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INECRenda e
) INTRODUCTION

Tailored testing, the selection and scoring of test items administered
in an interactive fashion to individual examinees has, within-the past
decade, become the spearhead for application of latent trait models to
achievement and ability measurement. The availability of improved computer
technology has contributed greatly to the increase in the number of systems
presently in operation which administer tailored or adaptive tests. It
should be noted that tailored testing as presented here is synonomous with
many other assigned names such as adaptive testing, response contingent
testing, or sequential testing. While numerous articles have appeared in
the literature which describe the one-~parameter logistic model and its
application in a tailored testing setting (see for example Reckase, 1974;

. Weiss, 1974; Patience, 1977}, little or no literature has been written
discussing operational characteristics of the procrdure when program para-
meters and item pool attributes are varied. For this report., cperational
characteristics refer to how well the tailored testing procedure estimates

a given true ability when provided an item pool and values for the controlling
program parameters. The operational characteristics, item pool attributes,
and program parameters will be described in detail shortly. ~

Although no literature was found which addressed the effects of varving
program parameters, a few studies have appeared in the literature whichk investi-
gated effacts of item pool characteristics on the operation of tailored testing.
Jensema (1975), for example, has investigated the influence of item pool
size and item characteristics on a Bayesian tailored testing procedure.

In general, Jensema found that when items are of adequate quality, it is
not necessary to have very large item pools. Reckase (1976) concurred with
Jensema in recommending a rectangular distribution of item pool difficulsy
values. In this latter study, the tailored testing procedure was based

on an empirical maximum likelihood estimation of the ability parameter

of the simple logistic (Rasch) model. Issues worthy of further investiga-
tion have surfaced in addition to item pool attributes, such as the effects
of program parameters on the bias and variance of ability estimatioa,

Bias and variance of ability estination constitute the operationzl:charactex-
istics of the tailored testing procedure. Bias and variance of ability
estimation and the program parameters will ncw be described more thoroughly.

Several articles have appeared in the literature whick discuss bias
of tailored testing ability estimation with regard to procedural bias toward
Subgroups of an examinee population such as minorities (see for example
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Pine and Weiss, 1978). The research reported here did not address this
type of bilas. Rather, ability cstimate bias investigated for this paper
concerned the fallure of a maximum likelihood taiiored testing procedure
to result in an expected value of the ability estimate equal to a

known true ability. In this sense, the attempt was to identify values
fur the program parameters, stepsize and acceptance range, as well as item
pool characteristics which would provide the least statistical bias in
abllity estimation. The variance of ability estimates was the squared
standard error of the ability estimates for a known true ability. The
desire was to minimize this standard error. These two dependent measures
rrovided the criteria for judging how well the tailored testing procedure
vsitimated known abilities when the program parametcers and item pool
vharacteristics were varied. ;

PURPOSE

The primary purpose of the research described herein was to determine
the operational characteristics of a one-parameter tailored testing proce-
Jdure when program parameters and item pool attributes were varied. The
program parameters investigated were the stepsize and acceptance range.

The stepsize parameter specified the magnitude of movement of the abilicy
vstimate during the initial item selection phase of tailored testing.

Ther acceptance range parameter determ'ned how deviant the selected item's
difficulty value could be from the requested item difticulty and still be
acceptable for administration. Items were requested by the procedure

to watch the ability estimate which was computed after eath item response.
The 1tem pool attributes varied were size, shape, and guality. Each of
these variables will now be described more specifically.

Based on the premise of tailored testing that when an examinee answers
an 1tem correctly, the item administered should be more difficult and vice
versa, the stepsize program parameter initially controlled how much more
Jdifficult or easy was the next'item administered. The selection of items
proveeded utilizing a fixed stepsize until the examinee had answered items
both correctly and incorrectly. After both a correct and incorrect response
had been obtained in the response string, a maximum likelihood ability
vStimate was obtained using an iterative search for the mode ot the likeli~-
hool distribution. For a more complete descripcion of the item selection
and ability estimation components of this maximum likelihood tailored
testing procedure see Patience, 1977. When an ability estimate had been
obtained, items were selected from the pool to maximize the information
function (Birnbaum, 1968). For the one-parameter model, the information
function 1s maximized when the difficulty of the selected item equals the
ability estimate. In the past, arbitrary valueg have generally been choosen
for the stepcize. One of the primary goals of this research was to empiri-
cally investigate the effects of stepsize values. on the bias and standard
error of ability estimates. 1In so doing, the intent was to determine the
optimal stepgize value which would minimize the bias and standard error
of ability estimates.

The second program parameter investigated was the acceptance range.
The acceptance range specified the amount of deviation in difficulty an
administered item could have from the ra=guested item difficulty and still
be acceptable for administration. The acceptance range parameter monitored
the appropriateness of items selected throughout the tailored test, i.e.,

J
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both during item selection based on. the fixed stepsize until both correct
and incorrect responses had been obtained, and also during item selection
Lo maximize the information function for a maximum likelihocd ability
estimate. If more than one item was within plus or minus the acceptance
range of the desired item, the item with a difficulty value nearest the
requested value was choosen. If no item was available from the pool within
the specified acceptance range of the difficulty asked for, the tailored
test was terminated. The primary aim then, regarding the acceptance range,
was to determine what value or range of values yielded the least bias and
standard error of ability estimates. Clearly, a small value for the accep-
tance range would have insured that items very near the desired item difficulty
would be administared. On the other hand, too small an acceptance range
valuc would have increased the chance of premature termination of the
tailored test, which would have inauced bias of the ability estimate.
1t shouid be noted that both stepsize and acceptance range interact with
item pool attributes and, therefore, a choice of what values are optimal
may Not be made assuming independence of these controlling factors.

Item pool attributes studied in this research included size, shape,
and Juality. Item pools used in this investigation ranged in size from
Hine to one hundred and eighty-one items. Shapes of item poocl distribu-
trions were normal, rectangular, bimodal, and skewed. Item pool quality
refexred to the contrast between actual and idealiz-d pools. idcalized
pools consisted of item difficulty parameters equally spaced from minus
three to plus three with equal discrimination values of one and zero guess-
ing as assumed by the Rasch model. Actual pools consisted of item difficulty
values obtained from calibration runs using the Wright and Panchapakesan
program based on the Rasch model (1969). In these pools, items were not
©¢qually spaced con the difficulty scale. It should be noted that, quite
‘clcarly, item pool attributey played a substantial role in the utility of
ti tailored testing procedure.

PROGRAMS

Two FORTRAN programs were used for investigating effects of program
pavameters and item pool attributes. The input variables for both programs
included: a) acceptance range, b) stepsize, c) item pool size, 4d) item
Jdifficulty values for the various sizes and shapes of item pools, and
¢) the true abilities for which an estimate was to be made utilizing the
program parameters and item pool provided. Both programs output the mean
and standard deviation of the estimates of each true ability provided,
These served as dependent measures for determination of the quality of
estimation for the specific values of the acceptance range, stepsize,
and item pool difficulties.

The first program, the TREElP, was based on the concept of a propensity
distribution. A propensity distribution in thig context was defined as
the probability distribution for observed ability estimates given a true
ability, P(G]G) (Lord and Novick, 1968). The concept of a propensity
distribution was extendcd from its use in trme score cheoxry to the coutext
of latent trait ability estimation. The TREELP program determined the
propensity distribution for a given true theta, O, analytically from the
properties of the tailored testing model.

Briefly, the TREE1P program operated as follows. Initially an item
of average difficulty was administered to the Simulated examinee with known
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true ability. Based on the probability function for the simple logistic
model, ' .

eu(a - b}
(0 ~ b) (1)

P{u} =
1l +e

where u is the item score (0 or 1), b is the item difficulty parameter,
and O is the ability parameter, the probability of a correct and the probab-
ility of an incorrect response was obtained. If the response was correct,
the ability estimate was increaged by the stepsize. If the response was
incorrect, the ability estimate was decreased by the stepsize. Thus after
One item was administered, two paths or branches were present on the "tre=".
(The tree diagram from probability theory was employed to represent the
propensity distribution in this study.) Based on these first possible
.abllity estimates, the closest items to each of the two estimates was
{ selected for administratiosn with the constraint that the difficulty of
the items must have been within plus or minus the acceptance rangé from
the present ability estimates. If no items were available to the program
from the item pool provided, that branch was terminated at that point.
However, assuming items were available, there existed four possible paths
after the second item had been ,administered. As lorg as all correct or
all incorrect responses were cbtained on a given path, the ability estimates
continued to be increased or decreased, respectively, by the stepsize,
However, when.both a correct and an incorrect response were present onh a
particular path of the tree, a maximum-likelihood ability estimation proce-
dure obtained an ability estimate using an iterative search for the mode
of the likelihood distribution.

Insert Figure 1 about here

To partially illustrate how the propensity distribution was determined

by the TREElP, Figure 1 shows a diagram’representing the operation of
the procedure on a nine item rectanqular pool. The stepsize used for this
i1llustration was 1.0 and the acceptance range was 0.3. The 0 for this
analytical derivation of the propensity distribution was set at zeroc.
As was pointed out above, the procedure began by administering an item
of average difficulty from the pool, i.e.ﬂ;the item with the difficulty
parameter 0.0. The probability of a correct response, as determined by
the probability function given above for the simple logistic model, was
0.5 and the probability of an incorrect response was 0.5. '

After a correct response the ability estimate was increased by the
stepsize,'or after an incorrect response, it was decreased by the stepsize.
Thus after onc item, the ability estimate was either 1.0 with probability
of 0.5 or -1.0 with a probability of 0.5. This procedure was followed
S0 that finite 4bility estimates would be available after each item response,
rather than the + = value given by the maxinum likelihood procedure.

The expected value of ‘the distribution after one item was 0.0 and the
standard deviation was 1.0. ‘ y

Based on these first possible ability estimates the closest itema
were selected from the pool with the restriction that they must have heen
within plus or minus 0.3 of the requested items. Thus, as Figure 1 illus-
trates, items with parameter estimates of plus and minus 0.75 were adminis-

*”



-5

tered to the estimated abilities plus and minus 1.00 respectively. On

the upper branch of the tree, a correct response yielded an ability estimate
that was again increased by the stepsize, since a maximum likelihood estimate
could not be determined without both a correct and incorrect” response.

Now, the ability estimate wag 2.0. The probshility of a correct response

to the item with the 0.75 ditficulty parameter was the same except for the
change in sign of the item parameters and ability estimates. When the

item pool distribution neing considered was symmetric, the results of the
analyses were the same except for the change in sign, ‘

Following the middle branches of the tree, an incorrecét response to
the item with difficulty 0.75 yielded an ability estimate of 0.375 from
the maximum likelihood technique. The probability of this response was
0.68 based on the model. When the first item was missed and the second
answered correctly, the probability of the second response was alsc 0.68.

By the local independence assumption of the model, the probability of either
a +2.0 estimate was 0.5 X 0.32 = 0.16 while the probability of +0.375 was
J.5 X 0.68 = 0.34. In this manner the propensity distribution after two
items have been administered could be cobtained. As noted at the bottom

of Figure 1, the expected value was still 0.0 and the standard deviation
{which was determined as the square root of the VAR(E)) was 1.174.

The tree developed further in this same manner whenever items within
the acceptance range were available. If 211 correct or incorrect responses
were present, the fixed stepsize was used to make ability estimates. Once
a mixture of correct and incorrect responses were presern:, the maximum
likelihood ability estimate procedure was used. Note the "branches" of
Figure 1 were "live" at +2.00 ability estimate but no items existed in
the pool within 0.3 of the ability estimate *0.375. Therefore, those
branches terminated. . .

The tree continues to develop by following all "live" paths. . The
program is finished after all branches are terminated by the condition
that no items of appropriate difficulty are available in the pool. One
may well imagine that as the number of items in the pool gets larger,
the procedure is, practically speaking, beunded by the storage capacity
0f the computer facility and magnitude of one's computer budget. For
the IBM 370/168 gystem on which the TREE1lP program was run, it was found
that sixty-one items was the practical upper limit on the number of items
the pool could contain for any particular run of the various combinations
of stepsize, acceptance range, and shape of the item difficulty distribution.

Due to the limitation on size of the item pool which could be investi-
gated with the TREELP program, the second computer program, SIM1P, was
developed. This program was adapted from the tailored testing procedure
based on the Rasch model which was already operational. This particular «
tailored testing procedure has been described thoroughly elsewhere (Reckase,
1974), so only the details pertinent to this research have been described
here. The SIMIP program followed only one path for any given O in contrast
to the TREE1F. A particular path was selected using Monte Carlo simulacion.
techniques. It provided for investigation of the properties of bias and
variance of ability estimation with much larger item pools since the required
storag~ and computation were substantially reduced as compared to the
TREE1P program.

The following values served as input to the program: the stepsize,
acceptance range, item pool difficulty values, O, and number of simulated
tests to be administered by the tailored testing procedure. The procedure

=
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initially administered an item of average casiness from the pool of items
provided. If a correct response vas obtained, an item that was more difficult
by a stepsize factor was administered. If an incorrect response was obtained,
an easier item hy the same value was administered, This fixed stepsize

up and down procedure continued until hoth a correct and incorrect answer

had been abtained in the response string. Then the procedure switched

from the fixed stepsize procedure te maximum likelihood ability estimation.

In both cases, items were selected to maximize the item information.

Ability estimation was accomplished after each item was administered (pro-~
vided correct and incorrect responses had previecusly occurred) by the
maximum-likelihood estimation procedure using an iterative search for'the
mode of the likelihood distribution. The jtems administered had to be

-within plus or minus the acceptance range from the requested item difficulty.
If no items were available within this range of the estimated ability,

the procedure stopped. The only other stopping rule was based on a preset
maximum number of items that was to be administered.

Items were gcored correct or incorrect by the SIMIP program utilizing
°n internal random number generator. Fil'st, the probability of a correct
response was computed using the formula for the probability function of
the simple logistic model stated earlier. The theta for this computation
was the true theta that was input into the program, and the difficulty
parameter, b, was that of the item just administered to the simulated exam-

X inee. After this probability of a correct response had been determined,
the random number generator selected a number between zero and one from
A rectangular distribution. If this randomly selected number was less
than or equal to the probability of a correct response, the item was scored
correct. If the randomly selected number was greater than the probability
of a correct response, the item was scored as incorrect. Provided both
incorrect and correct responses had previously occurred, an ability esti-
mate was made, .and the next item administered was selected to maximize
information for this estimated ability. This procedurs continued until
one of the stopping rules was encountered.

The majar controlling program parameters for both the TREELP and
SIMIP were the stepsize and acceptance range values, The stepsize para-
meter controlled how quickly the procedure would move through the item
pool while the acceptance range parameter specified how discrenant items
could be from those desired and still’be administered. The acceptance
range also indirectly determined the number of items from the pool which
were available feor administration. Clearly, the wider was the acceptance
range, the greater was the number of items that could have been chosen
for administration. ‘ e

The TREE1P and SIM1P programs used in this study for determining the
optimal stepsize, acceptance range, item pool size, and item pool distri-
bution were gimilar in that both output the mean and stsndard deviation
of ability estimated for each true theta input. However, they differed
in the manner in which the mean and standard Qeviation were determined.
While the TREBIP pursued all possible paths.through the jitem pool, the
SIMIP followed ofily the path that was the result of the gimulated intor-
action of an examinee with the tailored testing procedure¥ The mean and
standurd deviation from the TREELP were actually expectegd values and square
roots of variance computed from probabilities arising from the one-parameter
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modael and ability estimates arising from the maximum likelihood estimation
technique. The SIMIP program provided a mean and standard deviation of
the set of ability estimates obtained for each of the Us specified.

METHODS

To investigate the optimal stepsize, acceptance range, item pool
size, and item pool shape, nearly all possible combinations of the follow-
iny were input inte the TREEIP and SIM1P. programs for true abilities -3,
-2, -1, 0, 1, 2, and 3. The stepsize values used were .3, .4, .5, .6,
.b93, .8, .9, 1.0, 1.5, 2.0, and 3.0, while acceptance ranges were .1,

.2, .3, .4, and .5. Item pool sizes were 9, 13, 25, 31, 61, 72, 180,

and 181, Item pool shapes investigated were normal, rectangular, bimcdal,
and skewed, with difficulty values constrained between plus and minus
three. Idealized item pools (difficulty values in the above shapes with
spacing dependent on shape and size of item pool) were constructed and
used as input to the programs, as well as actual item pools (test items
calibrated and formed into pools with less constraint on having items
equally spaced along the difficulty scale).

The manner in which item pool size effects were investigated using
simulations was to run the TREE1P and 3IMIP programs on the varijous sized
pocls mentioned above. With the rasulting data, plots and projactions
were made to eastimate the item pool sizes needed for variocus accuracies
of ability estimation.

The comparisons to determine the optimal combination of independent
variables were based upon the mean and standard deviation of twenty-five
simulated administrations of a tailored test to each @ using the SIM1P;
wheére for the TREE1lP program, the comparisons were of the expected value
of U, E(U), and the standard deviation of O, YVar(0). Values of these
dependent variables were compared across program runs using various sized
item pools holding stepsize and acceptance range constant. They were also
compared from runs using various shapes of item pools, holding size of
item pool, stepsize, and acceptance range fixed. Additionally, comparisons
were made of the dependent variables, first varying stepsize with all
other variables fixed, and then varying the value of the acceptance range
while holding all other variables constant. Since the TREE1P program
was considered to yield the most accurate valuyes, i.e. E(Q) and vVari{e)
based upon the propensity distribution, another comparison was deemed
important. Because the SIMIP means and stancdard deviations were subject
to sample variation, they were validated against values of the TREEIP
for various runs on the sixty-on& item pool. Also, the number of estimates
of the true ability, i.e. the number of tailored tests administered to
each simulated exaninee by the SIMIP program was varied. This was done
to check whether an appropriate number of administrations had been used.

RESULTS

The results of this study were to a great extent drayn from tables
which summarized the results of the TREE1P and SIMIP programs. One issue
to be investigated was to determine the distribution of item pool Jiffi-
culty parameters that yielded the least bias and sthndard error of ability
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estimates across the range of ability from -3 to +3. Another important
question was how large an item pool was necessary to accomplish the. goal
of accurate ability estimation. Thirdly, a determination of the pre-
ferred magnitude of the stepsite parameter was desired. The fourth
outcome of this study was to decide upon the approximate value of the
acceptance range program parametar which would provide ability estimates
with the least blas and standard error. These were the primary targets
of the study.

Secondary goals of the study included a comparison of the performance
of actual versus ideal item pools. The contrast of these has been previously
described in the methods section. Another secondary objective was to compare
the results of the TREE1P and SIMIP program:., In .this regard, two concelns
were investigated. One pertained to how closc the SIMP estimates of the
means and standard deviations of ability were to the E(O) and VAR(O) deter-
muned by the TREEIP. The importance of this particular concern related
to how well the SIMIP analyses on larger ite- pools provided reliable data
on the primary questions of this study. It enould be recalled that the
motivation for development of the SIMIP program was to investigate the
research questions of the study on larger item pools than the TREELP program
would realistically accommodate. The second concern subsumed under comparison
of the TREELP and SIMlP programs was to decide whether or not twenty-five
estimates of each ability by the SIMIP was an adequate number. Several
analyses were run of the SIM1P pFOgram on various item pools from which
data had already been obtained from the TREE1P. By running the SIM1P
on these pools and holding all other variables fixed except the number
of test administrations, data were obtained pertaining to the adequacy
of the SIMIP estimates of the means and standard deviations. Another
matter along this same line was investigated with runs of the SIM1P on
some of the larger pools. This was the question of whether or not twenty
items as an upper limit of items administered by the tailcred test was
adequate.

Item Pool Shggg

The TREE1P program (propensity distribution technique) was used to
evaluate the effects of varying the shape of the item pool distribution
on ability estimation. The rectangular item pools were obtained simply
by selecting equally spaced items between +3.0 and ~3.0 inclusive. The
normal item pools were constructed such that the items were equally spaced
in probability. That is, the area between item positions was kept constant
in the range from +3.0 tc -3.0 standard deviation units in the normal
distribution. This procedure for producing the normally distributed
puols has the effect of selecting more items around the difficulty value
of zero and fewer items at the extremes. A similar procedure was used
in selecting the item parameters for the bimodal pools as was used for
sel¢ 2ting the normal pocols. The negative half of the pool was centered
around -.693 and the area under the normal distribution was used to Place
items around this point up to zero and down to -3.0. The same was true
for the positive half of the pool. The reason +.693 were chosen as tha
two modes of the dHimodal distribution was that, prior to the construction
of a bimodal pool, .693 as a stepsize value had appeared promising. There-
fore, after the first item was administered at 0, the stepsize of .693
would move the ability estimate out to one of the more dense regions of

x
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the pool whether the examinee correctly or incoxreeély answered the first

item. The skewed item pool distribution of item parameters was constructed
vid a similar procedure to that for the nermal and bimodal pools. ‘That is, the
items daivided the distribution into equal areas. For the skewed pool,

tables of the Pearson Type III distribution were used. The pool constructed
was positively skewed (skewness = .5), and it chould be noted that in any

table inclucdsd in the report, a skewed distribution always indicates a

positive skew.  However, the results would generalize to negatively skewed

Tl
!

. Results concerning the shape of the item pool distribution may be
aten 10 Tables l-b for differenl combinations of values of the other variables.
dowever, Tables 4 and 6 point out the more general trends of the item distri-
wution study. In Table 6 the comparisons of the normal and rectangular
pools of 25 items is shown for only acceptance ranges of 0.1 and 0.3 when
ralred with stepsizes of 0.5 and 0.7 respectively. These values of acceptance
rarje and stepsize were chosen because they appeared to yield some of the
least bias and least variance gstimates., Specifically, the acceptance
range of 0.1 was chosen to check whether the more dense item parameters
near the middle of the normal distribution would make the use of the smaller
Jugeptance range desirable.

As can be seen from Table 6, the normal distributicn appears to be
ihferior to the rectangular item distribution in almost all cases. Except
for the U.1 acceptance range data at 0.5 and 1.0 ability levels, either
the expected values deviate more from O or the standard deviations are
iarger, Oor both. It i: interesting to noté that even the estimates at
al.ility 0.0 are not as good for the normally distributed pool ag for the
rectangular pool, even though more items are present for estimation of
abaility.

Table 4 shows the expected values and standard deviations from the
TRELIP on normal, bimodal, rectangular, and positively skewed pools.

Bach o these contained sixty-one items. The stepsize was fixed at 0.693,
and the acceptance range was held at 0.30 for all runs. Again the rectan-
yular pool pericrmed better overall than did the other shapes of item
difticulty distributions. For true abilities zero and one, the standard
Jeviation of ability estimates, as well as the bias of the estimates, was
smaliest for analyses using the rectangular pool. At the ability levels

vf two and three, the rectangular pool yielded estimates with less bias

in the expected values but larger standard deviation: than the other shaped
poOls.,

The results obtained from the TREEP would have been the same for
the negative end of the ability continuum when the pools were symmetric.
Therefore, only the positive values of ability were run for the normal,
rectangular and bimedal pools. However, for the skewed pool containing
sixty-one items, the negative ability values of -1, -2, and -3 were run
using the same program parameters as were indicated in Table 4. The results
were as follows. For -1, the E(9) = -1.189 and Sy = 0.836. For -2, the
E(U) = -2.249 and Sg = 0.761, For -3, the E(O) = -2.935 and Sg = 0.577.
Even if one considered this skewed pool as being better suited for ability
levels around minus two to minus one, since it contained more items around
that region, it did not perform better than the rectangular pool.

Overall conclusions about the most preferred iter. distribution were
that the rectangular pool was most apt to yield the least bias and smallest
standard error of ability estimates across the ability scale. One important

‘A
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caution was suggested by some of the results. When setting up an item

poul for use with tajlored testing procedurass {(especially those having

3 comparable parameter to the acceptance range), it is important to look
carefully at the frequency distribution to be assured that no substantial
gaps exist in any acrea of the continuum. Otherwise, onc may expect peor
vstimation of ability at that region on the contgjnuum. In this regard,

vne should view the estimates of true ability 3.0 as understandably limited.
1 as much as the item pools did not have any items beyond difficulty

3.0. For best estimation of ability, the pool should have a dense uni-
form distribution of itemsS around the abilicy level to be estimated.

Item Pool Size

The criteria for judging how large an item pool was needed for the
tailored testing procedure were again the bias and standard error of ability
eatimates. The results of the simulations using both the TREE1P and SIMIP
programs have been condensed, and the general trend has been illustrated
1n Figure 2. The values of the E(Q) and Sg which have been plotted for
rtem pools of size 9, 13, 25, 31, and 61 were obtained from the TREELP.

Each of these pools had a rectangular distribution of item difficulty
paramveters. The 1tem pools witiy 72 and 180 items were actual tailoved
testing item pools. The pool of 72 items consisted of item difficulty
parameters from the calibration of a set of vocabulary items. This pool
was named VCIPL. The pool with 1£0 items was constructed using item diffi-
culty parameters resultanit of calibrations of items covering the cvaluation
techniques portion of an introductory measurement and evaluation course.
This pool was known as ETIPL. The distributions of item difficulty for
VCIPL and ET1PL were graphed in Figure 3 and Figure 4 respectively. The
neans and standard deviations of ability estimates cn the SIMIP yuns on
these latter pools have heen included in the plots of Figure 2. Each analysis
represented in this figure had O set equal to 1.0, the stepsize fixed

at U.693, and-acceptance range equal to 0.7 ).

The top graph of Figure 2 illustrates that as item pool size reaches
vl for this particular set of analyses, the E{0) is equal to 8. The bias
uf the ability estimates is essentially zero. The bottom graph of Figure
. shows that as item pool size increases, the standard error becomes less.
While these plots should be consideregfas rough approximations of the rela-
tionship between item pool size and ability estimate bias and standard
vrror, the i1nlication appears to be that with a uniform distribution of
ttem difficulty, U = 1, and the program parameters eqgual to the valuyes
used here, one could expect very little bias and a standard error of about
U.l with an item pool consisting of around 200 items. More will be presented
on 1tem pool size in the discussion section of this paper.

stepsize

The results of the study of the preferred magnitude of the stepsize
program parameter may be seen in Tables 1, 2, 2 and 7. Tables 1, 2, and
3 give the E{(O) and Sp from TREELP analyses of 0 = 0, 1, 2, and 3 using
item pools of size 9, 13, 25, 31, and 61. Tables 1, 2, and 3 show results
for the rectanqular, normal, and himodal d.<tributions of item difficulty
parameters respectively. Table 7 presents the results of the SIMIP analyses
on the ETIPL item pool for O = -3, -2, -1, 0, 1, 2, and 3. Negative O

li
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vaiues are not shown in Tables 1, 2, and 3 since the results of the TREELP
oh the pools used are the same as for the positive O valuea except for
the change of sign on the E(§)s. This should be expected since the item
pool distributions of item difficult- are symmetric around gzero. The
acceptance rang? for all analyses fo. Tables 1, 2, and' 3 was 0.30. For
the SIMIP analyses of the ET1PL, a substantially larger item pool, a smaller
acceptance range, 0.25, was used as is noted at the bottom of Table 7.
Another variable recorded in Table 7 is the mean number of items adminis-
tered for the 25 tests simulate’ by the SIMIP for each ability level.
The maximum number of items per simulated test was 20 for these SIM1P
analyses., .

In general, results presented in Tables 1, 2, and 3 suggest that
stepsizes between 0.5 and 1.0 give fairly unbiased egtimates. and also
have the smallest standard errors. Larger stepsizes tend L, have a positive
bias and larger standard errors. PFrom several graphs like the ones presented
1n Figure 5, the gtepsize value of 0.693 appears to be the hest overall
compromise value which achieves less bias while holding the standard errxor
down. Figure 5 shows the E(O) and Sg for the 31 item rectangular, normal,
and bimodal pools when © = 1.0 and the acceptance range eqguals C.30.
Due to the cost of running the TREEIP on larger item pools, not all cells
of Tables 1, 2, and 3 for the 61 item rools have been analyzed.

Table 7 of the SIMIP on the ET1PL pool suggests that a gtepsize between
0.4 and 0.7 is probably better for less bias and standard error. It should
be recalled that the SIMIP is subject to sample variation, but in general,
the results seem to suggest that a Stepsize of abou: 0.7 is appropriate.
However, a trend which should pe investigated further is that larger item
pools seem to do better with smaller stepsaizes and vice versa,

Acceptance Range

The results of the acceptance range study are given in Tables 8, 9,
and 10. Table 8 presents the E(G) and Sg for stepsizes 0.5, 0.693, 1.0,
and 1.5; acceptance ranges 0.1, 0.2, 0.3, and 0.4; and ability levels
0.C, 1.0, 2.0, and 3.0 from TREElp analyses. All of the results in Table
8 are based on the 25 item rectangular pool. From Table 8 it can be sean
that in most cages, as thLe acceptance range increacie, the standard devia-
tion decreases. This is a reasonable result since more items are available
for administration with a larger acceptance range. KHowever, there is
also a trend present in the amount of bias in estimate as the acceptance
range- increases, particularly at the higher ability levels and for the larger
stepsizes.

Table 9 ghows the results of the SIMIP on the VCI1PL pool; 25 test
administrations per ability level; 20 item upper limit; stepsize = _693;
and O = -3, -2, -1, 0, 1, 2, ana 3. The mean number of items is also
indicated. These results indicate that an acceptance range of 0.30 is
Probably the best compromise value for minimizing bias and standard error
of ability estimates across the range of 6. Table 10 shows the results
of the SIMIP on the ET1PL pool; 25 test adminirtrations per ability level;
40 item upper limit; stepsize = .693; and 8 » -3, -2, -1, 0, 1, 2. and 3.
Again, the mean number of items is indicated. These results on ET.PL
are somevhat more ambiguous although the extreme Scceptance range values
are clearly inferior to the more mocderate values of .2 to .4. In cases
such as this, one should consider a combination of the density of the



itel pool acroas the range of @ and whether a particnlazfé range shoula
be sstimated amore precisely than others, in order to decide on the best
acceptance range value, Decvisions regarding the best value of program
sarametera cannot be made independent of consida:gtlons such as the size

and shape of the item pool to be uged. .

Se&onda;y Results

Secondary results include the comparison of the performance of actual
versus ideal item pools previously discussed. Table 11 shows this compar-
ison, and overall, the ideal pool did not perform much better than the
ET1PL pool.

Another comparison was of the SIMIP and TREELP programs on the same
pools using the same program parameter values. By looking at Table 4 and
Table °, one may see that the SIMIP 4did a reascnably good job of approxi-
mating the TREEIP results at © = 2 for the himodal and skewed pools.

Also, from Table 5, it can be seen that increasing the number of tests
administered by the SIMIP did not dramatically change the means and standard
deviations. Thereforc, 25 administrations seemad adequate.

Finally, by comparing cells of Tables 7 and 10, one can see that
increasing the maximum number of items administered from 20 to 40 does
not substantially change the means and standard deviations from the SIMIP.
This comparison is not exact because the acceptance range of 0.25 used
for analyses in Table 7 does not precisely equal the value of 0.2 or 0.3
for acceptance range in Table 10. Neither ia the stepsize of 0.7 in Table
7 exactly equal to 0.693: used in Table 10. However, the values seemed close
«nough to make a comparison, and the result of this comparison seemad to
indicate that 20 items as an upper limit was adequate. Note that the mean
number of jtems recorded in both tables illustrated that the procedure
ap-proached the upper limit in the middle range of O

DISCUSSION
TREEL P

A possibl' explanation for the larger standard deviation given by
analyses run on the rectangular pool, at the more extreme values of the
apility continuum was suggested by 3 close look at the development of
the propensity distribution by the TREE1P for the various shaped item
pools.

A property of the TREE1P and the manner in which it developed the
propensity distributions was that the standard deviation actually increased
as more pranches or levels resulted from items administered to more aad
more possible ability estimates. This increase of the standard deviation
of ability estimates stabilized and converged for the smaller item pools
as the paths or branches of the "tree" terminated. For the larger pools
{especially the sixty-one item pools), the standard deviation initially
increased but. as branches were terminated the standard deviation came
down. This pattern of increasing standard deviation of ability estimates
during the early formulation of the propensity distribution was evident
for all shapes of the distributions of items in the pools.

However, the patterns of convergence to the final standard deviationsa
vielded by the TREE1P were different for the various shapes of item pools

13
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at different ability ievels.s Tables 1, 2, and 3 show a general tendency
for the standard deviations of ability s:stimates of the true abjlities

z2ero and aone to be larger tor the novmal and bimodal pools than for the
rectangular pools. But for ability levels two and three, the standarad
deviations of ability estimates wece generally larger for the rectangular
pools than for the normal and bimodal pools. This trend was consistentc
across most of the TREEIP analyses. The explanation proposed was that,
because more items were available for administration to the more extreme
levels of ability (i.e. 2 and 3) when the rectangular pool was used, the
standard deviation of ability estimates was larger since the standard

€rror was more accurately estimated. The standard deviations of the
vstimates from the normal and bimodal pools for these true ability levels
wure rmaller, since paths or branches were often terminated because no
1tems were available within the 2cceptance range of the estimated abilities.
In short, when fewer items were in the pocl around a particular true ability,
there were fewer paths allowed to develop in the propensity distribution

due to the stopping rules. Therefore, the standard deviation of abilivy
uStimates at that particular level was an underestimate. A logical check
for this phenomenon was the prediction that when the acceptance range was
made smaller, the drop in standard deviations for the more extreme ability
levels would be more pronounced with the normal pool than for the rectangular.
This did appear to be the case. The point is that the smaller standard
deviations for ability levels two and three Yielded by the TREE1P when
normal! or bimodal pools were used probably should not be weighted tco
heavily, as the tendency dppears to be somewhat of an artifact of v
procedure. The values obtained for the rectangular pools may well

more representative.

SIMLP

SIMIP was designed to score and administer items in the manner previousiy
Jduscribed based on the rationale that this approach was a reasonable simula-
tion of the behavior of an examinee when interacting with a tailored test.
The pseudo examinee with some specified true ability was Presented an item
of average difficulty from the peool, because, given we have no prior infor-
mation about his ability, the best guess of an item appropriate for the
examinee was one of average difficulty. Scoring of each item using the
examinee's ¥ in the one-parameter formula and then selecting a random
number from a rectangular distribution between zero and one was deemed
a reasonable simulation assuming the one-parameter model was correct.
Clearly, the larger the probability of a correct response was, the greater
the chance was that the random number generated was less than or equal
to the probability specified by the model of a“vorrect response. However,

‘ere was ample provision for the reality that ‘0ccasionally an examinee
with adequate ability to answer an item correctly will still respond incorrectly
and vice versa. While the probability of a correct response was computed
using the examinee's true theta, item.selection procedures used the fixed
stepsize until correct and incorrect reaponses were present, and then
Selected items maximizing information for the egtimated ability. This
approach rounded out the simulation of the interaction between examinee
and tailored test with respect to the SIMIP.

11
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Item Pool Sizge

The methods amployad for the investigation of the effects of item
povl size on the operation of the one-parameter maximum likelihood tailored
testing procedure were similations, but theoretical methods have also been
proposed. Lord {1970) suggested a formula for the number of items required
for a fixed stepsize procedure (selecting items more difficult by the
stepsize when correct responses were given and vice versa). The furmula

3N

N = {1 + R/A) (n - R/24) (2)

where SR 13 the range of item difficulties desired, d 15 the stepsize

and a submultiple of R, and n is the maximum number of items to be admin-
istered. For example, if R were plus three to minus three, d were set

at 2.%, and n were twenty, the formula would give

112 = (1 + 3.0/0.5) (20 - 3.0/(2 X 0.5}). (3)

With this set of values, 119 items would be reguired if the exact item
requested were to be available.

This formula does not directly apply to some tailored testing proce-
Jures whw.ch use a variable rather than & fixed stepsize. Also, most
testing procedures allow administration of slightly discrepant items from
these requested by the procedure (the acceptance range specifies how
discrepant). Procedures using a variable stepsize tend to require more
1tems because, as the procedure converges to an ability estimate, the
stepsize in effect becomes smaller and smaller. Allowing items to be
administered which differ slightly from the requested item compensates
to an extent for the increase ir number of items caused by the variable
stepsize. Another limitation of the formula 1s that several tailored
testing precedvres administer items until a specified precision is
reached instead of using a preset maximum number of items as a stopping
rule. . '
Another theoretical method of estimzting how large an item pool should
be 1S to determine the number of items required to reach a specified
precision of ability estimation, given that equally spaced, perfectly
discriminating items are available., With these ideal or optimal circum-~
stances, the precision of an ability estimate is equal to the difference
between adjacent items. Fouo example, an item pool with seven equally
spaced 1tems from -3.0 to +3.0 would classify examinees into categories
1.0 scale unit apart. The number of item responses required to make the
classification would be

k = logzn (3)

where n i1s the size of the item pool, since 2K is the number of branches
in the tree diagram after k items are administered. By specifying the
precision desired, e, the minimum item pool size can be determined by
the range of ability, R, divided by e, pius one,.

~”~
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The minimum number of items administered to classify all ability levels
in the tailored testing situatign is

k = logzlg-* i), (5)

Some results gbtained by ‘the applicatien of the formulas based on
the theoretical methad for estimating the number of items needed in a
pool, given the precision desired, lave been indicated in Table 12. The
requirements fotr pool size were computed for the range of ability, -3.5
to +3.5, given the desired classification interval size. As has been
poeinted out, these results are for a rectanguiar pool of hypothetical
items with perfect discrimination and zero guessing probabilities. With
these restrictions, the item pool sizes shown must be regarded as lower
limits. The minitum session length indicates the fewest number of items
that would have to be administered in order to classify an ability level
within the capabilities of the item pool. Thest also are based on hypo-
thetically perfect jtems and item pools, and should be considered as lower
limits. The values in the column labelled simulated length are the
number of items required to reach a best estimate using the most likely
response pattern simulated. 'All results in this column are based on
0 = 0.0.

In some cases the simulated session length is less than the minimur
predicted length because of the choice of ability level. Setting the
stepsize equal to 0.693 tends to keep the process near the middle of the
item pool, speeding up convergence for abilities near 0.0. If an ability
cf 3.0 had been used, the session length would have been 6, well over the
minimum Predicted values. Thus, the minimum gsession length refers to
the number of items needed across the ability range, and under specified
circumstances fewer items may be required.

These results using simvulated tests have been compared to actuzl
tailored testing convergence plots and found to be fairly good approxi-
mations (Reckase, 1976). On:2 observation of importance is that, from
convergence plots, it can be seen that giving too many easy items causes
bilas 1n ability estimation. Reckase (1975) has discussed this effect

in detail.

Generalizabilitx

It should be kept in mind that this report focused primarily on program
- parameters and item poql attributes as they interacted with the one-parameter
maximum likelihood tailored testing procedure currently in operation for

this research project. Clearly, the inferences drawn from the results

should generalize to other tailored testing applications using similar
conceptual formulations of operation. In this sense, the results of this
study were intended not as isolated studies of item pool size and shape,
stepsize magnitude, and value of the acceptance range, but rather intended
to generalize to fairly concrete statements about the preferred operation

of a cne-parameter tailored testing procedure., As was expected, item pool
attributes and program parameters interacted to a great extcnt in the deter-
mination of the degree of bias and amount of variance in ability estimation.
The intention in drawing up the numerous tables and figures of this report
was to illuminate trends of interaction amonyg these variables. These trends,

-
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in large part, were the primary thrust of this report. They should be
helpful in applying tailared teating procedures in which some of the
variables, such as item pool attributes, have been fixed by practicality.

In conclusion, this paper was intended as a guide for those setting
up a tailored testing procedure. The paper does not, by any means, exhaust
all the inferences that could be drawn from this set of data. The report
presented here has been an attempt to condense a more elaborate technical
revort which is presently being developed. One point should be made in
Closing. This strategy for investigating bias and standard error was
motivated by the need to determine these values across the ability con-
tinuum, cince our efforts were directed toward developing a criterion-
referenced tailored test. In criterion referenced testing, it is essential
to know the effects of estimate bias and standard error on decisions made
at various points along the ability continuum.
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Table 1
Expected Values and Standard Deviations
from TREEIP on Rectangular Item Pools
Varying Pool Size, Step Size and Ability Level

Ability Level

Pool Size  Step Size 0 1 2 3

E(®) S5, E(®) s B(®) S, EO® sy

. 0.5 -0.000 0.645 0.405 0.603 0.709 0.482 0.877 0.335
9 0.693 -0.001 1.025 0.756¢ 1.113 1.593 1.217 2.388 1.139
1.0 =0.00i 1.155 0.821 °1.213 1.685 1.298 2.548 1.286

1.5 -0.001 1.182 0,934 1.268 1.966 1.439 3.016 1.423

0.5 -0.001 0.765 0.655 0.937 1.577 1.219 2.599 1.201

13 0.693 -9.001 0.976 0Q.733 1.056 1.587 1.217 2.454 1.168
1.0 -0.001 1.187 1.037 1.150 1.995 1.085 2.822 1.005

1.5 -0.006 1.125 0.899 1.249 1.960 1.463 3.04% 1.423

0.25 ~0.001 0.547 0.584 0.809 1.606 1,200 2.783 1.190

0.5 -0.001 0.736 0.857 0.842 1.933 1.000 2.964 0.809

0.6 0.001 0.744 0.896- 0.868 1,986 1,004 2.955 0.788

0.693 -0.013 0.786 0.910 0.892 1.984 0.980 2.925 0.765

25 0.8 -0.013 0.801 0.931 0.93¢4 2.047 1.042 3.045 0.845
0.9 ~0.001 0.845 0.996 0.895 2,061 0.972 2.996 0.784

1.0 =0.001 0.829 0.990 0.901 2.099 1.036 3.135 0.867

1.5 -0.001 0.972 1.109 1.086 2.318 1.221 3.389 1.040

1.7 =-0.001 1.473 1.329 1.417 2.477 1.116 3.143 0.614

2.0 =0.001  1.551 1.389 1.553 2.673. 1.348 3.535 0.846

2.0 -0.001 1.555 1.361 1.741 2.863 1.930 4.248 1.750

6.5 0.004 0.726 0.949 0.788 2.022 0.902 3.018 0.725

31 0.693 -0.003 0.742 0.973 0.826 2.068 0.907 2.997 0.672
1.0 -0.003 0.776 1.009 0.866 2.140 0.995 2.183 0.817

1.5 -0,005 0,925 1.116 1.050~ 2.002 1.388 3.382 1,023

. 0.5 -0.001 0.598 0.989 0.657 2.il6é 0.804 3.133 0.593
61 0.693 =-0.001 0.610 1.008 0.677 2.138 0.805 3.111 0.566
1.0 -0.000 0.641 1.039 0.745 2,229 0.915 3.289 0.689

1.5 ‘ > :

Note. Acceptance Range = 0.30 \
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Table 2 )
Expectr.d Values and Standard Deviations
from TREE1P on Normal Item Pcools
Varying Pool Size, Step Size and Ability Level

Abilitg;;avel

4y

Pool Size Step Size 0 . ) 2 3
E (9) Sq E(9) So E(0O) Sg E(9) Sq
0.5 -0.001 1.018 0.848 0.847 1.318 0.491 1.463 0.226
9 0.A93 -0.001 1.098 0.960 0.966 1.601 0.655 1.898 0.282
1.0 -0.001 1.269 0.880 1.084 1.641 0.632 1.877 0.334
1.5 0.000 . 1.500 0.693 1.330 1.142 0.972 1.358 0.638
0.5 -0.001 1.028 1.062 ©0.866 1.697 0.514 1.922 0.237
13 0.693 -0.001 1.101 1.002 0.942 1.648 D.628 1.932 0.358
1.0 -0.000 1.273 1,146 1.020 1.760 0.548 1.946 0.231
1.5 -0.001 1,439 1.272 1.282 2.219 1.188 3.031 1.258
0.25 -0.001 0.847 1.110 0.858 1.969 0.576 2.210 0.408
0.5 -0.001 0.891 1.184 0.837 2.016 0.572 2.359 0.278
“ 0.6 -C.001 0.980 1.203 0.847 1.965 (.528 2.263 0.266
0.693 -0.000 0.956 1.174 0.811 1,871 0.482 2.079 0.227
25 0.8 -0.001 1.009 1.234 0.871 2.004 0.539 2.292 0.253
0.9 -0.001 1.052 1.290 0.964 2,223 0.784 2.818 0.658
1.0 -0.001  1.055 1.285 0.979 2.263 0.858 2.949 0.820
1.5 -0.001 1.327 1.384 1.186 2.394 1.070 3.167 1.114
1.7 -0.001 1.536 1.521 1.363 2.549 0.968 3.047 0.628
2.0 -0.001 1,738 1.653 1.600 2.845 1.248 3.492 0.884
2.0 -0.001 1.792 1.627 1.749 2.928 1.814 4.045 1.883
0.5 -0.000 0.869 1.218 0.805 2.046 0.557 2.385 0.277
31 0.693 -0.001 0.964' 1.268 0.880 2,192 0.734 2.778 0.607
1.0 -0.001 1,018 1.323 0.951 2.300 0.823 2.969 0,787
1.5 -0.001 1.301 1.404 1.155 2.410 1.043 3.176 1.092
61 -0.000 0.866 1.25 0.873 2.267 0.693 2.840 0.543

(4

- O
Vi O O uin
O
W

Note. Acceptance Range ®= (.30
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) Table 3
Expected Values and Standard Deviations
from TREE!P on Bimodal Item Pools
Varying Pool size, Step Sizec and Ability Level

Ability Level

Pool Size Step Size 0 1 2 3 -
. E(8) S, E(9) S, E(0) Sq E(0) Sq
0.5 -0.004 1.020 0.231 0.443 1.312 0.495 1.473 0.245
9 0.693 -0.004 1.095 0.951 0.968 1.601 0.666 1.903 0.383
1.0 -0.001 1.264 1.036 1.042 1.639 0.628 1.876 0.331
1.5 -0.001 1.442 1.216 1.326 2.187 1.2%2 3.027 1l1.29
0.5 -0.001 1.006 1.00%9 0.903 1.671 0.579 1.917 0.275
13 0.693 -0.001 1.104 1.001 ©.945 1.647 0.630 1.932 0.358
1.0 -0.000 1.267 1.143 1.011 1.75¢ 0.551 1.946 0.238
1.5 -0.000 1.436 1.274 1.276 2.217 1.181 3.029 1.252
0.25 -0.000 0.920 1.102 0.855~ 2.001 0.623 2.264 0.421
0.5 -0.001 0.870 1.152 0.867 2.024 0.594 2.373 0.278
0.6 -0.001 0.951 1.173 0.875 1.976 0.536 2.271 0.242
0.693 -0.001 0.964 1.207 0.933 2,174 0.768 2.774 0.612
25 C.8 -0.001 0.953 1.183 0.887 2.020 0."89 2.335 0.272
0.9 -0.002 1.025 1.260 ©0.994 2.246 0.780 2.833 0.631
1.0 -0.001 1.017 1.257 1.002 2.280 0.860 2.969 0.791
1.5 ~-0.001 1.294 1.350 1.192 2.396 1.064 3.176 1.091
1.7 0.002 1.491 1.483 1.362 2.543 0.9%9 3.047 0.612
2.0 -0.000 1.717 1.609 1,592 2,831 1.235 3.485 0.871
3.0 -0.001 1.761 1.601 1.763 2.953 1.803 4.070 1.857
0.5 -0.000 0.796 1.145 0.816 2.060 0.621 2.476 0.406
31 0.€93 -0.000 0.924 1.229 0.912 2.218 0.741 2.814 0.585
1.0 -0.000 0.957 1.262 0,95 2.298 0,832 3.0064 0.758
1.5 -0.002 0.968 1.284 1.049 2.446 1.080 3.338 1.015

. 0.006 0.726

-0.000 0.857 1.245 0.876 2.281 0.688 2.852 0.52%

6l
a 0.033 0.867
0.185 1l.128

L]
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Note. Acceptance Range = 0,30




Table 4
Expected Values and Standard Deviaticn;
from TREE1P on,Various Shaped Item Pools

U

Ability Level

fool Shape 0 1 2 3

E () Sq E(8) Sq E (8) Se E(O) Sg
normal -0.000 0.866 1.256 0.873 2.267 0.693 2.840 0.543
bimodal -0.000 0.857 1.245, 0.876 2.281 0.688 2.852 0.525
rectangular -0.001 0.610 1.008  0.677 2.138 0.805 3.111 0.566
skewed 0.040 0.815 1.282 0.858 2.257 0.670 2.801 0.561

Note. - All runs were on pools with 61 items with the stepsize and acceptance range
program parameters set at 0.693 and 0.30 respectively.
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Table 5
Means and Btlndafd Deviations
from SIMIP on a Bimodal and
Skewed Item Pool Varying
Nuber of Test Mministrations

Shape of Pool

Nunber of Tests

d
Mministerea  Bimodal _ Skewe
xe s a Xe Se
25 - 2.207 0.627 2.193 0.622
50 2.242 0.634 2,225 0.627
75 2.262 0.645 2.216 0.603

Note. All runs made with 20 item upper limit, stepsize =
.693, and &cceptance range = 0.30. The true

ability was set at 2.0. Both the pools had 61

;tnu. . ;_)3
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Table 6
Comfarison of TREELP Results from
25 Item Rectangular and Normal Item Distributions

Ability Level

Acceptance Ster Distribution

ucz-

Range Size Shape 0.0 0.5 1.0 2.0 3.0
E(0) SQ E(9) Sg E(0) SG E(9) So E(Q) So
G.1 0.5 k -0.001 0.918 0.470 0.927 0.944 0,943 1.893 0.968 2.764 0,884
N -0.009 0.951 0.522 0.904 0.980 0.762 1.468 0.426 1,555 0.251
N -0.000 0.959 0.623 0.922 1.169 0.821 1.877 0.491 2.093 0.231
24
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Table ?
Moans and Standard Deviations
from SIMIP on ETIPL Item Pool
Varying Sttpli:f’,

Ability Lavel ©

Stepsize -3 -2 -1 0 1 2 3
ié -2.886 -2.145 -0.992 -G.050 1.135 1,991 3.331
.1 So 0.715 0.728 0.486 0.534 0.502 0.627 0.788
Mni* 13,04 15.88 19,24 20.00 20,00 19.84 18.40
Xg =2.779  -2.230 -1.132 ©0.129  0.952  2.009 2.972
.2 ) 0.491 0.681 0.550 0.461 0.374 0.515 ¢.857
Mniv* 12.24 13.96 19.68 20.00 20,00 19.76 18,24
§6 =3.157 -2.139 -1,134 0.064 1.018 2.055 3.213
.3 Sy 0.652 0.645 0.800 0.503 0.353 0.516 0.844
Mni® 10.04 14.48 i8.56 20.00 i% 92 19.56 16.08
Xg -3.168  -2.250 . .052. 0.001  1.070  1.987  2.910
.4 So 0.611 0.782 J.547 0.518 0.444 0.531 0.554
Mni® 9.56 17.04 19.24 20.00 20,00 19.48 18.12
ié -2.762 -2.09% -1.122 -0.070 1.136 2.076 3.053
Mnie 9.20 14.72. 18.12 20.00  20.00 19.40 16,28
Note: All runs made with 25 adrinistrations per ability level, 20 item upper

limit, and acceptance = 25,

’ \?Hmi = mean number of items administered.
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Means and Standard Deviations
from SINIP on BT1PL Item Pool
Varying Stepsize

Ability Level

Stepsize -3 -2 -1 0 1l 2 3
ié -3,061 -2.175 -1.026 -0.065 1.029 1.950 2.913
7 s 0.561 0.460 0.573 0.469 0.516 0.696 0.533

Mni* 7.80 13.12 18.92 20.00 20.00 19.16 15.92

§§ -2.134  -2,271 -1.241 0.094 0.959 2.029 3.310
So 0.499 0.790 0.898 0.419 0.380 0.531 0.799
MRi*  5.92 11.40 16.96 20.00 19.84 19.20 13.28

X, -3.73%  -2.501 -1.389 0.101 1.035 2.437 3.239
1.5 Sh 0.876 0.961 0.910 0.598 0.792 1.118 1.010
Mni*  5.32 10.80 18.04 20.00 19.32 16.16 12.72
Eg -3.683 -2,972 -1.482 -0.329 1.100 2.032 3.631
2.0 Sq 0.514 1.044 1.194 1.175 0.450 0.913 1.345
Mni*  4.24 B.76 16.56 18.56 19.96 18.48 13.36
ié -4.530 -2.942 -1.751 -~0.042 1.230 2.511 4.471
3.0 So 1.591 1.494 1.916 0.465 1.117 1.556 1.519
Mni*  5.02 10.68 16.52 20.00 19.28 17.04 8.60

Ote. All runs made with 25 administrations per ability level, 20 item upper limit,
‘nd acceptance range = 25,

*Mni = mean number of items administered

2%
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Table 8

Expected Values and Standard Deviations
from TREE1P on 25 Item Rectangular Pool
by Step Size and Acceptance Range

Step Size
Ability  Acceptance
Level Range 0.5 0.693 1.0 1.5

E(&) Sq E () Sg E(9) 86 E(9) Sq

.1 ~0.00 0.92 -0.00 0.84 -0.00 1,04 -0.01 1.07
.2 -0.00 0.81 -0.02 1.01 -0.00 0.88 -0.00 1.06
0.0 .3 -0.00 0.7¢ -0.01 0.79 -0.00 0.83 -0.00 0.97
4 -0.00 0.76 -0.01 0.78 -0.00 0.8l -0.00 0.93
.1 0.94 0.94 0.55 0.80 1.08 1,06 0.89 1.23
.2 0.89 0.87 1.00 1.04 1.00 0.94 0.90 1.22
1.0 .3 0.86 0.84 0.91 0.89 0.99 0.90 1.1l 1.09
.4 0.9¢4 0.81 0.3 0.83 1.00 0.89 1.10 1.07
-1 1.89 0.97 0.97 0.66 2.09 1.03 1.99 1.45
.2 1.92 0.99 1.88 0.97 2.08 1.04 2,00 1.45
2.0 <3 1.93 1.00 1.98 0.93 2.10  1.04 2.32 1.22
.4 2.01 0.92 2.03 0.91 2.12  1.02 2.33 1.21
.1 2.76 0.88 1.21 0.46 2.93 0.93 3.09 1.39
-2 2.89 0.85 2.74 0.89 3.08 0.91 3.10 11.39
3.0 +3 2.96 0.81 2.92 0.76 3.14 0.87 3.39 1.04
.4 3.00 0.74 2.97  0.72 3.16 0.84 3.42 1.01
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Table 9

Means and Standard Deviations

from SIMIP on VC1PL Item Pool
Varying Acceptance Range

Ability Level

Acceptance

Range -3 -2 -1 (9] 1 2 3
ié -1.938  -1.713  -0.994 -0.491 1.10! 1.873 2.913
1 sy 0.430 0.794 0.573 0.810 0.976 0.676 0.447
Mni*  3.64 5.56 6.84 8.52 11.12 9.72 6.24
Eg -2.747  -2Z.133  -1.193 -0.152 1.208 2.268 2.889
2 8¢ 0.790 0.520 0.779 0.544 0.739 0.686 0.540
MRi*  6.96 8.868 12.56 14.44 15.44 10.56 7.20
ié -2.955  -2.085 -1.311 -0.021 1.026 2.229 3.10%
3 8y 0.823 0.555 0.943 0.385 0.578 0.581 0.510
MRi*  7.00 10.00 11.24 16.96 17.24 12.96 7.68
ié =3.171 -2.404 -1.346 -0.007 0.869 2.234 2.950
4 Sy G.690 0.538 0.681 G.344 0.399 0.775 0.579
MRi*  7.08 8.08 14.60 18.44 19.72 14.64 9.64
ié -3.157 -2.242 -1.051 0.160 0.941 2.340 3.117
.5 sg 0.606 0.791 0.619 0.755 0.546 0.780 0.497
Mni* 8.16 11.4 17.04 18.64 19.28 14.32 9.48
Note. All runs made with 25 administrations per ability level, 20 item

upper limit, and stepsize = _§93.
**Hni = mean number of items administered
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Table l0

Means and Standard Deviations

from SYMIP on ET1PL Item Pool
Varying Acceptance Range

Ability Level

limit, and stepaizé = ,693. \
*Mni = mean number of items administered ¢

34

- Acceptance -3 -2 -1 0 1 2 3
Range
ié ~2.528 -2,200 -1.174 -0.111 0.974 2.001 3.299
1 sg 0.55%9 0.667 0.700 0.569 0.903 0.471 0.781
MRi* 6.64 9.24 17.16 26 .60 27.80 16.44 11.16
ié -2.989  -2.159 -1.144 -0.0l6 0.926 2.152 3.451
2 s8¢ 0.491 0.559 0.731 0.332 0.362 0.464 0.765
MRi*  7.20 14.52 22.40 31.60 33.60 22.36 13.40
X -3.103  -2.475  -1.162  0.003  1.016  2.161  3.024
3 8§ 0.57¢ 0.594 0.630 0.239 0.40Y 0.410 0.747
MRi* 7.60 12.40 27.96 36.72 37.88 25.32  18.16
ié -3.064 -2.359 -1.121 -0.094 1.043 2.073 3.054
4 sg 0.615 0.815 0.582 0.261 0.316 0.336 0.520
MRi* 10.20 18.00 31.40 39.00 39.36 31.52 20.12
ié -3.378 -2.465 -1.088 0.031 0.993 1.920 3.195
.5 s 0.716 0.715 0.510 0.394 0.356 0.389 0.584
uli* 10.24 18.48 35.08 39.80 °  39.48 35.12 20.76
Note. All runs made with 25 administrations per ability level, 40 item upper
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Table 11
Means and Standard Deviations from
SIMIP on ET1PL Item P20l and Comparable
Ideal Item Pool

Ability Level

-3 -2 -1 0 1 2 3
ET1PL fe -3.061 -2,175 -1.026 -0.065 1.029 1.950 2.913
Pool Sy 0.561 0.460 0.573 0.469 0.516 0.69 0.533
Ideal ie -3.036 -2.404 -1,037 -0.017 1.148 - 2.222 3.070
Pool S, 0.441 0.703  0.652 0.462 0.787 0.718 0.460

Note. All runs made with 25 administrations per ability level, 20 item upper
limit, stepsize = 0.70, and acceptance range = 0.25.
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Table 12
Minimum Itea Pool Requirements
for a Rectangular Idealized Pool Given
Classification Interval and Ability Range

Ability Classification Pool Minimum Simulated
Range Interval Size Size Session Leagth Length*
(-3.5, 3.5) 0.5 15 3.9 2
(-3.5, 3.5) 0.25 29 4.86 4
(=3.5, 3.5) 0.125 55 5.8 8
(-3.5, 3.5) 0.0625 113 6.8 8
{-3.5, 3.5) 0.03125 225 7.8 7

*Note. Number of iteme adminiatered to closest approximation of 9
value within classification interval.

32
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3 \P ig'ura 1

Procedural Operation of TREELP
on a Nine Item Pool with
Stepsize = 1.0 and Acceptance Range = 0,3

Item - Probability Estimate Probability Estimate
Parameters of Response (Item Selected) of Response (Item Selected)

3.00

2,00
2.25 — (2.25)

2
1.50
1.00 +

0.75%

(0.75) “=—= .68 0.375
‘:‘()ﬁ// - ( 3 )
* -0.375

0.00 O-SO
- \‘1»00 + 0.68 - ( * )
-0.75% (~C.75)
- 0‘3
-1.50 <
‘2.00
-2.25 (=2.25)
'3#00
E(9) 0.0 ‘ 0.0
So 1.0 1.1

Note. The * indicates that nc item was available in the pool within + the

acceptance range,

-



E(0)

1.3

1.2

1.1

1.0

0.9

0.7

1.2

1.1

1.0

0.9

0.8

0.7

=32~

Figure 2
Relationship Between Item Pqol Size
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Figure 5

Relationship Between Stepsize
and the E(08) and S8
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