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Preface

SoMe, years ago I accepted an invitation from the Department of
Computer Technology at the Public Vniversity to deliver two lectures
on the Monte Carlo method. These lectures have since been repeated
over the cOurse of several yews and their contents have gradually
settled and "jelled." The present edition also-includes a supplementary
section (chapter 2), about which 1 should,say a few words.

Shortly before the first lecture, I discovered to.* horror that most
of the audience was unfamiliar with probability' theory. Since some
familiar4 with that theory was absolutely necessary, I hurriedly
inserted in the lecture .a section acquainting my listeners with some
be concepts of probability. Chapter 2 of this booklet is an outgrowth
of that .section. -

Surtly everyone has heard and used the words "probability,"
"freqyeney,", and "random varrable." The intuitive notions of prob-
ability and frequency more or iess correspond to the true meanings of
the terms, but the layman's Avtion of a random vjallable is rather
different from the mathematical definition. In chapter 2, therefore, the
concept of probability is assumed to be known, and only the more
complex concept of ki random variable is explained at length. This
section cannot replace a course in probability theory: the presentation
here is greatly simplified, and no proofs are given of the theorems
asserted. But it does give the reader enough acquaintance with randoln
variables for an understanding of the simplest procedures of the Monte
Carlo method.

The principal goal of this booklet is to suggest to specialists in all
areasthat they will encounter problems which can be solved by the'
Monte carlo method.

The ploblems considered in the lectures are fairly simple and have
been drawn from diverse fields. Naturapy, they cannot encompass all

vii



Preface

the areas in which the Mtthod can be applied. For example, there is n9t

a word abtlit medicine in the booklet, although the methods of chapfer
7 do-enable ont to calculate radiation dosages in X4ay therapy. If one
has a program for calculating the absorption of radiation by the various
body tissues, it.is poisible,to select the dosage and direction of irradia-
tion which most effectively ensures th'at no harm is done to healthy
tissues. ,

The present book includes the material read in the lectures. A more
detailed exposition is given of certain examplts, and chapter 9 has been
added.

N

.J

8

I. Sobol'
Moscow, 1967
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\ Introduction to
the Method `"/

The Monte Carlo method is a method of approximately solving
mathematical and physical problems by the simulation of random
quantities. %.

y. The Otigin of the Monte Carlo Method

The generally accepted birth date of the Monte Carlo method is 1949,

when an article entitled "The Monte Carlo Method" appeared. The
American mathematicians J. Neyman and S. Warn are considered its
originators. In the Soviet Union, thc first articles on the. Monte Carlo
method were published in 1955 and 1956.2

The theoretical basis of 'the method has long been known. In the
nineteenth and early twftieth centuries, statistical problems were some-

times solved with the help of random selections, that is, in fact, by the
Monte Carlo method. Prior to the appearance of electronic computers,
this method was not widely applicable since thc simulation of random
quantities by hand is a very laborious process. Thus, the beginning of
the Monte Carlo method as a highly universal numerical technique
became possible only with the appeartince of computers.
sThe name " Monte Carlo" comes fr6m the city of Monte Carlo in the

principality of Monaco, famous for its gambling house. One of the
simplet mechanical devices for obtaining random quantities is the
roulette wheel. This subject will be considered in chapter 3. Perhaps it is

worthwhile to answer here the frequently asked question: " Does the

1. N. Metropolis kind S. Ulam, "The Monte Carlo Method," Jougnal of the

American Statistical Association 44, no. 247 (1949):335-41.
2. These were the articles 13j). V. V. Chavchanidie, Yu. A. Schrcider, and V. S.

yladimirov.'
1

9

.Mb



. 2 Introduction to the Method

Monte Carl method help one win at roulette?" The answer is that it
uoes not; it not even an attempt io do so.
A

-

Example. In order t9 make more
clear -to the-reader what we are
talking about, let us examine a
very simple example. Suppose that
we need to compute the area of a-
plane figure 4. This may be a com-
pletely arbitrary figure with a
curvilinear boundry, given graph-

- it:ally or analttically, connected or
consisting f several pieces. Let
the region be as raepresented in
figure 1.1, and let us assume that

1.1 it is contained completely within
'the unit squitre.

Choose at random N points in the square and designate the-number
of points lying inside S by N'. It is geometrically obvious that the area
of S is approximately eqiial to the ratio N'iN. The greater the N, the
greatert,the accuracy of this estimate.

f

In the example represented in figure 1.1, we selected N 40 points.
Of these, N' = 12 points appeared inside S. The ratio N'IN = 12/40 =
6.30, while the true area of S

11.4

1.2. Two Features of the Molite Carki*ethod

In our example it would,,,have been too. difficult to 'calculate
directly the true area of S. riftirt II of this *lc:we shall consider
some less trivial examples. OUr simple, method, li4W6er, does point out
one feature of the Monte Carlo method, that is; "the sirp*.structure of
the computational algorithm. This algorithm consists,:.4 'Opera], of a
process for prbducing a rnridom.event. The.process is repeated is) times,
each MO beingindependent of the rest, and the results of all the trials
are averaged together. Because of ifs similarity to the process of per-
forming a scientifie experiment, the Monte Carlo method is sometimes

3. In practice, ate Monte CarlO:6,ethiil. is not used for calculating the arca of a
plane figure. There are.other methods for this, which, although they arc more
complicated, guarantee much' greater accuracy.

Still, the Monte Carlo method showri in our example permits us to calculate
very'simply' the "many-dimensional velume" of a abody in manY-dimcn§ional
space; and in such a case the Monte Carlo method often proves to be the only
numerical method useful in solving the problem.

i

I.



Introdigtion to the Method 3
v,

called the method of statistical trials. In our example, the random event
`-consisted of taking a 9andon4oint in the square aLd cheeking to deter-

, mine whether it belonged to S, and the rmults of the trials were aver4ed
together by taking the ratio N'IN.

A second feature of the method is that, .as a rule, the error which we
expect from the caleulation is V(D1N), where Ari is some constant and:
N the number of trials. In our example; it turns out from probability
theory (for proof, see section 2.6) that

D kak A)`= (0.35X1 0.35) ,;.: 61.23 ,

where A is 'the true area of the region S, so V(D/N) = -00.23/40) -
0.076. We "iee.that the actual error of the calculation, 0.05, was not,
after all, unreasonably large.

From the formula

eirtn j(A)

it is clear that to decrease the error by a factor of 10 (in other words;to
obtain another significant digit in the result), it is necessary to ificrease N
(and the amount of work) by a factor of 100.

To attain high precision,in this way is clearly impossible. The Monte
Carlo method is/Aost effective in solving problems jn..t hich the result
need be accurate only to 5-10%. However, any pirticulir problem can
be solved by different variations of the Monte Carlo method* which
assign different values to D. In many i3roblems, asomputational pro-

, cedure which gives D a 'significantly smaller value will considerably
increase the accuracy of the result.

4

1.3. Problems Tint Can Be Solved by the Monte Carlo Method

The Monte Carlo method makes possible the simulation of any proc.;Fss
influenced by random factors. This, however,' is not its only use. For
many mathematical problems involving vio chance, we can artificially
devise, a probabilistic model (freqlently severa4 for solving these prob-
lems. In fact, this was done in the example in section 1.1. For these
reasons the Monte Carlo method can be considered a universal method
for solving mathematical problems.-

./ . .

In foreign literature the term Monte Carlo methods (in the plural) is now
more frequently'used, in view of the fact that the same problem can be solved by
simulating different random variples.

,ii
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4 Introduction to the 'Method .

It is particularly iiitiresting that in certain cases, instead of siniulating
the actial random process, it is advantageous .to use artificial models.:
Such a situation is the topic of ofiapter 7.

More about the example. Let us return to the example4 section 1.1.
For the calculation we needed to choose points at random in the unit
square. How is this actually done?

Let us set up such an experiment. Imagine figure 1.1 (on an increased
scale) hanging on atwall as a target. Some distance from thc wall, N darts
are aimed at the center of thq,square and thrown. Of course, notitl the
darts will fall exactly in the center; they will strike the target at N random
points.° Can these points be used to estimate the, area of 5?

The result of such an experiment
is depicted in figure 1.2. In this
exPeriment N 40, N' = 24, and
the ratio N' IN = 0.6b is almost
double the true value ot the area
(0.35). /14.ieefear that when the
darts are thrown with very great
skill, the result of the experiment ,

will be very bad, as almost all of
the darts will fall near the center
and thus in S.°

We can see that our method of
computing the area will be valid

, only when the random points are
not "'simply random.," but, in addition, "uniformly distributed" over
the whole square. To give these words a precise meaning, we must .
becorne acquainted with the definition of random variables and with
some of their properti8°. This-ilufprrnation is presented in chapter 2. A
reader who has studied probabilitheory may omit all except sections
2.5 anc1,2.6 of chapter 2.

Fig. 1.2

5. We assume that the aarts are not in the hands of the' world champion and
that theY are thrown from a sufficiently great distance from the target.

6. The ways in "which the random p4i.nts were chosen in figures 1.1 and 1.2
will )lie discussed in section 4.5.

;
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Randonl
Variables

We assume that theconcept of probability is more or leis familiar to
the reader, and we passidirectly to the concept of a random variable.

The words " randoni variable," in ordinary English usage, refer to the
outcome of any process which proceeds without any discernible aim or
difection. However, a mathematiaan's use of the words, " random
variable" has a completely definite meaning. He is saying that we do
pot know the value of this quantity iji any given case, but we know
wh4t values it can assUme and we know the probabilities with which it
assumesthese values. On the basis of this information, while we cannot
precisely pr6dict the result of any single trial associated with this
random variable, we ean predict very reliably the total results of a great
number of trials, .The more trials there are (as they say, the larger the
sample is), the more accurate the prediction will be.

2.1. Discrete Random Variables

The random variable X is called discrete if it can assume any of a
discrete set of values,x1,

X is therefore defined by the table

(

x x x

P1 P2 Pn

l 2 n
9 (T)

where" x are the possible values of the variahle X, and
.P Ps, . p are the probabilities corresponding to them. Precisely

C7

1. In probability theory discrete random variables that can assume a countably
infinite number of values x, x, xe, . . are also.considered.

7

0

4



8 Simulating Randoin Vatialges

speaking, the probability \that the random variable has the value xi
(denoted by P(X = xJ) is equal to pi:

,4

i'X=xJ=p.
SoVimes we write px(xi) iestead of pi or P(X =

Table (T) is called the distribution of the random variable.
The numbers x x2, ..., x are arbitrary. However, the probabilities

Pi, P29 p. must satisfy two conditions:
(a) all A art non-negative:

A 0 ; (2.1)
A

(b) the sum of all the pi equals l':

Pi + P2 + + = l. (2.2)

The last condition means that in every event X must assume one of
the values x1, x2, . x..

The number

, _Ts

E(X) =2, xip, (23)
.

is called The expected value, or mathematical expectation, of the random
variable X.

To illustrate the physical meaning of this quantity we write it in the
following form:

E(X) = >-:;17,,ixtP1
Pi

AVe see that E(X) is in a sense the average value of the variable X, in which
the more prObable values are added into the sum with larger weights.2

2.. Averaging with weights is very common in science. For example, in mech-
anics; if masses mi, m2, mn are distributed on the x-axis at the points x,,

x., then the abscissa of thc center of gravity of this system is given by
the formula

x
/7-1 fn.

Of course, in this case the sum of all the masses does not necessarily equal unity.



Randarn Variables 9

Let us mention the basic properties of mathematical expeatation,pif
c is any constant, then

E(X + e),E(X)

If X and2 Y are an

umber' _

(a) 3'4 CE4)'.

o random Vari,ables,.then

E(X + E ( X + (II'

,

VaMA1 4(cAY /E(x)r) (2,7)

(2.6)

is called the varianee prthe rdOiti variable X. That is, the variatice
Var (X) is the maikethaticalexpectation of the squared deviation ofthe f

random variable X from average value E(X). Obviously, V& (4r) p
always. ;

The mithematipal expectation and the variance are the ost im-
portant numbe0,-characterizing thc random variable X. Wiat
practical value?

If we obterve the variable X many times and obtain the. values
X11 X2,-: .(each of which is equal to one of te numbers
'xi, xx), then the arithmetic mean of these numbertill be close

3 to E(X):

-v- + v + v E(X); (2.8)

aini the variance Var (X) characterizes the spread of these values
around the average E(X).

Formula (2.7) can be transformed using formulas (2.4)(24):

whence

Var (X) .= E(X2 2E(X) X + (R(X))2)

E(X2) 2E(X)- E(X) + (E(X))2 ,

Var (X) E(X2) ;- (E(X))2 . (2.9)

It is usually easier in hand computations to find the variance by
formula (2.9) than by formula (2.7).

/ 6' (



'10 Simulating Randora Variables
A

Let us mention the baiic properties of the variance: If c is any
1constant, then

vIr (X + c).= Var (X) ,.

Var (ci) = c2 Var (X).
.

The concept of iiependence of random variable plays an impO.Nant
role in the theory of probability. Let us suppose that, besides the variable

. X, we alio wftch a-random variable Y. If the distribution 6f the variable
-Xdo-es not changewhen we know ale value which the variable Y assumes,
and vice versa, then it is natural to believe that X and Y do n9t depencron

, each other. We then say that the random variables X and Y are inde-
pekent:

The following relations hold for indepeftent random variables X-
.

'and Y:
7E(X/Y) E(X)E(Y) , (2.12)

Var (X + Y) = Vat (X). + (Y) .

Example. Let'us consider a random variable X with the distribution

x (1
2 3 4 5 6 \

Since each of the values is equally probable, the number 9f dots appeariiis
when a die is hrown can be used to realize these values. litt,us calculate
the mathema cal expectation and the variance of X: By formula (2.3),

(X) = + 2 + 3 + 4 + 5 + 6)_ = 3.5 .

By forthula (2'.9),

Var (X) = E(X2) (E(X))2

= i(12 + 22 + 32 + 42_4. 52 4! 62) (3.5)2 7 2.913 .

Example. Let us consider the random vatiable Y with distribution

3 4,\

To realize these values, we can consider a toss of a coin with the condi-
. tion that a head counts 3 points and 3 tail 4 points. In this case,

E(Y) = 0.5.3 4- 0.54 = 3.5 ;
Var ( Y) 0.5(32 + 42) (3.5)2 0.25 .

4



Random Variables 11

iVe see that ECY) = E(X), but Var (1) < Var (X). This could easily
have been anticipated, sin& the values of Y can differ from 3.5 oMy by
± 0.5, while for the values or X the spread calreach + 2.5 .

'

C Random Varables

Let us assume that some radiom is placed at the origin of a coordinate
plane.'As each atom of radium decays, an a-particle is emitted. We shall

describe its direction by the angle b (fig. 3).
Since both in thltrry and practice, any
direction 2.tiliiht is possible, this random

'r variable can assumeany valte from 0 to 27y.

AVe shall say that a random variable X is
continuous if it can assume any value in
some interval [a, b].

A continuous tandom variable X is4.

defined by the assignment of a function
p(x) to the interval [a, b] containing the
possible values of this yariable. p(x) is

Fig. 2.1 called the probability density or :density
6 distribution of the random variable X.

. The significanee of p(x) is as follows: Let (a' , b') be an arbitrary
interval contained in [a, b] (that is, d a', b' b). Then the prob-

5
Ability that X lies in the interval (a' , b') is equal to the integral

P (a' < X < b') f p(x) dx . (2.14)

In figure 2.2 ,the shaded area represents the value of the integral (2.14).

j
a a'

Fig. 2.2'

s

b x

**1



12 Simulating Random Variables

The set,of values of X can be any interval. The interval may contbia
either or both of its endpoints, and even the cases a co and b = co
are possible.' The density p(x), however, must satisfy two condiftas
analogous to conditions (1) and (2) for discresteVariables:

(a) the density p(x) is nonnegativt:

p(x) 0 . , (2.15)

(b) the integral of the density p(x) over the whole interval (a, b) is
equal to.1:

The number

fea p(x) Edx = 1 .

ka) xp(x) dx
cv IP

(2.17) .

is milled the expected v,Jue of a continuous random variable.
The significance of this qudatity is t4fe same as in the case of the

discrete random variable. Indeed, since

xp(x) dx
E(X)

p(x) dx

it is easily seen that this is the average value of X. In fact, X can assume
any value xt.in the interval (a, b) with " weight" p(x)3

Everything explained in section 2.1 from formula (2.4) 'up to and
including formula (2.13) is also valid for continuous random variables.
This includes the definition of variance (2.7), the formula (2.9). for its
computation, and all the properties of E(X) and Var (X). We shall not
repeat them.4"

3. In this case it is also possible to explain the analogous formula in mechanics:
If the linear density of a rod is equal to p(x) for a x b, then the abscissa of
the center of gravity is given by the formula

xp(x) dx

5:17(x) dx

4. This statement is not exactly true for all continuous random variables. In
statistics there arise a Yew continuous random variables for which one or both
of the integrals

E( X) xp(x) dx Var (X) = p(x) dx (E(X))2

diverge; for instance, the Cauchy densily p(x) = (117r)(1 1[1 x']), fur co <
x < co , has infinite variance. I:or these variables, formulas (2.7) through (2.13)
cannot be used, and special methods must be devised to treat them.

9

a

I 4 .



iiandom Varlabkz 13

Let us mention just one mom formula, that for le mathematical
expectation of a random function. As before, let the random. variable X

. -have prObability density p(x). We 'choose an arbitrary continuous func:-.

tionf(x), and consider the redom variable Y f(X), sometimes' caned
a random function. It can be proved that

E(f(X)) = f(x)p(x) dx . (2.18)
a

it

Lefus stress that, genetally speaking, E(f(X)) f(E(X)).
The randohi variable G defined on the

interval All and Ichaving a d ty
p(x) F. 1 is called a uniform distri . iOfl

on [0,1] (fig. 2.3).
Whatever Nkubintegal (a' , b') we -take

withinp, 11, the probability that G liçs in
(a', b`) mama] to:

Fig. 2.3 f p(x) dx b' a' ,
ib:

that is, the length of the stibinterval. In particular, if we divide [0, 1 j

into any number of intervals of cqual length, the probabilities of G
hitting any of these intervals are the same.

It is easy to calculate thqt

1

E(G) = xp(x) dx\-- x dx = ,
0 0

ri
Var (G) x2P(x) dx (go) .

0

In what follows we shall have many uses for the random variable G.

2.3. Normal Random Variables

A normal (or gaussian) random , variable is a mndom variable Z
defined on the whole axis (co, co) and having the density

ith

p(x) = xp
(x a)21

aV27r
e [-

2c4
(2.19)

where a and a > 0 are numerical parameters.



14 Simulating Random Variables

'The parameter a does not affect the shape of the curve p(x): a change
in a results only in gi displaeighent of the'curve along the x-axis. How-

. ever, the shape of the curve does change with a change in a. Indeed, it is
easy to see that

1
max (pfxD = "a)

, If a decreases, the max (p(x)) will inerease. Ho weveli, according to
condition (2.16), all the area .under the curve p(x) is equal to 1. There-

^ fora, the curve will extend upward near x = a, but. will decrease for all
sufficiently large values of x. In fig.t.ve 6 two normal densities are
drawn, obe with a 0

'
a = 1, a.nd another with a = 0; al = 0.5.

(Another, normiodensgty i § drawn_ in figure 6.5 below.)
It is possiblAo- show that . .

, E(Z) := a , Vai(Z) = 0.2.

Normal random variables are endbuntered in pie itiVestigation of
very divetse problems. F`or example, an error a In measurement is
generally a normal random variable. The reason for this will be dis-
cussed shortly.. If the.error in measurement is no?' systematic, then
a = E(8) ----- 0. And the quantity a = A/Var (8), called the standard
deviation of 8, describes th4kerror in the Method of measurement.

The rule of "three sigmas." It is not difficult to determine that fot a dir-
eornel density p, .

..,

04 .3.
p(x) dx = 0.997 ,

fa+30

0 5

3

I.

0 2 3 x

Fig. 2.4



'Random Variables 15

whatever a and a are in (2.19). From (2.14) it fdllows that

P(a 30; < Z < a + 30) = 0.997. (2.20)

The probability 0.997 is very near to 1. We therefore give the latter
formula the 'following interpretation: For a single trial it is practiPally
impossible to obtain a value Z differing from E(Z) by more' Matt 3a.

2.4. The Central Limit Theorem of Probability Theory

This imarkable thebrem wls- first formulated by Laplace. Many
mathen4ticians, including P. L.1Chebyshev, A. A.klarkov, and A. M.
Lyapamolf, have worked.on generalizations gf throriginal result. Its
proof is rather complex. e

Let us consider N indepehdent, identically distributed ra ndoni vari-
ables X1, Ar3, 9 XN; that is to say, the probability densities of' these
variables cdincide. Consequently, their Mathematical expeetations and
variances also coincide.

We write

E(Xi) = E(X2) = = EMI) = m

Var(X1) Var (X2) = = Var (4)

Denote the sum of all these variables by SN:

SN + di2 + + XN

From formulas (2.6) and (2.13) it follows that

E(SN) = E(X1 + X2 + + XN) = Nm ,

Var (SN) = Var (X, + X2 4: + XN) = NV2 .

Now let us consider the normal random variable ZN with these same
-parameters: a = Nm, cr2 = Nv2.

THEOREM 2.1. The density of the sum SN approaches the density of the
normal variable ZN in such a way that for every x,

I SN Nm IZN Nm \
Pk v\I(N)' < vA/(N) < x 1

for all large N.

The significance of this theorem is clear: The sum SN of a large

number of identical random vatifbles is approximately normal

(PSN(x) PzA,00).

9 )
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Indeed, the theorem is alid wider considetaply weaker conditions.
Not all the terms 11, X, . . Xt, have to be identical and independent;
essentially, 'all that is muired is that single terms do not play too great

, a role in the sum.
It is precisely this theorem which explains why normal random

variables are so often 2ncountered in noire. Indeed, whenever we meet
a summing influence over a large number of independent random
factors, the resulting random variable proves to be normal. For
example, the scattering of artillery shells from their target is almost

ways a normal random viriable, 'since it depends on the meteoro-
conditions in all the various regions of.the trajectory as well as

on many other f-Cir-r-. 'g

23. Mc General Scheme of the Monte
Lrio

Method

Suppose that we want to determine some unknown quantity.m. Let
us attempt to devise a random variable X with E(X) = in. Say the
variance of this variable is Var (X) = v2.

Consider N independent random variables 11, X2, . . XN, with
.distributions identical to that of X. If N is su.fficiently large, then,
according to the theorem of section 2.4, the distribution of the sum
SN X1 +42 ± + IN will be approximately normal with param-
eters a = Nm, & No. From equation (2.20) it follows that

P(Nm 3vN/N < SN < Nm 317VN) P4' 0.997 .

Itlwe'aivide the inequality within the parentheses' by N, we obtain an
.
equivalent inequality, and the probability remains the same:

( 317 SN

VP/

We can rewrite the last relation in a, slightly different form:

< -VN
0.997. (2.21)

This is an extremely Important relation for the Monte Carlo method.
It gives us both a method of calculating m and an estimate of the
uncertainty of our estimation.

Indeed, suppose that we have found N values of the random variable

4
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X. From (2.21) it is obvious that the arithmetic mean of these values ,

will be approximately equal to m. With high probability, thecrror of
this approximation does not exceed.- the quantity 3v/VN. Obviously,
this error converges to zero as N: increases.

2.6. A Last Word about tbe Example

Let us now apply some of these ideas to ihe exaMple of section 1.1 to
see how weoriginally obtained the formulf for erroi

4/(fv) 41)4/.(A(IN)

If we.denote the result of the jth single trial by

f 1 , if the jth random point lies inliS
10, if not,

then our estimatF' of the area of S is just XI/N. It is.easy tq see that
the distribution of each Xi is

(
l

1 A Al
\

Hence, by formulas (2.3) and (2.9),

n2 = E(X) = O.(1 A) +.1. A A ,

V2 Var (X) 02.(l A) + 12',1 A2 = A(1 A

v j(ATD) fl(A(1N A))

We have chosen to omit the factor 3 from the formula 3v/A/N s'ince ii

deviation so large as 3(v/A/N) will rarely be encountered. Our formula
ODIN) actually gives the standard deviation of the. norrrkal random
variable which is "closest" to the distribution of (1 X f)I N. It is closely
related to anothet measure of error, the probable error, which we'shall
introduce later, in chapter 8.

5. It is immaterial whether we find one value of each of the variables X1,
X3, . . . XN or N values for the single variable X, since all the randoM variables
have identical distributions.



Generatini
Random Numbers
on a'Computer

The very, thought of generating rabd
f sometimes provokes the question: ."If-

must he progrannned beforehand, where,

e

40

ómpter
aline dO1S

°MAIMS comefrom?"
There.are, indeed, several difficulties asso44with this Point, hut they
belong more to philosophy than to inatbanaafics; and SO we slall not
dwell on them. f;

.

'The random variables discussed in chapiit.Z. mathematical
concepts. The question is whether oni'can
phenbmena experimentally. Such a.- discri:
proves to be approxlmate, and a random variable
physical quantity with perfect accuracy in orii'sgt. of phenomena can
prove' to characierize the same varitity,pOorly during the investigation
of others.

Such problems of deiciption are univertaliSt only within applied
mathematics but in all other fields as well. A' cartographer, for examPle,
can draw a road on a natiogal map as a peifectly straight line. On the
large-scale map of a heavily populated area, however, it must be drawn
wide and crooked, and very close examination reveals all sorts of
propetties of the road: color, texture, and the like,'of which the original
description can take no account whatsoever. Our use of random vari-

ribe natural
'course, always

ch described some

ables should be regarded not as pro
natural phenomena, but as a !oat,'
which we may be interested.

ing a perfect description of
lying parti9lar-problems in

Ordinarily, three ways of obtaining random values are distinguished:
tables of random numbers, random number generators, and the pseudo-
random number method.

3.1. Tables of Random Numbers

Let us perform the, following experiment. We mark the digits
0, 1, 2, .., 9 on ten ideritical slips of paper. We place these slips of

18
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Generating, Random Numbers on a Compute 19

paper in a hat, mix them together, and take out one; then return it and
mix again. We write down the digits obtained in this way in the form
of a table like table A in the Appendix cm table A the digits are arranged
in groups of five for conyenienee).
w Such a table is called a tale of random digits. It is possible to put ft
into a computer's memory. then, in the process of calculation, when we
need values of a random variable with the distribution

0 1 2 411
k0.1 0.1. 0.1 0.1 J

rd We need' only take. the next digiarom this tab e.
Yhe..largest of the published 'random-nu

(3.1)

r tables contaihs one
million digits.' Of course, it Was compiled with the assistance of tech-
nical equipment more sophisticated Wan a hat: A special roulette wheel
was constructed which operated electronically. Figure 3.1 shows an
elementary version of such a wheel. A rotating disc is stopped suddenly,
and the number to which the stationary arrow points is selected.

Fig..3.1

Compiling a gocut table of random numbers is not as easy as it may
appear. Any real physical device produces random variables with a
distribution differing slightly from the ideal distribution. During an
experiment there may well be accidents (for example, one of the slips
of paper in the hat might stick to the lining for some time)..Therefore,
the compiled tables are carefully checked by special statistical tests, to
make sure that no particular characteristics of the group of numbers

1. RAND Corporation, A Million Random Digits with 1610,000 Normal Deviates
(Glencoe: Free Prep, 1955).
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contradict the hypothesis4that the numbers are independent values of a
random variable (3.1).

Let us examine one of the simplest tests. Consider a table con-
taining N.digits. Let the number of zeros in this table be vo, the number
of ones_v1, the number of twos v2, and so on. We calculate the sum

9

(0.1)N)2.

The theory of probability allows us to predict the range in which this
sum should lie. It shduld not be very ,large, since the mathematical
expectation of each of the vi is equal to (0.1)N, but neither should it be
too ,small, since that would _indicate an " overly regular" distribution
of values.

Tebles of random numbers are used only for Monte Carlo mlethod
calculations performed by hand. The fact is that all computers hive
comparatively small internal memories, and a large table will not fit in

. them. To store the table in external memory and then to consult it
continually for numbers slows calculation considerably.

The possibility that, in time, the memoria of computers will increase
sharply should not be ruled out, and in that case randomrnumber tables
might become more widely useful.

3.2. Random-Number Generators

It would seem that the wheel described in section 3.1 could be hooked
up to a calculating machine ana be made to produce random numbers
as needed. However, any mechanical device would be too slo?,, for a
computer. Therefore, v'acuum tube noise is more often used as, a
random-number generator. The noise leVel of the tube is monitored, and
if, within some fixed interval of time, the.noise exceeds a set threshold
an even number of times, a zero is recorded; if an odd number of times,
a one.2

At first glance this is aawery convenient procedure. Suppose in such
generators work in parallel, all the time, and send random zeros and
ones into all the binary places of a particular memory location. At any
point in its calculations the machine can go to this location and-take
from it the random value G.. The values will be ecvenly distributed over
theeinterval 10, 1], though only approximately, of course, each number

2. There are setups whch are even moie statistically perfect.

9



Generating Random Numbers on a Compitter 21

being an m-digit binary fraction of the form 0. DwD(.2). Doo, where
each of the variables Da, imitates a random variable with the dis-
tribution

Yet even this method is not free from defects. First, it is difficult to
check the "quality" of the numbers produced. It is necessary to make
periodic tests, since iny imperfection can lead to a "distribution drift"
(that Ai, the ziros aild ones in one of the places begin to appear in
unequal frequencies). Second, it is often desirable to. be able"to repeat a
calculation on the computer. But it is impossible to duplicate a sequence
of random numbers if they are not held in the memory throughout the
calculation; and if they are held in the memory, we are back to the
random-number tables.

Methods of this sort will undoubtedly prove useful when computers
are constructed especially for solving problems by means of the MTate
Carlo method. For all-purpose computers, however, on which calcula
tions requiring random numbers come up only rarely, it is simply not
economical to maintain and to make use of such special equipment. It is
better to use pseudo-random numbers.

3.3. Pseudo-Random Numbers

So long as the " quality" of the random numbers used can be verified
by special tests, one can ignore the means by which they were produced.
It is even possible to try to generate them through a set formula.

Numbers obtained by a formula that imitate the values of a random
variable G uniformly distributed in [0, I] are called Pseudo-random
numbers. Here the word "imitate" means that these numbers satisfy
the test just as if they were values of a random variable. They will be
quite satisfactory so long as the calculations performed with them
remain ainrelated to the particular formula by which they were produced.

The first algorithm for obtaining pseudo-random numbers was
proposed by J. Neyman. It is called the middle-of-squares method. We
illustrate it with an example.

We are given a four-digit integer n1 = 9876. We square_ it. We
usually obtain an eight-digit number ni2 = 97535376. We takc out the
middle four digits of this number and designate the result n, 5353.

Then we square n, (n,2 = 28654609) and once mpre take out the
middle four digits, obtaining n3 = 6546.
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Then n32 = 42850116, n4 = 8501; n42 = 72267001, n5 = 2670;
n52 = 07128900, no = 1289, and so forth.

The proposed values to be used for the variable G are then 0.9876;
0.5353; 0.6546; 0.8501 0.2670; 0.1289, and so forth.3

This algorithm is unfortunately not suitable, for it tends to givemore
small numbers than it should. It is also prone to falling into "traps,"
such as the sequences 0000, 0000, ..., and 61db, 2100, 4100, 8100,
6100, .... For these reasons various experimenters have worked out
other algorithms.. Some of them take advantage of peculiarities of
specific computers. As,an example, let us examine one such algorithm,
used on the Strela computer.

Example.4 The Strela is a triple-addres's, 'fioating-point computer.
The memory location into which the number x is placed is made up of
forty-three binary places (fig. 3.2). The machine works with binary

111011130 11118381113 36 El

Sign of the coefficient

Fig. 3.2

Sign of the exponent

numbers in the form x = +q' 2", where p is the exponent of the
number and q the coefficient.5 In the jth place there can by a zero or a
one; let us call this value ej. Then

el e2 easq= + + + 9

21 22 235
e3725 + e3824 + + e422°,

In locations 0 and 36, zero represe s the + sign, one the sign.

3. This algorithm can be w en in thc form nk + 1 = Rnk), where F stands for
the aggregate of the operations that arc performed on the number nk in ordei to
obtain nk The number n, is given. The pseudo-random numbers Gi

4. Sec I. M. Sobol', "Psevdosluchainye chisla dlya mashiny Strela" [Pseudo-
random numbers for the Strela computer], Teoriya veroyalnosti i ee primeneniya
[Probability thcory and its applications] 3, no. 2 (1958):205-11.

5. A somewhat different method of floating-point number storage is common
in American computers such as thc IBM 360. Either 32 or 64 binary places,
arranged in groups of eigilt, are used. Real numbers are considered as written
in the form

±q.(16)°- "

where 1/16 q < 1, 0 c p ç 127. The leftmost binary digit records the sign of
the number, 0 for + , 1 for ; the next seven places record the value of p written
as a binary integer; the last 24 or 56...places give the value of the coefficient q. A
method of generating random numbers similar to that of the author can easily
be developed for use with this arrangement.--Trans.

.2.
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After a no1zeo number Go, usually 1, is chosen, the number Gk4.1 is

obtained fro Gk in three operations:
(1) Gk is Multipliecl by a large constant, usually 1017.
(2) The rdpresentation of the product l017G is displaced seven

places to the left, so that the first seven places of the product disappear,
and zeros appear in places 36 to 42.

(3) The absolute value of the resulting number is taken ;_this becomes

This process will yield more than 80,000 random numbers Gk before
the sequence becomes periodic and the numbers begin to repeat.
Various tests on the first 50,000 numbers give completely satisfactory
results. These, numbers have been used in solving a wide variety of
problems.

The advantages of the pseudo-random number method are quite
evident. First, to obtain each number requires only a few simple opera-
tions, so that the speed of generation of random numbers is on the
same order as the computer's work speed. Second, the program
occupies very lin* space in the comiluter's MemOry. Third, the sequence
of Gk can be easily reproduced. Finally, it is only necessary to yerify the
" quality" of such a series once; after that, it can be used many times
for calculations in suitable problems without fear of error:

The single disadvantage of this method is the limited supply of pseudo-
random numbers which it gives. However, there are ways to obtain still

more of them. In particular, it is possible to ch-ange the initial number
Go.

The overwhelming majority of computations currently performed by
the Monte Carlo method use pseudo-random numbers.

01



.--Transformatipns
of Random
Variables

The necessity of simulating different rando4 variables arises in
solving various problems. In the) early, stages of e use of the Monte
Carlo meihod, some experimenters tried to construct a wheel for finding

each random variable. For ex-
ample, in order to find values of a
random variable with the dis-
tribution

I X1 Xs Xs X4

10.5 0.
(4,.1)

25 0.125 , 0.125

one would use the wheel illus.
trated in figure 44, which operates
in the same way as the wheel in

Fig. 4.1 figure 3.1, but which has unequal
divisions, in the proportions pi.

I. However, this turns out to be completely unnecessary. Values Mr any
4kandom variable can be obtained by transformations on the values of .

one " standard " random variable. Usually this role is played by G, the
uniform distribution over the interval [0, 1]. We already know how to
get the values of G.

-

The process of finding the values of some random variable X, by
transforming one or more values of G, we will call the construction of X.

4.1. Constructing a Discrete Random Variable

Assume that we want to obtain values of a random varrable X,with
the distribution

' '
X "=- ( X1 X2

PI P2 Ps/
24

3
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Let us examine the interval 0 y 5 1 and break it up into n ifftervals
with lengths of Dc 19 9 Px. The coordinates of the points of division
will obviously be y = Pl? Y9 = P1 + Pat Y3 = P1 + P; +
Yo-i Pi P + Ps-i-

We number thejesulting intervals 1, 2, .. n (fig. 4.2):

2 3
r 1 1 ,

0 PI P14-P2 P14-P2*P3 1pr7

_ Fig. 4.2 i

a

1 y

Each time we need to "perform an experiment" and to select a value of
X, we shall choose a value of.G and find the point y = G. If this point
lies in the interval numbered i, we will consider that X = xi (for this
trial).

It is easy to demonstrate the validity of such a procedure. Since the
random variable G is uniformly distributed over [O, 1], the probability
that a G is in any interval is equal to the length of that interval. That is,

P(0 5 G < pi) =.
P(P1 G < Psi) = P2

+ P2 + + p_, G 1) = As

According to our procedure, X = x whenever

+ P2 + Pi-1 G < Pi + P2 + pt,

and the probability'of this event is pi.
Of course, on a computer we can get along without figure 4.2. Let us

assume that the numbers x,, x2, ..., x have been placed in successive
storage locations in the memory, and likewise the probabilities
pi,pi + pa, pi + pa + p3, ., 1,A flow chart of the subroutine for the
construction of X is provided in filfare 4.3.

Example. To construct ten values of a random variable T with the
distribution

3 4 \
k0.58 0A2)

3
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Add one to tht;
address of the
memory locatoons
from whch pi
and xi are to
be taken

Let

Restore the
addresses of
pi and x1

Fig. 4.3

For the values of G we take pairs of numbers from table A in the
Appendix multiplieci by 0.01.' Thus, G = 0.86; 0.51; 0.59; 0.07, 0.95;
0.66; 0.15; 0.56; 0.64; 0.34.

Clearly, under our procedure the values of G less than 0.58 correspond
to the value T = 3, and the values of G 0.58 to the value T = 4.
Thus, we obtain the values T = 4; 3; 4; 3; 4; 4; 3; 3; 4; 3.

Note that the order of the values x, x2, ..., x in the distribution X
is arbitrary, although it should be the samehroughout the construction.

4.2.` The Construction of Continuous Random Variables

Now let us assume that we need to get values of a random variable X
which is distributed over the interval [a, b] with density p(x).

L Since in this example the p, are given to two decimal places, it suffices to take
the values of G to two decimal places. In an approximation of this sort, where the
case of G = 0.58 is possible, it should be included with the case G > 0.58 (for
the value G = 0.00 is possible, but not the value G = 1.00). When more decimal
places for G are used, the case Of the equality Ci = ag, is improbable, and it can be
included in either of the inequalities.

3,
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We shall prove that values of X are given by the equation

27

(4.2)

that is, taidng each value of G in turn, we must solve equation (4.2) and
find the iorresrionding value of X.

For the proof let us examine the function (fig. 4.4)

p(x) dx .fxa

From the general properties of density (2.15) and (2.16), it follows that

y(a) = , y(b) = 1,

and, taking the derivative,

y'(x) = p(x) .

This means that the, function y(x) increases monotonically from 0 to 1.
Furthermore, almost any line y = G, where 0 G 1, intersects the
curve y = y(x) in one and pnly one point, the abscissa of which we take
as X. If we agree to take for values of G lying on " flat spots " on the
curve; the value of X corresponding to one of the endpoints of the flat
spot, then equation (4.2) will always have one and only one solution.

Fig. 4.4 Fig. 4.5

Now we take an arbitrary interval (a', b'), contained in [a, 131. The
4 points of this interval

a' < x < b'
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correspond to those ordinates of the curve y = y(x) which satisfy the
inequality

y(d) <y <

or to possible "flat -spots" with ordinates y(a') and y(6'). Since the
derivative y'(x) p(x) is zero everywhere on these "flat spots," they
contribute nothing to the probabflity P(a' < X < b'), and therefore
(fig. 4.5),

P(a' < X <- P(y(a') < G < y(b)) .

Since G is evenly distributed over (0, 1),

P(y(a) < G < y(b')) y(b') y(09

Therefore,

P (a' < X < b') p(x) dx
a

b.

J.,
p(x) dx

and this means exactly that the random variable X, which is a root of
equation (4.2), has the probability density p(x).

Example. The random variable II is said to be uniformly distributed
over the interval [a, I)] if its density is constant in this interval:

for all a < x < b

In order to construct the values of H, we set up equation (4.2):

H dxbaG
The integral is easily computed:

Hence, we obtain an explicit formula for

If --- a + G(b a) . (4.3)

Other examples of the application of formula (4.2) will be given in
sections 5.2 and 8.3.
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43. Neyman's Method for the Construction of
Continuous Random V,ariables

It can prove exceedingly difficult to solve equation (4.2) for X; for
example, when the integral of p(x) is not expressed in terms of elemen-
tary functions, or when the density of p(X) is given graphically.

Let us suppose that the random
variable X is defined over a finite
interval (a, b) and its density is
bounded (fig. 4.6):

p(x) M .

The value of X can be constnicted
in the following way:

(1) We take two values G' and
G" of the random variable G
and locate the random Point
(H', II') with coordinates

H' = a + G'(b a) ,

Fig. 4.6 = CM0.

(2) If this point lies under the curve y = p(x), then we set x
if it lies above the curve, we reject the pair (G' , G") and select a new
pair of values.

The justifica ion for this method is presented in section 9.1.

'4
4.4. On Constructing Normalized Variables

There are many ways of constructing the various random variables.
We shall not deal with all of them here. They are usually not used unless
the methods of sections 4.2 anc1/4.3 prove ineffective.

Specifically, this happens in the case of a normalized variable Z, since
the equation

1 Sz
xp dx G

is not explicitly solvable, and the interval containing possible values of
Z is infinite.

In table B. in the Appendix, values, already constructed, are giyen for
a normal random variable Z with mathematical expectation E(Z) 0

3 f;
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and variance Var (Z) 1. It is not hard to proves that the randm
variable

Z' = a + aZ (4.4)

will also be normal and, moreover, it follows from (10) and (11) that

E(Z') a , Var (r) cr2

Thus, formula (2.2), with the help of table B, will allow us to construct
any normal variable.

4.5. More About the Example from Section 1.1

Now it is possible to explain how the random points in figures 1.1 and
1.2 were selected. In figure 1.1 the points were chosen with the co- .

ordinates .

x = G' , y = G' .

The values of G' and G were computed from groups of five digits from
table A: xi = 0.`86515;y1 = 0.90795; x2 = 0:66155; y2 = 0.66434, and
sb on.

It can be proved3 that since the abscissas and the ordinates 6f these
points are independent, the probabil. t, of hitting 'a point in any region
within the square is equal to the area f the regiOn. Stated differently,
this means that the points are uniforml 'distributed over the square.

In figure 1.2 the points were made with the coordinates

x = 0.5 + 0.22' y = 0.5. + 0.2.Z*,

whe e e values cif Z' and Z" were taken successively from table B:

= 0.5 + 0.2.0.2005 , Yi = 0.5 + 0.2.1.1922 ;

x2 = 0.5 + 0.2(70.0077),

One of the points, falling outside the square, was discarded.
From formula (4.4) it follows that the abscissas and ordinates of

these points are normal random variables with means a = 0.5 and
variances 0--2 = 0.04.

2. Proof is given in section 9.2.
3. Proof is given in section 9.3.
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Simulating
a Mass-Supply
System

-

5.1. Description of the Problem

Let us examine one of the simplest mass-supply systems. Consider a
system like the check-out section of a supermarket, consisting of n lines
(or channels, or distribution points), each of which can " wait on cus-
tomers." Demands come into the system, the moments of their entrances
being random. Each demand starts on line number 1. If this line is free

at time 71, when the kth demand enters the system, it will begin to supply
'.the demand, a process lasting a time t. If at the instant Tk linet,is busy,

the demand is instantly transferred to line 2, and so on. Finally, if all n

' lines are busy at the instant Tk, the system is said to overflow.
Out problem is to determine how many demands (on the aikrage) the

system satisfies in an interval of time T and how many times it will
overflOw.,

Problems of th.is type are encountered constantly in the research of
..parket organizations, and not only those providing everyday services.

In sonie very special cases it is possible to find an analytical solution;
but in complex situations like those we shall describe-later, the Monte
Carlo method.turns out to be the only possible method of calculation.

5.2. The Simple Demand Flow

The first question which comes Up in our examination of this system

is: What is the form of the flow of incoming demands? This question is
usually answered by observations of the system, or of similar systems,

over long periods of time. From the study of demand flows under
various conditions we can select some frequently encountered cases.

The simple, or Poisson, demand flow occurs when the interval of time

33
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S between two consecutive demands is a random variable, distributed
over the interval [0, 03) with density

o,

p(x) = ae- (5.1)

Fi5. 5.1

E(S) =

Formula (5.1) is also called the
exponential distribution (see fig. 5.1,
where the densities (5.1) are con-
structed for a = 1 and a = 2).

It is gasy to compute the mathe-,
matical expectation of 5:

63

E(S) = xp(x) dx =.f xae-"dx.
a 0

After integrating by parts .(u
dv ae-"dx), we obtain

a a

The parameter a is called the demand flow density.
The formula for constructing S is easily obtained &on} equation (4.2),

which in the present case is written:

i's
ae-" dx G .

11.,

Computing the integral on the left, we get the relation

and, hence,

e-as G ,

=
1

ln (1 G).
a

c

The variable 1 G has exactly the same distribution as G, and so,
instead of this last formula, one can use the formula

S = In G .
-a (5.2)
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53. site Pian for the Computation

Let us look at the operation of the systa of section 5.1 in the case
of the simple demand flow.

To each line me assign a storage location in the memory of a com-
puter, in which we Slka II register the moment the line becomes free. Lct
us designate the next time at.which the ith line will become free by 4.
At the beginning cif the calculation we let the tirne when the first
demand enters the system, T1, equal zero. One can see that at Oils point
all the 4 are equal to 0; all the lines are free. Th% calculation ends at
time T1 = 7.1 + T.

The first demand enters line 1. This means that for the period t this
line will 1 busy. Therefore, we should substitute for 11 the new value

=,T1 + t, add one to the counter of demands mei, and return
to examine the second demand.
411iLet us assume that k demands have already been fxamined. it is
necessary, then, to select the time for the entrance ot the (k + 1)th
demand. For this we take the next valtie of G and compute the ne* .
value of S (Sk) by formula (5.2). Then we compute the entrance time

35
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Tk+1 = Tk Sk

Is the first line free at this time? To establish this it is necessary to
. verify, the condition

1.1 Tk4.1 (5.3)

If this cbridition is met, it means that at time Tk+ 1 the line is free and
can attend to the demand. We therefore replace t, by T", + 1, add
one to the counter, and return for the next demand.

If condition (5.3) is not met, it means that at Tk+i the first line is
busy. Then we test whether the second line is free:

1'2 tic+ 1 ? (5.4)

If condition (5.4) is met, we replacc t2 6y Tk+i + t, add one to the
counter, and go on to the next demand.

If ,condition (5.4) is not met either, we proceed to a test of the
condition

Tk+1

It can happen that for all i from 1 to n,

ti >

4
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Data inppt

end of Mal

add 1 to the
demands.filled
counter

add 1 to the
overflow counter

results to output
end of program

Fig. 5,2

A
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that is, that at time Tk+1 all the lines are busy..In this case we add one
to the overflow counter and go on to examine the next demand.

Each time Tx+ l is computed, it is necessary to test the condition for
the termination of the experiment:

Tk+1 > Tf

When this condition is satisfied, the trial comes to an end. On the
counters are the number of demands succeSsfully met (nd) and the
number of overflows (mo).

Let this experiment be repeated N times: Then the results of all the
trials are averaged:.

gind) A
1

E(N) Z; (Mal
1 1

where (m4)5 and (m0), are the values of md and mo obtained on the jth
trial.

In figure 5.2 a flow chart of the program which performs this calcula-
tion is given. (If the values of md and mo for single trials are desired,
they can be printed out in the square marked "end of trial.")

- 5.4. More Complex Problems

It is easy to see that we can use this method to compute results for
more complex systems. For example, the value t, rather than being
fixed, can be different for the various lines (this *ould correspond to
'different equipment or to varying qualifications of the service staff), or a
random variable whose distribution differs for the various lines. The
plan for the calculation remains roughly the same. The only change is
that a new value of t is generated for each demand and the formula for
each line is independent of that for the others.

One cark also examine so-calfed waiting-time systems, which do not
overflow immediately. The demand is stored for a short period t' (its
waiting time in the system), and, if any line becomes available during
that time,. it attends to that demand.

Systems can also be considered in which the next demand is taken on
by the line which will first become available. It is possible to allow for
random variations in the density of the demand flow over time, for a
random repair time on each line, and many other possibilities.

p.

A., 3

,
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Of course, such simulations are not done effortlessly. In order to
obtain results of any practical value, one must choose a sound model,
and this requires extremely careful study of the actual demand flows,
time-study observations of the work at t various distribution.points;
and so on.

In order to study any system o s type, one must know the prob-
abilistic principles of the functioniig of the various parts of the system.
Then the Monte Carlp methodIpermits the computation of tht*Torob-
abilistic principles of the entire,systemwhowever complex it may be.

Such methods of calculation are extremely e ful in planning enter-
prises. Instead of a costly (and sometimes i ssible) real experiment,
we can conduct experiments on a computer, trying oqt different methods
.of job organization.and of equipment usage.

4

ktb



Calculating
the Quality
and Reliability
of Products

6.1., The Simplestiian for Quality. Catenation
,

Let us examine a-product S, made up of (perhaps many) elements.
For exam*, S may be aviece of electrical equipment, made of resistors

capacitors (C(k)), tubes, and the like, We define the quality of the
product as thyalue of A-single output parameter U, which can be com-
puted from the parameters of all the elements:

U Ca), Co), ; )'. (6.1)

If, for example, U is the voltage in an pperating section of an electric
circuit, then by Ohm's law it is possible to construct equations for the
circuit and, solving them, to find U.

In reality the parameters of the elements of
a mechanism are never exactly equal to-their

VZR 22 KlIohms indicated values. For example, the resistor
tolerance 5% illustrated in' figure 6.1 can test out anywhere

Fig. 6.1 between 20.0 and 23.1 kilohms.
The qwstion arises: What effect do devia-

tions of the parameters of all tlxse elements have on the value of U?
One can try to compute the limits of the dimension U, taking the
worst" values of the parameters of each element. However, it is not

always clear which values will be the warst Furthermore, if the number
of elements is ,large, the limits thus computed will be highly over-
estima for it is unlikely that all the parameters will be simultaneously
at their w rst.

TbAuf re, it is more reasonable to calculate the parameters of all the
elemenp and the value of U itself by the Monte Carlo method and to
try to kstimatc its mathematical expectation E(U) and variance

39
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Var (U). E(U) will be the mean value of U for all the parts of the
product, and. Var (U) will show how much deviation of U from E(U)
will be encountered in practice.

Recall (see section 2.2) that, in general,

f(E(Rm), E(R(3)), . .; E(C:(1), E(Cm), .;

.1t is practically impossible to compute analytically the distribution of
U for an? function f which is at all Complex. Sometimes this cap be,done
experimentally by looking at a large lot of finished products. Biht even
this is not alwaylpossible, certainly not in the design stage.

Let us try to apply our method. To do so, we shall need to know:
(a) the probabilistic characteristics of all the elemeks, and (b) the
function f (more exactly, a way to compute the value of U from any
fixed valais R(1), R(2), f. ; C(1), C(2), . ; )

The probability distribution of the parameters of each single element
can be obtained experimentally by examining a large lot of such
elements. Quite.often the distribution is fdund to be normal. Therefore,
many experimenters procc4d in the following way. They consider the
resistance of the element pictured in figure 6.1 to be a normal random
variable Q with mathematical expectation E(Q) =4122 and with 3cr = 1.1
(remember that, according to (2.20), it is rare to get a value o..f Q
ting from E(Q) by more than 3a on any 'one trial).

The plan for the calculation is quite simple. For each element a value
of its parameter is constructed ; then the value of U is computed
according to formula (6.1). Repeating the trial N times end obtaining
values U1, 112, . . UN, we can compute that, approximately,

Al

E(U)
N 1.1

Var (U)
1

N 1

141 N,

( U1)2 ui 1

I- 1 1

For large N in thclatter formula one can replace the factor 11(N. 1)

by 1IN, and then this formula is a simple consequence of formulas (2.8)
and (2.9). In statistics it has been shown that for small N it is better to
keep the factor 1/(N .1).

6.2. Examples of the Calculation of Rehab' 1 ity

Suppose we want to estimate how long, on the ave ge, a product
will function properly, assuming that we know the relevant characteris-
tics of each of its components.
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If we consider the breakdown time of each component to to be a
constant, then computing the breakdown time of the product presents
no difficulties. For example, for theproduct schematically represented

in figure 6.2, in which the break-
down of one component implies
the breakdown of the entire
product,

Fig. 6.2 min (to)

And for a product, schematically represented in
of the elements is duplicated, qr redundant,

t min [t"); i(2); nia), (t(3), I'm);

sMce if element 3 fails, for example, the, product
*with the single element 4.

; i(2); t(3); 1(4)) . (6.2)

figure 6.3, where one

t(5)] (6.3)

will continue to work

In actual practice the break-
down time of any component k of
a mechanism takes the form of
a random variable Go. When we
say that a light bulb is good for
1,000 hours, we only mean that

Fig. 6.3 this is the average value E(F) of
ttie variable F. Everyone knows

that one bulb may burn out sooner than another .one like it,
If the density distribution F(,) is known ror each of the components of

.the product, E(F) can be computed by the Monte Carlo method, follow-
ing the plan of section 6.1. That is, for each element it is possible to con-

struct a value of the variable f*,; let us call it J... `then it is possible to
compute a valuefof the random variable representing the breakdown

time of the entire product, by a formula corresponding to (6.2) or (6.3).
Repeating this experiment enough times (N). we can obtain the

approximation
I

1-;( )
N

where r is the value,fobtained on the jth trial.
It must` bc noted that the question of the distributions F,k, of break-

down times for the various elements is not at all a simple one. For
Jong-lived elements, actual experiments to determine the distributions

are difficult to perform, since one must wait until enough of the elements

have broken down.

4 '7r
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6.3. Further Possibilities 'of the Method

The preceding examples show that the procedure for calculating the
quality of products being designed is quite simple in theory. We must
know the probabilistic characteristics of all the components of the
product, and we must succeed in computing the variabje in which we are
interested as a function of the parameters of these components. Then Nve
can allow for the randomness of the parameters by means of our
simulation.

'From the simulation it is possible to obtain Muchmore useful infor-
mation than just the mean and the variance of the variable that interests
us. Suppose that we have obtained a large number of values U, Us,
UN of the random variable U. From these values we can construct the
approximate density distribution of U. In the most general eases, this is
a rather difficult statistical question. Let us limit ourselves, then, to a
concrete example.

Suppose that we have, all together, 120 values U1, U2, U120 of
the random variable U, all of them contained in the interval

1 < Uf < 6.5 .

break this interval into eleven (or any number which is neither too
large ner too small) equal intervals of length Ax = 0.5 and count how
many values of Ui fall in each interval. The results are given in figure 6,4.

15 24 32 17 19

3 4 5 6

Fig. 6.4 -

The frequency of hits in any interval yields the proportion of hits,in
that interval out of N = 120. In our example the frequencies are: 0.017;
0; 0.008; 0.12; 0.20; 0.27; 0.14; 0.16; 0.06; 0.008; 0.017.

On each of the intervals of the partition, let us construct a rectangle
with area equal to the frequency of values of U, falling in that interval
(fig. 6.5). In other words, the height of each rectangle will be equal to the
frequency divided by Ax. The resulting graph is called a histogram.

The histogram serves as an approximation to the unknown density of
the random variable U. Therefore, for, example, the area of the histo-
gram hounded by x = 2.5 and x = 5.5 gives us an approximate value
for the probability

P(2.5 < U < 5.5) 0.95 .
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On the basis of the above calculation (the trial), it is possible to
estimate that there-is a probability of 0.95 that a value of U will fall in

the interval 2.5 < U < 5.5.
In figure 6.5 the density of a normal random variable Z' with the

parameters a === 3,85, (7 = 0.88 has been constructed as a comparison.1

If we now compute the probability that Z' falls within the interval
2.5 < Z' < 5.5 for this density, we get the "fitted" value-0.91.2

1. The numbers a = 3.85 and a 0.88 were obtained by considering a random
variable with the distribution

Xx X2 X3 XII \
k0.017 0 0.008 0.017)

(*)

where each xk is the value of the midpoint of the kth interval (thus, x1 = 1.25,
x2 = 1.75, and so on), and then calculating the expectation a and the variance (22
.of such a random variable by formulas (2.3) and (2.9). This process is called
fitting a normal density to the frequency distribution (*).

2. Here is the method used to compute this value. In accordance with (2.14),
we write

P(2.5) < Z'
1 C5.5 021

< 5.5) (11,/(222) .12,5 2a2 j

In the integral we make a substitution for the variable (xa)kr = t. Then we obtain

where ti = (2.5

V(279 ft: exp
P(2.5 < Z' < 5.5) = dt ,

a 1.54 and t2 -= (5.5 a)la = 1.88. The latter integral

1,9

IMO
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6.4. A Remark

It is unfortunate that calculations of this type are not at present per-
formed more commonly. It is difficult to say why this is so,. Most likely it
is because designers and planners are not aware of the possibility.

Moreover, before using the method to simulate any product, one
must find out the probabilistic characteristics of all the components that
go into it. This is no small task. But it is also true that, knowing these
characteristics, one can evaluate the quality of any product made of
these components. It is even possible to find the variation in quality
when certain components are replaced by others..

The probabilistic characteristics of the elements will always bea prom it
nent obstacle for those who make such calculations. Nonetheless, one
might hope that in the near future such calculations will become more
usual.

can be evaluated with thc help of tables of the so-called probability integral 0(x),
in which are given the values for x 0 of the function

94X) cxp (;-)V(277),

We obtain
if#

P(2.5 < Z' < 5.5) 0(1.54) + 0(1.88) 1 0.91,

using thc identity gx)-1- c(x) 1, which can easily be verified by looking al the
graph of the normal distribution

1P(x) = exp (--
%/(27r)



Simulating the
Penetratioi of
Neutrons
through a Block

The laws of probability, as they apply to interactions of single elemen-

tary particles (neutrons, photons, melons, and-others) with matter, are
known. Usually it is necessary to find out the macroscopic characteristics
of these processes, thOse in which an enormous number of such particles
participate: density, current flow, and so on. This situation is similar to
the one we met in chapters 5 and 6, and it, too, can be handled by the
use of the Monte Carlo method.

Most frequently, perhaps, the Monte Carlo method is used iu the
study of the physics of netitrons. We ;tall examine an elementary variant
of the problem of the penetration of neutrons through a block.

7.1. A. Formulation of the Problem

Let a stream of neutrons with energy Eo fall at an angle of 900 on a'
homogeneous block of infinite extent but of finite depth.h. In collisions
with atoms of the matter,of whieh the block is composed, neutrons can
be deflected elastically or absorbed. Let us issume, for simplicity, that
the energy of a neutron does not change when it is deflected, aisg, that a
neutron will "rebound" off an atom in any direction with equill prob-
ability. This is approximately the case for matter Composed of heavy
atoms. The histories of several neutrons are portrayed in figure 7.1:
neutron (d) penetrated the block, neutron (b) is absorbed, neutron (c) is
reflected from the block.

We are required to compute the probability p of a neutron pene-
trating the block, the probability p of a neutron being reflected from
the block, and the probability p° of a neutron being absorbed hy the

block.
45
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.1

(..eg. 7.1

Interaction of neutrons with matter
is characterized in the case under
consideration by two constants 2,
and 1,, respectively, called the ab-
sorption cross-section and the disper-
sion cross-section. The subscripts c
and s are the initial letters of the
words "capture" and "scattering."

The sum of these cross-sections is
called the total cross-section

The physical significance of the,Fross-sections is this: In a collision
of a neutron' with an atom of matter the probability of absorption is
equal to 1,/2, and the probability of reflection is

The free path length L of a neutron (that is, the distance between
consecutive Collisions) is a random variable. We shall aSsume that it
can take any positive value from a probability density

p(x) Z x

This density of the variable L coincides wh the density (5.1) of the
random variable S for the simple demand flow. By analogy with seWon
5.2 we can immediately write the expression for the mean free-path length

E(L)

and the formula Zr constructing L:

L = (l/1) In G

There remains to be clarified the questP of h9v to select the random
direction of the .neutron after the collision. Since the situation is sym-
metric 'with respect to the x-axis, the direction can be defined as the
single angle 0 formed by the final direction of the velocity,ethe neutron
and the x-axis. It can be proved' that the necessity of hFeirjg.:cqual-prob-
abilities in each direction is in this case equivalent to its beffigtiecessary
that the cosine of this angle, M = cos 0, be uniformly-acstributed over

4191. Proof is given in section 9.4.
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the interval [ I, 1]. From formula (4.3), letting a = I, b 1, the
form\tila for onstructing M follows:

1 1 . 2G 1.

72. A Plan for the Calculation by Means of tile
Simulation of Real Trajectoriea

Let us assume that a neutron underwent its kth deflection inside the
block at the point ,.rk and afterwards began to move in the direction Mk.

Let u consliuct the free-path length

Fig. 7.2

Lk = (1/X) In G

and compute the abscissa of the next
collision (fig. 7.2)

Xk +1 = Xk + LkMk

Ve check to see if the condition for
penetrating the block has been met:

+ > h

If it has, the calculation of the neutron's trajectory stops, and a 1 is
added to the counter fof penetrated particles. Otherwise--; we test the
condition for reflectiofir

xic < 0 .

If this condition is met: the calculation of the neutron,s trajectory stops
and a l is added to the counter for reflected particles. If this condition
also fails, that is, if 0 < xk < h, it means that the neutron has under-
gone its (k + 1)th collision within the block, and it is necessary to
construct the effect of this collision on the neutron.

Irtaccordance with the method of section 4.1, we take the next value
of G 'and test the condition for absorption:

G < L/Er

If this last inequality holds, then the calculation of the neutron's trajec-
tory stops, and a I is added.to the counter for absorbed particles. If not,

/
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we consider that the nention has undergone a deflection at the point
441. Then we generate a new direction of movement .

Ackl = 2G 1

and repeat the cycle once more (using different values of G, of course).
All the G are written,without subcripts, since each value of G is used

only once. Up to three values of G are needed to calculate each jog of
the trajectory.

The initial values for every trajectory are:

= 0 , mo = 1.

After N trajectories have been computed, it is found that N+ neutrons
have gone through the .block,, N have been reflected from it, and N°
have been absorbed. Obviously, the desired probabhities are approxi7
mately equal to the ratios

N+
Po 7

In figure 7.3 a flow chart of the program for this problem is shown.
, The subscript j is the number of the trajectory, and the subscript k is the

collision number along the trajectory.
This computation procedure, although it is very natural, is not perfect.

In particular, it is difficult to determine the probabilities p + and p- by
this :method when they are very small. This is precisely the case one
encounters in calculating protection against radiation.

However, by more sophisticated applications of the Monte Carlo
method, even these computations are possible. We will briefly consider
one of the simplest variants of calculation with the help of so-called
"weights."

7.3. A Plan for the Calculation Using Weights to
Avoid Terminal dibsorption

Let us reexamine the problem of neutron penetration. Let us assume
that a "package," consisting of a large number iv, of individual
neutrons, is traveling along a single trajectory. For a collision at the
point x1 the average number of neutrons in the package which would be
absorbed is wZ/, and 'the number of neutrons undergoing deflection
would be, on the average,

\
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In our program, after each collision, we therefore add Ihe value
wo/c/X to the absorbed-particle counter, and watch the motion of the
deflected package, assuming that the entire remainder of the package
is deflected in a single direction.

All the formulas for the calculation given in section 7.2 remain the
same. For each collision the number of neutrons in the package is
&imply reduced :

Wkls
Wk+1 =

since that part of the package comprising wkLII neutrons will be
absorbed. Now, the trajectory cannot be ended by absorption.

The value wk is usually called the weight of the neutrOn and, instead.Ofe
talking about a " package" consisting of wk neutrons, one speaks of a
neutron with weight wk. The initial weight wo is usually set equal to 1. This

, does not conflict with our notion of a "large package," since all the wk
obtained while computing a trajectory contain wo as a common factor.

A flow chart of the program which realizes this calculation is given in
figure. 7.4. It is no more complex than the flow chart in figure 7.3. It is
possible to prove,2 however, that calculating p+ by this method is
always more efficient than using the method of section 7.2.

47.4. A Remark

There are a great many other ways-to do the calculation, using various
weights,,,but we cannot stpp to consider them here. We .simply stress
that the Monte Carlo method enables one to:solve many complex
problems about elementary particles: The raedluna*d tart consist of
any substanCe and can have any geometrical structure rtheenergy of the
particles can, if we sp desire, be changed with each collision. It is
possible by this technique to simulate many other nuclear processes.
For exaMple, %e can construct a model for the tissioning of an atom
and the formation of new neutrons by collision with a neutron, and thus
simulate the conditions for the initiation and maintenance of a chain
reaction. Problems related to this were, in tact, among the first serious
applications of the Monte Carlo method to scientific problems.

2. Pxoof Ss given in section 9.5.



Evaluating
a Definite
Integral

The problems examined in chapters 5, 6, and 7 were probabilistic by
nature, and to use the Monte Carlo method to solve them seemed quite
natural. Here a purely mathematical problem is considered: the approxi-
mate evaluation of a definite integral.

Since evaluating a definite integral is equivalent to finding an area,
we could use the method of section 1.2. In this chapter, however, we
shall present a more effective method, which, allows us to construct
several probabilistic models for solving the problem by the Monte'
Carlo method. We shall finally indicate how to choose the best from
among all these models.

8.1. The Method of Compiitation

Let us examine a function g(x), defined on the interval a x b.

Our assignment is to compute approximately the'integral

g(x) dx-. (8.1)

We select an arbitrary density distribution pv(r), also defined on
the interval [a, b] (Mat is, a function pv(x), satisfying conditions (2.15)
and (2.16)).

Finally, besides the random variable 4/, defined on the interval [a, b]
with density Mx), we need a random variable

g(V)
p(V)

By (3.18),

b g ( x)
E(H) j. (-1-v-Fo)Pv(x)

j2
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0

Now let us look at N identical random variables 141, 1/2, ..., HN, and
apply the central limit theorem of,section 2.4 tti their sum. In this case
formula (2.21) is written

.`

17H j(Vutr,H)))
8.2)

This last relation means that if we choose N values 1/19 V2r I KW:

then for sufficiently large

1 g(Vi)

N 17v(V5)
(8.3)

It also shows that there is a very large probability that the error of
approximation in (8.3) will not exceed '3V(Var (11)IN).

8.2. How to Choose a Plan for the Calculation

We saw that to compute the integral (8.1), we cotild use any random
variable V, defined dyer the interval [a, b]. In any case

E(H) E(.g(n\
)/pv(v

;
tt,

However, the variance and, hence, the estimate of the error of formula
(8.3) are dependent on what variable V we use. That is,

g dxVar (H) E(II2) I2 =
.f

2(X) 12 .

a pv(x.)

It can be shown 1 that this expression is, minimized when pv(x) is
proportional to ig(x)1.

Of course, we certainly do not want to choose very complex pv(4,
since the prOcedure for constructing values of V then becomes very
laborious. But it is possible .to use g(x),as a guide in choosing py(x)
(for an example, see section 8.3).

In practice integrals of the form (8.1) are not computed by the Monte
Carlo method; the quadrature formulas provide a more precise tech-
nique. in the transition to multivalued integrals the situation changes.
The quadrature formulas become_very complex, while the Monte'Carlo
methal remains practically unchanged.

I. Proof is given in section 9.ti.

1
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8.3. A Numerical Example

Let us approximately compute the integral
J,

x/2

= f sin x dr .

the exact value of this integral is known:

f142

gin x dx [cos x]osi2

We shall use two different random variables V for the calculation:
One Nvith constant density 2/77 (that is, a uniform distribution over the
interval [0, ir/21), and one with linear density pv(x) = 8x1v2. Tioth these
densities, together with the function being integrated,, are -sho4 in
figure 8.1. It is evident that ttie linear density most closely fulfills 1,he

Fig. 8.1

recommipdation in section 8.2, that it is desirable for pv(x) to-be propor-,
tional t sin x. Therefore, one may expect that it 'will yield the, better
result.

(a) Let pv(x) 2/7r on the. interval [0, 7421 The formula for con-
structing V can be obtained from formula (4.3) for a 0 and b = 7712:

ttr
7TGV -
2

Now formula (8.3) takes the form
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Let N = 10. As values of G let us use 'groups of three digits from
table A (multiplied by 0.001). The intermediate results are collected in
table 8.1.

0.8,65 0.159 0.079 0.566 0.155 0.664 0.345 0.655 0.812 0.332
V1 1.359 0.250 0.124 0.889 0.243 1.043 0.542 1.029 1.275 0.521
sin VI 0.978 0.247 0.124 0.776.'0.241 0.864 0..516 0.857 0.957 0.498

The final result orthe computation is:

z 0.952 .

(b) Now let Mx) = 8x/ir2. For the construction of V let us use
cquation-(4.2),

rv

Jo dx
G.

After some simple calculations, we obtain

V = 2: G .

Formula (8.3) 'takes on the form:

sin Ks
8N 1/11-

Let N 10. We take the same numbers for G.as in (a). The inter-
mediate results arc couletd in table, 8.2. /1-*

Tgbk 8.2

"VP
2

0.159
0.626

0.936

3

0.079
0.442

0,96-8 .

4

0.566
1.182

0.783

5

0.155
0.618

0.937

6

0.664
1.280

0.748

7

0.345
0.923

0.863

8

0.655
1.271

0.751

9

0.812
, 1.415

0.698

1.0

0332
0.905

0.868sin Vi
Vi

0.4i 65

1.461

0,680

The result of thc calculation iigt

/
.As we anticipated, the second method gave the more accurate result,
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8.4. On kstimating Error

In section 8.1 it was noted that the absolute value of the error in calcu-
lating an integral I practically cannbt, exceed the value 3A/(Var (11),N).
In rvlity, however, the error as a rule turns out to be noticeably less
than this value. Therefore, as a characteristic of error another .value is
often used in practitethe probable erro

./(Yar (H)
N )

Table 8.3

Method Var(H) 8

(a)
(b)

0.256
0.016

0.103
0.027

0.048
0.016

The actual absolute error depends on the particular random numbers
used in the calculation and can prove to be twic'T or three times as large .
as 5,, or several times smaller, 5 gives' us, not the upper limit of the
error, but rather its order of magnitude. In fact, 8,, is verjr,nearly the
value for.which a deviation larger than 8 , and a deviation smaller than
Sp arc equally likely. To see this, note that we are approximating./ by

By the central limit theorem of section 2.4, R k approximately a normal
random yariable with mathematical expectation / and standard devia-
tion (y v/(Var (I1)1W). But for any normal random variable Z. it is
not -hard to' calculate that whatever a and u may be,

whence

a + 0.675a
P.,(X) (IX 0.5 ,

P(iz <, 0.675u) 0.5 --, P(Iz a > 0.675) ,

that is, deviations irotn. the expected- value larger and smaller than the
probable,error 0.675u are-equally probable.

Let us:.rehrn to the example in sectiOn 8.3. From the values given in

tables 8,1 and 8.2, one can approximate the variance Var for both
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methods of computation. The suitable equation for the calculation was
given in section 6.1.2

The approximate values of the variance Var (Il), the probableerrors
calculated from them, and the true absolute errors obtained from
calculation (8,) are shoWn in table 8.3 for both methods of calculation.
We see that 8, really is on the sameorder as 8,,

2.i For method (a):

Var (H) 1--L-4-[1 (sin 111)2 1 ( 11 sin iij)2]

714'
(4.604 3.676) =

36
4

For tnethoti (b):

Varo(H

'

_ Is-2.4)2
2 0

9 621, is- k Vf io k1- v / j-1

774
= 37.7,3 (6.875. 6.777) 0.016.

%

A

a

I '



4'4

Proofs
, *of Certain

PropositiOns

In this chapter demonstrations are given for some assertions made in
'the preceding-chapters. We have gathered them together because they

seemed to us somewhat cumber-
some for a popular presentation
or presupposed knowledge of
probability theory.

9.1. 'the Jilstificatiot et_
,Ngyman's Method of Copiructing

a Random Variable (Section 43)

The random point (II', 11") is
uniformly distributed 'bver the
rectangle abcd (fig. 9.1), the arca

x of which is equal to M 0(b a).'
Fig. 9.1 The probability that pointcli', 1-1")

is under the curve y = p(x) and
will not be discarded is eqiial to the ratio of the areas

p(x) dx 1

M 0(4 a) Mo(b a)

But the probability that tile point is under the curve y = p(x) in the
interval a' < x < b' is similarly equal to the ratio`of the areas

b(x) dx
Mo(b a)

1. Compare section 9.3.

58
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Consequently, among all the values of X that are not discarded, the
proportion of values which fall in the interval (a', b') is equal fo the
quotient

fbc:, p(x) dx

Mab a). lb'
1

M0(b .-- a)

which is what we wanted to show;

9.2. The Density Distribution of a Variable Z' L a + aZ
(Section 4.4)

It is assumed that the variable Z is normal, with mathematical
expectation E(Z) 0 and variance Var (Z) = I, so that its density is

P(x) = e-(x212)
A/ 27r

In order to compute the density distribution of the variable Z', ket us
. -choose two arbitrary numbers xi < x2 and compute the probability

P(x1 < Z' < x2) = P(xj < a + < x2)
r

< Z <
a

Consequently,

P(X1 Z
1

e-(x212) dx .

V2ir (xi -Oa

We siniplify this last integral by substituting the variable x = a + ax.
We get

P (x1 < Z' < x;) - 1 'f2 exp [ (x' a)2/2u2] dx'
v xi

whence follows (compare (2.14)) the normality of the variable Z' with
parameters E(Z') = a, Var (Z) cr2.
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9.3. Uniform Distribution of Points in a Square (Section 4.5)

Since the coordinates of the point (G', G') are independent, the
density p(x, y) is equal to the product of the densities

0 x , = Pw(x)1904.0 .2 4.

Each of these densities is identically equal to 1. This means that
p(x, y) 1 (for 0 x 1 and 0 <y c 1) and, consequently, the
unifottnity of distribution of the point (G', Gif) in the unit square.

9.4. The Choice of a Random Direction (Section 7.1)

Let us agree to specify a direction by means of a unit vector starting
at the origin. The heads of such vectors form the surfacr_of the unit

spherc. Now, the words "any
direction is equally 'probable"
471an that the head of a vector is

1-2tit,''random point Q, uniformly
distributed over thc surface of the
sphere. It follows that the prob-
ability of Q lying in any part of the
surface dS is equal to 71S14-2r.

Let us choose on the surface of
the sphere spherical cooqinates
((/J, sb) (fig. 9.2). Then

Fig. 9.2
dS = sin.96 d4 do , (9.1)

where 0 .15_ 77-, < Sb < 27T.

Since the coordinates and are independent, the density of thc
point (4), tfi) is equal to the product p(0, , po(0)p4,(0). From this
equation, relation (9.1), and the rel*n

it follows that

dS
P(, 41) dcli dSli = 477;

sirt
Po(01)0,(0) (9.2)

4144k
2. This is, in fact, the formal definition of the independence for rdndom

variables G' and G.
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Let us integrate this expression with respect to 46 from 0 to fT. Taking
into account the dbrmalizing condition

we obtain-

p(0) 4 =

'Dividing (9.2) by (9.3), we find tha

2

Pi(0) =r 211.

(9.3)

(9.4)

Obviously, 0 is uniformly distributed c;ver the interval [0, 7r , and the
formula for the construction of tis will be written thus:

. -

1,1, = 277,G . (9.5)

We find the formula for the construction of q. with the 'help of
equation (4.2):

whenm

ssin x.dx

*cf)..= 1 2G. (9.6)

Formulas (9.5) and (9.6) allow One to select (to construct) a random
direction. The values of G in these formulas should, of course, be.
different.

Formula (9.6) differs from the last formula of section 7.1 only in that
G appears in it rather than I G, tiut these variables have identical
distributions.

9.5. The Superiority of' the Method of Weighting (Section, 7.3)

Let us introduce the random variables N and N', equal to the
number (weight) of neutrons which passed through the block, and

-t

4.

1.
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obtained by calculating one trajectory by the method of section 7.2 and
one by the method of 7.3, respectively.

We know that

E(N) = E(N') = p+ .

Since N can take on only two values, 0 and 1, the distribution of N is
-

given by the table

N = (1 0 \
1 p+

Taking into account thatoN2 = N, it is not hard to calculate that
Var (N) p+

,lt is easy to see that the variable N' can take on an infinite number of
values: wo = 1, wi w2 = wo(L/D2, W3, Wk, . and also
the value 0 (if the package is reflected from the block instead of passing
through). Therefore, its distribution is given by the table

q)

\WO 1 V Wk 0
N' =

The values q, need not interest us, since in any case one can write the
formula for the variance

Var (N') wk2qk (p+)2
k 0

Noticing that all the, w, 1 and tha0 wkyk.= E(N') = p+ , we
get the inequality Var (N') (p+)2 V ar (N).

This fact, that the variance of N ' is always.less than the variance of N,
shows that the method of section 7.3 is always better for calculating p+
than the method of section 7.2.

The sanie argument applies to the calculation Of p -; and, if the
absorption is not too great, to the calculation of p° also.

9.6. The Best Choice for V (Section 8.2)

In section 8.2 we obtained ail expression for the variance Var (H).
In .order to find the minimum of this eXpression for all possible choices
of pv(x), we make use of an inequality well-known in analysis:

lu(x)v(X)i dx
2

u(x) dx .1 112(X) dx .

a a

s s
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We set u = g(x)/N/(ov(x)) and v = Vpv(x); then from this inequality
we obtain

b
22(X)g( -)idx]

2

f dx p
b(x)dx - dx

pv(x) a Pv(x)

Thus,

2

Var (H) [f I gQc)I dx /2. (9.7)
a\

It remains to be shown that the lower boUnd is reached when pv(x) is
proportional to I g(x)I.

Let

'Pv(x) = g(x)If 1 g(x) I dx

It is not hard to compute that for the density pv(x),

,g2(x)1

PAX)]
[f Ig(x)1 dx 12,

a

(9.8)

and the variance, Var (H is really equal to the right side of (9.7).
Let us observe that to e tlqe "best" density (9.8) in the calculation
in practice, impossible. get it, it is,necessary to know the value of

the integral j g(x)1 dx. But he evaluation of this last integral presents
a problein just as difficult hs the one we are trying to solve: the evalua-
tion of the integral Pa g(x)dx. Therefore, we restricted ourselves to
the recommendation stated in seetion 8.2.



APPNDIX Tables

STable'A. 400 Random Digits'
_

86515 90795 66155 66434 56558 12332 94377 57802
69186 03393 42502 99224 88955_ 53758 91641 18867

41686 42163 85181 38967 331.81 72664 53807 00607
86522 47171 88059 89342 67248 09082 12311 90316
72587 93000 89688 78416 27589 99528 14480 50961

52452 42499 33346 83935 79130 90410 45420 77757
76773 97526 27256 66447 25731 37525 16287 66181

04825 82134 803.17 75120 45904 75601 70492 10274
87113 84778 45863 24520 19976 04925 07824 76044
84754 57616 38132 6429A 15218 49286 89571 42903

.4

Table B, 88 Normal Values' -
- 0.0077 0.0348 1.0423 - 1,8149 1.18030.2005 1.1922 0.0033

1.1609 0.6690 - 1.5893 0.5816 1.8818, 0,7390 - 0.2736 1.0828
0..5.864 - 0.9245 0.0904 1.5068 1.1147 0.2776 0.1012 1.3566
0.1425 -6*.2863 1.2809 0.4043 0.6379 -0.4428 -2.3006 -0.6446
0.9516 -1.7708 2.8854 0.4686 1.4664 1.6852 -0.9690 -0,0831

-0.5863 0.8574 0.5557 0.8115 0.2676 1.2496 - 1.2125 1.3846
1.1572 0.9990 -0.1032 0.5405 -0.6022 0.0093 0.2119 -1.4647

-0.4428 -0.5564 -0.5098 -1.1929 -0.0572 -0.5061 0.1557 -1.2384
-0.3924 1.7981 0.6141 -1.3596 1.4943 -0.4406 -0.2033 -0.1316

0.8319 0.4270 0.8888 0.4167 -0.8513 1.1054 1.2237 -0.7003
0.9780 \-0.7679 0.8960 0.5154 0.7165 0.8563 1.1630 1.8800

r
I. Random digits imitate values of a random variable with distribution (3.1)

(see section 3.1).
2. Normal values imitate values of a normal (gaussian 1. random variable Z with

parameters a 0, a 1.

N"0

s-
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