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Chsapter 6

ADD4101i, AND MULTIPLICATION

NUmber Property of a Union
a

In Chapter 1.4. was infrodued the),mncept'of an operation. An .

operationessighs to eacli member of a set a unique element of a second

liert%-it was *pointed &it, for txample;-that the nuMber preperty
JP t

of a set is an operation. In this case, a metber of the first set is

a set, and a 'member of the second set is'a nutber. Essentially then if

is'a set whose members are,sets, and W. Is the set of Whole numb'Ers,

the mechanics in this operation mai`be illustrated as follows:

4

.OperationS Were-dfl(flhed on'two sets Of.sets, Thenl we'were
.

. .

4
... .

consideriwitwo sets, says, S and .T as we have.below. Each meMber.

of S is a-éetZni ea± member of T is a se-t.' A pair of sets; one

.;t 'from 8 -and ;ale from T, is assigned a unique elem&rt. The unique
4.

element may be a set whose elements are members of:the initial sets

as in the'case of the union or intersection; the uniqiie element may be

a set\whose elemehts are Compositions as in the case of the product set.

This is -what we mean when we say that al4pid set is created from tyo

given sets.

If A is one of the sets belonging to, say, 8, and, B AS'one

of the sets belonging to T, ;tht set operation may assign.a unique

element C to tht combination of A and'-B. To illustrate, sUPpose

S and- T are as follows:-

S --=,tIap bp c.),(ap0),(Lorie) Pc4gy, Rosie),{42,71 f, elephant))...

T = (fHarry, Karla, Pat, Charles), (e, g) b), e) r, -v), ...)

If A = (Loris, Peggy, Rosie) and E *=-; e, r, ,y), then A

is one of the sets 'cilqs' S and B is one of the sets of T. By the

149
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operation of union,,a set

C Peqgx, Rosie,

is assigned to the combination denoted as ALM.

Our,immedidie purpose is to tie such set dperations 'to operations

with numbers. Let us examine first, thelluMber properties of sets and

ir union. To illustratiel the unlon and the liuMber properties May be:

*(Lorie,,Peggy, Rosi,

'Consider a seodnd exa

S

4
(Lorliel Rosie, Peggy, mil

1

7

elephant) (*AT, f, elephant!)
1

. 4

5

a

From thi; number properties,indluated in the first instance, we.

"may recognize tile familiar 3, 4,'T eoMbination as one of ihecom-

binations in addition whereas, the combination Q 4, 5 is not so

recognized. It shbuld be Uear that tfilis is because we have a union ,

of di'Sjoint.tets'in-the former and that the sets are not ivsjciint

in the-latter. ,To visualize this, ik may en:Close all the meMgers

of a partiular set within some boundary, aS for exa

4

'Then, the two unions may be illustrated astfoflows:

11

. 14,'

r

150
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Obs.erV4 the ovrrl-kr..ping' of, -G and Ho. The element commOn to botp G

and H is a . The.pint we make at this tine is that 'the ordinary,

arithtletT Fort% or :)f 2-Jdition Is deduced.from the union of two disjoint

Ir N(A) 13,th property'of A 'and, IN1(B) ,is.the nuMber

)rroperty of B, then th4 number-prpiDerty of the- union gives the reSult
.

. ,.

pi' adding tile vdo nu7:1hers, IT0q and N(BY,. provided A' and B are
, .

Alsjoint. In--trmr 1,1rds, .
-

. .

1r A and B are disjoint sets& then N(A) -I- -N(B) = IN(AAjB).
.

'The union-is an'operabiOn on sets and addition,is an opera,tion on numbers.
,.

gorresponciln,:, to the union of two disjoint seta is the addition of their
, ,

---4-

.

number properties; the sum ef their number properties,is the number 4

.property et. theunidn.
1

.1-'1 - 4
I Thus, Ny Ijoking at the unions aCdisjoint'sks, the additio oleration

. ,

'Ls defined\On whc,le 14.,imbers
.

. 4

.

51 4114)

, The di -ram.that we h.ave above, lindicating hot 7 is Produced as the1
unique result oTombining 3 ind 4 in this-operatIon may bp rearrange&

,

slightly as below: ..:-

W

r-
.*

*

,- .
' W.* . _

-

. . ,
..--. 0,

Clearly tills As the arrangment indicated by the usual basis addition 4'

Iable.ln which the sum 0,114,3 and 4 IA located as the entry On the .

v

S.

fotrbll'row And fiftticoluMn.

54. S.
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0

3

Trobi ems

1 , I f A

I 14

_
5 c.) 8 9

', 2 ..:, ". 4 5 f,- 7 : 8 9 *' 10
-,.? N. 4 5 6 9, 10.: 11

4 , &., 8 9 so 11 12

4 c-\ ,.., 7.., ..a 10' 11' 12 1:-,

10 11 12 13 14

11. 12 ,j3 14 15

10 11 12. 13 14 1,5 16

o 11 12 14 ;15 , 17

10 .111 12 .13 14 15 16 17 18
0.

'1

t-
v1 Ai are as below, find AUB.

A (1, 2,
(1,- 2,

d. 2;
( 1,

X. 'A = (al-bp
le

2. Fer eaoh Of the si:ts j.n prablem 1, ;find, N(A), N(B), . and
N(AUB). State Whether it is true that 1+1(A) 4-11(B) = '11(AU13)4

for each pair of sets; exPlain'why .6-13.s equality holds or why 4

B ; r3)
:1; B (2,
4,); B

11 5)'; B 3,? 51: 73 9)
5, 7,* 9); B (1.1 2,: 3, 4,

d); B.-- (a 1/3117.:00 e , -

, doesnIt hold.

3. Draw diagrams to rep-resent the union of the 'ollowing sets.
a. A.r. (1,

,18 A ti;
31 4, 5);

41; B ='

ti

(.5.1

(I%

6,
3,
7)

A . (calf, camel, cariVou, cougcilr, cowl' coyote ); B

steer, cow, ox)
.

4. Suppose R is -ale set' of numbers listed in the row h4ading6 ..of the
addition tab1r; .;di Tay be described as .the set of possible addends:-
If C is the *set of numbe-rs listed in the column headings And B"

is Zile set of 'numbers in the main body 'of tilt, tabip fOr addition,
how -would.ou describe C: and B?. ,

Solutions for- ifroblems in this chapter sr:6
* *4'

152



itrop unjer Addition
""zo."0-

SinAe addition arises from unicn sets,, we ean expect that

'properties ,1:iier the ?union Noeratict miay haVe imPlications for the

. "

additio *cPeration. lie 'observe first, .that.the unions.of 60 sets ts

sel%- 1Thii of tourSe, is from the definition Of iinIon. Ass a whole:.

numb er' Maji .be 'Assigned to aily set, ,.6orrespond1ng to: t4p fact that

e have-P '

4 tte :x10(1 of.:VeTio sets 1\.s a set,
-,.

,. ..

"the' sUt of two Whole numbers iz a whole nuder.

:Both - of these .dre sta*..ements of ,cloStre properties.?' The first is the

. closure propertY of se under Uaion, and 'the second is the closure .
..:

. 4
. property of whole numbers 'U4der, addition.- If an operation that is

defined ot a set l'a such tftdt the result is an'eIement. clX tte same .

. .

set, th we say 'that the.set is tlosed under the opratioi7 :For
-.

..
._.

. example, if we, coniider the, oRpration dearibed by 'double the number",
.

then- the ae 6 1 t of doubling, any' wholt.nuMber ib also a' -whole number.

, We' visualiAz this operation thus.:

. (0; 1, 2 3, 41 5, 6, 7, 8, 91...I$

'-shoWing for iilstance, that if 3 is a member of -W ..doUbling 3 is
-also a Membpr of W.

2 ,*-
pimilarly, we may visualize closure- un.der addition thus:'

w 12 2$. 1;.11 5!i'62.1$ 8$ 94, ../$

showing here, that the result -of 3 and 5 is an element of W.

4oughly, thit means that we donit have to reach outSide te ,set. for
. .

_the result under tbs. operation.
,

.1% consequente olkthis propek-ty

hat we flay repeat the operatión on -the sum.
;

Anotiler property under the union pertains ti6 the 6rder of operation.

If A and B are sets, the result' of joining A to..B isthe pame

ttlrng:11 tO A. 16,4' Summarize tkis by- ?tiyiiig that the, :union- is

coMmutatiite operation. For any seta A and 334

:AUB = BUA.,

153
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I.
.

, .

Correspondin,g tO this, we have the commutative property 'of whole iumbers

under addition. For atv'whele nunbers a and b,
--NM.

Fer instarie the WM of 3 4 (whipli may be wrItten 3 4- 4
4

and 'the.sum of 4 *and3 ''(wrritten', 4 4.. 3) both yield 'the same number;
9

7. For, this,. reason, we caw write

3

Bot 3 4 and 4 + name the same nUblber.

We have said. above that a consequence of the closur property under

htldition ,Is that the operation may be repeated on the sum. Por example,

since 4 is a wh e number we might' add another whole nutber S84

tty the sum. Thi uld be indicated in the grouping of 3 4. 4 in

parentheses, thus:

'.Since the sum of 3 4,4 is 7,- the expression (3 4- 4) +

sum of 7 4- 9; =or, in other words; 1.6. That is to Oay,

( 4- JO 4 9 .' 4.9 and 7' 9, . 16;

a

therefore, .3 4. 4

F 16.
1

Swans the

\la

Since 16 - Is a whole 'nunber t4s prbbess may be 4eo4inued as _needed. .
v A

Thus, we may add tay, 5, to thie result of (3 4- 4) 4:9 to get the

resul t ,Of 4), 9)' 51 whreh is the same as;, 5, or 21.

Our next 'concern is to. Pursue the concept of grouping the Addends.

Revall t t for.,tets,' the grouping, under the union did_not change the

.resulti set. That it the union is .said qto be arP.,s:ssociati've operation.

Consequently; both ( A UB) Li C and A Ul B LP) give rise tb the' same number

prcperty. Therefore;we have the associative loropertY of Whole puMbers

under. addition:

for whole numbers 24,?

. ..

. i
ta If A ilea the- number property 3, B has.the number property
-- ,

4, and C has the number properq, 9, hen' KU B had the, number
, property iand . (ALAI) kiq has the number property :67_. +,9, or 16.
For these same sets 2 'WC has the number r)rope4rty 13, -,..aiid- AU(BUC)

. . .-.
,

has .the nuuiber property 3 + 13, , pr 16. A, B, C are of course, i
-.,, aa I

v
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a

4 54.

alldisjoint since addition'is derived.from e-uni n of tip:joint sets.
:1

To.trace 7t1e machInery" behind.this.pt6pert we can.display (a +b).+ c

;Pet
and -a +.(1, c) as follows.: ,

with the vertical qlashes indicating equality as we read ertically

'This may be ineerpret0 as folTows:

+ 4) + 9 7 +.9

inSpendently 3 + (4 + 9) A- 134 16 1-

Since 16 = 16, we can follow the,cheizrthus:.

( 3 + 4)4 4- 9---..7 + .9 ---.36 3.6 ---4-3 +13 :.-3 + ( 4 4,

.

4

I I.%
t.

.
.

$
A

Fremthis, we conclude that k3 + 4)-4.'9 = 3 1,(4 4 9).. Tile associative

.i-,

. .

.
property-states.that this characteristic is nbt.restricted te just'the

niambera 31 4 and 9; it holds for any.whole numbers -a,-A),, and

4.44

4 S 4

, . that is, .(a4- b) + c'r; a + (b-+ c).
.

V
.. ., -,.,

. . ,

.
Thejiroperty fer cl.ptureallows ui.to'repeatedly,add-as many:

numbers as we wish. .The Commutative and associative properties allow

'us to do thb adding in whichever)awwe please, as1ongias eadh addend

. ,

.,

is,apprbpriately apcounted for. For example, we'may r4uire7the 'sum:*

tr44 8 +'7 + 3 + 6 + 9.
,

c

'Cleaure states that this tan be donek merely add any two, then continue

to-add any of the ;ther addends te the resultand-seon. Commutativity--

ahd'associativity say that if-we so choose, we are fhe to pick Approprihte

gombinations at will*

For_inat in the adove example, it may be destleh e to loOk

s*.:

'fcxdoilhinations Of ten sincl adding one, ten to'another,is easy for-us.

For-the eabove sum, We may theiCfind.it:Cenvenient to group in- the

T,olloving-ligy: (2 4. 8), (.4+,6), (7 +:3). 1Lnce, the tscheme of our

procedure is:

155
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a,

a

1 10.

. 2 + 4. + + 7 .. 3 -.. 6 + 9

10

grom this, all we need is the sum of 5 and 91: then, add 30 tp -this
sum, getting' 44 as the final result. HoweVer, 'we may proceed directlY

from one addend to anOr:

Any appropriate way we choose should yield. the same' sum. ' In the name
4 \

of lafficieney if mit of sanity; ,the first method is' more likbly to'

be.preferred.

Let us examine how we make use of the carmautative and associatrve

properties. We shall not trace through every stet involved; ratiler,

we shall indi,!ate soro. of the bigger ,steps*typical ,of the situation.

Suppose we want 'die sum of 2 and 8. Because of commutativity

we m a y first 'in-terchkige t h e order, of ! h . . . .11 end .the,
-

,

Thia maY be followed next, by interchanging the order df ;the 5.. and
the 8 to get

-2 + 8 1- 5;4- 1. -I, 7 + 3 1- 6 + 9

Similarly, we can .go leap-frogging fox the sums 'of other pa rp of
numbers that-we may choose.

s.0'

,

S0 far, associativity has not been Used, or so it seems. The fact is,
we just conveniently neglected to motition'V when it did occur. To make

It
. . r

eadier to tallow let _us consider first, ,just._ the partial tam
-

Tf + 5 is obtained Ifirst, and 4 added to thiseesult,-follrad
by adding 8 to the result:of, ,(2' 4- 5) + 4' this may be ,indicated

linere the.inner parentheses show the first groupinvof 2 and

.156
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4

.. .. W + 5) 4. 4) + 8 Means , 4). e. i. ,
By the asAo.vi atty.:. propertY:

.,., . .

.4

.1;

(7 + 4,),-# 8 7 + (4 +A

-4 In humane, ,what- we art. 6S3rillg is ,

*r:

.1- 5) + 4 4- 8 .

#.,
,Clearly, 'Mild prel:!ess mtly be repeated again.and agairr. eSo, 'while the

-Associative prerty trad not been in gvidence it is Still very.
mUch ,alnIrt of the7process. This Is why,we say tilat both the cormutative14and associative properties .are involved 'in our "pick and choose" proceis.!

Further analysis of the rOle of the assoctai.tive-proeri-.1n4,7olvet further

AP.

. , .

"nasting" of parentheses, for example,

? 4-5 4 4-'1134 7,- (((2't 51'

and so forth.
al

Prowl the standpoint. that, 'an object (set) is producd froyi:,tWo
sets 'in .foruting the ukgon., II& Can regard the union as binary operation;

,it operates on twel, objects to-givi a third. We also have noted that

with closure, we maY,,c-ontinue. such an oiYeration on the union. Moreover,
because of dssociativiti, 'the COinpOund resp4 is Lnique (one- and only

-one set is daViried, as the union' regardless on grdup1.4). Thus;
:AUBUC r. an be vt:itten without parentheses. This. conor'is ,cerriett.
'over to the'operation of' addition: and the notation for the sum is
freed of any parentheses.

Probiems
A ,

-5. Which 'of the r011owing statements ere exanrples of the commutative
.property under addition?

41, a. 7 4-8 -# 7

(7 + 8). + 9 (8 4. 7) + 9, -

a. (,7 + 8) +..9 ft'7 + (8 +.9)
!4_ 87

+' + 9 - '44' 8)

*9 9- +18 .4- 7
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Vhich Of the -iPildving' ststemenie are eamples
prBperty under-addition?

'
a. (7.-'+ 6) + = (7 +.8) +.9
b.. (7 +.8) +A9. + (8 + 9 )

pa (7 t 8):+,9 + 8)

e,
7,-1- 8 111 =-7 (7

7 + 8 + + 10
to

)f '-the assoeistive

+ 8)- 9 .

- (7 + 8 + (9 + 10)-
,

(7 + (8. 4. p)l) io + +

g., (7 + (8 + 9)) = 7 + ((84+ + 3-0)'

Whirth property or properties of Iszhole numbers under addition make(s
ach of the Milord- true?

- 4-

a. (7 + 8) +
b. (7'4 8,) 4 (9.-+ 10) ,ir- (7 + 8)'+ '(i0 + 9)
....C. 7 + 8 = 15 . .

.. . .
8 +19_4-- 3:0,-. 10 +.,49 + 8 + 7 ,

.,..e., 7 8 9 =-.. 9 8 7
f,,, 7 + (8:+ 9) 2- 10 = (7'8) (9 + 10

,g. / + B 4: 9 + 10.',....(1 .1+ 10) +,.( 8 + 9),

.t
.Another.propeiti of sets under the union opera 'on that is

s,

significant fpr the'zagaitios cperation.12 ope that-is connecte vith
t

the Vtion. of *a set vith thiempty set: Ve have obsexted befri"re that
if ) is a it4 then Ati( 'Since the number propertY of the --.
erpty set is 0 if the nuniber'p;sopJty, of A isjj then tiae OOriesponding

,

statement for thesabOye observation is; a

sfor any whae number a,

a + b
40

Qt course, beceiuse of -the commutatime property, ve also have.' 0 + a ss= a.
k' -

Since addition of 9 to any number produces that identical ;umber,

0 is 011ed the itiSiltity* eleMent'-with respect' to addition. TIo Other
.

elzment plays this same rolef The-property referrad to.above is bknovn

as the property, Of zero nder addition, or in' short, the sgdition
.0000110.

property of zbro
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Addition- on the Nunber rine17
Thtoperation of addition.maY be vividly pictured on the nuMber line.

-- 'Recall that the numbbr line eonstructed 14 placing mdrks on a' line so.
-

thtt th!, spgmont'betwpen any.two'neighborirw,Marks it'dotgruent to one

.chosen iegMent. This vas adbopplished 'by' laying off copies Of ttie chosen
0

segment end to end. The chesen sevient determines a Unit, in the number line.

et

I.

visualize 2 + 5, let us, first lOcate 2 -and 5) on the

number line; not16e that between .2 and 5 are 3 units. Purthermore, I

observe that between 0 and 2 are 2 units.

9 1 2 3

This process May ioe more effectively inditated i4 arrows: as illustrated.

bolowl showing 2' 4,1.= 5.

n

-

2 + 3 =

The above diagram shows an addition using the nuniber 'line. NOre

than this, however, the example may be interpreted also as an illustration

of the closure property. An arrow of 2 units ,"foIloved be an arrow .

of 3' unitt yields an' arrow of a whole nuniber bf unite. Each. unit

may be regarded as a, step. Thus,- -2 steps -To.Thiwed 4-steps ritUlt

in a: total of 5 Steps. Note that the steps originate from 7111as

starting -point and that 14 adiance in accoid with the increas

order Of nunibLse.'

159
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Con Wider nOw 'the euls 3 + 2 on the number line,, Here, 3 steps
are foll6Wed by . 2 stew and.iift is cle'e that we gOtheesam.e result
as. before Incorporating the 'dtagrams for '.\3 # 2 5 ' and 2 H., 3
into a simgle diagram, ye\-can il,lustrate the comMutative'property
under adtiktion, .

I 140.

vet

it
2

3 11#1

5
114

\:

IThe , socil,tive property can' also be illustrated using tilce.number
'.line,, 4pveyer, .the -process is more involved. As an example, we Imow that

(? + 3) + 2 (3 + 10

, -1211e firs1 expression, (2 n .4,1 may 'be illustrated by a simple
extensin of the above method. An wow of, 5 units rtNsults from the

ahd unit arrows. tb this., is abutted' (attached; enH to- end),the,.4 un1trow, thus

[This of

3

(2 .3

is analogous .to the chain of 'atat'ements
- .

4:4 9"

'The ration for the second expression, + 4), is not*as dirtot. Y4thia, i ma.34 be more helpfUl to start with 'the analogous

3.6o

-4,

'
o

14.
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situation 1ir'i.. In analyting 2 4- (3.4. 4) we note that 3 4- 4 .:-.,

that Is ', + 4" and "7" ar*:. names.forth4, same nuMber. Thus)
.

.

s )

. , 1 .

2 + (3,+ ) =2 4 7
..,

9 .

.

ATCdoreingly,, weare,seeking ah army corresponding to' 3 -iO4.

arrow is.thOn abutted to the)arrow or 2 'unitOdoii.arcive at the,re,sult

for ,2,+ (3 t 4).

a
4

3 + 4

f
3 J-

P

,

2 4. (3 4- 4)

2 + ( 3 4- =

4'

Ihe diagramming:may te-eiMplified by transferiing the.arrow for.:.3 4

a
A

.directly.onto the .2 unit:arrow di is'shomp'below by th&dotted lines:

4 IN 9 10

A

A"
161
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It is by inco9k,)rating thediagrams.fgr (2:4- 3).+

2-4- (3 4) 9 that've shOw associativity. 4446

and, for
-

2

-

1?re4uent use'of..the nUmber line to illustrate,addition of whole

nuvibers mill 'profitote familiarity Wiih-tiroPerties nnder addition. Thlsv

the nunber ltme can he4.e. great deal in vor41ng'4th nutb4rs and in, ,

answering questions about.numbers.

Problems

8. Draw nuMber,lines to skims the,foilowing addition examplas.

a, '3469
b, 4 4. 5 f 9

e. (3 4:)6) + 7

,
(6, 7)

,J6.

16_

Draw pmber:lines to sholethat tlie following nunber are:commutative
under addition.

- a. 3 and 3

11. 30 and 50-7v

C. 3 4. 6) and 7
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10. Are the diagrams in Problem 9c. the dame as those in Problems et

and .1,11w or Why nft?

arrow
is

'be used to indicate advancing

number line,to'the next point* What

whole nuMber immediately following a

11, HOV,Vould
A

the whole

atout the

from one point on

does thft suggest ou
lb

given whole numb'er aT

.

#
Number Property .of the Produ.at Set

.

,

- When .3etS, 4re disjolnt we. have seen how the)operation

may,be elated to the union of the sets. The sum of the -nuMber properties

0
A

of all the sets,is,the nuMber property of the union. Since multiplication

may be viewed in terms tf'repeated addition, forming'union-after union
A

woad yie1d7.the number property requiAd. For example, if ve mant.the

result of. 4 x 5, we can get this by the union of 4 disjoint sets

each having -5 members.
%

A B (f,g11,1_1,1 C (k11:0mIn ) D

'.Thus N(AU P.) = 101 N( ( Ati B)U C) = 3:51 '11(1( ( AUB)U C) UD) = 20. This

wculd.''all. for finding Tquivalent, but disjoint, sets.' Another approach-
.

is V, the use f the 06IduCt:%set. This approaCh reveald More clearly how
,

'Imiltiplication arises 4iretly,aaan operation on'tvesets of nuMhers.

A

;Using thellihme problem 4 X 5, ':that we'haVe beforei let Us now
.0' 4

1confider two sets,

E = (dIble,d) and F = (elfpg,110i),'4
,

, Ithen N(E) . and NM'. 5. The profte, set.(Cariesian product) is

,E F

(e,,F),(0101(clg),(c,hye,i),(d2eMdrf)4(dlg)0(dIhWd.,i))'

from which N(3 X F). . 20. The Cartesian product OT two setsthus gives

,dircetly the product of their number properties. ,Ife is the nuMber

property of El and f -is the number property of F then the huMber

propvty of E X P is e Xlf. In short,

N(E) x N(F)- = N(Ex F),

t-ean be observed, moreover, that this statement is tine' vhe her oi.:nOt.

the tVo Sets4are disjoint.
. .or



f.

Rectangtla-r Arrays

yltt Cartesian prodtIcts, multiplication is defined On sets of whole

numbero.::.For e*amplf:1 4 X 3' -=-71 201, as .the operation

(01112,314.0,61...) (0.,l12,3 4 3 )

1,4 (0,-1,2, 5 7 9 io.13,113.213.3,14,1512.6,17,18,a3,eol...)z_can

evolve from the product set A X 11, where A:t(a,:bcld) and'

B ,A 'Os Fot these sets, A X'B may be displayed as fo4ows:

Av.

'At

,A x B = ((ala), '(817)) (a, ),0 (a )

(b, a Y, (bjfi ); (V). ), (b, 6),
(cpa) (ep.8), (c$7 ) (c, 6), (q,*)

ct); (d fi), (d,7), (al ))

1
'4*

In this, display, .we can 'gee that since A. X B is the union-of 46

equivalent disjoint gets, ((a, a )1 (g113 )0, (ap:/ ); (a, 6),(a,g) )((p !4),

(O,fi ), (b; ((d;a), (a, ft),. (d,7), (a, (a, e

a recianguldr arvaY of 4 disjoint Sets, eaCh having 5 neuters 1:iould

:I give us the ,nuiliber.prOierty 4- ') 5. 111)As'i for a plisieal.interpreta.tion:

of 4 X.5, We may set -ui a 'rettanguIar array of 4' ''rows with .3 objects

in each row. Counting the nuMber of objects in' the 'array apes thle .answer

to. 4 x 5: tither =of the diagrams below, an array of dots or an arilay

of reetangular shapes, can'serve as a,model for I. X 5.-
5
.

On. th haa14-or -suoh arrwa-., we can tl4nk of multipIitation

in terms of counting sets as follows:

Gilzen nuaibers a An4 b, an by-
. rectangular 'arw of ,objects can be non-

. structed sudh that there are a rows _and
b columns in the array, ,nie Tot1mber,

a -X.b is the' nuMber of obAnts in ;he array.
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Problems

12. Tying zwo sets that are not disjoint, one havihg 3 members and

the other* 4i. .Metnbers ihow that the-number property of the.product

set is 3 k .

V

13. a. Fox:m a rectangular arry f rectangular shapes illusti*ating
1.*

,an interpretation of 3-x 4.

b)/2 Using A (1,2,1) and B (1,2,3,41 list the 'ordered' pairs
(a, b where. a is an element of A and - .b is -an element

of. B -within the rectangular shazes drawn abpve. Let a

refer to the rdw and b to the column occupied by the rec-
tangular shape.

Using tht example 2 X 6, show by kagram how the multiplication

table illustraies an operation on whol; numbers, as, was''done for
addition on pme 151.

Proprties unden 112.31-ta1.!_s_a_tla

In the abOve, we have related multiplication' to the' product set.

The result of the operatibn-on any pair of numbers -we call the product

of the two nvbers.

'A

When we- examirfed the union 'of tWo sets to get an insight into the
. ,

properties under addition, ve observed-that the Union of two sets is

'a, set. The product set may similarly -be ex'amined to gather spme infor- ,

mation on the 'properties under multiplication. As in the case with

the unkn, the product set of two sets is -laso a set. *It is true that

the elements of the product set are not elementi5 of the original'sets--.
- -

.they bze pairs of elements. But, the crucial point is that-the tartesi;an
product is a set, and a number property may be assigned to this s4t;

From this, we 'have the closure 'property af whole xnunbvs Lder muLtiplicatiori
. '

The product of two numbers is a *ole, riuMber.

WW1. , , * . ther ,the product

-siet A x,B is a set.with 20 =Eters.' WO.likave seen :that if AB,
then the Cartesi\ion froduct -B X A' is diffeent from- A' ZB since-

the pairs are' ordered. For egample, (al i9 ) is al member of A X'B

whereas' ( p,a) 14.9 a member of B:X A. By dis.playing the memberit of
13 X'A as we had done fOr Ltk. X B we .should see that B X A also has.

A

20 meMbers,
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S.

s 4 .
4. 4 1

. Ni .
. , -.* , , .,,. * .

, ,. .. 4 0 . 1.4t , , if
*

lk ' ".

B x A.. (cciet),...(\tx.,b)4 . (6 ,,c), 1 a )
i

(15,8.)1, tb), JO,
.

e) ci)
-

(

IP) ( 13
4

414; f
-46 :

Th r etreF,ven though' X13 B ,X A, .both -1)roduct sets are
t' is; they have, the same number property. s

NOti:N 'from:the above displays -41,1at an array of 5 disjoint sets,
*.

eaf:h havirig 4 -members, and an array of 4 disjoin;t -sets, each hav..i:ng'

7

13,a)

6',c), Icf) -

5 membera, 'have the same number property.

itt3r.

40"

,Sets, I 5 lieMbers
in eacli set

1C

5 sets; '4 members

.. in each set

,Sinr'e- multiplication-refers' only t-o ;the nutber propertret of sets
involved .in.the. 'artesian pr oduct, the 'fact' that tiffigRartesian product.'- ' .
-is no,t ebmmutatiVQ has no.bearing on the 'cl5nimutativity under multiplicatiOrt..'

It is still true that -we have the commutative property 'of whole numbers

..

0.1nd r

c.` for anY, whole numbers a and b, a Xb=bX
.

In the example that we have used, 4 x-5 = 5 x 4. A 4 by 5 arrpy
has :the same number-Of members as a 5 blr 11 array. *The array as a
unibn -of 4 disjoint sets, each4having, 5 memb.ers also showS that

x 5 an be computed by the successive addition.4
a

14- addends

+ 5 + 5 + 5 ,

that Ass, '5 ig used as an 'addend 4 times. (This is somettnes
referred to as 'the -repeated addition gescrIption Of miatiPlication.)

3.66



A46ough of'Whole.ndMbers pay be,described'in terms Of

repeated adOitibn, it nfiNt be remembered that multiplication is defined

as An operation on 'two sets of numbers indepenfJentAbf addition. The,

.6peration showing the association, of a third nuMber with'a given\pair

May be indicated, for'eamialel,ty the usual method:. 4 )Z 5. 20 or

sipvIY (4,5)-4.20. '°(4,5)--;w20" -May be:Tead:, "to,ji and, 5 -is
.

assigned the niamber, 20% Likewile, addition, Pay be so described;
, .

,

- 'thus' (4,5)---.9 'may refer to an operatIon of addition.

Probl ems'

15. Draw twO arrays of rectangtilaf shapts to illustrate that 3 I = 4 X 3.

18. Is it-possible to draw an array to Xllustrate 3 X 0? WhY

or Why,notT

17. FOr each operaVion given
belo4

w, state Which arithmetic operation

it refers to.

a,

b.

( 215)--..10

(5,02---5

d. (111)

e.

d.

In adding, there is a partieulat.nupber a such that a + a =

find this number, 4
, ,.... ,

.l9.\In multiplication, is there a nuMber a such that a X a = at
.

-Are there more than dne nutber a magi., that a X a :-.-: al
.

20., If p6saible, draw'an array for a X- a such that a X a = a.

We have defind multiplication by-the nuMber property of the,

qartealan product' Of two sets.' 'Thererfkno evert'Andication:yet

that -i.,,,prf!)dt2A of three or morb. nutbers can begiven cliyeetly.by aeta.
*-

If We want the'produet 3,X4 X51' for'example, what NV might do is

tip find the Cartesian product Of pets having 3 and 4 TAFObek's'eadh.
(.

-This yields a set having 12 meMders. -To find '12 11, we cjan use,

aLlet_vith 12 members. and ,a 'set_ with 5- membera, forming-the- product
.

-
. .

set of these two. This,would be s ded we want the produtt,
..,

with the factort:;rouped: (3 X 4) X FOr example, if
, 42

*pa; A)

167"
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then S x E is .a sex with '12 members:

S X E = {(*,a), (*lb), (*, ( *M. ))

Now, if D and G are sets with' 12 ,and menters respectlirely, sa.Y.7

D = (dog, cat,, horsej- coV, goat, pig, chicken, duCk,
sheep, gobse, turkey( donkey)

- 4

ce,13.0,.431e)

then a.p1-9duct set, D )0G may fise fOrmed having Members.

Notice that D is equivalent tq S x E; there is 'a 1-1, correspondence.

between 'their membere. 7 -.,.._
. -.

3--

dog, cat, horh el cow, goat , pig chi cken, duck, sheep, goos el turkey, donkey)

I I I I. 1 I. 1 I-. 1

SKE ..((ii,$)(*lb)(4k,c)(*Id)(ola)(0,b)(1:31c)(0,d)(6,,a) (Alb), (b,,c)4 (4,d))

Instead' of D X G, -we might have used -(6 X E) x G to,i'inti. the number car-,

respond (3.X 4) X' Then, 'some. of 'the me4ers of (S.X'E)-.x G mey be

listed .as fo lows:
X E) X G =1((*,a),a),(( .8,),1),((*I.e;),T),,*((110,))

S.
t4

7

Observe that each member of (S x E) x G involves two sets of partttheses: .

the inner set speOfies an ordered pair of (S X E) and the outei stit specifies
1 . .

an oidered pair belonging xto (6 x.E) x G consisting of a hember of (S X E) and
k ,

a member of G. By agreeing that a member of a partieular, set always: appears
the 'same position Acithip.the.parbntheses, we may be able io staplify the notatpn

. .
Slightly. We might write a member of (S x E) X G with the agreement that the'

7 t
first element win' a set of parentheses is to be 'a member of S, the second
element a member of E, and the third element, a member' of G. Thus,'

'`4 frt. Ak okoallai might be-simplified-as (*,,a,0

i The simplification-gives a triple of numbers; as With an ordered pair, such
N. .

tiiples a.r t? ordered' insofar as 'the order of listing elements 'within the pitrenthe-
.

ses must be observed. It is then possible to extend the concept of Certesien
.

,products to ordered triples, quadruples, and st? on, - s A

A li .

- In tile foregoing, we'examined: the product set (6 X E) X 0, We can

similarly examine the produ/ct set S X (E XG) to find zthe product



3 x 5):. It is clear that if we do so, I X G ii11 ,be revealed.
to have, 4 x 5 . 20 member.s, and' that S (E,X, 0) will have
.,3 x 20 = s':() meMbers. Recall tha, (S 'X E) x G "alSo has 60 'members.

Thus- -both S X (E' 0)...and (S X E) ( 0 yieid the same 'numb:gar property.
(In fact, while we have noted in Chapter 1. 'that the Cartesian product

, is opt connotative, it can be 'shown that it la ,associative.) This
,.

parallel& ihe case with the Operation.of addition; .we haNte thus, the

asso:iative property of whole-northers under inoltiplicati8n1

and

for whole numbers a, b,

b) X c = a'x (b.x c),

For thc example 1./6 have above

(3 x )4 5 . 12 X 5 = 6t1

. '3 x;(4 )< 5) 3 x ,?()

Al ternately, this may: be writtn as follows:

(3 x x 5 ,x (4 )< 5)
11

X 20

6o

17

. .
., Sliowini aiain. that 3 x 4) )< 5 ',. 3 *4 x 5) by virtue of the statement,

60 .:1: 60. that is to say, both expressions name4the same number.-
,Th'ryi'i noltpl f?. box inade up of cubical blocks with dimen

a by b by c may be used Ao illustrate 'the asaociativity of
Multiplication.

-a b bloClur in etch vertical' al
c vertical al ices.

z

PB

4

b X c ,blocks in each hdrizontal
slice; .a -horizontal slices.

4kidel filustrat.ine the asaOciati%ve
4

property of ilatiplicatiOn.
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The riumber of blocks in:such a box is (a ) b) c and' is 8,3,40
a >t (b"X c) indicating'that 3t :is true that. (a ,)( b) x c = a X (1.:).x c)*

-.
Problems

21.. Sh Ow that 2 X xl 8 x involves both the. commutative .and the
associatiVe properties of mUltiplicatio.

.%."... 'What prOtrty or properties are involved in lach of the following?
. *

a. 2 X,Zt 4 .' 2 k -i. d'. '2 x 3 x =.2X 4 )43
tl.. 2 x 3 x 4 ::-.; 3 x 8 e. 2-4x'j 4. 3, X 2 x
c. 2 x 3'x 4 =..,6....x 4 f. 4 X 3 X 2 = 4 x 3 .x 2

Each of the numbers 31, Iy.or 5 in the produCt .3 x 4,x 5 is
galled a factor of the product* The extensions. of 'Cartesian product's
to more than two, sets .show that multiplication may, he defined for more
than two factors. Of course, this is implied, by t1e o1oslar8 propertY;
Since a x t is a whole nuuber if a and rb are whole nuMbers,"'we
may proceed to 'find the product of a X b 'and c if 'c is Sa whole
number. By the associative., property, Vie product is untque, hove-v.&
the factora are grouped. Just ,as we could ."pick and elpose" pairs
or-addends'. in a sum, the commutative 'and associative properties under
multiplication allow'us tO "pick and choose" pairsof,,factors in
a, product. i For example,

,

100

.8 x 4 x 5 x 5 x.2 8000.

"10

.liatural combination@ yielding tens, hundreds, and so on might make for
%

ease 'in -computations. To be sure, for the same produci one Can proceed ,

to,,compute laboriously as follows:
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Problem*

23!. Show by grouping with parentheses how -aXb X c4X d may be
regarded as a product inyoliring '3' factors instead of 11. fOr

.

each of the_following:

.a. 2 >0 X x 5 = 2 X.3 X 20

b. x 14..x 5.= 6 x X 5 ;

c. 2x3x14-x5=2x12-x5

*

The number 41 occupies, with respect to multiplication,' the same

positión that 0 occupies with respect to addition. Notice that,

,
1 x 3 = 3 x 1 = 3,
1 x 5 = 5 x 1 = 5

1 x 6 = 6 x i. = 6,
x 8 = x 1 = 8.

It is true that lxa= a . for all numbers a because a 1 by a
array consists of only one rcd haying a members, and thrpfore the
;entire array contains exactly a members.

5

it )

6
v-..444i*vom$41ali.",

It 3.

1 x 6 = X 8 = -8

Since 1 X a = al the number 1 is called the identity element

foF,multiplication. The property is referred to as the property of*

1 under multiplication:0. e.

,
tor whole numbers X a = a.

:
Because of the.commutative property under multiplication, we also

have a X 1-= a.

While 0 does not act as the identitin multiplication, it, doep...

Apecial iolP. IMie_rcaMber-of-meMbawa- a- -0- by----3-----arrisky-ttliatL -

is, an array yith '40 xows, eaCh have 3 meMbersY is 0 because the

set of meMbers of this'array. is empty. In general, if .a is a mhole
N.

n4Mber, the nuMber of meMbers in a, 0 by
0

,

a array is "0; 'thus,
t 4

for whole numbers a, QX a = 0.

It is also true that a'X0 = 00
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The characteristics of 1) in eialtiplication Of l'annihilating"

(ad-to speak) -ell numbers *xcept 0 in the product hap an impOrtant
consequence. If any factor is. 0, the product is 0.

. 7

Whit has been done 'sos. far shows that multiplication, as 4th
additiOn, IS, an .operation on the Whole numbers'which hap the 'properties

of closUre, commutatiiity.and associativity. There is a special number-'

ihat is site pientity for multipl'ication just as 0 is an identity

for addit.ion.' Moreovpi; 0 plays a speci4 role in'IM4tiplication for-

* which there is no, corresponding propeAy in addition.
,

There, is, another imPortamt property 'that links the ,Operati'ons of'

addition Itald mul t,plition. This property -which we ,shall now study

is the basis f le, for. the following statement:

This example may be 'verified by noting that butt). 4 x (7 + 2 ) nd

(4 x 7) + (4 X 2) give the s e result:

2) = 4 x 9 = 36, an

(4 x 2) = 28 + 8 = 36.A (4 x A ; 3

The- property is 'called the distributive. 1:4-operty of multtipfication over

addiiliOn.- It c,diStribiNitive 'Property state,that if a, b, and c are. , .,
any -whole pumber3; thOn

a X b + c) = (a eb) + (aU

The (listributive property may be illustrated by considering an Et

.by. b, + array.
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is true that this .array is formed from an - a ..by b arz
by c array.

0 / 411

a-

An

. *

6

a by b array

;

and an

An e by: c. array
,.

;-...,
.-sponsequently, the number a X (b + c ) f memberi in thd large arrpy

ie the sum of (a X b) ant: (a x e), thenumbers.of memberse ,oftthe
eubsets. fat is (b + c) (a x br (x c):''

#1-e

:Since mul-V.pits.cation is Connotative, both- the "left hand" and
"right hand" distributive -'propertieszhold, that is,

'Left hand: a X (b + c) a X b) + (a.X and
Right hand: (b c) x a (b x a) + )('c X a),

For example, by these-distributive propertieS

Left hand: 3 x (5 + 8) x 5) + (3 x 8), and
RiglA hand; (4._ + 1) x 2 (4. X 2) +4(7, X 2):

Recalling that when .1we say A t-.. B we mean: A and -B. both name
the, satne thing, then if A --2.11, it really. makes no difference-whether
'we-write A B or B A, With this in mind, since the left hand
distributive property says that a.X (b + c), and (a X b) + (a c)

,nazi* -the same 13:lumber, the Statement

a X (b + c) (a X b) (s. c)

can equally. well be written .as,

rov., example

4 I

(a X b) + (a,X c) a'X (b + c

=.3 X c5 8) -

right hand'distributive proPerty may be expressed as either
.4

:.



A

For eiapple,

,
The 1114tilbutive property Is very is-A:portant as it is, the basis for

A

,copputing tho prOduct pf two nuPbers.

.

teft hand: (5 x 4) 4- (5- x 6) . 5 x (4 4- 6)

5 X 10 50; alto

ltight hand: (7 X 9) + ,x 9) = (7 + 3) x 9

x 9 ; 90;

The'eonvenl,ence maylle further illustrated by the following exapples:
,..

(9 x 17) + (94,(a3 ) 1 9 x.(17 4- 83) . 9 x 100 . 900;

(24 X 17) 4- (26 x 17) . c24 +.26Ix'17 . 50 x 17 .850; . ,
(854.X 673) +.(146 x 673), . 054 4 146) x 673. 1000>C673.-= 673 000;

,(84 X367) 4. (84 x 633) . 84 >51000 . 84,000:
A

Problems

24. Use the distributtire *oterty to conput*e each of the fo1lOylng:,,

, A

a. (\57 5k 7) 4- (57 )< 93) t-

b. (57 x + (57 x 93) (Hi*nt: 8 . 7 4 .1)-

, 4

25 0 Mow thai, 57 < 5) 4: (57 ) 5 .-57 'x 10 by th; .§listribu tive

properly.
A

One might question whether additiofi diltributes over pultiplicatiOn.

I 01

That is, is tt always the case that'

This would be false if any Set of nunibers a, b and d can bt foi/nd'

that woad aipprdve the statementR For:example, a = 1, b 3, and,-

c 2 may be tried, For these iralues,

.a (b x 3 x 2 6 = 7, but

b).)( (a + c) 1 4-'3)4 ?< (1 4. 2) 4 x 3 12

So it cannot be Stated that, a 4, (b X c) is always, equal to

.a X b) 4. (a ;< c). '

:
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1221E.Ey-or PtopertieS !
tk:

.

. ' . % ..

The properties of dition and multiplication developed so'far
,

for Vhole'numbers . summarized as follows where a
-0

b and
. ....

Art vhcile nuMber:S.i

-1. Whole nuMbers are CLOSED under additia and multiplicetion.

=1:4 b 'and ;.a,t b aA:whoge nuMbers,

2. Addition and multiplication are COMMUTATIVE oPerations

a + b -sb + a and a X' a b X a.

Addition and multiplication are'ASSOCiATMoperations

(a 11- +,c a + (b c) and ,(a x b) x c = a X x c

4, lbers.is an IDENTITY-element .0 fog' addition and

element 1 .,for multiplication

a 4- a and a X 1 = 4% ,

5.. Multiplication

a x (b

sDISIRIBUTIVE over addition

. (a x b) a x c).

O. iero has a'spe.c-ial multiplication proPerty

0 x a C.

I IN
).4

TY

-

:P Multiplif-ation4Jsing the NUmber Line .
.

.
.i

.

, . .
.

Through.the interpreZrtiOn di multipliCation as repeated addition,

multiplication may be illustrated on IV nuMber line. rtor example.,
,

3 ilt means 3 addends,.each A04,10 b 4. That is,

4

Therefore, this max be represented ty e3 successive .arrows as,shovn

4 4

12

3 X 4 = 12

175
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'On the other handl 4-X,3 means7 4 addendsio

-on the nuMber line is as follows:'

3 3 /;

,
3. Tbe representation

12

'Is
1

As we can see, the two:reprevntations abolae are different; however,

-both of theSe yield the same result.. By combining these two in a single

diagi'am, we il/ustrate the commutative pioperty under multiplication.

:When more than two faCtors are involved"this too:may be illustrated;
4

For examplp, to-show (2 x 3) Xli., Ie bAve.itie-fo]joving.

a

Si

0 1 2 3 g 5 6 12 24

2 X 3 2 wX 3 2 X 2 X

, (2 x 3), x 4 24

Likewise, 2 X () X 4) May be shown by obtaining two (.3.,X4) "arrow"

and'abutting tnem. By combining the diagrams for, (2'x 3) X 4 and

2 X (3 n 4),., associativity may be illustrated. .1

Problem.

-26. PepreSent multiplication-on the nutliber line for 2 X 0 x 44.

7.

liumber Sententes

,

In developing the properties of numbers:and varions operations on

numbers, we have been using a rather special language'involvingt',

Symbo141for numbers, such as: 10 5, 2, 9 3

Symbols for operationi such as: +1 )43

and Syubols shoming relations-betvven numberst

such /tat =, <.

,..;

,.`



7
A grat deal of mathematics is.in'thesform of sentences about nuMbers

. J

or.ntiMber sentences as they are called. Sometimes:the sentences make true*,
e 0

.statements as tn 5.= 14", sometimes the nuMber'sentienees are false

.as in "5 +,7 'Whether it-is trUe or false o.more disqualifies
. ,

'-thF statement,ts azentence than, the statement, "G Orge WaShingtop was

vice president under Abraham Lincoln" is a-73isqualified'es a ent4hge.,

4

Am/ nuMber sentence has tb have a:"Iferb"'or- veit form", 'The ones

weshaVe,enTsuntered,so far are: "is eqUarto", "is less than",-"is greater

than". 'The syMbols,which we use for these ierbs are,listediaelow with a
V

4-

nuMber sentence illustrating,the use of each.

"is equal to"; 3 + 4 = 7

< "iz less than"; 5'.-r2 X 5

>, ; "is greater than"; 7 + 1.4> 7
A a

Az ye have noted, verbal sentences may be true;'"Geeirgt, Washington
'urea the first Piesident.ofthesUriited States?' or false: "Abraham Lincoln
was the first President of the phited,States." We aTho encounter sentences
such as: "H-6 was the V.rotlfitesident of the United States." If rea'd out '
:

of context,'tt may not be Xnown to whom "he" referred and -4 may thas be .
.

impossible to determine whether the sehtence is-true pr false. In fact,
'"Owas, the,fil-et President of the UMite'd States" may-be a test questip,'

requiringthe nime-Orthe man for N!hich it, wohld-be a tIve sentence,
SuCh a sentence is called an open sentenee auclis of great.UsefulnessfN

e://
/a

not Qnly in hisiory tests but in many other-situations as well., Open

-number sentences 6.rethe baSil Of a grea-e'de9l'of work in aritlimetic.

Solving a,problemjn arithmetic, for example, incorporates tfice aption,.151of an open sentence. As an,illustration the problem

may be stated: 7,-+ 5= D or 7 4 55 .11.11.1.111..11M.

The nuMber that makes '7 + 5 =0 a:true,statement is the soluti*for

)
2,

Opewn4mber spntences:are called etiUatib'ns if the_verb in them is

Sentences withany of-;the other verbs listed above are called "ineqiialities".S.
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sTtobiem

27. Wite <,
is true.'

)-

,or -4, in eaCh blank so ,each.MathematAcal sentence

a.

b. 3 4. 4 . 1

C. .(20,+ 30,

.d,

e.

800o)

(1200 loco)

Applications to'Teaching

.

34 20)'

(200 700)

(1006+ 1200)

0

4.

Addition is associated'with the union of disjoint sets of objects.'
. .

.--By.thisi.the commutative Property is c1eS4r1y'illustrated; *whether we '

jOin the first, set to the second set or the.seeond set to the first',4

the union consists-oethe same-meMbers. Recording' resultS of.joining

sets USingnUmerals may cauSe.soma difficultywithout some intermediate
'steps. For example, from the diagram

'

4

some children might: not be eble to proceed direetly tp the nuMber

sentence, 5 4 1. = 6,

A suggestion is to separt this -prOhlem into different tasks.

lite of the-flannel board to display objects in *04 sefledii be helpful.

Then tlie'numerals.may be written below each pictureWith.the numeral
or the:uadt 6howing the adden0s.



This may be followed_ by a review of the procedure the next. day,

liriting :6 below 5, l and finally, completion of the equation
-

.

In forming their own,.Kententes to accompany a, pictorial .siltuation

some children may have difficulty -getting' the 'it...." ol ine the right'

,,. place. Drawing' a .4uble line between the appropriate frames my help

with the association of ideas.

3

I. 7

.The use of, the number line has' b ,-eported to be extremely: helpful.

A nurber line fs fastened to- each Child lopesk; the child eventually

operates- independent orthis device in .accord with his own rate of

development.

.Commutativity under multiplication May be cOnveyed by arranging
,

Chairs 'facing the board, 'for example, in' an array Of, -16 rows,
2 to each-row. When t1-1 chairs .are turried .90 from -the original

direCtionl, there will be 2 rowS, .10.. to each. row, In each casc
(10 x 2 or '2 x 10); the nuMber of children is 20.

The . associative and distributive propertles are not presented Until
the second g.radq.* TO illustrate the distributive property 47, -

each contaiiIng,'say, 5, red blocks and 3 yellow blocks may be used:
Thus, in the k sacks, there are 20 red blocks

,

and 12 yellow blocks,,
.

or, 32

-1!..X (5 + 3 = ( 4 .X ,(4 x 3)*

v

-

Exercises - Chapter 6

.
,

.
. .

.

a.* Show. byotrying to indicate the steps in repeated addition hOw the_ .

'Commutative properrty-Of muitip ication would simplify the- calculation

of 1000 X 3.

179
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4.

2., What mAthpnatfbal sentence is sUggested by each of the-alrays below?

a.

W. Rhodes is'buying a two-tone cai. The company,offera tops in,

5 colors'andbodies in -3 'colors, 'Dray 'an array that.shoyesthe

- 'various.possible results, assuming'that-pone ofthe7tIody'cOlois

.are'the same as anyof'the-top colors.

Nir, Rhodes is,buying a4two-tone cai. Colors available forthe

tOp'aret red, orangel'yellw, green.and'blne.' Colors vailbble

:111' the bodY'are:red,.yelloNiand blue. Draw an arravto shin./

the various possible results. 'If Mr. Rhodes'insistithatthe par must
be,two-tolled' how many phoices'does'he hav,e?

An'enseMbld of sweater.and sliirt is ofgered Yith the sweater aya4Sble

in-five differeht:colorsand the skirt In' 4 colorl. Thd sUirt:alact

comeslin eitha:ataight.or Xlare,style.for 4ach of'the 4 'ciAors.

Hoy mipy different ensembles are possible?

Here'is an array separated into tvo smaller arrays.*
v.,

11 ** *

.
:4. . 4

4 x 8)

Array4A

a. How mani dots are'in array

b. Does n = p q?

c. Does 4 x 8*. (4,)< '3) x

a

4 3)

Irray B

.t

4+,4

'a a *2 a

(q

Array C.
-,

A/. Ar.Tay, B? Array C?,
,
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7. .:A familiar Puri...lie pioblem call'S.for planting 10, trees.in ai
orohard so, there,are 5 rows
with' 4 trees-in each row. The
ERA tion is in -the 'fore; of 'the star
.sho 'Di the figure to the right.
Why do nit this ata-r illustrate.the product of 5 and 11-?'

1,
The: middle.' sction of an' auditorium. seats 28 to a row, and t:.ach
side': section Seats '11 tOga row.. What is the-capacity of this

;audftorium if 'ther'e 'are ,20,5 such rows?
,Wbst,prop-erty of numbers is Used- in the following regrouping?3

100 + 21e 4344.

associative wiverti:es :0 -get the ampler
I a.

quickly by "picking and.choosing" appropriate combinattons:

SI

,.

24.8 4 t,21.14-.

Use the cotmotati4e'apd

x1tX3x 2 X 1
1%25 X 7 X 3 X

at:

ea. 250 X 14 x 14.x 2.

0

I

'What doet tIle following operation indicate for

(4,
4.

4

Make.each of the following a true statement, illustrating
distributive property."
a. .3X5,(474 ) 4- (3 3)

ct 13 .x 4; 14.) = (1 x ) + (13
(2 ('Is) (3, ) = ( :) x./

13. a. if "A. '.1sia set, iive piopZi*suinei
E(AUB)

How does the above reconcile with the
-seta as models for the swid

4,

he

,

B of A' such that

, .
concePt 1n joint

181 0
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2.

a, (112;3)
b.

c.

solum2ohs for Problems

(112,3,4251719)
e.

f.

(1,2,3,4,52719)
(alb,costiothy, 5 ,e)

. a b d . e f

N(A) ,
N(B) 3 0 5 5
N(A. B) 5- 3 7 7

JO) 11010':-. NIAU100 holds latten A and 13 are disjoint; benCe

it holds in a., a., and f.

C.

b.

C is the,set. f pOsSible nuMbers for an adpend and B is the

set of possible numbers for the sum.

a.3 c., sad g.

b., dk), e., and g.

ecommuta4ve property

b. commutative pVoperty

c. closure property

d. commutative property

e, no iroperty; statement is false -

fb associative properla

g. commutati nd associiitive propeAies,.

*



C.

tiLip
,

-

4

5,4

a 10
--

9

0 1 2 3 4 5 6 7 8 9 10 n. :2.2 13 14 15 3.6 3.7
3, 6

( 3 + 6) 4: 7

4

\
6 6

0 1 -L 3- 4 5 6 7
1

3

9

6 'I I I -I \ I I ,

9. i0; 11 3..1.3 111. 16 17

OIL

3 + ( 6 + 7)



b.

0 10 20 30 AO' 50 La 7.0 80 90

30 :4- 50 --em

oi

0 10 20 30 ho 50 6o 70 80 90.

4 50+30 .."^""*1

3 1k 5-

'3+6

a

.7 8 9 10 1 12 13 14.15 16 17 18

7

3 7 B 9- 10,11. 1 1J15 16'17
7 --.L+-7.-., 3+6

t

-
10, Vo; 8c an8 8d show associativity of 3 4. shows'

.commutativfty. of (3 t 6) 40 7
A'

11. Abutting a' 1 unit arrow to'an arrov cprresponding o,a given nutter.

This shove that the vhole nutliber after a given Vhole'nuiriber 14
Obtained iloing 17-to a.

12. For example,: if A r. (a, b c); B C, b, e, 4, then A X B

((aoa), (a1.0.); (ajc),(9.:(1);OsaMbsb).,(b:e),(bldlp( cya),(0,b),

vir



13,

-

(11,X) 112) .(113) -1 4)

(211) (212 ) (213) (2,4)

. (3,1) (312) 313) - (3 1).

)

I.

lb

No;- 310 Is the number property-of the empty set.

,

,..

. -. ,

.174 a. multAplication'
-

d. multiplication

t b. adilition 'e, addition
.

c4 4dlition % addition,or ltiplination' '----
*---,.-

A
.

12 .

Dd a, ),--. 0

19, ',yes; eithr a = 0 or. a

),2°.

2 x 3 x 4 ). 2 x(3 i<
2 >< (44)t

4) x 3

associative property

'commutativeprOperty

associative property

185_0.
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x 3 x = 2'x (3' X 4.) 2 X.12
1?. 2 x 3 x 4 = (2 x 3) x 4

4 ( 3 :x 2) x
- 3 x (2 x 41

3-x,8
c, 2X34(2X3)Xl6X4 Euksociative

d. 2X3XI2X14X3 covrautattve
e. 2X3 X4. )(2)(1.1:: commutatiyef. X 3 x 2 xv3 )(2. noneT

a, 2X3xitx5=2x3X(4 'x5) = 2 x3 X 20
b. 2 x.3 x 1Lx 5 (2 x 3) x 4 x 5 = x 4 x 5
c. -2x 3 Xitx5 2 X:(3 X1) X 5=2x12.1(

(51AX 7) 47 '(57 x,93) 57 x Z7 +93) 57 x 10c1, 5700

()7lx + (57 X 93) (37 x (1,0 + .7)) X.(51 + 93).
= (57 x 1) + (57 x.7) 4- (57 x§3) = (57 X 1) + (57 x (7 + 93)).

(57 x 1) 4? (57 x 100). 57 -I! 5700.. 5757

(51 x-5) (57 x 5) 57'x (5,4- 5) -= 57 X 10 .570

associative

aSsociatiire

commu at

'AssoCiative

/

b.

X14

274 a. >

<

9c,

fl

9

3 x

16

di
e. =

t+'
0



ChaPter 7

SUMACTION AND DIVISION.

The Remaining/Set

..***If A (Corneille, Sally Jiimy, mily, Elsi el Edward, Doilglas)
and if B = (Cornelia, Sally, il 'Elsiet then B., is.a subset of A,
Wken B -is' specified as, a subset of A, another subset of A fa simul-
taneously 'spetAfied; namely, by all' t el-) elements ',ST A' 'that aft not
elements of B.. In this wail' en ope ation is defined, producing from

A :and B, a set. called the com-plement of B relative to A,- or firre
s?.mely, the 'remaining )let. Thus, If C'= (army, Edward, Douglas), and
A and B are as 'aboye, then `C is the- remaining set.. *

Together, the kinion of B. and C is A,- so the two subsets

II complete" the given 'Set. Since C is cnosed or elements, that are
not elements of B, it is clear that the intersection of B 'and C

is .hte einptj set. In fackthese last' two statemelits. can, -be .1.413d as

the basis for defining the.relative complement, or remaining set. -We
denote the operation\ by the symbol "-"i read "wiggle,. * ror example.,

*if . = (01.A , CY, )) and B Olt, )2 then A 7 B ( $* $ )).

Of coume; the goal is to conpect this operation *with subtractions *.

Eind,this 'goal, is immediately achieved.by locSking at the appr.OPriaie
number properties. Note that in this example, the number 'property

-
af, A is , 5, thfs number property of B fis '!2, and the number proVrty

.of A,- B ls 3. In genepti, it is true that

, N(A.-; B) z-- N(A) - N(11').

4

Since pe definition of A reqUires B to be a Subset of Al

tifere, are eVidenqy restrictio'ns on B. B. can be the empty set; 4 . Can
be 'identical to A; 'these two sets, A and the empty set; establiph the
limitt on B. Consequently, if N(A) = a and N(13) = b, we have tb!

restrictions b 0 and b a, (The symbol 1.ly 'combines ">" arid.... , ...._

: "=" to indicate "Is greater the or equafte; similarly y is read
"ixt less than cir equal. to". The'resti-ictions can be incorporated into

. the one staement 4, , 0 b -a; that ill the number Of element! .341, B

can range from 0 to' the number of' efements in * A, Th,ese limitations

187
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for subtraction are eventually, relaxed Ithen the sit of numbers that we .

have to work with is Pxtended 'to include more than just the whole numbers.

Th'e pattern of deVelopment proceeds thua: fromlobaerVations On complementation,

the c4aracteristies of-subtraction are exaMined; from examination of the

charaeteristies,the operation_is extended Asfa-rebult, nutbers other'

thn whole o:.Mbera-may be inthduced.' ?or examPiel
#

if, A.= (a, b, el d,e) and'

, ,
B = (a, b, c), then A 7 B =.(

From this, we get the difference )

N(A) N(B) 11(A B 4. that is

5 '3 = 2.

The.statement, .5 3 = 2, pay in turn trigger the question Whether

subtraction may be defined for any two Wholp huMbers.V.For'eample, is

5 - B'defined? If up limit o&selvepto the set.of wholehuMbers,-
.-

the answer is l'por. But by'reassessing,thd-behavior of subtraction, ii

is possible,to intrdduce new memberd t6 the nuMber system so that sUb-
.

traction is always Wined in the system.'
,

The example 8, brj.ngs out.iwO important features of the

subtraction operation. .Zinee-no *Ole nuMber is the result of' 5 - 8,

the setlif whole numbers is not- closed under'sUbtraction. -Contrasted

a , 5, which does'Yield a whole nuMbef for allanswer, VP see that'

in general, if a and b -are whole mmMbers, it.id nottrue that a' b

is the same-airb--..--ec. Thu, subtrattien is-ntither-viosed nor oommutati,Ve.-*
These are negativ results; they tell us some Of the' properties that

subtraction does not haVe, Nevertheles hese are-important results.

aiInverse

'Subtr'aetion iS not restricted to,only negative results*IshowaVvr;

nor is the operation of getting remainingsets'so restricted. A. noteworthy

result may be stated tine:

BAJB A .

In ds: If we form t e remaining set A, 7 tg and then form the.union

of it with B, we have the omigin4 set, D agrammatically, the

-situation may be illustrated as folloim:

1,

188



A - B)UB

Similarly, if we start, oilt, with a set, X, and join a disjOint, .t
.set-Y----toa,--4-!, we get -XtjY, Nov if u
to -XUY, then we have (XUY) --Y which' turns out to be X, -the
original set. That is

(XtjY) -J, = X.
,

4
Becau e of these two situations, We say that the imion and Ihe complementation

. .

l'ar.'.aFe iverse operations. In effect,' one,..operation "undoes' What is- done by
' the o er, Corresponding to these properties -under the set operations,' .We'
,Yaave similar properties 'Under addition and subtractibm

4 A.
) *i a and b 4re whole Aumbers, and

b a, then (a b) b = -a and

TherefOre, subtraction and Addition are inverse operations whenever 'the
two operations are possible or, defined.

Definitions of Subtraction

,4!

We have defined the d fference SA the number property of the ;remaining
;

b is a number less than or gqual to a. We first -choose a set, A, -

'Bitch that N(A) = a; next, we pick a'set,.;1 By which Is a, sublet of A
and such thats.!(...B 16. These, two sets determine the remtining set,
A B The numbdr b, is ,the number of elementA, in A B:

a b B).

For example, if a,c= 5 and b -we can choose A to be the set

A =

we can choose B to-be the-sUbbet

B



Then*
.1

.A B = ,
Now Our definition tells us that

5 2 = N(A B) 3.

Note that if we made a different choice for

o

33' ose),
for example,

the resUlt wouldhe the samet Also, if, we had chosen d fferent set,.

A, for example A = (V, WI X, Y, Z) and any two meMber subset ef this

set as B, the result wOuld' still be the saMe.
gat

Problem*

1. 1.16. e this definition of subtraction to compUte lin detail 7 - 3. :

_There is a second opproachs to subtraction which does not use ihe

idea of the remaining set, but uses the ideas of amid!' of disjoint sets'

and of one-to-one. corretpondence. If a is a number 'and if b is. a,

number ,with b a, we start by choosing a set A with N(A). = a

and a set B disjoint frOm A with N( B) = b.

,Ilext we choose a set C, disjoint frol b,oth A and '13 *la) such
a way that A and (Blip) are lat one-to-one correspondence. That is,

there is a pair,ing of the eleven-4 of A with the elements of BLic.

Then the secend d efinition of subtraction is:

.a b =

In other words, having 'chose:5 apprbpriate'disjoint, sets A and B -we
look for a third ,pet C with jua.i the right number of members tics that-
the union of thiS set and the ;3 et B will exac:tly Match up with the
sit A. stv: numbezz oemembers in such a set C tells us "how much

larger" A

As an
a = and

before, but

B =. 11C, Y).

elements of

'is than B.
,

\ 4
examge of lthis definition ot subtraction let us*again use

b 2. A can be t he saie set (0, Alta ,f 3. as was used

.33 must 4.7 be a disjointse,00.th 2 members. .13et

An attempt tog.et'a one-Itv,-one correspondenceabetween the.
B and 'the elements of I may result in the following,

*SolutiOns for bleme in this chapter are on pagea208.-.

4
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, 11'= (*

leaving- some elements of A unpaired. We look for a set (disjoint

'from B),vso, that BUC Will match A. Thus, if C. =. { a 9, 4.), then

the elements of BUC can be put into one-to-one correspondence with

those of A.

BU e =

tt4 .

= b,),
. .

Now by 'the second definition of subtraction, the result of 5 -.2 la

the :Umber property ,of C. Therefore, 5 -, 2 = N(C) 3. The, moat .

importpt thing to say .about this definition of subtraction, is thst it

always giVes exactly, the same result as the fiirst definition.,

Problem
A

2. Use the ssj'cond definition of subtiaction to compute *in detail

Now the question naturally arises as' to whY we should- bother with

twc;'' di fferent definitions if they toth',give the same result*. 'Why not

Aise just!, one .of them?

The reason'ts that' there are- two quite different ,kinds of problems'

:that we commonly :stet and it is important td know-that the same mathematical

operation can be used to solve both kinds of problems.

Tbe first kind is the' "take away" type:
,

"John has '5 dollars and loses two of laitml. -How manY dollars

dOes he have left?"

The second kind is the "how many more" type :

"John has 5 dollars. Bill has 2 &liars. How aany

more dollars does Bill need 'in order to have as manY

John?".

The first definition of subtraction fits very well wit:I the

"take sway" type of prcibIhm,' and the second fits very well with the

"how many more" type. But in ea4kaase-tha problem is solved by

=Alp of the subtraction:. 5 - 2. 3.-
9

14.
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The statement that 'F,t have on the preoedi page, relating add.ition+54
,. .slibtractIon, namely

,(sa. b). + b

gives us yet another nsight into the concept of subtraction. If a -

is some number 'c, then we .11e

c + b a,

In other word , a b is, that number c such that a = c + . This

is why we can say that

a - b c if and only if a -v.- c b;

:
these two statements mean exactly tri'e same thing.

from this point of view, subtract'Aon is defined as the oper.ation

of finding the unknown addend,, .c in-the addition ,problem

since'this ,is...the Same number as a For example, -we can state that

5 - 2 is 3 Vecause 5 = 3 + 2.-
- .
Also, since we kAow that both

. it is true :that

5. and 5, = 2 +

5 - 3 and- 4 5 3

In general, any addition fact gives us two subtraction facta satomatically.

Problems

3. The two statements a - b L-1,C ,and a = c + b mean, the same thing.

WorkIng with whole numbers .6, 1:1; and 2 show the related addition

and subtraction facts.
,

, Weil would it be that an 'add tion fact does Act give us two slibtraOion--
facts automatically?

There are tw easons why it J.s imortant for teachers th understand
this Array cifthinking- about subtraction, as--well e IfIte twoc-The
first is that this is the way that children' usually think -when they iare

developing their skillt in computation. The second is that as ,children

'move thic44: solool, aria sZudy other kinds of nximbara, stich fractionS;

-192
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decimals, negative nUMbers ete.1'ihey will meet this- idea of defining

subtraction in.terms of addition again and again.'
/

It is important to realize that an. three definitions .of subtraction

are equivalent and yield the same-Properties.

Imps Est under Subtraction

We have noted a. property of subtraction that points tdr its role

as an inverse of addition. Two properties of the whole nuMbers under

this operatia. 'plat ye want to highlight nava involve the empty set.

Recall that with the union, ye have

-
The corresponding stateMent for nuMbers

'a + 0 = a.

By the lboVe, ye observe that

+ 0 = a

or any vholel number a,

a = a - 0

say the same thing: . Since. a + 0 ='0 + a we also, have
4.

Yhibh is the sama'as 0 = a - -a. lienme, in -addition to the invers ?

properties,

gt. for any wh'ole numbers a and (a - b),

fOr any whole numbtrs a 'and b; ('a b).- b =.45.1

4 .

. -lie., have the folloming tyo properties of . zero under subtraction:

for Any ihle nuMber 11,L, a - 0 = 8.3

for any whole nuMher s. - a = Q.

Problems

5. By a definition bf sUbtraction, 'we see that a b c if and

. only le- a = c + b, and 'that ( a -' b) b. = aa Whih properties

are eamplified bgLAbt following?

,* 200 = 202

b. Cy - i). + x = y 4* *

6. [(30 - 15) - 5] 5-=,
A. -5 4,40*-

8., 5 0 . 5
av.

3.93

"e



a.,

-'Does the sentence ( 5 - 7) + 7 = 5 make sense for uho1e numb'ers?

Show by the use 'of the properti,s Of addition and 'subtraction

that the follovihz sentence is true:

If' b al 8.44- (V".. a) = b.
.

Check that it is. true by using several-pairs of numllers.
a

,

3

--Subtraction Usina the Ishltber Line+161* !Mr 1= viemee44 loaimmiew

If we eondider subtriction vith.respe.6t to ;the reprpsentation

o; numbers using the nUmber, line, ve ean illustrate many -of its: iTvortant

prOcesses aed Troperties.

Vhat ie the atsver to 9 - ,4? Wt. start .on the ,numbe line 'at 9

and fake away or move to the left 1i unitt -thus arrivitg at ., which

is our ansveri,..

-9 -.4 = 5.
..

In Chapter 6 ve illustrated the use of the ?umber lir to show.
- --..thQ.associative property of addition. Subtr4etZlon 'does not'haye the

1
. . .1

i

.3..sOciati've prdperty for -;
Ja

-. 1 s, ,

(13, - 5) - 2,113 - .--: 6 .--1

13 - (5 - '2) = 13 - 10. ,

,
,

These,,example 'arkilluetrd off=iumber lines b ov. The first figuie,
shows tha = 8,, aro. t4s,rpsuit is used\,to get 6 from 8 - 2,
Thd secopd shows that 5 2 = 3 end this result is ueed to get 10
frc* .13 - 3.
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? 3.;)1. 5

S.

-15
b, 1 .1.

/3 9 10 ll 1,2 13 14 15 ...

- 5)- 2.-94.1 2

-(13 2 = 6.

4

.1)

0 1 2 '3 4 5 6. 7 8'6: 9 10 lt 12 13 110.5-%

.13 ( 5 e)

It>
-

,

it,is'not .trUe, tliat .(-13 - 2 iq the same. as
.z,knd we pxpr6se by the nparr sentnete..

3 (5 13 - 3

,

-

;wthei'te sinbol

4. s

(L13,- - 2 Fla
'

means. 'is' not ,equal tor..

---.
°Division .. P

. .
a

-* In the pie6ed1ng.- chapter, a rectangular array of a :rows vith b
. .
ittembere trr e&-throw-vati"used-aa a pliyikroa1-itode1 .14.. a x.b. irois tiiis

44.

- and from other models, the properties of muLtiplication for -whole numbers
were developed. Wsb, saw that multiplivation- of whole nu-mb-ers has the.
In-opertfee of q1naiiiel commutativity and 'assoCiativity, and that multi-

.

plication is saistributilie tiver-:Additioi. Also, the numbers 1 and 0
have ,-the special properties that,

j.04
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4

3.Xa=aXi.fta and

0Xa=aX,0=0...
.

The first three propertieS exactly paralletthe same three pfterties
. .

.

for,:addition, and 1 plays a role for multiplicatipn closely corresponding
*

%

to-that of 0 for addition. The similakty in behavior of the tvo operations
.

leads to th*: question as to'whether there is*an operation,vhich bears4to
. .-7' .

m1tIp3.tIon a sitilar relatiOn as subtraction does to addition; namely,

4! an,,Inverse.or,undoing operation. The aniwer to this is the'operation

ealled division.:

the-Product 4 x 5, we wInted the ndilber-of members in a

4 13y -5 Arimy or in 4 disjoint sets -with 5 meni6ers'in each Set.

,Wassoaated problem is to star-CwAth '20 -objects and'asi how many'dispint

subsets-theie are in-this set if eich'subset is to have 4. meMbers., 'In,

--terms of,,arrayS, the ,questionds "-if a set of 20 members'is arradged

to a row, how many rows-will there ber The ahsver is 5.2.

ac

, ea -objeete.exrahged 4, to a row.'

I

In many Caseathere would be d6 a4sarto the Oestion, dependlng
. 4 V.

onthe nUmbers. -For example, 20 objects arranged, 6: to-a roV doei

not give ah exact number otrows. It is'true that ordinarily vb-do'

carry out such'a division.proceSS as 20 divided by -6; 'obtaining-a

q uotient and a remainder.'. 14 speaking,of division as an operation in

tht set of whole !limbers, 1pvever4 the expres8io4,"20 'dtvided by 6'

. is meaningless because it is not a:whole number. The,wocess as indirated

3
try. i;firer, remainder 2, '1411 be more fully developed 3iter.when tht

techniqUes of division are dis&msed in detail. , It'Vill then: bepointed

outthat for any orleied pair (a, b) 0, ve may dev4oprI

.divfsion process.

7:- To answer the qUestion, "how many aisjointpaubsets'are -Glere.in a

aet of 20 If eadh.subsetis tehave 4 meMbers?", we formed AA array

Oi 20 objects arrange'd 4 to a rw, When ve form-this arr4y,mLare

a



4paftitioning the set of .20 into equivalentsets. By partitioaing a se:to

:ms Awl, Separating it into.disjoint sUbsets. Thus, the fact that a-set
May be,partitioned into 5 .ical$alent Subseti'i each having 4.

'members, sitbwa-usithat 20 = 4 x 5,:amd 20.5X4. The numberi 50,
which is thus assigned to the ordered pair, (26,-4) is' tanqc?the,2211.111S,
and the Operation which',produces 5- from (26, 4) is Called diviiiop.' The
normal'syMbol for the operation ofdivision is, 4 , Thus 20 44 5.z

The partitioning, of course, does not have to be shown ai 831 array. Either
,diagram below-#for example,gives therAult of 12 4- 3.

12 Objects, 3 in
each'roll.

Set of 12 objects in disjoint
subsets-, 3 objqpts each sUbsetv

for the ordered pair (20, 6) .there is no such.number that can
.be W paAednor is there for (5, 15). So, under the operation of dIvitio4n

(?0; 6) or (5; 13) are not.defiried leth4'set of mbole numbers. Division
therefore does not haVe the property of closure ip the abt of vhole numbers.
The last Case for .(5, 15) is'simply an'example of the fact, that in the-N

ordered pair of whole numbers''(1,4b), ,if b > .and a ,ft 0,2 the,operatibn
4of Aivtaioa never yields'a whole number.

Problems

6; Find "the whole numper'attached to each of thp following ordered pairs
under the operation of division; if there inone, explain.

a.. (20, 5)' c. (6, 1) e. 04,

b. (4,,28)
(124 9 (42, 7)

(470'7)

a. Display an array to oghom 28 7

:A? .7, .hy it._Partitioning---t.hat-is other-than an lirray3
.By partitiOning, Wellave 9btalne4 5 as the resat of 20+ 4 because

..5 x 4. This is similar to the misaing addend Approach to subtraction.
:kers ve say that 'a b is that number c mich that a. c b. Thai is,

197
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a * b = c if and only if- a = )4: b.

2hus4 c- is the, missing factor ,of a = c )4: b for given numbers a and

with b

Division as InverSe

In the same way as subtraction is the inverse of additiono, .diviSion

n may be thought of as the inverse'of ,multiplication by n.,,by a numbet

- Thus,.

- (8 x 3) 3 8 and (17 X 4) 17 ..

However, cautiOn must be 'exercised in-thinking iibout iitiplicatiori as

the inverse, of division because .it is true that

(15 3) 3 = 151 while. 3) x 1 is Meaningless
.

A

since 8 3 is not a whole ,number. This is similaAo the caution we

must exercise in this "doing and undoing"' process with subtraction; thus 'while'

(15 - 3) = 15 . is 'perfectly acceptale,

.(5 - 13) +13 is meaningless

Since (5 - 13). is not a Whole number.. Of, course, the restriction -will

be removed latlopen tbe set 'of whole numbers, is extended :VOnLclude

numbers for which 8 3 and -5 -.13 have meAning.
0

TYoblems

10. Tell whether each of ,theT follOwing statements is true or Whether it

is MieaninglesS for Whole numbers'.

(3-1-9) 3 (3+9)x93
'b. (.9 e. 3) F. 3 f. (9 ç 3) t 3= 9
c., (3 9) 4- 3

13. (3 x 9).+ 3 9

"z:., (9 C3) x.)

The, Pole of 1 and, 0 in Division', *
OM COMM

The operation of division was 'connected to the operation-of multiplication'

by the Stat&ent that
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Since- 1 arid 0 played special roles in multiplication, it may be appropriate
to pay particular' attention to the tWo numbers in division.

If b -= 1, then we have
ftecal1ing the special property of 1 under multiplication, we hnve c x 1 =
hepee, a and c' rePresent the same number, and for any whole number a,
a* 1 = a. On the other hand 1* b is not a whol'e number unless b = 1;
there is no.whole nwaber c such that 1 d X b if 14 1.

In :the sense that a 4- I =At, the number 1 acts somewhat like an
identity element for division. *-13nlike the identity element for multi-
plication in which, for any 'a, 1 x'a = a X 1, the number- 1, is limited
to acting as an- identity element for division only if ft 1:e, to the right

a 4. 3. c if and only if a...-. c x 1.

of the symbol
.-Again by the definition, of division, we can note the role of 0 -in

d1visioll. its*role may be summarized as follows.
.0 b

.only if c

if and only if 0 ".= (%,X b. For' b / 0, this is:true -

O. Therefore,

for any ,vhol e number b. such that b / 0 0 b
If b = '0, lie have 0 c and 0 c X 0. Since this
mx number c2 the result of '0 4 0 is ambiguous; 0 ÷ 0
speCify a unique number, hence

a
if and
have a

is true for
does not

the operation of division Is not defined for 0 +.0.
0 where a / 0 I still another situation. 'Since a 4 0 C

only if a = c X 0, and c X 0-= 0 for whatever num1Der or we
, N

contradiction in terms; wet started out with, the essumption that -
'a 0 and game to the concision that a = O. Por this reas04,

for 0,. a 4. 0 is undefined.
ihese last two

Problems.

U. Tell 'whether each of' the following is ayhole 'number, is ,not a whole
_.-numherl_. or cannOt bv, determined; 4f poSsitte-,---ntune---th-f-whols----Tirater.--

esults together indicate that division by 0 is not defined.

,

a. , 4

b. 2 4,

e. 3+ 3 *

d,
-e. 0 4 432,
f 3. -I- 1-.14,

199'
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g* 1 + b, b is. a whole number and '.b it 1.
h a + b, ,a' and b are whole numbers and ..b > a,
1. .0 +, b is a whale numb-er and i;:j 0;

" ,j. a ..1-'b; a and b are whole numbes an'd a >b.
k, a +-b12 a .and b are Whale numbers and a = b,

prstitt.of' DiVisibn
,

. Melly examples may be. given to show that the whole numbers are not
!closed under division; For example, while 6 5 = 2, 5 + 6 ,is not a

whole number.: These saMe two examples, show til'at 6 +.34 3 + 60, hence the

operation ie:not commutative. , To see that division is not associative,
agiiin Many examples may be produced. We need only one example, and such

an example is tb following:

12 4 (6 + 2) = 12. 3

The different results obtained for (12+1' 6) ÷ 2 on the 'one hand, and

f'or .12 1- (6 2), on the other, -shows that, in general, *it is not true
that (a b) c ÷(b a),

44

So far, division with respect 'to whole numbers h-as revealed itself,
ost:4-an operation -tht does not have the properties -of Closure, commutativity

sand associativity. FurthermOre, divisiOn, by 0 is to be avoided. To free
ourselvei frokthe impiiession that not snukch, can be said abent this operation,
',di need to consider only 'the -imp' otitrit 'notion thai division bY' b is the
inverse of the opereation of multiplication by b. That is, (a X b)' + b

provided, 'of, course, b 9.
.

Problems
N

12. For.which of, the following is it true that (

a,

b,

C.

4 2

-17 2

+ 6

+ 2

÷ 1

4 2

4
e,

fs.,

g

9

9

+ 3

+ 9

4- 1

+ 3

d. 0 + 5 + 1

Wit

+ c = a+ (b + c )?

13. From the results of the preceding exercises, under what conditions

will (a + b) c =a t (b c)?

200
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_Division Using the Number Line

We can Illustrate division using the nuMber line by partitioning a4

segment into congruent subsegments. For-example, to illustrate 6 4., 3,
we can pertition.a 6 .unit iegment'416 3 congruent subsegments, each

.of which

is corigruent to the segment from 0 to 2. Thus, this pirtition conveys
the-conent-6 3 = 2. Clearly, thii is associated with the representation4,
of multipl%cation on-the line in which.three 2 unit arrows or 2 unit
segments are abutted, resulting in a 6 unit arrow or a 6 unit segment.
The association may be thought 'of as: one oPeration is the inverse of the
other, or, from the,point of view thatt -

6 3 2 if and only if 6 2 X 3.

Another method of illustratlng division on the'number line is related tott.

*considering divisiOn in terme oereppated subtraction. This concept will be
discussild in further detail in Oh

discussed. We can indicate here,

er 13 wben the,division teChniques are.

ver thin use of the number line in

stove. Beginning with 6,
, order to compare with the uie shown

we ask: How manY tineS-can 3 -be subti.acted? Comapondingto this,
we can show division using the nuMber line as in the-sbove figure.

In this case, since subtraction is performed twice, 6 4 3N= 2.

Problems

14, a, Show by partitionin2_ a nagment_on_theinumbar-linc-th

la. Show:by partitioning Ogment.on the n

does not yield a whole nuMber.

201
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Composite Numbers ;

Betangular arraya form the basie for what used to be known as the
"retangular numbers" by the ancient Greeks. If a number n can be

presented as other than it 1 tby n ar4ity, then the4,1 n is said to be

a. rectangular number. For sexample, 6- miq be represented by a .2 by

3 array, 'So 6 'is a rectangular nOmber. Nov we call such a number
s

,a composite number; 6 = 2 X 3, so 6 is "composed" of sad 3.-

14 Is elso a corTosite number; either a 3 by h. rectangular' array

or a 2 by receangular array May-be used--as a model for the

compositiorr of 12. However, '2 x x, 3 4so shows how 12 may be

composed. It is true that if a whole number n may be "decomposed"
.

into more than two factors (other than 1 and' n), Aen it can be :

dec,omposed into -Cwo Tactors other than 1 and n. 4 Hence, sucH, a

nuetSer would be considered also a rectangulex number. It is simply
s

that tbinking in- terms of the composition puts the topus more on

yzing tht number than thinking in terms of tectangular arrays'

at can be formed."

Sinc.e 12 4, we have regarded 3 and 4 'as factors of 12.

As we. have noted, there are other factors of 12. For example, 2 is

.a factor of '12 because there is a whole number whOse product with 2

is 12. That is, 2 is a factor Of 12 because 12 is: 2 timesa whole

number; in this case) the w1o1e numb'er is 6. This automatically qua1i4es

6 to be also a firtor .of 12. A complete list 'of factors of 12 -may 'be
4 it

catalbgued as followS:'
4 f

12 1. x 12, s1 and 12 are factors of 12;

12 = 2 x 6, so 2. and 6' are factors' of 12;,

12 '3 X 4, so 3 and 4 are factors of 12;

12 t, '4 x 3, so . 4 and 3 are factOrs of 12;
4

12 6,x 2, so 6' and' 2 are factors of 12;

12 12 :x 1, .So and' -1, 'are factors of,o. 12;

Thus, 12 ,has 1, 2,-3, 4, 6, and 12 as factOrs. 5 is notArractbr

.of .12 because there is no whole nuMber,n such that the mathematical

a-eilt;*trw-e-

.. 12 r.'. 5 x n
s ,

is true* Neither are 7, 9,10,111 and any yhole number greater than, 12
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.
factors of 12. (Notice that the last three statements in the displaya

give.'no information op factors that 140 not coritained in the first three

statement% and we Could have 'done without them.).
\

s-It is clear that 'since n = 1X n, thy 1;zhole numb'br, n has 1 and
n as ftors. FloveVer, ,there are many, vhOle'pumbers.for -which these a.14
the only faCtors. For eifample-, 1 and 5 are the only factors of 5;. 1
and 7 are the only factors of 7; -and 12 and 13 are the only factors

-of 1:3;, and to on, Such numbers will be'of interest tor us ant, are
speially deSignated.

Amy whole number that has exactly two different Whole

nuMber factors (naMely itself and 1) is a prime number.

Note that this definition excludes 1 from the set of prime nuMbers
because 1 does not,hife two different factorso. It' also. excludes' 0

from the set of prines Irsine -0 0 X, n for a,r)y whc!Ie number n;

any.whole nuMber is a. factor of 00 In easence the primm nutters are

those that can only' e assoeiated lidth a 1 by11 array (fc;r n 1).

For exainple, let U consider an' array for .7,11:P1acing tWo' objects in

each- row, ,we can pomplete an array with 6 objects; the sevenths object

makes the array tioomplete. Similarly, z;
1

1
.014040% Yfflft"WM.,, yOredwAroom... ......"6.000.

-0 0 * :y1* 111 ***** '411 * 0 S S 0' 0 0 0

0 5 5 5 S

h., 5, 10i' 6 objects in a, row influce incomplete arrays witlr 7 objectés

All .whole nUMbers greater. than 1. pay now' be classified accOrding to

. Whethex thex are. prime Or composite. Over 2,000 years ago,-the-mathe-,
-

maticiap Eratosthenes devised an easy and straightforward method for serting

prime nuMbers from a lisiv of whole numbers. TO.find all the71>inle nutters

= r

less than 50, for mple, the whole . nimbert frot 0 through ,49 are

listed as beloli. 0 and 1 are crossed Out since they are not primes.
2' it a prime, but every other even nuMber has 2 ad a factor so all

7
even numbers greater than 2 axe croased out.
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. 2, 3, IL 7;
11, -die, 13, lir, 15, .30,1 17,

21, 23,' " 2è 25,
31, 10,, 33, jc, 35, .26;*; 37,

41, 43, .24, 45, Joel 117,

.
0ontinuing via this,- 3 'it."sived" and. 3 x 2, 3,X 3, 3')( 4, ...; .ere

"eliminated"; that is, *11 "multiPles" of. 3' greater than 3 X 1 are ,

eliminated.'

Q.s

, 3.0,4.,

20.. ..,

300,--31,
..40

:'77---.,:,1,
23,

43-,

.-....4;!:

.114

-5,
i

.34.',

25,
3,
.4.3,

.

----$3

7,
17,

-or,
v

: 37,
47, k,

. 19,

29;

'',2efs

49

11,

14.1 1 k2,

In' this second chart.the numerals that

are shaded represent numbers that, axe Nliminated" after the Screening as

"multiples" of 2 (1 is "eliminated" before this 'screening). The slash

marks indicate sereeni,ng as "muftiples" of 3, and the numbera that- ar'e
,

"samed" are Wntified by circles. By nov, 4 hassbeen iminated btcause

it is a multiple of 2; 5 Is next saved and all 9ther multlplesof 5 %

eliminated and so on. Thus, eventually, ve arrive at the set of all prime

numbers less than 50:

54 7,4 131 234

can bP ihovn that this screening process needs not be:tarried beoicnd "7
r prim numbers less than 50 since 49'. 7 X-7. If '49 is the product

t.!:)- 31; -37, 141; 43,.

0 t/14.0 vhole numbels a and

the other must be less than

7 \ruld have bee.n eliminate

741 \vas considered.

1.

1:Yobiems

b and-one of these is greaterthan ,,11 then

7. This telle us that any factor' gre.ater -than

&when its4cOmpanion factor (vhich is less'than.

14. Fxpress etch of the f9lloving nuMbers as products of tvo factori

slveral vays, or indicate that it is imPossible'to do,so.

al 18. c. 30 r
\'

b.. 6 d. xi

264

in
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-,15, List all,the nuMbers th'atdould be called 'Nfactars,

of thenuabdr

1), ofthe nuMber 19, '

of t.he 'number ,

APRlicaticins to Teadhing,
-

, )6Same children find it difficult to visualize set removdt. Aro. them
.yartitioning and ringing%a subset is not enoUgh; they Cannot seem to.
appreciate ttiat the oijettshave 'been removed since the Objects are still
muCh in evidence. Covering up the objects to be remoVed or crossiilg them
out with an )4; May helydUmmunicete'removal,

Similarly, using a'cuP to

.

cover up -a subset of, beans, for example, has
\;

een4found to be effective

\

in teachintrset removal,

0 the other hand, removal may have bean so convincing that it,causes
, difficulty with writing the nuMber

sentence associated with the rentoval.
For-example, in trying'to cdnnect the e3cpression 5 2 with 3, -only
the euMbers for the original set and the remaining set may be recorded;
the other sUbset has been removed, iothe Child cannot understand Why
its number Must be recorded. In that case, intermediate stagesinthe

.:remaying process may be suggested. This may be in the fOrm'of a class
, activity, for example, with a set of beans,. .The nuMber.,of the set pay
first be reeorded; asubsetmay next be separated,' Counted, and the nuMbeX,

srecorded. -Removal May be accomPlished-by Covering the set removed (as with
a cup). and fin.Ally,'the nuMber in.the remaining set identified and recorded,

Intermediate stages for the recordingOf nuMbers it the ringing of sk
members may-also be provided,' For example,- the following suggests various
possible stages for 5 - 2 = 3.

-



The concept of inveroe may prove diffiCult. Por -this: a varietr of

extuvles may 1) reqtired showing situations mhieh have inverses such as

faUing asZeep,and waking up, say; or 'puttinlg on a coat 'and taking it off.

However,' sometimes= it is noi the lack of underStanding of the concept that

is caUsing difftoaty;1it may beivtrying to verbalize tl,:te "doing and undoing"

that the shipldren find difficult.

1. °
The topics of7factors, composite numherer, and prime nUmbers

be.presented until *the iecond irade. A start on' this is given in the,first
-grade when oad numbers and eyn lumbers are discussed: Of co.urse, in terms

of multiples, the even numbers are simply the multiples of 2. Eamilarly,

'multiples of 3 are the entries in the 3 times table, and so on.

We have noted:that since 3 is a faCtor of 12, we can say that

12 is a multi f .3. Both factor and multiple originate from the Same

concept: there is a whole number n such that 12. =='3 X n. A multiple

is; vilewed from the standpoint of thq number ,beingVomposed; a factor is

viewed from the. standpoint of a number going into the compotition as ..a

"building block", Beginning in Grade 5, the children will be introduced

to-the Fundamental Theorem of Arithmetic - 'when a whole number is "decom-

posed" into the primitive building blocks of prime numbers; thii decgm-
to

position -will .be revealed as unique; that is, a whole number is made.up of

,
'one and only one *set of primitiVe blocks which We caIl.the primes. At that

%time,
the children will be taller; the "doinplete fa,rization" of a whole

number (or, the prime decodositión). Complete factorization is a natural

lead-in to. a corileaponding faCtorizationin 'algebra', which yieYds, t;Mong other

things solutions to algebraic equations.
Exercisea - Chapter-7

CY/ 7,0
,BiA010,71

t

coin to B., a,set C disjoint from B siich'thatt

If A .t CI El 0
B { 0}

exhibit A - B.

-BU = .t

If from a set of 8 membtrs we remove a set of 2 members, how

many members does the resulting set have
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if A - 0 0 0}
Atid c 0,0, El;
eXhibit B = C., Mhat is N(B)i\.

g .73how a representation on the nuMber line Which ill stratesthe fact'

441at 10 -,3 = 7, Use the Same'figure to illUstrat the idea that'
14 xi-7 :1- 3.

Show'a representation. on the nuMber litce Whicnllus

associative property doe's not hold under.the operation

- 3 / 9 - 3),

tes that the

subtraction.

Nhat cpelstIon is.ihe inverse of'adding- 7 'to any nuMbe ? What is
*the inverse of sub.tractng

8. It ,A and B are disjoin illustrate that

Nhat happens if, A :and ,B are iiot disjoint?

(.AU B)

Rewrite eadh mathematical sentence bV.ow asla dlvision sentence.
. ,Find tne unknown facort

a, h x 5 - 20

p x-4 28

e. n x 1 = 6

d. - 72'

e, n x 8 64

f.qX - 0

Tull whether each of the falowing,is_more rea4Aly visualized by a
rectangular array or: 7 rows or by disjoint subsets with 7 .in

each'subset.

a. 42 pieees of candyare to' be divided equallY.a 7 children,
b, 42 pieces of candy are to be packaged 7 pdece ackage,

IL,' A: mara.ing band always forms pz array when it marches. F leaderjikes.
,

to .use,maay different formations. .Asidefrom the leader, the band has-
,

59 mel*ers. ,The leader is trying very hard to findohe more mtAber.
WhY?

12.. Moes division have the commutative property .0ive an exaMple to,
,.. ..

substantiate your-anawer.

, .

13.. Express each of "the following, nuMbers at a prodUct of two smaller.

numbers or indicate that It is imppssible to do this:
0

d,

e. 8- g, 35

f, 1 h. 5

eat

1. 39 k, 6 , 82

j. 4 1. 111 n.. 95
.



4
Solutions for Broiblems

1, e A = Op Al 0, * p 0, , () .1.4-1th N( = 7.

choose -B = C *,0;0) which is a Subset'of A and i(B)

A - B ( 0, O,,
By definition, Aie know that N(A B)

Choose A . Uith N(A) =:7 .

Choose B (a, c) with N(B) = 3.

Now choose a igkt C d sjo it ,pank both 'A' and B.

and ava)
so that ty ifietching "(Bug) we ,can put BLIP' -in

pne-to-one corresiondence with A

C®, sA, *,0,c,40)
4

By definition we know iiiat 7 - 3 .4-11(0 = 4.

,
By Using whole nuMbers 64 41 we can illustrate 'the fact that

a -'b = c and a = c 4 b mean the same thing, ems

6 2 becaus.e 6 2 + 4
6 - 2 =- le because 6 `2? + .

4. )illitn a b, then a-.4- b = c gives only one subtraction facts

naMay a = c :!!, b. For exautple,3 3 3 . 6 and 3' = 3.

4
a, Inverse property of addition and subtlikction

b. inirerse property of additOn and subtraction'

c. invrse property of paition .and -subtraction showing% grouping

-within the parentheses. 30 - 15 is: another nanle for 15.

d. identity property of zero for addition (Zero added to. any-nuMber!
4 .

resultil .in that nuniber.)

identity property Of zerO 'for. sUbtraction ,( Zero stibtractea from

-iny nunber results in that nurber.)-
.

6. (5,-. 7) 7 doe4 not make sense in the present context hec uSe

5 7 is not a -whole nunber. Vor anY nUMbers a and bp

-al 'b.

208
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7. To show that a +- (b b b > a we ta: the commutative
preperty of addition'gettin a + (b a) = (b a) + a, which 'by
the third item° in Properties of aubtractthn is equal t6 b.

8, a. e

b, None; - ?8 > is: d. 6
,-. and

-A 9. 'a.

a, -True 44
,

' b. True
4; Meani ess .

."- 4, True

Wore number; 2
14ct I 'whole 'number'

t

c. 'Whole number; I".
d', rNot a whgle, nwaber
e, Whole Auniber; ,.431

f, Whole limber;
ot b0 Oe!texiii.

if 1,, *lw

None; t)lare ia no *
'7 row array of 147
mlobers,

e. Meaningless
A% True
, g. True

4

\
meaningleas if b t- r), not a yhble numbET

-

,

n tzMpiholp number -if
,

h, °Cannot be dekermined: aero if
a / 0, , s

s,

,4;
,z.,.'Wholnumber;O .

Cannot 1:ie ,determid:. Meaninglss 3 -whole 'n9Mber ,a
,tif b = 1; whole :number if -b >1., and b a faotOr of a;-

note a.ighole 'number if b >1' ,b- sn'pt tactor of -a.
'Ir.".-Nc6not

)?e determine- undefihTd if b = 0; the wpoi' number. '



..; 13, If 'a = 0, or = 1, oxl both

14. a.

5, '

and c = 1,

0 3 1I. 3

The*copirdlnate of this 1:14.nt is not,a whole nu*berl

at 3.X 6; 2 x 9, 1 x.8 (or 6 x.3, 9 x 2, etc.)

15.. 2 X,3,

c.' 2 X /5, 5 x 6, 3 xlo, 1 x 30

d. 1 X 11 an 11 x 1 are the Only snch

are notv sentially different._

tr,

factdrizations and they

N

1 lb. U. ; 1, ,
..--;
!.. 3 ,% ..6, lo, 15, and 30

.. .
.

,

In n. e fornal iims thb setoffaAottlof, 30:= (122. 3,526,10,J.5 30),

b, 1 and 19

(i. Ille,set of,factorsof 24 = (122031416,11,12,24)

,
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Chapter 5

NUMIERATION; NAMING NUMSERS

IlltrodUCtion

4,1e have used whole numbers extensively in our work thus far. We -

hal:re considered their nature, the' patur of operations associated with
theln, and somi properties of these oper tlons.. lowever, we have not
considered explicitly the important ins inctiosn between' numbers and their

-names.. Now we turn our attention-to- this -distinction and particularly
to- schemes for naming whole numbers; that is, to the problem of numerar

tión.
0

Wh Ole. Numbers and Their Names

We -know that the,w:hole number "twellie" for*example, Is a property
Of the set

(a, b, .g, h, 1, k, 1)

and of :111.- seta equivaleA to- this set. The word "twelve" is a. name

fpr this number properti and id not the number itself: --Similarly, ,the
syMbol or numeral "12" is 'another name for this same, number. Thip is
'true also for the riemeral "XII" written in the Itoman system of notation:
In fact,- whehtwe write,o' .*

'XII 12,
2

. we simply ,are asserting that UII" and. u12" ,are tWo differen names

for thp .same thing; that is, the dame nuitber.

-As we now cohsider paqnciples of numeration4 t is .important for

us -to _keep Clearly in mina that 'number and numeral a;:e tot eynonimous.

.A number is a concept, an abstraction. A whole,number is one kind of

number, and in various ereceding Chapters we-have considered selected'
aspecte of the' whole nuMber system: tn the, other hand, a numeration

aystem is a system:for:naming numbers; thub, it is a numeral syatem.

In thie chaptei:, we stiall -be concerned wiVa numeration systems for naming
4, Whole num4ers. VDur emphatis will be op the, uppeer named.or numerals,

44'
Arather than on the AUMkeers themselves.

N'
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_Ear lbier: Numeration Eatem

Man, daring the ourse of.his histery,did not always use our

familiar Hindu-Arabi- numeration system. -His'earliest achimes invelved

little.mo.re than tally marks, such as / fOr "one", // for "two"

for "three", etc. Such pimitive schemes were.far from effective

:and efficient, PartiCularly'when dealing with large nuMbers.

"ena

A

The rpt tans, the Chinese, the Greeks, the Romans, and'others all
*

developed numeration systemS that were improvfments upon primitive tally

schemes. However, none of these Was as sophisticated as the one developed

by the'Hindus, whi.th evolved intothe Hindu:Arabic system,we use today.

Nevertheless, tL brief consideration oflrtleast Nis' of these earlier

numeration systems can be of dnterest and Can'give us an appreciation of

theprinciplea and advantages of Out own system.

a
A Modified Greek System

I.

The Greek System:of numeration used twenty-seven basic syMbols:

. the twenty-fouraetterkof ihe Gi*eek alphabet and three obsolete letters.

Each of -blese,basic symbOis named a particular nuMber;, Other numbers were

-named by cotbining basic syMbois according to established principles or-
.

.

"rules":
49

Let ui illutrate'a modified version of.this Greek-system by using

as basic, Symbols 'the twenty-614 letters of our own-alphabet and tine'

additional arbitrary. Symbol, V The number ilanied by each basic
, .

symbol is indicated beloxin terms of oar own Hindu-Arabic numerals.

A = 1 = 10 S = 100

B = 2 It= 20 T = 200,

C = 3 L = 30 U . 300

13 7 it M = 40 V 400-

E 5- V = 50 W

F 6 0 = 6o 600

G = 7 P = 70 / . 700

= Q = 80_ Z=800
1 = 9 90 . 900

4%.
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J

iebA ompound syMbol such SS iS Intrretd to mean

70.4- 4 ,-or

in our asp system. SimilarlY,

NKR". means 500 4.20. 8 -,, I

means 200 -4- 90 ;2..

,528

290 1 and

"UTT means 300 =4. 6,, or 306 :'

in terms of our fa:miliaf. numerals.

$

lIotie that the symbol "DP"yould be interpreted to mean 4 + 70 ,

pr Thud, it wOuld bArue.that

PD . DP .

HoweVer, we shall agree,that fh such'instancee we shall write the:basic

:.symbol f6 the larger numberto the left of the basic syMbol for the

smaller number. Thus, the preferred form would be PD instead of DP .
,

Simil,arly, it :would 'oe true that'

WKH WHK = KHW = KWH = HWK = HKW ,

Of these six different names for the saMe n4Mber, the preferred form

would bp WKH

4Problese

i. EXprest each-of.these modified Greek system nlimerals as familiar

Hindu,Araibt numerals.

a, NG b. MB C. XK d. VC.
. e. VII

t

2.. Express eaib of these Hindu=Ar6bic ntimeraYs in the "preferred form"

of modified Greeksystem numerals.

a, 63 b. 4135 210 504 E,8B8

Does the.modified Greek sYbteM hivela basic4symbol for'the nutber
,

"zero"? If so, what is tliat sYmbol? If not, why is such s'basic,

syMbol not.used inthe,system?

1

Solutions for-problems in this Chapter are onspage 234'.
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But what-about naming numbers greater than I;rEI 2 or 999? We

cannot name Such numbers without's:me further agreement or ,extension-

of -awe syStem. So, letus t we*may use a.prime mark (2) to

indicate that the number amed by a basic symbol is to be multiplied:by

one thousand (1000). us,

In terms

Problems

means 1000x 5 ,,or 5000

means 1000 X 70 2 or 70,000-,

an T -means 1000 x 200, or 200,000

our familiar numerals.

Express each of these modified Greek system numerals as familiar

,Hindu-Arabic numerals.

IPYMG b. 'Q2A21.1L c. 1,202110

You, undoubtedly have noticed that the npMber ten" is of p aiicu1ar

signifiance in the modified Greek numeration system. Tor'insance, the

sYmbols J, X, . , Q, 14, named Multiples oPten (10, 20, . $

.80, 90) , and the symbols :S, T, . Z, V named multipaesof ten

tens or one'hundred (100, 200, . * 1 800, 900) .

We may say that "ten"'is the Joritsp,of this ilumeratia system. 'It

,* Is the basic nuMber that we use for grOupings within the system.

tures bf N meratlon Systems

Ma eration systems have three features that areof,significance-
+rib

as we turn to a consideration,of our own Bindu'Arabic system. 40

1: One of these features is that af base, a basic.nuMber in,terms

of whieh we effect groupings within the system:- This nuMber may ormay

not be "ten". Tf the base is "ten", we often refer to:that system asla

decimal system. ("Lecimal" is derived. fromth,t Latin word'decem whiCh

means "ten".)

-Another feature is a set of-basic symbols or number names. FromiL

these, all other numerals'are built. As we Shall see, the choice of

hsse often determines the number of basic symbols used within a numeration

system.
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A, third feature is a 4t of principles or rule r combining .

b symbols to form other numerals so that every while nutber may be
it

named in terms of these. basic syMbols only. It is vithin this third-tea-
AP

:ture that we find a principle that sets the,HinduTArabic system aPart from
others that preceded it. ge are'referring, of course), to the principle:

of Place value.

The Hindu-Arabi-Numeration System

:Let us eXamine each,of the, preceding featutes as it relates,

specifically to our Hindu-Arabicnumeration system.,

1:- The Hindu-Arabn numerationsystelll is adecimal'system: its .

base is tk:n. This is seen-Aearly in the-fact that we interpret the

number "sixty-three") for examPle, as "six.tens and three (ones)"'

"Sixty" itself means "six tens". This.featyre may be illustrated in

the groupings belom for the interpretttion of the nUmber-"siXty-three":

arx

2., The Hindu-Arabic numeration system utilizes ten basic symbols

or digita: 0, 1, 21'3, 5, 6, 7, 8, 9 sucIrthat

-0, names the nutber zero;

' 1 names tilt nutber.one;

2 names the number. two;'

3 names the nutber three;
.

4- names the nuthbei''four;

5 names the nuMber five;

6 -names-the'number siX;

7 names the number seven;

8 name the nuMber eight;

and 49 names the nutber nine.
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Notice'the inclusion of a symbol folf zero; 0 . 'This is.in marked'

contrast'to sYstems Su;11 as the Greek,.the Roman etc., that had no

zero symb.61..-The'need for a zero'sytboI in thellase 'of the Hindu-Arabic

:system,is relatedAosely to the place value principle disCussed in the

fo3Acfng section.-

3. The Hindu-Arabic numeration-system utilizes a principle of

pia.-e value, along with multkplicative and additive principles, 1n:order

to combine basic symbols or digits of the system to name whole nambers
4

greatPr than nitle We are\quite familiar with the fact that in the

numeral 2222 , for iiastance, each di§it 2 koes,not have the same
-

n-valuen. --e "value" of eadh 2 is determined by-its place or position

in the numeral as a whole:-

2222
ones

2 tens 0 :

hundreds

2 thousanda.

Or, we may .-onvey the same idea in a slightly different way;

Se.

2 2 2

x I , or 2

20

2 X 100 , dr 200

2

-3

X 1000 1 or 2000 .

Here we see the multiplicat ve-principle in association with.the place

value prigiciple. .0

We frequently find.it helpful to use an expanded form of notation

to emphasize both the multiplicative and additive principles thatapply

/v. -GO the interpretation of a numeral such as 2222-:,

2222 = (2 X 1000)-4-kax.loo) (2 x 10) 2 Xi).

None.of thelnotatiolp used thus far has made explicit the,important

role of the-base, ten,'In determin4ng the "plats values"., Each place to

ths 14*.rt-Qf the -ones- plae,e-4n a-lasimeralhas--aseeet&WIWAI-14-a,"-valve

that is ten times the 'value" associated mith the plaelilmediately to

its right. For the numeral.' 2222 1 -we can show this important idea in-
. . )
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this way:

or

1.

[..

----4-2 x 10 x 1
- . .

.---0-2 x 10 x 10 x 1

ly 2 X10 X 10 x 10.x 1

2 x 1

2222 2 x 10 x 10 x 10) (2 x 10 x 10'4- (2 x 10 ) + (2 x 1) .

The importnmce Of the zero syMbol, 0 , in connection with our

plaee - value numeration system is reflected in numerals such as 2220 ,

2202 , 2022 , 2200 1 and .2002'. Without the zero:symbol such numerals

f'coUld not be distinguished readily from 222 (in the 'case of 2220

2202 and 2022) or frOm 22 (in the case of 2200. and 2002). Without

sortie.symbol to denote "not apy" in a particular place, a:numeration aye,.

teM with a pla9e value prinqiple mould not.be feasible. In fact, the

relaUwely late invention of a symbol for'n4t ate '(a symbol for ihe

nuMaffpertaining to the emPty,Set), Was the reason for the relatively

late creation of a'place - value numeration system.
/

The following 5hart may be helpful in summarizing,some of.the

ideas just discuased regarding our numeration iystem.
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All aOlti 7 4 Ofh.ca.ni,s an its

ien.1 41744 int."4-4114. edils j oples ' nSeis ions frets

/ 0, 000)00Ci;\ 40003000 /004000 10,000 t000 10Q 10

104.0.J12.1,1 10)4040 0 040 0 xiO itiOati0v/ 040v 040 1040V0.: 104 0 ii?. .

0 5

\

. \
Consider the numeral 7,205,046 Nhich ve read as: "seven million, two Imindred five thousand,

, forty-six". (Notice that the void "and" is not used in reding numerals.for Mhole nuMberi. Otherwise*
it vould'not be cl'ear, for example mhen we say "ivo hundred and five thoUband" vhether we mean
"200 4. 5,000" oi "205,000%)

,
.

.,
(..e *

May irrpre!!,,the numeral, 7,205,04n, to meant_ 7 mill16s, -2,--hundiedthousands, 0- tei.k.

--,
1,- thousands, 5 thousands, 0 hundreds, 4 tens2 6 ones. Since 0 ten-thousands and01 hundreds

.
both result in zero, these may be omitted inthe interpretation. Thus, 7,295'0* means: ''17 uillions,

.

12'hupdred.thousands, _5 thousands, 4 tens, 6 ones. lie also MaY use an expanded 'notation forin:-

,-i",000,000, 200,000 + 57000 + 40 + 6 1 or

(7 X 1,006,000) 4 (,2 x lpo,poo) + (5 x 1,000) 4:.(4 x-110 (6 x.:1) ,

,. ..

..

I

1

, (7 x io * lo.x io x io.x io x io) + (2 x io x Io x ao x4o x io) -1- (5 x io x 1Cr x 10 (4 x 10 4- (g x 1)\

: 0

or



Pmblemi
0
,5., Write the base ten numeral for each of these expressions.

a. 7 hundreds, 4 tens, 9. ones..
b. 8 thousands, 3 hlindred6, 6 ones.

.c. 2000 + 70C) + 50 ,47 1

d. 40,000 6000 80 t 3
(5 x 1000) 4,(O X 100) j2 X 10) <4 x'l

-f.', .(7,X '101000) 4 ( x 100) (9 x 1)
(i x 10 x 10 x IC)) + (4 x x 10)t (3 x,1)
(9 x 10 x 10 x 10 >clip) (5 x 10 )( 10 x 16) (6 x 10)

Express 'each, Of these base ten numerals in three .ways *is shown

the illustrative-example below.

Examplev, 425( = 4000 i-200 + 50 +
.4257 (4x 1900) *,(2 x 100) x 10) (7 x 1)
4257.. (4 xlio x inX 10) (2 X 10 x 10) + (5:x Do) (7 x 1)

tc... 7350 40;102a. 644



Oronning la Fours'

'lie are familiar with grouping.objects by tens in

decibel plEwe value numeration system. For instance:
e*.k

nection mith our

.

., Number of
,

ase Ten

Tens pnes Numeral

x .
1

.

xxx . .

3

xx= .

4 4 '
. .

xxxxx 5 5

xxxxxx4 6 . s 6

xxxxxxx7 . _ . 7 7

xxxxx
..

e fi

xxxxxxxxi .

:9

pcomaxxxxxl
_

.

0 t' ,10
. < -

.
,1111 x

11044ZMUZJ lac : 12

: 1.4129044.2,Ead xxx 1 3- ,13

LS022222= mx 1

fxxxxxxxikx1 xxxxx
.

.: 15

::........-----......_

2

;........:-----....__..,._......;.

3 23=coma xxx
I xxxxxxxxxxl

,Suppose tnat we agreed to group objects by fours rather than bY tens.

4uppose for example, that instead of grouping fourteen objects as
_

Fxxxxxxxxiyxxxx 1 'ten and 4 ones

we:had grouped the fourteen.objects as

.6010: 10> (Ecyjs) xx 3 'fours and- 2 Ones.

220
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We-certainly have no-,5 changed-the nuMber of objects:

only changed the way in which these fourteen.tbjects

.."3 fours and 2 'ones rather than a :"1, ten amd

The numerals of our base ten place valve system

ones grouping, 'as _44

.4-Ones
-

0.4en(s)
v

fpurteen. We have

are grouped: as

4 ones".

reflect a tens-ando

Woullit be possfble'to develop a base four place-Value

ialose numerals eflet a fours-and-ones groping, as_

'3 2. .

sfou:rs

eration scheme

tet ys use sets of one, two, throe, . . fifteen objects to'see
-

how such a baSe four numeral systemmight be developed. This is done

in the chart below, which includes contrasting base teh numerals.'

NoVe,that,in the decimal systet, eadh vet of ten objetts is grouped

as 1 tenand the number'of these groups is inditated in the'tens place.

.711uS, 23 is ,2 -tens and 3 ones, 41,nd the number,of ones left uni

4143rouped.is%iven bY-the digit 3 Theyossible difOts inthe ones
Taace ate then a Ae zumerala 01.4 2, 3, 9 .

'groups of tens regrouped into hundreds whet.there are.ten Or more_ _

of'theiegrouPs,', roups of hundreds are-regrouped into thousands When there
4'are ten or'moreof the hundreds, and so on. Thus,any digit in any place

.,is tme of the nuMerals 0/ 1, P4 3, . 9 A sindlai,analyas shows'

that any digit in'base four numeration system ts one of'the nuMbers--
.

.61,1, 2, 3 sliince any nuagr of groups exceeding 3 would be regrouped'

into,groups of the next larger size.

4
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,

Numb,-./. of Base Four ,

Numeral Numeral.i,
Base. Ten

Fours OnA

% ,.., , 1
.

1 . 1
,

. _, ,-,4 .. , 2 ,

,

,
, , . . 3 3

1M , . .............' 1 0 le
1

1
,

1 # li -:Ixxxxi x -

!mull xx . ,1 . 2 , 12-
,6

rxxxxl
, 1 , .3 13

gafi 51N21 ,
25 0 20 . , 8

Ocxxxi g= . ' 1 .. ,

imam ixxxxl, xx 2 , pra 10 .

pubuci bon04 x* 2 . 3 23, 11

- 3 0 2 30.tl 153004 ,ixxx?cl

3 1. 31 13tc.xxxl tx.4x1 xxxxI x

3
4

2 - ' 32 1 14
'I -

poops! )4,0 1 POOCq xx

frxpq trix*[ jxxlaci xxx 3- 33 .

.

15

*This numig, should be read: one, zero, babe four. Succeeding410. ....
numerals in this column would be read:, 9 one, base four; 'One
two base four one three base four. etc.

We now-face a problem: :What, for initance, does the numeral "13"
'4 .

pleat: "1 ten and 3 . one's!' Ar -"1: four and. 3 ones"? Xe commonly
j'esolve this- prohrem- in the following way

r -

e If we see the .numeral "131' , for exanrple, we as'aurn that it is
itten in base ten and understand it to mean "1 ten and. 3, ones";

This-s-imply-followsfamillar convention;

If, on the other hand, ve vish-to write a numeral to convey a base
-four grouping such ,as "1 tow and 3 ones" we agree to use-the form

40.
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a #
7.\1

. 4 4
.... '' ' N , ,.1. . .

, S :, .

-1.-"13 ". The subscript- "fours' indicateS the base in which the--
9 -four ,,

, .. ) -, , ''' .. k. 3.'PilmerallAldrittena , v
.4a-,..:

ail'
i On oc,zation 1,ttien showing the base.;en numeral tor tshia-teen for.

0

..
ertain that there, is AO mi.sundcretanding. arree that

. '

-

anc;i* We 'May .write "1" 'instead cif simp?.y "13" Just to b

13 71'13ten
However, be sure to keep ,,learly in' mind that' .,

and that'

-

n ?fact; -it is trae that

te: 13
"Lour

.

and thai,

j,roblems

1. Write. 'Yesh or "Np" to 1ndic4e whether 'each of theSe is a true

en k 13foUr

I3ten 31Tout*
'

3foui ten '

X,

4

statrment.
4 4 .

'Ia. , 1 = 1 . a:- 3 -',. 3ten- foul:- . four
. .- .b. 2 ''' d. 10 .aofour 2t4en four .
i ".5

8.0. ?Express *eitch of these base four numerals as :bas :ten' numerals.
ft. 21four -

b.
-43°fOur

. c.-
..., ,

4 s,
9. BxPisegi each-of laiese base ten .npmerala, as a base four numersel.. . - .. ,

.1! a._ *8 -. V:. 14,- -, c. .11
. 9 A t ' :..4

t

.,..
. .

10. ° 'Using bass ''f,our nUmer
, .

.A.a.. e 'the evft IA le,numpere lesfi than sixteen.:
b..- -bilme the 'Odd whole nutibers nt greater.than,fifitien.-sow"

Y-L-M-+ it_

1,

f

aa

4

* 11

a



4,

Pothq

(pool:**

-1

'

Extend Orcruping by. Fours

,

o4
4.Our babe ten numeration system in.:.ludes %ore. -than just two placesi- - At

1114

* , ,
.... a terta plase and- a ones pia.e. Likewise, a base four numeration sydtem

- -
includes more thaA Just a fouri.place and a ones place.'l We now consider*
an extension of grouping by f.durs./

We know that ninety-nine is the greatest mhole number that c,tn be
named as a two-place numeral'in our base len numeration.syst-ep:

The next whole number, ten tens, or pne tundreds, necessitates a new ,

are to the of tens Pace. Thus, we name iten tins or chle hundred

with the, numeral 7

1 0 p
. L.ones.

tens
. ten tens or- hundreds,b

'4Similarlyr2fifteen. is ,the.last whole number .t_hat can be' named with'
a two-place numeral 1na baie four numeration system; 33'N The next
whole numb'err, four fours, or stxteen, nectssitates' a newsplace to the
left q fours place. Tbus, We name, four fours dr sixten with 'the

, numeral

4

1 0 four
. ones

our foul's or sixteens'
/4-

The following diagram may telp us interpret a,numeral, such as;
'-?321c;ur

7

tOgA

boracti

1414`,i

!VOL*

2 sets :Or
four fours
or si xteen

§5501_

4 sets,

of four

II

xx

2 onep,4

I.

`

Thus, 232 s anoer name for 6 232th 346-
ten ..f.9ur

'4



se

The place -values aSsoriated with a base four numeration tsyqem
00110w the same pattern ,ae do the place values associated *with base

ten' numeration system, as shown ln 'this chart:

Base X Base x Base *Base Aase Base One

- Ten x Ten X Ten
(Thousands)

-Ten x Ten
(Hundreds).

Ten ,* One

*-
,4,Four x Four x Four

Sixty-four:S)
Foul- x lour
'(Si4teens )

Four, One

Thus, the numeral 2123fou'r may. be interpreted as:

4 x 4 x 4) + (11:c 4 x.4) (2 X.4) A- (3' X 1)
v, tour

(2< 64) +' (1 x 16) -4-' (2 it'll.) '4, (3 x 1),
, ,, ; 1 0

, 212,tiour , 12.1.*-t- -16 + 8 + 3

four ten

.
Priebli!pis

I*

11, 'Express each of these base four ntamez2s1s as a bag; ten- numeral.,
a

a. 31,?four b. 1332 *four c. 303.gsour .t .

d. 2301 four

Other Bases

1230fov

-
S

A set of -objects may .be grouped in terms of bases other thari.ten

.or i'ousr.r Consid: foz instance, 4a set of 23 objebts that are grouped
first by sixeso, then by seve ns, -and 'tfien by eights.

mosot

'

" 5:

3 ,sixeS and - 5 ones o
SiX

XX 5 sevens and 2 ones, or 32
, _seven_* 1

XXXXXXX a eights and 7 ones, or 27-eight

S.

-
00

I.



These illustrations point -to the fact that the place-value pattern
associatel" with base ten and base tour may 'be ipplied to other bases
as well. For 1.nstance:

4

Bx Bkik)ilt Bx13 xB txB
,

1

10 x16 x10 x 10 10 x 10 x 10. . 10 x10 10 4.1
1

10000 1000 100. 10.

x 4 x4 4 xli 4 1,

256 . 64 16 4 1

3 x x 3 x 3 . 3 X 3 3 1
81 ,9 3 1

ix 2 xx 2 2 x 2 x 2 2 x.2
-4 16 8, 4 2
1 .

5 x 5 x 5 5- x 5 x 5 5 x 5
,

4.625. ,t . 125 25 5 I..,
. .

6 x 6 x 6 6 x 6 x 6 6 x .6 6 1

. 1 -
,

.. 216
.

a6 6 1
.

7 x'7 x 7°x 7. 't x X.7 7.x 7 . 7
,

240). ,. 343 49 , 7i

k
.. .

8 x 8x 8 x8 .8 x8,x8 8R.8 8
4096 512 64 .8 1

9 x.9 x 9 x p x 9 x 9 9 n 9
6561 72.9 81'

*Et
deriotes bases11.11.

"?.

a

I.

226
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,

. A chert such ,as the following one may be tielPful in 4-toying for
the whole numbers one through-twenty-five their numerals in each' of
these' bases.

Ten
**Mae

BASE

Nine .. Etght Seven Six five-

3 3

4 4-

5 5

6 6

,.
1
n.
,..

.1 1

n 2.
3 3 3 3

6 10 11

a

?
11

11 12

13

13 .14

20,
21

22

23

-14 15

15 16

11- t' - 18 .

18

237

22

.23

24

25

26

10 11

11, 12

12 13

.13, 14

14 15

15 16.

16 , 20 -.

17 2.1

20 22

21 , 23 -
,

22' 24

23 ., 25 .

24 :, 26

30
.,

26 -.31

27 . 32

".30 33,

11 , 12

12 13

1St" 14

14 20

Four

1 1
. 2 . 2
3 10

10 11

11 12

12 20

13 21' ,

20 22'

21 100-

22 .. 101

Tb

110

111

-, 3:000,

. 1001
. . .

1010

1'5 21. ..23-- lpe . loll

20" -221 30 * 110 1100

21 23 ,31 111 1101

22 24 4.32 112 1110,

23 30 .33 120 .1111.

24 ,31.

-.25 3g

30- j34-

31 -4'34

32 ho

.33' 41.

.

34, 44e'-

35 i, 43

40,,, I:4

31 _ 34 41 100

'- 100 - 121

1,61 122

-102
. .

ZO .

103 201 ,

116 202

111 210

114 211

113 t12
120 220 -

121 , 221

10100

10101

10110::

10111,

.11
-ALseezi.,,from the-oharti the base Itl.miera3: -always appears-as- 10 yhen

writtert in that particular base sYstem. Similarly,. in a paiAcularrbasai
-'syftem the numeral 100 always designates thp number obtained by ,mul:ti-

.

p1.y1n4 the base by 1tsp3:f.

I.

11,

-



40,

.

p.

The klace-value Pattern for a particular base is used whenever ye
wi,sh to-rewrite a 'numeral in that base as a abase ten numeral. Oonsider,
for 1 stanc?, the plat:e-value pattern applied to the numeral 2115nine

,)

inine
x.one

4 3 X nine
nine x nine ;

If nine X nine Xenine

In terms of this, pattern,ye :nay write':

2435run_
e

x49 'x 9) + .( 4 x 9 x 9) 4- (3,x 9) + (5 x
4

(2 "29) +4(4 x 81) + x 9) + (5'x 1)

1458 + 324 4: 27 + 5

. 1814- t
.D a

sAsak SulYpose that we were concerned laith the ravaerEa Na5 instead
.114

4i 1' of the numeral 243?nine . :Then, the base six .place-value pattern -would

permit us' to ,tirite:

2434ix 1 (2 x 6 x.6 x ,6) +.(4 x 6
x

6)

Problems
u

4

(3,x 6) (5
e

e

( 2 )0210 4' (4 sx 36) +4(3.x.) .4. (5 c "
416

= 432 4- 144 4=

= 599
4 . e

l.; Express each of these as. a base ten muneral.
3421fi-ve

a. 01..22'three

1

b. 56/4eight

32Olkiour

'10

0.

4

'61

T.

465 seyen

N



MP

A Note aboUt Notation
.111.0 +.,.

We have been expressing various nondecimal base num als as base
ten numerais. /In 'this 'work we moved directly into base ten just as soon
ap we:expressed a nondecimal base nUmeral in an expanOed fOrm. FOr
instance, when we write

2/34five = .t2sx 5 x 5 x 5) x 5 x 5) + (3.X 5) + x 1)

we have expressed all numerals qn the right-hand side of Ile equation in
ba0 ten notation.

lffor some reason we had wished to express 21 34five in an

expanded form within 1;ase fivOrather than in-base ten), then-we would
need to use.base five notation throWlout the-equation; Wemight convey
thts-idea by writing

, ,2134
five . (2 x-10 x 10 x 1 x 10 X 10),five'-i. X,10)Ivefiv

4-
(1 x 1)five

These two.notations are in keeping with the fact that, 5
ten

= 10
fi e.

0
On still other dceasions an expanded -form for '2134fTve might be

expressed as V

721'34
five (2 X fiv.e, X five x 've) 4-IN(1.cx, five X f4e) -i%(3,X five

4

-) (4 x one) .-

in sah an instance We have expressed the base consistently as the wovd
"five", thus avoiding the place-value numerala 5' or lOrive

,In practice We select whibhever of these forms.is best for ao
.*partiular purpose:.

I.
1..

4 *

sx7411917

. The main 'purpose & this.chapieritas been 0 aosist171 developing
:a-deeper underateadng of our Hindu-Arablb

numeration,eystema, a decillaiy
. . .veorralle_ten_system that utilises_sk.pringiiie_p.ftplace-val.m**----lp-adfttion.

40
. to-a consideratigic-this sys1116 itself, attention was direlld to two
things the hopikfU!! r c:ntributed'to thia deeper understandig: (1). a.

4

Niazi .fi d Greek9numeration syStem which had.noplaCe-vaide vinoiPIe,V'- and (4) place-value numeration syst4ivstsving
t
bases 'otheAlilmte*.,i,r

. ,.-
.

k/ft . 4 . .
.

voi

s

229
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40.

This latter material dhould itave clarified the fact that the principlei t
which underlie OUT Hindu-Arabic numeration system are not determined

by.the faiA that its base is1 4ten. These principles are more general ones -

which can be applled with otberbases aswell.- The case 4 the_Ocilial

base is but a'ap fic illustration of Akre general case.

.Throughout this chapter we sought_to emphasize thatany numeration,

aystem Is a scheme for naming nuMbers. Although any*partidular number

may be nimelin variouswaya, the properties of a number are-not affected

kt

a

al

hy the way in Which it it named.
.

-Appicationsto chi

Frequently we display'Ots of objects in ways that emphasize the"
A

decimAI ?Elise of our numeration system. For instance4ve-may'diVay a

sei,of 53 objets ass.5- rOwSOf 10 objects and.-3. nore:

O 00000'000
000 O00O0

.0 o*0 0,0 o
0.0 0.0

-0 o o o
Q 0 0 10.

Representations suCh aslthis dolielp children to think about coliectiona

of objects'in.tetms of Sets of ten "an0 some more", and consequently

direct attention\to-the decimal base or our nuMeration system. This is
,

true'of any representatioix that displays calections of objects as sets

of ten; regardleseof whether they are arranged in roystin bundles; or
A

aAwhatever.

The development of the place value concept is a different Imd-more...1mumb am...ii

difficult tatter. The'place vslueide'a'is associated with the numerals,

we Use, and.nay or nay not be.reflected in the
.

objects is arranged..

4
--in-the numaral--53--,the-,- is-in tens ;Ai:me and the 13 is in-

ones place. Hbwever, when a set of 53'4,Sects,is displayed in row) of

ten (and soie ones), as abOve, the diiplik;itself apes not suggests-the '
*

idea og a tens Ace and a ones plaoe'in our numeral ayetem. But we4may).*

mv in the direetiOn of this idea by shoWing collectic;nof 53 Objects

in 'which a set of

*

230
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lot in such a way that sets of 10 are placed at the-left.of the'ons,_,

0
0 0

.

. p , -o ., . o. 0 6 0 -9 0 45 , 0 0.000 0 0 9 0' 0 0 ._ 0 0 00 0 0 0 0000 0- 0 0- 0 . 0000.

,
. . .,T. .

Vith sota objects we often show each set of ten.as a "bundle-rather
than as shown above. In either instance, 1!e show the sets of ten'to

0 0 0

the left' of.the ones, "hinting" l'itHtheplace value id'ea astociated with

numerals. We.often IPurthert this ';hinting" by: using place value devices,

in WhA setsof ten or bupdles of ten are pl ed, in ."pockees" marked'

TTHS, and remaining sing4.e dbjeCts Sxe pla in "pockets" marked CMS.

An abacus represettat;on of 53 clearly is assdciated-much more

closOy-with the place value principae.

.11

Here the numberof tens and the nUmber .ofianes. are shown by the eadd

:in different positiont. The.nuniber of tens an& the numher of' ones e:1')O

.

.. . , .

. ,may be.show4.bystally. marks (as'at theleft below) or by digits (as:at

Ihe'-right below) in appropriate positions. c

Tene Ones

111111111111

Tens Ones

"
..

.'Meshould be aware of the.different pubOses and uses that'are

assoplated with two forms of nmtber charts:

ct

231
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couptihti chart

EllErri
3"

awn

12

32

111111

23

14 111111 16 Mill
20

24 EI 26 Ea 29 30ma 36 is 38 39 40

mina 46 11101_48 49 - 50

Numeral Chart

1011111111111 Mil 1101

10 111111111111 110111110111
in ,..8 19

Encimmici 25 26 El 28 29

30 3.
111111 110:11111111 3-6 11111

38 39

11111111111111:11111:11111111 46
49

The Cci.mtinq Chart highlighta ten as.the base of our numeration
41'

system. ',It we locate 35 , 'for instancei on the 'Counting Charl ,it
clearly mai be associated witbi 3 rows of 10 "blfitclts" and 5 'blocks" -

in ,the 'next row.

The Numeral Chart highlights an important feature of .the strutture
,

of our numerals. The tirst row of nmmerals lists the ten basic symbols -

ot digits used in 'bur numeration system. The . second Tow of numerals
*

includes those wi 1 in tens *ace; tZe third row, those -with
.

in tens place, etc.

Each chart has its appropriate place in an instructional progrim. .

--a-Child-lit-able-to-c6mplete,-dt&Teetly asv--44example-such---as

47 = tens + ones

this does not'guarantee that he also, can complete aorTept1y an exaMple :

3.

'Mr*

(

-232-



sugh-as:

\,!
4 \tens

(\

ones . .
,i .

,. .s .

16 The developoent '8f an undefstandfng of the.place value *principle demands

)
thai children explore its meaning And applicsItion with a variety of.,'

representations and in,a variety of ways. Suggestions pade here regard---

ing numeerS less than one hundred Can be extended; of couk,e) to apply
to nuMbers greater than nineti-nite.

I

. 'Exercises - Chapter 8

In eatil ring'vrite or > or < so thAt the sentence mill be
true.

a. 7006 cob t 50 r000 4 AD 4. 5

b., (3 Y 1000) 4. (8 x loo) 4 (4 ?(I.

1234
ei

1234

d. 43,21
siA "alfiVe

e. 400 3100
five

f. 31
20fouri

3840

(3-ig 4 x 4 x 4) 4. (1 x /1. x 2 X 1)

2. -Comqoiete each-of the folloving to make a true sentence.

a.
eight eight

'b. 15seven . seven ,----seVen
4

80.. x
, I

nine nine -----nine-

4 ,d. 32
six. -six

233
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Solutions for Probleni

a. 47 -b.' 552 c . 620 d. 403 e. p99

2. a. Oc YLE c. TJ d. .14D e.

3. No. It 1\3 not needed S\ince the system'has no place-value ,principle.

4. a. .2747 'b. 81330 c. 460093 Ime

5. a. 749 b. 8306. c. 2751 d. 446083-

e. 5024 ,f; 70609 g 81.03 h. 95060

a. 6184: 6000 .4- 100 +. 80 4- 4

(6 x 1000) 4. (1 x 100) 4:- (if,x 10) + X4 x' 1) .

(6 x 10 x 10 X' 10) + (1 x 10 x 10) 4 (8 x 10) (x I)
b. 7350: 7000'+ 300 50

(fx 1000) 4,(3 x 100) +.(5 x 10) .

(7 X 10 x 10 x lo):4- (3 ,x 10 x 10) + (5 x 10)

c. 40702: 40000 + 700 + 2
x 3001e0) 4- (7 x 100) + (2 x 1) .z0

(4 x 10 x 10 x'10 x 10) * (7 x 10 x 10) + (2 x 1)

-7. a. Yes b.*. Yes c. Yss d. = 10four)

8. 9 . 12 c. 6

9* * '26four b. 32foui,

e

: a. 2 10 1 2.ofour' four' four( four'1

b. 1four' 3foue 1'3four/

c. 23four

20fouri422fokizo

2321four/ four/

11. a. 94 b. 126 c. 198 ci. 177 e.

12. a.

A

30four'

(3 x125) + (4 x.25) 4- (2 x 5) 4- (1 x I) = 486

108

b. (5 X 512) :v. (6 x 64):X7 x 8) (4 x,1) = 3004'.

(4 x 343) (6 X 49) + (1 x 7) + (3 x 1) = 1704

(e8.14 4, (i 2t X 3). 4. x 3.7g

e. (3 x ?56)j-iv. (2,X 6)i) 4. (I x 4. (2 x 1) 902

234

32four

33foui

v' e
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. Chapter 9 40

prafFAURINENT COMMIS

, *

pertain basic geometric figuretand c6teepts have been plvented in.

Chapter 5. ReZall that oomnon.physical Objects provided thesfoundations
,bn which the development was built. ,This was so becausethis isthe

way iniwhich geometrical.ideas axe coliVeYed to young children'. -Little.11

#

Was said 'at ttalat ,ime'dbout geometric solids. This topic mill now,&..=
:exten liarity wilh associateded to gain.famid

vocabulatl!and characteristic's. .

;es has alreUdy ben'accolplished for many plane figUres. Jc

Theno,ion of congru4nce.which has appeared in theearlier disallsgorr

will also/be a-vital concept in'the following"d6elopment. Itawill 15tO-. .
.

..vide a ans of- ordeAng sets of Points which will in turn lead,to tIlf
.

:conce. of ;Leasure. By this-we do not tear;oordeftng the point asA.

1*1/
,

.7(1 dOn on IlT e number line. Ne Mean.astigning an order to ?lets of .'

Finta.as for example, among various segmeilts among p11re regiens, or
.

.

. ,, A ,

lid regions. -The.correspandIng
measures are'for,lengths, areas4 and .

s .

volumes: Thus, We ::.an compare the "'Ault" of different geemetric,objects,
., . .

- . fThe concePt of measure Will'be discussed in Chapter-12. Ih this chapter,..
. . .

.we wantfirst to'ide46tia tome ,of,the geometrical relationships and.con-.

.

,. figurations by their mathematical names and next, to diarify tReNeoheii

of ordering sets of points.

iS

4kiElaumt andarallel

N

-.4
The teivs'iriterstcting and parallel are familiar through Common mpage

in deicribing phystal phenomena. Me speak ofa road.that runt parallel 2
0to. a tailroad.track, or we speak-of the intersection of Polk and Oak

Streets, and so on. These everyday refereeces.describe, although somelihat-
,

more lodtelylithe.same relationshipethat the VvrtAel im/i.14_1A.s_geomosta.14N

Bedell thatAkrseetiou is one4,of:the set °Orations dealt wi-Ch

earlier. ,.The 'intersection of.'two sepa yieldt a set whose,-meMbersare

those.WhiCh the.,two pets ave in-comnpn.- The intetsection of tyq'
, then, 5an be, the empti trt r"it.tan have,menibers; it.is tpe empty

A

*My

41.
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Vif the .awo are ipis.joint
\ 1 ,. ,Thirtking' again of an example of streets, \if Fir..t Street 'and 8econd. .,

s

Street run parallel, theile is no intersectiO.n. Technically,. we would

, simply say the 'intersection is -,empty. However, the less tarMal-sdes--.. ,

'q-iption, that "-there Is n0,1,hterpection"; Is often Used in geomet4',
-411

:for the more aCcurate. descriPton, "the interstion is epptyll.

Consider the lines- Z and as oUr two s ets , of points. The
, .

,opesetion of Interse,ltion may yield, the empty set, a Single poinfl. or .a
..... , *line. Thc drawing&-illustrate these po sible si,tuatihns. \

..
In general, l!do intersact" or simply Antersects" invltes the' inter-

section :has membe -s; "do not iktersent" in-tplZeS the latersecti.0n is empty. ,* . ,. * . ..
Although V eie hav only used lines at examples, any sets bf pointla .can

be (..ons'idered from the pornt of view of whether they 40 or do tit:re inter-

Seet, A line maysint.Prspet a plane in a line, a point, ,or not at 41?.; 1,47 s.
A

there',14. no intersections, the line is 'said to '-b; parallel to the plana e.* Twa
, 4 \

4* planes may in*spct in a.line, a'plane, or not at all; if Alley do not '-
-

intersegt, they are said to be

. In spEke, it is 'possib(Le tha t two lines 'arie not 15arallellland still, N . .,
do Aot intvrseet. Picture a bridge over a-roatt,...aa an ekample*. The'

.

, z. . ., ,

btidge is not parallel 'to tbe road,41but 'does alot intersect the_road.
,,,,,... it- . , . -.- ..,..... ,

.
. -..

TT and A,I5 in this 4 drawing provide' another . rample of nonintereptIng,
# 44 -
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-nonparallel lines 197 1.s not parallel tolUr; neither dwthe two lines

intersect.

Parallelism for Xines may be stated:

4
.two are, parallel if they lie in the

sa pla and-do-not intezitect.
1

If S and are sets of points, certain subsets of, S anp'T

may be said to be parallel whpn S -a'nd T are parallel.' For ,example,
.)

two segments are parallel if they,are subsets of parallel lines.

Also; iyo regions are parallel if they are subsatts of two parallel

planes. ,A lilp may be parallel to a plane, and 39 on. Note that T15

and lir in the above drawing are 'subsets of parallel planes but are

not considered to tte parallel.. Lines not lying in the same plane are

:said to be skew; their,intersection ia empty Note also that a prane,

and a point:that is not in the plane may be subsets of paraliel planes,

'but we do not say that the point is parallel to the Plane'.

4
Problems*.
----c-77-,

.

, 1. 'Idbntify the intersections of the geometrical figures'named. They

refer,to the drawing. If theAntersection is the empty set, state

whethar the figures ai.e parallel or not.

*Solutions t6 prOlems in,this chapter'are on page 257 .

4

.
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*vs.*. 4 s
a, .cp and' FC' ,

b. the plane tegionswith Vertices C, D, E,, F
'

and the plane region with Vertices Al ri,i

E, H.

c. 'DH and CG. t.

d. Et and the plane regfon witb vertices

AliB, GI H

e. TH and EF
It

Prisms

..\

In Chapter 5, a reptiangUiar,pri*m was identiVied and,looked'at

'briefly. Ttjtas noted-that it was composed of six plane regions Called

faces. The intersection of an twO faces may be empty. ,If two faceA

I

"do intersect",,however, th5leint9rPP9tion is a s;gment called an,

In the same manner, intersecting edges determine a Point called

'5.44

a vertex. Thusl:the above rectangular prism is.the union of ite six

faaes, contains twelve edges and eight vertices: Its attape wa's abstracted

from a rectangular, box; afloot ita faces are redtangular regions.

The pictures:below of a deck of cards pdshed into an ob1i92e posi-

tion is also a model of a,rectangular prism. The.criteria for a'prism

are si uply . 4

. there are two congruent polYgonal regiOns

lying in parallel planea, and the edges

-which do not belong to these Raranel'ilane,5

are all parallel 1 One another. ,

238
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Thus in the'f

not:

gures below, the fir$t is a prism bUt'pheothertwo are

Nar,

bongruent,polygonal
Ykgroux-rt parallr
planes; edges parallel.

I.

Congruent polygonal
Kegiona.K.Varaliel .

planes;.edges pbot

parallel.

a

Edges parallel;
poIygonarregions
not congruent.

The congruent regions in the pakillel planes are called bases of
,

the prism, and the prism max be identified according to the kind of,
N

bases it has. 'FOr the"rectangular prism has rectangular regions

:for bases.; the.prism shown.in the figure at the left above is a penta-

gonal prism; either of the figures below is a triangular prism.

The faces of.a prism that are not bases are called the lateral

facea. Note that eadh lateral Pace is a parallelogram region; the

boundary of eadh lateral face consists Of two parallel edges caaled
, A

lateral6edges and two sides of congruent polygons. The two Sides of the .

congruent polygons are also parallel., thus the boundary of eaCh lateral

face is a parallelogram.

If the basei of a,prism are also Arallelogram regionsl.the priain

a paraljelepiped. Thus; the rectangular prisms are a sub-
.

the-parallelepipeds: A cube, which is the.unkpn of six

square regions, is another kind of specialized rectangular
. .

prism and, hence, is Edso. a ,parallelepiped. A generic chdin of quadri-
.

s called

4familyC?sf
7

congruent

lateral prism's can thus be fOr;ed just aA was idtntified for.:quadrilaterals.

tw

t#.
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1

A

a *

-.The above two pictUres Of the deck of cards illustr,ate anoth%t:

-property by' which prisms are classifieh. In,the-first case, the lateral'''.

faces are'rectanguiar-reKions; in ihe Secod drawing theY'are parallelo-
.

gram regions'only. The first is r1gt prism; the second is an bbltque

prism. 'The lateral facestof ri prisms are rectangles. The tn-

angularprisms dhown-dbove are right prisms. A cub'h is right-prism

all of Whose fices afe Kectankular regions and, more specificIllyl-are

square regions.

Frdblems

2. a. Select the Xigures Which represeneprisms and give the name
.

'

whict best de'scribes each.

b. -For those frgures which di) not repreient ritisms, ptate why'

'they fall'to qUalifY.

#.

A

(B),

(D) (E)

.4

3. w a figure representing an oblique square prism.'

124'') '1

1

(c)

(F)
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amids

Thedravings above represent examples of a familiar set of geametric

solids-namely,pyramids. As is the case for prisms, there are a great

varietyoftaizes and shapes of pyramids. Each-must satisfiahese

criteria:
L

there is a polygonal region,called the bases-
, ,

there is a point called the apex not in the

same.plane as the base where all the lateral
4 e

edges intersect;

4bah lateral face is a triangular regicit

determined by the apex and a side of the-base.

Amalogous to'the clasaification of prtsms, a pyramid'is identified
,

. by its base. Tn the first figure.above the base a'square region, and

so,it is a square pyramid. The,others ate a triangular pyramid and a

.

.

pentagonal ,pyraalid respectivIly. A, B, and edenote their respective',

apexes. -

Problems

4. 1411.6 of 'the following are draNiings of pyramids?

5.

t'

I.

ab
'a. State an approprikite name-for :this pyramid.

bt. :Tileatify_the,:*apet .

c. liou,na4 edges doe& it have?

d. How many faces does it have?

I. *4.

6. i,/hat arethe possible inteiTeCtions of two lateral faces of i

pyramid?

/

0



Cylinders'and Cones

Although we have not discussed all geometric solids4that are the

union of tlat surfaceAl" we shall how.turn out attention to solids. with

non-flat surfaces. These two figures represent cylinders. The two-faces

must 1:1e congruent regions in parallel p4nes. 'They are-ralled bases of,

Vale cylinder, which is consistent y

I

th the 'other uses of the same term.

Although the examples show cylinder s with circular bases, this,46 not
:.

'requirement of cylinders inlgeneral. At this time:1A shall not
"
consider

cylinders with bases'of other configurations, so,-the.diseussion will be
. . . , 4

* limited to circular cylinfilers. The boundariet of the congruent bases
.

.

are then congruent circles and are edges Of the cylinder.

The remaining rounded portion of the simple closed surface which

defines the cylinder is its lateral surface. The distinguishing

characteristio.of a surface which is not flat is that4). Segment deter-

mined by two of its points 'is not necessarily a.subset of the surface.

The drawing below-illustrates this feature; AB is not a subset of_the

'lateral surface of.the cylinder. In fact all' points of AB between A

and. B are in the interior of the cylinder.

It is possible to find segm6ts whiCh Axe subsets bçe lateral

surface of a cylinder, howeveit, such as CD . In fact this is a means .

ty which the lateral surfve is specified,.as we shall show below.

24.2



Each of the bases'has a tenter; therefore a segment is determined

by these two points. The line containing this segment may be referred

to as the line of centers. .Consider any plane of which this segment is

a sttbset. It will intersect the bases in two segments called diameters

such as AB 'and CD' in the figure. EaCh endpoint of one diameter is

to -iDe paired with the'appropriate endpoint of the other diameter in order' %

to be able to describe the set of points in the lateral surface. The

"aPprOpriate endpoints of the respective diameters-are those which
-

determine a segment that does not intersect the line of centers. Thus,

in the drawing,,A is paired -with C and B is paired with D .

'/By ontidering a:different plane, we will obtain tyo new pairs of

poirlts. If all such planes areconceived, all such pairs are4enerated.
*

''!Then.we say ve have defined a correspondence betweenithe points in the
. - .

, .

boundaries of,the two congruent bases. Any two porbts which are thus

paired are corresponding points4

Each of,these pairs of corresponding paintt determine4-a segment

4 parallel to the segment connecting the centers. The union of all seg-
.

ments deternined by coriesponding points is the set of points in,the

desired etirfac'e.e. Each segment is said to be an element of.the Cylinder.

'Any two elements are parallel. In the-figure, MN and' 1Y are elements

and therefore are parallel.

,1?

N ,
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The preceding description for generating4thg lateral surface is

rather involved. Iriis is because we want tO secirV 'the partieular

correspOndence we ha*e in mind since otHer possible16onfigurations Can
4

be forthed iiith the reRuired bases, If a different correspondence were

*defined between the pbints of the boundaries, a figure as in (a) and (b)

below might evolve. If no segmefits were specified, tlie resulting figure

might be as tn (c).

(0 ). ( b ) (c)

Me can now-state that a circular 6ylinder must'satisfy these

criteria:
.%

there are twoi congrtent circar regions in,

paratlel planes;

there.ts a surface which is the union of aID
4

segments,determined by corre8ponding points of Jak,

the boundaries ot the bases,

, Referring back to our first two ezamples of cylinders in this -

section, the fi,rst is a right circular cylinder; the secolit is oblique.4
In order to be right, any element fthe cyiinder must form rtght angles

.47 with each segment of a base which intersects itt
A

is apParent on reflection that there,is a distinct similari

betw n the cylinder and the.prism. They eaoh-fiave congruent regio

in parallel planes fin- bgset. If aiiiappropriate correspondence wer

set up ween the points of sides of the,bases of a prism., if

line segment oining them were considered such that they are par

then the lat ral faces woul05 be specified. In fact; the only di erence

is thet the b ses bf a.prism must be polygonal regions 'while se of a -

circular cylinder must be cirbular regions. It is the case th t a cylinder

:?4,1
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4)

-
. , * - .....

can be defined in' such a, wF as to include prismt as a safamily of
. , 4

cylinders; however, this wilelnot be-done for the el;mentary level'.

'Ay the same token that cylindert are anaiOgous to prisms, cones
.

., .,

are)analogous tospyramids. sAs with cylinders, the willTestrIct the

.plane region of a-cone to a circular shape and designate it :as the base
.

,

Wl
Of the cone: The point which Is not iu the samaplane-as the base'

describes the:apex. The lateral surfage is not so difficult to describe

4

1m

611in this figure. 1t mply:the set of line segments 'deteried by, the

apex and eacii point of the circular boundary of the base.

1)6blemsv--- v.

7. State a,deflnition of cylinders so sthat pripms woul be a sub-.

family of cylinders, namely polygonal cylinders.

Describe br draw representations of the,intersectionsOf a plane.,
"

and a right *circular cylinder if the pk!Lne does intersect the
41,

cylinder and is

.) a. parallel tO the bases;

b.- parallel 14 the line ofkenters;

c. not parallel to he base ilor the ,line of centers.,

'

-7.Spkares'.

'a

Oft

The final. solid to be included ii the sphere. .4 is the case for a

,circlels a sphere has a center. All segments connecting the cenfr of the

_sph14.eand s'point on'tha s here are cmmEguent. Indeed, this specifies

the,set of points in:the sphere.' They are: .
.

.

alI endpoints ar congruent segments

4 which haVe one endpoint ih damon,

but not including'tHeir common endpOint.

4

n

4.

f
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. ' V

1 . .
A. The congruent Segments :are radii,(siniUlar: radills). .Th6 union 9ftmo

-.. *

radii Which are eadh subsets of the same 13ne is a diatteter In the .,'

figure,.0: is Allecente, AO .and .013 lpfrEidii and therefore congruent,

and AB is A.diapeter.

A

.1

A heMisphereis*half of a sphere. Any plane.that contains the

centerof.sPhere mill
*
"cut'off". a hemisPhere.

*4v

Problems *.

9. 2Iden%ifi the inte;se;tion of

h. a plane and a sphere;

b. the center a4id te phere;

c a diaMeter and the sphere;

d. itke center of the sphere and one of its hemispheres.

110,

Ordering Sets of Potfits

The ordering of sets is nob a Inv topic. Chapter.2 vas devoted

to the coIiarison of sets according to order and ceriain propertiet of.

ordered *Pets. The approach taken'vas to pair tV. meMbers of the tvo

sets in question. Tlien it vas possible to decide whether one set had .

more or fever meMbers than the other or,mhether the tvo sets vere

equivalent. If 'Ile try to use the same*process vith sei-siof points, *

" 'two difficulties, are enceiuntered vhich make the proceduee ImpoSsible.

4

4.

a
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Take, for example, two.segments, MN, and' XY . Each is an infinite

set, and therefore' if we began pairing points we would never exhaust the

M PQ

X

s1i

JP

points of either set. This 4one eliminates pairing'aia metals of

ordering. To compound the probleml'however,-there is another property

,of segment that defies; paixing;-that is that 'they are continuous.% If
-

' two points, say P and W are chosen and paired, we cannot serect the

point next to .4.): to palir with the point next ti3 W 4 because there are
.

no riexq poihts on a segment. If for instance, . Q is named .in MN there.
are an infinite number of po ts between P. and ,Q so nothlng has been

accomplished.
11,6

4tThen, how'are segments, and sets of pTints.in general, ordered? We

,

-can resort to our coecept of congruence to assist'uss /t has been estab'7.

li'hed intuitively that two-line segments'are congruent,iiza movable

copy,of one can be mlehed and fiteed exactly on the other. A similar
$

.-* Y
procedUre serves to indicate whether...turves, polygons,'plane regions and'

.

.

. .

.' so on ate
.

congruent. It does not prOve useful in-determining whether cr

'not solid fjAures are congruent, however, since a mova4le copy ofa-
. .

,solid cannot always be matChed and fitted exactly on'the other'ints

,(For example, a solid block cannot.be fitted intO another stolid block.

%If two sets of points are not cOpgruent,,-we citn still Conceive of
Allik. i

an order betwee them. Suppose you measure the dimfnsions of this boOk.
*

Its length:is sho)ter than one meter. You are essentially carrying out .'

a cóMparison of set size vii,h the aid of a movable copy.- The sets being

compared are an edge of your bOok and a platinum bar in[jhe thlited States
.....

.

Bureau of Standards in Washington, IL:C. The movable,copy is a meter

stick and its saI iale is a record of the length of the bar. By stattnig
$

that th ngth of_the edge.of the Book-is shorter than one metO, we

are-Orde -the sizes of-two physical representations'of line segments.
. ,

In particu..ar youl. book is shorter than tlip bar.
0 -

4

* Geometrical segments are handled in a similar fashion. .Suppose it

is desired to order the'two'seti MN and XY . Mt Make a copy of PIN

247
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t,
4'4

indicata,by the dotted.segment, and lay it
s,

. -%

M P- .

%Wehave already

N

.

said that if they fit exactly, MN find XY would be-congrue4; .Ifl,
.).., .

-'OweVer theyitto net, one.of-two situations, must exist. ,X1V Valbs

congruent to a proper subsk of 1451 or JAN will 114 oongruent to's
. . .

I.proper subset of )1'. In the first instanoel-ve -would sg,f XY is,

.. I . -;;, -----.

srhorter thallMN cr, eluivalently, MN is longer than ,XY . The secend

possibilip is:intdrpreted.`as MN iszshorter thanXY,Or.XY
.

.'.longer than MN Our examplig deMonstrates thErfirst,caSel Since XY
.

-is congruent to-a proper suhset of MN-, We can:order the sets by'
. ,

M 1 N
. 1. - - - - - ,._- .... - _ ..,,r,

b
-1, ,..

, %

1Y MN tn increasing order,

. -e ...
. ,

'For finite sets, A and B , ryall that coMparing Sets assureE
%,.

exactlyene of three possible outce4v
: Ak

.

equivalent 'to B ';

A has more meMbers that B ;

A. has fewer meMbers than B

lbw we can State the parallel relationships for infinite sets of points,

Al% and CD :

TB is congruent-J.10bl' ;

rB is longer thann CD ;

-A-73 is shorter than OD .

Bete that "AB, is'ionAer than CD" does not mean has _more Ambers

than CD . We are-saying nothingabout "how mallz e' in relating infinite

sets. By repeated,comparfson,' it is-possible'to order more than two 4

ir" segments. 'Thus QR belew, ould fit Into the order XY QR MN as

-the'diagram.Ilfustrates. W1e find that QR iS'congrUentuto asubset

4 VIN and that XY is 'congruent to a subset of 7QR 'therefore'

-.-QTR is slirter than A and (111 is lTiger tqan
. .

R

a 4

0 R 0 R.............. --I I... "......... ...- ......... ...,... .... a.- ....---.....4 '
I

*.k4 44 X
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In ChaPter lal.t.these ordtr relationships will b restated:interns-

of numbers asiociated wit:LI-segments. Thda nuMbers will be.the measures

.br the.segments. By our ordering, however, 'we hate done no measurihs.
.

Thesecond kina of geometric'ffgures'that we wish to order is angles,.

,An angle I% the set of points definedbY the union of two rays, -.not

subdets of, thp ame line, whph heiye a common endpoint. Just as sitple

closed cUrve arate a plane #rt ti. three sdbsets (tIle.curvel tts in-N

'terior and its exterior);, angles-can be thought of-as doing the same

"thing: -A loirrt in.tbe interior .or eat' wile* if 'it lies between two

(
*,

.1

.
44

points.4 prne on each ray, exclusi4 ofthe vertex. Thus 13 .is in the

. interior of. LABC arid Q is in the interior of /DEF in

- the'exterior of. 1DEF and R is an exterior point of LABC

'TO order .0vo angles, ve'.rely.on amovable copy oç one in mu-,:the
z . 4 . .

se.pe manner asye did for segients.,For the angleS.pi tured abOvel'we

,.. ,
could place a cam of Inc o*er ZDEF so that one d e of the cbiq

coincides with one pide of, LDEF ; Trt' figure 'beloW shows one wp.ysthe

.' aopy can.be poSitioned. If the second side 8f thetcopy also coiniides

-with the,second side of ZDE7 /
we would say ,...

i',..

4 ABC is congrftnt to blEF .

...

a
,No

249
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If it is not possible to get such a coincidence, as it is not for ()Ur
4

angles, we define an order. Ncite that the points of WI except the

endpoint B 2 lies in,the interior of 1.1EF Whenever this phenomenon

holds, we say

LABC smaller *th'en I.DEF

4
. or, equivalently, LIEF is latger than if.ABC Iflit hap/Yelled that

the interiors of the tWo angles have points in common and that

except for B
. ,

were a stibset df the exterior of L DEF then

LABC is larger than

or LW... is smeller than' ipABC
DEF

-4 Considering a third angle, iGHI we find that GB

14 in the exterior'of LABC 40 in rinterior of
,

to
ekcep,W-

DEF . Two

statements expressing this are LG111 is larger than ZABC 1 and

is smeller thant LIEF In increasing order, ve.could write LAMC 3

As for segments, this procedure can be repeated in-

definitely flor as many angles as we wish. Congruent angles, would occupy

LGHI 3 LDEF

44.1114.

the same position in the order. 8.

, -

The definitCon of measurement for angles will not be included in

Chapter. 12 because 4.t is not ti-eated text'materials. It'has

.; been discussed here to indicate that the ordering of sets of points ban

Ybe,accomplished for figures other than segments. It is actually possible
-

to use'dpngruence as a means of ordering regions and solids also, alt4ough_ _

it is a bit martL omplieated. It is not postible, however, to order .

Amaike'sets of.points; that is, we cannet Order segments and angles; nor

segments and plane regions, and so on.

1

4
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Problemi

10,4 Represent n CD'and EF such thst their order fromishortest
.

to longe4 is CD AB 1'W .

11.. Place the sets represented by the angles belovin'increasing order..
,

Am.
a

6

12.- Cab you devise a means of ordering-the tvo iegions shOvn belov?
2 '

rma77.43 ile7.7.707.710.06nW7y. '

Applications:to yeaching

Teachers haveIound it most helpful to haye in the room a vide

collection of'objects'which illustrate geometrical solids. ,phildreq

also enjoy'bringing such objeets from lime. Effective ways of using' -

these and-other models have been recommended in this section of

Chapter5.

On the-nekt pages are included four patterns to be Used:in con-
.

structing geometrical solids out.of paper. Having the children observe

your detonstrati n of a construction emphasizes tvo aspects oflsolids.

'Many ark the union f plane regions that do not lie ih the same plane,

and Aey are hollow.
J'

The ideas in the pre-measurement eeetion are most important. The

Children should beasked to *rticipate as much as possible in manipulat-

ing figures to compare their sizes-both to understanqcongruence and

order. They"often experience some difficulty invisualizing,congruent

regions'if they have different.orientatiphs lo practice should be

provided with this in mind.

25
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S.

PRISM - Construstion of a square pf4sm.
. 41. Draw a ,rectangle With' vertices A B -, C ; -D as shown.

-! 2. Draw, as, shown, three bther r4ctangles congruent to 'the rectangle,
' already drawn with tabs. .,3. :Draw the two "Ignores along AB and DC with tabs; as shown..
Cut around 'the boundary 'of 'the figure and fold along the2dashed line
segments. ,

5. Use scotch tape or pasisi to hold the model together. Thv.tabs will
help give rigidity yr the vdel. You may want to tFin them some if
you use. scotch tape; .

a

6. : The bases or-this rectangtlar -prism s..i"e' squares, hence the name -
,square prisin. :. , ..

"*A. 4.. 7. This picture has been reduced photographilally. The original bad the -.
length. of AB .as 1 1/ " .. and that of' BC as 4" . This made a
1 1/2" X 1 1/24' X 4" are In.iim.. ., . ... . .. otN *4

*
A

*4.

.



-r

.
,

.FIRAKED - Constnietioa of a square.pyramid.

.Draw a dquate vith7%vertic-es A B 11) E shown.
2. Draw the arcs with centers at A and B anli radius AB Label

iie,interseetion ,shown as C

3. Draw dashed line -segments AC and BC. to form "dashed't equilateral
triangle -with vertices A )4' 0. Draw- tabs as: shown. -

'It. Repeat step. 3 to obtaip E"dashed" etjuilatral triangle with Niertices

E D F with tabs aa shown.-
5.- 'DraW the. .equilateral triangle shown, On ED and AE .

6. Cut around the boundary and Told along %I-1'e dashed line se.gments.

-Fasten with .scotch -tape -or ptate. The tabs help in putting the .

model together. You.mv want t6 trim some:of them if you use scotch. tape.
8. This- picture haa b4n reduced photographically. The-'original model"

had the,lengtha of,, as 2" .

t

,
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of a circular cylinder.

Draw the rectangle with vertices
Draw two congruent circles with radius'as shown;
model easier tp, struct,
these'circles colFetSmo-
gent ic; the rectangle.
Cut around-the. boundary
of the figure. Do y221

jseparate the.circles'
"froethe rectangle.

N

TAB

'In order to the

,Fold inta, the foryi of

a circular cylinder.'
Use scotch tape or
paste to fasten.the
model togethpr. Place
BC on AD fivat;
Fasten the basea
last.. 'Do not folds.
the tEib at BC tap
iii dv'erAD'-aild'paste
or.fatten'with tape.,

,

*.

r.

I

This picture has
,

been redUced
photographically.
The original model
had bases of radius ,
1" with the lengths
of )a5* ,and .AB as

and approximately

6.E , respectively.

t,



CONE Conatructioa of a
-

circular,cone..

1. Use a ,comp_ass to draw a circle vith a 'radius pas shown in the 'diagram.
Draw. tabs Is shown.

of this figure. The cirdular region 'will-be

semicircle with a radius as shown in the d.ia-
of tflç cirple. AB is --a diametei- Draw the

. Fut around the boundary
the base,spf the cone.

3. Use a compass ta' d.raw a
C is 'the center,

tab as shown.

.4

Cut around this azure.
Fasten AC to BC Witl scotcNtape or paste ,so thatrAC /falls on
Fasten the base to this =derby folding ths tabs ki.ndeutink scotch
tape or pass.

BC .

25
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- EXercises - Chapter 9

Wh,1* is -the jolioving definition of Parallel segments not sufficient

.-to *determine what e mean by parallel segments?

Two segments are parallel if they lie

in the same, plane, and do not ,intersec.

What are tJie seta which may resul4 in the ifiterpection of a line

and a plane?

tonstiuct a papa* model,of a square pyr d using the pattkrn on '
a .

Pete 253- , 3 4.4

,
a.. How many edges does a triangular pyramid have2

b. How wily edges does a rectangular pyrainid have? .

C P If the base of a pyramid has n sides, how many edges does

pyramid have?

the

,5.-. Tdentify by a drawing the intersection of a plane 'parallel to AO .

mid the cone, if A is the apex ands 0 is the center of the base.

iAssume the 'pia& inter ects 'the done in more than one point. it

Which of the following solid.regions must be'convex sets?

a. sphere; b. circular cylinder; c. quadrilateral 'pyramid.

State in.increasing order the sides of the triangle.*

X

8. Why, is it .incdrrect to say Z is a 4ubset of the interior of

L MAL

256
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Solutions for Yoblems

,l; a. C ., DE c. {,) ; they are parallel d. H e. ( ) ;,not parallel.

se. a. (A) cube.; (Et) .
'right pentagonal' Prism; (1') non-convex

quadrilateral.prism.,

b. (C) ,Tbere are not 2 congruent, prallel bases; the lateral

edges-are nit paralleL,

(b) 'The congruent faces are not'polygonal; the lateral slirface
-

, is not the Union of paralleloiram regions.

(4 The paralleIbasbs ara'not. congi'uent; the lateral edges'

.arenot,Parellel.

(b) , 'cc) , (d) , 4f)

.a. guadrilat,eral -pyramid
. ,

c. 8

d. '5

. A:lateral edge or the gpex

1,

7. A cylinder ts a geometric solid which is the union of two similarly!

oriented parallel ragionarmhose boundaries are simple closed curves

,and al4.._the segments determined by corresponding points'of the

congruent boundaries.

a. a circle; b. a rectaxigle or a segment congruent to.the

-segment connecting the oenters;, c,

-a. a ci,rele,,- point, -or -{

or

b. ( 1; the ce;ater is not part of

.

!the sphere; c. two points--the enpoints of'tha diamater;

257
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a.

11: Lc Ls / LA
.s. ---.

12. We can partition one region. make movable copies and lay.them on-,
the other region. Ti. they ;My we Iii11 say they hltve the same size.
If they do not; one vill be larger than. the Other. .

i . _ -,.4 .

lams, the rectangular rogion is larger than the square region.
s

.se

258
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,Introduction

Chapter 10

ADDITiON ANDIALBTRACTION =HINNIES *

We have used sets to describe addition and subtraction and to
develop its pi-operties.' Xnegring that 5 + 3 is the number of members -

in A U B .;wher.,./A is a pet' of .5 members and B is a disjoint' set .

Of 3 member", enables us to count'the members of IrtiB and to die-,

cover that' 5 + 3 is 8 . Knowing that 5 '+ 3 = 8 , from the definition

of subtraction, we can see that 8 - 3 = 5 . This is Tine, but it does

not reteey help us much if' we want to. determine 892 + 367 or 532 - 278 .

'To do problems like these quickly and abourately is a goal of real

importance. It- is a 'goal 1%.7goSe achievement is made much' easier in 'our
,

decimal system of numeration than in for instance, the Chinese or

Egyptian systems.

This chapter is concerned with explaining the whys ,and wherefores

of so-ealled "carrying" and "borrowing': in the, processes of computing.

sumS and differences. RegroVping As a more accurate termi.or "carrying!'

and "borrowing", 'and will be used threughout this text
is

We must recall how our systemof jumeration with'base ten is built.

What does the numeral 532 stand fpr? It' stands for 500 + 30 + 2 ;

, or 5 hundreds 't 3 tens + 2 ones; or again, since one hundred stands

for 10 te40, 532 stands for 5 firoups bf ten tens + 3 groups of 1*

ten + 2. ones. 'Also if, we know thatl'a number has- 2 groups of ten tens

and 7 groups of ten and. 8 ones, we-can write a numeral for that 'number
-

in the form (2 X (10 Ok3,1))) 44- (7' x ( 8 -X 1) or 200 + 70 + 8 = 278 .

When we write the numeral in this stretched-out' way, we have written it

in expanded foria.

Regrouping. Used in Addition

- Let us assume that we know the addition facts for all the one-digit

whole numbers and that we understand our decimal syetem of numeration.

How does this help us? Letts try some examples. Suppose we -want the

sum of 42 and 37 . Since we are adding (4 tens + 2 ones) and

259
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',XXX x XX X X X Xl

xxXxxxxxxi

(c)

3 tens 7 ones

as 79

Essentially what we are doing is finding,how many groups.of tens

-ve get (7 Iens.4- 9 ones) which we can write

and how mdby umits we have and them using our system of numeration to

write the correct numfral. Wemay dhow this in seVeral differeMt forms.

t or algorithms, such ast
4

a) 3 tens + 7 ones

4 tens 2 ones

7 tens + 9 onea = 79

(b) 30T+.7

40 k

70 9 == 79

Or we may" use an equation l'orm such as

37 + (30 A-7) .4- '(iup 04. 2)

= (30 + 40)i (7 4- 2).
%

= 70 '+ 9

. 792

9.

itt2

( 7 + 2 )

70 (30 40)

79

'Applyinitbe assoCiattve

and comnutative properties

Let us now add 27 smd 35 . This time we have 2 tens 7 ones

3- tens 5. ones) Nilich may be illustrated:

ix x x x:x x X.:J.7371

2 'tens +

XXXXXXX.

rXXXXXXIalaj
x)Ear....x x x

7 one 's

3 tens 5 ones

B y putting these groups together we now'have:

IMEEMESEEE3
Lla...1121.212L121.21.21 j

5 tens,

X XX XXXX XX lc,XX

12 ones



rxxxi-xxxx.xxi

ix xxxx xx x x 31

ye nom_regroup the 12 on.es. and get another set of''1 ten and 2 ones.

1 ten-

We nol..7 add .64 ten + 2 ongs.

(a)

"'Fr= 1777 xx x
EITIMECIEEE1

rxxx.xx.x'xxxx

x.x'x DC XIC x xxx

5 inns + 1 - ten

= 6 tens

2 ones

x x

r such as these nay be used:

AO,

2 tens + 7 ones

3 tens + 5 ones

5, tens+ 12 ones,, or

5 tens 4. 1 ten + ,ones, or
6 tpns 4- 2 ones 62'

4
Using an equation form we may-wri:te:

27.7+ 35 = ( 20 + 7) 4. +

(q 5) ApplYi4 the-associative
and commutative properties

= 50 2

= SO + (10 +
Applying the -'associative(50 .4- 10) +.2 property

6o + 2

(b)
30

50

50

60

onel
2 ones = 62

6

+ 7 27

4- 5 4. 35

4- 12, oY,

+ 10 4- 2,

4, 2;2 62'

12

2
62

,(7

(20

+ 5)
4. 30)

= :62" . .
We may e nd these same ideas to the addition of two whole numbers,

_ .

each greater than. 100 . Suppose, for instance, that we were' adding

568 and 275

261
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4

or we may :taite

(b)

4141,

( )

41.

5' hundreds + 6
2 hundreds +

ens +
tena + '5

on,es

ones'
7 hundreds + 13
7 hundreds,+

..,
8 .hun4reds +. 4

tens +
+ 3

3

ones? oY

iines, or ,
ones.= 843

8777.!
200 + .5,, 2.,

700 + , ot

-ma iko sor

800 + 40' + 3A 843

or ( 5 8

130'
700 (506 + 200)
843:

,
ye

Preciiie1y ttie same process ia used in .adding three or more nuMbers.
AOnq agair; ke Propertlef of addiiion are tmortant. Thus:

563 + 7,87 + 1384, ean'be thought of as- follow:

a

t
'563 ,..-- .500 + 60 + 3 -,.. (5 x 3.00) + (6 x 10) + (3)
,787 = 700 + 80 +- 7 ..., - (7 x loo) + (8 x 10 4-(7 X1)

.11384,= low + 300 4: 80 + .4...z..4.12,..r nob) .4 ( 3 X 1.00) + (8 x 10) + ()i. x 1)
(1, x 1000) + (15 ,x 100)+ (2ktec,1o) 4-114 X 1.4

Si

'and. tie, siiM ,563 787 1384

x 1000) + (15 X ..no) + (22 x,10) + (14 .x 1),
= (1 x 1000) + 1(1 X 1000). + (5, x No)) [(2 x boo)

(2 x 10)] [(1 x 10) x))1
. [(a X Imo) + (1 x.1050)1 + .x 3.00) 4- (2- x 10o)1

[(2 x 10) x (4 x 1)
4

= ( 2 'loco ) + (7 x loo) + (3 x 1o) x 1) 4441p,
. = 200Q 4- 700 + 30 + 4

2734
a

Ttis- is -ustiilly abbreviated a great-deal.- -.But -it 1.s impotopuit that' the
,underlying, pattern law understood and, tthe abbreviations reeggnized. Thus:
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500 4. 60 + 3 563

700.+ 80 + 7 can be' written -with- 1384'partfea sums - r-
1000 4- 300'4- 804-1 snm of ones-indicated as: 400 :sulli'aftens1000 71- 1500 + 220 + 14' 1500 'sum of hundreds

1000 sum of- -thousands

and the operation may be still further abbreviated to:
GOO

563 563
'7.87 Finally, by omitting 787'
1384 even the "-carry aver" 1384
--2734 numerals..we get:

Problem' s*

It

-0/5g

1. Find the sum, 38 4.'73 22 an algorithm that shows 'clearly
-how the sum is obtained.from 'the:additiori facts for 0 through

.9 only.
Show the individual stepp required in applying the associative

and commutative laws to shov, that

(30 + 7) + (50,4. 8).'= (30 +.50) + (7 + 8) .'

A Property of Stibtraction

'Just al ve vorked the 'same i5rob1em by various methods to get an
4. `.

insight into the addition process, we, shall nov study the subtraction
,

process by examining varfous techniques. Let us use a 01.11:Ple eximpke

to illustrate the procedures. -'

I.

Vsing, an equation form for -41.nding the value of the uninovn Addend

n in n + .23 = 58 and% comi)aring thip with- -the nsual algorithm identkfies

a property of subtraction that is used ext'ensively in computational vork.

We vrite:

58 - 231:- (5'0 + 8) - (20 + 3)

-the property of sub4action that deserves our special Attention is _that

which 'will enable us to elrprets (50 + 8)- (2p + 3)" in a useitul

liSalutions for problems in' this chant r are on page 271

263
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LE2LXXXXXXX X]

121 xxxx x'x x x xl

r
The Usual procedure for ,subtracting is by- the vertical eligrment,

58
23

whichl.may be expressed 'as either of the followiitgc:

(a) 5' tens 1 8 ones (b) 50 4. 8

2 tens 4- 3 ones 20,+ 3

tens + 5 ones = a 36 5'= 35
.

In the algorithm (b) aboVel 'notice that a -is subtracted from 8 and

:420: iv subtracted from:, 50 to arrilie at the tens and ones in the

difference. In equation form, this entire process is written:

= (0 4. 8), - -(20 4. 3) .'(50 -20), '(8 - 3

3

We may sta4.te the property, which allows (50 4- 8) (20 + 3)3

to be reexpressed as (50 - -20) '4- (81- 3) more generally in the

tle.following way: .

If a + b is the name of one number and

C d is the name of a second number,

and if a c and b d then

'(a +b) (2c d)=*(a c) + (b.- A)
.

We shall see repeated use of this propert.4 along with regrouping,

throughout, the rest of* this chapter.

At13)

Next,' 1,tt us interpret subtraattion, such as *17 vfrom 4-9 ; in

' terms of e removal. From a set, A of 49 objects remove a subl:.

set, B 17 objects, leaving a.remairider set, A B whose

'number' is * be specified.

We carhake for A a collection of 11.9 x's arranged as.tollows:

A-

x 12c_!t_a_icX

Ex xxxxxxxxx

264
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frxxxxxxxxxl

xxxxX xxxxl

.
Now we need topick a subset B of A Which'contains, 17 meMbers.'

Then'the nuMber of mmMbers:of the remainder set A - B.mill be 49 - 17 .

s

11

There are many ways to choose B One of them is this:
. .

lxxxxxx x x x xl

ixxxx xxxxxxl
lxxg'xxkcxxxxl

X X X
"Ret....B

But when we choose B this way, the remainder set A - B isnot easy

to couut. Some of the original bundles of ten have been broken up, and

only pieces otthem are in A - B 4

It is much better if we choose, B so as to either include all of

a bUndlet,of ten or pone of it.. Here one way:

X X X X X %X -X X X X

ixxxxxx x x"xxl

x x -

Now it is,.easy to colint the remaincAr set .A B. It can be done'

11 two steps. Looki4 at the right )1elifi side above, ve see thai the'

mutberol' ones in the remaindor set is 9 . 7 = 2 Looking at tht left

hand sideabove, we see that the number of.bundlee of ten in the raMainder

set is '4 - 1 = 3 Therefore the number-of meAbers in the remaindez set
1

.is 32 ,

Au important thing ta notice is that,since we dealt only with cam-
, .

plete bun4les of enl'we could count these using only "small" tuMbecp.

Now, let us ejnine in the same way another problem: 32 - 17 ..on:

We can pick A to be a set of 32' xls
I.

lx X X X X X X X X Xl

X XX X X X X X X X X X

lieed to,pick a subset- B with 17 naMbers, that is; one bundle of

"ten-and severl'ones. Bat, A has only two ones, so we wiii,have to'use
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EXXICIC xx,xx xJ
3

some of the member; cit. A in the bundles of ten. As Ve saw above, it

is bsst if we use only whole bundles. Therefore, 'we will take one of,
the bundles of ten in A I change it to '10 Ones, ind' put it with the
2 ones. Now A looks like this:

A

EZIEELIEMEI xxxxxxxxxxxi
Now it is easy to ske how we can pick a convenient subset B which

has 17 memipers. Here is one:

A

F-7=1 x x xxotzt-xl

txxxxxxxxxxl
It is easy to 'count the remainder pet

-ones, is *i2 - 7 = 5 and he 'number of tens is
32 - 17 15 and n = 15

Rather than object representation we may use algorithms such as
these to subtract 17 from

xxxxxXx31.3C.2C'x
B

The ripther of
- 1 . Therefore

or

3 tens + 2 ones 7 2 tens + 12 ones

1 ten 4- 7 ones = 1 ten + 7 ones

1 ten +4 5 ones = 15

(b) 304- 2 = 20 +,12
10 + 7 = + 7

10 4 5 = 15

or we may use an equation form,

32 - 17 = (30 + ,2) - (10 + 7)

.= (20 + 12) - (10 4- 7)
= (20 - 10) (12 - 7)

= ;5.
.

Notice that the renaming of (30 + 2) as (20 + 12)
4 application of the associative.property of addition,

(30 + 2) = ((20 + 10] + 2) = (20 4410 +2])

4.
266
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We may iubtract=larger,nUMbers of course, iimply by extending the

larinciples and procedures,used with,smallet nuMbers: COnsider, foX

instancel, sUbtracting:276 from 523 .

'Since we cannot satract 6 ones from 3 :ones nor tens from

2 tens, rent 'is required: In detail, ve may vrite:

5' hundr t tens + 3 ones = 5 hundreds + (1 -ten.+1 ten) + 3 Ones.

= 5 hundreds + (1 ten + 10=ones). + 3 ones.

s%,

.-5 hundreds + 1 ten +'13 ones. .

s= (4 hundreds + 1 hundred) + 1 ten + 13 pnes.

(4 hundreds'+ 10 tens) + 1 -ten + 13 ones.

. =44 hundreds + 114 tens + 13 ones.

OrdinarilY this procedure- ia &inpiy indicatedoby ,

5: immadreds +22 tens + 3 ones = 4 hundreds + 11 tens +13 ones.

We May now complete the'problem 523 . 276 by vriting:,

'hundreds + 2re tens + 3 ones . 4 hundreds 4- 11 tens + 13 ones

2 hundreds + 7 tens + 6 ones = 2 hundreds 7 tens +. 6 one

or vi may write

2 hundreds 1-- 4 tens + 7 ones ..247

500 +.20 + 3 = 400 110 13

200 + 70 + 6 . 200 + 70,4, 6's.

-4201:1+ 40 +' 7 = 247

,per-we nmys,use an equation firm, sUch as

53 - 278 = (00 20 + 3) (200 +-70 + 6)

= (400 110 + 13) - (200 4- 70 6)
,

200) + (110.- 70,)' + (13 - 6)

',mow

.= 200 + 40 + 7

= 247 .

We eventually pay shorten such algorithms to the form

5 2 3 orsiily 523

- 2 7 6 - 276

2 4 7 ' 247
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Problems

3. a. ln the property ( a' 4-, b ) ( c d) = (a r *c) + (b. -

why.are 'the conditions , a c and b d needed?

b. Give an illustratien of the,difficulty encountered if the

conAitionz are not,met.

a. HRepresent vith aoappropriateset, A and stibsetl, the

Summary

Teditniques of,adition and subtraction.maylbe explained in terms

of our decimal numerechoillSYstemcoupied wite,regrouping and applications

of thp 'Commutative and associetive,Properties of addition. :SubtraOtion

techniques utilize a specialexamTty of,subtraction;',naMely

stibtrasttion of.11-3 anti, 21 .
A

9

Show the same subtractiom in equation form.'

If a b c 1, and d are Nhole nuMbers such, that

a and .b.;>d; tigip it is true that''

(a -13) (p d) = (a (b .

'Thig speCiaI property mey be explained in-terms of the definition of

subtraction in relation to addition, coupl;c1:41.th 7014commutativd and

associative Prop4ties of additiO4n.pr-

Ayplicationt to Teachirig

If young childien areAo Compute with understanding, 4 is essential"

:that they have an adequate understanding'of our numeration system -with

its base of ten and its PrinciplVof place value. They also,need to

have ample opportunity to manipUlate sets of dzjects as the basis for

developing appropriate algorithms.I

, Algorithms such as these grow readily from manipulations of sets of

otlecti:
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+ 36 ?
A

(a) 4 tens + 2 ones (b)" O *. 2

3 tens + 6 ones 30 + 6
7 tens + 8 ones = 78 70 + a 70

-

2. =

(a) 75 tent + 9 ones (b) .6o + 9

2. tens 4413 Ones -20 + k
,

..11- tens + 5 ones ...45 4O + 5 = 45

112

8

70'

I. .78

*The6e same.agorithms serve young.children well"vhen regrouping and re-

naming are inIolve4;

,
3-

Alp

(a) 5 tens + 4 ones ) 50 + 8,

1 ten + 7. ones. 10 4- 7

b tens + 15 ones, or 60 + 15 2 or

7 ;tens + 5 ones 75
its

70 + 5 .
.

4. 81 - 35'=. ?

.

A
(a) 8 tens + l'one = 7 tens. + 11 ones

3 tens + 5 ones = 3 tens + 5-ones

4 tens + 6 ones = 46

(a) 58,:

+ 3.7

15

66

(b) * 1. . 7o + 11

30 4. 5 =.30 4. '5-

+ 6 46

Each child is not expected to be equally at ease with all algorithms.
He should be encouraged to vork vith the liorm with which he is most corn-

..

fortable. Eventually he will shorten that. algorithm to a more effidient
fOrtn, but hei should not be hurried into doing this. Computing with

understanding takes precedence over computing with a highly efficient

form in the earlier stages of learning.
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A
/srcises,,, Chapter V)

1. For eadh of these exalivies, compute using the three addition

algorithms just ill4strated in the precedinga@ction.'
;

a. 246 + 139

b. 777 + 964 ..?

c. 486 + 766 .

d. 774 926 .

2. For eadh of these examples compute using-the two sgbtract on

algorithms illustrated-in the preceding'section.'

a. , 764 7-199 = 7 710..- 287 =

b. 402 -.138 = t d. 800 - 396

,COmpute.774 926:- using am equation form. 4

Compute 800 -'3.96,-using an equation fo4m..
--
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Solutions for Problems

4

1. 34 1-73 '+:22

= 38

+ (73 + 22)

[(7 tens :II 3 ones) + (2 tens + 2 ones))

= 38 + [(7 tens + 2 tens) + (3 ones oies))

= 38 + (9 tens + 5 ones)

= 38 +'95'

2, (30-+ 7)

A

(3 tens + 8 ones
= (3 tens + 9 tens) +

= 12 tens + 13, ones

(9 tens + 5 ones)
,

(8 ones & 5 ones)

= -(1 hundred + 2 tens (1 ten, + 3 ones
, -

='1 hundred -A- (2 tens + 1 ten) + 3' ones

-.L.- 1 hundred +*3 tens + 3 ones

133,-

= ([30 + 7) + 50) + 8
= '(301+ [7 '+ 50]) + 8
.= (30 + [50 + 7)) + 8
= ([30 + 50) + 7) + 8
= (30 + 50) + (7 + 8')

associative

associative

commutative

associative

prop?rty

property

property

property

property

a. In order for gi - 6 and b d t& have meaning, it ie.

necessary that a c and b d These conditions also

assure that* a+b d, 'which makes + b) (c 4- d)-

meaningful.

b,. For exasile, let a = 7 ,,b 5 , c =*8 d = 2 so thet

a c is not true. ,Then (a + (c + d) = (7 + - *(8 + 2)

'= 12 - 10 = 2, and (a - c) + (b d) (7 7 8) + (5 - 2)

= (7 - 8) + 3 ? 7 - 8. is not a vhole..number, s6 the

property is undefined. ,If neither oonditior: had been true,

a + b) (c + a) vould not have been defined.
4

4
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xl

x xx xx x ix xl

Ic xxXx x x xi

* a. 116

:b

A

IA Ix it'x 12..___ jc_iix x x

Ix.xxxxxxXx

X X X 'X X X 'X X

= 43

or, regrouped,

lx x x:x xxxx

X X X

13x xxxxxxx
X X X .DE X X X It' 'X XX XX,

='27
N A B) 43 -

3 - 27 (40 + 3), '(20 + 7)
(30 44 13) (20 7,)

(30.- '20) 4. (13 - 7)-
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.Chapter:11

INTRODUCINO RATIONAL NUMBERS

A

Introduction,

All our work with. nmmbers ip to thii point has been ,with the set of'

vhole nuMbers- ve have pretAded that thelar the only' nuiab
.

s that exist

and ve have teen haw they and their operations behave. Our timber lines

'! have liaep martedonly at the points vhiCh correspond to ,14111e numbers,

leaving gaps containing many points that -are not named. Using only vliole

, numbers it is clear that many division problems cannot 'be worked (for

'example 3' + -); that is, the set or whole ilumbers is not closed under

the-operation of division.

NOV the'problem of naming points between those named by 'whole num-

bers 'on ihe nuMber Ilhe and the problem of (almost) getting' cosure under

division of whole nuMbers f ve cannot divide:by zero) are tvo problems

that persuade us of the paed_to extend our number' system to include more

than the whole numbers. In the historical development of fintbers the,

'prsblem-O4r-measnrement (-which will bp considered in Chapter 12) vai

probAbly a significant .mottvatian 'in forcing the extension,of number

systems to more sophistication than merely counting and nu ring.

,
4

-Regions as liodels for Rational Numbers .

Mb.

In oueektension of the number system to include, what ve.vill call

rational nualibers (but vhiCh are frequently called "fractione) we will
_

,procted mop as we ,did with the whole numbers. :That" ve vi4. start

-with physical models for sndh numbers and from these 'develop some concepts
4

abokit, them.'

In setting'up physifal models fo?. rational numbprs, we usually b'egin

by desiinating some "bdric*nnitu, for example, a. sPgment, a rec-Cangular

region, a. oircaar region, or a coil ectiOn-OP thingt . Uzitt7li"-then

'partitioned into a certain nnmber of congruent parts. These parts,

compared to the uniet, give -us the baais fOr mtdel for rational numbers.

a.

.
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v

cFor example, let us identify as:

our base unit a square region anp

suppose this is divided into two

congruent. parts as shown'in Figure {a).

We Want to associate.a nuMber with the

area of the shaded partHof the square.

libt only-drip-we want a nutber, we want

a-name'for thit numberl.anUmeral,mhich

will remind'us,of the two equal parts
v .

have:.(xf)ihich oriels shaded.'1-441e,

tranmeral'is the obvibut'onell; read

'M one-balf". 'If our'ullit is'partitioned into.three congruent parts,and
, 1. : 2 -

if twO,Of them.tre shaded; as in 6gure,(b), the nUmeral reMinds us
3

that ve are associating a.nuMber with two, of three congruent Partsof-a'

:unit. thserktbat our numbrai-still'uses notions' expressible by:whole
A

numbers; thatls; a basic Unit is partitioned into three.cppgruent parts

with -1.4c) of.tlieie considered.

c

(b).

_

In the'figures below, a-rectangular region serves asthe unit,

(c) '(-3)

3The numeral -17- expresses the situation pictured in Figure (c) namely
4

the unit region partitioned intd four congruent regions; of Which three

are shaded. And, of-courte, the numeral expresses 'the situation

represented by Figure (d), the base unit partitioned into'six congruent

regions; of which five,regions.are shaded,;

Vore-Copplicated-eituatione:ate-INWesented-in the next-drawings.--------
e'

In each-case the base unit'is the rectangular...region heavily outlined by

soli'd lines. In someliof these, the shaded region'designates a region

the same as or more than the.base region, hence nuMbers'equal to or

4
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Ulan one. Thus Figure (e) sholosthe base unit-partl:tioned into,five

5
'parts all of mhich are Shaded.. The numeral' -- -describes this model.

(e) Physioalmodel for

:that

(f) Physicai model forti

6
(g)

(h)

( 1-11) .6

milt
(t)

(k)

In Figure (f), the unit region is partitioned into four, congruent regions,
5

and-five sudh regions,aredhalsedrthe numeral ,desCribes this model.

Bxamine the other situations illustrated and verify that in eadh.case

the region'shaded is indeed a Amdel for,.the rational nudber named under
1 7 4

-*
4

44
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,

MOdelS us ng regions of varioui shapes

atgions of other.shapes-can also be, used as modeli'for.rational,

,nuMbers . Some su4 regions,.with associated,nuMerals, are pictured

advs., In eachicase, you can 4eAfy_that7the'model involves Identifica-
.

tionof.a_unit region, partitioning of thie regioi into congruent regions,

and.consideration.of a-certEan nuMber-of these congruent regions.

For thesake of Simplicity, we,haveused as'models only.plane

regions. Frequent1y4sye use solid regions, also, as models for rational.

.-numbers. The interpretation given'to,such models is but -an extension of

that used with plane regions.

(Prolkems*

1. traw models for:

4 2
a.-

4

3
2

4'

*Solutions for tS4e problems in this chapter are on page 297v:

216 b
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y44,

Vily are tly following;pictures-not good modeli for rational nUMbers?
. .

*07

1

.

at-enuml?ers do.the shaded i)ortions of the following models

illustratef

( a)

,

(se

Number 'Line Models for:Rational, Numb.erb 4 0

Another stancle4 -physical model 'for the idea of a rational number

:uses the number line; The valh.we locate ,new'points an the nwnber line
parallels the prOcedve ve followed wlth regions. After ve.mark ofra
unit segment and partition into coneruent --segments, 'we then count

. 1
. these parts. Mitts, 'in wder to locate the point corresponding tb L-1

) ve mark oft the unit segrasnt into 2 'cOngrlaent parts and cOunt off 1

1Srthem. This poirat corresPonds to -§

(a)

1: part-

99999--9799

unit
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t

5
In like vanner) to locate .g we partiti*a.unit,interval into

'conkruent Plots and count off ,5 of,these parts. We have now located,

the point vhicll we associate with.a.g

5 parts

unit

%

Once we haVe this method in mind) we see that:we can associate a

point onthe nuMber line. 'with all symbols such as .4 , , , etc.)

as illustrated below.

3- parts

3,4 1

Unit

5 parts

unit

9 parts .,.

2 9114

.unit

0

0

PrOblems

4. Locate the point associated with each of the following oni separate

nuMber'line.

0

C.
3

.

f.

278.
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Array Modks 1.61:Rational Numberseaoya.1*W awitia*.00. *MOW

'of objects arranged in:arrays. may serve as :models for rational.
,

, riumbers, as in the illustrations-below. /xi each figure the unit set or
_

array is bpunded by.solid lines.

..

1
A model for

2

4 is, ,,
4.- *

A> 4. 4>

1.0

(.cT) A' model ,for

o oo
ta

2
(b) A model for

N. 3

A Ai

A model :
4 '

for

In. Figurea(a), for instance, one of theitwo rows of the 'unit arrqy
1

is shaded. With this st)del we may' associate the rational number -§

In ngure (c),. four AV the four rows of the unit array are shaded, arid
4

with 'this isodel we may associate the rational number There are twO

unit arrays Figure (d) -with two-rows in each array. Three of the rows

3
_are shaded, arid with this modei we may .e.ssociate the iational nu4er

Notice that in each instance the rational number associated with a
.

particular model iS independent .of the number of elements irk each row
Iti

of the'arraY; For example f*. we would 'associate the same rational

279
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Referring to our'models we see

A.s the ilumbe of congruent parts'or

Tlit has been partitioned; while 'sa

thai b 1-the denominator; always.'
A

equivalent subsets into which a.

the numerator4 is :the nitiber of

these congruent parts'or equivalent subsets that are being used. One

of several reasons-why the denominator is never.zero is that ii would be
10-

nonsense to.speak.of--a-unit as, being divided into zero parts; it SurelY

cannot be divided-into fewer than chle ptrt.

Equivalent FraetiOns

The following figure shows several number lines: one on, which we have

located point's corresponding to 0 1 1.) 2'1 3,, ete.-; one on Zhich we have

0-4t 1 2 3
located pciints corresponding to 5-.11-13:1Tletc.;.one on whech ue hfVe

located points corresponding to. ) IF , etc.; ona on which we hdve

0 1 - 2 3 4 5_te9 v!r.,r/r/7.34-Jetc;
0 1 2

which we have located toints corresponding to , TF

located points correspon4ing

II'

and one on.

47 ) etc.

Al

2 3 4 5 6 7 8 9 12 11 12 13 14 15 IS 7 18' 19 20 21 22 23'TT
24

8 8 8. 8 8 8 8 8 8 8 8 8 8 8 88 a a Et' a

,

As we look at,these number lines; we see*that it seems very nstliral'

0
_

to think of j ; for example; as being assoeiated,with the Zero point.

For we are reall ,so to speak counting off 0 segments. Similarly)

it beast, matUral to locate. and, .8 as indicated. .

.4



Olt

Now let us put the five number lines together, as shown in the

figure below. In other words let 3,1s carry out on a single line the steps

o 1

2 2

0 I 2 3 4 5
4 44,
0 1 2 3 4 5 6 7 8 1 10 F1-888.8' assesses

3
I 1 2

6 7 8 9
4 ti 4 4

a 13 14 15 16 .17 18

88,0eeee8
19
i8

5

10 11

4 r 4
20 21 22 ZA 24
e8 8 ee

far loating in.ttrn pol,nts col-responding to the rational numbers with4
denominator 1 1 with denominator 2 y with denominator 4 and wit,h

1
denominator 8 When we.zdp this we see; aziona other things,'.that

2
and 't all correspond to the same point on the number line, or, in

other Words, are all names (numerals) for-the. same rational. number. ,We,,

0 1 2
see also that T. 1T1T, and so on, name the- points we have formerly,

named-with whole. numbers. Furthermore we see that 'fractions 'such as ,

4 8
"§, p. ancl the lap also name paints that have formerly been named

by whole numbers.. Fractions which name -ale same point on the number line,

and *which therefore name. the same rational n'Umber, are called equivalent

fractions. Notice that corresponding to each whole number there is a

set Of equivalent fractions. Consequent, there IS a one-to-one
.

correspondence betiteen the set of whole numbers dud a particular subset'

'of the'set of rational munbers. Furthermore, it can be shown -blipt a

,

one-,to-one correspondence may be establishes between the set of whole

numbers and the entird set of rationala.

--Equivalent 'Fractions in "Higher-Terme

Recognizing the same rational number under a variety of disguises

(names) and being -able to.' change the names of numbers without changing
4z.

the numbers are great conveniences in operating efficiently-with rational

a

et

1a,.

1, '



, .

1 2
numbek-s. Such, an ad±Ation problem as *g + is certainly' worked out

most efficiently by considering the equivalent problem .?,f +

1 3 2
equivalent because, ,g names the same number as and names the

12 3
.8

same number, as

,The figures illustrate 11. way of using our unit, region model to show

that -3- and 1--It are equivalent fractions, plat isl, that 3 and 172-

name the same number, First we serect a unit region 'and partition it

into 'three congrUent' regions by vth-tical

lines as Shown aFigure ( Figure

(b) shows the ,shading of t6 of these (a)

1 2
regions to represent f we re-

,
turn now.toour unit,region and

pertition,eadh of the former three

congruent parts by horizontal lines

inta four congruent parts, we have

the unit partitioned into 3,x 4 .,1e

congruent parts, as shown' in Flgure

(c) If the unit partitioned in thi,A Model' sho4ng
.iday is now superimpbsed oil the model

for - we get the model.shown in '1

3

I
1 I
I

1

(b)

g. 2 x 4 8
3 riTT P.,:

ngure (d), which Shows-t.hat. each of. the two shaded regions in the modkel

2for 3 is partitioned into four regions, giving 2vX 8' smaller con:

gitent i-egions-shaded. , Hence the model showing 8 of 12. congruenV

I parts represents the same number as the model showing 2 of 3 'congruent

1-

"

parts. 4

-
,The number' lines in Figures ( e)

and (f) degonstrate this same equiva.
2 ,

lence. In Figurs (e),, -3- is shown

:by partititining the unit segnient into IL'.

3 congruent parts' and- using two of these

to mark a point...If each of the 3

congruent parts. of the unit is now

partitioned into congruent' parts

283'

12

number line model,showitg that

2 .X 4- 8



the unit segment then contains I-.X 4 ='12 parts while the 2 original

parts used to mark - awnd contain 2 X 4 = 8 congruent par's, as shown
- ,

8
,in Figure (t). Hence, the, same point is named by

12
as was formerly'

2
named by_'..j..

To Put this in more-general termsi consider,the fractln Ihere
a

b, represents the number of parts a uflit has,been partitioned into and

a the nwnber of these parts maAed in the model.' If each of the..b

parts is further partitioned into k congruent parts, the unit then con-

tainsi.b X k:congruent parts. the same_time, each Of the a parts

is further partitioned into lc Texts so that there vill be a X k

a x k.
smaller congruent Texts marked tn the mode1.4 Hence, repreeeptil

b'Xk-

the sanii number as
a

13.

formerly did. Symbolically:

a a k
b k

',Wherek represents any counting number. Hence, for instance,

3 3. x 2 6 3 3 X 3 9 3 3 x 4 12or. V-- r57-5 7-n1m- e

A
- 4

Our knowledge of multiples,of numbers can be used to good advantage
. 1

when'each of two:fractions such as an 4 ,is to be .chang0Lim,

"higher terns",eo that eadh fraction has the same denominator.
A

a.

The set of multiples ot 6-is., (6 , 12 , 18 , 24 , "--30 , 16 .3 s * s'
The set of multiples of 4 is ()., 8 , 12' 16 ,-20 , 24,

!

The intersection of these two sets
t

is (12 , 24 36 , 48 , . :) and

any'menberof this intersection can serve as the'qconmon"denominator" for

the new fractions. The least Commin denoninator would be "12 'of

course, so that

.9, a

x 2 10
and

2' 7-12

284



Problemk

.

6. Draw both a unit region model and a number line model t9 illustrate

that
3 t

7..

Supply the missing nuMbers in each of the folloving.
0

24 '7
a. 3-= 77- b.,

8 ''Speafy the ',"k" used in each-case to change the first fraction

to the second.

7 7 x k
'13 .44 13 k

14 42
b. ,,T6 k

.3
c. 7 =

28
; k

=

aqva......aq Fractions in "Lover Terms"41.4 4 ,,
. 1 .

-

-EXpressing--ft-fraction 'in. "lover terms' (often called, "reduciri
, .

fractiops) is simply reversing, or uAdoing, the process used to expi:ess-
.

2 2 X 10 20 A
,#actions . in ").ligher terms' . For example, 7;

. i .= 841763 x lo = 3o -4

undoing this-process
4

20 20 4. 101. 2 . ,.. ,

4-

lu Ab, 10 ,4. 2 5

30 = 3o. + 10 -3- 'T 7 4-7--. 2' 2 $
-

12 12 4. 3 4 147 ihy + 3 49
and so on. In general:

If a counting, nuiber', k is a'factor of

both a and p 4, then
b

In this ease ve say that the -fraction it has heen changed to "loiter terms".

It Should be noted that labile it .is always possible to change- a traction

to an equiValent one in "higher terms" Vith denominator anY desired

Multiple of the original denominator, it, is not always possible to re-,
V,

name ("reduce") a fraction using a specified divisor (factor)o, since

one .cannot alvays divide . counting nuMber by a 'counting nuMber. For

4
example, .6 qan be renam using 2 as a divisor, but not by using 3 ,

2 cannot be changed ary "love4 terms". We sometimes say that
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a fiaction which Cannot be changed to any "lower terms", such as

etc., is in simplest prm or lowest terms.
7

Putting fractions in lowest terms or simplest form' is asconv1/21ient

skill, but its importance 1-tes been overrated. The superstition that

tractions must lways, 'ultimately, be written in this form has no mathe;

matical basis, ,for 'only different names for the same number ei-e at issue.

,It is oyten convenient-'for purposes of further computation or to make

explicit a particular interpretation to leave results in other them
simplest form. However, where simplest form is desired we can proceed

by repeated division in both numerator and denominator, or we can use the

,BLesatIst common factor of both numerator and denominator as the, k by

which both should be divid4. The greatest common factor of two numbers
43 the greatest whole number which is a factor of both numbers and tlis

is ptecisely what is required.. The examples displayed below should 'be

sUfficient to illustrate both procedures'for -writing a fractionin

simplest firm..

12 12 + 2 6 6 + 2 3

a 20 26 2 10 10 * 2 7 5

12 = (2X 2) x 3
20 = (2 x 2) X 5

So the greatest common factor of 12 and 20 -sis the

"conimon block" .-of factors 2 X 2 = 4 and

12 12 + 4 '3
20 20 + 4 5

104 104 + 2 52 52 ÷ 2 26 26 4. 13 2
4 M.' r6tr.1-7f = 1756 130 + 2 'W5 65'1. 3.3, 3

13

212.12

50_5

the greatest common factor is the U commonlbloCk".

X 2.x 13 = 52,-, and--
104 52 2

52 -7
observe _that-for a fracti n 2 the greatest common factor

(

St
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.ot 5 and. 9 :is one, and consequently the fraction,already is in its -

lowest terms. It.is trim that =3+1.7 =3 but'thereis nd need to

veriorm such a division.

Problems

9. 'For each of the follOwing, give one equivalent *fraction in. 'h

terms" and ,give three equiiraiiit-fradtiong. in '"10Ver-t-erm1:n

-eluding one in 'lowest terms.

24 .t; *. 30
a...

10. Why would it not make sense to speak of a fraction raised to

"Itighest -terms"?

Poi each of the following,, specify the greatest common factor,
a

say f of the numeiator and denominator and use f to write

the fraFtion in simplest form.

30- 30
a. f

*43

24

c.
52

39
52

Exisaity.and Order Aming 'Rational Numbers

First let us'recall the three possible relations that may exist

betnen tswo whole numbers, m and n One and only ,one of these

!three things is,true:

in = n m is equal to n)'

in > n (m is greater' than n)

m < n (m is less than n)

A similar statement' can be made about two rational numbers,

and

a
b. Td.

a c

*1;

-a a
<

s equal to -a-)

(LI is greater 'than

(2 is les,s than i)
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Let us consider these three -speci.fic examles:
-

A -.

6 9 7 5 5
B 12 .3

. 2. -8 ) .6

How 'may we compare the rationalinimbers in each inxampli.ttideternane

'whether the first nuniber of-each pair is eqital to, or greater than, or
less than the second number Of eich Pairr' Of the several. approaches

that might be taken we shall ',illustrate the one-in which each pair .of

fractions .is exp4ssSti 1,D tirms 'at" equivalent 'fractions:whose denomina-..,
s tore are the same. In particular,' the common denominat2vall be the

least, common denominator,' Thus:,
1.

2.

6 9To compare -8 and

' 6
it must be true :that, VI0

7To comPare .8 and

7it must 'be true that la
U1*

---5, 4.To compare -.8 and -6.:

9
7 12'

>

since

6

-7

5
.8

18'

'

217.7 ,

'15-§4 ,

9

5

4

18

20

16

and

_.'ann

18

21-7

15

18
-2T

20>

16< ,3.

4

4 1

it must be true that

,

Now,let us summarize each of these three coarisons and also make

a significant obserVation. in 'each instance:

6
1.

12 '
It also is -true that 6 x le = 8.x 9 .,

2.

3.

,

It also is tr that 7 x, 6 > 8 x 5

It:also is true' that 5 x 3 < 8 x 2 .

It- is extremely dangerous -to generalize on the basis.of isolated

examples; However, the -preceding examples do illustrate' an important

et of relations that can'be demonstrated to be true for all nonnegative

a
rational ,numbers and

d

a c
lf and only if a, x d b X ct .

a c
< if.and only if ilxd<b)(c.

286'
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Thus, Ve have a.verySimple,and oonvenientvay fdr determining

-whether or not tmo'rational numbfrs are equal and if:not equall.a. very

simple and'convenient 'Way for'ordering them.

,

Prôblm

12. 'Make each-Of thesf011owing,statementa true by vritimg or

or' in the ring'.

6 0 9

9 '45 -

20 100

c. 715

'143 1043
f.

13 -Tor

Rational }timbers in Mixed Form
losoomoiewm... mokeemamim

7.,ach of us- is familiar :with the'fact 'that a-rational number whose

1
name is ---

/
for example.also may be named in the nixed form,

2
- 2

(We prefer to speak of the-mdxed form for a rational number rather than

to speak of a "mixeenumber".) Let'us use,the nUMber line to examine

briefly sate of the assumptions underlying our Us0of the familiar mixed

fOrmfor naming certain rational mutbers.

0 2

2

5
3

Ckider, for instance, the use of - and 1- to name the same5 2

3 3

2 . iE Behind this statement
3 3rational nuMber.

,

lie often erte that

there is-the assumption, among others, that rational numbIrs,can be

addedt.-2 .3 4- 2 = 1 4- 2 = 12
5 3

,----,-------

Or consider the statement that 7 - 21-
;

'Here again we-see that
3.

S.

the ability to add rational numbers is one of"the things Aderlying.our

1 7 '6 1 1
interpretation of' 2-

.3 2 +

289.

49.

.

4

S.



4k-

It is beyond-the scope,of this chapter to give any systematic

consideration to the addition of rational numbers. Bowyer, ye did vish

to point out that this operation is implicit in an interpretation of the

mixed form for,a rational number.

Another important'implicit assUmption.is considered in'the

V

Rational NuTbers and Mdyision'

Thus far rational mimbers lave been interpreted in terms of several

modpls: unit regions partitioned into congruent regions, unit sets or

erreys,partitioned into equivalent subiets,- and unit segments partitioned

into congruent segments. We-Shall now look.morecloselY at the int

pretation of-rational nuMbers on the,number line,

*jar an example ye. &all consider We partition the unit

mtnt into four congruent sasegments and countthree pfthem. Each
1

interval in.the partition-represents -g therefore three-fourths is

the union-of three of these sUbsegments. Numerically this implies
3 - 1

that .z is 'defined. as 3 X

1
4 4 4

4

Similarly, the union of tour of these segmentsvabutted end.to-end

represents 4 ;,4 r 3 '2, as shown in (b).

(b
2

3
4

i

This is Consistent with'the ebove definition and the associative property

of.mul.tiplication tor the 1)roduct:

4 4,x (3 xt)
A

Aaw

411,
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'T

'.'4',),

a %

..; ,, ,,,,.", , 10: '.....1, ..II):,' ...-. ,*
. .

- Ile equaliV nt,thn 4reV'anlast..n*Fia.n are of particular:3.f
N .

.

interest

VZ

demonatrathett there,

mely

' a

4 a. Iltimb'er.; 7 , that axas433es,:torA.
; ,

x' n =733
. 33t

Associated With this -equation'is ',the quotieit n 3. + 4 .

, This bad no meaning in the- iet of- whole mothers, but we see poW that the

3 ee
set ofrOational numbers providr the nuniber -c as equal to. 3 i 4' .

% Q 9

Recallttbe use 6f the nuMber.line in illudtratibg, diviiion, stiy . of
-

6 .t 3 A 6 unit segment is partitianed. into:. 3 cdhgruent sub-

- seimerits. Each subsegment is congruent' to the segmenf from 0 to 2

-A
and thus, 6 t 3 2 . A similar partitiontmg of a 3 Hunit segment

into, 4 congruent sUbsegments oan associated with' 3 4
3

Figure (b)' above shows, each:subs,egment .1.s. Congruent to the segment 4

from 0 tb .E.Ohus jUStifying further that, 3 t, 4 =-3

-
A , #
This ',is bvt one' V.Iustration Of an important relation between

rational nubers And 'division._ In general, it is t'rue that

lk a 3.)

b
D

/.
*ere a ,is any whole nuMber, b; is any counting nuniber, and their'

v.-

l' 6 '' . -

quotient is ,the rational nuMber Ts . thus, for every ,Wbole nuMber lc

-A
.

a
and, for elery counting!' number b there is a rational nuniber ro such

Abet

Problem .3. ,

13.* a. Find n 3 n 5 .

174 the division on tlie -number 1:1,ne.

bx .a .
b

3

. -a

291
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V.

a

A New Property of NumbersINNORM ...1
\sr -

Rational numbers are different in,many ways trobmivhole numbers;

S.

Me Such diffe4ence is apparent if ve recall that for any whole number
One can alv.ays say 'what. tile "neXt", *whole number is and then ask, in a .

iimi"lar vein? vhat the "next" rational ritunlmr is after aliy given rational
s,

number. ''-or example, 4 is tile next w)lole number after 3 1069 'is tive
a next whole number after 1068 and so .on. What_;s the' next raticinal

4 `

1 2number atter ? - I f is suggested4 as the next one, -we can observe2 . 3
v. ..

,' ,, 1 6 .; 2 . 8' ' 7 VA' 1
.

2 'taiat: -z,- =..tr.-.-.,.- anu .5 = ''' " '
a es , le 12 :I s° is surely betwden 1. afid

3
7 .... 1 . 2Hence, n ikhas a better claim to being next to than does .3 . If

. .. .lt , is then sugrted thel .i.7-2.: be rsegarded as the n xt numer afte; 22: ,
4

, * 1 12 7 14 13 1ly.ecan obe twit --2. =,-§4 and -f-2- = -,--,r so .nr is closer to -,-, than,
,, st,,

To Carry *ails 'one step further, ve can squelch anyone wbo
r

13 4 I\ 1\-- kuggestss, -Iv as 'being the, next number after, 'by pointing out that
1 24 ' 137 ''''' 26 25 4 , , 12- = IT8 ' and Iv F- ;lg._ so that .4-8. is morb nearly "next to' than

13
. is N .s. 1-t, is cleait that this process could be carried on indefinitely

. .
-,,Ond, ftarthermtirei .Would apply no matter what rational number was in-

,. * %I

vo).ved. That is, -we can never identify a. "next" 4atiOnal number after
any given rational number. , A similar argument *would show that, ve can--

.*,
not identi*fir abnumber "just before a given rational number.

*

a

4

number line with 'a very large unit is shown ,to illuatrate the
vprocess we vent through in searching for the namber "next 'to"' 2

a '11.2
2

96 24
+Lri,ormarermarmoirmigerin.

0 ' 4 25 7
48

t,

* Another way of expressing what ve have beep talking about is to say.
that between 'any tvo rational numbers, there is always a third rational

-number; in fact, therefare more rational numbers than we could count.
Mathematicians goinetimes describe this by saying that tlw set of rational
numbers is dense. The word is not important to us, bnt is. descriptive

4 '6

of the packing of points representlng rational' numbers 'closer and closer
IV 7

2 9 2

401,

a

.4



or.

together on ihe nuMber line. Although We'can visualize that the points

representing, the' rational numbers are dniely packed, there are many
% .

points on the nuniber line Whoae coordinates are not -rational nUMbers.

a 3
Many points arat associated .with .numbers such as,\ It 2 If litir a.nd sb

on.. We "arp not going to conaider, such numbers in. this text, .but we

:mention theav:to.indicate that the'number line is 'not yet complete. There

is a point associated -with -every rational number but there is not a

I.

rational' nmAber for every-point.

Prdblews

14. Jiam :the 'rational.ppaibers associated with the points A-1 B C

D and E belov, vhere A is halfWay between 1- and 2 1

halfway betWeen 1 and A . ett.

%

15.. How many nuMbers are there between '1 an6'the huMber associated

* with point E ?

Summary.
0

,Every nonnegative rational nudber can be represented by many dif-
. 2

a .

ferent. fractions of the, form s' 'where a, designates a *pie nutber

and b designates a. counting nunber. . All fractions for the same

rational, nulaber are said to be equivalent. The PrOblems of changing

a fractionfto "higher terms" or to "lower terms" or to lowest terms

are essentially problems of renaming-. In thie connection we use to

advantage the fact that

a a x k
13,=b Xk

and also the :tact that

a k
k

(where k designates a counting hudber)

lmhere k designates a factor of a and b ).
A

293
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Bquality and order among the nonnegative rational numbers .can be

established on the baeis of these conditions:

44.

a c if and only if aXd=bX0.

a cs > Tao 3f and only if aXd>bxe.

s -a- if-alid-only-if-.---a-,x
z

. We have seen that a.ratiOrtal number may Se used to designate the
cilotient of any wholetiontraber, a and any counting number, b

a + -b =

Fina.171.y, we have pointed to the *fact that between any two rational

numbers, no'matter how close they are to each other, there are many

otier ratienal nuvbers. Among other things t.his means that, 'unlike the'
-whele numbers, one' cannot.4dentify"the number that comes "just before"

orAjust after" a given rational number.

, Applications to Teaching

We have emphe:sized the.use of several different models in developing

ideas about iational nuMbers:

'unit regions (plane and solid), partitioned into congrUent'

regions;

4

b. unit segments, partitioned into congruent segments; and

c, unitS arrws (or sets), %partitioned into equivalent subseti.

Children eilcountql0each nf these models in 'connection with theft.'

everyday experiendes, such as:

a. displaying a fractional part of i Candy bar,

b, displaying a fractional Part of a pieeemof string,

c. disp;aying a fractional part of a bag of marbles.

It is important that children have Eunple experience with each of' 1.1e

models identified if children are tcm.be able to apply rational numbers-

correctly and effectively. Variety of.representation is imperative in

this connection. -
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Exerc ses Chgpter 11

-.Using reptangUlar régions'avvyour unit regions, represent eadh of,

'the following .bi 1)Xtitioning the units and, Shading An7parts.

3 .,..' 7
* ,. 3

0
b..'2-

g
. f.

d.
4

h.

2.-. Using unit sements on number lines, represent eadh of the fractions

a h of Exercise. l.'

'9

T
k 4I.

, 4!

Using arrays Or' iquivalent sets, represent eadh of the fractions

a - h of Exercise 1. ,'

4. . Most of the following figures are models for rati'onal numbers. Some

, of them are_ not models because :the unft has not 1:4en partitioned

into congruent parts. For eadh one that is a prop* model, give.,

the rational nuMber which is pictured.

(a)

(a)

(b)

( e) I

. 4

( f)

-***4.wattows...e...notm.mistvilm"
2

(h)

295
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Confider the points labeled A,E, CID ane E. on the.;
number linez A C'

0 D E I

Give a' fradtion rlame to each of ths point4s.'
b:.. Ts the rational number .locat\ed at pointl 13 less than or

grea* than the one-located at D'? Explain your answer.
_ 4

C. 'In terms of the.parks on this nuith line; what tizO fraction
' .names could be assigned to' tha point ?

Interpret on the number line the followini:
26b. 5

Show on_the number line the equal ty:
2 3
'8

Tell Which of .the following fractions are in simlest form".

ve0^-

6 11 7 :la 510 7 412 10, 13 2,

For each pair of rational numbeiy named below, 'indicate whether the
first iS equal to the second, greater, than the second, or less than
the second.

1 I 7i 5 13 9a. a. e.
T.8

11 12 17 1b. u 7f§.

10. Express each of these in mixed form.
7 15 - 21 34 56a.

4.

4.
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SOlution6 fOrProblems

'Many mohfIs may`be used. These are illustrative only.

d.2 'rls't 12

5

e,

PP

414e figures are not good models beOause they are not partitioned

into 'congruent regions.

2 1. 2
a.. E

A

a.

b.
1.

-at*
0

4

1

.14110 ,

3
%5,

These modals are illustrative o

0 2

0' 2

e. 7

f.,

v

0-0 ire'
*I- II

10 I

1122.2A

297

.
* -
0 .

*

0 9 ,11 411

S lb
I 9 O.
Le * -
1 10 * S * 0 0 0 ,
12 0 0 0 0 0



'

or . . *

0 4

X

7. a. 8 b. 28 c. 7.

#

),

8. a. k ki= 3

9. 'Higher terms; many 'answers.,
48 72 240a; vriefe I'M .1 '5-0- e4c!
60 1:80s' 240. b. / / / etc.120 14-5VW

a k, 10: Sin X k can be any counting number, there is nob
a

liEdi to how 'large the numerator and denominator can become.

k = 21

e.g.: Lower terms; any of these:
12 8 6 4 2

- 15 10 6 5 3
30/ 20/12' icot :

911'g

uplam

Lowest terms:
2

"e.

31.
30 4.

s 45 + 15 T. 3
-. + 12 2b. f 16.) 36 * 12

13. 5 + 3 =

39 13 3c; f = 13 52 + 13

9
12

100

30 17-A. 15

fh

4:501

143®1043
13 3,03

10 11 12 13 14 15.
3

A

(or 12f")

abarrowmairaor.r..411#.1
3

D

17 , 1
(

13
1(or .18) kor 11-6) or IR

1 . re Ilan owl-be counted- -( actually

15-5?
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4.1

Chapter 12

MEASURE4Wr 4.

YIntroduction

Measunelent is one of the connecting links between the physical'

world around up and mathematics. Sp is countingy=but:in a different way..

Me count the nuMber of.boois on the desk., but veasure the length of:the
,

desk. Measurement ig also a connecting link between'nuMbers and geometric

,figures. To meadure a line segment is,to assign-a nUMber to it. This

cannot bedone bY counting the points. of the segment since there are,

infinitely many,points in Any Segment. TO take the place of coUnting

pointey;some new concept must be developed. The concept 61" Vmeasure-

menr1thet-Nrill'be *eloped is applicable not!orly'to line segments,.

but in,a closely related fashion to angles, areas of regioip, volumes

of pOlidS, weight, time, work, energy, and many other,concepts or.

physlcal entities.

Te Measure of a .12ot...ft

4

-In mathematics weAbink of the endpoints of a line segment as being

exact locatiOnS in space. he line segment determined by these endpoints

fa considered to..have a ce tain exact length. IT4tor instance, the,end7

points A AnA B 'of are'exact locations in space, and AB itself

has an exact length as e of its properties. Exact length then is a

property Of'all segmen s. In our intultive concept,of congruence, we

4'.have said that two seplents Are congruent,if a movable.copy of one can

be "matehed and fitt d exactly" on. the other. This may be interpreted

/eas aeaning that'th181 tWO segments have the same length.,,Thus, the-comMot

property of congruent segments is the same length. Non-congruent seg-
/

ments have diffellent lengths Whioh enable them to he ordered., -14hen we

compare AB 'With 4ny other segment SuCh as CD , one and only,one of

these three things is true:

AB is longer than CD, or

AB rieexactly as long as CD'', or

All-is shorter than CD' '

299
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It
In the caseof,finite sets, examination revealed 4 property on the,

'basiS'of whieh the sets could be A-ipmpared. That is, one set coul# iatch

a second set or kbeauld have'more or fever metbers than the second set.

At that pointa nutbers were asSociated with the property. In' the same

way, we wish to associate, nuibers with the'propertyef length of segments.

,T4s ii the *Objective of measuremen-4tor finaing,the length 'of a segment.

'Let Us deseribe-the process of miasurement as it applies to line

segments. The first step is to dhoose a line segmeni, say. RS to

serve as one.unit. This means to select RS and agree tirOnsider its

measure to be exactly the nutber 1 .

I

R s

,

(We should recognize that this selection of a unit is an arbitrary'

-choice we make., dfferent :leople tight well chdose_d,ifferent units and

historically they have, giving rise-to much confusion. For examplel&

at one time the English "foot" was actually the.length of tee,foOt of

' the reigning king and the "yard" the distance from his nose to the end

of'his outstretched arm. Imagine the confusion when the-kingAied if

,the next one.was of mUch'different stature.- '17,prious standard units'will

. be discussed a little later but meanWhile we return to the choice of* RS

a6 our unit', reognizing the arbitrariness of this chol:c.)

Now it is possible to conceive'of a line segment, CD' h that

the unit .RS ,cem be faid-off.exactly twice along' CD ) fs suggested in

the next'drawing.

4
UNIT

UNIT UN IT

C. -4

Then b reement the measure of CD is the nbmber 2 and the length
,1.1

of CD is exactly 2 units, although CD can be represented'only

300
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bloproximately by a drawing. In the sam9 way-0-line segm7nts of aength

exactly 3 unitt,'or exactly 4 :Limits, or exactly- any larger nuMber of

Inits are conceptually possfble although such line segmenis can be drawn

only approximate Ierta4t7-if a line *segment is very long -- say a
'AO

million inChes long r- no one would Alent to try to draw it 'even approxi-
.

mately; bui such a segment ban still be thought of.

We can also conceive of a line.segment, AB', such that the unit

will not "fit into" Ali i-7Whole'nA*1Mber of'timet 'at all. AB is a.

line.segment such that starting at A the unit RS can be'laid off 3

UNIT

s
UNIT UNIT UNIT UNIT

times along likB reaching Q Which is tetween

.;

6

and B although it

it were'la4d off 4 times -we would arrive at a oint- P which is well

beyond. 13 .14hat can be said ebout the length of AA?' Well, surely

'AB 'has leAgth greater the:xi '3 units and less than 4 unitt. 'In this

Particular'ase, we'can also estibate visually thiat the,length of A33

'is nearer to 3 units than to 4 units, st; that to the nearest unit

thelenge4 of 'AB is 3 units: This is the best we can do without

considering fractional parts of units, or else shifting to a smeller'

unit.

Another wey'of describing length to the nearest unit is by using

the liord "measure", Thus the measure of AB 'denoted m(AB) 1 is the

nutber 3 . It is understood in'the use.of measure that'it does not

necessarily describe exact 2..engtii. If two segments have the same length,

We know they arecongruent and they'have the same measure. Two segments

with,the same measure in terms of a specifiedunit are notnecessarily

--obtgruent.' l[mirever; if two segments have-the same 'measure for every

specified unit, 11)b matter how small, they must be congruent.

A
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1.

.Pmblems*

1. Using the'unit

. 'segments to the nearestunit.

,

find .the ,measure Of eaat of the following

Using the unit V.nd the measure of each of the segments

in Problem.1 to the nearest unit.
.

To help us in estiniatingi 'whether the measure of a segment is say;"
.3 or 4 w.e need to bisect our unit. RS is again shown as our unit

with T V.secting ft.g. .sokthat RT is congruent to lg and. RS is
a

used to measuTe MN'.

s.

0 N P
I

In 'laying off-the unit along' MN , label P 'the endpoint of the
. ,

first unit that falls on or beyond 41, and label Q the end of the'

preceding unit just 'as you dl.d. for AB on the .preceding page. 'Using

RT ('iihich has just been determined) to aid in measuring AB 1we can

check thitt BP is longer than RT and that the measure of AB is

4 ; or..m(AB) = 3 . Above,. NP is shorter .than RT and. m(I) .

There is nearly always a decision to be made about whether or' not to
c'ount the last unit which extends beyond the endpoint of the 'segment

being measured.. The reason for this is that itis raze intleed for the

°unit to fit an exact number of times :from endpoint to endpoint. It

1.

4'

* olut i on s for problems in the chapter are on page 312 .
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well to realize now that measurement is. approximate and subject to_ error.

The, "error"- is the segAn't from the end of-the segment being Measured to

the end -of -the last unit being 'counted. In A, the errOr

in MN it is NP. We note that the error:in aw measurement is always

at:most half the unit being used.

. Let 'usreltiPhasize- one' thing about terminology. In a phrase stnilar

to "a line segment of 3 units" we mean "the meaiure pf the ifne ieg-

,mont jn teris of a' partiatlar unit is the muMber- -3 ". The pbinf 'here

is simply to have a way of referring to' the nuMbers involved so ,that

they can bee added, multiplied; etc. RemeMber that we have:learn d

pow to apply. arithmetic operations only to nuMbers. You don't ad yards

-jaw more than you add apples. If you have 3 apples and 2 agopl

- yOu have' .5 apples altogether, becauge

3 4. 2 = 5 .

/Cu add nuMbers, not yards nOr apples.

AR, we shall see 'ehortly, the use of different units gives ripe

to' different measurea ,for' the same segment. Thus, if we Iconsider MN

m(T) = 6 for the unit XL, and

noN) 4, in. terms of the unit RS

4.

A

as the figurp indicates.

'

Standard Units

Numbers of people each using their awn units would have diffi

comparing their results or communicating with each other. For these

-reasons certain units, have been agreed u p o n by larise nuMbere -of-PeoPle

and suc'h units are called standard units.

s
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4

-Historically therehave been many standard units' used to measure

line segmentsl'sudh as a yard, an inch or a mile. 'Such a variety-is a

great conv4nience. An indh'is a suitable standard Unit tor measuing

the edge of a'shiet of paper, but.hardly satisfactoy for finding the

length of the schbOl corridor. 'While a yard is a satisfactory standard,

tor measuring the sddbol dorridor, it would not be a sensible unit,for

finding,the distance between -Chicago and Philadelphia.,

-Suth units of.linean_measure as inch, footl yard and mile are

-.commonly used standard units in the BrItish-American systdm of measures.

In the'eighteenth century in France.a group of scientists de4e1Coped the

system of measures whidh is knownas the netrit system using_A new

standard,unit.

In the metriosystem,,:the basic standard unit of length is-the,

moterl.whidh is approximatiy 39.37_ dmchesHor solittle morb.than,

yard. The metric system'is in common use in all Countriesexcept

those in which English is the main language spoken and'is Used by all

scientists in the World including those in English speaking countIllei.

Attually, th e fficial standard unit for linear,measure'even In the
up.1,4d S tes i he meterl, and the correct sizes

A
of othei: units:such as'

the timeter Inchlfoot and yard arespecItltd-hy law,with reference

to- et:meter. ,4 110

The principal advantage of the metric, system over, the British-
.

American bystesi lies in Ve fact that-the metric system-has been designed

for ease of conversion between the v;arious metric units' by exploiting the

decimal system:of numeration. Instead-of having '12 Inches to the foot,

3 feet,to the yard and 1760 yards to the mile, the mot" system'has

10 milliieters to,a centimeter, 10 centimeters to a deciMeterl-and
4

-10 decimeters to a meter. This makes conversions between unIts very

easY.

So far we have said nithing about metric unite larger than,the meter..

Tbe most useful ofAhese iE the kiloMeter, -which is defined to be 1,000

meters. The kilometer is the metric unit which closely'correslionds to

the British-American.mile. It turns out that one kilometer is a little

more than six-tenths of a mile.

0
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Me have a1readYnoted thkt_in,the metric system, the meter'is the

unit which corresponds approximately to'thi yard in theBritish-American

tsystem. The metric unit Which gorresponds to the inch is the centimeter

which is one4iundredth ona meter. A meter fs'almost 40 inghes so it

e

ID

, A 4

takes.about 2-- centimeterst9 mak4 an irmh or to put it'another laay

2 '

a centimeter is about 3 or .4 of an inch. Below are illustratted
. ,

a scale of inches and a scale of centimeters' so,yciu can compare them.
...

Centimeters'

Iches

-A 4

. ,, ',

Scales 'and Rulersii.

5 6 7 8

2 3

A

'Once estandard uniI such as a yard, meter or nile is .agreed,upon,

12 13

rl

the creation of a ec6Ikgreatly simplifies meastrement.

A scale 301a nulper line vitt( the segment frota
, 0 to: 1 congruent tocthe unit being Used.

A scale-dan-be'made with a' non-standard unit or with a standard unit.-

A ruler is straight edge. on mhich a scale using
a stanpard unit has, been maTked.

A we use the, ina as the'unit'in making.a ruler, we,have-a measuring
. .

devrcp,designed to, give us readings'to the-nearest inch. Most ordinary

*riders al-et,marked with the unit onqcsixteenth of an inch oiE with the'

unit one millimetei.

The Apvc6timeteLNatUre,of Measure01

*A.

Any me4sureTent pf'tthe length of a.segment made with d ruler is,

it'best, approxinete Mhen a'segMent is to be measured, ,a'scale based

pn a unit appropriate to.*spli-pose of the measurement-is'helected.

Atie-lnit is the s'ignent wi'ti endpoints at

of the iuler. The scale is placd'on the

the Beale on one eitdpoint of tMtegment.

tw6,eonsegutive spalf.. divisions

segment with the iero-point of
Tha

.

nutber'mhich correspondt'

the division point 'of the scale neareat the other endpoint of the
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segment is the measUre of the-segmeni; Thus, every measurement is made-

-te the'nearest unit tIf.the'irmhis the unit of measue for bur ruler,
-

,
then we have a'situation in vhich two line segments, apparently not the

same'length.may have the sam. e meature, in terms of a specified unit. -
d

, I

4
,

I

INCH

3 . C

in inches.; m(CD) = m(AB)

For the same tvo.segmentd we may get a different measure if ve use

'4). different unit segment. ,It should be clear the:t.ifthe unit is'dhangea,

theseeli 'changes. ThUs, irva decide.to use the c6ntimeter as our, unit,
.

'the figure beloy'sheys that in centimeters m(AB) .4 a1d, maTiY-= 6

. Now the measures do Indicate that theredsn difference4n the lengths

,

CENTINIETR

I
C.

in centimeters, m(CD) >m(.714)

of the tvo segments. Notide that by, using a smaller.unit (the centimeter)
q

we are ale to distinguish etveen the lengths ovtiro'non-congruent seg-
.

Inents wiiich in terms of Jlarger unit-(the inch) have the 'same measure...

If Measurements of the same segment are made in termeof different uniis,

the error in the-measurements mey be different since it is at most half .

the.unit being used. Thus, if a segmint is measured'in inches the error .

cannot be m6e than half an inch, while if.it is measured in tenths of

'an inch the error cannot be more'than half of a-tenth of an inch. Als a

result, if greater precision is Elesired in any measurement; a smaller

unit should be used.

Sometimes it is More convenient to recond.a length of- 31 inehes

as- 2 feet' 1 inches. 'Whenever n length ic.secorded using uore than

one unity it is understood that,the accuracy of the measure is indicated



by the smalit **nit named. A length -of 4 yd. 2 ft. -3 in. is measured

to'the nearest inch.t. That is, it is closer to '4 yd. 2 ft. 3 in. than

it...is to either 4 yd. 2 ft. 2 in. or 4 yd. 2 ft. 4 in. A length of

yia. 2 ft. is interpreted to .mean a length closer to 4 yd, 2 ft. than

.to 4 yd.'1 ft. or 4 Id. 3 .ft,. However, if this segment were measured

to the nearest inch we would have to indicate this by 4 yd. 2 ft. 0 In.
or 4 yd. 2 ft. (tp the nearest inch). There is a very real difference

in the precision of these measurements. Wnen the measurement is made to
49 -

the nearest foot, the interval withit which the length may vary is one

foot; when the measurement is made to the nearest' inth, the interval

within which the length may vary ii,ene inch. This is because the end

of .the last unit counted may lie up to a half a unit on either side of

'AS the end of the segment.

A,veiy important property of line segmenis is that any line segment

A may be peasured' 4 terms of' any given unit. This means that no matter

how small the unit ay be, there is a whole number n 1 such that if we

lay,off the unit n times along Ail starting at A we will cover AB

comtletely; that it, a point willpbe reached that is at the point B or

beyond the point B gr.
The len gth of' a line segment is a property ,of the line segment which:

we may measure in terms of different units. Theoretically, two segments

,have the eame length if and only if, they art. congruent. We run into

trouble thinking.Fid talking about length because, in practice/ meaSure-

ment of length is made in terms of units and, as we sa-q above, two lines

whi Ch are really different in length may both be said qUitettruly to have

length 2 inches ,to the nearect inch.

-A vivid illustration of this trouble will emerge if .we think about

an application.of linear measurement to the calculation a the perimeter

. of a rmlygon-. By definition:

The perimater,of,a pplygon is the length of the
* lixe segment Which is the union of a set oTnon-

-
werlapping line, segments congruent to the sides

tf ihe polygon.

'

A .6

I.
4

a
").
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N-40-

E.
1110......voLommar.

F G .h

'Thus the periineter of polygon ABCD is the length of El where

is the union of EF 1, ID Gil and 2 which are respectiVely

congruent toe .1 BC . CD and LA If va :put pins at points A

13- C and D and stretch a taut thread around the polygon from A

back to A .; when we' straighten but our -thread ye will. have a model of

a segment congruent to El ,

The.length 'of El, we know intuitively, is the.sum. of the lengths

of the four segm4nts when we Consider length ai an iitirindie property

cf degments. But, when we talk about lengths as'nsasured in terns of

certain units we may run into the:following situation:

CENTIMETER 'SCALE

' To the nearest centimeter m( AB) = n( BC ) m( CA ) = 3 . AB is congruent

to DE 1 BC is congruent t6. EF / CA ip congruent to FG but pl(G) 10

This is because to the nearest millimeter m4AB) r..ut(BC) .m(CA) = 33 ,

441, to the nearest nallineter n(DG) =7 99_ 1_ p410 to the nearest centimeter

this neans --m(DG) ,= 10 Even if we measure our Agments to the' nearest

inch we find n(AB) = m(BC) m(CA) = 1 and we would expect the measure

,the perimeter to be 3 . But' we find m(DG) = I. -,. This reminds us

agaIn that the measure of a' length is always, at best, an approximation
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and-apinioximation errors imy accumulate to cause.real trouble. The

es we can say s o e aware o s poss w enever p your

problems you are dealing with numbers which turn Ap.trom measurement

Amirocesses. Thepreciseness of any measurement is related to the size

Of the unit.selected.

Probleas
' I

3. Two'Childrill are asked to,determine the length and width of.a

crate; owils given a ruler'with unitsiiirked in'Teet, the other

a ruler with units narked in inches. The first says the crate

is 3' feet long, and 2 feet wide; the second says it is 40 inches

inphes. :Explain why they couldbOth'be right.

4. Both hildren are asied4to find the perimeter of the crate. The

,tirst one'says '10 feet, the second says 136 inches. A string

ia then passed'around thessrate, stretched out and the children are.

asked to measure-the string to'find the' periieter. This.timithe,

first pne says 11 feet,. thesedond.one 137 'indhes. Which

sults sae 'correct? ExpTain the discrepancy between the results.

We have indicates in this.development, that length is'the common

property posseSsedbY segments that are congruent in much the siiMW way,

that a nutber is the common property of allsets'that are equivalent.

Corresponding to the length of a given segment, is whole nuaber is

attadhed 'which we call its measure. note that this measure depends oil,

theiunit selected, and,' as we. have seen, is what one normally considers

'the measure to the nearest unit. Thus, length is approximated-by the

atamite, with the approximation being closer and closer as the unit is

finer and finer. This is theclse for ti:115i measure whether it describes

length, tint, weight, or any Other measurement.

1 N
When we say thlt a'segment hasAa measurement tif 3 inches, .for

instance, the implilation is that the unit is the quarter-inch. Thum,

1 1
a "measure" of 34. t is actually 13 ; since. 3E nches means 13

Iparter-inthes. Aihen-a-meaware-is-expressed-as a-rational-nuMberi

understanding is, therefore, that an approximation is made to the
4

smallest unit indicated, as for expmple, the quarter...inch mentioned above.

Starting with the concept of measure'as a wholenuaber, a meaning may nOw

v

;
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te,attadhed to a mRasure given-in terms of-a rational number. With ,

reference to the smaller unit, the measure is the Whole number of the
. .

maller units; with reference to.the larger unit, the measure may be

stated as a-rational number.
w

i

On a line, a:segment can,alWaya be found that would be congruent
.

s

:to some segment. , tt is then pcissible to choote two, ioints on h line so

that, the segment determined by the two points woula be congruent to the

unit for!a particular measure. If the two points on the'line wer'e
.

,identified as 0 and 1 , then a'nutber line may be constructed'such

that the,unit'on the,number line iscongruent to the unit for the measure.

Now, suipose*that the length cif a given segment is to be determined.

Clearly, there would 'be a segment on,the number line from 0' to a point

'having,,a rational number as its coordinate thatwoula approximate the

given segmenit iu length. Infect, by finding the segment-on'the nuther*

line with (1 as one-of the endpoints (the left endpoint) that is con-

gruent to the segment-teing,measured,': t should be possible to 66tain'the

measure by'the coordinate of the'otheliendpoint. Bythis, any'nuMber
. .

that nay be associated with any point'on the nuMber line is its coordinate

may be assigned as the measure of a segment, and two segments-tre saia

to be of-the same length if they have the same measure regardless of
. ,

the unitused. Length, conceivedporasthe comm6n property of congruent-
.

segments, is a slight departure from length insordinary language usage,

as for eiample, in stating that the'length of a desk is I. feet. Tlie --

explanation of length as theecommon property of congruent segments more

accurately emlihasizes its mathematical meaning.

310
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,Exerbises - Chapter 12

6

1, Whi -of the followi statements, is true about segments AB' CD 4

?

a. AB is'congruento% CD

b. AB'.is shOter than CD

c. AB 'is longer than EF

2, A dog weighs 18 pounda.

a. The ullit ot measure is

b. ,The measure is

'co The weight is

A desk is 0 chalk pieces long.

a. -Its measurement is

-b. Its Measure is

c. 'The unit of measure is

Is congruent.to

e. GH .is,shorter.than CD

GH is congruent to CD

in,Whichthe'following.sentences are

a; He is strong as an oXi.

b. Put ina'pinch of salt'.

C. We drink tlk gallon of milk per day.

d,'The' darn is;inee'high.

e. I am five feet tall;1,

The measUres.of the sides of-a'triangle in inCh Units are

15 and .

11.1, N4at are the measUres of the sidea' if the unit is a ftot?

'b. What is the measure of tEe,perilileter in inches? In feet?'

c.' Is'there,anything curious about your ansWer?

standard units used?

A

d.. Haw dolyou explain 'it?

A 13,
pse as a unit t6 Measure the follawing iegments,

is' CD. congruent to ,Er ? Do your answers contradict eadh other?

Explain.



Solut ons for Problems

1. a. b. 2 ;. c. 1 ; d. 2

2. a. 2 ,b. 3 c. 1 ; d. 3 . It should be noted how.the

measures differ.

40 inches to the nearest foot 'is 3 feet ,since the error is

less than ; foot... 28 inches to the ect. rest fojt is 2 feet.

AKain the error ts.less than -2- foot.

This problei involves the definition of perimeter Of a polygon..

Note:that the perimeter is 13y,definition the leneth.of the segment

*Ath is: congpeeet to the union of nOn-overlapping segments con-
f

grient to the sides.' Thus thitsecond method is the Correct one

fbr both children and the answers to the nearest 'unit are I.). feet

and 131 inches. '-The first resialt'oomes. from adding 3- + .2 4- 3 + 2
1bmt A_each measure had an error sf nch es,or -5 of

and the accumulation of these leads to the result 10, feet which

is,,in fact, incorrect. The result, inchei comes likewise

because each side measured in inches had an, error less than an

ineh,but which accumulated to something' near, an inch. The dif7

ference bwee.a.i the correct results 11 feet exid .137 inches 'is

due,to the fact that each- chilld /*yes his answer correct to the

nearest unit he using61:
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MULTIPLIAATION AND DIVISION MECHNIQUiS

Multiplying Numbers Greater l'han Ten
1

Ille,ability to compute with understanding and skill Wien multiplying

Viola nutbera'greater than 10 depends upon several thiia. Annng

these are: .knowledge -of basic Vultiplication facts, ability to,use'a

multiPie of 16 as a factor, familiarity with our decimal place value

numeration system, and abi lity to apply multipaication properties

commutative, associative, Aistrfbutive over addition, etc.).

First let us consider the Product of 4: and 12 1 for whiCh we may

display the array

00
4
0 0

. 00
00'000
0 0 0 0 0 .
00090

00000
0 0000
00 430

0 co 0000'000000
12

By partitioning the array into, two arrays so.thateach rowbas less than

10. meuibers, we peed t? use only basic multiplication facts, the distri-

butive property of,muitiplication over addition, and addition facts.in''

,Order to co l.. te the produot.of 4'. and 12'. For instance, we mai
4

partition,the 4 by 12 -array into a 4 by 7' array and a 4 by 5

array:

O 00000 00433 00 4
4000000 (500000.0000Q0000000O 00000000'000.

7 + 5

Then, x 12 = 4 x (7 4. 51
7) + 4ix 5)

= 28 20/

= 48

We have gone directly here from '28 20
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interveming steps:

= 28 + 20

20.4- (20 + 8)

= 14.0'+

2-=

By Choosing the numeral 7 4- 5 for 12 ; only basic multipaication'

,faats,from-the multiilication table are needed, We could also have choien

to.consider 12: as 3 4. 9 1 4 4. 8 Cr 6 4. 6 vi*out the necessity.of

going,outei0e the.tale. E wever, since in terms of our numeration

syStem wecommon4,interpre 12 .as 10'4. 2 it would.be more hatural

to partition the,ANby 12 array-into two,arrays in this way:,

0, 010 0_0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 900
0000-00 000000
0, 0 0 0 0 0 0 0 0 0 0 0

+ 2

Thus, 4 .>' 12 = 4 x (10 -I- 2)

= (4 x 10) (4X 2)

In dtder to accomplish this multiplication

.Multiplication' facts for multiples of ten,

also.

it-is necessary tolcncy

This istdone fpr the children,

To find the product, '4 x 10 , we look at

10 4- 10 4- 10 4- 10 . 40

Similarly, all mdliples of ten are considered by adding' or counting

tens. FUrthermore, to mmltiply 3 a 20 ,,then can be thought of as:1,

or as

314



In,the same way,'. multiples of tens of tens-1:or hundreds can bi presented,

and so on.

lieturning tothe product of -4 s'ed 12 it can now be completed.

4 x 12 = 4 x(10 4. 2)

= (. x lo) 4. (4 x.2)

4o 8
# 48'

We often uSe vertical algorithm such as these to effectthe same compu-

tation.

(a)
,X

40

2) (b) 10 2 40
4' Or x 4. x 4 4. 8

8 . 48 V5 13

or or. eventually simply

o

12
X

Az another Sxamp1e, consider the product of the nutlibers and 28
4

'Problem,

1. Show the multipliation of 3 and .28 in more detailed form,

particularly in gOing from 3 x 20 to 60 and in going from

60 + 24 to v84

3 x 28 = 3 x (20,4. 8)

x 20) (3 )03

60 +

W'e also My use One vertical algorithm or another to record ackr

L

00 i 4u_i_5na-for prbblems-in-this-Chapterfare,on-page 325
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thinking when multiplying 3 and 28 :

3 or
to 24
80,4 4 . 84

x-3
.g C3 x 8)
6o (3 x 2o)

or
( a) 28

x 3 x 3 + 24'

ro-

aimlay

Now l*t us extend our computation-to an example such.as

We *all be fairly:detailed-in our'first illustration:

4 x 236 . 4 x (200.4 30 + 6)
.

. = (4 x 2oo) 4 (4 x 30) 4. (4 N: 6)

. [4 x (2 x 100)] [4 x (3 )4: 3.0)I 4 (4 x,6)'

((4 'x 2) x loo) 1(4 ) 3) x 10] '(4 x 6)

..(8 x 100) 4 (12 N: 10) (4 x 6)

= 800 4 120 24

.
= 800 (100 ..0( 2o 4)-

7 800 ,106).-1- (20 20) 4 .

o 4 4o 4

4

Problem

2. JustifY- each step of the procedure Just illustrated for the product \

x 236

(a)

of 4 and 236 .

We maY record our thinking in several*ways using vertical algorithms:

(200
x..

30 4 6)

4

944
800
909

+ 120
4- 40

+
+ 4 .

236
x 4

24 x 6)
120 x 3o)
800 4 x 200)

-§7X

or

'03)

(b), 200 30 6

or , x 4 x. 4 X 4 120 or

1360 120 . 4- 24

.9.17V

236
X 4

12
8

316
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In all of these'different.p-ocedures considered ie-this section

.we have seep rePeatedly,that-"use is made of the-distributtue property

,Of multiplication aver addit on. FUrther extens ons o mu p ca 9n

computations.such as 23 X45 involve even,greater use of this property.

-Howe.Ter, .specific eon ideration-of these extenions is beyond the-scope .

, of fiis ahaPter.

Problem

Use one of the vertical algorithms identified above by (a) - (e)

)to illustrate each og these productsl'a. e. respectively. For

example, use '(a) as a 1 for- a.

- V**

a. 3 and 23

d. 2 an'd 397

5 and, 17

e. : 6 and 130

c.

Division Algorithms

First let us recall that-a problem such as 24,s. 4 = n may be

interpreted to mean that we are to find the nuMber n such that

n X 4 = 24 We may illustrate'this in the,follawing way,.using a.num-

ber line representation on'whieh we have identified multiples of 4 :

4 8 12 164 20 '24 28
vddre-1----

0x4 ix4 . 2 x 4 3x4 4x4 '5x4 6x4 7x4

With point P we haveassociated 24 and also 6 x 4 . Since the

association of a nunber with a point is unique, we4know that_ 6 x 4 ..4

and that 6 is th; number .n such that n.x 4 , 24 Let us recall

-what 6 x Using the nuMber line. It has been interpreted in'

terms of repeated additio 4 4 4 4- 4 4 4

1-- 4 4 4 411.4 4 i 4 --oil

6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24

6x4 -.24

Because division is7the inverse operationaf'mUltiplication and sUbtraction
4

is the'inverse operation of addition, it is reasonable to'expect that

. division may be'interpreted in terms of subtraction. This-is ind ed true.

ih
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ThUs - can be shown on the' ntimber' line, as repeated subtraction.

2444-6

17 18 19 20 21 22 23 24

/PH

The procedure illustrated above can be states in terms of nuMbers:

from 24- we sUbtract 4 afid then continue to subtract 4 from each

remainder in tlarrt, Until reaching' a remainder triat is less than,' 4 .

For instance:

21+ 20 16 12
- 4 - 4 - 4 .... 4

755 T.6 12 -Tr

8' '4
. 4 - 4
w D.

Sinee there are 6 suCh subtractions an4 the resulting remainder is, 01,
j . .

ye 'know that 6 X'.4 .,-= AV ..
.

Frequently we show 'these subtractions in- a ,more cimpEict

form such as that shown at the right.

,

Our york might be 'Shortened if, for:J.iistance, we

subtracted mmltiples af, 4 that are greater' than 4

such as:

24
- 8 (2 four or (2 X 4)T6 .

-12 3 f r, (3 X 4)

4 (1 four) or (.1. X 4)

A total of 6- fours have been suAracted sive
11.

*

(2 x 10? + (3 x 4) + (1 x.4) . (2 + 3 + 1 ) x 4

. 6 x 4 .

Repeated subtraction, the4 Pravides the rationale for division

'algorithms. Using- multiple 'of the 'divisor can be of great adVantage

tt -we, are dividi-ng-larger numbers: for exampl s, 42 3 = n .

4
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(a)
-( 8 x 3... 24

)! 3 = 15),
3 A
3 W X 3 = 3)

(al x.3 14.2.)-

24 + 3 =

k or .mply (b)

-4

>

*

As :before, of eoursel 42,t,

of V werd used.-:. Choosing
.

and more simple eventually.

I.

3.,;,1 14 -0 eyen -t,shough4different 7.1tip1es

multtilSe of' ten .may wspakn be-more.tintitural
N

However, c41dien wi4 begi with the..*

smaller multiples Anil' tft.,ke larger jumps in accordance with' tlzeir

maturitY. 4.
,

*Nextlet us atOnsider en exampiS such;,.asa.3.91 8 = n

0 'r,8 16 24 ØG 48 56 164. 72 80,,

-4

ww*

4'

4

88 96 .104 ,

0:48 ixe 2x8 3i'111 4x8 '5x8 6:(8 7O fix 8' 9x8 10x8. 1lx 12 x8 13)(8

4 .

.

.Clearly
12 X :8

12. and

(a).*

-.0 .

.ther4.is n9 whole

96 and,",-13 X.8

13 .

us4ex1ore the situation
44,

!.!i.umber

104.$

n,,such that
and thpre is

.
fOrther in

(b).

or sinaoly'

S.

.1%,

numbep ii 431.111

. 96 + 5 or 101

"
'n x B .101

nolOh93.e numbeco

this vay:

kince*:.
betwe;n.

x 8 101 ,
,..

4.! 5 . However>

4

101'
- 80 (lo x 8 =

83151 ,

8o qck
.21 *

16 ( 2 X 8 . 16) 16 2
1 (12 X 8' '96) 5 12

Or evpitually ( c)

44

4 9

Thus, a1-6=h th4re'
tovr

we have .determined that.., .

tlat. *n
pr ..

..,--- j12 x 8i.

12

16

44

nótilhole
101

.4-...
-

-... -33.. 1
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4

we ire not permitted to 'write something such as ,101 t. 8 = 12 r 5 ,

,since L2 r 5" ',is not a name for a number.
mom... % ser

In generals -if a is any whole number.,and*-b is any pounti,ng
4, aay associate with a + b or 1,-, the sentence

.
n

for which is a unique whole number stich that. n X b) a an

r .< b 4 For exampl'e, -20 t 3 *can be associated with

commonly -written in the form vo.

20 = (6

*here a.= .20., b = 3 p n = 6 and

algorithm-would appear:

. -
Thus 6 3 = 18 is to -be subtritcteya from 20 to find the remainder.
In order to subtract -then, 18, must be -1e,ss than ,or equal to 20 .

2
-3

or- 3 RV-

In mor,e
4 ,

the commOn-

If the remainder, 2 I had ,heensgrea-ier than or equal .po 5 , we could
have. found. a larger multipW of '3 to subtract flyn 20

The condition that r < b has a furtker *implication, It is 6er-
-

tainlytrue that .,,20 3' can be associated -with this equation:

20 = (1 x.3) +p;

from which-it can be ,stated. la'at ;20 + 3 is 1 with a remainder of'

17, Similarly, (2 ?( 3) +

r-

20 = (3 X 3) +
20.= ,(4 X 3) 4. 8

20' 2('5. x 3) + 5

20 = (6 (3) + 2

arc all valid equations associated -with 20 t 3.. it is i;pnera133r under-
iistoOd, however, that when we wish, to kilow what 420 divided-by 3 is,

Ne want th'e quotient expressed as the, lazgeit pdstibl e whole number plus
a>

a nonnegative remainder.. '(Note that, there it always2a remainder.- When
A

7

,
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b is a 'factor of it happens to be 0 . ) Thus by restricting'sthe
. -

remainder, r to be less than the diyisor, VI we assure that n will
.,,

...be the largest Whole 'number of times b is cOntained in a 'and so, we

onlSr :associate with 20 i 3 tile equation we want:

20 = (6 x 3) +.?..
a

'Now let us use 'division-algorithms to find n . and for t is)
'

expression: 250 t 7 . or1*
(a)

or eyentually

or -(

) 77f515

35-

or, using
st. larger multiples:

7 250
210 30.
11;5
,35 5

35

. (
Thus for a =.' ic)- , and. lit = 7 f we see that *,n = 35 emd r....,. 5 a

,l * :°'

"We therefore may-associate with 250 .7o2 the ilentenge

250 = (.35 x 7). + 5..
a

4.

Praleam

ii.. ...For each' oT the following write an equatIon of the form
, - .

a = (n X b) + r such that (n x b) '. a asuild sir < b

:40

a.
.

38.4, 5 ', .b...- 79 + 3 , c. , 112 + .4
at k

3
. f.ait lot

a.
'

2, -4 e, Iliows.
83

, *a

,. Rewrite.the general eqUatifki foil the spefal case wher.e. r = 0 ."-.. .

°

a
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-74Consider.the examgAs_1.74 3 n 1 or a

This algorithm proVided us with a great deal of infOrmation.

First, since the remainder is not eero, we know that there is no
*whole number n such that 3 x n = . Thit 'is, 3 is hOt a faCtor

of 74 . 4
#

Second, the algorithm gives us the information we-need to, replace
and r in the :equ!ktion 74 t.---s(n X 3) r so that, 'Oa X 33 74'

and r < 3 . We now may write

74 = (24.X 3) 42
2 *

,Third although there is no whole number n' such that .3 x n = 74

there v.4 ry.definits.Ig. is-a rational number n such that 3 x n = 74 .

.One -nkne for that rationil nuMber is 1,.since 3 x "7 = 74 The
- 3

,tagoeit4m igves ts the imformation needed to name tlis rational numbv

in a different way, in mi.ed form.4; FroM'our ,knoWleage of rational

, .

numlfers Ve know that o2 (the ;emainde'r) is of .(the divisor);

that is, 2 x 34. We then may assert' hat

Thus,, we knows that
,

-1

2
4 2 .Qr = 24

, 3 3

\
3 x (24

3
,24 .r2 = 74 a

- '

,

;

. Diviskons'-with larger numbers foll01-1 the same ideas Ve have developed.., .

1 *

411, 'but are beyond the scope of this chtpter.' .
-

Problem

For each exerase of oblem4, express the quoti'erit. as a rat
I.number in mixed form o as a whole number.

0
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te-lj

Sununary

In the development of multiPlication algorithms we used extenaively

4
the distributive\property of multiplication aver'addition, coupled with

the renaming of a factorAnaOcord with,ourAtecimal place value'numeration

sdheme.; 'For instanael, in,order.to etbact"the prodUct of, 4 and 23 '0

we renamed 2 as- (20 3) and then applied the distributive ;ropert4'

4 x (20 4- 3) . (4 x'ao) t (4 x 3)

In the,deVilopment of bivision algorithms.we utilized a process,of

" repeated sUbtractioe in which we.auccessivelj subtracted multiples of

the divisor. We,saw that the greater the size of the multiples used,

'the more efficient is the.algorithm.,

The division algorithm gives the information necessary to associate-

a
, with a i b

.

or ,r) (where a ip Any whole nuMber and b is any counting

-number) either ottwo things:

1. an ewation of the form

and r < b

r , where (n X b) a

2. :a rational tuMber in mixed form w enever a ;.1) and b is

not 'a factor .of a

A special case ofsboth I. and 4A,' arises when r 0 ; that is;

-.Vhen ), a factor pf a-.

.4plications to Teaching

It.isimpartant that algoritlims are develkoped.from:the 'standpoint

of being'swritten recorda of thinking patterns use,d "When computing.' Thus,

we can expeet that Childrents.algorithms will change with the passing of

tium. At first the mmltiplication and division algorithms may be Mnre

lengthi and).,psi efficient tha*-at a later.stage of,work. We should
'

plow children to usethohe algorithms that are,moet helpful'andsensible
A*

,4)1.,9_11112 We may encourage'them.to shorten-algorithms aver a period of
A

timelbut children:should not-be forced to use*more ehleient algorithms

,prematurmly.

323
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Exercises ChaPter 13

. Use several different algprithns to compute each_ of these:

a. .7 34 c. 9 x 28

b, 6 x 48 d. 8,x 54'

2. Assoate mo things mitheach Of the folloying: .s.41 equation of,

the form a = (21 b) r mhere (n X b) Aup r 11*; and .

a rational nUither in mixed form (or a:;vihple nuniber if b is a

factor of a ).

38 t 6 c. 125+ 8.

b. -99 4 ds, 84 +

a. slUng the ciapnondivisibn algoriWn, find the qutktient

342 7 .

.: .

b. ttelati_this' algorithm tb the meTe Iirtg4tive:algorithms USed

by thA children 'when' they are' first ilytroduced to division.'

4
4. II1 -a = (ri.i.X.b) --1...r 1 Oplain 'wh7 y

.. .

**

*%4S1

*

A

X b a and r < b

. 1
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4

\r SollItions for Problems

23 x 28 = (29 +

(3 x.20.4- (3'x 8)
(37x 2 1.0)-+ (3 x18),

= (6 x lb) + (3x 8).
= 60 4.24
=.40 +(,20)..+ 4

x 236 x, (200 .+,30 +.6) Warning 236 ."1

=1 k x 200) + x 30) + x6) DistributiVe properly of
multiplication over addttion

(4 X' (2 + 100) ) ..472-111.%x (3 x 101 4--(4 Renaming
y

= [(4 X 2) x 100 +-.[(4 x 3) )s< 10) + 4 x 6) As.soaative
property of
multiplieation

,-= (8 x lob) 4-'(12,x 10) 4 (4,x 6) Mu1tip1y1g

800 4. 120 + 24 11u1tip1fing, .

= 800 42.(100 +,20) + (20 +'.y) Renaming

(80o + lo4+ (20 4- 20)i+ ssoeiative propeily of -addition
= 900 + 4.0 +.,4 Adding 4,-,

= 944: Adding

(20 4; la
X 3 .

260 9 69 50

a. 397
x 2

TI
18
6

-77

x*5Y 3

a. 57 (9 x 6) + 3

130

\

%.

79 ga ; 3) 1 c. 112 =(2i x 4),

e. ( 270..x + 2 f. 106 = (53 X 2) + 0

50
14- 35

85
,

N.
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The Counting1WOhars

Chapter 14

.6TRUCTURE.

Istiur'development, we haveatarted with sets aa-pre-nuther concepts .

.:and obtained frot theet-thret Of count.1,4g,(natural) nulibers. Although
-

,-we did not consi4dir the p operties of th.e5counting-nuMPhrs'(we considered,

propertielkof whole numbers), if"'we had ajamined the cOUnting numbers

in thii light,'we would have discovered ciosure under addition and

plicition. 'In fact, all of the propertiep listed beloW-hold forthe set

1 of counting numbers':

thi,set is closed' undevadditip and multiplicationp

the'el;menta are,commutatiVe.under,additionand multiplipation;

the elementa.are associative,under addit iiiand multiplication;
41)

there is an Identity element for multi itation;

multiplication is distributive over addition.

The statsement for the "closure-property under addition is: if a

and ,13 are toyiting numbers then a -Lb is a counting number. This

may also be stated:

if a and b are countinig nuMbers, ad

a b = , then c is a counting number.

Thus, if a is 3 and b is 5 , then c is 3 4. 5 or 8 . A
t

related queStiop is: if a is 3 and t -is 8 2"is there a counting

nuMber x suCh that = c ? In terms'of open sentences, we are

2.then looking for the solution for

4..

,3 4: x . 8 . e AP

In this case, 5. is the solution of the equation. If we ask whether

there is a counting nuiber b such that 3 + b Arl we are posing the

__L_Iluestinx! Is 3 b = S' solvable in the set of counting'nuMbers?

The Mhole Numbers

In OUT study, we have found that 3 +.0:=.6 ; furthermore, 0 ia

the.only solution for x = 3 . Boyever, 0 is not a counting numb'er.'
/

4111

e
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41
1yable in the set of counting numbers.

Nor are 5 x 5 x 6 , 4- 2 ,1 and so on. In fact, for

any counting number a 0 'is the only solution'for

and henc x it' has no solution tri the set of' counting numbera.r

By adj ining 0 to the set of countiers, we obtain' an
extension from the cOunting numbers to the whole numbers. *That is

if Z (0) and N = {1 1 2 3 , , 5 , ...)' ,
then Z U := (0 1 1 1 2 1 3 4.1 5 , W

-'
k Within the set of whole numbers, then, the equation a + tx 1.-- a

has 'the solution x = 0 . All the properties that we have.for 'the set

of counting numbers hold equally fOr the set of whole numbers.' By Ihe
incltision of 0. in the set of whole numbers 'some new properties,e/re

gained: ,
there is an identity element for? additiOn;

the product of 0 and any whole number is 0
A

The Integers .

4 Even adjoining 0 to -the set of counting numbers,is not enough

_to completely solve the equation, a + x = c c , this egua-
-

tion is not solvable in the pet of whole numbers. For example, there

is.no -whole numl?er, x such tha,t 5 x Negatiye nUmbers are

introduced in the first grade, -but only in a limited way in 'relation to
the number line4% for example, as associated with the scale on a thermometer.

,
Later on, 'when negative numbers are explored in greater detail the
opposites of the C.ounting numbers, namelY, C... 711. 73 .72 I

be &joined 'to the Whole numbers. 'ThuS1we get the set of integers
1,

.

= , "It , "3 "). , 2 3 p. 11)

Then, the' equation a + x = c ,be aOlvable in the set of.intesers

for numbers a and c in this set, By this extension, 'we will find
4'

-that all the,,Properties that ve have Id-entitle@ for the whole numbers
still hold for the initegers. 5oreover, -we have an additional property
'which derives from the 1-felvabi ity of a * = 0- for, any integer a .w
'The solution for thi:s equation' is calla the 'inverse of a The property

41,



may be stated:

for- each integer a there ig an.inverse,

a such that a + -a: =. 0 .
1

By the commutative property, we can see 'that -a and a are inverses

of %each other. For example, 3 = 0 and -3' + 3 = 0 ; so, 3- and

? are inverses of each'-other.-

'Historically, there was onlyN.need qf the counting numbees for the

iprimitive 4kans:, his possessions and al.l his-reckoning were adequately-

accountel for by these numbers. 'The concept of zero as a number did not

emerge until ,quite late in civilization. With sophistication, we may

interpret the concept' from a .different point 'of view.- Zero might -be

tonsidered. to be the solution for' a x = a for Whatever number a ;-
in thin way, t number called zero is "postulated" as 'the solution.

Similarly, a'', may be postplated as the scautibn for a + x-=, 0 .

The Rational Numbers

We may nexpconsider,- the solvability Oia equatibns of the-form

a:X?r c for integers, a and c . Evidently, for certain numbers

*such as a = 2 and c = 6, the equation) ,a X x = is solvable in

4ntegers*. The solution for, 2 X, x = 6 is 3 . However, equal-ions

suah as

6,x x = g
th
are not solvable in.the 'set of integers. This leads to the set of all

rational' numbers: numbers repreeented
m

:by - where'. m and n are

integers and n 0 The solution for 6 X x 2 is then considered-
2 6to be z just as the Solution for 2 X x = 6 is considered to be .

As we have indicated in the precedine section regarding the. postulation

of zero and the number
in

may also be postulated as the solution

forl n,X x = m .

By-representation of such ,riumbers on 'the number Aine, we -identified,

for 'example, the numbers 4named 'as.

3
P

'3 9

a

.,



,to,be,the same number., Thll

:.

If a and b ar nonnegative integers such that.
..

b x k i' 0 , then 4i numbers tbat can be-represented,

a
bY -a-- are iden ifieawith - and all nuMbers

. b
a X k

erthat cen be represented bY ----- e identified.with,
b-X k

a
tb , where'-a, and b

. - do not have any common factor,other,
- .

,than 1. Cunless . a ... 0 J.
\

In this vay, 1 , ... are-considered to be in the same

4 6
"equivalence" class; I.;

_a,
.6 , "§ P .v. in another equilence class;

'1 2- 3-

-, Z 1 .6 1 " in sti 1 another ciass; and soon. Corresponding

4 6
to the equivalence of .6 p to' 1 1s7the equivalence-of the

statements ,

3Xx,= 2 $ , 6xx.'4 9 x x 6

SO, instead-of 'defining the equivalence classes via the numberline,

.the concept also.can be approached via equivalent statements. Either,

. 4
way, ^6 3 would be clhssified together.' Our approach

by the nuMber line ii the more intuitive'approacb in accord with the

pres'entation to the students..

rAs

atere,is anotherldnd of identification that we might interpret' by

the number line. It 1.6 thet'the-rational numbers la
m x 2

T. 4

may be identified with theTnteger m 1 if m is an

integer. From.this.vievygint, the set of rational-numbers may be

regarded Ap an extension of the set of,integers, We can Observe that

in,the set of rational,s, all the properties that we have identified that

hold for theintegers Still hold.. Furthermore, another property is

gained -- one that para1144,th property on inverses under eddition:

for each_rationel number :2' that is different

from 0 there is en inverse - such that

2 ( with -the identificationP - = I )
. J.

2 3 2 x 3 6 1

-3- 3x2
, 4

For exemple,

k
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a

-With extension on toP.af.;,extension, weosee an emerging structurA

,of the nuMbers AS characte*zed lily the properties. EaCh set of-numbers,

*together with the operatiens apd the properties,.form what is called a

minter system :For t he ratiinallpuMber system, the properties may-be
,

listed as follows: 4 #

the setis closedsunder addition and multiplication, for

ass lc
exsiple is a rational nUMber;,

2
t,

thepements are commtative under additi and multiplication,

1. 5 5
Tor.exemple

2 3 3 2

*the elements are associatiire under addition,and matipliCation

,f or exalaP4e)
f

\-2*

1 4-)
-37 '

there is an identity element for addition, Tyr example,

4

there is an identity element for multiplication,

3 3w X J. y ;

for example,
*.1

,for ac rational number, there is an inverse under addition,r-....-a. -

) . 2 . '2 *
or example; -7 A- (7) '=-' 0 3

4'

fo each rational nuMber different Trom 0 , there is an

5 6
inverse wider mu1tip1iCatiot5 for example, X = 1 ;

multiplication is distributive over addition, for example,
4

4

1 (2 5\ fl 2 1

Besides these, there are'properties which vs can elicit from the above,

such as
.

the product of -0

;
example,

and any rational nuMber is 0 ; for

9 ,=
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Other EXtensions

* . *
Other extensions will be made*beyond'the set of,ratiohal niAbers,

6

but these will not be carried oui in the first siXgrades. 'The rational

muMbers were associated with,
nuMbers have the property .of

-

are infinitely tal..ty zAtional
Air

the nuMber liAe represents'a
)

ppinta:o1:1 tte' number 'the 'rational

:benseet'wetveen any ty6 rag6nal nuMbers
nunibera) it appears that every' point on

ratio:mai punter., liweizer,' thei7e

nuMbers such as n' -fr 2 '#.',.-and so on, that are coordinateaof .

points, on the number line but are not-rational nunibers.

The next extension trings us*e,setof all nuMbers.that may be

represented On ihenuMber line. Theie'are the'real'nUmbers. Beyond

this extension are the 'complex numbers,-whos representat*Oris occupy

ihe.entire coordinate pIane.i.that is,,just t1e ,nutber line is.pot-

tiUfficient tbr their respiesentations) and-the hypercomplex niMbeta.
. .

-
With,tach nuMber system is associated a structure givdn by its properties.- .

J'S

4
We rialA ed to the property or prverties gained:with each

extension. litayer although we shall not,show how herev we shpuld

mentiop that itislio

Xextension from the domp

lgssor the comm

v

always the case that properties-lare gained. The
No
ex numbers to a hypezcomplex systen Taff result

ative property; a further extension may,result
. *

in thegloss of b h the-
.

commutative and assoFia-ave prariies.,
.1 1

6 * ., .
A4

There are other losses of properties. pat occur in e extensions

which havekt_been mentioned but Wth we will"note'vary briefly now.;
,

----
When the6set'O' ole nuerS±s extended to,;hhe set.of integers, we

lose the property that them is a number Whihye dam call a'first (or

; smallest.) nuMber. EXtendlng to the rationals, we lose the property that

each nun has a nuMber whidh we call the'neXt nuMher (or sUccessor).

That is, the integers-can lpe visualizedks "isolated" (discrete) 'points.

dre visualized as being densely
.

al n uMbers may be put into 1-1

oh the number line, whereas the rational
-

packed: 'It can be shown:that the rati
-

correspopiience -with the counttng.numbers, whereas's. 1-1 correspondence

caAnot be made wi,th the real numbers (we.say'that.we lose the.proPerty_

. Countiability 1n the extension). -Theextension from the real nuAbers,

to,the complex nuMbers.results in Ass of thp-prope'rty of order: between

tvo complex numbers, there is no "order ralation" sUch as
a?

that*detellninps which, of the two nunLers prededes the other.
-q
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While we ha.A, losses with the extensions mentioned, the gains
. /

apparently far outweigh tha.losses considering the many, many new
,4

problems that .can besolved vith'each extension. An important aspect

in the.ttudy oflalgebrai-.7 extensions Coneists of determining properties

thathold in eaCh extensiim. In turn, the study may orient itself to
-

. t

'investigating What.extensions may be dete/mined.that would retain

.certainPrdlierties (such asassociativity etc.), and'this is iiideed,

a programin the study of algebra.

An appropriate obserVatfon to make a .this time ii that in pre-'

sefitine mathematics as a structlired eirciplinel.thestudent is guided

through the extensions of the number syStems. Thus, with the student's
4,

maturity, his knowledge of syttems of numbers is simmltaneously broadened

and deepened. Ty

-41
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1

ANSWERS TO MERCISES

011'aptesr 4

1000 addends

1. 1000 x 3 = 3 + 3 3 J. 3 -Kw 3 . 3000 . This expresses 1000 x 3 .

By the ,'ommt.tatJ.ve property br lultiplication, 1000 x 3 . 3 x

and, 3 x 1000 . 1000 3000 .

2. a. x 5 = 20 ; ,b. 3- x = 6 ;
es 2 x 4 = 8 ; 4. 3 x 3 = 9

11111111111111

red

yellow

*

red Or yellov green blue

ed
red

orange
:red .

yellow
red

gren,
red

,

blue
red

red

yellow
Orange..

,yelaolg

ellow
ellow

green
yellow

blue
yellow

red
blue

orange
4b1he

yellow
bjut

greep
blue

lue
'blue

15 possible resu1-4.

If the:car must,be two-tone the4reate only 12 choices.

lit
flargd
skirt

straigb+
skirt,colors

ikirt

Sweater'COiors

335
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7.

8.

Or

a. n 7' p = 12 ;. q =
b. yes ; e. yes

A

.*

The star,pattern does not ive5 diso1nt sets with A meMbers

in each set.

20 x/2 f + 13-) - (20 x 28) + (2p ?II. (20 11)
. 560 +.220 + 226
= 56V 440
=.10002

20 x (28 + 11 + 11') = 20 x + 11)
20 x (50)

a

9. ..Asso:Aative property of addition.

0. a. (5 x 2). x (4 x 3) x-1 = 10 x 12 = 120
b. (125 X 8): x (7 x 3) = 1000 x:21 =' 21,000

( 250 X T4) x (14 x 2) s.' 1000 x' 28 = 28,090'

11. Commutative property under multiplication:

12. a.. 3 x (4 + 3).= (3 x 4)'+ (3 x 3)
b. 2 X (4 + 5) = (2 x + (2 x 5)
0. 13 -x (16 + = (13 x 16). + (13 x
d. (2 x 7) 4- (3 2.) =.(2 X 3)' X 7

13. a:

J

.

Then A U B. -) A

and .14(A tj 13) N(A) + N(B) = N(A) +.0 = N(A)

b. Although the eMpty set is'fl subsetPoPeiery set,- 1,t has nI '
vabers in capon with any other set.' Therefore, any set 'A

,ttr-e-ditritft-

\
336
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Jo tang C to
IP

3 . 6
-

13/4. t. A,
II( 13) 5

el

:Chapter '7

yields = A

t.3 .

3,0

3
1 0

10 -

ioaromos
.7

,

to

t.
1......-.7- 7 + 3

V
3

6

3 4

6-3 -.A-
9

6- 3
9. (6-3)

337
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4.

Y. Subtracting from the sum.'
4.

Adjn to the differenr.e.

Lt a ( () L O ) vz, B = (L. ,

4/Then Alp ( ()

and (A04) B 1 () LS El ) - A .

If -A and -B are not disjointl't e sets

not equal.' See

A, (a ,.b

ia b ,

'(AUB) B = (b

9. %. 2C + 5

b. p + 4

n ; n

example.

(Alp) B1 and 'A are

d e) ; 113.=- (ald,g,

j1'.,

c , e/ , which is a ney set.

d. n = 72 + 9 ; .n
fit

e. n.,= 64 8 ; = 8

t 7 f. No division Sentence can be wrItten. Division by 0 is

undefined.4 q x 0 0 is true ?or any number q

1

10; a. Ile,.7tangular array with 7- ro ws-and 6 columns.'
r

b. Disjoint subsets, dix with.teven meMbers each. .

4

". Either interpretatIon is e ally valid. "'There may be.oslight'

preference in thinking of disjoint subsets in b since subsets

of seven members each are specified in the packaging.

11. .The number 59 Ls a

jae\formed other than

Sixty meMbers allows

are 1 3 , 4 y

12. No.

prime nuMber, so no, rectangular arrays can

one with a single row or a Single column.

Many rectangular formations ince its factors

5 , 6 , 10', 12-, 15,, 26 30 )00 .

5 / 5 15 . In fact, 5 + 15 has no meania in-the

set of -whole numbers.

a.

338
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do,

13. a.' 2 x.6 or 3 x 4
x 18 ; 3.tx 12 ; 4 x

e. Prime

d. Prime

e. 1 2 X 4

f. Prime

7

:h. Prime

1) X' 13

a. 2 X 21 ; 3 x,14 ; or, 6 x 7
k. 2 x 3 4

J. Prime
. .

111.' '2 X 41

. a.
b. <

e. <
I.

2.. a. 14
eight

.

b, 6
',seven

_

4;--

t

Chapter 8
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e. 6'nine
d 5six

4
f'#

98

"
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. ,A
..

Chapter 9

. * /
.

.' .. ,

1.0 Sin72e segdents have two enlpoints, it is qtli e ossi:ble Tor them

not to Intersect and yet aot lie in parallel line AB 'and CD

. ilSustrate two se1t Which

. .satis4 the oonditiOns of lyillg
. .,-

in the same plane and noi inter'-'

secting; however, they are not

pArallel.

4).

2, The line; a point; ( )

e .

Model ',onstru tion.

5,

. -6 ; c. 2 n

or.

if the p*ne contains. .
.

,.

.

the Tina of center6. a. ; b.
.

. .. - 4 . ',-,-. . _ ___ --
401V. does not have:to k. When the quadrilatera; 3s not convex,

i;

the pyram:id le not.'
.

4

N
1

.contains the:point A ; A is in the angle, not in its interior.
4

N **

A

I.

ft



Chapter 10

1. a. .2 hundreds + 4 ten6''+ 6 one/
1 hundred + 3 tens 9 ones
3 hundreds +*-, lens + 15 orces

hundreds + tens 42 5 ones = 385

or 246
139
15

300
.75

,1b. 7 hundreds + 7 tens + j nes or 700 + '70 4. 79 hundreds + 6 tens + 4 o'zes 900 + 60 4- 416 hundreds + 13 tens + 11 ones \\.6r0-171-57-11.17-hundreds + 4 tens + 1.one 1741 1700 ;- '40 *.` 1 = 1741

or 200 + -41:;'+ 6
100 30 + '9.
300 t 70it 15
300+80+ 5 =

WIMPOD

4

`or 777
964

130
1600
TM'

4
i

-..., . 4 hundreds' + 8 tens + 6 ones
. 1 . 7 hundreds + 6 tens + 6 ones

sts

or 400 + 86 t 6
k 700 4. 60 + 611 hunareds + 14 tens + 0 ones rfoir-7774-.0 + 32,12 hundreds + 5 tens + 2 ones, = 1252

.
V-

or 1486
766

12
140'

1100
1252

4 a7 hundreds + 7 tens + 4 ones
9 hundreds + 2 tens + 6 ones .

1 hundreds + 9 tens
17 kunctreiv 0-teris +

_-

or 774

9Q
1600.

or 700 + 70
930

ones 3.6op xt. trio_
ones =' 1700 1700-+ o lzoa

4

. t.:
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a. 7 hundrecks_+ 6 t-PTIS '4- 4 ones = 6 hundred.s 4. 1
1 hundre-d 5 tell$. +-24,ens 4-10-ones = 1 hundred + 9 tens + ones

or 700 + 60 4 = + 150 +
166 + 90 + 9 = + 9os + 9

3-677-760---1. 5 565

5. husndreAs ens + ones = .565

b hundreds.4.,0 tens +*2 &les = 3 hundreds + 9 tens + 12 ones
3. hundred it 3 tens + 8 ones = 1 hundred + 3 tens + 8 ones

2 ha eds 6 ens + 4Eires = 264

or + + = 300 + 90 + 12
100 + 30 + 8 = 100 +.30 + 8

-200 + 8o + 4 = 264

a

I.

hundreds + I ten 0 onps., = 6 hundred 4: 10 tens +.'.1,0 Ones

hundieds + 8 tens + ones' = 2 hundrede+ 8 tell; + J ones'
= 423' 4

or 700 + 10 * 0 = 600 + 100 + 10
200 +§0 + 7 = 2o0 + 8o 4. 7

400 + 20 + 3 = 4e3.
4

d. -8 hundreds + Q ones = '7 hundreds +1"9 tens* +40 ones,
t

3 huAdred + 9 .tens + 6 ones = 3 hundreas 429 tens * 6 ones;

k hundreds + 0 ,tens 4 ones = 404.

or 800 o + 0 7 700 +
300 + 90 + 6 =, 309, + 90 + 6

400+ 0 + 4=404
4.

3. + 926 = (70Q + 70 + (96.0 + 20 + 6)

.

= (700 4. 900) + (70 +4.20) + (4 6)

= 1600 + 90 + 10

= 1600 + 100

= 1700 *

Boo - 396, = 8qo (309 + 99 +_ 6)

= + 90 %). -(300 It. 90 + 6

=1700 - 3004 (90 90) + (10.- 6)
4

342,
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a.

a..

a

,Chapter '11.

; 1
a

I.

e. NI 111111111111111

A

to

S.

4 5.

0 1. 2 0 1 2
3

b,k. 6 ,

I viv

o 4 2

d. 1 5 ;
3. a.

e*

;.... 4.4,
O 0 0 0 0

I 0 * 1
1 , 1I * *1

\.*: 0 0 01
1

1 0 0 01
41 10 0 1

,

f's

g.

b.

a 1 2 9

( empty)

40 0 ill ,

.46 a0100
0

'343

C.

17.

d.

O -0 000
O 0000o
O 0.0 070 0.
O .04000
.0o 0000.
O 00000
1000000

*

1

.00

a
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A

,

/-

IA

.*

1 2
a.A. A , or -c ; B C2

f..

4

.1

'

not an appropriate

; "
not anlappi..opriate models-

-not an appropriate moipl

1. 2

b, less thanl-slnee B,'lies to the left of D .1 'lies to

the.right of 0

C. 1 2
or 't

4:

11 7 12
a T. 12 $ 13

I

11, 917 7 re,
i

r

S.

'1\

1

r4

b.

A

fI
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, %

/
d. ,:and e, only

a. one itound ;

Chapter 12

/ 0

4

b. 18 c. 18 pounds

4*
a.,Th chalk pieces; b. 9 ; c. one K.:hen piece

4. c. and .e. crag-

I.

J

a. 4 , 1 1 1

b. 45 ; 4 *

c. 4 is liot the sum Of the measures of .qie sides in 'feet.

cl,; The measureot a perimeter''of a polygon iS obttined by the

mesaure of a se,gment which is the union, of non-overlapping

eegments congruent to the sies of- te polygon. Eadh -side
.

,of the triangleris longer than one 100 and therefore -the

errors account for the extra. fooi in'the perimeter.

. The measUre of CD is .1 The Measure o; EF is 1 . No. No.

Congruent segments4must have the same measure, regardless of the - t

unit. However, 'eagMents may have thei same maasure -without being

dongruent, It is necessa,ry, however, that with reference to some

unit, non-congruent tilt-must have different- measureg,--

the Case of CD and EF the measure of CD is 6 and the

measure of EF is 8 if thelanit is, 4

49

,
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0,

t.

. Chanter 1. : '.
. c.

1. 'These anfwers ire illuatrative; otherti'-aKe pt:5'ssib14..4 . .

a. .(30. 4- 4)
.x 7,
210 -t-2eil

, 230 4- 8 238

: oi. 34
I

b. 1i8 or. ' 48
7 x-6 . x6.

'arg
240

758)

c. (20 3) or 26 180
x 9 x 9 'ix 9 + 72.
Ukt + 72 Iro" .
250 + at,. 252

d. 54 or 54
x 8
32 1T2'

40

a

2.' a.. 38 4=.,(6 i< 6) 4-

.
; afso, 38' , t6 = 6 -g =

,99 = (24 x-4) 4-, 3 also, 99', 4 7 241*
..1

C. 125 8) ,-1- 5 3 also, *11725, * a ... 3..q

d.. '84 = -(28 x 3). also, 84 +',3 = 28

'48
a. a b. 7 r5rf 7 mr

28 , 28 - 280 *40

56 56 - 56 8r
67 48 3? = (-48 x 7),

S.

n x b a 'in order .tO assure that the multiple of is less
than oruequal -to a

11 X b. >_ a _t_ the subtracti on Ignild -not .be- -meauinitful-
,

r < b" in order tQ be sure th'at n is,as large as it. can be.
If r = b the quotient -would be one more than n ;
if r > b the.quotient would bi at least ona more than n

td.th or without a rekainder. _

2 9 5



pLOSSARY

Mathematical terms and.expressions are

S.

frequently used with different

meanings and connotations in tiie diffetent fielda or levels,ofmathemapies.
4,140V.

Tht following glossary explains some of the mathemktical words and phrases
. .

.

a.: they are used'in this book,and in the K-3 textilt TheSe arenot intendd .

to be formal definitions. More explanations, as well as figures and'

examples, may be found in the bbolt.

ADDEND. If- is tht su.,;1 of

an addend of 8.

A

and E, then 2 and 6 'are each

-AmatIon,,,An operatiov on two numbers to ottltin a thiid nuMber called

,ALGORiTHM. knumez.ical exPression of a computation UsinAproRerges Of,
4

` addition and multiplication and Characteristics of a akstem of.

-numeration to determine the standard name for a sum, difference,

productl'or quotient.

a
ANGLE. 'The union of two rays !which hava,the'same endpoint but which

do'not lie in th,, same line.

-AS MANY AS; AS MANY MEMBERS AS. two sets are equivalent, then one

-set is said to have as many meMbers as the other:,set.

ARRAY. An ordcrly arrangement'of rows and columns which maybe uted

as A physical model to interpret multiplication of wholeinuMbers.
t

For example,

* * * *

row "C/77"17717.-

4

*

,
column

x
_

A rectangular riay is implied by ARRAY. tstless otherwise speciried.,

34?
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ASSOCIATIVE FROPEETY OF AICITYON. When- three numbers are a,dd4d in a given

order, the Sum is independent of the grouping'. That is, for any three

numberst, a, b, and c, -

'ASSOCIATIVE PROM= OF MULTIPLICATION. When three, numbers -are multiplied

in a given order, the pz:oduct, is 'independent of the grouping. *That ,

isi for any three numbers al b., and el

( X b) x c a x (b x

4A.Sg ( Of A geometric ,figure). A particulaf side or face 'of a geometric

figure. For example, the, base of a parallelogram is one of the

stdes; the base of a square pyramid is he face that is the .square

region.

4

BASE (of a numeration system). A basic -number in terms of -which we affect,
0

groupings' within the system. 'ien s the.base of a decimal system

'and tv6 is 4e hase of a binary s stem.

-BASIC FACTS (addition, naltiplicationo subtraction, dMsion). Basic
. .

'addftion and mUltiplidation facti are sentencea which ,express -046

names for the sums and prOducts of all ordered pairs of whole

numbers less tElln 10. ., Ont name expresses the suili: or product,

using the.ordered pair. The Other nait expresses the, sum.or
.

product, using:the .Standard name.' 'For example, 2 + 4 . 6 is

a ,basic addition fact; 3)( 4 7 12 is a basic maltiplication Tact.
.

.

Basic subtraction _and division facts _express the differencesnd

votients for any ordered pairs of whole nuMbers 'a and bo

such that a b c c b = a. and a b = co such that

, c x b al where: b and c are both mhole waters less than 1Q.
'-V

41
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BETWEEN. If a curve DIASes .thrigh three Points 'A, 3 and CI

then S is between A and C. When a curve is ritt specified;

it is 'understood..that.the,cuppe is a line or a 'segment through

the poihts,

-If for three. numbezS a and a < b and

b is betwen a 'and a.

CARTESIAN PRODUCT. If, for tWo given Sets, A (a, C) and

B (1, 2), then the Cartesian product (Product 'set) of 'A

and .B is expressed-as

7
A X B = ((a, 1), (a, 2), (b, 1), .(b, 2) '(ç', 1).,(e; 2)).

CIRCLE. The set of all points tka plane whiCh sr& the same distance-
.? ;_fram-a @yen point. Alternativtly,- _lit circle is a sitople clos=d

curve.hpving a point 0 in its interio sUch thati if A ahd

B are any tv6 points of,the Arcle, OA is congruent to OB.

CLOSED CURVE, I cUrve whose starting and endpoints are the same.

'COLUMN. See ARRAY:

COMMUTATIVE IROPERTY OF,ADDITION.. Whr two numbtxra are added, their
sum Is independerib.of the order 01' :theAtidenda, For 'any two

t numbers a and b a 4.'b = b + a.

COMMUTATIVE PROPERTY' OF MULTIPLICATION. When two .numbers are multiplied,
their product is independent of the order of' the factors. For any
two, numbers, a and :01_ a:

COMPLEMEST OF ,A S. 'See RIRMAINING SET.

I CONCRQUNCE. The relationship betwAn 'two getmetric figures which have
exactly the Same size and shape.

4

'r)



-VON= id.X0ON, kpolygon Is safd to be convexlif the segment determined.

by any two int;rior points' lies entirely in th,q interior.°

The polygon below it no
4

+.1
. -

convex. It is said:to be, concave.

COMIC bb.e. A set.is said to be convex if a Agment detirmined bY any

kw.,3 points al- 'the set lies entirely in the set.

COORDINATE. The name of a point -on the ,number line. ,

COUNTING. Thc,.pairing of objects in a set with'the numerals in the

equiva,ient standard set.
f

COUNTING NUMBERS. Members of. (11 21 3 4, ...); that isl the whole

numbers With the exception of 0,

CURVE. A curve is a setaof points follóvtdinl going from one paint

to another.

DENOM;NATO.R. The sieOnd member of the ordered pair of whole numbers
s. v.

associated with a fra,.2.-jotifr It is'the number (nonzero) of congruent

partsr equival ent subsets into which a 'unit has been divMed.
,

z, OE. The numbsqr whiich IS-Assigned to an ordered. pair of /milers

under- Subtraction. is the, kifference. of 6 and 2.

DIGIT. Any one of the numerals in the-set 101 11 2,1 3 .4, 5, 6, 71.8 9).'

DISJOINT sgris. Two or more sets which have no members in common.

D/STRIBIEErrkillOPERV. _OF AULTIBLICZTIOi OVER ADDITION..%-A--joia,- propei-ty-

of multiplication an& addition. For any three nUmbers al 1)0

and then

e a x.(b,4- c) = (s b) x'c).

1

DIVISION. An operation on two numbers, a and 'b3 such that-:. a b n *
if ank only if n x b tr. a.



5"\:

-

EDGE. :rhe Interseption of two polygonal regidns WhiCh'ete facea' of the

-surface of a 'solid. Where two faces meet it; an edge'of the:solid.

,For cylinders and cones, the boundary, of aface is,an edge. *

A
EMITY SET. The ',4et which has no members.

EQUAL.' A B 'mew' that-A and ' B are names fdtPthp same thing.

For example, 5 7:2 , 3 exprloses twb manes fdr the difference

Of 5 and 21 alao., A = B ik. .and B are.sets corisisting

of the same members.

EQUATION. A .Sentence,whiCh.expresses'an equality. Open number sentences-

ire called 'equatiOns if + dverb is "equals" ,or "is equal to".

EQUIVALENT. -Two dr-more sets ar said to b equivalent if thejr members

can be put-into a One-td- ne correspondence; that is, each element

of, ,A is paired With exactly one element'of B and no element of'

B is left unpaired. --.

.407111 NUMBER, An integer Which caribe expressed as 2 X n Where n is

_an integer-.

'-EXPANDEVFORM. 'The numeral- 532 written as'
'40

(5 x 19 x.10 10)-+ (2 x 1)

or AS., 500 30 -17 2 :
4

is said to be written in expanded form.

EXTERIOR (CUTSIDE)-OF A SIMPLE 6LOSBID,PLANE CU1WE1 ,The subset of the

plane whiCh, excludes both,the simple closed c*ve and. the subset

of the'plane-enaosed by the.plane geometric /Igure..,
*00

EXTERIOR (=um) OF A 8IMPLE'CL9SED SURFACE. -The subset of-points in

space whlch exclildes both the simple closed'surface,and the subaa'

of points.enclosed by,the surface. ,

a

FACTOR. If 10 Is the product o? 2 'arid 5, then- -2 and 5 are
-

both factors-of O.

"40
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4s.

rEWER THAN; PEKER (MENBERS3.) THAN: ,If, in Pairing 4vhe e4ments -of A, with

thope of B$ there ds an element of B which is not paired with

any element of A, 'then A has fewer members than B.

FINIIS SET.' A set isltiniteiethgre_ is a, whaynumber that will.answer

the question, "How'many ,elements are there in theset?"

'The notation (0,. 1,1 21 3, 4, 5, 0 describele set of the,

* flrst seven, Wholenumbers tifinita set,

a,
FRACTION.-- 'The numeral of the form To- where b ianot equal to 0.

. GREATER ThJN. Associated with the relation "has more members th

for tets Is the'relation "iagreater than" for numbers.. For

example, "9 > e"- is read 79 is greater than 8"'. For any

-.two nutbers a and b, a ).b1- if a - b, is a /paitive, number.

4

ON. A polygon with six sidet.

A

7LEMENT. The number 0 is the idetity element.for additiOn

because the sum of. 0 and any given rlumiberis the given nutber;

that is, 0 4. a'= a,

The number 1 is the identity element for multiplication because

the product.of I amid any given number is the-given nuMber;

that, it, 1 X a = a.

IDISTITY PEtOPERTY. Th? property -which states that there is an identity-
element unFler a particular operation.

NiR -SET. A set is infinite if there-it no whole number that will

answer the question, 'Tow many elements are there?"

The notation tO, 1,,.21 3, 41 5 .6 deatibesthe set of whole
A

lumibers,,awinfinite set.* 7.
40*

4-

IOR 4 IDE) OF A SIMPLE CLOSED PLABECITNE.'

platie,snclOsed by the timple'closed

352

&12

The' subset of tht



47.

INTERIOR OF A SIMPLE GL9SED SURFACZ. TYie subset ott 'Points encloSet

by the'simple closed su,rface.

"41INTERSECTIM. -*the zet, .points coMmon to *two or more sets. of 'tints.

imam .tDOING AND UNDOING) OrEVITIONS. two operaiions zuch that'one ".
tiundoW'

what the other one "does". For example, putting on* *

jacket and taking it off are inverse ope'raioras,

JOIN; UNION. .The union of two disjoint sets to form a third set,,
whose members-Are all the elements in each of the two sets.

For exampl,e,

if A [red, blue, green)) and 13%. (white, orange)

then- A U B = (red, blue, green, white, orange).

LENGTH. The common property of congruent segments. We approjiMatie

lthgth by' measurement or comptfrison with specified unit segmente; -

in thl length.approximate.41 by the measurOent 5 miles,' ts
-the measure and the unit is the mile.

,

LESS THAN. Associa edwi.-th the relation has,fewer members' than" for

sets, is' the relation "is less than" for numbers. For example,
"2 ,< 5" is read "2. .is 'less -Ulan 5". For any two numbers a.

!k' and b, a <-1s 14' b is a positive number.

LINE. A`lite is conceived of as the unliiiited exteksion -of a given

segment in both prections.

. TAKE SEGMENT. A' sijecial case of the curves between two points. It may
be represented by a string stretched tau4y between its two endpoint's.

,

LINEAR SCALE, Ai scale IS a nuMber lint with -the segment fiom 0
*nu_congruent to the unit being used.

4
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Mihail, 'Two sets match,if their members can be put in one7to-on4

corresponden e.

:
. T

MEASURE. ,A nuMbe., assigned to" geometric figure indicating it6 size

(length, area, rolume time, etc.) with respect to a speCific
.

unit. 'For eample, the'measure in.inches of AXL'is -,4,.

A'.

'01

Iment(of a set)- An object iri a set.

MISSING ADECT4 IS, 8 is the sum oi 2 and n, Oen n is the

missing addenct
4

MISSING FACTOR. If 10 is the product

the missing factor,
a.

of 2 and n \n is,

rooft (MENBERS ) THAN. 1Y, in pairing the'eleMbnts of A with

.01, there is ayeast One meMberOf B *'whiCh is not

with any'element of A, then B has more meMberS,than

MUITITLICATION An dper4ion on two nu,tbers to obtaip a third nuMber...

those

paired

A.

callad their product.

NATURAL yuNiEms: )See COUNTING NUMBERS. 4.

.1110ATIVE VUNBER. Any nuMber that is less than O.

NUNBER L/NE,. A linamarked off .sit 1nterv41s.00ngruent to a ChO'Sen.nnit,

segm, 'suchthaV :there iS a4starting,point:msdbiated With the

nutaber th°e endPointof successivaintera),.s are-labeled'accord ng

to
N

the,counting nuMbere in their natural order.
a

I

. ,

.

-zuissait v: UN:Tr) Or-k-SE2. -The nuMberof elements-in,thp sot.c.11mnumber
.

_ .
. .

property,of A is written ,N(A), Ale A- is a set..

,NUMERZ., A. came'for a. number.

NUMERATION SYSTEM.- A ystm'for,naming-numbers.' .The'RoMan numaral system
....

ly-and'the decimal 'tem are:systens of'numera ion.
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TOR., The first nuilib4r of the ordered pair'atfleoleillpitbers

'associated with a fraction. It is the nu4er,Of congruent parts

brequivalent subiets being considered.

0

ODD 111,10BERS.. -An integer Vhith cannot be 'expressed as 2 x n, wheie

n interipp-t.

. it -4

ONR:4070NRCORRESPONDENCE. A pairibg between two sets A.and )3,,
.

.

,which.associates with eaCh selement of 11,-, a singe ement of B,

And with each element of B .4 single element' of,

',OTERATION. The association of a t)lird nutter with an ordered pair of

nutters is a binery-tperation.'i For example, in the,operation of

'addition, the nutter 7 'is assoctated With the pairpf nutters

5 and s 2.

tIn general, an operation is the,associatibn of a unicine element
4

to each element Of a given'set,' or,to each combination-of elements,-

one from each.'Of the' given sets.

ORM.' A property of 0 i'et of tutbers,which permits one-to sair Whether-

a iS less than b, greater than b,, or equal io b, wheriT a

and b 'axe, members of the set.

4

PAIRING, A correspondence i7a1Veh ah element Of one se-tand an element
1

of-anotner set. .

PARTITION. See PARTITIONING,

PARTITIONING.' Partitioning a'finite set Means separatina,the set into-

disjOint'subseta'so that the union of.the sasets is the given set.
-

%

In Artitioning an infinite set such as a line segment the,subsets

need not be disjoint, o ever, any two subsets haVe at most the

ppints of separation in common.

The see-para7t:ion ii tie par:titian.

ppiTA69u. A polygon with.five sides,



%

401,

PLAE VALUE., ANalue given to- a certain postion in a numeral. tVils-,

the Placessigils tp-Ue digit '2 'in 235 the*: ihione-- 200.

'PLANE. A,particuist set of points which can be thought of as tke
a .%

extension of a- flat surface,' such as the surface of a table.

PLANE REGICS.The,union of-a simple closed'pl ne curve"and its interim:.

POLYGON. A simple closed curve Which is the union of three or more

link segients.

PRODUCT. The third number- associated with an ordered pair of muMbers.\

a

4 N

by multiplication. For.example, 8 -is the product of 2 and

PRODUCT SET. Sse CARTtgAW PRODUCT.

QUADRILATERAL. A polygoia,with four sides.

QUOTIENT. The thli'd number associated with an ordered pair of,..number9

by divisien. For exaTple, 12 is the quotient of 48 and 4.

1,

RATIO. A relationship; betweSn an ordered pair'of numbers a ana b
awhere bn. The ratio:may be expressed by a b or by .

4
. a

RATIONAL NUMBER. A number which may be expressed as rb- or

Wherer, a and .bt are whole numbers with b 0.
a.

'RAY. Ray AB is the union of'segment AB and all points C such

'that B is between A and C.

RECTANGLE. A quadrilateral with ;our right angles.'

RBION. 8ee pulirREolaulum,somp

RWINDER; REMAINDER-SEM See REMAINING SET.

REMNINING SET; REMAINDER -(SET). ,If is s-sUbstW members

of A which:are not'members'of B are members of the remaining or

remainder set. The-complement of B relatiVe to A is the
. ,

'remain.j.ng set.

RENAMING. Using'another name for the same number. For example, '34'

can,bel.enaied,as 30 4, 20 4. 14, 2 x.17, and so on.
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INGLE. One oi t;zo congruent angle's determined by a line and a
ray having a point in the line aa endpoint.

J
ROUND. 'A shape w4ch has no corners or,sfdes.

ION See ARRAY.

RULER. A straightedge .on ,which a scale Using a standard unit has

. 'been mar1;ed.

SCALE. See LINEAR scar.

SEGIUNT. See LINE SEG ID(

SWIM& A.. statement, such as "9 + 5 .= lik" is a number'sentence;
it. Connects sets of numerical -and operational symbols showing
a relation between the seta of symbols. Exavles of symbo)..s
relating the sets are: =, <, and >. These symbols act

Itoas verbs in the sentences.

SIDE. A-segment 'of a polygon that is contained
:ln no segment of the, polygon other than
itself. For e7.ample, AB, BC, '5. and
DA, aPe aides of.the quadrilateral
illustrated at the right;

,)

= SIMPLE CLOSED CURVE. A -:closed ourv'which does not interiect

4CT,ID. A geometric figure that is not a subaet of am. <me plane.

SOLD) REGION. The union of a simple 4osed 'surface imd it,s interior.

-SQX.IAPE. A rectangle whose' sides 'are. eongruent.-,,

,, 4 .
STANDARD SM. One of the sets of ordered numerals 'such as 1 21. 3,

(1,. 2, 3; 4, 5).

STANDARD UNIT. A standard unit is a unit' of' meaSure "officially1,' agreed
or-accepted-as-a -stwidarel -Mcamiltes are:- indh, ,meter, gram.

SUBSOT: Giventvo seta' A and B, B is a substt of A if every
umber 0 13 is also t!. member of A.

3,57-
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SUBTRACTION: An operation 04 iyo numbers a 'and

third. numiSer- i, 'called the differenpe such

a.
, 6

SUM* The .1.,1.rd number associated...with an olered pair of-patters by

, addition..4 For example, 6 is the sum of -2 '"ande 4.

b to obtain a

tittat a - b = n

4

The word associated with
multipliation.

TRIANGLE. A polygon with three sides.

. a

to indicate the operatiOn

UNION. The operation that associat,ess with two sets, a third set

condisting of 'elk the members ,in each of two -sets. For examPlt,s

if A. = (redIstie green, white, yellow) and .

B.= '{blile; ,white, orante),

thdn A U ,B = {red, blue, green,-'white, yellow anal. f/

UNIT.. A \prototype froi whi e measure is 'obtained by.compariion. -

For example, the unit in measuring length. is a segment; the unit
for area -is a square tegion,

VERTEX OF AN ANGLE. The common endpoint of- its two rays.

VERTEX,7 A .POLYGON; If two sides have a point in on ,then this

common point is a vertex. The plural qf vertex is vertices,.
vow*

VERTEX OF A PRISM OR PYRAMED. If three or more edges 'have a point 'in

9onya9ni then the common loint 1.s_ a vertex

t

INEOLE -NUMBER. The' proierty othmon to a set of equkvalent sets.

jlembers of 10, 111, 3;

-


