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PREFACE

The climate space is presented in the literature as a.means of
quantifying the limits of an animal's thermal environment. This module
presents a more extensive discussion and shows how to calculate these
limits, especially limits due to the physical environment. Ideas
developed in the problem set check the assumptiohs of the climate space
model as well as extend the use of the diagrams for predicting activity
cycles. The material is aimed at general undergraduate life science

students, although a background in heat transfer processes is recommended.
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INTRODUCTION
In earlier modules of the thermodynamics series, we considered the
application of the First Law to biological systems (Stevenson 1977a and b)
and the heat transfer processes which govern the energy balance of organisms

(Stevenson 1978). The general heat budget equation for animals is

AU

it

M+Q -Q -LE~-C=-G [1]

where
AU = change in internal energy (W m—z),
M = metabolism (W m_z),
Q = radiation absorbed (W m—z),
'Q_ = radiation emitted (W mfz)
-2
LE = water vapor losses W ),

C = convection flux (W m—z),

G = conduction flux (W m—z).*

Equation 1 is a complicated expression with mény independent variables., Because
biologists are interested in how animals modify their heat balance and why any:
particular behavior or physical characteristic of an animal influences this
'balance, they must find ways of analyzing the heat energy baiance equation.

In this module we will discuss a model for which the animal's temperature

is not changing with time, that is:-the steady state assumption that AU ='0.. Porter

*In some of the biological literature the units of Equation 1 are

cal cm_2 minfl, but we have adopted the mks system here. The reader may find
Appendix I, modules already referenced and Fletcher (1977) helpful in making
conversions.



and Gates (1969) presented the "climate space diagram" to visually display the
range of envirommental conditions an organism could survive. More recently
Monteith (1973) has proposed another graphical method to represent the energy
balance which we will consider briefly. The works of Hatheway (1978) and
Porter et al. (1973) offer alternative methods for understanding an animal’'s

relationship to the physical environment.
THE THERMAIL. ENVIRONMENT: BASIS FOR THE CLIMATE SPACE

To describe the physical heét energy limits that an organism can tolerate,
Porter and Gates (1969) began by examining the abiotic components of the
environment. Four climatic factors —— radiation, air temperature, wind speed
and humidity -- were fecognized as affecting an animal's ghermal balancé.. The
authors decided that evaporative losses would be small for many organisms and could
be included as maximum and minimum rates without making the losses a function of
the humidity.

Tracy (1976) has, however, shown that when investigating the thermal and mass
balance of wet-skinned animals such as slugs, frogs and salamanders, the water
vapor céhcentration of the soil and the air must be known to accurately quantify
these exchanges. To date the climate space concept has not been extended to includé'
the environmental variable of water vapor concentration. Likewise, the formulation
of Porter and Gates (1969) does not consider the effects of wind direction. Nor is
surface temperature of the ground explicitly indicated (but see Equation 3 and
Appendix II for calculation of Qa)' Radiation, air temperature and wind speed,
though, which are the physical factors included in the climate space concept, are
the most important abiotic variables for the thermal heat balance of most terrestrial

animals. | ) a7
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Radiation

The most complex of the factors Pporter and Gates (1969) cénsidered is the
absorbed radiation because it is composed of several shortwave and  longwave
cohponents. Gates (1978) has written extensively about how to compute absorbed
radiation, and we will present a shor§ review here. In general, Qa is the product
of surface absorptivity, the surface area exposed to a particular source of radiation,

and the intensity of that source. This can be written:

= a = +_ " Y
Qa_ 31A13_+ azAzs a3A3r (S +s) + a4A4Rg + aSASRa [2]

where

S is the r#diation from direct sunlight (W mfz),

s 1s the radiation from scattered sunlight (W ;72)’

Rg is iﬁfrafed thermal radiation from the ground (W m_z),

Ra is infrare& thermal radiation from the atmosphere (W m_z),

r is the reflectivity of the ground.
Since we wish to consider the average flux per unit surface area, the Ai's are
the proportions of the total surface area exposed to each kind of radiation. The
ai's are_the mean absorptivities to each kind of radiation. Roseman (19%8)
discusses absorption, reflection and transmission. 1In their original paper,
Porter and Gates assumed that their animal was'a cylinder. Equation 2 can then

be rewritten as

=3 = - LT
Q, = as+ 0.5[as + ar(s + S) + Rg + Ra]' [3]
Here it is assumed that: 1) A, = V/m; 2) scattered sunlight, reflected sunlight, -




reflected scattered sunlight, ground radiation, and atmospheric radiation strike
half the animal (see Siegel and Howell 1972 for calculation of shape factors);
3) the mean absorptivities of the sunlight, scattered sunlight and reflected

light are equal to a; and 4) that the mean absorptivities of the infrared sources

are 1.0.

Environmental Constraints

‘The climate space concept derives from the fact that there is a relation between
the average incident‘radiation and-the air temperature independent of the organism.
It is generally true that warmer air temperatures occur with high radiation levels,
i.e., summer or tropical conditions. Likewise colder air temperatures are usuélly
correlated with lower radiation loadings. (Exceptions to this.generalization are the
high radiation levels in the mountainous regions of lower and middle latitudes during
the summer when air temperatures can be low (Porter and Gates 1969).) Thus, we
expect a positive correlation between the air temperature Ta and the absorbed
radiation Qa that the organiém is exposed to in any given habitat. Initially,

Porter and Gates considered a blackbody environment such as a cave or sheltered
spot in thick vegetation. The relation between absorbed radiation and air
temperature is given by the Stefan-Boltzmann Law and is plotted as the centerline
in Figure 1. Next they asked what is'ﬁhe relationship between these two variables
when an animal is exposed to a clear sky at night. Under these conditions ‘an
object will be receiving energy from the atmosphere which is at a lower temperature
than the surrounding air. Gates (1978), using an empirical relationship from
Swinbank (1963) for sky radiation, shows that the total radiation absorbed by the

organism is

9



- - L - u
~ aL(Rg + Ra) ~ aLU[Tg7+ 273]1% + 1.22 aLCf[Ta + 273] 171
Qa - 2 - 2 [4]

where

mean absorptivity to longwave radiation;

- s
Stefan-Boltzmann's constant 5.67 x 10 8 (Wm K'4),

Q rPl
g

-
]

ground temperature (°C),

—
|

air temperature (°C),
and the other symbols are as in Equation 2. Gates has assumed that the Ai's are
one-half in each case (Siegel and Howell 1972 show how this can be derived).
As before, we will let EL.= 1.0. It is also convenient to approximate the
ground temperature with the air temperature. In the early evening Ig > Ta’ but
several hours before sunrise the reverse is true. Equation 4 with the afore-
~mentioned asiumptions is the leftmost line plotted in Figure 1. This means that
if an animal were out foraging under a clear sky at night'at an ajir temperature
of 20°C, it would receive 50 W mfz less than if it were resting in a burrow.
Finally, we consider the condition when an organism is exposed to full
sunlight with an absorptivity to shortwave radiation of 0.8. 1In this case, the
radiation as a function of air temperature is givei by the line to the right of
the blackbody line. This line is "fuzzy" to remind us that this relationship is
less well-defined than the other curves. The assumptions and calculations necessary
to plot this line are discussed in Appendix II. If we now consider the difference
between a blackbody and a full sunlight habitat, bota at 20°C air temperature, we
see that the latter would receive 300 W m-2 more radiation.
The importance of Figure 1 is that we have established a region bounded by
the clear sky, plus ground radiation line and the 0.8 absorptivity line that

limits the combinations of Qa and Ta found in the natural environment. This

10
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‘Figure 1. Relationship between the total amount of radiation flux incident
on an object as a function of the air temperature. At night the object receives
thermal radiation from the ground and atmosphere. In the daytime the object
receives direct, reflected and scattered suniight, in addition to the thermal
radiation from the ground and atmosphere. The absorptivity to sunlight is 0.8.
The right-hand boundary line is fuzzy to- remind us that it is an average value.
From Porter, W. P. and D. M. Gates. 1969. p. 234.



region can be divided into areas: one between. the clear sky at night.and
blackbody line which governs the range of all nighttime conditions (S and s
of Equation 2 are zero), and a second area enclosed by the blackbody and the 0.8
absorptivity lines which gives the range of most daytime conditions. The averagé
radiation intensity can be less than blackbody levels during fhe day when clouds
prevent the surface from receiving shortwave radiation. To see this we need to
compute the absorbed radiation in the open, an, and compare it to that
absorbed in a blackbody cavity, Q.. If solar radiation is zero (S = s = 0)
then Equation 3 reduces to an = (Ra + Rg)/z. We assume that thé surface.tempe—
rature is equal to.the air temperature and the teﬁperature at the base
of t?e clouds is_iess than air temperature so R, < Rg and gao < Qad' In this
case, the higher the clouds the cooler the radiating surfacelof their bases. This
radiation, however, will always be greater than the radiation from a clear sky at
night.

Morhardt and G;tes (1974) have considered the temporal variation of Qa and
Ta more carefully. They measured Tg, Ta’ Rp (= S + s on a horizontal surface),
Rg and Ra hourly for a summer's day in the Colorado mountains shown as in Figure 2.
These values were used to calculate Qa for the Belding ground squirrel (Citellus
beldingi beldingi) from an equation similar to Equation 3.. In Figure 3, pairs of
Qa and Ta are plotted as a function of time. Morhardt and Gates made similar
calculations for several different microhabitats. Although there were no startling
conclusions about how the animal was being influeﬂced by thermal environment, we.
will consider their study further in the exercises. The next:step in constructing
the climate space diagram is to see how the animal is influenced by radiation, air

temperature,.and wind speed.
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Figure 2. Daily variation in the radiant environment in different micro-
habitats under different general weather conditions. The upper portion of the
figure describes daily fluctuations of air temperature (Tz) and temperature of
the surface of the substrate (Tg). From Morhardt, S. S. and D. M. Gates. 1974.
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Figure 3. Climate diagram for the habitat. Data on these diagrams indicate
the total amount of radiation that is absorbed by a geometrical model of a ground
squirrel under conditons of air temperature and radiation -shown in Figure 2.. The
model is oriented in two ways with respect to direct solar radiation to show how
absorbed radiation differs at the same air temperature and the*same time of day with
differences in orientation toward the sun. The amount of radiation absorbed is

greatest (Q ) when the long axis of the model is normal to the direction of
abs-maximum

the sun and least (Qabs-minimum) when the hemispherical end of the model is toward the

sun. All other orientations would be intermediate between these extremes. Data points
are taken directly from Figure 2 at hourly or half-hourly intervals and are identified
at selected points by showing the hour of the day in solar time adjacent to the points.

The line for sunlight 747 absorbed represents the maximum amount of radiation
that could be absorbed by the model in direct sunlight at any air temperature. The
blackbody curve-:indicates the intensity of radiation from a blackbody at any air
temperature, and the curve labeled "night time average of clear sky plus ground"
indicates the minimum energy likely to be absorbed by the model when exposed to &
night sky radlating at a temperature which is cooler than the air. From Morhardt,
S. S. and D. M. Gates. 1974. P. 25.-
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PHYSIOLOGICAL CONSTRAINTS OF THE ORGANISM

We expect two kinds of limits under steady state assumptions: one area
where the environmental conditions make the organism too hot and conversely
another area where it would be too cold. Fufthermore,.we expect an inverse
relationship between air temperature and absorbed radiation because the
organism'must maintain an energy balance. The reader should pause here to
make sure that these ideas are intgitive, as shown graphically in Figure 4.
Commgn experience suggests that increasing thé air temperature will make the
environment hotter, but increasing the absorbed radiation is not as obvious.
Most of us, howeﬁer, are familiér with the midday heat stress common in maﬁy
aredas on a clear summer day. Later in the afternoon whgﬂ tﬁg'sun‘is lower in
the sky Qa will be reduced. Air temperature will also be dropping so that the
transition that has occurred can be represented by the arrow labeled 2 in
Figure 4. In the Qintertime or early morning the reverse is true; the sun
will often feel good because it provides the extra energy to move you into the
acceptable region as shown with the first arrow. The exact slope and position of
these limits will depend on other environmentai conditions such as wind speed and
characteristics of the organism such as size and insulatibn. One cau think of
the limits as the combination of physiological factors that will allow the organism
to exist in that environment. For the iower iimit of the energy budget calculation o
an endotherm we would assume a high metabolic rate and thick insulation.

If we superimpose Figure 4 on Figure 1, the intersection or shaded region

of Figure 5 is the climate space of the organism. It should be clear to the

reader that the northwest and southeast boundzries are the results of environmmental

constraints while the northeast and southwest limits are the result of the

1z
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Figure 4. In Region I the animal is too cold. In Region II the animal can
maintain thermal equilibrium. In Region III the animal will become overheated.
Arrow 1 indicates the change in environmental conditions that takes place early
in the morning. The added warmth of the sun makes the environment. more "comfortable,"
Arrow 2 refers to the change in Qa and Ta in the mid-afterncon on a clear summer's
day. - '
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organism's need for homeostasis. The physiological limits can be calculated
explicitly using the First Law of Thermodynamics. This is the task of the next

section.

EXAMPLES OF THE CLIMATE SPACE
" 'The Lizard
To write down the heat energy budget of a lizard we need only sum up the
heat trénsfer components. Initially we consider only tliree of these components
(absorbed radiation, reradiation and convection) because metabolism and water loss
are small and they tend to cancel each other out (Porter et al. 1973). The

energy entering the system must equal that which is leaving, so
= . ) 4 .
Q, 't-:cr(TS #273)" + h (T - T)) [5]

where
Q_ = longwave and shortwave radiation absorbed by the organism (W m—z),

a
€ = emissivity (0.96),

2 ~4

0 = Stefan-Boltzmann constant 5.67 10—8(W m - K ),
T, = surface temperature of the lizard o, .

Ta = air temperature (°C),

h.c = convection coefficient (W m-2°C-1).'

Originally Porter and Gates (1969) suggested that the convection coefficient
should take the form

b= g y0+33 ;0-67
(o4 Cc

[6]
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where

k. = a constant 0.9274 (W o2 og~1 (m) 0'67'(m/s)“0'33),
= wind speed (m s—l),
D = diameter of the animal or cylinder (m).

Recently Mitchell (1976) found a spherical shape is the best overall model for
convective transfer in the terrestrial environment. He used weight divided.by
density, which is equal to the volume, all to the one-~third power as the
characteristic diménsion instead of the &iameter. (Using laboratory measurements
it is often péssible to get better estimates df'hc for a particular geometry.)
Generally one would calculate the Reynolds and Nusselt numbers to find the heat
transfer coefficient (Kreith 1973). This procedure is outlined in the module
on heat transfer procésses {Stevenson 1978). With a number of assumptions which
introduce only small errors, it is possible to write Mitchell's result in the

same form as that of Porter and Gates (see Abpendix III). We have

= 0.60, ~0.133 '
hC = ksv M‘b (7]
. where
k_ = constant 17.24 (W o 2 °C(m s-l)—o'Go(kg)o'133),

Mb body mass (kg),

and hc and V are as in Equation 6. We further assume that the body temperature
Tb is approximgtely equal to the surface'temperature TS. (The error in this
assumption will be checked in Problem 1.) The heat energy balance cén now be

written

Q, = €o(T, + 273)% + kSVO'GOMb—O'IBB(Tb - T). ‘ [8]

19
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To construct the climate space of the lizard, we need to make assumptions

about the variables of Equation 8. If V, Mb and T, are specified as constants, there

b
is a linear relationship between Qa and Ta. We illustrate this in Figure 6 by

1

plotting the upper line for V= 1.0ms , M, = 0.027 kg, and.T, = 39°C, and the

b

bottom line with only T, changed to 3°C. The shaded region in Figure 6 is the

b
climate space of the reptile if the wind speed is the average value for the micro-
climate ﬁhat the lizard inhabits, and if the body temperatures given are the upper
and. lower bounds that the animal cﬁn tolerate.

Examination of the climate space diagram allows interpretation of several
of the parameters of the hgat energy balénce model. The boundary points of th;
space indicate the extreme values that the lizard is likely Fo encounter and still
survive. The iowe; lgft—hand point of the diagram tells us that if the reptile is
exposed to a clear sky at night, its body temperature will remain high enough to
survive as long as the air temperature is above 7°C. The opposite corner shows
that 27°C is the extreme air temperature that the lizard could endure if it were
exposed to strong sunlight.

The effect of changing color is also illustrated in Figure 6. In desert
environments lizards often lighten their color which lowers their mean aﬁsorptivity.
For example, lowering the mean absorptivity from 0.8 to 0.6 in Figure 6 allows
the lizard té increase the air temperature that it can survive from about 30°C"
to 32.5°C. Norris (1967) has extensively studied the effect sf color change
on the thermal adaptations of desert lizards.

Increased wind speed increases the relative importance of the convective

term and couples the body temperature of the animal more closely to the air
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Figure 6. The hatched area is the climate space of a lizard with
absorptivity to sunlight of 0.8. If the animal decreases its absorptivity to
0.6 it can increase the air temperature it can withstand from 30°C to 32.5°C.

" The darkened areas refer to problem 4.




temperature. Figure 7 shows the influence of wind speed on the energy balance.
As the wind speed increases from 0.1 m s_'1 to 10.0 m s_.1 the physiological line
becomes more horizontal.

We can visualize the effect of sfge by picking body masses of 0.001, 0.10,
10.0 aﬁle0.0kS to insert in Equation 8 and plotting the lines in Figure 8. As
size or weight increases, the boundary layer thickens, decreasing the rate of

convective exchange (a smaller component of the heat balance). This is readily
seen algebraicaily by re-examining the convection term. We conclude that

'increasing size has the séme effect as decrgasing wind speed. It is also clear
from Figure 8 that most lizards (less than 1.0 kg) are closely tied to the ai;
temferature. . |

There are several observations which suggest that the thermoregulation

behaviors we might predict from considering this model indeed occur. Porter

and Gates (1969) oﬁserved that the small iizard (Uta stansburiana) (0.004 kg
approximately) which is tightly coupled to the air temperature climbs rocks early
in the morning. They hypothesized that this behavior was taken to avoid the cold
layer of air at the ground surface. Alternatively we might ask what options are
available if the lizard does not want to become too hot. 'From Equation 8 we see
that there are at least two strategies. The animal cén reduce the absorbed
radiation Qa by going to a shaded environment-or it can incrgase its convective
heat loss by climbing bushes where the wind épeed is greater and Ta is lower.
Descriptions of the daily activity patterns of the desert iguana (Dipsosaurus
dorsalis) from field observations, show that both these options are used. The
lizard emerges from its burrow in the morning. As Ta and Qa increase, the

animals move into the shade, then higher into the shrubs, and finally retreat
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Porter et al. (1973) found good agreement between the predicted behavior from

their heat transfer model and the morning activity pattern of this species.

The Cardinal

Our second and final example is the climate space diagram.of the cardinal
(Richmondena cardinalis). Several additional terms of the heat energy balance
are important here. As in all homeotherms metabolism and water loss are
significant sources of heat production and loss which cannot be neglected in
the thermal budget. The food necessary to produce metabolic heat energy for
thermoregulation is about 85% of the animal's total requirements (Bartholomew 1977).
The benefits for this energetic cost probably include both the ability to process
food faster and more efficiently and greater independence from the unpredictable
patterns of the weather.than ectotherms. The cardinal loseé‘the majority of its
water by exhaling air saturated with water vapor, although other species of birds
may lose up to 50% of their water through their skin (Lasiewski et al. 1966).

The energy balance must now be written

M+Q = eo(T +273) + R (T_-T)+E_ [9]
where
M = metabolic rate (W qu),
Q= absorbed radiation (W m—z),
€ = emissivity,
o = Stefan-Boltzmann constant (W m--2 K—A),
Ta = air temperature (°C),
h_ = convection coefficient (W m-.2 °C—1),
and

E = energy flux due to respiration (W m—z).
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Since there are internal sources and sinks of energy production (M and Eex)
introduced into the equation we must consider heat transfer within the animal.
Figure 9 from Porter and Gates (1969) shows a schematic view of an idealized
animal in the shape 6f a cylinder. The isothermal core is at body tempera:ure
Tb, the skin surface is\at temperature TS, and the outer suriace of the feathers
(or fur) is at Tr' Water loss through the skin, ESw (sweating), is included for
generélity. For the First Law of Thermodynamics and our steady state assumption
we know that the energy crossing each boundary is the same. Beginning with the

l | is equal to

b

the potential (temperature difference) times the resistance (but see problem 6).

two inside circles the energy flow across the region of thickness d

Therefore,

M- B =g (@ - T (10]

1

where kb is the thermal conductivity of fat (.205 W m °C—1). By similar

reasoning across the second potential we have
' k

M-E -E_ =—d—§(TS—Tr) - [11]
where df is the thickness of the fur or feathers in meters and kf is the thermal
conductivity-éf air (0.025 W m—l °C—1). The quantity of particular interest is the
difference between the body temperaturc and the surface temperature Tb - Tr' We
see that Tb - Tr can be written as

Tb - Tr = (Tb - Ts) + (TS - Tr)' [12]

Rearranging our heat flow equations (10 and 11) and substituting into Equation 12

for T, - T and T - T we have
b s s T




22

bTe =
= d¢(M-Eex-Esw)
Lé LT 5( ex” Esw

Kt

Figure 9. Concentric cylinder model of animal for heat transfer analysis.’
M= metabolism, Eex = respiratory moisture loss, ESw = moisture
loss by sweating, Tb = body temperature, TS = skin temperature,

Tr = radiant surface temperature, kb = conductivity of fat, kf
conductivity of fur or feathers, db = thickness of fat, and df =
thickness of fur or feathers. From Porter, W. P, and D. M. Gates.
1969, P. 230.

o
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4 de
Tb-Tr=—k';(_M-Eex)+T<;'(M-Eex—Esw). [13]

4

In the case of the cardinal Esw is‘assuméd to be zero so Equation 13 reduces to
T, -T_ = - Eexui +i—f). - [14]
ke

~Equation 14 can be used to calculate the surface temperature Tr if the other
variables are specified. Once Tr is known, Equation 9 can be used to construct
the climate space. Values for the parameters of Equationé 9 and 14 are taken
from Porter and Gates (1969) and reproduced in Table 1. These are used to
construct the climate space of the cardinal in Figure 10. The numerals correspond
to those in the table. Given these conditions the cardinal needs increased
metabolic output and thicker insulation to withstand cold conditions. Such low
levels of radiation and air température will occur just before sunrise during
the winter. One would expect the bird to minimize its heat loss by seeking a-
sheltered microhabitat to avoid radiating to the atmosphere and to reduce the
wind speed. Porter and Gates (1969, p. 237) add, "By tucking its bill under its wing,
the cardinal will also reduce surface area and water loss." It is also interesting
to examine the range of conditions for which the animal can rema;n in.steady state
if its metabolic output is at a minimum and Tb
numbered IT and III illuétrate the;; conditions. Line IV is the upper limit of

is constant. The set of lines

stress that the cardinal can endure.
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. —
AO } qudinal . -’/} |
M,= 0-40 Kg s

Other data |
20 feom Table 1 @ ]

Air Temper‘afure Ta (°C)
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1
D
o

660 800 1000
Absorbed Radiation Qa (Wm?)

O
N
S |
o
D
S

" 'Figure 10. Climate diagram for a cardinal showing relations between
air temperature, radiation absorbed, and wind speed for constant body
and radiant surface temperatures at actual values of metabolic and
water loss rates. From Porter, W. P. and D, M, Gates. 1969. p. 237.
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Table I. Values for the climate space of
the cardinal.

ex f . b. b T

1 107 3 Var 2 38.5 -16.0
II 53 5 10 2 41,0 21.4
III 53 9 5 1 41.0 37.1
: IV 77 77 .5 1 42,5 42,5

-2 . -3

M and Eex inWm ", df and db inmx 10 7,

T, and T in C,.Mb = 0.025 kg.

Monteith's Idea

In Chapéer 10 of his book, Monteith (1973) pfesents a graphical representation
of the energy balance equation which has some similarities to the climate
space diagram. Instead of using absorbed radiation, he defines a quantity
.Rhi (also see Hatheway 1978) which is equal to Qa - (Ta +-273)4 to use on
the abscissa. Next he derives an expression to represent the heat flow of

the organism as though it were simply conducting heat to the environment

c_p
M-E) == (@ -1)
hr
where
M = metabolism (W m_z),
E = water loss (W m—z),
T, = surface temperature (°C),
T, = effective temperature of the environment (°C),
€aP -2 o =1
T = equivalent conductivity (Wm ~ °C 7).
hr

The equivalent conductivity is due to a weighing of the resistance to convection

and radiation transfer. Figures 11 and 12 taken from Monteith illustrate his

3N
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Figure 11. Main features of temperature/heat~flux diagram for dry
systems. Ts is skin temperature, To coat surface temperature, '1‘e
effective environment temperature, and '1‘a air temperature. From
Monteith, J. L. 1973. P. 165.
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Figure 12. Temperature/heat flux diagram for locust basking (lower
section of graph) and flying (upper section). From Monteith, J. L.
1973, P. 166. '
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method, Notjce that there is a substantial metabolic contribution to the energy
balance when the locust is flying and that when the insect is resting the
environmental temperature is equal to the skin temperature TS which will also

equal the body temperature. Furthermore, if the environmental conditions (air
temperature, wind speed, and net radiation) are given, then a range of physiological
parameters (metabolism, fat thicknes;, fur thickness, water loss) can be found that
will allow the animal fo remain in thermal equilibrium. If_the physiological
values are known the converse problem can be solved (Monteith 1973, p. 165).

The climate space concept has the advantage that it has put an outer bound on the
physical enyironment. It may also be easier to interpret because absorbed
radiation is kept separate from reradiation. Monteith's method, however, allows
one to visualize ;he fela;ive magnitude of each resistance element between the

animal and the environment. For an example of this method see Cena and Clark (1974).
EXTENSIONS OF THE CLIMATE SPACE IDEA

The climate space concept can be extended in several ways which we will
fnyestigate in the exercises. Heller and Gates (1971) used it in a study of
interspecific competition in the genus Eutamias (chipmunks). Spotila et al.
(1973) were able to incorporate conduction.when they constructed the climate
space of the American alligator (4lligator miésissippiensis). Zervanos and
Hadley (1973) used these diagrams in their studies of the:thermoregulation of
the collared peccary (Tayassu tajacu). A wor&.of caution is in order, however,

concerning this representation of an animal's thermal state. We have assumed
g P
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thermal equilibrium throughout. Many poikilotherms regularly try to increase

their body temperature. Homeotherms also gain and then lose heat diurnally and ... .

vhen exercising. Schmidt-Nielsen et al. (1957) found that the camel stores and
releases heat on a daily basis. More careful field measurements will have to

be made before the importance of the nonequilibrium states can be ascertained.

(5]
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PROBLEMS

1. Table A provides metabolic rate, water loss, and fur and fat
thicknesses for several species of animals. Using th;F information and
Equations 10 and 11, calculate the maximum and minimum temperature
differentials across the fat (Tb _=Ts) and fur layers (TS - Tr)' Plot these
four values placing ('1‘S - Tr) values on the abscissa. Shade the rectangle formed.
Include lines of constant total differential ('1‘b - Tr)'

Rank the homeotherms from the highest to lowest difference between
body temperature and surface temperature. Under what environmental conditions
would an animal like to make this difference large? When would the animal like
to make this difference small? What other mammals do you know of besides the
pig tﬁat have thick fat-layers? Why might this be? How does fat compare with
fur or feathers as an insulation material? What is the relative efficiency of

each? Is it clear now that the assumption that Tb -~ Ir for the lizard is not

critical?
TABLE A
' M Eex Esw db df
Max. Min. Max. Min. Max. Min, Max. Min. Max. Min.
Shrew 396 139 26 0 26 0 1 1 3 2
Cow, summer - 104 104 9 4 58 6 14 14 5- 5
Cow, winter 104 104 9 4 58 6 14 14 27 27
Pig 124 58 75 1 7 1 35 1 3 1
Zebra finch 213 91 91 22 0 0 1 1 3.5 3
Locust 600 .07 14 0 0 0. 1 - —_— -
Cardinal 107 77 77 3 0 0 2 1 15 5
Jack rabbit 77 63 63 9 0 0 2 1 15 8
Fence lizard 70 - 2 - — — 1l - —_— =
- -2 -3
M, Eex’ Esw inWn ’ db’ df in m x 10

2, Construct the climate space of the pig, jack rabbit, and locust usiﬁg

the data presented below:

36
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TABLE B (Units as in Table A)

M Esw Eex df db Tb
Pig a_ = 0.8, Mb = 120 kg I 124 1 1 3 35. 36
II 100 1 21 3 35 36
III 69 7 66 1 10 37.5
IV 58 7 75 1 1 41.7
Jack rabbit a_ = 0.8, I 77 0 9 15 2 37.5
Mb = 2 kg. II 63 0 9 8.5 2 37.5
IITI 43 0 12 8.5 2 38.5
IV 45 0 20 7 1 39.5
VvV 63 0 63 8 1 43.7
Locust a_ = 0.8, Mb = 0,001 kg I 600 -— 14 - 1 42
IT 600 -— 14 — 0 20
ITI 0 - 0 — 0 20
v 0 - 0 — -1 1

3. Spotila et al. (1973) were able to incorporate the effect of
conduction. Thinking about the heat energy balance equation and assuming
that tﬁe ground temperature is constant, how will the physiological limits
be shifted?

4, Spotila et al. (1973) suggests that the area labeled A in the
climate space of Figure 6 need not be .included. Why might this be true?
Are there any other areas like this? How does your answer compare with
the information in Figure 3?

5. A comparison of thevclimate space diagrams in this module with
those found in the Porter and Gates paper shows that the slopes of the lines
are usually different under the same set of environmental and physiological
conditions. This is because a different convection coefficient is used.
Below is a thle of weigh;; and diameters for the same animals. Compute fhe
convection coefficient in'two ways:! 1) using the formula that Porter and Gates
(1969) provided; 2) using Mitchell's (1976) relationship, assume V = 1.0 nls_l.

Now make the comparison in a more systematic fashion: Let V = 0.1, 0.5, 1.0,

(VS
~d
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3.0, and 10m s_1 and Mb = 0.00001, 0,0001, 0.1, 10 and 1000 kg. Use the
relationship between length and weight given in Appendix IIT to find a
diameter corresponding to the weight values given. Compare the values by

forming the ratio of Mitchell's hc divided by that of Porter and Gates.

Animal Diameter Body Mass
n kg
Sheep .40 70.0
(fleece)
Cardinal .050 .020
Lizard .015 .050
Shrew ' .018 .010

6. W. P. Porter (personal communication) has pointed out that Equations
10 and 11 apply to heat flow in a slab not a cylinder as'éﬁown in Figure 9.
Derive the equation for heat flow through a Eylinder (see Kreith 1973 or
Hatheway 1977) ﬁnd through a platg-of the same average area under steady state
conditionsf When will the two formulae give approximatel& the same result?

Compare this with. the values used in Porter and Gates (1969) tabled below.

Why- does- this work?

Diameter Thickness of fur Thickness of fat
D (cm) or feathers ~ layer
df (cm) db (cm)
Desert iguana 1.5 0.0 0.1
Shrew ' 1.8 0.3 0.1
Zebra finch. 2.5 0.35 0.1
Cardinal 5.0 1.0 0.2
Sheep 25,0 12.8 0.1
Sheep " 25,0 8.2 0.65
Pig 36.0 0.3 3.5
Jack rabbit 10.0 1.5 0.2

38
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7. Morhardt and Gates (1973) measured both the metabolic rate and the
evaporative water loss as a function of effective ambient temperature
These graphs are included below (Figures 13 and 14). We know that both
these physiological parameters should also depend on the radiation levels and
wind speeds. Consider the metabolic chambers to be equivalent to a blackbody
environment and then plot -lines of c;nstant metabolic rate and evaporative
rates on the climate space diagram (let Mb =0.2 kg, V=m s_l). Now repeaﬁ
this process on the climate space of Figure 3. What are times of environmental
stress? ‘What might be the preferred activity period of the animal? Remeﬁber
that the metabolic curve is for a resting and fasting animal. How does that
change your answgr? Consult the original paper and investigate what other
thermal microhabitats were available. 1Is it critical that we do not have any

information about the animal in its burrow?
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Figure 13. Metabolic rates of all squirrels used in
this study as a function of effective ambient temperature.
-Open circles represent metabolic rates of resting squirrels
at effective ambient temperatures below the thermal neutral
zone. Closed circles represent metabolic rates of resting
squirrels at effective ambient temperatures above the lower
critical temperature of 28°C. Open squares represent meta-
dolic rates of exceptionally active squirrels, or those .
whose body temperature was falling below normal levels. The
solid line is a least squres regression line fitted to the
open circles, and the broken lines delineate the 95% confid~
ence interval of the least squares line. The equation of the
line and the correlation coefficient (r) are shown.
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Figure 14. Evaporative water loss as a function of
effective temperature (corrected to 4 mg Hzolliter air).

The data collected at different relative humidities-have
been corrected to a constant relative humidity (vapor
density = 4 mg HZO/liter air by using Eq. (14): A

logistic curve cf the form y = aebx is fitted t» che duka,
and the correlation coefficient (r) is shown.
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PROBLEM SOLUTIONS

i. Equation 10 is

— =.I§ - T
¥ Eex db (Tb 's)
Equation 11 is
kf .
¥- Eex - Esw - E;,(Ts - Tr)
o S | -1 ,.~1 .
kb = 0,205 Wn C ~ and kf = 0,025 W m € °. From this information maximum

and minimum values of (Tb - Ts) and (TS - Tr) can be calculated. These are

tabulated below,

The results are plotted

1969, Figures 5 and 6, p. 231).

on the two figures (Porter and Gates

(?S - Tr) (Tb - TS)
Maximum Minimum Maximum Minimum
Shrew 41.3 6. 1.7 0.6
Cow, summer 18.8 7.4 6.8 6.5
Cow, winter 101.0 39.8 6.8 6.5
Pig 14,7 1.0 21.0 0.1
Zebra finch 26.6 0 0.9 0
Locust ——— —— 2,9 0
Cardinal 61.7 0 1.0 0
Jack rabbit 40,8 0 0.7 0
Fence lizard ——— ———— 0.5 0
Ranking Total AT Ranking
Maximum Tb - Tr Maximum Minimum Minimum T, - Tr
Shrew 3 43.5 7.5 5
Cow, summer 6 25.6 13.9 6
Cow, winter 1 107.8 46.3 7
Pig 5 35.7 1.1 4
Zebra finch 7 27.5 0
Cardinal 2 62.7 0
Jack rabbit 4 41.5 -0

41
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If the environment is cold the animal will have to make this difference large
to maintain Th' It is also possible that-the surface temperature will be hotter
than the body temperature. Fleece on sheep can protect them from getting too
hot (Hatheway 1977). Making the difference small decreases the rate of heat
transfer within the body. .

Many marine mammals have thick layers of fat. Fat is an economical way to
store energy as well as provide insulation. It allows the animal to smooth out
its form which should reduce the friction losses due to drag when swimming.

. Some marine mammals are covered with fur. These animals all spend time ia terrestrial
habitats (seals, sea lions, otter), which seems to indicate that fur is an important
adaptation on land. The fur can also provide a boundary layer of air in the water
which helps to cut down on heat loss. The relative efficienéy of fat to air as
insulation material éan be computed by comparing the ratio'of the conductivities.
From the text we have

2822 B
The conductivity of fat is 8.2 times greater than that of air. Therefore, to
receive the same resistance to heat flow, an animal would have to have 8.2 times
the thickness of fat. The lizard can only maintain a maximum 0.5 °C difference:

between its skin and body temperéture.

2. The first step is to calculate T using Equation 13, This yields:

T °C

I II III Iv . v
Pig 0.30.. 5.9 37.6  41.8
Jack rabbit -4?6 18.7 27.5 32.3 43.7
Locust 39.1 20,0 20.0 1.0

- S
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EGT: values (€ = .96)

I II | III R v
Pig 304.6  378.0 507.6 535.6
Jack rabbit 285.9  394.9 4447 473.8 548.6
Locust 517.8  402.0 402.0 ~°  307.5
Pig Jack Rabbit Locust

hc’ convection
coefficient ‘9,12 . 15,72 43,21
M,, mass 120 ke 2 kg .00l kg

0.6 .~0.133 .
h, = 17.24 VO M

V =1.0m st

hc will be the slope of the line so all we need to do is find one pair (Qa,Ta)

for each set of conditions given in Table B such that

4
Qa + M= so'rr + Esw + Eex + hc ('1‘r - 'ra).

Assume '1‘a = '1‘r in each case so that the convection is zero. Therefore

Q = EO’T4 + B + E - M,
a r SwW ex
Qa Values
I II I7I A v
Pig 183 300 - 512 560
Jack rabbit 218 559 414 449 549

Locust - 68 ~134 402 307.5

The climate space diagrams for the pig, jack rabbit and locust follow on

pages 39 and 40.
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3. The conduction term is

G =

x|

@ - Tg)
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. 4 -2 5,.~1
where k. is the conductivity (Wm - °C "),
Tr is the surface temperature (°C),
Tg is the ground temperature (°C),
and X is the thickness of the layer (m).
The energy balance is
Q +M=€0T4+E +E_+h (T -T)+ kT -1),
a r sw ex c'r a r g
If Tr >'Tg, G is positive and the animal will receive more energy.

This will shift the climate space to the right, If Tg > Tr’ the opposite shift

will occur.

4, Combinations of low air temperature and high ;adiation do not occur
naturally. The coldest air temperatures will occur at nighé. "By similar reasoning
the area labeled B in Figure 6 suggests that the highest air temperatufes will occur
under low radiation levéls. Again, this will not be true.

Figure 3 of the text shows that this is the case. Other data presented in
the Morhardt and Gates paper confirm these observations, The reason is simply that -
the sun heats the air.

5. The two formulae needed to calculate the convection coefficients are

6 and 7. ‘ »
hcl = 0.927 V0'33D_0'67 , Porter and Gates
h, = 17.24 v°'6°Mb‘°'133 - Mitchell
hes b2 heo/he,

Sheep 1.712 9.78. 5.7
Cardinal 6.90. 29.04 4.2
Lizard - 16.67 22.70 1.54

“Shrew 14.76 31.85 2.2
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Mitchell's h,

.00001  0.001 0.1 1,01 10.0 160.0 - M
- v | W3} 4640 2,511 1.359 1.0 736 . ,398 Mp~0.1333
0.1 .251 20.08 10.86 5.88 4.32 3.18 1.72
" 0.5| .660 | 52.80 28.57 15.46 11.38 8.37 4.53
1.0/1.0 79.99 43.30 23.43 17.24 12.69 6.66
3.0(1.933  [154.63 83.68 46.29 33.32 24.53 13.26
10.0.43.981  [318.45  172.34 93,27 68.63 50.51 27.32
Porter and Gates' h o
.00001  0.001 0.1 1.0 10.0 1000 M
.0022 .01 . 0464 .10 L215 1.00 D
v | v0:333] s9.95 21.54 7.743 4.641 2.783 1.00  p~0-667
0.1| .464 | 25.80 9.27 3.33 2.00 1.20 .43
0.5 .794 | 44.14 15.86 5.76  3.42 2.05 .74
1.0] 1.0 55.60  19.97 7.18 4.30 2.58 .92
3.0| 1.442 | 80.17 28.80 10.35 6.20 3.72 1.33
10.0| 2.154 |119.75 43.03 15.47 9.27 5.56 1.99
letD=1L= (%b-)ll3 from Appendix IIL, p =1 X 103 kg nf'3
-0.133
e hc2 17.24 v0-%0 1 0.27 .. 0.089
then —= = ° W1/31-2/3 = 4,00 V50 Mo
| themy— 0.3 ,
e, " 0.927V -

ot
45




43

Ratio of hc2/hc1

M, ke
vas "\ .0001 .001 0.1 - 1.0 10.0 1000.
0.1 .801 1.17 1.77 2,16 - | 2,65 4.00
0.5 1.20 1.80 2.71 3.33 4.08 6.12
1.0 1.41 2,17 3.26 4,04 4,92 7.46
3.0 1.93 2,91 4.38 5.37 6.59 9.97
10.0 | 2.66 sol 6.03  7.40 9.08 13.75

6. The heat flow by conduction is

dT )
q = -kA == ) [A]

where q is heat flow (W)
k is the thermal conductivity (Wm °C—l)
A is the area perpendicular to the heat flow (m?)

T . g -
and -%; is the temperature gradient (°C m 1).

For a slab under steady state conditions we can separate variables and

intégrate equa.ion [A]
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q
s
dT A dx
T X
° q
= e oS,
L dt %A dx
i 0

- 1) [8]

For a cylinder we have

.. dT
Qe = -kA dr
A=2rr L

£
n
A
N
3
H
[l
n.ln-
=]

c
* 21k T -
To q ro
c dr
#T T 2mk T
Ty Ty

i
2vik o
Q= T (T, - T) [ci
n 2
i .
r i + ro
Now if we assuma the area of the slab is equal to L X 27 - and the

thickness to be T~ ¥, we 2an set the two equations [B] and [C] equal.

-

19
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ri + ro
k - -
L 2w 5 ('1‘i To) ? 2r Lk (T, '1‘0)
r =T, r
° n (r-o—)'
i
Cancelling terms, we have
To, ? 2(r0 ) ri)
zn(;—D T, +r_
i i o

Therefore qq will equal 9. if the above relationship is true. Using the data

given in the problem we can compute the relative radii.

Outside Radius Radius to
Radius to Skin Fat Layer
(cm) (cm) (cm)
Desert iguana .75 .75 . .65
Shrew . .90 .60 © .50
Zebra Finch - 1.25 .90 . .80
" Csrdical 2.5 1.5 1.3
Sheep 25.8 12.5 11.85
Sheep 20.7 12.5 11.85
Pig 18.0 17.7 14.2
Jack Rabbit 5 3.5 3.3

Checking these values we find that for the sheep when r = 25.8 and r, = 12,5

2(r0 - ri) .
then < +1 - ° 668 and
o i

o
2n6;;) = ,724,

This is the worst case for the data which is less than a. 10% difference.

O ‘ - l 5,:’
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You can check the error by plotting

r 2(1:o - ri) &

lnéih -
r, r + r, ve :2
z(ro - ri)' r, .
r +r,
o i

The intuitive reason this works is that there is not much chaﬁge in area for the
different pairs of radii we have examined. It is, however, possible to show

that

- x-1_ 1x-13_,1x~1s :
An(x) =2 [x Tt 3(x + l) + S(x + 1) toeel [p]

This is done by adding the series expaﬁsion for ~2n(l - y) and &n(1 + y) and

then letting y = %—i}l% The result will give equation [D]. Using only the
r
first term of the expansion in equation [D] with x = ;g-we get
i
r 2(ro - ri)
WG F T
i o i

7. On the figures the authors give equations to relate metabolic rate .and
evaporative water loss. These are

M = 0.2470 -~ 0.0064 TE, M(cal cm'-2 min-l)

L]
5< TE < 27 °C

M= 172 = 4.47 Ty, MW n2)

M=51Wn? 27 < T < 35 °C.

E = 0.00808 7093771 Tp  prcat em™? min~l)

E = 5.64 e 0037 Ty pou
T, 5 10 15 20 25 30 35
E 6.8 8.2 9.9 12.0  14.5  17.5  21.1
M 149.7 127.3  105.0  82.6  60.3 51 51

91
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Assume an animal weight of 200 gm which = 0.2 kg.

( . _ .
b o= 17.24 v0.6 N 0.1333

c b

hc = 5.36 21.36 56.1

-1

it

ool 1-0 500 ms

Lfcr v

The resulting climate space diagram is given on page 48.

If the animal were simply resting outside, to reduce its metabolism

to the lowest levels it should be active from 1100 to 1500 hours. The reason
to go above ground, however, is for activity. Therefore, if metabolic rate
increases 1.5 times, preferred activity times should shift to 800-1000 or 1500-1600
hours. It is hard to say much about water.loss when the animal is active.
According to the figure, if M increases to 82 W m-'2 then E drops. But if

‘ respiration rate increases with activity then E may also i&crease. Morhardf
and Gates considereé a wide variety of above-ground habitats. A shaded
environment gave much lower radiation loads during ghe day. If the animal
orients its body.parallel to the sun, this lowers Qa also. A great
deal more could havg been said about the thermoregulation strategies if the
thermal environment of the burrows were-monitored and if microhabitat usage
ané body temperature as a function of time of day had been recorded. One would
predict that shaded environments including the burrow would be used more in the

middle of the day. To test this, one would have to make hourly observations

on microhabitat usage.




The clinate space diagram for Problem 7
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THE CLDATE SPACE
APPENDIX I, Symbols, Units, and Dimensions

RIC

Quantity | ' Tnit Dimension 8.1, equivalent
Absorptivity - - -
Average absorptivity to
shortwave radiation - - .
Average absorptivity to
longwave radiation L - - -
Convection o ik (HL"z',["1 -
Specific heat of the animal J "C-1 HS-l -

-céz This whole term has the units of a convection coefficient; ¢, 13 the heat capacity of air, p is the
"he density of air, ¢p = JM-l, Ty 1s the combined resistance to radiation and convection transfer
degrees Celsius °C i -
Diameter i L -
Fat thickness i L .
Fur or feather thickness i L -
Water loss kg st .
~2 2.1
Respiratory water loss W o T -
Cutaneous water loss W m"2 HL-ZT“l -
Conduction e i -
Convection coefficient W m"2°C“1 HL"ZT"1 6-1 -
\ -lq "'1 '1 '1
Thernal conductivity of alr ¥ ™C HL T -

.69



APPENDIX I, Symbols, Units, and Dimensions - continued

Symbol Quantity Unit ~__Dimension 5.1, equivalent
ks Constant for convection 9 2 o]
coefficlent of a sphere Wm  °C HOT -
kc Constant for convection co- 1 ) o] Al .
efficient of a cylinder W °C i 0T
kd Thermal conduct lvity of iat 'wm-l "C"l 'HL-leanul -
ke Thermal conductivity of fur w.m-l °':'1 HL"le"]‘r'l .
or feathers ‘ '
S 1 )
L Latent neat of evaporation  Jkg LT -
L Characteristic length n L -
M Metabolisn W ’m'2 HL'ZT'I -
Mb Dody mags ke M -
Nu Nusselt number - , “ - -
- <2 =1
Qa Absorbed radiation Wm T -
Qe Emitted radiation W.‘m-Z HL-ZT'l -
r | Reflectivity of the under- ,
lying surface - R -
Ra - Atmospheric radiation p 91
(longwave) W T -
Rg Ground radiation (longwave) W m-? HL“ZT“l -
R Radiation from the sun 9 9.1
P and sky shortwave cal em min ™ I ' 697,7 y m-2
B ©  Reynolds number - - ' -
" - 3

~ 2

oS



APPENDIX 1. Symbols, Units, and Dimensions - continued

Symbol .Quantity Unit Dimension S.I. equivalent

S Solar radiation T a4 -

S Sky radiation i ot :

t Time S T -

Ta Air temperature o 0 -

Te  Effective temperature o 0 -

Tg Ground temperature o 0 -

To Surface femperature oC 0 -

Tp Surface temperature o 0 -

TS Skin temperature °c 0 -

U Internal energy J 1\11,2:[:'2 -

X, Length n L -
Boundary layer thickness m L -

€ Enissivity - - l : -
, , - =2 =14

0 Stefan-Boltznamn constant W ‘w2 oK \ HL °T "8 -
5,67 x 10-8

p Nass density 1x109 kg - e ]

) kinematic viscosity of air nig-1 LQT'l -

M = mass H= MLZT-Z,

T = time

L = length

A = temperature

)

ERIC ik

AN

TS
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APPENDIX II

Calculation of the Right-—Hand Limit of the Climate Space
In their original paper, Porter and Gates (1969) state with regard to

", . . An estimate was made of 5; as generally related to air

Equation 3,
temperature for value of absorptivity from 0.2 to 1.0." Gates (1977) shows -~

how to calculate S and s as a function of latitude, time of yéat, and time of

day. A representative value of 40° was chosen for latitude and then values of S, s
were calculated under clear sky conditions in the late morning and afternoon. For r,
a representative value of 0.15 was probably used. Curves of Ta and ’1'8 as a function
of time of day such aé shown in Figure 2 were then taken from weather bureau
statistics. Ra and Rg could then be calcglated using the Stefan—-Boltzmann law.

. All the numbers necessary to estimate 6; are then available. The final step is

to choose pairs of Ta'and Qa that are to be used. In Figﬁre 3, 9:00-10:00 are

hours of the day when this is true. This procedure is repeated at several latitudes
and times of the year, frdm which the right-hand boundary can be derived.

Campbell (1977 pp. 89-92) presents simplified equations to calculate the left-
and right-hand boundaries of the climate space. .He includes a correction factor to.
average the 1oﬁgwave radiation from the ground and thé sky for the left-hand
-boundarf. The direct beam and diffuse shortwéve radiation fluxes afe simply given for
the right-hand boundary. The reflected shortwave component seems to be included in
the diffuse teémrwﬁich at 25% of the direct flux is higher than Gates (1978) gives. L
The absorbed shortwave radiation is then added to the left-hand boundary values.

Therefore as Ta increases the shortwave component is constant using Campbell's

equaﬁions but using Gates' method the shortwave flux increases.

61
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APPENDIX III

Derivation of the Constant ks for the Convection Coefficient

Mitchell (1976) reported that the best overall relationship between

the Reynolds and Nusselt numbers is given by

Nu = 0.34 ReO*® (L)
Recalling that Reynolds number Re is the ratio of interial forces to

viscous forces in the fluid, we write

Re = -‘g—‘- (2)
where

V = the fluid velocity (m s-l)

L= éhe characteristic length (m),
and U = the kinematic viscosity (mzé"l).

The Nusselt number is a way to scale the rate of heat transfer as a

function of wind velocity, size of the organism and fluid thermal diffusivity.

It can also be expressed as

h L
Nu = L. (3)
k

where

h_ = heat transfer coefficient (W o2 °C"1),

L = characteristic length (m),
and k = thermal conductivity (W m—l °CF1),
Mitchell (1976) defined the characteristic length as
. Mb 1/3

where Mb is the mass kg

P 1is the mass deusicy kg mf3.

- Using these expvessions we can solve for the heat transfer coefficient as a
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function of weight and wind velocity. Rearranging Equation 3 and substituting

the Equation 1 for Nu, we have

6

k 0.
h, =7 (0.34 Re °). (5

We can then use Equations 2 and 4 to incorporate wind velocity and weight,

respectively.
_ k VL, 0.6
U .
_ 0:34 Xk 0.6 (5)7'0'133
U0.6 p
0.34 x X p0'133 V0.6 -0.133
0.6 % .
v
0.133
Lettingk = 0.34 x k X p
s 0.6
v
if p=1x 103'kg mf3 which is the density of water
k= 2.5 x10 2w o L oKt
t at 20 °C
U= 1.51 x 107° m?s~t
then ks = 17.24.

To see the error of assuming k and v at 20 ° C we can compare the
k
ratio of 0.6 °

Air temperature

k
°C
U0.6
20 20,07
50 19.51
1] 1. 28
The difference over the 20°C value is 20.79 6.4 percent.
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