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Preface

This module is directed toward intermediate undergraduate students

of the ecological sciences who are familiar with differential calculus and

algebraic techniques. No skill in computer or calculator programming is

required. SoMe of the mathematical functions used are fabricated to illustrate

a mathematical technique or concept. However, each function's behavior is always

comparable to the characteristics of the ecosystem it represents. Many topics

are introduc.nd and extended in the problem sets. Thus the problems and

computer exercises do not merely repeat the text but form an important

supplement.

ii
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INTRODUCTION

Most applications of calculus to ecological problems involve the

determination of specific relationships between measured quantities.

Frequently, the obvious relations involve rates of change of the quantities

of interest, and not the quantities themselves. In mathematical terms, we

often can determine equations involving the derivatives of functions instead

of the functions themselves. We then need to use an inverse operation on the

derivative to determine the desired function. This operation is called

integration and its field of mathematical study is called integral calculus.

For example, we may wish to know the blood level of a toxic material

that is absorbed through the skin during a certain time period. However, the

mathematical model may be based on the rate of absorption through the skin and

rate of excretion via the urine. Thus we wish to know the magnitude of a

quantity (body level of pollutant) when we know only the rate of change of

that quantity (rate of increase by absorption and rate of decrease by excretion).

FUNDAMENTALS

The inverse operation to differentiation is called ant idifferentiation

or, more commonly, integration. In models of exponential growth we assume

that the growth rate is proportional to the population size.

dN
71-t- kN

(1)

where N is the population size, t is time and k is a proportionality constant.

We could solve for N as a function of time by integrating the derivative.

However, we know that the exponential function is the only function which
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equals its derivative.

2

d(e
t
)

dt e

Thus, we can modify the function to give the solution

N = N e
kt

0

since differentiating N
o
e
kt

gives eqn. 1.

d(N e
kt

)
dN

= kN ekt = kN
dt dt

If we write eqn. (1) as

dN
= e

kt

dt
(2)

then the "antidifferentiation" becomes more obvious: find N so that its

derivative equals kN0ekt. If we define

g(t) = kN
o
e
kt

'

f(t) = N
o
e
kt

then eqn. (2) becomes

g(t) = df/dt.

Thus g(t) is the derivative of f(t) and, conversely, f(t) is an antiderivative

of g(t). But there is a slight problem. The antiderivative is not unique.

If we define

x(t) = Nekt + 10, y(t) = Nekt + 354

then x(t) and y(t) are also antiderivatives of g(t), as can be checked by

differentiating: dx/dt = g(t), dy/dt = g(t). One interpretation of this

is that the graphs of x(t) and y(t) have the same slope (derivative) for

any given value of t. Since the functions differ by only a constant, we can



write the general form of the antiderivative as f(t) + C where C can be any

constant. We usually write the antiderivative as the indefinite integral

g(t)dt = f(t) + C (3)

and call C the integration constant. Recall that the term "dt" identifies

the variable of integration just as it does the variable of differentiation

in the derivative df/dt.

THE DEFINITE INTEGRAL

The integration constant does not appear if the integral is a definite

integral, written as

b

A = J g(x)dx

a

where a,g are called the limits of the integral. In this case, the integral is

determined by evaluating the antiderivative of g(x) at the values x = b, x = a and

subtracting. Thus, as with eqn. (3), if

then

df
cfcc = g (x)

bg(x)dx = [f(x)]
a

a

= f(b) - f(a).

Note that the integration constant is not written since it is eliminated

ithrough subtraction. If g(x) = 2x2, then g(x)dx = f(x) + C = 2x3/3 + C and
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g(x)dx = 2x2dx = (2b3/3 + C) - (2a3/3 + C)

a a

= 2b3/3 2a3/3 + C - C

= f(b) - f(a).

Area Under the Curve

Whereas the derivative can be used to represent the slope of a curve, the

definite integral can represent the area under the curve (specifically, the

area between the curve and the horizontal axis). For a curve given by y = g(x),

the area (A) under the curve from x = a to x = b is written (see fig. 1).

jb

g(x) dx

a

a b

Fig 1. Area under the curve g(x).

This use of the definite integral has strong intuitive appeal. Consider the

case where g(x) = 1 as in figure 2.



g

2

5

a

Fig. 2. Area of rectangle.

The area under g(x) is then

A = j g(x)dx = 2 dx = 2 j dx = 2(b-a).

a a a
b

Thus dx represents the width and g(x) is the height. Thus the definite

a

integral as area has intuitive meaning: area = height x width. In general,

the same visual identification applies:

jb

g(x) dx

)l'ileight

width

Example 1

Diffusion of a gas across a membrane is often described by Fick's Law which

states that the rate of transport is proportional to the product of the surface

area of the membrane and the concentration gradient. Thus knowledge of the surface

area is important. Certain leaves have nearly parabolic edges (fig. 3). The

area of the top surface available for transport of water is then found by integrating

10
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the parabola function. If the dimensions of the leaf are length = 2a, width = 2b,

then the parabola describing one edge is wthten

Y(x) = -bx2/a2 + b.

Fig. 3. Leaf with parabolic edge contours.

The area of half the leaf is

=
2

la
A

(-bx2/a2 + b)dx

-a

i.e., the area between the x-axis and the upper curve. Thus we calculate

a

A = 2 (-bx2/a2 + b)dx

-a

a

= 2[-(b/a2)x3/3 + bx]a

= 2[(-ab/3 + ab) - (ab/3 - ab)]

= 8ab/3.
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Improper Integrals

Occasionally we are interested in long term behavior of a measured quantity.

For example, when raw sewage and other chemical pollutants are continually dumped

into a lake, one effect is the rapid increase in the number of microorganisms.

The resultant high level of organic oxidation from metabolism of the sewage can

lead to extreme oxygen depletion of the lake, with obvious detrimental effects

on other aquatic life (Dugan 1972). If we know something about the rate of oxygen

consumption by the microorganisms, then we obtain the amount of oxygen consumed

during a time period T by integrating the rate over that time period, i.e., using,

a definite integral with limits 0,T. We then estimate the maximum oxygen

depletion by integrating over an infinite time interval. Such a definite integral

with at least one infinite limit is called an improper integral.

Example 2

Assume that self-inhibition by the microorganism population causes the

oxygen depletion to taper off as time becomes large. One model might be

dC 2

te
-t+

e
-t

(4)dt

where C represents the quantity of oxygen consumed. A graph of dC/dt looks like

figure 4.

L

12



dC/dt

2.5

2.0

1.5

1.0

8

Fig. 4 Rate of oxygen consumption.

The total amount of oxygen consumed by time T is then found by integrating eqn. (4).

T
2

C(T) = (te
t

+ e
-t

)dt

0

The maximum depletion is then found by letting T increase to co.

T

1

C(co) = lim (te
-t2

+ e
t
)dt

T-->co 0

With most nicely behaved models, we can evaluate C(03) directly. The above integral

is then written

JC(03) = (te
t2

+ e
-t

)dt

0

3

(5)
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and is evaluated as with previous definite integrals.

Some functions are not "nicely behavk"" and certain integrals cannot be

evaluated directly. If we desired to evaluate the circumference C of a tube with

circular cross-section by using.an integral (instead of the well-known formula

C = 27m).we can encounter difficulties. For one-quarter of the circle (fig. 6)

the arc-length is given by (Schwartz 1974, p. 634)

L = dx

0

where r is the radius. The integrand is infinite at x -r (fig. 7). However, we

can evaluate the integral by taking the limit of another integral:

a

Vi77;i2-

,
L = lim

r
dx

a
= lim [r sin-1 (x/r)]

a4r 0

-
= lim [r sin

1
(a/r)] = rrr /2.

a +r

4



r

10

Fig. 5 The quarter-circle, y= x2 .

X

Fig. 6 Integrand of arc-length formula, y =

15
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METHODS OF INTEGRATION

Since there are no foolproof formulae that can be used for all integrals

(as there are for derivatives), the following integration methods all attempt

to change a difficult integral into a simpler one. All examples use definite

integrals.

Substitution

This method substitutes each part of a definite integral with a counterpart

so that the result is kept the same. With the substitution u = h(x), the integral

f(x)dx

a

becomes transformed into

g(u)du

h(a)

where g(u)du = f(x)dx. Thus the integrand, dx, and the limits have been transformed

into equivalent counterparts. We obtain g(u) by finding the inverse function

h
-1

(u) so that

x = h
-1

(u)

d[h1
dx =

(u)]
du

du

g(u) du = [f(x)][dx]

11(u))] [dh:1 (U)]

Often, h(x) appears explicitly in the integrand so that u is substituted directly.
ti

16
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Example 3

The problem presented above on the oxygen depletion due to sewage dumping

can now be solved. The integral in eqn. (5) is first separated.

I, -t
e

2 -t,
)

-t2
te + dt = to dt + le-k tdt

0 0 0

(6)

2

The antiderivative of to -
t

is not obvious, so we substitute a new function into

the integral. Let u = t2. Then the differential du is

du = (du/dt)dt = 2tdt

so that

du
= tdt.

The limits remain, since u = 0 when t = 0 and u = co when t = m. Direct

substitution then gives

Jm

-t2
dt = eto (tdt)

0 0
.00 CO

e (7-) = e du
u du 1 -u

0 0

= 2[-e u]°° = +[c) - (-1)]

0

1

2

Since the second term in eqn. (6) is now obvious ( e
-u

du = e
-1:tdt = 1),

0

we obtain the solution to eqn. (5) of

C(co) = 1/2 + 1 = 3/2.
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Integration by Parts

This method utilizes a relation from differential calculus concerning the

total differential. Recall that the differential of a product of two functions

u(x), v(x) can be written

d(uv) = udv + vdu.

If we evaluate antiderivatives, we obtain

uv = udv + vdu. (7)

Rearrangement of eqn. (7) gives the integration by parts formula

Judv = uv - vdu

With definite integrals, we usually write this formula as
b b

J

b

[u(x) -42-l]dx = [uv] - [v(x) -21111dx
dx dx

a

(8)

a a

Again, the goal is to change a difficult integral, the left side of eqn. (8),

into a simpler one, the right side of eqn. (8). An example is presented later.

Partial Fractions

When the integrand is a ratio of two polynomials, it often can be decomposed

into a sum of simpler terms. Only the case of nonrepeated linear terms in the

denominator is treated here. For more complicated cases in an ecological setting,

see Clow and Urquhart (1974) p. 559.
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The integrand is assumed to be of the form F(x)/G(x) where F(x) and G(x)

are polynomial functions and where G(x) is the product of linear factors. For

example,

G(x) = (1 + 2x) (2 + 2x) (1 + x)

is a polynomial composed of factors linear in x. The partial fraction technique

replaces the single rational expression by a sum of terms where each denomination

is one of the linear factors of G(x). If we have two linear factors,

G(x) = A(x)B(x)

then a partial fractions decomposition gives

F(x) F(x) Cl C2

G(x) A(x)B(x) A(x) B(x)'

where C
1

and C
2

are constants. Multiplication by A(x)B(x) gives

F(x) = Cl/3(x) + C2A(x) (9)

Let r r
2
be zeros of A(x), B(x), respectively, i.e. A(r1 ) = B(r

2
) = 0. Then,

with x = r, eqn. (0) is

F(ri) = C1 B(ri)

and with x = r2, eqn. (9) becomes

F(r2) = C2 A(r2)

so that C1,C2 can be easily determined.

Example 4

The logistic growth model for animal populations is represented as a

19
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differential equation

dN
= rN(1 - N/K), r,K = constant.

dt

Separating variables (see the section, Differential Equations) gives, using

the differentials dN and dt,

dN
= rdt

N(1 - N/K)

which is integrated to yield the equation

I.

dN
N(1 - N/K)

- j rdt (10)

The right side of eqn. (10) is easily integrated. The left side, however, must

be reworked. First rewrite the integral as

1

N(1 - N/K) N(K - N)

Now expand in partial fractions as

a
1

a
2

N(K - N) N K-N

Mulitplying both sides by N(K - N) gives

K = al(K - N) + a2N. (11)

Since (11) must hold for all values of N (Clow and Urquhart 1974, p. 562), then

setting N = 0 gives

and N = K gives

so that

a
1
= 1

a
2
= 1

K . 1 1

N(K - N) N

20
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Then eqn. (10) is

dN dN
N K-N

which integrates to

I rat

kn N - £n (K-N) = rt + C.

APPLICATIONS OF DEFINITE INTEGRALS

Direct applications of integrals generally fall into discrete categories

in contrast to applications of derivatives which usually are based on slopes.

The first group discussed below uses the integral as the accumulation of changes

in the function. The second category uses the integral as an area or generalized

volume. The last application is more mathematical, although it actually relies

on the accumulation concept, and uses the integral to estimate the error in a

given approximation.

Accumulation of Changes in the Function

The integral as a total accumulation has been presented before in example 2

on oxygen depletion. This use of the integral is actually fairly intuitive. Let

us call our quantity of interest F(x). Then F'(x) = dF/dx is certainly the rate

of change of F(x) and F(x) is certainly the antiderivative of F'(x). Then

integrating the rate of change of F gives the total change in F.

jbF'(x)dx = F(x)] = F(b) - F(a) .

a
a

Thus the definite integral

21
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b

F'(x)dx

a

is the total change in F(x) as x changes from a to b.

Average Change

The average change in F(x) is then found by dividing by the change in x,

since the average is the change in F 221 unit change in x. Note that this

formula can be shown graphically as the average height of the function. For

a given curve, the area under the curve equals the average height multiplied

by the width. Thus the average height y of a curve y = f(x) is the area A

divided by the width.

A = I f(x)dx = (b-a)i

a

b

b-a .b-a

A 1
f(x)dx

a

Example 5

An interesting example is a study (Fisher 1963 in Warren 1971, pp. 161-163)

of the effects of dissolved oxygen content and food ration on the growth rate of

Coho salmon. The data appear in figure 7. The upper curve is well approximated by

y = 7.3(x + 3.5)e
.°5x

(12)

The lower curve is the straight line

y = 28

where y = growth rate, x = dissolved oxygen. A simple comparison of the effect

of diet (restricted vs. unrestricted ration) on growth rate is to compare the

average growth rates (y) for the two diets. Since the lower curve has a constant

22
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unrestricted ration

(3.0-18.0 mg/1)
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Dissolved oxygen (mg/1)

20

Figure 7. Relationships between dissolved oxygen concentration and growth

rate of juvenile coho salmon when food was unlimited and when it

was limited. Arrows indicate growth of fish when held at oxygen
concentrations fluctuating diurnally between levels specified.

Data of Fisher (1963), in Warren, 1971, p. 162.

2.3
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growth rate, we must have y - 28.

30
1 1 1

Y 27
28dx --[28x] = --i(28)(30) - (28)(3)]

27 27
3

3

1

7
--- (28)(27) = 28
2

For the upper curve,

y

=

1

30

7.3(x + 3.5)e
-0.5x

dx

30

3.5e
-.0.5x 7.3 -.05x

dx +77- xe dx

3 3

30 30

-.05x
dx + .27

-.05x
e xe dx

3 3

27

7.3
27

.95

The first integral is the same form as in previous examples.

30
-.05 1 -.05x

.95 e xdx = .95[- e ]

.05
3

3

= 19(-e
-.05(30)

+ e
-.05(3)

) = 12.07

Rather than finding the second integral in tables, we will evaluate it using

integration IL/ parts.
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With dv(x) representing the differential of v(x), the second integral can

be written

-05x.

xe dx = u(x) dv(x)

3 3

-.05x
where u(x) = x, dv(x) = e dx

Recall that integration by parts uses the formula

judv = uv - fvdu

Since du = dx, and v = d.1. v = -e-'05x/.05, we get

-.05x-.05x 30 f
30

e-.05x -Xe
xe dx = [ --(-1-5. ] - dx

.05

3
3

3

-.05x

= .05

[[-30e -1 5
+ 3e

.15
] C1715E-

3

= 20[-30e
-1.5 -.15 e

-.15
e
-1.5

+ 3e +
.05 .05

= 173.04

Thus

. 12.07 + .27(173.04) = 58.8.

In summary, we have the averages:

ration average growth rate

restricted 29.3

unrestricted 58.8

It is somewhat surprising that the average unrestricted ration rate is over twice

that of the rate for the restricted ration. The data is deceptive visually due

to the close values near x = 3 mg/.R and the distorted logarithmic scale.

Distance

Velocity is defined as the rate of change of position. Since the distance

covered is the total change in position, it must equal the integral of the velock

?$
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For a free-falling object, the velocity is given by v(t) = get where g is

the acceleration due to gravity and t is time elapsed. The distance S covered

after T seconds is given by S = § gT2 which is merely the integral of velocity.

T

S = v(t)dt = 1 (gt)dt

0 0

T
= g t dt = g[t2 /2]

0
0

=
1

gT2
2

Volumes

Volumes and areas of complicated regions are also evaluated using the

definite integral. Previously, the area under a curve was bounded by three

straight perpendicular lines. When the bottom is not the base axis, the

integration is still simple. For a region shown in figure 8 the area is the

difference between the area under curve f and the area under curve g. Thus

A
f(x)dx - g(x)dx

a a

[f(x)-g(x)]dx

a
Note that [f(x)-g(x)] is merely the height of the region at the point x, so

the height times width interpretation is still applicable.

26
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a

Fig. 8. Area between two curves.

Surface Area of Revolution

When the region is not planar, the evaluation of its area must take into

account the changes in the third dimension. If the surface is obtained by revolvir

a curve around a straight line, the evaluation needs only a single integral. The

following example illustrates the method.

Example 6

One study of temperature regulation in mammals requires knowledge of the

surface area exposed to the sun. The model views the torso of the animal as

symmetric with respect to a longitudinal axis. Each vertical cross-section is

then a circle. The simplest such approximation is a cylinder:

tail

The cylinder can be described by revolving a straight line around the axis, as

in figure 9.



axis

L
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Fig. 9. Surface area of revolution: a cylinder.

axis

Unrolling the surface gives a rectangle whose width equals the_circuraferenceof--

the circular end face of the cylinder. This surface area of revolution equals

the line length multiplied by the width, thus (fig. 10)

A = 27r.2.

t

271r 0'1

Fig. 10. Surface of unrolled cylinder.

As with the area under a curve, the general formula for a surface area of

revolution must be intuitive, i.e., must visually appear as length times circum-

ference. Let the torso have a profile of varying radius:
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r(x)
X

Assume the line to be revolved is graphed as follows,

r

x0

and is represented by r = a - bx2, a and b positive constants. The radius then

changes with x, and the integral must be used:

ro
A = I 27r(x)dx .

Lx `v.."'"

°citcumference

length/

In this example, let x0 = .5m, a = .28, b = .24. The total surface area is

.5

A = 27(.28 - .24x2)dx

-.5

.5
= 27

3
[.28x -

24
x3]

-.5

= 1.63 m2

Note that any function will work in the formula, as long as the area desired is

a surface area of revolution. The only problem might be in using a function which

is difficult to integrate.

29
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Volume of Revolution

The volume of a solid generated by revolving a curve around an axis can

be derived as an intuitive extension of the surface area of revolution. The

area and volume formulae for the cylinder and the general revolved solid

(figure 11) are seen to be analogous.

Cylinder Revolved solid

(StSurface area 27m2St 2irf(y)dy

JO

Trif(Y)32 dY

)

Volume irr29

Fig. 11. Solids of revolution.

Now we develop the general volume formula by expressing the integral as a

limit of sums of pieces of the solid. Consider a curve z = f(y) and the region R

under the curve (figure 12). We revolve the region R around the y-axis (figure 13)

to obtain the solid.

30
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Fig. 12. The function f(y). Fig. 13. The solid obtained by

revolving f(y).

Suppose we divide the interval [a,b] into many subintervals, each of width

dy. Then, if dy is sufficiently small, the area of the subregion Ri is well

approximated by a rectangle of width dy and height f(yi), as figure 14 indicates.

By revolving Ri about the y-axis, we sweep out a circular slab with radius f(yi)

and thickness dy (figure 15).

-I dy

Fig. 14. The area increment dy. Fig. 15. The volume element obtained

by revolving dy.

31
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The volume of each slab is w(radius)2(length) = wf(yi)2dy. Thus we have volume V

of the solid as.

V = lim wf(yi)2 dy,
dy40."1:=1

wf(Y)2dY.

a

N = (b-a) /dy

General Surface Areas

When the surface is more irregular and is not axially symmetric, its area

can still be found. The surface must now, however, be described by a three-

dimensional function which gives the height as a function of the length and

width coordinate: z = f(x,y).

The dependence on two variables requires two integrals, and the method used is

called double integration.

Given a function of two variables, say z = f(x,y), we can write a double

integral of z over a region R as:

F = jf(x,y)dA

32
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with A representing the area coordinates from the region R. This integral is

more often evaluated by writing it as an iterated double integral:

ih(x)

F = f(x,y)dy dx = f(x,y)dy dx

a g(x) 'a ig (x)

Evaluation of the "inner" integral yields a function of x, which becomes the

integrand of the "outer" integral.*

When the surface is described by z = f(x,y), its area is found using an

iterated integral. The limits of integration are found by projecting the boundary

of the surface onto the x,y plane. The formula for the surface area is**

az aZ
A = [1 + +

ay

2 312
dy dx

a g(x)

and is best illustrated by example.

Example 7

If the animal is again consideredto look like a cylinder, one improvement

would be to account for the neck rising at an angle from the shoulder. To keep

the calculations simple, we assume the neck rises vertically, and is also

cylindrical (figure 16).
z

x

Fig. 16. Half of the upper surface.

4*Note that the order of integration can be reversed when f(x,y) is cont_.-d ons in x an

**See Ayres (1964), p. 319. 33
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We determine the area of the torso by subtracting the "back" area inside the

vertical cylinder, A, from the area of the horizontal cylinder, which we found

was .257. The equation for the "back" surface is x2 + z2 = (.25)2. The vertical

cylinder is defined by x2 + y2 = (.10)2. The projection is then half a circle

of radius .10 (figure 17), and is given by y =

Fig. 17. Projection of the "neck" region.

For a given x, y varies from 0 up to 1.10 - x . The limits on x are -.10 to .10.

The equation for the surface of the back yields the required partial derivatives:

aZ x aZ
9 = uax V7T7.7F ay

r.10 /711517D
X2

A = [1 +
.252-x

0] dy dx

-.10 0

This strange formula still has visual intutive appeal since the limits on y

are obtained from the width in the y direction (for a given x) and the limits

on x are from the length in the x direction. The quantity in brackets accounts

for the changing height of the surface. The remaining parts of the problem are

left as an exercise.
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Error Estimation

The integral can be used to develop approximate solutions to certain

equations or approximate models of given data. The integral provides a qualitative

error estimate for the approximation. The most well known application is the least

squares fit of a line through a set of data points. One of the most recent

applications is the residual norm as an error indicator for approximate solutions

to partial differential equations. In each example discussed below, a function is

integrated over a domain of interest. If this function represents the difference

between the approximate and true solution, then the value of the integral decreases

as the approximation improves. The integral is then minimized to provide the

"best" approximation.

Least Squares

Many experiments produce data as pairs of numbers

(xl,Y1), (x2,Y2),...,(xnan).

The underlying relationship is often assumed to be linear, that is, the model is

assumed to be

y = Ax + B, A,B = constants.

The points (xi,yi) are usually not collinear (see figure 18) due to experimental

error, inaccuracies in the model, round-off error during measurement, etc. Thus

the problem is to choose the constants A,B so the line matches the data points

as closely as possible. The method of least squares uses the sum of squared

deviations for the error function, E2 (see figure 18):

E2 = [y(xi) - yi]2

1=1

(13)

where y(xi) = Axi + B. The goal is then to choose A,B so that E2 is minimal.

35
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By writing E2 as a function of the parameters A, B, we minimize E2 by setting

the partial derivatives equal to zero:

y

9E2

BA
A aE2

w aB
o.

Ax + B

) deviation= y(xi.)-Yi.

(x4,Y4)

(x1071)

= + B - Y4

Fig. 18. Least-squares line.
x

We then obtain two linear equations in A,B which are easily solved (see problem 5)

and can be shown to give the line with the least sum of squared deviations (see

problem 6).

Norms

The squared deviation used in the least squares method is an example of a

norm. A norm of a function f(x), denoted fool' , is a functional (Pearson 1974,

p. 946) such that, for any scalar a, and any functions f(x), g(x),

IIf(x)II>0

II f (x) II = 0 if and only if f(x) = 0

II f (x) II = lal II f (x) II

IIf(x) + g(x) II < Poo II + Ilex) II

36



32

When a curve y = f(x) is approximated by a leastsquares straight line

y = Ax + B over the interval [a,b], we choose A, B to minimize the error norm E

defined by

b

E2 = J[Ax + B f(x)]2 dx

a

(14)

Note that equation (13) is a discrete analog of equation (14).

The norm can be used for evaluating the closeness of fit of one curve to

another, or for obtaining a qualitative estimate of the accuracy of an approximate

solution to an equation. The L norm of a function f(x) is defined as

L (f(x)) = Ilf(x)11 = 1f(x)1Pdx

a

The least squares norm E is in fact L
2
(f(x)), since

1/2

H f ocAj = [

b

I f (x)12dx

and thus

a

E2 = [ Ilf(x)(02 = [L2(f(x))]2 .

Example 8

An interesting comparison is between the line fitted to the data points of

example 5 and the line fitted to the smooth exponential curve of eqn. (12),

rewritten as follows.

yi = 7.3(x + 3.5)e
.05x

We can approximate this function with a linear function,

(15)

y2 = Ax + B (16)

3 A-/
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by choosing A and B to minimize the L2 (least squares) norm of the difference

between them, y1 - y2. Denote the norm by

f30

E = Hyl - y211 I. [j (y1-y2) dx]1/2

2 3

Substituting eqns. (15) and (16) yields

30

E (7.3[x+3.5]e
.05x

- Ax - B)2dx]1/2 .

3

(17)

We now minimize E by taking partial derivatives with respect to A and B (see

Hertzberg 1977 for a review of differentiation). One first derivative will now be

calculated, with the remainder of the minimization left as computer exercise 2.

First, note that the minimum of E occurs at the same values of A and B which

minimize E2, since E is positive. The derivative of E2 with respect to A is now

attempted: First, we write
30

a(E2) a [j f(A,B,x)d]
aA

s
aA

3

05-
where f(A,B,x) = (7.3[x+3.5]e

05x
-Ax - B)2 .

Then the derivative is calculated after the integration is completed, which is not

a simple task. It may be easier to differentiate under the integral sign first, and

then integrate the result.

Theorem (Pearson 1974, p. 100).

Let f(x,y) be an integrable function of x for each y, and let of /ay be

continuous over a < x < b, c < y < d. Then

af(x,y)dx of/a0dx .

dy
a

38



Thus we evaluate:
30

3(E2) j af
BA

= 51 dx

3

30
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05x
= 2(7.3[x+3.5]e

-
Ax - B)(-x)dx (18)

3

which can now be integrated (computer exercise 2).

No justification has yet been given for the constants in eqn. (15). These, too,

may be determined by a least squares norm. See computer exercise 1 for details.

The norm can also be used to estimate qualitatively the relative accuracies of

approximate solutions to a differential equation. The limits are determined as

above by the interval in which the accuracy is to be judged. An example is presented

in the next section.

DIFFERENTIAL EQUATIONS

As was previously mentioned, the integral is also used to solve a differential

equation. In the simplest form, if an equation is written as

dx
at

= f(t)

then the solution (general ,olution) is

x(t) = f(t)dt.

If we know the value of x at t = 0, the initial condition, then the differential

equation has a unique solution given by

t

x(t) s f(T)dT + x(0).

39
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Separation of Variables

When the differential equation also involves x on the right-hand side, the

solution is not so easily represented. Other techniques must then be employed

to represent the problem by a set of integrals whose integrands are functions of

only the variable of integration. One such technique is separation of variables.

Example 9

Let us return to example 4. The equation is

dN
E
= rN(1 - N/K).

The simple representation given above fails here:

N(t) = rN(1 - N/K)dt.

(19)

To integrate, we need to know N as an explicit function of t, which of course

we do not know. However, by multiplying both sides of eqn. (19) by the differential

dt, we obtain

dN = rN(1 - N/K)dt

and by dividing by N(1 - N/K) we successfully separate the variables N, t on either

side of the equality:

dN
= rdt.

N(1-N/K)

Integration is now possible since each integrand is a function of just the variable

of integration.

1
15c dN rdt.

40
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How are initial conditions incorporated now? Since the indefinite integral

produces an intgration constant, the constant is determined by the initial

condition, making the general solution unique.

Example 10

A recent study on water purification (Dickson, et al, 1977) included the

mortality of fish due to intermittent chlorination. The following data were

obtained (Table A) where frequency is the number of doses per 24 hours.

Table A Fish Mortality Due to Intermittent Chlorination

Mortality Frequency Duration (hr)

.01 1 1.5

2 0.7

4 0.3

.10 1 3.2

2 1.4

4 0.7

.20 1 4.3

2 2.0

4 0.9

.50 1 7.5

2 3.4

4 1.6

A mathematical model has been devised which shows the effect of duration (T)

and frequency (F) on mortality (M) using two differential equations:

BM/BT = a
1
T
1.5

M/8F = a
2
F18

41

(20)

(21)
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where a
1

is a function of F and a
2

is a function of T. Another model was derived

by curve fitting, using Table A and is quite different. For a given M,

Zn(T) bl - b2 Rn F (22)

where it is now assumed that b
1

is a function of M:

b
1
= 2.16 + 0.40 kn M.

Can both of these models hold? Are they consistent? We can answer this by

integrating the first model to derive a single expression for M as a function of

F, T. Each equation (20, 21) involves a single partial derivative, so that one of

the variables can be assumed constant. By holding F constant, we integrate eqn. (20)

to obtain

M = (a1/1.5)T2-5 + Cl

which is more precisely written, with al as a function of F, as

a
1
(F)

M = T
2.5

1.5
+ C

1
.

Similarly, we integrate eqn. (21) with respect to F, holding T constant.

Thus

1

M = a
2
F
1.8

dF = (a
2
/1.8)F

2.8
+ C

2

82(T) ,2.8
1.8 A: -I- 1'2

1 1(F)

(T)

T + C C
2

.
1

42

(23)
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We assume no observable mortality if no chlorination occurs, so that, if

F = 0 or T = Or then M = O. Thus C1 -C2 -O.

al(F)
2.5

a2(T)
T = F1.5 1.8

Therefore, we must conclude that

al(F) 1.5C F"

a
2
(T) 1.8C T

2.5

where C is some proportionality constant. From eqn. (23) we have

M = C F
2.8

T
2.5

It is now straightforward to manipulate eqn. (22) to look like eqn: (24).

kn T - (2.16 + 0.40 kn M) b7 kn F

kn T + b
2

kn F - 2.16

0.40

kn T + kn(F
2
) - kn(e

2.16
) M

0.40

kn M

b

2.5 kn(TF
2
/8.7) = kn M

kn[(TF
2
/8.7)

2.5
] = kn M

2.5
2.5b

2 2.5
T F /(8.7 ) = M.

(24)

Thus, b
2
= 2.8/2.5 = 1.1, C = 1/(8.7)

2.5 = .0045 and the models agree.

13
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Residual Norm

Often a differential equation cannot be solved by any standard methods and

an approximate solution is developed. In some cases, bounds on the error in the

approximation can be derived. Too often, however, calculating the error bounds

is as complicated as determining the solution itself. A recent idea is to use

the least-sqUares norm (or occasionally some other norm) as a gauge of the ac-

curacy of the approximation. With only the differential equation at hand, a

new type of norm, the residual norm, is used.

Consider a differential equation written as

dx
f(x,t) ,

dt

with initial condition x(0) = xo. If the equation is rewritten as

dx/dt - f(x,t) = 0

then we obtain an expression which vanishes when the exact solution is used.

In operator notation the equation is

L(x,t) = 0

where L is the differential operator defined by

L(x,t) = dx/dt - f(x,t) .

If L operates on an approximate solution, ii(t), then L(x) # 0, and its value is

the residual. Yet we would expect L(R) to be small if x is a good approximation.

The final step is to decide on some interval over which the approximation's accuracy

is to be judged, say [a,b]. Then the least-squares residual norm for the approxi-

mate solution x(t) is

II R(R) 112 is t 1 (L(I,t))2 dti1/2

44
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Note that n R n
2
. 0 if the exact solution is used, since L is then 0. This

limiting behavior suggests the residual norm as a qualitative indicator of the

accuracy of an approximate solution. No theory exists, however, for estimating

the actual error from the value of the residual norm.

Example 11.

A deer population is threatened by severe storms as well as reduced grazing

area due to a small fire. Consequently, a moratorium on deer hunting is imposed

until the deer population returns to 60% of the carrying capacity for the area.

How long should the moratorium be imposed?

Assumptions are now presented which allow us to model the population dynamics

of the deer and estimate the duration of the moratorium. Let the logistic growth

model be used:

do
Rn(1-n/K)

dt

Assume that the current population size is 400, the carrying capacity (K) is

2000, the intrinsic growth rate (R) is 1.0 and that the approximate solutions

should be fairly accurate for the first three years. Assume also that the

moratorium is not obeyed immediately, so that hunting pressure gradually tapers

off. Let the growth model with the "harvesting" (i.e. hunting) term be

dn
dt

itu(i-n/K) -
e-tn

with initial condition n(o)-nn.

(25)

Assume also that you do not have access to either a programmable calculator

or a computer. This equation cannot be solved by separation of variables (try

it), so some approximation must be made. From previous studies, you learn that

the following two models have been used fairly successfully to model short term

population growth.

15
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ni(t) = (K-no)(1-e-Rt/5 ) + n
o

n2(t) - n
o
e
Rt/3

(26)

(27)

Note that ni(t) tapers off at the carrying capacity, but n2(t) is exponen-

tial growth for n2z0; both are properties the exact solution must possess. Which

approximation is better? We compare n
1
and n

2
by evaluating their least-squares

residual'norms. Rewrite eqn. (25) as L(n) = 0, where L(n) represents the differ-

ential operator acting on n:

L(n) = dn/dt - Rn(1-n/K) + e-tn = 0

We expect a good approximate solution, na, to give

L(na) = 0 ,

and thus its residual norm should also be small:

H R(na) II = [ (L(na)) 2 dt]1/2 = 0 .

0

Intuitively, the smaller IIRII is, the better the approximation should be. For

this example, assume the following values:

K = 2000 R = 1

n
o
= 400 T = 3 .

The integrands in H R(ni)112 and H R(n2)H2 are now calculated. From eqn.

(26) we obtain, after a few steps,

[1.(n1)]2 = (2000 e-t- 1600 e-3-2t + 1280 e
-.4t

-2880 e
.2t

+ 1600)2 (28)

From eqn. (27) we obtain

[L(n2)]2 [ (400/3) et/3 - (1-400 et/3/2000

-e-t) 400 et/3]2 (29)
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After multiplying out the square in each equation and collecting terms, we can

write both (28) and (29) as sums of exponential functions, and thus both can be

integrated by hand easily (but tediously). The results are, upon integrating

over the interval [0,3]:

II R(ni)112 661.8

HR(n2)112 S 172.3 .

Figure (19) shows the accuracy of the two approximate solutions as compared

to a numerical solution to the original differential equation (25). It appears

that, for the chosen values of R,K and no, the approximation n2(t) is better,

and the residual norm for n
2
supports this evaluation. The 60% of carrying

capacity, i.e. 1200, is reached in 3.30 years using n2(t), and in 3.08 years

according to the numerical solution n(t). It is interesting that, without the

term for hunting (curve no(t) in fig. 19), the population reaches the 60% level

in only 1.79 years.

1300
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ti.; 1100
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900

700
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0 no(t)

0 nl(t)

A n2(t)
n(t)

1.0 1.5 2.0 2.5 3.0 3.5
TIME (YEARS)

FIG.I9 APPROXIMATE GROWTH FUNCTIONS.
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PROBLEM SET

G eneral

1. An application of both the definite integral an&exponential growth is a

model for the demand for natural resources. Assume P(t) represents the rate

of use of a resource at time t 5 0, and P
o

represents the rate of consumption

at time t = 0. The exponential model then gives

P(t) = P e
kt

The constant k can be defined as the rate of increase in the use of this re-

source. Let A(T) represent the amount of resource used during the interval

[0,T], T > 0.

a. Write the definite integral representing A(T) in terms of a general

function P(t).

b. Evaluate the integral for general T > 0 by substituting the above

exponential function for P(t).

c. In 1973 (say t = 0), the world use of copper was est-mated to be

6.99 x 109 kg, and the demand was increasing at an exponential rate

of 8% per year. How many tons of copper will then be used from 1973

to 1983?

(Hint: First find P
o

, k, T and then use your answer to (b).)

d. If the rate of growth in demand for coppers remains at and no new

reserves are discovered, when will the world copper be

exhausted? Assume the reserves in 1973 are 336 x 109 kg, and no

recycling occurs.
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2. Five thousand trout, each weighing 80 gms, are planted in a lake. The

population size, N(t), declines exponentially according to the equation

N(t) = 5000e
.5t

where t is measured in months. Each fish grows according to the formula

W(t) = 10000 (1 - .8e-.05t)3

where W is the weight in grams.

a. Check that both N(t) and W(t) satisfy the given initial conditions.

b. Write the formula for the biomass (total weight of all the planted

trout) in the lake as a function of t, and calculate the biomass

at 12 months.

c. What is the average biomass for the first 12 months? What was the

initial biomass? Sketch hcw you think the graph of biomass/versus

time would appear. Mark on the vertical axis the initial, final

and average biomass values.

3. Assume that a radioactive element disintegrates so that the number (N) of

atoms present at a given time (t) decreases at a rate proportional to N itself.

Let k be the constant of proportionality and No be the number of atoms present

at t = 0 (thus N(0) = No).

a. With the derivative representing the rate of change of N, use the

above defined parameters and variables to write an equation for the

rate of decrease in the number of radioactive atoms with passing time.

b. Solve this differential equation for N(t) so that the solution satis-

fies the initial condit.i.on, N(0) = No. (Hint: first separate var-

iables. Do not forge the integration constant!)
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c. Determine the "half-life" : the time (t1) such that

N(ti) = .5 No .

At t = t
1,

half of the original number of radioactive atoms have

disintegrated (decayed).

d. We now make certain assumptions which will allow us to estimate the

age of a piece of wood by radiocarbon dating:

i) living organic material contains the carbon isotopes C12 and

in a fixed proportion independent of time,

ii) the C12 atoms do not disintegrate,

iii) the CI4 atoms disintegrate radioactively with a half-life of

5568 years, and

iv) the C 12 and C 14 atoms are not replaced once the organism dies,

even though the CI4 atoms are being lost through disintegration.

A sample of wood in an American Indian cliff dwelling is measured to

have 87% of the CI4 isotope expected in living wood. Estimate the age

of the sample.
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4. The survival and health of intertidal organisms often depend on the amount

of time they are exposed, i.e. not covered by sea water. A given position on

the beach can be identified by its tidal height :: the height of the tide when

the water's edge just touches that spot. A model of tidal height as a function

of time can then be used to approximate the length of time between successive

high and low tides (or vice versa) during which a position on the beach is ex-

posed.

The following data were taken from tide tables for Port Townsend, Washington

for the day of maximum tide difference for daylight low tides.

Time Height (m)

4:35 2.47

11:49 -0.82

19:40 2.77

For each of the two times intervals 4:35-11:49, 11:49-19:40, the model uses the

following cosine function fitted to the tide data:

H = a cos (b(T-Th)) + Ha, Ha
high tide + low tide

2

a. Sketch a graph of the cosine function with the maximum at the high

tide level and a minimum at the low tide level for the first time

interval. What do the constants a, b, T
h

represent? Calculate these

constants and H
a

for each of the two time intervals.

b. The constant H
a

seems to be the average tide height. Verify this for

the first time interval by evaluating the appropriate definite integral.

Prove that the average height H for the two intervals combined can be

written as the weighted average of the average heights H1, H2 for both

subintervals. That is, show that (using decimal hours)



19.67

=
1

15.09

47

ii .85 w
H2.

H(t)dt =
77.24

15.09 H1 15.09

4.58

c. Fbr a point on the beach at the 0.0 meter tide level, how long is

it exposed between these successive high tides? (Hint: find the

inverse function T g(H), but be careful with the second interval.)

Least Squares

5. Write equation (13) using y(xi) = Axi + B. Evaluate the two first partial

derivatives and, by setting both equal to zero, obtain two linear equations in

A and B.

6. a. Fbr the following data, derive'the "least squares" line and prove

that for your choices for A and B, the sum of squares is at a true

minimum:

f(x,y) is at a minimum at xo, yo if, for x=x0, yy0

i) 8f /8x = 8f /8y = 0 ,

ii) (a2fi8x2)(82fi8y2)
- (azfiaxay)z > 0 , and

iii) ef/8x2 > 0 .

52
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Data from fig. 8 in text.

x

3.0 39.0

5.3 55.0

9.6 57.5

18.0 60.0

30.0 57.0

6. b. Now determine a "best" exponential fit to the above data. First

transform the desired function

y = Axe

into a linear function (with respect to x)

h(x,y) = f(A,B) + g(A,B)x.

A neater format is

h= f + gx.

Make a table of values for x and h. Determine the least squares

line through this new data set and, in the process, calculate f, g,

and thus A, B.
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Answers to the Problem Set

1. a. A(T) represents the total change in the resource. Thus the

rate of change, P(t), is integrated:

T

A(T) = P(t)dt.

0

b. With P(t) = P
o
e
kt

'

A(T) = Poe
kt

dtjf

0

= Po(l/k)e
kt

T

0

(Po /k"e

c. The initial use rate is P
o
, the rate of increase is k, and the time

interval ends at 1983-1973 = 10 years. Thus

P
o

= 6.99 x 10 kg

k= .08

T = 10.0 years,

and from (b),

A(10) = (6.99 X 109/.08)(e (.08)(10)-1)

= 107. x 109 kg .

$4
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1. d. We solve for T. The total change equals the current reserves

(at t = 0); thus the parameters are

116 = 6.99 x 109 kg

k= .08

A(T) = 336 x 109 kg

and from (b),

T

336. x 109 = (6.99 x 109

1

)e.08tdt

0

= (6.99 x 109/.08)(e08T-1)

3.85 = e
.08T

- 1

4.85
e.08T

km 4.85 = .08 T

T = (kn 4.84)/.08 = 19.7 years.

2. a. The initial conditions are N(0) = 5000, W(0) = 80.

N(0)

W(0)

=

=

=

5000e
.5(0)

= 5000(1)

10000(1 - .8e
-.05(0))3

10000(1 - .8)3

= 5000

= 10000 (.2)3 = 80.

b. Let B(t) represent the total biomass.

B(t) = N(t)W(t)

With t = 12,

B(12) = 5000e
.5(12)

(10000)(1.-.8e
.05(12) 3

= 21.88 x 103 g.
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2. c. Average biomass i(12) uses the definite integral

12

B(12) = (1/12) B(t)dt.

/
0

Substitution for B(t) gives

12

1(12) = (1/12) 5.0 x 107e'5t(1.-

J

.05t
.8e

3
dt

0

12

= 4.17 X 106
e.5t(i. .8e-.05t)3

dt.

0

Integrate by parts, where

u = (1 - .8e 051)3

dv = e
.5t

dt.

12

5t-.
e (1 - .8e

-.05t
)

3
dt

0

e
-.5t

= (1 - .8e
-.05t

)

3

-.5

12

-.5t

e-
(3)(1 - .8e t)2(.04)e dt

-.05 .05t
dt

12

0 12

- .55t
= (-.00496)(.177) + .016 + .24 e (1-.8e-05t)2dt.

56

0
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2. c. (contd.)

Integrate by parts again, with

u = !1 - .8e
-05t

)
2

dv = e
-.55t

dt

An intermediate stage is (two steps skipped), with the left side included,

12

jE.7.5t(1 - .CeA5t)3dt

0
12

= .0324 + .0349
- .60t
e

J

-
- .8e

.05
t)dt

0

12

= .0324 + .0349 e
.-

J

60t-
.8e

.65t
dt

0

= .0324 + .0349(.4353)

= .0476

B(12) = (4.17 x 106)(.0476) = 1.98 x 105g .

You might assume the function is monotone decreasing. The rapid

initial weight gain, however, causes a slight initial rise, as

shown below. The initial biomass is the product of initial weight

and initial population:

B(0) = W(0)N(0) = (5000)(80) = 400x103 gm = 400 kg.
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0 2 4 6 8 10 12
TIME (MONTHS)

FIG. 1A. TROUT BIOMASS MODEL

3. a. The rate of change of N is a decrease (i.e. negative) and proportional

to N. For k > 0, we have

dN
dt

= -kN

b. Separate variables.

dN
= -kdt

dN
N

= -kdt

Zn N = -kt + C, C = integration constant

N = e
-kt

e
C

But N(0) = N0. Thus

N(0) = N
0
= e0eC = eC

and the solution is

N(t) = Noe
-kt
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3. c. Substitute into the solution equation.
- kt1

N(t1) = Noe

- kt
1

.5 NO = NOe

2n(.5) = -kt

t
1

= - (Ln(.5)) /k

= (2n 2)/k

d. Let N(t) be the number of C14 atoms in the wood. Then

N(t) /N0 = .87 .

The half-life of 5568 gives

an 2)/k = 5568

k = (Stn 2)/5568 = .0001245.

The equation for N(t) then gives

N(t)/N
0
= e

kt

.87 = exp(- .0001245t)

2n(.17) = -.0001245t

t = 1119 years



4. a.

3

55

1
4 6 8 10 12 14 16 18 20

TIME (HOURS)
FIG. 2R. COSINE FITTED TO TIDE INTR.

a = half the total change in height (amplitude of cosine function)

= (high - low)/2

b = 2n/p where p = period = 2IThigh
Tlowl

T
h
= "phase" lag. The simple cosine function begins at t=0,

so the lag is the time of high tide.

First interval:

a = 1.645m., b = 2n/(214.58-11.82I) = 0.434 (decimal hours)

T
h

= 4.58, H
a

= 0.825m.

Second interval:

a = 1.795m., b = 2n/(2119.67-11.82I) = 0.400

T
h

= 19.67, H
a

= 0.975m.
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b. H = average height, first interval 7.24 hours

11.82

7.24
11. 1 a cos (bt - bT ) + H

a
dt

4.58

7124 (-a/b)(sin(11.82b - 4.58b) - sin(4.58b - 4.58b))

7124 (Ha)(11.82 - 4.58)

= -
7.24b

(sin(7.24(27q2(7.24))) - 0)

+H
a

= H
a
, since sin n za 0.

For the two intervals combined, we must weight the average height

in each interval by the length of the time interval.

19.67 11.82 19.67

H - 15109
09 15

1 H(t)dt =
1

09

1
H(t)dt + H(t)dt

.

4.58 4.58 11.82

11.82 19.67

7.24 1 7,85

15.09 7.24
H(t)dt +1-5.):-. 7.1 H(t)dt

4.58 11.82

7.24 7.85

15.09 H1
H

1 15.09 2

Y;

61



57

c. We need the times of day when the 0.0 tide level is reached.

:4

g 0

3

2

10 12 14 16 18 20

TIME tHOURS3

. k EXPOSEDA

FIG. 3A EXPOSURE TIME AT 0.0M TIDE HEIGHT.

The easiest way is to invert the function H(t) for each subinterval.

H = a cos(b(T - Th)) + Ha

(H - Ha)/a = cos(b(T - Th))

cos
-1

((H - Ha)/a) = b(T - Th)

(1/b)cos-1((H = Ha)/a) + Th = T

Now substitute the appropriate constants, and 0 for H.

First interval:

T .434
cos-1(-.825/1.645)

=

= 9.41 = 9:24 a.m.

Second interval:

1
T =

.400
cos

-1
(-.975/1.795) + 19.67

= 25.033.

This answer is obviously wrong since the 0.0 height must be attained

some time between low tide (11.82 hours) and the next high tide

(19.67 hours). The fallacy is in treating the "arccos x" as an

inverse function. It is one-to-one onla when the domain of "cos x"
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4. c. (contd.)

is restricted to (0,th i.e., arcos x always has [0,1T] as its range.

Thus the first term

5.

1

.400
1

cos (-.975/1.795)

correctly tells how far from the maximum (Th) is the desired time T,

but not whether T lies above or below Th. With the second subinterval,

T is obviously below Th and hence we subtract from Th:

T = 19.67 -
.400

cos
-1

(-.975/1.795)

= 14.31 hrs. - 14:18 .

n
E = [Pixj+B - Yi]2

i=1

DE P.
"7, 2.2[Axi+B - yi]xi

i=1

Set equal to 0:

n
2[Axi+B - yi]xi = 0

i=1

[Axi+B - yi]xi = 0
i=1

n
= I2[Axi+B - yi]

i=1

Equate to 0 and divide by 2:

(a)

[Axi +B - yi] = 0 (b)

1=1
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5. (contd.)

Thus we have two equations which are linear in A and B. This

is more easily seen if we rework them. From (a)

A( E x2) + B( E xi) - ( E xiyi) = 0 .

i=1 i=1 i=1

And (b) becomes

A(Exi) +nB- (Eyi) =O.
i=1 i=1

6. a. Eq. (a*) is:

A(1353.25) + B(65.90) - (3750.50) = 0.

Eq. (b*) is:

A(65.90) + 5B - (268.50) = 0.

We solve for A and B.

B = (268.50 - 65.90A)/5.

A = (3750.50 - 65.90B)/(1353.25)

= 2.771 - 2.615 + 0.642A = 0.156 + 0.642A

Thus

A = 0.156/(1. - .642) = .436

B = (268.50 - 65.90(.436))/5. = 47.95.

To prove that these values for A,B do give a minimum sum of

squares, we must show that, for A = .44, B = 47.95,

i) 3f/3A = 3f/3B = 0

ii) (32f/310)(32f/3B2) -
(32fat3B)2 >

iii) 32f/3A2 > 0,

64



6. a. (contd.)

where f is the sum of squares

We have

60

f = E(y, - Axi - B)2 .

i

of/3A = -2 E(y, - Axi - B)xi
i

was = -2 E(y, - Axi - B) .

i

Since A,B were calculated by setting these derivatives to zero, we

do not need to check (i).

32f/3A2 = 2 E xi; a2f /3B2 = 2n
i

a2f/alos = 2 E xi
i 1

Substituting into (ii) gives

(2 Ex)(2n) - 4(E xj)2 = 20 Ex! - 4(Exi)2
i 1 i i 1 i 1

= 20(1353.25) - 4(65.90)2

= 9693.76 > 0 .

Note that (iii) is obviously satisfied so we have a minimum for f.

b. Begin with

y = AxeBx

Divide by x to isolate the exponential function.

y/x = AeBx
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6. b. (contd.)

Now take logarithms of both sides.

kn(y/x) = kn A + Bx

Thus, in the form h = f + gx, we have

h = kn(y/x),

f= £n A,

g = B.

The transformed table is below.

x h

3.0 2.565

5.3 2.340

9.6 1.790

18.0 1.204

30.0 0.642

The least squares calculations give the transformed equation

and thus

h = 2.642 - 0.071x

y = 14.041x e-.
071x

c. The following graph (fig. 4A) compares the least squares line

and exponential curve of parts (a) and (b) with the data

and the exponential curve in the text (eqn. 12). The fit

of eqn. (12) seems superior to that of the curve from (b).
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6. c. (ce:td.)

However, the fit of

h = 2.642 0.071x

to the transformed data is quite good, as shown by fig. 5A.

Thus we conclude that a good least squares fit to transformed

data does not necessarily imply a good curve fit to the

original data.

75 least squares exponential fit

55

45

least squares
linear fit

0 5 10 15 20 25 30
OXYOEN CONSUMPTION

FIQ.4A. COMPARISON OF FITTED GROWTH FUNCTIONS.

3

3

0 5 10 15 20 25 30
X (OXYOEN CONSUMPTION)

FIG. 5A LEAST SWAMI LINE OF TRANSFORMED DATA.
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COMPUTER EXERCISES

Program INTG is both a calculation and graphics routine. Simple integrals

are not calculated. The solutions are predetermined and are plotted or tabulated

as a check on the user's own calculations. Integrals which have no known closed

form solution are calculated numerically, using an adaptation of Newton-Raphson

or Romberg schemes.

The specific user options and restrictions are detailed in the section of

this monograph titled "User's Gufde for Program INTG." This program is designed for

the line printer graphics subroutine PRNT3D, whose operation is described in Gales

(1979). In each exercise, the user must input certain parameter values. Some

parameters control the behavior of the functions. By repeating an exercise with

different parameter values, the user can gain a better intuitive understanding of

the degree of dependence a given function or method has on the various parameters.

1. The function used in eqns. (12) and (15) was determined by trial-and-error

using a calculator. The values of the three function parameters were changed until

a combination gave an acceptable visual fit to the data points. A more consistent

approach is to use least squares. The function is

y C(X+A)e-BX

so the goal is to choose the parameters A, B, C to minimize the error function

E, given by

5

E = E (yi - C(xi+A)e-Bxi)2
i=1

The difficulty with the use of a nonlinear least squares approach is that

the equations for the unknown parameters often must be solved numerilally.

Program INTG uses a Newton-Raphson iterative scheme to evalrlte the parameters.
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Starting values are inputted to the routine which iterates until the values are

relatively constant between successive iterations. The problem is that the

iterates may never converge, or may converge to a loca_ minimum for E which is

much greater than the absolute minimum, and which determines values for A, B and

C that are far removed from thelr "optimal" values.

When the approximation is used only for a curve f say for estimating

derivatives, the disparity between the computed vs. optimal values for the

parameters is of little consequence. However. when the function is used to

suggest a biological mechanism, i.e. each paramete- has a biological interpre-

tation, the differences can lead to erroneous explanations of the data.

Program INTG illustrates the sensitivity of the nonlinear least squares

method to the initial parameter escimates. Use OPTION=1 and try the parameter

values used in eqn. (12) as your initial estimates. Your output will include

a table of values for the iterations on A, B and C, to demonstrate the degree

of convergence. The output will also include the value of the residual sum of

squares and a graph of your approximate Junction and the data points. Repeat

the exercise with different starting values and try to achieve a lower sum of

squares. Be sure to try (A, B, C) (5.0, .05, 5.0) and (6.0, .05, 5.0). To

what value do the iterations converge? What is the graph of the second set?

My minimum sum of squar s was 52.0. Can you find a parameter set (A, B, C) which

gives a lower sum of squares?

2. Another way to use least-squares is to approximate one function by another.

Here we approximate the curve

.045x (3U)
y = 6.1 (x+5.0)e-0

by a straight line

y = Ax + B .
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The goal is not to minimize a sum of squares, but to minimize an integral, also

denoted E, called the "least-squares norm" (see example 8, p. 33). Whereas

example 8 used the function

y = 7.3 (x+3.5)e-'°5x

we will use the above curve, since it gives a better fit to the experimental

data (see exercise 1, above).

a. First, finish example 8 using the above function (eqn. 30), i.e. evaluate

both 8(E2)/8A and 8(E2)/8B, then set both equal to zero to obtain two equations

in A and B. The goal is to minimize:
30

E2 J [6.1 (x+5.0)e
.045

x-Ax-B]2 dx (31)

3

(Hint: when evaluating 8E2/8A and 8E2/8B, differentiate under the integral sign.)

b. Now, before solving these two equations for A and B, look at the graph

from exercise 2 or even figure 7 and choose values for the constants A and B

which you believe will describe a line which is a fair approximation to the

curve. Now use program INTG with OPTION=2. Your input includes values for A

and B. This option causes the least-squares integral to be calculated using a

Romberg numerical integration scheme. The output is a table of the iterations

of the least-squares integral (to illustrate the convergence of the numerical

routine) and a graph of the data points, the function of eqn. (30) and your linear

approximation. You may wish to repeat the sxcrcise with several choices for A

and B in an attempt to improve the fit. Now solve your equations for A and B

and input them into program INTG. How close were your previous guesses? Does

a dramatic reduction in the integral (31) correspond to a much improved fit?

3. The stomates in leaves are small pores which permit the exchange of gases

and water vapor. The stomates change shape from a near circle to a slit in order
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to adjust this exchange in response to varying environmental conditions. Each

stomate is roughly elliptical in shape with constant perimeter throughout the

shape change. The area of the opening is then given by

a

2b

a
(a2 -x2) dx

-a

where 2a, 2b are the lengths of the major and minor axes, respectively, of the

ellipse.

a. First evaluate this integral using either of two trigonometric substi-

tutions: let x = a cos° or let x = a sin8. Be sLre to check the limits

on 8 and the sign of each trig function in the transformed integrand. Your re-

sult must be non-negative since the area is non-negative. For a fixed perimeter,

say 35 p, the area should be maximal when the hole is a circle, i.e. a=b. Demon-

strate this by evaluating the area when a=b=5.57, and when a=5, bm6.09. (The

perimeter formula is P = 2n12+b2)/2 .)

b. Use your area formula (the answer to part a) to investigate the dilution

of the sun's energy flux due to the angle at which the rays strike the earth's

surface. The dilution is caused by a fixed amount of solar energy being spread

over a larger area (as the rays become more horizontal) and thus the energy per

unit area decreases as compared to the energy density of vertical rays.

The situation is pictured below, giving a top and side view for two in-

clination angles. The sunlight passes through a circular hole in an opaque sheet

and strikes the earth at an angle R from the perpendicular.
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The illuminated area changes from a circle (R=0) to an elongated ellipse

(as R increases). For a given diameter B, write the illuminated area A as a func-

tion of the angle of inclination R. Check your result by choosing values for

B and R and calculating the dilution D, which equals the circle's area divided

by the ellipse's area. Now use program INTG to check your calculations, using

OPTION=3. The input includes B and R. Your constraints are 0 B 5,

0 R $. 1.57 radians. The output includes the dilution coefficient and a graph

of the elliptical region. Does D = .6 mean more dilution (less energy density)

than D = .3 or vice versa? The inclination angle in Minnesota changes from about

20° in summer to 65° in winter. What is the resulting change in energy density,

measured by D?
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SOLUTIONS TO THE COMPUTER EXERCISES

1. The starting parameter set (A, B, C) = (5.0, .05, 5.0) causes

convergence to the values (5.0, .045, 6.2), with sum of squares equal to

52.2. The starting set (A, B, C) = (6.0, .05, 5.0) iterates (50 times)

to the values (12535, .005, .004), with sum of squares equal to 454. The

graph for the latter set is essentially a straight line, and a terribly

poor fit.

2. a. First partial derivatives:

D(A E2).

3

f30.

DA
(6.1(x + 5.0)e-

.045x
- Ax - B)2dxD1

30 -.045x
= 23f (6.1(x + 5.0)e - Ax - B)(-x)dx

Equating to zero and dividing by 2 gives

.30 .045
30

0 = -J 6.1(x2 + 5x)e
xdx Ax2 + Bx dx .

3 3

Successive integration by parts (for the first integral) and direct

integration (for the second integral) yield the first equation:

0 = 8991.0A + 445.5B - 25984.9

as
B
lf) =

3 DB
f31)-1'(6 1(X + 5.0)e-'

045x_ Ax - B)2dx

30

u -23f (6.1(x + 5.0)e
-.045x- Ax - B)dx

Equating to zero, dividing by 2 and solving yields the second equation:

0 = 445.5A + 27.0B - 1568.8 .
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b. The solutions are

A .061, B N 57.1 .

The least squares integral using the approximation Y .061x + 57.1

is 546.452.

3. a. Let x-mi,a sin 0. The limits of integration are then changed as

follows:

-a 4x <a

-a <a sin 0 4 a

-1 4 sin 0 41

There are many options for the range of 0. We first change the integrand

to see which range is suitable. We know the integrand is non-negative

since x2 4 a 2
. Substitution gives

x N a sin 0

dx N a cos 0 d 0

2.
bra7 x ax 2. S2 - a2sin 0 a cos e d 0

The integrand is then non-negative when the positive iiquare root is used

and when cos 0 is non-negative. Thus, we choose the limits of integration

to be -

w
since

sin (- ;1,11 ) -1, sin ( ) 10 1 and

cos 0 .4 0 if - 221 4 0 E .

integral is then

Tr'2

f a2sin20 a cos 0 d 0 N a2 f /17-7.7:I;10 cos 0 d 0

-7/2 -1112
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n/2 n/2

a2 f cos20 d 0 =
2 sin 201

- n/2
2 4 '

-n/2

a2 [ n/4 + (1/4)(0) - (-n/4) - (1/4)(0)] = rra2 /2

1Thus A = 32-3 f1677:7Jdx = nab .A =28
- 1

b.

When a = b = 5.57, A = 97.47 .

When a = 5., b 6.09, A = 95.66 .

r.41/
1.41 x

From the right-hand diagram, we have

cos R = B/x

and thus

x = B/cos P .

The minor axis is then the circle's diameter, B. In the answer to part

"a", we replace 2a by B/cos R and 2b by B.

A = nab = n(B/2cos R)(B/2)

= mB2/(4 cos R) .

Since the area of the circle is nB2/4,the dilution coefficient is

nB2/4
D = = cos R .

n22/(4 cos R)

'7 6-i
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Thus D = .6 means less dilution than D = .3, and D = 1.0 means no

dilution.at all. For Minnesota, the coefficients are

D = .94 for R = 20°

D = .42 for R = 65° .
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USER'S GUIDE FOR PROGRAM INTG

Identification

INTG - A program which determines the values of certain integrals to check
the user's own calculations or to show the dependence of each solution on
various parameter values.

Authors - R. Hertzberg, M. Bailey, and L. Anderson, Center for Quantitative
Science in Forestry, Fisheries and Wildlife, University of Washington,
Seattle. April 1979.

Purpose

Program INTG is the computer supplement to the module "Calculus-

Integration" by Richard C. Hertzberg. This module reviews the basic concepts

of integral calculus using examples from various areas of ecology, and

discusses some recent uses of definite integrals in error analysis, namely,

residual norms. INTG may be applied to three problems:

i) a numerical, nonlinear least-squares fit of a function to data points

using a Newton-Raphson iterative scheme,

ii) a numerical least-squares approximation of an exponential type of

function by a straight line using a Romberg iterative scheme, and

iii) the determination of the area of an ellipse, representing the dilution

of solar energy flux resulting from the rays striking the ground surface

at a nonzero angle of inclination.

All the problems illustrate the dependence of the solution on

certain input parameters. Problems 1 and 2 require initial estimates for

the function parameters. Problem 3 requires the angle of inclination and

the cross-sectional diameter of the solar rays.

Operation

INTG reads in any number of data sets provided by the user and
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nerates tables and/or printer plots (see Gales, 1978) until it encounters

NIS directive (see Input).

The'operation of INTG is primarily controlled by an input variable

named OPTION which may take on three values: OPTION=1 selects a function fit

to data points, OPTION=2 selects a line fit, and OPTION=3 selects solar

dilution. For OPTIONS 1 and 2, the program iterates the numerical approxi-

mation 50 times, or until the residual becomes too large. For OPTION=3,

the program evaluates the exact solution.

Since INTG automatically generates valid default values for each data

set, the user may override some, all, or none of those listed in the INPUT

TABLE. Thus, INTG will run correctly without the user specifying any input

values at all.
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Program Organization

The program is organized according to the following f

Output
appropriate

error
messages

NODFLT s .T.?

No

Yes

Read default values for
all variables from the
built-in default file

Read in the next
user-supplied data set

Yes-+

Check for errors in
the input set just read

Yes
Were errors found?

4. No

Calculate the appropriate
integral; iterate the

calculations for
OPTION=1,2.

Write out X, Y, Z
coordinates for plots or
tabular output plus the

titles for the plot.

ti

Call the printer plot
subroutine QQPR3D

which generates the plot

8i

Terminate
program
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Input

All input is handled by a format-free input package (Gales and

Anderson, 1978) which permits a user to assign values to variables by a

namemialue convention. No variable need be explicitly assigned by the

user, however, as unassigned variables automatically assume default values.

The input consists of any number of data sets, each of which is terminated

by a dollar sign ($). Comments in data sets are enclosed by slashes (1).

Each data set generates a separate printer plot.

The input for INTG is divided into three classes: (1) variables

having mathematical or physical significance: OPTION, A, B, C, DIAM, ANGLE;

(2) variables which control certain program operations, such as program

termination or the handling of default input: IPRINT, ECHO, NODFLT, and

'FINIS; and (3) variables which control the printer plots (default values are

in parentheses:: MIN (0), XMAX (0), YMIN (0), YMAX (0), MIN (0), MAX (9),

XRICH (0), YRICH (0), DFAULT (0), OVPRNT (.F.), AVE (.F.), INT2D (.F.),

NX (60), NY (45), and MAP (0,1,2,3,4,5,6,7,8,9). The variables in the first

two classes are explained in the following INPUT TABLE whereas the printer

plot variables are explained in the user's guide for PRNT3D (Gales, 1978).
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INPUT TABLE

Name
Type and
Dimensions Range Limits Descriptions

OPTION Integer 1,2,3 Number of problem selected:
1 = function fit to data points
2 = line fit to a function
3 = solar dilution
Default value is: OPTION = 1

A,B,C Real 0.1,10.0 Parameters of fitted function.
A, B and C are used in OPTION=1;
A and B only are used in OPTION=2;
and none are used in OPTION=3.
Default values used are A = 5.0,
B = 0.04, C = 6.0.

DIAM Real 1.0,5.0 Diameter of solar beam used for
OPTION = 3 only.
Default value is: DIAM = 1.0.

ANGLE Real 0.0,1.570763
i Angle of inclination of solar beam

used for OPTION ma 3.

Default value is: ANGLE = 0.6.

IPRINT Logical .F.,.T. A logical value which causes
the current values for all input
variables (default as well as
current user input) to be printed.
Default value is: IPRINT = .F.

ECHO Logical .F.,.T. A logical value which causes the
user's input to be echoed if
ECHO = .T., or suppresses echoing
if ECHO = .F.
Default value is: ECHO = .T.

NODFLT Logical .F.,.T. A logical value which suppresses
the input of default values if
NODFLT = .T.
Default value is: NODFLT = .F.

FINIS Logical .F., .T. A logical value which causes
program termination if and only

if FINIS = .T.
Default value is: FINIS = .F.
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The last four variables deserve special mention:

1. The logical variable IPRINT controls the output of all input ',variables

which are currently in effect (default values as well as tbw:e specified

in the current input set). Setting IPRINT=TRUE (or T or .1.) displays

the current values for all input variables; setting IPRINT=FALSE (or F

or .F.) suppresses the display.

2. The logical variable ECHO controls the echoing of the input cards.

Setting ECHO=TRUE causes the subsequent input set to be echoed;

setting ECHO=FALSE suppresses the echo for the subsequent input set

3. The lopical variable NODFLT can be used to inhibit the automatic

assl of default values to input variables. If NODFLT is set

TRUE i LAe current input set, then the current input set is assigned

default values as usual, but all subsequent input sets merely accumulate

more input values. In effect, the input values which exist after the

i-th input set is read, become the default values for the (i +l) -th input

set. The standard default values may then be restored by setting

NODFLT=FALSE, but, again, the effects of this change are delayed until

the next input set is read. To a limited extent, NODFLT permits a user

to set up his own default values and can be very useful for executing

a number of input sets which differ only in a few parameters. Consider

the following example in which a user wishes to vary the angle of inclina-

tion of the solar beam, but keep all other parameters the same:

/INPUT SET 1: THE FOLLOWING VALUES BECOME THE DE FACTO/

/DEFAULTS FOR ALL SUBSEQUENT INPUT SETS:

NODFLT = TRUE, OPTION = 3, DIAM = 1.4, ANGLE = 0.2, $

/INPUT SET 2: UP THE ANGLE:

ANGLE = 0.4, $
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/INPUT SET 3: UP IT AGAIN:

ANGLE = 0.6, $

/INPUT SET 4: YET AGAIN:

ANGLE = 0.8, $

/INPUT SET 5: NOW STOP

FINIS = TRUE, $

4. The logical variable FINIS controls program termination. The user must

add the card:

FINIS = TRUE, $

as the very last input set. If FINIS is not set, the program will termi-

nate abnormally.

Output

For eact, option, INTG produces one or more tables with convergence

or supplementary information, and a printer plot (Gales, 1978) which contains

a title, x and y axis annotation, printer plot lines, and a plot legend

which helps numerically interpret the plot. The latter is best explained

by an example. Consider the plot in the first sample run which displays a

function fit to a set of data points. The function and parameter values are

specified in the title, as follows:

NP1LINEAR LEAST SQUARES FIT OF

Y = C * (X+A) * EXP (-8*X), (2)

TO COHO SALMON GROWTH DATA (1)

A = 5.48 B = 0.04 C = 5.67

The coho growth rates are indicated by the scattered "1" points in the plot,

and the fitting function by the densely packed "2" points. For example,

a coho point ("1") near the top middle of the plot is positioned between
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1.627 and 2.085 on the x-axis and above 5.962 on the y-axis. Since`the scale

factor for both axes is E+01 (i.e., 10
1
), the data point represents a growth

rate of about 60.0 mg/g/day for a dissolved oxygen value of about 18.1 mg/l.

The last two lines of the legend specify the value of the z-axis levels and

the number of points mapped to each level. In this case, a large number

(-9 means >99) were mapped to level 0, five were mapped to level 1 (and show

up as "1"-s), 64 were mapped to level 2, and so on.

Restrictions

The user must restrict all input variables according to the range

limits listed in the input table, in order to avoid unrealistic physical

values.

Error Messages

There are three types of errors which may occur when attempting to

execute program INTG:

1. Syntax errors in the user's input

2. Range check errors

3. Plot parameter errors.

For type 1 and 2 errors, the program flags the error, skips the calculations

and plotting, and then reads in the next input set. For type 3 errors, the

.//
program sup'presses plotting, outputs an error message, and reads the next

data set. For a complete description of type 1 and type 3 error messages

and actions, refer to the user's guides for the format-free input package

and printer plot package, respectively.

Type 2 error messages are of the form:
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------ERROR NO. n IN

x

MUST BE GREATER THAN y

MUST BE LESS THAN z

where "n" is the number 2, 3, 4, 5, or 6; v is the name of a variable (A, B,

C, ANGLE, or DIAM), and x, y, and z are numbers.

Error message number 1 is slightly different:

-,,,-ERROR NO, 1 IN

OPTION x

OPTION MUST BE 1, 2, OR 3

Sample Runs

The annotated listing starting on the next page illustrates the

control cards and input cards for three sample runs. Each input set must be

terminated by a $ and generates one or more tables and a printer plot.

The output appears on the next few pages.
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XrNTGPT10PP2. INPUT SETUP FOR PROGRAM ..INTG
ACCOUNTp9XM08C00p****4**.
COMMENT.
COMMENT.
COMMENT. ***************************************
COMMENT. * THE FIRST CARD SPECIFIES THE JOB NAME*
COMMENT. * XINTG , THE CENTRAL PROCESSOR TIME*
COMMENT. * , 10 SECONOS, AND THE PRIORITY (2) *

COMMENT. * THE MEMORY IS 60000 OCTAL by DEFAULT.*
COMMENT. ****************************************
COMMENT.
ATTACHRBINTG,I0BINTG.
ATTACHRBFF,IDBFF.
ATTACH,BPR33,10BPR30.
COMMENT.
COMMENT. *****************MM$1*******41111114419111.0***111

COMMENT. * THE ABOVE CARDS ATTACH PROGRAM BINTG*
COMMENT. * (THE BINARY OF PkOGRAM INTG ), AND *

COMMENT. * THE SUPPORT ROUTkNES BFF (FREE
COMMENT. * FORM INPUT), AND\BPR3D (THE PRINTEK*
COMMENT. * PLOT PACKAGE PRNT30). THEY APE ALL *

COMMENT. * IN BINARY FJRM
COMMENT. ****************************************
COMMENT.
LOAD,B1NTG.
LOA0pdFF.
LOAD,BPR30.
EXECUTE,INTG.
COMMENT.
COMMENT. ***************************************
COMMENT. * THE ABOVE CARDS LOAD THE PROGRAM AND*..
COMMENT. * THE SUPPORT ROUTINES AND PASS CONTROL A
COMMENT. * TO INTG FOR EXECUTION
COMMENT. 410,0***********************************4
COMMENT.
*EOR

/ /
THE FOLLOWING DEFAULT VALUES ARE ASSUMED UNLESS
OVERRIDEN dY EXPLICIT INPUT VALUES*

/ /
/ *** **PROGRAM PARAMETERS*****

OPTION 1,

A 5.0, B 0.04, C 6.0,

/ 'ANGLE 0.6, .DIAM 1.0,
ECHO TRUE, IPRINT FALSEPNODFLT TRUE,
FINIS FALSE,

/ *****PLOT PARAMETERS*****
NX 60, NY 45, ZMAP /

XM1N 0, XMAX 0, YMIN Op YMAX 0,

ZMIN 0, ZMAX 9, XRICH 0, YRICH 09

DEFAULT 0, OVPRNT F, AVE F, 1NT20 F,

/************************RuN 1*********************** ***** */

A 5.48, b 0.04, C 5.67,

/ /
/************************RUN 2********************************/
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/ /
OPTION 2, A 0.70, Doe 51.0:

/ /
/ /
/************************RuN 34.*** ******,******(*************/
/ /

OPTION 3, ANGLE 1.0, DIAM 1.01,

XRICH .05,YRICH .05,

/************************$ 701) pRoGRAm**44.**********0*********/
/ /

FINIS TRUE,s
*EOR
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kOGRAM INTG READY FOR INPUT
0 /

/ /

/ . THE FULLOWING DEFAULT VALUES RE ASSUMED UNLESS /
/ OVERRIOEN 8Y EXPLICIT INPUT VALUES: /

/ /
/ *****PROGRAM PARAMETERS***** /
/ OPTION 1, /

/ A 5.0, B 0.04, C 6.0, /

/ ANGLE 0.6, DRAM 1.0p" /

/ ECHO TRUE, MINT FALSEpNODFLT TRUE, /
/ FINIS FALSE, /
/ *****PLOT PARAMETERS***** 0
/ NX 60, NY a 45, ZMAP 0,1,2,3,4,5,6,7,8,9p /
/ XMIN 0, XMAX a 0, YMIM 0, YMAX 0, /

/ ZMIN 0, ZMAX 9, XRICH Or YgiCH 0, /

/ .:' DEFAULT 0, OVPRN7 at F, AVE F. INTL) F, /
t /

/ /
/4110.**************0*10,80$#RUN 1*************************0******/
/ /

A 5.48, B 0004i, C 5.67, $

TABLE 1.A CONVERGENCE OF THE ITERATED PARAMETERS

ITERATF:N A 8
.

C RESIDUAL
10 4,379 .045 6.275 .029E+02
20 4.641 .045 6.300 .529E+02
30 , 4.973 .045 6.146 .521E+02
40 5.324 .044 5.942 .525E+02
50 5.676 .043 5.733 .532E+02

TABLE 1.ii DATA(A,Y) AND APPROXIMATION (F)

X(J) Y(J) F(J)

. 3CW.1,01. .390E+02 .436E+32

.53uE+01 .550E+02 .500E+32

.960E+01 .575E+02 .57S +32

.160E+02 .600E+02 .623E+02

. 300E+02 .570E+02 .558E+02
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NONLINEAR LEAST S4OARES FIT OF
YoC*(X+A).EXP(-8*X), (2)

TO COHO SALMON GROWTH JATA (1)
Ao 5.68 b .04 Co 5.73

.300 .712 1.169 1.627 2.0135
X X X X X

6.226Y 2222222222
I 222 222

2.542
X

3.000
X

G 222 222
R 1 22 222
0 I 2 1 2222
W 5.962Y 22
T I 2 22
H 1 2 22

I 2 22
R I 1 22-
A 5.697Y 2 2 I
T I 2 22
E 2

I

( I 1 2
M 5.433Y 2
G I 2
/ I

G I 2
/ I 2
D 5.169Y
A I 2
Y I

1 I 2
I

4.904Y 2
I 2
I

I 2
I

4.640Y
I 2
I

I 2
I

4. 376Y2
I

I

I

I

4.111Y
I

I

I

3.900Y1
X X X X X X ::

.300 .712 1.169 1.b27 2.065 L.542 3.000
DISSOLVED OXYGEN (MG/L)

SCALE FACTORS XAXIS: E+01 YAXIS: E+01 ZAXIS: E+00
Z0-2441 0(-9), 1.000( 5), 2.000(64), 3.000( 0), 4,000( 0)
Z5-29 5.000( 01. 6.000( 0), 7.000( 0), 8.000( 0), 9.000( 0)
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PROGRAM -INTG- READY FOR INPUT
/

/ /
/************************RUN 2*****************************/
/ /

OPTION 2, A 0.70, B 51.0, $

TABLE 2.A CONVERGENCE OF ITERATIONS OF L.S. INTEGRAL

1220.205
1213.685
1213.665
1213.665
1213.665
1213.665

TABLE 2.8
VALUES FOR DATA (X,Y), THE EXPONENTIAL FONCTIUN G(X)4
AND THE LINEAR APPROXIMATION L(X)

G(X) L(X)

3.00 39.00 42.64 53.10
5.30 55.00 49.50 54.71
9.60 57.50 57.82 57.72
18.00 60.00 62.41 63.60
30.00 57.00 55.35 72.00



LEAST SQUARES FIT OF A STRAIGHT LINE, (3),
TO Y6.1*(X+5.0)EXP(-0.045*X), (2)
WITH ORIGINAL DATA, (1), INCLUDED.
LINE Is Yu .70*X + 51.00

.300 .712 1.1b9 1.627 2.085
X x X X X

2.542
X

3.000
X

7.158Y 33
I 33

G I 333
R I 333
0 I

W 6.788Y 333
33

T I 333
H I 33

I 333
R I

A 6.418Y 33
333

T I 333
E. I 333222

I 22233 22222
( I 222333 2222
H 6.047Y 22 33 22
G

I

22 333 1
/ 333

222
22

G I 2 33 2222
/ 333
D 5.677Y 3332 22 I

A I 3322 22
Y I 1333 2
) I 333 2

33
5.307Y33 2

I 2
I 2
I 2
I 2

4.937Y
I 2
I 2
I

I 2
4.566Y

I 2
I 2
I

12
4.196Y

I

I

I
3.900Y1

X X X X X X X

.300 .712 1.169 1.627
DISSOLVED OXYGEN (MG/f1065

2.542 3.000

SCALE FACTORS X AXIS] E+01 YAXIS; E+01 Z AXIS; E+00
ZOZ4 0(-9), 1.000( 4), 2.000(54), 3.000(67), 4.0001 0)
Z5Z9 5.000( 3), 6.000( 0), 7.000( 0), 8.000( 0), 9.0001 0)
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PROGRAM -INTG- READY FOR INPUT/ /
/ /
/************************RuN 3********************************/

OPTION 3, ANGLE 1.0, DIAM 1.0,
XRICH .05,YRICH .0. S

,SOLAR ENERGY DILUTION DUE-TO ANGLE OF INCLINATION

INCLINATION ANGLE 1.00 HOLE DIAMETER 1.0

AREA OF CIRCULAR HOLE .79

AREA ILLUMINATED 1.45 DILUTION COEFFICIENT .5403
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SOLAR DILUTIUN
ELLIPTICAL REGION UN GRJUND ILLUMINATED

. BY SUNL1%;HT PASSING THROUGH A CIRCLE OF
DIAMETER 1.00, ANGLE 1.00 RADIANS

-1.851 -1.286 -.659
x x

.596 1.223 1.851
x x x x x

1.000Y 111111111111
I

P 1
O. 1

S I

I .773Y
T 1

I I
0
N I

.545Y
A 1

L I

0
IN

G .313Y
I

tl I

I I

N I

0 .091Y
R Il

Il
A II
X I

I -.136Y
S *I

I

0 I

F I

-.364Y
E I

L I

L I

I I
P -.!;91Y
S I

E I

I

I

-.818Y

I

-1.000Y
x

-.031-1.851 -I.2d6 1.31
POSITig5gLONG MAJOR AXIS OILLIPSIE-4223

SCALE FACTORS X -AXIS: E+00 Y-AXIS: E+00 Z -AXIS; E1.00
7.0-L4 0(-9), 1.000(-9), 2.000( 0),
P5 -I9g 5.000( 0), 6.000( 0), 7.000( 0),

1

1

1

1.

11

11
1

11
11

111
11111 11111

111
11

11
1

1

11
1

1

1
1

1

1
1

1

1

I

1 1

1

I

1 1

1 1

1 1

1

1
I

1 I

1 1

1 1

1 1

1 1

1 1

1 1

1 I

1 1

1 1

1 1

111
11

1

1 1

1 1

1111
11

11

111 111
I/

11111 11111

X x
111111111111

x x x x
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3.00J( 0), 4.030( 0)
8.000( 0), 9.00C( 0)
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PROGRAM INTG READY FUR INPUT
/ I

/

/************************sTop pRoGRAm*************************/

FINIS TRUE,S

PROGRAM INTG TERMINATED
E OR

(16
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