
DOCUMENT RESUME 

ED 204 374 TM 810 362 

AUTHOR Stenner, A. Jackson: Rohlf, Richard J. 
TITLE Construct Definition Methodology and Generalizability 

Theory Applied to Career Education Measurement. 
PUB DATE [79] 
NOTE 24p. 

EDRS PRICE MF01 /PC01 Plus Postage. 
DESCRIPTORS *Career Education: Definitions: Grade 9; *Measurement 

Techniques: Secondary Education: *Test Reliability: 
Vocational Maturity 

IDENTIFIERS Career Maturity Inventory (Crites); *Constructs: 
*Generalizability Theory 

ABSTRACT 
The merits of generalizability theory in the 

formulation of construct definitions and in the determinatión of 
reliability estimates are discussed. The broadened conceptualization 
of reliability brought about by Cronbach's generalizability theory is 

'reviewed. Career Maturity Inventory data from a sample of 60 ninth 
arade students is used to demonstrate the power of the technique to 
estimate reliability coefficients for a number of differing 
measurement procedures. It is concluded that researchers frequently 
use reliability coefficients that are inflated estimates of the 
precision with which their constructs are being measured. 
(Author/GR) 



Construct Definition Methodology and Generalizability Theory 
. Applied to Career Education Measurement 

A. Jackson Stenner and Richard J. Rohlf 

Introduction 

The field of career education measurement is in disarray. Evidence 

mounts that today's career education instruments are verbal ability measures 

in disguise (See Westbrook's chapter in this volume). A plethora of trait 

names such as career maturity, career development, career planning, career 

awareness, and career decision making have, in the last decade, appeared as 

labels to scales comprised of multiple choice items. Many of these scales 

appear to be measuring similar underlying traits and certainly the labels 

have a similar sound or "jingle" to them. Other scale names are attached 

to clusters Cif _items that appear to measure different traits and at first 

glance appear deservi.g of their unique trait names, e.g., occupational infor-

mation, resources for exploration, work conditions, personal _economics. The 

items of these scales look different and the labels correspondingly are dis-

similar or have a different "jangle" to them. 

As• instrument developers and users we commit the "jingle" fallacy (Green, 1974) 

when we give the same or nearly the same name to clearly distinct underlying 

traits. Similarly, we commit the "jangle" fallacy when different labels are 

assigned to essentially the same underlying trait. When a trait label such 

as Career Maturity is assigned to a set of items which in fact measures verbal 

ability, we have committed the jangle fallacy. Whenever we•find evidence 

that two similarly named scales are only moderately correlated, there exists 

the possibility of the jingle fallacy. 



Whether or not a given scale is a measure of verbal ability as opposed 

to career maturity is, of course, a question of validity, i.e., is the scale 

actually a measure of "what it is intended to measure"---or is it? This 

chapter asserts that the current state of affairs in career education measure-

ment exists because of the lack of carefully defined and operationalized 

career education constructs and will suggest a theory and methodology that 

researchers and practitioners will, hopefully, find useful in their continuing 

efforts to develop and refine measurement in the field of career education. 

Construct Definition 

Constructs are the means by which science orders observations. We take 

it on faith that the universe of our observations can be ordered and subse- 

quently understood with a comparatively small number of constructs or inferred 

organizing influences. Observations are aggregated and constructs created 

through`the mental processes of abstraction and induction. When we observe a 

group of children and describe some of the children as more aggressive than 

others, we employ a construct. We create the construct "aggression" by ob-

serving that certain behaviors tend to vary together and this pattern of covar-

iation among observations we come to designate as aggression. In describing 

the differences in behavior among children, we might conclude that one child 

is much more aggressive than other children. We arrive at this conclusion 

informally by summing up the frequency of observed aggressive acts and we use 

the total score as an index of each child's level of aggression.. These total 

scores are then compared and we arrive at decisions about each child. 

This process of weighting individual observations, aggregating the ob-

servations into a total score and then checking the quality of the construct 

score by determining how well the total score can predict the original ob-

servations happens so fast and so frequently and works so well in our everyday 



lives, that there is seldom need to reflect critically on the process itself. 

The search for pattern or regularity among observations is, it seems, just as 

central to our daily lives as it is to scientific activity. Perhaps because 

the process of observation, abstraction and construct formation is so funda-

mental to daily functioning, it is taken for granted in behavioral science 

research. Often observations in the form of questionnaire items and test 

questions are aggregated without adequately examining the assumptions and 

implications inherent in the summation and averaging procedures. The simple 

fact that observations are combined and a total score computed means that we 

entertain a hypothesis that the observations are in some way related to one 

another. If the observations are uncorrelated, then combining them into a 

total score is a meaningless undertaking, since the total or construct score 

will carry no information about the original observations and consequently will 

be of no value in explaining anything else. If, however, the observations are 

correlated, then the construct score has meaning. Precisely what meaning 

depends upon the perceived nature of the organizing influences responsible for 

the correlations among observations. 

A construct then is a theory which expresses how its inventor "construes" 

a set of interrelated observations. Construct labels (e.g., career maturity, 

occupational information, career decision making) serve as shorthand expressions 

for hypotheses regarding the nature of the predominant organizing influences 

responsible for correlations among observations. 

What constitutes an observation? In career education measurement the 

most common "observation" would be a person's response to a test or rating 

item. Such observations provide information about a person's placement on a 

scale and serves as an indicant of the extent to which the subject possesses the 

attribute or trait being measured. A set of such indicants (items) comprises 



an instrument. The underlying structure or organizing influence operating 

on these observations is often determined by some combination of statistical 

structural analysis, e.g., factor analysis, and a logical analysis of the 

item content. Corroboration of the underlying structure is then frequently 

sought by confirmation via hypothesis testing and correlations with other in-

struments measuring conceptually similar and dissimilar constructs. 

All observation whether made in service of the behavioral or physical 

sciences, is prone to error. Error is given more attention in behavioral 

sciences measurement probably because it exists in such abundance. Because 

of its abundance the process of construct definition must incorporate a 

theory of error. Various approaches to estimating the reliability of a 

measurement procedure rest on different assumptions about error and how it 

affects the observations we make. 

Classical reliability theory is based on Spearman's model of an observed 

score (e.g ., observation). Basically, an observed score is a function of two 

components, a true score and an error score. Within this framework, models of 

reliability have been formulated to assess the relative importance of each 

component. Campbell(1976) gives an excellent review of the historical 

development of reliability theory. All traditional measures of reliability 

(alpha, equivalent forms, retest) describe the agreement among repeated 

measurements of the same individauls. Although these reliability measures 

differ in their definition of error, they all assume a single undifferentiated 

source of error. Coefficient alpha attributes error to inconsistency in the 

extent to which individual items measure an attribute. Measures 

of stability such as test-retest or equivalent forms reliability coefficients, 

attribute error to changes in testing conditions; mood of examinee, etc. 



In recent times authors such as Tryon (1957); Cronbach, et al. (1963), 

Cronbach, Glesar, Nanda, and Rajaratnam (1972); Nunally (1967); and Lord 

and Novick (1968) have departed from the classic concept of true vs. error 

scores and have instead incorporated what has become to be known as the domain 

sampling theory of reliability. The notion of a true score was replaced by 

a "domain" or "universe" score which is an individual's score if all 

observations in a domain or universe could be averaged. Measurement error 

in this framework is the extent to which a sample value differs from the 

population value. 

This change in focus from a "true score" to "universe score" resulted in 

increased importance being placed on defining the "universe" from which a 

particular sample of items has been drawn and to which we want to generalize. 

Initially the concept of universe was restricted to thinking in terms of a 

universe of content, e.g., sampling of reading comprehension items from a 

universe of possible reading comprehension items. However, the work of 

Cronbach, et al. has broadened this original conceptualization. His work, 

referred to as generalizability theory, speaks to sampling of "conditions of 

measurement" which include additional sources of variation to that of just 

variation among samples of items, or components of content. This broadened 

conceptualization can be viewed as a change from a focus on the reliability 

of an instrument to a focus on the reliability of a measurement procedure. 

For example, suppose the career maturity of a group of students is rated 

on a number of items by a number of different teachers on several different 

occasions. The traditional view of a content domain would focus on the 

items as a sample from the universe of all such similar items. However, 

Cronbach's generaliz ability theory forces us to acknowledge that there are 

probably systematic differences in item scores across occasions which do not 

reflect true change in level of career maturity; and, to recognize that. there 



are systematic differences among students that are reflected in observed 

scores which are not necesarily due to difference in career maturity, e.g., 

socioeconomic status. Thus, from this perspective we are not only concerned 

with a universe of possible career maturity items, but, in addition, we need 

to think in terms of a universe of possible teachers and a universe of possible 

occasions, and a universe of possible respondents. Actually Cronbach does 

Aot talk in terms of different universes; but rather, each of the above would 

be considered a "facet" in the universe of measurement conditions. The more 

facets one chooses to include in defining a construct, the broader the universe 

of generalization. Cronbach also refers to facets as either "random" or 

"fixed." A fixed facet would be one that would not vary, i.e., would be a 

constant in the universe. For example, if raters were considered to be a 

fixed facet in a measurement procedure, the investigator would be planning to 

always use the same rater(s) whenever a measurement was taken. Given this 

condition, there would be no systematic differences in observed scores due 

to idiosyncratic differences in rating behavior among raters. However, if 

raters were considered to be a "random" facet, the investigator would be 

broadening the construct definition of career maturity such.that a person's 

"universe score" would be an average score across the universe of career 

maturity items judged across all possible raters. In the "fixed" case, the 

"universe score" would be an average score across the universe of items as 

judged by a particular rater or set of raters. 

As discussed above, the process of construct definition begins with the 

'recognition that observed scores ¡observations) are determined by some set 

of underlying organizing influences. In addition to "wanted" influences 

causing variation among scores, we must also recognize that there are "un-

wanted" (error) influences exercising potentially biasing or misleading effects 



on observed scores. Generalizability theory enables us to specify these 

sources of variance in observed scores in terms of characteristics of the 

object of measurement, characteristics of the indicants (items); character-

istics of the context of measurement, and the interactions both within and 

across those categories. 

In addition to a conceptual model, generalizability theory, using ánalysis 

of variance procedures, provides the techniques by which we can speçify 

the sources of variance (both wanted and unwanted) in observed scores and 

estimate the magnitude of their effects. The procedure also yields a.general-

 izability coefficient(s) which can be interpreted in a manner similar to tradi-

tional reliability coefficients, e.g., in estimating the standard error of 

measurement. However, before these analysis of variance procedures can be 

applied, it is necessary to design a study in which sources of variance are 

systematically varied. 

Generalizability theory makes a distinçtion between G and D studies.. A 

G study is a study in which data is collected in order to examine a wide 

range of sources of variance affecting a measurement procedure whereas a D 

study (for Decision) selects either the G study design or some modification 

of that design for use in estimating the generalizability coefficient that 

can be expected in some subsequent application of the measuremennt procedure. 

A D study does not involve the gathering of data but rather uses the variance 

estimates from the sources designed into the G study to estimate what the 

generalizability coefficient would be under alternative construct definitions 

and sampling secifications. For example, suppose that the authors of a career 

maturity scale employ a p:c x i x occ (persons nested within class crossed 

with items crossed with occasion) G study design. That is, the career maturity 

scale is administered to several classes on at least two occasions. Under this 



Scenario #'s 3, 4 and 5 all employ the broadest permissible construct 

definition (items and moments random) but the sampling frequencies for items 

and/or moments differ. In Scenario #3 we estimate what the generalizability 

coefficient- would be if 50 items were administered on one occasion (i.e., 

moment). Note that the generalizability coefficient under this construct is 

coincidentally the same as that observed under Scenario #1. As a rule when 

the cónstruct definition is broadened and the sampling specifications are 

unchanged, the generalizability coefficient goes down. Similarly when the 

construct definition is narrowed and consequently the universe of generaliza-

tion narrowed, the generalizability coefficient is increased. The 

reasoning for this outcome is straightforward; if the universe under examination 

is quite broàd, then a larger number of observations must be sampled to attain 

a specified level of precision, whereas a narrower universe permits a smaller 

number of observations 'to attain the same precision. Under Scenario #4 the 

item sample remains at Ni=50 but the number of testing sessions is increased, 

Nm=2, resulting in an improvement in the generalizability coefficient (E p2=.81). 

Finally, under Scenario #5 sampling frequencies are increased for both items 

(Ni=100) and moments (Nm=3) resulting in a substantial increase in precision 

of measúrement. 

Classical reliability theory, as practiced in the field of career educa-

tion measurement, is unnecessarily restrictive. Disciples of classical theory 

compute d number of equivalence coefficients by correlating student performance 

on split halves of an instrument or by computing coefficient alpha (KR-20) 

for an instrument administered on a single occasion. Similarly, stability or 

retest coefficients are computed by correlating student performance on one 

occasion with performance, say,, two weeks later. Finally, interrater re-

liability coefficients are computed by correlating the ratings of two or more 

raters of the same behavior. Éach of these forms of reliability coefficient 



reflect a single undifferentiated source of error and, more importantly, 

derive from different construct definitions. Coefficient alpha accurately 

reflects an instrument's reliability under the highly restricted construct 

definition which treats items as the only random facet and, consequently, the 

p x i interaction (confounded with the residual) as the only source of error. 

The stability coefficient properly reflects an instrument's reliability under 

a construct definition that treats occasions as the only random source of 

variance and the persons x occasion interaction as the only source of error. 

It is important to recognize that traditional forms of reliability permit 

errorerror variance to be confounded with true score variance because they do not 

differentiate among the many possible sources of error. For example, the test-

retest reliability coefficient will not "break out" a p x i interaction and 

thus that variance will be a "hidden" component of the true score variance. 

Likewise, the p x occ interaction will be a hidden component of the true score 

variance when calculating coefficient alpha. This can result in an artificially 

inf lated estimate of true score variance which, in turn, results in an inflated 

reiliability coefficient.' The attractiveness of generalizability theory is 

that it permits simultaneous consideration of items, occasions and other facets 

as random sources of error. 

Generalizability theory provides a framework that forces us to better 

conceptualize the constructs we use. Unfortunately many investigators do pot 

invest sufficient time in construct definition activities. Time and again 

researchers move ahead to answer substantive research questions without care-

fully defining the constructs that figure in their theoriès or program evalua-

tions. The most common mistake found in the behavior sciences is that investi-

  gátors will statea conceptually broad construct definition, but will use a 

reliability estimate that is based on a much narrower definition, thus yielding 

a coefficient which exaggerates the precision with which the construct can be 



measured. Elsewhere we have argued that career education will go the way of 

many previous fads unless,'as a field, it can stake out a set of well-defined 

constructs and related instrumentation (Stenner, Strang, Baker, 1978). So far, 

efforts in this regard have been disappointing. 

Some Special Applications 

Many seeminglÿ diverse issues in measurement can be accommodated within 

generalizábility theory:. Cronbach (1972) states: 

What appears today•to be most important in G Theory 
is not what the book gave greater space to. In 1972 
G Theory appeared as an elaborate technical apparatus. 
Today the machinery'looms less large than the questions 
the theory enables us to pose. G Theory has a protean 
quality. The procedures and even the issues take a 
new form in every contest. G Theory enables you to ask 
your questions better; what is.most sighificant for you 
cannot be supplied from the outside (p.199). 

In the discussion to follow we attempt to illustrate the range of appli-

cations for. Which generalizability theory, coupled with construct definition 

methodology, can be useful. 

Toward a Theory of the Indicant 

'A historical convention for which we can find no rational explanation has 

contributed to avoidance of a potentially fruitful type of construct valida-

tion study. The convention is to report person scores as rïumber of items 

(or indicants) correct and item scores as proportion of respondents answering 

an item correctly. Thus person scores and item scores are expressed in different 

metrics, leading some investigators to assume that there is some fundamental 

difference in the way people and items can be analyzed. For example, construct 

validity studies often emphasize relationships between theoretically'relevant 

valirbles and the construct under study and use the person as the unit of 

analysis. On the other hand, little work has been done in explaining variance 



in item scores. Some authors, including ourselves, contend that many career 

development scales containing items of the multiple choice variety in fact 

measure verbal ability and not career. maturity (see Westbrook's chapter in 

this volume). One approach to investigating this contention which, on the 

face, seems More direct than focusing on person score correlations, would 

involve predicting item scores using a set of item readability and syntax 

measures as well as theoretically derived ratings of the extent of career 

maturity called for by each item. If the readability and syntax measures 

explain a large proportion of the variance in item scores and the theory-

based ratings explain little of the variance, then it is likely that the so-

called career development items are really verbal reasoning items in disguise. 

If a construct is really well defined, then it should be possible to explain 

the behavior of indicants of that construct, i.e., explain variance in item 

or indicant scores. Unfortunately this is a test that few constructs in the 

behavioral sciences, let alone career education, have passed. 

Generalizability of Ratings 

Many outcomes in career education do not readily lend themselves to paper-

pencil testing. For example, outcomes such as employability skills, personal 

work-habits and job interview behavior are better measured by trained observers 

in either real or simulated settings. Generalizability theory provides a 

framework for estimating the dependability of these ratings. 

Suppose a career education program sets about to improve the job interview 

behavior of a group of students. Five employers from the local community are 

called, upon to interview each student and complete a rating scale. One highly 

informative design for examining the generalizability of these ratings would 

be p x i x r (persons crossed with items crossed with raters). Thus each student 



would be, ratèd by each employer qn all, items. Under this design the broadest 

permissible construct definition generalizes over items and raters. 

Separate estimates .of alpha or interrater agreement would overestimate 

the precision with which the construct as ;defined can be measured. The

gereraliiability coefficient more accurately, reflects our measurement pre-

cision and providés information on how the precision can be increased to an 

acceptable level. One excellent illustration of this typé of analysis is pro-

vided by Gilmore, Kane and flaccarato (1978). Note that this design does not 

include the°"occasion" facet. If a.-sizeable p x Qcc interaction exits,'•our• 

 estimate of measurement precition may be inflated if we have defined our con-

struct to be stable over time. 

Competency Testing

Some career education programs have objectives which state that all 

students will attain-a particular mastery level in reading and mathematics. 

In assessing this objective, instrumentation is needed that has a special kind. 

of reliability. Discussion above focused on developing instruemnts that would 

maximally differentiate among Objects (e.g., students). . In competency or 

Mastery testing, the objective is, to. differentiate among two groups of students, 

those that have attained the minimal performance level and those that have not. 

Generalizebility theory provides a framework for studying the dependability 

of mastery or competency decisions. The most thorough treatment of this 

application of generalizability theory is provided by Brennan and Kane (1977), 

Generaiizability of Class Means 

Some career education evaluations employ class or school rather than 

student as the unit of analysis (Stenner , Strang, Baker, 1978); Brennan (1915); 

Kane, Gilmore' and Crooks (1976) . Haney (1974) and Kane & Brennan (1977) have 

suggested that generalizability theory-provides a conceptually and practically 



appealing approach to estimating the reliability of class means. The 

simplest design from which we can estimate the generalizability of-class 

means is p:c x i (persons nested within class crossed with items). Note that 

this is the familiar persons x items design (from which coefficient alpha -

is computed) with the addition that knowiedge is available on class membership. 

Under this design we can estimate the reliability of persons nested within 

classes and class.means. In a more complex design such as p:c:s x i, the 

object of measurement might be persons (p), classes (c) or schools (s). In 

general, this type of split plot design can prove particularly useful in an 

evaluation in which multiple units of analysis (e.g., students, classes, 

schools).are employed (Hayman, Rayder, Stenner and Madey, 1979). 'As a rule, 

generalizability coefficients. should be computed for each unit of analysis 

employed in a research or evaluation study. 

In passing we should note that applications of generalizability theory 

in which class or school is the object of measurement,have focused exclusivelyY 

on the mean or first moment of the distribution. Lohnes (1972), in an ex-

cellent but largely ignored paper, demonstarted that using the variance of a 

class or school distribution as an independent variable might also be useful 

in predicting outcomes. In such studies interest is centered on differentiating 

classrooms not in terms of their means, but rather ip terms of their variances 

while generalizing over occasions or some other random facet. 

Issues Of Test Bias 

Much attention and controversy has surrounded the issues of race and sex 

bias in testing. Although there are many types of bias, perhaps the most 

pernicious is that which_gives members of particular racial, ethnic or sex 

groups unfair advantage in responding to certain kinds of items. It is somewhat



ironical that career eudcation has as one of its goals eradication of sex

role stereotyping (Hoyt, 1975 ) and yet we were unable to find any studies 

of sex bias in career education measurement. 

Some forms of item bias can be effectively studied within the framework 

of generalizability theory. For example, a simple p: s x t (persons nested 

within sex group crossed with items) will provide information on possible 

sex bias. In this design the component of variance related to sex bia s is the 

s x i (sex by item) interaction. If this component of variance is large then 

items have a different meaning (i.e., measure something different) for males 

and, females. Examination of the items contributing most heavily to the inter-

action can sometimes lead to explanations for the source of the bias (e.g., 

terminology unfamiliar to males or females). Students can also be nested 

' within race groups to evaluate racial bias or nested within reading level 

groups to evaluate the extent,to which item meaning is conditional on student 

.reading level. 

Although the literature on bias has focused almost-exclusively on racial, 

ethnic find sex characteristics, the notion of bias is a generic concept. 

Any characteristic of the object of•measurement which interacts with a random 

facet represents bias. For social and .other reasons, itém acores which 'are, 

conditional on race and sex (i.e., interact with race and sex) have received 

the bulk of attention. from theoretical as.well aspractical -perspectives, 

therg are othet' types Of bias that pose' equally troublesome., problems. ,For 

example, Items that take on radical.ly.different meanings depending upon the 

examinee's reading lever. are just as invalid as indicators of career maturity : 

 as  items thát- are conditional on the sex or. race of the examinee.. 



design the broadest permissible construct definition generalizes over items 

and occasions with either person or class as the object of meaisement. 

Suppose that an investigator has limited time available for student testiñg 

and wanted to know what the effect would be of reducing by 50% the number 

of items on the scale. This scenario could be set up and a generalizability 

coefficient estimated given specification of the object of measurement and

construct definition (which facets are considered fixed and which random). 

This application of generalizability theory is analogous to power analysis

(Cohen, 1977)  in which different sampling scenarios are evaluated to determine 

the probabillty of detecting an effect. In D studies different measurement 

scenarios (alternative construct de finitions coupled with alternative sampling 

frequencies) are evaluated to determine the precision with which objects of 

measurement can be differentiated. 

An Illustration of Generalizability Theory. 

Before proceeding with an example, it may prove useful to reflect on the 

   meaning of a generalizability coefficient as well as its general form. A 

generalizability coefficient is simply the ratio of true score variance (or 

un iverse score variance) to the sum of true score variance and error variance:

	E z,, 	 True score variance T
Ep True score variance + error variance +T 

The components. that enter true score variance and error variance change 

 as the construct definition changes, but the basic expression for a general-

liability coefficient remains the same. Following are several descriptive 

comments about thé generalizability coeffitient that`may help in gaining an 

intuitive grasp of what this ratio means: 



One task of measurement is to differentiate among objects 

(e.g., classrooms or children) on some scale while simultaneously 

generalizing over selected facets. The higher the generalizability 

coefficient, the better the differentiation or separation among 

objects. 

Children or classrooms differ on a scale for many reasons (we usually 

refer to these reasons as sources). Some of these reasons are

important to us and represent what we want to measure; and others 

are not of interest and represent noise. Differences among students 

that arise due to reasons we are interested in, we call trae score 

differences whereas differences due to reasons we are not interested 

in, we call error differences. A generalizability coefficient is 

simply the ratio of average squared differences between objects 

that arise from wanted sources divided by the average squared 

differences between objects arising from wanted and unwanted sources. 

Observed score variance is the sum'of true score variance and error 

variance. Thus the"generalizability coefficient represents the,, 

proportion of observed score variance that is due to "wanted" sources' 

of variance. If the generalizability'coefficient is high, then a 

high proportion of the variance in observed scores is due to wanted 

sources of variation, whereas if the coefficient is low,. It means that

only a small proportion of differences among objects is due to wantéd 

sources of variation. 



We can Conceive of the generalizability coefficient as a heuristic 

that describes the confidence with which we can rejectthe null 

hypothesis,that all objects' true scores are equal. Statisticians 

would use an F ratio for this purpose and, in fact, for the simple 

persons x items (p x i) design: 

F-1E 1 or F = ~ P 1-EP1 

The generalizability coefficient is the squared correlation between 

observed scores and true scores. The true score is the average score 

we would obtain if all observations across the random facets of the • 

universe of generalization could be exhaustively sampled. Errors of 

measurement (unwanted reasons that objects have different scores) • 

contribute to ordering.people differently on observed scores (which are

samples) than they would be ordered if their scores could be averaged 

over all facets of interest (e.g., items or days during a two-week 

period). The generalizability coefficient provides an indication of how 

differently people are-likely to be ordered if exhaustive sampling of

all relevant observations was possible. 

In summary, the generallzability'coefficient provides an estimate of the' 

precision of measurement given a construct çefinition. It is meaningless to.

refer to a reliability or generalizability coefficient without reference to 

the governing construct, definition. What construct definition is mast appro-

priate in a given situation' is a substantive question that often .cannot be 

..-answered by measurement specialists. •What definition to employ is a complex

question which takes us back to what wé want our construct to mean. Ascribing 

meaning to constructs and increasing our dnderstanding of variance arising 

from applications of our measurement  procedures is what the process of 

construct definition is all about. 



Table 1 provides estimated G study variance components for a p x i x m 

design, and Table 2 displays different D study designs or measurement scenarios. 

The data used in this illustration was graciously provided by Dr. Bert Westbrook 

and represents a subsample of the ninth grade data used in his chapter of this 

volume. The sample consists of 60 students responding to the 50 attitude 

items of the Career Maturity Inventory (CMI). 

Examination of Table 1 reveals that a large proportion (60%) of the variance 

on this instrument is.unexplained by facets of the measurement procedures. The 

second and third largest components of variance are the item (i) and person x 

item (p x i) interaction, respectively. The person (p) component explains four 

percent of the universe variance. The moment (m), person x moment (p x m) 

interaction and item by moment (i x m) interaction explain very small pro-

portions of the variance. 

A major advantage of generalizability theory is that the theory specifies 

which sources df variance are to be ignored, which contribute to true score (z) 

and which contribute to error (d) in estimating the generalizability of a 

measurement procedure under a particular construct definition. Whether stated 

or not, there are two essential aspects of a measurement procedure that must 

be made explicit before any reliability or generalizability coefficients can 

be interpreted. These are (1) the construct definition,: i.e., which facets are 

to be considéred random and which fixed, and (2) the sampling frequencies-

for each facet included in the. construct definition. 

 Table 2 presents construct definitions and, sampling specifications for 

five  scenarios.  Scenario #1 displays the generalizability coefficient under 

the classical reliability formulation in which moments (i.e., short-term 

occasions) are fixed (Nm=1) and items are random. The generalizability co-



Table 1 

Illustrative Example of Generalizability 
Analyses for the Attitude Subscale of the CMI 

Estimated Pro-
portion of 

Estimated universe variance 
Variance attributable to 

Source Notation SS df MS Component to each source 

Person P 68.87 59 1.167 .00889 04 

Item i ?70.41 49 5.519 .04328 18 

Moment m 1.20 1 1.204 .00030 00 

Person x Item pxi 661.62 2891 .229 .04111 17 

Person x Moment pxm 11.55 , 59 .196 .00098 00 

Item x Moment ixm 11.87 49 .242 .00159 01 

Person x Item pxixme 423.88 2891 .147 .14662 60 
x Moment 

Aº 
efficient (E p =.72) under this scenario accurately describes the precision of 

measurement only if our interest centers an how well students can be differ- . 

enttated on,a single occasion. This coefficient corresponds to the traditional 

coefficient•al obi. (or KR-'O). 

In scenario #2 moments are random and items are fixed. This construct 

definition corresponds to 'the .traditional stability or retest coefficient.' In 

other words, within .the framéwork of' general izability théory the traditional. • 

retest coefficient mai" be»'compu ted under a generalizability design of the form

p x i- x m whete items:constitute'a fixed, facet and moments constitute a..random 

facet. Note. that in this case the retest coefficient is higher than the internal.' 

consistency coefficient because the p x m variance component accounts for virtually, 

no variance whereas the,p x i interaction (which contributes to the true score when 

items are fixed) accounts for 17%'of the universe variance. 



Table 2 

Illustrative Scenario Table 

Scenario 
Construct *Defi.ni tion 

Random Facets Fixed Facets 
Sampling 

Specifications p  i 
Sources of Variance 

m pxi pxm mxi pxixme 
General i zabil i ty 

Coefficient 

1 Items Moments 
Ni= 50 T -	

Nm7 1 

d T - 6' .72 

2 Moments Items Nm= 1 T T 6 - 6 .78 

Ni= 50 

3 Items 

Moments 

Ni= 

Nm= 

50 

1 
T - - d - 6 .72 

4 Items 

Moments 

Ni= 

- Nm= 

50 

2 
_ • 6 6 . 6 .81 

5 Items 

Moments, 
6 .92 
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