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Abstract

Campbell and Fiske (1959) have developed four criteria of construct validity
“hen measures of more than one trait are obtained with more than one method.
In this study these criteria are compared with two other procedures—-—an
ANCVA model and Confirmatory Factor Analysis--for analyzing muititrait-
mytimethod (MIMM) data. Despite importent limita*ions of the Campbeil-
Fiske criteria, the usefulness of interpretations based upon the criteria,
jag heuristic value of their application, and the popularity of the method
all dictate that it continue to be used as a prelimjinary inspection of :
MTMM matrices. The principle advantage of the ANOVA model is a conveni :nt
Summary and test of convergent, divergent and method/halo effects. Hovever,
the limitations of this approach are even more numerous +han those en-
countered with the Campbell-Fiske criteria, and so the ANOVA approach
should ouly be used to supplement other procedures. Confirmatory factor
annlysis provides a direct test of the statistical significance and impor-
tance of various trait and method factors. The size of factor losdings
provide a convenient description of the magnitude of method and trait
effects, By constraining various parameters the resea>cher may formulate
and test alternative configurations of method and treit factors. Conse-
quently, confirmatory factor afalysis offers the advantagesruf both the
otter approaches without many of their limitations, and is the recommenced

procedure for ghalyzing MIMM data.




Cenfirmatory Factor Analysis and ANCVA Analyses

of Multitrait - Multimetaod Mat=ices

Campbell and Fiske (1950) have advocated “he assessment of validity oy
obtaining measures of more *han one trait, each o2 which is assessea by more
than one method. In the present examgrle the different traits are nine di-
mensions of evaluations of instructicnal effectiveness: the iifferent methods
o7 assessing the traits are student ratings of teaching effectiveness and
instructor ratings of their own teaching erfectiveness. Convergent validity,
that which is most typically determined, is the agreement between measures
of %*he same trait assessed by two different methods--student-faculty agree~
zment on evaluations of teaching. Discriminant validity refers to the diz-
tinctiveness of each of\the trait-factors.

Determination of convergent 2nd discriminant validity is based upon
inspection or analysis of a multltrait-multimethod matrix such as the one
shown in Table 1 (considering only the coefficients below the ma.n diagonal
of the entire 18 x 18 matrix at this point). Correlations between different
traits assessed by the same rethod appesr igxmonomethéd-heterotrait (the
upper left and lower right) blocks of tne matrix. Correlations between
different traits assessed by different methods are in the heteromethod-
heterotrait {lower lcft) blocks of the matrix. Whe convergent validity
coefficients, co}relations between the same traits assessed by different
methods appear in the heteromethod-monotrait disgonal of this matrix--the
values in <> in Table 1. I: is also valuable to have the reliabilities of
each measure in "the diagonals of the heterotrait-monomethod matrices--the
Values in parentheses in Table 1. Campbell and Fiske (1959) proposed four

criteria for sssessing convergent and divergent validity:
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The convergent validity coeficients should be statistically
significant and sufficiently different from zero to warrant
further examination of validity. Failure of this test indi-
cates that the different methods are measuring different con-
structs and implies a lack of validity in at least one of the
methods.

2) The convergent validities should he higher than the correlations
between different traits assessed by different methods. The
Tailure of this test implies that agreement on a particular trait
is not independent of agreement on other traits, perhaps suggest-
ing that the agreement can be explained in terms of a generalized
agreement that encompasses more than one {or all) of the traits.

3) The convergent validities should be higher than correlations
between differevt traits assessed by the same method. If the
convergent validities are not substantially higher, there is
the suggestion that the traits may be correlated, that there
is a method effect, or some combination of both these possibilities.
If the correlations between different traits assessed by the same
method approach the reliabilities of the traits, then there is
evidence of a strong halo or method bias.

=
—

The pattern of correlations between different traits should be
similar for each of the different methods. Satisfaction of this
criterion-——assuming that there are significant correlations emong
traits—-would siggest that the underlying traits are truly cor-
related. Failure to meet this criterion implies that the observed
correlation between traits assessed by a given method is due to
a methed or halo bias.

Despite the intuitive appeal of the Campbell-Fiske criteria, there
are numerous potential problems in their application. Although many of
these were anticipated by Campbell and Fiske, solutions were not offered.
Perhaps recognizing the dangers in the precise formulation of their cri-
teria, these authors stated that the development of statistical treatments
might be unnecessary or inappropriate, )
An obvious problem with the Campbell-Fiske criteria ‘s the lack >f

specification as to what constitutes satisfactory results. The applica-

tion to be presented in this paper, for example, involves nine traits,

each assessed by two methods. Testing the second and third criteria
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alone requires that each of zthe nine convergent wvalidi“ies be comrpared
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with 32 different correlations--a total
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un~ieldly, the likelihood of obtaining rejections due %o sanpling €luc*tua-
tizns alone increases geometrically with the number of traits and methods.
Th2 user is left with the task of determining eiiher the prop&rtion of
Tallures or scme average difference between the convergent validities

ani coefficients against which they are to bve coﬁgared. In either case,
the decision as to what constitutes a failure is arbitrary.

An even more serious ambiguity exists in ‘he criteria used tn assess
discriminant validity. At least conceptually, Campbell and Fiske make
clear distinctions bvetween method variance, trait variance, and trait
covariation. Method variance--the introduction f systematic variation
due to a specific method of data collection--is clearly detrimental to
dircriminant validity, though it does not preclude the deménstration of
either divergent or convergent validity. True trait variance (i.e., cona
vergent validity)--the correlation between different methods of assessing
the same trait that is iqdependent of method variance--is obviously gocd,
but it does not imply discriminant validity. True trait covariation--the
trre correlation between different traits that does not depend upon the
method of data collection--will increase the likelihood of failures in the
application of the second and third criteria. However, the fourth cri-
terion specifically tests for true trait covariation, and its demonstra-
tiop is taken as support for discriminent validity. A complete lack of
trait covariation makes interpretation more simple, but is unlikely to
exist in any but the most conrtrived of situs-ions (e.g., attitudes toward

-

cigarette smoking and capital punishment). Trait correlations approaching

unily can be unambiguously interpreted as a complete lack of discriminant




valiiity. TFor rost applications, hcwever, scme _ow +o noderate true
trait covariation is likely, and its interpretation is lert ambigucus,

The most serious problem with the Tamrtell-Fiske criteris is that

they are based .pon inspection of correlations between Observed variables,

but make inferences about underlying trait and method factors. The

validity of any set or interoretations depends upon the behavior ol the

inderlying constructs. This can be illustrated with the problem of

Systematically differing reliabilities. Application of the criteria im-

plicitly assumes, as recognized by Campbell and,Fiske, that each of the
Deasures are equally reliable. If there are substantial differences in
the reliabilities of different traits, or in the measures obtained with

different methods, then failures of one or more of the criteria may be a

function of the differential reliabilitieg alone. For example, if traits

assessed by one method are systematically more reliable than those assessed
by a second method, then the correiations among traits assessed with the

mre reliable method will be higher, and give the appearance of a method

effect. Some authors have Suggested that the multitrait-multimethod
matrix be corrected for attenuation (Heberlein, 1969; Althauser & Heberlein,
1970).

Similarly, the Campbell-Fiske criteria :lso assume that convergent
wlidities reflect the effect of shared :rait variance, While this is true,
the convergent validity coefficients can also be affected by shared methcd
variance or a trait-method iuteraction. Furthermore, the existence of
shared method variance or trait-method interactions may act to either
artificially'increase or decrease the observed validity coefficient. A
more detailed discussion c¢f the implications of thuse underlying inferences

is presented by Alwin (1974).

~J
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Since the developmernt of the Campbell-Fiske ~riteria for assessing
the multitrai*-multimethod nmatrix, a vrariety of specific statistical tests
have been developed Althauser % Heterlein, 1970; Alwin, 1974; Joreskog,
1374, “avanagh, MacKXinney % Wolins, 1971; ¥enny, 1979; Lomsx % Algina,
1974, Schmitt, 1978; Schmitt, Coyle & Saari, 1977, Werts % Linn, 1970),
~n the tresent study two of these orocedures are applied, and their 1limi-
tations are illustrated. The first is an analysis of variance technique
that was presented by Kavanash, et al. (1971), while the second is a
variety of corfirmatory factor analysis mocdels as elaborated by Schmitt (1978).

Tn the present study, the multitrait-multimethod approach was used to
validate students' evaluations of teaching effectiveness. Instructors in
329 college classrooms were asked Lo eveluate their own teaching effective-
ness on the same nine-trait instrument as their students. Previous appli-
cation (Marsh, in press; Marsh % Overall, 1979; Marsh, Overali & Kesler,
1979) of the Campbell-Fiske criteria left several questions unanswered.
In spite of evidence for both convergent and divergent validity, there was
the shggestion of a moderate method variance--particularly with the student
ratings. However, confounding this suggestion were the facts that: 1) the
Student ratings were more reliable than the instructor ratings (perhaps
explaining the higher correlations among the stddent ratings), and, 2) the
iikelihood that the correlations among the traits (instructional evalua-
tion factors) were true correlations rather than method or halo bias, The
purpose of this study is to compare the conclusions baged upon Campbell-
Fiske criteria with those obtained from two alternative analytic procedures,

and to discuss advantages and disadvantages of the approaches.

Method

During the academic year 1977-78 student evaluations were collected

)
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Divisiin of 3ocial Sciences at the

in rirtually all courses >7f2red in =he

“niversity of Scuthern California. Zvaluctions were admninistered s..ortly

—
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befire the end of the tern, sererally by a iesiznated student in the class
or by a staff perscn. The surveys wvere ccmp.eted By an average cf 76%
- {a range of from SL7 to 100%) of the students enroiled in each class.

Instructor selr evaluation surveys were sent to 2ll teachers who 1ad
been evaluated by students in at least twe different courses during the
same term. Instructors were asked to evaluate the effeciiveness of their
own teacning in both courses. These surveys were completed after the end
of the term, but before summaries of the student evaluations were returned.
While participation was voluntary, a ccver letter from tre Dean of the
Division strongly encouraged cooperation and guararteed the confidentiality of
each teacher's response. Instructors eval.uated both courses with a set of
iteus identical %o those used by students, except that items were worded in
the first person. They were specifically instructed to rate their own
teaching effectiveness and not to report how students would rate them. A
“otal of 181 instructors (78%) returned self evaluations from 331 courses;
ratings of 183 undergraduate courses taught by faculty, 4S5 zraduate ievel
courses, and 103 courses taught by teaching assistants,

The evaluation instrument consisted of 35 items that were designed
to measure 9 traits. Previous research, based upon a different sample of
511 undergraduate classes taught by regular faculty, determined the
reliability of the evaluation factors (median alpha = .Sk}, confirmed the
existence of the nine evaluation dimensions, and provided weights that were
used in calculating factor scores [See Marshj in press; Marsh & Overall,

1979). The evaluation factor scores used in the present study were weighted

averages, the weights having been derived from the previous factor analysis,
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2% standardized responses to each item, The =valuation trais-factors ari
3 orief descripticn are as follows:

LIARNING/VALUE=——1he extent to which students felt they encountered 2
raiuable learning sxperience that was intellectually challenging.

ZISTRUCTCR ENTHUSIASM--The extent to which students perceived the
instructor to display enthusiasm, energy, humor and an abilisy %o
hold interest

<RGANIZATICN--The instructor's organization of +the course, course
raterials, ard class presentations.

GROUP INTEZRACTION--Students' perceptions of the degree ‘o which the
instructur encouraged class discussions and invited students to
share their own ideas or to be critical of thcse presented by the
instructor. ’

INDIVIDUAL RAPPORT--The extent to which students perceived the instructor
to be friendly, interested in students, and accessitle in or out of
class. -

3READTH CF COVERAGE--The extent to which s*udents perceived the
instructor to present alternative approaches to the subject and
to emphasize analytic ability and conceptual urnderstanding.

EXAMINATIONS—-Students' perceptions of the value and fairness of
graded materials in the course.

ASSIGNMENTS—-TLe value of class assignments (readings, homework, etc)
in adding appreciation and understanding of the subject.

WORKLOAD /DIFFICULTY--Students' perceptions of the relative difficulty,
worklcad, pace of presentatious, and the nurber of-hours required
by the course.

Separate factor analyses were performed on the student and instructor
self evaluations for the 329 classes included in this study (Marsh, in
press; Marsh & Overall, 1979). This analysis was performed to determine

if similar evaluation trait-factors ur ‘erlie both the student and instructor

self evaluations, and if these were similar to results previously obteined

fcr a different sample of student ratings. Factcr analyses of both student

and instructor ratings confirmed the existernce of the same rine trait-

factors that had teen previously identified. Fach item, for both student

=y
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and iInstructor evaluations, loaded nighest on the factor it was desigzned
to measure. Lcadings for items defining =ach factor zenerally exceeded
.50, and all other 1;adings were tyricelly less than .20. Furthermore,
“he Tactor lcalings rrom both these analyses were quite similar to those
dreviously obtained with a different ropulaticn of student evaluations.
The 215 ‘actor loadings (35 items loading on each of 9 factors) for the
Tactor analysis of instructor ratings considered in this study correlated
90 with voth the 315 factory loadings obtained for student evaluations
in this study and thcse obtained with a previous factor analysis of a
different samnle of student evaluations; the two sets of 315 loadings from
the two factor analyses of the student ratings correlgt¢§“39$ with each
other. These findirngs justify the assumption that similar evaluation trait-
factors underlie both the student and instructor evaluations,

Results

Campbell-Fiske Criteria

Application of the Campbell-Fiske criteria discussed earlier requires
& visual inspectioa of the multitrait-multimethod matrix presented in
Table 1. One of the limitations of the uselof these criteria, as indicated
by Campbell & Fiske (1959), is the implicit assumption tnat the trait
reliabilities obtained with different methods are comparable., This is
clearly not the case in the present example, since student evaluations
{besed upon class average responses) are consistently more reliable.
Coefficient alphas (see Table L) for student ratings vary from .87 to
.98 (median .94), while thcse for the instructor self evaluations vary
from .70 to .90 (median .82). Consequently, for each of the correlations

presented in Table 1, the same correlaticn corrected for attenuation

11




iz alsc presentex. ntercretaticn ¢ <he Camptell-Fizke criteria -3 3diz-
:ugseq in terms cf both corrected and uncorrected zorrelastions.
\ The [lrst Campbell-Fiske criterisn requires that convergent valiizsy
~

No-

ccefticients be statistically significant and high enouzh to ~varrant
further consideration of validity. Zach of the convergert validity

ceerficients rresented in Tatle 1 is statistically significant, ani they

w

are substantial {(median r = .45. corrected Sor attenuation).

Znsert Table 1 Atout Here

The second Camrhbell-Fiske criterion requir 's that each canvergent
validity coefficient be higher than any other correlation in the seme
row or column of the same heterotrait-heterometnod blcck. %his test
requires that each of the uine convergent validity coefficients be com=
pared to each of 16 other coefficients--a total cof lhh'éomparisons in
all. Data presented in Table 1 satisfy this criterion for 143 of the 1Ll
comparisons (for both corrected and uncorrected ccrrelations), provid%ng
good support for this uspect of discriminant validity.

The third criterion requires that each convergent thidity te highér
than correlations betweern thet trait and any other trait assessed by the
same method. Appiication of this criterion to the uncorrected data
indicates only 4 rejecticns (out of 72 comparisons) for the instructor
self evaluations. For the student evaluations, however, there are 20
rejections (also out of T2 comparisons). On the surface, this would seem
to suggest a method ¢. halo effect for the student ratings, thoggh little
for the instructor self evalueations. However, this interpretation is

blased by the fact that the student ratings are consistently rore reliable

12
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than the instructor ratings. Correlations involﬁing only student ratings
are least attenuated, while thcse involving only instructor ratings are
most sttenuated. Consequently, relative to tHe e vergent validities,
correlatidns between student ratings are systematically incrqpsed and

} - 4
correlatyons among instructor ratings are systematically dec;eased. When
all corredqtions are corrected for at}gnuation, howsver, this criterion
1s still not met in 27 comparisons invélving the stuaent evaluations and
only 5 with the instructor self evaluations. The correction for attenua-
tionudecrgased the apparent method effect and lessened the difference in
method effect between student and instructor ratings, but these changes were
smsll.

The fourth criterion requires that the pattern of correlations among
different traits shouwd ée similar for the different methods. A wvisual
‘inspection of Table 1 suggests that this may be the case. To provide a
more precise test, the 36 off-diagonal coefficients in the student rating
block were correlated with those in the instructor rating block. The
result, r = L3, was significant at the -0l level and suggests that there
is a similarity in the psttern of correlations. This suggests that
there is true trait covariatﬁfn that is independent of method.

In summs:ry, the data prgvide clear support for convergent valiidity,
and at least two of the criteria of discriminant validity. Student-
instructor agreement on any one trait was indepencent of their agreement
on other traits. Furthermore, there was a similarity in the pattern of
tralt correlations for student and instructor ratings. There was an

indication, howaver, of some halo or method sffect-~particularly with

the student ratings,




The ANCYVA Aprroach

3ased upon recent citations in the literature, this techrigue appears
to have been porularized by Xavanagh, MacXinney, and Wolirs (1971). Stanley
{1961) demcnstrated how multitrait-multimethod data could be analyzed with
a three-factor unreplicated analysis of variance; wnen repeated measurements
of cases--ratings of collége classes in the present application--are measured
Over all levels of two other variables--traits and methods in this case--
three crthogonal sources of variation can be estimated. The main effect
due to classes is a test of how well ratings in general discrimirate between
classes, and is suggested to be analogous to convergent validity, It should
be noted that this is NOT the same use of convergent validity as that dis-
cussed by Campbell and Fiske (1959). The interaction between classes and
traits tests whether the differentiation Eetveen classes cepends upon
traits. If it does not, then the traits have no ¢ifferential validity
(i.e., each class is ranked the same regardless of the frait). This is .
teken to be a measﬁre of discriminant validity. The interaction géiween
clacses and methcds trsts -sther the differentiation between classes
depends upon methods. if .. .oces, then the different methods introduce a
source of systematic (undesi;able) variance. This is taken to be a mea-
sure of method or halo effect. The class by trait by method interaction
is assume. to measure only random error (i.a., the differentiation be~
tween classes is assumed not to depend upon any specific ffait-method
combination). Stanley (1961) recommends that the measures be replicated
for each sukrject within a given study,.thus providing independent es+:- P

mates of the three way interaction and the error term (also see King,

Hurter & Schmidt, 198C). However, his recommendation dces not seem to ever




follewed. In this model main effects due

ot

o treits and methods czn

alsc te calculated, but these sre Zererally cf less interest.

ty

oruch, larkir, %Wolins ard MacHirney (1570) and Xavenagh, Machirney
and Volins (1971, have describved computational procedures whereby the mean
sGuares and ithe variance comporent estimetes for the analysis of veriance
Zodel could te computec directly from the correlations conteinea in *re
zultitrait-multirethcd matrix. The computational equations for computing
these effects are presented in Table 2. ‘The systematic differences in tre
reliabilities ¢f student and instructor ratirgs, as previously discussed,
will procuce biased estimates of the discriminant validity ané method/halo
effects (Bcruch, Larkin, Wolins & Maciinney, 1970; Schmitt, et al., 1577).
Conseéuently, the ANOVA procedure was also spplied to the correlstions
that were corrected for unreliability (see Tatle 1).

Zach of the ANCVA éffects--COnvergent Veiidity, Divergert Validity,
and Method/Halo bias--and their variance components are presented in
Table 2, All three effects gre statistically significant fcr analyses
tased upon both the corrected and uncorrected correlation coefficients.
The size of the discriminant velidity effect (the variance compcrenc)
was approximately twice that of the methcd/halo effect. when the cor-
relation coefficients were corrected for attenuation, each cf the effeccs—~
except the error term--incressed. FKowever, the largest increase ceccurred
for the discriminant validity effect. As was observed with the Campbell- '
Fiske analysis, the correction for attenuation improved the discﬂﬁminanp

validity, but did not eliminate the method/halo bias.

-

Ingsert Table 2 About Here
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Tre princiral audvanteges o2 the ALTVA mciel are its ease of arrli-

cation end the convenient descriptive statistics surrmerizing the relative
zegritude of the effects ¢f convergent wvalidity, diverzent validity, and
methcd/halo vias. rowever, tae medel alsc ras major shertcorings. The
trotlzm of dilffering relisbilities, which this approach shares with the
“rratell-Fiske enalysisz, hes slready bteer discussed. The assumpticn +hat
the class by methed by treit interscticn contairs cnly error veriance is
net ncrmally testable, and its violations rey have varying influences on
the estimation of the cther etfects. The rodel makes no vrovisicn for the
Dossibility of true trait covariation or correlated iethod effects, and
trovides no test for their existence. Finally, mary <f the heuvristic
inferences that are likely tc result from the aphlication of the Campbell-
Fiske criteria will be.lcst with application of only the ANOVA analysis.,
Many of the disadvantages of the AN&VA model are shared with the Campbell-
Fiske analysis, but the misleading precision and simplicity of the ANOVA:
approach are less likely to reveal these potential problems,

Thére is no clear equivalence between the effects estimated by the
ANCVA model and the Camp“ell-Fiske criteria. Inspection of the computa-
tional equation for the convergent validity effect (see Table 2), indicates
that it is a function of the average correlation in the entire multitrait-
nultimethod matrix. This is clearly different from the Campbell-Fiske

criterion that is based ppon jJust the convergent validity diagonal. 1In

particular, even if all the convergent validity coefficients approached

.\\'m;ity, the average correlation in the entire matrix generally wnuld not.
) §¥hilarly, the ANOVA model might indicate a moderate degree of convergent

validity even if the average convergent velidity coefficient were close

16
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to zero.

The similarity of the divergent and method/halo effects in the ANOVA
model and the Campbell-Fiske criteria is harder to assess. Inspection of
the computational equations for the ANOVA effects (Table 2) indicates that
the discrimiﬁant validity and method/halo effects are a function of the
difference between the average of specified correlations and the average
correlation in the entire MTMM matrix, The comparisons in the Campbell-
Fiske criteria are more specific. Fu ﬁermore, the proportion of variance
accounted for by the four effects in the ANOVA model--the convergent,
divergent, method/halo, and error effects~-must sum to 1.0. This means
that an increase in the convergent effect will cause & decrease in the
divergent effect so long as the method/halo and error effects remain con-
stant. This is quite different from the Campbell-Fiske approach wherve
an increase in convergent validity will lead to an increase in discriminant
validity. Similarly, when correlations in the present epplication were
corrected for attenuation, phe Campbell-Fislke analysis indicated that the
Method:effect was re@gged (i.e., fewer. rejections of criterion 3), but
that the method effect in the ANOVA analysis actually increased--though
the increase was less than the increase in the divergent validity effect.
The ANOVA model has no term that is comparable to tke fourth Campbell-
Fiske criterion. In fact the ANOVA model is based upon the assumption
that traits are uncorrelated (see King, et al., 1980) but provides no
test of this assumption. These observations indicate that comparisons
between the ANOVA and éampbell-?iske analyses should be made cautiously.

In summary, application of the ANOVA model indicates siénificant
effects of convergent, divergent and method/halo effects. The size of

the discriminant vaelidity effect (the variance component) was more than

=
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“wice the szize of either 37 <he other =wo effects. The varisnce component
Tor this =ffect was also increased the mos: by the -orrection for atten.ua-
tion,

Confirmatory Factor Analysis

The confirmatory factor analysis approach is described under a variety
°f different lasbels in the literature: restricted factor analysis (Zoruch
% Wolins, 1970), confirmatory factor analysis (Werts, Joreskog & Linn, 1972}, -
Path analysis (Schmitt, Coyle & Saari, 1977; Schmitt, 1978), and exploratory
factor analysis (Lomax & Algina, 1979). This plethora of labels, and
particularly the emphasis on path analysis (aad structural equations) is
unfortunate. The analysis of the MTMM can be viewed as a straightforward
application of confirmatory factor analysis with a priori factors corres=-
ponding to specifi¢ traits and methods, and the mafor findings can be
interpreted in much the same way as can any other factor analysis. -

]

The Confirmatory Factor Analysis Model. 1In this study the notation,

the specification of the model, and the actual analysis are performed with
the commercially available LISREL IV program (Joreskog & Sorbom, 1978).

This program embodies Joreskoé's maximum-likelihood approach to confirmatory
’factor analysis, The model used in this analysis require; the specification
of thise different matrices.l These are the LAMBDA matrix that contains

the factor loadinas, the PSI matrix that.cAQtains the correlations between
the factors, and the THETA matrix that contains the error/uniqueness of

¢ach measured variuble. These are concertually similar to thé rotated
factor matrix, fdYe-matrix of correlations between factors, and the communa-

lities (a.ctxfally’bne-minixs the commuralities) that result from common

factor analysis, Ip confirmatory factor analysis, however, the researcher




is atle to comstrain various parameters in +he dilferent matrices in
order to test alternative models. <n “he basis of ~rese three matrices,
3 reproduced correlation matrix is determined that provides a "best rit”
to the original correlation matrix within the constraints that are imposed
oy the proposed model. Using matrix notation SIGM\, the reproduced ’
correlation matrix is defined as:

SIGMA = [LAMBDA ¥ PSI * TLAMBDA {j + THETA ZPSILON
In the present example, the confi,uration for the factor loading (LAMBDA)

Zatrix and the matrix of correlations between facjbrs (the PSI matrix) is

vresented in Table 3.

insert Table 3 About Here

~In the LAMBDA matrix, each of the 11 Tactprs (Ete 1 - Eta 11) repre-

-~

sents either a Method factor (Sta 1 & Eta 2), or a Trait factor (Eta 3 -

-

3tz 11). The first method factor is defined by the nine instructor self

evaluations (Ilrn, Ient,...,Iwrk), while the se.ond method factor is

RS
defined by the nine student ratings Sirm, Zant,,,,, Swek). Fach of the

nire trait factors is defined by the one instructor and one student rating

of the same trait, For example, the first trait factor (Eta 3) is the

learning trait factor agd is defined bty the Instructor and student ratings
of Learning. Zach of the "0" elements in the matrix represents a fixed

Parameter, while the other 36 elements are free and will be estimated.

In most of the models to be discussed--with 3jome notable exceptions,

the factors are oblique (correlated). The correlations among the 11 factors

aprear in the PSI matrix (see Table 3). Each of the elements in the PSI

matrix represents a correlation between two factors; for example, rl0.1l

represents the correlation between the Assignment factor (Fta 10) and the

-

Workload/Difficulty factor (Eta 11). Elements of the matrix
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2t tegin with r were Iree arnd estimated by <he Trogram; “he 0
elements were Tixed <c be zero; and the diagornals were “ixed to be I...
The LISRIL program attempts to minimize g maxizum-likelihocd loss
furction that is based upon differences between <he original .nd repro-
duced correlation matrices, and provides an overall chi-square test of the
gocdness=of=fit of the proposed model. As descrited by coreskog !Joreskog
% Sorbom, 1973), it also determines a test of identi®ication,
asrptomatically efficient estimates of each tree parameter in the pro-
posed model under the assumptions of mul+ivariate normality, estimates of
the standard error of each fitted parameter-—allowing a statistical test
of its Jjifference from zero, and additional information that is helpful
in determining what changes in the proposed model would provide a better
fit to the data (see Maruyama & McGarvey, 1980, for furt.er discussion).
The minimum condition for fitting the complete model (Alwin, 197h;
Werts, et al., 1972) is that there be at least three traits and three
methods. This means that, without makirg any further assumptions (i.e.,
constraining more parameters to a fixed value), the most unrestricted form
of the model is not i@gntifiad and cannot be tested. On the basis of both
substantive (Boruch & Wolins, 1970) and practical (Althauser & Herberlein,
1973) considerations, the correlations between traits and methods were
set to zero. However, the model was still not identified.2 In order
to obtain a testable model, the reliability of the student and instructor
ratings (coefficient alphas based upon the items that define each of the
fgctors) were computed and used as a basis for determining the values of
THETA (error/uniqleness components). Preliminary analysis ifdicated that

this resulted in a very poor fit to the data, suggesting that each factor

fey have a unique component as well as error. Consequently, the 18

-~
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variables were entered 1nto s standardi Tsctor analysis crocedure [iie, et
al., =975, and an 11 factor soluticn was letermined, The Communalities
resulting from this analysis (see Ili=, et al,, 1575, pp. L75-477) were
then used to determine an estimate 0 the TYETA elements. This precedure,
which provides an estimate of the combined uniqueness and unreliability,
orovided a much better fit to the iata. Censequently in order to circum-
vent the identification problem, all the THETA elements were set at a
value of 1 minus the communality of the variable. This same set of values
was used for each of the models to be discussed. Consequently, the most
general model to be considered in this study is one in which correlations
tetween methods and treits are fi“ed to be zero, and the values of THZTA

(error/uniqueness components ) are predetermined.

The Goodness of Fit of the Model. The LISREL program provides a

chi-square test of tae overall goodness-of-fit, but the test is dependent
upon the sample size. A reasonably good fit to the data will produce a
statistically sign:ficant chi-square value if the sample size is Jarge{
while a poor fit based upon a small sample size may not result in a
statistically gignificant chi-square value. Alternative indices of fit
(Schmitt, 1978) include the ratioc of the chi-square to the degrees of
freedom, the average difference betwewa the reproduced and original
correlation matrix, and a reliability coeffici;nt d;veloped by Tucker and
Lewis {1973). The reliability coefficient is defined as: .

r = (Co - Cm)/ (Co - 1) Where:

,’;o‘ = - the chi-square/df ratio for a null model,
Cm -: the chi-square/df ratio for the tested model,
1, = the expected value ¢f the chi-square/d( ratio

This coefficient scales tﬁ!’gﬂi-square goodness-of-fit value alcng a

@
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scale what varies Iroz zero . +he null =model)l <o 2.0, though ralues greater
<han 1.C are pessible. The null model generally consists of specifying
SI3MA to Te 3 ilagonal matrix, testing the assurption that <he measured
variatlas are uncorrelated. Tucker ani ~ewis suggest a value of .90 or
alghér proviies an adeguate fit to the data. Their ccefficiert provides
ar Iindex of *he proportion of *he variance that is explained by the model
rather than a statistical test of its goodness~of=fit. For example, a
Zodel that is tested with a small number of‘cases (e.g., less than 50 cases)
lay result in statistically insignificant differences from the observed
data (based upon the chi-square test) and yet only have a Tucker-Lewis
reliabilicy coeffic;ent of .50. This suggests.that while the proposed
Zmodel fits the data in a statistical significance sense, the test was a
very weak one and there may be many pos?fg;i models that would do as well.
Alternatively, a model that is tested with a large number of cases may
have a Tucker-Lewise reliability of .99 and still have a significant
chi-square value (see Buntler & Bonett, 1980, for further discussion).

The estimatea parameters for the general model (Model I) described
in this section are presented in Table 4. The chi-square value for this
model is statistically significant, but the chi-square/d4f ratio wa$ only
2.38 and the Tuckev-Lewis reliability coefficient is .98, This indicates

a good fit to the data.

Insert Table L About Here

Inspection of the values suggest that each of the nine trait factors is
well defined, that there is substantial method variance associated with
the student ratings and some associated with instructor self-evaluations,

and that the traits are moderately correlated.

22




Testinx alternatlive Models. Tomparisons of <wo %ested mciels san e

made by taxing the iifference in thair *wo chi~sguare valves and <esting
tnis against the difference in “he iegraes of “raeedom 'Sertler % Zonett,
2980; Yenny, 19765 3chmitt, et al., 1977). For examrle, one of the alter-
native formulaticns of Model I postulated that the 365 correlaticns between
the nine trait factors (in the PSI matrix) are really zero (Model 7V in
Table 5). Analysis of this model nroduced a chi-square value (543.6 with
134 degrees of freedom—-see Table 5) that was necessarily larger than “hLe
value obtaired with Model I (233.6 with 99 degrees of freedom); the two
chi-squares would only be equal if the estimated varemeters in Model I
Were exactly equal to zero. Since the difference in the two chi-square
values (310.0) assessed against the difference in degrees of freedom (3€)
is sfatistically significant and substantial, the analysis argues for
Model I. ;

In order “o make more precise tests of the data, a series of alter~
rative models were derived and their ability to fit the data (using the
Tucker-Lewis coefficient as an index) was examined. These models are sum-~
marized in Jable S--including the general and -ull models=--~along with
their chi-squares, degrees of freedom, chi-square/df ratios, and Tucker-
Lewis reliabilities, Alternative models considered the consequences of
eliminating one or more of the trait factors, eliminating one or both of
the method factors, or constraining some of the correlations between these
factors to be zero. For example, the student method factor was eliminated
(Model III in Table 5) by setting all the factor loadings for this factor
(the Eta 2 factor in the LAMBDA matrix) equal to zero and setting all the
correlations (in the PSI matrix) involving this factor--including the

disgonal element--equal to zero. However, this model provides a poorer
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£it to the data than Model I. Similarly, the elimination of the instructor
method factor also yroduces a poorer fit than does the §eneral model, but

a better fit than when the student method factor was eliminated. This
shows that the student method factor is more important than the instructor

method factor.

Insert Table 5 About Here

In summary the analyses of these alternative models indicates that:

(1) Substantial portions of the variance in the data were accounted for
by both the different traits and the different methods. However,
exclusion of the trait factors was far more detrimental to the fit
of the model than was exclusion of the method factors.

(2) The elimination of correle’ions among the traits produced a poorer
£fit to the data, indicating that the underlying traits considered
in this study are truly corrvelated.

(3) Whils there was substantial method variance in both the student
and the instructer ratings, elimination of the student method factor
was more detrimental than was elimination of the instructor method
factor. This indicates that there is more method variance in the

student rntings than in the instructor self evaluations.

A classic problem in factor analysis is the determination of the
number of factors. Researchers typically resort to heuristic guidelines.
In the present application, a precise statistiéal_teat is used to explore
the consequences of combining two or more factors (see Jo?eskog, 197L4).
The Organization and Breadth of Coverage trait-factors ;ere consistently

among the most highly correlated in each of the different models (e.g., see
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TSI matrix in Table 4), Furthermore, -hese two factors seem conceptually

'3

elated as well, Consequently, an eight-~trait solution was tested that
combined these two factors. This was accomplished by eliminating the
Srganization trait-factor, and allowing the Organization items to load

on the 3readth of Coverage factor. However, the results of this model
{¥odel X--see Table 5) produced a substantially poorer fit to the data
than 3id the nin;-trait model. This implies ;hat the best description

of the data requires all nine trait factors,.or at least that these two
should not be combined, The ability to test the statistical and practical
impact of combining traits off;}s an important advantage for the confirma-
tory factor analysis approach, particularly when research does not hegin

with a well established factor structure.

Descriptive Statistics. The values in Table L caen also be used to

derive descriptive gtatistics similar to those obtained with the ANOVA
model, and to agsess the adequacy of each of the measures separately.
Loadings in the LAMBDA matrix can be interpreted in much the same vay as
with common factor analysis; high load;ngs of iteméron a trait or method
factor supports the existence of the factor. Trait and methad variance
components for the general model (as depicted in Table L) can be estimated
b& squaring the factor loadings in the LAMEDA matrix (Joreskoé,.l97h), and
are presented in Table 6.

The trait variance in every measure,ﬁboth student and faculty ratings,
was subitantial and statistically significant, The average trait variance
across all measures was approximately twice that of the average method

variance, The trait variance in the student ratings was somewhat higher

than for the faculty self evaluations. However, the fuculty self




evaliations nad 1ittle metlod variance axcepnt “or the Learning/valce

factor), while +hat observed w.+th the student ratings was substan+ia’.

. .ne factor, learning/7alue, had substantial method variance “or oboth

student and instructor ratings. Tor instructor ratings of Legtging/Value,
“here was substantially more method variance “ha* trait variihbe. Simia
larly, there was more method variance in the student raﬁingﬁ of Ixeminaticns

than there was *rait variance.

Iinsert Table 6 About Here

It must be emphasized that evidence for the existence of a particular
trait or method should be based upon the size of the factor loadings in the
LAMBDA matrix (e.g., Table 4) or the variance corponents based upon these
‘loadings (Table 6). Some researchers (e.g., Schmitt, et al., 1977) have
incorrectly suggested that support for the discriminant validity should be
based upon the correlations among the trait-factors (in the PSI matrix)
rather than the factor loadings. However; significant correlations in the
PSI matrix merely means that the underlying trait-factors are correlated
in a manner that is independent of the method of data collection. This
situgtion is actually related to the fourth Campbell-Fiske criterion
(that the pattern of correlations among traits is similar for each of the
different methods), and they interpret this as evidence supporting the
discriminant validity of the measurey. As with the interpretation of
other oblique factor analyses, it is only when correlations between traits
become extreme that the researcher need be concerned sbout the distinctive-

ness of the different factors. As in the present application, the cor-

relations among factors may be quite consistent with the substantive
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nature of the data.

Application of the atrix equation .equation 1) or the equivalent
tracing rule (Schmitt, 13978; ¥enny, 1979) allows the deccmposition of each
reproduced correlation into components that are due to trait variation,
method variation, and trait-method interactions. As previously discussed,
One of the limitations of both the Campbell-Fiske and ANCVA techniques is
that they make inferences about latent or unobserved variables that are
(r based upon observed relationships. For example, the true trait variation

N
< \\‘in the convergent validities may be systematically increased or decreased,

depending upon *he influence of the method or trzit-method interactions.
A computational equation for decomposing each revrocduced correlaticn into

dlstinct components ig presented in Table 7. Aprlication of this decompo-
sition for each of the reproduced correlations indicated - - at there was
very little method varfation in any correlations other than the correlations

among tae student ratings,

»

Insert Table 7 About Here

Summary of the Confirmatory Factor Analysis Approach. The analysis

of MIMM matrices can be viewed as an application of confirmatory factor
enalysis. The matrices upon which this analysis based--except for the
constraints used to define various models-are familiar to users of
factor analysis, and the interpretation of the results is similar to

the interpretation of common factor anas .sses. However, the ability to
constrain various parameters allows the formulation and testing of various
descriptions of the Zitent trait and method factors. The "goodness of
£it" of the various models and their parameter estimates (e.g., ;::%bm

loadings) provide a direct test of the existence of various trait and

method factors.
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Jiscussion

The purrose of this study was to compare diZferent technicues ror
analyzing muititrait-multimethed matrices. In particular, the coanclucions
based upon the Campbell-Fiske criteria were compared with those generated
by the ANOVA model and the set of conJirmatory factor analysis models.

At the most general lavel each of the different approaches showed gzood
support for both the convergent and divergent validity, but also indicated
Soume method or halo bias. The Campbell-Fiske criteria, through inspection,
showed that agreement on any one trait was relatively independent of

agree ment on other traits (criterion 2), that the method variance was more
pronounced in the student ratings (criterion 3), and that there wag evidence
of tralt covariation that was independent of method (criterion L}, The
ANOVA model indicated that the variance component for the divergent validity
effect was apyroximately twice that for the method/haizéeffect. Confirma-
tory factor analysis provided précise tests of each of the observations
generated by the Campbell-Fiske criteria, provided’s sggtistical summay’y
similar to that generated by the ANOVA model. and also estimated separate
method and trait variance components for each of the different measures.
Confirmatory factor analysis also provided tests of additional hypotheges
that were not testable with either the Campbell-Fiske or the ANOVA
approsaches.

As previously diacussgggythere are several important limitations of
the Caxpbell-Fiske approach to analysis of multitraitemultimethod matrices.
The most important are: 1) the iaformal nature of criteria and the lack

K
of clear statements of what constitutes satisfactory results; 2) the

inability to provide and incorporate information about the reliability of
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of the measures (particularly if reliability estimates are not available):
3) the cumbersome and unwieldy number of comparisons that must be made for
large problsms; U4) the ambiguity between traitévariance, trait covariance,
and method variance; 5) th& reliance on observed variables for making
speculations about latent factors; and 6) the lack cf any meaningful
summary statistics that describe “he dsta. _!

Despite these problems, the Campbell-Fiske crite;ia performed well
in the present application. Each of the descripﬁive speculations based
upon this analysis were confirmed with the more rigorous tests of
alternative LISREL models. The approach, while lacking rigor, does pro-
vide an important initial assessment of convergent and discriminant validity,
and method/halo biases. The popularity of the method, the ease of its
application, the heuristic appeal of the criteria, and the usefulness of
interpretations all dictate that these criteria continue to be used for
the preliminary inspection of any multitrait-multimethod matrix.

The limita.ions with the ANOVA model, though perhaps less apparent,
are more numerous than those encountered with the Campbell-Fiske analysis.
The principal advantage in the use of this approach 1s that it provides
& convenient summary of the relative magnitude of trait and method effects
and a test of their statistical significance. However, *“he appropriate-
ness of the test and the summary depend upon many of the same underlying
assumptions that were discussed with the Campbell-Fiske analysis, and the
detailed inspection of the multitrait-multimethod matrix required by the
Campbell-Fiske apprbach will often provide an in..cation of protlems that
may be overlocked in the deceptively simple summary statistics resulting

from the ANOVA anslysis. Finally, many of the heuristic speculations that
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result in the application of the Camphrell-Fiske criteria will te lost if
orly the AlICVA model is used. For example, aprlicaticn of the Campbell-
Fiske criteria indicated that there was considerably meve method/halo
affect in the student rétings than in the instructor ratings, that there
was %true trait covariation amc.._ the different traits that was indeperdent
of method, and tuat the correction for unreliability reduced the method/
haio effect in the student ratings. None of these findings could have )
be=n identified by the ANOVA model to analyze multitrsit-multimethod
matrices. It does, however, provide useful summary statistics that can
supplenent the Campbell-Fiske criteria.

‘The limitations in the application of the LISREL models stem
brimarily from the difficulty of use. Paul Lohnes (1979, p. 334), an
influential researcher and textbook author in the application of quantita-
tive analysis, recently stated that "LISREL is a complex and expensive
fitting and testing machine to which the author does not have access."
The key points seem to be the complexity, the expense, and the Lack of
avallability. The LISREL program is commercially available for a rather
nominal charge, sc availability is not a c;itical problem. Complexity
represents a large initial hurdle that must be overcome, in much the same
way that the complexity of multiple regression was a limitation of its
of its application before the publication of the Draper & Smith (1966)
text. Similarly, the compiexity of LISREL will become less of a problem
as the technique becomes more widely known and applied. The expense--in
terms of computer time--is an important limitation that probarly will nct
be easily resolved. While many finite problems-~the kind that are likely
to appesr in textbooks--can be solved with small amounts of computer time,

exploration of large scope problems quickly become very expensive. This

30



will ve a particularly important limitation to the novice user whc may be

forced to use consideratle amounts of computer tire in formulating the
troblem,

3eyond these general difficulties in using LISREL, its applicaticn %o
analysis of multitrait-multimethod data also imposes other limitations.
in order to test a model with free varameters for all of the off-diagonal
values in the PSI matrix (correlations tetween the facto?s) and the HETA
matrix (the uniqueness/error variances) a minimum of three *raits and
three methods are needed. However, as demonstrated in this study, a
variety of constraint; can be imposed t£;£ allow testing of an alternative
Zodels. Even when there are an adequate number of traits and methods,
it is necessary to have a large number of cases in order to nrovide strong
tests of alternative models and to obtain high Tucker-Lewis reliability
coefficients. This is particularly importent when the researcher se-
quentially develops alt?rnative models on the basis of prior analysis of
the same data. This problem, taking advantsge of chance variation that may
be specifc to the particular data being considered, 1s not unique to
this analysis, and thre best control for the problem is to cross-validate
the findings.

Despite these limitations, confirmatory factor analysis is clearly
the superior method to use in the analysis of multitrait-multimethod data.
In summary, some of its advantages are:

1) it tests inferences that are based upon the underlying latent

variables rather than relationships between observed variables;

2) it distinguishes variance due to traits and methods;

3) it allows comparison of a variety of alternative formulations

of the basic model and an overall test of the goodness—of-fit
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f2r each pronosed model;

) it provides a separate statistical test o each estimated varasmeter

2gainst the null hypothesis of a zero coefficient;

it provides convenient summary étatistics of the amount of trait
and method variance in each separate measure, in each set of
Teasures, and for all the data combined;

it allows the decomposition of each revroduced correlation in
components that are attributable to trait and method effects;

it provides estimates of the reliability of each measure that are
incorporated into the analysis;

it provides an empirical test for the existence of correlations
among traits, among methods, and between traits and methods;

it provides an empirical test oi the number of trait-factors and

method-factors that provide the best fit to the data.

These advantages, particularly when compared to those of alternative

techniques, demonstrate the importance of vu<ing LISREL modeling in the

analysis of multitrait-multimethod data.'
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in the application of LISREL.

l--The most general model and each of the. alternative models could also

T e ©  Dbe specified in terms of x-variables instead of y-variables. Other
specifications of the most general model (e.g., éermitting correlated

errors, etc.) are also possib. . The particular specification used

in this study is the one most generally used by other researchers.

2--A necessary, but not sufficient, condition of identification is that
thege are at least as maﬁy observed correlations as free parameters.
Thi; is not a sufficient condition,,since there may be overriding
constraints (Kenny, 1979). The LISREL program, however, checks for
identification (See Joreskog, 1978; Joreskog & Sorbom, 1978; for

further discussion) and generates an error message when the pro-

&

posed model is not identified.




TABLE I -
fultitrait-Muleimethed Matrix: Correlations Retvecen Student and Faculty sclf Evaluations in 229 Coutses%

INSTROCTOR SELP-EVALUATION PACTORS STUDERT EVALUATYON FACTORS
INSTRUCTOR SELF LEARN ENTHU ORGAN GROUP INDIV\ BRDTH EXANS ASIGN WRKLD LEARN ENTHO ORGAN GPIUP INDIV BRDTH EXAES ASIGN WFKLD
EVALURTICE PACTORS ’
LEARNING/VALCE (830) 286 117 14 -70 127 -8 243 30 <405> 21y 171 192 29 256 1483 207 -58
ENTROSIASH 387  (820) 10 30 -19 124 80 -8 -10 99 <u76> 132 46 3 149 - 89 26 -29
ORGAMTIZATION 149 13 (780) -147 72 129 262 167 116 -12 =41 <254> -2)53 ~53 87 17 18 40
GROUP INTERACT 17 35 =180 (900) 20 107 85 46 =92 82 -13 =34 <4S54> 131 -3 -7 86 1
JHDIVID PAPPRT -85 -23 93 26 (820) -1y 147 218 59 -121 ~-16 36 ~4 <250> -142 55 -6 32
DREADTH 152 149 163 123 =17 (840) 203 85 -41 93 -7 67 -24 -188 <367> -88 4y -3
EXASINATIONS -9 101 349 102 {86 254 (760) 218 91 -35 -32 86 =137 -36 2 <135 -16 123
ASSIGMNMENTS 319 -11 232 58 288 LR 299 (700) 214 17 -90 -3 -47 ~-24 95 =19 <356> 225
WRKLD/DIFPCLTY 39 -13 161 -116 78 -53 125 306 (700) 16 ‘98 -48 -81 3 21 -56 122 <539
INSTRUCTOR SBLP-B'ALUAQIOH FACTOPRS STUDENT EVALOUATION FACTORS
STUDEAT ’ LEARN ENTHO ORGAN GROUP INDIV BRDTH EXAMS ASIGM WRKLD LEARN ENTHO ORGAN GROUP INDIV BRDTH EXANS ASIGN WRKLD
EVALOATION PACTORS
LEARNING/VALUE <456> 112 -5 89 -137 104 -81 9% 20 {950) 455 528 369 222 494 481 521 58
ENTHOSIASAH 200 <537> -u48 -14 -19 -8 =32 =109 -120 476 (960) 497 305 350 339 /019 248 17
ORGANIZATION 195 151 <306> -37 41 76 102 -4 -59 562 526 (93C) 215 334 562 /571 345 -46
GROUP INTERACT 213 52 -239 <4Be> -8 -27 ~159 -57 -58 382 314 225 (980) 420 165 341 305 -54
INDIVID RAPPRT 3) 34 -63 141 <282> -209 -42 -30 3 233 364 353 433  (960) 156 / 504 288 80
BREADTH 290 169 104 -4 =162 <413> 2 17 26, 522 157 601 172 164 (900)’ 33y 403 178
EXANIMATIONS 208 132 20 -7 63 =100 <166> =2} -63 512 443 615 357 534 357 /(930) 423 -23 ..
ASSIGNARNTS 237 30 21 94 -7 50 =19 <uu3> 151 557 226 373 321 307 433 ; 457  (920) 204 j%
VRKLD/DTFFCLTY -G8 -3 %0 1 37 -36 151 289 <691> 64 18 =51 -59 87 196 -26 228 (870) ﬂ_
NOTE: ¥alues enclosed in ()} in the diagonals of the upper left and lowver right patrices (the heterotrajt-aonomehtod nxtrhxsl ﬁ-
& 2 reliability (coofficient alpha) coefficients. TValucs enclosed in < > in the diagonals oflower left 4nd upper J
cight satricies (the heterotrait- heteramethod matrices) are the converqgent valility coefficients. All coefficients F.‘
below tho main diagonal of tha entire ¥3 x 18 gatrix have beon corrected for unreliability. Cocrelations (presented :::
vitkout docixal points) greater than 100 (i.e., .10) are statistically significant. fg
. £
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TABLE I

Coaputational Eqguations and Resalts of the ANOVA
Analysis of a Multitrait - ‘Multimethod Matrix

SEURRIFIERTTENSE RTRIABT==En=w FIBBEZEITIS ”:‘3_3-:::8::“8::23:-===8==='-8==: ==sd====

Computations Por Sumas of Squares and Estimated Vat;ance Co.}SBents
SOURCE ss DF Variance Componeat
Class {C) . Nom (rt) . N=1 (HSc-HSct-)/nn
{Converqent Yalidity) .
¥na (cv - ¢t ¥=1) (n=1 HSct-NScta
(Discrillnant Yalidity) . { ) ‘. ) ) ¢ y/n
- lass X %ot hods ‘ ¥am (rf - rt N~1) (a-1 1Sca-NScta) /n
(uethod/ualo zftuct) ¢ ) ' ( ) ¢ ) { )/
4 Hnm{l-rv-rfert) (N=1) (n=1) (n-1) HScta
(ettot) :
° iB?E?'i'I'ESE‘I?‘i;;ES";F‘E;;';°'(EI;§;2§{ """""""""""""""""""""
N 8 = Bur ¢ of iftorcnt traits
" = Nunuet of dxf ﬂﬁ{ thadsg
rt = :svarage carrelatio oetficxent in tgo entirc YTHN nattxx {including coefficients
poth above ani be ';f&“ diagoral and values.o +0 in the diagonals
ttve

rv = avegn e correlat
sum of val

en Sources v1th1n ;ta{ts + Computed by:
cf = avacaqc hetween

t dia onali) + mrn n o
corfelation in he monomethod blockb couputed bx
‘ Sum of -ononethod ~hoterotrait tr ancle coeff iiéents)
P-natlos or cach of the three effects (convarqent va lvet ent validxty and
. nat od/hs} ffect) ﬁre obtained b; vidiag t e Mean Squares for the effeoit -- the Sum of
Squares ed by the degrees of frecdoa -2 by the Hean Sqnare of the Brror ters.

""‘ iﬁlﬂﬂﬂﬂﬂﬂlalalﬂ";IB.I‘ISEI‘SB.’:S3333=.t==I====,8t3===8IEESSII"ISIS!B t2-t % -+ 3

.

. 0

Results tor Uncorr ted and Corrected Corrolation uatricxes

. s UNCORRECT!D‘CORRELlTIO"S ] CORRELATINS COBRICTED FOR ATTENUATION
- QQUQP! a¢ 8s .13 F VABRCP | 58 NS r VABEP_
Class 328 1009.55 3.078 6.54%% 0, 145 I 1085.89 3.311 8.17%+¢ 0.162
R (Convetgent) P
Trait 2624 3016.25 1.149 2.44%¢ 0,340 | 3101.05 1.182 2.97#+ . 392
(bivetqcnt) .
x ethod 328 €61.%7 2.0 4.27%¢ 0,171 I 690.54 2.099 5.27%+ 0.189 AN
~ (Hethod/ﬂalo) o
X TxH 228 1234 .43 0.470 ———— 0.870 | 1044%.51 0.398 <—=ee 0.398
(!tro r) .
Rt*0.170; Ry=0.6 0; Rf=0.282 no Rt=0,183; py=gQ. 707' Rf=0.300
l=;2§ ciasses: n=9 traits; a2 methods 3 CiasSes;’ na9 ifa its; a=2"nathods
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Table III

Configuration of the LAMBDA and PSI Matrices in the GENERAL MODEL
LAMBDA (Factor Loading Matrix)
Inst 8tdt Lrn Ent Org Grp Ind Brd Exm Asg Work
Nethod Method Trait Trait Trait Trait Trait Trait Trait Trait Trait

Factor Factor Factor Factor Factor Factor Factor Factor Factor Factor Factor

Eta 1 Eta 2 Eta3 Etald ' Eta s Eta 6 Eta T Eta 8 Eta 9 Eta 10 Eta 11

Instructors Learning/Value Iirn 0 Ilrn 0 0 0 0 0 0 0 0
Enthusiasm Ient 0 0 Ient 0 0 0 0 0 0 0
Qrganization Iorg 0 0 0 Iorg 0 0 0 0 0 0
Group Interaction Igrp 0 0 0 0 Igrp 0 0 0 0 0
Individual Rapport Iind 0 0 0 0 0 Iind 0 0 0 0
Breadth Ibrd 0 0 0 0 0 0 Ibrd 0 0 0
Examinations Iexm 0 0 0 0 0 0 0 Iexm 0 0
Assignments Iang 0 0 0 0 0 0 0 0 lasg 0
Workload/pirriculty Ivrk 0 0 0 0 0 0 n ¢ 0 Iwrk

8tudent Learning/Value 0 Slrn 8lrn 0 0 0 0 0 0 0 0
Enthusiasm 0 Sent 0 Sent 0 0 ] ] 0 ] 0
Organization 0 Sorg 0 0 Sorg 0 0 0 0 0 0
Group Interaction 0 Sgrp 0 0 0 Sgrp 0 0 0 0 0
Individual Rapport 0 Sind 0 0 0 0 Yind 0 0 0 0
Breadth 0 Sbrd 0 0 0 0 0 Sbrd 0 0 0
Examinations 0 Sexm 0 0 0 0 0 0 Sexm 0 0
Assigneents 0 Sasg 0 0 V] 0 0 0 0 Sasg 0
Workload/Difficulty 0 8wrk 0 0 0 0 0 0 0 0 Swrk

P8I {Correlations Between Factors)
Inst Stdt Lrn Ent Org Crp Ind Bre Exm Asg  work
~ Method Method Trait Trait Trait Trait Trait “Trait Trait Trait Trait
Factor Factor Factor ’actor Factor Factor Factor Factor Factor Factor Factor
Eta 1 Eta 2 Eta 3 Eta 4 Eta 5 Eta 6 Eta T Eta 8 Eta 9 Eta 10 Eta 11
Instructor Method 1.0
Student Method rl.2 1.0
Learning/Value 0 0 1.0
Enthusissm 0 0 rh .3 1.0
Organization ] ] r5.3 r5.k 1.0
Group Interaction 0 0 r6.3 r6.h r6.5 1.0
Individual Rapport 0 0 r7.3 rT.bk r1.5 r7.6 1.0
Breadth 0 0 r8.3 r8.4 r8.5 r8.6 r8.7 1.0
Examinations 0 0 r9.3 r9.h r9.5 r9.6 r9.7 r9.8 1.0
Assignments 0 0 rl0.3 rio.h rl0.5 rl0.6 r1o.7 r10.8 r10.9 1.0
workload/l)ifx‘lculty or 0 rll.3 ril.b ril.s ril.§ ril.7 ril1.8 rll.9 ril.10 1.0
: A1l elements vith the valus of 0 or 1.0 represent fixed values. while all other values are estimated by the LISREL progranm. b‘;

The third matrix, the theta matrix, is an 18 x 18 disgonal matrix in'vhich the diagonal values Trepresent variance attributable
to random error and/or reliable uniqueness. In the present application, these values were estinated independently and fixed
in this analysis. In other applications, these can also be estimated by the LISREL progranm. 4 3
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Learning/vValus
Enthusissm
Grganization

Grewp Interaction
Individual Rarport
Eres:s

Exaninatious
Assiznments
Workload/Di *ficulty
Learning/Valye
Enthusiasm
Orgarization

Grour Interaction
Individual Repjort
Breadth
Exaainations
Assignments
Workload/Difficulty

Instructor Method

Student Method
Learning/Value
Enthusiass
Organization

Group Interaction
Individusl Rapport
Breadth
Examinations
Assigrments
Workload/Df *ficulty

Conflguration of the LAIBDA and PSIT satrices {n the CENIAL “CDEL
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PSI (Correlations Between Fectors) -

Inst 3tdt
Methoq Method
Factor Factor
Eta l Zta 2
-0.666 0.0
~U. 245 0.0
-0.067 0.0
0.1T4 0.0
0.055 0.0
0.093 0.0
0.236 0.0
-0.156 0.0
«~0.097 0.0
0.0 0.697
0.0 0.571
0.0 0.729
0.0 0.480
0.0 0.612
0.0 0.567
c.0 0.829
0.0 0.615
0.0 0.101
Inst Stdt
Method Method
Factor Factor
Eta 1l Eta 2
1.0
-0.27T1 1.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
. 0.0 0.0
0.0 0.0

Lrn
Trait
Factor

Eta 3

1.0
0.273
0.335
0.162
=0.210
0.437
0.202
0.k0y
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THRTA EPS: Matrix of Uniqueness/Error Veriances {values are the diagonals

Learn Enthus Organ
0.3h3 0.51% 0.662
Learn Enthus Organ
0.11% 0.19% 0.129
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TARLE v
Summary of¢ Tested Models

Model Description Chisq »pr Chisg/pr rel
I 9 correlatad trait factors, 2 correlated method
factors, no trait-method correlations 233.6 98 2,18 «977

(the general sodel depicted ip Table TIT)

I 9 correlated trait factors, 1 o eneril" factor
vith loadines oaito £ studére ¢ inarpnergacto 330.7 99 3.3% .9
ratings, no trajt - "general® correlations
11z 9 correlated traits, 1 student method factor
(no faculty met:od factor), no trait-method 387.7 108 3.59 952
correlations
IY 9 correlated trait factors, 1 faculty method
factor (no student geghoj factor), nd freiod. 550.6 108 s5.10 .933
sethod correlations
4 9 ONcorrelated trajt factors, 2 correlatea
method factors, no trai¢ o a6 thod correlations -543.6 134 3.99 .951
I 90 orrelated traits, 2 Ullcorrelated
notHOSS. no tragt-uethéd correlat%ons 54,3 135 4,03 «930
" YII' 9 correlated traits, ¥0 method factors 1126.9 117 9.63 .gsg
YIII NO trait factors, 2 correlated method factors 4213.7 152 271.7 <561
Ix ¥ull rFodel (3 Aiagonal SIGYA natrix for which 10564.8 171 61,2 «000
Yalues vere de .

terzined only by the values ig
the THETA “-error/uniqucnesg-- 2atrix)

¢ 8 Correlated traits (the or anization ¢ Preadth 466.0 106 4.4 « 94y
tratt factors vere conbinodi 2 Correlated
Bethod factors, no trait-metfod correlations

L 4

iorz- r?e Yalues under the column headeq npeyw are Tucker-tewis Celiabiljty

ﬁoctfgc enta; a zeasire of tre ropcrtion of variance that issexplajned bI
the node being tested, ¥odel ¥T k6 "tke least restricteq rodel and "tha sode
¥ith the best fit van not fdentificd vittout fucther constrzaints of the
Rodel. However, b fizing several near-zero coefficients in the 251 matrix
to be zero, the'a el vas identified and could te tested.
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TABLE VT

Trait and Method Variance Components For Model I (the General Model)

. Trait

LEARNING/VALUE
ENTHOSTASH
ORGANIZATION
GROUP TNTERACT
INDIVID RALPPFT
BREADTH

. EXAMINATIOXS
ASSIGYMENTS
VRKLD/DIPFCL™Y

Mean Across All
9 Evaluations

from the Theta BEps

.275
407
«274
.536
.426
. 345
.513
. 108
<413

«U432

Ratings

Method Zrror

Instructor Ratings Student
: Method Error Trait
.44y .343. .517  .486
060 «515 533 « 326
.008  .662 .540 .536
- 030 <433 - 420 .230
.003 «519— « 265 «374
. 009 542 .674 <321
. 056 .423 - 278 .687
026 277 .335  .378
- 009 «560 <773 .010
.071 <475 -481 .372

NOTE: Variance_corponents were det
Method factor loadings fro

o, Tab

ilon matrix.

115
.19
« 123
337
.409
.« 159
. 193
<447
<236

ived by squaring the Trait and

le v, and using the unsquared value

16




Q

ERIC

Aruitoxt provided by Eic:

Table VII ~

Decomposition of Reproduced Correlations
General Equation for the Decomposition of eny Reproduced Correlation

The Correlation Between any Measure (X) and any other Measure (Y)

Trait Component Method Component Trait-Method Interaction Component
RXY = <(TX)X{T7)X{%IXTY)> . <(MX) X(MY )X ( RMXMY )> + <(MX) (TY) X(RMXTY)> + <(}7Y)X(TX)X(RM{TX)>
Where: . b
™ : The Trait Loading (in Lambda Matrix) for X-Variable

Y : The Trait Loading (in Lambda Matrix) for Y-Variable

RTXTY : The Correlation (in PSI Matrix) Betwcen Trait of X-Variable and Trait of Y-Variable

MxX ¢ The Method-Factor Loading (in Lambda Matrix) of X-Variable

MY ¢ The Method-Factor Loading (in Lambda Matrix) of Y-Variable

RMXMY : The Correlation (in PSI Matrix) Between Method of X~Varieble and Trait of Y-Varisble
P RMXTY : The Correlation (in ST Matrix) Between Method of X-Variable and Trait of Y-Variable

BTXMY : The Correlation (in PSI Matrix) Between Trait of X-Variable and Method of Y-Variable

Decomposition of & Convergent Validity Coefficient: Correlation Between Instructor Ratings of Breadth (X) and Students Reting.
Breadth (Y)

= <(.587)x(.821)X(1.0)> + <(.093)X(.T29)X(-.271)> + <(.093)(.821)X(0.0)> + <(.729)x{ .587)x(0.0)>

Decomposition of a Heterotrait - Heteromethod Correlation: Correlation Between Instructor Ratings of Organization (X) and Student
Ratings of Breadth (Y)

= <(.523)x(.821)x(.466)> + <(-.067)X(.567)X{-.271)> + <(-.067)(.821)X(0.0)> + <(.567)x( .57 3)x(0.0)>

Decomposition of Two Monotrait - Heteromethod Correlations: Correlations Between Instructor Ratings of Orgunization (X) and
Instructor Ratings of Breadth (Y)

= <(.523)X(.5BTIX(.466)> + <(~.067)X(.56T)X(1.0)> + <(~.067)(.587)X(0.0)> + <(.567)X(.523)X(0.0)>
Correlation Between Student Ratings of Organization (X) and Student Ratings of Breadth

= <(.735)X(.821)X(.466)> + <(.729)X(.567)X(1.0)> + <(.729)(.821)x(0.0)> + <{.567)x(.735)X(0.0)>

17

Note: For this particular application (see Table IV) all the trait-method iateractions were fixed to be zero.
So RTXMY and RTYMX are automatically zero. When the X-variable and Y-variable share a common trait (method) the corrclation
between the traits (methods) is 1.0. ~.
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