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Some, years'ago I accepted an invitation from the Department of
Computer Technology at the Public University to deliver two lectures
on the Monte Carlo method, These lectures have since been repeated

*over the course of severa] years and their contents have gradually

settled and “jelled.” The present edition also-includes a supplementary

" section (chapter 2), about which | should say a few words.

Shortly before the first lecture, 1 discovered to “my horror that most

. of the audience was unfamiliar with probability’ theory. Since some

familiarity with that theory was absolutely necessary, I hurriedly
inserted in the lecture a section acquainting my listeners with some
bagic concepts of probability. Chapter 2 of this booklet is an outgrowth
of that section, s e

Surely everyone has heard and used the words ‘probab:ixty,
“freqyency,”, and “random varidble.” The intuitive notions of prob-
ability and frequency more or lszss correspond to the true meanings of
the terms, but ‘the layman's notion of a random vpri,abie is rather
different from the mathematical definition. In chapter 2, therefore, the
concept of probabxhty is assumed to be known, and only the more
complex concept of a random variable is explajned at length. This
section cannot replace a course in probability theory: the presentation
“here is greatly simplified, and no ‘proofs are given of the theorems
asserted. But it does give the reaﬁ%r enough acquaintance with random
variables for an understanding of the simplest procedures of the Monte
Carlo method.

The principal goal of this booklet is to suggest to specialists in all
areas-ghat they will encounter problems which can be solved by the”
Monte Carlo method. ’

The &obiems considered in the lectures are faxrly simple and have
been drawn ffom diverse fields. Naturapy, they cannot encompass all

. vii
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. the areas in which the m%thod can be applied. For example, there is
a word ab8ut medicine in the booklet, although the methods of chaply

" 7 do-enable on® to calculate radiation dosages in X-ray therapy If one
has a pregram for calculating the absorption of radiation by the various
body tissues, it is possibleito select the dosage and direction of irradia-

 tion which most eﬁ"ecuvely énsures that no harm is done to healthy

. tissues. !

e The present book mcludes the mater:al read in the lectures. A more
detailed exposition is glven Qf certain exampies, and chapter 9 has been
added. : :

. : , + 1.Sobol'
! ] : Moscow, 1967
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The Monte Carlo method is a method of approximately solving
~ mathematical and physical problems by the simulation of random
~ quantities. * , L ,

.
«

° . - .
. - lfl._ The Origin of the Monte Carlo Method

The generally accepted birth date of the Monte Carlo method is 1949,
when an article entitled * The Monte Carlo Method”* appeared. The
American mathematicians J. Neyman and S. Ufam are considered its
originators. In the Soviet Union, the first articles on the Monte Carlo

method were published in 1955 and 1956.% L.
The theoretical basis of the method has long been known. In the
nineteenth and early twéntieth centuries, statistical problems Wer\e. some-
 times solved with the help of random selections, that is, in fact, by the
Monte Carlo method. Priorto the appearance of electronic computers,
this method was not widely applicable since the simulation of random
quantities by hand is a very laborious process. Thus, the beginning of

.the Monte Carlo method as a highly universal numerical technique
became possible only with the appcargnce of computers. ' \
e name * Monte Carlo” comes frém the city of Monte Carlo in the
principality of Monaco, famous for its gambling house. One of the
simplest mechanical devices for obtaining random quantities is the
roulette wheel. This subject will be considered in chapter 3. Perhaps itis SN
» worthwhile to answer here the frequently asked question: “ Does the

~m\~‘ -

1. N. Metropolis and S, Ulam, *“The Monté Carlo Method,” Journal of tbe
American Statistical Association 44, no. 247 (1949):335-41. '

2. These were the articles by- V. V. Chavchanidze, Yu. A. Schreider, and V. 8.
_Viadimirov. ’
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.2 = . Introduction fo the Method

. 4 . » g
o ‘Monte Carl method help one win at roulette ?” The answer is that it
. + " does not; H%ot, even an attempt to do so. :

S .

Example. In order to make more
. clear -to the-reader what we are
. talking’ about, let us examine a
. very simple example. Suppose that
" we need to compute the area of a~
- plane figure §. This may be a com-
pletely arbitrary figure with a
" curvilineay boundary, given graph-
ically or analytically, connected or
consisting 6f several pieces. Let
the region be as represented in
- figure 1.1, and let us assume that
e SV - Fig. 1.1 it is contaifed completely within
a ( I "the unit square.
» Choose at random N points in the square and designate the.number
of points lying inside $ by N’ It is geometrically obvious that the area
of § is approximately equal to the ratio N'/N. The greater the N, the
greater the aceuracy' of this estimate. .
.o Inthe example represented in figure 1.1, w:: selected N = 40 points.
Sk Of these, N’ = 12 points appeared inside S. The ratio N'/N = 12/40 =

-3

-,0.30, while the true area of S is 0.35.5. . ' .
o g
1.2. Two Features of the Moiite Ca.rl'dfhglethod

3 In our example it wouldﬁg&;.have been too. difficult to ‘calculate
directly the true area of S. If‘Bart I of this bewk we shall cogsider
some less trivial examples. Qur simple method, Rgwever, does pojnt out
one feature of the Monte Carlo method, that is; the simpﬁ:‘structum of
the computational algorithm. This algorithm consists, i general, of a
process for producing a ra‘:;dorn\‘ event. The-process is repeated N times,

’ each frial being independent of the rest, and the results of all the trigls
are averaged together, Because of ifs similarity to the process of per-
fqrming a scientific experiment, the Monte Carlo méthod 15 sometimes

- u‘ N N .

3. In practice, tHe Monte Carfo.methdt. is not used for calculating the area of a
-plane figure. There are -other methods for this, which, although they are more
complicated, guarantee much greater accuracy. .
* Still, the Monte Carlo method showwn in our example permits us to calculate
very'simply‘th: " many-dimensional vélume™ of a dody in man'y-dimené’iongxl :
- space; and in such a case the Monte Carlo method often proves to be the only
L , numerical method useful in solving the problem.

\ - .’ i




_- Introdyction tozlxeMethod o . R
caﬂed the method of sratisticai rrz’als In our cxample, the random event

“~consisted of taking a x;mdomﬁomt in the square and checking to deter-
mine whether it belonged to S, and the regults of thc trials were av:raged
togethcr by taking the ratio N'/N.

A second feature of the method is that, as a rule, the error which we
expect from the calculation is 4/(D/N), where D is some constant and.
N the number of trials. In our example; it turns out from probability
theory (for proof, see section 2.6) that

D = A(l — A)= (0.35)(1 — 0.35) ~ 0.23,
where A is the true area of the region S, so v/(D/N) = 1/(0.23/40) =
0.076. We See_that the actual error of the calculation, 0.05, was not,
after all, unreasongbly large. .

From the formula _ : ,

. ‘ error X J (—Q)
\ , \N

it is clear that te decrease the error by a factor of 10 (in other words,’to

obtain another significant digit in the result), it is necessary to xﬁcrcasc N
(and the amount of work) by a factor of 100. *

To attain high precision in this way is clearly impossible. Thc Monte

Carlo method is most effective in solving problems inyhich the result

need be accurate only to 5-10%,. However, any pérticufar problem can

) be solved by different variations of the Monte Carlo method* which

assxgn different values to D. In many grobiems a_gomputational pro-
cedure which gives D a significantly smaller value will considerably

_ increase the accuracy of the result. . v

- .
&

1.3. Problems That Can Be Solved by the Monte Carlo Method

The Monte Carlo method makes possible the simulation of any process

) influenced by random factors. This, however, is not its only use. For

many mathematical problems involvitg go chance, we can artifictally
devise.a probabilistic model (frequently several) for solving these prob-
lems. In fact, this was done in the example in section 1.1. For these
reasons the Monte Carlo method can be considered a universal method
-for solving mathematical problems.. '

. In foreign literature the term Monte Carlo methods {in the plural) is now
miore frequently ‘used, in view of the fact that the same problem can bé solved by
simulating different random vangbics

11



4 ' Introduction to the Method

It is particularly iftgresting that in certain cases, instead of simulating
the actial random process, it is advantageous to use artificial models. .
Such a situation is the topic of chapter 7.

More abaut the example. Let us return to the cxamp}bof section 1.1.
For the calculation we needed to choose points at random in the unit
square. How is this actually done? .

Let us set up such an experiment. Imagine ﬁgurc 1.1 (on an increased

-scale) hanging on a wall as a target. Some distance from the wall, N darts
are aimed at the center of the,square and thrown. Of course, not’?ﬂ the
‘darts will fall exactly in the center; they will strike the target at N random
pomts * Can these points be used to estimate the area of §7
" } ' e The resuilt of such an experiment
1} ' is depicted in figure 1.2. In this
experiment N = 40, N’ = 24, and
the ratio N'/N = 0.6 is almost
double the true value of the area
(0.35). }a-ie—eiear that when the
darts are thrown with very great
skill, the result of the experiment .
will be very bad, as almost all of
the darts will fall near the ccntcr
" and thus in §.8 ™
: We can see that our method of
Fig. 1.2 computing the area will be valid
< r , only when the -random points are
not “simply random;” but, in addition, *‘ uniformly distributed” over
the whole square. To give these words a precise meaning, we must
becotne acquainted with the definition of random variables and with
some of their propertie§; This-in%{mation is presented in chapter 2. A
reader who has studied probability theory may omit all except sections
2.5 and .26 of chapter 2. '

S. W'c_: assume that the darts are not in the hands of the world champion and
that they are thrown from a sufficiently great distance from the target.

6. The ways in ‘which the random p‘&m!s were chosen in figures 1.1 and 1.2
will be discussed in section 4.5.
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We assume that the.concept of probability is more or less familiar to

the reader, and we pass.“directl"y to the concept of a random variable. :
b The words * random variable,” in ordinary English usage, refer to the . . A&
outcome of any process which proceeds without any discernible aim or -
; difection. However, a mathemati¢ian’s use -of the words, *random
'« +° variable” has a completely definite meaning. He is saying that we do
‘ pot know the value of this quantity in any given case, but we know
whgt values it can assume and we know the probabilities with which it
assumes-fese values. On the basis of this information, while we cannot
precisely prédict the result of any single trial associated with this
random variable, we ean predict very reliably the total resuits of a great
number of trials, The more trials there are (as they say, the larger the

» sample is), the more accurate the prediction will be.

2.1. Discrete Random ‘Variabhs

The random variable X is called discrete if it can assume any of a
discrete set of values. x,, X, . . ., Xp.}
X is therefore defined by the table

,v (X Xaooce ‘xn .
Py Pa " P ‘

RS

- wher€ xy, xp, ..., X, are the possible values of the variable X, and
W1, Pay - - -» Pa re the probabilities corresponding to them. Precisely

o4
< !

1
‘1. In probability theory discrete random variables that can assume a countably
. infinite number of values x;, Xg, Xa, . . - are also-considered.




.8 * Simulating Random Varizbles Y
‘ speakmg, the probability that the random variable has t.hc value
(denoted by P(X x;)) is ‘equal to p;:

) F((.X=x‘)==g.._ ea

Soggtimes we write px(x;) mstead of p, or P(X = x)).

Table (T) is called the distribution of the random variable.

The numbérs Xy, X3, . . ., Xy arc arbitrary. However, the .pmhabxlmw
Pis Da, . . ., Px Must satxsfy two conditions:

(a) all p, are non-negative:

*

1

[ »

=~ p=0; ' 2’

X
(b) the sum of all the p, equals 1: ' o

’

: . kA Patotpe=1. 2.2)

The last condition means that in every event X must assume one of
the values x,, x5, ..., X,
- _ The number

E(X) =Z % . @3)

is called the expected value, or mathematical expectation, of the random
variable X. » |

To illustrate the physical meaning of this quantity we write it in the
following form:

E(X) — Zl;l x{l’: .
i=1 Pt

Weseethat £(X)isinasensethe average value of the variable X, in which
the more probable values are added into the sum with larger weights 2

-

2. Averaging with weights is very common in science, For example, in mech-
anics; il masses my, ma,. .., ms are distributed on the x-axis at the pmms A1,
Xz, . ... xs, then the abscissa of the center of gravity of this system is ngm by
the formula

1 3
X' 20-: Ximg
21- 1 My

Of course, in this case the sum of all the masses does not necessarily equal unity. e

-
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Let us mention the basxc pmpcrtm of mathcmnqa.l cxpectatzon.lf .
cis any constant, theit : ‘ , N... e
L EG+ c)}-”E(X)+c, S - (3.4)'

@ = cE(X) TR X N

‘o mndom Var\ablcs, then

E(X + 1) = EX) % E(__if’) oL e
- " ] .{‘_‘ ,“ .’N.-/f-c"‘ | . ’_ . o : & o
Y B - “,'r‘ . . .
Va;:m E«xf;» E(x»ﬂ) | ey )

.....

Var (X)is the matgemanml expectanon of the squarcd dewanon of the '
random variable X fron:;;&s average value E(X )e Obvxousiy, Var (¥ b) a [V
always. . - :

“The mathcmancai cxpectatmn and the variance are the ;ﬁost xm-
pertant numbegs characterizing the random variable X. What mthen'.
practical value?

If we observe the variable X many times and obtam the values
X, X,, .., Xy (each of which is ‘equal to one- of ‘the numbers
‘K14 Xas - +.» Xn). then the amhmenc mean of these number H be close

: 10 I;(X)

and the variance Var(X) characterizes the spread of these values
around the average E (X').
Formu a (2.7) can be transformed using formu as (2. 4)—(2 6)

Var (X) = E(X? — 2E(X)- X + (E(X))“)
= E(X?) - 2E(X)-E(X) + (E(X)), <
whence y |
S v
. Var(X) = E(X? - (E(X)). (2.9)

It is usually easier in hand computations to find the variance by

‘formula (2.9) than by formula (2.7).

15




10 ' Sxmulating Random Variables .

“Let us mention the basxc propcmes of the vanance: If ¢ is any |
constant, then ) '
Var (X + ¢)= Var(X), | ;zno)
Var (cX) = ¢® Var (X) | (2 u)ﬂ

ﬂ:e conccpt of z@ependence of random vanables plays an 1mpox‘tant '

role in the theory of probability. Let us suppose that, besides the variable
. X, we aléo witch a-random variable Y. If the distribution of the variable
<X does not change when we know the value which the varigble Yassumes,

«a and vice versa, then it is natural to believe that X and Y do not dependon

»

each other. We then say that the random variables X and Y are inde-
peﬂant

*and Y:

L ﬁs(x"r) ~EOE(Y), | 1y P
.. Var(X + Y) = Var(X) + Var(¥). f218)

Example. Let 'us consider a random variable X with the distribution

]

-

4

Since each of the values is equally probable, the number of dats appearmg |

when a die is throwh can be used to realize these values chet.us calculate
* the mathemalfcal expectation and the variance of X! By formula (2.3),

(X) =31 +2+3+4+5+6) =35,
By formula (2.9),

C Var(X) = E(X%) ~ (E(X))? o

= §(17 4 27 + 3 + 424 57 4 6% — (3.5)° = 2.917.

Example. Let us consider the random vzﬁiable Y with distribution

L

To realize these values, we can consider a toss of a coin with the condx-‘

. tion that a head counts 3 points and 3 tail 4 points. In this case,

< E(Y)=0534054=35;
Var (¥) = 0.5(3% + 4%) — (3.5 = 0.25.

L

| N
~J

The following rclat:ons hold for mdepeﬁem random variables X )

a



, ' Random Varmbles v - 11
“We see that E('Y) = E(X), but Var (¥) < Var (X). This could easily

have been anticipated, since the values of Y can differ from 3.5 only by |

j; 0.5, wh:le for the values of’ X the sp:ead m§ reach +2.5.

O
. _ MC@mR&nﬂomV’u&lﬂeﬁ :

o . describe its direction by the angle ¥ (fig. 3).
~ " . Since both in th®Sry and practice. any
\\ Y direction of flight i is possible, this random

' "'+ varfable can assume any value from 0 to 2a.

continuous if it can assume any value in
some interval [a, b].

p(x) to the interval [g, b] containing the
o — . possible values of this variable. p(x) is
4 . Fig. 21 : called the probability density or density
’f- & distribution of the random variable X.
. ‘) The sxgmﬁcance of p(x) is as follows: Let (¢, &) be an arbitrary
v .Uinterval contained in [q, b] (that is, 4 < @', & < b). Then the prob-
g { * ability that X lies in the interval (@', b') is equal to the integral

N ‘ ' . b '
o P@ <X < b) —_-f 5x) dx . S @14)

L]

N | ¥ =p(x)
‘,( ' - y4‘
S - ‘

In figure 2.2 the shaded area represents the value of the integral (2.14).

Let us assume that some radmm is placed at the ofigin ef a coordinate .
plane As each atom of radium decays, an a-particle is emitted. We shall |
‘We shall say that a random variable X is

A continuous random‘ variable X is
defined by the assignment of a function -
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The set of values of X can be any interval, The mtcrval may coxlm
cither or both of its endpoints, and even the cases @ = —c0 and b =

are possible.’ The density p(x), however, must satisfy two condﬂ!bns

analogous to conditions (1) and (2) for discretesvariables:
(a) the density p(x) is nonnegatwt '

- | PR 20, - | "@wy

(b) the integral of the dcnsxty Ax) over the whole interval (a, b) is |
ua] tO“l [ « ‘ . -
fp(x)dx =1. ' 2.16)
.~ The number St | o

. - v ' R
E(x):f W ]_{(2.17)

is called the expected t}fue of a continuous random variable.
The significance of this qudatity. ig tpe sawe as in the case of thc
dxscrete random wariable. Indeed, smce

it is easily seen that this is the average value of X. In fact, X can assume
any value x.n the interval (g, b) with *“ weight” p{xX®

Everything explained in section 2.1 from formula (2.4) up to and
including formula (2.13) is also valid for continuous random variables.
This includes the definition of variance (2.7), the formula (2.9)- for its
computation, and all the prapertxes of E(X) and Var (X). We shall not
repeat them.*’ .

+

. - . s -

3. In this case it is also possible to explain the analogous formula in mechanics:
If the linear density of a rod is equal to p{x) for a < x < b, then the abscissa of
the center of gravity is given by the formula

_ Jexp(x)dx —
o iy dx
4, This statement is not exactly true for all continuous random variables. In

statistics thete arise a Yew continuous random variables for which one or both
of the integrals - .

E(X) — fxp(x) dx , Var(X) = j.rsp(x) dx — (E{X))*

diverge; for instance, the Cauchy density p(x) = (1/=)(1/[1 + &*]), for —0 <
x < oo, has infinite variance. For these variables, formulas (2.7) through (2.13)
cannot be used, and special methods must be devised to treat them.

Y

2
R
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o Let us mention’ just one more formula, that for the mathemat:ml -

expectation of a random function. As before, let the random variable X
-“have probability density g(x). We choose an arbitrary continuous func- .
tion f(x), and consider the random variable ¥ = f (X), sometlmcs cal}ed
- a random function It can be proved that -

-

E(f(X) = j f(x)p(x)dx . (218)

Let us stress that, gencfally speaking, E(f(X)) #* f(E(X))
. _ The randoin variable G defined on the .
1 b -\ . nterval [0;1] and “having a d ty
R — - 'p(x).-lxscalledaunﬁ'armdxm
.. : ' on [0, 1] (fig. 2.3). -
o A Whatever ‘subinteryal (d',5") we ‘take :
. IS within 0, 11, the probabxhty that G ligs in s
Y T o (d, b’)xs.equal to . o

o 1 . L
Fig. 2.3 o ‘fp(x)dxmb’—a’, o .

]

that is, the length of the subinterval. In partlcular if we divide [0, 1]
into any number of intervals of equal length, the probabilities of G
hitting any of these intervals are the same.

It is easy to calculate thgt -

.

e E(G) = fxp(x)oleJ. xdx =3,

~
Var (G) =f Xp(x)dx — (EGP =4 -1 =7 |
o
In what follows we shall have many uses for the random variable G.
2.3. Normal Random Variables .
- A normal (or gausszan) random . variable is a random variable Z N
defined on the whole axis (—oo, ®) and having the density
¢ | |
1 (x - ay?
p(x) = mexp[ T} , (2.19)
\ -t
where g and o > 0 are numerical parameters.
\
\) X . . .

<t
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‘The parameter g does not affect the shape of the curve p{x): a change
in @ results only in’ a displacement of the curve along the x-axis. How-
ever, the shape of the curve does changc thh a change in o. Indeed, it is

- easy to see that _ —

max (o) = @) =0

b

,If o decreases, the max (p(x)) will increase. H'oweve?, according to
condition (2.16), all the area under the curve p(x) is equdl to 1. Thege-

fors, the curve will extend upward near x = a, but will decrease for all
suﬁ‘icxently large values of x. In figupe 6 two normal densities are
drawn, one with a\— 0, o = 1, and another with g = 0; ov= 0.5.
(Another normahdensity is drawn in figure 6.5 below. )* ' .
Tt is possible”to-show that = *. o oo

& - . Cow
! -

. E@Z)=a, var‘(z);aﬂ. <L

) : s R
. . ) J .
Normal random variables are encguntered in the irvestigation of

"very divefse problems. For example, an error 8 in measurement is
generally a normal random variable. The reason for this will be dis-
cussed shortly.. If theserror in measurement is not' systematic, then
a = E(®) = 0. And the quantity ¢ = 4/Var (8), called the standard
deviation of 8, describes tha error in the method of measufement.

The rule of “ three sigmas.” 1t is not difficult to determine that fot a

'guorma} density J Toe

! a+ 3o

Hx)dx = 0.997,

a+ 3¢
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whatcvcr a and ¢ are in (2.19). From (2 14) it féllows that ,
P(a-3a<2’<a+30)—0997 C (.20

The probability 0.997 is véry near to 1. We therefore give the latter.

formula the following interpretation: For a single trial it is practically
impossible to abram a value Z differing from E (Z) by more rhah 30

2.4. The Central Limit Theorgm of Pljobahility Theory

mathenfaticians, including P. L.'Chebyshev, A. A.Markov, and A. M.
Lyapunoy have worked on gcncrahzanons of th ongmal result. Its
proof is rather comp!ex : ’

L Let us copsider N indepehdent, 1dcnncally distributed randoni vari-

_ ables X;, Xa .. X v: that is to say, the probability densities of these
* yariables co’incide. Consequently, their mathematical expeBtations and

variances also coincide.
We write .

E(X) = E(X)) =---= E(Xy) = m,
Var (X)) = Var (X5) = A Var (Xy) = v*

-

| Denote the sum of all these variables by Sy:

‘ ng: X1+ Xi+"‘+ XN.
From formulas (2.6) and (2.13) it follows that

ESy)=EX, + Xa+-- -+ Xy) = Nm, J
Vaf(S~)=Var(X1 + Xg o4 XN)=NU2.

o : . .
Now let us consider the normal random variable Z, with these same

. parameters: @ = Nm, a® = Ni2.

THEOREM 2.1. The density of the sum Sy approaches the density of the

" normal variable Zy in such a way that for every x,

(S <) 2 (B < )

Jor aII Iarge N. -

The significance of this theorem is clear; The sum Sy of a large
number of identical random varigbles is - approximately normal

(Psy(X) = Pz (X))

This l%umarkable theorem was- first formulated by Laplace. Many

LS .
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Indeed, the theorem is ahd urider conmdei-aply weakcr conditions.
Not all the terms X, X, ..., Xy have to be identical and independent;
essentially, all that is rgguned is that single terms do not play too great
a role in the sum. .

It is precisely this theorem. which explams why normal random

- variables are so often éncountered in nggure. Indeed, whenever we meet

a summing influence over a large number of independent random

factors, the resulting random variable proves to be normal. For-

example, the scattering of artillery shells from. their target is almost
ways a normal random vdriable, since it depends on the meteoro-
I conditions in all the various regions of, thc trq;ectory as wéll as

' on many other factors. »

r

~

‘ hJ
2.5, 'ﬂ:eﬁkmenlSehen:eoftheI\rlono(_veéndoMe'timdm

Suppose that we want to determine some unknown' quantity m. Let’
us attempt to devise a random variable X with E(X) =m. Say the
variance of this variable is Var (X) = o2

Copsider N independent random varigbles X;, X3, ..., Xy, with .

«distributions identical to that of X. If N is sufficiently large, then,

according to the theorem of section 2.4, the distribution of the sum
Sy = X; +¢&s + -+ Xy will be approximately normal with param--
eters 2 = Nm, o® = Nid, From equation (2.20) it follows that

;gsf P(Nm — 3v4/N < Sy < Nm + 39\/1\/) ~ 0.997.

i !

'-‘I?-we divide the inequality within the parentheses by N, we obtain an
eql_nvalem inequality, and the probability remains the same:

3v SN v
P(m \/N N <m+‘/N)&*:0997

We can rewrite the last relatio'n ina slightly different form:

Pl § 5 m

This is an extremely important relation for the Monte Carlo method.
It gives us both a method of calculating m and an estimate of the
uncertainty of our estimation. )

Indeed, suppose that we have found N values of the random variable

\/N) ~ 0.997. (2.21)




'
3

~ the dxsmbunon of each X, is

" variable which is *“ closest™ to the distribution of (3 X)/N. It is closely

i o .- Random Varmble.s . 17 .
X.* From (2.21) it is obvious that the arithmetic mean of these values @~ °
will be approximately equal to m. With high probability, the error of -
this approximation does not exceed- the quantity 3v/\/N Obvxously, ' .
tlns error converges to zero as N increases. . :
. z.&AusthdabommEnmple 3
Let us now apply some of these ideas to the example of sccnon 1 1o
see how we'ongma.lly obtained the formul® for error _ R /
. .,/(2) J(A(l ~ a)) | L S
N N . T
If we.denote the result of the jth single trial by . . ’

o {1, if the jth random point lies in®S
70, ifmot,

then our csnmatp of the area of §is just 3, X,/N. It is easy tq see that -

1—A 4 S
Hence, by formulas (2.3) and (2.9), '

)

SR N

m = E(X) =0-(1 - A) +’i-’A,= A,
W = Var (X) = 03.(1 — A) + 124 — 42 = 401 - 4),.

g JE)- A N

We have chosen to omit the factor 3 from the formula 3p/4/N since ';1
deviation so large as 3(v/+/N) will rarely be encountered. Our formula
V/(DJN) actually gives the staridard deviation of the.normal random

3 RN :
H PR . .
% 45 2N .

related to another measure of error, the probable error, which we ‘shall -
introduce later, in chapter 8. '

5. It is immaterial whether we find one value of eagh of the variables Xy, ~* toe
Xa, ..., Xy or N values for the single variable X, since all the random variables
have identical distributions. . -

L A
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must be programmed beforehand, wheroi o 19
There.are, indeed, several difficulties assomﬂ&d ‘with this point, but they

- belong more to philosophy than to mathemaﬁcs, and so we shall not,

dwell on ghem. R, .e.,.n,t.;‘;aq;,;?“

“The random variables: dxscusscd in chaptér 2xe mathcmatlcal
concepts. The question is whether onl: can usl s
phenomena experimentally. Such &’ descnpufff fk'f‘f course, always
proves to be approximate, and & rahtiom vanab}e W 'xejx Hescribes some
p.hysxcai q'::anuty with perfect accuragy in one'set of phenomena can
prove'to chara¢terize the same quanmty poorly durifig the investigation
of others.

- Such problems of descr:ptxon ase umvcrsalat only within applied
mathematics but i in all other. fields as well.' A cgrtographc:, for exampie,

can driw a road on a natioffal map as a perfectly straight line. On the '

large-scale map of a heavily populatcd area, however, it must be drawn

wide and crodked, and-very close examination reveals all sorts of

propetties of the road: color, texture, and the like, of which the original
description can take no account whatsoever. Our use of random vari-
ables should be regarded not as prq iding a perfect description of
natural phenomena, but as a toot‘\ Iving~particyarproblems in
which we may be interested.

Ordinarily, three ways of obtaining random values are dxstmgmshed
tables of random numbers, random number generators, and the pseudo-
random number method.

"

' 3.1. Tables of Random Numbers ’

Let us perform the, following experiment. We mark the digits
0,1,2,...,9 on ten identical.slips ‘of paper. We place these slips of

18
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Generating Random Numbers an a Congps;ker’ v 19 -~
paper in a hat, mix them tcgéthcr'; and take out one; then return it and

mix again. We write down the digits obtained in this way in the form

of a table like table A in the Appendix (in tahlc A the dxgxts are arranged

in groups of five for convenience).

-~ -Such a table is called a mble af random digits. 1t is possxble to put it
into a compiiter’s memory. Then, in the prosess of calculation, when we
need values of a random variable with the distribution

. ? (0 1 2 .---A%&)
S o1 0.r 0.1 --- 01)°

we need only take the mext digltfrom this table. L
Thes largest of the published ‘random-nunfber tables contains one

million digits.! Of course, 1& was compiled with the assistance of tech-

nical equipment more sophisticated than a hat: A special roulette wheel
was constructed which operated electronically. Figure 3.1 shows an
elementary version of such a wheel. A rotating disc is stopped suddenly,
" and the number to which the stationary arsow pomts is selected

Fig. 3.1

Compiling a goaq_table of random numbers is not as easy as it may
appear. Any real physical device produces random variables with a

distribution differing slightly from the ideal distribution. During an °

experiment there may well be accidents (for example, one of the slips
of paper in the hat might stick to the lining for some time). Therefore,
- the compiled tables are carefully checked by special statistical tests, to

make sure that no particular characteristics of the group of numbers
&«
. 1. RAND Corpomtmn A Million Random Digits with 180,000 Normal Deviates
(Glencoe: Free Pregs, 1955). - .

(3.1)

. \f’:‘
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contradict the hypothesis that the numbers are independent values of a
random variable (3. 1) .

Let us examine one of the simplest tests. Consider a table con-

taining N.digits. Let the number of zeros in this table be vy, the number
_ of ones v,, the number of twos v;, and so on. We calculate the sum

- ‘20 (0 ~ (O.HN)Y.

AY

The theory of probability allows us to predict the range in which this
sum should lie. It should not be very large, since the mathematical
expectation of each of the v, is equal to (0 )N, but neither should it be
too small, since that would mdxcate an “‘qverly regular” distribution
of valucs /

Tebles of random numbers are used only for Monte Carlo.method
calculations performed by hand. The fact is that all computers h‘a
comparatively small mtemal memories, and a large table will not fit in
. them. To store the table in external memory and then to consult it
continually for numbers slows calculation considerably.

-The possibility that, in time, the memorié} of computers will increase
sharply should not be ruled out, and in that case random-number tables
might become more widely useful.

3.2. Random-Number Generators

1t would seem that the wheel described in section 3.1 could be hooked
up to a calculating machine and be made to produce random numbers
as needed. However, any mechanical device would be too slow for a
computer. Therefore, vacuum tube noise is more often used as a
random-number generator. The noise level of the tube is monitored, and
if, within some fixed mterval of time, the noise exceeds a set threshold
an even number of txmes, a zero is recorded; if an odd numbu‘ of times,
a one.?
At first glance this is agvery convenient procedure. Suppose m such
- generators work in parallel, all the time, and send random zeros and
< ones into all the binary places of a particular memory location. At any
point in its calculations the machine can go to this location and take
from it the random value G. The values will be elvenly distributed over
theyinterval [0, 1], though only approximately, of course, each number

2. There are sctups which are even more statistically perfect.

Dy
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B



@

" Generating Random Numbers on a Computer R |

being an m-&igit binary fraction of the form O. DyyDg, ... Dyg,, where
each of the variables Dm nmtam a random varjable thh thc dis-

tribution .
A . :
‘ (0 .1) i ' _ .
33 5 . )

Yet even this method is not free from defects. First, it is difficult to
check the “ quality” of the numbers produced. It is necessary to make
periodic tests, since gny imperfection can lead to a * distribution drift”
(that &, the zeros and ones in one of the places begin to appear in
unequal frequencies). Second, it is often desirable to. be able to repeat a
calculation on the computer. But it is impossible to duplicate a sequence
. of random numbers if they are not held in the memory throughout the
calculation; and if they are held in the memory, we are back to thc
random-number tables. :

Methods of this sort will undoubtedly prove useful when computcrs
are constructed especially for solving problems by means of the Mqnte
Carlo method. For all-purpose computers, however, on which calctila:
“tions requiring random numbers come up only rarely, it is simply not
economical to maintain and to make use of such special equipment. Itis
" better to use pseudo-random numbers. .

© 3.3. Pseudo-Random Numbers -

So long as the *“ quality” of the random numbers used can be verified
by special tests, one can ignore the means by which they were produced.
It is even possible to try to generate them through a set formuia.
~ Numbers obtained by a formula that imitate the values of a random

variable G uniformly distributed in [0, 1] are called pseudo-random
numbers. Here the word *“imitate” means that these numbers satisfy
the test just as if they were values of a random variable. They will be
quite satisfactory so long as the calculations performed with them
remainwnrelated to the particular formula by which they were produced.

The first algorithm for obtaining pseudo-random numbers was -
proposed by J. Neyman. It is called the mzddle-of squares method. We
illustrate it with an example.

- We are given a four-digit integer n, = 9876. We square_it. We
usually obtain an eight-digit number 7,2 = 97535376. We take out the
" middle four digits of this number and designate the result n; = 5353.

Then we square n, (n,? = 28654609) and once more take out the

middle four digits, obtaining n; = 6546. ‘
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Then ng® = 42850116, n, = 8501;" a2 = 72267001, ns = 2670;
ns® = 07128900, ng = 1289, and so forth. ' .
- The proposed values to be used for the variable G are then 0.9876;
0.5353; 0.6546; 0.8501¢, 0.2670; 0.1289, and so forth.®

This algorithm is unfortunately not suitable, for it tends to give-more
small numbers than it should. It is also prone to falling into *“traps,”
such as the sequences 0000, 0000, ..., and 6180, 2100, 4100, 8100,
6100, .... For these reasons various experimenters have worked out
other algorithms. Some of them take advantage of peculiarities of
specific computers. As gn example, let us examine one such algorithm,
used on the Strela computer.

Example® The Strela is a triple-address, 'floating-point computer.
The memory location into which the number x is placed is made up of
forty-three binary places (fig. 3.2). The machine works with binary

'EIJL.i["sla [5] ]32[33:]34135136137[38139]40[43]42]

S

s 2\
Coefficent - 1 Exponent

“

Sign of the coefficent " Sign of the exponant
' Fig. 3.2

numbers. in the form x = +¢*2*®, where p is the exponent of the,
number and g the coefficient.5 In the jth place there can be a zero or a
one; let us call this value e;. Then :

e e . e
q=2—i+§§+~--+2—§§: D = eg:2% + e5e2t + -+ €4g2°,
In locatjons 0 and 36, zero represeats the + sign, one the — sign.

3. This algorithm can be wgitfén in the form .,y = F(n,), where F stands for
the aggregate of the operations that are performed on the number n, in ordef to
obtain n, .:. The number n, is given. The pseudo-random numbers G, = 10~ ‘n..

4. See 1. M. Sobo!, “Psevdosluchainye chisla dlya mashiny Strele’’ [Pseudo-
random numbers for the Strela computer), Teoriva veroyatnosti i ee primeneniya
[Probability theory and its applications] 3, no. 2 (1958):205-11.

5. A somewhat different method of floating-peint number storage is common
in American computers such as the IBM 360. Either 32 or 64 binary places,
arranged in groups of eight, are used. Real numbers are considered as written
in the form h

tg-(16)778%4, .

where 1/16 < g < 1,0 < p < 127. The leftmost binary digit records the sign of
the number, 0 for +, 1 for —; the next seven places record the value of p written
as a binary integer; the last 24 or 56 places give the value of the coefficient g. A
method of generating random numbers similar to that of the author can easily
be developed for use with this arrangement.-—Trans. :

\
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After a norlzero number Gy, usually 1, is chosen, the numbes Gy , is
obtained froxja G, in three operations: : .
(D) Gy is xjumpheql by a large constant, usually 10“'

(2) The representation of the product 107G, is displaced seven

~ places to the left, so that the first seven places of the product disappear,
and zeros appear in places 36 to 42,

(3 The aﬁsolute value of the resultmg number is taken; this becomes o

Gicsae !

This process will yi€ld more than 80,000 random numbers G, before
the sequence becomés periodic and the numbers begin to repeat.
Various tests on the first 50,000 numbers give completely satisfactory

results. These numbers have been used in solving a wide variety of

- problems.

The advantages of the pscudo-random number method arc quite
evident. First, to obtain each number requires only a few simple opera-
tions, so that the speed of generation of random numbers is on the
same order as the computer’s work speed Second, the program
occupies very litt} space in the computer’s memory. Third, the sequence
of G, can be easily reproduced. Finally, it is only necessary to verify the
“quality” of such a series once; after that, it can be used many times
for calculations in suitable problems without fear of error.

The single disadvantage of this methed is the limited supply of pseudo-

random numbers which it gives. However, there are ways to obtain still -

more of them. In pa.rtxcular, it is possible to change the initial number
Go. .

The overwhelming majority of computations currently perfermed by
the Monte Carlo method use pseudo-random numbers.

1)
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The necessity of simulating different randomy variables arises in

solving various problems. In theycarly. stages of the use of the Monte .

Cario method some experimenters tried to construct a wheel for finding
cach. random variable. For ex-
ample, in order to find values of a
random variable thh the dis-
tribution

0.5 0.25 0.125. 0.125

one would use the wheel illus-

in the same way as the wheel in
Fig. 4.1 figure 3.1, but which has unequal

; divisions, in the proportions p;.
However, thxs turns out to be completely unnecessary. Values for any

_Jrandom variable can be obtained by transformations on the values of .

" one “‘standard”* random variable. Usually this role is played by G, the
> uniform distribution over the interval {0 1]. We already know how to
get the values of G.

The process of finding the values of some random variable X, by
transforming one or more values of G, we will call the construction of X,

&

4.1. Constructing a Discrete Random Variable
Assume that we want to obtain values of a random varikble X, with
the distribution

X___(xx x2 PP x‘).
Pr P2 v Ps

(xl xﬂ . xs x‘ );(41) .

- trated in figure 4,], which operates °

.
v ¥
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Let us examine the interval 0 < y < 1 and break it up into » iftervals
with lengths of p,, pg, . . ., P». The coordinates of the points of division
will obviously be yy=py, ya=p1+ps YVs=P1+Pit Pa...s
Va1 =p1+pg ot Pacss

We number ulting intervals 1, 2, .. ., n (fig. 4.2):
1 2 3 -, n
F T T T — T +
K By Pytpg ‘ Pyt Py +P3 1—0, 1 ¥
. Fig. 4.2 -

Each time we need to * perform an experiment” and to select a value of
X, we shall choose a value of G and find the point y = G. If this point
lies in the interval numbered i, we will ctmsxdcr that X = x, (for this -
trial).

It is easy to demonstrate the validity of such a procedure. Smce the
random variable G is uniformly distributed over [0, 1], the probability
that a G is in any interval is equal to the length of that interval. That is,

PO<G<p)=p,
P(py < G <pi+pa)=Pas

-P(p1 +pg++pn-1SGS 1)=pﬂ.h
According to our procedure, X = x; whenever
p1+p2+“‘+pa~xSG<p1+pg+"'+p¢,, ;

and the probability of this event is p;.

Of course, on a computer we can get glong without figure 4.2. Let us
assume that the numbers x;, X, . . ., X, have been placed in successive
storage locations in the memory, and likewise the probabilities
P1s Py + Pas b1 + pa + Pa, ..., 1. A flow chart of the subroutine for the
construction of X is provxded in ﬁ\Bre 4.3.

Example. To construct ten values of a random variable T with the
distribution

, 3 4
T= (0.58 0.42) '

t"&
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*

.

Find G
i~
)
‘ IsG<p
‘ 1
, o © yes
.
Add one to the  * ©oLet X=x, .
address of the
memory locations
from which p,
and x, are 10 Restore the
be taken ' addresses of
pyand x4y
k .
Fig. 4.3

For the values of G we take pairs of numbers from table A in the
Appendix multiplied by 0.01.> Thus, G = 0.86; 0.51; 0.59; 0.07; 0.95;
0.66; 0.15; 0.56; 0.64; 0.34, ' \

Clearly, under our procedure the values of G less than 0.58 correspond
to the value 7 = 3, and the values of G = 0.58 to the value 7 = 4.
Thus, we obtain the values 7 = 4, 3; 4; 3; 4; 4; 3; 3, 4; 3.

Note that the order of the values x;, X, ..., X, in the distribution X
is-arbitrary, although it should be the same\throughout the construction.

4.2.' The Construction of Continuous Random Varisbles

Now let us assume that we need to get values of a random \’z)ariablc X
which is distributed over the interval [, b] with density p(x).

1. Since in this example the py are given to two decimal places, it suffices to take
the values of G to two decimal places. In an approximation of this sort, where the
case of G = (.58 is possible, it should be included with the case G > 0.58 (for
the value G = 0.00 is possible, but not the value G = 1.00). When more decimal
places for G are used, the case of the equality G = p, is improbable, and it can be
iocluded in either of the inequalities,

33‘



Lt
e SN
.«
- "

[}

uTrfnm‘formtim of Random Variables | S27
We shall prove that values of X are given by the equation

..p X . :,Cz;‘m- :
U [ wax=6; @2)

that is, taking each value of G in turn, we must solve equation (4.2) and
find the corresponding value of X,
For the proof let us examine the function (fig. 4.4) .

IS

yb== fp(x)'m.

¢

From the general pr.ope.rtics of density (2.15) and (2.16), it ;”ollows that
- L ey =0, yb)=1,

and, taking the derivative, |

. ) | Y@ =p(x)=0.

This means that the function y(x) increases monotonically from 0 to 1.
Furthermore, almost any line y = G, where 0 < G < 1, intersects the
curve y = y(x)in one and only one point, the abscissa of which we take
as X. If we agree to take for values of G lying on *“flat spots”’ on the

- curve, the value of X corresponding to one of the endpoints of the flat
' spot, then equation (4.2) will always have one and only one solution.

v 4 v A
1 — _3___ - 1 —
G ===~ T ylo ) b———————~ .
| !
| |
i y{aht - !
} .
i | I
| | !
e - 4 i —
Q a X b x 0 a a b b X

Fig. 4.4 ' J/ : Fig. 4.5

Now we take an arbitrary interval (&', #), contained in [a, b]. The
4 points of this interval -

a<x<?b

W
o)
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' *
correspond to those ordinates of the curve y = y(x) which satisfy the
inequality ¥ '
ya) <y < b),
or to possible “fiat spots” with ordinates y(a’) ‘a_nd y(b). Since the
derivative y'(x) = p(x) is zero everywhere on these “flat spots,” they
contribute nothing to the probability P(a’ < X < b’), and therefore
(ﬁg' 45)9 . Y '
D P(@ < X <b) =P(ya) < G < yb).
 Since G is evenly distributed ovcr'((), 1),

. ‘b’ |
P(@) < G < 38 =y — ) = [ plx) ds.
Therefore, '

h!
P@ < X < b) =f px) dx

- and this means exactly that the random variable X, which is a root of
equation (4.2), has the probability density p(x).

Example. The random variable H is said to be uniformly distributed
over the interval [a, b} if its density is constant in this interval:

1
p(x)-—b_‘z foralla < x < b.

In order to. construct the values of H, we set up equation (4.2):

H
dx
L =G

The integral is easily computed:

H—a
‘b—a_G'

Hence, we obtain an explicit formula for H:
H=a+ Gb-a). ‘ (4.3)

Other examples of the application of formula (4.2) will be given in
sections 5.2 and 8.3.

L 4 {—
Q ol
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4.3. Neyman’s Method for the Coustruction of
Continuous Random Variables

It can prove exceedingly difficult to solve equation (4,2) for X; for
- example, when the integral of p(x) is not expressed in terms of elemen-
tary functxons, or when the density of p(x) is given graphically.
. Let us suppose that the random
variable X is defined over a finite
interval (a, b) and its density is
v § , bounded (fig. 4.6):

P(X) < MQ.

The value of X can be constructed
in the following way:
(1) We take two values G’ and
G* of the random variable G
and locate the random point
- (H’, H") with coordinates

] H =a+ G'(b - a), -
‘ Fig. 4.6 / H =GM,. °

(2) If this point lies under the curve y = p(x), then we set x = H';
if it lies above the curve, we reject the pair (G, ¢") and select a new
pair of values. A

The justification for this method is presented in section 9.1,

& -

4.4. On Constructing Normalized Variables

There are many ways of constructing the various random variables.
We shall not deal with al] of them here. They are usually not used unless
the methods of sectxons 4.2 and’4.3 prove ineffective.
Specifically, this happens in the case of a normalized variable Z, since
-~ the equation P

€

v Lo ()=

is not explicitly solvable, and the interval containing possible values of
Z is infinite.

In table B-in the Appendix, values, already constructed, are given for
a normal random variable Z with mathematical expectation £(Z) = 0

ERIC | 36
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and variance Var (2) = 1, It is not hard to prove? that the randdfn

variable

Z'=a+ oZ ‘ (44) Ok

. -t
TR

[ ad

will also be normal and, moreover, it follows from (10) and (1 1) that

E@Z")=a, Var(Z N = a3,

- Thus, formula (2.2), with the help of table B, will allow us to construct
~ any normal variable.

-

'4.5. More About the Example from Section 1.1

Now it is possible to explain how the random points in figures 1.1 and
1.2 were selected. In figure 1.1 the points were chosen with thc co-

o . it m*xﬂwwv 2
- ordinates . ‘ L] 9 “,'

RS
AT ) \.-c‘“.ﬂ‘" S

x=G, y=G".

The values of G’ and G* were computed from groups of five digits from .

"table A: x; = 0.86515; y; = 0.90795; x, = 0.66155; y; = 0.66434, and

sb on.

It can be proved?® that since the abscissas and thc ordinates of these
points are independent, the probability of hitting a point in any region
within the square is equal to the arc% the region. Stated differently,
this means that the points are uniformly-distributed over the square.

In figure 1.2 the points were made with the coordinates

x=05+02Z", y=054%022Z",
wheré\\he values &f Z' and Z~ were taken successively from table B:

% = 0.5+ 02:02005, 3, = 0.5+ 0.2.1.1922;

¢

x3 = 0.5 + 0.2(~0.0077),.... @

One of the points, falling outside the square, was discarded.
From formula (4.4) it follows that the abscissas and ordinates of
these points are normal random variables thh means @ = 0.5 and
variances o2 = 0.04. :

2. Proof is given in section 9.2,
3. Proof is given in section 8.3.

3% -
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s - Simulating
o - a Mass-Supply
System

5.1. Description of the Problem

Let us examine one of the simplest mass-supply systems. Consider- a

- system like the check-out section of a supermarket, consisting of n lines

(or channels, or distribution points), each of which can “wait on cus-

~ tomers.” Demands come into the system, the moments of their entrances

being random..Each demand starts on line number 1. If this line is free
at time T, when the kth demand enters the system, it will begin to supply

* the demand, a process lasting a time 7. If at the instant T} Iine}l;,'is busy, -
the demand is instantly transferred to line 2, and so on. Finally, if all »
.. lines arc busy at the instant T, the system is said to overflow, -

Our problem is to determine how mahny demands (on the average) the

~system satisfies in an interval of time T and how many times it will

overflows . . _
Problems of this type are encountered constantly in the research of

. farket organizations, and not only those providing everyday services.
*"In some very special cases it is possible to find an analytical solution;

but in complex situations like those we shall describe later, the Monte
Carlo method turns out to be the only possible method of calculation.

5,2. The Simple Demand Flow

The first question which comes tip in our examination of this system
is: What is the form of the flow of incoming demands ? This questien is
usually answered by observations of the system, or of similar systems,
over long periods of time. From the study of demand flows’ under
yarious eonditions we can select some frequently encountered cases.

The simple, or Poisson, demand flow occurs when the interval of time

'Y 33
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34 ‘ “Examples of the A:Splimtion of the Monte Carlo Method

§ between two consecutive demands is a randomi variable, distributed
over the interval [0, o) with density A )
ry

p(x) = ae~ox, - \(5-1) o

Formula (5.1) is also called the
exponential distribution (see fig. 5.1,
v 4 o Y. where the densities (5.1) are con-
structed for @ = 1 and g = 2).
It is easy to compute the mathc-r
matical expectation of S

\\m\

- E(S).:j0 xp(xid.xa'ﬁmxae““fci;:.

, After integrating by parts. (u =:q,
Fig. 5.1 dv = ae” °* dx), we obtain

0

E(S) = {—xe-af13°~+ F e **dx = [-_%]: =ia

The parameter a is called the demand flow density. |

The formula for constructing S is easily obtamed from equation (4.2),
which in the present case is written:

) A
j ae ¥ dx =G,

70 - )

Computing the integral on the left, we get the relation

£

and, hence, .
1
= — 111(1 - CI)

The variable 1 — G has exactly the same distribution as G, and so,
instead of this last formula, one can use the formula

N :
§=--InG. , 52



- Simulating a Mass-Supply System 35
5.3, 'The Pian for the Compatation

Let us look at the operation of the systex& of section 5.1 in the case
of the simple demand flow.

To each line we assign a storage location in the memory of a com-
puter, in which we 51@11 register the moment the line becomes free. Let
us designate the next time at-which the ith line will become free by 4.

" At the beginning of the calculation we let the time when the first
demand enters the system, T, equal zero. One can see that at this point -
- all the 4 are equal to 0; all thc lines are free, Th% mlculanon ends at

time Tf Tx + T. B

_ The first demartd enters line 1. This means that for the pcnod t this
line will i busy. Therefore, we should substxtutc for ¢, the new value

(#1)new =Ty + t, add one to the counter of demands met, and return

to examine the second demand.

t us assume that & demands have ah'eady been” xammed It is
necessary, then, to sclect the time for the entrance of the (k + Dth
demand. For this we ‘take the next vilte of G and compute the nexs=
value. of $ (S.) by formula (5.2). Then we compute the entrance txme

Tesr = Tk + 8. I
€
Is the first line free at this time? To estabhsh this 1t is necessary to
. .vcnfy the condition : .

ST ”G&

If this condition is met it means that at time Te,, the ling is free and
can attend to the demand; We therefore replace 1, by T, cs1 + 1, add’
one to the counter, and return for the next demand.

If condition (5.3) is not met, it means that at T, the first Ime is
- busy. Then we test whe:.her the second line is free:

ta < Tiepr ? ¢ (5.4)

A3

If condition (5.4) is met, we replace 1, by Ty,, + 1, add one to the
_counter, and go on to the next demand. °

If gondition (5.4) is not met either, we proceed to a test of the
condition

4 < Thyr -
) It can happen that for all J from [ ton,

tt > Tk+19-

. -
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Smmlatmg a Mass-Sgpply System 37

that is, that at time T',“.1 al!l the lines are busy. In this case we add one
to the overflow counter and go on to examine the next demand.

Each time T, ; is computed, it is necessary to test the condition for
the termmanon of the experiment: :

When this condition is satisfied, the trial comes to an end On the
counters are the numper of demands successfuily met (m;) and the
- pumber of overflows (mg).

Let this experiment be rqpeated N times. Then the results of all the

trials are averaged:

F

E(m) % 5 3. (ma),.

o
E(mo). % Z (mo),,

where (m,), and (mo); are the values of m, and mq obtained on the  jth

trial. '

In figure 5.2 a flow chart of the program which performs this calcula-
tion is given. (If the values of m, and m, for single trials are desired,
they can be printed out in the square marked *end of trial.”)

Y

*5.4. More Complex Problems

It is easy to see that we can use this method to compute results for
more complex systems. For example, the value ¢, rather than being
fixed, can be different for the various lines (this would correspond to
Wifferent equipment or to varying qualifications of the service staff), ora
random variable whose distribution differs for the various lines. The
plan for the calculation remains roughiy the same. The only change is
that a new value of ¢ is generated for each demand and the fermula for
each line is independent of that for the others. - .

One can also €xamine so-called wairing-time systems, which do not

overflow immediately. The demand is stored for a short period ¢’ (its .

waiting time in the sysiem), and, if any line becomes available during
that time, it attends to that demand. \
Systems can also be considered in which the next demand is taken on
by the line which will first become available. It is possible to allow for
“random variations in the density of the demand flow over time, for a
random repair time on each line, and many other possibilities.

- '




33 Examples of the Application of the Mcnge Carlo Method X v

Of course, such simulations are not done éﬁ'ortlessly. In ‘order to -

obtain results of any practical value, one must choose a sound model,
and this requires extremely careful study of the actual demand flows,
time-study observations of the work at t
and so on.
In oPder to study any system of this type, one must know the prob-
abilistic principles of the functioniNg of the various parts of the system.
Then the Monte Carlo method’ permits the computation of the~prob-
abilistic principles of the entire system however complex it may be.
* Such methods of calculation are extremely jelpful in planning enter-
prises. Instead of a costly (and sometimes i ssible) real experiment,
we can conduct experiments on a computer, trying out different methods

of job organization«and of equipment usage.
\ L

various distribution points,

&
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6 o ~Calculating
. the Quality
and Reliability

- of Products

6.1..m Simpl&st\%n for Quality Caftttation

Let ys examine a‘product S, made up of (perhaps many) elements.
For example, S may be awpiece of electrical cquxpment, made of resistors
‘(R(,:,), capacitors (Cy,), tubes, and the like, We define the quality of the

product as th®value of Isingle output parameter U, which can be com- -

puted from the paranfeters of all the clemeiits:

U = f(Ray Ray - - Cap Cap vy v (6.1)

If, for example, U is the voltage in an operating section of an electric

circuit, then by Ohm's law it is possible to construct equations for the
circuit and, solving them, to find U.

In reality the parameters of the elements of

a mechanism are never exactly equal to their

VZR 22 Kiohms indicated values. For example, the resistor
. tolerance 5% illustrated ir figure 6.1 can test out anywhere
Fig. 6.1 .  between 20.0 and 23.1 kilohms.

tions of the parameters of all t elements have on the value of U?
One can try to compute the Hmits of the dimension U, taking the
“worst” values of the parameters of each clement. However, it is not
always clear which values will be the wqrst, Furthermore, if the number
of elements is large, the limits thus computed will be highly over-
estimatedy for it is unlikely that all the parameters will be simultaneously
at theirﬁrst
re, it is more reasonable to calculate the parameters of aII the
‘ elemen;{and the value of U itself by the Monte Carlo method and to
. try to Astimate its mathematical expectation E(U) and variance

L

39 >

The xsﬁén arises: What effect do devia-
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Var (U). E(U) will be the mean value of U for all the parts of the
product, and Var (U) will show how much devxanon of U from E(U)
will be encountered in practice. -

 Recall (see section 2.2) that, in general,

U) # f(E(Rqy), E(&g;), A E(C(;ﬁ’ E(Cay) { s wee)

1t is practically impossible to compute analytically the distribution of
U for any function £ which is at all complex. Sometimes this can be done
experimentally by looking at a large lot of finished products. But even
this is not alwayg possible, certainly not in the design stage.

Let us try to apply our method. To do so, we shall need to know:
(a) the probabilistic characteristics of all the elemefits, and (b) the
function f (more exactly, a way to compute the value of U from any
fixed vale€s Riy R’ 5 Caay Caam e s +-2).

The probability distnbutlon of the parameters of each single element
can be obtained experimentally by examining a large lot of such
elements. Quite-often the dxstribut:on is found to be normal. Therefore,
many experimenters’ proceed in the following way. They consider the
resistance of the ¢lement pictured in figure 6.1 to be a normal random
variable Q with mathematical expectation E(Q) =*22 and with 3¢ = 1.1
(remember that, according to (2.20), it is rare to get a value of @ devia
ting from £(Q) by more than 3¢ on any ‘one trial).

The plan for the calculation is quite simple. For each élement a value
of its parameter is constructed; then the value of U is computed
according to formula (6.1). Repeating the trial N times and obtaining
values U,, U, . .., Uy, we can compute that, approximately,

EU) 5 LSy,

f=1
.

Var (U) ~- [}_ (U ~ —= (Z U,) J
=1
For large N in the latter formula one can replace the factor /(N — 1)
by I/N, and then this formula is a simple consequence of formulas (2.8)
and (2.9). In statistics it has been shown that for smalt N it is better to
keep the factor 1/(V — 1).

6.2. Examples of the Calculation of Reliabiity

Suppose we want to estimate how long, on the averyge, a product
will function properly, assuming that we know the relevant characteris-
tics of each of its components.

14
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If we consider the breakdown time of each component f, to be
constant, then computing the breakdown time of the product presents
no difficuities. For example, for th¢ product schematically represented

- in figure 6.2, in which the break-

t

“
) S down of one component implies
‘ . : _4 ' the breakdown of the _entire
. 1 -
‘ B 3 4 "~ product,
: : ‘ Fig. 6.2 t =-min (fy; fays Lars feay) - (6.2) .
. . ’ R

And for a product, .schcmaticélly represented in figure 6.3, where one.
of the elements is duplicated, ar redundant, ‘

t = min {1, s max (I fw); tor] » (6.3)

since if clement 3 fails, for example, the product will continue to work
‘with the single element 4, '

e e T T In actual practice the break-

‘ i N down time of any component k of

a mechanism takes the form of

a random variable {,,. When we

4 say that a light bulb is good for

L o 1,000 hours, we only mean that

Fig. 6.3 ' ~ this is the average value E(F) of

the variable F. Everyone knows

that one bulb may burn out sooner than another one like it,

1f the density distribution F, is known for each of the components of

_ the product, E(F) can be computed by the Monte Carlo method, follow-

S ing the plan of section 6.1. That is, for cach clement it is possible to con-

B struct a value of the variable Fi; let us call it fi. Then it is possible to

. compute a valye fof the rapdom variable F, representing the breakdown

time of the entire product, by a formula corresponding to (6.2) or (6.3).

Repeating this experiment enough times (N). we can obtain the

appr‘oximutim\ -

1

I I
[{I): N Zf;s
11

where f; is the value £ obtained on the jth trial. -

It must be noted that the question of the distributions F, of break-
down times for the various clements is not at all a simple one. For
fong-lived elements, actua] experiments to determine the distributions
are difficult to perform, since one must wait until enough of the elements
have broken down. L
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6.3. Further Possibilities of the Method

The preceding examples show that the procedure for calculating the
quality of products being designed is quite simple in theory. We must
know the probabilistic characteristics of all the components of the
product, and we must succeed in computing the variahje in which we are
interested as a function of the parameters of these components. Thenwe
can allow for the randomness of the parameters by means of our
simulation. f

From the simulation it is possible to obtain fuch more useful infor-
mation than just the mean and the variance of the variable that interests
us. Suppose that we have obtained a large number of values U,, U,, . . .,
Uy of the random variable U. From these values we can construct the
approximate density distribution of U. In the most general cases, this is
a rather difficult statistical question. Let us limit ourselves, then, to a
concrete example. :

#  Suppose that we have, all together, 120 values U,, Ug, vy Uygp of
the random variable U, all of them contained in the interval:

1 < U <6.5.
«=-We break this interval into eleven (or any number which is neither too
large ner too small) equal intervals of length Ax = 0.5 and count how
) many values of U, fall in each interval. The results are given in figure 6.4.

Fig. 6.4 -

The frequency of hits in any interval yields the proportion of hits in
that interval out of N = 120. In our example the frequencies are: 0.017;
0; 0.008;0.12;0.20; 0.27; 0.14; 0.16; 0.06; 0.008; 0.017. '

On each 6f the intervals of the partition, let us construct a rectangle
with area equal to the frequency of values of U, falling in that interval
(fig. 6.5). In other words, the height of cach rectangle will be equatl to the
frequency divided by Ax. The resulting graph is called a histogram.

The histogram serves as an approximation to the unknown density of
the random variable U. Therefore, for example, the area of the histo-
gram bounded by x = 2.5 and x = 5.5 gives us an approximate value
for the probability . ‘

P2.5< U< 55 ~ 0595,

{
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On the basis of the above calculation (the trial), it is possible to
cstimate that there-is a probability of 0.95 that a value of U/ will fall in
the interval 2.5 < U < 5.5, _ ' :

In figure 6.5 the density of a normal random variable Z” with the
parameters @ == 3,85, v = 0.88 has been congtructcd as a comparison.?

' . _ K L
a |
o
lo 1 -
. [ — -
0 1 2 3 4
Fig. 6.3

If we now compute the probability that Z’ falls within the interval :
2.5 < Z' < 5.5 for this density, we get the “fitted ”” value-0.91.2

1. The numbers @ = 3.85and ¢ = 0.88 were obtained by considering a random
variable with the distribution -

( X1 Xq X3 L X1 )
0.017 0 0008 .- 0.017

where each x, is the value of the midpoint of the kth interval (thus, x; = 1.2§,
%2 = 1.75, and so on), and then calculating the expectation g and the variance ¢?
.of such a random variable by formulas (2.3) and (2.9). This process is called
fitting a normal density to the frequency distribution (*).

2 Here is the method used to compute this value. In accordance with (2.14),
we write

™

I

, ) _ 1 o [B:B ’ _(x - a)ﬁ}
In tﬁe integral we make a substitution for the variable (x—a)fe=1. Then we obtain

’ ‘ 2 - 12
PQS<Z <55 = —om | exp (- 5) d.
s .

where 1, = (2.5 l a)fa = —~1.54 and f; = (5.5 — a)jo = 1.88. The latter integral

-

19



44 Examples of the Application of the Monte Carlo Method

' ' . 64. A Remark

It is unfortunate that calculations of this type are not at present per-
formed more commonly. It is difficult to say why this is so. Most likely it
is because designers and planners are not aware of the possibility.

Moreover, before using the method to simulate any product, one
must find out the probabilistic characteristics of all the components that
go info it. This is ro small task. But it is also true that, knowing these
characteristics, one can evaluate the quality of any product made of
these components. It is even possible to find the variation in quality
when certain components are replaced by others. o

The probabilistic characteristics of the elements will always be'a promi
nent obstacle for those who make such calculations. Nonetheless, one

- might hope that in the near future such calculations will become more
* usual. ' ' p

can be evaluated with the help of tables of the so<alled probabﬂity integral ¢(x),

in which are given the values for x > 0 of the function
~

1 * t3
&x) = 7O .”.. exp (—3) dr .
We obtain A
POS < 20 < 55 = &(1s8) + o188 - 1"~ 0.91,
using the identity ¢{(x)+ & —x) == I, which can easily be verified by looking at the

graph of the normal distribution
4

P(x) = —\—/—(12?) exp (—{) .



7 - Simulating the == !
-~ - . Penetration of —_—
Neutrons L |

.~ through a Block

The laws of probability, as they apply to interactions of single elemen- .
tary particles (neutrons, photons, mesons, and.others} with matter, are
known. Usually it is necessary to find out the macroscopic characteristics
of these processes, those in which an enormous number of such particles
participate: density, current flow, and so on. This situation is similar to
the one we met in chapters 5and 6, and it, too, can be handled by the -
use of the Monte Carlo method. . _ :
Most frequently, perhaps, the Monte Carlo method is used in the .
study of the physics of nettrons. We shall examine an elementary variant C
of the problem of the penetration of neutrons‘through a block. =~

7.1. A Formulation of the Problem I

Let a stream of neutrons with energy E, {all at an angle of 90° on a' ,
homogeneous block of infinite extent but of finite depth .. In collisions
with atoms of the matter of which the block is composed, neutrons can
be deflected elastically or absorbed. Let us assume, for simplicity, that
the energy of a neutron does not change when it is deflected, ang that a
neutron will “rebound ™ off an atom in any direction with equal prob-
ability. This is approximately the casc for matter composed of heavy
atoms. The histories of several neutrons are portrayed in figure 7.1:
neutron (&) penetrated the block, neutron (b) is absorbed, neutron {(c) is -
reflected from the block.

We are required to compute the probability p* of a neutron pene-
trating the block, the probability p -~ of a neutron being reflected from
the block, and the probability p° of a neutron being absprbed by the
block. o ’

45 ) A
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46 Exampies ‘of the Appheauon of the Monte Carlo Method

Interaction of neutrons with matter

consideration by two constants 3,
and 3,, respectively, called the ab-

. ‘ . sorption cross-section and the disper-
b .|+« - sion cross-section. The subscripts ¢
' and s are the imtial letters of the

vy '
< - 5 . words “capture” and *scattering.”
- The sum of these cross-sections is

—— - called the total cross-section

.F%'“.‘ | Z“E*‘*E;-

e o

The physical significance of the  Fross-sections is this: In a collision
of a neutron with an atom of matter the probability of absorption is
cqual to 3./3, and the probability of reflection is 3,/3.

The free path length L of a neutron (that is, the distance between
consecutive collisions) is a random variable. We shall assume that it

[

~can take any positive value from a probability density

plx) = 2 7.

Thxs densxty of the variable L coincides with the density (5.1) of the .
random variable S for the simple demand flow. By analogy with section .

3.2 we can immediately write the expression for the mean free-path length

1

E(L) =12

and the formula i%r constructing L:

L=—(1/56G.

There remains to be clarified the quest@ of how to select the random
direction of the'neutron after the collision. Since the situation is sym-
metric ‘'with respect to the x-axis, the direction can he defined as the
single angle ¢ formed by the final direction of the velocity of the peutron
and the x-axis. It can be proved * that the necessity of havmgcquak prob-
abilities in each direction is in this case equivalent to :m hcmgmecessary
that the cosine of this angle, M = cos ¢, be umformly axstnbutcd over

&
1. Proof is given in section 9.4,

is characterized in the case under
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the mtcrva.l [-—l 1}. From formula (43) letting @ = -1, b =}, the
formiula for comstructing M follows ‘

[ 4

M=2G ~-1.

. 7.2. A Plaa for the Calculation by Means of the
: Simulation of Real Trajectories

Let us assume that a neutron underwent its kth deflection inside the
block at the pomt x; and aftcrwards began to move in the direction M,.
Let us construct the fre&path length

Q=—W2h65

and compute the abscissa of the next
- collision (fig. 7. 2)

Xi41 = X + Lka

- - ' 1 We check to see if the condition for
' penetrating the block has been met:

' Fig. 7.2 Xk D R

If it has, the calculation of the neutron’s tré_}ectory stops, and a 1 1s
added to the counter for penetrated particles. Otherwxse we test the
condition for reflectiont

¢

Xee1 < 0.

" If this condition is met; the calculation of the neutron’s trajectory stops

and-a 1 is added to the counter for reflected particles. If this condition
also fails, that is, if 0 < x,,. < A, it means that the neutron has under-
gone its (k + 1)th collision within the block, and it is necessary to
construct the effect of this collision on the neutron. ‘

Ixz‘laccordance with the method of section 4.1, we take the next value
of G and test the condition for absorpuon

G < Ea/Z[““

- If this last inequality holds, then the calculation of the neutron’s trajec-

tory stops, and a 1 is added to the counter for absorbed particles. If not,
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we consider that the neutron has undergone a deflection at the pomt
Xx+1- Then we generate a new dmecnon of movement

Mkv-rz = 2G — 1 e

and repeat the cycle once more (using different values of G, of course).
All the G are written, without subscripts, since each value of G is used
only once. Up to three values of G gre needed to calculate each jog of
the trajectory.
The initial values for every trajectory are:

.

'\XQ = 0, MQ

After N trajectories have been computed, it is found that N * neutrons
have gone through the block,' N - have been reflected from it, and N°
have been absorbed. Obviously, the desired probabilities are approxi-
mately equal to the ratios

*N'E.:'( : ~i: 'ﬂ.
p.\,«N:. p~Ns po~N [

In figure 7.3 a flow chart of the program for this problem is shown.
. The subscript j is the number of the trajectory, and the subsmpt k is the
collision number along the trajegtory.

This computation procedure, although it is very natural, is not perfect.
- In particular, it is difficuit to determine the probabilities p* and p~ by
this ‘method when they are very small. This is precisely the case one
encounters in caiculating protection against radiation.

However, by more sophisticated applications of the Monte Carlo
- method, even these computations are possible. We will briefly consider
one of the simplest variants of calculation with the help of so-called
“weights.”

7.3. A Plan for the Calculation Using Weights to
Aveid Terminal Absorption

Let us reexamine the problem of neutron penetration. Let us assume
that a"‘packag&:," consisting of a large number w, of individual
neutrons, is traveling along a single trajectory. For a collision at the
point x,; the average number of neutrons in the package which would be
absorbed is w2 />, and the number of neutrons undergoing deflection
would be, on the average, wg>,/2.
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In our program, after each collision, we therefore add the value
‘wo3./S to the absorbed-particle counter, and watch the motion of the
deflected package, assuming that the entire remainder of the package _
is deflected in a single direction.

All the formulas for the calculation given in section 7.2 remain the
same. For each collision the number of neutron9 in the package is
simply reduc&d

Cw =W1¢
Pk+a "S‘"

“since that part of the package comprising w,S,/>. neutrons will be
| absorbed. Now the trajectory cannot be ended by absorption.

The value w, is usually called the weight of the neutron and, instead of'
talking about a * package” consisting of w, neutrons, one speaks of a
neutron with weight w,. The initial weight w, is usually set equal to 1, This
does not conflict with our notion of a *‘large package,” since all the w,
obtained while computing a fi'ajectory contain w, as a common factor.

A flow chart of the program which realizes this calculation is given in
figure' 7.4. It is io more complex than the flow chart in figure 7.3, It is
possible to prove,? however, that calculating p* by this method is
always more efficient than using the metbod of section 7.2. ‘

“7.4. A Remark N \

There are a great many other waysto do the calculation, using various

'weights, but we cannot stop to consider them here. We simply stress -

that the Monte Carlo method enables one to soive many complex
problems about elementary particles. The med‘iummd can corsist of
any substance and can have any geometrical structure thctﬂtrgy of the
particles can, if we sp desire, be changed with each collision, 1t is
possible by this techmque to simulate many other nuclear processes.
For example, ¢ can construct a model for the fissioning of an atom
and the formation of new neutrons by collision with a neutron, and thus
-simulate the conditions for the initiation and maintenance of a chain
reaction. Problems related to this were, in fact, among the first serious
applications of the Monte Carlo method fo scigntific problems,

2. Proof is given in section 9.5.

a .
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> ."a Definite B

The problems examined in chapters 5, j6, and 7"werc probabilistic by
nature, and to use the Monte Carlo method to solve them seemed quite -

- natural. Here a purely mathematical problem is consxdcmd the approxi-

mate evaluation of a definite integral.
Since evaluating a definite integral is equivalent to finding an area,

‘we could use the method of section 1.2, In this chapter, however, we

shall present a more effective method which. allows us to construct
several probabilistic models for solving the problem by the Monte
Carlo method. We shall finally mdxcate how to choose the best from
among all these modeis

- 8.1, The Method of Compitation

Let us examine a function g(x), defiried on the interval 4 < x < b.
Our assignment is t¢ compute approximately the'integral

; .
1= f g dx. @.1)

We select an arbitrary. density distribution py(x), also defined on
the interval [a, b] p.hat is, a function py(x), satisfying conditions (2.15)
and (2.16)). ‘

Finally, besides the random variable ¥, defined on the interval [a, b]
with density py(x), we need a random variable |
' g(V) |
' Py V)

By (3.18), . . :

sin - ] (8=

. 32
o8

H =




"

1

. Evalugting @' Definite Integral - 83

Now let us look at N identical random variables Hl, )‘:’,, .. ".HN, and |

apply the central limit theorem of.section 2 4 to their sum, In this case
fomula (2. 21) is written -

e

g 27{, 'Pi 3"/("““1_))):0.997. | (s.z)‘-

_ This last relation means that xf we choose N values Vi, Va, .. , J(,}, .
then for sufficiently large Ny 3

‘ -

LS 2y a3

"It also shows that there is a very large' probability that the error of = -

approximation in (8.3) will not exceed 3+/(Var (H)/N).

8.2. How to Choose a Plan for the Calculation

‘We saw that to compute the integral (8.1), we could use any random

variable V, defined over the interval [a, b]. In any case

"

E(H) = E(%’%) =1y )

- However, the variance and, hence, the estimate of the error of formula

(8.3) are dependent on what variable ¥ we use. That is,

() e

Var (H) = E(H?) - I? =f
(oS ) a

It can be shown! that this expression is minimized when p,(x) is
proportional to | g(x)|. ‘

Of course, we certainly do not want to choose very complex py(x),
since the procedure for constructing values of ¥ then becomes very
labortous. But 1t is possible to use g(x) as a guide in choosing [)y(X)
(for an exampie, sce section 8.3).

In practice integrals of the form (8.1) are not computed by the Monte
Carlo method; the quadrature formulas provide a more precise tech-
nique. In the transition to multivalued integrals the situation changes.
The quadrature formulas become very complex, while the Monte Carlo
methad remains practically uncéhanged.

1. Proof is given in section 9.6.
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8.3. A Numerical Example
Let us approximately compute the integral

x3 ' _
I= f sinxdx. -
0 e L
The exact value of this integral is known:
o . R
f Sinxdx = [—cosx}5? = 1.
Q9

We shall use two different random variables ¥ for the calculation:
One Wwith constant density 2/x (that is, a umform dl.stnbunon over the
interval [0, =/2]), and one with linear density py(x) = 8x/n»% Both these
densities, together with the function being integrated,, are showi
figure 8.1. It is evident that the linear density most closely fulfills the

"y b @

Fig. 8.1 -

recommgndation in section 8.2, that it is desirable for py(x) 16 be propor-
tional td"sin x. Therefore, one may expect that it 'will yi€ld the, better
result,

(a) Let py(x) = 2/m on the’ interval [0, 7/2]. The formula for con-
structing ¥ can be obtained from formula (4.3) fora = 0 and b = =/2:

Now formula (8.3) takes the form 2 ° N

L
a ~»

.

' o )
7%2—]\—;2}8111;’;.:
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Let N = 10. As values of G Iet us use groups of three digits from

table A (multiplied by 0.001). The intermediate results are collected in-

table 8.1.
Table 8.1 '

et S xee s s, TYT

=

} 1 2 3 4 .5 6 7 8 9 10

G, 0865 0159 0079 0.566 0.155 0.664 0.345 0.655 0.812 0332
¥, 1359 '0.250 0.124 0.889 0.243 1.043 0542 1029 1.275 0521
sin ¥, 0978 0.247 0.124 '0.77660.241 03864 0516 0.857 0.957 0498

The final result of the computation is:

{ 120952,

" (b) Now let p,(x) = 8x/»%. For the construction of V let us use

'equamcn-(ti 2),

I i P

After some simple calculations, we obtain

. v V=36,

N

.Formu}.a (8.3) takes on the form: - ‘

smV
1~8NE 'N.ﬁﬁ_

Let N = 10. We take the same numbers for G as in (a). The mter-

medxate results are coﬁ?:ntc\d in table 8 2. - ﬁ : .
Lo \ : v Table 8 2 )
ol e W;;;_:f__n:;________‘ e g e o s e _mmome e —

i o d 2 3 4 s 6 1 8 9 10

. G; 0865 0.159 0.079 0.566 0.155 0.664 0.345 0.655.0.812 05332

¥, 1.461 0.626 0.442 1.182 0.618 1.280 0923 1.271 1415 0.905

80T 0680 0.936 0.968. 0.783 0.937°0.748 O.863 0.751 0.698 0.868

-
N -

~ b
[N

) T
The rcsult of the calculation i i . -~

T, ~ 1~1~016 . o

‘As we anticipated, the second method gave the more accurate result:
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| 8.4. On Estimating Error

In section 8.1 it was noted that the absolute value of the error in calcu-
“lating an integral 7 practically cannbt, exceed the value 34/(Var (HIN).
In reality, however, the error as a rule turns out to be noticeably less
than this value. Therefore, as a characteristic of error another .value is
often used in practite—the probable errox.

5, so.ma/(%) :

« »

- +

Table 8.3 .
Method Var (H) 3, 5.
. " (@ 0256 . 0.163  0.048

(b) 0.016 0.027 0.016

-

The actual absolute error depends on the particular random numbers -
used in the calculation and can prove to be twice or three times as large .
as 8, or several times smaller. 3, gives us, not the upper limit of the
error, but rather its order of magnitude. In fact, 8§, is very-nearly the
value for which a deviation larger than 83 and a deviation smaller than
8, arc equally likely. To see this, note that we are approximating.f by

1
R:NZm‘

By the central limit theorem of scetion 2.4, R is approximately a normal
random variable with mathematical expectation 7 and standard devia-
tion o £ (Var (/3MWV). But forany narmal random variable 2, it is
not hard to calculate that whatever ¢ and o may be,

v, &
va+ 0.8764 . n
. PAx)dx - 0.5,
' . v ag—Q.8760
L N
whence ~ " 4

a

¥ Pz~ al < 0.675) = 0.5 = P(|z - u| > 0.675),

“that is. deviations frof-the expected yalue larger and smaller than the
probable error 0.6750 are 'qually probable.

L.et ustefurn to the example in section 8.3, From the values given in

tables 8.1 and 8.2, one can approximate the variance Var (/) for both

'
o

. (;.; 2 ) -

L
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- 5T
methods of computation, The suitable equation for the mlculatxon ‘was
given in section 6.1.3

. The approximate values of the variance Var (4 ), the probable errors
calculated from them, and the true absolute errors obtained from

calculation (8,) are showri in table 8. 3 for both methods of calculation.
We see tha; 8, really is on the same "order as 8.

2.4Fér method (a): ' . |
' Y 10
T - . Var(H)—— s [E(smp’,)ﬂ_lﬁ(zsmlf,)} \_‘\
iy T (4.604 — 3.676) = o.zy%
o o . Ct
* For method (b): ‘ . 'i
o ‘ ) "\ & o
’ - 7t 12 in ¥\2 1 {18 sin ¥\2
S v = 2503 () - 5 (5 5]
« ¥ W=55 ,2 A ,10 2~V
' 576 * (6.875— 6.777) = 0.016.
. "’; g
o A
; - / ~
, o ’ Y "
. . * a ~ -‘ ‘.‘
& :
. ‘. A - o
’ e ) ’ M
) "/
g /’ S
{
// . . !
. f } ’
J“*“’\l \‘\ r
\\\ L] . *
.'3 ’./’ < ‘:"‘
P / : .
* ) : .
‘;'g ‘ t
L] :; { R
2) a
j
i
AR ! :
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= Proofs
* of Certain

Propositions

“In this chapter demonstratlons are given for some assertions made in

"the prccedmg chapters. We have gathered them together because they

Y”

d c

seemed to us somewhat cumber-
" some for a popular présentation
"or presupposed knowledge of
probability theory.
' 9.1. The Justification-of
»INgyman’s Method of Cg\ns’mcting
2 Random Variable (Section 4.3)

The random point (H’, H") is
uniformly distributed ‘over the
rectangle abed (fig. 9.1), the area

0 a & b b
Fig. 9.1

"% of which is equal to My(b — a).!

The probability that point (H', H")
is under the curve y = p(x) and

will not be discarded is eqtal to the ratio of the areas

Pp(x)dx

1

L

Moo~ ) ~

M6 — @)

But the probability that the point is under the curve y = p(x) in the
interval @’ < x < &' is similarly equal to the ratio'of the areas

f o Xx) dx -
) Mc(b — a) ,
‘ »
1. Compare section 9.3.
sg

‘6‘4'

-
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Consequently, among all the values of X that are not dlscardcd the
proportion of values which fall in the interval (d', 5') is equal to the
qucmcnt

{2 p(x) dx b_‘ . .
,,§4_°(.b_1_';i_‘2_= L Hx)dx,

: Mo(b e a)

~ which is what we wanted to show:

v 9.2, 'IheDensxtyDistributmnnfaVarmbleZ"—a+aZ
. {(Section 4.4)

It is as‘sumed- that the variable Z is norrr;al, with mathematical
expectation £(Z) = 0 and variance Var (Z) = 1, so that its density is
H — 1 -x%/2)

PAx) = T e i

In order to'compute the density distribution of the vanable Z', Iet us
. ‘choose two arbitrary numbers Xx; < X, and compute the probabxhty

\
P(.x1 < Z' < x3) = P(x; <a+_bZ<x2) \

;P(x————l_a<2<x———’_a)-
[+]

a
Consequently,
o
£
. v 1 (xg—a)a 5 ©
- . Plx, < Z' <'x3) = —=— o3 gy
1, 2 \/2
-7 ) . T J(xy -ale

We simplify this last integral by substituting the variable x' = a + ox.
We get

. re xg .
P(x, < Z' < X3) = Kif??rf exp [~ (x' — @)*20%]dx’, "
X1 N

( whence follows (compare (2.14)) the ncrmahty of the vanablc 7' with
- parameters E(Z’) = a, Var(Z') =

-

55
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9.3, Uniform Distribution of Points in 2 Square (Section 4.5)
Since the coordinates of the point (G, G") are indcpendent, ‘the
density p(x, y) is equal to the product of the densities

\

S px ) =pepey)t e

N

Each of these densities is identically equal to I. This means that
px,y)=1(for 0<x<1and 0 <y<1) and, consequently, the
unifofmity of distribution of the point (G’, G*) in the unit sguare.

""9.4. The Choice of a Random Direction (Section 7.1)

Let us agree 1o specify a d:rcctxon by means- of a unit vector starting
at the origin. The heads of such vectors form the surfagg of the unit
. sphere. Now, the words “any

DO direction -is equally probable”
‘ ;ngan that the head of a vector is
* “"& random point O, uniformly
dlstnbuted over the surface of the
sphere. It follows that the prob-
ability of Q lying in any part of the

surface dS is equal to @S/4u.

Let us choose on the surface of
' : the sphere spherical coordinates
AN (¢, ) (fig. 9.2). Then

<y

' dS = sinddédy, (9.1)
Fig. 9.2 : .
where 0 < ¢ <7, 0 < ¢ < 2m,
Since the coordinates qS‘ and ¢ are indepgndent, the density of the

point (¢, ¢) is equal to the product p(é, ) = po(@)py(¢). From this
equation, relation (9.1), and the rela@n

- ) _ ds
P dbdb = 7
it follows that .

sin qb

PP pl) — 4%

2. This is, in fact, the formal definition of the independence for réndom
variables G’ and G”".

(9.2)

N
ket
~ )
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" Letus mtegratc this expression w:th respect to ¢ from 0 to 2. Takmg
. into account the ﬁbrmahzmg condition

28
| j Py =1,
WEObtAinf . | | . . . '

p@(¢)'~—--s—i’;—"-$: ey

‘Dividing (9.2) by (9.3), we find that

\ 4

PrOr - ©4)

Obviously, ¢ is uniformly djstributed over the interval [0, 27), and the

formula for the coastruction of ¢ will be written thus:
~ - &

Y=2G. )

- We find the formula for thc. construction of d> thh th; ‘help of

equation (4.2):

' 1 -] . . i B
EJ.O smx.dx == ?,
whence
cosd =1~ 20, , (9.6)

Formulas (9.5) and (9.6) allow onc to select (to construct) a random
direction. The values of ¢ in these formulas should, of course, be.

. different.

Formula (9.6) differs from the last formula of section 7.1 only in that
G appears in it rather than | - @, but these variables have identical
distributions.

9.5. 'The Superiority of the Method of Weighting (Section. 7.3)

Let us introduce the random variables N and N’, equal to the
number (weight) of neutrons which passed through the block, and

57
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obtained by calculating one trajectory by the method of section 7.2 and
one by the method of 7.3, respectively.
We know that

E(N) = E..(N’) =

Smcc N can take on only two values, 0 and 1, the dxstnbunon of Ni is
given by the table ‘

1 0

S N='(p+ 1—p*)'

Taking into account that,N? = N, it is not hard to calculate that
Var (N) ='p* = (p*). |
JIt is easy to sce that the variable N’ can take on an ipfinite number of
cvalues: wy = 1, wy = woo />, wa = Wo(3/2)% Way . .., Wy, ... and also
the value O (if the package is reflected from the block instead of passing
through). Therefore, its distribution is given by the table

(K"Q “)1 ”)2 P “7}‘ PN 0)

N' =
: do 91 92 - 4z - 4

The values g, need not interest us, since in any case onc can write the
formula for the variance

, Var (V) = 2 wige = (")
Noticing that all the w, < 1 and thal 37, Wy = E(N) = p*, we
* get the inequality Var (N') <. p* - (p")‘g = Var(N). .

This fact, that the variance of N'is always. less than the variance of N,
shows fhat the method of section 7.3 is always better for calculating p*
than the method of section 7.2. '

The same argument applies to the calculation of p-, and, if the
absorption is not too great, to the calculation of p° also.

: ) »
9.6. The Best Choice for V' (Section 8.2)

~ In section 8.2 we obtained an expression for the variance Var (/).
In order to find the minimum of this expression for all possible choices
of py(x), we make use of an inequality well-known in analysis:

fh ) a’x} “< f " w2() ds- f 2y dx

68
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‘We set u = g(x)/\/(py(x)) and v = \/py(x) then from this mequahty
“we obtam
T 2 gi(x)
U | ()] dx} < j dx j pp(r) dx - f at )d
’_l"hus, .
b 2 "
o . Var(#) = [j |g(x)] dx} — 12, 9.7)
. . \ a ‘- R .

It remains to be shown that the lower bound is reached when p,(x) is
. proportional to |g(x)|.
< . . Let ' - '

A . gl - )
; PO = e -

It is not hard to compute that for the density py(x),

, fﬁb"'&]vdx=[flg(;f)lldxz

Pv(x)
-and the variance Var (H)

*

is really equal to the right side of (9.7).
Let us observe that tofike the ‘ best” density (9.8) in the calculation
/ ds, in practice, impossible. To get it, it is necessary to know the value of
- the integral {7 1g(x)| dx. Butthe evaluation of this last integral presents
a problem just as difficult &s the one we are trying to solve: the evalua-
tion of the integral [} g(x)dx. Therefore, we restricted oursclves to
< the recommendation stated in seetion 8.2,




APPENDIX o Tablm .

*Table 'A. 400 Randam Dggirs

ST TTLWLTESST Lmiesee e meremene — S S

86515 90795 © 66155 66434 56558 12332 94377 57892
69186 03393 42502 99224 88955, - 53758 91641 . 18867
41686 42163 85181 38967\ 33181 . 72664 53807 00607
86522 47171 88059 89342 67248 (09082 12311 50316
72587 93000 89638 78416 27589 99528 14480 50961
52452 42499 33346 83935 - 79130 90410 45420 777587
76773 97526 27256 66447 25731 37525 16287 66181
04825 82134 80317 75120 45904 75601 70492 10274
87113 84778 45863 24520 19976 04925 07824 76044

84754 57616 38132 64294 15218  '49286 89571 ‘42903

T able B, 88 Normal Values’

S L TIE R i m e i i e an [T e . iemhem e dmi— s

0.2005 1.1922 - 0.0077 0 0348 } 0423 - 1 8149 1.1803  0.0033
1.1609 —0.6690 —1.5893  0.5816 1.8818  0.7390 -0.2736 1.0828
0.3864 -0.9245  0.0904 1.5068 —1.1147 02776  0.1012 —1.3566
0.1425 —0.2863 1.2809  0.4043  0.6379 —0.4428 -—-23006 —0.6446
0.9516 —1.7708  2.8854 0.4686 1.4664 1.6852 —0.9690 —0.0831

.~0.5863  0.8574 —0.5557 0.8115 -02676 —1.2496 —1.2125 1.3846

1.1572 09990 ~0.1032  0.5405 —0.6022  0.0093 0.2119 —1.4647
~0.4428 —0.5564 —0.5098 —1.1929 —0.0572 —0.5061 —0.1557 —1.2384
-0.3924 1.7981 0.6141 ~1.359¢6 1.4943 —0.4406 —0.2033 -0.1316

0.8319° 04270 -0.8888 . 0.4167 -0.8513 1.1054 1.2237 —0.7003

0.9780 —0.7679  0.8960 0.5154 -0.7165 0.8563 —1.1630 1.8800

. Random digits imitate va!ucs of a random Vdfldbi&, with dxsmbuuon (3.1)
(se: sectjon 3.1).
" 2. Normal values imitate values of a normal (gaussian) random variable Z with
parameterse = 0, o = 1.
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For further study the reader is referred to the foHowmg bﬁqks
Extensive bxbhographxes are to be found in the first two hstmgs

Buslenko, N. P., Golenko, D. I, Sobol’, I. M., Sragovxch Va.G., and
Shreider, Yu. A. The Monte Carlo Method. Translatcd by G. J. Tee.
New York: Pergamon Press, 1966. The same work was also published
as The Method of Statzsttcal Testmg (New York: Elsevier Publishing

-+ Co., 1964). - e
Hammersley, J. M., and Handscomb, B. C. Monte Carlo Meth@ds
London: Methuen and Co.,,1964. .

Spanier, Jemme and Gelband, Ely M. Monte Carlo Prmc:ples and '
-Neutron Transport Problems. Reading, M‘ss Addison-Wesley Pub-
lishing Co., 1969. b “ :

L ~
Some material dealing with particular matters discussed in chapters 3

and 4 may be found in Monte Carlo Method-tie proceedings of a

symposium), U.S. National Bureau of Standards Apphed Mathematics

Series, no. 12, 1951.
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Editor

The Popular Lectum in-.
‘Mathematics saries, transiated -
from the Russian, -
makes available to English- .
_speaking teachars and students .
some of the best mathematical
- literature of the Soviet Union.
The fecturss are intended to
introduce various aspacts of
mathematical thoughtandto -
engage the studentin :
‘mathematical activity which
will foster independentwork.
- Some of the lectures pravide an
. glgmentary introduction to
- certain nonelementary topics,
‘and others present mathematical
concepts and ideas.In greater
depth. The books contain many
ingenlous probtems with hints,
solutlons, and answers. A |
stgniﬁcant feature is the authors’
use of new approaches to make
complex mathematical topics
accessibie to both high school
and college students.
-y

P
; '

The Un'wex;sity of Chicago Press

’
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.mmmw
1. M. Sobol’

“Translated and ecfaated from

the second Russian edition by
Robert Mesgwer, John Stone, and

_ ‘Peter Fortini

The Monte Carlo meﬂaod isan

| approach to $olving mathemati-

cal and physical problems

_approximately by the simulation 'j

of random qualities. The author's
presentation of this rather
sophisticated fopic is uniquea in
its clarity. Assuming onlya ba.sic
knowledge of elementary ..
caleulus, . M. Sobol’ first

‘reviews the probability theory

required to understand the:
method. Next, he surveys the
ways of generating random
variables on a computerand
the reélative merits of random
number tables, generators,

-and pseudo-random number

techaiques. Examples are then
given of the use of the Monte
Cario method in quality control,
operatfons research, physics,
and numerical analysis.
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matics Institute of the USSR
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