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PREFACE

The climate space is presented in the literature as a means of

quantifying the limits of an animal's thermal environment. This module

presents a more extensive discussion and shows how to calculate these

limits, especially limits due to the physical environment. Ideas

developed in the problem set check the assumptions of the climate space

model as well as extend the use of the diagrams for predicting activity

cycles. The material is aimed at general undergraduate life science

students, although a background in heat transfer processes is recommended.
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INTRODUCTION

In earlier modules of the thermodynamics series, we considered the

application of the First Law to biological systems (Stevenson 1977a and b)

and the heat transfer processes which govern the energy balance of organisms

(Stevenson 1978). The general heat budget equation for animals is

where

AU = M + Qa - Qe - LE - C - G [1]

AU = change in internal energy (W m
2
),

M = metabolism (W m
-2

),

Q
a
= radiation absorbed (W m

2
),

Q
e
= radiation emitted (W m

-2
)

LE = water vapor losses (W m
-2

),

C = convection flux (W m
-2

),

G = conduction flux (W m
2
).*

Equation 1 is a complicated expression with many independent variables. Because

biologists are interested in how animals modify their heat balance and why any

particular behavior or physical characteristic of an animal influences this

balance, they must find ways of analyzing the heat energy balance equation.

In this module we will discuss a model for which the animal's temperature
t

is not changing with time, that is the steady state assumption that AU = 0. Porter

*In some of the biological literature the units of Equation 1 are

cal cm
2 1
min , but we have adopted the mks system here. The reader may find

Appendix I, modules already referenced and Fletcher (1977) helpful in making
conversions.
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and Gates (1969) presented the "climate space diagram" to visually display the

range of environmental conditions an organism could survive. More recently

Monteith (1973) has proposed another graphical method to represent the energy

balance which we will consider briefly. The works of Hatheway (1978) and

Porter et al. (1973) offer alternative methods for understanding an animal's

relationship to the physical environment.

THE THERMAL ENVIRONMENT: BASIS FOR THE CLIMATE SPACE

To describe the physical heat energy limits that an organism can tolerate,

Porter and Gates (1969) began by examining the abiotic components of the

environment. Four climatic factors -- radiation, air temperature, wind speed

and humidity -- were recognized as affecting an animal's thermal balance. The

authors decided that evaporative losses would be small for many organisms and could

be included as maximum and minimum rates without making the losses a function of

the humidity.

Tracy (1976) has, however, shown that when investigating the thermal and mass

balance of wet-skinned animals such as slugs, frogs and salamanders, the water

vapor concentration of the soil and the air must be known to accurately quantify

these exchanges. To date the climate space concept has not been extended to include

the environmental variable of water vapor concentration. Likewise, the formulation

cf Porter and Gates (1969) does not consider the effects of wind direction. Nor is

surface temperature of the ground explicitly indicated (but see Equation 3 and

Appendix II for calculation of Q
a
). Radiation, air temperature and wind speed,

though, which are the physical factors included in the climate space concept, are

the most important abiotic variables for the thermal heat balance of most terrestrial

animals.



Radiation

The most complex of the factors Porter and Gates (1969) considered is the

absorbed radiation because it is composed of several shortwave and longwave

components. Gates (1978) has written extensively about how to compute absorbed

radiation, and we will present a short review here. In general, Q
a

is the product

of surface absorptivity, the surface area exposed to a particular source of radiation,

and the intensity of that source. This can be written:

where

Qa = a1A15 + a2A2s + a3A3r (5 + s) + a
4
A
4
R
g
+ a5A5Ra [2]

S is the radiation from direct sunlight (W m-2),

s is the radiation from scattered sunlight (W m 2
),

Rg is infrared thermal radiation from the ground (W m
2
),

R
a is infrared thermal radiation from the atmosphere (W m

-2
),

r is the reflectivity of the ground.

Since we wish to consider the average flux per unit surface area, the Ai's are

the proportions of the total surface area exposed to each kind of radiation. The

a
i
's are the mean absorptivities to each kind of radiation. Roseman (1978)

discusses absorption, reflection and transmission. In their original paper,

Porter and Gates assumed that their animal was'a cylinder. Equation 2 can then

be rewritten as

Q
a Tr

= aS + 0.5[as + ar(s + 5) + Rg + Ra] [3]

Here it is assumed that: 1) Al thr; 2) scattered sunlight, reflected sunlight,



reflected scattered sunlight, ground radiation, and atmospheric radiation strike

half the animal (see Siegel and Howell 1972 for calculation of shape factors);

3) the mean absorptivities of the sunlight, scattered sunlight and reflected

light are equal to a; and 4) that the mean absorptivities of the infrared sources

are 1.0.

Environmental Constraints

The climate space concept derives from the fact that there is a relation between

the average incident radiation and the air temperature independent of the organism.

It is generally true that warmer air temperatures occur with high radiation levels,

i.e., summer or tropical conditions. Likewise colder air temperatures are usually

correlated with lower radiation loadings. (Exceptions to this generalization are the

high radiation levels in the mountainous regions of lower and middle latitudes during

the summer when air temperatures can be low (Porter and Gates 1969).) Thus, we

expect a positive correlation between the air temperature Ta and the absorbed

radiation Q
a

that the organism is exposed to in any given habitat. Initially,

Porter and Gates considered a blackbody environment such as a cave or sheltered

spot in thick vegetation. The relation between absorbed radiation and air

temperature is given by the Stefan-Boltzmann Law and is plotted as the centerline

in Figure 1. Next they asked what is the relationship between these two variables

when an animal is exposed to a clear sky at night. Under these conditions an

object will be receiving energy from the atmosphere which is at a lower temperature

than the surrounding air. Gates (1978), using an empirical relationship from

Swinbank (1963) for sky radiation, shows that the total radiation absorbed by the

organism is



a
L
(R

g
+ R

a
) a_a[T

g
+ 273]4 + 1.22 a

L
a[T

a
+ 273]4 - 171

JL

Qa 2 2

where

aL = mean absorptivity to longwave radiation,

, -2 - 4,a = Stefan-Boltzmann's constant 5.67 8
10 kW m K ),

[4]

Tg = ground temperature (°C),

T
a
= air temperature (°C),

and are

one-half in each case (Siegel and Howell 1972 show how this can be derived).

As before, we will let al, = 1.0. It is also convenient to approximate the

ground temperature with the air temperature. In the early evening Tg > T
a
, but

several hours before sunrise the reverse is true. Equation 4 with the afore-

mentioned assumptions is the leftmost line plotted in Figure 1. This means that
0

if an animal were out foraging under a clear sky at night at an air temperature

of 20°C, it would receive 50 W m
2
less than if it were resting in a burrow.

Finally, we consider the condition when an organism is exposed to full

sunlight with an absorptivity to shortwave radiation of 0.8. In this case, the

radiation as a function of air temperature is given by the line to the right of

the blackbody line. This line is "fuzzy" to remind us that this relationship is

less well-defined than the other curves. The assumptions and calculations necessary

to plot this line are discussed in Appendix II. If we now consider the difference

between a blackbody and a full sunlight habitat, bota at 20°C air temperature, we

see that the latter would receive 300 W m
-2

more radiation.

The importance of Figure 1 is that we have established a region bounded by

the clear sky, plus ground radiation line and the 0.8 absorptivity line that

limits the combinations of Q
a

and T
a

found in the natural environment. This
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Figure 1. Relationship between the total amount of radiation flux incident
on an object as a function of the air temperature. At night the object receives
thermal radiation from the ground and atmosphere. In the daytime the object
receives direct, reflected and scattered sunlight, in addition to the thermal
radiation from the ground and atmosphere. The absorptivity to sunlight is 0.8.
The right-hand boundary line is fuzzy to remind us that it is an average value.
From Porter, W. P. and D. M. Gates. 1969. p. 234.
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region can be divided into areas: one between the clear sky at night and

blackbody line which governs the range of all nighttime conditions (S and s

of Equation 2 are zero), and a second area enclosed by the blackbody and the 0.8

absorptivity lines which gives the range of most daytime conditions. The average

radiation intensity can be less than blackbody levels during the day when clouds

prevent the surface from receiving shortwave radiation. To see this we need to

compute the absorbed radiation in the open, Q
ao

, and compare it to that

absorbed in a blackbody cavity, Qac.' If solar radiation is zero (S = s = 0)

then Equation 3 reduces to Q
ao

= (R
a
+ R

g
)/2. We assume that the surface tempe-

rature is equal to.the air temperature and the temperature at the base

of the clouds is.less than air temperature so Ra < Rg and Qao <
eC

. In this

case, the higher the clouds the cooler the radiating surface of their bases. This

radiation, however, will always be greater than the radiation from a clear 5ky at

night.

Morhardt and Gates (1974) have considered the temporal variation of Qa
and

T
a
more carefully. They measured Tg, Ta, Rp (= S + s on a horizontal surface),

R and R
a
hourly for a summer's day in the Colorado mountains shown as in Figure 2.

g

These values were used to calculate Q
a

for the Belding ground squirrel (CiteZlus

beZdingi beZdingi) from an equation similar to Equation 3. In Figure 3, pairs of

Q
a

and T
a

are plotted as a function of time. Morhardt and Gates made similar

calculations for several different microhabitats. Although there were no startling

conclusions about how the animal was being influenced by thermal environment, we

will consider their study further in the exercises. The next,step in constructing

the climate space diagram is to see how the animal is influenced by radiation, air

temperature, and wind speed.

I n
J.. 4
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Figure 3. Climate diagram for the habitat. Data on these diagrams indicate
the total amount of radiation that is absorbed by a geometrical model of a ground
squirrel under conditons of air temperature and radiationshown in Figure 2.. The
model is oriented in two ways with respect to direct solar radiation to show how
absorbed radiation differs at the same air temperature and thesame time of day with
differences in orientation toward the sun. The amount of radiation absorbed is
greatest (Q

abs- xim
um) when the long axis of the model is normal to the direction of

the sun and least (Q
abs- nimum

) when the hemispherical end of the model is toward the

sun. All other orientations would be intermediate between these extremes. Data points
are taken directly from Figure 2 at hourly or half-hourly intervals and are.identified
at selected points by showing the hour of the day in solar time adjacent to the points.

The line for sunlight 74% absorbed represents the maximum amount of radiation
that could be absorbed by the model in direct sunlight at any air temperature. The
blackbody curve-indicates the intensity of radiation from a blackbody at any air
temperature, and the curve labeled "night time average of clear sky plus ground"
indicates the minimum energy likely to be absorbed by the model when exposed to a
night. sky radiating'at a temperature which is cooler than the air. From Morhardt,
S. S. and D. M. Gates. 1974. P. 25..



PHYSIOLOGICAL CONSTRAINTS OF THE ORGANISM

We expect two kinds of limits under steady state assumptions: one area

where the environmental conditions make the organism too hot and conversely

another area where it would be too cold. Furthermore, we expect an inverse

relationship between air temperature and absorbed radiation because the

organism must maintain an energy balance. The reader should pause here to

make sure that these ideas are intuitive, as shown graphically in Figure 4.

Common experience suggests that increasing the air temperature will make the

environment hotter, but increasing the absorbed radiation is not as obvious.

Most of us, however, are familiar with the midday heat stress common in many

areas on a clear summer day. Later in the afternoon when the sun is lower in

the sky Qa will be reduced. Air temperature will also be dropping so that the

transition that has occurred can be represented by the arrow labeled 2 in

Figure 4. In the wintertime or early morning the reverse is true; the sun

will often feel good because it provides the extra energy to move you into the

acceptable region as shown with the first arrow. The exact slope and position of

these limits will depend on other environmental conditions such as w'.nd speed and

characteristics of the organism such as size and insulation. One cane think of

the limits as the combination of physiological factors that will allow the organism

to exist in that environment. For the lower limit of the energy budget calculation o

an endotherm we would assume a high metabolic rate and thick insulation.

If we superimpose Figure 4 on Figure 1, the intersection or shaded region

of Figure 5 is the climatespace of the organism. It should be clear to the

reader that the northwest and southeast boundaries are the results of environmental

constraints while the northeast and southwest limits. are the result of the



Absorbed Radiation Qa (Wm')

Figure 4. In Region I the animal is too cold. In Region II the animal can

maintain thermal equilibrium. In Region III the animal will become overheated.
Arrow 1 indicates the change in environmental conditions that takes place early

in the morning. The added warmth of the sun makes the environment. more "comfortable."

Arrow 2 refers to the change in Q
a

and T
a

in the mid-afternoon on a clear summer's

day.

6
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organism's need for homeostasis. The physiological limits can be calculated

explicitly using the First Law of Thermodynamics. This is the task of the next

section.

EXAMPLES OF THE CLIMATE SPACE

The Lizard

To write down the heat energy budget of a lizard we need only sum up the

heat transfer components. Initially we consider only three of these components

(absorbed radiation, reradiation and convection) because metabolism and water loss

are small and they tend to cancel each other out (Porter et al. 1973). The

energy entering the system must equal that which is leaving, so

Qa = ca(Ts + 273)
4
+ hc(Ts - Ta) [5]

where

Qa = longwave and shortwave radiation absorbed by the organism (W m
2
),

E = emissivity (0.96),

a = Stefan-Boltzmann constant 5.67 10
8
(W m

72
K
74

),

T
s

= surface temperature of the lizard (°C),

T
a

= air temperature (°C),

h = convection' coefficient (W m
2
°C

1
).

Originally Porter and Gates (1969) suggested that the convection coefficient

should take the form

h = k 0 .33
D
-0.67

c c

8

[6]



where

14

- - 1
k
c

=
2

a constant 0.9274 (W m °C (m)
0.67

.(m/s) -0.3 3),

V = wind speed (m s-l),

D = diameter of the animal or cylinder (m).

Recently Mitchell (1976) found a spherical shape is the best overall model for

convective transfer in the terrestrial environment. He used weight divided by

density, which is equal to the volume, all to the one-third power as the

characteristic dimension instead of the diameter. (Using laboratory measurements

it is often possible to get better estimates of he for a particular geometry.)

Generally one would calculate the Reynolds and Nusselt numbers to find the heat

transfer coefficient (Kreith 1973). This procedure is outlined in the module

on heat transfer processes (Stevenson 1978). With a number of assumptions which

introduce only small errors, it is possible to write Mitchell's result in the

same form as that of Porter and Gates (see Appendix III). We have

where

h = k V
0.60mb-0.133

c s

k
s
= constant 17.24 (W m-2 °C(m s-l)

-0.60(kg)0.133),

[7]

Mb = body mass (kg),

and he and V are as in Equation 6. We further assume that the body temperature

T
b
is approximately equal to the surface temperature T. (The error in this

assumption will be checked in Problem 1.) The heat energy balance can now be

written

Qa = ea(Tb + 273)
4
+ kaV°

.6 0Mb -0.133
(T
b
- T

a
)

19
[8]
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To construct the climate space of the lizard, we need to make assumptions

about the variables of Equation 8. If V, Mb and Tb are specified as constants, there

is a linear relationship between Q
a
and T. We illustrate this in Figure 6 by

plotting the upper line for V = 1.0 m s-1, Mb = 0.027 kg, and.Tb = 39°C, and the

bottom line with only Tb changed to 3°C. The shaded region in Figure 6 is the

climate space of the reptile if the wind speed is the average value for the micro-

climate that the lizard inhabits, and if the body temperatures given are the upper

and lower bounds that the animal can tolerate.

Examination of the climate space diagram allows interpretation of several

of the parameters of the heat energy balance model. The boundary points of the

spaCe indicate the extreme values that the lizard is likely to encounter and still

survive. The lower left-hand point of the diagram tells us that if the reptile is

exposed to a clear sky at night, its body temperature will remain high enough to

survive as long as the air temperature is above 7°C. The opposite corner shows

that 27°C is the extreme air temperature that the lizard could endure if it were

exposed to strong sunlight.

The effect of changing color is also illustrated in Figure 6. In desert

environments lizards often lighten their color which lowers their mean absorptivity.

For example, lowering the mean absorptivity from 0.8 to 0.6 in Figure 6 allows

the lizard to increase the air temperature that it can survive from about 30°C

to 32.5°C. Norris (1967) has extensively studied the effect of color change

on the thermal adaptations of desert lizards.

Increased wind speed increases the relative importance of the convective

term and couples the body temperature of the animal more closely to the air

20
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temperature. Figure 7 shows the influence of wind speed on the energy balance.

As the wind speed increases from 0.1 m s
-1

to 10.0 m s
-1

the physiological line

becomes more horizontal.

0
We can visualize the effect of size by picking body masses of 0.001, 0.10,

10.0 and 100.0 kg to insert in Equation 8 and plotting the lines in Figure 8. As

size or weight increases, the boundary layer thickens, decreasing the rate of

convective exchange (a smaller component of the heat balance). This is readily

seen algebraically by re-examining the convection term. We conclude that

increasing size has the same effect as decreasing wind speed. It is also clear

from Figure 8 that most lizards (less than 1.0 kg) are closely tied to the air

temperature.

There are several observations which suggest that the thermoregulation

behaviors we might predict from considering this model indeed occur. Porter

and Gates (1969) observed that the small lizard (Uta stansburiana) (0.004 kg

approximately) which is tightly coupled to the air temperature climbs rocks early

in the morning. They hypothesized that this behavior was taken to avoid the cold

layer of air at the ground surface. Alternatively we might ask what options are

available if the lizard does not want to become too hot. From Equation 8 we see

that there are at least two strategies. The animal can reduce the absorbed

radiation Q
a
by going to a shaded environment or it can increase its convective

heat loss by climbing bushes where the wind speed is greater and Ta is lower.

Descriptions of the daily activity patterns of the desert iguana (Dipsosaurus

dorsalis) from field observations, show that both these options are used. The

lizard emerges from its burrow in the morning. As T
a

and Q
a

increase, the

animals move into the shade, then higher into the shrubs, and finally retreat

22
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Porter et al. (1973) found good agreement between the predicted behavior from

their heat transfer model and the morning activity pattern of this species.

The Cardinal

Our second and final example is the climate space diagram of the cardinal

(Riclvnondena cardinalis). Several additional terms of the heat energy balance

are important here. As in all homeotherms metabolism and water loss are

significant sources of heat production and loss which cannot be neglected in

the thermal budget. The food necessary to produce metabolic heat energy for

thermoregulation is about 85% of the animal's total requirements (Bartholomew 1977)..

The benefits for this energetic cost probably include both the ability to process

food faster and more efficiently and greater independence from the unpredictable

patterns of the weather.than ectotherms. The cardinal loses' the majority of its

water by exhaling air saturated with water vapor, although other species of birds

may lose up to 50% of their water through their skin (Lasiewski et al. 1966).

The energy balance must now be written

where

and

M Qa Ca (Tr + 273) 4 hc(Tr Ta) Eex

M = metabolic rate OW m-2) ,

Qa = absorbed radiation (W m
-2

),

C = emissivity,

= Stefan-Boltzmann constant CW m
-2

K
4

c- ),

T
a

= air temperature ( °C),

he = convection coefficient (W m
2

°C
-1

),

E = energy flux due to respiration (W m
2
).

ex

[9]
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Since there are internal sources and sinks of energy production (M and E
ex

)

introduced into the equation we must consider heat transfer within the animal.

Figure 9 from Porter and Gates (1969) shows a schematic view of an idealized

animal in the shape of a cylinder. The isothermal core is at body temperature

Tb, the skin surface is at temperature T
s

, and the outer surface of the feathers

(or fur) is at T. Water loss through the skin, E
sw

(sweating), is included for

generality. For the First Law of Thermodynamics and our steady state assumption

we know that the energy crossing each boundary is the same. Beginning with the

two inside circles the energy flow across the region of thickness db is equal to

the potential (temperature difference) times the resistance (but see problem 6).

Therefore,

M - E =

kb
(T - T )

ex db b s

where kb is the thermal conductivity of fat (.205 W m
-1

°C
1
). By similar

reasoning across the second potential we have
kf

M - E - E - Tr)ex sw df s r

1:10]

where d
f
is the thickness of the fur or feathers in meters and k

f
is the thermal

conductivity of air (0.025 W m
1

°C
1
). The quantity of particular interest is the

difference between the body temperature and the surface temperature T
b

- Tr. We

see that Tb - Tr can be written as

Tb - Tr = (Tb - Ts) +
s
- Tr). [12]

Rearranging our heat flow equations (L0 and 11) and substituting into Equation 12

for Tb - Ts and Ts - Tr we have

26
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Figure 9. Concentric cylinder model of animal for heat transfer analysis.'

M = metabolism, E
ex

= respiratory moisture loss, E
sw

= moisture

loss by sweating, Tb = body temperature, Ts = skin temperature,

Tr = radiant surface temperature, kb = conductivity of fat, kf =

conductivity of fur or feathers, db = thickness of fat, and df =

thickness of fur or feathers. From Porter, W. P. and D. M. Gates.

1969. P. 230.
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T - T = (M - Ems) + (M - E E ).
b r

d
b

kb ex kf
f

ex sw
[13]

In the case of the cardinal E is assumed to be zero so Equation 13 reduces to
sw

Tb-
db d

f,
= - E

kb k
f

+ --v.
ex

[14]

Equation 14 can be used to calculate the surface temperature Tr if the other

variables are specified. Once Tr is known, Equation 9 can be used to construct

the climate space. Values for the parameters of Equations 9 and 14 are taken

from Porter and Gates (1969) and reproduced in Table 1. These are used to

construct the climate space of the cardinal in Figure 10. The numerals correspond

to those in the table. Given these conditions the cardinal needs increased

metabolic output and thicker insulation to withstand cold conditions. Such low

levels of radiation and air temperature will occur just before sunrise during

the winter. One would expect the bird to minimize its heat loss by seeking a'

sheltered microhabitat to avoid radiating to the atmosphere and to reduce the

wind speed. Porter and Gates (1969, p. 237) add, "By tucking its bill under its wing,

the cardinal will also reduce surface area and water loss." It is also interesting

to examine the range of conditions for which the animal can remain in steady state

if its metabolic output is at a minimum and Tb is constant. The set of lines

numbered II and III illustrate these conditions. Line IV is the upper limit of

stress that the cardinal can endure.
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Absorbed Radiation QQ (Wm-2)

'Figure 10. Climate diagram for a cardinal showing relations between
air temperature, radiation absorbed, and wind speed for constant body
and radiant surface temperatures at actual values of metabolic and
water loss rates. From Porter, W. P. and D. M. Gates. 1969. p. 237.
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Table I. Values for the climate space of
the cardinal.

Eex
db Tb

I 107. 3 Var 2 38.5 -16.0
II 53 5 10 2 41.0 21.4
III 53 9 5 1 41.0 37.1
IV 77 77 . 5 1 42.5 42.5

M and Eex in W m
2

, df and dh in m X 10 3

Th and Tr in °C,.M.h = 0.025 kg.

,

Monteith's Idea

In Chapter 10 of his book, Monteith (1973) presents a graphical representation

of the energy balance equation which has some similarities to the climate

space diagram. Instead of using absorbed radiation, he defines a quantity

R
ni

(also see Hatheway 1978) which is equal to Q
a

- (Ta + 273)
4

to use on

the abscissa. Next he derives an expression to represent the heat flow of

the organism as though it were simply conducting heat to the environment

where

c p
(M - E) = a (To - T

e)rhr

M = metabolism (W m
-2

),

E = water loss (W m
-2

),

T
o

= surface temperature (°C),

T
e = effective temperature of the environment (°C),

c
a
p

= equivalent conductitrity (W m
-2

°C
-1

).rhr

The equivalent conductivity is due to a weighing of the resistance to convection

and radiation transfer. Figures 11 and 12 taken from Monteith illustrate his

30
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Figure 11. Main features of temperature/heat-flux diagram for dry

systems. T
s
is skin temperature, T

o
coat surface temperature, T

e

effective environment temperature, and Ta air temperature. From

Monteith, J. L. 1973. P. 165.

Flying
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Figure 12. Temperature/heat flux diagram for locust basking (lower

section of graph) and flying (upper section). From Monteith, J. L.

1973. P. 166.
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method, Notice that there is a substantial metabolic contribution to the energy

balance when the locust is flying and that when the insect is resting the

environmental temperature is equal to the skin temperature Ts which will also

equal the body temperature. Furthermore, if the environmental conditions (air

temperature, wind speed, and net radiation) are given, then a range of physiological

parameters (metabolism, fat thickness, fur thickness, water loss) can be found that

will allow the animal to remain in thermal equilibrium. If the physiological

values are known the converse problem can be solved (Monteith 1973, p. 165).

The climate space concept has the advantage that it has put an outer bound on the

physical environment. It may also be easier to interpret because absorbed

radiation is kept separate from reradiation. Monteith's method, however, allows

one to visualize the relative magnitude of each resistance element between the

animal and the environment. For an example of this method see Cena and Clark (1974).

EXTENSIONS OF THE CLIMATE SPACE IDEA

The climate space concept can be extended in several ways which we will

investigate in the exercises. Heller and Gates (1971) used it in a study of

interspecific competition in the genus Eutamias (chipmunks). Spotila et al.

C19731 were able to incorporate conduction,when they constructed the climate

space of the American alligator (Alligator mississippiensis). Zervanos and

Hadley (1973) used these diagrams in their studies of thesthermoregulation of

the collared peccary (Payassu tajacu). A word. of caution is in order, however,

concerning this representation of an animal's thermal state. We have assumed

32
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thermal equilibrium throughout. Many poikilotherms regularly try to increase

their body temperature. Homeotherms also gain and then lose heat diurnally and

when exercising. Schmidt-Nielsen et al. (1957) found that the camel stores and

releases heat on a daily basis. More careful field measurements will have to

be made before the importance. of the nonequilibrium states can be ascertained.
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PROBLEMS

1. Table A provides metabolic rate, water loss, and fur and fat

thicknesses for several species of animals. Using this information and

Equations 10 and 11, calculate the maximum and minimum temperature

differentials across the fat (T
b
- T

s
) and fur layers a

s
- Tr ). Plot these

four values placing (Ts - Tr) values on the abscissa. Shade the rectangle formed.

Include lines of constant total differential (T
b
- T

r
).

Rank the homeotherms from the highest to lowest difference between

body temperature and surface temperature. Under what environmental conditions

would an animal like to make this difference large? When would the animal like

to make this difference small? What other mammals do you know of besides the

pig that have thick fat layers? Why might this be? How does fat compare with

fur or feathers as an insulation material? What is the relative efficiency of

each? Is it clear now that the assumption that T
b

T
r

for the lizard is not

critical?

TABLE A

M E
ex sw

d
b

d
f

Max. Min: Max. Min. Max. Min. Max. Min. Max. Min.

Shrew 396 139 26 0 26 0 1 1 3 2
Cow, summer 104 104 9 4 58 6 14 14 5 5
Cow, winter,

,
104 104 9 4 58 6 14 14 27 27

Pig 124 58 75 1 7 1 35 1 3 1
Zebra finch 213 91 91 22 0 0 1 1 3.5 3
Locust 600 .07 14 0 0 0- --
Cardinal 107 77 77 3 0 0 2 1 15 5
Jack rabbit 77 63 63 9 0 . 0 2 .1 15 8
Fence lizard 70 -- 2 --. -- 1 -- -- --

M, E
ex'

E
sw

in W m
72

$ d
b'

d
f

in m x 10
3

2. Construct the climate space of the pig, jack rabbit, and locust using

the data presented below:

36
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TABLE B (Units as in Table A)

Pig as = 0.8, Mb = 120 kg

Jack rabbit a
s

= 0.8,

Mb = 2 kg.

Locust a
s
= 0.8, Mb = 0.001 kg

M
sw

E
ex

d
f

d
b

T
b

I

II

III
IV

124

100
69

58

1

1

7

7

1

21
66

75

3
3

1

1

35
35
10
1

36
36
37.5
41.7

I

II

III
IV
V

77

63

43

45
63

0

0

0

0

0

9

9

12
20

63

15

8.5
8.5
7

8

2

2

.2

1

1

37.5
37.5
38.5
39.5
43.7

I

II

III
IV

600

600
0

0

--
--
--

14
14
0

0

--
--
--

1

0

0

1

42

.20

20
1

3. Spotila et al. (1973) were able to incorporate the effect of

conduction. Thinking about the heat energy balance equation and assuming

that the ground temperature is constant, how will the physiological limits

be shifted?

4. Spotila et al. (1973) suggests that the area labeled A in the

climate space of Figure 6 need not be .included. Why might this be true?

Are there any other areas like this? How does your answer compare with

the information in Figure 3?

5. A comparison of the climate space diagrams in this module with

those found in the Porter and Gates paper shows that the slopes of the lines

are usually different under the same set of environmental and physiological

conditions. This is because a different convection coefficient is used.

Belowis a table of weights and diameters for.the same animals. Compute the

convection coefficient in two ways: 1) using the formula that Porter and Gates

0.969) provided; 2) using Mitchell's (1.976) relationship, assume V = 1.0 ms-1.

Now make the comparison in a more systematic fashion; Let V = 0.1, 0.5, 1.0,
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3.0, and 10m s
-1 and Mb = 0.00001, 0.0001, 0.1, 10 and 1000 kg. Use the

relationship between length and weight given in Appendix III to find a

diameter corresponding to the weight values given. Compare the values by

forming the ratio of Mitchell's he divided by that of Porter and Gates.

Animal Diameter Body Mass
ri kg

Sheep .40

(fleece)

70.0

Cardinal :050 .020

Lizard .015 .050

Shrew :018 .010

6. 7. P. Porter (personal communication) has pointed out that Equations

10 and 11 apply to heat flow in a slab not a cylinder as"shown in Figure 9.

Derive the equation for heat flow through a cylinder (see Kreith 1973 or

Ilatheway 1977) and through a plate of the same average area under steady state

conditions. When will the two formulae give approximately the same result?

Compare this with.the values used in Porter and Gates (1969) tabled below.

Why does- this work?

Diameter
D (gm)

Thickness of fur
or feathers

d
f

(cm)

Thickness of fat
layer

d
b

(cm)

Desert iguana 1.5 0.0 0.1

Shrew 1.8 0.3 0.1

Zebra finch. 2.5 0.35 0.1

Cardinal 5.0 1.0 0.2

Sheep 25.0 12.8 0.1

Sheep 25.0 8.2 0.65

Pig 36.0 0.3 3.5

Jack rabbit 10.0 1.5 0.2

I

38
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7. Morhardt and Gates (1973) measured both the metabolic rate and the

evaporative water loss as a function of effective ambient temperature

These graphs are included below (Figures 13 and 14). We know that both

these physiological parameters should also depend on the radiation levels and

wind speeds. Consider the metabolic chambers to be equivalent to a blackbody

environment and then plot-lines of constant metabolic rate and evaporative

rates on the climate space diagram (let Mb = 0.2 kg, V = m s
-1

). Now repeat

this process on the climate space of Figure 3. What are times of environmental

stress? What might be the preferred activity period of the animal? Remember

that the metabolic curve is for a resting and fasting animal. How does that

change your answer? Consult the original paper and investigate what other

thermal microhabitats were available. Is it critical that we do not have any

information about the animal in its burrow?
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Figure 13. Metabolic rates of all squirrels used in
this study as a function of effective ambient temperature.
Open circles represent metabolic rates of resting squirrels
at effective ambient temperatures below the thermal neutral
zone. Closed circles represent metabolic rates of resting
squirrels at effective ambient temperatures above the lower
critical temperature of 28°C. Open squares represent meta
bolic rates of exceptionally active squirrels, or those
whose body temperature was falling below normal levels. The
solid line is a least squres regression line fitted to the
open circles, and the broken lines delineate the 95% confid
ence interval of the least squares line. The equation of the
line and the correlation coefficient (r) are shown.

Figure 14. Evaporative water loss as a function of
effective temperature (corrected to 4 mg 820/liter air).

The data collected at different relative humidities.have
been corrected to a constant relative humidity (vapor
density = 4 mg 820/liter air by using Eq. (14) A

logistic curve cf the form y = ae
bx

is fitted ale data,
and the correlation coefficient (r) is shown.

40

From Morhardt and
Gates. 1974. P. 33.

From Morhardt and
Gates. 1974. P. 36.



1. Equation 10 is

Equation 11 is

36

PROBLEM SOLUTIONS

kb
M E

ex
= (T

b
- Ts)

db

k
M - E - E = (T Tr)

ex sw df r

kb = 0.205 W m
71

°C
-1

and kf = 0.025 W m
-1

°C
1

. From this information maximum

and minimum values of (Tb - Ts) and (Ts - Tr) can be calculated. These are

tabulated below. The results are plotted on the two figures (Porter and Gates

1969, Figures 5 and 6, p. 231).

(Ts - Tr)

Maximum Minimum

(T
b
- T

s
)

Maximum Minimum

Shrew 41.3 6. 1.7 0.6

Cow, summer 18.8 7.4 6.8 6.5

Cow, winter 101.0 39.8 6.8 6.5

Pig 14.7 1.0 21.0 0.1

Zebra finch 26.6 0 0.9 0

Locust -_-- ---- 2.9 0

Cardinal 61.7 0 1.0 0

Jack rabbit 40.8 0 0.7 0

Fence lizard ---- Mim 0.5 0

Ranking
Maximum T

b
- T

r

Total AT
Maximum Minimum

Ranking
Minimum Tb - Tr

Shrew 3 43.5 7.5 5

Cow, summer 6 25.6 13.9 6

Cow, winter 1 107.8 46.3 7

Pig 5 35.7 1.1 4

Zebra finch 7 27.5 0

Cardinal 2 62.7 0

Jack rabbit 4 41.5 0

11
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If the environment is cold the animal will have to make this difference large

to maintain Th. It is also possible thatthe surface temperature will be hotter

than the body temperature. Fleece on sheep can protect them from getting too

hot (Hatheway 1977). Making the difference small decreases the rate of heat

transfer within the body.

Many marine mammals have thick layers of fat. Fat is an economical way to

store energy as well as provide insulation. It allows the animal to smooth out

its form which should teduce the friction losses due to drag when swimming.

Some marine mammals are covered with fur. These animals all spend time in terrestrial

habitats (seals, sea lions, otter), which seems to indicate that fur is an important

adaptation on land. The fur can also provide a boundary layer of air in the water

which helps to cut down on heat loss. The relative efficiency of fat to air as

insulation material can be computed by comparing the ratio of the conductivities.

From the text we have

kb
8.2.

k
f

0.025

The conductivity of fat is 8.2 times greater than that of air. Therefore, to

receive the same resistance to heat flow, an animal would have to have 8.2 times

the thickness of fat. The lizard can only maintain a maximum 0.5 °C difference

between its skin and body temperature.

2. The first step is to calculate Tr using Equation 13. This yields:

Tr °C

I II III IV V

Pig 0.30. 5.9 37.6 41.8

Jack rabbit -4.0 18.7 27.5 32.3 43.7

Locust 39.1 20.0 20.0 1.0
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EaT
4
values = .96)

I II III IV V

Pig 304.6 378.0 507.6 535.6

Jack rabbit 285.9 394.9 444.7 473.8 548.6

Locust 517.8 402.0 402.0 307.5

Jack Rabbit Locust

h
c

, convection

coefficient '9.12 .
15.72 43.21

M
b'

mass 120 kg 2 kg .001 kg

V0.6 -0.133
h = 17.24 V Mb

-
V = 1.0 m s

1

he will be the slope of the line so all we need to do is find one pair (Qa,Ta)

for each set of conditions given in Table B such that

Qa + M = EaTr
4 + Esw + Eex + he (Tr - Ta) .

Assume T = T in each case so that the convection is zezo. Therefore
a r

Qa = EaT
4

E
sw

+ E
ex

- M.T4

Qa Values

Pig

Jack rabbit

Locust

I II III 1V . V

183

218

- 68

300

559

-134

512

414

402

560

449

307.5

549

The climate space diagrams for the pig, jack rabbit and locust follow on

pages 39. and 40.
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3. The conduction term is

G =
x r

T
g
)

4



where

41

-2 -1
k.is.the conductivity (W m °C. ),

T
r

is the surface temperature (°C),

T is the ground temperature (°C),g

and x is the thickness of the layer (m).

The energy balance is

Q
a

+ M = eaT r4 + E
sw

+ E
ex

+ h
c
(T

r
- T

a
) + k(T

r
- T

g
).

If T
r

> T
g'

G is positive and the animal will receive more energy.

This will shift the climate space to the right. If Tg > Tr , the opposite shift

will occur.

4. Combinations of low air temperature and high radiation do not occur

naturally. The coldest air temperatures will occur at night. By similar reasoning

the area labeled B in Figure 6 suggests that the highest air temperatures will occur

under low radiation levels. Again, this will not be true.

Figure 3 of the text shows that this is the case. Other data presented in

the Morhardt and Gates paper confirm these observations. The reason is simply that

the sun heats the air.

5. The two formulae needed to calculate the convection coefficients are

6 and 7.

0.33 -0.67h = 0.927 V D Porter and Gates

hc2 = 17.24 V0.601413 0.133 MitChell

h
cl h

c2 cl

Sheep 1.712 9.78. 5.7

Cardinal 6;90. 29.04 4.2

Lizard 16.67 2f.70 1.54

Shrew 14.76 31.85 2.2

<1..6



Mitchell's he

0.33

.00001 0.001 0.1 1.01 10.0 160.0 Mb

4.640 2.511 1.359 1.0 .736 Mb
0.1333

0.1 .251 20.08 10.86 5.88 4.32 3.18 1.72

0.5 .660 52.80 28.57 15.46 11.38 8.37 4.53

1.0 1.0 79.99 43.30 23.43 17.24 12.69 6.66

3.0 1.933 154.63 83.68 46.29 33.32 24.53 13.26

10.0. 3.981 318.45 172.34 93.27 68.63 50.51 27.32

Porter and Gates' 11

.00001 0.001 0.1 1.0 10.0 1000

.0022 .01 .0464 .10 .215 1.00 D

V
0.333 59.95 21.54 7.743 4.641 2.783 1.00 D

-0.667

0.1 .464 25.80 9.27 3.33 2.00 1.20 .43

0.5 .794 44.14 15.86 5.76 3.42 2.05 .74

1.0 1.0 55.60 19.97 7.18 4.30 2.58 .92

3.0 1.442 80.17 28.80 10.35 6.20 3.72 1.33

10.0 2.154 119.75 43.03 15.47 9.27 5.56 1.99

Mil
Let D = L = (1/3 from Appendix III, p = 1 x 10

3
kg m

17.24 0.60 nio
-0.133

c2 .27 .089
then TT-- - = 4.01 V0 Mb0

c 0.927 V
1 LIP I



\kg

V m s- .0001

0.1 .801

0.5 1.20

1.0 1.41

3.0 1.93

10.0 2.66

43.

Ratio of hc
2
/hc

1

.001 0.1 1.0 10.0 1000.

1.17 1.77 2.16 2.65 4.00

1.80 2.71 3.33 4.08 6.12

2.17 3.26 4.04 4.92 7.46

2.91 4.38 5.37 6.59 9.97

4.01 6.03 7.40 9.08 13.75

6. The heat flow by conduction is

where

and

dT
q= -kA

dx

q is heat flow (W)

k is the thermal conductivity (W m °C-1)

A is the area perpendicular to the heat flow

dT
dx

is the temperature gradient. (°C m71).

(m
2
)

[A]

For a slab under steady state conditions we can separate variables and

integrate equa.iun [A]



qs
dT = dx

kA

q sdt = dx
kA

T
i 0

qs
To - Ti kA x

For a cylinder we have

dT
qc kAcf;
A = 2nr L

dT
q = 2nr L
c dr

di =
qc dr

2nIk r

T
o

qc
o

dr
I dT = -

2nLk

Ti ri

-
r

T
o
- Ti =

2'n'Lk

kut
r

ON

qc

i
(T4 To)

44

(T - To) [B]

[C]

ri

2

o
+r

N thow if we assume e area of the slab is equal to L x 2n and the

thiclaiesstobero-r.wc izan set the two equations [B] and [C] equal.
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'

r, + r
k L 271.

2
° (T - T0)

?
Zir L k Ti - To)

r - r
o ri in (2)

ri

Cancelling terms, we have

r 2(r
o

r )

in(i-2.)
i

ri + ro

Therefore qs will equal qc if the above relationship is true. Using the data

given in the problem we can compute the relative radii.

Outside
Radius
(cm)

Radius
to Skin

(cm)

Radius to
Fat Layer

(cm)

Desert iguana .75 .75 ,65

Shrew .90 .60 .50

Zebra Finch 1.25 .90 .80

Cardinal 2.5 1.5 1.3

Sheep 25.8 12.5 11.85

Sheep 20.7 12.5 11.85

Pig 18.0 17.7 14.2

Jack Rabbit 5 3.5 3.3

Checking these values we find that for the sheep when r
o
= 25.8 and r

i
= 12.5

then

2(r
o
- r )

=
ro + ri 668

r
= .724.

ri

and

This is the worst case for the data which is less than a. 10% difference.

50
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You can check the error by plotting

42(r
o
- r

i
)

!fin( °)
r
i

r
o
+ r

i
r
o

.

2(r
o
- r

i
)

vs. r
i

r + r

The intuitive reason this works is that there is not much change in area for the

different pairs of radii we have examined. It is, however, possible to show

that

kn(x) 2
rx - 1 1fIC 1)3 1(IC - l) 5

=
+ 1 S`x + 5`x + [D]

This is done by adding the series expansion for -kn(1 - y) and kn(1 + y) and

1
then letting y = 1-17317-17. The result will give equation [D]. Using only the

ro

first term of the expansion in equation [D] with x =----we get
ri

2(r - r,)
kn(-)

ro + ri

7. On the figures the authors give equations to relate metabolic rate And

evaporative water loss. These are

M = 0.2470 - 0.0064 T M(cal cm -2 min -1)
E'

5 < T
E
< 27 °C

M = 172 - 4.47 T
E'

M(W M-2)

M = 51 W m72 27 < T
E

< 35 °C.

E = 0.00808 e
+0.03771 T

E, E(cal cm
72

min 1)

E = 5.64 e
+0.03771T

E, E(Wm-2 )

T
E,

5 10 15 20 25 30 35 .

E 6.8 8.2 9.9 12.0 14.5 17.5 21.1

M 149.7 127.3 105.0 82.6 60.3 51 51

51



Assume an animal weight of 200 gm which = 0.2 kg.

h = 17.24 V0'6
-0.1333

he = 5.36 21.36 56.1

for V = .01 1.0 5.0 m s

The resulting climate space diagram is given on page 48.

If the animal were simply resting outside, to reduce its metabolism

to the lowest levels. it should be active from 1100 to 1500 hours. The reason

to go above ground, however, is for activity. Therefore, if metabolic rate

increases 1.5 times, preferred activity times should shift to 800-1000 or 1500-1600

hours. It is hard to say much about water loss when the animal is active.

According to the figure, if M increases to 82 W m
-2

then E drops. But if

respiration rate increases with activity then E may also increase. Morhardt

and Gates considered a wide variety of above-ground habitats. A shaded

environment gave much lower radiation loads during the day. If the animal

orients its body parallel to the sun, this lowers Qa also. A great

deal more could have been said about the thermoregulation strategies if the

thermal environment of the burrows were monitored and if microhabitat usage

and body temperature as a function of time of day had been recorded. One would

predict that shaded environments including the burrow would be used more in the

middle of the day. To test this, one would have to make hourly observations

on microhabitat usage.

5 el



The .climate spate diagram for Problem 7
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THE CLIMATE SPACE

APPENDIX Symbols, Units, and Dimensions

Symbol Quantity Unit Dimension S, I, equivalent

a,

a Absorptivity

IM

a Average absorptivity to

shortwave radiation

aL Average absorptivity to

longwave radiation
INS

C Convection W m
-2

MT
-1

(HL
-2

T
-1

)

c Specific heat of the animal J °C
1

H8

.1

aP This whole term has the units of a convection coefficient; c
a

is the heat capacity of air, p is the

r
hr density of air, cap m JM , rhr is the combined resistance to radiation and convection transfer

oc
degrees Celsius °C

Diameter

d
b

Fat thickness

d
f

Fur or feather thickness M L

E Water loss kg s
-1
m
-2

MT
- 1

L
-2

E
ex

Respiratory water loss W m
-2

HL
-2
T
-1

E Cutaneous water loss W m
-2

HI:
2T

ft1

sw

G Conduction W m
-2

MT 1

h
c

Convection coefficient
-2. 1

HL
-2

T
-1

8
-1

k Thermal, conductivity of air W m 10C-1 T
-1
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APPENDIX I, Symbols, Units, and Dimensions - continued

Symbol
quantity Unit Dimension S, I, e uivalent

k
s

Constant for convection

coefficient of a sphere w m
-2

°C HL
-2
0
-1

T
-1

-

k
c

Constant for convection co-

efficient of a cylinder Wm
-2

°C
1

HL
-2
0
-1
T
-1

k
d

Thermal conductivity of at w
-1

°C
1

HL-10-1T-1

- .,- 1

ele4Tmik
f

Thermal conductivity of fur wla
1

.

or feathers

L Latent heat of evaporation J kg
-1

L
2

T
-2

Characteristic length

M Metabolism 14;
2

HL
-2

T
-1

Mb Body mass kg

Nu Nusselt number - - -

2

Qa
Absorbed radiation IN 111 HL

2

T
-1,,,

Qe
Emitted radiation Wm

-2
HL

-2
T
-1

r Reflectivity of the under-

lying surface - -

R
a

Atmospheric radiation

(longwave) Ill'al

72

-
R

g

Ground radiation (longwave) W m

R

P

Radiation from the sun

and sky shortwave cal cm 2min
1

Re Reynolds number

HL
-2
T
-1

HL
-2
T-1

SO

697,7 w m"2
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APPENDIX I. Symbols, Units, and Dimensions - continued

1.NIMMINMENInali

Symbol ,Quantity Unit Dimension S.I. equivalent

S Solar radiation W m
2

HL

. 2T .1

S Sky radiation W m
-2

HL
-2

T
-1

t Time . S T

T
a

Air temperature
oc 0

T
e

Effective temperature °C 0

T

g

Ground temperature °C 0

T
o

Surface temperature °C 0

T
r

Surface temperature
oc 0

T
s

Skin temperature
oc 0

U Internal energy J ML2T-2

x, Length m L

6 Boundary layer thickness m L

e Emissivity -

o Stefan-Boltzmann constant
w '111-2 0K-4

2T .. l
. ...14,

5.67 x 10-8

p Mass 'lensity 1x103 kg m
-3

ML
-3

1-2s
u kinematic viscosity of air

m
L2T.

1

a

a

11.

M m mass

T a time

L m length

0 m temperatUre

H.= ML
2
T
-2



APPENDIX II

Calculation of the Right-Hand Limit of the Climate Space

In their original paper, Porter and Gates (1969) 'state with regard to

Equation 3, ". . An estimate was made of Qa as generally related to air

temperature for value of absorptivity from 0.2 to 1.0." Gates (1977) shows

how to calculate S and s as a function of latitude, time of year, and time of

day. A representative value of 40° was chosen for latitude and then values of S, s

were calculated under clear sky conditions in the late morning and afternoon. For r,

a representative value of 0.15 was probably used. Curves of T
a

and Tg as a function

of time of day such as shown in Figure 2 were then taken from weather bureau

statistics. R
a

and Rg could then be calculated using the Stefan-Boltzmann law.

All the numbers necessary to estimate Qa are then available. The final step is

to choose pairs of Ta'and Qa that are to be used. In Figure 3, 9:00-10:00 are

hours of the day when this is true. This procedure is repeated at several latitudes

and times of the year, from which the right-hand boundary can be derived.

Campbell (1977 pp. 89-92) presents simplified equations to calculate the left-

and right-hand boundaries of the climate space. He includes a correction factor to

average the longwave radiation from the ground and the sky for the left-hand

boundary. The direct beam and diffuse shortwave radiation fluxes are simply given for

the right-hand boundary. The reflected shortwave component seems to be included in

the diffuse term which at 25% of the direct flux is higher than Gates (1978) gives.

The absorbed shortwave radiation is then added to the left-hand boundary values.

Therefore as T
a

increases the shortwave component is constant using Campbell's

equations but using Gates' method the shortwave flux increases.
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APPENDIX III

Derivation of the Constant k
s

for the Convection Coefficient

Mitchell (1976) reported that the best overall relationship between

the Reynolds and Nusselt numbers is given by

Nu = 0.34 Re0.6

Recalling that Reynolds number Re is the ratio of interim forces to

viscous forces in the fluid, we write

VL
Re =-7)-

where

(1)

(2)

V = the fluid velocity (m s-1)

L = the characteristic length (n),

and v = the kinematic viscosity (m2s-1).

The Nusselt number is a way to scale the rate of heat transfer as a

function of wind velocity, size of the organism and fluid thermal diffusivity.

It can also be expressed as

h L
Nu =-2---

k

where

and

he = heat transfer coefficient (W m
-2

'C
-1

),

L = characteristic length (am),

k = thermal conductivity (W m
1

"C
-1

).

Mitchell (1976) defined the characteristic length as
Mb 1/3

L = ()

where Mb is the mass kg

p is the mass density kg m .

(3)

(4)

Using these exp':essions we can solve for the heat transfer coefficient as a
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function of weight and wind velocity. Rearranging Equation 3 and substituting

the Equation 1 for Nu, we have

he
L

= (0.34 Re() 6). (5)

We can then use Equations 2 and 4 to incorporate wind velocity and weight,

respectively.

Letting k
0.34

Lh = 0.34
L

(VL )
0.6

u

x k x
0.6

0.34 k
V
0.6

L
-0.4

0.6

0.34 x k 0.6
Mb -0.133

0.6
V ()

0.34 x x p° .133 0.6 -0.113
0.6

V rib

0.133

if p = 1 x 103 kg m
3

which is the density of water

k= 2.57 x10
2
W m

-1
°K

1

at 20 °C

u = 1.51 x 10
5
m
2
s
-1

then k
s

= 17.24.

To see the error of assuming k and u at 20 ° C we can compare the

ratio of
0.6

Air temperature

° C
0.6

-10 20.79

20 20.07

50 19.51

2

0.89
The difference over the 20°C value is

1
6.4 percent.

2.7

U


