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3 Lo ~ - FOREWORD .

. The increasing contribution of mathematics to the gulture of the modern’
. 'world, as well as its importance as a vital part of scientific and humanistic’.’
education, ‘has made it essential that the mathematics in out schools be both
well selected and well, aught. )

States cooperated n'the formation of the School Mathematics Study Group .
. This Study Group,includes college and univer31ty mathematicians, high school
- teachers of maghematics, experts in education and representatives of science
and technology. The general objective of the Study Group is the improvement

. of the teaciing of mathematics in the schools of this country.  The Natiornal
¢ Science” gpuudation has. provided substantial funds for the support ‘of this
’ > endeavoy. . . )

) ‘ : . . o

+One of the prerequisities for the improvement of the teaching of, mathe—
matics in our schools is an imptoved curriculum—one which takes a&gount of ' the
T ‘ fnereasing use of mathematics-in ‘science and technology’ and in other areas of
-knowledge and at the same time one which reflects recent advances in mathematics
itself. One of the first projects undertaken by the School Mathematics Study
Group ‘Was to enlxst a group of outstanding mgthematicians and mathematics
teachers to prepare a series of high school textbeoks which would illustrate
such an improved curriculum. This tdxtbook is the first product of this pro— '
R ject. : ‘ R .
. i . . NN ;
) - The professional mathematicians in the Study Group believe that much of
the mathematics presented 'in this serigs of texts, is important far all well-
educated citizens in our society to know and that all of it is important for the
prewcollege .student to learn in preparation for advanced work in the field. At
the same time, the high’ school téachers in the Study Group believe that it is
presented, in such a form that it can be readily grasped by college capable
students. "# . . ' . |
4
In most instﬁnces the material presented in this serjies will have a - .
familiar note to it, but, the flavor of presentation, the point of view, as it
‘were, will be different. Some material will be entirely new to the traditional
curriculum. This is as it should be, for mathematics is a living and an ever-
growing subject, and not a dead and frozen product. of antiquity. This healthy
fusion of the old and the new should lead a college—bound student to a. ,etter
-understanding of the basic concepts and structure of mathematics and provide a-
firmer foundation for later courses. ¢

It 1s not intended that these books be regarded as the only\deflnitlve way o
. of presenting good mathematics to cpllege aapable students.” Instead, - they should
be thought of as a sample of the kind of* jmproved curriculum that we need ahd as
a source of suggestions for the authors off the commercial textbooks Jd¥ the
future. It is sincerely hoped that these texts will lead the way toward in—
spiring a more meaningful teaching of Mathematlcs, the Oueap and Servant of the
Sciences. ' o ) .

r ~ | oo




PREFACE v

The present volume is an experimental edition’ for a high—-school ¢ourse in- "¢
the theory of matrices and vectors. in selecting material for the text, the )
' School Mathematics Study Group has been’mindful of the fact that this is the
last mathematics course in secondary school, the terminal course for many
students. As citizeds, they should have a sound idea .of the, nature of mathe—
matics. This point of view has been emphasized in the Harvard report, "General
, Education in a Free Society," Harvard/University Press, Cambridge, 1945, which
- states: ‘”Methematics may be defined as the science of abstract form. The dis-
‘cernment of\gtructure is essé tial, no less to the appreciation of a painting or
symphony than)in the behaviout of a physical system;! no less in economics than
in astronomy. Mathematics-.studies order, abstracted from the particular objects
. and phenomena which exhibit it, and in a generalized. form. "

One of our basic aims is thus fo demonstrate the structure of m;thematics.
* We shall not'be concerned, however, with structure merely as such. Rather, we ,
shall exhibit some rich mathematics that is totally new to the student and
demonstrate struqiure as we proceed. To make abstract form a topic unto itself
fren leads to a barren presentation; to discuss the‘struq\ure of the already-
familiar arithmetic and algebra seems forced and repetitive to the boy or girl
who is dreaming of/a place in a jet age,, even in a spdce age. g

It is important to give the student some "new:\%athematiés that has cor- -
* siderable vigor and vitality. Until very recently, the high—school curriculum
has been almost entirely concerned with ideas that were developed during or
before- the sixteentl¥ and sayenteenth centuries. Computers and @lectronic brains- -
are front—page news. In orddld to appeal to the imagination of the studen{ and )
to expose some mathematics that is.very much alive, the material must be jew, .
different, and bold. o )

N - . . ¢
3N

Another caﬂterion is to provide some tools that will be eminently useful
‘4n the student's transition ‘from school to college, tools thatledll help bridge
the gap from the manlpulative spirit of high—school mathematics"to the abstract -
viewpoint of modern algebraic studies. Yet this material must not come from /

the usual sequéntial courses.

A unit on matrix algebra will satisfy the forégoing criteria. As one
)operation after another is defined, the structure of mathematics can be repeat—
edly emphasized. Terms like group, ring, field, and:isomorphism will be intro—
duced when meanlngfdl and needed for unifying .concepts. Thus they will be met
in a new, appropriate, and substantial &ontext; they will not be applied to
shopworn material. ‘' Introduced by Cayley in 1858, recognized by Heisenberg in ,
; 1925 as exactly the tobl he needed to develop his revolutionary work in quantum
' mechanics, employed today in such diverse ways as providing a language for
atomic physics, measuring the air flow over the wingof an airplane, and keeplng
the parts inventory at a minimum in a factory, .matrices can put the student -
close to"the frontiers of mathematics and provide striking examples of patte
. that arise in the most varied tircumstances. Moreover, the student meets Espe
mathematics emancipated from the familiar rules of arithmetic, and he lear
. that it is within his capacities to "invent" some of his own. If this study
can make mathematacs mire alive, EPen here indeed is a promising path.
‘ ~ -
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o

Cur study of matrix algebra will involve. the investigation of a significant
dsulational system, which will reflect the vigor of abstragt mathegatics. This
is & unit in "hard', mathematics that has power gnd beauty. It will provide an

‘effective language and some dynamic concepts that will'enhance the student's

ahilit? to handle his first college courses yet mot duplicgte qeterial.
-t \ B ' &) -
Lastly, with the objective that the intellectually vigorous students may,
in some small part, obtain an idea bf what constitutes ''mathematical research,"”
there is appended a set of "Research’ Exercises.” These dre by no means over—

‘night homework and any one of them may well constitute a project to be executed

by several students. Such team operations are conducive to §timu1ating-dﬁs—

course and critical. thinking. - L
- 7 . ' _ -
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Chapter 1

MATRIX OPERATIONS

o4 -t . o [
‘1-1. ‘Introduction ‘ //
. As we have studied more and more so;:histicatedfmathégmtics, we have had
LI . . {a, .
occasion to use more and more sophisticate@ kinds of 'mumbers.'" We began with
‘the po gi;ive whgle npumbers, 1, 2 3,.... .Then, in order to make subtractions

[

like 3 -7 Rpssible, zero and the negative whole numbers, 0, —1,-2*;-3,...,
{ ' '
had to be intgoduced. Next, in order to make it possible to divide any number

by anyf nonzero number, fraci:ioﬁsﬂlike 1/2, ~2/3, and —-157/321 were in{aex.xted. )

This did not bring us to the end of our.story, for, in 0rdé§ that every positive
¢

number should have a square roo;, a cube root, a logarithm, etcr, it was

"

necessary to invent still more numbers: the i gfinite decimgl or ;ggl_ggg_g;g
such as 1.4142,.., 3.1415928..., and 0;13131313.... Finally, in order that

negative numbers should also have square roots, and that such quadratic. AN

equations as - e »
- . . _.. _ . ‘ ' .
x2 +x +'1 = 0

should hage'solutions, it was necessgg@y to invent complex numbers like

‘ .
3+2i, 1 +ni, and -1/2 + (1/37)23
A
Whenever Fhere has seemed to be a good reason to do so, we have invented
- B v 2 ]

new séts ©f ''mumbers.” For instance, in)inventing complex quantitiég, we )
began not with the quantities th:EEB%ve; but with a purpose: to find a

system of numbers each of which has a équare root. When we havegmade one

s;cﬁ inVéDtion, it is nét hard to realize thag:theve is no reas;n to stop v
inventing( Why should we not hope EP invent many{kinds of new numbers?

Of course, it is easy to invent’things that db not work;\but harder to

o

invent things‘that do work — easy to invent things that are yseless, but

\
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& less successful new kifds of numbers have been invented byuﬁathemati,g@‘. )

{

*

S
™

-

-~ . p .
. ; o . o 2 .

hard to invént things that are useful. The same is true ‘'of the invention of

s f . . . I .
new kinds of numbers. --‘The hard thing is to invent useful kinds'of numbers, /
- , . - ) e N

¢ A

and kinds of numbers "that work." Neyertheless; a large number of more or

In this book, we are going to study one of the most successful of thekse néw

i. : -

-kinds of numbers: the matrices. ' .-

Before we tell ydu what matrices are, it is well for ds to emphas%ze

F-4

“ + their impsrtagbe. -Théy'are usefu? in almost every branch of science and

ehgineeiing. A great number of the computations made on the giant "electronic

brains" are computatioms  with matrices. Many problems in statistics 'are.

-« v
¢

"expressed in terms of matrices. 'Matrices come up in the hathematicq} problems
von . .

of economic¢s. They are extrémely importgpf in the study of atomic physics;

indeed, atomic physféists express almost all their problems in terms of

. P

matrices, and it would not be an exaggeration to say €hat the algebra of.

P4

mattices is the langnage of atomic physics. Many o!hgr kinds of algebra,

like complex-number algebra and vector algebra, which .some of you may already

»

have studﬁed, can be explained very jeasily in terms of matrices.’ So, in

.

.- ,
studying matrices, fou will be studying one of the newest and most important,
[ . .

as’ well as one of the most interesting, branches.of mathematics.

~ a e f o .
Let, us laok ét a few simple ef:jples. @
* , Many a baseEﬁll‘fan, whan he first opens tHe newspaper, refers. to a
. Vd Lt . . .
tabulation similar to thetfollowingz = . >
' . i . * . ' l ¥ )
- . 3 ! St
L G, AB. R H -
i} ' . . . . ./ ' s
- Aaron . & | ¥& 280 si/"log :
- | williams - w 32, 194 29/ 60
. Mantle 60 228 51.-70 .
¢ . ! ..
I e ‘Lopez , 63 241y 38 72 v ‘o -
. . -~ 4 . i » oot 4 ',Q
i ' " .
e : ’ _
L -~
.. //' Y . ‘ .. .o ’
| S -
to N ' . ) RN

]
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¢

. : . . . .
M N . . .' * -
- - J - »
\ ; o -
» . - .
- H . . -~ . y ¥, C . ‘ ) . N
» » " ) . . - ) . . ' 3
. . . . Ry :

” /( " . / , .
Iﬁ he is a Mantsaog(~\.he looks at the' ‘entxy in the third row and four:h ;'

column of numbers in ordér‘tq learn how many hits Mantlé has thus far obtained

* . : . .
- . 4 . - . -
during ‘the seagon. . f’;f ' ‘. : .o . 4 y
. . . Co.
. . . . e . -

-

! you will ﬁqté?thai wé have ,said '"row" in ébeaking.gY a horizontal grray,- . -

.and "column" in-éﬁéaking df‘&’vertﬁéal array. Thus, the third row {&‘
- i . . N

. . " . -

{, «
60 228 51 70,

. . , ; % 0 - . .
and the fourth column is ’ d o,
. N . . . &~ w" .
: . ) 109 ) . ; v,
i . - 60 . ) :
72 )
oo Y

An assembler of TV sets might have before him a table of the following'

. .
. ‘ ’

sort; ¥ | ) . . '
. } '. . - L N
\ A Model A Model B Model C,
] Number of tubes, 13 18 20 . »/‘{
P Number. of ‘speakers 2 3 . 4
» . . ) . e

. ’ ‘ . Vi
This table indicates the number of tubes and the number of speakers used in

Ed .-

assembling each model. - o

- ‘ ‘ _
.Ofitting the row and colufin headings, let us focus our attention on the -

arrays of numbers in the last two examples: ©
y : Pg

-
°

68 280 52 109 ,
S2 194 297 60 13 18 »20.
60 228 SL 70 37 4
63 241 38 .72 b

. . o ’
¥l . -
’

Suth arrays of entries are called matrices (singulér: matrix). Thus a

¥

matrix is a rectangular array of entries appearing in Zows and columns.
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- .
. i -
< . . -
. Y ' : - .

~4 N ,.‘.. ) "‘ . * i e . ’
~ - :. " ‘ E > . * - A :
.’ \.1(‘/ ) o . \ * . N . -.. -‘
S .“' !'_ l“_ . N ‘ » - ...q_‘ A " . ‘. . " n R
.AccualLy,Jgﬂg entries.may be complex numbers, functions, and in appropriate
“ - }tﬂh-‘h' T : \pj S S ' C .
. gircumstantes eveh mgtrices them¥elves; however, with a few exceptions that''
.. . - . . . L. ° [ . - » . o .
: o . . - - . —— .
will be’'clearly indicated, we s8hall confine ouyp attention to the real pumbers
. .'{- -. K .t B . . - -
- i ‘ .
. Witk which we argralready ‘familiar.. . . . o . .
.. .- sSome examples of matrices are the following: - ) .
R L] RO B VO e IRPURN : V- S VIRV I 8
| 1 \‘0_;f} ‘.;3.1& , 1 . ) L 0. o : N : ~ ]
P .t N r'- . -.T —2 . . . e
™ R " -, L‘-_‘ ; Lo . RPN f'

. . . M tos 1 .. !

1

You'will note here how squa}q'brackéts [ ] dre used in the mafhgmatical' v
T .~

-

-designation of matrices. S -
;: A great advantage of fhlsiﬁotatién is the fact that'we can use it in'
handling large sets 6f gpmbers.as single units, thus simplifying  the statemen;
of complicated relatiomships. - ' L

1

1-2, The Order of a Matrix-

A ]

The gorder of a matrix isegiver by stating first the number of-rows and
then the number of columns in ghe matrix. For example, ‘the order of the
. d¥gatrices in the foregoing éXamples'are'respective%y 2 X 3 (read "2 by 3"),
| 2x2, 4x1, d 1 X 3: Generally, a matrix that has m rows ;nd n.
1

colums is called an m X n (read "m by n'") matrix, or a matrix of order

m X n. “
If the number of rows is the same as ‘the number of columns, as in the
g\ﬁecond example above, then the matrix is square. Thus, given two linear
. ) 1 3

equations in two unknowns,

. \ .

»

28
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. .
S e ‘ ‘

[ 2 4
e T
-

wé"otzserve'ﬁha.t ‘the coefficients oflf x and ".. "y‘ .const;iti;[té,a square ma.t.rix:
C T ' ? 23 ~:
.‘ . s - . 1 ?gzz ¢ . ' ~

-y .
o .

»
A}

.
. »

. o . P
When speaking of. a square n x-niyaqtii, e often,réfer"to its order as n

. . A Y
h * ) S ) . ’ '
‘rather tham n-X n.~ For example, the 2:X 2 matrix N .
s "1 ,,\ ' .‘ + - ‘@ -
. ’ . . L N B . * o+t . . N
\ . . : . J - . -
. 2/ N 1 W ‘ ,3_
' ) ',. 3 4 ~ . = ’ . )
b I3 . L] ¢ v, . ‘)
. s ) ) :
is a square matrix of order' 2, and the 3 X 3 matrix: ° =
. v . : . . . i [
.~ ’ o : M . .
- . . -1 2 :3 R ’
- rd
4 =5 6 :
. . ..0. b
7°--8'—9 4
» ) . B ? . .
- . «‘ﬁ‘“ . K
is a square matrix of order 3.°, B . : ¢ ) ,
- T -9%'.,? ) e ~

If the pumber of rows is’l, as -in “the fourth ex&ﬁple in (1), above, the

o . . .
matrix is called a row matrix or a row vector. For example, in terms of

rectangular coordinates, a point in ‘a plane,might be designated by the row
LETe pLane)

)

" matrix [? é], or a point in space by the row matrix [? 3 *1].

Similarly, a_columm matrnix or column vector is a matrix having just one
column. Thus, the foregoing points can equally well be designated by column

matrices,

Z P
~ 3 or 3 ’
"'1 .

N
-

and the number of men, women, and children in a family might be denbted by

i «
» .



‘-

3 N N ' ) |
6 l , . //// .
. -~ “" \ y )
./‘ o o , |
' Capital letters are often used tor denote general matrices, and.the - 7
. . . R . . . /
R v f ' e - A
corresponding small letters with appropriate séﬁ%cripts are then employed to s
' ) : ‘< , :f, . : o ®
designate entries. Thus, we might have . e R -
. ‘ . f
- # . . .ot A
S e § R 2N 3 IR by
A= |a a a . and B'= 11-
. ST %2 T2 23 of | bgy :
N
| / N B U P T N A R

4 . - -

. . -

In these examples, the entries loceted at the intersection of the 2nd row and

3rd colymn are diszed by a,, and b23, respectively. ~ . . .~

Generally, the entry is located at the intersection of the i-th rob

*  and J—th column of matrix A, it is denogﬁd by a An m X.n matrix gcan be

i3’ . .,
denoted compactly as [aiﬂtnxrf Thus, the foregoing matrices A and*B are

. . A
¢ .
A= [&ij]3x3 and . B = [t.’ij]z'xa'

If the order is clear from the context or is arbitrary, the notgtioﬂ might be

R . oy

Y

reduced to ' L

A= ) : and B=1b,.1. . L R
= By 2 [Py | .

Associated with each matrix is another matrix calleJ its trapspose, which
is often convenient to use and has interesting theoretical properties. The”
A

t . . . . . ’
transpose A of a matrlx A is formed by interchanging its rows and columns.

For éxample, if N

~ A
: 1~ 2 2] - . b3 '
A = , then A~ = 2 -1 .

Definition 1-1. If A

]

-~

] is an m ¥ n matrix, thén the transpose A

‘

\\;,‘j (i = 1, 2,...,n} j=1, 2,...,m).

i
of A is the n X m matri® B [ ] with b, i = qji-for each .o . .

-

Q ‘ ‘:!f;




&~ a

_height, ahd.wef§ht.;a : A

.- ‘ ' Exereiseg’l—zf S , //f,“. ' f !
B . - f . . .

(a) Optain from a newspaper or other similar source six examples qf

l' /. i o .

information presented inematrix ford // . ) A

(b) In each of yeur examples, sState th§/0rdex of the matrix.

/

(c) In each of the examples,’suggedi ap alternative method (not in matrix

' , . /
form) of- presenting the same information, * - i ce
. P
A row veetqr witﬁﬂthree entries ‘can be used to tgbulate a person's age,
O ' ‘{.9'5 : K “ N . .'
!
¢

(a) Give ﬁ row vector that lists your pge, hei ht, and weigh .

(b) * Sugge%t when itnmight be useful to employ such a vector.’

Lét , , /I
’ ' . 7 ‘//
- s . — :-1 -
' ’ 1 2 3 4 : r .
/ !
: A = 8 10 12 14 . N
. ..\m —1 —3 .—-5 A <
| }\ 3 7 8
L a
] \ ) N .
_(a% what is the order of A? ,
(b) Name the entries in the 4th row. ISR
'(c) Name the entries in the 3rd column.
(d) Name the entry 84 . '
(e) \Nﬁge the entry 54 0
(f) Name the entry a7 - '
(g) Write the.tranepose At.~ .
Let
- . .
1 O/ 0 0
8= |0 ;/ 0 0
-0 1 0
L 4 s
0] 0.1 <
K BTRY :
|



. : N . / o
(a) Wwhat is the order of . B%? . ) . L a
l‘ | (b) 'Naméﬁéhe eﬁtrigs‘iﬁ'the 3rd column . . ‘;
()] “Name the entry by, .\ .
(d) .?or what values i,»j is Sij #-6? ' , \‘ . ' | . - N )
.." (e)' For:what vélues {“ j -is iJ =l9? ) o » i ' | ! T
| tf) Write the tranapose B#‘, T h - o jL ' '-2 . .§“::‘
°', 5. (a) Write a E)XIB matrix all: of whose entries are whole numbers. '. .
(b) Write a3l x:4 matrix none of whose entries are wh;le numbers. ) ]
W ' ~ \
(c) erte as5Xx5 matrix having all entties in its flrst two rows o
. / '; positive, and all’ entrieS\in its Last three ‘rows negative . . f:
’ 6. ;.a) How many entries are there‘in a2 X2 matrix? Y ‘
l}ﬁ (b) In a 3_X 3 matrix? ' o
/j (c) Inm an.n.x n matrix? . ‘ . ~ N o
-/ | . -

. -
-
- .
. B
.

1-3. Equality%of Matrices

Two matrices ‘are equal provided they have ‘the same order and each entry
) ¢

in the first is equal to the corresponding entry in the segond. For example, .. *
. A

L]

. | 2 27 p, o
1 4 0f _ |1 2x2 2-2 o = |22 X" =1 _ |G- (x+l)| | °
. b4 » Al »
2 8 4 ez 1672 8/2 |4 53 § x . x -
" but ~ ' T . j
‘ ' 1 4 '
' AN
. [1 2 3] 4 2 s, [o,o] 4 [Og/ : ‘
- ll» ’5 6 3 6 . . - _
¢ | R .
. , . ¢

Definition 1-2. Two matrices A and B are equal, A =B, if and only

if they dre of the same order and their corresponding entries are equal.
) . / '




.\ 2 , ) -"nc .
: Thds,- k * "_
. { .
- ‘ 4 .
- , " b
© o ijmxn iijn
if and only if aij =lbij for each fi i (i a ] 2,...;@;

3=

1 2,;..,!1)

Using the for going definit{on of equality, we can express certain

relationshigh-more compactly,

-

T he v

N
4

x +y = 5)
x—y-=1

Exe

For examglgg the_equatton

~ ﬁ A . N .
! ! “f L .l; .
e K 2 +3y| L | 7]
f '\ - R L
“l)"' : ‘3x - y : A \2 »
f . 'ff Y .
‘can befempioyed instead of the two-sppargte equations
' c~- -t ) ﬂ - , -, ’
- 2:( + 3Y = 7)
and .
X +,y atb 5. =1
X—y apbb 1 3
can be written in-place,of the four pquationms

a*thb=-—1,
a—-b= 3.

rcises 1—3

1. Solve the following equations:

(a)
(b)

(c) _

-

~——

v’
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2., From xhe-equalities’of’khe matrices A =B and B.=C, would you cohclude

. «
that A = Qz Why? '
3, Write the°matrix o ‘
- 110 %12 %13 - >
21 %22 %23} SO
b | '
- ' “ b
if ~" {
. N 3 L]
. : & . ‘.J . . . . L3 ' " .
. .f';\ . . ’ = — . - .
VA a4 21 +3] ~ 4.
..'_':..'_ \ ‘: T . . M . r
. . ' . _
4. Write the matrix’mhose entries are the sums of the corresponding entries *
. .
of the matrices - . - L.
: r ) :
*_ . T ’ . . . : [} .
- , "1 0 ) 0 2 )
. S——— #
2. -1 -3 4 o
-3 4 and 1|
1 0 6’ )
0 . : '
: ] ALY
a ™ -
5. Write the matrix whose entries are the differences (first ﬁinds\second) of
" the corre8ponding %ptries in Exercise 44 1
L . *
Ljﬁ. Addition of Matrices ' L.

We i‘ve now defined matrices and studied some of their most elementary

: ' \ 4 '
properties. But we have not really made them work. To do this, we must give

rules for adding and multiplying matrices, just as was done with complex

Fﬁmbers. If these numbers were defined bluntly as expressions of the form

’

é + bi, without the operations of addition and multiplication, and without

relation to the solution of such equatidns as

. 2 .
.. X +x +1 =0,

A

they would be of relatively little intefest. What gives life to complex

\.

AN

»



- ) - 11 -
- R .Q . .’ ) . )
numbers is the.fact that we’arg.able_to define adgition.anq multiplication
) i \ ; . ’ oL T
R for them in such a way that we have a whole algebra of tomplex nymbers, which
is indeed useffx_lg';\d interesting., . \ . . o,
2 \ - . . . - g .
. The samg remark applies to matrices. To give the study of matgices its
. . -, 8P] .
.- 4 1 R ‘. ‘ . . : . \, - . - '
¢ ¥ ., real content, we must define "sum" and "prdduct' fgr matrices. In this section,’
ﬁx - . . . 0" \ . . . . { L -
¢ A : N\ : .
N wve define and-study sums of matrices. BRroducts will be considered:}atef. '
3 . . T
" L

 You will recall that whenxxwp‘cgmplé% numbers 'are éﬁded{”fgﬁ example
. - . g . * ' : 'l’:

. ) . o .- . ; @ N . > ¢ . . .

— >+ Sf.-and ~2 + 4i, the two rexl compqnents“an& the'two-im&ging{zrfompongﬁts. v

are added separately. - Thus, yj Lot s

's\, . “
: N ' . “~
. \ C 4 | .
. (3 +5i) + (=2 +41) =3+ (=2))+(5+4)i=1 +091i,
. LI : .
- . i ™ *
v : 1f'we represent the complex numbers 4s column vectors, we find their sum
. ~ .t - -i"‘
o hy adding corresponding entries; thus, , - M '_
h v ¥
‘\ ~ . . :
L 4 . 3
‘13 =25 |1
, 3 I Y B Y g
This suggests the pattern used in adding matrices %f the same order. ,
¢ The sum of two such matrices is obtained by adding the individual entries in ‘
F ) .
corresponding positions. For example, R . <
L4 K ﬁ !
! I, ‘ ° 2 3 1 + ~4 2 1 - -2 5 2 ) .
~1 0 4 1 3 =2 0 3 2
. »
G : Since we shall not even give a rule by which matrices of different orders
. . ' .
could be added, we shall add two matrices only if they are of the same order,. .
. Two matrices that have .the same order are said to be conformable for addition.
The sum has the same order as the .two addends.
' ’ ' A
. 3
v Definition 1-3. The sutt A + B of‘two m Xn matrices A and B is
} " s 4




-

-~ L R f
Y . ~ s ‘, ." s
the m X n~matrix C ;such ‘that the elgment ¢ in theg i—th row and j~th

. ' [ ij
- [ 4
- columm df C -is equal to the sum a,, + b of the elements a émd b, .
. ! SIS S HR R S IR ¢ B
: in’ the i-—th row and j~th columr}*of A and' B, respectively. ‘ b

t

T [aij]mx [ij]an {i_] j]l_n)(n - :.

- : /

* <« Thus, N . Y . - .
£y ' » . .

- . .
' . .o
Fordinstandﬁ, .t . .
. R 3 T ' ’

' - . | - Sy \ N S
. a, . a b1 +b_ . + b, e &

e | (P i a11gi 11 M2 T P12 1 a2
[%21- 222 * P21 P22 7 a1 P22 Ty | T |1 S5 -
R e Y Pa Paa] | tPa fp tPp | ey oy |
\ . ) . ) - ' [ )
b . l

7

>If we consider all m X n ‘matrices, with m and n fixed, as constltuting

a set ,Sm n’ and if A and B are elements of S n’ then A+B is also

» b

~

an element of this set. That is, if A( (read "A 1is an element of
; Sa.n

.- 8 .‘\) and B€S , then (A+B) €S . L .
m,n , Myn : m,n .
, In the g.lgebr'a of ‘real numbers® R, %he equation .
f;\&‘ l). .' 7 . ’ \ . 7
.‘ S e S a+0=a
bad ..‘l’ ' . :- . '
is sgtisfied - for all a € R (this time, read '"for all a € R" as '"for all *
I.P - » < ) . ) ' .
'ﬁle_am‘ents ‘a of »R"). Accordingly, we say that 0 is the identity element for
addition in R. 1In the algebra of matrices, the matrices all of whose entries
— * - . . .« Y
' are 0 play a corresponding role. Thus, _ - ,
* . .
2 3 + 0 0| _ T2 +0 3+0 iy 2 3
-1 44" 0 0 ' -1 +0 4 +0 -1 4 |°
Such a matrix is called a zero matrix and is denoted by 9 If the order
* m Xn is significant, we write Oan; or, if the matrix is square, we might
v
© write 'Oh, where n Nicates’the order of the matrix. Thus, s
L] , % L

21




. - |
. . . @.‘,
. ) -, 13
. N v (
- . 3
; | 0o 0] o o o] !
Oz = [0 O]+ 0p5= |- , 0,= 0 0 0.
e o 1x2 e 2x3 |9 o ol 3 Yo o o -
. . :/ ' ' e * k3
“The equation { . .
‘ \ . ' \
T, " . A = -
. . * Am)(n +0mxn Ahxn. .
. , a - ;( . N I s
clearly is valid. for all A . i . ) —
- . i e ‘ n.l.x'n ‘ . A .
The addition of matrices is a commutative operation, as we can régdily
= . .. - .
. ' .
verify. Thus, -
.‘ 1
M2 )P Pz Pyl P Pt (%t s
f21 %22 %231 [P P2z Paaf [Py, Pay By 91 822 83
: — -“

In particular, the sum of the:two matrices on the left is a matrix having

element #f the sum on the right is blZ + a,. But
; . A J

-

a,, + b12 as element in the first row and second columm, and the corresponding

22 TPy by tayy,

-
)

. ¢
by the commutative law for the addition of real numbers.

The foregoing observation hoids generally, of course, so that we have the
following result: ,

Theorem.1-1.

If the matriceé A and B

are cenformgple for addition,
then they.satisf§ the commutative law for addition:

/

.
£.
%
»

A+B =38 +A.
Proof. We have
P




VO § ,

r

. o ' _ /
A+B = + |b, . N
. +B = ]+ o] — T
= * T .
¢ . [ ij i+ ,F;l
. - [bi g 7 aij]

. - ' , <= |b + [a, ]
- s c. [ij] 1)
' . ) ' = $ + A.

9 '
Y . . B 2 .

] N L} Y .

) - , - . ’
Thus, in terms of our usual notation, the element in the i—th-row and

. & '
Ce .

.j—th column of the sum on the left is 3y + Bi;’ and the corresponding
. «h .

. -«

N - t

i3 +aij Bu .

R )
. { -
- “ -
f » .

= + N
13 ¥ Pay TPy Ty

. I
element of the sum on the right is b

3

by the commutative law for the addition of rgal numbers; hence the theorem
follows - from the 'definition (Definition 1-2) of the equality of two Qatrices.

The addition of conformable matrices is also associative; that is, )

A+ (B+C)=1(A+B) +C.

. /
’ . :
’ b
For example, .
\/Jf
— N e _ - A-ﬂ .
. 2 1 + 1 2 0 + l) 0

L—a 0 6 | —2 0 1 | 5 1 2]

and also . o s

_ - _ A _ -
. 2 3 1| -1 2 0 J 10 &

-4 0 6 | -2 0 1] L 5 2]

— - - - -
=[1 5 1] N 10 &] _[25

- 0 7 5 1 2 -1 1 9

L - L ol -

. /
.
. .




e

'

2
.

v

- . —) " ' , ) ’ 15‘
) ) : . .'_ { ' -
) 1 [ ) * ."‘ .
We can state the associative property as'a thébfem and prove it, as’
; L .
follows: " - . .
: \ ” t Ve ‘ .o -
\ . [ . - :
' : oy ) .
. Thearem 1-2. If the matrices A, B, and C~ are-fbnf?rmable for addition,
then they,satisfy th‘!askogiatéve law for addition: : \{
A¥, . t '\"
o . ‘ .. . § )
. . A+ (B+C)=(A+B) +C.. v ‘.

N

Proof. We note that, .in terms of our usual notation, the element in the"

i~th row and j~th column of the sum on the left is a;

’ i :l--(bij + cij)’ and

the corresponding element of the sum on the right is (aij +-bij) + cij' But
- a,, +(b,. +c¢ = (a,, +Db +c,.. '
13, 7 Oy *ogy) = (o R )
You can complete the pfoof of Theorem 1-2 by te%ling why this last equality is
valid for all real numbers aij’ bij: and cij’ and why this equality $
implies the matrix equality
. . i A+ (B+C)=(A+B) +cC.

Since'it is immaterial’ in which order the matrices gre added, we write

A+ B+C for either expression;:

A

: A+ (B+C)=(A+B)+C=A+3B +C.
: i 4

~ t .

4

‘will recall that the.negative, or additive inverse, of the real number a is

~

denoted by —a. It satisfies ghe equation
+ r"‘-
a4+ (—a) = 0.
!

Subtrattion of matrices arises in a similaf manner.

N

-

Once we know how to add numbers,” it is usugl to consider subtraction. You
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Definigion-lg{( I&t' A an- ma(. n—matrix. - Then the .negative of A,

» N ‘f = ‘F \/‘- * 4’

written —‘-A, is the m. X n \natrix each Qf whose entri s_ is -t;he negative of

KR < - ’ - .

the corresponding )entry of A 5 T e .. * .-“' .
. -'\ - o - X ‘."' . ’ L TN ' 'y /.
K ) . PR . “ o '
- = y e «

Defi_&i’t':icrn 1—5’ If A snd { sre t:wq 'm )fn matrices, Ythen the

* e v -

difference of A and B, designatgdfby A - B, .is the «sum of the matrices
- ’ = - .- s . ,

' -
- . . S .. . ‘

, A and the_negative B. e LT N . s
. .o : i . - ”

. “‘) .

¢ ’ ' . VS .0 L)
Thus, .for A + (-B8), where A- and B) are matrices of equal orders we
k|

write A - B and say thafj.the symbols indicate that B is to be subtracted

)

from A. Por example, [ C e,
' . ) .

2 1 3] _fo 1-2] _[2 0o 5|° >
4 61| |3 4 1 1 -4 =2 S -t

* L}
and ' ' .
. e . ~
. ’ : CN
1 P~ _ |1t Q —c| .
ttc 4 c 2} % t 2
N ~
’ ‘ﬁow we can easily prove the followfng theorem: -
Theorem 1-3. If"A and B are m X n matrices, then
; . .
a () 4+ a=0, '
o (b) - (—'A) > A: . /‘.
> (¢) -0-= * 0, , -
’ () ~(A+3B) = (-A) +(-B).
/. ~ .

Proof of Theorem 1-3 (a). The entry in the i—th row and j—th column of

. . .

. &




L 14

-

. . ) i
. ~ . . .
.
L) - -
-
. 4 ~ . . . ¢ . ¢
- . .
- | G

—-A 1is, by definit'ion, —-a,,. Thus the entry.irtx the i—th row and j—th column

ij
- :,/ ’ 0y )
.of A% (—A) is* a,, + (-a,.). But/ a,, +-(—a = 0. Hence, every ent
(-A) N O i TRal e e.- every entry
o? A+ (-A) is zero;‘t;hat is, A‘-F_‘(—A) s th? zero matrix. )

v The proofs of the remaining parts are similar and are left to the.student
” '. N 3 Qi
= . :

-

*ag exercises.

Exercises 1-4 ' " v

-

) ) ’ . 2 . 6
e )

1. Find values x, y,ﬁ&n' and b that satisfy ‘the matrix relationship
‘ . ¢ k . - .

Al

x+3 2y-8{ 0 -6l .
a +-1 bx + 6| = -3 - 2% . .
b -3 3b 2b + 4 j_—21 . ¢
2. If *
3 2 1] -3 "8
A= 4 = 6 and B = —2 6 -1 »
~ |0 8 =3 0 2 3
4 6 8] 4 -1 8.

determine the entry in the sum A + B that is at the intersection of }
(a) the 3rd row and 2nd columm,

(b) the lst row and 3rd column,

(c) the 4th row and lgt column.

é\ Cqmpute ° -

, . " /2 1/3 /6 1/7 3
| 1/4 1/5 /8 19| T

4, Compute ]

R IR
Th 7 -
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S

6‘

t
7:

\\\\\ t..‘ ‘
N —————
1/2 1/3 1/4 0 0
1/5 1/6 177 + 1 0
> 1/8° 1/9 1/10 0O 0 1
Compute ’
*
_ X y 2 I -~y -~z
L P s8 t* + P l-.s -t} .
\ s u v w -t v l-w
(a) Doeéx‘the sum
[
3 2 1) - /ﬁ
1 3 2| + 02 '
3 1 2 .
make sense? *
(b) Does the sum \.a . "'==-\
3 2 1 -
= | /’T\
1 ‘ 3 g + 03*
'3 1 2 -

LY k\\\
make sense? _ ‘
(c) What is the latter sum?

Compute .
110 2 1 0 1 3
1 0 1| + |4 17 8| - 14 8 6
2 1 0 6 14 1+v2 11 11
b. _/

-

-

¥




L ) ¢
. . cg S
. {
) 8. ,Compute 4
v ' ] '
1 2 9 8 7 0 0 O 10 10 ‘10 Lol
. -
4 5 + /6 5 41 =10 0 0o} - J10 10 110 ..
. 8 32 1 o o 1] |10 1010 ‘
90 Given )
.(/ o .
’ 1 2 2 -1 4 2 _—
A= 4/ , B= |3 -2f , and C= | 1 Of ,
6 0 1 B ~2 =4
* '} . E
4l compute the following: _
a - N
") - ! 4
(a) A +B, () (A -B)+¢, .
() A+ (B.+C), (e) (A +B) +¢C,
(c) .A'=B, . (£) B —A.
‘ * . N
10. (a) 1In Exercise 9, consider the answers to parts (b) . and (e). What
e
law is illustrated? *
(b) In Exefeii% 9, consider the answers to parts (c) .aﬁg (£f). what
conclusion can be drawn? '
; . N
11. Prove Theorem 1-3. (b). N .
. | o »
.12. Prove Theorem 1-3 (c). . .
- 13.

Prove Theorem 1-3 (d). : ' o
4

< +

14, Assuming that A and B are conformable for addition, prove that

A+t =(a+m).
// . . b
4 -
’ L
) 1-5. Addition of Matrices (Concluded) .

The theorems given in Section l~§‘include exact analogu%s of all the basic
® 2 Y
laws of éfdinary algebra, insofar as these laws refer to additioff and subtraction. =«

o

>




“.Since A + (-A) -f@, ,and,fk + 0 =X, we have

20 .

14
N

We know that all of the more complicated algebraic laws concerning ?gdition

and Subtradtion are consequences of these basic laws. 'Since the basic laws of

- -

the addition and subtraction of matrices are the sgpe as the basic laws of the “
addition and subtraction of oxdingfy algebra, all the other laws for the

addition and subtraction of matrices must be the same as the corresponding'laws
for the addition-gnd.sﬁbtraction of numbers. We can state this as Eollows: .

Insof&} as only'éddition and subtraction are involved, the algebra of:

matrices is exactly like the ordinary algebfa of numbers.

So you do not have to study the algebra of iﬁdition and subtraction of . o '

<

matrices — you alrgady know it! Qé;t now the algebra that you already know

has a new and much'ricﬁet content. Formerly,”Tt could be applied only to

numbefg. Now, it can be applied to matriiﬁs of any order. Thus, we h;ve ‘ ' -~ '
obtained a %ery considerable result with a very small effort, simply by
obsetﬂing that our old algé%raic‘lawp of addition and subtraction apply not
only to numSérs{ but also to quite different kinds of things, namely, mafrices. e l
This very powerfyl trick of putting old results in new settings has Been used

many times, and often with great success, in-thg most modern mathematics.

.

A good example of the géneral principle emphasized abovg’is provided by

t
)

the following problem. Suppose that A- and B are known matrices of the

same order. How can we solve the equation

kS

. , . " X+A=3B

for the unknown matrix X? The apswer is easy. We do exactly what we learned

to do with numbers. Add the matrix —A to both sides. This gives
X +A+(=A) =B — A"

B
3 29




X=3B-A.

4

This is our solution. - ' ' .

Exercises 1-5

. ., 1. Solve the equation '
, BN 7 )
X + _0 I - 1 0]. L
‘ : 1 0 0 1
. . } : .
Yo f_c_:fr the matrix X. ,

2. Solve the equation

0 0 1] 2 1 2
A X+ |0 1 0] = |3 2
® r--
1 0 0 3 X o
1} ' .
for the matrix X. )
3. . _If [xl x, x3:| -["-6 0 2] - [—6 2 —3] . d‘etemine [x 3]
4, - :
, oy f
1 <y 0 \ <
1] + ¢, =, 1|, determine c, 4
2 Cy -1 3
/
5. If .
3} . .
2 3| . _ X X, -3 4 ’
4 0 Y1 Y) ' 5 -1

detelnnine X)s Xy, yl, and Yy
6. Prove that if the ‘matrices A, B, and C are conformable for addition,

» .

then’ (A +C) — (A +B) = C — B. o . -

Q - K
a - ()f)




P
7. Is the equation

. ' . ?
1 0 O 1 0 0 > 3 2 3
0 2 3] - 10 2 3 = -
1 0 4 1 0 4 12 12 ,o

- \
. valid?
P ﬁ . /‘

1-6. Multiplication of a Matrix by a;Number

Once_gye know how to add numbers, it is customary to define 2x as the
sum X + x, 3x as ihe sum 2x + x, etc. Fractional parts of x . are defined
Syirequiring that. (L/2)x + (1/25x = X, (1/3); + (1/3)x + (1/3)x = x, etc.
All of this ;an readil; be done with matrices. If we add two equal matrices,
the sum is élearly a matrix in which each entry is exactly twice the /cogresp pd—

e 4
ing entry in the two given matrices. Thus -, '

¥
‘ 2 3] L 2.3 |46 L2 23]
| -1 0 | ) =2 0 2(~1) 2(0) §
' Likewise, for three equal matrices wd Have
2 3" 2 3 2 3| 6 9] Tawy 3%
. + + = =
-1 0 -1 0 -1 0 -3 0 3(-1) 3(0)
/‘ ’ . ( A
Each of the above sums may bé\considered to be the product of a number and
— - .
a matrix. "We write -
[ 2 3] (4 6]
2 . = ke »
L—-l O-J ‘_-—2 0]
3 2 3 _ 6 9 . )
L—l O_d __‘3 Q;

By 9
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The equa tion ‘ ,
A +%.Ab- A, A

A L

Pl

R
Wy ' ' '
defining thedmatrix (1/2)A,, is dledrly satisfied by the matrix each of whose

entries is exactly 142 the corre§ponding entry of A; the equation
b .
1 )
.‘ \'i" 3 A+ 3’ A=A,
) _ v ~
» . ° " ‘ .
defining the pmtrix "(1/3)A, is ¢learly gatisfied by the matrix each of whose

./’

wir- ©

entries is exactly 1/3 the corresponding entlry of A. /

These comsiderations lead us| to make the -following general definitiom. _

[~ .

cA = Ac ofénumber ¢ and an m Xn

Definition 1:6. The produc

matrix A is the .m Xn matrix| B such that the element bij inf}the i—th

a

row and j—th column of B is equal to the product caij oﬁ ‘the number ¢

and the entry. 85 in the )Kth ow and j~th column of A..
: A
L] N \
. !
Thus, - . '
L
o1 mxn =[] mxn © = [21]mxn
)
For example,
11 %12 11 A2
€ |ay] 8,| = |ca, ca,, .
a31 a32 CaBl ca32 *

Note that here we have defined the product of a matrix by a number, not

the product of two matrices. It is possible also to define the product of two

- matriceg; this will be done in Section 1-¥%.

R 4{3

32
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A

Now we may state the following :hgorem about, products of matrices by ' .

numbers.

\..,
" - -

Theorem 1-4. If A and B are m xyﬁ \mdtricéb, and x and y are
- C
numbers, then o Tl

[N
]

. . _— :
(a) =x(yA) = (xy)A, I - )

(b)  (x4y)A = XA + yA,

AN
.

'y
(c)- (A =— a4, :
) (d) x(A + B) = xA + xB, v
(e) x0 =0, SRR .
(5 oa=0. \
Part (e) states thaé thé product of a nnmbe; and the zero matrix.is ;hé .
zero matrix, and part (f) states’that the product of the*ieré number aﬁ&-any o~
matrix is the zero matrix. . ) . o '
: ‘w ’
. N A\ L
Proof of Theorem 1-4 (d). The entry in the i—-th row and j—th column of s
the matrix A + B i; .aij + bij' Th; entry in.the i—th row a;d j—th column’ § ‘ N .
of matfix x(A.; B) is therefore, by definition, x(aij +\bij)' Now the intry .
}n thg i-th réw and j—th column of the matrix =xA is x aij; that 'in the
i;fh row and j—th column of the matrix xB ig x bij' Thus the{entry ip ' iﬁ
the i_th row and j—th célumn of Ehe matrix xA + xB ig x aij + x bij' Since
ﬁhﬁﬁggtries are numbers and, for all numbers, a(b + ¢) = ab + ac, we have
)
N / x(aij + bij) = x aij + x bij’
so that eaéﬁ entry in the matrix =x(A + B) is the same as the 6orrespond;ng' ’ L

¢
entry of the matrix =xA + xB. Hence,

33




x(A + B) = xA + xB.,

¢ The other parts of the above theorem may be proveéd in a,dimilar way.

When we studied the laws goVerning the addition and subtraction of

» |y
matrices, we saw that they were parallel to the laws governing addition and -

\\“ﬁubtractian in ordinary algebra. Thﬁ situation when we come to the multiplica—

~tion of patricea by fiumbers is rather similar, but not exactly the same. The

.

various parts of Theorem 1-4 resemble the basic algebréic laws for multiplica-—
. . N\ ot )

tion very closely. Thus, many of the more complicated ordinary algebraic laws
and procedures governing multipliéaéion still remain correct for expressions

- ) ; " | ~
- \ - ]

‘involying the multiplication of matrices by numbers. The difference is that

the product of adﬁumber'hy a number is a number, but the product of a matrix
. . . f' *

by a number is fhot a number but a matrix.
¢

* We are now able to solve some fnatrix equations involving additionm,
. 4 Py : ’ «
Vi ~ subtraction, and multiplication by a number. Let us look at an ex%mple.

:

. Suppose we want to solve the equation '

L s

=21 X + = 3X +

O O =
[ N‘w:
o O '--'
SO O
- O O

a—

Wg.fipst perform the indigated multiplication by -2, in accordance with part
. F) .

(d) of the above theorem, to get

Y

-2 ~& -6 1 0 0
=X+ | 0 =2 -4 =3x+ |0 0 o .
0 =2 0 0 1

Then we add 2X to both sides of the equation to obtain ot
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. ~, -
v v 2 4 6| 1 .
0 —2 -4 =3 +2+}/0 0 O .
: 0 0 -2 0 0 -

Next we use part (b) of the theorem to find that 3X +'2X = 5X, so that

+

-2 -4 -6 1 0 0 ’
0 -2 -4} = 58 + 0 0 0 .
0 0 -2 0O 0 1
- ) ‘
. ™ .
o ' .
Adding - )
~ / ' )
- v
1 0 *
\ s ’ »~
=10 0 0 *
1.1 .
0 0 -
¥4
" to both sides, we find thatt
- N -3 4 —6.
S , 0 =2 ~4| = 5X. .

* L.

Mnltiplyiqg both sides of this last equatien by I/Q, ve see by part (a) of

* L » ‘
the theorem that

. . . <
~3/5 -4/5 ~6/5
X = 0 -2/5 -4/5
' 0 0 ~3/5

4

This is our solution.

A

1



Exercises 1—6

1. For

A_[zl_—j’ng 30 5| g ocal|S L o0

1 0 4 6 9 -1 7 8 -1
? determine the result of the following operations:
" (a) 2A—- B ¥ ¢, (¢) 7A - 2(B - C),
., (b) 3A -~ 4B - 2¢, (d) 3(A — 2B + 3C).
2. -For.\ L '
2 2_2 3 3 3 s 4 4
A= |2 1 -3, B= |30 5|, andC=|5 -1 0} ,
- 1 0 4 6 9 -1 17 8 <1
' ™

determine the result of the following operations:
(a) 2a- B +,C, ' (c) 74— 2(3 - C), )
(b) 3A— 6B +9C, . {(d) . 3(A - 2B § 30).

-
"

3. Let A, B, and C be the matrices of\Exercise 2. Solve the equation
. . ¢
‘ % (X +4) +3(X+(@2X +38)) +¢,

giving all the steps in detail, and justifying each step. v

4, Let A, B, and C be the‘pa rices of Exercise 2, Solve-the equﬁtion
. v
v 2(X +B) = 3(® + (X/2 +A)) +cC.

5. Prove Theorem 1-4 (a).

6. Prove Theorem 1-4 (b).

!

“1=7. Multiplication of Matrices ’

L

Thus far, we have defined and studied the addi??on and subtraction of

o~

3¢
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.

matrices and thg multiplication éf a matrix by. a number. We still have not
defined the product of two matrices. Since thg formal definition is somewhat
cgmplicated and ﬁay at first seem odd, let us look at a simple practical problem
that will lead us to operate with two matrices_inlthg'way that we shall
uléimately call multiplication:

In Section 1-1, the‘nu:;ig of tubes and the number of speakers %ged im

assembiing three different podels of TV sets were specified by a table:

*

> ‘
: , . Model A Model B Model &
Nupber of tubes 13 18 20
* Number of: speakers 2 S 4 \\

This array-wili be called the parts—per—set matrix.
. [ ]

Suppose orders were received in January foq 12 sets of model A, 24 sets

of model B, and 12 setg of modg} C; and in February for 6 sets 6f model A, v
S ' S |

12 'of model B, and 9 of model C. We can arrange the information in the form

of a matrix: e

January February

Model A 12 6
del B 24 . 12 .« e
Model C 12 9

r

This will be caMed the sets—per—month matrix.

To determine the number of tubes and speakers required in each of the

L3

months for these orders, it is clear that we must use both sets of information.

A

. ' .
« For instance, to compute the number of tubes needed in Jaﬁyﬁry, we multiply each

<
entry in the lst row of the parts—per—set matrix by the corresponding entry in

the lst column of the sets—per—month matrix, and then add the three products.
-

Thus, the number of tubes, required in January is

~ "




. L3
. . . - . . . -
- .
. .

' -
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. . -
.

.  ~33(12) + 18(2%) +.20(12) ™ 828,
] . ~
' : ®
© To compute the number of speakers needed in January, we multiply each entry
T

in the 2nd row of the parts—per—set matrix by the corresponding entry in the
lst column of the éets—per—month matnéf and then add the products. Thus, the
o \

number of speakers for January is i

©2(12) + 3(24) + 4(12) = 144,
For Februar&, first we multiply the entries from the 1&; row of the parts—per—

L
set matrix by the corresponding entries from the 2nd column .of the éets—pergs'

¢ | )

month matrix and add to determine the number of tubes; secondly, we multiply . -
the entries from the 2nd row of the parts—per-set matrix by the correSponding

entrieé’from the 2nd column of the sets—per—month matrix and add to determine

-

the number of speakers. Thus ghe numbers of tube's and speakers for February are,

o

respectively, .

13(6) 4f1§(12) + 20(9) = 474,
-agd

2(6) + 3C12) + 4(9) = 84.. s
N .

" We can arrange the four sums in an array, which we shall call the part

\

— per-month matrix:

~ January February

Number of tubes 828 474
Number of speakers 144 84
~
. ) N
Can we now represent our ''operation' in equation form? Let us try:
p 13 18 20] |}* °© 828 474

2 3 4l |[** Y= 4 osa| - (1)
12 9 ’

[

38
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We have 'multiplied" the parts—per—set matrix by the sets—per—month matrix to

-

get just what should be expected, EPe pa;tgfper~month.imtrixt
Note that, in Equatioﬁ (1), 82§ équals the sum of the products:éf the
. entries in the lst row of the left—hand factof by the corresponding entries ’
in the lst column of the right—hand factor. Likewise, 474 equals the sum of °
the.produets of the entries in the lst row of the left—hand factor by the

corresponding entxies in the 2nd columm of the right—hand fad;ér, and so on.

Consider the ''product' matrix

. .
A 828 474
. . l44 84
in the symbolic form, ' R .
| a;, 3y, : ‘ S
. , h . * \/ .
£ -~ %21 %22

The subscripts indicate thé row and columm in which the entry appeafé; ;&ey
also indicate ‘the row and the column of the two factor matrices that are .

. L3
combined to get that entry. Thus, the entry a5 in the 2nd row and st

&
column is found by adding the products formed when the entries in the 2nd

) 14
row of the left—hand factor are multiplied by'thg_corresponding entries in the

1st column of the right—hand factdr. The most concise description of the

™ T :
. process is: '"Multiply row by columm." | _

The description, "Multiply row by columm,'" of the pattern in the fS?egoing

"Simplg practical problem -serves as ougs/guide in establishing the general rule .
for the mu{tipliéation of two matrices. Very simply the rule is to multiply

entries of a row by corresponding entries of a column and then add the products.

Thus, give% two matrices A and B, to find the entry in the i-th row and"

j—th column of the product matrix AB, multiply each éntry in the i-th row of

39,



the left—hand factor A by the corresponding entry in thej—th column of the
R . \
right—-hand factor B, and then add all the resulting terms. Since there must

be an entry in each row of the left—hand factor.to match with each entry in a

¢ -

column of the right—hand factof, and conversely, the product is not defined
. ) ' ® ¢ .-
unless the number of columms in the left—hand factor is _equal to the number of

rows in the fight;hand factor. When the number of columms in the -left—hand
factor equals the nq'!'r of rows in the right-hand factor, the matrices are -

conformable for multiplication. : . ‘ ‘

A diagram can aid understanding; see Figure 1-l.
¢ * . . v - ~

|

o B
e
8

—— P — ~ , — o
¥ B '
. . !._n__.-{

3 @

" Figure 1-1. Matrices A and B that are conformable
for multiplication. The number of columns of A must
be equal to- the number of rows of B. Then the product

- " AB has the same number of rows as A and the same
wumber of columns as B. 1 .
' .

v

An entry in the producx. AB is found by multiplying each of the n

"entries in a row of A by the corresponding one of the n entries in the

column of B and taking the sum; see Figure-l—2.

»
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..... . o
] .
| j°th
7 « | column
“ of
- 4 I_B
, .
. l
y - '
. | Bl a
d P
./')4: ] /-2
- ' i~-th row of A 1 '
L o e e — e i e e et e~ o — —JPosition oOf T
n _ _ entry c:i.1 o
R A c-as| |
c . _J . e . n ]
. < - : Q' l . ’
¢ Figure 1-2. Determination of an entry in the product
. AB of matrices A and B that are conformable for
K multiplication.
_ \ . .
Thus, to multiply - . .
1 2 3 _ 1 0. 3
’ A= |4 5 6 by B= |2 1] ,
7 8 9 4 1 s
we first write
. ‘ .~ i -\‘ 1 07
. 2 1
® . _4 1 )
— = - "
1 2 3
4 5 61" -
7 8 9
. - -
’&t

-~

o

o To detérmine the entry in the lst row and lst column of the product AB,
hr o ) .

o 14,




o .' \"~ ~ R . . * | i " . 33.“

&
. i
4
) -
LY ‘ »
—
v - \ P ..‘
Py ‘ Determinfpg one entry of the product after another 'in this way, we finally
obtain the complete answer fox the product KABf\-
: _
- 3 ' & * b
‘ ) .. 1 . o
, ’ * 4
- L
@ - ' b
) ) w
1 21/ 3 . 17 5 . {
4 5 6 - 38 11
7 8 9 . 59 17| . / '
L) . \ \’ .
) (Check each of the entries of the answer yourselfl) -That is,
« ..
[ N / e ) 17 5
Jff " . AB = |38 11| .
. ~ T ‘ 59 17 .
. . . & : » ~’
-« ‘ . - : : ' 4

To get the answer, 18 multiplicatiaae and 12 additions of pairs of numbers are

necessary. - ’ . . '
Although it may be a bit confusing at first, we place the factors adjacent
to each dther in the following examples since this is the arrangement usually

]
employed:




1 2 R 1(1) +2¢4)  1(2)' +2(0)  1(3) + 2(1)

@ | 3 1| "[2_.5 i] = | 3(1) +104) © 32) +1(0) 3(3) + 1(1)

4 2| - ~L(L) + 2(4) -1(2) +2(0) —L(3) + 2(1) p
: . . » N\
.o ‘ $ 2 s
. v . V= :;' 6 —~10 N X
v 7 =2 -1 . _
- o 2 :
v (b) [t 7 3] |4 = [x@+7% +3n )5 [33],
“ - ' 1 .

2 | 2(1) 2(7) 2(3) A
(c) 4 [1 7 3] = | 4(1) 4(7) 453)
' 1 - 1) (7)) 13|

v

*
2 14 6

1 7 3 j
I.et: us now proceed.t:.o gfine multiplication formally. -

Definition 1-7. TLet “V

. A= [aij]mxp and® B = [1;jk]p><n

.

be matrices of order m X ;; +and p X n, resPecti@;/The product AB
- 18 ‘the matrix of order meX n, of which the element in the ji—th row and the
j—th columt; is the sum of t:he products formed by mgltiplying elements of the
i~th row of A by corresponding elements of the j—~th column of B.
>

* The definition of ée product of two matrices can be e)\jxressed in terms
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’ N s
of the " z notation" for sums. Recall that, in the " z notation,'" we write
the sum _ ' ;
\ _

s-x1+x2+.---+xn £

[N

. of n numbers as -

* L]

-

) ERIOERS

k=1

.

In this notation, the sum

>

‘
v a4) Byy gy Byttt b Ay, by
is expressed as "
n i
L Ay by - > &

k=l

This notation enables us to e:':preas Definition 17 more 'compéctly:

L s

Definition 1-7'. Let ‘ '

> 2

&

.. A= [aij]mxp .a.nd. B = [bjk]an

be matrices of order m X p and p X n, respectively. The product AB is the

i

matrix of order m X n, given by .

a [aij]mxp [bjk]Px“ '[ ;<-j§1 %15 ka) axn. [c.ik]m)(n' ‘

Note that we have defined the product of two matrices only when the number
of columms of the left—hand factor is the same as the number of rovs of the

right—hand factor. 'Also note that the number of rows in the product is the

TN
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[2
3

3 .

i
\/ R .
same gs the number of rows in the left-hand factor, and thatﬁﬁhe number of .

columns in the product is the same as the numher of columns in the rjight—hand

factor. . N | o °
’
Exercises 1—7 '
lo Let . \ /—/ \
* L} - - >
- - l 0 —1
- - 2 O 3 -
T - o -~ 011
F"l 2 3- ]
4 5 6 .
. Cm= 7 8 9 rand D=| .2 2 . )
-3 -3
) i 1 0 ld

State the orders of each of the following matrices:

(a) AB, (f) BD, ' —ad
(b) DA, (£) D(4B),
(c) ap, (8) (CB)(DA), \
4 (d) CB, . ' (h) B(DA).
N _ - ~ . Y
2. grform therollowing matrix multiplication, where possible:
> 1]
ot @ [t 2 3 4] , .
- L ¢ 4 |

1
(b) f [1 2 3 4] ,
4
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1 . )
4 2 '
[ 2 3 4
- () [-1 -2 o] 6 11
‘*. 5-
'/‘_ N v
R .. 4 ‘ ’ n
o - ‘ 2
i (D) 6 1 [—1 —g g ’
- . 3 5 , - -
™ o A '
~ p -
M @ (4, 2] 0 2° 3 4]
1" 3] o 2 -1 s °
| N . | P
¢ - - \
1 2 3 4 4 2
(£) 0'2 -1 6] [1 3| -

3. Let xs[z-—z 4], Ya[o 1 z] .

U= Q K and W= —1 .
* 1 21 .
f s
. Compute the following:
] X .
) (a) 5UX, (d) (U-wW(X +Y),
~ (b)) WO, (e) XU + YW,
(c) 5XU— (2X—-Y)W, (£) (X —Y)U — W).
- .
- 4. Perform the following matrix multiplications:
) 1 o] [e 4 \,
(a 0 1 2 o] °
0 OW X X, Xy
™) . [N
() |0 1 0 |y v, y3ly
’ R B R U
, \

14
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“~

et

(c)

(d)

(£)

(=)

<
)
81 %2
'L"l*tz
@ o
0 a,
¢ o
i
0 o
b, -
o 0
0
2 1
2 2
L 3 ]
o w1 2]
1 0
0 1
A i
“ 5

©C O ™

‘o N ©




12 1 0 -1 .
f A= 4 5 8 and B = -1 0 1 .
7 8 -2 0 -1
|
. o
‘ \
. s
. - t
(a)’ 4B, (£f) A(B +B)),
t - . . ) t ‘l . 14 .
. (!E) AB -, . (g) A(B - B, // I
s : S
N t : \
(c) BB%, (h) aB'— as°,
(@) (aB)BS, . () aa-—38+3"" i
£, ' B
(ey A(BB), (i) (AA)a. N
- 7. Let™™ denote the identity matrix of order 3 (see 6age'5glg
oo 43.’ : S -
’ S 1 0 0 . ~ .
, \ Y I=1{0 17| .~ o
‘ Lolooo 1, Sy
. oy
- /JLet A and 9’ be as ig/Exercise 7. Compute AI,"  BI, \and BtI. Computé{hﬁ
v . . b N Qo
, . (DI and ((ADDI. - -t T
' o <
8. Let ‘ ’ ' y
— . .‘.Jf“!-‘\ o -t.'s.mw.--n.l. |
1 -
A= [i _g i} and B=1]2}| .
1 1.

A

Find (aB)® ghd B% a'.
9., For 4 certain manufacturing plant, the fellowing information is given:

b P
. : Part 1 Part 2 Part 3

- Cost 2 3 -5 .

“.1‘:1".:4(



o

. " ‘ »
Subasséh&fi 1 Subassembly 2
- 3
Part 1 b 1 ‘( _
D Y Part 2 - 3 A 5 -
' Part 3 7 2 \ . i
M?del 1 Model 2 Model 3
Subassembly It = 2 1 2
pZa Subassembly 2 3 . 4
- -l
£ . \\
- Day 1 Day 2 Day 3
. Modell 7 8 ¢ 8 )
N Model 2 3 "4 5
. | Model 3 3 5 6

Détermine the parts—per-model matrix and the cost—per—day matriﬁi

LY .

1-8. Properties of Matrix Multiplication

I We have learned that'insofar as only addition hnd subtraction are involved,
the algebra of matrlces is exactly like, the ordxnary algebra of ngmbers, see
Section 1-5. At this moment, we might be concerned about multiplicaqun s’hce
the definition seems a bit unusugl. 1Is the algebra of matrices like“he
ordiﬂary algebra of numbers insofar as multiplication is concermed?

_Let,us con81der an example that will yleld an answer to the foregoing

e ___%

- question. Let

P _lo o R e T O
..': .‘ h\! . . A el [1 0} _and ) ‘-’B [O ) 0] [y
l"L

1F we compute AB, we find AB = [8 ? . Now, if we reverse the order of the

factors\and compute BA,. we find .

R

. >‘|‘. .‘ “-. 1 0
, BA = [0 0:\ .

’

Thus AB and BA are differént matrices!
[ 4

-

" For another example, let

» . 4\()



. &
2 L ]
12 3 .
A= |31 andB-[AOI]
. -1 2 - -
Then
_ . , 1(1) +'2(4) 1(2) + 2(0) 1(3) + 2(1) 9 /_S
S o= 3l [i ; i] - | 3(1) +1(4) 3(2) +1(0) 3(3) +1(1)| =|7 6 10
. -1 2 - —1(1) + 2(4) —1(2) +2¢0) -1(3) +2(1)| |7 -2 -1
' <
\ while “
1 2 °

1(1) + 2(3) + 3(-1) 1(2) +2(1) +3(2)| _ |4 10
4(1) +0(3) + L(=1) 4(2) + 0(L) + 1(2) 3 10|°

.

Again AB and BA are different matrices; they are not even of the same order!

Thus we have a first difference between matrix algebra and ordinary

algebra, and a very significané‘hifference:it is indeed. When we multiply
numbers, we can rearrange factors since the-commutative law holds: For all
xe€R and y € R, we have xy = yx. When we multiply matrices, we have mo

»

such law and we must consequently be careful to take the factors in the order

At
< given. We must congequéntly distinguish between the result‘ﬁ% multiplying B
on the fighﬁ by_wA to get BA, and the result of multiplying .B onjthe left
by A to k;t AB., In the algebra of pumbers, these two operationg oY ''right
. multiﬁiicat}on" and "left multiplication" are the same; in matrix a , they
are not rdecessarily the same. j
{ ’ Let,ugnexp}ore some more differences! Let ' RN

: 31 -1 3 A
. A= l6 %I and B = [ 3 _9] .

. l
{ “ |
-

Patently, -A # 0 and B # 0. But if we compute AB, we obtain
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A}

B

thus, we find AB = 0. Again, let

_ [o o™
10 0}°

% 1 2 0 Q
A= 1 10 , and B= |0 0 Of .
-1 4 0 1
Then
¥ 1 2 o] 0 0
AB=| 110 0 0f = .
-1 4 0 4 9§ 0 ’

LY

-

' 'Tﬂ; second major difference between ordinary algebra and matrjix algebra is

1

that the product of two matrices can be a zero ma:fix without either factor
_é\ing a zero matrix. o | ’.j

fhenbreakdown for matrix algebra ogQ%he law that \xy = yx an? of *the law
" that xy =0 "only if either x or y is zero causes additional differences.

?or instafice, for real numbers we know that-if ab = ac, apd a ¥ 0,

then b = c. This property is called the cancéklation law for multiplicatjon.

7

égggi: We divided the proof into simple steps:
(a) ab = ac, f'
(b) ab — ac '=\o,
{c) a(d <¢) =0,
N ) b—c=0, - ~ -

(e) b =c.

For matrices, the above step (d) fails and the proof is not valid. In

fact, AB can be eﬁual to AC, -with A # 0, yet B # C. Thuws, let

37
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. .~
1 2 0 1 2 3 1 2 3
* w
A= 1 1 0, B=1]1 1 -1}, and C= |1 1 —-1}.
§§§ -1 4 0 2 2 2 1 1 1
. ~ . \>
Theng“
\
A 4
AB = 3 2| =AC, -
3 -7
. e~
» " ’
" - A40, ) ,
< ’(‘.
. but '
) . B#C.

Let us consider another difference. We know that a real number a can
have at most two square roots; that is, there are at most two roots of the
equation xx = a. (\ . Lot '

Proof. Aga;n, we give the simple steps of the proof: ‘

} (a) .Suppose that yy = a; then : v
- (b), xx = yy, ,. s

B (¢) =xx — yy = 0,

() (x—y)(x+y)=xx+(-y x+xy)~-yy,

(e) yx = xy.

(£) NFrDm StePS'(C) and (d), (x— y)(x + y)‘= XX — yY.

(g) From steps (e) and (b), (xx—y)(x +y) = 0.

(h) Therefore, either x —y =0 or x +y =0, )

(i) Therefore, either x =y or x = -y.
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Eo;-mazgices, step (e) and step (h) fail. Therefore, the fore%sing proof

.

is not valid if we try to-apply it to matrices. 1In fact, it is false that a

matrix can haveédat most two square roots: We have

. 10 1 0 _ [1 o]
o 1] | o 1 0 1’
1 0] [» 9 _ [1 0 ,
| 0o-1] | 0-L 0o 1’
~1 o] . [-1 o _ [1 o
- o 1] Lo 1 T |o° -
. -1 o] [-1 oj~_ [1 0]
0o-t] | o= 0 1] -
~/ - . ' -,
Thus the' matrix .
‘h

has the four different square rocts

1 0] ._[1 o -1 o [~ 0]
PPN S D I B SO

There are moge'! Given any number x # 0, ‘we have o
_ y ,

. 0 X .0 X - 1 0
1/x O 1/x 0| - 0o 1| °

.

4 1 (3

By giving x any one of an infinity of different real values, we obfain an

infinity of different square roots of the matrix I:

I Ay

) 0 1/3 0 ”t‘i‘
1/2 O > 3 0 ) __1/4 > etc. -,

! . L *
o)

-

h : . -
Thus the very simple 2 X Z.matrix I has infinitely many distinct dquare

~ * .
roots! You can see, then, that the fact that a number has at most two square

roots is by no means trivial.
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e . Exercises 1-8

Let

.
]

»

1 2 o
A= [3 4] and B = [—l ;} .

Calculate AB, BA, (AB)A, (BA)A, (BA)B,

and ((AB)A)B.

~ Let

t

Calpulate: .

"< (a)
- (b)
/
(c)

Let A

B(BA) ', A(AB),

LY

((BA)A)B,

‘ 1 2 3 1 0 -1
A= |4 5 6| ad B= |-1 Q0 1.
17 8 9 1 17l
r £
AB, . (d) (BA)A, /' (8) AaB),
BA, - I' ' (o) s, (h) (€BAA)B.
(AB)A, - (£) B(BA), (1) ((AB)A)B.

~ .

and B be as in Exercise 2, and lét

]
n

o O =

O = O

- O O

Calculate AI, ‘JA, BI, IB, and (AI)B.

Let

Show by colmputation that

(a)
Lb)

where A2

A S -
(A+B)(A+B)#Aé+2AB +B"3,

(A +B)(A—3B) 44" -8,

and .Bi denote AA and BB, respectively.

/

hd

P-
;)q
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S' Let . .i.\
‘ - , A}
100 . 2 0 0
. . A= |0 2 O and B= [0 2 0O} .
"« {0 0 3 0 0 2 :
. .. s : | | '
Calculate AZ, A?;‘ BZ, B3, ABz, AZB. ) '
6. . Find at least 8 cube roots of thé matrix
. N 1 0 0%- ’
~ O [
) 0 1 ¢
L
7.. Show that.thé matrix ' )
R} [0 ﬂ : . ) L —
AT 11 o ' \ :

-

-

satisfies the eqﬁ ion-ﬂA2 = 0.

-

How many 2 X 2 °matrices satisfying this

-«
. equation can you find?
8. Show that the matrix™ e
e 9 0 O
* < e A= |1 0 O
P a 0 1 0 N
& v . i

e éatisfies the equation A(AA) = 0. .

L

1-9. Properties of Matrix Multiplication (Concluded).

[4

_ We have seen that two basic laws governing multiplication in the algebra

* of ordinary numbers break down.when it comes to matrices. The commutative law
. T 'l :

and the cancellation law do not hold. At this pbint, you might fear a total

collapse of all the other familiar laws. This is not the case. Aside from the

-

two laws mentioned, and the fact that, as we shall see later, many matrices do

not have multiplicative inverses (receiprocals), the other basic laws of .
' L 4
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A

»

-9 : . .
ordinary algebya generally remain valid for matrices. The associative law

. 'hok?s for thg/muftiplication 6f,matrices and there are distributive laws that
unité addition and multipliqgtion.

-

. A few'examples will @aid us in understanding the laws.:

1 0 2 0 -1 2
Aa[l l]’ B-l:l ]J IS and‘C=K‘.|t3‘l]. \

Let

‘Then
(1 0] (2 0] -1 2]
A(BC) = |} 11 3 1 <
| |1 L Ry ,
) _"10'3/_—2@-12@ }
1 1 2 3 o0 7] )
and
L - }
(1 o 2 o) [« 2 ‘
' (“B)C'<11 11) 3 1] -
- 8—2 0_ :121 H:Z 4— *
/,_ 3 1 3 17 ]o 7| "
] # - - -
Thus,
R A(BC) = (AB)C.
Again,
: ' (1 0o (2. 5] (-1 2]
A(B + C) = 11} Tl 31>
_ 10 1 2] _ [ 1 2 A
1 1 11 5 4] °
and .
*




1 0 [2 OJ‘“ 1 0] [—1' 2]
AB + AC = +

[1,1] 1 1 |1 1] 3l

. _ _ v

. - 12 o] [ o2] [ 2]
|3 1] 2 3 |5 4]

\ \%\
so that
A(B + C) = AB + 4C. - - . (1)

Since multiplication is not commutative, we cannof conclude from Equation
(1) that the distributive principle is valid with the facto® A on the right—
hand side of B + C. Havin%llustr;ated the left—hand distributive law, we

. mow illustrate thW right—hand distributive law with the following example:

We have L . ‘
. [
\ (B +C)a = (2 0 + -1 2] 1 9] Bl
- 1 1 | 31 11
I, _ — - —fy ) '
. - - 1 2 1 0 3 2
. 4 2| 1 1 T |e- 2 '
¥ . L. ] L |
. 4

| 2 0] [1 0 -1 2 1 0 :
BA + CA 11 l:l 1] + [3 ;J l:l ;'

2 o + |1 2 3 2

2 1_ 4 1 6 2

Thus, - .
B (B + C)A = BA + CA.
« R
. You might note, in passing, that, in the above examples,

1 ‘ - Al

A(B +.C) # (B + C)A.

-

These Properties of mgtrix multiplication can be expressed as theorems.

[T

-
fag
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Theorem 1-5. 1If

A= [aij]m)(n’ B

e @
. then
¥

Proof. (Optional.) We

AB

l\ o >

(AB)C

. BC

A(BC)

Since the order of summation

5 (5w)

-~ = % b .
b m Xq- . j==l < jk kh) mXq

Hence,

Theorem 1—6. I1f

-

- [bjk]t:)(p’

(AB)C = A(BC).

‘ “
héve [ ' .
— % . °
= a C
<\ =1 ij jk Xp
L% (3 ~
= | a, . b c
=R i3 jk | “kh
- % b .
| ¥ kh)] nxgq
B>
= a. : b,, ¢
g M e SR

m Xq

-

mXq

in a finite sum is arbitrary, we know that

L4

{AB)C = A(BC).

49



«=s

. P

s

| A= [aiﬂan’ B'= [bjk]nXp’ and Ca[cjk]nxk

.

then A(B + C) = AB + BC.

Proof. (Optional.) We have

T

/. = i )
| (B & C) Lb}.k-:-cjanR,
B
A(B +C) = a,, (b,, +c.)
. g=L MOk RS s ,
& ' | ‘
~ % . % . .
. . = | as .b + a,.c
S (=T ¥ I L i € a1 n Xp
- a,.b o+ | a,.c
j=1 13 Jk m Xp j=1 1] 3k mXp
“_:/'
= AB + AC. g .
Hence,
. ~ A(B +C) = AB + AC.

Theorem 1-7. 1If

-

B = [bjk]n)(p’ “Ca[cjk]nXp’ and Aa[aki;]pxq’

then (B + C)A = BA + CA.

Proof. The proof is similar to that of Theorem 1—6.

It should be noted that if the commutative law held for matrices, it would
be unnecessary to prove Theorems 1-6 and 1-7 separately, since the two
statendot

&

A(B + C) = AB + ACY

- ’ . . ! \
59




and )

(B +C)A=BA+CA

<

would éay exactly the same thing. For matrices, however, the two statements

| . say different things, even though both are true. The order of factors is most
\ important, since statements like .
‘ : » .
"A(B +C) = AB +CA
v : a
. aﬁd | .
"
(B +C)A=AB +CA
. can be false for matrices. Zr" v '

-

Earlier we defined the zero matrix of oyder m X n and showed that it is

. : the idenfity element for addition: ' ' ,
. \ . ’ .- ¢ ‘ ul N
' A+0=a4, ] .

AN .
"

where A is any matrix of order m X n. This zero matrix plays @Pe same role

in mulﬁ&plication of matrices as the number Zero does in the multiplication of

\

" real numbers. For example, we have s N

" .

/ [2 0 3]..,_ o0 g*{o 0:‘.0' i
1 14| {0 ¢ o of =%

-

Theorem 1-8. For any matrix N

L ¢ An)(pn PLﬂnXp’

we have . : N
0 A = Q and A ) = O .
mxn nXp mxp nxXp pxq nxq
- L}
N

The proof is easy and i{s left to the student.

ERIC | / 61
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Now we may be wondering if there is an identity element for the multiplica—

tion of matrices, namely aqiatrix that plays the same role as the number 1

* does in the multiplication of real numbers. (For all real numbers a,
la = a = al.) There is such a matrix, called the unit matrix and denoted by

the symbol I. The matrix 12’ namely,

) - L= |10 ' | ¢
oo 2 o X1} °

: - ~ _ '4k

is ca¥ied the unit matrix of order 2. The matrix : i

1 0 O
, - I,= |0 1 0 .
- L. |0 0 1
“ - . X
. . k|

is ca§11ed~ the unit 'matrix of order 3. In general; the unit matrix of order

eiﬂianl such that ey = 1 forall i=3j and

. eij = 0 for all i # j (i ‘1,2,...,11; j‘”l,z,...,n). we now State the

important properfy of the unit matrix as a theorem. o

Theorem 1~8.‘ If A is an -m Xn matrix, then AIn = A and ImA = A.

n is the square matrix [

¢ PES -

"Proof. By definition, the entry in the i—th row and j—th column of the

. \ Lo
product AX_  is the sum a,
n i

cee + a Since e, ., =0 d

* + -
19151 242%; in®nj Kj
- whenever .k # j, all terms but one in this s&? are zero and drop out. We are

left with aijejj = aij' Thus the entry in the i—th row and j—th column of the

prédﬁct is the same as the corresponding entry in A. Hence AIn-= A. The

-

equality ImA = A may be proved the same way. In most situations, it is not ,//

necessary to specify the order of the unit matrix gince the order, is inferred/'

from the context. Thus, for.
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“va

we write

IA = A = AIL.

For example, we have |,

1 2 : 1 2
2 3 4 [é ‘i] = |3 4
5 6 .‘ 5 6
<4
and ,
1 0, 0 1 2 1 2
0 1,0 3 41 = |3 &4
0 0 1 5 6 5 6
ﬂl‘
Exercises 1-9
#
I!
\ l. Let ' .
k 0 1 To 1 o
Test the formulas
) : A(B + C) = AB + AC, "
v '
. : i (B + C)A = BA + CA,
A(B + C)-= AB + CA,
A(B + C) = BA + CA.
. .
Which are cérrect, and which are false?
2. Let

Show that AB # 0, but BA = 0.

» -~
50
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0

0
O .
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.

3. Show that for all fhatrices A and. B of the form

we have

AB = BA. -

4

Illustrate by assigning numerical values to a, b, ¢, and

-

a,b,c, and d integers.

4. Find the valug‘of x for which the followiné produééfis I:

1 ]
L]

P 20 7 -x =l4x 7x
. - 0 1 0} 0 1 0 .
" 1 2 1 X 4x —2x a
5. Let
L} /
’ 0 0.0 0 0 0 L _ 0 0 0
A= 1 0 0|, B =//0 0 0/, and C = 2 001,
. 0 1 0 / 1 0 0 . 1 2 0

Show that*® AB = BA, that AC = CA, and that BC = CB.

/

6. Show that for all matrices A of the form
I(- * 3

. 7 ’ 2
ab b
& -a2 —ab ’ B
we have
AA = 0.

Illustrate by assigning numerical values to a and b.

7. Let

d,

with
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8 ° 4
01 0 -1 1 0 U
. , - ‘
) Compute the following: o
- 'S () - i
T (a) DE, v T “ (d) ED, / —_— T o ’
. y */,»‘ - “ fo . . .
» (b) DF, (e) FD, T : \/
(¢) EF, © o (f) FE. S | :
T 8 ~ ’ o ‘-
’ If AB=—BA, A and B are said‘to'be anticommutative. ' What conclusions
- ( . L
can be drawn concerning D, E, and F? ‘ ) . .
8." Show that the matrix A = [}i ;] is a sblution.of the equation
AA — 5A +7I = 0. ro - : < 1
DT - ' 1Y
s 9. Explain why, in matrix algebra,
" S - | 2 ' -
« ’ (A+B) (A-B) £ -38° - . “
- . " ' - (\
except in special cases. Can you dévise two matrices A and B that
will illustrate the inequality? Can you devise two matrices A and B. .
;f// "that will illustrate the special case? (Hint: Use square matrices of
" order 2.)'
£ T : N ] . ‘
10. Show that if V and W are n X 1 columm vectors, then )
) . - vt W= whv. ; -
\\\ 11. Prove that (AB)t = BFAt, assuming that A and B are conformable fo%
-
multiplication. ' . ) - .
12, Using z: notation, prove.the right-hand distributive law;?‘
- 1-10. Fields and Rings ° N

In this introduétory chapter on matrices, we have defined several
operations such as addition and multiplication. These operations differ

from those of elementary algebra in that they cannot always be performed ——

ERIC 4
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" thus, we do not add a 2 X'2 matrix to a 3 X3 matrix. ‘Again, though a

4 X 7 matrix and a 3 ﬂbéi matrix can be multiplied together, the product
. ) .
is neither 4 X 3 nor 3 X 4.

Let us fix our attenfion on the set of all 2 X Z matrices, which we
° shall denote by M. Thus any 2 X 2 matrix is a member of M. Within this
system, wWe cdnr always add and multiply, and the sum and product of two

éaements of M are also elementq_of M; we express these facts by saying
. .

that M is closed with respect to addition and with reéspect to multiplication..

The results of this chapter will be used in Chapter 2 to check systematical—
ly that the set M of 2 X 2 matrices has the following properties:

) "The set is closed under addition.
L V| .

Addition is commutative.:.
Addition is fassociative.
ﬂ? . . There exists an identity element for addition (the zero matrix).

.There exists an additive inverse for each element in’ the seti.

-«
t, A

» * * L
-

- The set is closed undeg multiplication.

Multiplication is associative.

©
. . .

.

Multiplication is distributive over addition. . ‘
We have noticed that this algeb;a is different in two important aspects
from the algebra of real pumbers: namely, the commutative law fég\multiplication

and the cancellation law do fot hdld. -

There is a third significant difference that we shall.explore more fully
in later chapters but shail introduce now. Recall that the operatiqg of
sulgtraction was clééely associated with that of addition. In order fo s;lve

equations of the form

o\ A+ X =B,

~
&
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it is mnecessary to define the additive inverse or negative, —A. Then we have

~
. ) A+ X+ (HA) =B + (—A),
.‘ 0
Y X+ A+ (-A) =B + (-4),
, X+0=B-A,
.. X =3B-A. e .
L IS .
' ) e
Now "division" is closely associated with multiplication in a parallel manner.
- .y . ) F3
In order to solve .equations of the form
C
3
. :  AX =B,
. . . . q
@ 4t is necessary to define the multiplicative inverse (or reciprocal), which is
/ ' denoted by the symbol Afl. The defining property i%/\Af; A== Ad—l. Jhis
enables us to solve equationg, of tﬁg form o ' a
) AX = B.
Pead o*
_ Thus . ' :
aleaxy = als,
, ' Catax ="als,
\. X = A 'B.
Many matrices, other than the zero matrix O, do not possess inverses; for -
PR
instance,

| ) 00 and 2 - | |
. 1 0 -2 3 _

-

are matrices of this sort, as we shall see in Chapter 2. This fact constitutes
\\\§§§; a very significant difference between the algebré of matrices and the algebra

of real numbers.

')
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The algebra of reai numbers haé the‘following propertigs:
The set is closed under addition.
Addition is commutative.
Addition is associlative. : . -

There exists an identity element for addition (zero).

. There exists an additive inverse for each element in the set.

&
-~ . - .
~

-~

The set is closed under multiplication.

7 -

Multiplication is commutative.

-

*

P Multiplication is associative. .

The:g exists an‘iﬁentity element for multiplication (onebﬁ{ \
L2 . \

There exists a multiplicative inverse for each element in the set

/H-fi(zero excepted). o

- Multiplication is distributive over addition.
. < ’ ’ R .
Mathematical systems having the foregoing properties either of 2 X2
-~ N ! i
; matrices or of real numbers are sufficiéntly important, and are numerous enbugh,.

.
s 1

to be given special names. A set éubject to two operations, called addition ' - //

{

‘and multiplication, and possessing the properties lisfed for real numbers, is

called‘; field. A set subject to two such operations and bossessing all the

-

.. properties listed for matrices is called a ring.

Since the list of defining properties for a field contains all the
ining properties for a ring, it follows that every ring is a field. The

set of 2 X 2 matrices’ has one more of the field properties; namely, there is

¢

an jidentity element I for_gpltiplication. Accordingly we say that this set ' -

I's
4

is a ring with an identity element.

W& shall meet other such algebraic systems in Chapter 2; and in Chapters

»

4 afid 5 we shall dwell on the additional fact that, 'as noted above in

-
.

-

’ 7 63;’ ) )
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Section 1.6, matrices can be multiplied by numbers. In fact, in CRapters 4.

59

+ and 5 we shall see that vectors—which are matrices of‘a‘SPecial sort—not omnly

.
constitute interesting algebraic systems

applications.

\
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Chapter 2
e ) [ - .
* : . (THE.ALGEBRA OF 2 X 2 MATRICES
’ 2-1.  Introduction - e
» . * . . + ,

- In Chapter 1, we considered the eleméntary operations of addition and
< .
multiplication for rectangular matrices. This algebra is similar in many

e

respects to the algebra of real numbers, although there are important differences.

Specifically, we noted that the commutative law and the cancellation law do not

.

hold in matrix algebra; and that divisign is not always possible.

4

S *
With matrices, the whole problem of division is a very complex one; it is

\

centered around. the existence of a multipiicative inverse. You ﬁgll recall
that subtraction arose when we were solving the equation A + X = B for the

unknown matrix X. We needed a matrix —A, which is called the additive in—

Rl

‘verse for A, such that A + (-A) = 0. A similar pattern develops if we -

consider the problgm“Bf solving AX = C for the unknown matrix X. This

statement is misleading, althqugh it seems inndcuous. Let us ask & question:

If you were given the matrix equation

12 3 4] [x. - ox 10 2 0
g 9 o-1|- |1 B Jo1 0 2

: \ .14 5 6 5 o . ZIOIO’
. e 2 0] [x, - x, ol2,0 1

- .

could‘you solve it for the unknown * 4 X 4 matrix X? Do no® be dismayed
- ) S - .

if your gnswer is "No.'" Eventually, we shall learn methods of solving this

equation. However, the proﬁiem,is complex and lengthy. Im order to under—

8#§nd this problem in depth and, at the same time,.comprehend the full
signlflcance of .the algebra we have developed so far, we shall largely confine
our attention in ‘this chapter to a Spec1al subset of the set of all rectangular

. “ matrices; namely, we shall consider the set of 2 X 2 square matrices.’

3 . ‘ L . | :

(€) (’ . K__/ 6“') E ~




when one stands back and ;akes a broad view qf the many different kinds of
numbers that have been studied, one sees recurring patterns. For instance, let
us look at the rational numbers for a moment. Hefe is a set of numbers that we
can add and_multiply. Under additiqn and multiplication, the set satisfies

-

th: follqwing postulates:
The set is cloged undgr additiom.
Addition is commutative.
Additiqn is associative. }
There exists an identity element for additionm.

&  There exists an inverse element for each element under addition.
The set is closed under multiplicationm. e
Mnltiplicatidn'is commutative.

. Multiplication is associative.

There exists an identity element for multipiication.

There exists an inverse element for each element, except 0,
under multiplication.

A

* . -

Multiplication is distributive over addition.
4 .

.

Since there exists a rational multiplicative inverse for each rational number
except 0, division (except by 0) is always possible in the algebra of rational

«

numbers. In other words, all equations of the form

-

ax =.b,

where a and b are rational numbers and a # 0, can be solved for x in

the algebra of rational numbers. For example: if we are given the equation

‘ﬂa {
2.1
3*¥=72> {,

b

(1)

-
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!

we mGltiply both sides of the equation by — 3/2, the multiplicative inverse

of — 2/3. Thus we obfrin

/_l'\
oW
e
i

wirn
~ e’
-]
(|
i
o)
»
(Nlr—'
-
»

or

which is a rational number.

The foregoing set of postulates is satisfied also by the set of real
numbers, as we have noted previously on p;ge 58. Any set that satisfies such a
set of postulates is ;§lled a field. Thus both the set of real numbers and
the set of rationals, which is a subset of the set of real numbers, are fields
under éddition and multiplication. There are many systems xpat have this same
pattern. In each of these systems, division (except by 0) is always possible.

Now our immediate concern is to explore the problem of division in the set
of matrices. There is no blanket answer that can readily be reachgd, although

there is an answer .that we can find by proceeding stepwise. At first, let us

h”j

limit our discussion to the set of 2 X 2 matrices. .We do this not only to

consider division in a smaller domain, but also to study in detail the algebra
agsociated with this gubset. A mores general problem of matrix division will be
considered in Chapter 3.

L

Exercises 2—1

1. Determine which of the following sets are closed under the stated
operation:
(a) the set of integers under addition,

(b) the set of even numbers under multiplication,

s

-~ 7



(c) the set {1} under multiplication,
(d) the set‘of rational numbers under division,
< (e) the set Qf}posi;ive rational numbers under division,
(f) the set of integers under éhe operation of squaring,'
(g) the set of numbers A = {x | x > 3] under addition.
2. Determine which of the following statements are true,’and state which of
the indicated Qperations are connnutat:"ifve:

(a) 2 —-3=3-—2,

(b) 422=2%4,

(¢) 3+2=2+3, o
|
d) J/a +/b =/b +./a, a and b, positive, )& -
. (¢) a—-—b=b-—-a, a and b real, |
. ' (f) pq =gqp, p and q real,
(g) V=1 +2 =2 +/1.
3. Determine which of the following operations ¥ , defined for positive
| integers in terms of aintion and multiplication, are commutative:
() xFy=x+2y (for example, 2 ¥ 3 = 2 + 6 = 8),
() x Ey = 2xy,
N (¢) xFy=2x + 2y, .
(d) x®y = x§2,
(e) xEy =%,
(f) xFy=x+y+1.
4, Determine which of the following operations *, defined for positive _
integex:s in terms of addition and multipli_cation, are associative:
(a) x*y=2x+ 2y (forexample,(2*3)*4=8*4=16),

4

(b) xxy=x+y, ) .

2
(¢) x*y=xy,

.
-
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-
S (d) x %y =X,

.

"

(e) x*y , :
(f) xx*xy=xy + 1. .
5. Determine if the operation * 1is distributive over the operation ¥,

where the operations, ¥ and * are defined for positive integers in

terms of additibn and multiplication of real numbers: '

(a) x*Fy= x+ vy, X %y = XY;
)
(b) x ¥y =2x+ 2y» ' Xdkys= % Xy;
. (c). xFTy= x+y +1, X%y = Xy.

Why is the answer the same in each case for left—hand distribution as it
is for-right~hand distribution? .
6. In each of the following examples, determine if the specified set, under
addition and multiplication, constitutes a field:
(a) the set of all positive numbers,
(b) the set of all rational numbers, .

(c) the set of all real numbers of the form a + b V2, where

a and b are integers,

t

(d) the set of all complex numbers of the form a + bi,\ where

a and b are integers and i = v —1.

2—2. The Ring of 2 X 2- Matrices

Since we are confining ;ur attention to the subset of 2 X 2 matrfées,
it is very convenient to have a symbol for this subset. We let M denote the
get of all 2 X 2 square matrices. If A is a member, or element,‘of this
set, we express this membership symbolically by A € M.

Since all elements of M are matrices, our general definitions of addition

and multiplication prevail over this subset. For example, we have
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’ o 1l |-t 2| _ |- <} _ |0 4.
2 3 3 -1 2 -2 3 0f°
N

also, ®

SRR

For convenience of reference, let us repeat the defining postulates for
a ring, which we listed in the last section of Chapter 1. Arripg is a set_that
possesses the following properties umder addition and multiplication:
The set is closed under addition.’
Addition is commutative.
Addition is associative.
There is an.idemtity element for addition. ~
There is an additive inverse for each element.

[ be [
a

The set is closed under multiplication.

Multiplication is associative. : -

. . . (

Multiplication is distributive over addition.

-

Does the set M satisfy these properties? It seems ciear that it does,
but the answer is not quite obvious. Consider the set of all real numbers.
This set is a\field because there exi;ts, among other things, an additive
inverse for each anumber in this set. Now the positive integers are a subset
of the real numbers. Does this subset contain an additive inverse for eéch
element? Since we do not have negative integers in the‘set under.consideration,
the -answer is 'No''; therefore, the set of positive integers is not a field.

Clearly, a subset does not necessarily have the sg?e properties as the complete
' b
set.

q
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To be certain that the set M is a ring, we must systematically make sure
that each criterion is satisfied. For the most part, our proof will be a
Feiteq‘iﬁon of the material in Chapter 1, since th; general properties Qf
matgices will Se valid for the subset M of 2 X 2 matrices. The sum of two
2 XTZ ‘Mmatrices is a 2 X 2 matrix; thus, the set is closed under addition,

/Tﬂgqéenéral proofs of commutétivity and associativity are valid. Tﬂz unit

w\ . matrix is

o ol o) W
| | o 1| *

-

the zero matrix is

* : o of ~
‘ _ 0 0} *

and the ddditive inverse of the matrix

< Y '[ag

c

is '

~a -b
-¢ -d| °

ﬁhen we consider Fhé multiplication of 2 X 2 matrices, we must first verify
that the product is an element of this set, namely a 2 X 2 matrix. Recall
that'thevnumper of rows in the product is equal to the number of rows in the
left—hand factor, and the number of columns is equal to the number of columms
in fhe right—hand factor. Thus, the product of two elements of the set M
must be an element of this set, namely a 2 X 2 matrix; accordingly, the set

is closed under multiplication. For ex&mplqﬁﬂ‘
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o BIRA-RYD

The general proof of associativity is valid for elements of M, since it is

for.rectangular matrices. Also, both of the distributive laws hold .for
f

elements of M by the same reasoning. For example,

R R E-EY

4

and also
?

and also

S ! 1 h
LR R R R

Since we have demonstrated that each of the ring postulates is fulfilled,
we have proved that the set M of 2 X 2 matrices is a ring under addition

and multiplication. We state this result formally as a theorem.

Theorarﬁ?ﬂfﬁrﬁhe set M of 2 X 2 matrices is a ring under addition

)

'and.multiplicétion.

!
P
i

¥- : “
Furthermore, we know that the matrix {; é} is the identity element
for mfltiplication. Thus the set M is a ring with an identity element.

At this time, we should verify that the commutative law for multiplication

and the cancellation Wlw are not valid by‘agving counterexamples. For example,

Aa
by




69

, . L1 -1 1 2| _ —2!—2 N

n

' so that the commutative law for multiplication does not hold. Also,

A% , .
g 0 0 0 - 0 0 ' v .
1 0 2 0 o ol '
so .that the cancellation law\does not hold.
- . A ﬁ'
P . .
12

' : ' Exercises 2—2

1. Determine if the set of all integers is a ring under the operations of

addition‘and multiplication.

-
2. Detefﬁ&né\which of the following sets are rings under addition and

n multiplication:
- ,

A ta) the set of numbers of the form a + b V/E, wvhexe a and b
are infegers; '

-

(b) the set of four fourth roots of unity, namely, +l, -1, i and’
—i; -

«

(c) the set of numbers a/2, where a 1is an integer.

3. Determine if the set of all matrices_of the form {% 0 , with a ¢ R,

/{ 0 a
forms a ring under addition and multiplication as defined for matrices.
4. Determine if the set of all matrices of thedform [a 02 , with a € R,
0 a

forms a ring‘undeq addition and.mulﬁiplication as defined for matrices.

- .
»

2—-3. The Uniqueness of the Multiplicative Inverse

Once again we turn our attention to the problem of matrix division. As we

. "

~

™

AN

. '\I

'
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have seen, this problem arises when we seek to solve a matrix equation of the
fom ) N

Ax = C.
Let us lookrat a parallel equation concernming real numbers,

ax = c¢.
N . .o i .
Each nonzero number a  has a reciprocal 1/a, which is often designated d—l

and whose defining property is aa_l'- 1. Since multiplication of real numbers
. 3 .
is commutative, it follows that a 1a = 1, Hence if a is a nonzerc number,

o
then there is a number b, called the multiplicative inverse of a, such that
. ™ : ' - -~ . '
3 \ -1
\ ‘ _ - ab =1 = ba (b=4d 7).

\
3 N\

e

- Given an equation ax = ¢, b enables us to find a gliution for x; ,thus,

axb = c¢b, ’

abx = cb,

lx = cb,

»

X = ¢cb.

< v

®

Now our question concerning division by matrices can be put in another way. 1If
. »

AeM, is there a B ¢ M‘/for which the equation
. P ~ 1

. . AB,= 1 = BA - \
- 3 ) .

is satisfied? We shall employ the more suggestive notation A—l for, the in—

verse, so that our question can be restated: Is there an element Aﬁl e M for
{

which the equation

—1

aalop=at

A

? . [ ]
is satisfied? Since we shall often be using this defining property, let us
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. ‘ . _ ¢ _ ¢

state it formally as a definition.

Definition 2~1. If A € M, then an‘element Af? of M 1is an inverse of

\
A prowided |, —~/

Al =1 =ata.

8 If there were an element B corresponding to each element A ¢ M such \)
that\ : '

Y | &,
. . ‘BA-= I = BA,

-
~

then we could solve all equations of the form ;

- > AX = C, - \
* i
since we would have ' . \\///\
——_ - |
o B(AX) = BC, -
Y . ) (BA)X = BC,
N ' ' IX = BC,
) X = BC,

-

and clearly this value satisfies the origigal equation..

From the fact that there is a multipljicative invefse for every real number
except zero, we mighf wfongly infer a p;rallel conclusion for matrices. As
stated in Chapter 1, not all matrices have inverses. Our knowledge that O -
has no inverse suggests tha;.the zero matrix O has ng inverse. T;is is

. . .

-

true, sirce

v

~ - : X =0

for all X ¢ H,. so.that there cannot be'ahy X € M such that .

. \ > e
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OX = I.

But there is a more fundamental difficulty than this. Let us take the

-

nonzero matrix

I P
o ané try.to solve the equation ‘ ' v .
. f : AX = I, | .}or X € M.
1f we let -’ x
. x= |P 9| ’
. r s
then . ‘
ax = |P @ / ’

\ 10 o °*

HeTce, no matter what entries we take for X, we cannot have

AX =
!

Since the entry in the lower right—hand corner of AX 1is zero, and the entry
in the lower right—hand corner of I is 1. ¢
At this_point, you m&ght be th{nking that no matrix has an inverse. Do not

§
move too fast! Note that g

L

This means that I 1is its own inverse, just as l is its own inverse among the
numbers.

Also, let us note that

s
<Sl)




. af

has the inY?%ae . ' ,

1/2 0 2o_lo=201/2‘0
o 12 0 2 0 1 0 2 0o 172"

Thus the @atrix

-

., Consequently, the equation

" EI-bd

may be solved by multiplying both sides by A—l, thus:

1

1/2 0 2 0 X = /72 0 Y2
0 1/2 0 2 0 1/2 3 41°
. i : ] _
1L 0 X = 1/2 1
101 3/2 2| °?
: . N L A
(
. I EY SR :
: . 3/2 2| °
This is a-specific illustration of a general pattern. Let a be any
nonzero number. Now .
I=11
= aa-l I
. -1 : T
. = aa I1 (since 1 = II).

Since the multiplicationlof real numbers and of matrices is associative and
commutative, it foll?és éhat for all real numbers 'a and B, .and all 2 X 27 L

matrices X ‘and Y, we have . .

- 73 .
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. .
T, . ~ :
8 . o
'abXY = (aX) (bY)- ¥
. . #
In particular, then, . <l T
» b 3 :
. » ' N N\
__.1 : !
1= aD (D).
A os -1 -1
Since aa = a a, we can also state that . \\

3

I=(a *I)(al).

- - /

. \ag .
This result enables us to enumerate a large number of matrices and their in—

v

verses. Thus, let A = al; then A—l = d~11. For example, if a = 3 then
ry - .
L 3 o ! 1 |13 oo |l |
B . ., A= [0 3 and A - [ o 1/3]° - . e
. . & @ - ) ) ) ' i 1'/-
1f a = 0.2, then - N
. 7 . y v
‘ 0.2 -0 -1 5 o

»

At least we, know that there are a great many matrices A with the property that

o .
B such that

»
R

there 'is a cor{esponding matrix

' -k< ~ © AB =1 = BA. R
T : .

N
. Before turning to the problem of finding tho®e matrices that have invétses,

\ 9

let ug'show first that if a matrix has an inverse, it has only .one inverse;

-

that is, this jnverse is unique. For instance, in the example directly above,

we's§w that ’ _ -

We wish to show that there is.no other inverse. Suppose that we have elements

[

A, B, and C of M such that o g
. )

s
'S
s,



< .. , "
- * ° . ’ ‘e .
T AB = I = BA, !
L M .
and ?»@ \
. AC = 1= CA;
: ] A
R that is, A has an inverse B and A also has an inverse C. Multiply the
,of these two equations on the left by C. Then
i | - , . .
, . C(AB) = CI, T )
- ¢ M "“
or \ ’
N * v \ (CA)B = C-
] ‘\. ) » //
. : LY - . .
since multiplication is associative and 1 is the unit matrix. ' But now
CA = I. Hence ) ,
- < ' L
IB = C&, ‘w .
¢ * -
» . -
or - , .
- '| » B = C. .
- ¢ . )
v This result is so important that we call it a theorem and Rtate it formally:
) w7 _ ! ® . ,) . R - K . _l '—'l ~ ..-\‘
R ‘Theorem 2--2. If A€ M and if there exists A ~,- A € M, .such that -
= ’
AN Lo —_
o ~ N -~ N : . o » AA l - I & A l _A’
» & R
e * @ ? N - ) N\ %
‘ tg“gn A_l is unique; that is, there is no other solution X of the equations -
. M . g * .
] .t . ! ’ . . ’
* . . o / AX = I = XA. ] .
.. . LY , . » >, . \ g . . ) IO _l
Now wﬂ;an_ readily show(that‘ A is- the invérse of - A 4f we know that
A_—'l - is the inver:se of A. This may seem a bit trivial, but it is important
- r‘. = e . . - . - ' »,o R
" enough to state formally and prqve. . .
.l \ . v ’
- - AN - . "_ N
'f . . “ {‘ ’n‘k ' ' Ly -
. . . . .o * v boe —
) ' “Theorem 2—:3., If Ae and if - A has an idverse A l, then A 1 also_
. g . . to. T ) .
‘p.‘q.’ ) " , - " » .'. '\‘ .
. ﬂ ’ A TN , - ) . b » ’
8 N A -
¢ . ! : % ° " /~ .\sc.; . ' &
¢ : - ...‘.r - : ’ '\ ) 2] A - - ‘ -
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has an inuerse; gzgély, A is the inverse of A .

-

3

. =

1

4
\

Prodf. Since Aﬁl is the inverse of ‘A, this means,

by definition;~that

~However, the statement of equality can be given in reverse oxder:

-

v

Ala=1=at,

-~ ¢ .

N C, '
This, by definjtion, is the statement that A is the

®

. N .
_\ A Y

EXErcises 23

inveyse of A

o
~

..

1

1. éhow that each of the following ﬁatricés does not have -an inverse:

1 T
_1]" (d)

which of.the following pairs‘of elements of M are inverses of one

e

@ - [8 .m [;g (@) [

*

. )

another ¥

(a)- é!,gi\ and - {(1) 2] , ™

e

- - —‘- : 3 _T
(b) ; _]. and [g _} :

. f 7 .
2 4 1 4
) e 1 d [—6 2|

~5 7| 0 1
@ 1o ¢ and [1 o]’

&
) _ 1 .. . —
a by . d - .
o (E) c d and {'—‘C . a} .‘ .

1

r‘ .'9' ‘ :
«Y 3. Use the argument in the text ra show thatl\éince

rr®

-

.. .
Fall \

Q, =2 |1
o . ‘[ﬁ ‘61\ [1 lJ =9

Sq .

1
1

0 0
=3 0 -

»



neither of the matrices in the producg is invertible (has an inverse).

4. Show that if a> + bc = 0,  then

and hence that . © . . ol *~

°qa ¥ . . -

‘ : R o, -

. : | . : c ~a be
' has no inverse., . - ' ’ , ' ' > ‘
S e, . . : .
‘5. Show that if AeM, BE€M, B#0, gnﬂ AB = 0, “then A’ cannot have

o

-

) . c 8 . . .
an inverse. Can- B have an inverse? . }
6. Show that if A-é M, and 42,:-4A = 0, then either A = 4I- or A -has

[ ;
no inverse. (Hint: Factor the left—hand side and note Exercise 5.)

A

. . Y - .
7. ‘sn;aw that if A€M, BeM, C€M, and .AB=1 = CA, then B = C.
. , A * r . . . .
* _8. Show by direct computattion that . .o . .
’ : : : - BN

B ef

9. The matrices

- . . ~ .l : ¢ -
: $ " .\
- - -l 3 ' 5 3.
. . 2, — a.nd 2 1 »
\ # .
are inverses of one another. ‘Are their squares also inverses? ’l‘heixc"!‘h -
¢ , * A . o ) . ' RN
- transposes? K ‘ . . . !
. ) ¢ - 4
10. Since® -
2
AT = n-a, Y
. A3 - A-Az, . 3
A4 = A-A3,
. R N \
- L
. ?
| 55 . )

o
*
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we can readily demonstrate that A“—l

| Using this information, compute the inverse of each of the following

_matrices:
S : —~ m
(a) . |—1 0
' 0 -1} °
- L - )
i .
0 -1
(b) _1 0 ] .
. . L B
- R
. (c) 0 -1
C l 0 L ]
11. Let oL . t
. B = cos 8 sin @],
- . —sin O cos ©

h ~ »
2 3 /{ o -
‘ and compute B~ and B~ if 0 =/120".

12, 1If

3 -4
. A= 1—']‘

~ Yverify that

2

A —20A+1=0.
>~

Does the transpose of A also satiéfy'this same equaéiog}

L

13. Prove that ifg Ae M, if p, q, and

RN ’ pA2 + qA +

with r # 0, then A has an inverse,.

(Hint:
: term'" and factor the remaining terms. Be careful of what happens if p
¢ . .
or q is 0.) . ., S+

14. Prove, by'direct §%;stitution, that if
' -

- L[]
- . Ty L

ERIC | St

-

0

r are numbers, and if

Transpose the ''constant

4

is the inverse of A if 3An = I.

..a-’
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//L‘ »
then -
¢ o
X2 — (p + 8)X + (ps — qr) I = 0.
Show that X h#fs an inverse if and only if ps — qr ¢ 0. (Hint: Use
Exercise 13.) _ \\ ’ . o

Y

15. Use the result of Exercise 14 to show that if x° = 0 then ps — qgr =0
and p + q = 0. (Perhaps you may have to consider several cases in the

proof.) . '

~

+ 2-4, The Inverse of a Matrix of Ordeggg *

At this point, we have proved that the inverse of a 2 X 2 'matrix, if it
exists, is unique. Also, we know that there are some matrices that have

inverses and there are some that do not have inverses. But we have not yet 4
s * .

developed any general methods of attacking thg-proEIem. Certainly our algebra
will lack power &nles; general method§ are developed. We are in a situation’ =
similar to that in which a student finds himself when he has learned to factor

«a quadratic equation and has not yet learned the quadratic formula. He can fiﬁdf
the roots of many quadratic equations by trial, but he has no means for solving
all these equations.

r | It is our purpose now to develop a géneral method of determining the inverse

of a 2 X 2 matrix when it exists. We shall begin with a matrix whose entries

-

are specific numbers.and then duplicate our procedure with a matrix whose /

-

entries are more general. ' To start, we shall’copsider the mafrix -7

13

: 3 - '
, - : A“~[5 -z]‘ ' g

R

-

] and determine whethgr there is an invérse B such that AB = I = BA. 1If we let

-
- -~
.. L) . . 0
' -
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theﬁ

or

B 3p -r iq. —s - |10
' . [Sp -2r 5q —2s o 1} °

&

Since these two matriices are equal, the individual entries are equal. Thus we

have. four equations,
-

3p—- 4=1, (1) 3q - s=0,.0)

, 5p —2r = 0, (2) 5¢ — 28 =1. (4) o
. ' :

After multiplying Equat@pn.(l) by 2, we subtract Equation (2) from Equation

(1) and obtain »
. \ ' p = 2.
By substituting this vﬁlue of p 1in either Equation‘(lj or'Equat%Pn (2), we
obtain ' ’ ) _' ' >
r 915. : ,. -~

Equations (3) and (4) can be solved similarly, yieldiné

%
qQq =-1 and 8 = —3.

t

Now if we substitute these values for p, q, ¥, and 8, we obtain

» - ‘ 2 - ! '

) ’ ,
To demonstrate that .B is the inverse'of A, we must show that AB = I = BA.

-

This is easy: A

CEARSEYRI R

;Héing the notation for the inverse of a matrix introduced egrlier, we may write

(

O

\ 8y

Lol
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3 5|7 |2 -
) ' s 2| "7 s -3

.
"€ In our next step, we shall follow the same pattern as above; but'now we

shall use a general notation for our matrix A. Instead of having specific real
: N :
14

numbers for entries, we let

- b. 1
a -
A = [c al - ! - . ‘

As before, we represent the inverse, if it exists, as

. . ~ _ p q -
v B {r ;} ) .
oo : 2

N Assumimg AB = I,” we h‘ ~—

. ' a b P q| _ {ap + br aq +bs| _ {1 0
A e d}- | s |cp +dr - cq ¥ ds 0 1] °

’

»

This matrix equation may be written as four equationms, -
' » Coom
. [ \ : * .
. ) @p +br =13 (5) aqg bs = 0, (7)
. . : - .
cp +dr =0, (6) cq +ds =1, (8)
1 _ o :
“ 8

Since we wigh to find values for p, q, r, and s, in terms of the real
numbers a, b, ¢, and d, we multiply Equation (5) by df Equation (&) by b,

and then subtract. We obthin \

/

v _ . adb — bep = d,
[ 4
or

(ad — be)p = d.

- _ . . . .o -
e ) N : _ \ ‘-
' Repeating thig process, using appropriate pairs of equations, we obtain
. . \ . <
. | N
Q * ' -9 ﬁ - . o
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>

(ad — bc)q = -b, . (ad — be)r = c,. (ad — bec)s = a.

Should it gappens that ad — be = 0, then it follows from the four equa—
tions, above, that 2 =by=c=d =0, so that A =0.

We have seen in Sectign 2.3 thht the zero matrix does not have an inverse.
Hetice if ad — bc = 0 we have a contradiction of the assumptiai.;hat ;he matrix
A has an inverse B. 1In othér words, }f A has an inverse, then ad — bc # 0.

Temporarily, let us denote the.number ad — be by h. Now if h # 0, we may

write ' <

Substituting these values appropriately in B, we obtain

f

™
¥
>l Sia
|
=¥ o} g‘lu‘
i
=l
—
d n
® I
|

In order to show thatSthis matrix is the inverse of A, we check:

iR/
d . b ad—bc  —ab+ab -
- gh - {% S} -~ h h - h h - {1 f] = I
: c d|; {_¢ a cd—~d —cb+ad 0 1 )
' h h h h

. -
We mist also make sure that BAré 1, thus?

-d \\\E_ #8—bc .db—bd
B = hh{ab}=-h 2 ._.{10};1
_ ¢ a e di |—catac ~bctad 0 1 :
h W : 1" h h

N . ) S
S ' \

- . - ) - c ‘. ¢ . .®
ThHe fact that the relationship BA = I follows from the relationship AB = I °
is qﬁfte significgﬁni\fwhile?the dﬁfinition of the inverse demands the existence

T o ‘ . .

- N N )
and quaf&ty_df what are called left and right inverses, we have shown that for

ww o ¥ B . R N . PR ‘ . . R ]

v L4 o . ’
- R o
. v . .

51) " | . X
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2 X 2 matrices the existence of one implies the 'existence of the other and that

if they exist then they are, in fact, the same. Since th€ multiplication of

»

matrices is not gemerally commutative, we might have expected otherwise.

T oW

Wedshall state our result formallyl as a theorem.

L

Theorem 2-~4, If the matrix [2 ”b] has an inverse, then h=ad —bc #0

., and

Y .
Theorem 2—5. If h = ad — bc ¢ 0,/ then the matrix [? Z:l has an
inverse, which is .
. - P
d _b
' 5 h hi | )
N - & a
h h
YL '

d
) . -, .e’.’\
d b
| a 1 h L h :
<~ - ) A -
—t - h h

-~

Also, we state the converse of this result concerning h:

Proof .- Direct.multiplication shows that

"
 a—
o
B

Y
|
=0 5l
i
i oo

Exercises,ﬁiﬁ

For each of thg.following ﬁatricgs, determine whether the inverse eiists;

)y

if it does exist, find it:
PR

o9y

’
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-2 0] 2 -6 T o
(e) s (8) {_ . : o
[3 {« N 1 3 |
. 2 aﬂ . .
(d) {0 R

et 2

¢

. 2. Each of the following matrices is actually a function in the sense that it
depends on the ViZVe assigned to x, where x ¢“R. Detérmine\thqfe ‘alues

of x for which

L

he matrix has no-inverse.

e 2 . ) — L -
. ' : 2 0
(a) }1{ U,lc , (c) xz ,
| . | x x-1
.3 ] 2 ] .
X~ x . Xl -0 2T Y e L
s (b) 0 l ] (d) 2 3 . » - .
o . . ~ - ~. - J \
"« 3. Show that each matrix of the form. ,
. ) ‘ | cos ® sin O v
' - '=sin @ cos © . .

-~

~* has an inverse and find it. Show that the pnoduct of two such matrices

N (difﬁereﬁt'ﬁhf§é§“6f'9) is again such a matrix. (Hint: Use the addition

N ) - *
formulas from trigonometry.
£ u m trigono Ye.) f,«w\
.. 4. Show that.if A € M then A has an invegse if and only if its tramspose
S “ bt . i .
has an inversg. If "A has an inverse show that . e
L -1 , ~1
_ transpose (A ") = (transpose A)

5. Prove Theorem 2-3 by first computing AQL by Theorem 2-5 and then using -

_ : ‘i
Theorem 2—5 again to compute the inverse of A l. :

6. Under the assumptlon that the elemiﬁp A of M has an inverse, show how

[ solve' the equation AX = B, with B ¢ M. Apply this to solve the

9o

-




i
¥
X

0"
- e -

following equations:

4

(a) 2x + 3z = 9, (c) 2y.+ 3w =0, .
. —=x + 4z = 10; —y + 4w = 0; )
(b) " 3x +z =0; S (d) 3y 4+ w=1, /
—2x+"z==l; _ —2y+‘w=0.
2—5. The Determinant Fundtion _ *

We have seen that the criterion for the existence of an inverse for the

‘ ~ la b — .
. c d ¢ .
. } v

N

matrix

»

involves the value of the expression ad — bc. If ad — bc ¥ 0,” the inverse

does exist; _if ad — bc = 0, the inverse does not exist. Each 2 X 2 matrix
3 _ ; .

-~

determines one value for ad — bc. For example, 3

. - 1 ol :
©4f A= |g 5|» . themad—bc =1(1) = 0(0) = 1;
4 A= |2 3] “then ad — é;t; é(és ;'3(4)*=‘6- )
4 6 e : o -~ ! ;"
\ . :..4 ton - Y\ . . ¢ . ' ™
, 0.5 3 * C o :
; if A= [-4 o %} , then ad—bc = 0.5(0.6) — 3(4) = 11.7.
. ) ) ; J ‘

(Note that the seéond matrix doeg not have an inveP&g.) With each matrix
. ‘ RN 7
there is thus associateds one value, a real number determined by the entries. It

L]

' is convenient to give a name to this number, the value of the expression

—
ad — be, which is associated with the matrig

L d ¢ ‘
B

Definition 2-2. 1If - ‘ ‘ »
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'
!
)

. then 8(X) = ad — bc is cglled the determinant of X

»

Thus & assigns to each meﬁ@@% X of M a real,ﬁhmber 8(X), read

'"delta OELV§:” It is appropriate to regard this assignment or mapping as a

function from the set of 2 X 2 matrices' M to the set of rexl numbers R,

The function ©® has interesting ﬁropertigs, some of which we shall.

*  demonstrate.

then

~

) . .
s B : Mk—)&.
< ) ’

o

}

First Alet us compute the values ©B’(X) -for a few products:

(a)

(b)

then

- _

u
F

8(a) = 3(2) .~ 2(1)

It
|
o

'Aﬁ(fs) = 0(1) — 3(2)

t .

bl 3 2 03
AB"[12 2 1

B(AB) = 4(5)— 11(4) = ~ 24.
If T
-1 2 : g8 o]
S A= {o 3| and B = {3 1}’
{
5(A) = — 1(3) - 2(0) = — 3,

B(B) = 8(1) —0(3) = 8,

' ~1 z..e 0 =2 2
. AB:--l:o 3} [3 1?{: [9 3}’
94

-

L)
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5(AB) = — 2(3) — 2(9) = — 24, {

-

~

'fpg might suspect that ©5(AB) = 5(A) X 8(B). This is true an%ssi\%haLl now prove

it. - :

Theorem 2—6. If A €M and B e M, then ‘
. ‘ | k
5(AB) = d(A) d(B).
R . ) . -
\ ! -
| Proof. Let 4
- a b - P q
A {C d} , B [r S} ’ i
{ - ~
: - '
then
f\ ) ~ b \
' spp = |@P + DT aq +bs|’
S - cp +dr cq +ds|
/,- ) ' - IR ! )
N 7 5(AB).= (ap + br)(cq + ds) = (ag + bs)(cp + dr) S
. = apcq + apds + brcq + brds : (f/fh '
/C ' | — aqcp — aqdr — bscp — bsdr,
R .\ T . . > ¢
\§ ' . =| apds + brcq — aqdr — bscp, Lo R (1)
) - e
\' ' 5(A) = ad — be, ' \
N ' 3(B) = ps — > ‘f | ’ . ‘
L — E . 4
ST 5(A) 5(B) =\<%@,A by (ps < qr) '
. - . » P
. = adps — adqr — bcps + bcqﬂ\\ . , (2)
LA g . '
™~ . . - ~
{\ . By rearranging the terms in expressions (1) and (2), we see that
" K . - \ 5(AB) = B(A) *B(B), Lo q.e.d.
| ' ™~ C

' Let us look at aﬁothQ( example; let’

t %




88 .
Now if . ~
.
ALY “
~ &
~ 'y £
then
Hence
A_l
Further,«
T l. «
('-’
Theorem 2-7. 1f
inver%%, then
‘-/
A
Proof. We have
LY

5(4) =

.B(B) =

}

3 (A_l )

. B(B‘*l)f

A

is

z

a

3(.2) ~

0(1) — 3(2) = ~ 6,

1]
N
£l

i
b
o =
7~
[
"’
i

Ly
~ 1
and’ B_¥ \;i
3
) »
2(1) = 4,

o N



. : : R 9 . -
. . .

- ¢ . i
. * - ‘ ~
. ( . ) . . 89
- « N
. -1 )
. / . . . . o(AA 7) = 6(1)‘ . e <
. ’ . 4
. o. ’ B ‘ s X :“ ) ) M T
But by computing &(I), we see that - s “
. .
¢ ‘ S
. § . xm =1, S A
. . . ' \ . . . ( ! ' "
‘ ; .. . | ; W
T whence o v ool e ‘
’ - 'I ) S . — - ‘: .' ' .'r i .%(:".’I ’ .
; - ) ' ‘ . S(AA = l, /"". . S L) ' 7
* ? . * Yy - )
so that L s - . 7 -
] ) . . . ‘.,} . ./Z . [ . N
\ syl =1, 0 W '
\ N . & ' \ ! /“ . '*‘ o )." %
. - . SR S . ‘
or . P e
.\.‘. T ) 4 L . ¢ ) ¢ )
- _l T 1 .!
5(a 7) = . _ »
A . ‘ §(A) ! 1y
? : ‘ © o ‘ ' . . .- ¢ % r)
: .‘ ,’ . . . . LN 1 ) v
. . . e o - .
We are n;w in a position where 4e can prove quite 3 signific¢ant theorem,
* &) s 5 s ) r LR { , !
. which.will give us . the power to decide whenp a product AB hasl'ap inverse and L
» - ’ p. ) o ) “ ?' * ) ‘T L .
what the inverse is:’ ) - i . | . *
Vv :‘ . o~ - * f » N - * o ‘.
: - : : . - s . . -
/ . - [ i£ ) \ ! -
- = » . N a A g
. ] ! . 4 Iy . -t » u‘
Theorem 28. 1I A and B are 2 X 2. matrices,&-&nd‘if A and 8 have . N .
- . \ £ . . . ‘_ .,
: ' , inverses, -then AB has an inverde '(AB)nl, r;amelyc; o e g P . I
| ‘, . < E Y . . "[‘ - .“//f
. . —1 _ .o = f - ) . .
@By L= E A, " PEEE
\ ' I ‘ . Y ) S o : !
! A ; vy
. Proof. Recall that we have e ” ' .
. ) A . T . * - 4 - =
. . 9/ T . * s
3 5(A) # 0, | - _,
: . _ 6(3)“* Qy, Cs ./ R f
s ) . . ) . v T ' f//
N 3 5(A) -5(B) = d(AB), : ) o /<
' N - 4 * '
. _/’;
Hence, . * . |
3 . !;" ' ‘
e ' o 5(AB) # O, ’
) ‘ ‘ ) ’
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Lt

. "

.which means that AB has an inverse, by Theorem

3

2-5. To complete the proof of

olr theorep, we need only.exhibit a ﬁatr1x~ X suq? that

)

] _ )

.

L K . 1Y
« BRence .B.,.l At

*

. "

[+

ABX =

is a right inverse.

I = XAB.

1

Bl A AB = I.

* rhus BTL A is the in)erse‘of AB.

For exsmple, let

X\ A‘"‘ln
Y - '1-
Now
AB =
¢ [ '
whence

»”

Similarly, ﬁs show that

N

»

This completes the proof.

¢

Vv
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. e et e =

_- ) ’. o E .._,n - ,.

: Thus, ﬁor ouﬁ exemple we have (AB)—l =B - A .

There are many other theorems that caq be developed from the concept of a &

determinant func;ion. A few of these will be included in the exercises thht

follow. It is worth noting, though.we shall not prove,ft,-thet there is a
A

determinant function associated with the other se?s of squere metriees, thet iss .

with those of order 1," 3, 4,..., and that siq;lar theorejjghold for them¢

T : | # : 1 g
B Lt [ I's . . .__*" " . K .
.,' | ’ )
.Exexrcises 2—5 ' "
' ) e . . - % ¢ ¢ .
1. Verify:Theorem 2—8 for the matrices _ R
e . ' — * cf ' ~ f l . T l.;'f
2 l . 2 1 . L . ’ ’
() 4= 3?4]’ B 3]’ ' - .
- - . M . : & _
— 2 —‘ "’1! - '
t 1 7 0 l .
(b) A= -1 t ,f"B 1 %} ’
L . J/{, L y
+ . . _‘;'
2] 1.
o tx %] X x|,
. (e) A= {.3 sl B3 .‘a] '
) S L : _
. i ;
. / TN
2. Show that . ' : - Iy
. - * 2 ‘. . ¢ * !
- .~ ©B(tA) = t7 B(A)
R . I .
{brwggy AegM and any t ¢ R.
3. 'éhow'that 8(A) 1is the constant term in the polynqgial 8(A—-tI) .-
. . . ' \ \
.ol \ D 7 9(} "t

« T N " ¢,
L4 & ; ‘ . ¢ . ‘ .
o " ' LT 91
) ¢ i 3 "
\ : f : ar * .
) ‘Janq-i 2 ' S
i3 1 3 ' 2 2
- (aB) ™ = [7-.19 =l 71
| ~’ .‘ . - 2 2 /\l
L N oo ‘
~ But also, R N\ .
S R I B ¢ _1 3
-1 =1 ,,3 -5 2 2 - . 2 “a

B A [—l 2 l‘& o , Z l ".\‘. _
: . _ 7 5 e, .

-

o
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. %5, show that if A€M,

-

+

-

. . Y.
- 92
* N
i e
Py -
o T e
&""o.... If 3 ' . e
. N L A - i
\'\_\ ‘:‘f ’ P .
« .. - 3».,. ‘ .. . -
AT L - | XL
T SRR Sy
o /_M _.,"_' oy, A 2
P PR x -
P =5
. T e e .
. S . . )
. e
_ ~.'z,rffhd’ 5(A) and |
e

5(B~1AB) and show that they ‘are equal.

BeM, and B 1is invertible, then

. 5(tAB) = 5(a))

6.  Show that if At is the traASpose of A then

Lnd conclﬁ&e that

_ forany Ace M.

-

5(a) = 5(A%),

R I

!

I

7. The expression: 5(A — tI) 1is a polynomial in t. For each of the fg;;6w~
e ~

ing matrices A, expand this polynomial and find its zeros:
! . ! et

() {é f;}

T a
(») O{‘,
L

[e ol
() __zjﬂ ;
L -
‘ )
@ 135l
s
/
./
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-

agd expand the pol&nomial S(AAt - xI). 1Is this the sane as the polynomial

iﬁ | S(AtA — xE)? Arel these two polynomials the same for every matrix .A e M?

*

-
. B
» ¢ ‘ »
-~
- .
‘

« 2—6., The Group of Invertible Matrices

. In this chapter, we have been restricting our attention to the set M of

-

2 X2 matrices. This set is, itself, a subset of the set of all rectangular

Y - ¢

matrices. Now. this set M can be separated into interesting subsets. In the
¢

preceding section, we have divided M into two complementary subsets, the se f

2 X 2 matrices that do not have inverses and the set of 2& 2 matrices /yhat. )
do, have inverses. In this section, we. shall confine our attention prin pally

- t:g the set of invertible matrices. It is convenient to .denote this

symbol Mi k : .

¢ Let us sumarize certain facts about. Qhe set Mi- of Lmérx ible matrices:
! V4 f’fu., ) '

(a) If A€ Mi’ and B € Mi’ tht—{n ' AB.G Mi'

ot . ‘ (b). If A € Mi, B e Mi, i,

.. (c) TIn Mi’ there is an i&entity elem'ent,

and C € M then

() If A eM, then A has an inverse A

r.'? . ) | .
. ‘Not only does the set Mi- satisfy each of tHese condittions, but there are

R f . :
. many subsets of - M. that satisfy conditions? nalogous to t-hem. Any set S of

matrices that satisfies conditions (a), (b, (¢), and (d); vith S in place of

ill ‘be called a group. The concept of a group is furdamental and zxtrémely

/
. N p
C important in ma thematics. More gene/z,afally, any set?of elemeents A,B,C,..., not

.Mi>

neceésarily mitrices, satisfying the foregoing properties celative to an operaw

tion (not necessarily matrix multiplica}iion), is defined to be-a group. You will
-

‘note that only one op.eration is involved in the group pmperties. Although we

shall later introduce a few example/s of the more general toncept, for the
. . ??oment let us congider some examples of groups of i’nver{:ible matyrices.

e
I

.

{ Loy



S ) ,
The smallest set of. invertible matrices that constitutes a group

A

+

is the.set

whose one element is the unit matrix '[; 0 p Since Il = I, condition (a) is

satlsfied; and conditionp(b)*is automatically fulfilled by any set of

square
. 4

. * . . N
, matrices. Certainly r is a member of the set,» so that cbndit}an (c) is satis—

by} W, -thus: -

P /

fied For condition (d), theré must bifén tnverse for evnxy element;

¢
present set, the) ly element 1) is its own inverse.

’

“All quite simple, isn't it? Was it obvious?

Another set that constitutes a group is the set (I, —I}. Again

3 -

»

(b) &nd (c) obviously are satlgfied. Since

¢
' ) O .
* ot . 0 4 -

' S DED = D = - N
and . | ’ \ T“F? ' : t
‘ - 1
ND® & DD =1, \
e T

" )
conditipns (a) and. (d) also are satisfied

but in our

conditions .

e

- ¥

" The third set that we, shall show td be a grpup is.a bit more significant.

b

Thg,set,of all eleﬁents A e-M-.such that B(A) =1 1is a group. The proof ig

a.bit more dlfficult, and’ we must check carefully.each one of the defining

.

properties. To provide a'languagé that will be helpful, let us‘dennﬁﬁ this set

-

*

.

W= {A1lA€M and, 5(A) = 1].

A ¢

&

Let us verify first that condition (a) is satisfied. If A € W and B € W,

x

then, §iA) =1 and 8(B) = 1. Since 8(AB) = S(A) 3(BY ny Theorem

)

1Y

haVe ~ . - * . ‘ -

a(A€>'= §(A) B(B) = (1)(1) = 1,

: . ”
and thus AB £ W. - “

-~

' | S 477

2—6, we



A Y

£

A

)

Property (b) holds automatically.
For property (c¢), since B&(I) = 1; it is clear that I € W.
. _ \ ’
To'demonstrate that condition (d) is satisfied, we must show not only that

~each elemen;'df W has an inverse but also that the inverse is an element of

rF : . . -
We Now, 1if A € W, then 8(A) = 1. Since B8(A) ¥ 0, A has.-an inverse A l, .
by Theorem 2-5. Since , - L ]
- Y
- _ ANt a
and : » )
. ) 5CI) =1,  ° '
_ \
we have
. 4 . f
S(AA ) = N A~ 7 \
S5(A) 8(AT) = L -
I s(ATY) = 1, k | .
s(A L) = 1. - 4

s '

-~

Hence, A“l € W, and we have now demonstrated that W is .a group.

In.our last exaﬁpre, we shalltd;écgs:1i§l matfices of the form

~

Ay

'~ x|

*

X y} . (x,y = real numbérs) '

! .
and denote this set by Z, 2 C M. X

We observe first that the product of any two members of this set Z is algo
. * - ) <
a member of Z. We have, indeed, . N . o /
, :

Y N
' }

| N X V2] _ [ ®X Y2 (XY PN
\ 1 B |72 % B Tt U At A L

4

»

5“

Condition (b) is automatically satisf{éd; and clearly I 1is a member of

.

Z, so that condition (c) is satisfied.

&
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In considering condition (d), we run into'trouble.” The zero matrix is an

t

element of this sgt, but the zerc matrix does not have an inverse. The set of .’

. ¢
. -

al&\métriceé of the form

N . X Yy . : v .
-y X ' ) . . v .

L4
?

L}

'

does not foé; a grouﬁ. " Although the set 2 does not satisfy the four conditibns,

- .

a subset Zl of 2, defined by ¢
"- . Zi =f{Al AeZ and 5(A) = 1}, ‘

does gsatisfy the conditions and is therefore a groupt‘ b ' &

*

< ) .
The demonstration is easy. Let A € Zl and B € Zl We know that

'AB € z, as already shown; and, since B(A) = 1 and 5(B) = 1, we know that

S(AB) = 1. Hence AB € 2 - and therefore éondi%ion (a) is satisfied. Obviousiy,'

1!
condition (b) also is satisfied we know- that 'Ie2z and that B(I) = 1; - S

hence, Ie 21, "so that condition (c) is- satisfied Finally, for conditien (d),
. f R, T o -
we must show that if A € Zl then there is an inverse A 1 such that A”& € Zl‘“

Y

We follow the pattern set in an earlier illustraticn. Since S(A) = 1, thete is
an inverse. Then, using the fact 'that B(AA ) = 8(;), we proceed to show that
‘ngﬁ(A ) = 1, which means that A -l € Zl - Having demonstrated that the four
groups .postulates are setisfie&, we conclude thaf.we have a.group...
Before consi&ering~£he more generalleoncept of Q group, we‘agell demonstrate
a fruitful correspondence.between the elements of Z, and the points on a unit -
circle, whﬁch”will let us eieeiﬁe the geometric meaning of zl.

£ - | ) R

L] [
. - f I
T . - X y L
) A {—y X}‘e
' . L .
}

is any element of Zl’ we Have' S(A)_ﬂ 1, that‘is, we have .
3 .

-

. N : : ~[04

-



\ x2 + jz = 1.

.

Now, if we let x and y be coordinates of a peint (x,y), we are able to

L Y

establish a one—to—one cérrespo&dence between the elements of zl and the

A

points on a unit circle: ‘ .
~ ' . . ) 4 - \

. X y '
o <> (x, v).
g [}Y X _ .
“The set of matriceg is thus ﬁapped onto the set of points in such a way that to

- * ¢

each matrix -there corresponds eﬁactly one point of the set, apd to each point of
ths,sgt there corresponds exactly onermggrix. )

/A .
The point (x, y)  is on the cixcle offradius 1 with Féntgr at the origin,
]

ds shown in Figuie 2-1. . L Ly ' - ¢
) . (x," ¥) "
-
-~ 4 * «
-~ L
- _; & ‘. .
. . ] 'Y
. \ )
Figure 2-1. The unit circle. ) .
Y . -k ‘e
' Let us call this"circle the unit circle and denote it by Q. .°
¢ - Pt
+ Thus . . ) . 4
. - . ‘J LY . L 2 Q\2
- Q ='{(x, y) I x ¢ R, y€R, and x +y = 1.} .
) .
‘ Aﬁeométrical meaning can be ‘assigned to the inverse of any\eleme:nt of Zl. If -

& |

L 4
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then we.can readily. compute A‘l by Theorem 2-5, to obtain

4

o U , :

. 3 A_l- [x--] .
' ' Yy X

A ‘ . ¢ . '. - . { -~
Recalling the one—to—one corresponden%e bétween the matrices of zl and the
points of Q (the dnit'c&rcle), . RO .

- . N -
l x ' . .
| [__y Z:] > 9 o .

we see, by examining.Figure 2-2,. that the correspondent of .Afl

is the rgfleg»

tion in the, x axis of thé correspondent of A. DR P
n ' BN : SN

~

Figure 2~-2, ‘Gedmetric representation of inverse matrices A, and Afl € Z

] » . \“ Ce . _f {

Vi

lQ

- '
s .
. ‘ x

,Although a full discussion of the general notion of a group wouid be teoo
' ¢

extensive for this book, a féw words are in order. The definition of an abstract
group is stated somewhat differently from the defining prOperties given on page

, 93, althouéh the abstract definition implies the latter. "_ .

N . ‘e
L

[ £ §

3

*  Definition 2-3. A group is‘'a set G of elepents; a,b,c,..., on which a

‘ .
binary‘?peration o (read "circle") is defined,, such that the following

* ]
“w ..

' . . [ ‘ i
3 . ' . ot e
S »

) | \ . 10(‘ | \ N
. N - )~ ‘é’ ‘
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-

properties are satisfied: _ - )

- ‘ () .)If a€G and beG, them a o be G. (Closuré propértyl)

N . : . Ty . :
s (b) If a€G, be€G, and c &G, then ‘ h /
- . o a o(boec)y=¢(ao 1;) o c. (Associative propﬁty.) .

’ ‘ ',.. A .
] (c) There exists a unique element i, i € G, sug t ., 7. e
. : : ioa=am=ao i for all ‘a € G. (Identity property )

«

¢

. o (d) ~ For each a ¢ G, there exists an eleﬁfnt a 1; a -1 € G, .

“such that 2 oa=aoa ~=i. (Inverse property.)

> . ) - N A - . .

4 " . If, in addition, the following condition is fulfilled, the gr9db is said to be o
: commutative of abelian: ‘
Y ‘ . ) [l . )
. (e¢) For each a ¢ G and each beG,raobwbo a. (Comutative
. , v f propé:ty.) o ' o |
» . - »

, . | . . ? i . .

- . Altpohgh the operations we are most concerned.wbth'ig mathematics are
addi;ioﬁ?and multiplication, we are ndt_reiéricted to thesé in the fo:ego#yg'
abstract pefiﬁition. For instance, a hery‘ﬁelpful exercige,l;qt only foé under—

fs:anding the notion of a group but also for éomprehending a finite nomber system,

ro, 1s the addition’ aesociated ith a clock face; see Figure 2—3, This furnishes us

K with a group. The set of elements is 1,2,...,12. The operation-is clockvise

.

Figure 2-3. " A.clock face! The addition/é;sociated with it gives us a group,
. * “

.

\

+

. : 1 ’ & é
' . additiOn of hours. Each defin{ng prqyérty of an. ahstract grogp is/satisfied as

i
% © we shall now demonstrate. First, the ‘'gum'’ 7f &ny two elements is another

RS /- _ ‘ ) ¢
O . . — / nd ) | N * #
D ‘ c : . .f‘ ) l O e . .

v \k . .- ;”

. . ; 2 - . -

-

U
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we
- _F'" [
PR R v_':‘.!" . e
."'.:. .*P. /7 .‘ e ! - )
- : '“ i v 4
) I ACHE: SO P2 :
, RN Al 4 2= 1, »
! . - 1Y | |3 4
. 3+12= 3, N )
{ » hd % ' -
. Sedondly_since, for example : ) " I ’
. ’ ~ ] . . . i
. <o . +
(s+2)+3-1-and 8 4+(2+3) =1, ‘- ¥

.
RY - *

we see that the agsociative property helds. Thirdly, a fulf'clock retation,~an

L N -s
adfance of 12 hours, gives the same time, so that 12 is our unique idéntity

L J . N .
element; thus, : : 4 TR
¥ e 12 +2ww2m=2412, '
« e A ..‘ , A -
Finally, to each-of the elements, 1,2,...,12, there corresponds a number we can
vadd" to obtain 12.. Thus : : ?/‘;
s ‘ .o .
" N v & . ~

b4+ B=12= 8+ 4,

10+ 2=12= 2+ 10,
& L

12 412 = 12 = 12 + 12. “
‘ ' * : ) ) - . ;l';
One of the most eieganh examples of ‘a group consists of the three cube
roots of 1, namely x |

-

—1+f ~

1,

'y

L

dﬁﬁér multiplication. The' demonstration is 1eft to the studeet as an exefcise.

Interestingly enough, although the integers are the most. commonly used

+ System that has a group structure“(under‘the operation of addition), they were

-

-

S

~ | ? . Log

-
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\?.

'étudi§. ektensively were finite _groups such as the two*examples glven above.

s 1 'ﬁ

These’ groupa Were found during a study of the theoty of equations by Evariste

!

Galois (lSé}—1832). to whom :is credited the origin ot the systematic study of

Group Theory'. UnfOrtunately, Galais was killed in a duél at the age. of 21,

- ¢

” . N N

-‘;@mediépgli after récerdxng some of.his most‘notable theorems. : T

o . L. . . . .
. . . 1]
.. -
Lo . . ,
. - N . - Lo

¥

. K Exercises 2—6 °

' l.“‘Betgggiig"whether the following séts?grgtgroup§'under~ﬁultiplication; )

1« - ‘ ~ RS ’
(@) 1 Ojr -1 0 0 1y, ' )
O Ly’ |0 1y’ |1 o> . Y

o
(b) I “I)_ K, '—K,

where
O 1
K= 1 0 -

2. Show that the set of all elements of M of the form

- "
t O '
o ¢|* where t e R and t-#0,

constitutes a group under multiplication. _ .

s . e

3. Shm%,that the set of all elements of M of the form

13

- .l t s & 2 2 ’ L 4

», where t € R, s €R, and t —s =1,

constitutes a group under mult‘;\iplicatio'n.

“ . 7”. ‘
4. 1If - B .
| 0 A
Vo 2 2 .
. . \ _
A=1_v3 | o
2 7 2

’ .... , '. ’ y .. .~ .
'not first to have ﬁheir group structure analyzed. The first'groups to be -

q*



. - . , , X ‘f.\ . > 'Y . &t .
3 . - -~ v A\ . ? . s '
' \J
. L - £ - b . .
- 102 . s , : ' 7
s . N *
[ % - - Y s a
» . . - ..l 'f. Y .
. - - "’
- s .
. ghow that the set o “ i
. - . a - .
.o . \‘ ) . 3 B} s )_ . . - . » )
\ 20 3y T .
‘ L A aly. .
. ~ _ . D . .

- ~

‘is a group uiider mnltipl éati&nn ~Plot ghe.corfeépondtﬁg points in the
.- . . . ~ o . " . et : . . )

. ’ ~ “ plahe. h . _!. . “. :_ . . o « . .
, R , i -.’ X . L. . -.' ' N L . ran . .
3, Let L7 - ot . o . - B
- Voo . .- » - . X
3 . . p‘ . . .
\ 4 -
1l =2 e 0. -1
. STl p) e Ryt ) 43
- i . ’ N . . :- > 5 -
2 < A * . . “ \ -, * . r
Show'that the set . Lo R R
) . ) . ST e ' . . E . ° .
iy .- o, reepr Y wr oy, Ty L S
. - L L . L L . ’
is a "group under multiplication. Is this trud if T is any invertible
matrix? P -
~ . . . - .‘:;&m . . .
6. Show that the set of all e,@htg;‘pf.the,foﬁn ' . -
~ r‘- . : ’9 .’; I . .‘_ ‘
. -~ - 4 ., . T 5 . y
a 0 . '
0 bl°? with a€R, beR, and ab=1, . S
- 14 a group under multiplication. If you plot all of the poimts (a,b),
-with a and b as abgve, what sort of a curve dé you get?
7. Let ' L
-'?N\\ s
0 I'}.
K 1 0 . N . ']
‘e ' M BN £,

and let H be the set of h;l matrices of the form

-

« xI + yK, with %k € R. and y e R.

Prove the following:

-

(a) The product of two elements of H is also an element of H.-

A

(b) The element xI + yK 1is invertible if and only_if

Q o | lin.
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. ) . ¥ x y *0. N \.. . ’
| . . A : o

4

(c) The set of all e}éﬁents xI fny; A}th.:xz -y2 = )l is a group. -

8, "If aset G of 2X2 matrices is a group,‘%how,that~each of the following

sets are groups: - . . . A C e

(a) {At | A.€ G}, where ‘At = transpose of ‘A; | .,
- ../ . . i E . *
. . ‘ . , 4 .
) - (b)Y { “l’AB;l A € G}, where'.B is a fixed invertrﬁie element of M. )
L . -

9. If a set G of 2X 2 matrices is a group, show that - : N
A
* / . ! r’
(a) G e {A | AsG), - ' . ,
. / -
~ | - '.
» () 6 ={BA-l A e G&, where B 1is any fixed element of G.
10. Using the definition of an abstract graup, demonstrate whether or not each.
of the following sets under the indicated gperation is a group._
/' ) : i
(a) the set of odd integers under addition, ' \
(b) the set of positive real numbers under mnltiplication, .
)
(c) the set of the four fourth roots,of 1, {1, -1, i, =i}, under
multiplication; L.
(d) the set of all integers of the form 3m, where m ig'aﬂ integer,
under addition. : T
11. By proper application of the four defining postulates of an abstract group,
. . . ! . ~ ‘
prove that if a, b, and ¢ are ‘elements in.a group and a o b = a o:c, .
then b = c.. . ) 17
‘ Y i
A
2—-7. An Isomorphism between Complex Numbers and Matrices _
) ’ .
It is true that very many different kinds of algebraic systems cam be ; ;
expressed in terms of special collections of matrices. Many theorems of this
. L . T
nature have been proved in moderh higher algﬁ%fa. Without attempting any sucl
v . .
. . )
proof, we shall aim in the present section to demonstrate how the system of . o
. . /
. ‘,f’ ;
_ y e
Ly ,
L8 ;f A



06 . L o
e / ‘l ‘ / '/
’ complex numbers can be expressed in terms of magrices. -

N 4 . i
" were displayed. 1In particular, the set

\! of all matrices of the form ‘
™ - ' .’ Ny <N ¢
~ oL lx oyl -/ .
S . t ) t— x| ° 7/& Q,F sand y € R, . \ .
* ’ ' ) . g . 4 . . - ) y
was conkidered We shall exhi t a’one—to—one correspondence between the set
/ ’ _
ofg;ll cemplex numbets, whi we denote by C, and the set Z. This one—to—one

& .
;ortesa&?ﬁince would not bé.particularly significant if it did not preserve °

@lsgﬁggic propeéties - that is, 1'f the sum of two complex numbers did not’

t ’

: /.
; cq&téspond to the Sum*of the correSponding two matrices and the product of two:

-

eomplex numbers did not correspond to the produét of the corresponding two
/ - f
,«,'matrices. There are other algebraic properties that are preserved in this

N

sense.

-

Usually a complex number is é*iressed in the form

p 4 +‘yi,

where 1 = /=1, x€R, and y ¢ R. Thus, if c 1is an element of C, the

set of all complex numbers, we may wgite \

-

e = x(1) »+ y(i).

The numeral 1 is introduced in order to make the correspondence more apparent.
In oxder to exhibit an element of  Z in similar ;orm, we must introduce the

N~

special matrix

Note that




. -
. \ )
. .
- / .
s - ‘ - ’ - . - .‘" T
: . . . .
' ? . - i . v e

.

- N
thus ' ! - N ’
P - | . ) . ‘ . . ) v .
. - J =~ I, : R ¢ * -
A 4 - - . ..
1Y Y . h \ »
Q . -t A o ' Foa S '
The matrix J. corresponds to "the number i, *whi%h satisfies the ahalogous
. @ * .
ot B 7 - ¢ ‘. ) . R . . "
* N . 4
equation - .' . . o . ' R e ’ .

NS P e 2 : a o N
K fc) ’ ’ 4. i = — 1 - . ' . ’ ‘l
. -.;_; . , » N \I- . ’ f s . '1 ;

"3ﬁis enables us to vér;fy that ’p. PN ) < _ :

i ! ML
:;
N ‘ #
. X 0 + 0 v iy
0 x| ~y 0
f, 2 L - . 3 ‘f_ ,
13 » t ] .
- | xov] :
’ o ¢ " e

which indicdtes that any element of Z may be written in the form

. ]

xI + yJ. R

' For example, we have

’
-

. 0 1 -1 0 4
o 2 0 0 3
, = jo 2 +’[—-3 0
[ - ‘z 3 .
—3 21’
L



-»

-

1106 ~ ‘ - .
and - R - ' .
. o{ ./ 0 1 ,
. , l +.5 _1 -0 ).'. * ‘
“ . 4 B _ .
. N . o sl . : (
0 -5: 0
- . L .
5] T '
ol _ .

. ¢
v . . -

No# we can .establish a correspondence between C, the égEldf,ccmplex nupbers,
,and"z :ghé set of matrices: . s |
.' 'l-" '. ‘ '. . . . lﬁ
> . : 4 l
. . x} +yi €2 xI +yJ.*

»

) * - . o
Since each element of C is matched with one element of Z, and each element

4

of Z 1is matched with one element of C, we call the correspondence.one-to—one.

,

Several special correspondences are'notable: B -
. N ‘..xv'
0=0:1+01<€«>01+0-J=20 .
» . i . . .
1=114+0i <>k I+0J=1 . '

i=0.1+1i«>0.8F1I=7 "

£

" As sté;ed earlier, it is interesting that there is a correspondence

between the complex numbers‘and 2 X 2 matrices, but the correspondence is not

particularly significant unless the one—to—one matching is preserve& in the

‘ operationms, especially in addition and multjplication. We shall now. follow the

correspondence in these bperations and demonstrate ths&t the one—to—one property

A

is preserved under the operations.
When two complex numbers are added, the real components are added, and the

imaginéry components are added. Also, remember that the multiplication of a

K3
-

matrix by a number is dist}ibutive; thus, for ae€R, beR, and AeM, we

have .~ .

(atb)A = aA + bA.,

B

~

(%3



",Hence we are able tx ghow our one—to—vne correspondence under a'ddi\tidn:
. 9

N
-

. ' ¢ : : . -
. cl +-c2 . . . Z1 + 22 o . - .
o * . . <N
- (x1 +:§yl) +g(x2 +-}y2) (x11,+ le) + (xZI +-?23) é‘
. .‘ . = (xl + xz) + (yl + yz)i. <> "(x1.+l x%)"I + (yi +;y2)J,
) L. . e . ¢
- . : T . * -, ‘g'
, For example,, we have T : - ' . ’* .
A‘ : ] ! ’ ! ' i “ ’ . ¢ o ‘.
. . . fl\ . . ‘ a. ry : . - . . *
G T (231 + (4 +11), L (2T —33) + (4T + 1)) =
~ . ) . . , . ¢ L ) . .
. ' . ' - ¥ .
=6 — 21 _ € I - 23, T \
Lo o S ] .
and
“. o S B ’ ’ 4
A 3-f 21i) +'(2 +’Oi) (31— 27) + (21 +0J) -
e o - . ‘ *
] = 5-21 €<—> 51 27J. .
f y _ . | . '

Before demonstrating that the correspondence is preserved under multiplica—-
o )
tion, let us review for a moment, An/example will suffice:
v ks .

2 f

© (24 41) (3-2i) = 6-—4i +12i —81
= 6 — 8(=1) +y(~4 + 12)1 .

' v = 14 + 8i;
\ |

2

o (21 + 43)(31 — 20)= 6I° — 413 + 12JT — 83°

-~

o | = 61 — 41 +12J —8(-I)
= 61 -+ 81 + (=4 + 12)J

= 141 + 8J.
Generally,‘for mul tiplication, we have

R 5 1 _ 212, =
= §x1 + yli) (x2 + yzi) . (xll + le)- ¢(x21 + y‘ZJ)

A}

o 115« ' \

I
RATE




108 - : ' . i R
h \ f .
= (xl 2 T YY) (ziyz + x,y04 <> '(flx ylyz)I + (x¥2?

L} . .:- .
‘ » = ¥ . =‘ : -

" v If we repfesent a compléx nnmbe; . \{ e s
: S : ' s ‘ S : {
: . . o . .+ adbi - <« . : > .
. ‘ R . . i . » ‘. \
.- : . : e B, - ', ‘\ 4 ) ’ ’ #
.. as. a matrix, . \ : . : ot
N 1 L - ' .
| : a ® )
bi €«—> ’
a + bi b a ,
) - : . ER V
we do have alsignificant correspondenee%’ Not only is there a one—to-one cor—
& 1)

respondenee between the elexbents of ‘the two sets, but also the correspcmdence
is one—to—qne undex: the operat;ions of addition and multiplicatign.

The édditive and multaplicative identity elements are, respectively,
v . -~

¢
!

— -— s . . .

) ' ) 0 © ’
. 0: 0 + 0i €«—> < 0 0 .
‘ . B n
- and : % 1L=1+4+0i €> Lo oy,
. -0 1 ' \
- A~ -
and for the additive inverse of _ o, . , N
L} . ) 4
¥ [ . — N q \ R
A ' a
T a + }:i <> b a )
L. L4
we have ~
—a-bie—> B TP, _
i b -—a

-

\ !

'Let us now examine how the multiplicative inverses, or reciprocals, can be
matched. We have seen that any member of the set of 2 X 2 matrices *has a
mul tiplicative inverse if and only if the detetmihant does not equal zero. That

, is, if A€ Z then there exists K1 ¢ and only 1 x® +y% 40 since

L1y
'




- nmmbers,(and Z, a subset of all 2 X 2 matrices, .

‘ f ‘
- . \\ . 4 .
. . ) N { '
B(A) = x2 +-y2 if A= xI +yJ. Now we know that any complex number has a
- ' ;
multiplicative inverse, or reciprocal, if and only if‘tﬁe comblex number is not o

. _ . & . . .
zero, That is, if ¢ = x + yi, then there exists a multiplicative inve¥ge if

t

. .

and only if x +yi ¥ 0, which means that x and y are not both O. This is

-

equivalent to say{hé that x2 + yz'f 0, since x € R aqd .y € R. For multipii—

cative inverses, if S . T ‘ .o o
. wr . ‘ . -

o b

\ I

- ’ . . . ) . - ’
our correspondence yields \> _ . :
. ’ .
f . ‘e x
cl = x + vyi ‘ <> XI +yJ= Zr
1 : )
# _ . _ , )
R 1 1 1 . -1 .
y 7L x4y X +y .

It is now clear that the coLreépondence between = C, the set ©of complex
_ o
- $ g
x + yi €«<—> xI + yJ, .

is preserved und?r the algebraic operations; All of this may be summed up hy

. saying that C and Z have identical algebraic structures. Another way of

expressiﬁg this is to say that C and Z are isomorphic. This word is derived
from two Greek words and means ''of the same form.'" Two number systems are
isomorphic if, first, there is a mapping of one onto the other that is a one—to—
one correspondence ané, secondiy; the mapping preserves sum; énd products. If
ﬁwo number systems are isémorppic, their structures are the same; it is only

their terminology that is differemt. The world is heavy with examples of iso—

morphisms, some of them trivial and some quite.the opposite. One of the simplest .

LI

is the isomoxphism befween the natural numbers and the positive integers, a

3

t 4

-
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L3

subset of the integers;’another is that between the real numbers and the subset -

*

- a + 0 of all compl.'ex numl_:ers.‘ (We should q‘uickly gtxess ithat:)thgre isran N
N ‘isomosyhism between real numbers a agd thé set of all mat§kées'o§ the form
al +03Y) S S . ,
. .Aﬁ‘ethple of an isomqrphism tﬁatnis more difficult to dnders;and is that .

between Yeal numbers and residue classes of polynomials. We won't try to explain
- ) - N . é

thls one; but there is one more fundamental concept that can be in introdjced

b | | ' -

here, as follows. ‘ . .

We have stated that the real numbers are isomnrphic to a subset of the com—

3

plex-numberé. We speak of the algebra of the real numbemss as being embedded in

‘the algebrh of complex numbers. In this sense, we can say tha£~the algebra of

complex numbers is embeQdéE—In the algebra of 2 X2 matrices. Also, we can
speak of the complex numbers as being "richer" than the real numbers, or of the

2 X 2 matrices as being richer than the complex numbers. The existence of

.

compiex numbers gives us solutions to equations such as

.

x2"+ 1 =-0,’

i

which have no solution in the domain of real numbers. It is of course .clear

.

that 2 }s a proper subset of M, that is, Z CM and Z # M. Here is a simple

example to illustrate tHe statement that M is\?richer” than 2: The equation’

_ ~ x*-1=0
has for solution any matrix .
© B, ' \ :
£ 0 ¢t ‘
. X [;/t g] », teR and t ¢ 0,

]
»

as may be seen quickly by easy computation. On the other hand, the equation
’ -

%~ 1=0 | ‘

114




g | L, . L . 111
T ' f - i

& . 'ng' . N [N, . X -
has exactly two sqlptio among the complex numberg, namely c 9 l and ¢ =—1, =

- Lee

- . . RS , . L3
c L A : " .
- : ) .o Exercises 2-7
~ .1. Using the following v,aiues', show the cqrrespoddence under addition and

) ) S 7 L - ’

) . multiplication. between complex numbers of the form x + yi and matrices’

< . - ‘ T ‘ - - r .t
of thc:; form xi + yJ: ' Ce

b

. :
(b) kl = 3, yl' = ;"-l": xz = }.t and Yz' 1;
(<) xl = 0, Yl "','"‘ 3, T‘Z = 3, and )'2 o {b. .

2. Carry through, in parallel columns as in the text, the necessary computa—

¢ tions to establish an isomoxjphi:z between R and the set
, - N = [g: :);‘ : xeR | : v
by -means of the correspondence /
’ .
( o r $\~ X ﬁ—: | [x 0} ‘ | N
. N 0 x| ° o

' o . . . . '} . ” .
3. In the preceding exercise, an isomorphism between R and the sets of

matrices

0

/ {x 0},:{31{,‘ b

was .considered. Define a4 function

L.

f: R—>M

by

)
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‘ Al
112 ‘ oo L
- ’ i { - <
. ' ' .,
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Determine which of the following statements are correqt:
» . ): ¢ ‘ : . L) y'
' (a) f£(x +y) =.£(x) + £(y), " . :
) - § . ) 1 ’ — '
| ® £ = [fw)] [f)] . : . -
, : ¢ - . h ")” \ .
) Ceo(e) £(0) <0, - | » L.
. . ‘:“ A
- (d)‘ f(l) _ QI PN _i." g SR :
- 1\ -1 LY
@ () s a0 | -. | ;

.4. Is the set of matrices . T . : - , -
L | .
’ ’ a b ) .

’ - al’ .

.

. . . 2 ..
® with a and b rational and with az +b = ‘1,,‘3 group under multiplication?

-

~ 2-8, Algebras ) . \ |
. . .

The concepts of group, ring, and field are of freéuent occurrence in modern
ﬁﬁ} algebra. The study of these systems is a study of the structures or patccigé
thaE are the frgmew&rk on which algebraic operations are dependent. In this
chapter, we have attempte& to dempnstraté'how these same concepts describe the
structuré of the set of 2 X 2 matrices, which is a subset tof the set_of all

i

Tectangular matrices.
Not only have we introduced these embrac{ng concepts, but we have exhibited

the "algebra'" of the sets. 'Algebra'" is a genéric word that is freqpently used
: \ ' .
in a loose semse. . By technical definition, an algébra is a system that has two
’ Vs
binary operations, called "addition” and "multiplication,” and also has

-

P

‘multiplication by a number," that make it both a ring and a vector space.

\“\.' Vector sﬁéces'will be discussed in Chapter ; and we'ahéll see then that the
set of 2 X 2 m;trices constitutes a vector space under-matrix addition ;;d
multipiic%pion by a numbetr. Thus the 2 X/Z matrices form aﬂ algebra.

As you yoﬁrself might conclude at this time, this aigebra"is only one of

- <
1: f)

-



< many7 poss%b‘é ],gebr

.

of another,.

N

t:hey ‘have the’ same struct:ure, t:wo algeﬁras are call isomorphic. One of the

- "

#

in re}umg *observanions about:moderp mathematics is ghat ‘the -structure _o<£3 these
N oL LA, . : . . :

* .

'&f

Superficiall&

f

they ‘seem di‘fferent ‘becauge of‘ the terminology. When

-Q

13

¢

¢ f._ )

T

¥

fj -

.

. : ¥ N ¢ . . b
new branches often overlaps ;p;rts Qf, the old mathemati¢s with which we are
r ’ . A L N ~ . )

ali;eady fami

L]
“\

3L o ) )
Do)
T S
tS
b] .
~
;

.
-

-

-

..

7. PR
7

‘. /7

as. Some qf these algebras are \du’;.n‘licates of one ano;her

[y

in the sense that’ thgsbasic structure .of one is \he same as the basic structure

.

-

(
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Chapter 3 .

' NN ; :
4 * MATRICES AND SYSTEMS OF LINEAR EQUATIONS . N
. . . ) N kN - __—

— -

3~{. Introduction

i - * *

In this chapter, we are going\to demonstrate the use of matf %‘9 in the
- . \ N -
solution of syqtams of linear equations. We shall first review a few well-known -

‘algebraic techniques for solving these systems and then shall show how some of

the same/techniques can Be duplicated in terms ¢f thé matrix operations with‘“

¢
LY

. . “» = 8
.which you are now fami!thr.

Cur study will thps lead us naturally into the application of matrices to

-

the solution of systems of linear equationé;‘ ~/ e .

In your previous study of algebra, you probanly learned.peueral me thods

for seeking solutions of such systems of linear equations as
-

@

3 (1)
» ~5x + 3y = — 7.

Thus, you might recall the method of substitution and the method of elimination.

S

For example, you can solve the first of the above equations (L) for y in’

terms- of x,

y = 2x ~ 3,
N
substitute this expression in the second equation, obtaining /,f/
' A
- =5x + 3(2x — 3) = -7, .
whence
. 8, - R
x=2 . (2)
. ‘\ \\ .
and accordingly - \\;>
. 115
12p -~
ol



LY »
~116 —
: y=2x—-—3=2(2)-3=1. "
‘- ‘ .
Ve Or you can multiply both members of the first equation in (1) by 3 to obtain
6x — 3y = 9,
. . | o
add this to the second equation in (1) to eliminate y, getting
.! - . - ;
x = 2, “ (2) .
whence
y =1 . | '
~ Y f {})
as before. - T . ,
. “In each of the foregoing protedures, what has actualiy been demonstrated is ’

only that if there is a solution set of values (x,y) for the system'(l), then

(%,¥) = (2,1).” For logical completenesss you should substitute these values in

*  the original equations (1) and observe that for them the equations are valid

-

statements: : .

kY

22).— 1 =3, 5(2) + 3&)\-1—- 7.

.Alterﬁatively, of course, for logical completeness you might demonstrate

L]

that each of the steps you have taken is 'feversible'-—that is, that the validity gﬂ,

. ‘ . . -
of each new system of equations implies that of the former system—so ;ﬁ;; finally

3

the system of equations,

&

x= 2, y = 1, o
3 \

-

with' which you ended is equivalent'to the original system; that is, every solution

of one system is a solution Jdf the other, and conversely.

3

For example, the system

/I—’J\U | | "

Sy
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. | , | (3)
. -

£ - "
t L4

which consists of Eudation (2) and tﬂe first equation in (1), was &btained by
meaﬁs of alggb;;ic operations from thé system (1). Accordingly, any solution of
the system (1) is also'a solution 6f the system (3). \Cénversely, the validity
[/_ . of the system k3) iﬁpliés that of the'original system (1), since the first
equation in (1) is included also in (}), and since the\fecond equation in (1)
results from subtracting 3 times the first equation in (3) from the second
equation in (3). Accordingly,§the two systems ‘are equivalent.

Direct verifipation by the substitﬁtion of =2 and y=.1 1in the °
oriéinaidequﬁtions (L h;s the advantage, however, that it guards against com—
putagional errors. '

Iﬁ the present chépter, we shall investigate twe routine and orderly methods

of elimination, without regar& to the particular values of the coefficients
- - - .

except that we shall avoid division by 0. The first of these, the triangﬁiation

method, is an extren efficient general way of solving a.singletsystem of

equations. The diagoﬁal method, which is treated next, is an extension of the
}

triangulation method.” It is ragher less efficient than the triangulation method

- in solving a single systém; but it is especially usef&l.fg dealing with seQeral »
sy;tems in which corresponding coefficients of the vﬁriabieg are equal whilé the
. right—hand members are different;—a situation that often occurs in in@ustrial-a§d~
applied sciéntific problems .
;//fhe triangulation method and the diagonal methed are pr?cedures of the sort
'you might use, for example, in "prograﬁhing,” i.e., devising a method, or program,
for solving a system of linear equations by means of & modern glectronic computing
machine.s Bgfore long, these 'magic Braigs“ may be developed to the point éhere
they are able even to choose for themselves the most efficient méthod for dealing
’ °
By -
\ .lf?§
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< )

with any particular set of coefficients.
-~ . . 3 )/“
The methods will lead you naturally to see how the tp’eory of matrices that

you have beén studying is directly applicabl—é to, the solution of these systems.

In particular, you will see how the diagonal method can be used in matrix 'in—
N ‘ .. -
version and how very useful the inverse of a matrix is in the solution of
. ~ .

3
systems of linear equations.

[ 3 . -
a

~ ,
Exercises 3~1

1. Solve the following systems of equations:

(a) 3x + 4y = 4, (b) x— 2y = 3,
5x+7‘y = 1; | ‘y =23
L{e) x-+ y—-z= 3, ‘d) .x—-3y+22-=6,'
. 2y + z = 10, ' .y-'z-m--l@, '
. 5% — y——Zz-—B;‘ z-"};
L ;
(e) x+2y+ 2—3w=2, (f) 1x+0y'+02+0w=.a,7
ry—2z2 4+ w=17, ‘ , Ox + 1y + 0z + Ow = b,
z2—-28=0, \ * 0x 4+ 0y + 1z + 0w = cé
w=3; _ ‘Ox'-i-Oy + 0z + lw =d,
d" . . _ .
2. Solve by drawing graphs: h - -
‘. (a) x+y=2, ' (b) 3x + by = 1,
] }"x-'y=2; Sx + 7y = L.

2

3. Which of the following statements is correct? Which of the final conclusions

PS

is actually valid? If .
2 2 5% L 2.5 4 47,

45— 2445+ 5

then




2 . so that ;'l
Y 4—5=5=4, '
t ! . » ki :
whence ' )
) —1=1.
a . ] ) [/‘
If ) ‘ ;".!.
. ’.{"',f
4 — 1 = 1’ ‘5 .‘ }
. .
then \ ' S
. * h - .. 9 ! -
4—~5=5—4, .
so thats
- - 2 2 .
(4 -=5)" = (5-4),
' whence '
42 — 2.4.5 + 5% = 5% — 2.5:4 + 4%,
| A . -
. ® ) i ) )\.
+ 32 The Triangulation Methéd . ' ' .

~

.
The triangulation method for solving systems of linear equations is best
presented by example. 'The method consists of a step—by—step replacement of a
. : A

given system by a sequence of simpler but equivalent‘sysﬁems.

'y

Consider, for example, the system (¥
; o
3x + 2y — 2z = 3,
- 2% — ,y — 4z = &, | S 3\

\ ' ' . - x_+ y + 52 = Q.
. ’ LY

The basic objective of the triangulation method is to replace such a system

as (I) by an equivalent system of the form

-

X + bl_y + ¢, 2= dl’

y + c, z = d




120 . /A N )

,obtain  ° _% 7
G.t' ‘ ’ '. E\}

we 4

'8
" -

if this is possible. The value for z’ is then substituted from the third

equation into the second to determine a value for ¥, and then bofh of these-

values are substituted into the first equation to determine a valup for x.

. 3
For a system such as (I), the procedure in achieving the basi% pbjective—

’

if it can be carried out—~iskﬁirst to obtain the desired coefficients 1, 0, 0 for

X, next the desired coefficients 1, O for y, and then the coeffitient 1 for

z. Thus this procedure might be saidito consist of 3 '"molecules,” §f ‘3, 2, and 1

%

i

"atoms,'. respectively.
For/the solution of the system (1), the first molecule has 3 atbms: ;(i) the

v

‘ 7 . \
first equation in (I) is multiplied by 1/3 to yield E
2 nl . ok

2 .
3 \ (1)
(11) -2/3 «imes the first equation is added :p'the second equation iﬂ¥(1) to get
7 . w
—5yY-FE=2 (2)
and (iii) 1/3 times the first equation is added to the third equation i‘-(I} to

-~

Now Equations (1), (2), and (3) comstitute the system ' _-- Y
C ) | &\
X + % y = % z =1, %\\
G
% y + %gz = ] A )

Thus, any solution ©f the system (I) is also a solution of the system (II).

NG
~
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On the other hand, by reversing the atomic érocesé, you can show for yourself
that the reverse implication also holdg; that is, any solution of the system (II)

. is also a solution of the syééeﬁ (I). .Aépordinglxg the two systems are equiva—

lent: Every solution of oné of the systems is a solution of the other, and vice

.

versa. L ¢

The second molecule has tgg atoms., Namely, (i) the second equation in (II)

+is multiplied by ~3/7 to obtain ' ) ' g
8 6
ytyE=o7
; !
and (ii) 5/7 times the second equation is added to the third equation in (1II) to
yield , |
v, u
, 7-° 7
We now have the equivalent system '
2
b‘ ~ - =
. x + 3y z2=1, .
" 8 6
< y+3s z=-3, (111)
17 17
7 2T T

F

»

The third molecule has just one atom: we multiply the third equation of the

}

present system by 7/17 and thus obtain the equivalent system

+g.. :—-Ezg.l
xX*3¥ T3 ’

6
y+~7‘2=“:—?—-, ’(IV)
z =1 . ’
LN VN ;@
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We have now completed what is known as the forward solution of the system

(I),\ For the backward solution, we\subgtitute z = 1 into the second equation
- ‘:\.\. \

in (IV), getting . \

and then substitute z =1 dnd vy - 2 inﬁgﬁe\first equation, fimally obtain—
L ) h - ‘. ‘..,. " R * .
ing

. ' " x = 3. 3

-\
? NS

-

. In the backward solution, the systems .we have obt&inﬂ? are still-equivalent

to the original system. Thus, if we have ma&e no computational mistakes, we

have determined that the system (I) has the unique solution .

P

) (xs y, z) = (3, -2, 1). K

-

To make the steps of the triangulation method quite clear, let hs'detach the
. . 3 ’ .

-

coefficients of x, y, and 2z in the system (I), thus:

' e 3 2 =2 - 3
' 2 -l =4 = 4] .
0

The symbols x, y, z have been placed in a ‘row at the top of the columns

to serve as a memory device; in the next section, when we shall be working with

r

matrices, they will appear as a column on the right.

-

~

|
In the foregoing process, what we sought was an equivalent system containing

cgefficients 0 and 1 as fellows: . .
N

-

124
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What would we have sought if the system had consisted of 2 equations in 2

variables? of 4 equations in 4 variableé? Can you suggest why this might be

- A

called the "triasngulation" method?

In terms of detached coefficients, the steps in the foregoing_ forward

triéngulation solution of the system (I) went like this:
. ) . \

[

X y z X ¥y z
3 —1 &
- xE
3 2 =2 = 3 1 3 ~3 - 1
7 8 -
P 2 1 -4 - 4 :§:> 0 3 3 2 3
-1 1 5f-m= 0 0 2 13 - 1
' 3 3
J ¢/ Xy z y
. h 2 2 .
. 1 3 3 - 1 (4)
8 6 =
= L 1
17 17
, 0 0 —7"- = 7 .
' [} ]
x y z
2 2
g 1 3 -3 =1
8 6
/ —_;> 0 1 '.'7- = -'.-7-
f . 0 0 1 = 1
~
b {

Ly




Generally, for the system

a x+a12y+a13‘z=dl,

o Sl 8!

a x+322y+a232nd2,

21
- aq) X + a3, ¥ + a5, 2=dy, ‘

"

the triangulation method proceeds like this if none of the coefficients we ‘want

to divide by are 0:

b}
Xy AR x y oz
,
a1 %2 3| T |4 1 b2 Py B!
8y, 85 853 = || >|0 Py by L1 r
84 833 333 T |9 0 byy. Py £,
&£
e
x y z
: . 17, b, g
:i:i} 0 Cy3 8 (5)
™
0 €43 8,
e ”
X Yy z
L by By £y
> 0 €23 &y
4
“ 0 1 h,

in terms of the b's? What are similar expressions for the f's, g's, and

.h3?

Can you express each of the b's in terms of the a's? each of the c's

-

3. -
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. “ v Exercises 3-2

1. 1Im general,.in the triangulation method for solving a system of four linear

equations in four variables, how many ''molecules" are there in the forward

solution? How many "atoms' in each of the "molecules?” How many individual

additions and multiplications in the forward and backward solutions together?

2." Solve the following systems of linear equations by the triangulation method:

" B
¢ (a) 3x = 4 . () x =y =3,
‘ X +y =4 ,
(¢) 2x— y+ z=-—1, (d) x+y+z+w=09,
3x +2y + 3z = 3, X—y—2z4+w=-—1,.
x + y'}- z= 2, , X—y+z—w=—3, "

3. The solution s&% .0f one of the following sys of linear equations is

ce empty, while thg other solution set contains an/infinite number of.solutions.

-~ N

See if you cde* determyyine by the triangulation method which is_;gAch,'and

by gIVe three paxticular numerical soluticns for the system that dges have
solutions: ~. ' Va |
. - . ‘ _
(a) x+ 2y — z =3, (b) x+2y — z = 3,
x— y+ z=4, X— y+ z -4,
- 4bx — y + 2z = 14; 4x — y + 2z = 15, .
. ‘ e

. 4 .
N . 4 I

4. For the scheme (5) of this section, express the ‘zfs in terms of the a's,

E N

the ¢'s in terms of the b's, the §'s in terms of the a's and e's,
" the g's in terms 6f the f£'s and b's, and h3 in terms of the a's

and e's.

3-3. Formulation in Termsfof Matrices

In this gection and the next, we shall see how the matrix notation and
¢ . :
.operations that were developed in Chapter ,l can be used to write a system of

'l‘.\; —I’* R -
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¥

ﬁriangulation

-«
¢
. . - N
linear equations in matrix form and to carry out the steps of the
method for solvimg the system. | ) .
First, for the system (I) of Section 3-2, namely,
‘ - 3x 4+ 2y — 2z = 3,
2x — y — 4z = 4,
fx+'y+52=0,
) \
 let us comsider the array of detached coefficients of &, )y, and 2z as a
. » , -
matrix, .
> A - 2 -'l '—4 .
. -~L "1 5
Next, let us consider the column matrices, or column vect’d?:s, .
: ' A
® x - 3 | b Y
X= |y and B = |4t ,
- z _ 0
whose entries alwe occur if that system of equations. By the definition of
. T2

matrix multiplicatjon, we-have

.8 s

3 2 =2 x| - 3x + 2y — 2z
AX = 2 -1 -4 = |2x— y—4z]|,
’ -1 1 5 A l=x+ y + 5x

1

N

which is a column matrix whosé entrics-=are the left—hand members o

"';:of our linear system (I).

(LN VIEN

= Now the equation

J o

AX = B,

that is, -~

f the equations

v (1)
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' 3
. ol -
3 2 =27 |x 3
2 -1 —4 yi = 4] , ’ .
-1 1 5 z 0
[
is ‘equivalent,- by the definition of the equality of matrices, to the entire un4(‘

system of linear equatilons (I). It is an achievement not to be taken modestly

333‘ .
that we are able to consider, and work with, a large system of equations in terms

of such a simple representation as is exhibited in gquation (LY. A pattern is

~.

beginning to emerge, but we_shall not now spoil the fun by announcing the final

w

results.

There is an interesting way of viewing the produét,f

P
‘ X 3x + 2y ~ 2z N
¢ AX = y| = |2x— y—-4z| =Y.
z1| . —x + y + 52 _

You will ‘recall that the.equationSJYOu have been handling earlier, such as

- y =ax +b
and : : . :
. : y =-sin x, (\
express functinns, or mappings, with numbers i; constituting the,domain

/
ﬁ‘numbe:s y constituting the range. The above mtriz} A can also be conkidered

as determining a function, with the.variable X on a domain of column matriges,

and with the variable

3x + 2y — 2z
Y= |Z2x— y—
~X + y + J=z ™~

also on a range of column matrices: a matrix function of a matrix variable! We

-

have ndi previously considered functions of this sort.
[y

3

In terms of matrix functions, what is the meaning of Equation (L)? Thé

-
-

134
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-

matrix function determined by the matrix A maps the X domain of matrices onto

-
-

a Y range of matrices. Equation (1) asks an inverse question: What matrix or
matrices X (if any) are mapped on the particular matrix B? Of course, wg have

already found in Section 3—2 that the unique valid answer to this question is

We shall consider some geometric aspects of this matrix—function point of

=

view in Chapters & and 5.

Now look again at the scheme (4) in Section 3-2, but this time in temms of -

‘matrices:

O

- . -~ . - & _ ~
3 2 —2| |x 3 Y %- 27 [& L
v X .'
2 -1 4| |y| = [4] >0 —% -%? y| = |2
5 13
-1 1 5 z 3 0 = = z 1
b . . —ed . — — 3 3—4 A =
~ — .
2 _21 [ T ,4]
! — - — o
‘ 1 3 3 x . 1 .
8 6
0 0 %; z | -%; ’
’ , L D T M
i 2 2 1 [0
1 3 ~3 X 1
ro——— 8 6
>0 1 5 ly|=|-3
* 0 o 1 z 1 ™

@
»

We already know from the work of Section 3—¢ that these matrix equatioms are

equivalent, so that the implication arrows :i;> can be replaced by two—headed

t

arrows <:§:::§:> .

Our‘%mesent concern, however,%s the question: Can the foregoing implica—

) )

tions be achieved through matrix cperations? This question will be treated in

-

. | ‘l:}i;

e
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.
the next section. .
) A
Exercises 3-3
1. Perform the indicated mult:i;plicatio?s: ' —
W ) 4. =2 7 X 3 2,. —2 X u
(a) 3 1 5 v!, (b) 2 -1 4 y v| . .
i 10 6 ‘-l z -1 1 5 zZ W
2. Write in matrix form: - ‘
(a) 4x"—2y +72 =2, (b) x+y=2, -
’ X 3x+ y#$Sz=~1, X—y ™2, -
6y = z = 3; . : oy '

3. Determine the systems of algébraic equations to ‘which the matrix equations,

FETEN

502 | [

‘ 3 4 5 x 1 : a . 1 2
(a) 1 2 3 y| = [0}, (b) 2 -1 4 y vi = 12 3
0 1 2 z 2 -1 1 5 2 w 13 1
w are equivalent. . =
4. Onto what vector does the function defined by ‘ N
! . . ‘ ’
- ‘ o * o l 2 X
| T [3 4] [y} Y
- map the vector [3} ?' What vector does it map onto the vector ‘:g] ?
l’ R
. . .
’ 5. Perform the following matrix multiplicaﬁons:
— . — | "
1 0 0O a b ¢}
(a) 0 1 0 d e f|»
0o 0 1| 4 i
L | L® -
{ 1 00 'a b ¢
(b) 0 1 0 d e f},
K 0 0 2 S
AN :

o ' T | 134
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or o

(c)

0
0
1
| | 0
. (d) 0
1

7 oo /oo

o O r

e e T o

ro:»-h@”o«.,.n—al
. .

—

3+4. Solution by Means of Matrices

’ >
@ P

In applying the triangulation method to-the solution of the system (I) of

&
Section 3—~2, namel to

B . LY

L 2%~ y - 4z = 4, ' (1)

X + y + 52 =0,

-~ -

we garried ouz jgﬁp two types of algebraigtoperations in‘abtaining an equivalent

s&stem in triaﬂéﬁlar form: . ' : ) . ke

¢ . - : . . ) -

(a) multiply an equation by a number other than 0;

(b) add an eqd;tion to another equation. .

A third type of operation is sometimes requiggd, némely: e

(c) intexrchange two equations. )

: - Al
This third operation would have been necessary if a coefficient by which we

otherwise would have divided had happened to be 0, and there had been a sub—
se&hent equation in which the same variabl® had a nonzero coefficient.

. The three foregoing operations can, in effect, be carried out-Ehrough

-

. matrix multiplication. We shall illustrate this stgtement through exampies

.

involving a given 3 X 3 matrix of coéfficients of the variables 'x, f;.'and

vz, namely, . - . ' ¢
. - a b ¢
a A= |d e f}.
g h i
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\
You can easily see, however, that the comments ‘that follow hold more generally -

for an arbit:rary rect:angular mat:rix of coefficients.

(a') Comsider the product _ .
R n 00 a b c na .nb ne
} N 61 0 d e £| = d e £l
i ' ) Y . .
" You should perform this multiplication yourself to see that the result is correct.
K- ~

The operatibn has :‘h&ﬁf{ect of multi\)lying the first row of A by n. To
multiply the second or third row by n, you can verify that yon would mltiply

on the left by

¢

cC o
op o
0O O

o

"
oo
oo
oro
- K]

»

[ 4

. .
» ]

; respectively. Thus, to multi_p’fy the p~th row of a matrix A by n, you

) multiply A on the left by_'a matrix J obtained from the identity matrix I
o 4 : .
through multiplying the p—th row of I by n. ' /
/ . (") Consider the product
1 0 0 a b e a b . . ¢
d o 1 1 d @ £f| = [d+g e+h £ +1i];
LN 0 0 1 g h i g h i
/ - :
! this multiplication has the.effect of adding the third row of A to the second
. row of A. To add the t:hird row to the £{rst, for example, or the first teo the
second, you would multiply on thev-{eft by \
. 1 01 1 0O
y 0 1 0 or 1 1 0},
0 0 1 0 0.1
/ respectively. Thus,.to add the p—th row of A to the g—th row of A, you

- 135
N /* .
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{
multiély A on the left by a matrix K obtained from the identity matrix I

by adding the p—th row of I to the q—th row of I. N

v

§c') Consider the products

. N ~ — — - '1
0 1L 0 a b c d e f ' ,
e \7 1 0 0 d e £f{ = ta-b cj,
, 0 01 g h i g h i .
L . L. | I L -
. — 7 — . 'l"" T _ - - ——
1 0 0 a b ¢ a b ¢
0 0 1 d ¢ f£i-="|g h i},
L? 1 0 g h 1 d e f
L 3
' 0 0 17 a b cT g h i )
10 1 0 d e £| = {d e £|.
1 0 0 g h 1 a b ¢

{ . 1 -
Thus you see that to interchange the p—th and q—th rows of a'matrix A, you
multiply A orf t&e left by a matrix L obtai&%d from tife identity matrix I

by interchanging‘the p~th and g—~th rows of I.

Definition 3-1. The matrix multipliers J, X, and L described»in para—

graphs (a'), (b'), and (c*), above, are called the elementary matrices.

g

The foregoing rules for determining elementary matrices J, K, and L; to

be used im operating om the rows of a matrix A through matrix multiplication,

Y

are extremely easy tb remembi:: You simply perform the desired operaﬁion on I

instead of A. You might note, however, that these cperations on I are not

N :
operations defined in our algebra of matricesg they are merely devices for con—
stru;ting the left-hand multiplier J, K, or L.

. * .
Each elementary m%tr;§',5~\(that is{ each IJ, s or L) has an inverse,

that is, a matrix E © such that

E'E=1=EETL,

. For example, the inverses of the elementary matrices

-

- 5 139
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are the elementary matrices,

1

= 10

-0 0

0

o Bl O

0

0l .,

1

OO

O 0O

o0 r

- O

O =0

>

HII-'O

and L =

o0

s ) ané L-II

»

0O -

9

OO

oo

o0

OO
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e

respectively, as~you can verify either by performiﬂé the multiplications that
are involved or by recal}ing.the effect of multiplying any matrix A Dby one
of these elementary matrices. Thus, the above matrix L differs from ﬁhe
identity matrix I in having its.first two row§.interchanged; and multiplyiﬂg
on the lef£ byf.L‘ h;s the effect of interchanging theffirst two rQws.-
M}xltiplifations by el_éme_nt:ary matrices can be combined. Thus,‘ to multigly

the first row of A by 1/3, we would multiply .A on the left by the elementary

matrix J with ;) -‘1/§:.'~
3 ‘ * ) | -]; 0 OT
\ 3 |
' J= |0 1 O\; .
. | 0 0 1

and to add —2/3 rimes the first row to th cond row, or 1/3 times the first

row to the third, we would multiply A on the left by the product of elementary

matrices of type J—l KJ - . T
) ‘ _ »

. I-“3 2 '
-§-00 1 0 0 ——500 1 0 0
01 0 1 L o 01 0| = -35.10, q
¢ 0 1 c 0 1 0 0 1 0 0 1

or yd

}

Ly
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O O w
o = O
-0 ©
- o r
o ©
[V <Y~
L0 O wr
O >~ O
o~ O
- O ©
-

Wi

‘respectively.. To perform all three of these operations at the same time, we

'. would multiply A on the left by

v

0 bT,
l 0 » N . Ta

c 1

Hln-.

&

Wik WM wir

[

.

which can similérly be shown to be a product of elementary matrices.

Now the three operations performed on the matrix A through muitiplying A

...

on the left by'the above matrix Ml correspond precisely to the three atoms

LY

1), (ii),, and (iii) of the first molecule in the triangulation solution of the

system (I), see page 120.

ak?
In matrix form, the system (I) is ‘*
- } :
3 2 =2 X 3
~ 2 —L -4 yi = |41.
-1 1 b z 0
We multiply both sides of this equation on the left by Ml’ thus:
Lo ol [3 2 w2 [x Lo o] [3]
© 3 - 3.
2 o~ 2
-5 0 2 -1 -4 y| = |=5 1.0 41 (1)
1 N ' 1 ‘ -
3 0 1 -1 1 5 z 3 0 1 0

I
{
/
L
]
L
:
~ i.

If you will carry out the numerical.computations both in the lefé—hand member

and in the right—hand member of Equation (1), you will obtain the anticipated

result:

1y




This is the matrix form of the .system (Ii) of Section 3-2.

4

) Y

L
-

27 _2
K} 3
_1 _8
3 .3
513
3 3

)
1
i

L
-
L

1

L.
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///If you look mow in Section 32 at the two atoms (%? and (ii) of the second

molecule in the solution of fhe systeﬁ (1), you will ascertain that _the corres—

\\ pondiég\matrix.multiplier must be
AV _

\

L

Mé_- 0

0

b

o

(=)

1

~Nju SNjw ©

since this time we want to multiply the second row of the matrix of coefficients.

by 45/7 and \to add 5/7 times\tg?.seéond row to the third. The matrix M2 applies

thus:

to yield

which is the matrix form of the system (III) of Section 3-2.

The third molecule, with its one atom, has the corresponding matrix

multiplier

1

[w] [ aaed

o

-2— --2-—
3 3
7 _8
3 3
5013
3 3
2 2]
+3 3
8.
13
17
0 3

y -
Z
X
y -
A

-

&%

1 0 0
3
0 -7-0
5
0 7 1
L o
1
8
?’
Y]
7
L
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Y170 o
" My= |01 0,

7

0o 0 =+

- 17

™~

kY

"since it leaves the first equation unaltered, leaves the second equation unaltered,

" and multiplies the third equ?/tion by 7/17; applying){, ‘we obtain -

€

[~ 17, 2 21 [ i T L
. 1 0 ¢ 1 3 3 X \“0 0 3
o 1No| {o 1 % y| = o1 of |-2],
- 0 0 = 0o o L z 0 0o % 17
L > 17_‘ B 7_ L_ L-o 17 L7
or .- , ) & .
T2 21 -] ] T
1 3 3 x 1
| 8 - =8
.0 1 7 y| = = (2)
b 10 0 1 z 1
- ,.‘. . b ! N ’ .
Nbg@ﬁEl, of. course, is prec;sely'the matrix version of the equivalent
triangulated: system (IV)'of Section 3-2:
. -r\f i . . v
2 2
x+§y—-§zal, | N
' 8 6 :
“ _ ) y-{—-—za—-—, ' -
Y E 7 7
z =1,

from which tbe backward solution yields (x, v, z) = (1, —2, 3) as before.

-~

. . .
To review the foregoing process, and te visualize the operations more

N W )
generally, we might note that the successive matrix multipliers for the scheme

}<5) of Sectionfji—z are - .. .- ‘ !(
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e - r— o — —
;L 0 0 1 o0 o 1 0 0 :
’. %11
a 4 : >
—;—271— 1 0,0 bi 0{, and |0 'L 0 |
. a5 22
a . b T
--513-1- o 1| |o -f"—g 1 0 0 E—l-
1 22 , 33
X 1 L ] B e
IS

Let us now take advantage of the asseciative law for the multiplication of

) N

matrices to form the product o Sl i
[~ T - T 1 ]
1 0 © r 0 o = 040
& ’ ‘} ' -
- = i d \-—.3. —-gn V| ‘
M o= MMM 01 0fgf0 -3 0 3 10 _
LO 0 l.},d 0 7 1 3 0 1 < .
f - 4 ~ - R
T . «
1 & 0O =,°0 0
314 SN
=lo1 o 2 _3 N
- 77 e
7 c 1 5 ; -
™ . 0 0 17 C-?- 7 1 N
» - ) — L \/
( 3 0 0
2 3
= 7 "7 © -
Lt 2 7
17 17 17-

.

If M 1is applied to the original system of equations (I) in matrix form, thus;

[

- - — — — — — ’-— -

5 Lo 3 2 2| |x > 0 of |3
~72« —-;. 0 2 A 4| |y| = 1;‘- 4:;’- ol |4 v
1 s : 15 7

i
’

~

then the equiﬁalent triangulated system (2) is obtained directly, as you éan

114
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1?8 _
verify by performing the numerical computation.

If we are confronted with a secoqg system of 1ine;Z equations, say

.\ ’

x +2y —2z=-—-2,

ZxT— y — 4z --~ 12,

’«x + y + 5z = 18, £

in which the coefficients of the variabtfs are the same as in the original system

-

‘' (1), while the right-hand numbérs are different, then we can again apply the

{ ‘ S
same matrix M to obtain the same triangulated matrix of detached coefficients,

thus: . | S -0
. ]
T 1 1T 107 T e 1T 1]
3 0 0 3 2 2 X 3 0 0 -2
2 _3 2 <1 4] |yl =] 2 -2 o 121,
7 ~ 7 i N .
I S 1 1 5 7 |
T2 Vv R O I T I v v v B
or . -
’ <
’ - 2 2] [ C 2] M
L 3 =3} |* —3 \
< 8 32
0 1 - y = 5 1.»
7 7\__
0 O 1 21 . 4

\ L_ — e e —

whence the backward—solution proééss_yields : '

R ) (x, ¥, 2) = (2, 0, 4).

' .. When we are confronted with the problem of solving two or more systems of

[

linear equations that differ only in their right—hand members, however, it is

»

advantagecés to effect a further simplification of the matrix of detached co—

efficients, obviating the necessity of performing the backward solution each

>

time. This will be done.thfough'the diagonal process in the next section.

-«
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Exercises 3-4
> 1. Solve the following systems of equations by the triangulation method::
. & o
ta) 3x +2y — 2z = ~ 4, (b) =x-"y—2z =3,
2x - y— b4z =2, y + 3z = 5,
-x + y+552=7;, 2z + 2y — 3z = 15,
2.” Solve by the triangulation method: ' ) .
» 1 4 7. xT 3-
(a) (2 3 6 y| = 0],
5 1 -1 P 7
\ ' 1 4 7ﬂ R ] ,,37
(b) |2 3 6| |yj=to}f, f
5 1 -1 z -2
B & . = S — *
o .; 1 4 YT i xT 1
(c) 2 3 6 Y| ={ 31,
5 1 -1 z -4
1 4 7] [x] 0
(d) 2 3 6 y| = |0]. '
5 1 —1 < 0
- - | - - o B N | /'\.'!

3. Solve by the triangulation method:

*

4 0 2 X u 4 2
1 31 y v| = |1 6}.
2 -1 5 z w 3 7 &
3-5. The-Diagonal Method ¢
s
For the forward triangulation solution of the system
o ‘ 3 2 -2 X P 3 N
& 2 -1 -4 Yy o= |4, (1)
’ > ‘ -1 1 z 0 N
o A
you will recall that in Section 3-4 we sought an equivalent matrix equation
. e -

having coefficient matrix of the form

-

L
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1)

~ 0 o
.

s : ) N

" without regard to the-unspeci%ied_entires a, b; and ¢ in the upper righé—
hand portion. After this was achieved, the backward solution was employed to

obtain the answer: )

(x, vy, 2) = (3, -2, 1):

A

é In case we have to solve several systems of linear equationms, all with the
same coefficient matrix but with differenﬁ right—hand members, as in some of the
. , .

problems at the end of the preceding section, it is more eff{cientﬂto obtain an
LY .

e&uivalent'system with the identity matrix

L e

o
-

*i B

\- o 1 00 N
: —¥ = 10°1 0 (2)

’.‘; ) p 0 1
- : .
_ N ” : A
as coefficTent matrix, for then the backward—solution procedure is eliminated.
. - - -
It is always possible to obtain a coefficient matrix of the form (2) if it is
jpossible to obtain-one of the form (1). T .

3 N

You should recall that

1 00 x X -
o L 0 y| =y = X
c 0 1 z z

Vs

in ordé; to appreciate the value of having a coefficient matrix of the form

- Ll

(2). Can you tell how it is that no backward solution is needed in this case?

Can ydu suggest why"a method of solution involving a matrix of the form (2) might

'S

be called the 'diagdnal method"? (The 1's in Equation (2) are on the pringipal
diagonal*a? the matrix.) What matrix correspondg to (2) if the system consists

of 2 equations in 2 variables? of 4 equations in 4 variables?

o : 147
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Of course, more work is required to obtain a coefficient matrix of the form

(2) than is .required to obtain ome of the less special forg (1). You will recall

that in obtaining an gquivalent system with coefficient matrix of the form (1),

the procedure-:consists ordinarily of 3 ”molecules,” of 3, 2, and 1 "atoms,"
respectively. In obtaining & coefficient matrix of the form (2), as you will
see, the procedure again ord}nerily consists of 3 molecules, but now each melecule

contains 3 atoms&digggger, in general the additional work in obtaining a coef-

ficient matrix of the form (2) is more than compensated for even if thefe are
P | \ |
only 2 systems with identical coefficient matrices to be solved.
The diagonal method differs from, and extends, the trianguietion method as
. | - e

follows: whereas in the triangulation method we seek to obtain a coefficient

matrix with 1's all along the principal diagonal and with 0's everywhere beloWw

this.diagonal, in the diagonei method we seek to obtain a coefficient matrix
with 0's also above the principel diagonal. The way to determine the matrix
multipliers in order to do this should be apparent from a review of the rules
given in Section 3-4; (his will:be illustrated in the next section.

£

. _ Exercises 3—5 _ v

‘e

1. Perform the following multiplications:

-

- , T 1 12 10|
3 2 =2 7 T 1T
6 13 8
) (a) | 2 -1 4 7 "0 "ol \
o« N
3 17 <17 17
! 12 10 | ]
17 1-7— -f7— 3 2 =2
6 13 8
(b) 17 17 "D 2 -1 441 . N
1 b 7 .
— 17 i7 17 —1 1 5
L - L — 5

2. Multiply both members af the matrix equation

LY

. | *lqg
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y
1 12 10 X 17 . . !
. s 6 —13 -8| |y| = | O
-1 > 7 z 0
on the left by : . ‘
o
13 2 =
2 ":1 -4 L, -
-1 1 5
» ) , .
' and use the result to solve the equatién, -
) - s
3. Solve the following system of linear equations:
~ . x4+ 12y +10z=-9, | S
6x -~ 13y — 8z = 31,
—=x + Oy + 7§==;'8. ~

B ¥

3—6. Matrix Inversion

Let us apﬁly the diagonal method to the system (I) of Section 3-5. But te
emphasize the fact that the procedure will work equally well for any set of

right—hand members, let us replace the right—hand member

@,' b} . . RS
- . ;3 -
. ’ 37 u X e
4 by U= jv|, e >
0 w
thus: '
3 2 =2 X u .
2 =1 -4l |y] = |Vv]. (1)
. -1 1 5 z w
. v
| % .
This is an equation of‘thi,form -
t . -
AX = U, ‘. (2)

the coefficient matrix A determines a matrix function with independent variable

X on the range of 3 X 1 matrices and dependent variable U on a domain also

A\

149
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T - : o \\_

.» of 3x 1 patrices.
- ~

. . LS PN Iy
- If the matrix A has an inverse ;A l, so that

' 0 At aaread? . ®

1

and if'@e can determine A , then we can solve the equation (2) for X in“terms

of U by multiplying on the left by A_li

. ) . )
b . - ~
.

~1 -1 )
whence . « ' : B
~ e ¥ .
—~ e . ""l . )
X=4"U e
kY - 4 (f h [y
thus we have the inverse matrix function of the matrix function given by Equation

= -~ :

(2). " Our .problem is to determine the matrix- Afl in cdse this matrix exists for

¢ . ‘. - ' R
our particular example. f-\ _ o

/ : )
For symmetry, let us write Equation (1) in the equivalent form

3 2 =2 x 10 0 u
2 -1 -4 yl = (0o 1 0}, |v|, (3)
-1 1 5 z 0.0 1 W .

with a coefficient matrix on both sides of the équation.
“ Looking aﬁfthe left—hand coefficient matrix in Equation (3), we determine a

matrix multiplier to adjust the'firsg column, as follows:

4 .

. - 1 e e -~ - . T
Lo 3 2 -2| |x %o\\o 1 00| |u
2 - e i ’
-2 10 2«1 4| |yl = (=2 104 jo 10 |v
- 3
' 1 1 ‘
: o) {41 s e -5,}1' 0 0 1| |w| ° .
Y — - - - d . 0 B S - L.

it

This multiplies the first row o% the matrix_of coefficients by 1/3, adds
—2(1/3) = —2/3 times the first row to the se@ond, and adds 1(1/3) = 1/3 times-;;E“‘

first to the third, Xielding

ERIC , | L)



[— ~.V vy pres ey p— ‘—" f ¢
2 7 1. ] o
\ ) 1 3 T3 X 3 1 0 U ‘-"\
7 8 _g
- . 2 13 l
. 39 3 3 “ 3 01 v

"Adjusting the se

|

*

cond’ column of the left-hand coefficient matrix, we have

o

f

ad

1

i

2 2 271 2 1

1 5 0 1 .E 43- X 1 '.;,- 0 '-5‘0 0 u

A = 3. -1 _8 = le =3 -2 :

0 3 ) ) 3 3w/y 0 7 0 3 1 0 v .
5 5 13 . 3 1 w |

0 &) ‘1— L1 3 .3- z _0 7 ¥— i 3 0 1_ ;?_,

This multiplies the second row by —34?, adds (~2/3)(=3/7) = 2/7 times the second

- row to the first, and adds.(—ﬁ/é)(—ﬁ/?) = 5/7 times the segond row to the third

*
L

to yield numbers 0; l;}and 0 il the second column:

Y

- _w] ] 1, 2
1 .0 7 X 5 5 0 u
IS 8 -2 3 . . §
o 1 7 y| = 7 3 o vi}.
- . 17 v __1_ 2
0 0 7 2 7 7 1 “w_ N

‘similarly, adjustfhg the third columm of the left—hand coefficient matrix,

®

; . a
w& perform the multipdication

[

A}

”~

) . 107 [ 1] .1 T w] v 2 1 [.]
L 0 i7 1 0 - 17 ® 1 0. 5% 7 3 Q u
8 8 2 3
0' 1 | o 1 7 y | = 0. 1 17 7 -3 0' vi,
7 . 17 7 1 5
e~ 0 0 - 0 O — z 0 0 »~-= —_ = 1 w
i 17_ i ?_ L 8 l?)4 L 7 7 ] _L ]
. - §
obtaining
T
b ¢ l')(
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1 0 67

Y . " ]lo 1 0

— -y
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Loorzoo1] [T

17 17 17

6 13 _ 8 o .

7 "i7 T v [ (4)
SR SR A

17 17 17

Equation (4) can be written equivalently as

1

#
=], =
Sl= Sle G-

r

|

In particular, to return to our

we get

?
X
pS y ="
2
R

which coincides with the result

method.

Again, for the problem

we obtain

o

-

- - - :
S| Sfe S

y R
-1 -4
1 5

1210 f
17 17
A3 8
-17 T 10 vy . (5)
RN
17 17 i

{
original system (I) of Sectiﬁn.3—5, if for

)

3
we take 41, ‘
0 .
{
!
12 10 [.] BN
17 ', 7 3 . 3
13 . :
—-ﬁ -1 4 = -2,
5 7
17 i7 0_1 1
- - ,._L — i

obtained.in Section 34 by the triangulation

x -4
y| = 2 B
2 7 \
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to obtain

.on the left by B,

~

12

17 17
-8B _E&

17 17

2 L

7 17
—.

i 2 —z_1

2 —1 -—Q ’ B =
-1 1 5

1 0 0 X
0 1 0}, X= 1|yl
0 0 1 z

Accordingly, we have

*

-

Al

BAX = BlU,
X = BU.
BA = I,

the identiwy matrix. You can show likewise that

O

Thus the matrix A has B as its inverse, as deMned in Chapter 1:

o]

-

S

‘AB = 1.

153

- 90

17

_ 106

17
63

17

H
o
|

|~ Sl I

-
~

(6)

(7)
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B = AL, \tn”

Is it an atcident that the matrix B, which we determined as the product

-

of elementary matrices in-such a way as to satisfy Equation (6), also satisfies
Equati&n (7)? Not at all! — even though we know that the commutative.law‘dées
not generaliy hold forwmatrix'multiplication. The.fact that Equation (7) follows
from Equation (6) isyan instance of ﬁhe following,fesult: ' | >

Theorem 3~1, If A and B are n X n matrices, if B is a-product of

elementary matrices, and if BA = I, where I is the n X n identity matrix,

N S :
then . A s ;]

] . \'

By

Proof. For simplicity, we shall give the proof only for the representative

case ' ) ‘ N >
v
B-E2 1’ ] ¢
‘

hY

where E1 and ‘kz are elementary matrices;-énd we shall use the fact that every

elementary matrix E has an inverse g—iias indicated on pages 132 and 133.
Since
BA = I ax_xd B==E2 1
we have » ‘
]
-
EZ'E1 A=1,
whence
-1 -1 ~1 -1
El E2 E2 El A El Ez 1.
Consequently,
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~- [
: R T e | 1 -1
E"(E,” E)) B A= E,” E, I,
or ,
~1 s R |
E"E A=E E,,
since E;l,ﬁé = I and the product of I by.any matrix is the matrix itself.
- But aiso EIl El = I, so that : .
~1 —1
A= El E2 .
¥ 3 F 3
Since N - .
A= Enl Eﬁl and B=E C!
1 72 27y
¥
we have
Y1 -1 ‘
MB=E EEE ’ -
~1.. -1 v
| = Ep(Ey T EYE, _
whence .
£ - {
’ -1
. AB=E) EpL
or *
AB = I,

as desired. This completes the prpof of the theorem

N

Now look once more at the left—hand members and at the right-hand members of

the equgtipné starting with Equation (3) and ending with Equation (4), and syp—

]

press éfdé them the matrices

L

!

o
1
o |
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and v].

- %

and end with -

“The sequence of transformation matrices that leads from A to I leads also

1

from I to A -. We have thus outlined a method for the determination of the

inverse of the matrix A. N

o
K

Some matrices, however, do not have inverses, as you learmed in Chaﬁters

o

l.and 2. We sh7i1 be concerned with such a matrix when we deal with the matrix
®

of coefficients in the examples (a) and (b) at the start of the next sﬁftion.

. Exerfises 3—6 r . A

1. 'Sof§e the following systems of equations by the diagonal method:

\
(a) 3x + 2y — 2z = -~ 4, (b) x —y — 2z =3,
X'~ y — bz = 2, ¥ + 3z = 5,
—x + y + 5z =.7; ‘ 2x+2y — 3z = 15,
2. Solve by the diagonal method: .
. i& & 7 fj 3 oY L 4 7 x 3T
H (a) (2 3 o yl = |0, “() {2 3 6 vyl = 0], .
5 1 -1 z 7 5 1 —1 2 2| 9
— N 1 — = . - - —
1 4 7 X 1 L 4 7 X 0
(c) 2 3 6 y| =1 3|, (d) 2 3 6 yl = [0] .
5 1 -1 z 4 5 1 -1 z 0
— ' , = . . L N___J -

3. Solve by the diagonal method:
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ey
w o
LV B o O]

I
—

Solve by the diagonal method:

o

Solve by‘the diagonal ‘method:

*

X u m
Yy v n
2 w p
2x + y +
4x + y +
6x — y —
~4x — 2y +
Ix -
8y -
rlz —
2x +

1

6. Determine the inverse of each of the

following matrices:

by 4 2
s| = |1 6
£ 37
2z — 3w = Q,
z + w= 15,
z— w=35,
5& - w= 2,
y = 37,
2z =~ 4,
3w= - 17,
ow = 14, ¥

~N N o
- -
Mo O

1 oW 43 2 1 0 0
: ) .
"3 50, {0 1 -1}, 3 4 0
-2 1 0O 0 7 % 3 2
L - L . L -4
7. Use your work on Exercise &4 toféqlve
2 1 2 -3 s w 6 1
4 1L L 14" . le x| _ |6 12
6 -1 -1 -1 u oy & 8| °
4 =2 3 -1 v z -2 7
8. Explain how it is that the diagonal process is not self—destructive — that
is, that after a. 0 or 1 has been established in a certaiir position in
the coefficient matrix, this value persists at that place in subsequent
steps. *
9. Express the matrix *
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. S0 0 .
2
| . -2 10
-§-01
L .

as a product of elmﬁentary matrices.
—~ . )

* 10.[ Give a proof of Theorem 3-1 for the.case /

B = E3 E2 El.’

.

where E,, E,, and E; are elementary matrices, Try to prove the theorem

-

for the general case

- [

B=E E_, - E,E,. y, .

«

3~7. Linear Systems in General ,'

Earlier in this chapter, in Exercise 3—2-3, we were concerned with the linear

systems,
. (a) X 4=2y - z'= 3,. (b) x+2y— z=3, ,
% O x— y 4+ ozo=a4, X~ y+ z2=4,
bx — y + 2z = 14; 4x ~ y + 2z = 15,

LY
AN

b

which lﬁook innocent enough. But for them the first step of the triangulation

method of solution yields R

(a') x + 2y — z = 3, (b') x +2y — z =3,
- 3y + 2z =1, — 3y + 2z =1, ¢
- Gy + 6z = 2; —~ 9y + 6z = 3, .
i

and the second step gives .

~
(g



152

.‘

-

(a") x+2y -~ z =3, (b") x+ 2y — .2z = 3,

. & t
- 3y + 2z = 1, -3y +2z=1,
Y 0= —1; 0=0.

If there were a solution for the system (a), then we would have 0 = — 1;

-

hence there is no solution for this system.
Now, by contrast, there is no mathematical loss in drOpping the equation

0 =0 from the system (B'"). Without'this equation, the system can be written

.

equivalently as . .
(™) x+2y=3+az, ° o
. ‘ AR

. -—t_z, . | .
PSS e y\! 3 3 ; .

Application of the backward*solution portion of the triamgulation method to the

" system (b™) yields

<

+

-
K
Wi Wi~

]
-

Q)

N
.

«
B

Whatever value is given_ﬁo' z, this value and the correspandihg values of x
/ . ' :

a

and y as determined=b§ the equations (1) satisfy the original system (b). For
[ 4 -

- example, a few solutions are shown in the following table:-

z b3 ¥
. 2 -1 1
- 4 1
-1 3 3
11 1
© 13 3

1 6 -1 )

- 4 13 -3 -
(g

-
4

Do you have an intuitive geometric notion of what might be going on in the
rl

o ‘ﬁ gl
ERIC | 159
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above systems (a) and (b)? Relative to a 3—dimensional rectangular codrdinate

’

system, each of the 3 equations in either (a) oxr (b) represents a plane. Each

\ .
pair of planes actually intersect in a line. The % lines of intersection in

either (a) or (b) might be expected to be‘isnéurrenﬁ/é; a pgéé;u/ However, in

.- )
(a) the 3 lines are parallel Jut'not coincident; there is no point that lies 23~‘/////

all 3 planes. On the other haffd, in (b) the 3 lines are parallel and coincident;

there is an ertire 'line" of solutions. / d

How many possible configurations, as¢ regards intersections, can you list .

for 3 plares, not necessarily distinct from one another? They might, for
! _
example, have exactly one point in common; or two might. be coincident and the
) : . ‘ .
. ! . R -
third distinct from but parallel to them; and so on. There are systems of dirfear °

equations that correspond to each of these geometric situations. ’

s s
nge are two additional systems that even more obviously than the.above *

system (a) have no solutions:

(c) x=2, L (d) x+y +z =2, '
///’ x = 3; x+y+z=3. -

f.. . - ~ . -
Thus you see that the number of variables as C?mpifed with the number of‘equations

does not deteimine whether or not there-is a solution, : * ‘

+

It is plain that the routine triangulation and diagonal methods can be &

Y
¢ - *
-

applied to systems of aﬁ& number of linear equatigns in any number of .variables.

5o

Let us examine the general situation and see what canihappen. Suppose we have

* 1
a system of linear. equations in-certain variables. If any ‘variable s with

coefficient 0 in ewery equation, it plays no role ahd we drop it.g.Suppose we
have applied k molecules of the diagonal process; in doing this, since we
<« —Sometimes divide by the coefficient of one of the variables, {t might be

Ifnecessary to rearrange some of the equations, by the method of paragraph (c')

in Section 3-4, or to rearrange some of the terms in all the equations. At the

end of this process, we arrive at an equivalent set of equations cof the form
. .

-

1o
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-~
AJ

x, + - " linear terms in variables other than ‘xl,...,xk = bl’
(/' x, + kinear terms in varisbles other than Xypeensky = by»
( - . V . . 'o - B >(2)

| x + ligear terms in variables other than x g5 e ees®y = b,

* * and OTHER EQUATIONS in which the variables xl,...,xk.do not appear.

«

»
-

}f 1f any variable occurs with a nonzero coefficient in any ome of the OTHER

EQUATIONS, we can continue our elimination process. Eventually we will come to

an end. At this point, our system of equatioms must look like this:

*

-

x, + ' linear_terms in variables other than XpseeerXy -.bl’
gy ) x, + linear terms in variables othgr than xl,...,xk - bz,
Ve o —» - . [} }(‘3)
i Q\ : .
) X + ° linear terms in variables other than xl,..x,xk = bk’
. ‘bTHER EQUATIONS in which no variable appears with a nonzere coefficient.
o

N *

what’ can one of these OTHER EQUAiloqgﬁ whichemust be an equation {n which
no variable appears, look like? Either it is of the form 0 = 0, in which case
we might as well drop it; or it*is of the form 0 = b, where b is a constant
differenﬁ.from zerb, in which case it is a contradiction. Hence we see that:
>either the OTBﬁR EQUATIONS all state simply 0O = 0,‘ in which cése they can be
. dropped, or at least one of the OTHER EQUATIONS is an obvious contradictioq.
Since the system of equations (3) is equivé%ent to the original system of
equations, (3)can contain coné;adlctions, i e.,‘state impossibilities, only if
the oriéinal system of equations also states impossibilities, i.e., only if the
original system.of equations simply has no solution. '
Thus, if the OTHER EQUATIONS in (3) are not all gimply 0= 0?§ perhaps
¢ ' ‘ ‘

repeated several times, then the original system of equations has no solution.

»

Summarizing, we see that we have established the following result:
\

t-' . \}.n A
. AW - : £ 4
 § . . 'E\.)_(
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2

Theorem 3-2. 1If the diagonal method described above is repeatedly applied

to an arbitrary system of linear equations and carried through to the end, then
- we asrive at one of these two situations:

(a) . at least one palpable contradiction of the form 0 = b, b being
L

. some nonzerc number, so that the orginal system of equations has no solution; {

*

>

(b) “un-equivalent system of equations of the form

Xy + . linear terms in variable other than XpseeosXy = bl; .
X, + ' linear terms in vaxiables other than XjsoresXy = bz,
, | - | r (%)
* + linear terms in variﬁbles other than xl,...,xk - bk' 20
[~ ] . - > :
. ! . o

k}

i Let us examine case (b) more carefully. There ape two subcases: eithﬁf (1)
, . - ~

there are really no variables other &han xl,.m.,kk; or (ii) there really ‘are —

-

variables other than xl,...,xki'
S case (i) our system of eq&aﬁions reduces to X = bl’ xz = b2,...,
. X, = b, and the solution is unique.

In case (i1), there are variables oth%r than S ERRRTE Denote the vari-—

»

.ables other than. XpseenaX) by the letters yl,yz,...,yn; where n > 1. We can

transpose and write the system'(4) of equations in the foxm - ' p
f e Tt e L TR T

X, =b, +c + d2y2 + o + e > (5

2 TPy T Yy

. - - :[p -
xk bk + ckyl + dky2 + e 4 ekyn

—

Il

A

It is clear that this system of eduations will be satisfied if we assign
‘arbitrary value; to the variables ‘yl,...,yn, and then determine the values of

Xiseoes®y from (5). 1In this case, our solution evidently is not unique, as was

Ty

Qo 150
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illustrated in the table on page 152 . ! - o

Summarizing, we have the following theorem:

Theorem 3-3. Let a system of arbitrarily many linear equatiomns in arbitrar—

ily many variables be givem, If the diagonal method is repeatedly appliéﬁ to the

given system of linear equatinns, and carried through to the\end, then we arrive

at one of these tngee situations-

(a) at least one palpable contradiction of the form 0=Db, b being

some nonzero number, so that: the original system of. equations hag no solution;

T (b) enm equivalent system of ‘the form xl ='b1, X, = b

,..,xk = b

one for each of the unknowns in the original system of equatioms, s \t t there
7 4is a unique solutiom; . : ‘
k. (c) an equiyalent system of the form | \ o

. g A
X T bl +-cly1 + dly2 + -'-I+ e ¥, ‘
- X, m by eyy) hdpyy et ke¥ 7 (6)
f . . N l . ' :
- o e b ey H Ay, P TSI r

A
the “Q§E¢-s oé the initial system being xl,...,xIS and Yysees¥yo and not all

coefficients of the y s different fram 0, so that there is an 1nf1nitude of
solutions, which are obtained by giving arbitrary values to the variables

yl,...,yn and then determining the remaining variables xl,...,xk from the

equations (6).

Kl

~

Thus the question of solving systems of linear equations in arbitrsniii

L)

many unknowns is settled in all possible cases.

-
?
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Exercises 3-8 ¢ -

1. (a) List all possible configuratioms, as regards intepSecﬁicns, for 3

-

(N distinct planes. ' - . . ‘ .

(b) List also the additignal possi%&e cbnfigurafions if the planes are

/.--
Sl
©

allowed to be coincident. . o oo

. / ) ’1
2., Solve by the diagonal process: _ o ) 7N
\ . X+ y+ z=6, o
% X+ y +2z2=7, : : .
» Y$ z-la ."“ —
1 | | )
3. Find the solutions, if any, of the system of equations
v+ x4+ y+ z= 0, ) .
’ . v— x+2y + z = (0, - ’ . ,
v ~ x + 5y + 3z =1, R
~ . ‘ . v— x*+ y—- z =2,
i . _ .

e - .

4. Find the solutions, if any, of the system of equétions

A

. o - _ ' (

x+ y+ z=1,
'  ex—.y~22=0, . .
. - -~
RN x+2y +3z2=1,
P ] v
3 — y -5z = 1. )’ St "
5. . Find the solutigns, if'any; of the system of equations ) _ ///
v+2x+ y+ z =0,
o —v+ x+2y + z=0, ‘
- —-v‘+-4x + 5y + 3z = 1. . / .
® 4 ),/ *
6. Find the solutions, if any, of the system of equations -
. v+ x+ y+ z=1, ' /
- x— y+ z=2, . {

2x — y + 2z =0,
3k — 3y —~ 7z = 4,

L
o
<ta <

| +

’




» . Chapter 4

s \_,/ . ‘ .

* . REPRESENTATION OF COLUMN MATRICES AS GEOMETRIC VECTORS
' c !

4—~1. The Algebra of Vectors

PR

¢

&

le In the present chapter, we shall'deﬁelép a simple geometric representation

o for a ;pgcial class of matrices -— namely, the set of column matrices [i] with

a two.entries each. ,The'familiar algebraic operations on this set of matrices will
be reviewed and also given geometric.interpretatidngiwﬂich will lead'tp a deeper |
understanding of the heaning and implications of éhe algebraic ;oncepts.

4 -
By definition, a column vector of order 2 is a 2 X 1 matrix, Consequeﬂ%ly,

using the rules of Chapter 1, you can add two such vectors or mdftiply any one

a

of them by & number. The set of column vectors of order 2 has, in fact, an

algebraic structure whose properties were largely explored in your study of the

- b Q

rules of operation with matrices. In the following pair of theorems, we sum—
marize what you already know of the algebra of these vectors, and in the next

section we shall begin the interpretation of that algebra in geomatric terms.

-

»

’ o \ - .
Theorem 4—-1. Let V- ana\ W be columm vectors of order 2 and let A be,

a séuare matrix of order ‘2. Let r be a number. Then
\ ‘ "
V+W, rV, and AV

P

- -

are each column vectors of order 2. I w

¥

»

.
* -~

Theorem 4—2, Let V, W, and U be colum Gectqrs'of order 2, and let

X and B be square matrices of order 2., Let T and s be numbers. Then all

~

“the folloéing laws are valid. . . p .

.

I. Laws for &he addition of vectors: . . . ”

(a) V+W=W+V,




h

“w (B) (VH+W +U=V+ W+,

(c) V+02x1=

(d) v+ (V) =0

Vs

2X1°

a

II. Laws for the numerical multiplication of vectors:

. g .
(a) ©(V+ W) = rVv + W,

i

(b) r(sV) = (rs)V.,
(¢) (r +8)Vs=1rV + sV,

(d) OV=0, s

(e) 1V =V, | o

D) 0,00 =%yt

o

!

" II1. Laws for the m.ult‘iplication of vectors by matrices:
(a) AV +W) ‘a' AV + AW,
(b) (A + B)V = AV + BV,
(c) A(BV) = (AB)V,
(@) 0, V=0, 4
(e) IV =1V,
(£) ' A(xV) = (rA)V = r(AV).

$
4

In reading Theorem 4—2/ teéall that 02Xl is the columm vector of order

2 the sc{uare matrix of order. 2, all of whose entries are 0.
A\

" Both of the preceding theorems have already been proved for matrices. Since

2, and O

vectors are merely special types of matrices, the theorems as stated must like—

L3

'Qwise be true. They would also be true, of course, if 2 were replaced by 3,

_or by a general n, throughout, with the understanding that a column vector of

order n is a matrix of order n X 1.

e ' -

-

I8y
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Exercises 4—1

. Let @

let

, 3 0 1 1§,
L - [2 _1] nd Ba[_z 1], s

let r=2 and s = - 1, Verify each of the laws stated in Theorem 4—2 for

-

this choice of values for the variables.

2. Determine the vector V such that AV — AW = AW + BW, where

-

. | s o _ |3 1o
A= [; _.] s W [9] , and B [_4 é} .

3. Determine the vector V such that 2V + 2W = AV + BV, 1if

At

0 1 2 -1 =2
W= [?J' A= [—1 1]’ and B = [1 —-1]' ~
t

| 213 173 ma A2 1 -
A {;4/3 2/3] , 'B [[} 2}, and A(3V) = A(BV).

4, Find V, if

ol |

5. Let

Evalpate

(a) A [é:l and  (b) A {:ﬂ .

(c) Using your answers to parts (a) and (b), determine the entries of A

if, for every vector V of order 2,

. AV = 0,01

(d) State your result as a theorem.




162 ¢

6. Restate the theorem obtained in Exercise 5 if A 1is a square matrix of

order n and Y stands for any columm vector of order n. Prove the néw

theorem for n = 3. Try to prove the theorem for 'all n.

P

7. | Using your answers to phrts (a) and (b) of Exercise 5, determine the entries -

of A 1f, for every vector V of order 2, '

i

-

AV = V. - ~

(:?ta:e your result as a theorem.

8. Restate the theorem obtained in Exercise 7 if A is a square matrix of order

n and V stands for any column vector of order n. Prove this theorem for

n = 3. Try to prove the theorem for all n.

g

. 9. Theorems 4~1 and 4—2 summarize the properties of the algebra of column
vectors with n entries. State two analogous theorems summarizing the
properties of the algebra of row vectors with n entries. Show that the

two algebraic structures are isomorphic.

42, Vectors-and Directed Line Segments

In graphing functions and relationships, you discovered the great advantage

-

in having a simple numerical language to describe the location of a point in a
a ,

plané. You remember that an ordered pair of reéal numbers constitutes the co—
ordingtes'of any given point in the plame. But that same ordered pair of numbers

can be regarded as a row vector or as a column vector.

y

Thus, ih Figure 4-1 the point P that is 3 units to the left of the y
axis and 4 units aboveé the x axis is represented by the pair of numbers (—3,4).
However, that same number couple, written [}3 4] , is simply a row vector;

/  written it is a column vector. Consequently, a row or golumm vector

-3
4 ’
with two entries (or components), [} Q] or {:] , can be represented ged—

metrically by the point P:(u,v) in a given rectangular coordinate plane.

i

; . 15y
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- \ ¢
- It is often more useful, though, to think of the row or columm wector as

being represented by the directed line segment from 0 to P. We denote this
directed line segment by the symbol: oP . Thus, the row or column vector is
represented by a geometric quantity having length and direction. We shall call

this geometric quantity a geometric vector.

P:(—3.4)

Figure 4-1. A géometric vector.

In Figure 4—1, the directed line segment or geometric vector 6% is
pictured by the arrow drawn from 0 to P.
The length of OP is easily calculated by using the Pythagorean Theorem.

. For the point P: (—3,4), the length of 5§ is

Vo244 = 9 r16 =5,

One way of specifying the direction of 5§ is simply to say that its

& direction is that of the ray issuing froﬁQChe origin and passing through (—3,4).
It is mich more useful, however, to indicate the-direction of the ray by giving
;he césine and sine of the angle having the ray as terminal side and the
positive x axis as initial side. Thus, the direction is specified by the numbers
—3/5 and 4/5. You can verify the correctness of these numbers by recalling that
the cosine and sine of an angle in standard position, that is, an angle placed
in the coordinate plane so that its initial side is the positive x axis and its
terminal side is the ray that issues from the origin and passes through another

point (xl, yl), are given by the respective formulas .
. \ 'y

154
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X ’ y
1 and 1 .

T2 w2
x N 2t

) Regarding these numbers —3/5 and 4/5, it is worth while noticing that —3/5

k)

is the cosine of the angle that OP forms with the positive x axis and 4/5 is
the cosine of the angle that ,55 forms with the positive y axis; consequently,
these numbers are called the ''direction cosines'' of oP. (Can -you tell why the

slope of 6%, i.e., the number -4/3, will not specify the direction of the line .

segment from 0 to P?) N ~

“H

is represented by the directed line segment OP from the origin to the point

= In general, the column vector

P:(u,V): The length of OP is called the length or the norm of V. Using the
F 3

symbol |1Vl to stand for the norm of V, we have

VI =/ u? + v .

g —~

“ 3 —
Thus, if not both u and ‘( are zero, the direction cosines of OFP are

. . ¢ ' »
respectively. ‘ " {vx
(‘ .
Similar statements could be made concerg}ng the row vector [u,{] s but
for the present we shall consider only column vectors and the corresponding

geometric vectors. Hereafter, the term 'vector” will be used to mean 'column

vector."

+ We shall call :.[g] the zero vector or the null vector. It will be

[
regarded as being represented by a geometric vector of length zero to which no

.
r

( ) . a
o Iy
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unique direction is assigned. For the sake of convenience, however, we éhall
say that the zero vector is d%rected and that it has the same direction as any
and e.?y other vector.

- . Consequeﬂtly, each vector [j] determines a unique directed line segment
issuiﬁg from the origin of a given rectangular goordinate system. Conversely,

u|

/ﬁx such directed line segment determines a uniqué vector [v . Thus, a one—

w\ ' to—one correspondence has been set up between the set of column vectors having

2, '
AN

""two real-number entriés.and the set of direc;ed line segménts lying in a Cartesian
coordinate plane and issuing from, the origig. In the next section, we shall dis—
cover an interpretation of the algebraic operations on vectors' in terms of geo— "

metri§ operations on directed line segments.

N The associati;n between vectors and directed line segments introduced in

| this section is as applicable to 3—dimensional space as it is to the 2—dimensional
plane. %Thé only difference is that.a directed line segment in 3—dimensional space
will-represent a vector of order 3, not a vector of order Z.

Y

Exercises 4—2

1
hY

1. Of the following pairs of vectors, «
SIHENHE w (%3] [

‘ () &gj [‘2}; (@) [_:«732] i
o [ LA e R[5
(&) [-i'- , [g} ;H (1) [g . ng{ ;

~ ] - 7 ]
., (e) {j , [ﬁs‘/ﬁj (i) [Z c ae|

which have the same length? Which have the same direction?

2

2. Let V=t[

3] . Draw the arrows repr s\enting v for

ERIC v L7
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7-1, t=2, t=3, t=~—-1, t=~2, and t=- 3.

#

In each case, compute the length and direction cosines of V.

\

3. In a rectangular coordinate plane, draw the directed line segments xepre—
senting the members of each of the following sets of vectors. Use a dif-
ferent coordinate plane for each set of vectors. Find the length and

direction cosines of eachf vector:

1] 0] ' 1] 0 o
(‘a) 0 ] l » and 0 + l »
) X N — b - .
(b) 1] .3*' ’ and 1] + 31, | ~\\
. ._0_ ’. 'L_Z_‘ ? : ;0_ ~2_‘ ’
. . - - .
l ¢ -"" 1 _4 . v
(c) ] and + [ ;
_ 0 : h~2 : | 0 24 " N ‘
gus —— ) ey ‘ s Sy R
2 3 2 3
( d ) _.3 )F gl ] - an d _3— + [-1“ S
ﬂ . \ — ——
5 R ' 5 2
) H [2 ’ and f [—4_‘ ¥ [a‘

4. Let V= [é] « Draw the line segments representing V for x =1, ;
x=2, x=3, x=-1, x=-2, and x = — 3, In each case, comﬁute

the length and direction cosines of V.

5. Let v= H -t H + m .
y m b
Draw the line segments representing V,‘ if t = O, +1, +2, and

(3a) m = 1, b= 0;

(b) m-2, bal,

(¢c) m=—-1/2, b
'y )

3.

In each case, verify that the %Prresponding set of five points (x,y) lies
on a line.
6. Two vectors are called cellinear provided the geometric vectors representing

b

them lie on the same line through thé‘Erigin.' If A and B  are nonzero

{ o

~
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-
-

., collinear vectors, determine the two possible relationships between the

direction cosines of A a§d the direction cosines of B.

7. ctexmine all the vectors of the form [i ‘that are collinear with
. N . 2ﬂ B
- (a). | [ﬁ' , E , ’

- -

" ’ . (b) [3 ’ ‘\

™
-9 3
. L JA
. 0- M
- (e) [3 . o
LN .
.- + * . ‘ .

43, Geometrical Interpretation of the Multiplication of a Vector by a Number

The geometrical significance of the multiplication of a vector by a nuﬁber

is readi§¥pguessed on companing the geometrical representations of the vectors

Vv, 2V, and -2V for

_By definition, N .

rf-

E N v
M. -

- - , ~
Thus, as you can see in Figures 4—2 and 4-3 the arrows representing V and

while

~

2V have the same diredction, while =2V 'is represented by an arrow pointing in
. \

 J
the opposite direction. The length of' the arrow associated with V is 5, while -
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. * ]
+ »
X
. . -‘ ]
Figure 4—2. The product of ' _ - Figure 4-3. The product of «
a vector and a positive number. - a vector and a negative number.

\ .

I the aerwszrepresenting 2V and —2V each have length 10. Thus, multiplying
v be* 2“ produced a séretching of the associatgd geometric vecsor.to tyice its
original 1ength while leaving its direction»ﬁ;changed. Multiplication by "—2

- mot gnly doubled the length of the arrow but also reversed its dirgétion. *

Thege ob;erv tioﬁé lead us to formulate the following theorem,
" r .

Theorem 4—~3. Let the directed line segment OP represent ths vector V

and let r be a number. Then’the vector rV is represented by a directed line
segment whose length is Iri times the length of OP. If r 2.0, the repre—

sentative of rV has the same direction as 6%; if r <0, the direction of

o

the reprgsentative of V.. is opposite to that of OFP, >
-\ . .~

-~

NS
2 - A

Proéf: Let V be the'vector, [ﬁ] . THen ~

y 2 2

vl = u + Vo,

Now, . ,
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hence,

HeVil = /(w2 + ()2

; 2. 2 2
A ‘ —f = A/r (u” v")

- ifl\/uz + v2

) « ‘ ~ = irl 11IVIl. \ .

~

Thi?\proves the first part of the theorem.
» B

1f°

[N

» O ‘{
r=0 or V= [;} » , |

the second part’of the theorem is certainly true.

1f _ : ‘ ) \ ..

ﬁ r ¢ 0 and V # [g] .

.

ﬁhe direction c6sines of 5§ are

' 2 and A4 )
VL . v ?
‘ ) v A
while those of the representative of rV are
ru rv

—r I 2
ixl LIVl an itl 1ivil °

{

If. x >0, we have |ir| # r, .whence it follows that the arrows associated with
£
V and 1V have the same direction cosines and, therefore, the same direction.

If r <0, we have |¥| = — r, and the direction cosines of the arrow associ-

ated with rVv- areiﬁhe hegatives of those of 'OP. Thus, the direction of the

P

‘\T
...'.“

A
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representative of rV is opposite to that of OP. This completes the proof of

the theorem. ,

-

- One way of stating part of the theorem just proved is to say that if r ¥is

a number and V 'is a vector, then V and rV are collinear vectors; that is,

they are represented by arrows lying on the same line through the origin. On the

other hand, if the arrows representing t&é vectors are collinear, it is easy to

o show that you can always express one of the vectors as the product of the other'
vector by a suitably chosen number. Thus, by checking direction cosines, it is
easy to verify that R

5 0] 4 |
-2 * |-20]°? 4.
/ .
: ™
are c6llinear vectors, and that . ’
50 5 -10 |~ 5
L20]3 10\ [__2} > while [ 4:‘ ~2 _:‘ .
B
xIn the exercises that follow, you will be asked to show why the general ¥esult
illustrated by this example holds true. | . ) "
. . Exercises 43
| 2
\ 1. Let L be the set of all vectors collinear with the vector [g] . Fill
in the following blanks se as to produce in each case a true statement:
¥ ‘ -
B 6
: -t (a) f} € L; (e) [__:{ §L;
) b
{— 8t
(b) 9:] € L;‘ (f) for every real number t, [}_] € L;
| : ‘ VA
...2/3 . y —_— ’
(c) - € L; (g) for every real number ¢t, 12¢ € L;
L. ) e

(h) for every real number h # 0, [E:] ¢ L.

' N > &~

. . . lw‘
Q L6

-
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3. Verify graphically and prove algebraically that the vectors in each of the
following pairs are coliﬁnear. In each case, express the first vector as

»

the product of the second vector by a number:

SRR 3 T 2] % [,
(a) 3 * [1 * (d‘) E32 * [‘6 »
- N ~ - g
wy 5], [, ) 2] o[-,
€ / _-4- ? LS_‘ ? . __1- ] ' 4- »
2] [ 4], o] 2]
(C) [15— > i—_s ) (f) [O“ ’ [9- .

.

4. Let V be a vector and W a nonzero vector such that V and W are col-

linear. g;ovg that there exists a real number r such that

V = rW.

5. Prove: ' . . X

~

(a) 1If VvV = [g « and r ¢ 0, then Ve [:3] .

0] . To
(b)) If v = and V ¢ , then 1 =0,
0 0

o
-

6. Show that the vector V + rV has the same direction as V- if r >-1,

and‘the opposite direction to V {if r < — 1. Show also that

-

¢ HIV + eV = 1IVIE 1L + ), \

Y
~

4~4. Geometrical Interpfétation of the Addition of Two Vectors

The'addition of two vectors has a geometric interpretation that is somewhat

less obvious than that for the multiplication‘Sf a vector b) a number:
) :

- - =

If

t . -

.oy 0 ' 1 :
.V = [g} { and W= {:é] - .then': V+W i [}] . ) - 3

LR
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. . ’ . ) .
. . . L€ :
B : , 3
It is evident from.Figugé 4—4 that V + W 1is represented by the diagonal drawm

. .
from the origin to the feurth vertex of the parallelogram (actually, the rec—

tangle), three of yhose vertices are (1, 0), (0, 0), and (0, 1).

. N
\ P ]
-~
A Y i ’ y
W V+W | v o
N L & e b e 4 i
0‘. Ve B o 0 ) N ’ ' +W x
$ e 3 - .
v ! W .
ry - A ¢
. f
Figure 4—4. The addition of the ’ Figure 4—5. The addition of the
> ® 1 0 . K 2 3
| veetors | afl |- ~ vedtorsy | and |_7| -
.}\ *
. .. ‘e
If : o v
. ) \ - B
. A ' 5
LV = 2 and W = 3 » thenm V + W= > "
1 ' - 0

‘. a“ a . - .' s b .

‘ I, . e ’ 2,

- 2

.Loqkfng at thé representations of these three vectors in Figﬂ‘B,Q—S, we see that

V.+ W this time is re resented by the diagonal drawn from the‘origin to the

foqf§h vertex of the parallelogra?fhaving (3, —l)L‘SO, 0), and (2, 1) as three
" . @

of its vertices. .

#*The pattérn common to our two examples certainly suggests that the additiogn

of vectors co¥responds to a kind of parallelogram rule for -adding directed line

- . Ly
segments, If the pattérn holds in general, them V + W 1is represented by the
. _ . { ’
diagonal from the origin in the paraltelogram having, as adjacent sides, the .
' t ~» o !

geometric vectors representing V and W.

A sim 1e'way to co fuct that diagonal is indicated in Figure 4—6. If
p : _ _

OP represents V and OT represents W, construct the line segment PR

g

{17y ,



o

£ " Figure 4—6: ,Construction for vector addition.

L3 .
\. . » N
L J

-

having the same length and* difection as OT. Then .OR represents V + W.

~

This method of constructing the representative of V + W has the advantage

of being applicabyg even when V and W dre collinear vectors. Our only -

.prqblem is to verify that the construction actually does yield the representa- \\\\g

»

tive of V + w, whatever choice is made for V and W¥. Let )

{;

B ‘ .'v>= {:] ‘and Wﬂ_ [:] . _,. «:

p

Lo co R , . »
-~ T - . . . - u +r
) @ ' ‘..? . “ ) V + W [V + S} . ‘
)\ .. " A - ) : N
CIfC Vf and W are not colligear,‘the.po{nts (c, 0), (u, v) and (r, s) are
‘ .. . : "
digtinct and'constitute’the

@4

ertices of a parallelogran§ see Figure 4—7.

.ﬁ”. To show tngg_the fourth vert of that parallelogram is the point (u +r, v + s), -g

»

: you neéd merely show that the 1ine segment jo{ng <0, 0) “and (¥, s) hds the same

R ' - .

length as the line segment joing (u, v) and (u + r,“v + 8), and similarly that

o the 1ine segment joing {0 0) and (u, v) has the same, length Q§ the 11ne segment

@ggﬁing (r, s) and (u + r,/y§+ s} Coqyletlng this argument 1is JUSC an exergise

- e )

. ) . . i .
./ .. . .
{ v . . . . L . R :l Ly ‘. .
. . s -1 RS - ¢ ) v
o . N - . - . . OO - . . . ., , ‘- A
. C e . - oo PR
- - .
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. R
. -?
s " . _ ‘
R:(uir, vis) by : k
: L
A W
\ ¥ |
- *
R . "~ . Figure 4—7, The addition of noncollinear vectors, ) )\\
| | ‘ | | | | | [u] [r] | | ‘
. and . . .
_ . . v ) a
. . . S ¢ b ’ ‘

" . in using the distance formula.

t

if V and W are collinear, the construction’of the proposed repfeseﬁtatiqe

of V+W is indicated in Figures 48 and 4-9. It is eas§ to verify "that in

* ' ' Ay .o , . - - Ay
- ‘ V+W: )
3 R P v
g Woeel-d .~ ' K ==t
v ! b » LI !
| - : | .
. | R T W A0 ¥ ok
0 M N X | b oA
. - — .
!
. . '
B N R .
> Figure 4-8. The additidn of col—  _ Figure 49, The addition of collinear
linear vectors in the sam¢ direction. vectors in oppogité directions.
‘(, . o . - . : . .
g pﬁ ‘/
both cases we have the algebraic equalities ,
\ . ¢ N ‘ — -
i,“ o | | ON = QM + gg i " : n
- : - R ‘$/ KZU'&'I’.‘. . - (?
. i ) ' , . ,
2 and T R . - '
- "’é ' -
< { .
. . 1(,)’}‘ - Y .
Ve .

L.



NR = NK + KR -

S

= v + 8,

" The details of the proof will be left as &n exercise for the student.
We state the result formally as a theorem. I

‘ . . N *
. . “ . . , \; “\
o L . - : . .
Theorem 4~4. If the vectors .V _and W are represented by the directed

line segments_ 5§\ and 6%; r§3pectively, then V 4+ W 1is rﬁpresentéd by 5§,

. where PR: is thé]di;ectgd line ifgment having the same length and direction as
. . : N . -, . :
AT . oo o . » . .

Q'rs. . . . ’ - ‘- ‘ﬁ ) ,l ) o v ) ' . ‘\

AY

Since V- W=V+ (-W),  the %perétibn of subﬁf:Zting one vector from:*

. g\ another offers ﬁo egéennially new geame;ric idea. Figure 410 i;lustrates the

“

construction of the géometric vegtor representing V — W. It is useful to note,

g P . ! '

however, that since ~

‘ . AI) . .~ . ) . o (
[‘; _ :] - V-0l r -9,

e o - .. - e e N - - — a . _— Ay P ‘ . . . “ t' et
;- the length of the vector V — W equals thevgzi;;:ée between the points

.

LV ~ Wil =

3

P: (u, v) and T: (r, 8). ' ' . . ' ) o o s
“ . . ) ¢ . . .

.

b . .
o T:(l‘, 5) ) o \

. ,.“ . ) \ . A

-T:(-r, =-s) - 1 . .

' Figure 4-10. The subtraction 01.:; yectors\, . [i} 2 [r] Lt

-
L Y

¢ . r
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Exercises &44 ’

1. Determine graphically the sum and differences of the following pairs

vectors. Does order matter in constructing the sum? the difference?

S : — - -
@ _fj : [;’: ; @ [2 ENHE
(b) :g: ; ;gj 3 (e) [Z: - ::;2; ;
ol B o [

2. Illustrate graphically the associative law:

(V+ W) +U =V + (W+U).

e’

»3. Compute each of the following graphically:

(;). Bj * J |
KCRHE

o () :f + .
@ z‘i + :

4, State the geometric sighificance df the following.equatibns:
!
: . 0
- (a) V+w=[0],’ ‘
(b) v+w+u-¥[g], . "

(¢) V+WHU +.T = [0]. :
v . . - Q
: ’ - )
3. Complebﬁgthe proof of both parts of Theorem 4-4. .

3

of
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L o «

A}

»

4—5.- The Inner Product of Two Vectors

¥ ) .
Thus far in our development, we have investigated a geometrical interpre—
‘ . - .
tation for the algebra of vectors. We have established a one—to—one correspond—
ence between the sef of column vectors having two entries and the set of directed

line segments from the origin of é\coordinate plane. The algebraic operations

of addition of two vectors and of multiplication of a vector by a number have

acquired geometrical significance, .

-

But we can also reverse our point of view and see that the geoﬁetry of

vectors can lead us to the consideration of additional algebraic structure.

N

For instance, if you look at the pair of .arrows drawn in Figure 4-11, you .

.

ll.y
\ W
N A
% 0 x ~
T~ Figure 4—11. Perpendicular vectors. 7 . . E -

will very likely comment that they appear to be mutually perpendicular. You
have begun to. talk about the angle between the péir of arrows.

Let us suppose, in general, that the points P, with coordinates (a,b); and
-~ . o
R, with coordﬁnates (c,d), are the teyminal points of two geometric vectqfs?

Consider the angle POR, which we denote by fhe .Greek letter © (theta), “in the °

-

triangle POR of Figure 4-12,
‘ ¢ . . FY . [
+ It is very easy to compute the cosine of @ by applying the law of cosines
R]
to the triangle POR. If |OPI, IORI, and |PRlI, are the -lengths of the sides -

K
of the triangle, then by the law of cosines we have ° . Ly

-

210P! IOR| cos @ = 10PI° + IOR4Z — JPRIZ.

: . R sy ¢«
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Yy
P:(a, B)
//
, - . o P .
o/ T F
R ~
Vd
» e
¢ / .
~
. /"‘
& - )
R:(c, d)
A ]
Figure 4—12. The angle between twe vectors.
Byt
0PI = +/a° +b°,
' ORI, = /c® +d% ,
* ’ w
f 2 2
IPR] = \/(a—c)_ + (bd) . .
Thus, ' : ’ | ————

4

2(v/a? +b%) (/c* 4d%) cos 8 = (a7 + 1Y) + (X +d)) = ((a—e)® + (b-d)7)

= 2(ac + bd).
Hence,

IOPI IORl cos © = ac + bd.

-

The number on thaIrith—hand si@e of this equation, although clearly a function

*

(1)

of the two vector%f has not heretofore appeared explicitly. Let us givé'it-a‘

. name and introduce, thereby, a new binary operation for vectors.

-

" Definition 4—2. The inner product of the vectors

. "a c ) 1 a c| -
( . [b] aqd [EJ , written _[g} . [d] .

vy

WO
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-

1]

is the algebraic sum of the products of corresponding entries. Symbolically,

[::I e [;] = g¢ + bd.
~

We can similarly define the immer product of two row vectors: [a bl.[c d]w

¢ .

ac + bd. . ' d
. i * [
Another ngme for the inmer product of two vec7tors is the "dot product’" of
the vectors. You notice that the inner producf. of a pair of.vectors is simply a
number. In'Chapter 1, you met the product of a row vector by a column vector:

say abb] \’imes [;] » and found that

[a b] ‘ [;il = | [ac + bd] , .

the product being a 1 x'matrix. As you cak observe, these two kinds of products

are closely related; for, if V and W are the respective ‘.vectors [:] and

c T t '
[d]\’ we have V' = , [a b] and o
. t ) # .. -
V R ™~ l:ac-f-bd] = [V‘W:I.
. A x d & *
. A

~ - -
Later we shall exploit this close connection between the two products in order

v

<

to deduce Nthe algebraic properti;es of the inner p?roducf: from the kn_o{m properties °

of the matrik product.

. 4
Using the notion of the inner product and the formula'(l) obtained above,

we can .state another theorem. We shall speak of the cosine of the angle\ includec;/

between two vectors, although we realize that we are actually referring to an

-

angle between the associated directed “line segments.

v f

Theorem 4—5. The inner product of two vectors equals the prodyct of the

lengths of the* vectors by the cosine of their inclu‘ded"ﬁngle. Symbolically,

).

\

e
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VewW = [ |VI] |IWiIl cos 8,
where © is the angle between the vectors V and W. .

" The theorem has bee; proved i? the case in which V and W are not col-
linear vectors. If we agree to take the measureiof the angle between two col-
linear vectors to be 0° or 1800. actording as the vectors %ave‘e same or op—
posite directions, the result still holds. Indeed, as you may recall, the law
of cosines on which the hurden of the proof rests }eméins vglid eveﬁ when the

1 4

three vertices of the _”t:r'i}..angle" POR aﬁ%?'llinear (Figures.4—13 and 4—14) .

"R
' . . Ay
ty
P .
R P
0 .ox .
Q / 0 X
‘ .
R !
. R
Figure 4~13. Coll¥wear vectors Figure 4—14. Collinear vectors
in the same direction. in opposite directions.
,§§.
. e ?‘ '
Corollary 4~-5-1,  The relationship \
N , vevs vt
R . . )
/\‘- 'y

holds for every vector V.
. q

« The corollary fo\llows, at once from Theorem 4—5 by taking V = W, in which

. ot _ _
case 8 = 0°. Ta bé sure, the result also follows immediately from the facts

A : i
. . a . o \- . - A .
that, for any veetor V = [b] ., ~we have - . *
\ b . ) . L)
- JR T B | /2, 2
¢ . s VeV g + b§~, while 'iVII| = ‘a +b.
. R . .- S N 2. , P .
e e B L ;
| v .o L YN . e
. ‘j«"' . - e ) . o R
4 CT g f
. . s
.‘/,F‘) ™ / Y
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o+

_ We have examined a geometrical facet of theg imner product of two vectors,

O

but let us now look {at some of its algebraic properties.'- Does it satisfy com—
AN . . .

mitative, associative, or other algebraic laws you have met in studying number

*

™y . N

) -sy' 8 t:emi? \

It is easy'to show that the commutative law holds, that is,L

. VeW=VWeV.

. For'if V and W are any pairs of 2 X1 mat:/:;ices, a computationghows that

\ -

"B\&/

bt viw = W,

L

vy = [v.w] ., while wv = [w.v] . .
Hence ' . o .

\ s ' VeWws="WevV, l ' .
It is equally easy to show that the associative law cannot hold for inmer

products. Indeed, the products Ve(WeU) and (VeW)eU are meaningless. To

evaluate 'V o (WeU), for examples, you are, asked to find the inner pro-duct: of

the vector V with the number W eU. But the inner product is defined for two
¥ .

row vectors or two column vectors and not for a vector and a number. Incidentally,’
# . you are cautioneéd not to confuse the-product V(W eU) \\ith the meaningless
3 f ¢
Ve(Wel). The former product has meaning, for it is the product of the vector
L3 .

-(’

\ V by the number WeU. )

Ix{ the exercises that follow, youwswill be asked to consider some of the

other possible properties of the inner pfbduct. In particular, you, wi?l be asked

to prove the following’theorem, the first pa},'t of which was proved above. -

A]

Theorem 4—6. ‘I.f V, W, and U are ecolumn vectors of order 2, and r is

\

@ a real number, then y
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' N\
. (a) VeW=WeV, \
(b)Y (V) eW = x(VeW), )
(c) Ve(W + U) = VeW + Vel,
(d) VeV >0; and - .~
. ) 0 .x . . P
(e) if \Y eV =0, then V= [0] . .
{ )
?
\ ) . Exercises 4—5 ’ . 4

¢
\
-

® [

1. Compute the cosines of the angle determined by the arrows rep{izjntiﬂg the

two vectors in each of the following .pairs:

~ ) _ — - R ] —1 .
3 3. ~6 1279,
(&)' _—2_ LI ~2_‘ » © . (e) "[ l.—' 2 {12] » B
— : N n : -y = .
1] 0f-. 1 o} . .
(b) L__l__ > ~1~ » (f) ) [0—‘ s [__lJ : . ,
( “3-1 [6 . - ( ) 2 [5—1 . & '
ol keyr 7 (8 cH R A
* I | * . —
) [1T [3 T (;1) l:zﬂ ¢ | -
o w ‘ ) ' et 3—‘q »- . "'l_ » . t“‘ K 2t_J . "

.- In which cases, if any, are the arrows perpendicular? In which cases, if

any, are the arrows collinear?

<

o B! w/EO'
R El = [0] and Ez =

.o - . »

are the didection cosines of V. ‘

3. (a) Prove that two vectors V ‘d W are collinear if and only if

\
N

Vew =+ 1IVII |IWil.

ZS\;
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.

. Explain the significance of the sign of the right—hand side of this equation.

~/

<

(b) - Prove that
y o wew?d < nivit® nivii?

and write this inequality in terms of the emtries - of V and W.

(c) Show also that VeW < |IVIil HWH.

-

4. Two vectors V and W are daid to be orthogonal if the arrows representing

\

e V and W are perpendicular to each other. The zero vector is said to be

orthoéonal to every vector. Prove.that V and W are orthogonal if and
R ‘on;y‘if
x - | . Veuw=0.
. | | . _ | ,’
5. Fill in the blanks in the following statements so as to make the resulting

sentences true:

. : . — . o a
} .
v (a) The vecésrs 2 and [!&d] are collinear.
" / - [ 17 e cae .
e * : (b) The vectors ; and ~0 are orthogonal. .
‘n » l‘:ﬂ . —_—. 7\;:1 . i ) . T :
; . . e
(¢) The vectqrs '[%3' and : _54- ﬁre- —= .
\ . \ 1 18 \ [— - . . J ! X . 2
(d) The vectors [% %] and’ 13 I " dre collinear.
. | 12 | .

) by

N : f . ‘ -

(e) For every positive real number ¢t, the vectors

_ {:gi} and l:zj ape orthégonal.

A ]

» A

(& For every negative real number t, the vectors _ S

.. ' .
o [gi} and [&] are orthogonal.

, )

v Y o, ‘ .
6. Verify that parts (a) — (d) of Theorem 4—6 are true if, (/

Q a ; N - 1'9() .
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”

7. Prove Theorem 4—6 = , .
(a) by using the definition of the inmer product of two vectors;

(b) by using the fact that the matrix product Vtw-. satisfies the

L _ equation ‘
* viw = ®ew
} .

| ' 2 o 2
8. Prove that ||V + Wi =(V+W)‘0(V+W)=HVII

1

+2 VeW + IH\TH2 for

) every pair of vectors V and W. )

9. .show'that, in each of the following sets of vectors, V and W are.

~

orthogonal, V and T are collinear, and 'T and W are ofthogonal:-

1) -] (6] . - : pe
2] Lo 14 ] = 3 :
(b) v B [3-1 ’ T ) .L--zl...a ’ . w B - = 2] ) g

Do the same relationships hold for the set

B EF S R RN E

’\'10. Let V be a nonzero vector. Suppose that W and V are orthogonal,. while
. _ R
. T and V are collinear. Show that W and. T are then orthogonal.

Al

hinal N

11. Show that, for every set of real numbers r, s, and t, the vectors

{r} " and t [_S] are orthogonal. ,
s r - %

: ) ¢ | \ \ .
12, Let V = {v] , where V 1is not the zero vector. Show that.if'. W and V :

are orthogonal, there exists a real number t such that /

o
5 N .

) W=t | . - _
. u
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-

- 13. Show that the vectors V and W are orthogonal if and only if i

7 v + W% = 1 - Wi = o, }\\ - \

14, Show that if A = [é] - and B = i:;] » then.~

v ' . .|__.__ .
nan? e — (aeB)? = (ad — be)?.

A

,

¥ 15, Show that the vectors V and W are orthogonal if and only if

¢ -

] * - .
‘o w (V+We(V,+W) = VeV + Wel. A
16. Show that the equation -

(V+We(V—-W) =VeV—WeW -
/( . N ? . -~

~ holds for a11 ve€tors V and W%/

N
. "
17. Show that.the inequality ,
- ‘1 * . ) ’
, o . [ . \ ’ - . . = N
. IV + WL < TIVIEH +.IIWYT;' N ¢
/ . N . '
e A ' e [ . ) i )
A holds’ for all vectors V and W. _ (/’/kﬁ -
4—6. An Area and a Determinanty K : N 4

N : ! L

Before lggving the basic properties of our geometrical interpretation for
wectors, let us look at one more bit df\gégmetry. In Section 4—4, we saw that
-

two noncollinear vectors determine a parallelogram. That is, if

A} . .
) f" {
~ .

e and B = [;;{ il o

cLe _ <”f/"
A =
. .

are two @ioncollinear vectors, then' the points P(a, b), 0:(0,0), R:(c,d) and

f\ S:(a +¢, b +d),are the vertices of abparallelogram (Figure 4-15.) A reason—
3
able question to ask, is: Hod\(an we determine the area of the parallelogram PORS?"

) . “35 |
) : | ) © e ‘ | |"
' N




186 oL .
¥ » . .ALy
_ . .
rd
#///) ' P:(a, b)
)A "

. N »

A} ‘ 0 .
\ . ) j x— \
~ ¢ fﬁh g _ S:(atc, bid)

' B
0 £
. . AN‘
R:(c, d)

¥
»

-

Figure 4-15. A parallelogram determined by VéCtO?;T\\A

. ~
)
-

~

-

As you recall, the area of a parallekograméﬁquals the product of théglengths_
of its base and its altitude. Thus, in Figure 4~16, the area 6f the paralielo;_

gran KLMY is bh, where b, is the length Of side NM and h is the length'

’

of the altitude. KD. “ L . ‘..

9 '.\ N
Vo . , :
b 1
. ~
Figure 4—16. ‘Deéerminaticn of the area of a 'arallelogram. o »

But if b, is the length of side NK, and © is the measure of either:
. . ]

angl\e  NKL or angle KNM, we have’ 2

N wp : . . R
o h = b2 Isin O1. .
4 : ' '

. ,
Hence, the ‘area of the parallelogram ®quals blb2 Isin 6] .

: . ) .
Returning to Figure 4—15 and letting 6 be the angle between the vectors
) . 3 . . * '
A and B, we can now say that if G is the area of parallelogram® PORS, then
) ‘A -3 ' ' ‘ :
19» .

~

N~ T
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-
-
-
<
v
w
P

- & . .
- . 87
0 . . [
» 2 \ .
62 - HAH}r HBHZ' sin” 8., N L -
Now . ;l . e
. o
sin’ © = 1 - cos’ o. . ) AR
. £ . . . ) A K .
It follows from Theorem 4—5 that . .
[ . . . . » .
) ‘ - | : & . ) > . o -
. oo -7 . o . o . N
cos” © = (A;B) 5 N e
\ | LIAVET1iBI . o )
o R ’ : . N . . ' \ ’.., ¢ o I -‘
. . . '.». ) . ’ :". ) \. .
therefore, 0 : . . R T . . :
. R . . ’? , . ) » _
. . ' e ) ; -"’:/,J . e !
. -t ) 2 LAl HBH L\BL e ' ‘
. sin O = : 3 3 o S
. HEALL H«Bl W, ' Lt
, , . . -' ‘h ) - A
Thus,’ we have » ' ‘ S e _ Y
{. ¢ - . ‘_. R , R N N . v
. 2 t/ ‘ = ., 1y
v ' G = H‘AM% HBI‘lz rd (AOB)Z ,
* ¢ -, .r. ) . S . i . 3.' . ) ]
- : T
‘It follows efrom the result of .Exercise 14~of the preceding seation that: _ A,
' - L < S " . .
. - L (;2 '= ._(.ag--,bcgz. Y L -
. ¥ N . e _ ;
[ ! + [T
Therefeore, L A P oy N
. . g oo\
‘ GK = tad — bel. .~
tf ’ ,. . - . * . v . -

But ad — bc is the value of the determinant g(D), ‘'where D is the /

€ ,
a c¢ ' .. . "
matrix [b d] . For easy reference, let us write our result in the form of a

. . » . %
theorem. : . '

R * - B

“Theorem-4—6. The: area of the parallelogram determined by the vectors [:]

. le . Ta e} o
and [d] gquals 15(D) |, yhe,re?'[.)= [b d']' _ : o

r

'* / 19, | 5
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ot ;J'Corbllary 4—6—1. The vectors [:] and [;] are collinear if and only

, '-if._.‘;‘, 8(D) = 0. . ' . |
) ‘jr ' R ’ | : \

"'The argument proving ;he corollary is left as an exercise for the readér.

You notice that we have been led to the determinant of a 2 X2 matrix in .

exéﬁinihg a geometrical interpretation of vectors. The role of matripés in this

\ iﬁsgfifififiﬁh will be further investigated in Chapter 5.
el v - . | , S

o - ~J , Exerciées-&—G“i'
. ) \ , g
—

1. Let OP represent the vector A, and OT the vectqr B. Determtine the *

) area of triangle TOP if . _ Lo .
. ) * - 5 . 07 . - .
. . - (8.) A = f[ll * R B [2—‘ LIS , .
. ’ . o [t . : 'y e : V. ow .
. (h) A = [4] b4 B = [_2 » ' 4
» . - . '
s 1 | "3
R e I

r .

2. Compute the arqahof the triangle with ;eit&ces:

L3

’ (a) (030); ~(193); and ("321)'; ’

. * . . .
) ] v

\ (® (0,0), (5,2),".amd (~10,4);
-7 (e) (1,00, (0,1), and (2,3); |

@ (1,1, (%;L), and  (0,5); ) R
- (e) (1,2), (73,3), and (1,0). . . |

; @“_ ' / ' " .‘ j \j

4—~7. The Interplay between Algqbra.and Géometry; Vector Analysis

X

In this chapter, we E?ve é:éeléped a geometrical representa%ion-namely,

»”

diréé;ed line segments — for 2 X1 mAtrices, or column vectors. Guided by jpe

.

definition of the algebraic operation of addition of vectors, we have found the

. N ¢ . T ~
''parallelogram law of addition' of directed line segments. The multiplidation of

. . - »
© .

‘vlf?{? |
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-

a vector by a number has been representedlﬁy the expansiqﬁ[or contraction of the -
. \ . .
correspondingf directed line segment by a factor equal to the number, with the
’ 4 * ! .
{ sign of ‘the {factor determyining wﬁethe; or not the direction of the’'line segment -

-

. is reversed. fThus, from a \et of algebraic elements we have produced a set of

.
.

geometric elements. Geometrical observations in turn led us back to additional
algebraic concepts. : -
»

This interplay between algebra and geometzy, hswever, is not merely/sn inteﬁ;

esting intellectual exercise. The mathematics of directed line segments &o which.

our algebra has led us fcrms the beginnings of a discipline called ”veCtor

-

analysis," which is an important tool iﬁ classfbal and mode;n'physics, as well _l

»

as in geomegfy. The '"free" vecéors that you meet in physics end use to represent

forces, velocities, and other concepts, are close relatives of our geomettic
I‘ ' .
vectors, which are bound to the origin. ?he studyfin which we are engaged, con—
--sgqueqtly{‘is'of vital igportance for'physicis;s;eegineef%, and otﬁer applied
S scientists, as well as for mathematicians. . 4 J ‘ ' |

-




Chapter 5

TRANSFORMATIONS OF THE PLANE .

5~1. Vector Spéces and Subspaces ) »

P | You have discovered that one ‘of the most fundamental concepts in your

. . . . . .
study of mathematics is the notion of function. In geometry, the funetion con—

cept appears in the idea of transformation. It is the aim of this chapter to

H

recall what ‘'we mean by a function, té defiue geometric transfbtmatioﬁ, and €o

L]

" explore the role of matrices ip the study of a’sigsifi:ént class of these,trans—~

Qﬁ L

formations. ‘ . . , . o e
-~ Let us use'the symbol H for the set of all real column,yecéors,of order
- ; 2. , Thus, 1f.”R .is the set oﬁ’reél numb@rsi we have - R

A ¥ * . e .
B .. - R

EARTNEN

R H= {[u] } u € R -and veR}. $
) . Vv f o' ‘ \ .

he set H together with the operations of addition of vectors and of multipli- .

\
cation of a vector by a real number is an example of a type of algebraic -system,
' : \ : D -
' o’® ! :
called a vector space. ’
‘ ’ A . [} §
Definition’ 5-1. Any set of elements is a vector space over the set of v,

real numbers provided the following ‘conditions are satisfie?: \

. The sym of any two elements 'of the set is alsp an element of the set.

*

The product dﬁ\iyy element of the set by a real number is also an
element of the set. - ' : : !
. - . & ' . , [
The laws I and II of Theorem 4-1 hold. -

A

L

A simple example of & vector space over the real numbers is the .Set of all -

lineé; .and constant polynomials with real coefficients, that is, the set

. ~

. ' <P 19g i ’

(“ '-\/_'
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. {p [ p(x) = ax +.‘b, a eR andb € R},

* & - . ¥

vhere the addigion?is the usual addition of polynomials.
Another vector space over R is the set of vectors ﬁollinean with [%] s

that is, the set ~ ’ T '

O | "

T -[21 Il TERP. j;~ ﬂhf\?

.
\ . . . . » . ~

This vector spage is contained in H. It is called a subspace of H in ac-

4

cordance with the following definition. - '

¢ / ]

Pefinition 5-2. Ay nonempty. subset - F of H ié'a.éubépdce of H provid—

ed” (a) -the sum of every pair of vectors of F is in F,- aﬁd_(b) each product

of a vector in F with a real number is in F. .

K4

You may wonder what subsets of H are subspaces. First of all, to be a _
) . ' ' L4 '

=

Y -~ a ]
subspace, a given, subset F -must contain at least one vector, say V. Further—
. - ,

more; F must also contain each of ‘the products rV for real numbers r; that

is, 1f *V 1is not the zero vector ‘then F must contain every vector collinear

¢

.."- . . 0 ‘ 79 . . t
e

must belong to F. Consgguently,hthe following theorem is true:
' ¢

with V. Iﬁgparticular, the zgro‘vector,

a? TheonemFS—l:‘ Each subspace F of H contains all vectors dollinear with

any nonzero vector in F. In particular,‘qéch subspace contains the 2gro vector,

(

It is easy to see thdt the set consisting only of the’iéro vector is ;\\

3

. subspace. It is also simple to verify th&t the set of all vectors collinear

g o 197
.) | .
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with any given nonzero vector is a subspace. With a little more effort, you

I3

can show that subsets of these two types are the only subspaces of H, other

than H itself. . : ¢

-
©

Theorem 5-2.° Evéry subspace of , H consists ofhgxactly one of the follow-

! i

- .
ing: the zero vector; theafét of vectors collinear with a given nomnzero vector;

~

A the space H itself., : _
1 Proof. If F is a subspace Eontaining only one vector, then
T . ' ) 0 .
) . F ) [0] ’ -

R \‘ o ’ s \ ' rt

since ‘thg qé}o vector belongs to.every subspace.

.Y

1f “F contains a nonzero vector V, them F contains all the vectors

rV for real «t. ﬁccdrdingly, if all vectors .of F .are collinear with V, it
. J L L B
follows that . & < =
. | ﬂ. ; : .

. /
V #a N
.

But if F contains a vector W not collinear with V,.  we shall now prove
: _ - .

*

F = -{frV i reR } .

.

that P 1is actually equal to H.

*

\ . v i
Yoo Let the noncollinear vectors V and W in the subspace F be represented
.-by the poncollinear position vectors OP and 6&, respectively. Let Z be
~ any vector of lH, and let Z be represented by OT. .Since 65 and 6§ are

not collinear, any line parallel to one of them must intersect the line con—

—

< taining. the other. Draw the lines through .X pérallel to 55 and R, and
/ -~

~

. .
let S and Q be the points in which these-lines intersect the liifs con—

» taiﬁing OR and 5%, respectively; see Figure 5-1. Then

«
. .
. -
M - )
.
—_— — ’

L OT = 0Q + OS. . .

: . . 194
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e

./‘ !

3k

*
Figure 5-1. Representation of an arbitrary ‘ '% .
vector Z as a linear combination of a given e -~
pair of noncollinear vectors V and W. ' . -
fi' N 'A. :

. | '
But  0Q is collifiear with OP ~and OS with OR. Therefore, real numbers a

e . .

and b. exist q&ch that o o o .
¢ T .
. l_. . , — — — v {\/\ B ) b .
0Q = a0P .and "'0S = bOR.* ~ ¢ .

\

Hence,

2 P . >
% ‘ A

Z=aV + bW. B ¢ 3

-

Since F 1is a subspace, it contains aV, bW; d their sum, Z. Thus, every
vector Z of H must belong to F;.that is, W' is a subset of F.l But F is
gi%en'to be a subse; of H. Accordingly, F = H.

Equation (1) could have been derisved by a ;;urely algebraic argument. You . ‘
will be asked to givg.that argument below, in Exercise 5-1-9.
% ' -

2
* 4

Definition 5-3. 1If a vector Z can be expfessed in the form aV + bW, /

» . .
vhere a and b are real numbers and V ,and W are vectors, then Z is

called a linear combination of .V and K W. - ‘
\ [

e
Thus, by Definitions 5-2 and 5+3, we have'ihe.following result:

- [

& . . 19{) l S , <
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. . \ . !
Theorem 5—3. A subgspace F contains everyglinear combination of each pafr

(2

v . of wectors in F. ‘

.

1 N . - . L)

]

Fyrther, in proving Theorem 5-2, we have incidentally established the use—

ful fact stated in the following theorem: _ p

fo

~

s

Theorem 5-4. Each vector of H can be expféssed as a linear combination

of each pair of noncollinear vectors in H. . : €

~
L]

For example, to express

.

J
' —
we must determine real numbers a and b gsuch that .
- ' ) 2 ¢
' N\
5 4 3 -3
R R ~
) ¢
- ba — 3b‘ ) :
. 3a +4b| ° *@i
f 1 W
P ' ) A \\%5_‘\ -
Thus, we must solve the set of equations : f \g&
' T
T , 5 = 4a — 3b, B
' 4 \\\ -
' .10 = 3a +.4b. .
. . - }
- ; ’ Ve <
- ’ * f‘t
We readily find the ynique solutio; a=2 and b = 1; that ¥s, we have
. - * .
) iz = 2V + W. .
L] r) ) ' *
o G ert) .Y .
&;

~N
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If you observe that the giveﬂ'vec:ors V and W in the foregoing example

\ . . *
are orthogonal, that is, V.o\w = 0 (see Exercise 4-5-4 on page 183), then a

second method of-solutign might occur to yéu: For, if ' :
. : ' Z = aV + bW,
‘then for the produtts Z ® V¥ and Z e W you hive ¥ \
. o 2 ) 2
Z@oV=g-* Vil and Z e W=2D) JIWII .
But’, ' . )
Y S 2 ]
Z e V=3, Zey=25 |IVIIT =25, and [{WlI" = 25, .. y
[ . RN . '
&
~ Hence, . .
- } ' - ’ ’ "
. _
' ( 50 s 25a and 25 = 25b;
) . ! C e
. o . ’ Y i
L}
thus, S . ' _ * .
- L -

.

! as=2 ‘end b =1,

¢ i -‘“f
It is worth noting that the representation of a vecter Z as a lingér

combination of two given noncollinear vectors is uniqﬁe; that is, if the vectors

\

V and wr_are not collinear, then for each vector 2 the coefficients a and

v

b can be chosgq in exactly one way (Exercise 5—~1—14, beloe) so that

3
-

Z = aV + bW.

b -
~
. '

The pair of nqpcollineér vectors V- and W is called a basis for H, while

A

» ' ' . B
the ordered paiF of real numbers, a and b, are called the coordinates of 2

relative to that basis. In the example above, we found that thg vector _[;g]_

‘ . . .
' has coordinates 2 aanrjrelanive to the basis““ [g] and [ é].[

1
M A3

LY ( . . . -
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. ) ‘ . : Exerc¢ises 5-1

: . /
1. Express each of the following vectors as linear, combinations qﬁ [2J

. > a1
"_‘ ' ] ! and Lg] , and illustrate your answers graphically:
v . .
Y12 1 .
(a) ) 1! ' D (d) 0] > .
. - = — ’
T! o .o - T .
. 1 R »
(b). [_2 » ) . y (e) lj )
) B A v : i
. )
.0 S
(C) [_3 )' RN i (f) h.z >
2.  Determine the coordinates of each of the vectors in,parts (a) through (i) ;:
) ' . of Exerciseé 1 relative to the basis [}i] and [i] .
) . . ' . . ’ . -
\ o 3. ‘Express the vector [::] as a linear combination of the badsis
) o [2] ; this basis is called the natural basis for H.

4., Prove-that.the following set i#s a subspace of, H:,

4

- . ; ' , ) {jr [é] I r e R{}. ﬂ |

. [

s

\

e -5 Prove that, for any given vector W, the set {rtW | r € R} 1is a subs?%cg
, _ . : )
. > of H. ) -~ ‘ : o
. 6. " Prqve that the set &f polynomials ax2 + bx + ¢, for real numbers a, ﬁ,i
- and é; is a vector space over the real numbers, F;ﬂd Awo distinct sub-.“‘
L Y “' o ~ _ _ - kY ‘
spaces ef’this vector space. > :
7. For

A A u - N
. . - ) v == - . ‘;»‘
! v, : . . \“

) determine which of the following subsets of H are subspaces: . , HX

‘ ‘ | : \

(a) all V with “u=0, . (d) all" V with 2u—-v=0, - . £

: j€b) all V with v equal to " (e) all V with u +v = 2,
\ ; '_:; an integer, ' ' o .

. . 1]
5 X - e RD2
.o . . . ‘L
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-~ (e) sall V with u rational,

Prove that

¢

linear combination of two vectors in F.

. v i E . ) ' /
Give a purely algebraic proof of Theorem 5-2. ‘ s A )

O
.

(f) all V with uv =_0.’

<

.

F is'a subspace of H if and onl& if TF contains every

- " Y

-

.

a

of the{ vectors

cannot be expressed as a linear combina

10. .A‘Show éha; [-ﬂ ,
' B I P
ll: Describe tHe set of all linear combinations of two given'collinéar vectors.
12, Let Fl' énd Fé be éﬁbspacegkof H. Prove that thé set F of a{} vecforsh
. 'belqnging to both Ei .and F2 is also a subspagg.
A_13. In prqviné éheorem 5-2, we showed that if V -and W gre.hot collinear

Ll

vectors, then each vector of H can be expressed as a linear combination

-

of V an% W.
. sentagidn as a

collinear.

14. Prove that if
I 4
- "any vector 2

a and b can

4

Prove the converse: If each vector of H has a repre—

linear combination of V and ‘W, then V and W are not -

(3

¥ .oa .4

V and W are not collinear, then the representation of
. v

£

in the form aV + bW is unique; that is, the coefficients

be thosen in eXactly one way. - | ;

15. Use Equaﬁion (1) on page 142 to show that any vector

- , . g e i
A
. , ¢
. u
. o ' 2 Y
P ¢ f . - w - \
* ]
‘ ) ‘ m . . } . ‘
) . . . ] ~ .
“can be‘expressedruniquely/ﬁé a linear combihatign of the basis vectors X
. 13 . c N .
) ‘ Toe {:/f “F:‘#. .ff_
~ - te l . /i;

3 T =27,
21, 11, and . |4}, b
~1 1 /. 5 ,&

s

£

A
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™ ¢
' 5-2. Functions and Geometyic Transformations ‘ : -
N, — 7 /
: _ ﬁou recall ‘that a fundtion from a set A to a set’ B is a correspondence

“‘ .

between the eIemepﬁs of ﬂh\~5yd/§ets such tH&t with each element of A there is

' asqpeiated e;;Ltiy one eLement of B. The set A éﬁ the domaxn of the functlon . ;
[ ] . .
and*;he set B is the range of the function. In your previous'work .the¢ fune—

tions you.me; génerally had sets of real numbers: both for‘domain and ‘for ‘range.

- N »

: N
t " Thus'the function. symbolized in the form . e : .
. . - . R . - " g
2 o " e
’ X —> X . . -
' . ‘ s 2 w’\
. is likely to be interpreted as associating the real number  x~ with the non— \
negative real mumber x. Here you have a simpke examplesof a ''real function" N

-!E‘ . M B
. . Tooovk. T

of a "real variable.”

- -
3

In Chapter 4; however, you met a function V —> I'Wi| having for ici\

domain;fﬁe vector space H, and for its.range the set of nonnegative .real B

numbers. In éhe present chapter, we shall consider functions that have their .

. / . . Y '
range as well -as their domain in H. Specificalf}, we want to find a geometric

] . .

'interpretaéion for. these "vector functions' of a ''vector vanigile"; this is a

. ' gontinuation of the discussion started on page.l27. . .

-

Such a vector functigp widl associate, with the point P 'having coordinates
e ’ " * -
(x,y), a point fPV}'with-coordinates' (%',y'). In more vivid‘geometric-language,

we would say. that the function maps the point P onto the point ‘?‘. Or we may. °*

say that {t«hebs the geometric vector oP -onto the geometric vector 5?'. The ,
- e - /"'/\\}!

function can, thergfore; be viewed as a pfocess for "transforming" or mapping
. . . c
. the plane into itself; that is to say,

-

\

it is.a process that associates with each

A 3

. point P of the plane some poiﬁt m%‘ 2\p.f this plane. We shall call this process

B
0"?

‘a transfonmation of the plane into 'tself or a geometrlc transformation. As a

ki

matter of fact these’ transformatio s are ?ften called 'point traﬁsformations”

in contrast to, more general mappings in whlch ‘a point may be carried into a

[N
-

S

¢

-

. - {)r N
~— ‘}q ) . ) ¥




[

- mapped?)

. . ' » V—> -1V, Ve H.

ane, a cirale, ar some othér geometric configuration. For us;_fhen 'a.geometric,
[ i . T

trans%_ tibn is a helﬁﬁul means of visualxzing a: vector function of-a vector

1,

variable. As a- m.att&en of comiernent temmology, we shal!' call the vector that

o
~ IS v

such & funccion associa;es with a given vect%r v, " the image_of hV; furthermore,

i ‘ . "
; & . Y (% N ‘ - * .
'we sﬁall‘say that'the functibn maps v onno its -image.. . . . R
. ~“ - .. . : . - Ll ' '-.. * . ) ‘e . . o
. .. Let us look at .the simple function - T R
P e e . - '3 .;',. . . . SR - . . N . . . .- .
'_ .. “\'. ' e ";_. . e . X ".~- - . . .“ . . L .. . . .
o e e Tt T ;‘."” o : . © o TN T
<l e - .ot ~...‘_‘,”_'V —'——:9 2V.‘ V €- Hh . . . ‘, . R -
) M ' Tt e -0, Yy N ' . )
g ' L ot ' . . . . S .
* . . . . . . . - (,_

. ?his func{icﬁfmépg‘each.vgcto:,~V onte the vectérithat-has the samé'direction

.
. e ¢ R . - “

as V,,_but". is twice as.l&hg as V._ ATio thér way of asserting this is to

. £y

say that the functxon assbciates .with each pqxnt P -of the plane 4 point P‘
- -~
such that P and P' lie ont the same ray through the orxgln, but IEOP‘II =

-

-

fz:6§z:- see Figure 52, “’You may therefore think of the function in this ex—
ampleaas uniformly etretching the plane by a factor 2 in all direct1ons from

_the origin. (Under this mapping what is the polnt onto whlcg the origian is

o

As a sécond example, consider the function

s

- e

i N .

direction opposite- to that of the given vector. Viewed as a int transformation,

“the function associates with gny point P its "reflection" in the origin; see
- ) o . .

Figure 5-3.’

The functiom = - ' -

- : - o V“"T'*}—ZV

N

¢ -

combines both-of the effects of the preceding fuhctions, so 'that the vector

associated with V is twice as long as V, but has the opposite direction to
. - - »

-

\

"t

Iy
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Figure 5-2. The'traps—g,'} e .. 'Figure 5-3, The trans— .
formation V —>2V. ¢ . -% _ formation V—>— V.
’ e gl TR
Now, let us.-look:.z¥¥thg function : ' . ’ \ .
? B ’ i - » \.%:‘l ". 0\ . . N
- SR | / &
’ -V —> IVl V.
,.2“\;’ - . - ]
- ) s v,
As in our first example, each-vecggr is mapped by the function onto a vector .
A ) i i ) . . ¢
having the same direction as.tafagiven vector. Indeed, every vector if length ¢

., G _ | |
"1 is its'own image. Buf if. llVé{ > 1, then the image of V has a length

\ : A, _ K
greater. than that of V, with he-expansion factor increasing with the length

)

of V itself. Thus, theﬁ&ectqf ) ,
| ‘Q: ‘ . ‘4 | ! j . A :
2. . - y
O »
having length 2, is mapped onto - : .
) . r
) 41 , ' ,
of°? . ‘ . -
which is twice as long. The vector .
. g a
£ ~ N e ’
) . 26 .
3



y ] _',; I s ‘ o v _

s .. 12 2 . i N *
. . : "N . SN . .

whose length is 13, has the image =~ =~ o ]// , ‘ - ~

" / . - 65 - - ' - A . 2" _'. o B
N ' ! 156 ’ . - . ce -~ * 0,'

. .
4 . . -

withdength 169. On the other hafnd for nonzero véctors of ],engt:h less than -

.
' ..

one, we obtain iq'ge vectors of ‘'shorter’length, the contraction factor decreas—~ L
[} . .

. \. .
ing with decregSing length of the orig;nal vector. -&bqs, L e
o _.1_-‘? [y e
. , 2 \ Gl |
- is mapped onto A
0 P 0 .
o e - L . .
. . . - o .. ; .
‘the 'image being half as long-ggafhe given vector.. Again, the vector ‘s
4 R '
7’ ) Y v 49 _'-. »It.)‘
is mapped ‘onto . > " <,
. —2 S _}-:i . ‘ P
"7 | 49 - Y

*

the length of the first vector being 5/7, while the %engﬁh of its image- is only

(5/7)2, or 25/49. Although we may try to think of thfsihapping as a kind of

t

stretching of the plane in all directions;ffﬁi\;:e origip, so that any point

t 3

and its image are collinear with the origin, thi mental picturé has also-to
take into accounpt the fact that the degree of expansion varies with the distance
of a given point from the origin, and .that for points within the circle of radius

1 about the origin the so—called stretching is actually a compression. 3%
3

e

The mapping .o g
’ £
. - .
1 ) 2 .
V‘“"?‘E (V+U), where U = [1] , ;‘/’j}
-\ can be written in the form ] Jd :
\\\ v : '
/ 'r)’ f
. / ‘;‘ 4 ) {‘f
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/~' .\ ‘. e
. (] s . - 2 + 2 N
’ X X * . i .
i . . . . 2 i
P . . N
‘* L. AP .G‘ . 'k__'%. + 1 . -
:1. ¢ . . .y. - 2 3 .
/ . o ) o :

. C" . - L ‘. e : < -
+ % . P . to the Point (2,1). gne way of Wisualizing thig mappin’gfi to regard it.as

»

]

disﬁla*cing or craf_z_'isiéti,n'g' the plane in the difection of the vector U through' '

a distance equal bo thé length of vy and then compressing ﬁhe Plane by the

.

factod 1/2; see -Figure 5-4,

, . - V+u oo 2
. Figure 5-4,  The trabdformation vy - 2. o where y = il . '»
AN . . . “f : | )
‘. _ e
»
. . ,j‘,‘l;;f) ") O ' *
- R ' ¥ i
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- seill Anotﬁer’example of a vector ‘function on H is the Sgknsformation
. - e . e / -
1\ L ' \‘
X ; X +*?y - '] // . .
y r", ' y . ¢ .

t is moved parallel ‘to ghe X axis through a.

Under this mapping, each pé%
)
}distance equa e th& ordinate of the.point. The result is a horizontal
\ l
is being ‘moved

tTe plaﬁ& CFigure 5“3):

1 to twic
with points abova the "x ax

»spearing of

to the right'énd points below thét axis moue " to the left. . ’
ty ‘ .
Q. - P
‘ ‘ D —t
> 2
\ .
. X x‘+ 2y -
. Figur 53. The:transformation g —_—> v .
) B33 § .
) /
p distinct points of the plane

' All t vector - functions discuased above ma
But we can certainly produce ¢unctions not having this

onto distinct points.

Thus, the function

‘property.

) +
maps every point of the plane onto the origin. .
On the other hand the transformation ‘|
%
‘e ¢
* - [3] = Ll Y

maps_the point (x, y) onto the point of the X axis that_has the same first

279
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compenent as'-V}. For example, every point of the line "x = 3 4s ﬁﬁpped onto the
point (3,8). ,§ince'the image of’eaéh point P‘.ian be located‘by drawiﬁg a -
., . 3 ' !
perpendicular line 'm P to the x axis, we may think of P as being car‘ried‘

L)

or projected on the x ‘axis by a line perpendicular to this axis. Consequently,

this mapping may be.descgibea as a pérpendigular or othogonal projection .of the
: . . . = L

- . ' s
plane on the x  axis. You notice that these last two functions (1) and (2) map
H ento subspaces ‘of H. S N ' Ce . T

.

-

Since we have met examples of ;nansformations‘that map distinct' points onto

s

.qidtinc: points and have also geeﬁ'trgnsﬁormatidns'uﬁder-which distinct points

L ”

 may have the same image, it is useful to define a new term to distinguish be—

tween these twe kinds of vector functions.,
) —

K

-

Definition 54. A transformation from the set' H onto the set H is one—

to—one provfhed the images of distinct vectors are also distinct vectors.

-

H

Thus, if 'f is as function from H. to H and if we write £(V) for the

- .

image of V under Ehe transformation f, then Définit;gn 5-4 can be formulated

symbolically as follows: The function f is a8 one—to—one transformation on Hii

‘-

.Qi?yided ' _ - ' R
‘ e | ViU . e
implies .
(V) # £5(U)
<

for vectors V and U in H.

, Exercises 5—2

-

W

l. Find the image of the vector V under the mapping

TGV —> 3V

-

Qi

[



L ]

. forteagh of thel follovging valueg of Vi

.4 - '1 . A . ‘r | _: ‘, ." . —.-- . .
e M () [_ﬁ] (e) s [_}5 o

. , I B S
for each of ‘the following values of V: ) f
. 51 : R ) !‘ 0.. N ‘ r'5"— N T 7— '
(a) [1 > - ‘ <TC) [0. > ge) 1 + 1 SRR
2] L 77 U ) R
(h) Ll 1. ? (d) [:__3 4 " - (f) _l _73 K

Find '£(V) undér the mapping : / S

q

. '-' = X y . ._:A'. ‘
f... V [y] ﬁ,[o]’ \. ‘: s»\‘ .

() [i‘] (@ [ﬂ =2 [g :

Describe ‘the geometric effect of each of the following transformations of

H on the vector V = [;] : E ' !
) ' ‘ I ’
(a) V—> vV, : (h) v—> _;‘ ,
(b) V—> [g] > , i) v—> 2’; R : -
. o L ,
| e | {
(c) VvV —> av, a> 0, (1 Vv— g;: .
of X +Y
(d) V—>—av, a >0, (k) V—> y s. |
o7 - / . C x ]
'y ] ' x — 2y |
(£) "' V—> , (m) V—> .
LY - Y] '
-xX " - x
‘S) V—> [yjl, (n) V—> Ly_3x].

Determine which of the transformations in the preceding exercise are one—

. tO-One .

LY

Eind expressions of the type V"—,—} V! for thee transformations of H that

XN . ,
m&g}_each point P onto the point P' related 'to 'P in the ways described
Y '

-~
3 [3

belqgi
t r);

X o<l -

.‘._ v ..- .
T
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(a) P' is one unit to the right of P and four units above P; . N )

(b) }‘ is the perpendicular projectioﬁ of .P on the horizontal line

¢ \

through (3,2); e e . o Tea
(c)"P‘lwis the pérpendiculer‘projection of P on phe vertical Iine
) ‘ through (-1,—2); T . a' . - o
A . (d) OP and OP' are collinear éut opposite in direction,”hn&' 11OP' 1] =
& . * .1_. '-_.... , "‘ N ". x.\( R . 1.' .
,\ « .. - 2 HOPI‘ ‘.‘ ." ._ ] , [ . > t
E * (e) P' 1is the intersection of the horizgp£§1 line':%;ough P with n&e

line. of. slope —1 passing through the origin (horizontal projection on

the line y = —-x), . . L . ) L .
T y L .

(f) P' is- the intersection of the vertical line through P with the line

T y 3 2x (vertical projection on the line y = 2x)

*
Vo4 ¥

6. Show that the'mapping of H into_itself that sends each point P into the

-

point of intersection of the lime y = x with the line through P having

* »
. . )

slope 2 is given by )

L

[4

- N

can be expressed in the form ’ . e ‘

. - . 1 2 _
(b) Find the image under this transformation of [i} .
(¢) Find the image under this transformation of the subspace of vectors

collinear with [i] .

/’

- 8. Solve parts (b) and (c) of Exercise 7 when [: ] is replaced by
el e
) - 3 -
)
' ro

1o

,....,...




208 . | ' S

9. Under the ténngformation given in Exercise 7{ find by two fferent methods
{

) the image ‘0of each of gpe following vectors:

" g - [2] ’

S - 5{1 r-3- | 2--' - .‘ .\..

| 137 1] B 57 .
- (c) 2 = l + 1l () 3 . .
’ -( s.- - - . ' .| L N A ¢
- Y N . ( o i '

. 10. QSns}der the mapping L ) i \}~

L \ -

e [y:‘ - \[-1 1] [y} .-

} ¢ ) ',
e (a) Find the images under this mapping of the pair of points (5,1) and

(l -2), and show that the distance. between the given pair of points
:> equals the distance’ between their images. ¢ ,)

(b) * Solve part (&)Eif the given points are (-2,10) and (6,—5).

(c) Solve part (a) if the given points are (a,b) and (c,d).

- | o a Y

5-3. Matrix Transformations
- v # . :
" As poted earlier, especially in Chapter 3, the pair of equations

. . . . allx-f-a = b

125 7 %y

AT - 821 X F 8 ¥ 7 by

» ) , .
i' can be written in_the form _

AV = B,

where " *
a a x b
A= | 1 T2 o and 3= | Y.
a1 %22 y b,

Consequently, in solving the equations you actually determine all the vectors V
L V- S .

: N ’
that are mapped onto the particular vector B by the function

-
.
“\)




A OV —> av.. . AN
T ) 0 e . ’ '¥.
The study of the solution of- systems of linear,equations thus ledes to the

P

consideration cf the special class of traﬂsfurmasiens on H that are expressible
in the form (1), whe(e A is any 2 X 2 matrix.with :éal entriiz; These-matrix_

transformations constitute a very important class of mappings, ving\extecsive

v applications in mathematics, sts&;stics, phy81cs, operations xesearch,-and
. y : - o ) L : .
_ engineering. - o | . . ‘ ' o
S ~ ¢ . |

An important property of matrix transformations is that they are linear

mappings that is, they preserve vector sums and the products of vectors with

. ;?g; real numbers. ’ ;o ¢
N ' ' Y
sk
Y| Let us formulate these ideas explicitly.
.‘ g .’:t{,’l . i . l
fif’ Pefinition 5~-5. A linear transformation.on H is a function f from H

f!ﬂf '_ into H such that

fﬁ'g (a) for every'pair of vectors V and U in N, we have

i CE(V D) = (V) + E@WY; |

13

(b) for _every real number r and every vector.- V in H: we have

b - }

f(rz; = r f(V). ) _ K -

Theorem 5-5. Every matrix transfermation is linear.

$
. ‘ . s N
. ¥

* Proof. Let f be the transformation

@ : L

&

L

£

W

£f: V—> AV,

A where A 1is any real matrix of order 2. We must show that for any vectors V

and U, we have ' » ’ '

' ¥
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s ’ -
. ";'A(V + U) =.AV + AU; —
- . ¢ . 3 /
further, we: must show that for any vector -V and any réal number r' we have
& B . . ° L’ .\ N ¢
K X e e . S T '
o - 4 A(xV) = r(AV). _ . I, .

v
W s . .
'Y -

v
r .
K
t

X

B .

But these Qt‘aalitie‘s hoid in’ virtue of parts. III (a) and III (f) of Theorem 4-2, ,

¥ - -

* . (see page 160). ‘, , " ' S N

. . ¥ v . . ' ' - . . )
The linearity property of matrix transformetions can bd used to derive the |

- -

- following result concernipg transformations of the subspaces of H
- L 3 . ‘ .

Theorem 5-6. A matrix A - maps{every subspace F of H onte a subspace

\ F' of H. .

©o\e

'\.__:‘; ¢
4 .
\* Proof. I._.eﬁ F' 'denote the set of vectors
\:‘ : ) - . Q .
. . {AU | U e F}. .

Tol pi’:;'n_re that F'' is a subspace of H, we must sho_w/ that the following state—
ments'at;\e true: ‘ ' "‘
. - -

S

v;(a) 'For any pair of vectors P', Q' in F', the sum P' + Q' is

.s in F' - ' £ ) \ g
(bg For anylvector P' in F' and any real number r;. rP' 1is in
N F'.
N If P! .a‘§d Q' are in y‘, then they must be the images of vectors P
and Q in F; that is, T
<+ ) . ‘
: : - P' = AP,
L3
Q' = AQ. oo
, . :
It follows that : -
-‘l\
oA ;
X-I-Q"AP-FAQ'A(P-FQ),
S T >
N D) N -
R\%\' - ~ Z k) o .. - \
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. e £ . o A P - ’ ' N

and P' + Q'  is the image of the vector P +'Q in F.w(Can you tell why
T~ . '

P+Q i‘s in F?) Ken‘ce, (P' +Q') e F'. S;[:milagly.

- : ; . v : o ,

- et Lrap) = AGD),

o] \ <.

-—

' . | I
afhd hence rP' is the image of +rP. But <rP e}i’ because F is a subspace.

i 5

‘mﬁs, rP' is the ‘imagg of a vector in" E, thefegdre, rP' € F'. -
. , . r

Y

1
A

Corollary 5—6—1. Every matrix mé.ps the plane H onto a subspace, fither

-

the origin, or a'straisht line‘_&ggh t:_he origin, or H itself.

LIRS
.

For example, to determine the subspaces onto which

.

. | .

=107

+
-
.

maps - : ‘ S >

. . ,
{a) F = { [;] i y=-— 3x}, . g

(b) H "itself, _ _ .

. : .
we proceed as follows.

For (a), the vectors of F are of the form
v x 1

U= [—3:::! X [_3] » X ER.
Hence, ‘ i ‘ ¢
4 2 L 4 2 1l -2 2
R N SR HH R R R HE
. r,\ ’ - 4.

Thus, F 1is mapped onto F', the set of vectors collinear with [2] ; that

o
| | pax{g]gyngx}.

215 ‘

is,



212 ~ - R
. . . f ~ B F -
In oth rds ”"", A m&ps "the linﬁ passin\hrough the origin gwithllope -3 onto °

-

\,{9 ," Ly . ) ) x N P
the‘“linewt:hro thea-otigin with §l¢p§ ,17‘2, R i ;; S 1 ,,‘
g < g N N
' As regards (b), we note that for any vector . T o
.\ . ..‘. . . .A\.\'__ N &’ S ) .
S, . \‘t ) : .}' ""R . . # e, . TrF :
. ‘}‘N LY . A ~ v
\ la el * a . .f ¢ ~a ) -
| b 1 .. , . [ S -~ ’\ . }/.. vy . . ‘. " .
wg.‘_\\ ;e | ? ) T ) \S'-\ Y « » r- Ll ’ Ch
. \"_’\‘.. ‘ ) ¥ N [ ] “ - -
: N e ~ . .
A . ¥ 3 . . X
N . 4 2 x "X 4x + 2y : 2 : :
L AV 15 1 5 —‘5- x4y 7(225 +y} K St
’ \ L \ ‘ 2 . . o .

e
Since 2% + y assumes &1l real vaiues as x and ¥, ‘run over t.he set of real

-

numbers, t‘ﬁ_\\fqllows that H is also mapped onto’ F'; t:hat is,. A maps the

-g‘ . -
entire plane onto the} line
. . ' } v. . * * . . . ) & "
_— ' Ty =ix a / St -
. . ¥ ) 2 .. . . .
I/ ) * . % -
Exercises 5.3 . A . . i

.
L . . ~ .

1. Let A = [1 2] . For each of the,following values of the fecto;r v,

4 3
< , - ﬁ ' . - o
* 1 - A 5
(a) V = [2 » % (d) v = [:"'l »
u\.: ' — j 3-1 ,‘ ' \_
(b) vs= [_2 , - (e) V= [0 L '
0 —6 | | . .
(¢) V= [2] s (f) v= [ 4| .
determine:
(i) the vector into which A maps V,. ' ST

(ii) the line onto which A maps the.line cdﬁltaining V. -

2, A certain matrix maps ™

£ T~ ‘ '
[i} into [?%’, and [;] into [‘;] q.

a

Using this infoymation, determine’the vector into which the matrix maps

O ‘ . . 21/
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) each of the follawing:

v

' EYE 27 | B
. (a) K 3} (Hj:nt: : [g/] = [1] + [;} o) s i v e .

4 Rl - |
. . (b)' 212 ‘ . ) (e) 1!’ 3 . . ’
N T - - - o
s : . ' » ot . Y * : N
. . . '—2 a . ‘ ) ‘— 2-q . - l . Al . . .
. . . .
- - (d) ‘{ 2}) - sg) -:3 . . ‘ . . -~ '
i ~ . ' . o Lo ‘
3. L(Gnsider the following subspaces of H:, = .
' "OT | . x|
179 LO_} ’ - {[Y} |- Zx}’ '
-x-w . ' o ) .
, F, 13 ;.y=-—2x , F4fﬁ Rself. ‘

Determine the subspaces onto which Fl’ Fz, F3, and F4 aré mapped by each

LI
& .

of the following matrices:

L

. —~— \
(3) A= [:‘2’Z i] ) (b) B = [_(2} }é:l 'Y . (C) AB, ) (d) BA:
a~ _ S _ :
. 1 1 | } .
4. _Let A= [0 1-] . .

————

(a) Calculate AV . for

e REEE

. (b) Find the vector V for which . -

S N NN C

5. Determine which of the.following transformatioms of H are linear, and

jus tify Jour answer:

X +. 1 | fo.
—->[ g jL, (dr_ Ve —> [Sy] R

-
5 +

! o _ i x
, (a_)h v= [Y]
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(b), V= :1{} L (e) V —-->-)2'— (V + U), where U= [ﬂ \
. | - - | _ .
AT ) V> :Iﬂ C(E) V—> 1V V.

»

6, Show that the matrix sA maps the plane onto the origm if and only if

A

~to o | : _
- A= : [0 é} . . ) ‘, ﬁ
* _l N ) ‘v ... ; ) * . . *
7. ,Show that the matrix A maps every vector of the plane onto. itself if and
- - , - . - . . / ' )
only if ' : N . ! .
-7 1 o " .
A" [0 l] ) €
8. Show that ~ ' . ,/-\' ‘ /i o (P '

. . lr- . ‘

3.;" — _ .::“ - % »
- gnaps the line y = 0 onto itself. Is any point &f that line mapped onta
itself by this‘matrix? - - ‘ o - (
9, (a) Show that each of the matrices : { -
y \‘ . * - . ’ . . a

-

o 1 0] Ty 21 .
: | S - [0 0] and Io( o] .
‘a: . . A ln ' %\ !

maps H onto the x axis. ’ )

(b) “f)etermine t:he set of all matrices t:hat: map H ‘onto the x axis,

- o

1 : .
Ce o (Hint:: You ;nust detgrmine all possible matrices A sq?/t}set cor-, @
. ) respoending to each V € H thet/re. is a real number r -£0r which

. B AV=rl_é]. "< (L)

o *

In particular, (1) must hgld for suitable r when V is replaced by

‘ " , . A
L [é} and by [2] ) . ST -
B b \ - . .

10. Determine the set of all matrices that map H onto the -y axis. : _
\ . . . - . * X " .‘ " ‘.-,

11.7 (&) Determine the MCMI’L that . . ) .

. .- ¢
o - ‘ 214

LRSI

) ? ™ ‘_.:;, < -

o - . * ¥
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} g - AV = ZV ’
for’a{lglv, N d
. . - [ . . . '
(b) The mapping : S

o - V—>av - (a > 0)

"multiplies the lengths of all_vecﬁbrs without changing their directions. It

Jamounts to a change of scale, The number a is accordingly called a scale

factor or ééalar. Find the matrix A that yields only a change of\sc&leif

- s .
v &

T

AV = av- \ . -‘ “,N"n

-

12. Prove .that forvevery matrix A the segi F of all vectors U for which

) Y
2 -

S L\ . Lol :
is @ subspace of H. This subspace is called the kernel of the mapping.

~

13. (a) Show that the matrix of a tramsformation is determined when the images

of 2 noncvllinear vectors are given.-

~ -

(b) Find the matrix that maps

. . P _
' -11. 3, 2 X
Li onto [ 0] and [2] onto {Sjk. .

14. Prove that if a linear transformation of H maps each of 2 noncollinear

L

.
LS

vectors onto itself, then the transformatioh maps every vector onto itséif;

' \

. that is,- the transformation is.the identity’ mapping.

IS.‘JEIove that a trénsformatiop £ of H into itself is linear if and only if

¢
. 4

= .. f(xV +sU) = r £(V) + 8 £QU)
| . S .

! for every pair of vectors V and U of H and/iyery pair of real nuymbers

r and s. B : o ' '

' e L I

¢
54, Linear Transformations

F . C2H)

<

-
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A In the preceding section, we proved that every matrix Febresents a linear
transformation of ~R\\}nto H. We now pro&e the converse: 'Evefyflinear trans—

<
formation pf H into H can be represented by a matrix.

!.‘

W ) . '
Theorem 5-7. Let f be a ¥inear transformation of H into H.. Then,

T Tl
relative to any given basis for H, there exists one and only one matrix - A

such that, for all \V € H,

.

Proof. Wé prove first that

cannot be more than one matrix represent—

ing f. Suppose that there are two matrices A and B such that, for all
- . . .

M

V € H,
- %
AV = £(V) and BV = £(V).

*

AV — BV = £(V) — é(V)

for each V. Hence, o

*

(A—B)V = [g} for 4l1 V e H.

L

-

‘Thus, A — B maps every vector onto ﬁhe'origin._ It follows (Exercise ~3-6)

+ ' that A — B is the zero matrix; therefore,

& ) e - .

-

. Hence, there is at most one matrix representation of f.

Next, we show how t? find the matrix representation for the linear transfor-

mation f. Let S, and §
IR

2 be a ‘pair of noncollinear vectors of H. Let

2.9( :




"vecotor of H, it follews from Theorém 5-4 that there exist

. have - Y

L 41 . 1 a, ) //
A f(S ) = and f(S ) = '

I . %21 ) /

’

umbers v

"be t;he réspective images of Sl and S under the mapping f. f V is any
real n

-I
2 "such that’ -.V-n. vlSl + VZSZ. Since f is a. linea _transfomat:ion,

N

and Vv

h

xi CE(V) = £(v,S, Fv,8;) = vy f-(S}) #v,£(S,).

.. .. M *
b _ . ’

-

€« H
Accordingly, i .-
- * A
e

-

a1v1 T 345%

8,1V1 T 30

L ]

when vectof&,gﬁé okpressed in terms of their coordinates relative to the basis

Sl, Sz!

You notice that the matrix A 1is completely detemmined by the effec™of f

-

on the pair of noncollinear vectors used as the basis for H. Thus, once you .~

know that a given transformatien on H is linear, you have a matrix represent—

ing the ‘mapping when you have thg¢ images of the natural basis vectors,

~
»
oo
D
o)
&



B

Y

For example, it can be shown by a geometric argument that the.counéerclock—
wise rotation of the plane through an.angle of 30° about the origin is @ linear

; .

”“%ransformatiqn. This finction maps an§ point P onto the point P', ‘where the
measure of the angle POP' is equal to 30° (Figurévs—é). It is easy to see

(Figure 5-7) that

4y ; .
| (0,1) - '

-

&-sin 30%,cos 30°)
309 ° (c_qs_ 30°,s1in 300)

30°

la-]
e - e ——

Y

g

w

Q

o]

;4.17

‘o 0 > x . ' I 50 ' (1,0)

&= ‘

_ , > .

'H@m54.Ar&ump&m%h \HmmSJ.TMim@sﬁﬁdemS
an angle of 30° about the origin. ' '(1,0) and (0,1) under a rotation of 30° ,ﬁ' i
about the origin.> P

r..l ,.-:'. . | » ) %
| 1 e Tcos 38° | -
. N [0] " 'is .mapped onto [s in"% | .

\

and ) . e
o i}
0 : —sin 30
[1] - is mapped onto [ cos 3OQJ . .
Thus, the matrix representing this rotat:ioh‘ig
- ‘ - m\/_ N
cos 30° —sin 30° V3 _ L
. 2 2
A = = a ) .
. o o 1 ~/§
sin 30 cos 30 7 5

-

-

_ Ty
. Noter that the first column of A is the vector onto which - [0] is mapped;

Ay 223
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»

the second eoiumg of A is the image of [2] .

" The product or tomposition of Qwo transformations is defined just as you

+

define th composition of two real fﬁnetioﬂs of_.a real variable.

-

~y

Y

.. Definition 5-6. If £ and’ g are transformations on H, ' then for each

1]

vector .V in H the composition transformations fg' and gf are the trans—

)

fomations such that
£8(V) = £(g(V)) and gf(V) = 8(f(V).

. -

Thus, to find the image of V under the transformation fg, you first
" .apply g,;,EQd then apply f. Consequently, if g maps .V onto U, an& if

f maps U onto.W, then fg' maps V onto W.

The following theorem is readily proved (Exercise —4=17).

N ]

Theorem 5-8. If f’ﬁ§q a linear transformation represented by the matrix

A

A,  and g 1s a linear transformation represented by the matrlx B, then . fg
and gf are both linear transformations; _fg is represented by~ AB, while gf

is represented by BA.

» For example, suppose that in the coordinate plane each position vector is

first reflected in the vertical axis, and then the reshlting vector is doubled

in length. Let us find a matrix representation of the resulting linear trans—

formation on H. If{ g -is the mapping that transforms each vector into its

reflection in the vertical axis, then we have

Gl-GA B

. & - R
"If f maps each vector into twice the vector, then we have

*

-

. )
Q o - ‘-'?4
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L ) \
- N o

L

_ A \,

Accordingly, the matrix yepresentih% fg is
L

AR S .

2 0] [—voM. [ o
0 2 0 't} . 0 2|°

IS
AY

R

O

- \

. Exercises S%Qf-A

v - i

17~\§322\f?at each of the mappings in Exerciséc\ 2—3 @é'%inear, by determining

SN
A "'4.._'»‘

' , matrices representing the mappings. . v

‘ v
sy v

2. Consider the linear transformatioms, S

p:  reflection in the horizontal axis,
&:f;horizqnﬁal projection on the line y = — x (Exercise 5-2—5e),
r: rotation counterclockwise through 900,

s: shear mqving each point vertically through a distance equal to
the abscissa of the point, '
A

: L N
of H into H. In each+*of the following; determine the matrix)representing

the given transformation: - : . ’ §\ '
@ » (D aps () s(rs), |
) q, @ e W Gos,
(& . - (h) o, s @ psa),

‘:\_ @ s, (1) g¢s, (n) (ps)q, |
(&) pa, - (1) sq, - ' (0) (sp)(xq).

3. Let f be the rotation of the §lane counterc}éckwise through 45° about the

N
f

origin,  and let g be the rotation clockwise through 30°. Determine a

matrix representing the rotation through 15° about thé origin.,
' . '.'r _.\
4., (a) Show that every linear transformation maps the origin onto itself,

* - ’

Q ' . "
| 225

<,
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e,

-
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. 3 .
N -

.

(b) Show that every linear transformation maps every subspace of H onto

a subspace of+ H.

. 3. TFor every two linear tramnsformations £ and g on H, define f+ g to

be ‘the transformation such that, for each V ¢ H, .
(f + g)(V) = £(V) + g(V). e

Without using matrices, prove that f + g is a linear transformation on H.

6. For each l;néaf transformation £ on H and each real number &, define

‘af to be thé”iransformation such that
. ' ‘ af(v) = £(avV).

’ B N +

. Without using matrices, prove that af is a ligear transformation,én‘ H.

7. Prove ‘Theorem S—SQ b

- 8. Without using maté}ces, prove each of the following:
(a) (g +h) =fg+fh, . I
(b) (£ + g)h = fh + gh,

() f£(ag) = a(fe),  °

_where f, g, and h are aﬂy linear transformations on H and a is any

o

real nuhber. -

>—3. One—to—one Linear Transformations

The reflec;ién of the plane in the- X axis clearly maps distinct points
onto distinct points; thus, thg reflection is a one—to-one linear transforma—
tion oh H. "Moreover, the reflection maps any pair of néncollinear vectors onto

a pair of noncollinear vectors. It is easy to show that this property is common

*
[y

~ . to all one—to—one limear transformations of H into itself,

¢ -

A
«
S
- +
N . - .
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+ Theorem 5-9.- Every one—to—one linear transformation on H maps non—

collinear vectors onto noncollinear vectors.

-

. L4

_?roof. Let S1 and 82 be a pair of noncollinear vectors and let

L

- | £(sj) = T, and £(s,) -:‘1:2 \

,Pé their images under the one—to—one linear mapping £f. Since £ is one—-to— *ﬁ%%

-

one, we know that. Tl and "1‘2 are not both the zero vector. We may’ suppoge;

" therefore, that Tl is not the zero vector. “To s@gw that Tl and Tz ére

not &ollinear, we shalldemonstrate that -the assumption that they are collinear

1§ad§;t&?; contradiction. . _ : KE“: )
if Tl and T2 are chL%near, then thege exists a real'numhgf r such /“
that ?2 ar Tl. wa; considét the imége under . £ oitthe vector r Sl.; Siqeé.'
f is linear, we have . (-
. ~
| ] f(r 815 = f(sl)
R | =r T g | R
=T,. | ' .

LS

\{ﬂ; Thus, each of the vectors r S1 and S2 is mapped onto Tz. Since f is one—
booa ! . ; o v

" to—one, it follows that”

L3

r SI = 82’

o
M

and therefore that Sl and S2 are collinear‘vecfors. But this‘contradicts
'
the .fact that Sl and 82 are not collinear, Hence, the assumption that Tl

and T, are collinear must be false, Consequently, f ‘must map noncollinear

2

vectors onto noncollinear vectors. : ‘ ' ' .

-~ Coréllary 5-9—1. The subspace onto which a cne—to-one linear transformation

o

maps H is H itself. 0 s
20
~ : ~l e St

O
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. Thus, f must be a one—to—one transformation.

T 223

-
$ . *

Proof. Since the subspace contains a pair of noncollinear vectors, the .
£ ~

torollary follows by use of Theorxems 5-3 and 5-%.

¥ )
The link between one—to—one transformations“on H .and second-order

matrices having inverses is given in the nextfiheoreﬁ.

*

Theorem 5~10. Let f be a linear transformation represented by the matrix
B _ : 2
A. Then f is one—to-—one if and only if A has an inverse. -

Y 1

Prsof. Suppose that A  has ap inverses ‘Lét S and S, be vectors in

. . . ’

. -

H having the same image under . f£. ow, ., Coo

T3

-

. E(5)) =4S, and £(5,) = AS,. N

Thus,
Hence, ’
- Isl = ‘ ISZ > ‘ ?/
N ¢ ’C# r % .
and h
Sl =982.

.

"On the other hénd, suppose that £ is one—to—one. From Theorem 59, it
follows that every vector in H is the image of some vector in H. In particular;

3

there are vectors W and U guch that

£(W) = AW = [é} N |
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i . \
and - _ v )
\'\\"il .
\b‘o
= = i -
aw-w ]
-
. \{‘t;‘ )
Accoxrdingly, the mqpriﬁ'having for its first éo%umn the -vector W, and for its
. . . L '\r .
. . W - .
+ gecond column the vector U, is the inverse of¥ﬁ$.
o _ ¢ ‘ :
Corollary 5~10—1. "A linear transformation repkesented by the matrix A
is one—to—one if and only if '.fﬂ L ‘-
.. {  
- . 5(A) # 0. \ -
The theory of systems of two linear ‘equations in two véniables;can now be
: _ _ . . )
studied geametrically. Writing the system © R
, 14
. ! . . ' ) .
. ' a., x+a,y=1u, .
o 11 12 7 - -
o . (1)
s ., 2, x + ?’22 y- = v,
. * - .
in the form . c LTy .
AV = U, S @
. . . "\
. . : . N\
where . _ ! 3
»

o . ‘ a a, ., ' x ' u
Ly - . A= al% .alz .. V= N and U = } N
21 %22 y E M

»

we seek the vectors V that are mapped by the matrix A onto the vector U.

If ©5(A) ; 0, we now know that A represents a one—to—one mapping 'of H

onto H. Therefore, A maps exactly one.vector V onto U, namely, V= Aflu. !

Thus, the syQtem (1) — ox, equivaléntly, (2)~¥— has exactﬁy one sglution.
‘If ©(A) = 0, then, in virtue of Corollary 4—6—1, the colums of A .must
.
b <29

C

R ~~ -
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be collinear vectQrs. (Hence, A must have one ofy the fqrms

.

¢ 0 0 0 a or a ra '
| o of* |o bl”* ! b rb|’ o .

A

1 4
*
»

where not both a and b are zero. If A has the first of these forms, then #§

. ) . rs
A maps H onto the origin. 1In the -other two cages, A maps ' H onto the -
line of vectors collinear with the vector [:g] .. {See Exercise 5>-5-7, below.) >

<.
With these results in mind, you»maj now complete the discussion of the solution
‘of Equation (2). '
\ _\ \ .
Exercigses 55 T
* . L. Using‘Theorem 510 or its'cérellary, determiﬁe which of the.tfansfofmations
‘ in Exer¢ise 5—2-3 are one—to—one. P .. -
R . '.“ \L — . i"“..-
2. Show that-é linear transformation is one—to—one if and only if the kernel of
the mapping consists only of the zero vector. (See-Exerciée 5-3-12,) ;\‘

. . .
3. (a) show that if f is’a one—to-one linear tramsformation on H, then

there exists a linear transformation g such that, for a;lr V ¢ H, .

gf(V) =V

and . .
# . \
fg(V) = V.

The transformation g is called the inverse of f and is usually wrifen
g = f—‘lo

(b) Show that thewtransformation g ;\f:i\\in part (a) is a one—tc—one

~ .
-~

transformation on ~H.

- 4. Prove that the set of ohe—to—one linear transformations on H is a group"

relative to the operation of composition of transformations. o

\

-

. ¢ .
O ‘ . - . ‘2\}("

e

&
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~ 5. Prove that if f and g§ are one—to—one linear transformations of H, ° then

fg 1s also a one—to—one transformation of H. ‘ C

N ~

6. Show that if f. and g are linear transformations of H such that fg

is a one—to—one tramsformation, then both £ and g are one—to—one trans—

formations,

7. (a) Show that if . B(A).= 0, then the matrix ‘A maps H onto a point
. (the origin) or onto a line. | ) l
(b) ;ﬁhéw.that if A is the zero matrix and U 1is ﬁhe zero vector, then
ev;ry vector V of H is g-soiution of the equatiéﬁ? AV = U. .
(c) Show that if &(A) = 0O, éut A is not the zero matrix, then thef

+ solution set of the equation

is a set 0of collinear vectors.
(d) Sﬁow'that if ®(A) = 0, but A 1is not the zero matrix and U dis not

the zero vector, then the solution set of the equation .

L%

_Avau . * °

- aither is empty or consists of all vectors of the form

?
[
{ . » '
{v1 + cvzg t € R},
o R f" "‘
where V and V2 are fixed vectors such that A
Dt 5N
. - . ) . 0 ' N
AVl = [ and. AV_2 = ol * .

. i T \
- 8. Show that if the equation AV = U has more than one solution for any given

U,” then A does not have an inverse. . .
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5—6. Invariant Subspaces v ;
The reflection in the =x axis, : v o Y
4 - . E By 0 «
evidently has the property ¢f mapping each vector (point) on the x axis’.'om:o .

% itself. If you think of a mapping as "carrying'” a vectdr onto its image, you

-*, might think ‘of the vectors on the x axis as being held fixed in this reflection,

-

The notion of fixed vectors or points is important endugh for us to formalize the _'
. ‘ .

idea in a definitien.

. .
~ Vv [ . ) \ . ® _
~ o
» .

Definition 5-7. If a transformation of H into itself gxaps a given vector

onto{_ii:selﬁ, then that:"vect:or is a fixed vector for the E;ansformation. A fixed .

@ 4 . . . [

- vector is also called an invariant vector. .
;‘Lr"’ » o -_— - : [N *

»
“~

) ‘ v
Reflection in the x axis leaves fixed no points other than those on t:his

e
- '; e .
.

# axis. However, it: is easyr to see that each point on the y  axis is mapped by

| t:hxs transformt:.on onto another point of the ¥y axis, axcept: fox the origin,
- If W is any vector on the y axis, W # 0, then ‘

3

* ' . (W) = - W - . .
- Thus, the vectors collinear with W form a fixed, or invariant, subspace of H o,j‘
for this transformgtion. ' 1 o . ) -~
: Definition 5>8. A suybspace F of H is an invariant subspace for a

given transformation provided: (a) the image of every vector in F 1is also

‘ . a vector in F, and (b) every vector in F is the image of some vector in_- F.

\ o - " + .
The following theorem shows the connection between invariant vectors and

- *
b
S \

. O ‘ . ) () K
- : - <35
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" real numbers c¢ such that
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&

¢

invariant subspaces under linear transforxmations.

- - N
~ ° : ) s, E A3

 Theorem 5-11. If W is“an invariant vector for a linear transformation,’

:f, then every vector in the subspace F = {xW | r ¢ R} is invariant under the

transformation; that is, F is an invariant subspace. ~ Y

——

¢  Proof. Since f is a linear tramsfommation that maps W-“pnto'itself, we

‘have v

Y

." . | v . , . .. - rW. ) .
. ) .‘ . o _ ‘

-

£(xW) = r£(W)

Thus, f maps rW onto itself fom every real value of r. -

To determine the invariant subspaces of a linear.transfqrmation £, 'let

. S _ ) \ .
us suppos$~that_ f 1s represented byIEPe matrix A. We seek vectors W and
. < - ~

(_' - ’ < 8, - . -~
AW = cW.

.
L

If I is the identity matrix of order 2, we then have

- : - N A N
AW = (cI)W, ¢ .
. ¥
that is,
. ) S 0
or:a } .
€ o '
(A —c)W =" [g] . _ (L)
-
- [ 3
P ' . ¢ ’
... 'Letting
-
a - g a . X
12
VA= all ‘a and W = >
= 21 22

>y
.

]
a



a7 k)
. . . . ' ’ '
- 1 ) » M R . - ’ * - ' a ) 2.29
. : . S . -} '
we may -rewrite equation (1) as follows: X ¢
[ 3 . - ]
. . 11;T=ﬁ al2 . X ) 01 . @
' -321 S PR I 0 o ;
' ' -t \ R
" We know’there is @ nonzefo vector W satisfying equations (2) if and only if
a) . » ) \‘ Ly J ' ] a~a ’
. . . . < -
. .7\~' e . . (A —¢eI) =0, ' .
&5‘% . , . o . - ' ’ * . ’ *
\ ! | ! ' . -
that 1S * ~ r." N
. R ,
' .\ 4 o\ H \ Pon .
' (a c){al
e 11 y y# z -
] BREAGA v )
» ‘ . ‘“ Y “,\." ’\ .
or ' ) o w“iﬁd -
, . . . N . “X%\:\‘\\'ri \‘. 8 {
., L%\\k\-‘\\;{‘,\\ .
\E ‘{13‘"‘“\5 v .
CZ - (a _%x\.‘\‘ ;Qk"f )C‘ ’i\; ﬁ(A) = 0 . (3)
N 11;; a2 :
. \ ’

) | i
Equation (3) is called the charé‘§

b
Hi‘ /
¢

,;

roots. are’ called the characterlst{%‘iﬂ

. , -~ 75 )ﬁ

equation is solved for e, the c ponding vectors W satisfylng equation (2)

. .. are readlly found (Exercmse -

Il, \

You should notlce.that 1nva;1§ut 'vectors of A correspond. to a character—

.

. ’ Qi -« ' .
istic root equal to 1. e T .
' ' S
, For example, to determine the invariant subspaces of the matrix
3 - : :
o . ' o ! ' :
w . S - : 2 3. o )
. ' . [ S N . - -
n R . Lo . A
- we must solve the matrix equation ' ' -
- .'. .~:‘;. . A - .~:..' .,v"-l:._ ! ) . - .
. i 2 —-c 3 x 10 o . .
. - =, . . . .
N ‘ 0 . 1-c¢c y 0 : f -
- ' ) N

»

For the characteristic equation, 'we obtain

P

i
|
|

¢
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the roots of which are ¢ =1 and ¢ = 2.

For ¢ =1, equation (2) becomes Lo
. . P

L - ]

. « . o 4 . . -
_ 1 3 x| 10 - 6 . '
S 0 0 y ol ‘

-

. fhis' ﬁatrix equation is equivalent to the system

L £

ata
13
a . . el x + 3y =0,
. t !

2

v

0x + 0§ = Q.

- . . -

Thus, A maps the line x = -§y onto itself; that is, the sﬁb§pace of vectors

* collinear with [-3} is invariant.. Actually, since ' ¢ =<1, each vector of

1
this subspace is invariant. - Qo .
For “c¢c = 2, equation (2) becomes. ' -
_ ) ’

' H . . . :
- » _ 0 3 = - 0 - A .
* ¢ ) . -. [0 ‘—.1 J ’ [y ] [ O ] ’ / ° - ) .
N (.'\\' . . . ' . ) f .

S =0, ~ | »

-1y = 0. 4 | .

?
a

Y )

.

Hence, A maps the line y = 0 onto itself; that is, the invariant subspace

. ) B : - S 1l 3
corresponding to ¢ = 2 1is the. set of vectors collinear with '[0:]. But in 2‘
this subspace, only {g} is an invariant vector.,.

.7 . - .
‘ vt - 3
. I
. - - .

Definition 59. Each nonzero vector -W satisfying the equation

r

U
¢ AW .= cW
-~ - ‘-‘:" 1Y e
* : o B .'“‘:“v

37
3

is called a gharacteristic vector corresponding to the characteristic value ¢

- Xy
2L R

A

' Of -AI : . . . ] N . ~ . "'"

I3
-y i

The determination of the characteristic roots and vectors of a matrix is of

.

' S PN
' - . ~ \3:)

\ I N
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vast importance in many engineering and scientific p;obl: S, Thefaﬁalysis of
* &
flutter and vibration phenomena, the stability analysis of an airplane, and many
other physical probléms require finding the characteristic roots and vectors of
matrices. . . ’
- Exercises 56
. ' . -. q
1. Determine the characterigtic roots and vectors of each of the following
matrices: TNk : ' s
< ‘ c'-".:,..:
. 2 5 - | 2 1]
i (a) [0 3] Y , '_ . (C) [_1 0 S
(=3 &t | 0 2]
(b) ["‘l 2] * '_.,-:._')‘"'3 . (d) . [:0 1 .

2. Prove that zero is a chﬁ%&ctgfistic root of a matrix A if and only if
5(A) = 0. . T . ) y o
v ‘ ) o .
3. Show that a linear transformation f is one—to—one if and only'if zero is

S

not a characteristic footfbfffhe matrix'representing f.

4, Prove that if zero is a characteristic root of the matrix -A, then A has

at most one invariant‘subspacéwggher than the subspace consisting of the
o

zero vector alone., What is_thé”' ximum number of noncollinear characteris—

.

tic vectors that A can have?

5. Determine the invariant subspaces (fixed lines) of the mapping given by

6 2
2 3"

I

Show that these lines are mutualiy perpendicular.

6. The characteristic equation of the matrix

3

©
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3

,“ﬁ&gé in the illustrative example on page.229 is'
_c2 —3c+2=0,
| - P
. N , ' . A
For matrices, the corresponding equation is
L . . ) ‘ :
- : C —3C+ 21 = 9_: ' ¢

¥

where 1 is the identity matrix of order 2 and 0 is the zero matrix of
- . 3 6\-\, ) "

order 2. Show that A 1is a solutiom.of this matrix equation; that is)

show that : | . A >

- Al —3a+21=0

. -
\/‘_/’\ . .
. £

. : a a.. i P
- 7. Show that the matrix A = {éll 3?2] is a solution of its characteristic
= ' 21 722
(matrix) equation; that is, show that ' > L

-

-

2
A — (?ll + azz)A + 5(A)I iﬁg' .o 7

3
W

-

This result i§ the case n = 2 of a famous theorem called the Cayiey—
—

Hamilton:Tﬁeorem, which states,tpa; an ang;ogous result holds for ma;rices ’
»of any order n. - . | ' . v
' 8: Show‘ﬁha; [é} is an igygfia;t";ectzgibf the traésformatién
“ V—> IIVH. v,
= ) but;thgt 2 [é] is not invariant under this-:'mapping. Does this-result ;i?l

contradict Theorem 5117

-9. Show thét A maps every line through the origin onto itself if and only if

o

ey L :
b A - r O . 3. . ¢
0 r '

-

for r #D




- a2
10,. Let d.= (all - 322) G alza_l,.where a and a,.

2 117 312° 2212 22

. .
real numbers. Show that the number of distinct real characteristic roots

are any

of fhe matrix .. . -

@

e
. ' 11 %12 "
' 81 %22 » | '(1
$ . g .
is i .
' 4
0 if d <0, - S
- 1 if. d =0,
"j . vt ‘

2 if d >0.

- 4 .

11. Find a nonzero matrix that leaves no line through the origin fixed.

12. Dgtermine a one—to—one linear transformation that maps exactly ome line

through the origiw onto itself.” S 2 .

PR

13; Show that every matrix of ‘the form [: i] has two distiﬁﬁt characteristic

roots 1if . s # O. N

14, Show that the matrix A and its transpose At have the same characteristic

roots.

\".'
PR

.
1

5)7 . Rotations and Reflections R

_‘Since length is an important property in Euclidean geometry, we shall look
for the linear transformations of the plane that leave unchanged the length
tIVlil of every vector V. Examples of such transformatjons are” the. following:

(a) the reflection of the plane in the x axis,

(b) " a rotation of the plane th%ough any given angle about the origin,

(c) a reflection_is the x axis followed by a ‘'rotation.about the origin,

Actually, we can show that any linearfﬁﬁansformat?on that preserveé the lengths

¥oa 5 . . .
@f " all vectors is equivalent to one of these three. The following theorem will
R ' .

pre .

A

- | 2138
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be very useful in proving that result.

r
~

: Tﬁeorem 5-12. A linear transformation of H that leaves unchanged the

length of every iwector also leaves unchanged (a) the inner product of every pair

.of vectors and (b) the magnitude of the angle between every pair of vectors.

s

Proof. Let 'V and I’ be a pair of vectors in H and let V' and U' -

4

be their respective images under the transformation. In virtue of Exercise

-

4-5—-8, we have

v +011° = (vt +2veu + i’ W

‘and

EN

NV + Ut %= v P o+ 2vtent & LUty (2)

Since the transformation is linear, for the image of V + U we have

W AU =V U,

4

- LY

| Conse §§fntly, (2) can be written as. ' ; . _ .
» L ] .

O
W'
- »

" t 2 ] 2 - i ] § 2 -
LIV + U HT= HIVi LT +2vtet! + LIUY Y. (3)

-

But the transformation preserves the length of each vector; thus, we obtain

AVUHLE = HIVEE, HIgtit = 1iutl, and IV A+ UL = IV 4+ VIT.

L

‘Making these substitutions in equation (3), we get

v+ UIIZ = ISV!I2 + 2V'eU’ +~!IUEI2. (4)

Comparing_equationé (1) amd (4), you see that we must have N

1 * '
Vel = V'ey',

that is, the transformation preserves the inmner product.

- <239

{Qﬁ

R

T
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Since the_magnitude of the angle between V and U can be expressed in ;(‘.. :
terms of inner products (Theorem 4—5), it follows that the tranéformagioﬁfalso

preserves that magnitude. a . ' _ ) ' -
. .

N
.
¢ o

Corollary 5-12-1. If a linear transformation preserves the length of every

vector, then it maps orthogomal vectors onto orthogonal vectors.

v
- .

&

Sée.Exercise 4—5-4 on page 183 for the‘ﬁefinition oé orfhogoggl~vectors.
This simply means that the geometric vectors.érgﬂmutually perpendiculai.
It is very easy to show the tranéformationgiéé\are consideringmﬁlso pre—
'iﬁprve the distance between - every pai; of points iﬁ thévélane. Ve state this

preﬁgrty forﬁZIIY in the next theorem, the proof of whiéhg§§ 1eft as an exercise.

N
N

Theorem- 5-13. A linear transformation that preserves the léﬁﬁsh_of every,
. vector leaves unchanged the distance between every pair of points in ‘the plane;

_ R
that is,  if V' and U' are the.respective images of the vectors V. and- U,

. h .
A S

. them o K

: | ¢ T

vt — Ut = W~ o, | W
a1 ; . o

Let us noew find a matrix representing any given Finear length—preserving

transformation of H. All we need to find are the images of the vectors

I 0
8 = [o] and S, = [1]

. t tmder such a transformation. (Why is this se?)

“h . "k

1f - Si and Sé are the respéﬁtive images.of §; and S, th&n we know

that both Si and Sé are of length 1 and that they are orthogonal to each
i ’ '

o;her.

+

23 -

T

Fin-
s
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Supposg that Si forms thé'@ngle' @ (alpha) with the positive half of

the x axis (Figure 5-8). Since the length of S! equals 1, we have

1
T ) . "S' = CO‘S & \
S 1 sinq |’
We know that Sé is perpendicllar to Si. Hence, there are two opposite
A " -
ty 4
% "
1)
¢ N . '
- ' (cos @, sin o)
- S N\ - -3
AN Z ;
k H
v\\ \ Sl
9 :
»r \ *
AN
AN
- { 0 g-

Figure 5-8. A length-preserving transformation.
’ ~pqssibilities‘for the direction of S}, because the angle '8 (beta) that
makes with the pogitive half of the =X axis may be either

[N

T

. - B=a+5

or . )

R
* S B = a 2.

In the<fipst case (5), we have

L. L ~. .
- () L

=- ~ <1]

{5)

(6)
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cos B cos <cx\+ %—) —sin &
f = = =
Sz x\ !l * .
sin B sin a + 'i) cos )
-
. [N . » » .
In the second case (6), we have : )
cos (a—ﬁ) -sin @}
» . S' = . 2 - .
| 2 ‘sin (Cit - -g-) ~c0s X

Accordingly, any lineaxr transformation £ that leaves the length of each

—_— vector unchanged must be represented by a matrix having either the form ' W

: " Teos @ —sina]
£ A |sina cos af , : ) . (?)

-

or the form

-_cos Q.. sin O:‘
sin @ —-cos & T €8)

L] - b -

\A :

Q ' In the first instance (7), the transformation £ simply rotates the basis

've_ctars Sl and S2 through an _angle ¢ and we sﬁspeét that £ ; is a rotation

of the entire plane H through that angle. To verify this observation, we write

the vector V in terms of its angle of i:ncliriat:ion @ “(theta) to the % ‘axis

and the length r = [IVll; that 18, we write _ &

‘ . r cos 8| °
i - [ ) - . v . [r Si{i GJ hd ) . (9)

Forming AV froﬁ: equations (7) and (9), we obtain

o
[N

A .

' . . ' E AV = r{(cos O cos @ — sin ® -sin Q) | '
' ’. . . T r(sin © cos @ + cos © sin Q)| °
A

. From the formulas of trigonometry,

- -
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cos (9+<x)-cosecos Os—sge sina,

sin (8 + Q) ssinecos Q + cos esina,

. . .-'?:'.f
¢ [

we gee that - '

3

!

o AV = JT cos (8 +)7 ' ‘ .
AV = '{r sin (© +O¢)] : N

Thus, AV is the vector of lenglth. r at .ex;;&angle e + to the horizontal

axis. We have proved thae the matrix A represents a rotation of H through,
e engle -G |

o But suppose f 1is representecfﬁy" the matrix B in ;?:quation__ (8) above.

This transformation differs from the one represented by A in. that the vector
A

/ S' is reflected across the line of the vector Si Consequently, you may .

. f\ -
ot fu

. suspect that tius transformation ammts to a reflection of the plane in. t:he
\ ‘X axis followed by -a rotation througp /he angle &. Since yd’u know that the\

reflection in.-the x axis is represdnted by the mat:rix

v

. o N "
. so 0]
L 1o -1’ 5
. y
. you may, therefore, e:fpi?%t that "
, B = Al T oy

- We leave this verification as an exercise. £
'f.;.;

) - Exercises 57 . )
> ",

1.  Obtain the matrices that rotate H through the following angles:

(a) ‘1800, N -; ‘ | N (f) 900’
Sy 4%, T (8) -120°, ,
o Q

(c) 30, (h) 3607,

<43
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o (1) 60°, .~ | (1) -135°,
(e) 270°, ()  150°.

w ¥

-y

*

Write out the matrices that represent the transformation consisting.of a

reflectsion in the x axis followed by the rotations of Exercise 1.

Verify Equation (10), above.
A lineag- transformation of H that preserves the length of every vector is
called an orthogonai transformation, and the matrix representing the trans—

formationﬂigrgzrted an orthogonal matrix. 'Prove that the transpose of an

'dtthogonalhﬁatrix is orthogonal. . ' .

-

Show that the inverse of an orthogonal matrix is an orthdéonal matrix.

Show that the product of-two orthogonal matrices is ortﬁogonal.

(a) show that'a translatiecn of H in the directionfbf the vecter

. . . 2
A . ! U B [3]
and through a d‘épance equal to the length of U is given by the mapping

R M ) : V B V + U - . I}
‘k—‘.“.:k: * . B ' . \
S ® :
(b) . Show that this mapping does not preserve the length qf/;;;;;—;;;;pr,

but that it does preseryé the distance between every pair of point% i the

plane.

“(c) Determine whether or pot this mapping is linear..

Let ga and R, denote rotations of H through the angles « and B8,

B
respectively. Prove that a rotation through « followed by a rotation

through  amounts to a rotation through «Q + 8 ; that is, show thag

(3 ' "” -
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.

‘number. What does the result of Exercise 8 imply for complex numbers?

10.

(2)' Find a matrix that represents a reflection across the line of the P
vector " .
‘ , cos Q¢ ' RS
, sin | ® §

(b) Show that the matrix B ‘of Equation (8), above, represents a refléction

«
across the line of some vector.

k4

e,
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*

: RESEARCH EXERCISES . S

4

The exercises in this Appendix are essemtially ”}esegrch—type” problems

designed to exhibit aspects of theoxy. and practice in matrix‘algebra that could

not be included in the text. A They are éspecially suited as individual assign—
‘ments for those students who are proipéc e majers in the theoretiéal and ‘

:pfﬁéticgl aspects -of the scieqtific disciplines, and for students who.would like

_ v ‘
to test their mathematical powers; or students might join forces in working them.

et
N [y

[ . . .

L ¢ 8

1. Quaternions. The algebraic system that is explorédrin this exercise

-~ -

- was invented by the Irish mathematician and physicist, William Rowan Hamilton, ,

-
who }mblished his firsé paper on the subject in -1835. ft was not until 1858

that Arthur Cayley, an English mathematician and lawyer, published the first

[3

6

paper on mqtrlces. Since Hamilton s system of quaternions is actually an

algebra of matrices, it is more eaé&ly presented in this guise than in the form

>

in which it was first deyeloped.

In this exercise, we shall consider the algebra of, 2 X 2 matrices with

complex numbers as entries. The definitions of addition,Imultiplicétian,‘aﬁ@ .

_inversion remain the same. We use C for the set of all complex numbers and -

" we denote by K the set of all matrices \ '

s
.

LS

., where z, W, Zys and Qf .arexglements of C.:@ As is the case with matrices

having real entries, the element L _ ' ’ \\\R R

1

-~

. A 241
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of K has@%n inverse if and only if

*

-

‘ S oz - owz # 0,

Since -1 is a complex number, the unit matrix is still

¥

| . L R A .. I'. 1 b S ..
\ // .- | p 0 l . »

»
. If B f\/{ A
~ . . . ‘
o z = X'+ iy, s . .
AY - . // . ~N - * < .
~then we write < v R
a . k)
z = x — iy

»

AN . S <L f

“ and call this nuiber the complex conjugate*of z, or simply the conjugate of z.
. . & N “ —_—

u
.-

‘ : Z w . \ ' X
) X " ["ﬁ E}, ZQC and WSCO - .

- We denote by Q ‘the set of all quaternions.

a

«.  (a) Show that }aiq) nﬁx?.+-y2 + uz +-v2 if z=x+ iy and w=u + iv.

Hence conclude that, since x, y, u, and v are rgal numbers, B(q) =0 if
) . , .

I3
‘ : Y

and only if .q = 0.

L3

- \
(b) Show that if q € Q then q has an inverse if and only if q # 0

» . ¢

) .
i

ow

¥
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_and exhibit the form of ﬁml if it exists.
- ' ¢ o . - b
. '.rhrg{e elements o\f Q are of particular 1§1portance and we give them special
names: ,
- - i 0-7 -
U= [o ~4°
0 1]
- V =
s —_ s
, s [l 0_
. . go [0 i -
{4+ -0} °

{ ’ »

(c) Show that 4f -

}. . - = = Z . W # R
: 1 - oz’ AR

' I

where z = x + 1y and w=u + iv, then . : ;
q=xI+yU +uv+vwW. .

. (d) Prove the following identitieé involving I, li, V and W:

,sz-vznwzs‘-x ]
. .\a\c, ° 2,
gnd o ' _ S,

UVaWs=-—VU, VWW=U=—W/, and WU = V= — UW.

AR

-

(e) Use the precedigg two exercises to show that if q € Q and

then q +1r, q - r, and 'qr are all elements of Q.

"The conjugate of the element

< . _ z W ~ :
. o~ q = _G.é.,z-x—i-j.y, w=u + iv,

is

- -

243

€
-

e
™



-

244 - :
&‘ . “é
. 1
and the norm and trace are giéén-resgectively by
C N ' v
- ' tn . ) * )
) 1 1/2
“ - “ a1 = [s@)] Y
and )
t(q) = 2x.°
(f) Show that if q € Q, and if q“is invertible, then
- . Lo~ r . f
L T e

g1 .

‘

From this conclude that if q € Q,' and if .qml exists, then

-1
q

" lg) 'Show that each q € Q satisfies the gquadratic equation

o f \

T2 ] 2
. | ..~ q- —=t(q) q + Iql7 I = 0.

(h) Show that if q € Q .tﬁen

L . . qq = lqlz_I.3 .

~ . ¥ .
- s . ‘

‘Note that this may be proved by amsing the result that if

q=al + bU + cV + dW

L] .\_:.’-" y

then ’ '.'..t R

" +g=al —bU~-cV-dw .
and then using the results given in (d).-

- (1) Show that if q e Q and r € Q, then’

’

4 " & - lgri = Iql irl
~ .\ *
and .
. lq + i < liqi+ Irl.

€ Q.

&
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.
. _ :

- The geometry of quaternions corstitutes, a very interesting subject. It

‘vequires the representation of a quaternion
& A

q = al + bU + eV + dW

-
LY

as a point with coordinates (a, b, ¢, d) in four—dimensipnal space. The

subset’'of elements, ; ﬁ\;!//f ' .
. *f‘ N T > I ‘ :
3 _ ‘ Q =14q | g€ Q and Iql = 1},

is a group and is represented geometrically as the hypersphere with equatiom, .

- .

2

N

. ' a '
- az + b2 +c + dz = 1. PN .

2. Nonassociative Algebras

-

The algebra of matrices (we restrict our attention in this exercise to the -

v > . . .
set M of 2 X 2 matrices) has an associative but not a commutative multipli-

cation. '"Algebras'" with nonassociative multipiication have become increasihgly
. ‘ P . R . .
important in recent years—for example, in mathematical genetics. Genetics is

!
-

a subdiscipliﬁé_of biblogy and is concerned ‘with transmission of hereditary
traits. Nonassociative ''algebras'’ are important alsc in the sfhdy of quantum
‘mechanics, a subdiscipline of physics. We give first a simple example.of a Lie

aigébra (named after the geometer.Sophus Lie).
If A%y and B e M, we write R _ “

~
-

*  AoB = AB - BA

and read this 'A op B,” ''op" being an abbreviation for operation..
(a) Prove th§ following properties of o :
(i) AoB = — BoOA,

7~ (ii) oA =0,
o/ . .

ERIC g . tes !
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]

. (ii1) Ao(BoC) + Bo(CoA) + Co(AoB) = 0,

(iv) 401 =0 = ToA. S,

(b) Give an example to. shoW that ‘Ao (BoC) and (AoB)oC are different

and” hence that o 1is not an associative operation.
Despite these strange properties, o behaves nicely relative to ordinary
matrix addition.

‘(c) Show that o distributes.over adéition:‘

Ao(B + C) =.(AoB) + (AoC)

. ~
and

(A-+'B)'0C = (AoC) + (BoC)

(d) Show that o behaves nicely relative to multiplication by a number.

It will be recalled that A-l is called the multiplﬁ&éfivg inverse of A

-

and is defined as the element B s&tisfying the relationships

AB = I = BA.

» . ' - R

5

But it must also be recalled -that this definition was motivated by the fact. that )
. / . ) ' * . ‘ e r

* N

P3

that is, by the fact that I’lis a multiplicative unit,

(e) Show that there is\no o unit.

We know, from the foregoyng work, that o is neither commutative nor

assoclative. Here is another kind of opera§;on, called Jordan multiplication:

If AeM and B e M, we define. . ¥

'
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2]

AjB = BjA, . W

"+ so that Jordan multiplication is a commutative operation; but it is not

associative.
(f) Determine all of the properties of, the operation j that you can.

For example, does j distribute over addition?

LY

¢ 4 oo ®

3., The Algebra of Subsets

We have seen that there are intérest?ng algebraica}ly_defined subsets of

M, the set of all 2 X 2 matrices. One such subset, for example, is the set

.

z, whiéh ig isomoxphic with the sét of cbmplex numbgpé. . Much of highér

<

~mathematics is concerned with the ''global structure’ of "algebras;" and generally

-

thié_inyolves the consideration of subsets qf'the "algébras“ Seing studies. In

" phis exercide, we shall generally underscoge letters to denote subsets of M.

>
. -~
P - Lo,

If zé and B are subsets of M, then e ) -

A+3B 4

N . LT -

~

3

is the set of all elements of the form

. \ -~
A + B, where A e'M and Bhe M.
In set—builder notation this may be written * "
. A+B={A+B1AcA and B e B). . ,
¢ ‘ o
' By an additive subset of M is meant a subset A CM such that . ﬁf
A+ACaA.
(a) Determine which of the following are additive subsetg of M: _ @
(1) {0},

@



*

(1) (1), t . ~
L) M, o

(iv) 2z, . "’

(v) Ml’ the set 9f;;ll' A in M with 8&(A) = l,”

- : - (vi) The set of all elements of M whose entries are nonnegative.

ey (B) Prove that if A, B, and C are subsets of M, then ¢

. : (1) A+B=3 +4, N *W
(11) A+ (B+C) = (A +B) +G, - ‘ |

(iii) and if A CB then A +C OB + C. L

»

...(c). Prove that if A and B are additkve subsets of ﬁ, then -
- : L4 . . » - .
a+p N

-

'is also an additive subset of M.

Let VY denote-the set of all cpiﬁ@n vectors
~. Vg Tt

N Sl T

\ Y
\ ;

",- ‘ ¢ . < . . R
| - T 1y

L3 ¢ a

. with x € R and -y € R. o

L
.
-~ -

(d) ,Show that if v is a fixed element of V, then

-~ . -~

Al A€M and Av = [8]

Y

- | is ‘an additive subset of M. Notice also that if Av = 0 then (;A)v = 0.

If A-and B are subsets of M, then

AB | -
is the set.of alg-

*

AB, Ae M and B € M.

- *
. (D] ~
. VRN <D
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Al L

N
3

Using the set—builder notationm, we can write this in the form
* o AB = {AB | A ¢ A and B e B}.

A subset A of M is multiplicative if

. :

‘ )
;f\ . ' - | -A—A— c é'
A ' .
(é) Which of the subsets in ﬁart (a) are multiplicative?
(f) sShow that if A, B, and C are subsets of M, then
: (1) 'A(BC) ="(aB)C, | -\
g (ii® and if A4 € B, then AC C BC
’ (g) Give an eijple to two subsets A and B of M such that )
« ' . ' . ' | .
k AB #BA. :
‘ . oo : o
(g) De termine which of the following subsets are multiplicative:
| (1) {0, 1}, =
. (i1) {1, -1},
S LN - ‘ ' : ’
(iii) the set Qf all”elements of M with negative ertries,
¥ _(iv) the set of all elements of M for which the upper left—hand-
entry 'is less than 1, -
T, (v) the set of all eIementé of M, of the form

L
*

) oy “ ,
B 0 1y
with 0<x, 0<y, and x +y <1l. -
‘ -
The exercises stated above are suggestions as to how this ”alggbra of
subsets' works. There are many other results that come to mind, but we shall

léave them to you to find.. Here are some clues: ‘How would you defime tA if

teR and A e M? 1Is (-1)A = — A? Wait a miﬁutei What does —A mean?




"
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~

What does 57 méhﬁﬁ Does set mulgiplication distribute over addition, over
union, over in;er§§ctiog? Do notlgxpect that even &our teaéhér knows fhe
answer to-all of these possible questioﬁg. .Few,peoéle know all ;f them and.
fewer stil}, of thogg who'kn§w them, remember them.. If yoﬁ conjec;ure.that

"~ something is true but the proof of ik éscépesryou, then try to construct an
example to show tﬁat it is false. if thi§§2::8 nét ﬁork, try proving it again, -

and so on. ¢

-

-

4. Analysis.aﬁd'Synthesis of Proofs

~

. P .o y
- . This 'is an exercise in analysis and synthesis, taking an old proof to

pie®es and using the phttern to maké a new proof. In describing his activities,
.a mathematician is likely to put at the very top that of cggating new results.
( i . .
. -

But ''result” in mathematics usually means !'theorem and proof." The mathematician

does not by any mears lim}t his methods in conjecturing a new theorem: He’

. / .
guesses, uses analogiesw/draws diagrams and figures, sets up physical models,
. . /, . * .

A

N -

experiments,hcomputesayho holds are barfeg. Once he has. his conjecture firhly

‘ 4 ' . ’ - : ,

in mind, he is only half through, for he still must construct a proof. One way
/ ‘

of doing this ;s tofanalyze.proofs of known tbeoréms that are somewhat like the

- theorem hgnis trying to préve and then s§nthesizé a proof of the new theofem.
Here we ;sk ySuvto‘apply this process of amalysis and synthesis of‘proofs t§
thé algebra of matrices. To accomplish phis,'we shall introduce some new }
Opefations among matrices‘bg analogy with the oldg?perations.

For simplicity of cdmputation, we shall use only 2 X 2 matrices.,

To start with, we introduce new operations in the set of real numbers, 4(?

]

L

.If x€ R and y €°'R, we define R “ e —

-

X Ay = the smaller of x and y (read: "x cap y")

4

and

R EadN
L A



. / _ “‘-:i"'r‘xterchanging-_ A and' V , and conversely. L

'._/
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XxVy= the larger of x and y (read: "x cup y")» '

(a) Show that if x € R, .y ¢ R, and' z €.R, then

) r ~N

1) xAy=yAx - *
. t ¢ X /
W xvyzyvs

. ) - . Q
(111) x A A2 =(xAYIAZ .
* . - ‘
‘ (iv) xVFVz=(xVyVz, , ‘
(v) xAx=x, : . ~ . / '
o , o & p L ¥
oo ‘ (vi) " xV x = x, : _ \ N
(vit) xA(yVa) = (xAY) VxAz), L )
(i) X V(P AR = (xVY AV, . | ,

L]

Although the foregoing operations may seem a little unusual, you will have ° -

. . | 2.5 Lk g . ’ ’ ’ -

no difficulty.in proving thé above statements. They are naf diffiddlt to

- R ' IR A LT
remember if you notice the following facts: . ’ .

' The even—numbered results can be obtained from the odd-numbered results by

[N

-
~ -

The first states that A is commutative and the third states that A is
' ' ‘

_associative. The fifth is new but the sevéhth states that A distributes over

. [ r'd
vV . . ' .
\ . . .

P N

" To define the matrix operations, let us think of A as the analog of “.

multipligation and V as the analog of adlition and let us begin with our new
" E—

matrix "multiplication,'y

 We define

a b] ‘:x Y} .‘(a/\x)v(b\/z) (aAy) V(dAw
N = . N .
(CcAX)VAAzZ) (cAy)V(AdAwW

This is simply the row by column operations, except that A is used in

place of miltip}ication and V 1is used in place of addition. _To see this more

258
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Lo ) | ) . * ¥ . ) ) . &
cleagly,'wé'write
: (// ‘Ta b x y ax + bz ay + bw
- = - : .

¢ d) . |z w _ cx + dz cy + dw

(b) Write out a prpof that if A, B, and C are elements of ‘M, then

s
A(BC) = (AB)C. | :

~

L.
-

Be sure not tg_omi% any steps in the proof. Using this'as a pattern, write out

4

a’proof that S -

]

AA(AC) = (AAB)ATC,

Ve T
. * “
-

“;eriffing at‘gach step thaé you have the necessary results from (a) to make the
-proof sound. List all tge properties of ;he two éairs of opergtions t@at you//
need, such as associativity, commutativity, and distributivity. |

..(c). Using the analogy bet.:;eg,en‘ Vv a_.nd additior;, defiﬁe ' A'\_/.'I‘i, for elements
A and ‘B of M. . | ‘ | B |

,(d). State a;d prove,_ﬁfr-the new Operationsf aéalbgues of-all the rules

you know for .the .operations of matrix addition and multiplication. ~

”

*?

-
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Aaron, 2 ‘l,wf" Clock face, group property of.

Abelian group, 99 addition associated with, 99-100
Abelian property ,of binary operation, 99 Closure property of binary operation,
. .Abstract group, 98—99‘ : 99
. Addition of matrices, 11-12, 19-20 Collinear vectors, 166
associativity law for, 14~15 ’ Column matrix, 5° of
commutativity law for, 13 ' .Column of a matrix, 3
"Addition'" symbol.z:, 35 _ Column'vector, 5 N\
Addition of vectors, 10 order of, 159-160
geometric interpretation of, 171—173 . Combination, linear, 194
. Additive inverse, 15 Commutative group, 99 _
~ Algebra,®112-113 ] . " Commutative law for addition, 13,
embedding of, 110 - ' 36, 58,\.62
global structure of, 247 Commutative \law for multiplication,
- nonassociative, 245 "« 41, 56, 58, 62 - .
s richness of, 110 . invalidity §f, for matrices, 4041
of subsets, 247 . Commuptative pr perty ‘of binary
Angle between two vectors, 178 operation, 99
Anticommutative matrices, 55 Complex numbers, 1, {L10-11, 103-11l, 241
Area and determinant function, 185-188 isomorphism of X with matrices,
Associative law for addition, 14~15, '103-111
56, 58, 62 ' - Composition transformation, 219
’ of matrices, 14—15 « - Computing machines, v} 117 N
Associative law for multiplication, 47, 'Confofmability'for addition, 11
] 56, 38, 62 ‘ . Coiformability for multiplication, 31
of matrices, 47 1 - Conjugate, of a complex anumber, 242
Associative property of binary of a quaternion, 243
operation, 99 y ' ¢ Contraction factor, 201 B
Atom, 120 ' Coordinate plane, Cartesian, 165
Backward §blution, }22 Coordinates of a vector, 196
.Basis, 196 . Correspondence, one—to—one, 106
coordinates of a vector relative to, Cosines, direction, 164 N
R 1 . - * law of, 177
natural, 197 S Cup operation, 251
Binary operation, 9899 Déterminant function, 85-86
abelian property of, 99 “ of multiplicative inverse, 88
-? associative property of, 99 - " of a product,. 87
closure property of, 99 . related to an area, 185188
commutative property of, 99 - ©f the transpose of a matrix, 92 L
identity property of, 99 ' Diagonal method, 117, 139-141 '
 inverse property of, 99 Diagonal, principal, 140

Brackets used in designating matrices, 4 Difference of matrices, 16, 19—21
Cancellation law for multiplication, 42 ‘Direction cosines, 164

. © invalidity of, for matrjces, 41-42 Distribution laws for multiplication
Cap operation, ’250 over addition, 47-48, 56, 58, 62
Cartesian coordinate plane, 165 Domain, 127-128, 199
Cayley, v Electronic computing machine, v, ll?
Cayley—Hamil ton theorem,. 232 ‘ “Element' "symbol g, 12
Characteristic equation, 229 Eleméntary matrix, 132 -
Characteristic root, 229 _inverse of, 132-133

. Characteristic value, 229 Elimination, method of, 116
Characteristic vector, 230 Entry of a matrix, 3
o SV
g 255
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Equality of matrices,
Equation, characteri
Expansion factor, 201
Factor, contraction, 201
expansion, 201
Field, 58, 63
Finite group, 101 -~
Fixed point, 227
*-Fixed vector, 227
Forward solution, 119-122
' Function, 127, 199
deterntinant, 8586
. matrix, 127
'Galois, 101 . : :
 Geometric transformation, 191 199
Geometric vector, 163
Global structure of algebra, 247
Group; 93 A
" abelian, 99
ablmract, 9899 © '
utative, 99- N
finite, 101
of. integers, 100—101
of invertible matrices, 93
related to face of clock, 99—-100
Hamllton, 232, 241
Heisenberg, ‘v
Identity element for addition, 12«
, Identity element for multlplication,
39, 52
Identity map, 205

29

-

Idantity property of binary operation,

99
Identity transformation, 205,
Image, - 200 ' g
. Importance of matrices, v, 2
Inequalities for vectors, 183, 185
Infinite decimal, 1 ~
Inner product, 177—-179
algebraic properties of, 181-182°
Invariant subspace, 227
Inverse matrix function, 143
Inverse, multiplicative, 57, 71 «
of elementary matrix, 132—133
_of mitrix of order two, 83

"of a product, 89 R
uniqueness of, 75 N
Inverse property of binary operation,
99

' Isomorphism, 109-110

~.

" Linear combination, 194

-

-

Linear equatidns (see Systems of
© linear equations) . .
Linear map, 209 -

< Linear transformatioq, 209"

Lopez, 2
Mantle, 2-3
Map, 199
identity, 2L5
\" linear, 209
Matrices, 3

~

=

(o

addition of (see Addition of mat;fces)*

anticommutative, 55°°
conformable for additiom, 11
differenci/bf, 16,-19—21
equality

T~

identity element for additiom of, 12

importance of, v, 2

~ of matrices)
notation fox, 6
product of, 34 .
subtraction of, 16, 19«21
sum of, 11-12, 19-20
additive'inverse of, 16
brackets used in designating, 4
columm, 5
elementary, 132
~inversge of; 132-133
‘entry of, 3.
column of, 3

*

A}

multiplication of, by a number, 22—

25

multiplicative inverse of, 57,71
for matrices of order two, 83
uniqueness.of, 75 '
negative of, 16
order of, A
orthogonal, 239
row, 9
row of, 3
square, 4
square, order of, 5
transpose of, 6 )
Matrix function, 127

inwerse, 143
Matrlx transformatlon, 208 .
Molecule, 120 .
Mul tiplication, Jordan, 2&6
Multiplication of matrices,. 2736

<

>

[ )

multiplieation of (see Multlplxcation

- Jordan multipllcation, 246 associative law for, 47

Kernel, 205 .

Law of cosines, 177 \

Left multiplication, 41 4
. Length of a vector, 164 . .
Length—preserving transformation, 233

~

conformability for, 31 o
distribution laws for, over addition,
4748 - '

identity element for, 39 52
invalidity of cancellation law for;

4142

23{}() . o .."
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Multiplication of matric;;\?§bntinue%)a Real- number, 1 ) SN
left, 41 \ ‘ Reciprocal of a matrix (see Inverse,
right, 41 C Z . . mltiplicative)
. by zero mat¥ix, 51 ‘ Reflection in & line, 219, 233
p Multiplication of matrix by number, ~ Reflection in the origin, 200
. . 2225 , Root, chafacteristic, 229
R ) Multlplicatlve inverse of elementary _Right multiplication, 41 ¢
. “matrix, 132-133 . Ring, 58, 65768 )
"Multiplicgtive inverse of a matrlx,.‘ with an identity element, 58
. a .57, 71 . | Rotation, 218, 233
s of order two, 83 . Row matrix, 5
uniquaness of, 75 Row of a matrix, 3
Pt - Multiplicative inverse of a product, 89 Row vector, 5
Natural basis, 197 : Scalar, 215 .
Negative of a matrix, 16 o « Set M of 2. X 2 matrices, 56
" Negative of a number, 15 - - . clostire of, with respect to additionm,
Negative whole number, 1 : \ 56 : '
’ Nonassociative algebra, 245 b closure of, with respect to multi—
operation im, 245 , o plication, 56 «
Norm are of a quaterniom, 244 - . Shearing, 204 .
of a vector, 164 . . Sigma notation, 35*
_ Notation for matrices, 6 B . Slope, 164
7. Null vector,. 164 ‘ Solution, backward, 122
' "Number, 1- o " .Solution, forward, 119-122
“complex, 1 ' Space, vector, 191 :
o negative whole, L - Square matrix, & K
o positive whole, 1™ ‘ . order of, 5 . .
’ teal, 1 : . Square roots, 4344 )
zero, 1 - Structure of algebras, 247
One—to—one correspondence, 106 : Structure of mathematics, iii, v
One—to—one transformation, 205 . . - Subset, additive, 24¥.
.Operation in a nonassociative algebra, - Subsets, algebra of, 247 . !
245 . Subspace, 192 '
Order of a matrix, 4 v tnvariant, 227
Orthogonal vectors, 183 \\ _ ‘ Subtraction of matrices, 16, 1921
* Parallelogram law, 173, 188 Substitution, method of, 115
Perpendicular vectors, 177 . Subtraction of vectors, geometric
Point, fixed, 227 W interpretation of, 175
.. \ Polynomials, residue classes of, 110 Sum of matrices, 11-12, 19-20
Positive whole number,. 1 Systems of linear equatioms, 115 -
Principal diagonal, 140 : " elimination method for, 116
Product of matrices, 34 . s equivalent, 116
" Product matriic, ;30_.31 R ' ' in general, M—-lSé
Product of matrix and number; "23 " "line" of solutions of, 153 *
e ~ Product of vector and number, geometric substitution method for, 115
o ® . " interpretation of, 167-168 L Trace of'a guaternion, 244
' . ' Programming, 117 . Transformation, 191.
&), Projection, 205 composition, 219
- ¥ orthogonal, 205 “~,’ . . pgeometric, 191, 199
) perpendicular, 205 - E identity, 205 - .
¢ . Pythagorean- theorem, 163 : inverse, 225 PR
Quaternion, 241-245 : . length—preserving,. 233
‘ norm of, 244 “ © . . linear, 20%
. “‘trace of, 244 . matrix, 208
. " Range, 127-128, 199 ' one—to—one, 205
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. ~Transformation (continued), - Vector analysis 188-189
onto, 200 _ , » Vector functiom, 199 T
orthogonal 239 . . ~ Vector space, 112, 191
of the plane inte itself, 199 Vectors, 5 '
~Iransformations, comp081tion of, 219 . .addition of, 10
product of, 219 geometric interpretation of, 171-173 *
Transpose of a matrix, 6 parallelogram law for, 173, 188
Triangulation method, 117, 119-125 angle between, 178 - . : )
, solution by matrices, 130-138 bound, 189
%«  in terms of matrices, 125-129 ' collinear, 166
Unig circle, 97 . ) collinear, in opposite directions,
Unit matrix, 52 v o 180
Value, characteristic, 229 collinear, in same direction, 180
Vector, 5 ' . free, 189 - :
characteristic, 230 : : inequalities for, 183, 185 ' .
¢column, 5 _ * inner product of, 177—-179
fixed, 2272 ' . . " algebraic properties of, 181-182
geometric, 163 orthogonal, 183; -
length of, 164 ' perpendicular, 177
dnultilecation by a number, geo— subtraction of, 16, 19-21
metrical interpretation of, - geometric interpretation of, 175
167-168 Whole number, 1
norm of, 164 : . Willlams, 2
null, 164 Zero, 1
. representation of by directed Zero matrix, 12, lg ) T,
line segment, .162—163 as identity matrix for addition, 12
row,, 5 multiplication by, 51
zero, 164 . Zero vector, 164




