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Abstract

Campbell and Fiske (1959) have developed four criteria of construct validity

'when measures of more than one trait are obtained with more than one method.

In this study these criteria are compared with two other procedures--an

ANOVA model and Confirmatory Factor Analysis--for analyzing multitrait-

multimethod (MTMM) data. Despite important limitations of the Campbell-

Fiske criteria, the usefulness of interpretations based upon the criteria,

the heuristic value of their application, and the popularity of the method

dictate that it continue to be used as a preliminary inspection of, \,

MTMM matrices. The principle advantage of the ANOVA model is a convenient

summary and test of convergent, divergent and method/halo effects. However,

the limitations of this approach are even more numerous than those en-

countered with the Campbell-Fiske criteria, and so the ANOVA approach

should only be used to supplement other procedures. Confirmatory factor

analysis provides a direct test of the statistical significance and impor-

tance of various trait and method factors. The size of factor loadings

provide a convenient description of the magnitude of method and trait

effects. By constraining various parameters the researcher may formulate

and test alternative configurations of method and trait factors. ConsE-

quently, confirmatory factor analysis offers the advantages of both the

other approaches without many of their limitations, and is the recommended

procedure for.dhalyzing MTMM data.
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Confirmatory Factor Analysis and ArcvA Analyses

of Multitrait - Multlmetlod Matrices

Campbell and Fiske 1959) have advocated the assessment of validity by

obtaining measures of more than one trait, each of which is assessea by more

than one method. In the present example the different traits are nine di-

mensions of evaluations of instructional effectiveness: the different methods

of assessing the traits are student ratings of teaching effectiveness and

instructor ratings of their own teaching effectiveness. Convergent validity,

that which is most typically determined, is the agreement between measures

of the same trait assessed by two different methods--student-faculty agree-

ment on evaluations of teaching. Discriminant validity refers to the dis-

tinctiveness of each of the trait-factors.

Determination of convergent end discriminant validity is based upon

inspection or analysis of a multitrait-multimethod matrix such as the one

shown in Table 1 (considering only the coefficients below the ma.h.n diagonal

of the entire 18 x 18 matrix at this point). Correlations between different

traits assessed by the same method appear i3monomethod- heterotrait (the

upper left and lower right) blocks of the matrix. Correlations between

different traits assessed by different methods are in the heteromethod-

heterotrait (lower left) blocks of the matrix. Ilhe convergent validity

coefficients, correlations between the same traits assessed by different

methods appear in the heteromethod-monotrait diagonal of this matrix- -the

values in <> in Table 1. is also valuable to have the reliabilities of

each measure in 'the diagonals of the heterotrait-monomethod matrices- -the

values in parentheses in Table 1. Campbell and Fiske (1959) proposed four

criteria for assessing convergent and divergent validity:
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The convergent validity coefficients shod be statistically
significant and sufficiently different from zero to warrant
further examination of validity. Failure of this test indi-
cates that the different methods are measuring different con-
structs and implies a lack of validity in at least one of the
methods.

2) The convergent validities should he higher than the correlations
between different traits assessed by different methods. The
failure of this test implies that agreement on a particular trait
is not independent of agreement on other traits, perhaps suggest-
ing that the agreement can be explained in terms of a generalized
agreement that encompasses more than one (or all) of the traits.

3) The convergent validities should be higher than correlations
between different traits assessed by the same method. If the
convergent validities are not substantially higher, there is
the suggestion that the traits may be correlated, that there
is a method effect, or some combination of both these possibilities.
If the correlations between different traits assessed by the same
method approach the reliabilities of the traits, then there is
evidence of a strong halo or method bias.

4) The pattern of correlations between different traits should be
similar for each of the different methods. Satisfaction of this
criterion--assuming that there are significant correlations among
traits--would suggest that the underlying traits are truly cor-
related. Failure to meet this criterion implies that the observed
correlation between traits assessed by a given method is due to
a method or halo bias.

Despite the intuitive appeal of the Campbell-Fiske criteria, there

are numerous potential problems in their application. Although many of

these were anticipated by Campbell and Fiske, solutions were not offered.

Perhaps recognizing the dangers in the precise formulation of their cri-

teria, these authors stated that the development of statistical treatments

might be unnecessary or inappropriate.

An obvious problem with the Campbell-Fiske criteria ..s the lack pf

specification as to what constitutes satisfactory results. The applica-

tion to be presented in this paper, for example, involves nine traits,

each assessed by two methods. Testing the second and third criteria
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alone requires that each of the nine convergent validities be compared

:th 32 different correlations--a total of 2e3 comparisons. Besides being

unwieldly, the likelihood of obtaining 'ejections due to sampling fluctua-

tions alone increases geometrically with the number of traits and methods.

The user is left with the task of determining either the proportion of

_'allures or some average difference between the convergent validities

2.nd coefficients against which they are to be comb aced. In either case,

the decision as to what constitutes a failure is arbitrary.

An even more serious ambiguity exists in the criteria used to assess

discriminant validity. At least conceptually, Campbell and Fiske make

clear distinctions between method variance, trait variance, and trait

covariation. Method variance--the introduction of systematic variation

due to a specific method of data collection--is clearly detrimental to

discriminant validity, though it does not preclude the demonstration of

either divergent or convergent validity. True trait variance (i.e., con-

vergent validity)--the correlation between different methods of assessing

the same trait that is independent of method variance--is obviously good,

but it does not imply discriminant validity. True trait covariation- -the

tri:e correlation between different traits that does net depend upon the

method of data collectionwill increase the likelihood of failures in the

application of the second and third criteria. However, the fourth cri-

terion specifically tests for true trait covariation, and its demonstra-

tion is taken as support for discriminant validity. A complete lack of

trait covariation makes interpretation more simple, but is unlikely to

exist in any but the most contrived of situa7dons (e.g., attitudes toward

cigarette smoking and capital punishment). Trait correlations approaching

unity can be unambiguously interpreted as a complete lack of discriminant
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validity. For most applications, however, some .:.ow to moderate true

trait covariation is likely, and its interpretation is left ambiguous.

The most serious Problem with the 7ampbe1l-Fiske criteria is that

they are based upon inspection of correlations between observed variqbles,

but make inferences about underlying trait and method factors. The

validity of any set of inter-n'etations depends upon the behavior of the

underlying constructs. This can be illustr:Nted with the problem of

systematically differing reliabilities. Application of the criteria im-

plicitly assumes, as recognized by Campbell and,Fiske, that each of the

measures are equally reliable. If there are substantial differences in

the reliabilities of different traits, or in the measures obtained with

different methods, then failures of one or more of the criteria may be a

function of the differential reliabilities alone. For example, if traits

assessed by one method are systematically more reliable than those assessed

by a second method, then the correlations among traits assessed with the

nacre reliable method will be higher, and give the appearance of a method

effect. Some authors have suggested that the multitrait-multimethod

matrix be corrected for attenuation (Heberlein, 1969; Althauser & Heberlein,

1970).

Similarly, the Campbell-Fiske criteria 1so assume that convergent

,Jalidities reflect the effect of shared trait variance. While this is true,

the convergent validity coefficients can also be affected by shared method

variance or a trait-method ihteraction. Furthermore, the existence of

shared method variance, or trait - method interactions may act to either

artificially increase or decrease the observed validity coefficieLt. A

more detailed discussion cf the implications of these underlying Inferences

is presented by Alvin (1974).



Since the develocment of the 0amcbell-Fiske criteria for assessing

the multitrait-multimethod matrix, a variety of specific statistical tests

have been developed .klthauser & Heberlein, 1970; Alvin, 1974; Joreskog,

1974; Kavanagh, MacKinney & Wolins, 1971; Kenny, 1979; Lomax 3c Algina,

1974; Schmitt, 1978; Schmitt, Coyle & Saari, 1977; Werts & Linn, 1970).

:n the present study two of these procedures are applied, and their limi-

tations are illustrated. The first is an analysis of variance technique

that was presented by Kavanpr,1,1, et al. (1971), while the second is a

variety of confirmatory factor analysis models as elaborated by Schmitt (1978).

7n the present study, the multitrait-multimethod approach was used to

validate students' evaluations of teaching effectiveness. Instructors in

329 college classrooms were asked to evaluate their own teaching effective-

ness on the same nine-trait instrument as their students. Previous appli-

cation (Marsh, in press; Marsh & Overall, 1979; Marsh, Overall & Kesler,

1979) of the Campbell-Fiske criteria left several questions unanswered.

In spite of evidence for both convergent and divergent validity, there was

the suggestion of a moderate method variance--particularly with the student

ratings. However, confounding this suggestion were the facts that: 1) the

student ratings were more reliable than the instructor ratings (perhaps

explaining the higher correlations among the student ratings), and, 2) the

likelihood that the correlations among the traits (instructional evalua-

tion factors) were true correlations rather than method or halo bias. The

purpose of this study is to compare the conclusions based upon Campbell-

Fiske criteria with those obtained from two alternative analytic procedures,

and to discuss advantages and disadvantages of the approaches.

Method

During the academic year 1977-78 student evaluations were collected

8
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in 7irtually all courses offered in the of Social Sciences at the

ni7ersity of Southern California. Evaluations were administered s-ortly

bef:,re the end of the term, generally by a designated student in the class

or by a staff Person. The surveys ':ere completed by an average c±' 76

(a range of from 514 to 100%) of the students enrolled in each class.

instructor self evaluation surveys were sent to all teachers who had

been evaluated by students in at least two different courses during the

same term. Instructors were asked to evaluate the effectiveness of their

own teaching in both courses. These surveys were completed after the end

of the tern, but before summaries of the student evaluations were returned.

While participation was voluntary, a cover letter from the Dean of the

Division strongly encouraged cooperation and guaranteed the confidentiality of

each teacher's response. Instructors evaluated both courses with a set of

items identical to those used by students, except that items were worded in

the first person. They were specifically instructed to rate their own

teaching effectiveness and not to report how students would rate them. A

total of 181 instructors (78%) returned self evaluations from 331 courses;

ratings of 183 undergraduate courses taught by faculty, 45 graduate level

courses, and 103 courses taught by teaching assistants.

The evaluation instrument consisted of 35 items that were designed

to measure 9 traits. Previous research, based upon a different sample of

511 undergraduate classes taught by regular faculty, determined the

reliability of the evaluation factors (median alpha = .9k), confirmed the

existence of the nine evaluation dimensions, and provided weights that were

used in calculating factor scores (See Marsh, in press; Marsh & Overall,

1979). The evaluation factor scores used in the present study were weighted

averages, the weights having been derived from the previous factor analysis,

9



of standardized responses to each item. The evaluation trait-factors ani

a brief description are as follows:

IEAP=/VALUE--The extent to which students felt they encountered a

valuable learning experience that was intellectually challenging.

I:TSTFUCTCR ENTHUSIASM--The extent to which students perceived the
instructor to display enthusiasm, energy, humor and an ability to
hold interest

:FGANIZATION--The instructor's organization of the course, course
materials, and class presentations.

GROUP INTERACTION--Students' perceptions of the degree to which the
tnstruct:Jr encouraged class discussions and invited students to .

share their own ideas or to be critical of thcse presented by the
instructor.

INDIVIDUAL RAFPORT--The extent to which students perceived the instructor
to be friendly, interested in students, and accessible in or out of
class.

3READTE CF COVERAGE--The extent to which eudents perceived the
instructor to present alternative approaches to the subject and
to emphasize analytic ability and conceptual understanding.

EXAMINATIONS--Students' perceptions of the value and fairness of
graded materials in the course.

ASSIGNMENTS--TLe value of class assignments (readings, homework, etc)
in adding appreciation and understanding of the subject.

WORKLOAD/DIFFICULTY--Students' perceptions of the relative difficulty,
workload, pace of presentations, and the number ofhours required
by the course.

Separate factor analyses were performed on the student and instructor

self evaluations for the 329*classes included in this study (Marsh, in

press; Marsh & Overall, 1979). This analysis was performed to determine

if similar evaluation trait-factors urlerlie both the student and instructor

self evaluations, and if these were similar to results previously obtained

for a different sample of student ratings. Factor analyses of both student

and instructor ratings confirmed the existence of the same nine trait-

factors that had been previously identified. Each item, for both student

10



and instructor evaluations, loaded highest on the factor it was designed

to measure. Loadings for items defining each factor generally exceeded

.50, and all other 1,)adings were typically less than .20. Furthermore,

the 'actor loadings from both these analyses were quite similar to those

previously obtained with a different population of student evaluations.

The 315 factor loadings (35 items loading on each of 9 factors) for the

factor analysis of instructor ratings considered in this study correlated

.90 with both the 315 factory loadings obtained for student evaluations

in this study and thcse obtained with a previous factor analysis of a

different sample of student evaluations; the two sets of 315 loadings from

the two factor analyses of the student ratings correlated .95 with each

other. These findings justify the assumption that similar evaluation trait-

factors underlie both the student and instructor evaluations.

Results

Campbell-Fiske Criteria

Application of the Campbell-Fiske criteria discussed earlier requires

a visual inspection of the multitrait-multimethod matrix presented in

Table 1. One of the limitations of the use of these criteria, as indicated

by Campbell & Fiske (1959), is the implicit assumption -Crat the trait

reliabilities obtained with different methods are comparable. This is

clearly not the case in the present example, since student evaluations

(based upon class average responses) are consistently more reliable.

Coefficient alphas (see Table 1) for student ratings vary from .87 to

.98 (median .94), while those for the instructor self evaluations vary

from .10 to .90 (median .82). Consequently, for each of the correlations

presented in Table 1, the same correlation corrected for attenuation

11



also presented. :nterpretation of the Camtbell-Fizke _r'_ Feria is dis

cussed in terms of both corrected and uncorrected correlations.

The first Campbell-Fiske criterion requires that convrzent validity

coefficients be statistically significant and high enough to warrant

further consideration of validity. Each of the converwent validity

coefficients presented in Table I is statistically significant, and they

are substantial (median r = .45. corrected for attenuation).

Insert Table 1 About Here

The second Campbell-Fiske criterion requires that each convergent

validity coefficient be higher than any other correlation in the SEMie

row or column of the same heterotrait-heteromethod block. This test

requires that each of the nine convergent validity coefficients be com-,

pared to each of 16 other coefficients--a total of 144 comparisons in

all. Data presented in Table 1 satisfy this criterion for 1,43 of the 144

comparisons (for both corrected and uncorrected correlations), providing

good support for this aopect of discriminant validity.

The third criterion requires that each convergent 1?.Lidity be higher

than correlations between that trait and any other trait assessed by the

same method. Application of this criterion to the uncorrected data

indicates only 4 rejections (out of 72 comparisons) for the instructor

self evaluations. For the student evaluations, however, there are 30

rejections (also out of 72 comparisons). On the surface, this would seem

to suggest a method halo effect for the student ratings, though little

for the instructor self evaluations. However, this interpretation is

biased by the fact that the student ratings are consistently more reliable

12
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than the instructor ratings. :orrelations invol'ving only student ratings

are least attenuated, while those involving only instructor ratings are

most attenuated. Consequently, relative to the cHvergent validities,

correlateions between student ratings are systematically increased and
.., i

icorrela ons among instructor ratings are systematically decreased. When

all corre tions are corrected for at enuation, however, this criterion

$1
is still not met in 27 comparisons involving the stuaent evaluations and

only 5 with the instructor self evaluations. The correction for attenua-

tiondecreased the apparent method effect and lessened the difference in

method effect between student and instructor ratings, but these changes were

small.

The fourth criterion requires that the pattern of correlations among

different traits shou2d be similar for the different methods. A visual

inspection of Table 1 suggests that this may be the case. To provide a

more precise test, the 36 off-diagonal coefficients in the student rating

block were correlated with those in the instructor rating block. The

result, r .43, was significant at the .01 level and suggests that there

is a similarity in the pattern of correlations. This suggests that

there is true trait covariatipn that is independent of method.

In summary, the data provide clear support for convergent validity,

and at least two of the criteria of discriminant validity. Student-

instructor agreement on any one trait was indepeneent of their agreement

on other traits. Furthermore, there was a similarity in the pattern of

trait correlations for student and instructor ratings. There was an

indication, however, of some halo or method effect--particularly with

the student ratings.

13
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The ANCVA Aprroacli

Based upon recent citations in the literature, this technique appears

to have been popularized by Kavanagh, MacKinney, and Wolins (1971). Stanley

(1961) demonstrated how multitrait-multimethod data could be analyzed with

a three-factor unreplicated analysis of variance; wnen repeated measurements

of cases--ratings of college classes in the present applicationare measured

over all levels of two other variables--traits and methods in this case- -

three orthogonal sources of variation can be est4mated. The main effect

due to classes is a test of how well ratings in general discriminate between

classes, and is suggested to be analogous to convergent validity. It should

be noted that this is NOT the same use of convergent validity as that dis-

cussed by Campbell and Fiske (1959). The interaction between classes and

traits tests whether the differentiation between classes depends upon

traits. If it does not, then the traits have no differential validity

(i.e., each class is ranked the same regardless of the trait). This is

taken to be a measure of discriminant validity. The interaction between

clgeses and methods tests ',ether the differentiation between classes

depends upon methods. .oes, then the different methods introduce a

source of systematic (undesirable) variance. This is taken to be a mea-

sure of method or halo effect. The class by trait by method interaction

is assume.: to measure only random error (i.e., the differentiation beT-

tween classes is assumed not to depend upon any specific trait-method

combination). Stanley (1961) recommends that the measures be replicated

Pnr each suNect within a given study,..thus providing independent es'-1-

mates of the three way interaction and the error term (also see King,

Hunter & Schmidt, 1980). However, his recommendation dces not seem to ever

14
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been followed. :n this model main effects due to traits and methods can

also be calculated, but these are generally of less interest.

Soruch, Larkin, Wolins and MacKinney (1970) and Havanagh, Machlnney

and Wolins (1971; have described computational procedures whereby the mean

squares and the variance component estimates for the analysis of variance

model could be computes directly from the correlations contained in the

multitrait-multimethcd matrix. The comoutational equations for computing

these effects are presented in Table 2. The systematic differences in the

reliabilities of student and instructor ratings, as previously discussed,

will produce biased estimates of the discriminant validity and method/halo

effects (Ecruch, Larkin, Wolins & Mac:anney, 1970; Schmitt, et al., 1977).

Consequently, the .NOVA procedure was also applied to the correlations

that were corrected for unreliability (see Table 1).

Each of the ANCVA effects--Convergent Validity, Divergent Validity,

and Method/Halo bias--and their variance components are presented in

Table 2. All three effects are statistically significant fcr analyses

based upon both the corrected and uncorrected correlation coefficients.

The size of the discriminant validity effect (the variance componeoc)

was approximately twice that of the method/halo effect. When the cor-

relation coefficients were Corrected for attenuation, each cf the effects--

except the error term- - increased. However, the largest increase occurred

for the discriminant validity effect. As was observed with the Campbell-

Fiske analysis, the correction for attenuation improved the discAminant

validity, but did not eliminate the method/halo bias.

Insert Table 2 About Here
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The t,incirel advantages of the A:;?VA mc14.el are its ease of arpli-

cation and the convAnient descrittive statistics si-mmaricing the relative

maanitude of the effects of converent validity, divergent validity, and

method halo bias. However, tie moues also has major shortcominzs. The

croblem of differing reliabilities, which this approach shares with the

7mpabell-Fiske analysis, has already beer. discussed. The assumbtfon that

the class by method by trait interaction contains only error variance is

not normally testable, and its violations may have varying influences on

the estimation of the other effects. The model makes no provision for the

possibility of true trait covariation or correlated method effects, and

Provides no test for their existence. Finally, many of the hepristic

inferences that are likely tc result from the aptlication of the Campbell-

Fiske criteria will be lest with application of only the ANOVA analysis.

Many of the disadvantages of the ANOVA model are shared with the Campbell-

Fiske analysis, but the misleading precision and simplicity of the Al;OVA

approach are less likely to reveal these potential problems.

There is no clear equivalence-between the effects estimated by the

ANOVA model and the Campbell -Fiske criteria. Inspection of the computa-

tional equation for the convergent validity effect (see Table 2), indicates

that it is a function of the average correlation in the entire .multitrait-

multimethod matrix. This is clearly different from the Campbell-Fiske

criterion that is based r.pon just the convergent validity diagonal. In

particular, even if all the convergent validity coefficients approached

unity, the average correlation in the entire matrix generally would not.

milarly, the ANOVA model might indicate a moderate degree of convergent

validity even if the average convergent validity coefficient were close

16
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to zero.

The similarity of the divergent and method/halo effects in the ANOVA

model and the Campbell-Fiske criteria is harder to assess. Inspection of

the computational equations for the ANOVA effects (Table 2) indicates that

the discriminant validity and method/halo effects are a function of the

difference between the average of specified correlations and the average

correlation in the entire MTMM matrix. The comparisons in the Campbell-

Fiske criteria are more specific. Ft... hermore, the proportion of variance

accounted for by the four effects in the ANOVA model--the convergent,

divergent, method/halo, and error effects--must sum to 1.0. This means

that an increase in the convergent effect will cause a decrease in the,

divergent effect so long as the method/halo and error effects remain con-

stant. This is quite different from the Campbell-Fiske approach where

an increase Jr, convergent validity will lead to an increase in discriminant

validity. Similarly, when correlations in the present application were

corrected for attenuation, the Campbell-FisLe analysis indicated that the

Method effect was reduced (i.e., fewer,rejections of criterion 3), but

that the method effect in the ANOVA analysis actually increased--though

the increase was.less than the increase in the divergent validity effect.

The ANOVA model has no term that is comparable to the fourth Campbell-

Fiske criterion. In fact the ANOVA model is based upon the assumption

that traits are uncorrelated (see King, et al., 1980) but provides no

test of this assumption. These observations indicate that comparisons

between the ANOVA and Campbell-Fiske analyses should be made cautiously.

In stmomary, application of the ANOVA model indicates significant

effects of convergent, divergent and method/halo effects. The size of

the discriminant validity effect (the variance component) was more than

17
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twice the size of either of the other two effects. The variance component

for this effect was also increased the most by the correction for attenua-

tion.

Confirmatory Factor Analysis

The confirmatory factor analysis approach is described under a variety

of different labels in the literature: restricted factor analysis (Boruch

& ',.Tolins, 1970), confirmatory factor analysis (Warts, Joreskog & Linn, 1972),

path analysis (Schmitt, Coyle & Saari, 1977; Schmitt, 1978), and exploratory

factor analysis (Lomax & Algina, 1979). This plethora of labels, and

particularly the emphasis on path analysis (aad structural equations) is

unfortunate. The analysis of the MTMM can be viewed as a straightforward

application of confirmatory factor analysis with a priori factors corres-

ponding to specific traits and methods, and the major findings can be

interpreted in much'the same way as can any other factor analysis.

The Confirmatory Factor Analysis Model. In this study the notation,

the specification of the model, and the actual analysis are performed with

the commercially available LISREL IV program (Joreskog & Sorbom, 1978).

This program embodies Joreskog's maximum-likelihood apprOach to confirmatory

factor analysis. The model used in this analysis requires the specification

of three different matrices. 1 These are the LAMBDA matrix that contains

the factor loadings, the PSI matrix that contains the correlations between

the factors, and the TEETA matrix that contains the error/uniqueness of

Bach measured variable. These are concertually similar to the rotated

factor mattrix,

lities (actusally

factor analysis.

matrix of correlations between factors, and the communa-

bne-minus the commuralities) that result from common

In confirmatory factor analysis, however, the researcher

'18



is able to constrain various parameters in the different matrices in

order to test alternative models. :n the basis of these three matrices,

a reproduced correlation matrix is determined that provides a "best fit"

to the original correlation matrix within the constraints that are imposed

by the proposed model. Using matrix notation SIGMk, the reproduced

correlation matrix is defined as:

SIGMA = LLAMBDA * PSI * LAMBDA ?] + THETA EPSILON

In the present example, the confiburation for the factor loading (LAMBDA)

Matrix and the matrix of correlations between fa4ors (the PSI matrix) is

presented in Table 3.

Insert Table 3 About Here

In the LAMBDA matrix, each of the 11 factors (Eta 1 - Eta 11) repre-

sents either a Method factor (Eta 1 & Eta 2), or a Trait factor (Eta 3 -

Eta 11). The first method factor is defined by the nine instructor self

evaluations (Ilrn, Ient,...,Iwrk), while the se:ond method factor is

defined by the nine student ratings :Slrn, "cant Swrk). Each cf to

nine trait factors is defined by the one instructor and one student rating

of the same trait. For example, the first trait factor (Eta 3) is the

learning trait factor aod is defined by the instructor and student ratings

of Learning. Each of the "0" elements in the matrix represents a fixed

parameter, while the other 36 elements are free and will be estimated.

In most of the models to be discussed--with dome notable exceptions,

the factors are oblique (correlated). The correlations among the 11 factors

appear in the PSI matrix (see Table 3). Each of the elements in the PSI

matrix represents a correlation between two factors; for example, r10.11

represents the correlation between the Assignment factor (Eta 10) and the

Workload/Difficulty factor :Eta 11). Elements of the matrix
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tilE.t begin with r were free anJ estimated by the program; the "0"

elements were fixed to be zero; and the diagonals were fixed to be 1..

he LISREL program attempts to minimize a maximum-likelihood loss

furction that is based upon differences between the original -nd repro-

duced correlation matrices, and provides an overall chi-square test of the

gocdness-of-fit of the proposed model. As described by Joreskog (joreskog

& Sorbom, 1978), it also determines a test of identification,

anmptomatically efficient estimates of each tree parameter in the pro-

posed model under the assumptions of multivariate normality, estimates of

the standard error of each fitted parameter--allowing a statistical test ,

of its difference from zero, and additional information that is helpful

in determining what changes in the proposed model would provide a better

fit to the data (see Maruyama & McGarvey, 1980, for furrier discussion).

The minimum condition for fitting the complete model (Alvin, 1974;

Werts, et al., 1972) is that there be at least three traits and three

methods. This means that, without making any further assumptions (i.e.,

constraining more parameters to a fixed value), the most unrestricted form

of the model is not identified and cannot be tested. On the basis of both

sub3tantive (Boruch & Wolins, 1970) and practical (Althauser & Herberlein,

1970) considerations, the correlations between traits and methods were

set to zero. However, the model was still not identified.2 In order

to obtain a testable model, the reliability of the student and instructor

ratings (coefficient alphas based upon the items that ciefine each of the

fav:ors) were computed and used as a basis for determining the values of

META (error/uniqiteness components). Preliminary analysis thdicated that

thin resulted in a very poor fit to the data, suggesting that each factor

May have a unique component as well as error. Consequently, the 18
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variables were entered Into a standard factor analysis crocedure ;':;ie, et

al., 1975, and an 11 factor solution was determined. The Communalities

resulting from this analysis (see et al., 1975, pp. 475-477) were

then used to determine an estimate of the THETA elements. This procedure,

which provides an estimate of the combined uniqueness and unreliability,

provided a much better fit to the data. Consequently in order to circum-

vent the identification problem, all the THETA elements were set at a

value of 1 minus the communality of the variable. This same se; of values

was used for each of the models to be discussed. Consequently, the most

general model to be considered in this study is one in which correlations

between methods and traits are fi-:dd to be zero, and the values of THETA

(error/uniqueness components) are predetermined.

The Goodness of Fit of the Model. The LISFEL program provides a

chi-square test of tae overall goodness-of-fit, but the test is dependent

upon the sample size. A reasonably good fit to the data will produce a

statistically significant chi-square value if the sample size is large,

while a poor fit based upon a small sample size may not result in a

statistically significant chi-square value. Alternative indices of fit

(Schmitt, 1978) include the ratio of the chi-square to the degrees of

freedom, the average difference betwtwa the reproduced and original

correlation matrix, and a reliability coefficient developed by Tucker and

Lewis (1973). The reliability coefficient is defined as

r (Co - Cm)/ (Co - 1) Where:

the chi-square/df ratio for a null model,

Cm the chi-square/df ratio for the tested model,

1, a the expected value of the chi-square/df ratio

This coefficient scales theChi-square goodness-of-fit value along a
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scale that varies from zero the null model) to 1.0, though 'ralues greater

than 1.0 are ocssible. The null model generally consists of specifying

S=4A to be a diagonal matrix, testing the assumption that the measured

variables are uncorrelated. Tucker and Lewis suggest a value of .90 or

higher provides an adeauate fit to the data. Their coefficient provides

an index of the proportion of the variance that is explained by the model

rather than a statistical test of its goodness-of-fit. For example, a

model that is tested with a mall number of cases (e.g., less than 50 cases;

may result in statistically insignificant differences from the observed

data (based upon the chi-square test) and yet only have a Tucker-Lewis

reliability coefficient of .50. This suggests.that while the proposed

f/)

model fits the data in a statistical signer cance sense, the test was a

very weak one and there may be many posf ble models that would do as well.

Alternatively, a model that is tested with a large number of cases may

have a Tucker-Lewise reliability of .99 and still have a significant

chi-square value (see Bf.mtler & Bonett, 1980, for further discussion).

The estimates parameters for the general model (Model I) described

in this section are presented in Table 4. The chi-square value for this

model is statistically significant, but the chi-square/df ratio was only

2.38 and the Tucker-Lewis reliability coefficient is .98. This indicates

a good fit to the data.

Insert Table 4 About Here

Inspection of the values suggest that each of the nine trait factors is

well defined, that there is substantial method variance associated with

the student ratings and some associated with instructor self-evaluations,

and that the traits are moderately correlated.
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Testing l,lternative Models. 7cm;arisons of two rested an be

made by taking the difference in their two ohi-square vabes and testing

this azainst the difference in the degrees of freedom '_3entler
2,c

1950; Kenny, 1976; Schmitt, et al., 1977). For example, one of the alter-

native formulations of Model I postulated that the 36 correlations between

the nine trait factors (in the PS: matrix) are really zero ('.1odel V in

Table 5). Analysis of this model produced a chi-square value (543.6 with

134 degrees of freedom--see Table 5) that was necessarily larger than the

value obtained with Model I (233.6 with 9i: degrees of freedom); the two

chi-squares would only be equal if the estimated parameters in Model I

were exactly equal to zero. Since the difference in the two chi-square

values (310.0) assessed against the difference in degrees of freedom (36)

is statistically significant and substantial, the analysis argues for

Model I.

In order to make more precise tests of the data, a series of alter-

native models were derived and their ability to fit the data (using the

Tucker-Lewis coefficient as an index) was examined. These models are sum-

marized in Able 5--including the general and null models--along with

their chi-squares, degrees of freedom, chi-square/df ratios, and Tucker-

Lewis reliabilities. Alternative models considered the consequences of

eliminatinb one or more of the trait factors, eliminating one or both of

the method factors, or constraining some of the correlations between these

factors to be zero. For example, the student method factor was eliminated

(Model III in Table 5) by setting all the factor loadings for this factor

(the Eta 2 factor in the LAMBDA matrix) equal to zero and setting all the

correlations (in the PSI matrix) involving this factor--including the

diagonal element--equal to zero. However, this model provides a poorer
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fit to the data than Model I. Similarly, the elimination of the instructor

method factor also -produces a poorer fit than does the general model, but

a better fit than when the student method factor was eliminated. This

shows that the student method factor is more important than the instructor

method factor.

Insert Table 5 About Here

In summary the analyses of these alternative models indicates that:

(1) Substantial portions of the variance in the data were accounted for

by both the different traits and the different methods. However,

exclusion of the trait factors was far more detrimental to the fit

of the model than was exclusion of the method factors.

(2) The elimination of correlP:ions among the traits produced a poorer

fit to the data, indicating that the underlying traits considered

in this study are truly correlated.

(3) While there was substantial method variance in both the student

and the instructor ratings, elimination of the student method factor

was more detrimental than was elimination of the instructor method

factor. This indicates that there is more method variance in the

student ratings than in the instructor self evaluations.

A classic problem in factor analysis is the determination of the

number of factors. Researchers typically resort to heuristic guidelines.

In the present application, a precise statistical.test is used to explore

the consequences of combining two or more factors (see Joreskog, 1974).

The Organization and Breadth ofCoverage trait-factors were consistently

among the most highly correlated in each of the different models (e.g., see

2 (4
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PST matrix in :able Furthermore, -,hese two factors seem conceptually

related as well. Consequently, an eight-trait solution was tested that

combined these two factors. This was accomplished by eliminating the

organization trait-factor, and allowing the Organization items to load

on the Breadth of Coverage factor. However, the results of this model

(Model X--see Table 5) produced a substantially poorer fit to the data

than lid the nine-trait model. This implies that the best description

of the data requires all nine trait factors,,or at least that these two

should not be combined. The ability to test the statistical and practical

impact of combining traits offers an important advantage for the confirma-

tory factor analysis approach, particularly when research does not begin

with a well established factor structure.

Descriptive ,Statistics. The values in Table 4 can also be used to

derive descriptive statistics similar to those obtained with the ANOVA

model, and to assess the adequacy of each of the measures separately.

Loadings in the LAMBDA matrix can be interpreted in much the same way as

with common factor analysis; high loadings of items on a trait or method

factor supports the existence of the factor. trait and methQd variance

components for the general model (as depicted in Table 4) can be estimated

by squaring the factor loadings in the LAMBDA matrix (Joreskog, 1971), and

are presented in Table 6.

The trait variance in every measure, both student and faculty ratings,

was suMtantial and statistically significant, The average trait variance

across all measures was approximately twice that of the average method

variance. The trait variance in the student ratings was somewhat higher

than for the faculty self evaluations. However, the faculty self
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evalaations had little method variance except for the Learning/7alue

factor), while that observed with the student ratings was substan*ial.

ne factor, Iearninw/7alue, had substantial method variance for both

student and instructor ratings. For instructor ratings of Ieerninz/VaLle,

there was substantially more method variance that trait variance.

larly, there was more method variance in the student ratings of Examinations
a

than there was trait variance.

insert Table 6 About Here

It must be emphasized that evidence for the existence of a particular

trait or method should be based upon the size of the factor loadings in the

LAMBDA matrix (e.g., Table 4) or the variance components based upon these

loadings (Table 6). Some researchers (e.g., Schmitt, et al., 1977) have

incorrectly suggested that support for the discriminant validity should be

based upon the correlations among the trait-factors (in the PSI matrix)

rather than the factor loadings. However, significant correlations in the

PSI matrix merely means that the underlying trait-factors are correlated

in a manner that is independent of the method of data collection. This

situation is actually related to tne fourth Campbell-Fiske criterion

(that the pattern of correlations among traits is similar for each of the

different methods), and they interpret this as evidence supporting the

discriminant validity of the measureu. As with,the interpretation of

other oblique factor analyses, it is only when correlations between traits

become extreme that the researcher need be concerned about the distinctive-

ness of the different factors. As in the present application, the cor-

relations among factors may be quite consistent with the substantive
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nature of the data.

Application of the strix equation ;equation 1) or the equivalent

tracing rule (Schmitt, 1978; Kenny, 1979) allows the decomposition of each

reproduced correlation into components that are due to trait variation,

method variation, and trait method interactions. As previously discussed,

one of the limitations of both the Campbell-Fiske and ANCVA techniques is

that they make inferences about latent or unobserved variables that are

based upon observed relationships. For example, the true trait variation

the convergent validities may be systematically increased or decreased,

depending upon the influence of the method or trait-method interactions.

A computational equation for decomposing each reproduced correlation into

distinct components is presented in Table 7. Application of this decompo-

sition for each of the reproduced correlations indicated --at there was

very little method variation in any correlations other than the correlations

among the student ratings.

Insert Table 7 About Here

Summary of the Confirmatory Factor Analysis A ;proach. The analysis

of M'I1M matrices can be viewed as an application of confirmatory factor

analysis. The matrices upon which this analysis based-- except for the

constraints used to define various models--are familiar to users of

factor analysis, and the interpretation of the results is similar to

the interpretation of common factor &14.1,f8021. However, the ability to

constrain various parameters alma the formulation and testing of various

descriptions of the :.tent trait and method factors. The "goodness of

fit" of the various models and their parameter estimates (e.g., Nms,

loadings) provide a direct test of the existence of various trait and

method factors.
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:'iscussion

The purpose of this study was to compare different technioues :or

analyzing multitrait-multimethod matrices. In particular, the conclusions

based upon the Campbell-Fiske criteria were compared with those generated

by the ANOVA model and the set of coL.firmatory factor analysis models.

At the most general level each of the different approaches showed good

suwort for both the convergent and divergent validity, but also indicated

some method or halo bias. The Campbell -Fiske criteria, through inspection,

showed that agreement on any one trait was relatively independent of

agreement on other traits (criterion 2), that the method variance was more

pronounced in tin* student ratings (criterion 3), and that there waa, evidence

of trait 2ovariation that was independent of method (criterion 4). The

ANOVA model indicated that the variance component for the divergent validity

effect was approximately twice that for the method/halo effect. Confirma-

tory factor analysis provided precise tests of,each of the observations

generated by the Campbell-Fiske criteria, provided8a statistical summary

similar to that generated by the ANOVA model, and also estimated separate

met1,1d and trait variance components for each of the different measures.

Confirmatory factor analysis also provided tests of additional hypotheses

that ;one not testable with either the Campbell-Fiske or the ANOVA

approaches.

As previously discusselfhere are several important limitations of

the Campbell-Fiske approach. to analysis of nultitnsit-multimethod matrices.

The most important are: 1) the inf,:rmal nature of criteria and the lack

of clear statements of what constitutes satisfactory results; 2) the

inability to provide and incorporate information about the reliability of
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of the measures (particularly if reliability estimates are not available);

3) the cumbersome and unwieldy number of comparisons that must be made for

large problems; 4) the ambiguity between trait variance, trait covariance,

and method variance; 5) the reliance on observed variables for making

speculations about latent factors; and 6) the lack cf any meaningful

summary statistics that describe the data.

1
Despite these problems, the Campbell-Fiske criteria performed well

in the present application. Each of the descriptive speculations based

upon this analysis were confirmed with the more rigorous tests of

alternative LISREL models. The approach, while lacking rigor, does pro-

vide an important initial assessment of convergent and discriminant validity,

and method/halo biases. The popularity of the method, the ease of its

application, the heuristic appeal of the criteria, and the usefulness of

interpretations all dictate that these criteria continue to be used for

the preliminary inspection of any multitrait-multimethod matrix.

The limit/3_10ns with the ANOVA model, though perhaps less apparent,

are more numerous than those encountered with the Campbell-Fiske analysis.

The principal advantage in the use of this approach is that it provides

a convenient summary of the relative magnitude of trait and method effects

and a test of their statistical significance. However, the appropriate-

ness of the test and the summary depend upon many of the same underlying

assumptions that were discussed with the Campbell-Fiske analysis, and the

detailed inspection of the multitrait-multimethod matrix required by the

Campbell - Fiske approach will often provide an in..kcation of problems that

may be overlooked in the deceptively simple summary statistics resulting

from the ANOVA analysis. Finally, many of the heuristic speculations that
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result in the applicat:.on of the Campbell -Fiske criteria will be lost if

only the ANCVA model is used. For example, application of the Campbell-

Fiske criteria indicated that there was considerably me l-a method/halo

effect in the student ratings than in the instructor ratings, that there

was true trait covariation smog._ the different traits that was independent

of method, and that the correction for unreliability reduced the method/

halo effect in the student ratings. None of these findings could have

been identified by the ANOVA model to analyze multitrait-multimethod

matrices. It does, however, provide useful summary statistics that can

supplement the Campbell-Fiske criteria.

The limitations in the application of the LISREL models stem

primarily from the difficulty of use. Paul Lohnes (1979, p. 334), an

influential researcher and textbook author in the application of quantita-

tive analysis, recently stated that "LISREL is a complex and expensive

fitting and testing machine to which the author does not have access."

The key points seem to be the complexity, the expense, and the lack of

availability. The LISREL program is commercially available for a rather

nominal charge, so availability is Lot a critical problem. Complexity

represents a large initial hurdle that must be overcome, in much the same

way that the complexity of multiple regression was a limitation of its

of its application before the publication of the Draper & Smith (1966)

text. Similarly, the complexity of LISREL will become less of a problem

as the technique becomes more widely known and applied. The expense--in

terms of computer time--is an important limitation that probably will not

be easily resolved. While many finite problems--the kind that are likely

to appear in textbooks --can be solved with small amounts of computer time,

exploration of large scope problems quickly become very expensive. This
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will be a particularly important limitation to the novice user who may be

forced to use considerable amounts of computer time in formulating the

problem.

Beyond these general difficulties in using LISREL, its application to

analysis of multitrait-multimethod data also imposes other limitations.

:n order to test a model with free Parameters for all of the off-diagonal

values in the PSI matrix (correlations between the factors) and the THETA

matrix (the uniqueness/error variances) a minimum of three traits and

three methods are needed. However, as demonstrated in this study, a

variety of constraints can be imposed that allow testing of an alternative

models. Even when there are an adequate number of traits and methods,

it is necessary to have a large number of cases in order to provide strong

tests of alternative models and to obtain high Tucker-Lewis reliability

coefficients. This is particularly important when the researcher se-

quentially develops alternatie models on the basis of prior analysis of

the same data. This problem, taking advantage of chance variation that may

be specif'c to the particular data being considered, is not unique to

this analysis, and the best control for the problem is to cross-validate

the findings.

Despite these limitations, confirmatory factor analysis is clearly

the superior method to use in the analysis of multitrait-multimethod data.

In summary, some of its advantages-are:

l) it tests inferences that are based upon the underlying latent

variables rather than relationships between observed variables;

2) it distinguishes variance due to traits and methods;

3) it allows comparison of a variety of alternative formulations

of the basic model and an overall test of the goodness-of-fit
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for each proposed model;

4) it provies a separate statistical test of each estimated parameter

against the null hypothesis of a zero coefficient;

5) it provides convenient summary statistics of the amount of trait

and method variance in each separate measure, in each set of

measures, and for all the data combined;

6) it allows the decomposition of each reproduced correlation in

components that are attributable to trait and method effects;

7) it provides estimates of the reliability of each measure that are

incorporated into the analysis;

8) it provides an empirical test for the existence of correlations

among traits, among methods, and between traits and methods;

9) it provides an empirical test of the number of trait-factors and

method-factors that provide the best fit to the data.

these advantages, particularly when compared to those of alternative

techniques, demonstrate the importance of using LISREL modeling in the

analysis of multitrait-multimethod data.
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Footnotes

The authors wish to acknowledge William McGarvey and Robert Cudeck

for their comments on an earlier draft of this paper, and for their help

in the application of LISREL.

1--The most general model and each of the-alternative models could also

be specified in terms of x-variables instead of y-variables. Other

specifications of the most general model (e.g., permitting correlated

errors, etc.) are also possib . The particular specification used

in this study is the one most generally used by other researchers.

2--A necessary, but not sufficient, condition of identification is that

there are at least as many observed correlations as free parameters.

This is not a sufficient condition,,since there may be overriding

constraints (Kenny, 1979). The LISREL program, however, checks for

identification (See Joreskog, 1978; Joreskog & Sorbom, 1978; for

further discussion) and generates an error message when the pro-

posed model is not identified.
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TABLE I

Multitrait-Oultieethod Matrix: Correlations Between Student and Faculty Self Evaluations in 329 Courses

INSTRUCTOR SELF-EVALUATION FACTORS
INSTRUCTOR SELF LEARN ENTHU ORGAN GROUP INDI1 BROTH EXAMS ASIGN map
EVALUATION FACTORS

STUDENT EVALUATION FACTORS

LEARN ENT00 02GAN GPDUP INDIV BROTH EXAMS ASIGN IfFELD

LEARAING/ALGE (830) 286 117 14 -70 127 -8 243 30 <405> 214 171 192 29 256 183 207 -58ENTHUSIASM 347 (820) 10 30 -19 124 80 -8 -10 99 <476> 132 46 31 149- 89 26 -29ORGANIZATION 149 13 (740) -147 72 129 262 167 116 -12 -41 <254> -203 -53 87 17 18 '40GROUP INTERACT 17 35 -180 (900) 20 107 85 46 -92 82 -13 -34 <454> 131 -3 -7 86 1INDIVID 'APPRT -85 -23 93 24 (820) -14 147 218 59 -121 -16 36 -4 <250> -142 55 -6 32BREADTH 152 149 163 123 -17 (840) 203 85 -41 93 -7 67 -24 -188 <367> -88 44 -31EXAMINATIONS -9 101 349 102 186 254 (760) 210 91 -35 -32 86 -137 -36 2 <135> -16 123ASSIGNMENTS 319 -11 232 58 288 111 299 (700) 214 77 -90 -3 -47 -24 95 -19 <356> 225NRKLD/DIFFCLTI 39 -13 161 -116 78 -53 125 306 (700) 16 98 -48 -81 3 21 -56 122 <539>

INSTRUCTOR SELF-EVALUATION FACTORS
STUDENT LEARN MHO ORGAN GROUP INDIV BROTH EXAMS ASIGN ARKLD
EVALUATION FACTORS

STUDENT EVALUATION FACTORS

LEARN ENT00 ORGAN GROUP INDIV DRDTH EXAMS ASIGN UCKLD

LEARNING/VALUE <456> 112 -15 89 -137 104 -41 94 20 (950) 455 528 369 222 494 481 521 58
ENTHUSIASM 2u0 <537> -48 -14 -19 -8 -32 -109 -120 476 (960) 497 305 350 339 '419 248 17
ORGANIZATION 195 151 <306> -37 41 76 102 -4 -59 562 526 (93C) 215 334 562 1571 345 -46GROUP INTERACT 213 52 -239 <484> -4 -27 -159 -57 -98 382 314 225 (980) 420 165 341 305 -54
/NOTVID RAPPIIT 33 34 -63 141 <282> -209 -42 -30 3 233 364 353 433 (960) 156 504 288 80DREADTR 290 169 104 -4 -162 <413> 2 117 26, 522 357 601 172 164 (940) 334 403 178
EXAMINATIONS 208 132 20 -7 63 -100 <166> -23 -64 512 u43 615 351 534 357 (930) 423 -23
ASSIGNMENTS 237 30 21 94 -7 50 -19 <443> 151 557 226 373 321 307 433 457 (920) 2U4

F-'NORLD/DIFECLTT -68 -15 50 1 37 -36 151 289 <691> 6'1 18 -51 -59 87 196 -26 228 (870)

NOTE: Va1ues enclosed in ( ) in the diagonals of the upper left and lover right satrices (the heterotrait-mononchtod r:.tric(s)
A a reliability (coefficient alpha) coefficients. Values enclosed in < > in the diagonals oflower left and upper
right eetricies (the heterotrait-heterOmethod matrices) are the convergent validity coefficients. All coefficients
WON the eats diagonal of Os entire 18 x 18 matrix have been corrected for unreliability. Correlations (presented
wittlout deciaal points) greater than 100 (i.e., .10) are statistically significant.
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Computational Equations and Eosolta of tho ANOVA
Analysis of a Multitrait -'Multisethod Matrix

aaaaaaaa
sw=war=awas===s=ssamassas====s=sas===amam*ss====aa===zam==s====s===t====Computations For Sues of Squares and Estimated Variance ComponentsSOUKS S s" DV Variance Component

41. Ow IMP

Class (C)
(Convergent Validity)

Class x traits
(Discriminant Validity)

Class I nothods
(Method/Halo Effect)

CxTRM
(error)

Nam (rt)
.

Nam (ry - rt)

Mum (rf - rt)

Nna(1- rv- rf.rt)

. 6-1

(1,-1) (n-1)

(N -1)(a-1)

(N-1) (n-1) (11-1)

(MSc-dScte)/Sm

(MSct-MSctu)iS

(aScm-MSete)/n

RSctm

40

NOTE: M = Tot,' DusiLe of Cases (classes)= Rue 4: of d fferent t a ts
a Mum.er of Jiff. gpnt thods .rt a averaqe correlatio

coefficient in the entire 1TMR matrix (including coefficientspoth above and bp ws,the diagonal and valueso 1.0 in the diagonalsry = averale corrolat p between sources within traits , computed by:( 2 (sum of val ity dis onal ) an) / n m**.rf = average between Tait cor elat on in he monomethod blocks, computed by:2 (sun of monomethod-heterotrait tr angle coefficients) 4. nu) / n**2F- Ratios for each of the three effects
(convergent validity, divergent validity andmethod/helo effect) re obtained by dividing the Mean Square for the effect -- the Sum ofSquares divided by the degrees of freedom -- by the Mean Square of the Error term.UUUUUUUUUUUU UUUUUUUUUUUU

lasszassmssasssumsnalm===xim=====assgm UUUUUU ansx=massm

Results for Uncerreced and Corrected Correlation Matkicies

souars df

Class 328
(Convergent)

r x Trait 2624
(Divergent)

C x Method 328
(Method /Halo)

CsTxM 2624
(Error)

ONCONEECTEDTOENELATIONS
SS MS F VARCP

1009.55 3.078 6.54** 0.145

3016.25 1.149
2.1144.4. 0.340

661. 2.011 4.27** 0.171

1234.43 0.470 ---- 0.470

1

I

1

CONEELATIES CONVECTED FOR ATTENUATION
SS MS F VARCP

1085.89 3.311 8.17** 0.162

3101.05 1.182 2.97** 0.392

690.54 2.099 5.27** 0.189

1041.51 0.398 ---- 0.398

f44

NOTE; at *O.170; Nv=0.680; Ef=0.282M=329 classes; n=9 traits; m=2 methods NOTE; Nt=0.143;
M=329 Classus; Ev=0.707 Ef=0.350

11=9 traits; a=2 methods

b

cl

(t

(Taa
L.) 0
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Table III

Configuration of the LAMBDA and PSI Matrices in the GENERAL MODEL

LAMBDA (Factor Loading Matrix)

Inst Stdt Lrn Ent Org Grp Ind Brd Exm Asg WorkMethod Method Trait Trait Trait Trait Trait Trait Trait Trait TraitFactor Factor Factor Factor Factor Factor Factor Factor Factor Factor Factor

Eta 1 Eta 2 Eta 3 Eta h Eta 5 Eta 6 Eta 7 Eta 8 Eta 9 Eti 10 Eta 11
Instructor. Learning/Value Ilrn 0 Ilrn 0 0 0 0 0 0 0 0Enthusiasm lent 0 0 lent 0 0 0 0 0 0 0Organisation Iorg 0 0 0 Iorg 0 0 0 0 0 0Group Interaction Igrp 0 0 0 0 Igrp 0 0 0 0 0Individual Rapport Iind 0 0 0 0 0 Lind 0 0 0 0Breadth Ibrd 0 0 0 0 0 0 Ibrd 0 0 0Examinations lexm 0 0 0 0 0 0 0 Iexm 0 0Assignments Iasg 0 0 0 0 0 0 0 0 iasg 0Workload/Difficulty Ivrk 0 0 0 0 0 0 n 0 0 IwrkStudent Learning/Value 0 Slrn 8lrn 0 0 0 0 0 0 0 0Enthusiasm 0 Sent 0 Sent 0 0 0 0 0 0 0Organization 0 Sorg 0 0 Sorg 0 0 0 0 0 0Group Interaction 0 Sgrp 0 0 0 Sgrp 0 0 0 0 0Individual Rapport 0 Sind 0 0 0 0 Sind 0 0 0 0Breadth 0 Sbrd 0 0 0 0 '0 Sbrd 0 0 0Examinations 0 Seam 0 0 0 0 0 0 Sexm 0 0Assignments 0 Sang 0 0 0 0 0 0 0 Sasg 0Workload/Difficulty 0 Swrk 0 0 0 0 0 0 0 0 Swrk

PSI (Correlations Between FaLtors)

Inst Stdt Lrn Ent Org Grp Ind Brd Exm Asg MorkMethod Method Trait Trait Trait- Trait Trait Trait Trait Trait TraitFactor Factor Factor !actor Factor Factor Factor Factor Factor Factor r%ctor

Eta 1 Eta 2 Eta 3 Eta h Eta 5 Eta 6 Eta 7 Eta 8 Eta 9 Eta 10 Eta 11
Instructor Method
Student Method
Learning/Value
Enthusiasm
Organisation
Group Interaction
Individual Rapport
Breadth

Examinations
Assignments
Workload/Difficulty

1.0

r1.2
0

0
0

0

0

0
0
0

0 f

1.0
0

0

0

0

0

0

0

0

0

1.0
r4.3

r5.3
r6.3
r7.3
r8.3
r9.3

r10.3
r11.3

1.0
r5.4
r6.4
r7.4
r8.4

r9.4
r10.4

r11.4

1.0

r6.5
r7.5
r8.5

r9.5
r10.5

r11.5

1.0

r7.6
r8.6

r9.6
r10.6

r11.6

1.0
r8.7

r9.7
r10.(
rill'

1.0

r9.8
r10.8
r11.8

1.0

r10.9
r11.9

1.0
r11.10 1.0

Note: All *laments with the value of 0 or 1.0 represent fixed values, while all other value. are estimated by the LISREL program.The third matrix, the theta matrix, is an 18 x 18 diagonal matrix in .which the diagonal values represent variance attributableto random error and/or raliable uniqueness. In the present application, these values were estimated independently and fixedin this analysis. In other applications, these can also be estimated by the LISREL program.
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Table :V

Configuration of the LA:IBDA and PSI Yottrices in the SENE2AL r:CDEL

LAM Factor Lousih6 Y.atrix)

39

Inst
Method

Factoi

Eta 1

Stdt
Method
Factor

Eta 2

Lrn
Trait

I..ctor

Eta 3

Ent

Trait

Factor

Eta 4

Org
Trait

Factor

Eta 5

Grp

Trait
Factor

Eta 6

Ind

Trait
Factor

Eta 7

Brd

Trait
Factor

Eta 8

E.

Trait
Factor

Eta 9

Asg
Trait
Factor

Eta 10

Work

Trait
Factor

Eta 11

Learning/Value -0.666 0.0 0.525 0.0 0.0 0.0 0.0 0.0 0.0 OiO 0.0Enthusiasts -0.245 0.0 o.o o.638 0.0 0.0 o.o 0.0 0.0 0.0 0.0Organization -0.067 0.0 0.0 0.0 0.523 0.0 0.0 0.0 0.0 0.0 0.0Ort4 Interaction 0.174 0.0 0.0 0.0 0.0 0.732 0.0 0.0 0.0 0.0 0.0Individual Rapport 0.055 0.0 0.0 0.0 0.0 0.0 0.653 0.0 0.0 0.0 0.0Broc:th 0.093 0.0 0 :' 0.0 0.0 0.0 0.0 0.587 0.0 0.0 0.0Examinations 0.236 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.716 0.0 0.0Assignments -0.156 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.839 0.0Workload/Diffiv-Ity -0.097 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.643Learning/Value 0.0 0.697 0.719 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0Enthusiasm 0.0 0.571 0.0 0.730 0.0 0.0 0.0 0.0 0.0 0.0 0.0Organization 0.0 0.729 0.0 0.0 0.735 0.0 0.0 0.0 0.0 0.0 0.0Group Interaction 0.0 0.480 0.0 0.0 0.0 0.648 0.0 0.0 0.0 0.0 0.0Individual Rapport 0.0 0.612 0.0 0.0 0.0 0.0 0.515 0.0 0.0 0.0 0.0Breadth 0.0 0.567 0.0 0.0 0.0 0.0 0.0 0.821 0.0 0.0 0.0Examinations C.0 0.829 0.0 0.0 0.0 0.0 0.0 0.0 0.527 0.0 0.0Assignments 0.0 0.615 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.579 0.0Workload/Difficulty 0.0 0.101 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.879

PSI (Correlations Between Factors)

Instructor Method
Student Method
Learning/Value
Enthusiasm
Organization
Group Interaction
Individual Rapport
Breadth
Examinations
Assignments
Workload/Diculty

Inst
Method
-Factor

Eta 1

1.0

-0.271
0.0
0.0
0.0
.0.0

0.0
0.0

0.0
0.0
0.0

Stdt
Method
Factor

Eta 2

1.0
0.0

0.0

0.0
0.0
0.0
0.0
0.0

0.0
0.0

Lrn
Trait
Factor

Eta 3

1.0

0.273

0.335
0.162
-0.210
0.437

0.202
0.409
0.097

Ent
Trait
Factor

Eta 4

1.0

0.324
0.057
0.085
0.22T

0.159
-0.012

-0.003

Org
Trait
Factor

Eta 5

1.0

-0.143
0.127
0.521
0.466
0.231

-0,022

Grp

Trait
Factor

Eta 6

1.0

0.211
-0.017
0.014
0.101
-0.083

Ind

Trait
Factor

Eta 7

1.0

-0.176
0.350
0.263

0.117

Brd
Trait
Factor

Eta 8

1.0
0.179
0.320

0.198

Exm
Trait
Factor

Eta 9

1.0
0.332
0.074

Aug
Trait

Factor

Eta 10

2..

1.0

0.377

Work
Trait
Factor

Eta 11

1.0

TWA SPS: Matrix of Uniqueness/Error Variances (values are the diagonals of an 18 x 18 squgre matrix)

\ Instructor Self Evaluations of

Learn Enthus Organ Group Individ Breadth Exams Asignmnt Workld

0.343 0.515 0.662 0.433 0.515 0.542 0.423 0.277 0.560

Studont Evaluations of

Learn Enthum Organ Group Individ Breadth Exams Asigmnent Workld

0.115 0.195 0.129 0.337 0.409 0.159 0.193 0.447 0.236
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TAPLE 'V

Summary of Tested Models

Model Description

9 correlated trait factors, 2 correlated method

ChiSq Dr ChiSq/DF Pel------
factors, no trait-method correlations

233.6 98 2.38 .977
(the general model depicted in Table III)II 9 correlated trait factors, 1 "general" factorwith loadings on hott student & instructorratings, no trait - "general" correlations 330.7 99 3.34 .962III 9 correlated traits, 1 student method factor(no faculty method factor), no trait-methodcorrelations 387.7 108 3.59 .952IV 9 correlated trait factors, 1 faculty methodfactor (no student method factor), no trait -method correlations 550.6 108 5.10 .933V 9 UNcorrelated trait factors, 2 correlatedmethod factors, no trait - method

correlations .543.6 134 3.99. .951
TI 9 up correlated traits, 2 Uncorrelatedmethods, no trait- method correlations

544.3 135 4.03 .930--rtr- -9-correlated traits, NO method factors
1126.9 117 9.63 .858VIII NO trait factors, 2 correlated

method factors 4213.7 152 27.7 .561IX Null Model (a diagonal SIGMA natrix for whichvalues were determined only by the values inthe 108TA
--error/uniguenebs-- matrix)

10564.8 171 61.0. .000

8 Correlated traits (the Or G Ereadthtrait factors were combined , 2 Correlated 466.0 106 4.4 .944Nethed factors, no trait-me hod correlations

110Ttt values under the column headed "Mel" are
Tucker-Lewis reliability

coeffic enits; a seaslre of the proncrtion of variance that isexolaited byIt mode being tested. Model IT, the Least restricted Todel and'the model
th the best fit van not identiied without further constraints of the
el. However, by mixing

several near-zero
coefficients in the PSI matrix

to be zero, the sodel was identified and could be tested.
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TABLE VT

Multitrait-Multimethod

41

Trait and Method Variance Components For Model I (the General model)

Instructor Ratings Student Ratings
Trait Method Error Trait method 7rror

LEARNING/VALUE .275 .444 .343 .517 .486 .115

ENT30STNSM .407 .060 .515 .533 .326 .19-

ORGANIZATION .274 .004 .662 .540 .536 .123
GROUP IrTERACT .536 .030 .433 .420 .230 .337
INDIVID RAPPFT .426 .003 .519- .265 .374 .409
BREADTH .345 .009 .542 .674 .321 .159
EXAMINATIONS .513 .056 .423 .278 .687 .193

ASSIGNMENTS .704 .024 .277 .335 .378 .447

WRKLD/DIFFCL'7Y .413 .009 .560 .773 .010 .236

Mean Across ill .432 .071 .475 .481 .372 .2469 Evaluations

NOTE: Variance components were derived by squaring the Trait -and
Method factor loadings from Table V, and using the
from the Theta Epsilon matrix. unsquared value



Trait Component

R x Y <(TX)X(TY)X(STXTY)>

Table VII

Decomposition of Reproduced Correlations

General Equation for the Decomposition of any Reproduced Correlation

The Correlation Between any Measure (X) and any other Measure (Y)

Method Component Trait-Method Interaction Component

<(mx)x(mT)x(RmxmY)> <(1,00(TY)X(RMXTY)> <01Y)X(TX)X(RMYTX)>

Where:
TX : The Trait Loading (in Lambda Matrix) for X-Variable
TY : The Trait Loading (in Lambda Matrix) for Y-Variable
RTXTY : The Correlation (in PSI Matrix) Between Trait of X-Variable and Trait of Y-Variable
MX : The Method-Factor Loading (in Lambda Matrix) of X-Variable
N/ : The Method-Factor Loading (in Lambda Matrix) of Y-Variable
RMXMY : The Correlation (in PSI Matrix) Between Method of X-Variable and Trait of Y-Variable
RMXTY : The Correlation (in :SI Matrix) Between Method of X-Variable and Trait of Y-Variable
RTXMY : The Correlation (in PSI Matrix) Between Trait of X-Variable and Method of Y-Variable

Decomposition of a Convergent Validity Coefficient: Correlation Between Instructor Ratings of Breadth (X) and Students RatinG.
Breadth (x)

<(.587)X(.821)X(1.0)> <(.093)X(.729)X(-.271)> <(.093)(.621)X(0.0)> <(.729)X(587)X(0.0)>

Decomposition of a Heterotrait - Heteromethod Correlation: Correlation Between Instructor Ratings of Organization (X) and Student
Ratings of Breadth (Y)

<(.523)X(.821)X(.466)> <(-.067)X(.567)X(--271)> <(-.067)(.821)X(0.0)> <(.567)x(.5`3)x(0.0)>

Decomposition of Two Monotrait - Heteromethod Correlations: Correlations Between Instructor Ratings of Organization (X) and
Instructor Ratings of Breadth (Y)

<(.523)X(.587)X(.466)> <(-.067)X(.567)X(1.0)> <(-.067)(.587)X(0.0)> <(.567)x(.523)x(0.0)>

Correlation Between Student Ratings of Organization (X) and Student Ratings of Breadth

<(.435)X(.821)1(.466)> +'<(.729)X(.567)X(1.0)> <(.729)(.821)X(0.0)> <(.567)x(.735)x(o.o)>

Note: For this particular application (see Table IV) all the trait-method interactions were fixed to be zero.So RTICKY and RTXMX are automatically zero. When the X-variable and Y-variable share a common trait (method) the correlation
between the traits (methods) is 1.0.
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