.o . DOCOBENT RESUME

' ED 207 809 . SE 035 502
AUTHOR Soloamon, cynthia Je .
TITLE Teaching the Computer. to Add: An Example of

Problea-Solving in an Anthropomorphic Computer
: Culture. Artificial Intelligence Memo No. 39€.
- INSTITUTION Massachusetts Inst. of Tech., Cambridge. Artificial
Intelligence Lab.
SPONS AGENCY National Science Foundation, washin,ton, D.Ce

REPORT no\ LOGO-41
POB DATE] Dec 76 2
* GRANT : NSP-EC-40708~X

NOTE 22p. .
[AVAILABLE FRGM Artificial Intelligy=nce Lab., 545 Technology Square,
5 . ‘ Ra. 338, Cambridge, MA 02139 ($1.75). -
| EDRS PRICE MFO1/PCO01 Plus Postage. -

DESCRIPTORS *Addition; *Computation; Computer Programs;

Computers; *Computer Scieace Education; Discovery
Learaing; *Learning Activities:; uathenatical
Concepts; Models; *Problem Solving; Progras
Descriptions; Programing; Secondary Education;
*Secondary School Mathematics '

IDENTIPIERS . *LOGO Programing Language

1
ABSTRACT ' : |
: This document describes how to teach a gomputer to |
add nuabers using the LOGO prograaming 1429uaqe. The programing |
project is described in the way a studen aight develop it. The model
of developing the program uses humians as an anthropomorphiac scdel for
the computer, and the coapyter as a model for people. The document
has an unorthodex style, as auch of it is in the form of a monologue
L that reflects a progra! er's aind vho is working on a project. The
| paper concludes with the goals of the project that were attained and
f goontains suggestions for further extension of the investigation.
‘ (!P)
|
i

i
|
| |
-
| |
| 1
f v
, , |
| z
| i
f i
‘ ,

BARERRRERRRRRERARRRRRERRRRERRR AR R RRR AR RRRRER AR R RRR AR R SR REE RRRRRR KRR RR

» Reproductions supplied by EDRS are the best that can be made *

* fros the original docuament. *

O‘O‘ BRRERRRRRRRERERABRARERERRERRE B AR AR AR ARERER KRR AR XX BXERE R R ERXBRERBRE

Q »

[y
r
i

o . -

MASSACHUSETTS INSTITUTE OF Ti.CHNOLOGY «

A.I. LABORATORY

e »
.

'ED207809

Artificial Iatelligence ' December 1976
. Memo No. 396 LOGO Memo No. 41.

Teaching the Computer to Add: An Example of Problem~Solving in an

Anthropomorphic Computér Culture

U.S. DEPARTMENY OF EDUCATION by -
NATIONAL INSTITUWE OF EGUCATION
EDUCATIONAL RESOURCES INFORMATION .
CENTER (ERIC) Cynthia J. Solomon
x‘l'hn document has been reproduced as N
tecervad from the person or organuzaton
ongnatng it
Mmoot changes have been made to improve
vupvoducuon quamy

® Ponts n' view Of OpHIONS smed m m-s docu
ment do not necessaniy represent otficial NIE
posTION OF POHCY

Computers open up new ways to think about kriowledge and learning.
Learning computer science should draw upon and feed these new
approaches. 1In a previous paper called "Leading a Child to a
Computer Culture" I discuss some ways to do so in a very element- T
ary context. °This paper is 'a contribution to extendlng such
thinking to a more cdvanced project.

L~

The research described in this paper was conducted at Massachusetts
Institute of Technology in the Artificial Intelligence Laboratory's
LOGO Group under the. support of the National Science Foundation
Grant No. EC40708X and at Boston University.

¢

2

Teaching the Computer to Add: An Example of Problem-Solving' in an

4

Anthropomorphic Computer Cul ture >

by Cynthia J. Solomon >

The project o} fdefining: numbers and setting up the rules of
addition has been undertaken or discussed in elementary school math
classes, in college n;thematical logic classes.gin computer science logic
design, in systéms programming courses and in child psychology courses, and
so on. }n each cao; very different aspects of the project have been
estressed. Hers, ue look at the project as an examplé of probiem solving in
what ue have called an Aéthropomé;phiu Computer Culture.

This paper describes hou to teach a computer to add numbers.
"Teach?", you might say, "does that mean program?” Yes, the paper
deocrlbes a programming project and hou a student might develop it. So it ¥
gives a model for developing programs. But there is something else.

Learning to add numbers is an experience ue have all had. My model gf

_developing-the-program-uses ourselves as an anthropomorphic mode! for the ———]
computer (a useful redource for student prograu;ers) and the computer as 8
wmode! for ue (a uqudl resource for ev?ruone). The paper is reallg’abou;
< Haye to think sbout doing thee tuo things at once. Hence its unor thodox
ltdle. Much of it is in tﬁe form of a monolog which tries to reflect what
goes on in my mind as | work on such a project; at least that part of what’
goes on uhich | uguld offer to 8 baginner as a model. |
) In ele‘ontaru school kldo are presented ui:h'"nunber facts" and

“sddition facte”. But theg are deprived of a most valuable and lmportant

notiont what It ie like to make up @ set of rules, to define a domauh

undﬁr,uhich these rules car be consistently applied. Kids are not given a
chance to esee the process at work, get a feel for the power of recursion,
or get a sense of‘hou procedures are bullt up, debugged,-elaborated. The

kide are not heiped to look for tricks {or look at some "facts” or

f - o

techniques as tricks touards making problems easier to deal with.) The
Idea ‘hat.you can develop your. oun set of heuristics is ;~v;Fu impor tant
cog;rlbutlon to your oun problem-solving abilities. Maybe an even more
Important idea is that of learning from mistakes or "bugs" and developing
dobuoglhg techniques, but in a world where sverything is a "fact” it is
hard to appreciate or get iq;olved Wi th debugging processes,
' ?hio reaction light_pl%o be encountered:in recursive function
5theorg classes where the idea of recursion id<k;oun. but its real power as
@ problem solving instrument is not felt and where the Pzano axioms are
received as "facts" {queit‘fornal proois are introduced.) Students come
out of the experience as if they had undergone a set of well proscribed
exercises. They think of recursion and ihduétive methode as h;cus pocus,
not something that is really p;éctical. but something to be appliedvln very
-epecial situations |like courses in rec;rsive function theogb\or induction!
They do not see the deer implications which this rich project offers them.
0f course, the case might be made for the ;veruhelning‘

difficulty ;n giving kids a taste for debugging, heuristics, process,
procedure ulthout the uae‘of computers. But in-many computer cqurses,, thia
project is again vieued very narrouly as an exercise, not as a way of

gaining insights into the nature of intelligence.

We present a different point of vieu; here, in thie computer

e

,

culture, we expiore this project as a legitimate research question. We
- b
w1 build our oun system, find our oun way. He might drau upon personal

knowledge of number facts and skill algorithms.
/ . . . T)
AVieu of the Computer Culture

Computers open up new Hays f; learn about the development of
knou!edge and thinking. The computer ist--the computer scientist-teacher -
mathematician-psychologist--can create a culture in which it is possible to

observe students engaged in 3 learning process. We can experiment with

7

teaching techniques and content areas.. And thus, we can develop 3 computer

o

cul ture conducive to learning for a range 6f stu&ents from naive to expert.
"Go we take a bare computer and enrich it uith languages to tali in and
httach devices like turtles and music boxes 8o ue have concrete things:to
do and talk with.)

+ One reason turtles uer; introduced into this cul}ure was to
concretize an underlying heuriptic prlncipl; in problem-solving--
anthropomorphize! Make the idea come alive, be someone--albeit it |ives
only in the mind. Taiking %o inanimate objects and thus giving them Iife
Is an implicit pattern in our liveos we have tried to turn it to advantage
and mpke it an explicit process. The turtle uqud is one example and
easi |y fosters the idea of develdbing menta! imagery for concretizing,
abstractione. éut throughout this culture anthropomorphisms abound; we see
the‘éonputar. the program, the debugging process, etc. as people we can
talk to and talk about. ije extend this even further to imagine "little
men" reelding In the computer and coming alive to carry out a procedure,

then disappearing.

-

"LOGO, the programming language we ute, is designed o encqurage
anthropomorphisms. OGO is procedural and recursive. The importance of
having a procedural Ignguago is born out by our hypothesis that an
essentidl aspect of the grouth of oyr knouledge base is.ihe procos; of
absorving local procedures inté a hierarchical strdﬁture where onig the
%op-uost procedure is even recalied by name or descriptioé.

Ws observe the development of our programs from on; buggy state t;
snother. He foe; oureelves learning from these bugs as we carefully modify
the procedures so that their behavior grous closer‘to ouﬁ‘goal state. As

our experience inCreases ue ses that some bugs afford us brilliant new

Ay

insighte into unexpected ways of achieving resuits. We begin to watch for
. ©
} -

. .them, ready to capitalize on_bugs., Bugs are living creatures which we

\néuo. pamper, scold. laugh at, lasugh with, and learn from and enjoy.

Another anthropomorphic influence 6n‘the progranfing language
design affected procedurs names and variable names. Their composition has
feu restrictions and their size can be ionger than most people uant to
type. In this anthropomorphic computer cul ture na:ing is an importaﬁt
element. [t heips to;separate out and ldentify one procedure from another
and one bug from another. Agair, the éxplicit use of naming as a probliem-
solving tool is recoqﬁii?d as an essential ingrediZnt.. A first step toward
creadtive development for beginners occurs when they make uﬁ their first
procedurés and in so doing must give inem names, T;is parallei activity
can really be nind-&louing. The student "teaches a new uocd“ to the

computer. This power, to define and create, to give meanings to words, i$

reemphasized by the project described telow, The same feeling of power

(; .

»

[}

>

offered to beginners in their first experiegces defining procedures is
reinforced even moré strongly wher as more sophfsticated students they

create procedures to add nunbéra.

-

Discussing the Project -

1

In the next sections a style of problem solving is bresentbdgjn

the context of developing an actual program for addition. ‘The style is . ‘
y _— . . ‘ '
discursive and reflective as | attempt to follou through ‘the project as if » |

i were doing it nou while talking to you.

" The uay the procedures are constructed in this papef reflects a

definite style of problem-solving, Rather than making a formal plan first

o

by flow charting for example, 1 rely on a procedural approach uhich is no?e
natural and intuitive. Procedural thinking and in particular recursive
thinking in themselves encourage a structuring and pianning vut. Advice

likes Reduce the problenm, oinpilfu. do first what you knou hou to do,

. defer problems, try to limit the number of jobi any one procedure has to do

80 that its role is clear-~is an active part of the procedural development

of a progranm.

Here is an example of the kind of discussion which might occur J
Wi the students.
|

First of a}i let’s remember we uant 10 make up an addition

4

-/
‘ operation so that we can say

PRINT ADD 16 532

and the computer uill say ,
S48.

We also have. to remember that“thore are no aritiwmetic operators (helpers) P
O - N N 4 3

available to vs. ’) |

How do computers really add? Some people ansuer: it's in their,

harduare; 1t's built into the system; it's harduired. Is addition .) S
) *herduired” Into our system, are we |ike conpute?s_and s0 If a wire is- 1
% A3
. “loose we can't do it. ' . l

It is true that arithmetic is a-very necessary part of any -

2 . R) ‘ N
computer's hardusre, but the harduare is made up of "logical units™ which

. .

sre based on the same ideas we uill investigate., "“Well, could we do. °

without erithmetic primitives?” To the beginner it really doesn’t seem

:r ©

possible. [t's like recursion you tell me addition is not primitive but

7

. .onotlonlllg it just seems unthinkable. What about addition in children.

- ¥

Is It really a primitive or are there pieces of knowledga which are

scquired. Maybe we are so familiar with addition that we forget its

components. .Yes; addition is a familiar operation. But wuhat it we had ta
d [

tell @ little man hou to add? MWhere do we start? We might ask ourselves v

If ue know of 3 similar exper ience. Hey, look uha{ we have-to do is "teach

the computer” to add -- just like we might teach a person! Hell now

tsachers teach kids to add, we were once those kids, how did we learn'- can ‘
we give ourse'!ves some tips (But] thought it uas harduired and teacher

Just..). . .
At this point in past discussions tuo suggestions emeryge.

Teachers say we have to teach the computer the "number facts® and

computer lets say we have to build a 10 x 18 table. Great, | say, a

beginning. To the teachers I.aak how do we teach the number facts and what

8

LI “5

h- A}
< .
are they and hou many of them are there. To computer students | ask is a

e
10 x 18 table large enough and how do we organize it. The teachers will

face these issues too,-after all making a table is a ua'g of "teaching”

number facts.) ‘ ‘

3

What kind of table and what are numbér facts. - A table of the sums -

of the first 108 numbers is very liu;itéd and building a larger table is

still very Hnlited. loutﬂa‘t what 1 have in ng\ head. Isn't there a key

jdea or” t'uo that T c'c;u!d buildlc;n thout exhausting tl"F computer’s memérg.
Is it the case that children learn Inumter facts" like 16 + 28 -

36 as a primitive noti;m or- is there a more primitive idea undwmrlying it

»

‘all. “Uhat do kids learn about numbers. Tney learn about their

relationship to each other. They learn to order them. Sesame Street
teaches kids to count from 1 to 10 (and now to 28). Let's pick up on that,

£ - ’

and teach the compputer to count.

Counting by 1 A A

A tirst description of a procedure for 'countin;; might look like
the fol fowing commands ’ ’ .

TO COUNTUP :NUMBER -

19 PRINT ADD1 :NUMBER

ENO . <.
Hh?t ue have is a procedure requh‘blr;g one ;nput. a number. COUNTUP's job
is to print the nm;er folloning this input, To do this, ‘ue know, 1. mus t
be added to sm. 0f course, we don't yet know hou to do tﬁa‘t job. But

we 8pply 8 pouerful heuristic--ue pretent :ae know so that we can déocrlbe

hou to count. That is ue imagine wue have all the procedures ue need to do

’
- ’ ths job. What we are doing now is getting a-feel for what those 6eeds are,

then-naming and |isting them, and then putting their details aside until

- fater.

o

Actually we.can temporarily "cheat” and define ADDl to bs
*SUM 1 :NUMBER
l.o., -
T~ TO ADD1 :NUMBER :
. 18.0UTPUT S 1 :NUMBER
He will reg;l‘ace this "phbneu" algorithm 1ater!!
DIGRESSION: In LOGO there are .2 procedure types: commands and operations.
COUNTUP is a command, it does something but doesn’t send back a message.
ADD1 is an operation; It does send back a message.
A4 ’ .
Nou ue uant to really understand what COUNTUP does. One method we
offer is to trace through the script of a procedure in the guise of'llttle

men. Set into paper-and-pencil action a concrete example of COUNTUP at

work. “Thus
N COUNTUP 25 - .~ EFFECT
. . .4-—-)% 26
. : ¢NUMBER is 25 ' ' .
18 PRINT 26 . s

’ @ne) o »

4— .
We embe!lish LOGO with a kind of meta-language in writing out uhat is
i happening. We use arrous to indicate flou. ;
Was this how you expected COUNTUP to behave? Not really. COUNTUP

Has supposed to continue counting. - It was supposed to

COUNTUP ADD1 :NUMBER

10

- .

and thén COUNTUP ADDI ADDI :NUMBER

<. . .)
d and then COUNTUP ADOI' ADO1 ADD1 :NUMBER s,
and 6o on. . . o
[L :
> We can look at the problem a little differently.

e o " The agtion ls to take : NUMBER 'a.nd\ ‘ |
PRINT ADDL :MFBER . © ° - ‘
then we wint that same action to be performed
on ADD1 :NUMBER and so on. - : 1

Uell, let's tel! COUNTUP to do just that. He change GUUNTUP. ;
‘ TO COUNTLP. s NUFBER ‘ ' ~ - /
. 10 PRINT ADD1 :NUMBER ' , .
* 20 COUNTUP ADD1 :NUMBER '
END - A o °

. COUNTUP tells itself to COUNTUP. Good. Let's t.race throug\h this version.

’ -

o

- S : A . PAGE 18

» 9 errect

~ COUNTUP 26 ' v o
: -—-> \.,.a . .
. . :M.MER is 26) . .
.) 18 PRINT 27 ’

20 COUNTUP 27

- . 20 .
.o . sleep X/

».
. &
‘ tNUMBER: is 27 . ¢ 3
" 16 PRINT 28 : c L
. COUNTUP 28 i
:MISER is 28.
N N - « - 18 PRINT 29
o ' 20 >

L)
-« g N

Okay, COUNTUP eeems to be ugrking well. [t is a simple recursive procedure

which doesn’t knou how to-stop by itself. We see the tittle ne?_t never

)

report back, th;g'r;ever disappear, but remain in a dormaqt state. Letl'e
change the .acrlpt by ®xtending it to incrude 2 déscript lor; of uhen the }ob
is dorfe and the procés; should be stopped. '

To complete the description we have to give COINTLP‘nore '
Iinfgmatlon. ano ther In’put.\n This second Tnput coulq'be ar upper bound
which (NUMBER myst never exceed or It could be the number 'of. timea the’

‘

process should be repeated st\art'lng from :NUMBER. The first way seems °

limiting and comgusing in-possible situations like *
° -

COUNTUP, 19 17 SRR
0 x - ¢ ' . 3 A ’
where there would be no visible effect of COUNTUP doing anything. “So we

12

PAGE 11

(v}

follou the a!ternate suggestion,
Al though we _could change COUNTUP, let's not. Instead we will make
8 rew procedura, REPEATADDL, and give it 2 inputs.
TO REPEATADO1 :M@ER t TIMES
Ite vi.i. & action is the same as COUNTUP's
PRINT ADO1 :NUMBER
excert REPEATADDL is going to stop on its oun:
: - In deciding hou to describe the STOP rule, we look at various ‘
| possibilities. We could use a cute programming trick based on the “number
fact" that if we reduce :TIMES by 1 each time the PRINT action is taken ,
¢TIMES ui!i eventvally become 8. So m; could
. TES: sTINES « @
ond
IFTRUE STOP
. _ Oh, but uwe don’t know hou to reduce ua 1. UWe don't knouw yet hou to
| Increase.by 1!! So let's keep this possibility in mind for later on when
we have ploued ‘though the whols job. For ncw, let's look for another
,M : ’ Method, which ulll use only addition.
| DIGRESSION: = is the infix form of EQUAL used here as a truth-valued

’ identity operator not as a numeric "equals”. By the way tnis special form

_of conditionsl is very useful froma pedagegicpoint of vieu because it is a
more explicit statement of what is happening and easier to debug than

(F :TIMES « @ STOP
Well, of course, we Lould conjure up a neu :peclalist which couunts up from
e (Iﬁotud of down to B) until it reaches :TIMES. Let's call the
l;.cllﬂlt *COUNTER. It can be a third input to REPEATADDIL.

- : TO PEPEATADDL :NUMBER s TIMES.:COUNTER -

13

PAGE 12

Ther. .
10 TEST sTIMES = :COUNTER
20 IFTRUE STOP

otheruise
38 PRINT ADD1 :number

and nou turn the job over to the next little man, but give him the changed

Inputa;
48 REPEATADD]
ADD1 :NUMBER
1 TIMES
ADN1 :COUNTER
END

DIGRESSIUN: A procedure uith 3 inputsi! [t's strikingly cumbersome. True
enough and we will alleviate the situation by creating a superprocedure.
But it ie extremely important to sse that there are 3 uparate roles to the
Jjob, Bg haming them we cen talk sbout them.

Nou let's see our little men at wbrk.

<

14

REPEATADOY 23 2 @ [24

EFFECT _

25

{ —> 0O
X

tNUMBER is 23

:TIMES i» 2

tCOUNTER is 0

10 TEST 2 « B8 (false
20 IFTRUE - —

30 PRINT 24

40 REPEATADDY 24 2 1

CORS®
sleep)[/
o »
tNUMBER
tTIMES is 2

tCOUNTER .is 1
10 TEST'2 « 1 (EEEE;)
8 —— :
38 PRINT 25

49 © REPEATADD] 25 2 2

&%

tNUMBER s 25
sTIMES 18 2+
:COUNTER is 2 -
18 TEST 2.« 2 (true
20 IFTRUE STOP

<

€

done

O1GRESSION:

"Thie kind of “playing computer® really helps in debugging and

in general understanding the flow of a process. But it is personal, and
you have to be the Initiator to really appreciate the help

Nou that REPEQTAMI Works we can create a superprocedure to handle

15

°

tCOUNTER. let’s make COUNTBYL serve that purpose.

TO COUNTBY1 :NUMBER 3 TIMES

18 REPEATADO1
: NUMBEPR.
sTIMES
8

END

Nou we try it.
COUNTBY1 S1 8

52
S3

Great!!

Hey look, S1 + 8 = 59, Ue really have an adding machine!!
There is 8 problem. The job isn't really done. He really are

only interested in the final number not the intermediate ones. We might

rot aluays uant to print the number.

do uith the result each time we set the procedure in lotiOn: ‘Stated in

LOGO terms ue want COUNTBY1 to be an operation not a command.

COUNTBY1 to send back a message.

TO COUNTBY1 sNUMBER s TIMES
18 QUTPUT REPEATADOL

t NUMBER

: TIMES

0
END

But, of course, for this change to work REPEATADD] must be transformed into

en operation. Okay, let's do it.

Ue want to be free to decide what tog

\

16

v -

o

We want

PAGE 15

Let's look at REPEATADDL as it nou is.

TO REPEATADD1 :NUMBER :TIMES :COUNTER '
180 TEST i1 TIMES « :COUNTER * .
28 IFTRUE STOP
30 PRINT_ADD1 :NUMBER
40 REPEATADO1 .
ADD1 :1NUMBER .

) 1 TIMES :
: ADD1 :COUNTER
o 2 Em .

Let’s go through the script and see uhat needs changing so that we can »

’ convert REPEATADOl to an operation. There are 3 actions taken by
REPEATADOL. -
1. when s1TIMES=:COUNTER the procedure halts '
2. @ number ig priiriated
3. the job is repeated on neu inputs
Let’s decide what changes need to be made in each case. >

1. _Instead of only halting uhen the job is doneie want to send
Ve

- ' ‘ back {NUMBER. So

________ IFTRUE OUTPUT NUMBER

R 2. HWe no longer want to print, so we can erase 'line 38.
. — ;)
3. In this cave where the job’ is repeated but with neu inputs, It
is clear that the resultant action is what needs to be output. So .
40 OUTPUT REPEATADO1
- ADD1 sNUMBER
. 1TITES
- ADO1 :COUNTER L
This 1o obvious but 8lso hard for meny-people to accept after a moment’s
retlection. Oh, the magic of recursion'! Uoll'. it's not so magical. Put
yourself into the place of little men. Play computer yourself.

For example, imagine you uant to increase 17 by 1. So you give

-

the job to REPEATAODI. v

17 :

PAGE 16

REPEATADDY 17 1 8

' -« 2
- &

N tNUMBER is 17 .
sTIMES i’ ‘

tCOUNTER is B

10 TEST 1.0 m

20 ——

—— ATADD 18 1 1
.| eeloutRy mj \,\%

the message is 18

-3

+NUMBER is 18

s TITES is]
:COUNTER is 1

10 TEST le} rue
FTRUE output |18 I —
the mesuage is =

1t there uas no instruction telling wnat to do uith the message a BUG would
have occurrad ceusing the computer to exclaim ‘What do 1 do with 18°, |

It looks |ike-ue have an operation which will do the job. Of

courue, the whole process depends upon ADDl. [t°s nou time to look closely

a8t uhat e needed there. -

ADDing 1 to & Number

Let's add 1. _ .
. 18 +1 -=-> 19 |
e T T 276 % 1 eee> 277 “
| When we add 'l to a number ue re;llu transform the last digit of
the number. So what we uant s to taks the number apart.

1 ond8

Then change 8 to 9.
18

PAGE 17

Then put the neu number together.
1 and9
This should be easy. Let's call this input "NUMBER, so
HORD ‘ .
, BUTLAST :NUMBER
CIGITADD]1 LAST :NUMBER

Thus
TO ADO1 :NUMBER .
1@ OUTPUT WORD 1
BUTLAST :NUMBER

DIGITADDL1 LAST :NUMBER
. END
Notice we have changed the problem to one which involves only digits--10

elements.

Adding 1 to a digit is simple. 1¢ the digit is 6, then the result .

ie 7. If the digit is 8, then the result is 1. So e merely follou
through on this idea and we have a procedure.

TO DIGITADOL :DIGIT
18 TEST :DIGIT = 8 ,
28 IFTRUE QUTPUT 1

30 IF DIGIT « 5 OUTPUT 6

58 IF 1DIGIT=9 OUTPUT 10

P

DIGRESSION: Notice we have to check for each digit and so It doesn’t
matter in what order we check on the input’s identity. Not does it matter
about the form of conditional. ‘

‘ADOL 20 ---> 21
ADDL 346 ---> 347

It looks like thie procedure Io%orking!!
Let's try countbyl.
COUNTBYL 8 7 ---> 15
COUNTBYL 18 7 ---> 115

PAGE 18

huh ... what's this!
COUNTBY1 176 § ---> 1711
Oh, no! We have a bug!! Look
COUNTBY1 176 S
should really be 181 not 1711. Oh, ha, lock. 1t's a CARRY bug
1{nx ' -
should be 741, |.e., 8.
Okay, let's look closely at what ADD1 does when the last digit of its input
is 9. | |
ADD; 9 -—-> 10
That’s okay.
ADO1 19 ---> 118
Ught!
But now we knouw the bug, we can find a cure. He have to take
imclal action when the last digit 18 9. So
TO ACO1 :NUMBER ‘ .
18 TEST 9 = LAST sNUFBER '
20 IFTRUE
What should be done? That'e simple.
ADD 1 to BUTLAST :NUMBER

and join that to @ in place of LAST tNUMBER

20 N

20 IFTRUE OUTPUT WORD
ADD! BUTLAST :NUMBER *
]) .

30 OUTPUT WORD -
BUTLAST :NUMBER
DIGITAOD1 LAST sNUMBER
END
The ultimate test might be

ADD1 999 ---> 1000

SUPERADD
There is still a slight problem. Imagine we want to add 99 and
9333. Ue will need 1080 little men. all alive although in a dormant state.

That'e too; much both time-uise and work-area-size-uise. To be practical

. He have to reduce the smount of work. He can do that by spplying the same

nthot;s ue used i., ADD1. Change the problem tc; be addition of digits whose
resulte get concatenated together. So

TO ADD N1 :N2 ”
The pi. court by one from LAST iN1; do it LAST iN2 times; do the same for
the rest of the digits in 1Nl and sN2; stick it ai! together.

WORD

ADD BUTLAST :N1 .
BUTLAST :N2
. COUNTBYL LAST N1

LAST N2

~

~

Repeat thie Jﬁtl\l sither 1Nl or :NZ is stripped of everything.

|

PAGE 20

30 TEST EMPTYP :N2
4@ IFTRUE OUTPUT :N1

5@ OUTPUT WORD
ADO BUTLAST :N1
BUTLAST N2
COUNTBY1 LAST :Ni
LAST :N2
END

Extensions

The project is done in a sense, but it is not closed to

/ extensions. Fér example, you could reurite the procedures using SUBTRACT1

as well as ADD]1. Better still, uou could extend the domain to include
negative numbers or even decimals. Another direction to take is to make up
other arithmetic operations |ike MULTIPLY or DIVIDE or extend this to any
base syetem or buiid 3 modular arithmetic eystem, etc.

Are there some iumber operations which must b°e built into the
programming language at a more primitive level? The one that comes
Immediately to mind is CLOCK, an operation which reports on the ticke of

the computers clock. WHhat about operations not restricted to numbers?

Khich are really primitive?

