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Objective
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Approach
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SECTION 1

INTRODUCTION

This report prt7sents the development of a new technique for

enhancing the fidelity of flight simulators. The name given to the tech-

nique and to the system which applies the technique is BIOCONAID, an

acronym for Bionic Control of Acceleration Induced Dimming.

When an aircraft is subjected to a change in its velocity vector an

acceleration is experienced by the occupants. The cfommon situation is

that of a pilot changing the direction of motion of the aircraft through a

steep turn or pull-up. Then, if the maneuver is coordinated, the pilot
experiences an acceleration ter ding to pull him tighter against his seat
as if he weighed more. This acceleration also affects the blood pres-

sure distribution in his body. The blood pressure suplying the eyes and

the brain is reduced and the pilot may experience gray-out

out if the turn is continued or the pull-up becomes steeper.

or black-

In a combat situation, the pilot n_edi to continue the turn or pull-up
and retain his vision. He may perform straining maneuvers (described in
Appendix C) to increase the eye-level blood pressure and fight the black-

out tendency. Such straining represents expenditure of energy which
leads to fatigue. The "G-suit" is a protective garment which exerts pres-
sure on the lower extremities, thereby restricting the pooling of blood to
the lower extremities during high-acceleration maneuvers. Pilots of

high performance aircraft wear this garment to increase their tolerance
to acceleration.

Modern flight simulators, which are widely used for combat crew

training, provide visual scene dimming as the simulated G-load increases.
Also provided are G-suits which realistically react to the G-load. Missing,

however, is the pilot's need to perform the beneficial straining maneuver
with its attendant energy expenditure. Also missing is the characteristic

1
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a

loss of vision progressing from the peripheral field inward. TF'e

BIOCONAID System provides the means to simulate both of these miss;ng

elements.

The BIOCONAID System consists of four integrated software models

plus hardware which senses and p-ocessee pilot straining information for

input to the computer. The computer software models are:

Cardiovascular Model (predicts effect of G-level on eye-level

blood pressure)
G-suit Model (predicts beneficial effect of G-suit at the input

G-level)

Straining Mode: (predicts the beneficial effe-:t of straining)

Visual Field Model (predicts the visual scene brightness and

the limits of the visual field under acceleration)
The complete system also includes an electromyographic (EMG) subsystem

(signal processor).

Section 2 of this report includes a discussion of the, development of

each of the models mentioned above plus the EMG Subsystem (EMG strain-

ing signal). Also treated is the integration of the entire system. Sections

3 and 4 cover development and documentation of the algorithms and stra'n-

ing experiments.

Section 5 gives conclusions and recommendations. Briefly, the
BIOCONAID System performs as planned. A usable, smoothed EMG signal

is produced by pilot straining. Either the abdomen (external oblique) or

the back (latissimus dorsi) muscles are suitable as electrode sites.
Neither extraneous motions nor electronic noise seems to affect the system

adversely. All software algorithms perform satisfactorily. Full implemen-

tation of the Visual Field Model was not accomplished during the contract

period due to equipment limitations.

Because possible detrimental cardiovascular effects of sustained

straining in a 1 -G environment may exist, it is recommended that some

--,



medical research be conducted to identify system limitations or restrictions.

It is also recommended that the BIOCONAID.System, with possible limitations

or restrictions, be evaluated in an Air Force simulator with experienced

pilots.

Appendix A gives a test plan for system evaluation which might be

accomplished in the F-4 simulator at Luke Air Force Base. Appendix B

gives a complete listing of the computer programs developed during this

effort. Appendix C gives a discussion of the M-1/L-1 straining maneuvers

and Appendix D describes the special Tustin solution method used for the

cardiovascular model.

3



SECTION 2

THEORY

The human organism is a highly complex system of interconnecting and
interdependent systems. Its responses, in general, must be considered non-
linear and extremely difficult to model. Howeve r, by restricting the number
and levels of variables in a specific situation, it is often possible to model
complex systems successfully.

The purpose here is real-time modelling of the human response to G-
loading. To simplify the problem, it is assumed that only z-directed (normal)

acceleration will be considered and that the only variables influencing accelera-
tion are G-levei, G-suit protection, and pilot straining. The complex human

system can then be partitioned into four tractable models: the cardiovascular
model, the protective garment mcdel, the straining model and the visual scene
model. The relationship between these models is shown in Figure 1. The

result of each of these blocks is a contribution to the pseudo blood pressure

variable called "protection variable" (PV). In all cases, the contribution to
this blood pressure variable is either derived directly from the acceleration
profile or is a secondary result of that profile and the operation of life support
equipment. Note that a set-point value (one-G blood pressure at eye level) is
summed with the PV values (see Figure 1). A normally distributed random
variation, labeled "n" is also included to account for variations with pilots on
different days.

The cardiovascu ar response model is represented by a linear transfer
function which corresponds to the acceleration response of the pilot's blood

pressure. One prime governing factor in pilot response to acceleration is the
onset of grayout and blackout. These visual problems are directly related to
the blood pressure at eye level. This model output provides a dynamically

correct signal which is equivalent to the nominal loss in eye level blood

pressure for an unprotected human undergoing any acceleration profile, G(t).
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The straining simulation model accounts for the G tolerance enhance-
ment which is afforded by a properly executed M-1 or L-1 straining maneu-
ver. The purpose of these straining maneuvers is to increase the eye level
blood pressure in order to maintain vision. Proper performance of the
maneuvers requires that the abuominal and upper torso muscles be tensed
isometrically and that expirations should be made against a closed glottis.
The result is an increased intrathoracic pressure and increased blood pres-
sure at the eye. Proper application of the straining maneuvers also results
in ;.he appearance of myoelectric signals on the skin surface. These low
voltage electric signals are directly associated with muscle contraction
(Big land and Iippold, 1954; Brody, Scott, and Balasubiramanian, 1974).
These biologically derived signals are then processed by the model to gener-
ate a straining contributior. to the protection variable, PV

s
, which represents

the increased blood pressure due to the M-1 or L-1 maneuver.

The pressurized G suit is 'a protective garment used to increase the
individual's tolerance to +G. The suit uses pressurized bladders to pressz
against the legs and lower abdomen. The external pressure inhibits pooling
of the blood volume in the lower extremities, thus insuring a better supply
to the heart during acceleration. The suit must be inflated by the G valve
to a predetermined level for the suit to be effective. The simulation model
accounts for the required presstre level and uses the actual suit to provide

3

the necessary dynamics. The suit pressure is compared with the normal
flight pressure schedule and a protection variable contribution is generated
by the model.

The dynamic visual field model was developed to be readily implemented
in a simulation system. The visual field model uses the eye level blood pres-
sure predicted from the simulated G profile and the other protection variable
contributions as inputs to produce dynamically responsive signals which pre-
dict the expected visual field of a pilot undergoing that G profile.

The system presented on the following pages represents the results of
partitioning this complex physiological system into models. Each
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model is explored and developed in detail based on a common protection

variable. P14 which is related physiologically to system blood pressure.
The blood pressure models are then finally combined in a systematic

paradigm which provides the driving values for the visual field response

model.

2.1 THE CARDIOVASCULAR RESPONSE MODEL

Human tolerance to long term +Gz acceleration is normally measured

in terms of visual loss (blackout) and unconsciousness. Both of these
tolerance end points are related to the ability of the cardiovascular system
to deliver oxygenated blood at adequate pressure to the retinal and cerebral

regions. The acceleration causes a changing blood pressure profile in

the human such that the effective pressure vertically abcve heart level is

decreased and the pressure below heart level is increased. There is

therefore a lower perfusion pressure at eye level. The distribution of the

blood in the body also changes as the acceleration pools blood in the lower

parts of the body and lungs. There is therefore less available blood to
circulate and a lower oxygen content because the lungs do not operate as

efficiently.

There are two cardiovascular systems which are dynamically involved

in the process of blood pressure maintenance while the human is under-
going +G acceleration. The hydrostatic system is responsible for the
reduced retinal perfusion pressure at the eye and eventual loss of pressure

i
at the cerebral level. The orthostatic system is related to blood pooling in

the lower body with a concomitant reduction of venous return to the heart.

1The cardiovascular system has feedback systems which are affected

by blood 1,olume and pressure. The feedback systems attempt to regulate. v

the pressure and flow characteristics of the cardiovascular system. One
of the primary pressure sensors for this system is located in the carotid
artery. Any change in pressure at the sensors results in a regulatory
operation which attempts to return the pressure to a preset value. For
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example, a pressure drop at the carotid sinus initiates a neurologic reflex

action which changes the heart rate and output so as to increase the overall

pressure level, This section develops the rAtionale for a cardiovascular

transfer function model which describes the Gz acceleration response of the

blood pressure delivery system.

A radically new model for the cardiovascular system wc...s not the

intent of this system. Rather a reasonably accurate transfer function

based on physiological and physical principles as well as experimental

observation was sought. The major requirements were that the transfer

function model retain the major response characteristics of the cardio-

vascular system, be implementable in a real time digital simulation system,

and retain factors which are identifiable with measurable physiological

factors.

A number of models of the cardiovascular system have been developed

(Gillingham, Freeman, and Mc Nee, 1972; Knapp, Randall, Evans and

Marquis, 1978; Koushanpour and Spickler, 1975; and Miller and Green,

1973). The model developed by Gillingham (Gillingham, et al., 1972) is

used in the present effort. This linear model uses a transfer function of

the form:

K1(1 + a i'Vc ( s)
P(s) _

2 G(s)
1 + b

1
s + b

2s

(1)

Values selected for al' b
1

and b
2

are compromise values from the

literature and Gillingham's response curves. The break frequency for

the lead compensator factor, (1 , a 1s), was selected at 30 mHz (millihertz).

The denominator factor (1 + bls + b2s 2) was selected to give complex roots

with a natural frequency of 70 mHz and a damping ratio of 0.7. These

characteristics result in time responses and Bode plots which agree

reasonably well with experimental measurements. To obtain these

characteristics we find that al ,-- 5.31, sb1 = 3.23 and b2 = 5. 17.
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In order to evaluate the system gain constant, K1, Rogers, 1978,

treated the artery from the aortic arch to the eye as a column of blood
under the hydrostatic action of the G-loading. This column is offset from

the Z-axis by an angular displacement of 8 degrees due to the angular
inclination of the pilot's seat. The system gain determined in this way
K1 = -21.4, compares very closely with the gain derived from experi-

mental blackout results (Burton, Leverett and Michaelson, 1974), When
the seat inclination is included, K1 becomes -21.4 cos El. The final

transfer function is shown in Figure 2. (Note that G(t) here is dynamic

G-loading Gz - 1.) The solution technique used for generating PV
from G(t) is described in Appendix D.

G(s) -21.4 cos 8(1 +5.31s)
1 + 3.23s + 5.17s2

PVc

Figure 2. Block Diagram of Cardiovascular System Response

2.2 THE PROTECTIVE GARMENT MODEL (G-SUIT MODEL)

The history of G- suits dates from World War II and has been well

reviewed in recent monographs (Burton, et al., 1974; Fraser, 1966;

Gaur and Zuidema, 1961; and Howard, 1965). The wrap-around C41_1-31P

cutaway-type of anti-G suit, presently used by the U.S. Air Force,
improves blackout tolerance in the +Gz direction by about 2G above

resting tolerance (Leverett, Whitney and Zuidema, 1961). However, the

mechanism by which this beneficial effect takes place is not entirely
understood. Investigations have shown that the protection afforded by

the suit is not associated with any increase in cardiac output (Lindberg

and Wood, 1963) nor with any increase in eye-level blood pressure

(McCally, 1970). The G-suit attempts to prevent pooling of the blood in

the lower extremities of the body during plus-G maneuvers (Leverett,
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et al., 1961). Thus, it is not possible to model the physiological system
'dynamics pertaining to the G-suit until more knowledge is gained about the

system.

The approach taken in the present research ffort is to use an actual
valve plus a G-suit on the pilot to provide the suit dynamics and to model

only the known beneficial effect -- the 2G improvement in blackout

tolerance with a properly operating suit. The valve will be activated by

the computer-generated G signals.

The normal suit pressure versus G-loading schedule is shown in
Figure 3. If the actual suit pressure, at a given G-level, falls in the
cross-hatched area labeled "Acceptable Region", then partial protection
is being provided. Full 2G protection.is afforded when the suit pressure

reaches 'he right-hand edge of the "Acceptable Region". At higher suit

pressures no additional protection is provided and at suit pressures to the
left of the "Acceptable Region" no protection is provided.

A linear variation of protection within the acceptable region is

assumed which has a width of approximately 80 mm Hg. The simulation

procedure is to obtain the difference .. tween the actual suit pressure arid
the standard clirve pressure {right hand edge of acceptable region,

Figure 3). This difference is labeled 6PG. Then the protective garment

protection value contribution is generated as follows:

if 6p
G

<-80 then PVG = 0 (2)

42.if -80 s 6 PG < 0 then PVG (
80 .

8 ) 6 PG + 42.8 (3)

if 0 s A PG "then PVG = 42.8 mm Hg (4)

Note that 42.8 mm of Hg is equivalent to ZG protection since the cardio-
vascular system gain is -21.4. The simulation mocl--'. is presented in

block diagram form in Figure 4.

0 ..,
A. e

10



9

08

07'7
I

CC

u_66
z05
P
cc
taw4
_r
La
0 3

2

o o o
'A g 14)

OUTLET PRESSURE mmHg

0
in

Figure 3. Standard Pressure Suit-Valve Fill Schedule

SUIT PRESSURE

t ( t : PG

Figure 4. G-Suit Model for Generation of Protection Value PVG

11 90
4,.,,)



2.3 THE STRAINING MODEL

Human tolerancs? of acceleration may be improved by the use of pro-

tective measures and devices. Straining and gruntin; in tight turns was

practiced by German pilots prior to World War II to improve their

tolerance. This technique gradually evolved into the M- 1 m-neux er. At

the same time it was discovered that bending forward also impro\ ed the
tolerance of pilots in high acceleration maneuvers. The effects of posture,

restraint, and body position on G tolerance have been well worked out and

have been reviewed in detail (Dayson, 1969; Fraser, 1966; and Gaur and

Zuidema, 1961).

Since the early days of flying, the value of muscular straining as

protection against the effects of 4-G acceleration has been recognized.
Pilots observed that blackout or grayout could be postponed if they grunted

or screamed and tensed the skeletal musculature during acceleration. The

M-1 maneuver, defined as muscular straining with expiration against a

partially closed glottis (see Appendix C) is a most effective voluntary pro-

tection against the circulatory effects of +Gz acceleration (Lindberg, Sutterer
Sutterer, Marshall, Headley, and Wood, 1960; White, 1958). The physi-

ological basis for this protection has been ascribed to its effect on
increasing the arterial pressure at eye level during acceleration. As

forced expiration instituted the resulting increase in intrathoracic
pressure is transmitted directly to the aorta. There is an immediate

increase in peripheral arterial pressure which is only slightly less than
the increase in intrathoracic pressure. This maneuver affords up to 2.4 G
protection against blackout (Burton, et al., 1974). The circulatory
mechanisms described were identified by Rushmer in 1946. The "pry -4sure

raising" approach has theoretical difficulties in that blood pressure is
controlled within rather narrow limits by a number of effective servo-
mechanisms, the baroreceptor system being the best known. As a matter
of course the elevated intrathoracic pressure can result in a decreased
venous return, lowered cardiac output and therefore a lower blood

Orl
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pressure at the eye. The carotid sinus reacts to the initially increased
blood pressure and also attempts regulation. Both of these effects are

minimized by a cyclic application ^' the M- 1 or L- 1 procedure with a

repetition period of 4-5 seconds.

The skeletal muscle is controlled by signals which are transmitted
to selected motor ,nits of a muscle through the motor neurons. The force

generated by the muscle is the result c: both the freqdency of firing of
motor units and the number of motor units which are recruited. The

muscle tension is accompanied by electrical signals (EMG) which can be

detected by suitable electrodes on the skin surface. The electrical signal
exhibits the characteristics of its primary source in that it represents a
weighted sum of motor unit activations (Shannon, 1975). There is therefore
a correspondence between the EMG and muscle force (Big land and

Iippold 1954).

The EMG signal can be considered to be the summation of a large

number of individual potential waveforms each resulting from the firing of

a motor unit. Thus we can assume that the EMG signal is Gaussian with
a mean of zero. If such a signal is the input to a full wave rectifier, it has

been shown (Davenport and Root, 1958) that the mean output is proportional

to the standard deviation of the input. Furthermore, the standard deviation
has been shown (Shannon, 1975) to be the appropriate measure of the EMG

signal to use for control purposes. This reasoning leads to selection of

the rectified, smoothed EMG signal for determining a straining protection

value.

The simulator model requires the presence of two signals to generate
the straining protection value, PVs. The two signal3 represent the prime
factors which are present in a properly executed straining maneuver. The

EMG signal is generated by the straining subject and processed to provide

-in intermediate protection value PVrn. The protection afforded by muscle

straining is then modified by the effects of the breathing maneuver (M-1).

The protection factor generated by the breathing pattern is critically

13
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controlled by the straining and breathing rate. An improperly perforrred
M- 1 can actually reduce protection and result in a detrimental pressure

drop.

We assume the thoracic cavity to be represented by a flexible

cylinder surrounded by a muscle girdle. The muscle straining signal

representing muscle force around the thoracic volume is then assumed to

bear a linear eelation to the internal pressure increase at low straining
levels. At higher levels a maximum pressure is achieved and increases

in muscle straining are no longer effective. The pressure straining

relationship used in the model is shown in Figure 5 as a curve with a

saturation level related to the maximum pressure rise in tht, thoracic

cavity.

The effectiveness of the straining maneuver is also governed by the

repetition rate. The straining protection value PVm is therefore modified

by a function dependent upon maneuver repetition period K2
(tR).

Experi-

mentally, Kz(tR) is maximum at 3-5 seconds according to Gillingham

SATURATION LEVEL

cr (EMG STANDARD DEVIATION)

Figure 5. Pressure-Straining Relationship Based
on EMG Statistical Properties
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(Appendix C). Shorter time periods do not allow sufficient time for the
internal pressure to rise and longer time periods involve countering
responses due to baroreceptor feedback and reduced venous return to the
heart. The function representing the variation of K2 with maneuver

repetition rates is shown in Figure 6. The straining simulation block
diagram is shown in Figure 7.

2.4 THE VISUAL FIELD MODEL

Rogers, 1978 discusses the structure and functioning of the eye as it

forms the basis for a usable model of the visual field under acceleration.
The effect that acceleration has on the visual apparatus is observed in
terms of tunnel vision, greyout and blackout. During the periods of

grayout there are also decreases in visual acuity and brightness contrast
detection ability. Tunnel vision means that less of visual perception
occurs first in the peripheral areas of the visual field and progresses
.:award. Although there are man/ factors related to the anatomy, psychology

and physiology of the human which are responsible for these effects, the

structure of the eye is a primary factor, and it provides a suitable model

for the effects of acceleration on the visual field.

The primary cause of the effects of accelerationoon vision is believed
to be the reduction of blood supply to the rods, cones and cells in the retinal

layers. This has been confirmed by various investigators -wis and

Duane, 1956; Newsom, Leverett and Kirkland, 1968). The , s supplied

by the opthalmic artery which has two branches in the :,ye itself. One

branch, the retinal artery, enters the eye through the optic nerve and pro-
vides the primary source of blood to the retinal layers. The other branch,

the ciliary artery, supplies the outer layers of the eye and the ciliary
processes. Figure 8 shows the retinal artery entering through the optic

disc and branching out to supply the entire retina.

The structure at the retina is idealized as a network of cylindrical
hydraulic pipes with a central supply at the entrance of the optic nerve,

15
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Figure 9. If a steady laminar flow is assumed through a cylindrical tube

the flow, Q, will vary with the 4th power, of the radius of the tube and the

pressure differential AP. Also the flow will vary inversely as the length t

of the tube and the kinematic viscosity of the fluid T. This is stated in

Poiseuille's law as:

Q 871t
rr r

4
(AP)

(5)

The blood pressure drop across the cardiovascular system is mostly
across the arterioles (Berne and Levy, 1972). At higher levels of pressure
the retinal arteries supply the arterioles with sufficient pressure that the
entire retina is perfused with a continuous flow of freshly oxygenated blood.

As the pressure at the retinal artery drops, the flow must decrease in
accordance with Poiseuille's Law, and less blood, therefore less oxygen,
is available to replenish the retina.

The effective pressure (PR) in the retinal artery is the difference
between supply pressure Pae and the interocular pressure Pm (a pressure
differential of 10-20 mm Hg is required to maintain eyeball rigidity).

PR -- Pae - PIO

As an initial approximation, the retinal supply network is assumed
to be a network with the supply pressure distributed linearly across the
network. That is at any point along the supply.

dPr

dx
= constant

where x is the distance in degrees along the arteriolar bed, Pr is the
corresponding differential pressure along x,and the slope is a function of
the supply pressure at the optic disc.

The family of curves describing the pressure gradient across the
retina is a series o1 qtraight lines with slope



Figure 9. Linearized Representation of Blood Supply
to the Retina
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PR

K4

where PR represents the current retinal arterial pressure at the disc and
X4 is the outer circulation limit of the retina corresponding with the ora

seratta. For any value of Pae the retinal pressure as a function of degrees
from the disc is given by:

PRPr = x + PR
K4 (6)

In a small blood vessel; pressure differential of about 15-20 mm Hg
across the vessel wall is required to maintain an open flow channel (Berne
and Levy, 1972). When this transmural pressure is not maintained, the vessel
collapses, and the blood supply is cut off to all points beyond. This critical
pressure differential is now labeled PCRIT.

The threshold value for any x (called xL) in .rIgure 10 occurs when
Pr falls below PCRIT Solving for xL in terms of Pae at the P CRIT

-

xL (Pae PIO)PCRIT K4

(Pae PIO PCRIT)xL = K4 Pae - PIO

(7)

(8)

For a nominal value of K4 = 110° representing the outer circulation limit,
xi., is given by: (let Pm = 20 mm Mg,

PCRIT
17 mm Hg)

110(P
ae

- 37)
XL = P - 20ae

a

(9)

The quantity xL represents arc length measured from the center of
the optic disk. The optic disk is located on a visual field map approximately
10° to the right of the optical axis and 10° below the horizontal right eye

and to the left and below for the left eye. The peripheral edge of the model
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is determined by a polar projection of the retinal field. The coordinate

origin of the polar map is taken as the visual axis and the optic disc is

taken as the flow center. Defining it as degrees of angular location

measured counterclockwise about the optical axis (Figure 11), the field
contribution of the right eye under acceleration is then given by the solution

of:

rz - 2rdr cos (d + + rdz = xL2 (10)

where r (degrees) is the sensed visual limit at ir, rd is offset distance

(degrees) of the disc from the visual axis and d is the angular offset
(degrees) of the disc from the horizontal axis. A similar expression is
found for the left eye.

The visual field model can now be extended tc a binocular field.

Figure 12 is a binocular field map showing the coincident foveal areas as

the visual center, ana the optic disc for each eye in a manner that depicts

the observed field from inside out. The outer lines depict the outer edges

of the peripheral vision. Lowered blood pressure supply in each of the

modeled retinas causes the field to collapse as zoncentric circles with
centers at each of the optic discs as shown by the dashed lines. Thus the

visval field -.311apses toward a somewhat oval shape with the vertical field

having a smaller visual angle than the horizontal field. This shape is in
agreement with Gillingham's experimental results (Gillingham and

McNaughton, 1972).

At some point after the visual field has collapsedlthe central vision

is lost. iilingham, et al., 1972,shows that central vision remains after

the peripheral field has collapsed. The operating model is therefore

modified to allow for central vision by incorporating a central visual cone

which is responsive to the eye elevel protection value. Mechanization of

the model utilizes a binary decision to determine presence of the central

field. The decision point is chosen at a nominal 10 mm Hg below that of

the peripheral field critical point.
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In the actual mechanization of the visual field model, the following

data are used:

visual cone for foveal vision = 5° (Gillingham, et al., 1972)

rd = 10° (for both left and right eyes)
= .175 radians

d = 10° (right eye) measured clockwise from the right horizontal
visual axis

= .175 radians

d = 170° (left eye) measured as for right eye
= 2.967 radians

110 (Pae 37)
xL P 20

, degrees
-

ae

below:

(Equation 9)

= 1.920 (Pae - 37)/P - 20) radians
ae

Pae in this equation becomes PV, the generated protection
value, which is equivalent to eye-level blood pressure under

acceleration.

The above information is used in Equation 10 which is repeated

r 2 - 2r dr cos (d + + rd
2

= xL
2 (10)

All angles in degrees are converted to angles in radians and the equation

is solved for "r", which is the visual limit at angle * about the visual axis.

In either field:

r= rd cos (d + it) ± d
2 cos 2 (d + it) - (rd 2 - xL2)

In the right field:

rr = .175 cos (.175 +

PV
-20
-37

)21[737.cost (.175 + 4,) - .031 + 3.686 (
PV

12)
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In the left field:

r .175 cos (2.967 + it)

± 1/.031 cost (2.967 + - .031 + 3.686 ( PV-37 12 (13)
PV-20

Thus, using Equations 12 and 13, the sensed visual limit may be

calculated for any angle it and for any protection va'ue PV. These equations
are applied only to the point where all peripheral vision has collapsed and
only the central ( foveal) vision remains. The visual cone for foveal vision

is selected as 5° (Gillingham, et al., 1972). In the software, the collapse
point is reached at a value of PV which leaves the quantity under the radical
in Equation 12 positive

-.031 + 3.686 (PV-37 )2 = 0PV-20
which gives,

(14)

r)V = 38.72 (15)

The relationship between retinal blood oerfusion, and the ability for
contrast detection in a visual scene is apparently an oxygen transport

phenomenon. The observed visual dimming aid field collar,-; model could
possibly be extended to include these effects. Chambers and Hitchcock, 1963,
have documented the relationship between contrast detection threshold and
the G field, and White (1958), has documented the effect of lowered visual
acuity due to reduced oxygen content of blood in the retinal artery. Using

the CV model for the response of eye level blood pressure to acceleration,

the contrast and acuity results could be added to the visual dimming and
field collapse model.

In the present simplified mechanization, it has been assumed that the
brightness and contrast, at any given point in the visual field, are linearly
related to PV, the eye level blood pressure as influenced by acce.eration.
When PV is known, the Visual Response Algorithm produces, in addition to the

el
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visual field limit, signals appropriately scaled to be used for controlling
both brightness and contrast at any point in the visual field.

The algorithm presently includes control of a center and two side
visual TV screens with separate brightness and contrast signals. Collapse

of the peripheral vision will res,Ilt in the two side screens being dark
while collapse of the foveal vision will result in all three screens being
dark. Prior to collapse, the screens would exhibit a linear dimming.

2.5 THE EMG SUBSYSTEM

Figure 1 shows the EMG subsystem between the pilot and the strain-
ing model. The task of the EMG subsystem is to sense the raw EMG signal

from the pilot's skin, amplify it, process it and present it to the digital
computer.

The expanded block diagram of the EMG subsystem is shown in
Figure 13. Three electrodes (one is a reference ground) pick up the
yilot's EMG signals. The bio-amplifiers add the two electrode voltages
Ind provide a gain of 100. A hi-pass filter eliminates low frequency drift.

Ali,plification up to 1000 then readies the signal for full-wave rectification.

Finally, a two-stage low-pass filter provides a smooth usable signal for
use in the simulator computer.

----1
PIOT raiL 6'

TI s
1--0

I I.I0
--

100 AMPLIFY RECTIFY
1.! S .:, 1 T2 s + I s+ I

BIO.
AMP. = .15 = .8HI - PASS;TI LO - PASS;T2

Figure 13. EMG Subsystem Block Diagram

Except for the electrodes and the bio-amplifiers, the EMG sub-
system, as shown in Figure 13, was patched on an EM TR-20 Analcg
Computer. The patchboard wiring diagram is shown in Figure 14.
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2.6 SYSTEM INTEGRATION

The required dynamic model of pilot isual response to Gz can now be
assembled as a summation of the separate models. The completed system
algorithms provide the means for implementation in aircraft training ,Imula-
tors. The integrated system is shown in Figure 15.

Pilot commands 0* enter the simulator aircraft dynamics 0 causing
changes in the aircraft velocity vector. The resulting g-loading G(t), is used
to drive the cardiovascular model 10 . In addition the G(t) signal causes the
pilots G-suit 0 to inflate according to a preselected schedule. The effect

of the proper suit inflation is to increase the value of the protection variable
within certain limits. The sum of these signals 0 is added with a computer
generated random signal related to individual variations and with a set value

representing the eye-level, nonaccelerating, blood pressure (120 mm Hg).
The resulting PV signal drives the visual field model. The instrument panel
and the view screen are then dimmed according to the output of the model CI

The pilot senses the size and brightness changes and has the option of reducing
his aircraft maneuver intensity (g-loading) or increasing his g-tolerance level
by performing a straining maneuver (M-1 or L-1). If he initiates such a man-
euver, the EMG subsystem processes the myoelectric activity from his skin
surface, providing a smoothed EMG signal 0 to the straining model. The
straining model then generates a protection value, PVs, 0 , which is depen-

dent on the straining level and on the straining interval. This PVs is added

with the other effects and thus serves to increase PV and to increase the
visual field limits and brightness.

Circled numbers refer to Figure 15.
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cECTION 3

ALGORITHM DEVELOPMENT AND DOCUMENTATION

3.1 INTRODUCTION

Two FORTRAN algorithms have been developed from the physiolog-

ical models presented in Section 2. These algorithms are:
1. The Dynamic Visual Response Algorithm

2. The EMG Algorithm

The Dynamic Visual Response Algorithm consists of a FORTRAN

coded implementation of the Cardiovascular Response Model, the Protective

Garment Model, and the Visual Response Model. The EMG Algorithm

consists of a FORTRAN coded implementation of the EMG Straining Model.

A description of each algorithm is presented along with its flow chart.

In addition, a program listing combining the two algorithm; and the program
results with several input profiles, are presented.

3.2 DYNAMIC VISUAL RESPONSE ALGORITHM

The flow chart for the Dynamic Visual Response Algorithm appears
in Figure 16. The first input is simply the acceleration in units of G's
(G = 9.81 m/sec [Rogers, 1978]). This input must be generated from the
aircraft dynamics. This algorithm assumes that the acceleration is readily
available. The acceleration is used to determine the cardiovascular
protection variable contribution, PVC. The cardiovascular response
model is represented by a linear transfer function which corresponds to
the response of the pilot's blood pressure to acceleration. The calculations
used in the transfer function are implemented with a recursion relation.
As with all the various protection variable contributions a positive increas-
ing value indicates an increased protection or tolerance level.



Initialization
C = -21.4
A = - 0.88261

= 1.875342

C a -1.0947*G
D = 0.004634aG
E = 0.09831*G
F 2 0.17453

P = 3.32
SEAT a 0.226893

EYE a 0.087267
Z a 57.2958

-{L.-
X(1) a 0.0
X(2) a 0.0
X(3) a0.0
X(1) a 0.0
X(2) a O. 0
X(3) 2 0.0

SI a 0. 0

i
( READS X(1), DELP

X(1) a X(1) -

Figure 16. Dynamic Visual Response Algorithm
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AA O. 17453*eos(0. 17453+SY)
BB SORT(0. 031.1co 0. 17453+sy*.2.0. 031+w,1,2,

Figure 16. Dynamic Visual Response 10-orithm (continued)
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1 RIR = AA+BB

w

i

RP.DEG = Z*RIR

I LLS = (PV-110)/ 4.5+10
LLC = (PV-851/5+10

BRS = LLS*CB
BBC = LLC*CB
CTS = LLS*CC
CYC = LLC*CC

X(3) * X(2)
X(2) = X(1)
X(1) = 0.0
Y(3) = Y(2)
y(z). y(1.)-
y(1)_ 0

..-§.

1 T

(STOP)

BRS, BRC, CTS, CTC 1
TO DISPLAY

Figure 16. Dynamic Visual Response Algorithm (concluded)
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The second input is the difference between the subject's actual G-suit
pressure and the "standard curve pressure" (Rogers, 1978) (as calculated
from the standard pressure suit valve fill schedule). This difference,
which is labeled DELP, is used to calculate another protection variable

contribution, PVG. The final input is from the EMG algoi ithrn and consis,s

of a single protection variable contribution, PVS. This input is explained

n-sore completely in the EMG algorithm section.

After all the protection variable contributions have been calculated,
they are summed to form the protection variable, PV. This protection

variable is then used to calculate the blood pressure at eye level, PAE.
The \ ariable PAE is then used to determine the size of the visual field.

The size of the visual field is then used to determine equivalent
light levels for center and side CRT screens. Brightness and contrast
signals for the center and side screens are then calculated by scaling these

light levels.

This algorithm assumes that all three inputs are readily accessible,
and the protection variables are positive. This algorithm was written in

Fortran IV and was tested on both the University of Dayton Sperry-Univac

70/7 Computer and the Air Force Human Resources Laboratory (AFHRL)

Simulation Training and Research System (STARS) Xerox Sigma 5 computer

facility at Wright-Patterson Air Force Base.

3.3 FMG ALGORITHM

This algorithm is designed to take the rectified EMG signal from

the subject's straining muscles and generate the protection variable con-
tribution due to straining, PVS. The variable PVS in turn will be used in
the main program as one of the protection variable contributions. In the

process of calculating PVS, this program also calculates the EMG variable
PVM, and the straining effectiveness value, K2. Both these variables,

PVM and K2, are impertant because they are separate functions of time.
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Figuve 17. EMG Algorithm

RETURN

K = 0. 25*TIME



Their product determiqes the straining protection variable contribution,
PVS. The r Igorithm flow chart appears in Figuie 17.

The single input of this algorithm is the rectified Electromyographic
(EMG) signal from the subject's body. The EMG signal is used only in
the determina of the EMG protection variable PVM. Upon the initiation
of a desired level of straining the country variable LIME is started. After
TIME is initiated the straining effectiveness value K2 is calculated according
to the current value of TIME.

The single output of thi algorithm is the straining protection
variable contribution, PVS. The variable PVS is calculated with the above
rnent ned variables K2 and PVM. Also a scaling variable, R, is used to
keep the value of PVS between acceptable levels. Appropriate limiters
have been written into the algorithm to keep the variable PVS positive.

This algorithm was written in Fortran III and was tested on both the
Uni ersity of Dayton Sperry-Univac 70/7 Computer and the AFHRL STARS
facility.

3.4 PROGRAM CHECK-OUT

These two algorithms have been combined together into a single
program for use as software for the BIOCONAID system. The listing of
this program, called 1310, is shown in Appendix B.

Six different computer generated input profiles were used for
program check-out. Three of these had combined acceleration and
straining inputs, while three contained acceleration inputs only. The

results of these profiles, in terms of the protection variable, PV

(calculated blood pressure at eye level), are presented in Figures 18 to
23. All of these results exhibit a delayed loss in PV due to acceleration
and a delayed increase in F due to straining. in addition, these results
agree with the moaels presented in Section 2.
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Figure 23. PV Response to Profile #6 (No EMG Input)

43 61



SECTION 4

STRAINING EXPERIMENTS WITH HUMAN SUBJECTS

4.1 INTRODUCTION

The experiments and equipment development described here pertain

to the EMG subsystem which was described earlier in the report (Section

2.5). These experiments were done to accomplish the following goals:

1. To evaluate possible electrode sites on the pilot's body to pick

up straining signals.

2. To show that a reliable, usable signal is produced.

3. To indicate tolerance of the EMG subsystem to extraneous body

motions.

4. To aid in the development of electronic filters for the EMG

subsystem.
The experiments involved recording the EMG signals produced as the

s' :bjects strained in response to visual commands. The seven subjects

were faculty members and students. All faculty members were experi-

enced pilots. The work was accomplished at the University of Dayton and

at the Air Force Human Resources Laboratory, Wright-Patterson Air

Force Base, during the period of November 1978 to February 1979.

4.2 EXPERIMENTAL SET-UP AND PROCEDURE

Figure 24 shows the experimental setup. The equipment used and

the experimental procedure are described below.

Equipment: 1. Electrodes and wiring
2. Bio-signal amplifiers (Gain = 100)
3. TR-20 Analog (Hybrid) Computer (EAI) to provide:

a. Hi-Pass Filter
b. Amplification
c. Signal Rectifier (full wave)
d. Lo-Pass Filter for smoothing
e. Voltmeter - used for visual feedback of error signal

to subject
4. Strip Chart Recorder
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Rectifier

Subject visual

feedback

error

voltmeter
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s +I

smoothed EMG

4,

Record

Figure 24. Experimental Setup

Procedure: (equipment on and checked out earlier)

command (two

constant command

levels are used)

(5 minutes) 1. Prepare subject. Strap-on electrodes. Use EMG Lotion.
Explain M-1/L-1 straining maneuvers. Explain that his
straining will make error needle move.

(3 minutes) Z. Subject practices straining and observes needle. Operator
inserts practice commands and subject strains to bring
needle back to zero.

(2 minutes) 3. First test period (Experiment No. 1). Electrodes on
back. Subject relaxed and motionless. Command
level one (3 olt) is inserted and subject strains to
keep error zeroed. After about five seconds,
command is removed and subject relaxes. Repeat,
when subject ready, using command level two (6 volt).

(2 minutes) 4. Secont test period (Experiment No. Z). Repeat
except subject periodically raises and lowers alter-
natinv ieet (1-2 inches) during straining periods.

(`) minutes) Change electrodes to abdomen.

(2., minutes) 5. rhrd test period (Experiment No. 3). Repeat first.

(2 minutes) ii., Fourth test period (Experiment No. 4). Repeat second
except subject raises and lower alternating arms
(6-8 inches) during straining period instead of
raising feet.
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(5 minutes) Change electrodes to buttocks (seat).

(2 minutes) 7. Fifth teat period (Experiment No. 5). Repeat first.

(2 minutes) 8. Sixth test period (Experiment No. 6). Repeat second
except extraneous motion is turning head (about 45°)
alternately each way during straining period.

(3 minutes} 9. Remove electrodes. Equipment off.

(33 minutes total time)

4.3 RESULTS

Preliminary results are presented in Figures 25-27 for three different

subjects. This data was taken with an early technique of EMG signal pro-

cessing. The upper trace is the commanded signal, which the subject

attempts to match with his smoothed EMG signal (the middle trace). The

bottom trace is the raw EMG signal.

Although these preliminary results gave useful raw EMG signals,

the smoothed EMG signal suffered from a low frequency drift and excessive

noise. In addition, the smoothed EMG signal exhibited an excessive time

lag compared to the raw EMG signal.

Several changes in the EMG signal processing technique overcame

these shortcomings and are discussed in Section 4.4. The results for

experiments using five subjects conducted at the University of Dayton with

the final signal processing technique are presented in Figures 28-33.

These da'..a show a well-behaved smoothed EMG signal, free of drift or

extraneous no_ 3e.

In addition a number of runs were made with a different subject in

the STARS simulator cockpit at AFHRL. The BIOCONAID EMG subsystem

equipment was operated at the STARS facility to determine whether the,

would be an excessive amount of electronic noise interference in that

environment. These results are presented in Figures 34-40, in terms of

the raw EMG signal and an error signal (commanded signal minus
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smoothed EMG output). The equipment operated satisfactorily without

shielded-cables and amplifiers. All STARS equipment, including the TV

view screens, was operating with the exception of the cockpit instruments

(400 Hz).

4.4 DISCUSSION

Early in the experiments it became apparent that a more effective

filter was needed for the EMG signal. The smoothed EMG signal had too

much noise associated with it. The raw EMG signal included a low

frequency, drift, which also affected the smoothed signal. The smoothed

FMG signal also exhibited an excessive time lag.

Several changes were made to the EMG signal processing technique

to improve the system. A high-pass filter was added to remove the DC

drift from the incoming EMG signal. The low-pass filter (smoothing net-

work) was converted to a two-stage filter. Time constants of all filters

were adjusted for near-optimum response. The final configuration is that

shown in I .gures 13 and 24. Figures 28-40 show a smoothed EMG signal

which is reliable, free from drift and free from excessive noise. This

smoothed EMG signal shows very good correlation with the straining (raw

EMG) signal from the pilot.

The Experimental Procedure lists Experiments 5 and 6 which were

to be done with electrodes on the buttocks. Only Figures 25 and 26 show

any such tests being accomplished. The reason Experiments 5 and 6 were

discontinued is that consistently much better results were obtained with

the lattisimus dorsi (back) muscles and with the external oblique (abdominal)

muscles. Figure 26 shows a comparison between Experiments 4 and 5.

The smoothed EMG response to the 3 volt command has roughly three

times the magnitude in Experiment 4 (abdomen) than in Experiment 5

(buttocks). Similarly, the raw EMG traces showed a marked difference.
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Another problem encountered with placing electrodes on the buttocks

was the difficulty in strapping them on. This problem would be eliminated

with the adhesive electrodes used in later tests.

It appears the great advantage of seat electrodes ttt,ould be their

possible use without the necessity of mounting; electrodes on the pilot's

skin. Efforts to develop "seat pan electrodes should lie encouraged. f

electrodes must be mounted on the pilot, then the abdomen or back gn,es a

much stronger signal.

Experiments 1 and L had electrodes on the back while Experiments 3

and 4 had electrodes on the abdomen. Examination of the raw EMG traces

in Figures 28 through 33 indicates either sate is satisfactory but the

abdomen usually gives a slightly stronger signal.

Experiments 2 and 4 involved having the subject do extraneous body

motions while straining. Rhythmically raising and lowering feet (Experiment
2) and raising and lowering arms (Experiment 4) we re the specific motions.
Experiment 6 involved rhythmically turning the head from side to side.

There was no noticeable effect on the smoothed EMG signal due to these

motions. However, major motions (standing up or bending fat forward)

would saturate the signal processing equipment. Also touching or jostling

the electrodes caused a large response. We feel that the normal motions

of a pilot in the simulator cockpit will not adversely affect the BIOCONAID

system.

Two input command levels (usually 3 and 6 volts) were used to show

that the pilot can control his level of straining with reasonable accuracy.

Figures 28 through 33 show the smoothed EMG signal approximating the

command level.

Adhesive electrodes were obtained in time to be used m part of the
University tests on one subject (Figure 33) and on all the tests in the STARS

facility AFHRI.. As might be expected, these electrodes maintained a
more constant skin contact then the strap-on type electrode. Also, they
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Figure 40. Subject #8, STARS
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are easier to mount, may he used sex eral times, and the lotion in them

may be replenished I' dry'. however, removal of the e adhesive electrodes

is not pleasant since they pull hairs out.

A difficulty with amplifier saturation in the TR -2.0 was initially

encountered at the STARS facility. Howe% e r , Shen the gain was reduced

by a factor of 10, eN, erything operated normally. Fu compensate for the

reduced i ain, cumnian.1 siv,na l levels were 1tS0 reduced to 0.3 -ind

volts.

Som( very high frequency (2 MHz), low amplitude, noise pick-up was

obserx ed nr. an oscilloscope connected to the raw EMC; signal. This may

have been due to tile TV. Since it did not interfere with the BIOCONAID

system operation, it cas concluded that electronic noise pick-up at the

SEARS facility would not be too set ere.



SECTION 5

CONCLUSIONS ANL, RECOMMENDATIONS

5. 1 CONCLUSIONS

The BIOCONAID System offers the potential to provide a very

realistic simulation of visual dimming with straining during large accelera-

tions. The Dynamic Visual Response Algorithm provides a simulated

visual response in agreement with experimental observations and known

physiolowy. The EMG Algorithm provides an input to the visual response

which is also in agreement with experimental observations of straining

during large accelerations.

The EMG subsystem provides a smoothed, reliable straining signal,

not adversely affected by extraneous limb movements. Either abdomen
(external oblique) or the back (latissimus dorsi) muscles are suitable as

,lectrode sites.

All parts of the BIOCCNAID System have been carefully checked-out

with the exception of the Visual Field Model. Equipment limitations at the

STARS facility prevented the full implementation of the Visual Field Model

during the contract period. Thus final determination of system effective-

ness must await complete system implementation and evaluation in an

appropriate simulator. A test plan for such implementation and evaluation

is contained in Appendix A.

5. 2 RECOMMENDATION

It is strongly recommended that the BIOCONAID System be imple-

mented, demonstrated and evaluated in an appropriate Air Force simulator

with experienced pilots. Although the system appears to provide a realistic

simulation of visual dimming while straining, human pilot evaluations are

necessary to determine system effectiveness. It is expected that such
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implementation would imoke tine adjustment of some algorithm, gains,

thereby enhancini; the system.

It is also recommended that some medical research he conducted into

the physiological effects of sustained straining in a 1-G environment. It

w'aild be extremely useful to identify the level of straining which causes

significant detritnental cardiovascular effects, as well as the level of strain-

ing which causes negligible detr'Lmental effects. This medical research

should beein with a literature review of experimental and historical data.

If this re\.iew does not yield definitive auswers on the above straining levels,

new experiments on human subjects or animals should be conducted to yield

the desired results. Phis information is necessary for the safe implementa-

tion ot the IILCCONAID System in a training environment.

L
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APPENDIX A

TEST PLAN
BIOCONAID

(Bionic Control of Acceleration Induced Dirrirrumg)
SYS1 ENI LEST AND EVALUATION

A.1 INThODUCrION

This tebt.plan pertains to the performance-evaluation of the final
design of a system for bionic control of acceleration induced dimming

(BIOCONAID }. Present advanced flight simulators provide a system*for

dimming the pilot's visual scene to simulate partial blackout when the

aircraft normal acce-leration exceeds an appropriate level. The new

syStem goes one step beyond and provides for control of the dimming

through the pilot's muscular straining action (M- 1 or L-1 maneuver).

The BIOCONAID system has been designed by the University of Dayton

under Contract F33615-77-C-0080 with the Air Force Human Resources

Laboratory. This test plan. has been prepared to fulfill a contractua!
requirement.

The plan involves installing the BIOCONAID system in the SAAC

F-4 Simula'tor at Luke AFB, conducting the tests using experienced

Mr Force pilots, removing the BIOCONAID system and writing a report.

The intention is to minimize interference with normal training use of the

simulator during the evaluation. A seven week period is provided for

installation, interfacing and check-out followed by a one-week test

period. Disassembly and removal will be accomplished in one day.

The specific time schedule for the tests is dependent upon the date
Air Force go-Ahead is given and upon other Air Force instructions. The

University of Dayton anticipates this evaluation will be conducted under

an additional contractual arrangeinent. The following section contains

the test objectives.
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A.2 VEST OBJECTIVES

A. Z. 1 Objectie A

to evaluate the performance of the final design, specifically,

is the visual scene dimming reliably and realistically controlled by pilot

straining"' fo answer this question, the system must be observed during
long-term, high-acceleration turns. In addition, however, observations

must be made during rapidly changing maneuvering accelerations as well

as during periods of low dynamic acceleration. These latter observations
will be for the purpose of determining whether the final d esign is free from

inappropriate responses. All tests will be done with and without the electro-
,

myographic feedback to allow comparisons to be made.

A. Z. 2 Objective B

To conduct other tests on the final system. These "other

tests include further evaluation of several EMC electrode types and elec-

trode sites and further evaluation of system tolerance to extraneous motion.
These tests can be done with minimal increase in test time beyond the
Objective Attests and they should be very significant since they will involve

Air Force pilots in actual simulated flight. Pilot tolerance for the electrodes

is the most important question to be answered. Electrodes to be included

in these tests are:
strap-on, reusable many times
adhesive, disposable

electrode belt

seat pan electrodes (if avaiphi..)

Electrode sites included are:
abdomen (external oblique)

back (latissimus dorsi)
butts k (with seat pan electrodes)
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A. 1 TEST PROCEDURE

A. 3.1 General

During a ,)ne-week test period a number of experienced Air

Force pilots will act as test subjects to perform simulator Lights aimed at

accomplishing the test objectives. planned number participating is

ten (10), although more would be welcome. Each pilot will be briefed,

electrodes will be installed and a short practice period with the BIOCON-

AID system will be provided. Next, the actual test maneuvers will be

accomplished. These maneuvers consist of long-term, high accelera-

tion turns in both directions, short-term, rapidly changing acceleration

turns or aerobatics and normal operations r_ear one-G, such as landing

pattern. Details of the test protocol are given below. Finally, after the

flight, the electrodes will be removed and the pilot will be debriefed.

Each pilot will provide a brief written observation report which will be

included in the final test report.

The actual time-in-simulator for each pilot is estimated as

30-45 minutes and the total time per pilot is estimated as 1-1-1/2 hours.
The time of day for the tests will be such as to minimize interfering with

',the normal simulator training schedule. Once the BIOCONAID equipment

thstalled, it can be used or not used as desired. Merely placing a switch
in the OFF position returns the simulator to its original configuration.

A. 3.2 Specific Test Protocol 0

Time (min) /Cum. Activity

13/13 Pilot Briefing:
Review blackout pheleila
Review M- 1/ L- I maneuver
Explain BIOCONAID system
Explain test objectives
Describe test procedure
The need for electrodes
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2/15 Install electrodes according to the following table:

No. Pilots Type Location

1 Strap- on back
1 Strap-on abdomen
2 Belt waist
3 Paste-on back
3 Paste-on abdomen

If seat pan electrodes are available, they will be

used with all pilots (1. e. for part of each pilot-test

period).

10725 Pilot enters and starts simulator, climbs to 5000

ft altitude and practices turns to familiarize him-

self with BIOCONAID.

20/45 Test Period. Pilot does the following maneuvers

at 5000 ft, Mach . 8 on instruction from controller

(roll level after each turn):
A 360° turn right with 60° bank ingle (ZG)
Repeat to left without EMG feedback
A 360° turn right with 70° bank angle (2. 92 G)
twist body and head to look over right shoulder
Repeat to left without EMG feedback, twist
body and head to look over left shoulder
A 360° turn right with 80° bank angle (5. 76G)
Repeat to left without EMG feedback
A series of alternating oright and left turns of
45 with bank angle 70 , rolling directly from
one turn into the next. Eight turns will be
done (last four without EMG).

- A Chandelle right followed by a Chandelle
left (no EMG)
A Lazy-Eight (no EMG when turning left)
A rectangular landing pattern

5/50 Pilot shuts down simulator, deplanes, and electrodes

are removed.



20/70 Pilot is debriefed and gives written observations:

Tolerance for electrodes.
Was energy expenditure to avoid blackout
realistic')
Compare with and without EMG as regards
realism of simulated flight.
Was the onset of blackout and the recovery
through straining realistic')
Was the beneficial effect of the G-suit realis-
tically simulated?
Tolerance of system to body twisting.

- Further comments or recommendations.

A. 3.3 Recordings

Figure 41 shows a block diagram of the integrated system
including pilot, aircraft, G-suit, cardiovascular model, straining model,
and visual scene model. The numbers and names used below for recorded
variables refer to Figure 41.

Both digital and analog signals will be recorded. It is
anticipated that digital variables will be transferred to tape and printed off-
line. The analog recorder will be turned on and off by one of the operators
as the test progresses.

Teletype input to the simulator computer will result in

appropriate printed idertification of data pertaining to each maneuver.
When a new maneuver is due, the teletype input is changed by the operator.

Table A-1 lists variables to be recorded together with type
(digital or analog) and frequency of observation.

A. 4 TIME SCHEDULE

(Note: T = First test day, designated by AF)

TIME EVENT

T-49 UD personnel (3) visit Luke AFB for test planning
T- 39 UD ship or transport equipment to Luke APB

t.
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TABLE A-1

TABLE OF RECORDLNGS

Each Each
Type Once Maneuver Second Continuous

Date, hour, subject D X

Electrode Location D X

Electrode Type D X

Maneuver D X

Time 0 X

Roll Angle (6) D X

Heading Angle ($) D X

G-level (NZ) D X

Raw Straining Signal A X

Processed Strain Signal A X
(EMG)

G-Suit Protection Value D X
PVG

Cardiovascular Model D X
Output, PVC

Straining Protection D X
Value, PVs

Net Protection Value, PV D X

Dimming Signal (Output A X
of Visual Scene Model)

Visual Scene Light A X
..- Intensity
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1 T -37 UD engineer/programmer arrives Luke APB, begin interfacing
equipment and software

T- 27 Interfacing complete

T- 17 Piloted system checkout starts (one AF pilot needed)

T- 10 BIOCONAID system check-out complete

T- 5 Forrpal demonstration of system and AF approval to proceed
wi)h test/

T Testing starts

T +6 Testing ends

T+7 Equipment removed, simulator restored to original configuration

T+67 Draft copy of final test report to AFHRC

A. 5 IMPACT ON SAAC SIMULATOR SCHEDULE

It is expected that the simulator designated for these testa will be

already fully utilized during normal duty hours for training activities.

Consequently, the training usage should retain first priority and the test

program activities would proceed on a "time available" basis. Hope-

fully, evening and weekend hours would be available regularly during

the 44 day set-up and test period. It is estimated that an average of

two hours operating time per day would be required. tt

Care will be taken to insure that installation of the test equipment
and software is done in such a way that it does not affect the normal

training use of the simulator. This means that simple switches and

teletype entries will disarm all test provisions and leave the simulator

in its original operating mode.

Also, the test provisions will be installed so that they may be

rapidly removed leaving the simulator in its original configuration.
Complete removal of test provisions from the site will require less

than one day.
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A.i> AIR FORCE SUPPORT REQUIREMENTS

A.6.1 Equipment

SAAC (F-4) Simulator (8,' operating hours)

Includes: - digital computer capable of handlin.; software
one analog/digital p .rt
light dimming capability

Four channel strip chart recorder.

A. 6.2 /15er sonnel

1 Project Officer - liaison with base (part-time)
1 Simulator operator/maintenance technician - to operate

simulator (if required), monitor test installation (part-
time), answer questions

10 (or more) voluntary pilot subjects (1-1/2 hrs each)

1 pilot for "piloted system check-out'' prior to tests (4 hrs)

A. 6.3 Work Space

Combination office/workroorn near simulator.

Access to simulator.

A.6.4 Security

Secure area for UD equipment (table top analog computer,
meters, oscilloscope, bio-amplifiers, cables,
tools).

Security passes for four UD project workers.

Car pass for rental car.

A. 7 UNIVERSITY OF DAYTON SUPPORT

A. 7.1 Equipment and Supplie s

Oscillator
Bio-Amplifiers (6)

Cables and wiring

EMC electrodes
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A. 7. 2 Personnel

\......,--

A. 7. 3

2 engineers (one visit per week)

2 technicians or students (full-time on :-,'4

Transportation, Housing and Food

The University will furnish transportation for its personnel
and equipment avwell as housing and meals for its personnel.\
A. 8 REPORT,,REQUIREME NTS

)A report will be prepared as prescribed by Air Force instructions.
A draft copy will be furnished .-) AFHRL tiO days after completion of the

tests. The report will include the recr'rdeci data, the data analysis, the
pilot comments, conclusions and recommendations, and a discussion.

N

1 Oil
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APPENDIX B

ALGORITHM LISTINGS

00010 C
00020
00030

,01..r0411

00050
00060
00070
00080 C
00090 C
001 00 C
00110 C
00120 C
00130 C
00140 C
001'90 C
00160 C
00170 C
00180 C
00190 C
00200 C
00210 C
00220 C
00230 C
00240 C
00250 C
00260 C
00270 C
00280 C
00290 C
00300 C
00310 C
00320 C
00330 C
00340 C
00350 C
00360 C
00370 C
00380 C
00390
00400

TFORSRC.BIO OURM
CGMMON-INPUTS/X(6,,DELP.PVS
COMMON/OUTPUT/WI.BRC*CT:,CTC
DIMENSION Y(3)
REAL N,NFM.1(2,LLL,LLC
CB = 1.0
CC = 1.0

INITIALIZATION

G = -21.4
A = -0.882609

G = GAIN OF CARDIOVASCULAR TRANSFER FUNCTION.
AgB,C,DE = TUSTIN CO-EFFICIENTS OF TRANSFER FUNCTION.
F OFFSET DISTANCE OF THE OPTIC DISC FROM THE CENTRAL

VISUAL AXIS(10 DEGREES FOR RIGHT EYE)
P = OFFSET DISTANCE OF THE OPTIC DISC FROM THE CENTRAL

VISUAL AXIS(110 DEGREES FOR THE LEFT EYE)
SEAT = :EAT ANGLE (STANDARD IS 13 DEGREES)
EYE = OFFSET ANGLE OF EYE FROM PHYSIOLOGIC Z-AXIS

(TYPICALLY, EYE = 5 DEGREES)
Z =CONvEPSION FACTOR FOR DEGREES TO RADIANS CONVERSION.
Y(N) = G => DIMENSIONLESS MULTIPLE OF GRAVITY CONSTANT.

Y(1) = OUTPUT OF CARDIOVASCULAR TRANSFER FUNCTION.

DELP = DIFFERENCE BETWEEN STANDARD PRESSURE SUIT VALVE
FILL SCHEDULE AND THE ACTUAL SUIT PRESSURE.

PV = TOTAL PROTECTION VALUE.
PVC = CARDIOVASCULAR PROTECTION VALUE.
PVS = ELECTROMYOGRAPHIC PROTECTION VALUE.
PVG = G-SUIT PROTECTION VALUE.
PAE = CALCULATED BLOOD PRESSURE AT EYE LEVEL.
SI = POLAR POSITION ANGLE IN VISUALFIELD MEASURED

COUNTERCLOCKWISE ABOUT VISUAL AXIS FROM RIGHT
KIRIZONTAL AXIS. (0.LE.SI.LT.2DI RADIANS.)

INITIALIZATION FOR DYNAMIC VISUAL RESPONSE ALGORITHM
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00410
00420
004:10

00440
00490
00450

P = 1.877342
C = 6.0'.447 *1:,-

D = 0.00:1t;--:4 .17,

E = 0. 09831 4017,

F = 0.1745::
P = '3.-12

00470 :EAT = 0.22P;89::

00480 EYE = 0.08721;65
00490 2 =
0050H :,:,1, = 0.0
00910 ..,:e2, = 0.0

00520 ::e3. = 0.0
00-40 y,i, = 0.0

00940 i.2. = 1_1.0

00590 Ye---:. = 0.H
or2,;() :1 = 0.0 ._--

00970 C

0080 C

00590 C

00600 C INITIALIZATIGN FOP EMG ALGOPITHM
0061A C

00620 N = 0
00A-20 NNM = 0
000:40 NFM = 5
00590 P = 1.5
001;80 C 40***4,
00670 C

.

00680 1 PEADe99.101JX.1,.EMG.DELP
00690 101 FOPMATt3,F14.5('
00700 xel. = :;e1, 1

011710 C ******************
00720 C

I) 030 NNM ,- NNM + 1

00740 C

00790 C

C0760 C EMG ALGOPITHM
00770 C

00780 C ***************,.********>***************************
00790 C

00800 C DETECT :WHINING
00R10 C

00820 IFeEMG.GT.0.7; GG'TO 15
008Wi C

00840 C NO :WHINING TO LET PV c: = 0.0

00,150 C

00860 N = 0
00870 PV c = 0.0
00880 GO TO 21
00890 C

00900 C :TRAINING DETECTED == ITAPT COUNTER
00910 C

0090 C CALCULATE AND LIMIT PVM
0'30 C

101')
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00940 15 PVM = (22.39EMG) -15.67
00950 IF(PVM.GT.51.5) PYM = 51.5
00960 C
00970 C DETERMINE EFFECTIVENESS OF STRAINING DUE TO TIME
00980 C FACTOR (K2)
00990 C
01000 TIME =N'NFM
01010 IF(TIME.LE.2.01 30 TO 10
01 020 IF(TIME.LT.4.0) GO TO 11
01 030 IF(TIME.LT.5.0) GO TO 12
01040
01050

k2 = (16.0 TIME1/11.11
GO TO 20

01060 10 K2 = 0.5
01070 GO TO 20
01080 11 1(2=.25*TIME
01090 GO TO 20
01100 12 K2 = 1.0
01110 C DETERMINE AND LIMIT PVS
01120 C

01130 20 PVS = K2 P%/M R
01140 IF(PVS.LT.0.0)PVS = 0.0
01150 N = N 1.0
01160 21 CONTINUE
01170 C *******444.4~4..4.-0,4,4,44.4-4.4.4.4,4.41.4.4.4.4.4.****4.4.4.4.*********

01180 C

01190 C END OF EMG ALGORITHM
01200 C
01210 C No*******4,4104***411.414441.4. ****40-4 **41.4404441.44-******441.*

01220 C

012 0 C

01240 C 4.***41,44.4.44,41.44.4..***************4.414-4.4.4.....o41.44,4.4,4,4.

01250 C

01260 C CARDIOVASCULAR RESPONSE ALGORITHM
01270 C
01280 C **4141,-***-44,41.4..**4,4,441.4.44.4,4o....c4.4.4.4.4.4.4.4.*********4.414.41.4.***

01290 C

01300 C.

01310 C CALCULATE PVC FROM CARDIOVASCULAR TRANSFER FUNCTION
01320 C

01330 C 40-4N4P4P4P-0*40-.*****4.4.4.4104.*************4.044$4.***4104
01340 C

01350 Y(1) = A4,Y(3 + BY(2) + C*X(31 + D*X(2) + E*X(0
01360 PVC = 12u + Y(1)
01370 C
01380 C 4,4-4,4.4.**4**4.44.4.**4.4.4.4.4.+4,44.41.41.4.44.1.4.44.4.4.*****4.4.4.44.44.41.4..*

01390 C

01400 C LIMIT PVC ==") NOT TO BE LESS THAN 0
01410 C
01,420 C

01430 C

01440 C IF( PVC. LT. 0.0 ) PVC = 0.0
01450 C

1,14
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01460 C ********************40114140.40.*********441.****44.4+40.***414410
01470 C
01480 C GSUIT MODEL
01490 C
fit500 r

01510 C
01520 C CALCULATE PYG ==>NOT TO EXCEED 42.8
01530 C
01540 C
01550 PVG=0.
01560 IF(DELP.GT.-80) PVG = (42.8(DELP + 30) /80)X(1) /7
01570 IF(PVG.GT.42.3) PVG = 42.8
01580 C
01590 C 4P4,4404.41.*******************440************4-4044,441.****
01600 C
01610 C CALCULATE PV TOTAL PP']TECTION VALUE
01620 C
01630 C 4404.4.4,44.0*******************404.44,404.4044.********44,-.**4.4.
01640 C
01650 PV = PVC + PVG + PVS
01660 C
01670 C 440*********-4,4.0,40,4*****************4.41041~440.44.m.0.404,404,
01680 C
01690 C CALCULATE PAE
01700 C
01710 C ........***04,41440.****4.4104P4******4-4144M40,44,4444~44P-M4w-
01720 C
01730 PAE = PV (0.7730.48COSSERT EYE)*X(1))
01740 C
01750 C IF PAE IS LESS THAN 37.3. VISION COLLAPSES
01760 C
01770 Ir(PV.GT.37.3) GO TO 7
01780 LLS = 0.0
01790 LC = 0.0
01800 WRITE(1988)
01810 WRITE(98987s, NNM.X(6..EMG,PV
01820 88 FOPMAT(5Y./VISION COLLAPSE')
01830 GO TO 32
01840 C
01850 C
01860 C
01870 C CALCULATE SENSED VISUAL ANGLE (RRDEG,RLDEG)
01880 C WE CALCULATE THE VISUAL LIMIT,RRDEGrAT ANY
01890 r ANGLE.SI,U=ING ONLY THE RIGHT EYE.
04900 C,,910 C *0404.**
01920 C
01930 7 14=1.91986*(:./-37)/(PV-20,
01940 F1 = 3.1415S;
01950 IF (CI.L1.PI/2.0) SY = :I
01960 IF (:I.GE.PI-2.0, = PIS1
01970 IF (SI.GE,3.PI/2.0) SY = 2.*PI+SI
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01980 C
019911 C Nw PI ,2..LE.:Y.LE.+PI 2.
02000 C
02010 AA=FCO:..17453+:1.
02020 BB=:OPT(.031+,CO:i.17453+:Y,,,2.11:1+1,1**2.
020-40 PIP = HA + BB
02040 C
0205):
0206n c
02070 C CH :E CORRECT :EN:ED VI:UAL ANGLE AND CNVEPT
02080 C TO DEGPEE:

C

02100 c
02110 C
02120 PPDEG = 2 PIP
02130 LL: = ,Pv-1111., 4.5+111.

021411 LLC = .Pv-85.. 5.n+10.
112150 IFiLL:.GE.In., LL: = 1n.

02160 IF(LLC.GE.10.. LLC = 10.

02170 IF(LL:.LE.u.. LL: = H.
02180 IFiLLC.LE.n., LLC=n.
02190 32 BP:=LL:oCB
02201
02210
02220

BPC = LLC * CB
CT: = LL: CC
CTC = LLC CC

02230 IFiLLC.LE.0.. LLC = n.
02240 C
02250 C
02260 C
02270 C OUTPUT :EN:ED VI:UAL ANGLE AND UPDATE APPAY:

02280 C
022901:
02'w10 C
0231n 8 X(b4 = '1 11' 4 1

02320 PPINT :If6'EMGPVLL:LLC
02330 WPITE(98.871NNM.X,6.EM6iPV
0234u 8? FOPMAT(I2.3.3.
02350 33 X13, =
02360 = ,1,
02370 = n.n
02380 ,e(3, = .021

02390 Yi2. = Y.1,
02400 Y(1, = 0.0
02410 C
02420 C PUN FINI:HED 7
02430 C
02440 IF(NNM.NE.99,6 TO 1
02450 :TOP
02460 END
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APPENDIX C

THE M-1 AND L-1 STRALNING MANEUVERS

C.1 M-1 MANET_TVZR

'Pilots commonly refer to the M-1 Maneuver as the 'grunt' maneuver
since it approximates the pnysical effort required to lift a heavy weight.
The M-1 maneuver consists of pulling the head down between the4shoulders,

slowly and forcefully exhaling through a partially closed glottis, and simul-
taneously tensing all skeletal muscles. Pulling the heail downward gives

some degree of postural protection (shc,Itens the vertical head-heart

distance): intrathoracic pressure is increased by strong muscular expiratory
efforts against a partially ;losed glottis: and the contraction of abdominal

and peripheral muscles raises the diaphragm and externally compresses
capacitance vessels. Tor long-duration G exposures, the maneuver must
be repeated every 4 or 5 seconds. When properly executed, the exhalation
phase of the M-1 results in an intrathoracic pressure of 50 to 100 mm Ng

which raises the arterial blood pressure at head level and 'hereby increases
4-6 tolerance at least 1.5 G. The inspiratory phase of the M-1 maneuver
must (be done as rapidly as possible, sic. )."

C. 2 L-1 MANEUVER

The 1,1 maneuver is similar to the M-1 maneuver except the air-
crew member forcefully attempts to exhale against a completely closed
glottis while tensing all skeletal muscles. Using either maneuver the pilot
obtains equal protection, i.e. 1.5 G ;4reater than relaxed blackout level with
or without the anti-G suit. In a 1q72 study, subjects wearing anti-G suits
and perforrmnL! either the NI- I or 1--1 stramme manemer were able to

maintain ad-quate ision during centrifii2e exposure of --i9G for 45 seconds.

Hieher and loneer runs ha\ e not been attempted. IIowever, it is important
to note (a word of c a ution ) that iorcetully exhalini.; against a closed ,lottis

8q



,
-: ,\kahotit vigorous skeletal muscular tensing (Valsalva maneuver) can reduce

-C: tolerance and lead to an episode of unconsciousness at extremely lov,

Gz level. Therefore, instruction and training on the propar method of

performing these straining maneuers is essential."

(Source: Gillingham, K. K. and Krutz, USAFSAM AR 10-74, Brooks Air
,,.

Force Base, Texas. )



APPENDIX D

THE SOLUTION ALGORITHM FOR THE CARDIOVASCULAR MODEL

A digital algorithm is used to represent the cardiovascular transfer
function.

21.4 cos '3 (1 + 5.31s)

1 + 3.23s + 5.17s 2
(D. 1)

This algorithm employs Tustin's rnethod 6 for computational efficiency.

For a given recursion period T, determined by the simulation computer

frame rate, the output y(k) is given by the following equation.

y(k) =

+ x(k

+ x(k)

T2
2 - 6.46T + 20.68 2T

2 41.36

(D. 2)

- y(k-1)
T + 6.46T + 20.68 T- 4 6.46T 4- 20.68

+ T2 - 10.62T 2T
2

T 6.46T + 20.68

T2T + 10.26T

+ x(k-1)
T2 + 6.46T + 20.68

2
T + 6.46T + 20.68

Here, y(k) represents the output PVc at time tk, y(k-1) is PVc- at tk = tk-T

and x(k) is G(tk). A complete listing of coefficients for different values of
T is given in Table D-1. The coefficients are derived with a transfer

function gain equaL to 1.

A hypothetical aircraft maneuvering profile is shown in Figure D-1.

The predicted eye level protection value (PV) due to the cardiovascular
response model is shown in Figure D-2. The PV values are derived using

T = .02 and the hypothetical profile as a driving function.

'kJ
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TABLE D-1

Listing of Coefficients for Pvc Simulation

T A B C D E

0.02 0.9876 -1.9875 -0.0102 0.0000 0.0102

0.04 0.9753 -1.9750 -0.0202 0.0002 0.0204

0.06 0.9632 -1.9625 -0.0301 0.0003 0.0304

0.08 0.9513 -1.9501 -0.0398 0.0006 0.0404

0.10 0.9394 -1.9376 -0.0493 0.0009 0.0502

0.12 0.9278 -1.9251 -0.0587 0.0013 0.0600

0.14 0.9163 -1.9127 -0.0679 0.0018 0.0697

0.16 0.9049 -1.9002 -0.0770 0.0024 0.0793

0.18 0.8937 -1.8878 -0.0859 0.0030 0.0889

0.20 0.8826 -1.8753 -0.0947 0.0036 0.0983

0.22 0.8717 -1.8629 -0.1033 0.0044 0.1077

0,24 0.8609 -1.8505 -0.1118 0.0052 0.1169

0.26 0.8502 -1 8382 -0.1201 0.0060 0.1:61

0.28 0.8397 - 1.8258 -0.1283 0.0069 0.'352

0.30 0.8293 -1.8135 -0.1363 0.0079 0.144,3

0.32 0.8191 -1.8011 -0.1442 0.0090 0.1532

0.34 0.8089 -1.7888 -0.1520 0.0101 0.1621

0.36 0.7990 -1.7766 -0.1597 0.0112 0.1709

0.38 0.7891 -1.7643 -0.1672 0.0124 0.1796

0 40 0.7794 -1.7521 -0.1745 0.0137 0.1b82

0. 0.7698 -1.7398 -0.1818 0.0150 0.1967

,,, 0.7603 -1.7276 -0.1889 0.0163 0.2052

0.40 0.7509 -1.7155 -0.1959 0.0177 0.2136

0.48 0.7417 -1.7033 -0.2027 0.0192 0.2219

0.50 0.7326 -1.6912 -0.2094 0.0207 0.2301

y(k) = -y(k-2)A y(k-1)13 + x(k -2)C +!(k -1)D + x(k)E
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Figure D-1 Hypothetical Aircraft Maneuvering Profile
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