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Michael Agin, Michigan Technological University; James P.

Barufaldi, University of Texas at Austin; and Gerald
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We are pleased to make this publication available to
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Chapter 1

Introduction

Mathematics is a study of patterns. The patterns of

mathematics can arise from a wide range of real phenomena,

or they can be the products of human creativity. Unfor

tunately, this broader view of mathematics as a study of

patterns often eludes pupils, because they have developed

a much more atomistic view of mathematics as a collection

of very specific rules, formulas, and theorems.

The physical world is rich in patterns and relation-

ships which embody important mathematical principles. This

book suggests some of the many relationships or applica-

tions which occur in the physical world. In particular,

it will focus on:

patterns which we observe in selected physical

situations;

variables and other mathematical symbols which we

use to represent patterns;

functions which describe the relationships among

quantities or objects -- these include both

numerical and spatial relationships;

measurement and the gathering, organizing,

communicating, and using of data;

models or abstractions which enable us to explain,

to predict, and to make decisions.
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The author hopes to stress that ."applications" are

more than just a "laying on" (i.e., apply-ing) of already

learned concepts and principles. Rather, applications will

be thought of as embodiments -- realities in the physical

world which involve certain relationships or patterns in

which we may be interested. Readers are asked to examine

these embodiments as representative of phenomena we could

study as a source for deriving mathematical ideas, to look

for patterns among the patterns themselves, and to classify

relationships according to certain common characteristics.

However, before discussing further the contents and objec-

tives of the chapters which follow, let us consider briefly

the rationale for this approach.

Rationale

A perusal of mathematics curriculum mtterials at all

levels soon reveals that the concept of function permeates

virtually all of school mathematics. Closely related to an

understanding of functions are the concepts of variability

and proportionality. These ideas are essential to the

recognition and study of patterns and to the prediction of

changes and expected outcomes. Not only in mathematics,

but in science too, patterns, relationships, variability,

and functions are key concepts in understanding, interpret

ing, and predicting physical phenomena. The relationships

we encounter in the physical world are rendered more



understandable when represented in the language of mathe-

matics, while, on the other hand, the mathematical

relationships' in which we frequently are most interested

are those which arise from real applications.

We must keep in mind, however, that functions, propor-

tional reasoning, and abstract symbolic representations

require the Piagetian stage of formal operational thought,

and this has serious implications for the teacher of junior

and senior high school mathematics and science. While

Piagetian research has contributed significantly to the

understanding of how children learn, it has also led to a

common misinterpretation. It is unfortunate that the age

of twelve years is usually written in parentheses after the

heading "Formal Operations," for it has led many teachers

to the mistaken conclusion that the ability to reason

abstractly is the norm for junior high school pupils and

older students. On the contrary, while formal operations

may begin to emerge at approximately the age of junior high

school pupils, the development of logical thought is

gradual and evolutionary, and many, perhaps most, pupils

remain primarily concrete operational during much of their

secondary school experience. It is essential, then, that

secondary school pupils as well as younger children exper-

ience adequate interaction with concrete embodiments of

mathematical concepts through direct action on physical

objects.



Most educators accept as axiomatic that understanding

and meaningfulness are rarely, if ever, all-or-nothing

insights either in the sense of being achieved instantan-

eously or in the sense of embracing the whole of a concept

and its implications at any one time., Rather, any sudden

perception or flash of insight comes only to those who have

struggled to extend or apply concepts which they have

gradually and partially understood earlier. There ore,

teachers must provide pupils continually with recurring but

varied contacts with fundamental ideas and processes which

they hope pupils will develop.

Polya 1 stressed the importance of three phases of

learning: First, an exploratory phase of action and

perception which moves on an intuitive, heuristic level;

second, a formalizing phase which ascends to a conceptual

level and which introduces terminology, definitions, and

proof; and, finally, an assimilation phase in which the

learning is absorbed into the integral mental structure

of the learner.

Polya's description of successive stages, together

with the recognition of the cognitive developmental level

of the adolescent, have direct implications for the

secondary mathematics classroom, especially when one is

1Polya, George. "On Learning, Teaching, and Learning Teach-
ing." American Mathematical Monthly, 70 (June-July 1963),
605-619.
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concerned with an abstract concept like function. In

particular, they suggest the importance of physical embodi-

ments as one source for the development as well as for the

application of such concepts.

Much of the time, however, the term "applications"

connotes a kind of "laying on" which, in the case of ideas,

suggests a putting to use of the ideas after they are

developed. The "applications" which we speak of here are,

rather, "embodiments," since this term suggests a broader

understanding which encompasses the specifics from which

ideas emerge as well as the uses to which these ideas are

put. It is the fundamental premise of this book that the

learning of concepts such as function, proportionality, and

modeling is an interactive process which begins with the

learner's action upon concrete embodiments, proceeds to

abstraction, and returns again to new embodiments as the

source of further refinement zznd generalization. For this

process to take place, the learner must encounter these

concepts in a wide variety of embodiments from which

eventually one abstracts the essential ideas.

Goals and Objectives

The investigations in the following chapters are

intended for secondary school teachers of both mathematics

and science. They are assembled from among many appropriate

activities as representative of some of the embodiments



which can be used as a basis for developing mathematical

ideas. The activities included here were chosen according

to the following considerations:

-- The activity involves one or more important concepts

of junior or senior high school mathematics.

-- The activity is typical of experiments commonly done

in junior or senior high school science labs.

-- The activity involves simple equipment which you

should find easy to assemble yourself or to obtain

from your school's science department,

-- The activity is manageable within ordinary school

time limits.

The investigations are written for the teacher, but it

is hoped that they are presented in a form which can easily

be adapted to the needs, maturity, and background of the

teacher's own pupils. Teachers should carry out the inves-

tigations themselves before adapting them for class use.

The teaching notes in each chapter are intended to help

teachers implement the investigations. Each chapter also

contains suggestions of other embodiments which might be

developed into similar investigations.

Throughout the book readers will encounter more

questions than answers. By seeking the answers and by

generating still more questions, teachers themselves should

come to a deeper insight into the interactions of science

6



and mathematics. These insights, transmitted to students,

can go far to develop that broader vision of the patterns

and relationships which are science and mathematics. Thus,

the investigations suggested here are for every science

teacher whose students have moaned about the mathematics

involved, and for every mathematics teacher whose students

have asked, "Why do we need to know this?"

4



Chapter 2

Functions

Few concepts are as fundamental in school mathematics

as the concept of a function, and few, perhaps, are as

misunderstood or, more frequently, as incompletely under-

stood. For this reason, it is useful to consider the role

of applications in the development and generalization of

the concept of function.

A number of tasks are associated with the development

of the function concept. These include recognizing a func-

tion, predicting the range given the domain and a rule,

predicting or deducing the rule given a set of ordered

pairs, recognizing invariants (identities), and recognizing

inverses. One approach to developing pupils' abilities to

perform these and related tasks is through laboratory

activities; in which the pupil investigates concrete prob-

lems where a relationship exists between two quantities and

where variation in one of these brings about a predictable

variation in the other.

In these activities, the pupils are expected to make

determinations on which quantities to vary and which to

control; make observations; take measurements; graph,

tabulate, or otherwise record data; propose and test hypo-

theses; deduce the specific functional relationship of each

9 1 s-



embodiment; make predictions of future results; verify

predictions; and relate outcomes to other experiments.

The chapter first describes a series of investigations

for students. The teaching notes which follow point out

important concepts for consideration as well as relation-

ships among the investigations. The chapter concludes with

suggestions of other applications which could be developed

into similar investigations for classroom use.

Investigations

Investigation 2.1

Use tinker toys to make a "cart" such as the one shown

in Figure 2.1. Cut a strip of cardboard and lay -it on top

of the wheels of the cart. Now roll the cart through a

Figure 2,1

distance d and measure both

the distance traveled by the

cart and the distance tra-

veled by the cardboard.

Repeat the experiment for

ten different values of d.

Record your results in a table and on a graph. Try to

explain what is happening and why. Also, express the

relationship in a mathematical statement. Would the same

results hold if the cart had larger wheels? If the cart

had more than four wheels? If the cardboard was placed on

the axle instead of on the wheels? If the axle was longer?

10



Investigation 2.2

Take 20 differept round objects (jar lids, buttons, tin

cans, balls, etc.) and measure the diameter and circumfer-

ence of each. Organize your data in a table, and represent

it on a graph. Describe the pattern you see. Express the

pattern in a mathematical symbolism. Do you get the same

result from circles (2-dimensional) as from spheres (3

dimensional)? Do all the points "fit" exactly on the graph?

If not, where is the deviation the greatest? Are there some

reasons that might account for this?

Investigation 2.3

Hang a spring from a hook. Measure

the length of the spring. Now add one

weight (one washer) and again measure

the length of the spring. Continue to

add one washer at a time until you have

10 or 12 sets of data. (Stop, however,

if the spring nears its elastic limit.)

Do the entire experiment two more times

using different springs. Try to select Figure 2.2

springs that appear to have different stiffness. Organize

all of your data, first in a table and then on a graph.

What do the results tell you about the relationships between

weight and stretch? What are the variables in this situa-

tion? What are the constants?

11 17



Investigation 2.4

Clamp a metal strip (a hacksaw

blade, for example) to the table as

shown in Figure 2.3. Place a block

of wood above the blade to assure

that the blade bends at the table

edge. Mount a vertical scale behind Figure 2.3

the blade. Attach a wire or string to the blade so that the

weights hung from the spring at A pull the blade downward.

Pass the other end of the string around a pulley hung

directly above the blade so that weights hung from this

string at B pull the blade upward. Add weights at A and

read the position of the blade. Do this for six or more

different weights. Then repeat using the same set of

weights hung at B. Record the data in a table and also

plot the graph.

Does a given weight hung at A produce the same deflec-

tion as the same weight hung at B? How can you distinguish

between deflections downward and deflections upward? How

does this affect the graph? Why is it important that the

pulley be directly above the point where the string is

attached to the blade? Would the results change if you

used a thicker blade? A longer or shorter blade? A blade

of a different material?

Block oV2,
wood

12 1S



Investigation 2.5

(The following should be done using two uncalibrated

thermometers. However, since most classrooms probably do

not have equipment for this, it is described here as a

simulation of the actual activity.)

a. Make an enlargement of the two

thermometers pictured in Figure

2.4. Make each drawing at least

25 cm tall.

b. Assume that you have performed

the following experiment: Figure 2.4

(1) Two identical thermometers were placed in a pan

of melting ice. (Both ice and water were pre-

sent.) The .ercury level in each thermometer

was marked. This is the line wf, the temper-

ature at which water freezes. On thermometer

C this line was called 0 (zero); on thermometer

F it was called 32.

(2) Next both thermometers were placed in a pot of

boiling water, and the mercury level again was

marked. This is the line wb, the temperature

at which water boils. On thermometer'C it was

named 100; on thermometer F it was called 212.

c. Be sure the length between wb and wf is the same

for both thermometer models.

13
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assigned to the two points, divide the distance

between them into equal segments (called "degrees").

How many degrees will be on each thermometer?

Number at least 20 of the degrees on each thermo-

meter.

d. Use the two models to determine at least 6 pairs of

points (C,F) which represent equal temperatures

other than (0,32) and (100,212). Graph these

points; also graph the two fixed points (wf and wb),

e. Explain the relationship shown on the graphs. What

temperature will C show when F is at zero? What

wIll F read when C reads zero? Find an expression

to describe the relationship between the two

graphs. Show how the graphs can be used to convert

from one thermometer to the other. Is there ever a

temperature where the two thermometers show the

same reading? If the temperature on F goes up 10

degrees, will C go up more degrees or fewer degrees

or the same number of degrees? What reading on

each taermometer should suggest that:

-- you will need your snowmobile clothes

- - you had better take a sweater

- - you will probably be comfortable in your

shirtsleeves

-- a jump in the pool would feel good



- - you could bake a pizza

- - a cup of coffee is just right for drinking

Why is it necessary to be sure the dish of melting

ice contains both ice and water? Are the same

precautions necessary for the boiling point? If

the ice is melting, why do we call it the freezing

point?

Investigation 2.6

If a gas is held at a constant temperature while the

pressure is increased, the volume of the gas decreases; if

the pressure is decreased, the volume increases. Below are

typical data from two experiments:

Experiment two:Experiment

Pressure
(mm o)! Hg)

one:

Volume
(ml)

72C 600

540 800

480 900

360 1200

300 1440

240 1800

180 2400

Pressure Volume
(atm) (1)

0.1 10

0.2 5

0.4 2.5

0.5 2

0.8 1.25

1.0 1

Graph the data above to show volume as a function of

pressure. How do your graphs compare with the graphs in

the previous investigations? Can you write a mathematical

15 21



expression to describe the relation of pressure and volume

of a gas at constant temperature?

Investigation 2.7

Suppose you wanted to make a trip of 720 miles and you

had available the following alternative modes of transpor-

tation:

vehicle average

plane 360

train 120

car A 60

car B 40

motorcycle 30

bicycle 6

speed

mph

mph

mph

mph

mph

mph

Make a table of the average speed and time needed for the

trip for each alternative. Graph the data (average speed,

time) for the 720 miles. Describe your graph in a mathe-

matical expression. Is it similar to any of the previous

investigations? From the graph can you determine how long

the trip would take if you could average 55 mph? 100 mph?

How fast would you have to travel to make the trip in 5

hours? In 15 hours?

16



Investigation 2.8

I t I tI
o to zo 4.0 545

(-um.)

A physics student took strobo-

scopic pictures of a cart as

it rolled along the table top.

Attached to the cart was a mast

whose position at each succes-

sive picture is shown in Figure

Figure 2.5 2.5. The time interval between

pictures is 1/20 second.

(a) If the cart was moving from right to left, would it be

gaining or losing speed? What if it moved from left to

right?

(b) Graph distance vs. time for the cart's motion. Assume

it moved from right to left. What does the graph

indicate?

(c) Suppose we wanted to estimate the speed of the cart at

a given time, say at point B. One way to approximate

the speed at B is to calculate the average speed in an

interval containing B, say the interval AC. Use this

method to approximate the speed at positions B through

F. Keep track of your data on a table like this:



(Ad)
Position Interval Distance(Ad) Time(At) Average Speed (At)

B

C

E

F

AC

BD

7 cm .10 sec 70 cm/sec

(d) Plot the above data on a graph of speed vs. time

Compare the results to the graph of distance vs. time.

What does each graph tell you? Is there some way you

can use the graph of speed vs. time to tell you how

far (distance) the cart traveled in a given time? If

the cart did not accelerate at a constant rate but

rather increased its acceleration uniformly, how

would this show on the graph? What would happen to

your measurement of speed at each point above? Can

you safely assume that the speed at point C is equal

to the average speed from B to D? Is this the same

as the average speed from A to E? Check and see.

(e) Suppose your car's odometer breaks down while you are

driving through the desert. How can you determine how

far you traveled?

(f) A woman drives from home to work at the rate of 30 mph.

Later she returns at the rate of 60 mph driving over



the same route. What is her average speed for the

o
ol

off,

03

round trip?

Investigation 2.9

Figure 2.6 is the representation

of a strobe picture taken of a falling

ball. Graph distance and speed as

before, and determine whether the

acceleration of the falling ball is

uniform. If it is uniform, measure it

Investigation 2.10

time ihkervc41
-0.04isec. oq

Figure 2.6

oI

05

o6

Time (sec) Speed (m/sec) T:me (sec) Speed (m/sec)

mph)

0.0

1.0

2.0

3.0

4.0

5.0

0.0

6.3

11.6

16.5

20.5

24.1

6.0

7.0

8.0

9.0

10.0

27.3

29.5

31.3

33.3

34.9 (or 73

The data above are the instantaneous speeds in a test

run of a car, starting from rest, at intervals of 1.0 sec.

Plot the speed vs. time graph. Use the graph in answering

the following: How fast is the car going at t = 2.4 sec?

How far does the car go in the time interval between

t
1.
= 2.4 sec and t

2
= 5.2 sec? What is the maximum



acceleration of the car? When did the car reach that

acceleration? What is average acceleration during the

10 seconds? What total distance did the car travel in

those 10 seconds?

Investigation 2.11

When a ball rolls across a table top and off the edge,

it leaves the table with two motions: a constant velocity

motion in the horizontal direction (due to the rolling) and

a uniformly accelerated motion in the vertical direction

(due to falling),

Figure 2.7

If you roll a ball down a ramp (see Figure 2,7), .A.t

will roll along the table top with a velocity which depends

on the height from which it is released. You can calculate

that velocity (v0) by measuring the time (t) which it takes

for the ball to roll a distance (d) along the table. This

velocity, vo, is the horizontal velocity of the ball as it

20
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leaves the table. Repeat the measurements several times,

always releasing the ball from the same point, and calcu-

late the average value of vo.

Now, if the table has a height, h, then the instant

the ball leaves the table it begins to fall the distance,

h. Since the ball falls freely, you can calculate the

time needed to fall to the floor from the relationship

h = 1/2 ag t
2

where ag is the acceleration of gravity (ag = 980 cm/sec2

or ag = 32 ft/sec 2
).

During this time, t, the ball continues to move hori-

zontally'with the velocity, vo. The distance it will

travel is

x = vot

Use these relationships to predict the point where the

ball will hit the floor. Test your prediction by placing a

cup at that point. If your prediction is accurate, the

ball should fall into the cup.

Repeat the investigation for several values of vo.

How can you change the value of vo? If vo incree,ses, will

the cup be closer to the table or farther from the table?

Why? If you moved your experiment to a higher table, would

this affect the position of the cup? How? Why? Do the

outcomes change if you use a heavier ball? A bigger ball?

How and why do they change?

21



Investigation 2.12

On an .1.ndex card, make a scale drawing of an object

such as a ball falling freely. Choose your scale so that

about 10 or 12 successive positions of the object fit on

the card. Now, using the scale, transfer thc. drawings to

separate cards -- one position per card. Place the cards

in proper sequence and staple them at one end. Holding the

staplad end, flip through the book with your other hand.

Does the object appear to move? Suggest some other motions

you could describe in a motion book. Try a couple.

Investigation 2.13

What determines the length of time for a pendulum to

make one complete swing (known as the period of the

pendulum) ?

Investigation 2.14

What determines the period of an oscillating spring?

Investigation 2.15

The proton and the electron in a hydrogen atom each

have a charge of one unit, but the charges are opposite:

The proton has positive charge, the electron negative.

(It is customary to use the symbol e for the unit charge;

hence, the proton and the electron have charges of +e and

22
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e, respectively. The value of e is 1.6 x 10-19 coulombs.)

In the hydrogen atom, the distance between the proton and

the electron is about 5.3 (10-11) meters, and the electri-

cal force between the proton and the electron is found to

be 8.1 (10-8) newtons. As the electron and the proton are

moved farther apart, the force of attraction between them

decreases. The following data describe these forces:

distance between
+e and -e force
(meters) (newtons)

5.3

10.6

15.9

(10-11)

(10
-11

)

(10
-11

)

21.2 (10
-11)

26.5 (10
-11

)

31.8 (10
-11

)

37.1 (1011 )

42.4 (10-11 )

47.7 (10-11 )

-11
53.0 (10 )

8.1 (10-8)

2.0 (10-8 )

.91 (10-8 )

.51 (10-8 )

.33 (10
8

)

.23 (1C-8 )

.17 (10- )

.13 (10-8 )

.10 (10
-8

)

.08 (10
-8

)



Investigation 2.16

A weight hanging From a spring

is at the zero mark of a vertical

scale, as shown in Figure 2.8. The

weight is pulled downward a distance

of 10 cm and released. While the

spring oscillates, a stroboscopic

picture is taken with a time inter-

Figure 2.8 val of 0.2 sec. A sample of the

resulting picture is shown in

Figure 2.9.

q4. =1---Lv2.0 From the picture you can tell

8 that the weight is moving faster at

some places than at others. Where

4 is its movement the fastest? Where

is it slowest?

to

8

'7

£

3

-0 E.E1"-k6. 0
Sec.

Figure 2.9

Several such pictures were

analyzed and the following measure-

ments were recorded:

24
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time
(sec)

displacement
(cm)

0 -10.0
0.4 - 8.7
0.8 - 5.0
1.2 0

1.6 + 5.0
2.0 + 8.7
2.4 +10.0
2.8 + 8.7
3.2 + 5.0
3,6
4.0 - 5.0
4.4 - 8.7
4.8 -10.0
5.2 - 8.7
5.6 - 5.0
6.0 0

6.4 + 5.0
6.8 + 8.7
7.2 +10.0
7.6 + 8.7
8.0 + 5.0
8.4 0

8.8 - 5.0
9.2 - 8.7
9.6 -10.0

10.0 - 8.7

Graph the displacement of

the weight as a function of

time. Describe the graph.

Does it resemble any of the

functions you studied so far?

How? Or how is it different?

Z5
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I9vestigation 2.17

A radioactive substance one which spontaneously

changes or "decays" into other substances. For example, the

radioactive element radium is known to produce helium gas

and another rias called radon (since it comes from radium).

Radon, in turn, also is radioactive and it decays into

helium and a new element, polonium. Such a chain of dis-

integrations would continue unt", only nonradioactive

products (called "daughters") remain.

It is impossible to tell when any individual atom of a

radioactive substance will decay. However, given a very

large number of atoms, one can predict with great accuracy

what they will do over a long period of time. So, while a

scientist can never be certain what a particular atom will

do. in the next second, she can say with considerable accu-

racy what a billion of those atoms will do in the next

million years.

Radioactivity is usually measured in a unit called the

"half-life." This is the time during which half the

original quantity will decay. It is, of course, a matter

of probability, but since we are considering a very large

number of atoms the probability model fits quite well.

In this activity you will simulate a radioactive decay

using dice. Begin with a large number of dice -- 50 to 100

might be an appropriate range. Designate one face of each



die as indicating decay -- for example, if a 1 comes up,

that "atom" has decayed. Now, roll all the dice. Remove

all those which have decayed. Roll the remaining (still

radioactive) dice. Again remove all those which decay.

Repeat the process until all have decayed. Record the

following data in a chart:

Number of
the roll

Number of
dice rolled

Number
decayed

Number
remaining

1

2

3

*

(1) Do the simulation as described above and complete the

chart.

(2) For each roll, compute the theoretical probability of

an atom decaying and, using the data in the chart,

also compute the experimental probability for that

roll. Add the experimental probabilities as another

column in the table,

(3) Determine the half-life for the above. How many

"atoms" remain after one half-life? After two? After

three?

(4) Plot the number of radioactive atoms as a function of

the number of the roll. In a different color on the

same graph plot the total number decayed thus far as

a function of the number of rolls.
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(5) Using the data from the chart, for each roll calculate

the ratio of the number of "atoms" remaining active to

the number rolled.

(6) Decide how you could use the information from the

experiment to estimate the "age" of the set of dice

at some given time.

Now, repeat the experiment several times to determine the

following:

Does the outcome of the activity depend on the size of

the original pile?

What happens if you redefine a "decay" to be either a

1 or a 6?

Investigation 2.18

Another model of "decay" is found in the behavior of

bouncing balls. In this experiment you are to drop a ball

from a convenient height so that you can measure how high

it rises on (at least) 5 or 6 bounces.

(1) Perform the experiment.

(2) Record the number of bounces, the height of the ball

on each bounce, and the ratio of the height of each

bounce to the height of the previous bounce.

(3) Graph height as a function of bounce number.

(4) Graph the ratio of the bounces by plotting the height

of the (n+1) bounce as a function of the height of the

nth bounce.

(-12f 8



(5) ]low repeat the experiment several times so that you

use at least 3 different balls and at least 3 differ-

ent starting heights for each ball,

(6) Compare the results from all the above and summarize

your conclusions.

(7) The above experiment was also performed with a "super-

ball." Following are the data collected. Graph these

data as you did above. Does the superball obey your

theory and explanation?

Bounce Number

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5 4.5 4.1 3.6 3.3 3.0 2.7 2.4 2.2 2. -0 1,8 1.6 1.4 1.3 1.1 1.0

Height (Meters)

Teaching Notes

The investigations in this chapter involve the, concept

of a function. Key ideas to stress in discussions include:

What do we mean by a variable? What do we mean when we say

that a function is well-defined? What are the domain and

range of a function? What is meant by a one-to-one function?

Is every function one-to-one? What is an increasing

function? A decreasing function? A constant function?

f)=.7vtj



In all of these investigations, class discussion

should focus on variation (change): What is variable?

Which changes in the system depend on change elsewhere

(dependent vs. independent variables)? Which aspects of

the system do not change (constants)? Are there elements

of the system which can change but which do not affect the

outcome (irrelevant variables)? Students should note

different patterns of change, but in all cases the varia-

tions can be determined and predicted, and we can de1C he

them mathematically. Several types of variation (functions)

are investigated as follows:

Investigations 2.1 through 2.5 involve linear relation-

ships. After pupils have completed these or similar

activities, they should consider the similarities and

differences of the set of investigations. For these, all

are linear functions (f(x) = mx b); some are direct

proportions (f(x) = mx). Thus, for example, we see that

doubling the diameter of a circle doubles the circumference

(Investigation 2.2); however, doubling the weight on the

spring increases but does not double the total length of

the spring (Investigat'on 2.3), Investigation 2.4 intro-

duces both positive and negative values of the variables;

Investigation 2.5 suggests the idea of the inverse of a

function.



Investigations 2.6 and 2.7 have an inverse relation-
1

ship (xy = constant or yo<3-.), but students do not always

recognize this from the data. They often assume the

relationships are linear since, for example, they may

notice quantities like p
1

and p
2

or v
1

and v
2

are in ratios

of 2:1. They fail to notice, however, that in one case the

ratio is 2:1 while in the other it is 1:2. Here it is

important to contrast direct and inverse functions:

Direct variation X= k or y= k* x

Inverse variation y* x= k or y=
x

where k is a constant.

Investigations 2.8 through 2.15 _lye qtL rat

relationships, both direct (y of x2
) and inverse (y of 1

Pupils should observe that the graphs of quadratic funs

tions are non-linear. For a function where y 4:7<. x2
, the

graph of y vs. x is a parabola, while the graph of y vs. x2

is linear. This can be related to elementary concepts of

slope, derivative, area under the urve, etc. Since quad-

ratic relationships are frequently encou tered in real

situations, students should learn to recognize them from

the data and to explain and predict their behavior.

Also included in this set of activities are two

(Investigations 2.13 and 2.14) which require the student

to formulate hypotheses, to design an experiment to test

these, and to gather and interpret data. Two others
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(Investigations 2.11 and 2.12) provide opportunities to

apply principles from other activities to new situations.

Investigation 2.16 introduces a periodic function

(5, = k sin x), while Investigation 2.17 and 2.18 involve

exponential functions (y = kaX). For the periodic function,

we focus on the manner 4n which the values of the function

repeat with a certain regularity. In the exponential

functions, the independent variable is in the exponent, and

the functions represent growth or decay curves. Students

may confuse the graphs of exponentie.1 functions with those

of inverse functions (xy = k); discussions should contrast

these by noting the different values of the functions for

selected points in the domain..

As they carry out these investigations, the students

should be guided to organize their data in an appropriate

table. Frequently students need help deciding what to

record, how to label columns in a table, or how to arrange

columns. They may also need a suggestion to write data in

some ordered fashion--for example, they may record circum-

ferences and diameters of objects in the order in which

these were measured whereas it could be more helpful to

write the entries in increasing order of d (or C).

Similarly students may need help to plot graphs.

They should learn to identify the independent variable and

to plot it on the horizontal axis, in order to be consistent

32
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with the convention for plotting functions with the horizon-

tal axis for elements of the domain (x) and the vertical

axis for elements of the range (F(x)). Frequently, pupils

need guidance in selecting reasonable scales for the axes

and in recognizing that it is not necessary to use the same

scale for both axes. They also must learn to graph the

"best" line or curve rather than to "connect the dots."

The following notes refer to particular aspects to

consider in each investigation:

Investigation 2.1: This activity can be performed

using carts from the physics lab, or carts can be

constructed using thread spools or small wheels. Tinker

toys are easy to obtain and work well. The important thing

is that the cardboard strip or light flat stick rides on

the wheels in order for the distance traveled by the strip

to be twice the distance traveled by the cart. In analyz-

ing the outcome of this investigation, consider first the

motion of the strip if the axle of the wheel were fixed at

some point. In this case, if the wheel rotates once (3600),

the strip will move forward a distance equal to the circum-

ference of the wheel.
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Figure 2.10

Wheel is fixed with center
at x.. If wheel rotates
360o , strip advances
through distance equal to
the circumference of the
wheel.

Figure 2.11

Wheel moves forward as it
rotates. Wheel moves through
distance of 2Trr in one rota-
tion; strip moves through
distance of 47rr.

However, if the wheel itself advances forward (i.e., rolls)

as it rotates, then the strip travels a distance of 4Trr due

to the motion of the rotating wheel (as in Figure 2.10) plus

the forward movement of the wheel.

Investigation The objects used should have a wide

range of diameters. Small objects, like buttons, will yield

data that do not seem to fit the line as well as do the

points obtained from larger objects. This can motivate dis-

cussion about accuracy of measurements and relative error.

The activity also presents some practical problems of

measurement: How can you be sure you have the diameter?

How can you measure a round object? (Students should come

up with two approaches: wrapping a string or tape around

the object and rolling the object along a straight line.)



After the students record d and c in a table, they can

be directed to add more columns and record (c + d), (c - d),

(c * d), and (c/d). This makes it more apparent that.c/d.

is a constant regardless of the values of c and d. Students

should perform these calculations with a calculator, so it

is important to discuss significant figures for c/d. This

in turn motivates class discussion of experimental accuracy

and precision. Finally, the graph is studied to determine

its slope (approximately 3.1) which, of course, we decide

to name Tr.

Investigation 2.3; A reasonable substitute for springs

can be had with rubber bands of different length and thick-.

ness. For lighter bands, large paper clips or light washers

can be used for weights.

The investigation directs thc' students to measure the

length of the entire spring (L) with various weights (W)

suspended. Thus when W=0 (i.e., no weights added), the

spring has an initial length Lo. In this case, the linear

graph intersects the vertical axis at L. If we repeat the

experiment and measure only the increase in length (AL) as

weights are added, the result is AL=0 for W=0. Hence, the

linear graph passes through the origin. These two situa-

tions can lead to a comparison of the slope of the graphs;

the significance of the y-intercept, aad the distinction

between a linear function [f(x) = mx + b) and a direct

variation [f(x) = mx].
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For further discussion, consider the statement of

Hooke's law: F = - kx. This is a description of the force

exerted by the spring when it is stretched a distance, x.

What is the physical meaning of the negative sign in this

expression? How is this expressed in the graph of the

function? How does this situation compare with the one

in Investigation 2.3?

Investigation 2.4: This investigation is similar to

the previous one. Here, however, forces are applied both

upward and downward, and to differentiate between the two

it is reasonable to assign opposite signs: positive values

for lifting forces and upward deflections, negative values

for the opposites. Consequently, the graph must be extended

beyond the first quadrant. Caution: the pulley must be

positioned so that the lifting

force is vertical. If not, the force
r)

vector will have both horizontal and A

vertical components, as shown, and

only V will be a lifting force. (This

situation can suggest other more

involved problems for advanced students.) Figure 2.12

In both Investigations 2.3 and 2.4, students should

repeat the activity with different springs and different

blades to observe that any one spring or blade produces

a linear relation between force (weight) and displacement,



while from spring to spring or blade to blade there are

differences which show mathematically as differences in

the slopes of the graphs.

Investigation 2.5: This is a good example of an easy

simulation of an activity for which the actual equipment

Probably is unavailable. It also reinforces concepts of

temperatures degrees, and Fahrenheit and Centigrade scales.

In this case, neither of the variables is necessarily

"dependent" or "independent," so it is reasonable tJ

represent either one on the horizontal axis. In all

likelihood, some students will graph C on the horizontal

axis; others will graph F. (If they do not, they should

be directed to do so.) This will produce two graphs as

follows:

Figure 2.13 Figure 2,14

From the graphs we can derive the familiar relationships

5F = 9
§C + 32 and C = (f 32).



Further, if we graph both functions

on the same coordinate system, we

can introduce the concept of inverse

functions and we can study the rela-

tionship between the graphs of a

function and its inverse.

Investigation 2.6: If possible, an experiment or

demonstration should be conducted to generate real data.

If this is not feasible, hypothetical data like those given

can be used. Note that this investigation involves only

Boyle's Law: plvl = p
2
v
2
or pv = k at constant temperature.

1A logical extension is to investigate Charles' Law: v2
T,
T
2
or v = k at constant pressure. The latter will again

yield a direct variation similar to those found in previous

investigations. Later the two laws can be combined to yield
PIV

1 PTthe more general gas law: or PV = kT. Note thatT
1

T
2

these laws are for temperature expressed on the absolute or

Kelvin scale (oK oc 273). Note also that they describe

ideal gases. Real gases will deviate from these laws

especially at high pressure and low temperature extremes.

However, we will not encounter these situations in the

school classroom.

Investigation 2.7: The situation given here is only

illustrative of many which could be studied. The relation-

ship of speed to time in this investigation leads to other
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questions about distance, velocity, and acceleration in the

investigations which follow.

Investigation 2.8: Here the student is introduced to

uniformly accelerated motion. (Actual experimental data can

be substituted for the hypothetical values given in the

investigation.) The graph of distance vs. time (a quadratic

function) is contrasted with the graph of speed vs. time (a

linear function). Note that here we speak of distance and

speed rather than of displacement and velocity, since we are

not immediately concerned with the vector nature of these

quantities. Later extensions can consider this character-

istic thus yielding graphs in which the parabola is concave

downward (as in the graph of distance vs. time for a ball

thrown vertically upward).

In discussing the investigation, relate the average

speed in an interval to the slope of the line segment join_

ing the endpoints of the interval. As the interval narrows,

the segment approaches the tangent, and the slope of the

tangent represents the instantaneous speed at the point of

tangency.

Mathematically,

-571slope - Y2
distance traveled = average speed

x
2
-x

1
A

x time

and in the limit, as AX -5, 0,

lim Ay
ax-30 AX dx.
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Figure 2.15

Hence, we have an application of the derivative, and, for

advanced students we can extend the discussion to elemen-

tary concepts of calculus.

From the graph of speed vs.

time, we can find the average

speed in an interval:

Average speed
Y2 4- Y1during interval =

(x_ - x )
2

And the distance traveled during

this interval is given by: Figure 2.16

distance = (average speed)(time) = y
avg (x2 - xl)

But this is equivalent to the area of trapezoid ABx x in
2

Figure 2.16, or the area under the curve from x to x..

Again, we can extend the discussion to concepts of calcllus

if appropriate for the given students.

The two problems posed at the end of the investigatiol

warrant attention. In the first case, students tend to

oversimplify by suggesting that they would maintain a steady

speed and measure the time, then calculate d = speed * time.
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However, it is unrealistic to assume one could drive across

the desert at a uniform speed. A better suggestion is to

record the speed (rate) at fixed intervals. From the graph

of speed vs. time we can approximate the distance by find-

ing the area under the curve. In the second problem,

students frequently average the two rates. This, however,

ignores the fact that the woman must drive twice as long at

the slower speed. Hence, the times to go and to return are

Agiven by t
1 So

= and t
2 6-0

= and the average speed is

average speed 2d
tl + t

2
which is 40 mph, not 45.

Investigation 2.9: The concepts involved here are the

same as in :the previous activity, but we now have-the added

elements of free fall and the acceleration due to gravity- -

concepts which we use again in Investigation 2.11.

Extensions of this activity could include problems of

gravitational acceleration on other planets. This allows

us to note that the acceleration is uniform at the surface

of each planet, but that the constant values of A varies

from one planet to another, both because of differences in

the masses of the planets and because of differences in

their sizes. Or we can extend to problems of gravitational

acceleration for bodies at different distances from the

center of the earth to examine the relationship that

A
g d

oc--.-2 or to bodies of different masses at a fixed dis-

tance from the center of the earth to note that Ag aC M.
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lems:

The following values of Ag may be used in such prob.

Surface Acceleration
Body ft/seca m/seca

Mercury 11.5 3.53
Venus 27.8 8.53
Earth 32 9.80
Mars 12.2 3.72
Jupiter 84.5' 25.87
Saturn 37.4 11.47
Uranus 29.4 9.02
Neptune 44.8 (?) 13.72 (?)
Pluto ? ?
Moon 5.4 1.67
Sun 896 274.40

Investigation 2.10: This investigation shows a case

where acceleration is not uniform--hence the speed vs.

time graph is not linear. It is important that students

encounter examples such as this so they do not develop the

false conclusion that the speed/time graph will always be

a straight line if the distance/time graph is non-linear.

They likewise should be asked to graph speed vs. time for

cases of constant speed (hence acceleration is zero and

the speed vs. time graph is a horizontal line.)

Investigations 2.11 and 2.12: These activities apply

concepts from the previcus investigations. Students

generally enjoy these and consider them "fun." A nice

way to relate the two is to make a motion book for the

case of the ball rolling off the table.
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Investigations 2.13 and 2.14: These are purposely

stated briefly and with no specified procedures because

these activities are especially good fot teaching concepts

of experimental investigation. Students should hypothesize

variables which might affect the outcorze: length, mass of

object on the pendulum or spring, initial displacement,

material of spring or pendulum, etc. Then they must

design experimental procedures for systematically changing

one variable while controlling others. The investigations

also are recommended because they frequently force students

to confront unexpected results. For example, it is not

uncommon for students to be so convinced that the mass of

a pendulum determines the period, that they will try to

force the data to support their hypothesis despite experi-

mental evidence to the contrary.

Both investigations yield quadratic relat&onships.

For the pendulum, a good approximation is given by

T = 2.7r

where T is the period, 1 is the, length of the pendulum and

g is the gravitational acceleration. Hence T depends only

on 1. Do not expect students to determine the above

equation, however. Students almost always reach the

qualitative description that "the longer pendulum has a

longer period." To encourage them to quantify their

conclusions, ask questions like, "What should I do to
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the length in order to double the period?" or "If one

pendulum is 25 times as long as another, how do their

periods compare?" For most purposes it is sufficient.

that students _recognize the relationship T=.</-1-or T
2
0.(1.

In the.case of the oscillating spring,

T = 2Ir a-,

where T is the period, m is the mass (inertia) of the

object on the spring, and k is a force constant which

depends on the stiffness of the spring. Once again, it is

sufficient to expect students to determine that TcNCV-iior

T --m. There are, however, two other points worth noting:

First, unlike the pendulum, here the period does depend on

the mass. Second, we can contrast the oscillating spring

with the spring in Investigation 2.3. (If possible, use

the same springs for both activities.) In the first

investigation (2.3), we found a linear function, while

in this one we find a quadratic function.

Extensions of these investigations can take students

into a study of simple harmonic motion and of the relation-

ship between uniform circular motion and simple harmonic

motion. In particular, as a point moves with uniform

speed around the unit circle, the projection of that

point on the axis defines a simple harmonic motion which

is defined by a sinusoidal function.
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Investigation 2.15: This investivation is representa-

tive of the many inverse square laws which describe natural

8122
2

phenomena. Here we use Coulomb's Law: F = k (similar
r

investigations could include gravitational or magnetic

forces). Since we are trying to describe the relationship

between distance and force, it is convenient to convert the

given values to ratios: let r = 5.3(10 -11)m and express

other distances as multiples of r. Similarly, let

f = 8.1(10 -8 )nt and express the other forces as multiples

of f. Thus, for example, at a distance 2r we have a force

1
of w f.

Investigation 2.16: For the third time we have an

investigation involving springs. This time the function

is a periodic function [y = 10 sin (wt + 121l)where, for
2

the example given, w = 51n. The important concept is the
12

periodic nature of the function--i.e., the fact that y

repeats every 4.8 sec. Hence, f(t) = f(t + 4.8) for all t.

The function could be continued, but the data given are

sufficient to exhibit two complete periods of the function.

For the one chosen here, note that the situation is ideal-

ized, since the motion of a real spring would be damped and

the amplitude of the displacement would decrease. However,

this simplified situation better illustrates the point we

wish to emphasize.



Investigation 2.17: Here again we simulate a real

situation. However, teachers with access to counters and

isotopes of reasonably short half-life might prefer to

study real data. The investigation can lead to discussions

of probability and the manner in which the model approxi

mates actual events. Encourage students to try the

activity with larger sets of dice to see how the number of

dice affects the outcome. If one has access to a sufficient

quantity of other regular solids such as tetrahedra or

dodecahedra, the experiment should also be performed with

these to contrast the theoretical and experimental proba-

bilities for solids with different numbers of faces.

Investigation 2.18: This activity also involves an

exponential function, but here students make their own

measurements of the real event as opposed to the simulation

in the previous investigation. Several practice runs will

be necessary for students to develop skill at measuring the

ball's heights. A meter stick taped to a wall is helpful.

The activity seems to work best with three students: one

to drop the ball, one to measure and call out the heig is

of the bounces, and one to record the data.

Other Applications

The following are some of the many applications of

functions in science. Each could be developed into class-

room investigations.

46
uL



Linear Functions

1. The rate at which a cricket chirps is affected by

temperature. Hence, by counting the number of chirps

per minute (n) we can approximate the temperature (t)

in degrees Fahrenheit from the function t = + 40.

2. In an electrolysis of water, the volume of hydrogen or

oxygen liberated is a function of the electrical charge

which flows through the system. (Alternatively, for a

constant current, the volume of the gas is a function

of time.) Also, the ratio of hydrogen to oxygen is a

constant.

3. The acceleration of a body of fixed mass is propor-

tionate to the force applied (F = ma).

4. For a given material, the mass of a sample is propor-

tional to its volume (Density = M).
v

5. The length of a shadow is dependent on the height of

the object (the angle of incidence of the light being

held constant).

6. When a metal rod is heated, the increase in its length

is a function of the change in temperature. The rate

of expansion depends on the metal (Al = 1
o
At k where

lois the initial length and k is the coefficient of

linear expansion for the metal),

7. When a liquid is heated, the increase in its volume is

a function of the change in temperature. The rate of
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expansion depends on the liquid (Av = ve Ate k where k

is the coefficient of volume expansion for the liquid).

8. In a tank of water, the pressure of the water depends

on the depth (P = hD where h is the depth (height] of

the liquid and D is its density).

9. The ratios of elements in various compounds are fixed

(law of consta_L proportions). Hence, the amount of

each element present is a function of the total sample

size.

10. The velocity of sound in air is 1090 ft/sec at 0°C, and

the speed increases 2 ft/sec for each degree Centigrade

rise in temperature. (Extension: Since the velocity

of light is 186103) miles/sec, we can define a func..

tion to determine the distance of a lightning flash.)

11. A substance such as moth balls is heated enough to melt

the material. The substance then is allowed to cool to

room temperature (or below), and the temperature is

recorded at fixed intervals. The resulting graph of

temperature vs. time shows a decreasing linear function

until the substance begins to solidify; then a constant

function ("the plateau") until freezing is complete;

and, finally, another decreasing linear function until

room temperature is achieved.

12. The time required by light from distant stars to reach

the earth is a function of distance.
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13. The amount of heat required to raise the temperature

of a substance a fixed number of degrees is propor-

tional to the mass of the substance.

14. In the respiration of plants and animals, the amount

of 0
2
used is proportionate to the amount of CO

2

produced (C6H1206 + 60ii 6CO2 + 6H20 + energy).

(Conversely, in the photosynthesis of green plants,

6CO2 + 6H20 + energy--) C01206 + 602.)

Inverse Functions.

1. For a balance beam with a fixed force acting on one

arm, the mass needed to restore balance is inversely

proportional to its distance from the fulcrum.

2. The acceleration produced by a given force is inversely

proportionate to the mass of the object being acceler-

ated (j. = a) .
m

3. The force needed to roll a heavy object up an inclined

plane from the ground to a specified height is

inversely proportional to the length of the incline

(neglecting friction).

4. The frequency of a vibrating violin string varies

inversely as the length of the string (provided

other conditions are constant).

149



Quadratic Functions

1. The intensity of illumination from the light source

is inversely proportional to the square of the

distance from the source.

2. The area of a picture projected on a screen varies

directly with the square of the distance from

projector to screen.

3. The weight of an object varies inversely with the

square of its distance from the center of the earth.

4. The rate of evaporation of water from a cylindrical

container at fixed temperature and atmospheric condi-

tions is proportional to the exposed surface of the

water--hence, to the square of the radius of the

cylinder.

5. The frequency of a vibrating violin string varies

directly as the square root of the tension (provided

other conditions are constant).

6. The frequency of a vibrating violin string varies

inversely as the square root of its weight per unit

length (other conditions being constant).

7. At constant temperature and pressure, the rates of

diffusion of gases are inversely proportional to the

square root of their molecular weight (Graham's Law:
R1 In

2-- or Ro< Hence, m 0. 1 ) .

R
2

m1
R
2
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8. The kinetic energy of a gas molecule is given by

1KE =
2
mv 2 Also, the average kinetic energy of

molecules is constant at a given temperature. Thus,

for fixed temperature, v2.,( 1. (For example, a hydro-

gen molecule will have four times the velocity of an

oxygen molecule at the same temperature.)

Periodic Functions

1. A stretched string vibrates with a constant frequency.

A particular point on the string, P, is studied to

determine the displacement of P from its rest position.

That displacement as a function of time is a sinusoidal

function.

2. Alternating current ("AC") continually changes in

magnitude and periodically reverses direction--i.e.,

it increases from zero to a maximum in one direction

through the wire, decreases to zero, and then increases

to the maximum in the other direction before decreasing

to zero again. The graph of the instantaneous current

(or voltage) as a function of time is a periodic

function.

3. A unit vector rotates counterclockwise with a constant

angular speed. The projection of the vector on the

horizontal axis is a sinusoidal function of time.



Exponential Functions

1. The growth of bacteria which double every x minutes is
t
=t-

an exponential function of time. (Number of cells G4-2x.

where t is the time elapsed and x is the number of

minutes per generation.)

2. Carbon-14 decays with a half-life of 5700 years. (This

permits the C 14 method of dating fossil remains of

living organisms.)

3. The amount of light which passes through a pane of

glass depends on the thickness of the glass.

(a) Suppose a certain type of glass allows 4/5 of the

light to pass through a standard unit of thick-

ness. How much light could pass through 2, 3, 4,

5 .., thicknesses of this glass?

(b) Suppose 1 cm of glass transmits 81 percent of the

light reaching it. How much light would pass

through .5 cm? .2 cm? .1 cm?

4. Suppose a photographic enlarger is capable of producing

an enlargement up to 2.5 times the size of the original.

At maximum setting of the enlarger, how large would the

pictures be if the enlarger is used once? twice?

three times? five times? etc.

5. Water blocks out light, and the amount of light trans-

mitted depends on the purity of the water, the plant

and animal life, etc. Suppose a one meter depth of



water passes 85 percent of the light. Determine the

amount of light at depths down to 12 meters.

6. The diaphragm of a camera lens is marked in numbers

called "stops" (11, 8, 5.6, 4, 2.8 are common stops).

From any stop to the next smaller number, the amount

of light reaching the film at a given shutter speed

doubles.

(a) Graph the above relationship.

(b) If the 2.8 stop admits L light, how much light

is admitte at the other stops for the same

shutter speed?

(c) If 5.6 admits L light, how much for the other

stops at the same speed?

(d) If proper exposure for a particular picture is

obtained at 11 with a shutter speed of 1/25 sec,

what conditions would give the same exposure at

each of the other stops?

7. A man used a water soluble paint. When he finished

painting, 4 fl. oz. of paint remained iu his brush.

He dipped the brush into a quart (32 fl. oz.) of clean

water and mixed the solution thoroughly. When he was

finished, the brush still contained 4 fl. oz.

liquid, now a solution of paint and water. He repeated

the cleaning process with a quart of clean water.

After each washing, 4 fl. oz. of liquid re-1' -d in
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the brush. How much paint is in the brush after each

of the first 6 washings? Will the brush ever be com-

pletely clean? How much paint is left after n washings?

8. The frequency of a musical tone doubles with each

octave. The frequency of middle-C is 256 cycles per

second. Plot the frequencies of the "C-tone" for

three octaves above and below middle-C.

9. For many chemical reactions, a rise in temperature of

10°C approximately doubles the reaction rate.

Other Functions

1. The relationship between period of revolution (P) of a

planet around the sun and its distance (D) from the sun

is given by Kepler's third law: P2 = D3 (P is measured

in years, D in astronomical units).

2. The volume of a sphere increases with the cube of the

radius (V 04- r3 ) .

3. The gravitational attraction between two bodies varies

directly as the masses of the objects and inversely as

the square of the distance between them (Joint varia-

tion: F = G )
r

4. The electrical force (attraction or repulsion) between

two charges varies directly with the strength of the

q1c12charges and inversely with their separation (F = k )



5. The amount of current (I) flowing in a wire varies

directly with the voltage (V) and inversely with

the resistance of the wire (V =

6. The magnetic attraction or repulsion between two

magnets varies directly with the strength of the

magnets and inversely as the distance between them

(F = k
M

j.

2
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Chapter 3

Measurement

Measurement is an important process both in science and

in mathematics. Essential to measurement are two processes:

a comparison is made between the quantity to be measured and

some standard or nonstandard unit, and a numerical value is

assigned to describe that comparison. The types of measure-

ment we most frequently encounter are distance (linear),

area (surface), volume (capacity), direction, mass, temper_

ature, and time. Learning tasks include making direct and

indirect comparisons between objects, selecting appropriate

units for a measurement task, ordering, estimating, repre-

senting measurements quantitatively and graphically, scaling,

measuring inaccessible objects, and evaluating the accuracy

of a measurement.

Some of our everyday measurement tasks can be accom-

plished by direct measurement in which the measuring

instrument is applied directly to the object to be measured.

This is the case when we lay a ruler next to a board,

stretch a tape around the waist, step on a scale, or

immerse a thermometer in a liquid. Many other times, such

direct measurement either impossible or inconvenient and

we must rely on indirect approaches. In this case, we make

direct measurements of one or more related quantities and

use these to compute or approximate the desired measurement.
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Indirect measurements like these may be necessary because

the quantity of interest is too big or too small or too

fast or too distant or otherwise inaccessible. At other

times, indirect measurements provide convenient shortcuts

as, for example, in measuring the ar,---a of a rectangle.

Here, it may be possible to cover the rectangle with unit

squares, but it is more convenient to make linear measure-

ments of length and width and to compute area from these.

Students should engage in direct measurement activities

to develop fundamental concepts and skills and to learn

appropriate units of measurement. Such activities are

included in most science and mathematics textbooks and are

not considered here. The investigations in this chapter

involve indirect measurements which require more compli-

cated applications of measurement techniques.

Investigations

Investigation 3.1

One of the measurement problems we must face involves

measuring very small quantities. Devise a method and

measure each of the following:

(a) The thickness of a piece of tissue paper

(b) The volume of one raindrop

(c) The mass of one crystal of table salt

(d) The area of the head of a straight pin
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(e) The diameter of a strand of sewing thread or a

strand of your own hair

How accurate do you think your measurements are? What

are the most likely causes of error in the measurement?

What could you do to improve your results?

Investigation 3.2a

We observed in our motion experiment that falling

objects accelerate under the constant force of gravity.

Experiments have shown that on the surface of the earth, the

acceleration due t. gravity is approximately 980 cm/sect.

We will use this information to get an estimate of human

reaction time -- the time during which your eye observes

something, a message is sent to the brain, a decision is

made, and appropriate muscles respond.

Experiment

You will need a partner for this experiment. The

person being tested sits with hand outstretched and thumb

and forefinger ready to close and catch a falling object.

The partner holds a 30 cm ruler with the zero mark between

the catcher's open fingers. The person holding the ruler

drops it whenever he or she chooses. The other catches

the falling ruler and notes the mark where the catch is

made.

a For more complete discussions and related problems, see The
Man-Made World, New York: McGraw-Hill, 1971.



Assuming that the dropper simply lets go of the ruler

(i.e., does not thrust it downward), the distance the ruler

falls can be used to estimate the reaction time of the

person catching. Repeat the experiment many times for each

partner to get a better approximation of each one's reaction

time. How many trials do you think you should make? Do you

think that "practice makes perfect" in this case? (Note:

Try this experiment again sometime when you are very tired

or exhausted. Does it make a difference?)

Application;

Suppose you are driving your car and have to stop

suddenly. How long will it take to stop and how far will

the car go in that time? The following sequence of events

must take place:

(a) The eye observes a danger (yellow light, oncoming

car, child running into the road, etc.) A message

is sent to the brain, a decision is made, a

m,,;sage is sent back to the right foot, the foot

begins to move.

(b) Time is needed for the foot to move to the brake

and to push down the brake pedal.

(c) After the brake is applied, the car decelerates

or slows down. (The greater the deceleration the

more the passengers are thrown forward and the

more dangerous and uncomfortable the stop.)



Despite the limitations of the experiment performed

above, results have shown that minimum human reaction time

is about 0.2 seconds. (What was yours?) In the driving

situation the reaction is more complex than just closing

the fingers, which are already in position for the expected

fall. For the driving case, actual reaction time seems to

be about twice as long as that measured in the experiment.

Calculate how far a car would go if you were driving it at,

say, 10, 20, 30, 40, 50, or 60 mph. (Use your own reaction

time and also the minimum time mentioned above.)

Once your foot starts to move, there is still the time

needed for the foot to hit the brake. Again, experiments

with typical human beings have shown that this time also

was about equal to the reaction time -- and that was under

conditions when subjects were waiting for a certain signal.

In reality, the usual time to hit the brake under actual

driving conditions is also about twice the reaction time.

Thus, the total time for reaction to the warning and hitting

the brake is about four times the reaction time from the

experiment. Again, calculate how far the car would travel

for you at each of the speeds listed above. How far under

the minimum reaction conditions? Finally, once the brake

has been depressed, the car still must decelerate. The

following minimum stopping distances are based on tests made

by the Bureau of Public Roads. Reaction time is taken as

0.75 sec.
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Miles
per hour

Reaction
distance
(feet)

Braking
distance
(feet)

Total stopping
distance
(feet)

5 5.5 4
10 11 8
15 16.5 13
20 22 20
25 27.5 28
30 33 40
35 38.5 52
40 44 72
45 49.5 92
50 55 118
55 60.5 148
60 66 182
65 71.5 220
70 77 266

9.5
19
29.5
42
55.5
73
90.5

116
141.5
173
208.5
248
291.5
343

Plot the above data on a graph using the same set of

axes to graph both reaction distance and total stopping

distance. How is braking eistance shown on the graph?

Prepare a table and graph similar to the above but

using your own reaction time to calculate reaction distance.

Investigation 3.3

One of the most famous experiments in the history of

science was performed by the Greek geographer Eratosthenes

in the third century B.C. He is credited with having

measured the circumference of the earth. For the experiment,

Eratosthenes selected two points in Egypt: Alexandria, on

the Mediterranean Sea, and Syene, near the present location

of the Aswan Dam. The two locations are approximately on

the same meridian. At the time of the summer solstice, the

noon sun shown directly down into z. peep well at Syene.



(Hence, a pole stuck in the ground at Syene cast no shadow

at noon.) However, at the same time, a pole stuck in the

ground at Alexandria cast a

measurable shadow. Figure 3.1

represents this situation.

The experiment is based

on the following assumptions:

(1) The earth is a sphere

(2) A plumb line from any

point on earth points

toward the center of

the earth Figure 3.1

(3) The sun and stars are so far away from earth that

sunlight reaching two different points on earth

travels in lines that are essentially parallel.

In Figure 3.1, AN' and SS' are the poles at Alexandria

and Syene, respectively. A'B is the shadow at Alexandria

caused by the sunray AB. Since AA' and SS' are erected

vertically, the extensions of these lines meet in the

center of the earth. Further, since the rays at the two

places are assumed to be parallel, the angle x at the center

of the earth is equal to the angle y between the pole and

the sunray at Alexandria. By measuring the length of the

shadow and the height of the pole, one can calculate the

size of angle y, and hence of angle x. But the angle at



the center of the earth (x) is equal in degrees to the arc

from Alexandria to Syene, a measurable distance. (Known by

Eratosthenes to be 5000 stades, i unit which historians

believe to be about 0.1 mile.)

In his measurements, Eratosthenes found the angle y

(and hence x) to be 7.2 degrees. Since 7.2/360 is approxi-

mately 1/50 of the circumference, he could then approximate

the circumference of the earth .- and from that also the

diameter. Complete the calculations and compare the

results with the currently accepted value of 24889 miles

from the circumference around the equator.

A. Review the logic in the above analysis. Can you

justify each of the steps in the process?

B. Examine the three assumptions noted. How does

each of these affect the problem?

C. Are there any other assumptions implied in the

above (besides the three listed)? If so, what are

they and how do they affect the problem?

On the next page is a description of a classroom simulation

of Eratosthenes' methods. Complete the simulation for

several different circles and check the accuracy of your

measurements against the actual sizes.
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Measuring circumference and diam
Eratosthenes' method

(1) Near the edge of a sheet of paper draw the

arc of a large circle such as the one shoWn

at the left. (Better yet, have a partner

draw the arc for you, keeping a record of

the diameter used but not telling you that

diameter. After you have completed the

activity, have your partner check the

accuracy of your results).

(2) Pick two points on the arc fairly far apart

but not too close to the ends of the arc.

Call these A and S.

(3) Construct perpendiculars at A and S. (Recall

from geometry what is meant by a perpendicu-

lar to a circle.) These represent the

vertical poles at the two points.

(4) Obviously, if you extend the two verticals

they will meet at the center of the circle.

However, Eratosthenes could not do that on

the earth, so you may not do it either.

What he could do was compare the directions

of the two verticals with a standard direc-

tion which he took to be the direction to

the sun. You may do the same in the

following manner:
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(5) Take your paper to a sunny place arld position it so

that a pencil held perpendicular to the paper at the

right side -- i.e., here

will cast a shadow across the page and along t.`-le Syene

vertical. (To do this you may have to hold the page

almost edge-on to the sun.)

(6) Now, holding the page in exactly the same position (you

will no doubt need help), move the pencil along the

edge of the page until its shadow falls on A (Alexan-

dria). Mark the location of the pencil point when this

occurs. When you put the page back down, draw. the line

from the pencil point position to Alexandria. (Why?)

(7) Now apply the, techniques described on the previous page

to complete the experiment. Explain what you are doing

and why as you go through the procedure. Compare your

results with the answer held in trust by your partner.

Compute your percent of error. If your results are

off, what are the likely causes of this? Suppose you

plan to do this activity, but the sun does not shine.

How could you modify the procedures so that you could

complete the activity as scheduled?

Investigation 3.4

When rock masses within the earth move along a fault,

energy is released which travels as a disturbance (wave)

which we call an earthquake. Because earthquakes send out
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different kinds of waves, we are able to locate the center

of the disturbance. (We call the place where the fault

occurs the focus; the spot on the surface of the earth

directly above the focus is the epicenter.)

There are three principal types of earthquake waves:

p-waves: Are the primary waves. These are pressure

waves which are longitudinal--i.e., energy is

traveling in a push-pull manner along the direc-

tion of the wave. P-waves travel through solids,

liquids, and gases and are faster than the other

kinds.

s-waves: Are the secondary waves. They are shear or

transverse waves and the energy is transmitted

perpendicular to the direction of the wave.

S-waves are transmitted only through solids and

they travel at a slower rate than p-waves.

1-waves: Are the so-called "long waves" that are

created when the p and s-waves reach the earth's

surface at the epicenter. L-waves travel only

along the surface of the earth, and they are

slower than either p- or s-waves.

When a seismic disturbance occurs, all three types of

waves are created. They do not travel at the same speed,

however, so if a seismograph located at some point X records

the disturbances which reach it, the p-waves will arrive
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first, followed by the s-waves and finally the 1-waves. The

further X is from the epicenter of the quake, the greater

will be the time delay between the p and s-waves. Hence, by

knowing the speed of p- and s-waves in the region of the

seismograph station, an observer can record the time lag

between the first arrival of p- and s-waves, and calculate

the distance to the quake.

But this information is only sufficient to determine

the distance of the quake from X. Thus, the epicenter may

be located anywhere on a circle of radius d around X.

However, if two other stations, Y and Z, also record their

distances from the disturbance, then the intersection of

the three circles plotted from these data will locate the

epicenter.
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Above are seismograph records for four cities. Which

city is closest to the center of the quake? If the average

velocities of p- and s-waves in the region are 3.80 mi/sec

and 2.54 mi/sec, respectively, how far is the epicenter from

each station? Locate it on a map. Approximately what time

did the quake occur?

Investigation 3.5

Measuring distances in space is, of course, a difficult

problem since we cannot pace off a length or stretch a

measuring tape. Astronomers rely heavily on a principle

called parallax to make such measurements. Parallax is

easily demonstrated as follows:

Hold your arm outstretched in front of you with the

thumb pointing upward. Look at your thumb with one

eye closed. Now look at it with first one eye then

the other. Note how the thumb appears to change

position against the background of some distant

object such as a tree across the street. Repeat the

demonstration a couple more times with the thumb at

different distances from you. Note how the apparent

side-to-side motion of the thumb changes at different

distances from you.

Parallax is based on this apparent motion of a near

object against a background of distant objects due to the

motion of the observer. In the case of the thumb (near
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object) against a distant background (trees), the

"observer's motion" is caused in your head by the separation

between your eyes. In astronomy, the near object might be.

the moon and the distant objects the stars. The observa_

tions might be made by astronomers at two different

observatories. Consider the following:

At the same instant, two astronomers

observe the moon -- one from

point A where the moon appears Moon

:
at its high point on the sky,

SirerX

and one from point B where the 1rn1 010 .0

moon appears on the horizon

(see Figure 3.2).

Now suppose both observe a particular star. Since the

stars are so far away from earth, the lines of sight from

two points on earth to a star are essentially parallel. So

suppose that some star appears on a line with one edge of

the moon as viewed from point A. Then, due to the parallax

principle, observer B will see the same edge of the moon in

a different position relative to star X. Thus, the observer

at B can measure the angle of parallax (angle m) between the

moon and the star. This angle also is equal to angle n in

the diagram.

Now consider triangle BCM. Since the angle of parallax

is very small (less than one degree), the triangle BCM is

very nearly an isosceles triangle. The known radius of the

Figure 3.2
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earth (BC) is approximately 3960 miles. You now have enough

information to calculate the distance to the moon. (Note:

The parallax angle in this case is about 57 minutes.)

Study the principles involved in parallax measurement.

Then complete the next activity in which you use parallax

to measure the distance to an object.

1. An alidade is an instrument consisting of a rule equipped

with sights which can be used to determine directions.

You can make a simple alidade by taping a cardboard

sight to each end of a meter stick. A pattern is shown

in Figure 3.3 It should be

enlarged to approximately 6

inches finished height. The

sights should be taped to the

meter stick so that the tri-

angular piece and the front

strip are vertical when the

meter stick is laying on the

Tape
At, base

bo.oe-->

Figure 3.3

table. The finished instrument is shown in Figure 3.4a.

Using a pin or compass, make a small hole in the rear

sight. The hole should be just large enough to allow

you to see the front sight.

Figure 3.4a
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An alternative method

is to tape or glue a drink-

ing straw parallel to the

edge of a ruler as in



Figure 3.4b

Figure 3.4b. A pin is

inserted at one end (P in

Figure 3.4b) to serve as a

hairline for sighting.

To use this alidade, sight through the straw from the end

away from the pin and align the pin with the object being

sighted.

2. Place your paper on a horizontal surface such

,as a small table or stool. (It is a F7good idea

to tape the paper to a thick cardboard.) .t/
15/

Insert a straight pin vertically into the v/
111

/
paper near the center of the page but 1

V

419:1../

close to the edge away from you (see A (1-/

in Figure 3.5). Now place your meter

stick against the pin A and sight on

some very distant object such as a'

tall building, smoke stack, water

tower, or steeple several blocks

away (see Y in Figure 3.5). Taking

care not to move the meter stick

after you sight on the object, draw

a line along the edge of the meter

stick. This line will give your

reference direction.

3. Now, without moving either your naper or pin A, rotate

the eyepiece end of the meter stick until you sight on

Figure 3 5
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the near object whose distance you want to measure (see

X in Figure 3.5). Be sure to keep the meter stick

against the pin A. When ycu have found X in your sights,

draw another line along the edge of the meter stick.

Call this line 11. Your paper now should resemble

Figure 3.6.

4. Before you move the paper, mark

the point B from which you sighted

on X. You can do this by placing

a stick in the ground or a small

vertical rod in a stand or any

other convenient marker which can

be seen from a distance.

5. Move your table or stool to a new location about 4 or 5

meters from your first sighting position. The direction

from the first sighting (B in Figure 3.7) to the second

(C) should be approximately perpendicular to the direc

tion from B to Be sure that you can see both X and

Y from position C.

Figure 3.6

"Reey-ence

Necm- ok:?.jecV

Sec or,d eritl.

Figure 3.7

7S
73



6. Place the meter stick along the reference direction

marked on your paper. Again be sure the edge is against

pin A. Now turn the whole paper until you can again

sight on the reference object (Y). This will orient

your paper in the same direction for the two sightings.

7. Once again keep the paper in position, ,nd, with the

peter stick still against pin A, rotate the eyepiece

end uil :ou can sight on X. Draw the sight line

along the edge of the meter stick. Call this lir

8. Before you move your paper or

the meter stick, place another

pin against the meter stick

near the eyepiece (see D in

Figure 3.8). Keeping the meter

stick against pin D, rotate the

stick until you can sight on

the marker you left back at,

point B.

Figure 3.8

Draw this third line and call it 1
3

. Finally,

measure the actual distance from where you are sighting

(C) to the previous sighting location (B).

9. You now have two similar triangles. The triangle on

your paper is formed by 11, 12, and 13 (Figure 3.8).

The triangle we wish to measure is the "Parallax

triangle" XBC (Figure 3.7). Use the known distance,

BC, to calculate the distance BX and CX.
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results by measuring the real distances to the object

at X.

Explain in your own words how the procedure you

used here resulted in an indirect measurement of the

desired distance.

Investigation 3.6

The method of parallax measurement can be used to

determine many inaccessible distances, including the

distance to another planet. However, for this case the

indirect measurement is even more complex. In this

activity we consider the problem of measuring the distance

and direction to the planet Mars.

Our approach is that of the 17th century mathematician-

astronomer Johannes Kepler, who is credited with determining

that the orbits of the planets were elliptical, not

circular. Kepler knew that if he could determine the

distance and direction from Earth to Mars at a sufficient

number of points, he could plot the orbit of Mars. Deter_

mining the direction to Mars was a direct measurement which

posed no serious problem. However, the only way to measure

the distance was by using parallax. The probleM with this,

though, was that no two points on earth were far enough

apart to observe a parallax effect.

But there was another possibility for this measurement.

If it were true that the earth moves around the sun, then
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observations of Mars could be taken at two places in the

Earth's orbit which were far enough apart to notice a

parallax shift (see E1 and E
2

in Figure 3.9). This method

would work just fine except for one thing: Mars, too, is

moving, so by the time Earth moves from E
2

to E
1

, Mars

also will have moved to a new

position. Parallax measurements

depend on the object remaining

in the same position while the

observer moves.

Kepler had two other sources

of useful information, however:

the orbit of earth could be plotted so it was possible to

determine the position of Earth on any given date (see

Investigation 4.4). Also, Copernicus had already deter-

mined that the Martian year was 687 days. This meant that

every 687 days Mars completed one revolution around the still.

In this same time, Earth completed slightly less than two

revolutions (since two Earth years equal 730 days). Thus,

if Mars was observed when Earth was at El, then 687 days

later Mars would be in the same place but Earth would be

at E2
'

43 days short of returning

to its initial position. This

distance was enough to reveal a

parallax shift. By noting the

position of Mars against the

Figure 3.9

Figure 3.10
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background of the fixed stars, one could determine the

direction to Mars, and by calculating the position of Earth

in its orbit, one could draw a diagram of these directions.

The intersection of the two sight lines located the posi-

tion of Mars in its orbit (see Figure 3.10).

You can apply these methods to plot your own orbit of

Mars.

(1) Before you can plot the orbit of Mars, you first

must plot the orbit of Earth. This can be done from obser-

vations of the sun as described later in Investigation 4.4.

For the present investigation, however, you can approximate

Earth's orbit by a circle with the sun at the center.

Kepler's first law states that the orbits of the planets

are ellipses with the sun at one focus. Since for Earth

the ecentricity of the elliplical orbit is 0.017, the orbit

is very nearly circular and the approximation is a reason

able one. A circle of radius 10 centimeters is recommended.

(2) Table 3.1 gives eight pairs of observations taken

687 days apart. For each date, the positions of Mars and

of the sun are recorded. These are given as geocentric

longitudes--i.e., as directions from Earth to Mars or to

the sun. In plotting the orbit of Earth, however, you must

know the direction from the sun to Earth (heliocentric

longitude) since the sun, not the Earth, is at the center

of the orbit. But the direction from the sun to Earth is

77

S2



just the opposite of the Earth-sun direction, or 180° more.

Before you plot the orbit, convert the geocentric longitude

of the sun into the heliocentric longitude of the Earth.

The first pair is done for you.

(3) Use the heliocentric longitudes to locate the

position of Earth in its orbit on each of the 16 dates.

The convention being used here assigns 0o (the positive

x-axis) to the direction from Earth to the sun on the

vernal equinox (March 21). All measurements are made

counterclockwise from that reference point.

(4) From the Earth's position at la

and lb, draw the direction to Mars on,

each date. To determine that direction,

construct a line from the Earth posi-

tion parallel to the axis XY as shown

in Figure 2.11. This locates the 0°

direction. The direction to Mars is

measured counterclockwise from that reference. The inter-

section of the two lines locates one point on the orbit of

Mars.

TO v ex %41evino

°L To V err441
equinox

Figure 3.11

(5) Repeat the above for the other pairs of data to

locate eight points on the orbit. Connect these points with

a smooth curve. See if you can answer the following from

your orbit:



Position

Table 3.1a

Geocentric
Date of Mars

Longitude
of Sun

Heliocentric
Longitude

1a March 21, 1 931 119.0 0 0° 180°
lb February 5, 1933 169.0 315.7° 135.7°

2a April 20, 1933 151.5
o

29.4°
2b March 8, 1935 204.5 347.0°

3a May 26, 1935 186.5° 64.7°
3b April 12, 1937 245.5° 21.7°

4a September 16, 1939 297.5° 173.5°
4b August 4, 1941 16.5° 131.1°

5a November 22, 1941 12.0° 238.8°
5b October 11, 1943 80.0° 198.3°

6a January 21, 1944 66.0° 300.5°
6b December 9, 1945 123.0° 255.4°

7a March 19, 1946 107.5° 358.0°
7b February 3, 1948 153.5° 313.7°

8a April 4, 1948 138.0° 13.7°
8b February 21, 1950 190.5° 331.9°

aAdapted front Harvard Project Physics, Preliminary Final
Version, 1967.

79



Does the orbit which you plotted seem to support

Kepler's conclusion that the planetary orbits are ellipses?

If the distance from Earth to the sun is taken to be one

astronomical unit (1 au), what is the distance from Mars to

the sun at each of the eight points? What is the average

Mars -to -sun distance? What is the closest distance

(perihelion) and the farthest distance (aphelion) for Mars?

As measured from the sun, what are the heliocentric longi-

tudes of perihelion and aphelion for Mars? What is the

approximate eccentricity of Mars' orbit? At what time of

year is Earth closest to the orbit of Mars? What would be

the minimum distance from Earth to Mars? From your orbit,

can you verify Kepler's second law that the line joining

the planet to the sun sweeps out equal areas in equal

periods of time?

Teaching Notes

As noted earlier, each of the investigations in this

chapter relies on indirect measurement. These are

summarized below:
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Investigation
Quantity to

Measure indirectly
Accomplished through

Measurement of

3.1 One very small unit Many units

3.2 Time Distance

3.3 Diameter of Earth Shadow on Earth

3.4 Distance Time

3.5 Distance Parallax Angle

3.6 Position Direction

The first investigation (3.1) differs from the others

in that it is stated as a problem for which the student must

devise a method. Other small quantities can be added or

substituted for the ones suggested. Students should be

asked to identify the underlying assumptions (such as the

uniformity of the object to be measured) and the manner in

which those assumptions affect the method. This activity

also evokes questions about the precision of measurement

and the probable error.

The other five investigations include quite specific

procedures. Pupils should be challenged to explain in

their own words how they are to make the various measure-

ments and why they are doing each step. They should have

a clear idea of what they wish to measure, why direct

measurement is impossible, and how the indirect techniques

yield the desired results.



Many suggested discussion questions are included in

the investigations. Teachers can supply others, and both

teachers and pupils are encouraged to offer other applica_

tions for the various techniques. Many of the activities

described in Chapter 4 also involve indirect measurement.

In addition to those, the following are some suggestions

for developing other lessons:

1. Investigate different measuring instruments such

as a voltmeter, barometer, and hydrometer, and

describe how these devices work. Identify the

quantity which is measured directly and show how

it is used to determine the desired quantity.

2. How are echos used in measurement? How is the echo

principle used in radar and sonar?

3. How are the following small quantities measured?

The size and mass of an atom

The size and mass of an electron

The thickness of a film of oil on water

4. How are the following large quantities measured?

The speed of a bullet, golf ball, tennis ball,

etc.

The speed of sound

The speed of light

5. How are the following inaccessible quantities

measured?
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The temperature, mass, or size of a star

The height Of a mountain or depth of a crater

on the moon

The age of rocks or fossils

The age of a tree

6. Construct a sundial and explain how it is used to

measure time.

7. How are the stars used for navigation?

8. How can one predict and measure an eclipse of the

moon?

9. How can you measure the distance to the horizon?
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Chapter 4

Ratio and Proportion

The patterns, relationships, and variations which we

study frequently involve proportions. The measurements we

make and the problems we solve often depend on our being

able to determine the ratio of one quantity to another.

In fact, ratios and proportions are among the most useful

concepts in mathematics.

The concept of proportionality, which is associated

with Piaget's stage of formal thought, develops later in a

pupil's mental growth. Many of the activities in Chapter 2

illustrate simple proportions, and pupils should be guided

to observe those cases where, for example, doubling one

quantity causes another to double as well, or where doubling

one quantity causes another to increase by a factor of four.

The investigations in this chapter aim to reinforce

further the importance of ratios and proportions by showing

their usefulness in solving problems. In many cases seem-

ingly inaccessible solutions can be obtained from known

data with the help of ratios.

Investigations

Investigation 4.1

Ratios play an important role in measuring the heights

of very tall objects. Below are three simple techniques.
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Study each and explain how it works. Describe the ratios

involved in the measurement. Then construct the device and

use it to measure the heights of objects like flag poles,

steeples, tall buildings, TV antenna, etc.

(A1 Paper Triangles: Cut a

square piece of paper and

fold it along one diagonal.

Describe the resulting

figure.

Hold the triangle to

your eye and sight along
d.

Figure 4.1 the folded edge. Have a

partner observe you from

the side to make sure you keep the bottom edge of the

paper parallel to the ground. Holding the paper in

that position, move backward or forward as necessary

until you can sight on the top of the object. Measure

the distance, d, from you to the object and the

distance, h, from your eye to the ground. Explain why

the height of the object is (d +

(B) Hypsometer: In the previous activity, the position of

the paper triangle was fixed and you had to adjust your

location accordingly. With the hypsometer you can

stand at any convenient location and adjust the device

to the necessary angle.
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A simple hypSometer is

made from a sheet of graph

paper. A drinking straw is

attached along one edge. At

one end of the straw a string

is attached with a weight at

the other end. The string must

be free to swing as it serves

as a plumb line.

Figure 4.3

Figure 4.2

Sight through the straw

at the object (see G in

Figure 4.3). Note that

a EFA on the hypsometer is

similar to a EHG. Further-

more, a EFA is similar to

A ACB (GEFA = L.ACB = 900 and

LAEF = ,FAD since both are

complements of LEAF).

Therefore, BC: AF: GH = AC: EF: EH. This allows

you to use the scale on the hypsometer to determine GH

if you know EH. But EH is just the distance, d,,from

you to the object. For the reading shown in Figure 4.2,

if d is 55 meters, QS is 15 meters. (What would GH be

if d is 80meters?) Then the total height is (GH + h),

where h is the distance from your eye to the ground.
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For further investigation, experiment with your

hysometer to see how you can use it to measure the depth

of a depression (distance from an upper floor window to

ground, for example) as well as the height of an elevation.

More sophisticated hypsometers also have protractor

scales printed on them which allow you to read directly the

sine, cosine, and size of the angle of elevation. A simpli-

fied diagram is shown below. Study Figure 4.4 and explain

how to read the sine, cosine, and tangent Df the angle.

Can you read the tangent from the hypsometer in Figure 4.2?

0
0

-6

.1 8

t.0 2 .4 -6 *V t-9 t.2 1.4

4an elV 0,ha ht'tlk og object"

Figure 4.4

(C) Clinometer: This third device, which consists of 'a

protractor and a viewer, also measures the angle of

elevation to the object. Hold the protractor at eye

level and rotate the viewer

to locate the object of

interest. The calculations

for the height of the object

Figure 4.5 are similar to those in the
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previous activities. Draw a diagram to represent this

situation and describe the quantities which must be

measured and the calculations to be made.

Investigation 4.2

You can construct a simple device for measuring small

objects by copying the model shown below.

Figure 4.6

The object to be measured is inserted in the gauge. The

drawing shows an object (X) whose height is 0.8 cm. Why?

Explain how the gauge works and use yours to measure 10

small objects. Could you modify the scale or the gauge

in some way so that you could read the height of X directly

without any calculations?

Investigation 4.3

Perhaps you have heard the "logic" that the moon is

only as large as a quarter because a _quarter held close to

the eye covers the moon. Or you may have smiled at the way

cars and boats appear to be toys when viewed from an
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airplane. Experience gives us many examples of the way

objects appear different at various distances.

Ordinarily we are able to compare objects with other

things in the surroundings. If, however, we view two boats

far out on the ocean with nothing around them to aid our

judgment, the smaller one may actually appear larger only

because it is nearer. Or the boats may seem to change their

sizes because they are moving either toward or away from us.

In this activity you will investigate the manner in which

size appears to vary with distance.

Before you can begin, make a sighting device similar

to the alidade in Figure 3.4a. This time, however, you wil]

need to attach a scale to the front sight. This could be a

small ruler, a strip of graph paper, or marks drawn by you.

The actual size of the scale is not crucial, but the

uniformity of the markings is. Also, you must be able to

see the markings when viewing the object through the peep-

hole. The smaller the scale divisions, the more accurate

your measurements will be. It is recommended that the zero

on your scale be about 1 cm above the ruler.

Select four or five objects of different sizes. For

each, make a series of 10 or 12 observations at different

distances. In a table, record the actual distance from the

peephole to the object and the apparent size of the object

as measured on the scale. Graph the apparent size as a

function of the distance from the observer.
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If an object, A, is actually twice the size of another

object, B, how far must A be to appear the same size as B

when B is at one meter? Compare different pairs of

objects which you measured. If two unequal objects appear

to be the same size, how do the ratios of their distances

compare with the ratios of their sizes?

Have your partner hold an object of unknown size at a

fixed distance. Measure the apparent size and try to deter-

mine the actual size. How close can you come? Measure the

apparent size of the moon, then find the distance at which

an object of known size appears to be the same size as the

moon. Use your measurements and the known diameter of the

moon (2160 miles) to calculate the distance to the moon.

Investigation 4.4

You can use the relationship between apparent size and

distance which you determined in Investigation 4.3 to plot

the orbit of the Earth. The procedure is described below.

The method of plotting directions in space is described

in Investigation 3.6. Table 4.1 gives the geocentric longi-

tude of the sun on various dates. Convert these to

heliocentric longitudes and plot the direction from sun to

Earth on each date.

Pictures of the sun were taken from the same observator'

on each of the given dates. Measurements of the size of the

sun in each picture showed variations throughout the year.
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One possible explanation for this could be a periodic change

in the volume of the sun, but astronomers have sufficient

reason to rule out this alternative. That leaves as the

best hypothesis the assumption that the distance from Earth

to the sun is changing throughout the year,

Use your knowledge from Investigation 4.3 and the data

in Table 4.1 to locate the distance between the sun and the

Earth on each given day, Plot Earth's orbit. Does your

orbit appear to support Kepler's three laws? (See Investi-

gation 3.6.) In Investigation 3.6 you approximated Earth's

orbit by a circle. Does that approximation appear to be

justified? Would your orbit of Mars vary significantly if

you plotted it about this Earth orbit?

Table 4.1a

Date

Geocentric
Longitude
of Sun

Apparent
Size of
Sun (cm)

March 21
April 6
May 6
June 5
July 5
August 5
September
October 4
November 3
December 4
January 4
February 4
March 7

4

0°
15.7°
45.0°
73.9°

102.5°
132.1°
162.0°
191.3°
220.1°
250.4°
283.2°
314.7°
346.0°

48.7
48.7
48.5
48.1
48.6
49.0
49.5
49.7
49.9
50,0
49.6
49.5

From Harvard Project Physics, preliminary final version, 196

0 Q6
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Investigation 4.5

The toothed gears shown in

Figure 4.7 have different numbers

of teeth so that A makes three

revolutions in the time B makes 5.

Investigate the gear ratios for Figure 4.7

different gears. To do this you can use gears from various

children's toys, or you can construct cardboard models from

circles of different diameters. Determine a relationship

between the number of teeth and the number of revolutions

of the gears. Try to extend your relationship to three or

more gears.

Investigation 4.6

In the previous investigation you found a ratio which

described the numbers of revolutions for gears with differ-

ent numbers of teeth. One familiar object which depends on

gears is a bicycle. In this activity you can investigate

the role of gears and gear ratios in the operation of a

bike.

(A) Before you investigate the more complex gear-dri ?la

bikes, study the simpler case of the tricycle. In a

tricycle, the pedals are attached directly to the front

wheel. When the child's feet make one revolution, how

many revolutions does the front wheel make? Measure

the radii of the pedal and the wheels of a tricycle
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and determine how far the feet travel in one revolution.

How far does the front wheel travel during that same

time? How many turns must the rear wheels make during

this same time? Will the answers be the same for all

tricycles? If not, what factors would account for

differences? Try to observe a child riding a tricycle

and determine the average speed of the child's feet and

the average speed of the bike.

(B) Next study a single-speed bicycle in which the pedals,

near th4. center of the bike, are attached by a chain

to the rear wheel. Again find the ratio of pedal

revolutions to wheel revolutions. ,Determine the radii

of the pedals, the wheels, and the two gears (one

attached to the pedals and one at the hub of the rear

wheel). Also count the teeth in each gear. Is there

a relationship between gear sizes, numbers of teeth,

and distances traveled by feet and wheels? Compare

these findings for bikes of various sizes. Try also

to determine the average speed for this kind of bike.

(C) A ten-speed bike has two front pedal gears and five

rear wheel gears, each with a different radius and

number of teeth. Different combinations of front and

rear gears produce different pedal-to-wheel speed

ratios. When the shift lever is moved, a derailleur

pushes against the side of the chain and derails it

from one sprocket to another. The lower gears, those
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with low-speed ratios, are desirable for uphill climbs;

the-greater speed ratios of the higher gears are used

for racing. An example of the gear sizes for a ten-

speed bike is as follows:

Number of teeth on pedal gears: 39, 51

Number of teeth on wheel gears: 14, 17, 20, 24, 28

Diameter of wheel: 27 inches (68.6 cm)

Count the teeth on each gear of your ten-speed bike and

compute the gear ratios for each of the ten combina-

tions of front and rear gears. Make a chart to show

the combinations to use and the resulting ratios for

each of the ten clears. Remember that first gear has

the lowest ratio. Also determine the distance traveled

by the bike in one revolution of the pedals for each

gear and include that information in your table. If

you always pedal at the same rate on level ground, what

average speed could you expect to attain for each gear?

(D) Now look at a three-speed bike. You will notice that

the wheel gears are enclosed within the sealed hub

where you cannot see them. Us:,ng the principles you

learned in the earlier investigations, determine the

pedal-to-wheel ratios and the number of teeth on the

pedal gear, and predict the numbers of teeth on the

hidden gears.

95

99



Investigation 4.7

Use the solar system statistics given below to make a

scale model of the solar system.

Solar System Statistics

Planet Symbol Average distance from the Sun Equatorial diameter
Period of
revolution,

years

Period of
rotation,

days

Million
kilometers

Million
miles

Astro-
nominal

units Kilometers Miles
gelation
to Earth

Mercury 1/ 57.9 38.0 .387 4,880 3,032 .38 .24 58.60

Venus (;) 108.2 67.2 .723 12,100 7,519 .95 .62 243.00

Earth e 149.6 93.0 1.00 12,756 7,927 1.00 1.00 1.00

Mars d 229.0 141.7 1.52 6,784 4,215 .53 1.83 1.03

Jupiter
:21

778.0 483.4 5.20 143,200 88,984 11.20 11.88 .41

Saturn 1,425.0 635.5 9.52 120.000 74,568 9.41 29.46 . 4 3

A
Uranus 0 2.867.0 1,781.6 19.20 51,800 32.189 4.10 84.01 .57

Neptune U.)v 4.486.0 2,787.6 30.00 49.500 30,759 3.90 164.10 .77

Pluto p 5,890.0 3,660.0 39.4 2.600 1,618 .20 247.00 .39

Awl 0 - -. .1.1 V4(t414) IM(tes) - -- -
1,161resi- - V7 (as) - - - - -

a
Planetary data from Air and Space, November-December 1979.
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If the sun is represented by a basketball, what objects

could be used to represent Earth? Jupiter? Pluto?

If Mercury is placed 1 cm from the sun, how far away.

would Pluto be placed? Where would you place the nearest

star?

Discuss the difficulties in representing both size and

distance in the same scale model.

Investigation 4.8

A popular advertising campaign features the Jolly Green

Giant and his friend Sprout. Both the giant and Sprout

appear very human-like, except one is much larger and the

other much smaller. Suppose the giant is ten times the

height of a man (say 20 meters for convenience), and suppose

Sprout is one-tenth human size (say 20 cm). Consider the

likelihood of these creatures actually existing.

(a) Since both the giant and Sprout appear to be

proportioned like humans, assume that not only their height

but also their width and thickness are in the given ratios.

How will the cross-section of their bones compare with a

human's? Since the body's strength is proportionate to the

cross-section of the bone, how will the strength in the legs

of each compare? Weight, however, is proportionate to

volume. What will be the ratio of weight to strength for

each of these creatures compared to a man's? What is th,.

likelihood that the Jolly Green Giant can stride across the
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valley? In a tug-of-war, how many Sprouts would be needed

to balance the pull of the giant?

(b) How does the surface area of Sprout's body compare

with his friend the giant's and with yours? How does the

weight compare? When an object falls, the resistance to

falling caused by the air is proportional to the surface

area of the falling body. How does this enable Sprout to

jump freely from the Giant's tall cornstalks.

(c) When you climb out of a swimming pool, the water

which clings to your body is about .01 cm in thickness. If

Sprout accidentally lands in a puddle, how does the weight

of water on his body compare with his body weight? Will

he be able to survive without the giant's help?

(d) Assuming that the amount of food needed to sustain

body functions is proportional to the body's mass, how much

of his vegetable crop will the giant consume compared to

the humans he feeds? How much will Sprout eat? There is

another problem, however. Creatures lose body heat through

their skin, and to maintain body temperature warm-blooded

creatures need food proportionate to their body surface.

How would Sprout's food consumption rate compare to yours

if he is to survive the chilly nights in the valley?



Teaching Notes

Of major interest in these investigF.tions are the

relationships between quantities which are in a fixed ratio.

From these we are able to determine proportions which enable

us to arrive at desired new information. In doing the

investigations, students should identify the relevant

proportions and explain in their own words how variations

in certain quantities affect others.

Investigation 4.1, which involves indirect measurement

of heights, suggests three techniques. Many others are

possible, and students can be challenged to research some

or to develop their own. The ones described here require

only elementary concepts; pupils with some knowledge of

trigonometry can find many more techniques involving the

trigonometric ratios.

Investigations 4.3 and 4.4 show an example of a prob-

lem which must rely on ratios and proportions since only

indirect measurements are possible for astronomical

distances. The data also illustrate how even seemingly

small variations can be significant when scaled to actual

magnitudes.

Investigations 4.5 and 4.6 relate the usefulness of

ratios to a subject of considerable interest to students:

bicycles. The questions included in the activity probably

will stimulate more questions from the pupils. Related



investigations can be developed from these. For instance,

how do the gear ratios affect the force exerted by the bike

against the ground? Why are low gears needed for uphill

rides? How does the size of the rider affect the operation

of the bike?

Investigations 4.7 and 4.8 generally intrigue pupils

and are especially useful in motivating class discussion.

The model solar system is not difficult to construct for

either size or distance, but only when pupils attempt to

represent both on the same scale do they realize the

significance of the problem. The questions about scaling

also generate enjoyable discussions. Pupils should be

encouraged to read the delightful essay "On Being the Right

Size" by J.B.S. Haldane (in Newman, The World of Mathe-

matics, Vol. II). Some of the interesting investigations

which can result are suggested below.

1. Investigation 4.8 involves scaling, an important

consideration in many physical and biological situations.

Investigate other situations in which scaling is signi-

ficant. Some suggestions are as follows:

a. As animals such as the horse evolved, they got

larger. What are some of the implications for such

things as skeleton, organs, food, oxygen require-

ments, heartbeat, blood pressure, etc.?

100
41.



b. Look up the sizes believed to be attained by some of

the ancient reptiles. Foy creatures this size, what

are some of the requirements for sustaining life?

c. How do the rates of food, oxygen, and water consump-

tion of very small animals like mice compare with

man's or a larger mammal's?

d. Why do small animals have eyes which appear to be so

much larger in relation to their heads than do very

17).rge animals?

e. How do scaling considerations affect the construction

of buildings? For example, could a building like the

Empire State Building or the Sears Tower be enl--.rged

twice? ten times?

f. In order to keep a plane in flight, a certain minimum

speed must be maintained. That speed varies with the

square root of the plane's length for an airplane of

given desigr. If a plane's dimensions are increased

by a factor of four, how would this affect the

required minimum speed? How would it affect the

volume and weight of the plane? Therefore, how would

it affect the power needed to produce that speed?

g. Moviemakers filming horror or disaster movies or

outer space spectaculars make use of scale models.

For example, to film a giant lizard falling from a

skyscraper, a real lizard may be dropped from a model

of the building. Suppose the scale model is only



1/100 the height of the actual building. How will

this affect the time of fall? If the movie will be

projected at the rate of 24 frames per second; at

what speed should the sequence be filmed in order

to create the proper illusion of time? How might

you film a building collapsing during an earthquake?

The Starship Enterprise at warp speed?

2. Maxe a map of a designated area of land.

3. Make a topographic profile of a designated region.

4. Two techniques for enlarging or reducing drawings are

with grid paper and with an instrument called a panto-

graph. Investigate how each of these works and use the

method to enlarge or reduce a picture.

5. In Investigation 2.12 you made a flip book to represent

a motion. What happens if you make two copies of each

page in your book and arrange the pages so each pair of

identical pages is together? What if you make three

copies of each page? four?

6. The instruments we use to measure often use ratios.

For example, the expansion of a liquid when heated is

magnified, as in a thermometer, by forcing it to rise

in a very narrow capillary. Determine how the height

of the liquid in the tube is affected by the diameter

of the tube.
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7. Another way to magnify very small motions, such as the

expansion of a metal rod, is to make the expanding rod

cause a pin to roll. Attached to the head of the.pin

is a large circular dial, perhaps 10 cm in diameter.

How would you use ratios to determine how gar the rod

expanded if you noted that the dial turned through 200?

8. Investigation 4.1 showed three ways to measure heights

by indirect means. Find some other ways to make

indirect measurements. Some suggestions include:

a. How can shadows be used to measure height?

b. If you look into a puddle directly in front of you

and see reflected there a treetop from the far side

of the puddle, how can you determine the height of

that tree?

c. How can you measure the distance across a lake,

river, or freeway which you cannot cross?

9. The frequencies of the notes of a musical scale are in

fixed ratios to each other. Find these ratios for one

or more scales. Also, investigate at least one string

instrument, at least one wind instrument, and at least

one percussion instrument, and explain how each is able

to produce different tones. What is varied in order to

change the tone? Is there a relationship between that

quantity and the ratios of the frequencies of the notes?
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Chapter 5

Spatial Relationships

The previous activities investigated patterns and

relationships among variables in a variety of situations.

In general, these were expressed in numerical relationships

of one kind or another. However, many of the relationships

of mathematics are spatial ia nature and involve location,

position, size, shape, orientation, symm3try, similarity,

congruence, etc. These relationships. too; are encountered

in many applications of science.

For the activities described in this chapter, pupils

must locate points or objects; compare the size, shape,

orientation, or position of geometric figures; describe

properties of geometric figures; determine relationships

between figures or among parts of a figure; find symmetries

and, in general, apply concrete and intuitive ideas to

concepts of location, orientation, size, shape, and

distance. The activities also apply numerical methods to

describe certain geometrical relationships and patterns.

These activities allow the students to develop and rein-

force geometrical concepts through action on concrete

objects, and they further demonstrate that the patterns of

mathematics are not just abstract numerical creations but

that they exist as well in real-world phenomena.
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Investigation 6.1

We know from experience that when we look in a plain

mirror we see an image of ourselves which appears to be

standing somewhere behind the

mirror. We can study this

phenomenon with the help of

a MIRA. The MIRA is a piece

of plexiglass with perpendic-

ular end pieces which allows

it to stand upright.

hurror
line

Figure 5.1

To use the MIRA, draw a line across the center of a

piece of paper. This is the mirror line. The beveled edge

of the MIRA is placed on this line. The commercial MIRA is

in correct position when the words MIRA-MATH in the upper

left corner are in position to be read. Draw a mirror line

and position the MIRA. Then print your name on the paper

in front of the MIRA. Look through the MIRA and you should

see the image of your printing behind the MIRA, Unlike the

ordinaxy mirror, however, the MIRA allows you to trace an

image behind the surface while you look through the MIRA.

Trace your name as it appears in the MIRA. Make several

other figures and practice tracing their images. Then

investigate the following:

(a) Draw about ten figures at various distances from the

MIRA. The figures should vary in size, shape, and
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distance from the MIRA. Trace the images of each.

Describe fully the relationship between thtJ original

(object) and the image. Be sure to account for the

position of the image, its distance from the MIRA, the

size of the image, and the orientation of the image.

Figure 5.2

If a ABC is a 30-60-90

degree triangle and m is the

mirror line, describe the

image A'B'C' by answering

the following:

How do angles A, B, C in the object compare in size to

angles A', B', C' in the ima-le?

How do the lengths of the sides of a ABC compare to the

lengths of the sides of a A'B'C'?

How do the distances of points A, B, and C from line m

compare to the distances of, points A', B', and C'

from line m?

How does the position (orientation) of a ABC compare

with the position (orientation) of a A'B'C'?

(b) For a ABC described in Figure 5.2, begin with the MIRA

on line m and slowly move the MIRA away from and then

toward the triangle. Always keep the MIRA parallel to

line m. Describe the size, shape, location, and orien-

tation of the image as the distance from aABC to the

MIRA changes. Repeat this with several other figures.

1,07
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State a generalization which describes the relation-

ships between the size, shape, location, and orien-

tation of the object and its image as the distance

to m changes.

(c) Mark a point X on line m (see Figure 5.2). Repeat (b)

above but this time keep the MIRA on the paper while

you rotate it about point X. State a generalization

which describes the relationships between the size,

shape, location, and orientation of the object and its

image as the MIRA rotates about a point.

(d) Place the MIRA on line m as in Figure 5.2 and slowly

tilt the top edge of the MIRA toward, then away from

the object. Describe the relationships between the

size, shape, location, and orientation of the object

and its image as the plane of the MIRA rotates about

liae m.

(e) A line of symmetry in a figure divides the figure into

two congruent parts. In other words, the figure can

be reflected onto itself if the line of symmetry is

the mirror line.

Draw the following:

square
rhombus
rectangle (not square)
parallelogram (not

rhombus)
regular hexagon
regular octagon

trapezoid
isosceles trapezoid
isosceles triangle
equilateral triangle
regular pentagon
scalene triangle
circle

kite (2 pair of equal adjacent sides in this
quadrilateral)
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Use the MIRA to show all the lines of symmetry in each

of the above. Which have only one? two? three?

more? something else? Collect some leaves from

different plants and use the MIRA to determine the

symmetries in the leaves.

(f) A figure has point symmetry if it can be rotated about

the given point and made to correspond to itself. For

example, the center of a square is a point of symmetry

beca, se a rotation of 90° about that point maps the

square onto itself. What other rotations make the

square correspond to itself? Cut out of paper two

congruent models of each of the figures listed in (e)

above and determine if each has point symmetry by

placing one of the cutouts on the other and then

rotating the top figure. If it has rotational symmetry,

state both the point (center) of symmetry and the

degrees of the rotation.

(g) Extend the idea of a line of symmetry (for a plane

figure) to a plane of symmetry (for a solid). Place

different solids such as a cube, rectangular prism,

cone, cylinder, other prisms, tetrahedron, octahedron,

etc., in front of the MIRA. Describe their images.

Use a piece of thin cardboard to illustrate the planes

of symmetry in the images of these solids. Use models

of various crystals and determine their planes of

symmetry.
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(h) Transformational geometry is an approach to geometry

which studies the behavior of points and lines under

certain rigid motions or transformations. The three

basic transformations are translations, reflections,

and rotations (sometimes called slides, flips, and

turns, respectively). Look up each of these and write

a definition in your own words. Use your MIRA to

demonstrate the definitions you wrote. Can all of

these transformations be achieved with a MIRA? How

are an object and its image under each transformation

related?

(i) Cut two congruent 30-60-90 degree triangles from a

piece of paper. Label one "obj-.,ct" and the other

"image." Randomly toss the triangles onto the desk.

Use the MIRA to show that no matter where the triangles

land, it is always possible to reflect the object onto

the image. (It may be necessary to use more than one

reflection.) State some rules which describe where to

place the MIRA if:

(1) the image ir a reflection of the object

(2) the image is a rotation of the object

(3) the image is a translation of the object

(4) the image is a combination of a reflection and a

translation
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(5) the image is a combination of a rotation and a

reflection

(j) Use your MIRA to make the following constructions. in

each case describe briefly how you did the construction.

parallelogram
rectangle
rhombus
square
isosceles triangle
equilateral triangle
regular hexagon
regular octagon
midpoint of a line segment
perpendicular bisector of a segment
perpendicular from a given point to a given line
line parallel to a given line through a given point
bisector of an angle
circle congruent to a given circle and tangent to

a given line
altitudes of a triangle
medians of a triangle
center of a circle

(k) Explain how you could use the MIRA for the following:

(1) to determine if a chord is a diameter

(2) to test if two lines are parallel

(3) to test ir two lines are perpendicular

(4) to test if a triangle is isosceles or equilateral

(5) to test if a quadrilateral is a trapezoid,

parallelogram, rectangle, rhombus, or square

(1) Use your MIRA to "demonstrate" the following theorems:

(1) the base angles of an isosceles triangle are equal

(2) the diagonals of a rectangle bisect each other

(3) the diagonals of a rhombus are perpendicular

(4) every translation is a composition of reflections



(5) every rotation is a composition of reflections

(6) the segments joj.ning the midpoints of consecutive

sides of any quadrilateral form a parallelogram'

Investigation 5.2

Consider the situation in the

diagram in Figur:.! 5.3. The triangle

in front of the MIRA is reflected and

its image is traced behind the MIRA.

An observer at point P looks at the

image of the triangle. The sight

line from P to the right angle of

the triangle is shown. It appears to

the observer as though a triangle

being viewed is located behind the

MIRA. In reality, however, light

traveling from an object to a mirror would be reflected at

the surface of the mirror and would travel to the observer

along the path shown (solid line). The line 1 is the

perpendicular to the mirror line at the point of reflection.

The angles between the incident light and 1 and between the

reflected light and 1 are called the angles of incidence

(i) and reflection (r) respectively.

Make a triangle similar to the one in the previous

diagram. Pick a point P and place a pin at that point.

Line your ruler against the pin and sight along the ruler
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the image in the MIRA. (You will want to select a definite

point on the image to sight on--or, better yet, repeat the

sighting several times using different points such as the

three vertices.) Draw the sight line. Connect the corres-

ponding point on the object to the point of intersection of

the sight line an the mirror line. Measure the angles of

incidence and reflection.

Repeat the above with several more figures, varying the

distance and position of the objects as well as the position

from which you sight. What can you conclude about the

angles? What happens if the sight line is perpendicular to

the mirror line? State a generalization about the angles

of incidence and reflection when an object is reflected from

a plane mirror.

'Investigation 5.3

Draw a line on the paper. Using two mirrors at an

angle to each other, explore what happens when the angle

between the 'mirrors changes. Can

you make a triangle? square?

pentagon? hexagon? octagon?

other? What relationships appear

to hold between the figure made and

the angle between the mirrors? What

happens if the two mirrors ar,?. paral-

lel to each other?
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Experiment with three (or more) mirrors formed into an

enclosed area (for example, three mirrors making a triangle).

Place various colors and shapes into the kaliedoscopethuS

formed. Explain what is happening.

When a shape which is repeated indefinitely completely

covers a surface, the shape is said to tessellate the

surface. (An example is square tiles covering a floor.)

Is it possible to tessellate the plane using triangles?

using quadrilaterals? using pentagons? hexagons?

octagons? Will only special polygons tessellate? If so,

which ones? Prove the claim that any triangle and any

quadrilateral will tessellate the plane.

Investigation 5.4

When light travels through different materials it

travels at different speeds. In some materials it travels

faster than in others. Hence, when the light passes from

one medium to another, its speed changes and the path of

the light may appear to bend. A common experience of this

is the illusion of depth you oet when you look down into a

clear pool.

For this experiment you will use a small plastic box

filed with water. Place the box on the paper and trace

its outline. Now remove the box and draw a line perpen-

dicular to the far edge of the box. Place two pins in the

paper along this line.
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Now sight through the box

at the pins. In the paper between

you and the box place two more pins

so that the four pins all line up.

Remove the box and draw a line

adjoining the two pins you just

placed. How does this line compare

with the line along which the original pins were placed?

Repeat the experiment several more times, but these

cases should have the original pins along lines oblique to

the box. Again, place two pins between you and the box so

that all four appear to line up. Draw the line through the

last two pins to the near edge of the box. Then draw the

segment through the box, joining the points where the two

lines meet the box edge. This is the path of the light.

Repeat all of the above, using boxes of other shapes such

as triangular prisms,

Define the angles of incidence and refraction as

before--i.e., the angles between the light and the perpen-

dicular. What generalizations can you make about the path

of refracted light?

Sis4
iron.%

here
Figure 5.5

Investigation 5.S

When light strikes an object, it is reflected in all

directions. The light which reaches your eye enters through

the iris, which automatically opens to the correct width to
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admit exactly the right amount of light. The lens in the

eye focuses the light so that an image of the object is

formed on the retina at the back of the eye. The brain

interprets this sensation so that you "see" the object.

A camera operates in essentially the same way. The

amount of light entering the camera is controlled by

adjusting the shutter speed and the size of the aperture.

A lens focuses the light to form an image on the back of

the camera. A film treated with light-sensitive chemicals

replaces the retina, and the image is produced when light

reaching the film causes chemical changes which result in

a permanent imprint of the object. Developing the film

translates the chemical changes into a photographic image

or print.

This investigation and the next explore the relation-

ship in this process. Here you will consider the simplest

kind of camera, a pinhole camera in which light is focused

through a small hole rather than through a lens. For the

investigation you need a candle, a piece of white poster

board, and a piece of cardboard about the size of a standard

sheet of typing paper. You also may need to darken the room.

(1) Using a compass point, make a small, very round

hole about 3 mm in diameter in the piece of card-

board. Stand the candle, the cardboard, and the

poster board in a line as shown in Figure 5.6.

Keep the distances small.
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Figure 5.6

Adjust the pieces so an image of the candle flame

is formed on the poster board. Change the

distance (di) from the pinhole to the image. What

effect does this distance have on the image?

Change the distance (do) from the candle to the

pinhole.. What effect does this have?

(2) For at least six different .lelative positions of

the three pieces, measure do: the distance from

candle to pinhole; di: the distance from pinhole

to image; s : the height of the candle flame; and
0

si: the height of image flame. Record your data

in a table as shown below:

object image object image magnification ratio
distance distance size size

d d s s s / s d./ d.
o i o i i o 1 o

(3) What generalizations, can you make from the infor-

mation in the table? When is the image of the

flame larger than the real flame? When is it

smaller? Verify your conclusions by testing a few

more values of d
o

and di. If a given value for di
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produces an image 10 cm high (s
i
= 10 cm), where

should the screen be to form an image with s = 20

cm? with s
i
= 5 cm?

Make a drawing to explain the results you obtained.

(Hint: Use similar triangles.)

Investigation 5.6

Now replace the pinhole with a lens such as a magnify-

ing glass or an eyeglass lens. The lenses in this

investigation will be convex.

(1) First take the lens to the window and move the

screen (poster board) until you find a clear image

of a distant object such as a tree or tall chimney.

Find the position for which the image is as sharp

as possible. This distance from the lens to the

screen is the focal length which we will call

Record f for your lens. Also calculate f.

(2) Now light the candle and find the position of the

lens that produces a sharp image of the candle

flame on the poster board. Describe the image

flame.

(3) Place the candle and the poster board within about

2 meters of each other. Find a position of the

lens that produces a sharp image. Are there other

lens positions that also produce sharp images?

For at least ten different relative positions,
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measure do, di, so, and si. Be sure to include

some cases for which d
o
> 2f, some for which f4

d
o< 2f, and one for d

o
= 2f.

Complete this table:

1/f =

object image object
distance distance size

image magnifi- d./d 1/dsize caticn o 0 l/di
1/do 1/di

Does the table sugge5;t a generalization relating

d
o

and d
i
? What can you say about magnification

in this activity? Graph d
i

as a function of d
o
and

write an expression to dezcribe this function.

(4) Remove the screen and the candle and place a long

straight pin behind the lens at a distance d < f.
0

View the image of the pin by looking through the

lens at it. At the same time, have your partner

hold a thin pointer (a pencil will do) above and

behind the lens so that you can see the pointer

and the pin at the same time. When the pointer

(seen directly) and the pin (seen through the lens)

show no relative shift when you move your head, the

pointer then locates the image of the pin. Record

this distance (d ).



Repeat for several more values of d
o
< f and

add your data to the table in (3) above. Do your

earlier conclusions apply for cases of d
o
< f? If

not, what is different?

Investigation 5.7

Several earlier investigations concerned the behavior

of light when it is reflected from a plane mirror. Another

important type of mirror is the curved reflector used in

such things as search lights. These are commonly constructed
using a part of the surface of a sphere for the mirror. A

reflector made from the inside of the sphere forms a concave

mirror; the outside of the sphere produces a convex mirror.

Concave Mirror

Figure 5.7a

Convex Mirror

Figure 5.7b

Figure 5.7 illustrates these two cases. Both represent

the curved mirror as the arc of a circle whose center is C.

The line through C perpendicular to the center of the mirror
(line 1) is called the principal axis of the mirror, and C

is known as the center of curvature. Figure 5.7a shows what

happens when the light rays parallel to the principal axis
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strike the concave mirror. Since the light obeys the law

of reflec.tion, the angle of incidence equals the angle of

reflections, and the light is reflected back through the

midpoint of the segment from C to the mirror:. This point

(F) is called the principal focus and the distance from F

to the center of the mirror is known as the focal length of

the mirror. In the case of the convex mirror (Figure 5.7b)-,

the reflected light diverges as shown, but the light rays

appear to come from a point behind the mirror. In this

case, F is called the virtual focus of the mirror,

(1) Construct several arcs of varying radii and use

these to verify the claims in the above paragraph.

To do this, trace the paths of several light rays

parallel to the principal axis. At each point of

reflection, construct an angle of reflection equal

to the angle of incidence to determine the path of

the reflected rays. Show that for concave mirrors

the reflected rays are concurrent at a point (F).

Compare the focal length to the radius of curva-

ture. For convex mirrors, extend the paths of the

reflected rays behind the mirror to establish

thel% concurrence at the virtual focus. Again

compare the focal length to the radius of curvature.

(2) Consider the two curved mirrors shown in Figure 5.8.

The vertical arrow in each drawing represents an



Figure 5,8a Figure 5,8b

object which is reflected in the mirror, and X is

a point on that object. (For convenience, let X

be the tip of the arrow.) For each of the follow=

ing cases, construct the path of the reflected

light in both mirrors:

(a) The incident light is a ray through X paral-

lel to the principal axis.

(b) The incident light is a ray through X and C

(i.e., the ray passes through the center of

curvature).

(c) The incident light is a ray through X and F

(i.e., the ray passes through the principal

focus) .

Show that the three reflected rays which you

constructed in (a), (b), and (c) above are con-

current at a point X'. (Remember that for the

convex mirror you must extend the reflected rays

behind the mirror.) The point X' locates the

image of X in the mirror.

(3) In (2) above, X was the tip of a vertical arrow

perpendicular to the principal axis. Let the
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other end of that arrow be called Y and locate

the image, Y', by the same process you used to

find X'.

X'Y' now represents the image of XY in the

mirror. Describe the size, location, and position

of X'Y' relative to XY. Repeat the process of

locating images for each of the following condi-

tions:

(a) Th.. object is at various distances greater

than the radius of curvature. What happens

to the image as the object moves in from

infinity toward the mirror?

(b) The object is at a distance 2f, where f is

the focal length. (Hence, 2f is the radius

of curvature.)

(c) The object is at a distance between 2f and f.

(d) The object is at the distance f.

(e) The object is at a distance less than f.

(4) When the image appears to be in front of the

mirror it is called a real image; an image which

appears to be behind the mirror is called a

virtual image. From your observations in (3)

above, answer the following:

(a) Where will an object be located in order to

produce a real image in a concave mirror?
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(b'i Where will an object be located tc., oduce a

virtual image in a concave mirror?

(c) Is the image in a concave mirror inverted or

erect?

(d) Is the image in a convex mirror inverted or

erect? Is this image real or virtual?

(e) Is the image in a convex mirror larger or

smaller than the object?

(f) Is the image in a concave mirror larger or

smaller than the object? Is the image ever

equal in size to the object? If so, at what

object position?

(5) For the various locations of the object which you

have investigated, measure the following quanti-

ties and record the values in a tables

d : distance from object to mirror
0

di: distance from image to mirror

s : size of object
o

s : size of image

f: focal length of mirror

1 1 1Also record the following reciprocalsa ,-(71 ,

o i
(a) From your data determine the relationship

1 1 1betweend and f.di f'

(b) From your data determine the relationship

between the ratio of image size to object
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size and ti z4tio of image distance to

object distance.

(6) Locate some objects in your school or home which

use curved mirrors. Describe the functions of

the mirrors in those objects.

Investigation 5.8

Recall that when you vi,$ object such as your out-

stretched thumb first with the rig' eye and then with the

left, the object appears to shift its position (the parallax

effect). This is due to the separation between your eyes

which causes each eye to view the object from a different

position.

Suppose now that we reverse the process. Instead of

viewing an actual object and noting the images of it which

appear against a background, suppose we provide drawings of

these images in such a way that each eye sees only the

drawing which is intended for it. The message that would

reach the brain from your two eyes viewing these drawings

would be very similar to the message received if you viewed

the real object. Hence, what results is an optical illu-

sion of a three-dimensional object.

A picture in which two drawings are superimposed in

such a way as to produce this illusion is called a stereo-

gram. Figure 5.9 illustrates how the stereogram works.

The point X represents the object you are viewing -- say
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the tip of your pencil, Points X
R
and

X
L

are the images of X against the paper

as they are viewed by your right (R) and

left (L) eyes, respectively. Now suppose

we color point XR blue and point X
L

red,

and have you view the points through

"glasses" having a red lens for your

right eye and a blue lens for your left

eye. Any light coming to the right eye

must pass through the red filter. Now

ordinarily "white" light is actually

composed of light of many different

wavelengths corresponding to the differ-

ent colors, the familiar red, orange,

yellow, green, blue, and violet of the

spectrum. (You see this, for instance,

in a rainbow because white light passing through the water

droplets in the atmosphere is spread out or dispersed

revealing the various colors.) In the case of the red

lens, the filter material has the property of blocking out

the red light wh_le allowing the other wavelengths to pass

through. Hence, the blue dot can be seen through the red

lens (it should appear black), but the red dot cannot be

seen ,ecause the red light does not reach the eye. In a

similar manner the red dot only is seen through the blue

lens. Thus, when you look with both eyes through the

Figure 5.9
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alasses, each eye sees only one dot, but your brain super-

imposes the images and interprets the message as if you were

seeing the single dot at X in space. X is, of course; the

intersection of the sight lines RXR and LKL.

(1) In this activity we will learn to make stereo-

grams. First, however, we must make the viewers.

This is described below.

kecl.

Figure 5.10

The pattern in Figure 5.10 should be a good size

for a viewer for the average person. Cut two

copies of the viewer from stiff paper or light

cardboard. An index card is good for this purpose.

The red and blue lens material is the film called

"gelatin" commonly used to cover theater spot-

lights. It can he purchased from art supply stores

at a few cents a yard. Cut a small piece of each

color and place them over the eye holes. Glue the

two viewer pieces together with the colored filters

between.
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After you have made the viewer, copy Figure

5.11 onto white paper. Make all solid lines red;

make all dotted lines light blue. Place the paper

on the table and view the drawings through the

viewer. You will have to let your eyes adjust

until the picture appears three-dimensional. This

may take a minute or more.

it
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(2) Plotting pointsa

The problem of making a stereogram can be outlined

as follows: Assume that the eyes (R and L in Figure

5.9) are at some definite position relative to the

sheet of paper on which the stereogram is to be drawn.

Suppose we want to represent a three-dimensional object

such as a cube. We must first represent important

points of the object (the vertices of the cube, _or

example) and then determine how to locate the red and

blue images of each such point.

Figure 5.12 represents this situation. A cube is

placed on a sheet of graph paper on which we have '-dr'al:in

an X - Y coordinate system. If we take the Z - axis to

be perpendicular to the plane of the paper, then we can

locate each vertex of the cube by its coordinates (x,

Y, z). Figure 5.12a shows a top view of the problem

we want to solve: the observer sees the points

(vertices of the cube) against the background of the

graph paper. Each point P on the cube corresponds to

a red (x) and a blue (o) image on the paper. Figure

5.12b shows a side view of the same situation. We mutt

now find a way to locate those image points for a given

point P = (x, y, z).

a
The calculations in this activity and in the applications
are based on D. W. Stover, "Stereograms" (Houghton-Mifflin,
1966) .
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Figure 5.12a Figure 5.12b

In the development which follows, we will always

make reference to a standard paper r ul,

to 2.5 cm. We also assume the paper- is 21.5 cm by 28

cm. The same scale must be used oz. the Z-- is: unit

= 0.5 cm. If you use some other scale for your graph

paper you will have to modify the following derivations

accordingly.

For the average person seated at a desk with the

stereogram on the desk in front (qs in Figure 5.12a),

a reasonable set of coordinates are L = (-6, -61, 72)

for the left eye and R = (6, -61, 72) for the right

eye. These are determined by using the average separa-

tion of-the pupils of the eyes (6 cm) and the scale of

the graph paper (2.5 cm = 5 units). This gives the X-

coordinates of -6 and 6. The other coordinates are

estimated from the average height of the eyes above the

desk (for the Z-coordinate of 72) and a reasonable

130.
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viewing distance from the paper (for the Y-

coordinate of -61, since distances between the

X-axis and the observer are measured as negative

on the Y-axis) . Be sure you understand the mean-

ing of these coordinates before you proceed.

Coordinates of left eye: L = (-6, -61, 72)

Coordinates of right eye: R = ( 6, -61, 72)

Since the graph paper in 21.5 cm by 28 cm, its size

imposes some limitations. We want to place an object in

front of us so that the red and blue image points fall on

the graph paper. For our graph paper, it turns out that

an object will have its image on the desired space if the

object itself lies within the following range:

X-coordinate between -10 and 10: (-104X ..<10)

Y-coordinate between -23 and -3: (-234Y <-3)

Z- -coordinate between 0 and 22: (0< Z.<22)

We are going to define a function which maps points in

the object space onto points on the paper. Suppose we

consider only points with integer coordinates where

-104 X <10

-234Y 4-3

0 <Z < 22

How many such points would be in the domain of our function?

Review what we mean by distance in the three-

dimensional coordinate system. Specifically, for two
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points PI = (XI, Yls Z1) and P2 = (X2, Y2, L2)

--What is the X-distance between the points?

--What is the Y-distance between the points?

--What is the Z-distance between the points?

--What is the distance between the points?

Let us now take a point P = (X, Y, Z) on the object

which we want to map onto the paper. We will first concern

ourselves with locating PL, the image of P seen by the left

eye (L)--i.e., the red image. We will denote the coordinate

of as (X', Y', Z'). But since P lies on the graph paper,

its Z-coordinate will be zero. Hence, P
L

= (XI, Y', 0).

Further,sinceweareviewingP.with the left eye, we have

coordinates of L = (-6, -61, 72). Figure 5.13 illustrates

this situation from a side view. It also shows the Y and Z

distances between L and P and between L and PL. (Remember

that because of the limitations of our paper, Y2-61 and

Z 472. You must convince yourself that we do not need

absolute value signs for the Y and Z distances in this case.)
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Notice that the horizontal and vertical lines in

Figure 5.13 give us similar triangles. !Show this. Also

list the corresponding parts.) Using the proportions from

the similar triangles we get

Y' + 61 72
Y + 61 72 - Z

thus 1 72 .(Y + 61) - 61
72 - Z

(1)

(2)

Equation 2 gives the Y-coordinate of point P in terms of

the Y and Z coordinates of P.

Now consider Figure 5.14, a top

view of the same situation. In the

figure the X and Y distance between

L and P and between L and 'PL are

shown. Note that this time the X

distances must include the absolute

value symbols since the allowable

range of X (-10< x.'.C...10) includes the

pRo14414444144 1' may be to the left

of L. Once again the distances in

the directions of the coordinate axes

give similar triangles. (Where?- What

are the corresponding parts?) Using

the proportions from these triangles

we get:
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+ 61 Y ' + 61
(3)IX + 61 Y + 61

By combining equations 1 and 3 we can write:

Ix' + 61 72
+ 61 72 - Z (4)

Now look again at Figure 5.14. We noted earlier that the

X-distances must include the absolute value symbols here,

because point P could be to the left of L. However, it

should be clear from Figure 5.14 that if P is to the left

of L, then P would also have to be to the left of L.L

(Check this by picking a point P* to the left of L and

drawing the sight line F-*T.) Since this is so, if (X + 6)

is a negative number, so, too, will (X' + 6) be negative.

In other words, the ratio on the left in equation 4 can

never be negative. Hence, we can write:

X' + 6 72
X + 6 72 - Z

thus X' -
72

72 Z
(X + 6) - 6

(5)

(6)

Equation 6 given us the desired transformation for

locating X' once we know X. Now we have in equations 2 and

6 the necessary transformations for finding PL, the (red)

image of P seen by the left eye (L). What about thethe

(blue) image of P seen by the right eye, R?

1'
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We could repeat the above for the right eye, but we do

not need to do so, Look again at Figure 5,13 and the

geometry of the problem for the right eye. Since R has the

same Y and Z coordinates as L, the image PR = (X", Y", Z")

will have the same Y and Z coordinates as P --i.e., Y" = Y'

and Z" = 0. Only the X" coordinate is different, so we can

simplify the problem by determining the separation (S)

between X' and X", Then we can plot P and move a distance

S to locate PR.

To do this, consider Figure 5,15 which shows a top view

of the right eye observation. We denote P
R

by the coordi-

nates (X", Y", 0), By the same argument that we used to

determine X', we can show that

X" =
72

72
Z

( X - 6) + 6
-

Thus the distance between X" and

X' is given by the difference

between equations 7 and 6 or

S =
[ 72
72 - Z

(X - 6) + 6] - [ 72
72 - (X + 6) - 6

72
(x 6)

- (X + 6)] 6 - (-6)
72 - Z

( 7)
le-GI

&(r:, bi,o)

Fr

72 (-12) + 12
72 - Z

72 (-12) 12 (72 Z)

72 - Z (72'-Z)

-12Z
..470

72 - Z

Y+
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-12ZHence, S
72 - Z (8)

In the above derivation we have arranged the difference in

such a way that S turns out to be negative, since we move

left (i.e., in the negative direction). We now have the

desired transformations for finding the images of P:

X° = 7272 + 6) - 6
2

- Z

Y' =
72

72
Z

+(Y 61) - 61-

S
-12 Z

72 - Z

(6)

(2)

(8)

(3) Applications

Find the P
L

'and P
R

images of the following points

and plot them on the stereogram:

(a) A = (-8, -10, 4) D = (7, -17, 4)

B = (-4, -6, 4) P = (-6, -8, 16)

C = (3, -21, 4) Q = (5, -19, 16)

(b) Draw red and blue segments which correspond

to the images of the following:

AB, ti-C, BD, 177", 7W, PB, QC, QD, PQ

(A, B, C, D, P, Q are the points in (A) above.)

The results should be a stereogram of a

triangle prism.

(c) Make a stereogram of an object of your choice.

Include your calculations for locating the

points.
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Teaching Notes

The field of geometrical optics is a rich source of

activities involving spatial relationships, and the investi-

gations in this chapter are just some of the activities

which could be developed. The study of reflections

(Investigations 5.1 and 5.2) usually is conducted using

plane mirrors. However, the MIRA offers the additional

advantage of producing an image which can be traced, so it

is preferred over mirrors. The MIRA can be purchased

commercially or it can be made from sheets of plexiglass

purchased at a hardware store. The ends can be of any

material. A light balsa wood works well and is easy to

fashion into an endpiece. The important thing in making

your own MIRA is to bevel the lower edge so that the mirror

edge is half the thickness of the plexiglass. This can be

done with an ordinary workshop file.

Investigation 5.1 should lead to generalizations about

the size, shape, location, and position of images in a

plane mirror. These generalizations provide the background

for defining the three basic rigid transformations: trans-

lations (slides), reflections (flips), and rotations (turns).

Students should determine the necessary and sufficient para-

meters to describe completely each of these rigid

transformations:



A translation is determined by specifying the distance

and the direction of the slide (i.e., a transla-

tion vector).

A reflection is determined by specifying the line of

reflection (i.e., the mirror line).

A rotation is determined by specifying the center of

rotation and the angle through which the rotation

occurs.

We can define the product of two transformations, p * q,

as the transformation q followed by the transformation p.

Thus, we write p * q = r if r is a single transformation

which produces the same outcome as q followed by p. (Perhaps

the most familiar example of this is vector addition, where

the vector quantities represent translations as in the case

of displacements or forces.) Further, every rigid transfor-

mation can be decomposed into a product of translations,

reflections and rotations, and we can extend this result to

a definition of congruence: two figures are congruent if

there is a rigid transformation (or product of transforma-

tions) by which one figure can be made to correspond to the

other. In illustrating products of transformations it is

necessary to trace the intermediate images which in turn

are reflected in subsequent transformations.

In Investigation 5.2, the MIRA again replaces a plane

mirror in illustrating the law of reflection: the angle of
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incidence equals the angle of reflection. Be sure that

pupils include the special case of light perpendicular to

the plane of the mirror (i.e., angle of incidence = 00).

For the multiple reflections in Investigation 5.3,

mirrors are used. An inexpensive source of mirrors are the

Mirror tiles sold in discount, hardware, or home-care stores.

These can be cut to convenient sizes. It is a good idea to

glue the mirror to a block of wood so the mirror will stand

perpendicular to the table. Also, masking tape can be used

to hinge two blocks together.

Students should derive a relationship between the

dihedral angle between the mirrors and the regular polygons

formed by the multiple reflections of the line segment in

the first part of this activity. When using three or more

mirrors to form dihedral kaliedoscopes, pupils can generate

artistic patterns which cover the plane. This latter

activity suggests many extensions and enrichment projects.

One such extension is to photograph the kaliedoscoplc

patterns. Another is to investigate the tessellations in

various works of art, especially the works of M. C. Escner.

A more quantitative task is to show how the law of reflec-

tion accounts for the multiple reflections which are

observed.

Investigation 5.4 introduces the principle of refrac-

tion. The activity uses small plastic boxes filled with
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water, but glass prisms also can be used if they are avail-

able. Closely related to the refraction phenomenon is the

dispersion of white light into the spectral colors. This

effect irs reasonably easy to observe and to discuss in a

qualitative way, but good quantitative analysis would

require more sophisticated equipment so it is not considered

here. However, extensions of this investigation could

include a study of the spectra of various elements.

The simple pin-hole activity of Investigation 5.5

introduces other relationships which yield measurable
s
i

d.
1ratios. The magnification -- should equal the ratio T1,

s
o

which is easily verified using similar triangles, In

Investigation 5.6 a convex lens is used to focus the light.

As the relative positions of the candle and screen vary,

students should observe the following patterns:

(1) As the candle moves in from d
o

= 00 to d = 2f,
0

an inverted image is formed on the screen start-

ing at d. = f and moving toward d. = 2f. As the
1 1

image moves out from f to 2f, its size increases.

When d
o

= d. = 2f, object and image should be the
1

same size.

(2) As the candle moves in from d
o

= 2f to d
o

= f,

theinvertedimagemovesoutfromd.1 = 2f toward

d
i

= oo. As it moves out, s
i

increases until

finally the image vanishes when d
o

= f,
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The measurements made in part three of Investigation 5.6

should be sufficient to suggest the basic lens formula:
1 1

+ = . As in the case of the pinhole, the proportion

Si = di also holds for lenses.
s
o

The fourth part of this activity concerns the case of

an object placed inside the focal length of the convex lens

< f). For this case, object and image appear on the0

same side of the lens and the image is erect, not inverted.

As the object approaches the lens, the image moves in from

infinity and decreases in size. In the limit, the object

and the image meet atthe lens where they are of equal size.

The phenomenon of image formation lends itself to

numerous geometric investigations in which Li.e path of the

light is traced and images are located and described.

Investigation 5.7 illustrates these situations for spherical

mirrors. Similar problems could be developed with reference

to convex and concave lenses, and Investigation 5.6 is

natural to motivate such activities. The questions one

might ask would be analogous to those of Investigation 5.7.

Note, too, that the generalizations discussed relative to

Investigation 5.6 are similar to the conclusion one expects

from Investigation 5.7. Another situation suggested by the

spherical mirrors is to study the images formed by parabolic

reflectors, which produce sharper images and more well-

defined beams because the geometry of a parabolic reflector

1. A. .1
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eliminates the distortion (called spherical aberration)

which results from light reflected near the extremities

of a spherical mirror.

Finally, Inestigation 5.8 shows an application of

basic principles of optics in the creation of three-

dimensional illusions. The pamphlet "Stereograms" by

D. W. Stover (Houghton-Mifflin, 1966) gives an extended

discussion of the principles from which the transformations

are derived. It also contains tables of transformations

which are extremely useful in constructing original stereo-

grams. If students have difficulty "seeing" the stereo-

grams, two possible causes are (a) they have drawn the lines

too dark or (b) they did not stare at the paper long enough.

All of the investigations in this chapter are based on

spatial relationships associated with various aspects of

the field of optics. There are, however, numerous other

sources of activities which introduce spatial relationships.

Some of these are suggested below.

Other Applications

1. Reflection and refraction occur for wave phenomena other

than light waves. For example, a ripple tank can be

used to study these properties of water waves.

2. Interference results when waves spread out after parsing

through a narrow opening. The study of interference
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patterns in light, sound, or water waves leads to other

interesting spatial relationships.

3. Billiard balls also obey the law of reflection. Their

behavior can be studied on conventional rectangular

tables or on tables shaped like equilateral triangles,

rhombi, or ellipses.

4. A vibrating string produces standing wave patterns which

can be studied as the frequency of the vibration changes.

5. Chicago's Museum of Science and Industry and the United

States Capitol in Washington, D.C., both contain rooms

in which sound is reflected to a focus point. A whisper

at one focus in the room is clearly audible at the

other. What properties of the geometry of these rooms

would account for these effects?

6. Investigate the combinations of lenses and/or mirrors

used on the following instruments:

telescope

microscope

periscope

kaleidoscope

stereoscope

7. A tree casts a shadow which varies in length and posi-

tion at different hours of the day. Investigate the

relationship between the size, shape, and position of

an object and its shadow relative to different
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positions of the light source. (This investigation can

suggest many topics of projective geometry.)

8. During an eclipse, the center of the shadow is totally

dark (the umbra) while the surrounding part is partially

illuminated (the penumbra). What is the reason for

this effect?

9. When a magnet is brought near iron filings, the filings

align themselves in definite patterns. These patterns

can be studied to describe properties of the magnetLc

field.

10. The atoms in a crystal are in a well-defined pattern.

X-rays focused on the crystals are diffracted and

produce patterns which reveal the hidden structure of

the substance.

11. Minerals exhibit a property called cleavage: the

tendency to break along smooth planes, The cleavage

patterns of various materials reveal many different

polyhedra.

12. Symmetry and patterns are abundant in nature. The

following are some sources worth investigating:

flower shapes

the arrangements of leaves on a branch

spider webs

pine cones

sea shells
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beehives

soap bubbles

13. During the 1950s, movie companies produced three-

dimensional ("3-D") films which featured people,

animals, monsters, and objects which "jumped off the

screen" at the audience. Investigate how these films

used the principles of stereograms to create their

special effects. (Note: Instead of red and blue

light directed at one eye or the other, 3-D movies

usually used polarized light and the audience wore

"glasses" with polaroid lenses.)

14. A sand pendulum is constructed using a funnel filled

with sand as the pendulum bob. Investigate the patterns

formed as the sand runs out from the swinging pendulum.

Allow the pendulum to swing in different arcs (i.e.,

do not restrict its motion to one plane).

15. A child's toy called a Spirograph (Kenner Corp.) uses

gears of varying ratios to generate numerous patterns.

The spatial relationships involved in many of these

also can be used to illustrate aspects of Ptolmaic

astronomy such as the theory of epicycles of the

planets.
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Chapter 6

Modeling, Predicting, and Decision Making

Mathematics is created out of our need to solve prob-

lems which can arise from many sources. Usually these

sources have some basis in reality, although we often step

into the world of mathematics for their solution. In

solving real-world problems, both the scientist and the

mathematician frequently construct models. The modeling

process can be outlined as follows:

IIdentify "real world" problem

Simplify the problem. Identify relevant
variables and needed information.

Create a mathematical model
(equations, symbols, graphs, etc.

V
Solve the mathematical problem.

Apply the solution to the real-world problem.

IEvaluate the model: Does it give valid results? I

rroblem is
solved.

Yes No

119
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Refine the model and
try again.



To be useful our model must do two things: it must explain

known phenomena and it must enable us to predict yet unknown

outcomes. If it cannot do these things, the model must be

adjusted or -- sometimes, though usually reluctantly -- it

must be replaced,

Many excellent case studies of the evolution of .a model

are found in the history of science. These include develop-

ments of models of the solar, system, the atom, the nucleus,

light, electromagnetism, DNA, the universe, biological

evolution, radioactivity, and more. Each could be studied

to determine the assumptions and abstractions upon which the

model was based; the observed phenomena it sought to explain;

the aspects of the real problem which were adequately

accounted for; the discrepant events which the model could

not explain; the modifications of the model proposed to

account for such discrepancies; and the adequacy of the

modified model.

For example, the ancient Greek model of the universe

placed the earth at the center with the sun and planets in

circular orbits around it. While this model could explain

many observations, such as the daily motion of the sun from

its rising on the eastern horizon to its setting on the

western horizon, it failed to account for the "wandering"

or "retrograde motion" of the planets. This latter term

describes the observed behavior of the planets which appear

-1 50
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at certain times to move eastward among the stars, then to

reverse and for several months to move westward. In an

attempt to explain this phenomenon, Ptolemy's model of th

universe preserved the earth as the center of the system

but proposed the modification of epicycles. In this model,

each planet moved at a uniform rate on the circumference

of a small circle (the epicycle) while the center of the

epicycle moved in a large circle arcand the earth.

While this modification of the model successfully

accounted for one previously unexplained observation (retro-

grade motion), other discrepancies remained, Further

modifications were necessary such as displacing the Earth

from the geometric center of the motions. Finally, the

complexities of the Ptolemaic model led to its replacement,

but this did not occur until some 1500 years after Ptolemy

published his theory. Even when proposing the model which

ultimately replaced Ptolemy's, Copernicus himself wrote of

his attempts to improve on Ptolemy's model, not to over-

throw it. Only when he was convinced that his sun-centered

theory led to a simpler system did Copernicus reluctantly

change the model.

The models we use may employ equations, graphs,

diagrams, symbols, or physical materials. Investigation

2.17 presented a model of radioactive decay using physical

materials (dice). Many of the other activities in this
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book used graphs or diagrams to represent or model relation-

ships. In this chapter we will explore other models which

are useful in helping us understand and explain observed

phenomena, predict new outcomes, and make decisions based

on those predictions.

Investigations

Investigation 6.1

A simple model of chemical composition is found in the

Introductory Physical Science (IPS) course (Educational

Development Center, 1967).

This model uses paper fasteners

and small rubber rings to repre-

sent "atoms" of two "elements"

called Fs and R. Different

combinations of fasteners and

rings also can be fit together Figure 6.1

to represent "compounds."

An "atom" of the
"element" Fs.

An "atom" of the
"element" R.

A "molecule" of the
compound" FsR.

Figure 6.2

Figure 6.2 shows a "molecule"

of the "compound" FsR.

(1) Assuming that you have a

large supply of both Fs and R

and assuming that all the

111411101* fasteners are alike and all

the rings are alike, show how

this model can be used to illus-

trate the following principles:
150
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(a) All the atoms of a particular element are

identical.

(b) The mass of a substance is propoxtional to

the amount of that substance which is present.

(c) Atoms can combine in different ways to form

different compounds. For example, illustrate

the following:

FsR Fs
2
R FsR

3
Fs

2
R
3

FsR
2

Fs
2
R
2

2FsR 3FsR
2

(d) In a given compound, the ratio of the mass of

Fs to the mass of R is always the same (Law

of constant proportion).

(e) When Fs and R combine to form different com-

pounds, the masses of R which combine with a

fixed mass of Fs are in the ratio of small

whole numbers (Law of multiple proportions),

(f) In a mixture of Fs and R, the elements can

occur in any proportion.

(g) When elements combine to form compounds or

mixtures or when compounds or mixtures are

decomposed into elements, matter obeys the

law of conservation of mass.

(2) Evaluate this model for its ability to illustrate

known principles of chemistry.

weaknesses in the model.
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(3) Suggest other objects besides fasteners and rings

which might be used to create a similar model.

Investigation 6.2

Another physical model also found in the IPS Qourse

uses a mechanical device to represent the kinetic theory of

gases. In this device, a plastic cylinder is fitted with

two movable discs. The lower disc is attached to a small

motor which causes it to vibrate up and down. Small steel

spheres contained between the two discs bounce when the

lower disc vibrates, and the impact of the bouncing spheres

on the upper disc causes that disc to rise.

The spheres in this model

represent the molecules of a gas.

Figure 6.3 The speed of the motor deter-

mines the speed of the spheres

as the temperature of a real gas

determines the speed of its mole-

cules. Small rubber rings such

as those in the previous activ-

Stnall Steel ity can be placed on the upper
spheres

disc to exert additional pressure
Movctble

clizc against the gas, thus tending to

nriScatery
compress it. Use this model to

SrnoU
Motor

investigate the behavior of gases

by answering questions such as

the following:
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(1) How does the speed of the molecules affect the

volume of the gas?

(2) How does the number of molecules in the cylinder

affect the volume of the gas if the speed

(temperature) of the molecules is constant?

(3) How does the pressure exerted against the gas

affect the volume if the speed (temperature) is

constant?

(4) If the pressure against the gas is doubled, what

must be done to the speed (temperature) in order

to maintain a constant volume in the gas?

(5) If the number of molecules in the gas is doubled,

what must be done to the pressure in order to

maintain the gas at the same temperature and

volume?

(6) How useful is this mechanical model for explaining

the behavior of a gas?

(7) What are the limitations of this model?

InvestigatiOn 6,3

ciz

I

0 rasa. "13

Figure 6,4
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Figure 6.4 shows a lever supported at a point F called

the fulcrum. Several weights are hung from the lever as

shown. The product midi for a mass mi hung at a distance

di from the fulcrum is known as the moment of _force about F,

a measure of the turning effect of that force acting on the

lever. In order for the lever to balance, the sum of the

clockwise moments on one side of the fulcrum must equal the

sum of the counterclockwise moments on the other side. For

the case illustrated in Figure 6.4, balance is achieved

when

= m2d2 m3d3'

We can use a lever such as this as a physical model of

the arithmetic mean of several numbers, For the model, use

a meter stick for the lever and a number of equal weights

such as steel washers for the masses. Suppose, for example,

you want to find the mean of the numbers 33, 48, 56, 85, and

92. Hang one washer from each of the following points: 33

cm, 48 cm, 56 cm, 85 cm, 92 cm. Find the point where the

meter stick can be made to balance. This point (62.8 cm) is

the mean of the given numbers, Why? Explain how the lever

is a model for the mean, Illustrate a number of other sets

of numbers and find the mean of each. Is it essential to

use identical weights in this model? Why or why not? Under

what conditions might you le different weights? mould

you represent if you dic



Investigation 6.4

A class of popular mathematics problems is illustrated

by the following example:

A scientist in a poorly equipped lab has only two

containers for water: a five-liter one and a three-

liter one. How can she measure exactly one liter?

(Note: The containers are completely unmarked. It

is only possible to fill or empty them. It is not

possible to measure fractions of the total volumes

directly.)

Before you proceed, solve the pinblem above. Record your

solution in a chart like the following:

Contents of Contents of Des.:ription
Step Number 5-liter -jar 3-liter lar of activity

0 0 0

1

2

3

etc.

In the column at the right write a description of what has

happened in that step. (For example, "Empty small jar into

large jar.")

Martin Gardner I
proposed a mathematical model for prob-

lems of this type. The model is based on a hypothetical

1

"Bouncing Balls in Polygons and Polyhedrons," in the Sixth
Book of Mathematical Games from Scientific American,
Scribner, 1971.
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billiard table shaped like a parallelogram. The lengths of

the sides are determined by the sizes of the containers in

the problem. Balls on this table obey the usual physical

laws of reflection--i.e., the angle of incidence is equal

to the angle of reflection. We diagram the table for our

problem below using isometric dot paper.

Figure 6.5

In the above (Figure 6.5) model, our ball leaves from (0,J)

along the horizontal axis to (5,0). At this point (a), the

ball is reflected to (b) which has coordinates (2,3). In

similar manner the ball travels from b to c to d . . . to h.

(a) For each reflection point a through h, name the

coordinates of the point.

(b) Interpret the meaning of the above in terms of

filling aad emptying containers.

Another way to represent the solution is as follows:

5-liter container 0 5 2 2 0

3-liter container 0 ON:A3 0.\\2
Je
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(c) Explain the meaning of the above representation.

(d) What would have been the outcome if we had started

our bail from the origin to the 3-liter coordinate

instead of starting with the 5-liter coordinate?

Use the table at the right in Figure 6.5 to solve

this problem. Give the coordinates of each

reflection and interpret them in terms of filling

and emptying.

(e) Using the billiard table model, determine which

volumes in addition to one liter can be obtained

using the 5- and 3-liter containers.

- -How are these shown by the model?

- -List the steps in obtaining each of the

possible volumes.

--Is there only one way to obtain a given

volume? If there are several ways, how can

the model tell you which way is the most

efficient (i.e., has the fewest number of

steps)?

(f) Now let us try to extend the model to new situa-

tions. A natural question involves billiard

tables of oth::: diAlensions(or, equivalently,

containers of different volumes), Using the

isometric dot paper, model each of the following

cases. For each case determine all of the volumes

which can be measured using the two containers.



3 by 5

3 by 7

5 by 7

2 by 5

5 by 5

5 by 6

4 by 6

4 by 5

3 by 6

5 by 8

3 by 9

6 by 9

(g) Is it always possible to measure any desired

volume? If not, under what conditions is a

volume impossible?

(h) Generalize your findings from above: For given

volumes- A and B, which volumes can be measured?

(i) Now let's extend the model once more to a more

complex problem. In .he above cases we assumed

that there was an unlimited supply of water and

that we could get more water or throw water away

at will. Now assume instead that you have an 8-

liter container of valuable liquid (gasoline, for

example). You also have empty containers of 3

and 5 liters (one of each size). How can you

divide the 8 liters of gasoline into two equal

parts? Solve the problem before you go further.

Figure 6.6 shows the billiard model for the 3- and 5-liter

containers as before. We have added line m parallel to the

long diagonal of the billiard parallelogram. The coordi-

nates shown on line m are determined by taking the inter-

section of m with the grid lines which are parallel to line

n in the diagram. The length of m is equal to the length

of the long diagonal.
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Figure 6.6

(j) Show how the coordinates shown on m are related

to the coordinates of the points in the billiard

region. (Hint: Consider the lines which were

used to determine the points on m. The dotted

line in Figure 6.6 i3 one such line.) Explain

the above relationship in terms of the volumes in

the three containers.

(k) Use the model to solve the problem given on the

previous page. How do you know when you have the

solution? Is the solution unique? (i.e., can

you divide the 8 liters in more than one way?)

(1) Using the above model, determine all the possible

ways in which you can divide the 8 liters using

the 3- and 5-liter containers.

(m) Return to the different combinations which you

investigated in (h). Show that, for the cases

you have checked, if A and B are two containers
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such that A< B and. A and B meet the necessary

conditions which enab?e you to measure one liter,

then if we have a third container C which is fu.11

and for which c > A + B, we can measure any unit

volume up to B. (For example, if A = 15 and

B = 16 and c , then we can measure any amount

from 1 through 16.)

(n) Try to account for the cases in h where you could

not measure 1 liter. In these cases, if there is

a third container C (as described above) where

C A + B, tell which amounts you can measure using

A and B.

(o) Consider now cases where the container C is less

than the sum of A and B. See if you can modify

the billiard model to allow you to solve the

problem of dividing the contents of C. (Here is

an example of how a model no longer seems adequate

and must be modified to account for new phenomena.)

(p) (The following challenging problem is found in the

puzzles of Sam Lloyd.)

Some soldiers manage to capture a 10-gallon keg

of beer. They naturally sampled part of it,

making use of a 3-gallon and a 5-gallon container.

The rest of the beer was carried back to camp in

three equal portions--one in each of the
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containers and one in the keg. How much did they

drink and how did they measure the remainder into

three equal (non-zero) parts?

(The best solution is the one with the fewest

steps for the entire process. Each step, includ-

ing the drinking operation, involves an integral

number of gallons. It goes without saying that

the soldiers would never think of wasting any beer

by throwing it out.)

Investigation 6.5

Simple electric circuits provide a model for studying

algebraic systems. The two basic cases are illustrated in

Figure 6.7. In each circuit A and B represent switches

which can be either open (0) or closed (1), A battery

supplies power and we observe the light bulb in the circuit

to determine if it is on (1) or off (0).

Series GraLit

A 8

Pckra11c.11 Circuk-

Figure 6.7a

C 3
161
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Since the bulb can be lit only if there is a closed

path through which the electricity can flow, we can deter-

mine the condition .1,-f the light bulb for all possible.

conditions of the switches.

(A) Complete the tables below to show whether the

bulb is on (1) or off (0).

Series Circuit Parallel Circuit

A B Bulb AB) A B Bulb (A+B)

1 1 1 1

1 0 1 0

0 1 0 1

0 0 0 0

AB) We will use the symbol "." to represent electri-

city flowing in the series circuit and the symbol

"+" to represent electricity flowing in the paral-

lel circuit. Verify each of the following

generalizations about the circuits:

A + B = B + A

A B = B A

0 X = 0

1 X = X

0 +"X = X

1 + X = 1

From the observations you made so far, do there

appear to be identity elements for and for +?

1P4
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(C) In Figure 6.8 a third switch has been introduced.

Complete the tables and use the information in

them to establish the following associative

properties:

(A B). C = A (B C)

(A + B) C = A + (B C)

Figure 6.8a

A B C Bulb (ABC)

1 1 1

1 1 0

0 1 1

1 0 1

0 0 1

1 0 0

0 1 0

0 0 0
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Bulb (A+B+C)

1 1 1

1 1 0

0 1 1

1 0 1

0 0 1

1 0 0

0 1 0

0 0 0



(D) Two more complex circuits are shown Figure 6.9.

Figure 6.9a Figure 6.9b

Which of the circuits represents each of the

following:

A + (BC)

A (B+C)

Use the circuits in Figure 6.9 to illustrate the

following two distributive properties:

A + (B.C) = (A+B) (A+C)

A (B+C) = (AB) + (AC)

Which of the above is equivalent to the distribu-

tive property of the real numbers?

(E) Now suppose we introduce a double throw switch as

illustrated in Figure 6.10. This switch has the

property of being able to close in either direc-

tion (A or A'); however, if A is closed, then A'

must be open and vice versa.



Figure 6.10a

A

l

Figure 6.10b

From Figure 6.101, determine the value of AA1.

From Figure 6,10b, determine the value of A+As.

(F) If we use a double-pole switch, we can create the

situations in Figure 6.11. With this switch, both

poles must either be open or closed, so we will

use the same letter to represent each. Use the

diagrams to determine the value of the given

expressions.

A (A+B) =

Figure 6.11a

1 C 7
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(G) Using the principles derived so far, simplify the

following expressions:

A

A' .B+A =

A B

e

B'

A'.B + A.B + 13'.A =

(A'+B') (A'+B) (A+B) = A.B + A.B' + + A'.B' =

Investigation 6.6

A problem encountered by groups like the Department of

Natural Resources is to estimate populations such as fish in

a lake or deer in a region. This task usually is accom-

plished using a mathematical model'which relies on proba-

bilities. You can investigate this model, known as the

capture-recapture method, using simple equipment.

Select a large quantity of some convenient item, such

as a dish of dried beans, to represent the population of

interest. "Capture" a sample of the population by scooping
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some of the beans in your hand or in a small container.

"Tag" the captured sample by marking them with a felt pen

or with food coloring. Count the number of tagged beans

and then return them to the original population and thor-

oughly mix the entire quantity. Once again capture a small

sample and note the proportion of tagged beans in this

second sample. Estimate the size of the original popula-

tion using the following proportion:

Number tagged in Sample #2 _ Total number of Sample #1
Total number in Sample #2 Total number in population

(1) Let S
I
= size of Sample #1

S2 = size of Sample. #2

t = number of tagged items in Sample #2

P = size of population

What is the smallest possible value of P?

(2) List the assumptions which underlie this model.

Suppose you applied the model to an actual

situation such as estimating the number of fish

in a lake. What assumptions would be implicit

in the model? What variables could affect the

outcome?

(3) Examine the model further by considering the

following hypothetical case:

S/ = 10

S2 = 12

t = 5
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What is the minimum value possible for P? What

is the value of P suggested by the model? You

should find that P > 17 since the least number of

fish or wildlife in this population would be

(10 + 12 - 5). Why? However, the value of P

predicted by the model is 24.

(a) Suppose P=17 and 10 of these an orals are

tagged. Compute the probability that a

random sample of 12 animals would consist

of 5 tagged and 7 untagged ones.

(b) Now suppose P=24 and 10 are tagged. Again

find the probability that a random sample of

12 would consist of 5 tagged and 7 untagged.

(c) Repeat the above for P=18 through P=23 and

for P=25 through P=30. Arrange all of your

probabilities in a chart. Which value of P

appears most likely?

(4) Suggest some situations for wh'ch the capture-

recapture method would be useful. What arc some

decisions which.one might make based on the

estimates in these situations? What are the

limitations in each case?
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Investigation 6.7

The previous investigation presented a model for

estimating a population at a given point in time. One

important reason for wanting to know the size of a popula-

tion is to monitor the increase or decrease of a species.

Many of today's endangered species might still be plentiful

if humans had made decisions and adopted policies to pro-

tect or control them. In this investigation we will

consider a hypothetical endangered species of animals about

which we know the following to be true:

The animals reach maturity at age 3.

Of the females aged 3 or older, 88 percent give

birth to one cub per year.

In the population, 55 percent of the cubs are female

and 45 percent are male.

Only 42 percent of the cubs live to maturity.

Of the animals who do live to maturity, 15 percent

die each year from natural causes (disease, predators,

starvation, freezing, drowning, etc.).

An additional X percent of the mature herd is killed

each year by humans.

Suppose the population this year is 10,000 mature

animals. We wish to predict the population in ten years.

We will do this first for the female animals using the

above data. We will use the notation N(F ) to denote the
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number of mature females in year k (we take the current

year to be zero), and we note the following:

(1) Of the number of mature females who begin year

nine, 15 percent will die of natural causes and

X percent will be killed. Thus, the number of

females who begin year ten will be

(.85 - X' )x N(F
9

)

where Xe =---.
100

(since X represents a percent).

(2) In year ten, some of the cubs born during year

seven will reach maturity. The number of cubs

born that year is .88 x N(F7) and of these 55

percent are female. However, only 42 percent

survive until year ten. Thus, the number of

mature females added to the herd in year ten is

(.88 x .55 x .42) x N(F7)

or .203 x N(F7)

(3) Combining (1) and (2) we get

N(F
10

) = (.85 - X') x N(F
9 ) .203 x N(F7)

We see from the above equation that the number of

mature females in any given year depends on the

numbers of previous years and on the rate of

"harvesting" (killing) by humans. That equation

gives a model for population control.

(4) Of the 10,000 mature animals today, we expect

5,500 to be female. Suppose we want to maintain
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the herd at 5,500 females for each of the next

ten years. Then our population model tells us

that

N = (.85 - X") N + .203N

or 1 = (.85 - X') + ,203

since N(F
10

) = N(F
9

) = N = 5,500,

What limit should be placed on X' to assure a

steady-state population of females? That is,

how many mature females per 100 should be

harvested each year?

(5) Suppose the rate of harvesting females is 10

percent. How many mature females can we expect

in ten years? How many mature females will there

be if all harvesting is strictly forbidden?

(6) Develop the population model for the male animals,

N(M
k
). Determine the harvesting rate which would

assure a steady-state population of mature males.

(Caution: The number of mature males added in

year ten depends on N(F7), not on N(M7).1

(7) Look up similar data for some actual species such

as buffalo, sperm whales, bald eagles, or another

animal. Develop a model for population control

of that species. If possible, compare your conclu-

sions to the policies actually in effect for the

given species.
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Teaching Notes

Models present an efficient way of viewing problems.

By representing only what is essential in as simple a way

ac possible, models enable us to conceptualize relation-

ships, to predict outcomes of various actions and to make

decisions based on those predictions. Often our ability

to solve problems depends on our ability to conceive

effective models.

It was suggested in the introduction to this chapter

that the history of science is in many ways a history of

models. It is highly recommended that students trace the

evolution of at least one model as suggested in that

earlier section. Such study should emphasize the nature

of the model at successive times, the strengths and limi-

tations of each modification) and the relationships between

earlier models and those which replaced them.

Sometimes models are quite abstract and symbolic as in

the case of present-day models of the atom and the nucleus.

However, models also can be very concrete and simple. The

fasteners and rings in Investigation 6.1 are an example of

a simple model. Note that this model represents quite well

the laws of conservation of mass and of definite and

multiple proportions. On the other hand, note too that it

suggests nothing about the actual mass, volume, or struc-

ture of atoms and molecules. It also fails to suggest
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anything about the molecular motion of substances, a limi-

tation which serves to motivate the need for another model

such as the mechanical one of Investigation 6.2.

It should not be too difficult to obtain this "gas

machine" for classroom demonstration, since many schools'

,isical science laboratories have one. The mechanism can

be powei d b., a small battery and is easily assembled in

any classroom.

The balance beam model for the mean is easily modified

to accommodate any range of numbers. It also can be used

to illustrate the effect which extreme values can have on

the mean. (Check, for example, several values clustered

around 50 and one value very near to 100 or to 0.) Also,

use the model to observe the difference between the mean

and the median of the set of values.

The billiard table model for solving measuring prob

lems is a good illustration of a model which appears to be

quite far removed from the situation which it represents.

The investigation leads to the conclusion that if one can

measure a unit volume (one liter, in this case), then one

can measure any volume. Further, the condition. which

assures that one can measure the unit volume is that the

capacities of the two measuring containers must be rela-

tively prime numbers. This model is particularly useful

not only because it tells if the problem can be solved but

also because it shows how to solve it.
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In Investigation 6.5 the model is based on simple

electrical circuits. It is most effective if the students

actually wire the circuits or if one set of wired circuits

is available for classroom demonstration. The mathematical

system which results is, of course, a boolean algebra. The

degree to which one might investigate the properties of

this algebraic structure depends on the mathematical

maturity of the students. It is worth noting at least the

associative, commutative, and distributive properties, in

particular the existence of not one but two distributive

laws; the existence of identities and compleMents; and the

equivalence of multiplication (series circuit) and addition

(parallel circuit) to "AND" and "OR," respectively. It

also can be interesting for the students to explore some

applications of boolean algebra in computers or other

devices.

Finally, the two models for estimating and controlling

populations can be studied for their properties as models

and then can be employed in studying some real population

of interest to the class. The capture-recapture method is

based on probabilities and the example given in'section (3)

of Investigation 6.6 illustrates this for one specific case.

In that example, the student is asked to compute the prob-

ability that the value of P is some specified P* (where P*
s s

1 2> 17. The prediction that P - rests on the assumption
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that the animals which are caught are a random sa,aple of

the population and that the tagged animals occur in the

same proportion both in the sample and in the population.

Thus, if S2 consists of 12 animals, 5 tagged and 7 untagged,

the question becomes:

If there are P* animals in the population and 10

of these are tagged, what is the probability that

a random sample of 12 animals will consist of 5

tagged and 7 untagged ones?

Mathematically the answer to the above question is given by

the expression:

P(P*) = (

10
C
5

) ( C ).
P*-10 7'

( P* C
12)

That is, the probability that the population consists of P*

animals is given by

(Number of ways to
get 5 tagged ani-
mals out of 10)

(Number of ways to get
x 7 untagged animals

out of P*-10)

(Number of ways to
get 12 animals
out of P*)

For the case of P=17, we must evaluate

P ( 1 7 ) = (

1 0 5 7 7
C ) x ( C )

(

5

10! ) (

7!
7! )

! 5! 0!

17!
(17C12)

121 5!

For the example given, the probability of P=17 is very low

(0.04), but as P increases the probability rises to a maxi-

mum (0.32) for P=24, then decreases again for P, 24. Hence,

the model predicts the most likely value of P.
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The model for estimating a population at a given time

later can be combined with the model for predicting the

growth or decline of a population as given in Investigation

6.7. Together, the models give a basis for a number of

important applications to problems of contemporary signi-

ficance. Some other areas for studying models are suggested

below:

Other Applications

1. Trace the '.evelopment of one or more of the models

suggested in the introduction:

Models of the solar system

the atom

the nucleus

light

electromagnetism

DNA

biological evolution

radioactivity

the origin of the universe

the size and composition of the universe

relativity

quantum mechanics

2. In March 1980, Mount St. Helens, a volcano in Washington,

erupted after being dormant for 123 years. Although

scientists have not seen the inside of a volcano, they

176 178



are able to construct models of their interior struc

ture. Investigate the nature of the information which

enables geologists to construct models of volcanic

behavior. Some of the questions which such models

should attempt to answer are: How does the molten

material (called Magma) move through the earth's crust?

Why do some volcanoes erupt with explosions while

others produce quiet lava flows? What causes the

formation of volcanic cones, craters, and calderas?

How do volcanoes influence the surrounding landscape?

Why do volcanoes appear more frequently in certain

regions of the earth than in others? Are there ways

to predict when a volcano might erupt?

3. Like the questions above concerning volcanoes, many

things of interest to geologists cannot be studied

directly. Often this is because the geologic time

scale spans millions or billions of years. Investigate

the geologib models which scientists use to explain the

following:

the formation of the planet Earth

the interior of the earth

the formation, movement,and effects of glaciers

the evolution of a stream or river

the formation of mountains

the erosion of the landscape due to water, wind,

temperature change, etc,

177

179



4. An important model used by astronomers is the

Hertzprung-Russell (H-R) diagram, a graph which class-;

fies stars according to their spectral class (color and

temperature) and their absolute magnitude. Look up the

meaning of the following types of stars and show how

they are represented on the H-R diagram:

main sequence stars (this includes our sun)

red giants

supergiants

white dwarfs

population I and population II stars

variable stars

novae

5. Like the geologist, the astronomer also relies heavily

on models. Investigate the nature of the models used

to explain the following:

the life cycle of .a star

the composition and behavior of comets

the composition and structure of the sun

sunspots and solar flares

the classification of galaxies as "spiral,"

"elliptical" or "irregular"

black holes

6. Maps are a type of model. Collect several examples of

geographic, topographic, nautical, and political maps,
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identify the features which are represented on each.

In what ways are the maps alike and in what ways are

they different? What adjustments must be made in order

to represent the surface of the earth on a flat map?

7. The periodic table of the elements is another familiar

model. Identify the ways in which this model repre

sents known characteristics of the elements.

8. Some important social as well as scientific issues

include energy consumption and production; disease

control; the use and conservation of natural resources;

weather prediction; land use and management; waste

product disposal; and the environmental impact of

various industries, construction projects, etc. Inves-

tigate the ways in which models are used in some

aspects of these problems. How do models help in the

decision-making process?

9. Life on a planet depends on many factors including the

temperature, the composition of the atmosphere, and the

availability of food and water. Investigate some of

the models which contemporary astronomers have developed

to predict the probability of planets in other solar

systems with temperature and atmospheric conditions

similar to those on Earth--that is, predict the number

of stars besides our sun which might support pla1nets

suitable for human life.
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