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ABSTRACT
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chapter, th'e foundations of geometry are presented from.the
standpoint of group theory. (Author/MK1
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Preface

Roo

In the study of plane geometry, varjous transformations of geometric
figures often play an important parE of these transformations, 'the
so-called isometrics and dilations are most commonly discussed in
elementary treatments. An important property of these transformations
is that they preserve basic geometric clapifications: Straight lines "go
into" straight lines and circles "go into" circle's. Inversions are more
complicated transformations of geometric figures, under whicli straight

Jines may be mapped to circles, and conversely. The use of such map-
' pings allows us to develop a unified method of solution for many of the

problems bf elementary geometry, especially thbse concerning Con-
structions and pencils of curves. The result is that the theory of inversions

lends a less artificial character tO the interrelationships among types of
geometric figures. The" approach -usdi in this theory Its also useful in

;boundary questions arising irf elementary and " higher" Rometry. It
also enables us to provide an interpretation of the so;called notbachevs-

kian geometry in the Euclidean plane. There are interesting connections

between inversions and the complex numbers or, more accurately,
elementary functions whose range and domain are the complex numbers.

This book discusses the inversion transformations and theil' applica-
tions. To provide the mott convenient presentation possible, the
material is divided into three chapters.

In the first chapter, we shall study inversion transformations and
their applications to questjons in elementary geometry. In the second

chapter, it .will be shown 'that the 4ransformatnns of the first chapter
carilie expressed as linear and linear-fractional functions ofda complex

varia?!.. We shall also establish that, conversely, each such function
defivs a transformation of the plane which reduces to a sequence of
isoma-ies and inversions. In the third chapter the foundationg of

vii
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. viii Preface

-geometry are presented from fhe standpoint of group theory; using
these foundations and relying on the material in chapters -1 and 2, we
priefly Construct Euclidean plane geometry and Loliachevskian plane
geometry.

) The reader can find a More detailqd pies4ntation of the material
touched upon here in chipter 3 pf Vyss a .geornefriya [Higher
geometry],by N. V.Efimov.

Thit book is based on lectures given by the.autkor at various times to
students in Lenipgrad.

f
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Inversions
and Pencils of -

r Circles

1.1. Elementary Transform:items of the Plitue

The idea of transforining one geometric figure into another will play
a fundamental role In this,book. In this section we Shall discuss figures
in the plane. But first of all, we wish.to state precisely what we mean by
transformations of geometric figUres. Consider a plane, and let usassuilie

-that we have some rule that, for each point X in the plane, determines a
corresponding point X' in the same plane. This rule of correspondence
(let us cll it T) is called a transformatión of the plane, and the point X',
corresponding to the point X, is called the image of X under T. Trans-
formations of the plane will be written in capital letters. If T is some
transformation of-the plane, and if X is some point in the plane .with
image X' under T, we write X' T(X).

Suppose we are given f' a trans-
formation T orthe plane and a plane
figuie (for: example, a line Or a
circle) F. T takes each point X of the
figure F into some point X', its.
inwe. The figure F', consiSting of all
thri points which are images of points

7 (F)
in F, is called the image of the figure F
under the transformation T. We
shall often denote the figure F'
T(F) (see fig. 1.1).

Usually, a point and its image do not coincide. When tile point X and
its image T(X) do coincide, the point X is caned a fixedpoilit of the
transformation T. .

The transformation orthe pfane taking each point X into itself is
called the identity tramformation. in other words, a transformation of

Fig. IA

9



Inversions and Pencils of Circles

the plane is thc identity Wand only if alithe points of the plane aric fixed
piiints. We shall denote.the identity transformation-by the letter I.

A pipe figUre F is called invariant under a transformation T of the
Wane if the Image of F coincides with F; that is, if

Fig. 1.2

F. T(F).

It is important to note that a figure invariant
.under a transfdrmation,need not have a single
fixed4oint under that transformakion. For
example, if T ig a rotation of the plane through
some axedmonzero angle about a point 0, then
the only fixed point of T is 0.1 Thus all, non-
degenerate circles with center 0 are invariant
under T, and yet none of them contains a single
fixed point (fig. 1.2).

We sh-4,11 nov examine the elementary trans-
formations of the plane in greater detall.

1.1.1. Reflection with respect to a line. We define the reflection of
the plane with respect to the line I by the- following rule: ff a point X
lidS on I, it is carried into itself. If the point X does not lie on I, then
we take as_the image df X the pqint X' that is symmetric to x with
respect to the line I (fig. 1.3).

The figures invariant under reflection witrespect to the line I are all
those figures whkh have the line/ as an axis of symmetry, including 1
itself. Two such jnvariant figures are shown in figure 1.4.

Hg. 1.3 .4

1. By a nonzero angle we shall mean an angle whose radian measure is not an
integral multiple of 2.



Elementary nansfo rmations of the Plane 3

All points of the line 1, and only those point:,'are fixed points of the
transformation.,

1.1.2, Parallel translation. A parallel translation of the' plane is
defined by the followini rule: Suppose we are given a segment AB of
the line / in the plane; if the point, X does not lie on the line 1, then its
image X' is the fourth vertex of the parallelogram constructed with
sides AB and A X. If X lies on the line 1, then,for X' we,take the point of
1 snc'h that the line segments A X and B X' are of equal length arrd the

. line segment XX' has the same length as the line segment AB. In this

way the parallel translation translates each point of the plane by the
distance AB in the direcnon moving from A to B.(fig. 1.5). In terms of
vectors, vach point of the plane is translated.by the vector AB; that is,
for each point X in the plane; the vector equality XX' = AB holds

(fig. 1.6).

X X

F'ig. 1.5 Fig. 1.6

If the vector AB is tite zero vector (that is', if the point A coincides,
wtth the point B), then the parallel translatiOn by the vector AB is the

identity transformation.
Let T be a parallel translation by a nonzero vector AB. ft is obvious,

that T has no fixed points. Figures invariant 'under T include, for
exa'mple, all lines parallel to-The line'determined by the- segment AB. ,
There are many other invariant figures; figures 1.7 and 1.8 depict
figures L and Q which are invariant under T. The curves Lk and Qk are
the images of the curves Lk -1 and Qk -1 respectively.

. .

1.1.3. Rotation about a point. Let 0 be a given point in the plane and

a (read "alpha") a given angle. We define the rotation of the plane.

through the angle a about the point 0 by the following rule: If Xi an
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Fig: 1.7 'Fig.1.8

0 1

arbitrary point in the plane, we rotate the line segment OX about the
point 0 through the angle a (if a > 0, the rotation is counterclockwise,
and if a < 0, the rotation through an angle a is clockwiSe). _The,
resultant endpoint X' is taken as the image of X. The point 0 is fixed in
such u rotation.

If a = 0, the rotatio is the identity transformation.
Let T be the rotation about the point dthrough soint nonzero angle

a. It is obvious that the only fixed point of the transformation T is the
point 0. Circles having 0 as fheir center are invariant figurt.s under this
transformation. If the angle a has ,the radian measure

I. 27r= ,

where'n is a nat uniber, then a regulai ni-gon inscribed in a circle
with centir ais invariant undef&T.if and only if the number Of sides In
is divisible by n (fig. 1.9). In figure 1.10 we see a more. complicated
invariant. figure..

1.1.4- Isometry. An isometry is ,a transformation Qf the plane Which
" preserves distances between..pints. That is, T is an isornetry if and
only if for any, pair X and Y of arbitrary pOints in the plane, the line
segmOts XV and T(X)T(Y) are 43`f equal le-ngth (or, equivalently,
the distahces. X Y and T(X)T( Y.) are ecidal). We require fierther that the
trnsformation T be one to one ancionto; that4s, that every-point in the
plane be the image of 'some other point (T is onto) and that no two
distinct poinl s. have the same image. It-is easy to see that all of the trans-

, formations described above arelsometries. In a certain sense the con-
verse is true: It can,he shown that any isomevy is.either a rotation, a

<
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Elmentary.Traneorrnations afithe Plane

Fig. 1.10
I

parallel translation, a reflection with respectAd .a.lite, or some co1n-
position (suocessive application) of these.

1.1.5." Dilation. Let us fix some,point 0 in the plane, and let k > 0

be some fixed number. The dilatioh with center 0 and coefficient k is the
transformagon of the plane whiy1 takes the porta 0 into itself, and
tikes any Ant x different from40 into the point X'lying on the ray
(half-line) OX'and satisfying

9.1" = Ic.ox .

If k 1, then the dilation is the identity transformation. If k 1,

then the only fixed point/of the transforTation is the Center of the
,dilation, the point 0. We' note that if k < 1, a given figure "shAnks"
under dilation, while for k > 1, it " expands." Rays having their initial
points at the center of the dilation are clearly invariant under dilation.

It is possible to exhibit, in a fairly simple way; a more complicated
invariant figure. Let F be some figure in the plane (fig. 1.11). We enote
by mF the figure F-' which is the image of F under the dilation with
center 0 and coefficient in. Given the dilation T with.ccefficient k nd

center 0, we considez figures

The figure G, representing the union of all these figures (fig. I.12), as is
easily shOwn, ik invariant under the transformation- T.
, Finally, let us make use of the cOncepts of isometry and dilation to
foPmulate precise and general definitions for rhe terms congruent and
similar, which play an important role in elementary geoMetry:

a

logo

ot
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Ipvenions and Pencils of Circles

Fig. 1.12

Two figures F1 and F2 are iaid to be congruent if there oasts an
isometry taking the figure Fel into F2. The figures F1 and F are said to
kg...similar if there exists a dilation taking the figure F2 into some figure'
FITWhich is congruent to the figure F2.

1,2. Stereographic Projedion: The point at Infinity of a Plane
The concept of a transformation, considered in §1.1 for the plane,

clearfy extends to any geometric figure (including subsets of the plant
and of three-dilnensional Euclidean space). If the image of the figure M
under such a transformation T covers the entire figure N, we say that T
is a transformation of M onto N.

In the study, of the inversion transformations, it is quite useful to
examine one particular transformation of the three-dimttisional sphere
onto the plane. This transformation is called the stereographic projection
and is defined as follows: Let K be a sphere and P a plane tangent to K
at a point S (fig. 1.13). The point S will be called the south pole of K, and
the diametrically opposite point N, the north pole. Let 4' be any point of
K other than N. Then the point X' at which the ray N X intersects the
plane P is taken to be the image or' X. Clearly, the entire plane P is
ikvered. Thus, the stereographic projection transforms the sphere K,
minus the point N, onto the entire plane P.

Let us consider how the image of the point X on the plane P changes
as X approaches the point N. From the trnilar right triangles X'NS
and SN X (tig. 1.14), we have 7

SX' XS
NS N X

0



Hence,

Stereographie Projectivir

NS. XSSir Nak

Let r be the radius of the sphere K. Then, for a point X sufficiently close
'to tit north pole N, XS > r, and therefore

2r 2SX >
N X

Fig. 1.13 Fig. 1.14

(since NS .2r). It is obvious that as the point X gets arbitrarily close
to the 'point N (N X approaches zero), the length of the line segmentfr.
SX' inereases'without bound, so thaV.The point X' gets unboundedfy
further aw/ay from the point...S. Consequently, the poi_nt N cannot go
into any 'point of the plane P under the stereographic projection.. In
ader to extend the stereographic projection to the entire sphere K, that
is, for the north pole N to be given an image in the plane P. we must add
a new point to P. The added point O. is called the point at infinity. Now
letting the north pole N go into the point at infinity 0,, we tind that
stereographic projection takes the sphere K onto the plane.P.

Let us considqr some of the properties of the point at infinity ct /'
beany straight line in the plane P. We consider ,the plane th gh the
point N anq the line I= (lig. 1.15), 'this plane inttrsects the ç ere K in
some circle 1 passing through the point N. The line /' is viously the
.image of the circle I under the stereographic projFctio On the other ,.
hand, the image of every circle. on the sphere K pa.;ng through the
poillt.N is represented by a line in the plane P whi s the intersection
of the plane determined by the circle I. and the p F. I t fol.ipws that

the stereographic projection establishes a one -one correspondence

4.



S.

between the set of all circles on the spiterE K passing through the 'joint
N and the set of all lines in the plane P. Therefore, any line in the plane
Pcontteins the point O., (and thus all lines intersect at 0), which is Ale
stereographic image of the point N.

Let 11 be a circle in the plane P. If r' is the radius of 11 and d is the
distance from the south pole S of the sphere K to the Center of 11, then
the distance from S to any point of is no greater than d There-
fore, no circle in the plane P contains the point at infinity.

As we know, any three nonollinear points determine a circle. Lines
in the plane are similarly determined by three points, two of Which may
be chosen arbitrarily and the third of which is the point at infinity.
Therefore, a line may in a certain sense be regai;ded as a circle having as
one of its determining points the point at infinity.

Now consider the set of all circles on the sphere K whose planes are
parallel to the plane P. We shall consider this set tic. contain the pvints
S and N as degenerate circles of zero radius. The stereographic projec-
tion of this set of circles (fig. 1.1 6).is the set of all concentric circles in the
plane P with center S, which includes the pointiS (fixed by the stereo-

. graphid projection) and the point at infinity (the sterkographic image of
.the point N). Since the point of tangency of the sphere K and the plane
P could be any point of P (simply make the proper translation of the
sphere K parallel to the plane P), we can consider any system of
concentric circles to contain the common center of all the circles and th
point at infinity.

1.3. Inversions

Let us fix a circle in the plane, P with center 0 and radi r. An
inversion of the plane with central point Oanl radius r islhe tra forma-

6



Inzersi9ns

Pig. 1.16

tion of the plane determined by the following rule: A point X different G

from the points 0 and 0, is carried into the point X'ftoin.the raj, OX
which satisfies the equation ,/

.;(fig. 1.17); the point 0 is taken into the Roint O, and the point O., is
taken into the po& 0.

The circle depicted in figure 1.17, with radiUs r and center 0, is calle4
the circle of inversion. If X lies on the ci5 ofliriversion, then OX = r
and; consequently,

1.

Since the points X and X' both pc/on the ray 0 X, the points X and X'
coincide. It follows that all the points on the circle of inversiori are fixed
points and that the circle-of inversion itself is an invariant figure.

A point different from 0 lying inside the
crircle of inversion is taken by the inversion
to a point lying outside the circle, and,
coriversely, a point different from 0,0 lying
outside thc circle of inversion is carried to
a point in the interior of the circle.

Iri the first case, we have OX cc r, and
thus

Fig. 1.17 0 X'



10 Inversions and Pencils of Circles

verifying that the point X' lies outside the circle of inversion. The
second case is considered analogously.

Thus, any point X ancrits image X' lie oifthe ray OX and on different
sides of the circle of inver
(fig. 1.17).

if, of tourse, X does not lie Ori the circlea V

If the point X gets art)* rarily close to the point 0 (O4 approaches
zero),,then its image, the point X', becomes unboundedly distant from
the point a This is clear from.the relation

OX' OX
r2

'4

(fig. 1.18). It follows that the
point X' approaches the point

x4,dat
infinity. Analogously, we can

20 show that if a point X is made
arbitfnily distant from the
point 0, its image X! becomes
arbitrarily close to the point 0.
Thus the definition of the in-
version, which determines O.

as the image cif 0 awrconversely, is natural one.
Let .X be a point4ifferent from 0 ahd O. and let be the inversion

of the plane with;Central point 9 and radius r. Weedenote T(X) by X'
and T(X') Thep all the points X, X X" lie on the same ray 0 X
and satisfy the,equations

It follows that

r 2 r 2

OX' OX"0 ' OX'
dot

r2 0 X
OX" = L14 .

r 2

Thus, if X is'an arbitrary point of the plaiie different from the,center of
the inversion and the Point at infinity, then the operation T iterated
twice takes the point X into itself. If the pvint X is the point 0 or the
poi`nt at infinity, the result is the same: Under two, successive apnlica-
'ti,cins of the inverbion T, the point X is taken into itself. This is a direct
q'onsequence of the definitiOn of the inversion. It can be.formulated in
ithe following theorem:

THEOREM 1.1. A transformation of the plane which is the composition
.of an inversion with &self is the identity transformation.

_



Properties of Inversions 11

Finally, we remark that if the inversion T takes thepoint X into the
point X', then T also carries the point X' into the point X; that is,
and X' trade places. We recall that reflections with respect to a line
have/he satire property. This is the reason that inversiens are sometimes
called reflections with re'spect to a circle.

\I
1.4. Properties of Inversions e

In t is section We shall fix T as the inversion on the plane with center
0 and radius r.

: , .
First we shall rirove a simple lemma which plays an important role in

the study of the properties of inversions. ,

LEMMA 1. 1. Suppose tile peints A an' d B in the irane are different from
each otXer and from the poifts 0 and 0 iv and that theapoints Q, A, and B
are noncollinear. Let A'. = nioand B" = 7113): T4,ijie triangles-bAB
and 0 B`A' are simike, with corre- sponding'p. arts t scaled by the letter
orderings OAB and Op' A'.

Proof The triangles OAB an OB1A' (fig. .1.19). have a corn
angle, and tlie sides including the angle are proportional. To sho
we note that since

we have

OA r2
OA OA' OBOB'

OA r
2'i.OBr2

OB

OA ._1,131
OB OA'

I.

It follows that triangles OAB and OB'A' are similar. HoweVer, in *
similar trimigles, equal hngles lie opposite proportional sides, so from
the ratio aft.

OA OB'
013 eTA'

we got equality of the corresponding angles:

LOAB = 210B'A'
LOBA = LOA'B'

proving that the letter orderings OAB and 0B'A' indicate corresponThng
parts.



Fig. 1.20

Tx-mum 1.2. The inversion T carries any 11w passing through the
center of inversion into itself; _that is, a line passing through the center of
the inversion is an invariant figure.

The proof of this theprem follows easily from the definition of an
inversion.

THEOREM 1.3. The inversion T takes a line not passing through the

center of inversion into a circle passing through the Aoint 0.

;. Proof. Let 1 be a line not passing through the center of inverion 0.
Drop a perpendicular from the point 0 to the line 1, and let its inter-
section with I be the point M (fig. 1.10). Let M' be the image of the
point M under T. The point M' clearly lies on the ray \QM. Consider an
arbitrary point X (different from 0.) on the line 1; let X' be the image

. .101-,X under T. Tly lemma 1.1, we have

LOX'M' LOMX =

Therefoie, by an elementary geometry theo.rem concerning right tri;
angles and diameters of circles, the point X' lies on a circle K having the
line segment OM' as a diameter. Since this statement holds for all
points X on the line I, fhe image of the line 1 under T,1', is contained in

the circle K.
Now we must prove that the set of points 1' actually coincides with

the set of points df the circje K; that is, that K is also contained in V.
First let us remark that the point 0 is contained in the set I', since 0 is

,
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the image of O., which is containid in I. Now let Y be an arbitrary
point of the circle g different from 0. The ray 0 Y intersects the line I
at some point Z; we claim that the point Y is the image of Z under T.
Since the points Y and Z lie on the same ray,DZ, We need only prove
that Y satisfies

f
af

r2-OY
- OZ

... .

.
By construction, .the triangles 0 M' and OMZ.(fig. 1:20) are similar:-
therefore,

Hence,

Y QM .
OW -OZ

'OM 10M' ' r2,DY = .

OZ OZ

the desired result. Thus, Y is the image of Z under T. Since this is true
for all Y on the circle K, Kis contained in I', and since, by the above, l'
is contained in K, we conclude that the irge of / coineides with K, thb
assertion of the theorem.

The constructions carried out in the proof of theorem 1.3 enable uslir

to construct the image of a given line under the inversion T using only a
compass and straightedge. From the center of the.inversionthe point
0weadrop a perpendicular OM (fig. 1.20) to the line I. As before, we
construct the point M', which is the image of M (by constructing a line

, segment of length r210M along the perpendicular). The imago of the
line /is the circle l' constructed with the line segment OM' as a diameter.

In the special case where the line I is tangent to the circle of inversion,
the points M and At' coincide, and the circle /' is constructed with the
line segment .0It4 as a diameter. If I intersects the circle of inyersion in
two points A' and'r, then since 0 is necessarily' on the circle K K
is cortpletely determined by 0 and the fixed points X and Y. OS

THEOREM 1.4. The inversion T transforms a circle passing through the
center of inversion 0 into a straight line not passing through 0.

The proof follows from the fact that the composition of T with itself
is the identity transformation and from theorem 1.3.

THEOREM 1.5. The inversion T tAansforms a circle not passing through
the center of inVersion 0 into another Gircle not passing through 0.
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Proof Let K be a circle not passing through 0.We construct aline g
through the p6,int 0 so that it intersects the circle Kin a diameter AB
(fig. 1.21). Let A' and B' be the images of the points A and B under T,
X an arbitrary point on the circle K different from A and Bland X'
its image.

Fig 1 21 r
, - By lemma 1.1, the triangles 0)(A and OA' X' are similar, so that

,

LOA' XV = LOXA .

Analogously, the triangles 0 XB and OB'X' are similar, and consequently

LOB'X' = LOXB.

Since

LA' = ZOB' X' /OA' X' LOX* LOXA

= LAXB ;
2

it follows that X' lies on a circle S having the line segment A' B' as a
diameter. Since X was an arbitrary point of the circle K, the image K'
of K under T is contained in the circle S. show that K' coincides
with S, we must prove conversely that$ is contained in K'. Let Y be an

arbitrary point of the circle S different from A' apd B' and Z the point

on the ray 0 Y satisfying

OZ = 01

0 g)

I.
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It is obvious that the poinj Z is taken by tile inversion 7' onto
Oise point Y. Further, since the- points A', b' , and Y are the images
-under T of A, B, and. Z./respectively, lemma 1.1 allows us to conclude
that

LAZB= LOZB 2.0ZA = LOB' Y LOA' Y LA' Yir = ;.

Consequently, the point Z lies on the circle K. It follownitt the figures
S and K' coincide. By construction, the-endpoints of the diameter of the
circle Kthe points A and Bare different from 0 and are located on
the ray OA. Therefore, the circle K' does not plass through the point 0
(ori alternatively, if K' were to pass through 0, Kowould have to pass
through 0,,,; yet no circle contains 0,).

Thc constructions performed above enable ueto constrtict the image
of a circle under an inversion with.compass and straightedge. Let us
consider this question in greater detail.

Case A. The circle K does not pass through the center of inversion. In
this case, we construct a ray from the point 0 which intersects the
circle K in a diameter AB. We then construct A' and B', the images of
the points A and B respectively. The circle K', the image of the circleIK
under the Inversion 4', is just the circle with the line segmeut A' B' as a
diameter (fig. '1.22).

Fig. 422 Fig. 1.23

'pl
Case B. The circle K pas,ses through tha center of the ihversion. In this

case, by theorem 1.4, the image of K is a linee. We construct the ray
04 from the point 0 (fig. 1.23) which intersects K in the diameter OA.
We then construct the image of A, A'. The line perpendicular to the ray
OA at the pcaint Ak.is thc desired line K'.
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The constructión of the line le.can, be 'significantly simplified in two

instances:
1. If the circle K intersects the circle of inversion in two points B and

C, then the line K' coincides with the line determined by segment BC
(fig. 1.24).

2. If K is tangent to the circle of inversion at some point, then the
line K' is tAngent to the circle of inversion at that Ogle point (fig. 1.25).

&

Fig. 1.24 Fig: 1 .25

We shall now consider how angles between curves are affected by the
operation of an inversion. T. As we. know, the angle between two curves,
L, and L2 at their, point of intersection is the smaller of the angles
between their tangents at that point. It can be shown that an inversion

preserves the angles between curves. We shall prove this statement
below for the cases of circles and straight lines.

THEOREM 1.6. Under an inversion T, the angle between straight lines

is equal to the angle between' their images.

Proof Three cases can be presented here:
1. The lines I, and /2 both pass through the center of inversion 0.
2. Exactly one of the lines, either I, or 12, passes through the center

of inversion 0.
3. Neither I, nor l. passes through the center of inversion 0.
In the first case the theorem is obvious. Let us consider cases (2) and

(3). In (2) (fig. 1.26) lassurne, without loss of generarty, that the line
I, passes through the center of inversion 0 and that the line 12 does not.
Then the inversion T takes the line /, into itself; that is, the image of I,

coincides with I. The line I. does.not pass through the center of the
inversion and, therefore, is taken by the inversion into a circle /2passing

4



through the point 0. The tangent t to the ci;cle 4 at the point 0 is
parallel to the line 12 (fig. 1.26).

With respect to the relative position of the lines II. and 4, there are
two possibilities:

a. the lines 4 and /2 can be parallel;
b. 11 mil /"2-caft intersect at a point A.
If 1, and /2 are parallel, the angle between them is clearly zero. But

the line kpasses through the point 0 and is parallel to /2. Therefore, it
must coincide with "he tangent t to the eircleAilkat the point 0. It
follows that the angle between and 12' is equal to zero, and conse-
quently tile theorem is proved for the case (a).

Now let /I and 12 be nonparallel, with A their point of intersection.
Let a be the smaller of the angles between 4 = /I and the line /2, which
is equal io thc angle between /, and'the line t. The point A is taken by
the inversion into some point A' which is the intersection of the line /I'
and the circle l. But the line rk, the e 0A' must intersec the
tangent 1' to the circle /2' at A' at the- me angle at which It inte ects
the tangent t to 1 '2 at O. Since s is parallel to 12, this angle is a, a d the
proof for case (2) is complete.

The third Ca SC (fig. 1.27) may be proved analogously, We remark
only that if the lines 11 and 12 are parallel, the corresponding circles 11
and 1'2 are tangent at the point 0 and thus intersect in a zero angle, the
same angle as is formed by the parallel lines 1, and /2. If tht lines 4 and
12 intersect, then, as is evident from figure 1.27, the angle between the
circles and 1'2 a.t the point 0 is equal to the angle between the lines 11

-h
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Fit1.27

and /2since thc tangents ti and t2 to these cirsles at the point 0 are
parallel 'to the lines 1, and 12 respectively. This cmpletes the proof of
the theorem.

We leave the proofs of the following theorems to the reader as useful
exercises:

THiORDA 1.7. The angle between two circles is equal to the angle
between the images of these circlestunder an inversion.

. THEOREM 1.8. The angle betH;een a circle and a straight line is
equal ul the angle between the images of these figures under an
inversion.

.
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1.5. The Power cif a Point with Respect to,a Circle:
The Radical Ails of Two Circles

The concept of the power of a point with reference to a circle, which
is analogous to the concept of the distance from a point to a straight
line, will be essential in the discussion below.

Let K be a circle of radius r in the plane, M-444510trary point in the
plane, and d the distaficefrom Al to the center 0 of 'the circle K. The
power of the point M wiTh respect to the circle K is defined as the number

S d2 r2 .

If the point M lies inside the circle K. then d < r, and the power
S d2 r2 of Al is negative. The segments of the diameter PQ on
which M lies are of length d and r d. Thus, by a theorem of
elementary geomitry, for any chord AB of the circle K vilhich contains

M (fig. I.28a), we have

S r2 (r2 ti2) = (r + d)(r d) AM. MB .

If the point Af lies on the circle K,-thtn d = r, and the power of M is
zero. Finally, if the point M lies outside the circle K, then d > r and
S (12 r2, which is the square of the length of the tangent segment
from the point Ai to the circle K (fig. 1.28b), is positive.

Suppose we are given two ciiieles K, and K2. The locus of points
whose powers with respect to the two circles are equal is called the
radical axis of the circles IV, and K2.

We have the following theorem: 4`

THEOREM 1.9. If K, and Ku are'noncon.c,.entric circles, then their radical

axis is a straight line perpendicular to the line deterinined by their centers.

(a)
N.

(b)

Fig. 1.28
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Proof Let Oi and r)3 and r2 be the centers and radii of the circles

K, and K, respectively. el, and d2 be the distances from an arbitrary
point M to the centers 01 and 02 respectively. Then the power of M
with ?espect to K, is

Ls+1 L di 2 ri2

and the power of M with respect to K2 is

S2 = (12 2 r22 .

M lies on the radical axis of K1 and K2 if and only if

that is,

= S2 ;

Ae

de 2 d2 2 r2.

This is true if and only if

d12 d22 = ri2 r22

The right side of the above equation is a constant, sinceT and r2 are
fixed. Thus the locus of the radical axis of K1 and K2 is the set of points

NI for which

di 2 .d22 == k

where k is soine constant and d1 and d2 are as defined above. Without
loss of generality, we may assume that k 0, since otherwise we can
simply change the roles of the circles K, and K2 and arrive at k > 0. We
claim that there is a unique point S on the line of centers 0102 satisfying

01S2 02S2 = k .

Cle,tly, since k 0 implies 01S 02S, such a point S (if it exists)
must coincide with or lie to the right of the midpoint H of the segment

i0 (fig. 1.29). Thus, if S exists, either

(1) 01S + 02S = 010, ; or\

(2) 01S 02S = 0102 .

0 H

Fig. 1.29

2
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If CI k 5 (0102)2, then since k = (02S"+ 02S)(01S 02S), case
(1) musi hold, so that there existS a unique point Son the segment 1102

satisfying

= (01s + 02s)(01s 02S) = (010)(01s 02q).

Analogously, if if-> (0102)2, case (2) holds, and there is a unique point:

S lying to the right of 02 satisfying

k (01S + 0,2SX01S 02S) = (02S + 02SX0202).

Now let X be an arbitrary point on the fadical axis of K, and Kg;
that is, a point of thc plane satisfying

01X2 02X2 = k

- Let Y be the projection of X on the line 0102. By the Pythagorean
theorem, we have (fig. 1.30);

It follows that

Therefore,

01,v2 01Y2 = 20'2 ;
0212 02Y2 X Y2 .

01X2 01Y' = 02 02Y2

O Y2 02 Y2 = 0 2 02X2 = k . (1A)

Ys

Fig. 1.30

Since Y. lies on 'the live 0109 and
satisfies the relation (1.1), it must
coincide with the point S. Thus, the
point X lies on the perpendicular I to
the line of centers 0102 at S. Con-
versely, it is easy to show by a
similar argument that all points Z on
the line I satisfy

01Z2 02Z21
= 02Y2 02 y2 = k .

The desired locus of points is thtis a line perpendicular to the line of

centers, and the theorem is proved.
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We now consider the4 construction (by straightedge and compass) of
the radical axis of two nonconcentric circles. As above, we assume that
the.circle with the larger radius is K1, so that

k ri2 r22 O.

As shown above, if 01 and 4tp2 are the centers of K1 and K2, and H is
the midpoint of 0102, then Oae radical axis of the circles K, and K2 is
perpendicular to the line Q101 at the point.S, which lies to the right of
H. The construction of the radical axis is thus reduced to the construc-
tion of the point S on the line W32.

Wcashall now consider the coivtruction of the radical axis /given the
circles K1 and K2 in three cases:

I. Kl and K2 intersect at two. Points A and B (fig. 1.31). Since the
powers of points A and B with respect to both circles must be zero.
the radical axis I must coincide with the)straight line AB. (In this case,
the radical axis intersects the line of centers in an interior point
of the segallent 0101.) 4

2. Ki and K2 have a unique common point A, at which they are
tangent (fig. 1.32). The power of the point A with respect tO the cirFles

Fig. 1.31 Fig. 1.32

kl and K2is zero ; thus the radical axis !passes through the point A, and,
since / is perpendicular lo the line of centers 0102, it must coincide
with the common tangent of K, and K2 at the point A. (In this case the
radical axis also intersects the segment 0102 in an interior point.)

3. The circles K1 and K2 .have no points in common. We shall
separate this case into two subcases:-

a. The circles K, and K2 are situated outside one another (fig. 1.33).
We draw two common tangents to K, and K2, PQ and RT, with mid-
points H and 112 respectively. Since the power of a point X which lies
outside the circle K1 (with respect to KO is equal to the square of the
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length of the tangent extended from X, the midpoints Ill and H2 have
equal powers with respect to each of the &cies K1 and K2 and, con-
sequently, lie on and determine the radical axis I. It is easy to see that
K1 and K2 lie on different sides of the radical axis I. (In this case, too,
I intersects the line of centers at a point in the interior of the segment
0102.)

b. The circle K2 lies inside the circle K1 (fig. 1.34). In this cases
r2 0102, so that

k 2 - r22 = (r, + r2)(r, r2) > (0i02)2 .

Fig. 1.33 Fig. 1.34

Thus the point S (at which the radical axic intersects the line of centers
lies to the right of 02 (as shown above), and satisfies

(01S + 02S1(0102) = k .

Setting 0102 = c, this becomes

+ 0,S = .

Since S lies to tile right of 02, 01S 0,0, + 0,S c 0,S, and
the equation above becomes

c + 202S
or

O,S = kl2c

Since k is constructible from r, and r, and c is given, the length025 is

constructible; since the line 0102 and the point 02 are fixed, it follows
that the point S (and thus the line I) is constructible.

Y37
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In this case, the radical axis 1 lies outside the circle K1, anl thus both
K, and K2 lie to one side of I.

In each case, then, the radical axis I can be constructed by straightedge .

and compass frOm the circles K1 and K2.
In closing, we remark that the locus of points whose tangents to

and K2 are equal is, in cases 2 and 3, the entire radical axis, and, in case
1, all the points Of ttle radical axis outside of the line- segment AB
(where A and B are the points of intersection of the circles Ki and K2),

1.6. Application of Inversions to the Solution of Construction
Problems

The use of inversion transformations makes possible a number of
elegant solutions to classical construction problems in geometry. We
shall consider below problems which require *e construction of a
circle tangent or orthogonal to one or several circles.

I. Problems on tangents to circles:
Problem I . Three nontangent circles, K1, K2, and 'K3, intersect at

some point 0. We wish to construct all circles tangent to the circles
K K2, K. It is not hard to see (fig. 1.35) that the problem has four
solutions (in fig. 1.35 they are shown by dotted lines).

The method of inversions allows us to find these solutions easily.
Let 7 he an inversion with center V 'and radius r such that thc circle of
inversion intersects the circles K K2, K in pairs of points A ;

A 2, li A, 1.3, respectively. Since the circles K K,, K all intersect at
thei, point 0, the inversion T takes these circles into the straight lines
A1111, A2B2, and A3B3; since no two circles are tangent, these lines
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intersect pairwise. Thus our problem is reduced to 'constructing all
circles which are tangent to.the lines 481, A2B2, A3B3. Clearly, there
will be onc such inscribed and three such circumscribed circles for the
triangle DEF which is formed by these lines. The construction of these
circles is not difficult, and, by the rule given in sec. 1.4, we may con-
stniet the images of these four circles under the inversion T. This yields
the'required circles.

Problem 2. Construct all circles which 'are tangent to two given
circles K4 and K2 and pass through a given point 0, lying outside K1
and K2.

SuPpOse R is one of the clinked circles. Let T be an inversion with
411 center 0. Then T carries K, and K2 into circles ./C; and ./EG respectively,

and the circle R into a common tangent r . It is now obvious that the
solutions to the problem are circles which are the images of the common
tangents of the circles Ki and K; under the inversion T. Since there are
four of these tangents, the problem has four (constructible) solutions
(fig. 1.36).

. Problem 3 (Apollonius's problem). Construct all 9ircles tangent to
three given circles K1, K2, and K3.

We shall present two solutions to this problem.
First solution. Suppose the circle L, with radius R, is one of the

desired circles (fig. 1.37). We connect the segment 0103 from the
centers of the circles K1 and K3 and draw circles of radii r, + s, r2 + s,
and r3 + s around the points 01, 02, and 03, respectively, where r1, r2,
and r3 are thc radii of K1, K3., K3, and

(0,03 r3)
s 2

We denote the constructed circles by K1, K3, K3, respectively. Let L be
the ciircle concentric wiA L having radius ) = R s. It is clear that if
we can construct the circle L, we can easily construct the circle L. It is
obvious that L is tangent to the circles K, K2, K3. The circles R1 and Ka
are constructed so that they arc tangent to one another at some point D.
Let T be an inversion with center D and radius r such that the circic of
inversion intersects the circles K, and A. The inversion T takes the
circles k and K3 into a pair of parallel lines I and 13, and the circle K2
into a circle K. The circle L is taken by thc inversion T into a circle r:,
which is tangent to K`, and to both the parallel lines /1 and /3. In this
way, the solution of Apollonius's problem has been reduced to a
simpler construction problem: to construct all circles tangent to a given
pair of parallel lines and to a given circle.
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We leave the solution of this problem to the reader and suggest that
the reader verify that the pair of circles K, and K2 or K2 and K3 could
be used in place of the pair K, and K3 in the above'construction.

Second solution. We shall perform an auxiliary construction that
will reduce Apollonius's problem to problem 2. Suppose, without loss
of generality, that the circle K3 has radius r3 satisfying r1 > r3 and
r2 ra. Suppose L is one of the circles tangent to the circles K K2, and
K3. We construct the circles X and K2, with centers 01 and 02 and
radii p1 = r3 and p2 r2 r3, respectively (fig. 1.38). The circle
L, constructed with center 0 and radius p = R + r3, where R is the
radius of L, will be tangent to Ki and K2 and will pass through the point
03. Construction of the circle L is given in the solution of problem 2.

3 4
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The constructed circle L is concentric with the desired circle L and
has a radius which is larger by r3.. The rest of the solution is left to the
reader as an exercise.

II. Construction of a circle which intersects given circles orthogonally:
We shall say that two curves intersect orthogonally at a point M or that
they are orthogonal at the point M if the tangents to these curves at the
point M are perpendicular.

gig. 1

Problem 4. Given two nonconcentric oircles K1 and K2, we wish to
cOnstruct all circles orthogonal,to K1 and K2 passing through a given
point 'M.

Th solution to.this problem is broken down into a number of cases
depending on the releve position of the circles K1, K2, and the point M:

a. The circles K1 and K2 intersect at two points A and B (fig. 1.39a).
It is obvious that if M coincides with one of the points A or B, then the

, desired circle k can exist only if one of the circles we are considering has
zero radius. Therefore, in what follows we shall examine the case where
the point M is distinct from the points A and B.

Let T be an inversion transformation with center A and radius
r = AB. Then T takes the point M into some point M', the point B
remains umchanged, and 'the circles IC, and K2 are transformed into
distinct straight lines K, and K2 passing through the point B (fig. I.39b).
The image k' of the desired circle k under T must be a circle or a
straight line orthogonal to the nonparallel lines K', and K '2 and passing
through the point M ', which is distinct from A and B. It is obvious that
there is only one circle satisfying these conditions (there is no line ki
satisfying the above conditions). This circle has center B and radis
BM '. We denote this circle brie (fig. l.391). Since tyro iterations of the
inversion T yield the identity transformation, the image of the circle r
under T is the desired circle k.. In solving the problem in this case we

3 ,c5
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Fig. 1.39 (b)

have established that there is a unique solution regardless of the
position of the point M.

b. The circles K2 and K2 are tangent at a single point A.
If the point M coincides with the point A, the problem has infinitely

many solutions: first, the line of centers 0102 of the circles K1 and K2
(fig. 1.40), and, second, atty circle with its center on the coinmon tangent
of K1 and K2 which passes through the point A.

Now let M be any point in the plane other than A. Let T denote the
inversion transformation with center A and radius r = AM. Then
the invtrsion Tfixeske point M and takes the circles K, and K2 into the
parallel lines K', and K12 (fig. 1.41). The image k' of the desired circle k
under T should be either a circle or a straight line, passing through
the point M and oithogonal to the parallel lines K1 and r2. Clearly, k'
must be a line (and not a circle). Since the line k' must pass through
the fixed point M and must, be perpendicular to the two parallel lines
ICI and K12, it is uniquely determined, Inversion by T takes the line k'
into the degted circle k.

36



Apidica lion, of &versions

Fig. L40

Fig. 1.41

Not

Thus, in this case, if the point M i different from the point A, the
problem has a unique solution.

c. The circles K1 and K2 have no points in common. We claiip that
there is a point A on the line of centers 0102 and an inversion T with
center A (fig. 1.42) which transforms thc circles K1 and K2 into a flair of
concentric circles.

Let / be the radical'axis of the circles K, and K2. Let S be the point of
intersection of I with the line of centers 0102. As we showed in sec. 1.5,
since Ki and K2 have no points in common, the point S lies outside both
circles K, and K2. We draw a tangent from S to the circle Ki, with point
of tangency T1. The circle K with center S and radius R ST, intersects
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0

Fig. 1.42

the circles Ki and K2 orthogonally. For the circles Ki this follows
immediately from the construction, and for the circle K2 it follows

because the length f the tangent from the point S to the circle K2 is
equal to the length.6f the line segment ST1, which is the radius of the
circle K..We let A and B denote the points of intersection of the circle.
K with the line of centers 0102. The points A and B clearly do not lie
on either of the circles K1 or K2.

The inversion T talkes the following form; We place the center of T
at the point A, and wo-take.the radius r to be C'qual to the length of the,
line segment AB; that i%1 AB.

The inversion T leaves the point B fixed; takes the circle K into the
line K', which passes through the point B and is perpendicular to the
line of centers 0102; leaves the line of centers 0102 invariant; and
takes the circles K1 and K2 into circles K'1 and K'2, whose centers lie on
the line 0102 (fig. 1.43). Since the line K' is orthogonal to both circles

and Al, the centers of K; and r2 must lie on K'. It follows that the
centers of the circles K1 and K', lie on the point of interiection of the
lines K' and 0102that is, that K'1 and K; are concentric circles with

center B.

38
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Fig, 1.43

Now we assume that the point M is distinct from the points A and B.
Then its image under the inversion T, is also distinct qom these
points. Ilk' is the image under T of one of.the desired circles k, then k'
must be a line passing through the points Bd n d M'. It follows that the
line k' is unique. Applying thc inversion T, we obtain the desired circle
k. Thus, if the point M is distinct from the points A and B, the problem
has a unique solution. If M coincides with the point B, then we can take
any line passing through B for k'. In this' instance, then, the problem
has infinitely Many solutions,

If the point. M coincides with the point A, the problem again has an
infinite number of solutions. To show this, it is sufficient to do the above
constructions with one substitution: we consider the inversion T, with
center at B and radius r = AB.

In this way, we have considered all the possible relative positions of
the point M and the circles K, and K2. The problem has been solved
completely.

Problem 5. Given three circles K1, K2, K3, situated so that each lies
outside the dther two, construct all circles which are orthogonal to all
three given circles.

3 9
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Solution. By the assumptions, the circles K1, K2, Ka are situated so
that the radical axis of any pair of them separates the corresponding
circles. Therefore, the pairs K1 and K2, K2 and Kg have radical akes

k and /2 which are not coincident.
There are two possible cases:
a. The lines 11.and /2 are 'parallel. Then the centers of the circles K1,

K2, K3 are collinear. The line on which they lie is the solution to the
problem.

b. The lines l and 12 intersect at some point S. By assumption, thc
circles K1; K2, K3 are situated so that their radical axes lie outside the
corresponding pairs of circles. Therefore, we can draw tangents from
the point S to each of the circles K K2LK3. All the tangents have equal
lengths. Let ST1 be a tangent to the circieK, (where T, is the point of
tangency) and let r be the length of the tangent. The circle with center at
S and radius r is clearly the circle we are seeking.

From these considerations, it follows that the problem always has
only one solution. Wc leave it to the reader to verify this fact.

1.7. Pencils of Circles.

If K, and K2 are twq circles in the plane, the set of all circles orthog-
onal to K, and K, is called the pencil of cir.cles produced by K1 and K2
and is denoted by P(K K2). Often, if thc circles K1 andK2 do not play
an important role in the pencil produced, we denote the pencil sithply
by P or Q. Since we decided above to consider stralght lines as special

cases of circles, straight lines', as well as circles, can enter into the produc-
tion of pencils.

We now consider three pencils arranged in the simplest ways. These
pencils arise from special arrangements of the circles K, and Kg :

1 . K1 and K2 are concentric circles with common center B. In this
case, the pencil P(K11 KO is clearly the set of all straight lines'passing
through the point B (fig. 1.44). This pencil is called an elementary

elliptical pencil.
2. K, and K, are straight lines intersecting 31 the point B. The pencil

P(K K2) is clearly the set of all concentric circles with common center
B (fig. 1.45). This pencil is called an elementary hyperbolic pencil.

3. K1 and Kr, are parallel lines. The pencil P(K1, K2) clearly consists of
all the lines perpendicular to thc lines K, and K2 (fig. 1.46). This pencil

is called an elementary parabolic pencil.
We now consider how the variousFlementary pencils differ from one

another.
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Fig. 1.44 Fig. 1.45
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Fig. 1.46

Number of common points in the'
Type.of pencil circles K1 and k2

Parabolic 1 (the point at infinity)
Hyperbolic 2 (the point B and the point at infinity)

7

Since circles (including lines) can have no more than two points in
common, it 4s clear that there are in some sense only three different
.t types" of elementary pencils.

More precisely, we shall show that for any pitir of circles K, and K2
we can transform the pencil P(K,, KO into one of the three elementary
f>encils by application of a properly chosen inversion. Furthermore,
since inversions are one-to-one transformeons, any pencil P can be
transformed by an inversion into an elementary pencil of only one
definite type. For example, if the inversion T takes the pencil P(K1,
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into the elementary elliptical pencil P', theft no other inversion 7'1 can
take it into a parabolic or a hyperbolic pencil P1. This can be demon-
strated as follows: If T, takes P(K1, K2) into P1, then, on the basis of
theorem f.i, T1 takes P1 into P(Ki. KJ. We let

Then

= T(K1) , K: =

K2 = T(K2), K; = Ti(K2) .

1C1 TAKD , 1<2 TAKD

Since P` is an elementary elliptical pencil, and 131 is an elementary
parabolic or hyperbolic pencil, K1 and K'a are concentric circles, and K:
and K°2 are'intersecting or parallel lines. Let S be the transformation of
the plane which consists of the successive applications of the two
inversions T1 and T. .The lines K1 and K;, which have at least one
common point 0, are carried by the transformation S into the circles
IC, K2', which have no points,. in common; this is impossible, since the
figures S(K) = RTAKD) K1 and SVCD = 7(7.1(1Q) = le2 must
have at least one point in common.

We are now
theorem.

position to prove the following' fundamental

THEOREM 1.10. a. If the circles K1 and K2 have no points in common,
then there exists an inversion or identity transformation-71 carrying
P(K1, K2) into an elementary elliptical pencil.

b. If the circles IC, and K2 have a unique common point, then there
exists an inversion or identity transformation T2 carrying P(K1, 1<2) into
an elementary parabolic pencil.

c. If the circles Ki and 1<2 have two common points, then there exists
an inversion or identity transformation 7'3 carrying P(K1, K2),,into an
elementary ,hyperbolic

The proof of theorem 1.10 is closely related to the constructions we
performed in sec. 1.6 in the solution to problem 4. Subsequent,con-
structions will depend on the following lemma.

LEMMA 1.2. SupPose the inversion T carries the circles K1 and K2 into
the eircles K1 and K'2 respectively. Then the image of the penciiP(K1, K2)
under T is the pencil P(K1C2).

Proof of the lemma. Since any inversion preserves the orthogonality
of circles, the image 6f P(K1, K2) under T is contained in the pencil
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K'2). Therefore, to prove that the image of P(14, K2) coincides
with the pencil P(V1, IC 2), it is sufficient to show that the penciliV1, K'2)
is contained in the image of 1(K1, K2); that is, that for any circle 114f
the pencil AK'', IC2), there is a,circle k in the pencil P(K1, K2) such hat
T(k) = k'. If k' is a circle in P(V1, r2), let

k T(e)

The circle k is orthogonal to K1 and K2 and thus lies in the pencil
P(K1, K2). Since an inversion executed twice in succession is the identity.
transformation, we obtain

T(k) T(T(10) = kf,

and the lemma is proved.
I. Proof ofstatement a. Let K1 and K2 be two circles having no points

in common. If Ki and K2 are concentric, P(K,, K2) is an elementary
elliptical pencil, and we May choose T1 as the,identity transformation.
The interesting Ca.Se is that in which the circles are not concentric
(fig. 1.47). One of the circles, K1 oi K2, may be a straight line (but not
both, since then K1 and K2 would have at least one point in common,
the point 00.

(b)

Fig. 1.47

First, suppose that neither K1 nor K2 is a straight line. Let S be the
intersection of the radical axis 1 with the line of centers 0,09 of the
circles K, and K2 (constructing the Point S and the line /as in sec. 1.5).

The line I and, consequently, the point S lie outside both circles K, and

K2; therefore, we can draw tangents SQ1 and SQLfrom the point S to
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the circles K, and K2 (with Q, and Q2 the corresponding points of
tangency). The point S lies on the radical axis of K, and K2; therefore .

SQ, = SQ2. The circle K, with center nd radius a SQ1, intersects
K, and K2 orthogonally. Let A and B the points of intersection of K
with 'the line of centers 0102.

We define the inversion T1 have center A and radius AB. In
problem 4 of sec. 1.6, it was pov&I that the inversion T, transforms the
circles K, and K2.intt) concentric circles and IC2 with common center
B. By the lemma, the pencil of circles 11(K1, K2) is taken by the,inversion

int6 the pencil P(K1, K'2), which consistsyall lines passing through
the point _B.

-

Thus, the inversion T, transforms the pencil P(K,, K2) into an ele-
meVary elliptical pencil.

It remains to consider the case when one of the circles, say K1, is a
straight line (fig. 1.48). Since Ki and K2 have no points in common, K2
lies outside K27We tonstruct a line m through 0, perpendicular to K1,
and let S be the point at which m intersects K1. We construct further a
tangent SQ, tO K2. Let K be the circle with center S and radius e= SQ2,
and A and B the points ofintersection of K With the line in. The inversion
T, having center A and iadius r = AB leaves the point B fixed, leaves
the line in invariant, and takes the circle K into the line K', which
passes through the point B and is perpendicular to the line m.

The line K, does not pass through the point A, and the circle K is
orthogonal to the line K and the circle K2. Therefore, the images of K1
and K2 under T, will be the circles and K2', whose centers lie simul-
taneously on the lines K' and m; that is, K', and K'2 are concentric circles
with center B. It follows (by the, lemma) that the image of the pencil
P(K K2) is the elementary elliptical pencil P(KI, Kia).

Thus statement a is completely proved.
Proof of statement h. Let K1 and K2 be two circles having exactly one

point A in common (fig. 1.49). If both K, and K2 are straight lines, they
must be parallel, since they can have no common points otAer than Oa°.
In this case, then, P(K K2) is already an elementary parabolic pencil,
and we can choose T3 to be the identity transformation.

If neither K, nor K2 are straight lines, or if only one of them (say KO
is a ttraight line, ilve m4 choose any inversion 7'2 with center A.
K, and K2, are transforined by T2 into parallel lines and K12; thus
the image P(K'1, K's) of P(K1, K2) under T, is an elementary parabolic
pencil.

This completes the proof of statement b.
Proof of statement c. Let K, and K2 be two circles having tWo points

A and B in common (fig: 1,50). If both K, and K2 arg stright lines, then

_a
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they have exactly one point of intersection other than the point 0., and
P(K1, K2) is already an elementary hyperbolic pencil (so that we may
choose T3'to be the identity transformation).

(a)

N-1

K2

Fig. 1.48

(b)

Fig. 1.49

(c)

If at least one of K, and IC2 is not a straight line, let T3 be ttie inversion

with center A and radius r = AB. Then the images of K, and K2 under
T3 will be the lines K1 and IC2 intersecting at the point B (fig. 1.51). It

adisilbro

(s)

Fig. 1.50
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follows that the image P(KI, K) of P(K1, K2) under Ts is an elementary
hyperbolic pencil.

Thus statement c is proved, and the proof of theorem 1.10 is complete.
We now introduce the following definitions:
The pencil P(K1, K2) produced by the circles K, and K2 is Lid to be

elliptical if the circles K1 and K2 have no points in cornrbon.
The pencil P(K1, K2) is said to be parabolic if the circles K1 and K3

have exactly one common point.
The pencil pric1, Ko is said to be hyperbolic if the circles Ki and K2

have two common points.

THEOREM 1.11. Every elliptical pencil can be obtained from some
elementary elliptical pencil by the application of an appropriate inversion
or identity transformation.

THEOREM 1.12. Every parabolic pencil can be obtained from some
elementary parabolic pencil by the application of an appropriate inversion
or identity transformation.

THEOREM 1.13. Every hyperbolic pencil can be obtained from some
elementary hyperbolic pencil by the application of an appropriate in-
version or identity ttansformation.

Fig. 1.51

The proofs of theorems 1.11,,
1.12, and 1.13 follow immediately
from theorem 1.10 and the fact
that two successive applications of
the same inversion yield the
identity transformation on the
plane.

The point A is called a node for
the pencil P if all the circles of P
pass through A. The point A is
called an origin for the pencil P
if there exists a sequence of
circles of P contracting into the
point A.

From the construction of tee elementary elliptical pencil and theorem
1.11, we find that evecy elliptical pencil has two nodes andszo origin.
On the other hand, by theorem 1.13, every hyperbolic penciV has two
origins and no nodes.

Let P be a nonelementary parabolic pencil. This pencil is obtained
from -some elementary parabolic pencil P', consisting of a class of
parallel lines, under transformation by an inversion T. Let A be the
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center of the in;ersion T. It is not hard to see that P is the set of 0
..earcles mutually tangent at the point A, including the common tangent
of all the circles at the point A (fig. 1.52). Thus, the pencil P has one
node and one origin, both of which are the point A. Operating on the
pencil P by the inversion T, we obtain the elementary parabolic pencil
P`, for which the point 0,, is both the only node and the only origin.

From the above discussion, we obtain:

TREORM 1.14. The total manber of nodes and origins for any pencil
is two.

The pencil P is said to be orthogonal to the pencil Q if any circle in the
pencil P is orthogonal to any circle in the pencil Q. It is obvious that, if
the pencil P is orthogonal to the pencil Q, then, Conversely, the pencil
Q is orthogonal to the pencil P.

We now consider pairs of orthogonal
elementary pencils. UP is an elementary
elliptical pencil, 'that is, the set of all
lines passing through some point B,
then the set of all circles orthogonal to
the circles of P is clearly an elementary
hyperbolic pencil Q, cdnsisting of all
concentric circles with center B (we
adjoin to Q thc point B and the point
0., which are the origins of,Q). lt is
easy to see that, conversely, the pencil Q
is orthogonal to 12; and in addition, that
themodes of P are the origins of Q.

If P is an 'elementary parabolic
pencila set of parallel lines together
with the point 0.then the pencil Q,
obtained by rotating P through a right

angle, will be orthogonal to P, and conversely. Thus the nodes and
origins of the pencils P and Q coincide at O..

F.rn the abOve discussion and from theorems 1.11, 1.12, and 1.13,

we oain the following theorem:

THEOREM 1.15., For every pencil P there exists one and only one
orthogonal pencil Q. If P is an elliptical pencil, then Q is a hyperbolic

and conversely: the nodes of P are the origins of Q, and conversely.
If 13- is a parabolic pencil, then Q is also a parabolic pencil. In this case,
the nodes and origins of the pencils P and Q coincide at a single point A.
The pencil Q is obtained from the pencil P by rotating the pencil P
throitgh a right angle about the ppint A.

Fig. 1.52
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1.8. Strad= of sn Elliptical Pencil

THEo 1.16. Every elliptical pencil P Ls the set of all circles passing
throughcome 'two fixed points.

Pioof. If P is an elementary elliptical pencil with node B, then P is
the Ft of all circles passing through the points B and O. If P is non-
elementary, there exists an elementary elliptical pencil 12' and an in-
version T (see theorem 1.11), carrying the pencil P' ipto the pen-cil P.

P.' is the set of straight lines passing through some point B' (fig. 1.53).
Let A be the center of the inversion T. Then A and 1" are distinct; if

, not, the inversion T would carry the pencil P' into itself, and P would
be elementary. Since the image of the pencil P' under the inversion T is
the set of circles passing throtigh the points A and B = T(B9, the
theorem is proved.

COROLLARY I. The points A and B are nodes of the pencil P.

Thus, every elliptical pencil can be defined as the set of circles passing
through two fixed points (ni v of the pencil). It follows that the nodes
uniquely define the elliptical ncil.

. If one of the given nodes is e point at infinity, the elliptical pencil is
elementary.

CO-R0 WS( 2. Let A and B be the nodes of the pencil P. Then the
straight 9Ize AB is an elemeni of the peFil P.

If Aa dB are ordinary points, then the line AB is the only straight
line in the pencil P (all the other elements of P are circles). It is easy to
see that the line AB is the radical axis for any pair of circles in the pencil
P. Therefornithe line AB is called the radical axis of the pencil P.

Fig. 1.53

8
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Thus, a nonelementary elliptical pencil is the set of all "real" circles
passing through two fixed points, and the common radical axis of all
pairi of circles taken from this -set. As noted, this radical axis passes
through the nodes of the elliptical pencil.

If one of the points A and B, say A, is the point at infinity, then the
pencil P consists of all straight lines passing through the point B. In this
case, the uniqueness of the line AB disappears, and, consequently, for
an elementary elliptical pencil the concept of a radical'.axis becomes
meaningless. Thus, the presence of exactly one straight line in an
elliptical pencil is a necessary an 'sufficient condition for thipencil to
be nonelementary.

1.9. Structure of a Parabolic Pencil

THEOREM 1.17. Every nonelementary parabolic pencil P is the set of
ail circles tangent to one another at some fixed point.

Proof Since- P is a nonelementary parabolic pencil, there exist an
elementary parabolic pencil P' and an inversion T (see theorem 1.12)

carrying 13' to P. P' is a class of htutually parallel lines to which is.added
the point at infmity. Let A be the center of-the inversion T, and I the
straight line in 13' passing through the point A. Then the inversion T

leaves 1 invariant and transforms all
other lines of the pencil P' into
circles tangent to / at the point A
(fig. 1.54). Since the image under T
of the point 0,. is A, it follows that
the pencil P is the set of all circleS
tangent to one another at the point
A, and that the point A is thc origin
of the pencil P. T1,, proves the
theorem.

We note that if P is an elementary
parabolic pencil, that is, a class of

Fig. 1.54
parallel lines, then P is a set of
circles tangent at the point O.

COROLLARY. The straight line I 'is an element of the pencil P.

The line I is the radical axis of any pair of circles of the pencil P.
Therefore, lis called the radical axis of the pencil P.

It is clear from theorem 1.17 that every nonelementary parabolic
penal can be defined by its node (or, since they are the same; its origin)
A and the radical axis 1 passing through that point.
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If.the node of the parabolic pencil is the point at infinity, then it is an
elementary parabolic pencil, and isolation of a radical aiis is meaningless.

Just as in the case of elliptical pencils, a necessary and sufficient
condition that a parabolic pencil be nonelementary is that it contain a
unique straight line, the radical axis of the pencil.

1.10. Structure of a Hyperbolic Pencil

Hyperbolic pencils have & more complicated structure than the
elliptical and parabolic pencils described in secs. 1.8 and 1.y.

Let P be an arbitrary non-
elementary hyperbolic pencil.

Lp(R> OR (R<r) From theorem 1.13 it follows that
there exists an elementary hyper-
bolic pencil P' and an inversion T
which carries r 'to P. The pencil
.13' is the set of all concentric
circles with a common center at
some point B (fig. 1.55). Let A be
the eenter of the inversion T and
r its radius. From the proof of
the rem 1.10, it is clear that,
with t loss of generality, r can be

chosen as'the length of the line segment AB. or each positive number
let LR denote the circle with center B and) radius B, Let CR and DR

be the points of intersection of LR with the line AB, with CR (fig. 1.55)
regarded as lying to the left of the point B, and DR to the right df B.
Let KB (fig. 1.56) denote the image of the circle LR under the inversion

T. We first consider the case where

Fig. 1.55

R < ,r;

in this case both points CR and DR lie to the left of the point A. Their
images CR' and D which are the points of intersection of the circle
KR with the line AB, also lie to the left of the point A. Furthermore,

and, therefore,

r 2 r r 2

i< R
= A CR < AB r < AQR = A LYR .

r R r

3 11

46,
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It follows that the point. CI lies in the interior of the segment BM,
where M is the midpoint of the segment AB; that the point Dik lies
outside the line segment AB to the left of the point B; and, finally, that
tlie center of the circle KR is located at the point QR, also lying to the
left of B, since

C'RA + D'RA r2 I 1 -+ 1 \ r3

AQA 2 kr + R r RI r2 R2 r

If R r, the circle La = 1,7 asses through the point A (fig. 1.55),
and, since

r2 1.2

AC; = =
. A Cr 2r 2

the inversion Ttakes L into the straight line K which is perpendicular
to the line segment AB at its midpoint M (fig. 1.56).

k

If R > r, then the point CR lies to the left of B, and the point DR lies
to the right of A (fig. 1.55). Since

` 2r 2 r A AA
,ACuR

ACR r + R < `14""

the point CR' lies in the interior of the line segment AM, and the point
g, lies outside the line segment AB to the right of Ai The entire circle
KR thus lies to the right of thc line KT (fig. 1.56), and its center, the point
,QR, lies to the right of the point A, since AC'R < AYR. This can be .2

shown as follows:

r2 r2 r2
r+R Rr AD

Let h(R) denote the radius of.the circle KR.
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If .R < r, then

h(R)-
D'RA CIA r2 1 ) r 2R

2 2 kr R r + R (r + R)(r R)
(1.2)

rf As '1? coniierges to r, it follows from formula (1.2) that h(R) increases
without bound. A simple visual picture corresponds to this: The circles

r KR of the hyperbolicpencil P expand without bound as the parameter R
increase rom 0 tp r and, for R = r, become the straight line Kr.

If R > r, c

h(R)
CA + D'RA r2 1 1 1 r2R

\ 2 2 kr + R+ R (R rXR + r)
(1.3)

It follows that as R approaches r from above, the circles KR expand
without bound and, for R = r, become the line K. If R increases
monotonicall from r tO OD, it follows from formula (1.3) that the
circles KR contract (their radii approach zero). For R = +oo, the circle
KR becon+ the point A.

The general form of a hyperbolispencil P is represented in figure 1.57.
We remark that the straight line K, is the radical axis of any pair of
circles in the pencil P. (We leave the proof' of this fact to the reader:)
The line KT is thus called the radical axis of the pencil P.

Fig. 1.57

From the above discussion it is clear that a hyperbolic pencil is
-compfetely specified by its origins or by one of its origins and its radical
axis.

If one of the origins is the point at infinity, then the pencil P is an
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elemtntary hyperbolic pencil; that is, a set of concentric circles. The
concept of a radidal axis loses its meaning for such a pencil.

Since an elementary hyperbolic pencil contains no straight lines, a
necessary and sufficient condition for a hyperbolic pencil to be non-
elementary is the presence of a straight line. As we know, in a non-
elementary hyperbolic pencil, this line is unique. ,

1.11. Ptolemy's Theorem

In this section we shall investigate the prob a determining when
it is possible to pass a circle through four RAven points in a plane. It
happens that this 'question can be partiall answered with the help of
the well-known theorem 'of Ptolemy from elementary geometry. We
shall formulate and prove the theorem of Ptolemy a little later; first,,
let us consider the solution of the problem by means of inversions.

Let A, B, and C be three noncollinear
points in the plane. There is a unique
circle K passing through these points
(fig. 1.58). Let T be an inversion with
center A and-some radius r which is
greater than the diameter of the circle
K. The iinage ot the circle K under the
inversion T will be a line k which lies
completely outside of ,K, since r is

greater than the diameter of K. Let B'
and C' denote, as usual, the Ifilages of
the points B and C under T. The points
B' and C' clearly lie on the line k. Now

we fake an arbitrary point D in the'plane, and let D' be its image.2 If
the point D lies on the circle K, the point D' will.lie on the line k; if D
does not lie on K, then D' will not lie on k. Theeefooi., in order for the
four points A, 5, C, D to lie on the circle K, it is necessary and sufficient

that the points B', C', and D lie on the line k.
if the three distinct points B' C', and D' are collinear, then the seg-

nietts B'C' , C' D' , and B' D' satisfy one and only one of the three
relations:

B'D' + D'C' = B'C' ;
B' CI + C' D' = B' D' ; (1.4)

C' B' + B' D' C' D' .

Fig. 1.58

2. We assume that the point D is distinct from the points A, B, and C.
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If the three points ir C', and Di arn not collinear, then the inequality.

C'D' > B'C'
hokis.

We shall now aqempt to write the relations (1.4) and,(l .5) 'so thai
they do not involve the points B', C', and /r.

As a preliminary, we establish the following lemma:

LEMMA 1.3. Let the inversion T with center 0 and radius r be given.
Let M and N be t,wo arbitrary points in the plane afferent from 0 and
from the point 0.. Then

(1.5)'

where

M' = T(M); N' T(N).

Proof. By lemni4,11-17the triangles OMN
and ON'M' (fig. 1.59) are simile, and, in
particular,

Fig. 1:59

M'N' OM'
MN ON '

Since OM' = r210M, we have

and the lemma is proved.
From lemma 1.3, we have

r 2

r 2M'N' MN ,
OM ON

r 2
B' D' BDAB-AD, D'C' DC- AD AC, B'C' = BC AB AC

4
Thus, if the points A, B, C, and D lie on the circle K, the images of B,
C, and D lie on the line k, and the relation

r2

r 2 r2 r 2

BD + DC BC
AB-AD AD AC ABAC

is valid. (We assume..Nithout loss of genctality, that D' lies between B'

t
4



and C'.) If the
relation
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ints 4, 8, e, and D do not lie on the circle K, then the

r 2 rg rg
BD + DC > BC

AB.AD ADACt ,ABAC

is valid.
It follows that

BD.AC + DC.AB = BC.AD,

if the points A, B,°C, D lie on one circlet and

BD.AC + DC.AB > BC.AD,

if the points A, B, C, D do not lie on one circle.
Thus, we have:

THEOREM 1.18. In order that the four points A, B, C, D lie on .one.,
circle and that, the points A and D lie on different arcs with endpoints' ir

:

and C, it is necessary and skfficient that the equality ,

BD AC + DCAB = BC. AD

-13f- satisfied.'

Since any quadrilateral ABCD inscribed in a circle K satisfies the
conditions of theorem 1.18, we have;

THEOREM 1.19 (Ptolemy's theorem). For every quadrilateral inscribed
in a circle, the sum of the products of the opposite sides is equal to the
product of the diagonals.

fa)

A

:
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Complex Numbers
and Inversions

2.1. Geometric Representation of Complex Numbers and Operations
ou Them

As we -know, every complex number z x iy (where i is the
imaginary unit defined 'by the relation i2 = 1) can be conveniently
represented in the Cartesian plane by The ordered pair of coordinates

y). (We assume that the coordinate axes of the plane are txed with,
origin 0, as in fig. 2.1.) For every point M
in 'the plane there is a unique vector r with
initial point 0 arid terminal point AL this
vector is called the radius vectbr of the
point M, and the coordinates of the point
M are called the coordinates or components
of the radius vector. Therefore, the com-.
plex number z = x + iy can be. repre-
sented geometrieally by the radius vector

Fig. 2.1 with coordinates (x, y):
If z, = x, + iy, and z2 = x2 + iy are

two complex numbers, and r, and r2 are thei corresponding radius
vectors, then the numbers z, + z2 and z, z2 are,.defined by:

z1 + z2 = (x1 + x2) + 1(y1 + )72);_

zi z2 = (x1 x2) + i(Y1 Y2)

On the other hand, from the definition of the rules for addition and
subtraction ..01-,:r1,0.4We have in mind the parallelogram rule), it

folkiws 'the 14.1.:IyiegteirS,.', *a. + ,1% ..and ..1.1_-7r2 have coordinates
:+ tx 73A4 yl ),12) respectively. Therefore, the

additjon and stibir4tic4..gicao complex numbers can be performed on

48
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their radius vectors by taking the corresponding sum and difference of
the radius vectors representing the given complex numbers (fig. 12).

Fig. 2.2

The number 2 = x iy is called the conjugete -of the number
z = x + iy. Let M be the endpoir4 of the radius vector r corresponding
to the number z x + iy, and let M1 14 the endpoint of the radius
vector ri corresponding to the number x iy. Since the points M
and M1 haVe as their coordinates (x, y) and (x, y) respectively, M1
can be obtained from M by reflection across tbe x-axis (fig. 2.3).

Let z be some complex number and r its radius vector. Let 11 denote
the length of the vector r and p the angle measured counterclockwise
from the positive side of the x-axis to the vector r. The real number izl
is called the modulus of the complex number z, and the angle is its
argument. We shall often denote the modulus of z by p and the argu-
ment ot z by arg,g, or 9) (fig. 2.4). It is obvious that for the complex
number z x + iy,

= p cos 9)

y=psin9,.
Hence,

z = x + iy= p(cos cp + i sin (p) .

The expression of the number z = x ly in the form

z ,= p(cos + i sin q))

is called the trigonometric form of the complex number z.
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0

Fig. 2.4

Along with positive angles, measured counterclockwise from the
positive side of the x-axis, we introduce ndative angles, which are
measured clockwise from the positive side of the x-axis.

If 2 is the conjugate of the number

then

z = x + iy = *CI co + I sin co

p(cos 90 i sin qp)

.p(cos (-9) + i sin ( co))
= p(cos (27T cp)' + i sin (27T

X + ly

Thus, for the argument of the number
E, we can take either of the angles --cp
or 27T cc. (fig. 2.5).

Since sine and cosine are periodic
functions with period 27rt the value of

tei the argument of a compleZ number z is

Fig. /.5

defined up to an integral multiple of 277-.
Therefore, it is convenient to select,
from the values of the argument, the

ly so-called principal value, which is con-
tained within the interval from zero to
27e (i ncltsive of zero, but exclusive of 27T).

In the following, unless stated otherwise, we mean by the argument
of a complex number z any angle cp satisfying z = *Os so i sin 90).

We shall now consider the multiplication of comVp numbers.



ideomktric Representatton
,

Given two complex numbers z1, + iyi and zsa = x2 + iy2, the
product z, z, is defined to be ;he complex number

(x1x2 y'12) + i(x1 ya + x2y1)

Let us consider 4he wometric interpretation of the operation of
multiplication with the aid of the rtigonometric form for complex
numbers. Let,

Then

pl(cos fp, + i sin TO ;

z, = pa(cos cp2 t I sin (pa) .

z = z1z2 P1p2((cos pi cos 902 sin pi sin su2)

+ i(cos so, sin 472 + COS 902 sin soi))

p1p2(cos (so, + so2) sin ((r, + Ta)) .

In this manner, if the radius vector r represents the complex number
z = z1z2, and the radius vectors r, and r, represent the complex
numbers z, and z2, respectively, then the radius vector r is obtained
from r, and r, bY the following operations: The radius vector r, is first
rotated counterclockwise by an angle of 9)2 if 92 > 0, or. clockwise by
an apgle of cp, if 932 < 0; then, its length is increased by a factor of p2.
In other words, if cgo2 is the rotation 'of the pipe around the origin by an
angle of so,, and P is the dilation transfortnition with coefficierit p2 and
caiter at the origin, then the vector r is obtained from the vector r, by
successive application of the transformations cco2 and f3,3. In symbols,

r = gpa(a,ari))

Of course, if the roles of z, and za are interchanged (complex mul iplica-
tion is commutative), the analogous relation hblds:

r

We now turn to the geometric interpretation of the operation of dividing
two complex numbers z, = p1(eos (p, i sin T) and 22 = p(iosrpa +
i sin cp2). If z z1/z2 is the quotient of z1, and za, then

z, fa p(COS cpi cp1)p2(cos (pa i sin sv2)

z2- p2 os cp, + i sin so,)p,(cos (p, I sin so,)

pi (cos cpi i sin (p1)(cos ( cp,) + i sin
p, (cos 9)2 i sin 4)2)(eos ( 4 i sin

er
fl [cos 9)2) + sin p2)]
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Thus,
ziz = = cos (cal + ism
Za

Let a _c., denote the rotation of the plane about the origin corresponding
to the angle --(pa and let be the dilation transformation cerhtered at
the origin with coefficient 1/pa. Then the vector r is obtained from the
vector r, by successive application of the transformations a _ and
T31102; that is,

r PirDa[cx-0,4(ri)]

!

2.2. Linear Functions of a Complex Variabli and Elementary
Transformations of the Plane

Suppose every complex number z x + iy is made to correspondt to
some complex number z' + iy' by some rule. Then we samilat
for the set of all complex humbers, or, more simply, for the complex
plane, the function of a complex 'variable z' f(z) is defined. A
complex function whose rule,of correspondence is given by the formula

z' f(z) = az + b ,

Where a and b are fixed complex 1-i-umbers, is called a linear function,,
Since complex numbers can be identified with points in the plane,

every complex function can be considered as a transformation of the
points of the plane. It is the task of the present section to describe such
functions with the aid of the elementary transformations of the plape
investi ated in sec. 1.1.

Fir t, let
f(z) = z' az + b

be a give4inear function. Ha 0, then the function z' I) is constant,
since it assigns the complex number b to any coMplex number z. The
transformatiun of the plane corresponding to the function f(z) thus
takes the entire plane into the single point 17,,

From here on, we shall exclude this trivial transforMation from our
considerations and assume that a Yr 0.

Let
= la7(cos yr, i

be the compleii numbep a ,written in trigonometric form. Let r', r, and h
denote the radius vectors corresponding to thb numbers z', z, and b
respectively. Furthermore, let 16 be the dilation transformation with

t.
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center at the origin and coefficient lai, and let a, be the rotation of the
plane through an angle of 90 about the origin. Finally, let yt, be the
parallel translation of the plane by the vector h. It is not hard to see that
the point z', the endpoint of the vector r', is obtained from the point z,
the endpoint of Me vector r, by successive application of the trans-
formations a., Pic, and yb. T

A linear function of the form

z' 1. az + b

is often called a linear function of the first kind. As we have shown, a
linear function of-the first kind on the plane ecorresponds to a trans-
formation consisting of the sUccessive applicatiOn of the transformations
of rotation about the origin, dilation with center at the Origin, and
parallel translation. Here, the rotation and the dilation are determined,
by the number a, and the parallel translation by the number b,

We remark specifically ou some special cases.
a. Ial = 1, b = 0: rotation of the plane about the origin through an

angle equal to the argument of the number a.
b. a is a positive real number, b 0: dilation transformation with

Center at the origin and coefficient a.
c. a = : parallel translation by thc vector h.
The function

z' af + b

is called a linear function of the second kind. We consider first the
special case a = 1, b = 0. The function

z'. =

:st aer

takes each point z in he point 2 symmetzic Io it,* respect tq the
Tkus, the functi n

Z
irrrs,

is

easy to see,that /he general linear functign of the second kind corre-
,sponds to a transfmmation of the plane consisting of successive
applicationof reflection across the ;c:axiS, .1-citation about the origin,
dilation with center at the origin, and pafallskranslation. Just as irithe
case of linear functions of the fil-st kind...,the angle of rotation is equal to
the argument of the number a, t41..oeflielent of the dilation is equal to
the modulus of the number ai and the vector of thellarallel translation
is determined by the number b.
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2.3. Linear Fractional Function of a Complex Variiide and
Related Pointwise Transformations of the Plane

Functions of a complex variablagiven by the formulas

az + bz' = cz + (1'

+ bz'
CZ d

(2.1)

(2.2)

mhere a, b, c, d are fixed complex numbers and

'ad bc,0 0 ,

are called, respectively, linear fractional functions of the first and second
kind.

We consider first functions of the form

and

r2
z (2.3)

2, r
z

where r is some positive constant.
Equation (2.4) can be written as:

r 2Z T2z = = z .
zz 1z12

It folrows that,the transformatien of the plane
function

Vr

carries the point z to the point z' lying on the ray determined by the
radius vector corre.sponding to z, and that the modulus of the numbcr
z' is given by

, r2
Z

(2.4)

corresponding to the

r 2

12.11
Z1 IZ1 4.

Thus z' is obtained from z by an inversion with center at the origin and
radius r.

4.
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Equation (2.3) can be written as

By reasoning analogous to,that abov, we can easily conclude that the
futiction

r 2--
Z lb

corresponds to the successive application of a reflection across the x-axis
and an inversiOn with center at the origin and radius r.

We have

a TARREM 2.L In\ the complex plani,, the inversion transfor tion T
witli radius r arid center- d is even by the function

r + d. (2.5)
d

Analogously, the function

A

'(2.6)

yields the transfor iiition'obtained by the 'successive application of the
reflection across a line pfitallel to the' x-axis and passing through the
point d, and the inversion It`ith radius r and center d.

Fig. 2.6

Proof SupposeT is the inver-
sion with radius r and' center d,

And z' is the image of z under T,
(fig. 2.6). By tlie definition of the
invFrsion T, we7 have

di
dl

(2.7)
Pt.

Furthertm;i-e, the, numbers z

and z' d must have equal
arguments, since the fact that z
and z' lie on the same ray with
initial point d implies that z d

63
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and z' d lie on the same ray Ath initial point at the origin. Thus, the
numbers z' d and d have arguments differing only in sign.
Using the rule for Multiplication of complex numbeis in trigonometric
form, we obtain

(z' d)(i = 1z, d1 12 di(cos + i sin ()).

= Iz' c/1-12 31.

This equation along with equation (2.7), yields,

Hence,

r 2a =
d

r 2

d
+ d . .40

The second part of the theorem can be proved analogously.

THEOREM 2.2. A linear fractionyl function of thee second kind

+ bz' = cz + d

with c 0 can be written as a transformation of .the complex plane
consisting of the successive application of the following transformations:

1. the inversion with center at the point (3/e) and radius 1;
2. rotation of the plane through an angle equal to the argument of the

number (be ad)1c2;
3. the dilation with coefficient equal to the modulus of the number

(be ad)Ic2 and center at the origin;
4. parallel translation by the radius vector of the number alc +

[Abe ad)]/c2e..

Proof The linear fractional function (2.2) can be writteri as:

z,
+

c

bc ad
,2

a + a(bc ad)I
_ (2.8)

c c

The validity of theorem 2.2 fQllows immediately from formula (2.8).
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We have the analogous theorenifalinear fractional functions of the
first kind. The only difference is that between the inversion and rotation
transformations, there occurs a reflection aciross a line passing through
the point (d1c) and parallel to the x-axis.

If the coefficienfc is zero for the linear fractional functions (21) or
(2.2), they reduce to linear functions of the type considered in sec. 2.2.



Groups of
Transformations:
'Euclidean and
Lobachevskian
Geometaies

In this cimpter we shall give a brief construction of the so-called

Euclidean and Lobachevskian geometries from the poi6t- of view of
group theory. This approach to the study of various geometries was
first proposed by the German mathematician F. Klein in 1872.

3.1. The Geometry of a Group of Tr:informal=

3.1.1. The concept of a group. One of the mostfundamenial concepts
in algebra is that of a group.

Suppose G is sOme set, the nature of whose elements is irrelevant. For
example, the elements of G may be -numbers, vectors, functions,
transformations, or some other objects.

Now suppose that some rule of correspondence is given under which,

some element c of G is assigned to each ordered pair (as b) of elements
from G. Then we say that there is an operation defined on G, which is
normally called multiplication and denoted by a dot. That is, ir the
element e of G is assigned to the ordered pair (a, b), we

c ab .

The element c is usually called the product of the elements a and b. We
note that it does not follow from the definition of an operation that a b
is always equal to b a. -

Now suppose that an operation . is introduced on the set G. We say
that G forms a group with respect to the operation . if the following

*requirements (group axioms) are satisfied:
1. The associative law: For any three elements a, b, and c in G we

have the equality

b) c .= a (b. c) .

58
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2. There exists an element e in G such that for any other element a
of G the equality

a e = a

holds. The element e is called a unit element of the group.
3. For any element a in G there exists an element x in satisfying

ax e

The element x is called an ,inverse of the element a.
We shall now verify a number of simple propositions which follow

directly from the definition-of a group.
a. By axiom 1, no ambiguity results when we denote the group

element (a b)- tor a (b c) simply by a b c.
b. If e is a unit element of the voup G, then for any element a of G

we have

e a = a .

Furthermore:\for every element a in G. with inverse x, the equality

x a e

as well as the postulated equality

ax = e
holds

Let us prove proposition (b). If y is an inverse of x, that is, a group
. .

element satisfying

then

x y e

x a x a) e = (x a). (x y)
x(a.x).y. xe.y

= x y = e

which establishes the second pa.rt of our assertion, along with the fact
that a is an inVerse of its inverse x. Furthermore,

e a (a. x)- a = a (x a) = a e = a ,

by what we have just proved. This completes the proof of assertion (b).
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111 thp group G, each of the equations

a. x b (3.1)

x.a = b (3.2)

have unique soltitions in, x.
It is not hard to see that if g an inverse for a, then the elements

g b and b g to equations (3.1) and (3.2), respectively.To

show that the solutions are unique, suppose, for example, that
equation (3.1) has_solutions x1 and x2. Then, since

a x1 = b = a x2 ,

'we have

xt = gax, gb gax2 . x2,

where g is an inverse of a. The proof of uniqueness 'is completely
analogous for equation (3.2).

We note that by virtue of assertion (c), the unit element e and the
inverse of a given element a are unique, since all unit elements are
solutions to the equation ax = a, and all inverses of a are solutions to

the equation a x = e. We may therefore denote the unique inverse of

s.a by a-1.
A subset Hof the group G which is closed under the operation in the

group G and satisfies the three group axioms with respect to that
operation is called a.subgroup of the group G. Clearly, every subgroup
contains the unit element of the grotp and the inverse of each of its

elements.
We shall now present some examples Of groups.
1. The set of all integers forms a group under the operation of

addition. If m is some iriteger, then the set of all integers of the form

km, for k = 0, + 1, + 2, ..., forms a subgroup of this grbup.
2. The set of all nonzero real numbers forms a group under multi-

plication. The set of all nonzero rational numberstorms a subgroup of
this group.

3. The set of all radius vcetors in the plane forms a group under
addition. The set,of radius vectors ljfing on one line through the origin

forms a subgroup of this group.
4. The set of all n9nzero complex numbers forms a group under

multiplication. The sef of all complex numbsers of modulus one and the

set of all nonzero real numbers arc two of its subgroups.
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3.1.2. The group of transformations of a set. Let M be an arbitrary
non-empty set. A rule of correspondence f which assigns an element x'
= f(x) of M to each, element x of M is called a transformatio-n of the
set M into itself. The element x' is called the image of x under f

The set of all images x' = f(x), as x runs through M, is denoted by
f(M). It is obvious that f(M) either coincides with M or is a proper
(and nO'n-empty) subset of M.

The transformation f of the set M into itself is called a one-to-one
transformatibn of M onto itselfif it satisfies the following two conditions:

1 1 Different elxments x1 and x2 of the set M correspond to different
images f(x1) and f(x2). ,

2. The set f(M) coincides with the set M.
We shall consider below only one-to-one transformations of the set

M onto itself, which will be referred to simply as transformations.
Let f be a transformation on the set M. Since f(M) = M, we know

that for any x' in M it is possible to find a unique x in M satisfying

x' f(x)

(the uniqueness of "x arises from condition 1 above). Thus a rule of
cotTespondence g exists which assigns to each x' in M the unique x
satisfying .

lay write

x' = f(x) ;

x = g(x') .

It is easy to show that g is 4self a transformation and is uniquely
determined by f; it is called the inverse off and is, denoted by f -1.

Let f1 and A be two given transformations. Then the successive
application off1 and f2 defines a new transformation f on M given by

.1(x) = f2(f1(x)).

The transformation f is called the composition or product of the trans-
formationsf, andh and is denoted.h.f (the transformation written on
the right side of the dot is always 'carried out first). The composition of
transformations, generally0,4peaking, depends op the order in which
they are performed; that is* general,f,(f,(x)) need not equalf1(f2(x)).

The transformation e defined by e(x) = x, which leaves all elements

of M fixed, is called The identity transformation. If f, is a given
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transformation and f -I is its inverse, then it is easy to see that for any
x in M the relations

f(J -1(4) x = e(x) ; f-1(f(x)) = x = e(x)

are valid.
We have:

THEOREM 3.1. The srt of all transformations of a set M onto itself
forms a group under the operation of composition.

Verification of the group axioms in this instance is vdry simple.

I. If f1,f2, andf3 are transformatiOns of the set M, then

(fa ID -f1 = fa (f2 .11)

It is easy to show that both the left and right sides of the above equation
reduce to the transformatio defined by f(x) f3(f2(fi(x))].

Consequently, the comp° Awn of transformations always obeys the

associative law.
2. The identity transformation e plays the role of the unit element of

the group. For any transformation fon M and any element x in M, we,

have

f(e(x)) = f(x) 4

It follows that f- e =f
3. For any transformation f there exists a transformation g such that

g = e .

We need only take g = f
Thus the theorem is proved.
The group of all transformations on the set M will be denoted by

G(M).
Any subgroup of the group G(M) will be called a group of trans-

forrnations on the set Al. A nonempty subset H of G(M) is a subgroup
if the following two Conditions hold: (1) the coinpositionf.f1 of any
two elements J., and ./.2 of if is contained in 11; (2) the inversef of
any-element f of If is contained in H. These conditions are sufficient,
since the associative law always holds op any subset of G(M), and since

a nonempty subset H must contain some transformatio4f, wild thus the

...tyansformationsf' = e if conditions (1) and (2) are satisfied.

f)
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3.1.3. The geometry of a group. Let M be some set of arbitrary
elements, and 14 a group of transformations on M.

In the interest of visualization, we shall call M a space, and its
elements points. A set of points will be called a figure.

A figure A is called equivalent to a figure B if there exists a trans-
formation f on the group H carrying A onto H.

This relationship of equivalence of figures has the following im-
portant properties;

I. Every figure A is equivalent to
The unit element of the group Hthe identity.transformation of the

set M onto itselfcarries A onto A.
2. If the figure A is equipalent to the figure B, then the figure B is

equivalent to the figure A.
ACtually, if the figure A is.earried onto B by a transformalion f from

the group H, theri, since thc inverse f -1 off also lies in H, f -1 carries
the figure B onto the figure A.

3. If the figure A is equivalent to the figure B, and the figure B is
equivalent to the figure C, then the figure A is equivalent ito the
figure C.

If the transformation f in H carries A onto B, and the transform
g takes B onto, C, then the transformation g.ficarries A onto C; and
since g.f lies in if (II is a group), A is equivalent to C. ,

By.virtK of properties-1, 2, and f, the equivalenceireIation divides
the set of ail figures into equivalence classes, with each figure lying in
one and only one class.

Definition of a geometry from the point of view of group theory, as
proposed by Klein, involves consideration of certain.geometric proper-
ties and ,measurements of figures in'a space M which are invariant under
all transformations from a given group H, and are thus identjcal in all

equivalent figures.
The set of all properties and quantities invariant under n'ansforma-

tion by elements of a group H is called the geometry of the group H.
Klein's idea of regarding different geometries. as sets of invariants

under eorresponding groups has made it p'ossible to disclose fandamental
relations among various geometriesprojective, affine,,Euclidean, angl
Lobachevskian--which were constructed and studied ,around 1880. The
reader can find a detailed presentation of these matters in N : V. Efimov's
book, Vysshaya geometriya [Higher geometry].

In the next two sections we shall show how the geometries of Euclid
and Lobachevskii can be constructed from the point of View of group
theory.

't
e
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Euclidean Geometry

We shall restrict our consideration of uclidean geometry to the
nlane. In sec. 1.1 we studied, in the Euclidean plane, motions which
cc uld be represented as one-to-one transformations of the plane which
preserve distances between points, the so-called isometries. The corre-
spt nding sets of equivalent figures consist of those figures which can be
transformed onto one another by isometries. The fact that the set of
isometries is a subgroup of the group of transformations on the plane
is easily verified. First, suppose that f and g are isometries. Then the
trgisformation. h = g .f is also an isometry. The transformation h is
.rly one-to-one and onto; and if d(X, Y) denotes the distance
between the points X and 1' in the plane,

d(h(A), h(B)) = d(g(f(A)), g(f(B)?)

d( f(A), f(B))

= d(A, B)

for any points A and B in the plane. Furthermore, if f is an isometry
and4-1 is the inverse transformation off, then f -1 is also an isometry,
since for any points A and B in the plane,

d(A, B) = d(f(f -1(A)), f(f -AB)))

d(f 1(A)J-1(B))

Thus, the isometrics form a group of transformations on the plane.
The geometry of this group is called the Euclidean geometry of the

Since any isometry (see sec. 1.1) is the composition of rotations,
.parallel translations, and, possibly, reflections across lines (in this
connection we are allowing rotation through a zero angle and parallel
translation by a ztro vector, which result in thc identity transformation),
Euclidean geometry can be defined as a set of propositions about
properties of figures and quantities which are invariant under all possible
rbtations, parallel translations, and reflections across lines, as well as
compositions of these' transformations.

In sec. 2.2, using the identification of points in the Euclidean plane
with coylex numbers, we showed that linear functions of a comPlex
variable of the tirst and second kinds, I.

= az + b ;

z' = ai
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determine one-to-one transformations of the plane, which are isome-
trics if the modulus of the number a is one. We shall prove that, using
functions of the, forms (3.3) and (3.4), it is possible to specify any
isometry of the plane. In fact, let f be any isometry of the plane. We

.may write

f= p-g or f=

where g is a rotation through an angle a about the point D d2),

' p is a parallel translation by the vector OB with coordinates (bi, b2),
and s is a reflection across the line /, passing through the Point C =
(e1, c2) and making an angle 7 with the positive direction of the x-axis.

The rotation g corresponds to the linear function

z' = G(z) a(z d) + d ,

where

a = cos a + i sin a ;' d = + id2 .

The parallel translation p eqrresponds to the linear function

where

z' = 13(z) = z + b

b = b +

Finally, the reflection s across the line 1 corresponds to the linear
function

where

u cos 2y i sin 2y ; c' el + ic2;

We leave ito to the reader to convince himself of the validity of these
facts.

Thus,.the function f in the case when f = pg has the ftgrm

z' P(G(z)) = G(z) + b a(z 7 d) + d + b = az + d + b ad ,
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or, filially, 41i

where

Groups pf Transformations

ass

. e=az+(d+bad),

.Vcos2 a + sin2 a = 1 . .

Iff= s.p.g, then the corresponding function has the form

or, finally,

with

z' = S(P(G(z))) = S(az + (d + b ad))

ul(az + (d + b ad)) + c

-Ha+ ad) + c;

z' = uag + (u(d + 5 ãt7 e) ± c),

icos (2y a) + sin (2y a)I 1

From these considerations arises;

THEOREM 3.2. 'There exists a one-to-one correspondMve between the
isometrics of the Euclidean plane and linear functions of a complex
variable of the first or seCond kind

$1
z = az + b

and

such that lal -= 1; in addition, if the isometry f is the composition of
isometries f, and fa, that is,

,

with F(z) the complex function corresponding to f, F1(z) the complex
function corresponding to f1, and F(z) the complex function correspond-
ing to f2, then

F(z) F2(F1(z)) (3.5)
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eta '+ b, ,
F1(z) =

aii + b1;

az + b2 ,

a2Z + b2 ,

ngly,

F2(F1(z))

a2F1(z) + b2 =
+ (a2b1 + b2) ,

a2a12 + (a2b1 + b2);

a2a12 + + ba),
a2F1(z) + b2 =

a2a-iz + (41 + b2) .
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(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

Thecompositions of functions (3.6), (3.8) and (3.7),I13.9) yield linear
functions of the first kind, while the compositions of functions (3.6),
(3.9) and (3.7), ,(3.8) yield linear functions of the second kind. The
modulus of the coefficient of z and 2- in all four functions, clearly, is
equal to one.

The formulas (3.5)-(3.10) yield, for every pair of complex linear
functions F1(z) and F2(z), a corresponding complex linear function F(z)
which we shall call the composition of the functions F1(z) and F2(z) and'

denote by (F2. F1)(z).
With respect to the operation of composition, the set of linear

functions of the first and second kinds forms a group. Verification of
this -fact is extraordinarily simple. From the very definition of corn-
position it follows that the associative law is obeyed. Furthermore, the
function F(z) = z, corresponding to the identity 'transformation on
the plane, playslthe role of the unit element of the group, and finally,

the function

satisfies

1 b
z F(z) ax + b

a a
Q(z)

b .- , if F(z) af + b
a a

(I; Q)(z) = F(Q(z)) = z ;

(3.11)

that is, (2(z) = F i(z).
Let us consider the set of all linear functions of the first and second

kinds, in which the coefficient of the variable z has modulus one. From
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the formulas (3.10) for the composition of linear functions and formula
(3.11) for the inverse of a linear function, it follows that this set forms a
subgroup of the group of linear functions, introduced above. This
subgroup will be denoted by E. Clearly, E is a group of transformations
of the set of complex numbers.

From all of the considerations above, we obtain the following
theorem:

THEOREM 3.1. The set of invariants under the group E is the Euclidean
'geometry of the plane.

33. Lobachevskian Geometry

In the first half of the nineteenth century the Russian mathematician
N. I. Lohachevskii solved the difficult, centuries-old problem of the
independence of the, axiom of parallelism from the other axioms of
Euclidean geometry. The new ideas developed in Lobachevskii's work
exercised an enormops influence on the subsequent development of
mathematics.

The system of axioMs underlying Lobachevskian geometry is ob-
tained from the system of axioms for Euclidean geometry by replacing
the axiom of -parallelism with a new axiom, which is a statement
contrary to the Euclidean axiom. The new axiom is formulated as
follows: ' In any plane a containing a line a and a point A not lying on
a, it is possible to pass at least two distinct lines a' and a", having no
points in common with the line a, through A."

We shall present below one of the interpretation§ of Lobachevskian
geometry presented by the French mathematician Poincaré.

We consider some straight line / in the Euclidean plane. Without loss
of generality, we can assume that the line / coincides with the x-axis.
We shall call the set of all points (x, y) of the plane whose y-coordinate
satisfies the inequality y > 0, the upper half plané:

Fig. 3.1
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The points of 'the upper half plane are taken as the points of the
Lobaehevskian plane. We remark that the points of the x-axis are not
points of the Lobachevskian plane. Euclidean half-eireles with centers
on the x-axis and Euclidean rays with vertices on the x-axis which are
perpendicular to the axis are regarded as lines in the Lobachevskian
plane (fig. 3.1).

TWo figures A and B are considered equivalent if there exists a finite
number of transformations (Pi, 92, . .,.so each of which is an inv rsion
with center on the x-axis or a reflection across a line perpendic lar to
the x-axis, such that the transformation f = qa, (pm _ 1 .. . T2

the figure A onto the figure B.
It is evident that in PoinCares

interpretation, Lobachevskii's ax-
iom is fulfilled (fig. 3.2). We leave
it to the reader to convince himself
of ;he validity of Lobachevskirs
axiom in the cases not represen-
ted.in figure 3.2.

Fig. 3.2 X Let W denote the upper half
plane, and let H be the set of all

ransformations of the form

= g), so,_, .co2. fpc (rn is any natural number) ,

where (1)1, sp,, are inversions with centers on the x-axis or reflections
across a line perpendicular to the x-axis.

From the properties of these transformations, we already know that
each *hese transformations carries the upper half plane onto itself on
a one-to-one basis. Consequently, the set II consists of one-to-one
transform2kns of the upper half plane W onto itself.

We shaWow prove that H is a group of transformations on the set
W. 1ff and g are in H and

1 = (t)rn' (Pm - *(P2 "Pi ;

g 011'0n-1-0241;

then, for the composition of the transformations f and g, we hahe
formula

gf= 0.(11.-1. 11,201(Pin'9omi' ci 2

from which it follows that g. flies in the set H.
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Since two successive iterations of the same inversion or reflection so
reduce to the identity transformation, it is obvious that

r 9

and, consequently, the transformation .

h = (pm

is the inverse of the transformation

g 9),, sow . soi

The transformation h, obviously, lies'in H. Thus the set of transforma-
tions H on the upper half plane forms a group under the operation of
composition (see sec. 3.1.2).

The transformations of the group n- play the role of isometries in the
Lobachevskian plane W: they carry figures to equivalent figures in the
sense of the above definition.

4 Therefore, Lobachevskian geometry can be defined as the set of
0-invariants under the- group, of transformations II of the upper half

plane W. . .
In conclusion, w-e suggest that the reader carry out thc very useful

exercise of formulating Lobachcvskian geometry with the help of linear
fractional functions of a complex variable just as was done in sec. 3.1
for Euclidean geometry.

A detailed exposition of the questions considered in chapter 3 can be
found in N. V. Efimov'S Vyssharya geometriya [Higher geometry]. A,
detailed presentation of Lobachevskian geometry in the Poincare model
can be found in A. S. Smogorzhevskii's book, 0 geometrii Lobaekevskogo
[On the geometry of Lobachevskii] (in the series "Popular Lectures in
Mathematics," pamphlet 23).

'04, ,
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