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. In the study of plane geometry, varjous transformations of geometric
“figures often play an important . Of these transformations, the

' so-called isometries and dilations are most commonly discussed in.

elementary treatments. An important property of these transformations
is that they preserve basic geometric clagsifications: Straight lines “go
into”” straight lines and circles “go into”* circles. Inversions are more
complicated transformations of geometric figures, under which straight

Jines may be mapped to circles, and conversely. The use of such map-

¢ pings allows us to develop  unified method of solution for many of the
pYoblems bf elementary geometry, especially thbse concerning con-

structions and pencils of curves. The result is that the theory of inversions

lends a less artificial character to the interrelationships among types of
geometric figures. The’ approach -used in this theory s also useful in
- boundary questions arising ig elementary and ‘““higher” :bm&try. It
also enables us to provide an interpretation of the so;called Lébachevs-
kian geometry in the Euclidean plane. There are interesting connections

between inversions and the complex numbers or, more aceurately, -
elementary functions whose range and domain are the complex numbers. -

This book discusses the inversion transformations and their applica-
tions. To provide the most convenient presentation possible, the
material is divided into three chapters.

In the first chapter, we shall study inversion transformations and .

their applications to questions in elementary geometry. In the second
chapter, it -will be shown that the transformat{ons of the first chapter
carise expressed as linear and linear-fractional functions of'a complex
variaBle. We shall also establish that, conversely, each such function
deﬁge‘ia transformation of the plane which reduces to-a sequence of
isomeYries and inversions. In the third chapter the foundations of
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1 B \ '."Inv’ersio“ns .
| "and Pencils of -

1.1. Elementary 'rmdmt\mmanhem .

The idea of transformmg one geometric figure into another will play
a fundamental role in this,book. In this section we shall discuss figures
in the plane. But first of all, we wish to state precisely what we mean by
transformatjons of geometric figures. Consider a plane, and let us assuthe |
* “that we have some rule that, for each point X in the plane, determines a
corresponding point X in the same plane. This rule of correspondence
(let us &l it T) is called a transformatién of the planeg, and the point X7,
corresponding to the point X, is called the image of X under T. Trans-
formations of the plane will be written in capital letters. If T"is some
transformation of-the plane, and if X is some point in the plane with.
image X’ under T, we write X' = T(X). h . N

: Suppose we are given‘a trans-

formation T of the plane and a plane
figure (for example, a line or a
circle) F. T takes each point & of the
figure F into some point X', its
image. The figure F', ’, consisting of all
thd points which are igiages of points

1. . v

praa_ 4

.

F ) ;
1) in F, is called the image of the figure F / )
under the transformation 7. We ‘
- Fig. 1.1 shall often denote the figure F’ by, : \

T(F) (see fig. 1.1).
Usually, a point and its image do not coincide. When the pomt X and
its image T(X) do coincide, the pomz X is called a fixed pomt of the
transformation 7. -
“The transformation of ihe plane taking each point X into itself is )
called the identity transformation. In other words, a transfarmation of ,

1 N e



2 Inversions and Pencils of Circles

¢ the plane is the identity if and only if all'the pomts of the plane ars ﬁxed
_points. We shall denote the identity transformation-by the letter /.
" A plgne figure Fis called invariant under a’ transformation 7T of the
plane if the i'mage of F coincides with F, that is, if '

© T a P ) {-—- F T(F)

, 1t is m:portant to note that a ﬁgure invariant
undcr a transfdrmation.need not have a single
ﬁxcdg}mmt under that transformation. For
example, if Tis a rotation of the plane through
some fixed nonzeroangle about a point O, then
the only fixed point of T is 0.* Thus all non-
degenerate circles with center O are invariant
under 7, and yet none of them containsasingle
fixed point (fig. 1.2).

o T We sh:g,ll now examine thc‘eiementar): trans-

Fig. 1.2 - formations of the plane in greater detail.

. 1.1.1. Reflection m:h respect to a line. We. define the reﬂectwn of
the plane with respect to the line I by the following rule: If a point X
li& on /, it is carried into itself. If the point X does not lie on /, then
we take as the image Sf X the paint X’ that is symmeétric to X with
respect to the line / (fig. 1.3)..
The figures invariant under reflection witﬂ!‘respect to the line / are all
those figures which have the line’/ as an axis of symmetry, including /
itself. Two such jnvarignt figures are shown in figure 1.4.

0 X
~ ¥ .
! X,AX' ¢
° x'
/ Fig. 1.3

»
¥

3
1. By a nonzero angle we shall mean an angle whose radian measure is nof an
integral multiple of 2=,




. ‘ EIemm:ary Transformations of the Plane _ T3
+ All points of the line /, and only those pomts, are fixed points of the
-~ tmnsfonnatxon " '

1.1.2. Parallel transiation. A parallel translation of the plane is
defined by the following rule: Suppose we are given a segment 4B of
the line / in the plane; if the point X does not lie on the line /, then its
image X' is the fourth vertex of ‘the parallelogram constructed with
sides AB and AX.If Xlies on the line /, then for X’ we take the point of |

_Isuch that the line segments AX and BX' are of equal length aid the

. line segment XX’ has the same length as the line segment A 8. In this
way the parallel translation translates each point of the plane by the
distance AB in the direction moving from A to B.(fig. 1.5). In terms of
vectors, gach point of the plane is translated by the vector AB; that is,
for each point X in the plane, the vector equah{y XX’ = AB holds
(fig. 1.6). ’

» X ‘ . . X =
Fig. 1.5 Fig. 1.6

If the vector AB is tHe zero vector (that is, if the point 4 coincides:
with the point B), then the parallel trans}atibn by the vector AB is the
identity transformation.

Let 7 be a parallel translation by a nonzero vector AB. Tt is obv:ousa.
that 7 has no fixed points. Figures invariant ‘under T include, for
example, all lines parallel to-the line "determined by the segment AB..
There are many other invariant figures; figures 1.7 and 1.8 depict
figures L and Q whxch are invariant under T. The curves L, and Qk are
the images of the curves L, _; and Qx_y respectively. -

1.1.3. Rotation about a point. Let O be a given point in the plane and
« (read “‘alpha™) a given dngle. We define the rotation of the plane.
through the angle « about the point O by the following rule: If Xisan

11
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Fig/ 1.7 . ' 'Fig. 1.8 -

arbitrary point in the plane, we rotate the lme segment OX about the
point O through the angle « (if « > 0, the rotation is counterclockwise,
and if « < 0, the rotation through an angle ja[ is clockwise). The,
resultant endpoint X’ is taken as the image of X. The pomt 0i is fixed in
~ such a rotation.

If @ =0, the rctatloﬁ is the identity transformatmn ,

Let T be the rotation about the point O through soine nonzero angle
«. It is obvious that the only fixed point of the transformation 7T is the
point O. Circles having O as {heir center are invariant ﬁgures under thxs
transformation. If the angle « has the radian measure :

b

> LR 27

o = —
n
Q

where'nis a nath;alaaumber then a regular m-gon mscnbed in a circle
with centér O'is invariant undesxﬁ&and only if the number 6Fsides m
is divisible by » (fig. 1.9). In figure 1,10 we see a more uomphcated
invariant fxgure : -

1.1.4. lsometry An isometry 1s a transformation of the p ane which

“ preserves " distances between pmms That is, Tis an isometry if and
ouly if for any pair X and Y of arbitrary points in the plane, the line .
segmg:nts XY and T(X)T(Y) are 3 equal length (or, equivalently,
the dxstanw&XY and T(X)T( }’) are eq‘al) We require fyrther that the®
tr?mformatxon T be one fo oneand’ onto; thatds, that every-point in the
plane be the image of some other point (T is ontd) and that no two
distinct pomts have the same image. It.is easy to see that all of the trans-
formatmns described above are- isometries. In a certain sense the con-
' verse is true: It c.an.be shown that any isomejry is-either a rotatxon a

P ( ot
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parallel tmnslatmn, a reflection thh respe(:t. go a, lide, Or some com-

position (successxve application) of these.
1.1.5." Dilation. Let us fix some ,pomt 0'in the plane, and let k >0

" be some fixed number. The dilatioft with center O and coefficient k is the

transformafion of the plane which takes the poipt O into itself, “and
takes any p&int X different from, 0 into the point X” lymg on the ray
(haif-hne) ox ‘and satlsfymg | ’

ox' =k-0x. -

by

If k = 1, then the dilation is the identity transformation. If k # 1,

then the only fixed point/of the transformatxon is the center of the

dilation, the point O. W¢ note that if &k < 1, a given figure “shrinks"
" under dilation, while for & > 1, it “expands.”” Rays having their initial
; pomts at the center of the dilation are clearly invariant under dilation.

It is possible to exhibit, in a fairly simple way, a more complicated
invariant figure. Let F be some figure in the plane (fig. 1.11). We {enote
by mF the figure F' which is the image of F under the dilation\with

- center O and coefficient m. Given the dilation T with coeﬁ‘xcxent kand

center O, we consider figures

1 b i
smhEmhoog

F,F kF, .. k™ F,k"F, !

THe figure G, representing the union of all these ﬁg{z'res (fig. 1.12), as is
easily shown, is invariant under the transformation 7. '

, Finally, let us make use of the concepts of isometry and dilation to
fommulate precise and general definitions for the terms congruent and
simifar, which play an important role in elementdry geometry:

L

13N\




6 .. " Inversions and Pencils of Circles - *

Fig. 111 Fig. 112

Two figures F; and F, are said to be congruent if there exists an 4
isometry taking the figure F, into F,. The figures F; and F are said to
: lﬁmular if there exists a dilation taking the figure F, mto some ﬁgurc'

FyWwhich is congruent to the figure Fi. ,

1.2, Stereographic Projection: The Point at Infinity of a Plane

The concept of a transformation, considered in §1.1 for the plane,
clearly extends to any geometric figure (including subsets of the plant
and of three-dimensional Euclidean space). If the image of the figure A
under such a transformation T covers the entire figure N, we say that T
is a transformation of M onto N.

In the study of the inversion tr_ansformations, it is quite useful to
examine one particular transformation of the three-dimﬁgsionai sphere
onto the plane. This transformation is called the stereographic projection
and is defined as follows Let K be a sphere and P a plane tangent to X

ata point S (fig. 1.13). The point S will be called the south pole of K, and’

the diametrically opposite point N, the north pole. Let X be any point of
K other than N. Then the point X' at which the ray N.X intersects the
plane P is taken to be the image of " X. Clearly, the entire plane P is
Sovered. Thus, the stereographic projection transforms the phcre K,
minus the point N, onto the entire plane P. ¢

Let us consider how the image of the point X on the plane- P changes

as X approaches the point N. From the ﬂm\slar rsght triangles X'NS

and SNX (fig. 1. 14), we have ¢
. -

-

te.



. Stereographic Projection ' 17

Hence, ‘ |

: L NS XS -

: S -—T ‘ ~ ~ A
. ﬁ, * . . :

Let r be the radius of the sghcre K Thcn, for a point X sufﬁcxenﬂy close = O .
-'to th north pole N, XS > r, and therefore o : -~

. | - , . 2?2 V. '

: ) SX > N—X.- .

a0 . .

PR

Fig. 1.13 Fig. 1.14 ,

(since NS — 2r). It is obvious that as the point X gets grbitrarily close L, : 7
to the point N (NX approaches zero), the length of the line segment # )
SX' increases' without bound, so that the point X' gets unboundedly
further away from the point'S. Consequéntly, the point N cannot go
. into anypoint of the plane P under the stereographic projection. In -
_order to extend the stereographic projection to the entire sphere X, that
is, for the north pole N to be given an image in the plane P, we must add
anew pointto P. The ddded point O xs cal!ed the point at ngﬁmty Now,

be any stmight line in the plane P. We mnsxdu the plane thr
' point N and the line /*(fig. 1.15). This pmnc infersects the §

some circle 1 pdssmg thmugh thc pomt N. Thc lmc i xs vmmly the
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Fig. 115

~between the set of all circles on the sphes& K passing through the goint
N and the set of all lines in the plane P. Therefore, any line in the plane
P contains the point O, (and thus all lines intersect at 0x), whxc.h is the
stereographic image of the point N.
Let I} be a circle in the plane P. If r’ is the rddius of /j and d is the

,dxstance from the south pole S of the sphere X to the denter of /3, then
- the distance from S to any point of /1 is no greater than d + r’. There- *

‘fore, no circle in the plane P contains the point at infinity.
As we know, any three nongollinear points determine a circle. Lines

in the plane are similarly determined by three poiats, two of which may = -

be chosen arbitrarily and the third of which {s the point at inﬁnity
Therefore, a line may in a certain sense be regarded as a circle havmg as,
one of its determining points the point at mﬁn’xty

Now consider the set of all circles on the sphere K whose planes are
parallel to the plane P. We shall consider this set 14) contain the pqmts
S and N as degenerate circles of zero radius. The stereagraphxc projec-
tion of thls set of circles (fig. 1.16)1s the set of all concentric circles in the
plane P with center S, which includes the pomt;S (fixed by the stereo-
graphic projection) and the point at infinity (the steréographic image of
.the point ). Since the point of tangency of the sphere K and the plane
P could be any point of P (simply make the proper translation of the
sphere K parallel to the plane P), we can consider any system of
concentric circles to contain the common center of all the urdes and th
point at infinity. = '« .

Py

s ~ 1.3. Inversions
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txon of the plane determined by the following rule: A point X different R
from the points O and O, is carried into the pomt X ' qn the ray OX e
whxch satisfies the equation . L
:f/ ‘ -
‘ \ ) o . ‘ OX’ rg ' X é - :
OX ' / L
Afig. 1. 17); the point 0 is taken into the Qomt By and the poijnt O, is bl
taken into the pm?\t 0. ¢ : -
The circle depicted in ﬁgure .17, with' ra;iius r and center O, is called -
 the circle of inversion, If X lies on fhe cirgié of inversion, then 0X =r .
and consequently, ‘ -
o oo
] ; OX' = %- =T . ! “ 1
. b
Since the points X and X" both }ie/ on the ray OX, the points X and X’
coincide. It follows that all the points on the circle of inversion are fixed ¢
v .points and that the circle-of myérsxon itself is an invariant figure.
' * ‘A point different from O lying inside the
drcle of inversion is taken by the inversion
.1o a point lying outside the circle,” and, <
‘ ./ conversely, a point different from O, lying
o outside the circle of inversion is carried to
/ a point in the interior of the circle.
In the first case, we have OX < r, and
thus )
' , r r? : ¢
0X' = ox > 7 =r,
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+

venfymg that the point X ’ lies outside the circle of inversion. The

second case is considered analogously. ‘
" Thus, any point X and’its image X' lie o the ray O X and on different
- sides of the circle of i 1*, if, of ¢ourse, X does not he ofi the circle

(fig. 1.17). . P ’
If the point X gets arbitrarily close to the point O (OX approaches
zero), then its image, the point X', becomes unboundedly distant from

the pomt O. This is cledr from the relation . B
. . - - Q v - : '
- OX' = r- L : b

(fig. 1.18). It follows that the
_point X' approaches the paint
A infinity. Analogously, we can
X*&)m show that if a point X is made
ooy arbxtr'ﬁhly distant from the
L r,‘-"é,:r'.' - point O, its image X’ becomes
R N arbitrarily close to the point O.
318 ¢ Thus the definition of the in-
gt s version, which determines O
as the image of O dgd conversely, is a natural one. :
Let Xbea ;mmt different from O and O. and let 4" be the inversion
- of the plane with, g:emrai point O and radius r. Werdenote T(X) by X’
. and T(X’) by X”. Then all the pomts X, X4 X" lie on the same ray OX
and satisfy the .equations
. , T r ‘ . ’
OxX =ox° 0Xx' '
It follows that < ' ,

oX" = r? ()X

13

~0X. «

~

Thus, if X isan arbitrary point of the plane different from thecenter of
the inversion and the point at infinity, then the operation 7 iterated
. twice takes the point X into itseif. If the point X is the point O or the
' pomt at infinity, the result is the same: Under two successive appjica-
‘tions of the invergion 7, the point X is taken into itself. This is a direct
consequence of the definition of the inversion. It can be formuiated in
- ‘the following theorem: .

THEOREM 1.1, A transformation of the plane which is the composition
of an inversion with ftself is the identity transformation.

¢

¥
ﬁ



. Properties of Inversions : 11

»

_ Finally, we remark that if the inversion T takes the‘]ioint X into the
point X', then T also carries the point X’ into the point X; that is, X b

and X' trade places. We recall that reflections with respect to a line
havethe sariie property. This is the reason that inversions are sometimes
called reflections with reSpect to a circle.

,
1.4. Properties of Inversions .
In\‘us section we shall ﬁx T as the mversxon on the plane with center
O and radius r.
First we shall p prove a simple lemma which plays an 1mportant rolé in
the study of the properties of inversions.

LFMMA 1.1. -Suppose the points A and B in the Mane are d:ﬂ”erem from
each other and from the pamts O and O, and that the points G, A, and B
are noncollinear. Let A’ = T(A) and B" = 1{8); Gen ;71e triangles OAB
and OB'A’ are “similar, with corresponding parts‘ef 7 :cated by the Ilgtter
ordermgs OAB and OB'A’. ‘ N '

Proof. The triangles OAB an& OB'A’ (fig. '1.19) have a com
angle, and the sides including the angle are proport:onal To sho is,
we note that since . ¢ .

OA4-04' = —5p~ ~ 0B-0B","

we have

*

It follows that triangles OAB and OB'A’ are similar. However, in §
-similar triangles, equal Angles lie opposite proportional sxdes, so from
. the ratio , -

~ 04 OB
OB~ 04" | :

we git equality of the corresponding angles:

/OAB = JOBA’
LOBA = L OA'B’,

L)

proving that the letter m‘dermgs OABand OB A4’ indicate corresponding
parts.

M

-
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THEOREM 1.2. ‘The inversion T carries any l&ze passing through the
N center of i inversion into itself; that is, @ line passing thrpugﬁ the center af o
S the inversion is an invariant ﬁgure .o TS

. ’I’he proof of this theprem follows easﬂy from the deﬁmnon of an
“inversion’

THeoreM 1.3. The inversmn T takes u line not passing through tfze,
4 center af inversion into a circle passing through zize Roint O.

i* Proof. Letlbea hne not passing through the center of i inversion O.
Drop a perpendicular from the point O to the line /, and let its inter-

< section with  be the point M (fig. 1.20). Let M’ be the image of the -
: ‘ ‘point M under 7. The point M’ clearly lies on the ray ¢ QM. Consider an
,‘~-__” arbitrary point X (different from O,) on the line /; let X' be thc xmagc

“of - X undcr T. By lemma 1.1, we have
'A “ . . ) .

v o JOX'M' = LOMX

A

Nlﬁ

Therefore, by an elementary geometry theorem concerning right tri;
angles and diameters of circles, the point X" lies on a circle K having the
- line segment OM' as a diameter. Since this statement holds for all
points X on the imc /, the image of the line / under T !, is contained in
the circle XK. .

Now we must prove that the set of points /' actually coincides with.
the set of points of the circle K; that is, that K is also contained in /’.
First let us remark that the point O js contained in the set [, since O is

<) . !
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the image of 0., whxch is containéd in /. Now let ¥ be an arbxtrary
point-of the circle K different frém O. The ray OY intersects the line /

~ at some point Z; we claim that the point Y is the image of'Z under 7.,

Since the points Y and Z lic on the same ray.0Z, we need only prove

that Y satisfies ‘\ C o~
. . r‘ . rs ,
- 0 Y= Fz“ )

- A

By constmctxon, the tnangls [2) YM ’and OMZ (fig. 1.20) are sxmﬂaf
Thcrcforc, T : .

. - 0Y _QM . /
7-3.. o~ 0Z | ‘
ch‘x, - .‘. ‘ - . A
) - OM«OM' ' r? ) t
’ VOY = == = )
N 0Z .~ 0z -

the dcsxred result. Thus, Y is the i tm;gc of Z under T. Since: thlS is true

for all Y on the circle K, K is contained i in{’, and since, by the above, I’
is contained in K, we conclude that the: zjnage of / coincides with K, the
assertior of the theorem.

"The constructions carried out in the proof of theorem 1.3 enable us’
to construct the image of a given line under the inversion 7 using only &
compass and straightedge. From the center of the, inversion—the point
O—-we_drop a perpendicular OM (fig. 1.20) to the line /. As before, we
construct the point M’, which is the image of M (by constructing a line
, segrhent of length 72/OM along the perpendicular). The imagg of the
line /s the circle I’ constructed with the line segment OM ' as a diameter.

In the special case where the line /is tangent to the circle of inversion,
the points M and M’ coincide, and the circle /' is constructed with the
line segment OM, as a diameter. If / Intersects the circle of inversion in
two points X and Y, then since O is necessarily on the circle K = /', K
is compiste}y determined by O and the fixed points X'and Y.  ~

{ THEOREM 1.4, The inversion T transforms a circle passing through the
center of inversion O into a straight line not passing through O.

The proof follows from the fact that the composition of T with itself

xs the identity transformation and from theorem 1.3.
. {
THEOREM 1. 5 The inversion T transforms a circle not passing through
the center of inversion O into arother circle not passing through O.

kY
e

L
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Proof. Let K be a circle not passmg through O. We construct a hnc g
- through the point O so that it intersects the circle K inf a diameter AB
(fig. 1.21). Let A’ and B’ be the images of the points 4 and B under 7,
X an arbitrary point on the cxrclc K different from A and B,and X’ )
h its image. , . " -

« . By lemma 1.1, the triangles OXA ahd OA'X’ are similar, so that
. r ", . «

L., ‘ LOA XY = LOXA.
Analogously, the triangles O XBand OB'X’ aresimilar,and consequently
/OBX = /0XB.
Since ; ‘
u . . 1
JAX'B = [OBX — LOAX ="L0X ~ LOXA
.

= /AXB =

INI=1

it follows that X’ lies on a circle S having the line segment A'B’ as a
diameter. Since X was an arbitrary point of the circle K, the image K’
of K under T is contained in the circle S."To show that K’ coincides

' " with S, we must prove conversely that.§ is contained in K’ Let Y bean
arbitrary point of the circle § different from 4’ and B’ and Z the point
on the ray O Y satisfying

1’_2

OZ=—~-
» o

i . . f) ‘)’ v’.‘.' s
. : “~ £
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It is obvious that the poinf Z is taken by the inversion T onto
the point Y. Further, since the points A’, &, and Y are the images
under T of 4, B, and Z/respectively, lemma 1.1 allows us to conclude

A
tl?,at o ) . ( \ ‘
LAZB = LOZB ~ LOZA = LOBY— LOAY = LAYB =3.

. Consequently, the point Z lies on the circle K. It follows T the figures ’
S and K’ coincide. By construction, the'endpoints of the diamefer of the -
circle K—the points 4 and B—are different from O and are located on
the ray OA. Therefore, the circle K’ does not pss through the point O
(or, alternatively, if K’ were to pass through O, K»would have to pass
B - through O,; yet no circle contains 0,,).

The constructions performed above enable us“to constrict the image
of a circle under an inversion with.compass and straighfedge. Let us
consider this question in greater detail. :

Case A. The circle K does not pass through the center of inversion. In
this case, we construct a ray from the point O which intersects the
circle K in a diameter A8. We then construct A’ and B’, the images of
the points 4 and B respectively. The circle X', the image of the circle!K
under the inversion 7, is just the circle with the line segment A’'B’ as a

diameter (fig.'1.22). . o , -
o ’

Fig. 422 ‘ Fig. 123
) .

\ Case B. The circle K passes through the center of the ;'hversion. In this
B case, by theorem 1.4, the image of Kis a line®’. We construct the ray
e O A from the point O (fig. 1.23) which intersects K in the diameter OA.
' We then construct the image of A, 4. The line perpendicular to the ray
"OA at the paint A% is the desired line K'.

!
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The construction of the line K '.o;\n‘bc significantly simplified in two
instances: ( ' g

1. If the circle K intersects the circle of inversion in two points B and
C, then the line K’ coincides with the line determined by segment BC
(fig. 1.24). ) '

2. If K is tangent to the circle of irtversion at some point, then the
line K’ is tangent to the circle of inversion at that same point (fig. 1.25).

. o . -
. e
B
| D ‘ | >
K ' . ,
LS | X
koo ‘
Fig. 124 - Fig. 1.25

We shall now consider how angles between curves are affected by the
operation of an inversion 7. As we know, the angle between two curves
L, and L, at their point of intersection is the smaller of the angles
between their tangents at that point. It can be shown that an inversion
preserves the angles between curves. We shall prove this statement
below for the cases of circles and straight lines.

THEOREM 1.6. Under an inversion T, the angle between straight lines
is equal 1o the angle between their images.

Proof. Three cases can be presented here:

1. The lines /, and /, both pass through the center of inversion O.

2. Exactly one of the lines, either /; or [, passes through the center
of inversion Q. -

3. Neither /, nor /; passes through the center of inversion 0.

In the first case the theorem is obvious. Let us consider cases (2) and
(3). In (2) (fig. 1.26) wigassume, without loss of genera}f{y, that the line
/, passes through the &nter of inversion O and that the line /; does not.
Then the inversion 7 takes the line /, into itseif; that is, the image of {
coincides with /,. The line [, does not pass through the center of the
inversion and, therefore, 1s taken b)} the inversion into a circle /3 passing
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"through the point O. The tangent ¢ to the cu(clc I3 at the pomt O is

parallel to the line /; (fig. 1.26). - TN

With respect to the relative position of the lines 11 and /;, there are
two possibilities: .

a. the Imcsl and /3 can be paraﬂcl e

b. I, amd [;%cari intersect at a point A. :

If I, and /; are paraliel, the angle between them is clearly zero, But
the line /, passes through the point O and is parallel to /. Therefore, it
must coincide with the tangent t to the cxrcl;ﬂat the point O. It
follows that the angle between /; and /; is equal to zero, and conse-
quently the theorem is proved for the case (a). A

Now let /; and I; be nonparallel, with 4 their point of intersection.
Let « be the smaller of the angles between /; = /] and the line /;, which

.is equal to the angle between /; and the line . The point A4 is taken by

the inversion into some point 4’ which is the in;c(section of the line [
and the circle 7;. But the line /| = theipe OA" must intersect/the
tangent 7’ to the circle /3 at A" at the me anglg at which it interSects
the tangent ¢ to /3 at O. Since ¢ is parallel to /;, this angle is e, agid the
proof for case (2) is compilete.

The third case (fig. 1.27) may be proved analogously, We remark
only that if the lines /; and /; are parallel, the corresponding circles /3
and /; are tangent at the point O and thus intersect in a zero angle, the
same angle as is formed by the parallel lines /; and /,, 1f the¢ lines /; and
I, intersect, then, as is evident from figure 1.27, the angle between the
circles /1 and /; at the point O is equal to the angle between the lines /,
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and /,,!since the tangents ¢, and 7, to these cirs\lj;at the point O are
pgraliel Yo the lines /, and /; respectively. This completes the proof of

the theorem. ~____
We leave the proofs of the following theorems to the reader as useful

exercises; ‘

THEOREM 1.7. The angle between two circles is equal 10 the cmg!e
between the images of these circles‘under an inversion.

. TueoreM 1.8. The angle between a circle and a straight line is
equal 18 the angle bezween the images of these figures under an
inversion. . . A
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1.5. The Power of a Point with Respect to,a Circle:
The Radical Axis of Two Civcles

The concept of the power of a point with reference to.a circle, which

is analogous to the concept of the distance from a point to a stralght‘
* line, will be essential in the discussion below.

Let K be a circle of radius r in the plane, M- jtrary point in the
plane, and d the distafice from M to the center O of the circle K. The

“ power of the point M with respect to the circle K is defined as the number

“

S=d’—r’

If the pomt M lies inside the circle K, then d < r, and the power
S = d? — r3 of M is negative. The segmems of the diameter PQ on

- which M lies are of length » + d and r — d. Thus, by a theorem of
elementary geometry, for any chord AB of the circle X which contains

M (fig. 1.28a), we have . N
S=d® — 1= —(r3 —d¥ = —(r + d)r — d) ='—AM-MB.

'If the point M lies on the circle K “then d = r, and the power of M is

Zero. Fmany, if the pomt M lies outside the circle K, then d > r and
S = d? — r?, which is the square of the length of the tangent segment
from the pomt M 1o the circle K (fig. 1.28b), is positive.

Suppose we are given {wo aitcles K; and K,. The locus of points
whose powers with respect’to the two circles are equal is called the
radical axis of the circles X; and Kj.

We have the following theorem: ¢

THEOREM 1.9. If K, and K, are: noncorjgemm circles, then thetr radical
axis is a straight line perpend:cular 1o the line dezermmed by their centers.

Fig. 1.28
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Proof. Let C)3 and rlgg and r2 be the centers and radii of the c:rcles‘
. K, and K, respectively. L2t d; and dj be the distances from an arbitrary -
point M to the centers O, and O respectively. Then the power of M
" with Tespect to K, is ' .

SxL‘ dxg —rt,

and the power of M with respect to K; is
e =da? — rg®.

M lies on the radical axis of X, and K; if and only if
A S = 8;., ‘ Y
-that is, ) ' o o
d? — r3 =dgf - '

*

This is true if and only if
—d? =n?—rd

- The rxght side of the above equation is a constant, smcc$ and ry are
fixed. Thus the locus of the radical axis of K, and Kj is the set of points
M for which

dxg—azﬂ—“-ks

where £ is some constane and d, and d; are as defined above. Without
loss of generality, we may assume that k = 0, since otherwise we can
simply change the roles of the circles K, and K, and arrive at k& > 0. We
claim that there is a unique pomt S on the line of centers Q, 0, satisfying

0,52 — 0;8% = k.

Clc#!y, since k > 0 implies 0,5 = 0,5, such a point S (if it exists)
must coincide with or lie to the right of the midpoint H of the segment
0,0, (fig. 1.29). Thus, if S exists, either

(1) 08 4+ 038 = 0,0,; on\
(2) 0,S — 038 = 0,0,.

N S
. o— oo
1 01 - H 02
Fig. 1.29 N




i,

The Power of a Point 21

If 0 < k < (0,0,), then since k = (0,5 0:SX0:S — - 0,8), case

(1) must hold, so that there exists a unique point S.on the segment HOg

" satisfying

k= (0,5 + 0,5X0,8 — 0,8) = (0,0%)(0:S — 0.8) .-

Analogously, if k> (0,0,)?, case (2) holds, and there is aumque pomt‘:
S lying to the right of O, satisfying

—

k = (0,5 + QuS)O:S — 0:5) = (0:5 + 0:5X0.09).

Now let X be an arbitrary point on‘ the radical axis of K; and Kj;
that is, a point of thc plane satisfying .

()}\.Xr2 02X2=k

Let Y be the pmjecticfn of X on the line 0,0,. By the Pythégorcan
theorem, we have (fig. 1.30): . :

0,X% — 0,Y? = XY?;
0,X? - 0,Y% = XY2.

£
N

It follows that | _ .

01X2 - OxYQ = 02 2 OQYR‘
o Y

Therefore,

0,Y' — 0,Y? = O, ¥* — 0, X*=k. - (1)

Since Y lies on the line 0,05 and
satisfies the relation (1.1), it must
coincide with the point S. Thus, the
point X lies on the perpendicular [ to
the line of centers 0,0, at S. Con-
versely, it is easy to show by a
similar argument that all points Z on
the line / satisfy

Fig. 1.30 0. 2% ~ 0,22<
‘ Cor —01Y2L02Y2_k

The desired locus of points is this a line perpendicular to the line of
centers, and the thecorem is proved.
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We now consider the construction (by straightedge and compass) of
the radical axis of two nonconcentric circles. As above, we assume that
the-circle with the larger radius is X;, so that

k=r1’—“r2220.

As shown above, if O, and @, are the centers of K, and K;, and H is
the midpoint of 0,0,, then the radical axis of the circles K, and K, is
perpendicular to the line 0,05 at the point.S, which lies to the right of
_ H. The construction of the radical axis is thus reduced to the construc-

tion of the point S on the line OyO;. .
~ We,shall now consider the con{trucnon of the radical axls 1 ngen the

circles K, and K in three cases:

1. K, and Kj intersect at twor pomts A and B (fig. 1.31). Since the
powers of points 4 and B with respect o both circles must be zero.
the radical axis / must coincide with the,straight line 48. (In this case,
the radical axis intersects the line of centers in an mtenor pomt
of the scgmem 0,05) 1

2. K, and K; have a unique common point A, at which they are
tangent (fig. 1.32). The power of the point 4 with respect to the ciggles

Ky

. Fig. 1.31 . Fig. 1.32

K, and K, is zero; thus the radical axis / passes through the point 4, and,
since / is perpendicular to the line of centers 0,0, it must coincide
with the common tangent of K, and K at the point 4. (In this casc the
radical axis also intersects the segment 0,0, in an interior point.)

3. The circles K, and K, have no points in common. We shall
separate this case into two subcases:-

a. The circles K; and K, are s:tuated outside one another (fig. 1.33).
We draw {wo common tangents to K; and K, PQ and RT, with mid-
points H, and H, respectively. Since the power of a point X which lies
outside the circle &, (with respect to X)) is equal to the square of the

\
rn .
I}
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length of the tangent extended from X, the midpoints H, and H; have

equal powers with respect to each of the dircles K, and K, and, con-
sequently, lic on and determine the radical axis . It is easy to see that

" K, and K; lie on different sides of the radical axis /. (In this case, too,

I intersects the line of centers at a point in the interior of the segment
0,0;)

b The circle K, lies inside the circle K, (fig. 1. 34) In this case,
ry =rg2 0102, so that _

Y ki*lz'—fgzlﬁ(fx‘*‘rg)(rl_rg)>(0103)2.

Fig. 1.33 ' Fig. 1.34 -

-~
Thus the pomt S (at which the radical axie intersects thc line of centers)
lies to the right of O; (as shown above), and satisfies

(018 + 0.5)Y0,03) = k.
Setting 0,0, —= ¢, this becomes
0,8 + 0,85 = kc.

Since S lies to the right of O,, 0,8 = 0,0; + 0,8 = ¢ + 0,8, and
the equation above becomes

¢ + 2048 = ke,
or
0,8 = k|2c —*[2 .

N “l
Since & is constructible from r; and r, and ¢ is given, the length 0,8 is
constructible: since the line 0,0, and the point O, are fixed, it follows

that the point S (and thus the line /) is constructible. a3

l“\?l
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In this case, the radical axis / lies outside the circle K, arfd thus both
K, and K, lie to one side of /.
In each case, then, the radical axis / can be constructed by straxghtedge .

and compass from the circles K; and Kj. \
. In closing, we remark that the locus of points whose tangents tocf; N
and K, are equal is, in cases 2 and 3, the entire radical axis, and, in case

1, all the points of the radical axis outside of the line segment A8
. (where A4 and B are the points of intersection of the circles X, and K3).

1.6. Apphcsﬁon of Inversions to the Solution of Construction
Problems ‘ .

The use of inversion transformations makes possible a number of
clegant solutions to classical construction problems in geometry. We
shall cansider below problems which require #he construction of a
circle tangent or orthogonal to one or several circles.

1. Problems on tangents to circles:

Problem 1. Three nontangent circles, K;, Kj, and Kj, intersect at
some point O. We wish to construct all circles tangent to the circles
K., K;, K. It is not hard to see (fig. 1.35) that the problem has four
solutions (in fig, 1.35 they are shown by dotted lines).

el A . 8 ’
: Fig. 1.35 3

The method of inversions allows us to find these solutions easily.
Let 7" be an inversion with center O and radius r such that the circle of
inversion intersects the circles K,, Ky, K, in pairs of points A4,, B;:
A.. B,: A, B, respectively. Since the circles K, Ky, Ky all intersect at
thg point O, the inversion 7 takes these circles into the straight lines
A Bx, A.B,, and A,By; since no two circles are tangent, these lines

4 »
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“intersect pairwise. “Thus our problem is reduced toy'eonstructing all

circles which are tangent to the lines AgB;, A2B;, A3Bs. Clearly, there
will be one such inscribed and three such circumscribed circles for the
triangle DEF which is formed by these lines. The consfruction of these
circles is not difficuit, and, by the rule given in sec. 1.4, we may con-

strudt the images of these four circles under the inversion T. This yields .

the required circles.

Problem 2. Construct all circles which "are tangent to two given
circles X, and K; and pass through a given point O, lying outside K,
and K. ‘

Suppose R is one of the desired circles. Let T be an inversion thh :
center O. Then T carries K, and K; into circles K and Kj respectively,
and the circle Riinto a common tangent R'. It is now obvious that the
solutions to the problem are circles which are the images of the common
tangents of the circles K; and K under the inversion 7. Since there are
four of these tangents, the problem has four (canstrucuble) solutions
(fig. 1.36).

Problem 3 (Apollonius’s problcm) Construct all t;xrclm tangent to
three given circles K, Kj, and K,. o

We shall present two solutions to this problem. !

First solution. Suppose the circle L, with radius R, is one of the
desired circles (fig. 1.37). We connect the segment 0,0; from the

*  centers of the circles K, and K and draw circles of radiir; + s, rg + 5,

and rg + s around the poifts Oy, O,, and O, respectively, where 7y, ra,
and r; are the radii of Kj, K, K3, and

- (0,03 — 1, — "s)‘_
' 2

— ft‘
We denote the constructed circles by K, K, K, respectively. Let L be

 the cjircle concentric with L having radius R = R — s. It is clear that if

we can construct the circle L, we can easily construct the circle L. It is
obvious that L is tangent to the circles K, l?g, K. The circles K, and K,
are constructed so that they are tangent to one another at some point D.
Let 7 be an inversion with center D and radius 7 such that the circle of
inversion intersects the circles K; and Kj. The inversion T takes the
circles K, and Kj into a pair of parallel lines /; and /s, and the circle K,
into a circle K. The circle L is taken by the inversion T into a circle L,

which is tangent to K3 and to both the parallel lines /; and /. In this
way, the solution of Apollonius’s problem has been reduced to a
simpler construction problem: to construct all circles tangent to a given
pair of parallel lines and to a given circle.

33
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We leave the solution of this problem to the reader and suggest that
" the reader verify that the pair of circles K, and K or K; and K, could
be used in place of the pair K; and Kj in the above ‘construction.
Second solution. We shall perform an auxiliary construction that
will reduce Apollonius’s problem to problem 2. Suppose, without loss
of generality, that the circle K; has radius r; satisfying r, > r3 and
ra = ra. Suppose L is one of the circles tangent to the circles K, K3, and
K. We construct the circles K; and K, with centers O, and O; and
radii p, = r; — rz and p, = ry — ry, respectively (fig. 1.38). The circle
L, constructed with center O and radius p = R + rg, where R is the
radius of L, will be tangent to K, and K, and will pass through the point
O,. Construction of the circle L is given in the solutipn of problem 2.

3¢

-~
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The constructed circle L is concentric with the desired cxrcle L and
has a radius which is larger by rs.. The rest of the solution is icft to the

_ reader as an exercise.

I1. Construction of a circle which intersects given circles orthogonally:
We shall say that two curves intersect orthogonally at a point M or that
they are orthogonal at the point M if the mngents to these curves at the
point M are pcrpcndxcular .

Probiem 4. Given two nonconcentric circles X, and K;, we wish to
construct all circles orthogonal.to X, and X, passing through a given
point'M. .

¢ solution to.this problem is broken down into a numbcr of cases
depending on the relgfive position of the circles K;, K, and the point M:

a. The circles K, and K intersect at two points A and B (fig. 1.39a).

It is obvieus that if M coincides with one of the points 4 or B, then the

. desired circle k can exist only if one of the circles we are considering has

zero radius. Therefore, in what follows we shall examine the case where
the point M is distinct from the points 4 and B.

Let T be an inversion transformation with center A and radius
r = AB. Then T takes the point M into some point M’, the point B
remains um:hanged and ‘'the circles K1 and K; are transformcd into
distinct straight lines K, and K, passing through the point B (fig. 1.39b).
The image k° of the desired circle & under 7 must be a circle or a

- straight line orthogonal to the nonparallel lines K and K and passing

4

through the point M’, which is distinct from A4 and B. It is obvious that
there is only one circle satisfying these conditions (there is no line &3
satisfying the above conditions). This circle has center B and radi

"BM’. We denote this circle by’ (fig. 1.398). Since tWo iterations of the

inversion T yield the identity transformation, the image of the circle k'
under T is the desired circlé k. In solving the problem in this case we

: 35
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have established that there is a unique solution regardless of the

. position of the point M.

b. The circles K, and K are.tangent at a single point 4.

1If the point M coincides with the point A, the problem has infinitely
many solutions: first, the line of centers 0,0, of the circles K, and K;
(fig. 1.40), and, second, arty circle with its center on the common tangent -
of K, and K, which passes through the point A.

"~ Now let M be any point in the plane other than A. Let T denote the

inversion transformation ‘with center A and radius r = AM. Then
the inversion T ﬁxcsﬁxc point M and takes the circles K, and K into the
parallel lines K} and K5 (fig. 1.41). The image &’ of the desired circle &
under T should be either a circle or a straight line, passing through
the point M and orthogonal to the parallel lines K} and K3. Clearly, &’
must be a line (and not a circle). Since the line &’ must pass through
the fixed point M and must, be perpendicular to the two parallel lines

‘ and K3, it is uniquely determined, Inversion by T takes the line k'
into the deitted circle £.

-\ .
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Thus, in this case, if the point M is different from the point A, the
problem has a unique solution.

c. The circles K, and K, have no points in common. We claxm that
there is a point 4 on the line of centers 0,0, and an inversion T with’
center A (fig. 1.42) which transforms the circles K, and K; into a pair of
concentric circles.

‘Let / be the radical-axis of the circles K; and K;. Let S be the point of
intersection of / with the line of centers 0,0;. As we showed in sec. 1.5,
since K; and K; have no points in common, the point § lies outside both
circles Ky and Kg We draw a tangent from S to the circle K,, with point
of tangency T;. The circle K with center S and radius R = ‘ST, intersects
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Fig. 1.42

the circles K, and K, orthogonally. For the circles K; this follows
immediately from the construction, and for the circle K; it follows
‘because the length of the tangent from the point § to the circle K; is
~ equal to the lengthOf the line segment ST;, which is the radius of the
circle K. We let A and B denote the points of intersection of the circle,
K with the line of centers 0,0;. The pomts A and B clearly do not lie
on either of the circles K or K.

‘The inversion T takes the following form: We place the center of T
at the point 4, and wetake tie radius r to be equal to the length of the,
line segment AB; that is, ¥ AB.

The inversion T leaves the point B fixed; takes the circle K into the
line X’, which passes through the point B and is perpendicular to the
line of centers O,0,; leaves the line of centers 0,0, invariant; and

takes the circles K, and K; into circles K and K, whose centers lieon

the line 0,0, (fig. 1.43). Since the line X’ is orthogonal to both circles
K% and K3, the centers of K and K5 must lieon X" It follows that the
centers of the circles K and Kj lie on the point of intersection of the
lines K’ and 0,0;—that is, that K} and K are concentric circles with
center B.

¢
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Fig, 1.43

Now we assume that the point M is distinct from the p:.)intsN A and B.

Then M’, its image under the inversion 7, is also distinct ftom these
- points, If k' is the image under 7 of one of the desired circles , then &’
must be a line passing through the points Bgnd M. It follows that the
line k' is unique. Applying the inversion 7, we obtain the desired circle
k. Thus, if the point M is distinct from the points A4 and B, the problem
has a unique solution, If M coincides with the point B, then we can take
any line passing through B for k’. In this instance, then, the problem
- has infinitely many solutions. ' '
" If the point M coincides with the point A, the problem again has an
infinite number of solutions. To show this, it is sufficient to do the above
constructions with one substitution: we consider the inversion T; with
center at B and radius r = AB.

In this way, we have considered all the possible relative positions of
the point M and the circles K, and K;. The problem has been solved
completely. ' '

Problem 5. Given three circles K, Kz Ki, situated so that each lies

outside the other two, construct all circles which are orthogonal to all  ~

three given circles.

4
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32 Inversions and Pencils of Circles

Solution. By the assumptions, the circles K;, K;, K are situated so
that the radical axis of any pair of them separates the corresponding
ciroles. Therefore, the pairs K, and K;, K; and K have radical akes /;

v and /; which are not coincident.
" There are two possible cases: _

a. The lines /,.and I, are parallel. Then the centers of the circles K;,
Ka, K5 are collinear. The line on which they lie is the solution to the
problem. A

b. The lines /, and /; intersect at some point S. By assumption, the
circles K,: K;, K, are situated so that their radical axes lie outside the
corresponding pairs of circles. Therefore, we can draw tangents from ‘
the point S to each of the circles K, K\ K;. All the tangents have equal
lengths. Let ST, be a tangent to the cir%?l{’, (where 7, is the point of
tangency) and let r be the length of the tangent. The circle with center at
S and radius r is clearly the circle we are seeking. '

“From these considerations, it follows that the problem always has
only one solution. We leave it to the reader to verify this fact. '

1.7." Pencils of Circles

If K, and K, are twg circles in the plane, the set of all circles orthog-
onal to K, and K, is called the pencil of circles produced by K; and K,
and is denoted by P(K,, K3). Often, if the circles K; and K, do not play
an important role in the pencil produced, we denote the pencil simply
by P or Q. Since we decided above IS consider stralght lines as special
cases of cércics, straight lines, as well as circles, can enter into the produc-
tion of pencils. ‘

We now consider three pencils arranged in the simplest ways. These
pencils arise from special arrangements of the circles K, and Ka:

1. K3 and K, are concentric circles with common center B. In this
case, the pencil P(Ky, Ky) is clearly the set of all straight lines passing
through the .point B (fig. 1.44). This pencil is called an elementary
elliptical pencil.

2. K, and K, are straight lines intersecting at the point 8. The pencil
P(K,. K,) is clearly the set of all concentric circles with common center
B (fig. 1.45). This pencil is called an elementary hyperbolic pencil.

. 3. K, and K, are parallel lines. The pencil P(K,, K;) clearly consists of
all the lines perpendicular to the lines K, and K; (fig. 1.46). This pencil
is called an elementary parabolic pencil. *

We now consider how the variousglementary pencils differ from one
another. ' !

u
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a

Number of common points in the

Type of pencil ' circles K; and K; .
Elliptical o
Parabolic: - 1 (the point at infinity)
. Hyperbolic 2 (the point B and the point at infinity) °
. Q2
. - r

Since circles (including lines) can have no more than two points in
common, it 48 ¢lear that there are in some sensc¢ only three different
‘ftypes" of elementary pencils. _
~ More precisely, we shall show that for any pair of circles K, and Kj
we can transform the pencil P(K;, K;) into one of the three elementary
pencils by application of a properly chosen inversion. Furthermore,
since inversions are one-to-one transform;;xtions, any pencil P can be
transformed by an inversion into an elementary pencil of only one
definite type. For example, if the inversion T takes the pencil P(K;, K3)

PR N



34 o Inversions and Pencils of Circles
into the elementary clliptic;al pencil P’, ther no other inversion 7; can

take it into a parabolic or a hyperbolic pencil P;. This can be demon-

 strated as follows: If T; takes P(K;, Ky) into Py, then, on the basis of
theorem 1.1, 7, takes P; into P(Xj, K;). We let

Ki=TE&), K=Ty(K),
| b K=TK), | Ki=T(K).
" Then ‘ F |
= TI(KDs Ke == Tx(K;.)

r . -

Since P’ is an elementary elhptxca'i pencxl and P, is an elementary
parabolic or hyperbolic pencil, K; and K} are concentric circles, and K
and K7 are’intersecting or parallel lines. th S be the transformation of
the ‘plane which consists of the successive applications of the two

inversions 7, and 7. ‘The lines K] and K3, which have at least one.
~ common point O, are carried by the transformation § into the circles

K1, K3, which have no points, in commonj this is impossible, since the

figures S(K}) = T(Ty(K)) = K; and S(KQ) = T(T,(K')) = K3 must

have at least one pomt in common,
We - are now position to prove the followmg fundamental
theorem. - N

TueoreM 1.10. a. If the circles K, and K, have no points in common,
then there exists an inversion or identity transformation Ty carrying
P(Kl, Kj) into an elementary elliptical pencil.

b. If the circles K, and K; have a unique common point, Ihen there
exists an inversion or identity transformation T, carrying P(K,, Kj) into
an elementary parabolic pencil. .

c. If the circles K and K; have two common points, then there exists

" an inversion or identity transformation T; carrying P(K,, K3).into an
elementary hyperbolic pencil.

The proof of theorem 1.10 is closely related to the constructions we
" performed in sec. 1.6 in the solution to problem 4. Subsequent.con-
structions will depend on the foilowing lemma.

~
LeMMA 1.2, Suppose the inversion T carries the circles K, and K; into
the circles K, and K} respectively. Then the image of the penczl P(K,, Ky)
under T is the pencil P(K},.K3).

Proof of the lemma. Since any inversion preserves the orthogonality
of circles, the image of P(K,, K;) under T is contained in the pencil
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P(K4, K3). ’i'herefare, to prove that the image of P(K;, K3) coincides
with the pencil P(K}, K3), it is sufficient to show that the pencil P(K}, K3)
is contained in the image of P(K,, Ky); that is, that for any circle f
the pencil P(K}, K3), there is a circle k in the pencil P(K;, K3) such£hat
T(k) = k'. If k' is a circle in P(K}, K;_), let °

k =TE) :

The circle k is orthogonal to K; and K; and thus lies in the pencil

P(K;, K,). Since an inversion executcd twice in succession xs the identity.

transformauon, we obtain

T(k) = T(T(kD) = k'

- and the lemma is proved.

1. Proof of statement a. Let K, and Kj be two circles havmg no pomts

in common. If Ky and K2 are concentric, P(K;, K;) is an elementary -

elliptical pencil, and we may choose T, as the_identity transformation.

The' interesting case is that in whxch the circles are not concentric
(fig. 1.47). One of the circles, K, or K,, may be a straight line (but not
both, since then X; and K; would have at least one point in common,

First, suppose that neither Kl nor K; is a straight line. Let S be the
intersection of the radical axis / with the tine of centers 0,0, of the
circles K and K; (constructing the point S and the line / as in sec. 1.5).
The line / and, consequently, the point § lie outside both circles K, and
K;; therefore, we can draw tangents SQ; and SQi‘from the point Sto

-«
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36 Invcrsxons and Pencils of Circles
the circles K; and K; (with @, and Q; the corresponding points of

‘tangency). The point § lies on the radical axis of K; and Kj; therefore .
SQ, = SQ;. The circle K, with center § and radius @ = SQ,, intersects.

. Kj and K, orthogonally. Let 4 and B b€ the points of intersection of K
with Jhe Iin‘e of centers 0,0;. '

We define the inversion T,
problem 4 of sec. 1.6, it was pgovéd that the inversion 7, transforms the
circles K; and K intd concentric circles K3 and K3 with common center
-B. By the lemma, the pencil of circles B(K,, K,) is taken by the inversion
T, into the pencil P(K K3), which consxstsy all Imes passing through
the point B.

Thus, the inversion T, transforms the pencil P(Kl, K3) into an ele-
megtary elliptical pencil.

It remains to consider the case when one of the circles, say Ky, is a
straight line (fig. 1.48). Since K, and K; have no points in common, K,

lies outside K,. We tonstruct a line m through O, perpendicular to K;,

and let S be the point at which m Intersects K. We construct further a
tangent SQ, to K. Let K be the circle with center § and radius &= SQ,
and A and B the points of intersection of K with the line m. The inversion
T, having center A and radius r = AB leaves the point B fixed, leaves
the line m invariant, and takes the circle K into the line K’, which
passes through the point B and is perpendicular to the line m.

The line K; does not pass through the point 4, and the circle K is
orthogonal to the line K, and the circle K;. Therefore, the images of K,
and K, under 7y will be the ciscles K} and K3, whose centers lie simul-
taneously on the lines K’ and m; that is, K] and K3 are concentric circles
with center B. It follows {by the lemma) that the image of the pencil
P(K;, K;) is the elementary elliptical pencil P(K, K2).

Thus statement a is completely proved.

Proof of statement b. Let K, and K, be two circles having exactly one _

point 4 in common (fig. 1.49). If both K, and K; are straight lines, they
must be parallel, since they can have no common points other than 0.
In this case, then, P(K,, K;) is already an elementary parabolic pencil,
and we can choose T; to be the identity transformation.

If neither K, nor K, are straight lines, or if only one of them (say K,)
is a Straight line, ve may choose any inversion 7; with center A.
- K, and K.are transformed by T, into parallel lines K} and K7%; thus
the image P(K}, K2) of P(K;, K;) under T is an elementary parabolic
pencil.

This completes the proof of statement b.

Proof of statemeni ¢. Let K, and K; be two circles having two points
A and B in common (fig: 1.50). If both K and X; arg straight lines, then

have center 4 and radius AB8. In-

-
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they have exactly one point of intersection other than the point Oy, and -
P(K;, K3) is already an elementary hyperbolic pencil (so that we um.)ci

choose T to be the 1dent1ty transfonnstmn)

« \
\
K3 Ky
= . ) > A
o~ 02 .
(a) . o ' )

Fig. 1.49 '
) <o : .

If' at least one of K; and Kg is not a straight line, let Ty be the inversion
with center A and radius r = AB. Then the images of X, and K, under
T, will be the lines K; and Kj intersecting at the point B (fig. 1.51). It

K
A
. 8

o wdmip, :

- . P )
. Fig. 1.50
a r .
15
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follows that the image P(K}, K3) of P(K;, K3) under T is an elementary
hyperbolic pencil. :

- Thus statement c is proved, and the proof of theorem 1,10 is complete.

We now introduce the following definitions:

The pencil P(K,, K3) produced by the circles K; and X, is saxd to be
elliptical if the circles K; and K; have no points in comthon.

The pencil P(K,, K3) is said to be parabolic if the cxrclcs K1 and K,
have exactly one common point. ~

The pencil PUK,, Ky) is said to be izyperbalzc if thc circles K; and K,
have two commeon points.

THEOREM 1.11. Every elliptical pencil can be obtained from some
elementary elliptical pencil by the application of an appropriate inversion
or identity transformation.

THEOREM 1.12. Every parabolic pencil can be obtained from some
elementary parabolic pencil by the appl:canon of an appropriate inversion
or identity transformation.

Ll

TueoReM 1.13. Every hyperbolic pencil can be obtained from some
eleméntary hyperbolic pencil by the application of an appropriate in-
version or identity teansformation, ' '

1.12, and .13 follow immediately
from theorem 1.10 and the fact
that two successive applications of
the same inversion yield the

plane.

The point A is called a node for
the pencil P if all the circles of P
pass through A. The point A4 is
called an origin for the pencil P
if there exists a sequence of

Fig. 1.51 circles of P contracting into the
point A.

From the construction of ﬂfc elementary clliptical pencii and theorem
1.11, we find that every elliptical pencil has two nodes a o origin.
On the other hand, by theorem 1.13, every hyperbolic penci¥ has {wo
origins and no nodes. '

Let P be a noneclementary parabolic pencil. This pencil is obtained

-from "some elementary parabolic pencil P’, consisting of a class of
parallel lines, under transformation by an inversion 7. Let 4 be the
\

The proofs of theorems 1.11,,

identity transformation on the

-
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center of the inversion T. It is not hard to see that P is the set of g
jarcies mutually tangent at the point 4, including the common tangent

~of all the circles at.the point A (fg. 1.52). Thus, the pencil P has one

node and ane ongm, both of which are the point A. Operating on the

pencil P by the inversion 7, we obtain the elementary parabolic pencil

P’, for which the point Q,, is both the only node and the only origin.
From the above discussion, we obtain:

TrEOREM 1.14. The total number of nades and origms Jfor any pencxl _

-

The pencil Pis saxd to be or:hogonal to the pcncxl Q if any circle i inthe -
pencil P is orthogonal to any circle in the pencil Q. It is obvious that, if
the pcncxl P is orthogonal to the pencil Q, then, conversely, the pencil
Qis onhogonal to the pencil P.

‘ We now consider pairs of orthogonal
elementary pencils. If P is an elementary
elliptical pencil, that is, the set of all
lines passing through some point- B,
then the set of all circles orthogonal to

* the circles of P is clearly an elementary
hyperbolic pencil Q, cdnsisting of all
concentric circles with center B (we
adjoin to Q the point B and the point

0., whith are the origins of -Q). It is

easy to see that, conversely, the pencil Q

is orthogonal to & and in addition, that

the nodes of P are the origins of Q.

If P is an "elementary parabolic
pencil-—a set of parallel lines together
with the point O,-—then the pencil Q,

) obtained by rotating P through a right
angle, will be orthogonal to P, and conversely. Thus the nodes and

origins of the pencils P and @ coincide at O.

Er% the above discussion and from theorems 1.11, 1.12, and 1.13,
we obtain the following theorem: '

TurOREM 1.15. For every pencil P there exists one and only one
orthogonal pencil Q. If P is an elliptical pencil, then Q is a hyperbolic
pengil, and conversely. the nodes of P are the origins of Q, and conversely.
If P is a parabelic pencil, then Q is also a parabolic pencil. In this case,
the nodes and origins of the pencils P and Q coincide at a single point A.
The pencil  is obtained frozh the pencil P by rotating the pencil P
throigh a right angle about the pgint A,

R

#

IR

~J



% " Ioversionsand Pencls of Circles ~ ¥
msumcxf:nmpﬁmpm'

~ THEO 1.16. Every elliptical pencil P is the set of all circles passing
through\some two fixed points. .

- Preof. If P is an clementary elliptical pencil with nedc B, then P is
the set of all circles passing through the points Band O,. If Pis non-
eiementary there exists an elementary elliptical pencil P’ and an in-
“version T (see theorem 1.11), carrying the pencil P’ ipto the pericil P.
P! is the set of straight lines passing through some point B’ (fig. 1.53).
Let A be the center of the inversion 7. Then A and B’ are distinct; if
. not, the inversion 7 would carry the pencil P’ into itself, and P would
- be elementary. Since the image of the pencil P’ under the inversion T is
the set of circles passing through the points 4 and B = T(B"), the
theorem is proved.

COROLLARY 1. The points A and B are nodes of the pencil P.

’ Thus, every elliptical pencil'can be defined as the set of circles passing
through two fixed points (n of the pencil). It follows that the nodes
uniquely define the elliptical pencil.
If one of the given nodes is the point at infinity, the elliptical pencil is
elementary !
Cdilo RY 2. Let A and B be the nodes of the pencil P. T}z"en the
straight Line AB is an element of the peqcil P. . . ,

If A and B are ordinary points, then the line 4B is the only straight
line in the pencil P (all the other elements of P are circles). It is easy to
see that the line A B is the radical axis for any pair of circles in the pencil
P. Therefofiehe line 4B is called the radical axis of the pencil P.

*

Fig. 1.53




Stiuctire of @ Parabolic Pencil - 41
Thus a nonelementary elliptical pen¢il is the set of all “real” circles -
passmg through two fixed points, and the common radical axis of all
pairs of circles taken from this set. As noted, this radical axis passes
through the nodes of the elliptical pencil. ;
If one of the points 4 and B, say 4, is the point at mﬁmty, then the
. - pencil P consists of all straight lines passing through the point 3. In this
case, the uniqueness of the line AB disappears, and, consequently, for
. an elcmcnta.ry elliptical .pencil the concept of a radical-axis becomes .
meaningless. Thus, the presence of exactly one straight line in an

, clliptical pencil is a necessary an suﬁcxent condmon for the pencﬁ to -
» be nonelemc.ntary o _

. 1.9. Structure of & Parsbolic Pencil .

TueoreM 1.17. Every nonelementary parabolic pénci[ P is the set of
all circles tangent 1o one another at some fixed point. :

-~ Proof. Smce}’ is a nonclemcntary parabolic pencil, there exist an
¢lementary parabolic pencil P’ and an inversion T (see theorem 1. 12)
carrying P’ to P. P’ is a class of tutually paraliel lines to ‘which is.added
the point at mﬁmty Let A be the center of-the inversion T, and / the
stra.lght line in P’ passmg through the point A. Then the inversion T ¢

* leaves / invariant and transforms all -

' 4+’  other lines of the pencil P’ into
/ .\ .. circles tangent to / at the point A
[ / \ (fig. 1.54). Since the image under T
\( ) / o of the point O, is 4, it follows that

the pencil P is the set of all circles
—— N . ¢ tangent to one anotHer at the point
A oo A, and that the point A is the origin
) // L\ of the pencil P. This proves the
{\ /] theorem. .

‘ We note that if P is an elementary
. \/ parabolic pencil, that is, a class of
parallel lines, then P is a set of

Fig. 1.54 circles tangent at the point O .

COROLLARY. The straight line l'is én element of the pencil P.

The line / is the radical axis of any pair of circles of the pencil P.
Therefore, Lis called the radical axis of the pencil P.

It is clear from theorem 1.17 that every nonelementary parabolic
pencil can be defined by its node (o,r, since they are the same, 1ts origin)
A and the radical axis / passmg through that point.

4()
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‘If the node of the parabolic pencil is the point at infinity, then it isan
elementary parabolic pencil, and isolation of a radical axis is meaningless.
Just as in the case of elliptical pencils, a necessary and sufficient
condition that a parabolic pencil be nonelementary is that it contain a
. unique straight line, the radical axis of the pencil.

4

* 1,10, Structure of 2 Hyperbolic Pencil

Hyperbolic pencils have a more complicated structure than the
- elliptical and. parabohc pencils described in secs. 1.8 and 1,9..

Let P be an arbntrary non-
elementary hyperbolic pencil.
From.theorem 1.13 it follows that
there exists an elementary hyper-
bolic pencil P’ and an inversion T
which carries P’ 'to P. The pencil
P’ is the set of all concentric
circles with a common center at
some point B (fig, 1.55). Let 4 be
the center of the inversion 7 and
_ r its radius. From the proof of
* Fig. 1.55 theorem 1.10, it is clear that, .

withayt loss of generality, r can be
chosen as'the length of the line segment 4 B\For each positive number
R, let- L, denote the circle with center B and/radius R, Let Cy and Dy
be the points of intersection of Ly with the line 4B, with Cy (fig. 1.55)
regarded as lying to the left of the point B, and Dj to the right of B.
Let K, (fig. 1.56) denote the image of the circle L under the inversion
7. We first consider the case where

R<r'

in this case both points Cg and Dy lie to the left of the point 4. Their
images Cp and Dj, which are the points of intersection of the circle
K, with the line 4B, also lie to the left of the point A. Furthermore,

ACy=r+ R>r=AB > ADy’'=r — R,

and, therefore,

P G < AB =y <t = T AD]
3T R AR =< qp. r=R_ AU
D



Structure of a Hyperbolic Pencil 43

It follows that the point_:C;, lies in the interior of the s\cgmcnt’ BM,

where M is the midpoint of the segment AB; that the point Dj lies
outside the line segment 4B to the left of the point B; and, finally, that

the center of the circle Kj is located at the pomt Qs also Iymg to the .

left of B, since

o Cid+Dpd r2( 1 - 1 rs
o | AQ“‘“ 2 ",2(:—+R+ R)é - R
. If R=r, the cn-cle Lg = L, passes through the pomt A (fig. 1.55),
and smce . . ,
,_rr_r_r e
AG=dqg=5"1" !

the inversion Ttakes L, into the stralght line K, which is perpendicular
to the line segment 4B at its midpoint M (fig. 1. 56).

If R > r, then the pomt Cp lies to the left ofB and the pomt Dy lies
to the right of 4 (fig. 1.55). Since ,

]
<r2 T g2 r. -

) = e = —N

JACG =4 TR AM,

¥
the point Cj lies in the interior of the line segment AM, and th:lpoint
D), lies outside the line segment AB to the right of 4. The entire circle
K thus lies to the right of the line K, (fig. 1.56), and its center, the pomt

,Qx, lies to the right of the point A since ACk < AD%. This can be

shown as follows:
r 2 rﬂ . r2

r+ RSR=+" 4D

-  AC = = ADj,.

Let A(R) denote the radius of the circle Kp.

51
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CIf R < r, then | e :
DA —Ced {1 1 ) R
PRy = ==~ ‘_2(r,—R F+R) ST TR - B

(1.2)
"As R converges to r, it follows from formula (1 2) that A(R) increases
j' without bound. A sxmple visual picture corresponds to this: The circles
Ky of the hyperbohc*penml P expand without bound as the parameter R
increases_from 0 tp r and, for R = r, become the straight Imé K..
IfR>r,

h(R)=ch+D"RA_r=( 1 1 )-5 R .
V2 2 r+R R—-r (R=rXR+r)
v ‘ (1.3)
It follows that as R approaches r from above, the circles Kz expand
without bound and, for R = r, become the-line K,. If R increases
monotonically from r to +co, it follows from formula (1.3) that the
circles K contract (their radii approach zero). For R = +cc, the circle
Kz becomgs the point A. '
The general form of a hyperbohepencs} Pis rcpresented in figure 1.57.
"~ We remark that the straight line K, is the radical axis of any pair of
circles in the pencil P. (We leave the proof of this fact to the reader)
The line X, is thus called the radical axis of the pens;‘l P,

K
@ r,

Fig. 1.57

From the above discussion it is clear that a hyperbolic pencil is

™~_completely specified by its orxgms or by one of its origins and its radical
axis.

If one of the origins is the point at infinity, then the pencil P is an
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clem®ntary hyperbphc pencil; that is, a set of concentric cxrclm The
concept of a radical axis loses its meaning for such a pencﬂ '

Since an elementary hyperbolic pcncﬂ contains no straight lines, a -
necessary and sufficient condition for a hyperbolic pencil to be rfon- .

elementary is the presence of a straight line. As we know, in a non-
elementary hypcrbohc pencil, this line is unique. !

_MLhmm%mmm'

it is possible to pass a circle through four given points in a plane. It
happens that this qquestion can be partially’answered with the help of
the well-known theorem "of Ptolemy from elementary geometry. We

shall formulate and prove the theorem of Ptolemy a little later; first,
- let us consider the solution of the problem by means of inversions.

-

" In this section we shail invéstigate the px\-o}f)rm of determinirig when -

Let A, B, and C be three noncollinear

(fig. 1.58). Let T be an inversion with
B . center A and”some radius r which is

—0 K. Thei image of the circle K under the
inversion T will be a line k which lies
completely outside of (K, since r is
greater than the diameter of K. Let B’
¢ and C’ denote, as usual, the Ymages of
Fig. 1.58 the points B and C under 7. The points

B’ and C’ clearly lie on the line &. Ncw

we take an arbitrary point D in the plane, and let D' be its image.? If
the point D lies on the circle K, the pomt D’ will lie on the line k; if D

‘does not lie on K, then D’ will not lie on %. Therefon} in ogder for the

four points A4, 8, C, D to lie on the circle X, it is necessary and sufficient

that the points 8’, C’, and D" lie on the line k.
If the three distinct points 8, C’, and D’ are collinear, then the seg-
ts B'C’, C'D', and B' D’ satisfy one and only one of the three

relations: *
. B’D:+ DICI -'::B’C’;
BC'+ C'D' =BD'; (1.4)

C'B + BD =C'D'.

2. We assume that the poiat D is distinct from the points 4, B, and C.

53

v points in the plane. There is a unique
g  circle K passing through these points.

greater than the diameter of the circle :

«
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If the three points B', C’, and D’ are not collinear, then the ineqﬁa},ity, :
B'b' +C'D' > BC s
S holds.
AU ~'We shall now attempt to write the relations (1.9 and (1 5) so that
I they do not involve the points B’, C’, and D. S
e Asa prehmmary, we establish the followmg lemma: .
e LEMMA 1.3. Let the inversion T with center O and radius r be given.
' Let M and N be two arbitrary poims in the plane d ifferent from O and
. ﬁom the point Ow. Then o >
{ M'N' = MN —~—— 0 M‘ oN’

i where

M' =T(M); N =T({N).

Proof. By lemnia lA7the triangles OMN
and ON'M’ (fig. 1.59) are similar, and, in
particular,

r,{. . MINI _ OM’ ) BTN s
‘ MN ~ ON ¢
A
Since OM' = r?/OM, we have
N
¥ ra7? 2
Fig. 1.59 ’MN MNOM ON’
and the lemma is proved.
From lemma 1.3, we have
BD =BD ———, DC' = DC » B'C' = BC.

AB-AD AD AD-AC AB-AC’
* .
Thus, if the points 4, B, C, and D lie on the circle K, the images of B,
C, and D lie on the line &, and the relation

- r2 C r2 ' ’.2
. . BDopp t PCqpae = BC a5 Ac

_ . isvalid. (We assume, without loss of generality, that D’ lies between B’

|
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and C’ )IfthepomtsA B, C,and D do not lie on the cxrcch,thcn the
’ _‘relauQn :

rr ) "“ o rs
BD-23 AD*’DC 2D AC\ BC-T54c

is valid. L I
it follows that ' | f /
' . BD-AC + DC-AB = BC-AD,

if the points 4, B,’C, D lie on one circle, and -

Y .
' BD-AC + DC-AB > BC-AD

. if the points 4, B, C, D do not lie on } one circle. .
Thus, we have: '

13

" TuroreM 1.18. In order that the four points A, B, C, D lie on one, ,‘
circle and that the points A and D lie on different arcs with endpomts ﬁ" A:« 5o
and C, it is necessary and suﬁiczem that the equality

&

. " "BD-AC + DC-AB = BC-AD

a j-.‘.-."-,‘._.‘
RN

pu_——"

7:{% satisfied. . ¢
Since any quadrilateral ABCD inscribed in a circle K satisfies the

conditions of theorem 1.18, we have:

TueoReM 1.19 (Ptolemy’s theorem). For every quadrilateral inscribed
in a circle, the sum of the products of the opposite sides is equal 1o the
" product of the diagonals. '
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. 2L Geometric Representation of Cmnplex Numbers' and Operations
on Them
As we know, every complex number z = x + iy (where i is the
imaginary unit defined by the relation i2 = —1) can be conveniently
¢ represented in the Cartesian plane by the ordered pair of coordinates
(x, ¥). (We assume that the coordinate axes of the plane are fixed with.
(/ ongm 0, as in fig. 2.1.) For every point M
in the plane there is a unique vector r with
Y4 - initial point O and terminal pomt M. This
©o / vector is called the radius vector of the
vl— L _,um " point M, and the coordinates of the point
, M are called the coordinates or components .
of the radius vector. Therefore, the com-
. 5 — plex number z = x + iy can be. repre- ..
o sented geometrieally by the radius vector . .
Fig. 2.1 with caordinates (x, y). . ‘
C Ifzy = x, + iy, and zz = x5 + iyg are’ .
, two complex numbers, and r, and ¥, are theif correspanding radius
‘ _ vectors, then the numbers z, + zz and z;, ~ z, are.defined by:
zy + 2o = (X + X2) + i(yy + y2) i,
zy — 23 = (X, — Xg) + i{yy — ya).
On the other hand, from the definifion of the rules for addition and
’ subtracnon ofﬁvm‘mqs Qve lave in mind the parallelogram rule), 1 -
. foHQ\vs tﬁgt %ngtbrs Fp +.T2 and ry, —>r, have coordmdtes
x4+ xWi .{\;y"}?gngl {2 % <Ry Yy =47) respectively. Therefore, the
addition and subtrdctmn éf”&‘wo complex numbers can be performed on
. ':A:" 43 - . ’
O

£
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their radms vectors by taking the correspondmg sum and dxﬁ’erence of
the radms vectors rcpmentmg the given camplcx numbers (ﬁg 2.2)

¥ ) . . -
Y
VYo .
17
o ‘ g
Yt‘ —
~ f2 f1 \
X2 0 X2 *1X2 _ -
T Xy Xqtxg X ,
1NN ry-12 /\\ :
-2 . - \
Fig. 2.2

The number 7 = x — iy is called the conjuggte -of the number
-z = x + iy. Let M be the endpoint of the radxus vector r corresponding

" to the number z = x + iy, and let M, be the endpoint of the radius

vector r, corresponding to the number Z = x — iy. Since the points M
and M, have as their coordinates (x, y) and (x, — ) respectively, M;
can be obtained from # by reflection across the x-axis (fig. 2. 3)

Let z be some complex number and r its radius vector. Let |z| denote
the length of the vector r, and ¢ the angle measured counterclockwise
from the positive side of the x-axis to the vector r. The real number |z|

is called the modulus of the complex number z, and the angle ¢ is its
ment. We shall often denote the modulus of z by p and the argu--

ment of z by argz, or ¢ (fig. 2.4). It is obvious that for the complex

" numberz=ux +iy, ~ . -

. AN

X = pCos g !
y = psing.

Hence, R ' . ' 5
z—x%xy—p(wmp-f-zsmzp)

The cxpressmn of the numbcr z=x+ iy in the form

K

z,= p(cos ¢ + isin ¢)

is called the trigonometric form of the complex number z.

-
e

w

~
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e -

I=X+iy

X -iy

M,

Fig. 2.3

X

Fig. 2.4

~ Along with' positive angles, measured ‘counterclockwise from the
positive side of the x-axis, we introduce nefative angles, which are
measured clockwise from the positive side of the x-axis.

If Zis thc conjugate of the number

then

“

z=x+ iy = p(cos¢ + isin¢), s

-

Z = p(cos ¢ — isin o)

.

= p(cos (—¢) + isin (—@) s
= p(cos 2m — @) + isin (2w — qz)f

Fig. 2.5

Thus, for the argument of the number
Z, we can take either of the angles —¢
or 2r — o (fig. 2.5).

Since sine and cosine are periodic

- functions with period 2w, the value of

the argument of a complex number z is -
defined up to an integral multiple of 2.

* Therefore, it is convenient to select,

from the values of the argument, the
so-called principal value, which is con-
tained within the interval from zero to
27 (inclusive of'zero, but exclusive of 2r).

In the following, unless stated otherwise, we mean by the argument
of a complex number, z any angle g satisfying z = p(cos @ + isin g).
We shall now consider the multiplication of comw numbers.

-~

08

»
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Given two complex numbers z;, = X1 + iy and Zg = Xg + iy, the

pmduct 2,23 18 deﬁncd to be the complcx number
2 = (xxxn .Ki.Y.,i) + '(Xx}’a + Xay1) .

Let us consider éhe geometric interpretation of the operation of

multiplication with the aid of the ftigonometric form for complex
numbers. Let - '

z; = pi(cos @y + isin ?’1’3 Tt
;= pa(cos @3 + isin Pa) -
Then B )
Z = 2123 = pipa((cOs @; COS @y — sin @ Sin @g)
+.i{cos @, sin @ + COS @g Sin @y))
= p1palcos (1 + @a) + isin (@1 + a)) -

In this manner, if the radius vector r represents the complex number

Z = z,Z,, and the radius vectors r, and r, represent the complex
numbers z, and z,, respectively, then the radius vector r is obtained
from r, and r, by the following operations: The radius vector r, is first
rotated ceunterclockwise by an angle of ¢, if @3 > 0, or.clockwise by

“an apgle of —g; if g, <.0;then, its length is increased by a factor of p,.

In other words, if «, i1s the rotation of the plane around the ongm by an
angle of ¢,, and ,B‘}2 is the dilation transformation with coefficient p; and
cehter at the origin, then the vector r is obtained from the vector r, by
successive application of the transformations a,, and §,,. In symbols,

Boalayr)) | /
~Of course, if thé roles of z, and z; are interchanged (compfex mulfiplica-

tion is commutative), the analogous relation hbolds:
r= Bp,(“ai("s)) .

We now turn to the geometric interpretation of the operation of dividing
two complex numbegs z, = pl(LOS @, + ising,)and z; = p&:os‘cpg +

isingy). If z.= zllz3 is the quot:ent of z,.and zg, then
£H

_ 21°Z _ pi(cos @y + 48N @1)py(COS @a — i5in @a)

2323 pfseos ¢z + isin (p;)pz(cos @z — isin qag)

- ?‘U

py (cos @, + i sin @,)(cos ( —¢3) + isin (— @)
" pa (cos @; + Isin gg)(cos (— ‘P:) + isin (— @)

¥

= 53 [cos (cp1 - qzz) + isin(p; — @2)]-
P}

3y
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. Thus,

4 =§_l = Bl cos (@, — pa) + isin (g — 9]
a . Pa

Let a _,, denote the rotation of the plane about the origin corresponding

to the angle — ¢, and let B, be the dilation transformation cehtered at

the origin with coefficient 1/p,. Then the vector r is obtained from the

vector r; by successive apphcanon of the transformations o - og and

Biioy; that is, - /‘
r = Bygla-g(r)]. '

™ T
ot

2 2. Linear Functions of a Complex Vansb!e and Elementary
Transformations of the Plane

Suppose every complex number z = x + iy is made to comspon%to
some complex number z’' = x" + iy’ by some rule. Then we say,that .
for the set of all complex humbers, or, more simply, for the complex

‘plane, the function of a complex 'variable 2’ = f(z) is defined. A

complex functxon whose rule of correspondence is given by the formula

z' _f(z)—-aZri-b

v

where a and b are fixed complex numbers, is called a Jinear function, -

Since complex numbers can be identified with points in the plane,
every complex function can be considered as a transformation of the
points of the plane. It is the task of the présent section to describe such
functions with the aid of the elementary transformations of the plane

investigated in sec. 1.1.
Firgt, let o . .
f@y=2' =az+ b )

be a g:ve‘mear function. If @ = 0, then the function z = bisconstant,

“since it assigns the complex number b to any co/mpk:x number z. The

transformation of the plane wrrespondmg to the function f(z) thus
takes the entire plane inta the single point b,

From here on, we shall exclude this trwml transformation from our
considerations and assume that g # 0. -

Let T

" o a=ldcose +ising) . .
be the complex numbes @ written in trigonometric form. Let ', 1, and b
denote the radius vectors corresponding to thé numbers 2, z, and b

respectively. Furthermore, }ct B be the dilation transformation with
3

61y . y
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center at the origin and coefficient |al, and let «, be the rotation of the
plane through an angle of ¢ about the origin. Finally, let y, be the

~ parallel translation of the plane by the vector b. It is not hard to see that _
the point z’, the endpomt of the vector r’, is obtained from the point z,
the endpoint of the vector r, by successive application of the trans-
formations ag, Biay @nd ¥, 7 ' ﬁ* C :

* A linear function of the form :

-

z~az+b i . .

" is often called a linear fwzctmn of the ﬁrst kmd As we have shown a
linear function of-the first kind on the plane corresponds to a trans- -
‘formation consisting of the successive application of the transformahons
of rotation about the origin, dilation with center at the origin, and
parallel translation. Here, the rotation and the dilation are determmed‘
by the number a, and the parallel translation by the number b, , h

We remark specifically on some special cases.
a. la=1,b=0: rotation of the plane about the origin through an
angle equal to the argument of the number 4.
b.gisa posmve real number, & = 0: dilation transformatxon with €
center at the origin and coefficient a. : K
... ¢ a=1: parallel translation by the vector h. ’
¢  The function »

‘- - Z’Z"af'{"'b

is called a linear function of the second kind. We consider first the
special case @ = 1, b = 0. The function -
. ‘ A@}f

: : - =12 ) e

~N,

takcs each point z x\m{he point Z symmcmc 1o xt&;ﬁh respect tQ the . -
x-axis. Thus, the functign . s

.
Yo ,

- LS ol ¥=z
DO 4
denatc.s the symmetry tmnsformatxon with respect to the x—ams It is
easy to see,that the general linear functign of the second Kind corre-
»sponds to a transformation of the pIane consisting of successive
application of re.ﬁe.ctxon agross the x:axis, Totation about the o::xgm
dilation with center at the origin, and pafallgitranslation. Just as in 'the
case of linear functions of the fitst kind,the angie of rotation is equal to

- the argument of the number a, thg Toeflitient of the dilation is equal to

the modulus of the number g, and the vector of the parallel translation
is determined by the number 6. . . o/

N
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2.3. Linear Fractional Functions of & Complex Variable and
Related Pointwise Transformations of the Plane

Functions of a complex variable given by the formulas

-

e Y T ezvd 7 o
. R s _=,c:; i Z, , @

L - wherea, b, ¢, d are fixed complex numbers and
. \ e e e - ‘dd‘—bc,;&O,

are called, respectively, linear fractional functions of the first and second
kind. . -
We consider first functions of the form

¥

i ’ r2 | 23
. = ’ | ( )
and - s
| R L
2= _ 2.4 |

avhere r is some positive constant.
Equation (2.4) can be written as:

, riz r3

- z = 7 = HE z
. . i ‘ ’
It follows that the transformation of the plane corresponding to the
function o Y
A} . . ’-2
Z' = =
z

carries the point z to the point z’ lying on the ray determined by the
radius vector corrgsponding to z, and that the modulus of the number

s

2’ is given by : : R

radius r.

Ve 62 ‘. .
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Equation (2.3) can be written as

@

55

.

r
z

By reasoning analogous to.that abov¢, we can casxly conclude that the

function .

£ S

z ' _ \

- . T : .
corresponds to the successive application of a reflection across the x-axis
and an inversibn with center at the origin and radius 7.

* We have

r L i

_— THWREM 2.1 In the complex plane, the inversion transformanon T
wz:iz radius r and center d is gwen by the Sunction
»

(-

yields the transformation*obtained by the successive application of the
reflection across a line parallel to the x-axis and passing: through the
pamt d, and the inversion With radias r and center d.

IS

inversion T, we have
’ r? ré
Iz&— d[ :&“*f'«_r = — .
iz -dl I“ - E L.
2.7
A

Proof. S’uppose T is the inver- .
sion with radius r and center d,
and z'1s the image of z under T

(fig. 2.6). By the definition of the’

" Furthermore, ther numbers z -, d

and z' - d must have
arguments, since the fact that z
and 2’ lie on the same ray with
initial point d{implies that z — d

53

X

o hd @5
| Z=-—+d. ) 2.5)
" Analogously, the function ’
. . . . . A
i g =tV 2.6
- 0‘ » z _— d i

equal

.
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and z’ — d lie on the same ray wth initial point at the origin. Thus, the

numbers z' — d and Z — d have arguments differing only in sign.
- Using the rule for mulnphcatxon of complex numbers in mgonomcmc

form, we obtain : -

. R
& - d)z - d) = |z —d|-|z — dl(cos0 + isin0)
=z -dj-jz-aj. = *

This equation, along with equation (2.7), yicld‘s' :

&' . zZ =

z—d ‘ o>
The second part of the theorem can be proved analogously.

THEOREM 2.2. A linear fractiongl function of the second kind

with ¢ # O can be written as a transformation of .the complex plane
\_'/( consisting of the successive application of the following transformations:
1. the inversion with center at the point —(djc) and radius 1,

2. rotation of the plane through an angle equal to the argument of the
number (bc - ad)/c3;

3. the dilation with coefficient equal 1o the modulus of the number
(bc — ad)/c? and center at the origin;

4. parallel transiation by the radius vector of the number afc +
[dbc — ad)]/c?é. .

Proof. The linear fraciiopal function (2.2) can be writter as:

z,:[l B bc—ad+a d(bc - ad)|

< cic

(2.8)

¢ £

-

The validity of theorem 2.2 fo}lows immediately from formula (2.8).

54 '
N




_ Linear Fractional Funcrians . . .87

We have the analogous theorem foi dinear fractional functions of the
first kind. The only difference is that betwccn the inversion and rotation
Yransformations, there occurs a reflection acrcssa line passing t.hrough
the point —(d/c) and parallel to the x-axis.

If the coefficient ¢ is zero for the linear fractional functions (2.1) or
(2.2), they reduce to linear functions of the type consjdered in sec. 2.2.

&
.



 Transformations:
- “Euclidean and
‘ . Lobachevskian
Geometries

3 . Groupsof

In this cfmptcr we shall give a brief construction of the so-called
Euclidean and Lobachevskian geometries from the poifit of view of
group theory. This approach to the study of various geometries was
first proposed by the German mathematician F. Klein in 1872.

3.1. The Geometry of a Group of Trausformations

3.1.1. The concept of a group. One of thc most fundamental concepts
in algebra is that of a group.

Suppose G is some set, the nature of whose elements is xrrclcvant For
example, the elements of G may be numbcrs, vcctors functxons,

" transformations, or some other objects.

Now suppose that some ruje of correspondcnce is given undcr which,

~ some element ¢ of G is assigned to each ordéred pair (g, b) of elements

from G. Then we say that there is an operation defined on G, which is
normally called multiplication and denoted by a dot. That is, if the

element ¢ of G is assigned to the ordered pgxr (a, b), we w
: o - c=ab.

The eiement ¢ is usually called the product of the elements a and b. We
note that it does not follow from the definition of an operation thata-b
is always equaltob-a. .. -

Now suppose that an operation - is introduced on thc set G. We say
that G forms a group with respect to the operation’ - if the following
requirements (group axioms) are satisfied: ‘ o

1. The associative law: For any three elemems a, b, and c in G we
have the equality ~

’ (sa-b)~c'= ¢z-(b-c.)li
58
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2. There exists an element e in G such that for any other element a
of G the equality ‘ 4 : -
' ae=a

holds. The element e is called a wnit element of the group.

3. For any element a in G there exists an element x in G satisfying
: ax=e,

Tke element x is called an inverse of the element a.

- We shall now verify a number of simple propositions whxc.h follow

> directly from the definition of a group. '

a. By axiom 1, no ambiguity resulis when we denote thc group \

element (a b)-¢ or a- (b-c) simply by a-b-c. \
" b. If e is a unit element of the group G, then for any element a of G
we have .

¢

Al

eada=a. .r-’

Furthermore,\fcr every element a in G.with inverse x, the equality

Lo
x-a=e,
as well as the postulated equality " * -
ax=e,’

holds
Let us prove proposition (b). If y is an mverse of x, that is, a group-
element satisfying : -

xy=e,
then
 xa= (x-a)e= (x-a)‘-(x-y)
= x-(a-x)y=2x-ey
—xy=e, : P .

which establishes the second pért of our assertion, along with the fact
- that a is an inverse of its inverse x. Furthermore,

ea—(ax)a-—a(xa)—ae—-a

) by what we have just proved. This completes the proof of assertion (b).
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c. In the group G;, each of the equations
| a-x=b R

. o

and

[}

’x-a =5 . _ 3.2

have unique sofutions in x.

1t is not hard to see that if g is an inverse for g, then the elements
g+b and b-g are solutions to equations (3.1) and (3.2), respectively. To
show that the® solutions are unique, suppose, for example, that
equation (3.1) has solutions x; and x5. Then, since

* .

a-x,=b=ax,
“we have

x,=gax,=gb= g+a4-X3 = X,

where g is an inverse of a. The proof of uniqueness’is completely
analogous for equation (3.2). 10

We note that by virtue of assertion (c), the unit element e and the
inverse of a given element a are unique, since all unit elements are
solutions to the equation a-x = a, and all inverses of a are solutions to
the equation g-x = e. We may therefore denote the unique inverse of
abya '

A subset H of the group G which is closed under the operation in the
group G and satisfies the three group axioms with respect to that
operation is called a_subgroup of the group G. Clearly, every subgroup
contains the unit element of the grodp and the inverse of each of its
elements

We shall now present some examples of groups.

1. The set of all integers forms a group under the operation of
addition. If m is some integer, then the set of all.integers of the form
km, for k = 0, +1, +2, ..., forms a subgroup of this group. '

2. The set of all nonzero real numbers forms a group under multi-
plication. The set of all nonzero rational numbers Yorms a subgroup of

this group. :
" 3. The set of all radius vectors in the plane forms a group under
addition. The set of radius vectors lying on one line through the origin
forms a subgroup of this group. :

4. The set of all nonzero complex numbers forms a group under
multiplication. The sc?of all complex numbers of modulus one and the
set of all nonzero real numbers are two of its subgroups.

s
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3.1.2. The group of transformations of a set. Let M be an arbitrary

‘nén-empty set. A rule of correspondence f which assigns an element x’

= f(x) of M to each eléement x of M is called a transformation of the
set M into itself. The element x’ is called the image of x under f.
The set of all images x’ = f(x), as x runs through M, is denoted by

~_ f(M). 1t is obvious that f{M) either coincides thh M or is a proper

_we may write

(and non-empty) subset of M.

The transformation f of the set M into itself is calle'd a one-to-one
transformation of M onto itself if it satisfics the following two conditions:

1. Different eI‘ments x, and x5 of the set M correspond to different
images f(x;) and f(x3).

2. The set f{M) coincides with the set M.

We shall consider below only one-to-one transformations of the set
M onto itself, which will be referred to simply as transformations.

Let f be a transformation on the set M. Since /(M) = M, we know

that for any x’ in M it is possible to find a unique x in M satisfying

'x' -_—‘f(X) i -

Y
.

~(the uniqueness of x arises from condition 1 above). Thus a rule of

cotrespondence g exxsts which assigns to each x’' in M the unique x
sausfymg e,

. x' = f(x);

(I

. x = g(x).
- v e

« It is easy to show that g is igsell a transformation and is uniquely

determined by f; it is called the inverse of fand is denoted by /7.
Let f; and f; be two given transformations. Then the successive
application of f; and f; defines a new transformation f on M given by

fx) = fal fi(x)) .

The transformation f'is called the composition or pra(?uct of the trans-
formations f; and f, and is denoted f; -f; (the transformation written on
the right side of the dot is always carried out first). The composition of
transformations, generally, speaking, depends op the order in which
they are performed; that isNR general, f5(/3(x)) need not equal fi{f2(x)).

The transformation e defined by e(x) = x, which leaves all elements
of M fixed, is called ‘the identity transformation. If f is a given
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?

. transformation and f~! is its inverse, then it is easy to see that for any
_x in M the relations '

[N =x=ex); [N =x = elx)

are valid. he !

We have:

. . Tueorem 3.1. The set of all transformations of a set M.onto itself -,
" . " forms a group under the operation of composition.

.

Verification of the group axioms in this instance is véry simple.
1. If £}, f2, and f; are transformations of the set 3, then

T S =S U ).

It is easy to show that both the left and right sides of the above equation
reduce to the transformationf defined by f(x) = flfa(/i(x)].
Consequently, the composition of transformations always obeys the
associative law. -
& 2. The identity transformation e plays the role of the unit element of
the group. For any transformation fon M and any element x in M, we

have
b

- fle(x) = f(x).

It follows that f-e = f.
3. For any transformation f there exists a transformation g such that

- feg=e.

We need only take g = f 7.
Thus the theorem is proved. :
The group of all transformations on the set M will be denoted by
* G(M). ‘

Any subgroup of the group G(M) will be called a group of trans-
formations on the set M. A nonempty subset of G(M) is a subgroup
if the following two conditions hold: (1) the composition f3-f; of any
two clements f; and f; of H is contained in f; (2) the inverse [t of
any-element f of # is contained in H. These conditions are sufficient,
since the associative law always holds on any subset of G(M), and since
a nonempty subset H must contain some transformation f; ard thus the
'.t;ansformationsf‘ Land f-f~! = eif conditions (1) and (2) are satisfied.

)
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'3.1.3. The geometry of a group. Let M be some set of arbitrary
elements, and K a group of transformations on M. ‘ |

In the interest of visualization, we shall call M a space, and its
elements points. A set of points will be called a figure. -

A ﬁgurc A is called equivalent to a figure B xf there ezusts a trans-
formation f on the group H carrying 4 onto B.

" This relationship of equivalence of ﬁgurts has the following im-
portant properties:

1. Every figure A is equivalent to itself.

The unit element of the group H—the identity transformatxon of the
" set M onto itself—carries 4 onto A.

2. If the figure A is equzgalent to the figure B then the fzgure Bis

.equivalent 1o the figure 4.7

Actually, if the figure A is. qamed onto Bbya transformagxon f from
the group H, then, since the inverse f~* of f also lies in H, f~* carries
the figure B onto the figure A '

3. If the figure A is equivalent to the figure B, and the fzgure Bis"

_equivalent "to the ﬁgure C, then the figure A is equivalent to the

- figure C. ’
If the transformation fin H carries A onto B, and the transform

' g takes B onto C, then the transformation g-£ carries A onto C and
since g fliesin H.(Hisa group), A is equivalent to C.

. By vmuﬂ of properties-l, 2, and % the. equxvalencegrciatxon divides
the set .of all figures into equlvaiencc classe§ wnh each ﬁgure lying in
one and only one class.

Definition of a geometry from the point of view of group theory, as
proposed by Klein, mvolves consideration of certain.geometric proper-

ties and measurements of figures irnra space M which are invariant under

all transformations from a gwen group H and are thus identjcal in all

equivalent figures. '

~The set of all properties and quantltxes invariant under tidnsforma-
tion by elements of a group H is called the geomertry of the group H.

Klein’s idea of regarding different geometries:as sets of invariants
‘under corresponding groups has made it possible to disclose fundamental
relations among various geometries- -projective, affine, Eud:dean and
Lobachevskian-—which were constructed and studied around 1880. The
reader can find a detailed presentation of these matters inN!V. E:fxmov s
book Vysshaya geamem va [Higher gbometry]. ' '

In the next two sections we shall show how the geometnes of Eudxd
and Lobacht:vsku can be constructed from thc pomt of view of group
theory

-

]
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322. Euclidean Geometry

We shall restrict our consideration of E{uclidean geometry to the
'plane. In sec. 1.1 we studied, in the Euclidean plane, motions which
could be represented as one-to-one transformations of the plane which
preserve distances between points, the so-called isometries. The corre-
spc nding sets of equivalent figures consist of those figures which can be
transformed onto one another by isometries. The fact that the set of
isometries is a subgroup of the group of transformations on the plane

+is easily verified. First, suppose that f and g are isometries. Then the

trgnsformation i = g-f is also an isometry. The transformation 4 is
cz‘rly one-to-one and onto; and if d(X, Y) denotes the distance
between the points X and Y in the plane,

A d(h(A), K(B)) = d(g(/(A), 2(/(B))
§ = d(/(A), /(B))
= d(A, B)
for any points 4 and B in the plane. Furthermore, if fis an isometry

and £ is the inverse transformation of £, then £~ is also an isometry,
since for any points 4 and B in the plane, )

J | d(A, B) = d(f(f (AN, f(f "1 (B)))
| =d(f A,/ (B)).

Thus, the isometries form a group of transformations on the plane.
The geometry of this group is called the Euclidean geometry of the
plane. ,

Since any isometry (see sec. 1.1) is the composition of rotations,

N \ parallel translations, and, possibly, reflections across lines (in this

connection we are allowing rotation through a zero angle and parallel
translation by a zero vector, which result in the identity transformation),
Fuclidean geometry'can be defined as a set of propositions about
properties of figures and quantities which are invariant under all possible
rotations, paraliel translations, and reflections across lines, as well as
compositions of these transformations.

In sec. 2.2, using the identification of points in the Euclidean plane
with comglex numbers, we showed that linear functions of a complex
variable™of the first and second kinds, §

2 =az + by . (3.3)

2 =az +b, - (34)
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determine one-to-one transformations of the plane, which are isome-
tries if the modulus of the number a is one. We shall prove that, using
functions of the forms (3.3) and (3.4), it is possible to specify any
isometry of the plane. In fact, let f/ be any xsometry of the plane. We

may write

. -
f=pg or f=5pg,

where g is a rotation through an angle a about the point D = {d,, 43),
p is a parallel translation by the vector OB with coordmates (by, ba),

. and sis a reflection across the line /, passing through the point C =
(¢4, ¢3) and making an angle y with the positive direction of the x-axis.

The rotation g corresponds to the linear function
= G(z)=a(zA— dj+d, -
where. o \
a=cosa +isina;" d=d, + id;.
fhe parallel translation p cqrresponds to the linear function
z'=P(z)=42+b,
where ” | | .,

b=b1+ibg.

Finally, the reflection s across the line / corresponds to the linear
function

=8S@)=uz-0c)+c, n
where : ‘ ] .f K
u == c?szy - isin 2y, =0+ icy;, ¢ = ¢ ?icz.
We Iea;/c if, to the reader to convince himself of the validity of these
facts.

Thus, the funmonfm the case when f = p-g has the frm

z’:P(G(z)):G(z)+b=a(z—d)+d+b=az+,d+b—ad,

\.\I
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or,ﬁxial}x, | | v -

| ‘z'=az+‘(d+b—ad)7,'

where ‘ |

, la] = Vcosia +sina=1..

If f=sp-g then the cofresponding function has the form
7 = S(PG@)) = S(az + @ + b ~ ad))

W@z + @+ b—ad) — & +c
@+ @+b-ad)-9+c,

or, ﬁna}ly, - .
' .z’a(uﬁ)f+(u{3+5—&3—é)+c),
with J '
| .

!u&! = cos 2y —a) + isin(2y — )] = 1.

i

From these considerations arises:

THEOREM 3.2. There exists a one-to-one correspondénce between the
isometries of the Euclidean plane and linear functions of a complex
variable of the first or second kind

"=gqz+ b
and

2 =az+ b,

such that |a| = 1; in addition, if the isometry f is the composition of
isometries f, and fa, that is, '

f=this

with F(z) the complex ﬁmction corresponding to f, F(z) the complex

function corresponding to f,, and Fy(z) the complex function correspond-

ing 1o f3, then

F@) = Fy(Fy(2)) . - (3.5)

- a\

F 2
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Specifically, if - I -t
a2+ by, (.6)
ﬂ@‘L¢+m, o 6.7
azz + b3, | (3.8)
A - {323 + ba, 39

o ‘1 aﬂbl b '
a;Fi(2) + bg = {“2‘1 :i ¥ E b N b:))
FF2) = hE TS T 0 10)

4.2 + (azh, + ba),
ang(Z) + bg = {aﬂaxz (a 2)
aga,z + (agh; + b2).

, 4
The«compositions of functions (3.6), (3.8) and (3.7), (3.9) yicld linear

" functions of the first kind, while the compositions of functions (3.6),

(3.9) and (3.7), (3.8) yield linear functions of the second kind. The
modulus of the coeﬂicient of z and Z in all four functions, clearly, is

~ equal to one.

The formulas (3.5)«3. 10) yield, for every pair of complex Imear

functions F (z) and Fz(z), a corresponding complex linear function F(z)

which we shall call'the composition of the functions F;(z) and Fy(2) and

- denote by (F;- FiXz).

With respect to the operation of composxtxon, the set of linear
functions of the first and second kinds forms a group. Verification of
this fact is extraordinarily simple. From the very definition of com-
position it follows that the associative law is obeyed Furthermore, the
function F(z) = z, corresponding to the identity “transformation on
the plane, plays{the role of the unit element of the group, and finally,

- the function

if Fz) = ax + b,

N
|

»

Q) = @3.1h)

ifF@z) =az + b,

(S]]
I
-

N
S RO

satisfies
C(FQ)N2) = F(Q(2) = z;

that is, Q(z) = FY2).
Let us consider the set of all linear functions of the first and second
kinds, in which the coefficient of the variable z has modulus one. From
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the formulas (3. 1()) for the composition oflmear functions and formula
(3.11) for the inverse of a linear function, it follows that this set forms a
subgroup of the group of linear functions, introduced above. This
subgroup will be denoted by E. Clearly, E is a group of transformations
of the set of complex numbers. '

From all of the considerations above, we obtain the following
theorem:

Turorem 3.3. The set of invariants under the group E is the Euclidean

‘geometry of the plane.

33, Lobachevskian Geometry

In the first half of the nineteenth century the Russian mathematician
N. I Lobachevskii solved the difficult, centuries-old problem of the
independence of the, axiom of parallelism from the other axioms of
Fuclidean geometry. The new ideas developed in Lobachevskii's work

exercised an enormoys influence on the subsequent deve}opment of |

mathematics.

The system of axioms underlying Lobachevskian geometry is ob- .

tained from the system of axioms for Euclidean geometry by replacing
the axiom of parallelism with a new axiom, which is a statement
contrary to the Euclidean axiom. The new axiom is formulated as
follows: *In any plane « containing a lineg and a pomt A not lying on
a, it is possible to pass at least two distinct lines ¢” and @”, having no
poin®s in common with the line a, through 4.”

We shall present below one of the interpretations of Lobachevskian
geometry presented by the French mathematician Poincare.

We consider some straight line / in the Fuclidean plane. Without loss
of generality, we can assume that the line / coincides with the x-axis.
We shall call the set of all points (x, 1) of the plane whose y-coordinate
satisfies the inequality y > 0, the upper half plané.

y § W

LN NV L

Fig. 3.1

x

ST
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; The points of ‘the upper half plane are taken as the points of the
{ Lobachevskian plane. We remark that the points of the x-axis are not
! points of the Lobachevskian ‘plane. Euclidean half-circles with centers
" on the x-axis and Euclidean rays with vertices on the x-axis which are
perpendicular to the axis are regarded as lines in the Lobachevskian
i plane (fig. 3.1). '
Two figures A4 and B are considered equivalent if there exists a finite
number of transformations ¢y, g, . . . ,*@., €ach of which is an im:}rsion
‘with center on the x-axis or a refiection across a line perpendicular to
" the x-axis, such that the transformation f = @, @n_1- « - - @z @] takes .
the figure A onto the figure B. : . _ '
- It is evident that in Pointaré’s
4 interpretation, Lobachevskii’s ax- -
iom is fulfilled (fig. 3.2). We leave
it to the reader to convince himself
of the validity of Lobachevskii’s
axiom in the cases not represen-
' ted in figure 3.2.
Fig. 3.2 ’ Let W denote the upper half
‘plane, and let H be the set of all

R |

‘transformations of the form

S = P Pmor o Pl (mis any natural number)

1
where @y, . . ., pn ar€ inversions with centers on the x-axis or reflections
across a line perpendicular to the x-axis. - '
From the properties of these transformations, we aiready know that
each offthese transformations carries the upper half plane onto itself on
a one-to-one basis. Consequently, the set F/ consists of one-to-one

transformatjons of the upper half plane W onto itself.
We shal®how prove that H is a group of transformations on the set

W.If fand g are in H and

f= P Prm-1" P2 P1 s
§ = ‘!’n"//n—z"'ﬂbz“l‘x,

then, for the composition of the transfm'mdtxonsfdnd g, we ha‘é\he ¢
formula

g'f: ¢n'¢‘1:*3u' ‘ '¢’2"/’1"Pm"?m—1' : '992'?’1' s

from which it follows that g-f lies in the set H.

pay
77
¢
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Since two successive iterations of the same inversion of reflection ¢
" reduce to the identity transformation, it is obvious that ‘
$ =F -
and, consequently, the transformation
1 _ . ’ h'-;,?l.?g. [PIRY -g).

. * is the inverse of the transformation I

g = PnPm-1" "t Prn

Thé transformation A, ohviously, lies'in H. Thus the set of transforma-
tions H on the upper half plane forms a group under the operation of
composition (see sec. 3.1.2).
The transformations of the group A play the role of isometries in the
Lobachevskian plane W: they carry figures to equivalent ﬁgures in the
: sense of the above definition, _
4 " Therefore, Lobachevskian geometry can be defined as the set of

qﬂnvarxants under the- group of transformations H of the upper half

plane W. . . .

1 conclusion, we suggest that the reader carry out the very useful
exercise of formulating Lobachevskian geometry with the help of linear
fractional functions of a complex variable just as was done in sec. 3.1
for Euclidean geometry. *

A detailed exposition of the questions considered in chapter 3 can be
found in N. V. Efimov’s Vysshava geometriva [Higher geometry]. A
detailed presentation of Lobachevskian geometry in the Poincaré model
can be found in A. S. Smogorzhevskii's book, O geometrii Lobackevskogo
[On the geometry of Lobachevskii] (in the series ** Popular Lﬁctures in
Mathematics,” pamphlet 23).




