
DOCUMENT RESOME

ED 207 809

AUTHOR
TITLE

INSTITUTION

ROSS AGENCY
REPORT NO
PUB DATE
GRANT
NOTE
AVAILABLE FROM

SE 035 502

Solomon,Synthia J.
Teaching the Computer, to ,add: An Example ,of
Problem-Solving in an Anthropomorphic Computer
Culture. Artificial Intelligence Memo No. 396.
Massachusetts Inst. of Tech., Cambridge. Artificial
Intelligence rab.
National Science Foundation, VashinTton, D.C.
LOGO-41
Dec 76
NSF -EC -40 708 -X

2p.
Artificial Intelligence Lab., 545 Technology Square,
Rs. 338,, Cambridge, NA 02139 (S1.75).

!DRS PRICE HF01/PC01 Plus Postage.
DESCRIPTORS *Addition; *Computation; Computer Programs;

Computers; *Computer Science Education; Discovery
Learaing; *Learning Activities; Mathematical
Concepts; Models; *Problem Solving; Program
Descriptions; Prograaing; Secondary Education;
*Secondary School Mathematics

IDENTIFIERS *LOGO Programing Language

ABSTRACT #

This document describes ow, to teach a soaputer to
add numbers using the LOGO programing guage. The programing1
project is described in the way a stude4 'Wt develop it. The model
of developing the program uses huaans as an anthropoaorphic nodal lot
the'coaputer, and the computer as a model for people. The document
has an unorthodkAr style, as much of it is in the fora of a monologue
that reflects a prograveres mind who is working on a project. The

. paper concludes with the goals of the project that were attained and
rontains suggestions for further extension of the investigation.
(NP)

Reproductions supplied by EDRS are the best that can be lade

* from the original document.
,

t.

MASSACHUSETTS INSTITUTE OF 'ITCHNOLOGY

O
Artificial Intelligence
Memo No. 396

A.I. LABORATORY

December 1976
LOGO Memo No. 41.

Teaching the Computer to Add: An Example of Problem-Solving in an

U.S. DEPARTNENT OF EDUCATION
NATIONAL INSTITUTI,OF EDUCATION

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

XThe document has been reproduced as
recerved from the person or organization
onginanng It
Minot changes have been made to improve
reproduction quality

Points of view or opinions stated in this docu
mint do not nepessaray represent official NIE
Position Or policy

Anthropomorphic Computer Culture

by

Cynthia J. Solomon

Computers open up new ways to think about khowledge and learning.
Learning computer science should draw upon and feed these new
approaches. In a previous paper called "Leading a Child to a
Computer Culture" I discuss some ways to do so in a very element-
ary context. This paper is'a contribution to4extending such
thinking to a more cdvanced project.

The research described in this paper was conducted at Massachusetts
Institute of Technology in the Artificial Intelligence Laboratory's
LOGO Group under the:support of the National Science Foundation
Grant No. EC40708X and at Boston University.

2

r-

Teaching the Computer to Add: An Example of Problem-Solving' in an

Anthropomorphic Computer Culture

by Cynthia J. Solomon

The project of defining,numbers and setting up the rules of

addition has been undertaken or discussed in elementary school math

classes.'in college mathematical logic classes.t.in computer science logic

design, in eget:his programming courses and in child psychology courses. and

so on. In each case very different aspects of the project have been

stressed. Hers, we look at the project as an example of problem solving in

fi

what we have called an Anthropomorphic Computer Culture.

This paper describes how to teach a computer to add numbers.

"Teach?", you might say, "dose that mean program?" Yes, the paper

describes a programming project and how a student might develop it. So it

gives a model for developing programs. But there is something else.

Learning to add numbers is an experience we have all had. My model of

-developing-theprogram-uses-ourselves as an anthropomorphic model for the

computer Is useful resource for student programmers) and the computer 89 a

model for us Ia useful resource for evpryons). The paper is really 'about

ways to think eaboutdoing thee two things at once. Hence its unorthodox

style. Much of it is in the form of a monolog which tries to reflect what

goes on in my mind as I work on such a project; at least that part of-what

goes 4: which I would offer to a beginner as a model.
ae

In elementary school kids are presented with "number facts" and

"addition facts". But they are deprived of a most valuable and important

notion: what it is like to make up a set of rules, to define a domaiA

3

PAGE 2

under,which these rules cad be consistently applied. Kids are not given a

chance to see the process at work, get a feel for the power of recursion,

or get a sense of how procedures are built up, debugged,'-elaborated. The

kids are not helped to look for tricks (or look at some "facts" or

techniques as 'tricks towards making problems easier to deal with.) The

Idea that. you can develop your own set of heuristics is a,very important

contribution to your own problem-solving abilities. Maybe an even more

Important idea is that of learning from mistakes or "bugs" and developing

debugging techniques, but in a world where everything is a "fatt" it is

hard to appreciate or get involved with debugging processes.

This reaction might alSo be encountered in recursive function

theory classes where the idea,of recursion ii-known, but its real power as

a problem solving instrument is not felt and where the Peano axioms are

received as "facts" (albeit formal proms are introduced.) Students come

out of the experience as if they had undergone a set-of' well proscribed

exercises. They thiok of recursion and inductive methods as hocus pocus,

not something that is really practical, but something to be applied in very

special situations like courses in recursive function theory or induction!

They do not see the deep implications"whi6 this rich project offers them.

Of course, the case might be made for the overwlvalming'

difficulty in giving kids a taste for debuggiog, heuristics, process,

procedure without the use of computers. But in,many computer courses, this

project is again viewed very narrowly as an exercise, not as a way of

gaining insights into the nature of intelligence.

Us present a different point of view: here, In this computer

PAGE 3

culture, we explcire this project as a legitimate research question. UM

wilebbuild our own system, find our own way. We might draw upon personal

,knowledge of number facts and skill algorithms.
*IP

A-View of the Computer Culture

Computers open up new ways to learn about the development of

knowledge and thinking. The computerist--the computer scientist- teacher-

mathematician- psychologist- -can create a culture in which it ;s possible to

observe students engaged in a learning process. We can experiment with

teaching AechniqUes and content areas.- And thus, we can develop a computer

Culture conducive to learning for a range df students from naive to expert.

So we take a bare computer and enrich it with languages to talk in and

attach devices like turtles and music boxes so we have concrete thingspto

do and talk with.

One reason turtles were introduced into this culture was to

concretize an underlying heuristic principle in problem- solving --

anthropomorphize!
Make the idea come alive, be someone --albeit it lives

only in the mind. Talking to inanimate objects and thus giving them life

is an implicit pattern in our
lives: we have tried to turn it to advantage

and make it an explicit process. The turtle world is one example and

easily fosters the idea of developing mental imagery for concretizing,

abstrations. But throughout this culture
anthropomorphism, abound: we,see

the 'computer, the program, the debugging process, etc. as people we can

talk to and talk about. Ue extend this even further to imagine "little

men" residing in the computer and coming alive to carry out a procedure,

then disappearing.

5

PAGE 4

o

'LOGO, the programming language we use, is designed to encqurage

anthropomorphises: LOGO is procedural and recursive. The importance of

having a procedural language is born out by our hypothesis that an

essential aspect of the growth of our knowledge base is the process of

absoruing local procedures into a hierarchical structure where only the

iop-most procedure is even recalled by name or description.

We observe the development of our programs from one buggy state to

another. We feel ourselves learning from these bugs as we carefully modify

the procedures so that their behavior grows closer to our goal state. As

our experience increases we eee that some bugs afforld us brilliant new
o

Insights into unexpected ways of achieving results. We begin to watch for
es

'',then, ready to.capita.lize on bugs. Bugs are living creatures which we

name, pamper, scold, laugh at. laugh with, and learn from and enjoy.

Another anthropomorphic influence on the programming language

design 'affected procedure names and variable names. Their composition has

few restrictions and their mile can be longer than most people want to

type. In this anthropomorphic computer culture naming is an important

element. It helps to separate out and identify one procedure from another

and one bug from another. Agair., the explicit use of naming as a problem-

solving tool is recogniied as an eseenfial ingreciiimt.. A first step toward

creative development for beginners occurs when they make up their first

procedurds and in so doing must give tnem names. This parallel activity

can really be mind - blowing. The etudeht "teaches a new word" to the

computer. This power, to define and create. to give meanings to words, it;

reemphasized by the project described below. The same feeling of power

V1.

PAGE 5 .

0

offered to beginners in their first experiegces defining procedures is

reinforced even more strongly whet, as more sophisticated students they

create procedures to add numbers.

Discussing the Project

In the next sections a style of problem solving is presented :.in

the context of developing an actual program for addition. 'The style is
-

discursive and reflective as I attempt to follow through 'the project as if ',

i were doing it now while talking to you.

The way the procedures are constructed in this paper reflects a

definite style of problem-solving. Rather than making a formal plan first

by flowcharting for example, I rely on a procedural approach which is more

natural and intuitive. Procedural thinking and in particular recursive

thinking in t hemselves encourage a structuring and planning uut. Advice

like: Reduce the problem, simplify, do first what you know how to do.

. defer problems, try tolimit the number of jobs any one procedure has to do

so that its role is clear - -is an active part of the procedural development

of a program.

Here le an example of the kind of discussion Which might occur

withe students.

First of all let's remember we want to make up addition

operation so that we can say

PRINT ADD 16 532

and the computer will say

548.

PAGE 6

We also have, to remember that there are no arithmetic 'operators (helpers)

available to us.

How do computers really add? Some people answer: it's in their

hardware; it's built into the system; it's hardwired. Is addition

*hardwired" into our system, are we like computer:sand so if a wire is

loose we can't do it.

It is true that arithmetic is a-very mecessary part of-any

4computer's hardware, but the hardware is made up of "Imical units" which

are based on the same ideas we will investigate. "Well, could we do.

without arithmetic primitives ?" To the beginner it really doesn't seem

possible. it's like recursion you tell me addition is not primitive but

emotionally it just seems unthinkable. What about addition in children.

IS It-really a primitive or are there pieces of knowledge which are

acquired. Maybe me are so familiar with addition that we forget its

Components. sYesi addition is a familiar operation. But what if we had to

tell a little man how to add? Where do we start? We might ask ourselves

If we know of a similar experience. Hey, look what we have-to do is "teach

the computer" to- add -- just like we might teach a person! Well now

teachers teach,kids to add, we were once those kids, how did we learn - can

we give ourseIves some tips (But i thought it was hardwired and teacher

just..). ,

At this point in past discussions two suggestions emerge.

Teachers say we, have to teach the computer the "number facts" and

computerists say we have to build a 18 x 18 table. Great, i say, a

beginning. To the teachers I ask how do we teach the number facts and mhat

s

w.

I

O PAGE 7

are they and how many of them are there. To computer students I ask is a

IS x 18 table large enough and how do we organize it. The teachers will

face these issues loo,,after all making a tattle is a ay of "teaching"

number facts.

What kind of table and what are number facts. A table of the sums

of the first 180 numbers is very limited and building a larger table is

still very limited. 1s-that what I have in my head. Isn't there a key

Idea or two that 1' could build on without exhausting tle computer's memory.

Is it the case that children learn " number facts" like.16 + 28

,

36 as a primitive notion or is there a more primitive idea underlying it

. ,

all. 'What do kids learn about numbers. They learn about their

relationship to each other. They learn to order them. Sesame Street

teaches kids to count from 1 to 18 land now to 28). Let's pick up on that

and teach the compputer to count.

Counting bu 1

A first description of a procedure for'counting might look like

the following command:

TO COUNTUP :NUMBER
18 PRINT A001 :NUMBER
DC

What we have is a procedure requirhing one input, a number. COUNTUP's job

is to print the number following this input. To do this, we know, 1 must

be added to :NUMBER. Of course, We don't yet know how to do that job. But

wa opply.s powerful heuristic - -we pretent we know so that we can describe

how to count. That is we imagine me have all the procedures we need to do

9
O

PAGE 8.

the job. What we are doing,now Is getting a-feel for what those needs are,

thewnabing and listing them, and then putting their details aside until

later.
0

Actually we.can temporarily'"Cheat" and define A001 to be

SUM I :NUMBER

i.e.,

TO A001 :NUMBER
18..OUTPUT SUM I :NUMBER
END

Ue will replace this "phoney" algorithm later!!

fliGRESSION: In LOGO there are.2 procedure types: commands and operations.
COUNTUP is a .command, it does something out doesn't send back a message.
A001 is an operation; it does send back a message.

Now we want to really understand what COUNTUP does. One method we

4,

*offer Is to trace through the script of a procedure in the guise of little

men. Set into paper-and-pencil action a concrete example of COUNTUP at

work. 'Thui

COUNTUP 25 - EFFECT
26

:NUMBER ie'25
18 PRINT 26

We embellish LOGO with a kind of mets-language in writing out what is

happening. We use arrows to indicate flow.

Was this how you expected COUNTUP to behave? Not really. COUNTUP

was supposed to continue counting. it was supposed to

COUNTUP A001 :NUMBER

I ()

f

IMP

a

0.

5 a'

and then COUNTUP A001 ADD1 :NUMBER

and then COUNTUP icor Ami ADDi 'NUMBER

and do on.

We can look at the problem a.little differently.

The a9,tion Is to take :NUMBER and

PR:NT A001 :NUMBER
'

then we :dint that same action to be performed

on Awl :NUMBER and so on.

Well. let's tell COUNTUP to do just that. We change GoUNTUP.

TO COUNTUR:NUMBER
18 PRINT A001 :NUMBER
28 COUNTUP AOO1 : NUMBER

END

PAGE 9

COUNTUP tens Itself to COUNTUP. Good. Let's trace through this version.

I

ti

c

COUNTUP 26

:NUMBER is 26
18 PRINT 27
20 COUNTUP 27

:NUMBER, is 27
4e%

10 PRINT 28 .

28 COUNTUP 28

.11
EFFECT

> 27

:NUMBER is 28.

18 PRINT 29
20

28
23

PAGE 10

Okay, COUNTUP seems to be working well. It is a simple recursive procedure

which doesn't know how ostop by itself. We see the Little men never

report back, they never disappear, but remain in a dormant state. Let's

change the script by extending t to include a description of when the job

Is done and the process should be stopped.

To complete the description we have to give COUNTUP more

Information, enother input. This second input coulq'be upper bound

whiN :NUMBER must newer exceed or it could be ,the nueber'of.times the' .

process should be repeated starting from :NUMBER. The first way seems

l 1mi t 1 ni and callusing i n -possible situations like
* . , ... ,

COUNTUP. 19 17'

1 -

where there mould be no visible effect of COUNTUP doing anythkig. -So We

12

4

4

PAGE 11

follow the a!ternate suggestion.

Although we.could change DOUNTUP, let's not. Instead we will make

a new procedure, REPEATAOO1, and give it 2 inputs.

TO REPEATA001 :NUMBER :TIMES

Its action is the same as COUNTUP's

PRINT A001 :NUMBER

excert REPEATADOI is going to stop on its own:.

In deciding how to describe the STOP rule, we look at various

possibilities. We could use a cute programming trick based on the "number

fact" that if we reduce :TIMES by 1 each time the PRINT action is taken

:TIMES wl:i even orally become 8. So we could

TES silrES 8

and

IFTRLE STOP

Oh, but we don't know how to reduce oy I. We don't know yet how to

Increase, by 1!! So let's keep this possibility in mind for later on when

we have plowed'though the whole job. For ncw, let's look for another

method, which will use only addition.

DIGRESSION: is the infix form of EQUAL used here as a truth-valued
identity operator not as a numeric "equals". By the way tnis special form
of condition&I is very uneful trews psdagog- i- c -pMnt of view because it is a
acre sotiti-tiieteeent of what is happening and easier to debug than

IF :TIMES 8 STOP
I.

Well, of course, we uould conjure up a new specialist which couunts up from

(instead of down to 8) until it reaches :TIMES. Let's call the

specialist "COUNTER. it can be a third input to REPEATA001.

TO PEPEATADDI :NUMBER :TIMESACOUNTER

PAGE 12

Ther. .

18 TEST :TIMES :COUNTER
28 IFTRUE STOP ;

otherwise

38 PRINT A001 :number

and now turn the job over to the next little man. but give him the changed

inputs.

48 REPEATADO1
A001 :NUMBER
:TIMES

Am :COUNTER

ENO

OIGRESSIUNI A procedure with 3 inputs!! It's strikingly cumbersome. True
enough and we will alleviate the situation by creating a superprocedure.
But it is extremely important to see that there are 3 separate roles to the
Job. By Naming them ue can talk about them.

Now let's see our little men at ubrk.

14

REPEATADO1 23 2 8

0
;X.

:NUMBER is 23
:TIMES 1e 2
:COUNTER is 8
18 TEST 2.0
20 IFTRUE.
38 PRINT 24
49 REPEATA001 24 2 1

4?

sleep

A

EFFECT

24

25

4;

:NUMBER

ITIMES,is 2
:COUNTER is 1
18 TEST't 1 (0r1.1)

28
38 PRINT 2S ---------
49 REPEATA001 25 2 2

(sleep
\, .1

:NUMBER is 25
:TIMES is

:COUNTER is 2
18 TEST 2.. 2
20 IFTRUE STOP

47.

PAGE 13

DIGRESSION, This kind of "playing computer" really helps in debugging, and
in general understanding the'flou of a process. But it is personal. and
you have to be the initiator to really appreciate thehelb

Now that REPTA001 works we can create a superprocedure to handle

15

0

PAGE 14

C

:COUNTER. let's make COUNT8Y1 servelhatpurpose.

TO COUNTBY1 :NUMBER :TIMES
18 REPEATA001

:NUMBER
:TIMES
8

ENO
Now we try it.

COUNTBY1 51 8
52
53
t4
SS
56'
57
58
59

Great!!

Hey look, 51 + 8 59. We really have an adding machine!!

There is a problem. The job isn't really done. We really are

only interested in the final number not the intermediate ones. We might

not always want to print the number. We want to be free to decide what too

do with the result each time we set the procedure in motion. 'Stated in

LOGO terms we want COUNT8Y1 to be an operation not a command. We want

COUNTBY1 to send back a message.

TO COUNTBY1 :NUMBER :TIMES
18 OUTPUT REPEATA001

:NUMBER

:TIMES

8
ENO

But, of course, for this change to work REPEATA001 must be transformed into

an operation. Okay, let's do it.

1 6

PAGE 15

0

let's look at REPEATA001 as it now is.

TO REPEATADO1 :NUMBER :TIMES :COUNTER
18 TEST :TIMES :COUNTER
20 IFTRUE STOP
30 PRINT.,A001 :NUMBER
40 REPEATADO1

A001 :NUMBER
:TIMES

A001 :COUNTER
END

Let's go through the script and see what needs changing so that we can

convert REPEATADO1 to an operation. There are 3 action8 taken by

REPEATA001:

1. when tTIMES :COUNTER the procedure halts

2. a number is printed

3. the tab is repeated on new inputs

Let's decide what changes need to be made in each case.

1. _Instead of only hafting when the job is done e want to send

back :NUMBER. So

IFTRUE OUTPUT :`NUMBER

2. We no longer want to print, so we can erase line 38.

3. In this care where the job'is repeated but with new inputs, It

Is clear that the resultant action is what needs to be output. So ,

48 OUTPUT REPEATA001
A001 :NUMBER
:TIMES

A001 :COUNTER
This i_e__obvlous_butalso hard --f-or atitnirpeop-te- to accept if ter amoment's

reflection. Oh, the magic of recursion!! Well, it's not so magical. Put

yourself into the place of little men. Play computer yourself.

For example, Imagine you want to increaee 17 by 1. So you give

the Job to REPEATA001.
VW-

REPEATAOO1 17 1 8

:NUMBER is 17
:V.MES is'l
:COUNTER is O/r
10 TEST 1.8 gals
20

A\

ATA001 18 1 1

the message Is 18

:NUMBER is 18
:TIMES Is 1
:COUNTER is 1

18 TEST 1.1

FTRUE outpu

the message is

PAGE 16

If there was no instruction telling mat to do with the message a BUG would
havio occurred causing the computer lumlaim 'What do i do with 18'.

It looks like °we have an operation which will do the job. Of

course. the whole process depends upon A001. It's now time to look closely

at what is needed there.

ADOIng 1 to a Number

Let's add 1.

18 1 ---> 19

1 --->- 277

When we add'l to m number we really transform the last digit of

the number. So what we want is to take the number apart.

1 and 8

Then change 8 to 9.

S

ri

Then put the new number together.

I and S

This should be easy. Let's call this Input "NUMBER, so

WORD

.BUTLAST :NUMBER
DIGITA001 LAST :NUMBER

Thus

PAGE 17

TO AD01 :NUMBER
18 OUTPUT WORD

BUTLAST :NUMBER
DIGITA001 LAST :NUMBER

ENO
Notice we have changed the problem to one which involves only digits--10

e I emen t e.

Adding 1 to 8 digit is simple. If the digit is 6, then the result

Is 7. If the digit is 8, then the result is 1. So we merely follow

through on this idea and we have a procedure.

TO OIGITADOI :DIGIT
IS TEST :DIGIT'. 0
28 IFTRUE OUTPUT 1
39 IF :DIGIT 5 OUTPUT 6
58 IF :OIGIT.9 OUTPUT 18

DIGRESSION: Notice we have to check for each digit and so it doesn't
matter in what order we check on the input's identity. Not does it matter
about the form of conditional.

ADOI 28 ---> 21
A001 346 ---> 347

It looks like this procedure is marking!!

Let's try countbyl.

COUNTBYI 8 7 ---> 15

COUNT9Y1 18 7 -. -> 115

19

PAGE 18

A

huh ... what's this!

COUNTBY1 176 5 ---> 1711

Oh, no! We have a bug!! Look

COUNTBY1 176 5

should really be 181 not 1711. Oh. ha, look. It's a CARRY bug

1 0 1

should be 7+1, i.e.. 8.

Okay, let's look closely at what A001 does when the last digit of its input

is 9.

A061 9 ---> 10

That's okay.

A001 19 ---> 118

Ugh!!

But now we know the bug. we can find a cure. We have to take

special action when the last digit is 9. So

TO A= :NUMBER

18 TEST 9 LAST :NUMBER

28 IFTPUE

What should be done? That's simple.

ADO 1 to BUTLAST :NUMBER

and join that to 8 in place of LAST :NUMBER

2 ()

28 1FTRUE OUTPUT WORD

A001 OUTLAST :NUMBER

0

38 OUTPUT WORD=
OUTLAST :NUMBER
DIGITACIDI LAST :NUMBER

END

The ultimate fest might be

A001 999 ---> nee

SUPERADO

PAGE 19

There is still a slight problem. Imagine we cant to add 99 and

9999. We will need 1881 little men, all alive although in a dormant state.

That's t000 much both time -wise and uork-area-size-uise. To be practical

we have to reduce the amount of work. We can do that by applying the same

methods we used L. A001. Change the problem to be addition of digits whose

results get concatenated together. So

TO ADO :NI :N2

The pl. court by one from. LAST iN11 do it LAST :N2 times: do the same for

the rout of the digits in stil and :N21 stick It all together.

IOW
ADO BUTLAST :NI

OUTLAST :N2
COUNTBYI LAST INI

LAST sN2

Repeat this will) either sN1 or sN2 is stripped of everything.

21

PAGE 28

30 TEST EMPTYP :N2
48 1FTRUE OUTPUT :N1
50 OUTPUT WORD

ADO BUTLAST :N1
BUTLAST :N2

COUNTBY1 LAST :N1
LAST 042

ENO

Extensions

The project is done in a sense, but it is not closed to

extensions. For example, you could rewrite the procedures using SUBTRACT1

as well as A001. Better still, you could extend the domain to include

negative numbers or even decimals. Another direction to take is to make up

other arithmetic operations like MULTIPLY or DIVIDE or extend this to any

base system or build a modular arithmetic system, etc.

Are there some :umber operations which must be built into the

programming language at a more primitive level? The one that comes

immediately to mind is CLOCK, an operation which reports on the ticks of

the computers clock. What about operations not restricted to numbers?

Which are really primitive?

22

