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The mission of the Wisconsin Research and Development. Center

is to\improve the quality of education by address1hq‘the full
range of issues and. problems related to individualiazed schooling.
Teaching, learning, and the problems of individualization are
given concurrent attention in the Center's efforts to. discover
processes and develop strateg1es and materials for use in the.
schools. The Center pursues its mission by,

. ) . . e
° 'conduct1ng and synthesizing research to clarify the
processes of school-age ch11dren s learning and ,
development

L

-

® ‘conducting and synthesizing research to-clarify ef¥ective
appsoaches to teaching students basic skills and concepts

® developing and demdnstrating improved instructional strategies,
processes, and materials for students, teachers, and school
adm1n1strators .« ,

® providing assistance to educators which helps, transfer the
outcomes of research and development to‘improved practice .
in local schools and teacher education institutions

The Wisconsin Research and Development Center is supported

with funds frcm the National Institute of Educat1on and the -
University of Wisconsin. '
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Abstract

4 .
This paper describes the research program of the Mathematics Work Group

-

' B

of ;hg Wisconsin Reseaféh and.ngelopment Center for In&iviéualized Schooling.
The major'intefegt'}s in the Jevelopment of c?ildren's abilities to solve
verbal addit;on and subtraction problems and particuldcly in the procesges
and strategies used by children. Three factérs are considered: 1)s.problem
structure, 2) studegt characgéristics, a;d 3) the nature of inétructionl

An nnalysé;.of,Qerba;,probleﬁs is pyeseﬁted. This aﬁalysis iﬁcludés
a discussion of various types oflproblem entitieét'discﬁbte sets, continuous -
attributes, and actions or transformatibns. Problem structure is also a;a—
- lyzed along three dimensiohs: action vs. statijc relatiqnships, set inclusion,

~ -

and order (larger vs. smaller). Examples of various problem types are given.
’ ’

Results from thé-first year of an ongoing (1978-1981)'1dngitud}na1'sgudy
of primary age stidents are included. Theqe\rssulté are mainly g;fhered f;om
- individual problem-solying inteéviews with about 150 subjects. Variohs strat-
egies‘emplgyed and their change over time are examired.

i . )

The paper concluldes with a discussion of the iﬁplications of the research,

both present and contemplated; for instruction.

’
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A major aim of mathematical instruction is to enable-students to
lacquire condépts and skills requisite for solving problems of many types. .
A principal goal of mathematical education research is to understand how '

( children acquire those concepts and skills and to understand how selected

pedagogical and psychological factors are related to that acquisition.

'

The Mathematfcs Work Group of the Wisconsin Research and Development Center < )

for Individualized échooling is ‘presently conducting a program of research
. [} . ' ’
focused on a small set of those'concepts and skills. Its interest lies in

’

arithmetical ‘learning, and in;particdlar,.in the acquisition of concepts

3 .
and skills related to addition and subtraction of whole numbers.

A primary focus of ‘the mathematics project of the Wisconsin Research
and Development Center for Individualized Schooling is to study the processes

that cﬂildren use to solve simple verbal addition and subtraction problems
) Q * @

and to identify how thdse processes evolve over time. We believe that this

-,

_investigation will not only help us to better understand children's problem

solving skills but will also help us to understand how children acquire

4

basic addition and subtraction concepts and skills. _ o)

. The types of problems that we are concerned with are the simple story

. .
K . ) b . .

problems or word problems commonly found in elementary mathematics textbooksi
that can be solved by a single dperation of.addition or subtraction. We -
. .
are not suggesting that children necessarily solve these problems by adding
or subtracxing. In fact we have found that young children generally do not

: A N

. A /,
D S t 10




[

‘s

.
v / ’
' . ]

. '
N
™
N

solve them b& applying an arithmetic operation. It is convenient, however,.

-
*

to define the probiem domain in terms of these operations.

" Our research is investigating various factors that influence children's ,
problem solving behavior. These factors areAthe structure of the problem,
characteristics of thefchildren and in particylar certain cognitive processes,

instructional materials, and teacher's classroom behaviors. The interrela-

tionship of these factors is depicted below.

L

- ‘ Problem TS~
Teacher [ Structure )~ ~ ¢
Activities . Sty /
. -, [ * Pupil
- : Instrudti;:T\ ' Performance ;
Instructional ///,/!\ x//). , ot
Materials .| pupil ’ .
" _Characteristics '

Our research has progressed the furthest regarding the effect of problem

’ ’

. structure, and this aspect will be the primary focus of this papar. In order
) . ’ R . .
)

‘to understand the effect of.problem structure it is necessary to characterize

- -

. the major structural differences between different addition and subtraction

r
-

~ problems.

An An?iysis of Verbal Problems  ~

There are several approaches thatwprevious‘research has takenh to char-

.‘.\y

acterize verbal problems. ’One is to'classif§ problems in terms of syntax,
vocabulary level, number of words in a perlem, etc.u (Jermaé; 1973; Suppes,
Loftus & Jerman, 1969). A second apéfoach diffgrentiates between problgms
in terms of the open sentences they represent (Grouws, 1972; Rosenthal &
Resnick, 19743 Lindvall & Ibarra, 1978); "We hgve chosen a third alternative

that considers the semantic characteristics vf the problem. Our analysis

is generally consistent with other\ahalyses based on problem structure (Gibb, -

1956; Greeno, 1978; Nesher &-Katriel, 1978;“Vergnaud & Durand) 1976), bpt

'

)
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- .weshave introduced certain.distinctians not included in previous analyses

e ' i : :
of problem types. Ih our Tresearch we'bave been primarily concerned with

\
[y

'structural characteristics involving the action qr.relationshiﬁs déscribed

»

in' the problem. In order to fully characterize verbal problems, however, >

it is also necessary to consider the nature of the entities in the problem.

.

’ 1
Nature of the Entities in the Problem I

We -have identified .three distinct types of.entitigs in 'addition and .
subtraction problems, What all three have 1n common is that they are : -

3

"measurable or can be represented by;i number.

The first type we consider is a discrete collection of oblectsl In

<

. this case, it is possible to represent the elements in a set given in a

particular problem by counting out an ‘appropriate ndmber'%f physical objects

ta make, an equivalent set. There is a one-to-one correspondence between .
q , Do i
the problem set and d constructed set or between the problem set and a set

T of cogptjng words’ so that one can actually think of each éiéﬁent In the B

’

constructed or spoken‘set as representing an "element in the problem set. |

. L)
] s *

In contrast to discrete sets, we! can consider entities characterized’
.o ‘ w0 : )

by an attribute which is continuous in natdre, sucq as length, age or .

. temperature.

e

For continuous measures, however, -any 'set that might be .~ * . ~
[}] ’

-~

constructed would represent the quantity'in a very different sense, There
t 1 * .
LY . .

-+ . would not be a one-to-one correspondences, because there are no identifiable

’ - &lements, in this type of problem set. Thus, for contihuous quantity problems,

{. ' the constructed set would represent the number assigned % the attribute

in the problem, but would not*repfesént the attripute“directly. Needless !
_ . \

to say, continuous quartities present potentlally morel complex problem

-




[

_situations. 1t is also possible that continuous measures that-are not

[N

-

?

direcgly observable such as age or weight are more complex than measures
such as length or area thHat tend to be more easily discerned on a visual
Easig. - A .
Both of the previous catcgories involve a measurable entity that is
acted.upon or transformed to z}eld another measurable entity. ” In the third
category the entities are actions or transformations. The following |
e§amp1esfillustrate this 91stinction.‘ In the fi?st example the entities

are sets and in the second they are transformations.

John had 8 pennies: He spent 5 pennies.
How many, pennies did he have left?

Mary'had some pénnies. Her fathet gavé

her 8 more pennies. Then ghe spent 5

pennies. How many more pennies did she

have than she started with? o

Al

In the first problem the entities are sets of pennies that could be directly

represented by sets of objects. In the second problem the entities are a

change in the total number of pennies, not a set of Pennies; the problem

h

deals with the magnitude of the composite change, not with a set. In the

first problem there is a set of 8 objects, and 5 cbjects are removed from

Yt. In the second problem there is an initial rélative set of gnspecified

C :
magnitu7e. Eight objects are joined to it, and 5 are removed. The 5 objects

are not 'removed from the set of 8 objects that.were added but from the

1

larger set.® The followingfproblem illustrates wby this is a critical point.
Mary had some pennies. Her father gave her
5 more pennies. Then sglie spent 8 pennies.
: How many fewer pennies did she have than
' she started with? v

' 13\‘




This problem also illustrates another characteristic of transfor@atfbns;
they have both a magnitude and a direction. In other words they may be
rqpresehted by both positive and negative integers.

|

.1 In the research we have completed, we have only used problems involving
discreté sets., Conseque;tly all of the examples in the nexf section dealing
with problem structure involve discrete sets. However, continuous quantities
could easily be substituted. for the sets in the examples. It is somewhat
more difficult to fit problems involving compositions of transformations
into the model, and they may in fact represent somewhat distinct problem

types (cf. Vergnaud & Durand, 1976).

Problém Structure

We have identified three orthogonal dimensions that characterize the
different action or reiationships involved-in verbal addition and subtraction’
prob}ems.

The fifst dimension is based onn whether an active or static relatipn-
ship getwign sets or objects is implied in the problem. Some problems may -
¢ontain an explicit'reference to a completed or contemplated actionucausing

a change in the size of problem entities. For example, "Sue had 8 applesu

in a baskeg.- fhen she put 6 more apples in that basket. How many gpplgs

did she have altogether?" Contrasted to such situations are those'in which
no action is implied; that is, there is a static relationship. As an example,
consider, "Tpere are 7 apples in a basket. Four are red and'the rest are
green. How many of the apples are gréen?"

The presénce or absence of action carries with it a temporal aspect. .

When an action is pepf9rmed, there is usually an initial state which is

ciad
¢

14




changed or transformed as a result of the action. Thus, a before-after

'relationship is part of the situation. This is not tha%case‘when there
is no action. We do not suggest that temporal considerationé are different

\

from the action/statip dimension but rathér that tHey are simply a poFéntial—
ly different manner of‘considering.such situations.

The second dimension involves a set inqlusion'or set-subset relation-
ship.b In qertain problemg two of the entiti!;‘involved in the probiem
are necessarily a subset of the third, In other words, either the unknown
quantity is made up of the two‘given‘quanpities, or one of the given
quantities is made of the'other.given'quantity anq the unknown. Forl
example, consider the following problem: 'There are seven children on the‘
playgrougd. Thrég are boy; ana the resfﬂgre girls. Howuﬁany are girlsT"The

set of bo&s and the set of girls:are subsets of the set of childrén. The

alternative is that one of the.quantities is disjoint from «the other two.

For anothér example, consider.the' following problem: "There aré seven girls
and three boys on the plgyground. How many more girls than boys are there?"
' In this proylem, removing a set of three girls and countfng the‘numger of -
‘ ‘ girls‘iﬁ the fémqining set of four girls is one way of determining tbe
aESWer. The distiﬁctidn befween Fhis problem and the preceding one is that
. the set of‘boys is disjoint from all of the sets of gifls involved.
Tﬁe_tgird dimension is best described as an order relationship. 1In
the static relationship among th; entities, there may be the notion that"
;ne éntit& is larger or smaller than another. Where acgion is described
‘;n the problem; that action_maf result in sogething being mgde larger

.. y
e (increased) or being made smaller (decreased).

o | | 15
Q . .
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It is hélpful to visualize these three dimensions by fieans of a

three dimensional solid that represents a two-by-two-by-two matrix (Figure 1).
4] .

«©
N S

Figure 1. Schematic diagram of characteristics of addition/subtraction
roblems. . ’
p ° M A‘” “\

1
1
v

For each cell of the matrix there are three distinct probleﬁ\types,

depending upon which quantities are given and which is the unknown. Although

14

the action or relationship involved in each problem is essentially the same,

M

the problems are very different and potentially involQe different methods

l of solution.. In fact éach.;ell of the Q;frix contains both additioq_and”
Subtraction problems. .Furthermore, there are significant differences in
di%ficulty betweén'problemslﬁithin a single cell of the matrix that areﬂa
function of which quantities afé given apd which is the unknown. (Grouws;'
1972} Lindvall & Ibarra, 1978). The dietinction between different problems

within a cell in the matrix are illustrated by the examples given of Joining

'd . °




. because they are generally easy to understand and fe

and Separating .problems, I'n peneral the same sort of variation is possible
for problems in the other cells of the matrix. A characterization of u

problems corresponding to each cell of the matrix follows.

Joining. Joininé sitnations often arise in early mathematics instruction

nd to be familiar to young

children. Joining is the process of actively putting together an entity B

with an entity A to form a new single entity C. A is made larger or ins-

creased by B so that the union has measure c. Both A and B are subsets of

C.” Figure 2 indicates where Joining oqcurs in the three dimensional-matrix.

[
&

2
)
2 =
-

D
!

¥

)

/

thets

\§

Figure 2. Sciematic répresentation of "Joining" problemg

4

4
L]

The following examples illustrate the three basic types of Joiﬁing problems.

r

Wally had 3 pennies. His father gave him
6 more pennies. How many pennies did he
have altogether?

17




. Wally had 3 pennies. His father gave him
some more pennies. Then he had 9 pennies ,
. altogether. How many pennies did his father '
" give him? _ - -

~Wa11y had some pennies. His father gdve him o o
o 6 more pennies.. Then he had 9 pennies altogether.
' How many jpennies did Wally have to begin with?

! .

éeparating.- Separating problems have the same characteristics as Joining

* ., problems except that the action involves a decrease rather than an increase

. +

(See Figure 3). .

-~
-~

b o e e A

]

A -~
g
.
'
v
.
s

[

4 .
\,
no set inclusion  set inclusion

Figure 3. Schematic representation of "Separating" problems.

r

. -7-'In'Separating problems a subSet is removed from a given set. The three basic

» * s . \
. " Separating problems are illustrated below.
Fred had 8 pleces of candy. He gave 3 )
pieces to Jane. How many pieces did o

he have left? .
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Fred had 8 pieces of candy. He gave \ )
gsome to Jane. He had 5 pieces left.
How many did he give to Jane?

Fred had 8ome cahdy. He gave’ 3 pieces
tb Jane. He had 5 pieces left.. How L
many pieces did he have to start with? o

.

Egualiqigg." Equaliziné problems are not as well-known as Joining and

Separating. They are psedi‘gtensively in the earlier sections of the.

2

Developing Mathematical Processes (DMP) program that was developed at

L3

the Wisconsin Research and Development Center (Romberg;.Harvey, Moser,

Montgomery, 1974). There, are two types of Equalizing problems; one -

involyes an increase and one inyolves a decrease.(See Figure 4).

no_set inclusion  set inclusion
Dimension |

no set inclusion  set inclusion
Dimension | :

Equalize-add on - Equalize-take away

[
Y
t

.Figure 4. Schematic representation of "Equalize" problemé.

Equalizing problems involve the same sort of action that is found in Joining

and Separating problems but there is also a comparison” involved. Bastcally

19
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-

equalizing is a process of chapging one of two entities so that the two
& . . ) .
are then equal on some ‘particular attribute. The following is an example

of an Equalizing-add" on. problem.

There are 6 boys and 9 girls in the

- ' dancing class. How many more boys

’ : have to be put in the class in order

for there to be the same number of

boys and girls? '

e . : [4

Equalizing-take away problems are virtually identical except that the action
§ : D

» *

involves a decrease in the larger set.

There are .6 boys and 9 girls in, the
"dancing class. How many girls have ,

to leave the class in order for there

to be the same number of boys and girls?

Part-Part-Whole. 'Part-Part—Whole.problems involve a static relationship

existing between, an éntity having a particulaf attriBu@e and its two dis-

joint, but complementary, parts. The Part-Part-Whole problem.type -

a static situation in which the set-inclusion relationship is present —--
dres not appear to dividé itself natur;11y along the third dimensioﬂ'of
order. It is temﬁting to try to dichotomize the problem types on some
logical basis. Howevér, such attempts have proven fruitless. _Iﬁus, we

choose to show Part-Part-Whole problems as occupying two cells of the

matrix (Figure 5). Some* examples follow.

; : There are 2 boys and 6 girls in the dancing
class. How many children are there altogther?

A

. ‘c;;

-There are 8 chiidren in the dancing class.
Six of ‘them ate girls. How many boys are
in the class?




$

Figure 3.“ Schematie representation 65 "Part-Part-Whole" problems.
) o o
Comparison. IﬁfConparis;n pr;bléms there is a stétic,relationéhip of
.o order existing between' two disjoint entities. As the name implies the
Comparison problems involve a c;mparison of.twélquantitiés. These problems
are sjmilar to the Equalizing problems except that tﬁere is no implied

(3

action to increase or decrease one of the quantities, As with the Eqﬁalizing '
probléms there are two types of comparison p;oblems (See Figure 6). A |
Comparison~larger problem situatfon involves the amount by‘wﬁich the larger
of fwo compared entities exceeds the smaller on a stipulated attribute.

. In this situation, the student is directed by the problem language to focus " -

° .
on the fact that some entity A is' larger than a second entity B. Several

examples follow.
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: Figyre 6. Schematic representation’ of EComparison"probléms.”
) . . Joe has 5 records. Mike has 13 records. | N
v ‘Mike has how many more records than Joe? o '
' o"“ ) , i {.Q
‘ " Joe has 5 records. Mike hag 8 more necords
than Joe. How many records doés Mike have?
o b4 . ‘ . .
A second, 'similar type of problem is called the Comparison-smaller
* problem. ' As with the Comparison-larger problem, it involves a static
“ ' | ) o .
o relationship of order betweer two disjoint entities. However, the
. . ) Lo )
v Comparison—smal1er¢prob1emafogq}es attention on the smaller of the two
‘ -entities and on the .amount b& hhich it is less than the second entity. i
] B s - ‘
, @ ’
. The problems are identical to the Comparison-larger problems except w
L ) - . ) ) . ‘ ) )
that the question is who has fewer. ' 4 '
y ' .
o L Joe has 5 records. Mike has 13 records.

g . : Joe has how many. fewer records than Mike?

L4

4
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Our model does not unambiguously characterize -all proBiems, and there

are some problems that are difficult to placé in a single cell in the model.

For most types of addition and subtraction problems, we have evidence that '

children's solutions reflect the distinctions between problem'typeslcharT

- -

acterized by the model. The one contrast we have not systematically in-
. - s R

vestigated is the one begﬁeen'the_twp types of comparison problémsa It

4

is possible that this distinction is nqt. useful in charactgrizing children's

- ’ -

‘performance.. This would imply that the increase-decrease dimension of our’

L

model would only apply to ;he actiop dimension'df the matrix.

[

So far we have only investigated -9 of the 21 problems characterized

[ 4 B .
by the model. :These problems repagsent siy of the seven cells of the

‘matrix; the one exceptién is- the Comparison-smaller cell. In our initial

studies we have been concerned with the processes that young children use

to solve addition and subtraction problems. Consequently we have begun

’

with problems that logical analysis or empirical evidence wouid suggest 4

are most likely to be solved bylyéung children. In general these problems

*

are ones in which the action or relationships described in the problém
- ~ .

can be directly modeled without trial and error.

)

e Research Program 1
(4 .

In the studies conducted or presgntly in progress, tﬁe'principal focus

is on the strategies children use to solve basic verbal addition and sub- '
traction problems. 1In spring 1977, a pilot study invqlvingx43 first grade
children was carried out (Carpenter, Hiebert & Moser, 1979). A following

study involving the same subjeets was conducted in May of she same yeér'

”

0

0
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(Carpenter, Moser and Hiebert, in press). Both studies provided interesting * .
findings in- their own right. In addition, they helped ident{fy suitable

' problem tasks, refine data gathering and data reporting techniques, and

o

clarify many of the problem solving strategies children uée. These find-"-

ings provided the basis for the design of our major research éffort, a

-

three year longitudinal study of 150 children that is currently in progress.

Broc;dures ' .

Tﬁe longitudinal study is investigating three major sets of variables.

The basic dependent variable is children's performance on simple addition

t

and subtraction verbal problems. The primary method of assessing childrgn's
‘performance'is through individual interviews administered at-the beginning, A L;

midi;e, and. end of each school year. These results are supplemented with

*

‘paper and pencil achievement monitqringhfests administered approximately

’ — Al

Levery six weeks. and unit tests given gfter each majot unit of arithmet cs \

¢ /

instruction. - - -

o~
o

The second set of variables deals with measures of’§peQi£?c’96gnitive

g

abilities.fhat potentially are related to performance -on addition. and sub-

f 5

, tractiiszfoblems. Included in this set of variables aré‘measures of
coqég;varion, class inclusion, and information processing capacity. The
’th;rd major set of variables th;t we are investigating involxss the kind
and amount of instructipn that pupils receive on individuaihtopiqs. A

~ key component of these measures, which are gathered through direct<observa;

tion in the classroom, 1s the recording of pupil allocatedyand engaged\

time, using techniques developed in the Beéinning Teacher Evaluation

Study (Jones.& Romberg, 1979), In following sections, results from the

.‘ : ':241




first year of the study will be discussed. -

Subjects T s -

o
] ’ .

Subjects for the study consist of 150 ohildrenrffom eight first grade: ,

classrooms. The classes were in three.elementary'échools that all draw

' ' /

from pgedominantly white middle t6 upper-miqgla.clqss ne?gﬁborhoods. The
schools were selected in an attempt to control for instruction.. All tgrée'
used é‘modified,ugrsion of Developing Mathematical Progesses (oMP), the
activity-oriented problem solving program developed af”the Wisconsiﬁ Research
and Development Center (Rombe;g, et alj,_ 1974;. The modifications oc;ur
primarily with instructional units whose objectives deal with writing.qu
solving open gentences that represent addition and subtraction problems.
?hese modifacations are described in detail in Kouba and Moser (1979). -

At the time of the first interview in October l?78,_subjects;had
generally experiénced only the readiness acgivities typical of a kinder-

” : v

garten mathematics curriculum. Some had begun work on writing numerals. )

; o .
By the time of the second interview in January 1979, the instruction had

) r 4
- covered only two purely arithmetic units, Writing Numbers and Comparison

‘'Sentences. The other topics dealt with measurement and geometry. Comparison

Sentences introdugis the notion of a ﬁgthematical sentence, though it only
deals with representing a static relation (equality) beyween fwo numbers.
Tbus, at thé time of the second interview the children had received no

formal instruction in symbolic.feprgsentation of addition and subtraction.

On the other hand, several lessons which included problem situations involving
joining, sepérafing, part-part-whole and compa¥ison had been presented. In

those instances, modeling with objects to determine the solutions had been

suggested. " v

25




By the time of thg‘third interview‘in -May 1979, several instructional .

.t

‘

units on,addition andmsubtraction were presentedr The units required

t

uapproximately two months of lnstruction and LOCUSEd on the following N

objectives._ writing number sentences of the form a+b= [:] or a-b-= [:].

- to represent concrete and verbal problem situations, and solving number ’

’

sentences of the form a + b= [:] and a - b [:] for sums between 0 and 10

. i \ /

The problem situations were of the Joining, separatipg, comparison and

part—part—whole types. Several key features highlight these units& First,,
'the children are strongly encouraged to use modeling behaviors by represent-
’ ing numbers ‘'with sets of physical obJects. Second various forms of counting
o ' " are suggested Finally, analysis of verbal problems is taught using ; device

that has the part-part-whole relationship as its basis. This deviée tends

'to highlight ‘the inverse re1ationship of addition and subtraction.

i e

»

Problems
Each interview included six problem types, two having-antadditive
structure and four having a subtractive structure. hepresentative problems
and the order in which they were given in the interview are presented in
- Table 1 The specific problemsvwere selected because 1) they'were repreh

sentative »f roblems commonly included in elementary mathematics‘texta,

2) they include the three basic, but different, types associated with sub-

traction, 3) they were problems that the younger subjects were most 1ikely
to be able to solve, and 4) the,earlier pilot study (Carpenter,-et al., 1979)
had indicated that they would el4icit different patterns of solution. Each :

’

problem trpe was presented under four different c¢nditions, resultipg from

the crossing of two variables, number size and the ayailability 'of manipulative




-

o Table 1
- _ ,
-Representative‘Ad%ition and Subtraction Problems_‘ ®
1. Joining (Addition) Wally had 3 Pennles. His father gave
. . ' : * 'him 5 mote pénnies. How many pennies
did Wally have altogether?
2. Separating” (Subtraction) , Tim-had 11‘caadies. He gave 7 candies
’ . ' to Martha. How many candies did Tim
have left? ' ; o

3. Part-Part-Whole (Subtraction) There are 6 children on the playground.
, L d
R , _ 4 are boys and the rest, are girls. How
many girls are on .the playground?

4. Part-Part-Whole (Addition) Sara has 6 sugar donuts. She also has
e ) 9 plain donuts. “ How many donuts does . ]
_ . Sara hava altogether7 '
¢ . \
5. Comparison (Subtraction) Joe has 3 balloons. His sister Connie
: - ;o . has 5 balloons.. How many more balloons
L does Connie have than Joe?

.
L]

“«, ) e
'« 6, Joining (Subtrgltion) Kathy has 5 pencils. How many more
N _ pencils doed she have to put with them
' so she has 7 peneils altogether?

©

aids. The manipulative diqfnsion involved the presence or absence of physical

objects that could be used to represent the action or relationships described
3 in the probiems. Number size~included(a set of smaller numbef tripies, the
: QQm of whose addends was batween 5 and 9, and, a larger set for which the .sum
was béfween }1 and 16,
| The.assignment of number'tribles to problem type: involved a six-by:;ix
Latin square design resulting in six sets of six problem taska each of which
were_uniformly,and'randomlyvdistributad across subjects. |, ¢

Individual Interviews

o The interviéws were broken into two parts, with the 12 problems involving

1
i

25
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y .— ‘

smaller nqmbers given on one day and the remaining 12 with larger numbers

|

egiven on'j succeeding day. Interviews were cut short at any time it became

.
) -

apparent 1 subject was floundering. The interview procedyres were not .

¥

clinical ﬁn the sense described by Opper (1977)., Rather, they could be
. I . '

3 considerei as an attempt at hgturalistic observation. If a student's
: strategieé could be directly observea; no follow-up questions were ﬂa&gg.

1f not, the interviewer attempted to determine the strategy by asking
Y Y . .

v

the child further questions. All interviewers followed a standardized

routine for'qugstibning children and coding respdqses. All interviewers ?
N C

were trained to the point that intra and intercoder reliability coefficients
v , -

were greater than .90 (Martin, in press). \

We now turn to a presentation and discussion of results obtained to T e
% ddte. Because tbe;fongitudinal study is still .in progress, some data have
beer only partially anélyzif. The analysis of the data will be reported on
' a gross-sectioned basis. Tracing of thé devélopment of individual chiidren
over time has not &et been comple;ed. However,”the longitudinal study
results together with the results from the filot studies cited'eirlier e
(Carpentér, et al., 1979;° Carpenter, et al., in p;éss) provide a reasonably .

consistent picture of ch@lﬂren's initial solution processes for simple

verbal problems. Addition will be discussed first, followed by subtraction.'

Addition
Our basic interest is in the strategies children use, both before they
receive formal (i.e., school) instruction and during and after they receive

M initial'instruction in the operatidns of addition and subtraction. Because
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“ . ‘ _
“these children have, at best, limited exposure to the formal operations of

arithmetie,- the strategies they do exhibit are a result of their intuition,

‘their invention, and of informal "instruction and experiences (e.g., parents,

A7

' " older siblings, kindergarten). Most of the strategies are based on counting

and are similar to the strategies for éolution of numer%éal'addition problems

Ld

¢ identfTied by Suppes and Groen (1967) and Groen and Parkman (1972). oOther

strategies exhibited by our subjects are not based strictly on counting.

LY

Addition Strategies .

L3

¢

el

e N In all problem contexts reported; the measurable entities were discrete

\ -

sets., In two of the four settings, plastiq cubes were made available for
. modeling. 1In a third, the numbers were sufficiently small that the subjgcts'

ten fingérs could be easily used as representation§ of the two sets given
. ‘ in the problem. igniy in the foufth setting, larger numbers without the
cubes present, was it true that rphysical répresentations of the sets de-
‘ scribea in the probiem were relatively inacpessiblé. "As we shall report,
) this fburth setting induced digfefent behaviors on the part of some children.
The manipulativeg, cubes or fingers, were used.in two distinct ways. In
h)~ ‘ one‘case, they stood as direct representatives of the p;oblem entities.
In the second, they served as a marker or tracking a!d to help the child
re&eﬁber some counting sequence. |
The various types of strategies used to solve addition verbal problems
Wouid seem to occur in a iogical order of difficulty, or degree of sobhis—
kication.' This ls a suggestéﬁ ordering made on a logical analysis of the
levels of abstraction.. Empiric?l evidence suppdrting or contradicting

this order has not yet been analyzed. These strategies are summarized

-

- h

Q _ . _ 29
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below. In the following discussion, m is the smaller addend in the- !
problem, n the larger, and t is the sum: In other words m + n = t.

Counting All with Models. Cubes or fingers-are used to independently
count out and represent both sets. Then the union of the ‘two sets

is counted. Three distinct counting sequences are used, each associ-
ated with a direct one-to~one count of a set in the problem. One 4s

- "1, 2, ..., mj another is 1, 2, ..., nj the third is 1, 2, ..., m + n.
The answer is the number of objacts in the union set. We make no R
distinction if the smaller or larger set is modeled first. In actual

. ' ' practice, most children modeled .the sets in the order in which they !

were given, which was' always the smaller one first.

Counting All without Models. This is essentially the SUM strategy as
identified in the response latency studies by Suppes and Groen (1967) .
and Groen and Parkmah (1972). Neither set is modeled. The counting
sequence begins with 'one" and a simple counting procedure is executed
until either m ov n is reached. At that point, a double-count is
‘ {nitiated as the child continues until the final word, m + n, is reached
in the sequence. The first count at the intermediate point continues
asm+ 1, m+ 2, etc. (or n+ 1, n+ 2, ...) while the second and pre-
sumably simultaneous count is 1, 2, 3, «.. n (or1, 2, 3, ... m).
Keeping track of the second count may be done by objects (rarely
observed by us), by fingers, or mentally. The. answer 1is the final
number in the counting sequence. ' ' ‘

Counting On from First (smaller) Number. Exactly like the previous
strategy with the‘'major exception that the counting sequence begins with
morm+ 1, 'Againf tracking of the second count may be done with objects,
fingers, or mentally.

Counting On from Larger Number. This 1s the MIN strategy i@entified in
the response 1atency.studies. Here the counting sequence begins with
nor n+ 1. Tracking is done as in the other strategies.

Number Fact. Although the children we are working withehad not been

taught number facts until the latter part of the school year, some '

of them learned a great deal about addition outside of school, including

a wide range of number facts. These children were generally able to

.. apply their knowledge of addition facts to solve simple verbal problems. - -

d ~ Heuristic. Heuristic strategies are employed to generate solutions from
' a small set of known basic facts. These strategies usually are based
on doubles or numbers whose sum is 10, For example, to solve a problem
representing 6 + 8 = ? a child responded that 6 + 6 = 12 and 6 + 8 1is
. just 2 more than 12. In another example involving the operation' 4 + 7 = ?
- another child responded that 4 + 6 = 10 and 4 + 7 is Just 1 more than -10.

w
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"The latter three counting strategies that involve the double, or

4’

simultaneous counting deserve further discussion. Althougﬁ we did not

observe any instances of this behaviof, it 1is theoretically possible to

use a clearly different prucess to track the second set involved in the

v

“«
constructed, either by cubes, fingers or a string of counting words, as.

double count. In the three strategies described, the second set is being

.the double counéing is being carried out. In contrast, a child could

conceivably construct that second sét.(probably on a physical basis) prior
to beginning the double count. Then thelffacking woyld be carried out by
sgccessively removing objects from the eonstfdctéd set and‘would end when
.that'set was'éxhadsted.

The inférmation processing demands on the child would'séem'to be
much less féf the latter situation in which the second,‘tracked set was
constructed prior to the simultaneous count than in the former whiere the
second set is being consgructed as the ghi%d'is counting{‘ It would uppear
that the child would have to continuously check whether the second count
had yet reached thé'dgsired target number. When‘carried out mentally,

- 4t was difficult t; determine how the éhild knew when to stop. Some
children appeared to use some sort of rhythmical or cadeqced‘counting.'
Others explicitly described a double count. But children generally had

'difficulty,déscribiné th{ﬁ proceéss. When fingers were used to construct
- PR
the second set, it seems to us that children have a special kinesthetic,
quasi»shbitizable sense about knowing when a particular number of fingers

have been raised (or lowered). ¢
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Addition Results ' - | . . |
A summary of results for the two addition problems is presented in
Tables 2 and 3..-(Wording~of the prcblems is éiven in Table l;) Although
both interviews 1 and 2 were. conducted before children received formal
. instruction in addition, most children were able to solve both addition
| problems. In fact the overall pattern of responses for both problems is
almo;t identical both.in.terms of number correct and strategy. .This
‘suggests that there:is‘very little'difference in the way that children
approech these two types of problem.
It is not the case, however,lthat all addition problems are equivalent.
In an earlier pilot study (Carpenter, et al., 1979), the folloWihg Comparison-
, | | | larger problem was found to Pe significantly more difficult'than Joining
and fart-Part-Whole problems: |
kalph has 8 pieces of gum. Jeffohas 5
more pileces than Ralph. How many- pleces
of gum does Jeff.have? -
Although over 80 percent of the first graders in that study could solve
. the other two addition problems, fewer than 25 percent correctly solved
this Comparison problem. Over 50 percent gave one-of the numbers in the
_ problem as their answer. They'did not seem to be able to understand that
' - "Jeff had 5 more pieces of gum than Ralph' and interpreted it as "Jeff

had 5 more pleces of gum."

Although not performing at a high level,
' children were still better able to deal with_the "more than" relation
in the Comparison problem with subtractive structure. It seems.to be this

particular addition comparison context that gave' them difficulty

Ty
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Table 2

Results for Joining (Addition)yProblems [Interview Task #1] °

' T STRATEGY -
. _ Counting All Counting on HE Numerical - N
Condition Interview Number = . with without from from number  heuristic
Correct* models models first larger fact . '
Smaller R o . .
numbers 1 96 63 7 ' 13 -9 14 0
Physical | 2 126 © 83 0 - 7 13 25 % 4
objects , : o o ‘ , _ f\
' 3 138 50 0 . 8 23 - 48 . 5.
Smaller . ' ‘ c
numbers 1 90 49 11 o 11 8 10 8
No ﬁ 2 - 113 ' ~ 50 2 15 14 26 - b
physical - ,
objects 3 137 25 - 1 , 21 21 : 63 2
_ = ,
Larger . g ' ' . v
numbers 1 68 67 0 - _ 5 11 1 3 ‘
Physical 2 99 80 0. ’ 12 18 2 6
objects "
3 125 70 0 , 17 . 33 17 3
\
Larger . _ '
numbers 1 ' b4 _ 29 -0 11 12 0 , 2
No 2 68 25 1 25 L2 1 - 7
physical
objects 3 106 _ 21 1 T 34 42 18 3
: [ ) ‘ . . ' ‘, N
Ve x ‘}

o . n =14k for Interview 1; n = 150 for Interview 2 and 3

L L] . 4 s
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Table 3 . .

Résults for Part-Part-Whole dedition) Problems [Interview Task #4].
. . 4

~__ J

S o , ™\ STRATEGY _ \ .
« Vo Counting‘All Counting On 1 “*Numerical
, Condition ' ”Interview\ Number with without from from number heuristic
. X " Correct* models models - first larger fact
. : "" ."‘ w .
Smaller . ‘ y
= » . . ; Ca
numbers 1 -~ 108. 7 ‘7° 8. 8 4
Physical 2 . 1123 78 1 7 12 |- 20 9
objects ' " f
: 3 137~ 49 1 6 29 4§_f} 2
' - ; — N~
Smaller te »
~ numbers = 1 * * 92 54 8. 8 13 11 5
- N ' ‘
No . . . 2 108 47 5 13 14 L 27 8 .
physical ' X » - A
" objects 3 137  ° 21 1 19 24 54 0
4 T e g, : —t *
Larger 0, : . |
numbers 1 72 73 .1 4 5 2 2
[
Physical 2 107, 73 0 15 19 "3 5
objects : ‘ .
3 126 68 2 , 13 37 13 6 .
) h . S ,
Larger .
| numbers - 1 41 23 2 = 12 11 1 1
No | o2 68 25 3 12 25 4 6 iz
physical ' ' ) | e
objects 3 99 19 0 31 49 8 5

n = 144 for Interview

35
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There is a difference in the structure of the addition problems that may

! .4
account for this difference in difficulty. As notedr%n the earlier discussion

of problem types both.the Joining and P34t~Part;Whole problems have the set-

inclusion dimension. Thus, when a child constructs sets representing both

entities and takes their union, that child is.actually'modeling the problem.
This is not the case for the addition Comparison problem for which the set-
inclusion property does not h&id. The union of sets representing the quantities
described in the Comparison proﬂlem does not quite model the relationship
.o of'the problem. |
Fbr the Joining and Part~Part-Whole pr;blems, it appears that some T
children are able to represent and solve problems involving small numbers .
‘ before they can solve similar. problems inQolying larger numbers, In-tﬁ?éry,’
the process of solving probkems with small numberé or large numbers are the
same whén physical objects ére ;vailable. But the problems'with smaller
» numbers gere sigﬁificaﬁtly easier. ‘ , | '

9

Of particular interest was the fourth interview condition where lat:ar \»

»

numbers were used but no physical aids were available. Since it is more

_diffiqult to represent numbers larger than 10 with fingers, many children «

@

opted to use the Counting On strategies rather than-the less advanced .
" Counting All strategy that they would use when physical aids were present.

There was also a marked increase in the Counting On strategies over:

time. Although we cannot completely rule out the possibility of informal

~

instruction or some formal instruction by some of the classroom teachers

involved in the study, we would still propose that it is strong ¥vidence

in support of the theory put forth by Groen and Besnick (1977)' that children - °

s o
. o
-~ .
° 'y - ’




invent these stratégies for themselves.

Subtraction : ; 7

e A ® |
It is generally acknowledged that subtraction is harder for children

.than’adgition;v Although a number of reasons could be -advanced for this

I - ldifference, &e prq@ose tha£ a possible cause of thié difficulty is. the /
B » -, fact’ that thgre are several distinct representatiops possible for subtraction
' prablems while addition is generally defined as tﬁe union of two sets.v We

have identified three basie types of subtraction strategies which reprelent

3 ' .
~ the distinctly'diffefenf actions of separating, joining, and cohparing. Some

-

of thege étrategies 6§erate at different levels of abstraction in much the
'ug.“‘ . éamé'wéy‘asjthe éddipion_strategies. There is the low level model@ng of
_ | . sets and actiéns.with physical objects accompaﬁied byysimple céuntiqg and
o i the more éophisticated cdunting-stratggigs Fhat involve the- double-count apd
tracking procedures.  While not directly-associatéd with a specific problem

_ or strategy type, use of number facts and heuristics‘Fre dlso used to solve
1 3 v N ) & ' '
subtraction problems. The different strategies are described below. Some
. have been identified in the responmse latency study of numerical ‘qubtra_c,t:ion

. . .
problems carried out by Woods, Resnick and Groen (1975).H ' ’ '

’ . *  Subtraction Strategies ' b
: ' - (

‘% ( Rather than describe the sttategies in the order. of level of sophis-

tication, we have listed them by the.various‘types that correspond to the
problem types. The number gentences m - n=d orn+d = m’répresent the

. , ~mathematical operation characterized by the problen.

[} A
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Separating From, with models. The child uses concrete objects or fingers
to.construct the'larger given set m and then takes away or separates;
one at a time, a number of cubes or fingers equal to the smaller given
number n in the problem. Counting the set of remaining cubes yields the
answer. Three distinct counting sequences are used. The first is 1, 2,
..., m; the second is 1, 2, ..., u; and the third is 1, 2,....,\m - n (or d).

Counting Down From, In a more abstract representation gf'the separating
from strategy, a child initiates a backwards: counting sequence beginning
with the given larger number m. It is conceivable that a child could
precede that by counting 1, 2, ..., m; but we never observed it. . The
backwards counting sequence contains as many counting number words as
the given simaller number. The last number uttered in the’counting
sequence is the answer. 'Here-a double-count is necessary to keep track
that the correct number of counting words has been uttered. As with the
counting on strategies for addition, the tracking may be accomplished

by a constructed set of cubes (rarely seen) or fingers, or mentally.
This is the method number 2 identified in the Woodt et al. (1975) study.

Separating Tb, with models. The Separating To strategy is similar to the

Separating From strategy except that the separating continues until the
smaller quantity is attained rather than until it has been removed. 1In

the concrete case, after the larger set m is counted out, the child removes
cubes one at a time until tie remainder n is equal to the second given
number of the problen.. Ccunting the number of cubes (d) removed gives

the answer, Again, three distinct counting sequences are used.

Counting Down To. A child initiates a backwards counting sequence

beginning with the larger given number. The sequence ends with the

smaller number. By keeping track of the number of counting words

uttered in this sequence, either mentally or by using fingers or cubes,

the child determines the answer to be the humber of counting words

uttered in the sequence. It is interesting to observe that Woods, et al. ’
(1975) did not identify this strategy. From a‘'response latency perspective,
it would involve the same number of steps as a Counting Up From Given
strategy. , ' e

Adding On, with models. With concrete objects the chilu sets out a number

of cubes equal to the smaller given number (n). The child then adds cubes
to that set one at a time until the new collection is equal to the larger
given number (m). Counting the number of cubes added on (d) gives the
answer. Here too, three counting sequences are used. The first is

1, 2, ..., n. The second isn+'1l, n + 2, ..., m. No tracking,is needed "
because the child knows to stop whenever the word "m" is uttered. The
third count is 1, 2, ..., m = n (d). '

~

Counting Up from Given. A child initiates a forward counting sequence

beginning with the smaller given number n. The sequence ends with the
larger given number m. Again, by using any of the available devices,

39 V4
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the child keéps track of the number of counting words uttered in the
sequence, and thereby determines the answer. This is method number 3
of the Woods, et al., (1975) ‘study. ' —

Matching. Matching is only feasible when concrete objects are available;
The child puts out two sets of cubes, each set standing for one of the
given numbers. The sets are then matched one-to-one. Counting the
unmatched cubes gives the answer.
Greeno (1978) has hypothesized that children may use a single strategy
. u, to solve all'subtréction problems. He suggests, for example, that certain
problems are éssociated difectly with a subtraction opergtion.‘.Others are
first t;ansformed to one _of the repéesentations that is directly associated
with an opefation. This ana}ysis would seem to imply thafuall.of the proplemg;
that are initially transformed into’the same basic representation'ﬁoulé
generate the same-solution strategy..
An alternative hypotheéis is that different strategies would be used,f
depending on the structure‘of the problem, As we have just seen, certain
of the strategies naturally model the actio; described in specific p};blems.
Thé Separating problem is most clearly modeledhby tLe éeparating strategies.
«On the other hand, the implied join}ng action of the Joining (missing addend)
problems is mést closely modeled/g; the Adding On or Counfing Up straiegy.
_Comparison problems deal with static relat%onshipb between sets rather than
. action., In this case the Matching strategy app;afs to provide the best model.
_ . For the Part-Part-Whole subtraction problem the situation is more. - E
: . . P '
ambiguous. Since Part-Part-Whole problems ‘have no implied action, neither

the Separating nor Adding On strategies (or their counting analogues), which
]

‘ involve action, exactly model the given gelationship between quantities.
[} .

And since one of the given entities is a subset of the other, there are

not two distinct sets that can be matched, In the next section we shall

L] . \
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present evidence that the .second hypothesis best characterizes,children's.

solution strategies. In ocher words, children tend to model the action

or relationship described in the problem rather than attempt1ng to relate
A

the'problem to a single operation of subtraction.

Subtraction Results

¢

The data for each of the four subtractjgn problems are presented in
Table 4, 5, 6, and 7. The inoidenceJof the Separating To and Counting Down
To strategies was so small that that category is not included. For the sake
of readability,'uncodable‘responses as well as incorrect‘responses such as
guessing, repeating one of the given numbers, or adding instead of subtracting
are also not included in the tables. We w0uld'observe, however, that there
were relatively few instances of thesg types of .errors. Most often children
:who were unable tc, solve a problem because they were unable to represent
the action or relationship in the problem. They very seldom, however,
represented it in an incorrect or inappropriate way. . ‘

The reSults indicate that the domlnant factor in determining children s
strétegy was;the structure of the problem. The strategy used by the great
majoritybof children modeled the action or relationship described in the
problem. This was true through-all three interviews and under all problem
conditions. For the Separating probem (Table 4), almost all children used
a subtractive strategy (Separating, orsCounting Down). For theo Joining-
Missing Addend problem (Table 5), almost all children used a strategy (Adding On
or Counting Up). The results were not quite as overwhelming for the Comparison

problem (Table 6), but the Magching strategy was the most .frequently used

strategy.when physical objects were available. - In general, this strategy is
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) ) . . | Table 4 ‘
v ‘ . Results for Separating.(Subtraction) Problems [Interview Task #2]
-
. : B . : STRATEGY
' - SUBTRACTIVE + ADDITIVE | COMPARATIVE NUMERICAL
Condition Interview Number | Separate Count down Add on Count up Match | Number Heuristic
. Correct* from from given + | fact
Smaller . . } - .
numbers | - 1 ' 92 72 6 3 3 0 7 1 -
Physical 2 108 93 5 0 3 .0 17 5
objects _ . ) . : '
3 134~ "85 . 13 0 0 , 0 32 ‘ 7
Smaller ~ ‘ . - 4
numbers 1 | 4 53 . 7 1 3 0 9 5
No physical | 2 : 92 60 . 5 0 3 .0 15 b
objects _ , ' ) :
3 _ 129 65 12 ‘1 9 -‘0 37 . 3 ‘y
‘ Laféer . : )
numbers 1 60 81 2 1 0, 0 - 1 1
Physical 2 92 102 1 1 4 0 2 3
objects
: 3 111 96 13 1 9. 0 6 8
ﬁarger : .
numbers 1 24 33 6 0 1 1 1 1
No physical 2 31 26 9 0 6 0 2 o2
objects . e
3 68 35 21 2 12 0 15 8

¢

*
@ n =144 for Interview 1; n = 150 for Interviews 2 and 3
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! Table 5 . .
Results fdr Joining (Subtraction) Problems [Interview Task #6] 1 RN
T
- Y ¢ P ,
| STRATEGY - g °
/ 'SUBTRACTIVE : ADDITIVE COMPARATIVE NUMERICAL .
Condition Interview - Number Separate Count down Add on - Count up + Match |, |Number Heuristic
: Correct* from l from given fact . c
- - | T
Smaller ! : . : _ ’ o
numbers | 1 90 6 0 60 .15 2 - 7 2 T
v - . ' . : i )
Physical : 2 120 2 0 | 68 24 0o 23 .- 4
objects | . . '
! 3 133 2 0 47 30 0 ' 51 3
l . _ | _
!
Smaller |
numbers | 1 86 0 0 . 53 28 0 b9 2
No o 2 110 '0 .0 43 2 | 0 " 25 3.
physicel |¢ o | - . . .
objects | 3 132 1 0 30 39 0 , 49 -3
Larger ' ; . o % | \
numbers i 1 | 56 g 0 45 13 o5 b2 2 \
Physical i 2 : 86 3 , 0 65 - 18 ' 1 3 6
objects ' T ' : : .
! 3 ! 114 5. 0 70 . 27 -3 12 8
/] .
44 Lalrger ' " o | ' . | l 45
numbers 1 36 0 0 10 26 o0 1 2
No 2 159 0 0 16 39 0 2 3
physical ; '
objects 3 ! 92 1 0 21 65 0 11 8
| l * '
]ERi(j n = 144 for Interview ; n = 150 for Interviews 2 and 3 .
Rrovos oo e v ' : ¢ + : -




" Table 6

Results for Comparison (Subtraction)'Problems [Interview Task #5]

STRATEGY

: . ' SUBTRACTIVE ~ ADDITIVE COMPARATIVE NUMERICAL .
Condition Interview Number Separate Count down Add on ° Count up Match Number Heuristic
‘ : Correct# ' from . ' from given fact

Smaller
numbers

Physical
objects

Smaller
numbers

No .
-physical
objects

- Larger
numbers

Physical
" objects

Larger .
numbers k 29

No | | ' ' .42
., physical .
objects .3 58




Table 7

Results for Part-Part-Whole (Subtraction) Problems"[Interview.Task #31]

. STRATEGY w °
SUBTRACTIVE ADDITIVE COMPARATIVE - NUMERICAL
- Condition Interview - Number Separate Count downm ‘Add on  Count up Match Number Heuristic
Correct® : from ' from given ' fact
Smaller
niumbers 1 67 41 1 10 . 7. 1 5
Physical | 2 82 45 1 3 7 0 | 12
objects : . ‘ : "
- 3 - 119 72. 2 T 6 5 0 27
Smaller | o . N :
numbers - 1, 50 .32 1 6 5 . 0 L3
No 2 71 28 2 6 7 0 19 (
- phyf$ical :
~  objects .3 104 47 4 0 11 0 | 31
/ | J
- Larger ’ !
numbers ' 1 51 55 .2 7 3 0 v 0 B
S X . A a :
Physical | 2 68 67 0 6 5 0 3
objects P
'3, . 105 ' 83 8 3 11 1 9 ‘
48 ‘Larger ' ‘ \ '
‘numbers 1 19 19 0 4 11 0 Q
N T 2 34 12 2 2 16 0 o
‘physical ‘ '
objects 3 64 26 14 3 18 0 11

%
n = 144 for Intery;ew l and n = 150 for

Interviews 2

2

and 3
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Counting Down strategy to solve the Separating problem. Counting Down is a

" strategy prior to learning basic subtraction facté\\°

not possible when there are not objects available to‘construct the two ‘ K
gets 'to put in one-to-one correspondence. Interestingly, we ‘did have ;
several instances where children tried to match their fingers on one hand
with those on the other hand. This‘occurredehen the‘number.triplet 2-3-5
was used. “ | |

The ambiguity of the Part—Part—Whole probﬂem (Table 7). 1is reflected
in children's selection of strategi 8. Although a majority tended to use a

‘subfractive strategy, the addit e strategies were used‘by a significantvo

‘minority, especiallyoinpthe fourth tondition - here manipulative objects and

sufficient fingers were'not'available9to model the separating process.
- ;o th . 8 .
In the first two'interviews the Gounting Down strategy was used relatively

c L]

infrequently. Although a subtractive strategy was almost universally used .

to solve the Separating problem, children’tended to use the Separating strategy

‘ "

with physical objects or fingers1 Over three times as many chil&ren used the
O

Counting Up strategy to solve the Joining-Missing Addend problem as used the

difficult process. And when explicitly asked to count backwards a given .

(
number of steps, only about 50 percent of the first-graders in our sample M

.could do so. .Although our data are not conclusive in tnis"regard and others -

have identified Counting Dowm as a bgiic subtkaction strategy (Woods et al.,

1975), we would conjecture that some-children néyer use a Counting Down

-’
General Discussion of Strategies. N ) ‘

o>

It has been clearly established that children enter school with | )

X

. reasonably well developed counting procedures, and that they invent strategies

R

[

! , | ' . 50 ‘ ,‘ ‘ , : V"
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based 6n counting procedures to solve simple addition,and subtractio@

i
©

g'.‘. '
problems'T:f. Ginsburg, 1977; Resnick 1978). 1In fagt; the investigations
qarried'out\by a number of other researchers supporé this conclusiqn.’ Ours
is no exception. Oufﬁiesearch aléo offers some support to the conclusion that

. children first apply these strategies to small numbers and subsequently extend
. / . ‘ * . ' ) v
them to larger number domains (Gelman & Ggllistel, 1978).

'

~~w—»~——~~~~M~—'Mf~weur"researchwtndic%tesmthat’in'solying*simple’verbal”problems children

use various counting techniques to directly represent the action or relation-

_shipside9cribed in the problem. OQur current results dg not offer a complete
. ¢ '.

picguﬁe of the evolution of these représentation processes., However, based

on.the data we have, we would make an educated guess that at the earliest

i

stages chilgggg solve problems‘di;ectly by repreéenting the quantities
N described in thefprdblem and then performing the indicated action on these

o, representations.

|

[

In our cuﬁreﬁt reseatch we have focused on problems in which the . 1o

action or relationships described in the problems can be directly @odéled.

}nAother problems like the following missing minuénd problem this is an the

case.

Mary had some marbles. After she lost . g

z : 5 of them, she had 8 marbles left. How

L _ many marbles did Mary have to start with?,

.
¢

=+ 'In this prqblem the initial state is the'unknown quantity:l To diYrectly
o e ® model this action would require some ‘sort of‘ffial and error strategy -

in-which children guess at the size of the initial set and check their guess

by\remoﬁing 5 elements to see if there are 8 elements -left. It is possible
thét this sort of problem will generate trial and error variations of the

, stfategies that we have identified. Rosen;hal>gnd Resnick (1974) also suggest
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. that trial and error'strategles.might be employed for this type of problem.
" Dl .

Lo o
.

However, we are aware oﬁyvefjJIQQtlg’émpirical'eVidence that indicates that

B

¢

- o 1) . ’
children systematically use trial and error sfrategies to solve these problems
l.‘ . AV ) s @ J . ) *

rather than transforming them so that they can be solved directly.

~ 1

2 This @nalysis might help explain differences iﬁ diffiéulty between

different problem types., It would imply. that problems in.which the quantities

“given in the problem are operated on directly woild be easier than problems -~ -~ = =
. in wWich,they were not. In tégvanalysis of the Comparison addition problem

in the addition results section above this was indeed -the case.. This analysis

- 2’

may also explain why Separating problems like:

-«

You have some stamps. You give .
7 stamps to Judy. You now have .
4 stamps. How many stamps. did '

you have to begin with?

-

are significantly more difficult than related Séparating or Missinglﬁgdend'

N »

problems (Grouws, 1972; Lindvall & Ibarra, 1978). 1In the qction desqribed

in the problem, %lstamps are being:;emoved from an unknown quant££y. The

,onlylway to directly model this action is to glready know‘the answer to

the problem or to use trial and error. |

The difference in diff;duity begween action and static problems (Ng;her

& Katriel, 1978; Steffe, 1970) may-gléo reflect how clearly the action or

relatiénshipsaxfespecified in the problem. In the Comparison and PartuPartT
. Whplesubtractionproblems children were less consistent in their choice of

strategy than they wefe‘for thé Separating or Joining’subtraction problems.

Thié\may reflect the fact that children had more difficulty figuring out ﬂow

to model the relationships in the static problems, which was ultimately

reflected in their ability to solve the problem correctly. In this regard

’
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it’ is noteworthy that in our study there was no difference in performance on
the action and static state-addition problems. Since there is only one

general model of addition the exact representation of the action or relation-

* o

ship was not an issue.
Although they ﬁay have difficulty.applying them to all problem situations,

it appéars that early in their development of subtraction concepts children

have a variety of strategies for solving different subtractioh'probléms.':'

N

There may be a general overriding strategy of mofaling the action or relation-
ship descfibed in a problem. But it mani{ests itself in several very differént
ways that provide different interpretations of subtraction. We would- hypothe~

L3

size that at first children do not recognize the inteqchangeability of their

<

strategies. This would account for the fact that there is such a close match

between problem structure and strategy. Even though a Cownting Up strategy

.

is mgph easier and with the numbers in our problems more efficient than a Count-

ing Down strategy, most children in our sample ‘continued to attempt to use some
. ~ T s »

form of Separating strategy for the Separating problem. Woods ‘et al. (1975).

,hypothesized‘that older ch}ldren are able to choose the most efficient of the
counting st}ategies to solve numerical problems. So far we have no data to
support this conclusion with regard to children's solutions of verbal probiems.
They would suggest, howevér;'that younger children have independent concepti;ns
of ;ubtraction. A completely developeé concept of subfractibﬁ invovles an
integration of all these interprétatioisf.

Our data do provides.some insigh@s into how that developﬁent may'tqke

place. Apparently, the first step migﬁt involve a shift to more abstract

counting strategies from concrete strategies that completely model'the

.
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problem. Although at the time of the third interview most 'of the children .
in our sample continued to use a strategy that represented the action or
relationship described in the problem, almost half of them were using the
more abstract Counting Up and .Counting Down strategies rather than tqe more ;
concrete Adding On and Separating strategies.' Thus, the ab#lity to choose

between strategies representing different interpretations of subtraction

. - seems | to come after ‘the ability to use more abstract versions of a given .

Al

strategy in a particular problem.

So far we have said very little‘about the-relationship between thelformal g
mathematics that chiidren 1&arn as part of the mathematics curriculum and -
the informal strategies ‘they {invent. independently. 'We have completed one
study that examines the relationship between children s symbolic representation
of addition and subtraction problems and their strategies for solving them

»

(Carpenter, et al., in press). After several months of instruction, most

children could write addition and subtraction sentences of the form a + b =

ora~bm= to represent Joining and Separating ptoblems but had more
©

difficulty representing the other types of problems. At this stage very few
children recognized that the arithmetic sentence was a mechanism that they
might use to .help them solve %he problem. Most of them continyed to use the
verbal probIEm as the basis for deciding hpw to solve the problem. In fact,
in sptte of 1nstructions to: the contrary, about'25 percent of' the subjects
would solve a problem before writing a sentence.: In general few children
clearly understdod the relationship between the number sentence and the )
problem. o ‘. . X

This pilot study also provided some evidence that children g8 strategies

were less influenced by problem sgtructure after several months of instruction

e
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on addition and subtraction. So far this trend is not quite as evident in

the data from the longitudinal study,

As a final comment .to this segtion it is interesting to contrast the ¢
performance of the children we. have studied'and,ﬁhe problem solving abilitiés
of older students. We.have found that young children very carefully analyze
problems and base their solutions oﬁ the structure and‘éontent of the problem.
This analytic ability is precisely what older child;enllack. Although they

. : .
are generallx-successful‘inpéolving simple addition, subtraction, multiplica-
tion,'énd divisibn word problems,. they hgve‘a greaf‘deal of difficﬁlty with
even‘simple nonroutine broblems that involve anything more than a straight-

forward application of a singlé arithmetic operation (Carpenter, Corbitt,'

Kepner, Lfndquist, & Reys, in press a, b).

. , Other Variables
In the discussion so far we have attempted to characterize the processes
children use to solve simple verbal addition and subtraction problems and

how they:may evolve over time. In this fegard we have fécused on the effect

_ of problem structure on children's solution processes. In addition to problem

strﬁcture,ithere are two other important variables that we are investigating:
chgracre;{stics of the chilq solving thq problem and the nature of instruction
thé child has teceived. So far we have not made as much progress in examining}
these variables as we have in identifying the effect of problem structure,

bﬂl wéhbould like to briefly characterize some of the factors we have inves-
tigated and those we are‘continuing to investigate.’

Individual Differences

There clearly are differences in the rate at which children acquire

v

baéic addition and subtraction problem solving skills. At the time of

. 55
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each interview, a great deal of variability in performanceiwas observed.

.

What is not yet clear. is whether children are simply at different stages
of development{with respect to a given skill or whether different children

go through different patterns of development in the acquisition of addition
1 ] . .
and subtraction concepts and skills, For example, are children who use

“a Counting On strategy simply further along in their acquisition of additién

s 3

concepts than children who use a Counting All strategy, or do some children

need to rely on Counting All strategies up until the time they develop formal

addition concepts? Theefact that there is a steady increase over time in
the number of children using a Counting On strategy would argue for the
fact that children using a Counting All strategy were simply at a lower
level in their acquinition of addition concepts. Other stud¥es haQe also

Sy

' examined this issue and have generally concluded that older children
increasingly use mor; advanced coutning strategies. (cf. Woods et al.,
1975).

So far we have only examined our data on a cross sectional basis.
As we examine our data on a 1ongitudina1 basis and trace the change of
performeqce of individual children over time, we should begin to get a-
better idea of whether there is a well defined sequence in which children
acquire addition and subtraction problem solving .concepts and skills.

One of the factors that we have examined to attempt to account for
individual differences in the acquisition of addition and subtraction problem
solving strategies is the relation of these strategies to measures of more

general cognitive abilities that might be prerequisites. (Carpenter &

Hiebert, in press a, b). From an instructional point of view, the question

26
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of whether the ability to solve proglems or apply strategies 1is tied po the
development of certain bas}c*cognitive abilities is an important one. -There
are potentially different inétructional implications if the ability to solve
certain probléms or use certain strategies is closely linked to fundamental
'cognitive abilities whose éeveloﬁment is difficult to accelégate than if this
is -not the case. ‘ o

The variables that we have explored ark several of the logical abilities

that Piaget (1952) proposes represent the fgundation of -number concepts,

e

and a measure of information processing as characterized by Case (1978)
and Pascual-Leone (1970, 1976). In addition to the argument that these
" variables represent fundamental concepts that underlie the development of

the most basic number concepts, there were several other reasons for their

sélection. A strictly logical analyéis of the addition and subtraction

problems and strategies themselves would suggest that these concepts are
directly involved in certain ofhghe problems 5nd~strategieb. For -example,
the concept of class inclusioﬁ is a basic dimension of certain addition and
subtraction problems, The Part-Part~Whole problems:deal with subordinate
relations very similar to thoge found in classical class inclusion tasks. .
Similarly many of the addition and subtraction strategies involve trans-
formations that presuppose conservation. Although we ha;e not yet been able
to identify the specific information processing requirements of individual
strategies, different strategies ;eem to place very different demands on
children's information processing capacity, and it is reasonable that more
advanced strateéies may require more advanced infofmati;; processing capacities.
There are not only logical reasons‘for considering these variables;

~

there are empirical reasons as well. Previous studies have found that measures
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of basic Piagetian variables‘are,highly correlated. with pérformance on
arithmetic achievement tests (Carpenter, 1979a; Carpenter, Hiebert,,Blume,

Martin & Pimm, in press). Although these studies bave done little to uncdver

vexplicit felationships between these variables and specific arithmetic skills,

Steffe, Spikes, & Hirstein (1976) cbnclude that certain of these abilities are
required to learn to apply some of the more advanced counting strategies.

In&spite of the reasons that one might put forth to expect these variables

-to be productive in helping .account for-children's performance on addition and

‘subtraction problems, we have found that this 1s not the case. ' Not only have

we found that these basic abilities are not prerequisites fqr solving certain
problems o; applying certain éfrategies, but the correlations are modest at

best. Based on some other re§earch we have done on the learning of measurement
cohcepts (Hiebert, 1979), we have concluded that these variables are useful in
explaining performance onstasks whose logical structng,is.similar to the task
measu:ing'the'basic cognitive abilit;. For tasks that are based on'the applica-.
tion gf a skill like counting;.performancg is not -as‘closely reiated.

.‘g »
The Influence of Instruction

-«

Although children clearly invent strategles to .solve problems that they

are not exblicitiy taught, it 1s unlikely that the construction of these

strategles is unaffected by instruction. Psychologists studying the deyel—
opment of earl& nuﬁber*éonéepps have generally assumed that specifit instruc-
tio# plays relatively little part in the development of these basic concepts.
Although this assumption wmay Se appropriate for early number concepts on which
children receive comparatively little formal instruction in school, it is

less valid, for describing children's acquisition of addition and subtraction
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concepts. ‘It may be that within the iimits imposed by the rénge of common
practices within the elementéry curriculum, variations in instruction have
relagivély Little-effect oh the strategies that children employ. But this
is an unwarrantéd éssumption on ép a priori basis: It is important to at
1éést monitor'instruq;ion in order to have some idga of the.mafch between
formal instruction gnd fhe informal mathematics that children construct
themselves. . ) _ | | - .

*

Since we are ultimately concerned with applying dur knowledge about

4

the develobment of addition and subtracfion concepts in children to fhe
design of instruction, we are especially-interésted in the efféct of’
instruction pn'the dévélgpment of these concepts. Furthermore, since

we are also concerned with fhe implications of our results for the ma%he- |
matics curriculum in schools, we have chosen to conduct our studies in natural
schdol settings rathe{ than artificially controlled ihboratory experiments;

In the studies that are completed or in progress, we have attempted

to confrol mathematics instructaon. “All of the chilqren_in the major

- studies we have completed have been studying from the same mathematics

program, a modified version of Deveioping Mathematical Processes. fo fuéfher
take into account variations in the kind or amount of instruction that are
introduced by the teacher or the individual child, we are examining specific
classroom experiences of individual children. A major element in this
dimension of our research is the observation of .allocated and engaged time,
using techniques developed in the ﬁe%}nnihg Teacher Evaluation Study (Jones &
Romberg, 1979). Classroom observations of pgrticipating teachers and students

will provide evidence as to what types of activities students'have engaged in,

_the amount of time they have engaged in them, and the teaching behaviors that
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affect engagement.

The - observation data are etill incomplete, but the available data clearly

indicateﬂtuat_even with the game mathematics program there are -significant

differences in instruction and pupil engagement. It is not yet clear whether

'these differences have any effect on the strategies that children use to.

-

solve addition and subtraction problems. But'there 1s evidence that these

hl

Adifferenceeﬁare related ta differences in learning certain content like know-
ledge of pasic facts. This would seem to have implications for the time atv
dren wopld switch from invented atrategies to formal arithmetic;

g (
tions.

It is reasonable that instruction would have'an increasingly greater
effect in the later stages of acquiaition of addition and subtraction concepta.
- The very early concepts, like those etudied by Brush (1978) are probably
'prelatively independent of epecific instruction. Even the construction of
counting strategies does not appear to be‘greatly influenced by instruction.
Whether”the tranaition to more eophiaticated strategies could be accelerated
by instruction is an open question. But even without specific inetruction;
children construct‘the.etrategies themselﬁes# The shift to solving problene'
by using basic facts and formal algorithms certainly is related to instruction.ﬁ
It appears likely that, depending .on instruction, this shift may take place
earlier in some children than in others. Whether it 1is productive or in the
long range beneficial to attempt to accelerate'thia transition to formal
mathematical operations is also «n open question that requires further

research.
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Implications for Instruction

Our long range goal for studying children's learning of basic mathe-

-

matics concepts is to provide a basis for, designing more ?ffective instruc~
tion. It is not-our objectire to generate increasingly fine ground analyses
of‘children's behavior but to provide a description of children's learning,
and do so at a 1eve1 that it may potentially impact instruction. Consequently .
we have selected a content airea that is a central focus of the mathematics
curriculum,. we have selected relevant variables, and we have chosen to study1
the'acqsisition of this.content in real school envirpnmehts rather than

controlled iaboratory'settings. o . _
Applying knowledge abOu: children's learning to instructional decision -
maklng is not trivial. Although instruction should be consgistent with the
'_ ways children 1earn, the. most effective instruction cannot be deduced
directly from an examinstion of children's spontaneous learning. This
issue has been discussed at greater lengthrin another'paper (Carpehter. 1979h;
see also Claser, 1976 & Resnick, 1976) - The poiwt is that we~are not
"'proposing that our research in its current state clearly specifies an
appropriife sequence of instruction. A great deal of intermediate research
is.still required that'specificaily attempts to estabiish how instruction can
be designed th effectively build upon the spontaneous acquisition of addition
_and'suhtraction concepts that wevhavt observed and facilitatewthe transition
to formal addition and subtraction operati.ions. |
On a long rahge basis we see our research having implications for

instruction in two geperal areas: the selection and sequencing of content

/ and the individualization of instruction. There is ample evidence that
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children enter school with well developed counting processes and that they

naturally depénd upon these processes to deal with problems involving
- <numbers. The typical mathematics program, however, fails to‘build upon
.the richness and growing sophistication of these strategies. This is one
- | srea in which_research involving the design of instructionsl alternatiyes
might build upun our research. . A second involves tne integration of verbal
problems into the mathematics curriculum. It has typically been assumed
tnat children must first naster computational skills before they can apply

.them to solve problems., We have demonstrated, however, that children can

o solve basic verbal problems before they learn formal addition and subtraction

. ' Co y

skills. Rather than requiring computational skills for their solntion, basic
; problems give ‘meaning to addition and snbtraction operetions. This'suggests
that verbal problems might provide a basis for introducing addition and sub~
traction concepts and that verbal problems may be effectively integrated into
the instructional sequence a great deal more extensively than 1s now the case.

An effective program for individualizing instruction must be based on some

Al

measure of how children are different. “ If we can establish a clear picture
of how addition and'subtraction concepts are acquired, his_knowledge could
provide one basis for individualizing instruction. Presumably different
content and different types of instruction would be appropriate for children
at different stages in the acquisition of addition and subtraction concepts.,
The analysis of the acquisition of these concepts potentially provides a
basis for evaluating children’s concepts and skills and designing instruction

'that is appropriate for children at different stages.




More detailed knowledge of children's addition and subtraction
processes should'provide a more substantial basis forlmaking instructional
decisions. But as the above examples indicate,” there is already a reasonable

base to support a great desl of instructional research,
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