
BD 177 020

TITLE

' INSTITUTION

SPONS AGENCY
PUB DATE
GRANT
NOTE

EBBS PRICE
DESCdIPTORS

DOCUMENT RISMME

SE 829 188

-PDP-P Introductory Minicomputer Laboratory Manual.
Digital Systeme Education Committee Instquctionai..
Tools Task 'Force.
Pittsburgh Univ., Pa. Dept. of Electric
Engineering.
National Science Foundation, Washington, f.C.
76
NSF-GZ-29S7
117p.

MP01/PC05 Plus Postwe.
Coaputer Based Lataatories; Coaputer Programs;
eompiers; *Cosputer Science Education; *Digital
Computers; *Engineering Education; Nigher Education;
*Independent Study; Instruction; Instructional
Materials; Manuals; Programed Materials

ABSTRACT
This is a self-study manual designed tor freshman or

sophomore engineering students who have interest in the
organizational and operational concepts of the digital compuver, but
little or no experience with such computers. The manual gives an

introduction to a general purpose minicomputer, Digital Einimants
Corporation's PDP-8. (RK)

4**************
Reproductions supplied by PDES are the best thit can be made

from the original document.

S DIPISSITAMENT OP PSALM
1104/CATIOSI I P41.1%111
NATIONAL OISTITUTS OP

IDUCATPON

THIS DOCUMENT HAS PEEN REPRO-
DUCED EXACTLY AS RECEIVED PROM
THE PERSON OR ORGANI ZA Toon ORIGIN.
AT ING IT POINTS OF VIEW OP OPINIONS
STATED DO MOT NECESSARILY REPRE-
SEW Of. R IC lAL NATIoivAl INSTITUTE Of
Emir. At IOTA POSiToON OR POLICY

"PERMISSION TO REPRODUCE THIS a
MATERIAL HAS BEEN GRANTED BY !

Mast L. Charics
NSF

z

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERICL"

IT-01

PDP-8 INTRODUCTORY
MINICOMPUTER LABORATORY

MANUAL
ELECTRICAL ENGINEERING DEPARTMENT

UNIVERSITY OF PITTSBURGH
PITTSBURGH

PENNSYLVANIA

DIGITAL SYSTEMS EDUCATION COMMITTEE

INSTRUCTIONAL TOOLS TASK FORCE

DISE is a project supported by the National Science Fomdation

Grant No. GZ-2997

CoPyright © 1976 by The University of Pittsburgh
No part of this text may be reproduced in any way for the purpose

of profit.

41414.

DISE PROJECT

The DISE (Rigital 5ystems Education) Project is sponsored by Grant #GZ-2997 from the National Science Foun-

dation. The nucleus of the project is the DIST Advisory Committee, which is an inter-university, inter-isdustry

working gruup with the specific charter of developing, coordinating the development of, and distributing educa-

tional/instructional materials in the digital systems area.

The specific goals of Ow pr are: to assess Digital Systems Education, both to determine the types of

MIkliiircurricula, course contents, lab struc es, et.c., in present programs and to determine how present programs are

meeting the needs of industry and the students; to revtew existing educational/instructiona4 materials in this

area; to develop and/or eoordinate the development of new materials; to provide a industry/university forum to

foster the exchange of new technology; and to obtain widespread dissemination and use of newly developed or

existing materials-

Project Structure

Advisor_y_Committee. It is the responsibility of this group to determine the areas in which the educational/

instructional materials will be solicited and developed and to act as a review board for proposed projects and

completed materials. The committee will consist of between 15 and 20 members with the academic, industrial, and

professional societies sectors represented. The present members of this committee are:

Dr. Wayne Black Dr. Glen Langdon

Charles T. Main, Inc. IBM Research

Professor Taylor Booth Professor Arthur Co.

University of Connecticut Princeton Univerity

Professor Thomas Brubaker Mr. F:ancis Lynch

Colorado State University National Semicondoctor Corporation

Professor James T. Cain Professor Larry McNamee

University of Pittsburgh MCLA

Professor Yaohan Chu Professor T.W. Sze

University of Maryland University of Pittsburgh

Professor Ben Coates Professor B.C. Torng

Purdue University Cornell University

Professor Ronald C. Hoelzeman Professor Raymond Voith

University of Pittsburgh University of Teledo

Task Force Committees (Project Groups). These committees or groups represent the "manufacturing" division
of DISE and constitute the working groups of people developing materials for dissemination. There are presently

five project groups, although new groups will be formed due to changes in technology, demand, or interest levels.

For further information, contact:

DISE
Electrical Engineering Department

University of Pittsburgh
Pittsburgh, Pennsylvania 15)61

PREPACK

This 'mutual is designed for the freshmen or sophomore level engineering

student .who has no knowledge of 4 computer system. It is to serve as anjin-

troductiO'n to a Digital System (a general purpose minicomputer, Digital Egm4-

sent Corporation's PDP-S) from a programming or user's viewpoint. The intent

of this manual is to present organizational and operational concepts of the.

digital computer to the student'who has the interest in the subject, but little

or no experience. This manual is,self study 1, nature, and when vied with the

PDP-8, should allow the student to, on his own, master the operation of the

computer au well as several basic digital system architecture concepts.

The solution to each exercise is given after each problem definition with

the intent of demonstrating thi subject material. There are also several

questions in each chapter which the reader is asked to solve.. The solution

will usually follow directly from the section or exercise preceding the ques-

tion(s). A general knowledge of binary and octal number systems will be help-

ful to the reader. However, there is an appendix with sufficient background

.information on these number systems for the reader to handle this booklet.

V.

TABLE OF CONTIMTS

Preface

Chapter 1, Front Panel

Chapter 2, Memory

Chapter 3, Instructions

Chapter 4, Indirect Addressing

Chapter 5, Microinstructions

Chapter 6, Input/Output

Chapter 7, Assembler

Chapter 8, Overview

Appendix, Binary-Octal-Decimal Numbers

6

1

2

7

13

33

49

70

79

102

103

*

CHAPTER 1

Frant Panel

In this first section, the reader will sit down and perform some simple

operations on the PDP-S/I computer, with the objectives of familiarisation

with the controls on the front panel, and what one can do from the panel.

In the lower left-hamd corner of the panel is a key-type power switch.

(On the PDP-S/S the power 'key slot is on tha lower right, and the panel lodk

key slot is on the lower left.) Push the key in slightLy and turn to the right

to the "power" position. The computer is ready to use.

The first exercise will demonstrate how to manually load information into

specific locations in the memory of the computer. The PDF-0 has 4,096 (10212)

"slots" called words in its memory. The memory is the place where the cosputer

storea or remembers information mitered bi the programer, or calculated by the

machine. The memory is called "maim access"; any location is just as easily

accessed as another. Information in the PDP-S is organised into words of 12

binary digits, or "12 bits", which the computer interprets as instructions or as

data to be operated on.
gem*

The twelve switches, beginning with the seventh switch from the left, are

called the SWITCH REGISTER (Figure 1.1). The switch register is used to manually

enter information into the machine. Moo that each of the twelve switches of the

switch register correspond to a particular binary digit in the display on the

panel labeled the PrOGRAM.'40UNTER, MEMORY ADDRESS, MEMORY SUFFER and ACCUMULATOR.

The nineteenth through twenty-sixth switches are for same general functions.

These switches and displays will be presented as the reader progresses.

EXERCISE 1.1 .

Load five binary numbers into five consecutive locations in the computer

memory; then examine these locations and verify that thkse numbers have been

3

stored. The five binary numbers are:

000

000

000

000

111

000

000

000

111

111

000

000

111

111

111

001

111

111

Ill

111

Procedure: The programmer must first "tall" the computer where store the

first number. Suppose the location for the first number will be 003 000 000.

Set the SWITCH REGISTER to this value; the "up" position of a awit4 is a '0'

and "down" is a '1' (On PDP-8/S switch register up me 1, down gm Then, to

tell the computer this is the address in memory you are interested in, press the

LOAD ADD switeh and release. °Merv* that the setting of the switch registet is

now shown in the display labeled PROGRAM COUNTER. (An "on" light is a '1' and

an "off" light is a zero.) The program cOunter is a circuit which the oompUter

uses to keep track for itself where in memory it is to "find" something to do

next. But the computer has still done nothing to location 001 000 000 000. To

place the first of the five numbers in this location, set the switch register

now to 000 000 000 001, and lift DU (deposit) switch to operate. The location

in memory which is numbered 001 000 000 000 now holds dn it the number

000 000 000 001. The programmer has a visual check of this fact by the displays

on the panel Labeled MEMORY ADDRESS and MEMORY BUFFER.

Memory Address shows the address of a location in memory and Memory Buffer

shows what is =contained in that particular memory location. Note that after

lifting DEP,'the Memorz Address reads 001 000 000 000 and Memory Buffer reads

000 000 000 001. Also note that now the PROGRAM COUNTER reads 001 000 000 001;

it has automatically incremented itself by one, to indicate the next consecutive

memory location address. The programmer can now deposit the next number without

41.

4

loading the next consecutive address. Therefore, set the Owitch Register to

000 000 000 111 and lift DEP. Repeat this procedure for the next three numbers,

observing that the Memory Buffer and Memory Address displays will verify the

deposit operations.

'Ante that the program counter still incremented itself again after the

fifth deposit operation.

Now, to go back and check these five locationi, first, "tell" the computer

the first address you are interested in (i.e., 001 000 000 000). Set the switch

register to 001 000 000 000 and press LOAD ADD. To check the contents of this

location, press and release the ErAM (examine switch). The lUmoty Address dis-

play will read 001 000 000 000 and the Memory Buffer will read 000 000 000 001.

The program counter has again incremented itself to 001 000 000 001, and the

next consecutive memory location can be displayed by pressing EXAM again.

Examine the next three locations in the same way.

Note that pressing EXAM does not affect any memory location contents; it

merely lets the programmer "lime into memory.

Summary: This exercise has presented a method for the programmer to load in-

formation into any memory location and to check and sodify the contents, if

necessary.

Panel Lock

Data Field

Instruction Field

S e Inst.

Single Stop

Stop

Continue

ExaminefltJJjJ Deposit

Switch Load Address

Register
I Start,

Figure 1.1

5

EXERCISE 1.2

Run a sample program to clear;2008 (12810) consecutive memory locations

beginning with location 001 000 000 000. It is suggested that Exercise 1.1
*

be completed before this exercise. Because this exerciae is meant to merely

familiarize you with the controls of the computer, we postpone until later the

exilanation of why this particular series of ones and zeroes accomplishes what

we say it does. For now just take it on faith.

Memory Location Contents

000 000 101 000 111 110 000 000

000 000 101 001 011 100 101 111

000 000 101 010 010 000 101 111

000 000 101 011 010 000 101 110

000 000 101 100 101 000 101 001

000 000 101 101 111 100 000 010

000 000 101 110 111 110 000 000

000 WO 101 111 001 000 000 000

Froce.dure: Deposit these instructions into the given locations using the pro-

cedure In Exercise 1.1. Note that instructions are actually coded in binary

numbers. Also use the procedure from Exercise 1.1 to check that the instruc-

tions were loadqd correctly. To run the program, set the starting address, i.e.

000 000 101 000 into the Switch Register, press LOAD ADD, and tell the com-

puter to begin execution of the program by pressing START. The lights on the

display will go out and stop at some different setting. If the memory buffer

display reads III 100 000 0109 you know the program has stopped. This instruc-

tion is read by the machine as "halt execution." (In the FDF-S/S the memory
4

buffer should read 000 000 000 000, and the memory address should be 56.)

110

ID

ta

IS

Next examine the locations from 001 000 000 000 to 001 001 111 111 (10008

to 1177 8). Thly should all read 000 000 000 000.

Summer's: Exercise 1.2 illustrates how to execute.a program which is stored

in memory; and again, to check results of the program operation.

QUESTION 1.1

How would you eanually clear memory locations by using the panel instead

of using a stored program to do it? (Hint: Exercise 1.1).

ANSWER TO QUESTION 1.1

First, set the switch register to the address of the desired memory loca-

tion. Then press LOAD ADD. Next, sat the switch register to all zeros

(000 boo 000 00)) and press the DEP switch. This procedure deposits a word Of

all zeros into the desired memory location, i.e., that location has been

"cleared." To clear successive Emory locations, load the address of the first

location to be clerred, deposit zeroes in it, and continue to press the DEP

switch. Each "deposit" will clear the next successive memory location, because

the comiuter increments thevrogram counter after each deposit; the computer is

then pointing to the next successive location.

t 1)

7

CHAPTER 2

Memory

Chapter 1 introduced the memory of the PEP-8. The 4,09610 words of

memory are in a structure called MACIETIC CORI mum. Ile core is composed

of an array of smell magnetic "donuts" inierlinked by a series of criss-crossing

wires. A logical '0' or a logical '1' wiil be set on a particular "donut" de-

pending on which direction it is magnetiaea by the current passing through it.

A 12 bit word is set in memory by magnetizing a group of 12 "donuts" in memory.

The 4,096 word memory is thus composed of 12 x 4,096 m 49,152 magnetic "donuts."

To make it easier to handle the words in memory, the 4,096 words are sub-

divided into PAGES. Each page holds a set number af words just as a page in a

book. In the PDP-S, there are 3210 pages, each containing 128,0 words. There

is actually no physical barrier between the pages, but just as in a page in a

book, the machine "looks" at one page in t a time. The idea of accessing

different pages by direct and indirect addressing technicries will be covered in

later sections.

0

6

0

A, digital computer operates .on information stored in its memory by means of -;
t:

k

a section called the Arithmetic Unit. The most important part of the arithmetic ..-:-

unit of the PDP-S iska 12 bit register called the ACCUMULATOR. A register is a

4110

temporary storage area of data obtained from mammary where operations of the

arithmetic unit are performed. The accumulator is connected to the memory. One

can think of the accumulator as a "scratch pad"; it can retrieve information

held In memory, perform operations on it, and return the result.of these opera-

tions to memory. The programmer can "see" the cont ts of the accumulator by

means of the display on the front panel labeled ACC 10. TOR. To reilize how

the accumulator is utilized during a program, run the follollikezercise on the 40

COnputer.

a

0

8

EICRIECISE 2.1

Have the computer move the five numbers in locations 010 000 000 000 to

010 000 000 100 (20008 to 20048), using the accumulator, into the locations

000 000 101 000 to 000 000 101 100 (50 to 54).

Procedure: First, load the five numbers

from Vicereine 1.1.

Location

into the

101

a

locations given below, using

Contents

the techniques

Memory

010 000 000 000 (20008)
Nbb

101 101 101 (5555)

010 000 0001001 (20018) 010 010 010 010 (2222
8
)

010 000 000 010 (20028)
001 mil 01 ool (1111 8)

olo 000 000 011 (2003
8
) 000 000 000 000 (0000)

010 000 000 100 (20048) 110 101 110 101 (65655)

The binary code for the program to do this exercise is given below. Using

the procedure in exercise 1.2, load the contents into the corresponding loca-
,

40 tions:

Memory Location Contents

000 100 000 000 (0400
8
) 111 011 000 000 (7300)

000 loo 000 ool (0401) 001 ow am 100 (1214
8
)

000 100 000 g10 (0402) oil olb ool 101 (3215)

000 100 000 011 (0403) ool 110 001 no (1616)

000

000

000

loo 000 100 (0404
8
) 111 100 000 010

loo 000 101 (0405) 011 110 001 111

100 000 110 (0406
8
) 010 010 001 110

100 000 111 (1047
8
) 010 010 001 111

100 001 000 (0410) 010 010 001 101

(7402)

(3617
8
)

(2216
8
)

(22
.1

7
8
)

(2215)

'Locatioii Contents

9.

000 100 001 001 (0411 8) 101 010 000 011 (520
8
)

000'100 001 010 (0412
e
) 111 100 000 010 (74028)

000 100 cm 011 (0413
e
) 101 010 001 010 (52128)

000 loo ool 100 (0148) 111 111 111 011 (77738)

000 100 001 101 (04158), 000 000 000 000 (0000
8
)

000 100 001 110 (0416)
e

010 000 000 000 (20008)

000 100 001 111 (0417) 000 000 101 000.(00508)

Read pages 12 and 13 before running the program.

Note: The numbers in the parentheses above are much easier to read plan the

corresponding bilary strings. The four digit nuMbers in perenthesei.are the

octal representations of the binary striates before.them. Tbe 12 binary Agit*

of a word are arranged in four groups, each group containing three binary

digits. Each of these four groups of binary digits can be converted into their

equivalent octal number. (Also see appendix.)

EXAMPLE 2.1

111 001 010 101

(1x4)+(0x2)+(lx1) m5

(0x4)+(1x2)+(0x1) -2
(0x4)4(0x2)+(lx1) ml

(1x4).4-(1x2)+(lx1)

then, 111 001 010 101

110 100 000 011 6403
8

6 4 0 3

-7

m7125
8

EXAMPLE 2.2

a

0

a

0

411

MEM= 2.1
40 What would be the octal representation of the folLowing binary sulkers?

001 010 011 100

011 101 110 000 f

000 000 111 010

110 101 111 001
1"-

6410 001 011 111

10

QUESTION 2.2
t

octal numbers?What would be the binary representation of the following

6210
4,

5114

1062

0047

0327

With some practice, the reader ahould find that this octal

is easier to handle rather than the binary strings. (Remember,

the computer still only understands the binary numbers.)

representation
(--

however, that

Check that the five numbers were properly bolded into locations 20008 to

2004
8,

and also check that the program is loaded correctly. Briefly, the prom.

gram takes the first of the,five numbers, "moves" it to the accumulator, finds

the address wtere it is to be deposited in nemory, andZQh dtioait, it in the

savory location. The program then "erases" (clears) the accumulator and gets

....I 4

-the next number to be moved.

Two "halt" commands have been inserted in the program. The first will'

allow the programmer to see that the numbers in locations 20008 to 20048 are

first loaded into the accumulator before they are transferred to the 'menory

11

locations 0050
8

to 0054
8'

The second "halt" command will signify che end of

the program.
"."

Once the program has been loaded into the computer, set the switch register

to-04008 (starting address of the progiam), LOAD ADD and press START. Tne Fop-

gram will stop when it comes to the first "halt" command. thai the accumu-

lator display ocrabe front pa441 vial contain 101 101 101 101 (55558), the con-

tents of location 2000
8.

To resume continuatio; of the program with the nest

instruction after the "halt", press the CONT (continue) switch on the front

panel. The accumulater will now contain the conients of location 20018, which

is 2222
8.

(Before 2222
8
wee moved to the accumulator, 5555

8
sus moved to loca-

tion 00508 so that the accumulatcr could accept the next number.) When the COST

button has been pressed for the fifth time, all five numbers will IsiVe'been

moved to locations 0050
8
'to 00540. At this point, the program counter will con-

tain 0413
8'

the memori address will contain 0412
8'

and the memory buffer will

contain 74028. (Memory'address has 4138 and the memory buffer has 52128 in the

in the P1W-8/S.) The program run has been completed.

To verify that the five numbers have been transferred, load 00508 into the

switch register, and press LOAD ADD. To examine the contents of locations
.

0050
8

to 0054
8

press the EXAM button five consecutive times.

Summary: This example demonstrates that information can be entered into the

accumulator from one Memory location, and then can be transferred to another

location in memory. Also, the idea that ottal representation is easier to

handle than binary, should be noted.

a

r.`

a

ANSWERS TO CBAPTER 2 QUESTXONS

Question 2.1 a) 001 010 011 100

(1x4) + (04) + (04) 4

(0z4) + (14) + (14)

(0x4) + (1z2) + (0x2) 01 2

(0x4) + (0x2) + (1x1) 1

then, 001 010 011 100 0 1214

3

Similarly b) 011 101 110 000 3560
8

c) 000 000 111 110 0 0072
8

d) 110 101 111 001 0 65718

e) 010 001 011 111 2137
8

Question 2.2 a) 6210
8

6
8
0 110

2 010

1 0 001

0 000

then, 6210
8

0 110 010 001 000

b) 51148 101 00! 001 100

c) 1062 00i 000 110 OW

d) 0047 000 000 100 111

e) 0327 000 011 010 111

1_6

8

12.

a

13

CHAPTER 3

Instructions

The previous material presented some short example programs whiCh tOe
S.

reader would execute. This section will show how the computer takes these

sequences of octal numbers (remember, they are-actually binary.stringe7 and

Interprets them to be "command" or "data" words.

Excluding an equipment failure, the computer can only do what it is "told"

to do. The prograimer tells the computer what to do by use of one or more 12-

bit instruction words. An instruction word specifies to the machine whatl6p-

eration to perform and/or where to find the data upon which to carry mit this

operation.

The first major class of instruction words is the Memory Reference Instruc-

tions. They provide a means for the programmer to have the Computer access,

and operate on, data which is stored in memory. There are two parts to a lam-

ory reference instruction:

1. The operation code

2. The operand

The Operation Code is an octal number (actually, a three-bit binary number)

which the computer translates into a command. On the PDP-8, the operation code

is located in the three left-most bits of the instruction word. The remaining

nine bits are the 9perand. The operand does the memory referencing; It tells
*4

the computer the address of the data word, which the translated.instruction

will work on:

Bit # 0 1 2 3 4 5 6 7 8 9 10 11

1/2-"////
Operation operand

code 4111

fb

The mr-e has a 'set of six memory reference In2ti6ctioes. The first

column of the table below gives the three-letter mnemonics, which mske it

.
easier to remember the instructions;

14

binary
code

octal
code

TABLE 3.1

AND 000 0 Logical AND of a word in memory with the accumulator

TAD 001 1 TWOs complement ADd a mord in memory to the =cum-
lAitor

ISZ 010 2 Increment a word in memory and Skip next step if

result is Zero

DCA 011 3 Deposit into memory and Clear Accumulator

IMS 100 4 Jump to Subroutine

.INP 101 4 JuNP

In order to simplify the explanation of these instructiOns, the concept

of "pages" in memory (first introduced in Chapter 2) must be expanded.

411
The operand part of an instruction word is divided into three sections:

1. Address Miode Bit -- 1 bit

2. "Page" Bit -- 1 bit

3. Page Address Bits -- 7 bits

9 bits total in length

The 7 page address.bits can "call out," or address 2008 (128
10
) locations

in memory, i.e., 0008 to 1778.

But as stdted before, the PDP-8 has 4,096 memory locations. Bow, then,

can the computer access all of this available memory? This is where the mesory

pages come in. The 4,096 memory locations are divided into 3210 "pages" each

of length 2008 (12810) locations. Table 3.2 gives the page breakdown of the

memory locations.
4

15

When executing a protean, the computer can only "look" directly at the

memory in one of two ways:

It can look at the first page, called page zero, or at the page frai which

it is presently getting its instructions, the "current page. The section of

the operand, called the page bit, tells the computer which page'tfie address

specified by the 7 page address bits is referring to: either "page 0", if the

page bit le a '0', or "current page" if the bit is a '1'.

Bit # 0 1 2 3 4 5 6 7 8 9 _10 11

operation
code

Page
bit

page address
bits

The purpose of bit #3 will be discussed later in the section on Indirect

Addressing,.

EXERCISE 3.1

Translate the following *octal instructions words: 5050,. 5250. Assume

that the current page is page 4.

Solution:

a) 50t08 101 0 0 0 101 000 (the 12
binary

"page 0" "location 50
8
"

bits)

The instruction is: JuMP to location 50
8

on page "0". (That is, absolute

location 50
8'

since page 0 id the first page.)

16.

Ninory

JAE-.

0

Octal
Mowry
Locations

TAME 3.2

Mknory

Alia-
.

'20

Octal
Memory
Locations

0-177 4000-4177

1 200-377 21 4206-4377

2 400-577 22 4400-4577

3 600-777 23 4600-4777

4 1000-1177 24 5000-5177

1200-1377 25 5200-5377.5

i

6 1400-1577 26 5400-5577

7 1600-1777 27 5600-5777

10 2000-2177 30 6000-6177

11 2200-2377 31 6200-6377

12 2400-2577 32 6400-6577

13 2600-2777 33 6600-6777

14 3000-3177 34 7000-7177

0
15 3200-3377 35 7200-7377

16 3400-3577 36 7400-7577

17 3600-3777 37 7600-7777

b) 101 0 1 0 101 000. (the IZ5250
8

50.,3)41' current "location 50
8

binary
bits)

410 page"

The instruction is JuMP to location 50
8
on the current page. If the

instruction vas stored on page 4 of memory (Which is locations 10008 to 11778)

this instruction would tell the computer to jump to location (10008 508) m

absolute location 1050
8

(JMP 1050
8
). .

40

17

EXIECTSE 3.2

Translate the following octal instruction words. Assume that the current

page is Palle 5.

1001

1301

5201

5355

2177

1377

Solution: Using the same format as in Exercise 3.1:

a) 10018 001 0 0 0 000 001 TAD 1

1TAD "page 0" "location 1"

The instruction is: "Add the number which is in location 1 on page zero

to the accumulator."

b) 13018 = 001 0 1 1 000 001 TAD 1201

1TAD , "current "location 101"

PsEe"
The instruction is: "Add the number which is in location 101 on the

current page to the accumulator."

c) 52018 101 0 1 0 000 001 JNP 1201

510311P "current "location 1" 40

Wigs"

The instruction is: "Jump to location 1 owthe current page."

d) 53558 - 101 0 1 1 101 101 31420 1355

5-3111 "current "location 155" 410

page

The instruction is: "Jump to location 155 on the current page."

e) 21778 010 0 0 1 111 111 IR 177

2ISZ "page 0" . "location 177" 40

4 4.

The instruction is: "Increment the nuMber in location 177 on pegs O.

40 and see if that number is zero or not."

f) 13778 001 0 1 1 111 111 TAD 1377

1mTAD "current "location 177"

Me"
The instructiom is: "Add the number which is in location 177 on the

current page to the accumulator."

QUESTION 3.1,

Translate the following octal instruction codes. Assume that the current

page is page 6.

1301

2354

2254

1020

3120

5377

QUESTION 3.2

Translate the following "English" instructions to their octal. Assume

that the current page is page 7.

TAD 55 (page zero)

TAD 1655 (current page)

DCA 102 (page zero)

.INF 1777 (current page)

DCA 120 (page zero)

TAD 1620 (current page)

ISZ 1654 (current page)

1SZ 1754 (current page)

19

Tsbis 3.1 listed the six masory'referenes-instructioss for the POP-8

end gave their three-letter codes called a. The mnemoeice present

an easier way for the programmer to d a set of instructions for the

computer. Instead of looking at lists of tel numbers, the programmer can

read these short code words and follow thOlow of the instructions. Once

he has written up the corplete instruction set in aismsnics, he can than trans-

late to octal (actually binary) which can then be entered into memory locations

from the front panel, and execute this program. However, this hand translation

of "letter codes" to the binary "machine language" instructions can become quite

time consuming for very long programs. A program can be written to have the

comluter carry out this translation process. This program must be written in

machiee language and is.called the assembler; it "assembles" the programmer's

letter codes into the binary inetructious which the computer then executes. The

examples and exercises that will follow will be short enough so that the trans-

lation process can be carried out by hand.

The following exercises will now begin to use the Memory Reference In-

structions in some simple pr'grams in order to demonstrate their use.

EXERCISE 3.3

Write a program (in mnemonics) to add two numbers in memory together and

store the answer in a third menory location. Also code it into the octal (binary)

instruction words.

Solution: The programmer cannot tell the PDP-S to "Add 'A' to '15' and call the

.sum 'C" in one, or two instructions. He must first think out all the steps the

machine will have to carry out to do this problem.

The PDP-S uses the register called the accumulator (introduced in Chapter 2)

for all transfers of data words to and from the arithmetic unit, and to do the

arithmetic operations. The "English" for this program would look like the

40 following:

Step 1: °Clear out the accumulator in case there is something in it."

Step 2: "Add the first number le to the accumulator."

40 "Add '8'

20

Step 3: the second number to the atcumulator."

Sap 4: "nature the answer 'C' to memory.,"

Step 5: "Ind of program."

The "addition" commetd is the memory reference instruction "TAD", or

"Two's Complement Add." Teo's complenent means that negative integeis are

stored in the "Twee complement" form. This will be covered in a later example.

The mnemonics for the program can now be written. Assume the number 'AI is in

location 50
a

and the number 'II' is in location 51
8'

and the sum will be stored

in location 52
8'

Begin the program at location 308 (note that all these loca-

tions are on page zero).

Octal
Memory
Location Mnemonic Meaning

30

31

32

33

34

50

51

52

CLA

TAD 50

TAD 51

DCA 52

HLT

Octal value
of A

Octal value
of B

Octal1/4value

of answer C

Clear out the accumulator

Add the number in location 50
8

to the accumulator

Add the number in location 51
8

to the accumulator

Deposit the answer which is in the
accumulator into location 52

8
and

clear out the accumulator

End of program

21

Note thit the TAD instruction adds a am of the contents of the specified

location ee-the accumulator, that is, the number le is still in location 508

after the machine does "TAD SO".

Also, when the computer executed "DCA 52", the present value of the ac-

cumulator becomes the new contOnts of location 52
8'

and the old contents are

lost; then the new value of the accumulator is zero. (The instructions CLA and

RLT are called.microinstructions and will be covered in Chapter 5.)

The prograM can now be coded into intal (binary). instructions 061ch the

computer can understand; %codes for CIA and ELT are given:

Memory Octal

Location Mnemonic Code

30 CIA 7600

31 TAD 50 1050

32 TAD 51 1051

33 DCA 52 3052

34 HLT 7402

The reader should now loadle octal code of the program into the PDP-8,

and run the program (uSing the techniques from Exercise 1.2), for the following

sets of 'A' and 'B'. After each execution, examine the answer 'C' Which is in

the location 52
8'

verifying that the machine.did add the two octal numbers. Note

that this addition hss been performed in octal rather Chan our familiar lecimal

addition.

Trial 1 Trial 2 Trial 3 Trial 4

A (*1oc. 50) 0707 1111 1324 le666

B (elm. 51) 0070 1111 0175 2666

C (=loc. 52) 0777 2222 1521 6554

DO NOT load the ant/were in location 52 before each trial!

IP

22 ,

8ummarya The purpose of this exercise is to.Show bow a program can be written

in mnemonics instead of the 12-bit binary coding.

WESTION 3.3

Take the program in Exercise 3.3 and translate to the octal code noting

that now the program will begin at location 10008 and that 'A' is in location

10508, 'B' is in location 10618, and 'C' is in location 10528.

The next exercise will repeat Exercise 3.3, except that the concept of

setting the page bit is emphasized.

EXERCISE 3.4

Repeat the problem from Exercise 3.3, except that now begin the program

at location 400
8'

and the number 'e is in location 450
8'

and '8' is in loca-

tion 4518, and the answer 'C' will be placed in location 4528. (All these loca-

tions are on page 2.)

Solution: The page the computer will be working on is not "page 011, but is the

current 'Page". The page bit in the memory reference instructions used in the

program will now be set to '1' (Bit #4). 'AV is to be in location 450 but
8

this is the same as location 50
8'

"current page". For example, the instruction

4110
"TAD 450" in the program will be coded as follows:

001 0 1 0 101 000 001 010 101 000

TAD Ofcurrent loc. 50 1 2 5 0
s

page"

(Note that for Exercise 3.3, "TAD 50" was coded as 10508.)

Following this pattern, the program will be coded as follows:

Memory
Location

400

401

402

403

404

23

Mnemonic
Octal
Code

CLA 7600

TAD 450 1250

TAD 451 1251

DCA 452 3252

OLT 7402

450 (octal value
of A)

451 (octal value
of B)

452 (octal value
of C)

Using the console, load this program code into the given locations and

repeat trials 1 through 4 for Exercise 3.3, verifying that the results are

,the same. Note that if the programmer'did not set the "page bit" to '1' in

the memory reference imstructions used in the program, the computer would have

added the contents of location 50
8

and 51
8
on "rge zeie which are the absolute

locations 508 and 51

QUESTION 3.4.

Writp the octal code for the same program as above, starting at lo-cation

400
8'

except that now add the numbers 'A' and 'B' stored at absolute location

508 and 518 (on page zero) and store the result in absolute location 528.

The major advantage of using the computer is to perform the same operations

many times. This is referred to as looping. The programmer can at his discre-

tion, execute various

i

rtions of his program many times without repeatedly

rwriting the group of nstructions for that particular part of the program.

110

1

4. I

410

24

Because the programmer can accomplish this with just a fey instructions, this is

40 one of the most powerful tools at his disposal.

There girl two things that a programmer must know when creating a loop:

*
(1) the portion of thavrogram that he wants to be repeated, and (2) the number

40 of times that portion of the program is to be repeated. The programmer keeps

tFack of the number of times the loop is to be executed by means of a counter.

This counter is _usually a number set by the programmer and stored in memory.

For ease of programming, the PDF-8 has two instructions to perform the taak

of looping: the memery reference instructions ISE and MP. In the PDF-8 it in

easier to compare a number of value against zero than to compare that number or.

value to some other constant. The ISZ command increments the specified memory

location and compares the result to zero. Usually the counter is stored as its

negative value (2's complement) so that when the ISE is executed, the contents

of the memory location holding the counter will approach zero. For example, if

the programmer wanted to loop a particular part of his program five times, the

octal number 7773
8

(.-5
8
) would be stored in some memory location as the counter.

EXAMPLE 3.1

Obtain the negative value, in eight's complement form, of the octal numbers:

0005, 0060, 0525, 0001.

the octal number 000 5

its seven's complement 7772

"add 1" + 1

eight's complement 7773 (negative 58)

Note that finding the eight's complement of a number is the same as finding the

two's complement of the equivalent binary number:

Similarly:

the binarTo.number

its one's complement

"add I"

two's complement

0060
8

7717

+ 1

7720 (-608)

Note that most assembleiv (discussed later) allow entry of a negative number

directly. For example, octal 7771 can be specified as -7.

The JMP command iS then used with the ISE command allowing the programmer

the ability to transfer control.back to the beginning of the loop. These ideas

are covered in the following example.

000 000

111 111

000

111

101

010

111 111 111 011 m 77738

0525
8

0001
8

_7252 7776

+ I + 1

7253 (-5258) 7777 (-18)

EXAMPLE 3.2

The following program will add the octal number 10108 stored in location

4508 to the adcumulator five times, and will store the result in location 4518.

Jiote that negative five will be stored as the counter ia location 4528.

Octal
Memory
Location NneMonic Meaning.

400 CLA "Clear the accumulator"

401 TAD 450 "Add 1010 to the accUmulator"

0

402 ISE 452 "Increment the contents of location
452

8
and compare the result to zero"

(If result 0, skip next instruction;
if result if 0, execute next instruction)

403 JMP .-2 "Jump to-beginning of loop (locstion
4-01

8
)"

Octal
.Memory

Location lAie softie

404 DCA 451 "Deposit the reiult in location
4518"

405 HLT "Stop exe'cution"

450 1010 The number to be added

451 0000 A location to store the result

452 7773 "negative 5".

Note that the (.) refers to the present location of the program counter, that

is, location 4038. Thus (.-2) refers to location 4018, which is the beginning

of the loop. Then, "MP .-2" transfers control to the instruction TAD 450.

The octal code for the program can be written as follows:

,1"". Octal
Memory Octal

Location Code

400 CLA 7600

401 TAD 450 1250

402 ISZ 452 2252

403 JM1' .-2 5201

404 DCA 451 3251

405 HLT 7402

450 1010 1010

451 0000 0000

452 7773 7773

Notice that location 452, which initially contains a -5 would have to be re-

IP initialized each time the program is to run since it ends up w-th a value of

zero at the end of each run.

27

Solution: The follouing tibia lists the contents of the accumulator, location

452 which bolds the counter, and location 451 where the result will be stored,

on each OUCCessive pass through the loop.

Accumulator Loc.451
8

Loc. 452
8

Initially 0000 0000 7773

1st pass through
the loop

1010 0000 7774

2nd pass 2020 0000
.

7775

3rd pass 3030 0000 7776

4th pass 4040 6000 7777

5th.pass 0000 5050 0000

EXERCISE 3.5

Write a program that first cleits.the accumulator, thenikeeps adding '1'

//

to the accumulator. Write a delay logo to slow down the,Ømputer so that one

can "Iwatch" die computer count by viewing the display-labeled ACCUMULATOR on

the front panel. (The octal code for the instruction Increment the ACcumulator

is 7001 and the mnemonic is LAC; microinstructions yin be covered in Chapter

5.)

41

Solution: A simple program to continuously increment the accumulator is written

as:

Memory
Location

Octal
Code

ese

400

401

402

CIA

IAC

. -1

7600

7001

5201

28

If this .progtma is run on the computer, the accumulator will be inctmmented

10 so fast that the display mill appear blurred. This is becmse the execution

time for the JNP instructlion on the 191164/I minicomputer la 1.5 microseconds,

(m microsecond beiniegnal to 10-6 seconds), welch Is too fast-for the programmer

to see on the display. (In the PDP-8/S IMP takes 28 microseconds.)

TO slow down the time between eadh time the accumulator Is incremented, a

loop can be inserted within the proves Ames only purpose is tO slow down the

10
time for execution. Thisitype of looping is called delay lOopimov -Thus exectr

tion can be slowed down so that the programmer can "witch" the computer count on

the display.. A simple delay loop is added to the previous program:

Memory
Location Mnemonic

Octal
Code

400 CLA 7600

401 IAC 7001

402 ISZ 405 2205

JNP 5202

404 JHP .-3 5201

405 0000 0000

Since the execution time for the ISZ instruction is 3.0 microseconds

(54 microseconds), the loop:

ISZ 405

JHP

will take 4.5 microseconds altogether. This loop will be execute:1'40964o

(10000 8) times before the accumalator will again be incremented. Thus a delay

of 18.432 milliseconds (335 milliseconds) will be present between each time the

accumulator is incremented. Run this program on the'computer and note that now

29

part of the accumulator will be blurred, and Oho other pext will show the

accumulator "counting", on the display.

Tie should expect this range in ihe Breed of blinks. If we were asked to

list all the integers in sequence frost 0 to 999, or any positive integer, the

left most digit would change.the slowest while the units digit muld change the

fastest. In a computer the left most bit is called the Meet SignificantvRite

while the right most is the least, or 1.81. ye should therefore expect the M81

to change much slower than the 1.81 which it does.

. 40

To further slow down the execution, an outer delay loop can be added, allow-

ing the programmer to vary the speed at which the accumulator will count. Run

the following program on the computer. (Note that now the delay loop will be

approximately 8 x 18.432 milliseconds .147 seionds.) The calculation for the

PDP-8/8 bacomes 8(0.335872 seconds) 2.686976 seconds.

Memory
Location Mnemonic

Octal
Code

600 CLA 7600

601 TAD DELAY 1215

602 DCA 614 43214

603 TAD 616 1216 .

604 ISE 613 2213

605 JMP .-1 5204

606 ISE 614 2214

607 JMP .-3 5204

610 LAC 7001

611 DCA 616 3216

612 JMF .-11 5201

0

0

30

Newry
Location ftemomic

Octal
Code

613 0000 0000

614 0000 0000

615 =Aro 7770 7770

616 0000 0000

To vary the speed of execution, the ',Alas of location 615 can be varied

(remember to refnitialize location 616 to zero each time). Notice apso the

use of a label or name to reference the delay count rather than using its

address.

EXERCISE 3.6

Set up the program for a delay of 10 se ocnds.

Solution: The loop at locitions 604, 605 takes 18.432 seconds for the PDP-8/I

(0.335872 seconils for the PDP-8/0. Therefore the outer loop must be run:

16-8/I 10/0.0:4432 times mg 54310 tim"
40

PDP-8/S 10/0.335872 times mg 30
10

times

PIDP-8/I Initia.Uize lowition 61$ to -543
10

Is 4037
8

6741

PDP-8/S Initialize location 615 to -30
10

-36
8

7742

ANSWERS TO CHAPTER 3 QUESTIONS

Question 3.1 a) 13018 001 O. 1 1 000 001

"TAD" ftcurrent "location 101"
' page"

b)

1301
s

gm TAD 101 (current page) (TAD 1501)

2354
s

ow 011 101 100 m ISZ 154 (current page) (ISZ 1554)

c) 2254
8

gg 010 010 101 100 ISZ 54 (current page) (ISZ 1454)

d) 1010 001 000 010. 000 mg TAD 20 (page zero) (TAD 20)

e) 3120 IN 011 001 '010 000 m DCA 120 (current page), (DCA 120)

f) 5377 m 101 '011 141 111 go .120 177 (curraut page) (.11, 1577)

0

0

TE

ZOVL

.ZSZE

ISZT

OSZT

0091

spoo
Tw320

ag U073,*07"

TOT MI. 0

mgg uorrepar.

TOM 101 0

rz

2TUOISKIK

000 010

100261
elledu

0

tr

tOOT

£001

ZOOT

0001

uoTuraol

intz

110 %LI ZSI

9
tSZZ

010 010 tS9I ZSI

tun

010 100 0Z91 avi
°Mc

100 110 = OZI raa

8 LIES

110 IOI 1111 &Kr

PIE

too Ilo

Sat

010 TOO

ZOT

Ono
0 100 = SS9I

stsoi

000 100

c't uoT3seno

4AT2,TTETS

"ants

TOO m cc an rcw----FMYT3

cF"froff.7P40.4.

60'

4

INS010P°
cs°ese0i

fte"?'

gc

e.
boo

N°5

405'

4)
I.

Ols'

okick

k
4

*
004.

40*gfr%'0C4

33

SIMLA

'Indirect Addressiog

It was previously mentioned-that bit .1 of a memory reference instruction

on the PDP-0 is called the Addrees Mhde lit. In all preceding examples, this

bit was sat to '0' in the memory reierence instructions; this value of '0'

declares the Address Mode to be "D/rect Addressing". The address contained in

the operand of the memory referen, instruction la the location of the desired

information to be operated on. if bit #3 is now set to '1", the address mode

becomes Indirect Addressing. Mo0 the operand of the memory reference instate-

tion holds an address, but it serves as a "pointer". It points to-a memory lo-

cation and that memory location contains the information the instruction is to

operate on.

There are three main reasons why we may need indirect addressing.

(1) The most important is that there are not =Push bit positions life in

a Memory Reference Instruction to address any word in memory. Remember that we

can only address "page 0" or the "current page". If, however, we had a full 12

bit word availabie to use as an address, then we coula refer to any word in

core. Since 2
12-1=4095 and there are 4096 words in core (call the first word's

address 0000), the 12 bit positins allow reference to any word. This is .exactli

what indirect addressing allows us to dft

(2) Indirect addressing must be used when using subroutines. This will

be explained shortly.

(3) There may be times when we want to pick words sequentially from some

list. We can fetch these very simply by incrementing a word which contains the

address of the first word in the list and using indirect addressing.

34

mums 4.1'

If memory location 4008 captains the instruction TAD I 450, where the

"I" is the mnemonic symbol for "Indirect Addressing", (octal code a 1650), what

number would be added to the accumulator when this instruction is executed?

Solution: The instruction would not add the contents of 450
6
as in a direct

addressing instruction. The coaputer goes to location 4508p reads the contents

of location 450
6
as an address, and then goes to this new address aid adds the

a

contents of this new location to the accumulator. If the contents of semory

location 4508 is 230080 and memory location 23008 contained 1111, the computer

would add the nuxber 1111 (i.e., the contents of location 2300) to the accumu-

lator, and not the number 23008.

EXAMPLE 4.2

If location 600
6
contains-the instruction "MP I 643, current page"

(octal code 5643) and loCation 6438 contains the. instructiaa "TAD I 7459

current page" (octal code 1745) and location 17458 contains the instruction

"HLT" (octal code m 7402), what is the next instruction executed after the

instruction ".IMP I 643"?

Solution: The next instruction executed would be the "ELT" in memory location

1745. "JMP I 643" low, at the contents of location 643 as au address ("I"

means indirect addressing). The contents of location 643 is not interpreted

as an instruction, but rather as the address for the computer to "junp" to.

Since location 643 contains the number 1745
6.

the next instruction executed

in the "ELT", which is the contents of 1745:

3

35

Octal

Lo.s.aym Ninnnnics

600 iMP I 643 (CUrrent Page) 5643

643 TAD I 745 (C4rrent pap) 1745

1745 OLT 7402

EXEMCISE 4.1

What is the octal code for the following indirect addressed instructions:

TAD I 130 ('page xero'), DCA I 25V ('eurrent page')?

Solution:

a) TAD I 130 --- 001 1 0 1 011 000

"TAD" "indirect "page 130
8

address" sero"

then, TAD I 130 (page zero) 001 101 011 000

15308

b) DCA I 250 --- 011 1 1 0 101 000

"DCA" "indirect "current 50
8

address" page"

then, DCA I 250 (current page) 011 110 101 000

036"

QUESTION 4.1

What is the octal code for the following instructions: TAD 43, DCA I 500,

ISZ I 4139 JWP I 213, MP I 20, DCA 100, TAD I 43?

411

36

maismia

74
Go back to Exercise 2.19 and translate octal code of the program into

the ammonite, and explain sada inmtruction.. Note that the program tames both

indirect and direct addressing, and that some address references are.by name

40

or label rather

Solution:

then the address.

Octal
Code Mnemonic Explanation

Memory
Location

400 7300 CLA CLL Clear the accumulator (acc.) and the
. link bit.

401 1214 TAD MIMS Move "counter" in location 414 to the
accumulator.

402 3215 DCA COMTE Move "counter" from acc. to location
415.

403 1616 TAD 1.416 Move the contents of the address which
is contained in lot. 416 to the acc.

404 7402. HLT A "halt" 4.43 see the data transfer

above.

405- 3617 DCA I 417 Mbve it from the acc. to the address
found in loc. 417 and clear the acc.

406 2216 ISZ 416 Increment the pointer which is iu loc.
416. It now points to the next "source".

407 2217 ISZ 417 Increment the pointer which is in loc.
417. It now points to the next
"destination".

410 2215 ISZ COMTE Increment the courter in loc. 415. Is

it now sere
40

411 5203 JEP 403 Mb, so junp to loc. 403, to move the
next number.

412 7402 HLT Test the counter in 415 is nov xero9 so
halt the execution of the program: all

40 5 numbers have been moved.

413 5212 JMP 412 Jump to location 412.

Memory
Location

Octal
Code Ihkemonic

414 .7773 UMMUS5, -5

415 0000

416 2000 the address
2000

417 0050 the address

a"
1.

ExplanattoF

The S's iomplement form of negative 5

(-5)1 the

A location to sto::6:1;i "count*" and

to add one to it time a nudber

is moved. When the counter reachis
zero, all 5 numbers mill have been.
moved.

The addrasa of the lst.of the 5 numbers
to be moved; the "source". - 10

The address of the location to move

50 the 1st word to; the "destination"..

EXERCISE 4.3

If thecomputer is at address 4058 (page 2), haw can it be programed to

JUMP to address 620 (page 3)?

Solution: This can only be done through the use of indirect addressing.

Memory Octal
Location Code MneWnic

Eaglanation

404 CLA

405 JMP I .+1 JUMP indirectly to the location gtven

406 0620 in the next (.+1) memory location. .

Final result is to JUMP to location
0620.

620 DCA .-1 Put contents of location 617 into the

accumulator.

Mote that in this solution, almost any instructions could have been used a
in place of the CLA and DCA. The main point is that the JMP I .+1 caused a junp

to a location on another page. This procedure is not necessary if we are simply

at the end of a page and want to go to the first location of the next page be-

cause this automatic single address advance is done by the Program Counter which

is a 12 bit register in the computer.

438

gussarr Indirect addressing must be used when accessing a location not in the

40 "current page", except when --

(1) the location to abe assessed is in "page O."

(2) the instruction being executed is the last word of the "currant page"

and the next instruction is the first word of the next page.

QUESTION 4.2

Suppose a program extends over several pages of memory,- for example pages

1-108. Haw would data onpage 118 be eicessed? Nov else could the data be

410

stored to ease the access probleml

QUESTION 4.3

Write and execute a program to add seven octal numbers stored in locations

10008 to 10068 and store the result in locacion 6408. Start the program at

location 2008. Use indirect addressing and looping in the program.

SUBROUTINES

In computer progressing, the situation often arises where a certain group

of operations will have to be carried out several times with, perhaps, different

data. Instead of the programmer repeatedly writing oui the instructions for this

group each time it is needed, it would be more convenient (for the programmer) to

only write the instruction group one time, and to have the computer "filttch" it

any time it is needed. A grono of instructions used in this fanner is a sub-

program called a SUBROUTINE. Subroutines are aside from the Alain program. When-

ever they are needed, the =min program "stops" what it is doing, transfers control

to the sequence of operations ,fn the subroutine, executes them and then picks up

at the point in the main program immediately after the "call" for the subroutine.

Each time a subroutine is called, the conputer does this branching, execution of

the subroutine, and ti,%. returns to the main program it the branch point.

If, for example, tbs.:min programhad Co add' moms tmo =Where together,

instead of writing tha sequence of addition instructions each time they were

needed, the programmer' amid write a subroutine to do the-aadition. Ile would -

them have the mein program "sane the two numbers to be added to ibis subroutime,

"thick woujpd carry out the addition and then return to the mein program. The

programmer has then saved himself mmme code writing, and also conserved memory.

space. In order tq implement subroutines on the PDP-S the programmer must use

4 indirect addressing.

EXAMPLE 4.3

Write a program that calls a subroutine to add two numbers gA6' and 41'.

The result mill be stored in.'C'.

Solution: The memory reference instruction to call a subroutine is the .INS

instruction (JuMO to Subroutine). The JIG does two things:

I. The address of the next instrection after a MIS is stored in the first

location of the subroutine. (Note then that the first memory location

in a subroutine should not coutain any instruction or data. It will

be strictly a storage space.)

2. The address which is in the operand of the JMS instruction is increased

by I and placed in the program coumiter. Therefore the computer is now

ready to get the first instruction to be executed in the subroutine.

Indirect addressing is the means to return from the subroutine to the main

program. The last instruction carried out in any subroutine is an indirect-
,

addressed SW. It jumps to the address which is stored in the first location

of the subroutine. In other words, it jumps back to the next instruction after

the point in the main program where it had left off to carry out the subroutine.

fib

40

a
Octal
Memory
Location

400

401

402

403

.116 450

DCA 406

OLT

404 (the value
of 140

405 (the value
of.'11')

406 (the location to
store the sum 'C')

Octal
Code

7600 Clear the accumulator.

4250 Jump to the addition mimosa= which
starts in Loc. 50 current page (44508).

3206 After returning from the addition sub-
routine, store the sum in IC' and
clear the accumulator.

7402 Stop the program, addition completed.

MEP

450 0 0000 The addition subroutine; location 450
is the storage area to place.the return
address.

451 TAD 404 1204 Get the value of 'A' and put it into
the accumulator.

452 TAD 405 1205 Get-the value of 'II' and add it to
the value of 'A' in the accumulator.

!.5.3 .DIP I 450 5650 Get the return from subroutine -
address in Loc. 450 and jump to it.

41O
Remember that a JMS is a memory reference instruction and so we still have

the limits.of directly addressing only locattgnq in page zero or the current

a

a

4

page. If the subroutine is in another page, we must use indirect addressing to

jump to it, therefore, when possible it may be convenient tciput subroutines

into page zero so.that they may be addressed directly.

When,the program executes the instruction in 4018 (JMS 450), it wdll first

store in location 450, 401 + 1 402, the next instruction to be executed when 0

returning from the subroutine.

41

Then the computer gets the next instruction to be carried out by addiet

1 to the address in thi AS Instruction, i.e., 450 + 1 451. It then exectOis

the instruction is 451 (TAD 404)9 then in 432 (TAD 405), and then it reichis

the instruction to leave the subroutine (AP I 450). It gots the address con,

tained in location 450 (i.e., 402),.and jumps to thac locatios. Therefore, it

jumps out of the subroutine and back to the mein pungrat location 402. It

depo9its the results of the addition, and then stops CDC& 4069 DM.

NOte again that.the computer does not execute the instruction in the

address of the MS instruction. It stores in that location the address of the

instruction after the AS.

Note thit indirect addressing is used to return from the subroutine to the

main program.

The general structure of an m-instruction subroutine is:

'Octal
Memory
Location

X

(a instructions)

X+(m+1)

Contents

0

J I I

a

0

421)

MOW.
Writeaprogramwbici will callasubroutine that will find the numbers

which are divisible by three (3) from the numbers I to 2718, and then store

thee's' nuebsre'starting in bastion 10008. Start the program in location 6008.

Solution To test a numberA to see **ether it is divisible by three, repeatedly

subtract three fiomA until the result is either '01, which indicatei the eumber

is divisible by threat or the result is less than fOr, indicating that the we-

ber is not divisible by three. Me mommonics for the prosy= and subroutine

and the corresponding octal codes are given as,follows: (CU, CXA, ZAC, SPA,

SSA, and SZA are 'microinstructions - see Chapter 5.)
..

Location ftemonic Code

600 CiA 7600

601 TAD Z27 1215

602 CIA 7041

603 DCA COUSTZ 3216

604, LOOP, TAD TZSTD 1221

605 VAC 7001

606 DCA TISTD 3221

607 TAD TESTD 1221

610 AIS 650 . 4250

611 CLA 7600

612 ISZ COUNTR 2216

613 JIIP LOOP 5204

614- RLT 7402

615 Z27 .0033 0033

Clear accumulator

Find the negative value

of 27i0 and use this

as the counter,

Calculates next number

to be tested and store

in location 621.

Add number to be tested to the
accumulator.

Jump (current page) to sObroutine
starting in location 650.

Clear accumulator

Increment counter and halt if zero.

Return to beginning of loop

Halt execution

Cons t an t 2710 38

4 6

Location . Mnemonic 20.

616 COURT', 0000 0000

617 MUDS% 7775 7775

620 1000 1000

43

*WM
Location tretare .counter

els complement of 13', or (-3)

Starting location of where numbers
divisible by three are to be stored.

621 =TO, .0000 0000 Centel= number being tested

(rhe Sabroutine)

630 SUMS, 0000 0000 Storage location for return address..

651 TAD MI1DS3 1217 Stibtract v31'frou number being

tested, joy adding (-3).

652 S!A SRA 7550 This picroinstruction (see (bapter 5)
will tkip this nest instruc if

the contents'of the ac tor-is

pester than 10'.

653, JNP 655 5255 Jump to tbe test for a 01 section-

lator.

654 JMP 651 3251 Repeat loop until result is less than,
or equal tog zero.

655 SEA 7440 This microinstruction will skip the

next instruction if the contents of
the'accumulator is zero.

656 JRP I NSW= 5650 Jump back to main program to get next
number.

657 TAD TEST) 1221 If divisible by three, store

660 DCA I 620 3620 in location startiog at 10008.

661 ISE 620 2220 Get location for next number to be
stored

662 JR12 656 5256 Jump back to location 656 to exit

subroutine.

Note again how the use of names or labels for certain addresses makes the

program much easier to follow.

to

0

0

44

Autoindesima.

When using indireet addressing, care must be taken when using mismry

locations 00108 through 00178. When ome of these locations is addresbed

directly, the content of that location is Incremented by one, rewritten into

the same location, and used as the effective addresssof the current instruc-

tion. These registers cin be used to gain Meese to a table of data without

using the ISZ instruction to step through the tible.

ECXERISE 4.5

*kite a program using autoincrementing to clear locations 20008 to 27770.

Solution:

Location Instruction

*10

6010 INDEX, 0 /AUTOINDEX REGISTER

*200

0200 CLEAR, CLA CLL /CLEAR ACC AND LINK

0201 TAD CONST IGET PERMANENT COUNTER

0202 DCA CONST /STORE IT FOR USE

0203 TAD TTABLE /GET ADDRESS OF LOC ONE

/BEFORE TABLE BEGINS

0204 DCA INDEX /STORE IT IN AUTOINDEX REG

0205 DCA I roil AuTorocummem

0206 ISZ COUNT /UPDATE ODUNT, SKIP IF ZERO

0207 JMIP .-2 /LOOP BACK

0210 RLT /MALT, FINISHED

0211 CONST, -1000 /COUNTER

0212 COUNT, 0 /TEMPORARY COUNTER LocATION

.45

Location Instruction

0213 !TABLE, TABLE-1 /TABLE MONIES -1

*2000

2000 TABLE, (table values). /TABU STARTS Witi

In the above program, the symbols * and $ were _used to tell thit assembler

program special things. These will be explained in a later chaptei.

EXERCISE 4.6

Use autoindexing to search all of core for an occurrence of the number

12348..

Solution:

Location Instruction

*0

0000 NUMBSR, 1234

*10

/THIS IS THE NUMiER

0010 ENTRY 0 /USED FOR AUTOTMDEXING

*200

0200 BEGIN, CLA CLL /CLEAR ACC AND LINX

0201 TAD NUMBER /GET NUMBER

0202 CIA /GET ITS NEGATIVE

0203 DCA COMPARE /STORE IN COMPARE

0204 DCA ENTRY /INITIALIZE AUTOINDEX REG

0205 REPEAT, CLA CLL /MEI 1 ACC AND LINK

112230.-

.0206 , TAD I WM

0207 TAD =WARE

0210 SEA

0211 . JIW Row

0212 TAD IENUT

0213 ELT

0214 =AWARE 9 0

/GET nur VALUE

/ADD A 1234

/UV IF 1234 IS FOUND

/limn zr 1234 IS MT FOUND

/FUT MUMS OF 1234. IN ACC

/SUN

ITEINVEART LOCATIC91'

Note that the program stops with the address of the location in *IA

1234 was found in the accumulator.

ANSWERS.CilAFTER 4 QUESTIMIS

Question 4.1

TAD 43

DCA I SOO

001

"TAD"

001

011

.

000

0 0

"direct "Page
address" zero"

100 011 10436

1

0 100 011

"location 408"

1 000 000

"me "In 40 "Current 100
Page"

011 111 000 000 3700

1SZ 413 010 1 1 0 001 011

010 110 001 011

26138

MP 213 101 1 1 0 001 011

101 110 001 011

56138

DCA 100 011 0 0 1 000 000

011 001 000 000

go 3100
8

TAD 1 43 001 1 0 0 100 011

001 100 100 011

1 44 3

47

Question .4.2

Indirect addressing would have to be used to access them because when

the computer is executing instructions on some given memory page, it can

directly access constants or variables only from the "current page" or from

"page zero". If a program extends beyond one memory page in length, and, all

the instructions need to access the same data directly, the data suet be on a

page which can be accessed by all pages, i.e., page zero. For example, memory

pages 4 through 10 would not be able to directly access data "defined" on page

11, but they could adcess the data on page zero. Therefore if direct accees

were important it would be necessary to locate all the data for the long pro-

gram on page zero. Of course, if the penalty of an extra word and the slower

access time of indirect addressing are not critical, then the data may be stored

on any page and accessed indirectly.

Note that when indirectly addressing data not on page 0, it is convenient

to put the pointer to the data on page 0, so that the pointer may be used by

any page without being repeated on ehat page.

Question 4.3
Octal

Location Mnemonics Contents

200
8

CLA 7600 Clear the acc.

201 TAD 211

202 DCA 212

1211 Set the counter in
loc. 242 to negative

3212 7 (-7)

IP

0

4

Locution Mnemonics

48

Octal
COntents

203 TAD I 213 1613 AO the number, whose address
is in loc. 213 to the ace.

204 .ISZ 213 2213 Increment the pointer in loc.
213; it now points to the next
number to be added.

205 15Z 212 2212 increment the coaster in loc.
212; is it sere

206 JNIP 203 3203 Mb; jump back and add the meat
number

207 DCA I 214 3614 Tee; deposit the sum in the
location whose address is in
loc. 214..

210 HLT .7402 Stop the program; finished

211 the number 7771 The no. (-7) in ets complement

7771 form.

212 0000 0000 The counter location

213 the address 1000 The address of tha 1st no. to

1000 he added.

214 the address 0640 The address of the location to

640 store the sum.

1000 (Store the
7 octal numbers

1001 to be added in
these locations.)

1002

1003

1004

1005

1006

".73,

49

-

Ittcrolmetruntions

Some of the previous emerclees used several instruction that were mot

listed in 'Mlle 3.19 such as CLi, "clear the accumulator", and VIS, "halt"

Then instructioms belong to a secomd class of f9141 lmstrection called Elam

instructions. They are called microinstruction because is a 12 bit intraction

word single bits are each interpreted as an i4etruction wher!as in the Memory

Reference Instructions, the entire 12-bit word is one instruction to the computer.

Therefore, if the programmer writes some valid 'combination of bits set to 11' in

a miCrointruction each '1' will be translated into an operation.. The operations

are determined by the positions.of the '1' bits in the word (i.e., which bits are

set). Microinstructions have a 3 bit operation code, just as the memory refer-

ence instructions dp. To specify that an instruction word is a microinstruction,

the first three bits are set to 111

bit f 0 1 2 3 4 5 6 7 8 9 10 11

1 1 1 1'1 1 1 1 1 I I 111 1
operation
code

The general concept of having single particular bits in an n-bit instruction

woFd representing different commands to the computer's control unit is called

MICROPROGRAMMING.

Mere are tun groups of microinstructions for the POPE-8:

Group 1 Manipulate the contents of
the accumulator and the link

Group 2 Primarily for testing
operations

50

Me is s register, like the secumnlatowc, except that it is pity=

s-bit long. It acts as what could be Called au "overflow" register for the ac-

cumulator. If, for exempla, an addition operation resulted in a 'emir beyond

12 bits, the link would "catch" the overflow:

11111111111101110011111111111

Link Accumulator

The microinstructions give the programmer a way of mime the link to his

advantage in some problem situation, such as the mentioned additon overflow.

The Group 1 Microinstructions

Bits 00 through 02 are set to 11' as the microinstruction operation code.

But unlike the memory reference instructions, the remaining nine bits do not

specify an address in memroy. Bit 03 is set to '0' to indicate "Group 1".

Then:

1. When bit A is sat to '1', the instruction is Clear the Accumulator;

the snesonic is CLA. The accumulator is set to all zeros.

1 1 1 0 1 0 0 0 0 0 0 0

2. When bit 03 is set to '1' the instruction is Clear the Link; the

mmemonic is CLL. The link bit is sat to zero.

1 1 1 0 0 1 0 0 0 0 0 0

3. When bit 06 is set to '1', the instruction is Complement the Accumu-

lator; the mnemonic is CMA. Any bit of the accumulator that was a

'1' will be set to '0' and any bit that toss a '0' will be set to '1'

1 1 1 0 0 0 1 0 0 0 0 0

51

When bit #7 is set to 11',,the instruction is Cogolement the Link;
.1;

tha mmemonic is CM. LE the Link woe a '1'9 it will be set to '01;

if it was a '0' it will ke set to '1'.

1 1 1 0 0411.0 1 0 0 0 0

5. Wfien bit #8 is set to /1' and bit #10 is sat to '0', the instruction

is Rotate the Accumulator and Litk Right: the mmemonic is RAC A

loop is formed between the accumulator and the link and all-bits in

the loop are shifted ont position tO the right. Rumple:

Link

Link

1-1---07-1 1 0 0 1 0 1 1-7-0 1

Accumulator

11 1 0 1 1 0 0 1 0 1 1 0

Accumulator

6. When bit #8 is set to '1'.and bit #10 is set to '1', the instruction

(Before "RAR)

(After "RAR)

is Rotate Accumulator and Link to the Right Twice; the mnemonic is

RTR. The result is the same as doing "RAR" two times in a row.

1 1 1 0 0 0 0 0 1 0 1 0

When .bit #9 is set to '1' and bit #10 is set to '0', the instruction

is Rotate the Accumulator and Link Left; the Miemonic is RAL. The

result is the same as an RAR, except that ts-e bits of the accumulator

and link are shifted one position to the left.

1 1 1 0 0 0 0 0 0 1 0 0

8. When bit #9 is set tO /it and bit #10 is set to '1', the instruction

is Rotate the Accumulator and.Link Left Twice; the wonic is RTL.

The instruction is the same as doing RAL two times in a row.

1 1 1 0 0 0 0 0 0 1 1 0

- --

9. When bit f11 is set to '1', the instruction is Increment the

Accumulator; the mnemonic is I4C. The contents are increased by 1.

1 1 1 0 0 0 0 0 0 0 0 1

.Table 5.1 below summarized the Group 1 microiniltructions:

TABLE 5.1

Mnemonic Octal Code. ftMaa
CLA 7200 agar Accumulator

CLL 7100 CLaar Link

CMA 7040 *Oleos= Accumulator

CML 7020 ICOMplement Link

RAR 7010 Rotate Accumulator (and Link) Right

RTR 7012 Rotate Nice Right
A.

RAL 7004 Rotate Accumulator (end Link) Left

RTL 7006 Rotate Wine Left

, LAC 7001 Increment ACcumulator

There is an advantage to clash bit in a.midroinstruction being a particular

command. The programmer can form certain valid combinations of these instruc-

tional, i.e., he can set more than one bit to (1' in a given microinstruction

word. One can then think.of each of these valid cosibinations as a very small,

incomplete "program".

EXAMPLE 5.1

Using Group 1 microinstructions, what is the binary (octal) coding of the

instruction "Clear the accumulator and clear tilt link"? (The mnemonic is written

CLA CLL).

;

Solution: The operation code is 111 (078); for "Group 1" bit #3 is sat to

'0'. TO commend a CLA, bit #4 is sstr to mamma a CLL, bit #5 is set:

12.ACLL 111 0 1 1 000 000

operation Group CLA CLL
code 1

then, CLA CLL 111 011 000 000 0 73008

EXAMPLE 5.2

What is the microinstruction coding for "Rotate the accumulator and link

three places to the right"?

Solution: To rotate the accumulator and link once to the right the instruction

would be:

bit # 0 1 2 3 4 5 6 7 8 9 10 11

1 1 1 0 0 0 0 0 1 0 0 70108

To rotate the accumulator and link two more places to the right, the irk-

struction would be:

bitt 0 1 2 3 4 5 6 7 8 9 10 11

1 1 1 0 0 0 0 0 1 0 1 0 = 7012
8

Note that bit #10 would have to have the value of '1' and '0' at the same time

in order to write the command "Rotate 3 places right" in one instructien word.

Therefore this instruction is impossible to writs'in one 12-bit microinstruction

word, and the correct code would be two wprds long:

RAR 7010
8-

RTR 7012
8

The Group 2 Microinstructions:

In the PDP-8, octal numbers take on the range of 0000
8

to 7777 Both

positive and negative numbers are represented within this range of octal num-

beri. The range of the positive and the negative octal numbers are as follows

54

(remember that negative octal numbers are obtained by Ultima the 89s comple-

ment of the positive octal *numbers):

Positive 0000 to 3777
8 8 (Q10 to ;94710)

Negative 7777. to 40008 ((-110) to (-204810))
. 7C

Note that the main difference between positive and negative octal numbers is

that bit #0 of the negative numbers is set to a '1', and that bit 00 of the

positive numbers is set to a '0'. .Cartain tests are provided for handling

negative as well as positive number* and are covered by the "Group 2" micro-

instructions.

The Group 2 microinstructions give the programmer the ability to make cer-

tain tests on the accumulator and also the link and to make a decision based on

the results of the particular test. Whether the result of 4he test produces a

"true" or "false" condition, will determine whether the next instruction follow-
,

ing the microinstruction will be executed or will be skipped. This allows the

programmer to branch control to other parts of the program depending on whether

the accumulator is positive, negative, zero, or some other combination of these;

or if the link is a '0' or '1'.

Bits #0 through #2 are set to '1' as the microinstruction operand code.

Bit #3 is set to a '1' and bit #11 is set to a to specify "Group 2" Then:

1. When bit 04 is set to a '1', the instruction is Clear the Accumulator;

the mnemonic is CLA. The accumulator is set to all zeros.

1 1 1 1 1 0 0 0 0 0 0 0

2. When bit #5 is set to a '1' and bit #8 is set to a '0',.the instruc-

tion is Skip on Minus Accumulator; the mnemonic is SKA. If bit 00 of

the accumulator is a '1',which indicates a negative number, the next

instruction will be skipped; otherwise, the next instruction will be

executed.

1 1 1 1 0 1 0 0 0 0 0 0

r
gm, ti

4!.

3. When bit #6 li set be a '1' aid bit $ S is set.to a '01,

tion.is Skip on Zero Accumulator; the mmemomic La Ma*

tents of the accumulator ars Niro, the next instruction

skipped.

1 1 1 1 0 0 1 0 0 0 0 0,

4. When bit 0 is set to a '1' and bit #8 is set to a .10%.the instruc-'

tion is Skip on Nonzero Link; the mmemonic la SNL. The link bit can

have either one of two values; a '0' or a '1'. If the link bit le AL

,

toe iSstruc-

the coe-

val be

'I', the nest instruction will be skipped.

1 I I 1 0 0 0 1 0 0 0 0

When bit #5 is set.to a '1' and bit #8 is soot to a initruction

is Skip on Positive Accumulator; the mmemonic is 8P44 tf bit #0 of the

accumulator is,a '0' which indicates's' positive number, the next in-

atruction will be skipped.

I I. 1 1 0 1 0 0 I 0 0 0

6. When bit #6 is set to a 'I! and bit #8 is set to a '1', the instruc-

tion is Skip on Nonzero Accumulator; the mnemonic is ma. If any bit

in the accumulator has the value of '1', the next instruction will be

skipped.

1 I I 1 0 0 1 0 1 0 0 0

7. When bit #7 is set to a 'I' and bit #8 is set to a '1', the instruction

is Skip on Zero Link; the mnemonic is SZL. If the link bit is '0', the

next instruction will be skipped.

1 1 1 1 0 0 0 1 1, 0 0 0

S. When bit #8 is set to a l' and bits #5, #6, and #7 ere all '0', thq

instruction will perform an Unconditional Skip; the mmemonic is SKP.

A possible use for this instruction might be that the programmer may

that the inetrection following ftsideamismNalmttliiiis sot to

be rformed Soy sore, sad instead of-rewriting the program, a SR,

isstruttion can be _substituted

1 1 1 1 0 0 0 0 1 0 0 0
9. Men bit Ls set to a °V, the instruction will perform an Raman

OR of jtheter with the, .tor the mnemonic is M.

The original contests of the accmdator will be replauted with the

result of the ORR instruction.

1 1 1 1 0 . 0 0 0 0 1 0 0

Example:

001 100 101 101 (Accumulator)

101 001 100 110 (Switph Register Setting)

101 101 101 111 (Afier OSL Result is in Acc.)

10. When bit #10 is set to A-'1', the instruction will perform a Halt;

oileP

the mnemonic is HLT. This instruction will actually halt the current

execution of the.program, and can be inserted anywhere within the pro-

gram to,signal an end to the program. Note that BLT commands may also

be inserted anywhere in the program to provide an aid in "debugging",

i.e. , finding errors in the program during execution. (Show that the

octal code for a HLT is 7402 as was used in the previous exercises).
0 ,

Table 5.2 below summarises Group 2 microinstructions:

TABLE 3.2

Code

CLA 7600 CLear the Accumulator

SMA 7500 Skip on Minus Accumulator

SZA 7440 Skip on Zero Accumulator

(JO

SNL

SPA ,

SZL

(t-

: Code

7420

7510

7430

7410

7464

pip onnsero Link

Skip on Positive Accumulator

on fere Link

uncouditionaiiy:

inelualimiCM6 Switch Register
vith accumulator

7402 gliaLT

In the following two exercises, tgke the.time to verify that the given

octal Godes are correct, and then work through the programs by hand and Chen

verify.the results by running thaprograme on the PDP-S.

EXERCISE 5.1

of

Determine the contents of lc:ovations 4278 430, and 431 after execution

the-following program:

Location Mnemonic Code

400 CLA CLL 7300

401 TAD 424 1224
4

402 RAL 7004

403 RTL 7006

404 SMA 7500

405 SMP .+2 5207

406 DCA 427 3227

407 SNL 7420

410 31W .+6 5216

411 TAD 425 1225

412 RAR 7010

413 DCA 430 3230

Location Rift

58

414 8412, 7430
9

4154 SLT 7402

416 TAD 426 1226

417 7040

420 IA0 7001

421 DCA 431 3231

422 OIL 7020

423 JMP .-7 5214

424 1725 1725

425 4266 4266

426 0015 0015

427 0000 0000

430 0000 0000

431 0000 0000

Remember that:

1. Rotate the accumulator and the link when performing the rotate

instructions.

2. The instruction DCA 27 in location 4068 will deposit the contents

of the accumulator in location 427
8'

clear the accumulator, but

will not alter the contents of the link.

3. The instructions CMA, IAC, in sequence, will find the negative

value of the contents of the accumulator, in the two's complement

binary form. (8's complement octal)

59

Solution: After-the program is executed,

Loc. 427
s
will contain 7250

s

Loc. 430 will contain 6133

Loc. 431 will contain 7763

WISTMON 5.1

Repeat the previous exercise substituting the following values:

Lac. 4248 now contains 41238

Lac. 425 now contains 2744

Loc. 426 now contains 0050

EXERCISE 5.2

A group of ten (10) octal numbers are stored in Icecaps" 30008 to 30118.

Determine how many numbers are positive (not including zero), negative, or

zero and store these three tallies in consecutive memory locations.

Location Mnemonic Code

600 CLA CLL 7300

601 TAD 624 1224

602 CMA 7040

603 LAC -
7001

604 DCA 625 3225

605 TAD I 626 1626

606 SPA SEA 7550

607 J) P 5212

610 In 627 2227

611 JMP..+6 5217

612 SZA 7440

613 JMF .+3 5216

0

60

legation Mhempoic

614

415

616

617

620

1SZ 631

Jur .4.2

ISZ:630

CLA

Vii 626

2231

5217

2230

7200

2226

621 I32 625 2225

622 JNP .045
,

5205

623 ELT 7402

624 0012 0012

625 dboo 0000

626 3000 3000

627 0000 0000 The

630 0000 0000 Three

631 0000 0000 Tellies

*be 10 3000 5212 5212

numbers to
be checked) 3001 3014 3014

3002 0025 0025

0 3003 0000 0000

3004 6625 6625

3005 7200 7200

3006 1210 1210

3007 0000 0000

3010 0000 0000

3011 .; 2567 2567

61

It is possible to combine microinstructions in order to ierforn more

than one operation at a time. When coMbining microinstructiope there ire

tmo things that must be considered, (1) that the resulting groin! of micro-

instructions can be coded properly, and (2) that there is a delimits order

or sequence in which the microinstructions are performed durimg the execution

(If the program.

When working with combined microinstructiono, it will be helpful to

refer to the bit settings for the Group 1.and Group 2 microinstructions:

Group 1 microinstructions

bit f 0 1 2 3 4 5 6 7 8 9 lir 11

1 1 1 oaAcLLa1AoRARRAL 0/1. 1AC

operation zero speciVies 0: rotate one place

code 7
8

Group 1 1: rotate 'two places

Group 2 microinstructions

0 1 2

1 1 1

3

1

4 5 6 7 8 9

rTA SMA sum...gam
bit f

"."' SPA SRA SZL SKP

operation one specifies
code 7

8
Group 2

10 it
RLT 0

n: SKA, SZA,
1: SPA, SRA, SZI.

zero specifies
Group 2

Refer to the bit settings given for the Group 1 and Group 2 microinstruc-

tions and note that a Group 1 microinstruction cannot be combined with a Group

2 microinstructioi. The reason for this is that bit f3 cannot bW set to a

'0' and a '10= at the same time. Thus, the instruction to "complement the accu-

mulator and skip on a nonzero link" could not be written as one line of in-

structions:

1

CNA SNL (illegal)

but instead would be written as two separate lines of instructions: 10

CKA (7040
s
)

sm. (7450 8)

62

Microinstructions can be combine(within a particular group (aitber Group

1 or.Group 2) by petting the proper bits to a '11. A Comma instruction which

is used at the beginning of a program is "clear the accumulatormad link bit".

These tau microinstruction's can be written as one line of instructions because

they are both Group I microinstructions. The code.for the instruction can be

written as:

CLA CIL (7300)

(Note that bit #3 is set to '0' to indicate a Group 1 microinstruction, bit #4

is set to '1' to "clear the accumulator", and bit #5 is set to '11 to "clear

the link bit".)

EXAMPLE 5.3

Wrte the group of microinstructions to form the negative of a number

40 presently in the accumulator (i.e., the 2's complement of the number).

Solution: To obtain the negative of a number, the procedure is to complement

%

each bit in the accumulator (all l's would be changed to O's and all O's

would be changed to l's), and then increment the accumulator, in that order.

The instruction to do this would be the tvo Group 1 microinetructions, CMA

and IAC. The instruction then could be written as:

40

CNA IAC (7041)

or more commonly as:

CIA (7041) "Complement and Increment Accumulator"
4,

The problem that exists is whether the instruction CNA LAC is going.to be

interpreted by the computer as "complement and increment the accumulator" or

as "increnent the accumulator and then complement it". Thus order is important
A

in the execution of the microinstructions and it is necessary for the'programmer

to know in what order the combined microinstructions ate to be executed.

(Note that this is only necessary when two or mare microinstructions ere

combined to form one line of instructione.) This is theldes behind .

SIQUENCIK, whereby there is a definite order in which the microinstructions

will be executed by the computer. Allote that even though a group of micro-

instructionmioney be coded properly, the sequence of execution may be differeet

from that which the pseerammer had intended. The logical sequences by which

the computer will execute a group of microinstructions follows:

Logical Group 2 Logical
Sequences

1. CLAP CLL 1. Either MA or SRA or SNL.
Both SPA and SRA and 87.1..

2. CNA, CHL 2. CLA

3. IAC 3. OSR

4. RAR, RAL, RTR, 1TL 4. HLT

According to the logical sequence for execution of Group 1 microinstruc-

tions, the combined microinstruction CNA IAC (7041), will be interpreted

correctly and will form the negative of the number presently in the accumulaz

tor. There are a few things to note about the Group 2 "skip" eicroinstructions.

First, the "skip" microinstructions are divided into two groups, the logical

OR group, and the logical AND group. Whenever two or three microinstructions

are combined from the OR group, the next instruction will be skipped if any

one of the conditions are met. If two or three m....vinstructions are combined

from the AND group;,the next instruction will be skipped only if all of the

conditions are met. Secondly, microinstructions in the OR group cannot be

combined with instructions from the AND group because bit #8 of the Group 2

microinstructions would have to be set to a '0' and a '1' at the same time.

t)'

64

In the following exercises, different examples will be given on combining

sicroinstrnetions. It will be belifful to refer back to the different bit

setting* for the Group 1 and Group 2 microinstructions and also ths logical

sequences of execution for each group.

EURO= 3.3

Write the octal form for the fcalowing groups of microinstructions and

also what each group will actually do. Identify any illegal combinations and

explain why they are not possible.

1. CLA CLL CMA CML

Z. CLL RTL NLT0
3. SMA SZA CLA

4. SPA SNL

5. CLL SPA

6. CLA SKA SZA

7. RAR RTR

8. SNA SZL

9. CLA CLL LAC RAR

10. CLA STA

Solution:

1. CLA CLL CKA 011.

111 011 110 000 73608

Clear the accumulator and clear the link, then complement the accumulator

and the link. After execution the accumulator will contain 111 111 111 111

7777 or -1, and the link bit will be set to a 1.

a

65

2. CLL RTId ULT

An illegal colbination because Group 1 and Group 2 microinstructions

eannoit be combined.

3. SHA SZL

111 111 100 000 4. 7740
8 %

Skip the next instruction if the contents of the accumulator is less than

or equal to sato, and than clear the accumulator. (81(A and SZA belong to the

OR group and also bit #8 of the Gruup 2 microinstructions is sat to a '0').

4. SPA SIM

An illegal combination because the OR group and the AND group "skim"

microinstructions cannot be combined.

5. CLL SPA

An illegal combination becadse Group 1 and Group 2 microinstructions

cannot be combined.

6. CLA PIA SZA

111 Ill 100 000 7740
8

Same as (3).. The order of writing this combined microinstruction is not

important and will not affect the order of execution of the microinstructions.

7. -RAR RTR

An illegal cembination because bit #10 of the Group 1 microinstructions

would have to be set to a '0' and a '1' at the same time.

8. SNA SZL

111 i00 111 000 gm 74708

Skip tbe'neLt instruction if the contents of the accumulator is not equal

to zero.and if the link is equal to zero. (SNA and SZA belong to the AND group

and also bit #8 of the Group 2 microinstructions is set to a '1'.)

66

cL& CLL IAC EAR (Masai on PDP-8/6).

111 011 001 001 m 7311
8

Clear the accumulator and clear the link, increnent the accumulator, then

rotate the contents pf the accimulator and'the link one bit position to the

4110 right. This instruction will clear the accumulator aRd move a '1' Auto the

link bit. Note that this instruction could also have bean written as:

CLA CLL CHL 7340
8

10. CIA SPA

111 111 001 000 .1 7710
8

Skip the next instruction if the contents of the accumulator is;'greacer

than or equal to zero and then clear the accumulator. Note that the order

this combined microinstruction is written in is of no importance.

QUESTION 5.2

Repeat the previous exercise for the following groups of microinstructions:

1. CIA IAC RTL

2. CLA SMA SZL

3. SNA CLA

4. CHA SZA

5. SHA SZA S`sL CuA

EXERCISE 5.4

Write the set of microinstructions and their corresponding codes for each

of the following sets of instructione:

1. Clear the accumulator and clear the link, increment the accumulator,

and then complement the accumulator.

2. Clear the accumulator and then skip on a nonzero link.

.5

k

67

3. Notate the accumulator left, clear the accumuiator, and then skip

on a zero accumulator.

Solution:

1. CLA CLL IAC CNA would be wrong becaUse this inatiauction would comple-

ment the accumulator before incrementing it. The correct set of instructions

would be:

CLA CLL IAC (73018)

CNA (74)408)

2 CLA SNL (7.6208)

Note that order of execution is not'important for this instruction, but

the actual result would be to first execute the microinstruction SNL and fh.-54

clear the accumulator.

NAL (7004
8
)

CIA (7200 8)
7

SZA (7430
8
)

NAL and CLA cannot be combined, nor can CLA and SZA be combined.

The following is a list of combined microinstructions Which are commonly

used: 10

Micranstructions 'Code Naning

* CLA CLL cleai acc., clear link

CIA 7041\ complement'and!inireMent the acc. 40

((A IAC).

LAS 7604 load the acc .. with the value
;
of the

(CLA OSR) switch register

STL
(CLL OIL)

.4

7120 set iii.bt to a '1'," 40

* Indicates that it is used frequently.

Microinstructions Code

GLK 7204
(CLA RAL)

CLA LLC 7201

STA 7240
(CIA CMA)

CLL AAR 7110

CLL RAL 7104

CLL RTL 7106

CLL RTR 7112

SZA CLA 7640

SZA SNL 7460

SNA CLA 7650

SMA CLA 7700

SMA SZA 7540

SMA SNL 7520

SPA SNA 7550

SPA SZL 7530

SPA CLA 7710

PIA SZL 7470

60

Ihgakii,

put link bit into bit 011 of acc.

,

set ace. to '1'

set acc. to '-1'

shift positive number 1 right

'shift positive nuOber 1 left

clear link, rotate 2 left

clear link, rotate 2 right

skip if acc.680 then clear ace.

skip if acc.m0 or link is
both

lite

skip if acc.#0, then clear acc.

skip if acc.(0 then clear sec.

skip if acc.50, then clear acc.

skipif acc.40, or link is '1',
or both

skip if acc.>0

skip if acc.,, and if link is
'0'

skip if acc.'0, then clear acc.

skip if acc.00 ana link is '0'

ANSWERS TO CHAPTER 5 QUESTIONS

Question 5.1

After the program is executed:

Location 427 will contain 0000

Location 430 will contain 0000

Location 431 will contain 7730

* Indicates that it is used frequently.

4

or

69

Onention 5.2

1. CLA IAC R2L

111 010 000 111 a 7207
8

Clear the accumulator, increment the accumulator (set the accumulator to,

'1') and then rotate the contents of the accumulator and link bit two places

to theleft.

2. CLA SNA SZL

An illegal combination because the OR group and AND group "skip" micro-

instructions cannot be combined.

3. SRA CLA

111 110 101 000 0 7650
s

Skip the next ins:truction if the contents tf tt;e accumulator are nonzero,

then clear the accumulator.

4. CMA SZA

An illegal combination because Group 1 and Group,2 microinstructions can-

not be combined.

5. SMA SZA SRL MA

111 111 110 000 /760
s

Skip the next instruction if either the contents of the accumulator are

negative or ;aro or if the link bit is a '1', and then clear the accumulator.

I/

I1 1_0 I six bits three Kts I

CRAP= 6

78

InPut/Out-Put

We will now learn how to get inforirtion into and out of the computer.

Until now the °sly way we .could do this was by pushing the switches and

reading the lights on the front of the computer. Obviously this is a tedious

and very slow primes,. POrtunetely there are instruction, available which

allow us to type the informatios onto a tali:type and Waft allow tie computer

to type out its information. These ate the input/output initructioes (lOT In-

structions). The code for these instructions is as follows:

OP code Device Select Command Pulses

Instruction register

The OP code is octal 6. Six blts are used to identify the device for

which an operation is to be perTormed. These bits are sent out to ell devices,

as are the three bits used for commands. Each.device has a device selector

which decodes the six bits of information and if the particular deviCe has a

4110
code equal to the six bits, then the selector allows the three command bits to

pass to the device. In this way only the selected device receives the commends.

This is illustrated in the following figure.

71

Utually,esch device needs to communicate with-the computer to inglicate

that it has data for the coaputer or.that it is ready to receive data from

the computer. This is accompliabed by use of a signal called a "flair. The

flag is used to indicate that the device is either ready or busy. The computer

has the capability to do instructions of the following sort:

1. Transfer data and/or operate the device

2. Test the statue of the flag

3. Clear or set the flag'

One instruction-in particular is useful. This is the skip on flakin-

struction. This allows the computer to skip the next instruction if a par-

ticular device's flag it set. This is facilitated by the SK1P BUS on the PD10-8.

If the bus sees a signal and a skip instruction is being executed then the next

instruction is skipped. The use of ihis instruction will be illustrated in the

next section. Note that the only device able to cause such a skip is the one

being addresscd by the six bits of the IOT instruction used for device select.

An illustration of the IOT instruction is communication between a teletype

keyboard and the computer. Whenever a key is struck, the teletype prepares a

series of high and low voltages, representing l's and zeroes, puts these into

a keyboard buffer register and then sends a signal to the computer (flag) that

the buffer has data,. If the computer is programmed to respond, the-computer

then puts this bit pattern into the accumulator register. What happens to

the pattern from there depends on the user's program. Since the information

must go through the accumulator register, we obviously need some mechanism to

ihform the computer that the information is coning so that the accumulator does

mot have some data fram another programiwhich would be lost when the accumulator

gets the information from the teletype. This informing is accomplished by the

setting and clearing of a keyboard "flag". The status of this ilag is then

ID

0

72

monitored by a specific set of IOT instructions called the Teletype Keyboard/

Reader Instructions. The flag being set indicates that the keyboard buffer

contains information and is ready to send it. These instructions are easy to

learn since there are only four of them.

Teletype Keyboard Instructions

Octal

KSF 6031 Keyboard Skip om nag - Skip the next
instruction if the keyboard flag is
related (caused by the presence of in-
formation in the keyboard buffer regis-
ter, i.e., a kay has been pressed).

KCC 6032

KRS 6034

ERB '6036

Clear the accumulator add clear the
keyboard flag.

Move the bit pattern in the keyboard
buffer to the accumulator register.

Perform ICC and KRS.

An example routine which would read one typed Character and store it in a

location called TYPED is -
SP

410

KCC
KSF
Jle .-1

KRB
DCA TYPED

TYPED 0

/CLEAR THE FLAG
/SKIP IF FLAG IS SET

/READ KEYBOARD BUFFER

/STORE TYPED CHARACTER HERE

Since the flag will be cleared until a key is pushed, the computer dill be

in a continuous loop between the No instructions

until a key is pushed.

73

A nicely symmetrical concept and commends exist for sending imformation

out of the computer. The "flag" now is a printer flag and it is "est" when

the printing part of the teletype is ready to accept a character, while the

flag is "lowered" or reset during the printing process. The repertoire for

output iss

Teletype Printer Instructions

Octal

TSF 6041 Skip the next instruction if the printer
flag is "set".

TCF 6042 Reset or clear the printer flag.

TPC 6044 Mbve the bit pattern from the accumula-
tor resister to the printer buffer
register and.print the character.

TLS 6046 Perform TPC and TCF.

Suppose that we have the bit pattern, called the ASCII code, for the

letter "14" stored in a location we called "Ele and want it to be printed by

the teletype. A short sequence of code to do that could be:

EM, 315

CLA CLL
TLS /RAISE FLAG INITIALLY
TAD EH /PUT ASCII CODE FOR M INTO ACC.

TSF /WAIT FOR FLAG

JHP .-1
TLS /PRINT M

Note that here there will be a continuous loop between

TSF

.IMP 1

until the printer raises its flag indicating it's ready to type, then the TS!

will be satisfied and therefore will skip the MP .-I instruction causing the

letterli.to be printed by the 171.11 instruction.

Again notice the basic difference between' these I/0 instructions and all

the other instructions we have encountered previously. We now have the capabil-

ity cf having the.running of a program be dependent on wee external event, in

this case the change in the status of an external deVice flag. Previously the

only way we could have altered the running of a programsonce it startetwes to

push the STOP button. This concept of having the running\pf a program be depen-

dent on external events is the basis for "interrupt programming" or real-time

conputer usage as it is sometimes called.

Until now all the-instructions we have asked the computer to execute have

been linear in the sense that one instruction followed the other in a line of

successive operadons. We may have had JuNPs, but these were still linear in

that:

a. a given instruction vas executed;

b. the next instruction web a Jule to.some other location;

"c. the next instruction to be executed after the JuNP was at the loca-
tion which has been JuNPed to.

There are several eituations where it.would be very helpful if we could

suddenly suspend, or interrupt, a program which is running, run another program

for a while, then return to the previous program. This is exactly what INTERRUPTS

d). There are at least three main situations where we want this ability.

73

1, Wheneyer the computer is camminicatiWig with smother device,*euch as

a teletype or magnetic tard unit, both the computer and the unit must be ready

to send or

4between thewto

data at the same instant so there must be some comMunication

tablith this instant.

2. If a computer is being used to run or minitor some sort of process,

such as an experiment in a lab or a steel mill, we would like the computer to

respoud to an emnrgency situation quickly rather thantaving to welt for some

low priority program to finish running.

3. If a computer is being used in "timesharing" i.e., where several users

are using the computer simultaneously, we would like the coiputer availability

to 800from user to user so quickly that all users feel they have the compater

exclusively.

To make full usage of the apred of the computer we would like it tO perform

some useful calculations while waiting for external device flags ratherithan

just looping endlessly as in the previous examples. This can be acconplished

through two new instructions:

Mnemonic Octal Meaning
1

ION 6001 Turn the interrupt capability ou.

IOF 6002 Turn the interrupt capability 'off.

When the interrupt capability is on, and a device flag is set, the computer

will finish the single instruction it is executing but then instead Of executing

the next instruction of the program will 'automatically disable the interrupt sys-

tem and execute a hardware JMS 0 instruction. From our previous descriptions you

should remember that this will cause the location of the next instruction to be

executed by the interrupted program to be placed into address 0 end will cause

the execution of the instruction at address 1. It is the programmer's respon-

sibility to write the interrupt service subroutine which begins at address O.

ki

a

76

The last instruction of this subroutine would naturally probably be a

Ali I 0

which would return control to the program which was running at the time the

interrupt occurred since the AS 0 stored the return address it location O.

Note again that the .14NS 0 is hardwired or automatic, while the programmer must

write the JIC I 0, to return from the interrupt. The basis af real time com-

puting is therefore that while the computer is running sone non-essential

program, uaually called a background program, it can be interrupted by a flag

from an external device which causes the computer to devote itself to processing

this interrupt. Upon completion of the interrupt processing, or foreground

40
program, the computer resumes running the background program where it had left

off.

Timesharing is possible because most I/0 equipment Ls much slower than

the compuLer. If a person is Bitting at a teletype, the computer can nornally

execute thousands of instructions between successive key presses by the user.

By alloWing the user only a 'imp short length of time, say 1/100 of a second,

then moving to a second user, again for 1/100 of a second, then returning to

the first user, the computer will then perform seemingly impossible tasks of

servicing two users simultaneously! Since this switching between users is

done via interrupts, there is no seeming interaction between the programs of

the two users and each will feel that he (or she) has the full usage of the

computer to herself (or himself). Of course, with large, fast computers, it is

40

possible to setvice many users "simultaneously.r A large computer may be

reading/printing with 50 teletypes, be reading from several card readers and

printing on several Line printers all at once.

77

The follolring illustrates the use of the interrupt facility and intact-

rupt programming.

Location Instruction

*0

0000 0 /LEFT FREK 1101, mum AMISS
0001 jig' I SERV Mute MUM= TO IMMO

ROUTINE

0002 SERVE /AMEN OP FUME ENTINE
*1600

1600 SERVE. =Cr /SW WI SCOPE FLAG
1601 SEP /SCOPE FLAG NOT WSW
1602 JMP SRVSCP /JUMP TO SC= ROOTINE

1603 KSP /SKIP ON REMAND ILAO
1604 SEP /KEYNOAND FLAG NOT NAZSED

1605 MI MEET MRCP TO ICETBOARD ROUTINE

1666 TSF /SKIP ON PRINTER nita
1607 SEP /Pan= Two WM RAISED
1610 SRVPNT /JUMP TO PRiNTER ROUTINE

1611

Note that location 1 has an iu4irect jump to SERV; SERV is the symbolic

nese of location 2 and location 2 has the symbolic name of location 1600 in

it (SERVE).

Note that at locatio- 1600 and following, there are a number of skip type

instructions. Theaware used in the PDP-S to determine which device has caused

the interrupt. The PDP-S has only one line to indicate that an interrupt has

occurred. Therefore when an interrupt has occurred, it could have been caused

by any device attached to the interrupt bus of the machine. The set of skips

used above is called a skip chain. When the above chain determines which

device has caused the interrupt, a SNP to the appropriate routine is caused,

and the device is serviced. An example follows for the keyboard routine.

Location Instruction Neadin&

*1650

1650 SRVKEY, KRB /READ DATA INTO ACC.

1651 DCA I L005 /STORE DATA INDIRECTLY

1652 INC L005 /UPDATE POINTER

1653 Ft; nuu ON INTERRUPT SYSTEM

1654 .714P I 0 /RETURN TO MAIN PRWRAM

64:

4110 A

A.

In this service routine one datum Is brought into the accumulator and

stored in memory. The pointer is updated and than the interrupt system is

turned back on. Immember that it wee automatically turned off when the

interrupt occurred. What would,happen if another interrupt °Furred just

after the ION and before execution of the .INF I 01 The new intorrupt mould

destroy the contents of locaiton 0 disallowing return to the location la the

main program from which the machine was initially interrupted. Since this is

intolerable, the PDP-S ION instruction does not actually tura the interrupt

system on until after execution of of the instruction following the M.

This allows return from the current interrupt before another can be accepted.

SMART

Input and output and control of devices by computer is usually accomplished

by an interrupt cabability which allows A prdigran to be interrupted, another

program to be run and theu followed by a retUrn to the previous program.

v.

79

Assembler
.$

It wee mentioned in Chapter 3 that the programmer could'sse a program

called.the Assembler to translate his mnemonic-coded program into the binary

coded instructions which the computer understands. There are several ways

in whir.h a programmer may prepare and submit his mnemonic prograi to the PDP-8.

Ile Instructions for preparing such a tape sdll be given later.

Refering to Exercise 3.3, the simple addition program would be submitted

to the abeembler in the following "file":

*30

CLA

TAD A

TAD D

DCA C

HLT

* 50

A, 0707

B, 0070

C, 0000

Note that symbolic.names are now used to represent the memory locations

which hold the two numbers to be added aid the resulting sum. When the assembler

translates the instruction "TAD A", it 'looks' for the dehnition of "A" in the

file ("A, 0707") which means "A represents a memory location which holds the

number 07178". "*50" is an instruction to the assembler to locate whatever

follows in the "file", beginn"g at location 50:

s,

Therefore: le is in location 50 and has a value of 0707

'B' is in location 51 and has a value of 0070

'C' is in location 52 and has a value of 0000

Also, the assembler instruction "*30" tells the assembler to start the

40 instructions of the program aelocatioo 30. Therefore, the instruction "CLA"

will be in location 30 and the instruction "DCA C" will be in location

,(300)-33.

41 The dollar sign ($) is important! It must be at the end of the input to

the assembler. It tells the assereler "end of the file to be assebled." I1 .

it is omitted, it could result in a "ciash" a fatal programming error. When

the assembler translates.the file, it will result in the sada binary (octal).

coding that was developed by hand in Exercise 3.3, The procedire to use the

assembler will be covered later in this chapter;

In the exaraple above, 'e, '131 and 'C' are referred to as symbolic addresses.

The programmer does not have to figure out what absolute (or relative) numeric

address they represent as in the examples in preceding chapters. rasp may be

up to six (6) letters and numbers in length, but cannot begin with a number.

Examples: .

Valid Invalid

BUFFER 12X

A

X

SUMS

The symbols can be used anywhere in a program as long as they are defined.

Examples:

2.

J1IP END

END, ELT

"Emir is defined as the locaticrn containing
the instruction "OLT". The computer, upon
execution, will jump to the line of the pro.
gram with the "HLT".

81

DCA SMM The computewill deposit i'he contents of the
ace. into the location define(' by the libel
"SUMP, which initially is (leaned as containr
ing sero (0000).

SUM, 0000

Note that the comma (,) must appear after the definition of a symbolically

addressed location:

SUM, 0000

END, HLT

NOTE: If a program had the instruction "MI' END" and the programmer forgot to

'define' a location with the name "END", an assembly error would occur and the

program could not be assembled until "END" is defined, or, if "END" defined a

location which contained a number instead of an instruction, "iMP END" would

still jump to this defined location "END" and try to execute the number stored

there. This would probably result in an error. \

COMMENTS: The programmer can, optionally, attach a small 'note-explaining any

program step if he desires. These notes are called cdkments and are ignored

by the assembler if they are preceded ty a slash (/). If the slash is not used,

the assembler.will try to translate the comments into instrUctione4-and errore

will occur. Examples:

.

I.

110

A 4

a

CIA /Cleer'accomuletowto.stert work

a.

JMS ADD /Jump to subroutine "ADD"

Eze, liLT /End i2f program
ADD, 0009 /Begin subroutine "ADD"

/End of subloutine "ADD"

82

One of the greatest labor saving acts of the assembler.is that it permits

the programmer to do indirect addressing without having to do the tedious word

couRp.ng. This.may be accomplished in one of two ways:

1. Exrlicitly by usi of thiletter I after the instruction;

2. Intrinsically by use of the Pseudo-op "PAGE".

In the above example the effect of ther ig JMP.I1ADD was.to.inform the

assembler that we want to jump to ADD indirectly, i.e., we want to jump to the

4

location in cn..e yhose address is stored in the word called ADD. Although in

this example, the indirect addressing was for a return from a subroutine, the

same'usage.of "I" will allow a jump or accessing of any location in core. Note

that-here the'assembler does all the dirty work; it finds the relative address

of.ADD and, encodes ii into the instruction word at JPIP I ADD.

The second method, that of using the Pseudo-op "PAGE", is even more power-

ful. "PAGE" is called a Pseudo-or(pseudo-operator), because it is not a com-

puter instruction which we want the assembler to encode into machine language,

/ 9.
but it is rather a command to the assembler. It says that we want uo more

instructions 'encoded into tile current page and that the next instruction to be

encoded stiould begin on the next page. If this instruction is 3iven before the

page is filled with code, tfiere will be Rowe unus.td words left. The assembler

%

83

vill then use these mords to store addresses for indliect refsmencee. Aiming

the assbabler does all the dirty ork. For example in:.

MECT, LAC

PAGE

.1141F NUT

.

FAGf

If the PAGE pseudo-op is red using CAP 98 (the cross astseableLysing

the PDP-9) then the page desired must be explicitly identified. If it ie not,

then CAP 98 assumes that,you mean page O. In CAP 98 the PAGE pseudo-op is not

needed to allow references to off page locations. The assembler:will.code the

instruction using indirect addressing aid uses the last locations on that page

to code the full address, just as if you had reserved those locaSions with the

PAGE Pseudo-op. **The cross assembler running an the PDP-11 does not allow use

of the PAGE pseudo-op nor does it allow addressing directly any off page loca-

tions except page O.**

The assembler will find the addrese of NEXT, itota this address in the

location following the last encoded instruction before the second "PAGE", and°

then encode the SNP instruction as an indiract jump. The assembler then allows

easy access across page boundaries. The only concern of tve programmer is that

"PAGE" be declared to allow sufficient excess words on the current page for all

indirect addresses. Since beginner programs usually do not need to be "tight"

in the sense of not wastiag core, a good rule is to issue "PAM?" after about

every four paper pages of wiitten code,

ar*

111

34

"PAGE" is only me of several pseudo-ops *lob mmke assembly lirguags

more coavenient than it first appears. Details of these others say be found

tn any DEC literature which discusses the4w:ALL-DIWummbler, however, we have

here provided enough to enable thp reader to write meaningful programs now.

All we have said can be 'summarized very briefly:

Summary of Rules for Writing linemonic Programs using the PAL-D Assemblers

1. The first line-ot code must be

*xxxx

where xxxx is the octal address where we want the first instruction encoded.

Note: Do not use locations 2008-2048 or 77508-77518. This will be explained

.later.

2. All.locations which we want to reference by name must be defined by

the name followed by a comma. For example:

SEVEN97

TAD SEVEN

41

3. We may 4se indirect addessing by spscifying it explicitly using the

letter "1". For exempt :

OTHER,5
JNF I OTHER

85

4. V. may tell the assembler to use indirect addressing fez referencing'

locations in:other pages by issuing PAGE before the page is filled with cods.

5. We may comment on any line by using a slash (/).

6. The last line, physically, of our program met have only tr.

Remember that we.have been talking about input to the assembler. Tom

may remember that we stated before that the input to the assembler is a punched

paper tape. The directions for making the tape are in the nest section. The

normal sequence, then, for a beginner to use the PDF-8 is:

1. Write the program in MNEWIRICS following the rules we have given for

the assembler.

2. Use the EDITOR program to make a puached paper tepe of the NNINDWIC

program.

3. Use the ASSEMRLER to-convert the mnemonic paper tape into a binary

paper tape.

4. Use the LOADER to read the binary paper tape and load it into the

core memory of the computer.

5. Run your program by putting its starting location into the PC register

via the panel switches.

The Disk Operating System

A common feature of the PDP-8/i :teeis a package of programs, including

the asseibler and other utility programa.

These programs are not kept in magnetic core memory, but are stored on a

peripheral memory device called the DISK. A disk is i bulk storage (evice, con-

sisting of a rotating magnetic disk on which "1"s and "On's are recorded by

magnetizing a small area of the disk's surface. The disk on ths me-8 has a

capacity of 831,488 12 bit words. (RKOI'disk unit)

6

4

86

The user gets access to the disc and to. any Of the talks for which program

have been written by use of a program called the MCKIM %The programme tells

the Monitory by means of typing commends on the teletype, to 'fetch' from the

disk the desired utility program(s), such as the asseObler. This section will

present three of the available utility programs to get the reader to begin using

the disk system:

1. the Editor

2. the Assembler

3. the Loader

1. The Editor - a program which will accept the programmer's file (such

as the example at the beginning of this chapter) and to punch a paper tape

(called tfie'source tape) of the file which can be suirmitted to the Assembler.

It can also be used to correct typing errors, and to add or delete lines of.

instructions.

2. The Assembler - accepts the source tape created by the Editor, and

translates it into binary instructions which the computer can execute; also will

list any serious programming errors (such as illegal instructions); punches a

binaryi-coded paper tape of the translated program to be submitted to the Loader.

3. The Loader - a program, which reads in a binarr-coded program tabe and

loads the instructions and/or data into locations in memory; the program would

then be ready to execute by operating the front panel.

To preparO a program for execution ou the P1P-8, using the disk system,

the programmer will follow a certain sequence of steps. The sequence of stops

is as follows:

As with the assembler, we present here only the iinisOum instructions to
40

enable you to prepare a tape of a meaningful program. Fuil detailo of all op-

tions are in DEC literature describing the SYMBOLIC EDITOR program. The basic

0

87

idea of the editor is that it presents you with an empty "file" or scratch

pad, correct any typing.errors and then tell the editor to punch out on piper

tape the contents of the scratch pad. Therefore, whenever you type to the

editor, your typing may be one of top distinct classes.

1. The material may be teat which you wish to be writtel on your scratchpad.

2. The material may be a command to the editor.

To differentiate between these types, the editor lives in two different

nmodes", the text mode and the command mode. To change tWi editor's mode type

the keys as shOwn here:

The most important editor commands are:

Command

A Append the following text, i.e., write it on the

scratchpad.

Meaning

a

List the buffer, i.e., type the entire contents

of the scratchpad.

nL List line a.

Punch the buffer, I.e., punch a paper tape of the

contents of the entire scratchpad.

-

nfl

nl

Delete line n.

Insert the next text bifore line n.

88

0 Again, represents the RITURN key- With thesw few commands, you should

be able to type and correct a smell program.

We have previously given the proper sequence of steps to running a small

program. Assuming that you have written such a smalli program, we now give you

step-by-step directions for doing so. Good luck! 1

1. Turn the teletype "on" (the knob on the lower right hand side of the

teletype should be turned to thelan position).

2. Load 7600
8

into the switch register and press LOAD ADD (7600 is the

starting address of the Monitor), and then press STMT.

3. If the teletype responds with a ".", the monitor is ready to accept

a command from the programmer. If the teletype does not respond with a ".", a

procedure called "Bootstrapping the Monitor" must be done. The resident Monitor

S.

area, locations 7600 through 7777, may have been destroyed or altered and can.be

restored by manually loading into the computer the following bootstrap routine:

1

Location Contents

0200

0201

0202

0203

0204

7750

7751

6603

6622

3201

5604

7600

7576

7576

89

4

After ldS!ling in the above program, set the switch resister to 0200,

press LOAD ADD, and than presi START. The teletype should respond mith a

* * the Nbnitor is ready to accept a command from the programmer.

Step 1: Prepare"the tape for ehe Asseibler by using the Rditor (EDIT)

program stored on disk. (AM: the doubly underlined portions will indicate

characters typed out by the computer while your responses are,sinaly under-

lined.

. EDIT J.

=Mae

* IN - T:

OPT -

emiNews

* ,
.1110

(Call tha editor program)

(These commands tell the Nbnitor that input
and output will he handled by the teletype)

(No options)

CA' is the Editor command APPEND which will
append (or add) to the Editor buffer (at
this time the buffer is empty; as the program
is entered, the buffer's/11 begin to fill))

Type in program to be assembled; be
sure to end with a $ or a fatal error
w1.11 result.

Press CONTROL and FORM keys at the same
time to return Editor to command node,
which is denoted by an "*". Rake any
corrections necessary by using the given
editor commande.

Turn the teletype td the LOCAL position, turn
on the tape punch by pressing the ON button,

press the IS button on the teletype to

punch a er for the tape, and then return
the tele ype to the LINE'position and press
the OFF button an the punch.

(Editor command to punch the entire contents
of the buffer)

El

0

TUrn on punch

(Editor will punch buffer-after
hitting carriage return)

TUrn off punch

Press CONTROL and C Rays (Return,
to Monitor)

Step 2..; Assemble the program by using the utility program PALD. The

assembler must read your entire tape three times.

41
PALO),

ouir T:

OM!

* IN - T:

* OPT - T

90

#04

Place tape in tape reader with the control
on STOP or FREE

Press CONTROL and P Keys

Turn on the reader

PASS I

Turn off reader at end of tape

Reload tape reader

Turn on PUNCR

Type CONTROL and P Keys - a leader is punched

Turn on reader when leader is completed_

46 PASS 2 - RIMY TAPE IS PUNCHED

Turn off reader'at end of tape

7railer is punched

AMR

91

Ultra off punch

Reload tape reader

Press CONTROL and P Dye

Urn an reader

PASS 3 - LISTING TYPES (the memory loca-
tions, their octal contents, and the
program are ail printed out)

Turn off tape reader at end of tape

(ribs computer will return
to the Monitor), and then
print a

If the assembler found any errors you must go back to the editor and

make a new source tape.

Step 3: Load and execute BINARY tape using the utility program LOAD.

Press CONTROL and P Keys

Tura on tape reader

Machine will stop after tape is read;
turn off tape reader.

Press CONT button on fropt panel of

computer

Computer will loop in resident monitor

Press CONTROL and P Keys, coLputer returns
to xouitor, prints a

To execute the_erogram:

Press STOP button on front panel of computeir

0

Sat Switch Register to the starting address
of the program

Press LOAD ADD, than prang START

innatCW.1.1

Go back to Exercise 3.3 and use the disk monitor system to: create first

the source tape, then the binary-coded tape, of the program, and load the

prograe into memory; than execute the program.

41

0

Solution: The following page is a copy of the print-out from the teletype; it

includes the commmnds typed by the programmer and the corresponding computer

responses.

The Editor and Asspabler (PALD) communications are shown. The Loader

print-out is not shown.

Note that: (1) A dollar sign (0 must be at the end of the source tape that

is submitted to the Assembler.

(2) Mhen using the Assembler:

(a) The first time the source tape is read in, the teletype

will print nothing, unless the assembler detects an

error.

CIO The second time the tape is read, the teletype will print

meaningless "garbage" (see following page)

(c) On the third read, the teletype prints a listing of the

program along with the memory location and octal code of

eech instruction. Then it will print au alphabetical

listing of all symbols in the program, and their octal

locations (a symbol trOle).

93

'EDIT
*OUT-T:

*OPT-

*A
*30

CLA
TAD A
TAD I
DCA C
HLT

*50
A, 0707
B, 0070
C, 0000
$

*p
*30

CLA
TAD A
TAD B
DCA C
HLT

*50
A, 0707
If, 0070
c, 0000

-FALB
*OUT-T:

*OPT-T
.14+

/GET A
/ADO B TO IT
/STORE THE SUM
/STOP

STORE THE SUM HERE

/GET A
/AIX) 13-TO IT
/STORE THE SUM
/STOP

/SIORE THE SUM HERE

0030 7200
*30

CIA
0031 1050 TAD A /GET A
0032 1051 TAD B /ADD $ TO IT
0033 3052 DCA C /STORE THE SUM
0034 7402 IILT /STOP

*50
0050 0707 A, 0707
0051 0070 13, 0070
0052 0000 C, 0000 /STORE THE SUM HERE

A 0050
B 0051
C 0052

0

94

EXERCISE 7.2

Repeat Exercise 6.1, except use the program from Exercise 4.4.

Solution: The following five pages are a copy of the Editor and Assembler

'dialogue'. Note that the programmer made several typing errors when he

created the file using the Editor. The errors are circled; he also forgot

the instruction "NW. The second and third following sheets show how the

41
errors were corrected. The basic schemes are:

(1) Get the line which is in error.

(2) Delete that line.

(3) Insert the correct line.

OR

Insert the line(s) which was (were) missed.

Table 6.1, which follows the output from the teletype, lists the Editor

commands.

NOTE: (1) When the "k th" line is deleted (*kD), the old (k4.1)th
line becomes the new k th line.

(2) When inserting a line (*jI), the new text is inserted
before the 'j th' line, and the line count is adjusted.
Also, after all the new test is typed in, hit CONTROL
and /ORM keys (together) to indicate 'end of new text'

to the Editor, or anything else typed in will still be

read by the Editor as 'new text'. After hitting CONTROL-
FORK, the Editor will respond with a "*", it's ready for

a new command.

(3) "*600" is counted as a line; it is line 1
"*650" is counted as a line; it is line 19
The line count is done in decimal, not octal.

After all the corrections wvre made, the programmer continued the

processing of the program (punch the source tape, call PALD, etc.)

95

'EDIT
*OUTrT:

*OPT-

*A

*600'
CLA
TADas
DCA
TAD
IAC
DCA
TAD
JES
CIA
ISZ COUNT /ADD I TO COUNTER.0?

JMP LOOP /NO ,JUMP

K27, 0033
COUNT,0000
MIN39 7775
WHERE,I000
NUM, 0000
*650
CHEK2,0000
LP, TAD M1N3 /SUBTRACT 3

SPA SNA /RESULT>0?

E27

Coma
NUN

NUNB

NUN
0173

/GET 27 AND
/FORK -27
/USE AS COUNTER
/GET Lim NO.
/FMK NEET 3 # TO TEST
/AND STORE IT
/GET IT AGAIN
/JUMP TO SORT-

JMP ZTEST--/NO
JME0 LPI /YES ,JUVP TO LPI

ZTEST, SZA /ACC.4?'
END, SNP ICHEK3/EXIT SUBRT-

TAD NUM /ACC.NOT ZERO,STORE #
DCA I WHER !AT ADDR. IN WHERE
ISZ WHERE /UPDATE STORING PTR.
JMP END

*4L
CIB /FORM -27

*4D

*41
CIA /FORK -27

*4L
CIA /FORM -27

El

ID

40

*27L
END, JNP ICHEWEEIT SURT.

*27D

*271
END, MP I CRU3 /EMIT SUR IIRT.

*271.
END, DIP I CHEK3 /ZEIT SHUT.

*29L
DCA I MEER /AT ADM. IN WHERE

*29D

*291
DCA I WHERE/AT ADDR. IN 'WHERE

*15L
K27, 0033

a

*15D

*151
K27, 0033

*18L
WHERE,1000

*18D

*181
WHERE,1000

/33 OCT...27 DECI.

/FIND .ADDR FOR STORING SERE

*6L
TAD NUE

*6D

*61
LOOP TAD NUN

*6L
LOOP TAD NIX

DCA NM

*SD

*81
DCA NMI

DCA NUM

*14L
L27 0033

*ifi.

*141

*14L

ELT

ELT

*21L
CEBU 9 0000

*211
CHM ,0000

*21L
aux390000

0
*22L
LP , TAD MIN3

*22D

#22I
LP1 , TAD MIN3

*22L
121 , TAD 14IN3

.)'/GET LAST NO.

/arr LAST NO.

/GET LAST NO .

/AND STORE IT

/AND STORE IT

/AIM STORE IT

PfES ,STOP

/YES 9STOP

/ SUBTRACT 3

Manua 3

/ SUBTRACT 3

97

*P
*600

cIA
TAD F.27 /(a1T 27 MCI. A10)
CIA /OM
DCA CO= /0E AS MINTER

LOC*, TAD NUN /cart LAST
IAC /11MIN NUT # TO TEST

DCA NUM UND 'WORE IT
TAD NUN /GM: IT AGAIN

CiIME3 /JUIN, TO SUM.
cIA
ISZ COUNT /ADD 1 TO COUNTER.0?
.11e LOOP /NO 0111141,

/yEs STolt
R27, 0033 /33 OCt.27 CECI.
alum g0000

/7.75
WHERE 1000 /FIND AMR FMt. STORING HERE
Mit 0000
*650
cm3,0000
1219 TAD NM /SuETRACr 3

SPA SNA /RESULTHI?
ZTEST /No

JAW 121 /YES 011114P TO L1,1
ETEsT, sZA /ACC.44?
END JIIP I Cm0L3 /ExiT sun.

TAD NUN /ACC.NoT ZERO g STORE #
DCA I INIERE/AT ADDR. IN man
Isz WERE /UPDATE STORING PTR.
.Du, END

98

-1

.PALD
*00T-T:

*111-T:

*OPT-T
++

)9

0600
0601
0602
0603
0604
0605

7200
1215
7041
3216
1221

7001

*600
CIA
TAD K27 /GRT 27 DECI. AND
CIA /FON -27 .

DCA COUNT /USE AS COUNTER
LOOP, TAD NUM /GLT LAST NO.

1AC /FORK NEXT # TO TEST

a

0606 3221 DCA NUN /AND STORE IT

0607 1221 TAD NUM /4RT.IT AGAIN

0610 4250 JNS CHEK3 /JUK: TO SUBRT.

0611 7200 CLA
0612 2216 ISE COUNT /ADD 1 TO COUNTER.0?

4613
0614

5204
7402

JHP LOOP /W3 ,JUMP
HLT rifES,STOP

0615 0033 K27, 0033 133 OCT.027 DECI.

0616 0000 COUNT,0000
0617 7775 MiN3,7775
0620 1000 WHERE,1000 /FIND AMR FOR STORING HERE

0621 0000 NUM, 0000
*650

0650 0000 cm3,0000
0651 1217 LP1, TAD M1N3 /SUBTRACT 3
0652 7550 . SPA SNA 4RESULT>07
0653 5255 JMP MIST /NO
0654
0655

5251
7440

MP LP1 /US JUMP TO 121
ETES!, SEA /ACC.m0?

0656 5650 END, JPIP 1 CHIK3 MIT SUBRT.
0457 1221 TAD NUM /ACC.NOT ZERO,STORS #
0660 3620 DCA 1 WHIRR/AT ADDR. IN WERKE
0661 2220 ISE WHERE /UPDATE sTonsc PTR.
0662 '5256 .1MP END

CHEM 0650
COUNT 0616
END 0656
K27 0615
LOOP 0604
LP1 0651
laN3 0617
NUM 0621
WHERE 0620
ZTEST 0655

0

100

TAILS 7.2

of 11._..d_intor Commands

Command Pbrmet(s),

READ Read incoming text and append to buffer
until a form feed is encountered.

APPEND A Append incoming text tO any already in
the buffer until a form feed is encountered.

LIST List the entire buffer.
aL List the line n.

menL List lines a throagh n.

Proceed anCoutput the entire contents of
the buffer and return to commend pods.

aP Output line alp followed by a fame feed.

minP Output lines a through ne followed by a
form feed.

TRAIL T Punch four inches of trailer.

NEXT N Punch the entire *buffer and a form feed;
kill the buffer and read.next page.-

nN Repeat the above sequence n times.

KILL X Kill the buffer.

MUTE nD Delete line n.

mouD Delete lines a through n.

INSERT I Insert before line one all text until a
form feed is encountered.

n1 Insert before line a until a form feed is
encountered.

CHANGE nC Delete line n and replace it with any
number of lines from the keyboard until
a form feed is encountered

eignC Delete lines a thrOugh a, replace from
keyboard as above until fors feed is
encountered

MOVE mpn$kM Move and insert lines a through n before
line k.

GET C Get and list the next line beginning with
a tag. .

nG Get and list the next line after line a
which begins with a tag.

101

TULE 7.2 (continued)

Commend Potaat(a)

SEOCR Search the entire buffer for the character
specified (but not 'echoe4) after the 40

carriage return; allow modification vhsn
found.
Search line nip as above.allow modification.

monS Search lines e through n, allow modification.

END FILE E Free:ass the entire file (perform enough 40

NEXT comiands to pass the remaining input,
to the output file) and create ankend-of-
file indication; legal only for output to

the eyeteasdevice. If the low-speed paper
tape reader.is used for input while per-
forming an Ig commend, the paper tape reader ft

will eventually run out of tape, and at
this point typing a form feed vill allow
the command' to be completed,

MATTER 8

102

Overview

You now know all there Ls to know about digital.computers. Yes, that is

stretching the truth but you do now know how digital computers work. 110

40

matter how large or complicated the computer looks, the CPU just sits there

and fetches one word at a time from memory, does something with it, then goes

to the next instruction, etc., etc. You now understand how a comptter can

communicate with a person or many persons via teletypes or how a computer can

monitor many events "simultaneously" through interrupts. You saw how it was

necessary to have service programs to do anything useful with a computer be.

cause just operating it by its switches is hopelessly slow and tedious. So

now you know what DA operating system, just a collection of service programs,

is. You saw how the Assembler, a program, can save you much of the dit:ty,

tedious work in writing programs. By using the Assembler it is possible to

write a still More comrlicated program called a Compiler and Viola! we have

FORTRAN, BASIC, etc. These allow the user to be concerned even less with the

internal workings of the computer. So now no matter how impressive a digital

computer installation yod see with tape drives and disc drives, and printers

and punches and readers and teletypes and cathode-ray tubes and light pens

and....and.... you know that, at the bottom of it all, in the panel behind

the switches, the computer just fetches a single instruction from core, does

something with it, goe* to the nest one, etc., etc. Of course, it may do this

half a million times in the time it takes you to say -

The End.

103'

APPENDIX

BINARY OCTAL - DBUNAL NUMBERS

&neer Radix

All numbgr systems have associated with them, a number called the radix

or baie. The radix is the number of'symbols coniained in the particulix

number system. In the decimal number system, the radix is 10 because it con-

tains 10 symbols ranging from 0 - 9.

In the octal number system, the radix is 8 because it contains the symbols

0 - 7.

ftemple: What is the radix of the binary number system?

SolutiOU: The binary numger system as a radix of 2, the 2 symbols contained in

it are 0 and 1.

Notice that the value of the radix in each number system is 1 greater than

the highest possible value in that system.

In the binary number system, the highest possible value is 1. The radix

is 1 greater than 1,Nor 2.

40

Exmaple,: What is the radix of the "number system" which contains the following

symbols!
1

6 9 A Y I 0.# 1 5 ? F

Solution: Since there are 11 symbols in this particular number system, the

radix is 11.

Radix Point
+ft

In all number systems, the radix point, or decimal point is the separation

between the integers and fractional part of the Uumber system. Because the

a

4//

104

radix point JO omitted in computer calculations,'integers will be the subject

of this-appendix.

Subscripts

4111
Because number systems share symbols, it is sometimes difficult to

recognize the number system to which a particular number'belongs.

For example, the number 7601 could belong to the decimal nmOber system

and to the octal number system. To clearly define which number system 7601

belongs to, the number Ls followed by its radix subscript, or subscript.

Therefore, 76018.belongs to the octal number system, and 760110 belongs

to the decimal number system.

Example: Show that the numbers 40, 101, 19 belong to the decimal number

system.

40

Solution: 40
10

101 19
10' 10

Example: Show that 40, 101, belong to the octal number system.

40

Solution: 40. 101.
a--

Example: Show that 40, 101 belong to the binary number system.
4,

101
2

-----The symbol "6" doesn't belong to the binary system, soSolution:

the number 40 cannot be designated as belonging to the binary number system.

Number Position

Consider the decimal number 6947:

The 7 is said to be in'the Oth or units position.

The 4 is said to be in the 1st or tens nosition.'

105

The 9 is said to be in the 2nd oi hundreds position.

The 6 is said to be in the 3xd or thousands position.

The rightmost position has a value of one (units positicn), and Pro-

ceedirg to the left, the next position has a valuta which is the radix (in

'this case, 10) times the preceeding positional value. Time next position has

a value 10 times the preceeding positional yam, and so on.

These positional values can be expressed in powers of the radix value.

Also, thionumbers occupying each position can be called the coefficient

of that particular position.

Example: Express 694710 in terms of its coefficients, radix, and positional

values.

Solution: 6 x 10
3
+ 9 x 10

2
+ 4 x 10

1
+ 7 x 10

o

6000 + 900 + 40 + 7 694710

Example: Express 70510 in terms of its coefficients, radix, and positional

values.

Solution: 7 x 10
2
+ 0 x 10

1
+ 5 x 10

o

700 + 0 + 5 m 705
10

Example: Express 09705010 an terms of its coefficients radix, and positiongl

values .

Solution: 0 x 105 9 x 10
4
+ 7 x 10

3 + 0 x 10
2
+ 5 x 10

1 + 0 x tO

0 + 90000 + 7000 + 0 + 50 + 0 9705010

Notice in the previous example, the 0 value coefficients contributed nothing to
ft

the value of the number.

a

0

0

Daciael Univalent of Binary 'tabors

Just as decimal numbers cari be represented in this forme so can binary

and octal numbers.

ln the binary number system, the position values are tamed on the powers

of two. Then', the Oth position utas a value of 1, the 1st position has a value

of 2 times the Oth position, or 2, the 2nd position has a value of 2 times the

2nd position, or.4, and so on.

In this way, any numioer in any number system can be expressed in its

decimal equivalent.

Examp/e: What is the decimal equivalent of the binary number 10110?

Position #: 4 3 2 1 0
Number: 1 0 1 0

2

Solution:

16 + 4 + 2 am 22
10

Whereas, 24 n 16, 2
3

89 22 P 4, 21 P 2, 20 Pi 1

Example: What is the decimal equivalent of 11002?

Solution: Position #: 9 8 7 6 5 4 3 2 1 0

Number: 0 0 0 0 1 0 0 1 0 0

(1 x 2
5
) + (1 x 2

2
) P 32 + 4

m. 3610

Decimal Equivalent of Octal Numbers

In the octal number system, the position values are based_on pOwers of 8.

The Oth position has a value of 1 (or 80 to 1), the lst position has a value of

8 x 1 P 8 (or 81 m 8), the 2nd position has a value of 8 x 8 P 64 (or 88

and so on.

Example: What is the decimal equivalent of the octal number 715?

Solution: Position #: 2 1 0
Coefficient: 7 1 5

(7 x 82),+ (1 x 81) + (5 x 8°)

448 + 8 40 5 0 46110

_Example: What is the decimal equivalent of the num6er 61038?

Solution: Position #: 3 2 1 0

Coefficient: 6 1 0*3

(6 x

3072

Example:

83) + (1 x 82) + (0) + (3 x 8°) .

+ 64 + 0 + 3 0 3139,0

Express the number 0010108 in its decimal equivalent.

Solution: Position #: 5 4 3 2 1 0
Coefficient: 0 0 1 0 1 0

(0) + (0) + (1 x 83) + (0) + (1 x + (0) 0

0 + 0 + 512 + 0 8 + 0 . 520
10

107

Notice in this example that 001010 could also have been considered a

binary number, 0010102. However, the decimal equivalent of 10102 is 1010 which

greatly differs from 52010.

In all of the previous examples, conversion was"from the particular number

system to the decimal number system which everyone is familiar with.

Conversion from the decimal number system to a particular number system

will now be considered.

Binary to Decimal Conversion

Example: Convert 37
10

to its binary equivalent. To accomplish'this, repeatedly

divide the decimal number by the radix of the number system being considered.

In this example, begin by dividing 31 by 2:

11#

Solution: 37 * 2 18
18 2 m 9

9 * 2 in 4

4 2 2

2 2 m 1

2 1 so 0

Remainder I

Remainder m 0.
Reminder I

Remainder m 0
Remainder 0
Reminder I

Ogh position
1st position
2nd position
3rd position
4th position
5th position

Therefsre,
3710

1001012

In this conversion, 37 was divided by 2 which is 18 and a remainder of

1. This first remainder fills in the Oth position of the binary timber. 18

was then divided by 2 to get 9 and a 0 remainder, this remainder filled in the

next position, the 1st. 9 was next divided by 2 to get 4 and a remainder of

1. The 1 filled up the 2nd pos4lion. 4 was divided by 2 to get 2 and a rer,

mainder of 0 which filled the 3rd position. 2 was divided by 2 to get 1 and

a 0 remainder which went.into position 4. 1 was divided by 2 to get 0 and a

1 remainder which was put in position S. Repeated divisions by 2 will yield

zeroes, which means that the power of two does not exist for those particular

positions.

Example: What is the binary equivaledt of 0310?

Solution: 03 2. 1

J. * 2 m 0
with I remainder Oth position
with I remainder 1st position

0310 in 1SI0
2

Example: 1010 has what binary equivalent?

Solution: 10 4 2 w 5
5 * 2 m 2
2 4 2 1'

1 * 2 m 0

1

with remainder of. 0
with remainder of 1
with remainder of 0
with remainder of 1

10
10

1010
2

Oth position
.1st position
2nd position
3rd position

109

Decimal to Octal Conversion

Decimal to octal conversion is accomplished in the same manner, using 8

as the coeversion radix.

ElamPle: What is the octal equity:slant of 5910?

Solution: 59 * 8 es 7

7 * 8 0

with 3 remainder Oth position
with 7 remainder 1st position

59
10

um 73
8

iosigav What octal number is represented by "9110?

Solutian: 0991 * 8 mi 123

123 8 15

15 8 1

1 I. 8 , 0

with remainder 7
with remainder 3
with remainder 7
with remainder 1

0991
10

a 1737
8

Oth position
lst position
Zad position
3rd position

41Q

Grouping - Binary to Octal .Gonversion

The computer uses the binary number system in its calculations. But

writing out long rows of binary numbers is very tiresome (wate

1000101010011100110 five times to get ae idea). Binary to octal conversiah

simplifies the handling of binary numbers.

First, ihe binary number is grouped into threes starting in tha Oth

position.

lb:ample: Group 100011101011011010 into threes.

Solution: 100 011. 101 011 011 010

44.

Because zeroes do not add value to a number, then can be included so

that there are always three binary numbers to uoch group which is called a

triad. This "addition" always takes place on the left side.

.\\

4

110

Armaggv. Group 1011 into triads.

Solution: 001 011 .

Next, place the decimal value of each group below it and group the numbers

together.

Coniert _1011100012 to octal.

a

Solution: 101 110 001
5 6 1

101110001
2

5618

Where 101 gm 1 x 2
2 + 1 x 2

o
00 5

2
110 10 1 x 2n + 1 x 2

1
110 6

001 al 1 x m 1

!Emelt: Convert 1000
2

to octal.

-

Solution: 001 000
1 0

1000
2

10
8
(4

I

Grouping - Octal to Binary Conversion

To convert a number from, octal to binary reverse the above process.

Example: Convert 176
8

to binary:

Solution: 1 7 6

001 111 110

176 0011111102 m 1111110
2

410
Zeroes were added to the'octal '1' to form the lift triad.

0

ampuounanc

Complementing is iiortant in a computer, because it allows the computer

to subtract numbers "easier" by adding negative numbers.

l's Complememt

The l's complement of a binary number is a number formed by inverting

all of the digits:
,

BXemple: What is the l's complement of 100102?

Solution: Number: 10010
Compledint: 01101

41.

Aemplv What is the 1's complement of 11
10

Solution: Convert 11 1-0 to Binary

11
10

m 1010
2

Number: 1010

l's Complement: 0101

0101
2
is the binary l's complement of decimal 11.

2's Complement

The 2's complement is found by adding '1' to the l's coiplement.

Exampla.:

Solution:

What is the 2's complement of 100102?

Number: 10010

l's coimplement: 01101

+ 1

2's complement: 01110

Example: What is the 2's complement of 1110?

Solution: Since 11
10

m 1011
2

NUmber: 1011

l's complement: 0100

+ 1

2's complement: 0101

111

0

0

"Ws" Csirelesssts,

Ths I's complement of an octal member can be found by subtracting the

given number from the next highest power of 8.

Eample: What Ls the Ws complement of 175608?

Solution: BecauSe 17560
a
contains 5 digits, the next power of 8 above 17560

is 1000008 or 8 .

Power of 8: 100000 Note that arithmetic is octal.

Number: -17560

R's complement: 60220

EzamplE: What is the R's complement of 778?

Solution: There are 2 digits in 77, so the next highest power of 8 is 82 or

loo.

Alo

Power of 8:. 100

Number: -77

R's complement: 1

"W-1" Complement

The R!..1 complement Ls found by subtracting 1 from the R's complement.

Fineple: What is the 111 complement of 175608?

Solution: Power of 8: 100000

Number: -17560

R's complement: 60220

- 1

R-I complement: 60217

113

'fbe V. complement is analogous to the binary 2's complement.

The re complement is analogous to the bineryl'a complement.

Another may to fintIthe R and WI complements is to common the

specified octal number to binary. Form that numbers 2's and l's complements

and then comport back to octal.

k2sell: Find the R and Rps1 complement of 175608.

Solution: 1 7 5 6 0

001 111 101 110 000

number: 001 111 101 110 000

1's complement: 110 000 010 001 111

2's complement: 110 000 010 010 000

l's complement: 110 000 010. 101 '111

1-1 complement: 6 0 2

2's complement: 110 000 010

R's complement: 6 0 2

1 7 w 60217
8

010 000

2 0 60220
8

NOTE: The R's complement is often referred to as the eight's complement and

the R-1 complement as the seven's complement.

0

0

