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PREFACE

: Calculus has quietly invaded several areas of biology in the
last few years, reflecting a greater desire for precise explanations
of biological phenomena. Mathematical modeling of rates of dynamic
processes requires calculus. This module introduces ﬁodeling in
biology by reviewing differential calculus using only examples from
life sciencés.' The problem set should be worked since several ideas
are presented which are not in the text proper. An associated com-
puter program, DIFF, uses graphi;s to check the user's own calculations
and demonstrate the validity of ;eneral solutions. Previous exposure

to calculus is recommended but not required.
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INTRODUCTION

‘Differential calculus is being used more often in recent ecological
and physiological models as data become more precise and the processes
become better understood. Since most biological systems are dynamic,
their mathematical models must describe rates of change, not just current
values, of the relevant variables. Although most ﬁodels consider changes
over time, the techniques of calculus depend onlv on the mathematical
function involved and thus any independent variable may be used, such as
spatial dimensions, organism weight, temperature, etc. As a result, the
implications from a model of one process may be applied to the model of a

different process as long as the mathematical functions involved are the

same.

FUNCTIONS OF ONE VARIABLE

Rates of Change

The simplest graph of a dynamic relationship is a straight line. The

equation for a straight line is
y=mx +b (1)

where y and x are variables, m and b are constants. An example of this
relation is the oxygen uptake by the lobster. The oxygen consumption (v)
depends on the oxygen concentration (x) in the surrounding environment, so

s
that y is a function of x. A typical graph of this function in shown in

Figure 1.

.04 1

.02 1 ——

Figure 1. Oxygen consumption.




The equation for this function is

y(x) = .004x + .016
The number .004 represents the slope of the line; that is, the ratio of
the change in y to the change in x. When x changes by 1 unit, y changes
by .004 units. In this particular application, when the water 0, concen-
tration increases by one ml/1l, the lobster 0 consumption increases by
.004 ml per hour-gm body weight. The slope (m in Equation (1)) then
represents the rate of change of y with x.-

When the graph is not a straight line, the function it reFresents is
more complex than above and the rate of change cannot be expressed so
easily. Note that for each unit change in x in Fig. 1, y changes by .004,
regardless of the value of x. The rate of change is then constant. 1In the
graph of Fig. 2, the rate of change is not constant. To see this, approxi-
mate Fig. 2 by two connected tangent lines (Fig. 3a) and note that the
slope differs with each line. As the approximation improves (Fig. 3b), it
uses more lines and thus presents more slopes.j Using an infinite number

of lines, we would duplicate the curve (in Fig. 2) and have a slope that

changes with each value of x. The slope then depends on X and clearly is

not constant. In fact, one definition of the slope of a curve at a point

is the slope of the tangent line at that point.
[}

Note that the slope is ambiguous at the points where two straight

lines meet (Figure 3a). We say the slope is "undefined" at such 'corner"

points.

In general, the rate of change of a function is also a function of x

. d
and possesses its own equation. The rate of change is denoted Eﬁ to

reflect the ratio of the change in y to the change in x. When the graph
|
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Figure 2. Example of a function with a changing slope.

a. ' b.

Figure 3. Approximations to curve in Figure 2.

is a straight line, the equation for y is
y(x) = mx + b

and the rate of change is

dy _
dx m

The rate of change is called the derivative. 1Its functional form

depends on the equation for y. For example, an empirical relation

between oxygen consumption (Q) and body weight (W) is

Q = 3w?



The derivative of this function is

dQ _ _
E?i = (3)2W) = 60

The graph of Q = 3w? is given in Fig. 4a. The derivative at W = 1 represents
the slope of the line tangent to the curve at the point'where W = 1, as

shown in Figure 4b. At W =1, the slope is calculated to be

49 _ -

o 6(1) = 6
Q

l
3 E
2
slope=6
1 !
0 1 2 3 W 2 3 W
a, b.

Figure 4. Derivative as the slope of the tangent line.

The number "3" in the formula Q = 3W2, as well as the "2" in the
exponent, are empirically determined and differ with body size and species.

The general formula is
Q= aw’ (2)
The derivative of this power function is

dj- = L ] .' b—l
au a*b*W




Table 1 gives the more common functions and their derivatives,

Table 1. Derivatives of Elementary Functions
¥ (%) dy/dx
n n-1
X nx
X ' X
e e
fn x 1/x
sin x cos X
cos X -sin x

For a more complete table, see any calculus text, or !
any math handbook (see Bibliography).

Composite Functions

When a function is composed of several simple functions its derivative
can be evaluated in stages. In the simple cases where y equals the sum or
product of two functions, f(x), g(x), the rules for differentiation

(finding the derivative) are:

d df d
y(x) = £(x) +g(x), T =T +F
df
y(x) = £(x) g(x), %ﬁ = f(x)%f + g(x)g;

For exémpie, if y(x) = x%(x-1) + 2x, then

dy _ ,2d(x-1) _1d(x?)
3% = ¥ 3% + (% 1)dx + 2

x2(1) + (x-1)(2x) + 2

When y is a function of a function, the chain rule provides the differen-

tiation method:

10




) .
For the composite exponential function y = e x’ we have

u(x) = 2x, y(u) = e

l
dy _ u du _
du % dx 2

Therefore

The Gompertz growth curve is used occasionally to describe the popula-

tion size (N) of some species as a function of time (t), and is given by the

equation

N(t) = ae

where a,b,k are constants.

growth of the population.

The derivative dN/dt then represents the rate of

Here the chain rule is applied twice:

t -kt
N(t) = aeu< ), u(t) = -be
daN _ ae"
du
Write u(t) as -bev(t) where v = -kt. Then
dv du _dudv _ _ v,
FT dc = dv dat - ~be (k)
dN _ dN du d pe Kt kt
u dv u v - -
—_— e — — = - ~-k) = abk e ¢
dt = du av ar - 2¢ (he) (Fk) = a €

11



Higher Derivatives

The derivative dy/dx of a function y(x) is called the first deriva-

tive of y(x). If we write
dy _
ix - 8
then differentiating g(x) produces

dg _ h(x)
dx

|
which is called the second derivative of y(x), and is written

a%

dx*?
Other notation used for the first derivative includes y' and y, for the

second derivative, y"

and y. Since the second derivative is also a function,
it too can be differentiated to give the third derivative, and so on. The

th . . . . .
n derivative is written (there is no general dot notation)

Critical Points

The first and second derivatives can be used to determine three special
points on the graph of the function, namely, the relative maxima, relafive
’minima and the inflection points. The relative maxiﬁum is easily visualized:
the curve rises, reaches a peak, and then falls. The peak is the relative
maximum..‘zt is relative because the curve may rise even higher in a

e
different place on the graph. Similarly, the relative minimum constitutes

12




a low point on the curve. An inflection poirnt is best illustrated by an

example.

The logistic growth function describing population size is

(14+b) kt

O 14pe Kt

-1

N=N = No(l+b)(l+be— )

where k is a growth coefficient, Nb is the population size at t = 0 and No(l+b)

represents the carrying capacity of the environment. The growth rate is then

]

%% NO(1+b)(-1)(1+be‘kt)‘2(be'kt)(—k)

- - -2
N_(1+b)bke kKt 1ipe Kkt

]

The coefficient k is alwzys positive. In this example, we restrict b to be

greater than 1.

At a relative maximum, the tangent line is horizontal so the slope is zero.

Then the maximum growth rate occurs when the derivative of the growth rate

equzls zero. .
slope at (tl,Nl)

dN
(V) T
__-_—_O
dt
or equivalently, Nl‘ w— inflection point (tl,Nl)
dz‘N N°'1
— = O
dt? 0 f ..—t

1 .
Figure 5. Maximum growth rate at the inflection point.

The second derivative of a functior equals zero at the point of inflection,

'  where the curvature changes from cutving upward ™’ to ¢ irving downward N,
or vice versa. Then the maximum growth rate occurs when the population function
N(t) is at its inflection point (see Fig. 5). Since the slope is decreasing
(leveling off) following tlLe inflection‘point, and increasing before the inflec-

tion point, it is certainly maximal (steepest) at that point. This point can

13




also be viewed as the relative maximum on the graph of the growth rate,
dN/dt (see Fig. 6).

dN/dt

zero slope
dN(tl)"; -

0 tl t

Figure 6. Growth rate as a function of time.

We now locate this point of maximum growth:

2
0 = é—g at (tl, Nl)
dt
_d ~kt -kt ~2
0= dt[N°(1+b)bke (1+be ) 7] at (tl,Nl)
~kt. -kt -kt
0= I +b)bkZe  L(be I-1)(14be )73 |
-kt
Since all factors are positive except (be -1), then
-kt
0 = be l---1
Solving for t, gilves
1
tl = (k)ln b

and then substituting into the original expression for N,

~k(tnb) _,
N, = N_(1+4b) (1+be ) T = N_(1+b)/2

this says that the growth rate is highest when the population is one-half

Q ] 144




10
of the carrying capacity.

FUNCTIONS OF SEVERAL VARIABLES

Partial Derivatives

The models treated thus far involve functions of one variable. Oxygen
uptake is given as a function of just the surrounding oxygen concentration.
The population size depends only on time. A more complicated model, however,
may involve many variables. Growth certainly depends on available food sup-
ply in addition to time. Oxygen consumption also depends on more factors
than ambient oxygen concentration. One such model is discussed by Bayne,
Thompson and Widdows (1973).

The model begins with the equation

dic _ b ‘ ‘
ac = ¥ (3)

where C is the amount of oxygen consumed up to time t, and a, b and W are
constants.* The notation dC}dt demands that we may be able to consider C
only as a function of t. This is not always the case. Bayne, et al.,
studied mussels (Mytilus) with regard to the effects of food and temperature
on oxygen consumption. One of their data sets gives yalues for the co-

efficients a and b for winter vs. summer at two activity levels:

Table 2. Oxygen consumption for Mytilus edulis

Activity
Parameter Season standard routine
a Winter 1.76 2.6
Summer 1.87 2.64
b Winter 0.724 0.774
Summer 0.670 0.702

* C
Comparing (3) with (2) gives -g—; = Q.

b
N
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Standard activity represents the resting state. Routine refers to the post-
feeding time period where some filtration (i.e. muscle activity) is occurring.
From table 2, we recognize significant dependence of "a" on the level of
activity and dependence of "b" on both activity and season. Let season and
activity be denoted s and m, respectively. Then, in place of "a" and "b" we
write a(m) and b(s,m) to show the dependence on the variables m and s. Now
C, a and b are dependent variables and W, s, m and t are the independent
.variables. We must now write (3) as

3c

b(s,m) ,
3t (%)

= a(m)W

The derivative notation is different from that in (3) to indicate more than

one independent variable. This derivative is cailed a partial derivative
and répresents the rate of change of C with time while all other variables
are held constant. Note that by holding all of the independent variables
(except t) constant, we also hold a and b constant. So this partial deriva-
tive is ob:tained by differentiating the function C with respect to t and
treating all of the remaining independent variables as constants.

As a simple example, consider the fun'ction

y = xt2 RPN (3
Then
%% = t2  (t held constant)
. |
and

‘ %% = x+2t (x held constant)
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L L

The function y= xt .

Fig. 7.
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A partial derivative is by nature merely one simple relation (of
many) extracted from a complicated function. In (5), when both x and t vary,
the graph of y vs. x vs. t is a three-dimensional surface (figure 7). When
t is held constant, the graph (y vs. x) is a straight line (with slope t2);
when x is held constant; the graph (y vs. t) is a parabola, as shown in
Figures 8 and 9. These latter two graphs are much simpler than the surface
of figure 7. Note that the straight line (y vs. x) is the far edge of figure

75, and the parabola (y vs. t) is the near edge of figure 7c.

b/ Y
t= 1.2 x=3
_ 2
y= 1l.44x y= 3t
0 X 0 t
Figure 8. 3y/dx = t2. Figure 9. 23y/3t = 2xt.

A more complicated example is the complete expression for (4) . The level
of activity is based on the fraction of the maximal filtration rate. Then
m=0 represents the ''standard” state, m=1 gives the "active" state, and
m=.4 is the "routine'" state . Consider oxygen consumption auring summer.
Then

a(m) = 1.87(m+1)
and (3) becomes

2 - 187wt (6)

Changes in "b" are not significant so that an average value, .7, can be
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used. Since (6) involves four variables, and thus cannot be plotted, we

oC

3': . Then

revert to the notation of (2), i.e., Q =

(.7)

Q = 1.87(m+1)W (7)

This last expression is similar in form to (5) and its graph has a similar

shape. Problem 3 discusses (7) in more detail.

Critical Points in Three Dimensions

The extension of a critical point to functions of two variables is quite

natural. A point P = (xo,y° zo) is a critical point for the function
3 .

z = £(x,y)
if

af _ f _

ax’ay’o

at the pcint P. The classification of the critical point is, however, more
complicated. Since there are three second derivatives, many cases could be

considered:

325 _ 3(3f/3x) 32f _ 3(3f/3y)
9x2 9% ay?  dy

32f = 3(3f/3y) _ a(af/ax) - 3%f '

X3y X dy dyox

This last "mixed" second derivative can be evaluated in either order only
if the function f(x,y) is continuous in x and y. The functions used in

the examples wl ‘ch follow are continuous so that the order of differentia-

" tion is arbitrary. Rather than considering all combinations of sign (+,0,-)

"in the second derivatives, we treat only three, which classify a relative

19
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maximum, relative minimum, and a saddle point. Define

= . N - 2 '
R SAC N SOAE OIS ) f ey %os¥,)

|
where

2
13

etc.
Xxx 9x?¢

P i lati . .
is a relative maximum if L > O and fxx(xo,yo) < 0.
P is a relative minimum if L > 0 and £ (x ,y ) > O.
. xx 0’7o
P is a saddle point if L < O.
When L=0, the situation is ''undetermined" since its resolution is beyond
the scope of this module.

An interesting example is the function

z=x3+y3 - 3xy +15

which seems to describe some of the properties of water falling across a
rock face (Clow and Urquhart, 1974). Some of these properties are well
knowﬁ. The water will often dig potholes in the rock, especially if it
falls onto a ledge. The corners and edges of the ledge eventually become
rounded. We would then use a function which drops rapidly, levels off
then drops steeply again. Figure 10 shows a three-dimensional computer
plot of this functioﬁ, looking across the origiﬁhinto the positive octant
(x>0, y>0, z>0). The required shape is evident, with the pothole just
beginning to form. In fact, the function does possess a relative minimum
at the point (x, ¥y, z) = (1, 1, 14). This model is discussed further in
problem éf

The saddle point in the waterfall model 1s located at the point

(0, 0, 15). The region around the saddle point represents the front

20
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part of the ledge. It is displayed in the computer-drawn graph of figure
11, expanded verticaily to highlight the saddle shape. Some basic features
of derivatives are shown here:
a) The slope changes from point to point.
b) The slope depends on the orientation of the tangent line.
Thus, at a given point, the slope found by 9z/9x may be
different from the slope found using 9z/9dy.

c) The slope at a relative maximum or relative minimum is

zero, i.e. horizontal.

Figure 10. Waterfall function. Figure 11. Saddle point of waterfall

function.

21




17

BIBLIOGRAPHY

CALCULUS

Ayres, F., Jf., 1964. Theory and Problems of Differential and Integral
Calculus, second ed., Schaum's Qutline Series, McGraw-Hill, New York.

Clow, D. J. and Urquhart, N. S., 1974. Mathematics in Biology, Norton,
New York.

Keisler, H. J., 1971. Elementary Calculus: An Approach Using Infinitesimals,
Prindle, Weber and Schmidt, Boston.

Sternberg, W., Walker, R. J. et al., 1968. Calculus, A Computer Oriented
Presentation, The Center for Research in College Instruction in Science
and Mathematics (CRICISAM), Florida State University, Tallahassee.

Thomas, G. B., Jr., 1968. Calculus and Analytic Geometry, fourth ed.,
Addison-Wesley, Reading, Massachusetts.,

TABLES

Handbook of Mathematical Functions, 1964. Abramowitz, M. and I. Stegun,
eds., National Bureau of Standards, Applied Mathematics Series, 55,

Washington, D.C.

Handbook of Mathematical Tables, 1964. Weast, R. C., Selby, S. M. and
C. D. Hodgman, eds., Thg Chemical Rubber Co., Cleveland.

GENERAL

Alexander, R. M., 1968. Animal Mechanics, University of Washington Press,
Seattle.

Bayne, B. L., Thompson, R, J. and J. Widdows, 1973. '"Some Effects of
Temperature and Food on the Rate of Oxygen Consumption by Mytilus
edulis L.," in Effects of Temperature on Ectothermic Organisms,
Wieser, E., ed., Springer-Verlag, New York.

Caughley, G., 1970a. Ecology 51:53.

Caughley, G., 1970b. N.Z. J. Sci. 13:209.

de Vries, D. A., 1975. "Heat Transfer in Soils," in Heat and Mass Transfer
in the Biosphere, Part I, de Vries, D. A. and N. H. Afgan, eds.,
John Wiley and Sons, New York.




18

Bibliography (Continued)

Goldberg, S., 1958. Difference Equations, Wiley, New York.

Long, C., 1976. MAA Monthly, 83:370.

May, R., 1978. 'Mathematical Aspects of the Dynamics of Animal Populationms,"
in Studies in Mathematical Biology, Part II, S. Levin, ed., Math. Assn.
of America. ' :

Sladen, "B. 1969. '"The Ecology of Animal Communities," in Biology of
Populations, Sladew, B. and F. Bang, eds., Elsevier, New York.




PROBLEM SET .

l. a. The logistic population growth function satisfies the differential
equation
dx

d—t=Ax(N-x)

where x=x(t) is the population size and N is the cafgyi;é“capacity of the
environment. Use this equation to show that the maximum growth rate
(max dx/dt) occurs at the inflection point x=N/2. Assume A is positive.
(HINT: write the equation with v = dx/dt, and set dv/dx = 0).

b. The '"'relative growth rate" is defined by

dx

R
R = X ( dt

.where dx/dt is as given in part (a). Let x be given in "numbers of animals"

and evaluate the units of R. The logistié curve is often used to describe
"crowding effects" including intraspecies competition. Use the equation of
part (a) to detérmine the value of x which maximizes R, and explain this
result in terms of crowding.

2. Leaves usually have small openings called stomata to allow passage of
gases between their interior and exterior. Through them carbon dioxide
passes in for capture by photosynthesis and the resulting oxygen passes
out. Water vapor also escapes through the stomata, sometimes leading to
dehydration; Thus plants have guard cells around the stomata to régulate
their size. Action of the guard cells varies the shape of stomatél open-
ings from a long narrow slit to nearlyva circle. Throughout most of this
variation the opening has approximately the shape of an ellipse with a

constant length perimeter, typically about 35 j.

Q :241
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2.(cont.) A good approximation to the perimeter of an ellipse is

P = 2m/(aZ+b%)/2

The area is given by
A = mab

Set P=35 and evaluate the area, A, in terms of just the width, b. Show
that the area reaches a maximum when a=b, i.e., when the stomatal opening

is a circle.

2b

k—— 2a - >}

Constant-perimeter ellipses.

3. In the O2 consumption model represented by equation (7), the variable Q
has units of pl/hr. Write Q in ml/hr and find %% for w=1000 mg. Wh?t are

the units °f'%§*? What might this derivative represe;t biologically? That
is, why would a blologist be interested in this derivative?

4., A study of shape changes in nemerteans and flatworms (Aiexander, 1968)
theorizes that a basement membrane encloses the body and contains fibers
which run in helices around the body. From Figure b, if the length D of

the fiber is fixed, then & = béose and when the shape is cylindrical, the
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4. (cont.) circumference and volume are 2nr = Dsinf, v = nr?q.

EF—. \ 2
. i
fibger r
e £ !
= 3 =
a. Worm membrane b. "unrolled"
nembrane

a. Express v as a function of 6 (with D a parameter) and show v=0 when
=0 or 6=7/2 radians. What do these two cases mean physically?

b. Find 6 which gives a maximum for wv. Prove it is a relétive maximum
and not a relative minimum. Note that laboratory dissections show that in
the relaxed worm the fibers run at about 55° to the axis of the body. Why
would the relaxed worm have the maximum volume?

5. Studies of insect flight (Alexander, 1968) use the theory of "forced
vibrations' to explain the muscle action responding to nervous stimuli.
If the "forcing function' is assumed to be

Fsin(2mnt), t = time, F = constant,
then the steady amplitude A (magnitude of the vibrations) is given by

=l
A = F[(s-47%n%m)? + (2mK)?] *

where K = viscous damping coefficient
m = wing mass
|
n = frequency
s = stiffness of the vibrating medium

Find the frequency (n), called the resonant frequency, which gives the

maximum amplitude.

{ :36;
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6. This exercise verifies the location of the relative minimum in the example

of "water falling across a rock face". The function is
z=x3+y3- 3xy +15

Find all the critical points and determine which one is the relatii-e minimuwm.
7. Heat transfer in solls depends 6n many factors; among them is the variation
in the soil itself (de Vries, 1975).

Since most of the variation is in the vertical direction, a simple mafhema—
tical model is the one dimensional diffusion equation,

2L

— 9T _ 3
‘ c T 2z A oz

where we define

T = temperature

t = time

z = vertical space ccordinate
C= vblumetric heat capacity
A = thermal conductivity

When C and A are uniform in depth and constant in time, we have the

simple diffusion equation:

where a = A/C is called the thermal diffusivity of the soil. The temperature
at the surface gives boundary conditions for the model. For sinusoidal

variation of surface temperature, we can write the boundary conditions as

]

T(t,0) Ta + 60 coswt

]

T(t,=) Ta = constant

27
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7. (cont.) Show that the solution to this model is given by the following
function:

-z/d
T(t,z) = Ta + 90 e z/

cos(wt - z/d)
with
d = (Za/w)!‘j

Be sure to verify that this function satisfies the diffusion equation and

the boundary conditions.




ANSWERS TO THE PROBLEM SET

1. a. Find the x which gives max(dx/dt). Differentiate dx/dt with respect

to x, equate to zero ard solve for x:

d dx, _
i (dt = A(N -~ 2x)

0 = A(N - 2x)
x = N/2
Since the second derivative is negative, i.e.

d? (dx/dt) = -24 <0 ,
dx? {
then at x=N/2, dx/dt is maximal.

b. Find dR/dx, set equal to zero, solve for x:
]
- l — \
R = ;{Ax(N-x)] = A(h-x)

dR _ _
Ix A <0

So no relative max exists, and the maximum must be at the lower end of the
domain of x: sinceA0§x§N , then max (R) occurs at x=0. This model then

implies that crowding effects are present whenever any animals exist.
2. 35 = 21/(a’+b%)/2

§§ 2 a2+ b2
(Zﬂ) 2

2 1
e -

29
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2. (cont.) The area A in terms of b is then

352 N 35%p* iy
A=T1T(~>~-b9)D = T(=—— - 2
(2TT ) (ZTT‘ b)
Maximize A(b):

¢ 2,2 ] 2
, da _ m,35%b% _ ., 352, 3
: b - 2z - b (- 4bd)

0 === -4b%® , assume b # O.

= =5 - 4b?

2T , since b > 0.

352
a= Ggz -

w
W

2)% _ 35

= on since a > O;

il

Thus the maximum area occurs when a=b, i.e. a circle.

3. To convert (7) so Q is in ml/hr, we divide by 1000:

Q = 1.87x10 3(m+1)W"’

Q. 1.87%107 %" 7

om

= .234 for W = 1000

The units are then ml 02 per hour per unit of activity.

4, a., First solve for r(6): |

D .
r o sin 6

D 2
v = (5 sinb) - (Dcosh) !

p3 2
v(B) = =— sin” 6cosd

4
30
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4. a. (cont.)
v(0) = 0 since sin(0) = 0

v(90°) = 0 since cos(90°) = 0

3
b. -%% = %F {2sinfcos?6 -sin?6}
0 = 2sinBcos?8 -sinae‘ Assume 6>0

0 2cos?6 -sin?6
sin?6 = 2cos?6
tanf = V2

6 = 54.74°
5. Maximize A by minimizing the denominator:

0 =-g;[(s-4ﬂ2n2n02-+(2ﬂnK)2] = 2(s-472n2m) (~872mn)+812Kn
0 = -2(ms~472m?n?) + K?
2ms-K? = 872m?n?

) - 2ms-K?
87%m*

6. First calculate the required partial derivatives:

9z _ a2 _ 9z _ 4.2 _

% 3x 3y 3y 3y 3x

2z _ 3%z _ 3%z _
W eyt e yE T

Now find the critical point(s) by-simultaneously solving

.a_%.:O and _a_E_O
X oy ‘
i
Thus
3x2-3y=0 3y2-3x=0

< ’ . 31
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|
6. (cont.) From the first equation we obtain:

y=x?
Substitute into the second equation and solve for x:

3{x?)%-3x = 0

3x(x3-1) = 0
Thus x=0, 1 . The minimum is said to be at (1,1)
With x=1 we evaluate y:

y=(1)?%=1

To classify this critical point, we evaluate

2 2 2 2
G GH-GE) ar y) = @L:

(6:1)(6°1)-(-3)2 = 36-9>0
Since
3%z _ N _
= - 6 0 at (x,y) = (1,1)

then (1,1) is indeed a relative minimum,

7. Tirst show the boundary conditions to be satisfied:

T(t,0) ~0/7d os(wt-0/d)

T +6 e

a o

= T +6 coswt
a o

>/d cos(wt-=/d)

T(t,®) =T + eoe'
=T +0
a

=T
a
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7.(cont'd.) Now show that the diffusion equation is satisfied:

aT _ _eoe_z/dm sin(uwt~z/d)

AL % 8 e'-z/d cos(wt-z/d) - eoe_z/d(— %)sin(wt—z/d)

9z .0
| X
Soe’zld
= [sin(wt-z/d) - cos(wt-z/d)]
2 o _
.g—z%‘- = (- %) —g—e z/d [sin(wt-z/d) - cos(wt-z/d)]

1% -z
- (E) - [cos(wt-2z/d) + sin(wt-z/d)]

26 -z/d
- Egge sin(wt-z/d)

Substituting into the diffusion equation:

-z/d 28, 274
—Soe w sin(wt-z/d) = -a 3z e ein(wt-z/d)

The equation is certainly true when sin(wt-z/d) = 0. Now assume that

sin(wt—z/d)A?'O'and divide both sides by —eoe’z/d ein(uwt-z/d):

w = 2a/d?

Substituting for d, we obtain

€
]

2
2a/( (2a/m);§]

Thus the equation is indeed satisfied.

o
W




COMPUTER EXERCISES

)
Program DIFF 1s basically a plotting routine where the graph of a function

demonstrates some property or use of derivatives. The program is designed to
motivate the following concepts: the derivative as a slope, the zero slope

at a critical point, partial derivatives, and the distinction between continuous

and discrete rates of change.

The specific user options and program features are detailed in the User's
Guide for Program DIFF. The program is designed fpr easy conversion to be
compatible with a continuous off-line plotter (such as Calcomp). Thus one
option is setting XSLICE, YSLICE to "slice" and remove part of the three-
dimensional graph to expose a hidden profile. This option is of limited
benefit with a line printer, but is of great advantage with an off-line plotter
for displaying critical points, -

In each exercise, the user must input certain parameter values. By
repeating an exercise with different parameter values, the user can gain a
better intuitive understanding of how the behavior of functions and their

derivatives depends on the chosen parameter values.

1, In the example in the text treating oxygen consumptionh(see also problem
i

3 above), the oxygen consumption (Q) depended on both the activity level (m)

and the dry weight (W):
.7
Q = .00187(m + 1)W

where the units of Q are m£02/hr. For the computer exercise, we use the

correspondence

Q*z, m*>x, W=y
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so that the equation is

z = .00187(x + 1)y'7

Choose a value for y with 0 < y :_3000 mg and evaluate the first partial

derivative 9z/0x at that value of y. Now use program DIFF:

1. Choose function 1.

"2a. If a line printer is used, obtain the plot and check that the
curvature with increasing x agrees with what your partial derivative
suggests. Is the shape supposed to be a straight line, concave

upward, concave downward?

2b. If an off-line printer is used, set XSLICE = 0 and YSLICE = your

choice of y. Obtain the plot. Does the exposed profile agree with
your partial derivative? Repeat the exercise with XSLICE = 0,
YSLICE = 0. Does the graph Have the same general shape as Fig. 7
in the text? What is different? Now reverse the roles of x, y:
pick x so that 0 < x < 1, evaluate 9z/dy at that value, set
YSLICE = 0 and XSLICE = your value for x and obtain your plot.
Does the exposed profile agree with your function for 9z/dy?

| That is, 1s the shape supposed to be a straight line, circle,

parabola ... ?

2. This exericise illustrates how different parameter values can affect the

properties of a function and its critical points. Function 2 is used in
1

this exercise and is a simple polynomial in two independent variables:

z = (Pl)x2 + (P2)y2

First calculate all the partial derivatives needed to locate and classify

a critical point for gemeral values of Pl, P2. Now use program DIFF:

1. Choose function 2.

o

<
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2a. If a line printer is used, set values for Pl, P2 (from -1.0 to 1.0)
and obtain the plot. Locate and classify the critical point for
these parameter values. Now check that the plot does show the same
type of critical point at the same location given by your calculations.
Repeat for several values of P1l, P2 and note the dramatic change

in type of critical point. How does the location change?

2b. 1If an off-line plotter 1s used, choose values for P1, P2, XSLICE
and YSLICE and obtain the plot. Repeat the exercise with different
values for XSLICE, YSLICE only, and obtain the plot. Classify the
critical point as described in the text and compare witk the plot.
By repeating the exercise with different slicing values (XSLICE,
YSLICE), you can search for the critical point by observing the
changes in the exposed profile. For example, run the program four

times using the following values:
(XSLICE,YSLICE) = (-2,-2)(-2,-1),(-2,0),(-2,1)

You car also keep YSLICE = -2 and vary XSLICE. Check that the
exposed profile agrees with your first derivative. For example,

if XSLICE = -2, YSLICE = -1, then the sliced edge should represent
9z/9x at y = -1,

3. 'When a beam of rectangular cross-section is cut lengthwise from a log,

its strength can sometimes be well described by the following function:

k W D2

wm
]

where

v
]

streneth of beam

width of beam

b
]

(-]
]

depth of beam

as shown in Figure A, and where k is a constant which depends on the type

of tree used. Assume that the log is circular in cross-section and that the
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beam is cut so each corner reaches the outside of the log, as shown.

Assume k = 0.1.

-

Figure A, Rectangular beam cut from a log.

a., Find the width and depth of the beam which give the maximum strength.
Assume the radius of the log is r.
b. Now use program DIFF:

1. Choose function 3.

2, Llet P2 = raéius of the log. ChooséﬂPZ.so that 0 < P2 < 10.

3. Plot the fuhction., From the gfaph with y representing S and x
representing W, estimate the width W which gives the maximum
strength.

A.V.Now calculate the depth D. Check that you; estimates for W,

D agree with your general formula of part a.
4, .Animal populations newly introduced into a region have been observed to
increase rapidly in number and soon thereafter to fall drastically (Caughley

1970a,b) as indicated in Figure B. One theory is that the population at

first "senses" an infinite food supply and then réproduces rapidly to the

27
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point of overgrazing the area. The birth rate remains the same but the

death rate (perhaps of young) dramatically increases until the population

is low enough to match the food supply. The population then increases

more slowly and seems to stabilize. Migration is also involved but is poorly
uqderstood. The second population rise to a "steady-state" suggests some
adaptation or social "learning' by the population concerning their new

environment,

N(0)

0 . Time t

Figure B. Population dynamics of introduced species.

a. Consider the logistic equation written as follows:

rt, -1

N(t) = K(1 + be ' ")

where K, b, r are positive constants, and N(0O) < K. In an attempt to
describe the behavior in Figure B, one could modify the above logistic
function by allowing r to vary ovér time, i.e. r = r(t). Can the population
ever exceed K? If not, then this modified logistic function is not a good

!
model. Answer this for a general r(t) in any fashion: by examining the

c8



function N(t) itseif,,by evaluating the maximum of N(t), etc.
b. An alﬁé}%gte~ model is developed if the discreteness of the popula-
tion is taken into account. The logistic function in part (a) assumes that the

population size, N(t), will change continuously as time changes. In certain

species, populations do not change size smoothly (see Sladen and Bang 1969),

" The breeding time is a short period, once a year so that many off-spring are
born at the same time. The population size then increases in large jumps. .
This discrete change is not modeled well by differential equations. A closely
reléfed field is the study of "difference equations" (see Goldberg 1958) where

discrete changes are allowed. The derivative of the logistic function satis-

fies the differential equation

dgit) _ rN(t)[K-g(t)J

From this formulation, we see that the logistic model assumes that the
population is always aware of how far from the carrying capacity is the current

population size and so continuously adjusts for this difference. (Note that

-$§é
Sy

the der;vatfve depends on this i erence, K-N(t)). Actually, plentiful

food one season may cause too many births the following season, with a definite
time lag between abundant food and severe overpopulation and with few adjpst-
ﬁents in between. :

The computer is used here to illustrate this inadequacy of differential

calculus. The defivative above is replaced by a difference:

N(t+l) - N(t) - K~=N(t)
(+D) - ¢ rN(t)[ )

K
This model assumes the population changes only once per time period (é.g. ,
annually) and is unable to adjust in between. Is this more or less realistic

than the original logistic model? "

29
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The computer program for this problem plots the population size (N) as a
function of time (t) for a given set of parameters (constants). You sghould
note in each plot whether N fluctuates at all, whether the initial drop is
steep, and whether the population size eventually stabilizes at the carrying
capacity (K).

The input parameters are identified as:

Pl initial size

P2 = growth rate (r)
Lowever, the computer program restricts Pl to [-10,10]. The range of N
(initial population size) is chosen to be [50,250]. Thus we use Pl to repre-

sent, but not equal, the initial size as follows:
N - 150 ‘
Pl = ——— .,
10
The carrying capacity is fixed at K = 500, Investigate the different
kinds of behavior of the solution by using program DIFF:
1. Choose function 4,
2. Choose P1, P2 so that =10 < P1 < 10 and 1 < P2 < 4.
3. Obtain the plot.
Check that the initial size on the graph is correctly represented by your
choice of Pl1. Repeat the exercise if you wich, but be sure two of your plots
have P1 = -10, P2 = 3.5 and P1 = -10, P2 = 1.5, Can you estimate the value
for P2 above which the oscillations are no longer regular (or periodic),
i.e. May's "chaos" (1978)?
N .

Do you think this "difference" model could be a fairly‘good description
of the introduced population? How would you include social or genetic
"learning" into the model? That is, once the population size rises and then
falls, what parameters might change in the mudel so that the next rise would

40

be more gradual?
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5. The rerction (Y) of the body to a dose (X) of drug can be rep%esented by

~he function:

Y(") = X2(P1/2 - P2-X/3)

where Pl and P2 depend on certiin body characteristics and on the maximum dosage
which can be administered. Y indicates the strength of the reaction, measured
in millimeters of mercury if blood pressure is being tested, or perhaps degrees
Celsius if change in body temperature is being measured.

Find the dose that has "maximum sensitivity," i.e. where the rate of
increase of Y is greatest. Js this "critical point" a maximum or minimum for
Y'? %hat is this point called on the grzph for Y?

Now use program DIFF:

1. Choose function 3.

2. Choose ii, P2 so that 0 s P1 £ 5, .1 £ P2 £ 1.0.

3. Plot the function and calculate the correct value for X at the

“"eritical point." Check that the graph of Y(X) has the behavior

you predicted at this point.

ANSWERS TO THE COMPUTER EXERCISES

1. 93z/3x = (.00187y'7) = constant for given y.

Exposed prcfile should be a straight line.
-.7
9z/3y = (.00187) (x+1)(.7)y

Exposed profile curves upward with decreasing slope.

11
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2. 3z/3x = 2(Pl)x, 3z/d3y = 2(P2)y
32z/9x2 = 2(P1), 32z/axdy = 0, 32z/3y2 = 2(P2)

8z/9x = 0 if x 0

dz/3y = 0 1if y =0
Thus (x,y) = (0,0) is the only critical point.

To classify the critical point, evaluate:

32x 322 [322

2
3x2 3yl = Bxay] = 4(P1)(P2)

Pick P1 = .6, P2 = 1,0

2
Then 4(P1)(P2) > 0, 3% = 2(P1) > 0 and the point is a relative minimum.

3. From the diagram, we use the Pythagorean theorem to obtain

(2r)2 = w2 + D2 L
D
r
Thus D2 = 4r2 - y2

S = (L1)(4)r2w - (.1)u3

ds

o= (.4)r?2 - (.3)W?
0= (.4)r2 - (L3)W"

The critical point is then at W = v 4r2/3 = 2r// 3 .

We have

d?s
W4

= ~-,6W < 0

o,

so that when W= 2r/vY 3 |, S is indeed at a maximum.

The depth is then .

Y 4r2 - w2

-
= /f4r2 - 4r2/3
2/273 ' r

D

]
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4.a. Even assuming r = r(t), N cannot exceed K if (0) < K. We see this by

writing N as a fraction.

K

N> = 1l + be-r(t)t

Since b-> 0, the denominator exceeds 1, and thus
N(t) < K
b. Treat r as r(t) in the difference equation model, with

r(0)

r
[e]

r{l) = ro/2

r(2) ro/3
r{(3) = r(2)
or some such scheme to decrease r as timé increases.
5. Evaluate the derivative.
¥' = (P1)X - (P2)X2

The "rate of increase' of Y is greatest when Y' is maximal. Find the

max(Y') ty differentiating Y' and setting Y'' = 0.

e o dQ@¥"Y) _ ‘
Y = ix = (P1) (2)(P2)X
0 = (P1) - (2)(P2)X

. X = (P1)/(2(P2))

The value for Y is then

_ [‘Pl ]Z[Pl (Pl)(PZ)] (p1)3
Y = E———— 5, " =

(P2) 6(P2) 12(P2)*“

This point is an inflecti: = point on the graph Y versus X.




USER'S GUIDE FOR PROGRAM DIFF

Identification

DIFF - A program which displays properties of derivatives of mathematical
functions

Authors - Richard Hertzberg, Mark Bailey, Center for Quantitative Science

in Forestry, Fisheries and Wildlife, University of Washington,
Seattle. February 1979.

Pixpose

Program DIFF is the computer supplement to the instructional
module "Calculus-Differentiation," by Richard Hertzberg, which reviews
the basic principles and uses of differential calculus, with special
emphasis on ecological and physiological applications. The computer
prigram displays graphs of selec%ed functions so that certain derivatives

are visible. Most plots serve as checks to the user's own calculations.

Operation

The user controls program DIFF through certrin input variables.
The principal one, NFC., selects the function to be displayed and also
enables or disables other jnputs listed in the INPUT TABLE below. Other
Iinputs control the parawmeters in a function, the portions of a function
to be displayed, the number of plots, and the structure of the plots

themselves.

Setting NFC = 1 selects the function
0.7
F(x,y) = 0.00187(x + 1)y

and disables the input variables Pi, P2, and NPLOTS. The user may alter

14



=40~

the variables XSLICE and YSLICE which act as "slicing" variables that cut
through the 2 axis of the function along certain planes in order to reveal
hidden profiles. The slicing effect merely sets the z values of the
function to ZMIN (the smallest 2z value in the plot, which is usually
displayed as a blank) whenever x < XSLICE and y < YSLICE.

Setting NFC = 2 selects the function
i )

2 2
F(x,y) = PiX + P,y

This option enables all of the inputs listed in the INPUT TABLE. The
parameters of the function, P, and Py, are represented by the arrays Pl
and P2 which can hold up to six different sets of values and generate up

to six different plots, where the number of plots is controlled by NPLOTS.

For example, if

P1 =1, 2,3, 4,5,6,
P2 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
“ NPLOTS = 4 S

then DIFF would produce four plots as follows:

plot 1: lx2 + O.ly2

plot 2: 2x2 + O.2y2
plot 3: 3x2 + O.3y2

plot 4: 4x2 + O.4y2

Also, by repeating NFC = 2 with different values for XSLICE and YSLICE,

the user can "search" for three-dimensional eritical points by observing

various function profiles.

45
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Setting NFC = 3 selects the functioa
2
F(x) = 0.1x(4p, - x°)
which can be written as

F(x) = O.lﬁDz(x)

in terms of the notation used in computer exercise no. 3. This option
disables the input variables XSLICE, YSLICE, NPLOTS, Pl and the last five
elements of P2. P2(1l) represents the function parameter Py-

Setting NFC = 4 selects the function
F(y) = p,y(1-y/500) + y.
This function represents the step-wise solution to the difference equation
Vi1 = szk(1~yk/500) +yk » wherey, =y(x) ,
which is the discrete form of the logistic differential equapion
dy/dx = p,y(1-y/500)

as given in compiter exercise no. 4. This initial value for y (y(0))

is determined byAthe function
y(0) = 10.0 Py + 150.0 . -

This option disables the input variables XSLICE, YSLICE, NPLOTS, and
the last five elements of Pl and P2. P1(1) represents the parameter Py

in the initial value equation, and P2(l) represents the function parameter

Py
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Setting NFC = 5 selects the function
2 3
F(x) = (p1/2)x - (p2/3)x .

This option disables the input variables XSLICE, YSLICE,'NPLOTS, and the
last five ~lements of the arrays Pl and P2, The function parameters

P, and p, are represented by P1(1) and P2(1).
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Program Organization

The program is organized according to the following flow chart:

Start

\\tYes
/

\.//
> NODFLT = ,T. ?
AN

i,No

Read default values for
all parameters from the
built in default file.

Read in the user-supplied
parameter values.

v

<:'FINIS = ,T. ? ;>rEE§L___£, Terminate:

program.
No

y

Check for errors in
the user-supplied input.

L Output the 2
appropriate Yes Input errors found zA:>>

error messages.

No

\ !

. Calculate all the x,y,z points ]
for the chosen function. All z
values are set to ZMIN for all
x < XSLICE, y < YSLICE

v

¢ Note: For

Write out the X,y,2z coordinates. NFC=2, this

for all points onto the plot file. sequence is
v repeated NPLOTS.

number of timer.
Call the plotting subroutine
PRNT3D which plots the output.
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All input is handled by the format free input package (Gales and
Anderson, 1978) which permits a user to assign values to variables by a
"name=value" convention. Not all variables need be explicitly assigned
by the user, however, as unassigned variables automatically assume default
values. The input consists of any number of data sets, each of which 1s
terminated by a dollar sign ($). Each data set generates a separate
printer plot.

The input for DIFF is divided into three classes: (a) variables
having mathematical significance: NFC, XSLICE, YSLICE, P1l, P2 and NPLOTS;
(b) variables which control certain program operations, such as program
termination or the handling of default input: IPRINT, ECHO, NODFLT, and
FINIS; and (c) variables which coﬁt£01 the printer plots (default values
are in parentheses): XMIN (0), XMAX (0), YMIN (0), YMAX (0), ZMIN (0),
ZMAX (0), XRICH (0), YRICH (0), DFAULT (0), OVPRNT (.F.), AVE (.T.),
INT2D (.F.), NX (60), NY (45), and ZMAP (0,1,2,3,4,5,6,7,8,9). The variables
in the first two classes are explained in the following INPUT TABLE, whereas
the printer plot variables are explained in the user's guide for PRNT3D
(Gales, 1978). The user normally may ignore the PRNT3D variables since
DIFF controls them internally. However, if he chooses to change any of
them, he should do so with great care. In particular, the variables
XRICH and YRICH, if made too small, will cause DIFF to generate a very

large number of enrichment points, and consume far too much computer time.



. —45-

INPUT TABLE

Name

Type and
Dimensions

Range Limits

Description

Pl
P2

ASLICE
YSLICE

NPLOTS

IPRINY

ECHO

Integer

Real (6)
Real (6)

Real
Real

Integer

Logical

Logical

1,5

-10,10
-10,10

XMIN, XMAX
YMIN, YMAX

1,6

an

Identifies function to be
plotted.
Default value: NFC =1
Function parameters. Their
physical significance and,
to some extent, their range
limits, depend on the
particular function
specified.

Default values:

Pl = 1,1,1,1,1,1

P2 =1,1,1,1,1,1

Deletes part of the function
by setting Z=ZMIN for

x < XSLICE, y < YSLICE.
Default values:

XSLICE = O

YSLICE o

The number of plots to be
drawn. NPLOTS is used only
when NFC=2.
Default value: NPLOTS =1
A logical value which
causes the current values
for all input variables
(default as well as current
user input) to be printed.
Default value:

IPRINT = .F.

A logicai value which
causes the user's input to
be echoed if ECHO=.T., or
suppresses echoing if
ECHO=.F.

Default value is:

ECHO=.T.




Input Table (continued)
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Name

Type and
Dimensions

Range Limits

Description

NODFLT

FINIS

Logical

Logical

.F., .T.

A logical value which
suppresses the input of
default values if
NODFLT=.T.

Default value:

NODFLT = .F.

A logical value which causes
program termination if and

‘only if FINIS=.T.

Default value:
FINIS=.F.

Note:

XMIN, XMAX, YMIN, YMAX determine the range of points to be
plotted and are set internally for each function.
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The last four variables deserve special mention.
The logical variable IPRINT controls the output of all input variables
which are currently in effect (default values as well as those specified
in the current input set). Setting IPRINT=TRUE (or T or .T.) displays
the input variables; setting IPRINT=FALSE (or F or .F.) suppresses the
display. ‘ ,
The logical variable ECHO controls the echoing of the input cards.
Setting ECHO=TRUE causes the subsequent input sét to the echoed;
setting ECHO=FALSE suppresses the ‘'echo for the subsequent input set.
The logical variable NODFLT can be used to inhibit the automatic
assignment of default values to input Vafiables. If NODFLT is set
TRUE in the current input’set, then the current input set is assigned
default values as usual, but all subsequent input sets merely
accumulate more input values. In effect, the input values which exist
after th i-th input set is read, become the default values for the
(i+1)-th input set. The standard default values may then be restored
by setting NODFLT=FALSE, but, again, the effects of this change are

delayed until the next input set is read. To a limited extend, NODFLT

permits a user to set up his own default values and can be very useful

~ for executing a number of input sets which differ only in a few para-

meters, Consider the following example in which a user wishes to

slice the same function by using several different values for XSLICE

and YSLICE:

/INPUT SET 1: THE FOLLOWING VALUES BECOME THE DE FACTO/

/DEFAULTS FOR ALL SUBSEQUENT INPUT SETS: /

NODFLT = TRUE, NFC = 2, P1 = .1, .4, .5, 2.3,

S2
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P2 = 2.2, 2.6, 2.5, 2,8, NPLOTS = 4, XSLICE = 0, YSLICE = o, $
/INPUT SET 2: SLICE THE AndVE FUNCTION/

XSLICE = -1, YSLICE = 0, $

/INPUT SET 3: SLICE IT ANOTHER WAY/

XSLICE = 0, YSLICE = -1, $

/INPUT SET 4: SLICE IT YET ANOTHER WAY/

XSLICE = 1.2, YSLICE = —1j2, $

/INPUT SET 5: NOW STOP/

FINIS = TRUE, §

4. The logical variable FINIS controls program termination, The user

should add the card:
FINIS = TRUE, $§ B

as the very last input get. If FINIS is not set, the program will

terminate abnormally,

Output
DIFF produces sets of plots, via subroutine PRNT3D, which display

function values. Each plot contains a title, 1egeﬁd, X and y axis
annotation, and printer plot lines or surfaces. The title displays some

of the values, and ranges of values, for the variables used to generate

the plot. ; |

‘The plot legend, in conjunction with the numbers along the x and y
axes, allows users to interpret the plot numerically. The x and y axis
numbers are of the form *N.NNN and differ from their true values by pouwers

of 10 which are specified by tne scale factors in the legend. For example,

the,first line of the plot legend for RUN 3 reads.

-

o3 ‘
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SCALE FACTORS = X-AXIS:E+00 Y-AXIS:E~01 Z-~AXIS:E+00
hence the point, indicated by a "1'" character near the top right of the plot,
is near. (x=1.246, y=3.100) = (x=1.246x10°, y=3.100x10"!) = (x=1.246, y=0.31).
The remaining two lines of the legend specify the number of points mapped

to each z-level (-9 means > 99).

Restrictions

The input values are restricted to the ranges given in the INPUT
TABLE. Due to the physical interpretation of the function parameters,
further restrictions are indicated in the description of each computer

exercise.

Error Messages

Three types of errors may occur in program execution:
1. Syntax errors in the user's input.
2. Parameter range exceeded.
3. Plot parameter errors.
Input errors 1 and 2 generate an appropriate error message, the calculations

are skipped, and the next input set is read. For type 3 errors, the

program suppresses the plot, outputs the error message and reads the next
input set. If the plot file is emwpty, an error message is printed but the
plot proceeds. Type 1 and type 3 error messages are listed in the user's

guides for subroutines FFORM and PRNT3D.

Sample Runs

The control cards, input cards, and line printer output for five

sample runs appear on the next few pages.



-50-
DIFF,CH70000,T10,P2. ,
ACCOUNT y*xbsdbs s, 42b s t4
COMMENT. «
COMMENT #* 0 4R 5 0420430054540 4000000kt hbtkbbns !
COMMENT.* THE ABOVE CARDS IDENTIFY THt JCE %
COMMENT.* (DIFF), SPECIFY THE CENTRAL MFMUFY *
COMMENT.* REQUIREMEN(IS (70000 OCTAL)» THF *
COMMENT.* CENTRAL PROCESSUR TIME (10 SECONDS) =
COMMENT.* THE JOB PRIQRITY (P2)y» AND THE *
COMMENT.* ACCOUNT NUMEBER AND FASSWORD *
COMMENT H #3420 2024482 344220500500 830 040000458044
COMMENT.
ATTACH,BDL1fFF,1D=RBOIFF.,
ATTACH,BPK3D,I0=1PR3D,
ATTACH»BFF, ID=3FF,
COMMENT.
COMMENT 224 #3424 4440424247880 0bhtsktbnttstis
CCMMENT.Y THF AFOJOVE CARDS ATTACH THE MAIN +
COMMENT.* PRLCGRAM (Q21IFF), ANT THE SUPPCGRT- 3
COMMENT.* ROUTINES PRINT3D (3FR3D) ANC THE *
*
*
t 3

"COMMENT.* FREE FCRM INPUT RIJUTINE (BFF). THEY

COMMENT.® ARE ALL IN RINAPRPY

COHMENT.'*“*““"*‘ [ ZX FPE 2 EEEREL SRR RERRRERNE R R

COMMENT,

LCAC+8DIFF,EPRIC,REF,

FXECUTESCIFF.,

\,Lfn\c'\T-

CIMMENT ¥ 5%¥ 4422353002558 4540588880800 8%44044%04%

COMMENT.* THE ABOVE CARDS LCAD THE RQOUTINES *

CD“ﬂ: T.% INTO CENTRAL MEMOKY AND PASS CONTRCL #
{MMENT.® TO DIFF Fa% tEXECUTION *

I‘DMVE‘JT I EE IR EREERE NS *“‘*#‘**“"“;“‘#‘“““t

COMMENT.,

t:rR

IZE XX EREE R RS IR E RS R AR N TR N YRR SN R R E R AR S RN SRS E R RS R RE RS RS AR IR R R ENSEE R,

/

THe FCLLOWING TEFAULT VALUES 4PF USED

NFC=1, NPLCTS=1,

Pl = lasleslerlaslarlar F2 & leslerleslerlaslas

XSLICE = QOay YSLiICE = Q.y

ECHCa , Tepr NODFLT=.F.» FINIS= .F.»

Nx=b(, NY=4%, IMAP®0,152,3,49C56575 %57,

XMIN®0.0) XMAY=(0L 0 YMIN=20,0s YMAX=O,040 ZMIN=DG.0p TMAY®D O,
»nlCh=0.Cy YRICH=0.0, DFAULT=0.0,

OUERNT = F o» AVE = T, INT2D = Lf o> IPRINT o« [F,

BARS DGR A bk PR b F 50 SR RAAL LA RS RRUN [*F A a s Es b AR A A0 A P AE RS bo R At b

M N N NN NN N NSNS NS
NN Y N N N NN Y N Y NN NN NN N

NFC=1, $%

/

/
A X ERERE R R RS R R RS E R SR EEEE RS AU 2#####4#*#*####‘u.\“#####“tt‘#’tfv

/

NN NN

NFC=2, ¢
/ . /
/ /
JEESES RO RS KR AR FF IS RES A RN RS RQUN SFHB RS AR RE ARG L4 40580 422 R 24N AV S/
/ U = ’ /
o
oX .
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(N

NFC=3, ¢
/ A /
/ PR /
I‘!““‘##‘#“““‘ IZEESTEENFERE R AL l}“*""."*‘*“4““‘-‘*““‘.““/
/ B /
NFC=4, Ple-10, P2=1,2, ¢
/ ' /
/ . /
/*0“#“““““““‘ sekekt bk kxR UN 5“““““““““‘ﬁ‘#‘*“ﬁ“Q"/
/ /
NFC®5, XRICH®=0Q.05s YRICH=C.00%, 1PRINT » ,T.y %
/ : /
/ /
/“““#*““"““O“ “#‘*““‘*#STGF‘**““‘*.“‘“.‘ﬁ““#‘i“t‘#!‘/
/ - /
FINIS=,.T.» $ ‘
o | /
/ /

O

ERIC

Aruitoxt provided by Eic:

P e L e s R A L R R R R L AL
£ECP



OGRAM =DIFF- READY FOR INPUT

/"““““““““"““““#.“““““‘“‘““"“‘.“‘.“‘.“‘.#’*/
/ /
; THE FOLLOWING ODEFAULT VALUES ARE USFD ;
/ NFC=l, NPLETSe ], /
/ Pl = 1-’1.’10’1-’1-’10’ P2 » l.pleslesrlesrlenlos /
/ XSLICE = Q0.5 YSLICE = O.» /
/ ECHU‘.T.’ NUGFLT‘.F-p FINXS=Or¢’ /
/ NX=6GC, NY=45, IMAPaC, 192935495965 75 999, /
/ X“IN=2G,0p, XMAX2G,0, YMIN=O,0» YMAY=D,.(y, IMIN«Q,0, 7MAY=0,0, /
/ XRICH=0.0, YRICH=0,D, DFAULT=0.0>» /
5 OVPRNT = % ] AVE = .Te>s i'NTZD s .F.’ IPRINT s .F. ;
/ /
/“‘*““*““‘**#“#*"*4“‘.#‘9[_],\] 1#‘“#“‘“““.‘#*““““““‘./
/

NFCs=l, ¢
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ROGRAN <DIFF- READY FOR INPUT
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OGRAM =DIFF= READY FOR INPUT

) 1
/
/
/

z
AR EEE AR R R KRR AR kR R G RN E R FRUN SAPR v AV bR Rb R b kb kb bkt A A bbb b a b
NFC=5y XRICH®Q.05, YRICH=(C,00%y IPRINT » ,Tep ¢

€5
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0
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