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Abstract

This paper describes the research program of the Mathematics Work Group

of the WisConsin Reseaech and Development Center for Individualized Schooling.

The major.interest 'Is in the development of children's abilities to solve

verbal addition and subtraction problems and particuligy in the processes

and strategies used by children.. .Three factors are considered: 1>cprob1em

structure, 2) student characteristics, and 3) the nature of intruction.

An snalyses of verbal problems is presented. This analysis includes

1

a discusiion of various types of problem entities:.disc6te sets, continuous

attributes, and actions or transformations. Problem structure is also ana-

lyzed along three dimensions: action vs. stati.c relationships, set inclusion,

and,order (larger vs. smaller). Examples of various problem types are given.

,Results from th4-first year of an ongoing (1978-1981).1dngitudinal stIudy

of primary age students are included. Thege,results are mainly gathered from

.-.individual problem-solving interviews with about 150 subjects. Various strat-

egies employed and 'their change over time are examined.

The paper concludes with a dfscussion of the implications of the research,

both present and contemplated, for instruction.

ix
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A major aim of mathematical instruction is to enable students to

'acquire concepts and skills reqUisite for solving problems of many'types.

.

A principal goal of mathematical education research is to Understand how

children acquire those concepts and skills and to.understand how selected

pedagogical and psychological factors are relted to that acquisition.

The Mathematics WOrk Group of the Wisconsin Research and Development Center

for Individualized ,ichooling is'presently conducting a program of research

focused on a small set of those'conceOts and skills. Its interest lies in

arithmetical-learning, and in partictilar,, in the acquisition of concepts

-7.

and skills related to addition and subtraction of,whole,numbers.

A primary focus of-the mathematics project of the Wisconsin Research

and Development Center for Individualized Schooling is to study the processes

that ctildren use tasolve simple verbal addition and subtraction problems

and to identify how thase processes evolve over time. We believe that this

.investigation will noi only help us tO bettei understand children's prOblem

solving skills but will also help us to understand how children acquire

basic addition apd Subtraction concepts and skills.

The types of problems that we are concerned with are the simpleestory

problems or wofd problems commonly found it1 elementary mathematics textbooks

that can be éolved

are not stitgesting

by a single Oeration of.addition or subtraction. We

that children necessarily so]ve these problems by adding

or subetacOng. In fact we have found that young children generally do not

\/
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solve,them by applying an arithmetic operation. It is convenient, however,

to define the problem domain in terms of these operations.

pur research is investigating various factors that influence children

problem solving behavior. These factors are the structure of the problem,

charaeteristics of the, children and in particular certain cognitive-procesises,

instructional materials, and teacherls classroom behaviors. The interrela-

tionship of these factors is depicted below.

:4$
1

Teacher
Activities

411

Instructional
Materials

Problem
tructure

' Pupil

Performance .

Pupil

.Characteristics

Our research has progressed the furthest regarding the effect of problem

41
structure, and this aspect wilI be the primary focus of this paper. Iworder

to understand the effect of.problem structure it is necessary to characterize

's . the major structural differences between different addition ana subtraction

problems.
a.*

An Analysis of Verbal Problems N

There are several approaches that previous/research has taken to char-
.

acterize verbal problems. One is to clapsify problems in terms of synt4x,

vocabulary level, number of words in a problem, etc. (Jerman, 1973; Suppes,

Loftus & Jerman, 1969). A second approach differentiates between problems

in terms of che open sentqnces they represent (Grouws, 1972; Rosenthal &

Resnick, 1974; Lindvall & Ibarra, 1978). 'We have chosen a third atternative

that considers the semantic characterfgtics bf the problem. Our analysis

is generally consistent with otberabalyses based on problem staructure (Gibb,.

1956; Greeno, 1978; Nesher &-Katriel, 1978;'Vergnaud & Durand% 1976), biovt

1 1
4
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wehave introduced certain.distinctiOns not included in previous analyses

of.problem types. Ih our 'research we 'have been primarily concerned with

structural characteristics involving the action or.relationships described

in'the problem. In order to fully characterize verbal problems, however,

it Is also necessary to consider the nature of the entities in the problem.

Nature of the Entities in the liroblem

We have identified.three distinct types of entities in Addition and

subtraction problems. What all three have in common is that they are

measurable or can be represented by.- number.

The first type we consider is a discrete collection of obAects. In

thia case, it is possible to represent the elements in a set given in a

particular problem byicounting out an appropriate number of physical objects

to make,an equivalent set. There.is a.one,to7one correspondence between

the problem et and a constructed set or between the problem set and a set

of couAr nting words so that one can actually think of each ellment in the

constructed or spoken°set as representing an'element in the problem set.-

rh contrast to discrete sets, welcan consider entities characterized'

by,an at,tribute which is continuous in natUre, suci? as lengthq age or

.temperatute. For continuous measures, however, -any-set that might be

constructed would represent the quantity in a very different sense. There

.

would not be a one-to-one cOrrespondence1, because there are no identifiable

w .elements,in this type of problem seE. Thus, fOr continuous quantity problems,

the constructed set would rePresent the number Assigned eb the attribute

in the problei, but would not-represent the attribute directly. Needltss 1

to say, continuous quadtities present potentAally morei complex Problem

4
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. situations, it is also possible that continuous measures that.are not

9

directly observable such as age or weight are more complex than measures

such as length or area arat tend to be more easily discerned on a visual

basis.

Both of the previous categories involve a measurable entity that is

acted upon or tran4formed to y eld another measurable entity. ''In the third

category the entities are aFtions or transformations. The following

exadples, illustrate this distinction. In the first example the entities

I.

are sets and in the second they are transformations.

John had 8 pennies. He spent 5 pennies.

How many,pennies did he have left?

Mary had some pennies. Her fathei- gave

her 8 more pennies. Then rishe spent 5

pennies. How many more pennies did she

have than she started with?
-4'

In the first problem the entities are sets of pennies that could,be directly

represented by sets of objects. In the second problem the entities are a

change in the total number of pennies, not a set of vennies; the problem
..

deals with the magnitude of the composite change, not with a set. In the

first problem there is a set of 8 objects, and 5 objects ar removed from

"it. In the second problem there is an initial relative set of unoecified

1

1

1

magnitu e. Eight objects are joined to it, and 5 are removed. The 5 objects

ard notIremoved from the set of 8 objects that.were added but from the

larger set.' The following'problem illustrates why this is a critical point.

Mary had some pennies. Her father,gave her

5 more pennies. Then he spent 8 pennies.

How many fewer pennies i she have than

she started with?

13
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This problem also illustrates another characteristic of transformations;

they have both a magnitude and a direction. In other words they may be

represonted by both positive and negative integers.

1
In the research we have completed, we have only used problems involving

discrete sets. Consequently all of the examples in the next section dealing

with problem structure involve discrete sets. However, continuous quantities

could easily be substituted for the sets in the examples. It is somewhat

more difficult to fit problems involving compositions of transformations

into the mode1, and they may in fact represent somewhat distinct problem

types (cf. Vergnaud & Durand, 1976).

Problem Structure

We have identified three orthogonal dimensions that characterize the

Afferent action or relationships involved in verbal addition and subtraction

problems.

The first dimension is based upon whether an active 'br static relatipn-'

ship between sets or objects is implied in the problem. Some problems gay

6ontain an explicit reference to a completed or contemplated action causing

a change in the ,size of problem entities. For example, "Sue had 8 apples

in a basket.. Then she put 6 more apples in that basket. How many apples

did she have altogether?" Contrsted to such situations are those'in which

no action is implied;. that is, there is a static relationship. As an example,

consider, "There are 7 apples in a basket. Four are red'and'the rest are

green. How many of the apples are green?"

The presence or absence of action carries Fith it a temporal aspect.

When an action is performed, there is usually an initial state which is

--11
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changed or transformed as a result of the action. Thus, a before-after

relationship is part of the situation. This is not th%case when there

is no action. We do not suggest that temporal considerations are different

from the action/static dimension but rather that they are simply a potential-

ly different manner of considering such situations.

The second dimension involves a set inclusion or set-subset relation-

ship. In certain problems two of the entitg'involved in the problem

are necessarily a subset of the third,. In other words, either the unknown

quantity is made up of the two given quantities, or one of the given

quantities is made of the other given quantity and the unknown. For'

example, consider the following problem: "There are seven children on the
4

playground. Three are boys and the rest,are girls. How many are girls?" The

set of boys and the set of girls are subsets of the set of children. The

alternative is that oneof therquantities is disjoint from.the other two.

For another example, consider.the'following problem: "There are seven girls

and three boys on the playground. How many more girls than boys are there?"

In this problem, removing a set of three girls and counting the'number of,

girls in the remaining set of four girls is one way of determining the

answer. The distinction between this problem and the preceding one is that
11

.the set of boys is disjoint from all of the sets of girls involved.

The.third dimension is best described as an order relationship. In

the static relationship among the e4ities, there may be the notion that'

one entity is larger or smaller than another. Where action is described

in the problem, that action mai result in sowething being made larger
S "

(increased) or being made smaller (decreased).

1 5



It is helpful to'visualize these three dimensions by *leans of a

three dimensional solid that represents a two-by-two-by-two matrix (Figure 1).
0

Figure 1. Schematic diagram of characteristics of addition/subtraction
problems.

For each cell of the matrix there are three distinct problem types, .

depending upon which quantities are given and which is the unknown. Although

the action or relationship involVed in each.problem is essentially the same,

the problemg are very different and potentially involve different methods

of solution.. In fact each .cell of the matrix contains both addition.and

subtraction problems. Furthermore, there are significant differences in

difficulty between problems within a single cell of the matrix that are a

function of which quantities are given and which is the unknown. (Grouws,

1972; Lindvall & Ibarra, 1978). The distinction between different problems

within a cell in the matrix are illustrated by the examples given of Joining
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and Separhting.problems. In generil the same sort of variatiOw is possible

for problems in the other cells of the witrix. A characterization of

problems corresponding to each cell of the matrix follows.

Jeinin. Joining situations often arise in early mathematics instruction

because they are generally easy to understand and tend to be familiar to young

children. Joining is the process of actively putting together an entity IT

with an entity A to form a now single entity C. A is made larger or inr

creased by B so tHat the union has measure c. Both A and B are subsets of

C. Figure 2 indicates where Joining occurs in the three dimensional matrix.

Figure 2. Schematic representation of "Joining" Problemqrs,

The following examples illustrate the three basic types of Joining problems.

Wally had 3 pennies. His father gave him

6 more pennies. How many pennies did he

have altogether?
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Wally had 3 pennies. His father gave him,

some more pennies. Then he had 9 pennies

altogether. How many pennies did his father

give him?

Wally had some pennies. His father gave him

le-

4
6 more pennies.. Then he had.9 penpies altogether.
How'many,pennies did Wally have to begin with?

e

§eparating. Separating problems have the same characteristics as Jorning

,problems except that the action involves a decrease rather than an increase

(See Figure.3).

stsoc
loon

!"..1444,

w"hihru..

Figure 3. Schematic representation of "Separating" problems.

p.

In Separating problems a sub'set is removed from a given set. The three basic

Separating problems are illustrated,below.

Fred had 8 pieces of candy. He gave 3

pieces .to Jane. How many pieces did

he have left?

1 8
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Fred had 8 pieces of candy. He gave

some to Jane. He had 5 pieces left.

'How many did he give to Jane?

Fred had 4ome cahdy. He gave 3 pieces

tb Jane. He. had 5 pieces left. How

many pieces did he have to start with?

Equalizing. Equalizing problems are not as well-known as Joining and

Separating. They are usedetensively in the earlier sections of the.

Developing Mathematical Processes (DMP) program that was developed at

the Wisconsin Research. and Deleldpment Center (Romberg,. Harvey, Moser,

Montgomery, 1974). Therefore two types of Equalizing problems; one.

involves an increase and one involves a decrease,(See Figure 4).

0
011.1181°11stityc

841140.,

4414094k..4k*
"#17

Equalize-add on Equalize-take sway

.Figure 4. Schematic representation of "Equalize" problems.

Equalizing problems involve the same sort of action that is found in Joining

and Separating problems but there is also a comparison-involved. Basically

19
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equalizing is a process of changing one of two entities so that the two

are then eckilal on some'particular attribute. The following is an example

of an Equalizing-add'on.problem.

There are 6 boys and 9 girls in the
dancing class. How many more boys
have to be put An the class in order
for there to be tft sate number of
boys and-girls?

Equalizing-take away problems are virtually identical except that the action

involves a decrease in the larger set.

There are.6 bbys and 9 girls in.the
dancing class. How many girls have
to leave the class in order for there
to be the same number of boys and girls?

Part-Part-Whole. Part-Part-Whole problems involve a static relationship

existing between an entity having a particular attribute and its two dis-

joint, but complementary, parts. The .Part-Part7Whole problem type --

a static situation in which the set-inclusion relationship is present -

dnes not appear to divide itself naturally along the third dimension of

order. It Is temking to try to dichotomize the problem types on some

logical basis. However, such attempts have proven fruitless. Thus, we

. choose to show Part-Part-Whole problems as occupying two cells of the

matrix (Figure 5). Soweexamples follow.

There are 2 boys and 6 girls in the dancing
class. How many children are there altogther?

There are 8 children in the dancing ,class.
Six of 'them are girls. How many boys are
in the class?

20
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/)
Figure 5... Schematic representation of "art-Part-Whole" problems.

.

Comparison. ItiComparison problems there is a static,relationship ot

order existing between two disjoint entities. As the naMe implies yhe

Comparison problems involve a comparison of two quantities. These problems

are similar to theEqualizingproblems except that there is no implied

action to increase or decrease one of the quantities,. As with the Equalizing

problems there are two types of comparison problems (See Figure 6). A

Comparison-larger problem situation involves the amount by which the larger

of two compared entities exceeds the smaller on a stiphlated attribute.

In this situation, the student is directed by the problem language to' foeus

on the fact that some entity. A is'iatger than a second entity B. Several

examples follow.
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Figere 6. Schematic representation'of 9Comparison"
t

problems.-

; ,

.
.

,

,

, Joe has 5 records. Mike has 13 records.

Mike has how many more records than Joe?

--Joe has 5 'records. Mike has' 8 more records

than Joe. How many records dods Mike.have?

4

A second,:similar type of problem ie called the Comparison-smaller

problem. As with the Comparison=larger problem, it involves a static

relationship of order between two disjoint entities. However, the
,

Comparison-smallerproblem,foaites attention on the smaller of the two

-entities and on the ,amount by which it is less than the, second entity.

e
The problems are identical to the Comparison-larger pro lems except

that the question is who has Tewer.

Joe has 5 records. Mike has 13 records.

Joe has how many.fewer records than Mike?
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Our model does not unambiguously characterize-all problems, and there

Are some problems that are difficult to place in a single cell in the model.

For most types of addition and subtraction problems, we have evidence that

children's solutions reflect the distinctions between problem"types char:-

acterized by the model. The one contrast we have not systematically in-
to',

vestigated is the one between the.two types of comparison problems. It

is possible that this distinction is nqt.useful in charactrizing children's
4

0

performance. This would imply that the increase-decrease dimension of our"

model would only apply to the action dimension-of the matrix.

So far we have only investigated-9 of the 21 problems characterized

by the model. These problems represent six of the seven cells of t'he

matrix; the one exceptiOn is the Comparison-smaller cell. In our initial

studies we have been concerned with the processes that young children use

to solve'addition and subtraction problea. Consequently we have begun

with problsms that logical analysis or empirical evidence would suggest A

are most likely to be solved by young children. In general these problems

are ones in which the action or relationships described in the problem
Rip

can be directly modeled without trial and error.

Research Program

In the studies conducted or presently in progress, the principal focus

is on the strategies children use to solve basic verbal addition and sub-

traction problems. In spring 1977, a pilot study involving,43 first grade

children was carried out (Carpenter, Hiebert & Moser, 1979), A following

study involving the same subjeets was conducted in May df the same year

0.
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(Carpenter, Moser and Hiebert, in Press). Both studies provided interesting'

findings in-their own right. In addition, tbey helped identify suitable

problem tasks, refine data gathering and data ieporting techniques, and

clarify many of the problem'solving strategies chiidren use. These find-'

ings ptbvided the basis for die design of our major research 6Ifort, a

three year longitudinal study of 150 children that is currently,in progress.

Brocriures

The longitudinal study is investigating three major sets of variables.

The basic dependent variable is children's performance on simple addition

and subtraction verbal problems. The primary method of assessing children's

,performance is through individual interviews administered at,the beginning,

and.end of each school year. These results are supplemented with

1Raper and pencil achievement monitoring tests administered approximately

---
.every six weeks.and unit tests given after each majof unftofarithmetco

, .

instruction.

The second set of variables deals with measures of ific,bgnitive

abilities fhat potentially are related to performance.on addition and sub-

traction oblems. Included in this set of variables are measures of

co0vation, class inclusion, and information processing capacity. The

third major set of variables that we are investigating involves the kind
4,

and amount of instruction that pupils receive on individual topics. A'

key component of these.measures, which are gathered through direct,observa-

tion in the classroom, is the recording of pupil allocatedand engaged\

time, using techniques developed in the Beginning Teacher Evaluqtion

Study (Jones & Romberg, 1979), In following sections, results from the
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first year of the study will be discussed.

Subjects
A

Subjects for the study consist of 150 children from Oght first grade.

classrooms. The classes were in three Rlementary Schools that all draw

from predominantly white middle to upper-mi4dela,c14ps neighborhoods. The

schools were selected in an attempt to control for instruction. All three-

used a modified_version of Developing Mathematical Processes (DMP), the

0-

activity-oriented problem solving program developed at the Wisconsin Research

40
and bevelopment Center (Romberg, et al., 1974). The modifications occur

primarily with instructiohal units whose objectiims deal with writing ind

6 solving open pentences that represent addition and subtraction problems.

These modif
51.

cations are descAbed in detail in Kouba and Moser (1979).
*a.

At the time of the first interview in October 1978,.subjects.had

generally experienced only the readiness activities typical of a kinderr

garten mathematics curriculum. Some had begun work on writing numerals.

By the ttme of the second interview in January 1979, the instruction had

covered only two purely arithmetic units, Writing Numbers and Comparison

'Sentences. The other topics dealt with measurement and geometry. Comparison

..t

Sentences introduces the notion of a mathematical sentence, though it only

, deals with representing a static relation (equality) between two numbers.

Thus, at the time of the second interview the children had received no

formal instruction In symbolic.representation of addition and subtraction.

On the other hand, several lessons which included problem situations involving

joining, separating, part-part-whole and compatlson had been presented. In

those instances, modeling with objects to determine the solutions had been

,aiggested.

J
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By the time of thtk third interviewinMay 1979, several instructional ,

unite on,addition ancOsubtraction were p-resentedt 1"he units required

..approximately two months of .nstruction and focused on the fol,lowing

%
.

objectives: writing number sentences of the form a + b =0 or a - b = 0..

. .
.

to represent concrete and verbal problem situations, and solving number

sentences of the form a + b =0 and a b =0 for sums between 0 and 10. ,

The problem situations were of the joining, separatipg, comparison and

part-part-whole types. Several,key features highl4ght these unitst First,,

t

the.children are strongly encouraged to use modeling behaViors by reprbsent-

ing numbers with sets of physical objects. Second, variovs forms of counting

are, suggested. Finally, analysis of verbal problems is taught using a device.

that has the part-part-Whole relationship as its basis. :This devMe.tends

to highlight.the InVerse relationship of addition and'subtraction.
i

Problems

Each interview indluded six problem types, two having an additive

structure and fbur h#ving a subtractive structure. Representative problems

and the order in which they were given in the intervi;ew 'are presented in
,

-Table 1. The specific problems were selected because 1) they were repro-

sentative ,Nroblems commonly included in elementary mathematics texts,

2) they include the three basic, 'but different, types associated with sub-

traction, 3) they were problems that the xounger subjects were most likely

tb be able to solve, and 4) the,earlier pilot study (Carpenter,.et al., 1979)

had indicated that they WOuld ellcit different patterns of solution. Each

problem t7-pe was presented Under four different ccnditions, resulting from

the crossing of two variables, number size and the availsbility'of maniliulative

p.
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Table 1

-Representative Ad4ition and Subtraction Problems

1. Joining (Addition)

2. Separating'(Subtraction)

1.

Wally had 3 pennies. His father gave
him 5 mole pennies. How many pennies
did Wally have.altogether?

Tim.had 11.candies. He gave 7 candies
to Martha. How many candies,did Tim
have left?

3. Part-part-Whole (Subtraction) There are 6 children on the playground.
r 4 are boys and the rest, are girls. How

many girls are on the playground?

4. Part-Part-Whole (Addition)

5. Comparison (Subtraction)

6. Josining (SubtrOCtion)

Sara has 6 sugar donuts. She also has
9 plain donuts. "How many donuts does
Sara have altogether?

Joe has 3 balloons. His sister Connie
has 5 balloons.. How many more balloons
does Connie have than Joe?

Kathy has 5 pencils. How many more
pencils does she have to put with them
so she has 7 penoils altogether?

aids. The manipulative dirnsion involved the 2resence or absence of physical

objects that could be used to represent the action or relationships described

in the problems. Number size ingluded a set of smaller number triples, the

slim of whose addends was between 5 and 9, ando larger set for- which the sum

was between 11 and 16.

The assignment of number triples to problem type!; involved a six-by-six

Latin square design resulting in.six sets of six problem tasks each of which

Were uniformly,and. randomly distributed across subjects. ,

Individual Interviews

The interviews were broken into two parts, with the 12 problems involving
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D

smaller nmmbers given on one day and the remaining 12 with larger numbers

given on succeeding day. Interviews were cut shoyt at any time it became

,

apparent subyedt was floundering. The interview procedtmes were not
,

-

clinical lin the sense described by Opper (1977)., Rather, they could be

!

considerel as an attempt at naturalistic observation. If a student's

strategies could be directly observea., no follow-up questions were Oaked.

If not, the interviewer attempted to'determine the strategy by asking

the child furthgr questions. All interviewers.followed a standardized

routine for questibning children and coding responses. All interviewers

were trained to the point thpt intra and intercoder reliability coefficients

were greater than .90 (Martin, in press).

We now turn to a presentation and discussion of results obtained to

date. Because the longitudinal studk is still in progress, some data have

beer only partially analyzed. The analysis of the data will be reported on
0

a cross-sectioned basis. Tracing of the development of individual children
4

over time has not yet been completed. However, the longitudinal study

results together with the results from the eilot studies cited.earlier
4

(Carpenter, et al., 1979;'Carpenter, et al., in press) provide a reasonably

consistent picture of children's initial solution processes for simple

verbal problems. Addition will be discussed first, followed by subtraction.

Addition

Our basic interest is in the strategies children use, both before they

receive formal (i.e., school) instruction and during and after they receive

initial instruction in the operatiOns of addition and subtraction. Because

29
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'these children have, at best, limited exposure to the formal operations of

arithmetic, the strategies they do exhibit are a result of their intuition,

their invention, and of informal.instruction and experiences (e.g., parents,

older siblings, kindergarten). Most of the strategies are based on counting

and are sitilar to the strategies for solution of numerical addition problems
)

identftied by Suppes and Groen (1967) and Groen and Parkman (1972). Other

strategies exhibited by our subjects are not based strictly on countirT.

Addition Strategies
0

,\ In all problem contexts reported; the measurable entities were discrete

sets. In two of the four settings, plastic cubes were made available for

modeling. In a third, the numbers were sufficiently small that the subjects'

ten fingdrs could be easily used as representation; of the two sets given'

in the problem. Only in the fourth setting, larger numbers withoUt the

cubes present, was it trge that physical representations of the sets de-
to

scribed in the problem were relatively inaccessible. *As we shall report,

this fourth setting induced different behaviors on the part of some children.

The manipulatives, cubes or fingers, were used in two distinct ways. In

one case, they stood.as direct representatives of the problem entities.

In the second, they served as a marker or tracking ald to help the child

rgember some counting sequence.

The various types of strategies used to solve addition verbal problems

Tdould seem to occur in a logical order of difficulty, or degree of sophis-

tication.' This is a suggestA orderiqg made on a logical analysis of the

levels of abstraction. Empiricfl evidence supporting or contradicting

this order has not yet been analyzed. These strategies are summarized

29
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below. In the following discussion, m is the smaller addend in the,

problem,n the larger, and t is the sum. In other words m + n = t.

Counting All with Models. Cubes or fingersard used to independently

count out and represent both sets. Then the union of the °two sets

is counted. Three distinct counting sequences are used, each associ-

ated with a direct one-to-one count of a set in the problem. One ds

1, 2, m; another is 1, 2, n; the third is 1, 2, ..., m + n.

The answer is the number of objects in the union set. We make no

distinction if the smaller or larger set is modeled first. In actual

practice, most children modeled.the sets in the order in which they

were given, which was'always the smaller One first.

Counting All without Models. This is essentially the SUM strategy as

identified in the response latency studies by Suppes and Groen (1967)

and Groen and Parkmah (1972). Neither set is modeled. The counting

sequence begins c4it1 "one" and a simple counting procedure is executed

until either m 0, 1 is reached. At that point; a double-count is

initiated as the child continues until the final word, m + n, is reached

in the sequence. .The first count at the intermediate point continues

as m + 1, m + 2, etc. (or n + 1, n + 2, ...) while the second and pre-

sumably simultaneous Count is 1, 2, 3, ... n (or 1, 2, 3, ... m).

Keeping track of the second count may be done by objects (rarely

observed bY us), by fingers, or mentally. The.answer is the final

number in the counting sequence.

Counting On from First (smaller) Number. Exactly like the previous

strategy with the'major exception that the counting sequence begins with

r or m + 1. 'Againf tracking of the second count may be done with objects,

fingers, or mentally.

Counting On from Larger Number. This is the MIN strategy identified in

the response latency studies. Here the counting sequence begins with

n or n + 1. Tracking is done as in the other strategies.

Numter Fact. Although the children we are working withg.had not been

taudht number facts until the latter part of the school year, some

of them learned a great deal about addition outside of school, includi4

a wide range of number.facts. These children were generally able to

apply their knowledge of addition facts to solve simple verbal problems.

Heuristic. Heuristic strategies are employed to generate solutiors from

a small set of known basic facts. These strategies usually are based

on doubles or numbers whose sum is 10. For example, to solve a problem

representing 6 + 8 = ? a child responded that 6 + 6 = 12 and 6 + 8 is

just 2 more than 12. In another example involving the operation'4 + 7 = ?

another child responded that 4 + 6 = 10 and 4 + 7 is just 1 more. than .10.
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.The latter three counting strategies that involve tbe double, or

simultaneous counting deserve further discussion. Although we did not

6bserve any instances ot this behavio'r, it is theoretically possible to

use a clearly different process to track the second set involved in the

double count. In the three strategies described, the second set is being

constructed, either by cubes, fingers or a string of counting words, as:

the double counting is bEing carried out. In contrast, a child could

- conceivably construct that second set (probably on a physical basis) prior

to beginriing the double count. Then the iracking would be carried out by

successively removing objects from the constructed set and would end when

that set was exhausted.

The information processing demands on the child would seem to be

much less for the latter situation in which the second, tracked set was

constructed prior to the simultaneous count than in the former we the

second set is being constructed as the child is counting. It would appear

that the child would have to continuously check whether the second count

had yet reached the desired target number. When carried out mentally,

It was difficult to determine how the child knew when to stop. Some

children appeared to use some sort of rhythmical or cadenced counting.

Others explicitly described a double count. But children generally had

difficulty describing thiy process. When fingers were used to construct

the second set, it seems to us.that children have a speciAl kinesthetic,

quasi-subitizable sense about knowing 'when a particular number of fingers

have been raised (or lowered).
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Addition Results
r

A summary of results for the two addition problems is presented in

Tables 2 and 3.. (Wording .of the prOblems is given in Table 1.) Although

both interviews 1 and 2 were conducted before children received formal

instruction in addition, most children, were able to solve both addition

problems. In fact the overall pattern of responses for both problems is

almost identical both in.terms of number correct and. strategy. .This

'suggests that there,is.very little-difference in the way that children

approach these two types of problem.

It is not the case, however, that all addition problems ere equivalent.

In an earlier pilot study (Carpenter, et al., 1979), the folloWing Comparison-

larger problem was found to be significantly more difficult than Joining

and Part-Part-Whole problems:

Ralph has 8 pieces of gum. Jeff has 5

more pieces than Ralph; How many. pieces

of gum does Jeff,have?

Although over 80"percent of the first greders in that studycould solve

.the other two addition problems, fewer than 25 percent correctly solved

this Comparison problem. .0ver SO percent gave one of the numbers in .the

problem as their answer. They did not seem to be able to understand that

"Jeff had 5 more pieces of gum than Ralph" and interpreted it as "Jeff

had 5 more pieces of gum.9' Although not performing at a high level,

children were mtila better able to deal with the "more than" relation

in the Comparison problem with subtractive structure. It seems to be this

particular addition comparison context that gave them difficulty.



Condition

Table 2

Results.for Joining (Addition ) Problems [Interview Task #1]

1 STRATEGY

Interview

Counting on
from from

first larger

Numerical
number' hedristic

lact

Smaller
numbers

Physical
objects

14 0

25 4

48 , 5.

Smaller
numbers

No

physical
objects

Larger
numbers

Physical
objects

Larger
numbers

No

physical
objects

11

.15 14

21 21

10

26

63

8

2

4.

68 67 0 5 11

99 80 0. 12 18

125 17 33

44 29 0 11 12

68 25 1 25

106 21 1 34 42

.1

01.1*
. n 144 for Interview 1 n . 150 for Interview 2 and 3

*

1

2

17

6

0 2

1 7

18 3
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Result6 for Part-Part-Whole

Table 3

Addition) Problems [Interview Task 1/4].

, Condition Interview, .Number

Correct*,

Counting'All

with without
models models

STRAT'EGY
Counting On

from from
.first larger

Numerical
number heuristic
fact

Smaller

numbers

Physical
objects

Smaller
numbers:

P.

2

3

108. 77

78

49

7

1

7

7

8

12

6 29

- 20
4

4

9

No

physical
objects

Larger
numbers

Physical
objtects

2

3

92

108

137

54

47

21

1

2

3

72 ;

107,

126

73'

7,3

6B

Larger
numbers

No

physical
objects

1

2

3

41

68

99

23

25

19

n 144 for Interview n=150 for Interview 2 and 3

35

8.

5

1

8 13

13 14

19 24

5

0

5.

19

37

2

3

13

,2

5

6

12 11

12 25 ,

49

1

4

8

6

36 '*
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There is a difference in the structure of the addition problems that may

account for this difference in difficulty. As noted in the earlier discussion
t%

of problem types both.the Joining and Pt-PartL.Who1e problems have the set-

inclusion dimension. Thus,, when a child constructs sets representing both

entities and takes their union, that child is actually modeling the problem.

This is not the case for the addition Comparison problem for which the set-

inclusion property does not hold. The union of sets representing the quantities'

descrIbed in the-Comparison problem does not quite model the relationship

of the problem.

For the Joining and Part-Part-Whole problems, it appears that some

children are able to represent and solve problems involving small numbers

/before they can solve similar problems involying larger numbers. In, th
,
ory,'

the process of solving problems with small numbers or large numbers are the

same when physical objects are available. But the problems with smaller

, numberswere significantly easier.

Of particular interest was the fourth interview condition where larr

numbers were used but no physical aids were available. Since it is more

sdifficult to represent numbers larger than 10 4ith fingers, many children

opted o use the Counting On strategies rather than.the less advanced

Counting All strategy that they would use when physical aids were present.

There was also a marked increase in the CoUnting On strategies over

time. Although we cannot completely rule out the possibility of informal

instruction or some formal instruction by Some of the classroom teaChers,

involved in the study; we would stillpropose that it is strong tvidence

in support of the theory put forth by Groen and Resnick (1977) that children.

37 .10
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invent these strategies for themselves.

Subtraction

It is generally acknowledged that subtraction is harder for children

that addition. Although a number of reasons could be .advanced for this

4difference, we prTose that a possible cause of this difficulty is the

face that there are several distinct representations possible for subtraction

problems while addition is generally defined as the union of two sets. We

have identified-three basis types of subtraction strategies which reprebent

the distinctly different actions of separating, joining, and coMparing. Some

of these strategies operate at different levels of ahstraction in much the

same way as-the addition strategies. There is the low level modeling of

sets and actions With physical objects accompanied by simple countin,g and

the more sophisticated cciunting, strategies that involve the-double-count and

tracking. procedures. ,While not directly-Aassociat6Twith a specifiC problem

or strategy type, use of number facts and heuristics are dlso used to solve

The different strategies are described below. Some

in the response latency study of numericallitubtraction

by Woods, Resnick and Groen (1975).

subtraction problems.

, have been identified

problems carried out

Subtraction Strategies

Rather than describe the stiategies in the order.of level of sophis-

tication,. we have listed them by theyarioueltypes that correspond to the

problem types. Tile number sentences m n = d or n + d = m represent the

mathematical operation characte'rized by the problem.

38
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4

7

Separating From, with models. The child uses concrete objects or fingers
to,construct the'larger given set m and then takes away or separates,

one at a time., a number of cubes or fingers equal to the smaller given

number n in the problem. Counting the set of remaining cubes yields the

answer. Three distinct counting sequences are used. The first is 1, 2,

m; the second is 1, 2, ..., n; and the third is 1, 2, ...,,m - n (or d).

Counting Down From.. In a more abstract representation 9f the separating

from strategy, a child initiates a backwards.counting sequence beginning
with the given larger number m. It ib conceivable that a child could
precede that by counting 1, 2, ..., m; but we never observed it. The

backwards counting sequence contains as many counting number words as

the given smaller number. Thejast number uttered in theecounting

sequence is the answer. Here-a double-count is necessary to keep track
that the correct number of counting words has been uttered. As with the

counting on strategies for addition, the tracking may be accomplished
by a constructed set of cubes (rarely seen) or fingers, or mentally.
This is the method number 2 ideniified in the Woodb et al. (1975) study.

Separating To, with models. The Separating To strategy is similar to the
Separating From strategy exCept that fhe separating continues Until the

smaller quantity is attained rather than until it has been removed. In

the concrete case, after fhe larger set m is counted out, the child removes
cubes one at a time until tqe remainder n is equal to the second given
number of the problem. Counting the number of cubes (d) removed gives'

the answer. Again, three distinct counting sequences are used.

Counting D2wn To. A child initiates a backwards counting sequence
beginning with the larger given number. The sequence ends with the

smaller number. By keeping track of the number of counting words
uttered in this sequence, either mentally or by using fingers or cubes,
the child determines the answer to be the tumber of counting words

uttered in the sequence. It is interesting to observe,that Woods, et al.

(1975) did not identify this strategy. From a'response latency perspective,
it would involve the same number of steps as a Counting Up From Given

strategy. *

Adding On with models. With concrete objects the chilu sets out a number
of cubes equal to the smaller given number (n). The child then adds cubes

to that set one at a time until the new collection is equal to the larger
given number (m). Counting the number of cubes added on (d) gives the

answer. Here too, three counting sequences are used. The first is

1, 2, ..., n. The second is n + 1, n + 2, ..., m. 'No trackingiis needed

because the child knows to stop whenever the word "m" is uttered. The

third count is 1, 2, ..., m - n (d).

Counting Up from Given.. A child initiates a forward counting sequence
beginning with the smaller given number n. The sequence ends with the

larger given number m. Again, by using any of the available devices,

39



the child keeps track
bequence, an'd thereby

of the Woods, et al.,

of the number of counting words uttered in the
determines the answer. This is method number 3

(1975) study.

29

Matching. Matching is only feasible when concrete objects are available.

The child puts out two sets of cubes, each set standing for one of the

given numbers. The sets are then matched one-to-one. Counting the

unmatched cubes gives the answer.

Greeno (1978) has hypothesized that children may use a single strategy

to solve all subtraction problems. He suggests,;for example, that certain

problems ake associated directly with a subtractidn operation. ' Others are

first transformed to one..of the representations that is directly associated

with an operation. This analysis would seem to imply that all, of the problems

that are initially transformed into the same basic representation would

generate the same solution strategy.

An alternative hypothesis is that different strategies would be used,^

depending on the structure of the problem. As vie have just seen, certain

of the strategies naturally model the action described in specific, problems.

The Separating problem is most clearly modeled by the separating strategies.

tOn the other hand, the implied joining action of the Joining (missing addend)

problems is most closely modele.d4; the Adding On or Count'ing Up strategy.

Comparison problems deal with static relationshipb between sets rather than

action. In this case the Matching strategy appears to provide the best model.

, For the Part-Part-Whole subtraction problem the sitUation is more:

ambiguous. Since Part-Part-Whole problems'have no implied action, neither

the Separating nor Adding On strategies (or their counting, analogues), which

involve action, exactly model the given relationship between quantities.

And since one of the given entities is a subset of the other, there are
.1

not two distinct sets that can be matched. In the next secEion we shall

40
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present evidence that 'the ;second hypothesis best characterizestchildren's

solution strategies.. In ocher words, children tend to model the action

or relationship described in the problem rather than attempting io relate

the problem to a single operation of subtraction.

Subtraction Results

The data for each of.the four subtract* problems are presented in

Table. 4, 5, 6, and 7. The incidence of the Separating To and Counting 'Yawn

To strategies was so small that that category is not included. For the'sake

of readability, uncodable responses as well as incorrect responses such as

guessing, repeating one of the given numbers, or adding instead of subtracting

are also not.included in the tables. We would'observe, however, that there

wer.e relatively few instances of thes types ofterrors. Most often children

,who were unable te solve a problem because they were,unable to represent

the action or relationship in the problem. They very seldom, however,

represeqed it in an incorrect or inappropriate way.

The results indicate that the 'dominant factor in determining children's

strategy wasdkhe structUre of the problem. The strategy used by the great

majority of children modeled the actian or relationship described in the

problem. This was true through all three interviews and under all problem

conditions. For the Separating probem (Table 4), almost all children used

a subtractive strategy (Separating, or;Counting Down). For the Joining-

Missing Addend problem (Table 5), almost all children usea a strategy (Adding On

or Counting Up). The results were not quite as overwhelming for the Comparison

problem (Table 6), but the Matching strategy was the most frequently used
A

strategy when physical objects were available. In general, this strategy is

41



Table 4'

Results for Separating (Subtraction) Problems [Interview Task 112]

STRATEGY
SUBTRACTIVE. ADDITIVE COMPARATIVE NUMERICAL

Condition Interview Number
Correct*

Separate Count down
from

Add on Count up

from given

Match Number
fact

Heuristic

Smaller
numbers 1 72 6 3 7 1

Physical 2 108 93' 5 0 3 17 5

objects
134 85 13 0 0 32 7

Smaller

numbers 1 74 53 7, 1 3 9 5

No physical
objects

2 92 60 5 3 15 4,

3 129 65 12 1 9 37 3

Larger
numbers 1 60 81 2 1 1 1

PhysiCal

objects

2 92 102 1 4 2

3 111 96 13 9 6 8

Larger

numbers 1 24 33 6 1 1 1 1

No physical
objects

31 26 9 0 6 2 2

3 68 35 21 2 12
w

15 8

n * 144 for Interview 1; n * 150 for Intervie*s 2 and 3
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Table 5

Results for Joining (Subtraction) Problems [Interview Task #6]
.

Condition Interview Number
Correct*

Spaller
numbers

Physical
objects

1

2

3

90

120

133

Smaller
numbers 1 86

No 2

physical
objects 3

110

,132

4.

Larger'
numbers 1 56

Physical
objects

2 86

3 114

Larger
numbers 1 36

No
physical

objects

2 59

3 92

, STRATEGY'
SUBTRACTIVE

Separate Count down
from

6 0

2 0

2 0---
'o

1

.7

3

5

0

0

1

ADDITIVE
Add on . \Count up

from given

COMPARATIVE
Match

60

68

47

.15

24

30

2

0

0

53 28 0

43 24 0

30 39 0

45 13
e;

5

65 18 1

70 , 27 3

10 26 0

16 39 0

21 65 0

NUMERICAL .

Numb6r Heuristic
fact

7

23 4

3

9. 2

25 3 .

49 3

2

3

12

2

6

1

2

n = 144 for Interview ; n = 150 for Interviews 2 and 3



Table 6

Results for Comparison (Subtraction)' Problems [Inteiview Task #5]

.

.

Condition Interview Number
Correct*

STRATEGY .

.

SUBTRACTIVE
Separate Count down

from

ADDITIVE
Add.on Count up

from given

COMPARATIVE
Match

NUMERICAL
Number Heuristic
fact

Smaller

numbers

Physical
objects

.

1

. 2'

3

0

75

84

108

,

2.1

18

16

0

1

4

10

4

3

9

. 13

9

18

36

31

2

4

5

4

7

30

h"d7

6

13

30

.

4.

1

3

3

_

2 .

5

Sialler
numbers

No . '

'physical
objects

,

.

.

1

.

3.

61

76

97

.

'

10

.

9

9

0

_

2

2

16

16

8

.

17

22

27

Larger
numbers

Physical
objects

,
1

2 ,

3.

55

61

85

. 18

12

21

.

0

0

2

6

5

7

.

9

13

17

26

45

50.

1

2

. 4

,

1

Larger
numbers

No
, physical
objects

. 1

2

.

3

,29'

, 42

50

2

3

1

1

0

5

9

7

18

26

34

0

'0

0

.1

3

10

3

6

5

n 144 for Interview 1 and n 150 for Interviews 2 and 3
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Table 7

Results for'Part-Part-Whole (Subtraction) Problems"[Interview Task 1/33

Condition Interview NuMber
Correct*.

STRATE*G Y

SUBTRACTIVE

Separate Count down

.
from

ADDITIVE
'Add on Count up

from given

COMPARATIVE
Match

NUMERICAL
Number Heuristic
fact

,

Smaller
numbers 1 67 41

.

1 10 T 1 5 2

Physical
obiects

2 82 45 1 3 7

.

0 12 5 .

3 119 72.. 2 '----,_ 6 5 0. 17 4

.

Smaller.
.

l
.

numbers. 1, 50 .32 1 6 5 O
.

3

f

4

No i

phyrOical

2 71 28 2 6

. .

7 0 .19 4

objects .3 104 47 4 0 11 0 31 2

, .

Largek
numbers 1 51 55 2 3 0 0

........3.

L

Physical
objects

2 68 67 0 6 5 0 3 3

3. . 105 ' 83 8 3 11 1 9 7

Larger .

ilumbers 1 19 19 0 4 11 0

..,

No 2 34 12 2 2 16 0 1 4

'physicill

objects 3 64 26 14 3 18 0 11 4.

,

n = 144 for Interview 1.and n ,te 150 for Interviews 2 and 3



35

not possible when there are not objects available to construct the tv.m

sets to put in one-to-one correspondence. Interestingly, we aid have

several instances where children tried to matcLtheir fingers on one hand

with those on the other hand. This occurred when the number triplet 2-- 3 - 5

was used.

The ambiguity of the Part-Part-Whole problem (Table 7).is reflected .

in children.'s selection of strategi .
Although a majority tended to use a

subftactive strategy, the addit e strategies were used-by a significant

'minority, especiallyoiwthe fouith tondition- here manipulative objects and

sufficient fingers were itot'availableto mod 1[ the'separatingiprocess.

In the first twol.nterviews the Counting DoWn strategy, was used relatively

infrequegelyt Although a subtractive strategy was almost, Universally used .

to solve the Separating problem, childreatended t.ouse the Separatinvstrategy

with physical objects or fingers, 'Over three times as many chil4lren used the
4

,

0

Counting Up strategy to soIve the Joining-Missing Addend problem as used the
0

Counting Down strategy to solve the Separating problem. Counting Down is a

difficult process. And when explicitly asked to count backwards a given

number pf steps, only about 50 percent of the first-graders in our sample

.could do so. .Although our data are not conclusiVe in this regard and Others

have Identified Counting Ddwn as a blic sube action strategy (Woods et al.,

1975), we would conjecture that some-children'n er uSe a Couneing Down

strategy prior to learning basic sub'traction fact4N'

General Discussion of Strategies.

It has been clearly established that children enter school wittl

reasonably well developed counting procedures, and that they invent strategies

:(

/?
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based On counting procedures to solve simple addition,and subtraction

11-:mmof

problems--(cf. Ginsburg, 1977; Resnick 1978). In fact; the' investigations

carried out\by a number of other researchers support this conclusion. Ours

is no exception. Ourkesearch also offers some support to the conclusion that

children first appli, these strategies o small numbers and subsequently extend

them to larger number domains (Gelman & Gallistel, 1978).

. Our research -indicates- that in solv,ing simple verbal problems children
.

use variOus counting techniques to dire'ctly represent the action or relation-
.

ships described in the problem. Qur current results dR not offer a complete

picture of the evolution of Onese representation processes. However, based

on,the data we have, we would make'an educated guess that at tile earliest

stages children solve problems directly by representing the quantities

described in the problem and then performing the indicated action on these

representations.

In our curlrent reseatch we have focused on problems in yhich the .

action or rela0.onships described in the problems can be directly modeled.

In-other problems like the following missing minuend problem this is not the

case.

Mary had some marbles. After she lost
5 of them, she had 8 marbles left. How
many marbles did Mary have to start with?,

"". 'In this problem the initial state is the'unknown quantity; To directly

0 ,

model this action would require some'sort of trial and error strategy

in-which children guess at the size of the initial set and check their guess

by rRmoving 5 elements to see if ihere are 8 elements left. It is possible

that this sort of problem will generate trial and error variatiohs of the

strategles that we have identified. Rosenthal and Resnick (1974) also suggest

51,
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o
0

.
, ,

that Vial and errovstrateglesmight be employed for this type of problem.
. ,

However, we are aware of very, little empirical'evidence that indicates that

children systematically use trial and grror srategies to solve these problems
. J .

rather than transforming them to that they can be solved directly.
. .

()
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This,lapalysis might help explain differences in diffiCulty between

different problem types. It wOuld imply.that problems it.which the quantities

given in-the problem are operated on directly would be easier than problems

.1

., in wlich. they were not. In th /analysis of the Comparison addi.tion.problem

in the addition results section above this was indeed the case. This analysis

may also explain why Separating problems like:

You have some stamps. You give

7 stamps to Judy. You now have

4 stamps. How many stamps did
you have to begin with?

are significantlymore difficult than related Separating or Missing Addend

problems (Grouws, 1972; Lindvall & Ibarra, 1978). In the action described
4

in the problem, 7 stamps are being removed from an unknown quantity. The

pnly way to directly mOdel this action is to already know the answer to

the problem ot to use trial and error.

r-
The difference in difficulty between action and static problems (Nesher

& Katriel., 1978; Steffe, 1970) may. also reflect how clearly the action or

relationships are specified in the problem. In the Comparison and Part-Part-

Whole subtraction problems children were less consistent in their choice of

strategy than they were for the Separating or Joining subtraction problems.

This may reflect the fact that children had more difficulty figuring out how

to model the relationships in the static problems, which was ultimately

reflected in their ability to solve the problem correctly. In this regard
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it'is noteworthy that in our study there was no difference in performance on

the action and static state-addition problems. Since there is only one

general model of addition the exact representation of the action or relation-

ship was not an issue.

Although they may have difficulty applying them to all problem situations,

it appears that early in their development of subtraction concepts children

have a variety' of strategies for solving different subtraction problems.

There may be a general overriding strategy of modeling the action or relation-

ship described in a problem. But it manifests itself in several very different

ways that provik different interpretations of subtraction. We would,hypothe-

size that at first children do not recognize the interchangeability of their

strategies. This would account for the fact that there is such a.close match

between problem structure and strategy. Even though a Colnting Up strategy

is much easier and with the numbers in our problems more efficient than a Count-

ing Down strategy, most children in our sample 'continued to attempt to use some

form of Separating strategy for the Separating problem. Woods'et al. (1975),

hypothesized that older children are able to choose the most efficient of the

counting strategies to solve numerical,problems. So far we have no data to

support this conclusion with regard to children's'solutions pf verbal problems.

They would suggest, however, that younger children have independent conceptions

of subtraction. A completely developed concept of suhtractiOn invovles an

1

integration of all these interpretatio s.
\

Our data do provides some insights into how that development may take

place. Apparently,the firbt step might involve a shift to more abstract

counting strategies from concrete strategies that completely model'the
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problem. Although at the time of the third interview most'of the children

'
in our sample continued to use a strategy that represented the action or

relationship described in the problem, almost half of them were using the

more abstract Counting Up and.Counting Down strategies rather than ty more,

concrete Adding On and Separating strategies. 4us, the ability to choose

between strategies representing different interpretations of subtraction

_

.
.seems to come after the abilitf to use more abstract versions of a given

strategy.in a particular problem.

So far we have said very little,about the'relationship between the formal"

mathematics that chlidren'lekrn as part of the mathematics curriculum and

the informal strategies they invent independently. We have completed one

study that examines, the relationship between children's symbolic rqpresentation

of addition and subtraction problems and their strategies for solving them

(Carpenter, et al., in press). After several months of in'struction, most

children could write addition and subtraction sentences of the form a + b

or b =1:] to represent Joining and Separating problems but had more

difficulty representing the oiher types of problems. At this stage very few

children recognized that the arithmetic sentence was a mechanism that they

might use tp.help them .golVe ihe problem. Most'of them contitnued to use the

verbal problem as the basis for deciding hpw to

in spite of instructions to.the contrary, Abouir

solve the problem. In fact,

25 percent oethe subjects

would solve a problem before wOting a sentence.:' In general few chil4ren

clearly understdod the relationship between the number 'sentence and the

problem.

This pilot study also provided some evidence that children's strategies

were less influenced by problem structure after several months of instruction

ef
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on addition and gubtraction. far this trend is not quite as evident in

the data from the longitUdinal study,

As a final comment ,to this section it is interesting to contrast the

performance of the children we have studied and ithe problem solving abilities

of older students. We have found that young children very carefully analyze

problems and base their solutions on the structure and content of the problem.

This analytic ability is precisely what older children lack. Although they

are generally.successfurin solving simple addition, subtraction, multiplica-

tion, and division word problems, they have a great deal of difficulty with

even simple nontoutine problems that involve anything more than a straight-

forward application of a single arithmetic operation (Carpenter, Corbitt,

Kepner, Lindquist, & Reys, in press a, b).

Other Variables

In the discussion so far we have attempted to characterize the processes

' children use to solve simple verbal addition and subtraction problems and

how they.may evolve over time. In this regard we have focuse4 on the effect

of problem structure on children's solution processes. In addition to problem

strueture,'.there are two other important variables that we are investigating:

characteitstics of the child solving the problem and the nature of instruction

the child has received. So far we have not made as much progress in examining

these variables as we have in identifying the effect of problem structure,

bu we would like to briefly characterize some of the factors we have inves-

tigated and those we are,continuing to investigate.'

Individual Differences

There clearly are differences in the rate at which children acquire.

basic addition and subtraction problem solving skills. At the time of

t.
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each interview, a great deal of variability in performancerwas observed.

What is not yet clear, is whether children are simply at different stages

of development with respect to a given skill or whether different children

go through different patterns of development,in the acquisition of addition

and subtraction concepts and skills. For example, are children who use

li Counting On strategy simply further along in their acquisition of,additión

concepts than children who use a Counting,All strategy, or do some children

need to rely on Counting All strategies up until the time they develop formal

addition concepts? The fact that there is a steady increase over tina in

the number of children using a Counting On strategy would argue for the

fact that children using a Counting All strategy were simply at a lower

level in their acquisition of addition concepts. Other studies have also

'414141.

examined this issue and have generally concluded that older children

increasingly use more advanced coutning strategies. (cf. Wqods et al.,

1975).

So far we have only examined our data on a cross sectional basis.

As we examine our data on a longitudinal basis and trace the change of

performance of individual children over time, we should begin to get a-

better idea of whether there is a well defined sequence in which children

acquire addition and subtraction problem solvingconcepts and skills.

One of the factors that we have examined to attempt to account for

individual differences in the acquisition of addition and subtraction problem

solving strategies is the relation of these strategies to measures of more

general cognitive abilities that might be prerequisites. (Carpenter &

Hiebert, in press a, b). From an instructional point of view, the question

5 6
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of whether the ability to solve problems or apply strategies is tied to the

development of certain basic&cognitive abilities is an important one. ,There

are potentially different instructional implications if the ability to solve

certain problems or use certain strategies is closely linked to fundamental

cognitive abilities whose development is difficult to accelerate than if this

is.not the case.'

The variables that we have explored al116. several of the logical abilities

that Piaget (1952) proposes represent the foundation of.numher concepts,

ana a measure of information processing as characterized by Case (1978)

and Pascual-Leone (1970, 1976). In addition to.the argument that these

variables represent fundamental concepts' that underlie the development of

he most basic.number concepts, there were several other reasons for their

lection. A strictly logical analysis of the addition and subtractionse

problems and strategies themselves would suggest that these concepts are

direc

the c

tly involved in certain of the problems andstrategieb. For example,

ncept of class inclusion is a basic dimension of certain addition and

subtrac tion problems. The Part-Part-Whole problems'deal with subordinate

relations very similar to those found in classical class inclusion tasks.

Similarly

formations

to identify

strategies,

many of the addition and subtraction strategies involve trans-

that presuppose conservation. Although we have not yet been able

the specific information processing requirements of individual

different strategies seem to place very different deiands on

children's information processing capacity, and it is reasonable that more

advanced strat

There are not only logical reasons for considering these variables;

gies may require more advanced infoimation processing capacities.

there are empirical reasons as well. Previous studies have found that measures

S.
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of basic Piagetian variables are highly correlated, with performance on

arithmetic achievement tests (Carpenter, 1979a; Carpenter, Hiebert, Blume,

Martin & Pimm, in press). Although these studies have done little to uncover

explicit relationships between these variables and specific arithmetic skills,

Steffe, Spikes, & Hirstein (1976) conclude that certain of these abilities are

required to learn to apply some of the more advanced counting strategies.

In spite pf ple reasons that one might put forth to expect these variables

to be productive in helping.account for,children's performance. On addition and

subtraction problems, we have found that this is not the case. Not only have

we found that these basic abilities are not prerequisites for solving. certain

-
problems or applying certain strategies, but the correlations ate modest at

best. Based on some other research we have done on the learning of meAurement

concepts (Hiebert, 1979), we have concluded that these variables are useful in

explaining performance on:tasks whose logical structurfis.similar to the task

measuring the'basic cognitive ability. For tasks that are based on'the applica-

tion pf a skill like counting,.performance is not.as.closely related.

The Influence of Instruction

Although children clearly invent strategies to.solve prOblems that they

are not explicitly t.aught, it is unlikely that the construction of these

strategies is unaffected by instruction. Psychologists studying the devel-
,

opment of early number conceqs have generally assumed that specifit instruc-

tion plays relatively little part in the development of these basic concepts.

Although this assumption may be appropriate for early number'concepts on which

children receive comparatively little formal instruction in school, it is

less valid, for describing children's acquisition of addition and subtraCItion
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concepts. 'It may be that within the limits imposed by the range of common

practices within the elementary curriculum, variations in instruction hav

relatively little effect on the.strategies that children employ. But this

is an unwarranted assumption on an a priori basis. It is important to at

least monitor instruction in order to have some idea of the match between

formal ingtruction and the informal mathematics that children construct

diemselves.

Since we are ultimately concerned with applying Our knowledge about

the development of addition and subtraction concepts in children to the

design of instruction, we "are especially interested in the effect of

instruction on the development of these concepts. Furthermore, since

we gre also concerned with the implications of our results for the mathe-

matics curriculum in schools, we have chosen to conduct our studies in natural

school settings rather than artificially controlled lhboratory experiments:

In the studies that are completed or in progress, we have attempted

to control mathematics instruction. All of the children in the major

studies we have completed have been studying from the same.mathematios

program, a modified version of Developing Mathematical Processes. To further

take into account variations in the kind or amonnt of instruction that are

introduced by the teacher or the individual child, we are examining specific

classroom expeiiences of individual children. A major element in this

dimension of our research is the observation ofallocated and engaged time,

using techniques developed in the teginning Teacher Evaluation Study (Jones &

Romberg, 1979). Classroom observations of participating teachers and students

will provide evidence as to what types of activities students.have engaged in,

the amount of time they hive engaged in them; and the teaching behaviors that
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affect engagement.

The'observation data are'still incomplete, but the available data clearly

inaicate,that even with the same mathematics program there are significant

differences in instruction and pupil engagement. It is not yet clear whether

these differences have any effect on the strategied that children use to

solve addition and subtraction problems. But there is evidence that these

. differences..are related to differences in learning certain content like know-

.
ledge of asic facts. 'This.would seem to have implications for the time at

which c dren would switch from invented strategies to formal arithmetic.

tions.

It is reasonable that instruction would have an increasingly greater

effect in the.later stages of acquisition of addition and subtraction concepts.

The very early.concepts, like those studieeby Brush (1974) are probably

relatively independent of specific instruction. Even the construction of

counting strategies does not appear to be greatly influenced by instruction.

Whether the transition to more sophisticated strategies could.be.accelerated

by instruction is an open question. But even without specific instruction,

children construct the strategies ,themselves. The shift to solving problems

by using basic facts and formal algorithms certainly is related to instruction..

It appears likely that, depending.on instruction, this shift may take place

earlier in some children than in others. Whether it is produetive or in the

long rane beneficial to'attempt to accelerate this transition to formal

mathematical operations is also ,11 open question that requires further

research.

6 0
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Implications fov Instruction

Our long range goal for studying children's learning of basic mettle-

matics concepts is to provide a basis for,designing more effective instruc-

tion. It is not our objective to generate increasingly fine ground analyses

of%children's behavior but to provide a description of children's learning,

and do so at a level that it may potentially impact instruction. Consequently

we have selected a content area that is a central focus of the mathematics.

curriculum,,we have selected relevant variables, and we have chosen to study

the.acquisition of this,.content in real school environments rather than

controlled laboratory settings.

Applying knowledge about children's learning to instructional decisica

making is not trivial. Although instruction should be consistent with'the

ways children learn, the most effective initruction cannot be deduced

directly from an examination of children's spontaneoui3 learning. This

issue has .been discussed at greiter lengthxin another'paper (Carpenter, 1979b;

see also Glaser, 1976; & Resnick, 1976). The poiat is that we are not

proposing that our research in its current state clearly specifies an

aPproprir sequence of instruction. A great deal of intermediate research

is still required that specifically attempts to establish how instruction can

be designed 06 effectively build upon the spontaneous acquisition of addition

And subtraction concepts that we haw observed and facilitate the transition

to formal addition and subtraction operations.

On a long range basis we see our research having implications for

instruction in two geperal areas: the selection and sequencing of content

and the individualization of instruction. There is ample evidence that

61



47

children enter schaol with well developed counting processes and that they

naturally dep6nd upon these processes to deal with problems involving

numbers. The typical mathematics piogram, however, fails to'build upon

the richness and growing,sophistication of these strategies. This is one

area in which research involiling the design of instructional alternatives

might build upon our research. .
A second involves the integration of verbal.'

problems into the mathematics curriculum. It has typically been assumed

that children must first master computational skills before they can apply
A.

.them to solve problems. We have deMonstrated, however., that children can

, solve basic verbal Problems before they.learn formal addition and subtraction

skills. Rather than requiring computational skills for their solution, basic

; problems give'meaning to addition and subtraction operations. This suggests

that verbal problems might provide a basis for introducing addition and sub-

traction concepts and that verbal Problems may be effectP.rely integrated into

the instructional sequence a great deal more extensively than is now the case.

10
An effective program for individualizing instruction must be based on some

measure of how children are different. If we can establish a clear picture

of how Addition and,subtraction concepts are acquired, this knowledge could

provide one basis for individualizing instruction. Presumably different

content and different types of instruction would be appropriate for children

at different stages in the acquisition of addition and subtraction concepts.

The analysis of ihe acquisition of these concepts potentially provides a

basis for evaluating children's concepts and skills and designing instruction

'that is appropriate for children at different stages.

A

82
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More detailed knowledge of children's addition and subtraction

processes should provide a more substantial baais for maktng instructional:

decisions. But as the above examples indicate,"ifiere is already a reasonable

base to support a great deal of instructional research.

Q

4'

>
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