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ABSTRACT

Students in grades 1, 3, 4, 5, 6, and college were timed as they

produced the answers to simple addition problems or verified a given

problem as true or false. First graders clearly relied on a counting

process for their performance, as advanced by the Groen and Parkman

"min" (for minimum addend) model. Third grade appears to be a

transitional age with respect to addition processing; from fourth grade

on, however, performance in both tasks yields evidence of a zemory

retrieval process as the major vehicle of mental addition. The results

are discussed in terms of the Ashcroft and Battaglia (A978)

"network-retrieval" model, a model which asserts that simple arithmetic

facts are stored in a network representation, and are accessed in a

spreading activation-like fashion.
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THE DEVELOPMENT OF MENTAL ADDITION

The topic of our presentation today is "mental addition", quite

simply how numbers are added mentally, without the aid of pencil and

paper. This overwhelmingly common ability is of course crucially

important to the mathematics curriculum in school, serving as a

foundation for all of higher mathematics. From our perspective, mental

addition is equally important to an understanding of human cognition,

and more specifically to the issues of mental structures and processes

and their development.

Until recently, the most widely accepted view of children's mental

addition processes was a model advanced in 1972 by Groen and Parkman.

Their model asserted that mental addition is a "reconstructive" memory

process, that is that the sum of two numbers was literally computed or

reconstructed whenever it was needed. The source of this conclusion

was an experiment with first graders, in which reaction time

differences to simple addition problems were best predicted by the

smaller of the tobeadded numbers. In the jargon of this area, the

smaller numb.,r of a "lasic fact" problem, the 3 in 5--1-3 for example, is

called the minimum addend, or simply the "min". The Groen and Parkman

model says that some internal counter is first set to the larger value,

and then is incremented a number of times equal to the minimum addend.

Since the time to set the counter was assumed to be constant, RT in the

model should be a linear function of the min -- the RT should vary

directly with the number of increments added in the computation. Groen

and Parkman found this min factor to account for nearly 80% of the

variance in RT in their sample of first graders.

There is clearly some merit to the reconstructive counting

approach that Groen and Parkman advocated. Their model fit their first
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graders' data very well, and a great deal of other evidence shows how

heevily such small children rely on counting as they add simple numbers

(Ginsburg, 1977; Groen & Resnick, 1977). The min model begins to

falter, however, when older children are tested; the data we are

presenting today bear directly on this matter. Before turning to the

data, however, I'd like to sketch briefly the alternative model that we

are proposing, and mention in passing some of the evidence we feel

supports it.

Our approach to the topic of mental addition has been in the

opposite direction to that taken by Groen and Parkman. They began by

describing the initial mechanisms found in young children, then

projecting those through development. We have instead tested adults

quite extensively. to see where addition "ends up", and now are

searching for the beginnings of these final mechanisms. Our reaction

time results with adults are very supportive of the following

conclusion: Simple mental addition in adults is a memory retrieval

phenomenon, not a reconstructive counting process. Adults seem to have

the basic facts of addition (and multiplication, for that matter)

stored in an organized network or associative structure. Retrieval from

this structure is believed to be an intersection search process, as

found in semantic memory models, and the time for such memory retrieval

is a positively accelerated function o!! the size of the problem

(Ashcraft t Battaglia, 1978; Ashcraft & Stazyk, in press).

This last statement bears rephrasing here, since it is quite

important to our later results. Groen and Parkman's models clearly

predict that RT will be a linear function of the minimum addend. In

five separate studies from our lab, however, RT has been an exponential

function of the problem's sum. The square of the sum provides a
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reasonable fit to these RT patterns, so the emergence of 'sum squared'

is viewed as evidence for memory retrieval from a network

representation. Other ev:t.dence for the network structure we are

proposing includes associative confusion or interference effects, as

found by Stazyk, Ashcraft, and Hamann (Note 1) and Winkelman and

Schmidt (1974), priming effects (Hamann & Ashcraft, Note 2), and the

general implausibility of counting approaches to other arithmetic

operations like multiplication.

At this point, it would seem that the two extremes of the

developmental continuum are tied down. At the earliest stages, children

count when they do addition in their heads, and seen to do so by

"adding on" the smaller addend or min to the larger number. They

require nearly 3 seconds, on the average, for even the simple facts up

through 4+5=9. Adults, on the other hand, retrieve these overlearned

basic facts from an organized' LTM structure; their memory retrieval for

the same small problems averages 950 msec. The question of current

interest then becomes the following: When do children begin to abandon

the less efficient and less accurate counting processes? Putting it

differently, when do children begin to formulate and use an adult-like

memory structure for addition fact retrieval?

Figure 1 shows the average RT results in a study with 3rd, 4th,

and 6th graders. In this study, half of the stimulus problems were

presented with the correct answer, the solid lines marked true, and

half were presented with an incorrect sum, the dashed false functions.

The curves are plotted simply across small vs. large problem size, sums

0 - 9 vs. 10 - 18. The slopes of these functions for true problems,

850, 600, and 400 msec across grades 3, 4, and 6, begin to shed some

light on the underlying processes. Clearly, large problems require more
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time than small problems, the standard "problem size effect"; this

effect is a benchmark result in this area of research, and all the

models predict it. Of equally great importance, the graph shows how the

problem size effect diminishes across grade levels.

What is more interesting in these data are the patterns of

significance when the RTs are analyzed with multiple regression. When

such analyses are performed, letting the best predictor variables enter

the equation in free order, the problem size effect at the 4th and 6th

grade levels is best predicted by sum so.gared, the exponential function

we have found repeatedly with adults. This variable accounts for 68% of

the variance at 4th grade, and 78% at 6th grade, with standard errors

of 246 and 216 msec respectively. The single best predictor at the 3rd

grade level was the small/large factor on the graph, accounting for 56%

of the variance with a standard error of 450 msec, These results, plus

a high -..!L order interaction not shown on the graph, suggsted two things

first that 4th and 6th graders do addition in a fashion very similar

to that of adults, and second that marked individual differences in

processing may characterize the children in 3rd grade. Individual

subject analyses tended to confirm both of these conclusions.

Specifically, 40% of the 3rd graders yielded RT patterns which were

best fit by counting variables, and 40% showed some evidence of memory

retrieval patterns. At 4th 'grade, 20% seemed to be counting, and 70%

using retrieval; at 6th grade, only 10% of the patterns were best fit

by counting variables, but 90% of the records were best fit by the sum

squared retrieval factor.

In a second experiment, we decided to focus on three critical

points in the developmental continuum under consideration. Since about

two thirds of the fourth graders in study 1 seemed to be using a
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retrieval process, we reasoned th:.t children in the fifth grade would

not only be using retrieval the majority of the time, but also would be

doing so more efficiently than our 4th graders had. College students

were tested, to allbw for specific comparisons to full-fledged

retrieval, and 1st graders were tested, to examine their performance

under identical procedures. It had been suggested to us that using the

true/false verification task might be introducing some sort of artifact

into our results, possibly accounting for the specific patterns of

predictor variables we had observed. Accordingly, we tested our 1st

grade, 5th grade, and college students under two task conditions,

verbal verification and verbal production. In the former, subjects

indicated their decisions by saying "true" or "false" out loud; in the

latter, they stated the sum of the problem out loud.

Figure 2 shows the averaged RT results across grades for small and

large problems. The excessively large range of RT on the ordinate

gives the misleading impression that no problem size effect was found

beyond the 1st grade; in fact, all three age levels yielded very

significant effects of problem size. With the exception of 1st grade,

production and verification revealed only a constant time difference,

undoubtedly due to the decision stage in verification. The relative

facilitation of RT for 1st graders' production performance is probably

due to the heavy emphaq::s on verbal drill of the basic facts in the

first grade classroom.

As before, we turn to multiple regression results to examine the

details of processing in these subjects. In the analyses on

verification performance, first graders' RTs were best predicted by

minimum addend, in agreement with Groen and Parkman's data. Fifth

graders' and college students' RTs were best predicted by sum squared.

1,1
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Turning to the data from the production task, we find that the best

predictor variable at all three age levels was minimum addend. By

itself, such an outcome should suggest that some minlike counting

model accounts for the entire developmental range quite nicely. When

considered in the light of the verification condition here, which

tested the same subjects, and of other studies from our lab, a

different implication emerges. This different implication is that the

production task, rather than verification, may be suspect. In other

words, the production task herc.! seemed to generate data which were

consistent with a counting model at all ages, in direct contradiction

to other research findings. The verification task, on the other hand,

yielded data which are entirely consistent with other research--

counting processes early in the school years, and memory retrieval

later on.

Let me set the stage for a summary of the research I've presented

today by showing you the following graph. In this figure, adults' RTs

to the simple addition problems are plotted against the sum of the

problem, to illustrate the exponential function we have found. The

important curve for today's presentation is the one marked true --

adults' RTs increase exponentially with the sum of the problem, from

about 900 msec to about 1250 or 1300 msec. The slope of this function

is about 1.2. The final figure shows the adult curve plotted on the

same scale as the curves obtained from the developmental studies just

presented. The bottom four curves, for 4th, 5th, and 6th grades and

co-liege, all, show the significant exponential function of sum squared.

The two linear functions are the curves for 1st and 3rd graders' RTs

plotted across minimum addend. There is also an exponential curve

plotted for 3rd graders since this factor provided a best fit for half

0
W
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of the 3rd grade sample. This family of curves suggests strongly that

3rd grade is a transitional stage in addition processing -- absolute

RTs are much faster than 1st graders' times, but the retrieval function

is not yet reflecting consistent memory retrieval. One final and

amazing aspect of these data should be mentioned here. The 5th grade

curve fits beautifully between the 4th and 6th grades, despite the fact

that it came from a different experiment, with different apparatus, and

with a vocal response instead of a button press.

We have probably overstated the importance of 'sum squared' as an

indicator of memory retrieval. It must be admitted that in the

collection of 100 basic addition facts, structural variables like the

min, sum, and square of the sum are all highly intercorrelated. We have

claimed that sum squared is important for two basic reasons, first

because it disconfirms the only hard-and-fast prediction of the min

model, a linear increase in RT, and second because the exponential

function is difficult if not impossible to reconcile with any counting

or incrementing-based model. The7e are powerful pre-theoretical

reasons, on the other hand, for choosing a network approach to memory

retrieval. Wickelgren (1981) has recently argued very forcefully that

long-term memory is now known to be associative in structure,

associations being the building blocks of any iletwork model. The

interference and priming results mentioned previously are clearly

indicative of a network structure. Finally, a network approach is

flexible enough to be compatible with other arithmetic information as

well as other long-term memory information. As Resnick (1981) has

pointed out, what remains to be achieved is a detailed theoretical

acount of network structures in arithmetic. We view the research

presented today as an early step in working towards that goal.
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