DOCUMENT RESUME

ED 201 670	TH 810 265
AUTHOR TITLE PUB DATE NOTE	Takane, Yoshio Maximum Likelihood Additivity Analysis. May 80 19p.: Paper presented at the Annual Meeting of the Psychometric Society (Iowa City, IA, May 1980).
EDRS PRICE DESCRIPTORS IDENTIFIERS	MF01/PC01 Plus Postage. *Data Collection: Elementary Education: *Factor Analysis: *Mathematical Models: *Maximum Likelihood Statistics: Multidimensional Scaling *Likelihood Function Estimation

ABSTRACT

A maximum likelihood estimation procedure is developed for the simple and the weighted additive models. The data are assumed to be taken by either one of the following methods: (1) categorical ratings--the subject is asked to rate a set of stimuli with respect to an attribute of the stimuli on rating scales with a relatively few observation categories: (2) pair comparisons--the subject is asked to judge which one of two stimuli presented at a time dominates the other in some respect: or (3) directional rankings--the subject is asked to rank order stimuli in a specific direction (i.e., from the smallest to the largest or the other way around). Although the procedure mainly focuses on these three experimental methods for data collection, it is by no means restricted to them. Practical uses of the procedure are reported with an emphasis on various advantages of the procedure as a statistical method. (Author/RL)

US DEPARTMENT OF HEALTH. EOUCATION & WELFARE NATIONAL INSTITUTE OF EDUCATION

THIS DOCUMEN' HAS BEEN REFRO-DUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGIN-ATING IT POINTS OF VIEW OR OFINIONS STATEO DO NOT NECESSARILY REPRE-SENT OFFICIAL NATIONAL INSTITUTE OF EDUCATION POSITION OR POLICY

Maximum Likelihood Additivity Analysis*

Yoshio Takane

McGill University

MATERIAL HAS BEEN GRANTED BY Takane

"PERMISSION TO REPRODUCE THIS

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

ABSTRACT

A maximum likelihood estimation procedure is developed for the simple and the weighted additive models. The data are assumed to be taken by either one of the following methods: categorical ratings, pair comparisons or directional rankings. Practical uses of the procedure are reported with an emphasis on various advantages of the procedure as a statistical method.

Paper presented to the Psychometric Society meeting at the * University of lowa, May 1980.

1. Introduction

In this paper we discuss a maximum likelihood estimation procedure for additivity analysis from a variety of nonmetric data dimisting methods for normetric additivity analysis, notably MONAN A [Truskal, 1965], ADDALS de Leady, Young & Takane, 1976] and WADDA (Takane, Young & de Leedw, 1970], are all based on the least square principle, and are primarily descriptive in nature. The maximum lit (hood method developed in this paper, on the other hand, allows various kinds of statistical inferences including tests of hypotheses about the model.

2. The Model

For illustrative convenience we only discuss the two-factor case.

Let α_i and β_j denote additive effects of the 1th level of Factor A and the jth level of Factor 3, respectively. We state the simple additive model as:

(1)
$$y_{ij} = \alpha_i + \beta_j$$
,

where y_{ij} is the predicted model value for the combination of the ith level of Factor A and the jth level of Factor B. We also consider the weighted additive model which is stated as

(2)
$$y_{ijk} = w_{k\alpha} \alpha_i + w_{k\beta} \beta_j$$
,

where y_{ijk} is the subject-specific (subjeck k) model value for the (i, j) combination, and $w_{k\alpha}$ and $w_{k\beta}$ are the weights attached to Factor A and Factor B, respectively, by subject k. This model accounts for individual differences in additivity by differential weightings of additive factors.

(The nat we of this model as well as its relationship to the simple additive codel (1 is fully described in Takane, Young & de Leeuw, [1980].) In orde to eliminate tale indeterminanties in additive effects and individual differences weights, we may mequire that

(3)
$$\frac{\Gamma(\alpha_{j} - \Gamma\alpha_{m}/\Gamma)^{2}}{\Gamma} = \Gamma_{\alpha} \text{ and } \frac{\Gamma(\beta_{j} - \Gamma\alpha_{m}/n_{\beta})^{2}}{\Gamma} = n_{\beta}$$

where τ_{α} and σ_{β} are the numbers of Levels in Factor A and Factor B, respectively.

3. The Data

We assume that the fact are collected by one it the following mathods: categorical ratings, pair informations of directional rankings. In the categorical rating method informations of directional rankings. In the categorical rating method informations of directional rankings. In the categorical rating method, subject is asked to rate a set of stimuli with respect to an attribut. If the stimuli on rating scales with a relatively few observation integories. In the pair comparison method, on the other hand, the subject is asked to judge which one of two stimuli presented at a time dominates the other in some respect. Finally, in the directional ranking method inte subject is asked to rank order stimuli in a specific direction (i.e. from the smallest to the largest or the other way round). Although our membed mainly focuses on the above three experimental methods for from collection, it is by no means restricted to the above three. In fact in has been shown [Takane & Carroll, in preparation] that treatments of conditionalities, missing data and tied observations in the directional ranking method allow a still wider range of data collection methods to be handled within the framework of the directional ranking method.

4. The Method

Maximum likelihood multidimensional scaling procedures have already

been developed for the three data collection methods mentioned above [Takane, 1978; Takane, 1980; Takane & Carroll, in preparation]. The construction of likelihood functions in the current procedure is very similar to that in its MDS counterparts with the difference being that the former fits the additive model, while the latter fits the distance model. Here we only briefly discuss general strategic schemes for the construction of likelihood functions specific to the data collection methods. Details as well as modifications of the basic schemes (e.g., a provision for tied observations) may be found in the references given above.

4.1. Categorical ratings

Let

$$\lambda_{ijk} = y_{ijk} + e_{ijk}$$

where $e_{ijk} \sim N(o, \sigma_k^2)$. The probability that stimulus o_{ijk} (defined by the ith level of Factor A and the jth level of Factor B as perceived by subject k) is judged to be in the mth category (C_m) is stated as

$$Pr(o_{ijk} \in C_m) = Pr(b_{k(m-1)} < \lambda_{ijk} < b_{km})$$

$$= \int_{a_{ijk(m-1)}}^{ijkm} dz \equiv p_{ijkm}$$

where b_{km} and $b_{k(m-1)}$ are upper and lower boundaries of category m for subject k, $a_{ijkm} = (b_{km} - y_{ijk})/\sigma_k$ (m=1, ..., M where M is the number of observation categories), and where ϕ is the standard normal density function. We may impose various restrictions on category boundaries [Takane, 1980].

5

: .-

Let Z_{ijkm} denote the observed frequency with which o_{ijk} is put category m by subject k. Then the joint probability of Z_{ijkm} (m=1, M) is given by

$$p_{ijk} = \prod_{m=1}^{M} p_{ijkm}$$

The joint likelihood of the total set of observations is, in turn, states as

$$L = \prod_{k,i,j}^{p} p_{ijk}$$

4.2. Pair comparisons

The probability that o is judged to be larger than o is give by

$$Pr(o_{ijk} > o_{lmk}) = Pr(\lambda_{ijk} > \lambda_{lmk})$$
$$= \int_{-\infty}^{a_{ijlmk}} \phi(z) dz \equiv p_{ijlmk}$$

where $a_{ijlmk} = (y_{ijk} - y_{lmk})/(2_k)$. Let Z_{ijlmk} be the frequency with which o_{ijk} is judged larger than o_{lmk} out of N_{ijlmk} replications. The likelihood of the total set of observations can then be written as

$$L = \Pi p_{ijlmk}^{N} (1 - p_{ijlmk})^{N} ijlmk - Z_{ijlmk}^{I}$$

[Takane, 1978].

4.3. Directional rankings

Let $o_k^{(1)} > o_k^{(2)} > \cdots > o_k^{(M)}$ be the observed ranking. Let $y_k^{(m)}$ be the model value corresponding to $o_k^{(m)}$. We assume that the ranking is

obtained from the langest element to the smallest by addressive first choices. The producility of the mth first choice,

$$p_{k}^{(m)} \equiv -o_{k}^{(m)} \succ o_{k}^{(m+1)}, \dots, o_{k}^{(m)} \succ o_{k}^{(M)}$$
$$= - - \frac{m}{2} > \lambda_{k}^{(m+1)}, \dots, \lambda_{k}^{(m)} > \lambda_{k}^{(M)}$$

us given or an approximate integral of the multivariate more locatribution, which is approximated by

$$\pi_{k}^{(m)} = \frac{\exp(s_{k}y_{k}^{(m)})}{\sum_{m=1}^{M} \exp(s_{k}y_{k}^{(j)})}$$

where is approximately $\pi/(3\sigma_k)$. For the likelihood of a ranking we take a module of $p_k^{(m)}$; i.e., $p_k = M_{\substack{n = 1 \\ m=1}}^{(m)} M_{\substack{k}}$. Finally, the joint likelihood

of multiple rankings obtained from different subjects is defined by the product of P_k over k. For treatments of ties see Takane and Carroll [in preparation].

4.4. Numerical method

The log likelihood may be optimized by various numerical methods. The current MAXADD, a FORTRAN program to perform the analysis described in this paper, uses Fisher's scoring algorithm. From a limited experience of the author the convergence is very quick and smooth.

5. Some Empirical Results

We present some empirical results obtained by the method proposed in this paper. The data we analyze pertain to developmental change in the structure of weights attached to height and width of rectangles in large-

ness judgments. Kemple [1971] constructed a set of 100 rectancies by factorially combining I weight levels and 10 width levels each anding from 10 is des to 14.5 mohes in half-inch intervals. Four groups of children wet, 3rd, 5th and 5th graders) judged each of the 100 stimuli as who may it looked "Las " or "small" (two-category rating judgments).

6.

coviously analyzed the same set of data using a different procedure 43 IDALS [Takane, You is de Leeuw, 1980]. The first figure shows ca____ the har le in weights attached to height and width of rectangles as a futtri E age groups (as revealed by the WADDALS procedure). We can see onsistent tender that the weight attached to height decreases a fisirir For this analysis we aggregated the data by age groups by witch ase c inting the frequency with which each rectangle is judged as "large". This frequency was used an ordinal measure of the perceived largeness c rectangles. The prime focus of this analysis, however, was on the group differences disregarding the individual differences within the groups. This may not be justifiable, so we have performed MAXADD analyses of individual data.

The first table summarizes the results of separate MAXADD analyses of Kempler's data by grade. The first column represents the weighted additive model (WAM) with individual differences in dispersion (σ_k), the second column the simple additive model (SAM) with σ_k and the last column SAM without individual differences in dispersion (σ). In all analyses category boundaries were allowed to vary over individuals. Three figures are reported in each cell of the table. The top one is the log likelihood multiplied by -2, the middle one is the effective number of parameters in the fitted model (d.f.), and the bottom the value of the AIC statistic [Akaike, 1974], which is defined by

AIC = $-2 \times \log$ likelihood + 2 x d.f. of the model. The best fitting model is the one with a minimum AIC value. We see that the weighted additive model is the best in all age groups according to this criterion. There seems to be substantial individual differences in the weight structure within the age groups. We can also observe that the differences in the AIC values between WAM and SAM thad to diminish as we go from the 1^{3t} graders to the 7th graders.

7.

This point may be more clearly seen in the next four figures which display estimated individual weights for each age group. One tendency is evident; the plots of weight estimates tend to converge in the middle as the age goes up. For example, in grade 1 there are duite a few children who put a disproportionately large weight on height (including these two who totally ignore the width dimension), while those extreme subjects decrease in number and also in its degree until the majority of subjects put approximately equal weights on both height and width of rectangles. So the group differences we found previously with the WADDALS analysis of Kempler's data seem to be largely due to the difference in the constitution of the groups, which are heterogeneous in themselves, but which tend to get more homogeneous with age.

We have not done a joint analysis of all data in all age groups. The reason is simply that there are too many subjects. (For WAM with individual dispersions and category boundaries we need to estimate up to 300 parameters.) Consequently we had to resample portions of the available data set to examine the goodness of fit of the model in joint analyses. (The algorithm is being revised so that MAXADD can accommodate a problem of this size, however.) Two sets of data were subsampled, each consisting of data from 24 subjects (6 in each age group). A summary of the results are shown in the next table.

Э

(The entries : this table are analogous to those in the previous table.) For both sums of data the joint analysis with WAM with individual dispersions and boundaries outperforms the others, indicating that the additive effects may be assumed common to all age groups, though the weights are different not only for different age groups but also for individuals within the groups.

10

8.

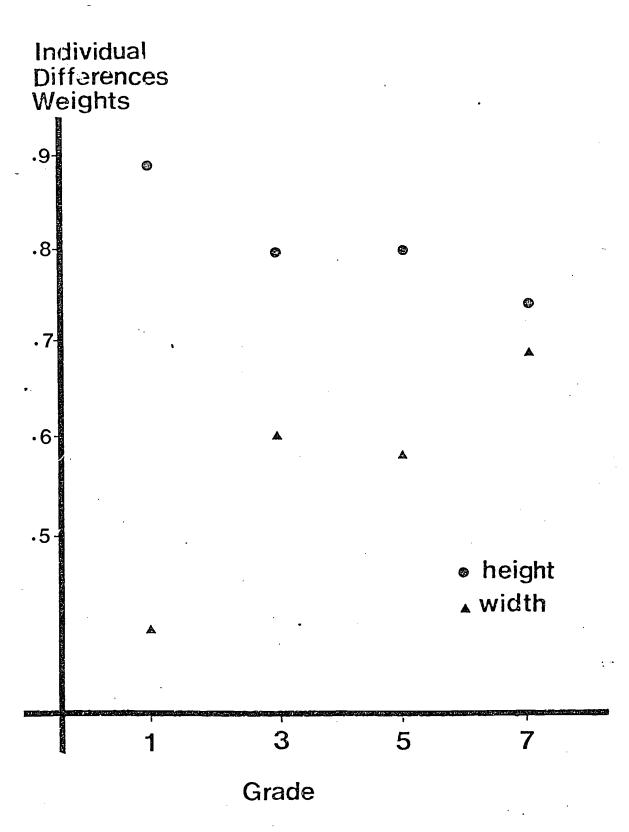
References

- Akaike, H. A new look at the statistical model identification. <u>IEEE</u> <u>transactions on automatic control</u>, 1974, <u>19</u>, 716-723.
- Kempler, B. Stimulus correlates of area judgments: A psychophysical developmental study. <u>Developmental Psychology</u>, 1971, <u>4</u>, 158-163.
- Kruskal, J. B. Analysis of factorial experiments by estimating monotone transformations of data. <u>Journal of the Royal Statistical Society</u>, Series B, 1965, <u>27</u>, 251-265.
- de Leeuw, J., Young, F.W., & Takane, Y. Additive structure in qualitative data: An alternating least squares method with optimal scaling features. <u>Psychometrika</u>, 1976, <u>41</u>, 471-503.
- Takane, Y. A maximum likelihood method for nonmetric multidimensional scaling: I. The case in which all empirical pairwise orderings are independent - theory and evaluations. <u>Japanese Psychological</u> <u>Research</u>, 1978, <u>20</u>, 7-17 and 105-114.
- Takane, Y. Multidimensional scucessive categories scaling: A maximum likelihood method. Paper submitted for publication, 1980.
- Takane, Y., & Carroll, J. D. Maximum likelihood multidimensional scaling from directional rankings of similarities. Manuscript in preparation.
- Takane, Y., Young, F. W., & de Leeuw, J. An individual differences additive model: an alternating least squares method with optimal scaling features. <u>Psychometrika</u>, 1980, <u>45</u>, in press.

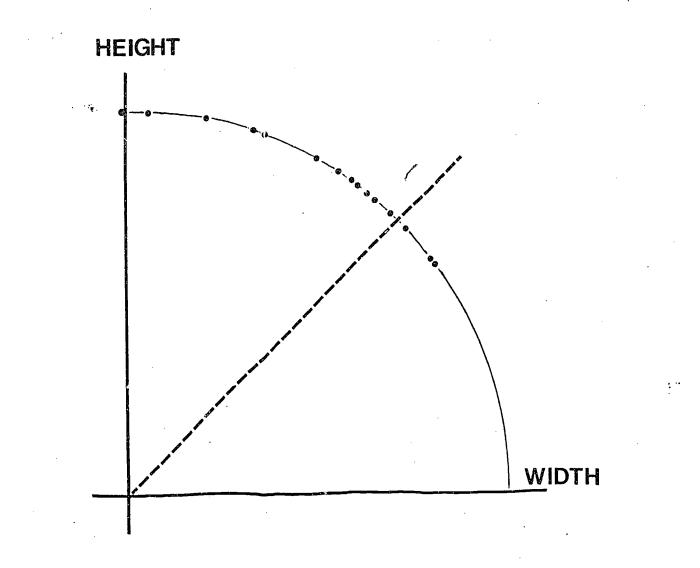
11

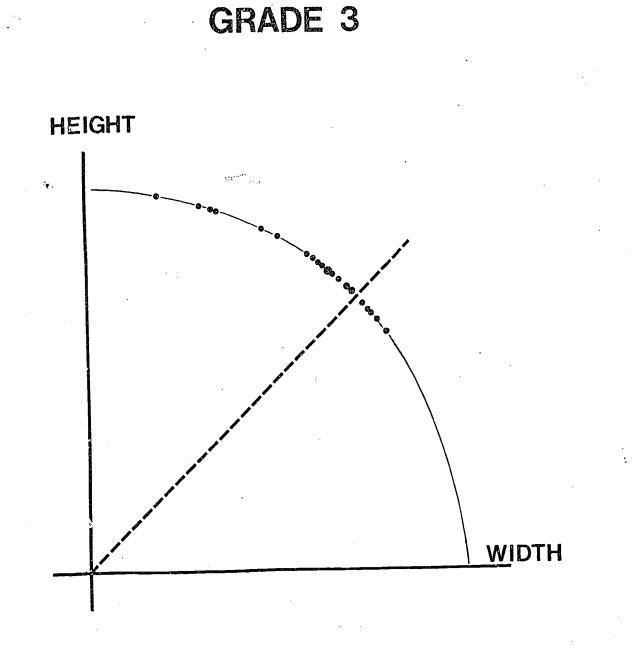
9.

•

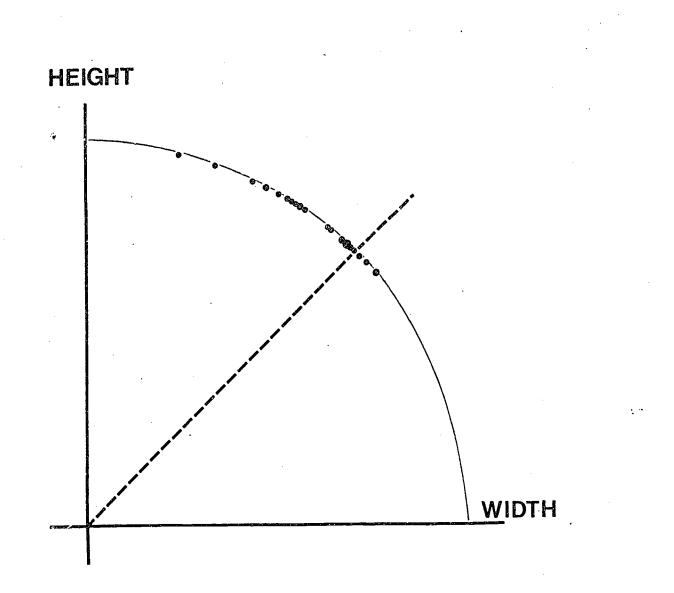


Change in weights attached to height and width of rectangles as a function of age-groups.

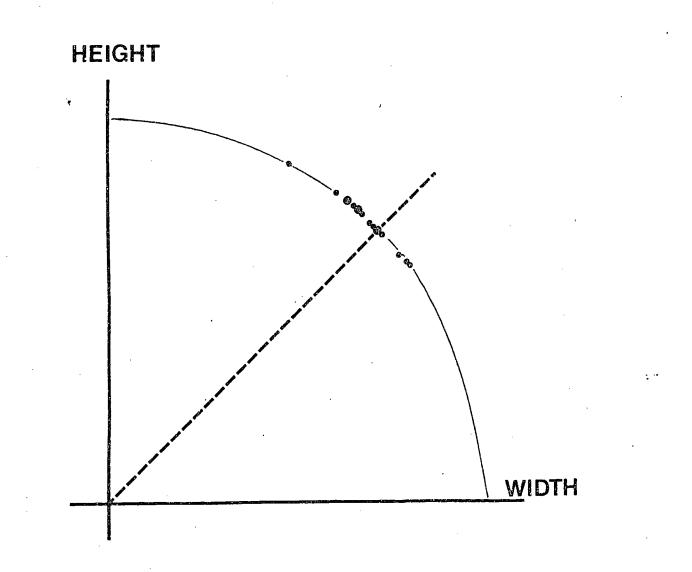




GRADE 5



GRADE 7



•								
Comparisons	0F	SEPARATE	ANALYSIS	ΒY	GRADE	AND	JCINT	ANALYSIS

	Separat	E ANALYSIS (B	Y GRADE)	JOINT ANALYSIS			
	WAM	SAM	SAM	WAM	SAM .	SAM	
	^o K	^o K	σ	σ _K	^o K	σ	
Set 1	2992.4	3130,9	3185.5	3050.0	3272,6	3371.2	
	136	120	96	88	66	42	
	3264.4	3370,9	3377.5	3226.0*	3404,6	3455.2	
Set 2	2562.4	2742.1	2802,5	2634.5	2868,1	2930,5	
	136	120	96	88	66	42	
	2834.4	2982.1	2994,5	2810.5*	3000,1	3014,5	

Legend:

-2 X LOG LIKELIHOOD (+ CONST.) D.F. OF THE MODEL AIC (+ CONST.)-

* MINIMUM AIC SOLUTION

