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DETAILS OF PROGRAMMING A MODEL OF
CHILDREN'S COUNTING IN ACTP

Mary S. Riley and James G. Greeno

Learning Research and Development Center
University of Pittsburgh

This paper is intended as an introduction to the opera-

tion and mechanics of the ACTP production system, a version

of Anderson's (1976) ACT system. Its preparation was moti-

vated by the following considerations. ACTP is already being

used by Greeno (1978) to model geometry theorem proving and

by Greeno, Riley, and Gelman (1979) to model the elementary

knowledge required to count a set of objects. ACTP has also

been identified as a potentially useful programming frame-

work for developing models of the cognitive processes involved

in other tasks, such as answering questions about a process.

Together, these current and projected uses of ACTP suggested

that more people would need to become familiar with the system;

this in turn suggested a need for ACTP documentation specific-

ally directed towards developing that familiarity. It is

hoped that this documentation will be useful for those just

beginning to program in ACTP as well as for those who simply

wish to understand the production system models developed by

others in more detail. The interested reader is also referred

to Greeno's (1978) discussion of the more general features of

ACTP and its use in his work on geometry.

The ACTP system is introduced in the context of COUNTER,

a model of counting developed by Greeno, Riley, and Gelman

(1979). The first section of this paper presents a general

overview of the model, including a sketch of COUNTER's per-

formance on a sample problem, to provide a general idea of

how a production system operates. Section 2 discusses the

mechanics of the model, including data structures, schemata,



and single productions. The last section, Section 3, follows
in detail the sequence of testing and executing productions
involved in counting a set of objects.

Section 1: Overview of COUNTER

The formal structure used in writing COUNTER is a pro-
duction system with a sequential, first-match application
discipline. This means that each element of knowledge is
represented as ar "if-then" rule, or production, containing
a condition and an action. When the program is rune....", the

process involves a series of cycles through a set of produc-

tions. On each cycle, the conditions specified in various
productions are tested in order. Eventually, the condition
of one of the productions is found to be true. Then the

action of that production is performed. Performance of an

action completes a cycle. On the next cycle, the conditions
of the various productions are tested again until one of them

is found true. The action of that production is performed,

and so on. The formalism of a production system model is a
useful one for constructing psychological theory, since the
components of the process are easily identified in the ele-

mentary productions, and there must be a relatively explicit
specification of the way in which different parts of the

process interact. A running program is evidence that the
components are sufficient for the tasks that the model is

able to perform and that they are mutually compatible so
that they can be integrated into a single functioning system.

General discussions of production systems as models of psy-

chological processes have been given by Anderson (1976).
Anderson. Kline, and Beasley (1978, 1979), Davis and King,
(1976), Hunt and Poltrock (1974), Klahr and Wallace (1976),

Newell (1972, 1973a, 1973b), Newell and Simon (1972), and

Simon (1975).
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A Simple Production System for Counting

An example of a simple production system is given in
Table 1.

Table 1
A Simplified Production System for Counting

Condition Action

PI. Here NEXT-OBJECT --Mb- Point to NEXT-OBJECT
Have NEXT-NUMBER Say NEXT-NUMBER

Change NEXT-OBJECT to CURRENT-OBJECT
Change NEXT-NUMBER to CURRENT-NUMBER

P2. Have CURRENT-OBJECT --051.- Get NEXT-OBJECT
Have CURRENT-NUMSZR Get NEXT-NUMBER
CUR-RENT-OBJECT is not the It obiect

P3. Mare no CURRENT-OBJECT
Here no CURRENT-NUMBER

-WEN- Point to first obiect
Say first number
Make the first obiect CURRENT-OBJECT
Make the first lumber CURRENT-NUMBER

P4. Eire Am.- Say CURRENT-NUMBER
Say Finish!

A

In each production the condition is stated, and an arrow
separates the condition from the action of that production.
The term CURRENT-OBJECT simply refers to the most recently
counted object. Thus CURRENT-OBJECT will at one time refer
to object A, at another time to object B, and so on, as
counting proceeds. NEXT-OBJECT refers to the object that is
next to the CURRENT-OBJECT in the line of count. Since in

the example counting will proceed from left to right, the
NEXT-OBJECT will always be the object to the immediate right
of the CURRENT-OBJECT. Thus when CURRENT-OBJECT is object B,

NEXT-OBJECT is object C. Similarly, CURRENT-NUMBER and NEXT-
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NUMBER refer to the most recently used number and the number
following it in the list of counting names (e.g.. TWO and
THREE). respectively. Counting. then. consists of an itera-
tive process of getting the NEXT-OBJECT and NEXT-NUMBER.
counting that object with that number, making them the
CURRENT-OBJECT and CURRENT-NUMBER, respectively, getting the
NEXT-OBJECT and tXT- NUMBER. and so on until there are no
more objects to count. For example, suppose that COUNTER
has just been told to count the objects and wishes to begin.
Initially there are no CURRENT- (and therefore no NEXT) OB-
JECTs and NUMBERs so the test of the conditions of P1 and P2
will fail. P3's condition is tested next and is found to be
true, causing the action
Here the action consists
which is in this case A;

of that production to be performed.
of five parts: get the first object,
get the first number (ONE); point to

the first object and say the first number (i.e., point to
object A ard say "ONE"); make the first object the CURRENT-
OBJECT because it has just been counted; make the first num-
ber the CURRENT-NUMBER because it has just been used. Once
this action has been performed, the first
and everything starts over again from the
P4 was never
condition

cycle is complete
top (notice that

tested on this cycle. On the second cycle, the
P1 fails but the condition of P2 is found to be

true because there now exists a CURRENT-OBJECT and a CURRENT-
NUMBER. This leads to the action of getting the NEXT-OBJECT
(B) and the NEXT-NUMBER (TWO). On the third cycle, the con-
dition of the first production is true, causing the action
to be performed: COUNTER points to object B and says "TWO,"
then changes B to CURRENT-OBJECT and TWO to CURRENT-NUMBER
(i.e., they are no longer identified as NEXT-OBJECT and NEXT-
NUMBER). On the fourth cycle, Pi's condition is therefore
false, but the condition of -' is true again, so the action
of getting the NEXT-OBJECT (C) and the NEXT-NUMBER (THREE)
is performed. On the fifth cycle, the condition of P1 is
true so the action is performed: COUNTER points to C, says
"THREE," then changes C and THREE to the CURRENT-OBJECT and

4



CURRENT-NUMBER, respectively. On the sixth cycle, P2's con-
dition is true, so the action of getting the NEXT-OBJECT and
the NEXT-NUMBER is performed again. On the seventh cycle,
the condition of P1 is true so COUNTER points to D, says
"FOUR," then changes D and FOUR to CURRENT-OBJECT and
CURRENT-NUMBER. On the eighth cycle, the conditions of P1,
P2, and P3 all fail. The reason P2's conditior fails is be-
cause the CURRENT-OBJECT (D) is also the last object. P4's
condition is always true since it is a default condition,
so the action of repeating the most recently used number,
FOUR, is performed (this is intended to symbolize COUNTER
identifying the cardinality of the set of objects); COUNTER
then says it is finished.

Notice that this production system takes appropriate
account of a variety of details. Fcr example, the produc-
tions whose conditions test for the presence of a CURRENT-,
or NEXT-, OBJECT and NUMBER (P1 and P2) precede P3 even
though P3 is always the first production executed during
any counting sequence. This Is actually a very efficient
ordering since after t'-e first cycle COUNTER will not go
through the unnecessary steps of checking to see if it has
begun counting yet, as it would if P3 were ordered first in
the list. It is also psychologically appealing in that it
seems unlikely that chiliren would go through such unneces-
sary checking each time before they counted the CURRENT-
OBJECT or got the NEXT-OBJECT and NEXT-NUMBER. On the other
hand, the example is deliberately sketch- and incomplete.
A serious psychological theory of the knowledge used in count-
ing would involve detailed representations of procedures for
scanning an array of objects, knowledge about tl,e number and
cardinality, and other components.

Evidence for Counting Principles

The model of counting that Greeno, Riley, and Gelman
developed represents a formal investigation of children's
understanding of counting that includes these more detailed
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representations. This work is based on previous investiga-
tions by Gelman and Gallistel (1978) from which they con-
cluded that even very young children (3-, 4-, and 5-year-olds)

understand more about counting than just pointing to objects

and calling out numbers; they understand general principles

of counting as wr.l. The principles referred to are:

1. Stable ordering. Counting requires a set of symbols

ordered in a fixed sequence. 1.7elman and Gallistel called

those counting symbols numerous, a convention we will follow

through the remainder of this paper.

2. One-to-one correspondence. Counting requires that

each object to be counted is paired with exactly one numeron.

and no two objects are paired with the same numeron.

3. Cardinalitx. The last numeron used in counting is

the symbol for the number of items in the counted set.

4. Abstraction. Sets of objects need not be homogene-

ous for them to be counted.

5. "Doesn't matter." It doesn't matter what order the

objects in a set are counted (also referred to as the Order

Invariance principlt).

Gelman and Gallistel observed children's performance on a

variety of counting tasks and then related this performance

to children's understanding of the above principles. For

example, that children understand the stable ordering princi-

ple was inferra.d from the occurrence of idiosyncratic count-

ing lists (e.g.. "One, two, three, six, ten" or "A. B. C. D,

. ."). Children who used their own lists did so consis-

tently, each time uttering the list elements in the same

sequential order. This suggested to Gelman and Gallistel

that children appreciate that whatever the list is, its ele-

ments should occur in a fixed order.

Evidence for children's understanding of the one-to-one

correspondence principle came from the observation that most

children attempted to pair each object with a unique numeron
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and almost never used the same numeron twice or skipped a
numeron. The occasional failures that did occur teemed to
result from simple mechanical failures in keeping track of
just what objects had already been counted.

Gelman and Gallistel cited two sources of vidence for
children's understanding of the cardinality principle.
First are Gelman's (1972a. 1972b) magic experiments in
which children were presented with two sets of objects and
on each trial instructed to choose the set with the greater
number of objects. Most children had no difficulty choosing

larger set in spite of differences in types of objects
arrangement of objects between the two sets. This

-,..6gested that these children were using cardinality as the
relevant property for choosing a set. The second source of
evidence came from observations that children frequently
repeated the last numeron used in counting a set of objects,
often with considerable emphasis. Repetition of the final
numeron suggested that these children appreciated that it
signifies something special.

Evidence for understanding of abstraction came from
observations that children's _'unting behavior is unaffected
by presenting them wit1- nnr.n,,,..4geneous sets of objects.

Evidence that children understand the "doesn't matter"
principle came primarily from performance on a task that
consisted of presenting the child with a set of five objects
and asking him/her to cour the objects. Then a constraint
was imposed or -T.e child's counting procedure by pointing to
one of tt-e ob ..7.ts and specifying a number that is to be

assigned to it. The use of constraint here refers to a
restriction on tht..- way a particular procedure can 1:), carried
out. For example, the experimenter might point to the second
object an instruct the mild to "make that the four." Mak-

ing the second object the four is a constraint in the sense
that the child normally would have counted it as two. Some
children perform,-1 counting with this additional constraint

7



by changing the order in which the objects were counted.
This involved counting the first object as one, temporarily

skipping the second object, counting the third and fourth

objects as two and three. respectively, returning to the

second object to count it four, and finally counting the

fifth object as five. These children seemed to understand
the order invariance principle in the sense that they all

reassigned numerons to specific objects in the set. Other

children, however, adopted the procedure of counting the
objects as usuaL until they arrived at the designated object,

at which point they would continue to say the numerons in

order until the designated numeron came up. then proceeded

again as usual. Thus, in the above example, they counted
the first object, saying. "One," then said, "Two, three,"

then counted the remaining objects, saying. "Four, five, six,

seven." These children also satisfied the constraint but

sacrificed a basic principle of counting that requires each

object in the set be put into one-to-one correspondence with

exactly one numeron.

Thus Gelman and Gallistel provided some interesting evi-

dence that children understand the principles of counting.

In fact, the simple production system for counting (Table 1)

has the surface characteristics required by Gelman and Gallis-

tel's five principles. The constraints of stable ordering

and one-to-one correspondence are satisfied by using numerons

in a fixed order and applying numeron tags to objects only

when the objects have not yet been tagged, but continuing

until all objects have been tagged. The principle of cardi-

nality is used because the system assigns the final numeron

as the quantity of the set. Abstraction is satisfied because

the system does not distinguish whether the objects in the

counted set are all the same. Finally, order invariance is
satisfied because the system puts no restriction on the

sequence in which objects in the visual representation are

counted. That is, after counting the array of objects "A.

B, C. D" from left to right. COUNTER would not hesitate to

8



count the array "C, D, B, A," also from left to right, even

though this Tzculd involve changing the assignments of numer-

ous to specific objects in the second array as compared to

the first the numnron TWO would be assigned to object

B in the first array, but to D in the second).

Since the simple production model performs in agreement

with Gelman and Gallistel's principles, there is at least a

limited sense in which it represents understanding of those

principles. However, Greeno, Riley, and Gelman believe zht

a stronger representation of understanding is achieved in a

system that they developed and which will be described in

the remainder of this section.

The sense in which they believe that their representation

of understanding is stronger than the simple production model

involves the generality of the knowledge structures that pro-

duce performance in agreement with principles that are under-

stood. Gelman and Gallistel's argument that children under-

stand general principles is based on observations of several

kinds of performance. Greeno, Riley, and Gelman reasoned

that if they could develop a model that would simulate a sub-

stantial part of the variety of performance that led Gelman

and Gallistel to infer that children understand principles,

then the knowledge in the model might constitute a plausible

hypothesis about the nature of children's understanding of

the principles.

COUNTER

The current version of the COUNTER model can count a set

of objects arranged in an approximately linear array. Normally,

when asked to count a set of objects, COUNTER first sets a goal

of finding the size of the set. Next COUNTER uses spatial in-

formation it has about the objects to find an end of the array

and determine the direction of counting. It then prints out

the name of the first object, together with the first numeron

in its ordered list of numerons. This pairing of object and

9



numeron is intended to represent counting that object. Once

an object has been counted, COUNTER identifies the next object

in the set and counts it with the next numeron in its list.
This process of finding the next object and pairing it with
the next numeron continues until COUNTER finds no more objects

along the directional path. After counting is complete,
COUNTER retrieves the goal from memory to find the size of
the group, causing it to relate the last numeron used in
counting to an internal representation af the set of counted

objects. COUNTER then repeats the last numeron used with
emphasis, assigning it as the cardinality of the set. COUNTER

can also modify its normal counting procedure to simulate per-
formance on the constrained counting task designed to test
understanding of the order invariance principle.

The knowledge COUNTER uses to count is represented in
two forms, semantic networks and producto.ons. Semantic net-'

works represent general factual knowledge and are similar to
the network representations proposed elsewhere (Anderson &
Bower, 1973; Norman & Rumelhart, 1975; Quillian, 1969). They

consist of (a) nodes that denote ideas or elements of the task
situation, and (b) labeled links that connect those nodes to
denote the relations among them. In the model, semantic net-

works are used to represent both COUNTER's ordered list of

counting names and the visual information COUNTER has about

a set of objects. These can be thought of as the model's

data structures.

For example, Figure 1 represents COUNTER's short list

of numerous. It should be pointed out that the terminology,

as well as the form, of the networks and productions discussed

in this section are slightly simplified compared to those

that actually appear in the ACTP model. This was done to

familiarize the reader with the more general aspects cf net-

works, productions, and how they interact, without becoming

involved in confusing details. The details will be discussed

in Section 2. With this in mind, the node CLIST stands for
"counting list"; the links labeled ispart between CLIST and

10



the nodes ONE, TWO, THREE, and FOUR identify each of these
numerons as a member of the same list. A fixed ordering is
imposed on the numerons by a simple pattern, or schema, for
NEXT relations. Consider, for example, the nodes TWO and
THREE. These nodes are linked to the node N2, which in turn
is linked through a token relation to NEXT. The token rela-
tion simply identifies this pattern, as a specific instance
(or token) of the NEXT relation, to be distinguished from
other instances of the NEXT relation. The NEXT relation
between THREE and FOUR is identified by the token node N3.
The links labeled area and argb are used here to define the
direction of the relation. So although TWO shares a NEXT
relation with both ONE and THREE, TWO is linked to ONE
through an argb link and to THREE through an am,a link.
This means that TWO is next to and after ONE, but next to
and before THREE. Similarly, THREE is next to and after
TWO (argb link) , but next to and before FOUR (arga link) .

Figure 1. Semantic network representation of COUNTER'S ordered list of numerons.

11



There are two main reasons why the number of elements in
CLIST is limited. One reason was to capture the fact that
young children simply do not have an unlimited resource of
numerous. The second reason was that properly extending
COUNTER's CLIST would involve more than just adding on numer-
on after numeron; it would depend on COUNTER acquiring the
base-ten rule. However, since the ability to count large
groups of objects is not central to the main issues addressed
in the current model, the choice was made not to elaborate
the acquisition process. There is, however, a production
called ADDTAG which provides a means of extending CLIST to
Include up to ten numerous. The details of this production
will be discussed in the last part of Section 2 under Sche-
mata.

In addition to factual knowledge, COUNTER also has pro-
cedures in the form of the productions themselves. Every-
thing COUNTER knows about how to count (i.e., getting the
first object and numeron, pairing them, getting the next
object and numeron, and so on) is represented as a set of
productions, each of which contains a condition and an action.
The condition specifies a particular interconnection of nodes
and links , called paterns, that must be present in the seman-
tic network in order for that condition to be true.

Figure 2 represents a simple production for getting the
NEXT-NUMERON from the ordered counting list (CLIST). The con-
dition consists of a single pattern; ORDASSIGN identifies the
particular form of the pattern, shown in Figure 3.

The prefixes *C* and *V* define the types of nodes in
the data base that can be matched to this pattern. *C* stands
for "constant" which means that this part of the pattern can
only be matched to a particular node in the data base which
has the identical name (i.e., CURRENT). *V*, on the other
hand, stands for "variable" which means that any node in the
data base can qualify as a match so long as it has an Ida link
to the node *C*CURRENT (Ida is simply one of the names used for

12



Condition Action

ilORKSIGN *CURRENT oVoCURRENT-NUMERON (ASYMREL *NEXT*WOKEN 00CURRENT-NUMERON IkttNEXT-NUMERON)i

M=mmgIMIP

Figure 2. Production for getting NEXT-NIJMERON,

Figure 3. Psalm for retrieving the CURRENT-NUMERON from the data base,



links in this particular pattern). This means that at one ti4nt
time during counting, *V*CURRENT-NUMBER will match to ONE, at
another time to TWO, and so on as counting proceeds. To make
this a little clearer, assume that COUNTER has been told to

count the array of objects "A, B, C, D" and has just finished
counting B as TWO. This means that TWO is now the current
numeron. COUNTER remembers this information by creating a
temporary data structure that has the following ?attern
(Figure 4):

Figure 4. Data structure specifying two as the current numeron.

Assuming that the condition pattern of the production in
Figure 2 is tested on the next cycle, it will match to the
pattern in Figure 4 with *C*CURRENT matching to CURRENT as
required and *V*CURRENT-NUMERON matching to TWO, since TWO
Is connected through an ida link to Cirat.:NT. A successful
match means the condition is true, so the action of the pro-
duction is taken. In this case the action also consists of
a single pattern and, just as ORDASSIGN tested for a particu-
lar pattern, ASYMREL tests for the pattern shown in Figure 5.
*C*NEXT is a constant, *V*TOKEN and *V*NEXT-NUMERON are varia-
bles. *V*CURRENT-NUMERON is also a variable, but since it
has already been matched to TWO during the condition test,
it must remain matched to TWO for the remainder of the cycle.
When this pattern is tested against the data base, a match
is found: *V*CURRENT-NUMERON is matched to the TWO node in

14



Figure 1, *C*NEXT is matched to the NEXT node, *V*TOKEN is

matched to the N2 node, and *V*NEXT-NUMERON is matched to

THREE.

CC*NIEXD

trVoCURRENTNUMERON

Figure S. Pattern for reviewing NEXTNUMERON from the data base.

Counting involves a series of such cycles through a set

of productions. On each cycle, the conditions of various pro-

ductions are tested in order until one of them is found to be

true. This causes the action of that production to be executed,

usually adding some new relations to the data base, and the

cycle is complete. Cycling continues in this way until no more

conditions are true.

Development of this counting model provided a specific set

of hypotheses about the knowledge structures and procedures

which together constitute understanding of the various count-

ing principles. Briefly:

I. Stable ordering. Stable ordering is achieved through

(a) the simple schema for NEXT relations which links each numer-

on in the counting list to its immediate successor, and (b) a

15



corresponding successor function--similar to the production in

Figure 2--for accessing this ordered list.

2. One-to-one correspondence. Underlying one-to-one cor-

respondence is a simple coordination between the procedures

for choosing the next object and retrieving the next numeron.

This coordination is achieved by the control structure of the

counting procedure itself (similar in structure to, but slightly

more complicated than the control structure in 'able 1) and

requires no additional knowledge structures.

3. Cardinality. Gelman and Gailistel's evidence for

understanding of cardinality includes children's repetition of

the final numeron, often with emphasis, and their performance

in the magic experiments which apparently involves associating

a quantity with the set of objects. COUNTER does this in a

very simple way that depends on storing a goal in memory at

the beginning of the counting sequence and maintaining that

goal in memory during counting. (The details of goal storage

and retrieval are discussed in Section 2.) The goal represents

the intent to assign a numerical quantity to the set of counted

objects. After counting is complete, COUNTER ret=leves this

goal from memory and adds to the data base the relational struc-

ture shown in Figure 6.

Figure 6. Data structure identifying the last nurnoron used in counting as the
size of the group of counted objects.

16



This structure involves the relational property SIZE, a token

node (S1) for the relation, and argument links (arga and argb)

to the node representing the group of counted objects (UG1--

for Linear Group) and to the numeron used last in counting (in

this case, FOUR). The model has also been programmed to print

the final numeron again, along with an exclamation point.

Gelman and Gallistel observed that children were less

likely to repeat the final numeron when they counted larger

sets of objects. In the model, repetition of the final num-

eron and formation of a relational data structure assigning

size occur because the goal of finding the size is retrieved

from memory. It is reasonable to interpret the observed lower

frequency of repeating the final numeron as a result of for-

getting, in which the longer process of counting included

more opportunities for interference with retention of the

goal of finding the set's size.

4. Abstraction. Representation of the understanding of

abstraction occurs by simply omitting tests for the kind of

object chosen at each step of counting.

5. Doesn't matter. Simulation of children's perform-

ance on the "Doesn't matter" (constrained counting) task

requires (a) procedural knowledge about the preconditions

and consequences of actions; (b) a procedure for checking

the con =equences of one action against the preconditions of

another action; and (c) a procedure for planning action

sequences such that early actions do not violate the precon-

ditions needed for later actions. So, in addition to having

a procedure for counting in the form of productions, COUNTER

has knowledge about the preconditions and consequences of

that procedure in the form of the semantic network shown in

Figure 7. Given a set of objects to count, the COUNTER knows

that the preconditions for counting any one of the objects

with any one of the numerons are that the object has not yet

been tagged with another numeron and the numeron has not yet

been assigned to another object. (This is simply another

17
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way of saying that an obiect can be tagged only once, and a
numeron can be assigned only once.) Counting the object
with the numeron has the consequence that the object is then
tagged and the numeron has been assigned. Similarly, COUNTER
knows that satisfying the constraint of assigning a designated
numeron to some object has the precondition that the object
has not been tagged and the designated numeron has not
yet been assigned; the consequences are that the object is
tagged and the numeron is assigned. Therefore, when COUNTER
is given the instruction, "Make that (the second object) the
tour," a procedure is executed that checks the consequences
of this action (i.e., the second object is not tagged and
the numeron is not assigned). If the consequences of carry-
ing out one action violate the preconditions of another
action, special checks for those preconditions are inserted
in the normal counting procedure. In the example there is a
violation: Given a set of five objects, if normal counting
is allowed to proceed first, then the constraint can no longer
be satisfied since its preconditions have been violated (i.e .

the second object has been tagged TWO and FOUR has been
assigned to the fourth object); similarly, if the constraint
is satisfied first, then counting can no longer proceed as
normal (i.e., in this case the second object is already
tagged and FOUR is already assigned). These violations
cause special checks for preconditions to be inserted in the
normal procedure such that each time an object is chosen it
is checked to determine whether it has already been tagged
with a numeron (is it the constrained object?), and each time
a numeron is chosen it is checked to determine whether it has
already been assigned to an object (is the constrained num-
eron FOUR?). Normally the counting procedure simply omits
these checks. Whenever one of the special checks determines
that either an object or a numeron has already been tagged or
assigned, respectively, a planning procedure is executed. The
planning procedure modifies the sequence in which either the
objects or labels are used to ensure that the preconditions
of the constraint as well as of normal counting have not been
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violated when counting is complete. Depending upon whether
any additional constraints (e.g., stable ordering, one -to -one
correspondence) are imposed upon the planning procedure, a
number of different sequences can be generated. Two possible

modified sequences have already been discussed (page 7). The

first sequence, which modifies the order in which the objects
are counted, satisfies the additional constraint of maintain-
ing one -to -one correspondence between the set of objects and the

set of assigned numerous. According to the model, the second
sequence does not take this constraint into consideration dur-

ing planning with the result that numerous are skipped and
one-to-one correspondence is not maintained.

A more thorough discussion of the model of counting and
its theoretical implications can be found in Greeno, Riley,

and Gelman (1979). The primary reason for mentioning it here
I.; to provide the necessary background for discussing some of
the productions in the next sections.

Section 2: Mechanics of the Model

The previous section presented a general overview of how

a production system works, including an introduction to the
form of COUNTER's knowledge structures and productions. How-

ever, before we can follow COUNTER through an entire counting

episode in ACTP, the reader needs to become familiar with some

additional features of ACTP. This section includes more de-
tailed descriptions of COUNTER's knowledge structures together

with a discussion of the mechanics of individual productions

and their interactions with the data structures. Also included

is a description of the schemata that comprise the condition

and action patterns of the productions.

Knowledge Structures

There are two primary knowledge stuctures represented in

the data base: (a) COUNTER's ordered list of numerous (CLIST),

and (b) spatial information about the array of objects to be

counted.
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A semantic network representation of CLIST is shown in
Figure 8. Notice that this is the same basic structure dis-
cussed in the last section, with the addition of a few more
nodes and links. The elements of CLIST are the symbols ONE.
TWO, and THREE This is indicated by the links labeled ispart.
between the symbols and CLIST. The symbols are also members
of the category NUMERON, as indicated by the links labeled
isa between them and the NUMERON category name. The purpose
of the list membership relation is to identify a numeron as a
member of a list of numerons. This allows numerons in the
li-t to be distinguished from other words COUNTER recognizes
as numerons but does not yet use to count. For example, a
child may know that EIGHT is a numeron before the child has
learned to count to EIGHT.

The other important relation is the NEXT relation which
Is needed to provide a fixed order between the numerons in
CLIST as required by the stable ordering principle. The

ordered relation NEXT links the symbols ONE and TWO to show
that TWO immediately follows ONE in the counting list. This
linkage includes a token node (G0197) in the diagram) and
links labeled arga and argb, indicating a specfic instance
of the relation NEXT in which ONE and TWO are the first and
second arguments. The symbol ONE is linked through hasprop
to the property name FIRST, representing that ONE has the
property of being FIRST. This property allows COUNTER to
identify ONE as the beginning of CLIST. The FOLLOWED property,
on the other hand, allows COUNTER to find the end of CLIST.

It was included because the relevant condition test for find-
ing the end of the list is a test for the ABSENCE of a NEXT
relation. However, ABSENCE tests can only be performed for
single-link relations. For example, (ABSENCE OBJPROP TWO
FIRST) would test for the absence of a hasprop link from TWO
to FIRST. As shown in Figure 8, NEXT is a multi-link relation
and so the ABSENCE test cannot be used. If it were not for
this technicality, it would do just as well to search CLIST
for a member A that was not connected through NEXT to another



Figure 8. Data structure representing COUNTER'S ordered list of nianerorts.
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member B, such that member B came after member A in the list.

If a member A were found that satisfied this constraint, then

it would follow from the properties of an ordered list that

member A was the last member of the list. However, in the

current model, it is necessary to search instead for a member

that has the ABSENCE of the single-line FOLLOWED relation;

this member is then identified as the last member of CLIST.

The ability to identify the last metioer of CLIST is a prerequi-

site to extending the list to include additional numerons.

Visual Information

The other data structure represents COUNTER's visual in-

formation about a set of objects and includes: (a) each ob-

ject's X- and Y-coordinates; (b) the difference between the

X-coordinates and the Y-coordinates of adjacent objects; and

(c) the measure of the slope defined by each pair of adjacent

objects. This quantitative information is used by a spatial

scanning procedure for choosing the next object to count with-

out skipping uncounted objects or repeating already counted

objects. The scanning procedure is based on spatial relations

that are used in forming perceptual groupings and has been

shown to play an important role in counting (Beckwith & Restle,

1966). Although the current model can only form perceptual

groupings for linear arrays, it seems reasonable that this

scanning ability could be extended to other spatial configu-

rations in a psychologically plausible way by including other

relevant Gestalt grouping principles.

In the examples discussed in this paper, COUNTER counts

four objects arranged in an approximately straight line such

as the following:

A B
C D

The data structure containing some o' the visual information

about these objects is shown in Figure 9. Objects A, B, C,

and D are represented by the nodes OB0178, OB0171, OB0164,
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and OB0161, respectively, and each of these nodes is linked
through isa to the OBJECT category node to indicate category
membership. Each object is also linked to its corresponding
X- and Y-coordinates through relations that are tokens of
XCOR and YCOR, respectively.

Information about the differences between the X- (or Y-)
coordinates of adjacent object pairs, though not shown in
Figure 9, is part of the same data structure and is repre-
sented in Figure 10. This particular example contains XDIF
and YDIF information for objects Amd B. Object A's X- and
Y-coordinates are connected to their respective relation
nodes through arga links; object B's X- and Y-coordinates
are connected through a_Ab links; and the value of the dif-
ferences between the two X-, and two Y-, coordinates is con-
nected by argc links.

Figure 10_ Data structures representing ditferences in X and Y coordinate: for objects A and B.
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Finally, the slope defined by two adjacent objects is

represented in Figure 11. Notice there are two slope meas-

ures given for each pair of objects in the data structure.

OB0178 OG0171

Figure 11. Data structure representing the slope defined by objects A and B.

This is because the slopes are defined in a system of linear-

ized polar coordinates where 0.0 is horizontal and pointing

to the right, 1.0 is vertical pointing upward, 2.0 is hori-

zontal pointing left, 3.0 is vertical pointing downward, and

intermediate directions are given intermediate values. There-

fore, for any array of objects, the slope defined by any two

of those objects can have one of two values, depending on the

26

irNt



direction of counting. In the above example, the slope de-
fined by objects A and B is 0.16666 when counting .n a left

to right direction, but 2.1666 when moving from right to

left.

COUNTER uses all this information when counting an
array of objects. After setting a goal to find the size of
the array, it begins counting by forming an initial percep-
tual grouping which includes some objects at one end or the

other of the array. After counting the end object ONE,

COUNTER uses the scanning process to count the remaining
members of this initial grouping in order. Once all these
objects have been counted, COUNTER determines if there are
still objects to be counted that are not yet part of the per-
ceptual grouping. If there are, the same scanning process is
used to extend the group to include some additional objects

which are then counted in turn. This process of extending
the perceptual grouping and counting continues until all the

objects have been incorporated into the grouping and counted.

Compared to the successor function for finding the next num-
eron in the ordered CLIST, the procedure for finding the next
object to count is relatively complicated. This suggests a
plausible explanation for Gelman and Gallistel's finding that

children almost never used the same numeron twice or skipped

a numeron, yet they experienced occasional difficulty in keep-

ing track of just what objects had already been counted.

Although the current version of the model limits the
size of the initial perceptual grouping to three objects
and extends the grouping by only a single object each time,

this is not intended to mean that these numbers must remain

fixed; they could be adjusted for particular spatial configu-

rations with the addition of other Gestalt grouping princi-

ples. However, these additions would not alter the basic

combination of perceptual grouping and scanning described

above and in Section 3_
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Single Productions

General form. Figure 12 shows an ACTP production. As

with the other productions we have seen, it consists of a
condition and an action. A grammar specifying the general
form of productions is given in Table A-1 of Appendix A.

Condition:

((GNUMCHK ((ASYMREL ONEONE VXII V2 V22})/
Action:

(PRINT V2 V22) (POPSTACK) (UNBASE) ((ORDASSIGN BASE V22))
GNEXTN V7 VIO Vi I V12)

Figure 12. Production 048 from the current version of the counting model listed in Aocweridix B.

Condition. In ACT? the condition of a production con-
sists of a control node and an optional set of pattern speci-
fications. In the above example, the control node is GNUMCHK
and the pattern specification is (ASYHREL ONEONE VX11 V2 V22).
The control node of a production has to be active (i.e., has
to be the current focus of COUNTER's counting procedure) for
the condition test to succeed. If the control node is active,
then the ACT? system searches for a set of links in its cur-
rent semantic network corresponding to the pattern specifi-
cation in the condition. For example, the pattern specifi-
cation in Figure 12 is an ASYMREL structure containing four
nodes (see Figure 13):
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Figure 13: ASYMREL pattern specifying a ONEONE relation between nodes V2 and V22.

In pattern specifications, nodes are designated as either

constants or variables. Constants are represented as oval-
shaped nodes which always keep the same value, whereas the
diamond-shaped variable nodes can change their values from
time to time as the system is running. In the example,

ONEONE is a constant. VX11, V2, V22 are variables. When
ACTP is running, some variables already have values. These
are called bound variables, in contrast to free variables
which have no current values. In searching for a pattern,

ACTP has to use the values it has for bound variables just
as it has to use the constants in the specifications. Thus,

a pattern search starts with the constants and values of

bound variables. ACTP then searches for nodes it can till
in for the free variables.

The production in Figure 12 is relevant to the special
checking procedure for the constrained counting task. When
COUNTER is presented with an array of four objects, A, B, C,
and D, and told, for instance, to "make C the two," a different
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production causes ACTP to construct a pattern involving the

object C and the numeron TWO linked together through a rela-

tion that is a token of ONEONE (see Figure 14):

Figure 14. Data structure representing a ONEONE relation between object C and TWO.

This pattern allows COUNTER to remember that C and TWO are the

object and numeron that are to be placed in one-to-one corre-

spondence to satisfy the constraint. Then, when COUNTER is

counting, each time a numeron is retrieved from the counting

list, the condition of the production in Figure 12 checks to

determine if it is the same numeron that is linked to C in

the stored ONEONE pattern. If it is the same numeron, it is

used to count C; if it is not the same numeron, then COUNTER

knows it can go ahead and use it to count the other uncounted

object it is current attending to.

Assume that COUNTER has been told to count the objects

and "make C the two." COUNTER scans the array of objects,

forms a perceptual grouping with A as the end object, and
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therefore --.., - -aunt A with the first numeron in its
counting ONE. However, before COUNTER can proceed, it
must first check if ONE is the constrainod numeron. The pro-
duction in Figure 12 is the relevant production for checking
the numeron and so it is tested. V22 is bound to ONE for this
test, and so ONE replaces V22 in the diagram (see Figure 15):

Figure 15_ Pattern for retrie.nng a node related to ONE through a ONEONE relation.

ONEONE is always bound, of course, since it is a constant.
Therefore, the pattern matches if there is a node related to
ONEONE as a token, and to ONE through an argb relation, that
can fit in as VX11; and another node related to the node found
for VX11 through an arga relation. Since ONE is not linked
to any other node through a relation that is a token of ONE-
ONE, pattern matching fails and
A as ONE. COUNTER then selects
trieves the next numeron, TWO.
ure 12 is relevant and so it is
bound to TWO (see Figure 16):
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Figure 10.. Pattern for retrvavirtg a node related to TWO ttsrough a ONEONE rafataori.

This time the pattern matches to the structure stored in the
data base which has the node G0185 related to ONEONE as a
token and to TWO through the argb relation, and another node
C related to G0185 through the arga relation. When pattern
matching succeeds, two things happen: (a) the nodes that
are found are assigned as the values of the variables men-
tioned in the pattern specification, and (b) the action of
that production is performed. In the example, this means
that C is now assigned to V2 and G0185 is assigned za VX11.
The action of this production is discussed below.

Action. Three kinds of things happen in actions: (a)

(a) executing special functions which include such opera-
tions as printing output to the terminal, (b) building pat-
terns by adding new relations and nodes to the data base, and
(c) remembering and activating nodes. The latter refers to
the fact that an action can contain a list of constants and
variables that will be activated and remembered on the next
cycle of tests. Any constant on the list will be active for
the next cycle; all other constants will be inactive. Any
variable on the list will have its value remembered and thus
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will be a bound variable on the next cycle. All unmentioned

variables will have their values forgotten and thus will be

free variables on the next cycle.

The production in Figure 12 has five action components:
(PRINT V2 V22), (POPSTACK), (UNEASE), ((ORDASSIGN RASE V22)),

and GNEXTN V1 V10 Vi i V12. PRINT is the special function for
printing output; thus (PRINT V2 V22) is the action of printing

the current values of the specified variables. In the exam-

ple, V22 is bound to the numeron TWO, and V2 has just been

bound to C. This piece of action, then, prints a node desig-
nating the object C along with the numeron TWO. The intention
is to represent pointing to an object and saying a numeron.

(POPSTACK), another special function, is involved in
removing goals from the data base once they have been satis-

fied. However, before we describe exactly how this is done,

a brief discussion is in order concerning what goals are used

in ACT?, and why goals are used in the first place.

Goals in ACTP are of two kinds. Simple goals are set by

activating control nodes, such as GNUMCHK. Control nodes func-

tion as goals that produce selection of productions whose pat-

terns will be tested. For example, the production shown in

Figure 12 is one of two productions that may be tested when

the control node GNUMCHK is active. Having GNUMCHK active

cor- esponds to COUNTER having the goal of checking whether a

numeron that has been retrieved is the specially constrained

numeron in a courting task. Simple goals are set on a cycle-

by-cycle basis and are set and remov'd without changing the

network structure that represents the situation.

Complex goals are used when it is necessary to store

information about a goal in memory. This happens whenever a

goal cannot be achieved immediately and will need to be re-

trieved later after another goal has been set and achieved.

Complex goals are stored in a pushdown memory stack. When-

ever a new complex goal is adopted, the previously current
goal is stored by placing it in the goal stack. Whenever
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the current goal is achieved, that goal is removed from the

memory stack, and the next previous goal reaches the top of

the goal stack.

Three functions in ACTP are involved in management of

complex goals. A schema, GOALX, creates data structures that

represent goal information. An example is in Figure 17. The

structure shown there is constructed at the beginning of count-

ing; the goal is to find the size of the group of objects pre-

sented to COUNTER. When this stucture is in memory, a pattern
such as (GOALX GOAL VXI XFIND SIZE V2 V3) would be matched,

so the system is able to retrieve information about what it

needs to do next, after it h3 completed a part of the task.

GOAL')

Figure 17. Data structure representing the goal of finding the size of the group
of objects to be countri.

Goal structures are formed in ACTP by a function SETGOAL.

which creates a structure in the form shown in Figure 17, using

the GOALX schema. SETGOAL also modifies the goal stack. Be-

fore creating a new goal structure, SETGOAL adds the current

goal to the stack of prior goals in memory. Another function
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POPSTACK, is used in an action when a goal has been accom-

plished. POPSTACX removes the current goal from the data
structure and changes the goal stack by removing the top
entry 'rom the stack and making it the current goal.

The structure shown in Figure 17 is formed when COUNTER
is asked haw many objects there are in a set. This identifies

G0224 as the current goal. If in addition to determining how
many objects are in an array, COUNTER is also told to "make
C TWO," G0238 is added to the goalstack, and a second GOALX

pattern is built in the dir' base, identifying G0238 as the

new current goal (see Figure 18).

1212olt::)

Figure 18. Data structure -ectresenting -..ne goal of "Making C "rw0-

Figure 19, then, represents the goal stack at the time the

production in Figure 12 is relevant.

Figure 13. Goal stack containing one goal.
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However. the current goal of satisfying the special constraint
was achieved when the action (PRINT V2 V22) was performed. So

(POPSTACK) removes 00238 from the data base and checks the
goal stack to see if there are any more goals. This is equiva-
lent to COUNTER asking itself. "Now that I've satisfied the
constraint of making C the TWO, is there anything elie I need

to take care of?" In this case, there is another goal in the
stack--the goal of assigning the last numeron used in counting

as the cardinality of the set. POPSTACK removes G0224 from
the stack and makes it the current goal once again.

Referring again to Figure 12, the special function
(UNBASE) removes the structure that represents the ,current
problem base. This data structure has the node LA 1r7. con-

nected to one or more nodes in the data base by links Ida,

idb, idc. and so on. BASE's main function is to provide
araseable memory that is not easily handled with bound varia-

bles in the ACTP system. BASE puts a node into memory so that

it can be retrieved and assigned as the value of a variable

during some later cycle. In the example, the current problem
base at the time the action of the production is taken is

shown in Figure 20.

Figure 20. Data structure representing the current problem EI4SE.

This structure was used to store the most recently used num-

eron so that it would be available to COUNTER when it came

time to retrieve the next numeron from the ordered list of
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numerowc. That is, when it came time to count object B,

COUNTER. a.aeded to remember that ONE was the last numeron it

used 1.17 -3rder to retrieve the appropriate next numeron (i.e.,

TWO) from CLIST. However, new that TWO has just been used
to count C, ONE is no longer the most recently used numeron
and so UNBASE removes it from the data base. The next action
component, ((ORDASSIGN BASE V22)), creates a new pattern in

the data base, making the current value of V22 (which in this

case is TWO) the base of the problem, as shown in Figure 21.

Figure 21. Data structure representiog the current problem BASE.

This means that the next time COUNTER needs a numeron to count

am object._ it will remember that TWO was the last numeron it
used and therefore choose THREE as the ne-t unused numeron.
THREE will be used to count the object any will then replacis

TWO as the current base, and so on. So in the example. UNBASE
and ORDASSIGN are part of an iterative procedure that allows

COUNTER to proceed systematically through its ordered CLIST

without skipping or repeating numerons.

The last action component consists of GNEXTN and some

variables. GNEXTN is a constant, and its being mentioned at

the end of the production causes the control node GNEXTN to

be active on the next cycle, in turn causing the condition

patterns of a different production (or productions) to be
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tested on the next cycle. The reason GNEXTN, and not some
other constant, is mentioned here is because it is
stant used as the control node for the productions
relevant to the next step in COUNTER's procedure.
case, the next step is to retrieve the next unused
from CLIST. This is because COUNTER had retrieved

the con-
that are
In this
numeron
TWO, in

to use it to count B. but discovered that TWO was
the constrained numeron and had to use it to count C, the
constrained object, instead. This means that COUNTER still
needs a numeron to count B. Since productions with the con-
trol node GNEXTN are designed to retrieve the next unused
numeron from CLIST, their control node is activated for the
next cycle.

Finally, Vi, V10, V11, and V12 are variables; mentioning
them in the action of the production causes their current
values to remain bound on the next cycle. In the example,
object B is the current value of V.. and must remain assigned
so COUNTER can remember that B is the object it intends to
count next. VIO, V11, and V12 are related to COUNTER's per-
ceptual scanning and grouping procedures which will be dis-
cussed in the next section.

Steps in matching and executing a production. The syn-
tax of a production is easier to understand if one has a clear
understanding of the procedures used in attempting to match
the conditions and executing the actions of productions.

When ACTP tests a producticn, the question is whether
the condition can be matched in the data structure. Typically,

there are two parts of a condition: a control node a..ld a pat-

tern specifiction. Neither of these is required, and prt.:3=c-
tians written for ACTP often have only a control node. More
than one control node or more than one pattem-n specification
can be included, but that has not been done in any models that
have been programmed.

ACTP proceeds through the elements in the condition of a

production. If an element is an atom, ACTP tests whether it
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is an active node. If it is not, then further testing :s
omitted. If an element is a list, ACTP assumes that the
element is a pattern specification. This will be a list of
concept schemata, each of which is a list beginning with a
schema name, such as ASYMREL or °REASSIGN. ACTP assembles
a list of links that correspond to the concept schemata in
the pattern, noting the nodes that consist of constants,
bound variables, and free variables. ACTP then tests
whether the pattern can be matched in the current data
structure. If it fails, it proceeds to the next production.
If a match is found, the free variables in the pattern are
bound to the nodes that they matched, and ACT? goes on to
the next element in the condition, if there is one. If all
the control nodes are active and all the patterns can be
matched, ACT? goes on to execute the action of that produc-
tion.

Actions have three kinds of components: atoms, which
must be variables or constants; special functions, which are
included in single parentheses; and pattern specifications,
which are doubly parenthesized, i.e., lists of lists. In
executing an action, ACTP proceeds through the elements of
the action. If ACTP encounters an atom that it recognizes
as a constant, it places the atom on the list of active nodes.
If the element is a variable, it places the value of the varia-
ble and the variable on the list of bound variables for the
next cycle and makes the value an active node. If ACT? en-
counters the name of a special function in a list, then the
function will be executed by LISP. If ACTP encounters a list
that is not a special function, then it assumes a pattern
specification. It assembles the list of links that corre-
spond to the pattern specification, using the values of all
variables that were either bound initially in the cycle or
that were matched in testing the condition of the production.
Any variables that do not have values are given values in the
form of unique symbols generated by LISP. The links in this
set are added to the data structure.
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Comments on the use of parentheses in productions. The

typical form of a production is shown in Figure 22. The entire

production, consisting of a condition-action pair, is inside a

set of parentheses. Then the condition is also enclosed in

parentheses to separate it from the action. Within the con-

dition, the list pattern specifications is contained is

yet another pair of parentheses, and each individual pattern

specification is also in parentheses. Sometimes a condition

contains no pattern specifications:

((GCOUNT) (PRINT V1 V22) (UNBASE) ((ORDASSIGN BASE
V22)) GNEXTOB V10 Vii V12)

Here the entire condition is the control node GCOUNT, closed

off by a single parenthesis; everything else is the action.

In the action, pattern specifications are inside double

parentheses. Special functions are inside single parentheses.

Nodes and variables that are to be kept active for the next

cycle are just mentioned, with no parentheses.

Thus, when reading a production from left to right:

1. A production starts with two left parentheses.

2. There is a single symbol at the beginning. This is

the control node for the production.

3. If there is a right parenthesis after the control

node, that completes the condition of the production.

4. If there is no right parenthesis after the control

node, there should be two left parentheses. This is the be-

ginning of a list of one or more pattern specifications. The

list of pattern specifications ends with three right parenthe-

ses, and this completes the condition.

5. The action may contain one or more pattern specifi-

cations. Each pattern specification (or each list of pattern

specifications) begins with two left parentheses and ends with

two right parentheses.

40

el:



Bqin Production

Condition

Control Node List of Pattern Specifications

Piped 5spec4

11:4FINDBOUND (CORDASIGN BASE VI V2 V3 NI) (OW V4 OBJECT) (ASYMREL VII VXI V4 N4) (NCOMP ' LESS N4 Ni))

Action

(UNEASE) (IORDASSIGN BASE V4 VI V2 N41) GFINDBOUND V.1)

End Production

Figure 22. Typical form of a prodtcrion (Production #161.
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6. The action may contain one or more special functions.
Each special function begins with one left parenthesis and
ends with one right parenthesis.

7. The action may contain a control node to be active
on the next cycle. This will be mentioned with no pare-the-
ses around it.

8. The action may contain one or more variables whose
values will be remembered (bound) on the next cycle. These
will be mentioned with no parentheses around them.

9. The production ends with a single right*pitarenthesis.
If the last thing in the production is a control node or a
variable, the terminating parenthesis will be by itself. If

the last thing is a special function, its right parenthesis
will be with the terminating parenthesis, so that the pro-
duction will end with two right parentheses. If the last
thing is a pattern specification, its two right parentheses
will be there, so the production will end with three right
parentheses.

A flowchart for writing a production is shown in Fig-
ure 23. Although it assumes a rigid order for the action
side of productions, this is not mandatory and experienced
users may prefer different orders.

A special note on conditions with no pzt-zern specifica-

tions. When the condition of a production consists only of
a control node, the action of that production will be taken
if (a) the control node is active during a given cycle, and
(b) no preceding production has already been tested as true
on that cycle. This can be made clearer by the following
example.

Compare Productions 23 and 24 from Appendix B:

P23
((GOBJCHK ((ABSENCE OBJPROP VI SPECIAL))) GNEXTN V10 V11 V12 V1)

P24
((GOBJCHK) GNEXTOB V10 V11 V12)
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Fivvla 73_ Flowchart for writing a single production.
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These productions are relevant to the special checking in-

volved in the constrained counting task. In constrained
counting, each time COUNTER selects a new object to count,
it checks the object to determine if it is the one involved

in the constraint. If it is not the constrained object,
COUNTER goes ahead and gets the next unused numeron from

CLIST. If it is the constrained object, COUNTER skips it
and selects the next object to count from the array. This

is because COUNTER intends to count the constrained object
whenever the constrained numeron shows up as the "next"

numeron in the course of counting the array; skipping the
constrained object here, then, ensures that it will not be

counted twice.

Production 23 checks the object assigned as the value of

V1 to make sure that it does not have the property SPECIAL

( "SPECIAL" here means "constrained"). If the object in ques-

tion is not a special (constrained) object, then the condition
of this production is true and its action is taken. This

causes the control nod. GNEXTN to be active on the next cycle

as well as the variables V10, V11, V12, and V1 to remain

bound with their current values. GNEXTN controls the produc-
tions responsible for getting the next counting name in the

model's ordered counting list_

Production 24, on the other hand, has no condition pat-

terns to be matched. However, while it is true that there

are no explicit condition patterns, consider the following

situation. On any cycle when GOBJCHK is active, both Pro-

ductions 23 and 24 are possible candidates for testing be7

cause they both have the same control node. But remember

that only one production is fired during any single cycle

and this production will be the first production whose con-

trol node is active and whose condition pattern (if any)

matches successfully to the data base. Furthermore, ACTP

productions are always tested in order. This means that

whenever GOBJCHK. is active, Production 23 is always tested

before Production 24. If Production 23's condition pattern
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matches, its action changes the active control node to GNEXTN

for the next cycle; in this case Production 24 is never tested

at all. In fact, the only time Production 24 is tested is

when Production 23's condition pattern does not match. So,

taken together, Productions 23 and 24 say, "If the object

attached as the value of V1 is not special (i.e., if this is

not the constrained object), then go ahead and get the next

numeron in the counting list; otherwise (i.e., if this is the
constrained object) find another object to count (this is

accomplished by activating the control node GNEXTOB)." Pro-

duction 24 does, therefore, have an implicit condition in

this case by virtue of following another production having

the same control node. This will of Len be true of other
"conditionless" productions in the model and is important to

keep in mind when interpreting Appendix B.

Schemata

A schema is a concept represented as a set of links that

go together to make a recognizable configuration. Each schema

has a name which is used to identify that schema in produc-

tions. A schema also has some slots that are filled in with

variables or constants when the schema is used in a produc-

tion. Some schemata in ACTP correspond to a single link;

other schemata contain several links. Three of the single-

link schemata--OBJTYPE, OBJPROP, and PARTOBJ--are shown in

Figure 24. OBJTYPE (also referred to as OBJCAT for "object

category ") has its arguments linked by isa, OBJPROP has its

arguments linked by hasprop, and PARTOBJ has its arguments

linked by ispart.

A fourth schema that is used in this system is ASYMREL,

a generic structure involving an asymmetric relation with any

number of arguments. For example, the ASYMREL schema shown

in Figure 25 has two arguments for a total of four nodes.

The name of the relation (for example, NEXT, ONEONE, YXSLOPE,

SDIF or YDIF) is the node at the top. A uniqu-' symbol is a

token of that relation. This symbol can be any convenient
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identifier such as NXT or YX, followed by a number; when an

identifier is not specified, then the unique symbol is G fol-

lowed by a number. The arguments are included as the remain-

ing nodes in the structure. For example, suppose a production

has the pattern CASYMREL NEXT VX1 V21, V22), and V21 is bound

with the value TWO (refer to the CLIST diagram in Figure 8).

This would match with VX1 bound to G0198, and V22 bound to

THREE. Consider another example involving the same pattern,

but suppose that V22 is bound with the value TWO when pattern

matching occurs. Then the pattern will match with VX1 bound

to G0197, and V2I bound to ONE.

Finally, the ORDASSIGN schema tests for the pattern

shown in Figure 26:

Figure 26. 0 ROASS1GN schema.

The top node is generally BASE, though it can be anything.

Although there are four arguments linked to BASE in the above

example, ORDASSIGN, like ASYMREL, can take an unlimited num-

ber of arguments. For example, in Production 48 ORDASSIGN

took only one argument: ((ORDASSIGN BASE V22)). The ORDAS-

SIGN pattern can be removed from the data base by using the

function UNBASE_ 'Mir means that the base of the process can

be altered from time to time during the running of the produc-

tion system. The utility of this schema will become apparent

in the discussion of the actual counting model.
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The uses of schemata involve matching and generating

patterns. In pattern matching, a schema will be p,.rt of a

structure that has some of its arguments already fixed as

constants or bound variables. If all the arguments are
fixed, pattern matching is simply a check to see whether the

links In the data base agree with these specified in the sche-

mata. If some of the arguments are not fixed, then pattern

matching involves a search to see whether there are nodes in

the data base thzt will fit into the specified structure.

For example, suppose a production has the pattern (ASYM-

REL NEXT VX1 V21, V22). NEXT is a constant; suppose VX1, V21,

and V22 are not bound. The pattern matches if there is a node

related to NEXT as a token, to another node through the arga

relation, and to yet another node through the argb relation.

The diagram of the CLIST structure indicates two secs of nodes

that qualify: either G0197, ONE. TWO, or G0198, TWO, THREE.

One of the token nodes (either G0197 or G0198) will become

bound as the value of VX1, and its corresponding arga and

argb relation nodes will become bound as the values of V21

and V22, respectively. Since there are several valid possi-

bilities, it is not clear which of the sets of nodes will

actually be found.

Now consider an example of how different schemaL.

combined in a complex pattern specification. The example is

taken from the condition pattern of the ADDTAG production

mentioned earlier. Basically, this production extends the

ordered CLIST by (a) identifying an elemenz known to be a

numeron but not yet a number of CLIST, and (b) linking this

element through NEXT to the last numeron in CLIST:

((ADDTAG ((ASYMREL NEXT VX1 V21 V22) (ABSENCE OBJPROP V22
FOLLOWED)

(OBJCAT V23 NUMERON) (ABSENCE OBJPROP V23 FOLLOWED)))

((PARTOBJ V23 CLIST) (ASYKREL NEXT VX2 V22 V23) (OBJPROP V22
FOLLOWED))
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The condition consists of the control node ADDTAG and a pat-

tern specification composed of four schemata_ This means
that the pattern to be found cannot have a different node
in the ASYMREL schema than in the OBJPROP schema. Thus the

two schemata are combined into the following single pattern

in Figure 27:

F ,gurs 27_ Pattern for rirtr Iry ng vle It nurneron in CLIST.

Together they allow the model to identify the last numeron-

in CLIST. That is. the only nodes involved in NEXT relations

in the current data base are the nodes representing the num-

erons in CLIST and the only one of these nodes lacking the
property FOLLOWED is the last one. Indeed, referring back

to Figure 3, node THREE is the only node in the data base
that has the right relation with both the consta- NEXT and

the constant FOLLOWED. The pattern matches, THR_ becomes

the value of V22, and TWO and G0198 are assigned as the

values of V21 and VX1, respectively, as shown in Figure 28.
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Figure 22. Data structure representing the NEXT relation between TWO and THREE.

Similarly, the last two schemata of the condition pattern

mention a single variable name, V23. Together, these two sche-

mata allow the model to find an element in its data base that

is a NUMERON but is not yet a member of CLIST. (OBJCAT V23

NUMERON) specifies that the node assigned as the value of V23

must be a NUMERON. The following diagram (Figure 29) shows

all the nodes that qualify:

Figure 29. Data structure snowing the members of COUNTER's numeron category.
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However, (ABSENCE OBJPROP V23 FOLLOWED) further specifies that
the node assigned as the value of V23 cannot have a hasprop link
to FOLLOWED. This additional requirement eliminates ONE and TWO
as possible candidates for the value of V23 since these three
nodes were linked to FOLLOWED when they became members of CLIST.
Although the node THREE does satisfy both requirements, it has
already been assigned as the value of V22 and cannot be assigned
again in the same condition.

Considering all four schemata together, then, the condition
of the above production says, "Find the end of the current CLIST
and then find an element that is known to be a numeron but is not
already in the ordered CLIST." Assuming that this condition can
be met, the action of the production is to make this unordered
numeron part of CL/ST, link it with THREE through a relation that
is a token of NEXT, and link THREE through hasprop to FOLLOWED.
This results in the expanded version of CLIST shown in Figure 30.

Notice that the FOUR was the numeron chosen to be bound as
the value of V23. As mentioned earlier, numerous FOUR to TEN,
inclusive, were all possible candidates. FOUR was bound simply
because the pattern matc:-Ier found this node first when evaluating
the elements of NUMERON. A more elejmnt version of ADDTAG would
perhaps assign varying "strengths" to the as-yet-unordered
numerous; a numeron's strength would then determine its proba-
bility of being bound to V23 when ADDTAG was ac-ive (as opposed
to leaving it up to the built-in "whims" of the pattern matcher).
The relative strengths of numerous could conceivably be a func-
tion of such things as watching Sesame Street and seeing SIX,
or hearing a poem with TEN in it.

A general point about the system is that most link-types
have inverses, and the system is indifferent to which direction
is specifiee in a schema. The inverse of isa is memb, the in-
verse of hasprop is ispr,,p, the inverse of ispart is ha.spart,
the inverse of taker. « type. Arga's inverse is argal, ana
argb's inverse is argbl. This is r.-)t an issue of any substan-
tive importance, but there will be times when the inverse
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relations will be specified, and it is confusing if "A isa B"
is not recognized as identical to "B memb A," and so on.

Section 3: A Detailed Lock At How the Model Counts

This section follows COUNTER in detail as it counts a
group of four objects. It describes the components of the
counting procedure as a series of actual cycles through
COUNTER's set of productions. The output from these cycles
is shown in Appendix C and will be referred to throughout the
discussion.

Some Preliminaries

Before COUNTER can begin to count, it must be "started up"
as shown at the beginning of Appendix C. STARTUP is a LISP
function that informs the ACTP system running the model of the
variable names, constants, links, and so on, that will be used
in a particular set of productions. Without this information,
the system cannot distinguish variables from constants, for
example, and therefore cannot operate. STARTUP also builds
COUNTER's ordered list of numerons, CLIST, into the data base.
Initially CLIST consists of only the numerons ONE, TWO, and
THREE (see Figure 8). During the first few cycles, the func-
tion ADDTAG will be used to extend the list to six numerons.
A listing of the STARTUP relevant to the current version of the
counting model is given in Appendix D along with a discussion of
the main STARTUP functions.

(Incidentally, a "*" J.11 the printout indicates that any-
thing following it on the same line was typed in from the
terminal.)

Still referring to Appendix C, the next line after (START-
UP) to be typed in from the terminal is (GENSET OBJECTS). GEN-
SET is another LISP function that sets up an initial data struc-
ture; something like GENSET is always needed to define a model's
initial knowledge state. In the counting model, GENSET sets up
the representation of the visual information in the display c-
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objects. The reason this was not done in STARTUP is because

GENSET takes different arguments depending on the number of

objects to be counted, and their location; its arguments could

not be easily changed in STARTUP. GENSET takes as its argu-

ments the names of objects and the values of their respective

X- and Y-coordinates. On the basis of this information, it

computes the difference between the X- (and Y-) coordinates

of adjacent object pairs as well as the slope defined by those

pairs. The output of this function is the data structure

representing the spatial information the model uses to scan

and count the objects. In the example shown in Appendix 2,

the variable OBJECTS had as its value the list:

(OBJECTS (A 7,0 0.0) (B 8.0 0.20000000) (C 9.5 0.0)
(D 10.0 0.0)

Operating on this list, GENSET generated the data structure

discussed in the last section and shown in Figure 9. Some of

the nodes in this structure were printed out in response to

the YES reply to SHOW-STRUCTURE?

TRACE is a LISP function that takes t: _2 names of other

LISP functions as its arguments, e.g., PREQPLAN and PREQCHK.

These other functions are then "traced" whenever they are

called during a cycle. A trace is a detailed report of a

function's execution within a program and is primarily used

as a debugging device.

CYCLE tells the system to begin the process of cycling

through its set of productions. A YES response to THINK-ALOUD?

causes the names of all currently bound variables and control

nodes to be printed out at the beginning of each cycle. If a

NO response is given, only the number of the current cycle is

typed each time, except when the action of a production includes

the PRINT function.

(SETQ DEBUG NIL) is a LISP signal telling the system not

to print out debugging information during the cycle:, that follow

it. (This could just as well have been typed in before starting

CYCLE.) Similarly, if at any time debugging information is
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needed, (SETQ DEBUG T) can be typed in, causing this informa-
tion to be printed out on subsequent cycles. In fact, LISP
signals can be given as input to any cycle, after which ACTP
will execute the functions that are specified.

The output from each cycle includes a list of the active
nodes and a list of the variables that have bound values. So
when the system now returns:

NIL
NIL
1
).» *

NIL indicates that az-. the beginning of the first cycle there
were no active control nodes and no currently bound variables;
therefore, no productions were tested and no action taken.

As already mentioned, LISP signals can be given as input
to a cycle. Also permitted are inputs that bein with any
one of the words on ACTr's list of titles that is defined in
STARTUP (see Appendix D). These inputs then became active
during that cycle in the same sense that constants mentioned
in the actions of productions become active for the next cycle.
For example, in Appendix C, the next input from the terminal
is (ADDTAG) which causes this control node to become active as

shown at the beginning of Cycle 2:

(ADDTAG)
NIL
2

ADDTAG is the control node of the production relevant to ex-
tending COUNTER's ordered list of numerons (discussed under
Schemata). The NIL under the (ADDTAG) says that there are
still no bound variables. ADDTAG is active on this cycle and
since it matches the control node of Production 1, the action
of the production is taken. Notice that whenever an action is
taken, the corresponding action patterns are printed out at
the end of the cycle along with a temporary data structure
identifying any permmanent new additions to the data base.
These structure de-criptions start with a symbol beginning
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with ST and give a list of the nodes included in the structure.
For example, at the end of Cycle 2 In the appendix, the action

patterns of Production 1 are printed out and ST0200ridentifies

the new additions to the data base:

2
MPARTOBJ CLIST) (ASYMREL NEXT VX2 V22 V23)
(OBJPROP V22 FOLLOWED)))
(ST0200 (FOUR CLIST NEXT G0199 THREE FOLLOWED))

This says that at the end of Cycle 2, FOUR (assigned as the

value of V23) has become a part of CLIST: the relational node

NEXT has been assigned a new token node (G0199) that takes

THREE and FOUR as its ordered arguments; and THREE is now con-

nected through a hasprop link to FOLLOWED. The data structure

containing these new additions to the ordered list of counting

names is shown in Figure 30. FIVE and SIX are added to CLIST

in the same way by activating (ADDTAG) for Cycles 3 and 4.

On Cycle 5, COUNTER prepeares to count by setting the goal

of finding the cardinality of the set of objects. (HOWMANY) is

typed in from the terminal, causing this control node to be

active on this cycle. (HOWMANY is one of the words on ACTP's

list of titles.) Production 4 is the only production with this

control node. It is tested during Cycle 5 and there are no con-

dition patterns to be matched so the action is taken. This

causes a new goal, represented by the token node G0224. to be

added to the top of the goal stack and the structure in Figure

19 to be added to the data base. This structure represents a

goal for finding the numerical size of a group of objects (i.e.,

its cardinality).

COUNTER is now ready to count. This time NIL is typed in

from the terminal which indicates that no input is provided for

the next cycle. However, part of the action of P4 was to acti-

vate the constant GSEE so there is an active control node at

the beginning of Cycle 6.

6 1S6



COUNTER Counting

The following discussion of the counting procedure skips
over the initial scanning and perceptual grouping of the objects
(Cycles 6-11) and begins with Cycle 12. By this time, COUNTER
has already scanned the arrayABCDand has formed a percep-
tual grouping of the three leftmost objects (i.e., A, B, and C).
Then using information about which end of the array it found and
the direction of the path between the end object and another ob-
ject in the group, COUNTER formed the following relational struc-
ture (Figure 31) which indicates that the array is approximately

Figure 31. Derceiott.li goup.ng of objects A, 8. and C.
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horizontal, scanning is to occur in a left-to-right direc-

tion, and the slope of the path that will be used to extend

the group if it becomes necessary. A perceptual linear

grouping, designated by the node .GC238. has been formed and

consists of three objects denoted 0B0178. 080171, and 0B0164

(,bjects A, B, and C, respectively). A structure involving

a relation called SCAN has also been formed. The arguments

of the scan relation are the group of objects (G0238). the

dimension of scanning (XCOR for horizontal, YCOR for verti-

cal), the direction of scanni-Ag (*GREAT for left-to-right or

bottom-up, *LESS for the opposite directions), and the slope

defined by the first two obje..ts fn the aay (0.16666665).

Cycle 12. During this cycle, COUNTER first focuses on

the perceptual grouping of objects it has just formed and

identifies the object at the left end of this grouping as

the first object to be counted. This object (i.e., object

A) is then tagged with the property of being the current

bound of the set, an operation equivalent to placing a tag

on each object as it is counted.

At the beginning of Cycle 12. GCOMPACT2 is active.

Following GCOMPACT2, on the same line, are the bindings of

the variables that were held over from the previous cycle.

The next line pairs these bindings with their respective

variables:

(*GREAT V12 XCOR V11 OB0178 VI 7.0 Ni OB0171 V2
8.0 N2 OB0164 V3 9.5 N3)

Thus, *GREAT is currently assigned as the value of V12, XCOR

is assigned to V11, 0B0178 is assigned to V1, 7.0 to N1, and

so on.

P22 is the only production whose control node is active

on this cycle, and so it is the only production that gets

'tested. The condition of this production tries to match the

following pattern (FiglAre 32) to the data base:
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Figur* 32. Pattern tor retrieving visual information about the group of objects.

The pattern matches to the data structure shown in Figure 31,
and the free variables V10 and VX3 are bound to G0238 and
G0245, respectively. Since the condition matches, the action
is performed. This action assigns VI (object A) the property
BOUND. (Note: This refers to the lower bound of the set of
uncounted objects and is not to be confused with the bound
value of a variable.) The second action component, (UNBASE),
removes all arguments from the temporary data structure,
BASE. Finally, the constant GNEXTN (NEXT Number) is activated
because it is the control node of the production relevant to
the next step in the model's counting procedure, and the bind-
ings of V10, V11, V12, and V1 are held for the next cycle.
The next step is to get a numeron frcm the ordered CLIST.

Cycle 13. On Cycle 13, COUNTER retrieves a numeron from
its ordered list of counting names so it can count the first
object in the array. In this case the successor function is
not yet applicable since getting the "next" numeron from
CLIST requires that there already be a current numeran. This
means that COUNTER must begin with the first numeron; this
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involves simply identifying the numeron in CLIST that has
the property first.

At the beginains cf this cycle. GNEXTN is active and
G0238, XCOR, *GREAT, and 0B0178 are alrea :3, as as

the values of V10, V11, V12, and V1, respectively. P45 and
P46 are both candidates for testing since they both have the
active control node. i'45 is the proauction that retrieves
the next numeron in CLIST. It comes before P46 in the
model's set of productions and so it is tested first. The

first part of its condition requires finding the following
ORDASSIGN pattern (Figure 33) in the data base:

Figure 33_ Perron, for retrieving tile current problem BASE.

Throughout the counting procedure, V21 is the variable that

gets bound to the most recently used numeron. However, since

there are no used nunerons an this cycle, this pattern fails

to match and P45's action is not taken.

P46 is tested next. Its function is to retrieve the

first numeron from CLIST. The condition requires finding
the pattern shown in Figure 34.
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Figure 34. Pattern for retrieving ow first nurneron from CLIST.

This pattern is matched to the CLIST structure in the data base
(see Figure 30) and V22 is bound to ONE. The action of P46 acti-
vates the control node GCOUNT and holds t'le bindings of V1, V22,
VIO, V11. and V12 for the next cycle.

Cycle 14. This cycle involves COUNTER counting the object
A with the numeron ONE. P55 is the only production whose control
node is active. There are no condition patterns to be tested and
SO the action is performed. The values of V1 and V22 are printed
out at the terminal.

***** (030178 ONE)

This is intended to represent COUNTER counting object OB0178 with
the numeron ONE. The rest of the action removes the current BASE
(on this particular cycle there is none to remove) and reassigns
the numeron that was just used as the current BASE. Figure 35
shows ONE as the current problem BASE, signifying that ONE is the
most recently used numeron.

Figure 35. Oats structure Um:0+pm; one as the current problem BASE.
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GNEXTOB (NEXT OBject) is then activated and V10, V11, and V12
hold their bindings for the next cycle.

Cycle 15. Having counted object A. COUNTER now scans its
initial perceptual grouping, LINGROUP, to determine if there are
objects that have not yet been assigned the property BOUND, (i.e.
have not yet been counted).

P31 is the relevant production here. In order for its con-
dition to be true, there must exi3t a node in the data base that
is a member of the current LINGROUP (LINGROUP is the value of V10)
but does not have the property BOUND. The current data base con-
tains the following information (Figure 36) on LINGROUP which is
represented by the token node G0238:

'Qum 36. Oats ----a,r ^g ,nlorrnatioh about the sat of °bracts.

There are two candidate f match: OB0178 and OB0164 whica

represent the objects B and r, respectively. OB0164 happens
to be chosen and is assigned as the value of VI. Before this
object can be counted, however, COUNTER must check to see if

there are any other objects between OB0164 and the most recently

counted object (030178). So GCHBETWEEN (CHeck BETWEEN) is acti-

vated and the mentioned variables keep their values for the

next cycle.
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Cycle 16. Before counting the object it just found,
COUNTER checks to make sure that there are no other untagged
(i.e., uncounted) objects between this object (object OL0164)
and the last object it counted (object 080178). Since the
direction of counting in the example is from left to right,
this is equivalent to checking for the existence of another
uncounted object whose X-coordinate is less than OB0164's
X-coordinate. If there does exist an object with a smaller
X-coordinate, this object replaces 080164 as COUNTER's cur-
rent focus and the checking procedure is repeated until the
uncounted object with the smallest X-coordinate is found.
Thus, in the same way that applying the successor function
to CLIST ensures that the retrieved numeron is the one imme-
diately next to the most recently used numeron, this percep-
tual checking procedure ensures that the object selected for
counting is the one closest to the object that is currently
the upper bound of the array.

At the beginning of this cycle, GCHBETWEEN is active and
so P41 is tested. The condition zequires first finding the
following pattern (Figure 37) in the data base.

F 4gure 37 Partern for retrieving the va!ue of oblect C's X-cooroolal.e.
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Next a second pattern must be found. constrained so that the

node assigned as the value of V2 does not have the property
BOUND, as shown in Figure 38

Figure 38. Pattern for retrovsng an obietz +en L1NGROUP togatl-ter .ts X-coorClinate

The first pattern is matched to the data base and XC0143 and

9.5 are assigned as the values of VX1 and Ni. These nodes

cannot be assigned again to different variables during the

same cycle, so the second pattern must be matched to a dif-

ferent set of nodes. Again the match is successful and
SC0142, OB0171, and 8.0 are assigned as the values of VX2,

V2, and N2, ,,..spectively. This means that COUNTER has identi-

fied ar-nther uncounted object in LINCROUP: it does not yet;

know, however, if this object is closer than OB0164 to the

last counted object. So the next condition test involves a

comparison of N1 and N2 to determine if the relation bound to

V12 is true with respect to them. In this case, V12 has the

value *GREAT and, since 9.5 (0B0164's X-coordinate) is greater
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than 8.0 (0B1071's X- coordinate), the relation is indeed true.

This indicates that OB0171 is closer than 0BC164 to the last

counted object (OB0178), casuing COUNTER r,) change its cur-

rent focus. However, before it can go ahead and count OB0171.

the model must repeat the checking procedure to de: -mine if

there exists yet another object closer than OB0171 to OB0173.

Therefo- , the last condition component and the entire

of the current production prepare COUNTER to refocus i check-

ing procedure m OB0171.

The rc.cocusing process is somewhat confusing here because

the current production, P41, is also the production that will

be used to check OB0171. This requires that before checking

can proceed, OB0171 must be assigned as the value of V1, the

variable that P41 considers to be bound to COUNTER's current

focus. Without this reassignment, the next time P41 is exe-

cuted V1 would still he bound to OB0164 and the model would

be caught in an infinite loop. OB0171 cannot be assigned as

the value of V1 on this cycle, however, because OB0171 is

already assigned to V2, and V1 is already bound to OB0164.

The strategy here is therefore the following: (1) remove

the landings of V1 and N1 by failing to mention V1 and N1

with the other variables on the action side of the production;

(2) hold OB0171 and its X-coordinate (8.0) in temporary mem-

ory until they can be assigned on the next cycle to the then

free variables V1 and N1, respectively. The second part of

this strategy requires the use of the ORDASSIGN schema. Sim-

ply mentioning the variable bound to OB0171 in the action of

the production is not appropriate here because this would

mean that 050171 would already be assigned on the next cycle

and could therefore still not be assigned to V1, even though

V1 would then be a free variable. The ORDASSIGN schema, on

the other ham', allows nodes to be remembered without assign-

ing them to variables.

COUNTER has already used the ORDASSIGN schema to store the

node representing the last numeron used in counting and there-

fore already has. the following pattern (Figure 39) in memory:
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Figure 3Z. Oats structure specifying ONE as the current probbem BASE.

Creating a new problem BASE requires that this existing BASE

structure first be removed from memory. Before'this is done,

however, '11.11nER needs some way of remembering the last num-

eran sine it will need this information when it comes time

to retrieve the next numeron in CLIST. The last conditior.

component serves this function. The pat.7.erm created by

(ORDASSIGN BASE V21) is matched to the above structure in the

data base with the result that V32 is now bound to ONE. T!-.1:.s,

even after the special function UNEASE removes the existing

BASE structure, ONE is temporarily remembered as a variable

binding. Once the old BASE is removed, ((ORDASSIGN BASE V21

V2 N2)) creates a structure 'that becomes the new problem BASE

(Figure 40):

Figure 40. Data structure specifying the current crobtem BASE.
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This allows 0E0171 and 8.0 to be remembered for the next cycle

without being held as specific variable bindings. Finally, V1

is not mentioned in the action of the production and so it be-

comes a free variable for the next cycle.

Cycle 17. Cycle 17 simply serves to assign OB0178 and 8.0

as the values of VI and N1, respectively. This permits COUNTER

to refocus its checking procedure to determine if OB0171 is,

in fact, the object closest to the last counted object.

GCHB2 (CHeck Between) is active, causing P44 to be tested.

The condition pattern matches to the BASE structure created

dni:ing the previous cycle. Notice, however, that two of the

arguments in the BASE structure have been assigned to new

variables. During the last cycle, CB0171 and 8.0 were assigned

to new variables. During the last cycle, OB0171 and 8.0 were

assigned to V2 and N2; the action taken during this cycle re-

assigns them to r.he variables V1 and N1 and holds these new

bindings for the next cycle. In this way, V1 is now bound

with COUNTER's mcst recent candidate for the object closest

to the last object counted. So together P41 and P44 allow

COUNTER to scan the uncounted objects in the direction of the

last object counted until it finally finds the one that is

the closest.

Note--in a slightly newer version of ACTP rebinding varia-

bles can be accomplished within a single production with a

special function called REBIND. The action of P41 could be

rewritten as:

(REBIND V1 V2) (REBIND N1 N2) GCHBETWEEN V10 V11 V12

Vi is rebound with the value of V2 and N1 is rebound with the

value of N2. V21 is not mentioned in the action because it is

to keep its current binding, which it will since it is the cur-

rent base of the problem; for this rearon (UNBASE) is omitted

from the action as well. Written this way, P41 also accom-

plishes what use to require P44. P44 is therefore no longer

necessary and P41 can simply call itself.
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Cycle 18. During this cycle, the same checking proce-

dure that was appli,:.J to 030164 is applied to OB0171. This

time there exist no uncounted objects between the current

focus of the checking procedure and the last counted object.

OB0171 is then identified as the next uncounted object in the

array. COUNTER then prepares to count OB0171 by activating

the control node of the production relevant to retrieving the

next numeron from CLIST.

GCHBETWEEN is active again but this time VI is bound .tip

080171 instead of 080164, changing the assignment of nodes to

condition patterns. Now the first condition pattern matches

to the structure in the data base containing 080171 and its

X-::oordinate, as shown in Figure 41.

Figure 41. Data structure specifying an X-coordinate relation between object 8 anti8.0.

Since the only other uncounted member of LINGROUP is OB0164.

It gets assigned as the value of V2 when the next part of the

condition pattern is matched. Ths problem arises when the

values of N1 and N2 are compared. N1 has the value of 8.0

and is therefore not greater than the value of N2 which is 9.5

and the condition fails to match.
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P42 is tested next and since there are no condition pat--
terns to be matched, the action is taken. This results in

OB0171 being linked to the property BOUND. ind'cating that
it is the next object to be counted. GNEY- Ls activated

again and variables V10, V11, V12, and V1 :?..eir bindings

for the next cycle.

Cycle 19. COUNTER has just found an,l,ther c!7-ect to count

and this requires retrieving another numer-_- -rcm CLIST. This

time, COUNTER has a last used numeron in memrr\- and so it can
apply a simple successor function to CLIST to retrieve the
next unused numeron.

GNEXTN is active and P45 is tested. The condition ...zquires

finding the following pattern (Figure 42) in the data base:

Figure 42. Pattern for retrieving the numeron in CI-1ST mat is next to ONE.

A match is found (see Figure 30) with the result that TWO and
G0197 get assigned as the values of V22 and VX1, respectively.
Thus TWO has been identified as the member of CLIST that imme-
diately follows the last used numeron ONE. The results is that

GCOUNT is activated and COUNTER prepares to count OB0171.
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Cycle 20. Having just retrieved the next unused =aileron
from its ordered list of counting names, COUNTER goes ahead

and counts OB0171 (object B) as TWO.

Since GCOUNT is active, P55 is the only production to

be tested on this cycle. There are not condition patterns to

be matched so the action of printing out the values of VI and

V22 is taken:

(080171 TWO)

This represents COUNTER counting the second object in the

array, 080171, with the numeron TWO.

The next piece of action removes the current BASE (which

contains the node ONE) and reassigns it with the value of V22,

which is TWO in this case. In this way, COUNTER can "remember"

that TWO is now the last numeron it used. This information is

retrieved when it comes time to get the next counting word in

CLIST.

GNEXTOB is activated and V10, V11, and V12 keep their

bindings.

Cycle 21. COUNTER is again in search of the next object

to count. It first scans the perceptual grouping, LINGROUP,

and identifies OB0164 (object C) a possible candidate.

GNEXTOB is active and so P31 f tested. This production

determines if there are any more uncounted objects in the cur-

rent LINGROUP by trying to match the pattern shown in Figure 43

Ji

Figure 43. Pattern fcr retrfervIng asp object from LINGROUP.
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under the additional constraint that V1 cannot be linked to
the property BOUND. (G0238 is the current member of LINGROUP.)
The pattern matches and OB0164 is assigned as the value of VI.
080164 was the only choice possible since OB0178 and OB0171,
although also members of LINGROUP, both have the property
BOUND. The only action taken is to activate control node
GCHBETWEEN and keep the mentioned variables bound with their
values.

Cycle 22. Before counting OB0164, COUNTER scans the array
for any other uncounted objects in LINGROUP that are between
OB0164 and the last object it counted. Since the only other
objects in LII.,ROUP (OB0178 and OB0171) have already been
counted, COUNTER identifies OB0164 as the next object to be
counted and prepares to get the next unused numeron from
CLIST.

GCHBETWEEN is active. P41 is tested and the first condi-
tion pattern is matched, assigning XC0143 as the value of VX1

and 9.5 as the value of Nl. The next part of tl condition

tests for the pattern (shown in Figure 44) where -_-he node

chosen as the value of V2 cannot be linked to the property

Figure 44. Pattern for retrieving an object n LINGROUP together with its X-coordinate.
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BOUND. Since the only two candidates for V2 (i.e., OB0178

and OB0171) also have the property of being BOUND, the condi-

tion fails and P42 is tested. This production has no pattern

specifications to be matched and so its action is taken:

OB0164 is assigned the property BOUND; GNEXTN is activated

for the next cycle; and the mentioned variables keep their

current bindings.

Cycle 23. Again COUNTER applies a simple successor func-

tion to CLIST to retrieve the next unused numeron.

The active control node GNEXTN causes P45 to be tested

cn this cycle. The first part of the condition pattern causes

COUNTER to recall its current problem BASE (which is TWO in

this case) and binds it as the value of Vi. The second part

of the condition pattern tests for the node that comes after

V1 in CLIST, shown in Figure 45. The pattern matches and

THREE is assigned as the value of V22. The action of this

production activates control node GCOUNT and holds the bind-

ings of the mentioned variables.

Figure 45. Fartern for retrieving a *:ex- riurneron from CLIST.
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Cycle 24. On this cycle, COUNTER coots OB0164 (object C)
as THREE.

GCOUNT is active and P55 gets tested. Since there is no
condition pattern, the action of printing out the current
values of VI and V22 is taken:

***** (OB0164 THREE)

The rest of the action re-loves the current BASE and links it
to the value of V22. GNEXTOB is then activated and V10, V11,
and V12 keep their bindings for the next cycle.

Cycle 25. This time when COUNTER tries to find another
object to count, it discovers that there are no more uncounted
objects in LINGROUP. It therefore prepares to execute a pro-
duction that extends the perceptual group to include new
objects.

Since GNEXTOB is active, P31 is tested. V10 is currently
bound to G0238 which is the symbol for LINGROUP, the percep-
tual subset formed during the initial scanning of the array.

Vi is a free variable and the condition of this production
requires that it be matched to a node in the data base that
has an ispart link to G0238 but at the same time lacks a
hasprop link to BOUND. The only members of LINGROUP are
OB0178, OB0171, and OB0164; since all these nodes have the
property BOUND, the condition fails to match.

P32 also has GNEXTOB as a control node and it is tested
next. There are no condition patterns to be matchvd so the
action of this production is taken, causing GEXTEND to be
active on the next cycle.

Cycle 26_ On this cycle COUNTER extends the perceptual
grouping ±.t just finished counting to include other objects
in the array that have not yet been counted. In the current
version of the model, this is a simple procedure that extends
the group a single object at a time, proceeding along the
same line as the scanning path of the current perceptual

group. Extending the group, then, requires first retrieving
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the relevant perceptual information and so the first pattern

that must be matched to the data base is shown in Figure 46

(see P33):

Figure 46. Pat-tern for retrieving visual information about 72".1! c.oiects.

It matches to the data structure shown in Figure 7, binding

G0145 to VX 1 and 0.16666665, the slope of the scanning path,

to N10.

Next COUNTER checks to see if there are any objects in

the array that are not yet part of LINGROUP. It tries to

match the pattern (Figure 47) with the restriction that the

node assigned as the value of V1 cannot be linked through

ispart to G0238 (the node symbolizing LINGROUP). In this

case, 030164 is the only node that qualifies and so it is

bound to V1, its X-coordinate is bound to NI, and the rela-

tional node XC is assigned to VX2.
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Fig me 47. Pattern for retrieving an object and corresoondneg X-coc "tam

Now COUNTER determines the slope defined by this new
object and one of the counted objects by matching the pattern
shown in Figure 48:

Fgur 48. Pattern for retrieving the Moos defined by object 0 and an adjacent abject.
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The match is successful and 030164 is bound as the value of

V2, and 0.0 and YXCL0170 are found as the values of N2 and

VX3, respectively.

The next condition requirement is that the values of Ni

and N2 must be appr.ximately equal (i.e., the new object must

form an approximately linear array with the other objects).
This requirement is also satisfied, making the entire condi-

tion of this production true and so the action is taken.

Now COUNTER must check if the e are any other objects
closer than 030164 to the most recently counted object. So

GCHCLOSER is activated and the mentioned variables are kept

bound with their values.

Cycle 27. COUNTER must make sure that the new object

is the o..)ject closest to the already counted group (i.e.,

closest to LINGROUP). OB0161 (object D) is the only remain-

ing objec- and therefore has to be the closest. COUNTER iden-

rifles this objet~ as the next object to count.

GCHCLOSED is active so P39 is tested first on this cycle

and tries to match the pattern constrained so that V3 cannot

L.. a part of LINGROUP (Figure 49):

F )gurit 4g. Pattern for retrieving two n Ides through an XCQR rtlaon,
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The only possible candidate for V3 is OB0161 but since it is

still assigned as the value of V1 from the last cycle, the con-
dition fails to match (i.e., there are no other uncounted objects
closer to the already counted group than 080161).

P40 is tested next. There are no condition patterns to be

matched so the action is taken. The action adds the following

structure (Figure 50) to the data base making OB0161 part of

LINGROUP and assigning it the property BOUND.

Figure 50, Data structure iCarttifying C) as a ta.zrt or LINGROLP.

Cycle 28. Once again COUNTER retrieves the next numeron

front CLIST. GNEXTN is active. P45 is tested and the following
condition pattern (Figure 51) is successfully matched and FOUR
is bound as the value of V22_

7cure 51_ Psrtarn for ratr.ev,riq next rurnerori from CLIST
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Cycle 29. At this point, COUNTER "sees" an object it
wants to count and has a counting name ready to use. The

active control node GCOUNT causes P55 to be tested on this

cycle. Since there are no condition patterns to match, the
action of this production is taken with the result that the

object gets counted:

**** (OB0161 FOUR)

Cycle 30. Having just counted an object, COUNTER attempts

to find another object to count. GNEXTOB is active, causing

P31 to be tested. However, since there are no more objects in

LINGROUP which do not also have the property BOUND, the condi-
tion pattern fails to match.

P32 is tested next. There are no condition patterns to

match so the action is taken to activate GEXTEND and keep the

mentioned variables bound with their values.

Cycle 31. The control node GEXTEND is active and once
again COUNTER attempts to extend LINGROUP to include any ob-
jects in the array that have not yet been counted. P33 is

tested and the first condition pattern is successfully matched

to the data base (this is intended to represent COUNTER recall-

ing the relevant perceptual information about the array, in-

cluding the direction of counting, slope of the array, and so

on). However, since there exist no more objects in the array
that have not already been made part of LINGROUP, the next

three condition patterns fail to find a match for Vl.

P34 is tested next on this cycle. There are no condition

patterns to be matched and so the action of activating the

control node RECALL is taken. However, the only variable to

keep its binding for the next cycle is V10 (its binding is

G0238, the symbol node for LINGROUP). This is because now

that COUNTER has already counted all the objects, it need no

longer remember the information it used to determine the

direction and slope of the counting path.
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Cycle 32. COUNTER has not more objects to count so it
checks to see if there is anything else it wanted to do;
that is, are there any current goals on the goal stack. In

ACTP goal retrieve.'- is accomplished with the GOALX schema
which generates a pattern identica- to the pattern generated
by the SETGOAL schema. ACTP then tries to match this pattern
against the pattern at the top of the current goal stack.
A successful match indicates a curx,ant goal has been identi-
fied.

In the example, COUNTER has a single goal pattern, shown
in Figure 17 (page 34). This represents the goal of assign-
ing the cardinality of the set of counted objects. Retriev-
ing this goal, then, requires generating the identical pat-
tern with the GOALX schema.

RECALL is active on this cycle and so the model first
tries to match the pattern specified in the condition of P35
to the pattern at the top of the goal stack. This particu-
lar pattern is only relevant to the constrained counting
task and fails to match COUNTER's current goal. P36 is
tested next and this time the pattern matches. This repre-
sents COUNTER recalling that it is to find the cardinality
of the set and causes the control node GCARDINAL tr be acti-
vated.

ycle 33. On this cycle, COUNTER satisfies its current
goal by assigning FOUR, the last numeron it used, as the car-
dinality of the set of oljects it just counted.

The acti-7e control node, GCARDINAL, causes P38 to be
tested on this zycle. The condition pattern of this pro-
duction requires that COUNTER first remember the last num-
eron it used before it can assign it as the cardinality of
the set of objects represented by G0238 (currently bound as
the value of V10). The pattern matches and FOUR is assigned
as the value of 21 (7igure 52):
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CBASE

"lt3

FOUR

Figure 52. Data structure represented current problem SASE.

The action creates a structure that links FOUR t7. G0238

through a relation node that -.s a token of SIZE (Figure 53)

Fi jury 53. Data structure idencfyinl as the Carl:finality of the group of counter objects.

and pria17 ,lue of V21, followed by an exclamation

identify:1.g lis numeron as the cardinality of the set:

(FOUR!)

Stace the cardinality goal is now satisfied, the action

(POPSTACK) removes the corresponding structure from COUNTER's

goal stack.
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Cycle 34. On this cycle, COUNTER checks again to see if
there is anything else it intended to do. RECALL is active,
but since there are no more goals left in the stack, the con-
dition patterns of both P35 and P36 fail to match. The action
of P38 indicates that COUNTER has completed its counting pro-
cedure:

((FINISH))
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APPENDIX A

Formal Description of ACTP

A model in ACTP has the following components:

1. et of constants,

2. a set of variable_

3. a set of relations,

4. a set of concept schemata,

5. a set of numerical relations.

6. a network of categorical and other ba- round
knowledge, including a set of input t .s.

7. a network of information constituting tae initial
task situation, and

8. a set of productions.

Constants are defined in STARTUP. hey include symbols

to be used as control nodes, such as GNE:e7OB and GNEXTN, as

well as symbols that will be included in the data structure

and referred to in productions, such as N7_;MERON, ZERO, ONE,

and so on.

"variables are also defined in STARTUP, for example, V1,

V2, and so on.

Relations are listed in STARTUP in order to define pairs

of inverse relations, for example, (LABL CNPT) and (ISA MEMB).

A concept schema is a name, a set of arguments, and a

list of relations between pairs of the arguments. In a net-

work where there are nodes and relational links, a subnetwork

matches a Ichema if the nodes in the subnetwork correspond to

the arguments of the schema, so that all the relations in the

schema correspond to links between pairs of nodes that are

determined by the argument-node correspondence_

Numerical relations are the standard binary .relations,

.:.ch as greater than, equal, and so on.
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Background knowledge includes categories defined in
STARTUP. consisting of isa relat ons between category mem-
bers and category names. One of the categories is TITLE,
and the members of this category can be used in providing
input information during operation of the model. Names of
categories and members of categories are automatically de-
fined as constants by ACTP. Information other than cate-
gories can also be included 1 background information. An

example is the set of successor relations involving NEXT
that are provided among the nuwerons that are in the initial
CL/ST for COUNTER.

The network representing the initial task situation con-
tains nodes that represent objects that are present in the
situation as well as relations among the objects. "Me situa-

tion presented to COUNTER has objects chat are to be counted
and spatial relations among the objects. Formally. the net-
work for the situation and the network of background knowledge
are indistinguishable in ACTP, but the two networks typically

have information that differs significantly in the psychologi-
cal interpretation of the model.

Productions have been described info= Ly in considerable

detail in this report. A grammar specifying the syntax of
ACTP productions is given in Table A-1. The first rule says
that a production has a condition and an action, with the con-

dition first. The seccnd rule says that a condition can have
one or more control nodes and one or more pattern specifica-

tions. In practice, there is alway7 a single control node
and either one pattern specification or no pattern specifica-
tion. The third rule says that the control node is a constant.
"Constant" is not a terminal, but the terminals that are writ-
ten for constants are defined for specific models. Figure 41-1

shows a fragment of the derivation tree for the production
that was eiscussed initially. shown in Figure 12 (page 28).

First, Rule 1 rewrites production as condition and action.
Rule 2 is used to rewrite condition as a single contr. node
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Table A-1

Grammar for ACTP Production

1. Production - condition + action

2. Condition -. (control node). (pattern specification).

3. Control made constant

4. Pattern specification - (concept schema). , (numerIc.4? constraint)'

S. Concept schema - schema name (argument)

6. Argument -+ constant

7 Argument variable

8 Nvfnertcal constraint NCOMP numerical relation + n-argument n -argument

3 N-argument -* variable

la 14- argument number

11. on - (special function) . (Pattern specification) . , (constant)

12. Suec,a1 function - PRINT (argument!'

13 Special function POPSTACK

1 Special !unction UNBASE

15 Special function - FINISH

16. Speci;%, function - REBIND + variable + argument

Note. x y rriians order is mandatory, x v means order is optional; ,..niver case means nonterrninal;

italicized means te-rnirta/ nodes defined for specific models: upper case means terminal;

(x) means x is optional; means x can b.- repeated.
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production

7;iley & Greno

condition action/
control node pattern specificat: -n

constant concept schema

GNUMCHCK

special function-

schema name argument argument

ASYMREL constant variable

ONEONE 100/

Figure A-1, Fragrnpn. t of derivation tree for oroducton =42.
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and a single Lattern specification, Rule 3 is used to rewrite

control node as constant. Constant is rewritten as GNUMCHK,

one of the constants defined in the COUNTER model.

Tice fourth rule in Table A-1 says that a pattern speci-

ficat can have one or more concept schemata and one or

more nom:. ',cal 'constraints. The fifth rule says that a con-

cept schema has a schema name at the beginning followed by

one or more arguments. While the number of arguments is syn-

tactically optional, most concept schemata have the number

of arguments fixed, and the production must have the required

numer of arguments.

In Figure A-1 the pattcrn specification is rewritten

according to Rule 4 as a single concept schema. The concept

schema is rewritten as schema name plus four arguments (two

are shown) using Rule 5. The schema name is ASYMPFL. The

first argument is a constant, ON'" NE. The second argument is

a variable, VX11.

Rules 8, 9, and 10 _specify the syntax of numerical con-

straints. They must begin with the symbol . =OMP, then have

the name of a relation (for example, *GREAT), then have two

arguments. These arguments can be either variables or literal

numbers. Variables would be assumed to have numerical values.

Rule 11 specifies the s'"ntax of actions, which can have

one or more special functions, one or more pattern specifica-

tions, variables, and constants. The production in Figure 12

(page 28) has three special functions, a pattern specification,

a constant, and three variables. A fragment of the derivation

is shown in Figure A-1 where Rule 11 is used to rewrite the

action.

Rules 12 to 15 specify the special functions that are

available in ACTP at present. REBIND was not available when

COUNTER was programmed. It is used to bind the variable listed

first either to the constant or the value of the variable that

is ":sted second.
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Figure A-2 presents a formal description of the ACTP pro
gram in brief form. The program has threa states: input,

match condition, and execute action. When the srstem starts,
there is a data structure and a list of productions. The

system initially goes to its input state. If an input is
received, the system responds by activating nodes and forming
network structure that is added to the data. The syst2m then
goes to State 2, with the first production available to be
tested.

In State 2, the condition of a production is tested. If

a match is not found, the next production is made available
and the system remains in State 2. If a match is found, the
free variables that were matched are bound to the nodes that
were found in the match, and the system goes to State 3.

State 3 executes the action of the production that was
matched. If tt'e action includes the special function FINISH,

the system will halt. The components of the action ar.2 exe-

cuted: special functions are performed, new network struc-
ture is added to the data, variables that are mentioned are
retained with their 'slues for the next cycle, and constants
that are mentioned are made active nodes for the next cycle.

We now present a more detailed formal description of
ACTP's operation. The data structure is a graph, with a set

of nodes:

X - ix xN1.1.'

Links in the graph are distinguished; there is a set of rela-
tions:

R (r11. rM'T.

In the usual way, each r4 defines a set of ordered pairs on
the graph. Each member of the set is a pair that is linked
by relation ri; i.e.,

Ri = i(xj, xk): ri (x., xk).
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data structure,
productions

activate nodes,
form network,
x fast production

x next
production

/7
x matches

bind variables

else

finish

Riley & Greene

perform special funcsions,
form network,
retain variables,
activate nodes

i=igure A-2. Formal description of the ACTP program.
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A subset of the nodes in tt,e graph are designated as
constants; that is, they have a property that permits them
to be referred to directly in productions.

C {x: x E X, c(x)}.

Another property is applied to a changing set of nodes dur-
ing operation of a model. This is membership in the set of
active nodes.

A ix: x E X, a(x) i.

Finally, nodes are the values of variables. Each variable
defined in the model defines a set V

i
consisting of the ele-

ment to -nich the variable is bound. If the va-iable is not
bound, V

i
is empty.

V
i

{x: E V. (X) }

Naw, consider Figure A-2 _ the start, the initial
data structure is a graph of the form specified above. Ini-

tially A is empty. The input can cause elements to be placed
in A and can cause additional relations to be applied in the
graph. It is possible for new nodes to be added, although
this is ,:pically not done from input.

Mn State 2, ACTP attempts to match the condition of a
production. The condition is a formula whose terms are con-
stant... bound variables, and free variables of the form:

(3x ) - {3x q) (F(1)
1

. by xl . . . xq)),

where each bi is either a constant or a bound variable, and
each x4 is a free variable. F is a conjunction of terms,
each of which is one of the following:

a(bi) , ri(bj, bk). ri(bj, xk) , ri(xj, xk)..

For the condition to be matched, the formula must be true in
the data structure. ACTT attempts to verify F by testing the
assertions about constants and bound variables and then search-
ing for a set of elements that satisfy the constraints on the
free variables. If the search succeeds, then elements
found to correspond to the free variables become the values of
those variables as the system moves tc State 3.
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Ordinarily the pattern must be matched with distinct

values for all the different free variables, and no free

variable can be matched to the value of any bound variable

or constan: in the pattern, although this restriction does

not apply to variables chat have numbers as values. To

state this additional constraint formall,..- lot

fx x ), B - (b . by 3;

that is, B is the set of values of the bound variables, and

W is the set of values of free variables that satisfies the

pattern match. Let N(xi) men that xi is a number. For a

pattern to match, the formula F must be true with the follow-

ing constraints.

vx1., xj ->N(x.), N(x ))-

w bi b B b

There is a facility in ACTP for relaxing the constraint

of distinct values. This facility was not used in COUNTER

and is not described in the body of this report. In writing

ACTP pattern specifications, one can specify subp-stterns of

variables and constants. This is done by placing -:he terms

in parentheses, along with subpattern tags, which may be any

distinctive symbols. For example, the condition of Produc-

tion P6 in Appendix B is ( JBJCAT V1 OBJECT) (OBJECT V2 OBJECT)).

Since V1 and V2 are different variable names, they must be

matched to different nodes in the data structure. To relax

that restriction, the pattern specification would be stated

as ((OBJCAT (V1.A) OBJECT) (OBJCAT (V2.B) OBJECT)). This

specifies two subpatterns, tagged A and B.

When subpatterns are designated, the values of variables

in different subpatterns are allowed to overlap. In the exam-

ple mentioned above, V1 and V2 could be matched to the same

value since they are in different subpatterns. Variables that

are not in subpatterns can be called global variables. All

the global variables must have distinct values, and all
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variables in subpatterns must be distinct from all the global
variables. Further, all the different variables in each sub-
pattern must be distinct. (Again the restrictions to distinct
values do not apply if the values are numbers.)

In the execution state, special functions are performed,
some of which alter the data structure by removing links.
New network structure is added, including addition of new
nodes in the graph
is put into Vi for
mentioned, It is a

. If a variable vi is mentioned, its value
the next cycle, and if a constant bi is
member of A for the next cycle.
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APPENDIX B

A List- of COUNTER's Productions

PROLIST

.. X(CADDTAO
((ASYMREL NEXT VX1 921 V22)
(ABSENCE OBJPROP V22 FOLLOWED)
'OBJCAT V23 NUMERON)
(ABSENCE OB.:PROP V23 FOLLOWED)))

((PARTOBJ V23 CLIST)
(ASYMREL NEXT VX2 V22 V23)
(OBJPROP V22 FOLLOWED)))

2. ((MAKE t(ORDASSIGN BASE V1 V21)))
((OBJPRZP Vi SPECIAL)
(3BJPROP V21 SPECIAL)
(SETGOAL GOAL VX12 XRESTRICTIOM MAKE VI V21)
(ASYMREL ONEONE VX11 V1 V21))

(PREQPLAN)
GSEE)

3. ((MAKE'? ((ORDASSIGN BASE V2I)))
((OBJPROP V1 SPECie,L)
(OBJPROP V21 SPECIAL)
(SETGOAL GOAL VX12 XRESTRICTION MAKE Vi V21))
(PREOPLAN)
GSEE)

4. C(HOWMAKY) ((SETGOAL GOAL VX1 XFIND ST.ZE ?GROUP ?NUM)) GSEE)

5. ((GSEE
((OBJCAT VI OBJECT)
(OBJCAT V2 OBJECT)
(OBJCAT V3 OBJECT)
(ASYMREL YXSLOPE V111 VI V2 Ni)
(ASYMREL YXSLOPE VX2 V2 V3 N2)
(NCOMP APXEO N1 N2)))

(COBJCAT V10 L/NGR1UP)
!PARTOBJ V1 V10)
(PARTOBJ V2 V10)
(PARTOBJ V3 V10))

GDIMEN
V10
NI)

6. CCOSEE ((OBJCAT Vi OBJECT) (OBJCAT V2 OBJECT)))
'((OBJCAT V10 PAIR) (PARTOBJ VI FAIR) (PARTOBJ V2 PAIR))

GCPAIR
VIO

V2)
7. cwsgE .(COBJCAT Vi OBJECT))) ((OBJCAT V10 SINGLE)) GCSINGLE
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Appendix B (Cont'd)

9. .(GDIMEN ((NCOMP APXE0 Ni 1.0)))
(CASYMREL SCAN VXI V10 YCOR))
GACIGN
V10)

9. C(GDIMEN ((NCOMP APXEO NI 3.0)))
((ASYMREL SCAN VX1 V10 YCOR))
;ALIGN
V10)

10. ((06TMEN) ((ASYMREL SCAN VX1 VIO XCI)R)) GALIGN V101
11. ((GALION

(CASYMREL SCAN VX1 V10 V11)
CPARTOBJ VI V10)
(ASYMREL V11 VX2 VI N1)
CPARTOBJ V2 V10)
(ASYMREL V11 VX3 V2 N2)
CPARTOBJ V3 V10)
CASYMREL V11 WC4 V3 N3)
(NCOMP *LESS Ni N2)
CNCOMP *LESS N2 N3)))

OCHBOUND
V10
VI1
VI
V2
V3
Ni
N3)

12. ((OCHBOUND
((OBJCAT V4 OBJECT) (ASYMREL VI1 VX1 V4 N4) CNCOMP *LESS N4 N1)))

GCHBOUND2
VIO
V11
V1
V2
V3
N1
N3)

13. CCGCHBOUND
((ASYMREL SCAN VX1 V10 VI1) CASYMREL YXSLOFE VX2 V1 V2 N10)))
(CASYMREL SCAN VX1 V10 V11.*GREAT N10) (OBJPROP Vi BOUND))
GDIRECT
V10
V11)

14. (cOCHBOUND2
C(OBJCAT VA OBJECT) (ASYMREL V11 VX1 V4 N4) (NCOMP )1v,REAT N4 N3)))

C(ORDASSION BASE V4 V1 V2 N4))
OFINDBOUND)

15. (COCHBOUND2
CASYMREL SCAN VX1 V10 V11) (ASYMREL YXSLOPE VX2 V3 V2 N10)))

((ASYMREL SCAN VX1 V10 V11 *LESS N10) (OBJPROP V3 BOUND))
GDIRECT
VIO
V31)
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16. (COFINDBOUND
((ORDASSIGN BASE VI V2 V3 N1)
(OBJCAT V4 OBJECT)
(ASYMREL V11 VXI V4 N4)
(NCOMP *LESS N4 Ni)))

(UNBASE)
(:(ORDASSIGN BASE V4 VI V2 N4))
GFINDBOUND ,

V11)
17. ((GFINDBOUND

((ASSIGN BASE V1 V2 V3) (ASYMREL YXSLOPE
((OBJCAT VIO LINGROUP)
(PARTOBJ Vi V10)
(PARTOBJ V2 V10)
(PARTOBJ V3.V10)
(OBJPROP V1 BOUND)
(ASYMREL SCAN VX1 V20 V11 *GREAT N1ON

GD2:RECT
V10
VII)

16. ((GDIRECT ((ASYMREL
19. (COCOMPACT

((PARTOBJ V1 VIO)

VX1 V1 V3 .N10)))

SCAN vX1 v10 V11 V12))) GCOMPACT V10 Y11 v12-:2

(ASYMREL V11 VX1 V1 N1)
(CBJr)ROP VI BOUND)
(PARTOBJ V2 V10)
(ASYMREL V11 VX2 V2 N2)
(PARTOBJ V3 V10)
(ASYMREL VII VX3 V3 N3)
(NCOMP V12 N3 N2)))

GCOMPACT2-
V1
V2
V3
N1
N2
N3
Vii
Vt2)

20. ((GCOMPACT2
((OBJCAT V4 OBJECT)
(ASYMREL V11 VX1 V4 N4)
(NCOMP V12 N2 N4)
(ASYMREL YXSLOPE VX2 V1 V2 N10)))

CCOBJCAT V10 LINGRGUP)
(PARTOBJ V1 V10)
(PARTOBJ V4 V10)
(PARTOBJ V2 VIO)
(ASYMREL SCAN VX3 VIO V11 V12 N10))

GCOMPACT
V10
V11)
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21. ((GCOMPACT2
((OBJCAT V4 OBJECT)
(ASYMREL V11 VX1 V4 N4)
(NCOMP V12 N3 N4)
(ASYMREL YXSLOPE VX2 V1 V4 N10)))

((OBJCAT V10 LINGROUP)
(PARTOBJ VI. V10)
(PARTOBJ V2 V10)
(PARTOBJ V4 V10)
(ASYMREL SCAN VX3 V10 V11 V12 N10))

GCOMPACT
V10
V11)

22. (GCOMPACT2 ((OBJCAT V10 LINGROUP) (ASYMREL SCAN VX3 V10 Vii V12)))
(tOBJPROP Vi BOUND))
(UNBASE)
tg GNEXTN)
VIO
V11
VI2
v1)

23. ((GOBJCNK ((ABSENCE OBJPROP V1 SPECIAL)) ) GNEXTN V10 vt1 vi2 VI%
24. X(GOBJCNK) GNEXTOB V10 Vil V12)
25. ((GOBJCHK2 ((ABSENCE OBJPROP V1 SPECIAL))) GNEXTN vto v11 v:2 vt)
25. .((GOBJCMK2) GETSPECZALNUmBER v10 v11 v12 VI)
27. ((GOBJCHK3 ((ABSENCE OBJPROP Vi SPECIAL))) GNEXTN v10 v11 v:2 Vt)
28. X(GOBJCHK3 ((ASYMREL ONEONE vx1 Vi v22))

(PRINT vi V22)
(POPSTACK)

.GNEXTOB
V10
V11
VI2)

29. (METSPECiALNUMBER
(MRDASSIGN BASE V21)
CPARTOBJ V22 CLIST)
CASYMREL NEXT VX1 V21 V22)
(ABSENCE OBJPROP V22 SPECIAL)))

(PRINT V22)
CUNBASE)
CCORDASSIGN BASE V22))
OETSPECIALNUMBER
V1
VIO
VII
V12)
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30. C(GETSPECIALNUMBER
((ORDASSIGN BASE V2I)
(PARTOBJ V22 CLIST)
(ASYMREL NEXT VX1 V21 V22)))

(POPSTACK)
GCOUNT
V1
V22
V10
V11
V12)

31. C(GNEXTOB ((PARTOBJ VI V1O) (ABSENCE OBJFROP V1 BOUND)))
GCHBETWEEN
VI
VIO
V11
V12)

32. t(GNEXTOB) GEXTEND V1O V11 V12)
33. ((GEXTEND

((ASYMREL SCAN VX1 V10 V11 V12 N10)
(OBJCAT V1 OBJECT)
(ABSENCE PARTOBJ VI V10)
(ASYMREL V11 VX2 VI N1)
(OBJPROP V2 BOUND)
(ASYMREL YXSLOPE VX3 V2 V1 N2)
(NCOMP APXEQ N10 N2)))

GCHCLOSER
V10
VII
V12
NIO
VI
N1
V2)

34. (COEXTEND) RECALL V10)
35. ((RECALL (COOALX GOAL VX12 XRESTRICTION MAKE VI V21)))

(PRINT V1 V21)
(UNBASE)
((ORDASSIGN BASE V21))
(POPSTACK)
RECALL
V10)

36. ((RECALL ((GOALX GOAL VX1 XFINLI SIZE ?GROUP ?NUM))) GCASDINAL V

37. ((RECALL) (FINISH))
38. ((GCARDINAL ((ORDASSIGN BASE V21)))

((ASYMREL SIZE VX1 V10 V21))
(PRINT V21 1)

(POPSTACK)
RECALL)
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39. C(GCHCLOSER
(! OBJCAT V3 OBJECT)
(ABSENCE PARTOBJ V3 V10)
(ASYMREL V11 VX1 V3 N3)
(NCOMP V12 NI N3)
(ASYMREL YXSLOPE VX2 V2 V3 N2)
(NCOMP APXEO NIO N2)
(ORDASSIGN BASE V21)))

(UN} ASE
.(CORDASSIGN BASE V21 V3 N3))
GCHC2
V10
V11
V12
N10
V2)

40. C(OCHCLOSER) ((PARTOBJ V1 V10))
((OBJPROP Vi BOUND))
(* GNEXTN)
V10
V11
V12
VI)

41. C(OCHBETWEEN
(CASYMREL Vii VX1 V1 N1)
(PARTOBJ V2 V10)
(ABSENCE OBJPROP V2 BOUND)
(ASYMREL V11 VX2 V2 N2)
(NCOMP V12 NI N2)
CORDASSIGN BASE V21)))

(UNBASE)
((ORDASSION BASE V21 V2 N2))
GCHB2

'1/10
v11
V12)

42. C(GCHBETWEEN) ((OBJPROP VI BOUND)) (* . GNEXTN) VIO V11 V12 V1)
43. ((GCHC2 ((ORDASSIGN BASE V21 VI N1)))

GCHCLOSER
V10
V11

.V12-
N10
V1
N1
V2)

44. (COCHB2 ((ORDASSIGN BASE V21 VI N1))) GCHBETWEEN VI NI V10 VII V12)
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45. ((GNEXTN
((ORDASSIGN BASE V21)
(PARTOBJ V22 CLIST)
(ASYMREL NEXT VX1 V21 V22)))

(* . GCOUNT)
V1
V22
VIO
V11
V12)

46. t(GNEXTN ((PARTOBJ V22 CLIST) (OBJPROP V22 FIRST)))
(4( . GCOUNT)
V1
V22
V10
V11
V12,

47. ((GNUMCHK ((ABSENCE OBJPROP V22 SPECIAL)))
GCOVNT
VI
V22
V10
V11
V12)

48. C(GNUMCHK ((ASYMREL ONEONE VX11 V2 V22)))
(PRINT V2 V22)
(POPSTACK)
(UNBASE)
((ORDASSIGN BASE V22))
GNEXTN
VI
V10
V11
V12)

49. ((GNUMCHK2 ((ABSENCE OBJPROP V22 SPECIAL)))
GCOUNT
V1
V22
V10
V11
V12)

50. (CGUUMCHK2) GETSPECIALOBJECT V1 Y22 V10 V11 VI2)
51. ((GNUMCHK3 ((ABSENCE OBJPROP V= SPECIAL)))

GCOUNT
V1
V22
V10
VII
V12)

52. ((GNUMCHK3) (UNEASE) ((ORDASSIGN BASE V22)) GNEXTN VI V10 V11 Vl:
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53. ((GETSPECIALOBJECT ((ABSENCE OBJPROP VI SPECIAL)))
(PRINT VI SKIPPED)
GNEXTOB
V10
VII
V12)

54. ((GETSPECIALOBJECT) (POPSTACK) GCOUNT VI V22 V10 V11 V12)
55. -(CGCOUVT) (PRINT VI V22)

iliINBASE)
((ORDASSIGN BASE V22))
GNEXTOB
V10
V11
V12))
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APPENDIX C

Output from the Series of Cycles Involved in
COUNTER Counting a Group of Four Objects

*CSTARTUP)

NIL
*(0ENSET OBJECTS)

SHOE. ; - STRUCTURE? *YES

(080161 D 10.0 0.0)
0080164 C 9.5 0.0)
(YKSL0169 080161 2.0)
(YKSLO170 080161 0.0)
(080171 B 8.0 0.20000000)
CYKSL0176 080164 1.8823329)
cYKSL0177 080164 3.8823529)
(080178 A 7.0 0.0)
(YKSL0183 080171 2.1666666)
(YKSL0184 OB0171 0.16666665)
NIL
*(TRACE PREOPLAN PREOCHK)

(PREOCHK PREOPLnh)
*(CYCLE)

THINK-ALOUD? *YES

0
>>> *(LISP PROGN (SETO DEBUG NIL) NIL)

MIL
NIL
1
>>> *CADOTAG)

(ADDTA0)
NIL
2
(CCPARTOBJ V23 CLIST) (ASYMREL NEXT VX2 V22 V23) (OBJPROP V22 FOLLOWE

D)))
(ST0200 (FOUR CLIST NEXT 00199 THREE FOLLOWED))
>>> *(ADDTAG)

CADDTAG)
NIL
3
(C(PARTOBJ V23 CLIST) CASYMREL NEXT VX2 V22 V23) COBJPROP V22 FOLLOWE

D)))(ST0211 (FIVE CLIST NEXT 60210 FOUR FOLLOWED)'
>>> *CADDTAG)
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(ADDTAG)
NIL
4
CCCPARTOBJ V23 CLIST) (ASYMREL NEXT VX2 V22 V23) (OBJPROP V22 FOLLOWE
D)))
CST0222 (SIX CLIST NEXT G0221 FIVE FULLOWED))
>>> *CHOWMANY)

(HOWMANY)
WIL
5
CcCSETGOAL GOAL VX1 XFIND SIZE ?GROUP ?NUM)) GSEE)
cSTK GOAL (00187) (HALT))
CST0225 (GOAL G0224 XFIND SIZE ?GROI2? ?NUM))
>>> *NIL

kGSEE')
NIL
6
(CCOBJCAT V10 LINGROUP) (PARTOBJ V1 V10) (PARTOBJ V2 V10) (PARTOBJ V3
V10)) GDIMEN V10 N1)
(ST0239 (00238 LINGROUP 080178 080171 080164))
>>> *MIL

(ODIMEN 0023(1 0.16666665)
(0.16666665 N1 00238 V10)
7
i(CASYMREL SCAN VX1 VI? XCOR)) GALION V10)
(ST0246 (SCAN G0245 00238 XCOR))
>>> *NIL

(GALION 00238)
(60238 V10)
8
(GCHBOUND VIO V11 VI V2 V3 Ni N3)
>>> *NIL

CGCHBOUND 00238 XCOR 080178 080171 080164 7.0 9.5)
(60238 V10 XCCR Vil 080178 VI 7.0N1 080171 V2 080164 V3 9.5 N3)

(C(ASYMREL SCAN VX1 V10 V11 *GREAT N10) COBJPROP V1 BOUND)) GDIRECT V
10 V11)
(ST0275 (SCAN 00245 00238 XCOR *GREAT 0.16666665 OB0178 BOUND))
>>> *NIL

(GDIRECT 60238 XCOR)
(XCOR VI1 00238 V10)
10
(GCOMPACT VIO V11 V12)
>>> *NIL
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(GCOMPACT 00238 XCOR *GREAT)
A00238 V10 XCOR V11 *GREAT V12)
11
CGCOMPACT2 V1 V2 V3 N1 N2 N3 V11 V12)
>>> *NIL

(GCOMPACT2 OB0173 OB0171 OB0164 7.0 8.0 7.5 XCOR *GREAT)
(*GREAT V12 XCOR V11 030178 VI 7.0 NI 080171 V2 8.0 N2 OB0164 V3 9.5
N3)
12
(CCOBJPROP V1 BOUND)) (UNBASE) (* GNEXTN) VIO VI1 V12 V1)
CST0306 COB0178 BOUND))
>>> *NIL

CGNEXTN G0238 XCCR *GREAT 080178)
(0B0178 V1 XCOR VIE *GREAT V12 G0238 V10)
13
CC* . GCOUNT) VI V22 V10 VII V12)
> > *NIL

CGCOUNT OB0178 ONE G0238 XCOR *GREAT)
(60238 V10 *GREAT V12 XCOR V11 OB0178 VI ONE V22)
14
((PRINT VI V22) (UNBASE) C(ORDASSIGN BASE V22)) GNEXTOB v10 V11 V12)

***** (0B0178 ONE)
CST0315 (BASE ONE))*NM
CGNEXTOB G0238 XCCR *GREAT)
CXCOR VII *GREAT VI2 G0238 V10)
15
CGCHBETWEEN V1 V10 V11 V12)
> >> *NIL

CGCHBETWEEN OB0164 00238 XCOR *GREAT)
(00238 VIO *GREAT V12 XCOR VII 080164 V1)
16
CCUNPASE) CCORDASSIGN BASE V21 V2 N2)) GCHB2 V10 V11 V12)
(ST0330 (BASE ONE 030171 8.0))
>>> *NIL

COCHB2 00238 XCOR *GREA',->
(XCOR V11 *GREAT V12 00238 V10)
17
CGCHBETWEEN V1 Ni V10 V1I V12)
>>> *NIL

CGCHBETWEEN 080171 8.0 G0238 XCOR *GREAT)
(60238 V10 *GREAT V12 XCOR V11 080171 V1 8.0 Ni)
18
CCCOBJPROP V1 BOUND)) C* GNEXTN) V10 V11 V12 VI)
CST0345 (080171 BOUND))
> >> *NIL

104

I I



Appendix C (Cont'd)

(GNEXTN 00238 XCOR *GREAT 080171)
(080171 Vi XCOR V11 *GREAT V12 G0238 V10)
19
CC* GCOUNT) Vi V22 V10 V11 VI2)
>>> *NIL

(GCOUNT 080171 TWO 00238 XCOR *GREAT)
(G0238 V10 *GREAT V12 XCOR V11 080171 4JI: TWO V22)
20
((PRINT VI V22) (UNEASE) ((ORDASSIGN BASE V22)) GNEXTOB V10 V11 V12)
***** (080171 TWO)
(ST0352 (BASE TWO))
>>> *NIL

(ONEXTOB 00238 XCOR *GREAT)
CXCOR V11 *GREAT V12 00238 V10)
21
CGCHSETWEEN VI V10 V11 V12)
>>> *NIL

(GCHBETWEEN 080164 60238 XCOR *GREAT)
(00238 VIO *GREAT V12 XCOR V11 080164 V1)
22
(((OBJPROP V1 BOUND)) (* GNEXTN) V10 V11 V12 V1)(ST0367 (080164 BOUND))
)>> *NIL

(GNEXTN 60238 XCOR *GREAT 080164)
(080164 V1 =OR V11 *GREAT V12 60238 V10)
23
((* GCOUNT) V1 V22 V10 V11 V12)
>> *NIL

CACOUNT 080164 THREE 00238 XCOR *GREAT)
(00238 V10 *GREAT V12 XCOR V11 080164 Vi THREE V22)24
(CPRINT V1 V22) (UNEASE) ((ORDASSIGN BASE V22)) GNEXTOB V10 V11 V12)***** (080164 THREE)
CST0374 (BASE THREE))
>>> *NIL

(ONEXTOB 80238 XCOR *GREAT)
CXCOR V11 *GREAT V12 00238 V10)25
COEXTEND V10 V11 V12)
>>> *NIL

COEXTEND 00238 XCOR *GREAT)
00238 V10 *GREAT V12 XCOR V11)
26
(OCHCLOSER VIC) VII V12 N10 V% N1 V2)
>>> *MIL
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corHcLoseR G0238 XCOR *GREAT 0.16666665 080161 10.0 080164)
(XCOR V11 *GREAT V12 60238 VIO 0.16666665 N10 OB0161 V1 10.0 Ni 08016
4 V2)
27
C(tPARTOBJ V1 V10)) ((OBJPROP V1 BOUND)) (* . GNEXTN) V10 V11 V12 V1)

(ST0403 (080161 00238))
(ST0405 (080161 BOUND))
>>> *NIL

(GNEXTN 00238 XCOR *GREAT 080161)
(080161 V1 G023C V10 *GREAT V12 XCOR V11)
28
((* GCOUNT) V1 V22 V10 V11 V12)
>>> *NIL

(GCOUNT 080161 FOUR G0238 XCOR *GREAT)
(XCOR V11 *GREAT V12 00239 V10 080161 VI FOUR V22)
29
((PRINT V1 V22) (UNBASE) ((ORDASSIGN BASE V22)) GNEXTOB V10 V11 V12)
***** (080161 FOUR)
(ST0412 (BASE FOUR))
>>> *NIL

CGNEXTOB 00238 XCOR *GREAT)
(G0238 V10 *GREAT V12 XCOR V11)
30
(GEXTEND V10 V1I V12)
>>> *NIL

(GEXTEND G0238 XCOR *GREAT)
(XCOR V11 *GREAT V12 G0238 V10)
31
(RECALL V10)
>>> *NIL

(RECALL G0238)
(G0238 V10)

(GCARDINAL V10)
>>> *NIL
(GCARDINAL 00238)
(00238 V10)
33
(C(ASYMREL SIZE VX1 V10 V21)) (PRINT V21 1) (POPSTACK) RECALL)
(ST0445 (SIZE 00444 00238 FOUR))
***** (FOUR 1)
>>> *NIL

(RECALL)
NIL
34
((FINISH))
FIN2SH
>>> *NIL
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APPENDIX D

STARTUP

STARTUP is the LISP function that puts the terminology
that will be used in a particular set of productions into
ACTP's memory. ACTP's terminology includes three kinds of
symbols: constants, variables, and links.

One way to memorize constants is with a function called
MEMORIZE, for example:

MEMORIZE (QUOTE (COUNTED USED FOLLOWED BOUND SKIPPED
SPECIAL)))

MEMORIZE simply tags constants so they will be usable either
as control nodes or constant nodes in patterns. Another way
of establishing constants is by the use of the function
CATEGORY:

(CATEGORY (QUOTE (TITLE ADDTAG MAKE MAKE2 HOWMANY)))

(CATEGORY (QUOTE ( NUMERON ZERO ONE TWO THREE TEN
. ')))

As with MEMORIZE, all the terms in these two lists become
usable constants. However, two additional things are done by
CATEGORY. A link is formed between the first term in the list
and each of the other members. The link is isa, indicating
category membership. For example:

ADDTAG isa TITLE

MAKE isa TITLE

THREE isa NUMERON

Finally, the CATEGORY function makes it possible to use the
listed terms as input to ACTP during a cycle.

The second kind of term is a variable. Variable names
are set up by a function called VARIABLE, for example:

(VARIABLE (QUOTE (V1 V2 V3 V4 . . . . V25 VX1 VX2
VX3 . . . . VX12)))
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(VARIABLE (QUOTE (Ni N2 N3 N4 N5 N6 N7 N8 N9 N10)))

The third kind of term is a link. Link names are set

up by a function called PUTINV:

(MAPC (QUOTE PUTINV) RPAIRS)

RPAIRS is a list of word pairs that gets defined before

PUTINV is called:

(SETQ RPAIRS (QUOTE ((LAM, CNPT) (ISA MEMB) (HASPROP
ISPROP) . . . .)))

PUTINV then takes this list and makes each member of a pair

the inverse of the other member. This is needed because the

pattern matching system in ACTP assumes that each link goes

in two directions, and the function that creates links in

patterns as ACTP is running looks up the inverse of each

link name and creates bidirectional links. For example,

the inverse of isa is memb (for member). This means that

when a link is made giving

ONE isa NUMERON

there is also a link giving

NUMERON memb ONE.

The following pages include the version of STARTUP that is

in the model.
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(LARVA AIL

(1119-111RIE (*PLO, IGAIE 2))

(IVO oAn (*PM OAR 2))
(BETA *NOPOINT 1)

(3ETO EOM Ito
(8E0 10118/ (NOTE (NIL IDA IDS IDC 100 IDE)))

(010 ARGLI31 (QUOTE (NIL NIL ARCA ARCO AOC ARCO AR01)1)

(DEN YARLI81 NIL)

um %Amu! NIL)
RPAIR8

(wog
MAR mill CIO MINN

(NOPRoP !PROP)

(NOWT WART)

(1110
to (IDA IDAI)

(Ili 11161)

(10C
(100 1001)

(IDE 10E1)(or Ian)
(1011 IDOL )

(AROU AROU1)

(ARP AROAI)

CAROB ARON)

(ARK AIR!)

(ANGD ARM)

(ANOE AM))

CAW ARM)

(AROO ARGO!)

(TYPE TOKEN)

RHO PRO)

(aOKEAT LEO

(GREG MOO
(EQUAL EQUAL)

(ME° AM)
(ACTION ACTIONI)

(TARG TAN)

(PAT? PATTI)

(415 *151))))



(HAPC (QUOTE PUTTNV) RpATio)

(CATEGORY (QUOE (TITLE ADDTAO HAKE NAKE2 HONNANY)))

(CATEGORY (QUOTE (NuHREL APXEQ BETWEEN LEO GREG *LESS *GREAT EQUAL)))

(CATEGORY (0110H (NUHERON ZERO ONE TWO THREE TEN NINE EIGHT SEVEN SIX FIVE FouR)))

(CA11004 (QUOTE (THING SQUARE TRIANGLE STAR CIRCLE PENTAGON CROSS TRUCK FISH CORN FENCE DUCK PIG)))

(NEHORIZE

(OHOTE

(ouExTOB OHM

(ISEE

GWEN
*Alp

.GCSIHOL!

OILION

OCHsouND

GCHNUND2

ODINEcT

()CONTACT

OCONPACT2

OFINDININD

GcLINGROUT

GEXTEND

GCHCLOSER

GOROINAL

GCHRETNEEN

GCHQ

001JCHW

GOBJCHK2

GETSPICIALNUNER

GNUMCHK

GNUNCHK2

GETSPECIALOAJECT

GcOuNT

GCHC2

uoligHx5 MCHO

A)))
(MEMORIZE (QuORECTE

LL

(OBJECT NUMERON CLOT FIRST NEXT BASE LINGROUP XCOR YCOR YXILOPE PAIR SINGLE SCAN)))

(HERRIN (QUOTE GOAL XFIND SIZE ?GROUP ?NUN)))

(1001(11E 'MOTE (COUNTED USED FOLIONED.sOuND SKIPPED

I 4
+(HERRIN (OHOTE (XRESTRICTION)))



vi
V4

VI
Ye

V/
ye

V9

VI0

VII

VII
V1)

vii

Vie
VI?

V18

VI,
Va0

Vil
via

VIS

Val
1.4 Va

YKI

VX2

Vxi
Vxx

Vx5

Vx6

vx1

vsa

Vxv

VxI0
Vx1I

VW)))
(VARIABLE (QUOTE (Ni Ng N3 Ni N5 N6 Ny Ne No)l)
(MO MINIM/ (QUOTE (ONE TWO THREE)))
(MO COW (CAN C0uNTL181))

!LINK CON ( QUOTE Min) (QUOTE HAIPROP))

(LP CON (QUOTE MIT) (QUOTE MOTH

(ow (QUOTE UNCLIP) (Cal COUNTLIII))

(/111/RoP Rog PRENEQ) MOTE ((QMANX I ROM) (NNW , QN!XTN))) (QUOTE NENI))

(PUTPROP (1111011 Pi (QUOTE 1(0NuNCOXI 0C0UNT) (OOOJCHNi ONEXTN))) (QUOTE NMI)

(looTPITP Fv[Rial Mc NOV OCHUNT)(0014CHKS ONCITH)) INENO)

(SETA DOA 0,39000000)
(8ETO DWI NIL))
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APPENDIX E

Glossary

ABSENCE. Function that tests for the absence of single-
linkeaFErgEions in the data base.

Example: (ABSENCE OBJPROP V22 FOLLOWED) (Production 1

in Appendix B).

Action. The "then" part of production rule which is
executed when the condition of that production is true.
Actions consist of (1) executing special functions, (2) build-
ing patterns by adding new relations to the data base, and
(3) remembering and activating nodes.

action.
ErlatE5I4:
Inverse:

actionl.
ExaMple:
Inverse:

Relation in the GOALX schema.
G0224---action--->XFIND (Figure 17)
actionl.

Relation in the GOALX schema.
XFIND---actionl--->G0224.
action.

Active node. Constants that are (1) mentioned in the
action of an executed production, or (2) typed in from termi-
nal.

ACTP. A production system for developing simulation
models. ACTP consists of (1) a set of production rules,
(2) a set of terms and concepts needed for the production
rules to be used, and (3) an executive program that is used
to operate the productions.

APXEQ. Constant given as an argument to the function
NCOMP to test for a single-linked quantitative relation of
"approximate equality" between two nodes corresponding to
numbers in the data base.

Example: (NCOMP APXEQ NI 3.0) (Production 8 in Appen-
dix B).

apxeq. Relation in the NCOMP schema.
Example: N1---apxeq--->N2.
Inverse: apxeq

arga. Relation in the ASYMREL schema.
Example: G0197---arga--->ONE (Figure 1).
Inverse: argal.

ar al. Relation in the ASYMREL schema.
Example: ONE---argal--->N1.
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Arguments. Nodes that are included in relational struc-
tures as the objects and elements that are related.

ASSIGN

Assigned node. A node that is remembered as the value
of a variable..

ASYMREL. Generic schema for specifying an asymmetric
relation with any number of arguments. ASYMREL consists of
(1) a relation node (e.g., NEXT, ONEONE) linked through a
token relation to (2) a token node represented by a unique
symbol, which in turn is linked through arga, argb, argc,
. . . relations to one or more arguments.

Example: (ASYMREL NEXT G0197 ONE TWO) specifies the pattern
NEXT---token--->G0197
G0197---arga--->ONE
G0197---argb--->TWO (Figure 8).

Atoms. Single words used as names for constants, varia-
bles,TUEEtians, etc.

Examples: FOLLOWED, VI, UNBASE.

BASE. Schema whose main function is to provide erase-
able memory not easily handled with bound variables in ACTP.
BASE consists of the node BASE linked through ida, idb, idc,

. . relations to one or more arguments.
Example: BASE---ida--->ONE (Figure 20).

Bound variables. Variables having a currently assigned
value.

CATEGORY. LISP function in STARTUP that (1) tags con-
stantsiWOEhgy will be usable either as control nodes or
constant nodes in patterns, (2) forms an isa link between the
first term in the category list and each of the other members,
and (3) makes it possible to use the list members as input to
ACTP during a cycle.

Example: (CATEGORY (QUOTE (TITLE ADDTAG MAKE MAKE2
HOWMANY))). (Appendix D) .

cnpt. Single-link relation used to specify the name of
a node in the data base.

Example: A---cnpt--->0B0178.
Inverse: label.

Concept schema. Pattern consisting of a name, set of
arguments, and a list of relations between pairs of arguments.

Condition. The "if" part of a production rule. Conditions
consist of (1) no, one, or more control nodes; and (2) no, one,
or more pattern specifications.
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Condition test. An attempt to match the condition pat-
tern specification to the corresponding nodes and links in
the data base.

Constant. Name of a specific node in the data base.

Control node. A constant in the condition of a produc-
tion that must be active for that production to be tested.
Control nodes function as goals that produce selection of
productions whose patterns will be tested.

comp. Relation in the GOALX schema.
Example: G0224---campl...>?GROUP.
Inverse: compll

Complex goals. Goals which cannot be achieved immediately
and will need to be retrieved at a later time. Complex goals
are stored in the data base by the function SETGOAL.

Cycle. A single loop through a set of productions during
which (1) conditions of productions are tested in order until
one of them is found true; and (2) the action of that produc-
tion is performed, ending the cycle.

CYCLE. Function that tells the ACTP system to begin the
proceligT6r cycling through PROLIST.

Data structure. Semantic network representing the infor-
mation upon which the production system works--on which actions
operate and on which the conditions oc productions can be de-
termined true or false.

EQUAL. Constant given as an argument to the function
NCOMP to test for a single-linked quantitative relation of
"equal" between two nodes corresponding to numbers in the data
base.

Example: (NCOMP EQUAL N1 N2).

equal. Relation in the EQUAL schema.
Example: N1---equal--->N2.
Inverse: EQUAL.

Execute. Performing the action of a production.

False condition. A condition whose pattern specifications
cannot be matched to the data base.

Free variables. Variables having no currently assigned
values.

GENSET. LISP function that sets up an initial data struc-

ture.
Example: (GENSET OBJECTS) (Appendix C).
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Goal. Objective that motivates performance of an action.

GOALX. Schema specifying goal information. GOALX con-
sistsCa-7i) a relation node, GOAL, linked through a token
relation to (2) a token node represented by a unique symbol,
which in turn is linked through action, pattern, compl, comp2
relations to corresponding arguments.

Example: (GOALX GOAL G0244 X FIND SIZE ?GROUP ?NUM)
specifies the pattern

GOAL---token--->G0224
G0224---action--->XFIND
G0224---pattern--->SIZE
G0224---compl--->?GROUP
G0224---comp2--->?NUM (Figure 17).

Goal stack. Memory device for storing the previously
current goal whenever a new complex goal is adopted. Operates
on a "first on the stack, last off the stack" basis.

*GREAT. Constant given as an argument to the function
NCOMP to test for a single-linked quantitative relation of
"greater than" between two nodes corresponding to numbers in
the data base.

Example: (NCOMP *GREAT N1 N2).
Inverse: LEQ

GREQ. Constant given as an argument to the function
NCOMP to test for a single-link quantitative relation of
"greater than or equal to" between two nodes corresponding
to numbers in the data base.

Inverse: *LESS.

haspart .

Example:
Inverse:

hasprop.
EREEFTE:
Inverse:

Input .

Relation in the PARTOBJ schema.
CLIST---haspart--->TWO.
ispart.

Relation in the OBJPROP schema.
ONE---hasprop--->FOLLOWED (Figure 24).
isprop.

ACTP or LISP commands typed in from the terminal.

isa. Relation in the OBJTYPE schema.
EREmple: ONE---isa--->NUMERON (Figure 24).
Inverse: memb.

Ispart. Relation in PARTOBJ schema.
ONE---ispart--->CLIST (Figure 24).

Inverse: haspart.

is ro . Relation in OBJPROP schema.
ample: FOLLOWED---isprop--->ONE.

Inverse: hasprop.
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label. Single-link relation used to specify the name of
a nodi-iii-the data base,

Example: OB0178---label--->A.
Inverse: crept.

*LESS. Constant given as an argument to the function
NCOMP to test for a single-link quantitative relation of "less
than" between two nodes corresponding to numbers in the data
base.

Example: (NCOMP *LESS Ni N2).
Inverse: GREQ.

LEq. Constant given as an argument to the function NCOMP
to test for a single-link quantitative relation of "less than
or equal to" between two nodes corresponding to numbers in the
data base.

Example: (NCOMP LEQ N1 N2).
Inverse: *GREAT.

Link. Labeled connections between nodes in the data base
that Tiii5te relations between them.

List. Atoms or lists enclosed in parentheses.
Sample of a list of atoms: (OBJCAT V4 OBJECT) (Figure 22).
Example of a list of lists: The entire production in
Figure 22.

Match. Attempt to find a configuration of nodes and links
in the data base that correspond to the pattern specification
in the condition.

memo. Relation in the OBJTYPE schema.
Example: -NUMERON---memb--->ONE.
Inverse: isa.

MEMORIZE. LISP function in STARTUP which tags constants
so they will be usable either as control nodes or constant nodes
in patterns.

Example: (MEMORIZE (QUOTE (COUNTED USED FOLLOWED 3OUND
SKIPPED SPECIAL))) (Appendix D).

-NCOMP. Function that tests for single-link quantitative
relatIUE-In the data base. (See APXEQ, EQUAL, *GREAT, GREQ,
*LESS, LEQ.)

tion.

Network. See semantic network.

Node. Symbol denoting ideas or elements in a task situa-

OBJCAT. See OBJTYPE.

OBJPROP. Schema used to represent property relations.
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ORDASSIGN. Schema used as an el:aseable memory structure
whichZiEWiemoved by the function UNBASE. Consists of a
top node (usually BASE) linked through ida, idb, idc, . .

to one or more arguments.
Example: C(ORDASSIGN BASE V21)).

E:= 1"Example:
Inverse:

Pattern.

1:114rn.
le:

Inverse:

E:::;rnl.
le:

Inverse:

Relation in the PARTOBJ schema.
CLIST---ispart--->ONE.
haspart

See pattern specification.

Relation in the GOALX schema.
G0224---pattern--->SIZE (Figure 17).
pattern'.

Relation in the GOALX schema.
SIZE--patterul--->G0224.
pattern.

Pattern construction. Building a list of links and nodes
that correspond to a concept schema.

Pattern matchilm. Testing whether a particular configura-
tion of nodes and fs can be found in the data base.

Pattern specification. A particular configuration of
nodes and limits that is to be matched in the data base.

POPSTACK. One of three special ACTP functions involved in
the management of complex goals. POPSTACK (1) removes the cur-
rent goal from the data base once it has been achieved, then
(2) removes the top goal from the goal stack and makes it the
current goal.

Examples: (See Productions 35 and 38 in Appendix B.)

PRINT. Special function for printing output at the termi-
nal.

Example: (PRINT V1 V22) Production 55 in Appendix B).

Production. Conditional ("If-than") statement used to
represent elements of knawledgt; in a. production system. Con-
sists of (1) a condition, and (2) an action.

Production rule. See production.

Production systeTs._ See ACTP.

PROLIST. Lt4st containing all the productions in a par-
ticular system .

PUTINV. Function in STARTUP that takes as its argument a
list 51C7astant pairs and makes each member of a pair the in-
verse of the other member.
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Example: (KA.PC (QUOTE PUTINV) RPAIRS).
where RPAIRS is equal to
((LABL CNPT) (ISA MEMB) (HASPROP ISPROP)
. . . .))

REBIND. A function that replaces the value of A by the
valueFirNT B retains its value. A must be a variable; B can
be either a variable or a constant.

Relations. Labeled connections between nodes.

Schema. See concept schema.

Semantic network. Knowledge represented as an intercon-
nection of nodes and links in the data base.

SETGOAL. One of three special ACTP functions involved in
the management of complex goals. Whenever a new goal is set
SETGOAL (1) adds the current goal to the top of the goal stack
and (2) adds the new goal to the data base using the GOALX
schema.

Example: (SETGOAL GOAL VX1 XFIND SIZE ?GROUP ?NUM)
Production 4 in Appendix B).

Simple Goals. Goals which can be achieved immediately
and which are set by activating control nodes.

gpecial functions. Functions used for purposes other
then building patterns.

Examples: PRINT, POPSTACK.

STARTUP. LISP function that informs the ACTP system of
the variable names, constants, links, and so on, that will be
used in a particular set of productions. (See Appendix D.)

TITLE. Name of category defined in STARTUP whose members
can be used in providing input information during operation of
the system.

Example: (CATEGORY (QUOTE (TITLE ADDTAG MAKE MAKE2
ITTOMANY))) (Appendix D).

token. Relation in the ASYMREL schema.
raEFle: NZXT---token--->G0197 (Figure 8).

TRACE. LISP function that takes the names of other LISP
functions as its arguments. These other functions are then
"traced" whenever they are called during a cycle.

Trace. Providing a detailed report (called a "trace") of
a function execution within a program. Primarily used as a
debugging device.

True condition. Condition whose control node(s) is active
and whose pattern specification(s) (if any) can be matched to
the data base.
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type. Relation in the ASYMREL.
Example: G0197---type--->NEXT .

Inverse: token.

UNBASE. Special function that removes the ORDASSIGN
structure representing the current problem base.

Example: (See Production 55 in Appendix B.)

Variable. Symbol that can be assigned the value of dif-
ferenEFaiiin the data base.
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