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Tailored testing, the selection and scoring of test items administered
in an interactive fashion to individual examinees has, within-the past
decade, becone the spearhead for application of latent trait models to
achievement and ability measurement. The availability of improved computer
technology has,contributed greatly to the increase in the number of systems
presently in operation which administer tailored or adaptive tests. It
should be noted that tailored testing as presented here is synonomous with
many other assigned names such as adaptive testing, response contingent
testing, or sequential testing. While numerous articles have appeared in
the literature which describe the one-parameter logistic model aed its
application in a tailored testing setting (see for example Reckase, 1974;
Weiss, 1974; Patience, 1977), little or no literature has been etritten
discussing operational characteristics of the procedure when program para-
meters and item pool attributes are varied. For this report, operational
characteristics refer to how well the tailored testing procedure estimates
a given true ibility when provided an item pool and values for the controlling
program parameters. The operational characteristics, item pool attributes,
and program parameters will be described in detail shortly.

Although no literature was found which addressed the effects of varying
peogram parameters, a few studies have appeared in the literature whidb investi-
gated effects of item pool Characteristics on the operation of tailored testing.
Jensena (1975), for example, has investigated the influence of item pool
size and item dharacteristics on a Bayesian tailored testing procedure.
In general, Jensema bound that when itens are of adequate quality, it is
not necessary to have very large item pools. Reckase (1976) concurred with
Jensema in recommending a rectangular distribution of item pool difficulty
values. In this latter stedy, the tailored testing procedure was based
on an empirical maximum likelihood estimation of the ability parameter
of the simple'logistic (Retch) nodel. Issues worthy of further investiga-
tion have surfaced in addition to item pool attributes, such as the effects
of program parameters on the bias and variance of Ability estimatioe.
Bias and variance of ability estimation constitute the operationr1roharactes-
istics of the tailored testing procedure. Bias and variance of ability
estimation and the program parameters will now be described more thoroughly.

Several articles have appeared in the literature whict discuss bias
of tailored testing Ability estimation with regara to procedural bias toward
subgroups of an exaninee population such a$ minorities (see for example
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ne and Weiss, 1978)._ The research reported here did not address this
type of bias. Rather, ability estimate bias investkgated for this paper
eoncerned ule failure of a maximum likelihood tailored testing procedure
to result in an expected value of the ability estimate equal to a
known true ability. In this sense, the attempt was to identify values
fur tiw program parameters, stepsize and acceptance range, as well as item
pool characteristics which would provide the least statistical bias in
a.bility estimation. The variance of ability estimates was the squared
standard error of.the ability estimates for a known true ability. The
desire was to minimdze this standard error. These two dependent measures
vrovided the criteria for judging how well the tailored testing procedure
e:itimated known abilities when the program parameters and item pool
v;:taracteristics were varied.

PURPOSE

The primary purpose of the research described herein was to determine
th.(- operational characteristics of a one-parameter tailored testing proce-
dure when program parameters and item pool attri.butes were varied. The
program parameters investigated were the stepsize and acceptance range.
The stepsize parameter specified the magnitude of movement of the ability
estimate during the initial item selection phase of tailored testing.
The acceptance range parameter detersO.ned how devant the selected item's
dIfficulty value could be from the requested item difficulty and still be
acceptable for adminis'tration. Items were requested by the procedure
to match the ability estimate which was computed after each item response.
Thc item pool attributes varied were size, shape, and quality. Each of
teese variables will now be described more specifically.

Based on the premise of tailored testing that when an examinee answers
an item corre.ctly, the item administered should be more difficult and vice
versa, the stepsize program parameter initially controlled how much more
dtfficult or easy was the nexVitem administered. The selection of items
ook:uedd utilizing a fixed stepsizc until the examinee had answered items
iAlth correctly apd incorrectly. After both a correct and incorrect response
had been obtained in the response etring, a maximum likelihood ability
estimate was obtained using an iterative search for the mode ot the liken-
hool distribution. For a more complete descripcion of the item selection
and ability estimation components of this maximum likelihood tailored
testing procedure see Patience, 1977. When an ability estimate had been
obtained, items were selected from the pool to maximize the ilnformation
function (Birnbaum, 1968). For the one-parameter model, the information
function is maximized when the difficulty of the selected item equals the
ability estimate. In the past, arbitrary values have generally been choosen
for dee stepiize. One of the primary goals of this research was to empiri-
cally investigate the effects of stepsize values, on the bias and standard
error of ability estimates. In'so doing, the intent was to determine the
optimal stepSise value which would minimize the bias.and standard error
of ability estimates.

The second program parameter investigated was the acceptance range.
The acceptance range specified the amount of deviation in difficulty an
administered item could have from the requested item difficulty and still
be acceptable for administration. The acceptance range parameter monitored
the appropriateness of items selected throughout the tailored test, i.e.,
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both during item seleceiaa,based orethe fixed siepsize until both correct
and incorrect responses had been obtained, and also during item selection
to maximize the information function for a maximum likelihood ability
estimate. If more than one item was within plus or minus the acceptance
renge of the desired item, the item with a difficulty value nearest the
requested value was choosen. If no item was available from the pool within
the specified acceptance range of the difficulty asked Fer, the tailored
test was terminated. The primary aim then, regarding the acceptance range,
was to 3etermine what value or range of values yielded the least bias and
standard error of ability estimates. Clearly, a small value for the accep-
tance range would have insured that items very near the desired item difficulty
would be administered. On the other hand, too small an acceptance range
value would have increased the chance of premature termination of the
tailored test, which would have ineuced bias of the Ability estimate.
It should be noted that both stepsize and acceptance range interact with
item pool attributes and, therefore, a choice of what values are optimal
may not be made assuming independence of these controlling factors.

Item pool attributes studied in this research included size, shape,
and quality. Item pools used in this investigation ranged in size from
nine to one hundred and eighty-one items. Shapes of item pool distribu-
tions were normal, rectangular, bimodal, and skewed. Item pool quality
referred to the contrast between actual and idealiz=e3 pools. idealized
pools consisted of item difficulty parametere eqeally spaced from minus
three to plus three with equal discrimination values of one and zero guess-
eng as assumed by the Rasch model. Actual pools consisted of item difficulty
values obtained from calibration runs using the Wright and Panchapakesan
program based on the Rasch model (1969). In these pools, itens were not
equally speced on the difficulty scale. It should be noted that, quite
elearly, item pool attributes played a sebstantial role in the utility of
th, tailored testing procedure.

PROGRAMS

Two FORTRAN programs were used for investigating effects of program
pavameters and item pool attributee. The input variebles for both programs
included: a) acceptance range, b) stepsize, c) item pool size, d) item
dIfficulty values for the various sizes and shapes of item pools, and
e) the true abilities for which an estimate was to be nade utilizing the
program Paraneters and item pool provided. Both programs output the mean
and standard deviation of the estimates of each true ability provided.
These served as dependent,measures for determination of the quality of
estimation for the specific values of the acceptance range, stepsize,
and item pool difficulties.

The first program, the TREE1P, was based on the concept of a propensity
distribution. A, propensity distribution in this context was defited as
the probability distribution for observed ability estimates given a true
ability, P(Ole) (Lord and Novick, 1968). The concept of e propensity
distribution was extendcd from its use in tree score eheory to the context
of latent trait ability estimation. The TREE1P program determined the
propensity distribution for a given true theta, 0, analytically from the
properties of the tailored testing model.

Briefly, the TREEIP program operated as follows. Initially an iten
of average difficulty was administered to the siniulated examinee with known
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true ability. Based on the probability function for the simple logistic
model,

e
uce b)

P{P} (1)
1 + e

(0 b)

where e is the item score (0 or 1), b is the item difficulty parameter,
and 0 is the ability parameter, the probability of a correct and the probib-
ility of an incorrect response was obtained. If the response was correct,
the ability estimate was increased by the stepsize. If the response was
incorrect, the ability estimate was decreased by the stepsize. Thus after
one item was administered, two paths or brandhes were present on the "tree"
(nVii tree diagram,from probability theory was employed to represent theA

propensity distribution in this study.), Based on these first possible
oability estimates, the closest itens to each of the two estimates was
f selected for administratisn with the constraint thai the difficulty of
the items must have been within plus or minus the acceptance range from
the present, Ability estimates. If no items were availeble to the program
from the item pool provided, that branch was terminated at that point.
However, assuming items were availeble, there existed four possible paths
after the second item had beeniedministezed. As long as all correct or
all incorrect responses were obtained on a given peth, the ability estimates
continued to be increased or decreased, respectively, by the stepsize.
However, when.both a cOrrect and an incorrect response were present on a
particular path of the tree, a maximum-likelihood ability estimation proce-
dure obtained an ability estimate using an iterative search for the mode
of the likelihood distribution.

Insert Figure 1 ebout here

To partially illustrate how the propensity distribution was determined
by the T1EE1P, Figure 1 shows a diagram*representing the operation of
the procedure on a nine item rectangular pool. The stepsize used for this
illustration was 1.0 and the acceptance range was 0.3. The 0 for this
analytical derivation of the propensity distribution was set at zero.
As Vds pointed out above, the procedure began by administering an item
of average difficulty from the pool, i.e.,, the item with the difficulty
parameter 0.0. The probability of a corre*ctresponse, as determined by
the probability function given Above for the simple logistic model, was
0.5 and the probability of an incorrect response was 0.5.

After, a correct response the ebility estimate was increased by the
stepsize, or after an incorrtict response, it was decreased by the stepsize.
Thus after one item, the ibility estimate was either 1.0 with probability
of 0.5 or -1.0 with a probability of 0.5. This procedure was followed
so that finite ability estimates would be available after each item response,
rather than the'+ Is value given by the maximum likelihood procedure.
The expected va1iie ofthe distribution after one item was 0.0 and the
standard deviation was 1.0.

Based on these first possible ability estimates the closest items
wore selected from the pool with the rettriction that they Oust have heen
within plus or minus 0.3 of the requested items. Thus, as Figure 1 illus-
trates, items with parameter estimates of plus and minus 0.75 were adminis-
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tered to the estimated abilities plus and minus I.00'respectively. On
the upper branch of the tree, a correct response yielded an ability estimate
that was again increased by the stepsize, since a maximum likelihood estimate
could not be detertined without both a correct and Incorrectresponse.
Now, the ability estimate was 2.0. The probsbtlity of a correct response
to the item with the 0.75 ditficulty parameter was the same except for the
change in sign of the item parameters and ability estimates. When the
item pool distribution leing considered was symmetric, the results of the
analyses were the same except for the change in sign.

Following the middle branches of the tree, an incorreCt response to
the item with difficulty 0.75 yielded an ability estimate of 0.375 from
the maximuM likelihood technique. The probability of this response was
0.68 based on the model. When the first item was missed and the second
answered correctly, the Probability of the second response was also 0.68.
By the local independence assumption of the model, the probability of either
a +2.0 (Istimate was 0.5 X 0.32 a 0.16 while the probability of +0.375 was
J.5 X 0.68 a 0.34. In this manner the propensity distribution after two

. items have been administered could be obtained. As noted at the bottom
of Figure 1, the expected value was still 0.0 and the standard deviation
(which was determined as the square root of the VAR(0)1 waa 1.174.

The tree developed further in this same manner whenever items within
the acceptance range were available. If .1:11 correct or incorrect responses
were present, the fixed stepsize was used to make ability estimates. Once

mixture of correct and incorrect responses were presen:, the maximum
likelihood ability estimate procedure was used. Note the "branches" of
Figure I were "live" at +2.00 ability estivate but no items existed in
the pool within +0.3 of the ability estimate +0.375. Therefore, those
branches terminated.

The tree continues to develop by following all "live" paths. The
program,is finished after all branches are terminated by the condition
that no items of appropriate difficulty are available in the pool. One
may well imagine that as the number of items in the pool gets larger,
the procedure is, practically speaking, bounded by the storage capacity
,Jf the computer facility and magnitude of one's computer budget. For
the IBM 370/168 system on which the TREE1P program was run, it wse found
that sixty-one items was the practical upperjimit on the number of items
the pool could contain for any particular run of the various combinations
of stepsize, acceptance rang'S, and shape of the item difficulty distribution.

Due to the limitation on size of the item pool which could be investi-
gated with the TREE1P program, the second computer program, SIM1P, was
developed. This program was adapted from the tailored testing procedure
based on the Rasch model which was already operational. This particular
tailored testing procedure has been described thoroughly elsewhere (Reckase,
1974), so only the details pertinent to this research have been described
here. ThiSIM1P program followed only one path for any given 9 in contrast
to the 1REE1P. A particular path was selected using Monte Carlo simulation,
techniques. /t provided for investigation of the properties of bias and
variance of ability estimation with much larger item pools since the required
storag,, and computation were substantially reduced as compared to the
TREE1P program.

The following values served as input to the,program: the stepsize,
acceptance range, item pool difficulty values, 9, and nuMber of simUlated
tests to be administered by the tailored testing procedure. The procedure
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initially administered an.item of average easiness tram the pool of items
provided. If a correct response was obtained, an item that was more difficult
by a stepsize factor was administered. If an incorrect response was obtained,
an easier item by the same value was admitistered. This fixed stepsize
up and down procedure continued until bo.th a correct and incorrect answer
had been obtained in the response string. Then the procedure switched
from the fixed stepsize procedure to maximum likelihood ability estimation.
In both cases, items were selected to maximize the item information.
Ability estimation was accomplished after eaeh item was administered (pro-
vided correct and incorrect responses had previously occurred) by the
maximum-likelihood estimation procedure using an iterative search for.the
mode of the likelihood distribution. The items administered had to be
,within plus or minus the acceptance range from the-requested item difficulty.
If no items were available within this range of the estimated ability,
the procedure stopped. The only other stopping rule was based on a preset
m4ximum nuMber of items that was to be administered.

Items were scored correct or incoriect by the SIM1P program utilizing
:11 internal random nuMber generator. Fist, the probability of a correct
response was computed using the formula Var the probability function of
the simple logistic model stated earlier. The theta for this computation
was the true theta that was input into the program, and the difficulty
parameter, b; was that of the item just administered to the simulated exam-
inee. After this probability of a correct response hsd been determined,
the random number generator selected a number between zero and one from
a rectangular distribution. If this randomly selected number was less
than or equal to the probability of a correct response, the item was scored
correct. If the randomly selected number was greater than the probability
of a correct response, the item was scored as incorrect. Provided both
incorrect and correct responses had previously occurred, an ability esti
mate was madeand the next item administered was selected to maximize
informatj.oL for,this estimated ability. This procedure continued until
one of the stopping rules was encountered.

The major controlling program parameters for both the TREE1P and
SIMI? were the stepsize and acceptance range values. The stepsiee para-
meter controlled how quickly the procedure would move through the item
pool while the acceptance range parameter specified how discreuant itens
could be from those desired and stillibe administered. the acceptance
range also indirectly determined the number of items from the pool whieh
were available for administration. Clearly, the wider was the acceptance
range, the greater was the number of items that could have been chosen
for adminisqration.

Mhe TREE1P and SIM1P programs used in this.study for deternining the
optimal stepsise, acceptance range, item pool size, and item pool distri-
bution were similar in that both output the wan and stendard deviatipn
of ability estimated for each true (theta input. However, they differed
in the manner in which the mean and standard deviation were determined.
While the TREE, pursued all possible paths.through the item pool, the
SIM1P followed only the path that was the result of the simulated inter-
action of an examinee with the tailored testing procedure% The mean and
stand&rd deviation from the TBEE1P were actually expecte0 values and square
roots of variance computed from probabilitiei arising fran the one-parameter.
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model and ability estimates arising from the maximum likelihood estimation
' technique. The SIM1P program provided a mean and standard deviation of

the set of ability estimates obtained for each of the Os specified.

METHODS

To investigate the optimal stepsize, acceptance range, item pool
1.ze, and item pool shape, nearly all possible combinations of the follow-

in9 were input into the TREE1P and SIM1P. programs for true abilities -3,
-2, -1, 0, 1, 2, and 3. The stepsize values used were .3, .4, .5, .6,
.b93, .8, .9, 1.0, 1.5, 2.0, and 3.0, while acceptance ranges were .1,
.2, .3, .4, and .5. Item pool sizes were 9; 13, 25, 31, 61, 72, 180,
and 181. Item pool shapes investigated were normal, rectangular, bimodal,
and skewed, with difficulty values constrained betWeen plus and minus
three. Idealized item pools (difficulty values in the above shapes with
spacing dependent on shape and size of item pool) were constructed and
used as input to the programs, as well as actual item pools (test items
calibrated and formed into pools with less constraint on having items
equally spaced along the difficulty scale).

The manner in which item pool size effects were investigated using
simulations was to run the TREE1P and sImap programs on the various sized
pools mentioned above. With the resulting data, plots and projections
were made to estimate the item pool sizes needed for various accuracies
of ability estimation.

The comparisons to determine the optimal combination of independent
variables were based upon the mean and standard deviation of twenty-five
simulated administrations of a tailored test to,each 0 using the SIM1P;
whore for the TREEIP program, the comparisons were of the expected value
of 31 E(U), and the standard deviation of 0, kriz7i7(0). Values of these
dependent variables were compared across program runs using various sized
item pools holding stepsize and acceptance range constant. They were also
compared from runs using various shapes of item pools, holding size of
item pool, stepsize, and acceptance range fixed. Additionally, comparisons
wero made of the dependent variables, first varying stepsize with all
other variables fixed, and then varying the value of the acceptanze range
while holding all other variables constant. Since the TREE1P program
was considered to yield the most accurate values, i.e. E(0) and iNar(0)
based upon the propensity distribution, another comparison was deened
important. Because the S1141P means and standard deviations were subject
to sample variation, they were validated against values of the TREEIP
for various runs on the sixty-onekitem pool. Also, the nuMber of estimates
of the true Ability, i.e. the nur*er of tailored tests administered to
each simulated examinee by the $IMI? program was varied. This was done
to check whether an appropriate number of administrations had been used.

RESULTS

The results of this study were to a great extent drawn from tables
which summarized the results of the TREE1P and SIM1P programs. One issue
to be investigated was to determine the distribution of item poor diffi-
culty parametera that yielded the least bias and stfindard error of ability
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estimates across the range of ability from -3 to +3. Another important
question was how large an item pool was necessary to accomplish the,goal
of accurate ability estimation. Thirdly, a determination of the pre-
ferred magnitude of the stepsize parameter was desired. The fourth
outcome of this study was to decide upon the approximate value of the
at;ceptance range prograM parameter which would provide ability estimates
with the least bias and standard error. These were the primary targets
of the study.

Secondary goals of the study included a comparison of the performance
of actual versus ideal item pools. The contrast of these has been previously
described in the methods section. Another s4..condary objective was to compare
the results of the TREE1P and SIM1P program:, In this regard, two concerns
were investigated. One pertained to how c101.4 the SIM1P estimates of the
means and standard deviations of ability were to the E(0) and VAR()) deter-
mined by the TREE1P. The importance of this particular concern related
to how well the SIM1P analyses on larger ite, pools provided reliable data
on the primary questions of this study. It enould be recalled that the
motivation for development of the SIM1P program was to investigate the
research questions of the study on larger item pools than the TREE1P program
would realistically accommodate. The second concern subsumed under comparison
of the TREE1P and sImle programs was to decide whether or not twenty-fivt
estimates of each ability by the SIM1P was an adequate number. Several
analyses were run of the SIM1P pFogram on various item pools from which
data had already been obtained from the TREE1P. Sy running the SIMI?
on these pools and holding all other variables fixed except the nunber
of test administrations, data were obtained pertaining to the adeqeacy
of the SIM1P estimates of the means and standard deviations. Another
matter along this same line was investigated with runs of the SIM1P on
some of the larger pools. This was the question of whether or not twenty
items as an upper limit of items administered by the tailcred test was
adequate.

Item Pool Shape

The TPEE1P program (propensity distribution techniqee) was used to
evaluate the effects of varying the shape of the item pool distribution
on ability estimation. The rectangular item pools were obtained simply
by selecting equally spaced items between +3.0 and -3.0 inclusive. The
normal item pools were constructed such that the items were equally spaced
in probability. That is, the areabetween item positions was kept constant
in the range from +3.0 tc -3.0 standard deviation units in the normal
distribution. This procedure for producing the normally distributed
puois has the effect of selecting more items around the difficulty value
of zero and fewer items at the extremes. A sinilax procedure MA9 used
in selecting the item parameters for the bimodal pools as was.used for
selt.:ting the normal pools. The negative half of the pool was centered
around -.693 and the area under the normal distribution was used to place
items around this point up to zero and down to -3.0. The same was true
for the positive half of the pool. The reason +.693 were chosen as the
two modes of the-bimodal distribution was that, prior to the construction
of a bimodal pool, .693 as a stepsize value had appeared promising. There-
fore,, after the first item was administered at 0, the stepsixe of .693
would move the ability estimate out to one tt the more dense regions of
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the pool whether the examinee correctly or incorrectly answered the first
item. The skewed item pool distribution of item parameters was constructed
via a similar procedure to that for the normal and bimodal pools. That is. the
Items divided the distribution into equal areas. For the skewed pool,
cables of the Pearson Type III'distribution were used. The pool constructed
was pesitively skewed (skewness = .5), and it should be noted that in any
table includd in the report, a skewed distribution always indicates a
positive skew. However, the reJults would generalize to negatively skewed

Results concerning the shape of the item pool distribution may be
,een in Tables l-e for differen'e combinations of values of the other variables.
Uowever, Tables 4 and 6 point out the more general trends of the item distri-
ution study. In Table 6 the comparisons of the normal and rectangular

pools of 25 items is shown for only acceptance ranges of 0.1 and 0.3 when
,aired with stepsizes of 0.5 and 0.7 respectively. These values of acceptance
rarge and stepsize were chosen because they appeared to yield sone of the
1-,st bias and least variance estimates. Specifically, the acceptance
range of 0.1 was chosen to check whether the more dense item parameters
nar the middle of the normal distribution would make the use of the smaller
aeceptance range desirable.

As can be seen from Table 6, the normal distributien appears to be
inferior to the rectangular item distribution in almost all cases. Except
fur the 0.1 acceptance range data at 0.5 and 1.0 ability levels, either
the expected values deviate more from 0 o'r the standard deviations are
larger, or both. It i interesting to notf that even the estimates at
uLility 0.0 are not as good for the normally distributed pool as tor the
reetangular pool, even though more items are present for estimation of
anility.

Table 4 shows the expected values and standard deviations from the
TleUlF on normal, bimodal, rectangular, and positively skewed pools.
Each () these contained sixty-one items. The stepsize was fixed at 0.693,
and th t! acceptance range was held at 0.30 for all runs. Again the rectan-
gular pool perZormed better overall than did the other shapes of item
lifficulty distributions. For true abilities zero and one, the standard
deviation of ability estimates, as well as the bias of the estimates, was
smallest for analyses using the rectangular pool. At the ability levels
of two and three, the rectangular pool yielded estimates with less bias
in the expected values but larger stan3ard deviations than the other shaped
pools

The results obtained from the TREE1P would have been the same for
the negative end of the ability continuum when the pools were symmetric.
Therefore, only the positive values of ability were run for the normal,
rectangular and bimodal pools. However, for the skewed pool containing
sixty-one items, the negative ability values of -1, -2, and -3 were run
using the same program parameters as were indicated in Table 4. The results
were as follows. For -1, the E(0) = -1.189 and So = 0.836. For -2, the
E(0) = -2.249 and Se = 0.761. For -3, the E(0) = -2.935 and So = 0.577.
Even if one considered this skewed pool as being better suited for ability
levels around minus two to minus one, since it contained more items around
that regiont it did not perform better than the rectangular pool.

Overall conclusions about the most preferred item distribution were
that the rectangular pool was most apt to yield the least bias and smallest
standard error of ability estimates across the ability scale. One important
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caution was suggested,by some of the results. When setting up an item
pool for use with tailored testing procedures (especially those having
a comparable parameter to the acceptance range), it is important to look
carefully at the frequency distribution to be assured that no substantial
gaps exist in any area of the continuum. OtheLwise, one may expect poor
estithation of ability at that region on the conttnuum. In this regard,
one should view the estimates of true ability 3.1) as understandably limited.

much as the item pools did not have any items beyond difficulty
3.0. For best estimation of ability, the pool should have a dense uni-
form distribut on of items around the ability level to be estimated.

Item Pool Size

The criteria for judging how large an item pool was needed for the
tailored testing procedure were again the bids and standard error of ability
Itimates. The results of the simulations using both the TREE1P and SIM1P
ograms have been condensed, and-the general trend has been illustrated

in Figure 2. The values of the E(0) and so which have been plotted for
item poole of size 9, 13, 25. 31, and 61 were obtained from the TPEE1P.
Each of these pools had a rectangular distribution of item difficulty
parameters. The item pools with 72 and 180 items were actual tailored
testing item pools. The pool of 72 items consisted of item difficulty
parameters from the calibration of a set of vocabulary items. This pool.
Was named VC1PL. The pool with IC,0 items was constructed using item diffi-
culty parameters resultan'e of calibrations of items covering tne evaluation
techniques portion of an introductory measurement and evaluation course.
This pool was known as ET1PL. The distributions of item diffiCulty for
VC1PL and ET1PI, were graphed in Figure 3 and Figure 4 respectively. The
means and standard deviations of ability estimates cn the SIM1P runs on
ehese latter pools have been included in the plots of Figure 2, Each analysis
represented in this figure had 0 set equal to 1.0, the stepsize fixed
at ,.693, and'acceptance range equal to 0..).

The top graph of Figure 2 illustrates that as item pool size reaches
el for this particular set of analyses, the E(0) is equal to 0. The bias
of the ability estimates is essentially zero. The bottom graph of Figure
: shows that as item pool size increases, the standard error becomes less.
wIlile these plots should be consider4as rough approximations of the rela-
tionship between item pool size and ability estimate bias and standard
...rror, the in?ication appears to be that with a uniform distribution of
item difficulty, 0 = 1, and the program parameters equal to the values
ustd here, one could expect very little bias and a standard error of about
0.1 with an item pool consisting of around 200 items. More will be presented
on Item pool size in the discussion section of this paper.

Stepsize

The results of the study of the preferred magnitude of the stepsize
program parameter may be seen in Tables 1, 2, 3 and 7. Tables 1, 2, and
I give the E(0) and So from TREE1P analyses of 0 et 0, 1, 2, and 3 using
item pools of size 9, 13, 25, 31, and 61. Tables 1, 2, and 3 show results
for the rectangular, normal, and bimodal d;.tributions of item difficIJIty
parameters respectively. Table 7 presents thc results of the SIN1P analyses
on the ETIPL item pool for 0 = -3, -2, -1, 0, 1, 2, and 3. Negative 0

1 I



values aro not shown in Tables 1, 2, and 3 since the results of the TREED)
on the pools used are the same as for the positive 0 valuen except for
the change of sign on the E(8)s. This should be expected since the item
pool distributions of item difficult- are symmetric around zero. The
acceptance rangs for All analyses fo: Tables 1, 2, and.3 was 0.30. For
the SIM1P analyses of the ET1PL, a sUbstantially larger item pool, a smaller
acceptance range, 0.25, was used as is noted at the bottom of Table 7.
Another variable recorded in Table 7 is the nean nunber of items adminis-
tered for the 25 tests simulate by the SIM1P for each ability level.
The maximum number of items per simulated test was 20 for these SIM1P
analyses.

In general, results presented in Tables 1, 2, and 3 suggest that
stepsizes between 0.5 and 1.0 give fairly unbiased estimates. and also
have the smallest standard errors. Larger stepsizes tend Co have a positive
bias and larger standard errors. From several graphs like the ones presented
in Figure 5, the stepsize value of 0.693 appears to be the best overall
compromise value which adhieves less bias while holding the standard error
down. Figure 5 shows the E(0) and Se for the 31 item rectangular, normal,
and bimodal pools when e . 1.0 and the acceptance range equals 0.30.
Due to the cost of running the TREEIP on larger item pools, not all cells
of Tables 1, 2, and 3 for the 61 item pools have been analyzed.

Table 7 of the SIMI.? on the ET1PL pool suggests that a stepsize between
0.4 and 0.7 is probably better for less bias and standard error. It should
be recalled that the SIM1P is subject to sample variation, but in general,
the results seem to suggest that a stepsize of about 0.7 is appropriate.
However, a trend whiCh should be investigated further is that larger item
pools seem to do better with smaller stepsizes and vice versa.

.11c_stat_iince a_an e

The results of the acceptance range study are given in Tables 8, 9,
and 10. Table 8 presents the E(0) and se for stepsizes 0.5, 0.693, 1.0,
and 1.5; acceptance ranges 0.1, 0.2, 0.3, and 0.4; and ability levels
0.G, 1.0, 2.0, and 3.0 from TREE1P analyses. All of the results in Table
8 are based on the 25 item rectangular pool. Prom Table 8 it can be seen
that in most cases, as the acceptance range increaz, the standard devia-
tion decreases. This is a reasonable result since more itens are available
for administration with a larger acceptance range. However, there is
also a trend present in the amount of bias in estimate as the acceptance
range.increases, particularly at the higher ability levels and for the larger
stepsizes.

Table 9 shows the results of the 5I141P on the VelPL pool; 25 test
administrations per ability level; 20 item upper limit; stepsize = .693;
and O Is -3, -2, 0, 1, 2, ana 3. The mean suMber of items is also
indicated. These results indicate that an acceptam range of 0.30 is
probably the best compromise value for minimizing bias and standard error
of ability estimates across the range of e. Table 10 shows the results
of the SINIP on the ET1PL pool; 25 test adminiftrations per ability level;
40 item upper limit; stepsize a .693; and 9 -3, -2, -1, 0, 1, 2. and 3.
Again, the mean nueber of items is indicated. These results on WIAPL
are somewhat more ambiguous although the extteme Acceptance range values
are clearly inferior to the more moderate VAlUes of .2 to .4. In cases
such at this, one should consider a combination of the density of the



Item pool across the range of 8 and whether a particular-AO range should
be estimated more precisely than others, in order to decide on the best
acceptance range value. Decisions regarding the best value of program
.,arameters cannot be made independeht of consideotions such as the sizeN
and shape of the item pool to be used.

Secondary Results

Secondary resUlts include the comparison of the performance of actual
versus ideal item pools previously discussed. Table 11 shows this compar-
ison, and overall, the ideal pool did not pelform much better than the
ET1PL pool.

Another comparison was of the sImap and TREE1P programs on the same
pools using the sane p,2ogram parameter values.' By looking at Table 4 and,
Table 5, one may see that the SIM1P did a reasonably good job of approxi-
mating the T1EE1P results at 0 st 2 for the bimodal and skewed pools.
Also, from Table 5, it can be seen that increasing the number of tests
administered by the SIM1P did not dramatically change the means and standard
deviations. Therefore, 25 administrations seemed adequate.

Finally, by comparing cells ot Tables 7 and 10, one can see that
Increasing the maximum number of items administered from 20 to 40 does
not substantially change the means and standard deviations from the 5I141P.
This comparison is not exact because the acceptance range of 0.25 used
tor analyses in Table 7 does not precisely equal the value of 0.2 or 0.3
for acceptance range in Table 10. Neither is the stepsize of 0.7 in Table
7 exactly equal to 0.693,used in Table 10. However, tht values seemed close
.trlough to make a comparison, and the result of this comparison seemed to
indicate that 20 items as an upper limit was adequate. Note that the mean
number of items recorded in both tables illustrated that the procedure
d?proached the upper limit in the middle range of 0.

DISCUSSION

TREE1P

A possibl explanation for the larger standard deviation given by
ciNdlyses run on the rectangular pooll at the more extreme values of the
ability continuum was suggested by i close look at the development of
the propensity distribution by the TREEIP for the various shaped item
pools

A property of the TREE1P and the manner in which it developed the
propensity distributions was that the standard deviation actually increased
as more branches or levels resulted from items administered to more and
more possible ability estimates. This increase of the standard deviation
of ability estimates stabilized and converged for the smaller item pools
as the paths or branehes of the "tree" terminated. For the larger pools
(especially the sixty-one item pools), the standard deviation initially
increased but.as branches were terminated the standard deviation tame
domn. This pattern of inereasing standard deviation of ability estimates
during the early formulation of the propensity distribution was evident
for all shapes of the distributions of items in the pools.

However, the patterns of convergence to the final standard deviations
yielded by the TREE1P were different for the various shapes of item pools
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at different ability levels.% Tables 1, 2, and 3 show a general tendencyfor the standard deviations of ability ?.stimates of the true ebilitieszero and one to be larger tor the normal and bimodal pools than for the
rectarigular pools. But for ability levels two and three, the standard
deviations bf ability estimates were generally larger for the rectangular
pools then for the normal and bimodal pools. This trend was consistent
across most of the MEI') analyses. The explanation proposed was that,
because more items were available for administration to the more extreme
levels of ability (i.e. 2 and 3) when the rectangular pool was used, the
standard deviation of ability estimates was larger since the standard
error was more accurately estimated. The standard deviations of the
estimates from the normal and bimodal pools for these true ability levels
were em41ler, since paths or branches were often terminated because noitems were available w4hin the acceptance range of the estimated abilities.
In short, when fewer items were in the pool around a particular true ability,there were fewer paths allowed to develop in the propensity distribution
due to the stopping rules. Therefore, the standard deviation of ability
estimates at that particular level was an underestimate. A logical checkfor this phenomenon was the prediction that when the acceptance range was
made smaller, the drop in standard deviations for the more extreme ability
levels would be more pronounced with the normal pool than for the rectangular.This did appear to be the case. The point is that the smaller standard
deviateons for ebility levels two and three yielded by the TREE1P when
normal or bimodal pools were used probably should not be Weighted too
heavily, as-the tendency appeare to be somewhat of an artifact of
procedure. The values obtained for the rectangular pools may well
more representative.

3IM1P

SIM1P WAIS designed to score and administer items in the manner previousi/
Jescribed based on the rationale that this approach was a reasonable simula-
tion of the behavior of an examinee when interacting with a tailored test.
The pseudo examinee with some specified true ability was presented an item
of average difficulty from the pool, because, given we have no prior infor-
mation about his ability, the best guess of an item appropriate for the
examinee was one of average difficulty. Scoring of each item using the
examinee's 0 in the one-parameter formula and then selecting a random
number from a rectangular distribution between zero and one was deemed
a reasonable simulation assuming the one-parameter model was correct.
Clearly, the larger the probability of a correct response was, the greater
the chance was that the random number generated was less than or equal
to the probability specified by the model of a'Forrect response. However,
there was ample provision for the reality that-Occasionally an examinee
with adequate ability to answer an item correctly will still respond incorrectly
and vice verse. While the prObability of a-correct response was computed
using the examinee's true theta, item-selection procedures used the fixed
stepsize until correct and incorrect responses were present, and then
selerted items naximizing information for the estimated ability. This
approach rounded out the simulation of the interaction between examinee
and'tailored test with respect to the SIM1P.
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Item Pool Size,_

The methods employed for-the investigation of the effects of item
pool size on the operation of the one-parameter maximum likelihood tailored
testing procedure were simulations, but theoretical methods have also been
proposed. Lord (1970) suggested a formula for the number of items required
for a fixed stepsize procedure (selecting items more difficult by the
ste)size when correct responses were given and vice versa). The f.Jrmu1a

N = (1 + R/d) (n R/2d)

where -R is the range of item difficultis desired, d is the stepsize
and a submultiple of R, and n is the maximum number of items to be admin-
istered. For example, if R were plus three to minus three, d were set
dt ).(), and n were twenty, the formula would give

119 = (1 3.0/0.5) (20 3.0/(2 X 0.5)). (3)

With this set of vaJnes, 119 items uould be required if the exact item
requeste,3 were to be available.

This formula does not directly apply to some tailored testing proce-
dures wh,.ch use a variable rather than a fixed stepsize. Also, most
testing procedures allow administration or slightly discrepant items from
those requested by the procedure (the acceptance range specifies how
discrepant). Procedures using a variable stepsize tend to require more
items because, as the procedure converges to an ability estimate, the
stepsize in effect becomes smaller and smaller. Allowing items to be
administered which differ slightly from the requested item compensates
to an extent for the increase in number of items caused by the variable
stepsize. Another limitation of the formula is that several tailored
testing procederes administer items until a specified precision is

reached instead of using a preset maximum number of items as a stoppieg
rule.

Another theoretical method of estimsting how large an item pool should
be is to determine the number of items required to reach a specified
frecision of ability estimation, given that equally spaced, perfectly
thscriminating items are available. With these ideal or optimal circum-
stances, the precision of an ability estimate is equal to the difference
between adjacent items. Fo.: example, an item pool with seven equally
spaced items from -3.0 to +3.0 would classify examinee8 into categories
1.0 scale unit apart. The number of item responses required to make the
classification would be

k = log2n (3)

where n is the size of the item pool, since 2k is the number of branches
ill the tree diagram after k items are administered. By specifying the
precision desired, e, the minimum item pool size can be determined by
the range of ability, R, divided by e, plus one.

--+ (4)
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The minimum number of items administered to classify all ability levels
in the tailored testing situation is

k e 1og2111+ (5)

Some results obtained by 'the application of the formulas based on
the theoretical method for estimating the number of iteas needed in a
pool, given the precision desired, have been indicated in Table 12. The
requirements fot pool size were computed for the range of ability, -3.5
to +3.5, given the desired classification interval Size. As has been
pointed out, these results are for a rectangular pool of hypothetical
items with perfect discrimination and zero guessing probabilities. With
these restrictions, the item pool sizes shown must be regarded as lower
limits. The minimum session length indicates the fewest number of items
that would have to be administered in order to classify an Ability level
within the capabilities of the item pool. These also are based on hypo-
thetically perfect items and item pools, and should be considered as lower
limits. The values in the column labelled simulated length are the
number of items required to reach a best estimate using the most likely
response pattern simulated. 'All results in this column are based on
0 e 0.0.

In some cases the simulated session length is less than the minimur
predicted length because of,the choice of ability level. Setting the
stepsize equal to 0.693 tends to keep the process near the middle of the
item pool., speeding up convergence for Abilities near 0.0. If an Ability
of 3.0 had been used, the session length would have been 6, well over the
minimum Ixedicted values. Thus, the minimum session length refers to
the number of itens needed across the Ability range, and under specified
circumstances fewer items may be reqeired.

These results using simulated tests have been compared to acturl
tailored testing convergence plots and found to be fairly good approxi-
mations (Redkase, 1976). Ona observation of importance is that, fram
convergence plots, it can be seen that giving too many easy items causes
bias in ability estimation. Reckase (1975) has discussed this effect
in detail.

Generalizability

It should be kept,in mind that this report focused primarily on program
parameters and item pool attributes as they interacted with the onetparameter
maximum likelihood tailored testing procedure currently in operation for
this research project. Clearly, the inferences drawn from the results
should generalize to other tailored testing applications using similar
conceptual formulations of operation. In this sense, the results of this
study were intended not as isolated studies of item pool size and shape,
stepsize magnitude, and value of the acceptance range, but rather intended
to generalize to fairly concrete statements about the preferred operation
of a one-parameter tailored testing procedure. As was expected* item pool
attributes and program parameters interacted to a great extent in the deter-
mination of the degree of bias and amount of variance inability estimation.
The intention in drawing up the numerous tables and figures of this report
was to illuminate trends of interaction among'these variables. These trends,

1 r
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in large pvt, were the primary thrust of this report. They should be
helpful in applying tailored testing procedures in which some of the
variables, such as item pool attributes, have been fixed by practicality,

In conclusion, this paper was intended as a guide for those setting
up a tailored testing procedure. The paper does not, by any means, eXhaust
all the inferences that could be drawn from this set of data. The report
presented here has been an attempt to condense a more elaborate technical
reoort which is presently being developed. One point should be made in
closing. This strategy for investigating bias and standard error was
motivated by the need to determine these vaguest 'across the ability con-
tinuum, since our efforts were directed toward developing a criterion-
referenced tailored test. In criterion referenced testing, it is essential
tt) know the effects of estimate bias and standard error on decisions made
at various points along the ability continuum.
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Table 1
and Standard Deviations
Rectangular Item Pools
Step Sive and Ability Level

Pool $ize Stek_ise

Ability Level

0
E(8) se

9

13

25

1
E(0) Se E(0)

0.5 -0.000 0.645 0.405
0.693 -0.001 1.025 0.756
1.0 -0.00i 1.155 0.821
1.5 -0.001 1.182 0.934

0.5
0.693
1.0

1.5

0.25
0.5
0.6
0.693
0.8
0.9
1.0
1.5

1.7
2.0
3.0

-0.001

-0.001
-0.006

-0.001
-0.001
0.001

-0.013
-0.013
-0.001
-0.001
-0.001
-0.001
-0.001
-0.001

0.765
0.976
1.187
1.125

0.547
0.736
0.744
0.786
0.801
0.845
0.829
0.972
1.473
1.551
1.555

0.655

0.733
1.037
0.899

0.584
0.857
0.896
0.910
0.931
0.996
0.990
1.109
1.329
1.389
1.361

0.5 0.004 0.726 0.949
31 0.693 -0.003 0.742 0.973

1.0 -0.003 0.776 1.009
1.5 -0.005 0.925 1.116

61

0.5

0.693
1.0
1.5

-0.001 0.598 0.989
-0.001 0.610 1.008
-0.000 0.641 1.039

2

E(9

0.603 0.709 0.482 0.877 0.335
1.113 1.593 1.217 2.388 1.139
.1.213 1.685 1.298 2.548. 1.286
1.268 1.966 1.439 3.016 1.423

0.937 1.577 1.219 2.599 1.201
1.056 1.587 1.217 2.454 1.168
1.150 1.995 1.085 2,822 1.005
1.249 1.960 1.463 3.045 1.424

0.809 1.606 1.200 2.783 1.190
0.842 1.933 1.000 2.964 0.809
0.888 1.986 1.004 2.955 0.788
0.892 1.984 0.980 2.925 0.765
0.934 2.047 1.042 3.045 0.845
0.895 2.061 0.972 2.996 0.784
0.901 2.099 1.036 3.135 0.867
1.086 2.318 1.221 3.389 1.040
1.417 2.477 1.116 3.143 0.614
1.553 2.673 1.348 3.535. 0.846
1.741 2.863 1.930 4.248 1.750

0.788 2.022 0.902 3.018 0.725
0.826 2.068 0.907 2.997 0.672
0.866 2.140 0.995 3.183 0.817
1.050- 2.002 1.388 3.382 1.023

0.657 2.116 0.804 3.133 0.593
0.677 2.138 0.805 3.111 0.566
0.745 2.229 0.915 3.289 0.689

Note. Acceptance Mange in 0.30

1 9
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Table 2
Expectnd Values and Standard Deviations

from TREE1P on Noma Item Pools

Ability Level

0 2 3

E (0) S
e

B(8) S
e

E(0) S s(e) s
e

.

9

0.5 -0.001 1.018 0.848 0.847 13318 0.491 1.463 0.226
0.693 -0.001 1.098 0.960 0.966 1.601 0.655 1.898 0.82
1.0 -0.001 1.269 0.880 1.084 1.641 0.632 1.877 0.334
1.5 0.000 1.500 0.693 1.330 1.142 0.972 1.358 0.638

0.5 -0.001 1.028 1.062 0.866 1.697 0.514 1.922 0.237
0.69.3 -0.001 1.101 1.002 0.942 1.648 0.628 1.932 0.358
1.0 -0.000 1.273 1.146 1.020 1.760 0.548 1.946 0.231
1.5 -0.001 1.439 1.272 1.282 2.219 1.188 3.031 1.258

0.25 -0.001 0.847 1.110 0.858 1.969 0.576 2.210 0.408
0.5 -0.001 0.891 1.184 0.837 2.016 0.572 2.359 0.278
0.6 -0.001 0.980 1.203 0.847 1.965 0.528 2.263 0.266
0.693 -0.000 0.956 1.174 0.811 1.871 0.482 2.079 0.227

25 0.8 -0.001 1.009 1.234 0.871 2.004 0.539 2.232 0.253
0.9 -0.001 1.052 1.290 0.964 2.223 0.784 2.818 0.658
1.0 -0.001 1.055 1.295 0.979 2.263 0.858 2.949 0.820
1.5 -0.001 1.327 1.384 1:186 2.394 1.070 3.167 1.114
1.7 -0.001 1.536 1.521 1.363 2.549 0.968 3.047 0.628
2.0 -0.001 1.738 1.653 1.600 2.845 1.248 3.492 0.884
2.0 -0.001 1.792 1.627 1.749 2.928 1.814 4.045 1.883

0.5 -0.000 0.869 1.218 0.805 2.046 0.557 2.385 0.277
31 0.693 -0.001 0.964' 1.268 0.880 2.192 0.734 2.778 0.607

1.0 -0.001 1.018 1.323 0.951 2.300 0.823 2.969 0.787
1.5 -0.001 1.301 1.404 1.155 2.410 1.043 3.176 1.092

0.5
61 0.693 -0.000 0.866 1.256 0.873 2.267 0.693 2.840 0.543

1.0
1.5

Note. Acceptance Range 0.30
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Table 3
hzpected Values and Standard Deviations

from TREE1P un Bimodal Item Pools
Step Size lend Ability Level

Abilit Level

Pool Size Step Size 0 1

E(9) E(0) E(0)e se se
2

9

0.5 -0.004 1.020 0.231 0.443 1.312 0.495
0.693 -0.004 1.095 0.951 0.968 1.601 0.666
1.0 -0.001 1.264 1.036 1.042 1.639 0.628
1.5 -0.001 1.442 1.216 1.326 2.187 1.252

0.5 -0.001 1.006 1.009 0.903 1.671 0.579
13 0.693 -0.001 1.104 1.001 C.945 1.647 0.630

1.0 -0.000 1.267 1.143 1.011 1.754 0.551
1.5 -0.000 1.436 1.274 1.276 2.217 1.181

0.25 -0.000 0.920 1.102 0.855'' 2.001 0.623
0.5 -0.001 0.870 1.152 0.867 2.024 0.594
0.6 -0.001 0.951 1.173 0.875 1.976 0.536
0.693 -0.001 0.964 1.207 0.933 2.174 0.768

25 0.8 -0.001 0.953 1.183 0.887 2.020 0.89
0.9 -0.002 1.025 1.260 0.994 2.246 0.780
1.0 -0-001 1.017 1.257 1.002 2.280 0.860
1.5 -0.001 1.294 1.350 1.192 2.396 1.064
1.7 0.002 1.491 1.483 1.362 2.543 0.959
2.0 -0.000 1.717 1.609 1.592 2.831 1.235
3.0 -0.001 1.761 1.601 1.763 2.953 1.803

0.5 -0.000 0.796 1.145 0.816 2.060 0.621
31 0.693 -0.000 0.924 1.229 0.912 2.218 0.741

1.0 -0.000 0.957 1.262 0.956 2.298 0.832
1.5 -0.002 0.968 1.284 1.049 2.446 1.080

0.5 0.006 0.726
61 0.693 -0.000 0.857 1.245 0.876 2.281 0.688

1.0 0.033 0.867
1.5 0.185 1.128

E(0) se

1.473 0.245
1.903 0.383
1.876 0.331
3.027 1.291

1.917 0.275
1.932 0.358
1.946 0.238
3.029 1.252

2.264 0.421
2.373 0.278
2.271 0.242
2.774 0.612
2.335 0.272

2.833 0.631
2.969 0.791
3.176 1.091
3.047 0.612
3.485 0.871
4.070 1.857

2.476 0.406
2.814 0.585
3.004 0.758
3.338 1.015

2.852 0.525

Note. Acceptance Range 1m 0.30



Table 4
Expected Values and Standard Deviaticn
from TREE1P onyarious Shmped Item Pools

Ability Level

Pool Shape

s(e) se E (3)

normal -0.000 0.866 1.256
bimodal -0.000 0.857 1.245,
rectangular -0.001 0.610 1.008
skewed 0.040 0.815 1.282

-e
0.873
0.876
,0.677
0.858

3

E(0)
0

E (8)

2.267 0.693 2.840 0.543
tk.)2.281 0.688 2.852 0.525 1-'

2.138 0.805 3.111 0.566
2.257 0.670 2.801 0.561

Note.- All runs were on pools with 61 items with the stepsize and acceptance range
program parameters s't at 0.693 and 0.30 respectively.



Table 5
Means and Standard Deviations
from SIN1P on a Bimodal and
Skewed Item Pool Varying

Number of Test Administrations

Shape of Pool

Number of Tests
Administered

i

Bimodal

25 2.207 0.627
SO 2.242 0.634
75 2.262 0.645

Note.

Xe

2.193 6.622
2.225 0.627-
2.216 0.603

Skewed

All runs made with 20 item upper limit* stepsise 411.693* and acceptance range m 0.30. The true
ability was set at 2.0. Both the pools had 61itemS. 23



Table 6
CoM6arison of TRIM? Results from

25 Item Rectangular and Normal Item Distributions

Ability Level

Acceptance
Range

Step
Size

Distribution
Shape 0.0 0.5 1.0 2.0 3.0

0.1

0.3 0.7

E (0) se E(0) Se E(0) Se E (0) se B(0) se
-0.001
-0.009

-0.013
-0.000

0.918
0.951

0.787
0.959

0.470
0.522

0.430
0.623

0.927
0.904

0.824
0.922

0.944
0.980

0.911
1.169

0,943
0.762

0.893
0.821

1.893
1.468

1.986
1.877

0.968
0.426

0.984
0.491

2.764
1.555

2.933
2.093

0.884
0.251

0.773
0.231

2 4

Orr



Stepsize

ie
.2 So

Mni*

ie
.3 Se

Mni*

Xe
.4 Se

Mni*

ite
.5 Se

Mid*

Table 7
Means and Standard Deviations
from SIMI) DA ET1PL Item Pool

Varying Storage ,
,wrimilmstiiIMmwm.=,

Ability Level

-2 -1 0 1 2

-2.886 -2.145 -0.992 -0.050 1.135 1.991 3.331
0.715 0.728 0.486 0.534 0.502 0.627 0.788
13.04 15.88 19.24 20.00 20.00 19.84 18.40

-2.779 -2.230 -1.132 0.129 0.952 2.009 2,972
0.491 0.681 0.550 0.461 0.374 0.515 e 857
12.24 13.96 19.68 20.00 20.00 19.76 18.24

-3.157 -2.139 -1.134 0.064 1.018 2.055 3.213
0.652 0.645 0.800 0.503 0.363 0.516 0.844

10.04 14.48 18,56 20.00 19 92 19.56 16.08

-3.168 -2.250 .052 0.001 1.070 1.987 2.910
0.611 0.782 J.547 0.518 0.444 0.531 0.554
9.56 17.04 19.24 20.00 20.00 19.48 18.12

-2.762 -2.096 -1.122 -0.070 1.136 2.076 3.053
0.539 0.619 0.700 0.539 0.562 0.548 0.718
0.20 14.72. 18.12 20.00 20.00 19.40 16.28

....0wM.do
Note: All runs made with 25 adwinistratione per ability level, 20 item upper

limit* and acceptance se .25.

Al mean number of items administered.
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Table 7 (Cont.)
Means and Standard Deviations
from snap on ET1PL Item Pool

Varying Stepsise

Ability Level

Stepsize -3 -2 -1 0 1. 2 3

-3.061 -2.175 -1.026 -0.065 1.029 1.950 2.913
So 0.561 0.460 0.573 0.469 0.516 0.696 0.533
mni* 7.80 13.12 18.92 20.00 20.00 19.16 15.92

X0 -1.134 -2,771 -1.241 0.094 0.959 2.029 3.310
So 0.499 0.790 0.898 0.419 0.380 0.531 0.799
mni* 5.92 11.40 16.96 20.00 19.84 19.20 13.28

xo -3.739 -2.501 -1.389 0.101 1.035 2.437 3.239
1.5 s 0.876 0.961 0.910 0.598 0.792 1.118 1.010

Mni* 5.32 10.80 18.04 20.00 19.32 16.16 12.72

-3,683 -2.972 -1.482 -0.329 1.100 2.032 3.631
2.0 S0 0,514 1.044 1.194 1.175 0.450 0.913 1.345

Mni 4.24 8.76 16.56 18.56 19.96 18.48 13.36

-4.530 -2.942 -1.751 -0.042 1.230 2.511 4.471
3.0 1.591 1.494 1.916 0.465 1.117 1.556 1.519

Mni* 5.0.1 10.68 16.52 20.00 19.28 17.04 8.60

:ote. All runs made with 25 administrations per abiliIMMINomo.

-nd acceptance range im .25.

mean number of items administered

ty level, 20 item upper limit,



Table 8

Expected Values and Standard Deviations
from TREE1P on 25 /tem Rectangular Pool

by Step Size and Acceptance Range

Step Size

s
e

Ability
Level

Acceptance
Range 0.5 0.693 1.0 1.5

E(0) E(0) Se E(0) Ete) s
e

.1 -0.00 0.92 -0.00 0.84 -0.00 1.04 -0.01 1.07

.2 -0.00 0.81 -0.02 1.01 -0.00 0.88 -0.00 1.06
0.0 .3 -0.00 0.74 -0.01 0.79 -0.00 0.83 -0.00 0.97

.4 -0.00 0.76 -0.01 0.78 -0.00 0,81 -0.00 0.93-

.1 0.94 0.94 0.55 0.80 1.08 1.06 0.89 1.23

.2 0.89 0.87 1.00 1.04 1.00 0.94 0.90 1.221.0 .3 0.86 0.84 0.91 0.89 0.99 0.90 1.11 1.09

.4 0.94 0.81 0.96 0.83 1.00 0.89 1.10 1.07

.1 1.89 0.97 0.97 0.66 2.09 1.03 1.99 1.45

.2 1.92 0.99 1.88 0.97 2.08 1.04 2.00 1.45
2.0 .3 1.93 1.00 1.98 0.93 2.10 1.04 2.32 1.22

.4 2.01 0.92 2.03 0.91 2.12 1.02 2.33 1.21

.1 2.76 0.88 1.21 0.46 2.93 0.93 3.09 1.39

.2 2.89 0.85 2.74 0.89 3.08 0.91 3.10 1.39
3.0 .3 2.96 0.81 2.92 0.76 3.14 0.87 3.39 1.04

.4 3.00 0.74 2.97 0.72 3.16 0.84 3.42 1.01



Table 9

Means and Standard Deviations
from SIM1P on VC1PL Item Pool

Varying Acceptance Range

Acceptance
Range

-3

'e
-1.938

.1 S 0.430
Mn1* 3.64

-2.747
7C-e
s

13.
0.790

mill* 6.96

-2.955
.3 S 0.823

14ti* 7.00

X
e

-3.171
.4 So 0.690

Mni* 7.08

-3.157
.5 se 0.606

Mni* 8.16

Ability Level

-2 -1 0 2

-1.713 -0.994 -0.491 1.101 1.873 2.913
0.794 0.573 0.810 0.976 0.676 0.447
5.56 6.84 8.52 11.12 9.72 6.24

-2.133 -1.193 -0.152 1.208 2.268 2.889
0.520 0.779 0.544 0.739 0.686 0.540
8.88 12.56 14.44 15.44 10.56 7.20

-2.085 -1.311 -0.021 1.026 2.229 3.109
0.555 0.943 0.385 0.578 0.581 0.510

10.00 11.24 16.96 17.24 12.96 7.68

-2.404 4.346 -0.007 0.869 2.234 2.950
0.538 0.681 0.344 0.399 0.775 0.579
8.08 14.60 18.44 19.72 14.64 9.64

-2.242 -1.051 0.160 0.941 2.340 3.117
0.791 0.619 0.755 0.546 0.780 0.497

11.4 17.04 18.64 19.28 14.32 9.48

Note. Ail runs made with 25 administrations per ability level, 20 item

upper limit, and stepsize * .693.

mean number of itens administered4



Table 10
Means and Standard Deviations
from STRIP on NTIPLItem Pool

Varying Acceptance Range

Acceptance
Range

-3

'E)

-2.528
.1 S 0.559

Mni* 6.64

7 -2.989
S: 0.491
Mni* 7.20

x
e -3.103

.3 S 0.5769
Mni* 7.60

I -3.064
.4 S

0
0.615

Mni* 10.20

ir -3.378
.5 Sa 0.716

MK1.* 10.24

Ability Level

-2 -1 0 1 2 3

-2.200 -1.174 -0.111 0.974 2.001 3.299
0.667 0.700 0.569 0.903 0.471 0.781
9.24 17.16 26.60 27.80 16.44 11.16

-2.159 -1.144 -0.016 0.926 2.152 3.451
0.559 0.731 0.332 0.362 0.464 0.765
14.52 22.40 31.60 33.60 22.36 13.40

-2.475 -1.162 0.003 1.016 2.161 3.024
0.594 0.630 0.239 0.401 0.410 0.747

12.40 27.96 36.72 37.88 25.32 18.16

-2.359 -1.121 -0.094 1.043 2.073 3.054
0.815 0.582 0.261 0.316 0.336 0.520

18.00 31.40 39.00 39.36 31.52 20.12

-2.465 -1.088 0.031 0.993 1.920 3.195
0.715 0.510 0.394 0.356 0.389 0.584

18.48 35.08 39.80 39.48 35.12 20.76

Note. All runs made with 25 administrations per ability level, 40 item upper

limit, and stepsise st .693.

*Mni 11, mean number of items administered

31)



Table U.
Means and Stkndard Deviationi from

SIM1P on ET1PL Item P.aol and Comparable
Ideal Item Pool

ET1PL
Pool

Ideal -i-

s
Pool Se

Ability Level

-3 -2 0 1 2 3

-3.061
0.561

-2.175

0.460
-1.026
0.573

-0.065
0.469

1.029
0.516

1.950
0.696

2.913
0.533

-3.036 -2.404 -1.037 -0.017 1.148 2.222 3.070
0.441 0.703 0.652 0.462 0.787 0.718 0.460

Note. All runs made with 25 administrations per ability level, 20 item upper
limit, stepsize = 0.70, and acceptance range = 0.25.



Table 12
Minimum Item Pool Requirements

for a Rectangular Idealized Pool Given
Classification Interval and Ability Range

Ability Classification Pool Minimum Simulated

(-3.5, 3.5) 0.5 15 3.9 2
(-345, 3.5) 0.25 29 4.86 4
(-3.5, 3.5) 0.125 55 5.8 8
(-345, 3.5) 0.0625 113 6.8 8
(-3.5, 3.5) 0.03125 225 7.8 '7

*Note. Number of items administered to closest approximation of 0
value within classification interval.

39



Item
Parameters

Figure 1

Procedural Operation of TREE1P
on a Nine Item Pool with

Stepsize = 1.0 and Acceptance Range = 0.3

Probability
of Response

Estimate
(Item Selected)

Prdbability
of Response

Estimate
(Item Selected)

3.00

2.25

1.50
1.00 +

(0.75)

2.00

(2.25)

0.68 0.375

* )

-0.375

* )-0.75

-1.50

-2.25

-3.00

-2.00
-2.25)

E (0) 0.0

1.0

0.0

1.174

Note. The * indicates that no item was available in the pool within + the
acceptance range.
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Figure 2
Relationship Between Lbws Pool Size

and the B(0) and Se
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Frequency Distribution
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