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Preface
ra.

The reader who is not familiar with Pascts triangle should be warned
that it is not a geometric triangle with three angles and three sides. What

.we call Pascal's triangle is an important numerical table, With the help of
which a number of computation problems may be solvid. We *shall
examine some of these problems and shall incidentally touch upon the
question of what "solving a problem" can mean in general.

This exposition requires no preliminary knowledge beyond the limits
of the eighth-grade curriculud, except for the definition of and notation
for the zeroth power of a number. That is, one must know that any non-
zeronumber, raised to the zeroth posVer, is considered (by definition!)
to be equar to unity: a° = 1 for a 0 O.

s-44.
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A Problem
from the

.
\ Eighth Olympiad

. ,

\,

During the Eighth Moscow Mathentalical Olympiad (494$), the follow-
: ing problem was presented to the ninth- tind tenth-grade participants:1

A network of roads is given (fig. 1.1). Fromtpoint A, 21"*men set out.
Half go in direction I, half in direction i;:. Reaching the first intersection,

each group divides; half go in
. s direction I, and half in direction in.

Sttch a division takes place at each
interiectim. How many people
arrive at each intersection oftrte
100tith rows/2

First let us observe that at the
moment, we-do not know whether
the problem has a solution ; that is,
whether the division of people can
proceed as required by the pr,ob-
lem's conditions. We know that if
an odd number of ople arrive at

fezsome intersection at which the usual division of tcle s of people is to
take place, then the division is blocked. Consequently, for the problein
to have a solution, it is necessary and sufficient that an 'even number of
people arrive at each intersection of each of the first thousand rows,
from the zeroth to the nine hundred ninety-ninth. We must make certain
that this is so in the process of solvitig the problem. ;

Let us begin by intrOducing symbols for the number of people who pass

1. See A. M. Yagloni and I. M. Yaglom, Challenging Mothempical Problems
with Elementary Solutions (San Francisco; Holden-Day, 1964), 1:19, problem 62b.

2. Consider the rows to be numbered, starting with the zeroth. Thos,,ih the
zeroth row, there is.one intersection (A); in the first, two; in'the second,threc; I

and so on,

rig. 1.1

8t ez,is



2 A Problem\ from the Eighth Olympiad

through each intersection of \our network of roads. The intersections of
each row will.be numbered from left to right beginning withthe zeroth;
cOnsequently; the intersectiong of thenth row will be numbeitd from zero
to n. Thenumber of people who pass through the kth intersectign tf the
nth row,will ltre denoted by 1--Pk. Since it is not clear at the present time
that the problem has a solution, we cannot be certain that all numberg
H nk exist ; that is, the number .11% exists for each k Trom 0 to n and for

4 every n from 0 to 1000. It is, however, clear &hat some of these numbers
exist. BY virtue of the notation we have intro d,

ji = 21000 (1.1)

Let us now, determine how the numbers link (k 0, 1, 2, ..., n) and
Hn+lk (k 0, 1, 2, n + I) are related, under the supposition That
they all exist. We ,shall show that if all the numbers,H nk exist and aro
even, then all the numbers lin +1k exist. Let us examine the nth and
(n + 1)th rows of intersections and the road segments which connect
them. At each intersection we place the appropriat symbol for the num-
ber of peOple arriving (see fig. 1.2). The number of people who enter thet

1 1,/
//

Fig. 1.2

I
1

zeroth intersection of the nth row (that is, /1") is divided by two, and
only half of these people enter the zeroth ithersection of the (p + 1)st
row; therefore,

1.4 n + 1 0
A A 0 2-- (1.2)

The other half of the no people enter the tirk intersection of the
(n + 1)th row and there join half the people who left the first intersection
or the nth row, who number /17y2.

Therefore, 11 n r (lino + '1 )/2. In general, the number of people
who enter the kth intersection of die + I )th row is th sum of half the
number of people who tell the (k 1 )th intersection of the nth row

IMMO&
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. A Problem from the Eighth Olympiad 3.

(or 11'-1/2), and half the number of people who left the kth inter-
section of the nth row (or fink/2). Thus,

.
4 , .

,*
. .

Fr
for 1 s k n . (1.3)

.
,

Finally, the number of people who enter the (n + 1)th' intersection
of the ,(n + 1)th row is equal to half the namb5r of peple who left the
nih intFtsection of the 'nth row:

-o

+1
R4-1 2

(1.4) :

The relations kli1)-(1.4) allow us to establish the fact that the-problem
has a solution. Actually, from equations,(1.2)-(1.4) it follows that if for
'any fixe,d n all numbers of the nth row (lina, . . , Han) exist and are
xlivisible by 2a, then all numbers of the (n + ,l)th row (Ha +30, ,

H +1 i) exist and are divisible by a. For if We suPpose that
H%, . 11" texisst and .are all', divisible by 2a, then there are
integers (whole numbers) M'0, Mni, . . M4, satisfying the relatiotA'

= 2aftif."0

Hni = 2aM

= 2aAl Pn

Thus, we have (using (1.2)-(1.4)):

n +1
hr no

= aMao;
2

r ft +1 Hnk-1 /Pk 2a *-i- 2a111%
k 2 , 2

= a(Mak_1 + Mak) for 1 < k < n ;

aipt+ li+3

This establishes the claim that thc numbers II + '0, iin 11,

exist and are all ,divisible by a.

i
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'4 A Problem from the.Eighth.O1Yrnniad

Therefore, since all numbers of the zeroth row (there is only one,- 11%) exist and are divisible by 21°99 (by 1.1), we harve 'verified that all
nuinbers of the first tow,

is

11%, Hli

exist and are divisible by 2999; all numbers of the second row,

1130, 1121, 1'123

exist and are divisible by 2998; and so VII, until a numbers of the
row, - .

IA Qin ngfli ' /19920,L 1, IP

exist and are divisible by 2; and all numbers of the 1000th row,

H lona H10001, .%..,,H1000

exitt (and are divisible by 1).
The relations (1.2)-(1.4) not onty show that the problem has4 solu-

tiOn, but also provide a method for calculating the line of numbers

H + 1o, + 11, + 1

from the line

11* '0, H 1, . . frit .

RePeatedly applying these relations, beginning with the zeroth line (by
using (1.1)), we theoretically can calculate the numbers link for all
501,501 intersections inilithe rows through the 1000th and, in par-
ticular, ror all intersections of the 1000th row, thus solving the problem.
ihe direct calculations for the first rows are:

H %
LA

°

21000
2999 ;

2

H1 2299
H30 =

2
= '2 = 29" ;

H 3'2

2

H -= 22999 = 28 H

H 2= + 21 2'20 + 2'22
H3 =

2 2
3 2997 ; and so on

it

II n 1000
2944 .

, 2 2

-N.

1110 + '
=

If
.14.= 2999 + 2999 2999 .

2 2

/f3 n. 29°8 2pin
2 2
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What It Means.
6to Soive
a Problem.

'ger

Thus, the problem of chapter 1 is sallied . ..
"How is it solved?" wonders an unconvinced ruder (the convincea

reader knows in advance what the author is gtoirit to say, and nothing
makes him wonder). VI don't see that we have solved it."

AUTHOR: Well, of course we have, solved it. You know that to 'solve
a problem means to find its solution. And we have jug found, the
solution.

READER (indignast4): Is this really a solution?
Aurilog (pretending that he doesn't understand what the trouble is):

Well, is it really incorrect? '
READER: iSio, "it" is correct, but "it" is not a aolutiop.
AUTHers- But then what is a solution?
READFIA line of'numbers showing how many Peoplearnve at each

intersection of the thousandth row.
AUTHOR:' But there would be 1001 numbers in this line. Is it possible

that the organizers.of the EighttiO1 piad wanted die participants to
write 1001 numbers?

READER becomes thoughtful.
AUTHORS: I have a proposal. So as not to complicate the situation

with long sequences, let us select one intersection, and concern ourselves
with #e number of people who arrive there. All right?

READER agrees.
AUTHOR: Now what i1l we consider td'be a solution to the following

problem: How many people arrive at thdthird intersection of the
fourth row;/ -

REAER: Huh? A narnber.
AUTHOR: Written how?
READER (amazefl): Well, in tDe deciMal system.
AUTHOR: But isn't an answer like "H43" a solution?

5
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6 What It Means to Solve a Problem

READER: Of course not. Some solution!
AUTHOR: By continuing the series of 'calculations which we began

at the end of the preceding section, it is easy to verify that 29" people
visit the third intersection, of the fourth row. Will the answer "29981'
be a solution to the problem?

READER (still nOt seeing-the trap): Yes, of course.
AUTHOR: §ut you,know that the expression ",29"" is not an expres-

sion in the decimal system. This eXpression consists of two decimal
numbers, "2" and "998," whose relative position shows what.operation
must be -performed upon them in order to obtain the de number.'

READER: ki.).it the expression "2998" call easily be co ed into
decimal forni

AUTHOR: Not so easily; just try to raise 2 to the 998th 'power. But
that isn't even the troubld; thetrouble is that just now you contradicted
your previous statement. Earlier, you agreed to considlr only a number
written in the decimal system as a solution. From the point of view of
this defiidition, the expression 4' 2998" is still not a sOlutiOn (it is a so-

-sailed half-finished product fro-m whichr the solution may be defined).
Of course, such a point of 'view is acceptable only if it is held, con-

. sistently. Bknother' point of view is possible; accovIrng to which 29138
is a solution. Such a point Of view will probably, darify the matter for
you. You 'know that often the simplest answers to mathematical
problems come not directly itt the form of a number written down in the
decimal system, but in related " indirect" form. With this in mind, what
should we settle for as a "solution," in our examPle, to the problem of
how many people visit the third intersection of the fourth row?

RIAthR: In our example, we must accept as a solulidon any expression
fdr which there is a method which lets us get a numerical answer
(written in the decimal system) from that expression. That is, 29" will
he a solution. Although the method of getting a decimal answer (997
Consecutive multiplications) is long,, it is feasible in principle..

AUTHOR: But then why isn't ,H43 a solution? Here, too, there is a
method of getting a decimal answer. It is given by the relations ,(l.l)-
(1.4)".

READER is perplexea.
A UTHOR (satisfied that he has succeeded in leading the reader into a

blind alley .the inexperienced reader, that is: the eiperienced reader will
. himself lead the author into a blind alley): The point is that there are at
least three interpretations of what we mean by a solution to the problem
of the number of people who visit a given intersection.

First interpretation: By a solution, we mean a number written in the
decimal system.

a



What'll Means to Solve a Problem 7

Second interpretation: By a solution, we Mean some expression which
designates a number, and for which a method is known that allows us

to get lhe detignated decimal number (a 'so-called first-interpretation
solution) from the expression.

Third interpretation: By a solution, we-mean some expression which
designates a number (wri(ten in the aecimal system) and whiCh 'is made

up of numbers and some operations considered "standard" (for
instance,-;:fle-usual arithmetic operations).' We require that eaCh
standard opiration be aocc(mz.anied by a method ofietting the,decimal
result .from, the decimal qumbers to which it is applied (as is _the case
with the 'arithmetic -operations). Then fin :fach expression which is
allowed, there will exist a method allowing us to get the decimal
number designated from the decimal numbers which are part of the
expression, so that a solution -under the third interpretatipn will autor

"-Matically be a solution under the second.
Under the first interpretation, 'neither H43 nor 2494 is a solution to

the problem of Anding the nuniber.of people arriving at the third inter-

- section_ of the fouith row. To get a solution, we must find a decimal
expression for 244?; however, this expression would consist of more
than 30gidigits, and could he calculated in a reasonable amount of time

on4r by a computer.
Under the second interpretation, both Hcatid 2992 are solutions.
In, the caie of the third interpretation, everything depends upon the

choice of the initial standard operations: If-exponentiation is included
among them, then 2994 will be a solution; if it is not included, then 2994

will not be a solution. If the standard operations include the operation
II which calculates the number from the numbers n and k (note
that the relations 0.0(.4) give a method of performing such a
calculation, so that the requirement we imposed-on standard operations
is sastisfied), then H43 will be a solution to the problem; in the otposite
'case, it, will not.

The question of Whether we may choose the standard operations
arbitrarily naturally arises. Speaking formally, we may certainly do so.
In practice, of course, we should choose as standard operations (through
which we are required to express the solution of any problem) slid
operations as are encountered in the sohitions of many problems, or
at least in the solutions of important ones. Such operations include
the four arithmetic 9perations and several other operations,:such as'

1. The set of standard operations nwst be indicated beforehand. It is important
to emphasize that thethird interpretafron depends on the choice of this set. Thus,
the expression 29" will be a solution under the third interpretation precisely if the
operation of exponentiation is included as one of the standard operations.

.



8 What It Means to Solve a Problem

exponentiation and the operation of taking factorials (see below, chapter \i
6)'. If the operation H were needed for important problems or if our
own problem about intersect)tsns were very importal, then perhaps the
operation H wbuld deserve to be ranked with the leinctard operations.
However, theoperation H was undeserving before we introduced our
prollimm, and is scarcely worthy now. In section 4 we will examine an
operation similar to H which, as we shall see, deserves to be included
as a standard operation.

But now we must return to our original problem of the intersections
of the thousahdth row. Its solution may be sought in three forms,
corre,spondittg to the three interpretations of a " solUtion".described
above.

1. In the form of a sequence of 1001 numbers, writtemin.the decimal
system. We shall not seek such a solution (since we found it too gifficujt
even to fina such a solution for one intersection of the fourth row). /

2. In the form of an expression which in principle allows us to calcu-
late the number (that is, to find a decimal representation of the number)
of people who arrive at each intersection of the thousandth row. We ..

have already found such a solution: H")"k, for.which the proocess of
calculation is given by the relations (1.1)-(1.4).

3. In the form of an expression which not only allows us to calculate
w000k for any k from 0 to 1000, but which is rmed by means of
certain standard operations. It is in this bfor hat we shall seek a
solution. fn the following exposition it will be,sme clear precisely which
operations will be considered standard fo our purposes.
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Let us consider a sequence of numbers, do, di, di, for some
n = 0, 1, 2, . . (for n 0 this sequence "degeneratci" to the sequence
consisting of the single number do). From it, let us generate a new
sequence of numbers'so, si, s4.1, by the following rule:

do , (

k ,(3.2)

,/,/ (3.3)

We say that this new sequence is derived from thc original one by
Pascal's relations. For example, from the sequence 34 , 2, wq may
produce (using Pascal's relations) thc new sequence, 2, 2, 2, and
from this one in turn the sequence 2, 4, 0, 4,

The French mathematician and philosopher laise Pascal (1 2)
investigated the properties of a triangular tal,fe of n h rciw
of which is derived from the preceding by ê relAti ns (3 ). This
table, which we shall examine furt nown as "Pascal's
triangle." .

Remark I. If the sequence ,F3 is Aerived from the sequence a by
Pascal's relations, then the sum of the elements of sequence f3 is equal to
twice the sum of the elements of sequence a. For using the relations
(33)(3.3),

sk dk_1 dk

44-1 "=" di

so + S1 + S2 + + Sn +

= d0 + '(do + di) + (d2 + d2) + + (4_1 + d,j +
= (do + do) + (di + di) + + (d + d,,)
= 2(110 + + + (4)

9

(3.4)



10 Pascal's Triangle

Remark 2. We say that a sequence of numbers do, . is sy
if for every whole number k from 0 to n,

elric

(3.5)

.For example, the fouvielement sequence I, 0, 0, I is symmetric.
A sequence so, . 1 which is derived from a *4mmetric sequence

do, by Pascal's relations is itself symmetrid. To establish this, we
must yerify the relations

Sk / (3.6)

,

for k = 0, I, 2, ..., n '1, 1. But for k 0 and k = n + 1, the equation
(3.6) follows from the relations (3.1) and (3.3) and the ,condition
do = d (which we get froth (3.5)fir k = 0). For I k , we have:

= dk + dk = (IR

= 44+ 1) - k1 - 1 +

t d = do0.1

1)-k == 5(n+1) lc

In the case of our example', application of..Pa
segpener 1, 0, 0, I yields the five4lement ,seq
is i1f symmetric.

iet us now look at the sequence.consist
We shl1 call this sequenCe Pascal's zero
use Pascal% relations to generate a new
Pascal's first sequence. Applying Pa
generate Pascal's second sequence from
Nince irMach transition to'a new
elements is increased by one, there
sequence. Without carrying ou
remarks 1 and 2 allow us to con

1. the sum of the numbers
proceeding TNT one sequenc
doubled, and the-turn of the

2. All of Pascal's segue
symmetry is preserved in
zeroth sequence is sym

Let us write down Pa
number of each segue'
the preceding row fr
table, called Pascal'

k + RI)+ 1*) -14 -1

(3.7)

l's relatiohs to the
ence 1, .1, 0, I, 1 which

g of the single number I.
sequence. From it, we may
quenee, which we shall. call

I s relationi, we may then
ascal's first sequence, and so on.

s quence, the number of sequence
11 be n + 1 numbers in Pascal's nth

any calculations, we observe that
ude:

n Pascal's nth sequence is 2' (since in
o the next,, the sum of the numbers is

urribers of the zeroth sequence is 20 1).

ces arc symmetric (since the pre)perty of
ssing from one s- ence to the next, and the

tric).
al's sequences,_one under another, so that each

ce is found, between and below those numbers of
m which it is calculated. We obtain an infinite
riangle, which fills the interior of' an angle; any

1
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segment of it, composed of the zeroth through nth rows, forms a
triangle. A segment of Pascal's triangle, consisting of the first fifteen

rows (the zeroth through the fourteenth) is Presented in figure 1.1.
Pascal's triangle is symmetric abOut the bisector of the angle whose

interior it fills, a consequence'of the elSci that each of its rows is sym-
metric. The numbers in it also satisfy a number of interesting properties.
.FOr example, the sum of the squares of the elements of any row is equal

to some element of the vgrtical column along the bisector of the ankle.
For any primenumber p, all elements of the th row, except the first
and last, arc &visible by p.' (A prime number is a itive whole number

whose only positive whole number divisors are itself and 1.)

It is clear that a method, of constructing Pascal's triangle may be
given without relyin on the notions of "yascal:s relations" or "Pascal's
sequences": Pascal's triangle is simply an infinite numerical table in
"triangular form" in which each entry alongthe sides is 1, and in which

each of tie-other entries is the sum of the two entries above it (to the
right and 'to the lett). The triangle first appeared in Pascal'§ paper
"TrZatise on the Arithmetic Triangle," published posthumously in 1665.

In that work the table reproduced in figure 3.2 was published, in which

each entry is the sum of the preceding entry in the same horizontal row
and the preceding entry in the same vertical column.2,.

1, More of these properties arc described on pp. 36---40 and 50-53 of rhe book-

Problems in the Theory of Numbers by Li. B. Llokin and V.:4. Uspenskii (Boston:
D. C. Hezth and ComPany, 1963).

2, See B. Pascal, Oeuvres completes, vol, 3 (Paris: Hachette et ('ie, 1908), p. 244.



Pascal's Triangle
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Thus, 'what we Fall "Pascal's triangle" differs frorn'the "triangle"
examined by Pascal himself by a rotation through 45°.

Pascal investigated, in detail the'propertfes and applications ofAlis
, "triangle"; several such applications will be examined in the following

section. For the present, we shall examine three of the "triangle's"
properties which were first noted by Pascal himself. For this purpose
(and only at this point in our exposition) we shall consider that arrange-
ment of the triangle in the plane which Pascal empl6yed, and wc shall
speak of" rows" and "columns." -

PVerty 1. Each number A in the table is the sum of the nttnbers in
the preceding row, ,from the leftmost to the number which standZ
directly above A (see fig. 3.3, in which the squares containing thr
summands which give the sum A are shaded),

Property 2. Each number A in the table is the sum of the numbers in
the preceding column, from ihe topmost to the number standing
directly to the left of A (fii. 3.4).

A

Fig. 3.3 Fig. 3.4



.ftiscal's Triangle 13

Property 3. For each number A in* the table, A 1 is equal to the
suni of.all the numbers contained in the rectangle bounded by that
column and that 'row whose intersection is the entry A (this ,row and
column is not included in ttie rectangle; see fig. 3.5).

The proof of property I h by mothematicql induction, a convenient
method of pfoof for assertions about the nonnegatiVe integers (whole
numbers)..The proof of such an assertion for all nonnegative integers m
involves' two steps: (1) establishing the assertion for m = 0; (2) a proof
that the validity .of the 'assertion for in = k implies fts valIdity for

k + r
(Mee these two \lequimmelts are;satisfied, thcs,desired assrtia is

proved.for all nonnegative integers m,lor since the trttth of the assetrion
fOr m = 0 is eseablished in the first step, thR second step allows us to
conclude that the assertion is true for m = 1. Applying the second step
again, we may conclude that the assertion is true for in 2, and so on.

Property I may be proved by mathematical induction as follows:
Number the rows and colunms (starting from the top and left) of
the triangle pictured, starting with zero. Let denote the ebtryin the
nth row and mth column. The assertion is that A', is the sum of the
first m + 1 entries of the (n 1)th row, or

An. An-10 +..Ax--11 .,+

Step 1. If in = 0, equation (3.8) becomes

.4'10

(3.8)

Since Am0 = A' '0 = I, the assertion holds for In = 0.
Step 2. Assuming (3.8) for rn k, ,and using the fact that each

"interior" entr3v the sum of the entry immediately preceding it in its
column and the n'tjy immediately preceding it in its row, we obtain

k+ Ank+ 143-1k+1

= 0 + An I 1 + + k An I 1

by using our assumption ("inductive hypothesis") on k, that

Arik = 1P-10 1116-11 + A'S-1k

(3.9)

Since (3.9) is a restatement of (3.8) for m = k + 1, we have shown that
the truth of our assertion (property 1) for M k implies its truth for
rn = k + I. This completes the second step of the proof.
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Property 2 may be proved by performing an induction on n rather -
than in; property 3 follows either from proOerty 1 by induction on n or
from property 2 by induction on tn. ,

More than'a century before Pascal's treatiw however, an interesting
tablenot in "triangular," but in "rectangular" formwas published
in the General Treatise on Nutnber and Measure (published in 1556-60),
which also 'appteared after the death of its author, the distinguished
Italian mathematician Niccolo Tartaglia (1506--59). Tartaglia's table
had the form shown in figure 3.6.3

4

1. .

1 -2 3 '4 :6
6 10 - j5 21

4 10 4 20 35. 56.
5. 15 35 70 . 126

I 6 2l 56 126 252

1 7 28 84, 210- 462

1 8 36 120 330 792

Fig. 3.6

Here each entry in.the zeroth row is 10. in each of the remaining rows
the leftmost .(zeroth} entry is 1, and each succeeding entry is formed as
th sum of thq, two entries "directly before it and above it. The table
.whiTartaglt introduced is called (naturally) "Tartaglia's rectangle."

. The lernentt of each of Pawal's sequences are usually numbered from
, left to r ht, beginning wj,iii-the zeroth. Thus, the 'second place in the

fifth row is occupied byliumber 10. The number occiipying the kth
place in the nth row will be denqted by 'PI, so that, for example,

1 , T52' 1.4)I-77,444 '''.`:1001. The expression T1 k will obviously .be
define-d for any n 0 and k 0, 1, n.

Let us examine the infinite sequence formed by the numbers T14 for
any fixed k and variable.n, that is, the sequence

Titk, Tk + lk, rt +2k, T 3.10)

This sequence begins with Tk,, since the kth row is the first row which
has a kth entry. Its elements are the numbers in Pascal's triangle occur-

- 4 ring in the "kth line from the left, parallel to the left side," and also,
becat4e of the triangle's symmetry, the numbers occurring in the "kth

3. Sec G. G. Tseiten, Isioriya matematiki r i XVII rekakh IThe history of
mathematics in thc sixteenth and se\Tnteenth centuries] (Moscow-Lcningrad:
GONTI, 1938), p. 116.
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line from the right, parallel to the right'side:" IT; Tartaglia's rectangle,
these numbers fill the kth column and the kth row.

For k .0 we get the sequence

1, 1, 1, 1, 1, 1, ...

(the zeroth column or the zeroth row in, Tartaglia's rectangle).
For k ,& 1 ite gets the' sequence of n4tural numbers

1, 2, 3, 4, 5.6,

(the first row or,firit column of
For k = 2 we get the sequence

rtaglia's rectangle).
, .

1,3, 6, 1 0., 15, 21,..

(the second row or second column of Tartaglia's rectangle). The elements
of this sequence are called triangular numbersN the Frith triangular num-
ber is Tm +12, so that 1 is the first 4riangular number, 3 is the second
triangular number, and so on. This name is a result of the fact that the'
mth triangular number T"' + 1 2 is the nymber of spheres (or other identi-
cal objects) which can be packed in the shape of an equilateral triangle
whose base is made up of m spheres (see fig. 3.7). In particular, the mth
triangular number is the number of elements contained in the first m
rows of Pascal's triangle, from the zeroth to the (m 1)th..

Letting k = 3, we get the sequence

1, 4, 10, 20, 35, 56, ...

(the third row dr third column of Tartaglia's rectangle). the numbers of
this Sequence are called pyramidal numbers, or more precisely, tetra-
hedral numbers; 1 is the first tetrahedral number, 4 the second, 10 the

a-

QO 0 0
0 0

Fig. 3.7

a

.4
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_third, and so on, so that the Oh tetrahedral numbir is 744+23. The mth
tetrahedral number T14423 is Efie number of spheres which can be packed
itt the shape of a tetrahedron (triangular pyramid) with an equilateral
trihngular base of side m (see fig. 3.8).4

(1)
)

(4) (10)

Fig. 3.8

4. Triangular ancipyramidal numbers (which are special cases of the so-called .
figure numbers) were of interest to the ancient Greeks, who attributed mystical
properties to them. Of the writings preserved today in which these numbers are
examined, the earliest is probably Introduction to Arhhmetic, by the ancient Greek
mathematician Nicomachus of Gerasa, who lived around A.D. 100. See D. J.
Struik, A Concise Itistory of Mathematics (New York: Dover Publicatiops, 1967),
p. 72; B. L. van der Waerden, &lend. Awakening (New York; Oxford University
Press, 1961, pp. 98.00). According to indirect information, however, polygonal
numbers were studied considerably earlier, in the 2d cvntury B.C., and even earlier,
in the 5th century B.c. by the famous mathematician Pythagoras ancl.his students,
the Pythagoreans (see pp. 46-47 of the above book by D. J. Strujk).

9
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Operation

A

By virtue of their definition, the numbers T'sk are subject to 'the
folloWing relations:

1)

ra+10 Ta+in+i

r1+1 k -:-= T

for n 0, 1, 2, ... ,

f6r n = 0, 1, 2, . . . ; k 1, 2,4., n

a

The numbers Ts4 are completely determined by these relations; using
the equations (4.1)-(4.3), wc may construct as many rows of Pasca's
triangle as we wish.

The definition of rik may be extended in a natural way so that it
makes sense for any nonnegative integer n and any integer k._To do this,
we set Pik =-- 0 for n 0 and for k such that 0 > k or k > n. Thus,
TNk = 0 for all pairs (n, k) for which n 0, k < 0, and for all pairs
(n , k) for which n 0, k > n. The felation Tft *1k = _1 + Pik will
then be satisfied for all k (and not only for k from 1 to n, as in [4.3]), and
the numbers Tlk will be completely determined by the following
equations:

----- 1 , (4.4)

0 for k 0 , (4.5)

rs+.11/4 Tnk + Tisz for all n 0 and all k . (4.6)

'These relations permit us to give a graphic representation of the
17.
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generation of Pascal's triangle. Lot us consider an infinite table dr
zeroes, arranged in staggered roWs, as shown below:

.... 0 0 0
.... 0 0 0 0'0

.. 0 0
.... 0 0 0 00

It is clear that such a table satisfies P 's relations, which require eaqi
number to be the sum of the two nea t numbers in the preceding row,''
We now imagine that are of the zeroes in the firstrow of this table is
replaced by a one. If Pascal's relations are to bc preterved, then the
" perturbation" will "enlarge to an angle"just like a wave in'd brook
wheri disturbed. by a stickin the form of Pascal's triangle:

C-.... 0 0 1 0 ..
....d01100.
.... I 2 1 0 ....

, 0 1 13 3 1' 0 ....

Qiven arbitrury n and k (n = 0, 1, 2, ... ; k '.:,,7 ,O, 1, ..., n), it would
be possible'-fo find 7'4,, if we had sufficient time and patiepce, by
writing out Pascal's triangle ancreontinuing until we arrived at the kth

nk

number of the nth row. Or we 'ould take advat of the relations
(4.1)-(4.3) which permit us to cetermine T rforming a finite
number of additions.

Wi leave it as a problern for the reader to determine the minimum
number of additions which must be carried out to calculate T", using
the relations (4.1)-(4.3), for given n and k. (Hint: Try to take advantage
of the symmetry of Pascal's triangle.)

1. We will consider an infinite row
- y0.4.,

. , s- 3, S- 2, S - f, CI, Si, S2,

tole derived from the infinite row

..., d-21 d -1, do, dl, d2, . . .

,

by Pascal's law, when sk = dk -1 t dk for each k. The definition of Pascal's law
for-finite rows follows cm this if Uch finite row .

is identified with the infinite row

Xo. . . .

. . . , 0, 0, 0, XO, Xn, 0, 0, 0, .
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Let us agree to call the operation of calculatingrk from the numbers
k and n, Pascal's operation. Pascal's operation is then' &fined -for any
n and k for which n 0, 0 k

But if we redefine rlk according to relations (4.4)-(4.6), then Pascal's
operation will be defined for any nonnegative integer n and any
integer k.

WittLthe help of PEikal's operation, it is easIST. to write down the
numbers H3k, which serve as ft solution to the Olympiad problem of
section 1. To find these numbers, we first define (for m = 0, 1, 1000;

so that

1=S 21000-m

HP114...., 21000

Then, from the relations (4.7) and (1.1), we get

(4.7)3

(4.8)

1zoo 2b000 = 1. (4.9)

In the relations (1.2), (1.4), arki (1.3) we may then replace the number
If "1, by its expression in tcrms of Z "I, given in (4.8). We get, from (1.2),

21000 -nZn_
21000-(n+nr+10 u

2

from which we obtain

Zn+10 = Zno . (4.10)

In exactly the same way, from (1.4) we get

21000 - nz fin
211)4414.(1% +.1271+1,4-

2

2. Pascal himself (proceeding from the rectangular arrangement of the table,
wbich he proposedsee fig. 3.2, p. 12, above) examined a different operation in
his treatise, that of finding the number standing at the intersection of the xth
column and the yth row (with the rows and columns numbered beginning with the
first, so that this operation is defmed for x 1, y I) from the numbers x and y.
If this number is denoted by P(x, y), then, as one may easily verify, P(x, y) =
Tx -1+ lk_i, from which T"k P(k + 1,n k + 1).

3. Since 2 to the zeroth power is considered to be equal to I, for rn 1000,
'equation (4.7) takes the form Z1000 .

9
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from which

Finally, from (1.3).we get

Pascal's Operation

244-1.4.1 Zn..

A '4

(4.11)

2l000-og +1)2 + 14 210t" Z -1 4' 21°13° " ric
I k n,

1=. 2

from which

Z"lk Z4k-1 + , 1 < k < n. (4.12)

the equations (4.10)-(4,12) show that each sequence,.

0)14+1

where n = 0, 1, ..., 999 is obtained from the preceding sequence

cu. <21`o, z*v>.

according to Pascal's relations. Since, as is clear from equation (4.9 ),

the initial sequence

- to = <zo o>

is Pascal's zeroth sequence, then the sequence fpllowing it, (01, is Pascal's

first sequence; the sequence CO2 is Pascal's second sequence; and so on. For

each in from 0 tp 1000,4 the sequence co. Pascal's m.th sequence, and

(4.13)

.Consequently, by (4.8), for _ each ni = 0, 1, ..., 1000 and for each
- q = 0, 1, . , m,

Var

1-1 = 21000,T,,,Q

In pafticular, for m = 1000,

1/1000 7.1000" q 0

4. For in > 1000, the sequence Loa is not defined.

(4.14)

(4.15)

9
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Thus, the number of people who arrive at an intersection in the thou-
sandth row is simply an element of Pascal's thousandth sequence! If
Pascal's operatio.n is considered fo be standard, then equation (4.15),
gives a sointion to the problem of section I (in the third form discussed
at the end of.chapter 2). In the foilowing two chapters we shall see how
two important problems can be solved with the aid of Pascal's operation.



Binomial
Coeffitients

In this seetiOn.we shall find expressions for the so-called binomial
coefficients by using Pascal's operation. In order to define the.binomial
coefficients, we take the binomial 1 + x and raise it to powers 0, 1, 2,

3, ... , arranging the terms of the resulting polynomials in order of
ascending powers of the symbol x. We get

(1 + x)° = I

)' = + x

(5.1)

(5.2)

(1 + x)2 = (1 + x)(I + ) I + 2x + x2, (5.3)

,(I + x)3 = (1 + x)2(1 ) = I + 3x + 3x2 + x2, (5.4)

and so on.
In general, for any nonnegative integer n,

(1 + = ao +'alx + a2x2 + + apxP, (5.5)

where a., a1, . a, are conslants. If you wish, yop can easily verify
3

that p n and that a. = a, 1; however, we do not need this now.

Somewhat later on, wewill obtain' this resat as a consequence of a

more general formula. At this stage, it is sufficient for us to know tiiat

the result of raising the binomial 1 + x to the poWer n (where n is a,

nonnegative integer) may be written as a polynomial with integral

coefficients, arranged in order of increasing powers of the letter x, as

exhibited in the relation (5.5). lihis polynomial is called the binomial

expansion of (1 + xr. Of course, its coefficients (and p 1, the number

22
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Binomial Coefficients 23

of them) depend on n. In order to stress this dependence, one often
, makes use of expressions for these coefficients in which n appears% SPecifi-
cally, the coefficient of x'" in the binomial expansion of (1 -I- x) will be

designated by (k). The numbers (14.) are called binomicd coefficients,

, The relation (5.5) may now be written as

(1 + x) (no) + + (n2)x' + (n)xP, (5.6)

and from tlie relations (5.1)(5.4), we get

= 1 CI) = 2 (22) 1

(0) I (11) = 3 (32) = 3 (33) I

We see that for the exponents n = 0, 1, 2, 3, the rows of binomial
coefficients coincide respectively with the Oth, 1st, 2d, and 3d rows of
Pascal's triangle. We shall now show that the analogous relations hold
for each n. To do this, we shall look at how the sequence of coefficients
for (x + r 1 is derived from the sequence of coefficients for (x'+ 1)n,
taking advantage of the formula

(1 + x)" = (1 + x)n(1 + x). (5.7)

Let us write down the expansions for the left 'and right sides of this
formula in ascending powers of the letter x. For the left side, formula
(5.6) gives (by substituting n + I for n)

in+ 1\
k

in + 1
0 1 ix +

in + 1 n + 1)x°,
+

k
)xk + + (5.8)
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for some q. By virtue of the same formula (5.6), we have for the right
side:

(I + 41(1 + x)

[(no) (ni)x (

(g)+ (7)x + n )xP

(on)x + + (k
)xP

(z) + 10 4- (110]x+...4- )+. k)?
n n1

OP-11 kPli

Because of (5.7), the right sides of (5.8) and (5.9) are equal. Therefore,
q p + 1; equating coefficients for identical powers of the letter x,
we get

(5.9)

I n + 1\ in\
0 101

in + I n
k 1k 1) Ok)

(n + 1
p .+ (p)

(5.10)

if 0 < k < p + 1, (5.11)

(5.12)

The relations (5.10)(5.12) show that the sequence of coefficients of
the binomial expansion of (x + On+ are derived from the sequence of
coefficients orthe binomial expansion of (x + I)" by Pascal's law. Since
the sequence o!' coefficients of the binomial expansion of (x + 1)°
coincides with PascaPs zeroth sequence, all succeeding sequences of
cOefficients also coincide with the corresponding rows of Pascal's

triangle. Therefore, the numbers (n) are defined only for k = 0,

. n, with

31 Pe Ae*

(5.13)
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Remark The question "What coefficients do .1C-3 and x2° have in the
binomial expansion of (x + 1)6?" may be answered, "The coefficients

are zero." Therefore, the expression (k) may be defined in a 'natural

manner fir the cases k < O and k > n by setting G1 & Ointhescases.

Then thelequation (5.13) will hold. true for all nonnegative n and all
integers k, by virtue of the redefinition of the symbol' rik which was
made in the preceding chapter.

Thus, we have expressed the hineirrd r i coefficients in terms of Pascal's
operation. We may now rewrite equation (5.6) in the following.forth:

(1 + --= 7'0 + T"1x + 7-'2x2 + + Tnkx4 + + ,Txn . (5.14)

Formula (5.14) is sometimes called Newton's binomial formula, or simply
Newton's-formula.' Another more traditional expression of this formula
will be presented in chapter 7.

In a certain sense, this section' has provided a "solution" to the

problem of finding an expression for the binomial coefficient (7)
k

Recalling chapter 2, we know that we have more than one criterion for
the "solution" of a problem. For example, if (under the second inter-
pretation) a solution is conskiered to be an expression which allows us'

to get the binomial coefficient (n) from n and k, then (7) is itself a

solution. If we require that the solution express (n) in 16rms of the

numbers n and k and certain standard operations (as in the third inter-
pretation), our concept of solution" will.depend on the collection of
standard operations chosen. If Pascal's operation is considered standard,
then (5.13) is a solution to the problem of finding the binomial coeffi-

cients (n) Another solution. to this problem, corresponding to a
k

different collection of standard operations, will be given in chapter 7.

I. Formula (5.14) was' known long before Newton: in particular, Tartaglia had
already mentioned it. Newton's name is connected with the formula only because
he pointed out a method of generaliring this formula to the case of an arbitrary
rational (including negative) exponent in 11i7(1.



The Number of
Subsets of
a Given Set

In mathematics, any collection of objects is called a set. Thus,

(a) the collection of all pages in this booklet,
(b) the collection of all integers,
(c) the collection of all even numbers,
(d) the collection of all the pencils in a certain box

are all sets.

If some object and some set are given, exactly one of the following

two statements is true:

1. The object belongs to the set.
2: The object does not belong to the set.

In the first case, the object is called an element of the set. For example,

the number 3 is an element of the set of all integergt and is not an
e4ment of the set of all even numbers.

t 'may happen that all elements of some set A are elements of another

set B (for instance, all elements of the set of all eveh numbers are
elements of the set of all integers)..In such a case, the set A is said to be

contained in, or a subset of, the set B. Obviously, every Set is a subset
of itself. If the set A is a subset of the se B, and the set B is a subset
of the set A. then A and B consist of thc very same elements, and are

equal.
Sets can be finite (like the sets in examples (a) and (d). above), or

infinite (like the sets in examples (b) and (c) above). Finite sets (and we
will study only such sets in this section) are the subject of a Aficular
discipline in mathematics--that of combinatorial analysis.

A particular set stands out among finite sets: the set containing no
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elements, the so-CAlted empty set. Thus, the possibility is taken into
account that on opening the box in example (d), we discover that the ,
set of all pencils codtained in it is-empty. The empty set is considered
to be a subset of evecy set.

If a set is finite, then its elements may be numbered to find how many
elements are in the set. A sct which consists of n elements is called an
n-element set. The se of pages of this book is a 44-clement set, for
example, and the empty set is a zero-element set.

Example. Let us exlimine a set consisting of three objects, a pencil,
a peri., and an eraser, and determine all of its subsets. There is exactly
one zero-element subset, the empty set. There are exactly three one-
element subsets (fig. 6.1).

Fig. 6.1

There are exactly three two-element subsets (fig. 6.2).

3 4



28 The Number of Subsets of a Given Set

Finally, there is exactly one three-element subset (the set itself) (fig. 6.3).

Fig. 6.3

Thus, our set has eight subsets in all.
Let an n-element set -be given; any k-element subset of it is called a

combination of the n given elements taken k at a time. It is obvious that
the number of combinations of n given elements taken k at a time does
not depend on the n given elements, but only on the numbers n and k.
The number of combinations of n elements taken k at a time is denoted

C"k .

Put differently, Clic is the number of k-element subsets of an n-element
set. The expression Cilk is usually considered to make sense for n = 0,
1, 2, ..., and 0 k n.1

The total number of subsets of an n-element set will be denoted by
C, so that

C = C110 + C'`1 + + . (6.1)

What are the numbers C and C'lk? We can answer this question in a
few specific cases at once. From the example just investigated, we know
that C3 = 8, C30 = Cs3 = 1, and Cal = C32 = 3.

Furthermore, we call verify the three properties listed below.

First property of the number of combinations:

Cm0 = = 1 . (6.2)

Proof. It is clear that any rn-element set S has exactly one zero-
element subset (the empty set) and one m-element subset (the set S
itself).

1. However, the definition can be extended to make sense for k > n by settini it
equal to zero in this case (simce for k > a no k-element subset exists).

35
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Without actually calculating the numbers C*, we shall now establish
two more properties of these numbers. The proof of the second property
is a helpful exeicise in the mastery of the concepts put forth in this
section; and the third property, together with the first, is a basis for
calculating the numbers C.

Second property of the number of combinations:

C* = C*_ . (6.3)

Proof. Let us consider any n-element set M. We must show that the
number of k-element subsets of M is equal to the number of (n k)-
element subsets of M. Let us carry out the following construction
mentally. From paper, we cut out as many squares as we have k-element
subsets of our set that is, C") and on each of thcm, we write out one
of these subsets, soThàt each k-element subset will be listed on exactly
one square. Let us also cut from paper C* _,, circles, writing each
(n k)-element subset on some circle. It is now sufficient for us to
show that there are equal numbers of circles and squares. For this
purpose, we lay all the squares on a table, and on each of them we place
a circle, according to the ;following rule: If some k-element subset of ,
the set M is listed on a square, we place on this square the circle on
which is listed the subset of the set M consisting of the remaining
elements

a b
Empty sat

Fig. 6.4

(for the case of a five-element set M, consisting of the elements a, b, c,
d, e, several squares together with their corresponding circles are shown
in figure. 6.4). It is evident that on each square there lies precisely one
circle, and that each circle will be placed on precisely, one square,
implying that there are exactly as many circles as squares.

Before going on to the third property, let us prove the following
lemma.
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LEMMA. Let us choose some element a in an (n + 1)--element set S.
The number of k-element subsets of this set which contain this chosen

element is equal to Cnk_1.

Proof. Again, let us conduct a mental experiment with circles and,
squares. We cut from paper as many squares as there are k-element
subsets containing the chosen element, apd on each of these we list one

such subset, so that each of them will be represented once. We then cut

from paper Cnk -1 circles, and on eaclIcircle we list one of the (k 1)-

element subsets of the n-element set of all unehosen elements, so that
all such subsets will be depicted (there are n unchosen elements, and
therefore Cnk -1 such subsets). On each square we place a circle, accord-
ing to the following rule: If some subset A is depicted on a square, then

on that square must be placed the circle listing the set derived from A
by removing the chosen element. It is clear that on each square there lies
quietly one circle, and that each circle is placed on exactly oqe square,
implying that the number of squares and tht number of circles are both

.equal to Cnk- 1. Since we cut out as many squares aslhere are k-element

subsets .of the (n + l)-eleknent set containing the Chosen element, the
number of such subsets is equal to _1, which is what we were
required to prove. (

We now go on to the third property of the number Cnk.

-Third property of the number of combinations:

Cn+lk Csk -1 Csk k (6.4)

Proof. Let us take an arbitrary (n + 1)-element set M and compile all
its k-element.subsets. From M we choose some element a. We denote by

X the number of k-element subsets of the set M which contain the
element a, and we denote by Y the number of k-element subsets of the
set M which do not contain a. Then

C"1k -= X + Y. (6.5)

But by the lemma, X ---- C", Moreover, X is simply the number of
combinations of the n unchosen elements taken k at a time, that is, Cnk.

Therefore,

Cm+lk Cm nk-1 + Ck (6.6)

which is what we wanted to show.
The third property, together with the first, shows that the sequence

Cn+lo, cn+In+1 (6.7)
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is derived from the seqUence

31

.Cso, C*1, C" (6.8)

by Pascal's relations. Since for n 0 the sequence

COo (6.9)

. coincides with Pascal's zeroth sequence, we know that for any arbitrary
n the sequence (6.8) will coincide with Pascal's nth sequence, and thus,

CI% = Tnic . (6.10)

Thus, we have a means of calculating the number of k-element subsets
of an n-element set, that is, the number of combinations of n elements
taken k at a time (in this, .way, formula [6.10] gives a solution-to the

problem of the number of combinations," under the condition that
Pascal's operation is considered standard).2

Finally,"the relations (6.1) and (6.10) show that the number of all
subsets of an n-element set is equal to the Atm of all the entries in
Pascal's nth sequence. As we know, this sum is equal. to 2'. Conse-
quently,

= 2. (6.1 )

2. The reader will find a different solution, with different standard operations,
in section 7.

3s



The Connection
with Factori

a

lee

In chapter 4, two methods of calculating the number TS from the
numbers n and k were.pointed out: the more "mechanical' thod of
writing out Pascal's triangle (which, however, leads to su uous
calculations), and the method more economical with regard to the
number steps (which, however, requires a certain organization of
calc ons), consisting of repeated application of the relations (4.1)
(4. . These two methods are very similar, for in both cases the numbers

k are obtained using Pascal's relations. However, there is another
method of finding rk, which we shall now discuss.

First, let us introduce a new symbol. We set

and fot each whole number m, we define

mt (m 1)1 m .

Thus, for m > 0,

ml 1.2. ... .

expression m I is read "m factorial.'
We shall now express Pascal's operation, in terms of arithmetic opera-

tions and the operation of taking factorials. For this purpose, we
examine the following expression:

m!
ql (m q)!

32
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Let us denote this expression by FM. It is clear that the expression
makes sense for in -a,0, 0 q m. We notice that

Furthermore,

0 0!
F -01111 1

K.
n! n!

k _1 +
15! k 1)! k! k

n! n!
(k 1)! (n k)! (n k + 1) + (k 1)! k(n .101

n!
k*)![n 1k

n + 1 (n + I)!
(k '1)! (n k)! k + 1) k! (n + 1

F"lk, 1 < k < n.

Thus, the sequence

<
is Pascal'S'zeroth sequence, while the (n + 1)th sequence

Fn+1 09 F3+11t F+1n X+1

is derived front the nth sequence

Fno, Fn1s Fnn

by Pascal's relations. Therefore, for any m = 0, 1, 2, the sequence
, t

Fm0, . . F

coincides with Pascal's mth sequence, and

Fm

-



34

'Hence,

The Connection with Factorials

m1

ql (m 70,011.,

We have thus expressed Pascal's operation in terms of the operations
of taking factorials, subtraction, multiplication, and division, in the
sense that we have found an 'expression for r", containitig only iz, q,
and the symbols for the indicated Operation%. This permits us to calcu-
late 71", directly, since we art able to calculate factorials, differences,
products, and quotients.

Several 'interesting corollaries follow quickly from the formula for
T% just calculated.

COROLLARY 1. Canceling (m q)! in the'numerator and denominator
of the expression for r9 we get

m!
q! (m q)!

m(m 1)[In (q 1)]( g)!
q! (m q)!

rn(inl)..[in(q-1)]
-q!

m(m 1)- -[in (q 1)]= _
q (q 1)- . . .1

COROLLARY 2. Let m > 1, in q > 1. The product of the g factors
m(rn 1) [m (q 1)] is always divisible by the product of the q
factors 1 2- q.

Specifically, pecause of corollary 1, the ratio of these products is
equal to Tin,, a whole number'.

.COROLLARY 3, From the relation V1.15), we get

14
1000!H1000

a q! (1000 q)!.

This is a new form of the solution to the problem of section 1.

COROLLARY 4. From the relation (5.13), we get

(n) n! n(n 1). .[n (k 1)]

k! (n k )! 12 . . . k



The Connection with' Factorials 35

This is the traditional high-school expression for the binomial co-
efficient.

COROLL/tRY 5. From the relation (5.14) and corollary 1, we conclude:

(1 + x) = 1 + nx + 11(n +1.2,

n(n 1), [n (k 1)]+ Xk 4- ' + X74

This is the traditional high-school form of Newton's binomial formula.

COROLLARY 6. The relation (6.10) gives the traditional high-school
formula for the nuinber of 'combindtions

4

n! n(n 1). [n (k 1)]
(n k)! 1.2- ... k

0.
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