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DETAILS OF PROGRAMMING A MODEL OF
CHILDREN'S COUNTING IN ACTP

Mary S. Riley and James G. Greeno

Learning Research and Development Centerx
University of Pittsburgh

This paper is intended as an introduction to the opera-
tion and mechanics of the ACTP production system, a version
of Anderson’'s (1976) ACT system. Its preparation was motl-
vated by the following considerations. ACTP is already being
used by Greeno (1978) to model geometry theorem proving and
by Greeno, Riley, and Gelman (1979} to model the elementary
«nowledge required to count a set of objects. ACTP has also
been identified as a potentially useful prograuming frame-
work for developing models of the cognitive processes involved
in other tasks, such as answering questions about a process.
Together, these current and projected uses of ACTP suggested
that more people would need to become familiar with the systew;
this in turn suggested a need for ACTP documentation specific-
ally directed towards developing that familiarity. 1t is
hoped that this documentation will be useful for those Just
beginning to program in ACTP as well as for those who simply
wish to understand the production system models developed by
others in more detail. The interested reader is also referred
to Greeno's (1978) discussion of the more general features of
ACTP and its use in his work on geometry.

The ACTP system is introduced in the context of COUNTEK,
a model of counting devoloped by Greeno, Riley, and Gelman
(1979). The first sectior of this paper presents a general
overview of the model, including a sketch of COUNTER's per-
formance on a sample problem, to provide a general idea of
how a production system operates. Section 2 discusses the
mechanics of the model, including data structures, schemata,
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and single productions. The last section, Section 3, follows
in detail the sequence of testing and executing productions
invelved in counting a set of objects.

Section 1: Qverview of COUNTER

The formal structure used in writing CCUNTER 1is a pro-
duction system with a sequential, first-match application
discipline. This means that each element of knowledge is
Tepresented as ar "if-then' rule, or production, containing
a condition and an action. When the program is runn...., the
process involves a series of cycles through a set of produc-
tions. On each c¥ycle., the conditions specified in wvarious
productions are tested in order. Eventually, the conditicn
of one of the productions is found to be true. Then the
action of that production is performed. Performance of an
action completes a cycle. On the next cycle, the conditions
of the various productions are tested again until one of them
is found true. The action of that production is performed,
and so on. The formalism of a production system model is a
useful one for constructing psychological theory, since the
components of the process are easily identified in the ele-
mentary productions, and there must be a relatively explicit
specification of the way in which different parts of the
process interact. A running program is evidence that the
components are sufficient for the tasks that the model 1s
able to perform and that they are mutually compatible so
that they can be integrated into a single funcrioning system.
General discussions of production systems as models of psy-
chological processes have been given by Anderson (1976) .,
Anderson, Kline, and Beasley (1978, 1979), Davis and King,
(1976), Hunt and Poltrock (1974), Klahr and Wallace (1976),
Newell (1972, 1973a, 1973b), Newell and Simon (1972), and

Simon (1975).



A Simple Production System for Counting

An example of & simple production system is given in
Table 1.

Tabie 1
A Simplified Production Systam for Counting

Condition Action
™. Have NEXT—-OBJIECT —m Point 1o NEXT-~-0OBJECT
Have NEXT-NUMSBER Say NEXT-NUMBER

Changs NEXT-OBJILCT to CURRENT-OBJECT
Changs NEXT-NUMBER w0 CURRENT-NUMBER

P2. Have CURRENT-OBJECT — Gut NEXT-0OBJECT
Have CURRENT-NUMB.:R Get NEXT—-NUMBER
CURRENT-OBJECT is not the iast object

L B Have no CURRENT —-OBJECT —ie Point to first object

Have no CURRENT-NUMBER Say first number
Makas the first obiect CURRENT—-0O8BJECT
Make the first rumber CURRENT -NUMBER

Pa. Eise i Say CURRENT-NUMBER
Say Finish!

A B o D
In each production the condition is stated, and an arrow
separates the condition from the action of that production.
The term CURRENT-OBJECT simply refers to the most recently
counted object. Thus CURRENT-OBJECT will at one time refer
to object A, at another time to object B, and so on, as
counting proceeds. NEXT-OBJECT refers to the object that is
next to the CURRENT-OBJECT in the line of count. Since in
the example counting will proceed from left to right, the
NEXT-C3JECT will always be the object to the immediate right
of the CURRENT-OBJECT. Thus when CURRENT-OBJECT is object B,
NEXT-OBJECT is object C. Similarly, CURRENT-NUMBER and NEXT-
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NUMBER refer te the most recently used number and the number
following it in the list of counting names (e.g.. TWO and
THREE) , respectively. Counting, then., consists of an itera-
tive process of getting the NEXT-OBJECT and NEXT-NUMBER,
counting that object with that number, making them the
CURRENT-OBJECT and CURRENT-NUMBER, respectively, getting the
NEXT-OBJECT and EXT-NUMBER, and so on until there are no
more objects to count. For example, suppose that COUNTER
has just been told to count the objects and wishes to begin.
Initially there are no CURRENT- (and therefore no NEXT) OB-
JECTs and NUMBERs so the test of the conditions of Pl and P2
will fail. P3's condition is tested next and is found to be
true, causing the action of that production to be performed.
Here the action consists of five parts: get the first object,
which is in this case A; get the first numter (ONE): point to
the first object and say the first number (i.e.., point to
object A and say "ONE"); make the first object the CURRENT-
OBJECT because it has just been counted; make the first num-
ber the CURRENT-NUMBER because it has just been used. Once
this action has been performed, the first cycle is complete
and everything starts over again from the top (notice that
P4 was never tested on this cycle. On the second cycle, the
condition I Pl fails but the condition of P2 is found to bde
true because there now exists a CURRENT-OBJECT and a CURRENT-
NUMBER. This leads to the action of getting the NEXT-0OBJECT
(B) and the NEXT-NUMBER (IWO). On the third cycle, the con-
dition of the first production is true, causing the action

to be performed: COUNTER points to object B and says '"TWO,"
then changes B to CURRENT-OBJECT and TWO to CURRENT-NUMBER
(i.e., they are nc longer identified as NEXT-OBJECT and NEXT-
NUMBER). On the fourth cycle, Pl's condition is therefore
false, but the condition of ™” is true again, so the action
of getting the NEXT-OBJECT (C) and the NEXT-NUMBER (THREE)

is performed. On the fifth cycle, the condition of Pl is
true so the action is performed: COUNTER points to C, says
""THREE,' then changes C and THREE to the CURRENT-OBJECT and



CURRENT-NUMBER, respectively. On the sixth cycle, P2's con-
dition is true, 80 the action of getting the NEXT-OBJECT and
the NEXT-NUMBER is performed again. On the seventh cycle,
the condition of Pl is true so COUNTER points to D, says
“FOUR," then changes D and FOUR to CURRENT-OBJECT and
CURRENT-NUMBER . On the eighth cycle, the conditions of P1,
P2, and P3 all fail. The reason P2's conditior fails is be-
cause the CURRENT-OBJECT (D) 1is alsoc the last oblect. P4's
condition is always true since it is a default condition,

so the action of repeating the most recently used number,
FOUR, is performed (this is intended to symbolize COUNTER
identifying the cardinality of the set of objects); COUNTER

then says it is finished.

Notice that this production system takes appropriate
account of a variety of details. Fcr example, the produc-
tions whose conditions test for the Presence of a CURRENT-,
or NEXT-, OBJECT and NUMBER (Pl and P2) precede P3 even
though P3 is always the first production executed during
any counting sequence. This is actually a very efficient
ordering since after t*e first cycle COUNTER will not go
through the unnecessary steps of checking to see if it has
begun counting yet, as it would if P3 were ordered first in
the list. It is also psychologically appealing in that it
seems unlike’y that children would go through such unneces-
sary checking each time before they counted the CURRENT-
OBJECT or got the NEXT-OBJECT and NEXT-NUMBER. On the other
hand, the example is deliberately sketchy and incomplete.

A serious psychological theory of the knowledge used in count-
ing would involve detailed representations of procedures for
scanning an array of objects, knowledge about thke number and

cardinality, and other components.

Evidence for Counting Principles

The model of counting that Greeno, Riley, and Gelman
developed represents a formal investigation of children's
understanding of counting that includes these more detailed
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representations. This work is based on previous investiga-
tions by Celman and Gallistel (1978) from which they con-
cluded that even very young children (3-, 4-, and 5-year-olds)
understand more about counting than just pointing to objects
and calling ocut numbers; they understand general principies
of counting as weil. The principles referred to are:

1. Stable ordering. Counting requires a set of symbols
ordered in a fixed sequence. %elman and Gallfstel called
these counting symbols numerons, a convention we will follow
through the remainder of this paper.

2. One-to-one correspondence. Counting requires that
each object to be counted is paired with exactly one numeron,
and no two objects are Paired with the same numeron.

3. Cardinality. The last numeron used in counting is
the symbol for the number of items in the counted set.

4. Abstraction. Sets of objects need not be homogene-
ous for them to be counted.

S. '"Doesn’'t matter.' It doesn't matter what order the
objects in a set are counted (also referred to as the Order
Invariance principlc).

Gelman and Gallistel observed children's performance on a
variety of counting tasks and then related this performance
to children's understanding of the above principles. For
example, that children understand the stable ordering princi-
ple was inferxazd from the occurrence of idiosyncratic count-
ing lists (e.g.. "One, two, three, six, ten" or A, B, C, D,
. . ."™. Children who used their own liscs did so consis-
tently, each time uttering the list elements in the same
sequential order. This suggested to Gelman and Gallistel
that children appreciate that whatever the list 1is, 1ts ele-
ments should occur in a fixed order.

Evidence for children's understanding of the one-to-one
correspondence principle came from the observation that most
children attempted to pair each object with a unique numeron




and almost never used the same numeron twice or skipped a
numeron. The occasional failures that did occur seemed to
result from simple mechanical failures in keeping track of
just whatr objects had already been counted.

Gelman and Gallistel cited two sources of - vidence for
children's understanding of the cardinality principle.
First are Gelman's (1972a, 1972b) magic experiments in
which children were presented with two sets of objects and
on each trial instructed to choose the set with the greater
numbetr of objects. Most children had no difficulty choosing
o larger set in spite of differences in types of objects
=z~ 3¢ arrvangement of objects between the two sets. This
~wggested that these children were using cardinality as the
relevant property for choosing a set. The second source of
evidence came from observations that children frequently
repeated the last numeron used in counting a set of objects,
often with considerable emphasis. Repetition of the final
numeron suggested that these children appreciated that it
signifies something special.

Evidence for understanding of abstraction came from
observations that children's . -~unting behavior is unaffected
by Presenting them witl nonhiuogeneous sets of objects.

Evidence that children understand the "doesn't matter"”
pPrinciple came primarily from performance on a task that
consisted of presenting the child with a set of five objects
and asking him/her to coun: the objects. Then a constraint
was imposed on *'e c¢child's counting procedure by pointing to
one of tte ob: .xts and specifying a number that is to be
assigned to it. The use of constraint here refers to a
restri-tion on the way a particular procedure can bm carried
our. Tor example, the experimenter might point to the second
object and instruct the £2ild to "make that the four." Mak-
ing the second object the four is a constraint in the sense
that the child normallv would have counted it as two. Some
children perform¢-l counzting with this additional constraint
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by changing the order in which the objects were counted.
This involved counting the first object as one, temporarily
skipping the second object, counting the third and fourth
objects as two and three, respectively, returning to the
second object to count it four., and finally counting the
£ifth object as five. These children seemed to understand
the order invariance principle in the sense that they all
reassigned numerons to specific objects in the set. Other
children, however, adopted the procedure of counting the
objects as usuai until they arrived at the designated object,
at which point they would continue to say the numerons in
order until the designated numeron came up, then proceeded

again as usual. Thus, in the above example, they counted
the first object, saying, "One,” then said, "Two, three."’
then counted the remaining objects, saying. ""'Four, five, six,
seven.'" These children also satisfied the constraint but

sacrificed a basic principle of counting that requires each
object in the set be put into one-to-one correspondence with
exactly one numeron.

Thus Gelman and Gallistel provided some interesting evi-
dence that children understand the principles of counting.
In fact, the simple producrion system for counting (Table 1)
has the surface characteristics required by Gelman and Gallis-
tel's five principles. The constraints of stable ordering
and one-to-one correspondence are satisfied by using numerons
in a fixed order and applying numeron tags to objects only
when the objects have not yet been tagged, but continuing
until all objects have been tagged. The principle of cardi-
nality is used because the system assigns the final numeron
as the quantity of the set. Abstraction is sactisfied because
the system does not distinguish whether the objects in the
counted set are all the same. Finally, order invariance 1is
satisfied because the system puts no restriction on the
sequence in which objects in the visual representation are
counted. That is, after counting the array of objects A,
B, C, D" from left to right, COUNTER would not hesitate to



count the array “"C, D, B, A,"” also from left to right, even
though this wculd involve changing the assiguments of numer-
ons to specific objects in the second arxay as compared to
the first (i.e., the ru=esron TWO would be assigned to object
B in the first array, but to D in the second).

Since the simple production model performs in agreement
wirth Gelman anc Gallistel's principles, there is at least a
limited sense in which it represents understanding of those
principles. However, Greeno, Riley, and Gelman believe thiar
a stronger representation of understanding is achieved in a
system that they developed and which will be described in
the remainder of this section.

The sense in which they believe that their representation
of understanding is stronger than the simple production model
involves the generality of the knowledge structures that pro-
duce performance in agreement with principles that are under-
stood. GCelman and Gallistel's argument that children under-
stand general principles is based on observations of several
kinds of performance. Greeno, Riley, and Gelman reasoned
that if they could develop a model that would simulate a sub-
stantial part of the variety of perfoimance that led Selman
and Gallistel to infer that children understand principles,
then the knowledge in the model might constitute a plausible
hypothesis about the nature of children's understanding of
the principles.

COUNTER

The current version of the COUNTER model can count a set
of objects arranged in an approximately linear array. Normally,
when asked to count a se= of objects, COUNTER first sets a goal
of finding the size of the set. Next COUNTER uses spatial in-
formation it has about the objects to find an end of the array
and determine the direction of counting. It then prints out
the name of the first object, together with the first numeron
in its ordered list of numerons. This pairing of object and

| -
Qo




numeron is intended to represent counting that object. Once
an object has been counted, COUNTER identifies the next object
in the set and counts it with the next numeron in its list.
This process of finding the next object and pairing it with
the next numeron continues until COUNTER finds mo more objects
along the directional path. After counting is complete,
COUNTER retrieves the goal from memory to find the size of

the group, causing it to relate the last numeron used in
counting to an intermal representation 2f the set of counted
objects. COUNTER then repeats the last numeron used with
emphasis, assigning it as the cardinality of the set. COUNTER
can also wodify its normal counting procedure to simulate per-
formance on the constrained counting task designed to test
understanding of the order invariance principle.

The knowledge COUNTER uses to count is represented in
two forms, semantic networks and productions. Semantic net-’
works represent: general factual knowledge and are similar to
the network representations proposed elsewhere (Anderson &
Bower, 1973; Norman & Rumelhart, 1975; Quillian, 1969). They
consist of (a) nodes that denote ideas or elements of the task
situation, and (b) labeled links that connect those nodes to
denote the relations among them. In the model, semantic net-
works are used to represent both COUNTER's ordered list of
counting names and the visual information COUNTER has about
a set of objects. These can be thought of as the model's

data structures.

For example, Figure 1 represents COUNTER's short list
of numerons. It should be pointed out that the terwinology,
as well as the form, of the networks and productions discussed
in this section are slightly simplified compared to those
that actually appear in the ACTP model. This was dome to
familiarize the reader with the more general aspects =f net-
works, productions, and how they interact, without becoming
involved in confusing details. The details will be discussed
in Section 2. With this in mind, the node CLIST stands for
"counting list"; the links labeled ispart between CLIST and

10
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the nodes ONE, TWO, THREE, and FOUR identify each of these
numerons as a member of the same list. A fixed ordering is
imposed on the numerons by a sisple pattern, or schema, for
NEXT relations. Consider, for example, the nodes TWO and
THREE. These nodes are linited to the node N2, which in turm
is linked through a token relation tc NEXT. The token rela-
tion simply identifies rthis patterm as a specific instance
(or token) of the NEXT relation, to be distinguished rrom
other instances of the NEXT relation. The NEXT relation
between THREE and FOUR is identified by the token node N3.
The links labeled arga and argb are used here to definme the
direction of the relationn. So although TWO shares a NEXT
relation with both ONE and THREE, TWO is linked teo ONE
through an argb link and to THREE througnh an arga link.

This means that TWO is next to and after ONE, but next to
and before THREE. Similarly, THREE is next to and after

TWO (argb 1link), but next to and before FOUR (arga 1link).

Figure 1. Semantic network representation of COUNTER’s ordered list of numerons.

. 11

Fea
Qr




There ares two main reasons why the number of elements in
CLIST is limited. Ome reason was to capture the fact that
young children simply do not have an unlimited resource of
numerons. The second reason was that prorerly extending
COUNTER's CLIST would involve more thar just adding on numer-
on after numercn; it would depend on COUNTER acquiring the
base-ten rule. However, since the ability to count large
groups of objects is not central to the main issues addressed
in the current model, the choice was made not to elaborate
the acquisition process. Trere is, however, a production
called ADDTAG which provides a means of extending CLIST to
include up to ten numerons. The details of this production
will be discussed in the last part of Section 2 under Sche-

mata.

In addicion teo factual knowledge, COUNTER alsc has pro-
cedures in the form of the productions themselves. Every-
thing COUNTER knows about how tc count (i.e., getting the
first object and numeron, pairing them, getting the next
object and numeron, and so on) is represented as a set of
productions, each of which contains a condition and an action.
The condition specifies a particular interconnection of nodes
and links, called pa.terms, that must be present in the sewman-
tic netweork in order tor that condition to be true.

Figure 2 represents a simple production for getting the
NEXT-NUMERON from the ordered counting list (CLIST). The con-
dition consists of a single pattern; ORDASSIGN identifies the
particular form of the patterm, shown in Figure 3.

The prefixes *C* and *V* define the types of nodes in
the data base that can be matched to this patterm. *C* gtands
for "constant' which means that this psart of the pattern can
only be matched to a particular node in the data base which
has the identical name (i.e., CURRENT). *V*, on the other
hand, stands for ''variable' which means that any node in the
data base can qualify as a match so long as it has an ida link
to the node *C*CURRENT (ida is simply one of the names used for

12
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Condition Action
((ORDASSIGN £CECURRENT @VECURRENT-NUMERON) (ASYMREL cCANEXT VKTOKEN #VCURRENT-NUMERON 2VENEXT-NUMERON)

Figure 2. Production for getting NEXT-NUMERON.

-
%

4CeCURRENT

€T

fda

«YCURRENT-NUMERON

Fiqure 3, Pattarn for retreving the CURRENT-NUMERON from the data base,

Aruitoxt provided by Eic:
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links in this particular pattern). This means that at one tiu:
time during counting, *V*CURRENT-NUMBER will match to ONE, at
another time to TWO, and so on as couating proceeds. To make
this a little clearer, assume that COUNTER has been told to
count the array of objects "A, B, C, D" and has just finished
counting B as TWO. This means that TWO is now the current
numeron. COUNTER remembers this information by creating a
temporary data structure that has the following -attern

(Figure 4):

CxCURRENT

Figure 4. Data soructure specifying two as the current numeron.

Assuming that the condition patterm of the production in
Figure 2 is tested on the next cycle, it will match to the
pattern in Figure 4 with *C*CURRENT matching to CURRENT as
required and *V*CURRENT-NUMERON matching to TWO, since TWO

is connected through an ida link to CUTLRINT. A successful
match means the condition is true, so the action of the pro-
duction is taken. 1In this case the action ‘also consists of
a single pattern and, just as ORDASSIGN tested for a particu-
lar pattern, ASYMREL tests for the pattern shown in Figure 5.
*C*NEXT is a constant, *V*TOKEN and *V*NEXT-NUMERCN are varia-
bles. *V*CURRENT-NUMERON i3 also a variable, but since it
has already been matched to TWO during the condition test,

it must remain matched to TWO for the remainder of the cycle.
When this pattern is tested against the data base, a match

is found: *V*CURRENT-NUMERON is matched to the TWO node 1

14




Figure 1, *C*NEXT is matched to the NEXT node, *V*TOKEN is
matched rto the N2 node, and *V*NEXT-NUMERON is matched to
THREE.

oVeNEXT~-NUMERON

. 2VeCURRENT-NUMERON
T ——

Figure 5. Partern for retrieving NEXT—=NUMERON from the data base.

Counting involves a series of such cycles through a set
of productions. On each cycle, the conditions of wvarious pro-
ductions are tested ir order until one of them is found te be
true. This causes the action of that production'to be executed,
usually adding some new relations to the data base, and the
cycle is complete. Cycling continues ir this way until no more
conditions are true.

Development of this counting model provided a specific set
of hypotheses about the knowledge structures and procedures
which together constitute understanding of the various count-
ing principles. Briefly:

1. Stable ordering. Stable ordering is achieved through

(a) the simple schema foxr NEXT relations which links each Tniumer-
on in the counting list to its immediate successor, and (b) a

15
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corresponding successor function--similar to the production in
Figure 2--for accessing this ordered list.

2. One-to-one correspondence. Underlying one-to-one cor-

respondence is a simple coordination between the procedures

for choosing the next object and retrieving the next numeron.
This coordination is achieved by the control structure of the
counting procedure itself (similar in structure to, but slightly
more complicated than the control structure in —2ble 1) and
requires no additional knowledge structures.

3. Cardinality. Gelman and Gailistel's evidence for
understanding of cardinality includes children's repetition of
the final numeron, often with emphasis, and their performance
in the magic experiments which apparently involves assoclating
a quantity with the set of objects. COUNTER does this in a
very simple way that depends on storing a goal in memory at
the beginning of the counting sequence and maintaining that
goal in memcxy during counting. (The details of goal storage
and retrieval are discussed in Section 2.) The goal Tepresents
the intent to assign a numerical quantity to the set of counted
objects. After counting is complete, COUNTER ret-ieves this
goal from memory and adds to the data base the relational struc-
ture shown in Figure 6.

Figure 6. Data structure identifying the a3t numeron used in cOuNting as the
size of the group of counted objects.
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This structure involves the relational property SIZE, a token
node (S1) for the relation. and argument links (arga and argb)
to the node representing the group of counted objects (LGl--
for Linear Group) and to the aumeron used last in counting (in
this case, FOUR). The model has also been programmed to print
the final numeron again, along with an exclamation point.

Gelman and Gallistel observed that children wexe less
likely to repeat the final numeron when they counted larger
sets of objects. In the model, repetition of the final num-
eron and formation of a relational data structure assigning
size occur because the goal of finding the size is retrieved
from memory. It is reasonatle to interpret the observed lower
frequency of repeating the final nimeron as a vesult of for-
getting, in which the longer process of counting included
more opportunities for interference with retention of the
goal of finding the set's size.

4. Abstraction. Representation of the understanding of
abstraction occurs by simply omitting tests for the kind of
object chosen at each step of counting.

S. Doesn't matter. Simulation of children's perform-
ance on the "Doesn't matter' (constrained counting) task
requires (a) procedural knowledge about the preconditions
and coasequences of actions; (b) a procedure for checking
the concequences of ome action against the preconditions of
another action; and (¢) a procedure for planning action
sequences such that early actions do not violate the precon-
ditions needed for later actions. So, in addition to having
a procedure for counting in the form of productions, COUNTER
has knowledge about the preconditions and consequences of
that procedure in the form of the semantic network shown in
Figure 7. Given a set of objects to count, the COUNTER knows
that the preconditions for counting any one of the objects
with any one of the numerons are that the object has not Yyet
been tagged with another numeron and the numeron has not yet
been assigned ro another object. (This is simply another
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MAKE 8 FOUR COUNT A, B,C,. D, E

AND

TAGGED
{A, B, C, D, E)

Comie= >

UNTAGGED
(8)

UNUSED
(FOUR}

Figure 7. Dasta sTructure containing information about preconditions and conNsaquUences
retavant to satisfying the special constraint.
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way of saying that an obiect can be tagged only once. and a
numeron can be assigned oniy once.) Counting the object

with the numeron has the consequence that the object is then
tagged and the numeron harc been assigned. Similarly, COUNTER
knows that satisfying the constraint of assigning a designated
numeron to some object has the precondition that the object
has not y<~ been tagged and the designated numeron has not
yet been assigned; the consequences are that the object is
tagged and the numeron is assigned. Therefore, when COUNTER
is given the instruction, ""Make thar (the second object) the
tour," a procedure is execrted that checks the consequences
of this action (i.e., the second object is not tagged and

the numeron is not assigned). If the consequences of carry-
ing out one action vioclate the prezonditions of another
action, special checks for those preconditions are inserted
in the normal counting procedure. In the example there is a
violation: Given a set of five objects, if normal counting

is allowed to proceed first, then the constraint can no longer
be satisfied since its preconditions have been violated (i.e ,
the second object has been tagged TWO and FOUR has been
assigned to the fourth object); similarly, if the constraint
is satisfied first, then counting can no longer proceed as
ncrmal (i.e., in this case the second object is already
tagged and FOUR is already assigned). These viclations

cause special checks for preconditions to be inserted in the
nermal procedure such that each time an object is chosen it

is checked to determine whether it has already been tagged
with a numeron (is it the constrained object?), and each time
a numeron is chosen it is checked tc determine whether it has
already been assigned to an object (is the constrained num-
eron FOUR?). Normally the counting procedure simply omits
these checks. Whenever one of the special checks determines
that either an object or a numeron has already been tagged or
assigned, respectively, a planning procedure is executed. The
planning procedure modifies the sequence in which either the
objects or labels are used to ensure that the preconditions
of the constraint as well as of normal counting have not been
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vioclated when counting is complete. Depending upon whether
any additional constraints (e.g., stable ordering, one-to-one
correspondence) are imposed upon the planning procedure, a
number of different sequences can be generated. Two possible
modified sequences have already been discussed (page 7). The
first sequence, which modifies the order in which the objects
are counted, satisfies the additional constraint of maintain-
ing one-to-one correspondence between the set of objects and the
set of assigned numerons. According to the model, the second
sequence does not take this constraint into consideration dur-
ing planning with the result that numerons are skipped and
one-to-one correspondence is not maintained.

A more thorough discussion of the model of counting and
its theoretical implications can be found in Greeno, Riley,
and Gelman (1979). The primary reason for mentioning it here
1; to provide the necessary background for discussing some of
the productions in the next sections.

Section 2: Mechanics of the Model

The previous section presented a general overview of how
a production system works, including an introduction to the
form of COUNTER's knowledge structures and productions. How-
ever, before we can follow COUNTER through an entire counting
episode in ACTP, the reader needs to become familiar with some
additional features of ACTP. This section includes more de-
tailed descriptions of COUNTER's knowledge structures together
with a discussion of the mechanics of individual productions
and their interactions with the data structures. Also included
is a description of the schemata that comprise the condition
and action patterns of the productions.

Knowledge Structures

There are two primary knowledge stuctures represented in
the data base: (a) COUNTER's ordered list of numerons (CLIST),
and (b) spatial information about the array of objects to be
counted.
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A semantic network representation of CLIST is shown in
Figure 8. Notice that this is the same basic structure dis-
cussed in the last section, wirh the addition of a few more
nodes and links. The elements of CLIST are the symbols ONE,
TWO, and THREE. This is indicated by the links labeled ispart
between the symbols and CLIST. The symbols are also members
of the category NUMERON, as indicated by the links labeled
isa between them and the NUMERON category name. The purpose
of the list membership relation is to identify a numeron as a
member of a list of numerons. This allows numerons in the
1i-t to be distinguished from other words COUNTER recognizes
as numerons but does not yet use to count. For example, a
child may know that EIGHT is a numeron before the child has
learned to count to EIGHT.

The other important relation is the NEXT relation which
is needed to provide a fixed order between the numerons in
CLIST as required by the stable ordering principle. The
ordered relation NEXT links the symbols ONE and TWO to show
that TWO immediately follows ONE in the counting list. This
linkage includes a token node (G0197) in the diagram) and
links labeled arga and arxrgb, indicating a specizZic instance
of the relation NEXT in which ONE and TWO are the first and
second arguments. The symbol ONE is linked through hasprop
to the property name FIRST, representing that ONE has the
property of being FIRST. This property allows COUNTER to
identify ONE as the beginning of CLIST. The FOLLOWED property,
on the other hand, allows COUNTER to find the end of CLIST.
It was included because the relevant condition test for find-
ing the end of the list is a test for the ABSENCE of a NEXT
relation. However, ABSENCE tests can only be performed for
single-link relations. For example, (ABSENCE OBJPROP TWO
FIRST) would test for the absence of a hasprop link from TWO
to FIRST. As shown in Figure 8, NEXT is a multi-link relation
and so the ABSENCE test cannot be used. If it were not for
this technicality, it would do just as well to search CLIST
for a member A that was not connected through NEXT to another
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Figura 8. Data structure representing COUNTER s ordered list of numerons.
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member B, such that member B came after member A in the list.
If a member A were found that satisfied this constraint, then
it would follow from the properties of an ordered list that
member A was the last member of the list. However, in the
current model, it is necessary to search instead for a member
that has the ABSENCE of the single-line FOLLOWED relation;

this member is then identified as the last member of CLIST.

The ability to identify the last memoer of CLIST is a prerequi-
site to extending the list to include additional numerons.

Visual Information

The other data struczture represents COUNTER's visual in-
formation about a set of objects and includes: (a) each ob-
ject’'s X- and Y-coordinates; (b) the difference between the
X-coordinates and the Y-coordinates of adjacent objects; and
(c) the measure of the slope defined by each pair of adjacent
objects. This quantitative information is used by a spatial
scanmaing procedure for choosing the next object tc count with-
out skipping uncounted objects or repeating already counted
objects. The scanning procedure is based on spatial relation=s
that are used in forming perceptual groupings and has been
shown to play an important role in counting (Beckwith & Restle,
1966). Although the current model can only form perceptual
groupings for linear arrays, it seems reasonable that this
scanning ability could be extended to other spatial configu-
rations in a psychologically plausible way by including other
relevant Gestalt grouping principles.

In the examples discussed in this paper, COUNTER counts
four objects arranged in an approximately straight line such
as the following:

A B c D
The data structure containing some c” the visual information

about these objects is shown in Figure 9. Objects A, B, C,
and D are represented by the nodes 0B0178, OB0l71, OBOl64,
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and OB016l, respectively, and each of these nodes is linked
through isa to the OBJECT category node to indicate category
membership. Each object is also linked to its corresponding
X- and Y-coordinates through relations that are tokens of

XCOR and YCOR, respectively.

Information about the differences between the X- (or Y-)
coordinates of adjacent object pairs, though not shown in
Figure 9, is part of the same data structure and is repre-
sented in Figure 10. This particular example contains XDIF
and YDIF information for objects Aaxd B. Object A's X- and
Y-coordinates are connected to their respective relation
nodes through arga links; object B's X- and Y-coordinates
are comnnected through a.gb links; and the value of the dif-
ferences between the two X-, and two Y-, coordinates is con-

nected by argc links.

Figure 10. Data structures representing differences in X— and Y- coordinates for abjects A and B.
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Finally, the slope defined by two adjacent objects is
represented in Figure 1l1. Notice there are two slope meas-
ures given for each pair of objects in the data structure.

YXSLO183

f”'g”

Ca o

Figure 11. Data structure representing the siope defined Dy objects A and B.

This is bacause the slopes are defined in a system of linear-
ized polar coordinates where 0.0 is horizontal and pointing
to the right, 1.0 is vertical pointing upward, 2.0 is hori-
zontal pointing left, 3.0 is vertical pointing downward, and
intermediate directions are given intermediate values. There-
fore, for any array of objects, the slope defined by any two
of those objects can have one of two values, depending on the
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direction of counting. In the above example, tho slope de-
fined by objects A and B is 0.16666 when counting n a left
to right direction, but 2.1666 when moving from right to

lefc.

COUNTER uses all this information when counting an
array of objects. After serting a goal to find the size of
the array, it begins counting by forming an initial percep-
tual grouping which includes some objects at one end or the
other of the array. After counting the end object - ONE,
COUNTER uses the scanning process tc count the remaining
members of this initial grouping in order. Once all these
objects have been counted, COUNTER determines if there are
still objects to be counted that are not yet part of the per-
ceptual grouping. If there are, the same scanning process is
used to extend the group to include some additional objects
which are then counted in turn. This process of extending
the perceptual grouping and counting continues until all the
objects have been incorporated into the grouping and counted.
Compared to the successor function for finding the next num-
eron in the ordered CLIST, the procedure for finding the next
object to count is relatively complicated. This suggests a
plausible explanation for Gelman and Gallistel's finding that
childrer almost never used the same numeron twice or skipped
a numeron, yet they experienced occasional difficulty in keep-
ing track of just what objects had already been counted.

Although the current version of the model limits the
size of the initial perceptual grouping to three objects
and extends the grouping by only a single object each time,
this is not intended to mean that these numbers must remain
fixed; they could be adjusted for particular spatial configu-
rations with the addition of other Gestalt grouping princi-
ples. However, these additions would not alter the basic
combination of perceptual grouping and scanning described
above and in Section 3.
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Single Productions

General form. Figure 12 shows an ACTP production. As
with the other productions we have seen, it consists of a
condition and an action. A grammar specifying the general
form of productions is given in Table A-1 of Appendix A.

Condition:
{((GNUMCHK ( {ASYMREL ONEONE VX!l V2 v22))) =
Action:
(PRINT Vv2 v22) (POPSTACK]) (UNBASE) ({(ORDASSIGN BASE Vv22))
GNEXTN V1 V10 V11 V12)

Figure 12. Production 48 from the current version of the counting model listed in Appendix B.

Condition. In ACTP the condition of a production con-
sists of a control node and zn optional set of pattern speci-
fications. In the above example, the control node is GNUMCHK
and the patterm specification is (ASYMREL ONEONE VX11 V2 V22).
The control node of a production has to be active (i.e., has
to be the current focus of COUNTER's counting procedure) for
the condition test to succeed. If the control node is active,
then the ACT? system searches for a sat of links in its cur-
rent semantic network corresponding to the pattern specifi-
cation in the condition. For example, the pattern specifi-
cation in Figure 12 is an ASYMREL structure containing four

nodes (see Figure 13):
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Figure 13: ASYMREL patrern specifying 8 ONEONE relation between nodes V2 and V22.

In pattern specifications, nodes are designated as either
constants or variables. Constants are represented as oval-
shaped nodes which always keep the same value, whereas the
diamond-shaped variable nodes can change their values from
time to time as the system is running. In the example,
ONECNE 1is a constant. VX1l, V2, V22 are variables. When
ACTP is running, some variables already have values. These
are called bound variables, in contrast to free variables
which have no current values. In searching for a pattern,
ACTP has to use the values it has for bound variables just
as it has to use the constants in the specifications. Thus,
a pattern search starts with the constants and values of
bound variables. ACTP then searches for nodes it can till
in for the free variables.

The production in Figure 12 is relevant to the special
checking procedure for the constrained counting task. When

COUNTER is presented with an array of four objects, A, B, C,
and D, and told, for instance, to ''make C the two," a different
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production causes ACTP to construct a pattern involving the
object C and the numeron TWO linked together through a rela-
tion that is a token of ONEONE (see Figure 14) -

Figurs 14, Data structure represanting a ONEONE reiation betwesn object C and TWO.

This pattern allows COUNTER to remember that C and TWO are the
object and numeron that are to be placed in one-to-one corre-
spondence to satisfy the constraint. Then, when COUNTER is
counting, each time a numeron is retrieved from the counting
list, the condition of the production in Figure 12 checks to
determine if it is the same numeron that is linked to C in
the stored ONEONE pattern. If it is the same numeromn, it is
used to count C; if it is not the same numeron, then COUNTER
knows it can go ahead and use it to count the other uncounted
object it is current attending to.

Assume that COUNTER has been told to count the objects
and "make C the two.'" COUNTER scans the array of objects,
forms a perceptual grouping with A as the end object, and
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therefore ~ -~ ~sunt A with the first numeron in its
counting lis_., ONE. However, before COUNTER can proceed, it
must first check if ONE is the constrainsd numeron. The pro-
duction in Figure 12 is the relevant production for checking
the numeron and so it is tested. V22 is bound to ONE for chis
test, and so ONE replaces V22 in the diagram (see Figure 15):

Figure 15. Pattemn for retrieving a node related to ONE through a ONEONE relation.

ONEONE is always bound, of course, since it is a constant.
Therefore, the patterm matches if there is a node related to
ONEONE as a token, and to ONE through an argbh relation, that
can fit in as VX11l; and anothex node related to the node found
for VX1l through an arga relation. Since ONE 1is not linked

to any other node through a relation that is a token of ONE-
ONE, pattern matching fails and COUNTER goes zhead and counts
A as ONE. COUNTER then selects the next object, B, and re-
trieves the next numercon, TWO. Again the procution in Fig-
ure 12 is relevant and so it is tested, this time with V22

bound to TWO (see Figure 16):
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Figure 18, Partern for retrnieving a nods reiated 1o TWO through a ONEONE refanion.

This time the pattern matches to the structure stored in the
data base which has the node G0185 related to ONEONE as a
token and to TWO through the argbh relation, and another node
C related to GO0185 through the arga relation. When pattern
matching succeeds, two things happen: (a) the nodes that
are found are assigned as the values of the variables men-
tioned in the pattern specification, and (b) the action of
that production is performed. In the example, this means
that C is now assigned to V2 and GO185 is assigned o VX11l.
The action of this production is discussed below.

Action. Three kinds of things happen in actions: (a)
(a) executing special functions which include such opera-
tions as printing output to the terminal, (b) building pat-
texrns by adding new relations and nodes teo the data base, and
(c) remembering and activating nodes. The latter referxrs to
the fact that an action can contain a list of constants and
variables that wil] be activated and remembered on the next
cycle of tests. Any constant on the list will be active for
the next cycle; all other constants will be inactive. Any
variable on the list will have its value remembered and thus
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will be a bound variable on the next cycle. All unmentioned
variables will have their values forgotten and thus will be
free variables on the next cycle.

The production in Figure 12 has five action components:
(PRINT V2 Vv22), (POPSTACK), (UNBASE), ((ORDASSIGN BASE v22)),
and GNEXTN V1 V10 V11 V12. PRINT is the special function for
printing output; thus (PRINT V2 V22) is the action of printing
the current values of the specified variables. In the exam-
ple, V22 is bound to the numeron TWC, and V2 has just been
bound to C. This plece of action, then, prints a node desig-
nating the object C along with the numeron TWO . The intention
is to represent pointing to an object and saying a numeron.

(POPSTACK), another special function, is involved in
removing goals from the data base once they have been satis-
fied. However, before we describe exactly how this is done,
a brief discussion is in order conceiming what goals are used
in ACTP, and why goals are used in the first place.

Goals in ACTP are of two kinds. Simple goals are set by
activating control nodes, such as GNUMCHK . control nodes func-
tion as goals thatr produce selection of productions whose pat-
terns will be tested. For example, the production shown in
Figure 12 is one of two productions that may be tested when
the control node GNUMCHK is active. Having GNUMCHK active
cor-esponds to COUNTER having the goal of checking whether a
numercn -hat has been retrieved is the specially constrained
numeron in a courting task. Simple goals are set on a cycle-
by-cycle basis and are set and removed without changing the
network structure that represents the situation.

Complex goals are used when it is necessary to sStore
information abcut a goal in memory. This happens whenever a
goal cannot be achieved immediately and will need to be re-
trieved later after another goal has been set and achieved.
Complex goals are stored in a pushdown memory stack. When-
ever a new complex goal is adopted, the previously current
goal is stored by placing it in the goal stack. Whenever
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the current goal is achieved, that goal is removed from the
memory stack, and the next previous goal reaches the top of
the goal stack.

Three functions in ACTP are involved in management of
complex goals. A schema, GOALX, creates data structures that
represent goal information. An example 1is in Figure 17. The
structure shown there is constructed at the beginning of count-
ing; the goal is to find the size of the group of objects pre-
sented to COUNTER. When this stucture is in memory, a pattern
such as (GOALX GOAL VXI XFIND SIZE V2 V3) would be matched,

80 the system is able tc retrieve information about what it
needs to do next, after it h- 3 completed a part of the task.

Figure 17. Data structure representing the goal of firding the size of the group
of objects to be counwed.

Goal structures are formed in ACTP by a function SETGCAL.
which creates a structure in the form shown in Figure 17, using
the GOALX schema. SETGOAL also modifies the goal stack. Be-
fore creating a new goal structure, SETGOAL adds the current
goal to the stack of prior goals in memory. Another function
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POPSTACK, is used in an action when a goal has been accom-
plished. POPSTACK removes the current goal from rhe data
structure and changes the goal stack by removing the top
entry “rom the stack and making it the current goal.

The structure shown in Figure 17 is formed when COUNTER
13 asked how many objects there are in a set. This identifies
G0224 as the current goal. If in addition to determining how
many objects are in an array, COUNTER is also told to "make
C TWO,'™ G0238 is added to the goalstack, and a second GOALX
pattern is built in the data base, identifying G0238 as the
new current goal (see Figure 18).

Figure 18. Data structure -epresenting The goM of “"Making C TWG™

Figure 19, then, represents the goal stack at the time the
production in Figure 12 is relevant.

Figure 13. Goal stack contmning one goal.
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However, the current goal of satisfying the special constraint
was achieved when the action (PRINT V2 V22) was performed. So
(POPSTACK) removes GO0238 from the data base and checks the
goal stack to see if there are any wore goals. This is equiva-
lent to COUNTER asking itself, "Now that I've satisfied the
constraint of making C the TWO, is there anything elce I need
to take care of?"” In this case, there is another goal in the
stack--the goal of assigning the last numeron used in counting
as the cardinality of the set. POPSTACK removes G0224 from

the stack and makes it the current goal once again.

Referring again tc Figure 12, the special funcrion
(UNBASE) removes the structure that represents the _urrent
problem base. This data structure has the node LAST con-
nected to one or more nodes in the data base by linys ida,
idb, idc, and so on. BASE's main functiom is to provide
eraseable memory that is not easily handled with bound varias-
bles in the ACT? system. BASE puts a node into memory so that
it can be retrieved and assigned as the value of a variabile
during some later cycle. In the example, the current problem
base at the time the action of the production is taken is

shown in Figure 20.

BASE

ide

ONE .

Figure 20. Data structuro representing the current problem BASE.

This structure was used to store the most recently used num-
eron so that it would be available to COUNTER when i1t came
time to retrieve the next numeron from the ordered list of
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numeronx. That is, when it came time to count object B,
COUNTEF. aceded to remember that ONE was the last numeron it
used 2> order to retrieve the appropriate next numeron (i.e.,
TWO) from CLIST. However, ncw that TWO has just been used

to count C, ONE is no longer the most recently used numeron
and so UNBASE removes it from the data base. The next action
component, ((ORDASSIGN BASE V22)), creates a new pattern in
the data base, making the current value of V22 (which in this
case is TWO) the base of the problem, as shown in Figure 21.

BASE

ida

-

Figure 21. Data structure representing the current problern BASE.

This means that the next time COUNTER needs a numeron to count
an cbject, it will remember that TWO was the last numeron it
used and therefore choose THREE as the newnt unused numeron.
THREE will be used to count the object an. will then replace
TWO as the current base, and so on. So in the example, UNBASE
and ORDASSIGN are part of an iterative procedure that allows
COUNTER to proceed systematically through its ordered CLIST
without skipping or repeating numerons.

The last action component consists of GNEXTN and some
variables. CNEXTN is a constant, and its being mentioned at
the end of the production causes the control node GNEXTN to
be active on the next cycle, in turn causing the condition
patterns of a different production (or productions) to be
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tested on the next cycle. The reason GNEXTN, and not some
other constant, is mentioned here is because iz is the con-
stant used as the control node for the productions that are
relevant to the next step in COUNTER's procedure. In this
case, the next step is to retrieve the next unused numeron
from CLIST. This is because COUNTER had retrieved TWO, in-
tending to use it to count B, but discovered that TWO was
the constrained numeron and had to use it to count C, the
constrained object, instead. This means that COUNTER still
needs a numeron to count B. Since productions with the con-
trol node GNEXTN are designed to retrieve the next unused
numeron from CLIST, their control node is activated for the
next zycle.

Finally, V1, V10, V11, and V12 are wvariables: mentioning
them in the action of the production causes their current
values to remain bound on the next cvcle. In the example,
object B is the current value of V. and must remain assigned
so COUNTER can remember that B is the object it intends to
count next. V10, V11, and V12 are related to COUNTER's per-
ceptual scanning and grouping procedures which will be dis-
cussed in rhe next sectiom.

Steps in matching and executing a production. The syn-
tax of a production is easier to understand if one has a clear
understanding of the procedures used in attempting to match
the conditions and executing the actions of productioms.

When ACTP tests a producticn, the question is whethex
the condition can be matched in the data structure. Typically,
there are twoc parts of a condition: a control node & d a pat-
texn specifiction. Neither of these is required, and pruluec-
tions written for ACTP often have onlv a control node. More
thar one control node or more than one patterm specification
can be included, but that has not been done in any models that

have been programmed.

ACTP proceeds through the elemernts in the condition of a
production. If an element is an atom, ACTP tests whether it
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is an uactive node. If it is not, then furthexr testing s
omitted. If an element is a list, ACTP assumes that the
element is a pattern specification. This will be a list of
concept schemata, each of which is a list beginning with a
schema name, such as ASYMREL or ORLCASSIGN. ACTP assembles
a list of links that correspond to the concept schemata in
the pattern, noting the nodes that consist of constants,
bound wvariables, and free variables. ACTP then tests
whethexr the pattern can be matched in the current data
structure. If it fails, it proceeds to the next production.
If a match is found, the free variables in the patterm are
bound to the nodes that they matched, and ACTP goes on to
the next element in the condition, if there is one. If all
the control nodes are active and all the patterns can be
matched, ACTF goes on to execute the action of that produc-

tion.

Actions have three kinds of components: atoms, which
must be variables or constants; special functions, which are
included in single parentheses; and pattern specificatiomns,
which are doubly parenthesized, i.e., lists of lists. In
executing an action, ACTP proceeds through the elements of
the action. If ACTP encounters an atom that it recognizes
as a constant, it places the atom on the list of active nodes.
If the element is a variable, it places the value of the varia-
ble and the wvariable on the list of bound variables for the
next cycle and makes the value an active node. If ACTP en-
counters the name of a special function in a list, then the
function will b« executed by LISP. If ACTP encounters a list
that is not a special function, then it assumes a pattern
specification. It assembles the list of links that corre-
spond to the pattern specification, using the values of all
variables that were either bound initially in the c¢ycle or
that were matched in testing the condition of the production.
Any wvariables thatr do not have wvalues are given wvalues in the
form of unique symbols generated by LISP. The links in this
set are added to the data structure.
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Comments on the use oi parentheses in productions. The
tyvpical form of a production is shown in Figure 22. The entire
production, consisting of a condition-action pair, is inside a
set of parentheses. Then the condition is also enclosed in
parentheses to separate it from the action. Within the con-
dition, the list : | pattern specifications is containea ia
yet another pair of parentheses, and each individual patterm
specification is also in parentheses. Sometimes a condition

contains no pattern specifications:

((GCOUNT) (PRINT V1 V22) (UNBASE) ( (ORDASSIGN BASE
V22)) GNEXTOB V10 V11l V12)

Here the entire condition is the control node GCOUNT, closed
off by a single parenthesis; everything else is the action.

In the action, pattern specifications are inside double
parentheses. Special functions are inside single parentheses.
Modes and variables that are to be kept active for the next
cycle are just mentioned, with no parentheses.

Thus, when reading a production from lefrt to right:
1. A production starts with two left parentheses.

2. There is a single symbol at the beginning. This is
the control node for the production.

3. 1If there is a right parenthesis after the control
node, that completes the condition of the production.

4. If there is no right parenthesis after the control
node, there should be two left parentheses. This is the be-
ginning of a list of ome or more pattern specifications. The
list of pattern specifications ends with three right parenthe-
ses, and this completes the condition.

S. The action may contain one or more pattern specifi-
cations. Each pattern specification (or each list of pattern
specifications) begins with two lefr parentheses and ends with
two right parentheses.
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Bagin Production
Condition

Control Node List of Pattem Spefications

mdﬁ\mm
Yy v

13FINDBOUND {[ORDASSIGN BASE V1 V2 VN1) (OBJCAT V4 OBIECT) (ASYMREL V11 VXI VAN (NCOMP*LESS N4 N1))

I

Action
Spfen Papech Nextnode  Var

(UNBASE] {{ORDASSIGN BASE V4 V1 V2 N4)} GFINGBOUND V. il

|

End Production

.Fioun 22, Typicalform of a production (Production #16).
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6. The action may contain one or more special functions.
Each special function begins with one left parenthesis and
ends with one right parenthesis.

7. The action may contain a control node to be active
on the next cycle. This will be mentioned with no pare-the-
ses around ict.

8. The action may contain one or more variables whose
values will be remembered (bound) on the next cycle. These
will be mentioned with no parentheses around them.

9. The production ends with a single right“parenthesis.
If the last thing in the production is a control nrnode or a
variable, the terminating parenthesis will be by itself. If
the last thing is a special function, its right parenthesis
will be with the terminating parenthesis, so that the pro-
duction will end with two right parentheses. If the last
thing is a pattern specification, its two right parentheses
will be there, so the production will end with three right
parentheses.

A flowcha:-t for writing a production is shown in Fig-
ure 23. Although it assumes a rigid order for the action
side of productions, this is not mandatory and experienced
users may prerer different orders.

A special note on conditions with no ﬁ;::ern specifica-
tions. When the condition of a production consists only of
a control node, the action of that preoduction will be taken
if (a) the control node is active during a given cycle, and
(b) no preceding production has already been tested as true
on that cycle. This can be made clearer by the following

example.
Compare Productions 23 and 24 from Appendix B:

P23
( (GOBJCHK ((ABSENCE OBJPROP V1 SPECIAL))) GNEXTN V10 V11 V12 V1)

P24
( (GOBJCHK) GNEXTOB V10 V11 V12)
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Fiy e 23. Flowchart for writing a single production.
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These productions are relevant to the special checking in-
volved in the constrained counting task. In constrained
councing, each time COUNTER selects a new object to count.
it checks the object to determine if it is the one involved
in the constraint. If it is not the constrained object,
COUNRTER goes ahead and gets the next unused numeron from
CLIST. If it is the constrained object, COUNTER skips it
and selects the next object to count from the array. This
is because COUNTER intends to count the constrained object
whenever the constrained numeron shows up as the "next"
aumeron in the course of counting the array; skipping the
constrained object here, then. ensures that it will not be

counted twice.

Production 23 checks the object assigned as the value of
V1l ro make sure that it does not have the property SPECIAL
("'SPECIAL'" here means ''constrained'). If che object in ques-
ticn is not a special (constrained) object, then the conditiom
of this production is true and its action is taken. This
causes the control nod. GNEXTN to be active on the next cycle
as well as the variables V10, V11, V12, and V1l to remain
bound with their current values. GNEXTN controls the produc-
tions responsible for getting the next counting name in the
model’'s ordered counting list.

Production 24, on the other hand, has no condiction par-
terns to be matched. However, while it is true that there
are no explicit condition patterms, consider the fcllowing
situation. On any cycle when GOBJCHK is active, both Pro-
ductions 23 and 24 are possible candidates for tesring be-
cause they both have the same control node. But remember
that only one production is fired during any single cycle
snd this production will be the first production whose con-
trol node is active and whose condition pattern (if any)
matches successfully to the data base. Furthermore, ACTP
productions are ulways tested in order. This means that
whenever GOBJCHK is active, Production 23 is always tested
pefore Production 24. If Production 23's condition pattern
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matches, its action changes the active control node to GNEXTN
for the next cycle; in this case Producrtion 24 is nmever tested
at all. In fact, the only time Production 24 is tested is
when Production 23's condition pattern does not match. So,
taken together, Productions 23 and 24 say, "If the object
attached as the value of V1 is not special (i.e., if this 1is
not the constrained object), then go ahead and get the next
numeron in the counting list; otherwise (i.e., if this is the
constrained object) find another object to count (this is
accomplished by activating the control node GNEXTOB)." Pro-
duction 24 does., therefore, have an implicit condition in
this case by virtue of following another production having
the same control node. This will ofi.en be true of other
"conditionless' productions in the model and is important to
keep in mind when interpreting Appendix B.

Schemata

A schema is a concept represented as a set of links that
g0 together to make a recognizable configuration. Each schema
has a name which is used to identify that schema in produc-
tions. A schema also has some slcots that are filled in with
variables or constants when the schema is used in a produc-
tion. Some schemata in ACTP correspond to a single link;
other schemata contain several links. Three of the single-
1ink schemata--OBJTYPE, OBJPROP, and PARTOBJ--are shown in
Figure 24. OBJTYPE (also referred to as OBJCAT for "'object
category') has its arguments linked by isa, OBJPROP has 1its
arguments linked by hasprop, and PARTOBJ has its arguments
linked by ispart.

A fourth schema that is used in this system is ASYMREL,
a generic structure involving an asymmetric relation with any
number of arguments. For example, the ASYMREL schema shown
in Figure 25 has two arguments for a total of four mnodes.

The name of the relation (for example, NEXT, ONEONE, YXSLOPE,

SDIF or YDIF) is the node at the top. A uniqu~ symbol is a

token of that relation. This symbol can be 4any convenient
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Figure 24. Single—ilink schemata.
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Figure 25. ASYMREL schema.
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jdentifier such as NXT or YX, followed by a2 number; when an
identifier is not specified, then the unique symbol is G fol-
lowed by a number. The arguments are included as the remain-
ing nodes in the structure. For example, suppose a production
has the pattern (ASYMREL NEXT vXl v21, Vv22), and V21 is bound
with the value TWO (refer to the CLIST diagram in Figure 8).
This would match with VX1 bound to G0198, and V22 bound to
THREE. Consider another example involving the same pattern,
but suppose thar V22 is bound with the wvalue TWO when patterm
matching occurs. Then the pattern will match with VX1 tound
to GO197, and V21 bound to ONE.

Finally, the ORDASSIGN schema tests for the pattern
shown in Figure 26:

Figure 26. ORDASSIGN schema.

The top node is generally BASE, though it can be anything.
Although there are four arguments linked to BASE in the above
example, ORDASSIGN, like ASYMREL, can take an unlimited num-
ber of arguments. For example, in Production 48 ORDASSIGN
took only one argument: ( (ORDASSIGN BASE V22)). The ORDAS-
SIGN pattern can be removed from the data base by using the
function UNBASE. Thir means that rhe base of the process can
be altered from time to time during the running of the produc-
tion system. The utility of this schema will become apparent
in the discussion of the actual counting model.
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The uses of schemata involve matching and generating
patterns. In patterm matching, a schema will be p. 7t of a
structure that has some of its arguments already fixed as
constants or bound variables. If all the arguments are
fixed, pattern matching is simply a check to see whether the
1inks in the data base agree with thrse specified in the sche-
mata. If some of the arguments ave not fixed, then patterm
matching involves a search to see whether there are nodes in
the data Sase thet will fit into the specified structure.

For example, suppose a production has the patterm (ASYM-
REL NEXT VX1 V21, VvV22). NEXT is a constant: suppose VX1, V21,
and V22 are not bound. The pattern matches if there is a node
related to NEXT as a token, to another node through the arga
relation, and to yet another ncde through the argb relation.
The diagram of the CLIST structure indicates two sets of nodes
that qualify: eirther G0197, ONE, TWO, or G0198, TWCO, THREE.
One of the token nodes (either GO1l97 or GO198) will become
bound as the value of VX1, and its corresponding arga and
argb relation nodes will become bound as the values of V21
‘and V22, respectively. Since there are several wvalid possi-
bilities, it is not clear which of the sets of nodes will
actually be found.

Now consider an example of how different schematas .o
combined in a complex pattern specification. The example is
taken from the condition pattern of the ADDTAG production
mentioned earlier. Basically, this production extends the
ordered CLIST by (a) identifying an elemern: Imown to be a
nuperon but not yet a number of CLIST, and (b) linking this
element through NEXT to the last numeron in CLIST:

( (ADDTAG ( (ASYMREL NEXT VX1 V21 V22) (ABSENCE OBJPROP V22
FOLLOWED)

(OBJCAT V23 NUMERON) (ABSENCE OBJPROP V23 FOLLOWED)))

((PARTOBJ V23 CLIST) (ASYMREL NEXT VX2 v22 v23) (OBJPROP V22
FOLLOWED))

v
.
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The condition consists of the control node ADDTAG and a pat-
tern specification composed of four schemata. This means
that the pattern to be found cannot have a different node

in the ASYMREL schemz2 than in the OBJPROP schema. Thus the
two schemata are combined inteo the following single pattern
in Figure 27:

Figure 27. Patzarn for retrieving the last numaeron 10 cLIST.

Together they allow the model to identify the last numeron-
in CLIST. That is. the only nodes involved in NEXT relations
in rhe current data base are the nodes representing the num-
erons in CLIST and the only one of these nodes lacking the
property FOLLOWED is the last one. Indeed, referring back

to Figure 3, node THREE is the only node in the data base
that has the right relation with both the consta- NEXT and
the constant FOLLOWED. The pattern matches, THR becomes
the value of V22, and TWO and G0198 are assigned as the
values of V21 and VX1, respectively, as shown in Figure 28.
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Figure 28. Data structure reprasenting the NEXT relation betwesn TWO and THREE.

Similarly. the last two schemata of the condition patterm
mention a single variable name, VZ3. Together, these two sche-
wata allow the model toc find an element in its data base that
{s a NUMERON but is not yet a member of CLIST. (OBJCAT V23
NUMEROK) specifies that the node assigned as the value of V23
must be a NUMERON. The following diagram (Figure 29) shows
all the nodes that qualify:

Conve > A7
L7

G

50

N

o



However, (ABSENCE OBJPROP V23 FOLLOWED) further specifies thact
the node assigned as the value of V23 cannot have a hasprop link
to FOLLOWED. This additional requirement eliminates ONE and TWO
as possible candidates for the value cof V23 since these three
nodes were linked to FOLLOWED when they became members of CLIST.
Although the node THREE does satisfy both requirements, it has
already been assigned as the value of V22 and cannot be assigned
again in the same condition.

Considering all four schemata together, then, the condition
of the above production says, '"'Find the end of the current CLIST

and then find an element that is known to be a numeron but is not

already in the ordered CLIST.'" Assuming that this condition can

e met, the action of the production is to make this unordered
numeron part of CLIST, link it with THREE through a relation that
is a token of NEXT, and link THREE through hasprop to FOLLOWED.
This results in the expanded version of CLIST shown in Figure 30.

Notice that the FOUR was the numeron chosen to be bo»nd as
the value of V23. As mentioned earlier, numerons FOUR to TEN,
inclusive, were all possible candidates. FOUR was bound simply
because the pattern matcher found this node first when evaluating
the elements of NUMERON. A more elegunt version of ADDTAG would
perhaps assign varying ''strengths'" to the as-vect-unordered
numerons; a numeron's strength would then determine its proba-
bility of being bound to V23 when ADDTAG was ac-ive (as opposed
to leaving it up to the built-in '"whims' of the pattern matcher).
The relative strengths of numerons could conceivably be a func-
tion of such things as watching Sesame Street and seeing SIX,
or hearing a poem with TEN in it.

A general point about the system is that most link-types

have inverses, and the system is indifferent to which direction

is specified in a schema. The inverse of isa is memb, the in-
verse of haspropr is isprup, the inverse of ispart is haspart,

the inverse of toker I:- tvpe. Arga's inverse is_argal, ana

argb's inverse is argbl. This is r»>t an issue of any substan-
tive importance, but there will be times when the inverse
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Figure 30. COUNTER'S extendec T.
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relations wi®l be specified, and it is confusing if "A isa B"
is not recognized as identical to "B memb A,' and sco on.

Section 3: A Detailed Lock at How rthe Model Counts

This section follows COUNTER in detail as it counts a
group of four objects. It describes the components of the
counting procedure as a series of actual cycles through
COUNTER's set of productions. The output from these cycles
is shown in Appendix C and will be referred to throughout the

discussion.

Some Preliminaries

Before COUNTER can begin to count, it must be ''started up
as shown at the beginning of Appendix C. STARTUP is a LISP
function that informs the ACTP system running the model of the
variable names, constants, links, and so on, that will be used
in a particular set of productions. Without this information,
the system cannot distinguish variables from constants, for
example, and therefore cannot operate. STARTUP also builds
COUNTER's ordered list of numerons, CLIST, into the data base.
Inictially CLIST consists of only the numerons ONE, TWO, and
THREE (see Figure 8). During the first few cycles, the func-
tion ADDTAG will be used to extend the list to six numercns.

& listing of the STARTUP relevant to the current version cf the
counting model is given in Appendix D along with a discussion of
the main STARTUP functions. )

(Incidentally, a "*' .n the printout indicates that any-
thing following it on the same line was typed in from the
terminal.)

Still referring to Appendix C, the next line arfter (START-
UP) to be typed in from the terminal is (GENSET OBJECTS). GEN-
SET is another LISP function that sets up an initial data struc-
ture; something like GENSET is always needed to define a model’'s
initial knowledge state. In the counting model, GENSET sets up
the representation of the visual information in the display c.
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objects. The reason this was not done in STARTUP is because
GENSET takes different arguments depending on the number of
objects to be counted, and their location; its arguments could
not be easily changed in STARTUP. GENSET takes as its argu-
ments the names of objects and the values of their respective
X- and Y-coordinates. On the basis of this information, it
computes the difference between the X- (and Y¥-) coordinates

of adjacent object pairs as well as the slope defined by those
pairs. The output of this function is the data structure
representing the spatial information the model uses to scan
and count the objects. In the example shown in Appendix 2,
the variable OBJECTS had as its value the list:

(OBJECTS (A 7.0 0.0) (B 8.0 9.20000000) (C 9.5 0.0)

(D 10.0 0.0)

Operating on this list, GENSET generated the data structure
discussed in the last section and shown in Figure 9. Some of
the nodes in this structure were printed out in response to
the YES reply to SHOW-STRUCTURE?

TRACE is a LISP function that takes ti 2> names of other
1LISP functions as its arguments, e.g., PREQPLAN and PREQCHK.
These other functions are then ''traced’ whenever they are
called during a cycle. A trace is a detailed report of a
function's execution within a program and is primarily used
as a debugging device.

CYCLE tells the system to begin the prccess cf cycling
through its set of productions. A YES response to THINK-ALOUD?
causes the names of all currently bound variables and contreol
nodes to be printed out at the beginning of each cycle. If a
NO response is given, only the number of the current cycle is
typed each time, except when the action of a production includes
the PRINT function.

(SETQ DEBUG NIL) is a LISP signal telling the system not
to print out debugging information during the cycles that follow
jr. (This could just as well have been tyved in before starting
CYCLE.) Similarly, if at any time debugging information is

54



needed, (SETQ DEBUG T) can be typed in, causing this informa-
tion to be printed out on subsequent cycles. In fact, LISP
signals can be given as input to any cycle, after which ACTP
will execute the functions that are specified.

The output from each cycle includes a list of the active
nodes and a list of the variables that have bound values. So

when the system now returns:

NIL
NIL
1

>>=> Y

NIL indicates that al the beginning of the first cycle there
were no active contral nodes and no currently bound wvariables;
therefore, no productions were tested and no action taken.

As already mentioned, LISP signals can be given as input
to a cycle. Alsc permitted are inputs that bezin with any
one of the words onn ACTPlP's list of titles that is defined in
STARTUP (see Appendix D). These inputs then become active
during that cycle in the same sense that constants mentioned
in the actions ofproductions become active for the next cycle.
For example, in Appendix C, the next input from the terminal
is (ADDTAG) which causes this control node to become active as
shown at the beginning of Cycle 2:

(ADDTAG)

NIL )

2
ADDTAG 1is the control node of the production relevant to ex-
tending COUNTER's ordered list of numerons (discussed under
Schemata). The NIL under the (ADDTAG) says that there are
still no bound variables. ADDTAG is active on this cycle and
since it matches the control node of Production 1, the action
of the production is taken. Notice that whenever aan action is
taken, the corresponding action patterns are printed out at
the end of the cycle along with a temporary data structure
identifying any per—anent new additions to the data base.
These structure de “criptions start with a symbol beginning
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with ST and give a list of the nodes included in the structure.
For example, at the end of Cycle 2 :n the appendix, the action
patterns of Production 1 are printed out and ST0200 identifies
the new adlitions to the data base:

2

(((PARTOBJ CLIST) (ASYMREL NEXT VX2 V22 V23)

(OBJPROP V22 FOLLOWED)))

(ST0200 (FOUR CLIST NEXT G0199 THREE FOLLOWED))

This says that at the end of Cycle 2, FOUR (assigned as the
value of V23) has become a part of CLIST: the relational node
NEXT has been assigned a new token node (GO0199) thar takes
THREE and FOUR as its ordered arguments; and THREE is now con-
nected througn a hasprop link to FOLLOWED. The data structure
containing these new additions to the ordered list of counting
names 18 shown in Figure 30. FIVE and SIX are added to CLIST
in the same way by activating (ADDTAG) for Cycles 3 and 4.

On Cycle S, COUNTER prepeares to count by setting the goal
of finding the cardinality of the set of objects. (HOWMANY) is
typed in from the terminal, causing this control node to be
active on this cycle. (HOWMANY is one of the words on ACTP's
1ist of titles.) Production 4 is the only production with this
control node. It is tested during Cycle 5 and there arxe no con-
dition patterns to be matched so the action is taken. This
causes a new goal, represented by the token node G0224, to be
added to the top of the goal stack and the structure in Figure
19 to be added to the data base. This structure represents a
goal for finding the numerical size of a group of objects (i.e.,
its cardinality).

COUNTER is now ready to count. This time NIL is typed im
from the terminal which indicates that no input is provided for
the next cycle. However, part of the action of P4 was to acti-
vate the constant GSEE so there is an active control node at
the beginning of Cycle 6.
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Aruitoxt provided by Eic:

COUNTER Counting

The following discussion of the counting procedure skips
over the initial scanning and perceptual grouping of the objects
(Cycles 6-11) and begins with Cycle 12. By this time, COUNTER
has already scanned the array A B C D and has formed a percep-
tual grouping of the three leftmost objects (i.e., A, B, and C).
Then using information about which end of the array it found and
the direction of the path between the end object and another ob-
Ject in the group, COUNTER formed the following relational struc-
ture (Figure 31) which indicates that the array is approximately

SCAN
$
3 argd 0.16666665

4

G0245 rge

% ) |'E=E=EII

o‘*o‘

T
-
>
.
Geeoa D N> Greorez D Cxeoraz
® X <
$ % & = <

> GO @D GD  @ored GD

Figure 31. Parceptuai grouping of objects A, B, and C.
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horizontal, scanning is to occur in a left-to-right direc-
tion, and the slope of the path that w1ill be used to extend
the group if it becomes necessary. A perceptual linear
grouping, designated by the node GC238, has been formed and
consists of three objects denoted OBO1l78, OBO171, and OBOl64
(objects A, B, and C, respeccrively). A structure involving
a relarion called SCAN has also been formed. The arguments
of the scan relation are the group of objects (G0238), the
dimension of scanning (XCOR for horizontal, YCOR for verti-
cal), the direction of scanniug (*GREAT for left-to-right or
bottom-up, *LESS for the opposite directions), and the slope
defined by the first two objects In the a- ay (0.16666665) .

Cvcle 12. During this cycle, COUNTER first focuses on
the perceptual grouping of objects it has just formed and
identifies the object at the left end of this grouping as
the first object to be counted. This object (i.e., object
A) is then tagged with the property of being the current
bound of the set, an operation equivalent to placing a tag
on each object as it 1= counted.

At the beginning cI Cycle 12, GCOMPACT2 is active.
Following GCOMPACTZ2, on the same line, are the bindings of
the variables that were held over from the previous cycle.
The next line pairs these bindings with their respective

variables:

(*GREAT V12 XCOR V11l OBO178 V1 7.0 N1 OBOl171 V2
8.0 N2 0OBOl64 V3 9.5 N3)

Thus, *GREAT is currently assigned as the value of V12, XCOR
is assigned to V11, OBO178 is assigned to V1, 7.0 to N1, and
so on.

P22 is the only prcluction whose control node is activ
on this cycle, and so it is the only production that gets
‘rested. The condition of this production tries toO match the

following pattern (Figure 32} to the data base:
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Figure 32. Pattern for retrieving visual information about the group of objects.

The pattern matches to the data structure shown in Figure 31,
and the free variables V10 and VX3 are bound to G0238 and
G0245, respectively. Since the condition matches, the action
is pexrformed. This action assigns V1 (object A) the pProperty
BOUND . (Note: This refers to the lower bound of the set of
uncounted objects and is not to be confused with the bound
value of a variable.) The second action component, (UNBASE),
Temoves all arguments from the temporary data structure,

BASE. Finally, the constant GNEXTN (NEXT Number) is activated
because it is the control node of the production relevant to
the next step ir the model’'s counting procedure, and the bind-
ings of v10, Vv11l, Vv12, and V1 are held for the next cycle.

The next step is to get a numeron frcm the ordered CLIST.

Cvcle 13. On Cycle 13, COUNTER retrieves a numeron from
its ordered 1list of counting names so it can count the first
object in the array. In this case the successor function is
not yet applicable since getting the ''mext' numeron from
CLIST requires that there already be a current numeron. This
means that COUNTER must begin with the first numeron; this
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involves simply identifying the numeron in CLIST that has
the property first.

At the beginainsg ¢f this cycle, GNEXTN is active and
G0238, XCOR, *GREAT, and OBO178 are alrea .y assigned as
the values of V10, V11, V12, and V1, respectively. P45 and
P46 are both candidates for testing since they both have the

active control node. P45 is the procuction that retrieves
the next numeron in CLIST. It comes before P46 in the
model’s set of productions and so it is tested first. The

first part of its condition requires finding the following
ORDASSIGN pattexrn (Figure 33) in the data base:

<>

Figure 33. Patern for retrieving the current problem BASE.

itla

Throughout the counting procedure, V21 is the variable that
gets bound to the most recently used numeron. However, since
there are no used numerons on this cycle, this pattern fails
to match and P45°s action is mnot taken.

P46 is tested next. Its function is to retrieve the
first numeron from CLIST. The condition requires finding
the pattern shown in Figure 34.
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Figure J4. Pattern for retriaving the first nureron from CLIST,

This pattern is matched to the CLIST structure in the data base
(see Figure 30) and V22 is bound to ONE. The action of P4€ acti-
vates the control node GCOUNRT and holds the bindings of V1, v22,
Vi0o, V11, and V12 for the next cycle.

Cycle 14. This cycle involves COUNTER counting the object
A with the numeron ONE. P55 is the only production whose control
node 1s active. Therxre are no condition patterns to be tested and
s0 the action 1is performed. The values of V1 and V22 are printed

out at the terminal.
dkdk (OBO178 ONE)

This is intended to represent COUNTER counting object OBO1l78 with
the numeron ONE. The rest of the action removes the current BASE
(on this particular cycle there is none to remove) and reassigns
the numeron that was just used as the current BASE. Figure 35
shows ONE as the current problem BASE, signifying that ONE is the
most recently used numeron.

2

Figurs 35. Qata structure specifying one as the current protiem 3ASE.
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GNEXTOB (NEXT OBject) is then activated and V10, V11, and V12
hold their bindings for the next cycle.

Cycle 15. Having counted object A, COUNTER now scans its
initial perceptual grouping, LINGROUP, to determine if there are
objects that have not vet been assigned the property BOUND, (i.e.,
have not Yet been counted).

P31 is the relevant production here. In order for its con-
dition to be true, there must exist a node in the data base that
is a member of the current LINGROUP (LINGROUP is the value of V10)
but does not have the property BOUND. The current data base con-
tains the following information (Figure 36) on LINGROUP which is
represented by the token node GD238:

0B0171

BOUND

Figure 36. Data ~iructu - >~ “arng nformation about the sat of ob1ects.

There are two candidates« § - m=atch: OB0178 and OB(Clé64 whica
represent the objects B and . respectively. OB0l64 happens
to be chosen and is assigned as the value of V1. Before this

object can be counted, however, COUNTER must check to see if
there are any other objects between O0BOl64 and the most recently
counted object (OBO178). So GCHBETWEEN (CHeck BETWEEN) is acti-
vated and the mentioned variables keep their wvalues for the

next cycle.
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Cvcle 16. Be fore counting the object it just found,
COUNTER checks to make sure that therc are no other untagged
(i.e., uncounted) objects between this object (object 0LN164)
and the last object it counted (object OB0O178). Since the
direction of counting in the example is from lett to right,
this is equivalent to checking fnr the existence of another
uncounted object whose X-coordinate 1is less than OB0Ol64's
X-coordinate. I1f there does exist an objlect with a smaller
X-coordinate, this object replaces OB0l64 as COUNTER's cur-
rent focus and the checking procedure is repeacted until the
uncounted object with the smallest X-coordinate is found.
Thus, in the same way that applying the successor function
to CLIST ensures that the retrieved numercon is the one imme-
diately next to the most recently used numeron, this percep-
tual checking procedure ensures that the object selected for
counting is the one closest to the object that is currently

the upper bound of the array.
At the beginning of this cycle, GCHBETWEEN is active and

so P4l is rested. The condition 1equires first finding the
following pattern (Figure 37) in the data base.

F.gure 37, Partern for retmeving the value of otject C's X-coordinate.
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Next a second pattern must be found. cuvnstrained so that the
node assigned as the value of V2 does not have the property
BOUND, as shown 1in Figure 38

Figure 38, Pattarn tor relrimving an Object 0 LINGROUP together with 13 X.coordinate

The first pattern is matched to the data base and XC0143 and
9.5 are assigned ac the values of VX1 and Nl. These nodes
cannot be assigned again to different variables during the
same cycle, so the second pattern must be matched to a dif-~
ferent set of nodes. Again the match is successful and
SCO142, OBO171, and 8.0 are assigned as the values of VX2,

V2, and N2, - espectively. This means that COUNTER has identi-
fied arnther uncounted object in LINGROUP: it does not ryetl
know, however, if this object is cleoser than 0B0O164 to the
last counted object. So the next condition test involves a
comparison of N1 and N2 to determine if the relation bound to
V12 is true with respect to them. In this case, V12 has the
value *GREAT and., since 9.5 (0BOl64’'s X-coordinate) is greater
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Aruitoxt provided by Eic:

thaa 8.0 (OR1071's X-coordinate), the relation is indeed true.
This indicates that 0BO0l71 is closer than OBCl64 tc the last
counted object (0B0178), casuing COUNTER t» change its cur-
rent focus. However, before it can go ahead and count OBO1l71.
the model must repeat the checking procedure tc de: —mine if
there 2xists yet another object closer than 0OBO171 to OB0178.
Therefo~ , the last condition component and the entire ~tion
of the current production prepare COUNTER to refocus i check-
ing procedure > OBO171.

The rv.“ocusing process is somewhat confusing here because
the current production, P41, is also the production that will
be used to check OB0171. This requires that before checking
can proceed, OBOl71 must be assigned as the value of V1, the
variable that P4l considers to be bound to COUNTER's current
focus. Without this reassignment, the next time P4l is exe-
cuted VI would still be bound to OB0164 and the model would
be caught in an infinite loop. OBO0l71 cannot be assigned as
the value of V1 on this cycle, however, because OBOl71 is
already assigned to V2, and V1 is already bound to OB01l64.
The strategy here is therefore the following: (1) remove
the Lindings of V1 and N1 by failing to mention V1 and N1
with the other variables on the action side of the production;
(2) hold OBOl71 and its X-coordinate (8.0) in temporary mem-
ory until they can be assigned on the next cycle to the then
free variables V1 and N1, respectively. The second part of
this strategy requires the use of the ORDASSIGN schema. Sim-~
ply mentioning the variable bound to 0BOl171 in the action of
the production is not appropriate here because this would
mean thac 0B0171 would already be assigned on the next cycle
and could therefore still not be assigned to V1, even though
V1 would then be a free variable. The ORDASSIGN schema, on
the other hand, allows nodes to be remembered without assign-

ing them to variables.

COUNTER has already used the ORDASSIGN schema to store the
node representing the last numeron used in counting and there-
fore already has .the following pattern (Figure 39) in memory:
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Figure 32. Dt structurs spacitying ONE as the current probiem BASE.

Creating a new problem BASE requires rhat this existing BASE
structure first be removed from memory. Before this is done,
however, “OUNTER needs some way of remembering the last num-
eron since it will need this information when it comes time
to retrieve the next numeron in CLIST. The last conditizn
component serves this function. The pat:-ern created by
(ORDASSIGN BASE V21) is matched to the above structure in the
data base with the result that V32 is now bound to ONE. Thus,
even after the special function UNBASE removes the existing
BASE structure, ONE is temporarily remembered as a wvariable
binding. Once the old BASE is removed, ((ORDASSIGN BASE V21
V2 N2)) creates a structure “hat becomes the new problem EASE

(Figure 40):

Figure 40. Data structure specifving the current oroblem BASE.
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™his allows OBOl71 and 8.0 to be remembered for the next cycle
without being held as specifie variable bindings. Finally, V1
is not mentioned in the action of the production and so it be-
comes a free variable for the next cycile.

Cvcle 17. Cycle 17 simpiy serves to assign 0B0178 and 8.0
as the values of V1 and N1, respectively. This permits COUNTER
to refocus its checking procedure to determine if OBCl71 1is,
in fact, the object closest to the last counted object.

GCHB2 (CHeck Between) is active, causing P44 to be tested.
The cordition pattern matches to the BASE stxructure created
duwing the previous cycle. Notice, however, that two of rhe
arguments in the BASE structure have been assigned to new
variables. During the last cycle, CBOl71 and 8.0 were assigned
to rew variables. During the last cycle, 0BOl71 and 8.0 were
assigned to V2 and N2; the action taken during this cycle re-
assigns them to rhe variables V1 and Nl and holds these new
bindings for the next cycle. In this way, V1 is now bound
with COUNTER's mcst recent candidate for the object closest
to the last object counted. So together P4l and P44 allow
COUNTER to scan the uncounted objects in the direction of the
last object counted until it finally finds the one that is

the closest.

Note--in a slightly newer ~version of ACTP rebinding varia-
bles can be accomplished within a single production with a
special function called REBIND. The action of P4l could be

rewritten as:
(REBIND V1 V2) (REBIND N1 N2) GCHBETWEEN V10 v1l V12

V1 is rebound with the value of V2 and Nl is rebound with the
value of N2. Vil is not mentioned in the action because it is
to keep its current binding, which it will since it is the cur-
rent base of the problem; for this reaon (UNBASE) is omitted
from the action as well. Written this way, P4l also accom-
plishes what use to require P44. P44 is therefore no longer
necessary and P4l can simply call itself.
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Cvcle 18. During this cycle, the same checking proce-
dure that was applied to 0B01l64 is applied to OB0171. This
time there exist no uncounted objects between the current
focus of the checking procedure and the last counted cbject.
OBO171 is then identified as the next uncounted object in the
array. COUNTER then prepares to> count OB0171 by activating
the control node of the production relevant TO retrieving the
next numeron from CLIST.

GCHBETWEEN is active again but this time V1 is bounc  ch
OBO171 instead of OB0l164, changing the assignment of nodes to
condition parterns. Now the first condition patteru matches
to the structure in the data base containing OB0O1l71 and its
X--oordinate, as shown in Figure 41.

Figure 41. Data structure specifying an X-coordinate relation between abject B and B.0.

Since the only other uncounted member of LINGROUP is OBO1l64.
it gets assigned as the wvalue of V2 when the next part of the
condition pattern is matched. Ths problem arises when the
values of N1 and N2 are compared. N1 has the value of 8.0
and is therefore not greater than the value of N2 which 1is 9.5
and the condition fails to match.
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P42 is tested next and since there are no condifion pat-

terns to be matched, the action is taken. This results in
OB0171 being linked to the property BOUND. ind cating that
it is rthe next object to be counted. GNEYT s activated

again and variables V10, V11, V12, and V1 .:ep :their bindings

for the next cycle.

Cvcle 19. COUNTER has just found ancther coh’ect to count
and this requires retrieving another numer:- “rec= CLIST. This
time, COUNTER has a last used numeron in memoryv and so it can
apply a simple successor function to CLIST to retrieve the
next wmused numeron.

GNEXTN is active and P45 is tested. The condition .cquires
finding the following patternm (Figure 42) in the data base:

Figure 42. Pattern for retrieving the numeron «n CLIST that is next to ONE.

A match is found (see Figure 30) with the result that TWO and
G0197 get assigned as the values of V22 and VX1, respectively.
Thus TWO has been identified as the member of CLIST that imme-
diately follows the last used numeron ONE. The results is that
GCOUNT is activated and COUNTER prepares to count OBO1l71.
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Cycle 20. Having just Tretrieved the next unused numeron
from irs ordered list of counting names, COUNTER goes ahead
and counts OB0171 (object B) as TWO.

Since GCOUNT is active, P55 is the only production to
be rested on this cycle. There are not condition patterns to
be matched so the action of printing our the values of V1 and
v22 is raken:

**k**x (OBO171 TWO)

This represents COUNTER counting the second object in the
array, OBJ171, with the numeron TWO.

The nexrt piece of action removes the current BASE {(which
contains the node ONE) 2ad reassigns it with the value of V22,
which is TWO in rhis case. In this way, COUNTER can "remember"
that TWO is now the lasast numeron it used. This information is
retrieved when it comes time to get the next counting word in
CLIST.

GNEXTOS is activated and V10, V11, and V12 keep their
bindings.

Cycle 21. COUNTER 1is again in search of the next object
to count. It first scans the perceptual grouping, LINGROUP,
and identifies OB0l64 (object C) s+ a possible candidate.

GNEXTOB is active and so P31 ! tested. This production
determines if there are any mcre uvncounted objects in the cur-
rent LINGROUP by trying to match the pattern shown in Figure 43

o738 D

ispart

Vi

Figure 43. Pattern fcr retrieving an obyect from LINGROUP.
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under the additional comstraint that V1 cannot be 1linked to

the property BOUND. (G0238 is the current member of LINGROUP.)
The pattern matches and CBOl64 is assigned as the value of V1.
0B0164 was the only choice possible since 0B0O178 and 0OBO171,
although also members of LINGROUP, both have the property
BOUND. The only action taken is to activate control node
GCHBETWEEN and keepr the mentiocned variables bound with their

values.

Cycle 22. Before counting OB0164, COUNIER scans the array
for any other uncounted objects in LINGROUP that are betweern
OB0164 and the last object it counted. Since the only other
objects in LI.. . ROUP (OB{0178 and OBOl71) have already been
counted, COUNTER identifies OB0l64 as the next object to be
counted and preparzs to zZet the next unused numeron from
CLIST.

GCHBETWEEN is active. P4l is tested and the first condi-
tion pattern is marched, assigning XC01l43 as the value of VX1
and 9.5 as the value 2f N1. The nexrt part of i : condition
tests for the pattern (shown in Figure 44) where ~he node
chosen as the value of V2 cannot be linked to the property

Figure 34. Pattern for retrieving an object 'n LINGRQUP rogether with 11s X-coordinate.
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BOUND. Since the onlv two candidates for V2 (i.e., 0B0O178
and OBO171) also have the property of being BOUND, the condi-
cion fails and P42 is tested. This production has no patterm
specificarions to be matched and so its action is taken:
OB0O164 is assigmed the prcperty BOUND; GNEXTN is activated
for the next cycle; and the menticned varizables keep their
current bindings.

Cycie 23. Again COUNTER applies a simple successor func-
tion to CLIST to retrieve the next unused numeron.

The active control node GNEXTN causes P45 to be tested
cn this cycle. The first part of the condition pattern causes
COUNTER to recall its current prcblem BASE (which is TWO in
this case) znd binds it as the wvalue of Vi. The second part
of the condition pattern tests for the node that comes after
V1l in CLIST, shown in Figure 45. The pattern matches and
THREE is assigned as the value of VZ22Z. The acticn of this
production activates control node GCOUNT and holds the bind-
ings of the mentioned variables.

Figure 45. Patrern for retrieving 3 nexT numeron from CLIST.
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Cyvcle 24. On this cycle, COUNTER counts 0B0164 (object C)
as THREE.

GCOUNT is active and P55 gets tescted. Since there is no
condition patterm, the action of printing out the current
values of V1 and V22 is teaken:

*kkF*x (OBC164 THREE)

The rest of rthe action re—oves the current BASE and links it
to the value of Vv22. GNEXTOB is then activated and V10, V11,
and V12 keep their bindings for the next cycle.

Cycle 25. This time when COUNTER tries to find another
ocbject to count, it discovers that there are no more uncounted
objects in LINGROUP. It therefore prepares to>execute a pro-
duction that extends the perceptual group to include new
objects.

Since GNEXTOB is active, P31l is tested. V10 is currently
bound to G0238 which is the symbol for LINGROUP, the percep-
tual subset formed during the initial scanning of the array.
V1l is a free variable and the condition of this production
requires that it be matched to a node in the data base that
has an ispart link to G0238 but at the same time lacks a
hasprop link to BOUND. The only members of LINGROUP are
OBO178, OB0Ol71, and O0OBUl1l64; since all these nodes have the
property BOUND, the condition fails to match.

P32 also has GNEXTOB as a control ncde and it is tested
next. Thexre are no condition patterns to be matched so the
action of this production is taken, causing GEXTEND to be

active on the next cycle.

Cycle ?26. Oun this cycle COUNTER extends the perceptual
grouping it just finished ccunting to include wther objects
in the array that have not yet been counted. 1In the current
version of the model, this is a simple procedure that extends
the groap a single object at a time, proceeding along the
same line as the scanning path of the current perceptual
group. Extending the group, then, requires first retrieving
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the relevant perceptual information and so the first pattern
that must be matched to the data base is shown in Figure 46
(see P33):

[~
D
-t
Q
——

Figure 46. Partern for retrieving visual information about n# <Djects.

It matches to the data structure shown in Figure 7., binding
GO145 to VX 1 and 0.16666665, the slope of the scanning path,
to NI1O.

Next COUNTER checks to see if there are any objects in
the array that arxre not Yet part of LINGROUP. It tries to
match the pattern (Figure 47) with the restriction that the
node assizned as the value of V1 canncc be linked through
ispart to G0238 (the node symbolizing LINGROUP). In this
case, OB0l64 is the only node that qualifies and so it is
bound to V1, its X-coordinate is bound to N1, and the rela-
tional node XC is assigned to VXZ.
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Figern 47 Partarn ‘0r ratriaving an abject and corresponding X-coc - nare.

Now COUNTER determines the slope defined by rhis new

object and one of the counted objects by matching the pattern
shown in Figure 48:

Figure 18, Pattern for retrieving the siope defined by obdject O and an adjscant object.

75



The match is successful and 0OBOlé4 is bound as the value of
V2, and 0.0 and YXCLO170 are found as the values of NZ and
VX3, respectively.

The next cordition requirement is that the values of N1
and N2 must be appreximately equal (i.e., the new object must
form an approximately linear array with the other objects) .
This requirement is also satisfied, making the entire condi-
tion of this production true and so the action is taken.

Now COUNTER must check if the e are any other objects
closer than OBCl64 to the most recently counted object. So
GCHCLOSER is acrivated and the mentioned variables are kept
bound with their wvalues.

Cycle_27. COUNTER must make sure that the new object
is the ob»jiect closest to the already counted group (i.e.,
closest to LINGROUP). OB0l61 (object D) is the only remain-
ing obiec  and therefore has tc be the closest. COUNTER iden-
rifies rhis objec~ as the next object to count.

GCHCLOSED is active so P32 is tested firsrt on this cycle
and ~ries to match the pattern constrained so that V3 cannot
L. a part cof LINGROUP (Figure 49):

Figure 35. Partern for ratrieving two n ades lirked thraugh an XCOR relaton.
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The only possible candidate for VY3 is OBOl6l but since it is
still assigned as the value of V1 from the last cycle, the con-
dition fails to match (i.e.., there are no other uncounted cbjects
closer to the aliready counted group than 0B01l61).

P40 is tested nmext. There are no condition patterns to be
matched so the action is taken. The action adds the following
structure (Figure 50) to the data base making OBOl6l part of
LINGROUP and assigning it the property BOUND.

Figure 5. Data structure icenufying D as a port of LINGRGOUP.

Cvcle 28. Once again COUNTER retrieves the next mumeron
from CLIST. GNEXTN is active. P45 is tested and the following

condition pattern (Figure 51) is successfully matched and FOU
is bound as the value of V22.

token e

o

Figure 51 Pattern ¢ar retrieving the next ~umeron frem CLIST.
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Cycle 29. At this point, CCUNTER '"sees' an object it

wants to coun: and has a counting name ready to use. The
active control node GCOUNT causes P55 to be tested on this
cycle. Since there are no condition patterns to match. the

action of this production is taken with the result that the
object gets counted:

*J%*x*x (0OB0161 FOUR)

Cvcle 30. Having just counted an object, COUNTER attempts
to find another ocbject to count. GNEXTOB is active, causing
P31 to be tested. However, since there are no more objects in
LINGROUP which do not also have the provperty BOUND, the condi-
tion pattern fails to match.

P32 is tested next. There are no condition patterns to
match so the sction is taken to activate GEXTEWD and keep the
mentioned variables bound with their wvalues.

Cycle 31. The control node GEXTEND is active and once
again COUNTER attempts ro extend LINGROUP to include any ob-
jects in the array that have not yet been counted. P33 is
tested and the first condition pattern is successfully matched
to the data base (this is intended to represent COUNTER recall-
ing the relevant perceptual information about the array, in-
cluding the direction of counting, slope of the array. and so
on). However, since there exist no more objects in the array
that have not already been made part of LINGROUP, the next
three condition patterns fail to find a match for V1.

P34 is tested next on this cycle. There are no condition
patterns to be matched and so the action of activating the
control node RECALL is taken. However, the only variable to

keep its binding for the next cycle is V10 (its binding 1is
G0238, *he symbol node for LINGROUP). This is because now
that COUNTER has already counted all the objects, it need no
longer remember the information it used to determine the
direction and slope of the counting path.
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Cycle 32. COUNTER has not morec objects to count so it
checks to see if there is anything else it wanted to do:
that is, are there any current goals on the goal stack. In
ACTP goal retriev:sl is accomplished with the GOALX schema
which generates a pattern identica”™ to the pattern generated
by the SETGOAL schema. ACTP then tries to match this pattern
against the pattern at the top of the current goal stack.

A successful match indicates a currant goal has been identi-
fied.

In the example, COUNTER has a single goal patterm, shown
in Figure 17 (page 34). This represents the goal of assign-
ing the cardinality of the set of counted objects. Retriev-
ing this goal, then, requires generating the identical pat-
tern with the GOALX schema.

RECALL is active on this cvele and so the model first
tries to match the pattern specified in the condition of P35
to the pattern at the top of the gocal stack. This particu-
lar pattern is only relevant to the constrained counting
task and fails to match COUNTER's current goal. P36 is
tested next and this time the pattern matches. This repre-
sents COUNTER recalling that it is to find the cardinality
of the set and causes the control node GCARDINAL t~ be acti-
vated.

vele 33. On this cycle, COUNTER satisfies its current
goal by assigning FOUR, the last numeron it used, as the car-
dinality of the set of ol jects it just counted.

The active control node, GTARDINAL, causes P38 to be
tested on this :ycle. The condition pattern of this pro-
duction requires that COUNTER first remember the last num-
eron it used before it can assign it as the cardinality of
the set of cobjects represented by G0238 (currently bound as
the value of V10). The pattern matches and FOUR is assignerl

as the wvalue of 21 (Tigure 52):
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Figure 52. Data structure represented current problem 8ASE.

The action creates 2 structfure that links FOUR t= GO0238
through a relation node that s a token of STZE (Figure 53)

Fijure 53. Data structure dentiying FUUY as the cardinality of the group ot countes objests.

and prisin- - . alue of Vi, followed by an exclamation poin.,
identify’..g 1is numeron as the cardinality of the set:

*Hkx*x (FOUR'3}
Siace the cardinality goal is now satisfied, the action

{(POPSTACK) removes the corresponding structure from COUNTER's
goal stack.
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Cycle 34. On cthis ecycle, COUNTER checks again to see if
there is anything else it intended to do. RECALL is active,
but since there are no more goals lefr in the stack, the con-
dition pattexrns of both ?35 and P36 fa2il to match. The action
of P38 indicates that COUNTER has completed its counting pro-

cedure :
((FINISH
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APPENDIX A
Formal Description of ACTP

A model in ACTP has the focllowing components:
: et of constants,

a set of variable: .

a set of relations,

set of concept schemata,

a set of numerical relations,

o wn & W N
[

a network of categorical and other bar <round
knowledge, including a set cf input t *s,

7. a nmetwork of information constituting tae inittal
task situation, and

8. a set of productions.

Coristants are defined in STARTUP. ‘hey include symbols
to be used as control nodes, such as GNE.» 0B and GNEXTN, as
well as symbols that will be included in the data structure
and referred to in productions, such as NLUMERON, ZERO, ONE,

annd so on.
rariables are also defined in STARTUP, for example, V1,
V2, and so on.

Relations are listed in STARTUP in order to define pairs

of inverse relatiomns, for example, (LABL CNPT) and (ISA MEMB).

A concept schema is a name, a set of arguments, and a
1ist of relations between pairs of the arguments. In a net-
work where there are nodes and relational links, a subnetwork
matches a schema if the nodes in the subnetwork correspond tO
the arguments of the schema, so thart all the relations in the
schema correspond to links between pairs of nodes that are
determined by the argument-node correspondence.

Numerical relations are the standard binary selations,
:ck as greater than, equal, and so on.
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Background knowledge includes categories defined in
STARTUP, consisting of isa relat. ons between category mem-
bers and category names. One of the categories 1s TITLE,
and the members of this category can be used in providing
input information during operation of the model. Names of
categories and members of categories are automatically de-
fined as constants by ACTP. Information other than cate-
gories can also be included . 1 background iaformation. An
example is the set of successor relations involving NEXT
that are provided among the nuuerons that are in the initial
CLIST for COUNTER.

The network representing the initial task situation con-
tains nodes that represent objects that are present in the

situation as well as relations among the objects. The situa-
tion presented to CUUNTER has objects that are to be counted
and spatial relations among the objects. Formally, the net-

work for the situation and the network of background knowledge
are indistinguishable in ACTP, but the two networks typically
have information that differs significantly in the psychologi-
cal interpretation ¢f the model.

Productions have been described inforr :(y in considerable
detail in this report. A grammar specifying the syntax of
ACTP productions is given in Table A-1. The first rule says
that a production has a condition and an action, with the con-
dirtion first. The seccnd rTule says that a condition can have
one or more control nodes and one or more pattern specifica-
tions. In practice, there is alway- a single control node
and either one pattern specification or no pattern specifica-
tion. The third rule says that the control node is a constant.
"Constant"™ is not a terminal, but the terminals that 2re writ-
ten for constants are defined for specific models. Figure ~-1
shows a fragment 5f the derivation tree for the production
that was ciscussed initially, shown in Figure 12 (page 28).
First, Rule 1 rewrites production as condition and actiomn.

Rule 2 is used to rewrire condition as a single contr. node
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Tabte A-1

Grammar for ACTP Production

10.

Control node

Production — condition + aciion
Conditlon - (control nodel” | (pattern specificanon!”

~ constant

Pattern specitication -+ (concept schemal® . {numernicat constraint)”

Concept schema =~ schema name *+ {argument)’
Argument -+ constan!

Argurmnent —= variable

Numeri.cal constraint = NCOMP - numerical relation + n—argument * n—argument

N~ argument — variable

1. Act on

12.

15

16.

Soecial

Special

Special

Special

Speciat

N-argument — number

-= lspeciat functionl® | {pattern specification)® | (varmnier” tconstant)”
function - PRINT + {argument)”®

tunction — POPSTACK

tuncnion — UNBASE

tuncuon — FINISH

tunctions — RERBIND + vervable + argument

Note. x + y means order 1s mandatory, x . v means order is optional; 'ower case means nontermunal ;
i2alicized means terminal nodes defined for specific models. upper case means terminal;
{x} means x 15 cphonal; x” means x can be repcated.
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production
~
\
condition action
\
control node cattern specifical -n special function
\
constant concept schema
GNUMCHCK schema name argument argument
ASYMREL constant variable
ONEQONE VX

Figure A-1, Fragment of derivation tree far product-on =438.
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and a single pattern specification. Rule 3 is used to rewrite
control node as constant. Constant is rewritten as GNUMCHK,
one of the constants defined in the COUNTER model.

The fourth rule in Table A-1 says thsac a pattern speci-
ficat - can have one or more concept schemata and one or
more nu.. ical constraints. The fifth rule says that a con-
cept schema has a schema name at the beginning followed by
one or more arguments. While the number of arguments is syn-
tactically optional, most concept schemata have the numbur
of arguments fixed, and the production must have the required

numer of arguments.

In Figure A-1 the pattermn specification is rewrltten
according to Rule 4 as a single concept schema. The concept
schema is rewritten as schema name plus four arguments (two
are shown) using Rule 5. The schema name is ASYMREL. The
first argument is a constant, ON™ YE. The second argument 1s
a variable, VX1i.

Bules 8, 9. and 10 uspecify the syntax of numerical con-
straints. They must begin with the symbol . :OMP, then have
the name of a relation (for example, *GREAT), theun have two
arguments. These arguments can be either variables or literal
numbers. Variablies would be assumed to have numerical values.

Rule 11 specifies the s'mtax of actions, which can have
one or more special functions, orne or moTe pattern specifica-

rions, variables, and coustants. The production in Figure 12
(page 28) has three special functions, a pattern specification,
a constant, and three variables. A fragment of the derivation

is shown in Figure A-1 where Rule 11 is used to rewrite the

action.

Rules 1z to 15 specify the special functions that are
available in ACTP at present. REBIND was not available when
COUNTER was programmed. It is used to bind the variable listed
£:rst either to the constant or the value of the variable that

-

is "~ Isted second.
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Figure A-2 presents a formal description of the ACTP pro-
gram in brief form. The program has thirec states: input,
match condition, and execute action. When the svstem starts,
there is a data structure and a list of productions. The
system initially goes to its input state. If an input is
received, the system responds by activating nodes and forming
network structure that is added to thaz data. The syst2m then
goes to State 2, with the first production available to be
tested.

In State 2, the condition of a production is tested. Tf
a match is not found, the next productrion is made available
and the system remains in State 2. If a match is found, the
free vari’ables That were matched are bound to the nodes that
were found in the match, and the system goes tc State 3.

State 3 executes the action of the production that was
matched. 1f tte action includes the special function FINISH,
the system will halt. The components of the action ar.: exe-
cuted: special functions are performed, new network struc-
ture is added to the data, variables that are mentioned are
retained with their ralues for the next cycle, and constants
that are mentioned are made active nodes for the nex: cycle.

We now present a more detailed formal description of
ACT?'s operation: The data stwucture is a graph, with a set

of nodes:

X = {xl;. . e XN}.
Links in the graph are distinguished; there is a set of rela-
tions:

R = {rl,. - - Tl

In the usnal way, each r, defines a set of ordered pairs on
the gr-aph. Each rember of the set is a pailr that is linked

Dy relation Ty i.e.,

Ri = {(xj. xk): T, (xj, xk)}.
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data structure,
productions

activate nodes,
form network,

next x = f.ost production
» - ~

production

2: match
condition

x fails x matches

bind varmables

S~—

perform special func.aons,
form network,

reatain variables,

activate nodes

firmish

Figure A-2, Formal description of the ACTP program.
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A subset of the nodes in the graph are designated as
constants; ~hat is, they have a property that permits them
to be referred to directly in productions.

C= {x: x « X, e(x)}.

Ancther property is applied to a changing set of nodes dur-
ing operation of a model. This is membership in the set of

active nodes.

A= {x: x € X, a{x)1t.

Finally, nodes are the values of wvariables. Each variable
defired in the model defines a set Vi consisting of the ele-
ment to ~nich the variable is bocund. If the wva~iable is not
bound, Vi i3 ewmpryv.

Vi - {x: x € Y, vi(x)}.

Now, consider Figure A-2. . - che srtart, the initial
data structure is a graph of the form specified above. Ini-
tially A is empty. The input can cause elements to be placed
in A and can cause additional relarions to be applied in the
graph. Ir is possible for new nodes to be added, although
this is ¢ pically not done from input.

In State 2, ACTP attempts to match the condition of a
production. The condition is a formula whose terms are con-
stant. ., bound wvariabies, and free variables of the form:

(axi) ... (qu) (F(b1 ... bp Xy - - - xq)).

where each bi is either a constant or a bound variable, and
each x; is a free variable. F is a conjunction of terms,

-
each of ~hich is one of the feollowing:

a(b;), T;(b;, b)), rj_(bj. x ). ri_(xj. X ).

i ]
For the conditicn to be matchec, the formula mus+t be true in
the data structure. ACTP attempts to verify F bv testing the

assertions abour constants and bound variables and then search-
ing for a set of elements that sactisfy the constraints on the

free variables,. If the search succeeds, then ""““e eliements
found to correspond to the free variables become the wvalues of

those variables as the system moves tc State 3.
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Ordinarily the pattern must be matched with distinct
values for all the different free variables, and no free
variable can be matched to the value of any bound variable
or constan: in the pattern, although this rescriction does
not apply to variables that have numbers as values. To
state this additional constraint formallw let

- = {xl. . e e xq}, B = {bl, e e bp);

thar is, B is the set of values of the bound variables, and
W is the set of values of free variables that satisfies the
pattern match. Let N(xi) mean that X, iz a number. For a
pattern to maich, the formula F must be true with the follow-

ing constraints:

v X5 xj(xi, xj e W o> x; = xj - N(xi), N(xj));

v X bj(xic W, bj = B-«oxi - bj »N(xi)).

i
There is a facility in ACTP for relaxing the constraint

of distinct values. This facility was not used in COUNTER

and is not described in the body of this report. In writing

ACTP pattern specifications, one can specify subpztterns of

variables and constants. This is done by placing -he terms

in parentheses, along with subpattern tags, which may be any

distinctive symbols. For example, the condition of Produc-

rion P6 in Appendix B is ( OBJCAT V1 OBJECT) (OBJECT V2 OBJECT)).

Since V1 and V2 are different variable names, they must be

matched to different nodes in the data structure. To relax

that restriction, the pattern specification would be started

as ({({OBJCAT (V1.A) OBJECT) (OBJCAT (V2.B) OBJECT)}». This

spec.fies two subpatterns, tagged A and B.

When subpatterns are designated, the values of variables
in different subpatterms are allowed to overlap. In the exam-
ple mentioned above, V1 and V2 could be matched to the same
value since they are in different subpatterms. Variables that
are not in subpatterns can be called global variables. All
the global variables must have distinct values, and all
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variables in subpatterns must be distinct from all the global
variables. Further, all the different variables in each sub-
pPattern must be distinct. (Again the restrictions to distinct
values do not apply if the values are numbers. )

In the execution state, special functions are performed,
some of which alter the data structure by removing links.
New network structure 1s added, including addition of new
nodes in the graph. If a variable v; is mentioned, its wvalue
is put into Vi-for the next cycle, and if a constant bj is
menticned, it is a member of A for the next cycle,
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APPENDIX B
A List- of COUNTFR's Productions

PROLIST

1. L{(ADDTAG
CCASYMREL NEXT UX1 W21 vaz
(ABSENCE OBJFROP Y22 FOLLOWED)
<DBJCAT V23 NUMERON)
¢ABSENCE OBJIPROP V23 FOLLOWED) )
((PARTOBJ V23 CLIST)
(ASYMREL NEXT UX2 V22 vad)
(OBJPROP V22 FILLOWED) )
2. ((MAKE ¢({ORDASSIGN BASE V1 V21)))
((OBJPRIP V1 SPECIAL)
(3BJPROF V21 SPECIYIAL)
(SETGOAL GOAL VUX12 XRESTRICTIDAN MAKE V1 V21)
(ASYMREL ONEONE VUX11i V1 VZ1)5)
(PREQPLAN)
GSEE)
3. ((MAKE2 ((ORDASSIGN BASE 1 V21)))
¢ (OBJPROP V1 SPECIAL)
(OBJPROP v¥21 SPECIAL)
(SETGOAL GOAL VX12 XRESTRICTION MAKE V1 Vz1))
~ (PREGQPLAN) :
GSEE)
4. ((HOWMANY) ((SETGOAL #BDAL VUXi XFIND STZE 2?GROUP TNUM)) GSEE)
5. ((GSEE
¢ (OBJCAT V1 OBJECT?
(OBJCAT V2 QBJECT)
(OBJCAT V3 OBJECT)
(ASYMREL YXSLOFE Vi1 Vi vZ N1l)
(ASYMREL YXSLOPE VX2 V2 U3 N2)
(NCOMP APXEQ N1 N2)))
¢ (OBJCAT V10 LINGR WF?
tPARTOBJ V1 V10D
(PARTOBJ V2 V10)
(PARTOBJ V3 V10))
GDIMEM
V10
N1)
6. ((BSEE ((ORJCAT Vi OBJECT) (OBJCAT V2 OBJECT) )
C (COBJCAT V10 FAIR) (PARTORJ Vi FAIR) (PARTORJ V2 FAIR))
GCFAIR .
V10
Ui
v . )
7. ((BSEE ¢ (OHJCAT V1 OBJECT?)) ((QBJCAT ViO SINGLE) BCSINGLE 410 Vi
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8.

0.
l1.

12.

13.

14.

15.

{(GDIMEN ((NCOMF AFPXEQ N1 1.0)))
(CASTMREL SCAN UX1 V10 YCOR))
GALIGN ~
M10)
((GOIMEN ¢ (NCOMF AFXEQ Ni 3.03))
(CASYMREL SCAN UX1 V10 YCOR))
GALIGN
vi0)
C(GBTIMEN)Y ((ASYMREL SCAN VX1 U19 XCR)) GALIGM Y10)
¢ tGALIBN
((ASYMREL SCAN UX1 V10 V11)
*(PARTOBJ V1 V10)
(ASYMREL V11 UX2 Vi N1)
(PARTOBJ V2 V10)
(ASYMREL V11 UX3 V2 N2)
(PARTDBJ V3 v10)
(ASYMREL V11 UX4 U3 N3
(NCOMP *LESS N1 N2)
(NCOMP LESS N2 N3))?
BCHPOUND
V10
Vi1
vi
v2
v3
N1
N3)
¢ C(GCHBOUND
(¢OBJCAT V4 DBJECT) (ASYMREL V11 UX1 U4 N4) (NCOMP XLESS N4 N1)))
GCHBOUND2
V10
Vi1
V1
v2
V3
N1
N3)
¢ CGCHBOUND )
((ASYMREL SCAN UX1 V10 V11) (ASYMREL YXSLOFE VX2 V1 VU2 N103))
C(CASYMREL SCAN VX1 V10 Vil .XGREAT N10)> (OBJPROF U1l ROUND))
SDIRECT
V10
vi1)
¢ <GCHBOUND2
(COBJCAT VA OBJECT) (ASYMREL V11 VX1 U4 N4) (NCOMP XLREAT N4 N3>))
((ORDPASSIGN BASE V4 V1 U2 N43)
GF INDBOUND)
{ CGCHBOUND2
(CASYMREL SCAN UX1 V10 V11) (ASYMREL YXSLOPE VX2 U3 U2 N10)))
((ASYMREL SCAN UX1 V10 V11 XLESS N10) (OBJFROP U3 BOUNDY)
GDIRECT
V10
v11)
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16. ((GFINDBOUND _
( (ORDASSIGN BASE V1 U2 V3 N1)
(OBJCAT V4 OBJECT)
CASYMREL V11 UX1 Va4 N4a)
(NCOMP XLESS N4 M1i)))
(UNBASE>
¢((ORDASSIGN BASE V4 V1 VY2 N4))
GF INDBOUND
Vi)
17. (<(GFINDBOUND .
© C(ASSIGN BASE V1 U2 U3) (ASYMREL YXSLOFE ¥X1 Y1 VU3 N1O))
((OBJCAT V10 LINGROUP:
(PARTOBJ V1 V109
(PARTOEJ V2 V10)
(PARTOBJ V3.Y10)
(ORJPROF V1 BOUND)
(ASYMREL SCAM X1 210 V11 ¥GREAT N10Y3

GDIRECT

V1o

Vil
1g. ({(GDIRECT ((ASYMREL SCAN UX1 W10 V1i V121 GCORMFACT yio wii i
1s. ¢ (GCOMPACT e e

( (PARTOHJ V1 V10> (ASYMREL Vi1 VXt VU1l N1
(CBJPROP V1 BOUND)
(FPARTDBJ VU2 V10)
(ASYMREL V11 UX2 V2 NI)
- . (PARTOB.J V3 V10)
- (ASYMREL V1i VX3 VU3 N3)
C(NCOMP V12 N3 N2)))

GCOMPALCT2 ~
L
va
v3 -
N1 g
N2
N3
vii
- viad)
‘ 20. ((GCOMPACTZ2
((OBJCAT V4 OBJECT?
(ASYMREL V11 UX1 V4 N4)
(NCOMP V12 N2 N4)
(ASYMREL YXSLOSPE UX2 Vi V2 N10)))
C (OBJCAT V10 LINGRCUP)
(PARTOBJ V1 V10)
(PARTOBJ V4 V10D
(PARTOBJ V2 V1O0)
(ASYMREL SCAN VX3 V10 V11l 12 N10)»)
GCOMPACT
V1o
Uitd
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21. ‘((GCOMPACT2
((OBJCAT V4 OBJECT)
(ASYMREL V11 UX1 V4 N4
(NCOMP U12 N3 N&)
(ASYMREL YXSLOPE UX2 V1 U4 N10)))
C(COBJCAT V10 LINGROUP)
(PARTORJ V1 V10)
(PARTOR. V2 V10)
(PARTOBJ V4 U10)
(ASYMREL SCAN UX3 V10 V11l V12 N10))
GCONPACT
vio

viiy»
22. ({GCOMFALCTZ ((OBJCAT V10 LINGROUP) (ASYMREL SCAN VX3 V10 V11l Vi2)))

((OBJFPROP V1 BOUND)?

LUNBASE)
. (R o GNEXTHN)
viod
Vil
Vi
Vi
23. C(GDBJCHK ((ABSENCE OBJPROF V1 SPECIAL)Y)>)>» GNEXTN V1o 211 W12 Vit
24, L (GOBJCHK) GNEXTOB V10 vii vil)
25. {(GUBJCHKZ ((ABSENCE OBJFROF V1 SPECIAL))?} GNEXTN V10 Vii 212 V1)
26. L(GOBJCHK2) GETSPECIALNUMBER V10D Vi1 V12 Vi)
27. {(GOBJCHK3 ({ABSENCE DRBRJFROF V1 SPECIALYY} GNEXTAN V1o Y11l VIZ2 V1)

- 28. L{GOBJCHKI ((ASYMREL ONEONE VX1 w1 v22))?
(PRINT V1 v22) .
(POPSTACK)

- GNEXTOB
vio
.Yl
vido .
29. ((QETSPECIALMUMBER
(C{QRDASSIGN BASE V21)
(PARTOBJ V22 CLIST) _
CASYMREL NEXT UX1 v21i v22)
(ABSENCE OBJPROP V22 SFECIAL))
(PRINT Vv22)
(LUNBASE)
( (ORDASSIGN BASE Vv22))
GETSPECIALNUMBER
v1i
V1o
vi1i
viz)
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30. ((GETSPECIALNUMBER
({ORDASSIGN BASE V21)
(PARTORJ V22 CLIST)
(ASYMREL NEXT ¥UXi V21 U22)))
(POPSTACK)
GCOUNT
v1i
V22
vi0
vii
viz2)
31. ({GNEXTCE ((PARTOB. V1 V10> (ABSENCE OBJFROF V1 BEOUND) )
GCHBETUWEEN :
Vi
via
Vil
vy1i2)
32. { (BGNEXTOR) GEXTEND V10 V11 V123)
33. ((GEXTEND
( CASYMREL SCAN VUX1 V10 V11 V12 N10)
(OBJCAT V1 ORJECT)
(ABSENCE PARTOBJ V1 Vi10)
(ASYMREL V11 VX2 V1 N1)
(OBJIPROP V2 EBOUND)
(ASYMREL YXSLOFPE VX3 V2 V1 N2)
(NCOMF APXEQ N10 N2)))
GCHCLOSER
v1io
Vi1l
viz2
N1iO
vi
M1
V2
34. ((GEXTEND} RECALL V10)
35. ({RECALL ((GOALLX GOAL wx12 XRESTRICTION MARE V1 w21 M
(PRINT V1 V21
{UNBASE)
( (ORDASSIGN BASE V21))
(POFSTACK)
RECALL
V10?2
36. ((RECALL ¢ (GOALY GOAL VX1 XFIND SIZE 7GROUF PNUM) Y)Y GLARDINAL W7
3. ((RECALL)Y (FINISH))
38. ((GCARDINAL ((ORDASSIGN BASE V21)))
((ASYMREL SIZE VX1 V10 V213
(FRINT V21 !)
(FOPSTACK)
RECaLL)
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39. ((GCHCLOSER
(<OBJCAT V3 0BJECT)
CABSENCE PARTOBJ U3 v10)
(ASYMREL V11 UX1 U3 N3)
(NCOMP U12 N1 N3)
(ASYMREL YXSLOFPE UX2 VU2 U3 N2)
(NCOMP APXEQ N10 N2)
(ORDASSIGN BASE U21)))
(UNBASE)
. (CORDASSIGN BASE V21 U3 N3))
 GCHC2
. 9Y10
vii
vi12
N10O
v2)
40. ((GCHCLOSER) ((PARTOBJ Vi V10))
' ((OBJPROP V1 BOUND))
(X . GNEXTN)
vio
Vi1
vi2
: v1)
4%. ((GCHBETWEEN
CCASYMREL V11 UX1 V1 N1)
(PARTOBJ V2 v10) -
(ABSENCE OBJPROP V2 BOUND)
(ASYMREL V11 UX2 vz N2)
(NCOMP V12 N1 N2)
(DRDASSIGN BASE V21)))
(UNBASE)
( (ORDASSIGN BASE V21 U2 N2))
GCHB2
" U10
vit
’ v12)
.42. . {(GCHBETWEEN) ((OBJPROP_ V1 BOUND)Y>3> (x . GNEXTN) V10 V11 v12 V1)
43,  T(GCHG2 ((ORDASSIGN BASE U21 V1 N1)))
GCHCLOSER
V10
V11
V12
N10O
V1
N1
v2)
44. ((BCHB2 ((ORDASSIGN BASE V21 V1 N1)>)) GCHBETWEEN V1 N1 V10 Vi1 uU12)
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45,

46.

47.

48.

49.

50.

51. .

52.

( (BNEXTN
(CORDASSIGN BASE V21)
(PARTOBJ V22 CLIST)
(ASYMREL NEXT UX1i U21 v22)))
(%X . GCOUNT)
V1
vz
V10
uil1l
V12 '
{ (BNEXTN ¢ (PARTOBJ V22 CLIST) (OBJFRCF Y22 FIRST)))
(x . GCOUNT) '
Vi
Vo2
IJlo
Vil
V12 .
¢ (SNUMCHK ¢ (ABSENCE 0BJPROP V22 SPECIAL) )
GCOUNT
V1
yaz
vio
Vi1
v12)
( (CGNUMCHK ( (ASYMREL ONEONE UX11 V2 u22)))
(PRINT V2 v22)
(POPSTACK)
(UNBASE)
¢ ¢(ORDASSIGN BASE V22))
GNEXTN
Vi
vi0
V11
vi2)
( CGNUMCHKZ ( (ABSENCE OBJPROP V22 SPECIAL)))
GCOUNT
V1
vaz
V10
Vit .
viz) :
( (GNUMCHK2) GETSPECIALOBJECT V1 V22 V10 V11l Vi2)
( (GNUMCHK3 ¢ (ABSENCE OBJPROP VU2x SPECIAL)))
GCOUNT
vi
Va2
V10
Vit
v12).

¢ (GNUMCHK3) (UNBASE) ((ORDASSIGN BASE V22)) GNEXTN V1 V10 V11l V1.
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((GETSPECIALOBJECT ((ABSENCE O0BJPROF V1 SPECIAL)))
(PRINT Vi SKIFPED)

GNEXTOB

v1i0

Vit

U1y
54. ((GETSPECIALOBJECT) (POPSTACK) GCOUNT V1 U22 V10 V11 vi2)

55. ktGCDuyT) (PRINT V1 u22)
. (UNBASE)>
({ORDASSIGN BASE v22))
GNEXTOB
vieo
Vit
viz2)»)

53.
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APPENDIX C

Output from the Series of Cycles Involved in
COUNTER Counting a Group of rour Objects

X (STARTUP)

NIL
X (GENSET OBJECTS)

SHOE - STRUCTURET XYES

(0BO1&61 D 10.0 0.0)

(0BO1&64 € 9.5 0.0
(YXSLO149 0OBO161 2.0)
(YXSL.o170 0BO1461 ©.0)
{0BO1?71 B 8.0 0.20000000)
(YXSLO1746 0OBO164 1.8823329)
(YXSLO177 0BO1464 3.8823329?
(0BO178 A 7.0 0.0’
(YXSLO183 OBO171i 2.164666466)
(YXSLO184 0BO171 0.1586664665)
NIL

X (TRACE PREQPLAN PREQCHK)

(PREQCHK PREGPLAN)
% (CYCLE)

THINK~-ALOUD? XYES

o
>>> X(LISP PROGN (SETQ DEBUG NIL)> NIL)D

MNIL

NIL

1

>>> X(ADDBTAG)

CADRTAG?
NIL
2

(¢ (PARTOBJ V23 CLIST) (ASYMREL NEXT UX2 V22 V23) (OBJPROFP V22 FOLLOWE
DY)

(STO200 (FOUR CLIST NEXT GO199 THREE FOLLOWED)?
>>> x(ADDTAB)

(ADDTAG). _

MIL
3

(¢ (PARTOBJ V23 CLIST) (ASYMREL NEXT VX2 Va2 va3) (OBJPROP V22 FOLLOWE

)))
?5%0211 (FIVE CLIST NEXT 60210 FOUR FOLLOWED))
>>> XR(ALDTAG)
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(ABDTAG)

NIL

4

;:;fARTGBJ V23 CLIST) (ASYMREL NEXT UX2 V22 v23) (OBJPROP V22 FOLLOWE

(STO222 (SIX CLIST NEXT GO22: FIVE FULLOWED))
>>> E(HOWMANY)

(HOWMANY )

HIL

S

(¢ (SETGOAL GOAL VX1 XFIND SIZE TGROUF ?NUM)) GSEE}
(STK GOAL (GO187) (HALT))

(STO22T (GOAL GO224 XFIND SIZE TGROUP ?NUM))
>>> SNTIL

{Q8EE)

:IL

((C(OBJCAT V10 LINGROGUP) (PARTOBJ V1 V10) (PARTOBJ V2 V10) (PARTOBJ VU3
V10)) GDIMEN VL0 N1)

(STO239 (G0238 LINGROUF 0BO173 OBO171 OBO14&4))

>>> EMIL

(CDIMEN GO22IB 0.18646666%)
(0.166664635 N1 GO238 V10)

7

(({ASYMREL SCAN ¥X1 V¥ > XCOR))> GALIGN V10>
(8TO246 (SCAN GO245 GO238 XCOR))

>>> ENIL

(GALIGN G0238)

{GO238 V146>

a8

(GCHBOUND V10 V11 Vi V2 V3 N1 N3
S>> ENIL

(GCHBOUND GO0238 XCOR 030178 0BO171 0OBO144 7.0 9.5)
(GO238 V10 XCOF V11 0BO178 V1 7.0 N1 DBO171 V2 0BO14&4 Y3 9.5 N3I)
k4

C(CCASYMREL SCAN UX1 V10 Vil x8BREAT N10) (OBJPROP V1 BOUND)) GDIRECT V
10 Vvi1)

(STO275 (SCAN G024S G0238 XCOR XGREAT 0.166464645 OBO178 BOUND))
>>> ENIL

(GDIRECT G038 XCOR)
(XCOR V11 GO0238 ViO)
10

(BCOMPACT V10 V11 V1i2)
>>> ENIL
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(GCOMPACT GO238 Y.COR XGREAT)

(GO23I8 V10 XCOR VY1l IGBREAT V1)

11

(GCOMPACTZ2 V1 V2 VU3 N1 N2 N3 Vi1 V12
»»> ENIL )

(GCOH&ACTZ CBO178 0BO171 0BO144 7.0 8.0 9.5 XCOR XBREAT)

(XAGREAT V12 XCOR Vil 0BO178 Vi 7.0 Ni 0BO171 V2 8.0 N2 0BO1464 V3 9.5
N3)

12

(((QBJPROFP V1 BOUND3I) (UNBASE) (X . GNEXTN)Y V10 Vi1 V12 V1)
(ST0306 (0QEO178 BOUND))

>>> XNIL

{GNEXTN G0238 XCCR #GREAT 0BO178)

(OBO178 V1 XCOR V14 XGREAT V12 60238 Vi10)
i3

((x . GCOUNT)Y V1 V2 010 Vii Vi)

x> ENIL

(GCOUNT 0BG178 ONE G0238 XCOR XGREAT)

(GO238 V10 XGREAT V12 XCOR V1l OBO178 V1 ONE vaz2y

14

((PRINT V1 U22) (UNBASE) ((ORDASSIGN BASE VI2)) GNEXTOBR V10 V1ii V1329
xxxxkK (0BO1738 ONE)

(STO3I1S (BASE ONE))
5y wNIL _

TGNEXTOB GO238 XCCR XGREAT)
(XCOR V11 XGREAT V12 GO238 V10
15

(GCHBETWEEN V1 V10 Vi1 V12)

=33 ENTh

(GCHBETWEEN O0B0O1é64 G0238 XCOR XGREAT)

(GO238 V10 XGREAT Y12 XCOR V1i 0BO164 V1)

14

((UNPASE) ((ORDASSIGN BASE V21 V2 N2)) GCHB2 V10 Vi1l Vi)

(STO330 (BASE ONE 0BO171 8.0))
>>> ENIL

(GCHB2 G0238 XCOR XGBREALV)

(XCOR Vil XGREAT V12 G0238 V10)
17

(GCHBETWEEN Vi N1 V10 V1i V1i2)
>>> ENIL

 {GCHBETWEEN 0B0171 8.0 G0238 XCOR XGREAT)

(50238 V10 XGREAT V12 XCOR Vii 0BO171 V1 8.0 NL)
ie

(((OBJPROP V1 BOUND)) (%X . GNEXTN) V10 Vi1 V12 V1)
(ST0345 (0BO171i BCUNDY)

>>> XNIL

104

| SN
D
]

{3




Appendix C (Cont'd)

(GNEXTN G0238 XCOR RGREAT 0BO171) e
(0BO171 V1 XCOR Vil XGREAT V12 G0238 V1i0)
19

({x . GCOUNT) V1 v22 yi1C Vil V12)

>>> ENIL

(GCOUNT 0BO171 TWO 0238 XCOR XGREAT)

(G0238 V10 *GREAT V12 XCOR Vil 0BO171 Ui TWO U22)

20

((PRINT VU1 VU22) (UNBASE) ((ORDASSIGN BASE v22)) GNEXTOB V10 Vi1 U12)
XXXXX (0BO171 TWO)

(STO3S2 (BASE TWO))

>>> ENIL

(GNEXTOB GO238 XCOR XGREAT)
éxcon Vii ®GREAT V12 G0238 v10?
1 .
(GCHBETHEEN V1 V10 Y11 y12)
>>> ENIL
"(GCHBETWEEM 0BO1&4 GO23I8 XCOR EZGREAT)
(GO0238 V10 XGREAT VY12 XCOR V11l 0BOL&4 V1)
22 '
¢ (¢COBJPROP V1 BOUND)) (X . GNEXTN) U10 V11 V12 uU1l)
{STO0367 (OBOl44 BOUND)) .
32> ENIL

' (ONEXTN GO238 XCOR XGREAT 0BO144)

(0B0164 V1 XCZOR V11l XGREAT V12 GO238 V10)
23

(CX ., GCOUNT) V1 V22 V10 Vi1 Vi)

>>> ENIL ‘

(BCOUNT 0BO144 THREE G0238 XCOR XGREAT)

{G0238 V10 XGREAT V12 XCOR V11l 0BO164 V1 THREE vwa

24
- CCPRINT Vi U22) (UNBASE) ((ORDASSIGN BASE V223) GNEXTOB V10 vii vi2)
- XXXXX (QBO1464 THREE)

(STO374 (BASE THREE))

>>> ENIL

(GNEXTOB GO238B XCOR XGREAT}
' ééCDR Vil XGREAT V12 G0238 v10)

(GEXTEND V10 vi1 vi2)

>>> ENIL

(GEXTEND G0238 XCOR RXGREAT)
(60238 V10 xGREAT V12 XCOR Vi1l)

26

{GCHCLOSER V10 V11 V12 N10 V1 N1 U2)
>>> ENIL
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(BCHCLOSER G0239 XCOR XGREAT 0.164664665 0BO161 10.0 DBO164)

(XCOR V11 XGREAT V12 GO238 U10 0.146456665 N10 OBO161 V1 10.0 N1 0BO16
4 V2) .

27
(¢(PARTOBJ V1 V10)) ((OBJPROP V1 BOUND)) (X . GNEXTN) V10 v1ii V12 v

(STO403 (0BO1461 ©GO023I8))
(3TV40% (0BO141 BOUND))
>>> ¥NIL

(GNEXTN G0238 XCOR *GREAT OBO1461)

(0BO14&1 Vi G023 V10 XGREAT V12 XCOR Vil)
28

((Xx o« GCOUNT) V1 y22 vi0 V11l V12)

>>> ENIL

(GCOUNT 0BO161 FOUR GO238 XCOR XGREAT)

(XCOR V11 XGREAT V12 GO238 V10 0B0O1s1 V1 FOUR V22)

29

C(PRINT V1 U22) (UNBASE) ((ORDASSIGN BASE V22)) GNEXTOB V10 Vi1l yizy
xxxekx (0BO1&1 FOUR)

(STO412 (BASE FOUR))D

>>> XNIL

(GNEXTOB GO238 XCOR XGREAT)
(GO238 V10 XGREAT V12 XCOR Vil)
30

(GEXTEND V10 Vi1l Vi12)

>33 KNIL

(GEXTEND GO238 XGCOR XGREAT)
(XCOR V11 EGREAT V12 G0238 V10)
31

(RECALL V10)

wu= KNIL
(RECALL GO2238)

(GO238 V1i0)

22

¢(GCARDINAL V10)

sl ANIL

(GCARDINAL G0238)>

(60238 V10)

33

( CCASTMREL SIZE UX1 V10 V21)) (PRINT V21 1) (POPSTACK) RECALL)
(ST044S (SIZE GO444 GO238 FOUR))

AXEXE (FAQUR 1)

»>>> #NIL

(RECALL)
NIL

34
C(FINISH))
FINISH
>>> NIl



APPENDIX D
STARTUP

STARTUF is the LISP function that puts the terminology
that will be used in a particular set of productions into
-ACTP's memory. ACTP's terminology includes three kinds of
symbols: constan=s, variables, and links.

Ong way to memorize constants is with a function called
HEHDRIZE for example:

‘ (MEMORIZE (QUOTE (COUNTED USED FOLLOWED BOUND SKIPPED
SPECIAL)))
MEMORIZE simply tags constants. so they will be usable either
as control nodes or constant nodes in patterns. Another way
of establishing constants is by the use of the function
CATEGORY:

(CATEGORY (QUOTE (TITLE ADDTAG MAKE MAKE2 HOWMANY)))
(CATEGO??)(QUOTE (NUMERON ZERO ONE TWO THREE TEN

As with MEMORIZE, all the terms in these two lists become
usable constants. However, two additional things are done by
CATEGORY. A link is formed between the first term in the 1list -
and each of the other members. The link is isa, indicating
category membership. For example:

ADDTAG isa TITLE
MAKE isa TITLE
THREE isa NUMERON

Finally, the CATEGORY function makes it possible to use the
listed terms as input to ACTP during a cycle.

The second kind of term is a variable. Variable names
are set up by a function called VARIABLE, for example:

(VARIABLE (QUOTE (V1 V2 V3 V4 . . . . V25 VX1 VX2
VX3 . . . . VX12)))
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(VARIABLE (QUOTE (N1 N2 N3 N4 N5 N6 N7 N8 N9 N10)))

The third kind of term is a link. Link names are set
up by a function called PUTINV:

(MAPC (QUOTE PUTINV) RPAIRS)

RPAIRS is a list of word pairs that gets defined before
PUTINV is called:
(SETQ RPAIRS (QUOTE ((LABL CNPT) (ISA MEMB) (HASPROP
ISPROP) . . . .)))
PUTINV then takes this list and makes each member of a pair
the inverse of the other member. This is needed because the
pattern matching system in ACTP assumes that each link goes
in two directions, and the function that creates links in
patterns as ACTP is running looks up the inverse of each
1ink name and creates bidirectional links. Forx example,
the inverse of isa is memb (for member). This means that
when a link is made giving

ONE isa NUMERON
there is also a link giving
NUMERON memb ONE.

The following pages include the version of STARTUP that is
in the model.
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APPENDIX E
" Glossary

ABSENCE. Function that tests for the absence of single-
linked relations in the data base.
Example: (ABSENCE OBJPROP V22 FOLLOWED) (Production 1
in Appendix B).

Action. The "then" part of production rule which is
executed when the condition of that production is true.
Actions consist of (l) executing special functions, (2) build-
ing patterns by adding new relations to the data base, and
(3) rememberxring and activating nodes.

action. Relation in the GOALX schema.
Example: G0224---action--->XFIND (Figure 17).
Inverse: actionl.

actionl. Relation in the GOALX schema.
Exanfple: XFIND-~-actionl--->G0224.

Inverse: action.
Active node. Constants that are (1) mentioned in the
action of an executed production, or (2) typed in from termi-

nal.

ACTP. A production system for developing similation
models. ACTP consists of (1) a set of production rules,
(2) a set of terms and concepts needed for the production
rules to be used, and (3) an executive program that is used
to operate the productions.

APXEQ. Constant given as an argument to the function
NCOMP to test for a single-linked quantitative relation of
"approximate equality'' between two nodes corresponding to
numbers in the data base.

Example: (NCOMP APXEQ N1 3.0) (Production 8 in Appen-

dix B).

apxeq. Relation in the NCOMP schema.
Xxample: Nl---apxeq--->N2.

inverse: apxeq

s arga. Relation in the ASYMREL schema.
xample: GO0197---arga--->ONE (Figure 1).
Inverse: argal. )

argal. Relation in the ASYMREL schema.
sxample: ONE---argal--->NL1.
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Arpguments. Nodes that are included in relational struc-
tures as the objects and elements that are related.

ASSIGN

Assigned node. A node that is remembered as the value
of a varIaEIe, - .
ASYMREL. Generic schema for specifying an asymmetric
relation with any number of arguments. ASYMREL consists of
(1) a relation node (e.g., NEXT, ONEONE) linked through a
token relation to (2) a token node represented by a unique
symbol, which in turn is 1linked through arga, argb, arge,
. . . relations to one or more arguments.
Example: (ASYMREL NEXT G0197 ONE TW0) specifies the pattern
NEXT~~~-token-~->G0197
G0197---arga--->0ONE
. G0197~--argb--->TWO (Figure 8).

Atoms. Single words used as names for constants, varia-
bles, runctions, etec.

Examples: FOLLOWED, V1, UNBASE.

BASE. Schema whose main function is to provide erase-
able memory not easily handled with bound variables in ACTP.
BASE consists of the node BASE linked through ida, idb, ide,
. +« . relations to one or more ar ents.

Example: BASE---ida--->ONE (Figure 20).

Bound variables. Variables having a currently assigned
value.

CATEGORY. LISP function in STARTUP that (1) tags con-
stants so they will be usable either as counutrol nodes or
constant nodes in patterns, (2) forms an isa link between the
first term in the category list and each of the other members,
and (3) makes it possible to use the list members as Ilnput to
ACTP during a cycle.

Example: (CATEGORY (QUOTE (TITLE ADDTAG MAKE MAKE2

HOWMANY) ) ). {Appendix D).

cnpt. Single-link relation used to specify the name of
a node in the data base.

Example: A---cnpt--->0BO178.

Inverse: label.

Concept schema. Pattern consisting of a name, set of
arguments, and a list of relations between pairs of arguments.

Condition. The "if'" part of a production rule. Conditions
consist of (1) no, one, or more control nodes; and (2) no, one,
or more pattern specifications.
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Condition test. An attempt to match the condition pat-

tern specification to the corresponding nodes and links in
the data base.

Constant. Name of a specific node in the data base.

Control node. A constant in the condition of a produc-
tion that must be active for that production to_be tested.
Control nodes function as goals that produce selection of
productions whose patterns will be tested.

ﬁggg. Relation in the GOALX schema.
ample: G0224---compl...>?GROUP.

Inverse: compll

Complex goals. Goals which cannot be achieved immediately
and w{f% need to be retrieved at a later time. Complex goals

are stored in the data base by the function SETGOAL.

Cycle. A single loop through a set of productions during
which conditions of productions are tested in orderxr until
one of them is found true; and (2) the action of that produc-
tion is performed, ending the cycle.

CYCLE. Function that tells the ACTP system to begin the
process of cycling through PROLIST.

Data structure. Semantic network representing the infor-
mation upon which the production system works--on which actions
operate and on which the conditions of productions can be de-
termined true or false.

EQUAL. Constant given as an argument to the function
NCOMP to test for a single-linked quantitative relation of
"equal' between two nodes corresponding to numbers in the data
base.

Example: (NCOMP EQUAL N1 N2).

equal. Relation in the EQUAL schema.

E%ample: Nl---equal--->N2,

Inverse: EQUAL.

Execute. Performing the action of a production.

False condition. A condition whose pattern specifications
cannot be matched to the data base.

Free variables. Variables having no currently assigned
values. .

CENSET. LISP function that sets up an inivtial data struc-
ture. '

Example: (GENSET OBJECTS) (Appendix C).
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Goal. Objective that motivates performance of an action.

GOALX. Schema sgpecifying goal informatiorn. GOALX con-
sists of (1) a relation node, GOAL, linked through a token
relation to (2) a token node represented by a unique symbol,
which in turn is linked through action, pattern, compl, comp2
relations to corresponding arguments.

Example: (GOALX GOAL G0244 X FIND SIZE ?GKROUP NUM)

specifies the pattern
GOAL---token--->G0224
G0224~--action--->XFIND
G0224---pattern--->SIZE
G0224-~-compl--->7GROUP
G0224~-~comp2--->?NUM (Figure 17).

Goal stack. Memory device for storing the previously
current goal whenever a new complex goal is adopted. Operates
on a "first on the stack, last off the stack' basis.

*GREAT. Constant given as an argument to the function
NCOMP to test for a single-linked quantitative relation of
'"greater than' between two nodes corresponding to numbers in
the data base.

Example: (NCOMP *GREAT N1 N2).

Inverse: LEQ

GREQ. Constant given as an argument to the function
NCOMP to test for a single-link quantitative relation of
"'greater than or equal to'" between two nodes corresponding
to numbers in the data base.

Inverse: *LESS.

haspart. Relation in the PARTOBJ schems.
kxample: CLIST---haspart--->TWO.
Inverse: ispart.

hasprop. Relation in the OBJPROP schema. _
Example: ONE---hasprop--->FOLLOWED (Figure 24).
Inverse: 1isprop.

Input. ACTP or LISP commands typed in from the terminal.

isa. Relation in the OBJTYPE schema.
Example: ONE---isa--->NUMERON (Figure 24).
Inverse: memb.

ispart. Relation in PARTOBJ schema.
ample: ONE---ispart--->CLIST (Figure 24).

Inverse: haspart.

isprop. Relation in OBJPROP schema.
ample: FOLLOWED---isprop--->ONE.

Inverse: hasprop.

115



Appendix E (Cont'd)

label. Single-link relation used to specify the name of
a node In the data base.
" Example: OB0l178---label-~->A..
Inverse: cnpt.

*LESS. Constant gilven as an argument to the function
NCOMP to test for a single~link quantitative xelation of "less
than'" between two nodes corresponding tc numbers in the data
base.

Example: (NCOMP *LESS N1 N2).

Inverse: GREQ.

LEQ. Constant given as an argument to the function NCOMP
to test for a single-link quantitative relation of 'less than

or equal to' between two nodes corresponding to numbers in the
data base.

Example: (NCOMP LEQ N1 N2).
Inverse: *GREAT.

Link. Labeled connections between nodes in the data base
that denote relations between them.

List. Atoms or lists enclosed in parentheses.

Example of a list of atoms: (OBJCAT V4 OBJECT) (Figure 22).
Example of a list of lists: The entire production in
Figure 22. o

Match. Attempt to find a configuration of nodes and links
in the data base that correspond to the patternm specification
in the condition.

memb. Relation in the OBJTYPE schema.
Example: NUMERON---memb--->ONE.
Inverse: isa.

- MEMORIZE. LISP function in STARTUP which tags constants
so they will be usable either as control nodes or constant nodes
in patterns.

Example: (MEMORIZE (QUOTE (CCUNTED USED FOLLOWED 30OUND
- SKIPPED SPECIAL))) (Appendix D).

.NCOMP. Function that tests for single-link quantitative
relatTons in the data base. (See APXEQ, EQUAL, *GREAT, GKEQ,
*LESS, LEQ.)

Network. See semantic network.

Node. Symbol denoting ideas or elements in a task situa-
tion.

OBJCAT. See OBJTYPE.

OBJPROP. Schema used to represent property relations.
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ORDASSIGN. Schema used as an eixaseable memory structure
which can be removed by the function UNBASE. Consists of a
top node (usually BASEg linked through ida, idb, ide, . . .
to one or more arguments.

Example: ((ORDASSIGN BASE V21)}.

artobj. Relation in the PARTOBJ schema.
e: CLIST--~-ispart--->0NE.
Inverse: haspart

Pattern. See patterm specification.

attern. Relation in the GOALX schema.
EEEEEIE: G0224---pattern--->SIZE (Figure 17).
Inverse: patterni.

actternl. Rela:ion in the GOALX schema.
e: SIZE-«-patterni--->G0224.
Inverse: pattern.

Pattern construction. Building a list of links and nodes

that correspond to a concept schema.

Pattern matching. Testing whether a2 particular configura-
tion of nodes and 1 s can be found in the data base.

Pattexn specification. A particular configuration of
nodes and 1links that Is to be matched in the data base.

POPSTACK. One of three special ACTP functions involved in
the management of complex goals. POPSTACK (1) removes the cur-
rent goal from the data base once it has been achieved, then
(2) removes the top goal from the goal stack and makes it the
current goal.

Examples: (See Productions 35 and 38 in Appendix B.)

PRINT. Special function for printing output at the termi-
Example: (PRINT V1 V22)  Production 55 in Appendix B).
Production. Conditional ("if-then') statement used to

represent elements of knowledgu in i production system. Con-
sists of (1) a condition, and (2) an action.

nal.

Production rule. See production.

Production syster. See ACTP.

PROLIST. TI.Zst containing all the productions in a par-
ticular syste=.

PUTINV. Function in STARTUP that takes as its argument a
list orf constant palrs and makes each member of a pair the in-
verse of the other member.
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Example: (MAPC (QUOTE PUTINV) RPAIRS).
where RPAIRS is equal to
( (LABL ??PT) (ISA MEMB) (HASPROP ISPROP)

REBIND. A function that replaces the value of A by the
value of B; B retains its value. A must be a variable; B can
be either a variable or a constant.

Relations. Labeled connections between nodes.

Schema. See concept schema.

Semantic network. Knowledge represented as an intercon-
nection of nodes and links in the data base.

SETGOAL. One of three special ACTP functions involved in
the management of complex goals. Whenever a new goal is set
SETGOAL (1) adds the current goal to the top of the goal stack
and (2) adds the new goal to the data base using the GOALX
schema.

Example: (SETGOAL GOAL VX1 XFIND SIZE ?GROUP ?NUM)

Production 4 in Appendix B).

Simple Goals. Goals which can be achieved immediately
and which are set by activating control nodes.

Special functions. Functions used for purposes other
then BuITlding patterns.

Examples: PRINT, POPSTACK.

STARTUP. LISP function that informs the ACTP system of
the variable names, constants, links, and so on, that will be
used in a particular set of productions. (See Appendix D.)

TITLE. Name of category defined in STARTUP whose members
can be used in providing input information during operation of
the system.

Example: ((CATEGORY (QUOTE (TITLE ADDTAG MAKXE MAKEZ2

HOWMANY))) d(Appendix D).

token. Relation in the ASYMREL schema.
Example: NEXT---token--->G0197 (Figure 8).

TRACE. ©LISP function that takes the names of other LISP
functions as its arguments. These other functions are then
"traced" whenever they are called during a cycle,

Trace. Providing a detailed report (called a ''trace') of
a function execution within a program. Primarily used as a
debugging device.

True condition. Condition whose control node (s) 1is active
and whose pattern specification(s) (if any) can be matched to
the data base.
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type. Relation in the ASYMREL.
E%ample: G0197~~--type--->NEXT.
Inverse: token.

UNBASE. Special function that removes the ORDASSIGN
atructure representing the current problem base.
Example: (See Production 55 in Appendix B.)

Variable. Symbol that can be assigned the value of dif-
ferent nodes in the data base.




