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+ Chapter 6 oo ot

AI;D@IO& AND MULTTPLICATION *

- .

Number Property of & Unlon o o

S5 N ¥
In Chapter L; was infroduced \thc’ccm,ept‘m an operation. An

*

oper ationrssigns to cach member of a set a unigue element of a second

se,t.\ Herd, it was pointed out for example, that the number property
of a set is an operatwn. In t}ns c,a. e, a member of the Tirgt set is -,
o - a set, and a mam‘oer of the second set is'a number. Essentially then if

P is a set wiose members are sets, and W s the set of whole numbers,
the mechanlcs in this operation may ‘be 111ustrated as follows.
’ - S ‘ =
2 . X
+,2,07%, {8, v}, (Ldrie, Peggy, Rosie}, {c, 1, i, n, ¢}, ...]
N - W:‘ {O, 1’\2"3’\1«," 5‘."1\ ) i L \ . -\\\\

- >

. Operations vere: d&f‘i‘he& o two sets of -sets, Then, we were »
' considerdyg two [sets, say, S and T as we have.‘oelow.\ Each member
~ of 5 1s a-ée:g%nﬁ each menber of T is & se‘h..‘ A pair of sets,’ one \
= from S .and gne from T, 1is agsigned a unique elemént, The unigue . .
element may be a set whose elements are members of the initial sets .

" as in the case of the union or intersection; the unigye element may be

. & set.whose elemenhts are compositions as in the case of the product set, s

This 1s what we mean vhen ve say that a thisd set is ‘created from t}-id

given sets. - -0 , ) . v

\ If ‘A is one of the sets%elonging to, say, S, &and’ B is one v
of the sets belonging to T, ,the set operation mey assign. a unique |

LN

: g .
element T to the combination of A a.nd B, To illustrate, suppose

S and- T are as f‘onows. . . '

e g s e b

m'
T

= {1a, b, c},{u,ﬁ},{]}orie, Peggy, Rosie},{oz,'v, s ele:phant) ...} .

2]
1}

L{Hai.‘rr;y, Karla, Pat, Charles}), {e, g, b}, {m, e, r, v}, .,.}

' ' 'If A = {Lorie, Peggy, Rosie} and B = (m, e, r, v}, then & °
1s one of the sets"&!(‘ § and B is one of the sets of T. By the ..
R v . . . . . ) .

-

o
-t
§
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- opexation of union,.a set B . A : e - N

.o . PLOrlC, Peggy, ROSle, m, e, v, v} o .

. K is as signed %o the *ombinatlon denoted as A[)B AR - .

Our immedi&te purpose is to tie ‘such set 0perations to operations
with numbero. Let us examine First, the number pr0pertips of sets and
“,:Ihéir anion. To illustrate, the unien and the wumber properties uway be:

g . - :

- -
* »
< - . .

'[Logie,,Peggy, Rosig}}){m, e,‘r

-

» v} = {Lotie, Rosie, }@égy» m, e, r;‘v}_

3) \ ' 'S L T \ ’{ﬁ\. -
"Cons idor a second exéé%iei i ’ f . ) h . :
. N N R “ oy ]
C (e, Y lay, £, elephant) = (@,8,7, f, elephant) . ‘ AN
! ; . ' . ] » : .
: b D .
\>\ » \ . - . . i -
- \ From thp number properties indicated in the Tirst instance, we . . ,
N may recognize the familiar 3, L, ? comblnatlon as one of the com- . - .
blnations in addition whereas, the combination 2, 4 5 1s not so
zacognlged Tt should be clear that this is because we have & union .
: of disjoint, sets in the former and that the sets are not Qisjoint .
. . 1in the.latter. ITc visualize this, we may~enmlose all the mgﬁgers i:’ - a ‘\,
{Cf’f of a partirular set within some boundary, as for exeample; - \ \
‘ ' N . _ o T . o
Al { J\




0 L4 . .
Observy the overldpring of G and He ';'hc clement commdn to both G .
e ant H is g . The. ,giz.t we m&k& at this time is that ‘the oxdlnary \
azithiﬂ»ti saperatlon af a3 0" is deduced rrom the union ot two dlsioinx
setsy I N(A) 13 the sue wk: pr‘oput\ of A and N(B) s, the nuab er

* .

: ‘ . )pi‘oywr\ty ot B, then the ﬁum‘oer'property ol thy union gives the result

’

o
o “of asdding the o nmk‘m..), N'(A) and M B) provided A and B ax:e

dls‘{nin . Iy\ \¥u‘~v- w#“d‘\’ . ~ . .. ] i . ‘ \‘\::
» .

r . > R . . N
i tr A and B are disjoint sets, then N(A) + N(B) - NAl B).

. N o F 4 < . L
» x. ~ The union-is aa\ope:*atiox‘ on sets and addition is an opera,tion on numbers.
\ Co"'x'e:‘spomin* te the 2 nion oi two dlgjoint setq is the addition of' théir

number pr Opt“t‘lPS the gun of their numbgr properties is the nuwber i

_property & the anion. - \ : .
‘ 3
1 '"lm.., by 1ooking at the unions of . disjoint sets, the addition of:e*ratian
.‘is derined“dn whold fumbers \ o X ' \'j J i
"v- ;W n (O: i: 2 Yy 1‘\: vesl . l W= (0, i, 2, 3, ’*: > Y
o : ' Woe (0, 1, ¢, 3, h 5) 6: > §:\";}A . - .
» The dhlg“an“t}zat\we have abeve, Indlcating hoY 7 is p*‘oaucec ‘as the -
i uniqm result of "Omblnihb 3 “énd L in thii operation may be rea*'ranged
. shbhtly as below: - . L .
. R . . , 2 \
o / W=0,1, 2 3, 4, 5, ..) ’ :
) - » x Wt . H -
N A S .
- { . 8 . ] \
» - . \ i - ) \ ;
v = ~ 4
o b s
. ~ * \:0~ 'y A h " e
» 2 w ____=? : < »
» . \ ";,
“-r- » . t ) M v
N v ‘ v : . . e \ )
‘ Clearly, this 4s the arrangment i‘ndijcated by the usuval basig addition e
rable in whi *h the sum Ofg: 3 and 4 1B locatea a6 the entry on the .
© " folirth rov nnd £irth’ column. ) ) T N ‘
: - | A
» . > / . - M . \} .
. » - ‘. LY ' . 3 N N a 3
,\ e 0 . ...
9 151? / ! -
» " - 1 .
) : . L . 1 ‘ ' - - N
R ) ., - . \ . ‘ . \ ~t ' .~ \ ‘ -
. " . . R -
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~ e Ty 5 8 T 8 9 100 1
7 33 4 L5, & a8 9 101l 12 L s )
sy s 3 8 a0 o2 12 . W
sy 77 8 9 10 11 12 13 1 B
' e T 8T 9 ae w12 )3 1k 15 L S
. A R 10011 12013 W1 16 R
) o9 o0 1233 ik 15 16, 17 0 N ~
N . Sf s+ w0 M1 o112 130 1k 15 18 17 1.§° o TN
. - 2 . ® .
‘ A - S 4 f:isf;,l»e\?' ‘ . ‘
' Problems” IR T AN |
S T 1. It A shd B are us I\:elow\, tind AUfB. RN T . . y
EOEAN v A=, 2, 13 - 13, h,\s o - o :‘
o N pe (1,72, 3} -a{ J o, . | @ : ‘ u-i, f
o ? Code A, 2003 4,8y B3 3,5, 7,9 . T - -
: T e 4, 3, 7,29} B = {1, 2,3, 4, 5} L T ;
> . s A = {'a{‘b’ 2y d); B = {a g ‘VM, ¢} \ . * .
2. Foz cach of the sets in Problem 1, find N(A), N(B), .and o \} N k

N(AU B). GState vhebher it is true that N(A) + N(B) = NAUB).
FOT each palr of sets; expl‘a‘ln*w}iy this eguality holds or wlif‘j .

N » 1f doesn't hold, \\ o TN . B

3. Draw die,g;amg to represent the unioh of ;:?‘;llowing sets.. /g; : Lo
a. A= {1, 353, 4,5 B=1(1, 3,5, } I £ S
b A= [1, 0, 3, k) B_{a o,?) v T T

¢v A = {rvalf, camel, car:wou, cougar, cow,’ coyote} ; B #bull, W |
tall, steer, cow, ox} ST . : .

» ' . LN -
[ - . 5 RN ? Nt m s e

4, Suppose R 1is the Set of numbers nsted 1n the TOW héadings of the\\o\ \

. addltion table; R y‘nay be describeﬁ as _the set of possi‘ole addends. .\
If C is the'set of numbets 1isted in the column headings and B *.
18 zhe set of numbers in the main body of the table for addition,

>

how wouldOou descride  C and B? I U, ., - ’

E A “ . » ' f ¥ N g : e
. bolutions Tor problems in this chapter ard on gage v . MR

,\‘ . .  .\ . <

I 152
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S aﬂ’rbpen e unr}er Addition - .4 \ . N

» - . . 1 . >

IR "“n\\r ar}diti\m a*isea f‘romk@ unien & sers, we can ex_pect that
'prowx*im und ; *he umion c..perai‘.i& may have 1mplica¥.1@ns for the e .

-

. adal *io§ ».peration. We sbserve first that. the “union® of two sets is
) .8 set. 'I‘his, of 'course, “1s from the uefinitlon of union. As’ g whole e

number wey be quigned to any set ,,morresponding ‘t;o the fact that

D ‘;. YL " the »10{1 f*\wosetskaset,\ . v

Do "% we have” - e L * s . \ o ‘ ) o .
L - “the sum of two vhole nuubers is a whole number. ‘ i ‘
> » Ay 0 ! \ o T
‘Both.pi‘ these s e ot\e.x.ements of closare propérties.v The Iirst is the ) ‘

\v

i . closure property ot set's under union, a.nd the second is the closure ‘ . .‘!
e v S . o
e propert.y o whole numbers mxdar addition. It‘ an operation that is

L B . R

de:tined Qn a set is sm.h tl'rat the result :ls an eIement o,f e same
set theg; we say that the -set is t-losed under the opera‘tion. “For-
exauq:le, ir we COnsider the o;;gration deggri‘oed by "*double the number s

. . then the pesult ol doublmg any whme m.mﬂ)er is also & whole number. =

s . We' visualiqg this operation fhus: = S ““:.‘ N TR
N . N Y S g, RN . - . 4 R )

v .: . .\ ) m > - \ . “:
g& I0123,h 5,6789,'..)“‘ - C

3
Y

showing, for instance, that if 3 is a member of W, douhling 3 i\s\ \.-w

\ . ) | a ) . » s v h
el T e 3

Similerly, ve may visualize cioaure»ﬁnder sadition thusy . -
. . “\ . . ) . i R ] X ‘ o
‘i‘\" . \‘ ‘ | W= {0 1 2’ h 5) 6)) 7’ 8 93, t‘.}, % ) .“ %

- 46 . ~ N .
~ » - ~
- . N . .

showing mre, fhat the reSult of 3 and 5 is an element of W \ \ :
RoughLy, this means that we don’t have to reach outSide the set- for -;’ | k
R  the result under t,t;e operation. .A consequenCe oﬁ,:{-.his property -

o \“t:hat wegmay repeat the operatidn on-the sum, ‘ j

s

-
N . . -~ -
. N (SN

L. Another property und&r the union perbains to the of*der of operation, ,‘
¥ A and B are sets, the result of Joining A t0 . 3B 18 the sEME &B ‘

- N ~ . - ~ Y
T Joinlng B to AL WE ¢ SUrmari ze this by saying that the* union is -e.
o comutat:ﬁ}e:'operation. For any sets A and B, \
) .~ ) L a \\ - v \» N M
N X \ ‘\\l N AUB BUA' ‘\ . “,\ «
A Y t - . "
- - ? . ) B
. N B . ) ’."‘ A
. 3 ‘ *a . ? - e . ‘ N
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< : v - 3 )
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) \\q . N : \’\ ) N \ ‘ ‘ ’ ‘ s ,“ . R N .
- 1 . . U o e :
\ Corre.,ponding 10 t.his, we have the commutative property of vhole ,numbers

J" . under addition, Fov any‘whole numbers, a and b,

a+b=b%a . . . ' ‘ AR SR

» - . N ) . . " /' X ’ . R
o - For 1nstan:‘e, the sum of 3 ‘and L4 (which wmay be wfitten 3 + h) s .
;- and'bhe.sum or U "and, 3 (written L + 3) both yield the same number, PO

\ Te T‘or this reason, we caw write . \ ' ™ Ee\, ‘ e . ';‘f

. S AN 'Y

Al »

- . . NI » . N

N . e R v 3+ 1& :‘h 3. T . e “ \\“

. .. . s : ~ . : N N N . S .
: Both- 3 + 4 and % + '3 name the same mﬁn‘ber. - . :

We have said above tha‘t a conse-quence of the closurg property under

>

aﬁdition is that the operation may be repeatea on the sum. For example, ‘ Y
. N sir'n,e 3+ 4 is a wha'e number ‘Wi: might add another whole number say, \
: 9, to the sum. mia;uld ‘oe indica\;e& in the grouping of 3 + 4 in ‘,;Ei .
paurerrc.hzeses,t thus: - .o B ‘ » I
\ Ty . . . "\ .

(3+h)+9.

. N . i N - . -
AL . .

o Sinre the*"“u.m of 3 +,4 s 7, the exjpression (3 + h) + 9§means *che :

e

sum ot 7 + 9; ‘or, in other verds, 16 That 1s to say, ‘ : e T
S e (G+B)+9=7+9ama 7 +9 =16 . S
) ’ therefore, (3 +4) + 9 =71+9 "¢ N : Voo R . \
- ‘ N " \ + . N = 16' . | N C \\‘ R . N "'~ ™~
i S T N » : : Je C L
- \ Sinee 1b Ls a who,le nuwx‘ber, this p:mcess may be «con}inued as.neeaed. T,
o T}ms, we way add say, 5, %o result of (3 + 4) + 9 to get the: AR K '

result of ((3 + 4). 3) + 5, vhi'ch 15 the same as: 184 5, 8 OF al.

S

Our next concerh is to. pursue the concept of grouping the adaends.»
Recall thht for. set8," the grouping under the union did not change the ‘ o
/ resulting set, That i.,, the uni.on is.said #to be an’ a.ssociative operation,

’ Consequently, both (AUB)UC and” AUJ(BYC) glve rise to the same number

_-property. Therefo;'e we have the associative property of vhole numbers “ *

. ‘under addition: ; ‘ ‘\ ’ \ o .

: . . for whole numbers 3 b and: c, ) o \ \ - ‘%\.‘ “

R . | ,‘\ - N (B. + b) TR & Y ‘(b ¥ C) [ j “ e > WW-;; . ‘_f ‘ “‘ .
S . o 7 ‘

® If A has the number property 3, B has.the nﬁmber property

AN

+ 4, &nd C hes the number property, 9, :})then AUB has the nunber . - e
‘ \property\ \ﬁmd (AUB)UQ has . the number property 7 +9, or 16, et
\\For these same sets, ‘BUC has the number property 13, .and AU(BUC) e
has . the awniber proper'by 3+ 13, ‘or 16. A, B, G are of course, ‘

< . [ ‘ ) » . ‘ -
- . . Y 3 . - . v

;.‘h ‘\\‘ . R “\:»\‘ ‘\' “\: 151" ‘ > o o \‘\
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> N N 4 . ) o . . '
SN all aisjoint since addition is deﬁVed from e.unipn of disjoint sets.

" To_trace "t‘fxe machinery“ vehind this pi‘opert , we can aisplay (a + b) + c e,

; \2 \-’r‘and & h(‘q + c) as follows. v Lt s \ “‘;f\v )

. N \ e \ SR : - ‘ ) :_f \‘:;

T € L T R U J EEET

N N | TR . S |

o : . : \ . S ; :
"“ with the vertical slashes indicating equality as we read vertlcally . .o .

‘ This may be interpreted as follows: s \ - ' :' :

L . S (3+ W)+ 9= 7»9-16 - e

| independently ‘ 3+(h+9)=3+13=16, S S

‘ S’lnce 16 = 16 we can follow the. chain: thus: . \ e C | \

BTy 9—-16-——16-—~:, +13—=3 + (n * g) o

) ‘;E‘ram ‘this, we ccnclude that (3 + lx-) + 9 =3 ¥ {4 9) The assOcis;c.ive n

property states that this characteristic is not restricted to Just the ) .

. nuubers 3, L end 9; it hold,s for any. *whole numbers 8," b, - end ¢} \ - ‘

‘.tixatis, (a#b)+c=a+(b+c) . . » I ;

" Yhe property for clohure s.llows us %o repeatedly add as napy . 3." .

numbers as we wish. ‘The comutative ana associative properties allov T !d

‘ug ‘to do thé adding in whichever wey we please, as long ’a.a each aadend T “ .

is apyr\)priately agcounted for, For example, we may require the sum. :

3 : -\ \ 2+5+,h+8+7+3+6+9 q< IN

L . . . e

closure states *that this can be done, merely aad any two, then continue , : n ‘

‘ to add any of the other addenﬂs to the result and- so on. Comuta’tivity :

--:- v ana‘ associ&tivity say that if -we 80 chOOSe, ve are frge to ;pick a;ppropri*a.te -

combinations at will, o S . ‘

: Em ins&m&e+ 1n the a‘oove exam:ple, 1‘1; may be aesira.ble to 1Q,ok )

- fcr combinatit)ns of ten since aaaing one ten to ‘another is easy_—fs; UB, )

h Ny

o . ‘\ ~ For. the a.bove sum, we may then find. it convenient to group in the. e
e follcming way: (2 3 8), (h + 6), {7 +:3).° H%nce, fbhe nschame of our ‘
R f;procedure is: » - - PR

S o> L - > .
< B o » > . R
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-Erom this, all we heed is the sum of 5 and 9,
.sum, getting b as the final result,
‘xrom one addem) O anoﬁ?év- - i ‘ s \1 o { N

) ) - - ?
» ‘. ‘ . >~ . u
N N - N L ]
N N R N . N TS .
> N N a
N SRR £ SRR V¢ T : =
' :‘ R /—-\ /—\ . ‘ / \}
N . X ‘\‘ N -
* T 2+5+k+ 8+ T3 w649 . .
r ~ N -
i . .
’ . b0 Tt : ¥
3 >N * . v - -
Y 2 .

‘then add 30 _'t‘:b‘this ‘
Hnwever, ‘We may prbceed directi}ir

PR
> N

L B 2+5+h+8+7+3+0+ . \ S “1'-\"‘
_?_ 926 935 . P

A J

Any appropriat,e wegy we choase should yielﬂ the same’ sum. v In the na.me

/.;‘I

of g,fficiency 1t not of semity, the first methoc‘l is more lik'ely ‘ho :.

\properti es.

el

v * N . N -
. . . NI »
N

be, preferred. ) - !
"Let us examine how we make use of the commutative and associatfve
ra:ther

we shall Indi. ‘ate SOws- of the bigger steps typi.cal of bhe s:.tuat:lon.

We shall not trace thraugh every step invoived,

S\APPOSP we wa.nt the sum of 2 and 8.\ Because of commutativity,

we may first 1nterchéqge the order of thg,;.h and thtz 8: o T ‘ .
i 2+5+h+&+7+3+6+9 \ " \:‘ \ "’
A 2+5¢8+h+7+3+6+9.\ | AN t

Thia- may be followed next by interehanging the order of the 5 and :
the ) to ge‘t‘. . e \ . St . N T
- ‘ 2+8+5+h+7+3+6+9.1\“§; \ ‘

Similar].y, we can go leap-frogging for the sums of other pairg of © !

numbers that-we may choose. : . e oo .
,So far, assoeiati\rity has not been used, or- 80 it seems. The fact is;, :
we Just conveniently negleeted to mgation i§ vhen it aid occur. To meke ‘ : R
Ry easier to follow 1et ug consider . ﬂr& Juatthe partia.]. sum. . N —_—
- : ASN D
» AN S a . N .
) S2+ 5 ¥ 1} + 8, ] o
e ~2 + 5 18 obtained Pirst, and b added to 'ﬁhis‘resul‘t “follgwed - -
jby aaaing 8 %o the result of (2 +5) + b," this may be indicated S e
*; S ((a+5)+h)»~8 \ ‘
where “the 1nner parenthesea show the :f.‘irst gruuping of 2 and. 5. Thl.jm . 3
A - ft\ . - . a‘ N T . 'l‘
e 1156 I Lo : :
. ?ﬁ ' » _— \




s
. * v (2
4.
-
-
1

2 . t
Al - ~ » S - * a8 AN
a . » » b .
RS » > [} R LY a
SN - ) ! . ) - ~ o
\ : ) (("+59+’&)+8 méans (i+h)+8 ( S
. - DR N .
. . L B . - ) .
& v By the ass cViativx- property, . \ S e
\\\\ : "l"~ ‘(?+h)+;;?+(h+u8)=(2+5)+(h+8) e .
‘ 3 In uummaz:y, what~ we are saying is . N ";, » o -
é(a+s)+u>+8 (2+5)+(h+8) S
A, ‘ ¥ LS :
\‘Clearly, this pro ‘@55 mdy he repeatcd again and aga:ln. 'So, while the p
»asocciative pr@a ty Had aot been in ev1denne be;‘or‘e it is stnl very \
. mich a part of the process, This is why. we say that both the cqunutaﬂve o ¢
- and’agsociative propvartiea are involved in our "pick and_choose” process.? \
Fur't.hs:r ‘analysis of the roie of the aosoc!ablve properw :I.nvolVes further - s
‘ -
, o~ nasting" of parmthe..‘m, f’or example, R "
| . 243+ b 48y 7= (((29 ‘5‘)\+‘h‘)\+_8);4 T ,
. -and so forth, -~ L T, - . N %
» : h . M A .
* Fr ol the sta.ndpoint that an dblect (set,) is proauced frop two \ \
i sels 1n fomﬁ% the umon, w6 ..::m regard the union ss. g binaw operation, .
q.r. operates on two, objects to- g:We a third. » We also have noted that ‘ \
“ with cl oswe, ve ney. eon*tinue such an ope'ration on the union. Moreover, . .
because of associatlvity, the ¢ompound resu.lxt; is tnigue (one and only
 one set is defired as the union’ regardless of‘ grouping). Thus, ¥ —
‘ SAUBUC r‘a.n be written Without par‘entheses. This. concgt is carriea.
" over to the operat:lon of addition, and the notation for the sum is ‘\ e
freed of any parenth‘eues. . ) B
t X \‘ ~ ;.. ]
‘\Problems~ D R W N \ N
5, Which'of the tollowing statements are examples of the commutative R
© ' property under additicn? \ S L TNy SRR
L ‘ a, 7.).8 __g.’,? N . ‘ N N N N - . B \ \‘\q;
. N : o . R BN L
. i ‘\b. T+8=748 R o . ! . .
T ce (?+8)’+9~(8+7)+9 - \ o : f\_,"* .
- d. (7*8)+9={+(8+9) e * Ty T N
» i . AN . " - ) N e i B
- k8 (? 'F 8) +9 = 9 de (7 + 8) B . N Lo RN A N
o "‘§.7+8)9 9+8+7 Y 2 . e o ,
", N ) =
‘157 - N \ ? S -\ OO




. 8 L9 T, - N o : . ,
‘ h t':;.. W»‘hioh of the f‘olldwi;xg stetements e.re examples of t’he assoeiative o Q. \‘ﬁ
e N :‘j‘pr\;:perty under-addition? B )f ,‘ ce \ RS SR
L At eseaenes L T
& N “ b... (7 +.8) a9 =T + (8 + 9) “ ‘ “" - a o '
S ,‘;‘ﬁ/’ (T+8)+9=9+(F¥+8 Sl B et T s
. " dy 7w+ 8 #’9 (7 + - 8) + 9{ : " \ ‘, “ ' Vol T :
S e;‘7+8+9+10 (1+8 +(9+1o) ‘ oo
o D1 (BeoM 0 (B9 e w0 - T .
R (v+(8+3)\lm 7+((8+9)+10) N T
‘ Lt \? . 7‘.“ Whir‘h prbperty or pv-oper‘ties of Whole numbers under aﬁditi.on wmake( s) .
. | .ee.ch of the true? . o T ! N
\** \“\ia. (i+8)\ = ( 9+1o§/-i/(7+8)
. "o (T4 8) 10) = (7 +8)+ (10 +9) .
: . &, T+8=15 S "_’ . e ‘
" al 7T+ 849 410,210 4948+ 7 Tt s . o \
S F.. 7T+{(8+9) +10= (7 4»8) + (9 + 10) T .
o ‘ g T3B+9 1’q_._.(7 +10) + (B +9) E

X \ sigxrifi\.sg‘t for the*aéﬂttion pperation.is gne that is cohnecte with o £
o © . the uﬁion of a eet with the empty set. ' We heVe ohsez‘ved be‘fc're *that .
. 11‘ }'F ’is a sez then AU{ } = A.\ ‘Since ‘the number property of the

. em'pty set ts 0,” if %he numbef pro;pe?ty of Ais 31 then tpe corresponﬂing
o statement for the. abwe observation is: - v o ;r- . " -
for any who]:e\nunmer ‘8, L
* .o : »i- R . )
e ,courss, because of the commu%ative property, we also hawe O+a=8
N ( . ‘

Since aaaition of 0 to any number produces tha.t 1denticel number, '
0 1is eé.lled the iélentity element with respect to‘adaition. No other . !
elgment plays this seme role, " The- pro;perty referréd “to.above is known

[rURREIN AP LI U

*

. as the property of of zero under addition, or in ehort, the agdi‘tion ‘ ¥,
preperty of z2bro. \ R oy L S Tt
. ‘ N N N ‘J. B \\ N N ‘ A N - o “‘
N - " 2 . * ' - q N N )
- ‘ 4 . . : ]
. \ B . N N N » - R > )
. Aid i - ) N
> ’ . R ’ N B . a
- vy ; T :l? " - ) N
Ny ' Q‘ v ) ’ - > oA
NER N . a » oo
» i: . Y R
-\y N N R x - N
A . " : - * N .
- . . » s
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N v 4 N . RN
N 1



The above diagram shows an addition using the nuuﬂoer line, More

than this, however,‘ the example may be in‘tprpreted also as an illustration C,
of the closure property. An aryow of 2 units "followed by“ an 8rTow - o .
of 3 units yields an arrow of a whole number of units, . Each unit e / ol
\may be regarded &g & step, 'I'hus, - sﬁeps Tollowed ‘63,"“3” steps resul‘t: R

in g total of 5. ‘steps. Note that the steps originate from ‘O 188 B
starting point and that wé advance in accor@v wﬁh the increasl :
order of numbdrs. | v .

Rl B

. ~ EIS . »
- ‘ * ’ ' N ; * \j'\ ' ' ) *
Ad@ition om the Number Uine - L e, i o T
———— T - . NN - € N ..
Y N . . . . . i R e 'Y . . s b N :
The- ‘operation of addition may be vividly pictuzed on the number line, IR
- Recall t.har, the number line i s constrm.teé Yy placing marks on & 1§_ne 80
that *}w s:»gv ‘nt between a.ny:two neighboringxmarks is: congruent to one o
_chosen sagment. 'I‘his was a(.cOmplishea ‘oy 1eq;ing off copies of the cltosen N
) segment end to end, 'I'he ﬁhoae*n *egvnent determines a uni‘t\ in the num‘oer 1ine. . .
Tt . T \n N d N . ‘ :
kY . “ *
> i N N -
* . ) - . L ¥ hE T e
— Doy — i N > ;l: . + .
I'd . 0 D 1 . . a 3 ‘ l} . 5 ‘6 i ,7 . k3 =
’Esivrtsuanze 2 + ”4 5, let. us- first ‘locate 2 -and 5) on tbe
number line; notice that between .2 and 5 are 3 .units, Furthermore, 3 .
cfn ocbserve that ‘oe‘;.ueen 0 snd 2 are 2 unlts. RS . N
: e +— .- —a :
N 0 1 2 3 Lx 5 & 7 ,
This process may be more effectively indicated ‘oy e.rrows as illustrated ¥
below, shovlng ‘9' +3. = 5. | ) N S ’ »X N .
! * 2 5 3 ee RN ‘ ~ \ AR
e - , - .
N VIR —my } . t T bt ®
. 0 1 2 3 |y 5 6 7 )
: -5 - :
: . N ¢ ' |
2+3=5 N 3 .
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AR

v

e ¥ o
iy ;, The igllu:f:x‘ation for the second expression, 2% (3 + l;) s

'as dir:,et.. P {this,

. kS
. L

s ‘i)‘ LY N ‘
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- N X
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is not

113 may: be more helpful o start with the analogous

; - * . :3
Cnns‘lder new the %um 3 O 2 on the nnmber 11ne. Hereb “3" steps S )
i are followad by . 2 steps and i s cleah- that we g theosame result ) *
. as. before\\ Incorporating the diagrams for ™ + 2 = 5and 2w 3= ? .
s into a si.:pgle diegram, we\an il,lust.rate the commutative property
‘mder adq}tiong ? ‘ . . ' . ' -
* ¥ . LN ]
- ’ -
3. ~ * “ ; ~ 2 \a ~ N L
‘ ' NN ; w 1) - ) e
t 1 - et —» ‘
2 4 5 6 T - »
5 3 - N o
. . - R .
A ~3- > N .
: } — - } —»
2.3 b oo 5 .6 [ )
\ 5 = T .
\'_' ’I’he }sspeikﬁive pmperty can also be illustrated using e .number -
. line. qpyever , -the- ‘process is more invelved. As an example, \we know ‘that
“ \ i . .
AT . \ R i i : .
B T »(g + 3) +h=24(3+ h).
.‘\Eg‘__ . . ‘ . N .
THe fira _expression, (2 +3) + }L, may Be illustrated by a s:.mple : .
extensi, .ot the above method. An aprow of, 5 units re’sults from the ‘
2 and’ '3¥ unlt arrows. To thia, is abutted ( at‘tached e to- end) “the
T unit TOW, thus " . SR .
} ﬁ . S ~‘§ ‘
) N : ! \ \ . ‘ : \ . ‘)
’ ‘ . 3 ‘t * ‘” R \\‘ . . _ \‘ . N .
~a' 3\‘13;"1 - = ; N
SN N Ji 2 3 .4 5 6 7 8 9
o ;\;}\ . AR I
. - - T a 3 3 — - ll- N s °
‘ ‘ ‘ . \~ \ . . . RE .
! b N \5 \ | o (2 + 3) ¥ h - ,. N = * .*?(“h\v
. ‘“; .\ » . \._: ,
Yy (2 - 3) + 49 :
RS . ? . . . R
; N ) \ -~ N > NEEY . :
l This of JJILE‘ is analcgous o the chain o statements ’ \ o 2 o
el i »‘ﬂ?-q» 3 n**”s;cn 2 S
f,‘ o

X
v - ’ 3 Y
- T [0
\ e e =y L N 3 !
¥ - :
160, ¢ A
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“"arvow is thon abutted to the:qrrow of 2 unitgﬁbu.arfive at thearesult

-te

Y
v .
-

)

In analyzing 2 + (3 + k),» we note that 3 + b =7; : .
that 1s 9 4 4" and "V are names for the same number. Thus, o Sl

> H . >~

situatlon 11rsa.‘

"

e 2 + (3 + h) 2 N 7 a.g ;

a

ﬁnoorﬁingly, we' are\oaekinﬁ ah arroy rorresponding to' 3w b, This ‘i>‘. 3 : \M'

for 2+ (3 + h) N o .o N
’ ) ~ RN .‘ \ / P »
oo N ) . j ‘ . A " \tw‘v b ~ ’
. M, " - 3 ‘- . "+ - - — ll- - '\‘_,, ' . . “ ’
0 1 2 3 L . s 6 T 8. 9 N

L . ‘ 4 . L r -
\\-‘ N R t y . N .
s /‘ ‘24'(3“‘1#) T ”
N . 2+(3+l|.)=9 - - 'y TS .
. < N a . \\ N . 1
‘ N ° . < * - " .
The diagramming WBY 3e afmplified by transferring the arrow for,)3 * h . ‘
dirently onto the .2 unit arrcw ds is shown helow by the dotted 1ihe8' S ‘ o
N Y N [ :
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r‘ - > ) Fl . i
N A ¥ N - ) N
N 3 - ‘ ' » )
N It is by im_orporatihg the diagrams fo‘t (2 + 3) +. \=-9“ &and\ for . .
2 - o
’ 2+ (3 ¥ h) 9 that ve show associativity. ‘
L N » 3
' L RS 1._ - > ‘:_g‘ - 0 “ . .
. ‘ 2 .3 - T
- A N * r ® ” .
-} b > 3 e} e ———y 3 ! - o
-~ CR NS 3T 5 60 7 8, 9 10 g B
: « O = ’ » ) ‘ * ? ' > "
S \ - - = b
e Ty 2+ 3 4 : »
. . (2+3)~ M ] . o
» ) - Al » %\ b

. \ * »\"\ S
e — ) \\ N ) -\ N 3 Poa
- “\ < + 1 bl
AL N 3 4 5 6 o
O % - ~ .
‘ 2 ¥ 3 + h' ) o
' . . <y
F » - \ - )‘ ;; - " - | . N \ . BN :‘
. - Ca \ B 2 + (‘3 + h) ; B .. . o . . . L . ;‘» RN
A 0 R N N .

. N o N 7

Frequent use ofs the number 1in.e to illustrs.te a.ddition of whole \ L
: g numbers will pror‘note :f'amiliarity with properties under aadition. Ihqs

. the number line can hel;p a great deal in vorking with numbérs and in., °
) , am:.wering guestions about numbers. o ‘“\f»; o _5‘\ : R
) Problems - ‘ LY . Ta .
* A

8 Drav number- lines to show the following addition \e:kamlés\. o
b. h‘ + 5 9 { v ) . ’ N R N X \ - . \
L e (3¥6) 4721600 e : ‘
LI - a Ieterme16 ot T e

K

NN

!l

9. Draw pumber. liries\ to show"that the foliowing\nqmbe‘rs‘ are: cémufc.ative BN

oo under addition. o~ : L o . -
\ - .o o T : -
SR -‘a. '3 and 5 \ o o \ \ o
d:w\\ . i . bi %0 and 50 e e " S ot . N . i . oo SR . “;!0 . &
“ . . . R . R . . N . . ) . 3 -
c. (3+5) and 7 s S i -
. -0 . A\ N '\ N . N .
. ’ N N . N *.
" 162 - .
N \ Y o 2 * N . - .
1 . .
3 92 . ] 7 R ®
. . i\ A} '\ '-’ ) . \\ \‘\\ * -



. ot

- ) ) .

10. Are the diagrams in Problem 9o the $ame as those in Problems 8(:

‘ and %d? Why or why n&t. K - \ A
N \ N l ‘ R \ ) > i ‘ .
11, How.would arrcws be usad Lo lndicate advancing from one point: 0{1 ‘ * * -

n A -
. \thg whoh nunter line sto the next pmn‘b&» What does thi‘s suggest . U
\ ebou\, the wlnolz number iunnedlately following a glve.n uhole number a?
.\ . » N * N 3 s
~ . ) v A b * . ‘i
Numbuer Property of the Prddu\:t Set . R \ N . n
~ : - : ~ - . T .-
™ Whon S0tS gre disioint', we have seen how the’ qoperation of anition N ‘
L WAy bv reiat,vd to the L.mon of the Setb-\ The sum of. the nuwmber properties N

of 'ﬂl the sets. is, tbe number proper-ty of the union. Since multiplication
may bv viewed in terms ¥t repeated additlon, forming union- after union
would yielc} ithe number property requlred. For exam;ple, if ve want_the

. result of h X 5, we can geﬂt this by the union of h dlsjo‘lnt ‘sets SR
* each having 5 aembers. ‘ o \ ( ST ’> a f
R . oo . L \ \
) A {a)b:'?;&)e], B~ {f‘,g,‘l},i;j), ¢ = {k,f,m,n,o},~ D= {P)H‘:f‘:‘S,%) “\ ‘2 -
s, N(AUR) = 10, M (AUBUC) = 15, N(((AUB)UC)UD) = 20, This Coe

“weuld "all “or finding h chulvalzent but disjomt sets. Another a;pproach
is P the use of the produ t\set This approach reveals wore clearly how

2

multipli anion arises dire\.t,iy as an operation on ‘two’sets of nuwbers,

?

Using the wihme prob em h % 5, -that we have before, let us now
3

~

. consider two se'ts .
N S E - {d b c,d} and F = [e, ,g, il,- .
r » . . . DN
thén N(E) = b and N E’) = 5., The pruﬁuct set. (Cartesian product) is .

B X F = {(a,e) {a, f) (a,2),(a,n), (a,i) (b, e) (v,1), (byg) (b3n),(b,1)y S

a0
3\ R »
(e,8),(c,1),(c,8),(e,m), (e,1), (a,e),(4, f),(d,g),(d n),(8,1)) \
‘from which I\.(E X F) = 20, The Carteman product OF two sets thus gives
duntly the produﬂt of thelir number propgrties. ‘If 'e is the number. - N
propert.y ot E, and f is thc number pmperty of F, then the number L
wa property ot L X F is e X f. In short '
‘ N\E) X N(F) = MB x F) |
— !It can be observeﬁ s moreover, that this statement ;Ls true whether or not -
" the two betajgre dinjoint. ‘ B . ‘ )
. ’ 163 . N .
‘ . N
» “,. . * » S ¥ ~\’
) 23 ' ) * : » » -« “%




NS

-«

N 0 e e
N S

-

: ‘5“\ AXB = {(a’u) . (a’ﬁ),‘ ‘(837), \(8:5)‘3 (a:‘)

. of rectangular shapes, can“serve as a. mbdel for- 4 X 5.

in terms of counting sets as follqws: R e 1 " \,

Rectanghla} ﬂrrays o \‘ o \ ‘ ) e e

Via Cartesian products, multiplit.a’clon is defined on sets of whole .
numbers, I-‘or example 4 x ® =:I 20, as-the operation B s

W= {0 l,-,3,h,,, ""} ) B W\“‘: {0.)1:2:3:‘1*:5“:6:";} ) . \

>

{I

. z‘q‘ {o,-1,_,4,1»,,,6 7,8,9,10,11,12, 13,1h 15,10,17,18,,9, seve), can

'evo?.ve from the pruduct set A X B, vhere A {a,b c,d} and®
) B ={w L8, *y %,¢}. For these sets, A X'B ma.y be displayed as :E‘ollcms.

+

| \ L Bua), (8), (57), (5,8), (be) .
AT (‘C,q\),w (c,8 Yoo (c,'i;);; (e, 5;), (e, ¢ ) |
" . . (d"‘a‘):‘ ‘(,a?ﬁ )’ P(\d,? )\: (d,ﬁ )’ : (d’* )} .

-

v ' ! : N\ : e N
Tn this. display, ve can see that sincé A'X B is the unlon-of . 5 - e
equivalent dis,joint sets, (s, a) (a, B ), (a,7), (a,s), (a,e)}{(b,u),
(b 6), san (b f)}:\o-o, {(a a), (d ﬂ)‘, (ﬁ 'Y)’ (d 6)’ (d g)}’ ‘;

a rectanguldr arvay of 4 disjoimt sets, each having 5 members would |

..

RN

give us the nmnbe:n proper‘ty b % 5, **Thus, for a physieal 1ntertpretat10n
of L x5, we may st up a rectangular array of b rows with 5 objects Y
in each row. Counting the number of objects in the array gives “the answer ‘
to. hox 5. Bither «01 theé aiagrams below en array of dots or an arrey '

i T A
y T » N Q“\
N Y

. Dnthe basig{oﬂsugharrays, we can think of multiplieation .. A e

Givennumbez:s a an& b, ‘an a.. by ) SN N S

. rectangular a:n;ay of - o‘n,jects can be con- e ‘ ‘

Bl o structed such that there aYe a ,Tows. and .o
) "~ .~ b columns in the array. . The number, , N

a<X.b, 1s the number "of ob}g:ts 1n the a.rray.

hd . - . ) . ~ ol
N . . . . NN sy, L e
-

6 / Lo el
. . - \ N ) -
i . LI AN hl B N N N N “'\‘”}.

) v . > AR N N N . N . \*\‘\

LR [ - . . ’ . N AR . R v

v
-t
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. - ” ~ -
N N N . . - N o ) N N \‘ \\- . ~ 9“ \
a \ X t’\ \ . ‘ . * . » “~ 3
Pr()blems R . \ . ot . S ‘ Cw »
| T s b e - ~ » N - d‘ N . :
\ 12‘. L’ ‘ch sets Yhat are rot ai sjoint one havihg 3 members and ) Vo
v the ocher & me&bers 3 Shov that the. number property of the prodtzct ‘ -
. * - hd ‘ tey
set:ls_3'><li. \ ‘ o ‘
13. a. Forxm a ret:tangular‘arranf‘ rectangula:r shapes illustrating ) i‘-\
7 an interpretation of 3-x 4, L ST e .
b’ Using A - L,_,?} ard B = {1 2 3,1;} 1ist the - oruered pairs . v "\
‘ {a,b), vher e a2 is an element of A and~.b ' is an element ‘ '
of B within the rex.tangular shagps drawn above. Let a_ ~ .
v refer to the ‘row and b to the column oceupied by the rec- \
- tangular shape. o - , ’ : .

Y

b, Uslng the ‘exampl'e 2% 6, _ shew by /éiagrém how. the éiultiplication

table illustrates an operation on vhole numbers , 8y was ' done for

addition on page 31, T - BN . ‘ . e

‘ Sy .

» > R B R '
* 2]

‘Prc}pentips undep Multiplicatién . e : S

3
RS

/‘t‘ NEEN ’ “ N : N
In the above, we. have related multiplication 0’ the product set. I
'I'he result of the operatinn on arw Palr of numbers -we call the groduc \ s

of the two m{nbers. T —_— T o \“,‘. . ‘
When we examine& the unio:n of two sets to get an insight into the

' properties under adaition, ve observed that *t;he union of two sets 1s )

‘8 set. The product set may aim;llarly ‘be extmined ko gather spme infor- .

mation on the 'propertles under multiplication. As in the case with

the unY\on, the product set o:t‘ two ' sets is ‘also a set, "It is true that ) "!;\% s,
the elementa of the prodv..cb set are not elements of the original setg-~ :
they ure pairs of elements, But.,', the cru01a1 point is 'bha‘t“the ﬁartesian R

product is & set, and a nmrtber p:ro:perty may be assigned to this set.

From this, we have the closure ‘properiy of whole num jﬁ.. under mu,ltiplicabion. .

: The produc‘c of two numbers is a whole num'ber. S,
It A= {a, 5 ,a} and B =:({@,B,7,3,¢], then the product - B
s‘et AXB isa set with 20 merrbers. Wg have seen .that i:f' A £ B, \ S ‘

_ whereas® {8,a) isa member of B.X A, . By aisplaying the members of

t;hcn the Cartes}n ;produot B XA is dii‘f‘erent from A X'B since’ o ‘
‘the pairs ave: ordared. For example, (a, By 18 a member of A X B¢ - B “

B X'A as we had done for:A x B we.should see that B X A also has‘ )

20 members. h . . L S N =
. ¥ N N H)
= » - ’ > )
e 165 > o S
o » N N N N » ‘v

\ \ . - *
) - Wy -

* 0 g v
: Y
L]




LN FOERAE . * « "
- \ — * v :' \. v N ¥ - \“?‘} a ). - Y. - ¢
. AN » 3 .' . - . o 9‘? NS . - .
.“\; o . “ . ) ‘:u\ - :’i T ‘* N N ' V . : ) ,‘:lh.\; "h - ) ") -~ A h > . ) . t
V o \ NSRS B )‘A"* {(Q.va)a, R {!-:b) A& :’F).v \ (a dzf NI .
\\ - - \“ _ \ ‘;\\ Lot "(ﬁ :a): (.ﬁ b) (ﬁ:c)a (B d)gm - T ‘
o N (v a), ('!-‘b), ('v c)\, &( Y a) et |
. AN - . aﬂ.“ . e
o C e T, (6‘ a) (5 b) ..(5\,3:)‘,‘ (5 d‘).v“\ R L
? : N ’ \‘ ) é; ) ~t h N ‘- ’
’ \“ < LA ~_  k\ . (t )a')“’ ( G ,b):, (“.t\.)?),‘y " (“\)a)_‘}- ) :-h '\ N
o o Thn efﬁre, wzm thaugh' ’A x B ;4 B X A 'both proauct set;s are eg_un.valent, e
R .2 is, they have: the same rlumber ‘property. Yoo o ot
) AN B . : N ) ’ ~ ~ )
. N 3\ N . .
B n Not.vg trom “the above displays that an array of‘ 5 disjoint sets .
5 v v :
S " each having 4 members, and an array of b diS’join-t sets, each ha‘v:ing ) S
' LB mewbezs, ‘have tha same rmmber propert;y. ‘ EE N < e :
3 * b o N . . . R .
;:\‘ Iy T . " ‘ : N .
,e h sets, 5 rﬂ‘embers R 5 sets, lz» members : “
AN “:"l'i ~ineach set = - . in each set ‘
fl “\“', Sinf'e mx.ltiplica‘cion refers only +o ‘t;he number properties o:t sets .o ;.

L 1nvolvm3 JAn. *r:he Cartesian proauct the fact’ that Martesian product ' I
‘is nq.t ohmmu ta*ive has noe »bearlng on the commutatlv:.ty unaer multiplicatlon. o
It is still true that we have the \.omrmtative proz;erty of whole num‘oers ‘

undpr« multlplio'ation\ : ) ) Tt
hj . . < : for any whole numbers & &nd D, aXb = b X'as . - -
- S
In th'e example that we have used, h X5 = 5 X h. A b 'by 5 array ; o
ot has the same number of members s.s a2 5 by 4 arrey, The arrgy &s a o A
R unmn of & disjoint sets, each’havi,ng 5 menbers also shows that h "y )
b X5 sanbe \\on:putgd by the successive additiop.i -2 . . .
BN e o e e ook addends R o T —
s \ . LN N L . A N - R
~ 5+5+5+5 " \\. Co. . . ‘ \\u\:

N that is,. 5 15 used as an addend 4 times. ('.I‘his is sometimes. .
S rere:rred to as the re;peatea addition @escr}ption of multlplmatlon.)

* . N~ . . . - . . .
. » T
. hd
N ® .
L . - N
N e > 166 ~ N
. »
-
3 -~ ‘
& » Q . . S
> e ~ N
hd ) ~ ~ N - E
- M - N
By N ) * . 0l
- \ -~ . 'kk :‘




Ai}c.hough ultl pli*at,ion of ‘whole numbers may be described in terms of
S repeated additibn, 1t st be rememberea that multiplication is dei‘}ned T
‘as an opera*wr or two swts ot numberu :Lndeperder'tqpf addition. The
" .operation showing the aswgiation, of a ’chird number with a given pair
P may be indicated, Ior example, by the usual method: 4 X5 =20 or =~ . . K
‘ . sigply. (%,5)—= 20, "(L 5)-—*-20“ ey beﬂrea.d \ "to y a.nd 5 ‘is‘\ ‘ )
‘\abslgned the n ’nbez 20", Likewise additlon nay be s0 descri‘oed, f ‘
. thus’ (&, 5)'"*9 may refer to an operat. on of adaltion. : ‘ . @ :*\‘

-
*» '\ ) . ‘ -~ . . . . L
e “ N ~ v i S R N . . » N N w
Problems : S . ‘
A ATl

.

/"‘
B .

.

15, Draw two a:rrays of reu tangula;‘ shapes to 111ustrate that 3@ h 1:» X 3.

16, Is it poosible %o draw an array to fllustrate 3 X 0?7 Wy

C o or why not? . s oo . ‘ PR
17, Fér ‘each operation. given below, state which arithmetic o;perataon -
T refers to, ‘ oy ‘ \ ‘
a. (2,5)—-10 i d (L1 s 7 S

b, (3,5)—=8 N CA{L1)—2 - :

o v (5,0)—w5 ‘ Cd(2,2)—eh o ‘ o

N

e

"i N - ° Tt . ™

: 1'8.‘» In adding, there is a particul‘af\nuwb\er 2 such\t\hat & +a=a

> - find this number. S

9 \In snultlplication, is there a num‘ber a such that a X a = a? . . ’ - 
‘ “Are there more than dne number a sucl* that 8. X & = a% ) \ e

- \‘ 20.‘ Ir pos§ible, draw ‘an ‘array for a X & such that a X # = a.‘.\ i .‘ ‘
; ‘ g \~ . . \‘ . - e ; &
Ve have aexinva multiplivatlon by the number property of the L e
C&I’tesian proaux.t of tWo sets. There 1s~ no overt indication ye‘b ‘ - \.
\;.‘:‘"\ \“ that he Jpredusy of threc or mord numbt.rs can be given d'irectly by se’c.s.
* If we want the product 3xh x5, 1or example, what we might do is
to find the Cartesian product of sets having 3 and U4 mewbers each, ‘
) 'l!his ;yields a BeL having 12 wuembers. To :f'md 12 f? we cen use \ oy
M_.&%ghbzith 12 members. and. a sei; :uith» ; mambers foamiag %;he proé% e
) set of these two. This would be 50 rovidea we want the produet;, R \ .
with the iaLtors grouped~ (‘3 X% 1&) X 5. For example, A \ o : C “ NN o

‘ 3 \e“‘

ST L g = (%,0, A) and il = (a,b,cl,aj
\ \ o - o ‘

FEEERY ~
S wae . ) \ N .




then. s )( E is.a sex vith 12 mem‘oers' o N \ o

N . S XE = »(*,a), (*,b), (* r~) (*,a) ,,,,‘( ,a)}. L
N \ . \ N . » . \ \“ . s N , )
Now, 1f D' and G are sets with' 12 \and 5 meinb‘ers\fespectiirely, say, T o
. "~ D = {adg, cat horsed, cow, goat, pig, chicken, g‘:luck - o

.« ‘ . sheep, goose, ‘turkey donkery} T IS
N s \ ’ . - N - N . N ) ) .‘ s
‘ . and\_ e < T & I . ‘\ DT
. . . . ‘. . ' ’ ) . o R N * ) * . »

-‘{aﬁ 'Y 5!}

\\\\\

‘,C‘)
!

then a.product set, D >¢G mmf ‘B‘e formed having 60 members. .
: B \ ,

. : . e .
. .

l‘aot.in.e that D is equivalent to S X 1}, there is a 1-1, corajespx;nden‘ce} o \

»

-

o between ‘their members. \ VAR L i ~ : RN
RN ‘ \ oo ‘ e :
. . _— & )
o, - . D= {dog, cat,horke, cow,goat, pig, chicken, duck, sheep,goos e, turkey, donkey)
- ;
SXB = «{(*,'a)(*,b)( 0)(* ﬁ)(U a)(U b)(D c)(D a)(a,8) (A,b), (A,c), (A,d)}
'% - N )
' " Instead of D X G, - we migh‘b have used (S X E) X G to. ﬁnﬁ the nunbezr cor-
ol respond to, {3.% 1») X 5. Then, ‘some. of the mempers of (S X E) X G may ‘be

1isted fol lows: o . ‘ -
| (s % 13) X G = (((*,&),a) (( * a),ﬁ)\,((*,a) y),...,((a,a),e)}

. Obséz:ve that each member of (8 x B) X G ‘in‘irol‘ves o 8618 of yar%‘bhesés‘ .
the inner set speeifies an ordered pair of {S X E) and the outer aet specifies
‘an ordered palr belonging o (8 X E) x G consisting o:t‘ a hnember of (8 X E) and.
a member of G. By agreeing that a member of a pmicular set a:l.ways* appears ig
the same position withip the parentheses » Ve may be able to si)nplify ‘the notat:}on =
slightly We might write a member of (S x E) % G with the sgreement that ‘bhe

" flrsat element wi@:m a set of parentheses is to be a member of S, ‘the second
* element & member of E, and the third ele:nant, a member of G. ’.Ihus,

B S — S (ee) ;,a)““mi‘gﬁt‘Be“simpnﬁea*as (%;8,8) ey

p o

S

1 ’I’ne aimplification-giveg a triple of numbers; as wi't;h an ordered pair, such :
triples are ordered insofar as “the order of lis'hing elements within the parenthe—
5885 nmst be observad. It is then possible to- exteml the conce;gt of Cartesian

T ;produc'hs to orderea triples, quadruples, and so on. \ . » \ X N

.

o In she forego:mg, we examined the produc‘h set {8 x E) X G. We can
- eimilar]y axamina the proau‘c'b sey S X (E X G) to f:lnd tha product

S ague N e

AN 1 \‘, . SN L AN at




»
. 3w (b x5), Itis
\ to have 4% X 5 =
c3 X 20 = 0 members,

.

clear that 1 we do so

X G ‘will e revealed
20 members, and’ that &% (E X G) will have

A ~

Recall thak (S X E) X G ‘also has 60 wmembers. ,
’I’hus, both S X (E x G) and (S XE) XG. yield the same number property.

{In tavt while we have noted in Chapter h “that the Cartesian :product

. 1is npt vommutative, 1‘t can be shown tha.t it is aasociative.) This
par&nel the case with the opergtion of e.ddition, we ha‘ve ’f.‘nus, the

assoﬁ_iative propezty of whole numht.rs under multiplicatlon*

_Tor whole nugbers &, b, and ‘o,
’ (axbd) X2 =a'% (v X ¢),
& N t ) o * .
For thc example wé.n have a.bove
) L (3><!;)x5—1 X5 = 60 -
" and O
‘ 3x;€1+x5)=3x‘20=60_.~
+ . . .
- Alternately, this may be writtén as follows:
‘ (3x4) x5 © 3%k x5)
T B o i!
ST 12 x5 . 3x
f S R
‘ < &0 - '. 60
Y X . ‘* ) )
S Showing again that (3 X %) X 5'=
B, 60 = 60; ghat is to ‘say, both expressions name’ the ‘same number.,-
. The physiﬁq? mo"io‘! af o box made up of cu‘n‘lcall‘ bloc
! B by b by g

multiplim* ion.

RN

™

3

'3 X(h X 5) by virtue of the statement

ﬁ':

s with dimensions

may be used ‘to illustrate ‘the assoclativity of

aXb ‘blocks in ed“ch ver’tioal sl‘i‘?ze, ‘

&

c' vert;ir'al alic'es.. .

3

N

19

b X ¢ blocks in each hord zontal -

slice; a horizcnt&l slices.

“Model ﬁlustratd.ng the aasociative

property of mtﬁtiplication.

ow

4

-

-



»
Y »

B ‘. The Rumber of blocks in such a box is (axb) X o and is a;go
a >< (6% ¢) indieating that it is true that (a X b) X¢ =aX (b X ¢)e

N \A‘.‘ ) ) \ . v AN ) ) \
Prohlems ) i S .
4 »

‘ 2. Show that a X3 Xk = 8 X 3 involves both the commutative and the
. ) N associative properties of mul‘tiplicatian. +

~

h 22,, What probfrty or ;ort)pert;iee are involved 1n ga.ch of i;he following?
- o a.VE\kf;\‘.,?}(h X 12 N P Qxheexhxﬂ

3 \ Bes 2X 3 x & 338‘ Looe 2X3xb=3x2xh s

‘ co 2Xx3Ixh=6x4 " r, hx3xes hx3x2f‘\‘

4

[

. Eacin 51* the eumbers ‘3, 1&‘01‘ 5 1in the product 3 X 1} X5 is . e
N .- called a factor of the product. The extensions gf Carteaian :products o ) \
" to more i‘.ha.n two- sets show that multiplication may, be defined for more.
than two factors, Of course, this ie implied by the closure propert;y,
~ Since a X P 1s a whole nmnber if a a.na ‘i) are whole numbers, we

may proceed to Tind the product of a N b 'and ¢ if ¢ 1s ‘& whole A -
number. * By the associative property, the product is unique, however v - lj ;
the factors are grouped. Just as we could Jpick and choose pairs o
y of a.ddends in & sum, the commutative smd assoaative properties under

: ‘multiplication allov us to “pick and choose“ pairs of :f'actors in

a proﬁuct. » For exs.mple, - 100 = \ - st 4

[EEEEREEE Ve .8\2®5x\2=8000.-‘_‘ T

. 3 . . 4 N
» . - N = A

- N . B 10 . DR ?
» -Navural conﬁainations yielding tens s hundreds, and so on might meke for : : ?
ease in eomputations. To ‘be snre, for the sa.me product one can proceeti

" %o_compute 1aboriously as :f‘ollows-

»‘N~T’. . j"‘;‘8\\)(/’2*:><f>><\z»35\>< 2 L
g T e e 32-/1502/1;000’48000 T T T

L : . . o » A oL N
T L ee e R

R « N - . . D e
N ™ N NI N




R T R T N N N N - N PR - e e . el
R . » . . R . Ca - E L. :
S . N -y R D

N . N N o . . . 'S . N . \ R N N N ?

A3 ‘\~ \‘ ) t
: ‘.\ Problem' o L
. :"“ ‘\ N'—-l—-w; R ‘ N ‘\ . R . . ) . . I ‘ .
) 23, Show by grouping with parentheses hov & Xb Xc'Rd may be o
R regardea as a product inyolving 3 factors 1nstead of l& for \‘ i N S -
< i : B : .
. each of the 1ollow1ng. . : - L \ \ o <
2 o - » i R . -
. NS : .
8e 2x3xl+x5 2><3><20 .- R R
"¢ b, 2x3xhx5=6xhkxs | . o
. i ‘ N - i . . . - . \
‘ c.\2x3xh><5‘=2x12~x5 » e ’\. ‘ :
R <. * N \ . :
. * The number % oceupies, with respect to multiplication, the same ) L
RN posit:mn that O occuples with res:pect :bo addition. Notice that, f ST -
: . 1X5=5%x1=5, - \ L ‘ :
s Lx6=6x1e6, . .
1 X 8 = 8x 1= - 8, oo .
x N . - . ¥
. N 2 R -
It is true that 1 X a = a . for all numbers & because a 1 by 8 o
array consists of only one roW ha.vihg 8 membem ’ and the fore the . = . .
\ entire array contains exactly & menfbers. T . )
L] ) ) R 6 ‘ . N . \: \ N ‘ ; N - \\ .
. 5 e \ N ‘ B 6 . - o N . 8- \ )
. \ \ ——a . . ' ' bt . . .-t \m‘ ) oo
- l{' e '} : . l{"'\' * '} 1{0 . e e . ‘] + ¥ o™
. s . & . . . . I e
1x5=5 - C1x6<"6 . 1x8=48 S
Since 1 X a = a, the num‘oer 1 is called the 1aentitz element . ) o
for mu]stiplication. The property is referred to as the property of o
1 under multipheation. ) \ .
SRR o R forwholenunﬁaers & lXa=8a - * . o= %
! : ‘ ' ‘ ! ® ' k%
Because of the comxnutative property under multiplice;tion, we ‘8l80
. ave axi1= S L : T S

o Wnile 0 does not act as the identity\ in multiplica.tion, it does . . . )
— . _have & specisl role. Imemmﬁoer@imambeansu arG‘t%y~3~a:'t=1‘ary—l(~-t'.1'x\;-.~ S s
\ is, an array with -0 Tovs, each have 3 members) is O because the '
' set of members of this" array. is empty. In geners.l if a. is & whole v o

nuniber, the number cf members :Ln a 0 by a array 13 0. ‘thus, \,‘,
w\ . . . ‘

S , for whole numbers "g._; 0'X & = 0,
.f': \\f:{t is also true that a X 0 = 0, - T oo .




R \ |
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. o The characteristies of () in multiplication df “annihilating .
‘ a {so” to speak) -al] numbers wxcept 0 in the product has an 1mport£mt ‘

»

¢ . congequence. If‘ any iaﬁtor is O? the product 18 0,

Vhdt has been done so- far shows that multiplication as wi,th ‘
. \ addition, is- an operation on the whole numbers which has ‘the }groperties
. ~of closurp, comutativi‘ty~ and aasoniativity. There 1s 8 specia.l aumber:
} 1 that is am identity for multi,plication Just as O is an ldentity
A « 1ox' audlticn. Mbr'.cvpr, .0 pla,ys a specl&), role in‘inultiplicatmn for '
" - whivh there is no. corr esponding property in sdaition. R
; - N ‘ There is another 1mport.ant property tha.t‘ links the ¢peratior;s of
- a.dditicn &nd wul 1pliration.\ This property which we shall now study

s the basis, fpr ‘le, for. the following statement' \
\ » ; .
A C A x(7+2) = (4 x17)+(hx2).
$ T » N . R 'y » N 9 A N LI A

This example may be verified by noting tha’c, both h x {7 + 2) and ! LT . hE

(b % 7) + (h X 2) glve the same result: : : \ a
‘ oy ,,“H‘g\r\“j+\2)=hx9=36 ang . 8 |

A ‘ (hx'i)-»(l;xa) 28+8_36 L }’gﬁ

. v N
* . ~

FY

, The property {s-called the alstri'butive pmperty of multiplication over \
addi‘éion. e Jigt‘r,\hatlve property states that if g b end c are

~

. “ any whole ,numher\.,‘ then . : S S (J \
. e . “ . ax(b+c) (axb)-%(a’xe.)s\ . :
~ A N DEERE

» The di tribx,.tive pmpz rty may be illustrated by consiﬂering an & h

LY

oy {b.v o) array, S S ST
b +g-. : .o b T \e )

LI A . T R T N t ., e e e e @

-

for

-
[ ]
[ ]
-
L ]
-
[ 3
-
[ 2
[

- » L L * . 0 » L » » L »
.-

[ ]
L ]
L ]
[ ]
[ ]
L
v
*

.
® e 9 2 2 2 2 9w e 30 . ‘\oooo

. % % B & » @ 8 9. B > W 2 * P
[T NN NN < r JE s

-
[ ]
[ ]
i
Ll
L ]
v

#
[ ]

'172 : s N M » ’

M
s
L4
P
-
w
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It is true that thio a.rray 13 fomed from an “g\_by b ma( and an -
\;f a by < array. R o o ~ \
Lo . .:" b c- W ’ -
» B | e Y . . —a—
"{ ¥ “1"‘}\‘;\ :Oaao-o\o. A
., S : N : ga' . .
"\ g * 3 e » .: . : L R Y \. . . » \‘ A _.
‘ B "a"' * % o e @ ! N & : : » ¢ s e Y o - ' . h <
! A : . i o L N . N N ‘ B
oo J L S \‘ » ‘= i, " 2 s e 9 @ . . ‘ .“._.\u-.g B
e An & by b array ‘ An an by c. array N
- Conseguently, the number a X (b + ¢) of members in the large array
15 the sum of (a x b) anm (a Xc), the numbers of mem‘oers of” the . \ : -
‘subsets. -That is, a X (‘:: +2)= (a xb) + (a-x c) - o o
Since mltiplh&tion is eomutative, both the "t hand“ e -
. the "right hang” aistributive ‘propertiesx nold, that is; R it
‘ NS
Voo " Left hand: - a X (b + ¢) = (a X o) + (a-x¢), . ‘ .
ST Right hand: (b + c) Xa=(bxa)+{cXx ae e ~y
: ’ B RN - R :’
For exampl e, by thﬁse diatribu‘tive proPerties s e h P ) .
, ; Lef;nhmd: 3x(5+8) (3><5)+(3><8), and
’ . Rignt nand; (b +7)x2-< (h X 2) ++(7 X 2)v g " o
5 Renalling that when we say A B we mean\ A and “B" both name <.
v the same thing, then if A = B;, it really makes no differenee whe‘hher : ‘
" we'write A =B or B = A, wnh this in mind, since the left ‘hand ," \ AN
> - R R S,
o aistributive property says that a. X (b + c) a.nc'i {a % ‘b) + ( 2 X c) o
" namg . the sam@urrber, the’ statement N . : o v §
’ ~ N . . v ~ N : o N ‘
I . i \\‘a)((b'!—c) =(a Xb) + {axc) . v
C, ean equally well be W{tten &8, St . S -
\' (a X ) + (a.x c)#a'x\(b*bc).' )
*  For example, R N o ) ‘ T s
g ety v v e e - i e o ;(3_{)( 5~) ;.4:.\(,3\-3&“«8)“

/ . \(b\xa) +\(c><a)=j.(bfg'q)><.a“3‘ o >

=, 3 ?&(5 + 8). “‘\ . B s AT . ‘ , \‘ . . ..\
Similerly, é right hand’ distributive property may be expressed as ei ther . §
’ \\u\‘ . .

b*¢)¥a‘=(h3€a)+(cka) » =

or

iy,
»

- ‘.
N v .
i N < ) v N
: n [ I -
\ R N S
AN A
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. The dds.tributive groperty is very important* as it is the basis tor

®

computing Wi product of two m.mxbersy o

-

*. Left handi (5x1¢)+(§x6)\5x(l&+6)‘ \
é5><10-5o, also
Right hand: (7><9)+(3><9) (7+3) %9

.

ot o =1o><9 9. .
 The’ Lonveni.em.e may ‘Ge further illustrated by the follcwing examples'
T (ox T+ (9% B3 29X (17 83) = 9><mo_9oo, o
(2 x 17) + (26 x 17) =(eh+26) X'17 = 50 X 17 = 850; .. ..

»(81; X 367} + (Bh X 633) .= 84 % 1000 = 8y 000. o

) . . . ] - e
- . C ) N .

Probl ems

hd 4

2&. Use tht. diwm‘euti‘ve proi}erty to cempute earh of the following

\ e (ST XT) + (57 x 93) B Y “ i
‘ 5T x8) + (57 x93) . [(Hnw 8=7 ¥¢11~ ' : .
LB Shcv\\thd*‘l:\ 7 X 5) + (57 x 5) 57 % 10 by the eistributive = . ° e
"' property. S “ S o s
P pervy . \ o \ . o . L
\.’ v ‘\____,__,_W\A\ ! ' ’ ‘ - Bt
- v One might question whether addition diatrlbu‘tes cver multipli«.ation. ‘
\ ‘ That 15, 1s it always the case that \ T e LT
€
i '\" “a-i-(b)(c) (a+b)jX"(a+L‘)?
“ \ ‘l‘his would be false if any set of mmfners .8 b and c can be fmmd
o thq.t would disprdve the statement, For exam:pIe, a=1, b= 3, mid .
\ / © ¢ = 2 may be trled, For these va.lues, * T SN AN
! (bx::) 1+(3x2)=1+6 ?, b;it E
) - "‘a*b)xia’rc) (1+3)><(1+2) hx3=12.
= - N *f‘ '
- . Sa it cs.nnot be s’ca.ted thats & + {b % c) 18 slvays, equa,l‘to .
) . 17k : -
See 34 ) - . ? ‘
PO Wt s y e . R ) Yy _

. / . (B3b X 673) + (146 x 613) = (85h + 186) X 673 1000;:673 = 673,000, _
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Smmnary Qi Propt.rties h .
. 'I’he propert;ies of gadition and mu]\tiplication developed S0’ fa.r )
. . ] . a
for yhole numbers m@“sw :aummarized as 1‘ollows, where 8 P and .
N ard whole numbers, ' :’ ) ‘ \ v
- 1. Whole numbers are CLOSED under add,it.ion a.nd multiplication :
' ‘ ‘g +b and a,;x b az‘e whm‘te numbers. . 3
[P
2, s\ddition and multiplicatmn are CONMJTATIV’E operations \
R a+b-‘o+a and aXb-bXa.‘, - . .
T 3. Aduition and multiplicatian are ASSOCIATIVE eperations o
. \BE
* (a+b)+c=a+(b+c) and . (ax‘o)XC=ax(ch:) :
4, There is an IDENTITY el ement O for addition and an IDENTTTY ’
element i f‘or multi:plif'ation . ) ) )
A | a+ 0= a and a X l o - e -
B ) - ‘) . . . ) . N W
T Muliiiplication is DISTRIBUI‘IVB over addition IR - T v
r .ax(b+«~) (aXb)+(axc) L ' \
\\ . N O . o v » 8
6. . Zero has a‘specrial multiplivat.ion property = - e . \ .
o Mult‘lplir'atinn Using the Number Line ‘; - S e ;" S o
‘ ] Through the 1nterpretation of multiplication as repea“hea adﬁition, . oy i
;nultiplir-ation may be illustrated on the number iine, For example, ‘ TR
. N .
xlt means 3 addends, each adde@gjﬂ b%g L, That is, - S s . !\.
| 3§§,&,-ls+h+l}.‘\ . : R o
Thevefore,  this riaa;} be rejpregsented by *3 succés_sive.arrows as -shown ‘below: S
' \\ .\ h ",“;‘ . h . », 3 l} 3 ‘\ Tk
¢ o . ‘ o - ’ . ) .
—y ..u . - PO Y I \\ ’ " = Fv—, ) ‘\ N Y )
#7001 2 3 b 5,67 8 5 10 11 12 ‘ E
- " © 12 .
3xb =12 S
st % ‘ ‘ s
. - E * ) ‘ ‘**
75 K
T A
, 35 €
€ > % = b \‘i ;
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“On the other hand, h x 3 means 4 saddends of 3. "The representation

on the number line is as tollows. E \ .
. ~ \ \ . i
¥ 3 » ‘ 3 - .3 \ ii 3 -’ . ) -
TYe,1-2 3 k-5 6 7 8 9 10 U 12 o
- 12 N *
N B -
7 t. \ : . R » N
’ N , b x3F=127 7 o -
) N 7 . . R d - a
N AR Y N >

As we can see, the two repregentations aboue are different; however,

“both of these yleld the same regult.,. By camhining these two in a si;zgle
* disgram, we 11lustrate the commutative property under multiplication. .

’
Whm more than two factors are invoived this too may be illustrateﬂ.
For example, to-show (2 X 3) X4, we have the fol;lowing. ‘ ‘

H . Y

¢ N R v R AN
) . N N

5

&

:01231.56‘ w18 o

2x3 2x3 . . 2x3 . ax3 o v.°
(2% 3) xh — - ey
/ . B R R ~ A

(2x3) xh=2h

Likewise, 2 X (3 x 4) mway be shown by obtaining two €3 x b)) arrows

" and abutt.ing them. By combining the diagrams for (2 X 3) X 4 and v

2 X (5 % 1» . associativity may be 111ustrateé. ’ A ‘ .
’ R . -« .
Prodblem , . - . . %

26, Represent multiplication on the number line for 2 x {3 x 4.
~ LY N . E ™ N
» . N &

Number Sententes \ 0 o -

Vid

a

In developing tne prqperties of numbers anﬂ various operations on

A

numbers, ve have béen using a rather special language involving. .

ST J Symbola. for numbers, such as: 1, ‘}, 2, 9, 35 wers
. S ~Symbols for cperations, such as: +y X3
) ‘ and Symbcls showlng rélaticns ‘between rmmbers 2 '
SR " such B8 =, > <
k 176 s o V»‘ . ) T a e )

e

¥
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A gruat deal ot mathemati\.s is da the torm of sehtences about numbers

or ~ggmber sentences as they are called, SOmetimes the semtences make truey

‘statements as in 1 “9 + 5 .= 147 , sometimes the number sentences are false
a8 in "5 + T = 11", "am.ther it is true or false O more aisqualiﬁes , .
- the statvrheni;»:as & .sentence than the st:atement "G orge Washing‘con was . ‘ N
" vice president under Abrsham Lincoln" is a disqua.lified as a senté‘nc;e. ‘

Any number sentence has S have a verb" ar- "verb :f'orm“ The ones

we shave . engountt red so far are: "is equal to“ "y5 less than" , ™M @reater
than", The symbols, vhich we use for these verbs are listed 'below with a " N
number sentence illustrating the use of each. T '
S o e R
= "1s equal to"; = 3+ b =7 - \ L
N © <‘; “i 1ess than'; - 532 X5 ‘ ‘ o ;
>3 Mis greater than" T+ 1‘,,\, 7 T e . .

As we have noted, ve;bal sentences may be true; "Georgé Washington \

_‘was the r‘irst President.of the United States," or fa.Ise "Abrehsam Lincoln

~ was the first President of the Unitei States.“ We ai&o encounter sentences

‘ euch as: "He was the first President of the United Stat;es. . If read out -

‘ of context, it may not be known to whom "he" referred and it may this be “

‘ in@ossible to determine whékher the sehtence is true or false. In fact, - e

\ "[:]was the .fiket President of the Unitéd States" may be a test questigz; ‘
requir;ng the na.me of' the man for which it would e a true sentence. r - ;
Sunh a sentence is called an open sentence ard is of great usefulness: \ /

) not iny in history tests but in wmeny other “situations as well.. Open "‘3 ‘
number sentences ére the basis" of a great degl of work in arithmetic. ‘ \
Solving a problem in arithmetic, for example, incorporates tﬂe @hiox}. \ \ d
of an open sentence, As an illustrs.tion, the problem

. . ’ v N :
\r5 may be stated: 7*+5=D9?‘7*5=‘ — B

The number that makes 7 + 5 =[] & true,statement is the solutiod, for

S U G UGV AU,

‘ o ‘ * 7 v - e

. 1 . N - . e
’ Open number sentences are called eguations if the Verb in them is "=, .
Sentences with any ot the other verbs listed above a.re called “1nequa1:lties". \‘

-~ > . R - . N AR N

- ST . e

-
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27, Welte ¢, >, .or = in each blink so each mathematical sentence
‘ . . ‘8\ o 6\- o ‘\ \ | R e s . . : ) - | \
' e (20+30) (3Q+ ao) e ;
’ a. {200 + 800) (eoo + 700) o \
R v —— . A R . B R N N 3
. e, (1200+1ooo) (1ooo+1aoo) SN L
A ) . \ ‘ . . T ot RS )
" Applications té“Teaehing 2 PO R ‘ s '
‘ Addition is associated with the union of disjoint sets of objects.
By this, . the comutatrve property is clearly illustratec‘t 3 whether we | L
joln the first set to the second set or the. secong set to the first,
© the union coasists of the same members. Recording results of joining i . m;
o Sets using numerals may cause soms aiff'icul‘ty ‘without some in‘termediate \\_
A ‘steps. For example, from the diagram : : .
Cox ) . X X . X -
\ s .
. X X . X, X -
X : ‘ . . . : . \;.\
some children might not be able to pro&eed directly *t.p the num'ber
. sentence 5-%1 = 6. ‘ ‘ \ o
i A suggestion is to se;pare}te this problem into different tasks. o N
_ Use of the- -flannel boarﬁ to display objects in each set will be helpful. PR
_ Then the numerals may be written belcw es.ch picture with: the numeral R \
- for the unid showing *the addends. ‘ ot
. { x x oo X X '
X X X X !
X X X X
g .2 ' 1 541
\ .
Al \ . .
ER 5 S
T CoE . . Yo
. ‘_,‘/ <o ) - . . i
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Thj.s may be #ollowed by a review of the procedure the next. day,

Vriving 6 below 5.+ 1 and Tinally, completion of the equation \‘ N

. . B

+ . = » R \

A ""\ W T . ' N . -
A N N ¥ A

-

in torming their own, sentences prie} acr.ompany a p gborial si'tuation,

somé children may have aiffieulr,y getting the ™=" -symbol insthe right: -

L place, Drawing a d?mble line between the appropriate I‘rames may “help ot B

with® the asso::iation of 1deas. - ' . . : ‘ . ‘

. . ) ) N . . t NN ""a :
3 5 8» N NN e

—— . ~ -«
o Da : N .-
The use oi the number line has b e@orted i:o be extremely helpful. !

) . .

A number line is fastened to sach ¢hild @esk the child even'&ually ‘ v
 operates independent Of this device in nccord with hlS own rate of .

“:*development.\ \ S | . “ N
N ‘. . ‘ . . . : - ;"‘ o R . ¥ >
j » “‘ \ ) \ N ‘ \ ) R T
. Comutativity under multiplication may be conveyed by arranging i e

\ 2 to each row. When the chairs are turded ¢90 from t,he original

chairs facing the board, for example, in an array Of 10 TOwSs,

direction, there will be 2 rows, 10 to each. 'row, In each case f -
- ' (10 X2 or 2 x 10), the number of chil&reri is \26. ‘*‘)ﬂ
LN . . N .
- _ ’I‘he assouative and distri‘butive pro;oerties are not presentea u;ntil )
_ the second grade«. To illustrate the diotributive property W sabk‘s 3 . _
each containing, s&y, 5 red blocks ang, 3 yellow b,locks may be used. o
Thus, in the L sacks, there sye 20 red’blocks shd 12 yellow blocks, "
.. or, 32 blocks. . - _-- * . :
- ;lg‘x(s+32=(h\><5)‘\+}(h><3). e s .
* 9 - ) \ e‘ X o . \ . - . A ';‘
\ o Exercises - Chapter 6 =~ . ‘ _— S
R “ N R N N ~ \ N N >
. R * - - . ) .
;1.‘ " Show. by\\ tryir«g to indicate the steps in repeated addition how the 2 S
T vr:oummi;an;:lw: property “of multiplication woula ;inzpl_ify the calculaﬁon
of 1000 X 3, ‘ L \ : R ) =
S R - : C o, - . . \' RN \‘
- . ; . L o |
. 1y &
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- YT = oo . RN . B

° - :\ . N . N . R ) o . ) - o * :
. L ,, ‘ . . e
* N - . R -, [ TN . O .
N . - What mdvhematical sentence is suggested by each of the afrays below? s T '.
" N N
" a ) 8e . » Y . » ‘_t. b,,\ C. K. - . ’
. . ¥ . . : ‘ : \
. - * L ] L 2 L » N . R L ] -
. N v -
T e « e a . . . * * e . .
‘ A ® » Ve ) » » T N N . :
) oy R e a. i . .\
’\ b 4 » " ’ N ’ M : . "
A - Y *
EY ) \‘\ < b . - »
. S 3. M.r Rhades is buying a two-tone car. The company offers tops in
. . . e
v 5 colors and bodies in 3 colors, Dziaw ‘an array thai shows “the
. "vancus possible results, assuming thet - none of ‘the hody colors “\ R :
[ .are’ the same &8 any of’ the top colors. * - ‘ N N
N . . . - b . : el
~ . . Yy .
b My, Rhodes is buying a,two-tone car, Colors’ available for 't;he e -
- top are: red Qrange, ‘yellow, green and blue. Colors a,vailb.ble Lo :
o i f;or khe body are: red, yellow and blue, Drav an arrsy bto show ..
‘ ‘the various possi‘ble results. If Mr. Rhodes :msists that, the car must K ..
‘ be two-toued how many choices ' aoea he have? - ) ‘
e B ) An ensemble of sweater a.na ski::t is oﬁ;ered with the sweater available R **
RN - in-five different ‘colors and the skirt in 1& colorg. The' skirt also. R
‘ ‘ ﬁorues ‘in elther straight or x‘lare style, for each of the & colors. . i
. - How msny difi’erent ensembles are possible? ) '
R ] N
. . 8. Here is an may separa‘bed “into two sma.ller arrays. :
R . e T e s s ' " . e e e - . o e 3 ® e 3 . ‘ ‘
' » s % s 8.0 » » s s ¥, . ' 2 2 e 02 !
* . M : * - ‘¥ N * o
\; .\..?’i 2.0 8 » » e s 8 N * s e eve - ‘ : S . . 'x,
. “ee \0 * o o s » . [ B IR o ts 0 * . ‘
T 7 (a=kx8) (5= b x3) Colaskes)
. Array A . - Array B ., o Array C ) . :
PSRV ‘SO e i s g e sy =
TN 8. How wany dots are in array A? Array\ IB? h‘r{ay 6‘? \ e T
N b, \Does n p * q¥ . " c \ . N o ‘
‘ Co Doea h X 8= (l; % 3) + {4 % 5)? Lo C
N \‘§ . W
\‘\ ’ A .
N \ ;
= 7 - bl r'\ - ’ »
. v 180 = -
- R 1 .
- ;:\“ R N . 1Y }\ x . " . \v
¥ » - - -
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e = S . N R L 3 R . R
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. N

\ Ts = A familiar pum,.e problem calls for planting 10 trees in an
e .\‘orchard so, there are 5. rows .‘ \ e

" with h trees- in each rQw. The ¢ e 0 h ' ‘L -

& e R TR
* 8, The mi.idle se\.tioh of an auditorium seats 28 to d row, and each : D e

;sidef‘ set‘tion seats 11 to'a row. What is the cajpacity of th:ls

3 auditorium if there are 20 such rows? o S - e .

s \:\ “\gf = mwcparty of nuwbers is usea in the following regrouping? s

T g6 A 96+h+2hh=100+21+h Sauh, B ..
s LR g . N o
"5 10.  Use the counmt.ative and associative ms-o,perties 4o Qet the ansyer

Ce . quickly by "picking anﬁ choosing appropriate combinatibnS°
SR \a..5xhx3x2x1*‘~- ] L ‘
e B, 125 % 7 ><3><8 , o T ST e

. “ ee 250 X 1h X k'x 2, S | LT

. . . N . - -

LA

. e
-

e - 11, What. doeé t};e following opers:tion indicate for 3 >< h? . . o .
. (3,1})-\.._12, T

; - N N ~ “ W . o ’ "\‘ . N v . o
.\, o R IFIN (1' 3)/ . \ RS * o o ' h
jb\ » : ;? . ., \ .\ & " \ i R R . ? - : - ‘.*:»';;T«" o P N - ,.\\_:‘_
\ <0 12, Make each of 't.he f’ollowing a true statement illuatrating the o
. \'l ) distributive property. T T . BRI ’ l ' ) ,
vt a 3‘><‘1(h3+ = (3% !;) + (3 ) “ o N
R bv‘@ﬁx(‘....+5)-(2><h)+( X 5) T N
) . cor 13){(6-;-34) (13 % } i-f'!'-l)(\ ) e — — ‘E
Lo et eXT e (3% ) = (_ )x7\ S
© 13, a. If A 1s A se‘h, give 8 proper subset 2B of A such thm‘. .

e N(AUB) A » N(B)N N a See
) N ' ;: . . AN ";:
S b, How dc)es the above reccncile w:l,th the concept of ubing ai#JOint NEEET ,

]
Bebs 85 models for the sumi .
o e

P
*

~

A
-~
i
- N * - SN N
> [ WN—

h ]

et v - N . . SR
B » 3 o < N N . M N
. - N N N N . - N . N . N . ;
T ) N : . e ST e Y e
N [N O - R N S N .:ﬁ\ B * .
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The Remaining ,Set

‘*If’ A= {Cornel‘la, Sa.lly Jimmy, Emily, Elsie\{ Edwa.rd Dougles} S
and if B = (Cornelia, Sally, Qily,‘msiej‘, ‘then B, 15 a siubset of A, - o J
‘When gB °ig sper-ified 85 8 subset of A another subset of A s simul- , \
. ta.neously ‘syevlfied, namely, by all t & elements o‘f A’ tha.t abe not
\elements of B.. 1In this way, an opef tion is defined, proauring from
A 'e.nd B, a set called the compl ement of B relative to A,~ or more *
s;.m;qu, the 'remaining set, 'L'hus, If C= (Jiumy, Edward, Douglas}, and

A and B are as above, then 'C is ‘the rem&ining set. T \
‘ o . . N .-

_Together, the dnion of B, and C is A, so the tvo subsets -

complete the given set. \ Sin\.e C is \.ompmed or elements that are o -
not elements of B, 1t is clear that the intersection of B ‘and ¢ \
is t\ne \eiirpty‘ set, In fact(:\these last two statements can e usea a8
the basis for defining the relative compl ement, or remaining set. We . :
denote the operation by the symbol TR read “wiggle" * For example, \" \ §
1f. W= (0,4,0, ,)) end B={0,0), then A~ B= (2,5, .
. or eouree, the gOal is to (:onnect this operation with su'btraction, o ) a “
snd this goal is immedistely achieved by locking at the appr.bpria.te IS
number properti es, Note that in thls example,  the number property

o A is. 3, the number property of B ris g, e.nd the number progerty'

" of Aw B is 3. In\geng:ﬂ, iv ie true that ‘

»

‘N(A-i B) = N(4) - N(B)., . .

‘Since the definition of A~ B requiree B to be a subset of A,
there are evidently restriet:lons on B, B ‘can be the empty set; B, can
. be identical t0 A; ‘these two sets, A and the empty set, establ:lsh the

limits on Bs Consequently, if N(A) = a ana N(B) = b, ve have the

" restrictions b >0 and ‘b g & (The symbol ">" combines ") and

. : ‘can ‘range rrom 0 to the number of" elements in - A. These limitations S

:,, LI m{ncate "is greater then or equ to"; similarly "¢ is read ‘ B
15 less than Or equal to”. The: restrictions can be incorporatea into - . ®
s the one statement, . O $ b ga; ~ that 13, the number of elements . B \

Y
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fOr subtraction a.re eventually relaxed when the set of numbers that we .
have to work with is extended to include more than Just the whole numbers.
i The pattern of dev»lopment prooeeds thus- from observations on complementation, .

. y the Ln,ara.vt.eriatins of - subtraction are examined from examination of the
o characteristics,- the operatitm is extended.- “As ‘& rebult, nunﬂaers other h
e th‘i whole numbers may be introduced. For exampie, S
. 2 R ) % . .
M if‘A\z (a, b, ¢, 4, e} and” . \
T B ={a, b, c}, then A~B={(a, €. | e
» From this, we get the difference - . e T e
- : ‘ K \ . ) \ -
o ‘ ’ " N(A) ~ N(B) = B(A ~ B); that 18 . .
. Fe 3 - . L

) vf . -7 * ) N 5 had 3 = 20

~ -~ . E . . BN

N . »
. The statement; 5 - 3 =2, may in turn trigger the question whether
= subtraction may be deiined for any two whole numbers. .For exomple, is |
5 - 8 defined? If we limit ouﬁ‘selves %o the set of whole numbers, -

the answer is "no". But by reassessing the behavior of subtraction, it

t%“/{u

is possible to introduce new members‘ to the nuwiber system 80 that sub-

3

v ; traution is always. dt.fined in the system.

\ The example, 57 B, br,ings out, two important features of the ‘ .

\ subtraction operation. Since no whole number is the result of 5 - 8 )
v the set of whole numbers is not closed under subtraction. contra.sted s \\ ‘
with 8 -5, waich does yield s whole number for s enewer, we ses that .

in general, ir a and b - are whole numbers, it 48 not true that & - b §§‘ *
is the same- as—-‘o—-w—s;. - Fhud s subtractien—ia—nei:ﬁrer%ed nor comnutative S
These are negativé results; they tsll us some of thé proz)erties “that

. » ‘

subtr;aettion does not have, Nevertheless, these are im:portant results.

-

\Subtractibq as" inverse

.- ~ ) :
A NN ? -

Subtraction is not restricted to on]q,' negative results Y howerr, \ .
nor is the operation of getting remaining ‘sgts ‘80 restrictaad. A noteworthy IR

result may be stated thys: “}° ‘ . ) ot o
: / th - B)UB AL s
. I In ords: If we Torm t e remaining set ﬁ F‘ a:ad then form the. union
‘ of it with B, we have the onigingl set, A. Disgrammetically, the
~ situation may be illustrated as follows; .- v | 2

-

5. N . { N N R . AN N 5
C 3 . ‘ ' AEEEN L » o q* O ) v o RN
N Te AN 2 N N I A “. MR o . ‘1‘3\\ - . o7 <
: . . . . .




Similarly, ir we start out. wit.h a set, X, &nd Join a dis,jointr St o

~seﬁ ¥ w—%%&e%%—mwwm&WWT—ﬂm ~
- to -XUJY, then we have (XUJY) ~ Y, . which turns out to be X, ~phg .
origin&l set. That is, : X . \ \ \ * . . .

N -
*

(xuy) ~ Y = oo Y
. - d -
Because of these two oituations, we say that the Q}xnion and the complementation
.are ihverse operations, In effect, one- ‘operation "undoes” what is done by

*the o er. Corresponding to these properties ‘under the set operations, we' T
have similar prOperties under addition a.nﬂ subtx;action. A \ P !
e T : if a and b Q.re whole ,numbers, ana ’ 'S S i

\ b<a, then (a-b)+‘b & and . sy
. o : (a +b) -b =

N ~
Therefbre, subtraction and addition are imerse Operations whenever ‘the : ;
two operations are possible o defined. D . \ v L § '

- N . Y,
R . L R . 9 *
< . N R > >

i)et‘initions Eﬁ" Subtract:ion

We have defined the dirference aB t.he number property of the ;cemi.ning \
“ﬁW&WMWWﬁmWMG 5 S
: b 13 & number less than or &gual to & We Tirst choose a set, \A,- \
‘such that N(A) 8; + next we pick & set,.s B, which ig a su‘n‘%et of A .
and such thax\\NiB = B, These two sets determine the rem‘aining set, \ ¢
§ A~ B, The numbdry. a - b, is the nunber of elements,in A ~ B:

- . . . .

, \ 8 -b = NA~B)," "

For exan@le, if a=>5 and b = 2, ve “can choose A %o be the set \\N {
. . A—{OA o*é'}. - .

w—i—— \Re*% We ean chmse B to ’Ue th’é su‘oset ‘—‘““f e —- ———-—-

e \]‘ -y B = IA’*] -




N - ST e :
' Then, - : : )
N N A B-{OD &€l
R . . t 2
. Now our definition tells us that .
’ \ 5*9 N(A~B)“'3. \ \
- s Note t‘:hat 1:i“we made a dif‘ferent choice f‘or B, for ex&ﬁiple\‘
i B= o, é‘}* T
* the result would be the same, Also, if we  hed chosen é different set, B
A, tor example A= (V, W, X, Y, 2}, and any two member subset of this )
set as B, the result would still be the same. - ) .
>
Problem

- »

‘in detail T ~ 3.

1, er this defin‘tion of subtraction to compui;e
'I'here is a sehond gpproach to subtraction vhich does not use the ‘ =
idea of the remaining set but uses the {deas of union of disjolnt sets’ o
and of one-to-one *orreSpondence. If a 1s a number and if b is\a,
number with b ¢ a, we start by choosing a set A with N(A). =&

JICTNN a.nd a set B disjoint frbm A with N(ZB)

Next we choose a set c, disjoint frog hoth A e.na ‘B in such -
.8 way that A and BUC) are i one-to-one correspondénce. That is, "
there 1s a pa.iring of the elements of A with the elements of BU&. n
~ Then the secona deﬁnition of subtra,ction 13-

v . '- " . . N . >

e In other wox‘ds, having chosen appropriate dis;]oint sets A ana B we )
. look for & third set C with just the right number of members 8o that . °

. - the union of this set and the set B will exac*bly match up with the .
- get As The numben of members in such a set C tells u§ “how mach ~ 0 ° -

1arger A is than B. - & . g - o o IR

" X 5 A o .
- \ - ' As an example of this aefinitimn of subtraction let ussagain use

a = 5 and - = 2, A{ can be th.e same set {0, AN = 6) as vas useﬂ
before, but B must nﬁw be a éisjoint se& w.th 2 members, Let
e Ah A 2 eoh o A Aoem e A o A4 e e+ IR SR R

= [X, ¥}. An attemp’c to get a one-tg-one correspon&enceabetween the
i w elements of B * snd ‘the elementg of .Q may result in the following,

- N N \ * N N N ’ ‘ ’
‘ Lo \ 2 AN . * t R e Y
: **solutions for problems in this chapter are on pege 208. . g
N Y \ N f . - O S R IS .
N * . . .t . . . ¥
i e . ’ . ot . . JE - a s
. LI .o
’ ' 190 .

-
-
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. s-ton . .7 o )
A = (0, Mo, €, L

1Y o . N N i -
leaving sowme elements or A unpaired. We look for a set, C: {disjoint
from B).s0 that BUC will mstch A. Thus, if C={a,B,8), then
" the elements of BUC can be put into one-to-one correspondence with =

S

* N ) . o

‘ " those of A. \ S . ) i o : ) \ ,t
e BUC:\‘\{}I{’?T? $) C \‘ ‘ ey
R 4 : S B - «
. Now by ‘the second definition of subtraction, the result of 5 2 is
-the number property of (. Therefore, 5«2 =NC) = 3. _ The. most R 3‘.:
important thing to say about this definition of subtraction is that it ' e
‘ aluays gives exe.ntly the same result a5 the first deﬁnit:lon. ‘ ‘ ‘
Problem.” \ \ S oo \
2, Use the second definltion of subtraction to compute in detail T - 3. _
N \ \ N . . " ‘ ~ “ N ‘ N R wm—
. Now the guestion naturally arises as to why we should bothei' with
. ¥ two al t‘fcrent dvf‘iqitions if they Qoth give the same resulta Why not .
© 7 use Jusﬂ one of them? o . .. ST N .
R The réason’es that there are two quite different kinde of problems o o
\that we cowmonly mﬁet and :11'. is 1nxportant to know that the seue mathematical
. -operat‘lon can be used to solve bo‘t:h kinds of problems. - s n
X Tne PLrst kind is the “take svay” type: o o R
‘ "John has 5 dolla.rs and 1osea two of ‘them. *How many dollars t
© does he have 1eft?" o T N < B e
’I‘he secopd kind is the “how many more" type: ‘ 3 )
MJohn has > dollars. Bill has 2 dollars. "iiow IRDY ) . . ‘ \
more dollars does Bill need 'in order to have as many&s e T ¥ B .&
o John?" . ‘ : o CE
o The Tizat definition of subtraction fits yery well witl the
- "take ‘awmr“ type of prt{b*m, and the second fits very vell with 'bhe T
‘ "how many more” type. But in eaqh\,mse the problem is solved by -y S
..m.eana m t.he aubtra.ction._ S ow 2,883, Tk o - N \ )
:“‘ - - o b S . R N y ’\ . N ‘:"“ " -
o 191 Y % S
o . - ! x - . ) : 2 o .
v T \ ' 3 /




AN A R

* s

N S ‘ . . 1:‘ : ,
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. - The statement “that ve have on the preced17 page, relating addition’$o ..

subtracvlon, namely g N
: - . Y . : s w
L N o {a - b) + b = s, :

N N »
»

glves us yet another insight into the concept of subtraction. If a-b
is some number ‘¢, then we have \

t\ v
! : »

\‘,. W 1 N ‘C‘;)'tb\\-‘-‘-\.&.
. i . N

In other words, ‘a - b 1s that number ¢ ° such that & =c+b. This ~ N
is why we can say that: - - :

-

-

. " ‘ o a-b=c 1ztanﬂ9nlyif a;cf»b;
- o these two statements mean exactly th‘e same thing.

From this point of view, subtraction is defined as the operation ’/ ;
‘of finding the unknown addend,; .Cy in the addition problgm i o ‘ o

-

-

. ~' ’ N N \‘ - Y
ca=c+b?

N

since this Is the ssme number 8s & - b.\ For example, we can state that
. 5 -2 1s3because 5=3+2.
Also, since we know that both ™ . - IR

-
-~ L L

5.$.»\ ’2.and §\=2+3‘ K

) . b‘\ N ) R ~ N a + ‘. .
RN Vit 1s true that R S o S
. R

T T o ‘ 5;233\@&@51@3:;2‘,& :‘» v

In genersal, any addition fact gives us two subtraction facts sutomatically.

. . . -~
. RN A 3 N .o
N : MR N M N . : ) ’

Problems \ B v i Nt o o \ o
3. The two statements a-b= e nnd a = ¢ + b ‘mean. the same thing.

Working with whole numbers 6, h ami 2 show the related addition SR
and subtraction facts. ERTR : . . T

\‘ ) R
h, Whed would it be that an addition fa.ct does not give us two 'subtracj'.ion
X racts automatically? Yoo N \

R There are twiveasons why it ds \impérta.nt for teachers to understﬁnd .
e $RE8-WAY OF thinking sbout subtraction, as well ntthe*;rtrsttwo.g“—'me‘ e
first is that this is. the way that children usually think when they tare
defveloping their s8kills in computation. The Becond is that 85 children
mve through sc:hool and stuay other kinas of numbers » such k-1 frac:bions ’

»

»




R \\\ ‘ \‘ ..,;:.; ‘
. . . . \ :
- v. . - ‘ \
decimals, negative numbers, etc., they will meet this- idea of defining
subtraction in terms of addition again and again, _ ° ’
. . . 04 ‘
- It is 1mportant to reallze that a.-l‘l three d%finitions of subtraction
¥ are equivalent and yield the seme- properties. - .
Properties under Subtra.ction o - \ -
We have noted 8 pr operty of subtraction that points t& i"ts role
. as an nwerse of additicn. Two properties of the whole numbers under -
. this operation that we want to highlight now involve “the empty set. o
Re(-all that with the union, we have o B
’\ \ © AU SN ) \
. . AT - _{ T w/
" The corresponding statement for numbers 1s For any whole' number &, B .
\ ‘a + 0 = :
- . L - >
‘ By the above, we observe that ' .
“»a+0‘a anda a=~-0 ,. _ ' - .
sa.y the same thing. . Since. a8+ 0= O + a, we also have 0+ g = é, . \
~vhith 1s the same'as 0 = & - &. Hence, in adaition to 'bhe inverse ‘
prope:*t;ies, ‘ s ' =
LB for any whole numbers ~a and ’31, wi't'.h a > b, (a - b) +d = R :
° ~ _ for an;v whole numb%rs “3\ ‘and ‘o; } b),- b= ) " ST ‘
. x DN SR e . o S )
. -we have the following two properties of .zero unde:b sub‘bractj.on: :
A \ \ . . . N . ‘ Ty . BN - .
‘ for any whole nunber &, & - O =a; S
o for any whole nunber -9 & -8a=0 o ‘ . \ :
AN \ N N N . . L N ’ @ ‘
- . SR Y R o * ® )
Problems . o ~ .
D+ ' By a definition of subtraction, we see that a - b = c. if and
3 . only ®f a =c + b, and that (a - b) + b = a miéh properties ‘.
. are ememplified byutié following? - . " .
- RS
; S tE0E < R00) ¥ éoc 202" TS N
\ b. (y-2)+x=y - e \ S
& [(30-15),5]+5=15 a3 S o S ;
) - 5408 : o~
- 2. N L ] N ' ‘ A . . ' R : ) .
S \a" 5 0 5 ‘ ) . 7 v Ca
. IR I } )
e e
' . ‘ . ,:a’:-} ‘ N . . . . CL i ; : N ’ : - IR . :x."m N
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Doas the sentence (5 - 7) -+ 7

5 wake sense for whole numbers? .
; AR “ 1. ~' Show by the use of the properties of aadltion and subtraction

o ) that the following sentence is true‘ ’ ‘ -

‘ . It b >a, a+ (‘b"x— a) . S
e " Check ,.hat it 1s true by using. several“pairs of nuﬂﬁ)ers.
N N .t N R -1 ., N 4. . Y N .
L]

-a.»ww-—--m- Sub%raetion Using the Number Line o

»

IT we consider subtraction with. respect to ﬁ;he re;aresentation

S processes and ‘pro:perties. \ j WOl S . /" -
o | ‘ : et
St : - What i? the aﬁswer to 9 « h? We. start on the mmb /7 line at 9
I R and fake away or move. to the 1eft h units thus arrivi g at 5, which
Sy Tis owur ansver. \

A

A\ N N )
N ~ A
Toow N Sy M o .
. . N T L. . -
. R . N NS .; h_ N T e k3
N N D N . } “ ) 3 "\
N N . N ' - N - -
~ N N . * N
. 1 E] 25 .
e

- g
’ - . . .
. . o 5 y 9 3 - ) :
. » N N
N A N

o .-
. s . oy
+ . - e

- N

9‘1; 5, - ~:! T
%

N e
In Cha.pter 6 we illustrated t‘ne use oi‘ the nuuiber lige to show

\thfg ‘issociative property of addition. Sub‘trq,e'hién ‘does no’c ha.ve the ‘
assacia‘tWe prcperty for . -

-A
3 N e
. A - :
a . »
- 3 N4
. . . BN

of numbers txsing the nmnber nne, we. can illustrate wmany of its. importa.nt

Y

i .  \‘ (13-5)—? B-z 6

v ?""

L |
g = L
o : 13,.(5.,23 13,3,_10.

These example*—r. are\illustrat'éd oﬁ*number lines b low. The fiilét fié’tﬁ'e.
shows thw - %= 8,.

angd. thi& result is use ‘0 get 6 from 8 . 2, o
: -
The second shows thet 5 -~ 2 =3 and this resul%\ is used to get 10 -

from 13 - 3. - - ‘ Y ‘ )

N t - : : ?\a ‘ ‘ : o
* ., ° i \ LN ’ ' ° N - - ) ’ 1 b . ) h
a“: . A : B . “ ‘ . . . - . i :"*\“ e N . “ g ‘.’\ . \\ ‘ .“ “q
o . . B R ) e T v .
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SR " . . U . > . p .oy o ot
R - _(‘13-(5_.9) 5_2,.:. S te e . S o . .
. . . 7 B o v o a L M .

N 3 N N . o . Yy - ) L < :
- . . . : . :
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Y n

) R R Sy .‘13-(5,.2) 13-3&1{) - ; . - R .

-
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P
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) . . .
“' ’ b . ""

Hence, it, 15 nat true tha’t. (13 - 5) -2 is the same as 13 (5 - 2), o //

*-and we expréss fhis by the num‘qer ‘sentnece.

: oo v e L .

'VI’\ ‘ . g‘.‘ - ' ~ o \ \‘ © \ . B . ‘ ".

N P (13.- 5) - 2 ;! 13 - (5 - 2), Lo _ . SRR
\; - L SN g LN a..\v ‘ "\‘;
o where, th.e symbol ";l"  means " g not egual to¥'s. - . ‘“\(3 \// '

A N \.> R N ..\ N i "‘ * " N - . . \\‘ - A <
. \\ . N N i ! ) . 9 ) N . NN . ‘ . . - N
\ o _

N °D1vision \\‘\\.; o, . . . \ . .
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. In t,he preceding chapter, a rectangnlar array of a "FOUB _ w:Lth b . i
S ’*membrw ey e'ﬁrwvwgs used we & pﬁysiical ~model T e X e me Cthis LT "f" ‘
ana from othey mcdel», ’t.he ‘properties ef multiplica.tion for whole numbers . R
were developed. Wq saw t.hat nmltiplitation of whcle numhers has the o ‘ ‘ ‘ \
pruperties ‘of qlosure, cmmrmrtativity e,na assoeiat:lvity, and that multiﬂ N
i ylication 18 Histributive over qadititm. Also, the numbers l and 0 R . K
e have the speclal pro:perj;i«es that . \‘ SR _ \ ~ N

R

. T NN . N - l . N
N LN N » . y * N 4 . .
= BRI . . ) . . N
Te Lt . . N R N R

» Sy N
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;\IXa\aaXlaa,\ana \u'\ o "

‘Q \OXazaXO 0, S N

. ‘I'he t‘ii' st three properties exactly paralle? the same three properties
- fox addition, and 1 Plays & role for mulﬂplicatipn closely corresponding L
to tha.t of 0 for agddition, The similaz'ity in behavior of the two operat*lbns Lo

>0

1ea.de to th@ question as to whether there is’ an operation which bears«t.o .
multipiéq&tton & similar relation as su‘btraction does to addition; namely, S
< anxinverse or undoing cperatian. ‘The ans%zer to this is the operation ‘ n o
valled division. R e N . . . \ . :
Tc‘ﬁnd the product b X 5, we g@unted the number of members in a
h ‘oy 5 arr:ay or in U disjoint sets with 5 members in each set.

. An asson iated problem is to start with 20 . ob;)ects and ‘ask hov wany disg]oint
: subsets there are in-this set if each subset 15 to have L. members. In, .
.-terms of ayrays, the question.is "if & set of 20 menbers is arrarged b . -
to & row, how many rows will there be?“ ‘I‘he a.?aswer 18 5. . \ \
‘ W . . X *x - x X A \ v
. X x. x X o ;
p . \ ‘x x  ox . ox. \ '
’ . N RN * R4
= . X x x X N .
i N X x > S 4 A
. K , 20 o‘c:;jects arranged L. toa 0w, . L e > <
" In many cases. ‘there would Ve no answer to the question, depenair@ RN

W

on the nnmbers. For example, 20 ob,jects arra.nged 6: to'a row does ‘
not glve an exac‘t: number of, rows. "It is ‘true that ordinarily we- ao oo
. carry out such'a aivision - procesa as 20 di.vided by 6 obtaining a

quot.ient and a remainder. In speaking.of divlsion as an operation 1n s

- the set of whole némbers, however, the expression, 120 divided by 6“

3

.18 meaninglesa because 1% 1s pot a whole number. The process as 1naicatea

. by, bfé_(j)“\’ rema.inaer 2, *will be more fully developeﬁ later when the R
techniquea of division are distussed in detail.. It will then be po:lnted '
out _that for any ordeted pair (a, b) with b £0, vemay aevei;op B R
.dwfsion process. . o B e

3 . g . k AN o m—— I AN ...1».m- RSV VI SETO .,_..m_.v:-..._....._a
- To ansver the question, "how many dis,joint&subsets are there. in a .

set el‘ 20 1f each -subset is ‘to*have &4 menﬂaers?“ s e i‘ormed &n array
of 20 objects arrangaa L to a row, When we form this array, we are .

- - -

® ) . N R . ~ . . \ N o
Ty . ) * ) . . . . - o S )
. ~ 4 ‘ : -
. N LN N . AN - N N N
. Ny 7 o .. )
* ‘ . ? A N ’ 196 - . i - . - . \:
. ) N * ~ . N T . : I }
» 3 < .
q Y, B »
3 . \"'8 ) ° ! .




) T partitioning the, set of 20 inte equiva.,ent Bevs, By pa.r*hit:toning a set i o
o ' we mean separatlng 1t into.disjoint subaets. Thus, t,he fact that a set o N

of 20 way be pertitioned into 5 equiiralent subsets) » each having 4 .
\members, sh\ows us jthet 20 = BX5. and 20 =5 X k. The number, 5
which 1s thus assigned to the ordered pair (20, %) 1is called" the guotien
~ end the operation which produces 5 fram (20, k) is called division. The
‘ mrma.l symbol for the operation oI division 1s + . Thus 20 ¥k = 5, f”
o h The partitioning, of course, doea not ha.ve to ‘oe shown as an array. Either S
g dlagram below,"for example,gives the result of 12 + 3,

2

~->
~

* Voroey e Sy . ) AR : \
. . - R . o

. . . . - i ) .
- . N y\ N s \\ :

» » -
12° objects, 3 in ) . Set of 12 objects in diadoint
each’ row, . T subsets, 3 ob,jqcts in each subset, :
NN L “‘ i » N j . N ~ "

" For the ordered pair (20, 6) _there is no such. number that can
. be attached; 'ndr is there for (5, 15). 80, under the operation of alviSion,

‘(20 £) or (5, 15) are not defined im the set of whole nunbers.: Divisitm ;h
therefore does not have the proper't:y of cl<>sure in the F:1-34 of whole numbers. S ' .
The last case for ( 5, l‘j) is ‘simply an’ example of the fa.c.t that in the o
ordered pair of whole numbers - (a,ob), if b > 8, and g ;5 0, jbhe\operat‘i'oz\z
“of aivision never yi el&s a whole number., s ‘
P;oblm C : T e ‘ “\ o .

- N »
- .

:'v‘

»

P

- 8.  Find the whole number ‘attached to each of the following orﬁered pa.irs
. " under the operation of aivision, 1f there is nane, explain.

- {20, 5) : . ¢ (6, 1) . {6k, ‘:s)"_
by (n,‘ea)_ . ae (78, 9) - r,‘(ua, o

- AN N . ] ‘ N . . : . - ,‘ )
9. - .Disp].‘ay &n array to ghow 28 + 7. \ ‘ - ) ‘

| Y. Illustrete .28 2 7. by a Partiti%iﬁ% het is other thanan arreys” T T

By partitioning, ve .have o‘otaineg 5 88 the result of 20+ 4 because .

\ i 20 =5 X b4, This is similsr to the missing aﬂdena approaeh to subtraction.
o \*Here, we aay that a +b is that number e such that & = ¢ X b, That is,

..

-

N N




PR » . -~ ~ ——
. y\ ‘ N ‘l \‘ ) —
O ‘;‘““" O i AR \ o i voa
R A A ? if and only if “a =q X b.
F N ‘\‘ N N ‘ - ) - R
o ) ‘ '.[‘hus, o is the uﬂ.ssing factor of a = c X b for given numbers & and
b, wuilth ‘o;o. S e -
N3 ’ ’ * N ~ 4 .. N N R . 3‘ ’ X ‘ ‘ o
: \Div\ision as Inverse\ v ‘ o - o - : o . e ‘
R R 3 t X \\
N In the same way as aubtraction is the inverse of addition, division \
. by 8 number n may be thought of as the inverse of multiplication by n.
. ‘ "S‘.‘ ;‘mlus’ o ‘ AR \ . ) o . ‘ \ )‘ . \:-';
" / o S(Bx3)+3-8 ema mxu)+ . o
SN However, cautidn must, be exercised in thinking about tiplicatioxi 8s - . ‘ B
T the inverse of division becsuse. it is true that A o
h N N A
(15 + 3) X3 = 15, while (8 3) >< 3 is mea.ningless * !
N i
© . singce 8+ 3 18 not a whole number. This is similar “to the caution we
mst exercise in this “doing ané undoing“‘ process with subtraction, 'thus while
/ ‘ o (15 . 3) %3 =15° is’ ;peri‘ectly acceptable, t _
! (5 - 13) + 13 s méaninglesa .
. since (5 - 13)_ is not & whole nmnber. of. course, the restriction :vlill '

* be removed 1atewxen the se’r. of whole numbers is extended to include

numbers for which 8 + 3 and 5 -.13 have meaning. T, L ;

~Prob1ema \ o - ’ A . oo

\ 10. Tell whether each of the following atatements is true or whether it :

L . ‘ is meaningless for whole numbers, . T ;
g (349) -9=3 - e (329)x9=3"

3 e {(3-9)+9=3 v g (9+3)x3=9 T ot
AN . . . L . : BN . A N - t AN o
® Y a4 (3%x9)+3=9 S
R N ; . o . LN
) ) ~ N . - R ' X NN R
- The Role of 1 and. 0 in Divisiom ‘ - 3 : ;
5 ‘ The operation of division was connected to the operation® of multiplication
* by the statement that ‘ :
£ : N : e
‘ ::\ v a+b Se¢ if and only 1f- a = ¢'X b,
. . . . . O 'S ‘
N > . } ‘ N - \ A ~ - . . . > \ \\ . .
S \ : - R 3198 : ) ~
» L o . ) v \ ‘ \\\y .
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T of the symbol* ., .

LIf b ;QTO, we ha.ve 0%+0= c and O = ¢ X 0. Since this is true for

~

RS

Sim,e 1 and 0 plmd special rolea in multiplication, it mey be appropriate s ;
to: pay P&r"ti cular attention o the WO’ numbers in division., o . A‘\

If b 1, t‘menwehave a-tl-c 1i'.apdon1yif a=cX1l, ' =
Recalling the speclal property of 1 under multiplication, we have ¢ X .1

hence, & and ¢ i‘epresent ‘the same number » and for any whole number a, X

‘awl= a On the other hand Tlay is not a vwhole number unless b= 1 o o

there 1s no whole number ¢ such that 1 exb i 4 1.

In the sense tha.t &+ 1 =5, the number 1 acts somewhat like an
identity el ement for divi‘sion. Unlike the idenbity element for multi-\
pliuation in which, for g.r_g a, 1 X'a = & X1, the number- 1 is 1im:lted
6 acting as an identity eleément for dtvision only if It fs to the right

® »

e

- ~
AN

Again by tho. definition of division, we can note the role of 0 in \ \
" atvisiod, Briefly, 1%srole may be sumayized ss follows. R L

»

. 0% b=c If and only if 0 ¢ X b. For b £0, ‘this 1s.true .

\or\xly if ¢ =0, Tha“eore, o ‘ 3 o f o o -

Al t ) W
foy e.ny vhole number .b. such that b 0 0= b = 0,
Y0 .

A

. ay number ¢, the result of 0 + 0 is ambiguous, 0 *—0 does not ‘ D
specify & unique mmber, hence SN ) Y \

A N ~

-~ ~

)f the operation of division i.s not dei'ined for 0O w 0. . o

8 0 vwhere a ;é 0 is still another situation. Since & +0= . o 1
- Af andonly if a=cX0, and c X 0'= 0 for whatever number e, we - . L
\‘ ~ ~
have a contradiction in tems, we started out wit.h the assumption 'bhat L L.
a #0 ana ‘came t0 the conclﬁsion tha’q & =0, For this reason,” T 7, i o .
for 3;40,,8.-50 isunaefined S .

These last two results together indicate that division by 0 is not definad. f

\‘ . - \ \\\ ] \ \ . . ‘}
Problems. - . Co . — ..

1l.  Tell whether each of the following is & Jyhole number, is.not a whole °

mmh.er, or cannot be determined;-1£- pees:l:blve, \namer“thvvhcie Tumbery “‘““““‘“‘“‘
| B A 6+0. ) o
es 3%3 7 s fo 1+b, b is & whole number and b = 1. B
R ‘ :‘ \ . C 199 o i . . | . ;
1 i \ . ‘?:
- R 5‘9 .

2.



A }

o .

‘8 1t D,

~ia\&whole\1:mmber and‘b;él. I | .
h. & * b, .a and .b. are vwhole mmhers and . ‘n > B \‘ \ \, ' a
1, 0+ b, b is'a whole number &nd bAo s
> J» a+'db; & and b are vhole numb ers and Q > b. f N $ . "
; k. a<Db, é "and b are whéle numbers. and a = b, ~. )
y Pro:perties of Division - s . R ):‘ N

" sgailn many examples may be produced, We need only ohe example, and such

by RN .
R, A RN

>
Matny examples may be.given to show that the whole numbers are not

L closed under divlaion. For example, while 6% 3 =2, 3+ 6 ismota .

whole number‘ These same two examples . show the:t 6 +.3.43+ 6 _hence the :“;; ﬁ
operation is not conmmtat:lve.‘ To see that diyision 15 not associative, .

an example is thg \following: S

-

12+ 6) * 2‘:‘2::1, bt
(5-3-2) 12'*“3-—h . L

at »

The different results obtained for (12 el 6) + 2 on the one ham}, and’

S for 12+ (6 +2) on the other, shous that, in genera.l it is not true

that (a*b) caa*(‘o-‘c) C Co . g
So rar, division with respect to whole numbers has revealed itself
g 1 a.n operation that does not have the properties of closure, comutativity

and associa.tivity. \ Furthermore, division ‘by 0 1is to be avoided. 'ro free

i ourselvas rroghe mpression that not much cen be sald about this operation,

" we need o co;;aider only ‘the importan't noti(m that division 'by b »i8 the

inverse ot the opezzation of multiplication by b. That is, (a Xb)+b =

provided ‘of. course, b ;i 0., . ‘\ ) o .
Problems k o . \ 3 e
. *W N e . ‘ N
. 12.\‘ For. “bich of the following is it true that (a. + B)+c = at (b +0)? - )
D e hezrz T e §i9 c e .
b.\'h+é+1 - \ £, 9»:;3;1
T, h+6~2; ‘ 8t 0+9+3
a0+ ooy T
13. From the results of the preceding exerciaes, under wha‘b ctmditions :
YWl (a.-‘-'b) c=8 *{b¥ec)? T c S e

<




- Division Using the Number Line o S I %
‘ o . N A\
- \ We can lllustrate dlvision using the number line by partitioning a
segent into congruent subsegments. For example, to illustrate & + 3, T o
_ We can partition.a 6 unit segment into 3 congruent su‘bgegmepts, each - -3
I of which \ o R o : :

¢ 2 g 2 ‘1; 2, ' . SN i o,

i

w ol
[5)9

“ “ DR S

: is cong“uent to the segment i’rpm 0 to 2, Thus, this partition convays ‘
.._.._-»%he\—conee‘pf‘“ £+ 3 =2, Clearly, thig is associated with the representation o
of miltiplication on“the nne in which three 2 unit arvovs.or 2 unit
segments are abutted, nesulting in a 6. uni'b arrow ora 6 unit segment. ‘
. The assouiation ‘may be thought of as: one ojperation is the inverse of the
. other, or, from the“ point of view that ‘ ‘ o S

Voo
A d

6+3=2 ifandon];yif 6=2x3 °

N - . i . 3 R v

Another method of illustratitpg diviaion on the number 1ine ia related to
considering divisia,n in terms of repeatea subtraction. This concep't will be
discussed in further detail in -T' er 13 when the. a.iv:lsion techniques are .
~ discussed, We can indicate here s ) ever, ‘thig use 3¢ the number line in

. order to compare with the use shown agove. Begimning with &, e o v
" * . “ . v ) \ T N
‘ N i . i ) 6 \~ - . ‘ \\ R 8
' - — :
N ot 4 - } —+- 1} ——1} é o] . N !
’ % ' . ' \ - Y \ 0 ’. *
3 T 3

'fwe aélv How many times: can 3 be subtracted? Corresponding\ to this,
" we can show divismn using the number line as in the- above figure. ﬂ o

" In this oase since subtraction is performed twice, 6 4 3\-.: 2, " \3

Prnblems Lo . S . o : \ o <

l.. a.\ S‘aow by parti tioni_ng a mmmmmmm& ’ehaar&ew ﬁt-*j,

‘B, Shcm by partitioning a ﬁegment on the, ng;nber line that 5 + 2
’ does not yield a whole num'ber.

[F o A
é
e,
4}_' . L
-
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L
¢
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' Composite Numbers Lot
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Recta.ngular a.rrays form the basis for what used to be known &g the
reétangm.ar numbers by the ancient Greeks. if a number n can be

. presented as other than a 1 oy n array, then thes n  is said to be
Ca rectangular number.\ For e:eaugple, 6" may be represented by a 2 ‘ny

-

3 array, ‘B0 6 is a rectangular number, Now we call such a number .
aomposite number, t6 =2 X 3, wo 6 is coumosed“ of 2 ‘apd 3.

13‘ is also & composite number; elther a 3 by b rectangular array
ora 2 by 6 rectangular array may be used>as a model for the .
composition of 12. However, x‘ 2 X3 also shows how 12 may be

composed. It is ‘true that if a whole number n ma.y be "decomposed” .
_ into more than two factors (other than 1 and’ a), , then it cem be ™

deqomposed ‘into two ‘Factors other than 1 and n.* Hence, such &
number would be considered also a rectangﬁla;r number, It\is sinmiy

.that thinking in terms of the contpos:ltion puts the fopus more on

yz:lng the number t.ha.n thinking 1n ‘terms of rex.ta.ngular arrays

]

net can be rormed. ‘ ~ R T

Since 12 =3 X L\,‘ we have fregardéd 3 end 4 ‘as factors of 12,
~ As we. have noved, there are other factors of 12, For example, 2 is
) fa:.tor of 12 because there is a whole number whose product with 2

) N \"‘ N

15 12, That is, 2 is a factor of 12 because 12 is 2 ‘times, a whole .
number, 1n this case, the whole number is 6. This automatically qua:l.ifies ‘

6 to ve a.lso a factor of 12. A c0mplete 1ist of Tactors otf' 12 may be

B

catalogned as follows*‘ - - .

S | : .
¢ 12 =1X12, soll g;;a 12 are zfat:f.ors of 12;:
12=2 x 6, 8o 2. and & are faétorg‘éf 125 o
12 =3 X4, so 3 and b are factors ‘of 12; T
12 = 4 X 3, 804 and 3 are factors of 12;

“ . 12=6Xx2, 80 6 and 2 are fa&qrﬁ of 12;

4

© o 1e=12X1, so 12 und .1 ‘are factors of,, 12;

\\

Thus,‘ 12 \has 1 2, 3, 4, 6, =and 12 85 factora. 5 is not,f‘fe.ctér
.of . 12 because the e ia no whole number n such that the mathematical

»
v

R ‘ 5><n

-

. 1s true, Neither are 7 ,8 9,10,11, a.«nrl any whole aumber greater than 12

-\

» B “‘i
VSR -

ot G e A i s




. ! ». A .
factors of 12 ( Notice that the last three sta.tements in"the display Ce
give no 1nformation on factors that was not ‘contained in the first three

statements and we could have ‘done without them.) o o S

It is clear that’ since n =1 X n,\ any whole numb¥Y, n has 1 and o ) ;‘..

n as f&tors. Rowever, 'bhere &re wany whole’ punbers for which these are o
the Only fac'cérs. For ex’&mple 1 and $ are the’ only factors of 5, 1
and T are the only factors of 7; -and 1° and 13 gre the only factors

of ,13, and $o On, Such numbers will be“of interest for us an’ﬁ, are

A spebia.lly designs.ted. : o ) S . v
N N * * hd ) o ) v
N : Any whole naber that has exactly two diﬁ’erent whole .
N - number Factors { na.mely itse].f and 1) is a pripme number.
Note that this def‘inition excludes 1 irom the set of prime numbers : _ - W ‘

because ‘1 does not h e two different factors. Tt also excludes’ 0 -\ -
from the set of.‘ primes %since 0 s &0 Xn for any whole number n; i
any whole number is ‘a.. factor of 0. .In essence, 't;he Prime numbers sre’
‘those that can onlyhe assoc,iated with a "1 by n array ( for n £ 1)

Fo;‘ exa.nmle, let ug consider an’ e.rray for 7. %Placing two objects in ‘
each row, we can gomplete an array w:l’ch 6 objects; the seven‘th object o N N

makes the array Hcomplete, Similarly, o : R i

-.“t_»oo‘]/ovot\\vno'o‘ovcoi‘t " s a8 8 @ - g
~ A O . ~ ~ N

/. i R R . . -
Al

3, &, 5, ?or 6 o‘o,jects #n a row inguce :lncomplete arr&ys ‘with* T o’b,jects. e
* 4

Al} whole zmmbers greater than 1 may nov be classified according to

. whethez: they are prime or composite. Ove:r 2,000 years ago, the mathe- , o

matician Eratosthenes devised an easy and stralghtforward method for so,r—ung ‘

prim mumbers from a 11517*01‘ whole numhers. To find all the _prime numbera S e

. less than 50, forigmmple, the whole numbers from 0 through 49 are S
T 1is%ed as below, O and l axe crosseﬂ out since they are not primes. |

2 1 a prime, but every other even number has 2 as 8 factorl 50 all o

_even numbers greater than 2 are. crossea out, B S ‘ B A

”
t
w
13
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~ ' B T v R
: TomL A 3.0 5 BN &, -
18 \ 11, 3 13,  ~3‘#’ 15, A8, 17, a8, 19, N
T ) B 20, a, a2, 23, M, 3, 28, &, 28,29,
. \ . ‘}E;;‘ 31, ,32;‘ 33, 3, 35, _36*” 37, 38, 39, \ -
S e, hl, M, b3, J, k5, - M6, < T, ;\};.8', h9 -

C;mtinu‘iné; with this,> 3 18 "sdved" and. 3 X 2, §x 3, 3% 4, ...; ‘s,re‘ Cot

‘ _ "eliminated”; that is, 11 "multiplés” of 3 greater than 3 X 1 are ,
i . - eliminated. = ‘ ‘ ‘ \ ' )
. N . - “

~10,71 11, 1112,

o SERE 2, 33’ 25, | ® e
A A N 33, :f‘; I
RO, W1, e, ¥, | .

In this second chart the nmnerals 'I;ha.‘t N
are aha.ﬁ.ed *'epresent nmnbera that are "eliminated" after 'the ﬁcreening as - o
*"multiples” of 2 {1 is Yeliminated" “before this ‘screening) The slash
‘ masrks indicate sct-eeni_.ng as “multiples“ of 3, and the numbers, that - -are
\ R saved" are i#ntif‘ied by circles. By now, % has-been /d{minatea b‘écauae
‘ . it isa mltiple of 2 5 is next saveq and all gther wltiples of 5 *

eliminated and so.on, ’.['hus, eventually, we arrive a’c the set of all prime

: 'numberé less than* 50: . . \ \‘ : ‘ 7 L. NN S
\ . “\ . . . s
T o {3 5: 7: ]é': 13)\ 17; 19 23: é9: 31: 37: 1“13 3&3,, 1}7}'
Xit can be shown that this screening process needs not be; earried ‘beyond 7
t‘ir prime numbers less than 50 since 1&9 T X 7o If 49 is the proauct
tho whole numbexs a and b, and one of these is greater than +7, then
th? ‘other must be less than '7.§ This tells us that any factor: greater “than .
i - w
7 Yould have been eliminated, when its companion factor {which is less than .
7‘5 was considerea. ) s N SR . . N
N “\‘ ~r ‘y R \: ; N ‘ 1 \\ ‘\ b. ) . ‘:\\“ > e
Problems T N
1k, 'E‘x’press each of the following nmnbers ab products of two i‘actors in N
‘ * sgveral ways, or indicate that 1% 1s mpossible to do o, L,
FR S U Y .__....;_mm_._h_hh._,:d‘_;h_‘han‘. [ ‘._.ﬁg-ﬂ e e e 4 o
\" . ‘ \ ' i o L BN
. b.: 6 vl . . “ a. 11 ] ‘ 7

;:~ " o~ B \ ) . N ) . \\ /a
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15 Bist all the numbers that could be cmed “factors”
8, of the numbeér .30, " L
o, or the number 19, ‘ oo T s

- ¢,  of the number 24,

" . Applications 3o ‘Teaching . : ‘ .« S

&' ~* Some children "';nd it dif:t“icult to visualiza set. removi Fox them s \
. partitioning and ringing.s subset is not wnough; they cannot seem 0. » i .

a;ppreciate that the o‘b,jects have been removed s:lnce the objects a.re still

much in e'vidence. Covaring up the obJects to be remOVed or crossing them ‘ :

out with an Y may help* &Smunicqte removel, Similarly, using = cu:p to \‘ .
: cover up -a subset of. beans, for example, has \Veen‘fm\nd to he effective '

in teaching 'set removal, 1 ‘ - . I \ L

-

-

LO\D' the other hand removau may have beez} 80 convineing that it'causes ]
» Alfflculty with writing the number sentence associated with the removal, \
" For -example, in trying to connect the expression 5 - 2 with 3, only ‘
‘the numbers for the original sg‘b and the remaining set way be recorde&
‘the other su-bset has been removec‘t so the child cannot understana why
its nugber must be recorded. In that ca.se, intermediate stages .in ‘the i \
removing process may be suggestea This uay ke in the form of & class e

. a.ctivity, for exa.mple, with a set o:t‘ beans. The number of the set may ’

ﬁ.rst be reeorded, 8 subset may nexh be aeparated, counted and the numba;c o

a cup) and fin&lly, the number in 4he remaining seb identifiea and recorded.

. Intermediat® stages for t;he recording. of numbers in the ringing of set -

members _may also be provided., For exa.mple, the :t’ollowing suggests various
) possible stages for' 5 . 2 = 3. o

. . . N
N "y N ~ N

. D . Wz . : v
v~ w X * .

" ’
W
#

N T

‘\ SN e s . - ,“..:‘?Q.

&

' ‘recorded, - Removal may be accomplished by covering the set removed (as with SRR




\ examples nay be required §howing situatiorxs which have inverses such as

" be presented until the second graae. A start on this is given in the first

" However, sometimes it is not the la.ck of understa.nding of the conce;pt that
* is causing Qifffoulty; 'it 2oy be ,brying to verba.lize the “doing and undoing"
rt.ha.t the shildren find diffmut. o ‘ . )

© grade when odd numbers a.na evén numb ers a.re dlscussed, Of course, 1n terms
of multiples, the even nuu&)ers are snnply the mul‘tiples of 2. ulmilarly
multiples of 3 are the entries in the 3 t:l.mes table, and so on,

“~ R NN o . \'}) “ ‘ N

‘The conr:ept of mverae may jprove ditficult. For ‘this, a varietsr of ot

falling asl“eep and waking up,. say, or putting on & coat ‘and ‘taking it off.,

»

" The topics of fa.ctors, conrposite num‘bersr, and prime nmnbers will: not

Ay

&

. We have noted that since 3 is a factor of 12, we can. sa.y that
12 is a multi}w:f 3. Both factor and multi:ple originate from the same
concept' there is.a whole number n such that 12 = '3 .X . A‘Inultiple ;
is; viewed from the standpoint of the number beiWomosed, Y factor is - o
viewed from the standpoint of a number going into the compoSition 86 8
"building block", Beginning in Grade 5 , the ehild:ren will be introduced

s

y
Rz ]

“to0-the Fundamental Theorem of Arithmetic - when a vhole number is Ydecom-

posed” into the primitive ‘building blocks of prime numbers R thls decqm- o
position will be revealed as unique, that is, & *whole number is mede. up of
: one and only one set of primiti‘«'e blocks which we call ‘the primes.\ At that .
Jblme, the children will be taugh‘t the "eomplete fach rizat:mn” of a whole

mmber {or, the prime decomﬁosi‘hion) Complete factorizatim is & naturel - ‘“

‘lead-in to.a corresponding :Eactorization in algebra-, which yields ’ among othe:r :

things , ‘golutions to algebraic egquations. ‘j: - o F .
Exercises - Cha;pter T .

RS {t:? [eAvRY pr:b/

!
;B“-{U O V} o ‘ - x;'_
" Jointo B aset C dis,joint fro:m B such that BUC -A. v , 1
erna{OODOVIOQ} -
f gnd B = {C} Q} . . ‘ R .“\
\ \ R

exhlbit A ~ B P :

. 3. If from & set of 8 memb‘:rs we remove a set of 2 members, how o \—
- = ma.ny mem‘bers does the reaulting set ha.ve? S . e
C¥ , L \ \
N * y . \;3 N . . . 3
\ 206 .‘ X L T o \ N
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7.

9.

M0,

11,

9
*

n.:~

B as.,ociative property does ot hold under the operation !

’ .i’f?,("t

LIS . Y

If A={ZL O O D} L
wa oA, O, O, DA@ = @O}

exhibit B such_ that AUB =

e

C. What is N(B)?\ : :

ruhow 8 repreoentation on the number 1line which 11 strates the 1a<:‘c
that 10 « 3 = ". USL thc- Same figure to illu'strat the idea that
W7+ 3.

‘oo

*

. r“ \
Show“a re:pre entaticn on the number lide which illust tes that the

subtraetlon.
>0 i

“

*\('?-ﬁ)-aié‘?"(ﬁ. 3)
What aperation is the inverse of" a&ding T to any nmnber? Whah is

* the inverse of ub.tra ing - 82 T \ :
If A a.nd B are d:l:;& illustra.te that (AUB) ~B'= A,

Nhét ha.pﬁiens 11‘ A and ‘B a:re ot disjoint?

ot

v

LewT

Rewrite each mathematical Sentence b\low as a divvision sentence.
. Flad the unknown factor. ‘ \

&. n X 5 = "0 \ ’ .
Cd U e

B, p X4 =28 : ~

. Ty N X 1 = 6 o

Tell whether each of the felloving, is more readily *visualized by a

' r‘cx.t.angul&r array of“ T rows or by disdo.mt subsets with 7 in

each’ subsets - o o ; SR

» N =

A wmar dung band always forms an array when it maxches.
to use mam/ different formations. Aside from the leader, *the ‘band has:
59 mempers, Ahe leader 1s %rying very hard to find one z\nore\ member,
Why'.’ . ‘ | ‘ 5 ‘
Does division have the comnmtative property? Give an example to

»

substantiate you?“‘answer. , . . o

\ -

Fxpr ess vach of ‘{;ho :{‘ollawi.ng numbers as & product of ' two smaller.

‘ numbero or 1ndi<:ate that Ty is impossible to do this. o ..

w

a. 12 o3l e, B g 35 . i, 39 . ke ém.82
» ¥4 78 on 5 ke dW o al e

°

R R

b,
R
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N
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8o Inverse property of addition and ,,subt’ﬂb.ction G

\ W
S ) 7 ’ ! N ‘
- . Solutions for ‘Pa:'oblems . Co -
Choose - A = {o, 8,0,%,0, & @) witn w4) - o
C!hooae B ={ %0, D} which is a subset of A and N(B) = 3.
a~B8=1(0,0¢, 8} N .
By definition, we know that 7 - 3= \N(A\;-\B) r-;"h. '
. t ‘ e T
' Choose A = 10, 4, Ij x, O, é' fﬂ} Tyith N(A) =7 .
Choose (a, R c] \ > with N(B) = 3. \ *
Now chocse a@t c disjo G i;rom both A" and B, - :
=B E e, wma O X- e Me) =k
' 8o that by M\,hing (BUQ)  wi A we can put  BUC -in
one-to-one uorrespondence with A . v )
BUC. = {9': b C:? 3;:‘)@;4’!} \
Y - (8, & T, % 0,5,@} BENE NN
S \ q
By definition we know tha.t T - 3 N( C) :
v
By using who;e nunﬂoers 6, h, we can illustrate the fac'h that B
a-b=c and a=¢c + b mean the same thing., Thus \
e 6 - h~$2 because 6= 2+ b - ‘ .
and \ * 2 S '
‘ 6 - 2 = I because % 1+ 2. . S

\‘When‘ alb, ther a+d fg ~gives only one subtraction fact, N _‘ o

namely a = ¢ « b, Forexazzmle,dj+3=6 and 3 5“3-

\ ) -

b. 1zi\rerse property of additicm and subtraction L

ce lnverse property of aﬂdition ana ~s.ubtraction showing grouping :
within the parentheses, 30 - 15 . is- another name for 15. .

d. identity property of zero for addition {(Zero added to. any number

\ results in that nunmer.) L B \-“ e
-N 1dent:lty pro:perty of zero I‘or subtraction (Zero suh*tracted from
any number results in that munber.) ‘ "o .

(5 - 7) + 7 does not make sense ‘in the :present context hecause

LN

5 -7 is not & whole number, For any numbers a2 aml 'b, ‘ >
ETTEI Y e L eSO T T o -
) ) . . \ ) R ! ) S "
> 3
y R a PR R Y
: . ©. 208 . e
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ERN \> ‘?‘ -] N
Ts  To show that a + (b -\a) =b 1 b >a wé\:..-.;'s.;~ the cominutative .
* prc'perty of addition gettin& a + (b - a) = (b - a) + &, which by
. t‘ne third 1tem In Properties of Subtz:action is equei to b. '
80 Qo 4 . \ Ce 6 ) . B \8‘
* b, Nore; - 28 S d. 8 6 S
. a.nd .y P 0. B . g. None; thére is no .,
. o ’ ‘ : o 7 'row arrey of U7 .

o oy - \ m&mbers.

N A} N

¥

True % v s @ Meaningless ‘
True ‘-Q . o ©f, True . -,
Mesningless . \ \ True

AR J

:\ " dy  True . - - ) - ) .
) 1. ' a, Wl\;ol‘gé\zimubei;l% T .. .  R .
. - \‘q. Not Y ‘who‘l\e\‘im\rmser‘\ L e \, ‘ : ,
. *oel Wholé\ number ; 1 . o B :1, ! )
. NI 8 -Not a whole mmber ' c v
-5“?‘;‘ . & Whole hunber; .0 et s Yol \
?‘ R & Whole aumber; “i““ S o f LA , . \ ﬁ'& T
W 8 C%a}not be ;)e%em:lrfwi. meaninkless \ii:.f\"‘b = va'g\wnot 8 whole m.mﬂmr, g ‘-
. Coosif B T SRS o
‘h\. *Cannot bhe &er‘emd‘néd-\ 2ero ?f & =\‘\0;‘ note?g@.}:holg number i A
R SN O ‘Wholé num‘oer; I TR S o \\ . ,.:.,‘ C ‘\ - s '
; o »»J. Cannot be determinéd' ~ meam.ngless \1:» B =0; whole number & T
'S 1f b % 1; vhole number if b >1, 'and b fy factor of " a;. { o
- not a whcle nu.mber ir »>1 and b is 'no‘t; 8 :f'actor of "8 o :
~\t.annot~. pe aeteminea, undefinga if *a'=b = 0; the w}':o'le nwnber " 3
- 1 ie.a .=b Foo o Lt S
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1] B . .
: . 3x 6y 2%x9,
2x3, ix6
el 2 X N\x 6,

=7
H
-,
X

‘\ \16-{ e * l’

1 % l are 'bhe on]y such I‘actorizatlons and they

3 X;O,

Sy

1X30

»

‘¥

(2

\»

é

.
»
»
~
4
1
.
»

e form\al terms, thé set. of fara»ﬁo?s“of 30

1x18 (or 6 ><3, 9 X 2, ete,)

The coprdinate of this pb;lnt is not & whele nmp‘bei',
. ) . hd

o2

"

@

{1 2,3,5,6,10 15,303

\ AN O | a.nd 17 v )
S e, - The -set of f‘act‘,ors of 2 = {1,2,3,h ,§ 12 21;3
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‘Chapter 8 a
- . NUMERATTON: NAMING NUMBERS L .
\ L “ i . ] . ) N - . g\
Int.rodizét.ion \ )
,}vle have used whole r;,umbers extensively 1n our wo:rk thus far. We . . ° \

"have considered thelr nature, the naturg of: operations associated: with

them, a.nd some propertiea of these opergtions, However, we have not

'\ considered expli*itly the mportant dis 1nction between numbers and their X o J‘ ‘
\’names., Now we turn our attention to this distinction and particularly Lo
to° schemes for naming wvhole numbers; that 18, to the problem of numera- | \ .
tibn. o \ ‘ \ ~ . Y S
. ¢ . ) : . B | - . | n
Whole. Numbers and Their Nawes : o : RN B
We Know that the vhole number “twe‘ive" , for example, is a property , o ,
of the set ; \ o . 'y o . ..
? » \1{a,,c,§ e,fg_,hij,k 1}\
‘f and of all' setd equivalept to this set, The word "twelve" is s name
. fpr this number propesty and 18 not the number 1tse1f. Similarly, ~the *
s‘ymbol or numeral "12" is ‘another name for this same number. This is . \ “
t.rue alsa for the numeral "XII" , written in t{xe Roman system of notation. - e
Iri fact, wheh'we write . AR . ’ ‘ ’
B d .\)’ T °ﬁ1 ~="1:~a‘ TN | ,

<
o

._;:gﬁ_hu .

\%‘

y N N N NN e : } :
Ve simply are asserting that YXII" and Vi2" are two different names

.

for the sane thing, tbm‘. 19, the Same aumber. C o N

-

As we now cohsi&er pf’inciples of numeration,g it is :lnq:ortant for
us - to .keep clearly in mind tha.t ‘number and numeral are ﬁot synonymous. & e ¥
A number is a concnpt an abstraction. A whole ‘number is one kina of . -
number, and in various Rreeeding chapters we have consiaerea selected
aapects of the whole number system. &)n the other hand, a_ numeration

gystem is a ‘system for, nam:lng numbers H thus, it 13 a numeral syatem,
In this chapt;er, we shall be coneerned wigh numeration systems for nawing

whole numb.ers. Pur emphasis will be on thsgmmber nemessor mumerals, . ., ..
ratl;er than on the rmm*q,ers themselves. o I ‘ . B
~ . 3. - 3 . RN - . o . . N Cd

. 21 \ . . ‘ é

. ) 2
‘.-M~\ ) ‘"? ’ . . .~ »
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" gmdifiea Greek syét‘em‘. R .

P

little mose than tally marks, such as / for "one", for “two", o}
. J .

.. . \ v o o o
‘Barlier Numeration Systems o . N,

©

-

Man, during the :ourse of his history, d4id not aJways use our
familiar Hindu-Arabi‘ aumeration system. ‘His ‘earliest schemes involved

/// fbr "three", etu. uch pnimitive schemes were fer from effective

Jand erficient, parti*ularly when dealing with large numbers.

The Egyptlanb the Chinese, the Greeks, the Romans, ana others all o ‘ ‘\\
developed nnmeration systewms that were 1mprovaents upon prlmitive tally \

~schemes. However, none of thesd was as sophisticated as the one developed

\\by the Hindus, whi:h evolved into the Hindu-Arabic _system we use tcday.~

- the twenty-tour 1etter3 of the Greek alphabet and three obsolete letters.

‘ Nevertheleos = brief consideration of at least opg of these earlier

‘numera*ion systemb an be of :interest and can give us an appreciation of
the principles and advantages of our own system.

A\ T

°

Y
-

The Greek system of numeration used twenty-seven basic symbols-

Each of these basiv symbcls named a particular number. Other numbers werg

" named by combining basic symbols according to espablished principles or —
< n, ‘ o ) \ ’ o
\rg{gs ; ‘ &9 \ s
Lgt us 111ugtrate & modified version of. this Greek system by using T e

it

additional arbitrary'symbol Y7 - The number nemed by each basic

as basia.symbols the twenty-six 1etters of' our own alphabet and one "

«
L

\ symbol 1s- indivated beloq~1n terms of our own Hindu-Arabic numerals. >t ” -
. A= J-10 s;loo | -
. . K'= 20 T = 200 .
C = 3 . L =30 - U = 300 :. : c - N
D = b M=k V = 400 S o . } o
E=5 N=5 - W =500 | I
al ) F}—*aé 0 = 60 X‘$ 600 .
) S G=T. P=T0 Y = 700 - .
.. H=8 Q=8 2=80 .l
‘ I= =90 en@=900 . . . R S
e R L
- - :
s - : ; )
e i 7 ) ‘ .
) . ’ 212 . *. R
. \ R ?753 \ - o
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A )
e -

f"!\ »ompound symbol sunh as “PD*' is inter;erete,d to mean

v

704-1;,01' R

LY N .
- o N N W
N

. in our oy system. Similarly, .
- "WKH". means 500 + 20 + 8, or. 528 , _ b
"TR" means 200 + 90 ) or 290 , ar;q o
~ "UF" means 300 + 6, or 306 o S SIS
1n terms of our f‘amiliax‘ rumerals, ‘ ) :
N — . . . .
Noti. ‘e that the symbol "DP" would be interpreted t‘o mean 4 + 70,
or . 7h ., 'I'm.s, 1% would be\*r.r\..e that \ o \ L
! ¥D = DP . . * " \‘ - LN o
However we shall agree that ih such ‘1nstances we shall vrite the basic n ,
R symbol £ the larger mgmber to the left of the basic symbol for the ‘ * :
smaller number. ’"‘11...,, the preferred form would be PD instead of P, N *
Simil,a*!y, i ‘wmld o true that L .
N = WHK = KHV = KWH = HWK = HKW , . o~ :
» ¥ &
“of these six different names for the same nymber, the preferred form - "
would be WKH . L \ N T \ .
) . : - - R v Y B »
°Problems“ : : L D S
I,  Express each of these modifiea Greek system numerals 8t :t’amiliar :
Hinﬂu-Arabb numerals. . > . \_;, . )
’ L8 MF . b ZNB e, XK d Ve, e vn{ RS
2. Expreos ea h of these Hindu-Ara’bic numerafs in the preferred form"
,‘ of modif‘ied Greek system numerals, L - - ‘
’ a. 63 ‘?,«5 - g, 210 “a. 50 e 888 v -
»
! D Does the modified Greek system have 8 basica,‘symbol for "the number \
’ ‘ zero"? If so, what is tbat; symbol? If not, why is such a basic ‘
. symbol not ‘uged in the system? R . - Sy
‘2 N R A NN ..
"v . i ) \ ? ’ ,‘ ' . . . “\la: ‘
: Solutions for problems in this chapter are on page 234, \ - Coa
N ”~\
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‘But what about naming nwibers greater than VRI or 999%2 We
“\annot n&me su:h numbers without some further agreement or extension

~of t}.e gystem. So, let us ey we.may use a.prime mark (‘)\ o

us,

means 1000 X5, or 5000 )
means 1000 X 70 s OF 70 OOO

. --means 1000 X 200 , or 200, 000
in terms gf our familiar numerals.,
l

\ \Prub\l ems | | g

‘ h.~ E‘.xp‘"e s each of these modified Greek system numerals as familiar
Hindu-Arabic numerals. S
‘&, BUYMG b, QIAWL ‘2. VIO'RG

»

You undoubtedly have noticea that the number ”ten“ is of P ‘
signifi cance 1n the modified Greek numeration system. For instance; vb;he'
symbols J, K, o o.. , Q, B named multigles of\ten (10 20, e e e
.80, 90} , and the symbols 8, T, . . . , 2, V named multiples of ten

. tens or one’ hundred (100, 200, * s o, 800 900) .

We may say that "ten"‘is the ¥ase of this fumeratioh system. Tt
o ) * 48 the basis number that we use for grduzﬁings mthin the systerg. A

/\Qtures of \‘querat‘ién ‘Syéteins oo _—

Mra‘bmn systems have ‘three features that a.re of signiﬁcance
as we turn to a consideration of our own mm&mwu system. &

»

\ »; 1.‘ One of these features is that of base, a basti,c. Jnumber in-terms
of whi"h we effect groupings within the system. ‘rhis number may or may ‘
not be "ten". If the btase is "ten", we o:f‘ten refer o ‘that system as*a
aecimia.} system. (“Decimal" is, derived :t‘rom thﬁ Latin word decem which\

means "ten",) .

2. -Another feature is & set of. basic symbols Qr number names. \From! )

~ these, all other numerals’are built, As ve shall Bee, “the choice of
base often determines the mumber of basic symbols used within a numeration

SFS'Q.M. . : ﬁ : " ‘ Co " B o T

‘/\I )
bl
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b§?1~ symbbls to 1orm cther numerals S0 that every whble number may be

named 1n terns ot these basiv symbols only. Tt is within this third fea-

\~oi nlaue value.‘ - ] ‘
- . h

G \ : o
The Hindu-Arahio‘Numeration System

»

Let us examine ea“b -of" the, preueding featufes as it relates~
spewifiwa]ly to our Hinﬁu-Arabi\ numeration systemn,

Al

1.  The Hindu-Arabf\ numeration system is a deuimal system' its .
‘base is tun. This 1s seen- learly in the fact that we interpret the

number “sixty-three", for example, as "six tens and three (onea)“
"Sixty" itsel! means “six tens .. This. feature may be illustrated in

" the groupings beloy for the 1nterpretation of the nimber- ”sixmy-three"

L. “ o (::3 XXX XX XX X)
 [& EXXXXEXE {;é}“‘ -
- \(gfk S YEE x'x\; x) ‘\ .
I EXXX x.ﬁ\x X igi) | |

s ) Z Iy
o . MEXXXXXXXX X) <
. .o “‘?ﬁ“: .

- ‘X X X hd

P o

-

}
The Hindu-Arabio numeration system utilizes ten basic symbols

or di(_z,i;t;sx\~ 0, 1, 2, 3, L, 5, 6, ?, 8, 9 Buch~that
) \ \ “

oD names the number zero; 2t

j:

names the number one;
names the number two; :
names the nuuber three; . o

" names the number four;
names the number five;

names the number seven; oy

N U & oW Ay

- names the number eight;
and nemes the number nine.
3 L N |

) 49

‘nemes the number six;

\ture that we find a prin 1p)e that sets the Hindu-Arahic system apart from
. others that preceded 1t. Ve are referring, of course, to the principle .

-

g e :




thive\the 1n51usion of a éymbol foy zerb- 0 . This 1s in marked
contrast to systems su. ‘h as the Greek, .the Roman, etc., that had no

: zero uymbol *The need for a zero symbol in thejgase of the Hindu-Arabi»

systew is related\,losely to the place value p:inciple discussed in ‘the
fol owing sextion. }

3. The Hindu-Arabiﬁ numeration’system utilizes a prineiple of
plare value, along with mult&plicative and additive principles, in ‘order

to combine basiz symbols)or digits of the system to name whole numbers )

greater than nine, We aré\quite familiar with the fact that in the
numeval 2222 , for *nétance, eaﬁh digit 2 #oes hot have the same
“valuz . The "value” of each 2 1is determined by its place or position
- 1n the numeral as a whole:

e

-2 ones . ‘\
2 tens'g'i

~2 hundreds

2 thousands.

Or, we may ronvey‘the same idea in‘é slightly different way:

“22‘27...\\“ : o
‘ l 2 x 1,0r 2 . ‘
2x10,0v 20 >
2% 100 , 6r 200 -
w2 X 1000 , or 2000 . \

Here we see the multipli &tkve~principlé in association with.the place -
value pr&n"iple. g \ ’

>
E S
» . . "

We frequently findvit helpful to use an expanded form of notation

to emphasize both the multiplioatrve and additive principles that apply )

to th@ interpretation of a numeral such as 2222 :

2002 - (amex 100) + (2x10) + (exl) T

role of the base, ten, “in determ1n§ng the "place values“.t Each place to

None. of‘the‘notatioga used thus ‘far has made explicit the. 1mportant \

3

‘the 1eft of the ones plage in o -pumeral h&&a&aee&&teé M%% ‘!va‘“n"

that is ten times the "value" associated with the place 1mmediately Yo

 its right. For the numera? 2222 , we can show this 1mportant idea in

‘b’ i AN
T‘ .
3

|

\ i - \ 21£i3~\ ~\ e

‘ N > k»
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late creation of a plaue - value numeration system. o ‘ \ d
s

)]
Uy
.'-—-v—"“— ‘

2202 o 4
1. )
I 2x1

2%20 %1

—---v-»exlo‘xloxl
-2 %X 10 X 10 X 10 X &

N » . . ‘ N . . . ?; \
or ~ T oo :

2228 -~ {2 X 10 x 1‘05103 + (2% 10 x 10) '+ (2 x 10) + (2 x 1) .
" The lmportance of the zero symbol, 0 , in connectioﬁ’wiih our
place = valué‘numefaticn gystem is refle»ted in nnmerals such as 2220 ,
2202 , 2022 , 2200 , and 002 .° Without the zeyo: symbol such numerals

eodld not be distinguished readily from 222 (in the case of 2220 , .
‘2202 and  2022) or from 22 (in the case of 2200 and 2002) ~ Without

some symwbol to denote “not any" in a particular place, a. numerapion BYy5~
:tem with a plage value prinqiple would not be feasidble, In fact, the |

relatively late invention of & symbol for: “ﬁét any" (a symbol for the
number pertaining to the empty set), was the Teason for the relatively

The following Chart may be helpful in summarizing some of. the
ideas just disvuased reg&rding our numeration sysfem.

o
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\\ N } - . ‘\ * . *\ N : "‘ : N ’(\

: » \ M:ﬁom .o \ S Ebu:;aqﬁ o ‘ Uil o

) | - Fens . . ‘ N &.}nns \ . Aunﬁtﬁ. ia l“ﬂs / ‘0’?0‘5 . A&md‘eﬂ ﬁns ong,g
0,000,000\ | ' [ 000,000 | ' 100,000 | 10,000 | tooo | 100 |10 | 1]

105(0x/0x103/0+ 10410 | 10+10x10x10210%10| 10+10x1010:42| 10+10+10+10| 10+10D.| 10310 | 1ovi| 1

Z

=)

3

forty six". ’Notioe that the ‘word “ang" :is not used in reading numerals for vhole numbers‘ Othemdse,}-

Consider the numeral ,,205,01&6 which we read as: seven millian, two hundred fiVe thouaana

1t would not be clear, for example, vhen ve say "two hund;*ed and five thou.sand" whether we mesn ‘

- 200 + 5, ooo“ or "205,000".) .. -

»
-

| L o
Wf‘ may ’tmﬁ“ the numeral 7,205,0h8 t.n mean:. 7 millisns -2 huaéreé-theusands we»m ~~~~~~~ —

N thousands 5 thauaands, 0 hundreds, h tens 6 ones, Since O ten-tho:asanda and 0 hunareds

3
Q

(,x1oo@ooo}+(2x;ooooo)+(5xlooo)+€hx10)+(6x»1),or\‘ ‘ \“"‘

\ o
© both result in zéro, these may be omitted “in the interpretation, 'I’hus, ,295&@‘ means: ‘7 millions, -

2" hunﬂred-.thouaanda, 5 thousands, &4 't)ena, 6 ones, We also may use an expandea notatiqn form; ,
¥,000,000 + 200,000 + 5,000 + ho +6, or ‘ S 4 ‘ ‘

('(xloxloxl()xmxl()xlo)+(2><lele10><§0><10)+(5><10><10><10)+(h><l0)+(6><1)

N \ 3 L N
* . N A N . N N N .
NN . e . . . N
v
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. Problems . o S s -

o7 . . . . . N . N
s B Write the base ten numeral for each of these exXpressions,

a, 7 hundreds, L& tens, 9 ones ., ‘

.-b. B thousands, 3 Hundreds, 6 ones. ;

Y e 2000 % 700 + 50 + 1 S . ,\ : ‘\ e
a \“\‘d.‘hO000+b000+80+3 ; [
Ve {5%1000) + (0 x 100) +.(2 x 10) +(h><1) N ST

vVor. ) {T-X 10 ,000) + (6 x100) + (9 x1) - s R

| & ‘(mexmxlo)+(hx10><10}+(3><1) ‘ ) |

“h, \9x1\.xxv>\13x10)+(5x10x10x10)+(6><10)

R - Bxpress each of these base ten numerals in three ways as shown im
: © the illustrative- example below. ‘ \ \ o %

: Example:, 4257 = hOOO +200 + 50 + 7 \ L
N L he5y - (hxlgoo)+(2xloo)+(§5x10)+(7><1) R
i b5t = (ltx%(oxlcxl())-k(?XlOXlO)+(5X10)+(7><1) R
a. 51@ Dy 7350 L e ko702 . \
« R ’
§ S
' N : ~ \
L N
° _ » .:i\
N - . . \“ \
i ‘ i 3
/. . -
e T —- e - - P
- o 2
e iy R N * :
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Grouping by Fours -

. 'We are familiar with grouping;cbjects by tens in ¢

- decimal place value numeration system,

' For instance: '

_A{‘*“‘-\ - 2 Y > S
: . Number of -" Base Ten
v Tens Ones Numeral
X . ‘ 1
- N »
xx \ l[
oo ' H
. o ‘ * \
1 xooox —_—
F s —

‘ - A
\\~—:§§ncoccx : \
\\\\xxxxxxxxx e ;

Violvwlaolul slwin

Pl

L0000

[EEEEEeaaE] X 1 1
| oo x 3 ‘ 12

Feveeivevodihved

-

czgzzzzgzzzj &xxx

R N

P OOOXXXAX | oo R

1
2
3
N
5
6
T
8
9
o
1
2
3
h
5

st

15

[Soe0ea00aer) o

R E&c;

L]

1

-

’ 3 -

N
A

Suppose that we agreed to group objects by Pours rather ﬁhan by tens.

Suppose, for example, that 1nsteaa cf grouping foarteen objects as

@xm

1 ten and h ones

“we -had grouped the fourteen cbjects as

@@@Xx

» r
=
3
o)
Ny
N ' PO

3 fours and 2 ones.

BERE-" 1 B .

e
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We hertainly have ot ‘hanged the number of objectS' fpurteen, We have
. only *hangcd the way in which these iourteen obdects are grouped as

Ny

i \
'3 rours and 2 'ones" rather than as "1 ten and L ones".

“w)

Y

w

- [N R
‘l\‘ The numerala of our baue ten plaae vaiue system refle%} a tens-ands. \f
’ o E o
ones grouping, as 8 5‘\;£k ‘ . L b < \ g
oy N “s‘v~ . N \ \‘
‘ . B Y . :
o I ‘f I L-ones~‘ : - T o gﬁ‘. :
. X v . v 9 -
: . i : fen(s) \ \ )
Y . N N k] ( .

Wbulgrit be possible to develop a base four plaﬂe-value numeration scheme

ﬁhan numeraly reflest a fours~and-cnes grogping, as..
R \ .

s \ L;ones I o :
‘ l e fours S e ¥ Q .
Let us use sets of one tvo, three, . , . ) fifteen objects to see

how such a base four numeral systenm might be developed This is aone
in the chart below, ‘which 1ncludes nontrasting base ten numerals. ‘

.

Notve. that in the decim&l system, each set of ten objects is groupea
as 1 ten and the number of these groups is indicated in the ‘tens place.
Thus, 23 is 2 ‘tens and 3 ones, and the number of ones left un#
£ grouped . is‘given oy the diglt 3.. The possible aig§ts ;n‘tpe ones
;}f . Place are then ary e numerals O, i~ 2, 3y v v s > 9 . ‘Similafly,
\ regrouped into hunﬂreds vhen there are ten or more
 of these groups, groups of hundreds are’ regrouped into thousands when there e
are ten or mope of the hundreds, and 8o on. Thus ‘any digit in any place

'groups of tens

P SN D

. 15 one of the numerals 0, 1, 9 3y « . > 9+ A simllar analysis shows
that any digit in base four numeration system Is one of ‘the numbers |
0 A, 2 3 sinwe any number of groups exceeding 3 wOula be regrouyed
into 3roups of the next larger size. N, o M“,g;¢
| R . , |
\ . :
JEVETUTUNUIEF NI, SN G PR S e —— . - —— - —— PR S [N Y \\ ‘“" :
N ‘ - » A . ® -
| ‘ N N . . , » 2 » ‘;
.221 \ ) . . \‘
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\ : '
\\ » : "? ‘w
Numbgr of Base Four . || Base Ten ~
\\\ Y » N . . ) AN
\ Fours | Ones Nume;ral . Numeré.l
%\ - >~ -
v X \ ™ 1 1 1 »
= . 2 2 e ‘
. 3 » »
XX 3 3 3 .
G B L 0. 10", BRI ‘
\ - : ) SO e
POy x R 1 1 I N
x . B! 2 12 6 | ‘
e e .
\ xxx 3 13 T .
‘ S \ S - % - =
v .|l & to . S8 -
\ - : ‘ ‘ v : :
. B xy e | 1 a ).
L EmEE x| o2 2 I 1o,
/ -m«/\ 2 .| 3 | = n ’
| = o m= S 0 30 13
® mmr—m X 3 1 31 13N .
v - ' i r B —d : N
&5 [ﬁ EEE) xx | 3 W 2 ' 32 'ﬁ v 1k N
oo el B ex | 30| 3 33 | R
h - N t i . . . AN \ \ . ’
R . . "
. *This num@ should be read' ong, z€ero, base :f'cur. Succeeding
‘ nunerals in this column would be read' . ue, one, base four, one R
\t*wo, base fcur, one, three, base four; etc.
- \ .
We now face a problem. What, for 1nstance, dpes’ the numeral "13" ~
N \ mean: "1 ten and 3 ones" | ”1 four and 3 ones”" ‘ W,e commonly o
\ Jesolve this problem in the follcwing way§ . ) \
- v . e
. » If we see the numeral’ “13“ » Tor example, we assume that 1t is
f' ritten in base ten and understand it to mean ”l ten and 3 ones".
Thls “srimpty fo?tftows ‘I‘amﬂinr COI'IVETI‘U‘I‘OIT ‘“"‘ T T
If on the other hana we wish %0 write a numeral to convey & base:
four grouping such as "l fourr and 3 ones" we agree to use the forum
+ ) -~ -
. o * 222 N . .
. . . L a 92 B . :
. . i R . Y
I ‘ 3 \
N ) : . . % . e
S ' L - ! 3



. “13 ¥, The subocript ' "Iour : indivates the base in which the ‘-\/ i \‘

‘o . :
uro o R : ar N : ) -

* . . v AR ’ N A s 8
\c mmerﬂ id Witten. R . LN R q\‘ o - ‘ o - i ‘ R . ,’ R ‘ -
3 !" \ "

! On oot ‘asion, m‘ﬁen ahowing the base.ten numeral for ';,hirteen, for

a.me, we “may write “13t 'd.nstead of. simply 3T oy just to bq \ ‘ .
o 3 - . ‘ .’\‘ ‘ . -" -
certain tha: there is no misunderstanding. *Thus,: wé agree that - AT
B ‘ t o ! s ) v . Tos ‘ o N ‘\ " W ‘;"“ X ) ‘f j\\ '
Y N O R ST .. » 1 . ) < . M . <
- T . ; : . 3 3ten oo ‘. NG oo X
 However, be sure %o ﬂep *‘early 1n mind that‘ S . . SN
M o . N e . R . T v %
~ o 8 13423, ot s T
) o) 3; fow L0 |
. R . . . ot . N RIS Ve
°-- - and that L el o \ o SRS
R . D - R i R - 1 C . e N »\91 ‘ . - . " v - a.
N . ‘\ C e . . » o ~ 3ten h 3f°ur v . : . ‘\ - » oo
N N Y ? ) /‘ . o W ) . ’ s o AN N \ ? ¥ *
¥ Inrfact, 1t is true that o R e ST by ‘
:{ NI . - . . . N \ R . - . N . N \;. . R o ) -
. R S I . 1 . - 1 » R \ - . NN 3 > N R
: SN Y ® BN Bten 3 f‘our‘f\ A ) N R <N 2
. Ce - a N . . - e ; .\\ \ - R - h i q? . 3 \\ ‘,g"
and that . Y b 0 . . ‘; . ! - \ 8 . N ,
. . o . \ . " : . e LN - .
? R . . . . L 1 AN ' - J R el - L o
o ) e, e e 3four (ten * T O ) r
v . &‘ » AN e ) . : N - ‘ " N ;
5 Prohlems N \‘ I S . '® T e
“ N ".‘"""""" et N » ) , ) » N . . .
BES s i NN v L " ,‘,,
R f;. Write “Yes or "No“ to indic a;;e whether each of these is 8 t;rue - e, w Y
~ N -~ N N *3 . N
R N . - N N ‘r N - . &t
statgmént.. A | ) ‘ A . ‘ e e .

+*w . . N .
-y

L osa. . 0 oo=d1, o L gl ~‘\3f§ur:\='~3\ LT e R e

al BRI tep=" “four S . \ 1 R

R AL Y LA 10=30, s e T

- v . . . “ . .
L

o bl X N .
’:K'.‘-\ @ ?I:xpress ehch of these ‘oase four numerals as base ten numerals. L

,“- - f\“.\‘\ SN NI 3
a. 21t“:)ur - o B’Ofou‘r - .. e ‘lerour . '

i . - . . B AN
. ;%’b DA N .. - .
; Tt N

\ 9. ;Bxpreé‘s each of th’ese hase ten numerals as a base four numerql . e, e

n NS

o A e . = BN . o .
o .,; e, '8 . : .. B 1h R TR & | S
. ¥ . - . o R ) . »

. 10. Using base Lour numers 3® soxl L . . ‘
N T o \Q R . . ‘, . . w\‘ .
Che : ﬁe the E{Vén wh 1e umbers 1es,c.: than sixtean. SR L o

N “"s b.\ Name .the odd whole mmbers m%greater then fiftcen. .’ SO N

: ’ W

- A d

R N . a ')~ N::\-- O W .~:: >
AR

“four s 2mm \ four - . ‘ R

w

A} N E]
[ R WO N | - T S, - p RS :
m%—‘ \ ’\ oy - T RN ' t ‘ N ’ R
. : - e b ) - R -

A :_w N Y . . a

- - N
A S Ve - ( N - -~ P ,‘?‘ LR
- ~ N " " A
» - L 4 A ]
P s a . P - PO Sy
3 - . . RS o N * -
-~ A . ¥ ' e . " =
: ? . N Ny > ? h i& N ‘m~\ :' *a
NN . ~
? - N . '
‘0
% ? A : 2 R
- - * . v » [
v - N LI S » -
. - ‘ - - %
- S - [y

Fi
| 4
¥
//rm .
3V
S..U

3 » N ¥ K . N
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; Our babe ten nu'neration system inﬂludes rqore “than Just two pfaces, Xy
N &
Ly oA terts pla‘e and- a ofey pla-*e. Likewioe, a base fopr numeration syétem N B
‘ 1ncludes mnre than Just a fours .placfe ana & ones place.\ We now comsider ’
R . )
an 1extenslon of. grouping by fours. B - N .

. - » e ¥ : T
- We know that ninety-nine is the greatest .whole number that can be N
Lot R N .

named as a two-pla oI numeral in our base ten numeration. syste!n' 99 0 ‘

. \ .
o P T’he next whele number, ten tens,. or ,pne h.mdred neceasitatea a new . . : .

pl ace . to the left of tens place. Thus, we nawe den tens or onehundrea i
: 9 © Cwith the numeral N Y .
Y Y - \ N X : ) . '
- o »
A ' \> -
' \ o ones ..
K tens .
T . . o - ten tens. or« hundreﬁs %
Similaxly, fifteerr is the last whole number . that can be named with N
]
b M »
|4 two-plaae numeral in a base four numeration system' 33 N T The mnext .
R . vwhole Aumber,. four fours, or si.xteen, ner:fssitates a new .Place to the . o
S AT Co
. . left of fours plave. Thus we na.me. four fours o:r sixteen with the oo
.~ numeral o . ) . oo .
. - e )
- . ® A a N ST . »,
e N \ e | o
» N \ * .. ‘\" v * }b‘ '
o T - T
' - # ISR * ) . ) “
’ [ : or sixteens L
DY - » Ve,
‘ ’I"hp f‘ollnwing diagp&m may help us interpret a numera], such as .
~ s > » - -
3 four . , L .
¥ . ‘ .
N i X Fy N X s % - ’ ¥ N
N N - X) . . . . .
T . 2 setsof - "3 ‘sets. 2 ones’ o . .
. ' . four fours \ of four R S Vo :
< '& ? . sor 8l X'teen » . R
;._‘._... IR )\L— .~ S N ; r N e g e e _ Nq»“ i . . x -l_‘ . [ i \f )
s : B Y . .).\ . - \ ,“ - . i . -;’ ,
\ - \ r L4 T P32, *&6*, \ ‘ AT
~ Thus, 23 four 18 anothfr hame f“o 0en gé?ﬁgur A L - :
P e N . NN P ) . . ,- LN . :‘
- - 0 1 - e . ) o *
~ -~ : - ' v N - ’
, . Lo . . .
. x . : @’:’1‘ v oot :
» : > A ’ v - - S
R . X ~ . i .; n - E SR
2 “ N N N R AR Y R >
" » : LAY 3 ‘o ) ) 3 . : » !
oo R N = ¢, ¢ “_ ,* ¥ * N
) 3- T . . ;’ N PR CRERAR — ®. -

- X N N W - . . o
- A [N N * N
]: lC AN ' e - S N
. N R . b . N N N Y *» S N §'\ N B >
P rore i oo B . . e . . LSRN N A N AR TN
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. - : . » T . R ) R - s N ) .. \: vv : ‘{V‘ -, ‘
. \ . . . . . ‘ N N
N . ' B ‘ ~ N * e N
! . - o . Cos L3 . . . ?
Q = N . : . . * , # ' . .
R * h A - N “ ) R . R Y
. N . . N > -

The place values assoriated with a base four numeration .sys‘fcem
L llow the same pattern a8 4o the place values associated with & base o B .
. ten rmmeration system, as ahum in this chart: ' x ‘ R . ‘

-

-3 . [ .
S N Ny B 8

. \ \ \ ‘Base X Base X Base Base X'Mase | Base One LR
| ! - - i : - : e | s -
"\ | - Ten x Ten X Ten *Ten X Ten | Ten |.»One | » o

S ‘ (Fhousands) {(Hundreds).- | . 1 - e g )

~ v

T - Lrour x Four x Four Four X -Four | Four, One S
R bSixty-fours) - { ‘(Sixteens) S T I \ o

2 ~ Y 3
R T . Al . ‘. : . ) N ! N é‘gn -; N
N N > » . R . N v, -
* *. Thus, the rumeral 21??3 fou!r\ may‘ be im:er:preted as:’ R T
RO N N ?
. . . \ .
A )

2183, axu h L boxk 2 %h) x1 o Q;
- A2p0r = ( i, x b x ) + (Lgf j< ):+(‘ X. ‘) (3 ) E | T
T AR - <‘~ x5 v (1 x 15)%‘2 X8 v (3x1). .

? MK o N - ” r L -
. . é12~‘éour ::, 12§ ";_ }6‘ > 8 3> 3 - v . . D) ‘ @ .
= \'\ S ‘ N .‘ . %3 : h R ‘ N N ' . :‘:
o P1235 0 = 195 (Leey, 155ten) oo ‘ . *
:’ . *o\ :‘ ~ L 3 \ \ . ‘ »
- © T . . »" L0 . AR .
Pz;pblems . : . R L : .. : ) .
N W . . . N ‘\' . . . Ly . ) ~ . \g .
. }1, I:xpress eaoh of these base fdur numex’als as a base ten numeral., : ’
. ?7 . 31*four ‘ ®. 1332f0ur " “ c- Bm'éfour .
o ‘\‘;d.' anlfour T e 1230?0‘-\1‘ L oL ‘
. . RSN .o s Y. . \ e h 9
Other Bé.ses - .. \ .t \ O \ oL ’

» » v

A set of objects may be groupedv in terms of bases other than.,ten | \ N

.or i‘our. Considbr,” Fom instance, % set of. 23 ob,jects that are grouped R
: first by sixes,, then by sevens,.and then by eights. B N \"‘ v
S N . 3 :
" ' ‘ * N . -t"‘i‘ 0
@@@ oodx 3 sikes sud- 5 oné's, ov if; O
* ~ v . IEC RS .
) > N
be oo oy sevens ones, or 2 - ‘ :
D CEED oD x5 sevens and. 2 omsy or Ry
. % e - » . \ . \ ‘ Q
@@ J0800KK 3 eights and ki onea, or weight o .
. . ' e T, e T,
; M . » .. o . a
N - = ) ‘e A ‘&,
" F 2 . N \ » -‘» . - . . R . N - N
» R ) 2?5‘ . R .
- . R N N
S . QJ - b 3’ n
IRRN D ‘ . \ \ - L O
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These 111ustrationa point “+0 the Tact that the place-value pattern

LY
?

N

LN

aasocia&;ed’ with base ten and base tour may be applied to other bases

‘0\  a.swell

- For }nstsmce.

*

D e \ BxBXB%® | BxBxB | BxB | B |1’ :
\ a . - - - : i “ ‘ . . -
. . 10 x 1;5‘ X 10 X 10 ,10.x10x10{10x10 | 10 Y 1. ~
. A 10000 w00 , | 100 10 {1
) : . — — - 3
. Sl T b xexhoxh bxhxd | 4xi oo \
o | 256 . B T IN R AR ’ i
' K 3IXYIXINI 33?‘35-3 3x3 | 3 |
° ‘ k ‘ N \\ . . . 8] N \ 2 "t‘ ‘9 . " ) 3 .
. <+ . Ad N ¥ »: N N . » - e
oo T jexexdxe ax2xe2 | 2x2 2 f 1
\,,\ .:c"" T : 7 16 . DY 8\ l; 2 ‘1
2 X5 X5 %5 OX5X3 I 5%X5 | 5 [ L| v,
.. ; - S - 125 25 5 |1, ﬁ L
% \ Ex6x6x6 | 6x6x6 .| 6x6 6 | 1 ‘ oo
M - [ 1296 . | a8, 36 ] 61 ‘ R
- \ . ) * RN ] 3 v B - . N . . . ”»
N \ ) \‘: K . - ) ) - V¢
\\ TXTXTxT Y xRt | ax7 | 7|1 e =
S W U - 10 R L SR RS 'T- S L 2 S B N NI
.. Y] lex8x8xs 8x8x8§ | 8x8 8 | 1 ~ '
. A I 4096 512 e 1 -8-]1 e .
Y N i ‘\ ! '\‘ - . k‘\‘ . : . . ) .
S aT o ‘9><‘9><9><9 9YX9X9 9X%X9 911 ‘ : .
e *B deﬁote\a; base; ” ‘ B R - <o
T a s e F) . \‘; \ y \ ‘ . ‘:'
f; : < ot - T . ' )
—- )’ P . - y - -~ N G .
s » Ry - T k3 AR :
. / st 226
e . R EY "’5
t‘.; AN -’ 3;5 . - \ R ~
_:\ . YN o~ N it N .“ 3 M v * v o s
\ ) ¥ - - -~ ‘ N \\ ' * .
Coaa Ty EETRTEE SR
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A cha‘m; such as the fo owing one may be helpful in shbwing for

1 ¢

the whole numbers one through: twenty-ﬁve their numerals in each of
these bases, N . ‘
. "BASE ! - - .
‘Ten . Nine. ~Eu_:;l'.n: Seven S8ix  Five ' Four  Three * Two® N
1 1 1 1 1 1 NI
N > \ 1)
2 2" 2 2, -2 2 . .2 2 10 ‘
3 -3 3 3 3 "3 3 1 1
T S T S TR TR -
5 5 B s 10 - 1 12 101
6 -6 6 6 - 10 1 12 20 110
7 T 7 S0 . 1w e 13 . 2 . 111 \ C
) N . . . N L . - .t N \!{' . 3 “
8 8 10 1 122 7 13 20 22 . 1000 N
9 10 50 12 1 21 1000 .00 -,
3 10" 12 13 - 1% 20 22 + 100 1010 R

= |

it
e
.
[
hov]
.
wr
ot
P

21 2%~ 102 1lom R
> 30 Ca00- Lt e
3. 31 w1 - um - o

| ol '32 L uz 11\1;0‘ - ‘\.\'

' oA 3 3 33w o.ame .

By 200 2 T2 R w0 - 1A - "10000:\“ T R
e 8.8 ar 23] 7\25“; 33 01 12 1000k . e
18 d 22 Y2 0 300 33% 102 2000 000 . .. .0
190 2. 23 . (2. " 3 T3k o103, 2010, 10011

&
—
& ®
J
[]
-
/er
bt
g
e
N W
[ -
BB 388G
n
[15)
(%3]
(o]
¢
»
ot
<O

(W
Mo
bttt
o WU
’...J
o
rs
8

N S
S N R 26° 32 " 16 22 - 10100 )
N 2 - " ‘\;25 - 30 b 33 \ B Ll“ 111 - 20 10101 \ ‘ R
e a6 o3 3. w w2 et lomen o o
e B e 32 T omilk uy3 w2 o Lt
Mﬁh %6’ 30 . 33 ho% B 120 20 . 1000 Yy L
%% oow. ;3 W 100 120 . oea | 11001
"u_. As_seeni‘z:our xh&chant; the hase mnaralwxaysappmvasﬂ 4& »when»- 0’;:“
written in that particular base system, Similerly, in & ;particular bas& T s

. ays'hem the numeral 100 always aesignates ‘the number obtainec'i by multi-» o s

\ plying %}ne bese by its;eli’. e N &‘,\‘ v ‘? ..
. N ) . . . N e " ) e . )

- N -
: ! ‘9 N el * 3.“ \
N »
R % - N 0 LN
> . s s . » *
» i ¥ W WURR » )
. . L, . :
Y ' 3 N : .
N ' +
o \ N 8, 3 . *
. » »
» '. . o o ! o ' o » )
. o - . - TR 3 ) »
2 R Lol .
n“‘j N - . N - .
. » »® . >
» - . '3 1 - N !' N
el Al ~
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. The Rlace-value pattern f‘cr a particular base 1s used whenever we 3
C .
wish\o revrite a numeral; in that; base as & base ten numeral. (}onsider,
’ for i stam.g, the place-value pattern applied to the numeral 21135nine:
=
.. . . 28 3‘.?“1“& ) - o, I |
- . i - 5 X.one o ? \
~ . N -
. R 3 X nine- T .
A . . [ ’
= . 4 X nine X nine : =
N > - aﬁ nine X nine X nine Yo C e
K} .. u .
. ¥n terms of t;his pattern ye may write: . \
o 9h35ﬁ1m=(2x’9 xv9‘><9)+(h><9><9)+(3,x9)+(5><1) S
N -
- : M*=(2x*‘3739)+(hx81)+(‘x9)+(5><1) 9 ‘ )
) - N 7
c ~;""\=11&58+32h‘+27+5 s o~
¥ o N N AN *
‘a N -
» = 1811‘?‘ * o * AU -
LR . V. > ? " X A - . ) .
> a S’uppase that we were t:oncernea ‘t-’ith the numeral éh&’j ':mstead S N
LY R v "' \
\ d : cof the numeral "1;35:?1; 'I‘hen, the base six place-value pattg-zrn would ’
. N N ¥ N ). . R . y h
N ' pe‘rmit us® to Jrite:r vy oo L s N fé
oY 235} =(2x6x,6x*6)+(hx6x6)+(3><6)+(5x1)
Sk \ \ .
\ 2t (2x‘>316)+(l;x36)+(3x3)+(5.><1) yo !
N EY hd v -
. » . 2 ‘
- L32 + lli\h + 18 "5 i . R . C .
¥y ‘e . N ‘a‘_' x -
. 2 s 599 ) R N i : ) .
" . . @ - N ~ “ . S,
AN N . - \; '1. ’~ }‘ " .‘ .
N Problems : .\ o .
Ay L - I -
Expreas each of these as & ‘base ten numeral. . ‘
A A
s‘ -~ . » ’ ! - : - ‘ ) " ) . ) ‘8 \ ‘:
V o, % J0IR 2'ch;r'ee 3201éi'our - L e Y
. o e oy et o
\ - : . X, W ) N
- :‘ Coe , A \ N
¥ ‘ N - . N
. a i R ? N
‘:"\ . ‘f ’ » ' ) ‘:. . .. 2 N » ‘ \\
. ~ ° . L
. S ~ s
LI *‘ »
) M \ 228 N . * a‘ ‘ N 2
. 3 T N . B SN ‘
. .‘ N * ) o “‘\ \ §'\ »Q i . . ) "
N - . s . ’ '
. ' [T \ N » 88 : . . \' \' N i . . \' M . N —
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: ﬂ Note a.bout N\’:atatiion

We have been expressing va.rious nondecimal ‘base numeials as ‘oa.se
ten numerasl s, xIn ‘this work we moved directly into base ten Just as soon

. .ag we expressed a nondecimal base numeral in an expanﬁed‘ i‘orm. For "
inst.ance vhen ve write " T : *

, '1'“'

~

{\ 213& -rexsxbx‘j)+(1x5x5)+(3x5)+(hx1) ‘
!

ve have expressed all numerals on the right-hana side of %he equation in
base ten notation. ) ‘_ ) ‘ ‘ : . ’

k4

If for some reason we had wished to e)@ress 213h in an

expanded form wit}}in base five { rather than in base ten), théniwe would

‘ N
need to use.base five notation throgghom; the: equation. We might convey = ‘
this idea by writing : . Lo . T

. -~
b} ) . . *.

A e = (2 x~1o X 10 x 10-)f (S 10 X 10) .+ (3 X‘IO)fivé‘\ Ty
N C Xy s U

Be: two .not,ations ‘are 1n keeping with the I‘act that 5ten mflve . e g
N . . 3 'S8
k) .

On still other o: Lasiono an expanded form for. 213hfi.va might be . .

- .
® . . .

" expressed as ¥ ; .

Thes

21‘3hﬂv = (2 X five X Five x a‘ive) +"(1")' five x f;];ve) + ( 3 X ﬁve)

. R < R R X . . ;D.\‘ . i o
‘ - ‘\ + (l" X One) : : X t‘ R LY . -

B such an instance ve };ave expressgd the base consistently 88 the wo:;c’l ; LU

n n . i
five", t;hu.» avoiding the place-value numerals 5ten or loﬁve ‘ Co R

. NN » ‘ RN : .
-In practice w.e select whiche'ver ‘of thgse forms is heat for a
‘particular purpose,. : . AN

NS
.

4.",;-

> The ma.in purpose of th;.s cha.pter ‘has been @o assist\j,n aeveloping

a éeepe; qnderataﬁdng of our Hindu«-Arabi%: numersation. systeng -1 decil&al’ . L

" or b‘ase ten system that utilizes a Eringj,p‘.l.g pibplace.xalus. -Ta-edéition oo

toa consideratior;\f ‘this sysfn itself attention was airecva to two » T

things that hopful Y tontributed "o this aééper understanding: (1) & AP

aif:l&ﬁ:‘);ekmumeration system vhich had no place-value nrinci;;l e, , ¥ ela U

Vv i\ and (é) placewa.lue numeration systdns *ha:ving bases other Bh .te&.; ST
A . CoT

N *
- . NN -

- -

[PV

- \J

.
v
-
£
’
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This latter material should have clariiied ‘the fact that the prinbiples L
vhich underlie our Hinﬂu-Arabiﬂ numeration system are not determined <7
by the fact that its base is . ten., These principles are more general ones
which can be appliaed with ot,her bages as_ywell. - The case of the aecimal

. basa is tut a'sp ifit_ 111ustration of a&n\re general case. RN

A{?f +
4

'I'hroughout thia chapter we sought to emphasize that any numeration

\ -system 13 a scheme for naming numders. ‘Although any’ particular number
3 \ \ may be nametl in various ways the properties of a number are not af:t‘e».ted
\ \ by the way 1n vhich it 1§ named. . \ BN ‘ .
o I

Apb‘lioations to\‘ipaching . S ‘ \ ‘ ) S . N

.

&

. Frequen'tly wé\ display ‘s8ts of objects in ways that emphasize the
decimal base of our numeration system, " For 1nstance‘, we' may di@lay a .
. set,of 53 Ob,jex..ts as 5 rOWS® of 10 objects, and -3, more' \

T2

00000 OO
0000000
0000000
0.0 00000,
©000B®00
N LY o s o0 .-

V . R ‘ . PR ‘~ . B
Representations such as '*this a0 help chi]drei’x to tif!iﬁk about collections

000000
0-00 ¢ O
000 00

. el \ of objects in. te¥ms of Bets of ten “ami some more” , and consequently \
direct attention to the decimal base of our numeration system. 'Ihis is .- ~
L true of any representatiou that displays co‘:llections of ob,jects as sets
\ \.‘ \ ~ of ten, regardless *of whether they are arranged in rows ’111 bundles, or
\ whate'ver.*‘

N

\\é"‘ s ‘ . The development of the place value concept is a different ‘and more

\ . aifficult fiatter. The ‘place value iden 1s associated with the numerala.
. we use, and may or may not be reflectéd in the% in whiqh a set of .

e obJects is arra.nged. \ I JEU ' v ) v

- 3 "
R

. ¥ ) ;
e oI the nmnerai 53 ‘!:he 5 is in tens p},&ne and the % ig dn o - e —

~

W

ones place. However, wvhen & aet o:t‘ )éc‘bs is displayeﬁ in rouws of

™ ten (and some ones), as sbove, the displ,r itself does not suggest the o

:I.aea of 8 tens pface and a ones place in our numersal system. But we mayf S
PO - move in the airection of th:ls idesa ‘by showing & collection of 53 obJjects

i

- \ u“\ ’ ;Y‘ . A ’ ‘ \230 . R - : »

- b : N - N . v N [}
- . :
% . A . ) - SR . B i) . . . N . < e
N N N N - N - N NN
. . N N .
E \ .
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1 « . N . . B BN . N « -

R J‘
o ~'v 1n aunh a way that sets of 10 are placed at the left of the' ones,
v ’“ N k T ‘\ <0 . BRI ’ N ’ '

3
~

o ~‘.0 ‘;\.\ . o o L

,00 "0 9 2o oo D
}pbO: . 000 009 000 00O : .
oooo QQOO' ovooo0 oooo @oooo . 000 !

o \ SR
With some objects ve often show each set of ten ‘a5 a “bundle“ rather

than as shown above. In either instance, ve shov the sets of ten to . -
the left of the ones, “hinting" at. %he place value 1dea associatea with ‘
numerals, We often zmrther’ this ',:hinting“ by using place velue devices,
in whir-h sets of ten or bugdles of ten are pl ea in "pockeﬁs“ markea 5‘ ;
\ w . TENS, and remaining single o‘bjec.vts are pla7d in “pockets“ markea ONES. 7 .

An abat.us representation of 53 clearly is assdciatsd much mo:m=
x.losgl,y with the pla\,e value principle. o \ e

K B S (‘ ) .

}Iere the number of tens and the nunber of ones are shown by the 'ibeaas \ IR l
S in aif‘ferent positions. The .number of tens and the number of ones als ’ .
« . .may be.shows by ta)sly marks {as ‘at the left below) or by digits {as at ‘ ‘
‘ _t.he right below) in appropriate positions. ~ o
3 . » . ‘ g
Tens Ones | R Te;as Ohes \ e ol

L AL L e T T

-

4

N » - N ' : R N X -

X < .
Ive—ﬁhauld be aware of the difrerem; pujg_"pcses and uses that are )
assoviated w:ith two foms of mamber charta'

v
.
-




' * _— ) N t ‘n»}
. S
Counting Chart . .
\\ : - N »
v et 3w v 6 r | 8| 9w |
RN ol u e a3 | w|sfwe|w]8]|w]| o
‘ - —— SO R , S
o oo a e || | | 28| & 281 2 | 30 >
2 ) : 4 ) ” A :
. 3L (32 | 33 [ 3§ 3% 36 | 3| 38|39
- b1 | w2 [uz [ uk | ous [ usT| W7 w8 | w9 |-50 1
S i : : > . R e e AR '
\1 \ ] . , . * .
s, . ’ \\ ; Numeral Chart '
N | ‘ !

10} |12 [ 13 f b 15 [16 | 17 | 18| 19

ST o 20 2 | e2 |23 | o 25" . 26 27 | 28 | 29 x
IS S B R R RN R RN N . %
Sl o : : SIS S e — \ = : ¥

> o bbo -8 L k2 | w3 ) B | b5 | M6 | b7 | 8 | b9

. . -xe ..
: - o
~ —— B

R » - . . - . .
l N . . N B

R L The Counting Chart highlights ten as.the base of our numeration

\ system, If we locate 35 , for 1nsta‘nc\e,fon the ‘Counting Chart, it
“clearly may b¢ associsted with 3 ryows of 10 "biqeks” and 5 "plocks" . .
in the next row., L . . e

- .- The Numeral Chart highlights an impor'tant feature of the strutture ‘

of our numerals, The first Tow of nwnera.ls lists the ten haslc symbols ~ )
o "
. el or digi*ts used in our numeration ‘system.. The. second Tow of numerals
: » :
. includes those w1§h 1 in tens Wace; the third row, those wi’bh 2 N
©  in tens place, ete, . , : : \ . . .
T Bach chart has its ap:propria)té place in an {nstructional progrim, . K ’!

e 1ve ChlId 1s sble to complete, correct1y~a¢wexamyte such ms - S

QNP | NN

47 = tens + ones - : $ .«

this does not guarantee\ 'tsh‘at he alaQ can complete eorréctly an exanple

. ( T ) . » RNy N
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\.! . & dtens '4; 7 ones = R . .
» e A . .

% The de\}s»l opment of an mderv*a.nding of the. place value princlple demands

\ o
- thaz' children explore its meaning gnd application with a variety of. \ o ’
representations and in a Variet,y of WayS Suggestions made here regards .
\ing numbers less than one hundx-ed cen be extended of couxge, to appily ' *
to numbex* gx eater thar ninety-nine. . o ) :
\ * N ’ - : R
Y N : : “}_E:xei'cises ~ Chapter 8 ‘ -
1. In cach ring write = or > or so that the sentence will be
true, " i o - ; o ‘
~ &, ‘s‘ooé«vf;o?)‘+500fooo-+50+5 e ‘ : o o >

e X 1000) + (8 x 100) + (Lxl) O381»0 | .
S ) Ca . eight Ol¢31+ o ) ) ) \" . ' & ‘ o . ‘

"‘ &“ - d, ’*3°1 OhB‘l >‘ i ) ) . o :‘\\ o
e &0003100 ve ‘ ‘ ‘

:t:f \312015.‘0“‘30 (3w is x‘h\x ) + (1 x ) X hi 1 (2x1)

2o Complete each- of the zollowing to make a true sentence. V
. ) ~ a +\ - . R . N .
: v eight eight . eight . N : ~ ",
- > | b ‘ T ) - 6 = ! \ . B ’ ) - } i
o . 1“)seven seven  ~e———geven . r :
~ N - ~ " -~ ‘ - N N N . N N N \3
. N NN . L 38 A - . . . ) .
N 8. x ¢ = # '
o Lot Mine nine nine . | ‘ - . S
. K . . N . I3 . ‘ I . ) ~ . 5 ° :
' a s h e - » o ' ‘ ~ s
‘ ’ 3‘313{ PN T 510N v . L ‘
o S 7 ’ i > R ) ’ RN R R
) . Y L s s . - -
. . N . - . A . ~ ‘e ':
. }
- » ° .
e - e e e e
) :j ) i N i ) > .
- Y 3 }
A \\ » ‘)
% . :
- . - . | . ‘
233 .2 »> o . - N N
» . — .
- . \ . . .
Q0.
: . o A \3 ’
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1y \ \\ ) * T : "\‘li\\ .
o N Solt.it;!.ons for Problems
1. & ls'.’. k., 82 e 620 a. %03 e 999 -
2, . @\ WE. e W a WD o ZW S
3. Wo, It & not needed eince the system has no place-value principle.
\ a . . .
b &, 2T b, 81330 * . €. k60093 ﬁ ) - o .
. 5 & 789 b, 8306 e, 2751 . . d. 6083 - R
- e, 502k £ 70609 g, 8403 h., 9506C '
6. . 618k 6000 + 100 + 80 ¢ k \ ;
. 16x1000) +(1x100) +(8x10) +(4x1) . | _
- - (6x10x10><10)+(1x10><10)+(8><10)+( xl) o,
. N ‘;’3\50. 7000+ 300 + 50 "
{77 % 1000) %(3x100)‘+‘(5x10) . :
| {7 X 10 X 10 % 10)+ (3 X 10 x 10) + (5 X 10) *
: T e bo702:  h0OOO + 700 + 2 o |
) T (b x 10000) + {7 x 100) + (2x1) b
(hxmxmxmxm) +(7x10x10) +(2%x1)
M. a. Yes b Yes Yea ;a.; N?: (b =120, )
) 8..a 9. bil2 o & \
\ N ’ ’\ ) ) N ’ - \‘ > .- N [N
v P A ‘gbfour ®. 3""four Ce ~\23:f’6ur o S | ;
e ; % . . N ) . T Ty
. ten . . . AR
o 10" - 8 \Ofour’ afour’ mfour{ y four’ zofour‘ Eafoqr’ 30four’ 32 four "‘ ; o
f RS ‘Mu . i . C ) . \ . \ e
b. lfour’ 3four’ B’ﬁﬁ?’ B:E‘our’ eli‘our’ 231‘01.1:”’ 31four’ 33foui~‘ Yl -
" ) : ) i T
1. & 5¢ b, 126 e, 198 . a4, 177 . e, 108 AN
c 120 ae (3x7125) + (W x25) + (2% 5) + (1x1) =486
N b. (5% 512) 4 (6 x 64) + (7 x 8) + (& X1) = 3004+
To. (B x 383) + (6 x 49) + (T xF) + (I x1) = 170k
@ (2XB1) 4 (1X.9) & (ax3)1{2x1) =179 S N
N e
’ e. (3x‘256)~+(2><6'})+(1~xh)+(2\>\<1)=902“‘ * ‘W
» . ’ PO . ow . ' N
‘.»,. - . \ ﬁ . ? ‘ ‘;
L NN - 2 . s \:!‘ . AN ] \ e ‘~ N
.v: M . 'L} v r
~ : . . . - »
. 23k
R - »9";.‘ . »
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St o - PREMEASUREMENT CONCEPTS ‘ ‘
*\« . \\ . - ‘\ - ' . \ o ~. »
: I;atrpduction . . * \ : ¢ ) N T

~

Certain basih geometri figureéand concepts have been prgsented in. i .
Chapter S Re‘éa&l that cogmon:® p}wsical ob,jects provided the foundations e R

on whigh the develoyment was built. This was 50 be(.ause this is the » = °
way 1mwh.ich geometri cal idegs gye r-onveyed to youﬂg children, Little ' \ )
\was said at that ,t,ime about geometric solids., This topic will now b’&u o " ®
\:extenﬁeﬂ to gain familiarity with associateg vocabulaz’jv and characte.ristics
e ms ha., e‘ady been a\cen;plished for many plane figures. S 'R \

-

o

The no; ion of eongruence whi"h has appeared 1n the earlier discqsa:l;); : o : [
will also be a vital concepy in “the following development. It will pi‘o- ~ \

\ vi)dé a peans of ordering sets of points which will in turn lesad to the .

. concept of measure. By this ‘we do not nean . order‘ing the point§ as ye - \

‘o,

SR hpw-/done on the number line, We mean assigning an order to sets of ° ‘\’
\ Roints as for example, amorxg varicus segments anong pl‘?;ne regions, or .

solia regions. -Phe, ~orresponding measures are ‘for lengths, areas, and - o e
volumes, Thus, we ran compare the "sizes" of t}ifferen:t geometric oﬁjects, ‘ \
The (,unf‘ept of measure Will be discussed in Chapter 12, Tn this chapter,

N wge want rirst to '1daxt1fy some of the geometrical relationahips and cone \ -

AR I‘igurations by their ma\.hematioal nanes ana next, to ciarif; tﬁe\come t ‘ ) \ . -

,*:’“ )

of ordering sets of’ points. : N

}nt'eraecting and ~‘Pa.ra11‘el o L N o \
- N ‘-‘ .. . o \ . R -

The terms intersécting and parallel are ramiliar through counnon usage B

in describing physiual phenomena. We speak of & road that runs parallel N N

T v : o e
R to a railroad-track or we speak of the 1ntersection of Polk and Oak :
' Streets, and so on. These evex:yday references ﬁescribe, although somevhat

more loosely Y,: the . same relationsbiy&m thmterms_imply_inmm -

. DU Recall that $) rsection is one of ‘the set operations dealt wiﬂh

o earlier. ‘The 1ntersectipn of . two sebs y:leld,s a set whosg: members,are . o
those wwhich the tWo sets have in eommon. The intersection o:f' twa ‘.: L ;‘-\ .

then, gan be the empty &e::\:\r %" can have membere, 1t is the empty@ ‘ \ \

"

N NN N A . . . Tt R N Lt N
.- R . a N . . . “ . A ¥ ) .
R T L L iit‘é. N . . - - 1Y N » . N

*




ﬁ‘ i—ha .wo are 'is *oin

» ) «Thinking’ again af a‘n exampﬂ of streets, if Firut Street ‘and Secord
. o .. Street run para lel,. there {s no 1ntersect10n. ~‘1‘echnic~ally, we would
1‘?\ o . simply say the: 'lnterseﬁtion\ is- ﬂmpty.‘ Howefver, the Yess farmal des-
o0 ‘riptmn, that Wihere s no intersection”, is oisen used in geometxg :
ror the more accur&te Gescr‘iptibn, "the 1ntersection is empty‘* . o T

L L Consider the lires AB - and Eq as our two sets of polnts. The ‘ o
ope;yation of 1ntsrs§~tion may yie‘ln the empty set, a single point, or. a BN
line, T‘xv nrsdi“gs 1t luotratee* t.ese pogsible situat:.bns.\ \ . o

*

~ ABNCD=P - ° 2B

w T

]
o
* > . AN

Coe P W Zeneral, Mo intersect" or simply "int;erseets 1mplies the inter-— R
\\ o section .has- menbe;s; “do ot i&erseﬁt“ 1mplies the interseetmn is empty. .
f &

v .

M though we have only used iines as examples, any sets af pointa .can L.

" be 'onsidered from the poi‘nt of view of whether t‘hey do or do not inter- L \ :

aect. A llne may-in;snrs»ct a p;lanp in 8 line, a point or not at qll, i;r\
\ there‘ia- no 1ntersection‘ the line 18 said te be parallel to the ;plane‘ hd ‘I'wo
c N planes ey 1m‘:§rsect in e, line, a8 plane, o:r not at all; if they do mot

. 1ntersact, the'y are said to be paraly;l., I DR ey

. BN DN

. In spai.e, it is ponsib(le that two li.nes are not paralle]!'{&nd still I

tow

Y do Yot 1nt§ruevt Picture a bridge over §*roa.d’ as an examplm The ~.f . ‘
bridge is not para}lel to' the roaa "but; doea not intersec”t ‘the roaa

e v e - TN NNV

‘6-5 and ﬁ' in this ’drqwing pr@vide another :;ample ‘of noninterseet‘ing, R

3 N
[N

N . : ) N .
~ - a i ~ . N
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are sets of points certain subsets of 8 and T .
may be said to be parallel when S 'amd T are parallel, For example,

two segments are parallel if they are subsets of parallel lines. ..
Also, two regions are parailel if they are sdbséms of two parallel

planes. A line may be parsllel to a plane, and so on. Note thet CD

and AB in the above drawing are ‘subsets of parallel planes but are

not considered to Pe perellel.: Lines not 1ying in the same plane are

’\;sald to be skew; their intersection s empty- Note also ﬁhat a plane

1.‘\ Identify the intersections of the geometrical figures named. They - )

and & point . that is not in ‘the plane may be subsets of parallel planes,

' but we do not say that the point 1s parallel to the plane. : >
Problems* . 1 . ‘ .
=== S :

AR

refgr~to the drawing. If the intersection is the empty set, state
3y
Vhethgr the figures a%k parallel or not. )

2

*solutions to problems in,this chapter are on page 257 . Ca

\ ¥ , :
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tion is also a model of a~rectangu1ar prism.

. * * RSN
) and FC . [
\ b, the plane ?egion with vertices C, D E F \ ) \
: ‘ g and the plane region with Vértices A D, 4 ‘ . N
o E Ho o Co R
c. ™ anaoc S T A ;
. d. E& and the plane region with vertices .
| A B, G, H © T ‘ -
e. BH and FF ‘ ‘
o P * . i N - »n o
‘Pi'isms . Y - e »\%‘\ s \v -\

*

In Chapter 5, a rechangdlar prism was identiﬁied end-locked at

' briefly. It,yas noted that it was composed of six phane regions callea
faces. The 1ntersection of ang two faces may be empty. If two faqeé
3 . X i ’ N ’ . - [N ‘5
> * - = Y
' ‘\f‘ Al ES »
) x ’ L
) . o

-

. * * v .
\
Ydo 1ntersect" however, t@J}x’inxersection is a se@ment called an
In the same manner, intersecting edges determine a point called
a vertex. \Thus,‘the above rectangular prism is the union of its six

faces, contains twelve eﬁges‘and eight vertgcekt

>

The pictureq below of a deck of cards pﬁshed into an obligpe posi-

The.criteria for a prism
‘ N 4

srestwly. [ . PO
there are two congruent polygonal rggions :
L. o ' 1ying in parallel planes, and the edges SN
‘ 'whlch do not belong to these pgraT1el -planes !
E ‘ are all parallel ¥o one another. . . R
3y - . -

Its sHﬁpe was abstracted
f}om a rectangular box; alygof its faces are reétangular regioné. s

-

.

d

e

e

ot
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Thus in the figures 'bélow,‘ the first s a prism ‘oﬁt\-;hhe— oth‘er‘ two are

»

not,

-

l-r

Congruent polygonal . Congrgerg; polygonel ~°  Edges parallel; \
FRETONS—Tn paralTel™ T regions im-Parallel = “polygonal regions T
planeg; edges parallel. hlanes;. edges not ) not congruent. - .

parallel.

N

° The congruent regions in the pa¥allel planes are called bases of

~ the prism, and the prism may be identified according to the kind of
‘basés it has, ' For g-:{xé.mp].e‘, the ‘rectangulzar\prism has r;ctangui\bar\ réglons
. for bases; the prism shown. in the figure at the left sbove is a penta-
 gonal prism; either of the figixres below is & triangular prism,

-

3

Y

»

_ The faces of. & prism that are not bases are called the lateral \

faces. Note that each lateral face is a parallelogram region; the
" boundary of each lateral face consists of two parallel edges cadled

IR \ . -
lateral edges and two sides of congruent polygoﬁs. The two si‘gfes of the -

1s called s para.]g\e]:epiped. Thus , {;he rectangular prisms are a sub-

\ congruent \polygons are alsc parallel, thus the boundary of each lateral

* *

face is a parallelogram.

If the bases of a prism are also parallelogram regions, “the p‘z;isg‘n

'famiiy }f- the*parallelepii:éds: A cube, which is the union of six

éongruent square regions, is another kind of specialized yectangular

jprismand,hence, “is alsova @arallelejéipeb\; A fg‘éneﬂ\ ic cheln of“qdadri-
' laperal prisms can thus be formed just as was identiffed for.quadrilatersls.’

% S
" - ) A . a \ ?'_ . \ N
A 239 | \ .
A : . .
» : h N )
N \ *
Aol 3 > ‘ -
v t . 9\) N A
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S . IR o . . .
W, ' - The above two pictures of the deck of cards illustxate émoth&n_‘ .
a . ‘property b‘y\ which piisms are claésifie& In, the first case, the 1ateraf

faces are rectangula;r regions, in the secogd drawing they are parallelo- .
- gram regions only The first is ::;ight prism; the aecond 1s an bblique .
R +  prism. ' The 1atera1 faces*of rigl prisms are rectangles. The t.ri~
‘ angular prisms sho{m ebove are right prisms. A cubi is @ right prism

all of whose faces are xecta:ngular ‘regions and, more specifically, are

' square regions. ST i ‘ o ‘ . S . \
- . ) \ ~ . “\ M i N \
R . LY . - ~ . . - N . . N . -
* Problems ‘ o RN \ S
- N . —_'T N N [ ' D . .
" 2, &, Select the figures which represent prisms and giv& the name .
- whicﬁ best describes each. o ‘ . ae
oo b. For those figures 'which do not represent prisms, state why
. they fail to qualify. i : . M \ o~
o ~ N \ N\ i . ) )
P »
i Ry A \\
» 1 T . PENIEE NI *
. . N ,'1 .
. 7
: . o ®
‘ (A" (B) - (c)
. 3 ' » v

- ~
»
-] Y s
i . \ ) . ’
Y (D) N ¢ ‘ R ¢ )
» ) \ \ ’ ‘ ‘ N ) N -3 *
. o 3. %\QI a figure representing an obiique équare prism.’
R R -
R [
' . o ~
M hl
R ¥ » - * v
h » . *
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£
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The drawings a‘bove represent examples of a familia.r set of geometric

solids, namely, pyramids. As is the case for prisms, there are & great
" variety of&izgs and shapes of pyramids. Bach must satisfy these  ° ) v
criteria* ‘ : B : o R

there is a polygona.l region» ca.llea the base,
there is a point called the apex not in the

seme plane as the base vhere all the lateral

I
edges intersect;

\ éach laterad face is a triangulsr region >t o ¢
r \ N

- determined by the apex snd & side of the base. B

N ®

Analogous to ‘the class:.fication of pr:tsxns, a pyra:mid is identlfied
- by its base. In the firet figure a,bove the base g‘:‘ a square region, and ‘
e SO it is & squa:re pyremid, The\ot,hers are & trie.ngular pyramid and & ‘
pentagonal pyrawid respectivgly. A, B, end C‘Taenoté their respective

i A y * . ‘ > . vl
apexes. - C P g . / )
~ Problems \ \‘ T S - o .
N ' Wﬁlch ,of tne :f’ollowing are arawings of pyramias? .

5. ' &. State an appropriate m.me for this pyramid.
s ae - be . Identify the’ apex. } ot
ce Houmany edges does it have"\

»

R d. How many faces does it have?
. o “\ 3 . . R R . * . ) . - N
. a AN \ \
e . : \ N
§. Wheb are<the possible intersections of two latersl faces of a
N * N ] ) ~ -]
E pyramid? , - i‘ y
7]+ - * s N . ] . -
[N . 2’4—1 NN 2 R
) - ~ . . ‘/' ,
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Cyl inders ‘and Cones

Aithough we have not discussed all geometric solids %hat are the * ~
" union of Tlat ‘surfacesy we shall how turn ou} attention to solids with . = v
non-Ilat surfaces, These t\g‘o figures represent cylinders. The two faces

S N - ’ : -
N
L. . >

. must be congruent regions in \\para]..iel planes. 'They arecalled bases of .
~ the cylinder, vhich 1s consistent with the other uses of the same term.
Although the exsmplee show cylinders with circular bases, thiswus not S
~requirement of cylinders in ‘general, At this time we shall not consider \\ d
- cylinders with bases of other configurations, so~the. discussion will be )
‘ . 1imited %o circular cylinders. The boundaries of the congruent bases \ ) \‘ v
\ \are then congruent clrcles and are edges of the cylinder.

‘ The remaining rounded porti'on of the siu@le closed surface vhich
-+ .- defines the cylinder is its lateral surface. The distinguishing

~characteristic\of & surface which is not flat is that 'a segment deter-
mined by twd of its points is not necessarily a subset of the surface. °
S . The dre.wing‘ below-illustrates this feature;\‘ Kﬁ' is not a subset of the
. Iaterai surface of the cylinder. In fact all’ points of AB between A

and. B ere in the interior of the cylinder. b ’

3

-

-

Y i It is possible to i‘ind segm'ents which are subsets S%le lateral
surface of a cylinder, howevez\ such as CD . In fact, this is a weans

‘oy which the lateral surface is specified 88 we shall show ‘oelow.

o ¢




{ \ - o . . ' LI |
.7 TEach of the baSes ha,s a center; therefore a segment is determineﬂ

“oy\these two points. The line conta.ining this segment may be referred
: to as the line nf centers.‘ 'Consider any plane of Whlch ‘this segment is

& subset, It will im;e:rsect the bases in two segments called ﬁiameters,

such asl AB and D in the figure, Each endpoint of one diameter is?
to be palrea with the appropriate endpoin‘t‘. of ‘the other diameter in order

to be able to aescribe‘the set f “jboints: :!:n‘ the lateral surface. The ‘
"api)rdpriate!’ endpoints of the respec‘t;ive diameters "are those which
-determine & segment that does not intersect the line of centers. Thus,
vin the drawing, A is paired with C and B is paired with D..

Bys nsidering a different plane, we will obtain two ngw pairs of
‘poi ts. If all such pibanes are conceived, all such pairs are.generated.,
‘Then we say ve have defined -a correspondence between %he points in the
“ooundaries of the two congruent bases., Any w0 poﬁts which s.re thus -

»

paired are corresponding points: > \ . s

Bach of these pairs of corres;;onai;:é points de\termineav,\'a segment
parallel to the segment connecting the centers. The union of all seg-\
\ ments determineé by corresponding points is t}\le set of points in. the
desired slirfac'e.'\ Each segment is sald to be an element of the i:;'linder.\
Any two el‘ements are parallel. “In the -figure, M a.nd’ ¥¥ are elements
and therefore are parallel. ‘ o

x ~
R
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? 2 A
]
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The preceding description Tor generating;the lateral surface is
rather involved This is becauoe we want to specif% the partlcular >
* correspondence we have in mind since otler possible, conilgurations can
be formed with the reguired bases, If a different corresponaence were
- "3efined between the pqints of the boundaries; a figure as in (a) and (b)
\ below might evolve, I} no ségmenﬁs were specifiea,‘fﬁe'resulting figure
might be a6 in (c). . ‘ ‘ N -

. )  {e)

We can n‘owl state that a circular eylinder must satisfy these ° »

-
2 ’ ~

criteria;

»

there are two cbngréent ‘cir\cvg\lar regions in, R o \\ I

%

© paratlel planes, ) . . e,
" there s a surface which is the union of al3 . 5
.‘\} . segments -determined by corresponding points of R

: . -the boundaries Qf’ the bases, o, b

R \ Referi'ing back to our first two exampleg of cylindere in this = . 4
- section, the first is a rlgh‘!! circular cylinder; the secodd is obligue. \
,= In order to be right, any element d‘f*the cylinder must form x'fght angles
= with each segment of a base which intersects 1t‘ * -

, -
29 is apparent on reflection that there.is a distinct simlla.ri
b . betwgen the cylinder and the prlsm. " They each-hsave congruent reg:lo

set up

\ in para]lel Pl anes for belsds, p If aﬁi’a‘ppropriate correspondence wer
\ ween the points of&

sides of the bases of a prism,

~ is vhat the b ses of & prism must be polygonal regions +while se of a _;
/ . circular cylinder must be circular regions. It is the case thht a cylinder

- » O
N v '

TR — 2hh i >




e \ i . N . . . . . . ‘\v
e . ) \ ) e . : -

., can be defined in such a way as to include prisiné as a subfamily of
-~ cylinders H however, this wi l not be. done for the elementary level

v

’By the same token tha.t cylinde:cs are ana.{ogous to prisms, cones - :

grelanalogous to pyramids. As with cyhnders, we will restr;c:t the - ~ v .
_plane region of a cone to a circular shape and designate 1t es the base ‘ ;t N
'of the cone. The point which ‘s not im the same plane-as the ’ba.se'
describes the's __L The lateral surface is r:ot s0 difficult to descri‘oe v
. . ‘ r R . . .
» . T \ T i
. 5 .
. -
. y . ,

- - % -
v . . D

“ln this figure. It_ts simply the set of line segments ‘dete
. apex and each point of the circular boundary of the base,
) £ Y . » "\ ‘ R . ‘{ . ‘ ‘ \ . ‘

Pro‘blems o e
=

M féxuly of cylinders, namely polygona.l cylinders. : . . .. >
x R = S — \»_«n—_.—-_ N » I
- 8. ' Describe or draw representations of the intersections of a planea . \
B and & right—ar?ular cylinder if the p],gne does intersect the e
\cylinder and is ; ‘ h )
, ‘ a.  parsllel to the bases, g .o~ S )
b. ' parallel tg the line ofl centers, o i S
c. not parallel to 5he base nor the line of centers; N ) .
\\: . T - T ) ~ . N . X : R
: ~@Sﬁ‘&res‘ \ : N . ’ ‘ :
. ’ \ r .
. .The final' solid to be included i! the sphere, A‘s is the case‘fqr a . :
’ ) circle, a sphere has a center, All segments connecting “the cent’e:r of the .
el s;phere and a point on the sphere are congruent Indeed this specifies ;
b the set of ;points in the sphere.‘ '.[hey are: - v ‘-
) ) »
all end;points df congruent segments . . ‘
o -2 Y ynich have one endpoint in <ommon,. v ’ )
T ' but not including tHeir common endpoint. v " . ) » -
-~ ‘ ‘ & Tt )
. . ~ {
P ' ) ’ .
| o 1 )3 N
. 25 ; »
N Y . s 3 :
’ ’ . . /;"{ -
[ ey y
N 1 ‘:}\) AL
R N ) : . !
» - .3 .‘ » »
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 \~ The congruent segments are radii (singular-

: t0 the ¢
" ordered wets.

" equivalent.
“two difficulties are encOuntered which make the procedufe Wwupossible,

- . l

rad:lﬂs). . The union ¢f two
raffii which are each subsets of the same lj.ne 1s a dlameter.

In the .

figure, O is the c:entex', A0 .gnd ‘OB are ra(dii and thereifore\ congguent,

‘ b. ‘the center apd the dphere;

Cs a diameter and tlie sphere;

b Y

»

-

3d. 3:.);—& center of the sphere and one' of its hewispheres. .
L 3 N ; ) ) . T

- - N N

\Ofdering Sets of Poifits o,

*

~

Chapter 2 was devoted

The:oraering of sets is. “nob a wew topic.
arison of seds according to order and certain properties of
The approach taken was to pa.ir the members of the two

»

. : “!\ . 7 -\ . . . ~
Problems . * L. e N
9. . Ident:lf& the inteyseétion of Y - o ' -
v &. & plane and a sphere; \

sets in question. ‘I’l}én\ it was possible to decide whether one set had « =

more or fewer mem‘pers than ‘the other or .whet'her the two sets were >

R

I we try to nuse the same process with setg of points,

»

w4



Take, for example, two segments R MN and- XY . Each is an infinite

set, and therefore if we began pairing points we would never exhaust the

o ) L ) N N
. ’ . "‘

— ot ; ) }"
a' “ _.-..

»

points of either sgt. 'I'his e}one eliminates pairing‘as‘ a mebns of

ordering. To compound ‘the problem, ‘however, there 1s srother property

of segments ths.t defies pairing, the.t is that they are eontinuous. It

two points, say P and W , are chosen a.nd paired, we eannot select the

\point next to P to paiir with the point next to W , because. there are

no next poihts on a segmen‘t. If for 1nstance, Q 1s naped in N there

are ‘an infinite num‘ner of po; dts betveen P and Q, so nothi,ng has been
accornplished, o

&
2 -

\'.[‘hen, how' are segments, a.nd sets of ;p@ints Jin g_eneral, ordered? Ve

. can resort to our concept of congruence to assist us,’ It he.s been estab-

1ished 1ntuit1ve1y that two line segments are congruent df. a movable

co;py of one ce.n be m@ched and fitted exactly on the other. A simila.r

- procedure serves to indiee.te whethen curves, polygons, plane regions and

SO on are congruent. It does not prove useful 1n determining whether or
‘not solid figures are congruent however, since a movaple copy of\a’;}

\Bolid cannot always be watched and fitted exactly on ‘the other m§
(For exar@le, & solid block cannot be fitted into another s@lid block.

*If two sets of points are not eO&ruent 've can still conceive of
an order betvwee them. Suppose you measure the dimensions of this bobk.

\Its length’ is sho ter the.n one meter. You are essentially carrying out .

8 comparison of set size with the aid of a movable copy. The sets heing

compared are an edge of your book and & platinum bar 1r{}'he United States
Bureau of Standards in We.shu.ngton, D. C. The movable .copy 1s a meter
stick and 1ts s?ale is a record of the length of the bar. By stating
that th ngth of_ the edge»of the Book\is shorter than one meter, we

© . are orde the sizes of two ph:;sa.eal representations oi‘ h.ne $egments.

In particular your book is shorter than th@ bar. o

K . : \ .
» Geometricaltsegments are ha.ndled in a sa.milar fashion. Suppose it
is desired to order the twe sets MN and X . We make & copy of MN

a . l R N 9 *
- Al N
» . >N ! M R LR N d
N R N s N 4
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LY
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“ indicateh by ‘the dottea segment and lay it oyér XY * We .have already RN
t 1 Y N v : halSEN \". \

LM s e —= N ; . N \

. Re . .- .
) “ - ‘ ' )‘ - \'.'\ . '\“‘\
R . said that it they it exactly, I and ¥ would be eongrueni R AL

‘ 'however, they @6 not, one.of two situations must exist, X willbe L
eongruent to a proper subsét of MM or MN will bg congruent to' a C ”:;;;'1
\ .proper subset of XY In the first 1nstance, we would sa& XY is RN
'S‘horter than MN cx, equlvalently, MN 1s 1onger than XY 'f‘he secon& o
possi’bili}y is 3:ln‘t;e.'fr;[:me't;eél‘*az.ts MN is shorter than ¥  or XY *13 N
“;longer than - MK . Our examplg demonstrates the ;f':!.rs‘t; case, s:lnee ¥

o ‘ N
’ . is congruent to.a proper subset of MN We can‘order the sets by’ ‘
N RN o . R
. \ {"“"‘-:-*r——:-——‘,—-'-v-—‘———l\ .o c0 o DR LA
‘E“‘\»x \ , :' o Y . o . R - N . i\ -\
. <, . i o - , : AN " LN
XX, MN in increas:lng order. : . ‘ L .
" For fin:lte sets, A and B ?all that comparing sets assureh R a
exactly“one of three poss:lble oute es. : oo : : i \\e; .
? . -
) \ A 1s. eguivelent to B ! .
N NN ol . ‘ ) . .
A \ S A has more members that B e T
- o o - . A has fever members than Ba . . A

* Now we can state the pa:rallel relationships for 1n;t‘in1te sets of points,

-

. S iB is' conQr&enhto% . P “@ -
an N ~ BB is longer tham TD ; s e ) N
3 S B is shorter thgn 0D . e e
‘\ : » ‘ . \ ) . . N J ‘-:_ . L . i N i ‘fz
Note that "AB, is Jorger than CD" does not mean AE has more wembers . .

. . than ﬁ We are 'saying nothing. sbout “how many“ in relating infinite

\ sets. By repeated .comparfson, it is poss:lble to order more tha.n two . v \

. / segments. "Thus QR below fwould fit into the order X'Y QR MN s “\\“ /?\
“‘: h ‘”‘the‘diagram\ﬂl‘ustrates.. wz find that QR 1s congruent. to a subset . -

bf MN , and that XY is ‘congruent to a subset of 'QB \Therefore”
QR 1is skdrter than MY and @R is longer than XV ,

N S RS » - ' .} Q N R r‘ )
" ‘ ¥ C ' - : “
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In Chapter 12,t. these order relationships will ‘qg restated in terms:
of numbers assoclated with segments. Theésé numbers will be the measures

3
oi' the segments. By our ordering, however, we hate done no measuring.
A, e

~ The second kind of geometric figums t.hat we wish to order is angleo. .

An angle s the set of points aeffnea by the uwaion of two rays, not
subgets of théa ame line, which ha,ye a2 common endpoint. Just as simple

.closed curve arate a plane into three su‘osets (t}'le curve, :Lts in-~

"terior and its extemor), angles-can be thought of as aoing ‘the aame

't.hing. A point is in-the intermr oi® a& ‘gle if it lies between two
’\

v

.,\ S  ? . .
;points, ﬁ:rne on each ray, exclusii'e of - t’he vertex. Thus P -is in the
interior of . /ABC and Q is in the in‘l:erior of , {DEF . P isin”

the *ex‘t.erior of. [DEF and R Ais an extérior po:x.nt of ZA‘BC .

b

i)

» 1Y \%

To order ;wo angles, we ‘rel-y on a movable copy 0, one 13;1 mu ;t;he

could place a copy of LABC over LDEF s0 that one

coincides with one side of  JDEF e figure below shows one way ‘the %
copy can be posi‘bioned If the second ‘side of the, copy also coinﬁdes t

W
E]

‘with the second side of /DEF , ve would say_ R .

LABC is congrugn‘!; to [_DEF ‘.1.\ iy

Ao
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or LDEF is smaller “than’ [oABC \ .

etate‘ments\ expressing this are /GHI is larger than lABC , and -/ GHT
is smaller thanc [ DFF . In‘increasing order, we could write J ABC ,

v

the same position in the oraer.\ S

If it is not possible to get such a coincidence‘, as 1t 1s not for our
.

angles, we define an qrder. Note that the points of I'ér 3 except the

endpoint B, 1ies in the 1nterior of LDEF Whenever this phenomenon
holds, we say e s ‘ \ \ s
- [Aac i3 smaller ‘than [DEF o«

* »

. or, equivalently, L DEF is la®ger than [ABC R :t‘f it happened that.
.the intenors of the t‘wo angles have points in common and tha.t ']if N
except for B, were a subset of the exterior of ZDEF then

LY

_— ‘. LABC islargerthan ADEF ‘

et

.- Considering & thira angle, 4/ GHI , we find that GH , e)ccent&;r
e, 1i§/s in the exterior of [A:Bc qkd in ze interior of im Two‘

¥ 1

T ~ BEH . F i ¢g

[GHI [DEF As for segmen‘t;s, ‘t;his pr0ceaure can be repeated in-
deﬁnitely For as nany angles as we wvish, Congruent angles would occupy .

The definition of measur‘e:;ieﬁt \for\ angles will not be included in
Cha.pter 12 because .1t is not treated in the K-1 text materisls. It has

been discussed here to indicate tha,t the ordering of sets of points tan

be accomplished for f‘igures other than segments. It is actuplly possible

to use cnngruence as a means Of ordering regions and solids also, although

\~ i‘h 1is a bit more. complica‘ted It s not possible, howaver, to order

‘uniike sets of points; that is, we cannot order segments a.nd angles , nor

segments and plane regions, and so on, ) . N



Probl ems
10, Represent ﬁ CD "and EF ‘such that their order frou shortest
tolong.esi;is GD B, TF.. . o . .

e - »

‘11.. Place the sets representea by the angles below An 1ncreasing order. -

N . . “L‘ i‘_‘ N . -
£y . a v N
] =, - . » - ¥ . -t
N . N . : - . . R

LS

_Lgli ca’cions to Teaching

. Teachers have found it most helpful to have in the room & wiae

N

i co]:lection of objects’ which 1llustrate geometrical solids. Children
B ™ also enjoy bringing such objegks from home, E:ﬁ‘fectj.ve ways of using *

these and-other models have been recommended in this section of
Chepter 5. = | R - Lo ‘

- . )

On the next pages are incluaed four patterns to be used in con=-
. struct:.ng geometrical solias out of paper, Having the chilaren o‘oserve

your demonstratikn\;f a constructien emphasizes two aspec‘ts of 1solias, .

 Many are ‘the union‘\Qf jplane regions that ao not lie ih the same plane,

and they ave }mllow.

The ideas in the pre-measurement section are most lmportant. mé

.

3

ehildren should be asked to Qarticipate as much as possible in ma.nipulat- \

ing figures to com;pare their sizes, “ooth to understand congmence and
order. They' often experience some difficulty in visualizing congruent

. regions 1f they have different orientetiozas, 80 praetice ‘should be
~ provided with this in mind. :

»

- ) . »
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",  PRISM - Cbnstruction of a sQuafe pust \
N o . Draw a recta.ngle with® vertices A , B, C ;.D as showpn.
" T. . ' 2, "Draw, as shown, three other rectangles congruent to ‘the rec’cangle
T x . alreaay drawn with tabs. : - N
* 3. Draw the two ‘sguares slong AB and ¢ with ‘tabs), - as shown.,
- “ 4. Cut around the boundary of ‘the :f‘igure and folad along the ‘dashed:line
s : . segments,
’ 5. Use scotch tape or pasta to hold the moc‘lel ‘t;ogether. The tabs will °
. ‘. help give rigidity ;0‘ the model You mnay wan‘t to trim them some if
» . You use. scotch tape, .o -
. 6. » The bases of*this rectangular -prism a.re squares, hence the name -
_square prism, 3
) 7. This picture has been reducea photograghically. The original had the -
. length.of AB as 1 1/P"..and that of BC as 4", This mede a .
i 1/2" x 1 :1,/2“ X h" pduare prism.” 200
~ e ° > N 7 A : N N
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. - PYRAMID - construction o;t‘ a square pyramid. o »

1. Draw a dquate with vertises A, B, D , E as shown. C.
o, 2.0 Draw the arcs with centers at A and B .am rac‘iius AB . Label
. the intersection shown as €.
"+ 3. Draw dashed line segments AC and BC- to form “dashea" equilatera‘l
‘ " v triangle with vertices A , B, CcY Draw tabs as:shown.
A N Repeat step 3 to cbtain “'dashed” equilateral triangie with ‘vert.lces L
: E, D, F with tabs as shown, ™ e
5. . ‘Draw the equilateral triangle shown on BD and AL .- N
. 8. -Cut around the boundary and ‘fold along “the dashed line segments.,
T.+ "Pasten with .scotch tape or paste. The tabs will help in putting the .
. model together. You sy want t0 trim some of them ii‘ you use scotchs tape.
+- 8, .This picture has been reduced photographically. The orig‘lna‘l model’
: * . had the lengths of AZB a8 2", .
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- - N . -
. of a circular cy}:inder. \ \ ) _ I
\ 1.  Draw the rectangle vith vertices A , B, C ,.D. o . >
. 2 Draw two congruent circles with radlus ‘a5 shown‘ ‘Tn order to \x)g.ke the * | '»
~  » '\ model, easier to.gpnstruct, V- T 0 N - .
-.  these'clrcles ca&e tan- . ‘ h. ,Fold inte. the form of
N \ gent to the rectangle. . a circular cylinder,
* .. 3. Cut around- the boundary Use scotch tape or
of the figure. Do not .- paste to fasten the
\ e;pa.rate the circles model togethegr, Plade
. rom’ the rectangle. .BC on AD fiwst. ~
- Fasten the bases | -
> last. Do not fold"
L o the tab at BC , Lap
N NS 11: over AD ' -and’ paste
) ; or. fasten with tapen
- R a . 1] . s AN . N a“ -
N . o . -« ‘\ N »
A A N “ B . .
o : : o r\ .
* » Con ; N
‘ ' » . " N ‘ .
s ) "l\ ~ )
o : . v R -
f\ * » } N
* - IR
. A , * . :
N '\ \/‘ . l\ \
. 1 . .
. - . o ;‘}g
- “ " R : \v"_ .
N ° ) 5 .
N i R N4 : ’ : R N
. : y . A
A - - » . - ! \
a . \ :
: i T : « R B
. - l 3
v O
. ® . . ..
\ T [
- - I i, R 1
* ) : * - !/ X

©

o N ] . -,

This picture has oot
been reduced T

- photographically. , ~ -
The original model
had bases of radius .

1" with the lengths

of XD and AB as

h“ and approximate‘{y

& K s respect:.valy.




-

74"

»

. .
o CON‘E - Construction of & circular cone. I s
? IL. Use a,compass to drav a circle with a Tradius sas shown in the diagram.
o * Draw tabs ks shown, N . .
« ' fut around the boundary of this figure. The circular region will- be‘
* - . ‘the base of the cone, -
3. Use a compass t& drav a semicircle with a ! radius as shown in the dj.a- -
\ gram. C 1is-the cen‘ber of thq circle. AZB is-a ﬁimneter. Draw the
- teb ‘as shown. > . ~ ) .
+ %, ' Cut around this ﬁgure. c}' \ - - . -
. 5. Tasten AC to .BC wvith scod tape or paste so that ~AC f‘alls‘ on BC .
. 6, Tasten the base to this model’ by folding the tabs andgugl scotch
. ' tape or jpast'e. . :
\a N .-
a@‘ . S
. * A}

A d
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- ¥ Exercises - Chapter 9 : >
. :‘ e L N » . . li .
. * - 1 N » N
1. Why is “the ;‘ollowing definition of parallel segments not sufficient
o ﬁetermine vwhat We mean by parallel segments" .
\ Two segments are parallel if they lie .
in the samﬁ plané and do nop Antersect. )
2. What are *t,he seta which may resuly in the inteqsection of a line
. and a plane? I~ .. '
3. \‘Construc!t a DApET model of a sguare pyr@lid\‘using\ the pattérn op
‘ \P&’Be 253' . - R A 3 3 M /
b a 3 How many edges does & triangular pyramid have? - , EERE
b. - How maw edges does a rectangular p;yramid have? - . N
ce I the base of & pyrmnid has n siaes, hou many edges does the )
pyramid have? \
De Identify by a drawing the intersection of a plane parallel tb 70 .
' @nd the cone, if A is the apex snd 0 is the center of the base. <
Assume the “plahe inter ec‘bs the cone in more than one point. f
6. Which of the following solid regions must be’ convex sets?
\8.. sphere, : b, ) circular cyllnder, . e quaﬁrﬂa‘te‘ral pyramia
T Sta.te in increas:mg oraer the sides of the t‘riangle. \
‘ - Z \ : . ’
N ‘ m “ ‘i . . R N
Ot N . x E N
E . X . Y © e
8. Way is it 1ncorrect to say B is a :;ubset of the interior of
. . 7. v \
L MAL % \ o e
L \ ) .
1 M : T !
N . ~ B ) x
A L
L * - ) . ’
b 3
AY
1
\ v %6 e ‘?
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‘ congruent boundari es,

* . . v
- S " Solutions for Problems
4 .
ae C Db, DE c. ¢ } they are pa.rallel d. H =e. { } ; not para.llel
e (a) cub\eé (B). righ-t pentagonal prism; "(F) non-convex ~

gquadrilateral. prism.

‘ -N-

- b, (C) Tbere are not 2 congruent, ;parallel bases; the lateral
R ‘ edges ‘@re not parallel. - \ '

. (D) 'The congruent faces are not polygonal; the 1atera.1 sﬁrface

"is not the uxﬁon of parallelogram regions. N
(E) The parallel bases are not* congment ; the lateral edges’ N

e

¢ »

~

o f

-e.re ‘not parallel. * ‘ '

(6), (e}, (@), L&) L R

‘& quadrilatersl pyremid . : x .
. D ! ~ | N e | ‘
. Ce 8 o . . .
a. s, IR
. Alateral edge or the apex | : o \ ;

A cylinder is a geometric solid which is the union of two similarly!
oriented parallel regions( whose ‘boundaries are simple closed curves
Bnd a.ll the segments determined by corres;aonamg points of the

: . \ . T e
Y
Be & circle, b.

- 7 -

a rectargle or a segment congruent to the

- segment connecting the centers;

hE ) . N ’.

8. B ci,rele, - poin%, or { 33 b [ ); the center is not part of
't.he sphere, _c. two poin‘bs--the endpoints of the diameter; d. {3 .

o D A : B LB by
. ¥ V “ ‘7 -] ' v

™ L . . . ~ » ’
4 a » N
A 67 ’ )
? N - ) "’
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We can pa.rtition one region, make movable copies and lay them on o
the other region. Ir they f.‘;!.;l-., we will say they h}ve the same s:.ze.

it t‘hey do not one will be la.rger ‘bha.n the other.
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. Chapter 1.0 e \
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T . ADDITTON ANDoSUBTRACTION TECHNYQUES \ . ‘
~ " : * - N X T ‘ . ' ’ N . \\ ‘ - B * \
) ‘Introdnction ~ ‘ - . o, ‘ \

L ad

' We have used sets to des\.ribe addition a:nd subtraction and to N B \( T L
. develop 1ts properties. Knd?:ing that 5 +3 1s the nuuber of *menbers S N
in AUB ,.where /A 1s a set of .5 . members and B is a disjoint set . “a
of - 3 members, enables us to count’ the members of 2B and to dis-
‘cover that' 5 +3 is 8 . Knowing that 5 3 = 8 , from the deﬁmi‘tion
of subtraction, we can see that 8 - 3=5. This :I,s ‘fine, but it does \
not reﬂﬁy help us much if we want to. determine 892 + 367 or 532 - 2718 . . \ &
\ To do problems like these qu:lokly and accurately is a goal of real | . _
v - lmportance. It-is a goal Wose achievement 15 made much easier in Our y .

C . -

dec:[ma.l system of numeration than in, for insta.nce the Chinese or
Ie‘.gy'_ptia.n systems / o

o . This chapter is concerned with explaining the whys . and wherefores .
" . of so-called “oarrying“ and "borrowing“ in the processes of computing
‘ sums and differences. Regrouping is a more accurate term Gor carrying
~ and “borrowing“ an’d will be used throughout this text.\ .

What does the numeral 532 ‘stand for? It'stands for 500 + 30 + 2 3

Jor 5 hundreds 4+ 3 tens + 2 ones; or again, since one hundred stands
k4

We must recall how our system of w;mmera.t:lon with base ten 18 built. . ‘ .

‘ for 10 tenﬁ, 532 stands for § éroups of ten tens + 3 groups of
ten + 2 ones, Also if ve know that ‘a number has 2 groups of ten tens :
and T groups of ten and 8 ones R we- can write a numeral for that number
in the form (2 x {10 ?\],o]) > (Tx 1Q) +(8x1) or 200 + 70 + 8 278. .

' When we write the numeral in this stretched-out way, we have written it

4in e_:_ganded form. N " ?

» Ny s
‘ N N N E e T Ty o . a

Regrou'ping- Used in Addition - I N . “
. 1 ) » .
A Let us assume that we k.now the addition :facts for all the one-digit

whole numbers and that we understand our deeimal 5ystem of numeration. R

[N ——

How does this heljp us? Let's try some examples. ' Suppose we want the : \ e

sum of 142 and 37 . \Since we are adding (4 tens + 2 ones) and
259

119




) . ¥ =
- . . L ) N .
(3 tens + 7 ones) we get (7 %ens_+ 9 ones) which we cgn write \
as T9 . \ ‘ T \ R N
] - N \ N [~ N
.+ .- Essentially vhat we are doing 1s finding.how many groups,of tens
~+ - and how mehy units we have and then using our system of numeration to ;
v ©  write the vorrect numeral. We may show this in several different forms.
,* or slgorithms, such asf o . | T
o B - . -~ . . 'J .
. - {a) |3 tens + 7 ones (b) |30 +.7 (c) 37
: |4 <tens + 2" ones /} 40 + 2 \ -~ 2 b ‘
o |7 tens+9 ones =79, [r0+9=79 . | 9 (7+2)|.
: S el .| 10 - (30 + k0)
o . \ ; .J . R : o 79 —
; . s“ Or ve may, use an equation form such as S \\ o oo -/
. L 37 + 42 = (30 +77) o+ (4O ,+ 2) ) A S
R 3} = (3\0 +40) + (7 +2). .  Applying the associative"
“ : )
=70+ 9 and commutative prope;-ties
-t e, )

" Let us now add 2'( and 35 . This time we have \(2 tens + 7 ones)

+ (3. tens + 5. ones) * which may be 1llustrated:

[xxxxxxxxxx] . =~ - XXXXXXX
- R ~ N ' . ‘ ’ ‘J
xxxxxxxxxxl o
™ Sard v.\”- . .
‘ -2 tens . S 7 ones N
[xxxx xxxxxx| XXXXX
N . : R
[xxxx xxxxx x| '
- xxxxxxxxx x| . R R
“ 3 gens - : S 5 ones
N > ) - ~
. By putting these groups together we now have: * !
L fxx xxxxxgxx| .
. Ty . “ h \‘\ N N
o ]x‘xxxx‘xwxxx_J . \
»  [xxxxxxxxxx| XXX XXXX XX XXX
[x,x xxx XXX X X|
[xxxxxxxxxx|
2 . . o
5  tens . ‘ + ' 12 ones




We nouegroup the 12, ones. and get another set of V1 ‘ten and 2 ones.

. .
oo .

EN

VA >

=
Using an equation form we may. write:

]xxx:kxxxxxj{ X %, .
'? - N » ) X LN i
1 ten ~’+i 2. ones -
5 We now add @5 tefis. + 1 ten) + 2 ones. | i . .
' \[xxxxxxxxxxlo : C
e W > ot . 2. -
o EExxxzxxxx] . - ~
c’/_’)gx XX XXX XXX 3 ) X X - .

S xxx TXXXX x:x]“ S / ) )
[xxxxxxxxx x| -
XXXXXXXXXX| |

5 wens + 1 -ten "2- ones ,
! =6 tens 2 ones = 62 ~
} Or, €lgorithms such as these may be used:
- (a) |2 tens + 7 ounes 1 (v) 120 + 7 ()] et
- 13 tens + 5 ones 30 +5 +3B
15 tens+12 \o\nes\,\\ or ) 50 + 12, or c12 (7 + %)
5 gens +1 ten + 2 ones, or| 50 + 10 + 2, or 50 (20 + 30)%
‘6 tens + 2 ones = 6‘.'3_“ 60 % 2 = 62° 1 62 ‘

.

. ?+35 (20+7)+(3Q+?) . . :
<o \ C = (2004480) T+ 5) © Applying thevassocilative
S » and commutative properties
S s msewdZ e
‘ =50 + (10 + a) = . ‘
Applyihg the associative
“(50 + 10) fa property
. =60 + 2 -~
- ‘ oo '\ =62 ’ ) ? “\\) .
We may extind ‘these same ideas to the adda.tion of two whole numbers,

each grea“ter than 100 .
568 and 275

Suppose, for instance, that we vere adding

AR Y

D

L SN
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BN

{(2x10)+(1x1.0)]+(hx1)
(2 X 1000) + (7 X 100) + (3 % 10) +(h x 1) .

]

W =200Q+700+30+h
2’?3h \

~

- " v C - w
C(a) |5 hundreds + 6 tens + '8 ones -
j ) 2 ‘hundreds * 7 tens + '5 ones L e |
: . > 7 hundreds + 13 tens + 3:3- ones,? or 1 . - * ‘
. . 7 \hundre‘.dsw- 1, tens + 3 opes, or. | \‘ ‘ R :
L \ ? .hundreds + h ‘%i- 3 ones = 81&3 \\_:\,,_ N '
S ke v C S 7N e \‘: IR .
‘?r\\}’em:qmte\ j; \. . - o \\ !
(v) [s00+ 60+ B8 ] or (e} 568 - " T |
. 200+ 70 5 ¢ | ' +275 S D
. @y 700 + 130, +13, or' e _“ (8 ¥ 5) N DR S
R 7oo+1ho+ 3,,or N 130‘ 6o+“roa B
B0+ bo v 38| - | 200, (500 + 200) -
‘»’: . . . ‘ \ \: . . . 8153‘ S |
Precisely tﬁe same :process ‘i used 1n adaing three or more nunﬂaers. ,
ang again e propert;.ea of at}di'bion are :tmportant. Thusy > . o 5
\\563 + ?:87 + 138h cen be thought of as: fol}ows- ) L AR
563 = . ‘ 500 ¥ 60 + 3 = (5 x 100) + (6 % 10) + (3“'5@) .
87 = 700 + 80 + 7 = S (7 %200) ¥ (8 x10) +7(7 K1) .
,Eﬁ‘i‘= 1000 + 300 + 80 + l;.ﬂ(_x 1000) + (3 x 100) + (8 x 10) + (h x 1)

(1.. x 1000)+(15 X 100)+ {aaavlo) +(€Lh X 1,) * :. i

T

»
-y
2,
) e e »
. 3
R :
1
.
262
¥ L
? ° 1 f)
e
\‘ .
> >
N T
- LTt

i =

]

This is ‘nsualiy abbreviated a great deal.‘ “But-it “15 importfxrb ‘that the
unaerlying vattern be understood and the a‘o’breviatibns recqgnizea.

- ;(ixlooé) + (15 % 200) + (22 %10) + (1hx1) = T
(1 X 1000) + [{1 % 1000) + (5 x 10Q)] + [(2 % 100) + ;\.\ .
’ (2x10)] + [{1 x 10) +(hx1)]
= [(3. X 1000) + s (1% 1000)1 +.[(5 x 100) + (2% 100)] 0, .

A

-&w h \
v a
. N -
RN N
) 0
~
L 4 - . ®
C .
S e M ey
Thus:
»
~
- » Y
. -
A - .
A
- .
n
B
* )



L -~ . 500+ 60+ 3 - S % 863 S
e e \ s 700 + 80 + T can be written with ere B Lo
‘ o - . partial sums 1384 )
) 1000 + 300 + 80 4+ A . 14~ sum of ones . . :
- . indicateﬂ as: .. 230 ;su\m‘bof\tens e
3 e - I N ) N Y ) e -~
. ! 1000 &+ 1509 + 220 + 3k S ~ 1500 ‘sum of hundreds T
NN e \ L o .- 1000 sum of fhousands
ﬁ‘: g n‘ ‘;:~°~- N . . ’ ‘ \ -
* - =nd the operation may be still further abbreviated to: =
‘ T 000, . e
563 -, - . 563 | ’ .
_— : 787 Finally, by cmitting VAN u o \
- s . : 1384 even the "carry over" 13811- e e S
‘ : ' 273% _  numerals.we get: . 273h R ‘ R . =
~ N h A ] \ ‘ o ‘ “ N ' ) \ \ ) . ’
e B NN . \ ) ’ NN . * . N ’ ’ o, * ) ¥
Problems e s ~ : T \ e Lo
"1, Find the sum, 38 +73 + 22 by an algorithm that shnws clearly SR Ty
) _ -how the sum is obtained from ‘the. addition facts for 0 through ‘ "
N ‘,9 only. Co o ‘ ‘ \ o X ) ;
28, Show the individual ate;ps required in applying the associative . ‘_f.’
‘ and comutative laws to show that ‘ : \ . oo . ' o
R {30+ 7) +(50.48) = (30 +50) + (7 +8) . ‘ o
g e - ) Ct T, - ‘ ’ \ o \ ) ' ‘ ‘ ”P N . MR
A Property of snbtraction S i' \ o o SN S

. Just as. we worked the same ﬁroblem by various methods to get ap
; insight. into the aac‘lition process, we, shall now study the subtraction
process by exam:lning various ‘techniques. Let us use a 'Dlmpie example
‘sto illustrate the procedures. ‘ L ot S S o .

o Using* an equation form for Aﬁnding the value of the unlmown ‘addend *
S in n + 23 = 58 and' comparing this with: the usual algorithm identifies \ ‘*
a8 _m:o;perty of subtraction that is used extensively in computat1ona.1 work, .

»

We Wi:te. ) oy

| ‘ 58-23 (5o+8)-(2o+3) ‘
—— - The property of subt;t\a.ction that deserves oyr special attentiun is that TR ﬁ

~ which will enable us to expresa " (50 + 8)- - (Ep +3) ina useful form, SR

- ~ ‘ . 0 N . .\;‘-‘: . T . % .
"'$61utions for problems in tHis chapter are on page 271 . . ° L
\. \“ )
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. %' The ususl procgdure for subtracting is by the vertical alignment,
St e 58 \ \ \
\ , ‘ . ‘ 23 - B .

“ which may be expressea ‘a8 either of the following. ‘ :

v () 5 vens +8 omes ], ) [ -8
o : 12 ten3+3 ones R 20+3 oL
3 tens +5 ones = 35| , : N 30 + 5=35] . '\ x

N

T In the algorithm (‘o) a‘oove, ‘notice that 3 Jis subtractea from 8 and
'20 ig‘ subtracted from 50 0 arrive at the ‘bens and ones in the
difference. In equa'bion form, this entire process. 18 written-

o 5ﬁ~23 60+&-(m+3) GO-m)+w-3)
J ‘ \ . & \ : ' 30+? v

TR ~ ;\ . R - BN
- . SR N N . N o3 .
~ We may atate the ;pmperty, which e.llows {50 + 8) - (20 + 3)
" to. be reexpressed as (50 - QO) * (8 - 3) , more generally in the

S gk.following way:

.

" D If a+b is the name of one number and —
o L ‘¢ + d is the name of 8 second number,
1‘@!‘ . “and if a »>c and bzd then .
. . Lo . ]
A v ‘(a+b)-(‘c+d) (a-c)+(b-d) T :
.,“" We shall see repeatea use of this property, along with regrouping, o

throughout the rest of* this chapter.

A

I @b © Next, 1et us interpret Bubtract,ion, such as "17 «from h9 N in
* verms of e removal, From a set, A , of L9 objects remove a subs
- set, B , 17 objects, leaving a, remainder set A-~B, whose
| num‘per is 'bo ‘oe specified :

¥

We can take for A a collection of 1&9 x!s arranged as.follows:

2 .

b}

Fxxxxxxxx%] ‘ . \ .

~ ‘xxxxxx"xxxxj B \ R
e N - - XX XXXXXXN

v fxxxxxx XX X2%| . .
. L

XAXAXXXXXXXX
AN 2

- Y : N ) 26!" ’ \\'

|
B "' O
by
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®

.

DN

N ‘\ . ‘\ ‘\‘ ~ ‘\
\I[xxxxxxxxxxl‘ l ‘ .

: | o ——— .

\A‘_ S——— . XXAXXXX X ¢

dto count; R

‘ number of ones in the remaind.pr set is 9« T =2.
" hand siae above, we see that the number of bundles of ten in the r

‘setis‘h»l=3.
- is 32, \

i “ plete bundles of Yen, we could count these using only "small" numbq;g.

“ten. ana seven ones.

» ‘
Now ve need to pick & subset B of A which conts.ins 1’? members.
Then the nu:mber of members of the rema.inder set A~ B will be h9 - 17 .

\I

'I?nere are many ways to- chonse B . One of them :!.s this~ !

]xxxxxxxxxx[ B

‘|x‘xxxxxx:x~xx| \ \
A , i XXX XXX XX N
XX X XX X XX X X| L. ‘

%

[x x x'x x x xfx x x|

"But when we choose B this way, the remainder set. A ~ B 1s not casy

Sone Qf"the original bundles of ten have been broken up, and

only pieces of them are in A~B. ) 0

‘It is mmch better if we choose, B 80 a8 to either include a.ll o:t‘

~

a bundle of ten or pone of it. Here is one way:

\[xxxxx\\x-xxxxj‘ .

X!X
B *

Ixxxxx 2 x x x x|

[xxxxxxxxxx| _f\\“

A}

Now it is _easy to count the remaindér set A ~ B, ‘I~t‘ can be done’

ih two steps. Lookii'fg at the right hand side above, we see that the -

Looking at the left
Sdairiﬁer

There:f‘ozje the number of \memﬂ)ers in the remaindexr set

Wy

£

'An important thing to notice is that since we dealt only with con-

‘;

Now, let us e 32 - 17 =0V

We can pick A to be a set of 32" x's T
LI ) -
[x xxxxxxxx x|

- - .
. N ~ - N

ine in the same way another problem'

C

}i*]xxxxxxxxxxj“ L =xx

]xxxxkxxxxxl

“

» {

' We need o, pick 2 subset - B with 17 members, that is, one bunale of

But. A has only two ones, 50 we will have to use
: . [N .

?
3 R
»

< 265 ‘ .
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§"'§ " some of the members of A in the bundles of ten. As We s\aw\abové, 1t -
\ ‘is bept if we use only whole bundles, Therefore, we will take one of,
the bundles of ten in A change it to '10 ones, and jput it with the

‘ 2 ones. Now A lboks 1ike this" ~ \
\' |xx»xxxxxxxx] B - ‘\f\ \ : M
. [xxxxxxxxxxl | XXXXXXXAXXXX
‘ Do Now 11'. is easy to see hpw we can pick a convenient Subsei‘: B which
« - hnas 17 menbers. Here is one:

Ixxtxxxxx-xxx]~

N Alxxxxxxxxxxl l : XXX FX XXX X XXX
) ; b »
\ § . N
o - It is easy tp count the remainder set A~ B . The qgmber of
a i *  -ones. is '5.2 -T=5. and the mmber of ‘tens 13 2 -1 =1 . Therefore
32-17 15, and n =15 . L. L v_ 3 y ‘
. -~
Rather than ob.ject representation we may use algori*bhms such as
these to subtract 17~ from 32 ) \ \ L
(a)n 3 tens + 2 omes =2 tens + 12 ones - \
L 1 ten +F omes =1 ten + 7 ones ) Y
- k ) N R N ) . - Y
° e o - 1 ten +;5 ones =15 : \
. - Or \ . 2 > . ; “ t‘ \
(b) 30+ 2=20+12
' 10 +7 =10+ 1
S - 10w 5 =15 ’
or we may use an equation form, as e
‘ 32 =17 = (30 + 2) = (20 + 7) I
L ‘ ., =(20+12) - (10 +7) ’ ’
) = {20 - 10) + (12 - 7) ‘ \
o= 10 +5 .
Notice that the renaming of (30 + 2) as (20 +12) involves an
application of the associative property of aaaition, in that
(30 +2) = ([20 + 10] + 2) = (20 +[10 +2]) (20 +12) .
L \ d s
\\ .
. . . N 266 -
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. s . N ~ \ 1‘: ‘ \ o i \‘
. - We ma:y su‘o‘dract; larger numbers, of cmlrse, simply ‘oy ext.enaing the \ R f

pr:!.nci;ples and proceaures used with smaller nunibers. Ccmsiaer, for oD
1nsta.nce, subtracting 216 from 523 . : -

#

“Since we cannot suhtract 6 ones from 3 ones nor '?‘ tens from
»

2 tens, reni.mg is requived. In etail, we may write: . : S

L3

5~ hundreds § 2° tens + 3 ones = 5 hundreds + (1 ten.+'1 ten) + 3 ones.
\ ‘ o =5 hundreds + (1 ten + 10 ones). + 3 ones, - R
A R IR =5 hundreds +1 ten + 13 ones.
@ 0 . \ . (l& hundreds + 1 hunared) +1 ten + 13 ones. ’
toos ‘= (4 hundreds + 10 tens) + 1 ten + 13 ones.
. =;1b hundreds + 11  tens + 13 ones.,

- . L -

e
» . N

. Qr&inarily this procedure is a:imply 1ndicateaf by . . ‘ -

R
5. ‘hundreds * 2 tens + 3 ones h hundreds + 11 tens + 13 ones. }
) We may ‘now complete the problem 523 - 276 by writing. \ .
5 ‘hundreds + 20 tens + 3 ones = & hundreds 411 tems + 13 “ones
2 hundreds + 7 tens + 6 ones = 2 hundreds + 7 tens + 6 ones
o, o ‘ - 2 hundreds + 4 tens + T ones =247
. or wé may write BV o "
. N N ‘ i ‘ A . . & . \\ . \
! 500 +.20 + 3 = 400 + 110 + 13 . B o Lo
200+ 70+ 6=200+ 0.+ 6. SRR o
T ) CR0Q'+ 3O+ T = 2HT o - :
L, Hrowe may\u\ée an eguation fim’ such as S i i o

523 - 276 (500 + 20+ 3) - (aoo + 70 + 6)
R = (400 + 110 + 13) - (200 * 70 + 6)

s = (400 - 200) + (110. - 70) + (13 - 8) N
o D =200 + 40+ 7 S '
-~ * ) \ : o = 211:7 » ® T ) ) o -
We eventually mey ahorten sucﬁ algorithms to the form o . - .
) - o 5 2 3 \ or sim;ply 523 . - . . \ < .
. -276 - 276 - . ' .
\ e 1;7‘; - v
» i} »\ A v .
- 267 ‘
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\\Pro“oleins Co " o . . . R
3. a. Tn the property {a+ b) - (c +4d) = (a - 'c) + (b -d) , o
. o why  ere the conditions a>c and b >4 needed? ' \ ¥

b, Give an illustration of the, difficulty ‘encountered if the
conditions are not met. T C

L, s, \\Represept with an app;"op':z:iate« set, A , and subset, B, the
. subtrattion of 43 and. 27 . \ e
" Db. Show the same subtraction in equation form. '

Techniques of ahdition and subtrac;tion way ‘be e:xplainea in terms - g
of our decimal numera.tiom system, ccmpled with Tregrouping and applications
“of the commutative and aBBociatiVe properties of addition. Su'btraction \

techniques utilize a special ;)roperty of. subt’raction, nmnely,

it a,,b, c, and 4 are whole numbers sueh that
az.q and . bzd,t@itistruethat ) *
(a+b);(c+d)=(a-c) ii-\(‘b-d)

) This speciaI property may be explainea in terms of the dafinition of
subtraction in relation to addit:l.on, coupled-with thé connnutative and o
associative properti es of addition. Vol R .. N

1Y

;glicatiqns o Tea.ching_

If young children sre.to compute with understanding, i;}-. is essential o

- that they have an adequate understandmg of our numeration system with . -
its base of ten and its ;principle of place value., They also need to \

have ample opportunity %0 manipulate sets of o‘cr,jects as the basis for ‘

. defveloping appro;priate algorithms

»

Algorithms such as thes€ grow readily from manipulations oi‘ sets of
: o‘ﬁ;e{:ts.‘ . ; - oL . . T e

125
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R

1 2+36=1
. "0; N . [N

‘ (a) & tens + 2 ones
3 tens + 6 dnes

7 tens + 8 opes
- \‘ ) N \\ ‘\h

>
L

2. 69 - 2h =
(a) © tens + 9 ones
2 tens +\.1}\ ones
: i_h tens + 5 ones-

naming are inVolveq

=45

(b)” 40 & 2
308

\

(b) 60 +9

20 + &

8. T0+8=78"

ho+5 15

N
A

»

75 -

3. 58 + 17 = 8] M .
\ (a) 5 téns + 8 ones 1) 50+ 8.
"lten + T onesf\ 0+ T
" . 6 tens + 15 oues, or \ 60 + 15 , or
.7 kens + 5 ones = 75 | “70** o=

b Bl -35=1

* (&) 8 tens + 1'one

3 tens + 5 ones =

= T tens + 11 ones

3 tens + 5 .ones

€

-

h tens + 6 ones = 46

R

*

"’I‘hese Bame'algorithms serve ymmg children well "vhen regroupii:g a.nd re-‘

6.

(e) 38,
v

15

&

>

N

(b) 80 +1 =70 + 11
\ 3\e+5‘~_\-§0\+ 5.

40 + 6 = 46

Each child is not expected to be equally at eage with all algorithms
He shoula be encouraged to work with the Sorm with which he is most com-
fortable. Eventually he will shorten that. algorithm to & more efficient

form, but he‘ should not be hurriea into doing this. .

Gomputing with

undgrstanding takes preceaence over compu‘ting with a highly efficient

form 1n the earlier atages of 1ea.rn1ng.

R TN

2]

-

=
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- \ « . . Bxercises - Clmpter 10 .
R \ 1. For each of these examples, compute using the three addltien
.t slgorithms just illustrated in the preceding s@ction.
a. 246 +139=2 . . c. 186 4 766 = o
b. 777+96h=?‘ A, 77h+926=?
2., Tor éach of these examplea, compute using the two subtraction
* @‘ - aigorlthms illustrated in the Preceding’ Eection. .
oL g.rzsu 199 " e, TI0.- 287 =%
o ‘o.‘ o2 - 138 & 800 - 396 = ?
\‘3.\1 * Corqpute T?h ¥ 926 us:lng an equation form. i St o
X 1&’. Con@ute 800 - 396 using an equation foa@n. . N
. ~ . - .,..r \ .o . o \“‘
¥ . o
1, * -
. v S N
@ R
N * »
+ . - . -
R n “/
\\\\\ . 2 .




=12 = 10

- S L N
. s Solﬁtions for Problems S ‘ . -
P L ' i; IR ~ .
: ‘au\38+1y+%=38+tm+em ‘ Gl o
..\ \ * = 38 + [(7 tens + 3 ones) + (8 tens + 2 ones)] B \ :
. » = 38 + [(7 tens + B tens) +(3 ones + %ones)] \ ) ) “
N 38 + (9 tens + 5 ones) o . N ) - .
. . =38+95 \ . R o
2 (3 tens + 8 ones) o+ (9 tens + 5 ones)
. = (3 tens + 9 tens) + (8 ones ; 5 ones) \
' -~ :12t¢ns+13ones\ . \ . .
\ "\\' = (1 hundred +2 tena) + (1 ten +3 ones)
. R ) o 1 hundred + (2 tens + 1 ten) + 3 ones \ N
\ . =1 hunared +3 tens + 3 ones - . ‘ A
L~ = S e 3\‘ | | |
2, (30 + 7) + (50 + 8) ({30 + 7] +50) + 8 associative proﬁgrty . \
. \-,) ‘ = (30.+ [T+ 350)) + 8 - associative property T
AN \ = (30 + [50 +7]) +8 Acommutativgprop'erty . N
' . \\ = ([30 +50] +7) +8 associative property N : \

= (30 + 50)“‘* (7 +8) 'asxmij»{ive property S :

Tn order for a=-c. and b -d te have meaning, it is
necessaxy. that s 2¢ @nd b >d. These conditions also
assure that a + b 2 e+ 4. “which makes (a + ‘b) - (c + a)

meaning:ﬁxl. \ - o . - ‘ .
For exaule, 1ot & =7 ,b=5,c=8,4d=2, 50 thet N

a2 ¢ is not true. Then (a +b) = (e +a) = (7.+5) - (8 +2)

g, and (a-c)+(b-d) (7-8)+(5-2)

= (7 . 8) +3=17 7-8 is not a vhole number? 80 the

property 18 undefined, -If neither .couditiqn' had been true,

»

il

{a +1b) - {c +d) would not have been ae;gined, ,
o X - ?
Y N L )
. . T -
.‘ ’) \ £ 271
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13
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78
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ok Bl x XXX XX XXX

L ,‘»‘“Alkxx\xx‘xxxirxl o
e T =x XXX XXX xxl

a

\le;xxx‘x‘x‘xxx‘x]\ : T
WA) =43 | -

or, regrouped, = T v s

- -

EEEEEEEEEE]

Allxxxxxxxxxx|

R #, A [mxx;xxxx\xxxl\

. . R . .
N R 2 R .
s N - N

(k0 + 3), -H‘(éo ¥
‘ - =1(304%13) - (20 + 7)
SR =(30 -20)+ (a3 -7y °
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' INTRODUCING RATIONAL NUMBERS
Introduction . - R ) g
] : v

All our work with numbers g;p to this point has been with the set of

whole nunﬂ)ers, we have pretenaed that theyfarve the only nurr?e‘rs that exist

and ve have seen how 'they and their operations behave, Our number 1ines

* have veep marked only at the points which correspond to whole numbers 5

- leaving gaps containing many polnts. that ‘are not named. Using only whole
numbers it is clear tha.t wany division problems cannot be worked (for
example 3+ 4); that is, the set o;t’ *whole numbers is not cJ‘osea under

 the operation of division. \ —

»
»

Now the problem of naming points between those namea by whole aum-

" bers on the punber 1fhe and the problem of (almost) getting closure under

*

. ‘“Regions as Moaels for Ra‘bional Nunﬁ)ers

) systems to more sophis‘ticg.tiOn than merely counting and nu ring. .

aivision of whole numbers { we cannot divide Dby zero) are two problems

. that persus,de us of the need tp extend our number’ system to include more
than the whole numbers. In the historical aevelopment of nunbers the )
‘preblem’ o8 messurenent (which will be considered in Chapﬁer 12) was
probably a significant motfvation in forcing the exbension “of number

~ . N - -
]

- . .

»

-In our“‘extension of the number system to include what we. will call
rationsl numbers (but which are frequently called ”fractions") we will
proceed much a.g we did with the vwhole numbers. That‘ is, ve ‘wil;L start
“with ph):sical rgodelé for sﬁoh numbers and from these develop some concep‘ts

- sbogt them, "’ - ~ \ . o o

In setting up pw;;(al models Fod rationsl numbers we usually begin \
by designating some "bdbi

\c“unit“, for exawple, a.segment, & rectanfular
““regionf‘a;_oirciﬁar region, or a collection of things, - ’I’}‘i,i':s“q:‘:i‘f "is then

[}

partitioned into a certain numher of congruent parts. These parts, .. .
compared to the unit, give us the basis for & m&iel :E‘or rational numbers. ‘

A

A



Co, JFor example, let us identlfy as, o T - e
e our base unit a square region ang . . wo .
o gsuppose this is divided into two N *

congruent parts as. shown™in Figure {a).”
We want o associate a number with the
' area of the shaded part of the square.

Not only ‘tfo we want a number, we want

o a name “for this number, a numeral ‘which
~will remind us of the two equal parts . -
~ We have, of which one is shaded.” Jhe . -
mumeral is the obvious one, % , read s -
I ‘“one -half". If our umlt is partitioned into, three congruent parts and
v i:E' two of them are shaded, as in figure (v), the numeral % reminds us.
.7+ that we are associating a number with two of three congruent parts of &
f © . unit. Observe that our numeral still ‘uses notions expreseible by whole
numbers; that is, a ‘oasic unit is partitioned into three. eongruent parts

 with two of these considered. . o ‘ !

e In the figures helow, & rectangular region SeYVes as the unit.
N u o

(e) - : \ \~ . (a)

. , - - The numeral -E expresses the situation pictured in Figure (c) N namely
the unit region partitioned into four congruent regions ' of which three X ‘
‘are shaded. And, of-course, the numeral % expresses the situation B
\ \ represented by Figure (d), the baSe unit partitioned into six congruent ~
L regions of which five. regions are shaded. o

T T T Nore “eomp'ii‘eated ‘“situations ‘are “)@resent’ed “in the next ‘drawings.
In each .case the base unit is the rectangular region heavily outlined by
.o solid 1ines. In some,fof these, the shaded region designates a regiOn
‘. the same 85 or wore than the.base region ’ hence num‘oers equal to or
.., 274 .
" . ’, , o7Th

N




. \"‘ ) * ) .
than one. ’L‘hus Figure (e) shovs the base unit- partitionea into five v

5 ¢ R

: ,‘ ) p‘a.rts,\ all ofjwhich are shadea.. The numeral~ 3 -describes this moael

-

i . * K 2
5 . .y 13 L
= i
| 2 CONE* ‘
" ) ' \j * .. )
S . ~ L . . *
Unit - Lo T
" {f) Prysical model fo&‘*% o ' ‘(J-);-;f o
. \ . . \" a s : : C s R
. N . “~
0%)‘. *
. ) ) 8 °
. (k) 3 :
- 5 b . ¥ N ' .
\ F . T .
N A} oo . - \
’ Y ‘ N . . . . A ‘“‘
(n) 3 ~ | e
In Figure (£), the unit regicm is partitionea into faur congruent regions,
and ‘five such regions are shaq,ed**the numeral 'E describes this model,
‘Examine the other si‘t;uations 111ustrated and verify that in each.case
the region ‘shaded is indeed a model for the rational number nemed under " o
1Y . . N - \ . 3 N N N .
« . :
S - R S
- 3
) ° » * 275
. A » R v
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o ‘hum‘oers. \ Some suéh regions, with associatea numerals, are pictured

& . = ~ . .
Sy N -
o ; I . : o
R R} M M A J
A J »
N 1: AN
R »

- . - AN
. 3
AR LR <

¥ ‘ :
Y “a A N S
A Y
LY ) N ’
- . .
N B 'S
N ‘\‘\ -
N EIEN
N -
-
q\\ .
'. R E ] . . . ¢ - 5'
* Models using reglons of various shapes \
. N N . ~ N > N N N . \ d >
R - . ] L
. Cy N . T

Regions of other shapes oan also be used as models for. rational

4

: abo;vg, In t;ach ‘case, you can verify..;hhat -the moael 1nvolves identiﬁca-

\ tion oi‘ &8 unit region, partitioning of this regioﬁ 1nto congruent regions,
ﬂ‘ a.nd consiaeration of & cer:tabin number of these congruent regions. \ _

For the sake of simplicity, we shave used as models only plane

regions, Frequently, we use 50118 regions, also, as moaels for ra'tional

» humbers. The interpretation glven ¥o such models is but an extenaion o:f

O

E e

NI A i Text rovided by ERIC
N R

a

that used ‘with plane regions. - N ‘ . -
1. Draw models for: \ \

. . . _?_ . \ | . ; @ ; -,
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T Co " e \ \ . . \ \ ¢‘
e 2 Why are ‘Ch; following pictures not gooa models for rational numbers? '
. N 9
X O .' * . . .
A . . ) . .“‘ . N N . . N . M PN . N R N »
R . oA S
-: \\‘ X "‘ 3 ~

W}Z;.t numhers do. the shaded ;portions of the - following models : T L

o - illustratei"' T . R SN N
A » - .
- . ‘ C- - o ‘\\ ‘\ ) 3 * . N
R . . N - . N s L .\ ] » .,..-
RN (&), .~ awe e R VI :
.s ‘_ - S e N . ¥ o
‘Number Line Models for Rationa.l» Numbers =~ - . é S |

R Anothm- standan@ :physical model Tor the 1dea of a rational number
\uaes the number line, The wa;yswe 1ocate new points on the nqm’ber 11ne =
‘ \:para.llels the procedure we followea with regions. After we .mark off a‘f
e ) unit segment and parti‘tion it inbo cong-ruent segments , we then count ‘

S 'bhese par(s. Thus, in %aer to locate the poiwt corresponding o }3- y . BN

R \we mark off the unit segmbnt into 2 congruent parts ana count off 1 . .
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v, d‘f’ them. - This _point corres;ponas L \ 5
N ‘ - ) : Lo o » ‘ *
v 1" part - . . \ .
= N ';'—*_-_‘ 1 3
. s
, S i . .
.\]' \ Q‘ N o — ‘ \; * )
i i A bian e - Ny vb___‘_‘un e SO -~ - \_,\WH\;‘\,v\;\‘-‘_V_m“\,‘,,m‘_‘“,,‘ B e e
> s a . N ’ B . . ’ o N ‘\n.
N - N N N N J‘ R
~ bl » w
- ' :‘\ (g . ) T " 1 .. ) ) Tﬂ N *
¥ - . Iy N . .
) \:\ H ) ‘\ M ‘s 5 *
? N & N
+ L. ow
N 217 S It
k) ~ q‘ ~ N '
e ‘\a - 1 . ) \ D
v ’ ;‘ ;
- - ' -V » : :
? 7 LEANEEN D N : A
R x‘ . "~ > 3 ~ ot



- . * oaw ‘q\‘ . . 'S *
T ® -
< . 7 R ‘ .
. \ I , u\ - | T .
\ N E)

| y | .\ In l:i.ke mmer’ 0 1ocate 'E , We partition a unit interval 1nto

T i et

\ R congruent ;parts and count off 5 of these parts. We have nov located, \

. % 7 the point which we associate with % I
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‘ Once we have this method in mind, we see that we can associate a
N - point on the number line wi‘t;h all symbols such as 1; » E 'H » etc.,

?‘a.s illustra:ted below, -
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Problems ;

i h. Locate the point asso::iated with ea.ch of the i‘ollowing on & se_'parate \
- L number ‘line, o
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Arrsy Modéls for Rational Numbers R .
. "“Bets of objects e.ri:a.nged in arrays may serve as models for rational
_ humbers ,\ 923 in the ildustrations ‘below. Ia each figure the unit set or
92 is bounded by solid lines. -
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. E ‘ In Figured( a), for 1nstance, one of the,rtwo rows of the unit arrgy
Lo 18 shaded. With this wodel we may associate the rational number % .
j In Eigure (c) 5 four f the four rows of the unit array are shaded a:nd
* . with "this model we may assoc:late the mtional nunber Ti There are two
unit arrays in Figure (d) with two rows in each array.‘ Three of the rows
. are shadea, and with this. mode‘l we mey assoclate 'l;he rational number %
Notice that in each instance the rational number associated 'with 8
_____m*particular_moael 18 independent of the number of elements in each row

~of the a.rray. Fo:r example- - we would associate the sawme ration&l

- N >
. k! N N N 3

L . -



E number, % , vith either of tl\xe\ arrays below,
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xof vhich are to be consiﬁered. o

- numbers consists of those numbers of the specified form, -5 , and their .

.
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. loo® 1000 009000
- leee jleee oo oee .
loeeoe 200 000000 .
{00 0 D00 0060000 -
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Notice that wp also may associa.te the rational nunber % with a "
representation t%.t 1s not an array, such as:
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in which & unit set is partitionea iato ;E‘our equivalent su‘osets R three

»

Problems °

5. Show an é.:qray\ as o model for each of these, e, T
. 5 . ST ~ >
. 8. . % bo % Ce '.??' . d' % e, % fo 'g T ) e >
\\ R \ ‘ » ‘ . . »
. Some Vocabulam' and Other C&nsiderations o \ o N ’

The numbers for which our regions, segments and a:crays are moﬂels .
are called rational runbers. The particular numeral form in which these -

nurbers often are ex;p:n.essed is celled a fraction.  Meny different fract:lpns
designate the same.rational numbgrs We have here again the distinction
between ) number ana names (numerals) for that number. ‘

In thia chapte:r we are concerned with those rational numbers that \ L N
can be named by 8 fraction of the form % vwhere -a re:prewents a whole
numbey a.nq b represents a counting number (i.e. N a vhole number other

than 2ero). In effect, this deﬁnition restricts us to & consideration

. @f the ponnegative rational numbers. The complete set Q«f rati.nnal . o e

opposites or negatives. . o \ N

N AN



N Referring tt; our models we see that b -the denOminator, always'\ \
is the numbe( of congruent parts or equiva.lent subsets into which a. | ) ‘ - ‘
. unit has been partitionea , while a ’ the numerator, is the n‘émber of \
\ these congruent parts or equiva.lent. subsets that are being uaed. " One
\ _ of several reasons ‘why the aenominator is never _zero is that it would be . !
s mnsense to. speak, of-a -unit as being divided :mto Zer0 parts, it surely
) cammt be aivided into fewer than Oﬁm part. S —
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Equivalent Fractions

v The following figure shows Several number lines: one on wixich‘we h\ave‘ )
‘ 1ocated points coz‘resyonding %0 0, 1 )2, 3, ete; 3 one on which we have .

\O‘élj 2 3

located points correspmding to » 5 e't.c. H one on which we hgve

b 3

'locate& points corresponding o
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ihi .. _As ve 1ook at, these number lines, we 5ee ‘that it seems very nathral

+ to think of" g , for example, as being sssociated: with the zero polnt. .
For we are really, 80 to speak, c0unting off 0 segments. " Similarly,

it weems natural 1o locate 2 10; an& 8 as indica:bea. N o o
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Now let us put \;hhe_ five nunxtt)er lines together, as shown in the
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*;,‘ i figdre below, In other words let us carry out on & single line the steps :
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T _ for 1oca*bing in turn poj.nts corresponding to the rational numbers with
' denominator 1, vith denominator 2 , with denouﬂnator ‘4 and vith
denomina‘tor‘ 8. When we Jae this we see, a.moug other things, :t;hat 3

2 3
«» -12; and -g all correspond t0 the same point on the number 1ine, or, in

. other Words, are all names (.numerals) for:-ishe same. rational, num'ber. \We\\\ -

. see also that -g- » % » % > and so0 on, ‘name the“poin“hs we hnve formeri‘ly.j

. R 8, %
o ‘named“with whole, numbers. Furthermore we see that fractions ~:s.n.mh a8 2

2 p
;f,, i,; » 1?’ » -and the like also name points that have fomerly been namea

¥

by whole numbers' Fractions which name the same po:!.nt on th‘e number line,
and whieh therefore neme. the same rational num‘ber, are ca.llea eguivalent
fractions. Notice that correspgnding to each wholé nunber there is a
set of equivalent fractions, - Consequent]y, there is a one»to-on; i
s correspondence be‘hween the set of whole numbers ana a particular subset
of the set of retional numbers. Furthermore, it can be shown ’bhp:t a °*
\ one-,to-one correspondence may be estsblished between the set of vinole
N numbers and the entiré set of rationzls. : \/
’ s, . Se N

T Equ:tvaben'b Fractions ‘i?_l "iﬁgher*‘rems“ oo ‘ T T -

. \ . Recognizing the same rational number under a variety of aisguises N
(names)‘ and ‘being able to change the names of numbers withou’c hhanging
thé numbers are great conveniences :I.n operating efficiently with rational
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- " _numbers. Such an adgition problem as % + -§ is certainly worked out
- wost effici‘ently by cohsidering."t.he equivalent problem %é 1?2 N '
"o ”~_equivalent because 1; names the same number as %— and § names the ’ \ . o
\ \‘~S&m numhex\ as «§- - T - \ . . \ ) . ,\
¢ 12 ° . o o "
The figuree illuetrete e way of using our unit region model to show , :
\ 2" 8 2 .. ‘8 C s
- ~'t'.'l'ze:l; 3 a\.na\ 12. are equivalent fractions > phat 'is ,+ that 3 and 15 \ o
- ‘name the same nuumber, . : First we sefect a unit region and partition it
into ‘three congruent: regions by vertical v ‘ o
‘lines ss shmm in Figure (?. . TFigure ‘i ,
{v) shows the shading of twyb of these - (a) V
. 1
\ L . 1 .
regions to represent = . If we re=- . ¢ leandos
3“‘ thirds .
turn now to our unit _region and . . T !
. partition each of the former three "' \ . 1
congruent parts by horizontal lines (:‘;) wepeme]
. imto four cengruent parts, we nave { -
the unit partitioned into 3 X b = 2 twel:f‘the ‘
) congruent parts, as shown’ in Figure \ . i
(c) If the unit pariitioned in thls . oger showing §= § :: L 'i% ]
vay is now superimposea on the moael s 2 N ‘i T e
R for §- , Ve get the model  shown in " L
‘ F,].gure (d), which shows thet each of, the two shaded regions in the model ‘ 1NN
I ff,;r 3 is partitioned into four regions, giving 2% h 8 ' smaller con-\
gitent regious shaded. Hence the moael showing 8 of 12 eongruent*‘ : .
3 | parts represents the same number as the model showing 2 o::' 3 congruent ‘
‘ parts. °
;. ‘The number lines in Figuree (e)
. and (F) aemonstrate this seme equiva-"
].ence. In Figurs (e),. -?; is shown . .
NS > partitioning the unit seg;uﬁent into ¥ _»r‘ ‘
3 congruent parts and using two of these \
to mark a point.'.If each of the 3 X .
N ‘ eongruent parts. of the unit is now Number 1ine model showiwhg shat \
Sy . ' . : ‘2 2x 4 8 . S '~
R partitiened into }3 congruent\ .’iay/ 3 ‘—y"g = Té . . \ < o
‘ N o . \ ) > N N ‘ ‘~ - . )
1 . 283 B
.J\ \3: v . R
¢ ' ~ N 1127
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the uni‘t. segment then eontains 3% 1} =12 parts while \th‘e 2 origina'i

R . N
par*ts useﬂ to mark 2 mow contain 2 X 4 = 8 congruent parts, as shown

-3
,:Ln Figure (f). Hence, the same point is named by 18-§ as was formerl‘y‘
*,;)‘ . nemed by- § ‘ ‘ o R S e
J’ ) v R
. ‘ To put this in more general terms, consider the fracti -—- ‘vhere
N “\\—" - - ‘
‘ b represents the number of pa.rts a uhi't; has. been partitionea into and
e \ a the number of these parts marked in the model, If each o:t‘ 'bhe b

parts is further partitioned into X eongruent parta the unit then con=-
. - taina"' b Xk ” congruent parts. ‘c.he§ same time, each of the a parts
. is further partitioned into Kk parts 80 that there vill be a Xk

‘smal}er eongruent parts marked in the moael. # Hence, represepté\

b'x k‘

the same numbe'r as -.z'- formerly did. Symbolically.

2 N ) o 7
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“vhere #k represents any counting number. Hence for instance,

3 3 3X3 9 xh 12
I:—* e:m‘ F°F%3T 12:“1: r*rz "sae“(

when each of two. fractions such as “‘-2 ana 13;- Is to be cha.nged 0.

"higher i;erms" 50 that each fraction has the same denominator.

(IR

*me set of multiples of 6 is (6,112,118, 2 ,30,36,% . .1

-

The set of multijples of b 1s {“.1#, 8, ’1‘2‘3,\16 , 20, 24, . .Y

' The intersection of these Bwo sets is (12 , b , 36, ¥, . ) end
v ‘any member of this interseetion can serve as the “cotmon " denominator” for
‘ the new fractions. The least common denominator would be ~12 , of

»

v course, so that : »
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" Our knowleage of mult:.pl es - of numbers ean ‘be used to gooﬁ adva.ntage ‘
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Problems \
* 6.: Draw both a unﬁ:. region model and a number line wodel tQ illustrate

\ .2 .k ‘ ~
RN . that '3‘:= '6 \0 ‘ . i N N - .

Temo L N N 3 - N . 7_ .
Y Te Supply the missing nu.mbers in each of the following. N
. 81 . ::a 3 _ 3)( 211» i \b 7 L R \\c\ 1}
o ‘ - 5—- 5 x \ 1;:6 5 . . . E 32\ . 12 "2'1: .
‘\B.C “\Sjpeéify the ‘\"k\" uSea in each case to change the ﬁrst fraction
" %o the second. } Rkl \ .
C. I _ Ixk _28 o S :
& 13 I3k " §2’ —_ R
1 b |
b Jg =g i k= __ B .
7 . \ . . ‘ ) )
Do e deggiean : .
h * e . : -t

.
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; Equivalent Fractions in “Lower Terms® T -

T 2

E@reesing—-a fraction in. "lo*s«er terms" (often callea "reduci

"'-,'

2_2x10 20
3. 37%10," 30

P incotne this 2020410, 2 . 10510 s 2 2 5
: ‘undoing this process, ) m30 " 10‘: 3 - Simi]‘a;rly, T S35

12 12+3 b W7 1d e 3

. ;{'ractions‘in ”hig};er terms”. For example, ~ana<

W "W+378°73 7 3:{3“3':". and so on. In gemeral: = -
If s counting number, k , is a factor of -
) \ ‘ N a a+k \
~both 2 endd ,\then =3 v k*' _ S

In this case we say that the Praction -'3‘ has been changed to "loyer terms

b

It should ‘be noted that while it is always possible to change' & fraction .

to an eguivalent one in "higher terms" wisth denOm:lnator any desired
‘ miltiple of the originel denominstor, it is not always possible 1o Te-
* . hame ("reduce”) a fraction using a specified divisor (factoz’) » Since

- * one.cannot always divide, counting number by a counting m;miber. 'For

o example, 3 Gan be rendm

S ~ At

R

P e ———

B while 3 cemnot be changea
. 5

9\ . AN S X
« N . . o . o
. . .
N - e R .
. . N . N . .
\

~ :E‘ractio,ns) is simply reversing, or undoing, the prOcess used to express» ‘

using 2. as a divisor, but not by using . 3 R

any M ower terms Ve sornetimes B8y tha‘b f

. S——a— ———
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gkill, bub its iunportenee has been overrated.

‘1

) by repeated aivision in both numerator and aenomina.tor, or we ean use the

fraction which cannot be changed to a.ny “lower terms", such as

Wl
L .

> etc. , is in simplest form or lowest terus.

R:tt:lng\ fraetior;s in \1ewest tezfms or. simplest form is a, convénient
‘The superstition that 7
‘fractions must i@lways, ultimately, be written in this form has no mathe-

. watical basis, for only different names for the same. number a.re at issue.
It is often convenient: for purposes of further cemputation or to make .
- explicit & particular interpfetetioﬁ to leave reeults in other than

sitlplest :E‘orm;‘ Howevar, where simplest fo:rm is desired we can proceea

~grea.test common fe.ctor of both numerator and dencminator as the k by

©.'is precisely vhat is required.

' vhich both should be aiv:l.do@. The greatest common factor of two numbers

is the greatest whole number which is & factor of both npumbers and %his
‘I'he examples displayed below should be
sufficient to 1illustrate both procedures for writing a fraction in

siu:plestfgm. ' ) oo
()‘1_1_._2_‘_12‘*2___-6\}2;__3_ .
SRR - - S VY- R IR
12=(2x2) %3 B .

So the greatest cenmon factor of 12 and 20 1§ the.
"oormon block® .of factors 2X 2 = b4 , and

12 _12+ % '3
20+ 84° 5"

by b ez 52 522 26 26413 _2 .
W0 "W+ 2 130102 B B ri3 B
2 mh ; “2le60 A
2|32 - 2|130
2|26 5l& -
13 . © 13
.50 the greatest common factor is the "common block” .
S 2X2X13 =52, end o T |
/1014 10k 4 52 2 : . ‘ o
TYE60,+ 52 3 o |
T . Dbserve that-for & :E'racti n such \~ed’~\ -g \the greptest eo:mnen factor
. T T
‘ . 3 1 1686 a A )
\ . o 7 . -~
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. ) \3
- of 5 and 9 18 one, gna consequently the fra.ction already is in its _ :
e Lowest terms. It is true that % =‘-g--3-3» = -g— but there is nd need to Y %
\ perform such a division.\ ‘ v .
: Problems\ \ y ’ :
N N . v
9. ‘For each of the following, give one equivalent 3 fraction in "haréﬂer
terms“ and give ‘three _equivalent fractions in "lower “ﬂ'ém“s““‘*‘*m- o v
) ~cluding one in 1owest terws.
oo -V 30 o ‘ .
a._: ‘3'6 o bo \ 'G'o' o - ‘ \- N \ N »
10. VWhy woula 1t not make sense to speak of a fraction raised to
o "higheat terms"y - ‘ .
1. For each of the following, specify the greatest coumon factor,
*  say. £ , of the numerator and denominator and use £ %o write
the fraction in simplest form, S ) \ ‘
. 300 e 30
\ " 80 'E-s' . f\“‘\' S . E = . . X . .
o o " ‘
. o : 24
- PR |
Cs 52 f -~ w 52 i . . ) . - . -
I_:".g 11;1 ana Oraer Among Rational Numbers \ ‘ \ N
\ . - . Q
First let us recall the three :possible relations that may exist
betw%en t,wo whole nuubers , m and n. One and only one of these
“three things is true: \ . , o .
o ; . m=n (mis equal to n) \
- . . m >an (mis greater than n) o I o
\ ‘ w<n (mis less ‘t;ha.n n) ,
A similar statement can be mede about two rational numbers . ‘ : .
& W \“u_a, ;b;ﬂ__:__ - o e e e e et et e s e ey o e e o+ e va s s ‘NA-.._...
Y and 3 : o o . N T . T
? a_g < |
T =3 (% is equa.l to ) \ .
- g ¢ o i T T
" v E >3 (-}; is greater ‘than -—) . \ : SR
v 8. s (2 is less than =) ' f a
< e TN O S
. 87 | I S
¢ L Co ) : ) ; S
N N \ S W ’ 1 !' ae J
AR gt - | .
- ‘\“\3\» - R v‘;- Lo» . . N N i ‘ & L



. less than the second number of eq.ch pair? of ‘bhe severalﬁ a;pproaches

s \{ “ o ) . : T - .
. » « T . : SR »
- AN » * ¢

Let us consiaer these three apeciﬁc exe.mples-

~ ®

R 6 . \\\ ‘ s s .
-“nl' \Bf‘igé‘ 2'~%>3 3. %:-Ié

-

How maar we compare the rationei&?numbers in each exanxple to determine
whe-t.her the first number of: each pair is “eqial to, or greater than, or
that m:l.ght be taken, we shall ‘illustrate the one :ln which each pair 01’
fractions is expressea in terms o:f‘ equivalent fractions whose ﬂenomina- -
tors are the same, In particular, the coummn denonxinator vill be the o
laa.st comon denominator, Thus ‘

A}

10 | o \ . \‘ M 6 18

. _18 9 18 18 18 7
?‘o cf)mpare '8 and E _since B.=3F 213 = B »80d 5 = 34
) . £ - e 9 ) i _ ) ?
| . it must ‘og ‘t;rue‘tha:t, 8%, = .- =
' T e T B 7.2 5 20 - 220
2. ‘I'.o‘compp.re B and 5. since“: 'g -‘51; Sl ) and | 34 )-E-E 'y
it must be true that >% . N 3
: cmovve e s § 52 ‘
S Bl e e 5 15 b, 16 15 16 - S
3. To compare -§ an§ ra s:}nce =M.z o0 Fp < FR o, e
\ it muse be true \'t;ha'b g <-§ . T - » . ;
i | HNow 1et us suummsrize each of these three: comparisons and also make
. \a \ a signiﬂcant observation in each instance. e e o
- 1, g:-l% Italsois‘truethat 6)(12 8x9. ‘ - S \\ *
. . - T . : : Co .
a2, :n; also 1is tr‘&‘thaﬂ TX6>8%x5.
) N . 2 . hY ) \ ‘
. 3. §<-§.\ It also 1s trué thet 5x3<8x2.
. . k]
\ . -
\ It is extremely dangerous to generalize on the basis of isolated
examples. However, the preceding examples dao illustra:be an important °
- A se'l; of relations that ca\n "be demonstrated to be true for all nonnegative '
: ‘rational numbers % a.nd % N \ . . .
\ SR . Xd=bxe . " T )
. Spey i;fandonljif wXd=bXCc.
R L . ) N X A
= ‘§>§- 1:anaon1y1f aXd>bXxc, .
: a _c . LS \
553 if«wnd only if aXd¢b X c ,
- ] 288‘ ;
N - 3 .“\ N
R EMC Y ‘ N -~




f - 'I'tms, ‘we have a very simple and conven:lent way for aeterudning
whether or not two raticnal numbers are equal ana if not equal )8 very
¥ simple and convenient way for ordering them. :

‘ Pro‘olgg \ oL o
. ‘\xIé. Make ea.ch of the following statements true by 'writing S or > _
T - or < in the ring. : \ : . o N
. o %"E'EOT ‘.‘ '8012 : '6- '—3 \‘ -
o N ‘ X e
A . : 36 R} hs L. T1M3 \1043

: \ a. i O 55 L& 2100 IR A :

‘ Rational I\hmbems in Mi'xed Form S

e, o Bach of ug 1s familie.‘. with the ‘fact that a- rational nunber whose ‘

name is. -3?: for exanmle,‘ also uay be named in the mixea form, 1% -

(We pre:f‘er to speak of the m:lxed fOrm for a rational number rather than
* %o speak of & "mixea ‘nunber”s ) Let us use the nuuber line td examine

LI

\ . briefly some of the assuu(ptions underlying our uset of the familiar ulxed
fom for naming ‘certain rational numbers. S ?
. 3 . . \
i . L 4 " . 4 & - e
o 1 2z 3 0k 3z 8 L - %
" 3 3 3 .3 3 3 3 3 3
o 1 2 L1 2. e L2 2
\0 N  w—— L l l-v- o \a—‘
e 3 3 3 3 5 .8
, ~ - C sider, fqr instance, the use of % and l-g- to neme the sa.me
A . .
rationa.l number. We often s&ate that -g— 1-:';- Behind this statement '
/’ there is the assumption, among others s the.t rational numbirs can be
L 5_3 2_.2 . S g
aaa;~—=- --1+«-=1—. \ .
‘ Or, consider the statement that 33- = E%‘; . Here again we see that
s the ability to ada rational numbers is one of “the things u’nderlying. ‘our
T N . o T
. é,nte*\rprgtation of - 2-]3& , since: % = -g- + %— = 2‘+ % = 2-33—‘ . ‘
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B 2 is bey;;n\d;the\ s/eppe\of this \chapter\to‘ give any systematic
~ consideration to the aaaition of rational numbers. However, we did wish

to point out that this operation is 1mplic1t in an interpretation o:f: the
mixea form for a rational number. \

o e Another :I.mportant implicit assumption is consiaerec‘l 1n the ]
following ‘section. o e

A4

Ra:tional‘l\l@bers and Division

Wy

*

Thus rar rational mmbers have been interpreted in terms of several
models' uait: regions ;partitioned into congruent regions, unit sets or
|ITEYS partit:loned into equivalent subsets, and unit segments pa.rtitionea
o ~ into congruent segmen'ts. We she.ll now 1ook more closely a.t the integr- /

Q

Qpretation of rational numbers on the number line, : ’
= * For an . example we shall consider II . Ve partition the unit seg-
ment into four eongruent subsegments and count three of them, Each
interval in the partition repreeents -E ’ therefore three-fourths is
the union ‘of three of these Subsegments. Numerieally this implies P
T that 1; is defined as 3 xﬁ - o // .
~> AR L , 1. Y . . J . N
; S ro
' (a) '-'I‘:-P——-.-—.-—.— DA PP U P —
> IR Sk
. “Jupameseman %-———ﬂ-ﬂ . . . ) N ' !

£ N
. N

Similarly, the union of four of these segments abuttea end-'to-ena

* » 1

represents b X 'E or 3 5 88 shown in {p). 8 LT
-« ' N . 3. ;_. ) 3 W 3 - ’ K < - .
) T pom § e 3 e
\ (v) b e G GG e Qe
a N «\Q N l N 2 3
Pt 4)!- . iy

This is consistent with the a‘bove definition and the ass,ociative property :
of. multiplication 'i’or the ;oroduct‘ -

"~

CUTTRITTERI AR T T »

;. . » R s

R gx,; ux(ng) (u‘ig)xx 1a><§§ -
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A ‘ . ‘“ 1Y ,. ;;‘;\\ ‘;: “\?\y::; N '».L). a;.' 3{‘ \x 2 ,1:5"“\2\: a: ‘»:‘\ : ? : » Y
N A SN \.\ . 3 S N
i} N s A N a3 0
'.Ehe equa.lity of th.e ﬁrat*andJast mugera,ls are o;t‘ yarticular $o )
§ interest. . N ‘\ \‘ . -‘: A o 23 v.‘\;‘\ v i N N e ;, RETE . i R * .; ) ‘.“ ) i "“ ]
R s T T . ’ SN T et \‘_ LR .
. B A ll- X . . B C e G R M ¥ § \
. " - . S ‘E _— i e By \ e
...,.w.q.v:m demqnaisr&taﬁ.,m&&‘ thera 3\5 a nuumer, ~B ;c.ha’c, &atiaﬁes ‘thq.wquaﬁion» ._,....m_*
L e o Tlkxn=3, 0 ST e REN
S R . . e 6“ .. i .
\ ‘ raamely‘g n =% . Associa:hea with thi% equation is’ the cmotient n = 3 2 b, o
x N s N “ ‘ ~ \
Nt This haa no meaning in the set of whole numbers » but ve see pow that the ..
Y .. * - : P Smemammanma s A - RNt
. set ofﬁ‘ational numbers jproviags the number %" as equal to 3¢ h o .
BN ‘ \j Reca.ll)the use o:t' the number line in illustrating ﬁivision, say of " f"\
. 6 + 3., A 6 unit segment :ls partitimed into&?, congruent sub= . )
; segments. Each .subgegment is congruent'to the segmeni‘: fmm 0 to 2, ;
. end thus, 6+3=2. A Bimiiar partitioning of & 3 unit segment R
v v R . oo R L 2
- into 4 congruent subsegments can be associated wi'th 3 + y, : ( R
Figure (b) above shcws , each subsegment is. éongruent to the segment s
- RN \ . .
from 0> tb % ,*thus ,justifying further thato 3ak= -35 SN
AN ¥ . ) .
T o ~ This‘vis but one' t}l‘ustration b:tj* an ‘in;portant relation betyeen - v .
" rational mugbers and division.. In general, it is true that ° - ‘o
* N N . A O > . . N .
v . . - : . . 3 . . e SN R
LN et
-where & .is ~any whole number, ’fai is any counting number, and thelr e T
o &, el L . R . . . - ’
‘ guotient is the rational number % . -Thus , foxr every vhole number & o )
\ and for every, counting mmn)er b there is & rational number %‘ such
T L - : . . : - \ o v
 that .
¢ . e v ixfea. R
¢ ST v ! ~
» * . ‘ \ * ° : .
. N N ) \ . A » 0' ? i * -
. Problem .- — ‘ )
13, a Find o 1f’ 3xnfs5. e s s

N N J . N » - T - . i LS )
e e "b‘s how 't;he div:}.sion on the nmnber hgte; 2 \ .

NS N i B - \ L . . ‘ . .
- N 7 e . N .
. M ® 2
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S A New PrOPertY of Numbers ‘: RN - \ . ‘,\f

§ Ratiunal numbers are dif:t‘erent 1n many ways .fro'm, vhole numbers.
One Such diffeyence is apparent if we recall that for any whole number
one can always say vhat. the "next™ whole number is and: ‘then ask, in a-. ©

imile.r vein* vhat the’ "nexﬁ‘" rationalm mmhaer is after. any given rational
. number. For exa.mple, L is the next whole number after 3 , 1069 is the
. next whole number. after 1068 and so on. What is the next rational

. A
1

OV NI .
RSN,

is. suggested as the next one, we can observe

2

3 AN © e
N : 1 .§. ) 7 ‘ l *
. 15 .

“ - number e.fter 2 ? "I:f
tha.t = = 6 50 T?_ is surely betwéen = ahd

2 3508 3 oK
\Henc\e, 375 ehas a better claim to being next to i:ﬁén does

Wi winy
. 3
=
+

1t is then sug%ested that i:’» be regarded as the

. 1_12 J 1k 13 SR 1 :
- we .can obﬁgwe that 3 =35 and 12 —-E s° @; 15 closer to 5 .the?tn‘

xt number after

2

ol

»

‘is ,12 To _earry this one step further, we can squel ch anyone who

- suggesi;s —E\ as 'being the' nexb number afte:r L by pointing‘cut that -

: 2 T
\ 1 — 2)* and 137, " ‘sc\a tha.t is moﬁ nearl "next to® 1 than S
R . 5 ‘Eg —I; 1-}-8 ‘Kg }' P

\ ‘ ‘ %3; \ It is clear that this process could ‘be carriea on 1naefinite1y

)

s and :t‘urthermo;re, would aplaly 06 matter what rational nusber was in-

v volved. ’I‘hat "is y we can never identify k] next“ gational number after
. - amy given rational number.\ A similar argument woulg show that we can-
‘ not identiry a,.numbef ”Just before a given rational number. \

N
*

\ . & number line with & very large unit is shown to illustrate the
. - qprOcess we wen'b through in searching for the rmuber "next to" % .
N . ‘\

- e 7 \ ‘A'no\ther wé,y of‘ expressihg vwhat we havse been\talking about is to say‘
N v that between any two ratisnal numbers, there is always a third rational . N
. rgunmer, in fact, therevare morg rational numbers than we could count. o
. o Mathema.ticians sometlmes describe this by saymg that th,e set of rational

[N & - -

« numbexrs is dense. The worﬁ is not important to us, ‘ou't is descriptive

L, o
. ) of the packing of points represent&ng rational numbers closer and closer
- B 292
B - . - .
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N

‘togethe‘r on t‘h‘e‘ number line. \‘.A;Lthough ire‘csln visualize that the points
representing the rational numbers are dénaely ;pa.ckeﬂ there are many ‘

A points on the number line vhose coordinates are not rational numbers.

- : ) L ; .
Meny points a.ri associ,ated witb numbers such 8s \u , s/_ \f’r , and s0  *
op.. We' are not going to consider such numbers in this text but we
~‘mention them 0. indicate that the number line is ot yet coxrmle‘te. There
is a point agsoclated with every rational number but there is not & .

Vrationa.l nuniber for every point. oW

vx

T ) W* . \ ~ N . N . \
. ’ ’ . 4 . N N ) N : ) R K
v Problems o . Lo

, ,
. 1b. - Neme the rational qumers associated with the pointa A, B , C,
D and E, . below, where A is halfway between 1. and 2 B

“halfway between 1 and A ,. etc. \
oA Y EC A, ‘
B - S . ey — . : -
o 'D . B . N \ 2

w fl

vy 4 R N
15. . wa many rmmbers are there between '1 and the h\m})er assoclated
. * with point E % ‘ |

o

i
Every nonnegative rational nmnber can be represented by many dif-

ferent fractions of the form % » where a designatea & vhole number

and b designates a'counting \nmnber. All fractions “I‘or the same

) rat';ional number are sald to be equivalept. The problems of changing
a fractionsto "higher terms” or to "lower terms" or to lowest terma

. are essentially problems of renaming. In this connection we use &2’
‘adva,ntage the fa.ct that )

a2 _aXk (vhere k designates a counting number) -

P TP Xk : ‘
and also the fact that ‘ \ $
d % i‘-g—{-% {vhere k designates a factor of a and b ).

———ea e . - ol - . . 1

-

-,
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Bquality é.}'xd oxder among the honnegative rational numbers -can ‘;e )
established on the basls of these conditions: \ .

) . N ) -

. $=% ifendonlyif axd=bxec.
N N \ R [ . )
%5-3» Jifanc‘lonlyif axd>bXxe.,
3 N N N ¥*
ST T ‘"‘““%“E-a TP and on;:y if*“a V.S < Bdntde

R

" We have seen that a. ra‘bior{a.l nmnber nay be used to designate the
quotient of any whole@mmnber, a » 8nd any counting number, b2

[ ~
N

‘a%b=%\- v-

' Fina.lly, we have :gointed to the fact that between any tWo rational

N numbers » NO ma.tter how close they are to each other, therp are many

~ other raticnal nuybers. Among other things #&his means that, unlike the’

*whple numbers, oné cannot ”:ldentify‘the number tha.t comes “,just before”
or ‘l.juat after“ a given rational number.

A ]

\ f.'gplications to Teaching

¢

‘We have emphasized the. use of several different models in developing )

o

iﬁeas about rational nunbers:

a. unit regions ( ;plane and solid), partitione& into congruent
h regions*

3 "

. be unit segments, parti‘tionea into congruent segmen'bs, and
‘c. unit, arrays (or sets) » »partitior.led :mto equivalent su‘osets..

Children encounmeach of these models in “eonnection with thefr
everyday experienc‘és s 8uch as: °

a \displsqring s fractional part of a candy bar,,
b. . displaying a fraetional pa.rt of & piedemof string,
Ce. displaying & fractional part of & beg of mrbles.

Tt is important that children have ample experience with each of :bhe :
_models identified 1f children are {ovbe sble to apply rationsl mumbers' °
correctly #&nd effectively. Variety of” représentation is imperative in
this connec.tié.n. . \ oo
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et N
“ Exercises - Chapter 11
‘.,.‘ : l\\ e N . 0 ‘ ! ) N . 4 '
"l \\‘Usipg rectangular regions.ag.your tmi'b regions, represent each of ~
"' *  ‘the following by p@.f’titioping the units and shading 1n“p\art5. \
\ i “ 3 'y e
bt & RN
= . L . oL, 9 \ ) )
| Co. ‘E o . 8. \ 'E \ . ~
: - TN 1w .
do h. 3 "
L3 . T - .
C 2. Using unit segments cn nmuber 1ines ; represent each of the fractions
. & - h of Exercise. 1. o . .
N - : -

3. Using arrays or’ §quivalent aets » represent ea.ch of the fractions
\ a - h of Ebtercise l. >

B TR \ - o ‘

k, . Most of the following figures are models :t‘or rational nunBers. Some

. G:E’ them are not models because the unit has not. been partitioned
1nto congruent parts. _ For each one that is a proper moﬁel, give. -
the re.tiona.l number which is pictured.

LERIC | BN

Qv i e . . (N 2 .
.\‘a’\ . : .o RN . -

9

,‘l
N

“



\'\ ‘. ‘ | )
- \\5\. Congider the polats laBeJ:ed ;A., B, C, D and E. on the.
N o, : \ B . A ’ ¢
.. numbgr line: S . o — - .
A I D - E . S h
AN N .
. . g. Give a Fraction name %o each of the point's y 5
‘ . + Is the rational number. located 8t poirrb B less than or - ™
; greater than the one located a'b D ? Explain your answer.
i " C» -
- 6. Interpret ‘on the number line the followin% \ ° - :
' H ‘ 3 N
. \ 20 _, b 23 _ T :
. © T Show on the number line the eg,uality. ‘ N N
» L. 2 3 : :
‘ o B - 'i":f
~ - '\S) * .. ‘
‘ 8, Tell which of the following fractions are in “Bimpleat form A
.+ 6 1 7 1a 510 7 T2 10 13t 2 . N
2T 12’13’513’1a2’ T’ﬁ §‘6,’3\ : * SR
N e . : ‘Q N <
9. For ea.ch pair of rational numbers namea below, indicate ‘whether the
- Coa first is equal to the second, greaterr 'bhan t‘he second or less than
o o the second. L .
A . N 1 ‘e 1 « .- :7 5 13 9 R
\ c B Ems TR R C. '_g:gd; & 3313 .
P S B F- 2 w 7 1 .
N be “FE o, 3E a 35,35 | s
) \\ 10. Express each of these in- nixed form, o
7 .. 1% -2 34 ) 56
- 8, I bn ‘B'“Q Ce "g!' a, 15 e, ‘i‘é
» 3 i S N
> ~ e » ‘
r A 3 >
‘ \‘- - - : »
A ] . A -
— r 2 ol -
v N ;. ) o
. R - ) ” ’
. \\296
‘ )
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lems

Solutionk for.Prob

‘Theése are illustrative only.

‘Many models méy“‘be used.

1.

.

A4

The flgures are not good models because they are not partitioned

2,

into congruent reglons.

3.

© .2

2 .
E.

N N - h — ey ¢
— e ——

B

A

a.

o=~
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L X X XX K
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2000000
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These models are illustrative o
- Ve
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R N g, 1“Higher ‘terms; many answers, .81 Lower térms; any: of these: \Lowest terms:
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1imit 'L'o how large the numerator am‘i denominator cax; become. \

. 10, Sinc@ in k o cen be any counting nuniber, there is no
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i R )y “* Chapter 12 .
‘ .  MEASUREMENT . .
T “‘ltntroaxiction " k
L : Measunexgent is one of the connecting links between‘the physical -

world around us and mathemat';cs.\
We count the number of books on the desk, but IeaSEEe the 1ength of the
'ﬁesk.
. figures. To meadure & line segment is to assign a number to i%. This
cannot be done by counting the poi;n‘ts of the segment since there are

\ infinitely mamr points in ‘any segment. To take the place of counting
“ S the :points—-— some new conoept muet be developed. The concept o:t‘ l'measure-
menii‘"that will be develo;peﬂ is applicable not only to line segments

. ‘but in. .& closely related fashion to angles, area.s of regiox&s » Volumes ‘
T of solids ) ‘weight, time, work, energy, and wmany other concepts or

physioal entit:les. I _ R

oo 1 'In methematics we' think o:t‘ the endpoints of a 1ine segment as being
exact 10cations in epace.

: The Measure of 2 Segg

e 1ine segment determined by these endpoints
is oonsiaered to have 8 ¢e) ts.in exact __ﬂt_l} For ingta,nce, the’ end-
points A and B of are ‘exact locations in space; and AB itSelf

_—  has ~axx exact length as gne of its properties.' Exact length, then, is a

\ property of all segmens.

“have said that tWo 8 ents are congruent if = mova.‘ole copy of one can

¢ be "matched and fitted exact

o a8 mea.ning that th
property of congrwent segments is the same length. Non-congruent seg- -
Jents have diffezfent 1engthe which ensble them to he ordered.. - ‘When we

\ coupare AB w:lth any other segment such a8 CD R one and only one of

. these three things is true:

In our intuitive concept o:f‘ congruence, we

" on the other. This may be interpreted

two segmento have the same length. . 'I'hus , the common

e,

TY Sve—

—— a (N U O

wt

:).s longer than -C;'D 3 or \
is emactly as long as D, s OY

. o } ‘ \ N ‘? ..
L . DS io oho‘:_;ter than CD T ~ . :

El QI' El

= . . ®

o 14

299 -

159

S0 18 counbing,-but in a difi‘erent VaY.

Measurement ig also a connecting link between num‘oere ana geometric

Sy



N 38

A e e

.‘we.y, we wish to associate numbers with the" propertya of length of segments.

.3
N N A N . ) - {
In the case of finite sets, exa.mination revealed 8 property on the

‘ baais of vhich the sets could be \.omparea That is 3, one set coul' match

a second set or it eoula have more or fewer meubers than the second set.
At “that point, mmbers were associated with the property. In the same

This is the ob;)ect:l.ve of measurement,\or finding the 1 th of a segment.

*

\Let\ us describe sthe process of ‘measurement as :I,t applies‘to line

segments. The first step is to choose a line segment: say §§ ,
serve as one. u.nit. This means to select RS and a.gree to consider its

measure to be exactly the number 1 ., . ) s ¥

(We should recognize that this selection of a unit is an arbitrary

choice we make. Different beople might well choeskifferent units ana B

‘ historically they have, giving rise to much confusion. For example,

at one time the English "Foot" was actually the .length of the .foot of

_the reigning king and the “ya.ra" the aistanee from his nose to the end

of ‘his outstretched arm. Imagine the con:f‘usion when the" kingﬂ died if -

" the next one was of much different stature. V@rious atandard units’ will

. be Qiacussed & little later but meanvhile we return to the choice of “ﬁ'é'\

B |

a6 our upit, recognizing the arbitrariness of this choice, ) o Ry
Now it is possible to conceive of a iihe segment, 'éﬁﬁ‘ th that
the unit RS can be laid. off. exactly twice along CD @s suggested in
the next drawing. - - : :
, L . *ouni TR
\ : ° . A ) <
] N N :\\ N ) » . S Y _.S-
\ . S N . N . .
\ . UNIT UNIT
\‘\‘ . Ce t + D < 0
\ S st

Then ‘Qy/z/greemsnt the measure of‘ GD is the ntmber 2 and the length

- of TD is exactly 2 units, slthough CD can be represented only

°
N
EN

300 \
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“‘“‘“““éengruent.
.,pecifiea unit no matter hew small they must be congruent.

. We can a.lso conceive of a line. segment 3,
= will not "fit into" AP & whole mimber of times bt all. B is e

: approximately by a drewing. In the sang we;y, line segme nts of length
R exactly‘ 3 unitsg, or exactly b units or exactly any 1arger number of e
ﬂnits are conceptually possible, although such line segments can be arawn >,

) only epprea&meteﬂhe—-}a—ileetj—if a line segment is very long -- 88Y &
mill:l.on inches long -~ 1o one would want to try to drav it ‘even e.pproxi- T
\ mately, but such a segment can still be thought of.

¥

such that the unit

line segment such that starting at A the um.t RS can be laid off 3

e

-

. R

CouNIT X
Y, . ’--m-\
. R 0—"-——5“ S . \ ’
o uNIT uNIT UNIT wNT
RN ‘ . - ’; . N : . 'L F _ A P
A — T3
. ~ . X >
tines along AB reaching Q wiich is between and B, although if

it were le.id oﬁ‘ L times we would arrive gt a point. P which is well
beyond B « What can be sa.id about the length of .A.B, ? Well, surely

3B - has lehgth greater than '3 units and less than b units. ‘In th:i.s
~par%i~cu1ar case, we can also estimate visua.lly ths.t the length of B
‘15 nearer to 3 units then to 4 units, so that to the nearest unit

the ‘length of AB is 3 units.‘ This is the best we can ﬂo without
consiaerlng fraetional parts of units, or else shifting to a smaller

-~

©unit. -

)

Another way of describing length to the nearest unit is by using

the vord ”measure . Thus the measure of A‘B

‘denoted m(AIB) , 15 the

number 3 . It is understood in the use of measure thet it aoes not

necesesrily describe exact length.

we knovw they are’ congruent and they have the same measure. T™wo segment

= . A

with the same measure in terms of a specified unit are not neeessa.rily

‘However, if two sagments have the same weasure for every

-

I:r two segments have the same length,

-]
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Problems \ T o
PR DX Using the unlt  eemms find he measure of each of the following
@ \ R . segments to the nearest unit. \ ‘ ‘ ‘ \ \ .
. ) (e) . .
N (a). . ;\’ N b -
- 2.‘ Using the unit -’ sem——e ! f;d.na the measure of each of the segmenta
- 3

in Problem 1 to the nea.rest uni,t. o .

N

) To help us in estimating,whethér the measure of a segment is say,
"3 or &, we need 0 ’oisect Qur unit. RS is againv shown as our unit
T. wita T hisec‘ting B sckthat FT is congruen‘b to Fi% and. RS is

o used to measure MN . . o :'P .
RS . . E L o
* w S Nl ’
B ) T\ \ SN
: P RS .
»
. ' e e — 2 s 87

\ In 1éying off ‘the unit along MN label P* the end:point of the
" first unit that falls on or beyond&N and label § the end of the
\ preceding unit .just as you did for 2B on ‘the preceding page. Using
RT (‘ﬁhich ha.s Just been dete:\mined) to aid in measuring - AB s we can
check thet BP is longer than RT and that the measure of AB is
R 3o m(2B) = 3, Avove,, NP ‘1s shorter than RT and. w({MN) =
o There 1s nearly a.lways a decision to be made about whether or not to
\ count the 1a.st unit which extends beyond the endpoint of the segmen‘t
K  being measured., The reason for this is that 1t 'is raxe indeed for the
\ “unit to fit an exact number of times from endpoint t0 endpoint. It 1s

T

‘ ‘ olutions for problems in the chapter are on page 312 .

r * =
A
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o wel‘.!: ‘o realize now that measurement is. a.pproximate and subject to. exyor.
- The. error“ is the segmbnt from the end of-t‘ne segment being measured to
the end of ‘the last wnit being counted. In ,A]E'.",a the error is :BQ "
U 4n N, 1t 1s WP . We note thas the error in any measurement 13 alweys )

at most half the un:lt being used.

»

‘ - Let us...ﬁmphasize one thing about termi:qology. .In a phrase simila.r .
" to "a line segment of 3 units" we mean "the measure Of the 11ne seg- t
ment in berms of a :particular unit is the number- 3 ", The poink here
is simply to have a way of referring to the aumbers 1nvolvea 80 ths.t

" they cen be added, multiplied, etc, Remember thet ve have! "Learnd
Jow to a.;pply a.rithmetic operations only to nunbers, You don‘t add, yards
“any more than yeu add apples, I‘f you have 3 a:p;ples and 2 appl .
+ you have i5 apples altogether, because S

W

. b IJ'/,/ ¥

(o | 3+42=5. . |
) You add numbers, not yards nor a:pples. oo

A& we ahall see shortly, the use of dlfferent units gives rise
. %o a:x.fferent measures for the same segment. Thus, if we \ponsider  MN

wy

n{}M) = 6 for the wnit KO and . -
" m(M¥) = 4. in terms of the wnit BS ,

[x74

3\
\

4 7

as the figure indieates.

.

N A ~ N \H?ﬂ\ N : N N . ) * . " N
: om o e NP :
4 .- t } — % —e
i \ \ \ ~
M o NP
2d {- } } ol
. R -8 ¥
Standard Units ‘ “ ™
Nunmers of ;people each using their own units would have 4iffi
o com;pa.ring their results or communicating with each other. For these :
reasons cei;tain units have been agreed upon by 1arge numbers of people N
a.nd such units are called standard units. ’
S TR | . '
- Y
H \\ R * - R
‘; a " ’ 303'
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+ The most useful of" these i

> N N ~ N
~ . : L N
N Y RS T
v .
\ .

* . . o . ° . -
- Eiistcz"ically there\ have been meny standard units used to\\messure
line segments, such a6 & yard, an dnch or a wile. ® Such a variety is a
great chvénience. i An inch is a suitable standsard unit for mea.suring
the edge of a sheet of paper, but ‘thardly satisfa.ctory for finding the
1ength of the schooi corridor. ' While & yard is a satisfactozw standard .

\?

i‘or measuring the scl‘fool corridor, 1t would net be a sensible unit, Jfor

finding the dista.‘nce between Chicago and Philedelphia.»
) ‘ -

] -Such units of li.nea:c mea,sure as inch, foot, yard and mile are \

N commorﬂy used ste.ndard units in the British-American systém of mea.sures. ‘
In the eighteenth cen‘tury in France, 8 group of .scien%i.sts develcpea the ‘
system of mea.sures which is known as the mebric system using__& ne*w
standard. unit, .~ T S \ »

+  In the metric system, 't he basic standard unit of length is-the,
meter, which is s.p;proximatg\y 39.37 inches or a little moi"e than ‘
‘51 yard, The metric system is in common use in gll countries except
those in which English is the wain language spoken and 'is used by all
scientists in ‘the 'worla including those in Mglish speaking countz‘ies.
Ac‘t.ually, th
Uniijed S\ tes is the meter, and the correct sizes of other units® such as
the
t0

e officia.l standard unit i‘or linear, measure even in the

timeter, :mch ‘foot and yara sre s'_oeciﬁed by law with reference

» ) . . . . - : :
emeter. ‘ L & VT N @

T

.The principal advantage of the metric system over the British-
American ‘system lles in t;xe fact t‘nat ‘the metric system has been designed
for ease of conversion between the various metric units by eaqﬁoi‘ting the
decimal system ‘'of numeration. Instead of having ‘12 inches to the foot
3 feet to the yard and 1760 yards to the wile, the ngmiﬁ system has
10 wmillimeters to a centimeter, 10 centimeters to a decimeter, ‘and

10 decimeters to a meter. This makes conversions betveen uﬁits very

easy. N \\ \ . ¢ . i » .

-

So far we have said nzthing about metric units larger than “the meter. .

the kilometer, which is defined to be 1, OOO
meters. The kilcmeter is the metric unit which closely corresponds to
the British-American.mile. It turns out ths.t one kilometer is & 1itt‘le \

~ : -

more than six-tenths of a mile. = . P : oo e



 Scales ‘and Ruiers

‘“ - \ o ’ ’ »
We have a.lrea(ly noted th&t in the metric system, ‘the meter is the
‘unit whioh corresponds approad.mately 10 ‘the yard in the British-American

system. The wmetric unit which corresponas to the inch is the centimeter

»

. which is one-hundreath of 'a meter. A meter is almo.,t ho inches s0 it

takes about 5% centimeters tp make an inch or to put it another way

“‘a‘centimster\is about 2 or 4 of an inch. Below are illustrateﬂ

5

‘a scale of inches and a scale of centimeters 50 you can cowmpare them.

‘\m N S

Centimeters s L, )

o i 2 3 9 5 6 7 8 .9 1o R I V-

3 1 X i ] ] | | IR | | A i J

i . i 1 L < { 1

0 r . 2 3 4 5
@ \‘ ¥ * * \

I;;ches ‘ \

k]

~

. - Once a standard unit such Bs & yard meter or mile is agreea upon,

L]

t}:\e creation of a sca'le greatly siu@hi‘ies measurement. : N

\,\, o~

o & . A scale is“"a nurqber line witlr the segment from <7
L | ey 2 .

0 to 1 congament to \the unit ‘oeing usec‘l. ,

A soalexcan be made with 8 non—standard unit or with 8 standard units
A ruler is 8 straight edge on which a scale using
a standard unit has ‘oeen marked.

3y
»

ﬂ’ ve use the inch as the unig in making %) ruler, we. have ‘a measuring
device designed %o give us readings to the nedrest inch. Most ordinary

srulers are marked with the unit onq;sixteenth of an inch o with the

- unit one millimeter. ‘ Lo e \ N

. . D
. \ S 5, N B

The Approbcimate ‘Natnre of Messure

°

Any measureqxent of \he length of a, segment wade with & ruler is,

at best, approximate. When & segment is %o be measurea & ‘scale ‘oased -

on & unit appropriate %0. the purpose of the measurement 1s '\selectea.
iha %mi«‘b is -the segmont with endpmnts at two consecutive sca]e givisions

- of the ruler. The scale is placet‘i on the segment with the zero-point of

the scale on one endpoint of the%egment. The number which corresponds
R the division point of the scale nearest the other endpoint of the

-
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-

‘ same 1ength, may have the same meaSure, in terms of a specified unit, - ,

x

- segment is the measure of the. segment, Thus, every measurement is made-

to the nearest unit. hIlC:E‘ the’ inch is the unit of :measur;e for our ruler, .
then we he.ve a situation in which two line segments » apparently not the

e

INCH S | ' o \ S

o N ) . '1In inches, wu(CD) = m{AB) & 2 o
- N \ » R + o

N X > : AR LN N . »

For the same t30 _segments we may get a different measure if ve use

& different unit segment. It should be clear the't if the unit is thanged,

3\“

the scale changes. Thus, if* wé decide. to use the céntimeter as our unlt,
the figure below shows that in centimeters m(AB) 4 and, m('ﬁ)

Now the measures do indicate ‘that there is a aifference ‘3n the 1engths ;;‘?.\
e A T }\ : . B‘ - . . C\ ) ‘} LI 1 ) 1 N o i\ D ) Vo
B — k- ! . ¢ i Y e €
f -t . \ o
N ‘ o ‘ . g
CENTIMETER . ‘ .
‘ In centimeters, m(CD) > m(ﬁ) oy ‘.‘ ST

of the two segments. Notir}e that by. using a smal‘ler unit (‘the centimeter)

' we are able to distinguish etween the 1engths o:f ‘tﬁo‘ non-congruent seg~ o

ments which in terms of arger unit {the inch) have the ‘same Measure..
If measurements of the same segment are me.de in terws of aifferent units,
the error in theameasuremente way he different since it is at most half .
the,unit being used. Thus, if a segmént is measured in inches the eryor .
cannot be mdre than half an inch, vhile if it is measured in tenths of

“an 1nch ‘the error cannot be more than half of a tenth of an inch. A& a N

S

result if greater precision is Qesirea in any. measnrement~ a smaller

uplt should be used. L )

A

o Sometimes it is more convenient to record 8 1ength of 31%inches

as 2 feet' T inches. Whenever a 1ength is xecorded using more than

one unlt, it is underextood that the e,ccuracy of the measure is indicated
. ‘ \k “9‘ \‘\*‘ B ) 3% . 2 ‘.
. . . X . - 7 . : .
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by the smallest unit named‘. ‘A length of b yd. 2 ft. 3 in.‘ is measured
‘ to the nearest inch.> That is, it is closer to Rt yd 2 ft. 3 in. than
. 1%"1s to elther kya. 2 ft, 21in. or b yd. 2 ft. 4 in. A length of
‘ o byd. 2 £t is interpreted to mean a length closer to 1} yd. 2 ft, than
to b4 yd.‘i ft. or 4 yd. 3.ft, However, if this segment were measured
. to the nearest inch we would have t6 indicate this by 4 yd. 2 . 0 in.
s or P ya. 2 ft. {(tp the nearest inch) 'I'here is a very real difference
in the precision of these measurements. When the measurement is wade to

the nearest :E‘oo;l;, the interval withi‘n which the 1ength may vary is one

:f‘oot, when the measurement is made to the nearest inch, the interval

" within which the length may va.ry is gne inch., This is because the end

\ cof the last unit counted may lie up ‘to a half a unit on either side of
K the énd of the segment. ) )

*

hd .

A, very important propert:y of line segments is that any line segment\ ‘

\ K\ « may be measurea in terms oi‘ any given unit. This means that no watter
.»  hov small the unit mdy be, ‘there is & whole number n , such that if ve
\ 1ay off the unit ni times along 3 starting at A wve will cover AB
completely, that i5, a point will, be reached thaat is at the point B or

beyond the point B on AB . o "

- e

. The length of a line segment is a property .o:f‘ the line segment which '
Ve mey measure in terms of different units, Theoretically, two segments
Jhave the seme 1ength if, and only if, they axru congruent. We run into
trouble thinking and ta].}ging gbout length because, in practice, measure- -
ment of length is made in terms of units and, as we sai_7 above, two lines

) Wh)].C!h are really different in length may both be sald guite truly to have
1ength 2 inches to the nearest inch. ‘ '

vy
. \A viviﬂ illustration of this trouble will emerge if we think a‘bout
* @an ap;plieation of linear measurement to the calculation of the perimeter

. of a polygon, By definition- o : ®
YL The Eex’lmeter oi‘ a polygen is the length of the
‘ e liﬁ‘e segment which is the union of a set ol non-
qyerlapping line segments congruent to the sides

k) LN

<2 8 the po]ygon.‘ \
VTSR N 2 . LY ' . .
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Thus the :perimeter of polygcn ABCD is the 1ength of EI vhere

R is the wnion of & , ¥6 , CH and AT wnich are respectively

congruent to AB BC 3. (‘:D and TA . If we put pins at points A ,

B, C-and D and stretch & taut thread around the polygon from A

‘back to- A: > when ve straighten out our thread '%:e will have a model of
-3 segment congruent to EI i - ) ) ‘

@ The length of ZEI 5 We know intuiti'Vely, is the sum of the 1engths e

of the ‘four segments when we consider 1ength as an iﬂ.trinaic pmperty
Qf.‘ segments. But, when ve talk about lengths as measured in terms of
certain units we ma.y r™an 1nto the following situation.

LN

2 CENT!METER SCALE 7 .8

. 9 0
- mcn scm..e .3 "4
' E F 6
* \ T . N
50
*To the nearest centimeter a(2B) = m(BC) = m('(TA') AB is congruent
- %o TE, BC is congruent to ¥F , CA is congruent to 76 bus =(T6) = 10 .

This is because to the nearest millimeter n(AB) = w(EC) = w(CX) = 33 ,

this means ~m(TG) = Even if we measure our sdgments to the nearest
. inch we find u(EB) = m(BC) n(TR) =1 and we wOula expect the measure
~of the perimeter 4o be 3. But we find w(I6) = + This reminﬂs us *

aga:lm that the measure of a length is always, at best, an approximation

",

and to the near»e&,_t\_z!ﬁllim‘%ter w(TG) = 99 , and to the nearest centimeter

‘2
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" and approximation errors may e.ceumulate to ce.useoreal trouble., The ~

“best we ce.n 88y 15 GO be aware of this possi‘bility\whever In youg

" \problems you are aealing with numbers which turn up Jrom measurement -

‘ \ the unit selected and, as we have seen, is vhat one normally considers

3

. Starting with the concept of measure as a whole number, & meening mey now

 processes. 'l‘he greciseness of any measurement :ls related to the s:lze _—

of the unit selected. . o .
c Yoo . . - . o ?
Problems o C N N

)

3. Two~ch11&r‘  are ssked to determine the length and width of a

. crate; ome 8 glven a ruler with units marked in' feet, the other »

e ruler with units merkeﬂ :ln inches. The first says the crate

.is 3 feet long and 2 feet wide; the second says it is hO :lnches
by .28 :lnches. * Bxpla:ln why they cauld both be right, \

k. ‘Botlx_shildren are "asked' to Tind the perimeter of the crate. The

.first one says -10 feet the second says 136 1nches. A string
is then passed around the~gr'ete, stretched out and the children are.
e.sked to measure the string to' find the perimeter. This time the
first one says 11 Tfeet, the, second one 137 :lnches. mrxich re-"

L'p

\sults awe correct? Explain the a:lscrepancy between the results:

. We have indicated in this development, that length is tHe common \ \
property ;possessed; by segments that are congruent in wuch the g'ﬁ!!! way B e
that a number is the common: property of all sets the.t are equivalent. ‘ ™
Corresponding to the length of a given eegment 8 whole nuwber is o
attachea which we call its measure. Note that thlis measure depends \ox; ) N

i‘the measure to the nearest unit. Thus , length is approximated by the "-
measure, with the approximation being closer and closer as the unit is
‘finer and finer, This :ls the. ceee for any measure vhether, it describes C
\1ength, time, welght, or sny other measurement. : \

When ve sa;y thlt a segment has %8 measurement Qf 37; inches R .for

‘ :lnstance, the :l‘mpli a.t:lon is that the unit is the quarter-inch. Thus,

a "geasure" of 31- t8 e.ctue.lly 13 , since 3;5 :lnches means 13 : L e \
que:rter-inehes. ‘When -a-measure-is- expreeeeé a8 & rational number, the o T e B
unaerstanaing is, therefore, thet an approximation is made to the o

sme.llest unit indicated, as for exg.mple, the que.rter-inch mentioned above.

Y-
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be attached to a measure given in terms of a rational number, With .

L7

&,

- reference to the smaller unit, the measure is the whole number of the

smaller un:lte ;'with referenee to-the larger unit, the measure may be

\ stated as a-ratiouel number.

On 8 line, B segment can always 'be found that would ‘be congruent

R to some segment. It is then possi‘ole to choose two points on & line so
“that the segment determined by the two points would be congruent to the

unit for ‘a particular measure. If the two points on the line were

,identified as 0 and 1l , then a ‘number line may be constructea such .-

that the unit on the number line is congruent to the unit :E‘or the mea.sure.

- Now, suppose that the 1ength of a g:lven segment is to be aetermined.
Clearly, there would be a segment on- the number line from O to a point

‘having a rational number as its coordinate that woult‘.i approximate the

given segmen{t ia length. In fact by finding the segment on the number
line with q as one of the endpoints (the 1eft enapoint) that is con-
gruent to the segment’ being measurea At should be possible to obtain the

- measure ‘oy the coordinate of the othex®endpoint. By th:ls, any number

that may be assoc1ated with a.ny point on the nuniper line as its coordinate
may be assigned as the measure of a segment, and two segments are said
to be of ‘the same length if they have the seame measure rega:raless of

the unit used Length, concelved. of as the common property of congruent -

segments R ie a slight departure from length in orainary language usage, .
as for example, in stating that the' length of a deek is Lk Teet., The
explanat:lon of 1ength as thes common property of congruent segments more

>

accurately emphasizes its mathematical meaning.

»
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- Which of the following

‘b

C.,

Bt

. _Exercises - CP_?}_’E‘-‘?}E

L]

-
AB is congruen‘h o CD "a." I8 1is congruent to EF
AB 1is shtﬂ'.er than CD e. GH is shorter. than T
] s longer than TF F. GH is cougruent to CD

A dgg veighs 18 pounds,

8.

b

“Co

Be

‘ “b.

b,

v 8.

I‘n\

- Do

\‘CO

5

a.

€.

\The

15

6..

-

-

8.
\b. >
" Is there anything curious about your anawer?

Cs

T am five Peet tall. .-

The unlt of measure is o

The measure is \ \,.
‘l’he welght is _ R L

o A aeek is 9 : chalk pieces 1ong.

Tts measurement is _ e
Its meapure is .

’J.'he unit of measure is .

which of "the following sentences are standard units usec‘l?

He is strong as an oy ° : e N

Put in.a pinch of salt, .- \ -
He drink a gallon of milk per aay. o R

The corn is knee high, \

measures of the siaes of a triangle in 1nch u.nits are 1'? N
and © 13 . o ‘

Weat are ‘l;he measures of the. sides ir ‘the unlt is 8 foot?
What is the measure of 'er “perimeter in jnches? In feet?

- N N ?

d. . How do Iyou explain it?

Use
Is
Explain,

A\ ‘as a unit %) measure the following segments.

..

AY A A

c-<-—----~a - ES —F

PO

¥

TD congruent to B2 Do your answers contradict each other?

)

3w ) e

statements is true sbout segments AB , D ,
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" Solutions for. Problems

S 1.

X

1
a. 2; be3;. e 1
- measures di:t‘fer.‘ \

3>

«
Qe l;bo 2; Ce

T 4. 3. ‘It\shpulat be noted hov the

fho inches o the nearest :E'oot s 3 feet since the error is

1

less ‘than 3 foot. 28 inches to the nearest :f'o&t 18 2 feet,

A&ain the error is less than }2- foot. \

This prohlem involves the definition of perimeter of a polygon. .

\ Note that the perimetar is by deﬁnition the 1eng‘bh of the sement .

which 1s: cong;ment to the uni.on of non-overlapping segments con-" -

.gruent to the sides. Thus the‘second methud is the correct one

\ . for both chilc‘lren and the answers to the neareat unit are 11 feet
and 137 inches. The firss result comes from adding 3+ 2 + 3+ 2

but..each measure had _an e;‘!;Qz‘ of Q}I!QB'L ’k dnches or %—‘» of a. foat

——— St 1 NS AR e dd

and ‘t-he accumulation of these leads to the result 10 feet which
is, in fact, jacorrect. The result 136 inches comes likewlse \

because each side mea.sured 1n lnches had an error 1ess than -:,;L; an - |
" inch ‘but which accumla.tea to something nea:c an inch, The dif-

ference bétween the correct Tegults 11 feet and 137 inches is
due to the fact that each chﬁa g'fves his ansver: correc‘b to the

. © \ .
neares’t unit he is using. ‘ . e R

b -

R A P
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e S sy
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“order to co

;o Multi:plying Numbers Grea‘ber ‘I'han Ten \

'.I.‘he ability +0 compute with underﬁtanding and skill p:hen multiplying .

these are:

(comutative, associative, distributive over add:ltion, ete. ).

{  Pirst let us consider the proauct of % and 12
dieplay the array ‘ \

-

cC00O0-
0000
‘"ocovo0o0
000O0.
c0Cco
0000 .
Mo ooo
" o000
0000
co000
0000

*

0900

MULTIPLICATION AND DIVISION ’.['ECHI‘IIQUES

) ﬂhole aumbers greater than 10 delaends upon. several thi S, Amons
_knowledge of basic qxultiplica.tion facts, ability to use 'a

. waltiple of 10 a8 a factor, familiarity with our decimal place value
numeration system, and ability to apply z;mltiplication properties \

»

for which we may

. By partitiOning the array into two arrays 80 that- each rov has 1ess than

10. members, we need 'hg use only ‘basic multiplication tacts, the aistri-
butive property of multiplication over aaaition, ana addition facts. :!.n

te the :product of & and 2.

For 1nstance, we ma‘y

partition ‘the. L vy 12 qia;rra.y into a b by 7 array and a 4 by 5

sy

arrewt .
c00000 0jooloo
400000040000
000 0000|0000
O0000O0O0|0O00O
\ 7 + 5
SO N '
“Then, b % 12 = hx(7+5) R \
\ (hxﬂ+0hxw o
D=2t |

=48 \

o000

T
.

e

\ . < A\ L
We have gone directly here from °28 + 20 to 48 and have omittéd the

B
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intervening stepa.

S ; ‘ &*&0—4—-—2& C T \

7. =20 + (20 + 8) _—_ e
e (20) +20) + 8 o . \

R =40+8 LF o ‘
=148 o

-~

By chogsing ‘bhe numeral T+5 for 12 y only basic multiplication

\fac'ts from the multiplication table are needed, We could also have chosen

to cansiaer 12 as 3 + 9,4 + 8 or 6 + 6 without the necessity of
going outsiae the 't.able. However, since in terms of our numeration
system ve commonly interpre@f12 as 10+ 2 , it would be more hatural
to part:lrhion the % by 12 sarray into two arrays in t}ais \way.\

. 00000000 O0O0J|00 .
4 . 40‘0 0000000000 L .
. 000000000000
000000 00D0O0|00O -
10 o+ 2
Thus, hxla bx(w+2 - : L
SR - (b x10) + (b X 2) TN

. 1

In Order to accomplish this mﬁltiplication, 1it.is necessarxfj £0"know

‘miltiplication facts for miltiples of ten. This is ‘done fpr the children,

also. e
_— - : . R ) B
To find the product, L4 X 10 , we look &t . "
‘ 10410+10+10=h0.*
: Similarly, all multiples of ten are considered by aading or counting - .
. tens, Furthermore, to multiply 3 ap 20 then can ‘ne thought of 883, - i "gié
S U S x 20 = b x.(10 +10) : ‘
‘ . = (4 x 10) + (& % 10)
Ve : . = 80 ‘
. s \ ' s o
F'x 20 = b x (2 x 10) | o
- .. =1l x2)x10
o : . : =Bxi . )
“z ) 314 "y
a ‘ 3
\ R

By



N - -~ -~
A t N * N
X . >
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i o Y
In the same way, mul‘c.iples of *tens of tens, or hundreds can be presented,

S

° and S0 on.

>

Returning to .the proauct of Y ahfxd ¥2 , it can now be completed.

hx(ma—a)\ S R
T iexw0) s ix2) S
: . ) ~ \“ji=1}0+8‘ ~ ‘ Y
o e =48 B ‘

- ) N

§ o \\.hxlg

“u

. We often use vertical algori\thms\ éuch as these to effect the same cowmpu-

Y

tation.

N

w | /

e Tto+2) o () | 1
— X L - . or B +8] . or
oo . HOT B = 18 w8 :

‘ ta) | w2} - S ;ﬁ‘\(e) 2]
or ' x’__lé or. eventua;ly \s\impljr\*‘ o Xj;g

n . ;
8 : L

514—“0
X
od+# v

¥
*
P~
(2]
i’
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As another éxﬁmple, consider the product of the numl.)er‘s 3 and 2‘84
' 3x B = 3><(20+8)
S !y =‘§{(3 xeo) + (3 x8)§
S ‘_‘ .§:60+21&
\ g =8 T o
Problen® o S e

1., Show the multiplication of 3 ana 28 in wmore detailed éform, I

particularly in going from 3 X 20 to 60 and in going from
60 + 21} to 8lt

N . . . e N ‘; . \ \3) ) N \\ T
Y We also may use one vertical algorithm or another to record our ‘
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 thinking vhen miltiplying 3 and. 28 : o o
eyt {20 8) \ () 20 8 60
f ‘ X o+ 3 » or - X 3 X3 + 24 or
o & + 2k ] o [ 2 B ‘
o a 80+ 4 =84} s ~
L g”' . (e) 28 Tt (a) | e8]
iN o X3 . or : X3
S Bk (3 ) ok
s 60 ( ) 6 |
{ B 5 | .
. . Now let us ext;end our computation to an example such as b X% 236
. We s{gall be fairly datailed in our- first illustration. \ ‘ x
A S X x 236 = % 3 (200 + 30 + 6) | o
o | ==(l»x200)+(hx3o)+(hx6) C oo
~\ : [hx(axloo)]-t-[hx(3x10)]+(h—x6)
’ (hxe)x1oo]+[(hx3)x10]+(hx6)
(8x100)+(12x10)+(&x6) n
=800+120+2k R _ N
i . i *7‘ = 800 + (100 + 2_)_,:!:—(20 + 1&) ‘ .
o P =800 + 100} + (20 + 20) + % . - R
ki T =Boosko sk | | .
Problem ® \
2. Justii‘?\ each step of ‘bhe procedure Just 11lustrated for the :product W B
of b end 236 . . ‘ N Sy
‘Ve may record our thinldng_ i;n several;ways using vertical algorithms: g
(a) | (200 + 30 + 6) (»). | 200 30 6 - 800} . |
S 1y \ tor L Ix b ox. b X X b 120] or
800 + 120 + 24 ! 800 180 . "‘II + 20l -
‘90D + 40 + L = 9kh ) OLE
\ — - ’ " ‘ \ : » I
~ {e) | 236 *(a) .| 236 (e) | 236 )
s X b TR R N B - LR S
- T (b x 6) or ~ 34 ] or eventuelly =~ | 9BR| 0 T
120 (4 x30)| - 12 | T \ : \
R 800 (4 x 200) 8 . -
1 ’ 316
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;\‘: we In all of these different pr0ceaures considered in~this section
~we have seen repesatedly, that ‘use is made of the distributive property

of multiplication over addition. Further extensions of multiplicacion O
» ' computations . such as 23 X h5 involve ‘even. greater use of this property.
~?~‘;Howemer, speeific eonsideration of theee extenfions is beyond the" scope
' of t‘&is chapter. ‘ \

Co | ) ‘ \ PR
‘PTeblem o R T

3. Use oné of the vertical algorithms identified sbove by (a) - (e)
1to illustrate each of these yroaucts, a. - €. respectively. For

;i\ ‘ example, use (e) a8 &

a 3 and 23 %b§ 5 ana 17 e b ema 3B
'd. 2 and 397 e.! 6 and 130 ‘

v

Division Algorithus .

Yoo oo -

First let us recall that & problem such as 2k s+ 4 = n way be
interpreted t0 mesan *het ve are to find the ‘number n such that ‘
‘ axh =24, We\may\illugtrate this in ‘the following waY," using a . nums
ber\line representation on‘whieh we have identified mnltiples of L :‘ $
8 12 6 ) 20 5"4 28

k)
L

0x4 x4 . 2x4  3x4& _  4x4 524 6x4 - Tx4

(o]
--b( - }

_ With point P we have-associated 24 and also 6 % b, Since the

_association of a number with a point is unique, we'know that. 6 X & = 3h
and that 6 1is the number n such that n X b = 2 , Let us recall
vhat 6 X 4. ‘means, using the number line, It has been\interpreted in
terms of repeated additio AREREELE: L 4+ b+ 4,

a¥o

o & — e 4 —p—— 4 —=y Py p—
i ¢ T | 2 3 4 % 6 7 8 9 10 N 12 13 M 15 16 17 18 19 20 2 22 23 24
P = ~ - 6x4=24 . - —y

>

' Beecause division is- the inverse opere%ion of multiplieation and subtraction
is the inverse operation of addition, it is reasonsble to expect that
division nay be‘interpreted in terms of subtraction, This is indged true.

317
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Thus, * 2k + &4 can be shown on the mimber Line a?fs i;epeated subtraction.

‘algorithms, Using multiples of the divisor can be of great advantage -
== TIf we are dividing larger ‘numberst for emple, 2 » 3 =

. : o . 6 s T
[ N N ‘ » " T alw - T '.-iaﬁi i; ~
3 e § s § ——p—— 4 4 A 4-—----|
0 7 2 3°4 5 67 8 9100l 1213 1.5 167 1815202 222 24
’ —— — e 284142 6 e ; e ] .
\ "I‘he rrocedure 111ustrated above can be state% in terms of numbers: \ -
. X 7 N »
S from 234' we subtract k% and then continue to sub‘hract R from ea.ch
et remainder in +\urn, until reaching & remainder that is 1ess than h
i . For instance: .
: S 2k 20 6 . 12 . 8 - 4 o, ‘
N ‘"....)f N '....’i T O N §°~£
\ o 20 W% - .12. T8 P00 .
o ) S:lnce there are 6 such subtractmns a.nd the resulting remainder is. 0,
kY .
"\ - we know that 6 xh =3, s ‘ . S U B
L, Freguently we show these subtractions in a mo:re compact . 24
\ \ - . ok s
N\ form such as that shown at the nght. - 'é% o
Our work might be shor‘bened if, for instance, ve R S :'i% ‘
-0 subtracted mul‘tiples of L4 that are greater ﬁhan lt -t - L N
\ such as: T ‘ ) e ‘113:
| 8
U 3 - h\
> - X I;
- b
. =k (1 four) or (1x 1) : ‘
. w0 S
\ N 3 \\ ‘ N
A total of 6 :E‘ours have 'been sub’tracted s:l.pce ‘ e
(2xh)+ (3 xh) + (1 x4 =(2 *3+ 1) X li T .
: Repeated subtréction, thén‘; p'i‘éviaes the Cratiénale for division E



a “.“{ . ; \\ ’ ’ . ~a ) .
"V or simply ., () {3782 \ -
(10 xs 30) ~

NS ﬁ) o PR v ST PR |
X =1 . 3 . 12 & .

N ) :
. ~ R .
oy Na . . -

.\{":“ - As bgfore, of couz\'s;, hi’ R 3 s 1h eVen though ﬁifferent multiples = "‘ ‘
. * o:t' 3 weré used. Ghoosing mul‘t‘.tples of ‘ben ma}' agp.:\n be more vnatural : \, e -
*  and wore oinq)le eventually. Houever, eh;ldren wili begin with the . °

>*° smaller multiples anﬂ take 1arger Jumps in accordance with tl@eir
| \' : maturity.. '.' ST S o S REEEN 2
" N . e N el \
' vNext 1et us qonsiaer an example such‘;\as‘; 101 + 8 = .o R . y \" I
P S rveri o e g AT
Ox8 . ma o2x8° 3x8  4x8 58 6x8 7»3 BxB +9x8: leB g aaxa 13x8
o . T ., R .
\ Clearly the:::e is r:o vhole number hn such that nx8= 101 , s,ince,_., " j‘ \ ‘
. 12 X8 =96 and 13 X8 = 101;. » and there is no '\whole nuubex: between _— S
Ce. 12 am 13 e e L
' I.ei. us e‘xp'lore the situation :f‘urther in this way' ~

‘» "Q~

) \:\\\ : (\a): . ‘10‘1\ s ‘ ) \ “‘ ) . (v 8)1@1 AR ) : : ! ) NS
. LN 80 (10 % 8 = 80) oo \ \ 3:0\ . ,\ . . \ L
j\_“\ o 21 . - . or sin(ply‘ . 'ﬁ‘ - . - \ S s N

e -16(2x8=16~) o 16 2 " ;
5 EXBEw. ¢ Y | o
e \ 12l . B T e
u___g} or eve:atually (c) 8 183: - t . , : .
R ,"aT * < R
IR ‘ 16 | : ‘ . .
‘\ ' N $ - ’ « ?? N . “~ B ~'\ N
;" AU 4 2 - . | ‘ . ‘
L3 »
S Thus, altﬁ h the;re is nd ’%zhole mmﬂoe;r n \Bu(ih t'gat.' n X 8= 101 5 e .o

we have de’cermined thap 101 = 96 +5 or 101 = (12 X 8) £5 . Howerver,

» 2 k]

. N L




we are not permitted to write somethingﬁsﬁch as 101 & 8 = 2rs5,
since e r 5" :1s not & name for a riumb“er. 1 L ‘

2 . [

In general, if a is any whole number and b 1is a.ny coum‘.ing

v nMay associate with a + Db or 1? 'the sentenqe o

A

- ! RN - > o .y R - \ L,
DR / a. a=(aXn)+r C .o

' commonly written in the form :r_ e
SeE SR o R R
} for which 'n 1s & unique whole nunber: shch that (n X b) <a and.
r < b - For example, 20 # 3 +can be associated with N
. . . N ) N » 6;— ) ?
‘e . ’ - M . L. o .. ' o . hd
G _ o = "(6 X 3) +2 or. 3|20 N -
\ N . ) “ \ \‘ i .
o there a’=.20-, b =3 n ‘n=6 and r ‘}’ In more dgtail, the common «
e \ algorithmvould p.ppear. . L \6 2 e \e R ;a’
N Lo - 3 la()‘ \ N . .~ .
A . . \ R . . l— : S
- r ¥ 2 » R .

Thus,_ 6 % X3 = 18 is to be eu‘otracted from 20 to ﬁnd the remainder.
In oraer to subtract. then, « 18. must be lgss than or equa], to 20,
. If The remainaer, 2, haa been grea‘!;er than or equal 'po 3 ve ‘could

have. found 8 larger multipl’e o:f‘ 3& 0 subtraet from 20 -

The condition 'that r < b has & mrth.er implication.‘ It is cer- .
+  tainly true that - .20 + 3 ‘can be asSociated with this equatit)n- '

~ *

e, L e ax e R
) from whieh -it can be stated that '20 + 3 1is 1 with a remainaer of o
D017, Similarly, o Slex3) s T D
UL SRS %=(3£3)ﬁnj IR
T o )—(lix3)*>$ o
- o, o5 x3) w5 . . .
R S(6x3)+ 2 T
B . are a:!.l valid equations associated with 20 » 3,. Tt is generally. under-

‘ ,,stood howe'ver, that when we ‘wish to kpow what ‘,20 givided-by 3 is,
we want the quotient expressed as ’the 1argest possibie whole number plus
8 nonnegative mmainder. . (Note that. there is alweys a remainder. _ When




5 e 8 f >
. L v

. - % ~ ? : S

. b is a ‘factor of a ” it happens to be o 2) Thus by restricting Tre

T . remaim‘:!.er, r , to be 1ess than the divisor, b, we assure that n will

. wbe, the largest whole nmnber of times b is contained in g_ R ana so~ we
o ondy a.ssoc:].ate with 20 ¢ 3 “the equation we vant: . M
~ \; B S (6><3)+2 e -

. . Now let us use division a]goritlmxa to find n a.na T for this
expression. 250 » ? .or. ?_’é__

N . B : 3
.o (a) ] =0 o - or (b) |772501] . or, using ‘
B -_II;’-I'__S_ {20 X T) N }_1_}_9 *20° I  larger multiples:
\ 11 . . LI |
e lox . Croltw0 | TR0 0
‘ i e 73] . =l . ‘%2 30, .
BN e TR 28| u e
S B - {7 R \ ’*'?*"““13'5“" :
. - 73 xT) S R 2035
‘ N AR EC NN B 2 32.; ’ )
’ .o . T N . b ‘ ?;5 . . N
. . % or eyentually (¢) - |77250
. o : . 2l v
.- \ S ;2\ % X Ca 3 a R
S S L N 1 R
) 'I!hus, :f'or a = 250 and- b =7 ”we see that* 35 gnd r.=5. " -

‘We ‘there:f‘ore may - a.ssociate wi‘bh 250 «r Ki on%-;— the sentenge

BN . 250 = (‘35><77+5.
- f' - ' . .\; ® : T > ' »
7\ ' “ * : ) ‘ N R -~
- Problems a \ N ‘. S
e b \:\I‘or each’ of the following write an equation of the form
e 'y (nxb)+r,anchthat (nXb)Sa andgr(‘o,,
. a‘. 38*5 - .,79,3.." c, 4 112 4 b
ey S 83 RSN S 106 .
'ﬁ \‘ C e - . ) “ -‘ K . N . .. - )
5. Rewrite,the general equatidn for the spetfal cage vhere. r =0 ™
",\ R n‘; . ) ) i . - ER
N R * T
LA - - -l )
. ‘ . - ’t v
» ‘ “\ e . N . . . N
) 2 \ N “‘ N N to v 321 \ * . ¥ !
S S LN T ' -
L | - N -
LT BT »
RS " - h ‘-‘
N F} * ' *




: . ‘\\ - \;o - . LY
h, ’ o N AN » . »? ‘ L s
N Consider- the exaﬁgls_,?h + 3 or 1% n: . T
N - ~ . “‘~ . - 3 » . . A
S 3T : )
e : 60| 20 \
x> 8 % - Ry ~ . AR e
s \ - ‘12w T Y T
\ \\ o . \ \2 R \ ‘

l - : 'l‘his algorithm provides us with a great desl of informetion.

; o First ) since the remainder is not ‘zero, we know that there is o ‘

cee LT whole number n "such that 3 Xn=Th . Thes 1s, 3 is not a factor

o Of Yh ) L2 ‘ ) : o - ) ) -

?n : ’ % ) ’ ’ ) ’ )
- Second, 't;he algori‘bhm gives us the 1nformation we need to replace ’

\ n snd r in the eg_ua't;ion 74 -»(nx3) +r so t,ha't; (nx33s7h
\ T, and r<3 \Wenpwmaywrite \ . . L Ty

RN . NN N
= -~ -

s e

: g S Third a.lthough there 18 no whole nmnber n such that 3 Xns= '?h
there ve:ty definite;l,y is.a rational number n such that 3 X n Th . )
\ . One me for that rational number 1s :{3}? \, since I X z_l_;_ =Th , ’I'he\ .

AR

algo:t"ithm gives s the im:formation neeaed %0 name this rational numbgrk . N
o o~ in a c‘lifferent wa.y, in mixed form.,\, Frow' our knowledge o:t‘ rational

Y

~:;\ R num'lvers e mow ‘that 2 (the remainaer) :i.s "3% of 5 (the ﬂiViBOI'):

R that is, 2= -2- X 3.. We then may essert Q;hat ‘ L
= 2h +

»

. . * \ =2k + & =l - = ; o " ~
o meeabed e Teagapnt o
_ . Thyus, we know thet .7 - - . o S

wiro
o
n o
F

wi o
.

\ N N . R . o
N 3‘x<euf+3>~=3>~<,eu_=7h, | S T
\ . 3= 8 T
Dlvisi'pns vith lar ger numbers f£ollow the same ideas we have developea Cota
. but are 'beyond the scope of this eh#pter. ‘ N . :

-, 2

'Problem‘ . \ \ S . v . .

e e e & .
»

. For each exercise of Eoblgm:h, express the quotient. as a rati
aumber in mixed form ‘a.s‘\a whole number, = .

- . . -




g

\;‘\when 'R is a factor of a-. N ° -‘* : -

@

o,
.

——

. with a3 b or

. of being ‘written records of thinking patterns used 'when coumuting. ‘Thus,

) eremewrsly- j N ‘ .

In the development of multiplice.tion algorithms we used extensively
\the distributive property of multiplication over addition, coupled with .
the renaming of a factor in accord with our Mecimal place value ‘numersation

‘ scheme. ' For instance, in, order to eﬁ'ect “the product of & d 23,
_we venamed 23 as (20 + 3) and then applied the distributive propertyg

-»

hx(eo+3) (hx20)+(‘¥><3)

In the development of ﬁivision algorithms we utilized a process of
"repeated subtraction” in which we successively subtractéd multiples of
the divisor. We saw that the ‘greater the size of the multiples used, I,
"the more. ei‘ficient is the algorithm. =~ . -

& - .

The division algorithm gives the information necessary to associate

" (where a ig -any whole number and b is any counting

&lm

number) elther of two things: ‘ L .4

. 1, sn eguation of the form ‘a=(nkb) + T vhere (n Xb) < a
and r <o, | O\ ;
2. & rational number in m:l:xec‘i form whenever & >b anﬁ b is

- N
N -

notafactorof a . . . S T
N ~ o ‘~‘c‘

*

A specinl case of both 1. -and %,. srises when r=20 ;\t‘het is’",

) v .
: : . A
N n N

 w——manionar

.Ap})lications to Teaching_ : S \1»- s : . ‘ o ‘ Co

Tt. is. {mportant that algorithms are developed -from the standpoint \ N

Ve can expett that children‘s algorithms will change with the passing of R .

time. At Tirst the multiplication and dlvision algorithms may be more | h . R

lengthy and 'l,ess efficient than at a later stage of work. We should’ . S T

allow children to use ‘those algorithms that ar‘e\most helpful “and sensi‘ble " r
\ﬁg ‘them. We may encourage them . to shorten’ algOrithms qver & period of R

N time,sbut children should not ‘be forcea to use more efficient algorithms

NI
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: Exqrcisés - Cha:éter 13

8. 7 % 3b \“c. \‘9 x\ 28 '

b, 6 x_as

‘d- o B‘X 5&‘ )‘» i

1
N

Use several \a\ifférenj: algorithms to compute each of these:

N e

-
n
NN N
*

~

Assoc\iategwo things with, each of the Tollowing: ..é,;g equ;.ztiiin of, :
the fq@@ a=(nXb) +r vhere (n X b) <& afd T b end .

a rationsl number in mixed fo
factor of a ). ‘

a 3846

b, 99 # k&

a. Using the

c. 125+ 8

d.

8h +'%

»

rm {or a\;.vh@)le number if b is a

)

LN

cqumon division algori&n, £ind the gquotient o

b. Relate this algorithm %o the more primitive:

algorithms used

‘bgr the, children vheﬁ‘ t.hey are Tirs \ihjbroduceé to division;\
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.. ... _Solutions for Problems - = | i \
R ’ N A N

BN 3><28 3x(2o+8) R | .

- s (3 x.20) .+ (3 8) ~ L~ Y
S L (3x2>¢10)+(3x8) : ) L ‘ )
S(6x10) +(3x8
Y ™ LT T S
S o (§o+ )‘+1+ o C N e

H

) f, 2. b x236 =% x (200 +30 + 6) Rﬁnaming 236 .
|

i(’r .

]
<
L4

”

i, o a‘(lyx 200) + (1& >< 30) + (4 x6) Distri'butiVe property of
\ \ . ;v 4 wmultiplication over addition >
=i[b X (2 + 100)] <X (3 X 10)] +(k x 6). Renaming

T [(h X 2) % 100] + 14 x 3) X 10] + (4'X 6) Associative
NN oo \ oo property of
S EURRIE \ S multiplié’atiorx
S §?= (8 x 100) . {12 % 10)*+ (4 x 6) Multiplying N :
PR - 800 +120 + b  Multiplying - A S
= 800 +(160 + 20) + (20 + &) Renaming L '\ ¥
. oy = 1800 + 10{)3‘ + (20 + 20)"+ L)ﬁssociaﬁve ;pro;per%y of aaaition N o
ST Y 2900 # B0+ b Adding SO B
s . =g adiing Lo

L2 N o
308" (2043 b

8. Y ‘\. e

IR VO .38 = A7 X o) 4 3 b 79 = (25 %,3) + i Lo w2 =<2§ X 4), +0° 5
LA sle=(9%6) +3 e B3: (2 ez £ 106=(53%x2)+0
‘ . a ’ E . ;; - ) \" ) . ~ ;
* - N + L8 ? '3
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meCountingNumbers T : RS
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In,our development we have started with sets as pre»number concepts . .

< . =nd obtained from them- thj\set of counting (natural) numbers. . +Although
e e,

]

T we 4dia not ooneider thé P operties of theh counting numbéra (we considerea o . (3

pro:perties of whole numbers), ifwe had examined the counting numbers o o
‘ in thie light, we wOuld have diseoverea closure under addition and mxglti- R b
o plication, ‘In 'fact all of the properties 1isted below -Hold for the set
\ of counting numbers‘- e, n

xi v " the. set is elosed under' eddition and multiplicationg- \

R ‘ \ " the elements are. comnutati,ve under addltion and multiplication, e - .f

T \ the elements are asseciative under additién\and multiplication, . s
‘ there is an identity element for multipji‘:ation, _ .

e’ R

multi;plication is distz’i‘outive over addition.

-‘—‘"

1 . S
~ The statement Tor the ‘closure property under addition is: " 1f & o
e a.nd ,b  are eoynting numbers, then atb is a cOunting number._ This s

mayalsobestatea' L Co . e

>

Tif

. & and b are tounting nuubers, ahd
. “" b

-

= ¢, then c . is & .counting number. .

'Ihus,ifais3andbis 5,thencis 3+5,0r 8, Asf
‘ ; related question is: if a 1is 3 and & is 8 ,"is there a counting L Ny
_number X \such that & \f x=c ? In terms of ~open. eentencee, ve are \

then looking for the solution for g ' ‘ ‘ : - : L
. A 3+ x=8., . " R

- In this case, 5 .1is the solutiOn of the equation. IF we esk whether
N <there is & counting number b such that 3 + -"‘@ , We are posmg the R .
—e uquestionn Is 3+ b 8 solvsble in the set of counting numbers? e
"’\‘ . . . . - V o *

4 S

. A S
'l'he Whole Numbers . - . L)

)

- “In our study, ‘we heve found that 3 % O 33 furthermore, 0 is‘ o R

the Only eolution for + X =3, However, O is not a counting nuaber.,
. N . ] . N /

o . . ) : o * { .
N » N N : { L
B

o . d 3




e ear].;uth.en,_g_:h.x.___&._ia_m_s_o_lvable :ln the set of counting numbers.

\\No:rare 5+x-5, 6+x_\6\, 2+x=2,andsoon. In fact, for

. any counting number a E - 0 1s the only solution'for :

N
A

- . . : ’ * N LR

: catx=a, \ ST
8’ has no solution in the set of countipg numbers ‘

EAER

\\\\\\\\ —ersere———

SR ‘ extens:\on from the counting numbers to the whole numbers. “That :ls, N

1'f Z {0} and N— {1 2’ 3 ’ ll- 5, ".] A -\"\ \ ,
then ZUN_{O , \’3’1‘ 5’“.}=w. Lo T

.
v W:lthin the set of whole numbers, then, the equation B+x=a A
has\the solut:lon x=0 + All the properties that we have for the aet \

- of counting numbers hola equally for the set of whole numbers. - By the A
incldsion of O in the set of whole numbers ‘some new properties ﬁgre - \ \

gained. ' v . 1 R .o v
v ) N T R ‘ ) - " {\‘

v there is an identity element Por. addition, ) s ~ e

. & the product of O and any whole number s 0 . o : o
) LT R : N oo

» .

~1v~,~ v The Ih'begers . T i B f R ) o —_ L | : fk‘
N \ Even ad.joining 0 to the set of counting ‘nunbers 18 not enough S
RN to completele/ solve the equation, & + X = C .‘ If ¢ < B> this equav R
\x tion is not solvable in the set of whole numbéra. For e:xanmle, there S
is.no whole nmrﬂaer x such thafh 5+ x= 3 . I\Tegat:lve numbers are .
i in‘broduced in the first grade, “but only in a limited vay in rela,tion to
't.he number lineg for example, as associated with the scale on a ‘t.hermomater.
; Later on, vhen negative num'bers are explored in greater detail ‘the " . e
| 0pposites of the cOunting nuaﬂoers, namely, {vsny ™y 73, 72, " may \ |
be aﬁjoined 3o the whole numbers. Thns, we get the set of 1m;egers \ )

.

| . \Isi...,\h "3, ) O .1, ,3,...).‘ T

Then, the equation a+x=2ce will be splvable in the sgt of integers ‘ <
‘ fo:r ‘numbers a and cs in this set. eBy th:ls extension, ve w:ill find \ .
- - that all the jroperties that we nave 1dentifies for the vhole mwbers .
\ st:lll hold for the ;lnt»egers. orecver, we have an additional property o
o which derives from the @lvabzity of + % = 0- for any integer\ a.  \

The salution for this eguatiora is called the 1nverse of a . The jpréperty

\
a . . R -

- ———————— s . 3




RSN T e e e g e
N N A N
N

.- : ) \n

~ may be ;statedz

b for-each integer & , there ig an inverse,
: ) - " ~ . » 2 )
a such that & + a=0. \ N \
X T a

By the commutative property, Wwe can see that 'a and “a are inverses
of ~each other. For exemple, -3+ "3 =0 and 3 +3=0; so 3 and
& 3 are inverses of each o‘bher. : . . R

H:.storically, there was onhg need of the counting numbers for the
primitive man his posseasiona anc‘i all his-reckoning vere adequately \
\accounteg ‘for by these numbers. The concept of zero as a number did not
emerge until \quite late in- civilization. With sophiatication, we nay

,, -‘\\\\\\:I.n‘t.erpret the concept from a different paint ‘of vieﬁ.“ Zero might be

in thﬁ vay, g number callea 2ero :I.s "postulated” as “the qolution.
\“Similarly, *a‘ may be postu" atea as the solution f'or a+ x=0,

Lows.e o ; :
- The Rational Numbers . T, o~

o We ma.y next sconsider the solvabllity ofe equationa of the—form

*such as & =2 ana c = 6 the equation’ a X x = e 1is solvable in

“» 0 ¢ Jntegers. The solution for 2X.x= 6 1s 3 . However, equations
* such as BN : . N

.Il \ N N . 6\X3{=2\\’

. : o
«’  are not solveble in the set of integers. ’I'hi\q leads to the sst of all

rationa.l‘ numbers; . numbers represented by %‘ vhere. m and n  are
B m‘l;egers end n # 0 + The solg‘t‘ion for 6 X x >= 2 is then considered ‘
s to be % just as the sglution for\ 2Xx=86 is consiaered to be’ 5
As we have inaicatea in the preceding sectmn regarding the postule:bion
of zero and fe. , the number -2 may also be pos'!'fulated a5 the solution
\for' n*x“x\ =m . .

e By represen'batxon of s\:ch zmmbers on ‘the nuwber ;Line, we identified,
t L]
N for ‘exemple, the numbers "named as_

»

E | - 6 A xk o< ~ |
o \ i . v, % ? "2'\’ "g‘ ,!\ Y ’ﬁéﬁ > ,‘\."\for‘ k ’l_ te)

N -

R

e
»

tonsidered to be the solution for a+ x= a for whatever nunber a A 4

aXx f- ¢ for 1ntegers a and ¢, Evidently, for ‘certain numbers .

h o



‘to e the same number.\ uT B

b><k,éo then

axk X X’

-

. that can be represented by ,Z‘ ;: i: are identa.fieﬂ with »
% , vhere ‘a. and B .o not have any common Factor other

_than l* (.un]:ess\aeoa). C \ . ‘ : v
\ ) . ’ N ~\ N N \‘ A

numbem that can be represented .

are iden ified with & ona all numbers e

if 8 and b ar onnegative integers such that.
%
b

R . AN R . A .
In this way, \ 33'- ) % Gy oeee ~are-considered to be in the saue
g \ \ \

equivalence class; 3 ,\'gs > l}.‘. in another equ%lence ‘elas‘s»; ‘
}é :, 12; R %, ves in sti 1 another cla.ss, ‘and 5O on, Correezzonding ) o
~ to the eguiveience of 2 -2 R -g- » .*.1‘. is\the equive.lenee of th‘e- T R ‘j
ste.tements‘\ ; \ . R o \\
| 3><x=2, \\SK\X‘xrh, oxx=6, ..

B So, instead of defining the equivalenee classes vie. the number ‘line, ' $
the concept also. can be approached via equivalent statements. Either:

vay, -§- ’ %‘k, -g— 3 ves would be classified together. Our approach

by the nuuber line 15 the more intuiti'\re approach in accord with the
presentation ‘o the students.. )

N ) - T

There 45 another kind of identification tha.t we might interpret by

the number 1ine. It is that “the rational numbers ? R ‘ gj § g > : \'

may be identifiea with the Integer m,if m is an -

A

mx3
1)(37 M

integer. From’'this vvi ewpoint the set of rational numbers may be
regarded as an extension of the set o:f‘ integers. We can observe that \
in the set of rationals, all the propertiee that we have 1dentified that
hold for the integers still hold. Furthermore, another property is

gained -- ~one the.t paratiels tl}ﬁ{ﬂ‘operty on inverses under addition.
i

for each retional ‘numb er _% that is different
P

T~ from 0 , there is an inverse 2 such that \ i
By 2.1 (ien the identd 1. To-
X a=T (with the identification, 3 =1 ) .
' 2,3_2x3_6_1 |
For example, 3 2 =3%x5-8°1"° o
Y . '
° 330 .
N, - .
L N 159 N

e
.
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- With extension on top ‘of, extension, we*see an emerging Structurca
©of the numbers :as characterized 'by the properties. Each set of numbers,

T ~toget?mar with the operat&hs anﬁ the properties, form what is called a

;\number system. For t&e rational ‘pumber system the properties may be i

-—\

listed as follows. pR e ,;}* o » 2 -

‘the set is closed ,under aadition end multiplication, for SN

example, — Uy 2 'is a rational number, : ’

1

the}lements are con_nggtative under additi *and multiplication,

4

g

=

3"

ro! l-’
wIUl
nol =]

]

i‘or example y

’thé elements are associatiw‘re ﬁnaer aadition and mu‘ltipj.i‘cation,

- for e:tanlpie, (-- 5) *§=3 + (5 'E) m_

~

there is an identity element for addition, for example, %

s %"'0"%a \ 't‘\\w‘t‘. )

-

L}

+ . thnere is an identity element for multiplication, foa:.;'example,

\

>

2 -~ 2 . 1)
N =+ (=) =0
3305 | )
. \ LY R
fo each rational number aifferent from 0 there is an
. ; .
)

inverse under multiplication, i‘or example, Zz X —g = 1 H
) 1

multiplication is distri‘outive over addition, for example,

2><( +2 ) - (3 x2>+<1 2 .

3

R

Besides these, there are‘properties vwhich we can elicit from the shove,
\ Y, e

Y .
. - . v

such as. %
the product of "0 ami any rational number is 0 3 for
J T eamle, 0xF-0. o
. . N 9
) « N\
L]
A ] ” \\ \..

3

(3
] a<"“'
kY
N
v“‘ *
e oo
% o
\‘ ’
\. -
‘i
_i’
.- \#‘
-
\
A
L]
.
. .
3



Other Extensions - \/ . o L
\e N N R ‘/\,—r—"“ - AN ‘
Other extensions will be made'beyond the set of rational numbers y s
but these will not be carriea out in the :E‘irst six gredes. The rational C
mumbers were assoeiated with points on the’ nuniber ‘:I.ine.,__As “the rationa.l‘ SN
. numbers have “the property of being dense (between any two ra:.tional num‘bers o
 are infinitely wany r&tio,nal numbers), it sppears that every point on ‘

e the numbher 1ine represents ‘e rational number. Horwever,‘ there axe v-

\ numbers such as s, 127, ¥, and so on, that are coordinates of
9 points on the number line but are not: rational nuntoers. T

R \ The next extensiqn brings us xhe eet of all numbers. that may be Cre
. represented on the number line. These are the real’ “nunbers. Beyond , . ‘

. f  this extension are the complex numbe:rs, vhos representatibns oceupy ‘

‘ > the entire _coordinate plane (that is Just t§e number 1ine is pot ... . .

» . - sufficient :f'or their reapresentetions) &nd the ha;percomplex numbeirs. \

LN
- W

3

\ 7
\ WitIL eaeh number system is associated a structure givén by its properties.

R

~ :  We have Qz ¢d to the property or pr@ex“ties gained with each v -
) extension, How ver) although we shall not show how here, we should : . -
- mention that it is no; alwa.ys the case that properties are gained. The : N ‘)

.
N

.

\extens:.on from the comp\ex numbers to a hypez;complex systeh mpy result :
in'the loss of the commu ative property, a further extension may result oy
in the loss o;‘\th the commutative and associet?ve pro e:rties.t \

° Ny T
< » 3 . ¥ N o \“ o

R t[here are other 1osses of properties that occur in the extensions
s which have ht_ been mentioned but w.h\nh we will "note’ very briefly now.

2 \ Whén the®set’ of~;ll'x\<>IL.e nmnbers ig extended to the set of integers, we
& ) A lose the property that there is a number which we can call a8’ first (or

-

R . smallest) number. Extending to the rationals, we lose the property that ‘
- . each numm has a number which we call the next number (or successor)
K That is, the integers.. can we visualized% "isolateﬁ“ { aiscrete) points

o ) e

on tbe number line, vhereas the rational; are visualizea as being aensely
. f - packed, "It can be showm’ “that the rati numbers may be put into 1-1 \

! corre5pondence with the counting nunbers ) whereas a 1-1 com'equnaence ‘

~-

B cennot be made with the real numbers (we. say‘that we lose the. property R, S
of count,ability in the extension) * The extension from the real numbers ' -
v to the complex numbers results in loss of the }roperw of order{ between

. 7 two complex numbers there 1s no “order relation such as .'¢"»or MHN Coa

v

that *determines whigh of the two nmn(:ere preceaeo the o‘gher. .
Fanl N N ° - . 3 - ) o d \ ) R - . . w

. - ) @ ) - ﬁ\D\i 3 3 2




» . -

While we have losses with the exmensions mentioned the gains
jpparently far outweigh tha losses, conoidering the many, many new o~
problems that can be solved with each extensian. An important aspect

. 1n the. study of laugebrai extensions éons‘ists of detennlning properties

‘ “that holdjin ea *h extensior n. In turn, the study may orient itself to
"investigating what extensions may be deteﬁ%lned th:t would retain *
certain prcﬁ;ertieo { such as assoviativity, ete.), and this is indeed

3y

e Za program‘in the study of algebra.\\ ..

An appropriate observation to make at this time is that in pre- °
sentlng mathematics as a structured dihtipline,.xhe student is guided .
L ~ through the extensions of the number systems. Thus, with the student’s - \ ‘»§
‘ maturity, his knowledge of systems of numberg is simultaneously broaﬁened

and deepened, o ) v
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e
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L XY ? - » ¥ ‘ .. |
¥ . ~ R . »
v ~ T \ “;‘
N * L ) aa
. - : ANSWERS TO EXERCISES = . s )
. Loy L |
* i - . . A . . > : ’ g :
. 1000 saddends - A
' B r —— e A - ] A ° -
ds 1000 X 3 =3+ 3+ 3+ 3+ 200+ 3.=3000. This expresses 1000 X3 .
N o Y ‘*-.“ N . . o .
. By the‘- commutative property of .r@ult}p} ication, 1000°X 3 = 3 X 1000°% D
i and 3 X 1000 = 1000 + 1000 + 1000 = 3000 . .. e .
\ 2' 8, . 15 X 5 = 20 3 \bi 3 X 2 = 6 > 5 *
e, 2%xXh4s 8; 4. 3%x3=9 \ . . .
\t\ ) » . ‘
b ) ) n— \lw- - - kA T
3, ’ < A ~ . .
. ;/‘ .
3 . ' LN .
' \ ” b v o~ 3
) [ - . \
; o\ ‘ ) . i . L . \ C e - ) - ‘ N . -

i, o red ordnge \ yeilow green \biue RS l -
ed) | orange | yellow | green | blue A
. Tred red “red . red red red . L . »
- . red “orange | /Fellow\| green | blue .| . L '
e yellow { yellow | yellow ellow/| yellow | yellow | 15 possible resul‘hQ. -

\ red .| orange ‘grellow | green luey |, - ) A A
blue - blue blhe blue | blue Dblue ) \ . ‘ :
. - N kﬁ . 3 N \\ a

* - N N

If the car must be two-toned, thére are only 12 choices. *

* N
v N
- . »

~

Y
2 : aons ~‘>“. SN \ | JENNINN. QNN - NN ‘xnbsiq‘e‘a:téi‘“'c‘éidi.é - Nt me e e [N :_ |
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0 . v LN

e o T soExbeselL
‘ . e -y * 0 -different ensembles. .~ -
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‘ ‘ "\\;:“".t . . ) v s P
h A ’ . . ) \\ K . xa . .
) 6. a., n=9%2; p=12; Q=20 -
3'~ 9 »*
b, yes ; C, Yyes - .
+ \ R N \ Fd . : ) N ,'ﬁ; o
' oo -~ . . : - ST
7. The star pattern does not give 5 .Gisjoint sets with L4 members - T
. in, each set. o ' ' ‘ o .
o ) i ) . . . : ‘
8. 203,28 P17+ 11) = (20 x 28) +(°o;<11)+(20><11) o
. | =560 +220 +.220 i s
e . . .= 560\+ 540 . :
L L =1000" o \ ‘ ( o
Coor 20 x (23 + 11+ 11) = 20 x (39 +11) N
w- s » . B = 20 % (50) ‘ s ‘ . ‘
\“‘ . _=100Q R ‘ — e —
9. . Assccia\;ﬁre propefty of addition.
- R Yo N . » R . “ \ . -
10, a. (5 %x2) x{hx3)xX1l=10x12 =120 B N
be {125 x B)' % {7 x 3) = 1000 X 2 = 21,000 . S
(asoxls) x(lhxa) 1ooox28—28 000 .
: ' : . A ,
. . 11, Commtative property under multipli catiom ., ¥ .
3 ‘. A \‘_' i . ‘
12, a. 3% (b +3) = (3 x b) + (3 x3) SN L
b 2% ({k+5) =(2x¥) +(2x5) o to \
o ea 13X {16 + &) = (13 x 18).+ (13 x b). ‘ - ‘
* R . \ > . . h - e v L]
- T A (3x?)+(3x3_)=.(g><§)x7 ~ 0 ~
T * " * "
\ § ' ‘ N . o .-
13. a; B={ } . Then AUB-—AU{}-A R : \
o and WA U a) = M(A) + N(B) = N(A) +0 = Na) .
. b. Although the empty set is 8 subse‘lf"o:t' e*very set, it has ng
N ' ugmbers in commor: with any other set. Therefore, any set A . \
e e e v e - m:mmy"get -are éig}omm. . S e e - : \’w‘_“mg;_.._.\__.._z
- s : - ‘ N o » \. N \“ ‘ )
. L a . ¥ ‘ . \ o > .
\\: ‘\ L ¥ R ) - ‘ \ ’ ) . X f\'\’ N . w
‘ - % o s \ - Coh
* T \ k] ~ 3
A 3
N " o
> * 3 ‘. * 4 i
.. C e '
Cy L . R : .
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B Jotiing C to B yields BUC - T
2.‘:\«'3-\0 [:],\7 X, OQ} ’
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7. Subtracting -° from the sun.
<, \ : A\

- Aﬁaihg =% to the diffprenve,
a N A

s

8, Lgt.‘t.\-{o A D]\Qnds (a,b,c). o
. ”Th?ﬁ AUB&{O, A O :aybaﬁ‘}\
and (AUB) ~B= 10O , 4, D}-A.‘ -

L]

It & and B are not dig‘}oint ‘the sets (AJB) ~ B and A are

fi

2

T o \ not equal;“oén example, : ‘ ) LI )
i A= (a » , 0% an, e} ; B={a > 3 g , j} .
. ”\UQ:’ a,,b,;’:‘,d,e,g,j} ‘ .
I ’AUB)~B={b, :,E?,\mhhiuazmys%.  \ \ f{
j \ \ N Q\ | A \‘\
9.7 % w2 +5;m =h T A, P - 72+ 9;n=8,
) b, p= M+ b pe= AP e, n=64 +8;n=28
Y n =% ¢l i< ' ! o
Y - , - L. No division sentence can be written. Division by 0 is;'
‘ ‘ undefined.. g X 0 = 0 is true fhbr any number q‘_ %
10, 2, Hecsangulay array with 7. rows ana 6 columns, LT
* 7 b, [Disjolat subsets, six with,seven members each, .
. > L
~. . ".Fitker interpretafion is equally valid. 'There may be.islight

preference in thinking of disjoint subsets in b , since subsets

" of seven members each are specified in the packesging.

-
.

* ii, The rumber 59 is & prime number, §0 no reétangﬁlar arrays can
pe formed other than one with a single row or a single colum.

bixtj wembers allows many rectangular fcrmations glnce its iactors

are 1,g,3,h,5,6,\1o‘,1m,15, ,30 60 .
[y J ‘
. - 12. No. 1% = % 5 ) 15 In fact, 5 ¢+ 15 has no meaning in the
e - > set of vhole numbers. _:"‘A - e T e
) .
) - -
Q" * :
R N . . '?.
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.Y 1le  Since oz.gments have two endpmnts, it is quite ossible i‘or them o \:i
e not to intersect and yet not lie in parallel linex, B and TD o
E A <t ‘ 5 il‘:iustrate two segm
-\, .satis?y the oonditions of lyi’ng )
e ‘ : in the same plane and not inter.’ oo
*y . ‘sec‘ting, however, they are not ‘ -
- n { paraliel, ‘
vy » . N L 4 \ 2 ’
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1. =a.

‘s

o éhapter

10

-3 hundreds + & tens + 5 ones =

2 hundreds + b tens " w é. ongﬁf
1 hundred + 3 teus +\.9 ones
3 hundreds +‘? tens + 15 ores

or

200 + 40"+ 6
100 + 30 + O

300 + 10
300 + 8

T

+ 15
+ 5—385

16 hundreds

\Or

ohé
139
15
R
.. 300

A}

or

7 hundreds
9 hundreds

5

ens
ens

17 hundreds -
777
1
130
- 1600
1751

A

" & hunareas
» 7 hundreds.

aid £ 28 PR

ens
ens

J”UJO‘%-«J
ct ctlct of

96k

ens
ens

+ 11 ones
+ 1.one

or

L

A

700 + "70+ 7 OO
900 + 60 + - &

\ 1600 + 130 + 11

1741

1700 %+ %0 &~ 1

-}

. N
*

+ & ones

11 hundreds
12 hundreds
586
766
712
- 1ho
1100
/ N

M ~

or

7 hundreds
. 9 hundreds

ens
ens

+ +le +
o cHlot ot

ens +

+ &6 ones : ‘ Vo
+ B> ones
+§2 ones, = 1252 A

"-% )

»

n

P R
4 ones .
6 ones .

or

16 hundreds
- 17 humdreds

A Y

or 774
.
) 9Q

1600.
1700

*

‘J\ *

+ ? t
+ 2 ten
+ 9 %
= U te

?

ns,4’ O ones
ens +

.900 + 20 +

“ones = 1700 T T

1600 + 90 + 10
1700 +

O+ 0 =

=174

40 + 80"+ §
700 60 + &
1100 + 140 + 12

“ N

d
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g | hvnﬂred'* + & tens + L ones = 6 hundreds + 15 tens. + 14 ones. N
b i hundred  + 9 tens +3-ones = 1 hundred + 9 tens + 9 ones T
5. hundreds + © tens + ones = 565 :
\ or 700 + B0 + b = €0Q¢ 150 + 1k ;
- 100 + 90 + 9 =100 + 90 + 9 . ’ ﬁ
500 (60 + 5 =565 ..
. _ bs L hundreds +.0 tens +°2 dhes = 3 hundreds + 9 tens + 12 ones T
ot J L 1 hundred + 3 tens + 8 ones = 1 hundred + 3 tens + & ones ‘ o
. : . { \ R 2 hurtdfeds .+ 6 rens + 4 ones = 26k
- - s L . . . : T
. R * R . \\ i \ . R Y
. - or b0 + Q +'2 = 300 + 90 + 18 . . .
e . 100{+ 30 + 8 = 100 + 30 + 8 o
- 3 R e "300 +60 + b = 264 N , s
~ . » . N .‘ N ; ~ "b “ A d
€.~ hundreds + 1 ten '+ O ones = 6 hundredX + 10 tens + 10 ones
i } 2 hundgeds + 8 tens + ¥ ones = 2 hundreds”+ 8 tens + 7 ones .
! ‘ ., K hundreds +, 2 tens + 3'ones = 23 g B
. or 700 + 10 + 0 = 600 + 100 + 10 \ e 7
s . " 200 +80 +7 =200+ 80+ 7 e . .
- - . 400 + 20 + 3‘=h23, —
. 1 . ‘ \

- d, 8 hundreds + O.'te\ns; ;O ones =7 hundreau + 9 tens + 10 Oney
3 huxdredd + 9 tens + 6 ones = 3 hundreds +' 9 tens ¢ - & one : v
SN )’J o ‘ \ T+ hundreds + O tens + 4 ones = WOk, '+

?’2 . .
T =

N ,\/“ ?

: 3. ?‘:’)w?e@ (708 + 70, +K(9§o+20+6) ‘ ~

or 800+ O
300 + 90

+ +

O,
’ OOO

oo
-
gy
o0
88 8
\tf+

+
+
+

). o = {700 + 900) + {70 +'20) + (h * 6) . o, .
oo . = 1600 + 90 + 10 . , .
;‘ . \‘ X = 1f500 + 190 L ; L Vo ‘ ‘\ 7
s = l?OO v o \ o % \ ;,, ,
— Womo-bebes (o0 e
f - - (700 + 90"+ 10) - {300 3 90 + 6) - : C
o =%700 - 3009 + (90 - 90) + (10.-6) -, |
SRR A
v -t ‘ N
N 2, 8 i
- * . » ) \" ~ -
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ST . ‘; - v - -
. R ‘\ ‘ ‘ - . B \‘ R . » N
. gL ‘
l"a 8.. * » "'3'" ! ' >
N N > IE + .\' f = 2 ’ ;‘ '
v = N R
- ) 2 . -. . ) ) oo T T
. b, B ~ 8. 1ot an appropriate mpdel . . 3
) . 3‘.‘3{ R B e T e
' co g h.  not an’appropriate model . e
. .o i , . N 7
- " 1& \ v
- + Q. Y not an appropriate model N C
. & ’ o \ : £
. o B ‘i-o' » \ » i )
- ] . \ R b &‘\‘f
A N ' o
50 gv‘ E 2 S ‘;

l'
3° ’3 e

- b, les s t.han, aim:e B lies to the 1ef1; of D while A 1ies to - v *f
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2

N 2

L8

‘d,..and e,\on‘ly\\\\\-\ ‘ F . -

‘as oOne pound ; - b, 18 ; ¢. 18 pounds

c. sand .e. only" . \ »

b b e

' The measure of CD is 1 . The measure of I is 1. No.' No.

L4
L 2
's
a“
L3
¢

. S \ \ X

» &

a9 chalk pieces; . b. 9 ; c. " one w<halk piece

e. U4 is uot the sum of the measures of the sides in feet.

d, The measurey of a perimeter of a polygon is obtained vy the' 1 . e

measure of a segment wvhich is the union.of non—overlappmg

\ segments eongruent to the sides ef the polygon. Each side o
of the trianglefis 1onger than one f*, and therefore the ‘ B
errdrs account fOr the extra. :E'oot 1n’the perimeter. . ’ “‘f-

- . Fd

Congruent segments,mist have the same measurs, regaralees of the = - '

unit. However,'segments may have the sgmg measure without being

~ dongruent, It is neeessary, hcmever, that with reference o some RS ‘

unit, non-congruent s must have different measureﬁ. In . I Co
‘the cas? of CD and EF the measure of CD is 6 ana the \ R \ < ‘
measure of EF is 8 if theunit is 6-—-!-1 ") ‘

e
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. L \ gha;pter 13 S !
RN ’: o » Lo SN
‘Phese hnswers are ifllustrative, others’ az;e ;possiblé .
- '\ NN ) ' ,‘« ¥ N Ay
(30 + k) 34 e b "8 | or.c b8
Tx A - ?‘ x 7 R X6 . x6.
TR SR SN
v .230+ 8 =238 20T~ - 20
FEE \‘ . ~ o o ‘2.3:"8 . . R . :ém) ’ \ ] -
. S ’ v LN
T e \'30 + 8) or 20 8 " ~.180 .
. X 9. X933 w9 472, "
T 18 . Ta. 252,

250+ 2=252 o,

R . . Sk sk -
\ ' ’ X__a; \x 8 ¢ . » b4 < ? %
T 32 32
\ 80
» ¥ N Fé.é v . s Y ' .
2 e 3B LB 6) w2 also, 3Br6=-62= 6% T
\b\.\ 9= (2 k) + 3  wiso, s k- h% SR
L3N . d: N
. . LY 3
s ‘G (1,5 >< 8) » 5 3 also *&-25 N 8 15 ‘8 ‘
ﬁ . d. (28)( 3); also ‘ '
SRS S
3. e 7[WE b, 7 T
A —Bg ¥ Cw ‘ R
5 ‘w’ 2 \"
o6 o %
- .-‘\31&? s s 3 = (18 x 7 * 6
* ) - \ . ‘\ S N i

o,

A

[T, IR
L3
o
N “ -
. -
« e
s
.
N

nXb sa in order 10 assure. that the multiple of bris less

- than or- equal-to a .' - .

- \

e If naXxb ) & , the. mlhtractinn mul&nathemaninsful

M N ‘*-t\ .

W

DN < b" in order tg be sure th'at n 18 as large as it. can be. \

If .r=Db K the quotient wcmla ‘oe ‘one more than n
1:9 r > b , ‘the.guotient would be at 1east
.. wi%h or without a remainder. ST e

S * . v N
: Y . *
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< . N
" . » : R 3},&6 . s
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N E)
’ gqs :
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one more than nt. .
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» - tGLOSS}\RY .”’ ’ : ‘ ) :\ *
E Mathématiual terms and expressfuno are f«gguently used with diiferent S !
. ®
o meanings and connotations in the diffe%ent fields or levels. of mathema@a!? ; .
The tollowing glossary explains sOme of the mathe Eticar'words and phrases \ b
b ag they are used "in this book and in the K-3 tex These are'not lntended. . -~\\f {‘

SN to be formal deiinltlons.

More explanatlons, as well as Iigures gﬁd‘

examples, may be found 1n the bbOk.

A -

N A \ - \
N N m\‘ “
- ADDBND. I 2 is the sumof 2 and £, then 2 and 6 -are each S, C
;:'~ an addend of 8, . , {;ﬁ \ \ e
AIEHTION.\ An operatioq ou two numbers to dbtain 8 thlrd number called . \
- “their sum. : .
ALGORITHM A “umn“»aw »xpression of & computation using prcpertles of |
o+ 3 - addition and’ multiplication and characterlstlcs of a system of

product ox quotlent.

;\i \gﬁGLB. “The uanion of ta

do not lie in ths

A8 MANY AS; AS MANY MEMBERS AS.~

» =

»
»

rays which haveethe sam@ endpoint but which

same line.

*

el . numeration to determine the standard name for a sum, difference, :

IF two sets are equivalent, ﬁhen one -

Tset is said to have as many members as the other set.

‘ARRAY - i\ri

a

orderly arrangement‘ot TOWS and columns which may be used o

a8 a physical model to interpret multiplicatidn of whole. numbers.

For exampxe,

-

R \ Y
\ . \ .

<>

It row

» »

N “ ’, . ) o \\ . R L
A YEGtBngula;';;zxﬁy is iwplied by ARRAY unless othervise epécified.f

EFSUNEN

‘*‘“;l‘“:;ﬂu‘i e e e e e

»
p]

- Ix b

~
2

o
column

*« ¥
% %

R

-

-

-
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. . . . N N .
. ASSOCIATIVE PRdPERT! OF ADDITION. When three numbers a.re added 1n a given _
S - \ order, the sum is 1ndependent of the grouping. That is, for any three
o numbers., &, b, and ¢, - ~ - T
T - R N . . * - N N ) R T N T A . r
o - . {a+d) +72 =a+(bwe) N

'ASSOCIATIVE PROPI:ZRTY OF MIL'I‘IPLICA&‘ION. Wheén three numbers ‘are multiplieﬁ
’ in a given order, the proauct is independent of the grouping. ,Tha.t .
" isy for any three numbers a, b, and ¢, o
- 3 ‘(a‘Xb)Xc\;ax(bxe). ) .

R . . " .

L . - ”»

+

BA.;ZC (of a geometric 1‘igure) A particulai‘ side or face of & geometric N
! ‘ ‘ figure. For example, the base of a parallelogram is one of the
sides; t.he base of a square pyramid is the face that is thersquare\ .
. region, . . . ..

3
H N N
. N . [N N

BASE (of & numeration system), A basic number in terms of which we affect

groupings‘within the system, Ten}s the base of a decimal system ‘
AN S ‘and two is the baSe of a binary system, \ .
BASIC FACTS (aaaiuon, m;.lltiplication, subtraction, division) Baaic R

‘addition and waltiplication :Fagts, are sentences which ex:press two
names for the sums and products of all ordered pairs of whole .
¢ numbers less tha‘n 10. - One name expresses the sum o.r product
using tne oruered pair. The other name’ expresses 'l-.he sum or S
~ product, using, the atandard name. ‘For example, 2+h =6 is
g N C \a baaic aﬂdition fact,\ 3% 11 12 is a ‘baeic multiplication :i‘act.

v -
Basic subtraction and divieiOn facts express the differences and

= DO

U

quotients for any ordered pairs of whole numbers 8 and b . AN
such that a « b = ¢ if c+b=§.‘and &<+ b =c, such that 1
‘e Xb =8, where'd and ¢ are both whole numbers less than 10.

: ) ' 3 o N
N - . : .

#
"

. . NN . N N . . N . N N Wt N .
Ry . . ) N . % ., [




Al
‘l‘-\

T3 CGLUM‘I- See’ ARRAY! . \ \ | ) ’ » v . ‘ ’

S GOMPLEMENT or A'SET. Bee RMIMN& SET, C L .o

BN

B R . .
‘\\ R N Al - . N R S o .

then B is between A and C. When a curve :!.s 8t specified \ -
it is understood ,;that the cupr—e is a line or a ‘segment ‘through

the poihts. - ‘ S T : e
If for three number.s a8 b, and ¢, a<b. and: h( e, then ‘ <
b is betx,ﬁen & rand .o, N

. c
- .
CARTESTAN FRODUCT. If, for two given sevs, A = {8, b, ¢} and

B = (1, 2}, then the Cavtesian product (product sert;) of . A

and B 1sexpressedas' ) ; o .

\ AXB = {(a, 1), (a, 2), (v, 1), (b 2), (c, 1), (c, 2))

- CIRCLE. Tha set of all P01nts i‘ & plane which are the same distance \J
_from a gihven point. Alternatively, 8 circle is a simple clos€d - e e
cu&'ve h;wing a point 0 in its 1nterigr such thaty if Iy e.nd k
B are any two points of the ei&rcle, Ok is congruent to OB.

CLOSKD CURVE. A curve whose starting and enapoints are the same.

LY

»

COMMUTATIVE IROPERTI OF ADDITION, - When two numbars are added 'bheir S
‘ ‘\ sum 45 independent,of the order of the Ssddends, TFor any two
"i numbers & a.nd b, a#b =b + & R ‘

COI\'MUTATIVE PROPERTY OF MULTIPLIOATION; When two nuubers are multiplied s \\ ' SR
- thelr product is independent of the order of the factors. Fpr any . i \\!
__two numbers & ‘and b, & Xb=bXan. i‘_ »‘Hm

‘ CONGRUENCL. The relationship betwden t $vo geometric figm'es which ha:ve 5.

exactly ‘the same size and shape, D L s
\ . s . -‘ AN ‘ - N N S

. “ ) ) ) . - -\J.gf:v“‘ ‘ ~_\ . * . ;
R ~ SN |- ANTI R o e T




NI

SONVEX POLYGON. Ajo]ygtm is said to be convex e the segment determined EEE o
by any two 1nter1o:r poin-ts lies entirely in the interior. - oo

"\“ "\,:)'%.,

* \ ' T S N o R >

o \ The polygon belov 15 not convex, It is seid to be concave, * - - ’

- CONVEX SET A th is said to be convex if a ségment de‘hermined by any
A §t:wo points of ‘the set lies em:irely in the set.

COORDINATE The neme of a point on the number line, i
‘. N . ~’
COUNTING 'I'hwairing of objects in 8 set with the numerals in the :

. N 7

. ‘ equivalent standard ss.t. \ o Co o '

Bof

» COUNTING NUMBERS. Members of {1, 2, 3, )4, ves}; that is\, the wh(il:e
T e numbers with the exception of O, IR )

C’URVE. A curve is a set,of points followea inv going from one point TN
to another. v N

N
S N N ]

// w DENOM@IATOR. The second member of the ordered pair of whole numbers \ \ L
‘ SN * associated with & W It is"the number (nonzero) of congruent
. parts T ‘equival ent subsets into which 8 unit has_ been ﬁivided.

‘\DIFFERIN(‘:E The number which is .assigned £0'an ordered pair of nunhers o
S under” subtraction, . & is ‘the. tiif‘ference of 6 and 2. ‘

R4

~DIGIT. Any one of the mmerals in the set {0, 1, 2\, 3. l; 5, 6 7, 8 9}.
. DISJOII\PI’ SEI’S Two or more seta which have no members in common.

I msmmzrxm :EBQPERTX oF mmmcm&u OVER. ADDI‘]EION b Joini; p:::operty»‘w—“»w—:
‘ of multiplicat:l(m and adaition. For any three numbers & ‘b,

LN e . 1 . L . - N T 3,\ ‘ <4 -
N . . and c, then ‘ ‘ \ \ \ ‘ . =
o . ) N, ' ’ » - R
b

} ‘ .o ax(b»-ﬂ—c)a(axb)»;-(axc)

-
DIVISION. An operation on two numbers, a and b, ’ such that aw b = n v
. If endonly if nXb= * ‘ ‘

\t N . e

- - N N - N . - . N to- A %
N * . . . ' . N “ . AN s :
AN b R N N :

. > N » . N N N - N N

R . .* . . N N . - .3

N .*\\ S N L w . R . N . K q ( S . R B N . . Yo s esened
NN . N N N < . . NN . C ey

L N
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B

 EXPANDED'¥ORM., " The numeral 532 wrltten as

) N E \\ T ‘;.;-;

. L
= ~ - NR .-\
N N - S
: . . * N

- N RS

I:iDGE. The iuterse,_tion of two polygonal regions whic;h are faces ot the "

suri‘aee ot 3 nOl id. Whert. two [aces me,et is an edge of tﬁe solia.
R L4

For cylinders and cones, the ‘boundary. of a face is @n edge., =~

EMP’I’! SET. Thn ot?" which has no members. . e / )

EQUAL At3B me/a';é that A and 'B are names o™ the same thing.
For emnple, 5 -2 = 3 \expr,ﬁses two names for the dir‘.t‘erence -
of 5 ana 2f

\ alse, A =B it . A -and B are sets consist;ng
of the same members. \ ‘

»
v o
‘i

EQUATION. A sentence \whic‘h‘ eXpresses an equality. Open number sentences .
.are called ‘equations if ’@ werb is "equals", or "is equal to". '

EQUIVALENT., Pwo dr ‘more setS aré sald to be eguivalent if thé:l.r menbers
i; can be put: into a one-to- ne correspondence, th&t is ) eaeh element

of A is pa:lrec‘t with exa.ctly one element'of B an& no element of -

B is lefy unpan.red. ,‘ A2 o R C S N
~ BVEN NUI!'IBER, An integer which can’ be expressed & 2 >< n where n- is
h \ g ~ N

.an integer. . oo T :

‘ (5 x 10 x*m) +o(3 % 10) + (2'x1)
or as, - 500+30+2 *:.,' o . . ot
' 1s said %o be written in expanaed form. o B

mmmoa (OUTSIDE) 01? A SIMPLE CLOSED PLANE cqui .The subset of thc

I W IRV

> plane which excludes both. the simple closed curve and the subset
of the plane enclosed by the plane geometric ;E‘igure.‘\ )

' EXTERIOR (oumsnm) OF & SIMFLE ULOSED SURFACE, The subset of poin‘ts in

spar:e vhich excludes both the simple closed surface and the subset
f pointss~enclosed by the surface, = . = .-

V »

Nt

- « R LY
. .

W

R -

e M T [

mcwoa. If 10 ‘is the product of 2 g 5, then 2 and 5 are
both factors of j . R o \ 3 T e ‘
. ) T N T o T B -

L \ § ‘ A R K . R o
~N ‘ o . NN : . N
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| FEMER THAN; PE{ER (MEMBERS) THAN. If, in pelring ‘he egements‘of A with

‘ those of - B, there vis an element of B' Whlc;lli 18 not paired with
. .&wy element of A, “then A has fewer members than B.

FINITE SET. A set is* "mite if th.ere is & whole( number that will ansuer
‘the question, "How many e‘lements are there in the set?"

' The nosavion (0, 1, 2, 3, la- 5, 6} aescr'lbes&the set of the

* first seven whole numbers, a i‘mite set. :

I’RAC‘I’ION. ‘The numeral of the form % where b 1s not \équal to O,
. ) s ) R ’ o r 2
G

. GREATER THAN. Associated with the relation "has more members thel'

S for Bets 1s the relation "is greater than" for numbers. . Por

‘ example, “‘9 > 8“‘ is read U9 is greater than 8" For any \
- two numbers a and b, & >b, if a - b is & positive number.,

¥

R o o - \ o »
\_\E ‘ O R

. - N R ’ o N Y

. HEXAGON, A polygon with six sides. = o » . ":ﬁ' .
R A
. NN . NN -b R . \\‘\\ I N N )\ - . N N -

” IDENPITY ELEMENT. The number O is the identity eleément for addition ...
because the sum of . 0 and any given qumber is the given number, )

-

1w

that 18, O + &’ al, oy, -

<+

The number l is the 1dentity slement for multiplication because
the product of 1 " and any given number 1s the given number;
fbhat is, 1Xa-=a,.

Y oo &

IDENTITY PROPERTY. ’I‘he pmperty vhich states that there is an 1dent1'hy‘

- ) element under a part‘.icular vperation. : oo
W - ¥

.

mmm A set is infindte” ﬁ' ‘there Is no whole numher tﬁat will
answer the question, "How ma.ny elements are there?“

»

‘ - .» The notat:!.on {0, 1, 2, 3, L, 5, 6, ...} r}eéﬁ‘ibes the set of whole -

L]

mm;bers, an infinite set.” . o ) ‘
\ IOR (ﬁémm) OF A SIMPLE cx,osm FLANE CUZRVE The aubset of the -
’ plane .sncle:sed by the simple closed curve, . }3‘
. . (SN I NN j
‘ B2 ‘
A ‘ ) ) \ . . . . i
-i" a’ . ' \ » s




- : ' ), o7 . ] S e -
o INTERIOR Or A SIMPLE CLOSED. SURI‘A&E. e subset of Poinks enclosed - T
by the simple closed syrface, - « ' N \\ o : :\ \

@
INTERSECTIDN. "I'he set f :points coﬁmon to Jwo or more sets of ﬁints.

. TNVERSE- TooTNG AND UNDOING)- OPIRATIONS. ‘o Opera’gions 5uch ‘that® one .

) "undoés? what the other ome “does".\ For exemple, puttmg ong .. ' ‘
A4 R . Jacket and taking it off are 1nveroe ope'rations. e e o i " .

. | _— \ . \9\
e . o : o . > ; * ) , N ,

. JOIN; UNION. The L.nion of two disjoint sets to form a third set
Voo o

* whose members are all the elements in each of the two sets,

*i o For examp,.,.e, o o N | - L r, :
o If A = {red, blue, green},’ a.nd B = {vhite, orange},

- then A U B = (red, blue, green, vhite, orangel. = . DT

~ - R o A
~

' LENGTH. The common property of congruent segments. We approxinxa’ge B

e

length by nessurement or couparison with specified unit segments’
in thé 1ength appmximatea by the measurement 5 miles, @ is
the' measure and the unit is the mile,

, .
- LESS 'I!BAN Associa ed’ with the relation "has . “Pewer members than" for
- sets, s the relation "is less than" for numbers, For example,

el

. "y < 5" is read "2 is‘less than 5", For any two numbers a v \.; -
. 13 and b, ac<bd ¥ b-a 18 a ;pos:ltiv:a aumber, ‘ . ‘ o
LINE. A'liae is ‘eived of aé"'{he unlimi'i;'ed ext;eﬁsion of 8 given e \ T
segment in bcth airections. \
LIM} SEGMENT, A specml case of the curves between twi: points, If WAy
be rebresented by a string stretched taut{l.y between its two enﬂpoint’s. .
- LINEAR scm A scale s & nuiber 1line with the segnerit :t:rom 0 to 100, \
_.h S U R NV [ .J, x.,_mm-‘ RN, = - L
R congruent to the unit bemg used, o B \J R O
. o« ) ) \\' N N . OON R .
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. \ MATC}L "Two sets mateh i\“ their members can be put in one-d;o-on'b . \\ T
\ L ‘_"t . eorrespondenie. . o R
. ;“\ . MEASURE. A aunber assigned to a geometric figure inuieating its size N
- \ ~ (length, ares, .volwl.une,L time, ete.) with respect to a specific . )
-~ unit,. For ixample, the 'measure 1n 1nohes of AB iis 3. o \
- . V- . . D i \‘ . ‘ .
- N N . N * * . ) N
\ ‘M e Y =; S : :) X
- MEMBER e*“ a se*) An o‘oject in a Set. o ‘ SRl =y
N MISSING ADDEND 1;’ 8 is the sum of 2 and n, then n is the
”‘..~ missing addend \ ' ) o .
_— MISSING I‘ACTOR. CIf 10 is the product of 2 and n, then \n is
| M o the missing factor. v e ' . ‘f
‘ MORE ( MEMBERS) THAN, If, in pairing the elements of A with those \
B - of By there is at (1ea.st one member of B which is not palred ) .
with a.m] element of A, then B ‘has more menﬂoers \than A, ‘
N » . ) »\ o N
N MULTIPLICATION. R o’peration on two numbers +Q obt.a:i,p a third number\\\ o ot
called thelr product. T * \ 5
- \ v N ST F e
y - ) . . . . * N ) \ ) } :
;  NATURAL num’éms. )See COUNTING NUMBERS, - RN
{ L 3 .
X A . NEGATIVE NUMBER. Any number that is leSS than O, : . %
: N(IMBER LINE,. A line marked off a{t 1nterv§ls congruent to a chosen unit. T
. segment ‘such that there is a' s‘t;arting point™ ;zssocia.ted with the - i
Tom number 0,,\ the end'_noin‘f; of successive interva.ls are: 1abelea aecording i
. . : o t0 the coun‘ting number's in their natural order. Lt .
_;....Q_:»;_MNUMBEB&(,EROHIRTY) OF A-SEL. - The nunber.of olements in the set, MMWMM
‘\S‘ - \; A 'property of A is written N(A) s wh__z_:e A is a set. . - T
R ~~NIMERAI. A «ame’ :t’ur 8 number. R \\ \ o, ; R s
e : N ey
s . NUMERATTON s&smm; A yatgm for nam:lng numbers. The Roman numeral system B
. v A - - \‘ :
EE . - and the decimal §tem. are. systeum of numeration. . ' e
S . o . ) ( . o NN ] o
SR . c L »y o o . o \ . >
e ~ A * s * ot % o ’ N
- - N - . B O ~\ ) o L i . .
o T 21 3 N i .
\\\ n\' .\ \ ~
* N \ foT ‘ L
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NUmE'RATOR. ~ The f:lrst nmﬁber of the ordered pair of whole*gnmers N~ .
‘ associatea with a fraction. It is the num‘per of congruent parts - o,
‘ br‘eg_uiva.lent subsets being considered.’ .\" RN \ 1

t LN . R . -

R s o - . ~ S
R TN ~
\ ODD miams. An mteger Whit:h cannot he expressea as 2 x n, where
¥ : .n is‘a,n integer o N :\. : .\: . ‘
’omm-om: CORRESFONDENCE. A pairing betwaen two sets_A ana B, ¢ .
. which. associates with each .element of A & sing ¢ -

o a.nd ‘with each element of B .a single element of

iR

' OPERATION. The association o:f‘ a thirt‘i nutber with an ordered pair of I Sy
g nunbers is a ¥inary bperation. For example, in the operation of K NN
. “addition, the number 7 is assocj,atea with the pair of num‘bers e,

v . 5&ﬁd 2. . N ) . § \ ‘z.- ) \ _‘
\ . In general an operation ls the association‘ of & unique element. ’
to each element of & given set or, to each combination of elements, . o

one from each-of thé given sets. o . ‘ . \ S
. R . A \ .l
ORD,I-}R A property of a set of numbers\which pemta one- tc say whether .
& 15 less than b, greater than b, or equal to b, pwherg a R
\ " and b ‘are. members .of the se‘t. ~ "\ . . . : I o

- N . R N

- N 3

: PA]RING A correspogldence men an element of cne set and an element \ o

*

\ of spother sev. = ) : \ :
R} . ’ A . N . ) . . i . {
. PARTITION See Pmmmomc o - : oo \ \ :

PARTITIONING Partitioning a finite set meens separa.ting the set in‘bo
dis,jomt subaets so that the unjon of the Bu‘bsets is the given set.

~

" In p‘a.rtitioning an 1nfinite set such a8 a 1ine segment, the su‘bsets

.neea not be disjoint, v efver, any &Wo subsets have at most the

points of separation in commog.
* R ‘%e aeparat.ion is the parti‘hian._
o PENTAGON' A polygon with Five sides,

-

P
»
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\RATIONAL NUMBER. A number which may be expressea as

- ’ - . . ~ - b - . . N VoS

. ) ¥ \ . ’ I ‘ . N
FLACE VALUE. A walue given to a certain position in a numeral. 'Tpps‘, N C )
the plac@assigns to“the dlgit 2 in 235 thd Y&lue- 200, - RS

PQXNE. A particular set of points which can dbe thought of as the "
extension oi a flat surfe.ce, such as tire surfhee of a table,

- 3

S PLANE RIEBION. 'I'he u{uon of a simple closed plane curve and its interior.

\
POLYGON. A simple closed curve which iu the unidn of three or more

-

A}

1int: sagmenta.

.

PRODUCT. The tiird ‘mmbs‘r associated with an ordered pair of num‘oersa
by multiplicafion. For. example, 8 'is the product of 2 and ‘b,

' PRODUCT SET. \See 'CARTESIMN FRODUCE.,

Q o S R

N N ~ N ) N
QUADRILATERAL A polygoh with four sides. e . s
. * N X R
QUOI‘IE!\IT The thi?d number associated with an ordered pair of. numbers e

by division. Fcr z.xample, 12 is the quotient of 1&8 and bk,
<} ‘ 1{ R . . \ ‘ MR oo

N . A R .
h) e ‘\\ - o » “ t. .

RATiG.‘ A relatiOnship betweén an orderea pair. of nunbers a am‘i b

“vhere b 'I'he ratio, may be e:gpressed by a : b or by 2.
b N

A ~
or -3,

o'ty

-8

b
vheren a and. b, are whole numbers with b # 00
- F

"RAY. Ray AB 1is the union of segment AB and a.ll points C, such o

-that B ‘is between A ‘and C.\ \
RECTANGLE. A quaﬂrilasberal with four right angles. } S -
REGION. See FLANE FRGTON AND SCLID REGION.
REMATNDER; REMATNDER SET, See REMATNING SET.

- REMAINING SEP; REMAINDER (SEE). If B is a*subszet&gf ‘Ay--edl mewbers - - ——

of A which are not members of B are members of the rema.ining or
remp.inder set. The complement of B relative' to A is the

'remaiqing get.
. B N N st N R . ’\v:‘ . -
RENAMING. Using another name for the same number. For example, 34
can be Yenamed. as 30 + 4, 20 + 1k, 2 X 17, and s0 on. )

¢
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-* « RIGHTD kNGLI‘.. Cne of tm congruent angles determined by a line gnd & L L -
e \ ray having a point in the line as endpoint. N : ’ .7 o~ ‘ :
ROUND A sha.pe wh\ich has no coruers or. .sldes, ‘ o _?. -0 " ¢
. ROW. aeeARRAY. s L ‘f | “ o S
o \RULER A straightedge on which a sce.le using a stanaara unit has ' v/ ’ .
. ‘been m&rked. o e ) ‘ \ .
. ‘. R ‘ > »
- <. L T DU
“a N ' ‘ s N N N o . N ’
A} N : a
S . R I , N
i ‘BCALE. Sco LINEAR SCALE. -
SEGMENT, See LINE SEGMENT, = o - IR
. S'EMENCE. As atement, such as "9 + 5 = 11;“ is a number sentence,
o it connects sets of numerical and operational symbols showing S .
a relation between the sets of sy‘mbols. Examples of symbols :
relating the sets are: =, <, and >. These symbols act N o
. ' ' » . . ' : : .
as verbs in the séntences, . B - . : . > -
. . . - . . * ]
SI1DE, A-segment ‘of a polygon that is contained ° .
‘ *in no ségment of the polygon other than .
itself. For example, #B, BG, TP, end 3
. DR, ade sides of the quadrilaterai R i
-1llustrated at the right, ~ = . — R
> SIMPLE CLOSED CURVE; A .closed survé‘which doeé not interéect\itsélf.' \ :
. SOLID. A gemnetric :t‘igure that is not & subset of any one p;lane. ) ‘
SOLID REGION. The union of a simple c;Losed surface and its ipterior, .
\SQIIARE A rectangle whose sides are congruent., - .. B
‘STANDARD SET. One of the sets of ordered nwnera.ls sucb a5 (1, 2, 3, h}, Lo
| {1 2, 3, b, 5}, ‘ S ‘ ~
STANDARD UNIT, A st:amiard unit is & unit of measure "officially" agreed \ R
a@e&waecep’be&m mam “Exs.mprés a.re. “1inch, meter, gram. \
SUBSEI‘ Given two sets A and B, B is a subset of A 18 every SRR
member of B s also & member of A, Lt e
‘ ~ ‘ \ 8 ’ “:
N B v . ‘ N '
. o .« ° 5 -
¥ 2, Fad
; . 3 \ . o
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SUB?RACTION. An operation on, two numbers & and b to obtain a . . .
- . thixd number a, “eall ed the differenpe suc1§ that & - ‘o’: n- EERER
» ¥ 'b . r _ . . J . .
r ¥ if.n+13 | . L . T
SUM. ’I’h- hird number associated with an orgered pai'r of” xmn%ers vy
» .. . » "
addition. For exau;ple, 6 is the sum of 2 ‘and” k. \ e
- .' ~ X . ’ :
] BN . . . . . . .
e \ \ T o . - S
e TIMES, 'Ihe word associated with X to indicate the o;perat:.on,\ e
‘ * multipligation. : . ( AR
. \ \ .- \ I X :
" TRIANGLE." A polygon with three sides. . . \ o A ‘:
£ . . . ~ . ~ . . N N A4 . ‘»
» ° UNION. 'The operation that associates with two sets, a third set h . T
L. consisting of al,l the members.in e&ch of two -sets. For exampl®,
= 3
N S & § A= {red b‘lue, green, white_, yellow} and . ’ -
N - . * Bu=" {blue, white, oran\ge}, > o a r/ " ;
: v t,hén Al B = (rea blue, green,'white, yellow? orangg}; - )
T N ‘°~ v o . . t
‘ i " ) UNIT. A ‘protctype from whWe mea.sure is obtainea by conxpa.rison. o . \\:j ..
o For example, the unityin measuring length is a segment s the unit e
C R - for area: is a square i'egion. - - : e
\ N E . . ' v- . . ~ ‘ N . | . ”‘J'
 VERTEX. OF AN ANGLE, The common endpoint of its two rays. . | .
\ VERTEX, T A POLYGON.' If %wo sides have point in %mm then this . L
. éommon point is a vertex. The plurt'al qf‘vertex \is‘vertices\. o S
. VERTEX OF A PRISM OR FYRAMID, If %hree or more edges ‘have & point 1n ' §
~ 7 R
— _h _common, then the_common jpoint is & verbexs . .l ol o é
* » \ i B \ K] w ' By ;\ §
. WHORE -NUMBER. i‘he property common 40 a set of equivalent sets, - - %
Mem‘bers of {0 i, 32 3, sssle \ S

-

.
ot f}nmw ¥

. » \‘
s\ \ .
:; \_G”‘ o 21 ry * t.
ERIC o o el L
- B \!@" . N N IR e S
SREEE . R M



