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Abstract.

Experiment.l:; 42 subjects solved algebra word problems in eit er work or

equation format., In Experiment 2, 42 subjetts,solved or si plY translated word

Strategies for Algebra Problems

,problems into eqUations. The pattern of response latencies, by problem length,

was different for the treatment groups. Results conflicted with a two - stage

. model-of problem solving consisting of separate translation and solution

processes.'

V
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t
This paper is ~concerned with the developmen

V
t of a theory of algebraic

-
,71

,

problem"solving., The rationale for studyhng'algebraic problem solving includes

4

the fact that work in this area would co'htribute to existing work on prose
6-,,

f'

, ,

-coMprehenslop (Hinsley, Hayes & Simdric11-977), thgt, a theory of algebraic

problem solving would become.a ma jor component Of a larger theory of deductive'

reasoning (Mayer & Revlin, 19780: and that the resulting theory could be

tested wide variety of real world situations involving mathematics in-
_

structioh ()Kilpatric0- 1970).

Traditionally,' studies ofSalgebraic problem solving have dealt with one ofp

three taiks::

(1) Equation Problem' -- consisting of single or multiple eaations

and a goal of solving for a certain value.- For' example, 3X -1,9.

4,(2) Word Problems -- consisting of a, single, or,multIple sentences that

(3)

. .

can be translated into equations and solved without any additional

ci

sepentic knowledge. For example, find a number such that 3 times,
.....,,

the number is the same as 9,

Story Problems -- consisting Of Single or multiple sentences that

require additional semantic knowledge to be translated into

equations and solved. For example, John drove his jet 9 mites

on 3 gallons of gas. What was his mileage? (You must know

that mileage = distance + gas .used.)
4

The domain of the present study will be restricted to single sentence word

problems, although these tasks are closely related to the others.
fa,

Translation and Solution

An extensive literature review is beyond the scope of this paper. How-

ever, much prior work falls into two categories: computer simulations of

algebraic problem solving processes (e.g., Eobrow,,1.968; Hayes & Simon, 1974;

rf;
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Mindy, Note 1,; Bregar & Farley, Note 2; Novak, Note 3); and instructional

studies aimed.at improving mathematics education, such as published in Journal

for Research. in. Mathematics Education or NCTM meeting proceedings (Barnett,

Vos 6 Sowdder, Note 4; Clement, Lochhead & Soloman, Note 5). Unfortunately,

there has not been much basic experimental research the Jga between

`high level thebry (i.e. computer models) and educational application.

Perhaps the strongest single theme of the existing experimental research

analgebraic problem solving is that the process of translating the probleni

into a representation is a crucial one. For example,:Paige & Simon (1966)

.found that subjects who drew integrated pictures to represent word problems

were more likely to perform correctly on the Problems%than subjects who drew

fragmented piclitUres. Hayes and his collegues (Hinsley, Hayes & Simon, 1977

Robinsoni& Hayes, 1978) found that students have "schemas" for various types of

story problems and that they use these schemas in selection of information they

will pay attention to. Work on arithmetic word problems by Greeno and his

associates (Riley'& Greeno, Note 6; Heller & Greeno, Note 7).demonstrates that

children can interpret an add/subtract'aperation in a word problem in different

ways such-as "cause/change" or "combine" or "compare," and that the difficulty

of the problem depends on which interpretation is involved. In similar studies,

Loftus &'Suppes (1972) and Rosenthal & Resnick (1974) found that difficulty of

word problems was affected by the linguistic structure of the problem. Schwartz

(1971) foUnd that subjects who used a Mttrix representation for information

in &deduction problem were more successful. Also, Mayer & Greeno (1975) and

Mayer (1978a; 1978b) reported that the same'algebraic information Was'stored in
... .

memos 'in qualitatively different ways 'by different subjects4 Insreview of

(.repre entative studies i-ri human ,deductive reasoning, Mayer & Revlin (1978,
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Strategle5 for Algebra'Problems,

The most striking Commonality among the studies is that

emphasis on how, reasoners encode the presented information...

each researcher seems, to fOcus on a slightly different aspect

of the encoding "process.

,

This ,conclusion seems particulary, relevant to work.on algebraic, problem solving.

Osecond'strong theMe of experimental work involves mainly the,process of

I

solution.(rather than translation). A detailed analysis of the solution

protoOls of ifidivi u 1,probtemsolvers involved in solving physics problems

suggests that students acquire as set of heuristic strategies that can be

represented formally (SiMolm & Simon, 1978; Lakin, Note 8). Similarly, Greeno
. 0

(1976, 1970 lhas provVded e detailed analysis of the problem solving processes

used by high school students solving geometry problems. .These studies may be

suMmerized by statidgcthat detailed models of the problem solving process for

,-

story problems can be .fit to the 4ata.of real students solving real science-
.)
._. .

problems; furthermore, a major featu're of t4 solution process for skilled per- , 4
v .

formers is a reliance various forms of heuristic planning.

The research on encoding-a t;,s *ion processet, as well as one's own

introspections, might lead4one04 stime that solving word problems consists of

two successive stages: translafion from words to equation, and solution of the

equation using the rules of '.1gebr d the strategic planning of algood

problem solver: Indeed, many algebra textbooks explicitly teach this.iprocedure

of, eranslatiog followed by Atittt , Further, computer models of algebraic
J, t

poblem solviqg generally Make a d,itinction between a program, to translate a
,.

-E.problem from into an,..intern l'-`representation, and a program to.solve

the problem by applying operations 2:the internal representation. For' ex-
,.

ample, pobrow; (1968) :STUDENT and Ha s & Simon's (1977) UNDERSTAND program

1

41:

1;;NI
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make ,a clear distinction between translation and solution and tend to emphasize

the first prracess; in addition, Bundy (Nate 1) and Berger & Farley (Note 2)

rely on the translatIonisalution distinction but tend tt emphasize'the solution'

proces in their programs. /

For the purposes of the present paper, jbe term "two-stage model" will

refer to the idea that solving word problems involves:

(1) Translation Stage -- which takes words as its input and gives a,

formal representation (such as'an equation) as its output, using

encoding rules.

(2) Solution Stage" which takes the output of the translation stage

as its input and gives a numerical value as its output, using

algebraic rules and strategic rules.

Although the two-stage model. seems to be a. well-accepted fact Of life --

forming the basis for computer models as well as textbook lessos -7 there has

not been sufficient research evidence to establish its validity.

Problem Representation

This paper provides an experimental investigation of the two-stage model

in the context of one type of word problem. In particular, this study ion-

4 tr
vestigates whether subjects use different solution procedures when an algebra

problem is presented in equation format versus when it is presented as a word

problem. The effects of problem representation on algebraic problem solving

have been investigated in several previous studies.

In a previous set of experiments on algebraic substitution, subjects

learned a set of. four interlocking equations (Mayer; & Greeno, 1975, Experiment

I). For some subjects the information was presented as a story such as,

Mileage,= Distance/Gas Used, Total Time = Preparation TiMe + Driving Time,

Driving Time = Arrival Time Leaving Time, Speed = Distance/Driving Time.
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Foe other subjects, the information was presented as an isomorphic set of

nonsenSp equations, such as M = D/G, I = P V, V = A - L, S =I/V. The re-

sults indicated that there were no major differences between groupsin terms of

response latenc)es Or reported soluelon strategy for simple problems such as,

"Preparation Time = 1,/2 hour,'Total Time = 2 hours, Find Driving Time". Thus

if we had'stopped at that point we would have concluded that the same problem

solving model could account for the performance of both groups. However, two

additional types of probleMs were also used: "unanswerable problems" such as

"Speed = 50 mph, Driving Time = 1 hour, Find Mileage", and oquestionS" sucH'as

"Given Arrival TiMe and Leaving Time what else is needed to find Total Time?"

For,these types of problems, which require checking many relations, the story

subjects were much faster (e.g., twice as fast..for the unanswerable problems)

as compared to the letter group. Thus, this study provided our first hint that

the story format provides for a more integrated memory representation of the

four equations and/or faster search speed when many relations must be tested.

If the story subjects tend to integrate the information with their ex-

isting knowledge, as is suggested by the previous result, one prediction is

that they should be less influenced by the presentation order of the equations.

In order to test'this idea, another study (Mayer & Greeno, 1975, Experiments 3

and 4) was conducted in which subjects learned 9 interlocking equations pre-

sented either as meaningful stories or as nonsense.equationsi Subjects learned

3 equations to criterion, then learned a second set of three, and then learned

a final set of three. On a subsequent test subjects were asked about'only

three of the equations such as, W = 0 * D, M = 0 * H, R = W/T. Problems

required either no substitutions, such as "Given. M and H could you find 0?",

one substitution such as, "Given M, H and D could you find W?", or two
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substitutions such as, "Given M, H, I) and R could you find Tr. For some

subjects the 3 equations had all been Warned in the same set (same set) and

For other subjects the 3 equations came from 3 different sets during learning

(separite sets). For the story subjects, performance was the same on problems

requiring substitutions regardless of whether one or separate sets were involved;

however, for the letter group response time on substitution problems was much

longer (e.g. twice as long on two-substitution problems) for the separate set

presentation as compared to the one set presentation. Thus the story subjects

appeared not to be influenced by the organization of presentation while the

letter subjects were. This result provides replicatory support for the idea

that the story format allows for a more integrated memory representa 'on, and

thus faster performance on problems requiring search across several equation.

Since the above results encouraged the idea that presentation foimat in-

fluenced problem solving perfOrManee, a'subsequent series of experiments was

conducted which investigated the same issue using a simplier and better ana-

lyzed task -- linear reasoning. For example, in one study (Mayer, 1978,

Experiment 2) subjects learned the remote pairs of linear ordering such as:

F>H>R>B. For some subjects, premises were presented as a story such as: "The

frog gets 10 times as many votes as the rabbit. The hawk gets 20 times as many

votes as the bear. The frog gets 40 times as many votes as the bear." 0thr

subject received isomorphic equations in nonsense form, such as, "F =_,10 * R,

H = 20 * B, F = 40 * B". Subjects were asked to answer questions involving no

substitutions such as "Is F>R?") involving one substitutions such as "Is F>H?",

and involving two substitutions such as "Is H>R?". If subjects remember the

.three premises and then use them to make inferences, the response latencies,or

error rates should increase with the number of required substitutions. This is

the pattern obtained and best fit by the story subjects, but it was not obtained

10
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For the letter subjects. The letter group's data was bust fit by a model In

which each term was tagged, and question answering Involved tag matching rather

than making Inferences. Thus, In this case problem format Lofluenood both the

mode of representation and the problem solving proced-ure.

The previous two sets of studies highlighted the negative aspects of

equations -- i.e., requiring more time In complex situations, and encouraging a

superficial solution strategy. However, the present experiment uses a task Ln

which equations may hold an advantage; first, a single long equation is used

rather than a list of substitutable equations, and second, the necessity of

real-world knowledge is'minimized. 11% this case, equations may hold an

advantage over word format because they require less memory load (Hayes,

1978).

Problem Space

For example, consider the o0erators that a person uses to solve a word

problem such as the following:

Find a number such that if 8 more than 3 times the number is

divided by 2, the result is the same as 11 less than 3 times

the number.

For purposes of this paper, we will call this an algebra word problem, and

subjects who are asked to solve these types of problems will be called the word

group.

An isomorphic way of stating the problemin equation form is:

(8 + 3X)/2 = 3X 11

We will call this format an alg bra equation.problem, and subjects who are

asked to solve these types of problems will be members of the equation group.
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Thero aro 17,WO 9441C Cict40 or 4CII090 L9dt C49 he used to qonecato

problem hL4t05 In this problem;

MOVEs -- a variable or ,w ether I s mood from one 5ido of the

equation to the other ht addition, substractiob, multi-

,

plIcatIon, or division of both sides by the same- value, and

COMPUTES -- combining two' consecutive numbers or two Instances

of Xhe same variable on one side of the equation 1

carrying out a computation such as addition, subtraction,

multiplication or division.

For example, given. the problem state,

8 = 6X - 22 3Xi

a MOVE operator would be to add 22 to bath sides, yielding the new problem

state,

8 + 22 = 6X - 3X

An alternative operator that could be app lied to the problem state,

8 = 6X - 22 - 3X c

is the COMPUTE operator; since there are two variables on one side of the

equation they can be combined, yielding the new problemlstate,

8 = 3X - 22

Each problem state may be characteried by indiCating the minimum number

of MOVEs and of COMPUTEs that would have to be applied in order to move from

the given state to the end state (i.e., X --.. a number). For example, the

initial, state,

',

(8 + 3X)12 = 3X - 11

r quires 5 computations and 4 moves to generate a value for X., Thus it is

lab led as problem state 54; the first number indicates the number of required

,
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f ''
,

.. 4'.
coMputatiOns and the second number' gives the number of required *moves. If one'

MOVE is made, such as to multiply both sides by 2-, the resulting state, .s

8 + 3X = 2(3X - 11) U

requires 5 computations and only3moves; thus, it is labeled as problem state

453. Further, if the'COMPUTE operator is applied twice on the right -side of the

equation, the resulting

8 + 3X = 6X - 22

requires only 3 computations and 3 moves; thus it is labeled as problem state

33. The remaining 3 moves are to get all the X's on one side, get all the

numbers of the other side, and then to divide both sides by the number of Xs;

the remaining 3 computations are to add 8 and 22, to subtract 3X from 6X, and

to carry out the final division 30/3 to get a value for X.

Table 1 gives a list of_some of the possible problem states, and labels

each according to the minimum number of MOVEs and COMPUTEs that are required.
1

Labels with prime marks (1) indicate that they have the same number of MOVEs

and COMPUTEs as some other non-identical state. For example,

8 + 22 = 3X

requires a COMPUTE (add 8 and 22), a MOVE (divide both sides by 3) and a

COMPUTE (divide 30 by 3). Similarly,

30 = -6X - 3X

requires a COMPUTE (subtract 3X from 6X), a MOVE (divide both sides by 3) and a

COMPUTE (divide 30 by 3). Thus both problem states require 2 COMPUTEs and 1

MOVE, and are labeled as problem 21 and 21' respectively.

Insert Table 1 About Here
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There is more than one single path to.the solution state. For example,

one could move from state 53 to state 52 by applying a MOVE operator; or one

could move from state 53 to state 33 by applying COMPUTE operators. A partial

problem space is given in Table 2. The given, state (54) is on the left and

the goal state (00) is on the right; thus, any change In state to the right

represents progress towards the goal. The problem space does not include any

state with a fraction and does not include backwards moves from state 54.

Table 2 consists of number pairs - -representing problem states--connected by
A

labeled linesrepresenting MOVEs or COMPUTEs. The first number indicates the

number of required COMPUTEs and the second number indicates the number of

required MOVEs, as is shown in Table 1. The M above a line refers to the

application of a MOVE operator and the C refers to the application of a COMPUTE

operator. For example, one sequence of problem states is 54,53,52,51,31,21,11,10,00;

another possible sequence is 54,53,33,32,22;21,11,10,00. As can be seen, not

all of the 14 states shown in Table 2 are needed for any given solution path.

Insert Table 2 about here

In the present experiments, however, subjects were asked to solve problems

which began at each of the 14 states listed in Tables
1 or 2. Some subjects

were given problems in word form (word group) and others were given problems

in equation form (equation group). Thus the resulting data is a 2 x 14 array

showing the response latencies for each group by problem state.

Contrasting Versions of a Two-State Model

Simple Two-State Model. The simple two-stage model states that solving

an algebra word problem involves two states--translation plus solution--while



Strategies for Algebra Problems

12

solving an isomorphic algebra equation involves only one state--solution. In

addition, it is assumed that the solution processes are identical for corres-

ponding word and equation problems; the oily difference between subjects,

solving word and/equation problems is that word problems require a translation

and equation problems do not.

Finally, it is assumed that translation requires a

constant amount of time regardless of problem state.
2

According to this version of the two-stage model, the response time to

answer a word problem is represented as,

RTw(p) = RTt + RTs (p)

while the response time tcyanswer a corresponding equation problem is,

RT
e

(P) = RT
s

(p)

where RT
t

is the time to go from words to an equatidh for all problems, RT
s
(p)

is the time to go from an equation to responding with the correct answer for

problem p, RTw is the total time to solve a word problem

total time to solve a corresponding equation problem.

p and RT
e

is the

This model allows for a straightforward prediction concerning differences

in performance of the two treatment groups on each of the 14 problem states:

There should be an overall main effect in which the equation group is faster

than the word group, and since this difference is constant over all problem

types there should be no interaction between treatment and problem state.

Modified Two-Stage Model. The simple two-stage model makes an assumption

that translation time is a constant: regardless of problem state. In order to

eliminate this dubious assumption, a modified two-stage model is introduced to

this section. The modified two-state model is identical to the earlier model

except that translation time varies as a function of problem state. Like
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the simple two-state model, it is still assumed that the solution process is

the same for both types of p

The solution time to solve word problem p may be represented as follows,

RTw(p) = RTt(p) RTs(p)

and 'the time to sblve a-corresponding equation problem is,

RTe(p) = RTs(P)

where RT
e
(p) is the time'to trApsrate- a given problem into an equation, and

RT
s
(p) is the time to produce a correct response for an'isomorphic equation.

This model also predicts an overall main effect in which the equation

group performs faster than the word group. .In addition, this model also pre-

dicts an interaction between treatment and problem state. The form of the

interaction, however0, is that the difference in latencia6 should increase as a

function of problem length (i.e., as the complexity of the translation process).

Thus, word problems requiring much transj4 ion should generate higher differ-

ences from corresponding equation probl han word O'oblems-that are short.

Since there are several ways of defining problem length, these)will be dis-

cussed in the results section. 3

Different Solution Procedures. The previous two models have been based on

the idea that responding to algebra word problems involves translation plus

solution, and that'the solution process for word problems is the same as the

solution process for equation problems. An alternative presented in this

section is that the solution process for a word problem is not the same for its

corresponding equation problem.

According to this model the latency for responding to a word problem may

be represented as follows.

RT
w
(p) = RT

t
(p) + RT

sw
(p)
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,and the time to'solve a corresponding dquation,problem is,

RTe(P) = RTse(p)

where Rt
t
(p) is the time to translate 'a problem p,'RT

sw
(p) is the time to solve

4

the problem using the word-solution procedOre, and RT
se

(p) is:the time to sohie

the problem using the equation-solution proced6re.

Since this model assumes qualitatively different solution procedure for

the-two treatment groups, it is, important- to specify the nature of the differe-

nces. The nature of the differences can be conceived in terms of differences in
N

the conditions that are attached to the possible actions (i.e., MOVE and COMPUTE).

In general, problem solvers in this task report two general types 6f goals:

(1) Reduce expression-Ttrying to carry out any indicated operations or clearing

any parantheses as soon O'possible, and (2) 1-solate variables--trying to move.

a

all'the Xs on one side and move all the numbers onto the other side. It may be

noted that the conditions for reduce expression involve looking at only one

side of the equality such as noting whether there is a parenthesis or whether

there are two numbers on one side (i.e., 8 + 22 is on one side in problem state

21);. in contrast, the conditions for applying operators with respect to the

isolate goal always involve looking at both sides of the equation such as

noting whether there is an X on both sides.

For purposes of this paper, it is reasompble to suppose that equation

format requires less memory load than word presentation format. Since word

format is cumbersome, it is more likely that the controlling strategy of

subjects in this group is to reduce the expression. Since the equation allows

for a unified visual representation of the entire problem, it is more likely

that the controlling strategy of subjects in this group is to isolate the

variable. Specific production system models which are based on these
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2 difference in the conditions will be_discussed in the next section of this
Y

paper,
_

and are presented in detail in a companion paper (Larkin & Mayer\ 1980.

Based on these differences it is pc.ssible to predict differences in,the

pattern of solution performance that must result in a *treatment'x problem state

interaction. In partidular, the equation group should show evidence of planning

and of setting "isolate variables" as its tdp goal while the word group should

show a pattern of performance that does not involve planning but rather sets as

its goal to "reduce expression".
1
Reduce Versus Isolate Strategies

In this section we present a more formal model which outlines the differ-

ences in performance between the equation subjecti--who presumably use an

isolate strategy--and the word subjects--who presumably use a reduce strategy.

As a first step, Table 3 presents a general condition-action list (or means-

ends table). The left side of each statement gives a general description of a

situation (or difficulty) that may be encountered in solving the algebra

equation, and the right side gives a general description of the action o. be

taken. Thus,the condition-a&tidn pairs listed in Table 3 are much more general

than those needed for a running program but they are consistent with Newell &

Simon (1972) system and will alloW us to Aerive some predictions in this

experiment.

We assume that a subject, represents the information in a that will

allow for testing of the siox conditions listed in Table 3. When a subjedt is

given a problem in soMe state p, the subject searches for the condition

are met. If more than one condition is met,
(t

he equation subjects will c oose

one to work based on the priority ordering, I-1,

the priority ordering for word subjects is R-1,

1-2, R-1, R-3, R-4; similarly,

R-2, Fk3, R-4, 1-1, 1-2.
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'lookAnopler way to state this differentia is to say that equatio

); fiest 'Nit- isolate conditions and word subjects look first for redu e conditions.

,

In the present experiment, there are several cases in which actions asociated

with isolate conditions (1-1 and 1-2) cannot be carried out without further.

setting of subgoals. However, if subjects use the reduce strategy it is never':

necessary_to stack subgoals.

An example of these differences is given in Tables 4 and 5. For the

problem in state 54, three conditions are neat: there are Xs on both sides (1-

1), there are numbers on both sides (1-2), and there is a parenthesis (R-3).

Equation subjects select 1-1 as the condition-pair to be executed, but when

trying to apply the action operators find that there is a constrainti.e.,

there is a parenthesis. In order to remove this constraint, a new subgoal must

be stacked on top of the 1-1 subgoal, and so on, can be seen, problem 54

involves 2 failures to carry out a subgoal. (i.e., 2 instances of subgoal

stacking), problem 53 requires 1 instance of subgoal stacking, and 33 requires

one. For word subjects, there is never a failure to carry gut a subgoal and

thus no need for subgoal stacking. The results of applying the reduce and

isolate strategies to all 14 problem states is summarized in Table 6. In order

to predict response latencies it is necessary to predice that each move re-

quires some constant amount of time, each computation requires some constant

amount of time, and each instance of goal stacking (planning) requires an

4
additional amount of time.

Like the modified two-stage model, this formulation predicts an inter-

action between treatment and problem length. However, unlike the previous

model, the pattern of interaction should reflect different solution strategies.

In particular, the interaction should reflect the fact that there is goal
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stacking rd4uii.edjfOr prOblem states 54 (2 :time, 53 (1. time ), and 51 (1 timer

for the equation g.roup but not the word group.

Tables 3., 4 6 about here

Experiment 1

Subjects solved problems in each of the 14 problem states with some

7
subjects receiving all problems in word format and s e subje ,ts receivin§

them in equation format. Experiment 1 was conduc order to test the

predictions of each of the models discussed 646/,:l -The sifipple two-stage model

predicts an overall main effect but nol190 modified two -sta3e

model predicts an overall main effect---as4 sKe9'mo,otonically increasing

difference as a funCtion of problem length., AFinelly, if the subjects in the

groups use qualitatively different solutiostrategies such as isolate'versus

reduce, more speCific differences-in the/66at stacking procedures can be

described.

Method

objects and design. The subjects were 42 college students recruited from

the Psychology Subject Pool at the University of California, Santa Barbara.

Twenty-one subjects served in the equation group and 21 subjects served in the

word group. All subjects solved the same 14 states of problems so state of

problem is a within-subject factor.

Materials and apparatus. Two sets of 98 problems were constructed. The

equation set presented the problems An equatilerm such as:

(8 + 3X)/2 = 3X - 11

The word set presented problems identical to those in the equation set but

used words such as:
1
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Find ajiumber' f 8 more than 3 times thp number is-divided, by, 2'
.

results.. ,sameame aA 11 less than 3

The 98 problem% were generated using a 7 by 14

times

design.

the number.,

The first factor in-

dicites that seven different 'problems were used h as the one indicated

above. All-problems were of the sae f,ormbut specific values werediffetent.

The second factor, indicates that each problem Was broken down into 14 different

problem states by manipulating h many compytations and moves had to be made.

Table 1 shows the 14 states of each problem, and Table 2 shows a partial problem

space.

the apparatus consisted of an ADM-3 terminal screen and keyboard for

presentation of the stimu11-'and entering of responses; an ADM-3 terminal that

was uled as an experimenter monitor; a Micropolis dual floppy disk drive used

for storing the stimuli, the .experiment program, and the data; a Teletype

printer used for printing out the data; and an Altair 8080 computer used to

control these devices.

Procedure. Each subject was run individually in a session, that lasted

approximately 30 to 60 minutes. First, subjects were given verbal instructions

to make sure that they could solve algebraic equations similar to those in the

experiment. Three subjects were unable or unwilling to solve the trial equa-

tion, so new subjects were run in their places. Instructions stated,that an

equation (or a word problem) would be presented on the screen. The subject was

to logically solve the problem for the unknown, and then press the corres-

ponding button on the keyboard. The buttons were labeled from 1 to 30 by

integers and included one button labeled "none." Subjects were explicitly told

not to guess or to use any shortcut method; rather they were told to carefully

work out the solution step by step and to press the answer button only when
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they were sure of their answer.5 Subjectswere allowed 60 seconds to.answer;

as soon as the subject answered, or as soon as 60 seconds paSsed, the question-

was removed from the screen and a new question appeared in 2 seconds. Each new

question was preceeded by a beep.

The questions were presented in random order except for the constraint

that each set of 14 items tonsisted of all 14 problem states and that each set

of 14 items contained 2 different instances of each problem. After each set of

14 problems, subjects were given a brief rest period.

First a set of .14 practice

items were given, one at a time. Then seven sets of 14 experimental items were

given. At the end of the experimental session subjects were asked about their

solution strategies to make sure that subjects had followed directions.

Results and Discussion

The average response time for each of the 14 problem states was computed
j,

for each subject in each group.
6

Table 7 summarizes the meah response time for

each of the two groups by problem state. An analysis of variance was performed

on the data with treatment as a between-subject factor and problem state as a

with-subject factor. As expected, the ANOVA revealed_that the equatkon group

was significantly faster than the word group in overall performance, F(1,40) =

71,244, p < .001, and there were overall differences in response time 'for

different problem states, F(13,520) = 197.11, p < .001.

The main focus of this experiment, however, is on the question of whether

subjects in the two treatment groups followed different solution procedures.

The "translation plus solution" theory states that subjects in the word group

simply translate the problem into an equation and then solve the equation in

the same was as the equation group. A simple version of this theory assumes



rA

Strategies for' Algebra Problems

20

that translation requires a constant amount of time for each problem, and,:hus

predicts that the word group should take longer than the equation gr6up overall

but there Should be no interaction with problem state. The ANOVA revealed a

significant pattern of interaction between treatment and problem state, F(13,

520) = 17.78, p < .001, and thus provides evidence against a simple version of

the "translation plus solution theory."

Insert TableL,7 about here

These results allow one to reject a simple version of the "translation
I

plus solution" theory. However, a modified version of the theory predicts

an interaction if its assumed that the translation stage takes longer for

longer problems, This modified version of the two-stage theory predicts an

interaction between treatment and problem state in which there is a monoton-

cally increasing difference as problem length (indicated by number of compu-

tations and moves) increases. The difference in response time (in seconds)

il

between the two treatment groups for each of the 14.1 problem states are listed

\
in the last row of Table 7. A linear regression

3 using number of steps (i.e.,

computations or moves) as the independent variable and the difference in RT as

the dependent variable produced an R
2 of only .65, and a multiple regression

using number of computations and number of moves as the independent variables

and the difference in RT as the dependent variable produced an R
2

of only .70.

These results indicate that the treatment by problem state interaction cannot

be neatly described as consisting of monotonically increasing differences, if

problem difficulty is defined as a function of the number of steps.
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An alternative theory thathat predicts an interaction between treatment and

prOblem state is that the two groups engage in qualitatively different solution

procedures. For example, the data presented in Table 7 suggests that there are

three general stages for the equation group indicated by a-sharp drop from

state 54 to 53, and from each of the 5-comp'utation states (53, 52 or 51)

respective 3-computation state (33, 32 or 31). One hypothesis developed earlier

is that the equation subjects may plan ahead and stack goals; for example, they

can stop at state 54 and see several moves ahead, at the other 5-computation

states they can see several computations ahead, and at the 3-computation states

they can see to the end of the problem. The three major jumps in respons time

suggest that subjects are able to form subgoals (Thomas, 1974). However, the

word subjects do not show the same subgoal pattern; for them each additional

computation or move tends to add a constant amount'to solution time.

In order to provide more infOrmation on this observation, several mul6iple

regressions were fit to the means for the 14 problem states for each group.

These are summarized in Table 8. First, a simple linear regression was used

with the'independent variable being-number of steps. (A step was defined as

either a move or a computation such that 54 state required 9 moves, and state

10 required 1). As shown in Table 4, the model fit the word group reasonably

well (R2 = .95) but did not fit the equation group well (R2 = .83). Second, a

multiple regression was used with the independent variables being number of

computations and number of moves. As shown in Table 8, this model fit the word

group slightly better than the one-variable model, but did not fit the equation

group well (R
2
= .84). Finally, a multiple regression was used that included

three independent variables: number of computations, number of moves, and stage

level. Problem state 54 was defined as stage level 2, problem states 53, 52
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and 51 were designated as stage level 1, and all the lower states were designated

as stage level 0.- This model resulted in no improvement of fit for the word

group, but did result in an enormous improvement of fit for the equation group

(R
2
= .99). Thus, the equation group was best fit by the three variable (or

stage model) while the word group was best fit by a simple step model or two

variable step model. These results suggest tla //t the pattern of interaction

between the two groups cannot be adequately described by a simple or modified

"translation plus solution" thesory. In contrast, there is evidence of different

processing strategies as indicated by the fact that the group response patterns

are best fit by different models a planning or stage model for the equation

group and a step model for the word group.

ir

insert Table 8 about here

The previous analyses explored trends in the group means. An additional

analysis was carried out to determine whether the individual data encouraged

the same conclusion as the group data. Each of the three regression models-

one variable, two-variable and three-variable -- was fit to the pattern of mean'

response latencies for 14 problem state for each individual subject. Table 9

.

shows the value of R
2

indicatingndlcating the goodness of fit, for each model applied

to each of the 42 subjects. Table 10 shows the number of subjects in each

group,(n = 21) who were best fit by each regression model; the top portion

(strict criterion) of Table l0 defines "best fit" as yielding a R2 value that is

more than .01 higher than the next simpliest model, and the bottom portion

(linient criterion) defines "best fit" as yielding an R
2

value that is more

than .03 higher than the next simpliest model. As can be seen, 20 of the 21
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subjedts in the equation group are best fit by thethree-variable (or planning)

model, while most the tt14...word,group subjects are best fit by the one or two-

variable (or step) models. Chi-square tests were conducted for the data in the

top and,battom portions of Table 10; there was a significantly different

classifidOtiscri pattern for the two treatment groups using the strict criterion,

2 2
X = 20.88, df = 2, a < .001, and using the linient criterion, x = 25.04,

df = 2, a < .001. Thus these results are consistent with the conclusions

preseRted on the basis of group data.

------------

Insert Tables 9 and 10 about here

---------------------------------

A final analysis was conducted in order to determine whether the differ-

ences between the treatment groups was an artifact of the many repeated trials

in the experiment. For example, since each of seven problems was repeated in

14 different problem states, it is possible that subjects by the end of the

session learned to respond on the basis of distinctive cues in the problem

rather than actually computing an answer. It should be pointed out that the

instructions clearly stated that the subject should compute the answer rather

than try to find ways of guessing, and further, that subjects indicated that

they had followed directions when questioned after the experiment. However, in

order to provide more data on this question, an analysis was conducted using

data from the first experimental trial (there was a practice trial before this

trial) and the last experimental trial; each of these consisted of one of each

of the 14 problem states with all problems counterbalanced. The mean response

latencies for each group on each of the problem states occurring in the first

and last experimental trials is shown in Table 11.
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Insert Table ,11 about here

As can be'seen in comparing the pattern of the equation and word groups,

the same general pattern is,obtained for both the first and last trial. I

both cases, the word group shows .a patterI of consistently more time required

for each new step while the equation group shows a jump from 54 to 53 and from

the 5-computation state to its corresponding 3-computation state.4rThese

patterns are similar to those presented and discussed in conjunction with Table

3. An analysis of variance was conducted using treatment as a between subjects

factor and trial and problem state as within subject factors. As expected, the

equation group was faster overall, F(1,13) = 75.23, p < .001., and performance

on the last trial(was faster than on the first, F(1,40) = 104.95, p < .001.

In addition there was a pattern of interaction between treatment and problem

state that was similar to that shown in Table 7, F(13,520) = 9.42, p < .001.

There was, however, no evidence that the treatment x problem state inter -Sion,

was different for the first versus the last trial; this observation is con-

sistent with the failure to obtain a three-way interaction involving treatment,

problem state and trial, F(13,520) = 1.05, n.s. In addition, a separate ANOVA

was performed on the data for the first trial and a separate ANOVA was per-

formed on $e data for the last trial with treatment and problem state as the

factors. In both cases there was the same significant treatment x problem

state interaction; for the first trial data, F(13,520) = 7.03, p < .001; for

the last trial data, F(13, 520) = 4.81, p < .001. These results provide evi-

dence that the differences in performance between the groups was not based on

an artifact of the design that allowed for learning of a short cut as the

session progressed.
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Experiment 2
0.

The results of Experiment 1 suggest that the solution process used by

subjects in the equation group involves planning. However, the translation

and solution process of the word group does not show the same-sort of planning.

One reasonable conclusion is that the two groups use qualitatively different

solution processes, as-represented b9 the isolate and reduce strategies

In order to provide another test the implications of the models discussed

above, a second experiment was conducted in which one group wrote a numerical

answer for each word problem (word-to-solution group), and another group wrote
a

an equation for each word problem (word-to-equation group). According to the

two-stage model performance of the word-to-solution task involves the following:

RT
w-to-s

= RTt (p) + RT5 (p) + RTw (p)

and the performance of the word-to-equation group involves:

RT
w-to-e

= RT t(p) + RT,m(p)

where RTt(p) involves the time to go from the word problem to a statement of

the underlying equation, RT
s
involves moving from the equation to a numerical

answer (a process that requires plann g when performed separately) and RTw

involves the time to write an equation or a number on a sheet of paper. The

S

previous experiment suggests that the RT
s

component involves planning.

The previous experiment demonstrates that when the solution stage is

performed alone (i.e., for equation problems) there is evidence of planning. If

there-are two independent stages in solving algebra word problems, and if the

solution stage requires planning, then the performance of the two groups in

Experiment 2 should differ. The two-stage model predicts that the word-to-

solution group should show a pattern involving planning--since a solution

process is required--while the word-to-equation group should show a pattern in

which performance depends only on the length of the problem.

oo
0.0 Lj

O
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As an alternative it may not be possible to cleanly separate the trans-

lation and solution processes for word problems. In this case, both groups

will show the same general pattern of performance since both groups engage in

the same step-,1*-stert translation process; however, since each step requires

more computation for /the word-to-solution group then each step should take more

time.

Method

Subjects and design. The subjects were 42 college students from the

University of California, Santa Barbara. Twenty-one subjects served in the

word-to-solution group and 21 served in the word-to-equation group. All

subjects solved the same 14 states of problems so state of problem is a within

subject factor.

Materials and apparatus. The same 98 word problems and the same apparatus

were used in Experiment 1.

Procedure: The procedure was similar to that used in Experiment 1, except

that subjects were asked to write their answers on a sheet of paper and then

press ay_ button on the terminal. For the word-to equation subjects, the task

was to write down an equation--using X as the unknown--to represent the

word problem. For the,word-to-solution subjects, the task was

to write down a number for the answer. All subjects were allowed

to circle their final answer. In addition, subjects were told to press any

button on the keyboard immediately after circling the answer they had written.

Each subject solved 14 practiCe and 42 target problems; these were presented in

sets of 14 each and were counterbalanced as in Experiment 1.

Results and Discussion

The average response time7 for each of the 14 problem states was computed

$7e for each subject in each group, as in Experiment I. Table012 summarizes the
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mean response time for each of the two treatment groups by problem state, and

is comparable to Table 7 for Experiment 1. As in Ex eriment 1, an analysjs of

variance was performed on the data with treatment as a between-subjects factor

and problem state as a within-subject factor. The overall mearrresponse time

for the two treatment groups was identical (23.3 sec) so the overall main

effect for treatment produced an F of zero. As expected there was an overall

main effect due to problem state, reflecting the fact that longer problems

required more time, F(13,520) = 226.1, p < .001.

The main focus of this experiment was on the pattern of performance of the

two groups by problem state. Both groups appear to show a pattern that is

simila'o that displayed by the word group in Experiment 1 -- monotonically

increasing response time as a function of problem length. However, the treat-

ment by problem state interaction is statistically significant, F(13,520) =

14..18, p < .001. The interaction can be described by saying that the word-to-

solution group is faster than the word-to-equation group on simple short

problems but the word-to-equation group is faster than the.word-to-solution

group on long problems. This interaction is consistent with the idea that

translation to equations is not needed and may interfer with problem solving,

especially for problems that do not require much planning.

Insert Table 12 about here

In order to better understand the nature of the treatment by problem s

7)
e

interaction, several muliple regressions were performed. The goal of these

analyses was to determine which models best fit the performances of the two

groups. In Experiment 1, the performance of the word group was best described
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by a simple one-variable or two-variable step model while the equltion group

was best fit by a three-variable planning model. The group means by problem'

state were fit to each of these models,'as in Experiment 1; in addition, another

one-variable model was tested in which the number of calculations served as the

independent variable.

The two-stage model (or tFanslation plus solution theory.) predicts that

the word-to-solution group will demonstrate "a solution process that uses

planning heuristics -- as indicated by a fit to the three-variable planning

regression model -- while the word-to-equation group will demonstrate a linear

step-by-step process -- indicated by a fit. to a one or Iwo-variable step model.

However, the altet,rnative model predicts that the two treatment groups will show

similar patterns of performace -- both being fit by a simple step model.

The results of these analyses are summarized in Table 13. As can be seen,

both groups were best fit by simple one-variable or two-variable step models,

and neither group required the planning model that characterized the equation

group in Experiment 1. Apparently, both groups performed more like the word

group in Experiment 1 than like the equation group. For example, a comparison

of Tables 8 and 13 shows that the word-to-solution group replicates the general

form of performance of the word group in Experiment 1. The word-to-equation

group shows a similar trend except that each additional step requires less time

than for the word-to-solution group. One interpretation that is consistent

with these findings is tha0ooth groups engage in segment-by-segment trans-
' 4_

lation process but the word-to-solution group must alsotperform some operations

on each newly translated segment.

Insert Table 13 about here
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A more detailed inspection of the results shown in Table 13 shows the

it
followings (1) The intercept for the word-to-solution group is higher than for

the word-to-trahslation groups; this isconsistent with the idea that the

RT
write

process takes longer for equations which consist of many symbols than

for writing a single number. (2) The time required for addi-tional calculation

steps is greater for the word-to-solution group; this is consistent with the

idea that this group must actually make a computation as part of the ongoing

translation/compacting process while the other group does not. Further, the

number of moves required increases the solution time for the word-to-solution

group, presumably because each move must actually be executed as part of the

translatiOn/compacting process. However, the number of moves does not increase

the required time for the word-to-equation group and in fact serves to decrease

it slightly; this is consistent with the idea that the number of moves does not

increase the number of segments that must be translated. For example, problem

states 54, 53, 52 and 51 do not differ in terms of the number of variables and

relations that must be translated.

Supplemental Study

The,preyious studies suggest that equation format allows goal stacking for

long problems. However, this conclusion is based only on the'pattern of

response latencies. In order to provide additional data on the problem-solving

process of subjects, an interview study was conducted.

The subjects were eight college students from the

Introductory Psychology Subject Pool at the University Sf

Pittsburgh, with four subjects in the equation group and

four subjects in the word group.



Subjects were randomly assigned and run individually.

Each subject was asked to solve two of the state 54 equations

used in previous experiments. For the equation treatment,

an equation was printed on a chalkbOard by the experimenter.
gitlr

The subject as asked to "think aloud" and tell the experimenter

what to do with the equation. Each action that the subject

called for was carried out by the experimenter writiiW a new

equation on the board under the previous one. When a subject

finished a problem, he/she was asked to go back to the first

step of the problem; in particular, the subject was asked

whether he/she first thought about "getting rid of the

parentheses" or about "getting the Xs on one side". imilar

prodedure was used fC)r the word treatment, except that the

exp6rimenter wrote the problem on the board in word form. The

experimenter transcribed all of the problem statesgenerated

on the chalkboard and all of the subjects' comments concerniiig.

search for conditions; the entire session was also tape recorded.

The main interest in this study is to determine whether

there is any evidence that equation subjects engage in goal stacking.

Two of the four subjects in the equation group gave clear

evidence of goal stacking but none of the word subjects did.

For example, the solution process and.comments of one of the

equation subjects is given in Table 14. As can be seen, this

subject sets "isolate X" as a major goal but this strategy leads

to several failures. Of the two subjects in the equation

group Who did not show signs of goal stacking, one used fractions

and one gave a fast, textbook proper description. However,

even the subject who used fractiips gave a hint of the "isolate

strategy "; "I wanted to get X on one side, but to do that I had
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to do something with that fraction: Separate 8'..from 3X and

remfmbering the basic rules of algebra you can't subtract them

outl,when they are over a fraction. You hdve to separate them."

Thus, this subject also expresses a goal stacking approach in

which moving X caopot be accomplished until it is separated

from the fracti,on. None of the word subjects gave any evidence

of setting "isolate X" as a goal, or'of goal stacking. . r

In addition, several equation subjects expressed difficulty

in using the slash (/) as a division symbol. Hayes (1973) has

found similar evidence for the role of spatial factors in solving

equations. Many subjects expressed difficulty in verbalizing

their thought process, and there is reason to believe that this

task is not condictive to protocol analysis. However, the

results provide support for the reality of goal stacking in

equation subjects.

Insert Table 14 about ,here

-General Conclusion

This study provides new information concerning-the problem solving process

for algebra word problemsr1 First, Experiment 1 compared solving word problems,-*

(which presumably require separate translation and solution phases) with solviRg

corresponding equation problems (which presumably require only the solution

phase). Results indicated that is was.not possible to characterize the be-

havior of the word problem solvers as consisting of a translation phase followed

by a solution phase like that of the equation problem solvers. Rather there

was evidence, consistent with earlier results by Mayer 6 Greeno, (1975) that

the solution process was qualitatively different for the two treatment groups.

The word problem solvers displayed a pattern of monotomically increasing response

increasing response times as a function of steps, as previously noted by Loftus

4-1.4
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& Suppes (1974); the equation problem solvers displayed heurlstic planning

t similar in some respects to those suggested by Bundy (Note 1).
.4 .

Kt Second, Experiment 2 compared the processes involved in translation from
r)

ds to equatiOns and the processes involved in translation from word to

an wer. Solving word problems produced a pattern of behavior that indicated a

'fillOdiTfed version of tranJation alone. There was again, no evidence that the

solution phase involves the planning procedures as produced by the equation

group in Experiment I. Thus these two studies cast serious doubts on the

applicability of the two-stage model of algebraic problem solving to the

current task.

Finally, these results suggest directions for future research on how"

humans solve algebra word problems. The results of these studies, as well as

othei studies comparing word versus equation problem solving (Mayer & Greeno,

1975; Mayer, 1978a, 1978b), indicate that theories of problem solving based on

solution of equations may be different than theories based. on solution of

correspo6ing word problems. Hueristic solution models must take the problem

representation into account. The present results encourage the idea that work

on comprehension of prose might be relevant to work on the solution of word

probl'ems. This is so because the present results show that the comprehension

proceS.s and the solution process are far more intertwined than was previously

assumed. It seems likely that when subjects are given complex word problems

that overload their working memories, they do not rely on the straightforward

translation-plus-solution strategy. Rather, they appear to rely on p,successive

chunking'procedure in which segments are translated and operated upon in a

piece-by-piece way. Several researchers have pointed to the important role of

working memory in prose comprehension (Kintsch & van pijk, 1978; .Britton,
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Holdredge, Curry & Westbrook. 1979). Furthermore, Individual differences in

working memory (Hunt, tunneborg & LevI1s, 1975) might be important in encouraging

the use of different problem solving strategies.
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1. Problem states involving fractions or involving backwards moves from the

given state are not included.

2. The strategy used in this paper is to begin with as simple a model as

possible, and to add more parameters only as needed. Thus, we begin with

(a simplistic assumption that translation time is a constant, but later

modify that assumption below.

3 Based on the results of Experiment 2, the best indicators of

translation difficulty are number of moves and computations required

4. The isolate strategy and the reduce strategy are not the only possible

models but they both are the simpliest and correspond to the reports

of problem solvers. In addition, the assumption that all computations

take an equal amount of time, all computes take an equal mount of time,

and each instance of goal stacking takes an equal amount of time, are

made in the interests of simplicity. If there are gross differences

between individual MOVEs or COMPUTEs or STAGES then the fit of our

models should suffer and we would be encouraged to add even more

parameters. Fortunately, this is not necessary in the present experiments.
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5. One strategy that we did not want our subjects to engage is that of esti-

mating values to plug into X. The instructions emphasized the fact that

subjects should use logical deduction, and a post-experimental question-
,

naire confirmed that subjects followed instructions.

6. Error rates were low, and the distribution of errors was similar for

the two groups. The equation group averaged 4% errors and the word

group averaged 7% errors with errors defined as not giving a correct

response within 60 seconds.

7. Error rates were low, and the distribution of errors was similar for the

two groups. The word-to-solution group averaged 5% errors and the word -

to- equation group averaged 1% errors.

4 cl



Table 1

Fourteen Problem States for (8 + 3X)/2 a 3X - 11

Computations
and Moves
Required

54

53

52

51

33

32

32

31

22

22
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Problem State

(8 + 3X)/2 = 3X - 11

8 + 3X = (3X - 11)2-

8 = 2 (3X - 11) -3X

8 + 2(11) = 2(3X) -3X

8 + 3X = 6X - 22

8 = 6X - 22 - 3X

8 + 22 + 3X = 6X

8 + 22 = 6X - 3X

8 = 3X - 22

30 + 3X = 6X

21 8 + 22 = 3X

21

11

10

30 = 6X - 3X

30 = 3X

30/3 =, X



A

Table 2

Problem Space for (8 3X)/2 ma 3X - 11

M M
54 53

M
52 51 22 21

CC

C/"

33 32 31 11 10

\\\:/"
32' C 22' 14 21'

C
CO

Note. Problem states are represented by two digits In circles; the first digit indicates the

number of required calcuations, the second digit indicates the number of required moves.

Operations are represented by letters next to arrows; M indicates a move, C indicates

a calculation, CC Indicates two calcuations.

A
1
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Table 3

Some Condition-Action Pairs for riving Problem 54

Isolate 'Variable

(I-1) *Xs are both sides of the equation -->

Move X to left side and combine with other X

(1-2) Ns are both sides of the equation -->

Move N to right side and combine with other N

Reduce Expression

(R-1) 2 Xs on one side of the equation -->

Combine them

(R-2) 2 Ns on one side of the equation -->

Combine them

(R-3) Parenthesis on one side of the equation attached to division -->

Move divided term to other side of equation

(R-4) Parenthesis on one side of equation attached to multiplication -->

Carry out the multiplications

1 _
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Table 4

Solution of Problem 54 Using Isolate Strategy

Problem State Events

f: (54) 3X - 11 (8 + 3X)/2

Conditions: 1-1, 1-2, R-3

Goal: I-1

Fail due to PARENS (R-3) 1

Goal: R-3 -

Succeed 1

(53)' 4 2(3X - 11) = (8 + 3X)

Conditions: 1-1, 1-2, R-4

Goal: 1-1

,r

43

Calculation Move State

Fail due to PARENS (R-4) 1

-Goal: R-4

Succeed 2

(33) 6X -.22 = 8 + 3X

Conklitions: 1-1, 1-2

Goal: 1-1

Sutceed 1 1

(22) 3X - 22 = 8

Conditions: 1-2

GcAl: 1-2

Succeed 1 1

(11) 3X = 30'

Conditions: 1-2

Goal: 1-2

f' Succeed 1

(00) A = 10.

From Problem State 54 5

From Problem State 53 5

From Problem State 33 3

From Problem State 22 2

From Problem State 10 1

4 2

3 1

3 0

2 0

1 0



Problem State

(54)

(53)

(33)

(22)

(oo)
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Table 5

.SolutjoreAf Problem 54 Using Reduce Strategy

of

44

Event Calculation Move Stage

3X - 11 = + 3X)/2

Conditions: 1-1, 1-2, R-3

Goal: R-3

Succeed 1

2(3X - 11) = 8 + 3X

Conditions: 1-1, 1-2, R-4

Goal: R-4

Succeed 2

6X - 22 = 8 + 3X

Conditions: 1-1, 1-2

Goal: 1-1

Succeed 1 1

3X - 22.=. 8

Conditions: 1-2

Goal: 1-2

Succeed 1 1

3X = 30

Conditions: 1-2

Goal: 1-2

Succeed 1 1

X = 10 1 1

From Problem State 54 5 4 0

Froth Problem State 53 5 3 0

Fro Problem State 33 3 3 0

(Fr m Problem State 22. 2 2 0

From Problem State 11 1 1 0
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Table 6

Number of Moves, Computations, and Subgoal Stockings for 14

Problem States by Two Solution Strategies

Problme State Isolate Strategy Reduce Strategy

COMPUTEs MOVEs STATES COMPUTEs MOVEs STATES

54 5 4 2 5 4 0

53 5 3 1 5 3 0

52 5 2 1 5 2 0

51 5 1 1 5 1 0

33 3 3 0 3 3 0

t

32 3 2 0 3 2 0

4i q
32 3 2 0 3 2 0

o 31 3 1 0 3 1 0

22 2 2 0 2 2 0

22' 2 2 0 2 2 0

21 2 - I 0 2 1 0

21' 2 1 0 2 1 0

11 1 1 0 1 1 0

10 1 0 0 1 0 0



Table 7

Mean Response ie by Problem State for Two Treatment Groups --Experiment 1

Treatment Problem State

1 1 1

10 11 21 21 22 22 31 32 32 33 51 52 53 54

Equation Group 2.7 2.1 3.1 3.7 4.6 5.0 5.0 5.8 6.1 7.9 12.6 14.7 15.2 25.0

Word Group 3.4 4.0 6.2 10.7 11.0 13.8 ' 14.6 18.1 18.4 20.7 27.4 28.8 31.3 34.3
I

Difference .7 1.9 3.1 7.0 6.4 8.8 9.6 12.3 12.3 12.8 14.8 14.1 16.1 9.3

Note. Main effect of treatment, p < .001. Main effect of problem state, p < .001.

Introduction of treatment and problem state, p < .001.

r -
rn



Table 8

rValue of f2 and Variable Weighings for Three Multiple' Regressions

Experiment 1

R ATMENT

EQUATION
GROUP

WORD
GROUP

h

11

r

ONE VARIABLE

R.
2

= :83 .84

STEP = 2.63 sec COMP ATION = 3.02 sec
Intercept = - 4.40 sec MOVE = 2.04 sec

Intercept = -4:59 sec

ABLES

R2= .95
STEP = 4.37 sec
Intercept = 3.58 sec

R
2

.98

COMPUTATION = 5.63 sec
MOVE = 2.47 sec
Intercept = 3.94 sec

Fit to Two Treatment Groups.

THREE VARIABLES

R
2

= .99
COMPUTATION = .69 sec
MOVE = 1.42 sec
STAGE = 7.25 sec
Intercept = .90 sec

R
2
= .98

COMPUTATION = 5.42 sec
MOVE = 2.43 sec
STAGE = .61 sec
Intercept = -3.39 sec

L" r)
lJ ki



Table 9

Individuals Ss

Values of R' for 42 Subjects on Three Models -- Expe iment 1

A

Regression T Regression 2 Regression 3
(One Variable) (Two Variable) (Three Variable

Word Groups Equation Group

Regression 1 Regressjon 2 Regression 3

(One Variable) (Two Variable) (Three Variable)
p.

1 .881 .930* 934 .843 (.870 .913*

2' .926 .969* .970 .6135 '.685 .825*

3 .882 .968 *" .972 .707 .785 .869*

4 .934 965* .967 .753 .758 .888*

5 .902 .902 .982 .735 .747 .848*

6 .699 .905* .911 :
.705 .927 .975*

4
7 .901' .939* .978* .763 .765 .878*

8 .933 .962* .964 .798 .798 .884*

9 .648 .694 .790* .863 .910 .951*

10 .935 .946* .947 ,.710 .849 .908*

11 .895 A.934* .937 715 .715 .850*

12 .922 .954* .954 .797 .825 .917*

13 .890* '.892 .893 .779 .734 .869*

14 .852 .854 .963* .839 .850 .910*

15 .862 .892 .921* .818* .821 .828*

1,6 .933 945* .955 .728 .736 .861*

17 .870 .952 .971* .772 .798 .911*

18 .911 .968* .966 .803 .832 .929*

19 .881 .966* .957 .831 .870 .910* tr.

20 .945* .948 .949 .693 .698 794*

21 .935 .948;,\ .945 .861 .863 .945*
m,
m
to

)i
ote. - AsterM (*) indicates best fit using strict criterion.

.

0

r 4
co

cr
-1
cu

0

tit (D
3



Table 10

Number of Subjects Who Were Best Fit By Each of Three Regressions

in Two Treatment Groups -- Experiment 1

Treatment

Strict Criteria

Regression 1 Regression 2 Regression 3

Equation Group 1 0 20

Word Group\ 2 13 6

Linient Criteria
Equation Group 1 0 20

Word Group 8 9 4

2

Note. - For Strict criteria, x u. 20.88, df 2, p < .001.
*
2

For linicnt critefia,,x = 2, p < .001.

CPI
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Table 11

Mean Response Time by Problem State for Two Treatment Groups

Treatment

on First and Last Trials Experiment 1

Problem State

10 11 21 21
1

22 22
1

31 32 32
1

33 51 52 53 54

First Trial
Equatiori Group 3.2 2.6 3.6 4.8 5.6 5.5 7.9 7.2 7.7 10.9 15.1 19.9 18.6 35.6

Word Group 5.0 5.4 9.6 13.7 12.5 19.2 20.9 22.8 24.0 28.1 35.3 39.6 36.1 40.9

Last Trial
Equation Group 2.0 1.9 2.5 2.8 3.5 4.7 3.7 4.4 4.6 5.5 11.6 13.2 12.8 21.2

Story Group 2.3 2.9 4.7 8.9 10.0 9.1 11.8 14.2 15.7 17.6 22.8 25.3 26.2'25.9

Note. - Main effect for treatment, p < .001; main effect ior trial, p < .001;
main effect for problem state, p < .001; interaction between treatment
and prOblem state, p <..001; interaction between treatment, problem
state and trial, n.s.



Table 12

Mean Response Time By Problem State for Two Treatment Groups - Experiment 2

Treatment

10 11 21

Word-to-Solution 6.4 9.1 12.8

Word-to-Equation 12.9 12.4 16.2

PI

Problem State

.22 22
1

31 32 32
1

15.3 14.3 17.1 23.0 21.4 24.1

18.5 15.5 17.1 24.5' 24.0 24.8

Note. - Main effect for treatment, p.= n.s.; main effect for problem state, p
interaction between treatment and problem state, p < .001.

33 51 52 53 54 .

24.4 35.9 41.1 38.6 42.8

22.1 40.5 35.9 30.5 31.4

< .001;

0
00
CD



!Values

Table 13 ,

of R
2

and Variable Weighings for Four Multiple Regressions fit to Two Treatment

r.

t

Tre4t4p/t,!

One Variable
(Step),

Experiment 2

One Variable
(Calf)

Two Variables

Wordto -1 Solution R
2

ER .95

Step RE 5.1 sec

R
2

g .97
Computation g 8.1 sec

R
2

g .98
Computation P 7.5 sec

Word -to- Equation

Intercept a -.9 sec

R
2
g .66

Step g 3.1 sec
Intercept g 8.4 sec

4

Intercept P -.9 sec Move ER 1.4 sec
Intercept P -1.6 sec

R
2

g .92 , R
2

P .97
Computation .g 5.7 sec Computation P sec

Intercept g 6.3 sec Move g -2.2 sec
Intercept g 7.4 sec

Groups

Three Variables

R
2
g .98 .

Computation P 6.9 sec
Move P 12 sec
State g 1.8 sec
Intercept g -.3 sec

R
2
g .97

Computation
Move P -2.2
Stage = -.3
Intercept g

6.7 sec
sec
sec

7.2 sec

00

a
0

V1



0- Equation

(8 + 3X)/2 u 3X - 11,

(8 + 3X)/2 H 3X

8 + 3X = 2(3X - 11)

+ . 6X - 22

-30 u -3X

X = 10

0 4

1

Table 14

Transcription of Subject 3 Nor Problem 51

Subject's Comments

The first thing hwaht to so Is get all variables on one side. So,

I was doing a lot of stuff. (Pause) First, I would add 11 to both
sides.

Then I would, lets see. Oh, first I would have to divide, I mean
multiply both sides by 2. (Points to first equation.) I usually
write it with the fraction different. OK, so I mean here (points to
first equation) multiply by 2.

Oh, I would multiply the whole thing at one time.

In one step I would subtract 6X and add 8. Subtract 8.

Then X = 10.

r5
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