
DOCUMENT RESUME

ED 194 060 IR 008 912

AUTHOR Harris, Diana, Ed.: Ccllison, Beth, Ed.
TITLE Proceedings of NECC/2 National Educational Computing

Conference 1980 (Norfolk, Virginia, June 23-25,
1980).

INSTITUTION Iowa Univ., Iowa City. Computer Center.
PEPORT NO IsBN-0-937114-00-6
PUB DATE Jun 80
NOTE 306p.

EDRS PRICE MFOI Plus Postage. PC Not Available from EDRS.
DESCRIPTORS *Computer Assisted Instruction: Computer Assisted

Testing: Computer Oriented Programs: Ccnputer
Programs: *Computers: *Computer Science: Elementary
Secondary Education: Games: Higher Education:
Humanistic Education; Learning Laboratcries: Material
Development: Mathematics Instruction:
*Microcomputers: Science Education

IDENTIFIERS *Computer Literacy

ABSTRACT
This proceedings, which includes 52 papers and

abstracts of 13 invited and nine tutorial sessions, provides an
overview cf the current status of computer usage in education and
offers substantive forecasts for academic computing. Papers are
presented under the following headings: Business -- Economics, Tools
and Techniques for Instruction, Computerd in Humanistic Studies,
Computer Literacy, Science and Engineering, structured Programming,
ACM Elementary and Secondary Schools Subcommittee, Computer Science
Education, Integrating Computing into K-12 Curriculum, Mathematics,
Testing-Placement, Pre - College' Instructional Materials, Minority
Institutions--ECM/, Computer Laboratories in Education, Computer
Gt.mes in Instruction, and Computing Curricula. Abstracts are provided
for 13 invited sessions dealing with such topics as microcomputers in
education: research in microcomputer uses: personal computing:
educational ccmputing: past, present, and future: the Open
University: CAUSE program and projects: funding academic computing
programs: computer-based resource sharing: computers and instruction:
improving utilization cf 2-year college computer centers: teaching
computer ethics: data sets available from the federal govenment: and
MIS education, as well as nine tutorial sessions designed to provide
attendees with the opportunity to expand their appreciation of and
involvement in educational computing. (CHC)

* Reproductions supplied by EDRS are the best that can be made *

* ircm the original document. *

U S DEPARTMENT OF NEACTN.
EDUCATIONE *waits
NATIONACINSTITUTE OF

EDUCATION

THIS DOCUMENT NAS owl REPRO-
ovceo exam., AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN.
MING IT POINTS of view OR OPINIONS
STATED 00 NOT NECESSARILY 'TERRE
set:TORSION. NATIONAL INSTITUT ECF
EDUCATION POSIT/04 OR POLICY

,Proceedings of NECC/2
National Educational Computing Conference 1980

Edited by
Diana Harris
Beth Collison

Hosted by
Christopher Newport College
Newport News, Virginia

Held et
Holiday Inn/Scope
Norfolk, Virginia

23, 24, 25 June 1980

..

"PERMISSION TO REPRODUCE THIS
MATERIAL IN MICROFICHE ONLY
HAS BEEN'ORANTED BY

Ted Sjoerdeme

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC).'

Copyright
International Standard Book Humbert 0-937114-00-d

Published by
19Sgs SZCC

The University of Iowa
Wag Computing Center

for
Iowa City. Iowa 52242

guns 1980
NAtIonal aluestIonal Computing Conference II

Cover dealgn by Madeline WIn4auer

1

NECC 1980 Steering Committee

Alfred Bola
University of California-Irvine

Bobby Brown
University of Iowa

William S. Dorn
University of Denver

Karen Duncan
Gerald L. Engel

Christopher Newport Co.iege
Norman Gibbs

College of William and Mary
John W. Hamblen

University of Missouri-Rolla
Paul Hazen

Johns Hopkins University
Harry Hodges

Michigan State University
Lawrence A. John

University of Dayton
Sister Mary Kenneth Keller

Clark* College
William E. Knabe

University of Iowa
David R. Kniefel

New Jersey Computer Network
Doris K. Lidtke

Towson State University
Elisabeth Little

EDUCOM/EDUNET
Sister Patricia Marshall

Xavier University of Louisiana
Richard W. Pogue

Medical College of Georgia
James Poirot

North Texas State University
Nancy Roberts

Lesley College
Theodore J. OPerdeme

University of Iowa
David L. Stonehill

University of Rochester
'David B. Thomas

University of Iowa

General Chairman: Gerald Engel
Program Co- chairmen: Richard H. Meting,

Dori:: K. Lidtke
Local Arrangements Committee: Robert Mathis,

Michael Stamen
Publications Committee: Diana Harris. Theodore

Sjoerdema, Madeline Windauer

The National Educational Computing Conference wishes to thank the following
people for their contribution of effort, time, and knowledge as referees for
the papers submitted for presentation.

Robert Aiken, University of Tennessee
William Atchison, University of Maryland
Emile Attala, Polytechnic State University
R. P. Banaugh, University of Montana
Bruce Barnes. National Science Foundation
Joyce Damao, Southern University
Alfred Bork, University of California
O. R. Boynton. Indiana University
Mary Jane Brannon, Huntingdon College
Hans &trey, Tennessee Tech. University
Tom Carroll, Michigan State University
N. John Castellano Indiana University
Sylvia Charp, School District of Philadelphia
Ronald Collins, Eastern Michigan University
Frank W. Connolly, Montgomery College
Michael J. D'Amore, New Jersey Educational

Computing Network
Charles Davidson, University of Wisconsin
Herbert Dershem,\Hope College
David Evans, VIMS
Selby Evans, Texas Christian University
Stefan Yeyoch, College of William and Mary
F. T. Fink, Michigan State University
Fred Gage, Texas Christian University
Norman Gibbs, College of William and Mary
Sheldon'P. Gordon, Suffolk County Community

College
Keith Hall, Ohio State University
John W. Hamblen. University of Missouri
Marry Hodges, Michigan State University
Darlene Heinrich, Florida State University
Jews A. Higgins. Digital Equipment Corp.
A. AA J. Hoffman. Texas Christian University
Lawrence Jehn, University of Dayton
Vincent H. Jones. Baton Roque, Louisiana
Basheer Khumawala, University of North Carolina
Joyce C. Little. Community College of Baltimore
Richard W. Lott, Bentley College

David Maharry, Wabash College
Sister Patricia Marshall, Xavier University
Donald H. McClain, University of Iowa
Donald E. McLaughlin. Augustana College
Edward D. Meyers Jr.. Center for the Study of

Health Development
Percy L. Milligan, Southern University
Robert D. Montgomery. North Carolina Central

University
Catherine Morgan, Kensington. Maryland
Mike Moshell, University of Tennessee
Robert Noonan, College of William and Mary
Bruce E. Norcron. SUETY at Binghamton
Linda Petty, Hampton Institute
Charles Pfleteger, University of Tennessee
Richard Pogue, Medical College of Georgia
W. W. Porterfield, Hampden-Sydney College
James Powell, Burroughs-Wellcome Co.
C. A. Quarles, Texas Christian University
Joe Rabin. Queen College of BURY
Ottis Richard, University of Denver
David Rine, Western Illinois University
Peter Riese. Control Data Corp.
Leroy Roquemore. Southern University
R. C. Rosenberg. Michigan State University
Ted Sjoerdsma, University of Iowa
David Smith, Duke University
Philip F. Spelt. Wabash College
Elliot A. Tanis. Hope College
Robert Tannenbaum, Ancram, New York
David Thomas. University of Iowa
Robert Thompson, University of Dayton
John Van Iwaarden. Hops College
Rita Wagstaff, Temple University
T. C. Willoughby, Ball State University
Gary Wittlich, Indiana University
Allen Disbur, SUNK at Binghamton

And special thanks to the authors whose cooperation kept this publication on
schedule. .,.-Diana Harris

5

Foreword

The Second National Educational Comput-
ing Conference (NECC/2) builds on the
success of last year's conference at the
University of Iowa. In organizing the
program for NECC /2 we have attempted to
implement many of the suggestions we have
received during the year. Of special
significance are the tutorial sessions
which are designed to provide attendees
with the opportunity to expand their
appreciation of and involvement in
educational computing.
NECC/2 is a broadly based conference'

bringing together, in the common inter-
ests of computers in education, a great
number of individuals with diverse back-
grounds and a great number of cooperating
societies. It is hoped that in this
forum the diversity can be focused to
improve our common interest.
This volume presents the papers pre-

sented at the conference and summaries of
most of the special sessions. The coordi-
nation of the contributed papers was in
the able hands of Richard H. /mating of
the University of Maryland, and the coordi-
nation of the special sessions was in the

CV

equally able hands of Doris K. Lidtke of
Towson State University. We give them our
sincerest thanks for the many hours spent
on these tasks. We also thank the authors
for submitting their works and working with
us to maintain our schedule.
Thanks are also due to the entire NECC/2

Steering Committee for their excellent
guidance in preparing for the Conference.
Special acknowledgements go to Ted

Sjoerdsma of the University of Iowa who
coordinated publicity and Diana Barris
also of the University of Iowa who edited
these proceedings.
Finally we thank all those individuals

who came to NECC/2 and helped insure that
the concept of this series of conferences
is a success.

Gerald L. Engel
Chairman, NECC/2
Christopher Newport College
Newport News, Virginia 23606

Table of Contents

TUTORIALS
1 CAI-An Introduction

Michael Aronson and Harold Rabmlow
2 How to Choose a Microcomputer for Educational Use

Kevin Hausmann
3 Turning Students on to the Computer:

The Introductory Course
Gary Shelly

4 Instructional Design
Gary Stokes

INVITED SESSION
5 . Microcomputers in Education

Chaired by Murali R. Varanasi

TUTORIAL
6 Program Development Techniques

A. J. Turner

BUSINESS/ECONOMICS
7 Computer Science and MIS College Students:

An Investigation of Career-Related Characteristics
Eleanor W. Jordan

12 Force- Feeding SPS8 in Market Research and Analysis
at Hampton Institute

Howard F. Wehrle III
16 Short-Run Forecasting of the U.S. Economy

Minims R. Bowman

TOOLS MD TECHNIQUES FOR INSTRUCTION
19 Hypertext: A General-Purpose Educational Computer Tool

Darrell L. Ward and Steve Bush
25 A Dynamic Process in Teaching Techniques

Jamil E. Effarah
31 Considerations and Guidelines for Developing Basic Skills

Curriculum for Use with Microcomputer Technology
Robert M. Caldwell

INVITED SESSION
37 'Research in Microcomputer Uses in Education

Chaired by David Xdiefel

CCMPOTERS IN HUMANISTIC STUDIES
39 Creativity through the Microcomputer

George M. Bass, Jr.
42 Giving Advice with a Computer

James W. Carson
46 ?roma Theory of Reading to Practice via the Computer

Dale M. Johnson and R. Scott Baldwin
54 Non - Harmony: A Vital Element of Bar-Training in usic CAI

Joan C. Groom-Thornton and Antoinette Tracy Corbst

7
vi

COMPUTER LITERACY
58 A Case for Information Literacy

Bruce B. Schimming
62 A Byte of BASIC.

Judith Am Hopper
65 A Computer Workshop for Elementary and Secondary Teachers

Herbert L. LW:rah:to and John T. Whittle
68 Microcomputers and Computer Literacy: A Case Study'

Robert J. Wilson

INVITED MISSION
73 Personal Computing: An Adventure of the Mind--

Paul Hazen

INVITED SESSIONS
74 Educational Computing: Past, Present, and Future

Ronald W. Collins
75 The Open University

Prank Lovis and William Dorn

SCIENCE AND ENGINEERING
76 Demographic Techniques in Ecology:

Computer-Enhanced-Learning
A. John Gets, Jr.

81 Microcomputers as Laboratory Instruments:
Two Applications in Neurobiology

Richard F. Oliva
Classical Mechanics with Computer Assistance

A. Douglas Davis
90 Computer-.Augmented Video Education in Electrical

Engineering at the U.S. Naval Malawi
Tian S. Lim, Michael W. Magee, and Richard A. Pollak

STRUCTURED PROGRAMMING
96 The Use of Programming Methodology in Introductory

Computer Science Courses
Elisabeth Alpert

103 FORTRAN 77: Impact on Introductory Courses in
Programming Using FORTRAN

Prank L. Friedman
112 Using Model -Based Instruction to Teach PASCAL

Bodgan Csejdo
119 Structured Machine-Languages An Introduction to Both

Low- and High -Level Programming
David G. Hannay

ACM ELEMENTARY AND SECONDARY SCHOOLS SUBCOMMITTEE
125 ACM Elementary and Secondary Schools Subcommittee

Progress Report
David MOursund

130 Computing Competencies for School Teachers
Robert P. Taylor, James L. Poirot, and James D. Powell

INVITED SESSION
137 CAUSE Program and Projects

Chaired by Lawrence Oliver

TUTORIAL
138 Databases - What Are They?

Arlan DeKock

COMPUTER SCIENCE EDUCATION
139 Required Freshman Computer Education in a

Liberal Arts College
David E. Wetmore

143 Development of Communications Skills in
Software Engineering

John A. Seidler and John G. Meinke
147 Systematic Assessment of Programming Assignments

Judy M. Bishop
152 Data Structures at the Associate Degree Level

Richard F. Dempsey

INTEGRATING COMPUTING INTO K-12 CURRICULUM
155 The Scarsdale Project: Integrating Computing

into the K-12 Curriculm
Thomas Sobol and Robert P. Taylor

168 Panel
Beverly Hunter and Catherine E. Morgan

INVITED SESSION
169 Funding Academic Computing Programs

Sheldon P. Gordon and Lawrence Oliver

TUTORIAL
170 Techniques for Instructional Software Development

Using Microcomputers
Kevin Hausmann

MATHEMATICS
171 A Method for Experimenting with Calculus Using CAI

Frank D. Anger and Rita V. Rodrigues
179 Computer Applications in a Finite Mathematics Course

G. piegeri. K. Abernethy. and A. L. Thorsen
1B4 A Computer-Assicted Course in Biomathematics

Pui-Kei Wong
194 Computer Symbolic Math

David R. Stoutemyer

INVITED SESSIONS
197 Computerilased Resource Sharing

Donna Davis Mebane and Rodney Mebane
198 Computers and Instruction: Development, Directions,

and Alternatives
Chaired by William Gruener

TUTORIAL
199 Videodisc

Bobby Brown and Joan Sustick

TESTING/PLACEMENT
200 MicrocomputerAssisted Study and Testing System

Hugh Garraway
205 RIBYT - A Database System for Formal Testing and

SelfAssessment
F. Paul Pubs

214 Computer-Managed Placement in Mathematics Instruction
for Health Occupations Students

Thomas A. Boyle and Peter Magnant

9

INVITED SESSIONS
220 Improving Utilization of Two Year College Computer Centers

Chaired by Joyce Currie Little
221 Teaching Computer Ethics (Workshop)

Walter Mauer

TUTORIAL
222 PASCAL

H. P. Haiduk

PRE-COLLEGE INSTRUCTIONAL MATERIALS
223 Computer-Based Instruction for the Public Schools:

A Suitable Task for Microprocessors?
Timothy Taylor

230 Microcomputer/Videodisc CAI - Some Development
Considerations

Ron Thorkildsen and Kim Allard
236 The Won-Technical Factors in the Development of CAI

Michael Mocciola

INVITED SESSIONS
237 Data Sets Available from the Federal Government

Chaired by Thomas E. Brown

MINORITY INSTITUTIONS ECMI
238 Academic Computing: A Sampler of Approaches in Minority

Institutions
Sr. Patricia Marshall

245 Computer Use in Chemistry at a. Minority Institution
James D. Beck

249 Educational Use of Computer* in Puerto Rico
Frank D. Anger

COMPUTER LABORATORIES IN EDUCATION
250 Microcomputers in the Teaching Lab

Robert F. Tinker
256 The Computer Lab of the 80s

Guy Larry Brown
258 The Education Technology Center

Alfred Bork, Stephen Franklin, and Barry Kurtz

INVITED SESSION
260 MIS Education: Industry Needs and Educational Solutions

Chaired by Eleanor W. Jordan

COMPUTER GAMES IN INSTRUCTION
261 Shall We Teach Structured Programming to Children?

Jacques E. LaFrance
266 Structured Gaming: Play and Work in High School

Computer Science
J. M. Moshell, G. W. Amann, and W. B. Baird

271 Tapping the Appeal of Games in Instruction
Peter O. McVay

o

0

COMPUTING CURRICULA
276 An Sducational program in Medical Computing for

Clinicians and Health Scientists
Albert Hybl and James A. Reggie

281 A Secondary Level Curriculum in System Dynamics
Nancy Roberts and Ralph M. Deal

287 The Computer Software Technician Program at Portland
Community College

David M. Hata
290 A Computer Science Major in a Small Libe.al Arts College

Joerg Mayer

293 Author Index

X

Ii

Tutorials

CAI - AN INTRODUCTION

Michael Arenson
Dept. of Music
Univ. of Delaware

Newark, Delaware 19711
(302) 738-8485
Harold Rahmlow

Abacus Learning Inc.
531 Lancaster Avenue

Wayne, Pennsylvania 19087
The American College

Bryn Mawr, Pennsylvania 19010

ABSTRACT
The NECC-2 Computer-Based Instruction

Tutorial Session is designed for persons
who have had little or no experience
working with computer-based instruction
(CBI). This session will give basic
information that will help them get
started in CBI. The topics for the ses-
sion include:

(1) An examination of terms related to
CBI and the differences between com-
puter assisted instruction, computer-
managed instruction, and computer
test generation

(2) Characteristics of today's educational
environment and the place of CBI in it

(3) Alternate CBI systems and character-
istics of each

(6) Examples of successful CBI
(5) Questions one should consider before

getting into CBI
(6) Where to get additional information

or assistance concerning CBI

12

2 NECC 1980

HOW TO CHOOSE A MICROCOMPUTER FOR EDUCATIONAL USE

Xevin Hausmann
Minnesota Educational Computing Consortium

2520 Broadway Drive
St. Paul, Minnesota 55113

ABSTRACT
--Milypeople are realizing the tremendous
potential that microcomputers have for
education; however, it is becomming increas-
ingly difficult to stay abreast of all the
varieties of microcomputers currently
available. One solution to this problem
is to define the components that make up
a minimal educational microcomputer system
and then consider only those systems which
meet minimal criteria.
The minimal system, as defined by

Minnesota educators, consists of the
following:
- An input device must be a typewriter

keyboard and output a multiline
monitor or printer.

- a permanent file storage must be some
form of disk storage.

- The BASIC language must be supported.
- At least 12X of user memory must be

availalbe, excluding operating
system and language processor(s).

Since BASIC is the most often used
language, an evaluation of BASIC language
features and capabilities should be made.
BASIC features typically considered
include sequential file handling, random
access file handling, chaining, special
functions, matrix operations, formatted
Output, and good graphics commands.

Once the range of systems has been
narrowed, ways to provide or acquire
support should be considered. The
following points were deemed important
in the Minnesota plan for microcomputer
support:
- One specific microcomputer (chosen

through a bid process) should be
available to educational agencies
by a state contract.

- Instructional service support for
the selected microcomputer should be
defined end increased to the level
currently available for timesharing.

- Continuous analysis and evaluation
of hardware and software must keep
up with the changing technology.

The technical evaluations and the
invitation for bid used by the Minnesota
Educational Computing Consortium are
available from XECC Publications, 2520
Broadway Drive, St. Paul, Minnesota 55113
Ask for the 79 -80 Microcomputer Report.

13

TURNING STUDENTS ON TO THE COMPUTER:
THE INTRODUCTORY COURSE

Gary 8. Shelly
Anaheim Publishing Company

1120 East Ash
Fullerton, CA 92631

(714) 879-7922

ABSTRACT
--7Flai long as computing has been taught
in high schools, colleges, and universities,
there hii been controversy concerning the
first course in the curriculum. Some have
advocated a high-level course dealing with
algorithms and programming, while others
have taken a computersn-society approach.
With the increased enrollment in this
course, notonly in colleges and univer-
sities but in high schools and even junior
high schools, guidance must be given to
teach a worthwhile course which can satisfy
the large number of students from all
disciplines who will be taking it.
This tutorial will present a suggested

course content and methods for implement-
ing this course at all levels of education.
It will include justification for the
subject matter which the author views as
critical for the course and unique and
effective ways in which this subject
matter can be taught effectively.

14

Tutorial 3

4 NECC 1980

INSTRUCTIONAL DESIGN AND COMPUTER EDUCATION

Gordon Stokes
Computer Science Department
Brigham Young University

Provo, Utah 84602
(801) 374-1211 Ext. 3027

ABSTRACT
mace of performance objectives,
course organization, instructional
strategies, and evaluation procedures
will be discussed in this session. The
instructional design of an introductory
FORTRAN class will be the case history
that illustrates the instructional
design process in a classroom.
The presentation will give the partici-

pants enough information and examples to
help them organize their own classes.
The evaluation procedures will cover both
formative and summative exams.
Some recent research results on indi-

vidualized instruction in an introductory
class will be presented, and their
Applications for instructional design
will be discussed.

15

Invited Session

. MICROCOMPUTERS IN EDUCATION

Chaired by Murali R. Varanasi
Dept. of Electrical Engineering

Old Dominion University
Norfolk, VA 23508
(804) 440-3742

ABSTRACT
7-the introduction of the first

microprocessor in 1972, advances in the
microprocessor field have so accelerated
that universities have been faced with a
aerious educational challenge. To take
advantage of the cost and flexibility
offered by the programmable LSI devices,
the digital designers have to be educated
in software engineering; computer scien-
tists have to learn digital systems at
the gate and subsystem level. Even
though microprocessors, they must be dealt
with as any other computer--i.e., inter-
faces have to be built, buses have to be
designed, and programs written. There-
fore the following challenges arise:

1. How are design skills to be taught?,
2. What sort of courses are needed?
3. What sort of laboratories are needed?
4. How does one introduce a Computer

Science/Engineering student to
application areas?

This panel will address the above ques-
tions from the perspective of experienced
education, industrial, and government
experts knowledgeable in computer educa-
tion. Future applications of micro-
processors will also be discussed.

15 -

Tutorial

PROGRAM DEVELOPMENT TECHNIQUES

A. J. Turner
Clemson University

ABSTRACT
Computer programs are often developed by

users without considering the effort that
will be required for someone other than the
author(s) of a program to understand it
modify it, or correct an error. However,
several techniques are available to assist
in the development of computer programs
that are easier to road, understand, debug,
and modify. Since tee techniques also
facilitate the initial implementation of
most programs, they are valuable even if a
program is intended to be used without
modification.

Techniques for three aspects of program
development are considered in this tuto-
rial: design, programming, and implemen-
tation. Topdown design is discussed as
the basic approach to program design.
Module independence, module function,
information hiding, and the HIPO tech-
nique are considered as modularization
criteria and paradigms to -id in the
development of the design. The two pro-
gramming techniques discussed that facil-
itate the development of program code are
the use of pseudo-code and stepwise
refinement. Also included are techniques
for improving the readability of program
code, such as structured coding and
program formatting and commenting conven-
tions. The use of iterative. enhancement
and module stubs are discussed as implemen-
tation techniques that complement the
desigr and programming techniques and
facilitate the use of a topdown approach
to program development.
Emphasis is placed on the use of these

techniques by a small implementhtion
team or a single individual. Examples
in the BASIC and PASCAL programming lan-
guages are included.

6

17

Business/Economics

COMPUTER SCIENCE AND MIS COLLEGE STUDENTS:

IS THE STAMPEDE FOR THE MONEY?

Eleanor W. Jordan
Department of General Business
University of Texas at Austin

Austin, Texas 78712
512-471-5322

INTRODUCTION
College programs in computer science

and management information systems (MIS)
are generally experiencing increasing
enrollments in spite of declining or
stable university-wide enrollments.
Since the demand for DP professionals
is currently very high, enrollment
increases in these two areas may be an
indication of the practical orienta-
tion of the '70s college students who
supposedly left the liberal arts and
demonstrations of the '60s to pursue
safer career paths in a declining job
market. if this is true, will colleges
be producing more computer graduates in
the '80s who are money-oriented rather
than computer-oriented?

industry is unlikely to be dis-
mayed at the prospect of more practical
computer science graduates. Bruce
Gilchrist (5) predicts that the short-
age of OP professionals will continue
through the *80s mainly because educa-
tional institutions are not producing

7

graduates with an adequate education
for business applications. He suggests
that computer companies spend less
time raiding each other's DP employ-
ees and more time interacting with
educational institutions in order to
improve the DP personnel situation.

Several-educators have joined
industry recently in complaining that
computer science education is often
irrelevant to industry needs (2).
Resulting recommendations have often
been to add particular courses or
stress particular languages (2), but
there has been an increasing interest
in new programs designed for the
broadly defined fields of software
engineering (7) or information systems
(4).

Before too many new programs are
developed, it might be valuable to
consider whether it is possible to
relieve industry's frequently expressed
frustration with computer science
graduates by making curriculum changes.

.18

8 NECC 1980

Paul Anagnostopoulos (1), a participant
in the 1979 Brown University conference
on the difference between software
theory and practice, decided that the
much talked-about software crisis is
due mainly to programming personality
defects. His suggestion that more
attention be paid to the psychological
aspects of programming and systems
design is similar to Daniel Cougar
and Robert Zawacki'e (3) suggestion
that DP professionals consider behav-
ioral aspects of personnel responsibi-
lities as well as the required technical
skills. In their investigation of
more than 600 DP professionals (analysts,
programmer/analysts, and programmers),
Couger and Zawacki found that the
stereotype of programmers as loners
had considerable basis in fact: DP
professionals reported significantly
less need for interaction with others
than all six of the other professional
groups studied.

Are people who choose DP careers markedly
different from people in general? Couger
and Zawacki found that practicing DP pro-
fessionals have lower social needs than
others and concluded that this trait had
important implications for how DP work
environments and job requirements should be
designed. If computer science and MIS
students differ from other students in
job-related attitudes and achievement moti-
vations, it could have implications for
program design, course design, and student
advising in the computer science and MIS
areas.

STUDENT SURVEY PROJECT
In spring 1977 I was involved in the

development of an undergraduate MIS program
in the College of Business Administration
at The University of Texas at Austin. A
strong computer science program already
existed at the graduate and the undergrad-
uate level, but odr business school committee
thought that the orientation of the computer

TABLE 1. Mean Ratings of Importance of Possible Considerations
In Career Choice for Student Sub-Groups

Career Considerations
in RInk Order of
Importance

Business

(N=326)

MIS

(N=21)

Computer
Science

(N2r20)

Liberal
Arts
(1440)

Natural
Sciences
(N=45)

Engineering

(N=15)

1. Personal Interest* 3.4 3.3 3.0 3.6 3.5 3.4

2. Personal Abilities 3.1 3.2 3.2 3.3 3.4 3.1

3. Career Potential 3.1 3.3 3.3 2.8 2.9 3.5

4. Job Security 3.0 2.6 3.1 2.4 2.7 2.7

5. Salary** 2.7 2.4 2.9 2.2 2.3 2.5

6. Amount of Time
Allowed Outside Work 2.6 2.4 2.4 2.5 2.3 2.9

7, Flexibility 2.5 2.5 2.5 2.5 2.4 2.4

8. Variety of Job
Requirements 2.4 2.3 2.3 2.4 2.2 1.9

9. Opportunity for**
Community Service 1.8 1.5 1.3 2.2 2.5 1.5

10. Prestige 2.0 1.5 1.9 1.9 1.6 1.7

Items are measured on a five-point scale with Osindicating "not at all important* az.d
4 indicating "extremely important."

Asterisks indicate that an analysis of variance resulted in a statistically significant
difference among sub-group means at the following levels: *--p4.05, **--14.01

19'

Business/Economics g

TABLE 2. Mean Scores for Student Sub-Groups On
Work and Pamily Orientation ?actors

Factor Business MIS Computer
Science

Liberal
Arts

Natural
Sciences

Engineering

(A=326) (N=21) (N=20) (N=40) (N=45) (N=15)

Mastery 20.1 20.3 19.0 19.2 19.6 19.7

Work 19.7 20.7 18.4 20.4 20.5 19.9

Competi-
tiveness** 13.7 12.1 11.2 12.1 12.3 12.9

Personal
Unconcern 10.3 10.3 11.2 10.9 10.7 10.1

The overall group means for these factors were very close to the Helmreich and Spence
normative data for 1455 college students.

**An analysis of variance resulted in a statistically significant difference among
sub-group means at the .01 level.

science undergraduate program was more
suitable for aspiring graduate students,
systems programmers, or scientific pro-
grammers than business applications sys-
tems analysts. The MIS program was de-
signed to provide the education for a
knowledgeable business user who can ef-
fectively define his information needs
as well as analysts who can design the
requested' software without the usual
conflict between user and DP personnel.

Pall 1979 was the first semester
for the proposed MIS program. Since it
is a computer program in the business
school I was interested in whether the
students attracted by the program would
have work-related attitudes and motiva-
tions similar to business students or
CS students. I therefore included stu-
dents in two of the required MIS classes
in a Pall 1979 survey project that mea-
sured attitudes from a large sample of
business students at the undergraduate
and masters level. A smaller sample of
liberal arts, natural sciences (includ-
ing computer science), and engineering
students was also included for a compar-
ison with the MIS group. The resulting
sample included 467 undergraduates) the
large majority were business majors in
accounting, management, or marketing.

RESULTS

Determinants of Career Choice
Most of the students participating

in the survey reported that they had
decided on a career goal, even though
the sample included about as many fresh-
man and sophomores as it did juniors and
seniors. Approximately half of the de-

cided group had specific career goals,
while the other half indicated that they
had decided on a general area but were not
sure about what their specialization might
be.

On the survey students were asked to
rate the importance of ten elements in
their considerations for choosing a career
field on a scale of 0 to 4. The ten ca-
reer choice items included on the survey
are listed in Table 1 in the order of aver-
age importance to the entire sample.

Personal interest in a career field
had the highest mean rating for all stu-

..J'aftt 'sub-groups except the computer science
students and engineering students who tended
to rate the importance of career potential
more highly than any of the other items
listed.

The generally high ratings given -to
personal interests in career choice deliber-
ations are not consistent with a popular
view of '70s students as obsessed with fi-
nancial security, but the rest of the items
in the top half all fit this view. Matching
a career with personal abilities ranks sec-
ond for most groups and career potential,
job security, and salary follow.

To determine what reliable inter-group
differences might exist in deliberations
about career choice, I performed a separate
analysis of variance for each of the ten
items. Statistically significant differ-
ences among means were found for three of
the items: personal interest, salary, and
opportunity for community service. For all
three of these items the mean for computer
science students was at one end of the
range of sub-group means and the

20

10 NECC 1980

means for liberal arts students and
natural science students were at the other
extreme. The mean for MIS students was
closer to the other sub-group means for
all three of these career choice items.
For these three considerations in making
a decision about a career, the MIS stu-
dents appear to be more like other stu-
dents than the computer science students.
For the other considerations included
in the survey, the computer science
students, like the MIS students, appeared
to rate each item of similar importance
or lack of importance to the other sub-
groups.

Achievement Motivation
The su=vey also included four

measures of achievement motivation.
These measures were taken from Robert
He]areich and Janet Spence's (6) Work
and Family Orientation Questionnaire
since considerable evidence exists for
the statistical reliability and valid-
ity of this instrument. The four fac-
tors identified in Helmreich and
Spence's analyses are designated as
work, mastery, competitiveness, and
personal unconcern. The first two
would seem to be highly relevant to
realistic motivations of aspiring
DP professionals in the rapidly chang-
ing computer environments work is
intended to measure the desire to work
hard and mastery measures desire for
intellectual challenge. The items
composing the competitiveness factor
are related to a desire to succeed in
competitive, interpersonal situations.
A high score on the personal unconcern
factor indicates a relative lack of
concern about the possible negative
interpersonal consequences of achieve-
ment. In validation studies these fac-
tors have been found to be appropri-
ately related to measures of scienti-
fic achievement, college grades, and
income.

Computer science and MIS students,
according to my results, are similar
to business, liberal arts, natural
sciences, and engineering students in
terms of work, mastery, and personal
unconcern (Table 2). In a comparison
of the six sub -group means the results
of an analysis of variance test was not
statistically significant for any of
these three factors. However a Statis-
tically significant difference among
means was found for competitiveness.
The highest mean factor score was for
the business students and the lowest
was for the computer science students,

the mean score on competitiveness for MIS
students was similar to the middle scores
of liberal arts and natural science stu-
dents.

SUMMARY AND CONCLUSIONS
The sample of computer science and

MIS students participating in this sur-
vey was quite small so any conclusions
that can be drawn from the results must
be tentative. Where comparisexe could
be made to other mtudies the data did
appear to be representative of college
students and consistent with the Couger
and Zawacki (3) study of DP professionals'
personal needs. The additional implica-
tions of my study may then be worth consi-
dering at least for purposes of discus-
sion.

For the most part computer 'science
and MIS students appear to make career
choices in a manner similar to other
students and have similar achievement
motivations. However, where statisti-
cally significant differences do exist,
the computer science students were found
consistently to have an extreme posi-
tion, while the MIS students consistently
indicated choices and motivations simi-
lar to the other student sub - groups.

Implications for Industry
If the results of this study in an

academic setting are combined with the
Couger and Zawacki (3) study, the impres-
sion of the DP professional is that of
someone who has low needs for social
interaction and little desire for inter-
personal competition relative to other
professionals or aspiring business
executives. Computer science students
are just as interested in an intellec-
tual challenge ae other students, accord-
ing to my study, and have a greater need
for personal growth than other profes-
sionals, according to the Couger and
Zawacki study. But challenge and growth
are apparently not defined in terms of
social interaction or interpersonal
competition. If the business execu-
tive understands this then it seems highly
plausible that it would be possible to
capitalize on the task orientation of
the traditional DP professional and
benefit.from the lack of possibly des-
tructive interpersonal competition.
Some of the closed-door complaints that
are sometimes heard about DP shops may
stem from an assumption that the source
of the isolation policy is a know-it-
all egocentricity, when in fact it is
likely to be a difference in task orien-
tation.

21

The results of this survey related
to MIS students seem very hopeful for a
future reduction of the frequency of
conflicts between computer experts
and business managers. For all ana-
lyses where differences in motivations
or importance placed on career choice
considerations were found to be statis-
tically significant, the MIS students
tended to take a middle position.
Hiring a combination of MIS and compu-
ter science graduates may very gall result
in a DP shop that has better intro-
company relationships and still delivers
the technical expertise that may re-
quire an almost exclusive orientation
toward the task at hand.

Another hopeful note is that the
programmer's big ego desoribed in
some of the stories of Gerald Weinberg
(8) in The Psychology of Computer
?rIgraw,mEg doesn't seem o pre-
va ent among either MIS or CS students.
Weinberg's observations may be more
based on egocentricity than egotism.

Implications for Educators
Gordon Davis (4) has discussed

the conceptual differences in the func-
tions of information analysts and system
analysts as a basis for designing
curriculum in MIS and computer science.
The results of my study provide some
additional support for the distinc-
tion between broadly defined programs
in information systems and the tradi-
tional computer science program.
The middle position occupied by the
MIS students on a number of career
orientation and achievement moti-
vation measures may mean that they
will generally be successful in the
liaison and managerial roles they are
often placed in. Also MIS programs
apparently attract a different type
student than the computer science
programs. As the number of MIS.pro-
grams increase the number of gradu-
ates seeking DP positions may increase
at a faster pace than expected.

The high salaries and eager on-
campus industry recruiters would seem
to be the most obvious reasons for
the continuing increase in MIS and
computer science enrollments, but
that's not what these students are
reporting. Personal interests are
more important than salaries for all
these late '70s college students.
With a continuing increase in college
graduates and 'a variety of computer
educational programs, perhaps the soft-
ware race Will catch up with the hard-
ware advances faster than the latest

predictions indicate.

REFERENCES

1.

Business/Economics 11

Anagnostopoulos, P. "Software Crisis:
Method or Psychology?" Computerworld,
October 29, 1979, pp. 23, 28.

2. Cook, J. R., Gallagher, M. C., Johnston,
M. A. 'An Analytical Study of Industry's
Computer Education Needs." Interface,
Vol. 1, No. 1, Winter 1979, pp:37.

3. Conger, J. D. and Eawacki, R. A. "What
Motivates DP Professionals?" Datamation,
Vol. 24, No. 9, September 197 8,
pp. 116-123.

4. Davis, G. B. "Information System
Curricula in the Business School."
Interface, Vol. 1, No. 1, Winter 1979,
113727:177-

5. Gilchrist, B. "Wanted: DP Professionals
or the '80's: Computerworld, January
7, 1980, pp. 6 -T.

6. Helmreich, R. L. and Spence, J. T.
"The Work and Pamily Orientation Ques-
tionnaire: An Objective Instrument to
Assess Components of Achievement
Motivation and Attitudes Toward Family
and Career." JSAS Catalog of Selected
Documents in Psychology, Vol. 8, 1978,
pp. 35-55.

7. Jensen, R. W. and Tonics, C. C. "Soft-
ware Engineering Education - -A Construc-
tive Criticism." Proceedings of the
Sixth Texas Conference on Computing
Systems, November 1977, pp. 5B-7 - 511-13.

Weinberg, G. The Psychology of Computer
Programming. New York: D. Van Nostrand

iVil.

a.

12 NEM 1900

FORCE-FEEDING SPSS IN
MARKET RESEARCH AND ANALYSIS AT

HAMPTON INSTITUTE

Howard F. Wehrle, III
School of Business
Hampton Institute

Hampton, Virginia 23668
(804) 727-5362

INTRODUCTION
Hampton Institute (HI) is a small,

!West/stove, four-year historically
black college that grants graduate degrees
in education, nursing, and (in conjunction
with George Washington University) engi-
neering. As of September 1979, the School
of Business included 15 faculty members
and 792 students (the largest enrollment
of any element of the Institute) who re-
presented 36 states, the District of
Columbia, and the Virgin Islands. The
School of Business is actively pursuing
preliminary actions toward accreditation
of the undergraduate program by the
American Assembly of Collegiate Schools
of Business (AACSB), with the mid-range
goal of an accredited Master of Business
Administration (MBA) program.

COMPUTER EDUCATION FOR BUSINESS AT
HAMPTON INSTITUTE

The focal point for computer education
at HI is in the Division of Computer
Science, Department of Mathematics, which
offers a major in computer science. COBOL
is the principle vehicle for teaching, al-
though two APL terminals are available.

Xn the School of Business, a single
computer course, "Computer Concepts in
Business," has used FORTRAN. Until the
1978-79 school year the course war. taught
by a full-time visiting professor, an
IBM employee. Upon his departure, the
author volunteered to teach both sections
of the course, continuing the soiewhat
restrictive program-writing orientation
using FORTRAN, which was 4stablished by
his predeceesor.

Beginning in September 1979, however,
the main thrust of the course was sub-
stantially redirected from a rather narrow
technical orientation to a broader mana-
gerial orientation more appropriate to
potential junior managers who are under-
graduate students in business. This re-
direction included a new text, O'Brien's

Computers in Business Management (7),
which emphasises business applications
and problems with substantially less
attention to detailed programming tech-
niques. In addition, preliminary guidance
from the Chairman of the Department of
Management and Marketing had emphasized
that FORTRAN is not necessarily the pre-
ferred language. Accordingly, minor
preliminary study has addressed the possi-
ble introduction of the C language (2)
since software compatible with the Harris
PDP-11 (now biking installed at HI) is
available. This guidance recognizes the
fact that the goal of the School of
Business is not to train computer pro-
grammers or potential data processing
managers, but to train competent junior
managers with a breed overview of busi-
ness.

Hardware available to the School of
Business as of September 1979 included
five keypunches, one terminal interactive
with the IBM 370/168 computer at The
College of William and Mary in Virginia
at Williamsburg, and an IBM System 3 at
Hampton Institute. The- System 3 allows
batch processing of Statistical Package
for the Social Sciences (SPSS) programs.

THE CHALLENGE OP BUSINESS 428-01
On August 30, 1979, the author, primarily

management rather than marketing oriented,
was offered the opportunity to teach, as
an overload, Business 428-01, "Market.
Research and Analysis." This opportunity
was eagerly grasped, after only brief
cone/devotion. A conventional syllabus
complemented the text end supported the
concept of team determination, team lead-
er selection, and research topic recomeen-
dation by the students. For the class of
59 students (34 juniors and 25 seniors)
specific guidance was given orally at the
same meeting: "This course is team-
oriented. Accordingly, by the next class

23

meeting please arrange yourselves in teams
of not less than five nor more than seven
members, at least one of whom must have
completed 'Computer Concepts in Business'
(to ensure a basic familiarity with the
mechanics of computer programming, key-
punch operation, and program debugging).
Select your teas leader, and provide the
instructor a written list of the team
members, designating the team leader, the
individual with basic familiarity with
computer procedures, and a list of three
topics you propose for research. One of
these topics, if deemed suitable, will be
approved by instructor. if none of the
first three is considered suitable, the
team will be required to submit a second
slate of three topics." (This requirement
was never invoked, although the instructor
was asked by members of several teams, "Why
did you approve that topic? lt wasn't the
one we really wanted; we just added it on
to meet your requirement for three topics."
The response: "lt was the only one on
your slate which had any 'meat', the others
were lightweights which would not hey*
presented any challenge to you.")

By the second class meeting, eight teams
were organized and moving out smartly; the
remaining seven students wasted their first
four class meetings fighting the problem
but none dropped the course.

A sample milestone chart and work plan
were distributed the first day of class;
teams were advised the next requirements
after approval of their research topic
were successive submission of an hypothesis,
work plan, milestone chart, and question-
naire(s) to elicit data appropriate to
determine whether the hypothesis could be
supported or rejected.

RESPONSE: CONDUCT OF THE COURSE
One may wonder, at this point, what need

is there for computer support or what com-
puter application exists? After topic ap-
proval specified questionnaire(s) would be
administered to a random sample of not less
than one hundred nor more than five hun-
dred respondents.

Each team was issued (and acknowledgement
made by signature of s student team member)
a folder containing selected extracts from
the SPSS manual describing the options
and statistics available for SPSS proce-
dures CONDESCRUT1VE, CROSSTABS, FRE=
'Imam PEARSON CORR, and SCATTERGRAW
and a data binder containing an unexploded
printout of a program operating on a
sample of five with such data as last four
numbers of social security account number,
age, height, weight, shoe site, color of
hair, and color of eyes. These data items,
admittedly remote form most business appli-
cation, were selected primarily both to

Business/Economics 13

demonstrate sample SPSS capabilities sad
to challenge the students to define ana-
logous application to their project.

For further reference, two copies of
the 4PSS manual (5) were available: one
chained to the counter in the computer
center where card decks are turned in for
batch processing; the other, the instrue-.
torsa parsonel copy. (A third copy,
recommended for purchase by the Institute
library as a reserve reference,
was not yet availeble at this writing.)
The instructor (along with his SPSS
manual) was also available to team members
as a resource person/advisor.

The projects moved forward. Host
classes were split between rather cursory
lecture coverage of the assigned text and
substantial time for team work and coa-
gulation with the instructor as required.
Meny questions arose, most of which were
answered in the Socratic manner or by
:oscine reference to assigned coverage
in the text. "Be of good cheer and read
ahead." Needless to say, these techniques
roused el:beta:nisi complaint from some of
the class.

Sampling of the approved student topics
is included in the appendix co this paper.
One common complaint concerning these
topics took the general form,"What does
this have to do with market research and
analysis?" The reply was standard: "The
thrust of this course is precisely that
of market research and analysis; while
we are not attempting to ace the Nielsen
ratings, or ascertain the marketability
od Old Tennis Shoe Bourbon, you are exer-
cising the techniques that would be ap-
plied in either of those two or a multi-
tude of other examples."

STUDENT PROBLEMS
One substantial inhibiting circumstance

in an otherwise orderly progression of
learning by doing was the delayed dis-
tribution of the sample SPSS program by
the instructor to each team. (He had his
own problems in debugging what should have
been a relatively simple, straight-forward
program, owing to his lack of familiarity
with job control language (JCL) and the
evolutionary progression of SPSS from
Version 6.0, which he had last used six
years ago, to the current Version R.S.0)

As the semester moved forward, and the
milestone for submission of completed
reports approached, the instructor received
successive feelers and ultimately almost
frantic pleas to delay submission of the
report. Although time was not available
to do other than edhere to the schedule,
as a small encouragement the teams were
advised that chioce of date and order of
presentation would be available to the

74
i4w

14 NECC 1980

teams in order of their report submission:
the first team would choose first, second,
third, position on any of the three days;
the last team would have no choice.

Several teams complained, with apparent
justification,about a severe imbalance
of work; some team members were obviously
not pulling their share of the workload.
Since it had been emphasized that the same
report grade would accrue to each team
member, concern was expressed about the
apparent injustice of the workers sub-
sidizing the drones. So, peer ratings
were required of all members of each team.
These were compiled, reviewed, and, after
consultation with a colleague more ex-
perienced than the author in personnel
testing and mensuration, appropriately
weighted beforetkacorporation in the final
course grade. (In addition to the report,
four graded exercises highlighting appli-
cation of text material were administered
during the term.)

Immediately after submitting each re-
port, it was comprehensively and severely
reviewed-by the instructor, as if it were
the first draft of a professional report.
The following day, the report was re-
turned to the team leader, end after his
persual, was discussed at length with him
and selected members of his teas. It was
emphasized to each team that their oral
presentation would provide an opportunity
to recoup some of the cuts suffered on the
written report.

Several teams wanted to revise and re
submit the written report, but this com-
mendable response wss rejected because the
lessons learned from the severely criticized
original report might be dulled. The
preparation of oral reports would be in-
hibited, and such a requirement would
place an inordinate burden upon the students
at a time when preparation for final ex-
aminations should make major demands on
their available time.

FINAL ASSESSMENT AND LESSONS LEARNED
Although the author considers that busi-

ness 428-01, "Market Reasearch and Analysis ",
was successfully (albeit rather painfully,
for some students) completed, he learned
some lessons which should significantly
improve his second and subsequent conduct
of the course.

First, completion of "Computer Concepts
in Business" should be a prerequisite to
Business 428. This requirement would tend
to even the student workload, since each
teem member would have some experience in
keypunching program/data cards; and would
be able to participate more fully in pre-
paration of basic data for machine compu-
tation.

Second, although Lehmann (2) provides

a comprehensive review of elementary sta-
tistics as an appendix to one chapter,
the statistics course required in all
undergraduate sequences in business at
NI should be a prerequisite to business
428. This requirement would eliminate
the tendency of some students to call up
unnecessary statistical routines and fail
to call up some useful routines.

Third, SPSS is a valuable research tool
which all undergraduate students in busi-
ness should learn to use. This limited
application in "Market Research and Ana-
lysis" at Eamptoa Institute is the first
step in that direction: it is a required
course for ell. undergraduate marketing
majors.

0

APPENDIX: APPROVED RESEARCH TOPICS FOR
BUSINESS 428

Team

1 What effect does the Hampton Institute
population have on gross sales of
stores in the Coliseum Mall?

Subject

2 Declaration of majors: Why we choose
the majors we do

3 Food additives and preservatives

4 Salt II Treaty

5 Gas rationing program in the area

6 Trade school is a good alternative
to college

7 Hampton Institute's intended growth

8 How future computerized purchase
will affect consumers and industry

9 Social Security

Business/Economics 15

REFERENCES

1. Alexander, Daniel E. and Messer, Andrew
C. PORTRAN IV Pocket Handbook. New York:
McGraw -Hill, 1972.

2. Kernighan, Brian V. and Ritchie, Dennis
M. The C Programmina Language. Engle-
wood Cliffs, New Jersey: Prentice-
Hall Inc, 1978.

3. Lehmann, Donald R. Market Research and
Analysis. Homewood, IL* Richard D.
Irwin, Inc, 1979.

4. May, Phillip T. Programming Business
Applicatkons 4,12 FORTRAN. BOStOki
aoughton-Mifflin Co., 1973.

5. Hie, Norman H., et.al, Statistical,
Package for the Social Sciences, 2nd
ed. New York: McGraw -Hill Book Co.,
1975.

6. and Hull, C. Hadlai.
SPSS Batch Release 7.0 Update Manual,
March 1977. Williamsburg, VA:
Computer Center, The College of William
and Mary in Virginia, 1977.

7. O'Brian, James A. Computers in Business
Management: An Introduction, revised
ed. Homewood, IL: Richard D. Irwin,
Inc, 1979.

8. SPSS Pocket Guide Release 8. Chicago:
SPSS, Inc, 1979.

26

16 NECC 1980

SHORT-RUN FORECASTING
OP THE U.S. ECONOMY

William R. Bowman
Economics Department
U.S. Naval Academy
Annapolis, Maryland

(301-267-3156)

OBJECTIVE
The work of professional economists

most often used by government officials
and private businessmen lies within the
realm of macro-economic forecasting.
This art, however: is rarely acquired by
students of economics due to the expense
of developing large-scale econometric
models of the economy and the high level
of statistical knowledge presumed to be
necessary in macro-economic modeling.

In response to this void, a research
seminar in economics at the :*.S. Naval
Academy has been designed to offer under-
graduate students a chance to build
inexpensive, simplified forecasting
models. These models are based upon
economic theories, or extensions of
theories, learned in previous courses.
They are derived with limited know-
ledge of few, but powerful, statistical
techniques rarely encountered by under-
graduates. As piurt of a class exercise,
each student develops one sector of a
macro - economic model. These sectors then
become integrated into a simplified model
of Gross National Product (GNP) and
inflation (as measured by the GNP
implicit price deflator).

BACKGROUND
The art of forecasting the economy

combines intuitive judgments with
computer-based statistical models of
aggregate spending behavior. The goal of
these models is. quite heroic, to say the
least; one must model the decisions of
groups of millions of individuals in e
market place. These individual decisions.
when aggregated, determine the level. of

........._._production,--as well as the aggregate
price 3evel of all goods and services
produced.

The uses of macro-sccnomic forecasts
have been widespread. They are used by
government policymakers when evaluating

alternative fiscal and monetary proposals,
and by private individuals when evalua-
ting expected economic growth rates and
inflation within defined sub-sectors of
the economy. The number of the more well
known large -scale models is limited to a
handful, however, due to the enormous
cost of building and maintaining the
computer-based models. Some models, like
the Data Resources Inc. (DRI) model, have
as many as 200 stochastic equations and
over 350 endogenods variables.

As indicated above, these cost consid-
erations also limit how undergraduate
schools teach this important aspect of
economics. If macro- economic forecasting.
is taught, it is often dons by having the
student merely manipulate previously
developed models. That is, they may plug
in a hypothetical value for a chosen
policy variable (say the corporation
income tax rats) and observe the model's
predicted effects on the aggregate econ-
omy. While this approach teaches stu-
dents the sensitivity of economic sectors
to public policy, it tells them nothing
about the assumptions behind the model of
the structure of the equations used in
the model.

METHODOLOGY
Re ression Analysis

Tito methodology used for introducing
the student to the art of forecasting is
basically one of learning-by-doing. The
student is first giypp an introduction to
regression analysis.(The theory behind
the statistical procedure is discussed
only with regard to the assumptions one
must make when using regression analysis.
(Formulae are not proven-since the stu-
dent is considered a user.)

Computers make it easy -- and fun --
for the student to do regression analysis
from the very beginning of the class.
Simple time-series practice data files

27

are created and stored. These files are
"accessed and analyzed with the regression
package Time Series Processor (TSP) that
was originally written at Harvard and
later modified at Dartmouth to run on a
time-sharing basis.

The control statements used to execute
the program are quickly and easily
learned. Students May print out their
data base in easily readable format, com-
pute correlation matrices, and run pre-
liminary regressions with simple control
statements. (See Table1 of Appendix A.)
More advanced techniques made necessary
by the problem of autocorrelated error
terms can also be taught to the student
with the TSP package. Date transforma-
tions such as discrete lags, logarithms,
and first differences are easily com-
puted. Their effects on the predictive
power and autocorrelation can be observed
by comparing the model results Using
transforms& data with tho3e of the pre-
liminary regressions.

More advanced transformations,,includ-
ing the Cochrane-Orcutt procedure(21 and
the Almon Polynomial Distributed Lag
(MOM, are then presented and used.
The latter transformations are usually
considered to be beyond the realm of under-
graduate students; however, the
learning-by-doing approach (made avail-
able by the TSP package) makes their use
both possible and highly instructive.
(See Table 2 of Appendix A for the con-
trol statements used for some of these
data transformations.)
Model Design

With the statistical knowledge
acquired through doing regressions on the
practice data files, the student builds
a simple regression model (Ordinary Least
Squares (OLS) or Two Stage Least Squares
(TSLS)] for a selected part of the
larger macro model. The choice of
explanatory variables is based upon
economic theories discussed earlier in
the research paper. The quarterly data
base used to analyze each student's model
is the Department of Commerce's data bank
used in its Bureau of Economic Analysis
(SEA) quarterly model. This data base
consists of nearly 750 variables and
transformations of these variables that
may be used as endogneous and exogenous
variables. Thus, it provides (at the
time of this writing) the student with an
exhaustive source of-quarterly time
series information for the period of
1949:1 through 1979:3.

The student selects independent vari-
ables that are deemed appropriate for the
theory he has developed previously and
creates mass storage data files for easy

.28

Business/Economics 17

access. Much effortis_then taken to
derive a simple model whose explanatory
variables have the expected sign and are
statistically significant. (See the
"estimated coefficient" and "t-statistic"
for the explanatory variables in Table 1
of Appendix B.)

In addition, the student must work to
obtain the best over-all fit of the data
and minimize the degree of autocorrela-
tion. (See the "adjusted R squared" and
the "Dublin - Watson statistic" of Table 1
in Appendix B.) This process usually
involves strong trade-offs between the
latter two statistics and provides the
student with a real world sense of fore-
casting problems rarely encountered by
economic majors.

After numerous structural changes of
the model, the student selects that model
which most closely achieves two objec-
tives. First, the model should have a
high degree of explanatory power over the
historical data period; second, its fore-
cast errors should be minimized. The
latter is diagnosed by dividing the his-
torical data into a sample period and a
forecast test period. The model is then
used to generate predicted values of the
dependent variable that may be compared
with the actual values. This process is
especially important during established
turning points of specific cycles for
variables classified as "cyclical."
(See the actual, predicted, and forecast
values of a selected variable in Table 2
of Appendix B.)
The Forecast

lincestructure of the model is
chosen, the student uses his best judgment
of the values of the exogenous variables
during the forecast period. This period
is defined in the short-run, for example
1979:4 through 1900 :4, to minimize fore-
cast errors. These values are selected
based upon expectations of professional
economists and business leaders concerned
with macro-economic forecasting as
reported in recent issuccof numerous
journals and magazines.(")

The student then plugs these expected
values, or a range of values, into his
model to produce "conditional ex ante
forecasts." These forecasts may Si--
altered if student expectations cast
doubt upon the likelihood of the model's
results, i.e., the "judgmental forecasts."
It ie in this last-pilaffsthat the-Student
comes to appreciate the limits of
computer-based modeling and the impor-
tance of pereonal, informed judgment,
common to all large-scale forecasting
models.

18 NECC 1900

Once each student's structural model
---anorforecast-have been completedi-the

forecast of GNP and inflation is done by
using a reduced fora model with the exog-
enous variables and predetermined endog-
enous variables used in each student's
own structural model. This step permits
each student to discuss his research pro-
ject with ether class members, while pro-
viding each with an awareness of the
inter-relatedness of their work.

CONCLUSION
By the end of the semester each stu-

dent has become fully immersed in a
highly technical research topic. Each
has related previously learned economic
theories to empirical model building
using regression analysis on time series
data. With the aid of the TSP software
and the college's computer hardware, each
student has acquired a sense of accom-
plishment rarely experienced at the
undergraduate level. The blend of'eco-
nomic theory and computer-based techni-
cal analysis often opens the eyes of
undergraduate majors to a whole new
world of excitement in learning.

FOOTNOTES
(1) Cochrane, D. and G. Orcutt,

"Application of Least-Squares Regressions
to Relationships Containing Auto-
Correlated Error Terms,* Journal of
American Statistical AssoiiiT1757VO1.44
(1949), pp. 32-61. (See Table 3 of
Appendix B for an example of the
Cochrane-Orcutt adjustment factor.)

(2) Almon, S., "The Distributed Lag
Between Capital Appropriations and Expen-
ditures,* Econometrica, Vol. 30 (1965),
pp. 178-96. (See Table 4 of Appendix B
for an example of the Almon Distributed
Lag coefficient)

(3) The text used in the course is:
Chisholm, R.,- and -G. Whitaker, Fore-
casting Methods, Homewood: R. r-rrain,
1971.

(4) Three sources of information are
most often used: (1) Federal Reserve
Bank publications (e.g. St. Louis's
Review, New. York's Quarterly Review, and
WIW%'s New England Review) and large
commercial bank publications (e.g.
Citibank's Mopthly Economic Letter, Chase
Manhattan Bank's Business rti-alrf and
International Finance, and Morgan

-----------Guarantyks-MOrin570iiranty-8urvey)1 (2)
national business magazines (e.g.
Business Week, Forbes, and Fortune):
and (3) newspapers e.g. Nei-YEFEtines
and the Nall Street Jourarit

29

Tools and Techniques for Instruction

HYPERTEXT - A GENERAL PURPOSE EDUCATIONAL COSUVTZH TOOL

Darrell L. Ward
North Texas State University

Steve Bush
The University of Texas Health Science Center at Dallas

The Hypertext computer system is described in this paper. Although its applications are varied, the
major emphasis here is the use of this system in the educational environment. The major features
as visible to the student and instructor are developed. For the instructor, these features include
the use of Hypertext as an organization and lecture presentation tool. For the student, Hypertext
provides a model of information that mirrors a library yet permits a computer - assisted instruction
approach as information is perused.

ItiTRODUCITON

Hypertext, as an information organizing fa-
cility, wee first described in 19/0 (1). The
major emphasis of this paper will be the use of
Hypertext in an educational setting. Hyper-
text has been implemented at The University
of Texas Health Science Center at Dallas
and is currently being used within the Medical
Computer Science Department at that facility.
The implementation details of this system
will not be described, though it is appro-
priate to describe the computing environ-
ment within which Hypertext now functions.

Hypertext operates on a highly reliable,
dual processor Tandem -16 minicomputer system.
The Tandem-16 was deeigned to satisfy criti-
cal computing functions, thus the architec-
ture reflects the design criteria with a
high degree of redundancy. The total sys-
tem philosophy is to run non-stop and, in
fact,ersingle hardware failure does not
crash thio-Itiretem or contaminate the data in

any way (1.1.: The implementation language
(Tandem mis TAL Application Language),_ as

block-structured, IIGOL -like language. The
Tandem-16 is capable of supporting page-mode
terminals, which permit user interactions to
occur on pages of data, much like pages of books.

With the above as background, the remain-
der of the paper will alarm the way Hypertext
presents information to both the instructor

and the student. Section 2 will describe the
model of information that Hypertext presents to
its users.Section 3 will introduce the instruct-

or's use of Hypertext in creating lecture mater-

ials, proaenting information in the classroom in-
teracting with students, and maintaining current
materiels in the subject areas. Section 4 will
demonstrate the student.s use of Hypertext. This
section will describe the environment with respect
to one course, although general use by the student
could benefit the total educational p:ocess..
Finally, section 5 wila summarize the ideas pre-
sented and describe areas of further research
using the Hypertext tool.

MCOEL or THE HYPERTEXT ENVIRONMENT

The basic unit of information in Hypertext is
a pages the user is provided an environment of
pages and relationships among those pages. Each
page in Hypertext is owned by an individual from
the community of users and may be declared private,
.preventiktother users from reviewing its con-
tents. However, the philosophy of Hypertext is to
provide an environment of information (haring,
thus typically most pages are public, accessible
to the community of users.

Each Hypertext user enters the system
through a page designated as the top page or
entry page. When the user is identified to

19 3(j

20 NECC 1980

Hypertext and verified as a valid user, the top
page- of that user-is -immediately.presented to him.
The user is then in command mode and mays

1) edit information on the current page.
2) view another page via a menu selection for-

mat available on the current page.
3) view another page via an 4mplicit relation-

ship between the current page and the "next" page.
4) view another page by explicitly naming the

page of concern.
5) establish a new page and formalise a rela-

tionship between the new page and the current page.
6) establish a relationship between the cur-

rent page and some other already existing page.
The above operations are by no means exhaustive,
but identify some of the major functions that re-
late to the educational use of Hypertext.

BALATTOVSHIPS AMONG PAGES In HYPERTEXT

Each page within the Hypertext system is giv-
en a unique page number that is available for dis-
play along with the informational contents of the
page. This system-assigned number is an explicit
method of estabiishing inter-page relationships.
Any page can be created or altered to point to

Urals to do

o prepare Mot vane
* 3:00 p.a. mottos
o trade rung:3 ocou
o reid OM Article
o wart on SIN ptoposai
o moth on DINS lecture

notes
o call J. Smith tat*

utak yagy SS

4e0 sots

(I) Wags to do

(2) Orr.. neaten

(3) reurso kotttlelo

page 23

another page by inserting a "HYPERRIMP" to that
page number. Any number of pages may be-ietated
to a particular page by linking them in the above
described manner. The Hypertext system imple-
ments the linking by providing the user a numeric
selection menu of pages (numbered sequentially
from 1) which are accessible from the current
page, permitting the user to surely select the
page of interest by depressing the appropriate
numeric key.

The above environment of pages is illustrated
in the following example representing one user's
top page and its set of possible relationships
with other pages. (See figure 1 fora graphic
model of the example.) In this example the top
page provides for the selection of one of three
other pages. The other pages includes

1) a page containing "things to do" with no
additional relationships.

2) a page containing the current classes
taught by the instructor (e.g. FORTRAN, COBOL,
etc.) and additional access to the rosters of
each of those classes.

Covers GGGGG tS

(1) FORUM

(2) COSOL

(3) Structured otos.

peso 27

Class ootettels

(1) FORUM

(2) COWL

(3) Structured Frog.

(4) 06.S

%($) Op. Sys. psis 66,

See Urns to tot
PASOAN clan: negotiate0

tOtalthS class rooter

Ed Illttfane

Mitten Jones
Shirley 1011

Jeff herd

Pent 96

COSOL cleat' Teeter

Soo Jests
Jill Smith
Shirley lilt

Jerry Knowles

Nab 73 4

Structuted frog.
close soscss

40
MOTOR

Yet

Tess 34

Figure la. An example Hypertext organisation for an instructor

31

Dope. eel.cher UNIVAC
nor MC were Involved
/* the devevelopom of
FORTNAlktin lecke, led
ffietdevplepimac effect.
am le an linter,

TORUN eouctin

(1) Introdoctlat
(2) txpresslomo

Asslinevnt state.
(4) I/o

($) Logical Ii

(10) Nettles sublime.

pate 123

Introduction to
FOAMY

text

Peie 124

1.

.11LM
Which compeer *pee:-
handed the development
of MIRAN?

(1) UNIVAC
(2) ISM
(3) DEC

Ma 00,

... continuation of
TOMO text ...

Page 03,

Figure lb. Hypertext example continued

Tools and Techniques for instruction 21

CTuelt, Mender the
Irallershlp of Mop
Dachas led the Vay
far the development
of TAMAN

pato 111

3.C)

22 NECC 1980

page_containing_courses.already-develop--
ed in Hypertext and the capability to access the
index of each course via the menu selection pro-
cess. Each course (only the FORTRAN cotirse is
illustrated) will consist of pages linked together
with the possibility of many routes through the
course materials depending on the user's responses.

TRAVERSING PAGES IN HYPERTEXT

Hypertext offers its users a variety of op-
tions for traversing its pages. This section
will not attempt to describe all the options but
will try to convey the atmosphere offered by Hy-
pertext. There are several aids available to the
users as they peruse Hypertext, including:

1) the ability to retrace pages already
visited.

2) the ability to place landmarks (either in
a temporary mode or permanent mode) on pages so
that the user can directly return to a visited
page of interest.

3) the ability to proceed forward through
pages.

The traversal of pages can be illustrated via the
previous example (the instructor's Hypertext).
Consider a typical set of operations that an
instructor might wish to accomplish:

1) add "grade COBOL exam" to the list of
things to do.

2) drop "Ed Jones" from the roster of the
FORTRAN class.

3) review the FORTRAN lecture material that
will be presented in class the next day.
We will assume the user has successfully logged
onto the Hypertext system and is currently
positioned at the top page.

To accomplish
-select the "things to do page" by depressing
1

-indicate the desire to edit the page (EDIT
command)

-alter the page to reflect the added item
(grade COBOL exam)

-back up 1 page (now positioned at the top

page)

To accomplish 2:
-select the "Classes" page by depressing 2
-select the "FORTRAN class" Peg* by depress-
ing I
-indicate the desire to edit the page
-alter the page by deleting the line contain-
ing Ed Jones

-back up 1 landmark (the top page is an im?
plicit landmark, thus we are now back to the
top page

To accomplish 3:
-select the "Courses" page by depressing 3
-select the "FORTRAN course" page by depress-

ing 1

-review the index, select- the - appropriate - --

topic of the lecture and depress that key
-review the pages of the lecture one at a .

time, altering the contents of any pages as
desired and selecting the next page by de-
pressing the RETURN key or function key 16
(the last page of the topic normally points
to the index page)
-return to the entry page by going back 1
landmark

As the instructor peruses the lecture contents,
there is ample opportunity to thoroughly test out
all branching situations (via the back page func-
tion) and to alter any text that has changed or is
incorrect. Also, the instructor can quite easily
construct additional materials and link those at
the appropriate point while traversing the course
materials.

THE INSTRUCTOR ENVIRONMENT

The previous section hinted at some of the
facilities available to individual instructors.
This section will explore those aspects related
directly to the teaching function and how Hyper-
text can assist that function in most instances.
Previous work has shown the delete utility advan-
tages of incorporating the computer into the pre-
paration and delivery of course materials (3).
The current Hypertext system significantly extends
the previous work by providing the following
additional functions:

1) the ability to traverse course materials
in a very flexible manner(landmarks, backing up,
skipping, etc.).

2) the facility for embedding, within a page,
a call to an external program thus providing for
an open ended system with respect to simulations,
demonstrations, etc.

3) a dynamic, easy to use organization tool
for creating and maintaining course materials.

4) a framework for combining materials to be
presented in class with CAT materials to be taken
by the student outside of the classroom.

The flexible approach toward visiting pages
within the system allows the instructor to create
course materials that suffice both for in-class
presentation and for self-paced instruction. It

permits the instructor to include additional
material based on the response of the class. It

also allows the instructor to leave more detailed
explanations, examples, and problems for the
students to discover on their own outside of class.

As as example of the above consider the pages
of information shown in figure 2, a short segment
of a FORTRAN course with branching Possibilities.
In an'isi -Clips fxesentaiion; the*irstruCiOrOiii
request, from the class, responses to the question
contained in page 200. It may be apparent that
the majority of the class understands the concept;
thus the instructor can select to disregard fel,.
Itup of the question and go directiy to the next
block of materials to be presented, beginning at

33

Tools and Techniques 'for Instruction 23

-4311th-of-thr-folltivInn

con a valid FORtean
viesesslont

(1) 23

(2) X4(4)

(3) 2-1462

...4c 200

2.5 IS A ve114 0.1mess
Lou - It 2s a comment
set page 14$ (1) for
the complete set of
rut.,*

Mole 201

aftwt this is elpv.

lovely an Assieneeot
statement

pap 20)

Logical Expressions

Vela

"Pg. 101-51 is a
valid even:440e le
FORTRAN - see pose 145
(1) fox the templets
set of expression
roles

vase 204

Figure 2. Typical text in an instructional segment

page 204. However, there may very well be some
students that do not understand the question and
interactions that transpired and do not stop the
instructor to request additional information.
This segment of the population could turn to the
CAt mode of Hypertext and review the question on
their own.

Finally, from the instructor perspective, a
highly reliable computing system is essential.
So far, the experience with Hypertext has been
quite good: there have been no system crashes
during the approximately 60 hours of in-class
presentations given to date.

STUDENT ENVIRONMENT

Again, earlier work describing the class
room use of computers and student benefits
apply in full to the Hypertext system (3).
Briefly, these include:

______1)_no.requirement for extensive note taking.
2) a clear, oonsistentprensentation medium.
3) an outside of class CAt facility for re-

view of the in-class materials.
With Hypertext, as pointed out above, the ?unt-
tions available to the instructor are significant-

ly extended. The student profits as well, as

pate 202

Hypertext allows him to access information the
instructor has created in a friendly, reliable,
and flexible manner. Although the student does
not have the capability to alter this information,
he may get a hard copy of any pages that are
reviewed. Of course, the instructor may permit
the student the ability to create pages. For
example, consider figure 3 as a possible student
view of Hypertext. The top page permits the
student to organize each individual course of
interest within Hypertext as well as his total

educational environment. The student use of such

a facility, with easy access to a reliable com-
puting resource, would indeed promote a creative
and exciting environment.

SUMWARY

Hypertext, as a tool to assist the presen-
tation of information both in and out of class,
has been presented. An-overview Of.the Hyper-
text environment, as well as its uses from both
the instructor and student vantage point, has

been described.
Use of the computer in the classroom has

been slow to develop due to the lack of support-
ing software and hardware. A reliable computing
system with a creative environment such as

34

24 NECC 1980

Top_page

Things to do

Current courses

Homework ensign.

Acquaintances

Upcoming exam

Wimp to du page

Current courses page

(00e pointer co each
course)

Homework saalgneenes

Pate

Upcoming cues p4$4
(this may alni2til
potterer to study
oec114om tor each
exams)

Figure 3* Example Nypertoxt for a student

Hypertext should facilitate the use of computers

to assist the educational processes* Some areas*
notably the reliability and interface* have been
extended from earlier work (3)1 however, there
remain sone existing areas for future research.
The ability to provide a user-oriented graphic
facility embedded within a 'yet.; such as Hyper-
text is an outstanding problem. Also, the ability
to provide quality video display for a large
audience requires additional work.

=MEN=
1. T. S. Nelson. "No More Teachers's Dirty Looks."

_Cteputer.Decisions, September-_1970. -

2. Tandem Corporation. Programming Manual.
Cupertino, Ca. Noveeber 1977.

3. D. L. Ward. "A Computerised Lecture Prepara-
tion and Delivery System." Journal of Educa-
tional Technology Systems, Vol. 6(1),

1977-1978* pp.21 -32.

4. R. Chong. "On-Line Large Screen Display
Systems for Computer Instruction." Proc.
of ACM SIGCSE-SIGCSE Joint Symposium,
February 1976* pp. 189-191.

5. W. Trace. "The Use of ATOPSS for Presenting
Elementary Operating System Concepts."
SIGCSE Eulleting, 711, February 1975, pp.
168-171.

6. J. Rogers. "A Computerised Classroom for
Instructor's Experimentation and Training."
Commuters in,Educationi-0.-Lecarme and R.
Lewis (eds.), IFIP -North Holland Publishing
Co.* 1975.

35

Tools and Techniques for Instruction 25

A DYNAMIC PROCESS IN TEACHING TECHNIQUES
by

Mall E. Moth, Ph.D.
INFORMATICS INC.
311M Yuma Sheet

Conga Path, Caffein* 31304
(213) 1117-9131

ABSTRACT
Programs to teach people how to use computer

products (hardware and software) often do not meet the
needs of the diverse audience of users. The needs of one
group may vary considerably from the needs of another. A
lag exists between-the hydra-like growth of the computer
beldame and software industry, and the technology for
teaching customers. This paper describes a practical
Inaba technique which has proved successful at
Informatics Inc.

'Teaching designs are based on identified procedures.
This approach Is represented by a network of relationships
and interactions. The process starts with recognizing the
audience segments for whom the courses should be
developed, specifying their learning objectives, and
planning a design customized to user needs. Brainstorming
for ideas and selecting the most relevant comes next. After
the form of presentation is drafted, at least two dry runs
are conducted before representative audiences. Feedback
Is collected, analyzed, and evaluated; results are integrated
into the evolving course. A field test at a customer site is
the next step; more feedback is collected, analyzed, and
evaluated. Finally, the validated responses are integrated
into the courseware to produce a tested and useful
educations! program

INTRODUCTION
Helping customers learn how to use software

products is an important element in the design of those
products. Some customers need technical training to
install, implement, and support a product at their facility;
others need to learn to use the product for reporting or
processing data. Meeting those need!, Is the job of

specialists In the Product
Communications Group of Informatics Inc.

The Product Communications Group Is a part of
Technical Product Support; it Includes technical writers,
editors, graphics designers, and education developers.
These communications specialists work together to
document software products and to design courses for

training customers. Their work begins early in the design
of the product; software documentation and their teaching
techniques are considered integral parts of the

oduct package.

During the creation of learning activities at
Informatics, the education development specialist is
involved in a set of relationships and interactions that can
best be illustrated as a network. This network design
includes a systematic process for seeking relevant
information to improve both course designs and teaching
techniques. Figure 1 represents this process of continuous
interactions and decision making.

IDENTIFYING THE USERS
In the computer industry, hardware or software

products are manufactured to meet the needs of a wide
spectrum of users. The first step in teaching techniques is
to identify the audience segments of this spectrum the
people for whom the courses should be developed. For
most practical purposes, two major audience segments,
the end users and the technical support personnel, can
be defined:

1. The End User Audience. This segment of users
usually includes managers, clerical personnel,
and casual programmers. The end users are, in
general, not a data processing - oriented group
because their primary interest is in their
particular job; data processing is only a means to
some other end.

2. The Technkwl Support Audience. This segment
includes the support personnel, mainly data base
administrators (DBAs), system designers, system
programmers, -sad application programmers.

Depending on the level of complexity of the product, a
plan should be developed for subdividing each audience
segment into smaller segments with users of similar
backgrounds and job requirements.

36

26 NECC 1980

THE DYNAMIC CYCLE OF
EDUCATION DEVELOPMENT

Figure I

37

--IDENTIFYING USERS' LEARNING °enema
The second step is to identify the learning objectives

which reflect the needs of each audience segment. For the
two major groups of users, two sets of objectives
are identified.

The end users need to know how the product can be
used to their benefit and how to obtain the information
which answers job.related questions and solves their
problems. The following set of learning objectives might
be developed to reflect end users' needs:

To obtain job-related information.
To acquire a basic level of skills essential to the
use of the product.
To explore and identify the capabilities of the
product for solving problems.

The technical audience needs to know how to solve
more complex problems bow to keep the product
running efficiently, maximizing the benefits to their
organization. Tice learning objectives developed for the
technical support personnel might be represented by
the following:

To understand the difficult concepts and
procedures which dcn1 with the activities
associated with the product.
To explain and, where necessary, customize the
product to meet the end users' needs.
To identify the specific security requirements and
the constraints that can be imposed upon the user
for efficiency or security purposes.

PREPARING THE DESIGN PLAN
The educational courses are developed to satisfy the

learning objectives which reflect the needs of the identified
users. The procedures start with gathering information.
Tice education development specialist interviews a diverse
cross-section of specialized personnel; they contribute
ideas and techniques relevant to course development,
which might shape the product learning process. People's
contributions are based on personal experiences in the
field during interaction with similar users or on ideas from
published sources, or they are gathered from colleagues.

The neat procedure is analysis to find out how to fit
together the collected ideas, how to look for the simplest
and most relevant approaches to be used in presenting the
capabilities of the product to the users, and how to
produce a design covering all of the important and
practical aspects of the product. Once the overall design
pima is established, skills needed to accomplish each
objective are specified and written down to form the basis
for group discussion. In industry, they refer to this group
as the document specification review committee. The
committee members are representatives of the same
groups who contributed ideas. They are called to review
and comment on the design plan and the proposed
specifications. As a result of the document specification

I ;

Tools and Techniques for Instruction 27

review committee meeting, the education specialist reviser.-
the form and content of the evolving course and rebuilds it
into a coherent design.

COURSE MEDIA
The media used in teaching are generally: handouts,

overhead projector tansparencies, the board, and the
instructor's guide. This guide should be prepared carefully
to provide consistent instruction. Wall charts are also
important course media; they are developed for
continuous reference during class session. Examples of
wall charts used for IMS/VS-envirorament data structure
are shown in Figures 2 and 3. Figure 2 is intended for the
technical group who normally looks at a hierarchical
structure of logical statements from top to bottom.
Fixate 3 is intended for the end users, presenting the same
concept in an approach that deals with building a
relationship within a framework of reference, a readable
left-to-right flow.

TIME AND PLACE CONSIDERATIONS
Time and place must be considered in course

development techniques. The duration of the course, when
in the sales/installation cycle it will be taught, and where it
will be taught all affect the design of the course. The
education specialist has to ask some questions about
timing: Is the class needed before the installation of the
product? If so, this may give the technical group an
opportunity to become aware of what is expected during
the installation procedures. Should it be taught during
installation? When does the end user need the
information? The education developer also has to consider
location: Where will the course be taught? Will students
have access to terminals? Will actual data bases be used
for examples? The choice of customer site or a regional
office has impact in these areas. These decisions are made
by product management, marketing, and product
communications after considering both technical and
marketing needs.

IMPROVING AND EVALUATING THE COURSE
The process of course development starts with laying

out a preliminary desks resulting from selected ideas and
committee discussion. To improve the course, dry runs are
conducted before an audience representative of the group
for whom the courseware is being developed. These dry
runs help determine the effectiveness of the instruction,
which is measured by the feedback collected after each dry
run. Changes to the course are introduced, and the course
is retested in another dry run before a new audience; more
feedback is collected, evaluated, and compared to the
results collected from earlier tests. This comparison
measures the degree of improvement.

3 s

SAMPLE USER DATA BASES

PLANT SKILL

LPLANT
FLANT.ID.
FLANT.NAME
FLANT.PHONE
PLANT.REGION

...whl.
PROO.CDOE. EMP.NO.

MOD
PROD.DESC
PROO.AMT EMF

EMP.NAME
EMP.SEX

PRODAITY

I--.
SALYEAR.
SALYTD
SALDED

ED YEAR'
EDDEGREE
ED.SCHOOLSAL ED

'DENOTES SEGMENT KEY FIELDS

SUB

SUO.NAME.
SUS.GRADE

SKILL.CODE.
SKILLNAME

pLANT.io'

EIN.NO.

Figure 2

39

Tools and Techniques for instruction 29

0

.

qb

BUILDING A FRAMEWORK
(defining relationships)

PLANT. ID
Karr mow. NAAE

PLANT. PHONE
PLANT. REGION

PROM CODE

PRODUCT PRCS DESC
PROD. NAT
PROD. CRY

DAR NO
OWLOYEE Di? NOE

SALYEAR
SALARY ISALYTD

SAL.DED

YR
ECUCARON ED.DEGFEE

ED.SCHOCI.

SWECT 'MEN
SUB. NAME

PLANT
SUB.ORAD

SKILL SIP
SKILL. CODE FLAME, (mew
SU.. NAPE

Figure 3

40

30 NECC 1980

VALIDATING AND INTEGRATING THE
INSTRUCTIONAL DESIGN
In industry, product communications group should not
release the course to the field before a field test at a
customer's location. After teaching the course to the
intended audience at a customer site, the developer and
course instructor collect written and oral comments that
aid the developer in determining the degree of success in
achieving the identified objectives for the course. The field
test itself indicates that the minimum evaluation effort in
producing a product learning activity is accomplished.
Responses produced from the field test reflect the attitudes
and feelings of the users to the course learning materials.
In the process of validation, some of these responses are
considered very useful to field instructors and are
integrated in the instructor's guide to assure that field
instructors are aware of users' expectations. Other
responses may lead to the elimination of misconceptions in
the course presentation. These changes are made before
the alai release of the hinting document; however, no
attempt is made to customize the instructional activities to
every individual customer's needs. Examples arc set to a
typical and general application familiar to users. These
examples can be modified, based on users' feedback, to
become more realistic in the final touches for refining the
courseware product.

SUMMARY
In summary, the instructional design technique that

produces a successful learning activity should follow
these criteria:

1. The learning activity or class material is designed
to achieve specific learning objectives. Mainly,
these objectives are to impart the knowledge of
the product capabilities to the users and to enable
them to use the product efficiently.

2. The learning activity is designed to offer
replicable instruction, that is, instruction that
can be taught in the field setting by any of the
field instructors. The instructor's manual serves
as a guideline to assure consistent instruction.

3. The learning activity is designed so its
effectiveness can be tested and demonstrated.
Typical problems, based on user needs, should
be solved in class. Hands-on practical
application of what has been learned should also
be provided.

1. .USION
are products and their instructional activities

should be developed to work for the users' benefit. Users
are encouraged to be a part of this dynamic process of
education development. Their feedback is needed in order
to learn how the product and its learning process can be
made to work better.

Product educ. ion development techniques and the
evaluation cycle have no time limit. They start with
brainstorming but never end as long as the users are active
in monitoring the product and its educational programs to
service their job-related needs.

4r

Tools and Techniques for instruction 31

CONSIDERATIONS AND GUIDELINES FOR DEVELOPING
BASIC SKILLS CURRICULUM FOR USE WITH MICRO-

COMPUTER TECHNOLOGY

Robert M.. Caldwell
Division of Educatior.:2 e.t4dies
Southern Methodist University

Dallas, Texas-76276
(214) 692-2347

The availahil. of low cost micro-
computer technology is creating a revolu-
tion in education. Institutions of all
types can now take advantage of the many
benefits offered by computer-based educa-
tion at a cost that is easily affordable
for most. In addition, advanced micro-
processor technologies interfaced with a
wide range of audio-visual devioes in just
a few months have increased the oapabili-
ties of micros to include color, graphics,
animation, and music and speech reproduc-
tion. In short, microcomputers have made
available an extremely fldxible and power-
ful teaohing medium at a prioe that is
finally cost-effective for most users.

In response to this growing interest
in the use of microcomputers in instruo-
tion, several major publishers currently
offer limited curricula in basic skills
for delivery on microcomputers. A num-
ber of school districts such as the Dallas
Independent School Distriot and those dis-
tricts affiliated with the Minnesota
Educational Computing Consortium also have
developed materials whioh cover a variety
of skill areas. Because of the signifi-
cant expenditures associated with develop-
ing these programs, however, most of them
are limited in scope and employ a rather
narrow range of teaching strategies and
machine capahilities. In addition, few
of the individuals ourrently engaged in
instructional deveW "nct have had much
experience in using Highly interactive
medium like the Mi4 umputer. As a re-
sult, much of what passes for courseware
today neither helps to develop higher
level cognitive skills nor challenges
learners to use higher order learning
strategies. Most lessons utilize a drill
and practice format in which thecolputer
asks a question and requires the student
to respond. Many so called tutorial pro-
grams are no improvement. They merely
present segments of expository text and

then display questions to test the student's
comprehension of that text. This sort of
of instruotion has its use but implies to
most educators that the computer's power
lay only in its ability to present text
and ask questions. This form of instruc-
tion serves to reoreate the very worst of
what presently ocours in a traditional
classroom OUR ignoring all other teach-
ing strategies coat oan help develop learn-
ing styles and learner independenos(Garson,
1980).

To complicate this problem further,
some oompanies are now developing author-
ing systems which will allow classroom
teaohers, students and curriculum devel-
opers to create their courseware through
a process which utilizes templating and/or
menu selection. To be sure, many edu-
oators will use these processes to create
exciting programs which utilize the
system's capabilities to its fullest.
Many others, on the other hand, will
duplicate the type of programs mentioned
above; they will need help, guidanoe and
education about what microcomputers can
do and how instruction can be presented
to take full advantav of the unique
features of the new technology. They
will need explicit guidelines that will
help them devise ways to make contacts
between the learner and the learning
experience more meaningful, more effi-
cient and more productive. The purpose
of this paper, therefore, is to present
specific guidelines for designing instruc-
tional programs that will be delivered
on microcomputers so that those programs
will use the capaoity of the microcomputer
system in a way that will develop in
learners a range of cognitive skills and
help learners develop useful learning
strategies.

32 NECC 1980

GENERAL FEATURES OP PROGRAM DESIGN
One of the most important factors

inherent in programs delivered on com-
puter-based systems is their ability to
adapt instruction truly to the individ-
ual needs of each learner. With this in
mind,then, programe of computer -based
instruction should include the following
general features (Caldwell and Rizzo,
1979):

1. Learner Control over the
instructions iiWaia-re a feature of
program design often ignored by instruc-
tional designers. Certainly there are
situations in which a presentation of
instruction must be linear. Certain sub-
jects and concepts require it. In most
other cases, however, consideration
should he given to allowing the learner
as much control over the learning
sequence as possible. Options should be
incorporated into the instructional
sequence which allow for review of pre-
vious frames; for decisions about the
type, difficulty level, and number of
problems or exercises received; and for
alternative branching routes that might
lead-to the accomplishment of lesson
objectives in less time. In short,
students should be given the opportunity
to advance, review, and'exit lessons
except where such control defeats the
purpose of the lesson. This ability of
learners to pace themselves provides a
degree of individualization not present
in purely linear programs.

2. A system should be totally
individualized and offer highly adaptive
and res onsive learning environments.
By a ow ng self- pacing adk. individ-
ualized branching, learners are helped
to select the pathway through the
eateries that is most appropriate for
their needs.

3. Programs should be modularized
and structured in coherent, hierarchia
patterns. This type of organizational
pattern allows for great flexibility
in program implementation because
curriculum materials specifically ad-
dress each necessary skill in a defined
content area in a manner that provides
for development of skills not mastered
or allows bypassing of skills which
have already been mastered. This pro-
cess can reduce student frustration
and increase curriculum effectiveness.

4. All skills to be mastered
should be carefully stated in or-
formance objectives. The accurac
El-i7W.Biram is based on the spec fie
definition of the objective in terms
of performance competencies. Activi-

ties allow for precise diagnosis of
skills already mastered, remediation in
skill deficiencies, and exact evaluation
of learner progress.

S. Progress should be measured in
terms of mastery of performance objec-
tives.

6. Strategies for dia nosie and
4 prescription should be used. e effic-

iency of a program is due primarily to the
diagnostic inventory made of the ekills
of each learner. This information can
then be used to place them appropriately
within the curriculum and to direct learn-
ers to the instructional material most
Appropriate to their needs.

7. Programs should be, when possible,
multi - sensory in format,

SPECIP:T GUIDELINES POR INSTRUCTIONAL
DEVELOPMENT

Programs of computer-based education
have been developed in a variety of de-
signs and formats. Some use drills arrang-
ed in stionds while others are built around
a series of tutorial leesons. Many even
incorporate all or most of the features
mentioned above. Within these programs,
however, are characteristics of instruc-
tional design that heavily affect the
success of the instruction. The following
ie a description of some of the more com-
mon characteristics of lesson design that
can contribute to instructional effec-
tiveness and some that can seriously de-
tract from it.
Creating Text and Graphic Displays

Many alternatives can be used to break
the monotony of lines of text filling an
entire screen:

1. Use graphics to box important sen-
tences or paragraphs. Boxes made of lines
or keyboard characters do nicely to alter
the visual display of text on a monitor.
Reverse highlighting ae. color can also be
used .effectively to accentuate visual dis-
plays. In addition, microcomputers can be
connected to graphics tablets which make
extremely interesting displays in almost
any size or shape.

Whatever is used, it is crucial to
interrupt continuous lines of text on
screen so that the screen does not look
crowded and cause verbal overload in stu-
dents. Too much text can have the effect
of discouraging the learner, especially if
he/she is a poor reader.

2. Allow the student control over the
sequence of presenting text by breaking
large portions of the text into discrete
units or segments which the student can
call up in sequence by merely pressing the
space bar or some other key activated for
this purpose. This procedure serves two

purposes: it allows learners to read at a
rote that is appropriste for them, and it
breaks the reading task into small segmeats
eo that the reader ie not overwhelmed by
page after page of text on the screen.

3. Animations, graphics, cartoon char-
acters and other creative devices serve to
create variety end interest in the display
Which appears on the monitor. Used cre-
atively, these capabilities of microcompu-
ter systems can contribute greatly to
effective instructional programs.

4. Double spacetext material whenever
poeeible to enhance the visual effect.

5. Use color to enhance the display or
to highlight' whenever possible. One pro-
gram uses color-coded feedback to distin-
guish it from other text and to emphasize
key concepts. Color is also useful in pro-
viding prompts and to direct attention to
various portlons of the screen.
Creating the Instructional Sequence

1. As a general rule, try to show
learners rather than tell then. TU.over-
use of exposition is the single biggest
mistake instructional designers make.
They feel as if they suet write a lecture
into each frame or prOline complex direc-
tions, instructions or explanations when
they can very simply use graphics or the
ability of the computer to erase, rewrite,
flash and even animate to make concepts
clear. (The presentation which accom-
panies this paper illustrates this point
with k number of examples.)

2. Make lessons as interactive as
poeeible. Force learners to Make
choices; help them make decisions by
providing them with options and altern-
atives. Simulation and dialog programs
are the beet instructional strategy for
promoting interaction, but it can be pro-
vided through other means as well:

a. Menus
Learners may choose from a variety

of options within a leeeon or within a
program by making choices from menus.
These menus allow the learner flexibil-
ity to pursue his/her interests or to con-
trol the sequence in which topics are pre-
sented. For example, s language leeeon
Which deals with predicates might allow
students to access concepts which have no
particular instructional sequence. Figure
1 illustrates Just such * menu.

b. stftticerfarmatie

Learners SIMMUAIMI Oven a variety of
activities and choice Of content. Tutor'-
isle should be accompanied by creative
drills or instructional games that rein-
force skills and intonation and enhance
the interactive mature of the instruc-
tion. These games and drilla can stimulate
sotiVation hy capitalizing on a novelty

Tools and Techniques for instruction 33

Figure 1

PREDICATES

Which mould you like to study

1. Predicate Nominative

2. Direct Object

3. indirect Object

4. Predicate Adjective

5. Review

a. Linking verbs

b. Action verbs

c. Adverbs

Choose a number or letter

effect. Competition in the games can be
against other students, the computer it-
self, time limits, or performance criteria
set by other students (e.g. "the best score
on this game to date is " or "the beet
time for this game ie 613".

A word of cautiorli-appropriate here,
however. In en attempt to bring novelty to
their programs, some designers have defeat-
ed their own goals. In one such leeeon
students are encouraged to save a tiny man
who is standing in a deep pit from a large
heavy stone which ie slowly rolling down a
hill on the left side of the pit. This
teat is accomplished hy solving $ Series
of math problems successfully. With each
correct response the man moves up the right
side of the pit toward freedom. If the
learner fails to get the problem correct,
however, the stone rolls closer and loser
until it eventually falls into the pit and
squashes the poor fellow. In an observa-
tion of this sequence with several child-
ren, a number of them chose to see the man
get squashed with the full knowledge that
to do eo they must fail every single math
problem presented to them. This exercise,
therefore, did little to develop math skills
but did much to distract the learners from
the true intent of the leeeon.

c. Prompts
The power of computer-based instruc

tion resides in its ability to ehape learn-
er behavior toward learning outcomes in a
way not possible with most other media. An
important factor in shaping hehavior ie the
Use of prompts. Designers who ignore the
use of prompts often turn the instruction

44

34 NECC 1980

into a guessing game. For example, a number
of math programs currently available present
problems then simply respond to the learn-
er's incorrect response with a "No, try
again." Thie type of feedback gives the
learner no information about how he/she ie
doing; it only promotes guessing until the
correct answer is discovered. Prompts such
as, "Too high, try again" or "Remember,
carry the ones," on the other hand, pro-
vide learners with guidance toward the
correct answer. Without them, interaction
becomes meaningless. More about prompts
will be said later in this discussion.

d. Task Description
Learners are very cation misled about

what it ie they are supposed to do or how
they are supposed to respold in a given
exercise because the instructional designer
has confused the task for them. The follow-
ing i4 a perfect example: In this lesson
the learner is presented with the task of
distinguishing complete and incomplete
sentences:

The store closed early.

Type comp (for complete)or inc(for
incomplete)

The task here ie clearly discrimination
between complete and incomplete sentences,
but it ie confused by asking the learner to
type "comp" or "inc." The instructional
sequence is marred not only by a poorly
designed drill and practice but also by a
poorly conceived response format. An im-
proved version would simply ask the student
to respond by typing a 1 for complete (or a
c) or a 2 for incomplete (or an i), thus
focusing attention on the discrimination
task rather than the typing task.

Task confusion can also be lessened or
eliminated by providing learners with a
sample exercise before they are engaged in
a drill or a quiz':

Input and Response
1. The method an instructional de-

signer chooses to facilitate learner im-
put and reeponee ie largely a function of
the type of learning outcome desired. Res-
ponse modes most commonly include typed res-
ponse, touch reeponee or light pen response.
The first criterion for choosing one of these
modes is whether the response will help
reach the objective of the lesson. One
illustration of this rule is in the ex-
ample cited earlier in which etudente are
asked to discriminate between complete and
incomplete sentences. In this case a typ-
ed reeponee was inappropriate to the objec-
tive of the lesson. In fact, typed respons-
es in general seem prone to high error rates
because of the nature of typing tasks (Cald-
well, 1974). Typed responses also become

time consuming especially if learners are
unfamiliar with the keyboard. This problem
can have the effect of distracting learners
from learning the concept being presented.
A related problem ie that many errors in
typing are judged by the computer to be in-
correct responses, and therefore etudente
are routed to remedial sequences or to seg-
ments of the lessons they have just been
through.

Similarly, if typed responses are not
carefully cued, learners will often be for-
ced into closed loops; that is, they try to
find the correct answer by typing random
responses. When this problem occurs learn-
ers have little idea about what is expected
of them and become frustrated trying to find
the response that will advance them to the
next frame. Thie common error in instruc-
tional design has an extremely negative
effect on learners.

Some advantages can be found in the
typed response. however, which are not pres-
ent in forced choice reeponee modes (Cald-
well, 1974):

a. Learners seem to express more favor-
able attitudes toward writing and the use
of verbal language.

b. Spelling skills and the ability to
generate language improve.

c. Personalized feedback ie made poss-
ible through direct entry of student names.

2. As mentioned earlier, response by
direct entry should not be required of a
student without an example or a practice
exercise. Thie can prevent learners from
making errors in the practice exercises.
These errors can become important, particu-
larly if one ie using response data to
branch learners or to do item analysis.

3. A number of other helpful suggestion*
can be found in the guide to developing ins-
tructional software developed by the Minne-
sota Educational Computing Consortium (1980).
Some examples from that guide follow:

a. Be consistent in the way questions
are asked and the required format for res-
ponses. Do not code answers unless it ie
necessary. Request the responses of YES or
NO rather than coding responsee such as 1
YES and 00NO. When processing these answers
check the first character to determine if it
ie "Y" or "N". If it ie neither, erase the
student's answer and re-ask the question.

b. Ask questions while the information
needed to answer them ie still on the screen.
Don't ask a question then change the screen
to ask another one leaving the choices for
response on the screen jut erased. If
the student must choose from a fixed eet of
options, then those options should remain on
the screen throughout the quiz sequence. In
some cases it ie helpful to allow etudente
to go back to formerly displayed frames to

refresh their memories. This review ie
accessed by means of the WNW key.

c. Put options for a question in a
COIMID. Do not imbed them in a sentence.
Options having multiple words should be
coded with numbers or lettere.

d. Answer checking after accepting'in-
put deserves specific consideration. Don't
ask a question and expect a very specific
answer. For example, if the question ie
"What is the capital of Minnesota?" some
learners might answer, "The capital ie St.
Paul." If the response judging is too rig-
id and is looking for just "St. Paul" this
student's answer would be wrong. It ie
therefore very important to do keyword
matches rather than a match on the whole
answer entered.

Also, when looking for correct answers,
consider how many times to allow a student
to miss a question. A typical method used
by may designers ie to ask a question a
maximum of three times. This way, the
learner has the opportunity to be prompt-
ed twice. Any more than three tries seems
to indicate that the student has not mas-
tered the concept and it ie beet to move
him/her on. However, it is a good idea
to ask the same question again later.

4. The number of questions presented
during a formative evaluation ie the sub-
ject of considerable debate. Essentially,
the number of questions presented in any
one exercise ie dependent upon the objec-
tive being assessed. As a general rule,
however, five (5) ie a number that seems
workable for most learners. It ie a
sufficient number to assess progress to-
ward mastery of the objective and requires
just enough time so that the exercise it-
self does not become tiresome for the
learner. Five items ie a good number for
generation of item pools also if one uses
the guideline that three times the num-
ber of items should be written as are
presented in the exercise.

5. One must also be wary of the type of
information learners are permitted to in-
put. For example, a common practice in
many computer- ascieted lessons is to sek,
"What ie your name?" or "What do your
friends call you?" The purpose of such a
question, of course, is to use this infor-
mation later to provide personalized
feedback or to use the learner's name in
the content of the presentation (e.g.
"MIMO to: Johnny"). This practice can some-
times have disastrous effects if the
learner decides to get cute. One student,
for example, was observed to enter "idiot"
to just such a question as those cited
above. All successive feedback after that
resembled statements such ae, "No, Idiot,
try again" or "Good work, Idiot." While

1

Tools and Techniques for Instruction 35

this type of response can delight 'earners,
its overall effect ie one of distracting
them from the purpose of the lesson.

RWinforceftent
-Considerable space has been devoted in

this paper to suggestions regarding respons-
es to various types of imput. The section
dealing with prompts serves as a good ex-
ample. Generally, reinforcement should be
specific and directed at providing informa-
tion that will help shape the learner's be-
havior toward the desired learning outcome.
As an illustration, consider the following
sample sequence:

ing to the word- -

Come)
(Here students are required to transform
the word by retyping it with an -ing end-
ing.) A correct response on the first
try would warrant positive reinforcement
such ae "great, super, well done, excel-
lent." These and other reinforcing state-
ment(' can be generated randomly from a
list of 20 or 30 possible statements. In-
correct responses on the other hand,
should follow a pattern of prompting which
should lead the student to the correct
answer. For example:

First incorrect response: Come)
giggling (drop the e). The student ie
tiedlfrj reminding btm/her of the rule
under examination (drum the e).

Second incorrect response: Come,
comiing (come + ing). Here the learner

different response. In the
second prompt the computer system animates
the a in come and it drops from the equa-
tion then-f6W-ing moves into place.

Third incorrect response: Come,
gmipx. If on the third try the student
still not type the correct response,
the correct answer should be given, and
the student should then move on to the
next problem. This type of reinforcement
pattern contributes to meaningfulness of
the material to be learned because it:

a. Provides specific information
that helps guide correct learner behavior
toward achieving the desired outcome.

b. Reduces the frustration often
experienced by learners in CAI programs
that simply provide a "no" response to an
incorrect answer. A simple "no" ie un-
satisfactory because it provides no
specific feedback that helps the learner
to discover correct responses. Instead
learners are forced to guess until the
correct answer ie found (Caldwell, 1070.

Reinforcement strategies depend
largely on the nature and type of learning
being attempted. Reinforcement, however,
can be made more meaningful if it is per-
sonalized and specific to student

4V

36 NECC 1960

response sequences. (e.g. "You did well,
Allen, but would you like to review pre-
fixes before going on?")

In summary, the design of instruc-
tional programs should incorporate
various teaching strategies to add
variety to an overall curriculum and to
address cognitive processes at all levels
of that domain of learning. Also, pro-
grams should use to their best advantage
the features of color, graphics, and.
animation offered by microcomputer tech-
nology. Exciting new developments in
speech and sound periphekals also exist
and should be incorporated where relevant
and appropriate. Also, learner control
over the instructional sequence allows
for individual pacing and better oppor-
tunities to achieve mastery through
branching, diagnosis and remediation.
This flexibility can add significantly to
computer based programs if they are
designed and implemented carefully.

The scope of this presentation
limits discussion of the many subtle
variables which contribute to effective
instructional design, but attempts to
begin an organization of some of the
features which seem to contribute to
successful programs. It is hoped that
it might stimulate other authors and
designers to share their rationales and
experience in designing high quality
programs of computer-based education.

REFERENCE NOTES
Caldwell, R.M. "The Effects of Selected

Strategies for Teaching Reading to
Non-literate Adult Learners Using
Computer-Based Education." Paper
presented at the annual meeting of
the American Educational Research
Association, San Francisco, April,
1979.

. "Evaluation of a Program of
Computer-Assisted Reading Instruc-
tion for Semi-literate Adolescents."
Paper presented at the annual meeting
of the American Educational Research
Association, Chicago, March, 1974.

REFERENCES
Caldwell, R. M. and Peter J. Rizzo.. "A

Computer-Based System of Reading
Instruction for Adult Non-readers,"
AED8 Journal, Summer, 1979, 12,4.

Gerson, f7-177TWe Case Against Multiple
Choice," The Computing Teacher,
February-March, 1980, 7,4.

Minnesota Educational Computing Con-
sortium User Services, A Guide to
Developing Instructionanare
for the Apple II Microcomputer, St.
Maul, Minnesota: The Minnesota

Educational Computing Consortium,
February 15, 1980.

4 7

Invited Session

RESEARCH ON MICROCOMPUTER USES IN EDUCATION

Chaired by David Kniefel
New Jersey Educational Computing Network

THE AFFECTIVE AND COGNITIVE EFFECTS OF
MICROONNPuTER-BASED SCIENCE EDUCATION

Ronald E. Anderson, Daniel L. Rlassen,
Thomas P. Hansen, Minnesota Educational
Computing Consortium

ABSTRACT
Microcomputers are used increasingly

to deliver and enhance science instruc-
tion, but the impact of these new
technologies has not been extensively
studied. An experiment was designed to
investigate the effects of a brief CAI
activity on student attitudes, beliefs,
and knowledge. Three hundred fifty
high school students were tested and re-
tested before and after taking a 20-30
minute lesson on water pollution. The
instructional material was all delivered
by an APPLE II microcomputer using high
resolution graphics and some color vari-
ations. The findings support the claims
that: (1) even a very brief CAI exposure
can be instructionally effective; (2)

understanding about computers, i.e.,
computer literacy, can be improved as a
consequence of such CAI: (3) students
become attitudinally more positive about
computers from microcomputer CAI: (4)
graphic enhancements may not improve
student responses; (5) system malfunctions
may revise student conceptions of them-
selves as well as computers.

The micro offers a vast potential. with
some possibly questionable effects.
Since it allows new kinds of person -
computer relationships, we can not presume
to know its ultimate impact on individuals.

THE EFFECTS OF MICROCOMPUTING ON LARGE
CENTRALIZED TIMESHARING

Kent T. Rehrberg, Minnesota Educational
Computing Consortium

ABSTRACT
imiesota schools have already acquired
nearly 1,000 APPLE II and other micro-
computers, even though they have had
access to a large central computer via
a statewide educational network. This
situation offers opportunity to research
some important questions such as: (1) How
do people justify their acquisition of
microcomputers? (2) How are micros used
in the schools? (3) Does microcomputer
acquisition substitute for or foster time-
sharing use of a centralized facility?
The MECC research serves as the basis for
projection of the role of microcomputers
and instructional computing in the short-

' term future.

DISCUSSANTS

Harold Peters, Associate Director, CONDUIT
John Castellano Jr., Indiana University

37 48

Computers in Humanistic Studies

CREATIV/TY THROUGH THE MICROCOMPUTER

George M. Bass, Jr., Ph.D.
Assistant Professor
School of Education

College of William and Mary
Williamsburg, Virginia 23185

804-253-4289

"Creativity is a battle
against fixed attitudes."

(Raudsepp, 1977, p.55)

In many ways teaching a college course
on creativity is very similar to teaching
students hdw to use a computer. Both sets
of students come with many preconceived
notions about the subject. Usually these
attitudes have not been built upon direct
experience with computers or creativity
experiences but on hearsay and vague ex-
pectations. This lack of experience has
often led students to be fearful of their
own ability .o be fyeative or to master
the computer. Yet a willingness to break
free from theba frozen views and to see
ideas and problems from a new perspective
is needed in both areas for the student
to succeed.

During the fall semester of'1979, I
taught an advanced education course on
creativity. This course was designed to
be a seminar for students who had success-
fully completed an introductory education-
al psychology course. My overall goals
were to present students the necessary
background about creativity as it has
been studied by psychologists and educa-
tors; to introduce them to instructional
strategies which may help develop crea-

38

tivity; and finally, to increase their
own creative abilities. Eleven students
took .the course.

COURSE ACTIVITIES
In order to distinguish this course

from just another elective, I wanted to
use activities not typically found in
other courses they had taken. Entering
national contests, participating in crea-
tive growth games, working on word puz-
zles and logic problems, reading and solv-
ing detective stories, producing poetry
and written compositions, and using a
microcomputer were introduced throughout
the semester. (More traditional activi-
ties such as assigned readings, class
presentations and projects, and a final
position paper were also used to increase
the learning process.)

Because the microcomputer is such a
new educational technology, it is an
ideal way to break the chains of student
expectation and release any hidden poten-
tial. Yet the fear of the unknown or the
exaggerated visions of computer power
(such as HAL in 2001) were a real concern.
In order to redarfhis possibility, I
began the first class with TLC -- Tender
Loving Computer. Other exercises using
the capabilities of our Apple II micro-

49

computer were later interspersed through-
out the course.

MICROCOMPUTER ACTIVITIES --
OBJECTIVES AND RESULTS
1. Course Syllabus

Since this was the first time the
creativity course had ever been taught,
I felt it necessary to give students my
course objectives, assignments, and re-
quirements during the first session.
However, I wanted to communicate this
basic information in a nontraditional
way as mentioned earlier. I also wanted
the students in the class to meet one
another and to learn of any personal ob-
jectives each individual might have for
the class. To accomplish these objec-
tives, I wrote a program on the microcom-
puter to interact with each student.
After requesting the student's name and
some background information (interests,
reasons for taking the course, etc.) and
engaging him in chit chat, the program
presented relevant information about the
course and then introduced the student
to the capabilities of the microcompu-
ter. Using a variety of programs cur-
rently available for the Apple II, the
students were presented with computer
graphics, text manipulation, and game
playing experiences, e.g., Rock/Scissors/
Paper, Dragon's Maze, Star Trek.

The results of this experience were
quite positive. The students had never
seen a microcomputer before and were
surprised with the variety of things it
could do. As each student took a turn,
the rest of the class crowded around the
color monitor to watch the action. They
got to know each other through the typed
conversation with the Apple II. They
also got to see many of the programs
available to them outside of class. (For
two students this introductory session
led to a semester-long journey with Star
Trek after almost every class!) This
computerized syllabus generated interest
and set the tone for an unusual class.
2. "How I Spent My Summer Vacation"

Assignment
One of the most common assignments

that teachers give when students return
to school in the fall is to write a theme
on how the student spent his summer vaca-
tion. In order to get the students in
the class to begin thinking of novel ways
to solve problems or accomplish tasks. I
gave the class this typical task, but
asked them to solve it in a creative way.
When they next came to class with their
creative solutions, I shared with them
one solution using the microcomputer. I
programmed a story which contained an

Computers in Humanistic Studies 39

overall structure but required the addi-
tion of certain words and information from
the user to compose a complete tctle of how
the Apple II spent its summer. Besides
showing how unique paragraph-length sto-
ries can be created using a microcomputer,
this exercise laid the groundwork for a
future class discussion on form versus
content in creating something new.

While the students' creative solutions
to this assignment were indeed varied (a
picture scrapbook, a summer job advertise-
ment, "first grader's" paper, fantasy
story), their response to the Apple II
story was enthusiastic. They worked as a
group supplying the adjectives and other
words requested by the program. However,
the first time through the story, they had
no idea how these words were going to be
used. The resulting narrative was a hu-
morous, if not entirely accurate, account
of what a microcomputer might do over the
summer on a deserted college campus. The
second time through the program the stu-
dents chose their words more carefully to
fit into the structure of the story they
remembered. While this second experience
resulted in a new version of the tale, in
some ways it was not as entertaining as
the first version. In resulting class
discussions the notion of appearance ver-
sus substance, "how said" versus what
saidilith,are role of the creator and his
audience in giving meaning to a creation
were all related to this computer/human-
generated story.
3. The Apple II Pops

The apple II microcomputer can make
music-like sounds through the Apple's
built-in speaker. A number of commercial
programs are available to create these
songs with minimal programming. Using the
FORTE Music Interpreter by Rainbow Comput-
irs Inc., I showed the students how to
program and save songs they composed using
the Apple's speaker. I wanted the stu-
dents to construct a nonverbal creation,
to become more comfortable with using the
microcomputer as a tool, and to learn an
introductory programming approach.

At the class concert during which each
aspiring composer introduced his creative
effort, it became readily apparent that my
objectives were achieved. Although the
variety of songs (from birdlike melodies
to atonal experimentations to K-Tel music
advertisements) again showed the diversity
in the class, all students completed the
assignment and expressed their growing
ease with the Apple. They commented on
the computer as most forgiving, but also
most demanding. Mistakes were easy to
oorrect by retyping the note or line, but
putting commands in the correct syntax was

50

40 NEOC 1980

required for the program to work. In ad-
.dition, the students expressed an appre-
ciation of each other's efforts regardless
of previous musical experience.
4. Aphorism Construction

Adapting an Aphorism Generator pub-
lisheAby J.D. Robertson (Creative Com-
utin , August 1979), I programmed the
pple to construct aphorisms such as
"Alcohol is the liver of stress" through
random combinations of lists of the three
key nouns. The class was asked to genera
ate sayings using the format " is the

of ." as well. Pour stints were
chosen to do this individually, Is of
two and three students were chosen to do
it collectively, and the remaining two
students worked as a team to select those
aphorisms generated by the computer which
they thought most creative. After each
individual or team had chosen their best
two sayings, these aphorisms were read to
the rest of the class without identifying
the origin. Each class member separately
ranked the three best aphorisms; these
rankings were then tallied and the high-
est rated sayings identified. My objec-
tive was to stimulate a discussion of
individual, group, and random efforts in
creating original products.

Although the results were certainly
not definitive (one pair had written both
of the top ranked sayings), they did lead
to alively debate on the difference be-
tween random replacement and meaningful
combinations. The idea of "creativity is
in the eye of the beholder" was also rein-
forced by this exercise. The writer and
the reader put meaning in aphorisms &M-
other creative products.

IMPLICATIONS
The use of these microcomputer activi-

ties added greatly to the overall achieve-
ment of the course goals. One reason for
this success was the close fit between the
course topic and the capabilities of the
computer. Indeed, creativity with its
"battle against fixed attitudes" stresses
a concern with new images and experiences.
Torrance (1979), a major figure in crea-
tivity research, has even recommended a
three-stage instructional model to en-
hance incubation and creative thinking..
Activities using a microcomputer can be
implemented at each stage in his model.
Stage 1 is aimed at heightening anticipa-
tion; it tries to motivate learners to
relate each learning task to meaningful
experiences. The course syllabus and
summer story certainly attracted the stu-
dents' attention and stimulated their
curiosity and imagination. Other compu-
ter activities such as role playing games

and simulations should also warm-up stu-
dents and increase their anticipation.
Stage 2 burns this initial interest into
deepening expectation. Song development
is one example of the yellow; information
processing patterns which Torrance sug-
gests. Stage 3 simply tries to take crea-
tive thinking and keep it going. Seeing
the various capabilities of a microcompu-
ter in this course should permit students
a better understanding of future .techno-
logical applications in their own lives.

Although psychologists have perhaps
focused more on the instructional demands
of creativity and problem solving courses
than other subjects, the psychological
principles underlying such instructional
planning and design van be generaliz..d to
other college subjects as well. Treffin-
ger and Huber (1975) have emphasized that
the content of any course can be analyzed
according to an instructional systems ap-
proach. Such an approach focuses on iden-
tifying specific instructional objectives;
diagnosing characteristics of entering
learners; developing sequential, learning
hierarchies and teaching strategies to
accomplish the objectives; and assessing
performance to determine learner achieve-
ment. Following such a basic instruction-
al model will allow any teacher to esti-
mate the value of particular educational
technologies in a chosen course.

The specific issues for incorporating
the computAr into this current educational
technology have been widely discussed dur-
ing the past decade. Usually the chief
criticisms against such a move have re-
volved around cost and teacher resistance
(Trow, 1977). Yet these concerns have
mostly been associated with computer-
assisted instruction using a large time-
sharing system. Recently, there has been
a shift from CAI programs aimed at indi-
vidualized teaching of a single subject
matter toward computer-managed instruction
in which the system directs the entire in-
structional process (Splittgerber, 1979).
Even with this move toward CM/, there
still remains an implementation problem
into the public schools. Economic, tech-
nological, and instructional design con-
siderations have kept the potential bene-
fits from being realized.

But a revolution is in the making:
With the recent rise in accessibility of
microcomputers, the cost argument has been
greatly deflated. With the groWth in
microcomputer design and capabilities,
many of the technological concerns about
access, memory storage, and program lan-
guages have also been met. With the grow-
ing commitment to instructional' design
relevant to CAI and CMI, better software

is becoming available. Nevertheless, it
teacher resistance is not overcome, all
these changes will probably be for nought.

The experiences detailed in this paper
reveal one possible strategy to introduce
the applicability and benefits of micro-
computers. By incorporating course con-
tent with microcomputer capabilities,
students can gradually come to appreciate
the vast educational potential in this
new technology. With such a focus on
computer-enriched instruction, the teach-
er is less likely to fear displacement
from the teaching/learning process. The
emphases of CEI experiences are on stimu-
lating class discussions and group inter-
actions, not taking over the teacher's
role. As Eisele (1979) has pointed out,
the possible uses of microcomputers in
the classroom are many: as tools for
creative problem solving, games and simu-
lations, drill and practice; testing and
test construction. By taking advantage
of these uses to enrich classroom activi-
ties, today*s educator can be accountable
and productive without feeling deperson-
alized or replaceable.

And isn*t that a reasonable way to
win the battle against restrictive fixed
attitudes?

SUMMARY AND CONCLUSIONS
Since many students and teachers are

hesitant to use the computer because they
are unfamiliar with what it can -- and
cannot do, it is imperative that ways
be developed to introduce gradually a
more realistic appraisal of the compu-
ter's capabilities. If these benefits
are provided through computer-enriched
activities which do not reduce the main
role of the teacher, more acceptance of
such activities should be forthcoming.
With the advent of microcomputer systems
almost any small college can afford the
computing power that was available only
to large institutions just a decade ago.
An example of such an application in a
_OPllege course on creativity was pro-
vided to illustrate the feasibility of
such a CEI approach.

Computers in Humanistic Studies 41

REFERENCES

Eisele, J.E. "Classroom Use,of Microcom-
puters." Educational Technology.
October 1979, P. 13-15.

Raudsepp, E. Creative Growth Games. New
York: Jove Publications, 1977.

Splittgerber, F.L. "Computer-based In-
struction: A Revolution in the
Making?" Educational Technology.
January 1979, p. 20-26.

Torrance, E.P. "An Instructional Model
for Enhancing Incubation." Journal
of Creative Behavior. 15199-117---
P. 23-35.

Treffinger, D.J. and Huber, J.R. "Design-
ing Instruction in Creative Problem
Solving." Journal of Creative Behav-
ior. 1975, 9, p. 260-266.

Trow, W.C. "Educational Technology and
the Computer." Educational Technology.
December 1977, p. 18-21.

52

42 NECC 1980

GIVING ADVICE WITH A cateina

James W. Gets=
Department of Philosophy
University of Notre Dane
Notte Dame, Indiana 46556

(219) 283-6471

Ovet the last thtee years, my colleague Paul
MOWN* and I have been at wotk on an interactive
computet ptogtam called EMIL which we use to help
teach our courses in formal logic. Since June of
19/9, we have been devoting our efforts (thanks to
funding from The National Science Foundition) to
implementing a computerised "copilot" for EMIL

which the students can call on to obtain advice on
how to tackle problems that they find too diffi-
cult to handle on their own.

The methods we are using to provide out stu-

dents with advice are easy to Implement and quite
effective. They represent an approach to comput -
*tired education that doesn't fit neatly into the
standard categories (i.e. recotd keeping, multi-
ple choice CAI, testing, games, simulations,
etc.), but one which has the potential for wide-
spread application. The goal of thin kind of
tutoring ptogran is to prompt the student to
develop and use creative strategies solve problems
which do not necessarily have any one

correc answer. The advice-giving program is
Socratic; it asks the students leading questions
concerning the problem before them, questions
which help them analyze and resolve their diffi-
culties.

A typical course in formal logic requires
students to find formal proofs. Students are
presented with a sot of formulas of logic and
asked to apply certain logical rules to them to
derive some othce formula. The derivation which
they are asked to construct consists of a ss
queues of formulas each of which follows from
previous members of the sequence by one of the
rules, and which ends with the formula.they are
to prove. This kind of learning is important
not only in that it provides the foundation for
the mastery of the basic concepts of. logic, but

also because it gives the students the opportun-
ity to learn some of the practical problems and
strategies involved in creative thinking, parti-
cularly in creative thinking characteristic of
mathematics and the sciences.

Giving students practice in the creative so-
lution of formal problems particularly import-
ant in science education. Too often scientific
knowledge is presented as if it is descended from

heaven, or required same form of superhuman intel-
ligence for its discovery. Very little attention
is payed in science education to allowing students
to appreciate the thinking processes which go into
the analysis and mention of scientific problems
in a real setting. There is a tendency to obscure
the very human process of fumbling around, of try-
ing out strategies, of assessing failures, and of

cresting better lines of attack, which are all
patt of the scientists' daily life. A course in
logic gives students the opportunity to refine
their skills et problem solving in an environment
where the difficulty of the problems they conftont
can easily be adjusted to their growing abilities.

In the standard sort of course, students' abili-
ties at finding proofs vary widely, so that those
who do not have an initial knack are severely or.
wilted. Even when strategies for proof - finding
e re carefully discussed in class, some students in-
variably complain that they can't do a new problem
on their own in spite of "understanding" the lec-
tures. Pert of the problem for these students is
that they cannot convert a verbal explanation of
techniques. into s flexible tool for dealing with a
new situation.

With a bit of tutoring, most students with thee.
difficulties improve rapidly. If students think
out loud while attempting a proof, a gentle nudge
lure and there often leads to success. If they
don't understand the rules, or simply haven't both-
ered to learn them, guiding then through a proof or
two tends to straighten things out fairly quickly
and to improve their confidence and activation.
Just as in teaching most skills, the effective

strategies involve letting the student perform the
task under guidance; lecturing on the proper pro-
cedure and telling students to go home and do like»
wise is relatively ineffective.

Of course there are good teems why tutoring is
not widely used in an introductory coots* in logic.
These classes are usually quite large, so tutoring
simply-takes too much of the tes6er's UM*. Not
only that, grading exercises in proof-finding is
tedious, so teachers tend to give students rale..
tively few exercises that require then to create a
proof. Sven if students can learn on their own,
they simply don't get enough practice to develop

53

any skill, unless they catch on right off the bat.
Very often, the teacher relies on exercises that
require a single answer, such as those that ask
the student to fill in the justifications for the
lines of a proof that is already completed. This
process does familiarise students with the rules,
but it gives then no practice in the art of find-
ing a proof.

Computers make it posigible to simulate the tu-
toring situation. Students can enter their proofs
at the terminal, and the computer can be program-
med to see whether each line of the student's so-
lution follows from previous lines and to describe
the difficulty if anything goes wrong. When the
student gets lost the computer can make sugges-
tions about how to proceed.

This use of computers in education is particu-
larly interesting because it departs radically
from the multiple- choice foneshich has become al-
most paradigmatic of computerised teaching materi-
als. A proof-checking program doss not requite
the student to cowl tv ady preselected answer, but
to find a solution by any of a potentially infin-
ite somber of lines of attack. In a sense, the
program does not demand an answer, but *imply pro-
vides an ongoing check of the student's progress
in achieving a result. It does not require a set
response so such as provides tool that studenti
can use in their own way to develops skill.

Compared to multiple-choice programs, proof-
checking progtams make heavy demands on the com-
puter, the teacher, and the student. The coeput-

-- or must interpret the student's Name at the
terminal, determine whether they ere correct, and
respond in an intelligent way. The student and
teacher must familiarise themselves with the pro-
cedures for operating the computer erosion, and
suet put up with the inconveniences caused by hav-
ing to use a computer which is generally overbur-
dened already, sad which occasionally malfunctions.
They gust also put up with the inevitable mistakes
a programmer sakes in designing the logic teaching
system. And yet, if we are ever to develop com-
puter teaching syetems that provide students with
twig' for learning, rather than merely with ongo-
ing multiple choice exeminatians, we must over-
come these difficulties. Working out effective
strategies for proof - checking programs can pave
thew for developing less authoritarian styles
of cceputerised education in other areas.

Our logic tutoring program, called EMIL, has
several advantages over other programs of the
eau* kind. First, there are a large number of
logic textbooks, each with its own version of the
rule of logic. EMIL is the only program that
lets teachers supply the program with the set of
rules to be used with their textbook, instead of

forcing them to use the book which goes with a
set of rules written into the program. Second,
E MIL is extremely gentle with the student's input,
and generally repairs typing mistakes rather than
complaining about them. This le important because
our students ere, for the most part, unfamiliar
both with the typewriter keyboard and the notation

Computers in Humanistic Studies 43

of logic. Third, the program lets students tam
lines st the bottom of the proof Which they hope
to derive later so that they can work the proof

backwards if they like. The reason we allow, and
in fact encourage working backwards, is that ef-
fective proof-finding strategies require an ana-
lysis not only of the formulas already derived,
but of the formula to be proven as yell. Often the
proof - finding problem can be considerably simpli-

fied by using the goal formula as a guide-post for
determining what the steps previous to it oust

look like in the completed proof. Our program
allows students to record the results of using
such strategies right it the terminal, instead of
submitting a polished product to the computer. The
fourth advantage of our program is the main topic
of this paper. Since September of 1979 EMIL has

been giving students good advice about how to
solve problems that they ere unable to do on their

own. In this way it is providing a good portion
of whet can be offered by s human logic tutor.

There are three main strategies for designing
computer program that can offer advice on proof

finding. The first is simply to store a completed
version of the proof that the student is working
on and to store a list of comments that ere in-
tended to help a student who asks for aid on com-
puting a particular line. If the calmest the stn
dent :eceives proves isahelpful, the student can
oak to see the next line of the stored proof, or
indeed any number of lines, up to and including
the entire proof. -

This hint strategy requires that a completed
proof must be stored in the computer, along with
appropriate comments, for every problem students
will work on. It also presupposes that there is
likely to be only one reasonable sequence of steps
that leads to the conclusion. If studentsp-
proach a problem in an unusual way, there may not
be enough similarity between their proof and the
stored proof for the computer to be of any help.
finally, it presupposes a top -to- bottom pattern of

proof construction. But frequently the very next
Jeeps in a proof will not reveal a strategy that
Leeds to success; suck strategies must rather be
explained with reference to what happens much
later in the proof. This sort of hint routine
does not help students appreciate the global str-
ategies which require knowledge not just of whets
the proof has been, but also of *ere it Lavine,
and these are generally the most useful strategies.

Mother technique is to write a program that
allows the computer to generate a solution to the
student's problem and to recognise standard *Stil-

ettoes during the course of that solution. This
strategy eliminates the need for storing a proof,
with commentary, for each problem to be attempted,
since the computer generates its own solutions.
But this strategy runs the risk of generating
strange proofs, which students are unlikely to to-
capitulate. Also, each formulation of the rules
of logic will require its own custom-tailored pro-
gram for generating proofs. Furthermore, the pro-
gram to generate comments must be very carefully

5.4

Os.-r

44 NECC 1960

written to avoid misleading advice. Worst of all,

this strategy still does not help students to see
global strategies; like the stored-proof strategy,
this strategy uses a top-to-bottoet approach to
proof construction and confines itself to giving
advice about the very nett line of the proof.

Another difficulty with both of these approach-
es to the design for an advice-giver is that the
programs doss not attempt to construct advice on
the basis of whatezer progress the student may
have already made on the ;nobles. The failure to

build advice *round the students partial successes
tends to discourage invention of novel, yet pron.
loins, partial solutions, to devalue the students'
own creat...te abilities, and to lower their self-
confidence. It dampens the students' engagement
In the problem-solving process while reinforcing
them for stereotyped solutions.

The third approach to the design for an advice-
giver, the one we have adopted, overcomes these
problems by paying ..are attention to the techni-
ques actually used by human logic tutors. One of
the main things a human tutor should do is prov-
ide students with effective problem solving tools
for analyzing the situation they are in and for
breaking the problem into simpler subproblems to
which the same tools can be applied all over
again. An effective tutor does not give the
solution, or evenrpiedet-of-ft; bhi-tiotead-pro-
vides an apprenticeship in 'AO art of asking the
relevant questions, the r avers of which will
lead the student to sae ow the problem can be
broken down into more enageable parts. Questions
like "Can you apply "-Us rule to lines you have
already derived?" lard "What rule could be used to
derive s formul.. 4.4 this shape?" when presented

in a coherent sequence are very effective in help-
ing students .sevelop strategies which they can
learn rt. vs. effectively in a wide variety of
proof - fading problems.

"e actual program that we use to give advice
.us writs... by me in about four hours. The lm-
placentation was ao easy because the advice pro-
gram does little more than ask students a lead-
ing question and thee branch to s new question
on the basis of their answer. Eventually, the
program tuns out of questions to ask, and sped.
fie advice is given the basis of the informa-
tion prov44 ,- in the st4ant's answers to the
questions. se questicao can be thought of as
being structured in a Use, with the path along
the branches being determined by the students'
armors, and the advice for each situation be-
lug located st the tip of each branch.

Since programming our advice-giver was so

simple, the main focus of our attention has
been on the creation of a file of questions
which have real pedagogical merit. Since the
questions axe not written into the structure of
our program, modifying the question tree in re-
sponse to 4at we learn about effective advice
has been a painless process which dose not re-
quire any programming expertise.

Our question file bee a very simple format.

(See Figure I.) Each record contains the text of
a question followed by a lint of accepted answers,
each followed by a number which indicates which
record to Sump to in case the student responds with
that answer. The last item in each record begins
begins with a "*" (which indicates that there.are
no more accepted answers) and contains text which
is printed in case the student does not respond
with one of the accepted answers. Most of the
questions we ask are answered with "yes" or "no",

but we found the use of other sorts of answers
more conVe2:ent for certain questions. The text
of the advice to he given is simply stored in the
question file foil. ad by "*." This "*" indicates
to the program that this "question" has no accept-
ed answers, and ro the program should stop the ad-
vice giving process after printing it.

We have built a number of improvements into
this simple program. First, the sequence of the
questions should vary depending on how such the
student has learned and how difficult the problem
is. Our first solution to this problem has been
to assign each problem that the student is us. It

on a level number and to use this number to roav
the question-asking program to separate quests...
trees for each level we have defined

The second enhancement is motivated by the fact
that we want to mention items in our questions,
that change during the execution of the program,
for example, the last line number the student has
finished In the proof, or the name of the rule
that he intends to work with. Obviously the text
of the questions in the file cannot mention spe-
cific line numbers or rule names. Our solution
is to introduce variables, or fillins, to our
question text,

FIGURE I: SAMPLE RECORDS FROM A QUESTION FILE
1. 'CAN YOU APPLY MP TO ANY PROVEN LINES' '7' 2

'N' 3' *ANSWER YES OR
2. 'APPLY MP TO THESE LINEC"*.
3. 'WHAT IS THE NAM CONNECTIVE or YOUR GOAL

FORMULA?' '4' 4 'V' S t->1 6 **PLEASE MOWER
4, V OR 41

that are then replaced with the cottesponding
specific information Suet before the question is
printed at the terminal. We have adopted a con-
vention that words beginning with "4" are vari-
ables, and so, for example, a line of advice on
our question file might read like this: 'OU
SHOULD APPLY 4kULE TO LINE 6GNUM'. This directs

the program to fill iz the specific information
about the rule name and line number so that the
student sees, for example, YOU SHOULD APPLY GOUT
TO LINE S.

It may surprise you to learn that although our
advice-giving program was running with these two
enhancements in September 1979, we were
working on a central portion of the advt. ing

program in January 1980. That was because ea still
had to program the most important improvements the
development of subroutines which can answer all
the questions which are posed to students by the
advice-giver, and comment on any errors in the
students' responses. Though students are gamer-

ally quite accurate in their responses to ques-
'tions posed by our advice-giver, they occasionally
make eine:Nuts that can result in their receiving

bad advice. But informing students of their er-
rors is not the only reason for giving the comput-
er the ability to monitor the correctness of the
students' responses. Once students run the advice-
giver a number of times, they become bored at hav-
ing to answer a number of pointless questions. The
questions become pointless not because they aren't
needed in analysing proof - finding priblems in gen-
eral, but because the Student is r- l aware that
a particular portion of the me' is not needed
for the problem being dealt with aen the com-
puter is capable of answering qua time itself, we
can decide which questions, at mi. :h levels of
difficulty, should be printed at the terminal, and
which we should let the computer answer for itself
by examining the proof the student is working on.
Experienced students may resent being asked any
questions at all and nay prefer an advice-giver
that merely prints a specific piece of advice.
However, we believe that for met students who
need the advice-giver in the first place, posing
the relevant sequence of questions is such more
valuable to their learning problem-solving skills

than is their obtaining advice.
At this writing we have a version of EMIL that

answers for itself all the'questioes we pose save
one, and we have a method of indicating in our
question file which questions are to be asked
under which circumstances. He *till need to do a
lot more research on how obtrusive the advice-
giver ought to be as a function of the students'
progress and cognitive style. However, the main
advantage of our program is that we have complete
flexibility over the circumstances under which the
program types out the questions.

There is a final reason for programming the
computer so that it can answer all the questions.
When this is done the program can traverse the
question tree on its own and come up with the
relevant advice. Once advice is available, the
programs can follow it to construct proofs on its
own. Judging from extensive paper and pencil
tests, our advice tree turns out to be highly
effective (though not totally effective) in solv-
ing logic proof-finding problems. As a result,
it is capable of solving for itself the vast
majority of problems we give our studs s. This
provides us with an 'sporran tool for .mproving
our program. By running a large number of prob-
lems through our advice-giver, we can determine
the circumstanced under which it is unable to do
a proof, and than use that information to crests
e more sophist -.1ted version of our question
data files.

Our approach to giving computerised advice
has a wide range of applications. It can be
used, for example, to help college students
with their physics homework, or with tracking
down the identity of unknowns in qualitative
chemistry, to help medical students learn diag-
nosis, or even to help people to determine what is

Computers in Humanistic Studies 45

wrong with their car, or whether to itemize their
deductions. All it takes is a simple program to
run the questions and a question file that is
carefully constructed to reflect the best strate-
gies that people actually use to solve the kinds
of problems which are at issue. Depending on the
context of its use, sone or all of the enhance-
ments to the basic program that we have developed
could be used.

It is worth pointing out exactly how our ad-
vice-giving progra differs from the standard
approach to CAI using the multiple-choice format.
The differences are not particularly striking from
the programmer's point of view. In both cases,
the program is designed to ask questions and to
select new questions on the basis of the students'
mowers. The advice-giving programs generally re-
quire a more elaborate branching structure, and
they may differ in being unable to evaluate the
students' response. But the important differences
are the ones that are obvious to the educator, for
they have to do with the educational purposes of
the program.

Multiple choice CAI attempts to get the student
to memorise the correct answers to a certain kind
of question. The stress is almost entirely on en-
suring that the student lutes certain facts. In
the case of advice-giving programs, the answers
are not pert of whet is being taught. If any-
thing, it is the questions we would like the stu-
dent to master. By exposing students, over and
over again, to a sequence of questions that have

been proven effective in problem analysis, the
student learns to develop efficient strategies
that can be used over a wide range of problems of
a similar kind. Furthermore, the whole process
of learning to adopt principles of problem analy-
sis and decomposition is a valuable exercise of
problem solving skills that can be applied to
virtually any domain where creative thinking is
required.

Although advice-giving programs may not look
very different from multiple choice courseware to
tt% programmer, they have radically different edu-
cational goals, the most important of which is the
development of problem solving ability. Given the
simplicity of the programming effort as compared
to games and simulations, advice-giving programs
are particularly attractive for any educator in-
terested in developing the student's creativity.

46 NECC 1980

Ir

FROM A THEORY OF READING TO PRACTICE
VIA THE COMPUTER

Dale M. Johnson*
Center for Educational Research & Evaluation

The University of Tulsa
Tulsa, Oklahoma 74104

R. Scott Baldwin
University of Miami
Coral Gables, Florida

INTRODUCTION
The purpose of the present paper is to

describe a project which uses the unique
and high-speed capabilities of the com-
puter to match adolescents with books
which the students are capable of read-
ing and which they enjoy reading. The
ultimate mission of the project is to
increase the amount students read, which
in turn would enable them to become__
better readers. -Enhanced reading ability
and attitude would then motivate students
to read mores thus, the probability of a
cycle of life-long reading habits for the
individual would be increased (Mathewson,
1976).

Traditionally, reading has been viewed
as a hierarchical skills arrangement.
This conceptualization has been reflected
in reading instructional programs which
incorporate highly structured approaches
to word recognition and comprehension
skills. The underlying assumption has
been that students who are thoroughly
grounded in word attack skills, phonics,
sight vocabulary, word analysis, spelling,
and other reading subskills would use
these skills in reading, thereby becoming
able readers.

Computer assistance in building read-
ing subskills is not unusual. Illustra-
tive projects in CMI include the Wiscon-
sin System of Instructional Management
(WIS-SIM), the Instructional Management
System (IMS), the Interactive Training
System (ITS), and the Stanford Project
(Splittgerber, 1979). Numerous CAI pro-
jects in reading have been implemented
since the mid-1960s that capitalize on
both drill and practice and tutorial
modes (Atkinson, 1968; Atkinson, Fletcher,
Chetin, & Stauffer, 1970: Atkinson & Paul-
son, 1970; Madachy & Miller, 1976: and
Morrison, 1979). Computers have also
been used to establish the "readability*
levels of print material (Barry, 1979;

Barry & Stevenson, 1975: Fang, 1968; Mar-
ten, 1978, and Walker & Boillot, 1979).

Recently, reading specialists have
posited that fluent reading develops as an
integrated process rather than as a loose
collection of reading subskills. Fluent
reading entails much more than the sum of
specific skills. Such skills provide a
necessary but insufficient foundation for
the-development of nature reading-(Gooda
man, 1976: Smith, 1971). Profound in its
implications, the basic idea reduces to a
simple formula--young people need to prac-
tice reading in order to become good read-
ers (Allington, 1977: Daniels, 1971: Fader
McNeil, 1968; and Squire, 1973). How-

ever, students who are in most need of
reading practice tend to read the least.
The results are that the reading deficit
accrues with age, ultimately resulting in
secondary students who can neither read on
a level congruent with their abilities nor
enjoy reading.

RATIONALE
The basis for the project described in

this paper is that students do not read
partly because they fail to find reading
materials which ar- comprehensible and
interesting to them. However, a variety
of books do exist that span the abilities
and interests of virtually all students.
Therefore, a sound argument can be ad-
vanced that the problem is not one of
availability but one of accessibility.

On the basis of current trends in read-
ing, it could be reasonably hypothesized
that if various student characteristics
and preferences could be matched with
corresponaing book characteristics, the
probability of the student increasing his
or her interaction with print would be
enhanced. Further, the increased reading
would result in a better likelihood of the
student becoming an improved reader and
developing more favorable reading habits

57

and attitudes. Therefore, a major task
becomes one of maximizing the match be-
tween student characteristics and perti-
nent print characteristics 3v. order to
select a book that the student can read
and will enjoy. Gilliland (1972) pre-
sents this task as follows:

Readability is primarily concerned
with a basic problem familiar to
all people who choose books for
their own use, or who choose books
for others to use. This is the
problem of matching. On the one
hand, there is a collection of
individuals with given interests
and reading skills. On the other
hand, there is a range of books
and other reading materials,
differing widely in content,
style, and complexity. The ex-
tent to which the books can be
read with profit will be deter-
mined largely by the way in
which the two sides are matched...
(p. 12).
The time-consuming task of matching

students and books has typically relied
on published bibliographies; -human recall,
and trial and error. Such techniques are
obviously limited. Finding books which
contain all or most of a desired set of
characteristics is a complicated task, in
fact, it is virtually impossible if the
set of characteristics is large and the
resources for finding them are limited
to human intervention techniques. Simpson
and Soares (1965), Jongsma (1972), and
Stanek (1975) have found that librarians
and teachers, regardless of their in-
tentions, fail to accurately consider
the reading interests of young people
when purchasing or recommending books.

Research over the past decade or so
provides clues as to what variables arc
important for matching considerations.
Robinson and Weintraub (1973) and Squire
(1973) have confirmed the importance of
reading interests of students when
selecting reading material. Further, the
reader's age, grade level, socioeconomic
background, sex, and cognitive reading
ability will tend to influence reading
preferences (Ashly, 1970; Carlsen, 1967:
Jungeblut & Coleman, 1965; Hansen, 1973;
Scharf, 1973: and Soares & Simpson, 1967).
Book characteristics which tend to be
influential include amounts of dialogue,
concreteness of language, type of narra-
tion, and the degree of action and con-
flict provided (Carlsen, 1967; Jungeblut
& Coleman, 1965; and Simpson & Soares,
1965). The reader's age, grade, sex,
ethnic background, personal history,
hobbies, and the book's length, theme,

Computers in Humanistic Studies 47

linguistic readability, etc., will com-
bine in a predictable manner to determine
just how interesting a particular book
will be to a particular reader (Imam &
Patyk, 1967; Smith & Johnson, 1972).
Thus, it becomes clear that the quality
of the match between a reader and a book
is a function of numerous personal traits
and textual characteristics: however, the
literature does provide a comprehensive
list of the most important variables.

THE BOOKMATCH SYSTEM
In keeping with the goal of getting the

most suitable books to students, the most
pertinent variables were incorporated in-
to algorithms which were subsequently
coded for computer processing. First,
individual student preferences regarding
print characteristics are considered.
Figure 1 shows the variables -on which
students can express their personal
sentiments.

Three of the characteristics relate to
the characters portrayed in the book, one
relates to the setting or location of the
story, and then 08_tvical interest areas
are considered. With respect to the "in-
terest areas," the student simply
cated how well he or she likes each par-
ticular area from he list of 88 topics
on a three choice response format coded
as follows: (Y) Yes, very much, (S)
Sometimes. It's OK., (N) No, I don't. Of
the OS interest areas, 20 are human drama
themes (ecology, drugs, personal beliefs,
loneliness, etc.).

Corresponding to each connecting line
show in Figure 1, an algorithm was devel-
oped and coded into a FORTRAN subroutine
for a main program. However, Figure 2
displays additional algorithms for refin-
ing the match between students and books.
Figure 2 shows three student traits that
represent somewhat different constructs
from the student variables (preferences)
shown in Figure 1.

The student traits which are linked to
various book variables are reading abil-
ity, attitude toward reading, and grade
level. For example, three algorithms use
a measure of student reading ability to-
gether with: (1) linguistic difficulty
of the book, (2) when the story appeal
begins, and (3) the length of the book.
Conceptually, better readers can more
readily comprehend more difficult text,
they can comfortably tolerate more intro-
ductory background prior to the beginning
of the story appeal, and they will tend to
cope better with longer books than poorer
readers.

Students' attitudes toward reading are
also used (Figure 2) to help discriminate

5V

48 NECC 1980

among books. The algorithms use a meas-
ured attitude score based on the follow-
ing heuristics. Students having better
attitudes toward reading, as opposed to
those with poor attitudes, will be able
to cope with longer books, will not re-
quire early story appeal, and will rely
less on physical action as a prerequisite
for enjoying a book. Finally, the grade
level, since it is associated with chron-
ological age and maturity, is also com-
pared to the linguistic difficulty (which
is measured in grade equivalents) of the
books and to the length of the books.
Generally, students in lower grades will
not enjoy longer and/or acre difficult
books.

A FORTRAN main program was written for
the Xerox Sigma 6 system which includes
subroutines incorporating the schemes
shown in Figure 1 and Figure 2. The func-
tion of the program is to receive individ-
ual student variables as input and match
them with each of the approximately 5,000
books in the data base. Each variable of
each book is compared with the respective
student variables and differential
weights are assigned according to the de-
gree of match and the relative importance
of the variable. The weights are con-
verted to points and summed, resulting in
each book being scored for each individual
student. The books with the highest num-
ber of total points are listed as a per-
sonalized ,bibliography for each student.

The functional operation of the match-
ing process (referred to as Bookmatch) is
shown in Figure 3. As can be seen, the
first function is to extract a subset of
books which are accessible to the student
from the book data base. In most cases,
this subset is the school's library hold-
ings which have been furnished by the
librarian. Second, each variable of each
book is compared with either the student's
preferences and/or traits. The algorithms
accumulate a point total (score) for each
book. Finally, the books receiving the
highest score (most accumulated points)
are printed. This output includes the
author(s), title, type of book (fiction,
nonfiction, biography, etc.), and a brief
annotation of the book.

Each student receives a printed list
of his or aer own personalized bibliog-
raphy. The bibliography includes the top
20 books and must contain some nonfiction
and biographies along with fiction.
Summary reports for teachers, librarians,
and administrators are also provided.

DATA BASE
Of significance to the success of the

system is the data base which contains

information on books written for early
adolescent readers (grades 5 - 9). New
volumes are periodically being added to
the data base which presently contains
about 5,000 volumes established over a
three-year period. Initially, pertinent
book variables were identified through a
review of literature in the field of read-
ing. The original pool of variables was
verified by a committee of public school
reading teachers and university reading
specialists. Two of the original varia-
bles were subsequently omitted from the
list due to variations in printing styles
across separate editions of many of the
books. These two variables were "number
of pictures" (or non-print figures) and
"size of type."

Second, a master list containing the
titles of books to be included was com-
piled from published recommendations from
widely recognized sources including the
American Library Association, Library of
Congress, School Library Journal, American
Guidance Services, International Reading
Association, and the National Council of
Teachers of English.

Reviewers were tutined to evaluate
characteristics of books and to prepare
annotations. These reviewers consisted of
reading professionals witn masters degrees
and with either adolescent reading or
library experience. The book evaluations
were checked for reliability and were
further validated by a reading specialist.
The annotations were refined by a profes-
sional editor. Book data were then coded
and stored for computer match of book
characteristics with student traits and
preferences.

SUMMARY
Based.on the notion that practice in

reading will be facilitated when readers
and appropriate literature are brought
together, a project called Bookmatch is
presently being implemented. In order to
match reader characteristics an' pre-
ferences with textual characteristics of
books, a medium with capabilities for vast
data storage, retrieval, and rapid arith-
metic comparison operations was required.
The computer was the logical choice to
handle the task. During the Bookmatch
processing, books are scored according to
the degree to which they favorably compare
to student preferences and characteristics
On the basic of these scores, the computer
provides a printout with a personalized
annotated bibliography containing the most
comprehensible and interesting books that
are accessible to the individual student.

59

Computers in Humenistic Studies 49

BOOK VARIABLES STUDENT VARIABLES
(PREFERENCES)

(SEX OP MAIN)1(

CHARACTER(S)

ETHNICITY OP

IN CHARA

)1(

AGE OF MAIN

CHARACTERS)

SETTING OF

THE STORY

INTEREST

AREAS OP
2VE BOOK

4SEX

PETERENC)

ETHNIC

REFEREN

)(AGE

REPERENC)

(SETTING4)

PREFER=

Figure 1. Schematic fpr matching algorithms of student
preferences and book variables.

6Q

50 NECC 1000

.

----lit

SEQUENCE or (INDIRECT)

STORY

(
GRADE)4
LEVEL

CHARACTER
ISTICS

.(BOOK

CHARACTERISTI S

PHYSICAL

LENGTH OF

BOOK

ATTITUDE AMOUNT of
PHYSICAL

READING ACTION

Figure 2. Schematic network for matching algorithms of
student traits (characteristics) and book
variables.

61

.--IVARIABLES

INPUT
STUNS?

4

new
Lunn

sown=

STORE
LIBRARY'S
MOLDINGS

MATCH
ARIFIRENOSS
(sm. 1)

INPUT
Xa BOOR

4

CUMULUS
BOOK TOTAL
SCORE

i(

SELY.CT

LIBRARY
HOLDINGS

Computers in Humanistic Studies 51

BOOK
DATA
BASH

SORT BOOKS
BY POINTS
(SCORES)

OUTPUT'

INGS AND
BEST BOOMS

(ANOTHER sTunetakftroP OR tisX'?
STUDENT ./

Figure 3. Functional Schematic for BOOM= operation.

52 NECC 1980

REFERENCES
Allington, R.L. "If They Don't Read Much,

How They Ever Gonna Get Good?" Journal
of Reading, 1977, 21, 57-61.

Ashly, L.P. "Children's Reading Interests
and Individualized Reading." Elementary
English, 1970, 47, 1088-96.

Atkinson, R.C. "Computerized Instruction
and the Learning Process." American
posys.%ologisf. 1968, 23, 225-357--

Atkinson, R.C., Fletcher, J.D., Chetin,
J.C. & Stauffer, C.M. Instruction in
Initial Readin Under Computer Control:

tanfor Project. TechnicaTW47513Ft
131.3117ard, Calif.: 'natl.. 'or
Mathematical Sciences in the Sc
Sciences, 1970.

Atkinson, R.C. & Paulson, J.A. An
A roach to the Psychology of Instruc-
t on. TcahlEil Report 157. 3TIEE7A,
Calif.: Institute for Mathematical
Studies in the Social Sciences, 1970.

Barry; a:c.- "Computerized Readability
Levels--Their Need and Use." Journal
of Educational Data Processing770757

Barry, J.C. & Stevenson, T. "Using a
Computer to Calculate the Dale -Chall
Formula." Journal of Reading, 1975,
19, 218-22.

Carlsen, G.R. Books and the Teen-a e
Reader. New YENT-Iirper & Row, 967.

Daniels, S. How 2 Gerbils 20 Goldfish
200 Games IINTIFhem
Hew E12-1.7a. .iihTIORATaT The War--
ail-stet Press, 1971.

Emans, R. & Patyk, G. "Who Do High School
Students Read?" Journal of Reading,
1967, 10, 300-4.

Fader, D.N. & McNeil. Hooked on Books:
Pr ram and Proof. Nis7-173Fks G.P.
Putnam 11-13nr-f568.

Pang, I.E. "By Computer: ?leach's Read-
ing Ease Score and a Syllable Counter."
Behavioral Science, 1968, 13., 249-51.

Gilliland, J. Readability. London:
University of London Press, 1972.

Goodman, X.S. "Reading: A Psycholin-
guistic Guessing Game." In Singer and
R.B. Ruddell (eds.). Theoretical
Models and Processes of Reading.

Newark, Delaware: International Read-
ing Association, 1976.

Hansen, H.S. "The Home Literary Environ-
ment--A Follow -up Report." Elementary
English, 1973, 50, 978.

Jongsma, B.A. "The Difficulty of Child-
ren's Books: Librarians Judgments
Versus Formula Estimates." Elementary
English, 1972, 49, 20-6.

Jungeblut, A. & Coleman, J.H. "Reading
Content That Interests Seventh, Eighth,
and Ninth Grade Students." The Journal
of Educational Research, 196758, 392-
T51.

!Carton, H.A. " G M Program Rates Level of
Text Difficulty." Computerworld, 1978,
(May), 9.

Madachy, J. & Miller D.J. The Use of CAI
in the Lan ua e Pr ram at GaTigunt.
Santa Bar ara: Assoc atran73Eai
Development of Computer -Based Instruc-
tional Systems, January, 1976.

Mathewson, G.C. "The Function of Attitude
in the Reading Process." In H. Singer
and R.B. Ruddell (eds.), Theoretical
Models and Processes of Reading (2nd
M=Newarrirei,Dwares International
Reading Association, 1976, 665-76.

Morrison, F. TICCIT. Dynamic Phoenix,
1976 (July), 45-6

Robinson, H.M. & Weintzaub, S. "Research
'Related to Children's Interests and to
Developmental Values of Reading."
Library Trends, 1973, 22, 81-108.

Scharf, A.G. "Who Likes What in High
School." Journal of Reading, 1973, 16,
604-7.

Simpson, R.H. & Soares, A. "Best-and-
Least-Liked Short Stories in Junior High
School." English Journal, 1965, 54,
108-11.

Smith, F. Understanding Readin . New
York: Holt, Rinehart an W nston, Inc.,
1971.

Smith, J.R. & Johnson F.D. "The Popular-
ity of Children's Fiction as a Function
of Reading Ease and Related Factors."
The Journal of Educational Research,
1727437-7977467-----7--

Soares, A.T. & Simpson, R.H. "Interest in
Recreational Reading in Junior High

School Students." Journal of Readig,
1967, 11, 14-21.

Splittgerber, P.L. *Computer-Based In-
struction: A Resolution in the Making?*
Educational Technology, 1979, 19, 20-5.

Squire, J.R. "What Does Research Rev;a1
About Attitudes Toward Reading?" In
R.A. Meade and R.C. Smith (eds.),
Literature for Adolescents: Selection
an -thiC -Columbus, Ohio: Charles E.
Brirra, 1973.

Stanek, L.W. *Real People, Real Books:
About YA Readers." ToE of the News,
1975, 31, 417-27.

Walker, N. & Boillot, M. °A Computerized
Reading Level Analysis." Educational
Technology, 1979, 19, 47-9.

*Note
Dale Johnson will present paper.

64

Computers in Humanistic Studies 53

54 NEW 1960

NON - HARMONY:
A VITAL ELEMENT OF EAR-TRAINING IN MUSIC CAI

Join C. Groom- Thornton
and

Antoinette Tracy Corbet
School of Music

North Texas State University
Denton, TX 76203

(817) 788-2791 ext. 269

INTRODUCTION MD BACKGROUND
Computer-assisted instruction (CAI)

in ear-training has become an important
assistant to classroom teaching in the
first two years of college-level music
theory. The student's aural skills (which
are needed to deal with the three basic
elements of music -- harmony, melody, and
rhythm) can be greatly reinforced with

-such individual instruction. Part of the
success of this reinforcement is that
while these elements are integral parts
of a complex multi-dimensional subject,
they can be separated from each other to
a great extent, so that classroom teaching
(and CAI lessons) can concentrate on
virtually one element at a time. In
particular, this system allows the less
advanced student to concentrate his
efforts upon developing his understanding
of one broad subject at a time. As his
skills and confidence grow, he is better
capable of identifying these elements in
various combinations, and eventually of
understanding them in their musical
context.

As soon as the student has developed
some skill in each of these three areas
and has begun to understand the integrated
whole, it is necessary to introduce the
concept of "non-harmony." As the name
implies, this element lies outside the
realm of the established harmonic strucT
tare but relies on melodic and rhythmic
context to differentiate among the various
forms that it takes. Despite its rather
negative title, non-harmony is a very
positive part of music an aspect of
the concept of variety which helps to
delineate style. In practice, non-
harmony takes the form of short melodic
and rhythmic patterns which augment the
harmonic context. These patterns fall
into approximately ten categories for
which terminology is fairly standard.
Each term refers to a type of non-harmonic
tone which defines its own special pattern

and context. Although each pattern is
rather specific, melodic and rhythmic
context can vary somewhat and harmonic
context can vary gz:atly. For this
reason, the necessity of drill and prac-
tice of such variance presents a logis-
tics problem in the classroom but is
greatly helped by random access and tran-
position available with CAI.__

METHOD
The ear-training CAI system at North

Texas State University employs the Auto-
matic Music System (ANUS) designed by
Professor Dan W. Scott of the Computer
Sciences Department. The ANUS system
consists of a Motorola 6800 microprocessor
with a CRT terminal and specialized music
hardware (MUSOR). The microprocessor
translates the musical score and accesses
the MUSOR, which is the actual sound-
producing apparatus engineered by
Professor Scott. The ANUS system is
connected to an BP 2000-F Timeshared BASIC
computer, which provides additional file
storage capabilities. This system uses a
flexible score language for notation input
and offers a variety of timbre and articu-
latzon possibilities. Of primary impor-
tance is the facility of rapid playback
which is a substantial advantage over
other computer-based music systems in its
cost range.

The non-harmonic tone lessons were
constructed using a simple melodic and
rhythmic four-voice chorale style. This
simplicity was not due to any system
limitations, as the system is capable of
rapid and complex articulations of rhythm,
a wide range in melody, and up to seven
simultaneous voices for harmony. Rather,
the simplicity,was'maintained to limit
the number of variables of elements other
than those being tested and to give a
fairly normal musical context. For each
example heard, the basic context was a

65

five - to seven-chord progression of four
voices in quarter-notes. To this strictly
harmonic setting, one or more non harmonic
tones were added in eighth-note motion.
Since there were ten categories to be
covered, the following factors determined
the order in which the terms were pre-
sented. Group I consisted of the five
non-harmonics that normally occur off the
beat or in a rhythmically weak position
as compared to the note of resolution
which comes directly after. Group II
consisted of the four non-harmonics that
occur on the beat or in a rhythmically
strong position, and usually displace or
delay a note of the harmony. The last
category normally has no such rhythmic
definition. Due to the rhythmic contexts,
Group I is considered easier to hear than
Group II. Also, in actual practice in
music literature, the patterns in Group I
generally occur more often than those in
Group II.

Within Group I, the five unaccented
non-harmonics (with their standard abbre-
viations) were presented in this order:
1. _unaccented passing tone (OPT)
2. neighboring tone, upper and lower

LN) also sometimes called
"auxiliaries"

3. anticipation (ANT)
4. escape tone or echapee (ET)
S. changing tones (CT)

Within Group I/ the four accented non-
harmonics were given this order:

6. accented passing tone (APT)
7. suspension (SUS)
8. retardation (BET)
9. appoggiatura (APP)

The final example was:
10. pedal tone (PBD)

The ir'arnal order of the two groups was
chosen to present the most-often heard
categories first, in ordtr tarstmrtthe
student with the most familiar patterns.The
only exception to this practice occurred
with categories 8 and 9. The less-often
heard retardation (18) was placed before
the appoggiatura (19) in order to present
it directly after the suspension, on which
it is patterned. Also this order was
selected because Jummary lessons are used
in various places between individual pre-
sentations, and a t meaty to show simi-
laritieu and differences between the sus-
pension and retardation would logically
come before proceeding to the next (and
less - related) non-harmonic.

The general need for both immediate
and cumulative summaries of such a large
number of elements resulted in seven such
lessons being inserted into the sequence
already discussed. While each of the ten
single-element lessons seemed well served

Computers in Humanistic Studies 55

by the examples (which were carefully
written to provide maximum exposure to
the variations encountered in music), the
summary lessons gradually grew in number
of examples since they demonstrate a
variety of combinations of these elements.
Of course, this variety is further
expanded by random selection and trans-
position.

A standard format for the student's
answer was kept for all of the lessons.
Because of the complex situation presented
by non-harmony, the student's response
could not be reduced below three elements:
the rhythmic, melodic, and non-harmonic
contexts. (This sequence best repre-
sented the student's understanding of the
factors involved, as determined by the
author's experience in teaching.)

For the first element, the student
types a number from one to six, locating
the beat with which the non-harmonic is
associated. (Although many examples are
seven chords long, a basic precept of non-
harmony is that it must finally resolve
into harmony. Therefore, non-harmony
could not,be.associated with the seventh
beat.) The second element of the stu-
dent's answer is a capital "S" or "8*
which indicates that the non-harmonic
occurred in the soprano or bass melodic
voice. (The choice was limited to the
upper and lower voices to afford a measure
of variety while avoiding the unnecessary
complication of determining locations in
inside voices when these voices can be
extremely close.) The third and last
element of the student's answer is the
abbreviation that identifies the non-
harmonic itself from among the ten pos-
sible labels. Even though this part of
the answer would be obvious in any of the
single-element lessons, the act of typing
the abbreviation reinforces the student's
aural impression and, establishes a pattern
of response which does not need to be
altered for the summary lessons. All
elements of the answer were separated by
commas, even when the example involved
more than one non - harmonic response.

One other factor, a chord tone, was
added to a few random examples within
each lesson. A chord tone may resemble
a non-harmonic tone in rhythmic and melo-
dic placement, but it is part of the har-
mony (as opposed to non-harmony), and its
pattern of usage does not necessarily
parallel that of a non - harmonic tone.
This factor was added to insure that the
student would truly listen for non-harmony
and not just attempt to label anything
that moved! These chord tones do not
require any response from the student
other than to understand that they were

CC

56 NECC 1980

notes which were not part of the non-
harmonic answer.

RESULTS
In final sequence, there are seven-

teen lessons, delineated as follows:
Nl. UPT - Unaccented passing tones
occur most often of any of the non-
harmonics and are located equally
well in soprano or bass.
N2. UN, LN - Upper and lower neigh-
bors occur mainly in soprano, as
reflected Immthe examples.
N3. ANT - Anticipations occur almost
exclusively in the soprano and
usually very close to the end of
the progression.
N4. Immediate summary of Lessons 1,
2, and 3 (the most-often heard
unaccented non-harmonics).
N5. ET - Escape tones occur mainly
in the soprano voice.
N6. CT - Changing tones involve a
definitive four-note pattern and
occur only occasionally in the bass.
N7. Immediate summary of Lessons
5 and 6 (somewhat similar patterns).
N8. Cumulative summary of all unac-
cented non-harmonics (Lessons 1
through 7).
N9. APT - Accented passing tones,
like unaccented ones, occur in both
soprano and bass.
N10. Summary of APT and Urf (Lessons
1 and 9). These two patterns occur
quite often and are alike except
for rhythmic placement.

S - Suspensions occur in both
voices in many cases.
N12. RET - Retardations parallel
suspensions in every way except
that they resolve up instead of .

down.
N13. Immediate summary of the ac-
cented non-harmonics covered thus
far (Lessons 9, 11, and 12).
N14. APP Appoggiaturas may hays
slightly varied melodic patterns
and most often occur in the soprano.
M15. Cumulative summary of all ac-
cented non-harmonics (Lessons 9,
11, 12, 13, and 14).
N16. Tap - Pedal tones are the least
often used, but are the most obvious
non-harmonics to identify, occurring
mainly in the bass.
N17. Final cumulative summary of all
of the non-harmonics (This lesson
contains the most examples).

SAMPLE
The following example shows Lesson Nl

(UP Lth comments on specific features.
Cs L, 1/13/80, JCGT & ATC

C: CHORD PROGRESSIONS WITH UNACCENTED
C: PASSINGATONES
H: FIRST ANSWER IS THE NUMBER OF THE
HI CHORD AFTER WHICH THE NON-HARMONIC
H: TONE:SOUNDS.
H: SECOND ANSWER IS "S" OR "B" FOR
H: SOPRANO OR BASS VOICE WHERE THE NON -
H: HARMONIC TONE OCCURS.
H s THIRD ANSWER IS THE ABBREVIATION (UPT)
H: FOR THE NON-HARMONIC.
Hs TYPE LETTERS IN CAPITALS (WITH SHIFT
H s KEY).
H: (SOME MOVING EIGHTH-NOTES MAY BE CHORD
Hs TONES.)
The *H" statements are "hints" which the
student may branch back to at any time to
obtain reminders about valid answers and
format.
T: $N, HERE'S A LESSON TO HELP YOU LEARN
T: NON-HARMONIC TONES.
Ts THESE WILL BE UNACCENTED PASSING-TONES.
P: 2
The "T" statements are texts which the
student sees, and the "$N" addresses the
student by his own name. The HP: 2" is
a two-second pause (with the text still on
the screen) to allow the student to absorb
the information.
CS:
Ss 2
Ts I'LL PLAY 5 TO 7 CHORDS.
T: YOU TYPE: WHICH CHORD (1,2,3,4,5 OR 0
T: 6) THE NON-HARMONIC OCCURS AFTER,
Ts WHETHER THE NON-HARMONIC IS IN SOPRANO

OR BASS (S OR B) IN CAPITALS.
T: THE ABBREVIATION FOR THE NON-HARMONIC
Ts (UPT) IN CAPITALS.
Ts TYPE A COMMA (,) AFTER EACH PART OF
Ts YOUR ANSWER.
Ts FOR INSTANCE: 3,B,UPT
Ts MEANS THE NON-HARMONIC OCCURRED AFTER
Ts THE THIRD CHORD, IN THE BASS VOICE,
T: AND IT WAS AN UNACCENTED PASSING-
Ts TONE.
Ps 10
The"CS" then clears the screen so that the
following text can appear as a stationary
group without rotating off the screen.
"S: 2" double-spaces the text of added
visual impact. The text contains specific
instruction on the anwer format and gives
a hypothetical student response with
explanation. Again, there is a pause of
ten seconds for comprehension.
Ts HERE'S AN EXAMPLE (WITH ANSWER), $N --
T: $R 4CD 3C 2E GE
Ts 4EE
T: 4G 3BD 2D GQ
T: 4E 3CU 2G CUQ
Ts 4F 3C 2F ADO
T: 4G 3GD 20 BE
Ts CUE
Ts 4GD 38 2F DO
Ts 4CU 3G 2E CH

67

Ti ?
P: 20
Ti eS 813

T: YOUR ANSWER: 5,S,UPT -- RIGHT, $N ?
pi 10
The next section plays a sample example
for the student (lines 145 - 205 process
the sound) and then gives the correct
answer with a pause for comprehension.
Ti REMEMBER:
Ti TYPE A "," BETWEEN THE PARTS OF YOUR
Ti ANSWER.
Ti TYPE A "7" TO RE-HEAR THE MUSIC.
Ts TYPE " / /HINT" FOR A HINT ABOUT
Ti ANSWERS.
Ti (YOU MAY WANTTO USE PAPER AND PENCIL
Ts TO JOT DOWN ANSWERS BEFORE YOU TYPE
T: THEM IN.)
P: 10
The student then sees the final reminders
on basic procedures for dealing with the
musical examples.
Ti LET'S GET STARTED, SR,
Vi 123456SBUPT,
0: 10CRNIAP4,453).
The actual examples are then announced
to the student."V"' gives-the valid
characters for the student's answer. For
every lesson the first eight characters
are the same; the numbers 1 through 6
are the possible answers to the first
question of beat (rhythmic placement);
and "s" and "B" are the possible answers
for voice (melodic) placement. The last
characters label the non-harmonic and
range from a single one- to three- letter
grouping (for the single-element lessons)
to the complete list of all non-harmonic
possibilities for N17. In this sample
lesson of Ni, only the single abbrevia-
tion of VET is valid. Finally, "Q"
formats the questions. In this case
there are 10 possible examples from
which the program makes a random selec-
tion and a direct comparison. The stu-
dent completes the lesson when he
answers four out of five times correctly,
And he is allowed three tries,befobe the
correct answer is given by the computer.

Ten examples then follow which are
similar to the sample example of lines
145 through 190.

DISCUSSION
The seventeen lessons of this non-

harmony project are all presented in
parallel format to establish a consistent
pattern of thought and approach and to
minimize confusion as the lessons grad-
ually become more complex. Each element
is introduced in a lesson devoted solely
to its problems and contexts, and summary
lessons gradually combine the elements in
a logical order. Data on students'

Computers in Humanistic Studies 57

responses are kept and made available to
the classroom teacher for evaluation and
advising.

SUMMARY AND CONCLUSIONS
Music poses interesting instructional

problems because it shares with other
fields (for example, chemistry and math)
a well-defined vocabulary for musical
elements. However, musical teaching must
include showing the relationships among
these elements. Non-harmony is an essen-
tial component of these relationships,
and thus forms a model for the solution
to the problem of teaching.relationships
in many fields.

SELECTED REFERENCES
Apel, Willi. The Harvard Dictionary of

Music. HarvainfaVerexty Press,
Ca ridge, 1969.

Bales, W. Kenton and Joan C. Groom.
"AMUSs A Score Language for Comput-
er-Assisted Applications in Music."
Presented at the 1979 Association
for Educational Data Systems Conven-
tion3*Detroit, Michigii.

Hamilton, Richard L., and Dan W. Scott.
"A New Approach to Computer-Assisted
Instruction in Music Theory."
Presented at the 1977 Conference on
Computers in the Undergraduate Cur-
riculum, Denver, Colorado.

Hofstetter, Fred T. "Computer-Based
Recognition of Perceptual Patterns
in Harmonic Dictation Exercises."
Presented at the 1978 Association
for the Development of Computer
Instruction Systems Conference,
Dallas, Texas.

Killers, Rosemary N., W. Kenton Bales,
Richard L. Hamilton and Dan W. Scott.
"ANUS: The Computer in Music
Instruction." Presented at the 1979
Texas Music Educator's Association
Conference, Fortlorth, Texas.

Ray, Douglas, and Rosemary N. Killam.
"Melodic Perception Development and
Measurement Through CAI." Published
in the proceedings of the 1979
National Educational Computing
Conference, Iowa City, Iowa.

68

Computer Literacy

A CASE FOR INFORMATION LITERACY
Dr. S. D. Schiaming

ISM Corporation
10401 Pernwood Road
Satbeeda, MD 20034

301/897-2090

INTRODUCTION
Although digital computers have

been present in educational institu-
tions for over 25 years, only a small
percentage of students have been ex-
posed to them. As the cost of com-
puting continues to decline, it is be-
coming financially feasible to intro-
duce the "majority of students to com-
puting and data processing.

Dr. Andrew R. Molnar (1) is an.ert1-
cultte spokesman for the expanded inte-
gration of the computer luto American
education. Citing our shift from an
industrial society to a knowledge -based
society together with the international
challenge to our technological leader-
ship, he makes a compelling case for
computer literacy. Dr. 4elner is not
alone to his views. The te:: "computer
literacy" is being increasingly used
and discussed at educational confer-
ences and in the educational litera-
ture.

The objective of Ott paper is to
explore the future content of computer
literacy education. Bose' upon an
assessment of current computer /data
processing education, trends in tech-
nology, ma a projection of the future
inforastioe environment, a set of three
future skill categories is defined.

Computer /Data Processing Pro-,
fessionals (2) - the computer
experts

. Inforaatioa System Profession-
als (3,4) - the integrators of
the computer and business pro-
CerfeS
The End Users - the information
system customer

The first two categories are, of
course, key areas requiring educational
planning and investment. However, from

a statistical point of view, they will
represent s small minority of the popu-
lation interacting with future informa-
tion systems. it is the end user major-
ity for which computer literacy is
probed in this paper. The result of
this exercise is a recommendation for
the creation of a course entitled "An
Introductory Course in information
Literacy" for the majority of under-
graduate students who are pursuing a
major other than computing.

TECHNOLOGY DIRECTIONS
The 1980s will conceivably see an

order of magnitude growth in computing
power. Responsible for tnis growth
will be the continued decline in cast
of electronic components together with
the elastic demand for data processing
services. The concept of the computer
rill rhease as processing capability is
dist.- uted into many devices. Today's'
hobb t with a microprocessor at home
cepa. .. of communicating with a distant
large computer is a beginning example
of distributed processing. One of the
reasons for this trend is that the
cost of computing has dropped below the
cost of anuaicstion. Thus it becomes
desirabl ;o satisfy local data pro-
cessing kegnirements at the source
while communicating only that data
required by other sites. Communication
costs will also continue te, decline
as newer forms of broadhead communi-
cation, such as satellite transmission,
become commonplace. Again, as in ege
computer industry, change will he drama-
tic in the communications industry.
There can be little doubt that informa-
tion technology growth will continue to
he significant through the latter part
of this century.

NOTE: The views expressed in this paper are those of the author
and do not necessarily represent the views of the international
Snail:ass Machines Corporation.

58

69

The key implication with regard to
educational curricula is that not only
will computers change, but the informa-
tion envlrossent in which they operate
will change; the way data elements are
moved, stored, and used will be altered
as wall as the way they are processed.

An analogy to transportation aye-
teas can be drawn *ere. Vehicles, road-
ways, and parking facilities are compo-
nents of a transportation system just
as computers, communications, data, and
applications are components of an infer-
nation system. Vehicles are not
studied in isolation by urban planners,
and correspondingly computers should
not be studied in isolation from other
components of the information system.

CURRENT COMPUTER/DATA PROCESSING
EDUCATION

For the purpose of this discussion,
it is convenient to think of three
clssses of students that correspond to
the skill categories presented in the
introduction.

. Computer Majors - tho t prepar-
ing for careers in da,a process-
ing.

. Information Systems Majors -
those preparing for careers in
managemenc with a major in infor-
mation systems.

. Other - those with career objec-
tives other than computing or
data processing . . . the future
end users.

Dr. J. Baubles's most recent inven-
tory of computing in American education
(5) provides insight into the relative
distribution of these classes: in ex-
cess of 901 of the students fell into
the "other" category while 301 of the
institutions offered courses in the
first two cstegoriss. From these sta-
tistics, it would sees the computer
major is receiving sore than his fair
share of reseurca$.

The status of information systems
(IS) education is addressed in a recent
article (6) reporting preliminary 'find-
Legs of the ACM Curriculum Committee
for Information Systems. Prof. Jay F.
Nuns-alter, chairman of the committee,

.id: "The IS field integrates eye-
.efts analysts, statistics, management
science, accounting, economics, fin-
ance, marketing, production and compu-
ter and communication teahnolo-
gime . "The U.S. has nearly five
computer science departments for every
IS department according to a recent
study not connected with the ACM Laves-

Computer Literacy 59

tigation. Nevertheless, the nation has
a much higher demand for personnel,
such as IS graduates, who have a combin-
ation of technical and organizational
skills than for computer scienc t. grad-
uate with 'solely' technical skills."

With the previous discussion as a
basis, certain conclusions can be made
regarding future educational require-
ments of the three categories of stu-
dents previously defined.

FUTURE EDUCATIONAL REQUIREMENTS
Vocational and Computer Science
Professionals - The demand for
this type of professional to-
gether with the curriculum
needed to prepare him or her
appears to be relatively well
understood and served by the
educational community.

. Information System Profes-
sionals - As reflected by the
Nunamaker study, the information
system concept has been slower
to emerge. However, due to the
efforts of the ACM (3,4) and the
nation's business schools (42 of
the 52 satisfactory IS under-
graduate programs were compo-
nents of business or management
colleges) (6), the problem is
understood and undoubtedly steps
will be taken to improve the
quality and quantity of informa-
tion system graduates.

. All Others (the future end
users) - It is this group for
which current computer literacy
appears to be inadequate. They
will take their places in market-
ing, production and administra-
tion with a cursory knowledge of
the computer but not the informa-
tion system in which they func-
tion. A hard-earned lesson in
the computer indubtry is that to
major cause of information sys-
tems fatless has been that they
didn't do what the users ex-
pected The end users must rep-
resent their needs as input to
the information system design
process.

The following course description
addresses the minimum elements of an
information literacy offering.

AN INTRODUCTORY COURSE IN INFORMATION
LITERACY

There are four key components in
this information literacy proposal:
computers, application programming,

7u

60 NECC 1980

data, and communications. The computer
portion could be satisfied with the
traditional "Introduction to Computing/
Data Processing" course currently avail-
able at many institutions. There is no
need to elaborate here on the contents
of this type of course.

Application Programming.
Coding-in a high-level language is

not sufficient to understand the role
of application programming. In fact,
for the generalist, it may be of second-
ary importance to an awareness of the
application requirements/preliminary
design process. The following topics
should be addressed:

. Requirements Study
- Documenting information flow

in an organization
. Prz:tminary Application System

Dep4Ln
- Transaction definitions
- Screen formats

. Generation of a Software
Specification

. Design of an Application
Software Module
- Flowcharts

RIPO diagrams
. Coding of an Application

'Software Module
- Coding
- Testing
- Debugging

Data
Much as the treasurer is respon-

sible for the money resource in -an
organization, the business community
has come to realize the value of their
data records andthe need to assign
management responsibility for their
safekeeping and use. An infornstic
literacy course should include the
following subjects.

. The Concept of Data as a Re-
source

. Data Characteristics
- Physical relationships

Logical relationships
. Storage Alternatives
. The Role of Data Base Adminis-

tration
- Data dictionary concepts

Communications
The fourth and final component of

the information literacy offering, com-
munications, should impart an awareness
of the regulatory, cost, and technolo-
gical aspects of the links in a contem-
porary information system,

. Industry Structure
- Common carrier services

. Switched

. Leased

. Value added - packet
switched

. Satellite
. Other

- Tariffs
. Information Networks

- Combining count:Ideation°
and data processing

- Network architectures
. Centralized
. Distributed

. Design Tradeoffs
- Nigh volume - batch

Interactive
- Public vs private

It should be noted that each of
these four topics is a complex special-
ty in its own right. No pretense is
made that skill in any of the topics
would be developed through the course,
but rather a conceptual knowledge of
the elements in an information system
would be gained. Also of equal impor-
tance, the role of the end user in an
informtion system design would be estab-
lished.

A two - semester sequence would be
desirable; however, a one - semester sur-
vey course could also be of value. The
business school, because of its prece-
dence in information systems curricula,
would be a logical choice to ofer this
introductory course.

In conclusion, it is hoped that
this presentation stimulates thinking
in the educational community with
regard to its roil in preparing atm
dents to coexist with information tech-
nology in the 21st century.

NOTES
1) Andrew R. Molnar, "The Next Great

Crisis in American Education: Com-
puter Literacy," ARDS Journal, Asso-
cief'-.1 for EducationalMISys-
tems, Volume 12, No. 1, Fall 1978,
p. 21.

(2) " Curriculum '781 Recommendations
for the Undergraduate Program in
Computer Science," Communications
of the ACM, Vol. 22, No. 3, March
1149.

(3) "Curriculum Recommendations for
Undergraduate Programs in Informa-
tion Systems," Communications of
the ACM, Vol, 16, No. 12, December
7V73.

(4) R. L. Ashenhurst, ed., "Curriculum
Recommendations for Oteduate Pro-

fessional Programs in Information
Systems," 4 retort of the ACM Curri-
culum Committee on Camputer Educa-
tion for Managemen, 2972.

(5) J. Hamblen, "Computer Education in
Nigher Education -- _Status, Alter-
natives and Needs," AFIPS, :978.

(6) "ACM Cites Dearth of DP Programs,"
Computerworld, November 5, 19)9.

7o

Computer Literacy 61

82 NECC 1980

A BYTE OF BASIC

Judith A. Hopper

Arapahoe County
District 6

Grant Jdnior High
Littleton, Colorado 80122

(303) 795-2560

INTRODUCTION
The average U. S. citizen has not the

foggiest'idea of how computers work and
how pervasive their influence actually is.
Consequently, he has no idea of what to
do when a computer makes a mistake; he has
no idea of how to vote on local, state, ur
national issues involving computers (e.g.,
the establishment of a national data
bank)s he is, in short, culturally dis-_
advantaged.

It is therefore essential that our
educational system be modified in such a
way that every student (i.e., every pro-
spective citizen) become acquainted with
the nature of computers and the current
and potential roles which they play in
our society. It is probably too late to
do much about adults, but it would be
disastrous to neglect the next genera-
tion.

- Committee on Computer Education,
Conference Board of the Mathe-

matical Sciences
For today's children, understanding

computer fundamentals is one very
important factor in building an informed
citizenry for the future. Students who
are computer literate will have .setter
career opportunities and less career
shock. They will be better able to cope
in a world with rapidly moving and ever-
changing technology. Thus, in this era
called the Age of Information, schools
can no longer delay in bringing the
computer into their curricula.

A BYTE OP BASIC
Seeing the need to get some kind of

program with computers started in her
school district, the author of this paper
wrote a proposal to pilot a computer
literacy and BASIC programming class at
the junior high level. The district pur-
chased an Apple II microcomputer and
things were off and running.

A class of fifteen eighth and ninth
graders was chosen for the project. The

class, to be one semester long (eighteen
weeks), met five days a week for fifty-
five minutes. The Apple II is a 32K
system with a Centronics printer. Xt was
felt a hard copy would be a benefit in
that the students would have something
tangible to take home to show to their
parents.

The class was begun by acquainting the
students with computers in generals what
is a computer system, what are its parts,
and what does each part do. Using their
knowledge and expanding what they knew,
the class discussed various types of
input/output devices as well as particular
usage, i.e,, in business, industry,
science, and research.

In order to get the students on the
computer as quickly as possible, flow-
charting and algorithms were tae next
topics presented. As it was important for
the students to be able to break down a
problem into its component parts and
analyze each stzp of the solution, flow-
charting was introduced as a pictorial
representation of this pzocess.

Simple programming was introduced next
to acquaint students with the computer.
Feeling comfortable with the computer and
learning the on-off procedures in using
the computer were the main objectives.
The introductory programming was simple to
insure each student initial success at the
terminal.

Egg cartons were then used to build
personal computers for each student. In
beginning to write more difficult programs
the students had to put their program
through their "EGG 12" system first to be
sure it was doing what they had intended.
Once it was demonstrated that it would run
on their computer, they could run it on
the Apple. Using this technique forced
them to evaluate their own %ark and make
corrections as needed.

As the class progressed through the
semester, more and complex programming

73

was introduced. Most all of the common
BASIC statements were used (LET, IF-THEN,
TAB, GO TO, REM, FOR-NEXT, PRINT, etc.)
and also some library functions (SOB, ABS,
INT, RND). In addition, as the machine
being used has color graphic and string
variable capabilities, these were soon
added to the repertoire of the student
programmers.

Interspersed among the programming
lessons, other topics were presented. In
answer to the question of what does the
computer do with the program once it has
been typed in at the terminal, machine
language and the binary system were dis-
cussed. Changing numbers back and forth
from base two to base ten, and adding,
subtracting, and multiplying in base two
were some typical class activities. A
comparison was also made of a program
written first in BASIC, then in.assembler,
and finally in machine language.

*he concept of language interaction
resulted in the introduction of the
origins of BASIC and the history of com-
puting. Beginning with Stonehenge, the
abacus, and the slide rule, the class
proceeded through Pascal, Babbage,
Hollerith, Aiken, Hopper, von Neumann,
and others. This discussion of the
development of the computer and its
changing faces served to illustrate
where we are in terms of both current
computing capabilities and conjectures
about the future.

The class enjoyed learning to use
various computing devices, the abacus
being of particular interest to them.
The slide rule and calculator were also
introduced as well as a ten-year old
Hewlett-Packard.2000 series computer,
which required marking Hollerith cards
with a pencil. As the students were
exposed to these devices, they learned
both the limitations and the capabilities
of each.

An important part of any literacy
class is not only learning what a computer
can and cannot do but also keeping up with
some of the literature available on com-
puters. Throughout the course the
students had to read a number of articles
from various periodicals acquainting them
with what was going on in the world of
computing. They had to bring current
articles in from magazines and newspapers
and write reports. The vocabulary of
computer -ese was carefully ()is:111890d so
that as complete an understanding as
possible was available. Any neY develop
meats of computer usage were also pointed
out and discussed.

Field trips were made to observe the
use of computers outside the olassro,m,
and several people working in t:o com-
puting field were invited 'do speak to the

Computer Literacy 63

class. They discussed various jobs
directly related to using the computer,
the training required, the responsibili-
ties that go with the jobs, and the avail-
ability of openings in the field.

It was hoped that with the completion
of this course the students would have a
working background knowledge of program»
ming, that all fears of a computer would
have been extinguished, and that they
would be aware that computers have great
potential and capabilities but also limit-
ations. If the development of the
computer continues at the rapid pace at
which it is now moving, the students'
world will truly be a computerized world.
Any knowledge of the field they can gain
now will serse to make their lives that
much easier upon completion of their
education.

FINDINGS
This first class was an enthusiastic

group of fifteen students. They were
excited about working with the computer
and could hardly wait for some hands-on
experience. This enthusiasm continued
.hroughout the semester. Each time the
students wrote a program, they immediately
wanted to test their programming abilities,
gaining a great deal of satisfaction in
watching the computer do what they had
intended.

But while there was enthusiasm, there
was also some apprehension among the
students. One of the primary goals of the
class was to overcome this fear. The
students need to be comfortable and feel
at home with the terminal. Providing them
some initial success with computers was a
way of achieving this goal.

The biggest problem for the class was
the availability of only a single terminal.
With fifteen students writing two and
three programs a week it was difficult to
schedule time so they each could use the
computer at least twice a week. Some came
in before v-hool, others during lunch and
after school, as well as during the full
hour being used during class. It is hoped
this problem will be alleviated next
semester with the acquisition of four
additional microcomputers.

Another problem encountered was the lack
of typing skills in the students. Having
to use the one-finger-hunt-and-peck method
consumed a lot of time when they:were
reedy-to type in their programs. As the
r.4.ass progressed through the semester they
became better and faster at getting their
programs in, but it remained a time-
consuming problem throughout.

Now that the first class is over, the
students are asking for a second class at
a higher level. They are very interested
in the many facets of the machine and

74

84 NECC 1 980

would like to pursue its capabilities.
Unfortunately a second course in computing
is not currently available at the junior
high level (it is at the high school), but
it is hoped that these students can be
used as resource personnel. With their
ability to program and run demonstrations,
they may be called on by teachers wanting
information or simulations. By using the
computer in other classrooms, it can
berme an integral part of the entire
school curriculum.

FUTURE OUTLOOK
The computer programming and literacy

class at Grant Junior High was a pilot
class for the district. Before jumping
in with both feet the district felt it
best to try an initial program, evaluate
that one, and go on from there.

Concurrently with piloting this class,
visitations to other school districts
with a "computer curriculum already in full -
swing were made. As at Grant, there
appeared to be good student interest, but
also considerable frustration over the
inadequate number of terminals available.

Then, with recommendations from visit-
ations, attendance at several conferences,
and research in the area of computer
education, a proposal was formulated for
the implementation of microcomputers into
the school district. The proposal calls
for one junior high and one senior high in
the district to be fully equipped to begin
the implementation. It is hoped that
these two schools working together would
be able to iron out any problems that
would arise so the full district-wide
implementation would progress smoothly.

The proposal for the computer imple-
mentation specifies definite curriculum
recommendations. At the elementary level
the gifted and talented program already
is doing some programming. The proposal
calls for some subtle exposure of the
other elementary students -- at least to
acquaint them with computers so that
their fears are eliminated.

At the junior high level it is planned
that all students at some time during
their thtee-year career take a computer
literacy course (possibly nine weeks).
Structured within the class would be a
basic introduction to computing -- what
the computer can and cannot do. In
addition to the literacy course a class
in computer programming would be offered
for those students who would like to
pursue the programming aspect. Also it
is hoped other disciplines (math, science,
social studies, and English) would want to
use the computer as a demonstration tool
for simulati Is, data processing for
experimental r classroom recruits,

tutoring individuals, or any other func-
tions -- limited only by the imagination.

Promtaming in higher level languages
as well as practice in developing software
would be offered at the senior high level.
The proposal also recommends the computer
be used as a tool in higher level math
courses, in science and social science
classes, and in the business department
for data processing.

As staff members at each of the schools,
in addition to the students, would need
exposure to the machines, the proposal
also provides for inservices and actual
classes for faculty members not familiar
with computers. %t is hoped that teachers
in various disciplines would then be
interested in the computers and want to
use them as a demonstration tool in their
classrooms.

The school board has just recently
accepted this proposal for a two-year
implementation of microcomputers into the
schools in the district. The hardware
requirements are not merely cost-effective
but also offer the opportunity to improve
the quality of education. Where once this
type of technology was used by a few
privileged persons, today it is becoming
ubiquitous. A degree of flexibility has
also been built into the proposal so
changes or enhancements to improve the
program can be made.

Education is missing an opportunity if
not a responsibility if it fails to pro-
vide its students with the necessary
background to move into the "information
age." We need to start now to provide the
public with the understanding of this
information science and technology. As
J.C.R. Licklider put it "People must
master the technology or be mastered by
it."

EQUIPMENT LIST
High Schools:

Apple II 48K
Video
Double disk
RP Oscillator
Firmware Card
Radio Shack 4C!
32K addition
Double disk
15 Radio Shack 4K Level II
Master slave
Interfacing connectors
Printers where needed

Junior High Schools:
Apple II 48K
Double disk
Printer
8 Radio Shack 4K Level II
Master slave

A COMPUTER WORKSHOP
FOR ELEMENTARY AND
SECONDARY TEACHERS

Herbert L. Dershem
John T. Whittle
Hope College

Holland, Michigan 49423
(616) 392-5111

INTRODUCTION
Although computers have been used by

secondary teachers for a long time, only
recently has the microcomputer made it
economically feasible for the elementary
teacher to use the computer in the class-
room. IA addition, new technological de-
velopments have made it possible for
secondary teachers outside the fields of
mathematics and science to use the compu-
ter as a classroom tool. Recent reports
and recommendations (1,2) have emphasized
these facts and indicated the need to
make teachers aware of the potential the
computer possesses as a tool in the
classroom.

This paper describes a two-week work-
shop which was offerod by the authors in
the summer of 1979 to provide teachers
with knowledge of computers as they are
applicable to the teacheks' classes.

ORIGIN AND OBJECTIVES or THE WORKSHOP
Through working with students and

teachers at both the elementary and
secondary level, the authors became
convinced that the computer is a valuable
educatipnal tool. But it was apparent
that the computer could be used effec-
tively only if the classroom teacher was
aware of its potential. We believed that
once the teacher learned to use the com-
puter, he or she would be able to use it
in creative and innovative ways in the
classroom. The biggest step was over-
coming the teachers' fear and awe so that
they could implement their own classroom
computer applications or adapt those of
others to their own needs.

With this in mind, we designed a two-
week workshop with the following objec-
tives:

1) The teaoner will be sufficiently
familiar with the operation of a computer
to instruct others in its use.

2) The teacher will know where to find

Computer Literacy es

resources for ideas, activities, and
programs related to the classroom use of

'computers.
3) The teacher will know the BASIC

language well enough'to write simple pro-
grams, to introduce the language to stu-
dents, and to read any BASIC program and
make minor modifications to it.

4) The teacher will have sufficient
understanding of tI.e way a computer works
to explain it to students.

5) The teacher will know the techniques
and approaches most frequently used in
instructional computer applications and
have experience in their use.

6) The teacher will have Cosigned and
implemented at least one computer activity
for his or her classroom and be capable
of developing others.

7) The teacher will know the types of
computer equipment available for class-
room use and be aware of advantages and
disadvantages of each.

The workshop was intended for teachers
who had no previous experience with compu-
ters and who wished to explore ways in
which they could improve their teaching
by use of the computer.

WORKSHOP FORMAT
The workshop was divided into two

parts, a laboratory and a lecture, each of
which met for one hour and fifteen min-
utes every day for two weeks. Upon com-
pletion of the course, the teachers re-
ceived two hours of college credit.

The BASIC language was taught in the
laboratory portion of the course. Actual-
ly,"two laboratory sessions were held each
day, one before and one after the lecture,
half of the participants attending each
session. Ten Radio Shack Level II 16K
TICS -80 computer systems, loaned to the
college by Radio Shack,were set up in the
laboratory and each participant was seated
in front of a unit. The textbook, "Using

76

66 NECC 1980

BASIC "by Julien Hennefeld (3), was chosen
Wcause it contains many sample BASIC pro-
grams to illustrate concepts. A set of
these programs was placed on cassettes
for each laboratory; then during the lab-
oratory each participant would load a pro-
gram from cassette. Next, the instructor
would talk about the concept illustrated,
have the participants run the program,
and usually ask them to make modifications
to see the effect. The topics covered in
the laboratory during the first week were
as follows:

Day 1 - How to use the computer
LET statements
PRINT statements

Day 2 - GO TO statements
iF-THEN statements

Day 3 - INPUT statements
FOR-NEXT statements

Day 4 - Subscripted variables
Grapiics

Day 5 - String variables
PRINT@ statements

During the second week the laboratory
time was used for each participant to
design and implement a useful classroom
computer activity. The instructors as-
sisted the participants in the design
and programming of the activities. Addi-
tional features of the BASIC language and
advanced programming techniques were cov-
ered as they were needed. On the final
day of the workshop each of the partici-
pants presented the results of his or her
project to the entire group.

In the lecture portion of the workshop,
the participants were divided into ele-
mentary and secondary educators. The top-
ics of the lectures for each group follow:

Day 1 - How Computers Work
Day 2 - Techniques and Approaches in

the Classroom
Day 3 - Elementary - More techniques

and approaches
Secondary - Survey of Resources

Day 4 - Elementary - Survey of Re-
sources
Secondary - Problem Solving
Principals

Day S - Computer Literacy
Day 6 - Design Considerations for

instructional Hardware
Day 7 - Experience with instructional

Software
Day 8 - Survey of Computer Equipment
Day 9 - Elementary - More experience

with instructional software
Secondary - How to Teach
Computing

Day 10 - Presentation of Projects

Both laboratories and the lecture were
held in the morning. The room containing
the computers was also left open in the
afternoons so the participants could re-
turn and work on their projects. Although
this afternoon work was not required, many
teachers did take advantage of this oppor-
tunity. in addition, several had TRS-80
systems at home or at their schools which
they used in the afternoons or evenings.

RESULTS
Twenty educators from three local

school districts attended the workshop.
Of these, twelve were secondary teachers,
four were elementary teachers, and four
were administrators. All four administra-
tors attended the first week only. Also,
some of the teachers who had previous
computer experience took the second week
only.

A brief description of the projects
developed by the teachers is found in the
Appendix. Both the instructors and the
participants were amazed at what has been
accomplished in a two-week period. An
enthusiasm for computer use was generated
by the workshop so that participants went
back to their schools and pushed for the
purchase of a computer for their classroom.

A further indication of the success of
the workshop is the demand for it to be
repeated this summer. This demand is com-
i%g from teachers who saw the effect the
workshop had on last year's participants.
As a result, the same workshop will be
offered twice this summer as well as once
during the academic year. Hope College has
now established its own microcomputer lab-
oratory, so the computers will not be bor-
rowed systems.

The only modification to the workshop
.which we plan is not to allow participants
to register for just one week. Those who
took only the first week missed the im-
portant experience of putting together
their own software. it was also difficult
to adjust the workshop to those who came
in during the second week. As a result,
the workshop will not serve the needs of
those teachers with some previous computer
experience.

interest has been expressed is a work-
shop specifically for teachers who are
already using computers. We are consider-
ing offering such a workshop, which would
cover advanced programming and software
design techniques. in this workshop we
would invite each teacher to bring along a
student so that they could participate as
a teacher-student team. From our observa-
tions, much of the software developed is
actually done by such teacher-student
teams with the teacher doing the design

and the student the programming.

REFERENCES
1) Milner, S. "An Analysis of Computer

Education Needs for K-12 Teachers.' Na-
tional Educational Computing _Conference
PromeedNg1773WCity, 1979.

2) Taylor, R., Poirot,'.7., Powell, J.,
andtHamblen, J. "Computing Competencies
for School Teachers: A Preliminary Pro-
jection for All but the Teacher of Com-
puting." National Educational Computing
Conference PromeedailtriBirCity, 1979.

J. EitasBASIC: An Intro-
duction to Computer Prograiragi. Winn
WiW7Ntlaidt, Inc., 1978.

APPENDIX. PROJECTS COMPLETED BY PARTICI-
-. PANTS IN THE COMPUTER WORKSHOP

Physics experiment simulation - A falling
body experiment is simulated by the cam-
pater. The student is asked to provide
the appropriate formulas to calculate
expected results.

Geometry drill - A drill and practice
exercise is conducted using geometric
terminology.

Spanish drill - A drill and practice on
Spanish grammar and vocabulary is con-
ducted entirely in the Spanish language.

Ordering - This program is intended for
use at the elementary level. The student
takes a list of items and places them in
a described order. Three implemented
orderings are alphabetical, fractions, and
decimals.

Parts of Speech - The student is given a
word list and after picking a word from
this list, leads the computer to identi-
fying the word by answering the computer's
questions about its part of speech.

Word house. - This program is intended for
students learning English as a second
language. The student is required to place
each of a list of words into its proper
category and word house.

Presidential drill - This program drills
students on presidents and their terms of
office.

Golf statistics - This data collection and
analysis program simplifies the paper work
of the golf coach.

Career counseling aid - A student inter -
sated in a career in aocounting can sit
down with this program and find out what

Computer Literacy 67

options exist in this field and the edu-
cation necessary for pursuing each option.,

Test generator - This test generation
program simplifies the high school math
teacher's job of creating examinations by
randomly choosing problems which have
parameters that may also be randomly se-
lected.

Carrying drill - This program drills the
student on carrying skills in multiplica-
tion by presenting randomly generated pro-
blems. If the student responds incorrect-
ly the program carries out the multipli-
cation, carefully specifying each carry
value along the way.

Mortgage payoff - The student can use
this program to examine the effects of
varying the parameters on mortgage pay-
offs.

68 NECC 1980

MICROCOMPUTERS

AND COMPUTER LITERACY;

A CASE STUDY

Robert J. Ellison
Hamilton College
C).inton, NY 13323

315-859-4138

I win discuss the role of the micro.
computer in computer education at Hamilton
College. The focus will be on the kirds
of applications I have found useful and on
the methodology that was used to develop
the systems on the microcomputer. My ini-
tial interest in the microcomputer has
been its use as an aid to teach computer
literacy. I will discuss the development
of an interac ive statistical package that
is the core df a three week introduction
to computing and programming. The package
permits elementary programming and file
management to be introduced eithout an ext
tensive introduction to programming.

While the microcomputer can be an ex-
cellent instructional aid, it quite often
is inconvenient for program development.
Most of our applications could not be de-
velope4 on a larger machine, however,
since we are very dependent on programming
the screen and the graphics displays. I
will discuss our experience with the UCSD
PASCAL(TM) system which is now available
on a number of different computers. It
has significantly aided the design and
management of the project. The system's
extensive use of prompt lines makes it easy
for the novice student to use.

It was my goal to develop systems
which could be easily modified and expanded.
The microcomputer is not large enough to
support a universal package; furthermore,
the more complete systems usually also
bring with them a more complicated control
structure. Since our goal is to introduce
computing to an audience with little if any
computer experience, we wanted a simple and
often specialized user interface. But if
we are not going to offer a fairly com-
plete package for the micro, then we
should design a system which can be
easily modiried. The statistical package
I will discuss was written using a library
of procedures which can be integrated into
a custom system. The package has been sup-

plemented by both the mathematics andbiol-
ogy departments for their own special ap-
plications. Some of the materials will
also appear in the development of a file
maintenance system in the advanced comptter
science course on data structures. The
limited professional support for academic
programming in a small college practically
forces us to write generalpurposesoftwear.

THE ENVIRONMENT
Hamilton College is a liberal arts in-

stitution with an enrollment of 1600 stu-
dents and a faculty of about 135. Over 600
students a year will take courses which
use the computer. The computer science of-
ferings consist of a two-course program-
ming sequence (6) and two advanced courses
which emphasize file structures and topics
in data base organization. The first pro-
gramming course is taken by about one third
of the students before they graduate. The
academic computing is done using a remote
batch entry to the IBM 370/168 at Cornell
University. We will shortly be able to use
the interactive system at Cornell also.
The advanced computer offerings are taught
using PASCAL and microcomputers.

r am exploring the possibility of ap-
plications which do not require the full
capability of the IBM/370 or which can
take advantage of the simpler operating
environment of the microcomputer. While
the Cornell system supports a quite adequate
number of statistical packages and progimmr
ming languages, for the novice tLe system
is still too complex to be easily used. A
number of applications involving elemen-
tary program instruction or simple statis-
tical analysis might be better served on a
smaller machine or one specially configured
for the use.

Learning the control language for the
use of a computer system is a special prob-
lem for those non-computing courses that
want to explore the use of the computer as

79

a tool. The focus is too often on the de-
tails of the system rather than the prob-
lem to be solved. A well designed micro-
computer system might be of service here
also.

We have selected the TERAK microcom-
puter as our primary unit. The CPU is a
Digital Equipment LSI-11. The TERAK was
chosen for its graphics capability, a 320
by 240 raster image, and the wide range of
software available. Operating systems for
the TERAK include DEC's RT-11, the UCSD
PASCAL(TM) operating system, which we use
most often, and the Cornell Program Synthe-
sizer (13), which I will discuss below.
The TERAK can also be used as a terminal
to Cornell, and with the use of a communi-
cations package text files can be trans-
ferred between the two computers. Programs
exist to convert files between the RT-11
and the UCSD disk formats. Ihavedeveloped
software to transfer the graphics and
character buffers to a Printronix which
has a plot capability.

GOALS 4

Our most immediate need was foresys-
tem to support a new offering for computer
literacy in our winter term. Hamilton fol-
lows a 4-1-4 calendar. It was my intent to
offer a short course which couldhelpmeet
the demand for computer literacy. Since
our first programming course is designed
for a general audience, I did not feel the
need to teach programming. On the other
hand it seemed important to introduce stu-
dents to the use of the computer to store
information and hence to the concept of a
file.

I felt it was quite important to in-
volve the student more than as a passive
observer of the computer. Ourgreatestprob-
lem was finding programs and applications
which involved the student with more than
selecting an option from a menu. Iampar-
ticularly interested in examples which in-
volved the maintenance of files on the com-
puter. An immediate application was the use
of a text editor and text formatter. The
UCSD screen editor is very easy to use. I
had also written the formatter (9)inPASCAL.
I added user-defined macros with the out-
put directed to the printer, disk file, or
screen. While the text editor could be used
to discuss files and updating of informa-
tion, I wanted a more complex example.

The use of a statistical package
seemed a possibility. The choice was in
part motivated by use of the SAS system
(12) which makes extensive use of both per-
manent and temporary files. A SAS run con-
sists of a number of procedures to list,
sort, and modify the file. Most procedures
create a file to pass data to the next

f

Computer Literacy 69

step of the process. SAS also supports
limited programming in PL/1. Inmost cases
the program code is applied to each record
of the file. It seemed that a package such
as SAS could serve to introduce the con-
cept of a file, program variables, and
elementary programming. Using files as the
primary way to pass data is ideally suited
for a microcomputer with limited memory.

The use of SAS presented some prob-
lems for our short course. Our computing
on the Cornell system is primarily done
by remote batch entry. Although I preferred
to use an interactive system for this
course, the IBM control language for the
interactive system was too complex for
our audience. It also seemed difficult to
introduce in such a short time the syntax
and semantics of even an elementary part
of PL /l.

My solution to the above problem was
motivated by the availability of aprograra-
ming system for the LSI-11 (13) called the
Cornell Program Synthesizer. The system
includes an editor for the language PL/CS
(S), which gives a template for each major
construction. For example, a single key-
board command generates the template

If (condition) then
(statement)

Statements are checked as entered. The
system is designed for teaching program-
ming and includes elaborate editing and
tracing commands. I wanted to include some
of these features to assist in entering
elementary programs for the statistical
system.

THE STATISTICAL PACKAGE
The system supports real, integer,

and character variables. The core of the
system is an elementary file management
system that includes modules to open and
close file, get or put the next record,
and retrieve or store individual variables
in a record. Each statistical file consists
of a data file and a directory file that
lists the variable names and types. The
file management system is stored in the
system library and can be called from any
PASCAL program. The system is designed for
instructional use, not to support large-
scale statistical analysis. It can serve
as a tutorial for the use of a more com-
plete, flexible, and faster system such as
SAS. The system consists of the following
general programs.

Create:
he record and directory files are

created from the text files made by the
editor.

70 NECC 1980

List:
The directory and the data are listed

on either the screen or the printer. Vari-
able headings are automatically printed.
A single record may take several lines.

Sort:
The file may be ordered by any of the

variables in ascending or descending order.
Multiple sort keys can be specified. It may
also be used as a procedure in other pro-
grams.

This module supports an elementary
programming language to permit modification
of the file. The statements are prompted
and errors are noted on entry. The program
is saved on the disk for documentation.
Currently, an individual statement can be
edited as it is entered but cannot be
changed after it is accepted. I will not
include elaborate editing, since most of
the programs are rather short and are easily
entered again.

The statements supported and the tem-
plate provided include;

Assignment:

(variable name) = (expression):

New variables are declared simply.by
entering the name. The variable type is
automatically set by the type of expression.

Conditionals:

If (condition) then do:
(statements)
end;

Select;
when (condition) do;

(statements)
end:

when (condition) d0;
(statements)
end;

otherwise do;
(statements)
end;

end;

The SELECT statement has been recently
added to the IBM version of PL/I. Only the
statements associated with the first true
condition will be executed. The OTHERWISE
block may be empty. The SELECT was used
instead of an IF..ELSE construction as the
former seemed to be less confusing. I
chose not to implement the GO TO statement.

4.4

It not only complicated the design of the
interpreter for the language but also
created the possibility of infinite loops.

Input /output

Output (file name
*

The current record is written to the
selected file. When the file is opened
the user has the option of specifying
which variables will be written. The
record has all the variables in the input
file as well as any new variables intro-
duced by the program. Currently two output
files are permitted. The program prompts
for an output file if none is specified.

If an expression or variable is not
correctly entered,a list of the variables
and their types can be requested before
the correction is made. The program is
automatically indented to reflect the
nesting of conditionals.

The following is a sample program.
The variables QU/ZI, QUIZ2, FINAL, and
MIDTERM are on the input file. The vari-
able TOTAL is created by this program.
The lower case entries were supplied by
the program.

TOTAL = 0 ;
if NOT(QUIZI MISSING) then do;

TOTAL = TOTAL + QUIZI
end;

if NOT(QUIZ2 MISSING) .aen do;
TOTAL = TOTAL + QUIZ2 ;
end;

TOTAL = TOTAL + FINAL + MIDTERM ;
output DEMO ;

The system was used for the first
time this winter. Our program editing was
not as elaborate as apparently was needed,
but the overall student response was quite
positive. To the student, the basic pro-
gram unit is the file which for a general
course on computer literacy was appropri-
ate, The limited programming also helps
explain how a computer workst We currently
plan to use the same system with our first.
programming course to introduce files and
interactive computer systems. A variant of
the system will be used in the first year
biology sequence.

The system is easily expanded. New
programs are written in PASCAL with the
PASCAL input/output functions replaced by
those in the new file management system.
It is particularly easy to have a student
develop an independent PASCAL program for
a specific file and then replace the input/
output functions to generate a general
purpose program. The system, especially
the file management section, has been an

8j

excellent source of examples for the advanced
computer science students.

DEVELOPMENT
I would like to discuss the way we

have managed the development of this sys-
tem and the use of UCSD implementation of
PASCAL. A small college often does not have
the p ogreaming support available fox the
development of large systems. The prolif-
eration of a number of specialized pack-
ages would only compound the maintenance
of these programs. While the initial effort
is greater, I have tried todevelopgeneral-
purpose programs which can serve in other
applications, for example, the file man-
agement system which supports both the
statistical package and general file main-
tenance programs for an advanced computer
science course on file structures. The
graphics library, which I have not discussed,
is used by mathematics, biology, and physics.

It is clearly desirable to reuse soft-
ware, but keeping each of the various sub-
systems supplied with the latest revisions
can btl difficult to manage on a small sys-
tem. Programming in PASCAL and the UCSD
implementation of it have both assisted in
this task. A vital feature of PASCAL is
the ability to define new data types.
PASCAL includes the simple variable types
integer, real,and character. But for the
kinds of systems programming involved in
this project, we needed more elaborate
structures. For example, we had to main-
tain a directory for each file which main-
tains the variables and their type. The
deini+ion of such a directory had to be
consistent throughout the system. In PASCAL
we could define a directory in several
steps.

Const {compile time constant}
Namelength = 10:

Type

memestr . packed array(1..Namelength)
of char; {string}

Vardescript m record
{ describes file variable }

Name : namostr;
Position integer;
Typeofvars (realtype,integertype,

chartype) ;
Length; integer { length in bytes)
Max ; real;
Min real;
end

We can then declare the type directory as

directory m array(1..maxvars]
of vardescript;

Computer Literacy 71

A procedure GETDIR whose purpose is to
read the directory could be declared with
the following heading:

Procedure GETDIR(VAR D; DIRECTORY);

If it is necessary to add more informa-
tion to our description, such as the num-
ber ok missing values, then we only need
add a line such as

missing ; integer;

to the original definition. That change
is then reflected in all procedures which
use that data type.

The UCSD system has included some
non-standard features. I have tried to
avoid the use of them when possible, but
their definition of a unit has been quite
valuable. A unit is a separately compiled
library of subprocedures. It can also in-
clude type definitions. I keep the system
type definitions in the library. Those
types are then copied into each program
which uses that unit. Changes in the com-
mon definitions are then reflected in all
programs which use that module. It has
been an excellent tool to maintain consis-
tency in student written programs.

The procedures and definitions can
be included in the program by the simple
command

uses {unit name };

The statistical system has a unit devoted
to file management, another to parsing and
evaluating expressions, and a third unit
to provide run-time support. In addition
we have other units with graphics proce-
dures or random number generators. The use
of units does not affect portability cf
the system. The source code of the proce-
dures could be inserted instead of the
uses statement.

SUMMARY
We are continually surprised by the

ease with which major changes can be made
to the system whose length now exceeds
5000 lines. The use of PASCAL and the UCSD
unit has played a major role. It has been
very easy to develop the system incremen-
tally and to quickly train students to
assist in the programming. PASCAL is well
suited to the kind of systems programming
involved in this project.

We have been pleased with the student
reaction to the statistical system. The
combination of that system along with the
PL/CS programming system has provided a
quick introduction to programming and the
use of files for our course on computers

82

72 NECC 1980

and society. We are planning to develop
tutorial materials so the system can be
used by other courses. Further evaluation
of the system will have to wait until it
has been uzed by other disciplines. We
have been successful in having other fac-
ulty use the modules to develop their own
specialized software. We are now evaluating
what additional modules should be placed
in common units.

REFERENCES

1. Austing, R.H., Barnes, B.H., Bonnette,
D.T., Engel, G.L., and Stokes, G.S.
"Curriculum '711; Recommendations for
the Undergraduate Program in Computei
Science--A Report on the ACM Curriculum
Committee on Computer Science." Comm.
ACM 22, 3(March 1979), i47-L66

2. Austing, R.H., and Engel, G.L. "A Com-
puter Science Course for Small Colleges."
Comm. ACM 16, 3(March 1973), 139-147

3. Committee on the Undergraduate Program
in Mathematics of MAA. A compendium of
CUPM recommendations. /IAA 11 (1975),
52S-570

4. Conway, R. Primer on Disci lined Pro-
gramming UsIRFE/ag.-Iritt top 9:1-

5. Conway, R. and Constable, R. "PL /CS --
A Disciplined Subset of PL/I." Techni-
cal Report 76-293, Department of Compu-
tar Potence, Cornell 1976

6. Ellison, Robert J. "A Programming
Sequence for a Liberal At College."
Proceedings of the 1980 SIGCSE Sympo-
sium on Cdbeuter Science Education

7. Grogono, Peter. Pro rammin i. Pascal.
Addison-Wesley,

S. Jensen, Kathleen and Wirth, Siklaus.
Pascal User Manual and Report. 2nd
arfan:SFr_rWViiEreg 1974

9. Kernighan, Brian and Plauger, P.J.
Software Tools. Addison-Wesley 1976

10. Lopez, A.A., Raymond, R., and Tardiff,
R. "A Survey of Computer Science Offer-
ings in Small Liberal Arts Colleges."
Comm. ACM 20, 12(Dec 1977), 902-906

1.1. Nevison, J.M. "Computing in the Liberal
Arts College.`' Science 194 (Oct. 1976),
396-402

'12. SAS Users Guide 1979 Edition. SAS
17WIENZIWIT

13. Teitelbaum, R.T. "The Cornell Program
Synthesizer; A Microcomputer Implemen-
tation of PL/CS." Technical Report 79-
370, Department of Computer Science,
Cornell University 1979

14. Van Loan, Charles. hComputer Science
rnd the Liberal Arts Student." Techni-
cal Report 79-376, Department of Com-
puter Science, Cornell University 1979

3

InVited Session

PERSONAL COMPUT/NG:
AN ADVENTURE OP THE MIND.

Paul Hazen
Applied Physics Laboratory
Johns Hopkins University

ABSTRACT
firgrants from the IEEE Computer

Society, The Johns Hopkins University,
Radio Shack, and other agencies, the
International Instructional TV Cooperative,
source of instructional TV materials to
all educational TV networks nation-wide
and internationally, has finished and is
marketiol the implementation of a six-
course national educational TV series
aimed at the pre-college level in the
area of personal computing and computer
literacy. The name of the project is
"Personal Computing: An Adventure of the
Mind.*

The objectives of this new series are
to illustrate the uses of perscAal
computing, to demonstrate the interface
of humans and machines, to identify the
fundamentals of communication in personal
computing, and to motivate students to be
Annovative in their own applications of
personal computing. Since the personal
computer is viewed by many as a mind
multiplier, a furthcr objective of this
educational TV ser.las is to greatly in-
crease the number of minds that can be
multiplied by taking personal computing
to millions of children in classrooms
across the country.
Education and informational programs

are closeli allied in that both attempt
to communicate facts, concepts, and
ideas. Both need to be designed with
specific objectives in mind. Some of the
objectives to be discussed .e both
attitudinal and informational in nature;
that is, they deal with feelings as well
as facts. The underlyi:q thrust through-
out is that . . . LEARNING CAN BE FUN!

8.1
73

invited Sessions

EDUCATIONAL COMPUTING: EMT, PRESENT, FUTURE

Ronald W. Collins
Dept. of Chemistry

Jefferson Science Bldg.
Eastern Michigan University

Ypsilanti, MI 48197
(313) 487-0106

ABSTRACT
During the past ton years considerable

effort has been devoted to optimizing the
role of computers in education. A vari-
ety of tutorial CAI programs have been
written, large data bases of questions
for computer-generated exams have been
amassed, sophisticated software for
graphics has been developed, numerous
data reduction and simulation programs
have been written, and the use of on-line
classroom computing has been studied.
In addition, the emergence of minicom-
puters and microprocessors has lowered
the cost of computing. Nevertheless,
the overall impact of'the computer on
education has been minimal. One of the
major deterrents has been the poor trans-
portability of programs from one computer
to another. As a result, educators are
often required to develop their own
software for use in courses; however,
many instructors have neither the time
nor the experti:,e to do so. Will the
new stand -alone home computer systems
improve this situation? Possibly, but

74

for most educational uses, the need for
prograMining time and exper 4.ca will still
be high. Furthermore, the several gener-
ations of changes in hardware have not
yet led to pignificant improvements in
computer-basd pedagogy. Educators
simply must give more consideration to
the question of how the computer can
reshape the way and atyle it hich we
teach. To date, most instructional com-
puting has simply becn appended to the
traditional pedagogical framewc.k, thus
encouraging the self-fulfilling prophecy
that the final impact will be minimal.
The future? By 1990 (or 2000 at the
latest), there should be a number of new
and outstanding examples of true computer -
based/- derived /- oriented projects in
education, rather than a mere continua-
tion of the current computer-augmented,
yet traditional approach.

THE OPEN UNIVERSITY

Prank Lovis
The Open University

Milton Keynes, England ME7 6AA
(0908) 653371

William Dorn
Mathematics Dept.

Universik of Denver
Delver, CO 80210
(303) 753-3529

ABSTRACT
--TH-TTE2 Britain's Open University will
replace the two second-level computing
courses which it has been running since
1973. There will be wily one new course
since we ha's come tc realize that running
two second-level courses is unnecessary
and extravagant. The new course is ex-
pected to maintain the current enrollment
o . 700 students per year.
Production of the new course is well

underway, and in this paper its content
and presentation will be compares with
those of its predecessors. Tile new
course was designed after careful consid-
ation of the views of both students and
faculty members from which emerged the
one urgent and clear demand that the
course should relate closely to the
commercial world of data processing.
The main themes of the course are

practical computing, data structures,
files and file processtAg, systems
analysis,and design, and the social
impact of computing. Introductions to
operating systems, data bases, and
distributed computing are also included.
The course components comprise written
materials, computer programming
activities, 16 television programs, three
teaching audio-cassettes, and six
broadcast radio programs.

MAW Someone 75

The present paper will concentrate on:
(1) Why the DP bias was considered

essential and how it shows-up in the
course.

(2) The content and presentation of
the first four main themes listed above.
In this connection the systems analysis
and design package bears specIsl mention,
as it is being developed in collaboration
with the O K.'s National Computing Centre
and will involve the student in a practical
project.

(3) The specification and future imple-
mentation of OUSBASIC, a computing language
designed to enable the student to write
and run structured programs in the unique- -
and awkward -- distance teaching environment
of The Open University.

The paper will be illustrated with two
excerpts, of ten to fifteon minutes duratic
each, from films of two of the television
programs- -The Introduction to Files and
"ile Processing and Systems Analysis and
Design.

c*c

Science and Engineering

DEMOGRAPHIC TECHNIQUES IN ECOLOGY:
COMPUTER-ENHANCED LEARNING

A. John Getz, Jr.
Department or Zoology

Ohio Wesleyan University
Delaware, Ohio 43015

(614) 369-4431

INTRODUCTION
Judging from the availability of CON-
DUIT programs on ecological topics (5 of
8 in biology in the Summer 1979 issue of
Pipeline), there may well be more com-
puter use in courses related to ecology
than in courses in other areas of biolo-
gy. For instance, valuable CONDUIT pro-
grams exist that aid students in learning
about population growth using the logis-
tic equation and related models, inter-
specfic competition using the Lotka-
Volterra equations, and energy flow
through the trophic levels of various
ecosystems. Additional areas in ecology
are appropriate for computer-enhanced
learning. In particular, the use of the
computer to aid students in under-
standing life tables is described here.
Such work not only helps students under-
stand these complex tables, but also per-
mits them to quickly and easily get a
grasp of the consequences, in terms of
bosh population growth rates and age dis-
tributions, of alternative reproductive
strategies.

SIGNIFICANCE OP LIFE TABLES
In many ways, a survivorship and fertili-
ty life table represents the ultimate
synthesis of data on the life history
characteristics of a given population or
species of organisms. Both age specific

76

death rates (1 ,).and age specific birth
rates (mx) must be known and transcribed
into appropriate format. For survivorship
data, this means knowing the proportion
of individuals surviving at the start of
each age interval; and for fertility
data, this means recording the number of
female offspring per female in each age
inter.-al. From these data, numerous
descriptive functions can be readily
calculated by formulae of varying degrees
of complexit (see Mertz, 1970 or Krebs,
1978 for a fuller description of these
quantities). These fUnctions or .uanti-
ties include the following.

(1) The gross reproductive rate, G.R.R.,
is a hypothetical quantity that indi-
cates the multiplication rate per genera-
tion if females suffered no mortality
prior to completing reproduction at the
rates specified in W fertility tables.

G.R.R. = E mx
x=0

(2) The net reproductive rate, Ro, is the
actual multiplication rate per genera-
tion if the population follows both the
mortality and fertility schedules in the
life table.

8 '7

no 01M
xmO
i! 1

(3) The mean length of a generation, 0,
is given by:

0 a
lxmxx

Ro

(4) The innate capacity for increase in
the particular environmental conditions
for which the table was written, rm, is
a factor that gives instantaneous growth
rates. The calculation of rm must be
done by trial and error in the formula:

-rmx
L. e lx.s.x 1.

x 0

(5) The finite rate of increase,X,..is
the factor by which population size
changes por age interval in the life
table, e.g., per year if the life table
is in years.

/' a 0 1111

(6) The stable age distribution is the
proportion of organisms that would be in
each age category if the population con-
tinued to grow indefinitely according to
the schedules in the life table. The pro-
portion of organisms in each age category
x to x+1 is given by

I lxe
x

s
E "4
im0

where I, like x, is a subscript indicat-
ing age.

While the data that are used to generate
a life table in the first place are quite
intuitively understandable, e.g., the
number of female offspring produced by an
average six year old female, the derived
terms, especially rm, are much less easi-
ly grasped. Because a thorough conception
of r is desirable in conorete terms
(suck as numbers of offspring and num-
bers of seasons of reproduction) before a
student starts working with logistic
growth models, a thorough familiarity
with all the various life table parameters
is highly important.

RATIONALE :('ONPUlER USE
The reasons using the computer in life
table analyst flan be divided into argu-
ments against h,nd caloulation and argu-

Science and Engineering 7

ments for the computer. Co:18149ring first
the arguments against hand caltulation,
there is the unfortunate, but nonetheless
real truth that many undergraduate stu-
dents are terrified by the sorts of sum-
mation signs and exponents intrinsic to
several of the demographic formulae. At
best, such students may laboriously plug
through their calculations and then
finish with absolutely no confidence in
the accuracy of their results. At worst,
some of these students may not even be
able to perform the calculations. Clear-
ly, neither of these situons is con-
ducive to students' learning about
ecology. On the other hand, for under-
graduates capable of manually performing
the calculations required, such an exer-
cise rapidly becomes a numbtaglr mechani-
cal process that, too, is not conducive
to their learning about ecology.

As for the arguments for use of She com-
puter, three points.oan be made. First,
for students ever more used to punching
numbers into either calculators or com-
puters, one additional application of
the computer generates very little
anxiety. Math phobias can stay submerged.
Second, the fast and accurate results
provided by the computer maintain both
the interest and confidence ox the stu-
dent. Moreover, if the student wishes to
test himself and his ability to manually
arrive at the same answers, the computer
output does provide such a check. Final-
ly, because the tedious parts of thi
exercise are done by a tireless computer,
the student is free to concentrate on
interpreting the biological significance
of his findings. This is precisely the
concentration that most ecology profes-
sors presumably desire, and I have found
.) useful in the present instance.

DESCRIPTION AND APPLICATIONS OF LIFET
With the above points in mind and two
years' experience teaching about life
icables without the aid of a computer, I
wrote a short program, LIFET, in BASIC
for our PDP 11/TO at Ohio Wesleyan Uni-
versity. LIPET would be suitable for use
on other similar RSTS/E time-sharing
systems or on minicomputers, and a pro-
gram listing is available on 7equest. In
brief, the program asks the student to
enter the age specific survivorship and
fertility data for the population in
question and then proceeds with calcula-
tions of the first three of the six
quantities defined above. The innate
'capacity for increase is calculated by
trial and error with active participation
by the student in the trials. When the

tti
8 (6,,

78 NECC 1980
ts

student .is satisfied with the value of
rm that he has attained, the program
uses that value to aalculate the Finite
rate of increase. Finally, the student
is given the option of obtaining a
stable age distribution or not. A sample
program run is given in Figure 1.

There are at least three sorts of appli-
cation of this proc:1Lm. First, and most
simply, is rarely giving the students
some real data from a natural population
(e.g., from Vinegar, 1975 or Medica and
Turner, 1976). The students can organize
the data into life table format for

RUN LIFET
DO YOU WANT AN EXPLANATION OF THIS PROGRAM (YES OR NO)? YES

THIS PROGRAM CALCULATES LIFE TABLES AND DEMOGRAPHIC PARAMETERS. THE ONLY
INFORMhTION NEEDED TO MAKE THESE CALCULATIONS IS THE AGE-SPECIFIC SCHEDULE OF
DEATHS AND BIRTHS WHICH YOU SUPPLY AS 1(x) and m(x) VALUES WHERE:

1(x) = PROPORTION OF POPULATION ALIVE AT THE START OF AGE INTERVAL x; AND
m(x) = AVERAGE NUMBER OF BIRTHS TO EACH FEMALE ALIVE AT AGE x

TO RUN THIS PROGRAM, MERELY ENTER THE MAXIMUM AGE TO WHICH FEMALES SURVIVE
(RECALL THAT LIFE TABLES ARE FOR FEMALES ONLY) AND THEN FOR EACH AGE CATEGORY
ENTER THE 1(x) and m(x) VALUES SEPARATED BY A COMMA. THESE DATA CONSTITUTE
ALL THE INPUT NECESSARY TO MAKE DEMOGRAPHIC CALCULATIONS USING THE FORMULAE IN
KREBS (1978, pp 160-170). SEE THIS REFERENCE FOR DEFINITIONS AND EQUATIONS.
ONLY THE.EXACT r CANNOT BE CALCULATED WITHOUT ADDITIONAL INPUT ON YOUR PART.
THIS IS BECAUSE THE EQUATION MUST BE SOLVED BY TRIAL AND ERROR, i.e., BY
SUBSTITUTING ONE VALUE FOR r IN THE EQUATION

-rx
SUM e 1(x) m(x) = 1

AND THEN SEE/NO HOW CLOSE THE SUM COMES TO ACTUALLY BEING EQUAL TO I.
FOR /JUR FIRST TRIAL, USE THE VALUE FOR r APPROXIMATED BY Rc AND G. IF ALL
REPRODUCTION TOOK PLACE IN THE SAME YEAR, THIS WILL ALSO BE THE EXACT r. IF
THE SUM YOU GET IS GREATER THAN 1, INCREASE YOUR EST/MATE OF r. IF THE SUM IS
LESS THAN 1, DECREASE YOUR ESTIMATE OF r. INITIALLY MAKE FAIRLY LARGE CHANGES
IN r AND ONLY LATER MAKE MORE SUBTLE CHANGES AS YOU ADJUST THE SUM TO
1 +1-0.005. ONCE YOU ARE SATISFIED WITH YOUR VALUE FOR r, STOP ADJUSTING IT
AND THE PROGRAM WILL CONTINUE TO MAKE OTHER CALCULATIONS USING THIS FINAL
VALUE OF r ON WHICH YOU HAVE DECIDED.

WHAT IS THE LAST AGE AT WHICH SOME FEMALES ARE ALIVE? 3
FOR X = 0 WHAT ARE THE OBSERVED VALUES FOR
1(x),m(x)? 1.0,0
FOR X = 1 WHAT ARE THE OBSERVED VALUES FOR
1(x),m(x)? .9,2
FOR X = 2 WHAT ARE THE OBSERVED VALUES FOR
1(x),m(x)? .7,1
FOR X 22 3 WHAT ARE THE OBSERVED VALUES FOR
1(x),m(x)? .5,1

THE GROSS REPRODUCTIVE RATE, G.R.R. = 4
THE NET REPRODUCTIVE RATE, Ro= 3
THE GENERATION TIME, 0= 1.56667
AS APPROXIMATED BY Ro and 0, r=.701242

THE PROGRAM
WHAT IS THE
SOLVING THE
DO YOU WISH
WHAT IS THE
SOLVING THE
DO YOU WISH
WHAT IS THE
SOLVING THE

WILL NOW CALCULATE AN EXACT r by TRIAL AND ERROR.
VALUE FOR r THAT YOU WISH TO TRY? .7
EQUATION WITH r= .7 GIVES AN ANSWER OF 1.1277
TO TRY AGAIN WITH ANOTHER VALUE FOR r(YES OR NO)? YES
VALUE FOR r THAT YOU WISH TO TRY? .8
EQUATION WITH rom 8 GIVES AN ANSWER OF .995479
TO TRY AGAIN WITH ANOTHER VALUE FOR r(YES OR NO)? YES
VALUE FOR r THAT YOU WISH TO TRY? .79
EQUATION WITH r= .79 GIVES AM ANSWER OF 1.00784

Figure 1. Sample output from LIFET

Science and Engineering 79

Figure 1 continued
DO YOU WISH TO TRY AGAIN WITH ANOTHER VALUE FOR r(YES OR NO)? YES
WHAT IS THE VALUE FOR r THAT YOU WISH TO TRY? .795
SOLVING THE EQUATION WITH r= 795 GIVES AN ANSWER OF 1.00164
DO YOU WISH TO TRY ',GAIN WITh ANOTHER VALUE FOR r(YES OR NO)? NO

THE FIRM RATE OF INCREASE, LAMBDA= 2.21444
THE EXACT INSTANTANEOUS RATE OP INCREASE FOR THE POPULATION, ra .795

DO YOU WISH TO CALCULATE THE STABLE AGE DISTRIBUTION FOR THIS POPULATION? YES

GIVEN A STABLE AGE DISTRIBUTION, TIE PROPORTION OP ORGANISMS
IN EACH AGE CATEGORY, C(X), WOULD BE:
Of 0) = .626875
C(1) = .254776
c(2) m .C89485
c(3) = .288641E-1

x 1(x) m(x) 1(x)m(x)
0
1
2

121°

3
1.56667

1
.9
.7
.5

0
2
1
1

GREs= 4

0
1.8
.7

Rots

.5
3

r= .795 lambda= 2.21444

DO YOU WANT TO CALCULATE ANOTHER LIFE TABLE (YES OR NO)? NO

themselves if desired, or the data can
be presented as a table from the start.
Either way, this students have the ex-
citement of finding out for themselves
whether various populations in nature
are growing or shrinking and at what
rates. If population growth is occur-
ring and data are also available on num-
bers of individuals alive in each age
class, the students can also investigate
whether or not such population growth
has been going on at the given rates for
a number of years. If it has, the ob-
served proportions of individuals in
each of the age classes should be the
same as the proportions given by the
LIFET calculations of the stable age
distribution. Students seem to enjoy
checking this assumption of 1:Se table
methodology.

A second application is the use of data
not just from one population of a
species, but from multiple populations
of a single species. The wcrk by Tinkle
and Ballinger (1972) on intraspecific
comparative demography of a lizard is
especially appropriate. By analyzing the
age specific death rates and fertility
rates using LIFET, students can enhance
their understanding of the population
consequences for real al.lmals of vari-
ations !n life history strategies. These
particulan data, in fact, indicate that
some of the natural populations are just

holding their own and others are decreas-
ing in size. With analyses completed,
students can either write about or dis-
cuss hypothetical alterations in repro-
ductive strategy that could improve the
lot of the marginally surviving popula-
tions.

A third and final example of an applica-
tion for this program is to give students
free reign to devise an optimal repro-
ductive strategy in each of several
habitats tot a totally LypothOical
organism. A few guidelines need to be
laid down at the outset, and then stu-
dents can be set free to uoe their
creativity. For example, one needs to
specify how many kilocalories total a
female has to produce eggs in her life-
time, the range in sizes (caloric con-
tents) of eggs to be permitted, and the
harshness of the various habitat' in
terms of probabilities of the survival
of offspring to age 1 from each possible
egg size Zn each habitat. Survivorship
thereafter an either be specified or
:eft to the students' own devices. The
generation of an optimal strategy, or
even possible strategies, for each en-
vtronment then "bequires that students
generate a number of life tables. Suc-
cessful completion of such an exercise,
in my experience, results in an excel-
lent appreciation of the merit° and
drawbacks of iteroparity and semelparity

9 u

80 NECC 1980

in various situations.

SUMMARY AND CONCLUSIONS
For the past two years, I have used an
interactive computer program, LIFE?, as
a means of enhancing my instruction of
demographic techniques in an under-
graduate course on animal ecology. I
have found that I have been able to
cover more examples and nuances of life
history studies since I initiated the
program than,I,was able to before. By
obviating the time-consuming busy work
of life table calculations, I can
realistically expect my students to ac-
complish far more sophisticated and ex-
tended problems than were possible
before I wrote LIVET. In my opinion,
students who have had the benefit of
using this program have gained a far
greater understanding of life tables
and demography than did my earlier stu-
dents. Certainly, they have had more
opportunities to do so in a challenging
way. What's more, they enjoy it. This
last point, in and of itself, can be a
strong recommendation.

REFERENCES
Krebs, C. J. 1978. Ecology ; 'The Experi-
mental Analysis of Dietributionmnd
Abundance. 2nd ed. New York: Harper &
Row. 670 p.

Medica, P. A., and F. B. Turner. 1976.
"Reproduction by Uta stansburiana
(Reptilia, LacertITTa, Iguanidae) in
Southern Nevada." J. Hernetol. 10:
123-128.

Mertz, D. B. 1970. Notes on methods used
in life-history studies. In: Readin e
in Ecology and Ecological Gene. es,
J. H. Connell, D. B. Mertz, and W. W.
Murdoch (eds). New York: harper & Row.
PP. 4-17,

Tinkle, D. W., and R. E. Ballinger. 1972.
"Seelo orus undulatus: A Study of the
Intrespeci ic Comparative Demography
of a Lizard." Ecology 53:570-584-

linegar, M. B. 1975. "Demography of the
Striped Plateau Lizard, Sceloperus
virgatut." Ecology 56:172-182.

6

Science and Engineering 81

MICROCOMPUTERS AS LABORATORY INSTRUMENTS:
TWO APPLICATIONS IN NEUROBIOLOGY.

Richard F. Olivo
Department of Biological Sciences
Smith College
Northampton, Massachusetts 01063

The low cost of microcomputers has
brought them into the same price range as
ordinary laboratory instruments, and their
ability to collect and store data makes
them an extremely welcome addition to a

laboratory. At Smith College, we have de
veloped two applications for using micro
computers in neurobiology. Pne application
is suited to advanced st,Jents and re
searchers and involves the use of a micro
computer and a digitizing tablet to moos
Ore photographic data; the other is suit
able for routine use in a neurophysiology
course and involves an analog/digital in
terface for collecting and displaying
transient data. In describing these two
applications; 1 shall emphasize a number
of aspects that 1 believe are of general
interest in introducing microcomputers
into undergraduate laboratories.

HARDWARE: THE AIM 65
1 chose Rockwell's AIM-65 microcom

puter for laboratory use. Like its smaller
cousins, the KIM and SYM, AIM-65 is a re
latively inexpensive singleboard computer
that is based on the 6502 microprocessor.
The AIM includes an input/output interface
With two 8bit parallel ports, which we
use to connect the computer to laboratory
instruments, plus two timers and an inter-,.
rupt register. The AIM also has a full

kaebOard; a 20character alphanumeric dis
plays and a thermal printer. I consider it
an advantage that the AIM does not use a
video monitor, since video would make the
system less compact and more expensive;
the ATM's oneline display is adequate for
prompts and date, end the outpOt ports
provide a means (with a digitaltoanalog
converter) of plotting data at high reso
!Utters on an oscilloscope or chart record
er. The AIM'. printer further provides
each group of students with inexpensive
hard copy.

The AIM is also relatively convenient
to program. It has an extensive (8K) moni

for that incorporates a versatile editor,
a disassembler, and a pseudoassembler
that permits writing programs in mnemonics
rather than op codes. A full symbolic as
sembler, which 1 used for writing our pro
grams, is optional, as is an SK BASIC
(both of these are supplied as readonly
memories that plug into designated sockets
on the AIM board). The assembler and BASIC
sockets will also accept 2716 erasable,
programmable readonly memories (EPROM;).
Once a program is debugged, it can be lo
aded into an EPROM to be installed in the
assembler socket, permitting a student to
run a program by typing "",° the monitor
call to the assembler. The student does
not need to be an accomplished computer
user) the programs are highly interactive
and provide abundant prompts for entry of
data and for menu choices.

In addition to the AIM, its enclosure,
and a power supply, two other pieces of
hardware are necessary. The AIM'. 4K bytes
of onboard memory are not sufficient for
extensive digitization, so that a supple
mentary memory board is desirable. 1 chose
the Memory Plus, an SK board from The Com
puterist (P.O. Box 3, S. Chelmsford, MA
01824), which has the additional feature
of an EPROM programming circuit. Other
manufacturers also make A1M /KIM compatible
SR and 16K memory boards. The other major
piece of hardware required is an
analog/digital interface. Commercial A/D
boards that can interface to the AIM's
input/output ports are available, but the
ones that I am aware of are too slow for
digitization at the rates needed (about 10
kHz) in a neurobiology lab. Consequently,
we built our own analog interface, which I
shall describe later. At present we have
two AlMs at work. One is a prototype sys
tem with 12K of memor And a single analog
input/output channel; its cost is about
$1000, and we are seeking funds to buy and
build six more such systems for routine
class use. The other AIM has 4K of memory
and is devoted exclusively to taking data

82 NECC 1980

from a HiPad digitising tablet (Houston
Instruments). That ssetoe's cost, includ
ing the digitising tablet, is about *1400.
For ,comparison, these prices are of the
same order of magnitude as a laboratory
oscilloscope or a chart recorder.

APPLICATION It
IN/111FACINS TO A MIMING TABLET

1 shall first describe our system for
collecting data using Niro/ digitising
tablet. The program has been through sev
eral stages of design and is now in heavy
regular use. It illustrates several as
pacts of interactive laboratory computing
thot I believe r of worst importance.

Nourephssiologists typically msisura
the electrical changes in nerve or muscle
cells in response to stimuli. The stimuli
and responses are displayed on an oscillo
scope screen and era usually photographed
on 35-me film by an automatic camera. The
photograph* serve as primary data for sub
empnt analysis of the traces and for
illustratiogs for publications. Analysis
raquiros measuring the amplitudes and time
courses of the events, which is usually
den by projecting the film in an enlarger
onto graph war and (boiler, microcom
puters) to/lovely counting 'soar's. A di
gitising tblot under the graph paper is
huge improvement* it takes data utmeti
cells, *poets up the *nise!' by a factor
of at least ten, and is intrinsically mars
accurate than hand analysis. For those who
have never seen a small digitizing, tablet.
it consists of a flat surface (ours is 11
inches suer*) in which wires are imm/
des), plus a cross hair cursor that Is
placed on the surface and returns the X,V
ceardintos of its position. In using a
digitising tablet. two problems most be
solved: interfacing the microcomputer to
the tablet, and creating an efficient pro
ves for recordists and analysing data. I

shall describe the interfacing aspects
first.

The electronics in the HiPad tablet
output data in Home' formats. any of
which meg be suppressed by jumpers at the
output connector. Different strobe lines
aro available for each of the formats. so
that a microcomputer can be made to attend
to one format and to ignore the others. 1

chose to take data in binaryceded decimal
(BCD) form rather than in straight binary
(hexadecimal), the alternative parallel
format. The main reason for this choice is
that the final output had to be in decimal
form since hexadecimal data are incempro
heNtlible to most biologists. I believe
*at an important principle casts here: a
student or researcher should never be

skid to read or generate hexadecimal
numbers. Since oh* 6502 microprocessor can
be set to do BCD arithmetic, it made sense
to start, compute, and end in BCD rather
than to convert to or from hex.

BCD DATA FORMAT

cool
oascommate

OTOMMKth
sus um mood

aloud Ward 1 1 1 1 1 1 1 x lxixlx totem
:emu 0 I 0 I sot kw 2n0 OYU
X kith 2o1 SO are SD 310 BYTE
X Allil 4th SO LSO AA OrM
Y kth 0 1 0 1 Op 1430 sir srm
Y kith tad SD the SO NO OrM
Y Aith thlt SD LED Oh 10111

DATA TIMM

11476

OM SINK

Mt= 1.

In its BCD format, $0, HiPd tablet
outputs seven bytes of data for each digi
tised point. The contents of these seven
bytes are shown in Fig. 1, which also
shows the timing of the data. Note that
Opt, 1 is a control word. bytes 2, 2, and
4 contain the Xcoordinate. and bytes 5.

6. and 7 contain the Vcoordinate. The
timing diagram shows that the BCD strobe
line goes high as each byte is output.
Thus. a subroutine to read data into the
microcomputer must test for the presence
of the strobe pulse, then read the current
byte, store it, end repeat these opera
tions until seven bytes have been read. I

connected the BCD strobe to control line
CAL and the light data lines to the A1M's
Port A. In the 6502 system, input/output
ports and associated registers are ros/
from and written to as memory locations,
so that operations on the strobe pulse and
data resemble reading data from memory.

The full subroutine to take a data
point is shown in Figura 2. When the so
brotine is called, the microprocessor
enters a threeinstruction loop in which
it remains until the strobe pulse occurs.
In this loop. it checks the interrupt flag

9 3

register 4SFR, part of the 6522
input/output chip) to see if line CAI is
high. It then reads Port A. checks for the
tpected control word, and if it is found.
proceeds to read and store the remaining
sir bytes of data. Once the sir X,Y bytes
have been stored, they ere repacked to
place the sign of each coordinate in
separate byte for more efficient handling.
In the overall program. the OETPT subrou-
tine is followed by another subroutine
that tests whether the point just taken
lies in menu area of the digitizing ta-
blet, if so+ the program jumps to the op-
propriet* section, otherwise the point is
treated as a legitimate data point.

GET POINT Pt NIPAO AXPT DATE: 11/2049

CV ORRENTT(VA) V
410LF7(VA). y

SCALEAS/DIV. 44290

WAIOIV: 1000
NVIDIV! 0021

01 OEIPT
054CC9 LOA IFR
0090 AND $02
OFAS DEO OETPT
130024 LDA PORTA
A900 AND WO
1053 CAP OFFO
1C93

EI
916 OEIPT

*603
1CC9 LOX 000
0503 STROO1
110000 LOA IFR

O ARO 0,42MO946
000 STA001

DE1045 LDS PORTA
1020 ST*

NX
XVOATA.X

00 I

DOER CPX 0$04
2e2915 ONE STR091
00F4

itEPACK DATA
1900 LDV 04
iSNIFT 4 PITS
0306 SNFOAT
11,4 LSO XVINITA
30C9 RON XVOATIS1
WO ROO 3V5A10 42
05A9 LSD XVDRIA43
INC ROR XVOATIS4
740 4 DOR

OEV
XVOATx,0010.33

AP
OLDS. ONE SMFDAT

INS

P! A.

PRMIE 5100 lOS R1
CLOCK 1A:30 11/28/79

IDASE.....

40020
AS
NA

49000
VOASE 40034 NV

40004 AS

IPEAK 43040 NA
00136 MS

VPERK 40094 NV

50220 NS
VORIS 44047.20 NV

40444 MS

......wm

FRAME 0031 IDO A1
CLOCK 21.30 11/25,79

IOASE 10000 NA
40014 AS

VOASE 44031.60 NV
46004 MS

IFEAK 43140 NO
416MS

VPEAK 400595 40 NV
40220 NS

VAALF 4040 0 MY
444 os

PIONS 3.

In addition to solving these aspects
of interfacing, it also is necessary to
Wive an efficient program for data collec-
tion. Hy assembly-language program goner-
otos almost 2K bytes of object code, a

substantial amount. On initial entry. var-
ious constants and tables ore set equal to
zero, after which the date of the etperi-
ment and several scale factors are re-
quested by prompts to the user. The main

Science and Engineering 83

part of the program then begins; in this
section, a series of points is taken for

each frame and stored in tables in memory.
Figure 3 shows the print-out made during
the early part of running the program+ and
Figure 4 shows pert of the tables that are
printed after all frames have been meas-
ured.

Several aspects of this program are of
general interest. First, every measurement
that the user must make is preceded by an
explicit prompt on the All's display.
Prompts make the program easy to use and
are always good practice in interactive
computing. Second, the program can be
re-entered without going through the ini-
tialization routine; existing data are
thereby retained in memory unless they are
deliberately erased. Rosy re-entry makes
the program more forgiving of errors, such
as accidental escape to the monitor, and
it also makes it possible to print tables
or re-enter scale factors at intermediate
stages in the measurements. Re-entry is
accomplished by two means. The first was
mentioned above: the left edge of the di-
gitizing tablet is reserved for a menu.
and each point token is tested to see if
it falls in the menu area. The menu is
available whenever the program is espect-
ing a data point, which in practice is
most of the time. The other method of
re.-entry uses the three user-defined keys
on the ASH's keyboard. During the initial-
ization routine, these keys are programmed
to initiate jumps to certain sections of

0.111.0

EXPT DATE. 11/21/79 EXPT OATE. 11/20/79

041
FAO VANN TAMA 19115 FRO VPNV V/205 TINE

030 34.00 3440 0136
01 31.60 1140 0134
ME 31.40 MO 004

I0412
FRS WAY 11401 IPAS

04 20,40 3440 0154
033 30.00 3340 0134

I043
FRO VOW TANA TAMS

027 30.00 2000 0134
03$ 20.40 $000 0134

030 $94.00 0444 !CO
071 095.60 0440 2138
032 007.40 0514 2230

10.02
FRO VARY WOKS TIME

034 007.40 8660 2400
033 003.40 OM 2511

10.02
FRO VIINV Vi2AS TINE

037 090.00 1492 2430
0$2.40 1244 2230

10.01 I0.
FRO VONV IPAA IPAS FRO

01
VARY VIPS TINO

043 22.00 1E00 1143 043 090.40 0700 3310
044 20 40 3940 010 044 093.20 0472 3409
047 32 00 MO 0134 047 a6 00 153$ 3304

FIRM 11.

94

84 NECC 1980

the program Thus, the user can redirect
the execution of the program fairly con
veniently and without losing data already
entered.

Another aspect of general interest is
that for each frame measured, the program
stores data in a temporary buffer until
the last measurement for that frame is
taken. The data are then transferred auto
mtically to the tables in memory. The
point of the temporary storage is to allow
the user to escape and remeasure a frame
without contaminating the final tables if
an error in measurement is suspected. Any
one who hes used program that does not
permit correction at the time of entry
knows the frustration that accompanies
being forced to continue in-a process one
knows to be incorrect. ln this case, by
permitting a penaltyfree escape in the
middle of a frame. a compromise is achi
eved between ease of programming and no
correction routine at all; relatively few
measurements are made in one freme, so
that repeating a frame is not onerous, and
the final tables remain accurate.

ln summary. this application of micro
computers to data collection illustrates
several aspects that 1 believe are charac
teristic of good interactive programs. The
program is permanently in an EPROM and can
thereby be called by single keystroke.
without requiring that the user know how
to run a tape or diskloading routine:
also it cannot be accidentally written
over. The program provides abundant
prompts. Data input and output are always
in decimal format. The program can be
reentered and redirected without erasing

existing data, making it more convenient
and more forgiving of errors. Errors of
which the user is eware can be corrected
at the time of entry. Each of these fea
tures is. 1 think, important in bringing
microcomputers into the laboratory. The
philosophy behind this approach is to make
the computer friendly to user who is not
expert in programming. As colleague ex
pressed it. "You don't expect students to
build an oscilloscope in order to use one,
so why expect them to program the micro
computers that they use?"

APPLICATION 2:
ANALOGTODIOITAL CONVERSION

Our second application will eventually
be used by more students than the first
one, but the program is still in an early
stye*. so 1 will describe it only briefly.
Students in neurobiology laboratories typ
ically rbcord highlyamplified, transievit
electrical signals from the nerves of ani
mals such as frogs or crayfish. The sig

nals are observed on oscilloscopes, and a
recurrent difficulty in the past has been
that the transient signals are difficult
for students to measure or even observe.
Storage oscilloscopes are helpful, but
they are expensive and they do not provide
hard copg. Routine photography is slow.
awkward, and expensive, particularly if
Polaroid film is used. Microcomputers, on
the other hand, offer the possibil.ty of
digitizing signals and playing them back
for analysis. Playback can be repetitive
and fast for observation on an oscillo
scope. or it can be oneshot and slow for
writing out on a chart recorder. ln addi
tion, in many experiments signals are re
corded from single nerve cells rather than
from groups of tens or hundreds of nerve
cells. ln such cases, the information of
interest is the time interval between in-
dividual electrical impulses (action po
tentials) in a nerve call. Histograms of
interpulse intervals and post stimulus
firing rates are routinely computed in re
search laboratories: we can now make such
techniques available to undergraduates as
well. Finally, some neurophysiological ex
periments (such as recording evoked poten
tials from the scalp) require signal aver
aging tecause the signals are much smaller
than the background electrical noise. Once
again, microcomputers can make
signalaveraging tecnniques available to
undergraduates.

Digitizing transient signals and sig
nalaveraging both require analogto di
gital conversion, but presently available
AtoD boards that interface to a parallel
port are too slow for use in a neurobiolo
gy lab. An action potential can be as
brief as 1 msac, and if its shape is to b
preserved in digitization, at least 10
samples should be taken. This requires a
sampling interval of 100 usec. Analog Dev
ices (P.O. Sox 2110, Norwood, MA 02062)
manufactures an integratedcircuit, Sbit
AtoD device that can make one conversion
every 25 usec and that costs less then
$25. I have used their device in the tna
log converter board whose block diagram is
shown in Figure 5. The converter requires
two control lines, one to start conversion
and one to signal that the data are ready,
plus eight date lines. These line: Ora
connected to Port A and to CA1 and CA2 of
the AIM. Port S is connected to a
digitaltoanalog converter, for playback
of digitized data. The Port S control
lines, which are not otherwise needed, are
used for input and output of trigget
pulses.

My interactive program for A/D conver
sion, like the HiPad program, will reside

riga an EPROM end will make the microcom
puter sees like smart instrument to the
user. The major input routine provides
continuous diiititton with scrolling
display, so that the oscilloscope screen
resembles moving chart. Receipt of a
trigger pulse causes digitization to cease
after' a preset interval, followed by con
tinuous replay of the lest three pages of
data tthree pages are about the limit fo.

flickerfree displeya. The user eon else
choose to output the digitized data slow
ly, for playback to chart recorder.
Chart recorders have frequency passbands
from DC to 100 Hz, at most, while the ori
ginal signal has 'portent components up
to about 5 kitzs thus an espnsion of the
timescale by a factor of i00 is necessary
to writs the data /accurately on a chart
recorder. The timescale can be almond/ad
easily by inserting a timing loop in the
playback program.

Digitization at 10,000 samples per
second would appear to require huge am
ounts of immoral, but a comparison with the
oscilloscope sweep speeds that aro used by
nevrobiologisfs to display data shows that
the memory requirements are not excessive.
-A single sweep typically displays from 10
Mee to 0.5 sec of data so that 194 bytes
of memory would hold two to eighty swims,
In *any cases, when longer sweeps of data
are of interest, high rates of figitiza
tion are not needed, and the effective ca
pacity of the memory can be extended.

Thus, in summery, the relatively low
cost of icroceputers opens menu new pos
sibilifiee for using them in Cie laborato
ry. The programming effort that is re
quired can be extensive, end some of the
interface hardware may have to be con
structed, but the results give students
enormously greeter cap.bilities for na
lyzing data. It is !.portent that under
graduates in science receive experience
with such techniques, for they wiil work
in world in which computerized canon.-
tion and analysis of data will be routine.

1111=11migr4amr.

SAW IN

Science and Engineering 85

pm A

CAI

CA2

Cal

'tent 5.

96

86 NECC 1980

CLASSICAL MECHANICS WITH COMPUTER ASSISTANCE

A. Douglas Davis

Department of Physics
Eastern Illinois University

Charleston, IL 61g20

-This paper describes the use of
computer and elementary numerical

analysis in the teaching of a course
in classical mechanics. This is a
traditional, rigorous, calculus-based
mechanics course. The use of-the
computer allows students to solve
problems somewhat before the analytical
solution is developed. Such prior
solution allows them to anticipate
the analytical solution and greatly
aids in their understanding. Computer-
generated solutions also allow the
investigation of interesting problems
whose analytical solution would other-
wise be beyond the scope of this
course.

INTRODUCTION
This paper describes the use of

a computer and elementary numerical
analysis in the teaching of a course
in classical mechanics. This is not
a computer-based mechanics course.
Rather it is a traditional, rigorous
course in classical mechanics. Computer-
generated solutions are used as simply
one more tool to teach the real physics
of the situation.

The first week (three SD-minute
lecture.) is devoted to teaching
"conversational BASIC" just enough
BASIC that even students with no prior
exposure to computers can go to a
terminal and write the simple programs
we shall use. Thus, students can
immediately write, run and change their
own BASIC programs. The TAB function
in BASIC allows even neophytes to
obtain graphic results very quickly.
In addition, the results of some
instructor-written computer programs
are used. Both student-written and
instructor-written programs give students
another tool-- another point of view,
enother handle -- to use in developing

physical intuition and a solid under=
standing of what's going on in a given
situation.

Computers are used in the following
areas:
1. Introduction to variable forces.
2. Introduction to integral calculus.
3. Investigation of harmonic motion.
4. Alternate approach.
S. Central force orbits.

INTRODUCTION TO VARIABLE FORCES

In any good, solid introductory
physics course students will have solved
essentially all of the basic probltis
involving motion caused by a constant
force. Variable forces require the use
of calculus for a solution and are
usually not covered in detail in an
introductory physics course - even if it
is nominally calculus-based.

Harmonic motion is the motion of a
body under the influence of a linear
restoring force and can be written as
F X where F is the force, X is the
position, K is the spring constant which
determines the strength of the force, and
the negative sign indicates that the
force always acts to move the body back
to the origin. A classic example is a
body of mass M attached to a spring with
spring constant X. But harmonic
oscillators have more wide spread use
than that. A thorough understanding_ of
harmonic oscillators is useful, even
necessary, for understanding such diverse
things as automobile suspension systems,
radio receivers, and ultra-violet
absorption by the atmosphere.

A major foundation of classical
mechanics states that a force acting on
a body will cause it to accelerate. This
acceleartion is directly proportional to

r

the force and inversely proportional to
the mass and can be written in the form
of a = F/m or, as is more usually done.
in the form of F ma. Beginning with
this in the second week of class students
write a simple iterative program to solve
for the motion of a harmonic oscillator.
The essentials of the program are:
100 LET F K * X
110 LET A = F/M
120 LETVV+A* D
130 LETX=X+V* D
140 LETT=T+ D
160 PRINT T, X, V
160 GO TO 100
where F is the force; K, the spring
constant: A, the acceleration; V, the
velocity; X, the position; T, the
times and 0, the time increment T.

Pditional details of the program allow
D to be small for greater accuracy yet
have only a manageable amount of data
to be printed out. A more sophisticated
numerical analysis routine, like the Runga-
Kutta method, could be employed (I).
But since the object of all this is' to
understand the physics of the motion rather
than extreme numerical accuracy, the
simpler method seems preferable. While
classroom discussions are usually
limited to writing a program in BASIC,
this procedure is readily adaptable to a
hand-hald programmable calculator (2).

The TAB function in BASIC allows a
student to get graphic output readily by
changing the PRINT statement to:
160 PRINT TAB (40 + 30 * X): "*"
which centers the output on column 40
when X 0 and has a scaling factor of 30
to PRINT an asterisk in column 70 or
column 10 if X has a value of +1.0 or
-1.0. If considerably larger or smaller
amplitudes are expected the scaling factor
is changed accordingly.

Such graphic output allows the
students to see the motion -- and
investigate its dependence upon Serious
parameters -- in some detail before we
begin the rigorous analytical solution of
the same peobiem. Knowing more about
the behavior of a system makes finding
a mathematical solution all the easier
and more meaningful once it is obtained
by more traditional means.

INTRODUCTION TO INTEGRAL CALCULUS
The fact that an integral represents

the area under a curve is of vital impor-
tance in physics. Yet students sometimes
complete the average course in integral
calculus knowing an integral as simply an

Science and Engineering 87

operation, the antidifferentlation of a
function. To stress the idea of an
integral as the area under a curve or as
an infinite sum, a homework problem Is
assigned that asks for the sum of the
areas of small rectangles bounded by the
quadrant of a circle. The quadrant of a
circle can be broken into five, ten,
perhaps 20 or even 100 small rectangles
whose individual areas can be calculated
by hand. As more and more smaller and
smaller rectangles are used, their total
area comes closer and closer to the
actual area of a quadrant of a circle,
wrZ /4 or 0.71164r2. An integral, since it
is a sum of an infinite number of
Infinitesimally small rectangles gives
exactl that result. To make this point
um* s a ably clear, the students are
asked to continue by breaking this
quadrant of a circle into 100, then 1000,
and finally 10,000 tiny rectangles. This
problem would be unrealistic and futile
to attempt by hand. but is an easy and
interesting problem for the computer.

INVESTIGATION OF HARMONIC MOTION
F = -KX describes a simple harmonic

oscillator. Addition of a frictional
damping force turns this into a much more
realistic damped harmonic oscillator.
Such a damping force might represent
mass and spring wiggling under water, or
in cold molasses, or the resistance In a
radio or the shock absorbers on a car.
Its inclusion drastically changes the
technique and approach necessary for an
analytical solution. But long before the
students are concerned with the details
of an analytical solution, they have
amply investigated the behavior or motion
of this damped harmonic oscillator. The
only change to the earlier computer
program is to redefine the force, includ-
ing the damping force.
100 LETF=-K *X-C* V
With this change, the students can now
investigate the motion for various initial
conditions and various values of the
damping coefficient C. Underdamping,
critical damping, and overdamping become
terms of real significance describing
certain particular and characteristic
motions of the oscillator.

Resonance Phenomenon .or the behavior
of a driven or forced harmonic oscillator
has application throughout technology.
Tuning of a radio is but one example.
Long before the students hear the ominous
phrase "inhomogeneous second-order
differential equation," they will have
learned much about the characteristics of

96

88 NECC 1980

solutions to Just that. Again, one
simple change to the initial computer
program is all that is required. The
equation defining the force now becomes
100 LET F = -X*X-C*V+E*SIN (10T)
where E is the strength of an external
driving force which varies sinusoidally
with angular frequency w. Resonance
can clearly be seen and investigated by
changing various parameters and observing
the effect those changes have on the
output.

ALTERNATE APPROACH
Some very interesting real-world

problems are difficult to solve analyt-
ically. Others can be solved analytically
without too much difficulty, but under-
standing the full meaning of the solution
may not be entirely clear to students.
For both situations a computer-generated
solution is a very useful alternate
approach.

It is an easy matter to discuss the
trajectory of an object thrown and then
acted upon by Earth's uniform gravita-
tional field -- as long as friction
through the air is neglected. That's a
reasonable approximation for many sit-
uations. But it is also a rather
interesting problem to include air
resistance and then inviii1WITIU
trajectory. Air resistance is not
neglegible if a student throws a
crumpled wad of paper at a waste can
or if a naval cruiser fires a shell
at a target ten kilometers away.

It isan easy matter to return to
the original computer program and modify
it to handle a ballistic trajectory with
linear air resistance:
100 LET Fl = -C * V1
105 LET F2 = -C * V2 N * 0
110 LET Al Fl /N
115 LET A2 = F2/I1
120 LET VI V1 + Al 4 0
125 LET V2 - V2 + A2 * 0
130 LET X = X + V1 *0
135 LET Y a + V2 * 0
140 LET T = T + 0
150 PRINT T, X, Y
160 GO TO 100
C is the air drag coefficient, G is the
acceleration due to gravity, the quantities
with a 1 suffix refer to horizontal or
x-components, and quantities with a 2
suffix refer to vertical or y-components.
This program yields a data table of hor-
izontal and vertical positions which
students are asked to plot in order to see
the trajectory. Initial conditions of
muzzle velocity and firing angle are

varied; the air drag coefficient is also
varied.

CENTRAL FORCE ORBITS
Gravitational forces, electrostatic

forces, and forces on an isotropic
harmonic oscillator are all examples of
central forces, forces which depend only
upon an object's distance from a certain
origin. Central forces occur throughout
nature. Any course in classical mechanics
will spend a considerable amount of time
and effort investigating central forces
in general and the inverse-square law of
Newton's Law of Universal Gravitation in
particular. The orbits of interplanetary
space probes, comets and planets all are
both important andinteresting.

Again, the computer can enhance this
aspect of classical mechanics. For
example after the analytical solutions
are derived and discussed, e desktop
mini-computer with attached x-y plotter
can be brought into class. As the class
watches, orbits are drawn for various
initial conditions. The conditions for
a circular orbit become obvious, and
the real meaning of escape velocity is
made entirely clear.

This computer and plotter also allow
the students a glimpse at how planets
would move if the universe had been
designed differently. Orbits for a force
that has a radial dependence of

1 or 1 or
rz.9

or whatever one likes can be handled just
as readily as the 1 of the real force.

This always sparks'students' interest and
leaves them with an experience somewhat
more tangible than just the discussion
of an equation.

CONCLUSION
Classical mechanics forms a very

important foundation in the education of
physicists and engineers. And almost
Invariably, it is considered difficult by
students. Both student-written and
instructor-written computer programs offer
an additional tool to aid students in
understanding mechanics. Students find
the computer enjoyable (even those with
little or no background who also find
its use challenging). They report that
its use greatly aids them in gaining a
thorough understanding of the analytical
solutions, for as they see how a system

99

actually responds, the mathematics even-
tually derived to describe that motion
becomes much more meaningful.

REFERENCES
(1) A F. Vierling. "Harmonic Notion".olosics: An

Pulcolomifommision on College
Poysits, 1969, Page 35.

(2) R. Eisberg, Applied Mathematical
Physics ienc ngtf
a cu a ors, c raw- 9

i 0

Science and Engineering gg

90 NECC 1980

COMPUTER. AUGMENTED VIDEO EDUCATION IN
ELECTRICAL ENGINEERING AT THE U. S. NAVAL ACADEMY

Michael W. Hagee
Tian S. Lim

Richard A. Pollak
United States Naval Academy
Annapolis, Maryland 21402

(301) 267-3492

ABSTRACT
This paper describes a computer-

augmented video education (CAVE) project
being undertaken in the Electrical Engi-
neering Department at the United States
Naval Academy. The project is designed
to produce a series of modules involving
computer graphics display and integrated
computer-controlled television to help
engineering students (non-electrical) as
well as non-engineering students learn
the essentials of electrical engineering.
Each module contains a quick recap of the
theory and basic sample problems,
followed by an exercise to test students'
proficiency.

I. INTRODUCTION
Although there are different areas

in which a midshipman at the United
States Naval Academy can major (from
nuclear physics to English literature),
all midshipmen regardless'of major are
required to take a two-semester survey
course in electrical engineering during
their second class (junior) year. Two
different two-semester courses are
offered. One is the core course program
for non-engineering majors and the other
is the engineering core course program
for engineering majors. Both courses
cover basically the same material at
slightly different levels. Both courses
are a mixture of theory and practical
work and cover just about every major
electrical engineering area.

This unique requirement for all
Students to successfully complete a
two - semester college level electrical
engineering course has presented some
time-consuming problems. In the past,
one-onone extra instruction (El)
sessions have been the main tool in
helping those non-technically oriented
students.

El sessions involving an instructor
and one or two students have always been

an important part of the learning process
in the Department of Electrical Engineer-
:ng and is in part a philosophy of teach-
ing at the Naval Academy. The somewhat
slower or weaker students find this type
of aid essential in any course in which
applying basic principles to solve prob-
lems is a primary objective and also used
as a measure of achievement. These EI
sessions were found, not surprisingly, to
be remarkably similar. They begin with a
quick recap of pertinent theory followed
by the solution of a basic problem apply-
ing the principles just reviewed. As time
_permits, the problem solving is repeated
with variations in the hope that the
student builds both,experience and con-
fidence. In fact, the confidence of the
students that they can succeed by apply-
ing the different. principles td slightly
different situations is of paramount
importance in such a course. A typical
RI sessions is also characterized by
usually covering only one or two of the
stated learning objectives of the program.
Sessions covering the same material are
repeated with different students. In this
sense they are inefficient and tax the
instructor not necessarily just for the
time involved but also because even a
skillful and patient instructor can find
it difficult to maintain enthusiasm
through constant repetition.

II. DESCRIPTION OF COMPUTER-SUPPORTED
INSTRUCTION SYSTEM
The Academic Computing Center at the

U. S. Naval Academy has developed a
computer-supported instructional system
(CSIS). It is intended for use as a
drill/practice/tutorial tool to aid USNA
instructors in computer presentation of
their course material. The same learning
material can also be used as a test. One
feature allows the instructor to build an
exercise in basic building blocks called
frames. A frame may be in the form of a

101

question, a comment, or a help sequences
or it may be a means of letting the
student control branching. The frame-
type designator determines how the com-
puter is to analyze the student's response.
if such a response is necessary. Another
important feature is that frames may c'ntain
numeric and string variables and function
expressions -- all under the control of
the author/instructor. This feature
allows the instructor to present the same
functions (question types) to all
students, but each studenk. gets a dif-
ferent set of values for the variables
and functions (questions) used in the
frame. Furthermore, the instructor can
control such things as the number of
tries a student is allowed for answering
a question correctly, whether the frame
contains graphics, the number of times a
frame is to be presented with different
variables substituted, and allowable
correct answers.

A team of eight instructors from the
Department of Electrical Engineering is
currently working on a project using CSIS.
The current project will incorporate
those phases of aid to students into
packages or modules of material available
at any time in the Academy's audio visual
centers.

The project team is producing a
series of modules of video and computer
materials which could be used by students
as a self-help, extra-instruction tech-
nique. Bach module is keyed to one of
the recurrent stumbling blocks encoun-
tered each year by non-engineering
majors in their first course in electri-
cal engineering. These modules are
being designed to replace some of the
regular extra-instruction tutored/taught
by the faculty.

A study of past exams, student
evaluationst and faculty questionnaires
indicated that all students, from the
superior to the weaker, experienced
common stumbling blocks. Interestingly
the problem areas were common to. both
the engineering and now.engineering
students. These areas covered such
topics as network reduction, Thevenin's
Theorem, Norton's Theorem, voltage/
current division, RC and RL transient
analysis.

It is our conviction that the com-
puter is most significantly exploited
as an educational tool when it is used
in conjunction with other activities.
All module design work is approached
with the ide.,41 of complementing class
work with practical drill and practice
exercises which reinforce the major
learning objectives.

Science and Engineering 91

All extra-instruction modules are
designed to give initially a brief (one
or two frame) review of the objective in
question. However, the heart of the
modules is the drill and practice frames.
These frames can select problems and
circuits at random and through the use
of predictable wrong answers (PWA) guide
the student through the necessary steps
to a solution. The instructor/programmer
can incorporate video anywhere in the
program, from using educational television
for the initial introduction to having
certain segments serve as help sequences
for the PWAs.

the

both the graphics
terminal and the video cassette player
are completely controlled by the computer,
the student is relieved of all coordina-
tion tasks but is still an active part in
a multi-media presentation. A control
interface was designed at the Naval
Academy to take signals from the author's
program and physically control the video
cassette player. There are commands such
as "GO TO" and "PLAY." These commands
transport the video tape under author/
instructor or student control. The
computer really acts as a coordinator.
The student, not the computer, can control
the instructional flow. This control
results both from answers to presented
problems and from input to periodic
decision frames. Figure 1 shows an
arrangement of the color television
monitor, color video cassette player, and
the computer graphics display terminal.

In what follows, we describe some of
the computer-aided NI programs.

A. Voltage/Current Division
Figure j2 depicts a typical question

frame block diagram. Figure 3 reflects a
specific question frame in the voltage
division module. As the student enters
this particular frame, the program assigns
random values from previously stored files
to all circuit variables. The component
across which the voltage drop is to be
calculated is also randomly selected.

Based upon the values assigned and
component selected, the program calculates
the correct answer, six predictable wrong
answers (PWA), and one unpredictable wrong
answer. The student then enters his
answer.

In Figure 4 the user has entered a
value of 65, and the computer has re-
sponded with the unpredictable wrong
answer message. In Figure 5 the student
entered the correct magnitude but had the
wrong polarity which caused one of the PWA
messages to be displayed. Finally in
Figure 6 the student has answered correct-
ly and received an appropriati congratula-
tory response.

102

92 NECC 1980

FIGURE 1

f4;
r,

7.1 -4 -tt

The PMAs are .sot limited to a one-
or two-line message but can be expanded
into several supplementary frames or a
video presentation. Upon completion of
these help sequences the user is usually
given the same or similar questions to
teat his understanding.

After a successful answer, the
program checks to see whether the
student has received the required number
of presentations. If not, a new circuit
with different components and values
would be randomly selected and presented.

If the number of presentation
criteria is satisfied, the program
determines whether the user has answered
a predetermined number of questions
successfully to continue to the next
objective. If not the student is sent
to another series of help sequences:
otherwise he is directed to the next
objective.

All variables, circuits, com-
ponents, number of presentations, and
number of attempts are under the author's
control.

0. RL Transient Module
This program consists of 28 frames.

As an example, suppose the student has
reached Frame 8 and is presented with the

circuit as shown in Figure 7. NO is
asked to answer the questions and the
picture remains on the screen until he
has provided an answer. If the answer is
correct, he moves on to the next topic.
If the answer is wrong the first time,
he is given a second chance. If his
second answer is still wrong, he is
given three choices: (1) mare review,
(2) take the test again, or (3) stop.
This information is given in Frame 13 as
shown in the Appendix. All he has to do
to make the choice is to type in REVIEW,
CONTINUE, or STOP. If he chooses REVIEW,
or CONTINUE, an appropriate picture will
appear on the screen to provide the infor-
mation he has asked for. If he chooses
to STOP, he will be asked if he wishes to
comment on the program. He can either
type in "NO" (no comment) or make a
comment and then sign off.

III. SUMMARY
Computer-augmented video education is

a highly interactive process that is dif-
ficult to describe verbally. The best
understanding can really only be achisoved
by sitting at a carousel/terminal and
running the module. A good computer-based
instruction system must satisfy several
different communities: the educator-

103

programmer, the instructor, and most
importantly the student.

Student response to the first set of
mcdules has been heartening, as a large
lumber indicated that they found the
modules to be helpful and enjoyable. Many
students tried the programs after hearing
that they were of help: on the night
before each major exam approximately 258
of the class worked one or more modules.
W. feel it is important to develop pro-
grams that will be challenging and com-
pelling and that will encourage students
not only to try other topics, but also
to recommend the programs to other
students.

The twelve modules that were used
covered material of about 1/4 of the
course, and approximately 758 of the
students in the course used one or more
programs. It appears that the availabili-
ty of additional topics would have re-
sulted in a greater percentage of the
students using the modules, since other
topics were suggested by both users and
non-users. The advisability of provid-
ing a complete set of supplementary
programs is being studied at this time.

A total of six sections out of 45
were randomly selected to authenticate
each module. Three of these sections
were designated control groups while the
remaining three were the test groups.
Although data are still being analyzed,
initial indications point to a high
correlation between the test groups and
the higher test averages. (The complete
data analysis will be available by the
time of the conference.)

There were two major problem areas
pointed out by the students. The first,
not surprisingly. was delays caused by
slow computer response. The chaining
process used in the display of graphics
caused some fairly large delays especial-
ly when the number of users on the system
was in excess of 100. This problem
must be dealt with (it will be studied
this summer), since these delays may
have prevented some students from using
the programs and could dampen enthusiasm
for any interactive computer materials.

The second most often recorded
comment was a pedagogical one. The
students had a strong desire to see the
school solution to a problem. This was
true even though they may have answered
the problem correctly. There was also
a strong preference for seeing the
specific problem missed worked in the
help sequence rather than seeing a,
general review of the theory involved.

Through the use of computer
graphics display terminals, well
engineered and flexible software, and

Science and Engineering 93

a system with a demonstrated high reli-
ability, we believe we have developed a
pedagogically sound and interesting set
of modules that will complement the
regular classroom instruction. The
student can use the system to increase
basic electrical engineering skills
through drill and practice. The in-
structor can anticipate to spend less
time on Er sessions and therefore can
devote more time to students with serious
difficulties.

This type of customised instruction
offers the added benefit of diagnosing
students' specific problems in given
concept areas as well as measuring vari-
ous teaching methods, since one can
monitor the responses/comments of
students to the given material.

REFERENCES
1. R. Pollak and J. Schwab, "uSNA -

Computer Supported Instruction
Systems Sophisticated, Generative
and Easy to Author," Proceedings of
the 16th Annual Meeting of Associa-
tion for Educational Data Systems -
Higher Education. 1978.

2. M. B. Sousa. "Computer Augmented
Video Education." Educational
Technology. FebruaiiWW7W. 46-48.

FIGURE 2

Individual
Help

Sequence

N

Fail
(Help)
Frame

Next
Success
Frame

94 NECC 1980

FIGURE 3

QUESTION #1 FRAME 51

You will be given three chances to answer
all questions correctly. If at any time
you feel you would like to review the
voltage divider technique concept, type
"00" when a question is asked.

(The calculator mode may be entered by
typing "$CS ".) --Wait for the circuit.- -

What is the value of the voltage drop
across R2?

R1=1500 OHMS R2=670 OHMS R3=560 OHMS
R4=600 OHMS Vs=6.3 VOLTS

ANSWER?

CIRCUIT 7

FIGURE 4

QUESTION #1 FRAME 51

You will be given three chances to answer
all questions correctly. If at any time
you feel you would like to review the
voltage divider technique concept, type
"00" when a question is asked.

(The calculator mode may be entered by
.typing "$CA".) --Wait for the circuit.- -

What is the value of the voltige drop
across R2?

R1=1500 OHMS R2=670 OHMS R3=560 OHMS
R4=600 OHMS Vs=6.3 VOLTS

ANSWER? 65

I'm sorry butyouranswers don't agree.
I think your approach is incorrect.
Please TRY AGAIN or type 00 to review.

V1/4A.

R3
CIRCUIT 7

FIGURE 5

QUESTION #1 FRAME 51

You will be given three chances to answer
all questions correctly. If at any time
you feel you would like to review the
voltage divider technique concept, type
"30" when a question is asked.

(The calculator mode may be entered 1
typing "#QA".) --Wait for the circuit --

- What is the value of the voltage drop
across R2?

R1=1500 OHMS R2=670 OHMS R3=560 OHMS
R4=600 OHMS Vg=6.3 VOLTS

ANSWER? 65

I'm sorry but our answers don't agree.
I think your approach is incorrect.
Please TRY AGAIN or type 00 to review.
ANSWER? 4.9

You have the correct magnitudewbut the
wrong polarity. Try Again.

1 05

CIRCUIT 7

FIGURE 6

QUESTION #1 FRAME 51

You will be given three chances to answer
all questions correctly. If at any time
you feel you would like to review the
voltage divider technique concept, type
"00" when a question is asked.

(The calculator mode may be entered by
typing "SCA".) --Wait for the circuit.- -

What is the value of the voltage drop
across R2?

M1=1500 OHMS R2=670 OHMS R3=560 OHMS
R40600 OHMS Vs=6.3 VOLTS

ANSWER? 65

I'm sorry but our answers don't agree. I
think your approach is incorrect. Please
TRY AGAIN or type 00 to review. ANSWER
-1.91

You have the correct magnitude but the
wrong polarity. Try Again. LAST CHANCE
ON THIS QUESTION. 21.9 GROOVY(

it R3

R471.

1

FIGURE 7

QUESTION #5 FRAME 8

TEST 1

Consider the following

1

R2

E-=

circuit.

2

CIRCUIT 7

Let E*10 VOLTS R1=3 OHMS
L=30 mH R2=6 OHMS

The switch has been in position 1 for
a long time (at least 5 time constants).
What is the current through the
inductor?

ANSWER?

Science and Engineering 95

APPENDIX

You have missed the problem.

You have 3 choices as follows:

1. Type REVIEW for more drill.

2. Type CONTINUE if you would like to
try the test problem again.

3. Type STOP to stop.

ANSWER?

1U

Structured Programming

USE OF PROGRAMMING METMCDOLOGY
IN INTRODUCTORY COMPUTER SCIENCE COURSES

Elizabeth Alpert
Hartnell College
156 Homestead Ave.
Salinas, CA 93901
408 758-8211 x 431

INTRODUCTION
"Twenty-five years ago our job was to
instruct the machine; now it is the
machine's job to execute our program."

E.W. Dijkstra

In August 1979 I participated in the
Ninth Annual Computer Science Institute
at the University of California, Santa
Cruz. The institute was dedicated to Pro-
gramming Methodologya one-week intro-
ductory course followed by a two-week
lecture series. The speakers were an
impressive group - -many of the members of
IPIP Working Group 2.3 plus several other
prominnt computer scientists. I expected
to receive information I could use in the
classroom, but I did not anticipate that
the material would lead to a total re-
evaluation of what and how I was teaching.

The nature of computing is changing
rapidly. The proliferation of microproces-
sors has spread the availability of com-
puting and created an increased need for
what Wirth (1) calls "programming know-
how." In addition, advancements in micro-
processors and LSI technology have paved
the way for the development of new
programming techniques. Economizing on
memory space or eliminating an instruction
or two are antiquated programming goals.
The design and implementation of correct,

96

readable, and understandable programs
should be the goal of modern programmers.

Enormous contributions have been made
toward reaching this goal. It is the re-
sponsibility of computer science educators
not only to lecture about methodology but
to incorporate the new methodologies
thoughout the computer science curriculum.
The purpose of this paper is to discuss
those aspects of programming methodology
that have particular relevance for computer
science education and to make some sugges-
tions for their incorporation early in
the curriculum.

THE SCOPE OF PROGRAMMING METHODOLOGY
The major objective of programming

methodology is to increase the program-
mers* ability to design and implement
programs. Programming methodology
addresses problem solving techniques,
program reliability and adaptability, pro-
gram correctness and structure, guidelines
for partitioning large program tasks, and
software tools. The computer science
student, whether in a four- or two-year
program, must develop an appreciation of
what methodology is and how to use it.

PROGRAM DESIGN

Modularization
....a separation of concerns."

E.W. Dijkstra

Most programming problems deal with
more than one issue. Thinking about all
the issues at once is confusing and
difficult to do. By separating the issues
and dealing with the complexities one by
one, a program becomes naturally parti-
tioned into modules. Programs written in
a modular structure are easier to think
about, modify, maintain, and understand.

How to partition a problem is not
necessarily obvious, and therefore it is
difficult to teach. What should be taught
is that partitioning a problem is the
first step in problem solving and program
design, and is a worthy goal in itself.

Most introductory textbooks discuss
modularization, but do not include enough
exercises to provide students with an
opportunity to apply it. It is up to the
instructor to develop sophisticated
problems

problem
simple to solve

after the has been partitioned.
The whole cycle of changing, adding,
deleting, and exchanging modules should be
made a part of all programming projects.

Specification
Specification is a statement of speci-

fic requirements. It is a process that is
independent of composing the program and
is not part of the solution. Specifica-
tion provides a means of communication,
and in fact should minimize what the
programmer needs to know. To be useful,
specifications must be precise and well-
structured. Parnas (2) believes that
specifications stated in terms of exter-
nally observable phenomena are preferable
to specifications given as another pro-
gram because they are user-oriented and
understandable even by the non-programmer.
They do not leave room for guessing about
the requirements nor do they suggest
particular implementations. There are
various techniques of formal specification
that appear in the programming methodology
literature, but regardless of the method
the common guidelines, as suggested by
Parnas, are:

state everything that is required
state nothing that is not required
leave no room for doubt.

It is essential that students learn
to appreciate the necessity of formal
specifications and learn a well-structured
specification methodology. Practical
experience in writing formal specifica-
tions should be required of some program-

Structured Programming 97

ming projects. Most introductory textbooks
provide completely specific problems. The
students are even given the input/output
formats. It would be a worthwhile exer-
cise for instructors to assign practical
problems with which the student has
familiarity--e.g., registration process-
ing, payroll- -and require the student to
do a complete specification of a problem.

ALGORITHM DESIGN AND DESCRIPTION
"Nice descriptions of neat algorithms
are not gifts from heaven; they are
formally designed."

Dijkstra and Gries

Once a program has been formally
specified, algorithms can be designed for
each of the parts. Before the algorithm
is designed, however, it is necessary to
select a notation to describe the algo-
rithm. The notation must be concise,
understandable, and formal.

An Introduction to Formal Descripticns
One of the most powerful tools for

algorithmic design is the notation (or
language) developed by Dijkstra (2). It
is essentially a calculus for the deriva-
tion of programs using predicate trans-
formers for each statement. A predicate
transformer is a rule for deriving from a
result predicate (post - condition] a predi-
cate corresponding to the set of states
that ensure that the statements will termi-
nate and establish the truth of the post -
condition. The statementlin Dijkstra's
language include: Ale, abort, assignment,
and the guarded construcii-IT---fi, do---
od. A guard is a Boolean ail-reel-Ion at the
Vied of a statement.list; a list may be
executed only if the corresponding guard
is true.

The statements are defined by their
predicate transformers. The mathematical
semantics of a statement S and any post-
condition Rare given by the weakest pre-
condition such that S establishes R. This
is denoted by wp($,R).

For the assignment statement the
predicate transformer is

wp("x := E", R) = R-x:=E
where R._

ag:=E
denotes the predicate obtained

by substituting all'frae occurrences of
x in R by some expression E. A defini-
tion of the predicate transformers for -

all the statements can be found in (3).
A description of the c-erational semantics
for each statement V" Lows.

The "skip" stay sent is executed by
doing nothing. The "abort" statement
signals failure. An assignment statement
is denoted as "x : E" where x is a

1 u

98 NECC 1980

variable and E an expression. The semi-
colon denotes sequencing; the execution of
"Si; S2" will result in Sl being executed
before S2. The "TF" statement is denoted
as

if B
1
+ SL

1
11 B2 + SL

2

B
n

-to SL
nfi

where the Bi denote guards and the SLi are
statement lists. In the execution of IF
any one of the SLi will be executed if the
corresponding Si is true.* The Q "bar"
acts as a separator between otherwise un-
ordered alternatives. The "DO" statement,
denoted by

do B. SL
1

B
2
+ SL

2
0

0 B
n

SL
nod

continues to executeany one of the alterna-
tives whose guard is true until all of the
guards are false.

Some Examples of Formal Descriptions
Describing algorithms using this nota-

tion can be accomplished through some
faifly simple formal methods. Let us con-
sider a situation where it is desirable to
establish the result as a = 7 where a is a
program variable. The program a := 7 will
establish the truth of the result since
the initial state is true (i.e., 7 = 7 is
T, and w("a := 7", a = 7) = T). The pro-
gram a := 6 will not establish the truth
of a = 7 since there is no initial state
that will guarantee it (i.e., 7 = 6 is F)
and wp("a := 6, a = 7) = F).

Let us next consider the problem of
establishing, for a given x and y, a result
where m, a program variable, contains the
larger of x and y and either x or y when

= y. For the result to be true when
m x, x must be > y. For the result to
be true whennt= y, y must be > x. The
conditions x > y, y x become the guards
for the program statements.

if x2 y + m := x

0y,x+m:= y
fi

*The IF aborts if no guard is true.

Since one of the two conditions must be
true the prbgram will never abort. Note
that if x = y both conditions will be
true, and it is indeterminate which state-
ment will be chosen; nor does it matter
(3).

Programs using the do---od iterative
construct can be developed in much the
same way. Let us consider developing a
program to establish a result R that
states that S is the sum of the elements
in an array A of n elements where n > 0.
Obviously, the establishment of the truth
of R requires a loop structure. What must
be found is a generalization of R, i.e.,
a relation P, that can be easily made true
initially and that can be held true during
the iterative process. In generalizing,
the variable i replaces the constant n.
Thus, P can be defined to be the relation
that S is the sum of all elements in the
array up to A (i) and 0 < i < n. Using
this generalization, the result, R, is
established if P is true and i = n.

Since P must be true before executing
the loop, conditions must be found that
establish this state. Setting i to 0 and
S to 0 will establish P - -the sum of no
e lements is zero. During the iterative
process, computational progress must be
made to ensure termination. Stepping i
towards n by increments of 1 will do that.
Keeping P invariant then requires adding
A(i) to S after incrementing i. All that
remains is the choice of the guard for
the loop. Since i = n is the condition
for termination, i 0 n must be the condi-
tion for remaining in the loop. The
program has now been derived:

S to 0; i := 0;

do i 0 n +

i pal i + 1; S := 5 + A(i)

od

A more robust program results when
the guard is weaker. A guard i 0 n is
weaker than i < n. If, for whatever
reason, n were less than zero, the loop
guard i < n would cause an immediate skip,
and termination of the loop with no
notification of error.

A common solution to this same prob-
lem is the following

S im A(1), i tm 2

do i 0 n + 1 +

S ;NB S + A(i); i i + 1

od

100

The second solution is more efficient--one
pass through the loop has been eliminated.
However, for n <:1 the second program is
not correct. The program could be modi-
fied to the following equivalent program:

S A(I); i 1

do i 0 n

i + 1; S S + A(i)

od

but both will result in an infinite loop
for n < 1.

Reasons for Using Formal Descriptions
By this time the reader might be

thinking that the examples have not shown
anything new. That is exactly the point.
The solutions may be the same but they
have been arrived at through a totally
different process. It is the methodology
that is important as a program design tool.

These solutions could probably have
been written Without the analysis, but for
more sophisticated problems the program
solution may not be as obvious or intui-
tive. And even if one were to arrive
intuitively at the same program, that the
development of the algorithm can be
formally verified is significant.

By following the methods outlined by
Dijkstra, solutions to problems can be
devised and described in a notation that is
quickly understood. The algorithms can be
easily discussed because of the simplicity
of the language. Initial formulations of
algorithms can often be *massaged" pro»
ducing simpler or more efficient solutions
without changing the assertion about their
validity.

Additional examples of this approach
oan be found in the appendix. It is
suggested that the reader solve the prob-
lems first and then compare the solutions
with the algorithms.

The greatest challenge in computer
science education is teaching students how
to design algorithms. The intuitive approach
May=work for some students but it certainly
cannot be depended on. Illustrating the
design of a few basic algorithms is
-usually helpful, because the students
can transfer the techniques to related
problems. Po- example, different algo-
rithms for manipulating the elements in a
list may share many of the same
properties.

An initial reaction to the Dijkstra
notation and the methods that are described
slush more formally in his book is that the
methods are too mathematical and beyond the
comprehension of most beginning students.
That charge may be true for the underlying
theory and the Mere sophisticated problems

Structured Programming gg

whose elegant solutions can only be under-
stood when derived formally, but for the
types of problems introduced at beginning
levels the pre- and post-condition asser-
tions as well as the iterative structures
can be defined in a less formal manner.
Dijkstra, himself in fact, often does
just that.

What is important is that students be
taught to design algorithms and be
encouraged to express those designs in a
notation that is independent of the pro-
gramming language used for implementation.
When algorithms are designed with a
particular language in mind they are
usually overly complicated and often in-
correct. There is no great accomplishment
intraining students to think in ?OMAN
(or any other programming language). The
real goal should be to train students in
how to think analytically and provide
them with tools that can assist them in
that task.

Other Formalisms
At this point the reader might be

wondering why there has been no reference
to flow charts, structured programming,
or Stepwise refinement. The design
methodology that has been presented is
actually an historical outgrowth of these
techniques.

Twenty-five years ago, when program-
mers were concerned with the details of
machine execution, flow charting might
have been a useful technique. Now,
however, it is antiquated as a design tool.
ThiVoit appropriate use of the flow chart
is as documentation--a description of the
execution of the program. It is unreason-
WarariXpect students to try to design
algorithms using flow charts. NOreover,
they hardly ever draw the flow charts
before coding a program even when
instructed to do so. They usually draw
flow charts after the program has been
coded and is running. Instead of being
chastised for this, they should be praised.

Structured programming is more an
implementation methodology than a design
one. The constraints of structured pro-
gramming for design purposes are fairly
primitive. The Dijkstra methodology has
equivalent basic constructs, and stronger
guidelines for combining them. Students
should certainly be taught structured
implementation, but will find that imple-
menting well-designed algorithms requires
very little additional work.

Stepwise refinement still plays an
important role in design, especially for
larger problems. Dijkstra uses refinement
in his notation when describing complex
problems. Hehner C41 has suggested adding
to the Dijkstra notation a formal method
of refinement that eliminates the need

110

100 NECC 1980

for the do--cd structure; and may further
simplify the notation.

Students usually are successful when
using refinement techniques. That an
English phrase or descriptive term can be
included in the design process(and its
precise definition done separately), simpl
fies thinking about a problem. The prac-
tice of writing down simple concise step*
is one that instructors should follow in
the classroom whenever a problem is being
worked out. Too often students attempt to
solve problems by thinking in the syntax of
the programming language when just a simple
description suffices as a first step.

PROGRAM IMPLEMENTATION
"Software is undoubtedly the major
source of unreliability in most
computer systeks today."

J.J. Horning

Unfortunately, the design of a correct
algorithm does not ensure that its imple-
mentation will be reliable. Whereas the
costs of hardware are plummeting, the
costs of sortware keep rising. Seventy
percent of programming effort is spent
on maintenance and much of that main-
tenance is repair to unreliable or incor-
rect software. In view of this situation,
one of the important goals of implementa-
tion should be reliability. This section
of the paper presents some suggestions
taken from Horning (5) for creating more
reliable programs.

Language
The goals of simplicity, under-

standability, and maintainability are as
important for program implementation as
they are for program design. A simple,
elegant algos.hm is easier to implement
than one that .ias not been carefully
planned, but an effort must be made to
maintain the simplicity. This effect can
be achieved by choosing programming
language constructs that are simple and
easy to understand. Well-designed
algorithms can be implemented using only
a subset of a total languages

Another adVantage of choosing a sub-
set is that the programmer can become
more familiar with the constructs and
truly understand how to use them effec-
tively. The use of a language structure
that is only vaguely understood can be
dangerous.

Very often in beginning programming
language classes instructors cover as many
of the language structures as possible.
This is actually a disservice to the
students. A more successful approach would
be to throw out all the complex structures
and consider only the very basic ones.

The programmer who truly understands the
basiez will be more valuable than one
who thinks he/she knows all the
complexities.

Documentation and Style
Documentation and style are ath.r.

areas that can improve reliability. Docu-
mentation should include not only a
description of what the program is
supposed to do but also information re-
lated to the design. Self - documenting
techniques such as explicit declarations
and choice of meaningful variable names
are helpful.

Developing a style of programming
should go right along with developing
formalisms. Indentation and formatting
of the program text is a relatively
simple matter, yet it greatly enhances the
reader's comprehension.

Most current textbooks provide
examples of documentation and style. With-
out constant pressure from the instructor,
however, there is little transfer of what
the student sees in the text to the
programming assignmerts.

Robustness
The concept of robustness was Men-

tioned briefly in dealing with program
design. It is relevant as well to program
implementation. P program is more robust
if it functions properly when given a
wider range of input values. The inclu-
sion of a few precautionary measures to
handle the events that aren't supposed to
occur can contribute much to the relia-
bility of a program. These measures can
be language, machine, or data directed.
At present there are no exception handling
schemes that are infallible, but neverthe-
less, it is vital that beginning program-
mers realize the importanca of such
considerations and develop an appreciation
for the need to make programs robust.

CONCLUSION
"Well it Iprograsq works, it must
be right."

Anonymous

This paper has presented certen
concerns of methodology in program design
and implementation. These concerns should
also be the concerns of computer science
educators. The need for computer literacy
courses is being stressed by college and
university administrations across the
nation. Soon every college student,
whether in a two- or four-year curriculum
will be enrolling in a computer science
class. The question is--what and how are
we going to teach these people?

For years, the philosophy has been
that students need to get on the machine
quickly. It didn't matter much what they
did there. If we are teaching people how
to program, it does matter. Many students
take only one course in programming and
use that experience in their future
endeavors. With the increase in small
business and home computers this pattern
will increase. The decision must be made
then whether these people should merely
learnt programming language or really
learn how to program.

The methodologies described in this
paper are not difficult to understand or
teach. They can be included in all elemen-
tary courses now being taught. If they are
taught as part of the programming process
so that students initially learn to do
things correctly, the quality of program-
ming is more likely to improve.

Teaching all the details of any pro-
gramming language is of transitory value.
Languages change, machines change, new
versions of software are released, and no
two manufacturers do everything the same.
But teaching methodology has lasting value.

Just because a program works doesn't
mean it's right. What must be conveyed to
students is that there is more to program-
ming than just coding. They need to
develop an appreciation for. programs that
are simple, elegant, readable and robust- -
the kind of program of which Dijkstra
says, "Ain't it a beauty!"

Acknowledgements
I would like to thank Professor

William M. McKeeman and the University of
California Extension for giving me the
opportunity to participate in the Institute
of Computer Science at OC Santa Cruz. I am
grateful to Kenneth Friedenbach for hin
contributions to the development of this
paper. I would also like to thank
Professor Fred Schneider of Cornell
University for his comments on an earlier
version of this paper.

REPERENCES

*1. Wirth, Niklaus. The Module: A
System Structuring Facility in
Higher-Level Programming Languages.
Insirtut fur Informatik, Zurich,

*2. Parnas, David L. The Role of
Program Specifications. University
of North Carolina at Chapel Hill.

*These were distributed at the Program-
ming Methodology Lecture Series, Ninth Annual
Computer Science Institute, University
of California, Santa cruz, August 1979.

Structured Programming 101

3. Dijkstra, Edsger W. A Discipline of
Pr ramming. Prentice-Hall, Inc.
1976.

*4. Hehner, Eric C.R. do Considered od
A Contribution to the Programming
Calculus. University of Toronto.

*5. !WOW J. J. Effects of Program-
ming Languages on Reliability.
Xerox Palo Alto Research Center.

APPENDIX
The following are examples of algo-

rithms developed by formal methods pre-
sented by David Gries during a five-day
Introduction to Programming Methodology
class at the University of California,
Santa Cruz, August 1979*.

Example 1. Coincidence problem
Given a function f with M values
where

f(0) < < f(2) < < f(14-1)

and a function g when N values where

g(0) < g(1) < g(2) < < g(N1)

coast the pairs that: are the same.
For example, for

f = 3,
g = 1,

5,

3,

8,
4,

12,
7,

15,
8, 11

18

the count c would be 2.

Solution 1. m := 0; n vs 0; c gm' 0;

do n 0 M and m 0 M

if f(s) < g(n) + m tr. m + 1

f > g(n1 * n vs n + 1

f (21) = g(u) -0 n := n + 1;

m g= M + 1;

C t= c + 1

fi
od

The loop invariant is that c contains a
count of the number of CO = g(i) where
0 < i < m, 0 < j < n. Termination is
ttri condition-M = M, provided f(m-l) <
g(n) or n = N, provided g(n-1) < f(n).

112

102 NECC 1980

Example 2. Different Values
Given a function f where

f(1) < f(2) < f(3)< <f(M), M > 1,

count the number of different values
in f(1 :M).

Solution. 2. m 1= 1; c := 1

do m # M

if f (m) = f(m 1) 1- m 1m m + 1

f(m) # f(m + 1) +c := c + 1;
m 1= m + 1

fi
od

The loop invariant is that c contains 1 +
the number. of f (i 1) # f (i) for
1< i< a and 1< m e m.

The program may be simplified to:

a so c tat 1

do m # M

m 1m m 1

if f (m) = f (m + 1) 'skip"
I f (m) # f (m # 1) y c := c +1

fi
od

1'3

Structured Programming 103

FORTRAN 77: Impact on Introductory
Courses in Programming Using FORTRAN

by

Frauk L. Friedman
Department of Computer and Information Sciences

Room 381 Spedumnslell
Temple University

Philadelphia, Pennsylvania 19122
(215) 787-1912

ABSTRACT
A first course in teaching problem solving and

structured progtamming using FORTRAN is briefly
described. The features of the new FORTRAN 77
standard which in the author's view impact most
significantly upon the course are summarised, and
the effect of those features upon the structure
and content of the course is discussed.

INTRODUCTION
Oa the third of April, 1978, The American

National Standards Institute (ANSI) approved a
new American National Standard for the FORTRAN
programming language (ANSI 78]. This standard,
designated as FORTRAN 77, is a revision of the
1966 American National Standard FORTRAN. It is
expected to have a significant impact upon the
use of the FORTRAN language in a wide variety of
applications areas. The new language should also
have a considerable effect upon the use of
FORTRAN as a convenient language for teaching
introductory programming, since it provides a
number of significant pedagogic advantages over
its predecessor.

The features of FORTRAN 77 that support
these advantages are the subject of this paper.
A summary description, with examples, of each
feature is described, and the effect of the

feature upon the structure and content of an
introductory course is discussed. Before pro-
ceeding to these topics, however, an outline
description of such a course is presented
(see also EFK 77 and FK 78]).

COURSE STRUCTURE
Figure 1 contains an outline of the topics

covered in the course, a time scale for these
topics, and a list of problems that are
associated with each topic. The course is
oriented around a set of two -dozen problems
which illustrate a variety of problem-solving
techniques. Most of these problems are solved
in their entirety, from the analysis and initial
algorithm outline, through to the final flow-
diagram refinements and FORTRAN program.

Each problem is used to illustrate the
application of a new feature of the FORTRAN

language. The feature Will normally have been
introduced first, and a brief description of Its
syntactic form provided. The problem provides
additional motivation for mastering this new fea-
ture since the problem solution would be much more
difficult without it.

Some of the problems shown in Fig. 1 emnhonifn
skills that are fundamental to programming, such as
finding the largest value in a data collection,
searching an array for a specified item, and sort-
ing. Other problems relate to a variety of appli-
cation areas: business-oriented problems (checking
account transactions and inventory control), games
(bowling score computation and Tic -Tac -Toe),

statistical computations, computer graphics, and
text editing.

By concentrating on problems that require the
introduction of additional features of the FORTRAN
language for a reasonable solution, the motivation
for these features becomes readily apparent. Once
the essentials of the festures needed to solve a
particular problem are introduced, class dis-
cussion focuses on data description and algorithm
design. It is occasionally the case that other
FORTRAN features are introduced as the algorithm
i developed, refined, and finally implemented.
The essentials of these features are described, and
examples of their use are given, usually within the
context of the problem at hand.

SUMMARY OF NEW FEATURES
The new FORTRAN standard describes two levels

of the languages FORTRAN (sometimes referred to
as Full FORTRAN), and Subset FORTRAN. Whereas the
FORTRAN subset was previously described in a
separate standard (American National Standard Basic
FORTRAN, ANSI 13.10-1966), the description of
Subset FORTRAN is now included in the description
of the full language, and the old standard has
been withdrawn.

The guiding criteria used in the development
of the standard were CBRAI 78]:

1. the inclusion of only those new features
proven through actual usage

2. the inclusion of new features that en-
hance the portability of programs

11 4

104 NECC 1900

Week

1-2 Introduction to computers,
programs and prorcam-
ming languages

FORTRAN and-the basic
computer operations

3

4

5

Problem Analysis
Algorithm.development

and refinement
Flow diagrams

One and two alternative
decisions

WHILE loops
Compiler role in trans-

relating structures

Data types in FORTRAN
List-directed formatting

DO loops
Arithmetic expressions and

functions

6-7 Lists and subscripted
variables

Searching a list
Index computation

8 Block-IF decisions struc-
ture

Generalised DO loop
Next iteration and loop

exit control
Nested Structures

9-10 Functions and subroutines
Argument lists and global

data
Program system charts

11 Use of Format Statements

12-13 Logical expressions
Character string processing
Extracting substringe
Replacing substrings

14 Multi-dimensional arrays
Array input and output
Computer art

Pit. It

Computation of gross and net
salary for one person (the
program given to students to
run on the computer during the
first week)

Computation of Sum and average
of N items

Inventory control, finding
largest number, simulation of
a bicycle race

Checking account program, prime
number identification, Centi-
grade to Fahrenheit conversion

Computation of table of fac-
torials, finding an item in a
list, frequency distribution of

exam scores. Table lookup via
direct computation and search
arrays

Scoring a bowling game, drawing
a bar graph, sorting an array

Simple statistical package
Sort/merge package

Mortgage interest tables

General search subroutine,
finding parameters of a
DO loop header, text editor
program system

Matrix inversion, status of a
Tic -Tac -Toe game, printing

block-letter patterns, schedu-
ling class rooms

Course Outline and Assigned Problems

3. minimal increase in language or processor
complexity

4. avoidance of features that conflict with
the previous (1966) standard t

5. elimination of features in the 1966
standard only under clearly demonstrated circum-
stances

6. production of a more precise description
of the language.

The new standard describes programs written
in FORTRAN 77, and not the processors (such as a
complier or interpreter) of these programs. The
implementation of a standarconforminn processor

1 s

Is to be inferred (rose the standard. The standard
is to be interpreted as specifying only the minimum
reggirementm of the language. Thus a standard -con -

fotaing processor for the language vast be able to
handle all standard - conforming programs according
to the rules of the standard. It may, in addition,
however, have extensions for features such as bit
manipulation or errs- processing that are not
specified in the language. It is then the decision
of the user whether or not to conform to the

standard when writing a program. Of course,
standard-conforming programs usually will be
portable to all machines supporting a standard -
conforming compiler; non-standard programs may
not be as portable.

This section contains a list and description
of the new features of Tull FORTRAN which affect
most significantly the introductory course just
dew:tibed. Those features discussed that have not
been included in the subset are so designated.
Users of systems not supporting the full language
should sake adjustments as appropriate in the
curriculum changes suggested in the last section
of the paper.

The relevant features of Full FORTRAN are
listed in Table 1 and summarized in the remainder
of this section. The material presented is in no
way intended as a complete description of these
features; in fact, it barely scratches the surface.
Additional examples and detail may be found in the
Brainerd paper and in FORTRAN 77 introductory
programming texts (see [DR 78], and D0 79]).

TABLE I

NEW FORTRAN 77 FEATURES MOST RELEVANT
TO INSTRUCTION IN INTRODUCTORY PROGRAMMING

1. The character data type
2. List-directed formatting (not in the

subset
3. The block-IF (if-then-else) decision

structure
4. Generalized form of the DO

Statement

5. Arrays
6. Expressions: the PARAMETER Statement

and mixed -mode arithmetic

7. The SAVE statement.

1-22&SheraeLar_Data_Tga&
Perhaps the most significant change in the

standard is the addition of the character data
type, which now replaces the Hollerith type.
It was the use of the Hollerith type that made
many FORTRAN programs difficult to understand, to
check out, and to transport'from one computer to

another having a different sine storage cell.
(Although the Hollerith type is no longer in-
cluded in the standard, it is expected that most
major manufacturers will continue to support this
feature in their FORTRAN 77 processors).

Some examples of the declarations of character
variables and arrays are:

Structured Programming 105

CHARACTER*120 BUFFER
CHARACTER CARD (SO), ITEM
CHARACTER*10 FRAME, IN1TLS *1, LNAME

The length of each characi :r variable and array is
fixed by the declaration statement. In this
example, BUFFER is declared as a character string
of length 120, while CARD is taken to be an 80
element array of character strings of length 1.

Character constants consist of strings of
characters enclosed in apostrophes. Character
variables and array elements may be given values in
the same manner as other typed elements in FORTRAN:
through the use of READ, assignment, and DATA
statements. For example, the statements shown
below all have the effect of assigning the string
IVORY JOE to the variable FNAME, as previously
declared.

READ (FMTID10, UNIT" S) FRAME
10 FORMAT (A)

Input Card IVORY JUE
1234567890

FRAME a 'IVORY' //

FRAME 'IVORY JOE'
DATA MAME / 'IVORY JOE' /

The READ statement illustrates the use of
cifiers for format and unit numbers. Other

input ou;put specifiers (for end-of-file, error
conditions, etc.) are also allowed (see (NO 80]).
The old form

READ (10, 5) FRAME

is still permitted with the expected caveat that
the first item listed specifies the unit number and
the second, the format number. The use of PMT and
UNIT have the added advantage of allowing order-
independent list specifiers in an input/output
statement.

The use of the A descriptor by itself in a
fotnat is also new to FORTRAN. When the length of
the element to be transmitted is not specified in
the format, it is taken from the declared length.

The statement

FNAME 'IVORY' // 'JOE' '
Illustrates the use of the character string concate-
nation operation. Substring and string comparison
operations are also permitted in FORTRAN 77, as
well as intrinsic function opurations for determin-

ing string length and for character.to -integer and
integer.to.character conversion. User-defined
character functions are also permitted in FORTRAN
77. (The FORTRAN 77 Subset does not support
concantenation, substrings, or character functions).

2- List - Directed Formatting (Not available in the

Subset)
The new FORTRAN standard permits the uae of a

1sG

11

106 NECC 1960

statement label, an integer variable that has been
assigned a label, a cbatactet exptession, or an
asterisk for the designation of a format. Pot
example, statement lists i), 11), ill) and iv) ate
allowed in FORTRAN 77 and produce identical
results.

I) WRITE (6, 150) 'SUM N (N + / 2
150 FORMAT (A, I6)

II) ASSIGN 150 TO LABEL
WRITE (6, LABEL) 'SUM 0 1, + 1) 2

150 FORMAT IA, 16)

ill) CHARACTER FORM*6
FORM '(A, I6)'

WRITE (6, FORM) 'SUM

'Iv) WRITE (6,1(16, 16)' 'SUM = ', N * (N + 1) / 2

An astatisk is used to specify list-directed
formatting, as determined by the input output
list, the ptocessor, and the fora of the data. For
input, the type of each data item is determined by
the FORTRAN system (rather than a user format
description). Additional information, such as the
position of the decimal point in a real number is
also determined in this manner. Data items may
be separated from one another using blanks or
comas.

Given the card

(219-40 -0677' 'LITTLE LOOT' 80 1.35
The statements

REAL RATE
CHARACTER SSNO*11, NAME*24
INTEGER FOURS
READ*, SSNO, NAME, HOURS, RATE

would produce the following result:

WEE=
riODZI.V4 1414-Wi55-,

11121111 RATE
1.35

As shown, character strings read via list-directed
formatting must be enclosed in apostrophes; the
four data items shown lathe card are separated
from one another by one or mote blanks.

In list-directed output, the widths of the
fields used to print the listed elements are
determined by the type of the element and the
processor. The width of each character string to
be printed is determined by the declared length
of the string. However, real and integer'data
are printed in fixed-width fields regardless of
the magnitude of the value to be printed; the
field widths ate pre-determined by the processor
and are normally not alterable by the programmer.

3-The Block -IF Decision Structure
The block-IF structure will considerably

reduce the reliance upon the GOTO and the label
in FORTRAN ptogramaIng. This structure, with
appropriate code indentation, can greatly enhance
the readibility of programs written in FORTRAN 77.

The logical function PRIMA shown in Fig. 2 (see
(BRAT 78] provides a good illustration of the use
and advantages of the block-IF.

LOGICAL FUNCTION PRIME
INTEGER N, DIVISR
IF (N .LE. 1) THEN

PRIME = .FALSE.
ELSE IF ('1 .!Q. 2) THEN

PRIME = .TRUE.
ELSE IF (110D(N, 2) .EQ. 0) THEN

PRIME = .FALSE.
ELSE

DO 10 DIVISR 0 3, INT(SQRT(REAL(N))), 2
IF (MOD (N, D1VISR) .EQ. 0) THEN

PIER .FALSE.

RETURN
END1F

10 CONTINUE
PRIME 0 .TRUE.

ENDIF
RETURN
END

Fisz_k An Illustration of the Block-If Structure

This function shows the use of the Block-IF
in implementing a decision structure with four
alternatives, and a decision structure having one
alternative (inside loop 10). A two-alternative
Block-If may be implemented in the form

IF (condition) THEN

ELSE

.1

ENDIF

If condition is true statement
sequence executed

If condition is false statement
sequence executed

4-Generalized Form of the DO 100 Statement_
The previous sample also illustrates the more

general DO loop feature provided in FORTRAN 77.
The form of the FORTRAN 77 DO loop header state-
ment is:

DO sn loopvar = expl, exp2, exp3

where
I) expl, exp2, and exp3 represent the

initial, terminal, and step value expressions
respectively

II) expl, exp2, and exp3 may be any integer,
real, or double precision expression having positive
negative, or (except for exp3) zero values (the use
of expressions is not permitted in the Subset)

ill) Loopvar may be any integer, real, or
double precision variable

iv) an optimal comma is permitted after the
terminal statement label, an.

1 2 7

The number of times * DO loop is executed
is called the trio count. The trip count specified
by the previously described loop header is computed
as

VAX(iNT(v2-v1 + v3)/v3),0)

where vl, v2, and v3 are the values of the expres-
sions expl, exp2, and exp3 respectively, and INT
truncates the result of the expression argument
if it is not an integer value. The following
relationships must bold between v,l, v,2 and v3:

vl < v2 and v3 > 0

or
14 > v2 and v3 < 0

If the value of the trip count is not positive, the
loop will not execute at all. It is important to
note that this is contrary to the convention
adopted by many processors based upon the previous
standard: that loops were executed at least once
regsrdisss of the values of the loop parameters.
The previous standard did not specify what was to
be done for loops written with an initial value

exceeding the terminal value at loop entry. The
change will not effect the execution of programs
that were written in accordance with the previous
standard, ant it way affect those that were
written in violation of the standard.

5-AII!1!
The Full FORTRAN language defined in the

standard provides three major changes from the
previous standard:

i) arrays smyhave up to seven dimensions
ii) the specification of a lower subscript

bound is allowed
iii) subscripts in an array reference may be

any integer expression (see also, section 6).

Items i) and ii) above, are not permitted in
the Subset.

The specification of the lower subscript
bound is indicated through the use of a colon, as
In

REAL X (-315)

which defines a nine-element array X with elements
x(-3), X(- 2)...X(0)...X(3). If the lower bound
is omitted, it is assumed to bs one.

6-oprestiooss laglaggsgLitugging_sgjAmt
Erode Arithmetic

sere are places in the nunr1ORTBAN
in which expressions ore permitted where only

constants, variables,' or restricted forms of ex-
Freestone Were previously allowed. For example,
expressions are now allowed in output statements
(see i. below), as subscripts (ii), as array
dimension bounds (ii), and es indexed -DO pare

meters (see section 4). Sons examples are
i) WRITE (6, 130) 'SUM ', N * (N + 1) / 2

ii) INTEGER SIZE, I, J, lC
PARMISTER (SIZE 10)

Sbuctured Programmkp 107

REAL X(2*SIXS)
DirtA MI), I 1, SIZE) I MAO I
WRITE (6, *) X(6*X-J)

Example 11) illustrates the use of the PARANITIR
statement, which is used to attach a symbolic same
to a program constant or parameter. (The UNARM
'totem/et is net included in the Subset). If the
symbolic name is not of the defeat implied type,
its type scat be specified before its appearance is
e PARAMETER statement. Expressives are permitted
to the right of the equal symbol, but they map

contain only constants or previously defined
symbolic constants.

Symbolic constants may be used in expressions
in the same way es variables. They Imp, in addi-
tion, be used in specificities and DATA stateliest*

in places when only constants bed been previously
allowed. Such uses are illustrated is limo 3 and
4 of Example ii), abets the symbolic constant SIZE
is used where only constants were previously
allowed.

Example ii) also illustrates the use of the
implied -DO in DATA statemeut (not allowed in the
Subset) and the moralisation of the fore of sub-
scripts allowed is /OSMAN 77. Any integer ex-
passion soy be used to specify a subscript,
provided the value is within the bounds specified
for the corresponding dimension in the array
declaration. (The ell standard limited subscript
specification to expressions of the form

Cl * V t C2

where C
1,

C
2
were integer comstants, mud Ewes an

Integer variable).
With regard to the formation of expressions,

the major difference between the 1966 standard and
the new NORMAN is the latitudes of slued-mode
arithmetic. Integer, real, double precision, and
complex operands map appear in arithmetic expres-
sions except that double precision sad complex
operands may not appear in tbe'esme expression.

The type of an expressive is determined by
exmainlegoperand-operstor-operand triples --the
type of the result of each triple is determined by
the typo of the two operands involved. For ex-
ample, if X, 1, and J are integers, and 14, J-2,
then the result of the evelostive of the StitIMOSt

X - 2.3 I/J

is 4, es determined es follows:
i) divide I/J; slims I'S and Jet are both

integers, the result of this divisive is an
integer, 2.

11) add the rod value 2.3 and the integer
2; since 2.3 is real, the reedit of the division
is first converted to real prior to addition which
then yields a result of 4.3.

ill) the red result 4.3 is assigned for the
lateen wettable E, resulting in the wrist nuiSn'
seat of the truacatosivalue 4.

108 NECC 1980

7-The SAVE Statement

Contrary to what a number of FORTRAN users have
become accustomed to, there is no requirement in
either the 1966 standard or the new standard to
retain the values of local variables in subprograms

from one execution to the next. Programs written
under the assumption that local variables were
saved were non-standard and would not execute
correctly on all.proccssors.

While saving the value of local variables in
subprograms used to be rather cumbersome, the
FORTRAN 77 SAVE statement can be used to simplify
this process. For example, a small subprogram to
increment a counter and check for overflow night
appear as follows:

SUBROUTINE EMIT
INTEGER MAXVAL
PARANETER (MAXVAL st 100)
INTEGER COUNT
DATA COUNT /0/
NAVE COUNT.
COUNT w COUNT + 1
IF (COUNT .GE. MAXVAL) THEN

PRINT*, 'COUNTER EXCEEDS MAX VALUE OF ', MAXPal,
PRINT*, 'COUNTER RESET TO 1.'
COUNT 1. 1

RETURN
ENDIF
RETURN
END

The SAVE statement causes the value of COUNT to be
saved between calls to the subprogram BUMPIT.

IMPACT OF NEW FEATURES UPON INSTRUCTION
Only a few of the new features found in

FORTRAN 77 have been described in the previous

section. As indicated, the list is restricted to
those features which are felt to have the greatest
impact upon instruction in introductory programming
courses using FORTRAN. Yet of the features dis-
cussed, only three, the character data type, the
Block -rF structure, and list-directed formatting
have substantially contributed to major changes in
the structure and content of the course. Of the
remaining features, the generalized DO loop
(introduced in week 8), implied-DO in a DATA
statement (weeks 6-7), additional flexibility in
the use of expressions (spread throughout the
course), and the additional array features (week 8)
are creatures of increased convenience having only
a minor impact upon the course. The SAVE state-
ment (weeks 9-10) is a feature that Mould be
understood by all students working with subprograms,
but it has no other impact upon the course.

The PARAMETER etatement (introduced in week 4)
provides a vehicle for discussing the notion of a
program parameter (as opposed to an in -line con-
stant). This statement provides a convenient means

for a Programmer to attach a WOO to &constant
value (programmer parameter) that has special pro-

gram significance. A value representing the maxi-
mum size of an array is one example of a program

parameter. Other examples are illustrated in the
sample program shown at the end of the paper.

In the view of this author, mixed-mode
arithmetic offers no advantage to the student in an
introductory course. On the contrary, the use of
mixed-mode expressions requires additional care and
a more sophisticated understanding of expression
evaluation than is desirable or even necessary
at this level. The automatic type con-
version required by the mixed-mode expression
provides very little programming convenience and
has the added disadvantage of being hidden from the
user. The use of the type conversion functions
such as INT (real-to-integer with truncation), AIRE
(real-to-nearest integer), and REAL (integer-to-
real) in avoiding mixed-mode. arithmetic should be
encouraged.

It is perhaps not too surprising that the
character data type, Bloc{ -IF, and list-directed
formatting have had the most influence upon the
course. For, as an analysis of the course struc-
ture outline indicates, the major emphasis in the
course is upon problem solving, rather than the
details of the FORTRAN language. These three fea-
tures make it even easier to concentrate on
problem- solving techniques and algorithm develop-
ment, with less emphasis upon the language
implementation considerations. Yet each contrib-
utes to this effort in a different way.

The character data type makes it possible to
introduce the concept of a character string, and
the reading, printing, and comparison of strings
at a very early stage of the course. For example,
character string constants are used in list -
directed output statements as early as week 1, in
order to provide descriptive labels or headers for
the values printed by the first program run by
a student. By week 4, the student is reading and
printing character strings using list-directed
formatting and simple character string comparison.
During week 4, data types are discussed in detail,
and a more formal presentation of the chsracter
type is Oren. Finally, by weeks 12 and 13,
students are writing programs requiring the use of
some simple but fundamental string operations such
as aubstring extraction, comparison, insertion,
deletion, and replacement. Most important, all
work is now done in a totally machine-independent
fashion, without the previous requirement of having
to store data of one type (character) in a memory
cell of a different type (real or integer). This
latter feature has the added advantage of providing
additional compile-time checking for data type and
operator consistency.

The Block-IF structure eliminates most of the
need for COTOs and labels in the implementation of
algorithms in FORTRAN 77. The only remaining COTO
needs now can easily be restricted to implementa-
tion of the WHILE loop structure and loop exit and
next iteration steps. The Block -IF makes it

possible for instructors and students to concen-
trate on the specification of decision steps in
terms of the tasks to be accomplished and the
condition(s) of selection, without concern for the
details of using labels and COTOs. The resulting

.1r9

implementation is not only easier to write, but also
easier to understand and far less subject to error.
This point is perhaps but illustrated via one
possible rewrite using COTOs and labels of the
executable portion of the function PRIME (see Pig.
3).

IP (N .GT. 1) GO TO 1
PRIME .FALSE.

RETURN
IP (N .NE. 2) co TO 2

PRIME
RETURN

2 IP (MOD(N, 2) .NE. 0) GO TO 3
PRIME .FALSE.
RETURN

3 MAX, IPIX(SQRT(PLOAT(N)))
DO 10 DIVISR 3, MAX, 2
IP (NOM, DIVISR) am. 0) 00 TO

PRIM .FALSE.

RETURN
10 CONTINUE

PRINS .TRUE.

RETURN

Fig.31 The Function PRIME Without the Block..IF

10

Even with indentation, the logical structure
of this code is obfuscated considerably because of
the COTOS and labels.

The single and double alternative forms of
the block-IF are introduced during week 3 of the
course, and the general form is presented during
week B. By this time, however, students have been

doing considerable programetag, using the COTO
only for the implementation of the MILE loop
structure. (Even this use could have been avoided
had the FORTRAN 77 standard contained a VSILE-like
loop structure in which the repetition condition
could be specified in the structure header).

Another advantage of the block-IF is increased
similarity in the structure of student programs.
Students (and instructors, too) are now better able
to understand the programs of others Aid to assist
in checking out and correcting programs that fail.

Finally, there is the matter of list-directed
formatting. List - directed formatting allows the
instructor to delay considerably any discussion of
one of the most detailed, unpleasant features of
the FORTRAN language -- formats. While it is true
that formers are an important feature of the
FORTRAN language, and should not he overlooked, the
study of formats contributes little to student
mastery of the fundamentals of choosing data
structures and designing and Implementing
algorithms. It is for this reason that formate
have been delayed until week 11 of the course,
after the presentation of subroutines and functions
is complete. It is indeed a shame that the list -
directed formatting feature is not included in the
Subset. It is hoped that most Subset implementors
will view it as top priority for support in their
processors.

In the course, list-directed formatting is
introduced in the first program given to students

Structured Programming 109

to prepare and submit for computer entry. The
capabilities of the list-directed feature are then
slowly expanded informally throughout weeks 2
through 4 until finally, in week 5, it is
formally described,and a brief overview of how it
works is presented. Exclusive use of list-
directed formatting in all problems studied and
assigned is then continued until week 11.

CONCLUDING COMMINTS
Of all the new features of FORTRAN 77, list -

directed formatting provides the greatest added
convenience to instructors of introductory
programming courses (be they in FORTRAN, BASIC,
PASCAL, or any other language). The block -IP and
character features are not far behind in this
respect. But list-directed formatting allows
students to begin to do input and output
immediately, and to continue to do even slightly
sophisticated input /output throughout the first
tea weeks of the course (including the study of
subprograms) without the added complication
introduced through the use of formats.

The following program (Pig. 4) illustrates
the use of list-directed formatting, the character
data type, the block -IP structure, and the
PARAMETER statement. Arrays are used in the pro-
gram only for illustration, not because they are
required. The program was run on a Control Data
Corporation Cyber 174 using the University of
Minnesota FORTRAN compiler, 1177. For the example
input entries show below

6

Bird' 5
'Mickey Mouse' 2
'Kermit T. Frog' 6
'Ace Bandage' 95
'Carmine Burma' 7
'!hiss Piggy' 9

the generated program output is'

METIER OF EXAM SCORES IS 6
NAME SCORE

ra BIRD 5

NiCKST MOUSE 2
MART T. FROG 6
ACE BANDAGE 95
CAREN& BVIAta 7

MSS mat 9

RATING
SATISFACTORY

UNSATISFACTORY
SATISFACTORY
*** INVALID SCORE **
SATISFACTORY
OUTSTANDING

THE NUMBER OP OUTSTANDING SCORES IS 1
TEE NUMBER OF SATISFACTORY SCORES IS 3
/RENUMBER OP UNSATISFACTORY SCORES IS 1

THE NUMBER OF INVALID SCORES IS 1

REFERENCES
(ANSI 783 American National Standard Programming

Lansuage FORTRAN, American National
Standards Institute, New York, 1978.

[BRAT 783 Brainard, Walter S. et. 81., "FORTRAN
77", CACI (21, 10), October 1978, pp.
806-20.

110 NECC 1980

C
C PROCESS EACH RECORD. DETERMINE AND PRINT RATING ALONG WITH

C PRINT COUNTS

'

C PROGRAM TO PROCESS A SET OF EXAM SCORES RANGING BETWEEN 0 AND 10
C AND CLASSIFY ACCORDING TO OUTSTANDING (8-10), SATISFACTORY (4-7),
C OR POOR (0-3). COMPUTE AND !RENT FREQUENCY COUNTS.

C
C PRANK L. PRIEDMAN 12-9-79
C

C
C READ AND VALIDATE N

C
C

PRIM*, 'PROGRAM TERMINATED.'

C NAME AND SCORE. INCREMENT APPROPRIATE COUNTER.

.GT. MAXSCR) THEN

. nine*,

PRINT*, THE NUMBER OP OUTSTANDING SCORES IS ", OUTNR
PRINT*, ' THE NUMBER OF SATISFACTORY SCORES IS ', SATNR

plaw, "
PRINT*, THE NUMBER OF INVALID SCORES IS ', ERRCNT

C

YAMMER oamouT 8, MINSAT - 4, MAWR s 0, MAXSCR 10)

PARAMETER (MAXCNT 100)
CRARACTER*24 NAME (MAXCNT)

READ*, N

' NUMBER OF EXAM SCORES IS NOT VALID, MAX IS 1, MAXCNT

SATNR * 0
UNSNR * 0

DO 40 I 1, N

mum '

PRIME*, 9 THE NUMBER OF UNSATISFACTORY SCORES IS ', UNSNR

INTEGER MINOUT, MINSAT, MINSCR, MAXSCR

INTEGER MAXCNT

INTEGER SCORE (MAXCNT), N, Ix, I
CRARACTER*20 RATING

IF (N .GT. 0 .AND. N .L14MAXCAT) THEN
mu:RINT*, 'NUMBER OP EXAM SCORES IS ', N

OUTNR * 0

BRUNT - 0

STOP
END

INTEGER OUTNR, SATNR, UNSNR, ERRCNT

20 CONTINUE

DO 20 II * N

PRINT*,

ELSE:1P (SCORE (I) .GE. mum, THEN

READ*, NAME(II), SCORE (II)

1

LENIts Somas' FORTRAN 77 Program

NAME

', RATING

SCORE

1 21

RATING'

Structured Programming 111

ERN 783 Davis, Cordon B., and Thomas R. Hoffman,
TORTRANI A Structured, Disciplined
Style, McGrew-Rill, 1978.

CFK 773 Priedaaa, frank L. and Elliot B. Roffman,
Problem Solving and Structured Program:
Lag in FORTRAN, Addism4esley, 1977.

CPR 783 Friedman, Frank L. and Elliot R. Koffman,
"Teaching Problem Solving and Structured
Programming in FORTRAN," Computers and
Education (2. 3), Perganon Press,
January 1978, Pp. 235-45.

(35 793 Rune, J.N.P., and R.C. Volt, ProarennimR
FORTRAN 77: A Structured Approach,
-711*W1779.

CND 801 Meissner, Loren P. and Elliot T. Organick,
FORTRAN 77 Featuring Structure Programming,
Addison - Wesley, 1980.

112 NECC 1980

USING MODEL-BASED
INSTRUCTION TO TEACH

. . PASCAL

Bogdan Czejdo

Warsaw Technical Univ.
Brigham Young Univ.

I. INTRODUCTION
177:1iiiiWer we introduce the concept

of model-based instruction, first defining
'model' and then presenting a simplified
view of the modeling process. A way of
classifying models is presented, and a
process for preparing a set of complemen-
tary models for use in model-based Jastruc-
tion along with the characteristics of
this type of instruction. The paper then
concludes with the application of model-
based instruction to computer-assisted
instruction.

II. THE ROLE OF MODELS IN TEACHING
A model is defined in Webster's Bic-

tionaryw to be a*:
1. copy, image
2. pattern of something to be me&
3. archetype
4. description or analogy used to

help visualize something that
cannot be directly visualized

S. system of postulates, data, and
inferences presented as a mathe-
matical description of an entity
or state of affairs

For the purposes of this paper, a model
is defined to be any diagram, table, pic-
ture, or figure which helps the student
to understand and remember a'concept or
perform an action which is a part of a
set of teaching objectives. As shown by
research in a variety of teaching areas04,
models play a very important role in the
learning process.

A simplified view of the modeling process
in learning is represented in Figure 1.

We have chosen a subset of meaning
which corresponds with the meaning
of model in our paper.

l'Iten 1. 711, °mattes of Not .16

The internal models students created in
their %mon minds Allow them to understand
and remember concepts and perform pre-
scribed actions. The students may create
these models on their own (transformation
Il) based on descriptions provided in text-1'
books and lectures. Alternatively, the
internal models used by the student may be
based on external models (transformation 13)
already created by the textbook author or
lecturer (transformation 12).

The creation and use of internal models
is a complex psychological process which
will be mentioned only briefly here. It
should be recognized that the creation of .

models by the student.is a difficult and
time-consuming task. During lecture, there .

is usually insufficient time for the student
to formulate suitable models on his own.
The fuzzy and incomplete models that may
come to mind are soon forgotten because they
are not strongly impressed on him through
reinforcement by the teacher or by his own
performance.

Indeed, transformation Ii is difficult
for the student for a varie y of reasons.
The student may be untrained in the crea-
tion of models or have a weak imagination.
Because of an incomplete understanding of
the full subject, the models he creates
may turn out to be unsuitable. Unlearning
In initial model and relearning a more
a4Aquate model may be very difficult:

123

For all of these reasons, it is important
for the teacher, and in particular the com-
puter science teacher, to pay careful atten-
tion to the subject of models and to provide
the student with useful external models.
(In the rest of this paper, the term *model"
will refer. to external model.) - -

III. TYPES OF MODELS
A wide variety of models have been

examined and evaluated for potential use
in teaching PASCAL programming. These
models have been drawn from several text-
books(3,5) and have also been created by
the authors of this paper. What constitutes
the model and the object to be modeled
depends on the point of view of teacher and
student. A computer program, for example,
is often a model of some real-world activity
or process. However, in the context of this
paper, the computer program will be considered
to be the object to be modeled.

One of the best ways to classify models
is by their structure. Six basic structures
have been identified:

- graphic
- array
- mathematical
- text
- compound
- parallel

Most of the models we use are gra phic
structures, four of which are leviilic-tfees
(hierarchies), networks, and domains. Levels
and tree structures can be described using
the example of an interactive language. On
the microcomputer systems used by the authors
in their introductory PASCAL course, there is
an interactive command language which is inter-
preted by a system monitor or operating system.
Each user starts at the command level. By
typing an "E", the user can go to the edit
level. To return to the command level from
the edit level, the user can type a *QV
sequence. Figure 2 shows simple level struc-
ture.

Command level

Edit level

1QU

Figure 2. Simple Level Structure

Levels are represented by horizontal lines.
The transitions are represented by labeled
vertical lines. Figure 3 shows a simple
tree structure.

Structured Programming 113

Figure 3. Simple Tree Structure

Each circle represents being in a parti-
cular state (at a particular level in this
case).

It should now be obvious how one can com-
bibe elementary submodels into a more com-
plex structure. In Figures 4 and 5, a
more complete model of an interactive lan-
guage is drawn using the level and tree
structures of Figures 2 and 3.

Command level

Edit level

Insert level

Figure 4. Level Structure

Figure 5. Tree Structure

The root or first level is drawn at the
top of the figure but, of course, the
reverse option is also possible. In the

I 0 4
4. 41

114 NECC 1900

tree model, each state has at most one
"parent" state making it a strictly hier-
archical structure. If this restriction is
relaxed, a network structure results. An
example of a network structure is the syn-
tax diagram in Figure 6 for a BEGIN-END
block;

Figure 6.

Syntax Diagram for BEGINEND Block

Another *Wimple of network structure is
the model of the MAK computer shown in
Figure 7.

CPU Disk Memory

Figure 7.

Model of Flow of Information in
Minicomputer flan

The tree and network structures consist
of nodes [states) connected with directed
lines. The final graphic structure to be
discussed in this paper, the domain, con-
sists of a set of'areas which either over-
lap or are disjoint. Figure 8 illustrates
a simple example of a domain structure that
is a model for teaching the Boolean opera-
tions OR, NOT, and AND.

Figure S.

Domain Structure model
for Teadhing Boolean Operations

There are, of course, a wide variety of
other graphic structures that might be
useful in other fields of learning.

A second type of structure is the array
structure. A simple one-dimensional array
IIMEcalled a list, a two-dimensional
array is a matrix. Array structures find
their greatest utility in modeling computer
memories (core, disk, etc.) and in repre-
senting data. See Figure 9 for an example
of an array structure which describes the
name, type, and value of PASCAL variables.

PASCAL Variables

Name MS .Value

count

surname

Pi

alpha

condition

integer

string

real

character

boolean

43

Jones

3.14

G

true

Figure 9.

Name/Type/Value Model

Mathematical structures constitute a
thilrEYfroriodel structure consisting of
a string of symbols (letters, numbers,
mathematical operators, etc.). Figure 10
Illustrates one type of mathematical struc-
ture, the Backus Normal Form model. It is
an alternative model for the same BEGIN-END
block as described by Figura 6, but with a
more mathematical flavor.

ablock)staBEGIN <multi-stat> END

<multi -stat>ts=<statement>l<multi -stet>,
<statement>

Figure 10.

Backus Normal Form for BEGIN-END Block

For completeness, we add a fourth type,
the textual structure, which is nothing but
text711173ifairiEgiage. An article,
letter, or book all contain such structures.
We introduce this type of model here, not
because we want to study books as textual
structures, but because we want to alio',
textual structures as small components of
larger models.

Having introduced various types of
structures, we are now in a position to
describe compound structures. A compound

12

structure is one that is composed of several
types of substructures For example, it is
possible to combine two types of model struc-
tures (array and graphic) into one compound
model as shown in Figure 11.

l- 000e0Ao1 Neon) b) isrtrage

no SI MUM) 8 SIRING
01 IOTWOO)

ZOMBA Ps mum'tvoCibelei Mt 101 intabol)
Menet= Mit CU) ImOseldb)

N - mune

el

fooest404 NM) MIMI)

d)

noun U.
01144444446, User Streuture 414 owl GeephIesi Steuctego

Iete Cempound MK 40.

The last, and probably the most signifi-
cant, model structure to be described here
is the rallel structure. A parallel
structure s similar to the compound struc-
ture in that it consists of a collection of
several more elementary models. However, a
parallel structure differs from the com-
pound structure, as the sub-models within
the parallel structure remain distinct and
physically separate, related only in that
they represent complementary aspects or
features of the same real-world object.
The advantage of several parallel models
over one compound model lies in the sim-
plicity that can be retained in each com-
plementary sub -model while at the same time
representing all the necessary features of
the system.

For example, the models in both Figures
5 and 7 represent certain features of the
TERM microcomputer. Figure 5 illustrates
the steps necessary to have the computer
perform certain actions, while Figure 7
shows Ale flow of information within the
system. Thus, these two models form a
parallel structure. Another example of
parallel structure is shown in Figures
6 and 11. Figure 6 depicts the syntax
of the PASCAL language (in a sense, the
steps or actions in programming) while
Figure 11 represents the computer memory
(information flow) associated with a

Structured Programming 115

PASCAL program. Thus, a parallel structure
consisting of one model to represent the
information flow and another to represent
the human performance (operator actions)
seems especially appropriate and of general
applicability.

IV. EVOLVING PARALLEL STRUCTURES
Effective teaching of a comgix Model or

of a set of parallel models involves a
series of steps on lessons. The models
upon which these lessons are based must be
carefully selected and designed so that the
student's understanding grows in a smooth
and orderly way. This process suggests a
family of closely inter-related models
culminating in the final parallel structure
which has been selected to represent the
system under study. The model chosen for
a particular micro-lesson may be related
to the models used in previous micro-
lessons by;

(1) incorporating some new feature or
component into a previous model.

(2) synthesis of several previous models
into a new model.

(3) providing a more exact description
of some part of a previous model.

As an example of this process, consider
the model of a TERAK computer in Figure 7.
One can introduce the concept of a work
file by expanding this model as shown in
Figure 12.

rMOnitor Ic

IKeyboarci

CPU Disk Memory

I

file ABC

workfile

Figure 12. TERAK Information Flow

Another example of model evolution can
be seen from a comparison of Figures 5 and
13. Here again a new feature is added to
the model to create a more extensive model.

126

116 NECC 1980

Figure 13. Tree Structure

It should be noted that the models of
Figures 5, 13, 7, and 12 are inter-related
and constitute an evolving parallel struc-
ture. Figure 14 depicts such a structure
where M1 and Mi' represent the models of
Figures 5 and 13 and M2 and M2' correspond
to Figures 7 and 12. Each connecting
line (Ri) represents the relationship
between two models or the relationship of
a model to reality.

Microteaching Microteaching
Unit 1

1

Unit 2
1

Figure 14.

Evolving Parallel Structure

V. TEACHING OBJECTIVES IN MODEL -BASED
INSTRUCTION
Once an evolving parallel structure of

models has been designed, it becomes fairly
straightforward to define the teaching
objectives. The objectives can be des-
cribed in terms of the models, the rela-
tionships between the models, and rela-
tionships of the models to reality.

The purpose of each micro- teaching unit
would be to solve a practical problem in
some particular area. The process of pro-
blem solving using models is shown in
Figure 15.

Model 2

Model 1

Reality

Figure 15. Problem Solving Using Models

The problem-solving process illustrated
in Figure 15 consists of 6 basic points:

1. PR-Practical problem to be solved
2. Model M2
3. MS2- specified model M4
4. Model M1
5. MS1- specified model M1
6. PP-Practical performance

By specification, we mean the process of
applying the model to a specific situation
by selecting one state or path of the model.

The choice of teaching objective for
each micro-teaching unit can now be speci-
fied by the triplet of transformations:

T
1,

T
2'

T
3

where each T is defined as follows:

MS2 T
1 2
(PR MM)

2

MSM = T2 (MS2, 1(MSM, MM)

PP = T
3
(MS

1)

These transformations represent:

T - The transformation of the Model
1 M, for a given practical problem,

PR.

T
2
- The transformation of the model

M1

for a given specified model,
2.

T
3
- Practical perfoimance for the

specified model MS1.

Models enable us to describe teaching
objectives more precisely, which is, of
course, a very important condition for the
success of teaching. Another advantage of
this way of designing teaching objectives
is connected with the analysis of problem
solving, as one can concentrate on under-
standing and performance more than remem-
bering.

V/. MODEL -BASED INSTRUCTION
Having prepared specific teaching ob-

jectives, we are in a position to design
the micro-teaching lessons in detail. Two
phases .re involved: _first we teach the

127

models and the relationship (the generali-
zation processes), and second we teach how
to apply them (the specification processes).
An example of this process is shown in
Figure 16.

Figure 16.

Diagram of First Phase
of Microteaching Lesson

A description of the steps in Figure 16
is as follows:

1. General description of a device
(TERM computer).

2. Introducing the basic elements of the
Model, M2, and relations (Keyboard,
Monitor, CPU, and disk drive).

3. Basic elements of the model, MI (modes).
4. Description of the first task to be

performed (transfer from keyboard to
CPU).

5-6. Generalization of the model, M2, so
that it represents task 1 (adding in-
lormation flow from keyboard to CPU).

7-8. Generalization of the model, M1, so
that it represents performance con-
nected with task 1 (adding actions E
and I).

9-15. Repetition of steps 4-9 but for task
2.

Thus, the first phase is the process of
generalization of a model. It includes the
introduction of new aspects to the model
related to each elementary task. The second
phase is the process of specification and is
based on model specification as shown in
Figure 15. Again, we repeat this phase
several times with increasing student activ-
ity until students can solve any problem in
this area.

Now we are ready to describe the basic
characteristics of model-based instruction:

1. Parallel structures
2. An evolving sequence of models
3. Teaching objectives which are based

on the evolving-parallel structure
4. A method of teaching based on moving

from a practical situation to a model
and then back to practical performance.

Structured Programming 117

In various practical situations, it may
be appropriate to relax one or more of the
above requirements for model-based instruc-
tion. In addition, the diagram of teaching
(Figures 15 and 16) can be modified depot:dins
on the student's role in the creation and
use of the model. When_the model is an
-algorithmic description of a process of
performance, then the process of specifi-
cation of the model is impossible, and we
have algorithm-based instruction rather
than model-based instruction.

Some models require that certain para-
meters be supplied by the user to complete
the model. If this is the case, then the
transformations 2-3 and 4-5 of Figure 15
will consist of a series of steps instead
of just one step.

Other models require some work to con-
struct using simpler models. If the pro-
cess of construction is given by some algo-
rithmic rules, then the diagram of teaching
will not be substantially changed. However,
if the creation of one model is described
in terms of other models, then in the pro-
cess of problem solving we will have two
phases in place of one. The first will be
connected with model construction for the
practical situation, and the second will
be connected with applying this model to
some practical action.

VII. THE APPLICATION OF MODEL-BASED
INSTRUCTION TO COMPUTER-ASSISTED
INSTRUCTION

On the basis of the principles of model-
based instruction, a CAI facility has been
implemented which teaches the PASCAL lan-
guage on the TERAX computer. Plans are
underway to also implement this facility on
the TICCIT system.

It appears that MEI is a very useful
method in CAI because:

1. Computer graphics provide an effec-
tive way of displaying models and
their transformations. Model-based
languages are much easier to imple-
ment than natural languages.

2. The strict definition of teaching
objectives makes it very convenient
to evaluate user responses. This is
very important in tracing each step
in the process of problem solving.

Three types of conversation blocks have
been designed as shown in Figures 17-19.

Figure 17. Simple Conversation Block

118 NECC 1980

Figure 17 shows a simple conversation block.
It consists oft

P 4. the problem to be solved
C 4 correction block
+ 4 right answer
- 4. wrong answer

ri,nrs IS. Teaching CobvOtaatiest 'lock

In Figure 18, several simple conversation
blocks are combined into a teaching sequence.
In each simple conversation block, one of
the transformations, tl, t2, t3, performed
by the student, is evaluated.

Figure it. svaleatioft COOVO,SSUOR Sleek

Figure 19, in comparison with Fiaure 18,
shows the process of evaluating two students'
solution to a problem. The students' possible
responses are represented by Al, A2, A3e and
A4. Al is the correct answer. A2 is the
wrong answer, but the answer is covered by
the rules of model M1. A3 is the wrong
answer not covered by the rules of M1. A4
is the exit path followed when a wrong answer
is repeated. There are as usual correction
blocks, C2, C3, and C4, which differ depend-
ing on the response of the user.

The conversation blocks described above
are, together with the information blocks,
the basic elements of a CAI micro- lesson.
The diagram in Figure 20 is an example of
this type of CAI lesson.

Mara 20. Disven Of CAISIteteleMpos

In Figure 20, IB represents an informa-
tion block to be displayed on the monitor.
B1 is a simple conversation block, 82 is
a teaching conversation block, and B3 is
an evaluation conversation block. It is,
of course, possible to repeat conversation
blocks B2 and B3 until the lesson is
mastered by the student.

VIII. SUMMARY
In tE717751r, we described the use of

model-based instruction to teach the
PASCAL language. In the classified set of
models, we found and defined a parallel
structure. We next showed how to transform
this structure into a sequence of evolving
models that constitute an evolving parallel
structure, the basis for defining teaching
objectives. The characteristics of model-
based instruction were then described.
Finally, the application of this teaching
methodology to computer-aided instruction
was shown, using as an example the teaching
of the PASCAL language.

REFERENCES

1. Webster's Seventh New Collegiate Dic-
ti.Taly, 1961 ed. G 4 C Merriam Co.
Z--Yakowski, Ludwik. Nauczanie Problemowe
w Szkole Zawodowej. Warszawa: WSIP, 1974.
3. BowIes, Kenneth L. Microcomputer Pro-
blem Solving Using PASCAL. New Yorks
Springer-Verlag, 1977.
4. Jensen, Kathleen and With, Niklaus.
Pascal User Manual and Report. New Yorks
Springer-Verlag, 1970.
S. Schneider, G.M., Weiengart, S.W., and
Petit:me, D.M. An Introduction to Pro-
gram:deg and Problem Solving with Pascal.
New Yorks John Wiley, 1970.
6. Niemierko, Boleslaw. Testy Osiagniec
.Ilholnxch. Warszawa: WSIP, 19/37.

(MINI -MICRO COMPUTER) PASCAL
VERSION 11.0. Institute for Information
Systems, La Jolla CA, 1979.
8. Czejdo, B., Kozinski, W., Kwiatkowski,
S., Kipinski, E. "Zastosowanie Maszyn
Cyfrowych do Automatyzacji Przetwarzania i
Przekazywania Informacji." Prace Naukowe
Politechniki Warszawskiej Elektryka,
47 (December 3977).
9. Chanon, R.M. "A Course in Programming
and Practice: Toward Small Systems."
SIGCSE BULLETIN, 1 (February 1978): 224-
228.

1 9

Structured Programming 119

STRUCTURED MACHINE-LANGUAGE:
AN INTRODUCTION TO BOTH LOW- AND HIGH-LEVEL PROGRAMMING

David G. Hannay
Department of Electrical Engineering and Computer Science

Union College, Schenectady, NY 12308
(518) 370-6273

INTRODUCTION
Students in introductory computer

courses are often frustrated by the un-
familiar processes involved in solving
bewildering algebraic problems, particular-
ly if their background in mathematics is
weak. But these same students can learn
the fundamentals of structured programming
quickly and painlessly by directing the
activities of a simulated robot, R1-D1.

RI-DI is an indirect descendent of the
turtle used by the LOGO group at M.I.T. to
introduce elementary school children to the
computer. The immediate reward of seeing
a turtle move across the floor or a robot
across the screen makes even non-mathe-
matical students excited about programming.
This pedagogical principle of immediate re-
enforcement is as valid for college students
as it is for young children.

But this visible movement is one of
the least significant of Rl -Dl's abilities,
for it has the arithmetic capabilities to
perform simple computations and the logic
capabilities to illustrate the fundamentals
of structured programming.

RI-D1 was also designed for ease of
programming; each command consists of a
single letter or digit. A program con-
sists of a free-form string of commands
with virtually none of the syntax rules
involved in the typical programming lang-
uages; hence a student is free to concen-
trate on such programming techniques as
decision making and loop control.

This particular robot has been used
successfully in introductory programming
classes by means of a simulator written
in PASCAL. This simulator traces Rl -Dl's
-movements and calculations on a comand-
by-command basis. Once students have
been introduced to programming via the
robot, the concepts of programming in a
higher-level language become easier to
explain, and the concepts of computer
organization can be taught from a more

interesting perspective.

CAPABILITIES
Rl -Dl is a robot that has not outgrown

his training wheels. It can move back and
forth in a straight line and position it-
self over one of ten squares (memory cells)
numbered 0 to 9:

forward

0 1 1^11MISIMMINI11 9

(- backward
It can be directed to move to a specific
square or to take a position relative to
the current square, moving forward or
backward one square at a time.

R1-D1 can also do a limited amount of
arithmetic. Each of the ten cells can
store an integer number. It can also add
or subtract from an on-board accumulator.

Decision making is accomplished by
comparing the contents of the accumulator
with the contents of the current cell then
executing a single command (or group of
commands enclosed in parentheses) based on
the result of that comparison. For example,
you could have the robot execute a command
only if the accumulator was less than the
contents of cell 15.

Finally, R1-D1 can be programmed to re-
peat one command (or a series of commands)
a specified number of times. This struc-
ture can be enriched by the use of the
decision making commands to exit from the
loop prematurely based on certain conditions.
For example, it could add a number to itself
seven times, or until the sum exceeded 1000,
whichever comes first.

Input and output commands do not exist
as such. When the simulator is run, you
specify the initial contents of each of the
ten cells; their contents are displayed
automatically after each command is executed.
However, if you wish to teach about I/O

13

120 NECC 1980
instructions as such, reading from and
writing to the cells can be considered as
input and output respectively. Or, while
discussing computer organization, you may
treat these instructions as memory fetch
and store.

SUMMARY OF COMMANDS
Miscellaneous Commands:
"H" Balt.
" " Temporary Pause.(Allows entry of

immediate mode commands.)
"N" Make a Noise.
"@" Execute commands from an indirect

command file.

Movement Commands:
"F" Move forward one square.
"13" Move Backward one square.
"0" Move to square O.
"1" Move to square T.
"2" Move to square B.
"3" Move to square T.
"4" Move to square 1%
"5" Move to square 14
"6" Move to square B.
"7" Move to square T.
"8" Move to square T.
"9" Move to square I

Data Transfer Commands:
"W" Write contents of accumulator

into current cell.
"R" Read contents of current cell

Into accumulator.

Arithmetic Commands:
"8" Zero out accumulator.
"I" Increment accumulator by 1.
"D" Decrement accumulator by 1.
"A" Add contents of current cell

TO accumulator.
"S" Subtract contents of current

cell from accumulator.

Skip Commands:
"E" Execute next command only if

accumulator is Equal to contents
of current cell.

"G" Execute next command only if
accumulator is Greater than
contents of current cell.

"L" Execute 'nett command only if
accumulator is Less than
contents of current cell.

Program Control Commands:
"P* Perform a command as many times

as the current value of the
repeat count register.

"C" Load repeat count register from
the accumulator.

"X" Premature 'Alit from a perform
loop.

MODES OF OPERATION
The R1-Dl can be run in any one of

three different modes: immediate, direct,
or programmed. In immediate mode, com-
mands are executed as soon as the key is
struck on the keyboard. This immediate
feedback has proved very beneficial in
eliminating some of the students' fear
and has made the robot understood and

enjoyed even by children in elementary
school. (While in this mode tl-e last two
groups of instructions, skip and program
control commands, are not allowed, as they,
by definition, involve multi-character
command sequences.)

In direct mode, a complete command
string is given directly to the simulator
which then begins execution. This allows
the students to use multi-character command
sequences with minimal knowledge of the
host operating system. Students communi-
cate directly with this one program without
learning to use a text editor, compiler, or
other system programs.

Finally, as the system text editor is
introduced, students can edit and save pro-
grams for RI-DI and modify them as they see
the results generated. This approach not
Only helps in teaching such concepts as de-
bugging by tracing, but also gives the
students a chance to use a subset of,the
system text editor on a manageable piece
of text since programs are typically only
one line long.

APPLICATION TO VARIED AGE LEVELS
First graders enjoy watching the robot

move back and forth across the screen as
they enter commands in immediate mode.
High schoolers can be shown graphically the
relation of mult":)lication to addition and
division to sub' *.ction as illustrated by
the sample program in the next section.
College freshmen gain a glimpse of both
machine language and PASCAL programming
concepts.

SAMPLE PROGRAM
A program which would take the initial

contents of cells 1 and 2, and put their
sum in cell 3, their product in cell 4,
their quotient in cell 5, and their remain-
der in cell 6 is given below:

1R2A3W
1RCZ2PA4W
Z5WIRC6WP(6R2LXS6W5RIW)11

This program not only illustrates several
important programming concepts such as
loading and storing, looping, decision
making, etc,, but also serves to remind
students that multiplication can be per-
formed by successive additions, and that
division can be performed by successive
subtractions.

The first section of the program reads
the value from cell 1, adds the value in
cell 2, then stores the result in cell 3.

The second section of the program picks
up the first number and loads it into the
repeat count register. The accumulator is
cleared, then the second number is repeated-
ly added to it. 'The product is then stored
in cell 4.

The third section of the program first
clears the quotient to zero and sets up
the dividend as the remainder. Then, each
time through the "P" loop the divisor is
subtracted from the dividend, and the re-
mainder and quotient are updated. As soon

131

as the dividend is less than the divisor,
the loop exit is taken and the program
halts.

One of the major disadvantages of this
type of programming is the obvious lack of
on-line documentation. But since the pro-
grams are so short and simple, this lack
of documentation has not proven to be a
handicap to students.

CONCLUSION
Decision making and loop control on

R1-D1 follow the general outlines of the
PASCAL IF..THEN and REPEAT statements
respectively. The equivalent of a GO TO
statement has been purposely omitted,
thereby teaching students the concepts of
structured programming from the very be-
ginning. Parentheses can be used, when
necessary, to treat a group of commands
as a single command, just as BEGIN..END
are used in PASCAL.

Students in introductory computer
courses learn the fundamentals of struc-
tured programming quickly and painlessly
by directing the activities of the robot.
A few sessions with R1-D1 at the beginning
of the computer science curriculum leave
students both more knowledgeable and more
enthusiastic about programming than they
were in the pre-robot period.

SIMULATOR PROGRAM LISTING

PROGRAM R1D1(INPUT,OUTPUT);
(THE WELL STRUCTURED ROBOT)

(BY; DAVID G. HANNAY)

VAR
COMMAND

CHAR;
ACC,
COUNT,
LEVEL,
LOC,
PC,
PTR

t INTEGER;
CELL

ARRAY(0..9) OF
PROG

PACKED ARRAY[1.
DOUBLE,
VALID

t SET OF CHAR;

INTEGER;
(PROGRAM STORAGE)

.00) OP CHAR;
f SET OF PREFIX COMMANDS)

f SET OF VALID COMMANDS)

Structured Programming 121

(DIRECT EXECUTION VERSION)

{ CURRENT COMMAND)

(ACCUMULATOR)

f REPEAT COUNT REGISTER)

{ DEPTH OF *PERFORM" LOOPS)

{ CURRENT LOCATION OF R1D1)

(PROGRAM COUNTER)

(TEMPORARY POINTER)

{ MEMORY CELLS)

PROCEDURE PERFORM
(FIRST, LAST, TIMES: INTEGER);
FORWARD/

13

122 NECC 1980

PROCEDURE VALID ASSIGN;
BEGIN

DOUBLE tm [IDA,AGA,ALA,APAI,
VALID :=

,
I($ I), ipr,rci,sx,1

END; (OF VALID ASSIGN)

PROCEDURE BLANK SCREEN
(ROW: INTEGER);

BEGIN
GOTOXY(0,ROW),
WRITE(CHR(27):',V)

END; (OF BLANK SCREEN)

PROCEDURE ERROR
(WHICH: INTEGER);

BEGIN
GOTOXY(0,22),
CASE WHICH OF

1:
WRITELN('ILLEGAL COMMAND');

2:

WRITELN('OUT OF BOUNDS');
3:

WRITELN('PARENTHESES CHECK')=
END: (OF CASE)

EXIT(PERFORM)
END; (OF ERROR)

PROCEDURE SCAN
(VAR Pl, P2: INTEGER;
LIMIT: INTEGER);

VAR P3, P4: INTEGER;
BEGIN

IF PROG(PC) <> I('
THEN
BEGIN

P1 := 0; P2 := 0
END

ELSE
BEGIN

PC v PC + 1; P1 := PC;
WHILE PROG[PC] <> ')' DO

BEGIN
IF PROG[PC) = I(' THEN SCAN (P3, P4, LIMIT);
PC :0 PC + 1;
IF PC > LIMIT THEN ERROR(3)

END;
P2 := PC 1

END
END; (OF SCAN)
PROCEDURE SKIP

(LAST: INTEGER);
VAR Sl, S2: INTEGER;

BEGIN
PC : PC + 1;
IF PROG[PC) IN DOUBLE THEN PC PC +
SCAN (S1, S2, LAST);
IF S1 <> 0 THEN PC := S2 + 1

END; (OF SKIP)

133

PROCEDURE PERFORM;
VAR

P1, P2,
RC: INTEGER;

BEGIN
RC := TIMES;
WHILE RC >= 1 DO

BEGIN
GOTOXY (50 , 2) ;

WRITE (' LEVEL : ',LEVEL,' REPEAT COUNT: ',RC);
PC := FIRST;
WHILE PC <= LAST DO

BEGIN
COMMAND :0 PROG[PC];
GOTOXY(0,12);
WRITE(PC,': ',COMMAND,");
IF (COMMAND >= '0') AND (COMMAND <= '9')
THEN

LOC := ORD(COMMAND) ORD('0')
ELSE

IF COMMAND IN VALID THEN
CASE COMMAND OF

READLN;
ow:
BEGIN

GOTOXY(0,22);
WRITELN('* * * HALT * * ");
EXIT (PERFORM)

END;
IF':

BEGIN
LOC := LOC + 1;

END:IF LOC > 9 THEN ERROR(2)

BEGIN
LOC := LOC 1;
IF LOC < 0 THEN ERROR(2)

END;
44'4

'I':

' A'

'5':

sw:

L':

Stnotured Programming 123

CELL(LOCJ := ACC;

ACC := CELL(LOCJ;

ACC := 0;

ACC := ACC + 1;

ACC 1= ACC 1;

ACC := ACC + CELLILOCli

ACC :0 ACC CELL(LOC);

IF ACC <> CELL(LOCJ THEN SKIP(LAST);

IF ACC <xi CELLILOCI THEN SKIP(LAST);

IF ACC >= CELL(LOCJ THEN SKIP(LAST);v:
BEGIN

SCAN(P1,P2,LAST);
PERFORM (P1 ,P 2, 1)

1 3 441

124 NECC 1980

END;

'C'

PC := P2 4 1;

COUNT := ACC;

BEGIN
PC := PC 4 1;
LEVEL := LEVEL + 1;
SCAN(P1,P2,LAST);
IF P2 = 0
THEN

P1 := PC; P2 t= PC;
PERFORM(P1,P2,COUNT);
PC t= P2

END
ELSE
BEGIN

PERFORM(P1,P2,COONT);
PC t= P2 4 1

END;
LEVEL := LEVEL - 1

END;
'X't
BEGIN

RC := 1;
PC := LAST;

END;
END (OP CASC)

ELSE ERROR(1);
WRITE(CHR(27),'J');
GOTOXY(6*L0C+10,12);
WRITELN(10,ACC,'>');
FOR PTR := 0 TO 9 DO
BEGIN

GOTOXY(6 *PTR410,13);
WRITZ('1',CELLPTR),11.)

END:
GOTOXY(50,2);
WRITE('LEVEL: ',LEVEL,' REPEAT COUNT! ',RC);
PC t= PC 4 1

END; { OF PC LOOP I
RC := RC - 1

END; (OF RC LOOP)
END; (OF PERFORM)

BEGIN(R1 -D1 MAIN PROGRAM)
VALID ASSIGN;
WRITETIPROGRAM? '); PC := 1;
WHILE NOT EOLN DO

BEGIN
READ(COMMAND);
PROG(PC] := COMMAND; PC := PC + 1

END;
COUNT := 1; LEVEL :0 0; LOC t= 0; ACC t= 0;
WRITELN('C E L L S');
FOR PTR := 0 TO 9 DO

BEGIN
GOTOXY(6 *PTR +11,10); WRITE(PTR)

END;
PERFORM(1,80,1):

END. (OF PROGRAM 1R1D1')

ACM Elementary and Secondary Schools Sillacommittee

ACM ELEMENTARY AND
SECONDARY SCHOOLS
SUBCOMMITTEE PROGRESS

REPORT,

David Moursund*
Dept. of Computer &
Information Science
University of Oregon
Eugene, Oregon 97403
Phone: (603) 686-4408

ABSTRACT.
Although the instructional use'of

computers at the Precollese level is
growing by leaps and bounds, it is still
in its infancy. Over the short run many
of the major problems are correctly per-
ceived to be due to a lack of adequate
or appropriate hardware, software, and
courseware. But there are two other
major problems that will be the domi-
nant long-term considerations. These
are the problems of securing widespread
agreement upon the ultimate goal(s) for
instructional use gf computers and the
problem of teacher training.

The Association for Computing Ma-
chinery's Elementary and Secondary
Schools Subcommittee has been working
for the past two years to identify some
of the major problems of instructional
use of computers and to help lay a foun-
dation for progress towards their solu-
tion. Some two dozen taskproups have
been established. This paper is the
introduction to a NECC/2 session in

11.,:oursund is Chairman of the ACM
Elementary and Secondary Schools Sub-
committee. He is also editor of The
Computing Teacher, a professional jour-
nal aimed mainly at elementary and
secondary school teachers interested
in instructional use of computers.

which several of the taskgroup leaders
will discuss their progress.

In June 1978 the ACM Elementary and
Secondary Schools Subcommittee was formed
by merger of a Secondary Schools Subcom-
mittee and a Teacher Certification Sub-
conmittee. Since that time ES J has work-
ed diligently to identify some of the
major Problems related to instructional
use of computers at the precollege level
and to help solve them. Dug to very lim-
ited financial resources ES in most
cases can only hone to provide some lead-
ership and to lay a foundation which may
help lead to long term solutions.

This same two-year time span has.
witnessed a massive influx of computer
facility into the schools. Reliable data
on how much hardware has become available
has not been collected. !le know. however,
that total sales of microcomputers by
Apple, Commodore, Radio Shack, and a num-
ber of other companies total in the hun-
dreds of thousands. The state of Minne-
sota has long been recognized r its
leading role in the instructiot. use of
computers. Through the Minnesota Educa-
tional Computing Consortium it has made
time-shared computing available to almost
every school in ehe states Precollege
public education system. During the past
two years these same schools have added

125136

128 NECC 1980

approximately 1,000 microcomouters, while
continuing to increase their use of the
time-shared system. Minnesota has a pon-
ulation of about 4 million, or a little
less than 2% of the total US population.

One can get additional insight into
this massive growth of microcomputer use
in education by talking to a variety of
teachers and by attending local and na-
tional professional meetings, ss it has
been my privilege to do. For example,
each year the northern California affil-
iate of the National Council of Teachers
of Mathematics holds a meeting at Asil-
omar, near Monterey, California. Usual
attendance is about 1,500 educators. Bob
Albrecht, well-known author and leader in
the computer education field, has attended
this meeting for many years. According
to Bob the 1978 meeting included 4 modest
amount of computer activity, and there
were 10 microcomputers available for dem-
onstrations and hands-on use.

At the most recent 1979 meeting
there were computer-related talks sched-
uled in parallel with every math session.
There were some 66 microcomputers avail-
able for hands-on experience, and there
was a well-organized software swap. The
software swap was set up by the Computer-
Uaing Educators (CUE), a northern Cali-
fornia group that is lass than two years
old. By the end of the Asilomar meeting
CUE had well over 200 members. (1)

At the Asilomar meeting I talked
with dozen of teachers who are just get-
ting started in the instructional use of
computers. The most typical question
went approximately like this: "Our
school has $X to spend for computers.
What should we do ?' The typical figure
mentioned ranged from a thousand dollars
or so up to many times that amount.

Two conclusions seem evident.
First, many people with very little for-
mal training or experience in the in-
structional use of computers are now be-
coming involved; indeed, they are being
asked to take major decisions that will
affect how computers are used in their
schools. Second, while the primary con-
cern is still hardware, there is growing
awareness on the part cf novice users
that software is els° a major issue.

On the average, the novice computer
educators know little about work done by
others nor of the higher level problems
faced by the field of instructional use
of computers.

WHERE ARE WE HEADED?
In my opinion one of the major pro-

blema of instructional use of computers
is there is little agreement as to where

we are headed. The overall long-term
goals are neither clearly understood nor
widely accepted by the people who will be
involved in implementing them.

Over the past decade computer liter-
acy for all students has emerged as the
major goal in instru "tional use of com-
puters at the nr -" ege level. Ini-
tially comput4 acy tended to mean
computer aware It was thought by
many to be adeqa students could
comt to understano ..ome of the capabili-
ties and limitations of computers and
thus gain some insight into how computers
were affecting the world and their lives.
There was relatively little mention of
giving simdents substantial training in
use of computers or inter iting their
use into the curriculum. Lnitially, at
least, it was clear that resources to do
so were not available within the.foresee-
able future.

But the future proved difficult to
foresee accurately, and large-scale in-
tegrated circuitry became commonplace.
As the price of computers dropped and
availability increased, the meaning of
computer literacy changed. Now the ex-
pression tends to mean a functional,
working knowledge of computers.

The analogy with reading and writing
literacy expressed by Art Luehrmann (2)
is highly instructive. We can imagine
being involved in education at the uriwn
of the invention of reading and writing
and entering into discussion as to their
role in education. We can imagine edu-
cators getting bogged down on issues such
as the brand of pencils and paper that
are best or lamenting the poor ouality
and small, quantity of books that are
available, But these turn out to be
short-term issues, and are certainly not
the major long-term problem. Over a time
span of a few thousand years, and aided
by the invention of movable iype and high-
speed printing presses, reading and writ-
ing come to be integrated into every as-
'pect of human intellectual activity.

What have proved to be continuing
Problems in reading and writing are il-
lustrated by looking at examples, such as
in mathematics and music. In each field
there he been a need to develop appro-
priate symbols, notations, and vocabulary
in order to represent the key ideas. Key
ideas had to be developed and preserved.
As this knowledge accumulated, educatora
are faced with the problem of hc.4 to
teach it and what students should learn.

Now shift your attention back to the
problem of inatructional tse of computers.
If our technologically oriented aociety
continues to prosper then we can easily

137

ACM Elemental), and Secondary Schools Subcommittee 127

imagine that eventually computers will be
as readily and conveniently available as
books, pencils, and paper are today.
Within that framework a single clear-cut
goal for instructional use of computers
seems eiident to me. We want to integrate
use of computers into every aspect of hu-
man intellectual activity in the same
manner that we have done for reading and
writing. The computer is a universal
tool, a new aid to problem solving, and
we want all students to develop a high
level of functional knowledge and skill
in its use.

This ultimate goer. will take many
decades, centuries, or even milieu's to
accomplish. Progress will be made by
identifying problems that face current
educators and working to solVe these pro-
blems. The ACM ES has identified about
two dozen problems and established a like
number of task groups to work on them.
The next several sections of this paper
discuss some of these problems.

SHOULD COMPUTERS BE USED IN EDUCATION?
There is growing support prom tea-

chers, school administrators, school
board members, parents, and others for
the instructional use of computers in
education. But much of this support is
still tentative, and much of it is based
upon incorrect insights as to how com-
puters will affect education. Robert
Taylor of Columbia Teachers College
heads the ES J Arguments taskgroup. His
review of the literature led him to as-
semble a book of readings (3) on the
arguments in favor of instructional use
of computers that have been so well ex-
pressed by various people over the past
15 years. Perhaps the main conclusion
to draw from Taylor's work is that many
people are busy reinventing the wheel.
Most people currently entering the com-
puters in education field are not taking
the time to learn what ib already known
and thus are expending considerable ef-
fort redoing what has already been done.

HARDWARE, SOFTWARE, AND COURSEWARE
PROBLEMS

Several of the ES3 taskgroups are
concerned with the problems of hardware,
software, and courseware; as mentioned
earlier, many people view them as the
major issues that need to be resolved.
The hardware and software problems are
closely related. We have a growing num-
ber of options in educational b vdware,
with the quality and capabilit these
machines continuing to improve -ut
there is a lack of software compatibil-
ity between different manufacturer's

machines, and we are just beginning to
see how massively difficult the software
problem really is.

We can better understand the soft-
ware/courseware problem by examining one
of the major directions of expanded com-
puter activity, computer-assisted in-
struction. The idea is for the computer
to take over some of a teacher's func-
tions, interacting with students to en-
hance student learning. Material is
needed at every grade level and in every
discipline, and the past 20 years of ex-
perience of the PLATO project, as well as
many other computer-assisted instruction
pro3ects, points out the difficulty of
developing good quality instructional
software and cvircware. Developing good
software and computer-oriented courseware
is more difficult than developing the
more traditional materials currently in
use. nreover, the current market is
small, the number of people involved in
developing materials is modest, and the
machinery for coordinated national ef-
forts in development or distribution is
not yet well established.

It is clear, then, that regardless
of hardware progress, software and course-
ware will continue to be major problems
for many years to come. Some federal
funding is being made available, however.
For example, Judy Edwards (4) heads a
three year, $200,000 per year project to
work on educational software for micro-
computers.

Another approach is being strongly
encouraged by ES J and has also received
the backing of the International Council
for Computers in Education (5). Local or
statewide groups of computer-using educa-
tors who can readily participate in soft-
ware and courseware exchange are being formed.
Such local groups bring people together
for personal interaction and are proving
to be a highly effective mode of infor-
mation dissemination. Those interested
in starting such a group please contact
the author of this paper.

CURRICULUM CONTENT QUESTIONS
Computers are a general aid to pro-

blem solving in every academic discipline,
although they currently are much more
used in some areas than in other;. ES
has taskgroups concerned with computer
uses in mathematics, the sciences, the
social sciences, the humanities (includ-
ing art and music), business, and voca-
tional education. The task in each case
is fairly similar. Eventually use of a
computer as an aid to knowing the subject
matter and to solving problems from these
disciplines will be routine. So far,

1 3

128 NECC 1980

however, relatively little progress has
occurred.

We find the most progress in mathe-
matics, Calculator use in secondary school
mathematics is now common, especially in
the more advanced courses; strangely (in
the author's opinion) use of calculators
in the remedial math courses has been more
slow to gain acceptance. The use of com-
puters is taught in some math courses,
but we seldom find a math course where
the math content has changed to reflect
what computers can do or how one uses
them in problem solving. Almost always
the computer is an add-on topic and is
used in conjunction with learning the
traditional topics in the traditional man-
ner.

In very few secondary schools one can
find a significant change in the science
or business curriculum due to commuters.
As in math, computer use tends to be add-
on in nature, to help students learn the
traditional content. Thus it is a'very
rare student who emerges from high school
with a functional knowledge of the com-
puter as an aid to problem solving in a
variety of disciplines.

The problem here is immense. The
content and coursework for every disci-
pline needs to be rethought and redone
in the light of computers and their ca-
pabilities.

ELEMENTARY SCHOOL
A single taskgroup is attempting to

bring order out of chaos in elementary
school education, which represents about
half of all of precollege education. Al-
though this group is not expending much
energy on the issue of calculators, that
particular issue gives good insight in-
to some of the overall difficulties
faced by the field of instructional use
of computers.

Calculators are now ouite inexpen-
sive and reliable. Even at the retail
level one can buy a 4-function machine
with 4-key memory and liouid crystal
display for under $10. Since such a
machine will last for years, an elem-
entary school could provide its stu-
dents with essentially unlimited access
to calculators at a cost of perhaps S2
per student per year. The use of cal-
culators at this level has been studied
in many research projects and has re-
ceived the backing o such organiza-
tions as the National Council of Teachers
of Mathematics and the National Council
of Supervisors of Mathematics. Many
books of calculator materials are now
available for use in the elementary
school.

But calculators have hid essentially
no impact upon the elementary school math-
ematics curriculumt Speculations as to
why would fill at least an entire paper;
however, it seems that a major factor is
that teachers lack appropriate knowledge
and skills.

What, then, can we expect to happen
with, computers in the elementary schOol?
One answer is computer-assisted instruc-
tion, with the main emphasis being on the
computer taking over some of the instruc-
tional processes currently handled in
other ways. Proponents talk about tea-
cher-proof materials and point out inad-
eouacies in the current instructional pro-
gram. Opponents point out the inadeoua-
cies of commuterized instructional mat-
erials and discuss the wisdom of this
type of change in our instructional de-
livery system,

Very few elementary schools current-
ly attemot to teach studenta about com-
puters 'We have only modest insight as
to what is appropriate. Again, the major
drawback is teacher knowledge.

TEACHER KNOWLEDGE
Every teacher knows how to read and

write and makes use of this knowledge in
teaching. Every teacher has substantial
insight into the use of reading and
writing as a tool to learning the disci-
plines s/he teaches, and in solving the
problems of these disciplines. The great
bulk of instructional materials builds
umon students' abilities to read and
write

Contrast this with teacher knowledge
of computers! It is a truly rare achool
that has even one teacher who uses com-
puters as an everyday tool in cooing with
the yrobleme of his/her disciplihe. Thia,
then, is the major problem. We are.ask-
ing computer illiterate teachers to help
students to become computer literate at
a functional level.

This problem is being attacked in
many ways. Among these are teacher cer.
tification requirements, pre-service
courses, in-service courses, self-directed
study, and so on. Many teacher organiza-
tions recognize the problem and are in-
cluding computer talks and computer ta-
torials in their professional meetings.
All of these things are necessary, and
all are helping. But progress seems slow
relative to the magnitude of the task.
The educational world bas yet to accept
the use of computers in precollege educa-
tion as a major goal, and thus to begin
to devote the resources necessary for
rapid progress.

13

ACM Elementary and Secondary Schools Subcommittee 129

REFERENCES
I. Computer-Using Educators. Founder

and president of this organization is
Dr. William (Sandy) Wagner, Mountain
Vtew High School, Mountain View, CA
94041.

2. Lenhrmann, Arthur. "Should the Com-
puter Teach the Student, or Vice-
versa?" Proceedings of the Spring
Joint Conference, 1972. Reprinted
in Creative Computing, vol. 2, no.
6, Nov-Dec 1976.

3. Taylor, Robert. Tutor, Tool Tutee:
The Computer in the School. leachers
College Press, scheduled Tor publica-

Lion in 1980.
4. Edwards, Judy. She is Director of

Computer Technology Northwest Re-
gional Educational Lab, 710 S.W. 2nd,
Portland, OR 97204,

5. International Council for Computers
in Educations This non-profit pro-
fessional organization publishes The
Computing Teacher, a journal for i37
ucators. Seven issues are planned
for academic year 1980-81, and the
price for US subscribers is $10.
Write to ICCE, %Computing Center,
Eastern Opegon College, La Grande,
OR 97850,

140

130 NECC 1960

Robert P. Taylor
Towbars College
Columbia University
(212) 6784484

COMpUTING CONPITINCIIS POR BCSOOL MOMS

James L. Poirot
North Texas University
(817) 788-2521

IN/ROPUCTI014
On December 4-5, 1978, the Elementary and

Secondary Schools Subcommittee (313) of the ACK
Curriculum Committee met in Washington, DC to
begin formally laying out curricular and teacher
training guidelines for the integration of com-
puting into the elementary and secondary schools
of the country. Building upon a lengthy initial
discussion and a review of earlier papers and
documents dealing with the ease problem, the sub-
committee outlined what it would attempt to dc.
This process identified several tasks that
together would constitute the overall work of the
subcommittee. finally, on the basis of interest
and expertise, each participant in the l$3 meeting
was assigned to a working task group to further
define and carry out one of the identified tasks.

Among the tanks identified was one dealing
with teacher training: to define the scope and
unbutance of teacher training needed to integrate

coeputing into the schools. Accordingly, a
teacher !reining task group was formed.

This paper is a product of that task group.
It deals only with a subset of the issues and
areas related to designing overall, computer -

literate teacher training. To appreciate its
focus and accept some of its omissions, one should
be aware of the following conctrsinta that task
group, placed on itself. first, it was unanimously
agreed that definitions should be in terse of ore.
potencies to be achieved rather than in terms of
programs or courses to transmit those competan*

cies. Socund,beesuse the computing coepetencies
needed by the teacher who must teach computing as
a subject are more extensive than those needed by
other teachers, the competencies needed only by
the computing teacher should be treated es a sepa-
rate module. Third, though integrally related to
each other, the competencies needed by the teacher
are quite different from those needed by the
teacher's teachers, the staffs of institutions
actually doing the teacher training. It was
agreed, there:ors, that specifying the compete*.
cies needed by the teacher's teacher would be
separate module of work. It was also agreed that
it should only be undertaken after the competen-
cies needed by the teacher had been specified.

The task group saw the coerstencies needed

James P. Powell
North Carolina State University
(919) 737-2858

by teachers at the school level as belonging to
one of three sets. The Met set encompasses
those basic universal computing oompatencies
required for any school teaching, regardless of
level or subject. The second encompasss those
additional computing competencies needed only by
the teacher **must teach computing es a subject
in its own right. The third encompasses' addi-
tional computing related, subject - specific com-
petencies needed by teachers of reinjects other
than computing.

This paper outlines the competencies in all
three sets. It Incorporates critical suggestions
received as a result of wide circulation of two
earlier papers on the topic (1,2). We also trust
it will stimulate useful discussion and criti-
cism. We hope it provides some guidance to those
wondering abet teachers should know about com-
puting.

COMPUTING COMMITUNCIsS Halpin BY TENCaiRs
Three sets of computing competencies

The Wet (1.0) includes those which all
teachers must haft, regardless of their level or
discipline, even if that discipline is the
teaching of computing itself. The second set
(2.0) includes those needed only by the teacher
of computing as a subject. It should be noted
this second set presupposes the Met. The third
set (3.0) includes additional competencies for
teachers who use computing to support or enhance
instruction in subjects other than computing.
leery teacher should acquire the competencies
listed in the first set (1.0) and the competen-
cies listed in either the second set (2.0) or the
third set (3.0).

1.0 s Universal computing competencies needed 1w
ell teachers

These are computing competencies which ell
school teachers should have to teach effectively
in a society permeated by computes. They casts
to either cc both Of two goals: (1) to under
gated computing and (C) to use computing. They
can be stated partially in terms of competencies
listed in ACM's "Curriculum '78r (3) and per
tially in termed different competencies derived
from other sources. >t number of such other

14

ACM Elementary and Secondary Schools Subcommittee 131

1

sources are listed in the references at the enact
this paper. They refloat the abundance of diverse
work that has taken place in the past decade
relating computing to education.

1.1 Comfttencies
In terms of these universal competencies,

_Ames teacher should:
C1.1 be able to read and write simple pro-

grams that work correctly and to under-
stand bow progress and subprograms fit
together into systems;

C1.2 have experience using educational
application software and documentation;

C1.3 have a working knowledge of computer
terminology, particularly as it relates
to hardware;

C1.4 know by example, particularly in using
computers in education, some types of
problems that ate and some general types
of problems that are not currently
amenable to computer solution;

C1.5 be able to identify and use current
information on computing as it relates
to education;

C1.6 be able to discuss at the level of an
intelligent layperson some of the-his--
tory of computing, particularly as it
relates to education; and

Cl.? be able to discuss mural or human-impact
issues of computing as they relate to
societal use of computers generally and
educational use particularly.

The ahoy* competencies should be transmitted
within the general preparation programs for all
teachers by having those progress include the
topics listed below (11.1 through 11.5). For

those being trained to teach computer science,
those topics will represent only a small subset of
whet mat be learned about computing and its uses
(see Section 2.0). For all other teachers, how-
ever (apart from the subject-specific competen-
cies covered in Section 3.0), these topics cover
much of what must be learned about computing by
the teacher who is to be minimally literate.

1.2 s Topics of Study
T1.1 Programming "Topics: Includes develop -

sent of simple algorithms and their
implementation in a programing lan-
guage, programming style, debugging and
verification, end task-specific pro-
gramming for educational applications.

11.2 COmoubtr, lerminologv; Includes soft-
ware le.g., operating Systems, time
sharing system) hardware (e.g., CRT,
tape, disk, microcomputers) and miscel-
laneous items (e.g., documentation,
testing, vendors) .

11.3 Classic Applications of Cosentino in
moons Includes representative
experience with problem solving and

text manipulation; simulation, drill
and practice, and complex tutorial

systems including complete student
progress record keeping; and educa-
tional administrative systems.

11.4 Wuman/Nachine Relationships: Includes
artificial intelligence, robotics,
computer assistance in decision making
(e.g., medical, legal, business),
simulations, and computers in fiction.

11.5 Information on computers, in educations
Includes periodicals, important books;
on-line inquiry sources such as ERIC;
professional societies such as acts,

ARCS, NCTRI time-sharing networks,
networks of compuuter users; and hard-
ware vendor groups.

In 11.1 procedures or algorithm are at the
heart of computing so teachers should learn what
they are by implementing simple examples such as:
a procedure to average a class's grades, a game
to guess what number the computer is thinking of,
or a procedure to display a large box on the
screen and then mate it shrink to disappearance.

Teachers need to be able to implement such
procedures in only one language but should be
able to read at the same, or a greater level of
difficulty in a second so that the idea of a
language, its strength and limitations, springs
from personally experiencing functional dif-
ferences between two languages. Within the
limitations of simple programs,teachers should be
taught to write well-structured code, easily
readable by others, and to document their code in
acceptable fashion.

11.2 should be integrated throughout the
course of study. In order to successfully use
computing the vocabulary of the field must be
understood. What is the difference between
tape, a floppy disk, and a disk? Why use one over
the other? These are general ideas but some
minimal understanding of thesis necessary to use
computers.

11.3 should certainly familiarise the
teacher with several of the existing well-
developed CAI systems cited in Section, 3.0 below.

?etchers will not develop new ideas about what
could be done in their areas unless they see the
best of what has been done; neither will they get
a full understanding of what can not be
reasonably well dons by computer without such
exposure. Tor example, acquaintance with the
physics system designed by Bork (4), with CCC
drill and practice systems based on Suppes's work
(5), or with PLATO work (6), should serve to
acquaint the teacher with the CAI issues.

Since many teachers end up in administration
and since administrative uses of computers affect
the teacher, WOO introduction to one or more
representative administrative systems should be
included. A student record system would probably
be a reasonable choice for illustrative study; it
deals with information familiar to the teacher
without using financial details some might find
difficult to understand.

Teachers should also be familiar with super

1 2

132 NECC 1980

calculator modes of computer use as a classic
application. As home computers become more
common, perhaps little formal work in this area
will be necessary. Clearly,word processing must
be covered= every teacher does so such word pro-
cessing manually that none should be left ignorant
of how much word processing help the computer can
give.

With respect to T1.4, the long range and the
immediate implications of computing as a form of
artifical intelligence should be taught. The
excitement of learning to think about thinking and
of contemplating the powers and limits of human
intelligence are so significantly linked with com-
puting experience that this aspect must be
studied; the opportunity is too great to pass up.
Artificial intelligence pay best convey both the
power and limitation of computing in education.
Acquaintance with any of several perspectives on
this experience is essential and can be taught
using such projects as the WOO work (7) or the
SOLO work (I). A growing body of fiction about
computing can also contribute effectively to the
teacher's insight into the emerging world (9,10).

With respect to T1.5, teachers must know
where to look to keip abreast in this rapidly
changing field. Course work and instruction
should therefore routinely call attention to and
require that the trudge, use a range of sources
about computing and eddcation.

The ideas presented above represent a minimal
set of competencies which every teacher should
obtain. The topics Oreeented provide a framework
to achieve this minimal level of competency. In
addition to these competencies, every teacher
should also acquire the competencies listed in
either Section 2.0 or Section 3.0.

2.0 s Competencies needed for the teacher of
computing

While every classroom teacher should have the
general set of computing competencies suggested
above, the teacher of computing needs more. The
likelihood that he or she will, in addition to
teaching, be forced to function as a general
resource to faculty, administration, and students
only increases the need for more extensive compe-
tency in computing.

Since much of the knowledge required for such
a teacher is similar to that required of anyone
desiring to be a computer professional, many of
the computer competencies defined in the recent
ACT4 Curriculum Committee report, "Curriculum '70"
(3), apply to the teacher as well. This sector
therefore relies extensively upon that report.

2.1 : Competencies

The core material recommended for teachers of
computer science represents essential elementary
material, as well as material especially designed
for educators. Computer science teachers ehoulds

C2.1 be able to write and document readable,
well-structured programs and linked

systems of two or more programs,
C2.2 be able to determine whether they have

written a reasonably efficient and
well-organized programs

C2.3 understand basic computer architec
tonal

C2.4 understand the range of computing
topics that are suitable to be taught,
as well as the justification for

teaching these topics,
C2.5 know what educational tools can be

uniquely employed in computer science
education.

The first three competencies are of the sort
commonly needed by all computing professionals,
and are listed in "Curriculum '711" as among those
to be covered by the undergraduate computer
science degree program. Competencies C2.4 and
C2.5 are not orAmsonly needed by all computing
professionals. They are essential only in the
preparation of computer science teachers.

lormal training in mathematics is

considered crucial for the teachers of computer
science. While the specification of this meths -
matical content is considered beyond the scope of
this report, it should be noted that this content
may include topics which are frequently not part
of formal mathematics programs (e.g. finite
mathematics, statistics).

For individuals who are to serve as a com-
puter resource person for their school or school
system, two additional competencies have been
identified.

C2.6 Develop the ability to assist in the
selection, acquisition, and use of
computers, interactive terminals, and
computer services suitable to enhance
instruction.

C2.7 Ds able to assist teachers in evalua-
tion, selection, and/Or development of
appropriate instructional materials
that use computing facilities.

2.2 : Topics of Study
These competencies should be gained through

a series of courses and other vehicles developed
through joint efforts of teacher education pro-
grams and the computer science program. We pre-
sent below a list of topics that should be
included in the program.

T2.1 Programming Topics: Includes ;advanced

algorithms, programming languages,
blocks and procedures, programming
style, documentation debugging and
verification, elementary algorithm
analysis, applications.

T2.2 Software Croanizationt Includes cos-
pUter structure and machine language,
data representation, eymbolic coding
and assembly systems, addressing tech-
niques, macros, program segmentation
and linkage, linkers and loaders,

systems and utility programs.

1 el 3

ACM Elementary and Secondary Schools Subcommittee 133

T2.3 aardware Organizations includes
computer systems organisation, logic
design, data representation and
transfer, digital arithmetic, digitel
storage and accessing control,
reliability.

T2.4 Data Structures and illing_Processings
includes data structures, sorting and
searching, trees, file terminology,
sequential access, random access, file
I/0.

T2.$ Computers in Society: . Computers and
their effects on governments, careers,
thought, law, personal behavior)
privacy and its protections information
security and its preservation.

12.6 TeachilMi_CbmPuter Sciences includes
(1) knowledge of learning theories as
they apply to learning about computers.
(2) knowledge of several appropriate
curricular scope and sequences for a
variety of program goals (e.g., liter-
acy, careers, college preparation. per-
sonal problem solving).

'Curriculum '70," along with avast amount of
research in computer education, supports the
inclusion of topics 22.1 through T2.5. Knowledge
of programming topics, software organisation,
etc., are essential for the computer professional
of today.

The teaching of computing is a unique cox»
pater profession. Knowing how to program,
however, does not, in itself, qualify a teacher
for teaching computer science. Materials on why
and how to teach computer topics included in T2.6
are invaluable to the teacher of computing and
should be included within a program of study
training such teachers.

Competencies C2.6 and C2.7 of the previous
section are required for those serving as computer
resource personnel for a school system. These
competencies should be gained through the computer
science program and the teacher preparation pro-
gross. The following topics will assist in devel-
oping the required competencies.

22.7 Winced Tunics, in computer, Sciences
includes advanced topics in computer
organisation, operating system, archi-
tecture) .datebase systems, computer
communications.

12.0 Computers, in Education: includes
detailed knowledge of learning/teaching
research as it has implications for
affective design of institutional com-
puting systems and administrative uses
of computing in our educational
setting.

including study of computers in education
will increase the teacher's ability to as:Me a
role of leadership in providing direction toe
school system in integrating computing into its
curriculum. This additional computer background
should allow the computing teacher to act as a
resource person to assist in fostering development

and implementation of cosputing throughout the
school, even when the other teachers know nothing
of computing.

3.0 Subject specific Computing competencies
needed by teachers

In addition to the set of universal
competencies needed by all school teachers, there
are additional level- and subject-specific
competencies which teachers should have. Any
teacher will require at least one of these, but
no one of them will be universally appropriate
for all teachers. The definition! of those
competencies spring entirely from the vast and
highly diverse body of experience with using
computing in education over the last decade.
Seeress representing SOW of this work are listed
in the bibliography. The competencies can be
stated generally, irrespective of the teacher's
eventual level of subjects the topics, though,
will vary considerably, depending on both.

3.1 ComPotenotee
In terms of these subject-specific

amp:tingles, the teacher should:
C3.1 be able to use and evaulate the general

capabilities of the computer as a tool
for pursuing various discipline.. or
level-specific educational tasks;

C3.2 be able to use and evaluate alternative
hardware and software systems designed
to function as tutors or teacher aids;

C3.3 be familiar with information and quan-
titative techniques of study in the
(teacher's) subject.

These competencies should be developed by
the teacher preparation program, tailored to suit
the trainee's intended teaching leiel and

subject. Vs will not present an exhaustive list
of topics corresponding to these subject-
specific and level - specific uosPeunotas.
Instead, we will present model topics for a few
selected subjects end levels.

3.1.3 -Libidos of Stu& for Teachers of Early
Childhood arisary_grasea_imel-- TIC
TEC3.1 Computerises wimplh.gt opens -

gap Experience with a wide rends of
computerises but computing-related
activities that children van partici-
pate in to enhance their readiness to
understand and work with cosputers.

21C3.2 games and Simulations: Experience
with a wide range aflame end simula-
tions that stimulate children to
explore and better understand funda-
mental concepts and strategies of
learning.

T1C3.3 Tutorial patens: Soperience with
simple and complex tutorial systems
focusing upon mathematics, spelling,
reading, and other elementory topics,
including bi- lingual variations of
such systems.

1 4

134 NECC 1980

=3.4 exploratory, programming systems:

Experience with well-developed explor-
atory systems where child-appropriate
EA) subsystems such as robots are pro-
grasmatioally manipulated by the child
in a discovery or problem- solving

approach.
Less work has taken place in the area covered

by 14E3.1 than one might expect. Despite the
likely wide-spread availability of microproces-
sors in the immediate future, computer less com-
puting activities can still be very useful, Sy
contrast with heavily machine-dependent activi-
ties, they provide a more contemplative, less
involved opportunity to examine some of the funds -
mental ideas connected with computing. They thus
allow those using them to deepen their under-
standing even if titet have access to computers.
Typical examples may be found in some of Papert's
work (ll) and in Taylor (12).

Vast quantities of games and simulations are
available for TOC3.2, but careful choices should
be made in selecting them. Many are not well -
written, either from a programming point of view
or from a child-user point of view, and no game or
simulation should be selected unless it succeeds
in both areas. Some of the best work in this area
at this age level came out of the People's Com-
puter Company under the initial stimulus of
Albrecht (13).

With respect to TEC3.3, though,many tutorial
systems have been developed, not all of them are
good. The experience of the teacher should
certainly include at least one good system and
some discussion of what lies behind it. The work
of the CCC group under Suppes is certainly a
worthy example in this category (14).

Finally, new exploratory systems relevant
for 11C3.4 are smearing, but the pioneering work
is still only for illustration. In particular,
the =MCC work which produced SHALLTALe (15) and
the LOGO work, particularly as Seymour Papert has
advertised and sustsined it (16), is outstanding.

Microprocessors can be the primary machine
used, but not so much that the trainee is left
ignorant of the advantages of larger systems.

3.2.2 : Tbeics of Study for Teachers of Foreign
Language --SW.
TP53.1 Genes and Simulations: Experience

with a wide range of games and simula-
tions designed to provide cultural
background and informal language
learning, using the culture as context
and the language as the medium of com-
munication in the gems or simulotion.

4114.2 Tutorial Systems: Experience with
tutorial systems designed to enhance
the learning of a foreign language
through a carefully arranged body of
interactive experiences driven by com-

petency-based, computer-administered
testing.

TP53.3 perste:: language, Text Editing: Expe-
rience with a powerful text editor

used to create and manipulate texts in
a foreign language.

Under TFL3.1, simulations based on relevant
activities and situations in the language-
culture can provide insight into the languags
difficult to obtain in other ways. these, and
many popular computer games, should also be used

provide a more informal language practice for
learners. This practice can take two forms: (1)

translatinq and (2) informally using the
language. Teachers should practice translating
all user text, of appropriate games and simula-
tion, into the target language, thus preparing to
have their students do such translation.
Teachers should also have wide experience with
playing games whoa, text is entirely in the tar-
get foreign language and which expect all player
responses in that language. Such playing in a
foreign language can be a valuable informal
enhancement. Experience with a wide range of
such games and slwulaticns may else suggest new,
more appropriate ones which the teacher can
Create or have others, including students,
create. Some attempt to create such new material
(or new variations of old material) should be
part of every foreign language teacher's
training. Naturally, where audio is available,
it should be appropriately used.

There are many examples of language drill
and practice suitable for use under TFL3.2. Work
such as that done by Suppes (17) at Stanford
should certainly be familiar -to language
teachers, though alternatives certainly exist
(18). Work in this area should rely es heavily
upon audio and graphics as possible, thus cutting
down on the automatic tendency to always trans-
late from the native language and to develop
competence only in reading' and writing the
foreign language.

TFL3.3 should ensure that teachers use a
suitable computer text editor to manipulate text
in the target foreign language. With appropriate
accent mark capabilities, such editors can
encourage language learners to practice much more
prose writing and thus enhance their overall com-
mend of the language.

3.2.2 : 'lbpics of Study for Teachers of Physical
Science -- TPS
TPS3.1 Exploratory programming Systems:

Experience with well-defined explora-
tory systems through structured,
discipline-appropriate languages.
Systems meet include graphic capa-
bilities, be programmahly control-
lable by the student, and be oriented
to discovery through problem-solving
activities relevant to the physical
sciences.

TPS3.2 Tutorial Systems: Experience with
tutorial systems designed to enhance
learning of the physical sciences
through a carefully arranged body of
interactive experiences driven by

1'45

ACM Elementary and Secondary Schools Subcommittee 135

competency- based, computer-adminis-
tered testing.

7253.3 Wass and Insulations Brperience with
etand-om gams and simulations
designed to enhance understanding of
specific physical phenomena or signi-
ficant,past experinents.

7293.4 Clammog/Laborabery
experience with automated sanagesent
of people, learning, time, and
resources including automated inven-
torying, laboratory
infornatim/referance system; in
general, uses of the cosputer to
provide the science teacher with more
time to west with individuals.

1123.5 Date Collection and Analysis: expe-
rience with :systems which collect and

analyse date including on-line
gathering and analysis of experimental
data and process control systems which
collect, analyse and provide feedback
to the system.

Tape possibilities under all three topics for
Physical science teechtcs have been extensively
explored already by Bork (19) and others (20).
their careful work and well-documented analysis
should be extended and incorporated in the
trailing of physical science teachers. Such
training should include experience with relevant
examples which illustrate the three topics; it
should also require each trainee to construct
selected, similar, small modules of computer-
supported instruction as a normal part of teacher
training.

=MAW
This paper has addressed the computing compe-

tencies needed by pre-college teachers. These
competencise are listed in three groupings based
on the involvement of the teacher in computer-
related activities. Because of the variation of
subject matter, implementation magpies have been
given for teachers of- grades 1-4 (early

childhood), for teachers of foreign languages and
for teachers of physical science. These examples
are not meant to be In inclusive but to indicate
the level of necessary background knowledge.

Before graduating from a teacher training
program, all teachers should be required to
acquire the first sat of competencies and either,
the second or third set. This requirement will
prepare each teacher to use computing in the
classroom.

No aotempt has been made to package the com-
petencies into specific courses. It is felt that
each environment will possibly require a different
technique for the introduction of the material.

Another group of individuals that need to be
considered are the currant in-service teachers.
The competencies described above are as important
for them as for our future teachers. In-eervice

courses must be developed to provide the indicated
background for bi..8011,100 teachers.

List of Contributors
Vivian Coon, University of Missouri -Rolla
Richard Dinnis, University of Illinois
Dan Isaacson, University of Oregon
David Musson., University of Oregon
John W. Hamblen, University of Missouri-Rolla
Atone R. Kamorewskii Bremen High School,

Midlothian, Illinois
James Lockard, Buena Vista College
Dick Ricketts, Multnomah County Education

Service District, Portland, Origin
Stan Troitman, Wheelock College

Cladd References
1) Poriot, James, James Powell, John Romblon,

*Mart Taylor. "Computing Competencies for
School Teachers -- A Preliminary Projection
for the Teacher of Computing." National
Educational computing Conference
Proceedings, Iowa City, 1979.

2) Taylor, R.P., John Hamblin, James L.
Poriot, and James D. Powell. * Computing
Competencies for Teachers -- A Preliminary
Projection for All but the Teacher of
Computing." National educational Cosoutift
Conference Proceedings, Iowa City, 1979.

3) Curriculum Committee on Computer Science
(C3$). °Curriculmi701 Recommendations for
the Undergraduate Program in Computer
Science." (Preliginary Draft, dated Autumn
1976).

4) Mork, Alfred. "Learning to Teach Via
Teaching theCOmputer to leech.' Journal of
Comoutereased Instruction, November 1275,
vol 2.

5) Sums, Patrick. "Computer- Assisted

Instruction at Stanford" in Man and
Computer, larger, 1970.

6) Smith,' Stanley and Bruce Arne Sherood.
"Educational Uses of the PLATO CmpUter
System." SCINC4* April 1976 , vol 192.

7) Papert, Seymour. "Teaching Children
Thinking," Logo Memo 2, NUT AI LAO, October
1971.

S) Dwyer, Thames. °The Act of Ideation*
Blueprint for a Renaissance' Creative,

Computing, Sept/Oct 1976.
9) MOsehmits, Abbe (editor). Inside

Information: Computers is fiction.
Reading, Mass.* Addison4Iesley, 1976.

10) Taylor, lobes* P. (editor). Tam of -the.
Marvelous pocking: Thirty -Five Stories of
Commuting. lbrrimtowa, 1447.: Creative
Computing Press, 1980.

11) Papert, Seymour. "Teaching Children to Be
athematic:Ian* VS. Teaching About
leatbesetica.0 Logout,* 4, MIS AX LAS, July
1971.

12) Taylor, H. P. 0Computerlase Competing for
Young Children or What to Do till the
Coyotes Cones" in Proceeding of the lid
World Conference on Omuta' in Education.
Morth Melland/Amsterdam, 1975.

116

136 NECC 1980

13) IOC (collective authorship). What to Do
MK You It t Return. Menlo Park, Calif.:
People's Computes Company, 1975.

14) Stipp's, Patrick and Elisabeth decker. "Seel-
Mitten Studies of CCC Elementety School Cur-
ti:Mums 1971-1975." Computes Curriculum
Corporation, Palo Alto, 1976.

1$) fey, Alan. "A Personal *mates far Children
of All Ages" in itOriesdines of KR National
Conference, Soften, August 1972.

16) Papert, Seymour. Versonal Competing and the
Impact on Education." Edited transcription
of a talk delivered at the Gerold P. *leg
Nemeelel Confatencs, as printed in the pro-
ceeding', Camputinii in College, and Oftivet-
Iljr 197$ and muga University of Bova,
1978.

17) E4F'ss, Petrick, Sober! Salt h, Marian Beard.
"University-Level Competes - Assisted Instruc-

tion at Stanford: 1975.° Instructional
Science, 6 (1977), Elsevier Scientific
Publishing Company, Amsterdam.

1E) 1Tnabea. at al. °CAI in Language Education"
in Proceedings of 2nd World Conference In
Computers in Education. North
flollandalsevier, 1975.

19) Bork, Alfred. "Preparing Student-Computes
Dialogs Advice to Teachers." PCDP, U. C.
Irvine, July 1976.

20) Dwyer, thongs A. "Some Principles for the
Eisen (Meg Computers in Education." Inter-
national Journal of Nen-Machine Studies 3,
Jely 1971.

afts,References
21) AiiiniN7,111111am F. 'Computes Science Pre-

pimation for Secondary School Teachers."
11pulletin, S (1973). 1'45-47.

22) "Computere and the roaming Society." Report
Of hearings before USER October 1977, US
Govt Printing Office, 1.94B.

23) Conference Board of the Mathematical
Sciences Committee on Computes Education.

MEMMIINIMmalLn.Mmbakilualt
Johan Education, ...CD1111, Washington, D.C.

21) Conference on Isaiiithematicel Skills and
learning. U. S. Department of Beath. Edu-
cation, and Welfare, Euclid, Ohio, 1975.

25) Lennie, J. Richard. "Undergraduate Programa
to Increase Instructional Competing in
Schwas. ProoesdingeofIdathConferenceon
Cote sting in the Undergraduate Curricula,
last ignBilbge Web* 1977.

26) Dennis, Z. Richard, Dillhung, C. and
Mitisnieks, 3. "Computes AotiVities in Secon-
dary Schools in Illinois." Illinois Series
on Slucaticeig Applications of

24, Univ. of Illinois, 1977.
27) 110.00014 D.M. "Problems of Implementation:

Courses for Pre- and In- Service education ".
for on and fps In Secondary,

Schools. Northololland Publishing Co.,

1978.

28) IF/P Technical Committee for Education,
Working Group on Secondary School
Education: Computer Education for Teachers
in Secondary Schools: Aims and Objectives
in Teacher Training AFIPS, Montvale, NJ,
1972.

29) Zeuhrmann, Arthur. "Reading, Writing,
Arithmetic, and Computing" in ;spraying
Instructional Productivity in Higher Educa-
tion. Educational Technology Publications,
1975.

30) minas, Stephen. "Computer Literacy: The
Next Great Crisis in American Education.".
Oregon Computing,' Teacher, vol 6, no 1, Sept
1971.

31) Noussund, David. "Report of the ACK Teacher
Certification Subcommittee." SIGCSE Bulle-
tin, vol 9, no 1, Dec 1977. PP-8-18.

32) Poirot, James L. "A Course Description for
Teacher Education in Computer Science."
sIGCsn Bulletin, vol. 8, February 1976, pp.
39-48.

33) Poirot, J.L. and Groves, D.P. Beginning
Computer, Science. Menchaca, Texas:
Sterling Swift Publishing, 1978.

31) Poirot, J. L. and Groves, D.N. compute
Science for the Teacher. ,amcjaca. Texas"
Sterling Swift Publishing, 1976.

3$) Recommendations Regarding Computer k ugh
School Education. Conference Board of the
Mathematical Sciences, Washington, O. C.,
April 1972.

36) Taylor, 'Robert P. "Graduate Remedial
Training in Computing for Educators."
SIMMS Training Symposium Proceedings,
Dayton, February 1979.

37) Taylor, Robert P. (editor). The Computes in
the School: Tutor, 221, Tutee. New Fork:
Teachers College Press, 1980.

38) Technology in Science Education: The Next
Ten Yeats. National science Foundation,
Science Education Directorate, Washington,
D.C., July 1979.

39) Topics, k Instructional Computing, A
special publication of SIGCUE, 1975.

Invited Session

CAUSE PROGRAM AND PROJECTS

Chaired By Lawrence Oliver
Program Manager CAUSE

National Science Foundation
Washington, D.C. 20550

(202) 282-7736

ABSTRACT
Dirnation\about the Comprehensive

Assistance to Undergraduate Science Educa-
tion (CAUSE) program and a brief histor-
ical overview will be presented with
emphasis on projects involving the use of
computers in education. Exemplary CAUSE
projects will be presented focusing on:
1) individualized testing using micro-
processors; 2) minicomputers in under-
graduate laboratory science education; and
3) computer generation of instructional
materials.

PARTICIPANTS (Listed in order of Presen-
EWE:GU--

A Brief Historical Overview of CAUSE
Computer-Related Projects

Larry Oliver
National Science Foundation

Individualized Testing Using Micro-
processors

Douglas MoCohm
University of California, Davis

Minicomputers in Undergraduate Laboratory
Science Education

Elisha R. Huggins
Dartmouth College

Computer Generation of Instructional
Materials

Michael'P. Barnett
Brooklyn College of CUNT

1 I c`
137

Tutorial

DATA BASES - WHAT ARE THEY?

Arlan DeXock
University of Missouri-Rolla
325 Math-Computer Science Bldg.

Rolla, Missouri 65401
(314) 341-4491

ABSTRACT
--WiTs7vorkshop will cover the three major
approaches to ourrent data base hystems=
hierarachica4vSODASYL, and relational.
The relative advantages and disadvantages
of each approach will be compared. In
particular IBM's Database System IRS, _-
Cullinane System IDMS, and Cincom's System
TOTAL will be discussed.

149

138

Computer. Science Education

REQUIRED FRESHMAN COMPUTER EDUCATION IN A LIBERAL ARTS COLLEGE

David E. Wetmore
St. Andrews Presbyterian College

Laurinburg, N.C. 28352

(919)-27636!2x367

Computer education requires a defini-
tion of the group to be educated* the fa-
cilities (hardware and software) with
which the education is to be accomplished*
the goals of the educational process: and
the level and rigor of that process. In
practice* the first two factors often de-
termine the last two.

On the undergraduate level, there are
three fundamentally different groups to be
educated: potential computer scientists*
other science students* and everybody
else. There is some agreement on the
needs of the first two groups. The needs
of the last group the educated members of
society who are not mathematically or sci-
entifically oriented* are not so well
defined. This paper describes the at
tempts* spanning a decade of one institu-
tion to educate *everybody else.*

St. Andrews Presbyterian College iv
a small (600 student) liberal arts col-
lege. In 3.969 we instituted a science
course required of all freshmen* *Selected
Topics in Modern Science." This course is
both the terminal course for non-science
maims and the introductory course for all
Science PRJOVS. We felt that the ever in-
creasing role of the computer in society
required that we give all of our students
a familiarity with computers. We decided
that this could best be done by teaching
them the rudiments of a programming
language. At that time we had no interac-

139

tive capabilities and all dour work was
done in batch mode. Software constraints
limited our choice of languages to PL/1
PLC* or FORTRAN. Most of our students are
not mathematically inclined* and so we
chose PLC because of its string handling
capabilities.

Over the next seven years* until the
acquisition of interactive hardware* our
computer education program evolved into a
fairly stable system. As our present sys-
tem is a direct response to our earlier
experiences* a relatively detailed des-
cription of our old system follows.

The program consisted of eight
three-hour sessions held weekly. The
average section size was about 25* and
there were usually six to eight class sec-
tions. During the first week there was a
short introductory lecture* followed by
the ideas of algorithms and flow diagram-
ming. Students were given a simple bil-
ling problem its flow diagram and its
program and were asked to punch up the
program* run it* and bring their output to
the next session.

At the second session the printouts
were discussed* with emphasis on the de-
bugging process. Then non-formatted 1/0
assignment* and unconditional branching
statements were introduced. The assign-
ment for outside work was to modify the
billing program to handle multiple ous

150

140 NECC 1980

tamers by a loop and to write ane run a
program to calculate averages.

At the third session we introduced
arrays and conditional branching state-
ments. The students were to modify their
average programs to use arrays and also to
calculate the average deviation of their
set of values. In the fourth session we
held a review and then discussed comment
lines and simple output formatting. The
students' assignment was to rewrite their
averaging program using comment lines and
formatted output to increase the under-
standability of the program.

In the fifth week character strings
were introduced. The assignment was to
produce a program calculating the average
word length in a text. The sixth week was
a continuation of character strings. The
homework assignment was to write and run a
program converting clear text into pig
Latin.

During the seventh and eighth weeks,
each student was expected to design,
write, and debug a program which he felt
might be useful to him in his academic
career. Most students wrote such things
as checkbook balancing programs, grade

.point average calculators, or simple sta-
tictical packages.

This educational venture was success-
ful in teaching students the rudiments of
programming, the strengths and wealraesses
of the computer and something of the po-
tential role of the computer in society.
We were not successful in convticing the
students that the computer vas a useful
teal, however, as most of etiom never used
it during the rest of their academic
career.

In 1977 we ev:.:hased a Digital
PDP-11/60 computer with eight video termi-
nals for stuetl-. use. During our first
year wit% tails syst:....1 we did nothing more
than our former system by switching
to BASIC and using the "MR' series to
teach the language. The homework assign-
ments remained unchanged. Our work con-
vinced us that there are certain attri-
butes of an ideal curriculum "or teaching
everybody else about 1--vputera. I believe
that there are six sue" attributes:

First, what is being done must be of
obvious applicability to the student.
Many college freshmen are not mathemati-
cally inclined and do not foresee any use
to them of the computer as number crunch-
er.

Second, the system must obviously be
computer dependent. In our old system,
none of the assigned prograps would repay
the effort involved in writing and debug-
ging the programs.

Third, the material must be capable
of ,gradual entry. New knowledge should be
required in small increments. Although
our ,original sequence was modified quite
frequently, we were never able to avoid
one session in which the stuaents were
overloaded with information.

Fourth, the system should be
word-oriented instead of number-oriented.
Most students are more comfortable with
words than numbers. For example, we found
that interest in the computer increased
dramatically when we started to work with
character strings.

Fifth, the system must have under-
standable error messages. For beginning
students a cryptic error message is prob-
ably worse than a simple statement that an
error has been committed.

Sixth, the system must possess the
attributes of any good tool: versatility,
usefulness, resistance to breakdown, obvi-
ous efficiency, and feedback to the user.

We decided that the system which
would best combine the attributes listed
above was word processing. Word process-
ing includes programs to write text, alter
text, move text within or between files,
and to format text. The systems are not
only obviously computer dependent, they
are impossible without a computer. It is
apparent that they will work with textual
material of any length or complexity.

The major advantage of word process-
ing is its applicability. A freshman at a
liberal arts college knows that L4 will
write many papers over the course of the
next four years. Any tool that will make
that writint easier is welcomed.

Word processing systems are usually
designed for use by non-technical people
and are structured so that much can be
done with a few commands. Additional ma-
terial can be learned when its need is ob-
vious to the student. There are no quan-
tum leaps in knowledge requirements.
Furthermore, because of VI,: users for
which most word processing systems are de-
signed, they are quite fail-safe, and
their error messages are usually clear and
self-explanatory.

1 51

We chose UOT, a line-oriented editor
as our editing system. EDT is not as
powerful as other available editors, but
it is characterised by simplicity and ease
of use. jinn was chosen as our formatting
program. It is capable of straightforward
formatting with a very few commands but
can be used for extremely complex format-
ting jobs.

The textual material used in the
course is a 25-page manual consisting of
the following information:

Introduction
Logging on
Account security
Overview of the programs
Logging off
Files and file naming

Editing.Program
Entering the program
Creating files
Writing files
Appending tc files
Error messages
Editing, an overview
Text display
Finding text
Adding lines within text
Deleting lines from text
Changes within lines

Getting Hard Copy

Text Formatting
Introduction
Case control
Margin control
Centering text

Displaying Files

Account Directories

Spelling Checker Program

Summary Table of Programs

Each new student at St. Andrews is
assigned a computer account. To use this
account !*:. is necessary only tcego to the
computer center and obtain the account
nueber and password. Each May, accounts
are deleted unless the student requests
that it be kept. At present 230 students
(37% of the student body) have active ac-
counts. About 22% of the students not
taking a coaputer science course or the
freshman course have active accounts.

Computer Science Education 141

The computer block lasts four weeks
with four assignments. During the first
session the introduction of the manual,
editing program through appending to
files, and getting hard oopy are covered.
The students* first assignment is to acti-
vate their accounts and write a file of at
least 100 lines in two different sessions.
The student must hand in a hard copy of
the file the next week.

For the second week the reading ma-
terial is the remainder of the editing
program section and the text formatting
material. This material is discussed and
questions are answered. The homework as-
signment for the third week is to edit the
file produced during the first week so
that it will include formatting commands
for case and margin control and for para-
graphing. A copy of the edited file is to
be handed in.

During the third meeting the rema-
inder of the manual is covered, and each
student is asked to bring to the fourth
session an output file (formatted text)
from the file produced during the second
week.

The fourth and final session is de-
voted to questions from the class and work
with individuals. The homework assignment
(which is weighted twice as heavily as any
of the others) is to hand in, within three
weeks, a copy of a computer - produced paper
submitted for grading in another class.

An advanced word processing document
is available in the college bookstore.
The advanced document deals with addition-
al features of the editing and formatting
programs. This last year 174 students
bought the required introductory text, and
about 50 copies of the advanced text were
sold. (*)

Student evaluation of the computer
block has been favorable. In our usual
term-end evaluation it received an average
rating of very good. Xi past years, prior
to word processing, the computer block was
usually rated as good to fair.
Furthermore, conversations with faculty
members outside the sciences indicate that
an increasing number of papers in upper
level courses are being computer produced.
Thus, although we have no hard data, we
feel that we are having some success at
our primary goal, that of showing all stu-
dents the utility of the computer as a
tool.

152

142 NECC IWO

In addition, we feel that word pro-
cessing is an excellent computer applica-
tion with which to show students the use-
fulness, strengths, and weaknesses of com-
puter systems.

(0 Copies of the introductory hand-
out may be obtained by sending a self -
addressed, self - stamped ($0.70) large man-
illa envelope to the author.

153

Computer Silence Education 143

DEVELOPMENT OF COMMUNICATIONS SKILLS
IN SOFTWARE ENGINEERING

John A. Seidler
John G. Reinke

Department of Mathematics/Computer Science
unieers'4 of Scranton
Scranton, PA 18510

(717) 9S1 -7428

INTRODUCTION
Now such will an individual's

programming skills be enhanced by an
ability to present ideas orally and in
writing? There is such more to
programming tnan just writing programs.
Yet the emphasis in computing and
information science curricula is on
programming witn little emphasis on many
of the other essential tasks that surround
and are included in the programming
process. Since 1975, we have been teaching
a course- that provides a broader view of
software engineering. Tnis course,
entitled Computer Projects, is an
undergraduate degree requirement that is
taken in the senior year. AS part of this
course, students develop and document an
approved project of their choice and give
several ors presentations as well as
several written reports.

Normally, these projects begin during
the junior year. The projects can be done
in a variety of areas but must have a
reculty\sponsor. Students are encouraged
to seek out faculty from other departments
who are interested in using computing
resources in some way to expand on
existing projects. In any case, all
projects must have faculty sponsors who
are interested in the projects.

A key element in this course is its
organization. During the semester, each
student must give two lectures about his
project and write seven reports. The
combination of the oral presentations with
the written reports produces a total
description of the project and makes the
students aware of a more global picture of
the programming process as well as giving
him a better understanding of the types
of things that programmers and systems
analysts do besides grinding out code.

Subsequent sections of this paper
describe the course and the rationale for
various items_ that are included and the

reasons for the way he reports are
organized.

COURSE ORGANIZATION
The course is organized around the

presentation of student projects. For the
first two weeks the students are given a
general orientation regerding what is
expected from them. Daring the next three
weeks the students make their first oral
presentations which moat be between 15 and
25 minutes long and provide appropriate
general. descriptions 6(the Protect
areas. The presentation Should be
directed toward convincing the audience of
the importance of the project And the
impact it has on its environment.

The middle three weeks of the course
are spent describing the various methods
that can be used in the remaining reports
and the second oral presentation. Also,
the students ate shown the
interconnections that should exist between
the oral presentations and their various
reports. The second half of the semester
is devoted to the second oral
presentations. These are 45 to SS minute
presentations on the technical details of
each project. This talk emphasizes the
appropriateness of the technique selected
to solve the problem.

While the above sequence is occurring
in class, the students Submit reports
about every two weeks. As a collection,
these reports are supposed to form a
complete description of the project.

THE ORAL PRESENTATIONS
Both oral presentations are evaluated

by both students and faculty member'
present. Students are greded on a variety
of factors such as content, the use of
visual aides, and the appropriateness of
the level of presentation for the
audience. The first presentation is a 21
minute survey of the area of the project.

_I 'F

144 NECC 1980

rue purpose nere is to acquaint tne

audience wits tne problem area and
convince tnem of tne importance of tne

project.
Tee second presentation is a 40 to 52

minute presentation on technical aspects,
hardware, data organization, and
algorithms. Part of this presentation
must InclUde, when appropriate,
structured walkthrough of a part of tire'
project.

REPORTS
me seven reports, when taken as a

unit, should form a complete description
of the project. Content of tnese reports
is a compromise between an ideal and what
is realistic witnin the time frame of a

semester. In all cases, the reports are
judged not just on their technical merits
but also on the organization, grammar, and
spelling.

Report Ono. lids report is an

exten ed abstract of the project and
should be about throe to five typed
double-spaced pages long. the students
are told to relate this report to their
first presentation. Specifically, the
first talk should elaborate on the general
problem area while tea extended abstract
should only briefly mention it.

Report Two. This tnree page report is
a requirements analysis. Here the student
must describe the hardware needs of his
project and describe now he came to his
conclusions. To wqp the students, a list
of general questions is distributed. This
list includes:

i. Wnat resources does the project
require? (Primary memory, disk,
tapes, etc.)

2. Time requirements - What effect
do various variables have on the
time requirements?

3. Terminals - CRT, hardcopy,
graphics, hign quality hardcopy
-Which is ideal?
-Which are satisfactory?
-Baud rates?
-Synchronous, asynchronous?
-Intelligent terminals, etc.

4. Program space requirements?
5. Backup

Report Three. This lip a justification
document. The' students assume that they
are writing a document in response to a

request by corpo ate management for
justification of continued funding of the

project. Here the students are required
to defend the value of their project over
the status quo. Explanations of details

must be given in a way which would be
understood by a semi-technical manager or
executive. As a suggestion, students are
told that they should produce figures that
describe their project versus the status
quo, then emphasize how these data are
arrived at legitimately.

One purpose of these first three lb
t reports is to give students a chance to
collect their thoughts .during the first
five weeks of the semester. The rest of
the reports demand a considerable effort
on their part and require a thorough
analysis of their projects.

Report Four. This report is a
collection or-Teur analysis and design
documents. The first is $ systems chart
in the form of a tree structure that
describes the top-down organization of
their system. Included with this chart is
- brief description of the purpose of each
module in the System.

The second part of this report is a
data chart. The data chart is in these
parts--input, process, and output. The
input section describes the files used as
input to the system along with the record
formats of inpbt files. Each item in a
record is defined in terms of its type and
what role it plays in the system. The
output section describes both the output
file and update files. By an update file
we mean s file used both as an input and
output. As in the input section, all
record formats and items in the record
must be completely described.

The process section describes the
type, bound, and purpose of every major

'variable used. This section is grouped
first by describing global variables,
then common variables, then a break down
of other variables by module. By major
variables, we mean that, for the sake of
brevity, the students can selectively
decide to limit the size of the data chart
by not including all variables, for
example, temporary storage and loop
indices.

The third component in report four is
a 4Ata flow graph. Again, due to time
limitations, the students are not required
to create a data flow graph of the entire
system. Rather, they use several
important items and show how they are
transformed and combined with other data
to produce the results. The data flow
graph completes the systems chart in that
the systems chart shows the tree structure
of a system.

The fourth item in report four is a
bibliography. This bibliography does not
just state the references. Instead, a
brief statement mast accompany tech ,

.5,5-

reference describing the relevant
information obtained from that reference.
Also,. the bibliography does not list only
texts and periudicals. It also includes
references to individuals who have
provided information or assistance. It is
grouped as follows:

1. Text References
2. Popular Periodical References

(Time to Creative Computing)
3. PiEBNicef1717raical Re erences

(all other periodicals)
4. individual Citations (persons

who assisted)
With report four, we have a broad

based view of'the project. This report
acts as a framework upon which the rest of
the reports can be built and integrated.

Report Five. Report five is a user's
manual, esarr$7 the most difficult report
for the students to write. The
fundamental problem is that_they know too
much about their project, and they lack an
appreciation of the difficulties that
others encounter (especially those who are
not experts in computing) in simply using
the project.

The key to improve this report is an
emphasis on well-constructed ,examples.
Even this is a problem, however, because
the students usually create unusual
esoteric examples that are not typical of
normal use of their project. That is,
their examples are often like the horn :le
examples we find in manuals that are
produced by the various computer
manufactures.

Another problem tnat is evident in
this report is poor grammar. in order to
correct this with a minimum effort, the
students are told that the report is
graded using the basics in Strunk and
White's Elements of Style. Also, some time
is spent on some the asics.

A final emphasis in this report is
the importance of stating everything.
That is, many times students assume that
the readers of their reports have the same
background and knowledge that the authors
have. As such, 'their report is not
complete because there is still a
substantial amount of Knowledge that is
locket; up in their heads and not stated in
black and white.

As a complement to report four, this
report explains the details, critical
elements, and various interrelationships
in the system. Here, students are
encouraged to find the weaknesses inherent
in the various graphs and charts of report
four.

Computer Science Education 145

Report Six. This is usually the
easiest report for the students to write.
They are so wrapped up in the technical
details of their project that the volume
of material that can be included
contributes significantly to the
generation of this report. However, there
are still problems they encounter in
construction of this report.

Their biggest problem is one of
organization. The students are often so
wrapped up in the project that they don't
know where to begin writing.
Surprisingly, they find it difficult to
use the sections of report four as an
outline for this report. Once they
realize the usability of report four in
generating report six, this report becomes
well organized and easy to read.

Re ort Seven. This report contains
four sect ons7-61- first section consists
of annotated and documented program
listings. The documentation should
explicitly indicate the connections
between the code generated for the project
and the various reports. Section two is a
set of corrections to reports four, five,
and six, which allows students to modify
these reports ..o stay in line with the way
their system has evolved.

Section three of this report is
anther difficult section. Here students
are required to make a critical evaluation
of their system, pointing out flaws and
deficiencies both in their overall design
and implementation. This is followed by
section four, which describes what was
learned through the project. Included in
this section are recommendations for
modifications, enhancements, and ideas for
future projects.

OSSERVATIOHS
There is no doubt that this course

gives the students a broader appreciation
of the entire hardware/software
development process. If there is a flaw,
kt is not in this course: rather, it is
that preceding courses do not require more
of the development process so that this
course will be less of a shock to
students.

Typical of the variety of projects
that students have done in this course
are:

1. Developcant of relative and
hierarchical data base
simulations

2. General purpose software science
measurements system

3. Programmable calculator use in
the physics laboratory

1 ti 6

140 NECC 1980

4. On-line accounting laboratory
S. An enhanced editor
S. Grapnics: Uktronics - Mablo

interface
7. Graphics: 3-D perspectives with

hidden line elimination
S. Software for forcasting the

university's financial status
By allowing a broad collection of

projects, wa have obtained an interesting
by-product. Faculty from other
departments, as well as various
administrative offices, are more aware of
the potential of our computing resources.
Therefore, despite a stable, or slightly
shrinking student population, we have
created an increased demand for computing
resources. This has given us an
opportunity to obtain the variety of
computing resources that we need to
support our computer science program.

Computer Science Education 147

.1'

SYSTEMATIC ASSESSMENT OF PROGRAMING ASSIGNMENTS

Judy H. Bishop
Computet Science Division

Univetsity of the Ilitmeetstand
Johannesburg 2001

SOUTH AFRICA
(tel. (11)-394011)

SUNHARY
The obvious way to assess a course on

programming is to assign merles to programs
written by the students. However, it is not
evident st the outset that systematic assessment
is feasible. Nor is it necessarily ap:4rent
when features the meeker should look for and the
weight to be attached to them. This paper
explains a method,taat has been used for four
years at two universities to mark course work at
second year level. The experience gained shows
that systematic assessment is possible and can
be used to provide guidance to students as to

what constitutes a good program.

BACKGROUND
The second year course in advanced program-

ming (Barron 19751 is the backbone of the

computer science degree at both the Univetsity
of Southampton, England, and the University of

the Witwatersrand, South Africa. Since 1974, it
has been taught with the aim of turning out not
just good, but excellent progtammers. Like
Noonan (19791, we felt that the primary student
ptoduct of such a course should be a single,

large programming project, split into four
smaller projects. Two such projects mete
designed to be used in alternate years, each
requiring a total of about 1000 lines Of Pascal
Mullis* 1974, 19751. Although e written
examination is required to tett a full knowledge
of data structuting end sorting techniques, the
bulk of the final mark for the course is derived
from the project. At the outset, therefore, it
was realised that the marking of these projects
bed to be of a higher standard than usual.

Very little guidance in grading can be found
in the literature. Abehire (19781 in his
otherwise excellent advice for teachers, skirts
the gables, stagily stating "Establish s grading
policy ... Erode each program ... Tell the

students your grading policy." In petticular,
how does one neutralise the effect of subjective
factors such es the student's previous perforem
eoce, his presentation (nester essay), end the
preference of different markers for one or another

style of program layout?
The methods used to matk the assignments foe

lets* first year closes* or small third year
class,* do not seem approriate for a coitus
sized second year class (40-80 students).
Program ossignmeets in first course can, for
the moat pert, be assessed by checking thee they

work for certain samples of data (Noonan 19791
although some teachers ovoid this approach and
amass only by s special fora of examination
(Rsdue 1976, Troebetta 19791. At the other end
of the scale, projects undertaken by third year
and greduste students can be looked st
individually and marked over a wide range of
criteria (Hell 1979]. Second year assignments
fell *members in the middle. One needs to give
marks for good ptogtan and data design as well
as for correct results, but the 'umbers involved
preclude spending hours agonizing over each
program. In fact, the projects es set up
require the first three parts to be handed in at
two weak intervals. Each pert builds on the
next so that it is desirable thee work handed in
on Friday be necked and returned by Monday. So
as not to rely on the impossible, end also
because typically some 40Z of solutions era not
handed in in final fora, specimen solutions ate
distributed and students era free to use these
instead of their own in the next phase.
Nevertheless, speed is a factot.

As final complication, the within may be
shined between two or three people and this
means that a standard must be well defined end
understood. These thris requirements of quick,
accurate, end equal narking led to the design of

the systematic method presented here.

THE METHOD
The method quite openly borrows ftom a

technique used in faecal to mike programs more
readable. Instead of working in numbers,
marking schema is sat up vein words or phrases
to deactibe the assessment of the solution under
various criteria. Once all the solutions have
been marked, weights are assigned to the words
end 4 final sack calculeted. This mark is then

1 5S

148 NECC 1980

compared to the earlier estimates made on
impression. and the marks might be voderated one

way or the other. The six steps are
1. Divide the solutions into five groups

based on evident output.
2. Set up s symbolic marking scheme.
3. hark all the solutions sccording to the

scheme.

4. Assign weights to the words used in
marking.

5. Calculate a numeric mark.
6. Compare the estimated and calculated

marks and moderate if necessary.

1. Rough Groupie.
Divide the programs into groups according to

the evident output.

A. Fully correct
1. Answers partially wrong
C. Incomplete output, perhaps with an execu-

tion error
D. No output - execution error in reading

phase
C. Compilation errors

These groups can be roughly translated into
the traditional classes as follows:

A : First (802 +) (unless layout is
horrible or algorithms
messy or inefficleit)

B,C : Second
or third (502 -792) (the largest group -

ebould not get a First
or Fall)

D t Third
or fail (592-) (tricky group - they

must be marked on
criteria other than
results)

Fail (492-) (depending on the level
of the course, these
might get zero)

2. The Marking Scheme (Grading Policy)

A marking scheme is devised by selecting
five or more criteria on which the programs
might differ, for exempla, the algorithm, design
of output, schievement, and testing. In initial
e asignmente, the criteria mould emphasize points
S uch IS nest program layout or the correct use
of procedures and parameters. In later assign-
ments, a quick Ounce st the solutions hooded in
will show whether thee* lessons have been
learned and ere no longer worth assessing
becsuse the standard is uniformly high.

Each criterion is then assigned a list of
between two and five possible values. These
are meaningful adjectives, spplicsble both to
the criterion and to the expected results. A
typical scheme would bet

answer. (right, some wrong, none,

still reading)
output design 0 (as required,

improvement possible, shortcuts,
unformatted)

algorithm (elegant, competent, average,
messy)

achievement (more than enough, fullfilled
requirements, gaps left,
far too little)

testing (complete, partial, insdeqeate)
self-contained (yes, no)

1.

Some comments on this scheme are:

If there are no answers, the potential output
design will still-be assessed.

2. In a text formatting problem, "shortcuts"
would be given if, for example, formatting
such as centering or right - justifying was
done by spacing to an absolute column number
instead of being based on the length of the
line. "Unformatted " - would be granted when
there is no centering or justifying.
Possible improvements would be small things
such as leaving a line at the bottom of a
page before printing the page number. The
rating of the output design should not be
confused with that for achievements.

3. The values given here for algorithm have
been found to be applicable only when the
marker is genuinely astonished at the
standard. A competent slgorithm is one in
which-

- there are no redundant or out of place
variables

- control structures are used correctly (e.g.
case, not cascading if's)
loope cover short ranges (i.e. if a loop is
more than 20 lines long, part of it should
be in a procedure)

- the intention of each line is obvious,
with comments only being necessary to
indicate yet-to-be-included seztiens or
modifications that might be considered.

- the use of the language is quietly apt,
avoiding over- simplification and clever
tricks alike.

Most students' algorithms fell down somewhere
and are classed Si average. A messy program-
can be recognized a mile off!

4. At some stsge, one wishes to emphssize that
procedures should be written, se far as
possible, es self-contained entities. This
does not just mean that they should have
local variables, but that they could be
celled from different contexts and still
produce the same results. This discipline
is particularly important in a course where
one assignment leads to the next. If
procedures are not self-contained, they will
have to be altered before being lifted out of

1 5 9

one program into another.
5. The testing ctiterion is there to get

students out of the habit of handing in only

One tun. Very often instructors Prefer a
single tun because it is leas to mark, but
in fact the opposite is true. It is easier
to put the onus on the student to illustrate
aliat his program can do rather than have to

deduce this from the listing.

Careful considetation must be given to the
interaction of individual criteria. A prima
exampl is that of testing versus achievement.
If a feature is included, such as a test for an
unexpected end-of-file, then a tun showing that
it works should be handed in. This can lead to
a progtan being given

achievement .6 fulfilled requirements
testing Partial

if the end-of-file was checked for, but only a
tun with correct data wan handed in. On the
other hand, a ptogram that did not make the
check would get

achievement = too little
testing = complete

because it had actually tested all that it could
do. The weightings for these criteria (Step 4)
would be assigned such that the first program
would get slightly more marks.

3. Harking (grading)
The process of marking uses two tables. On

the first. values for the criteria in the
marking scheme are filled in for each student
with the last two columns, "matk" and "calculated
class ", being left blank for the time being.
On the second table, the group is recorded,
alongside an "estimated class" and a comment.
The estimated class represents one's gut
teaction to the stmdents' efforts, and JO as far
as nany informal lurking systems go. The
comment lists any relevant factors that woad
not show up in the marks and could be used at a
later date to explain border-line cases. Typical
table entries would bet

TABLE I

NAME ANSUERS OUTPUT 'ALGORITHM ACHIEVE
J. Mullins right as required' average ful.req

I

Coo t ITEST Iter MARICALC.CLAS1
partial yes

TABLE II

'NAM COMMENT
heJ. MVIlinsl A

CROUP EST
I

. 'Good
use of t language I

Two further lists are useful. One records
the names of students whose programs at worth
distributing and notes the points that the

Computer Science Education 149

programs illustrate. The other lists the

important points that should be commented on in
tutorials or in a handout, including moon
misconceptions or interesting approaches.

4. Weights

Only at this stage are numerical Values
assigned to the atlas used in cIessifyins the
students' solutions. Each vales in each
criteria is assigned a weight, so that the left

hand value* add up to the desired maximum
lark. Pot nest assignments, a maximum of 20 is
adequate. Suitable weights for the sample
scheme above are:

3 1 0
answers (right, sommons, none, still reeding)

5

output design (as tequited,
3

improvement possible,
2 1

shortcuts, unformatted)
6 5 . 3 1 (2)

algorithm (elesent, competent, average, messy)
6

achievement (mote than - enough,

5 3
fulfilled requirements, gaps left,

1

fat too little)
4 3 1

testing (complete, partial, inadequate)
1 0

eelfeontained (yes, no)

The maximum mark in this scheme is actually
mote than 20 because elegant algorithms end
achievement note than required should be
rewarded by additional marks. These scores
could well be cancelled out by the student
falling down on sons other aspect, such as
testing. Note that even the worst program vest
get some marks (for effort) so that sato dots
not appear for every criterion.

5. Classifying

Simple summations give the actual !arks for
the first table. Prom these, classes ate
assigned as follows:

CLASS I MARX
I 80* 16+
11-1 70-79 14-15
11-2 60-69 12.43
III 50-.59 10-11

P 20-49 5-10
PP 0-19 0-4

6. Moderating
In this final step the effort so far is

1 6

150 NECC

rewarded by comparing the ,three assessments:

- the rough grouping based on visible results
the gut reaction class estimate

- the mark calulated on detailed criteria.
If there are violent disagreements between

the estimated and calculated classes, the

weightinee should be adjusted first. Adjustment
was made in the above scheme because a program
with a very messy algorithm got 16 marks and
really should not have got a first. Therefore
messy was given a weighting of 1 instead of 2.

I II-1 11-2 III F

Rough 12 (24 combined) 9

Estimated 11

1

5

.%**.s.qiw

13

Calculated 12 3 10 6. 10

The above table shows a comparison from an
actual assignment given to 41 students. Only
one program improved its rating on the
calculated mark, Ails eight were demoted. The
value of the calculation method is evident in
that close examination showed the estimates to
be faulty. Three programs in Croup C had tiny

errors and would have worked soon. They were
estimated at II-2e. Then the scheme showed that
they had shortcut or unformatted output in

addition and correctly placed them in class

III. On the other hand, another C program had

top marks for output, algorithm, and achievement

which compensated for the slightly wrong answers
and moved the class from a II-1 (estimated) to a

I (calculated).

EVALUATION

Although the method takes a while to

describe, in practice it is a stream- lined
procaas ehich can enable 60 assignments of about
300 lines each to be accurately assessed in

about twelve hours. /he setting up of the

scheme takes about twenty minutes and assigning
the weights about tan minutes. The grouping,
classifying, and moderating take about an hour.
Men this investment, the individual solutions
can be marked in ten minutes each. This

compares favourably with the norm of thirty
minutes for an examination script.

An important advantage of the method is that

it almost eliminates prejudice of any sort.
The example abtve was taken from the experience
of a marker who is usually quite generous and
showed that some 20Z of the estimates were too
high. On the other hand, there are some markers
who equate "very good" With 7 out of 10 and

have a mental block against giving full marks.
With this scheme, they find that they can
justify "complete" for testing in their minds

and let the calculations take care of themselves.

One of the criticisms of the method may be
that it does not encourage a fine enough net.

In nearly all cases, the weights in the above

example jump from 5 to 3 to 1. This is

intentional. After four years experience, we
have found that one cannot make the fine

distinction between en algorithm that is
excellent, very good, good, fair or poor. These
terms are too vague and are avoided in favour of
competent, average and messy, with which one can
identify a program more readily. Thus the marks

do tend to be discrete and categorized rather
than continuous.

Although the method does not provide any
built -In checks against plagiarism, the fast

pace with which programs can be marked means
that one's memory is capable of detecting
striking similarities. In four years, one case
of genuine plagiarism was detected and proven.
Numerous similar programs were found, but by
referring to the scheme, it was established that

they differed in One or more important details.
Using the method has definitely increased

our understanding of what constitutes a good

program. Ass result, our teaching has improved
and certainly the standard of the student
programs has risen over the years to such an
extent that me would disagree witli Dolma and
Pozefsky (19791 who state that "Student- written

Programs accepted by computer science instructors
are usually inferior to programs which exemplify
currently-accepted 'good' professional practice."
Our experience is that students produce programs
which are just as good, if not better, than those
in an "up-to-date programming shop".

Because the symbolic scheme does not have
actual marks, it can be shown freely to students
so that they know what to aim for. The tables
of detailed evaluations are also invaluable in
countering queries about results because the

words are all there to explain why the student
lost marks (e.g. shortcuts, inadequate testing).

COHCLUSICN
This method of grading is ideal for medium

sized classes where programming excellence is
examined by practical work. It minimizes the

effects of prejudice and provides a balanced

assessment of the factors that are being
particularly stressed at any one phase of the
project. It is adaptab'e to most types of
projects and has been expanded and used with
success in more senior classes. It increases
ones understanding of good programming, and
enables one to communicate this to students in a

handy way, Finally, and moat importantly, it
establishes confidence in systematic assessment
for both staff and students.

ACKNOWLEDGEMENTS

The Advanced Programming course vas devised
by David Marron of the University of Southampton

and it was at his suggestion that this method of

grading was designed, Thanks are due to the

1 62

Computer Science Education 151

classes of 1975 to 1979 who responded with such
enthusiasm to these ideas.

REFERENCES
Abshire, Gary, "Techniques for Computer Science

Teachers", SIGCSE Bulletin 10 (4), 42-46,
December 1978.

Barron, D.W., "Design and Construction of

Computer Programs: A Course in Advanced
Programming", Computer Studies Group,
University of Southampton, 1975. Revised
1978.

Deimel, Lionel and Pozefsky, Hark, "Requirements
for Student Programs in Undergraduate
Curriculum: Hon Huth is Enough?", SIGCSE
Bulletin 11 (1), 14-17, February 1979.

Hall, Colleen, "Third Year Project Harking
Scheme", Computer Science Report, University
of the Witwatersrand, July 1979.

Hullins, Judy, "The Family Tree Project for

Advanced Programming", Computer Studies Group
University of Southampton, 1975. Revised at

Computer Science Division, University of the
Witwatersrand, 1978.

Hullins, Judy, "The Play Structure Project",
Computer Studies Group, University of
Southampton, 1976. Revised at Computer
Science Division, University of the
Witwatersrand, 1979.

Noonan, Robert, "The Second Course in Computer
Programming: Some Principles and
Consequences", SIGCSE Bulletin 11 (1),

187-191, February 1979.
Radue, J.E. "On the Teaching and Evaluation of

FORTRAN Service Course" SIGCSE Bulletin

(2), 32-35, June 1976.
Trombetts, Michael, "On Testing Programming

Ability", SIGCSE Bulletin 11 (4), 57-60,

December 1979.

152 NECC 1980

DATA STRUCTURES AT THE ASSOCIATE DEGREE LEVEL

Richard P. Dempsey
Computer Science

The Pennsylvania State University
The Worthington Scranton Campus

Dunmore, Pa. 18512
717-961-4757

Recent design methodologies based on
the structure of the data and the develop-
ment of data base management systems which
use a wide variety of data structures add
weight to the importance of data storage
and processing. The fundamental role
played by data structures courses in
applied bachelors degree programs also in-
dicates its significance (1, 2, 3).
Associate degree programs that train
students to be quality entrylevel
programers with sufficient background to
adjust to new trends in data processing
must provide these students with back-
ground in both internal and external data
structures (4). This paper describes the
philosophy and content of such a course
taught as part of the associate degree
computer science curriculum at the
Scranton Campus of Pennsylvania State
University.

The objectives of the course are as
follows:

1) To present the structure and
functional characteristics of external
storage devices and their impact on file
organization techniques.

2) To present concepts of internal
and external sorting and searching
techniques.

3) To present the advanced COBOL
language elements associated with the
above.

4) To present the concepts of in-
ternal data structures.

5) To expose the student to the use
of libraries and utility routines.

6) To make the student aware of
considerations in the design of data
files.

This course, titled "Techniques of
Organization," is offered in the first
term of the students' second year. It is
a three-hour course. Prerequisite

courses from the first year are:
1) lst term. "Introduction to

Algorithmic Processes" This course
emphasizes solving problems using the
computer as a tool. The language is
either WATPIV or PL/C.

2) 2nd term. "Computer Organization
and Programming! This course emphasizes
the binary and decimal instruction set of
the IBM 360/370 Assembler Language. The
objective is to get the student to see how
the computer operates at machine level.
This provides a solid background to make
the student a better COBOL programmer and
debugger. All programs are run ou ASSIST
(described in (5)1.

3) 3rd term. "Introduction to Data
Processing? This is not the usual course
using this title, but a high-powered be-
ginning COBOL course. As the students
have programmed in two languages already,
this course moves fast. It covers such
topics as table handling, SORT verb,
sequential files on disk and tape, and
REPORT-WRITER. Emphasis is placed on
programming style, documentation, and
quality of code. Structured programming
is emphasized throughout. The programs
are typical data processing problems.

The students now have a solid, basic
programming background. Through the
"Techniques in Organization" course, this
background will be reinforced while they
learn to handle data in new ways. The
material in this course is presented with
an applications orientation and a minimum
of theory. The objective is to give the
student a working knowledge of data
organizations and experience at using them.
Some topics will simply be introduced and
reinforced in following courses.

The order of presentation of the
topics in this course is not always the
same. The nature of the programming

163

assignments, shifts in emphasis due to new
trends in data processing, and the makeup
of the class itself all affect the arrange-
sent of topics. These topics, with
approximate times in parenthesis, are:

Topic 1. Indexed Sequential Files
(1.5 weeks) A thorough working knowledge
of ISAM is expected. Some time is spent on
the physical aspects of ISAM files so that
the students are aware of what is physical-
4. happening. The pros and cons of ISAM
files and the options available within it
are discussed. The elements of COBOL
needed to process ISAM files are presented.

Topic 2. Direct access files (1 week)
Both relative and direct files are covered.
The concept of hashing is introduced. The
pros and cons of direct access files are
discussed in relationship to the other file
organizations. The COBOL elements needed
to process these files are also presented.

Topic 3. VSAM files (1 week) VSAM
files are discussed, with major emphasis on
the KSDS format. The physical character-
istics are presented and compared to those
of ISAM. Comparison is also made at the
COBOL language level between ISAM and UMW.

Topic 4. Sorting (1 week) External
sorts are covered briefly. One or two
techniques are looked at so that the stu-
dent can see the nature of what takes place
in an external :oft. No attempts are mede
to teach the student how to write an
external sort. Internal sorts are also
discussed. In the first year the student
has programmed at least one internal sort,
such as the bubble sort. Discussion here
is held to the relative efficiency of such
sorts in relationship to data set size. A
sorting technique, such as Quicksort, is
presented as an example of a sort for
larger, internal data sets.

Topic 5. Internal Data Structures (3
weeks) Problems are discussed that empha-
size some of the limitations and problems
resulting from using only the basic inter-
nal storage techniques covered in the
language courses. This discussion leads
into a working level presentation on linear
lists, stacks, queues, singly and doubly
linked lists, trees, and inverted lists.
Algorithms for handling some of these
factors, as well as ways of manipulating
and allocating storage for them in COBOL
are examined.

Internal and external data structures
are compared. For example, a good tie-in
of the similarities and differences would
be an investigation of how a set of records
that need a tree structure relationship can
be stored on external files using various
file organizations. By this time the
students are gettihg a good grasp of data
organization and its impact onprograming
efforts, which should provide them with a

Computer Science Education 153

good basis for what is happening in most of
the data base management systems they will
surely face. Such knowledge is essential
to making effective use of these system.

Topic 6. Searching (1 week) A short
time is spent on various searching tech-
niques as they relate to the various data
structures. This discussion further en-
hances the students' understanding of the
significance of storing data in different
forms.

Slotted with these six main topics are
some others, basically for programming
purposes. Partitioned data sets are intro-
duced to allow the use of libraries and the
COPY verb. These libraries are created for
the students, but the JCL and control
statements for IEBUPDTE are explained.. The
JCL and COBOL statements to handle sub-
programs are also presented.

The programming assignments for the
course are all done in COBOL. Students are
given all needed JCL, but all elements of
it are explained so they see the reason for
each element of each JCL statement. All
programs must be structured and completely
documented. They are evaluated on quality
and correctness.'

Typical programing assignments are:
Prog. 1. An input edit routine that

creates a sequential file on disk of the
valid records. This file is then sorted
in a second step by calling the system
SORT/MERGE package via JCL.

Prog. 2. An ISAM file created from
the output of Prog. 1. Libraries and the
COPY verb are introduced.

Prog. 3. A report produced by sequen-
tially processing the ISAM file from Prog.
2. This assignment introduces the use of
the IEBISAM utility to allow keeping an
ISAM file as a sequential file. (Students
are not allowed to keep permanent files on
our system).

Prog. 4. It random update, including
adds, deletes, and updates, processed
against the ISAM file from Prog. 2.

Prog. 5. A three-step program that
creates, updates, and produces a report
from a relative file.

Prog. 6. A program to implement the
Quicksort algorithm discussed in class.
This assignment requires the use of COBOL
subroutines and stacks.

Prog. 7. A program to build and
manipulate a singly linked list.

Some of the topics, such as direct
files and trees, are not implemented in
this course. The next course, covering ad-
vanced assembler, advanced debugging,
utilities, and JCL, provides an excellent
place for students to write programs using
these concepts.

154 NECC 19130

This course covers a lot of material
in a ten-weA term. Care must be taken not
to get too seep into topics that don't
merit the attention in relationship to
other topics. Creating more than one
course for the material is difficult as
there are only six basic computer science
courses plus a projects course in our
curriculum. This limited number of
courses results from the University's
strong belief in the total edUcation of
the student and concnrs with the guide-
lines set forth by %he ACM SIGCSE paper on
associate degree programs (6).

A major problem with this course is
the lack of a suitable textbook to cover
such a broad range of topics. Most books
only cover a subset of these topics end
even then tend to be too elementary or too
theoretical. The topic of internal data
structures has proven to be a significant
problem in this area. Barrodale et al (7)
has a nice approach for our applications
level but is not detailed enough; most
other data structures books are too de-
tailed an theoretical.

This course has kept many computer
science majors offthe streets a night or
two, but the material and programs have
provided a soli.: background for our
graduates. They become productive almost
immediately upon employment in such areaa
as application programming and technical
support. Several have been able to use
the course as a springboard into data base
systems. This practical applications-
level study of the area of data storage and
organization has given them the experience
and confidence to be quality members oi!
the data processing field and to adjust
quickly to the changing demands of their
field.

3. Fosdick, Howard and Karen Mackey, "A
Cot:se in the Pragmatic Tools of the
Programming Environment: Description
and Rationale," SIGCSE Bulletin,
Vol. 11, No. 3, NUE7-1779, pp. 11 -13.

2. Mackey, Karen and Howard Fosdick, "An
A- lied Computer Science/Systers
e __aiming Approach to Teaching Data
Structures," S/GCES Bulletin, Vol.
11, No. 1, Feb. 1979, pp. 76-78.

3. Beidler, John and John Meinke, "A.
Software Tool For Teaching Data
Structures," SIGCSE Bulletin, Vol.
10, No. 3, Aug. 1978, pp. 120-122.

4. Little, Joyce Currie, "Computer Educa-
tion and Community Colleges,"
interface, Vol. 1, issue 1, Winter
1979, pp. 12-16.

5. Overbeek, R. A. and W. E. Singletany,
Assembler Language with ASSIST,
Chicago: Science Research Associ-
ates, 1976.

6. Little, Joyce Currie et al, "Curricu-
lum Recommendation... in Computer
Programming," SIGCSE Bulletin, Vol.
9, No. 2, June-WM-pp. 17-36.

7. Barrodale, et al. Elementary Computer
Applications, Wiley, 1971.

Integrating Computing into K-12 Curriculum

THE SCARSDALE PROJECT

INTEGRATING COMP'ITING INTO TH8 K-12 CURRICULUM

Thomas Sobol, Superintendent of Schools, Scarsdale, N. Y.

Robert Taylor, Teachers College, Columbia University, N. Y., N. Y.

Introduction

Within a few years every child in

America is likely to have at least one

personal computer. The potential impact

upon schools staggers the imagination. At

the least, it is likely to move the focus

of education troll end product to process

and raise visual and auditory forms of

information to a status rivalling that of

written language. Because ideas can be

presented, explored, and expanded by human

interaction with the computer, computing

is certain to transform the schools from

kindergarten upwards, its impact will be

as broad and deep as any intellectual

innovation in recorded history, including

printing. In addition to traditional

communication, teachers and pupils will

communicate through tne computer

immediately and dynamically, in word,

picture, and sound, with each other and

with others throughout the community whom

they will never meet face-to-face. Thus

the nature of the communication will be

transformed and the range of participants

will be startlingly enlarged.

This stage of mass computer use waa

forseen years agot it arrives at last

because computers have been improved,

made smaller, and produced considerably

cheaper over the last five years. Yet

many of the questions raised in the minds

of those who foresaw what was coming

remain unanswered, How will use of

computers affs.ct the child's development?

What are appropriate languages for young

156 NEM 1980

children to use in talking

to computers? What devices other than the

traditional keyboard and screen or

terminal/printer can, when attached to a

computer, maximize its educational utility

for the young child? What should teachers

know about computers? Row expert should a

teacher be in computing to make reasonably

effective use of it in teaching and

learning? What is the teacher's role in a

classroom where every student has free

access to seductively engrossing computer

power? What is the impact of computer

games on the child and what row should

such games have in the school? When

should the computer be used as a tool,

when as a tutor, and when as a tutee?

Little significant research has been

done on most of these questions, even by

pioneers it computing and education. The

research that has been done focuses on a

narrow subsca of the issues such as the

effectiveness of computerized drill and

practice in arithmetic or spelling. There

are few clear answers so far; often what

are advanced as answers are little more

than strongly held hypotheses. There is

no ready-made curriculum, even in outline;

there are po coherent texts; there is

little available teacher training; and

there is little public understanding of

what changes computing might promote in

education.

Given all these unknowns, if a public

school system takes the transforming

impact of computing seriously, where does

it begin? Who does what with whom, at

what cost and with what type of success?

Though little research has been performed,

though many more questions have been

raised than have been answered, and though

nothing like a comprehensive intergration

of computing into the curriculum has been

formulated, the computers are here,

exciting possiblities beckon. To do

nothing is unthinkable. This paper

reports one school system's response.

The Scarsdale% Preipet

Two years ago students and teachers

in Scarsdale, NY, were doing little with

computers. Three or four terminals in an

old office in the High School offered

computer games to a handfotl of computer

freaks, the terminals were down as often

as they were up, and nobody seemed to

understand what the freaks were talking

about. Furthermore, inflatton and

declining enrollment had taken their toll

in the school system: summer school and

driver education had been abandoned, and

other programs were threatened. The time

.

hardly seemed ripe for a brave new

curriculum venture in computing or

anything else.

However the community does enjoy an

enlightened citizenry and teaching

faculty. Many were aware, however dimly,

that computers were transforming the

society and that they ought to be

transforming the schools as well.

Accordingly, in early 1978 the Scarsdale

Board of Education appointed a citizen's

advisory committee to make recommendations

concerning the use of computers and

computing in the schools. The committee's

report, which gave the Board a platform

for action, recommended that computing be

introduced into the curriculum throughout

the school system and that appropriate

steps be taken to purchase necessary

equipment and to train teachers in its

use. The committee also recommended that

the district engage a qualified consultant

to help in the effort. Work began

immediately.

We believed the project should begin

with the education of teachers --es many

of them, system-vide, as possible. Too

many school ventures in the past had

foundered because irre money had been

spent on expensive equipment than in

helping people prepare themselves to use

Integrating Computing into I12 Curriculum 157

it. However, district history suggested

that simply requiring teachers to take a

new in-service course would not accomplish

everything. Grass-roots support, from

both teaching staff and community, would

also be essential if the project were to

succeed.

19713/19744

In the fall the District convened a

steering committee consisting of about a

dozen teachers and principals. Committee

members were charged with keeping their

colleagues informed of developments,

reviewing4progress, drawing up statements

of assumptions and goals, and making

recommendations far the purchase of more

equipment when appropriate. With the

consultant, this committee reviewed the

Advisory Committee report, made plans for

the first in-service education efforts and

decided on immediate hardware purchase.

The committee swiftly acted to

acquire hardware, both to have it

available for the teacher training and to

satisfy some long-standing student demands

in the high school. However, the

committee decided to limit first-year

acquisition to a minimum in the belief

that they could better make such decisions

after they themselves had had a year of

1 6. cs

158 NECC 1980

training and experiencb with computers.

Because it was not clear that any one

microcomputer would be best for

everything, a mixture was acquired: four

Apples, file Pets, and one TRS 80. As

anticipated, the variety provided good

experience in making later acquisition

decisions.

As winter approached, Dr. Taylor met

with all teachers in the school system to

lorovide an overview of contemporary

computer technology and its implications

for teaching and learning. (The teachers

actually met in several groups rather than

in a single blocks English and Foreign

Language, Social Studies, Art, and Musics

Math and Sciences sand Elementary:The

purpose of these overview meetings was to

inform teachers about the long range

prospects and to build their enthusiasm

for beginning training. All teachers were

then invited to participate in the

in-service course scheduled for 8 two-hour

sessions throughout the winter months.

There were three main objectives to

this first courses (1) to introduce the

teachers to the rudimentary concepts of

programming, (2) to get them over their

fear and accustomed to using

sicrocomputers, and (3) to :mtter inform

them of some potential uses of computers

in the classroom. First, FPL. an language

developed at Teachers College to teach

programming, and BASIC were used to teach

the crucial elements of programming.

Second, scheduled use of the ten

microprocessors was built into the course

so that every teacher participating had to

use them to finish the course. Third,

selected articles by pioneers of computing

and education were read and briefly

discussed.

Formally, the course was offered

jointly by the district and by Teachers

College, Columbia University. The

participants could take the course for

Teachers College credit if they paid

tuition, for local school credit if they

paid the nominal teachers institute fee,

or for no credit, without charge. Of a

faculty of 330, 122 enrolled, including

several principals and the superintendent.

By the end of this course in late spring,

one third of the Scarsdale faculty had at

least some familiarity with computer

programming and some hands on experience

with a :ommon microprocessor.

Meanwhile, meetings were held with

parent-teacher groups and with members of

the local press to explain the purposes of

the project and to develop community

support. When time came to prepare a new

school budget, the Board of Education had

no trouble in i*,.:reasing its appropriation

for computer equipment and additional

training.

Determining the next steps was less

easy. It is one thing to provide some

teachers with an exciting introduction to

computing, quite another to modify an

entire curriculum by integrating computing

into it. The vision shared by the authors

and the steering committee was only

general: computing should be incorporated

into the curriculum. The problem was to

refine this general goal into specific,

detailed sub-goals. This task was all the

more difficult because most members of the

steering committee admittedly were not

experienced in current computing

technology let alone expert enough to

predict what computers would be like two

or mere years into the plan when the

curriculum changes might be realized.

Nevertheless, planning proceeded.

To clarify what was underway, three

documents (Appendices A, 8, and C) were

produced: a statement of assumptions, a

set of curriculum goals, and a rough plan

for managing project activity over a

four-year period. Though almost

immediately outdated by experience and

events, these documents and the thinking

Integrating Computing into K-12 Curriculum 159

behind them were essential foundations for

further thinking and for much of the

action that made them obsolete.

19/9/1980

During the summer of 1979 a small

group of teachers was paid to develop

programming exercises for fifth and sixth

grade children. (At this writing, at

mid-year, many pupils have already raced

through this material, despite the fact

that till quite recently it might have

been considered strictly high-school level

material.) Based on the experience gained

with using the first, mixed batch of

microcomputers, the district selected and

acquired 19 more: 15 purchased from

school funds, two donated by an outside

agency, and two purchased by parent

groups. Each school then had a minimum of

at least two machines. More were placed

in the junior and senior high school and

full-time aldes were hired there to staff

a computing center in each.

Th:oughOuc the school year the

Scarsdale Teachers Institute (the

in-service education teacher-run,

teacher-serving program which jointly

sponsored the first formal introductory

computing course) has offered a series of

mini-courses in programming in BASIC;

1 7 .

.1Ms.mmb,

180 NECC 1980

certain junior and senior high school

teachers (primarily in math and science)

have begun exploratory use of computers in

their classes; a concerted effort has

been made to introduce computing and

programming to all fifth and sixth grade

pupils in their classes; a selected group

of K-2 teachers have begun to explore

dynamic graphics applications in beginning

reading and mathematics in their classes;

and formal in-service work of several

kinds has been continuing. At the same

time, planning for subsequent years

continued on various fronts.

Units

What has been accomplished thus far?

To begin with, nearly one third of a

district faculty which two years ago knew

little or nothing about computers now

knows the rudiments of programming, has

lost most of its fear, and is beginning to

try new things. A small cadre of teachers

has become enthusiastic and increasingly

knowledgeable and gives promise of

leadership in the years ahead. Many

pupils from the elementary grades through

the high school have acquired a beginning

knowledge of the computer's capabilities

and of their own capacity to get the

computer to help them think. Computer

hardware exists in all the district's

schools, with more to follow. And there

is a broadening base of understanding and

support of the project throughout the

community.

problems eneauntoreA

Any innovative project encounters

inertia after the first enthusiastic push.

Scarsdale now faces the problem of what to

do about the two thirds of the faculty who

have not learned about computers -- and

what to do about the hundreds of

enthusiastic children who have learned

about them but must, perforce, be assigned

to the classes of teachers who have not.

There is the problem of providing support

to the willing teacher who is learning but-

who needs help. There is the ubiquitous

problem of money and of acquiring hardware

as rapidly as it can be used.

And there is one other, more subtle

problem that must perhaps beset all such

ventures in computer education until the

shape of the future is more clearly

revealed. Computers have the power to

change the ways in which people acquire

and extend knowledge, just as writing

changed such ways millenia ago. But until

we know better how those ways will change

and how a school should be reorganized to

capitalize upon those new ways, computer

17.1

technology is in danger of simply being

harnessed for the pursuit of present goals

within present modes of operation. To

employ computers thus is to miss much of

the revolutionary potential they represent

and to heavily damp the enthusiasm and

insight they might otherwise foster in

children. To finish by using computers

for little more than enhancement within

the traditional curriculum and the

presuppositions implicit in it would be

tragic. The challenge Scarsdale and every

other school or school district faces is

to be sure this doesn't happen.

,The Goal

Using computing to practice

mathematics and language skills in

traditional curricula is helpful but

primitive, almost like using televisor

primarily to display pages from textbooks.

Serious questions must be raised about

mere productivity of educational

approaches which limit visions of computer

application to such narrow horizons. Some

of the skills for which computer

assistance is so easily designed may

actually be of significantly less

importance as computer access continues to

increase. Hampered by ignorance, enticed

by expectation, Scarsdale seeks a grander

goal: to become so comfortable with

Integrating Computing into K-12 Curriculum 161

computing that our understanding of it

will naturally reshape the way we think

about everything. 4

Cencladjer school
districts

What might others learn from this

project's successes and problems? We

suggest the following:

1) Begin with people, not equipment.

The eager person who wants the

machine and is ready to employ it is

more valuable and catalytic than the

machine that no one understands.

2) Develop broad support throughout

your community and teaching staff.

3) Engage in on going, system-wide

planning. Do not leave matters to

an individual school or department

or to an outside consultant.

4) Use a consultant or consultants who

can bring not only technical

knowledge of computers, but an

understanding of schools and the way

people use their minds and

imaginations.

5) Concentrate resources of time,

money, and attention on the project.

In this way you can achieve a sense

162 NECC 1980

of purpose and direction despite the

shrinking you may be suffering

elsewhere in the system.

6) Don't wait for the perfect computer; 1)

current machines despite their costs

and limitations are a perfectly good

introductory device for teacher

training and pupil experimentation.

A great deal must be learned now if

better machines are to be well

employed when they do become

available.

7) Don't limit yourself to one type of

machine; get experience with

several. As cheaper, more powerful

ones bow in, you will have a better

experiential background by which to

judge them.

8) Find out what you can do with the

hardware as it stands, then do it.

Don't always wait for expert

software; both teachers and

children can learn powerful things

from exploring a machine's basic

capabilities to plot, edit, speak,

delete, and so forth.

Appendix A

assumptions re coo PutoXfiMAd

C81911th18irL-inaLLIIctiall

The influence of computing on human

life and on the entire planet's

development will continue to

increase exponentially for the

foreseeable future.

2) All pupils should be educated to cope

with this growing influence; as

many pupils as possible should be

educated to master computing and to

use it creatively.

3) Such educating toward computing should

be general rather than specfic

since hardware and software changes

will continue to occur at such a

rapid rate that specific training

will rapidly become obsolete.

4) Any human being of normal intelligence

can understari the fundamental

principles of computers and

computing, can operate computers,

and can learn to write simple

computer programs.

5) Pupils should begin learning about

computers and computing from the

time they first enter school and

should continue such learning

throughout the grades.

6) Pupils should also use computers as an

aid to other studies, in the

humanitits and social sciences and

the fine arts, as well as in

mathematics and natural science.

7) Pupils learn to use computers by using

computers. The use of computers

should be as thorougly integrated

into the school program as the use

of pencils or chalk.

8) Computers are both an object and an

instrument of learning.

Traditionally we study writing to

learn how to write, and we use

writing to refine thought and

express feeling. so too should we

study computers to learn how to use

them and use computers to extena

and refine our thinking.

9) If pupils are to learn about computers

and computing, their teachers must

learn about computers and

computing. If all pupils are to

learn about computers and

computing, all teachers must learn

about computers and computing.

Integrating Computing into K-12 Curriculum 163

10) Computer hardware will become

increasingly less expensive, and

both hardware and software will

become increasingly available.

11) Computers can serve as tutors,

teaching us skills and information

according to programs written by

others. Computers can also serve

as tools, analyzing data,

performing calculations, and so

forth. And they can serve as

tutuees as we teach them to solve

problems, compose music, etc. Bach

use has its place, but the most

important is the last.

12) Programming computers requires logic

and precision. Pupils who learn to

program computers practice logic

and precision.

13) The study of computers and computing

does not run counter to the spirit

of humane studies and the exercise

of free, creative intelligence. On

the contrary, it extends and

deepens them by extending the power

of the human mind and may foster a

much needed dimension to our

intelligence.

164 NECC 1980

Appendix Et

guriculum

1. From kindergarten through high school,

at increasing levels of

sophistication, pupils should learn

the fundamental principles of

computers and computing. Some

Pupils should learn to write simple

computer programs in elementary

schools all pupils should learn to

write simple computer programs

before the end of their junior high

school years. In grades 9 or 10

all pupils should complete a

one-semester course in computing,

computer science, and the social

issues raised by computer

technology. Other high school

computer studies should be oriented

towards computer skills which

students will need in college, such

as computer applications in

numerical analysis and statistics.

2. From kindergarten through high school

pupils should use increasingly

sophisticated calculating and

computing devices as an aid in

studying mathematics, science, and

other subjects.

3. Throughout the grades interested

Pupils should have opportunities to

extend and enrich their knowledge

of computer programming. In the

elementary schols these

opportunities might take the form

of after-school workshops or

special individual or group

projects; in the junior high

school. of projects(mini-courses,

or club activities; in the high

school, of specialized elective

courses, projects, or club

activities.

(Sow can we make this item more

specific?)

4. Interested high school pupils should

also have the opportunity to study

computer science, computer

technology, and data processing.

1 '70

Appendix C

Curriculum: Pour-Year Plea

1978-79

Elementary: None.

Junior High: Computer club plus?

High School: Computer Center open.
Computers used in
science courses.

1st semester: Introductory
Computer Course.

Computers & mathematical
application course 442
- 1/2 credit, 1
semester course.

Computer used in 9th grade math

Computer Club makes much use of
center.

1979-80

Elementary:

1. Three week mini-course for
intermediate students
rotates among five
elementary schools.

2. Consultant and 2-4 primary
teachers work with K-3
students.

Junior Highs

a. Each 8th grader has an
equivalent of one week
mini-course on
computers (hands-on).

b. Each 8th grader has two week
computer/literacy
course in spring as
part of social studies
curriculum.

High School:

Introductory programming (2
semesters).

Advanced programming courses
developed.

Integrating Computing into K-12 Curriculum 165

Computers used in science courses.

Computer applications in math
developed.

Independent study projects
available.

Computer Club active.
1980-81

Elementary:

Mini - courses for 5th /6th graders;
most have hands-on time
with desk-tops during
both years.
Increased/experimental
activity at primary
grades. Units for
primary grades included
in social studies,
science curriculum
guides.

Junior High:

Units on computers in social
studies technology
units.

Computer units in math courses both
years.

Active Computer Club.

High School:

All before continues.

Increased computer use in social
studies, business, and
science courses.

1981-82

Elementary:

Nini-courses for all 5 -6 graders,
all have opportunity
Or hands-on computer
work.

Activities for primary grades
included in social
studies, science, and
Math guides.

Junior High:

Continuation of 1980-81.

High School:

7G

166 NECC 1980

Continuation of 1980-81. Expanded
use of computers in
non-math departments.

tzpi)*hrerehitirL PrpnitA

First Semester.

a. Consultant meets with staff in
various formats.

b. Guest speakers meet with staff.

c. Committee reads, discusses,
meets, and argues.
Engages others not on
committee in similar
conversations.

Second Semester.

a. Consultant continues to meet
with staff.

b. Consultant teaches literacy
course in Scarsdale.

Faculty visits other schools to
examine use of
computers.

Issues: What do we want kids to
knows

What learnings are appropriate for
each age?

How do we best teach about
computers?

How do we go about organizing
ourselves?

How do we involve the entire staff?
1979-80

a. Consultant advises computer
committee and others.

b. Advanced seminar for those who
had first course.

c. Four session course on BASIC
for novices and
literacy graduates
(Sept./Oct.).

d. Follow-up mini-courses on
educational
applications &
programming led by
in-house staff (Nov. -

February).

e. Course on graphics and music.

f. Guest speakers - Computer
literacy.

g.

h.

1.

j.

a.

b.

c.

d.

e.

f.

g.

Visits to other schools on an
expanded basis.

Social studies, science, and
business faculty gain
experience with
simulation materials
through BOCES course.

Send one or two to computer
repair school.

Course on programming for CAI
(2nd semester).

1980-81

Consultant continues support
group on computers.

One or two faculty take
advanced college
courses.

Course in FORTRAN, etc.,
offered to all with
previous experience.

Introductory BASIC course
repeated for those with
-no computer experience.

Release-time workshops for
those with no computer
experience.

LOGO on the APPLE course for
elementary school
teachers.

CAI programming course.

LI
19
=78-79

1. Prepare statement of
aspirations.

2. Educate ourselves.

3. Design structure to involves
entire district.

4. Plan and implement system-wide
in-service program.

17

S. Plan 1979-80 computer budget
(16,000)

6. Purchase 1979-80 computers and
software.

7. Design courses at high school
level.

8. Plan 3-4 yr. purchasing
program for computers.

9. Design a mini-course for
elementary students.

197v-80"

1. Continue system-wide general
education.

2. Provide follow-through
in-service for
teachers.

3. Plan 1900-8i budget (21,000 for
hardware, software).

4. Make 1980-81 purchases.

S. Design courses at high school
level.

6. Pilot units at juor high
level during 2nd
semester.

. -

7. Pilot mini-courses at
elementary school upper
grade level.
experiment at primary
level; expand primary
level computer use,
teach technology unit.

8. Develop maintenance procedures.

9. Integrate computers into
expanded Sth grade
technology unit.

10. Integrate calculators,
computers into math
curriculum.

11. Search for and write grant for
computers.

12. examine software.
1980-81

1. Focus in-service on advanced
courses.

Integrating Computing into K-12 Curriculum 167

2. Continued expansion of
curriculum off4rings.

3. Plan 1981-82 computer budget.

4. Make 1981-82 purchases.
1981-82

1. High school curriculum in
place.

2. Junior high curriculum in
place.

3. Elementary curriculum in place.

4. Write computer scope and
sequence.

1 *;*fcI tj

168 NECC 1980

INTEGRATING COMPUTING INTO K-12 CURRICULUM

Beverly Hunter
Human Resources Research Organization
300 North Washington Street
Alexandria, Virginia 22314
(703) 549-3611

ABSTRACT
aliFFically, schools and school dis-

tricts have employed a wide variety of
strategies to integrate computer-related
activities into the curriculum. Several,
such strategies are reviewed, based upon
a national sample. The need for a compre-
hensive computer literacy curriculum,
K-12, is described. A plan to infuse
computer literacy objectives and activ-
ities into the traditional curriculum is
set forth. Implications of such a plan
on teacher training and curricular mate-
rials me discussed.

Catherine E. Morgan
Dept. of Instructional Planning and
Development
Montgomery County Public Schools
850 Hungerford Drive
Rockville, Maryland 20850
(301) 279-3321

ABSTRACT
Ugger-based instruction in the Mont-

gomery County Public Schools, a large
public school system, includes mmputer-
assisted and computer-managed instruc-
tion, computer literacy, computer math-
ematics, and problem solving. The inter-
active use of computers for children
begins as early as third grade while the
management system in mathematics monitors
individual student progress from kinder-
garter.

Invited Session

FUNDING ACADEMIC COMPUTING PROGRAMS

Sheldon P. Gordon
Suffolk County Community College

Belden, New York 11784

Lawrence Oliver
National Science Foundation
Washington, D.C. 20550

ABSTRACT
At most institutions, the single most

critical problem in the development, imple-
mentation, maintenance, or expansion of any
academic computing program is lack of money
This presentation will focus on a variety
of possible solutions to this problem. A
number of alternate sources of funding,
including grants from private foundations,
grants from government agencies, and
contributions from local business and
industry, will be discussed. Primary
attention will be devoted to the most
likely source of outside funding, namely
government grants, especially those
availabl through the National Science
Foundation. In particular, details will
be provided about the respective objectives
and limitations on those NSF programs that
would most likely sponsor various types of

computer oriented activities. These would
include CAUSE (Comprehensive Assistance to
Undergraduate Science Education), LOCI

. (Local Course 'mprovement), ISEP (Instruc-
tional Scientific Equipment Program), and
MISIF (Minority Institution Science
Improvement Prograzi",.
In addition, the presentation will

include a discussion of some of the
important do's and don'ts connected with
proposal writing, and will relate them to
the process of gre.nt review as conducted
by the NSF,

169 1 S

Tutorial

TECHNIQUES FOR INSTRUCTIONAL SOFTWARE
DEVELOPMENT USING MICROCOMUTERS

Kevin Hausmann
Minnesota Educational Computing Consortium

2520 Broadway Drive
St. Paul, Minnesota 55113

ABSTRACT
7%saWocomputers become more and more
available and easy to use, more and more
people will be designing and writing soft-
ware for them. Before a project is begun,
however, there are several obvious but often
gotten considerations:

1) Is this a reasonable application for
a microcomputer?

2) What are the limitations of my
equipment?

3) What modes of interaction should
be used?

4) What support materials may be
required?

Once the analysis phase is completed,
the design and layout stage may begin.
Design should center primarily on the
organizational content and division of
the material. Also at the design stage,
one should consider the mode of presentation
of the material. So far, all the time
spent on the project has not involved any
time programming the microcomputer.
After the design is planned out, one

enters the ithplementation stage.
Briefly, some items to consider here
includes

170

1) Adequate spacing of material on the
screen.

2) Efficient movement between frames.
3) Effective presentation techniques.
4) Good ways to ask questi,ns.
5) Effective feedback for answers.
6) Adequate arS appropriate use of

graphics and other special features
of the microcomputer.

After an application is developed and
written, it is very important to adequately
test the program. Many times this is best
done by watching someone use the program
who is totally unfamiliar with it.

More detailed written material of this
nature is available from the Minnesota
Educational Computing Consortium, 2520
Broadway Drive, St. Paul, Minnesota 55113.
Ask for the Apple Authoring Guidelines.

Mathematics

A NETHOD FOR EXPERIMENTING
WITH CALCULUS USING.

COMPUTER-ASSISTED INSTRUCTION
Frank D. Anger L Rita V. Rodriguez

Department of Mathematics
University of Puerto Rico

Rio Piedras, Puerto Rico 00931
(809) 764-0000

INTRODUCTION
The project which is the object of

this report was carried out in the (a-
cuity of Natural Science at the Univer-
sity of Puerto Rico, Rio Piedras campus,
during the years v.976 to 1979. The Na-
tional Scienc. ration sponsored the
project through its Minority Institations
Science Improvement Program (MISIP),
making possible a wnole new aspect of
instruction and learning for 1600 stu-
dents. Although the ptssent paper will
concentrate on the computer- assisted
instruction modules developed for the
introductory calculus course that we
believe are innovative themselves, we
most begin by describing briefly a few
points which make tnis project, as a
v121e, unique.

First of all, as the composition
of the student body is that of the
Spanish-speaking culture of Puerto Rico,
the various materials of the project
were produced in Spanish. In addition,
experience has shown that although UPR
mantains a selective admissions policy,
entering students are frequently defi-
cient in analytic skills and in expe-
rience with methods of scientific
inqciry. Inadequate or, frequently,
incorrect preparation may lead a studen4..
to frustration or failure when faced
with laboratory or problem-solving si-
tuations.

171

Second, the project introduced or
advanced sweeping changes in the curricu-
lum. Rather than simply paste on a little
computer-assisted instruction (CAI), we
took into account the full importance of
the computer to modern science and in
particular to the working scientist. Thus,
programming was made mandatory for all
majors in the faculty, CAI was introduced
in all basic science courses, and inter-
active computer utilities were madeavail-
mble.for students of certain advanced
laboratories. In the calculus courses,
greater emphasis was placed on the use of
the calculator and on the numericalmethade
of calculus.

Finally, the project created the Na-
tural Science Academic Computer Center
headed by a member of the faculty and
staffed exclusively by students. Rather
than implanting a ready-made system to
which students have recourse, we thereby
created an organic exterugion of the stu-
dents' environment, providing her imme-
diate incentives for probing deeper into
the uses and operation of computers. This
last area has been one of the high points
of Ale project. (4)

THE MATHEMATICS COMPONENT
The project developed in an orderly

series of stages, beginning with the
training of staff, the search for appropriate
hardware, and various necessary

172 NECC 1980

administrative measures. Although every
part of the project seemed to be fraught
with unexpected difficulties, the faculty
as a whole responded more positively than
expected, and their cooperation along with
that of various student assistants kept
things moving forward at all times. In
the Mathematics Department, the necessary
changes and investment of time were the
greatest, since to 'his department cell
the full weight of training professors
and implementing the new programming course
requirement for the whole faculty. We soon
realized that the applications in the dif-
ferent discip'ines involved were better
handled by U..* new programming courses
rather than by the old course (see Figures
1.a and 1.b). The pre-medical and biolog-
ical science students were better served
with a programming course that would in-
clude data gathering, statistics, and
examples in their own discipline. There
are many packaged programs that, with some
programming knowledge, the student may
easily adapt to his needs. On the other
hand, the physics, chemistry,and mathe-
matics majors were to be taught more
sophisticated programming, also wit% exam-
ples from these discipliner.

To train more of the faculty members
in PL/1, programming seminars were given.
We chose the PL/I language in particular
because we believe that it is extensive
enough that the student who knows it may
teach himself whatever langUage the ma-
chine he has at hand uses. Parallel te
this, the calculus course was divided
into two courses; the first, as in the
programming course, designed to serve the
pre-medical and biological science stu-
dents and the second to serve physics,
chemistry, and mathematics majors (see
Fig. 1.a and 1.b). These divisions re-
spond to long-standing curricular tensions
in a faculty in which about two thirds of
the students will go no further inmathe..
matics than the first semester of calcu-
lus while the other third will need at
least two or three semesters of more
advanced mathematics.

THE COMPUTER-ASSISTED INSTRUCTION FOR
CALCULUS

The major reason for the implementa-
tion of CAI at the University of Puerto
Rico was to combat a lack of analytical
skills and to overcome, to whatever extent
possible in such a limited program, the
tendency toward rote learning and memori-
zation as the basis of learning. We de-
sized, moreover, to avoid doing with the
computer what could be done equally well
or better by more traditional methods,
with the possible exception of the one-to-

one tutorial. Thus, we sought three basic
things from each module:

1. It should perform some graphic
or numerical simulation of some funda-
mental process, concept, or technique.

2. It should be highly interactive
and open ended, allowing the student some
freedom to experiment with the concept
under investigation.

3. It should minimize the difficul-
ties faced by the student using the com-
puter.

These objectives have much more ob-
vious implementations in the experimental
sciences than they have in mathematics,
and we feel that there is still much room
for exploration and development in this
direction. Nonetheless it is herein that
we feel much of the novelty and value of
our modules lies.

Math 103
Precalculus I

4 credits

Math 104
Precalculus II

4 credits

Figure 1(a) Previous Basic Matikaatics
Sequence

/hdt 100
Remedial Math 105

Math 1 Precalcuks
3 5 credits

credits

Fiigu a 1(b) New
Basic Mathematics

Sequence

Math 200
Calculus for
Biology and

Life Science
5 credits

fiaUt 205
Calculus I for

Physical
Sciences and
Math 5 credits

Math 211
Calculus I
3 credits

Math 107
Programmine
3 credits

Math 21:
Programming
with Statistics

3 credits

Math 218
Programming

3 credits

Before the actual structure and con-
tent of the individual modules are dis-
cussed, it will be instructive to look at
some of the story of their development.
At the start of the project we wrote to
numerous publishers and universities in
order to obtain Information on texts and
already existing CAI for calculus rouses.
Although we then found some interesting
supplementary texts, it soon became ap-
parent that very little had been done for
calculus like the interactive programs
that we envisioned. Algebra, statistics,
and linear algebra seemed to be the areas
that had attracted the most effort for a
variety of reasons running from the size
of the student populace to the appropri-
ateness of the material for programming.
We found the nearest thing to our aspira-
tions at Georgia Institute of Technology
where Dr. J. C. Currie and a small group
had developed some rather brief programs
for illustrating limits, derivatives, ap-
proximate areas, and other topics along
with a driver program which we totally
failed to appreciate at the time. (6) Far

13
lifm=mmnimmIllmsleImmnEllmamsimilllEmMmwEIMMIIngi!!!!MO=111

Offer Metes and Branching

more impressive things had been done for
logic at Ohio State University, for sta-
tistics at University of Akron, and for
non-mathematical subjects in many other
places; we wanted to see something similar
done for calculus.

As we learned more about the diffi-
culties of compatibility and transferabi-
lity and thought more about the problems
of translating whatever we found into
Spanish for our students, we leaned to-
wards developing our own programs out of
the many materials and ideas which we had
collected during the first year of the
project. We had finally settled on buying
a Hewlett-Packard 2000 System for its re-
putation for fast response with a large
number of users, to give us independence
from the main competes center with its
many large administrative jobs, and be-
cause it supported Coursewriting Facility,
an approximate implementation of IBM's
Coursewriter with available BASIC numerical
functions. We had experimented with the
latter language on UPR's IBM 370/145 com-
puter and believed that it was a rather
powerful tool providing the necessary
structure for developing good CAI. We
were eventually to come to grief with
the Coursewriting Facility, but we remain
pleased with the rest of our system;
after many months of work in this lan-
guage we found ourselves unwillingly
forced to convert everything to BASIC,
which is now the language in which all
our programs are written.

We arrive, then, at the modules
themselves. It was for the calculus
course of the hard sciences and methane«
tics (Math. 20S in Fig. 1) that the CAI
modules were produced. The various pro-
grams which make up the entire CAI system
in calculus are depicted in Fig. 2.

Within the system, the student has
complete freedom to choose among the
different modules at any time, although
he is informed in class when it would be
most appropriate to study each module.
The manager program, which interfaces
between the student and the individual
lessons, also allows the students to
register themselves, avoiding one of

Manager Pram

Registration
of Students

S sa-on an
Securit

Mathematics 173

the time consuming operations often asso-
ciated with the beginning of the semester.
The structure of this program is shown in
Fig. 3. (Of course the security with this
s;.tem is minimal, but in our environment
this is not a problem.) This same program
maintains data on the total number of uses
of each module by each student and the
total number of minutes of terminal time
of each student. Three separate report
programs have been written to produce dif-
ferent usage reports for the teachers of
each section and for global evaluation.
No data are kept on right and wrong res-
ponses: it will become clear further on
that such information is either not ap-

-plicable or irrelevant for the majority
of response situations presented.

The general form which most of the
modules follow is given in Fig. 4. It
must be remarked here that these modules
are nut in any way conceived of as re-
placing the textbook or the lecture. :hey
are strictly supplementary and each one
presupposes that the student has already
been introduced to the concept or tech-
nique in his regular class work. Thus,4m
the first part of the module there are'
usually a few questions to find out if the
student is at all familiar with the mate-
rial, and if not, to recommend that he
learn more about it before gotng on. The
examples which the computer presents are
as much for the sake of familiarizing the
student with how the computer output looks
and how to later enter his own data as they
are for illustrating the material being
studied. That is to say, it is expected
that the student will continue making up
his own examples and investigating the
computer's responses and will do most of
his learning during this latter exchange.
Those students who stop after the prepared
examples are not really likely to ;lave
gained much. Fig. S presents the eight
modules and their content essentially as
the manager program presents that menu to
the students, except of course, it appears
in Spanish on the screen.

4. SECANT S. GRAPH

7. NEWTON

6. CURVE

1ElE
Th Me I Modules

I. INTRO 2. NUMBER]

Figure 2. The Calculus CAI Programs

Report, Facilities

Rised Students by Section I

Amber of Successful Completions!
of tea tbdula by Student

I Total. Usage Time for each tbduS1
by Student

174 NECC 1980

/
Present

Modules
of

1-----
Select
Module

I

Figure 3. Manager Program Flowchart

sail format as in 3 . The computer provides

the necessary data and prompting. The option
to rerminate is offered before each example.

1. INTRODUCTION

2. 9pESTIONS. Does the student know enough to benefit
from the module? If not, he may be asked
to return to the text before continuing.

3. INTERACTIVE EXAMPLES. The student participates in
working through an cx..mple selected by
the program.

4. EXPERIMENTATION. The student is given the opportunity
to make up and enter his own examples in the

ob.a.mee dm. el re.wwer...mr
Fi3ore 4. CFneal Scheme for Modeles

Mathematics 175

1. INTRO Introduces the terminal, the
keyboard, and its traits.

2. 111142814 Presents real numbers, round-off,
and how to read mathematical tables.

3. LIMIT : Studies Limits of rational functions
with values that make the denominator
equal to zero (0) by the use of a table.

4. MAW: Illustrates how the slope of the secant
tends toward the slope of the tangent.

5. GRAF : Calculates values of a given function
and its derivrtivesinorderto help plot
the graph.

6. CURVE : Evaluates the function,finds the inter-
cepts, critical points, and points of
inflection of a polinoeisl.

7. NEWTON: Finds tne roots of a given polinomial
using Newton's method.

8. AREA : Calculates the approximate integral by
various methods.

?IMRE 5. The Eight Calculus CAI Modules

Table 1. Calculus *Wale Usage

,1
Pall

78-79

tamdwar of
Sections

Total
Students

Number of
Students

participating

X of
Students

participating

Modules
Used per
Student

Average
Total
Minutes

5 150 37 25 % 3.3 65

Spring
78-79 9 270 123 441 5.6 84

Pall

79-80
7 200 67 34 2 3.1 68

2

Sable 2. Average of Responses to Module Questionnaire', 1978-79

relevant relevant
to to

long clear interesting helpful course studies
high recommend
level fast it

6 3.6

AA

3.5

tart confusing boring not irrel- irrele- loso slow don't
helpful elevent vane to level recommend

to course studies it

is 6

178 NECC 1980

The first two modules in fact have nothing
to do with calculus. They are there to
minimize the shock of dealing with the
computer for the first time and increase
the probability that the student will be
able to successfully use the modules and
interpret the results. Next comes a mo-
dule on limits and then on the derivative,
both centered around investigating tables
of values of the appropriate expressions
in the neighborhood of a chosen point.
There are no epsilons or deltas here, and
it is hyped that the student will get more
of a feel for how varying values approach
a fixed number. The next two modules deal
with the use of the first and second de-
rivatives to describe certain properties
of the graphs of functions and to draw
those graphs. It is our continuing dis-
appointment that these modules contain
very few graphs. Despite the fact that
we had proposed to buy some graphics ter-
minals and even a plotter, we were never
able to do so. Several programs were
developed to produce graphs with alphabetic
characters but were never actually incor-
porated into the fiaal modules. It is
still not clear whether a graphing routine
cannot make a straight line look like a
straight line that will be very
convincing for the students. The seventh
module illustrates the Newton- Raphson
Method for finding approximate roots to
polynomials, while the last module does
approximate integration by three of the
standard methods frequently treated in
introductory calculus courses.

To demonstrate the implementation of
the general structure of the modules as
shown in Fig. 4, we shall disease in more
detail the seventh module: Newton. The
introduction reminds the student of the
objective and iterative nature of Newton's
Method ant' requires him to recall the pre-
cise form of the iterative formula, using
one of the very few multiple choice formats
in these modules. Once he gets that
straight, the sample function, f(x) e

4 x3 -5, is presented. The studeat is di-
rected to choose a starting value, x , and
the computer then calculates, one 0 at
a time on request, x, until the
student decides *.hat

,

hAt 4 he is ready to
say what is vot ,eing approximated.
Upon entering his Guess, he is either told
it is not good enough and to look at more
values, or that it is right, or that it is
close enough, but that a better value
would be ,Once the .student has success-
fully named the root, the computer offers
him the ,..pportunity to enter a polynomial
of his choice by entering, successively.
the degree and the coefficients.
The program then runs through the same

L

sequence of steps until the student names
the root being approximated with suffi-
cient accuracy or until it becomes clear
that the process is not converging. (As
you may expect, the only method the pro-
gram has for determining the root is the
senses Newton's (Method, so that in some
untidy cases the coMpeter gets it wrong,
leading perhaps to some confusion. This
sort of thing is, however, a constant
source of difficulty in many of the mod-
ules and in fact in all numerical methods.
Some care has been taken in the program-
ming to avoid some of these pitfalls and
to give some warnings in the text portions.
The student manual, which offers various
forms of encouragement and hints, also
points out same of the difficulties.) The
student then has the option of trying for.
another root of the same polynomial, en-
tering another polynomial, or terminating
the module.

RESULTS OF THE CAI IN CALCULUS
Throughout the duratioa of the proj-

ect, and continuing.now, certain evalu-
ative procedures were used to assure some
kind of objective information about par-
ticipation, reaction, and effect of the
CAI. The first of these, participation,
was constantly monitored by the computer
itself. Table 1 shows the percentage of
the enrolled students who actually used
the modules to some degree or other, the
average number of modules run by each
student, and the average time spent by
each student at the terminal during the
semester. The relatively low use is due
irincipally to three factors. Foremost
is the totally voluntary nature of the
computer laboratory. Any such voluntary
activity cannot hope to attract more than
75% of a class unless it guarantees better
grades. Our modules offer no such guar-
antee. Secondly, there were considerable
difficulties during the first semester of
1978-79 due to the delay in completing
the final home for the computer center and the
resulting lack of terminals and comforta-
ble working conditions. At that time
there also was no student manual, leaving
the students more or less on their own in
attacking the modules. Finally,the pro-
fessors teaching the various sections of
the calculus course change from semester
to semester, and there is a clear corre-
lation between the enthusiasm of the pro-
fessor for the computer laboratory and the
students' participation.

Student reaction was checked each
semester by a standard questionnaire dis-
tributed in class and in the computer
center. It was originally supposed that
a student would fill out one of these

1

questionnaires for each module that he
used, but we soon decideC that we should
be content if we could elicit one overall
reaction from each participating student.
The results of these questionnaires are
shown in Table 2. The reaction is clearly
favorable, being most favorable on the
issues of "interesting" and "would recom-
mend it." (Responses here were made on a
scale from 1 to 5, 1 in full agreement
with the bottom description and 5 with
that of the top.) The form used also in-
cluded more direct questions over problems
encountered in using the modules, and some
of the students' comments led to correc-
tions and minor improvements.

The actual effect of the CAI on stu-
dent performance and general understanding
is obviously the most difficult to measure
of the three parameters, but perhaps the
most important. We have made two formal
attempts at measuring this. The first of
these was in the second semester of 1977-78,
when we set up non-participating control
sections for comparison of results. Due
to a plague of difficulties, many relating
to the problems which led to giving up the
Coursewriting Facility, it became impos-
sible to gather any reasonable data. The
second attempt was made at the end of the
first semester of 1978-79. At that tir
a study was made comparing certain in-
dices of calculus students who had actually
lama some of modules. These indices were
their SAT scores, both achievement and
aptitude, their final grade in calculus,
and the number of modules used. In this
small sample, no actual statistical cor-
relation could be established, but cer-
tain tendencies were apparent. Porexample
(see Table 3), all the students who used
five or more modules obtained a grade of
C or better in the course, while of the
students who used five or more modules,
only one had obtained better than 700 on
the SAT math achievement.

Table 3. Comparison of Module Usage
Course Grade, and Previous Aptitude

and Achievement Test Results
Pail Semester 1978-79

(Fig

part

0A
e

c

o u

Aetite
bcores

ores in percent of
Lcipating students.)

27 4 4

11 08 8

11 15 11

4 27 15 11 4

8 4 8 4 11 4

4 4 11---0...8----4
4 8 4 111 4

11 4 111 1

de 0400 601-700 701-400 1-2 3-4 5-6 7-8.

1Imammelmvir.

0

0
ot-acio
01-700t

0-600 X

44"

I

Number

doulfes

Mathematics 177

(One fourth of the participating students
ran five or more modules). One is tempted
to draw the conclusion that the students
who used the modules most are the hard-
working students; not necessarily highly
intelligent, but nonetheless successful.

To conclude this discussion of the
evaluation of the project's results, we
would like again to recall that the ob-
jectives of these CAI modules and the
basic philosophy used in constructing
them are to overcome certain experimental
and analytical deficiencies in the stu-
dents' preparation (as well as to offer a
challenge to the more highly motivated
students), and hence they are not directed
at the routine type of problem solving
that is prevalent on examinations. It
was, therefore, never expected that using
the modules would be directly and imme-
diately reflected in better test scores,
but rather in a deeper, long-range appre-
ciation of fundamental concepts and a
more enquiring approach to attacking new
material. Any correlation obtained be-
tween exam performance in the calculus
course and module use is therefore much
more likely due to pre-existing attitudes
of the student than to the contribution
the calculus CAI made to his or her knowl-
edge. The calculus is neither a bag of
technical tricks, as it- is frequently
taught to non-science majors, nor an ex-
ercise to mathematical logic, as it often
appears in honors courses. It is a co-
herent system of ideas elaborated for the
modeling and analysis of certain clavier:sof
phenomena; experience with some of these
phenomena and with the way calculus pur-
ports to capture these processes is neces-
sary for anyone aspiring to scientific
investigation or teaching. We hope that
our modules make a start in the direction
of providing some of, this experience.

DIFFICULTIES AND WARNINGS
The creation and implementation of

successful computer-assisted Instruction
is a major undertaking involving many
factors, any one of which is capable of
nullifying many months of serious effort.
Our project, which we consider to have
been reasonably successful overall, did
not escape from its share of mistakes and
frustrations, and it still faces the dif-
ficulties of maintenance and imbrovement.
The initial challenge is the selection of
an adequate system of hardware and soft-
ware, unless one is locked into a pre-
existing system. The choices today are
far wider than they were three years ago,
and serious consideration must be given to
microcomputer systems as well as to minis
and main frames. Although our mini

1 S

178 NECC 1980

computer, the Hewlett-Packard 2000 System,
has functioned well in our environment,
its upkeep may be too great for a smaller
institution, or capacity too limited for
a more ambitious project. The lack of
special symbols on our terminals (H-P
2640B), such as integration signs or even
lower-case letters, puts undue strains on
programmers and users alike. The mathe-
matical symbols as they appear in texts
and are used by the teacher on the board
are important for a quick understanding
of the material and for adequate rein-
forcement. For example, INT X2 DX needs
much more attention than
does the usual expression,jx2dx. Related
to this point is the ability of the ter-
minal to recall previous pages of material
(terminal memory), or careful programming
to imitate this ability. Although all our
terminals now have memory, at the outset
of the project they did not, and we found
this situation much less flexible and more
demanding.

Problems with software can be more
insidious. It is not easy to find out
from salesmen exactly what a computer or
a software package is capable of doing,
particularly in the area of educational
applications. We began, as mentioned
above, with iBM's Coursewriter which is
an especially designed system for CAI
and its management. We soon discovered,
however, that it is incapable of doing
any kind of calculations other than in-
teger arithmetic. This can be overcome
by begging, buying, or writing assembler-

- language functions to increase the power
of Coursewriter, but this solution we
found to be painful and restrictive. H-P,
on the other hand, allows these functions
to be added to their Coursewriting Fa-
cility via simple BASIC programs. To a
large extent this is what sold us on the
system we bought. Several months later
we gave up trying with the Coursewriting
Facility and converted to BASIC. Com-
plications in the compiling procedure,
bugs in the management facility, and
system crashes occasioned, at best guess,
by the many needed disk accesses finally
wore down the patience of even the most
stalwart among us. Of course, BASiC is
an entirely adequate language for most
CA/ (consider its transfer.-
ability, by far the majority of the
available cAi packages are in BASIC),
but it does not encourage the same kind
of careful organization and answer pro-
cessing as do Coursewriter and other CAI
languages.

Some of the other components that
can, and hence will, go wrong are: Inade-
quate physical plant, too few terminals,

improper scheduling of student usage, poor
response time when the computer is busy,
and,inevitably, equipment failure. While
it is idle to suppose that one can avoid
all of the problems and delays that typ-
ically arise, careful consideration can
avoid many of the difficulties. After
all, you can not change your computer sys-
tem with the same frequency and ease with
which you have been changing vourcalculus
text over the years! We hope that as the
advice and experience of a large number
of generous and helpful people helped
guide us through the vagaries of this
project, so some of our experience may
contribute to future endeavors of this
nature:-

REFERENCES
1- M.J. Christensen, MATHDOC; A Control

System fox Computer-Assisted Calculus,
Proceeding of Conference on Computers
in Undergraduate Curricula, Denver,
June 1978.

2- W.S. Dorn, G.G. Bitter, D.L. Hector,
Computer Applications for Calculus,
Boston; Prindle, Weber and Schmidt,
Inc., 1972.

3- G. McCarty, Calculator Calculus, Palo
Altos Page-Ficklin Publishing Co.,
1975.

4- R.G. Selsby and M. G6mez Rodriquez,
"On- the -Job Training of Students in
Computer Science," Proceedings of
Minority institution Curriculum Ex-
change Conference, Concord, North
Carolina, January 1979.

5- D.A. Smith, Interfaces Calculus and
the Computer, Roston: Houghton Mif-
flin Company, 1976.

6- K.D. Stroyan, Manual for a Computation
Laboratory in Infinitesimal Calculus
and Linear Algebra, Mathematical
Sciences, University of Iowa, 1976.

COMPUTER APPLICATIONS IN A FINITE MATHEMATICS COURSE

by

R. Abernethy,
G. Piegari,

and
A.L. Thorsen

Mathematics Department
Virginia Military Institute

703-463-6335

INTRODUCTION
The course described in this paper sup-

plements a standard course in finite math-
ematics with computer applications. It
was developed with the following goals in
mind. First, since the course is offered
to students in engineering or mathematics
cure^ula, it was the authors' hope that
the computer applications would increase
student interest and motivation as well as
head off the common complaints about the
irrelevancy of abstract mathematics
courses. Second, it was felt that the
computer assignments would lead to an in-
crease in the student's proficiency in
programming, which would prove benefi-
cial in his later mathematics and engi-
neering courses. Finally, it was hoped
that the student's grasp of certain top-
ics, in particular probability, would be
enhanced by the computer assignments.

Three sections of the course were
taught to a total of 51 students in the
spring semester of their freshman year.
Each of the students had received, in the
fall semester, at least 4 hours (contact
hours, not credit or semester hours) of
instruction in BASIC. However, most were
far from being competent programmers, and
the authors are convinced that our course
could be made self-contained by beginning
it with 4 or 5 lectures on BASIC. We
started our course with a diagnostic test
on BASIC and followed it with a one-day
review of BASIC. We resolved to discuss
programming only as specific problems a-
rose in connection with computer assign-
ments and spent no more than an average
of 15 minutes class time per week on
programming. Eight computer assignments,
timed to correspond to the material being
covered in class, were given. Each as-
signment was to be completed by its as-
signed deadline, which was between one
and two weeks. These assignments, in to-
tal, were counted as an hour test (15% of

Mathematics 179

the final grade in the course). No comput-
er work was included on hour tests or the
final examination.

The computer assignments were executed
on an HP2000 computer through 8 time-shar-
ing terminals in three locations on campus.
However, a group this size could easily
have been accommodated with as few as three
terminals (perhaps fewer with proper sched-
uling). To provide help on the computer
assignments, each of the three instructors
was available for a one-hour scheduled
help-session each week. Each session was
open to all students in the three sections
and was conducted in a computer terminal
room where five terminals were available.

One restriction on the course, placed
by our department, was that none of the
core mathematics content of the course be
deleted or diluted in order to accommodate
the computer work. We believe that we sat-
isfied this restriction, even though cer-
tain introductory topics from chapters 1
and 2 of the course text (1) were omitted
from the syllabus to provide the additional
time required for the computer assignments.
The time gained proved more than adequate,
and in addition to the computer work we
were able to give a reasonable treatment of
linear programming, which was not in the
original course syllabus. The major topics
in the course were set theory, discrete
probability (including Markov Chains and
stochastic processes), matrix algebra, sys-
tems of linear equations (including a
Leontief model in economics), and linear
programming. The text material was chapters
3,4,5, and 6 (1), but there are numerous
textbooks which offer similar coverage.

The course was evaluated in two ways.
A student evaluation form was completed by
each student at the end of the course,
which provided some insight into whether
the goal of increased interest and motiva-
tion had been achieved. More formally, we
compared the performance of the students in

180 NECC 1980

the computer-supplemented course to that of
students in the standard course. A lame
part of the final examination which was
given in our course had been given to sev-
eral earlier sections and one concurrent
section of the unsupplemented finite math-
ematics course. To test our hope that
comprehension of some of the mathematical
topics would be enhanced by the computer
work, we compared the scores of the stu-
dents in the standard course with the
scores of the students in the computer-
supplemented course for the relevant sec-
tions of the exam. Results of these evalu-
ations are discussed in section four of
this paper, following a discussion of some
of the computer assignments in sections two
and three.

COMPUTER ASSIGNMENTS IN PROBABILITY
The first five of the eight computer as-

signments were related primarily to proba-
bility theory. Pour of these five were
simulations of probability experiments.
One assignment was a program to compute
combinations and permutations and use
these results, in turn, to compute the prob-
abilities of certain events.

The first program was simulation of one
hundred tosses, one thousand tosses, and
then ten thousand tosses of a fair coin.
It was in this assignment that the stu-
dents were introduced to the random number
generator and its vital importance in sim-
ulating experiments. Also, we indicated
the need for a test condition to translate
the value of the random number generated
into an outcome for the experiment. For
example, since the random number generated
is greater than or equal to zero and less
than one, declaring the outcome as heads
if the number is less than 0.5 is a simple
and reasonable way to simulate the tossing
of a fair coin.

The second assignment used the random
number generator introduced in assignment
one for a more complicated simulation.
The experiment was rolling a pair of un-
biased dice. The student was reminded that
the outcome of one die is independent of
the outcome of the other, and the outcomes
2 through 12 must be generated in conformi-
ty with their natural frequencies. The use
of the integer function INT was introduced.
Thc, outcome of one die can be simulated by
generating a random number, multiplying it
by six and adding one, and then taking the
greatest integer (INT) of this result.
The outcome of each die is generated inde-
pendently, and the two numbers are added
together to obtain the outcome of the ex-
periment. Assignment two consisted of
running 100, 1000, and then 10,000 trials
of the experiment and approximating the

correct probabilities of the various out-
comes. Varying the number of trials was
intended to convince the student that the
larger the number of trials, the closer
the approximating probabilities reflect
the true probabilities obtained by analyt-
ical methods in the classroom.

The third computer program was a simu-
lation of the classical Buffon's Needle
Problem. It is both easy enough to simu-
late on the computer and difficult enough
to defy solution by the analytical methods
studied in finite mathematics (although it
can be solved by integral calculus). The
student is thus introduced to the main
value of simulation--solving problems that
cannot be solved by other means. In
Buffon's problem, a needle one unit in
length is dropped on an infinite grid of
vertical lines. The probability that the
needle touches a line is the desired quan-
tity. For our experiment the lines were
two units apart. In order to accurately
simulate the experiment two independent
random numbers must be generated, one to
obtain the angle the needle makes with a
horizontal line and one to obtain the lo-
cation of the center of the needle between
two lines. The test condition to determine
a hit or miss amounted to comparing the
projection of the needle on the horizontal
line to the distances of the center of the
needle from the adjacent vertical lines
(5). The student was required to compute
the approximate probability that the nee-
dle hits a line for 100, then 10,000 simu-
lations of the experiment. Incidentally,
since the exact probability is 1/11, we
asked the student to compute the recipro-
cal of his approximate probability to see
if he would recognize this answer as an
approximation of t.

Assignment four involved programming
algorithms to compute C(n,r) (the number
of combinations of n objects taken r at a
time) and P(n,r) (the number of permuta-
tions of n objects taken r at a time) and
using these algorithms to compute proba-
bilities, for example the probability of
getting four aces in a seven-card poker
hand. One by-product of this assignment
is the lesson that computers have practi-
cal limitations. The largest factorial
that could be computed on our computer was
331. Therefore, the student was forced to
develop a more sophisticated algorithm to
compute C(48,3)/C(52,7) (the probability
of four aces in a seven-card hand) than
simply computing each of the factorials
first and then performing the division.

The fifth assignment had three parts:
(1) the simulation of 3000 World Series
between two evenly matched baseball teams;
(2) the simulation of 3000 World Series

in which one team had a .6 probability of
winning any single game; and (3) the simu-
lation of 3000 World Series if it were
changed to a best of nine game series,
rather than r best of seven. In the first
part, where the teams are evenly matched,
the length of each series was tabulated, to
illustrate the non-intuitive fact that a
six-game world series is as likely as a
seven-game series. Since the probabilities
of having a six-game series and a seven-
games series are equal, about half the
class can be expected to conclude that a
save: -game series is most probable and half
that a six-game series is most prothle.
It should be noted that a slight deviation
away from exactly evenly matched teams
makes a six-game series the most likely.
The second part of the fifth assignment was
intended to illustrate the fact that if one
of the teams has an advantage over t...) other
team in each of the games, then itz advan-
tage ie magnified when the trials are
grouped into a contest. The probability
that a team with a .6 probability of win-
ning each game wins the series is about .7.
The third part of the assignment illustrat-
ed that as the number of trials grouped in
a contest are increased, the initial advan-
tage is further magnified, in this cane
from about .7 to abut .73. Although each
of these parts can be solved analytically,
the solutions are complicated and usually
beyond the objectives of a finite mathe-
matics course; so, the student is again
impressed with the primary value of simu-
lation. (Similar problems are ..iscussed in
Kemeny (2), pages 143-144 and section 1.5
and Kemeny (3), pages 161-167.)

COMPUTER ASSIGNMENTS USING MATRICES
Assignments six through eight were de-

signed to introduce the students to the ma-
trix (MAT) commands in BASIC and to the sys-
tem library. Assignment six was a set a!
routine exercises that required the use of
the commands for the matrix operations of
addition, multiplication, scalar multipicce-
tion, multiplicative inversion, and trans-
position. Additionally, the students were
given a 2x2 matrix B and asked to use a loop
to determine B4.

Assignment seven paralleled our class
discussion of Markov Chains, and its purpose
was to introduce the students to subroutines,
round-off error, and a double loop. For the
project, the students were given two 3x3
transition matrices and asked to write a pro-
gram to test each matrix for regularity. A
transition matrix A is regular if An has all
positive entries for some nonnegative integer
n. The students were asked to recall that in
performing calculations with a computer,
round-off error is almost always present.

Mathematics 181

Hence a quantity, which may actually be
equal to zero, may be calculated by the
computer to be, for example 0.0000021.
Thus, in the subroutine to test for zero
entries in BRAn, the students were forced
to structure their conditional statements
in such a way as to ignore any difference
in compaAd quantities which are less than
the suspected round-off error introduced
by the computer. In addition to a loop to
calculate An, assignment seven also re-
quired a double loop (one for the row in-
dex and one for the column index) to deter-
nine if An had any zero entries. The tran-
sition matrices in the assignment were 3x3
matrices. Thus the students knew thgt
their program need only test for
zeroes because in class we gave the theorem
stating that if an nxn transition matrix
is regular, then at least one of the first
(n-1)4+1 powers of A contains no zero
entries.

For the first part of the final computer
assignment the students were required to
write a program to solve two problems based
On our classroom discussion of Leontief
models. This prugram involved solving a
system of linear equations using the INV
function to find the inverse of the coef-
ficient matrix.

It has been noted that one of our ob-
jectives was to increase the student's
proficiency in programming. Toward this
end, each of the above computer assignments
required the students to actually write a
program- -not merely supply data to a pro-
grew called from the system library. How-
eVer, the authors felt that students should
be given an opportunity to realize the im-
portance of the system library; hence, they
introduced the system library in the second
mitt of assignment eight. The problem
supplemented our class work on linear
programming and the simplex method. In the
assignment the students were asked to max-
imize an objective function subject to five
constraints using a program (LINPRO from
our system library. The instructors felt
that the introduction to this powerful fac-
et of computer use was an appropriate end
to ;.he computer segment of the course.

EVALUATION OP THE COURSE
The results of the student evaluation

given at the end of the course were general-
ly quite positive. Most students sewed not
only to enjoy the course, but to feel that
it was useful. For example, a question on
the overall rating of the course had an
average of 8.3 on a 0-to-10 scale. The
average response to the question; "Would
you recommend this course to others?"
(again on a 0-te-10 s ^ale , where 0 = not
recommend at all, and 10 = highly recommend)

182 NECC 1980

was 8.1. in addition, many responses in
the comment section of the evaluation form
indicated that the course was well-received.

A statistical evaluation of the course
was done by comparing scores of students in
the regular course (group R) on 21 problems
common to both final exams. We proposed
average scores on the mathematics portion
of the SAT as a possible measure of how
groups C and R compared in ability. Imme-
diately a problem arose because the two
groups were significantly different when
this variable was measured. Two comparable
groups were acquired by deleting all stu-
dents with Math SAT scores over 600 in each
group of students. We were left with 24
students to group C with an average Math
SAT score of 531, and 29 students in group
R with an average Math SAT score of 533.
Students in both groups C and R were engi-
neering and mathematics majors.

The results of the 21 examination ques-
tions are given below.

Grou C Grou
N er o st ents 29

Average Math SAT 531 533

Total number of
questions

504 609

Number of correct
responses

330 365

Sample success
probability

PC r .655 .599

From the table above we get the difference
of the sample proportions to be Pc-Ae.056.

Let PC be the success probability for the

grow, C population and PR the success prob-

ability for the group R population. Test-
ing the null hypothesis Pc 4 PR against the

alternate hypothesis Pc > PR, we found that

the probability that fc fR > .056 is less

than .028 (c.f. chap. 8,(4)). Therefore,
at the 5% level of significance, we rejected
the zAll hypothesis and accepted the alter.-
nate hypothesis that the performance of.stu-
dents in the computer-supplemented course
would exceed that of students in the regular
course on the 21 exam questions. We point
out that the one-sided test was suggested by
the restriction that the coverage of the
central mathematics topics in the new course
be at least equal to the ooverage given in
the regular course. Consequently, it was
expected that the value of Pc would be at
least that of PR .

1Aere may be other faotors which con-
tributed to the superior performance of
group C. For example, those in group C

were exposed to each of the three instruc-
tors, while those in group R were taught
by only one of these instructors. in ad-
dition, the class size for group C averaged
17 students, while the average class size
of group R was 24 students. However, the
authors believe that the introduction of
the computer into the course was an impor-
tant positive factor contributing to the
significant difference in performance noted
above.

Finally, we remark that when the stu-
dents with Math SAT scores of over 600
were compared, the students from group C
again performed better on the 21 exam
questions than the students from group R.
However, the difference was not as gag-
nificant. This result is consistent with
the authors' feeling in the beginning of
the project that the better students were
likely to perform well no matter how the
course was designed and that the greatest
effect of the computer supplements would
be on the average students.

SUMMARY AND RECOMMEHDATiONS
it was our intention to add a computer

supplement to a course in finite mathe-
matics without compromising the traditional
approach to the mathematical content in the
course. In short, we did not want our stu-
dents to become computer experts while
sacrificing their ability to solve problems
with paper and pencil. it is obvious, how-
ever, that one cannot introduce a computer
supplement into a finite mathematics course
without making some adjustments. Since we
were restricted to the same 45 contact hours
as In the standard course, we had to elim-
inate certain introductory topics mentioned
at the beginning of this paper; however, we
did not reduce the amount of time devoted
to probability and matrices. We eliminated
enough material to give us an additional
eight contact hours, and we found this ad-
ditional time sufficient for the discussion
of computing in general and the computer
assignments in particular. If, on the
other hand, one wished to add a computer
supplement without sacrificing any of the
standard course material, the best approach
would probably be to increase the contact
hours per week from 3 to 4. The extra hour
per week mould be more than adequate to
accommodate the computer supplement.

We also believe it is important for the
students and the teacher to maintain a
sense of perspective about the goals of
this kind of course. it is too easy to
drift unintentionally into a computer pro-
gramming seminar to the detriment of the
traditional theoretical and problem-solving
aspects of a finite mathematics course.
The student must be kept mindful of the

193

main thrust of the course, even if, as is
often the case, he is more interested in
computers than in mathematics. Keeping the
course properly balanced becomes a question
of the instructor's resolve, but he can
help himself (as we did) by keeping the
computer part of the course out of the hour
tests and final examination.

Finally, we believe that when computer
assignments are returned to the student,
the student's program should be accompanied
by the instructor's solution. The solution
can be typed in capitals to resemble the
actual print-out obtained at a teletype-
writer terminal. Besides showing the stu-
dent the correct answer, an instructor's
solution provides the student with a valu-
able reference if he pursues computer pro -
gramming after completion of the present
course. Such a policy, of course, requires
new or altered computer assignments for
subsequent courses, but we consider the
price small in relation to the benefits.

We must admit, in summary, our satis-
faction with the results of this course.
It will likely be a permanent part of our
curriculum, and we anticipate further re-
finements and additions to the computer
assignments in future offerings of the
course. To this end, we invite others who
have had similar experiences with a com-
puter-supplemented finite mathematics
course to share their views with us.

REFERENCES
1. Campbell, M.G. and Spencer, R.E.,

Finite Mathematics, New Yorks
Macmillan; 9

2. Kemeny, J.G., et. al., Finite
Mathematical Structures7-lagrewood
Cliffs: PrenrainTal, 1959.

3. Kemeny, J.G. and Snell, J.L.,
Finite Markin, Chains, Princeton:
Van Nostris,Ur

4. Mendenhall, W., Introduction to
Probability and Stat fisFair,3ra
edition, Belmont,Ca1-7Mrtias
Wadsworth, 1971.

5. Mosteller, F., Fifty Challen in
Problems in Probability, Read n ,
FIREWEVarais Addison- Wesley,
1965.

1 94

.
Mathematics 183

184 NECC 1980

A COMPUTER-ASSISTED COURSE
IN BIOMATHEMATICS

Pui-Kei Wong
Mathematics Department

Michigan State university
East Lansing, Michigan 46824

517-353-6880

Applications of mathematics to prob-
lems in the physical sciences and engin-
eering are well known and have long been
an integral part of the undergraduate cur-
riculum of mathematics departments. touring
the past two decades courses in numerical
methods and elementary finite mathematics
have also been added by many colleges and
universities, reflecting the growing im-
portance of mathematics in economics,
management. and social sciences as well
as in modern technology. We need only
cite the contributions of such individuals
as Kenneth Arrow,' George Dantzig, Nasally
Leaatiff. Paul Samuelson. and John
von Neumann in this connection.

On the other hand, applications of
mathematics to the biological and life
sciences, though no less important, have
not found their proper pla'ce in the under-
graduate curriculum. It was J.B.S. Haldane
who observed in 1928 thatt "The permea-
tion of biology by mathematics is only
beginning, it will continue and (grow)
into a new branch of applied mathematics."
In the decades since, we have witnessed a
phenomenal growth in the applications of
mathematics to the agricultural, biolo-
gical, and life sciences. beginning with
the work of Haldane, Lotka, Volterra.
and Wright and onto that of Hodgkin and
Huxley, who shared the Nobel prize in
physiology or medicine in 1963. And most
recently, Allan Cormack and Godfrey
Hounefield were awarded the 1979 Nobel
prize in physiology or medicine for their
pioneering work in applying mathematics
and computer technology in the x-ray image
reconstruction technique called Computer-
ized Axial Tomography (1).

Recognizing the growing impact of
mathematics in the life sciences, the
Mathematics Department at Michigan State
University introduced five years ago a
new course MTH-461 titled "Selected
Mathematical Ideas in Biology." This is

a one-quarter, four-credit course with
calculus as prerequisite. At Michigan
State we have a two-term, ten quarter-
credit sequence in calculus for the bio-
logical and social sciences. A student
having completed this abbreviated calculus
sequence is usually adequately prepared
to enter MTH-481. No prior knowledge of
computer programming is aesumed.

The major objective of this course is
to provide the student with a sound intro-
duction to mathematical methods and deter-
ministic models in biology, especially in
the use of computer simulations to analyze
model behavior. To this end a number of
problems from biology are introduced and
studied in some depth. We start with the
underlying biological description, hypo-
thesize, and then derive a working mathe-
matical model. Once constructed, the model
can be manipulated and analyzed to reveal
its possible behavior. Modifications on
the basic model are made, and the system
is then studied again under various initial
conditions, external inputs, and pertur-
bations. All this can be done quickly and
economically by computer simulations.
Instead of numerical solutions. it is often
more desirable that the long-term trend or
qualitative behavior and stability proper-
ties of the model be known. In this case
computer graphics provide a particularly
effective tool in the analysis of model
dynamics.

In adlition to conventional class -
-room lectures and homework, students are
required to spend time each week in the
computer laboratory doing modeling and
simulation exercises. These exercises use
instructional modules written specifically
for the course, and they run on Tektronix
4051 graphics computing systems. These
stand-alone microcomputers are capable of
high resolution graphics (780 lines by
1324 pixels per line) and are especially
well suited to our needs. A Tektronix

195

-4631 hardcopy unit provides a record of the
graphic output of any desired simulation
run.

We also use computer graphics in the
classroom. Demonstrations are done using
a Tektronix 4025 graphics terminal and an
Advent 1000A television projection system.
The 4025 is a raster scan device with 480
x 640 resolution and provides a composite
video output to the Advent. It is driven
by a Tektronix 4051 computer. The Advent
has a seven-foot diagonal screen and is
suitable for viewing by a class of up to
forty students. Dynamics of a model can
be displayed on the screen before a class
and discussed very effectively this way.
A Tektronix 4662 digital plotter is also
used to make high quality multicolored
transparencies for use on ordinary over-
hied projectors.

The mathematicg treated in MT8 -481
include matrix algebra, difference, and
differential equations, and applications
are drawn from various areas of biology.
Special emphasis is given to the qualita-
tive behavior and stability of nonlinear
equations. The course will typically cover
the first twenty-two items of the outline
below plus occasional substitution from
the remaining ones.

MTH 481 Syllabus
1. Algebra of vectors and matrices.
2. Linear equations and determinants.
3. Eigenvectors and eigenvalues.
4. Methods of least squares.
S. Discrete time single species population

models.
6. Linear difference equations.
7. Depletion of nonrenewable resources.
8. Discrete time predator-prey models.
9. Populations with age structure (Leslie

model).
10. Harvesting and exploitation of renew-

able resources.
11. Population genetics and difference

equations.
12. Asymptotic behavior and stability

(period three implies chaos).
13. Analysis of growth data.
14. Logistic, Gompertz, and other continu-

ous time 9opulation models.
15. Geometrical analysis of differential

equations.
16. Models of photosynthesis.
17. Linear differential equations and

systems.
18. Compartmental analysis.
19. Lotka - Volterra and other models of

competition and interaction.
20. Volterra-Gauss principle.
21. Theory of chemostat.
22. Stability and limit cycles.
23. Enzyme kinetics.

Mathematics 185

24. Simple epidemic models.
25. Cell cycle analysis.
26. Models in neurophysiology.
27. Fishery dynamics and marine food chains.

The interactive computer-assisted
instructional modules used in the course
are designed for the student with no
prior programming experience, and they are
stored on data tapes. An orientation
lecture on the use of the Tektronix graph-
ics computing system is given at the start
of each term, explaining how the student
can access the system and use these
instructional tapes. These modules range
from tutorials on vectors and matrices
through population growth, fitting data to
logistic growth curve, differential equa-
tions, and modeling using compartmental
analysis and the method of peeling.
Students have found using interactive com-
puter graphics particulty helpful and
have later adapted and modified some of
the programs written for this course far
their own research use.

To illustrate the use of computer sim-
ulation in teaching mathematic modeling,
let us consider the problem of growth of
human populations. First the problem is
analyzed by the very simple difference
equation

(1)
xk+1 Ark k 0, 1, 2,

Here ick is the population size or density

at the kth census and A is the intrinsic
growth rate, which is defined as the dif-
ference between the crude birth rate B
and crude death rate D. In this case the
population is treated as a homogeneous
collection of individuals so age structure
and sexual differences are ignored. Equa-
tion 1 admits the closed form solution

(2) xk = Akx0 k =

where x0 is the initial population if A

is constant. The future behavior of the
population is therefore completely deter-
mined by the magnitude of A. However
real populations can rarely be described
realistically by such a simple model in
which the growth rate is constant over
long periods of time.

The first modification we make then
is to allow the intrinsic growth rate A
to be time- or population-dependent.
Closed form solutions to Equation 1 are in
general no longer possible, but the prob-
lem is easily handled by the computer. In
the Chi module for this course, actual
census data is used to construct population
projections. Figure 1 shows several dif-
ferent functions used to fit the crude
birth rate data for Costa Rica. The

1 u

186 NECC 1980

student is asked to select one of these,
and the computer will then calculate and
display the corresponding population trend
for a specified number of years into the
future (see Figure 2). At the end of each
simulation run the student has the choice
of changing the parameters or entering an
entirely different birth rate function and
running the problem again. In this case
the same death rate function is used for
all the simulation runs.

At the next level of complexity, a
population is studied by separating it in-
to sex and age classes using the basic
model of Leslie (2). For human populations
where the ratio of males to females is
essentially constant over long time periods,
it is customary to consider only the fe-
males and divide them into five-year age
classes and take census every five years.
The basic equation is still Equation 1,
but xk is now a population vector with

n components, and A is the projection
matrix.

A

f
1

f
2 f 3 fn

sl 0 0 . . 0

O s2 0 . 0

O 0 0 an_

Here fj is the average number of female

offspring born to a member of the jth class
every five years, and si is the prob-

ability that'a member of the jth class
will survive and advance the (j + 1)st
class at the end of five years. If we
restrict our attention to females of ages
O - 59, there will be twelve age classes
and A will be a 12 x 12 matrix. if we
assume constant fecundities and survival
probabilities, the population for subse-
quent years can be calculated using
Equation 2 as in the zimple scalar case.
Figures 3 - 6 are the computer-generated
population profiles for American females
based on the 1964 data for fecundities
f1,...,f12 end survival probabilities

81"*"1112'
In the final stage the effects of

population-dependent .A as well as har-
vesting ere added to the'Laslie model and
studied. Figure 7 shows the menu selec-
tion for this model; and Figures 8 and 9
are the output of two different simulation
runs for a hypothetical population having
three age classes. Extensions of the model

to include insects, trees, and other popu-
lations that are more naturally grouped
into developmental stages or size classes
are also included at this stage.

All the CA/ material was written in
TEK-BASIC specifically for interactive
use and has been revised and tested over
the past five years. Although much of it
was designed with teaching mathematical
modeling to biologists in mind, some of
it can be and has been adapted and modi-
fied for use in other courses as well.
The equipment was acquired in part with
funds from the National Science Foundation
under an Instructional Scientific Equip-
ment Grant.

REFERENal
[1) L.A. Shepp and S.D. Xruskal, *Com-

puterized Tomography: The New
Medical X-ray Technology," American
Mathematical monthly, 85 (1978), 420-
439.

[21 P.H. Leslie, "On the Use of Matrices
in Certain Population Mathematics,"
Blometrika, 33 (1945), 183-212.

I S

0006 0106 0001 OLO1 0001

Sw.SSS S
%

1

id
.................

_ r ,.,... \f=p40.001000,0400=1itimloor. -....*:"..0. Od s 's

s,s

\ 41th

%
1

£81 solletuetWIYI

.
Q

.

$0 84 'Id .41) ,a$n 01. *IVA nu Od 3ASOO N07.103POdd NOXIM

Slid 1YZ1N3N0dX3 MAXON 33UN1 3UY ed t 8d ld
MO 01 114 ma-lams 18Y31 SC 1 3NM1

MO mem 1N3S3Sd3d MOW= NOX/V111d0d 0001 aid ON1VZO AO 'ON 31Y00 IMAM 05108-101004/M Y1800 VOA 31Y$ HU= sonyo

'10Til

188 NECC 1900

Pig. 2
POPULATION or COSTA RICA, I SWUM BASED ON PI PROJECTION

RIGHT VERTICAL SCALE POPULATION IN MILLIONS CSOLIO CURVE)
LEFT VERTICAL SCALE RN ES PER IOW POPULATION
DIAMONDS REPRESENT ACTUAL CENSUS DATA

SO

o'de

...'
0'601014 RATE

.,s
.e* `44z

.
117RTS4 RATE

414,

. s 4...,,
......diPoobw

e OM

MI

SS

010 107e
L

OPULATZON

. DEATH RATE

mi

2 .1

4.1400 ,

7 .."6"."../INIA4.04401.1/401/0101/..04.41.
0.11..4.

. 20200

...........^....,.-..-1.-.......,-.+ -............... -.-.....-- . Im.

19.9

AMERICAN FEMALES , AOC* MOO
POPULATZGN PROI'ZLI AT T 1004

12
$$

Is

Mithon008 110

0
e
7
e
6
4

2
$

$ 0 0 I 2 $5

HORIZONTAL SCALE I'M PeRCeNTO
FZO . $

AMERICAN rEmAms, AOE* 40-60
POPULATION PRcruE AT 1 i 000

$2
$$

I*

s
e
7

4

a

9 0 a 12 16

HORIZONTAL SCALE IN PERCENT,
FZO. 4

200

190 NECC19130

AMERICAN FEMALES, ACES 8.-68
POPULATION PROFILE AT T 2014

..r./1.104/..,..1
* 0 0 12 16

HORIZONTAL SCALE IN PERCENTS
FIG. 6

AMERICAN FEMALES, AGES 8-68
POPULATION PROFILE AT T 2839

2'H
10 I

0
7 1

a_
r. Ll
4 I

S I

i

s 1

0 111 12 ite
HORIZONTAL SCALE IN PERCENTS

MS. 0

2u

Pig. 7

sow MENU *ow

Mathematics 191

t. CONSTANT FECUNDITY AND SURVIVAL PROBABILITY

2. POPULATION DEPENDENT FECUNDITY, CONSTANT
SURVIVAL PROBABILITY

3. .CONSTANT FECUNDITY, POPULATION DEPENDENT
SURVIVAL PROBABILITY

4. POPULATION DEPENDENT FECUNDITY AND SURVIVAL
PROBABILITY

S. HARVESTING

SELECT BY NUMBER THE ITEM YOU WANT: 3

202

I 92 *CC 1990

MUM MODEL, COM. FEC., POP
FNDCW) 1/04EXPCW/D1D2)), Di

F1 se 9 P2 01 12
3149)' 8 WO) 4
PLOT OF TOTAL POPULATION WCK)

DEPENDENT SURV. PROS.
299 D2 00 2.6
St 0.893933333 32 0.5
ICS) a 1 11

19 20 05 40

no. s

.2(13

Si

4.

59 80 70 89

Mathematics 193

LESLIE'S MODEL: coNsar . FEC., POP. DEPENDENT WRY. PROD.
FNDCW) m 1/C1.EXPCW/01-02)), DI on 180 02 m S
F1 so 9 F2 m 12 $1 - 9.93333413$33 $2 m 0.5
XCS) m 6 WO) so 4 ZOO - 1 WOO - 11
PLOT OF TOTAL POFULATION WCK)

alm

1999

880

998

790

999

500

480

see -I-

MO

189

..,

I

\

\ t

i Ii
a a

19 28 30 40 SO 90 79 80

FIG. 9

204

194 NECC 1980

COMPUTER SYMBOLIC MATH

David R. Stoutemyer
Electrical Engineering Department

University of Hawaii at Manoa
Honolulu, Hawaii 96822

(808) 948-8196

Most current calculators and mathemat-
ical computer programs are oriented toward
approximate numerical computations using
an occult arithmetic called chopped non-
decimal fixed-precision floating-point.
If this revelation causes discomfort, con-
sider what Anston Householder, dean of
numerical analysts, said "I don't like
to fly in airplanes, knowing they are de-
signed with floating-point arithmetic."

This arithmetic has undeniable advan-
tages, but it also has decidedly bizarre
implications which are difficult to
convey even to graduate numerical analysis
students. More important, it is not the
arithmetic that any of us uses for manual
computation.

THE NATURE et COMPUTER SYMBOLIC MATH
The good news is that computers also

can do exact rational arithmetic. More-
over, even small personal microcomputers
can do the nonnumeric symbolic operations
of algebra, trigonometry, analytic geo-
metry, and calculus. In fact, use of such
computers for these purposes does not even
require a knowledge of computer program-
ming, other than the widespread custom of
using "a" to denote multiplication and
"+" to denote raising to a power, in order
to unambiguously specify expressions using
a one-dimensional format compatible with
the limitations of standard keyboards and
displays. For example, here is a sample,_
interactive dialogue using the muMATH-79 T'm
symbolic math program on an inexpensive
Radio Shack ?RS-Seta computer, which is
increasingly popular in schools:

In order to expand the expression
(5x- 7)(2y +3)4 the user types the line

(5*X-7)*(2*Y+3)+4;

and a few seconds later the interactive
response is

80*X*Y4-4 112*Y+4 + 480*X*Yi3
-672*Y443 + 1080*X*Yi2 1512*Y+2
+1080*X*Y - 1512*Y + 405*X - 567

Next, to solve the equation

2 (23-42s) =x3 - a2x for x, the user types
SOLVE (2* (X+3-M2*X) x+3x+2*X, X)
and the interactive response is the
solution set

00.0,
XBIA,

X = -A).

Next, to invert the matrix

l0
0 ql,

the user types

([1,19
(0,Q]) -1;

and the response is

(11, PAN
(0, 1/01).

Then, to simplify the trigonometric-
logarithmic expression (tan a)cos a)+
1/csc(a)+1D(e2y) 2 In a, the user
types

TAN(A)*COS(A) + 1/CSC(A) + LN(X4.2*Y)
-2*LN(X);

yielding the response

2*S1141(A) + LN(Y).

To sum the series

(a j
2
+ b

j
)

J1
the user types

SUM(A*.7+2+1344, J, 1, N)

to get the response

205-

(2*A*Nt3+3*A*N+2+A*N)/6
(B1(N+1)-B)/(11-1).

(The arguments of the sum function are
respectively the summand, summation index,
lower limit, and upper limit.) Finally, to
evaluate the integral

jlax2 x sin x21dx ,

the user types

INT(A*Xt2 X*COS(Xt2), X)

yielding

A*Xt3/3 + SIN(142)/2.

In contrast, traditional programming
languages such as APL, BASIC, FORTRAN or
PASCAL provide built-in math facilities
essentially only for limited-precision
arCtIonstia.

The above examples have illustrated
symbolic math capabilities relevant to
grades 0 through 14. However, computer
symbolic math also features exact rational
arithmetic, which is more suitable than
floating -point for supporting math educa-
tion at the kindergarten through sixth
grades. For example, continuing the above
dialogue, to simplify the expression
3030/12/401 the user types

30+30 * 121(1/2)/401

and the response a few seconds later is

(253410016192626953125/
502114206731006316270912)*(3)+(1/2)

There are none of the roadoff, taufile1444
or overflow problems that beset traditional
mathematical programming languages.

Although none of the above examples
requires a knowledge of computer program-
ming other than the convention of using
*** for multiplication and "V* for
raising to a power, curiosity of needs
not net by the built-in facilities causes
someusers to seek deeper involvement
with the mathematical and programming
techniques used to implement these sym-
bolic math systems. Accordingly, sym-
bolic math systems generally provide a
programming language for writing exten-
sions. Examples of slch extensions are:

1. introducing new functions (such as
hyperbolic functions) and their
simplification properties;

2. extending the class of expressions
which can be factored, differen-
tiated, or otherwise operated upon;

3. extending the class of equations
which can be solved;

4. automating the sequence of steps
necessary to do an inductive proof,
determine a limit, test a series

Mathematics 195

for convergence, or determine
the first few terms of a Taylor
series.

EDUCATIONAL USES
Computer symbolic math has long been

available to applied mathematicians who
have generous computing allowances on the
largest computers, but this tool has only
recently become available on the inexpen-
sive small computers most often available
to kindergarten through sophomore cal-
culus classes. How can this increasing]
available tool support math education?

1. A symbolic math system can be used
bx a computer-aided instruction
prbgram to provide far more flex-
ible, intelligent, aild responsive
automatic drill or examination
than is otherwise possible. For
example, symbolic math systems are
able to recognize the equivalence
of a wide variety of mathemat-
ically equivalent expressions, and
a computer-aided math instruction
program can adaptively take alter-
nate courses of action depending
upon the users' performance. Such
programs free teachers to do what
they do best--provide warmth,
understanding, individual high-
level guidance, and assistance for
unanticipated difficulties.

2. The ability to do numerous large
examples encourages creative ex-
plorations which can reveal pat-
terns and thus suggest general
theorems. Students* inductive
generalization powers can be exer-
cised and developed to a far
greater degree than is otherwise
possible.

3. Built-in two facilities can allow
students to see each step of a
computation, rather than merely
the final result.

4. A demonstration that an operation
can be done automatically by com-
puter can encourage average and
poor students that the flashes of
inspiration given only to brilliant
students are unnecessary for that
operation. Hope for plodders is
revealed.

5. Students who are more enthusiastic
about computers than about math
are provided with a new avenue for
appreciation of math. Computer
symbolic math vastly enhances
the opportunity for beneficial
mutual reinforcement and cross-
motivation between math and
computers.

196 NECC 1980

6. Inspection of the underlying com-
puter symbolic math implementation
programs can help students learn
the methods for accomplishing the
operations manually.

7. Programming extensions to the
built-in operations can reinforce
understanding of both the built-in
and new operations. In fact, an
instructor can withhold portions
of the algebra system implementa-
tion and challenge the students
to implement them.

AVAILABILITY
For educational use, a symbolic math

system should be interactive, general pur-
pose, and available for a modest fee on
computers typically available to students.
In order of increasing computer memory
requirements, here are four symbolic
math packages which meet these
requirements:

PICOMATH-80th is a set of three small
symbolic math demonstration programs
written in BASIC that should run on vir-
tually any computer. For information,
write The Soft Warehouse at Box 11174,
Honolulu, Hawaii 96828.

muMATH -79 is currently available for
manY57Mvarious brands of personal
microcomputers based on the Intel 8080,
Intel 8085, and Zilog Z80 microprocessor
chips. Computer memory can be measured
in units called bytes, and muMATH requires

from 32,000 to 64,000 bytes of memory,
depending on how many of the various math-
ecatical facilities are loaded simulta-
r =sly. For information, write Micro-
...ft, at 10800 N.E. 8th, Suite 819,
Bellvue, Washington 98004.

FORMAC is available for medium to
large IBM 360 and 370 computers which have
at least 140,000 bytes of memory. For
information, write Knut Bahr at GMD/IFV,
D-6100, Darmstadt, Germany.

REDUCE is currently available for IBM
360war110, DEC POP 10 and 20, Univac
1100 series, CDC Cyber series, and
Burroughs 6700 computers. REDUCE requires
a minimum of from 300,000 to 400,000 bytes
depending on how many of the various math-
ematical facilities are loaded simulta-
neously. For information, write Professor
Anthony C. Hearn at the Computer Science
Department, University of Utah, Salt Lake
City, Utah 84112.

LITERATURE
Most of the relevant literature is

oriented toward research rather than edu-
cation, but a good way to get started in
this area is to join the Association for
Computing Machinery Special Interest Group
on Symbolic and Algebraic Manipulation.
Their A6WSIGSAMBulletin is a timely source
of information on such topics as
meetings, abstracts, and new systems.
For information about joining, write
the ACM at 1133 Avenue of the Americas,
New York, NY 10036.

Invited Sessions

COMPUTER-BASED RESOURCE SHARING:
DIVERSITY AND OPPORTUNITY

Chaired by Donna Davis Mebane and Rodney Mebane
EDUCOM

P.O. Box 364
Princeton, NJ 08540

(609) 921-7575

ABSTRACT
Computer-based resource sharing occurs

in many places, by many people, in many
forms, for many reasons. A professor who
asks a colleague to evaluate the pedagogic
quality of a CAI tutorial, a student user
of SPSS, a demographer working with census
tapes, a librarian with access to OCLC --
all of these people are engaged in some
form of computer-based resource sharing.
This special session will report on a
major EDUCOM research project, funded by
NSF, to examine the diversity of sharing
activity that takes place within the
higher education and research community
and the opportunity that exists for
increased cooperation.

In describing, explaining, and evaluat-
ing the sharing phenomenon, two scenarios
are apparent. One is of relatively small-
scale activity, very informal and with
information exchanged primarily by word of
mouth. Many are neither aware of what
others are doing with computers nor of the
possibilities for shared use. The other
scenario is of an active attempt by
various resource-sharing organizations
(RS08) to promote the orderly exchange of
computing materials and experiences.
Focusing on the latter scenario, this

session will begin with the benefits of
sharing and the various pathways to
sharing. It will then specifically
address interinstitutional resource
exchange and nine representative organ-
izations that provide a link between
resource developers and a resource users
and effect the shared use of hardware,
software, machine-readable data bases,
and other computing systems. The RSOs
participating in the EDUCOM study include
the following nonprofit organizations:
CONDUIT
ZOOM
Georgia Information Dissemination
Center (GIDC)
Health Information Network (HEN)

Inter-university Consortium for
Political and Social Research (ICPSR)
Merit
New England Regional Computing Program
(NERComP)

North Carolina Educational Computing
Service (NCECS)
Research Libraries Information Network
(REIN)

Profiles of these organizations will be
presented, and the nature of services
offered will be explored in depth.
Specific RSO activities will be cited to
illustrate the diversity of organiza-
tional response to such questions as
these:
What kinds of resources are available
and where do they originate?
What options do developers have?
How ate resources packaged and
distributed?
Who are the current users of these
organizations' and what services do
they find most valuable?

What are the technical, economic, and
organizational conditions of using
shared resources?
How do the sharing organizations them-
selves adapt to a rapidly changing
environment?

The primary objective is to make praoti-
tioners and leaders in the field more
aware of organizational options available
to meet their own diverse computing needs.
Materials will be distributed describ-

ing the study and the participating
organizations, and representatives of the
nine organizations have been invited to
apply for space in the exhibit area.

197 208

198 NECC 1980

COMPUTERS AND INSTRUCTION:
DEVELOPMENT, DIRECTIONS, AND ALTERNATIVES

Chaired by William Grusner
Addison-Wesley Publishing Co., Inc.

Reading, MA 01867
(617) 944-3700

ABSTRACT
Tlifrsession will examine the world of

computers in the instructional environment.
Our three panelists have used micros, minis,
and mainframes in various educational
situations and will present papers as a
basis for discussion and examination of
computers and instruction.

During the session directions and alter-
natives for new uses of computers will be
explored and the existing systems examined.
Participants and attendees are encouraged
to exchange information and ideas. It is
hoped everyone involved will leave with
fesh insight into the creative use c!
..omputers for educational purposes.

CREATIVE LEARNING WITH COMPUTERS - -THEORIZE
OR PERISH

Margot Critchfield
Pittsburgh, PA

ABSTRACT
*Thperience of the dyed-in-the-wool

computer hobbyist provides educators one
point of reference for our warm enthusiasm
for the computer. Our observation of
students who learn to program or who play
complex games on interactive microcomputers
provides another point of reference. What
do these vastly different kinds of learners
have in common? A theory of learning is
needed to tie these disparate computer
users together. Such a theory must be
applied to the design of educational
experiences that include computers in order
to ensure computersl.success and continued
growth.

This paper will attempt to clarify the
definition of creative learning and to
state some of the explicit values of formal
educatita as they relate to computer use.
The possible contribution of some current
learning theories to a set of principles
for creative learning with computers will be
discussed.

PLATO: COMPUTERS AND INSTRUCTION, A
LARGE-SCALE SYSTEM

Robert Hart
University of Illinois

ABSTRACT
The Language Learning,Laboratory at the

University of Illinois makes available an
80 terminal PLATO site for humanities usage.
During the past seven years, the Language
Learning Laboratory has supported PLATO
materials development for French, German,
Spanish, Russian, Swedish, Swahili, Hindi,
Hebrew, Chinese, Japanese, Latin, Classical
Civilizations, and E.S.L. The relative
independence of development projects has
led to a number of models for incorporating
PLATO in classroom activity, ranging from
totally PLATO-centered to voluntary and
supplementary usage. Research now in
progress seems to reveal a relatively
stable pattern across a wide variety of
situations:

(1) There are two overlapping but distinct
populations of users, one PLATO-receptive,
the other non-receptive.

(2) Both instructor and student dissatis-
faction with current materials centers on
response analysis and feedbadk character-
istics, which are perceived to be relatively
inaccurate, inflexible, and unable to deal
with meaning as opposed to fdrm.

MICROCOMPUTERS IN ELEMENTARY AND SECONDARY
EDUCATION: WHERE WE'VE BEEN, WHERE WE'RE
GOING.

Dan Isaacson
University of Oregon

ABSTRACT
4*=Bducational research says about the

use of computers in teaching, what's
happening now, what the future holds, and
what's holding us back will be discussed.

C'9

Tutorial

VIDEODISC TUTORIAL

Bobby R. Brown and Joan Sustik
Weeg Computing Center
University of Iowa
Iowa City, Iowa 52242

(319) 353-3170

ABSTRACT
'mss tutorial is for individuals who have
little or no experience using a videodisc
An instruction. The tutorial will consist
of a presentation of the performance char-
acteristics of videodisc as they relate to
.tnstruction. A variety of applications
c...-vnt and potential will be discussed.
Various approaches to the development of
materials and mastering of discs for
videodisc applications will be presented.
The tutorial will also include a demon -
stration of an operational intelligent
videodisc system. Handouts will be pro-
vided to the _participants.

199 210

Testing/Placement

MICROCOMPUTER-ASSISTED STUDY AND TESTING SYSTEM
(MASTS)

Hugh Garraway
The University of Texas at Austin

EDB 43GB
AlPtin, Texas 78712

(512) 471-4014

INTRODUCTION
Computer-managed instruction (CMI) has

proven to be an effective teaching/learn-
ing strategy. Studies using large com-
puter-based instruction (CBI) systems such
as PLATO (Nievergelt, Jurg and others,
1978) and TICCIT (Reigeluth, 1978) have
shown that in addition to facilitating
learning, students enjoy CMI. The mili-
tary is one of the largest implementers
of CMI. The Navy is using several TICCIT
systems in a CMI application that is ef-
fective in terms of both cost and in-
struction. The Air Force is using a de-
dicated CMI system, the Advanced In-
structional System (AIS), developed with
the McDonnell Douglas Corporation.

The Teaching Information Processing
System MIPS) and the Program for Learn-
ins; in Accordance with Needs (PLAN) are
two CMI systems available for use in
all levels of education. Both of these
systems are batch-oriented and are in-
tended to be used on mainframe compu-
ters. TIPS and PLAN are designed to be
used mainly with large numbers of stu-
dents.

Successful medium- and small-scale
applications of CMI (Bork, 1977; Brock-
osier, 1977) have helped define some
common problems in using CMI including'

1) Time and expense involved in custom
designing CMI systems for individual ap-
plications.

2) Difficulty with adapting existing
CMI programs to run on computer systems
other than those for which they were de-
veloped.

3) Knowledge of programming necessary
for an instructor to create or modify a
program.

4) High initial cost for setting up
hardware or adding to existing systems.

5) Communication expenses and problems,
and down time associated with time-sharing
systems:

Recommendations for improving the cost
effectiveness and efficiency of future
CMI systems have included the use of
stand-alone microcomputer systems and ad-
vanced authoring languages that allow an
instructor to specify or choose instruct-
ional and testing strategies and enter
related content without having to learn
a complicated programming language.

PROTECT OBJECTIVE
The objective of this project was to de-

sign, produce, implement, and evaluate a
CMI system with the following specifi-
cations:

1) The system will be based on inex-

200
211

AUTHOR DISK

AUTHOR PROGRAM

Creates files for assignment/test mod-
ules, edits fi:es, maintains index.

.00 401 mks mk.

Collects data from completed student
disks.

Displays results from completed nodule.

YES I

Testing/Placement 201

STUDENTDISX

STUDENT PROGRAM

Executes essignment/tests, updates
"STUDEX" file.

INDEX FILE

Holds execution sequence.

STUD= TILE

Holds student data, past scores, se-
quence pointer, and re-entry status.

ASSIGNMENT/TEST TILES

Holds couplets text and data for 1 sod-
uls in sock file.

?JOUR! 1

MASTS INSTRUCTIONAL ALGORITHM

REPEAT THROUGH LAST REMEDIAL NODULE X, N

NEXT REME-
DIAL OR
SLOCX 4 SIX
INSTRUCTOR

YES

GIVE NEXT
MAIN ASSIG%
KENT (X+1)
0

.111=111M OR. Vila .00

YEE

SANE AS ABOVE THROUGH ALL MAIN AND RUMEDIAT. RDE14ENENT/TDst NODULES I

?IMRE 2

212

202 NECC 1980

pensive microcomputers with disk storage
ability.

2) The system will be interactive.
3) The CMI program(s) will be con-

tained on individual student disks so that
they may be used on any compatible micro-
computer.'

4) An interactive, intelligent auth-
oring program will allow an author to
create CMI modules without having to
master a programming language.

5) The system will allow an author
to gather student data from individual
disks for storage on a single data
disk.

6) The system will perform simple
statistical computations and display
group and individual results as raw
score, mean, standard deviation, and
s-score.

7) The collected data will be
stored in a format that can be easily
transferred to other statistical anal-
ysis packages.

MASTS
The result of this project is the Micro-

computer-Assisted Study and Testing System
(MASTS). MASTS is contained on two disks
(Figure 1). The author disk contains the
authoring program which creates the data
and index files to be stored on the stu-
dent disk. The student disk contains
the student program which executes ac-
cording to the data stored by the author-
ing program. Copies of the student disk
are distributed to each student in a CMI
course. The progress for collecting and
manipulating student data from the indi-
vidual student disks are included on the
author disk. The heart of MASTS is a
two-dimensional variable instructional
algorithm (Figure 21 with parameters and
branching or looping conditions set by
the authoring program. This algorithm
is assembled by the author program through
interactions with the author. To assem-
ble an algorithm, the author need only
be familiar with the options available
in the algorithm model (Figure 2), as the
authoring program is menu-driven and all
options at any point in an authoring
session are displayed on the monitor.

AIOTHORIN0.SYSTEM
An instructor wishing to use MASTS

receives an author disk, a student disk,
and a short booklet outlining the options
available in the instructional algorithm
for creating a CMI module. After read-
ing the booklet, the instructor plans the
assignments and tests and determines the
criterion levels to allow the student to
progress or receive remedial assignments.
The instructor or clerical assistant may

now interact with the authoring program
to create the CMI unit. A complete CMI
unit may consist of numerous assignments
and tests, but MASTS does not require
that the complete unit be entered in a
single authoring session. The smallest
amount of information that may be enter-
ed during a session is one module con-
taining an assignment, the test based on
the assignment, and the data such as com-
petency level for advancing, number of
test questions to give, whether questions
are to be given in random or fixed order,
and what remedial strategy is to be taken
upon the student's failure to reach the
established competency level.

Each assignment/test module is given a
two-number label X, Y, which determines
its position within the instructional al-
gorithm. X represents the main assign-
ment/test. Y represents a remedial as-
signment/test for the main assignment-
test X. For example, the first assign-
ment in a MASTS unit would have the label
1,0. I: the author-specified competency
level were met for test 1,0, then assign-
ment 2,0 would be made. If the compe-
tency level were not met, the MASTS would
execute the author-specified remedial
strategy. The student could then repeat
assignment 1,0, be given a remedial as-
signment Test 1,1, or be blocked from fur-
ther assignments pending a visit to the
instructor, at which time the block can
be removed from the student's disk. When
a remedial test is passed, the student is
advanced to the next main assignment.,
When a remedial test is failed, the op-
tions are the same as outlined for 1,0.
Thus, a remedial assignment/test pre-
scribed for failing 1,1, would be 1,2.
Passing 1,2 would advance the student to
2,0. If the last remedial test fora main
assignment is failed MN, the student
is automatically blocked and told to see
the instructor. When a student has suc-
cessfully completed all of the main as-
signments on a disk, he is instructed to
turn in the disk to the instructor. Any
number of main assignments (X) and any
number of remedial assignments tY of X)
may be created within the file boundaries
of the microcomputer disk-operating sys-
tem.

To begin a MASTS authoring session', the
author places the authoedisk in the
microcomputer and turns on the power. The
author program automatically loads, runs,
and presents the author with a master
menu. The author may select one of sev-
eral options. If he selects to create
new assignment/test modules, he must put
a student disk into a second disk drive,
and is so informed by the author program.
The author will then be asked to enter

21 3

the 2C,Y number of the new ;nodule. After
this information is entered, the program
will prompt the author to enter the assign-
ment, the text of which can be any length.
At the end of the assignment, the author
enters the letter "S* on a new line to sig-
nal the end of the assignment. At this
point, the author may instruct the pro-
gram to execute the test immediately af-
ter the assignment or allow the student to
leave the computer to complete the assign-
ment. It is also possible to run a pro-
grain specified by the author at this
point, which allows the integration of
other CBI programs with MASTS.

The program will now prompt the author
to enter the test. The test is construct-
ed through interaction with a menu-drive
subroutine which allows any number of
(mixed) multiple choice, true-false; or
key word questions to be entered. The
menu allows the author to select a ques-
tion type or end the test. The process
for entering the text for all types of
questions is similar to that for enter-
ing the assignments. A multiple choice
question may have any number of choices
since they will be presented one at a
time to the student. (After all choices
have been shown, they will be repeated
until the student picks one.) The key
word question allows the author to specs-
fy a number of keywords or character
strings to be considered a correct answer
to the question. In the student program,
a key word question asks the student to
type in a response. This response will
be searched by the program to determine
if it contains any of the key words. If
it does, it will be counted as correct.
After entering a test question, the pro-
gram returns to the menu which allows
other questions or the end of the test to
be specified. At the end of the test, the
author is prompted to enter the competency
level in percent for passing to the next
main assignment. He is then prompted to
enter his choice for a remedial strategy
for students who do not pass. When this
information has been entered, the program
will return to the master menu. From. the
master menu, the author may add other mod-
ules as outlined above or print a master
student disk when all modules for the
MASTS unit have been entered. When the
latter option is selected from the master
menu, the program will prompt the author
to enter the information fields he wishes
to gather on each student's disk. The
author simply types a one-line instruction,
such as "Please enter your last name," for
each information field he wants. Any num-
ber of fields may be entered, and they will
be presented before the student's first
assignment. Tim responses will be stored

Testing/Placement 203

on each student's disk.
When the author finishes entering in-

formation fields, the author program will
place this information on the student
disk, along with other index information
making the student disk complete. In-
structions are then given to make copies
of the master student disk for distribu-
tion, which necessitates the program re-
turning to the microcomputer's disk-oper-
ating system.

STUDENT DISKS
Each student is given a copy of the

master student disk. To use his disk, a
student places it in any compatible mi-
crocomputer and turns the microcomputer
on. The program automatically loads and
starts at the proper point in the instruc-
tional algorithm. On the first session,
the program gathers the information
fields entered by the author and the first
assignment is given. Then according to
the instructions entered by the author:
1) the program stops and will not contin-
ue until the computer is turned on again,
thus allowing the student to remove his
disk and carry out the assignment before
returning for a test; 2) the program pro-
ceeds directly to the ti it on the_ assign -
sent, in which case, the assignment text
could be used as an instructional frame
rather than as an assignment as such; or
3) the program chains directly to another
program which could be placed on the stu-
dent disk by the author.

When a student finishes a test, he is
given instructions which may be the next
main assignment, a remedial assignment,
the same assignment again, directions to
see the instructor (a block is placed on
re-entry until the instructor unlocks the
disk), or instructions to turn the disk
in, if the student has finished the last
assignment. All scores for each test are
stored in the studex file which also holds
the information on a student's location
in the algorithm and his re-entry status.

MASTS DATA COLLECTION AND DISPLAY
When students have completed their

MASTS disks, the disks are turned in to
the instructor for data retrieval. One
of the options on the authoring program
master menu is collecting data from disks.
Each student disk is placed in the second
disk drive and is read by the author pro-
gram aollect subroutine. The information
fields and scores for each test are stored
with those for all other students. When
all student disks have been read, the in-
structor may use the result display option
from the master menu. This option causes
the computer to chain to a data display
program that computes and displays

2 `r4

204 NECC 1980

statistical information for each test and
each student. If a particular test has
been repeated, the statistics are computed
for each attempt. this information may be
displayed on the monitor, printed on a
line printer, or both. The student data
is stored in standard ASCII text files so
that simple programs may be written to
transfer student data to other data base
formats used by more sophisticated statis-
tical analysis packages.

APPLICATION AND EVALUATION
MASTS has been used for two semesters

in an upper-level media course for educa-
tion majors at the University of Texas at
Austin. Most of the class time for this
course is spent teaching production pro-
cesses while MASTS is used to assign out-
side readings describing media applica-
tions. In the past, assignments were made
with a reading list, but many students did
not finish the readings. Another approach
used was to require students to write re-
action papers or short reports based on
the reading assignments, but this approach
reduced the number of readings that could
be assigned during a course. Using MASTS
for these assignments allows the instruc-
tor to set due dates for completion that
coincide with related in-class activities.

These first applications of MASTS have
served as formative field evaluations help-
ing to define needed changes and to catch
bugs as only trial by fire can do. An
added benefit from using MASTS has been
that the computer anxieties of students,
most of whom have never worked with a com-
puter, have been lowered (according to pre-
and post-MASTS questionnaires).

MASTS HARDWARE
A Radio Shack TRS -80 with 48K memory

and two disk drive units is used for auth-
oring and data collection from student
disks. The student programs require only
one disk drive and 32K memory.

CONCLUSIONS
The definite student enthusiasm and

lack of major problems encountered in im-
plementing MASTS indicate an open door fox
exploring the use of small scale CMI.
MASTS or a similar system could form the
heart of a programmed text or workbook.
Another application might be in individual
learning centers, using all forms of in-
structional materials as possible assign-
ment media.

REFERENCES

Baker, Frank B. Computer Managed Instruc-
tior. Englewood Cliffs, N.J.: Educe
trail Technology Publications, Inc.,
1978.

Bork, Alfred. "Course Management System
for Physics III." Proceedings of the
Conference on Computers in the Under-
graduate Curricula,1977, 213-222.

Brockmeier, Richard. "Report on a Highly
Used Computer Aid for the Professor in
His Grade and Record Keeping Tasks."
Proceedings of the Conference on Com-
puters in the Undergraduate Curricula,
1977, 93-100.

Hilgendorf, Allen. A Study of the Trans-
portability and Effectiveness of the
Un-Stout CMIS and Individualized In-
structional System Based Upon Learning
Styles. Menomonie, Wisc.: Univ-Stout,
1976. (ERIC Document Reproduction Ser-
vice No. ED 131 305).

McDonnell Douglas Corp. Advanced Instruc-
tional System. Brochure distributed
at AECT Convention, 1979.

Nievergelt, Jurg, and others. Alterna-
tive Delivery Systems for the Computer-
Assisted Instruction Study Management
System (CAISMS). Urbana, Ill.: Illi-
nois University, February 197R. (ERIC
Document Reproduction Service No. ED
149 785).

Reigeluth, Charles M. TICCIT to the Fu-
ture: Advances in Instructional Theo-
ry for CAI. Salt Lake City, Utah:
Brigham Young University, 1978. (ERIC
Document Reproduction Service No. ED
153 611).

Roll and Pasen. "CMI Produces Better
Learning in an Introductory Psychology
Course." Proceedings on the Confer-
ence on Computers in the Undergraduate
Curricula, 1977, 229-238.

Van Metre, Nicholas H. "Problems in Re-
searching Computer-Managed Instruct-
ion." Paper presented at the American
Educational Research Association, To-
ronto, Canada, March 1978.

21 5

RIBYT -- A DATA BASE SYSTEM FOR FORMAL TESTING
AND SELF-ASSESSMENT

F. Paul Fuhs

School of Bussness
Virginia Commonwealth University

1015 Floyd Ave.
Richmond. Va. 23284

804-257-1737

ABSTRACT
This paper describes the function and

structure of a data base system called
RIBYT, which simultaneously controls and
associates questions in question pools for
many courses of instruction. The data
base stores questions created by both fac-
ulty and students and is used for kormal
testing and student self-assessment. The
structure of the data base allows rapid
retrieval of multiple types of sets based
on predetermined logical associations.
The data base also provides for the col-
lection and association of feedback
information not only on student perform-
ance, but also on the quality of the ques-
tions in the data base. This quality is
assessed through students' subjective com-
ments about the questions they receive and
through statistical item analysis. Feed-
back is also provided to students on how
they are able to improve the quality of
their question input, The structure of
the data base is easily transferable to
many data base systems which currently
exist.

INTRODUCTION
Many educators administer one or more

pools of objective test questions as the
basis for examinations. These pools usu-
ally are in the form of multiple-choice,
fill-in-the-blank, or column-matching
questions. Educators have a need to gen-
erate, organize, store, .modify, and
retrieve such test questions'.

1Publiehing companies like Harcourt,
Brace, Jovanovich (7) and SRA (10) have
recognized this need and are willing to
supply such pools in certain courses to
faculty who adopt their texts. Their
pools, however, lack associational struc-
ture and are merely sequential files
organized by text page number.

Testing/Placement 205

The logical associations among the
questions within a pool present a diffi-
cult administrative problem. Questions
must simultaneously be ordered in a number
of ways, they may be grouped into sets by
course topics, by textbooks, by page num-
bers within textbooks, by tests in which
the questions were used. and by many other
categories. Question pools are also dif-
ficult to manage because they are dynamics
questions have different life spans, sub-
ject to such factors as over-exposure in
usage, changes in textbooks, and obsoles-
cence due to technological changes. New
questions must continually be added to
these pools and sach new question forms
multiple associations with previously
existing questions. In addition, periodic
rewording and pruning of existing ques-
tions are required and, unless the ques-
tions in a pool are already well organ-
ized. it is difficult to detect synonymous
questions.

Many traditional file systems have
attempted to solve these associational
problems. Yet, frequently these systems
are expensive, overly complicated, and
difficult to use. They lack the capabil-
ity to make multiple associations among
the data items.

DATA BASE TECHNOLOGY
Data base technology over the past ten

years has been successfully applied to
many storage and retrieval problems espe-
cially where multiple associations exist
among data elements. Such associations
are logically represented as relations
(2), hierarchical structures (8), and sim-
ple or complex networks (9). They are
physically implemented through such
methods as hashi0g, tables, and lists.
The data base approach has penetrated
business and government and is in the
process of replacing many traditional file

21

206 NECC 1980

systems. DBMS are currently available
even on minicomputers like IBM's Sys-
tem/38, Hewlett Packard and DEC machines.
However, educational institutions have
been slow to use data base systems except
for some purely administrative functions.

FUNCTIONS OF RIBYT
In this paper, we describe the func-

tions and structure of the data base sys-
tem called RIBYT at Virginia Commonwealth
University. This system applies data base
technology to the associational problems
of using and maintaining pools of ques-
tions for formal testing and student
self- assessment2. The single data base
contains multiple pools of questions, one
pool for each course using RIBYT. The
questions are of various types, including
multiple-choice questions with single or
multiple correct answers; fill-in-the-
blank questions with multiple and alterna-
tive correct answers; and column-matching
questions. Each pool is under the direct
control of the faculty members responsible
for the course. In addition to faculty,
students in some courses are allowed to
create and add questions into the data
base. Student questions, however, are con-
sidered unedited until reviewed by a fac-
ulty member. Such questions, while physi-
cally intermingled with edited questions,
are logically distinct. During the review
process, student questions are accepted,
modified, or deleted3. The question pools
grow at a much more rapid rate when stu-
dents are allowed to enter questions.
With a large pool of questions and the
security provided by a data base system,
faculty allow student self-testing in a
nonthreatening spirit similar to the
self-assessment procedures afforded mem-
bers of ACM (M. Students view either
faculty selected questions or random sets
of questions, and receive feedback on
their performance. The faculty control
which questions the students are allowed
to view, but students control (within lim-
its) the number of questions, the course
question topics, and text page ranges over
which questions may be selected for self-
assessment. Students are generally enthu-
siastic about participating in question

2The self-assessment aspect of RIBYT is
one of the data base's unique character-
istics, from which it derives its name
,(Review It Before YOU Test).
'The review process is also used to modify
or delete questions which have failed
statistical item analysis.

generation because they understand the
merits of the self-testing.

To improve the quality of student
questions, faculty, while reviewing the
questions, optionally enter into the data
base comments directed to the student
authors of the questions. This feedback
is a learning experience in test construc-
tion, but even more so in course content.
There are two other feedback mechanisms to
improve the quality of the questions in
the data base. First, from an inspection
of patterns of student responses faculty
may detect acceptable alternative respon-
ses that were not previously considered.
Secondly, students can enter into the data
base complaints concerning any of 'the
self-assessment questions they have
received. As a result faculty and stu-
dents critique the self-assessment ques-
tions. Questions for formal examinations
are selected from questions which have
already passed through these filters.

Student responses to test questions
are used not only for student performance
evaluation, but also for statistical item
analysis. Each response entered into the
data base is associated with a unique
question number within the data base, a
course test number, the question number
within the test, the student making the
response, and the student's score for the
response.

The RIBYT data base system associates
two course topics with each question in
the data base. Topics assigned to ques-
tions by students are considered tempo-
rary, until reviewed for editing b7 fac-
ulty. Each course can organize its
permanent topics hierarchically and
independently of any other course. There
is no limit to the depth of any of the
hierarchies. The topics for all courses
are physically in the same data sets of
the data base, but logically kept dis-
tinct. The hierarchical organization of
topics provides flexible retrieval possi-
bilities. Questions may be retrieved based
on specified topics. Alternatively, they
may also be retrieved by topics that exist
as children nodes in the hierarchical
topic structure. Retrieval, therefor, is
made as generic or specific as desired.
Faculty and student users can view at any
time the hierarchical structure of the
topics which, similar to the questions
within any question pool, changes over
time.

IMPLEMENTATION OF RIBYT
RIBYT was designed under the assump-

tion that faculty and students using the
system would know little or nothing about

21 7

data base processing. Application pro-
grams written in COBOL and BASIC act as
the communication between the DBMS and the
users, who access the system through batch
and on-line devices. RIBYT is implemented
on a Hewlett Packard 3000 Series II com-
puter using the DBMS package, IMAGE, which
has been widely acclaimed (5). The design
of RIBYT is not restricted to IMAGE, how-
ever. With minor modifications RIBYT can
be implemented on many network-oriented
DBMS. CINCOM's TOTAL DBMS is but one
example (3).

ASSOCIATIONAL STRUCTURE OF RIBYT
Figures 1 and 2 illustrate the 22 data

sets (files) of RIBYT. There are eight
master4 and 14 detail data sets. Master
data sets contain records stored by hash-
ing. Each master record, composed of one
or more data items, can be linked to one
or more detail data sets. Master data
sets can be viewed as either independent
files or as sets of records where each
record acts as a chain head to one or more
records in a detail data set. Within a
detail data set records are linked by for-
ward and backward pointers to form sets. A
detail record may belong to one or more
master data sets. Master data sets are of
two types, manual and automatic. Unlike
records in manual data sets, automatic
data set records are stored or deleted by
the DBMS itself. These records act as
Chain heads for records in detail data
sets. With this data base architecture,
networks of associations among records and
data sets can be created and then manipu-
lated by the DBMS. Figures 1 and 2 show
for each data set its name, its type5, and
its associations with other data sets.
Within a detail data set a chain of
records can be further logically ordered
by specifying one of the data items within
the record as a sort item6.

4Aside from the terms "master" !_and
"detail" which are peculiar to Hewlett
Packard, we will adhere to CODASYL(1)
terminology as closely.as possible.

5In figures 1 and 2, B- Binary and
X=Alphanumeric. The numeric value fol-
lowing the alphanumeric specification "X"
represents the number of bytes assigned
to that data item.
6In figures 1 and 2 these sort items are
designated as "S" under the appropriate
data items.

Testing/Placement 207

Before faculty or students store or
retrieve questions, information concerning
the users is stored in the data set called
ROSTER; course information in the data
set TEXTBOOK-MASTER, and system initiali-
zation information in the data set LAST-
MASTER. Each record in ROSTER contains a
user's name, course and section number, a
status (faculty or student), and a unique
user identification number. TEXTBOOK-MAS-
TER contains one record for each block of
twenty pages of each textbook. Each record
contains the textbook title, and a data
item BOOK-BLOCK composed of course and an
associated textbook number and the page
block. Such structuring gives more rapid
retrieval for those questions based on
textbook page %webers. The data set
LAST-MASTER contains one record. Stored
here are the sequence numbers of the last
question entered into the data bare
(LAST-QUES), the last temporary topic
(LAST-TEMP-TOPIC), the last permanent
topic (LAST-PERM-TOPIC), and a faculty
password (FAC-CODE). The latter allows
faculty to perform such special functions
as dumping an entire question pool for a
course. In addition to the security pro-
vided by the operating system and the
DBMS, FAC-CODE and ROSTER are used to con-
trol access to the data base. SYSTEM-
STACK is the other system data set, imple-
mented as a stack that contains
information on the last 50 interactive or
batch jobs run. Each record contains a
time stamp, plus a user and program iden-
tification number. This information aids
in backing out of system malfunctions and
detecting unauthorized access.

A user, wishing to enter questions
into the data base, begins a session at a
CRT by choosing from a menu of textbooks
associated with the user's courses. This
menu uses information from the data sets
ROSTER, ALTERNATIVE-COURSE, and TEXTBOOK-
MASTER. Then, for each question, users
are prompted for background information on
the question before entering the text of
the question. This information will be
entered into the data set QUESTION-INDEX.
The user enters two course topic numbers,
a textbook page number, and the type of
question. The application program assigns
a permanent or a temporary number to each
new topic. The names and numbers of new
topics are entered into the data set TOP-
IC-MASTER. If the user wishes to index a

'Mr readability the data.base, data sets,
and data items are shown in capital let-
ters.

208 NECC 1980

question on only a single topic, the sec-
ond topic becomes a dummy. The program
then adds to the record in QUESTION-INDEX
the DATE, the BOOK-BLOCK, a unique ques-
tion number (QUES -NUM), the version number
of the question (QUES-VERS), and the
user's identification number. The status
of the question (QUES-STATUS) is set to
'edited" if the user is a faculty member,

'otherwise it is -set- to "unedited." The
other data items in QUESTION-INDEX are
initialized to zero.

After all data item values have been
coastructed for a record in QUESTION-IN-
DEX, as the record is physically stored,
the DBMS creates multiple associations
using hashing and linked lists. The ques-
tion's background information in QUESTION-
INDEX is linked to its author in ROSTER,
the textbook referenced in TEXTBOOK-MAS-
TER, the question's topics in TOPIC-HEAD,
and its unique question number in QUES-
TION-HEAD.

The text for a question and its
answers are next entered into the data
sets QUESTIONS and ANSWER-CHOICES. For
fill-in-the-blank questions the text is
stored in QUESTIONS and the answers are
stored in ANSWER-CHOICES. Alternatively
acceptable answers for each blank are
stored in ANSWER-CHOICES. For multiple -
choice questions, the stem of the question
is stored in QUESTION and the choices in
ANSWER-CHOICES. Each choice is designated
as correct or wrong (CORRECT-WRONG). One
can not afford to assign to each question,
choice, and answer a fixed length equal to
the largest possible number of bytes the
text might need, rather, data base tech-
nology is used to solve this problem.
Text is considered as 40 or 72 Character
blocks linked together. Records in QU2S-
VERS-HEAD are chain heads for sets of
character blocks in the data sets QUES-
TIONS and ANSWER-CHOICES. Within the data
set QUESTIONS each textual block of char-
acters is assigned a sequential line num-
ber (LINE-NUM), which is used as a sort
item to keep the text in correct logical
order on a chaine. Since any choice of a
multiple - choice question may also have
more than one line of text, the sort item
called SEQUENCE is composed of the alpha-
betic choice designator (A,BiCiDtor E)
concatenated to a text line number within
the claim. This system automatically

ftecords in any of the data sets are not
necessarily stored in the same order in
_which they ;sere .input.

keeps the choices and the lines of text
within each choice in logical order. The
total number of times each choice is
selected as an answer in either formal
testing or self-testing is later stored in
the data item RESP-TOTAL.

QUESTION RETRIEVAL
There are many selection options for

question retrieval from RIBYT, aside from
retrieval for editing purposes. Question
retrieval is first divided into formal
testing and self-testing. Faculty can
restrict questions so that these are used
only in formal testing. Each type of
testing is further divided into three
options. Under the first option faculty
specify by question number the actual
questions to be included in a test. Under
the second option faculty specify that a
single set of questions are to be randomly
selected for an entire class. under the
third option faculty indicate that a dif-
ferent set of questions are to be randomly
selected for each student. Faculty may
specify that questions are to be selected
based on one or more topics, page ranges,
or any combination of topics and page
ranges. In self-testing, faculty may
leave topic and page selection to each
student's choice.

DATA SETS USED IN QUESTION RETRIEVAL
Three data seta are used to control

question retrieval. These data sets con-
tain specifications that are used by a
retrieval program to select questions from
the data base for formal testing and
self-testing. The first data set, TESTS,
has a primary key COURSE-TEST-NUN, which
is a combination of the course designation
and a test number within the course. Each
record in TESTS represents a single test.
Each record has a SECURITY-CODE to control
access to the test. The percentage that
each test represents towards the total
course grade is stored in TEST-WEIGHT.
The number of questions per test, the num-
ber of times a test may be taken, the
average difficulty factor per test ques-
tion, the types of questions, the selec-
tion options, and the mix between vali-
dated and unvalidated questions are stored
in the data set TESTS. When faculty wish
to designate the actual test questions,
the set of question numbers is stored in
the data set SPECIFIED-QUES by question
number (VERB -NUM). Each number acts as a
search,argument to retrieve the text of
one questl m, This retrieval is performed
as follows. First the system uses the
value VERS -NUM in SPECIFIED-QUES to hash
into the data set QUES -VERS -HEAD. The
retrieved record than points to sets of

22

textual blocks, representing a question.
its choices, and answers in the data sets
QUESTIONS and ANSWER-CHOICES.

The data set PAGES-TOPICS is a multi-
purpose data set. Each record in PAGES-
TOPICS stores either a textbook page range
or one or two course topic identification
numbers. Each record is linked to an
individual test in the data set TESTS.
The value of the data item PAGE -TOPIC -
SWITCH indicates-whether a record contains
page or topic information. For pages, the
data items START and END store page ranges
and the data item BOOK-HIER stores a
course textbook identification number.
For topics, two topic identification num-
bers can be stored per record; one in
START and one in END. BOOK-HIER is then
used as a binary switch to indicate
whether only designated topics or their
hierarchical children are to be included
in question retrieval. Question retrieval
based on textbook pages is accomplished by
hashing into TEXTBOOK-MASTER and following
appropriate chains into the data set QUES-
TION-INDEX and from there using the com-
bined data items, QUES-NUM and QUES-VERS,
as a key to hash into QUES-VERS-HEAD.
Then the program follows chains into QUES-
TIONS and ANSWER-CHOICES as described
above. Question retrisVal by topics is
similar after entry into QUESTION-INDEX
from TOPIC-HEAD. Since all hierarchical
twins of a given parent topic are organ-
ized as a set in the data set TOPIC-INDEX,
whose members are linked to a topic in
TOPIC-HEAD, sub-topics are found by first
hashing into TOPIC-HEAD and following a
chain into TOPIC-INDEX.

STORING AND RETRIEVING TEST RESPONSES AND
TEST SCORES

Information concerning student respon-
ses is stored in six data sets/ TEST-
SCORES, TESTS, RESPONSES, STUDENT- GRIPES.
ANSWER-CHOICES, and RESP-FEEDBACK. The
set of all test scores for a given test is
linked together within the data set TEST-
SCORES, and this set is itself linked to
the data set TESTS. Within the data set
TEST-SCORES is a chain associating all
tests for each student. Since RIBYT han-
dles the possibility that the same student
takes the same test more than once, each
test score is made unique by being associ-
ated with a time stamp DATE-TIME in TEST-
SCORES.

The student responses to each test
question are stored in the data set
RESPONSES. Each record is composed of a
question identification number (VERS-NUM),
the question number within the test, the
text '.ine number within the response, a
code indicating whether the response was

Testing/Plaoment 209

correct or incorrect, the student's
response, and a combined data item (USER-
DATE-TIME) formed from the student identi-
fication number and the time stamp. Each
response in the data set RESPONSES is on
two link paths, one originating from the
data set QUES-VERS-HEAD, the other from
the data set TEST-HEAD. In addition,
since it is desirable to have the respon-
ses continually sorted by test question
number within a test and since there may
be more than one text block per student
response, the two sort items, TEST-QUES
NUM and LINE-NUM, are used as major and
minor sort fields for the records on a
USER-DATE-TIME chain.

Besides receiving the traditional per-
formance feedback to their responses (a
list of correct answers, questions, and
test scores), students may receive textual
comments concerning particular responses.
Faculty store these in the data set RESP
FEEDBACK. After students receive feedback
on their tests, they may enter into the
data set STUDENT-GRIPES their reactions to
any individual test questions, anony-
mously, or by student identification num-
ber. Course grades can easily be deter-
mined based on the data sets TESTS and
TEST-SCORES.

STATISTICAL ITEM ANALYSIS
Two measures of a question's quality

under statistical item analysis are item
difficulty and item discrimination (4). A
difficulty index is calculated concur-
rently for every question in a test. The
set of student responses is retrieved by
hashing into the data set TESTS with the
key COURSE-TESTNUM and obtaining all
chained records in the data set TEST-
SCORES. For each record retrieved the
data item values of USER-NUM and DATE -TIME
are used as a concatenated key to hash
into the data set TEST-HEAD. All test
responses for a single student are
retrieved from the data item CORRECT-WRONG
of the data set RESPONSES through a chain
originating in the retrieved TEST-HEAD
record, and this procedure is then
repeated for each student. The retrieval
is rapid and passes over all other tests
in the data base. The calculated diffi-
culty indices are then storcd in the data
set QUESTION-INDEX. The calculations for
statistical item discrimination require
the same data sets as item difficulty
determination.

CONCLUSION
The associational power inherent in

the data base system RIBYT allows many
relationships to be made and maintained
among courses, textbooks, coursa topics,

220

210 NECC 1980

students, faculty, tests, test questions,
test construction options, and student
responses to questions. RIBYT stores sub-
jective and statistical feedback on the
quality of the questions in the data base
and aseociates this feedback with the test
questions. This system supports formal
testing and self-assessment procedures and
salads the storage of many types of ques-
tions, while imposing no limit on the size
of any question or answer,---The centrali-
zation of the logical associations into
one data base provides better security and
easier maintenance than traditional file
systems.

ACKNOWLEDGEMENTS
I am grateful for the assistance

of Dr. Kathleen cokrigan Fuhs and Mr.
Paul Thompson for helping to specify
and clarify some of the user require-
ments of RIBYT.

REFERENCES

(1) CODASYL, CODASYL Data Base Task
Grp* Report, ACM, New York,

(2) Cwdd, E. F., "A Relational MOdel
of Data for Large Shared Data
Banks," CALM, 13,6, 1979.

(3) Datapro, TOTAL, Delran, N.J.:
Datapro Research Corp., March
1978, section M12-132-101 to
M12-132-104.

(4) Downie, N.M. and R. N. Heath,
Basic Statistical Methods, 2nd.
ia7,Wew York: Harper AN Row,
1965, p.228.

(5) Gepner, Herbert I., "User Rat-
ings of Software Packages,"
Datamation (December 1978),
183486.

(6) Hewlett Packard, Image, Data
Base Management, System,
ence Manual, Santa Clara, ca.t
MgreETWalcard, 1978.

(7) Hilgard, E. R., R.L. Atkinson,
and R. C. Atkinson, Introduction
to Psychology, 7th ed., New York:
Harcourt, Brace, and Jovanovich,
1979.

(8) IBM, IIMB/VS, Application Pr ram-aka eference Manual, or er no.
SR-20-1026, whit7-17017ins, New
York, 1978.

(9) Kroenke, David, Data Base Processing,
Chicago: SRA, 19777-

(10) SRA, "Mid -Term Blues? Computerized
Test Service Available," Data Proc-
essing News (Spring 1979)71

(11) Wong, J. W. and G. Scott Graham,
"Self.-Assessment Procedure VI," CACM,
22,8 (August 1979),449-454.

(Manual)
LAST-MASTER

STACK LAST-

QUES
LAST-

TEMP-
TOPIC

LAST-

PERM-
TOPIC

FAC-

CODE

X4 B B B X8

key

---- ..

(detail)

SYSTEM-STACK

:.;ACK DATE-
TIME

LAST-
USER

LAST-
PROGRAM

X4 X12 X10 X4

I S

FIGURE 1: SYSTEM CONTROL DATA SETS OF RIBYT

(Auttratic) (Manual) (Automatic)

TOPIC-HEAO TEXTBOOK- QUESTION-

MASTER HEAD

TOPIC
URN TITLBOOKE

X30

KBOOBLOCK

X12

key

(Manual)
ROSTER

LAST-
NAME

FIRST-
NAME COURSE \SECTION STATUS

USER -

NUN

X20 XI6 X6 ' X2 X2 XIO
-

key

1 _

(Detail)
QUESTION-INDEX

TOPIC-

NMI
TOPIC-
NUN2

DATE BOOK
BLOCK

PAGE-
NUN

QUES-
NUR

QUES-
'MRS

DIFFI.
CULTY

QUES -

TYPE
.QUES-DISCRINI.,°"
STATUS NATION

;
"
NUM

X4 X4 X6 X12 X4 X4 X2 X2 X2 X2 B -X10

,S S S S
. . .

(Detail)
TOPIC-INDEX

TOPIC- SUB- SUB -

NUM TOPIC Bic.

X4 X30 X4

(Detail)

QUES-FEEOBACK

(Detail)
ALTERNATE-COURSE

VERS-
NUM

LINE-
NUM

FEE°ma
ala X2 MU X10

MINIM

USER -

NUN COURSE SECTION

X10 X6 X2

I

FIGURE 2: DATA SETS OF RIBYT

(Manual)

TOPIC-MASTER

TOPIC

ICOURSE \TOPIC NUN

X6 X30 X4

241 223

(Automatic)
QtES-YERS4AD

VERS-
_. NUN

X6

(Detail)

QUESTIONS

VERS- LINE-
NUN NUN TEXT

X6 X2 X72

S-

(Detail)
RESP-FEEDBACK

(Detail)

ANSWER-CHOICES

VERS- SEQUENCE RESP- CORRECT- TEXTNUN
TOTAL WRONG

X6 X4 B. I---..
-X2 X40-

S

VERS-
NUN

LINE-
NUN FEEDBACK

X6 X2
11. X72

S

VERS-
- HUH

X6

(Detail)'

RESPONSES

TEST-
S.

NUN

LNUINE-

N
CORRECT-
WRONG

X6

4
X6

-s

X2 X2

(Detail)
STUDENT- GRIPES

STUD-
NI/4

LINE-
NUN GRIPE

X10 X2 1 X72

S

(sqeal
TEGTu-HEAD

)

USER-DATE-
TINE

X22

STUDENT-
RESPONSE

USER-
DATE-
T

X40 X22

Figure 2 (cent): DATA SETS OF RIBYT

2?

(manual)
TESTS

,0,,,,I0U5E;

TEST:
SECURITY-
CODE WEIGHT"'u"

HUM-OF-

QUES

TEST-
TIMES

AVE-
OIFF

QUES-
TYPES

SELECT-
OPTIONS

VALID -

MIX

X12 X8 8

-

8 8_ 8

-

-..

X2. X2

.

8

key

...._ ,

. ,

I ,

-I, -

(dtai)
SPECIFIC/lIVES

COURSE- %MRS-

TEST-HUM NUM

X22 X6

2 5

(detail)

PAGES-TOPICS

COURSE-
TEST-NUM

START ENO BOOK-

HIER
PAGE-
TOPIC-
SWITCH

X12 X4 X4 X2 X2
. , .

Figure 2 (cont): DATA SETS OF RIBYT

(detail)
TEST-SCORES

(from
Roster)

COURSE-

TEST-HUM

CATE-
TINE

SCORE

_

USER-
NUM

X12 X22 8

.

X10

S

214 NECC 1980

COMPUTER MANAGED PLACEMENT

IN

MATHEMATICS INSTRUCTION

FOR

HEALTH OCCUPATIONS STUDENTS

Thomas A. Boyle
Purdue University
West Lafayette, Indiana 47907
(317) 749-2256

.INTRODUCTION

The Indiana Vocational Technical
College at Indianapolis (IVTCIN) main-
tains an instructional program to serve
the mathematics needs of students be-
ginning study in health occupations
technologies. The program is based on
Streeter and Alexander's Fundamentals
of Arithmetic (1), beginnlTifh-ngt
whole number operations, continuing
with fractions, decimals, and percents,
and extending to ratios and signed
numbers. The materials are organised
in 15 modules, each with a pre -test,
a practice test, and a mastery test
used to guide individual students to
the study materials appropriate to
their evident needs.

Although the instructional
materials in the program proved
appropriate and were reasonably well
received by students using them,
certain problems soon developed in'
guiding students to the modules speci-
fic to their needs. in particular, the
following were noted:

1. The handling of pre-tests on
an individual basis was time consuming
and otherwise a burden on testing
personnel.

2. Because of the limited number
of pre-test 1orms and the level of
supervision for actual testing, it was
possible for students to use the pre-
test materials in ways which would fool
themselves regarding their mathematics
skills.

3. Capable students were bothered
by the need for working through several
tests in order either to find a' suitable
starting module or to demonstrate
competency and by-pass the program
entirely.

Peter T. Magnant
Indiana Vocational Technical College
1815 East Washington Street
Indianapolis, Indiana 46202

4. Neither the student nor the
staff could readily get an impression of
how the student stood with respect to
the whole program.
COMPUTER APPLICATION

in an effort to mitigate these
problems, work was begun early in 1978
to adapt test materials and procedures
which had been in use at another XVTC
institution (2). These materials con-
sist of a programmed test format, which
require. students to attempt equal num-
bers of test items in each of several
categories, together with computer
scoring and data processing. This use
of a computer enables first the scoring
of each student in each item category,
with subsequent determination of score
statistics for each student group. As
will be shown in subsequent examples,
this use of a computer yields informa-
tion in detail which would be practi-
cally impossible to get from hand scor-
ing. Previous work with the combina-
tion of test format and computer data
processing had demonstrated efficiency
in the use of test administration time
and the possibility of rendering in-
formation from each of several relative-
ly independent item categories (3).

Figure 1 shows the computer scor-
ing output for a select group of
students. The category of subtest
scores appear in six columns following
the student names. A key at the bottom
serves to identify six subtests. For
this test some grouping of modules was
necessary, e.g., instructional modules
1-3 dealing with whole numbers are all
represented in subtest one. The key
further identifies the SCR column as

2 7

Testing/Placement 215

I V T C INDIANAPOLIS 4Z6/79

SUBTEST SCORES
NAME 1 2 3 4 5 6 1-6 NF ERROR ITEMS

Bob W. 3 -4 2 1 -4 1 -1 37 51 32 18 50 4 5 14 26 61 72 76 82 71 79 8
.43 -.57 .33 .17 -.80 .17 -.03

Bev H. 5 -2 -2 -5 1 -4 -7 44.13_33 53 17 45 52.39 58 14 66 76 82.71 85 7
.83 -.22 =.29 -.63 .14 -.57 -.16

Sue D. 7 -4 -2 0 -1 -2 -2 48 7 24 21 53 28 18 50 57 40 14 66 76 82 71 6
1.00 -.40 -.29 0 -.13 -.22 -.04

Jo B. 7 -2 1 -4 0 -2 0 48 31 42 54 50 45 23 38 59 44 66 76 71 79 62 6
1.00 -.20 -.13 -.57 0 -.25 0

Pat W. 7 5 3 5 4 -1 23 42 18 56 52 5 59 19 66 76 81 74 62 83 80 78
1.00 .56 .43 .83 .67 -.14 .55

Pan W. 7 8 2 0 -2 0 15 48 31 23 58 30 26 83 80 77 85 81 74 66 76 65 7
1.00 .89 .22 0 -.25 0 .31

Joy D. 8 7 6 -1 2 2 24 48 7 24 52 30 26 67 77 85 75*77 79*73 65*79 6
1.00 .78 1.00 -.13 .29 .20 .50

Dee R. 8 8 5 -1 5 0 25 46 53 56 52 14 72 7S 77 85 81 70 65 66 76 65 6
1.00 .89 .71 -.14 .71 0 .54

Liz R. 7 9 6 -2 7 8 35 46 13 43 42 14 79 GG 85
1.00 1.00 .86 -.25 1.00 1.00 ./6

Kay B. 7 10 7 -7 8 8 33. 48 13 43 42 57 30 79 85 65
1.00 1.00 1.00 -.88 1.00 1.00 .69

SUBTEST SET
** 1 = WHOLE NUMBERS ** 2 = FRACTIONS ** 3 *DECIMALS ** 4 = PERCENT ** 5 = RATIO **

** 6 = SIGNED NUMBERS **
** SCR = SUM OP SMUT SCORES ** NF = NUMBER OF ITEMS ATTEMPTED ** RATIO SCORE = SCORE

DIVIDED BY RELATED NP **
Figure 1. Facaimile*GlftthemfticeScaingPrcammOiftlat

holding the sum of six subtest and the NP
column as showing the total number of
items attempted by each student. Numbers
at the far right identify the first ld
mistakes made by each student.
TEST SCORING

Subtext scores for each student are
presented in two numbers. The first, the
raw score for each subtext, is based on
one point for each correct response. A
penalty is applied for making errors in
sequence, this scoring yields an expected
score of zero for a student strategy of
pure guessing. If performance is worse
than that from pure guessing, i.e., if a
student consistently makes errors in a
subtest, then that subtest score becomes
negative. The second number, the ratio
score appearing below each raw score, is

toe result obtained from dividing the raw
score by the number of related items at-
tempted. As should be evident, the com-
putation of seven raw scores and seven
ratio 'corm would present a formidable
task for anyone attempting hand scoring of
this type of test.
APPROPRIATE PLACEMENT

The students represented in Figure 1
were selected to present a range of stu-
dent performance. Bob, the first student,
obtained a row of scores which could well
result from guessing. It appears likely
that he made consistent errors in items
dealing with fractions and ratios, but he
earned only three points in seven attempts
with whole-numbers, so we may be reason-
ably confident Bob should start at the
beginning of the instructional program.

218 NECC 1980

INDIANA VOCATIONAL TECHNICAL COLLEGE
INDIANAPOLIS

M - 31 MATHEMATICS SKILLS ASSESSMENT PROGRAM
FOR

Pat W. 4 679 80981 44

THIS PROGRAM IS AIMED AT HELPING YOU DEVELOP THE BASIC MATHEMATICAL SKILLS NEEDED
TO DO AN EFFECTIVE am IN THE IVTC SPECIALTY YOU INTEND TO ENTER. THE PROGRAM HELPS YOU
AND YOUR INSTRUCTOR FIRST BY NOTING THE PARTS OF THE IVTC MATHEMATICS SEQUENCE IN WHICH
YOU MAY ALREADY HAVE ADEQUATE SKILL. NOTE IS ALSO MADE OF THE SECTIONS, OR MODULES IN
WHICH YOU APPEAR TO NEED ADDITIONAL HELP AND PRACTICE. AS YOU KNOW, MOST PERSONS EN-
TERING TECHNICAL EDUCATION NEED TO IMPROVE THEIR SKILLS IN SOME PARTS-OF-MATHEMATICS.

THE PRIMARY PURPOSE OF THIS ASSESSMENT PROGRAM IS TO HELP YOU GET STARTED AT THE
POINT WHERE YOU CAN DO YOURSELF THE MOST GOOD., ONCE YOU KNOW THE MATHEMATICAL MODULES
YOU NEED TO WORK ON, YOU WILL FIND YOUR INSTRUCTOR AND THE LEARNING LABORATORY STAFF
READY TO HELP. ,AND AFTER A PERIOD OF INSTRUCTION AND PRACTICE, YOU CAN CALL ON THE
SKILLS ASSESSMENT PROGRAM TO CONFIRM THE PROGRESS YOU HAVE MADE.

THE FOLLOWING MESSAGES SHOULD HELP -

Pat W.
YOU WORK SOMEWHAT FASTER THAN THE AVERAGE WHEN TAKING THE TEST. THIS IS A REASON-

ABLE STRATEGY, OUT YOU MAY BE GUESSING ANSWERS TO ITEMS WHICH YOU COULD SOLVE IF YOU
SPENT A LITTLE MORE TIME ON THEM.

IT APPEARS YOU DO YOUR BEST WORK WITH THE MATHEMATICS IN MODULES 1 - 3. YOUR SCORE
OF 100 INDICATES ADEQUATE SKILL WITH WHOLE NUMBERS.

JUDGING FROM YOUR RESPONSES, IT APPEARS LIKELY THAT YOU HAVE ADECIJATE SKILLS IN THE
FOLLOWING TOPICS.

TOPIC SCORE

PERCENTS 83

IVTC MATH MODULES

TEN

ALTHOUGH YOUR SCORES DO INDICATE SUFFICIENT SKILL, THERE MAY BE SOME ROOM FOR IM-
PROVEMENT, AND YOU MAY BENEFIT FROM A QUICK REVIEW OF ONE OR MORE OP THE MODULES LISTED.

EVIDENTLY YOU HAVE MADE SOME PROGRESS IN LEARNING ABOUT FRACTIONS, HOWEVER YOU DO
APPEAR TO NEED MORE PRACTICE WITH THE MATERIALS IN MODULES 4 - 7.

PROBABLY YOU CAN DO YOURSELF A LOT OF GOOD.BY GETTING TO WORK ON THE MATERIALS IN
MODULES 8 - 9, EVIDENTLY YOU DO NOT HANDLE DECIMALS VERY WELL.

NO DOUBT, YOU REALIZE THAT YOU KNOW SOMETHINGS ABOUT PATIOS, BUT YOU DO MISS SOME POINTS
HERE AND PROBABLY WILL BENEFIT FROM ATTENTION TO IVTC MATH MODULI ELEVEN.

EVIDENTLY YOU MADE MISTAKES ON THE FOLLOWING TEST ITEMS

18 56 52 5 59 19 66 76 91 74 62 83 80 78

Figure 2. Paeietrdle 14-3119it1anatics Sooting Prcgraft Oftpirt

The next three students received
very low scores inmost 'attests, yet
scores which are evidently adequate in
the whole number subtest. Bev had the
lowest total score (-7) observed to date,
but did five out of six whole- number
items correctly. Evidently these students
will benefit from starting with the in-
structional materials on fractions. pat
will also benefit from starting with the
instructional materials on fractions,
however, she obtained acceptable scores

in other subtests.
Pan, Dee. And soy, the next students

listed, had scores characteristic of ade-
quate performance in two or three sub -
tests. Recommendations for these students
would lead to intermediate modules in the
instructional program. The scores for
PAM and Dee indicate some study is needed
beginning with module eight. Joy may
well be advised to begin with module ten.

The two students remaining, Lis and
Kay, received practically perfect scores

229

in all but one subtext. Evidently these
girls made all but one of their mistakes
on items in the percent subtext. May's
scores are especially noteworthy. She
worked rapidly on the test, attempting 48
items in the 30 minutes allowed. She
got all items correct in five subtests
yet made errors in all eight of the per-
cent items she tried: the negative seven
score results because the first error is
not penalized.
INDIVIDUAL OUTPUT

The computer program which produces
the test scores has been extended to
yield a one-page message for each student
on which the student's ratio scores are
ranked, and the subtests on which he did
best are identified. Appropriate mes-
sages are selected, including recommenda-
tions for notion. Duplicate copies are
produced for the student's file and for
instructional supervisors. A facsimile
of this output is presented as Figure 2.

INKRUCIFICING.

FFOGIOM

1 48 mem =ARM
MO 71

2 28 MIID LAS TECH
MO 61

3 46 RADEECGIC 'MICE
Ns 57

4 42 SURIOCALIECH
MO 57

5 44 LICPRACEICRSE
N- 455

6 37 minawAser
MO 39

7 93 MUMMIES:REMO
MO 31

TestingiPlacement 217

SCORE STATISTICS
During the period to July 1979, the

M-31 test was administered to approxi-
mately 1000 IVTCIN students. Prom the
total group, some 763 were identified by
instructional program. The response data
from these students were grouped and test
score statistics obtained for students
entering each of seven health occupations
programs at IVTCIA. The numbers of stu-
dents identified by_ instructional program
ranged from 31 for health career prepa-
ration to 455 entering the practical
nursing program. Numbers of students in
groups may appear to change and the sums
of groups may be different from the total
tabulated in Figure 3. This is because
additional data were received and pro-
cessed during the time the report was in
preparation.

The score statistics were arranged
by ranking the mean total ratio scores
for the instructional groups. This

1NDIMMIKMIXAMLIECENVFICILLEGE
1101/MOLys

14-31 19111114=8 VMS= SUMMRRY

AUGUST, 1979

029421 DE m= maw maw exam Ian riss
NOS. PEACTICAS NOS. SOIREMOrtED

MEAN .93 75 .74 .49 .76 .71 .73 40.56
STD DEN .09 .35 .33 .44 .39 .34 .22 8.62

MEAN .93 .72 .75 .45 .72 .70 .71 40.07
9P1) MY .15 .41 .29 .52 .37 .37 .25 9.06

toe .92 .66 .69 .47 .74 .66 .69 39.31
STD 1:43/ .13 .36 .34 .44 .39 .33 .21 7.84

MEAN .95 .57 .68 .39 .67 .69 .65 39.25
STD DEV .09 .48 .34 .46 .51 .39 .25 8.27

MEAN .92 .62 .66 .27 .59 .49 .60 38.65
STD DOW .15 .41 .30 .48 .47 .44 .25 8.42

MAN .93 .62 .66 .22 .45 .46 .56 35.64
STD rev .12 .42 .32 .50 .53 .52 .26 8.27

MEAN .78 .33 .33 -.06 .21 .30 .31 37.45
EaDDEV .27 .54 .60 .53 .50 .38 10.87

wan .92 .62 .66 .32 .61 .55 .61 38.52
ETD DEV .15 .42 .32 .50 .47 .44 .26 8.69

115t9111 3. 14-31 =SE E5312791,101 DIMSWEID BY INVIRICYICti% GROUP

23

218 NECC 1960

ranking placed the respiratory theraphy students
highest, and the health career preparation
students latest. The 0:Inplete statistics for all
seven Student grape are presented in Figure 3.
Mean scores are presented for all six of the
N-31 subtests, as well as for total score and
number of item attempted. With the exception
of the items-attepted mean, the scores repre-
sented are ratio mores (i.e., the raw score
divided by the number of related items atteipted)
for each student. As can be seen the subtest
means range fran 0.95, correeronding to a mean of
ninety-five percent, down to a negative 0.06.
This latter score indicates average test per-
formance just slightly worse than would be mc-
rented for a etudett strategy of pure guessing.

Figure 3 Indicates that, an the average, the
14-31 test is of reasonable difficulty for
students entering health service instruction
programs at IPDZIN. However, the difficulty is
not even for different groups. The respiratory
therapy and medical laboratory technician
trainees and the radiologic aid surgical techni-
cians find the test quite easy. The statistics
ghat that, especially in the first grouPs, many
students; handle the designated range of
arithmetic skill adequately. Unquestionably,
there are many of these students vim have little
to gain from further study of the skills =pre-
sented. Among the students who do seen to need
further related study, the need appears to be
greatest for percent drills.

Data for all students, including sane
tested after mid-July, We that there is sane
correspondence between the arltlenetic
that have been =Allred by the entering students
ard the sequence of interactional reddest. On
average, all groups score highest on
the whole amber subtest. With the eocception
of the percent scores, there is a trend toward
laser scores in the subtests related to later
instructional modules. The break in the se-
quence of scores, at the percent subtlest,

may indicate either need for special effort if
students are to attain 80 percent performance
or disPlY that the test items mere
sonby difficult. t1te heck dose call at-
tention to an advantage of the test format:
evidently saw students oho have difficulty with
test item related to module 10 readily surpass
the criterion BO- percent perfonerms in item
related to module 11 and to signed ambers.
Here the test faint and amputee data proces-
sing enable identification of the difficult
materials and may obviate the need for subse-
quent modules.
SIGNIFIGINZE

TIO3 statistical teats have been performed
on 14-31 data obtained to date. One-way
analyses of variance have been clone at each
ooltent4Figure 3) of group subtest scores to
check for significant differences between

grout's, for example to see *tether the respiratory
therapy students and the LPN's could be regarded
as caning from the same PoPoleriro- The analyses
were me twice, once with and once without the
health career preparation group. The results are
presented in Table x la teats of P. values.

WRTHOUf WITH
;MEM SCP MCP

1 %tole Numbers 0.545 5.271*

2 Fractions 2.099 4.473*

3 Decimals 1.581 7.425*

4 Percents 5.246* 7.455*

5 Ratio 4.172* 7.413*

6 Signed mamba= 7.747* 8.135*

*Significant at 0.01 ac less

Table x. F-values for analysis of
variance in subtext scares,
with and without health
care preparation students.

These values show that, excluding the OCP
students, only marginal differences appear
between groups wititxecex4 to ichole =bar,
teactica, and decimal'ambtest scores. Signifi-
cant differences appear in the other subtast
scores. When the RCP students are included,
sg=icant differences appear in all subtlest

APPLICATICN OF MUMS
Zang the ptvoedures discussed, students are

able to review their am strengths and weekneeses
related to mathematics, both as individual
applicants and in relation to the other Maim**
seeking admission into a program area. The
Indiana Vocational Technical College at Indianap-
olis helps students in their areas of deficiency
sib they can develop the mathematical skills
necessary for admission aid eventual success. If
scores are acceptable for program adedssicn, the
Related Education Department can use the date as
a basis to increase mathematic skill in light of
the health programs needs and objectives.

aben imbalance develops belmeen the ambers
of students seeking to enter different health
specialities, an 1ndividual's scores may wag*
encouragement for consideration of other
specialities also within the student's preterit or
future range of mathematical developeent. For
example, sane students seeking to enter the
practical nursing program may beneficially

231

ansider other instructimal program.
OICELBICHS

A ccmputer-tesed testing prooedure has been
adapted to menage the mathematics placement of
Madames pursuing inetzuctia, in health mama-
time. The anaiattion enables more efficient
use of scixol persamel and expedites pleasant

Testing/Placement 219

in, or by-pas3 of, a sequence of asthmatics
instruction SWUM. Scam normative data have
been obtained and ease significant differences
seen to exist between scores of students
seeking inatructian insdifferent health
specialities.

REFERIEWES

1. Streeter, Jame and Alexander, Gerald. Fundamentals of Aritbatic. New York: Raper and Aces
Publishers, 1975.

2. Boyle, Timms A. and Shaver, Carroll G. Ccmwtar Amassment of Mathematics Skills for Students
beginniza Postnday Technical Evalw. Seventh 0:inference on Omenzbers in the Maks-
gradeate OnTicula. KrOaftn: state university of New York, 1.976.

3. Boyle, Thaw A. and Wright, Guy L. Itcarater-aanisted Evaluatica of Student Acheivement."
Engineering klucatice, vol. 68, No. 3, Decenber 1977, m. 241-245.

232

Invited Sessions

IMPROVING UTILIZATION OP TWO-YEAR
COLLEGE COMPUTER CENTERS

Robert L. Burrows
Triton College

2000 Fifth Avenue
River Grove, Illinois 60171

(312) 456-0300

ABSTRACT
th=difiC11118i011 will begin with an over-

view of the areas of responsibility of a
computer-assisted learning agency and then
elaborate on what can be done in these
areas once one actually becomes an agency.
Specific topic areas include the following:
--Marketing approaches to attract teachers
to the computer via such means as
seminars, newsletters, and committees.

--Training instructors in computers,
using as specific examples the three
courses now being offered to Triton
faculty each semester: Introduction
to Computers and Programming, Intro-
duction to Statistical Analysis Using
SPSS, and Introduction to Computer
Graphics.

--Working with faculty to obtain
educational software including
catalogs, magazines, educational
suppliers, and user groups.

--Supporting software written or planned
for academic users, including changes
to system software, program filters
written to convert foreign software,
an electronic mailing system, a
program directory system, and a car
system.

--Working with faculty in obtaining
hardware, using as example the
terminals and microcomputers purchased
at Triton and its plan for a computer
lab.

--Problems with computer education
specific to a community college.

2')')4, to.

TEACHING .COMPUTER ETHICS

Walter Maner
Philosophy.and Computer Science

Old Dominion University
Norfolk, VA 23508

ABSTRACT
--Wriinagemont, staff, and users of
information systems of all kinds will
benefit greatly from training in applied
professional ethics. These professionals
work in an environment where they must
deal responsibly and knowledgeably with
critical moral problems (such as breau4
of privacy, computer crime, and dehuman-
ization) which are aggravated, trans-
formed, or created by the advance of
computer technology.
A general rational for a course in

computer ethics will, therefore, be
developed along with course design
criteria, a full course description, a
set of proposed course objectives,
associated bibliographies, and a taxonomy
of subject matter areas within the field
of information ethics.
Attendees will break into small discus-

sion groups to study cases illustrating
moral dilemmas posed by the use of
computers in education.

23 .f

Invited Sessions 221

Tutorial

PASCAL TUTORIAL

Harry P. Haiduk
Amarillo College

P.O. Box 447
Amarillo, Texas 79178

ABSTRACT
--YETrEutorial is concerned with

(1) a brief historical view of PASCAL in
terms of its philosphy and stated design
goals

(2) a brief review of its current rele-
vance in a diverse set of applications,
particularly as it may relate to the new
Department of Defense Common High Order
Language, ADA

(3) a comparison of PASCAL's logic and
data structures with those of BASIC, COBOL,
FORTRAN, and PL/I

(4) actual running program examples con-
trasting PASCAL with BASIC and FORTRAN.

222

2 3 5

IMM'y A11111111===1.11

Pre-College Instructional Materials

COMPUTER -BASED INSTRUCTION FOR THE PUBLIC SCHOOLS:
A SUITABLE TASK FOR MICROPROCESSORS?

Dr. Timothy D. Taylor
Computer Based Education Center

308 Carroll Hall
The University of Akron

Akron , Ohio 44325
(216) 375 7848

OVERVIEW
The microprocessor is proving itself

as an attractive, low-cost device which
has the capability to serve its owner as a
record-keeper, accountant, entertainer,
and tutor. The attractiveness of the de-
vice has led teachers and other educators
to explore its potential for providing
computer-based instruction. While no de-
vice, whether it be a microprocessor, a
large computer, or something in between,
should be viewed as simply good or bad
for education, all devices have charac-
teristics which must be considered before
an investment is made. One might expect
that a computer terminal connected to a
large computer (resident or non-resident)
might have capabilities that microcompu-
ters lack, and this is certainly the case.
Whether or not a school should purchase a
micro, however, depends entirely upon the
function which the machine will have.
Following is a discussion of the educa-
tional services that can and cannot be
provided by off-the-shelf, low-cost,
microprocessors such as the Apple IX or
Radio Shack's TRS-80 (Model I).

DISPLAY CHARACTERISTICS
The variety of characters, graphics,

and colors that microprocessors are ca-
pable of displaying has been a major fac-
tor in the success of its sales during
recent years. The Apple II and Ohio
Scientific micros, for exawle, can pro-
duce graphics, colors, and sounds, in
addition to displaying standard keyboard
characters. Graphics are often helpful,
particularly for the ruching of such sub-
jects as physics and hisher level mathema-
tics, but the most important characteristic

223

required for much of the current instruc-
tion in the public schools is the display
of upper- and lower-case alphabetic char-
acters. None of the low-cost micropro-
cessors is sold with upper- and lower-case
displays, although most of them can be
modified, at extra cost, to add this capa-
city. The use of color and sound can add
significantly to the appeal of micropro-
cessor-based courseware, but the lack of
dual-case alphabetic characters has to be
considered a serious limitation for the
teaching of such subjects as English and
reading.

SIMPLICITY OF OPERATION
A public school student using a termi-

nal tied to a large computer typically be-
gins his session by being seated and typ-
ing one short message. At that point, he
has entered the computer-based education
course and is working where he left off
during his last session or where his pre-
vious performance records indicate that he
should be. One CBE course may contain
enough material to teach the student and
track his progress for a year or more. A
student using a microprocessor (presumably
with at least one disk drive) typically
has a more complicated procedure for begirt-
ming his session. He will obtain his disk,
be seated, insert his disk into the disk
drive, power-on the machine so that the
initial_ program will be loaded into memory,
and theft he is ready to begin, He may or
may not have to type a message telling the
computer to start the lesson. He probably
cannot start where he left off last time;
however, a carefully programmed lesson may
enable him to choose his own starting
point. One disk may contain enough meter!?

236

224 NECC 1980

al to tutor the student for a number of
hours.

In the public schools, students using
terminals connected to a large host compu-
ter can be given the freedom to use the
terminals without teacher supervision be-
cause the sign-on procedure is simple and
because no peripheral materials, such as
floppy disks, are required. Use of a
microprocessor may require the monitoring
of a disk storage area and a check-out,
check-in systeu for students to borrow
disks. Since a standard 5-inch floppy
disk contains only a limited amount of ma-
terial, the student will frequently need
to exchange his disk in order to switch to
another topic.

In terms of simplicity of operation,
the advantage appears to rest with the
terminal connected to a large host compu-
ter.

ADDRESSING A VARIETY OF LEARNING NEEDS
A typical, well-planned CRE course con-

tains a sufficient quantity of instruction
to meet the needs of a variety of differ-
ent students: the slow learner, the rapid
learner, the student who knows nothing
about the topic being presented, the stu-
dent who already has familiarity with the
subject matter. As the student works
through the instruction, his performance
will cause him to be branched forward for
advanced material, backward for additional
practice, or laterally for s discussion of
topics tangentially related to the primary
topic being presented. The number of
paths that a student could take through
the material is infinite because the
structure provides almost limitless bran-
ching opportunities. Since no two stu-
dents possess identical needs, it is pro-
bable that no two students will progress
along the same path of instruction. A
computer-based course should be extremely
flexible, broad in scope, and capable of
handling students' individual performance
styles. Failure to attain these charac-
teristics constitutes a failure to place
CIE into a category eeparate from other
media such as lectures, textbooks, and
audio-visual tapes, all of which possess
a predominantly linear flow. :-

The above characteristics make present
computer-based instruction impractical, if
not impossible, on today's most popular
microprocessors. Microprocessor tapes,
disks, and memory have a size limitation
which prohibits them from delivering a CRE
course with the breadth of scope described
above. At best, a student using a micro
for this type of instruction would find
himself swapping disks constantly in order
to branch ahead, backward, and laterally.
Rut microprocessor courseware with this

V. 4'.

degree of individualization is not avail-
able today. The educational software cur-
rently available for microprocessors con-
sists of short lessons, each addressing a
specific topic. Seldom does any continu-
ity exist among these short lessons. To
employ these microprocessor lessons for
genuine computer-based education would
mean that decisions as to which students
need which lessons at what time would be
made by teachers, aides, or by the stu-
dents themselves. Whether these persons
would make the correct decisions, and
whether continuity could be provided among
the lessons collected, is questionable.
Assuming that continuity could be achieved
students would have to be given paper-and-
pencil tests constantly in order to deter-
mine which lessons were needed by each
student and in what sequence. Such tests ,

are unnecessary on a large computer sys-
tem since branching occurs automatically
as a result of present and past student
performance. In a well-designed CRE les-
son, students are generally unaware that
such intricate branching is taking place.
They know only that the computer is moving
in s logical direction from the beginning
to the end of topics that they need to
learn.

TRACKING STUDENT PROGRESS
Microprocessors and large CIE systems

both have the capacity to provide on-line
assessments, to give the student some in-
formation about his progrese, and to
branch him to various locations based on
his performance. (As mentioned before,
the physical size limitations of the
microprocessor's disk would frequently
necessitate disk-swapping in order to
switch topics.) Out in order to build a
genuine performance history on each stu-
dent, a large system is required. Large-
system CRE can relieve the teacher of the
burden of administering periodic tests and
plotting each student's growth. By typing
appropriate keywords at the computer ter-
minal, the instructor can view immediately
any student's current and past performance
records. Typical information includes the
following:

1) the student's first and last date
on-line.

2) the total number of hours and
minutes spent.

3) topics where mastery has or has
not been demonstrated.

4) areas of particular difficulty.
5) areas not tutored due to excellent

pretest performance.
6) average response time on drill-and-

practice items.
7) length of individual sessions.
8) students' comments on parts or all

23 7

of the instruction.
This information can be displayed for one
student, a group of students, or all stu-
dents in a teacher's class. Hardcopy ter-
minals are often used so that the report
may be kept for future reference. Teachers
can quickly identify any students having
difficulty, and students can become very
highly motivated when they see that they
have achieved progress from one week (or
month, or year) to the next.

The quantity of student performance
data afforded by the microprocessor is
trivial when compared to the data routinely
kept on the large system. Many (perhaps
most) of today's tutorial microprocessor
lessons give no performance statistics
whatsoever. Those lessons that do give
performance information do not store it
permanently for the teacher's later inspec-
tion. Performance data are collected and
reported to the student as he is working,
but when his session is over and he re-
moves the disk from the disk drive, all
collected information is instantaneously
lost. Although virtually no microproces-
sor courseware exists that builds a his-
tory of student performance, it is possi-
ble to do so. The most practical way to
accomplish such a task is to use a multi-
ple-disk system. In a two-disk system,
for example, one disk can be devoted to
collection and storage of performance
data while the other contains lessons be-
ing presented. In a public school, each
student would be assigned one or more
disk for storage of his own performance
data, and these disks would be checked in
and out along with the disks containing
the instruction. Instruction would have
to be programmed carefully so that each
lesson would store performance data on a
different part of the data-collecting
disks. An instructor wishing to view the
performance histories of his 30 students
would sit at the microprocessor with his
collection of 30 or more disks and slip
them in, one at a time. As each student's
progress is displayed, the information
could be duplicated in hardcopy form if
a printer is attached to the micropro-
cessor. Obviously, this inspection of
student progress would be a time-consum-
ing task, and the performance data pro-
bably would not be as complete as the
data collected on a large system.

It was mentioned above that typical
performance data provided on large CBE
systems includes the student's first and
last dates on-line, total time spent on
instruction, and average response time
on drill-and-practice exercises. Unfor-
tunately, many of today's popular micro-
processors cannot record any of this infor-
mation. It is possible to ask the student

Pre-College Instructional Materials 225

what the date is or how long it took him
to answer a question, and then the stu-
dent's response can be recorded, but the
reliability of such data would have to be
questioned. The absence of an internal
clock precludes the recording of dates or
elapsed time by the microprocessor. Other
types of data, such as topics mastered and
scores earned during on-line assessment,
can be recorded by the microprocessor if
the lessons are programmed to do so and if
a system of data-collecting disks, like
the one described above, is established,

In short, the collection and reporting
of student performance data are essential
in order to track progress, provide student
motivation, and isolate learning problems.
Large CBE.systems address this need very
well. Microprocessors could provide some
(but not all) of the same student perfor-
mance records only after a fairly complica-
ted system of specially written lessons,
student data disks, and multiple disk-drive
hardware is created. Retrieval of informa-
tion from this system would be significant-
ly more cumbersome than it is presently on
larger CBE systems.

INSTRUCTIONAL LANGUAGES
Like spoken languages, computer

languages are numerous and varied. Many
computer languages perform similar tasks
equally well, but some languages are
specialized to perform certain tasks better
than the .others.

Computer languages that have been de-
signed to provide instruction are sometimes
referred to as instructional languages.
Such languages typically record some basic
information automatically for every student
on every CBE course, such as his first and
last usage dates, his total time on each
lesson, and hia current location within
each lesson. In addition, storage
ties are provided to enable the course
author (programmer) to store an infinite
variety of performance data permanently or
temporarily. A student progress report is
merely a systematic display of these stor-
age facilities. An instructional language
also permits the course author to accept a
wide range of responses from the student.
For example, if the author expects "false"
as the answer to a question but realizes
that students may misspell the word, he can
use a atat-ment which essentially says, "If
the student types a five-letter word begin-
ning with 'f' and ending with 'e', I recog-
nize this as the correct answer." Another
characteristic some instructional languages
have is the automatic re-starting of the
student at the point where he left off dur-
ing his list session. Characteristics such
as these are not found in computer lan-
guages that have been designed for purposes

233

226 NECC 1980

other than instruction.
BASIC is an example of a non-instruc-

tional language, not because it is defi-
cient in some way, but because instruction
is not the purpose for which it was crea-
ted. It is a general-purpose computing
language which is standard on virtually
all microprocessors. The language has no
pre-defined storage area for recording
student performance data, no provisions
for accepting a wide range of responses,
and no automatic restarting of the student
where he left off last tine. Naturally,
the BASIC language has capabilities that
some instructional languages lick, notably
in the area of mathematical computation.
Wu if BASIC is to be used on microproces-
sors for CBE, numerous sophisticated sub-
routines must be created in order to give
BASIC the characteristics of an instruc-
tional language. These subroutines will
occupy space on the disk and permit less
space for instruction and collection of
performance data. The subroutines must be
duplicated and stored on every disk used
for instruction. And, in spite of their
sophistication, the subroutines will not
permit the recording of certain types of
data such as dates and student response
time unless the microprocessor chosen con-
tains an internal clock.

As mentioned above, most languages can
accomplish most tasks. But if a choice is
made available, it is only logical to pick
the language which is least cumt.ersome.
On large systems, the choices are numerous
and include many instructional languages.
With microprocessors, the choices are few
or nonexistent and do not include instruc-
tional languages.. On the basis of lan-
guages, it appears that present-day micro-
processors are not yet prepared to handle
the level of aophistication found in large-
system CBE courseware.

LARGE - SYSTEM AND SHALL-SYSTEM
CHARACTERISTICS

Regardless of the language employed or
the performance data collected, there are
certain. inherent characteristics of large
systems which must be evaluated prior to
making a decision to employ or abandon such
a system. On the negative side, when the
large computer malfunctions, all terminals
connected to it become useless. But that
all terminals are using one computer also
has advantages. A major advantage is the
ability to avoid duplication of effort.
For example, when a courseware revision
becomes necessary on a large system, one
correction constitutes a system-wide
change. But if 50 microprocessors were
used in place of a 50-terminal network,
then 50 individual corrections would need
to be madeone for each copy of the defec-

tive course. Such duplication of effort
is a general characteristic of micropro-
cessors. Each user has his own computer
and his own copy of each program he uses.
Fifty users wishing to use a mathematics
lesson would need to purchase 50 copies of
that lesson. On a large system, only one
copy of the lesson is needed, and it can
be used on any number of terminals simul-
taneously.

Another important feature of large
systems is that all users are accessing
the same disk storage area. It is this
characteristic which permits teachers to
obtain class reports on groups of students.
Such reports often point out the best,
worst, and average oerformance record of
the group (sometimes including statistics
such as mean, range, and standard devia-
tion), thus giving the teacher an immedi-
ate picture of the group's homo or hetero-
geneity. With micro-based CBE, perfor-
mance data are likely to be scattered
across many disks, thus making such group
reports impossible or impractical.

Large systems often possess a message-
handling capacity which is not possible on
microprocessors. Messages can be sent
between course authors and students, for
example. A student who is puzzled or who
wishes to communicate with the author of
his lesson for any reason can usually log
a comment which the author will later read
and answer. Such communication assists
the author in locating any areas of,his
lesson which may cause confusion among
students and enables teachers or other
supervising persons to post administrative
announcements to users of the system.
Some large systems also permit on-line di-
rect communication between terminals.

Microprocessors necessitate a duplica-
tion of effort and lack message capabili-
ties, but they do provide a greater degree
of independence and self-sufficiency. As
mentioned above, a computer malfunction on
a large system renders all terminals use-
less simultaneously, but one microproces-
sor's failure has no influence on other
microprocessors. A micro is also more
portable than a terminal connected to a
large computer since the latter requires
either a hardwired communications line or
a telephone line. And, of course, there
are no monthly rental charges after a
microprocessor and peripheral equipment
are purchased.

WHY BUY A MICRO?
A microprocessor can serve as a valu-

able educational tool, particularly in
teaching students about computer hardware,
and can help them develop an understanding
of what happens when a program is written
and executed. Mathematics students can

239

also profit from a study of the BASIC lan-
guage, which can be used effectively to
solve math problems using algorithms.
Limited amounts of instruction, of course,
can be provided in tutorial or drill-and-
practice form as well But nothing with
the scope, complexity, and record-keeping
abilities of large-system computer-based
education can be accomplished ih a reason-
able way on today's microprocessors.

LAUNCHING A CBE PROJECT WITH
MICROPROCESSORS

Assuming that apublic school has con-
sidered the pros and cons of the low-cost
microprocessor as well as those of the CBE
terminal connected to a large system, and
assuming that the micro was chosen, these
are some of the steps that would probably
have to be taken:

1) purchase a microprocessor.
2) purchase at least two disk-drives

in order to provide the capability
for storing and retrieving student
performance data.

3) purchase floppy disks for data
storage and for storage of the
instruction itself.

4) purchase a printer in order to
provide student progress reports
in hardcopy form.

5) modify the microprocessor so that
it will display upper- and lower-
case alphabetic characters needed
for the teaching of spelling,
English, reading, and related
subjects.

6) design machine-language or BASIC
subroutines to handle tasks al-
ready designed in instructional
languages.

7) copy these subroutines onto all
disks to be used for, lesson con-
tent and/or all disks to be used
for data collection.

8) initialize each disk to be used for
lesson content or data collection.

9) build courseware which branches
forward, backward, and laterally
to accommodate individual learning
styles and which keeps detailed
student performance records on the
data-collecting disks.

10) establish and supervise a system
for storing lesson and data-
collecting disks, keeping track of
which disks are borrowed (and re-
turned) by whom, and assuring that
each student has access only to his
own data disk.

11) make copies of lesson disks if the
project involves more than one
microprocessor.

12) when errors are detected, make the
corrections on all disks containing

Pre-College instructional Materials 227

the defective lesson or data-recording rou-
tine.

The above steps vary in complexity
and would probably require years to accom-
plish. The characteristics of such a sys-
tem are contrasted with the characteristics
of present day large systems in the Summary
Chart which appears at the end of this
article.

NOTHING IS IMPOSSIBLE
It is not the author's intention to

state that microprocessors are useless for
computer-based education. In fact, most of
the undesirable characteristics mentioned
can be rectified through hardware modifica-
tion, addition of peripheral devices, or by
simply purchasing a larger microprocessor.
But it is the small, comparatively unsophis-
ticated microprocessor that has"been at-
tracting the most attention in the market-
place. This author becomes concerned when
teachers and other consumers become en-
tranced by those very attractive devices
and when salesmen with little or no experi-
ence in computer-based education make exag-
gerated claims. Quality microprocessor
courseware which has been tested objective-
ly and shown to be of educational value is
NOT widely available. Microprocessor
courseware which provides the individuali-
zation and record-keeping of large systems
is not available at all. Although it IS
possible to buy a microprocessor with upper-
and lower-case alphabetic characters, and
although larger disk drives CAN be used so
as to reduce the amount of disk-swapping,
and although an internal clock CAN be added,
such modifications result in a home brew
system which is costly and which makes the
in-house development of courseware manda-
tory. It is this message that the sales-
men are failing to convey.

THE FUTURE
Microprocessors will probably play an

important role in future CBE systems for at
least two reasons:

1) Their capabilities will increase.
It is hoped that a greater choice of compu-
ting languages will be available along with
greater storage capabilities and, conse-
quently, less required disk-swapping. An
internal clock will enable the micro to
record dates and keep track of elapsed time.
Upper- and lower-case characters will be
commonplace.

2) Downloading will become more
practical. Downloading essentially means
that the micro can communicate with a lar-
ger machine for the purpose of copying a
program into its own memory or onto its own
disk. Then the program can be used locally,
independent of the large machine. After
the session is completed, the updated

240

228 NECC 1980

records can be transmitted back to the
larger computer.

It is rather impractical to attempt to
emulate large-system CBE with today's smal-
ler microprocessors. A tremendous amount
of time and effort would be required, and
the final product would contain built-in
disadvantages. By the time such a system
is built, better micro-based systems will
probably be available. At that time a re-
evaluation of the enhancements made on
microprocessors as well as on large sys-
tems will be necessary.

DESIRABLE CHARACTERISTICS

Typical Low-Cost
Large Popular
System Micro

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Involves a one-time cost without monthly rental charges.

Displays graphics and colors, produces sounds.

Displays both upper- and lower-case alphabetic characters.

Has complete portability, not dependent on a telephone line.

Requires one step (one short message) to start instruction.

Affects only one user when the computer malfunctions.

Provides performance feedback while the student is on-line.

Provides detailed performance history for teacher's later
inspection.

Enables students to continue where they left off during their
last session.

Records dates and students' response_ times.

Records session time and permits instructor-defined session
length for individuals or for all students.

Generates class reports showing histories of groups or students.

Has well-constructed courseware immediately available.

Is a system well-adapted for extensive branching to accommodate
individual learning styles.

Supports instructional computer languages.

Permits nessages among students, authors, teachers, and others.

2 II

UNDESIRABLE

Typical
Large
System

CHARACTERISTICS

Low-Cost
Popular
Micro

X

X

X

Pre-College Instructional Materials 229

Involves a monthly rental charge.

Lacks graphics, colors, and sound.

---Requires a dedicated line or telephone line.

Has upper-case display only, unless modified.

Requires executing several tasks in order to start instruction.

Requires constant disk-swapping if individual learning styles
are to be accommodated.

Requires a disk storage and check-in facility which most be
supervised.

Necessitates adding more disks proportional to the quantity of
performance data desired.

Requires creating new courseware since virtually none exists
presently.

Necessitates considerable duplication of effort.

at?

230 NECC 1980

MICROCOMPUTER /VIDEODISC CAI
DEVELOPMENT CONSIDERATIONS

Ron Thorkildsen
Him Allatd

Exceptional Child Center
UMC 68

Utah State University
Logan, Utah

(801) 730-3534

Providing an appropriate education fot all
children in the least possible restrictive envi-
ronment will require drastic changes in our educa-
tional processes, ftom assessment and prescription
through instruction and monitoring. Recently
Benjasin Bloom has stated, "If we are convinced
that a good education is necessary fot all who
live in modern society, then we 151st search fot
the alterable variables that can make s difference
in the learning of children and adults in or out
of school" (Bloom, 1980). The alterable variables
Sloom emphasizes are time-on-task, cognitive
euttY, and formative t4Stin. These variables
help explain the learning interactions between
teacher and student. Using these variables implies
individualizing the entire educational process,
ftom assessment to the monitoring of learning.

Mainstreaming is currently viewed as a
necessity in providing the least restrictive
environment. Mainstreaming handicapped students
crestes a special burden for the classroom teacher,
however, introducing handicapped students into
the regulat classroom greatly inctsases the range
of intellectual capacity and experience of the
students. This broadened range makes the individ-
ualization of instruction a necessity, although
individualization will be extremely difficult
considering the limited resources available to the
regular classroom teacher,

Educators have long felt that the computer
holds a special promise in providing individual-
ized instruction, but this promise has not been
fulfilled because of the limitations of audio
visual hardware ..id the high cost of computers.
Recent changes in hardware should alleviate many
of these limitations. The microcomputer has
greatly reduced the cost of computing and the
videodisc has the capacity to provide the audio
and visual components necessary for effective
individualized instruction via computer-assisted
instruction (CAI).

A CAI system utilizing a microcomputer and
videodisc is currently being developed as pert
of a research project conducted by Utah State
Univeruity's Exceptional Child Center, The
system is designed to be used by nonreaders and

specifically by mentally retarded children and
adults. Even though the system is designed to be
used by e handicapped, it will have all the
components necessary for a general purpose CAI

system. With the appropriate courseware the
system would be relevant to learners at any level
of intellectual ability and expetience.

The system, teferred to as the MCVD (Micro-
Computet/VideoDisc) System, was otiginally devel-
oped ftom funds of a small grant received from the
Univetsity Research Office. Subsequently a stoat
ftom the Media and Captioned Films Division of
the Bureau of Education for the Handicapped of
DREW was awarded. The grant is for two years and
began October 1, 1979.

The major goal of the project is to develop,
evaluate, and demonstrate a CAI system for use
with mentally handicapped learnets. The system is

unique since it can commmajcate with nonreaders,
a capability nonexistent or very limited in past
CAI applications. Computer-assisted instruction
systems have been devised and developed to commun-
icate with nonreaders, but in most cases they have
used serial devices such as audio tope recorders
and slide projectors. The difficulty with these
systems is a relatively long access time when
branching to different segments of an instruction-
al program. A short access time (less than 3
seconds) is ctitical in most CAI applications,
but especially critical when wotking with mentally
handicapped learners since, at best, their atten-
tion is difficult to maintain.

The hardware fot the MCVD system consists of
the MCA videodisc player, an APPLE II microcom-
puter with a digital disk, a Sony 12-inch tele-
vision monitor, and a Carroll Manufacturing light -

lututruPt touch panel. The MCA 7802 videodisc
player was selected becauae of its random access
capabilities, and the APPLE II microcomputer
system was selected because of its pottability,
reliability, and color graphics capabilities.
A color monitor was chosen because of the addi-
tional flexibility provided by color. The tout.%

screen is a light -intetrupt system which allows
the learner to interact with the system by touch-
ing the scream. The hardware components are

2.1:3

enclosed in a cabinet that disassembles for trans.-
partation purposes. The monitor will be mounted
on an adjustable pedestal that swivels, tilts,
and can be adjusted for elevation. This flexi-
bility and adjustment is necessary to accommodate
the wide range of ages and varying degrees of
motor ability. The cabinet is mounted on retract-
able wheels to facilitate mobility.

The computer programs that control the video-
disc and receive input from the touch panel are
written in Applesoft BASIC. These programs
were originally written in PILOT, which we aban-
doned because of problems with the PILOT trans-
lator. PILOT was originally selected because of
its ease of use. lie are currently exploring
various PILOT translators and compilers. We have
determined that a PILOT interpreter does not pro-
vide for sufficient execution speed to interact
with the three devices. We are also currently
investigating the potential of PASCAL as a lang-
uage for the system.

Communication between the three hardware
deilces is accomplished through an interface board
that was designed and built by USU's microcomputer
lab. The interface board also can programmatic-
ally switch the video source to the monitor from
either the APPLE /I or the videodisc. This capa-
bility allows us to transmit APPLE II graphics and
audio to the monitor while the videodisc is search-
ing. It also allows us to present video informa-
tion from the APPLE II and audio from the video-
disc simultaneoua3y, which provides for a great
deal of flexibility in altering the video images
from the videodisc.

At present the system interacts with the
learner by presenting an audio instruction and
the associated visual image on the monitor via
the videodisc. The learner responds by point-
ing to an object on the monitor screen. When
the learner touches the screen, two light beams
transmitted from each axis of the touch panel
are interrupted, and the point of interruption
is detected by the touch panel. The X and T
coordinates from the point of interrupt are
transmitted to the microcomputer. The computer
program in the microcomputer contains the correct
coordinates for each segment of instruction, and
the coordinates transmitted by the touch panel
are compared to these correct coordinates. If

the response is correct, the microcomputer
responds by referencing the segment on the video-
disc which contains audio and visual positive
feedback. Other possible response conditions
are a wrong response, a close response, and a
non-response. (A non-response is detected when
the learner does not respond in a specified
period of time. Recorded segments are contained
on the videodisc for these response conditions as
well as a variety of feedbatk, including animation
and motion picture sequences. Each segment of
instruction has associated parameters that specify
the number of times a learner must respond cor-
rectly to advance to the next segment and the
number of trials allowed before the teacher is

Pre-College Instructional Materials 231

signaled for help. While the learner interacts
with the system, data are collected by the micro-
computer and stored on the APPLE II magnetic disk.

Various data are maintained which track a
leatner's progress through a program of instruc-
tion. The data are then available for analytic
purposes and are also used by the system to allow
the learner to start at a point where the previous
session was terminated. This automatic restart
option can be overridden by the teacher, who can
specify the point at which the learner is to
continue. The data is readily available in hard -
copy form via a Centronics Printer.

Pour instructional programs are currently in
various stages of development. These instruction-
al programs are developed by the Outreach and
Development Division of the Exceptional Child
Center and have been field tested and validated.
They were chosen primarily because the instruc-
tional sequences had been validated and because
they are adaptable to the MCVD format. The
following is a brief description of the programs:

1. Matching Program (Hofmeister, 77) - This
program teaches the child.to match objects
that are alike in_size, colpr, or shape such
as idencifying squares with other squares.
This skill is necessary before the child can
learn the more advanced skills such as names
of colors and shapes and reading. This
program was not designed to teach a child to
to name colors, sizes, or shapes.
2. Timetellina Program (Rofmeister, 75) -
This program is to be used with any child
or adult who cannot look at a clock and
recognize what time it is to the minute. It

has been especially useful in tutoring
programs for the slow learner, although it is
not restricted to such use. Upon completion
of this program, the learner should be able
to look at any clock, showing any time, and
recognize the correct time to the minute.
3. Recognition of Functional Words
(Rofmeister, 76) - This program provides
instructions for teaching the learner to
recognize functional words. This program
teaches the recognition of twenty different
words important to everyday living (e.g. stop,
go, pull, push, etc.).
4. Identification of Coins (Rofmeleter, 77)
This program teaches the learner to recognize
coins upon sight.
Preliminary development of the Matching

Program was completed in May 1979. A preliminary
field test was conducted and changes were made to
the system as a result of this field test. A
second preliminary field test was conducted and
changes were made to the system as a result of
this field test. A second preliminary field test
of the Matching Program is currently being con-
ducte4. It was anticipated that this field test
would be tompleted by the submission time of this
paper, however, the field test will be continued
through February 8, 1980, in order to collect
additional data. This second field test was

24.4t

232 NECC 1980

necessary tom (1) evaluate the changes in the
system that were precipitated by the first field
test; and (2) further define the population.

The following problem areas were determined
as a result of the first field test:

1. Even though the search times were rela-
tively short (less than 2.5 seconds), the
attention of the child was lost when the
monitor went blank during a search time.
2. The system was giving negative feedback
to a correct response when the child was
required to touch multiple objects on the
screen.

3. The child seemed to lose interest in
specific positive feedback segments if they
were repeated several times.
la an attempt to rectify these problems a

number of changes were made to the system:
L. A programmable switch was added to the;
interface board that allowed the computer
program to switch the source of video from
either the microcomputer or the videodisc.
This switch enabled the system to present a
computer-generated graphic while the video-
disc was searching.
2. The algorithm in the computer program
used to detect Nultiple responses on the
screen was changed. We determined that the
computer program was not responding rapidly
enough to detect rapid responses from the
learner. The algorithm was changed, and a
rapid increase in response time was realised.
3. The algorithm used to select positive
feedback segments was changed so that the
segments could be presented randomly.
The six children involved in the second

field test are from the special education class -
roomest the Exceptional Child Center. These
children are functioning at a lower mental devel-
opment level than those involved in the first
field test. The purpose of this change was to
determine if children at the lower level of
development could effectively interact with the
system. The only criteria established for
selection was that the children have sufficient
motor skills to hold and point .ith a small
pointer and sufficient receptive language to
understand simple commands such as "touch the
one like this," "that was good," "that was not
correct," and "try again."

The field test has been in operation for
three weeks at the time of writing. During
this time numerous problems in working with the
test population have been identified. Since
the field test is continuing, the data c.onot
at this point be analyzed and specific con»
elusions cannot be made.

The first half of the Timetelling Program
is planned for production in March 1980. The
following entry-level skills have been estab-
lished for learners using timetelling courseware
(these entry level skills will define the popula-
tion):

1. Learners must be able to count to sixty

and recognize :gushers 1-12.

2. Learners must be able to identify basic
geometric shapes (e.g. circles, squares,
etc.).

3. Learners must have sufficient motor
skills to hold and use the pointer.
At the completion of the first half of the

program, learners will be able tom
1. Sequentially count and place the numbers
1-12 around the clockface.
2. Recognize the digital format (e.g. 2:)

for the little hand.
3. Determine the value of the little hand
with digital cues on the clock face and the
big hand as a distractor.
As a result of information gained during the

second field test of the Matching Program, it was
determined that physical prompting and practice
in_using the. pointer are required before inter-
acting with the abstract objects on the tele-
vision screen. The Timetelling Program is being
developed to involve the teacher (or another
student) in the beginning phase of the program.
When appropriate interaction with the CAI system
is achieved, the system takes over, allowing the
learner to work independently with the CA1

system.
Based on the unique capabilities of the

MicroComputer /VideoDisc System, the following
courseware design considerations were formulated
and incorporated into the development of the
Timetelling Programs

1. Although the availability of a second
audio track affords many instructional
options, such as instruction with different
voices or in a second language, as course-
ware development proceeded both positive
and negative, it was determined the second
audio track should be used to store specific
feedback, to the learner on his performance
(see Figure 1). This feedback is specific
to a particular segment of instruction as
opposed to the standard feedback blocks
which are used by numerous instructional
segments. Generally, it is the instructional
sequences at the beginning of the program
that require specific feedback. An example
would be "good touching the one."
2. Strategic placement of the standard
feedback blocks can substantially reduce
the access time required by the videodisc
player to search for a feedback segment.
Because of the nonlinear nature of the MCVD
system, standard feedback is used often
throughout the program. A regression
equation developed by Woolley and DeBloois
allows the prediction of access time based
on the number of frames (Woolley, 1980). A
criterion-of 2.5 seconds was established for
the maximum search time for providing either
positive or negative feedback. Based on the

regression equation, the feedback segments
would have to be located within 6900 frames.
of any instructional segments that access it.

241.-

Meeting our 2.5 second search criteria re-
quired multiple placement of the standard
feedback blocks.
3. Periodic testing is facilitated by the
nonlinear capabilities of the MCVD system.
The timetelling courseware and microcomputer
software are designed to branch to appro-
priate practice frames for criterion test-
ing. This branching insures that the learner
will be tested only on the material the learner
has already covered. Criteria have been
established at 00X accuracy. Testing,
consisting of II frames, begins and continues
only as long as the learner meets the SOX
criterion. In other words, as soon as two
frames have inaccurate responses, the software
branches the learner back to the initial
lesson for continued practice. Conversely,
should the learner meet the BOX criterion on
his or her seventh frame, the last test frame
will be omitted.
4. The amount of repetition can be varied for
individual learners based upon their previous
performance. The learner who achieves a
predetermined level of accuracy (determined
during field testing) may be branched ahead
to the criterion test and given the opportun-
ity to demonstrate mastery of that particular
concept. Learners having difficulty with Coe
same concepts can be given additional repeti-
tion and subsequent prectia:-z,r
The two preliminary field tegiti and produc-

tion experience have yielded valuable information
on the development of videodisc-based CAI. Pre-
sently one of the most limiting disadvantages of
CAI involving the videodisc is the high cost of disc
pressing. This presents instructional courseware
developers with an entirely different set of
instructional development problems. After a disc
is pressed, you have to live with it. Therefore,
any experience gained from this project or other
projects should provide valuable information in
developing videodisc programs. Essentially,
a developer needs all of the up -front knowledge
available before a disc is pressed.

REFERENCES
Bloom, B.S. "The New Direction in Educational

Research." Phi Delta Keegan. 1980, Vol.
16, No. 6.

Nofmeister, A.M. 6 Gallery, M. A Program for
Teaching the Identification of Coins. Niles,
Illinois: Developmental Learning Materials,
1977.

Nofmeister, A.M., Gallery, M. 6 Landon, J.J.
"Matching Sires, Shapes and Colors." An
Instructional program prepared by the Excep-
tional Child Center, Utah State University,
Logan, Utah for the Utah Division of Family
Services, 1977.

Nofmeister, A.M., Atkinson, C.M. 6 Nofmaister,
J.B. Programmed Time Telling. Eugene
Oregon: E.B. Press, 1975.

Eamaister, A.M., Patten, M. 6 Rosen, A. "A

Pre-College Instructional Materials 233

Parent Teaching Package - Word Recognition."
Available at the Outreach 6 Development
Division, Exceptional Child Center, Utah State
University, Logan, Utah, 1976.

Woolley, R.D. and DeBloois, M.L. "Preliminary
Benchmark Data for the PR 17820 Discovision
Associates Videodisc Player." Center for
Instructional Product Development Technical
Report 11. Utah State University, Logan,
Utah, 1980.

234 NECC 1980

Audio Track 1
Audio Track 2

Video

Control Track
Sync Track
Audio Mad(3

One Segment of Instruction-
4 Seconds on Vk isotope
120 Frames on Videodisc

Directio of Tape Travel

One Inch Type C Helical Videotape
Used For Initial Production

Figure 1

2 A.

Linear Framework of Timetelling Package

1 .
instruction

AY.

_1 Instruction
;i1A4.

....f.:::: Instruction
, 4,

1,417`c

v.v.42
Instruction

\

Standard Feedback Block ISFBI

Figure 2

2-1s

236 NECC 1080

THE NON-TECHNICAL FACTORS IN Tat DEVELOPMENT OF CAI

Michael Mocciola
Computing Center/Academic Computing

Pace University
New York, New York 10038

ABSTRACT
The most challenging opportunities and

the most serious problems that inhibit the
development of computer-aided learning in
education are non-technical. In most
educational institutions decision making,
communications, and bargaining about the
funding of computing, the purchase of
computer equipment, or the application of
computer methods is divided among the
major populations of the schools; school
board members, administrators, teachers,
department heads, and students. To
understand the socio-political factors
related to computer-aided learning, the
job-related responsibilities of each of
these populations must be carefully
examined. Computer educators then need
to use the socio-political forces to the
best advantage of students and teachers
to provide enhanced classroom instruction.
Educators must recognize and foresee the
needs of the schu'l community, have early
access to pertinent information, and
communicate effectively.

21o;

Invited Sessions

DATA SETS AVAILABLE FROM THE FEDERAL GOVERNMENT

chaired by Thomas E. Brown
General Services Administration

National Archives and Records Service
Washington, DC 20108

(202) 724-10,d

ABSTRACT
Many agencies of the O. S. Government

routinely make computerized data available
to educators and researchers. To do this,
some agencies provide reference service for
the data which the agency created, other
agencies distribute data originally created
by other agencies, and still ether agencies
serve as a clearinghouse for a given sub-
ject and refer researchers to agencies
having information on that subject. This

""session will have representatives from
three agencies performing these three
functions. At the end of the session, one
should have a clear indication of the pro-
cedures involved in locating and obtaining
data sets from the Federal government.

SPEAKERS:
EFrationcn, Coordinator, College Cur-

riculum Support Project, Bureau of the
Census: a discussion of the services
which the Bureau of the Census provides
to enable researchers to gain access to
data collected by the Census Bureau.

Ross J. Cameron, Archivist, National
Archives and Records Service: an outline
of the functions of the Machine-Readable
Archives Division in its mission to inven7__
toffy, obtain, and provide reference ser-
vice :or data created by other Federal
agencies.

Edward D. Mooney, Program Specialist,
National Center for Educational Statistics:
a presentation on the Federal Interagency
Consortium of Users of Educational
Statistics whose purpose is to facilitate
access to education data in the Federal
government.

237
250

Minority InstitutionsECMI

ACADEMIC COMPUTING:
A SAMPLER OP APPROACHES
IN MINORITY INSTITUTIONS

Sister Patricia Marshall
Xavier University of Louisiana

7325 Palmetto Street
New Orleans, LA 70125

504/486-7411

A variety of post-secondary minority
institutions using a variety of approaches
to academic computing were interviewed
campus-wide and in-depth late in Fall 1979.
These interviews were part of a larger as-
sessment of needs in educational computing
at 239 minority institutions.(1)

Faculty, students, and administrators
..were_interviewei_on computing development,
usage, problems, and successes. Diverse
approaches were discovered, corresponding
to philosophic, demographic, geographic,
Historical, political, and cultural fac-
tors.

The institutions were selected in order
to obtain as broad a cross section as pos-
sible within time and financial limits and
parameters such as ethnic composition, type
of control, date of establishment, highest
level of offering, academic orientation,
enrollment, type of access to hardware, and
experience. While not all of the most suc-
cessful institutions were chosen, we did
try to include schools which would not feel
threatened by the interviews and which had
had enough experience to identify factors
inhibiting and promoting progress. Con-
sciously excluded were such institutions
as the Universities of Hawaii and Puerto
Rico; partly for financial reasons and
partly because they are so much larger than
minority institutions in general. The
table on the next page lists the institu»
tions interviewed and some key parameters
used Li their selection. For confidential-
ity we identified them only by number. We
will report here on four of them; these are
named below with permission.

Institution #3

The Community College of Baltimore is
au Eastern seaboard, public, urban, two-

238

year, three - fourths black institution es-
tablished after World War II. It enrolls
over 9,000 students in day and evening
dictator Two campuses, one emphasising
technical studies and one evolving toward
a focus on business studies, are united
under one administrative structure. Large
numbers of minority students began to at-
tend this school early in the 7Os as a
result of outreach by the institution.
The stable faculty consists of only 28
percent minorities. Although this insti-
tution may appear small by national stan-
dards, it is one of the largest of the
minority schools and one of the few two-
year colleges with any large degree of
experience and planning in academic com-
puting.

Unencumbered by the weight of tradi-
tion and spurred by local employment
needs, the Community College of Baltimore
had established a separate academic de-
partment for data processing by the early
date of 1965. Thia department, now called
Computer and Information Systems (CIS),
attracts 300 majors and graduates about 25
each year with an associate degree in com-
puter studies. Four full-time and numer-
ous part-time faculty staff the department.

The school has weat'ered tnree hardware
phases and is entering its fourth. Ini-
tially an IBM 1620, acquired for the data
processing department in 1965, was the
only computer. A committee from electron-
ics, data processing, and administration
hired a manager of computer services and
developed specifications for a UNIVAC 9300,
which arrived in 1968. The college allo-
cated its funds to lease it and pay support
staff for administrative services. Depart-
ments and individual users, however, have
never been charged.

1972 brought a UNIVAC 9480 (131K) with

Zvi

Minority institutionsECMI 239

TABLE 1

MINORITY POST-SECONDARY INSTITUTIONS

INTERVIEWED ON ACADEMIC COMPUTING, FALL 1979

/NWT-
TUT/ON

DATE
ESTAB.

ETHNIC
TYPE
B S I

TYPE
CONTROL
PUB

OF

PRI

HIGHEST
LEVEL
OF
RERING
'2'4

OF-

4M

ORIENTATION
FALL
1978
ENROLL-
HENT

TYPE OF HARDWARE
ACCESSIBLE BY STUD -
ENTS AND FACULTY

LIB
ART

TECH
/VOC

ENGI
NEER

CAR
ERR

1 1947 x x x x i'I

.

/

9
,
152

1

UN/VAC 9480
IBM 1620
APPLE II (5, used
as terminals and
stand -alones)
DEC 10 (remote)

2 1873 600 HP 2000
/BM 1130

3 1969 x x x x 876

--,

DEC 10 (remote)
PDP 11/70 (remote)
PDP 11/34
IBM 360 (remote)
IMSAI 8080
TRS-80

DEC 10
HP 1000
Micros

1891 x x x x x 5,395

5 1884 BIA x x 1,013 DEC 11/34
IBM 1401

6 1867 x x x x 1,526 DEC PDP 11/34
IBM 1130

7 1968 x TRI
BAL

x x 839 DEC PDP 11/45

8 1881 .. x x x x 3,296 HP
M2000/158370/158 (remote)

SOL (3, micros)
SWTP (micro)

9 1966 x x x

I

x 4,315 IBM 3031 (remote)
IBM 3033 (remote)
AMDAHL 470 (remote)

NOTE: Campus-wide interviews were conducted at the
institutions listed above as part of a needs
assessment of educational computing in minor-
ity post-secondary institutions.

ETHNIC TYPES: B - Black
1S - Spanish speaking

I - American Indian
1

HIGHEST LEVEL OF OFFERING: 2 - Two years

.- 4 - Four years
4M - Master degree

252

7

240 NECC 1980

four terminals for administrative data en-
try and inquiry. COBOL, RPG, ernd FORTRAP
were supported for students, as well as
ASSEMBLER (on the 9480 and the 1620).
This UN/VAC is still used for student
batch runs. In addition, ten ports were
rented in 1975 on a companion community
college's HP 2000, an arrangement that was
terminated in 1979 in favor of access to a
DEC 10 at a nearby private university.
Students use ten DecWriter terminals which
are dedicated during labs for a course in
BASIC and used for other courses during
open times.

The CIS faculty purchased five micro-
computers in Fall 1979 through a Title VI
grant. These have replaced the 1620 in
teaching assembler languages and computing
principles. A fourth system is under con-
sideration now because of the two campuses,
growth of institutional and faculty re-
search, and growing concern for academic
computing. The institution had done its
own local needs assessment before consid-
ering such a step.

Thus, the Community College of Balti-
more hoe steadily built its computing cap-
abilities, if at a slower pace than some
majority institutions certainly also at a
faster pace than most minority and/or two-
year institutions. This stable growth has
resulted from support by the college of
increases in computing capabilities through
its own funds, supplemented by aggressively
sought federal grants. Because of its
careful planning and budgetary practices,
the school will be able to assume ancillary
costs when grants expire.

Factors influencing the expansion of
computing capabilities at this institution
have been the local employment market, size
of the student body (necessitating automa-
tion in record handling and giving early
exposure to administrators and faculty),
support by administration, key faculty mem-
bers with interest and dedication to sup-
plement the budget for computing resourcea,
and explicit planning mechanisms within the
college charged with studying computing
needs.

Administrative support is evidenced by
hiring practices, release-time practices
(for proposal writing and planning), and
activities involved in acquiring computing
equipment. A few key faculty nembershave
visited other successful sites, attended
conferences (ECMI(2) and others) and con-
ventions, served on committees in profes-
sional associations, sought external funds,
and lent one another intellectual and

moral support. The evaluator who conducted
the interviews at this community college
commented:

These individuals represent a
scarce resource at any institution
and seem to represent a necessary
if not sufficient condition for
progress in academic computing.
(A broad base of faculty awareness
is probably not a necessary condi-
tion for groiEg in an institution's
computing capabilities.)

Periodic ad hoc committees on computer
utilization WEISii exemplify the planning
mechanisms for computing established within
the college. Plans also exist to establish
a line position for a director of informa-
tion systems reporting to the president
through a dean of planning, development,
and communications. This new position
would assume responsibility for academic,
as well as administrative computi:3.

Tensions have existed between adminis-
trative and academic computing, as at many
Other institutions. The manager of comput-
er services reports to the vice-president
for administrative services. The CIS De-
partment, on the other hand, is within the
Division of Business, Secretarial, and Com-
puter Sciences under the vice-president for
academic and student affairs. Support
staff have grown through several stages to
the current manager of computer services,
three programmers, two keypunchers, and two
computer operators. No students are em-
ployed since the manager claims "it doesn't
work."

Students submit batch jobs through a
slot in a. door. Output pickups are sche-
duled twice daily for fifteen minutes each.
However, during the two lab hours assigned
each course in a batch-mode language,
turnaround time is closer to immediate.
Students, who probably know of 40 other
alternatives, accept the pickup arrange-
ment, complaining only about the number of
keypunches. Terminals are available for
learning BASIC, and the APPLE microcomput-
ers were made available in Spring 1980 for
learning ASSEMBLER. The commercial option
in CIS will be offered at the campus near-
est the business community and the scien-
tific option at the other campus. Academ-
ic applications exist also in the business
department (managing data on patient care
and student performance). CMI(3) is ex-
pected to be developed in remedial reading
and CAI(4) in science courses after the new
configuration is installed. Faculty with a
good track record in attracting federal

grants will be responsible for developing
CAI at the science learning center. The
project director for the science learning
center had attended an ECMI conference and
attributes his current grant, in part, to
that experience.

Institution #2

Bennett College is a private, women's
four-year, historically black, liberal
arts college with a "ILy, though stable,
enrollment of about by°. Located in
Greensboro, a mid-Atlantic city, the in-
stitution houses its computing hardware in
one attractive location on campus. This
hardware includes an INK IBM 1130 batch sys-
tem used for administrative purposes and
student programming coursea and an inter-
actsve HP 2000 with fifteen terminals used
extensively for CAI tutorial and drill and
practice in mathematics, English, and biol-
ogy. Two of four keypunches are available
to students.

Computer center hours are 8 a.m. to 10
p.m. (Saturdays on request), and consulta-
tion is available during these times.
Freshmen receive computer ID numbers at the
beginning of the school year, but upper-
class student* have open-shop, direct ac-
cess to both computers. They run their own
decks and retrieve their own output immedi-
ately; however, lines do develop when the
business office is running at the same time
on the 1130. Tables are provided students
in the computer center for such use as
examining output and correcting programs.

Reports on the success of the CAI pro -
j ect, in which faculty prepare courseware
(or modify existing courseware) using IDF,
have been given at CCUC(5) and ECMI(4)
conferences; a great deal of consulting and
sharing with other colleges has also taken
place. In addition, this college has been
cited as an academic computing exemplar by
HumRRO(6).

Computing began at Bennett College ele-
ven years ago. A rented teletype connected
the college to TUCC(7) and provided for
some instructional work, as well as for im-
proving computer literacy of the faculty.
Influential in establishing the initial
capability were the president of the col-
lege (who later attended an ECMI confer-
ence) and the mathematics department chair-
person (who later became the computer cen-
ter director). A year later, the college
purchased the 1130 through a federal grant
in connection with another university.
This computer was used, from the beginning,

Minority InstitutionsECM1 241

for both administrative and academic pur-
poses. It was also used cooperatively by
two other small, church-related, primarily
white institutions in the same city. All
three schools used it for registration
processing. Five years ago a Title III
grant made possible the purchase of the
HP 2000 with fifteen terminals for CAI de-
velopment. Basic skills disciplines ac-
counted for early CAI use; CAI is built
into course requirements in these disci-
plines.

The success here with CAI has given
rise to new problems. Students need twice
as many terminals, and the 1130 is too
small and is no longer supported by IBM.
Additional personnel trained in computing
are needed. Release time for faculty is
needed to develop additional CAI course-
ware. Despite the success, the support of
the president, end-the small size of the
institution, some faculty are still una-
ware of the potential in their disciplines.
In such a small school, this is seen as a
problem by faculty who do use the computer.

Attendance at ECMI conferences helped
to develop a strong team of faculty, how-
ever, who have used instructional computing
heavily. Througn a federal grant the in-
stitution began to share its expertise in
Spring 1980 by conducting a regional con-
ference similar to the ECMI conferences.
Bennett collaborated with North Carolina
A & T University (Institution #4) in con-
ducting that conference. Thirty small
colleges participated.

One faculty member cited CAI as ex-
tremely helpful to entering freshmen, so
many of whom are in need of remedial work
due to inadequate preparation in secondary
schools. Students said they appreciated
the CAI but not the downtime. The presi-
dent of the institution would like to see
separation of administrative and academic
computing. Plans for upgrading the exis-
ting hardware are on the drawing board.

Despite its small size and its depen-
dence on hardware and software that are
less than stets-of-the-art by today's
rapidly changing standards, Bennett Col-
lege has taken a position of leadership
in the development of transportable course-
ware for use in basic skills courses. Suc-
cess has brought with it new problems, but
it has also nurtured confidence, plans, and
determination to solve the problems.

242 NECC 1980

Institution #3

The Rio Grande Campus of Tens State
Technical Institute is a technical-voca-
tional, two-year, Hispanic institution lo-
cated in Harlingen, close to the Mexican
border in the southernmost tip of the
state. One of four such institutions com-
prising a system in Texas, this school was
established on a World War II air force
base in 1967. Its fast-growing student
body numbered well over 1,100 at the time
of the interviews, and some of the growth
is in the data processing program.

Curriculum design is a high-priority
and on-going activity at the school, as
evidenced by its special stuffing anJ the
existence of school-industry cooperative
committees and advisory committees. An-
nual evaluation ensures that curricula are
up to date and graduates are well prepared
for employment. (Some students command
entry-level salaries as high as $18,500
without graduating.) Just minutes away
from this institution are vast farmlands
on which thousands of Mexican Americans
barely survive. Thus the existence of an
industrial corridor and this institution
to serve it is pivotal to economic change
in the area. (On the first day of the
interviews here the Wall Street Journal
stated that this region was one of the
four fastest - 'rowing industrial areas in
the country.)

A new building houses the computing
and electronics programs and computing
facilities, as well as some other mathe-
matics and science or technical programs.
Nearly one-third of ita 17,000 square
feet is occupied by computing facilities
and classrooms used in the industrial
data processing program (IDP). Prior to
the interviews (just two weeks after the
move to the new building) less than a
fourth as much apace had been available.

IDP students dominate the facility,
which, like the entire campus, is out-
atandingly clean and well organized.
Terminals are dedicated to students, or
to entire classes, from 8 a.m. to 5 p.m.
ften the facility is open till 6 be-
use the IDP chairman stays late. Since

. t students are Mexican-American under-
gr.Iuates who live with their families in
the area and are not accustomed to being
away in the evenings, the facility is not
kept to at night. A demand does exist,
however, from working adults in the area
for an evening program. Finances and
staffing are the obstacles to be over-
come.

Two instructors are employed in the IDP
program, one the chairman. An additional
slot is open but not filled. The two in-
structors bear heavy teaching and lab
loads, with most emphasis on tab work.
They share the burden of supervising the
facility. Second-year students are trained
not only to program (and maintain programs)
for some administrative and academic appli-
cations, but also to assist as consultants
to first-year students when instructors are
unavailable.

The /DP chairman has spent much of his
own time on outreach to other departments,
providing demonstration projects, seminars,
and classes. The degree of interest from
other departments likely to use the comput-
er for instructional purposes ranges all
the way from "take it away" to "you can't
begin to meet MY needs." Those least in-
terested are traditional inatructors. In
programs T.% individualized instruction
(or in u instructors have had previous
experien-e), faculty are eager to attempt
computer-managed instruction or computer-
aaaisted test generation. Attitudes appear
to stem from educational philosophies
rather than from familiarity with areas of
expertise, such as nuclear technology or
mathematics.

Two weeks after the move to the new
building, when the interviews were conduc-
ted, a terminal room contained ten CRT's,
two teletypes, and a line printer in fairly
constant use. A Radio Shack TRS-80 and an
/NSA' 8080 microcomputer were also avail-
able. Six additional CRT's, a printing
terminal, a digital plotter, and a tape
drive were also being readied for use.
Three keypunches with acoustical shells
were available. Bulletin board displays
included charts, lists, schedules, comput-
er-generated Mona ',isms, and a sign pro-
claiming "The Dirty Dozen." ("The Dirty
Dozen," it turned out, were the second-
year students who had survived out of a
much larger original field of beginners
in the IDP program.)

The terminals were on-line to a DEC
FDP 11/70 located in a department store
45 miles away. COBOL& not the latest
(1969), and RPG card (Mks are sent to a
DEC 10 at a university 50 miles away, with
a turnaround time of weeks. But students
are obviously learning and being hired.
The IDP department, having grown from four
students in 1974 to more than seventy at
various levels of advancement at the time
of the interview, has gone through several
upgrades of remote connections. Current
plane call for an on-aite computer with 32

2 S6

ports for student use. However, instruc-
tors who want to support individualized in-
struction, record keeping, and test genera-
tion in open-entry/open-exit courses feel
they may still not have sufficient capacity
since they would be in contention with IDP
for use of the resources. Meanwhile, ad-
ministrators are working on additional ca-
pacity for administrative work (remote ac-
cess to a large state institution's network).

One instructor has done some work of his
own, some oz which was destroyed in one of
the upgrades. Most recently he has been
using a TRS -80 microcomputer on his own
time. He envisions a cluster of micros in
a classroom, which he sees as a cost-effec-
tive solution to his problems in a tradi-
tion-oriented department. The electronics
program, which trains almost a hundred
students for customer engineering on DEC
equipment dedicated to the program, can
use twice as much hardware. The chairman
of this program, a former ECMI(2) parti-
cipant, keeps up with hardware period-
icals and literature but is far too busy
to move into academic computing generally.

Students who are beginners tend to see
no problems with existing hardware and
software, but the advanced "Dirty Dozen"
talk like data processing managers. Com-
pletely at ease in the jargon and what's
behind it, they speak knowledgeably about
the shoreconings of the available soft-
ware, the need for this version of a lan-
guage and that many ports, and even the
additional justification needed in the
current proposal for new equipment.

Administrators give moral support, but
their budget requests have to move through
several layers of state bureaucracy and
compete with other technical institutions.
Even when funds exist, it is difficult to
find qualified staff in the area who sre
not already working for burgeoning indus-
tries at high salaries. Nevertheless, the
industrial data processing program grows,
and other departments are beginning to
voice their needs. Among two-year tech-
nical institutions, TSTI-Rio Grande may be
on its way to becoming an academic comput-
ing exemplar.

Institution #4

North Carolina A 61T University is a
state-controlled, four-year, master degree-
granting, black institution, with liberal
arts and some engineering emphasis. The
enrollment is 5,400 students, Locatea 4C
Z1188 town from Bennett College (Institu-

Minority InstitutionsECMI 243

tion #2), this school was the last (and
only minority) institution to procure a
mainframe computer through the National
Science Foundation's original Office of
Computing Activities. That computer was
a CDC 3300, and it followed the first com-
puter acquired in 1964, an IBM 1620. It
was replaced by a DEC 10 in 1977. Federal
and state funding was combined in each of
the latter two cases, with the CDC being
sold to add to the funding for the DEC.

Although some impetus came from the
computer center (especially recently), a
key role was played by former dean of arts
and sciences Arthur Jackson, after whom
the computer center is now named. More
than 80 terminals are on-line to the DEC
10, 26 of them in the computer center. A
variety of languages are available: BASIC,
PASCAL, APL, COBOL, ALGOL, LISP, and oth-
ers. The computer is available around the
clock all week. The staff includes nine
programmer/analysts, and experts are
available to faculty and students as
needed. Students access the computer in-
teractively through class accounts or in-
dividually (both authorized by departments)
as well as by batch jobs. A monthly report
provides usage information but is not cur-
rently used for charging. Most use is by
students in coursework, but faculty do re-
search, and administrative applications
abound. Turnaround time is good except at
peak times. Jobs are limited to fifty at
a time, which can cause a connection delay
of ten-to-fifteen minutes. Work space in
the computer center for students is also
limited.

During the past two years North Caro-
lina A & T University has experienced what
the computer center director refers to as
"a quiet revolution" in computing. From a
single-job, batch-mode machine with 49K
main memory and 25 megabytes of disk, the
university took a quantum leap to 256K,
600 megabytes of high-speed disk and the
ability to process up to fifty jobs at a
time in many languages interactively, in
batch mode, or in combination.

However, increased demand for computer
time has lowered response from excellent
to poor. Engineering, which six months
before the interviews could run circuit
analysis, finite element, operations re-
search, and other sophisticated jobs at
any tine,'must now normally execute many
of these between 5 p.m. and midnight, and
several between midnight and 8 a,m. Engi-
neering school jobs also include CAI pac-
kages needed for educationally disadvan-
taged students, and it is difficult to

256

244 NECC 1980

find time during the day to run them.
Plana are afoot for a memory upgrade at
8100,000, half of which must be raised
from outside the university budget. Fur-
ther upgrades will probably include a re-
mote-site laboratory and a processor up-
grade. Staff and space needs were cited
in addition to hardware and stations for
remote access.

An active computing advisory committee,
chaired by a chemistry professor, func-
tions as an agent of change and supple-
ments positive pressurf.s from all types of
users and administrators. Proposals have
been written, and a computer science deg-
ree program is to be launched in Fall 1980.
An academic computing director and an ad-
ministrative computing director will also
be hired.

Some usage came about through partici-
pation of faculty at ECMI conferences(2),
where they learned about MINITAB, test as-
sembly and scoring, test item banking, and
CAI, all of which are now used. Although
most usage is by the engineering school,
other departments (especially mathematics,
chemistry, and business) are becoming ac-
tive users. The list has expanded each
month in the last two years. Electrical
engineering has also developed several
microcomputers for instructional use and
an HP 1000 that is used for instructional
purposes and research in upper-level cour-
ses.

Instrumental in the growth of computing
in engineering at this university has been
an engineering accrediting agency, accord-
ing to some faculty. Employment of faculty
by local industry was a factor in initially
creating awareness of computer potential
among engineering faculty. ECMI conference
attendance is credited with increasing
awareness among mathematicft, chemistry, and
business faculty.

Political problems associated with fed -
eral. efforts at encouraging integration
have caused difficulties in maintaining
orderly development of academic computing,
according to some, Also cited as a nega-
tive factor was the pattern of federal
funding which historically favored main-
stream institution and left out minority
institutions. This is one of the few min-
ority institutions, however, that managed
to begin to beat the system as early as
the '60s.

Conclusion

In the cases of the institutions des:-
cribed above, though a variety of approach-
es have been made toward academic comput-
ing, certain factors surface as common
ingredients of success. These include
campus-wide planning (or at least plan-
ning beyond the walls of a single depart-
ment or class), dedication on the part of
key faculty or administrators, careful
budgeting practices, the ability to put
together funding from various sources, the
ability to learn by experience (as well as
by capitalizing on the experience of oth-
ers), and the will to get maximum mileage
from the resources at hand. Interesting-
ly, historical factors that could have de-
feated some actually seem to have caused
these institutions to try harder.

References

(1) Needs/Strategy Evaluation of Minority
Institutions in Educational Computing
(NSF Grant No. SPI-7821515, in prog-
ress)

(2) ECM (Educational Computing in Minor-
ity Institutions): three working
conferences end one workshop for
minority institution faculty in 1975-
1977 to assist faculty with little or
no knowledge of educational computing
to learn about it in their own disci-
plines. Courseware was developed by
a small group at one summer workshop.

(3) CMI: computer-managed instruction

(4) CAI: computer-assisted instruction

(5) CCUC: Conference on Computing in the
Undergraduate Curricula (annual,
1970-1978)

(6) HumRRO: Human Resources Research Or-
ganization

(7) TUCC: Triangle Universities Comput-
ing Center

Minority InstitutionsECMI 245

COMPUTER USE IN CHEMISTRY AT A MINORITY INSTITUTION

James D. Beck
Department of Chemistry
Virginia State University
Petersburg, Virginia 23803

(804) 520-5481

INTRODUCTION
Many students in minority institutions

encounter severe difficulties in introduc-
tory science courses. These difficulties
often prevent minority students from ob-
taining degrees in scientific fields and
thus effectively shut them out of careers
in the sciences, engineering, and the
health sciences (1). These students are
often classified as "underprepared," a
classification which implies that their
backgrounds, in science and mathematics
especially, are not strong enough to en-
able them to succeed in rigorous, quan-
titatively oriented college courses.

A number of characteristics of these
underprepared students have been identi-
fied (1,2). These range from poor math-
ematics background and lack of exposure
to science in high school to poor study
habits and a lackyof self-confidence.
Poor reading ability and a general weak-
ness in communication skills appear to
be significant factors which inhibit
success fcr these students. Many of
these students have low personal stan-
dards for academic achievement, expect
failure, and fear science courses. Al-
though numerous approaches aave been
taken to improve the performance of
underprepared students in Acience
courses, limited use has bo4n made of
computer-based learning modes.

Virginia State University is a
four-year stated supported institution
located in Petersburg, Virginia. About
3400 full -time students are enrolled,
with over 95 percent of the undergrad-
uate population being black. Reading
testa given to incoming freshmen have
shown that most of them have serious
reading problems, with nearly 70 percent
of them reading below the ninth grade
level. Median scores on the Scholastic
Aptitude Test were ;bout 300 on the
verbal part and about 350 on the quan-

titative part for incoming freshmen.
Many incoming students have had limited
exposure to science in high school. As
an example, 16 percent of the students in
a general chemistry class this past year
had not had any chemistry in high school.

The problems of inadequate prepara-
tion are compounded by the student diver-
sity which is encountered in many courses.
Incoming freshman chemistry majors, for
example, had reading scores ranging from
9.0 to 15+, SAT verbal scores ranging
from 240 to 480, and SAT mathematics
scores ranging from 280 to 580. This
range of abilities, backgrounds, and in-
terests presents a tremendous challenge
to an instructor.

INSTRUCTIONAL APPROACH
For several years we have been exper-

imenting with various approaches to the
teaching-learning process in trying to
meet the varying needs of our students
who enroll in chemistry courses. Most of
our efforts have been centered on our
general chemistry course. This is the
chemistry course with the largest enroll-
ment and the one in which the problems of
diversity and weak backgrounds are most
pronounced. The approach we are currently
using employe the computer in several
ways (3), and we are exploring new and ex-
panded types of computer use. In general,
we try to make available to our students
a wide spectrum of different ways to
learn chemistry in the hope that some of
these will meet the needs of all of our
students. The variety of materials and
methods allows students to select learn-
ing modes which suit them while permit-
ting students who are not well-prepared
to engage in extra activities to help
them master the material.

Our approach has been to retain the
traditional components of our general
Chemistry course--textbook, lectures,

25s

246 NECC 1980

recitation, and laboratory sessions. To
these we have added a selection of supple-
mentary materials and activities, includ-
ing a study guide, sets of performance ob-
jectives, lecture otes, slide/tape and
filmstrip/tape programs, voluntary practice
sessions, copies of old examinations, and
suggested plans of study. The computer
has also played an important role in this
smorgasbord of learning activities. About
fifty interactive computer programs are
available for student use; most of these
are drill-and-practice or simple tutorial
programs. A few are simulations. The
computer has also been used to generate
individualized problem sets for student
use. These are used off-line and the an-
swers may be submitted for grading by the
instructor.

Students are free to select which of
these alternative learning strategies they
wish to employ. No specific activities
are required, but students are expected
to complete a certain number of activities
during the semester. Students are encour-
aged to do more than the minimum number,
especially if they exhibit weaknesses in
identifiable areas.

We have evaluated the effectiveness
of these learning activities in two ways.
One involved a simple frequency of use
compilation in which we counted the num-
ber of times that students selected a
particular type of activity. The other
evaluation method used student surveys to
ascertain the students' perceptions of the
relative usefulness of the activities.
Both studies produced similar results.
The interactive computer programs were
used heavily and were perceived by the
students as being very useful to them
in their efforts to learn chemistry.
The computer-generated problem sets were
used by nearly all students and were also
perceived as being very useful. The
voluntary practice sessions ranked
slightly below the computer programs and
problem sets in extent of use and in
perceived usefulness. The slide/tape
and filmstrip/tape programs were rated
still lower.

It is interesting that every activ-
ity was used by some students and that
every activity was rated by some to be
"very useful." It is also interesting
that while all of the non-traditional
items that were described above were
considered, on the average, to be
"quite useful" to "very useful," the
highest student ratings were given to
the lecture notes and to the lectures.
However, the textbook, study guide,
recitation classes, suggested plans of
study, and sets of objectives were all

considered to be less useful than the com-
puter programs, problem sets, voluntary
practice sessions, and media programs.
The copies of old examinations were ranked
nearlyeven with the practice sessions.
Students nearly all desired to continue
having a variety of alternative methods
and materials available.

COMPUTER USE
The instructional approach has been

described in some detail to emphasize the
integral part played by the computer. Al-
though the computer is not an essential
part of the instructional process,it is
a valuable component. The computer can
do some things better than others, but it
cannot do all things well. It should be
looked on as one of many instructional
modes available to the teacher, appropri-
ate for some students studying some types
of material in some situations. When the
computer is made a part of the instruc-
tional package, its use should be care-
fully planned with consideration given to
the learning objectives that are involved.

The use of the computer in this pro-
ject is not new or unique. However, these
types of use can be duplicated at nearly
any institution, even a small college, a
minority institution, or a high school
where extensive computer facilities may
not be available. The methods also offer
the potential of expansion to more elab-
orate and sophisticated computer applica-
tions.

Most of the interactive BASIC programs
that we have used were written at Virginia
State University and tailored to the needs
of our students. While simple in concept
and in construction, the programs have
proven to be quite useful in this setting.
They have been designed to be short and
single-concept in nature, each one re-
quiring that the student spend only a few
minutes at the terminal. Most are open-
_ended, allowing students to obtain addi-
tional practice as they feel that they
need it. In general, the programs cover
basic topics which must be mastered in
order to solve more complicated problems
and understand more complex relationships.
A few programs are simulations of chemical
situations.

These interactive programs do not use
graphics or special effects and generally
use the most common BASIC instructions.
Thus, they will run on nearly every com-
puter system and can be used with either
CRT or hard-copy terminal. Some of them
have been adapted for use on several of
the popular microcomputers (4). Although
the programs may not be suitable for use
in all environments, they are simple

227

enough that they can easily be modified.
The generation of individualized

problem sets has also been done in a very
simple manner. Two different approaches
have been tried here. In one we have gen-
erated the problem sets in batch-mode,
using a FORTRAN program which merely se-
lects questions at random from a question
bank. Any system could use this method
since a similar program could be written
in any language that has a random number
function. In the other method of genera-
tion, individual BASIC programs have been
written for each problem set. In these
the random number function is used to se-
lect individual questions and to generate
individual data within questions. With
this method, we can run the problem sets
in batch mode or have each student ob-
tain a copy from a terminal. Hard-copy
capability is obviously required for this
mode of generation.

EXTENSIONS
While the two modes of computer use

that I have described are relatively sim-
ple, they can be adapted to fit a variety
of instructional settings, they do not
require special hardware, and they have
been proven effective. There is, however,
a great potential for developing more so-
phisticated, and perhaps more useful modes
of computer use, building upon these sim-
ple applications. We have explored some
interesting extensions at Virginia State
University and plan to try out more new
things in the future.

Prior to September 1979, our inter-
active programs were limited somewhat by
our terminals--slow and noisy IBM 2741
hard-copy units. Installing IBM 3278 CPT
units and 3287 printers has increased our
capabilities tremendously. By reducing
the time required to run each program, we
have been able to increase the number of
programs available and allow students to
spend more time in remedial or advanced
work. Although printers are available,
students do not generally need to get
hard-copy for their runs, since their re-
sults are put into a file and can be re-
trieved by the instructor for grading.

Although our new terminals do not
have true graphics capability, their rap-
id print speed has enabled us to program
material which requires more extensive
layouts than we were able to use pre-
viously. This equipment has expanded the
realm of programming possibilities to
some areas that we could not consider be-
fore the change in hardware. We would
like to have the capability to use real
graphics; this would undoubtedly enhance
learning even more (5,6).

Minority InstitutionsECM 247

Although we have been using computer-
generated individualized problem sets for
several years, we have just begun to ex-
plore the possibilities involved with
using them. For example, the program
that is used to generate the problem
sets can also be used to generate indi-
vidualized repeatable exams or quizzes.
Computer - grading, either on-line or off-
line, is'a possibility.

Problem sets offer some significant
advantages over interactive programs.
They do not require extensive connect
time, since the actual work is done by
the students off-line. They permit the
inclusion of topics and problems which
are not appropriate for interactive pro-
grams. For example, multi-step problems
that require extensive calculations can
be included on the problem sets. Ques-
tions that require the use of the text-
book or of other sources of information
are suitable. In fact, there are almost
no limitations on the types of questions
which can be included on a computer-
generated problem set. If grading is
not a problem, even essay questions are
possible.

One exciting potential use of com-
puter-generated problem sets is for diag-
nosis and prescription which we have
tried on a limited basis. After the stu-
dent has completed the problem set, an
interactive program is accessed on a ter-
minal. This program checks some or all
of the student responses. At this point,
some of the advantages of an interactive
mode can be realized. Immediate feedback
can tell the student which answers are
correct, and the correct answers or meth-
ods of calculation can be presented. A
course of action can be prescribed to
help the student overcome the identified
weaknesses. Prescribed activities may
include reading the textbook, doing ad-
ditional problems, running interactive
computer programs, viewing slide/tape
programs, or seeing the instructor.
These prescriptions are individualized
and are based on the student's perfor-
mance on the problem set. In addition to
providing useful information to the stu-
dent, the results can be made available
to the instructor, enabling areas of
weakness to be identified, for individual
students and for the class as a whole.
This capability is similar to the TIPS
program (7).

The problem sets might also serve as
a core for a system of computer-managed
instruction. We have been exploring
some different ways to use them and have
been encouraged by the results. Our stu-
dents have responded positively to our

26o

248 NECC 1980

primitive attempts at diagnosing problems
and prescribing remedies, and we hope to
enlarge this effort in the near future.

Several years of working with com-
puters in chemistry at a minority insti-
tution have convinced me that many stu-
dents, underprepared ones in particulur,
can benefit from computer-based instruc-
tion. I believe that this is possible
without elaborLte computer hardware, ex-
tensive programming experience, or a huge
investment of time and m^ney. Alfred
Bork has stated that there is no one
right way to use - computers xn education,
or even a most profitable way (8). Cer-
tainly there is no one best way to use
computers in science instruction or with
underprepared students or at a minority
institution. But there are many mean-
ingful and wortl-while ways in which com-
puters can be used to enhance learning
for all students (9,10,11). Instructors
at minority institutions should not con-
sider computer-based instruction to be
beyond their c. Abilities. The compu-
ter is an important instructional tool
that needs to be included in planning
present and future educational delivery
systems.

REFERENCES

1. McDermott, Lillian C., Iiternick,
Leonie K., and Roseng.tist, Mark L.,
"Helping Minority Students Succeed in
Science," Journal of College Science
Teachin , 9, 135 (1980).

2. Ketn k, Louis J., "Teething Science
to the Disadvantaged Student in an
Urban Commbnity College," Journal of
Chemical Education, 50, 46,71-973177.

3. Beck, James D., "Using i.L4 Computer
in the Teaching of Science," Pro-
ceedings of the Minority InstTEUrions
Curriculum Exchange Conference, Wash-
ington, D.C., p. 37 (1979).

4. Several programs are available from
Programs for Learning, Inc., P. 0.
Box 954, New Milford, CT 06776.

5. Bork, Alfred, "Computer Graphics in
Learning," Journal of College Science
Teaching, 9, 141 (1980).

6. Soitzberg, Leonard J., "Computer
Graphics for Chemical Education,"
Journal of Chemical Education, 56,
644 (1979).

7. Shakhashiri, Bosom Z., "CHEM TIPS -
Individualized Instruction in Under
graduate Chemistry Courses," Journal
of Chemical Education, S2, 581------
11371.477-

8. Bo; *4-ee "Computers and the
Fu AA .ucation," Computer -Based
S. In.w Istruction, Andre Jones and

Harold Weinstock, editors, NATO Ad-
vanced Study Instatute, Leyden, Neth-
erlands, p. 21 (1977).

9. Lower, Stephen, Gerhold, George, Smith,
Stanley G., Johnson, K. Jeffrey, and
Moore, .7_ W., "Computer-Assisted In-
struction .n Chemistry," Journal of
Chemical Education, 56, 219 (1979).

10. Cauchon, Pauf,-Wimistry with a Com-
puter, Programs for Learning, Inc.,
P.O. Box 954, New Milford, CT (1976).

11. Moore, John, Gerhold, George, Brene
man, G.L., Owen, G. Scott, Butler,
William, Smith, Stanley G., and Lyn -
drup, Mark L., "Computer-Aided Instruc-
tion with Microcomputers," Journal of
Chemical Education, 56, 776 (1979).

Minority institutionoECM1 249

EDUCATIONAL USE OP COMPUTERS IN PUERTO RICO

Prank D. Anger
Department of Mathematics
University of Puerto Rico

Rio Piedras, Puerto Rico 00931
(OM 764-0000

ABSTRACT
Puerto Rico presents a unique blend of

problems and promise in educational com-
puting. Both the lack of an adequate
technological base in the community and
restricted capital hold back the develop-
ment and implementation of computerized
instruction in all forms. Public schools,
facing many of the same problems of main-
land inner-city schools, are totally unable
even to start in this area. Nonetheless,
since about 1974 there has been a rapid
growth of instruction with and about
computers in the universities, colleges,
and private and parochial secondary
schools. This cowth promises to increase
radically during the eighties.

The educational problems to which this
development responds, the kinds of computer
strategies attempted, some interesting
results, and projections for the eighties
will be discussed.

262

Computer Laboratories in Education

MICROCOMPUTERS IN THE
TEACHING LAB*

Dr. Robert F. Tinker,
Director, Technical
Education Research
Centers, 0 Eliot St.,
Cambridge, MA 02139
:617) 547-3090

AN OVERLIOXED AREA
While computers have many uses in sci-

ence education, their use in instrument-
ation has been largely overlooked. This
paper will show the many powerful things
that can be done with a properly inter-
faced computer to gather, analyze, and
present real laboratory data.

The major reason that this educational
tool has not been developed in the same
way as other educational applications of
computers relates to hardware. Twenty
years of experiments with educational
applications of computers have almost
entirely involved large time-shared main-
frame computers, which are not well
adapted to the timing requirements im-
posed by real laboratory measurements.
A time-shared computer determines when
data is going to be read from the term-
inal, and so communications with it are
determined by the computer's timing re-
quirements. While that condition may
usually be adequate for human inter-
actions with a terminal, it is not 'ade-
quats for most laboratory interactions.
In lab applications, the timing require-

*
Some of the materials incorporated.in
this work were developed with the fin-
ancial support of the National Science
Foundation Grant Nos.7711116 and SED
79-06101.

250

meets are often too stringent for simple
time-sharing systems. It is possible to
use tine-sharing for laboratory measure-
ments, but it is considerably more complex
and expensive than using terminals for
time-sharing.

The arrival of microcomputers on the
scene has completely changed the hardware
situation. Many laboratory applications
of computers require very little computa-
tion and place only minimal requirements
op the computer. As a result, very simple
and inexpensive microcomputers can be
successfully used in the laboratory. Now
that the hardware question is being solved,
it is time to begin a vigorous effort to
make up for lost time, to begin using com-
puters in the lab, to develop related
hardware and software, and to research the
educational implications of this tool.

SAMPLE APPLICATIONS
Our group at TERC began experimenting

three years ago with applicatioac of
microcomputers in the laboratory because
we were writing course material on instru-
mentation as part of our modular electron-
ics project, which is designed to prepare
.tmdents to use instrumentation. It was
clear from the beginning that no such
course would be complete without a fairly
thdrough coverage of microcomputer appli-

cations in instrumentatim.research labs
that are not already heavily dependent on
computers for gathering and analyzing
data will certainly become so by the time
the current generation of students are on
the job for any length of time.

The Coolina Curve Experiment
Historically, the first application we

developed used the KIM computer to record
temperature of a liquid sample of naphtha-
lene as it cooled through the crystalize-
tiop temperature. This is the cooling
curve experiment familiar to those who
have taught introductory physical science.
There is some nice physics in it because,
as the sample loses heat to the surround-
ing water or air, the temperature does not
drop uniformly. At the transition temper-
ature, heat flows out but the temperature
does not drop, giving rise to a plateau-
like graph of temperature as a function of
time. This shows very clearly somethiug
that many beginning students do'not appre-
ciate! namely, that there is a distinc-
tion between heat and temperature; that
at the solidification temperature, heat
is flowing out without a temperature
change.

There is some good science in this
experiment. First of all, of course, the
plateau temperature is a good way of de-
termining the melting point of a sample.
In addition, mixtures of napthalene and
paradichlorobenzene (moth flakes and moth-
balls) display some interesting melting
phenomena. In some ratios, the plateau
disappears, as it will for most mixtures,
but at one particular ratio -- called the
eutectic -- a plateau reappears at a temp-
erature that is below the melting tempera-
ture of either of the pure substances.

All these phenomena are accessible to
someone with as little instrumentation as
a mercury thermometer and a stopwatch.
However, gathering and plotting the data
can be a tedious and boring task, parti-
cularly when it is necessary to repeat
the experiment several times for different
mixtures. A typical cooling curve run
takes 20 to 30 minutes. This run can be
speeded up by using a Koller sample, but
then many fewer points are obtained and
many of the important features of the
cooling curve are lost.

The microcomputer solves this problem
entirely. We developed # very simple
interface that can be ad to record the
temperature of a sample at any rate
desired and to display on a simple oscill-
oscope a graph of the resulting tempera-
ture versus time. The microcomputer can
log in at a rate of one per second to gen-
erate an apparently continuous graph,

Computer Laboratories in Education 251

which can be observed as it evolves. The
temperature detector is an inexpensive
signal diode. Because the transducer is
small, a small sample can be used, and
the experiment can be speeded up so that
it only takes a few minutes. As a result,
it is feasible fat students to obtain data
on mmy different samples and focus their
attention on the phenomena, rather than
on the boring details of gathering and
displaying the results.

A Pot ourri of ApplicationsSStce this initial venture into micro-
computer applications in the laboratory,
we ham developed over a dozen other lab
applications for simple microcomputers.
These ire listed below with some of the
more general applications described first,
followed by some programs tailored to the
specific needs of certain laboratory
exper4ments:

Counter/Timer. In this program, the
computer displays counts or elapsed
time. It has all the functions of a
normal counter/time but with a lower
frequency response. In addition, it
can record for later recovery the num-
ber of times that multiple events hap-
pened after an initial trigger period.
IC Testin . ,This convenient program
earns the logic expected !too an in-
tegrated circuit (IC) by running
through the permutations of a func-
tioning IC and than comparing this to
questionable ones.
Function Generator. Using an analog
output, this program generates a var-
iety of functions that one would only
expect from a very sophisticated func-
tion generator. Ten different func-
tions, incliding white, pink, and blue
noise, are available with selectable
amplitude, offset, and frequency up to
a bandwidth of 20 kHz.
Transient Recorder. This program
triggers when the transient starts and
displays the result on a standard
oscilloscope, thus effectively con-
verting it to a storage-type oscillo-
scope. Up to 256 samples of the input
signal can be recorded at intervals
as fast as 20 microseconds. In effect,
the cooling curve experiment is a
special adaptation of this facility.
Fourier Synthesis. This program can
require: the amplitude and phase of
up to 30 terms in a Fourier synthesis.
The resulting output waveform is dis-
played On a common oscilloscope and
can be beard with the help of a simple
power amplifier.
Fourier Analysis. This program uses
the idea behind the transient recorder

26,1

252 NECC 1960

to capture an input waveform, which is
then frequency analyzed. Using a Fast
Fourier Transform algorith, the com-
puter displays the power content of the
first 128 frequencies in the captured
signal.
Radioactive Half-Life Experiment.
Here, pu &Mt from a Geiger Tube are
counted over time, and the resulting
half-life decay function is displayed
on an oscilloscope.
Pulse Height Analysis. This program
uses a special interface to capture
the height of pulses from a standard
photo-multiplier particle detector.
The resulting pulse height spectrum is
then displayed on an oscilloscope. With
less than a dozen integrated circuits
in the interface, a standard microcom-
puter can be used to replace special-
purpose PHA instruments costing ten
times as mach.
The Computer of Average Transients. We
have developed a geological sounding
experiment that requries careful pro-
cessing of signals from a geophone that
detects seismic waves generated by hit-
ting the ground. The common technique
is to use a compliter of average trans-
ients, which the KIM simulates, using a
simple program.
Solar Collector Analysis. Temp4rature
from a number of sensors distributed
around a solar collector, as well as a
light detector measuring the input
light levels, is simultaneously logged
and selectively displayed through use
of this program.
Rotational Dynamics. This program,
written by Ken Flowers, measures the
angular acceleration of a disk commonly
called for in lab experiments involving
rotational dynamics.
Linear Dynamics. An electronic version
of spark tape uses clear tape with
black lines. When attached to an object
and pulled through a special detector,
the computer can display position,
speed, and acceleration instantly.

EDUCATIONAL IMPLICATIONS
These examples illustrate that it is

technically and economically possible to
have students use the computer asa gen-
eral-purpose laboratory instrument: the
big question in many people's minds is
whether such use is desirable. I will
begin addressing this point by first
developing the skeptics' argument more
fully. There are essentially three main
arguments against the use of this kind of
sophisticated instrumentation. First i*
that it is too complex and difficult to
use: secondly, it makes the laboratory

mysterious, thus weakening the connection
between reality and result; and third, it
isn't really necessary at all. These ar-
guments are taken up in order below.

Complexity
Microcomputers introduce a whole new

level of complexity that requires master-
ing sophisticated hardware, software'
and operating concepts. In order to use
computers effectively, the students will
have to investigate all these new ideas
and will get sidetracked, so that any
possible advantages that the computer can
bring will be offset by the enormous in-
vestment of time and intellectual effort
required.

This would certainly be a compelling
argument if it were true, if students were
required essentially to develop all the
hardware and software needed in the labor-
atory.. However, this is an inappropriate
way to use a computer in the laboratory.
The desirable approach is to use previous-
ly developed canned.programs that are
carefully designed to require the minimum
amount of additional knowledge. Lab pro-
grams should operate just the way elec-
tronic pinball machines do; anybody with a
quarter can walk off the street and begin
using those microprocesmor-based machines.
There is no reason that laboratory instru-
ments using microprocessors should be any
more difficult to use. Admittedly, some
of our first efforts in this area do not
meet this requirement. But there is no
basic reason that prevents microcomputers
from being easy to use in an application
area. It is simply a question of good
programming; providing menus for selec-
tion and help files to clarify any diffi-
cult points.

Mystification
The skeptic would hold that an instru-

ment that instantly gives result is un-
desirable when it is not clear to students
how those results are obtained. If there
is no alternative way to cross-check the
-,,cults, if the experiment must stop when
the apparatus stops.fuectioning, and if
the computations are too difficult to dis-
cuss, then the results may as well be
magic.

Since the results appear to be magi-
cal, the student loses any chance of hav-
ing any intuitive understanding of the
meaning of the results and connection be-
tween those results and the physical phen-
omena under investigation. For instance,
you pull a strip of marked paper through a
little gadget, and the computer prints out
some acceleration data. The connection

between the way you pull the tape and the
acceleration is incomprehensible and un-
verifiable, and therefore, the students'
understanding of the term acceleration is
not enhanced by this experiment. With a
spark tape, the student can see the marks
on the tape, understand the relationship
between those and the motion, and trace
the calculation of the acceleration
through a series of simple calculations
based on the marks. Furthermore, the cal-
culations are based directly on the defini-
tions of velocity and acceleration, and
therefore, the student gets practice in
applying those definitions by performing
the calculations in the laboratory. all
awareness of these relationships are lost
when the computer automatically calculates
the accelerations and graphs them.
,An important part of laboratory exper-

iences for students is their enabling
function. That is by learning how to
frame and answer questions, students are
then better able to function as scientists
and as citizens. Understanding is the key
to this enabling function, and the inclu-
sion of a major thing, the microcomputer,
which is inherently incomprehensible, is
disabling rather than enabling.

These are important arguments and point
up some of the pitfalls of using the com-
puter in the laboratory. Like any new
tool, the microcomputer can be misused.
However, the statement of the problem
points to the solution. Most people can
learn to use mysterious or incomprehen-
sible devices -- so long as they have a
clear idea of cause and effect. Many
aspects of diving a car are essentially
mysterious to drivers: the details of the
connection between the wheel and the dir-
ection of motion, between turning the key
and the operation of the motor, between
the position of the accelerator and speed.
The same arguments can be applied to most
of the technologies in our environments
television, radio, calculators, tele-
phones, and aspirin. People use them all
more or less effectively without any de-
tailed understanding of their mechanisms.
Through practice people have learned the
connection between inputs and outputs.
They have learned what to expect when
the accelerator is pressed, when the
record button on a tape recorder is
punched, whena telephone is dialed. The
reproducible and predictable nature of
these technological aids, which can be
understood at an intuitive level through
practice, completely removes the mystery
surrounding their operation and obviate*
the need for a detailed understanding of
how they work. This process of gaining
an intuitive appreciation of a connection

Computer Laboratodes in Education 253

of inputs and outputs I call "intuition
calibration" because it is directly anal-
ogous to the calibration one performs on
instruments.

The thesis, then,is that if a micro-
computer is used to measure acceleration,
this will appear to be mysterious only
until the students' intuition is calibra-
ted. Now is this done? The direct ap-
roach is to give students this tool and
let them play around with it in a directed
manner in order to get a good intuitive
feel for what it is producing. In tests
with students, we have found that it
takes very little time using this tool to
appreciate, on an intuitive level, the
relationship between the acceleration and
the change of speed, namely, that rapid
changes in speed results in large accel-
eration and that slowing down is just
another form of acceleration with a neg-
ative sign. These intuitive explorations
demystify the tool, but more important,
they foster an intuitive feeling that no
other approach can create. Students come
away with more than understanding of an
isolated term, such as acceleration. They
talk about acceleration in intuitive terms
that are directly related to its defini-
tion. They see that it is position-indep-
endent, that it only depends on how quick-
ly speed is changinl. Thus, the measure-
ment and the definition come together in
the laboratory without the use of compu-
tation.

The one argument that can't be count-
ered is that students do not gat as much
practice performing computations in a
laboratory where the computer does the
computation. The obvious cure for this
is to assign some additional computation
or to do the experiment once without the
computer.

1 tt
---TEirikepticts argument hers is that the
computer, while attractive, is not really
necessary in the laboratory. However,
the microcomputer makes a number of things
possible that could not otherwise be done
convenientli or economically, and there-
fore, unless cne takes the fan.estic pos-
ition that there is no Seed to improve
science instruction, one cannot ignore
these rather substantial improvements.

The use of a general-purpose laboratory
computer broadens the kinds of experiments
that can be contemplated in a teaching
laboratory and also increases the rate at
which data can be gathered and analyzed.
For example, the dynamics measurements
permit a detailed analysis of the Connec-
tic..1 between force and acceleration that
in simply tot possible through any other

2 c

.1MM.

254 NECC 1980

mechanism. This application alone opens
up new and as yet, uncharted possibili-
ties in the introductory laboratory. Sim-
ilarly, the Fourier Analyzer, the Pulse
Height Analyzer, and even the Computer/
Timer open up possibilities that would
otherwise not be considered in elementary
laboratories because of cost considera-
tions.

The speed with which experiments can
be analyzed is often an important educa-
tional factor. Instead of a simple fall-
ing ball experiment occupying an entire
laboratory, many accelerated motions can
be studied together in one laboratory;
instead of one cooling curve, a set of
cooling curves of various mixtures can be
studied in the same length of time. The
result has to be that students will have
more raw data available to them on which
to fashion their theoretical model of the
natural world. Because less time is de-
voted to the calculation and presentation
of data, more time can be devoted to un-
derstanding the scientifice phenomena. In
many cases, the hand calculations are not
only time-consuming but distracting;
because they occupy most of the lab time,
students tend to focus on them and totally
forget the scientific phenomena being in-
vestigated.

A secondary but important argument for
the inclusion of microcomputers in the
teaching laboratory is that by the time
our students are employed, those that go
into the laboratory will find microcom-
puters there.

THE FUTURE
I feel that the microcomputer viewed as

a laboratory instrument is an emerging
resource which is cost effective today in
certain teaching situations and will be
used in the immediate future in an
extremely broad range of science teaching
environments.

Current Efforts
The pestary impediment to the wide

scale use of microcomputers in the labora-
tory now is that software and hardware are
not readily available from any one source.
This, in turn, is partly because commer-
cial vendors do not perceive the teaching
laboratory as a commercially viable area
because there hus been no broad expression
of interest by laboratory teachers.

As a non-profit organization dedicated
to improving science instruction, our
group at TUC have undertaken a number of
projects to speed the introduction of the
microcomputer into the laboratories. We
have, of course, generated some sample
programs that illustrate the kinds of

things that can be done, and we also eval-
uate and distribute hardware and software
so that schools and teachers can find most
what they need at one place. We have de-
veloped three laboratory interfaces and
are currently working to Interest some
manufacturers in these or other related
products.

For a number of years, we have been
giving workshops for teachers on the use of
microcomputers in teaching. These work-
shops have been very well received and,
in fact, we face the problem that there
are more people interested in taking these
workshops that we can possibly enroll. To
meet this need, we are in the process of
developing an exportable workshop -- a one-
day workshop that former workshop partici-
pants can themselves offer to others. We
are currently looking for groups of
teachers who will participate in the first
round of these workshops and be willing,
then, to host these workshops themselves
in their immediate locale.

Long-range Efforts
We see a time in the near future when

microcomputer-based instrumentation will
be as widely used in introductory science
teaching as microscopes, clocks, and ther-
mometers. The microcomputer will not be a
frill added on top of other instrumentation;
it will be the primary instrument. Because
of the ease of programming and flexibility
of input and transducers, grade school
students could use microcomputers in much
the way they currently use microscopes, to
extend their senses, to help them perceive
physical phenomena that are outside the
range of their immediate senses, and to
provide the questions and motivations for
scientific studies. Most of the elements
necessary to fulfill this vision are cur-
rently available, and it is certain that
prices will drop over time to the point at
which few schools could justify not having
microcomputers in the laboratory.

Meanwhile, however, we see four areas
in which important work needs to be done
before microcomputers will be widely uged:
education research and development, improve-
ments in the laboratory interface hardware,
network software for sharing limited
resources,.and development of curricula
that use laboratory-interfaced computers.

EdttionResearchdDeveloent. We
suggest t at t of

microcomputers in the laboratories, while
having many advantages, also creates cer-
tain pitfalls. Both the advantages and the
pitfalls need careful researching. In what
sense can students learn to master such a
powerful tool? What intellectual pre-
requisites must they have? The questions

2e'V

raised about mystification and enabling of
students must be studied in greater detail.
There is a possibility that the introduc-
tion of laboratory experiences that use the
microcomputer will be of benefit not only
to science instruction but also to mathe-
matics learning. When combined with the
power of the computer to analyze and model,
the introduction into mathematics ,:tstruc-
tion of computers that can deal with real
phenomena will have an important role in
motivating students in building intuition;
this area needs to be researched and de-
veloped.

Interface Hardware. We see a continuing
need to keep abreast of hardware develop-
ments and continually incorporate relevant
innovations into interface designs. It
is only by producing and distributing in-
creasingly sophisticated prototypes that
we will learn how these can be used in edu-
cation, how costs can be minimized, and
how dissemination problems can be reduced.
One of the benefits of our work in build-
ing and distributing prototypes is that it
helps build a market we hope commercial
companies will want to exploit.

We see a clear need to develop an in-
terface that contains its own 16-bit CPU
and communicates to a host computer over
the new general interface bus or over
other standard communication lines. Such
a device would have greatly increased
performance and would be compatible with
almost all commercially available compu-
ters. While it may not be affordable by
a large number of institutions this tine,
it is important to learn, through limited
distribution, what educational' advantages
accrue from the increased performance this
unit would have.

Networking. The expensive part of
computers now is not the central process-
ing unit or the memory but rather the
peripherals: printers, disks, specialized
interfaces, graphic displays, and the
like. The appropriate way to maximize
computational performance is to have a
means of sharing the expensive resources
among a variety of inexpensive computers.
Thls is called networking and is the
microcomputer alternative to time-sharing
which is really only appropriate for
computers that have expensive CPUs and
memory'. We have some interesting net-
working software and hardware currently
operating in our lab that need to be
brought into the teaching environment
and expanded to laboratory applications.
We envision that the teaching laboratory
of the future will involve a network of
inexpensive computers at each laboratory
station, networked with a number of more
sophisticated special-purpose microcom-

Computer Laboratories in Education 255

puters to be used for extensive data
analysis, combining data from many students
and generating complex displays. This
local network would be tied into a central
computing center, which could be used for
long -term, storage, high-speed printing,
and the maintenance of large data bases.
We are cooperating with a number of
schools to work towards an initial imple-
mentation of this ideal.

Curriculum. The most pressing current
neorii-Wargeneral area is to develop
curriculum material that uses laboratory
microcomputers. One can view the programs
that we have developed so far as samples,
a shotgun blast that illustrates what can
be done. There is an urgent need syste-
matically to apply laboratory-based micro-
computers to courses in various disci-
plines. An important aspect of this
effort is to try to define the electrical
characteristics of the interface that is
required, so that the curriculum material
does not haye to be tied to any particular
hardware. We naturally feel that our lab
interface defines this standard, but we
would be del.ghted to discuss any other
possible standards with any educators.

The only way extensive curricula will
be developed is to use teacher-generated
material. The major problek with this
approach is the evaluation and distri-
bution of this material. We have estab-
lished an experimental Microcomputer
Teacher Resource Center that uses a com-
mercial data base to store reviewed files
and programs. This data base is public
and contributions are welcomed. If
teachers will evaluate what they use
from this data base and contribute some
new material, great strides will be made
in filling the missing curriculum gaps.

SUMMARY
A microcomputer equipped with a labora-

tory interface offers a very exciting new
resource for science instruction. With
the proper hardware, the computer can be
turned into an altogether general-purpose
instrument. It can replace a large number
of standard instruments at a fraction of
the cost, and provide the major measure-
ment and analytic tools needed in a wide
range of science courses. Equipment and
software are available today that begin
to do this, while future hardware develop-
ments and declining costs will make lab-
based microcomputers a necessity in nary
teaching situations.

20 0w 0

256 .4E0C 1980

THE COMPUTER LAB OF THE 80S

Guy Larry Brown
Head, Data Processing

Piedmont Virginia Community College
Et. 6, Box 1-A

Charlottesville, Virginia 22901
(804) 977-3900

INTRODUCTION
During the past 20 or so years that the

computer has been used as an academic roof,
there has been considerable discussion
about computer-assisted instruction (CAI).
CAI, in fact, has been a luxury affordable
by only a few. In recent years, with pres-
sure being applied to educational budgets,
it appeared that CAI would remain a dream
to be realized only if the good foivy god-
'other waved her magic, wand in a class-
room. However, the advent of the micro-
computer witb its by cost and super cap-
abilities has made it possible for that
marvelous wand to be directed into even
the most ispoverisbed academic niches.
This paper describes an operating system
of microcomputers that is unique in capa-
bilities and costs.

THE SYSTEM
The system in operation tonsists of 14 .

microcomputers eacb with 8,192 (8K) of
random access memory (RAM) and 8K of read
only memory (ROM). The RAM allows storage
of instructions written in Microsoft BASIC
and data in the form of letters of the al-
phabet, digits, and special characters.
The ROM contain' an interpreter that tran-
slates BASIC into the computer's language.
Each micro has its own keyboard for input
into the computer and a video monitor for
visual output.

Stored programs are available from
shared dual floppy disks, each capable of
holding up to 275K characters. The disk
unit is part of the host computer tbreugh
which control of the micros is centrally
exercised. This host computer has 48K RAM
with its BASIC on disk instead of in ROM.
Control of the bost.is through a CRT. At-
tached to the host is a 100 character per
second (CPS) matrix printer which is also
Shared by the micros.

The program (software) that provides
the capability for the micros to share the
disks for input/output(1/0)and the print-

er for hardcopy output occupy only a small
part of a single disk. The remainder is
set aside to store student programs and
for other uses as may be desired. For
example, a program can be,colled by a stu-
dent to provide information about a problem
he does not fully understand. Or a series
of tests can be stored for use by the stu-
dent at the instructor's discretion.

Two of the micros received minor modi-
fications to permit I/O througb a standard
cassette player. This capability permits
the units to be detached from the system
and moved out of the lab for demonstrations
or other purposes. Zr also allows for the
transfer of a program stored on a cassette
into the micro's memory and hence onto a
disk for storage and subsequent availabil-
ity to all micros.

All computers were manufactured by Ohio
Scientific, the printer is a Centronics
779, the video monitors are Sanyo VM 4209,
and the CRT is a TEC Series 500. The sys-
tem is capable of operating with 16 of the
micros; however, to keep total costs below
$19,000, only 14 were purchased initially.
This figure included all equipment,instal-
lation, and softweref Equipment selection
was influenced by the availability of a
reputable local dealer who services what
he sells. Also favoring Ohio Scientific
is the large inventory of software,' small
business system capability with hard disks,
and design features making expansion and
upgrading simple snd relatively inexpen-
sive.

OPERATION
The system ins operated almost flawless-

ly since installation in the fall of 1979.
Typical micro systems use cassette I/O
which is very slow compered to disk. And
a dedicated disk for stand -alone micros
adds significantly to the costa the unit.
The shared system allows each micro user
to (1) load a program stored on disk into
the memory of his computer, (2) save a

2

program on disk, (3) print a listing of
the program, or (4) print the output from
the execution of a program. Only one micro
can use the disk or printer at a time.
The use of passwords for files, message
sending to the host computer, and line
advancing on the printer are recent,
locally added enhancements to the oper-
ating software.

USES
Presently the system is used only for

teaching the programming language BASIC.
One 20-student class was taught in the
fall of 1979, and two such classes are
being conducted during the winter quarter.

During registration, several units were
moved from the lab for demonstration pur-
poses. Curiosity was aroused in many who
stopped to engage in conversation with the
computer or play a game.

FUTURE PLANS
In addition to expansion to 16 micros,

there are plans for the acquisition of a
quality character printer for word proces-
sing. This capability will permit in-
struction of secretarial science students
and members of the staff in word proces-
sing.

Expansion of courses to cover assembly
language is anticipated as well as a course
in the operationof small business computer
systems. Longer range plans call for
teaching COBOL.

Efforts are being made to make the lab
available to any of our faculty for use in
their courses. Programs will be developed
for math, chemistry. biology. and a variety
of business courses.

ADVANTAGES
Cost.
Reliability.
Graphics capabilitiesof 256 characters.
Standardization of components.
A single disk for program/data storage.
Display of 64 characters/32 lines on

micro videos.
Extensive software available from man-

ufacturer.
Expansion of capabilities. and updating

inexpensive.
Not dependent upon trained computer

personnel.
Rapid transfer of programs/data through

a disk system.
Hardcopy available to all micros.
Control is facilitated thxdOsh the host

computer.
No reliance on telephone connections.
Students learn on a micro frequently

found in businesses.
Micros still function independently.

Computer Laboratories in Education 257

DISADVANTAGES
Disk and printer allow only one user at

a time (this is only a minor incon-
venience).

Cost is so low that academic departments
can afford procurement without in-
volvement of computer management
(maybe this is an advantage).

Documentation is not complete or error
free.

Operating software lacked capability
for printing the execution output
of a program (locally modified to
acquire this capability).

Service may not be locally or quickly
available.

Cost is so low that one cannot expect
the same level of manufacturer sup-
port as previously experienced when
systems were priced much higher.

Demand for usage night be so higb that
the establishment of priorities for
use may be difficult.

SUMMARY .

A computer lab for the &Os is available
today. It consists of up to 16 microcom-
puters, each of which can bave up to 32K
RAM. They have rapid access to programs
and data through a shared dual floppy disk
drive which also provides for equallyznpid
storage. Hardcopy listings of programs and
output from the execution of thoserrograms
are also available on a 'bared printer.
The system, including the host computer and
all other hardware, installation, and nec-
essary software is available for around
$20,000.

270

25$ NECC 1900

THE EDUCATIONAL TECHNOLOGY CENTER

Alfred Bork, Stephen Franklin, and Barry Kurtz
Educational Technology Center
University of California
Irvine, California 92717

(714) 833-6911

This paper reports on the formation
of the Educational Technology Center at
the University of California, Irvine. The
primary focus of the Center is the use of
the computer as a learning aid. The
Educational Technology Center was started on
January 1, 1980, with University funds
providing staff support. The Center con-
tinues the activities An computer-based
learning conducted by the Physics Computer
Development Project during the last eleven
years.

NEED
The Educational Technology Center was

formed because we believe strongly that
the next decade will be a critical period
in American education. Such centers are
needed to guide us toward a future where
tte computer will play an extremely im-
portant role An education. It is impor-
tant to develop a number of continuing
groups that are not fully dependent on
grant funds but have an existence beyond
support for particular projects.

We have pursued for some years within
the University of California the possi-
bility of one such Center. Estill pro-
vide guidance to others working in this
area. The Center will work on a wide
range of research and development activi-
ties leading to more effective use of the
computer and associated technologies in
learning environments.

CURBINT ACTIVITIES
The Educational Technology Center

intends to engage in many activities con-
cerning more effective and more efficient
use of information technology in learning,
emaphasising learning materials on the
Wien.' computer. Some of the activities
will be pure research, while others will
have& strong applied and developmental
component. We shall work closely with
individuals and groups elsewhere, as in

the past, so that the Center has a
nationwide effect beyond its immediate
activities, materials, and publicity.

The Center will publish a newsletter
reviewing the activities and results of
its projects. Although no set schedule
is planned, we expect this newsletter to
be published three times a year. Anyone
interested in receiving the newsletter
should write to the Center.

The following list gives the active
projects at the Irvine Center. Further
information about any activity is avail-
able on request.

1. A. Testing and Tutoring Environment
for Large Science Courses.
Authoring for personal computers
Testing environments
Physics - waves
Statistics
National Science Foundation--Compre-
hensive Assistance to Undergraduate
Science Education (CAUSE)

2. Scientific Literacy in the Public
Library.
Public libraries, shopping centers,

science museums
Public understanding of science
Personal computers
Fund for the Improvement of Post-
secondary Education (TIPS!)

3. Mathematics Competency Tests for
Beginning Science Courses.
University of California/California
State University and Colleges

4. Translation of timesharing materials
to personal computers.
Universit of California/California
State University and Colleges

5. Biology materials ecology.
University of California, Irvine,
Committee on Instructtonal Develop-
ment

27j

6. Development of Reasoning Skills in
Early Adolescence.
Junior high students
Transition to formal reasoning
Personal computers
National Science Foundation - Devel-
opments in Science Education (DISE)

PRODUCTION SYSTEM
In addition to specific products,

such as those just mentioned, the Center
has developed a production system for
generating computer-based learning mater-
ial. The emphasis is on both efficiency
and effectiveness and on techniques which
will allow natural extensions to large-
scale production of such models. The
production system is based on a systems
analysis of the problem and on our many
years of experience in producing a wide
range of learning material. Literature is
available describing the system and the
supporting software.

ISSUES FOR THE FUTURE
Currently we can distinguish a number

of very important issues that will shape
the future of computer-based learning:
these issues indicate directions the
Educational Technology Center will pursue.
No order of priority is intended in this
list.

1. Full-scale course development.
At present, with a few notable exceptions,
computer-based learning materials are sup-
plementary to course structures. Very few
full courses mike heavy use of computers
to aid learninc. We need experience in
developing such complete courses and in
integrating computer and other learning
aids. We need additional experience in
computer-aided delivery of such courses.

2. Expanded acquaintance. Very few
teachers, and even fewer members of the
general public, have seen any effective
computer-based learning material. Often
the examples seen have been weak examples;
so the learners have formed inaccurate
opinions of the value of such material.
We need more acquaintance with the full
range of possibilities, more computer
literacy with a learning emphasis.

3. Research in learning. Presently
we have conflicting theories about learn-
ing. We need to know more about how stu-
dents learn so that we can develop better
learning aids.

4. Production techniques. Older
strategies for developing materials often
were not suited for the large -scale devel-
opment needed in the years ahead. The
types of systems approach followed at
Irvine and elsewhere needs further explor-
ation and refinement as the scale of

Computer Laboratories in Education 259

activities increases. We should aim for
the best possible materials at the least
developmental cost.

5. Expanding technologies. Com-
puter and associated technologies are
evolving rapidly. We must learn quickly
to use an.expanding range of capability,
developing materials which are not immed-
iately outmoded.

6. Thec,terinewinterac-tive mediumW-ew
earrrnigmedium, we must learn how it

differs from older media. For example,
reading from computer displays has many
differences from reading print medium, but
the empirical details are not known.

7. Dissemination. New media also
demand new males of dissemination.

S. 'sew course and institutional
structurss. As computers are more widely
used, they will have major effects on
course and institutional structures.

The Educational Technology Center
intends to pursue these and other issues.

2

Invited Session

MIS EDUCATION:
INDUSTRY NEEDS AND EDUCATIONAL SOLUTIONS

Chaired By Eleanor W. Jordan
Department of General Business
Business-Economics Bldg. 600
university of Texas at Austin

Austin, Texas 78712
(512) 471-3322

ABSTRACT
7574FEhe past decade a considerable
number of discussions in industry-oriented
publications like Computerworld have
focused on irrelevant education as a reason
for prevalent software problems and DP
personnel shortages. In this session,
educators will discuss efforts made by
their institutions to resolve the supposed
relevance problem in programs for business
application's software designers at the
graduate and undergraduate level. Two
industry representatives will also partic-
ipate in the panel.

200

PARTICIPANTS (Listed in order of Presen
tatzon

Marguerite Summers, Chairperson
Western Illinois University

David Naumann
University of Minnesota
MBA and PhD PIS programs

Joyce J. Elam
Wharton School
University of Pennsylvania
MBA concentration in MIS

Eleanor W. Jordan
University of Texas at Austin
Undergraduate DP program

James Cook
Southwest Texas University
Undergraduate business CS program

Ken Truitt
ARCO Oil and Gas Company

Willis Ware
Rand Corporation

27ki

Computer Games in Instruction

SHALL WE TEACH STRUC-
TURED PROGRAMMING TO

CHILDREN?
Jacques E. LaPrancc
Dcpt. of Mathematical

Science
Oral Roberts Univ.
Tulsa, OK 74171

ABSTRACT
--liZZT011ege programming experience has
been observed to be detrimental in many
cases to college-level study of computer
science. The problem is the lack of un-
derstanding of the principles of struc-
tured programming. The solution proposed
here is the introduction of structured
programming games at the elementary
school level which will prepare the
children to do structured programming
later on with languages such as BASIC and
FORTRAN that are not designed to promote
structured programming. An example of
doing this called ANTFARM -s presented
and the results of using it with one
group of children are discussed.

THE PROBLEM
RUFF-7E7 more students are entering
university computer science programs with
some form of prior.experience with com-
puters. This is typically a high school
course in FORTRAN or BASIC or experience
with a personal computer. There seems to
be no corresponding exposure to struc-
tured programming or design, however.
The students believe they know a lot be-
cause they have written programs in BASIC
or FORTRAN, but in reality they know onk
coding; they understand nothing of struc-
ture, top down design, good style, or
documentation. It is sometimes difficult
to get them to break the resulting bad
programming habits. This problem is like-
ly to be compounded by the increasing
availability of small personal computers
without proper accompanying instruction
in good top down programming. An in-
creasing number of young people will
likely learn programming by reading their
microcomputer BASIC manuals. The learn-
ing of coding will thus be encouraged
rather than the learning of programming.
Yet these students will be misled into
thinking they know a lot because they are

able to code some substantial programs.
The task of computer science education
will be made more difficult by this back-
ground experience because the students
will have to do more unlearning than is
currently the case and sometimes unlearn-
ing is more difficult than learning.

THE PROPOSAL
A possible solution to the above prob-

lem would be to introduce structured pro-
gramming concepts to children before they
are able to begin to use conventional
programming language. Other oulutions
might be to replace BASIC wich PASCAL as
the most common microcomputer language or
to have all manufacturers' BASIC manuals
based on structured programming. Neither
of these alternative solutions seems
feasible, The simplicity of BASIC will
cause it to continue to be poptIlr, es-
pecially with the smallest computer con-
figurations. The large number of pro-
grams already coded in some dialect of
BASIC will also serve to keep support for
BASIC strong. The manufacturers may be
more or less willing to include struc-
tured programming concepts in their man-
uals, but the bottom line will always be
what enables them to sell their product.
The general public will have to become
more knowledgeable, discriminating, and
particular before the manufacturers will
feel any serious pressure to include ma-
terial on structured programming.
Although the first solution mentioned

above is not a shoo-in, it is one that
can be developed more easily than either
of the others and would be worth inves-
tigating. It is not realistic to have
all elementary schools begin teaching
structured programming, but a few well-
published success stories plus the avail-
ability of well-written materials for use
in schools would help to promote the
idea. A few successful projects at

261

274

t,

282 NECC 1980

schools in several areas across the coun-
try would encourage other educators . io
something similar and inspire comp...er
manufacturers to include structured de-
sign and programming in their manuals.
Structmed programming 'concepts could

easily be introduced to elementary school
thildren if they were presented in e gene
form at their level of sophistication.
Gamos could be developed for which the
con 11 language is inherently struc-
tue and the children would be moti-
val.ea by the attraction of the game to
master the control language as well as
possible in order to do more with the
game. Because the language would be in-
herently structured, they would automat-
ically begin to develop structured prob-
lem solving skills and structured expres-
sion of their ideas. Manuals could be
provided that would describe structured
design and programming in a way that most
teachers could follow and would also
describe how to use the games with the
children to develop their understanding
and skills.
The LOGO system at H.I.T. Artificial

Intelligence Laboratory (12) already con-
tributes to these goals. This system was
not developed for introducing structured
programming concepts but aould be easily
adapted to that purpose. It is exciting
for the children to use (14) and there-
fore has the necessary motivational char-
acteristics. Several other tools for
teaching structured programming could be
developed with different appeals, dif-
ferent levels of sophistication, and dif-
ferent organizational structures.

THE EXPERIMENT
(71.:7taing of these ideas was made

in April 1979 by the author and Dr. Mary
Dee Fosberg of Central State University,
Eemond, Oklahoma. To present the ideas
of programming to a group of gifted
children, we designed a gaze called
ANTFARM. It was implemented on an IMSAI
with a Z80 processor, Digital Micro-
systems disk, -Aid Infoton 200 CRT using
the UCSD PASCAL system which we took to
t' .f presentation and set up there.
The ANTFARM program consists of drawing

in ant facing up in the center o2 the
..creen and two rows of food ("e's) in
the upper left. The goal is to have the
ant move over to the food, eat it, and
plant new food. The ant looks like:

\ *l *1 /
0 or -0 or *00-.

0 / \
71\ 1\

etc., depending on orientation

It accepts five basic commands: MOVE,
TURN LEFT, TURN RIGHT, EAT, and PLANT.
MOVE means move forward one character
position in the direction the ant is fac-
ing; TURN, LEFT or RIGHT, means a 45° ro-
tation about the first body segment; EAT
means to consume whatever is under his
head; and PLANT means to plant a new seed

swith his tail. Seeds start out as ".";
100 time units later they germinate
(","); then after 50 more units they
sprout (" ; "). They grow into a stalk
("1") after 50 more units and then into a
branching plant ("Y") after 50 more. At
the end of 75 more units, a flower: ("P")
appears and then after 75 more or a total
of 400 units, the plant natures into food
("S"). One time unit is the tire neces-
stry to execute one operation. Such a
growing rate seems to be a satisfactory
choice though unrealistically fast.
Each time the screen is updated, the

cursor is moved to the home position, and
the first line on the screen is erased to
await the next input. The user may type
any combination of commands on this line.
When the return key is pressed the com-
mends sze performed. We began by simply
showing the children the effects of indi-
vidual commands. Then we introduced the
concept of sequence by showing that sev-
eral com.ands can be listed on the same
line.
Since the sequence of commands cannot

be longer than one line, the limit on
program size is quickly reached. Other
commends are then introduced to allow the
ant to do more things. From the author's
point of view, however, additional com-
mands are given to develop the additional
structured programming concepts of itera-
tion, selection, and refinement.
The first additional command illus-

trates iteration: "DO a cc.amand sequence
n TIMES," where n is an integer. Instead
of "n TIMES," there can be "TO ROW
integer" or "TO COLUMN integer." The
rows ate numbered down the left of the
screen and the columns across the top on
the second row. This command allows the
ant to go through a sequence many times
before stopping for the entering of the
next command. (The "DO" command can be
used in conjunction with the do nothing
commands "WAIT" and "REST" to watch
plants grow.)
The command to illustrate selection has

the form:

PLANT
IF SEE (FOOD

,SPROU1
LDIRT

[AHEAD)
LEFT command.
RIGHT

If the character space in front (or to
front left or front right) contains non-
space for "PLANT," " @" for "FOOD," ";" or
"1" for "SPROUT," or space for "DIRT,"
the single command following will be exe-
cuted; otherwise it will be skipped.
This command allows for some interesting
conditional tasks such as having the ant
look for a row of food to eat or an open
furrow in which to plant more food. Al-
though the chi'dret were able to use this
command it seems to need more development
to be stronger. In its present form, it
seems too restrictive.
To encourage the development of hier-

archical structure and refinement, the
command sequences are limited to one
line, and a command called "REMEMBER" is
given. This command has tho form "REMEM-
BER name command .sequence END" which al-
lows the child to give numesto command
sequences for subsequent use as commands
themselves. One popular sequence is

REMEMBER TURNAROUND DO TURN LEFT 4 TIMES
END

after which "TURNAROUND" can be used as a
comman.l. This subprogram capability is
especially helpful when used in connec-
tion with the selection command since
only one command may be selected or
skipped. Tie commands "QUIT" and "STOP"
allow the currant subprogram to be ended
prematurely (or the ANWARM program it-
silf to end if it is used at the command
:t.ae level). This capability allows for
powerful search features when used in
submodules with selection and iteration
commands, such as

REMEMBER MOVETOFOOD DO MOVE IF SEE FOOD
AHEAD STOP 70 TIMES END

This will cause the an- to move forward
71) times or until there is food right in
front o' it, whichever comas first.

One of the tasks the children raced VAS
the planting of a field of four rows of
ten plants each. The following is an ex-
ample of a structured development of a
solution:

Computer Game': in Instruction 263

The final commands availab. are "FORGET
name," which eliminates th- named module
from the table, and "nu," which lists
on the screen all the "REMEMBER"ed names
and their definitions. 14'...n the use"
pushes the return key after the "TELL"
display, the screen is cleared and the
ant's farm scene is redisplayed as it was
prior to the "TELL" display. A future
addition will be commands to save and re-
call the'set of defined modules to and
from a disk file. Thece commands will
allow a child to build his program from
day to day rather than having to type
everything over from the beginning at
each session.

THE RESULTS
We had about 13/4 hours with a group of

gifted children between the ages of nine
and twelve. Interest was universally
high throughout the session. The format
of the session was that for about 20 to
30 minutes the children were shown some
of the hardware aspec..,, of computers;
then the ANTFARM was introduced. Since
the Infoton has a detached keyboard, the
author sat to the side and did all the
typing while the children looked at the
screen and said what to type. We intro-
duced the ANTFARM features roughly in the
same order as in this paper, stopping
frequently to ask the children how to get
the ant to do sou specific task. The
children picked up the ideas very quickly
and were soon telling us of th-ngs they
wanted to see the ant do. By the end of
the VI hours, three or four of the most
involved children were beginning to use
topdown design to achieve some specific
task they wanted the ant to do, defining
their own modules and giving them names.
The only weaknesses observed were the

selection commands and ,:he bugs. The
selection commands were too difficult for
the -hildren to use unaided in their pre-
sent form, primarily because the condi-
tion was something happening out in front
of the ant instead of right under him,
and the seeing left or right does not
correspond well to Where the ant is
facing when he turns. The bugs occasion-

REMEMBER FIELD TWOFURROWS TWOFURROWS END
REMEMBER TWOFURROWS FURROW NEXTRIGHT FURROW NEXTLEFT END
REMEMBER FURROW DO MOVE PLANT 10 TIMES END
REMEMBER NEXTRIGHT DO TURN RIGHT 3 TIMES MOVE TURN RIGHT MOVE MOVE END
REMEMBER NE.;TLEFT DO TURN LEFT 3 TIMES MOVE TURN LEFT MOVE MOVE END

A field could be planted in the upper right part of the screen by

DO MOVE TO ROW ? TURN FIGHT TURN RIGHT DO KOVE TO COLUMN 65 FIELD

2 76

264 NECC 1980

ally caused the program to abort, losing
all the defined modules and all the farm
development to that point. Actually the
program worked quite well considering it
was developed and implemented in three or
four man-days and consists of over 400
lines of PASCAL code. (This accomplish-
ment in itself is a credit to the value
of top-down design, structured program-
ming, and PASCAL.)

THE CONCLUSION
The ANTFARM program has demonstrated

Chat it is possible to create tools with
high motivational value for children that
contain ell the concepts of structured
programming. Furthermore, the way this
program is designed. forces the children
to use hierarchical or structured devel-
opment to achieve their goals. Even in
one session we were'beginning to see some
of the children using structured develop-
ment, on their own. It seems reasonable

suggestuggest that continued use of tools
such as =FARM over an extended period
of time could develop these concepts so
well in children that they would continue
to use top-down design and structured
programming even with languages such as
BASIC and FORTRAN which are not naturally
oriented toward them. We hope that we
will have the opportunity to continue to
explore these ideas and that others will
have similar opportunities. We need
long -term data on children using these
tools to determine the effects on their
future success in programming or computer
science.

REFERENCES

1. Benet, Bernard, "Computers and Early
Learning," Creative Computing,
#4-5 (Sept.-Oct. 197107 pp.
90-95.

2. Beyer, Kathleen, and Stuart Milner,
"Elementary School Curriculum
Task Group," ESSS Re wort, Sep-
tember 1979, PP. 2

3. Brady, J. M., and R. B. Emanuel, "An
Experiment in Teaching Strateg-
ic Thinking," Creative Comput-
111I, 14-6 (Nov.=T78), pp.
106-109.

4. Cohen, Harvey A., "Oznaki and Be-
yond," Proceedings of the
National Educationaraiqutine.
daraWice, 1179, pp. 170-178.

5. Dahl, O. J., E. 4. Dijkstra, and C.
A. R. Hoare, Structured Pro -
ramming, New York: AcaaZiic
rens, T972.

6. Hakansson, Joyce, and Leslie Roach.
"A Dozen Apples for the Class-
room," Creative Coruting, 5-9
(Sept. 1979), pp. 2-54'

7. Larsen, Sally 'Greenwood, "Kids and
Computers: The Future Is To-
day," Creative Computing, 05-9
(Sept. 1979), pp. 58-60.

8. Lieberman, Henry, "The TV Turtle: A
LOGO Graphics System for Raster
Displays," MIT, A. I. Memo 361
(June 1976).

9. MECC, "Computer Literacy Objectives
from MECC," ACM SIGCUE Bdlle-
tin, 013-4 ON T. 1979).

10. McGowan, Clement L., and John R.
Kelly, Top-Down Structured
Ptogramming TechaqUIT7---
New York: Petrocelli/Charter,
1975.

11. Milner, Stuart D., "An Analysis of
Computer Education Needs for
K-12 Teachers," Proceedings of
the National Educational com-
utiriaMience, 1979, pp.

12. Papert, Seymour, "Teaching Children
Thinking," MIT, Arttti 'al Ir-
telligence Memo 247 "%I L:.

1971).

13. Papert, Seymour and Cynthia Solomon,
"Twenty Things to Co with a
Computer," MIT, a. I. Memo 248
(June 1971).

14. Papery, Seymour and Harold Abelson,
Jeanr0 Bamberger, Andrea
diSess, Sylvia Weir, "Znterim
Report of the LOGO Project in
the Brookline Public Schools:
An Assessment and Documentation
of a Children's Computer Labor-
atory," MIT, A. I. Memo 484,
(June 1978).

15. Perlman, Radia, "Using Computer
Technology to Provide a
Creative Learning Environment
for Preschool Children," MIT,
A. I. Memo 360 (May 1976).

16. Ragsdale, Ronald G., "A Program
. Package for Introducing the

Top-Down Approach to Computer
Programming," SIGCSE Bulletin,
#11-1 (Feb. 1979174. 113-117.

17. Solomon, Cynthia J. and Seymour
Papert, "A Case Study of a
Young Child Doing Turtle
Graphics in LOGO," MIT,
Artificial Intelligence Memo
375 (July 1976).

18. Watt, Daniel R., 'A Comparison of
the Problem - Solving Styles of
Two Students Learning LOGO: A
Computer Language for Child-
ren," Proceedings of the
National EducaticTarini'euting
U5EfiFiFice7-11707-pp. 255-260.

19. Weinberg, Gerald H., The Psychology
of Computer Promammjag,
RFw York: Van Nostrand
Reinhold, 1971.

2 :7S

Computer Games in Instruction 265

266 NECC 1980

STRUCTURED GAMING: PLAY AND WORK IN HIGH SCHOOL COMPUTER SCIENCE

J. M. Moshill, G. W. Amann
(The University of Tennessee)

W. E. Baird
(West High School)

Knoxville, Tennessee

PROLOGUE
Question 1: When, is a computer,gare not a
game? When is it an ok class-activity?
Question 2: So what's wrong with games,
anyway?
Exasperated answer to 2:
Students won't work on programs when they
have access to games. Games are fin and
programs are work.
Reflective answer to 2:

The usual computer games are either
hand-eye (with occasionally some small ,

amount of brain-) coordination contests,
such as "Lunar Lander," or fantasy-land,
interactive do-it-yourself storybooks such
as "Dungeons and Dragons.* These activi-
ties take part in the allure of broadcast
television: namely, they involve the
student kinetically and emotionally, but
they do not have a cumulative component.
You can walk in on television (or computer
games like "PONG" or "SPACE WAR")
anytime; no prerequisities or logical-
deductive skills are required. (For an
excellent exploration of this theme, see
Postman, 1979.)

We cannot call this kind of attention
passive -- observe any kid watching an
action TV show or playing a video game.
Nevertheless the interaction is non-ana-
lytical. It has more in common with
baseball than with reading, more of re-.
cess than of curriculum. No wonder
teachers of computing have game trouble
whenever interactive terminals or micros
become available.

The problem this paper explores is
the development of an introductory cos-
puting curriculum built around a kind of
struc*ured gaming. The computing commu-
nity has begun to understand that care-
fully chosen programming language features
can guide our thought in ways that make
code work across time, that. is, remain
adaptable, comprehensible, repairable.

lualr7
4.4

ThruatiallyeupEortedbytSF Grant
SED-79,-91

We propose that a similar choice of amin
features can foster the development o
logical problem-solving skills, while
retaining the kinetic/esthetic motivational
structure of video games. (We have all
known programming hacks who have made the
game/program connection.) We want to use
midrecomutercolorgmapidestomakeonoputing
more Mtn color crayons and less like
arithrettc.

Having said that much, we will answer
Question 1 and then flesh out our answer
with a description of the curriculum we
are developing.
Question 1: When is a computer game an ok

class activity?
Answers 1) The game must be designed with

a set of concepts and skills in
mind and a plan for how the
game teaches theses

2) The things learned in the acti-
vity must contribute toward a
cumulative body of knowledge,
a toolkit that the student can
perceive and make use of, as
toys and toy-making tools, and

3) The game must be su erseded by
a more interesting, more nter-
active game, chosen with extreme
care to be cnplayabln unless the
student has mastered the skills
taught in the previous lesson/
game.

CHALLENGE
Our mission, in the University of

Tennessee/NSF High School Computer Science
Curriculum Project (HSCS), is to make com-
puter skills available to average students.
Computers may indeed become as ubiquitous
as telephones and televisions, although we
believe that the introduction of another
technology as soporific, captivating, and
anti-thinking as television could be a
major social disaster. M. hope, rather,
that computers will become convivial tools
like the telephones "convivial" means that
their use is determined by the user, not

by some central leastcommon denominator
such as broadcaster. We don't have utopian
ideas as to what future generations will
do with computers. (Who could have pre-
dicted in 1915 what problems we'd have with
automobiles?) We do, however, have a
strong feeling that the question of
whether individuals will be able to program
their computers, or merely ha Programs, s
an open and important questiori. The chal-
lenge, then, is to give every citizen who
can dial the telephone some ability to pro-
gram a computer.
METHOD

This section will be brief; we have
published elsewhere (Aiken, Hughes, MOshell
1980) the nuts and bolts description of
HSCS. We are using a cartoon-animation
software system called RASCAL which runs
as part of UCSD PASCAL on the APPLE
microcomputer. The basic installation
costs about $3200, including a single
floppy disk, color television, and 100
character-per-second printer. Each lesson
in a one - semester (18 week) course consists
of approximately a week of work, divided
into these parts:

Introductory activities
Exploration project
Skill-building project
Buttoning-up activities.

A class consists of about 15 students per
computer (our collaborating schools have
only one APPLE each we hope to try the
curriculum in multi-computer classes later),
Five groups of three students alternate
computer use with planning work using
graph paper and marker pens. The off-line
students ere planning their strategies,
doing hand simulations and observing the
on-line students, fur to graduate to the
next activity, a group must successfully
predict the outcome of an assigned "seed"
(e.g., geometric pattern, algorithm. pro-
gram). The activities develop during 18
weeks from a non-linguistic, color-pattern
process called "quilting" (next section),
through immediate-mode and straight-line-
code entry of TURTLEGRAPHICS (Papert,1970)
commands and the introduction of PASCAL
control structures such as REPEAT...
UNTIL and IF...THEN, to the creation of
cartoon characters and their animation
with complex programs using the RASCAL
animation system. The output is always
color graphics and music; the curriculum
steadily increases its interaction as
students learn how to use the joystick
to control motion. There is always an
underlying lesson about how programs
work. Al. code is in a completely
structured language (PASCAL) and is
taught from the inside out. Only at later
stages do environmental details such as

Computer Games in Instruction 267

declarations become of concern. A PASCAL
interpreter is used which scroUs the
source psgram being executed on the bottom
of the screen (at a controllable rate)
while the program produces its output on
the top part of the screen. A working
system will be on exhibit at NECC2.

We will conclude with fairly detailed
explanatiqn of the first two lessons,
quilting and TURTLEGRAPHICS.
TWO EXAMPLE LESSONS
Lesson ls WM-W.--
Behavioral Objectives: Students should
learn how to insert a disk and start the
system. They will run the Quilt program,
explore its features and limits, and use
it to generate :static and moving color
patterns.
Conce ts: Students will learn the follow-
ng:

1) how to enter an initial pattern of
information into the system which
then controls the repetitive be-
havior of the computer
(Introduction Activities).

2) 116:7; to construct simple experiments
to determine the parameters of the
computer's operation, such as how
many colors it has, how big the
screen is (Exploration Projects) .

3) how to hand simulate a formal pro-
cess of discrete steps to predict
the computer's behavior and under-
stand it(Skill-building Projects).

Resources:
IT-The Quilt program. Students insert

a disk and on the computer.
When the greeting message appears,
thuv type X (execute). The
computer asks EXECUTE WHICH FILE?
The student types QUILT and a re-
turn. QUILT then prints the fol-
lowing message:
THIS PROGRAM LETS YOU DRAW A PIC-
TURE.AND THEN MAKE A 'QUILT' OF IT
BY REPEATING THE PATTERN. TO DRAW:
SET PADDLE 0 FOR A COLOR;
TYPE KEYS ARCUND K TO MOVE THE DOT.

FOR INSTANCE, 'I' MOVES THE DOT
UPWARD.

TYPE 'R' TO SEE THE PATTERN
REPEATED.
TYPE '0' TO HALT THE REPEATING.
TYPE 'C' TO CLEAR THE SCREEN.
TYPE 'Q' TO END THE PROGRAM.
NOW HIT THE RETURN KEY TO BEGIN.
When the student hits the return
key, the following reminder message
remains on the bottom of the
screens
REMINDERS:
KEYS AROUND,MOVEsIstUP,J=LEFT,U=DIAG,
ETC
C) LEAR REPEAT MALT DE REPEAT=
QMSITTETWOUSPROMM

2S9

268 NECC 1980

The game paddle supplied with the
APPLE computer consists of a knob
controlling a computer input; the student
turns it and observes that the dot in the
center of the screen changes color. She
types an experimental sequence of
keystrokes such as LLLI and observes that
the dot moves and leaves a colored trail
shaped like loigure 1. She than tries typing R.
The coseuter immediately reproduces the pattern,
starting where the cursor ins left and finis; the
screen with a periodic pattern. (Since the screen
is waived, when the cursor dot falls offscreen
left, it returns on the right, and similarly for
top-betben.) If you RP:levet the. above seed, you

get Figure 2.
2) Miscellaneous resources: cusbzweede

40x40 graph roper, five or sax sets of
color crayons.

Sequence of Events:
The first day of this lesson consists of

introducing the program and allowing students to
play with it for a few minutes each. They are sent
any with copies of a sheet of exploration pro
jests to be undertaken the awn day. These pro-
jects are carefully ordered by increasing difficulty
so that the first group on the machine will have
sane chance of success, while the second group 411
have to do ,scale planning before getting on the on:-
puter Mile the first group is working) in order
bD succeed. The exploration projects are:
Group 1: 93W many colors are there?

Are they distinct, or are some repeated?
How are you going to be mare?

Group 2: Can you paint witieblack, or is it like
the paintbrueh not touching the painting?
WM high and wide is the screen? How
many colored blocks are there?

Geoup 3: How cony blocks (pixels) per second can
this =cuter draw?

Group 4: Can you fire a pattern (seed) belch, when
run, 411 fill the entire screen with one
color? Whet is the shortest or* you can
f ird?

Group 5: Let's say you were allowed only seven
keystrokes to make your seed. If I stuck
a piece of tape on the screen somewhere,
can you make a seed which will zap a line
through my =irked text? (It might go
around several times; that's ok.)

The second and part of the third days are
spent giving each work group (two or three students)
tea minutes access time to the caqouter, while the
other groups catch or plan. The teacher :roves
about observing, providing hints, and showing
students low to pretend to be the ocmputersusing
graph paper and crayons. We turn the scarcity of
assurer access to our advantage here by requiring
the students to be careful and precise in their
hart-ainulation of the repeat-process in order to
predict :bat their prcgrams will do.

During the third day the teacher deteridnes

which groups have caplets) their tasks and gives
them the next challenge sheet: the skill-building
projects. Since the first groups got easy explor-
ation projects (and finisher] earlier), they are
given tougher skill-building projects. Groups
that haven't figured out their ecplorations by the
middle of the third day are helped to fine the
answer and roved on.

The object of skill-bsilding exercises is to
be able, to accurately predict what a given seed
will do. Two parts are given. In pert I, each
group is given a different list of three or four
seeds and asked to hand-sisolate the result and
then to try it. when they can do this assignment
correctly, they move to part II. Here, the work-
sheet gives them the finished pattern, and they are
to find the seed that creates it. In this exer-
cise, the gang really Incases like a game. Moving
patterns are tensible, for instance, if the seed
goes basic over itself in the background color before
continuing. Again, because the students are having
to hand-simulate durino their off-machine time,
skills are being built ladle students are planning
=ewes. The teacher nqa-only give very short
machine wows times during this phase, requiring
that a filled-out crayon simulation be presented as
a ticket to allow its being tried on the ccmputer.

On the fifth day the class is given over to a
show-and-tell, in which each group explains km it
found the mow to its exploration question and
shows off the most interesting seed. Polaroid
photos or slides of each group's best pattern are
taken for use in the et-of-course Parents' Day
ed-Abit.Lesson 2: ACS
Behavioral Objectives: Students will learn how to
control the screen tte-tle via individual amends
no the TWERP progran. They will explore the fea-
tures of =ME:GRAPHICS and of teSTE, a neusic-output
function.
Concepts: Students will learn the folleArsg:

1) the idea of using cateends that are weird*
to get desired output. They should under-
stand that connaais consist of operators
(verbs) and (nouns or adjectives).

2) the conceptscperirent construction
and hand-simulation (which are introduced
by Lesson I and reinforced here).

Resources:
nINTERP, the PASCAL interpreter program.

MEM will be used throoehout the Munn.
, In this lesson, the insediate :rode will be

used; as each command is entered it is
executed. The canaries used this week
(listed below in Day 1 Evens) control the
position of an imaginary screen turtle
which leaves a colored trail as it moves.
A musicetaking canard is also explored.

2) Six small protractors.
3) Six pre-made, but unmarked, cardboard

rulers long enough to reach diagonally
across the Te screen.

Sequence of Events:
bo the zirst day, the teacher shows students

2S3 4.

how to start INIERP and enter the immediate mode,
then types the following six lines, pausing after
each while the Class observes the effect:

PILISCFEEN (HIES)
FILISCSEEN(BLACK)
PBCOLORHereret
mow (20)
Itge (50)
HOVE (20)
These contaands are written on the blacklaard.

one sore emend is added, AVVE'IO(20,20), to be
used if the line being drawn goes off the screen.
Students are allowed two minutes each on the con -

pater to try these cowards. The concept of can -
mends (operator, operands) is briefly explained.

Fbur discovery questions are then given to the
class:

I) *at is the size of the screen? Where is
the center?

2) Had Bony angles are there? What do nega-
tive angles do?

3) How many colors are there? What are they?
What happens when various eeneolors and
tee/wound colors are used together?

4) Try the camend BYTE(nuater, timber) . What
does it do? Oat is the effect changing
the first number? The second number? What
are the legal ranges of_each Tarter?

Each group is given responsibility for one question.
Tie groups get question 4.

Cat the second day, work groups attempt to
ewer their questions. They are given a descrip-
tion of the concept of sheeting a dot, which they
may try when they have answered their questions.
(They need those answers to sheet the dot.)

'lb shoot a dot, a piece of colored tape is
stuck to the television. The students try to pass
a turtle track through the cot. Doing it with one
TURN and one WIVE is a successful shot. The teacher
will provide protractors and (blank) rulers and
will suggest that students make television oilers,
but without telling them lame

After having deronstated the ability to shoot
a fixed det on the screen (beginning of Day 3), the
team will graduate to production geometric figures
of the Collaring types increasing in difficultyt

1) square
2) rectangle
3) isosceles right triangle
4) equilateral triangle
5) rectangle with diagonals
6) trapezoid
7) 5-point star
B) Star of David
9) "naked dandelion" (radial lines from a

cam= point)
10) a short Mlle, in block letters
The first five designs above will be attempted

by the teens on Day 3, with the first teem to the
tezminal getting design 1, the second tarn getting
design 2 and working first at their desks with graph
paper, protrictors and rulers, and so on through all
the teens. On Day 4 or after they have mastered all
of the first dive designs, the teens will tackle
designer 6e10. on Day 5, the class as individuals

Computer Games in Instruction 269

will he given IURITEGRAFH/CS-oarmands to produce a
design at abet* level S above and asked to draw the
figure on graph paper as it would appear when drawn
by IVICETAWAPHICe.
THE Ox IT& STYLE OF THE HSCS CURRICUILlet

At idusTeint-the reada may ask, lefty do you
call these activities games at all? What have your
lessons in cannon with Blackjack or lunar Lander?

The fact that unifies Quilting, TURTLEGRAPHICE,
and more traditional interactive gazes is that they
sell thenselves. No one has to canpel students to
do their assignments.

The point at which our curriculum diverges
fran closed genes is that the only real opponent in
traditional games is a pseudo - random amber gener-
ator or perhaps another Inman. In a cognitive game
the onaenent is the rich structure of our own
ignorance. The excitenent of being able to create
pattern and order is as old as the wall paintings
in the caves of France. It is an essentially
hewn activity, one at which all players can win.
It is also a meta-gene; in which an infinite number
of specific games like shoot-the-dot can be
expressed. The relationship between cognitive
genes and traditional genes is analogous to that
between a set of blocks and a preassembled toy. A
different order of learning becomes possible.
THE DEEM STILE C*? THE HSCS CURRICUILI4

The rundenetwardesign princWre have fol-
lowed is to attewpt bomake.each lesson augment the
students skills in three areas: discovery, con-
trol, and design. We elide,/ students to play with
the* system as each new feature is introduced, but
the? have discovery questions Onee answers they
seek as they mass around in more or less structured
ways. They need to find the answers to be allowed
access to the next level of the system. Students
develop discovery skills by experimentally answer-
ing questions nee "what does this cameed do?"

Ile ask students to undertake specific chal-
lenge, such as the shoot -tine -dot game, to develop
their ability to control the receputer by selecting
the correct cartrand and pzovieing correct values
for its operands. Their understanding of the system
is built by simulation exercises, which alive thee
to predict the behavior of a catmand and ttete to
choose the right command.

Later in the sweeter, students will begin
writing prcgrantsr but even at early stages there is
the impetus to desi input sequences to produce
the desired pate. Students must be able to pro-
luoe a sequence of cayman& which produces the pre-
natal output on first submission in order to
graduate to the next level of the system.

Another principle we have followed can be sum-
med up in the phrase "design from the first experi-
ence." Mt believe that =touter science (or any-
thing else) should be taught firm the inside out.
That is, first experiences mist incorporate the
heart of the trebter at hand, with as little ettrai.
nexus matter as rossielc. For instance,
teaches the frrlamental core of the computing
experiences in zepetitiotrif a =trolled process
there is greet weer, The Quilting lesson is taught
without introducing a word of jargon, pi vices

2S:3

270 NECC 1980

assigements, or complex camend sequences. alin-
ing, and its fundamental message, can be taught to
illiterates. The second lesson similarly teaches
the relationship between operands, operators, and
results. Only after students have firm operational
skill with a given tool, do we introduce terminol-
ogy, written reference materials, and the ultimately
necessary environmental details such as data
declarations and control statements.

This paper has addressed the important ques-
tion of "Om Vans" microcomputer education? We
are excited by the prospect of transforming gaming,
a traditional problem area for computing teachers,
into one of their primary tools.

Ihe authors aclarmaedge and appreciate the
assistance of their collaborators: R. M. Aiken,
C. E. Hughes, C. R. Gregory and J. A. Ross
(University of Tennessee); L. Demarotta (H. C.
Maynard High School); E. Miner (Alcoa High School).

REFERENCES

Aiken, R. M., Hughes, C. E., and Mbsbell, J. M.,
"Computer Science Curriculum for High School
Students," Proceedings Prbi/SIOCSE Conference,
Kansas City, Montana, February 25, 1980.
Papert, S., "Teaching Children Thinking," Proceed-
ings WW World Congress on Computers and Education,
Preswerdam, 1970.

Postmen, Neil, "The First CUrriculons Comparing
School and Television," Phi Delta Kappan, 61:3,
November 1979.

Figure 1: The Seed Pattern

.. ;',1-.
-i- .1

- ., .--:-.;-.. -, .r , I

. o 1
3-42:-.--

, --r-T---.--111-1 ,l.e.I-1- , I'l ""."11-1-1-1- r r --1--1
-; +-Ealmi-4

417'1- --i-7 17:::-.-t-rrrrizi-r.---i-n-r.
' :- :- I l I .1-- i-

,.,..!_rt.".
'frri-r 14" +1:1-1 : 111
11:0:1T 1- 4-i-

;

13:1-irt

if

I I

H

Figure 2: The Repeated Pattern

2 (%-

Computer Games in Instruction 271

TAPPING THE APPEAL OF
GAMES IN INSTRUCTION

Peter 0. McVay
Educational Services

Digital Equipment Corporation
12 Crosby Drive

Bedford, MA 01730
Tel. 617-27S-3000 Ext. 2217

Games and the Computer

Around the time when computers began
appearing in classrooms and ceased being
a novelty, the theory arose that the
ideal way of teaching with a computer
was to put instruction in the form of a
game. Actually, this teaching method
has been around for years; pioneers in
the Dewey teaching method used many
games in their curriculum, and a number
of Montessori techniques also involve
games.

Probably one reason the game idea so
caught and held the attention of educa-
tors with computers was the mania for
computer games in general. Really bril-
liant students (and instructors) spent
an inordinate amount of time designing
and programming new games. Other in-
structors and students spent a huge
amount of time playing these games. Why
fight it? Design instruction to take
advantage of the built-in motivation;
there is a pool of course developers
anxious to develop instruction (i.e.,
games) and a large audience of enthusi-
astic students (players).

What Happened: Expectations Denied

With a few exceptions, the results
were notably disappointing. Problems
arose on two fronts when games were made
an integral part of computer-aided in-
struction:

The game quickly took over
the instruction and frequeAtly
became more important than the
content of the lesson.
Language-oriented, subjects

required a huge amount of pro-
gramming effort to bend to an

effective computer game. Human
languages and thought processes
simply are not easily trans-
ferred to a computer, except on
the simplest level. (Note the
word "easily " - -there are bril-
liant exceptions to the above
statement.)

The pendulum recently has appeared
to swing in the opposite direction:
games are now anathema and viewed as a
frivolous pastime at best. But this
approach ignores that games are immense-
ly popular and have a tremendous at-
traction for game players and designers
both. This paper proposes to extract
some of the good points about games and
then apply them to real computer-aided
instruction.

Salvaging Valuable Parts

What points are worth saving? What
can games do that other methods of in-
struction do not do as well? The obser-
vable characteristics of computer games
(and computer game players) are:

A high level of motivation.
Game players and designers
spend hours working at the
terminal.
Clear and consistent goals.

All true games have a clear
ending in mind. How much in-
struction becomes bogged down
because of muddy goals and
objectives?
A high amount of player in-

teraction. Game players are
doing something: they are
manipulating the terminal, the
computer, and the game struc-
ture itself.

284

272 NECC 1980

Maximum choices for the Play-
er. Studies of children's toys
'Rive shown that the flashiest
toy is not the one that is
played with most often. The
toy that gets the most atten-
tion is the simplest one that
allows the child to use imagi-
nation. The most popular games
(on or off the computer) are
those with the simplest cC1.-

structs and widest range of
choices.
Simplicity. How much in-

struction fails because the
starting sequence for the stu-
dent is too complex? Complex-
ity in itself is not the hor-
ror--the problem is that no one
bothers to explain all the de-
tails to the user. Most good
games come with very detailed
instructions. (Note: why does
the programmer who balks at
providing documentation churn
out reams of instructions for
the game he just designed?)
Creativity. Many of the as-

pects of computer games-- wheth-
er they are traditional or in-
vented by the user--have highly
creative parts. An axiom among
game designers that is fre-
quently used to justify their
interest in games is that some
of the most highly creative
ideas and programs are tirst
developed in a gene.

Applied Gaming Principles

How can the principles from games be
applied to instruction? It turns out
that the items that make games so ap-
pealing are intertwined, and by incor-
porating several facets of games into
genuine instruction, several objectives
can be achieved at once (e.g., high mc-
tivation, strong interest,. good inter-
action).

The remainder of this paper is a
checklist of items to look for in any
computer-aided instruction. These are
items which have been found to most re-
liably, increase the quality of computer
instruction and, it is hoped,' the skills
of students taking the course. An im-
portant point about this list is that it
Is not meant to be exhaustive--it is a
start. Persons wanting to use the ques-
tions as a checklist may also have their
own principles and procedures to add to
the list.

Questions for the Developer

Is the method of presentation con-
sistent with the material? The best
computer games require player actions
that fit the total concept of the game.
Players move tokens by giving directions
to the computer in a manner similar to
picking up the piece by hand (for board
games). If the game is a thought-type
game, the player makes decisions that
are consistent with real-world decision
methods. The computer in both instances
is a referee, informing the player of
the consequences of his actions.

Poorly designed instructional games
or simulations use methods of advancing
players (students) that are not related
to real actions. In a number of compu-
ter board games, students race cars,
horses, or other items around a track.
But instructional racing games make the
pieces move around the track by answer-
ing questions. These games are not no-
tably successful because the action is
too slow and because races are not nor-
mally run by answering questions. This
design error occurs because the devel-
oper has inferred that actions that game
players enjoy in ale setting must be
good in all settings. This mistake re-
sults in a product that is neither good
instruction nor a goo'' game. Lesson de-
velopers can avoid this trap by chosing
a presentation method without regard to
the observed popular appeal of a method
in a different setting. A natural, or
consistent, presentation enhances the
appeal of a lesson considerably. If the
subject is math, the game should use ma-
thematics naturally, not as a means of
moving a token. The Minnesota Educa-
tional Computer Consortium has developed
economic models that allow children to
run simulated businesses (lemonade
stands, bicycle factories); both mathe-
matics and economic fundamentals are
taught through these games. English
teachers can use word processors avail-
able on most computers in their clansen.
Students take naturally to word proces-
sors--they enjoy seeing their work
turned out in a professional format.
There are many other examples--the key
is to ensure that the presentation
matches the material.

Is there a large amount of player
interaction? f'requently the charge
rated against television can also be
raised against education: the student
sits and absorbs the material passively.
The lecture format certainly has its
place, and brilliant and stimulating

lecturers are rare individuals that
should be sought after. But computer-
aided education as a lecture or elec-
tronic page-turning format usually does
not rise to these heights--and is also a
bad use of the medium.

An examination of the most popular
games shows a high amount of player in-
teraction. This interaction is not sim-
ply key-pushing; some of the popular
games are also limited to single-key
responses after lengthy actions by the
computer (football, adventure, road-
race). But the player is constantly
thinking -- decisions must be made, paths
chosen, strategies worked out.

Again, an objection will be raised
that the material in education cannot be
adapted to such a lengthy decision-
making format. But an examination of
the actions that students take when
studying shows several possibilities for
increasing the student's participation:

1. 'ath choice. When a stu-
dent Tritairii away from the
classroom, he at least has the
option of choosing which page
or chapter to start on. Why not
include this choice in the com-
puter session?

2. Notes. It is relatively
simple to provide an electron-
ic scratch pad--each student
can be provided with a comment
or note option during the les-
son. At the and of the lesson,
the student can either store
the notes or (if disk space is
limited) take a printout of the
notes away.
3. More inquiry. This does

not mean more questions. In-
quiry can be a form of path-
taking, or an invitation to
speculation. The student
chooses which subject to take
first. Incidentally, this also
answers the frequent question
of the correct order to study
subtopics. The student can
choose the topic and also skip
from topic to topic if neces-
sary. The same material is
eventually covered, but along
paths that the student has cho-
sen.

Is the material creative? One
puzzling problem in computer-aided in-
struction is that the same individuals
that produce ho -hum instruction also are
turning out brilliantly designed games.
Obviously the same effort is not going

Computer Games in Instruction 273

into both projects. This problem is a
management, not a computer, problem.
There can be several reasons for this
dichotomy when it appears:

1. Freedom to experiment and
make errors. If you insist on

-)r-fand perfect instruc-
tion from your developers, that
is exactly what you'll get- -
with all the creativity and or-
iginality of the Saturday-morn-
ing cartoon shows. A perfect
lesson is not necessarily a
good lesson. In fact, lessons
that have incomplete sections
may even be more useful, since
the student must fill in the
missing portions.

2. Appropriate comments at
appropriate times. Kibitzers
seem to abound in educational
development areas. The discus-
sion of approaches and critical
analysis of lessons under dev-
elopment is an important part
of the creative process, but
there are many cases where a
promising bit of instruction
has been discarded because
constructive criticism was
heaped upon the material--be-
fore it was developed and be-
fore advice was requested.
While a developer is writing a
game as a hobby, no one is
leaning over his shoulder.
Leave the developers alone
until there is something to
criticize other than a first
draft.
3. Responsibility. Managers

frequently lick confidence in
the persons working under them,
and hope to avoid errors by
giving very detailed instruc-
tions to the developers. If a
developer is presented with a
cut-and-dried package, there is
little room for a new and crea-
tive approach. For someone to
become truly involved with a
project, she must feel that the
project is at least partly
hers, and must have some in-
volvement with planning. And
responsibility extends down to
some very low levels. In a
language arts project in Nor-
folk, Virginia, the computer
operators were employed to
enter some of the questions
students would be given. They
were asked to use their imagin-

2S

274 NECC 1980

ations when entering the praise
response students would receive
on correct answers. The re-
sults were a series of ques-
tions with highly original re-
sponses that the students could
relate to. The operators also
took a personal interest in the
development of the course, and
frequently monitored student
progress and asked to change
Lessons that were not popular.

Is everyone using the material en-
thusiastic? Bete is another factor that
is a function of the people involved and
not the computer. 'You WILL be enthusi-
astic:" is obviously an unworkable ap-
proach (but one which is sometimes
tried:). But if everyone involved with
the development of a particular piece of
instruction finds it tedious and diffi-
cult to work with, then perhaps the en-
tire instruction set should be looked
at. If persons who are working in their
subject area find the topic boring, then
what about the students? What is needed
is either a fresh and creative approach
(see above) or a different topic. If a
subject is completely boring, then its
value is open to question. Tepid topics
usually result if the individuals can
see no value in them whatsoever.

Enthusiasm, once engendered, tends
to be catching. Enthusiasm most fre-
quently stems from freedom and responsi-
bility--two subjects discussed under
creativity and maximum choices, above.
Freedom and responsibility extend to all
levels: supervisors, developers, tea-
chers, and students. Teachers and ad-
ministrators tend to be wary Of allowing
students to take part in the teaching
process, and for good reason: student
freedom is difficult to manage and con-
trol. Real participation in their own
education is also a novel idea for most
students; they have been passive consum-
ers of instruction for so long that they
may not be able to handle such a respon-
sibility without careful pre-training.
But the results can be spectacular.

Here are some areas in the instruc-
tional process where personnel at all
level: can directly participate:

1. Level of instruction. Too
hard? Too easy? Should it be
presented to a different grade
level or in a different subject
area?

2. Method of presentation. Is
the format (question and ans-
wer, screen display, essay and
choice) appropriate for the
subject?
3. Effectiveness. Does the

content of the lesson stay with
the student?
4. Correctness. Is the con-

tent free of grammar, syntax,
spelling and content errors?
(Here is an area where younger
students delight in showing
off. If you choose to release
them on this one, prepare for
an avalanche.)
5. Additional lessons. What

other material shodIrle added
or changed?

6. Design of instruction it-
self. Developers can work with
Mir students, or students who
have just completed the course,
to redesign and evaluate the
instruction.

Is the course simple and direct?
One fault of some of the indiVre
courses is that they tend to be immense-
ly complex. While at some time in the
future humans may learn to think recur-
sively and in complex algorithmic pat-
terns analogous to the machines they
use, presently people still think in the
same old way. Presenting highly complex
study structures, maps, objective
fields, and learning paths can set up a
forest that quickly discourages even the
most determined students.

If the structure is too complex,
there are three solutions:

1. Check the presentation. In
complex structures, a simple,
direct path can frequently be
found in the material.

2. Turn routing over to the
student. If given a list of
tWand objectives, the stu-
dents can make their own
choices of what to study first,
and when.

3. Ride some of the complex-
ilx. taiTrUistructure may
be-due to the enthusiasm of the
developers for marvelous struc-
ture. A lot of the design can
be safely hidden by having the
computer do the routing work.

Great advances have been made in the
use of computers in classrooms in the
past few years, and the pace of develop-
sent and discovery increases with each

2 =,

Computer Games In Instruction 275

new application. The procedures dis-
cussed in this paper are a starting
point for developing better computer-
aided instruction. The key to success-
ful computer-aided instruction, as to
any other form of instruction, is the
people involved in the project. There
is no substitute for a creative, dynam-
ic, and highly qualified individual in
the right position at the right time.
Fortunately, these persons appear to be
available because computer-aided in-
struction has made great gains in recent
years. The continuing analysis of what
constitutes good technique in the use cl
computers will continue this trend.

Computing Curricula

AN EDUCATIONAL PROGRAM IN MEDICAL COMPUTING FOR CLINICIANS AND HEALTH SCIENTISTS

Albert Hybl
Department of Biophysics

(301) 528-7940

James A. Reggie
Department of Neurology &
Department of Computer Science
(301) 528.6484

UNIVERSITY OF MARYLAND
School of Medicine

Baltimore, Maryland 21201

ABSTRACT

The growing importance of computers in medi-
cine implies that health professionals lacking ru-

dimentery knowledge of their potential use will be
handicapped in the future. In this paper we dis.
cues the content and implementation of a curriculum
in medical bomputing that we have introduced at our
medical school to remedy this problem. In addition
to formal classroom instruction our proves in
chides such innovative features as a demonstration
laboratory for exhibiting computer applications in
medicine, the use of a family of knowledge mange.
sent languages that are designed for computer -
inexperienced clinicians, and the involvement of
interested individuals in ongoing researoh in nor-
puter applications in medicine. Our description of
this curriculum and its implementation should be of
interest to anyone involved in tesohing computer.
inexnerienced individuals about the potential uses
of computers.

INTRODUCTION

In recent years the role of computers in medi-
cal education has been receiving a great deal of
attention. The vast majority of this interest hen
centered on oomputer.aided inatruotion for a wide

range of olinioel and pro.olinical topics (3, 4, 8,
9, 14). At the present time many medical schools
use such autcsated instructional material to
supplement conventional teaching methods.

In this article, however, we will discuss a
complementary aspect of computers in medical educa-
tion: introduoing medical students, prastioing
physicians, end other health-related personnel to
the applications of computers in medicine. Iduoat.
ing individuals in the health professions about

278

medlOal computing has recently been singled out as
an area of great importance that deserves more at -
tentiOn than it hes received (7, 12, 18). Very
little literature has addressed this gojl and there
has been no clear consensus about which aspects of
computer science should be taught to medical stu-
dents and physicians. How this material should be
taught and how it should be introduced into an
already information.dense medical education process
have been given little if any attention.

It is our belief that the growing influence of
computers on medical care makes some familiarity
with their uses and potential important to health
professionals. We have thus designed and imple-
mented a program tc supplement conventional medical
education with instruction on medical computing.
This program has two major OnjnotiVen:

(1) to provide health professionals with a broad
understending of current and potential uses
of computers in medical researoh and clinical
practice; and

(2) tc give health professionals the ability to
directly use available computer reeouroea for
solving clinical and researoh problems.

In this report we begin by out ..ing the con-
tent of a curriculum on computer applications in
blomedisine that we believe achieves these objeo.
Elves. he then disouse how we have approached the
implementation of this program at our institution
and the response it has generated aeons medical
students and fatuity members. Finally, our expert.

*noes are reviewed in the context of other resent .

eadOevors in this,area.

2Q9

A MEDICAL CONFUTING PROGRAM

The content of our medical computing program
reflects our feelings about ghat topics are cur-
rently important or will become so in the future.
03r 00100 of topics is based largely on modioal
(imputing systems that are presently used and a re»
view of recent literature on biomedical computing
research. Our emphasis is on the use of the com.
voter as a tool to accomplish various tasks rather
than the fundamental conoepts of computer science.
The materiel in our program can conveniently be di-
vided into five sections:

O General Concepts
O Soientifio and Laboratory Applications
O Clinical Applioation
O Educational Applications
O Administrative Applications

The section on general oonoepts is tailored to
increase student awareness of the oapabillties of
computers and to provide then with the fundamental
knowledge needed to use a computer. It includes:

O Essentials of interactive Computing* In ord-
er to entourage students to become computer
users, we begin by explaining the mysteries
of account numbers and password*, the tech.
niques for signing on and off, the idiosyn-
crasies of using certain terminal*, the mar-
vels of the executive system, and how to save
data and/or progress in retrievable files.
(Batch processing or programs is disoussed

but not used by students.) .

O Document Prooesaing and Text Editing: These
systems are easy to learn and iamediately
useful to the students. Their mastery faoil-
itates the learning and use of other oomputer
resources.

O General Information Processing: Programming
languages for intonation prooessin4 and for
general problem-solving are surveyed. Guide
lines are presented for selecting an seem-
priate language for various tasks.

O An Overview of Applications: An initial
overview of the range of scientific, labora-
tory, alinioal, and educational application
of computers in medicine is given. This in.
eludes SISOSSSIOO of boil working systems
such as a whole.body CAT scanner; a cranial
CAT seamier; two nuclear scanners; computer-
ised baste solemn research laboratories; the
Q8.2 System for ICU patient data colleetion,
storage, and mitering (at the Maryland
Institute for Emergenoy Medioal Services); a
partially implemented PROM'S system (17) (at
the Baltimore Cancer Research Center); and

the Stroke Database Center (located adjacent
to the Neurology Mari, this unit serves as an
entry point to the sultioenter Nations'
Strike Database OM.

Computing Curricula 277

O Social and Legal Issues: A discussion or the
present and future effects of computers on
the practice of medicine is given ano
eludes material on ethical issues, standard-
ization, and the economics of medical comput-
ing. The Privaoy Act of 1974 (PL 93-579),
the Federal Brooks Bill (FL 89-306), and fed-
eral information processing standards are
examined.

The section on scientific and laboratory ap-
plications contains the following material:

I Real-Time Instrumentation: Configurations of
microprocessors and minicomputers for data
acquisition ranging from stand-alone dedi-
cated facilities to hierarchical computer
networks are discussed. Techniques for col-
lecting and communicating data to the oosput-

er are stressed.

O Graphics: The use of terminals with graphics
capabilities and plotting systems is ex-
plored. Their ability to extend the effec-
tive use of computer resources by improving
the presentation of certain types of informa-

tion is covered. The plotting of results
from the digital simulation of a biophysical
system is used as an example of the suppor-
tive role of graphics.

O image Prooessing: The role of computers in
various clinical scanning systems (e.g., CAT,
nuclear) is discussed. Attention is given to
the tuture..pntential of image analysis in the
laboratory (e.g., ohromoscse analysis, cell
oountins).

Statistical Analysis of Dates The basic cm-
oepts of data analysis are introduoed and
available packages for statistical processing
of data are desoribed (0.g., SPSS, MOP).
Example applications :mob as epidesiologic
data analysis Sr. provided.

The seotion on clinical applications covers
topics dealing with the use of computers in patient
oarc and clinical research including*

O The User-Computer interface: The use of com-
puters for obtaining s patient's history and
the problems of making computer facilities
direotly usable by physicians are explored.
A brief introduction to natural language
processing by aaohine is provided.

O Medics' Information Systems: This inoludes
the use of registries, data bases, and hospi-
tal information system for storing and re-
trieving manic:al records for use in patient
care and clinical researoh. Aspects of se
ourity and integrity ere examined in detail.
The oonoept of a query language is introduced
and ourrently available systems are reviewod

(e.g., COSTAR, PROMS, ARAMIS).

290

278 NECC 1980

Computer-Assisted Medical Decision-Making:
Tne potential uses of computers for assisting
physicians with diagnosis and patient manage»
sent are discussed. Concepts of knowledge
representation and alternative inference
methods (s.g., statistical pattern classifi-
cation, production rule systems, cognitive
models) are covered.

The section on educational applications covers
material relating to any aspect of the health pro-
fessional's training. It includes:

O Computer-Aided Instructions The available
systems for computer -aided instruction (e.g.,
PLATO, ASET, MEN) are reviewed and informa»
tion on how to author suitable lessons is
presented.

O Education in Medical Computing:. The atti-
tudes of health professionals toward using
the computer for medical applications are
explored. The concept of a curriculum on
medical computing and a survey of existing or
proposed programs are presented.

Referent:. Systemss Computerized literature
searches (e.g., MEDL1NE) and more advanced
medical knowledge bases are described.

The section on admiestrative applications
surveys the use of computers in hospitals end phy»
sician offices for scheduling, accounting, analysis
of polioy-related issues, and other related tasks.

CURRICULUM IMPLEMENTATION

Currently we have implemented formal course-
work that encompasses most of the material outlined
above. This coursework began with only a single
one»credit minimester course that covered essen-
tially all of the material listed above at a fairly
euperfioial level. We have recently added a second
one-credit @animater course and divided the ma-
terial between the two courses permitting it to be
presented in greater (loath. Although both courses
begin brfatiliarizing students with the essential
elements of interactive computing, they are largely
complementary in what they cover. One course ad-
dresses general concepts, scientific and laboratory
applications, educational applications, and ad-
ministrative applications. The other course Con-
centrates on clinical applications. Both courses
Ore offered twine a year and are taught in a coor-
dinated fashion. Students are permitted and en-
couraged to take both courses.

Since biomedical computing has not been gener-
ally recognized as pert of the medical curriculum,
our approach has been to gradually introduce this;
material into the medical school program. lie feel

that the development and evolution of our program
has profited from an incremental implementation.
The gradually increasing amount of ooursework ap-
propriately parallels the amount of computer use by

the medical community.

To maximize the student's experience, we nave
adopted a teaching approach that uses several
different instructional methods. Much of the ma-
terial is presented as formal lectures that are
complemented by related reading assignments from

the current literature. The use of lectures and
reading assignments allows us to cover the wide
range of concepts outlined above in the brief time
available. However, to give mediCal-students a
more intimate acquaintance with the impact of the
computer on health care and medical research, we
have supplemented the traditional teaching approach
in three ways.

First, students are made cognizant of the di-
versity of applications through tours to on-campus
facilities where dedtcated computers are in active
use (the sites are listed above under "An Overview

of Applications"). These visits effectively empha-
size the present role of computers in the health
professions and contribute to student motivation to

learn more about biomedical computing.

Tne second way we are supplementing classroom
teaching is through the development of a laboratory
for the demonstration of applications of computers
to specific research and to clinical and education-
al problems that are not currently in day -to-day
use at our hospital. EKO analysis (currently being
implemented) is especially suitable for demonstrat-
ing the major components of laboratory computing:
data acquisition (analog - digital signal process»
ing), feature extraction (R -wave recognition, ONST
classification, power spectrum analysis), and
decision- making (presence or absence of myocardial
infarction). Several computer-aided decision-
making systems are complete (e.g., diagnosis of
thyroid disorders and stroke; prediction of outcome
following cardiac arrest) and are used to illus-
trate the current level of state-of-the-art medical
decision support systems. Feedback from medical
students and physicians is useful for guiding the

development of the experimental systems that are
being demonstrated.

The third aspect of our instructional approac:

involves hands-on experience using the computer fa-
cilities at our university. In one of the mini -

wester courses students are expected to use the
Document Processing System to prepare a critique of
a current journal article of their choloe. The
students are also given projects involving digital
simulation, computer graphics, general problem
solving, and using statistical packages. In the
other course that covers mainly clinical applica-
tions, students are asked to develop two small
computer -aided deoision.making systems using a fan
ily of knowledge management languages designed for
use by computer - inexperienced individuals (15).
The systems supporting these languages provide a
oomplete computer -aided decision - making system when
given a description of the problem to be solved and
tha relevant knowledge noeded to solve it. Dy

Ins the computer for these projects students are

able to learn directly about the capabilities and
limitations of the computer for assisting them with
a wide range of tasks.

At the present time our elective minimestar
courses are reaching about 5 10% of the freshman

and sophomore *lasses. Students taking these

courses have a wide range-of ccaputing backgrounds,
varying from essentially no previous computer
science to an occasional student with an undergrad-
uate degree in a related field (e.g. biomedical
engineering). The variety of ihstruotional ap-
proaches used has been fairly successful in inking
the material presented understandable to cosputer
inexperienced students. At the sue time the broad
scope of the material has provided a challenge to

even the most advanced students. Student evalua-
tions of the courses implemented so far have been
essentially positiv4 other faculty umbers and
u niversity administrators have begun to take an
interest in the program.

DISCUSSION

Previously proposed or implemented programs
for education in medioal =outing fell primarily
into two ostegories. First, and most common, are
those representing complete curricula that consist
of interdisciplinary studies in medicine and com-
puter science. These ourrioula are designed to
produce individuals who are specialists in biomedi-
cal computing and thus typioally had to graduate
degrees. Several examples of such ourricula have
been described (1, 6, 13, 19) and a resent review
of relevant progress in the Federal Republio of
Oermsny has addressed this issue (10).

The seoond category of educational progress in
medical oomputing include those consisting of only
a single *Ours* designed to supplement the educa-
tion of health professionals (e.g., nurses, plume-
elate). For the soot part, this courses have coo-
*red a very limited range of topics (2, 5, 16).

The medical computing ourriculum that we have
described ih this report lies in between the two
different oetegorles outlined above. On the one
band, it is designed to supplement the traditional
educational experience of medical students and oth-
er health professional' stellar to the single
course programs. On the other hand, it consiats of
more than a single course and oovers a wider range
of topic". The depth to whioh these topics are
oovered is gradually increasing es the available
oouraework 'woes's.

In this report we have attempted tc desoribe

n ot only what the content of a medical °eluting
currioulus should be, but also how it night be
implemented within the constraints of the tradi.

medioal school experience. In particular,
we have presented our belief ih the need for an
incremental implementation and an argument for
supplementing oomventional lecture material with

Computing Curricula 279

hands -On computer experience, visits to relevant
facilities, and the use of a demonstration

laboratory.

Our present plan is to continue the evolution
of our minisester elective program through addi-
tional courses and by instituting a more formal
evaluation of their success. The demonstration
laboratory needs further work; we need to develop
and acquire additional software and hardware.
Long-range goals include the establishment of medi-

cal student externships in advanced topics in medi-
cal computing, integration of at least some form of
required instruction on biomedical computer appli-
cations into the standard medical ourriculum, and
the creation of a continuing medical education
course to reach practicing physicians.

Atanaldikilltlitat he thank the Departments of
Diagnostic Radiology, Pharmacology and Experimental
Therapeutics, and Radiation Therapy, the Maryland
institute for :urgency Medical Services, and the
Stroke Databank for graciously accommodating our
class tours of their facilities. Computer time for
this project was supported in full by the Computer
Science Center of the University of Maryland. Dr.

Reggie gratefully ackLooledges support for this
work from an NIB Teacher-Investigator Development
Award (5 KO7 NS 00349).

REFERENCES

1. Ackerman, L. V. & Harris, D. K. (1975).
rohitecture for a Graduate Level
Educations/ Program in the Area of Computer
Systems in Nedlotne,wAuggproopentwol szi
Magma Lansaw cont*ranat VP 765468'

1. Buokwell, L. J. (1979). *Education of Health
Care Students to Acoept and Use the

Cominutar, ItHOgullnii Set Ina 3tst., 1280111111
Soimakoz 1881liaLlos An Manisa Sam

edited by Dunn, R. A., 206-209. Nov York*
IBEB.

3. Dora, J. G, Ne;4an, A., Nasmond, V. E. 6
Haynie, C. (1978). "Computer-sided
Instruotion in Clinical Neurology,* journal

sitilesilaalignaatia.., 23(8): 693.

4. Deland, E. C. (1978). IducgatiggIgghgalggg
An AIWA &WM llibioAtutog New !oft: Plenum
Press.

5. Dumas, B. P. (1979). *A Computing Course for
Pharmacists,* lamunliana sit ant .3rsL.
Zionntan an Smut= laalinattaa jii Salm/
SAKI, edited by Dunn, R. A., 210.213. New
Yorks IEEE.

292

280 NECC 1980

6. Duncan, N. A., Austing, R. H, Katz, S.,
Pengov, M. E. & Wasserman, A. I. (1978).
"Health Computing: Curriculum for an Emerging
Profession, Report of the ACM Curriculum
Committee on Health Computing Education,"

Pr dinar of Ing eGli 1.921 &liana
Conference, 277.285. New York: A.M.

7. Duncan, K. A. (1979). "Educational Programs
for Health Care Computing," Prooeedinen sit

the 3rd. =min an Daunt= lantiantina In
gattratfarg, edited by Dunn, R. A., 204-205.
New York: IEEE.

8. Halverson, J. D. & Ballinger, W. F. (1978).
" Computer- Assisted Instruction in Surgery,"
Surgery, 81(6): 633-638.

9. Kenny, G. N. & Schmulian, C. (1979).
"Computer-Assisted Learning In the Teaching

of Anaesthesia," inalabgaii, 352): 159-162.

10. Kocppe, P. (1977). "Education in Medical
Informatics in the Federal Republic of

Germany," of Infarnalina In Mining,
16(3): 160-167.

11. Kunitz, S. C., Havekost, C. L. & Gross, C. R.

(1979). "Pilot Data Bank Networks for
Neurological Disorders," prooeedluna slum

IYERoilum an raw= Anginal= In
Medical fare, edited by Dunn, H. A., 793-797.
New York: IEEE.

12. Levy, A. R. (1977). "Is Informatics a Basic
Medical Science?" Yroceedlnea.MC1101=2.7..
edited by Shires, D. B. & Wolf, H., 979-981.
New York: North Holland.

13. Levy, A. H. & Chen, T. T. (1977). "Plana for
a Program in Medical Information Science,"

Erstantginant 1221 Intel CsinuLtr.
Conference, 46: 321-325.

14. Madsen, B. W. & Bell, R. C. (1977). "The
Delopment of a Computer - Assisted
Instruction and Assessment System in
Phareacology,"Mdicalsdueation, 11(1): 12 -
20.

15. Reggie, J. A. (1980). "A Domain-Independent
System for Developing Knowledge Bases,"

Iracanslinna Ord.] Wang Sanatanne
af Ma amain And= lac faunatntlana
Malin of latsaLlinannt, victories B.O.'
Canada. (in press).

16. Rowley, B. A. (1979). "Computer Medioine
Educational Program for Medical Students and

Others," Proceeding ithi 3Eg, $ ignaly. an
Samna Anoliettian In Mina am edited
by Dunn, M. A., 214.216. New York: IEEE.

17. Schultz, J. R. & Davis, L. (1979). "The

Technology of PROM1S," ISSE/tooeedIngn,
61(9): 1237-1244.

18. Shannon, R. H. & Duncan, K. A. (1978). "Why
a Curriculum in Health Computing?"
hsasslinta of Ihn Ardi 142 liatinna
SPererena, 273-276. New York: ACM.

19. Wasserman, A. I. (1979). "Educational
Programs in Medical Computing Their Basis
and Implementation," hstnesunna,g,m3rg,
Asonalui fagot= Andinatinn In Medical
Slign, edited by Dunn, R. A., 217-222. New
York: IEEE.

2° r)

A SECONDARY LEVEL
CURRICULUM IN
SYSTEM DYNAMICS

Nancy Roberts
Lesley College

Graduate School of Education
9 Mellen Street

Cambridge NA 02138
617-547-8844

Ralph N. Deal
Chemistry Department
Kalamazoo College

Kalamazoo MI 49007
616-393-9452

SYSTEMS THINKING IN EDUCATION

For quite some time, the influence
of science on society and education bus
been primarily reductionist, seeking to
understand phenomena by detailed study
of smaller and smaller parts. Over-
emphasis in this direction has led to a
separation of allied wciences like physics
and chemistry. "Learning more and more
about less and less" (Odum, p.9), as one
critic described reductionism, has taken
place with almost the complete absence
of a movement in the opposite direction
to integrate knowledge. Education tends
to follow the pattern of parts within
parts. Knowledge is divided into dis-
ciplines, and disciplines are further
divided into subjects. The student is
seldom exposed to materials which seek to_
integrate the various disciplines and
subjects.

Education ar well as the everyday
world of social and economic analysis has
a pressing need for synthesis and holism.
The systems approach seeks to understand
how parts fit together to form a whole
that functions for a common purpose. It
Is in the world around us that most
students will be making decisions for the
rest of their lives. Explicitly under
standing the nature of these systems
from a structural and a behavioral point
of view constitutes a most relevant and
useful education.

THE APPROACH: SYSTEM DYNAMICS

System dynamics is a method for under-
standing and managing complex social systems.
It is built on traditional management (inferm
motion, experience, end judgment) and feed-
back theory or cybernetics (principles of

Computing Curricula 281

structure and selection of information).
Mathematical models of varying degrees of
complexity are built to reflect the system
out of which a problem grows. Computer
simulation is used because behavior implic-
it in the structure of complex systems is
too involved to be solved by direct math-
ematical methods. Model building and com-
puter simulation is therefore an integral
part of the system dynamics problem-solving
approach.

System dynamics starts from the pree
tical world of observation and experience.
It does not begin with abstract theory nor
is it restricted to the limited information
available in numerical form. Instead it
uses the descriptive knowledge of the oper-
ating arena about structure, along with
available experience about decision. making.
Such input* are augmented. where possible by
wrLtten description, theory, and numerical
data. Feedback principlee are used to
select and filter the information that gives
the structure and numerical values.

System
when Professor Jay W. Forrester of UIT pub»
lishe :ta 6:Industrial

1961

field of system dynamics broadened in its
applications, it also broadened in its
student audience. Initially taught as a
graduate level course at MIT, it has spread
to the undergraduate curriculum in many
universities. In 1975, ae a dissertation
project, Roberts introduced the basic con-
cepts to fifth and sixth grade students
(1978). The evidence that fifth and sixth
grade students could understand and apply
these basic concepts lad to the development
of the warrant secondary level curriculum
project being funded by the Office of
Education. The project is based at Lesley

294

282 NECC 1980

College Graduate School of Education,
Cambridge, Massachusetts, under the
direction of Nancy Roberts.

A SECONDARY LEVEL CURRICULUM ZN SYSTEM
DYNAMICS

The current curriculum development
group is writing and pilot testing a set
of six self-teaching, introductory learning
packages. This material will make it possi-
ble for a teacher in any discipline to
introduce model building and computer
simulation as a ptJblem-solving method,

The titles of the six learning
packages are:

I. Basic Concepts: Dynamic
Problems, Systems and Models

II. Structure of - Feedback Systems
XII. Graphing and Analyzing the

Behavior of Feedback Systems
IV. Understanding Dynamic Problems
V. Introduction to Simulation

VI. Formulating and Analyzing
Simulation Models

An overview of the content of each
learning package,follows.

I. Basic Concepts: Dynamic Problems,
Systems, and Models

Embarking on a course of study in
system dynamics, students need to under,
stand the basic concepts that underlie
the field. Three concepts are central;
the focus is on dynamic problems; the
intent is to consider the whole system
of interacting parts from which a problem
arises; and models are explicitly employed
to carry out the analyses. Bach of these
concepts is explored briefly in learning
packago I to provide a foundation for the
study of feedback systems which follows.

A problem is dynamic if it changes
over time. Urban crime rates, for example,
rise; the economy cycles, as do pendulums
and people's feelings of depression and
elation; central city populations decline,
and so do reserves of natural resources:

A system is defined as a collection
of parts operating together for a common
purpose, but the concept is sometimes
better left undefined to be inferred frog;
examples. The notion should connote
complexity, but it should also suggest
a wholeness of perspective and the 'feeling
that the whole is greater than the sum of
its parts.

A model is a representation»usually
a simplification--of some slice of reality.
Pictures, verbal descriptions, graphs, sets
of equations, and laws are models. Think.
Jug can be characterized as the manipula.-
tion of mental models; the real system is
never in one's head. Such a concept may
seem too generalized to be useful, but

11

realizing the central role models play in
our thinking (especially in the scientific
method) allows asking the, proper question-
not whether to develop a model, but what
kind of model is most helpful for a given
purpose.

System dynamics helps us to under..
stand problems arising in dynamic systems,
first by making our mental models explicit,
second by incorporating into them feedback
relationships (learning packages If, III,
and IV of the curriculum), and third by
providing means for developing them into
unambiguous mathematical models (learning
packages V and VI) when the complexities
become too great for mental models to
handle.

II.Stucture of Feedback Systems
This part of the sequence introduces

a way of thinking holistically abort
cause and effect. The principal tool
employed to analyze a system is the causal,.
loop d.agram. Cause-and-effect relation-
ships are symbolized with arrows, forming
chains of causal links. Loops result when
some or all of these chains return to
their starting points. These loops of
causal influences are called feedback
loops; they are the central focus and
foundation of system dynamics.

Causal»loOp diagrams are visual
models of feedback systems. In part
of the curriculum they are used in a goner
ally descriptive way to summarize the com-
plex interactions in a variety of stories,
problems, and systems with which the stu-
dent is fel:tiller. The following is one of
the storiea from this learning package
followed by the possible csusalrloop die.
grams that students might develop.

MS OIL CRIS2S

2():;

One aspect of the oil crisis, as
explained by an economist, was the starting
of a vicious circle. This vicious circle
was begun by agreements made by the Arab
oil-producing countries in 1971 called the
Teheran and Tripoli Agreements (named for
the cities in which the meetings were held).
Here these countries agreed to raise the
price of oil. The rise in oil prices
meant that these countries made more money.
They made so much more money that they
could not possibly spend it all. Real-,
ising this, these countries decided not to
produce as such oil. They knew that even
tually their oil supplies would run out so
they might as well make thelplast as long
as possible.

Because there was less oil being
produced in the world and more oil was
needed every day, a scarcity developed.
This scarcity of oil forced the oil prices
to go up even higher, continuing the
vicious circle.

The following causal-loop diagram
explain he economist's vicious circle
theory.

dOil Produki) of Oil

refits 4.

Figure 1. The Vicious Circle

In causal-loop diagramming, as in
multiplicatin, two negative elements
cancel each other out, creating a positive
feedback effect.

The diagram below expands on the
information given in this story and might
result from a class discussion.

Amount of
+ t Amount

Oil Left Oil Price of 40Used by
In Ground Pr cord Oil Cons eers

...

I.JAPProfits

Figure 2. The Oil Crisis

The principal skills the students will
develop in learning package II are the
ability to represent the essential Le»
finances in a problem or system as a
causal-loop model and the habit of search.
Leg for feedback influences which close
causal loops. if students couplet* this
part of the curriculum but do not cony.
tinue on in the sequence, they will
have ,gained a powerful tool for under,
standing complicated interactions, but
they will have only begun to understand

Computing Curricula 283

the connection between feedback loops and
dynamic behavior.

M. Graphing and Analysing the Behavior
of Feedback Systems
Dynamic behavior of variables in

systems is the focus of this learning pack-
age. The purpose is to understand how the
structure of feedback loops is responsible
for the behavior of variables in the system
over time. Graphs are introduced and used
intuitively, often without specifying
nuaegical scales. The amte of the graph
of a variable over time is the concern.

Behavioral characteristics of positive
feedback loops and negative feedback loops
are explored in simple situations and then
exploited to analyse more complex multiple-
loop structures. Positive loops are shown
to be responsible for uncontrolled behavior
such as exponential growth, while negative
loops are shown to produce goal?seeking
behavior, though often with disturbing
fluctuation* and cycles. S»shaped growth
in several apparently different systems is
shown to occur when a quantity is influenced
first by a positive loop and then by a neg-
ative loop; a shift from dominance by the
positive loop to dominance by the negative
loop produces behavior which looks initially
like unrestrained exponential growth but
then becomes goalvmeeking. An important
principle will appear as different systems
are explored: systems with the same feed-
back structure tend to behave the same over
time, in the sense that the shapes of their
graphs over time are essentially the same.

The role of delays in goalvseeking
systems is explored intuitively. Students
will become familiar with the principle
that delays can cause a variable to oscil-
late around itmgoal.

The approach in this part of the
curriculum is essentially nonvquantitative,
except that some quantitative graphing will
be done to provide the tools required to
graph intuitively the behavior in causal-
loop diagrams.

Students completing learning package
III will have a foundation for the principle
that the bshaVior of a system is a cense
quence of its feedback structure. They
will be ready to try to apply their under-
standings to more complex situation*.

IV. Understanding Dynamic Problems
'A number of recurring themes in real.,

world problem' are uncovered in this part
of the sequence. Each theme is explored
in the oontext of several apparently dif-
ferent dynamic problems, making use of
causalvlocp models and the properties of
feedback systems developed in Sections II
and III. The structure of feedback loops
responsible f.; the thematic behavior is

296'

284 NECC 1980

exposed in each system, provi'ding a common
focus for understanding the different
problems sharing that theme.

One of the themes explored here is
sometimes referred to as the counterintu-
itive behavior of complex systems=
intentioned policies often tend not to
produce the behavior expected, occasion.
ally producing results opposite to those
intended. The phenomenon is traced
initially to the distinction between open
loop and closed-loop thinking. The former
overlooks feedback in contrast to the
latter, which incorporates within the
boundary of the system all the essential
feedback influences. Counterintuitive
behavior appears again as the significance
of feedback structure is explored; feed.
back systems tend to resist certain kinds
of change, unless the actual structure of
the system is affected. In feedback
systems the short -term effects of a
policy may be different from, even oppo
site to, its long-term effects. The tend.:
ency of complex systems to become dependent
upon external controls is explored under
the theme of "shifting the burden to the
intervener". The concept of tradeoffs is
introduced. In complex systems, policies
rarely improve all aspects of the system
at once; usually a policy improves some
areas and is deleterious to others, rem
quiring policy-makers to teke explicit
account of the tradeoffs.

The problems explored in this part
of the sequence range from peer pressure,
cramming for a test, and mowing lawns, to
criminal justice, pollution, urban growth.;
stagnationi.decay, drug-related crime, and
global population and food needs.

Learning package IV is the canine
ation of the essentially now.quantitative_
part of this introductory system dynamics
curriculum. It shows the power of attempt
ing to understand complex dynamic problems
by focusing on feedback loops, to illustrate
some themes which recur so frequently in
complex systems that they may be called
"principles", and to leave the students
with a balanced view of the power and limitr
ations of their understandings at this
point. as learning packages II, III and
IV have progressed, the need for knowing
the relative strengths of feedback loops
in a system will have arisen at various
times, leading naturally (but not ;moos.
eerily) to the next part of the sequence
in which methods are developed for making
the assumption. embodied in a causal-
loop diagram unambiguous by quantifying
them.

V. Introduction to Simulation
Computer simulation in system dynamics

becomes necessary when the implications of

a structure of feedback loops are in
doubt. Greater precision is required than
a causal-:oop diagram can provide. Section
V develops the skills needed to translate
simple causal-loop models into quantitative
models which a computer can trace through
time, simulating the behavior of the actual
system.

Two critical notions form the t 4481
the concepts of a level (or stock) ada the
concept of a rate (or flow). Level var-
iables are pictured as rectangles; the
rate adjusts the flow of something into
the level with which it is associated,
just as a faucet adjusts the flow of water
into a tub, changing the water level.

Sires hpu- Birth Population
Rate V Y

Figure 3. Causal-Loop Diagram as It Relates
to a Flow Diagram

This part of the Curriculum returns
to the work of learning packages II and
III, developing quantitative understanding
of positive and negative feedback Loops
and the behavior of simple systems. Stu-
dents will expend their skills in under-
standing and interpreting graphs of var-
iables over time. In addition, they will
develop abilities to write general level
equations and the elementary rate equations
for exponential growth and decay and sig-
moid (S-shaped) growth. Exercises include
first-hand calculatin7 and graphing the
model variables, then simulating the models
with the aid of a computer. Familiarity
with computers and programming is not re-
quired; the introduction to the simulation
language DYNAMO is self-contained. The
programming is presented as a means to an
end: making assumptions sufficiently pre-
cise and suitably coded that a computer
can trace out their implications over time.
Having hand-simulated the models first, the
students will know what the computer is
doing.

At the close of learning package V
the students are ready to understand more
complex simulation models, they will have
begun to see the power of simulation, and
they will have solidified their understand-
ings of the behavior of feedback loops
covered intuitively in learning package II
and III.

VI. Formulating and Analyzing Simulation
Models
Several of the problems addressed in

learning package IV are reconsidered, gen-
erally in greater detail. For each, in

2 Qt

turn,a quantitative model is developed in
DYNAMO, and explorations of the system are
carried out by simulating different con-
ditions in the 'model. The central focus,
besides the significant problems them-
selves, is the understanding of complex
system behavior. Where in a given system
does intervention have the most effect?
Why does the system behave as it does?
What policies actually improve the be-
havior of the system? Why does one
policy have a desirable effect while others
which initially appear promising have little
helpful effect or may even prove to be
harmful?

Explorations of the behavior of a
system are carried out, and alternative
policies investigated by changing,numer-
ical relationships in the model, alter-
ing, or adding equations. The computer
is shown as an obedient servant tracing
out the implications of a modeler's
assumptions over time. Each simulation
model and each simulation run appear
not as ends in themselves, but as means
to understanding,the dynamics of a cer-
tain problematic system. The goal is
understanding, and feedback models help
us to understand certain kinds of problems.

Learning package VI completes this
introduction to system dynamics. Stu-
dents continuing through all six sections
will have a new understanding of the causes
of dynamic problems and the beginnings of
a set of tools for analysing and under-
standing them. They will have learned
to look at problems holistically and to
search for feedback loops responsible
for the behavior of the system. They
will understand the role of models in
approaching problems and what is re-
quired to develop such models. The stu-
dents will also,have an introduction to
the meaningful role computer models and
simulations can play in helping people
to cope with the complex dynamic problems
they face.

THE CURRENT CURRICULUM PROJECT

The project is scheduled for comple-
tion in August 1980. During the spring of
1980 it will be pilot tested in six high
schools. Two teachers from each high
school will integrate the curriculum into
their courses. These teachers are from
the disciplines of Computer science,
mathematics, chemistry, physics, English,
history, environmental studies. And biology.

The targeted audience of secondary
students need not be the only user, of the
materials. The materials that were created
for fifth and sixth graders have been used
in high schools, universities, and even
in the MIT Sloan Fellows Executive Develop-

Computing Curricula 285

ment Program. The secondary level design
should also be appropriate for many under-
graduate college classes, as well as for
other possible learning settings. The
learning packages have been planned to
meet the following criteria:
1) Interdisciplinary and Unifying. The
materials will provide examples from a
number of subject areas: physics, econ-
omics, biology, ecology, sociology, anthro-
pology, social studies, and literature.
The generic similarity of structure and
behavior in these fields will be illus-
trated.
2) Relevant. The materials will deal with
significant world and national problems
as well as problems encountered by students
in their own lives.
3) Hands-on Approach. The set of learning
packages will teach students the modeling
process through a series of exercises.
Initially, the students will 4evelop on
their own a set of feedback diagrams de-
rived from the verbal description of a
problem. Then they will go on to quantify
the elements of the problem through graph-
ing, and finally write the equations re-
presenting the structure of the model.
The students will then hand simulate their
model and finally simulate the model with
the aid of a computer.
4) Supplementing Rather Than Replacing

Existing Subjects. The curricular
materials are designed to supplement rather
than replace current courses. For example,
the materials will be used to demonstrate
integration in a mathematics course, popu-
lation growth in a biology course, factors
underlying social problems in a social
science course.
5) Reiterative. Roth the problems selected
for study and the skills taught will re-
appear in several learning packages. The
students therefore will study the same
problem areas with increasingly more details
of problem elaboration and increasingly
more sophisticated methods as they proceed
from causal-loop diagramming through graph-
ing, to equation writing, hand-simulation,
and then computer-simulation. Each skill
that is taught will be recalled for use in
later exercises that focus ostensibly on
other skills development. Further, the
student's sense of the similarity of under-
lying dynamic structures will also be in-
creased as problems from a variety of dis-
ciplines are studied from a system's per-
spective. The students will begin to
understand how identifying the underlying
structure of a problem gives one a strong
sense of comprehending the problem.

The curriculum development group.
hopes to do extensive field testing over
the next few years. Should anyone be in
terested in field testing the learning

25

286 NECC 1960

packages or wish more information on the
projec-, please contact either of the
authors.

minim
1. Forrester, J.W. Industrial Dynamics.

Cambridge, MAt MIT Press, 1956.
2. Odom, X.T. Energy, Power and Society.

New Yorks Wiley-Interscience, 1971.
3. Roberts, N. "Teaching Dynamic Feedback

Systems Thinking* An Elementary View."
Management Science, Vol. 24, April 19794
pp. 836 -943.

2919

THE COMPUTER SOFTWARE TECHNICIAN MANI

AT PORTLAND COMMUNITY COLLEGE

1980

,David M. Hata
Portland Community College
12000 S.W. 49th Avenue
Portland, Oregon 97219

(503) 244-6111

ABSTRACT
-This paper is a status report on a new voca-

tional program being offered at Portland Community
College entitled "Computer Software Technician."
The curriculum was developed jointly by Portland
Commohnity College and an advis'ry board composed
of representatives from local electronics manu-
facturing companies such as Tektronix, Intel, and
Electra -Scientific Industries and is targeted at
software/hardware technician positions in the
O.E.M. environment.

INTRODUCTION
Portland Community College is a comprehensive

community college serving all of Washington County
and parts of Multnomah,Columbia, Clackamas, and
Yamhill counties, a region of some 679,000 people.
Within the geographic boundary of the community
college district are located several large manu-
facturers of electronic equipment -- Tektronix,
Intel, E.S.I., and others.

Courses offered at Portland Community College
are organized and integrated into a broad variety
of programs ranging from associate degree, certif-
icate career, and college transfer programs to
special interest and enrichment courses, appren-
ticeship training, and high school completion.
The philosophy of Portland Community College is
to offer learning opportunities to everyone re-
gardless of prior educational experiences, a
philosophy which has earned the school the name.
the Educational Shopping Center. It is in this
environment that the Computer Software Technician
Program is growing.

PROGRAM DEVELOPMENT

e need for computer software
technicians began in late 1977. A survey con-
ducted within various groups at Tektronix showed
widely varying skills among those polled. For
example. the Information Display Group's skill
set was much more computer oriented, greater than
40 percent software, as opposed to less than 20
percent for the Test and Measurement Group. It
was also noted that groups with more software
engineers had fewer technicians. It became

Computing Cunicula 287

evident that the software equivalent of the hard-
ware technician did not exist.

With the increase in the number of micro-
computer-based systems being manufactured, shifts
in the skill sets required in the manufacturing
environment were projected to move trward increas-
ing emphasis on software skills. Translated into
future manpower requirements, an addition of
several hundred software professionals was pro-
jected

.--

over the next five years, an impossible
task in the face of a critical shortage of tech-
nical people. Using past experience in developing
electronic technician programs at the two-year
level, the two-year concept for training software
technicians began to grow among managers.

Development of the program began in March
1978 when Tektronix formally approached Portland
Community College with the idea of offering a two -
year associate degree program to train computer
software technicians. An ad hoc committee was
formed and instructors from the Electronic Engin-
eering Technology and Data Processing Departments
were assigned to course development tasks.

PROGRAM GOAL
-----urrart programs in electronics and data
processing/computer science emphasize either hard-
ware-related or software-related topics. The goal
of the Conputir- Software Technician Program is to
train a technician who has the skills to write and
develop microcomputer applications software under
the guidance of a software engineer and can bridge
the hardware/software gap by posses:Mg-skills
that will enable him/her to verify correct system
operation.

THE COMPUTER SOFTWARE CURRICULUM
The proposed Computer Software Technician

Program consists of 101 credit hours for the ass-
ociate of applied science degree. The first year
consists of perallm eardware and software course
sequences combinpr ith mathematics and communica-
tions courses. C: wads develop basic problem-
solving skills whi:m Wilding a foundation in
basic circuit theory and device operation. The
software and hardware areas merge in the fourth

300

r-

288 NEcc

term as courses begin to integrate both software
and hardware topics into a unified presentation.
The program concludes with courses and on-the-job
learning experiences, to create the ability to
function as part of a development team and learn
the art of project management.

TERM I

CST 2.211
Lecture Lab. Hrs.2Software Programming I

$TN 125 Computer Oriented Mathematics I 5 5

WR 2.301 flatness Communications I 3 3

EL 6.117 Basic Electric Circuits 6 4 6

CST 2.221 Software Programming I 4 4 2

ITN 126 Computer Oriented Mathematics II 5 5

WR 2.302 Business Communications II 3 3

EL 6.127 Fundamentals of Semiconductors 6 6

TERM III
CST 2.231 Software Programing III 4 4 2

CS 233 Intro. to Numerical Computation. 4 4 2

WR 227 Technical Report Writing 3 3

EL 6.137 Digital Logic Fundamentals I 6 4 6

TERM IV
EL 6.248 Introduction to Microprocessors 4 3 3

CST 2.241 tow Level Languages 4 4 2

SP 100 Basic Communication 3 3

EL 6.247 Digital Logic Fundamentals II 4 3 3

TERM V
CST 2.123 Language Processors 4 4 2

CST 2.136 I/0 & Data Cbsmunication Prog. 4 4 2

PSY 1.546 Asychol &ammo 3 3

EL 6.257 Peripheral Circuits 4 3 3

TERM VI

CST 2.126 Project Management 4 4 2

CST 2.132 Operating Systems 4 4 2

CST 2.141 Field ProJect 6 1 18

EL 6.267 Advanced Micro Systems 4 3 3

IMPLEMENTATION
laboratory Facilities:

Parallel efforts to upgrade existing electron-
ics laboratory space used by the electronic engine-
wing technology program and to acquire the spec-
ialized equipment necessary to implement the Com-
puter Software Technician Program have produced a
well equipped set of laboratories to support both
programs. Our initial goal to equip each labora-
tory with industry-standard equipment has been
realized. Specialized equipment for the Computer
Software Program purchased for laboratory use in-
cludes logic analyzers, microcomputer treinerc, and
software development systems.

Equipment needed by laboratories:

Basic Circuits Laboratory:
Dual-trace oscilloscope (35 MHz)
Digital voltmeter

Basic Circuits Laboratory Continued:
Triple power supply
Function generator

Advanced Circuits Laboratory:
Dual-trace oscilloscope (100 MHz)
Digital voltmeter
Triple power supply
Function generator
Digital counter

Digital System Laboratory:
Dual-trace oscilloscope
Digital voltmeter
Function generator
Triple power supply
Logic analyzers
Microcomputer trainers

-so

Computational Systems Laboratory:
Microcomputer systems capable of running

BASIC and PASCAL
Microcomputer development systems

Cooperative Work Experience:
A cooperative education program has been

established with local companies, and ten CST
students are currently participating in the pro-
gram. Each cooperative education student is re-
quired to carry twelve credit hours of academic
work while working twenty hours per week. Close
supervision is maintained between the cooperative
education coordinator and managers of the coopera-
tive education students.

The response has been favorable among parti-
cipating managers; student response has been
positive although many have expressed the feeling
that the academic work load combined with work
assignments has been demanding.

Faculty Upgrading:
Program development has reinforced the need

for a teaching faculty having a skill mdx that
spans the hardware/software boundary. To date,
faculty upgrading has been accomplished by tech-
nical seminars, independent study, and interaction
with industry. Keeping pace with an ever changing
technology is a continual struggle, and incorpor-
ating new teaching ideas into courses remains
before our faculty.

Course Content Guides:
Course content guides are being reviewed

for content and updated. These course content
guides are available upon request by writing to
the author.

IMPACT ON COMPUTER EDUCATION
-nate processing and computer science pro

grams to date have been very business applica-
tions oriented. Curricula are heavil), weighted
toward programing languages and applications
that do not fit the treditional product develop-
ment cycle.

The Computer Software Program was a totally
new program rather than a modification of an
existing program. The electronic engineering
technology am data processing Programs were
left intact since they are currently serving a
well-defined industry need. in this manner, a
curriculum was developed to meet a future need
for technicians with both software and hardware
skills.

With the first gradmaiing class in June
1980,'software'technicians capable of fitting
into systems development and manufacturing groups
will be entering the Job market. It has been
evident from the ftedbeck obtained through mana-
gers of our cooperative education students that
the skill mix will be right for entry-level

posngititheseons in software groups currently employ -

programs of this Ups are opening up new

Computing Curricula 289

areas in which persons interested in computers,
computer programing, and electronics can enter:
Programs of this type have not been available in
the past. To industry, these technicians will
provide the analogue of the hardware-oriented
hardware technician that has been missing.

CONCLUSION
The need for computer software technician

programs will grow, and the Computer Software
Technician Program at Portland Community College
can serve as a model for programs at other
colleges. It is the result of close industry -
college interaction and is currently being eval-
uated through a cooperative work program with
local electronics companies.

302

290 NECC 1980

A COMPUTER SCIENCE MAJOR IN
A SMALL LIBERAL ARTS COLLEGE

Joerg Mayer
Department of Mathematical Sciences

Lebanon Valley College
Annville, PA 17003

(717) C67-10SS

This presentation examines the diffi-
culties, both practical and philosophical,
which stand in the way of offering a com-
puter science degree at a small four-year
liberal arts college. Also I will present
the compromise which was struck at our
college.

Until recently, computer science as an
undergraduate degree program was almost
entirely restricted to the larger uni-
versities. Such programs were expensive,
both in terms of teaching personnel and
equipment, and required an environment
which included an engineering school.
These conditions are easing somewhat, and
it is becoming increasingly difficult for
a small college to resist the incentives
to enter the cornuter science market.
Computer hardware is now within the means
of most institutions, and for those with
inadequate funding there are ties into a
commercia2 or educational time-sharing
network. Also with declining overall
enrollments on the horizon and an at best
stable interest in most traditional sub-
jects, the continuing shortage of college-
trained computer personnel seems to offer
the chance to shore up at least some of
the drain in the student population by
offering a major in computer science.

Encouraging though the emerging con-
ditions may be the arguments against
adding computer science to the program of
a liberal arts college are rather unset-
tling.

Despite the efforts of many, there
remains a sizeable gap between the defend-
ers of liberal education as the attempt to
capture the essence of the complete man,
and the proponents of an introduction to
science and technology as the only means
of preparing our youth for the technolog-
ical future. The present mixture of major
programs in most liberal arts institutions
reflects more an uneasy truce than the
result of mutual understanding. The

separation between the two cultures shows
no signs of dissolving, at least not in
education.

Computer science as an undergraduate
major brings this dichotomy in education
into sharp focus, perhaps because this
discipline is predominantly machine and
process oriented. The aim of computer
science is not to seek truth or to under-
stand man and nature, and in that sense
it is anti-humanistic. Computer scien-
tists are as seen by the humanist,
essentially non-reflective, meaning that
they do not concern themselves with the
ethical and moral implications of their
work. (Weizenbaum's book on that issue
is not widely known; and in any case,
it does not seem to be very popular among
his colleagues.) Therefore, computer
science is considered by many to be anti-
thetical to the basic philosophy of
liberal education. *One only has to ob-
serve the nearest computer freak to find
proof for the dehumanizing, indeed deper-
sonalizing influence of that machine.*
Computer science, as a relatively young
discipline--exuberant, irreverent, and in
some ways irresponsible and antagonistic
to deeply held cultural values- -does not
easily fit into the age-worn quilt of
liberal education.

Even if the misgivings were somehow to
be overcome, however, the practical prob-
lems of offering computer science in a
small liberal arts college are most for-
bidding.

To begin with financing the needed
technical expertise is beyond the capa-
bilities of most such institution.. It
would be unwise, both politically and
financially, for the college to hire a
beginning Ph.D. in computer science for
$25,000 when the average salary of the
assistant professore in that college is
$14,000 and that of full professors is
$22,000. Another manpower problem arises

from the ACM standards set in Curriculum
'78. There it is recommended that *ap-
proximately six full-time equivalent
faculty members are necessary. ...* With
a student :faculty ratio of 14:1 this
translates into roughly 80 computer sci-
ence majors, a number not likely to be
reached in an institution of 1500 students,
which is the typical enrollment of a small
four-year college.

Another difficulty lies in the courses
which should be offered. According to
Curriculum '78, a minimal program in com-
puter science consists of twelve
courses in computer science and seven
courses in mathematics, making a total of
57 credit hours in the major. Rare is \
the liberal arts institution that would
allow such a concentration of a student's
time in his or her major.

Finally, there is the need for hard-
ware and software. Again, Curriculum '78
established certain benchmarks. "It is
essential that appropriate laboratory
facilities be made available that are
comparable to those in the physical . . .

disciplines The initial budgetary
support . . . may be substantial.* Also
mentioned are extensive software systems.
The whole package, even if conservatively
interpreted, presents a financial burden
that reaches well into six-digit numbers.

Realistically, then, it is impossible
for all but a handful of the best endowed
small liberal arts colleges to find the
total budgetary support for the start of
a computer science major which approaches
the standards set by Curriculum '78. So
a student who wishes to major in computer
science must limit his choice of a col-
lege to those with an enrollment of at
least 5000. It means that the smaller
college cannot enter the market of com-
puter science education. Finally, it
means that employers and graduate schools
of computer science cannot reach into that
rich pool of above-average, motivated,
and broadly educated graduates.

At Lebanon Valley College we wore drawn
into the computer science field more by
accident than by design. In the early
seventies when it became clear that the
major in actuarial science was very
attractive to prospective Students and
could be so designed as not to violate
the precepts of liberal education too
severely, the Department of Mathematics
decided to expand its offerings into the
applicable areas. The department grew
steadily, so that in 1978 there were 70
majors in a school whose total enrollment
was 950. In 1975, enough computer science
courses hadbeen added to offer an inform-
al,concentretiOn in computer science. The

Computing Curricula 291

technical courses included programming
(advanced), computer architecture and
assembly language, data structures, and
an independent study. Of the 36 mathe-
matics graduates since 1977, six took
computer-oriented jobs, seven became
system analyst/programmers, and four
entered highly respected computer science
graduate departments.

Encouraged by these results, and
strongly persuaded by the Admissions
Office, a major in computer science was
added to the programs of the Department
of Mathematical Sciences. Its structure
is as follows. All students in the De-
partment, regardless of their major, take
the same core curriculum which consists
Of&

1Analysis 13 hours
Foundations of Mathematics 3 hours
Differential Equations 3 hours
Introduction to Computer Science 3 hours
Linear Algebra 3 hours

During the difficult sophomore year,
the students assess both their capabili-
ties and their strongest interest.
Accordingly, some will drop out of com-
puter science and others will shift into
it. For that major the remaining re-
quirements are:

Abstract Algebra 3 hours
Classical and Numerical Analysis 3 hours
Computer Organisation & Assembler 3 hours
Data Structures 3 hours
Programming Languages & Compilers 3 hours
Internship 3 hours

The internship must be taken in some
commercial or industrial computer opera-
tion, usually during the summer. The
languages taught during the last three
years are BASIC-PLUS, FORTRAN, and
Assembler (PDP11/40). We strongly en-
courage the mastery of one additional
language, such as RPG or COBOL. .

There are other requirements. To give
the students some bacuground in the basic
components of computer hardware, they
must take a year of physics and work in a
Beall computer science laboratory. Also
required are six hours in psychology, and
three hours in an ethics course designed
to deal with the ethical issues inherent
in modern technology, and computers in
particular. Finally, having observed the
often abominable technocratese of hand-
books and manuals, we require that the
computer science major take a three hour
writing workshop.

Thus, the major consists of 31 hours
in mathematics, including the Curriculum

3u4

292 NECC 1980

'78 courses MA 1, MA 2, MA 5, MA 3, CS 17,
CS 18, with MA 6 strongly encouraged;
-twelve hours in computer science, includ-
ing CS 2, CS 3, parts of CS 4, also CS 7,
and CS 81 18 hours in what we consider re-
lated topics; and three hours internship.
The totals are 46 hours in technical
courses and 18 hours in supportive disci-
plines.

These requirements are in contrast to
Curriculum '78, which sets a minimum tech-
nical requirement of 51 hours, of which 30
are in computer science.

The disadvantages of our approach are
at least the following. It makes us Un-
comfortable to be in such disagreement
with Curriculum '78, and we would not be
prepared to adjust if the suggested pro-
gram of Curriculum '78 were to develop
from recommendations to quasi-accredita-
tion requirements. Secondly, the rather
narrow scope of the computer science
courses must result in a limited appreci-
ation of the broad sweep of that field.
And finally, the substantial as difficult
requirements in mathematics will most
likely lead to a higher dropout rate than
we are accustomed to because many students
interested in computer science are mathe-
matically not very gifted.

The advantages are that we will be able
to increase the enrollment in our depart-
ment and that all the students in the
department are being exposed to the new
discipline. For them, the main and over-
riding advantage is the flexibility which
they enjoy during the first three years.
To be able to switch, without loss of
credit and required information, between
mathematics, actuarial science, computer
science (and probably operations research
in the near future) is valuable to the
mathematically gifted, who did not in
their high sohoo1.4ears have any indica-
tion of the many job and graduate school
opportunities for which they may be pre-
destined. For me personally, the greatest
advantage of our approach is that it shows
our students, and not just in theory, the
great breadth of mathematics and the mutual
dependence and influence of the various
disciplines we incorporate in our total
program.

Two conclusions appear to be clear.
First, a small liberal arts college can
offer a computer science major only if it
does not adhere too closely to the recom-
mendation of Curriculum '78. And second,
such a Major has any chance of success
only if it is incorporated in the oper-
ations of an already existing department.
Its44Seeultyembers must be willing to
work hard mastering most of the courses
in computer science while they are still

teaching the normal twelve hour load.
The Computer Center personnel must be
sympathetic to the reality that the new
major will tie up the system more often
than they are accustomed to. And the
administration must be willing to accept
the fact that one cannot start a tech-
nology-based major without improving the
existing hardware and hiring at least one
specialist. It is well to remember that
more often than not, the necessary sup-
port will come at least two years after
it is needed.
For those who may be contemplating

implementing n variation of our a2proach,
let me close on a bright note. Within
tilt first semester of the new major, four
students transferred into it from other
departments in the college, and two more
students transferred into it from other
schools because they wanted both computer
science and a small liberal arts insti-
tution.

3 06

Abernethy, ,Kenneth 179
Allard, Me 230
Alpert, Elizabeth 96
Amenn, G.W. 266
Anger, Frank D. 171, 249
Aronson, Michael 1

Baird, W.B. 266-/"4"4".
Baldwin, R. Scott 46
Bass, George H. Jr. 38
Beck, James D. 245-it,
Seidler, John A. 143
Bishop, Judy H. 147
Bork, Alfred 258
Bowman, William R. 16
Boyle, Thomas 214
Brown, Bobby 199
Brown, Guy Larry 256.

Brown, Thomas 237
Burrows, Robert L. 220
Bush, Steve 19

Caldwell, Robert H. 31-A4-6'1-
Collins, Ronald W. 74
Corbet, Antoinette Tracy 54
Czejdo, Bogdan 112

Davis, A. Douglas 86
Deal, Ralph H. 281
DeKock, Arlan 138
Dempsey, Richard F. 152
Dershem, Herbert L. 65-Aw444.
Dorn, William 75

Effarah, Jamil E. 25
Ellison, Robert J. 68

Franklin, Stephen 258
Friedman, Frank L. 103
Fdhs, F. Paul 205

Garraway, Hugh 200
Carson, James W. 42
Oats, A. John, Jr. 76
Gordon, Sheldon P. 169
Oruener, William 198
Groaa- Thornton, Joan C. 54

Hagee, Michael W. 90
Haiduk, H. P. 222
Hannay, David O. 119
Hata, David H. 287
Hausmann, Kevin 2, 170
Hazen, Paul 73
Hopper, Judith A. 62
Hunter, Beverly 168
Hybl, Albert 276 "A.e..4

Author Index

293

Johnson, Dale M. 46
Jordan, Eleanor U. 7, 260.44"'

Kneifel, David 37
Kurtz, Barry 258

LaFrance, Jacques E. 261
Little, Joyce Currie 220
Lim, Tian S. 90
Lovis, Prank 75

McVay, Peter O. 27101.46.0e40,

Hagnant, Peter 214
Manor, Walter 221
Marshall, Sr. Patricia 238
Mayer, Joerg 290
Heinke, John G. 143
Mebane, Donna Davis 197
Mebane, Rodney 197
Hocciola, Michael 236
Morgan, Catherine E. 168
Hoshe1/4 J.H.
Hoursund, David 125

Oliver, Lawrence 137, 169
Olivo, Richard F. 81 - 442749,01w.404

Piegari, O. 179
Poirot, James L. 130
Pollak, Richard A. 90
Powell, James D. 1So

Rahmlow, Harold 1

Reggie, James A. 276--.44"4
Roberts, Nancy 281
Rodriguez, Rita Virginia 171

Schimming, Bruce B. 58
Shelly, Gary 3

Sobol, Thomas 155/14.0.

Stokes, Gary 4
Stoutemyer, David R. 194 - 'e'~4'

Sustik, Joan 199

Taylor, Robert P. 130,155
Taylor, Timothy 223
Thorkildsen, R'n 230
Thorsen, A.L. 179
Tinker, Robert F. 250
Turner, A.J. 6

Varanasi, Murali R. 5

Ward, Darrell L. 19
Wehrle, Howard F., III 12
Wet lore, David E. 139 A4'4-'4V,
Whittle, John T. 65/..r...et..

Wong, Pui-Kei 184./4444

