.

DOCONENT BESUNE
. ED 177 020 | SB 029 168

 TITLE _.PDP-R Introductory Einicomputer Labcratory Banual.
: Digital Systess Educatior Comsittee Ins uctional
Tools Task Force.
N INSTITUTION pittsburgh Univ., Pa. Dept. of !1ectric:2
’ Engineering.)
SPONS AGENCY National Science Foundation, Washington, [.C.
PUR DATE 76 -
‘GRANT HSP~G2Z~2957
NOTE - 117p.
EDRS PRICE NFO1/PC0S5 Plus Postgge. ,
DESCHIPTORS Ccaputer Based Lalkora tories; Computer Prograas; .

Computers; *Computer Science Edication; *Digital

gl Computers; *Engineering Education; Higher Education;
*Independert Study; Instructicn; Instructional
Materials: Manuals; Programed Materials
ABSTRACT

) This is a self-study manual designed fcr freshman oOr
sophomore engineering students who have interest in the 4
organizaticnal and operational concepts of the digital computer, but
little or no experience with such computers. fhe manual gives an
intrcduction to a general purpose sinicomputer, Digital Ecuipmants

"Corporation's PDP-8. (HK) ‘

:a:#*itttt**tt:**tttttttt*tt*ttttttt#ttttttt*ttttttttoit:a#t*t:#**&t*tt
* keproductions supplied by EDES are the best that can be made ¥

* fros the original document. *
e e e T L Rl L DT L L L L R L Ll b h bttt ittt

® U'S DEPARTMENT OF HEALTN, “PERMISSION TO REPRODUCE THIS «

EDUCATION & WRLFARE MATERIAL HAS BEEN GRANTED BY
NATIONAL INSTITUTE OF N
EDUCATION

THiS DOCUMENT MAS BEEN REPRO- , u Iu"!— s

B8 DUCED EXACTLY AS RECEIVED FROM NSF I7-01
THE PERSON OR ORGANIZATION ORIGIN- -4 :
ATING IT POINTS OF VIEW OP OPINIONS ’

. STATED DO NOT NECESSARILY REPRE- i

SENT OF F 1CIAL NATIONAL INSTITUTE OF TO TH RESOURCES '_
EDUCATION POSITION OR POLICY E EDUCATIONAL

INFORMATION CENTER (ERSCL"

- PDP-8 INTRODUCTORY
MINICOMPUTER LABORATORY
o ' MANUAL

ELECTRICAL ENGINEERING DEPARTMENT
UNIVERSITY OF PITTSBURGH
. PITTSBURGH
®. PENNSYLVANIA

ED177020

®
o DIGITAL SYSTEMS EDUCATION COMMITTEE
' INSTRUCTIONAL TOOLS TASK FORCE
@
®
&0 DISE is a project supported by the National Science Foundation
® & Grant No. GZ--2997
N Copyright © 1976 by The University of Pittsburgh
(‘& No part of this text may be reproduced in any way for the purpose
O of profit.
w]
« o
-

.

)
DISE PROJECT

The DISE (CIgital Systems Education) Project is sponsored by Grant #GZ-2997 from the National Science Foun-
dation. The nucleus of the project is the DISF advisory Committee, which is an inter-university, inter-industry
working group with the specific charter of Zeveloping, coordinating the development of, and distributing educa~-
. tiomal/instructional materials in the digital systems area.

The specific goals of the prgiiﬁii:re: to assess Digital Systems Education, both to determine the types of
curricula, course contents, lab struc es, ecc., in present programs and to determine how present programs are
meeting the needs of industry and the students; to review existing educational/instructicra. materials in this
area; to develop and/or coordinate the developmen: of new materfals; to provide a industry/university forum to
foster the exchange of new technalegy; and to obtain widespread dissemination and use of newly developed or
existing materials.. ‘ -

Project Structure

Advisory Committee. It is the responsibility of this group to detarmine the areas in which the educational/
{nstructional materials will be solicited and developed and to act as a review board for proposed projects and
completed materials. The committee will consist of betweem 15 and 20 members with the academic, industrial, and
professional societies sectors represénted. The present members of this comnittee are:

Dr. Wayne Black Dr. Glen langdon
Charles T. Main, Inc. IBM Research

Professor Taylor Booth Professor Arthur io
University of Connecticut Princeton Unfversicy
Professor Thomas Brubaker Mr. Foancis Lynch
Colorado State University National Semicondisctor Corporation
Professor James T. Cain ‘ Profvssor Larry McNamee
University of Pittsburgh UCLA

Professor Yachan Chu Professor T.W. Sze
Unfversity of Maryland University of Pittsburgh
Professor Ben Coates Professor H.C. Torng
Purdue University Cornell University
Professor Ronald (. Hoelzeman Professor Raymond Voith
University of Pittsburgh University of Tcledo

Task Force Committees (Project Groups). These committees or groups represegt the "manufacturing” division
of DISE and constitute the working groups of people developing materials for dissemination. There are presently
five project groups, although new groups will be formed due to changes in technology, demand, or interest levels.

For further information, contact:

DISE
Electrical Engineering Department
Unfversity of Pittsburgh
Pittsburgh, Pennsylvania 15761

Jd

PREFACE

This matual {o designed for the freshman or sophomore level engineering
student who hse no knowledge of a computer systea. “ It 1is to serve u'm}n— o
:Mﬁctit;n to a mgm- System (a general purpose minicomputer, Disitgl Equip-
ment Corporation's PDP-8) from a progi-a-:l.ng or user's via-poini:. The iatent
of this manual is to presemt organizﬁtiml and operational concepts of theo
digital computer to the s:udeﬁt'whn has the interest in the subject, but little .
or no experience. This m;nl is self study 1. nature, and when used with the -
PDP-8, should allow the student to, on his own, master the operation of the
computaer as well as several basic digital system architecture concepts.

The solution to each exercise is given after each problem definition with
the intent of demonstrating the subject material. There are also several
quesidions in each chapter which the reader 1is asked to solve. The solution
will usually follow directly from the section or exarcﬁe preceding the ques-
tion(s). A general knowledge of binary and octal number systems will be help-
ful to the reader. However, there is an appendix with sufficient background

-information on these number systems for the reader to handle this booklet.

T oy

hef&e. [J L] o [J [J L ® .. L

Chapter 1,
Chapter 2,
Chapter 3,

. Chapter &,

Chapter 5,
Chapter 6,

Chapter 7,

'Chap:er 8,

Appendix, Binary-Octal-Decizal Nusbers

Front Panel. .
MemOry

Instructions .

Indirect Addressing.

‘Microinstructions

Input/Output . . .

Agseabler

Overview

<

13
33
49
70
79
102
103

CHAPTER 1

Front Panel
In this first section, the reader will sit down and perform some simple
operations on the PDP-8/1 computer, with the obj;ctim of familiarization
with the contgols .on the front panel, and what one can do from the panel.
In the lower left-hand corner of the panel is a key-type power switch.
(m the PDP-SIS.the power :key slot is on tha J:mr right, and the pamel lock
key slot is on the lower left.) Push the key in slightly and turn to the right
to the "power” position. The computer is ready to use.
~ The fi‘rst exercise will demonstrate how to manually 1oa¢‘l information into
‘specific locations in the memory of the computer. The PDP-8 has 4,096 (=212)
"slots" called words in its memory. The memory is the place where the cowuter.-
stores or remembers information ontered by the prograsmer, or calculated by the
machine. The memory is called "random accoss"; any location is just as easily
accessed as another. Information in the rné-s is organized into words of 12
| binary digits, or "12 bits", which the computer interprets as instructions or as
data to be opéra.téed on. |
The twelve switches, beginning with the seventh switch from the left, are

called the SWITCH .REGISTH (Figure 1.1). The switch register is used to manually

enter information into the machine. Note that each of the twelve switches of the
switch register correspond to a particular binary digit in the display on the
panel labeled the PROGRAM JOUNTER, MEMORY ADDRESS, MEMORY BUFFER and ACCUMULATOR.

The nineteenth through twenty-sixth switches are for some general functioms.

These switches and displays will be presented as the reader progresses.

EXERCISE 1.1

Load five bipary numbers into five consecutive locations in the computer

memory; then examine these locations and verify that these numbers have been

stored. The five binary numbers are:
600 000 000 001
000 000 000 111
000 000 111 111
000 111 111 111

111 111 111 111

Procedure: The programser must first "tell" the computer where store the

first number. Suppose the location for the first number will be 00J 000 000.

Set the SWITCH REGISTER to this value; the "up” position of a switch is a '0'

and "down" 1s a '1'.. (On PDP-8/S ewitch register up = 1, down = Then, to

tell the compucer this is the address in memory you are interested in, press the

LOAD ADD switch and release. Observe that the setting of the switch register is

now shown in the display labeled PROGRAM COUNTER. (An "on" light 1s a 'l’' and
an "off" light is a zero.) The program counter is a circuit vhich the computer
uses to keep track for itself where in memory it is to "find" something to do
next. But the computer has still done nothing to location 001 000 000 000. To
place the first of the five numbers in this l.ocafim, set the switch regisﬁer
now to 000 000 000 001, and 1lift DEP (depqs:!.t) switch to operate. The location
in memory which is numbered 001 000 000 000 now holds dn it the number

000 000 000 001. The programmer has a visual check of this fuct by the displays

on the panel labeled MEMORY ADDRESS and MEMORY BUFFER.

Memory Address shows the address of a location in memory and Memory Buffer

shows what is -ontained in that particular memory location. Note that after
' b

11fting DEP, the Memory Address reads 001 000 000 000 and Memory Buffer reads

000 000 000 001. Also note that now the PROGRAM COUNTER reads 001 000 000 001;

it has automatically incremented itself by one, to indicate the next consecutive

memory location address. The programmer can now deposit the next nucber without

i J
{

[}

loading the next consecutive address. Therefore, set the Switch Register to
® 000 000 000 111 and 1ift DEP. Repeat this procedure for the mext three numbers,
observing that the Memory Buffer and lﬁ-ory Address displays will verify the

deposit operations.

e fiote that the program counter still incremetted itself again after the
fifth deposit operation.
Now, to go back and check these five locations, first, "tell"” the computer
¢ the first address you are interested in (i.e., 001 000 000 000). Set the switch
register to 001 000 000 000 and press LOAD ADD. To check the conteats of this
location, press and release the EXAM (examine switch). The Memory Address dis-
ot play will read 001 000 000 000 and the !!e;ory Buffer will read 000 000 000 00l.
The program counter has again incremented itself to 001 000 000 001, and the
next consecutive memory location can be displayed by pressing EXAM again.
. Examine the next three locations in the same way.
Note that pressing EXAM does not affect any memory location contents; it
merely lets the programmer "look" into memory.
P ,
Summary: ‘this exercise has presented a method for the programmer to load in-
fomtién into any memory location and to check and modify the comntents, 1f
® ’ necessary.
° ” : . . Singie Inst.
f. ‘ T S ' | Single Stop
: —— Ce——— Stop
‘ e v G [—
® e AT T T T T : ine
1 Lock - shassaainttasd “TL@.?LJ Deposit
;::: Field] TH Switch - — Ji:: Address
Instruction Field Register | | ‘ Start . o
E l{fC‘ Figure 10 1

Run a sample progras to clear; 200, (128,) comsecutive memory locations '
beginning with location 001 000 000 000. It is suggested that Exercise 1.1

‘ be complated before this exercise. Because this-asarﬁiae is meant to merely
familiarize you with the controls of the computer, we postpone uatil later the
e:ﬁlanntion of vhy this particular series of ones and zeroces accomplishes what

we say it does. For now just take it on faith.

Memory Locationm | ,. Contents

000 000 101 000 : 111 110 €00 000
000 000 101 001 011 100 101 111
000 000 101 010 010 000 101 111
000 000 101 011 010 000 101 110
000 000 101 100 101 000 101 001
000 000 101 101 111 100 000 010
000 000 101 110 111 110 000 000
000 000 101 111 - 001 000 000 000

Procedure: Deposit these inmstructions into the given locations using the pro-
cedure in Exercise 1.1. Note that instructions nré actually coded in binary
numbers. Also use the procedure from Exercise 1.1 to check that the instruc-
tions were 1@# correctly. To run the program, set the starting address, i.e.
000 000 101' 000 into the Switch Register, press LOAD ADD, and~:ell the com-
puter to begin execution of the program by pressing START. The lights on the
display will go out and stop at some different setting. If the memory buffer
display reads 111 100 000 010, you knoﬁ the program has stopped. This instruc-
tion i{s read by thg machine as "halt execution.” (In the‘?DP-BIS the memory

buffer shouid read 000 000 000 000, and the memory address should be 56.)

J

*

Next examine the locations from 001 000 000 000 to 001 001 111 111 (1000,
to 11775). Théy should all read 000 000 000 000.

Summary: Exercise 1.2 illustrates how to execute a program which is stored

in memory; and again, to check results of the program operatiom.

QUESTION 1.1
How would you manually clear meémory locations by using the panel sostead

of using a stored program to do it? (Hint: Exercise 1.1).

ANSWER TO QUESTION 1.1

First, set the switch register to the address of the desired memory loca-

tion. Then press LOAD ADD. Next, set the switch register to all zeros

(000 000 000 00U) and press the DEP switch. This procedure deposits a word of
all zeros into the desired memory location, i.e., that location has been
"cleared." To clear successive ne-ory(locations, load the address of the first
location to be clerred, deposit zeroes in it, and continue to press the DEP
switch. Each "deposit" will clear the n;xt successive memory location, because
the computer increments the program counter after each deposit; the computer is

then pointing to the next successive 1o§ation.

at)

-

CHAPTER 2

Meuwory
Chapter 1 introduced the ﬁnry .of the PDP-8. The 6,09610 vords of
memory are in a structure called MAGHETIC CORE MEMORY. The core is composed
of an array of small magnetic "donuts” inéerlink:d by a series of criss-crossing
wires. A logical '0' or a logical '1' wiil be set on a particular "doput" de-
pending on which direction it is nméizea by the current passing through it.
A 12 bit word is set in memory by magnetiszing a group of 12 "domuts” in namry
The 4,096 word memory is thus composed of 12 x 4,096 = 49,152 magnetic “donuts."
To make it sasier to handle the words in memory, the 4,096 words are sub-
divided into PAGES. Each page holds a set mmbe: of words just as a page in a
book. In the PDP-8, there are 32,, pages, each containing 128 10 YOTds. There
is actually no physical bnrrier between the pages, but just as in a page in a
book, the machine "looks" st one page in t a time. The idea of aecessing
different pages by direct and indirect addressing\techniq.es will be covered in

later sections.

.*-'

A digital computer operates on information stored :Ln its memory by means uff N

PR

a section called the Arithmetic Unit. The most important part of the arithmetic '
\

" unit of the PDP-8 is a 12 bit re;gist__er called the ACCUMULATOR. A register is a
temporary storage area of data obtained from memery where ?;mraciom of the
arithmetic unit are performed. The accumulator :l.s conn&cted to the memory. Ome
can think of the accumulator as a "scratch pad”; it can retrieve information
held in memory, perform operations on it, and returnm the result of these opera-

tions to memory. The programmer can "see’ the contents of the accumulator by

means of the display on the front panel ﬁbeled ACC TOR. To realize how

the accumulator is utilized during a program, run the followm\exercise on the

L)

somputer.

o o
-

.
'
IV

. .
ey e
‘

EXERCISE 2.1
Have the co-gucar move the five numbers in iocn:ions 010 000 000 000 to
010 000 000 100 (2000, to 2004,), using the accumulator, 'into the locations
000 000 101 000 to 000 000 101 100 (50 to S4g).

o
Procedure: First, load the five numbers into the locations given below, using

the techniques from Exercise 1.1.

Contents

101 (ssssa)

usmg Location

010 000 00G VOO (2000,) 101 101 10

010 000 000" 001 (20018)
010 000 000 010 '(20028)
010 000 000 011 (20038)

010 010 010 010 (2222,)
001 001 001 001 (11115)
000 000 000 000 (0000,)

010 000 000 100 (200&8) 110 101 110 101 (65658)

®

The binary code for the program to do this exercise 1is givén below. Using

!the procedure in exercise 1.2, load the comtents into the corresponding loca-
® tions:
Memory Location Contents

° 0G0 100 000 000 (0400,) 111 011 000 0CO (7300,)

000 100 000 001 (06018) 001 010 001 100 (121108)

000 100 000 910 (0402) 011 010 001 101 (3215p)
° 000 100 000 011 (0&058) | 001 110 001 110 (16168)

000 100 000 100 (0&0&8) 111 100 000 01C (7&028)

000 100 000 101 (04055) 011 110 001 111 (36175)
® 000 100 000 110 (04068) 010 010 001 110 (22168)

000 100 000 111 (10678) 010 010 001 111 (22.178)

000 100 001 000 (06108) 010 010 001 101 (22158)

Mewory Location
000 100 001 GOl (0‘118)

000" 100 001 010 (04128)

000 100 001 011 (0“'38)

000 100 001 100 (041ég) -
000 100 001 101 (0415g)

000 100 001 110 (Mlﬁa)
000 100 001 111 (04178)

Contents

101 010 000 011 (52038)

111 100 000 010 (74028)

101 010 601 010 (5212)
11 1 11 011 (77739)
000 000 000 000 (0000g)
010 00D 000 000 (20004) -

000 000 101 000 (0050,)

Read pages 12 and 13 before running the program. . h‘

-

} .
Note: The numbers in the parentheses above are much easier to read than the

coﬁespondins binary strings. The four digit 'mmbets_ in parentheses. are the
octal represenutionalof‘ the binary strings hefore.:hea.‘ The 12 binary digits
of a wer.:d are arranged in four groups, each group canta:lging :hreet bﬁm
digits. Each of these four groups of binary digits can be conv.grted into éheit.

equivalent octal number. (Also see appendix.)

EXAMPLE 2.1

111 001 010 101
(1x4)+(0x2)+(1x1) =5

(0x4)+(1x2)+(0x1) i =2
(0Ox4)+(0x2)+(1x1) =]
(1x4)+(1x2)+(1x1) =]
then, 111 001 010 101 -71258
EXAMPLE 2.2

110 100 000 011 = 6403,

6 4 0 3

N -

~

-

TN) v -
What would be the octal represeatation of the following binary ousbers?

-

\

L

001 010 O11 100
011 101 110 000 e
000 000 111 010
110 101 111 001

V10 001 oO11 111 o

QUESTION 2.2
What would be the binary represeantation of the following octal numbers? "

6210 o

S114 ' "
1062 '
0047

0327

With some {:racfice, the reader should find that this octal representation

is easier to handle rather than the binary strings. (Remsmber, however, th‘at.-\

L]

the computer still only undersctands the binary numbers.)

4

Check that the five numbers were properly 108ded into locations 200()8 to -
20068, and also check that the program is loaded correctly. Briefly, the pro~
- ‘ .
gram takes the first of the, five numbers, "moves" it to the accumulator, finds
T Vet
the address where it ig to be deposited in memory, and theén deposits it in the
memory location. The program then "erases” (clears) the accumulator and fets
. ' ‘ IS
“the next anumber to be moved.

Two "halt" commands have been inserted in the program. The first will -

allow the programmer to see that the numbers in locations 200()8 to 20048 are

first loaded into the accumulator before they are transferred to the memory

——

Ly

11

locations 00508 to 00548. The second "halt” command will signify che end of
the program.

Once the program has been loaded into the computer, set the switch register

to 06908 (starting address of the pto'gi:an), LOAD ADD and pregs START. Tne pro-

gram will stop when it comes to the first "halt" command. Mote that the accumu—

lator display onjthe front peacl vill coatain 101 101 101 101 (55558), the con-~
tents of location 2000;. To resume continuation of the program with the next

r instruction after the "halt", préss the CONT (continue) switch on the front
panel. The accumulator will now contain the contents of location 20015, which
is 2222

(Before 2222 was moved to the accumulstor, 55555 was moved to loca=-

8.
tion 0050

8
g 8° that the accumylatcr could accept the next number.) When the CONT
button has been pressed for the fifth time, all five numbers will lLave been
moved to locations 00508'to 00548. At this point, the prograa counter will con-
tain 04135, the memory address will contain 04125, and the memory buffer will
contain 74024, (Memory address has 4135 and the memory buffer has 5212¢ ia the
in the PDP-8/S.) The program run has been completed.

A To verify that the five numbers have been transferred, load 00508 into the

switch register, and press LOAD ADD. To examine the contents of locagions

0050, to 00548 press the EXAM button five consecutive times.

Summary: This example demonstrates that information can be entered into the
accumulator from one memory location, and then can be transferred to another
location in memory. Also, the idea that octal representation is easier to

handle than binary, should be noted.

. ANSWERS TO CHAPTER 2 QUESTIONS
Question 2.1 s) 001 010 011 100

(1) + (0x2) + (Ox1) = &
(0xt) + (1x2) + (1x1) =3

(0x4) + (1x2) + (Cx2) =2

(0x4) + (0x2) + (1lxl) -]

Similarly b) Ol1
c) 000

d) 110

Question 2.2 a) 6210

then, 6210
b) 51168

c) 1062

d) 0047

e) 0327

101

101

110

then, 001 010 Ol1 100 = 12348
110 000 = 35608 .
111 gm - 00728
111 001 = 65718'

011 111 = 21378

010
001
000
610 001 000

-'10; 00! 001 100

= 00} 000 110 0

= 000 000 100 111

= 000 011 010 111

3 .‘-"."'{'-

CHAPTER 3

Instructions)

The previous material presented some short example programs which the
reader would execuie. This section will show how the computer takes these
sequences of octal numbers (remember, they are-actually binary etringa) and .
. {nterprets them to be "command" or “d;ta" words. .

Excluding an equipment failure, the computer can only do what it is "told"
to do. The progtmer tells the computer what to do by use of one or more 12—
bit instruction words. An instruction word specifies to the machine whu op-

eration to perform and/or where to find the data upon which to carry odt this

-

#, .

operation.
The first major class of instruction words is the Memory Reference Instruc-~
| tions. They provide a means for the programmer to have the computer access,
and operate on, data which 1s st;red in memory. There are two pafts to a mem-
ory reference instruction: | |
1. The operatioti code "
2. The operand

The Operation Code is an octal number (actually, a three-bit bimary number)

which the computer translates into a command. On the PDP-8, the operation code

is located in the three left-most bits of the imstruction word. The remaining

nine bits gre the Operand. The operand does the memory referencing; it tells
&,

the computer the address of the data word, which “he translated instruction

will work on: y _ . T
Bgit 4 ©0 1 2 3 &4 5 6 1 8 9 10 1
operation , operand
code

14

The PDP-8 has & set of six memory reference instructions. The first
column of the table below gives the three-letter mmewonics, which make it

. easier to remember :in instructions:

- TABLE 3.1
binary octal
code code
AND 00C 0 Ldgical_@_gofnwrdmmydth:heacmmr
TAD 001 1 Tw.'s complement ADd a word in memory to the accumu-
lator
1SZ 010 2 Increment a word in memory and Skip next step if
Tesult 1s Zero
DCA 011 - 3 Deposit into memory and Clear Accumulator
JMS 100 4 - JuMp to Subroutine
P 101 4 Jue

In order to simplify the explmtion of these instructidns, the c‘oncept
of "pages" in memory (first int.toduced in Chapter 2) must be expanded.

The operand part of an instruction word is divided into three sections:

1. Address mdc Bit -~ 1 bit

2. "Page" Bit -= 1 bit

3. Page Ag!di:'ess Bits -~ 7 bits

' 9 bits total in length
The 7 page address bits can "call out,” or address 200s (12810) locations

in memory, i.a., 0008 to 1778

~ But as stdted before, the PDP-8 has 4,096 memory locatioms. How, then,
can the computer access all of chis available mry? This is where the memory
pages come in. The 4,096 memory locations are divided. into 3210 “pages" each
of length 2008 (12810) locations. Table 3.2 gives the page breakdown of the

@emory ’locations .

15

When uacuting a program, the computer can only "lcok" directly at ths
"ienn:y in one of two ways:

It can look at the first page, called page :éio, or at the page from which
it is presently getting its imstructions, the “current page”. The section of
the operand, called the page bit, tells the computer which page the address
specified by ﬁhe 7 page address bits is referring to: either "page 0", if the
page bit is a '0', or "current page" if the bit is a 1. _ *

Bit¢ 0 1 2 3 &4 S 6 7 8 9 10 11

Z 2B

operation page ' page address
code | bit bits

The purpose of bit #3 will be discussed later in the section on Indirect

Addressing.

EXERCISE 3.1
Translate the following'octal instructions words: 5050, 5250. Assume

that the current page is page 4.

Solution:
a) 5080, ——- 101 0 0 0 101 000 (the 12
o S5=IMP "page 0" "location 50." binary
pag 8 bits)

The instruction is: JuMP to location 508 on page "0". (That is, absolute

location 508’ since page 0 is the first bagn.).

16

TABLE 3.2
Octal | Octal

Memoxy Memory Memory Memory
_Page = % Locations _Page locations
0 0-177 " 20 4000-4177
1 200-377 21 4200-4377
2 400-577 22 4400-4577
3 . 600~777 23 4600-4777
& 1000-1177 24 5000-5177
5 1200-1377 25 5200-5377
6. 1400~1577 26 seoo-ss_vln

7 1600-1777 27 5600-5777
10 2000-2177 30 6000-6177
11 . 2200-2377 31 6200-6377
12 | 2400~2577 32 6400-6577
13 2600-2777 33 6600~6777
14 3000-3177 34 7000~7177
15 3200-3377 35 7200-7377
16 3400-3577 36 7400-7577
17 3600-3777 37 7600-7777

b) 52505 ——— 101 o 1 0 101 000" g:: :;'2
S=JMP . "curregt "location 508" bits)

® . page

The instruction is JuMP to location 508 on the current page. If the
instruction was stored on page 4 of memory (which is locations 1.0008 to 11778)
® this instruction would tell the computer to jump to location (10005 + 508) -

absolute location 10508 (IMP 10508). .

17

EXERCISE 3.2
Translate the fo‘uovd.ns octal inatmc:ﬁn words. Assuse that the current
page is page 5. |
1001
130}
5201
5355
. 2177
1377

&~

Solution: Using the same format as in Exercise 3.1:

a) 10015 = 001 0 0 0 000 001 TAD 1
1=TAD "page 0" " "location 1"

The instruction is: "Add the number which is in location 1 on page zero

to the accumulator.”

b) 13018 = 001 0 1 1 000 001 TAD 1201
1=TAD P "eurrent "Jocation 101"
pase" ‘

The instruction is: "Add the number which is in location 101 on the

current page to the accumulator."

c) 52()18 = 101 0 1 0 000 001 JMP 1201
5=JMP "current "location 1"
page"
The instruction is: "Jump to location 1 on the current page."
d) 53558 = 101 0 1 1 101 101 JMP 1355
S5=JMP "current "location 155"
page"

The instruction is: "Jump to location 155 on the current page.”

e) 21775 = 010 0 0 1 111 11 1Sz 177
2=1SZ "sage 0" . "location 177"

<1

18

The {nstruction is: "Increment the nusber in location 177 on page O,

and see if that number is zero or mot."

£) 13775 = 001 0 1 1 11 111 TAD 1377
1=TAD "current "location 177" -
page”

The instruction is: "Add the mumber which is in location 177 on the

current page to the accumulator.”

QUESTION 3.1 -
Translate the following octal instruction codes. Assume that thﬂ current
page is page 6.

1301

2354

2254

1020

3120

5377

QUESTION 3.2

Tr;nsla:e the following "English” instructions to their octal. Assume
that the current page is page 7. ,
TAD 55 (page zero)
TAD 1655 (current page)
DCA 102 (page zero)
JMP 1777 (current page)
DCA 120 (page zero)
'TAD 1620 (current page)
ISZ 1654 (current page)

ISZ 1754 (current page)

Table 3.1 listed the six nnloty':afcrcacn'in-ctuécionn for the FDP-8
and gave their three-letter codes cnliad s. The mnemonics present
an easier way for the programmer to d a set of iastructions for the
computer. Instead of looking at lists of optal nn-bein. the prograsmer can
read these short code words and follow the flow of the instructions. Once
he has written up the édnplece instruction setiin.-hsnnnics. he can then trans-
late to octal (actually binary) which can then be entered into memory locations
from the front panel, and execute this prngnn. ﬁouauor. this hand translation
of "letter codes” to the binary "machine language™ imstructions can become quite
time consuming qu very long programs. A program can be written to have the
computer carry out :ﬁis translation process. This program must be writtea in
machine language and is. called the agsembler; it "assembles” the prograsmer's
letter codes into the binary instructions which the computer then executes. The
exasples and exercises that will follow will be short enough so that the trans-
lation process can be carried out by hand.

The following exercises will now begin to use the Memory Referénce In-

structions in some simple praograms, in order to demonstrate their use.

EXERCISE 3.3
Write a program (in mnemonics) to add two numbers in memory together and
store the answer in a third memory location. Also code it into the octal (binary)

instruction words.

Solution: The programmer cinnot tell the PDP-8 to "Add 'A' to 'B' and call the
.gum 'C'" in ome, or two 1nntructiona. He mus:‘first think out all the steps the
machine will have to carry out to do this problem.

The PDP-8 uses the register called the accumulator (introduced in Chapter 2)

for all transfers of data words to and from the arithmetic uynit, and to do the

‘1
“d

R N ¥ P S
!“:‘(Jf"

arithmetic operations. The "English" for this program would look like the
following:

Step 1: "Clear out the accumulator in case there is something in it."”

Step 2: "Add the first number 'A' to the accumulator."

Step 3: "Add the second number ‘'B' to the azcumulator."”

s:ﬁp 4: "Return the answer 'C' to memory."

Step 5: "End of program.”

The "sddition” command s the memory reference instruction "“TAD", or
"Iwo's Complement Add.” Two's conpimt. means that negative integers are
stored in the "Iwo's complement” form. This will be covered in a later example.
The mnemonics for the program can now be written. Assume the nusber 'Q;' is in |
location 508 and the number 'B' is in location 5lg, and the sum will be stored
in location 528' Begin the program at location 308 (note that all chese loca~-

tions are on page zero).

Octal
Memory
Location Mnemonic Meaning
30 CLA Clear out the accumulator
31 TAD 50 Add the number in location 508
to the accumulator
32 TAD 51 ' Add the number in location 513
' to the accumulator
33 DCA 52 Deposit the answer which is in the
accumulator into location 528 and
clear out the accumulator
34 HLY . End of program
S0 Octal value .
of A
51 Octal value
of B '
52 Octalkvalue

of aaswer C

4

Fote that the TAD instruction adds a copy of the contents of the specified
location te~the accumulator, that is, the ousber 'A' is still in location 30,
after the machine does "TAD 50".

Aleo, when the computer executed "DCA 52", the present niue of the ac~-
cumulator becomes the new conténts of location 525, and the old contents are
lost; then the new value of the- ‘nc.acnslatc.r is gzero. (The instructions CLA and
HLT are called microfnstructions and will be covered in Chapter 5.)

The program can now be coded into octal (bimary) imstructions which the

compucer can understand; :l‘coden for CLA and HLT are given:

Memory 4 Octal
Location Maemonic - Code
30 * 7600
31 ~ TAD 50 1050 .
32 TAD 51 1051
33 DCA 52 3052
3% HLT 7402

The reader sh_onld now loadihe octal code of the program into the PDP-8,
and Tun the program (uéing the techniques from gmcm 1.2), for the following
sets of 'A’ and 'B'. After each execution, examine the answer 'C' which is in
the location 52g, verafying that the machine did add the two octal mumbers. Note

that this addition has been performed in octal rather than our familiar :ecimal

addition. .
" Trial 1 Trial 2 Trial 3 Trial &

A (=loc. 50) 0707 1111 1324 \3666

B (=loc. 51) 0070 1111 0175 2666

C (=loc. 52) 0777 2222 1521 6554

DO NOT load the answers in location 52 before each triall

Y
L

10504, '’ 1s in location 10515, and 'C' 1s 1n location 1052,.

22

Summary: The purpose of this exercise is to show how a program can be written
in mnewonics instead of the 12-bit binary coding. .

oN 3.3
Take the program in Exercise 3.3 and translate to the octal code noting

that now the program will begin at locatioa 10008 and that 'A' is in location

8
The next exercise will repeat Exercise 3.3, except that the concept of

setting the page bit is emphasigzed.

" EXERCISE 3.4

Repeat the problem from Exercise 3.3, except that now begin the program
at location 6008, and the number ’'A' is in location ASOB. and 'B' is in loca~
tion &518, and the answer 'C' will be placed in location 6528. (All these loca~

tions are on page 2.)

-

Solution: The page the computer will be working on 1is not "page 0", but is the

"current page". The pege bit in the memory reference instructions used in the
program will now be set to 'l' (Bit #4). 'A' is to be im location 4508, but
thie is the same as location 508' “current page". For example, the instruction

"TAD 450" in the program will be coded as follows:

001 0 1 0 101 000 = 001 010 101 000
TAD Ycurrent loc. 50 - 1 2 5 08
page"

(Note that for Exercise 3.3, "TAD 50" was coded as 10508.)

Following this pattern, the program will be coded as follows:

!"
£ {

Memory Octal
Location Mnemonic Code
400 CLA 7600
401 TAD 450 1250
402 TAD 451 1251
, 403 DCA 452 , 3252
404 HLT 7602
450 - (octal value
. of A)
451 (octal value
' of B)
452 (octal value //
of C)

Using the console, load this program code into the given locations and
repeat trials 1 through 4 for Exercise 3.3, verifying that the results are
the same. Note that if the programmer did mot set the "page bit" to 'l' in
the memory reference instructions used in the program, the computer would have
added the contents of location 508 and 518 on “p-ge zero" which are the absolute

locations 508 and 518.

QUESTION 3.4

Write the octal code for the same program as above, starting at location
|

4008, except that now add the numbers 'A' and 'B' storéd-st absolute location

508 and 518 (on page zero) and store the result in absolute location 528.

The major advantage of using the computer is to perfofi the same operations
many times. This 1s referred to as looping. The programmer can, at his discre-
tion, execute various portions of his'progran many times without repeatedly

writing tﬁé group qf nstructions for that particular part of the program.

’ | N

~¢3

-

Because the prograsmer can sccomplish this with just a few instructions, this is
one of the most powerful tools at his disposal.) .

'meren‘i two things mtapmmrmtmm«:mcingalm:

(1) the portim of the program r.hat he wants to be repeated, and (2) the m
of times clm: portion of the program is to be repeated. The programmer keeps
track of the number of times the loop is to be executed by means of a counter.
This counter h_usullfn number set by the programmer and storad in memory.

For ease of progrm:l.ns the PDP-8 has two instructions to perform the task
of looping: the nmry reference instructions ISZ and JMP. In the PDP-8, it is
easier to eonpue a number of value against zero tham to compare t.hat. nunb.n oz
value to som¢ other constant. The ISZ command increments the apecified BemOTy
location and compares the result to zero. Usﬁally the counter is stored as its
negative value (2's complement) so that when the ISZ is executed, the contents
of the memory location holding the counter will approaéh zero. For example, if

the programmer wanted to loop a particular part of his program five times, the

octal number 77738 (-—58) would be stored in some memory location as the counter.

—~

EXAMPLE 3.1

Obtain the negative value, in eight's complement form, of the octal numbers:
0005, 0060, 0525, 000l.

the octal number 0005

8
its seven's complement 7772
"add lll ‘ + 1
eight's complement 7773 (negative 58)

Note that finding the eight's complement of a number is the same as finding the

two's complement of the equivalent binary number:

25 ®
|
the binary, number 000 000 000 101 |
its ona's complement 11 111 111 010 | ®
"add 1" + 1
two's complement 111 111 111 o0l = 77734 -
' @
Similarly:
0()608 ().'5258 0(!0()18
7717 .7252 7776 e
+ 1 + 1 o+ 1
7720 (-608)] 7253 (-5258) 7777 (-18)
Note that most assemblers (discussed later) allow entry of a negative number ®

diréctly. For example, octal 7771 can be specified as -7.

TheJHPco—nndiéthenusedwich:heISZcomdsnMngtheprm

the ability to transfer comtrol back to the beginning of the loop. These ideas ®

are covered in the following example.

L]

EXAMPLE 3.2
o
The following program will add the octal number 1.0108 ftored in location
4508 to the aé¢cumulator five times, and will store the reiult: in location 6518.
'Note that negative five will be stored as the counter in location &528.
. ®
Octal
Memory ‘
Location Mnemonic Meaning
400 CLA "Clear the sccmlatér" :
. ®
401 TAD 450 "Add 1010 to the accumulator"
402 © ISZ 452 "Increment the contents of location
. 452, and compare the result to zero"
(If result = 0, skip next instruction;
if result ¥ 0, execute pext instruction) .
403 IMP -2 "Jump to -beginning of loop (locgtion

"
4018)

® - . : . | 26

Octal . :
® Memory : |
Location Moemonic " Meaning
404 DCA 451 “Deposit the result in location
PY : 405 HLT "Stop execution”
450 1010 The number to be added
451 0000 A location to store the result
@ 452 7773 "negative 5"

Note that the (.) refers to the presemt location of the program counter, that

is, location 6038. Thus (.~2) refers to location 6018. which is the beginning

of the loop. Then, "IMP .-2" transfers control to the imstruction TAD 450.
The octal code for the program can be written as f;:llm: |
= Octal : :

® Memory Octal
Location Mnemonic Code_

400 cLA - 7600

401 " TAD 450 1250

402 ‘ 18z 45? 2252

403 JMP -2 5201

404 DCA 451 . 3251

. 405 HLT 7402

450 | 1010 1010

451 , 0000 0000

452 7773 7773

&£

Notice that location 452, which initially contains a -5 would have to be re-
® initialized each time t'he prograh is to run since it ends up w.th a value of

zero at the end of each rum.

r O ‘ ‘Jtl'

Sw ”
R

‘ . ?{3 . .
v . 4 .

27

Solution: The following table lists thc conteants of the accumulator, location

8
on each successive pass through the loop.

452, which holds the counter, and location 431, where tha result will be stored,

Accumulator Loc.451g Loc. 4525
Initially _ 0000 | 0000 77173
let pass through 1010 ' 0000 1774
the loop
2nd pass 2020 0000 s
3zd pass 3030 0000 7776
4th pass 4040 © 0000 7777
Sth pass 0000 © 5050 0000
EXERCISE 3.5)

Write a program that first clears the accumulator, then /teepa adding ‘1’
’ '
to the accumulator. Write a delay loop to slow down the ter so that one

can "watch” the computer count by viewing the digplay labeled ACCIRMULATOR on
the front panel. (The octal code for the instruction Increment the ACcumulator

1s 7001, and the smemonic is IAC; microinstructions will be covered in Chapter .
\ p

re

8
5.) . \) L

Solution: A simple program to continuously increment the accumulator is writtem

Memory Octal

Location Mnemonic Code

- 400 CLA 7600
401 . IAC 7001

402 JMP .-1 5201

S

3

1 this progran 1s run on the cumputer, the accumilator will ba incremsnted |
%o fast that the display vill sppesr blurred. This is becnuse the executton
time for the JMP mtruction on the PDP-8/1 nu:lcmum is 1.5 microseconds:

(a microsecond being equal to 107 seconds), which 1s Eoo fast-for the programmer s
to see on the display. (In the PDP-8/S JMP takes 28 microseconds.)
To slow down the time between each time the sccumulator is incremented, a
1oop can be inserted within the program whoss only purpose is to slov down the
time for exscution. This type of looping is called w ‘Thus execu-
tion can be slowed down so that the .prégrmr can "watch” the cosputer count on

the display. A simple delay 160_1: is added to ‘the pievi.m pro(rns i

Henory ' Octal
Location Mnemonic Code
401 | IAC 7001
402 ISZ 405 . 2205
‘403 IMP .-1 5202
404 JMP .-3 5201
405 0000 0000

Since the execution time for the ISZ instruction is 3.0 microsaconds

(54 microseconds), the loop:

will take 4.5 microseconds altogether. This loop will be executed 409610
(100008) times before the accumilator will again be incremented. Thus a delay
of 18.432 milliseconds (335 milliseconds) will be present between each time the

accumulator is incremented. Run this ptogrém on the computer and note that now

'mofthmmlaurMIhblmd.Mmoﬁcmwmm

-~ ¢ R
a8,
-

-accumulator “counting”" on the display. | o @

ﬂeahouldexpec:thiarminthec.-edofbum. If we ware asked to

‘Iistaumuuaeninneqﬁneefmﬂcém.ormpouu;ew.m

left most digit would change. the slowest while the units digit would change the A(.C_
fastest. In a computer the laf.t most bit 1s called the Most Significant Bit, MSB,
vhile the right most ir the least, or 1SB. ﬁcshuld:ha;etoremqetmm

to change much slower than the LSB, which it does. @

To further slow down the execution, an outer delay loop can be added, allow-

ing the programmer to vary the speed at which the accumulator will count. Bun

the following pragram on the computer. (Note that now the delay loop will be ®
approximately 8 x 18.432 milliseconds = .147 seéopds.) The calculation for the
PDP-8/S becomes 8(0.335872 seconds) = 2.686976' seconds.

®
Memory Octal
Location Mnemonic Code
600 . aa 7600
601 TAD DELAY 1215 | ®
602 DCA 614 3214
603 | TAD 616 1216 -
604 1Sz 613 : 2213 ¢
605 P -1 5204
606 1Sz 614 ~ 2214
607 e - < . 5206 ¢
610 IAC . 7001
611 ~ DCA 616 3216
o

612 JMP .~11 ' 5201

:j.)‘ . - . .

~

Memory - Octal
° Location Moemonic Code
. 613 0000 0000
614 0000 0000 \
Py 615 DELAY, 7770 7770
" 616 10000 0000
To vary the speed of execution, the value of location 615 can be varied
¢ (remamber to refuitialize location 616 to sero each tims). Notice also the
use of a label or name to reference the delay count rather than using its
address.
@
EXERCISE 3.6
Set up the program for a delay of 10 seconds.
® ‘ : |
Solution: The loop at locations 604, 605 takes 18.432 seconds for the PDP-8/I
(0.335872 seconds for the PDP-8/S). Therefore the outer ioop must be run:
° $oP-8/1 10/0.018432 times = 543, times
. PDP-8/S 10/0.335872 times = 3010 times
PPP-8/1 Initiallize location 615 to -55310 - --10378 = 6741 -
. PDP-8/S Initisllize location 615 to -30,, = ~364 = 7742
. ANSWERS TO CHAPTER 3 QUESTIONS
Question 3.1 a) 13015 = 001 0: 1 1 000 001
® # W” ",m& "location 101"
13018 = TAD 101 (current page) (TAD 1501)
b) 23548 = 010 011 10! 100 = 1SZ 154 (current page) (ISZ 1554)
o c) 225408 = 010 010 10! 100 = ISZ 54 (current _page) (ISZ 1454)
. T d) 1016 = 001 000 0_10 « 000 = TAD 20 {page :ez:o) (TAD 20)
. e) 3120 =011 001 010 000 = DCA 120 (current page) (DCA 120)
r[l{fc £) 5377 = 101 Oll .’f}; 111 = JMP 177 (curreat page) (JMP 1577)

SRS

31

Question 3.2 TAD 55 = 001 o .0 0 101 101

“TAD" “"page "location 55"
. sero”

= 001 000 101 101
= 1055 ‘

) : 8
. . TAD 1655 = 001 0 1 0 101 101
*TAD" "eurrent "location 55"
page”
Y. = 001 010 101 101
' - 1255,

Similarly, DCA 102 = Ol1 001 000 101
- 31025
JMP 1777 = 101 011 111 111

- 53778

DCA 120 = 011 001 010 000

= 31208

TAD 1620 = 001 010 010 000

- 12208

1SZ 165 = 010 010 101 100

= 22548

1SZ 1754 = 010 Ol1 101 100

= 2354,
Question 3.3
: Octal
Location Mnemonic Code
1000 CLA 7600
1001 TAD 1050 © 1250
1002 TAD 1051 1251
1003 . DCA 1052 3252°
1004 HLT . 7402

- -
pe

- 32
® ' 1050 Octal value of A
| | 1051 Octal value of B
1052 * Oectal valus of C
® a) These locations are on memory page 4. .
b) Compare the octal code for the instructions TAD 50, TAD Sl.imd DCA
52 above, with those same instructions as they are cited in
Exercise 3.3.
® Question 3.4
Octal
Location Mnesonic ' Code
, 400 CLA 7600
® : '
401 . TAD 50 : 1050
402 | TAD 51 1051
. ‘ 403 DCA 52 3052
®
404 HLT 7402
50 Octal value of A
51. Octal value of B
@
52 Octal value of C
o
. L]
@

KX

CHAPTER ¢

‘Indirect " ess S
It was previously muoncd that bit §3 of a memory reference mcmm
on the PDP-8 is called the Addr ggga Bic. In all preccding exazples, this
bit was set to '0' :Ln the memory rehrm instruccions; this value of ‘0’

declares the Address lhde to be "Di.recc Addressing”. The address contained in

the operand of the memory rafqrenee mr.ruct.ion 18 the location of the desired
information to be operated om. If bit #3 is now set to '1', the address mode
becomes Indirect Addressing. !ow, the operand of the memory refermcn m:m-'
tion holds an address, but it amea as a "pointer”. It points to a memory lo-
cation and that memory location contains the informatiom the instructiom is to
operate on.

There are three main reasons why we may negd indirect addressing.

(1) The most important 13 that there are not enough bit positions 1eff in
a Memory Reference Imstruction to address any word in lilory. Remember that we
can only address "page 0" or the "curreat page"”. If, however, we had a full 12
bit‘untd available to use as ap address, then we could refer to any word in
core. Since 212-1-é095 snd there are 4096 words in core (call the first word's
addreas 0000), the 12 bit pou;lt:l.c{ns allow reference to any word. This ia _enctlfr
what indirect addressing allows us to do®

(2) Indirect addresaiﬁg must be used when using subroutines. This will
be explained shortly.

(3) There may be times when we want to pick words sequentially from some
list. .ﬁe can fetch these very simply by incrementing a word which contains the

address of the first word in the list and using indirect addressing.

g

EXAMPLE 4.1 | .
If memory location 400, contains the instruction TAD I 450, vhere the
"% 4g the moemonic symbol for "Indirect Addressing”, (octal code = 1650), what
pumber would be added to the accumulator whem this instruction is executed?

Solution: The imstruction would not add the contents of 6.':4)a as in a direct
addressing instruction. The computer goes to location 6508. reads the contents
of muuonasosuandams,mmmwmmgmca&g«-m_
contents of this nev location to the accumulator. If the contents of memory
location 450

8
would add r.he_nuﬁer 1111 (1.e., the contents of location 2300) to the accumu-

is z:iooa. and memory location 23004 contained 1111, the computer

lator, and not the number 23008'

EXAMPLE 4.2

If location 600, contains the instruction "JMP I 643, currenf page"
(octal code = 5643) and léﬁation 6638 contains the instruction "TAD I 745,
‘current pege” (octal code = 1745) and location 17105a contains the instruction
”"m.'r" (octal code = 7402), what is the next instruction executed after the

instruction "JMP I 643"?

Solution: The next instruction executed would be the "HLT" in memory location
1745. "IMP I 643" lookp at the contents of location 643 as an address ("I"
means indirect addressing). The contents of location 653 is pot interpreted
as an instruction, but rather as the aldress for the computer to "jump” to.
Since location 643 contains the number l7é58, the next instruction executed

-~

is the "HLT", which is the contents of 1745:

o

‘ Octal
Locatiom Masmoaics Cods
600 JMP I 643 (Current Page) - 5643
643 TAD I 745 (Curreat Page) 1745
1745 HLT 7402 - ‘

EXERCISE 4.1

What is the octal code for the following indirect addressed instructions:

TAD I 130 ('page zero'), DCA I 250 ('curreat page')?

Solution:

a) TAD I 130 —— 001 1 0 1 011 000
“TAD" "indirect ''page 1308
address” zero" ‘
then, TAD I 130 (page zero) = 001 101 011 000
»

- 15308
b) DCA I 250 — 011 1 1 0 101 000
"DCA" “indirect “curremt 508

address” page"
then, DCA I 250 (current page) = 011 110 101 000

- 36508

TION 4.1
Vhat is the octal code for the following instructions: TAD 43, DCA I 500,

1S2 I 413, JMP I 213, JMP I 20, DCA 100, TAD I 437

SJ

EXERCISE 4.2 - /
Go back to Exercise 2.1, and translate :7‘ octal code ot the prograa into
%
the mnemonice, and explain each instruction. ' Hote that r.he progrm uses both
indirect and direct addressing, and that some address nﬁmmbym
or label rather than the address.
Solution:
PY " Memory Octal .
Location Code Mnemonic Explanation
400 7300 " CLA CLL Clear the accumulator (acc.) and the
. 1link bit.
® 401 1214 TAD MINUSS Move "counter" in location 414 to the
accumulator. -
402 3215 DCA COUNTR Move "counter" from acc. to location
415.
o 403 - 1616 TAD I.416 Move the contents of the address which
- is contained in loc. 416 to the acc.
404 7402 HLT A "halt" *o see the data transfer
- d ‘ &m.
® 405 3617 DCA I 417 Move it from the acc. to the address
‘ ' found in loc. 417 and clear the acc.
406 2216 ISZ 416 Increment the pointer which is in loc.
" 416. It now points to the next "source”.
@ , 407 2217 1ISZ 417 locrement the pointer which is im loc.
417. It now points to the next
“destination”. | '
410 2215 1Sz COUNTR Increment the courter in loc. 415. Is
it now gero?
411 $203 JMP 403 No, so jump to loc. 403, to move the
next number.
412 7402 HLY Yes, the counter in 415 is now zero, so
halt the execution of the program: all
® 5 numbers have been moved.
413 5212 JMP 412 Jump to location 412.

r Q ‘ .t (‘I

Mewmory Octal v
Location Code Mnemonic | ' Explavation
414 - 7773 MINUSS, -5 The 8's complement form of negative 5
- .- " "
415 0000 COUNTR, 0 A location to store the "countdr” and
L to add one to it tizme a nudsher
is moved. When the counter reaches
gero, all 5 mumbers will have been _ -
» med- ‘ ' .
416 2000 the address The address of the lst.of the 5 pumbers
| 2000 to be moved; the "source”. - '
417 0050 the address The address of the location to move
50 the lst word to; the "destination". -
EXERCISE 4.3

1f the computer 1is at address M)S8 (page 2), how can it be programmed to

JUMP to address 620 (page 3)?

\

Solution: This can only be done through the use of indirect addressing.

Memory Octal
Location Code . Mnemonic , Explanation
404 CLA . .
405 JMP 1 .+1 JUMP indirectly to the location given
406 0620 . in the next (.+1) memory location. .
Fipal result is to JUMP to location
0620. :
620 DCA .-1 Put contents of location 617 into the
! accumulator.

Note that in this solution, almost any instructions could have been used
in place of the CLA and DCA. The main point is that the JMP I .+l caused a jump
? 0 a location on another page. This procedure is not necessary if we are simply
at the end of a .page and want to go to the first location of the next page be~
cause this automatic single address advance is dowe by the Program Counter which

H
is a 12 bit register in the computer.

Q \ ‘1 4

p 3

Summary: Indirect addressing must be used when accessing a location not im the

e 2

"current page”, except when ~- »
(1) the location to be assessed 18 in “page 0." 4

(2) the instruction being executed is the last word of the "current page”

and the next instruction is the first word of the next page.

QUESTION 4.2
® Suppose a program extends over several pages of memory, for example pages

1-10 HBow would data on page 118 be adcessed? How else could the data be

8.
stored to ease the access problem?
¢

QUESTION 4.3

Write and execute a program to add seven octal numbers stored in locations
1()008 to 1()()68 and store the result in location 6505. Start the program at

location 2008‘ Use indirect adcireui.ng and looping in the program.

SUBROUTINES . et
® In computer programming, the situation often arises where a certain group
of operations will have to be carried out several times with, perhaps, different
data. Instead of the programmer repéa:edly writing out the instructions for this
L group each time it is needed, it would be more convenient (for the programmer) to
only write the instruction group one time, and to have the computer "fe\.ch" it
any time it is needed. A gronp of instructions .used in this manner is a sub-

® program called a SUBROUTINE. Subroutines are aside from the main program. When~

ever they are needed, the main program "stops” what it is doigg, transfars control

to the sequence of operations én ghe s.ubtout:lne, executes them and then picks up
® at the point in the main program :I.mdi.ately after the "call" for the subroutine.

Each time a subroutine is called, the computer does this branching, execution of

the subroutine, and thL-. returns to the main program at the branch point.

Q‘ Q . N
ERIC i

- _ .
S
v | 39
: . ‘ .
.

1f, for example, mmnpmcnhdmw-mmmwm

instead of writing :he anqmce of addit.:l.on mcm each time ehcy ware:

needed, the progra—o: ¢ould vr!.te a lubtout:l.ne to do :hq_nddiﬂm. -Be m.hl o
then have tpeninprogrq "send" the mm- to be added to :hi,s,uhmdn; .
which mu}'d.carry out the addition and then return to the main program. The

M progra-nr has then saved himself some coda writing, and also consctvad DETOTY -

quce. In order tq uplmn: subroutines on the PDP-8, the programmer must use
. % indirect addressing.

EXAMPLE 4.3
]
. Write a program that calls a subroutine to add two numbers ‘A’ and 'B‘.

The result will be stored in ‘C'.

Sclution: The memory reference imstruction to call a subroutine is the JMS
instruction (JuMp to §yb:o§:1ne). The JMS does two things:
1. The address of the next instruction after a JMS is stored in the first
‘ location of the subroutine. (Note then that the first memory location
in a subroutine should not coutain any instruction or data. It will
be strictly a storage space.) |
2. The address which is in the operand of the JMS instruction is inctéaaed .
by 1 and placed in the program counter. Therefore the computer is now
ready to get the first instruction to be executed in the subroutine.
Indirect addressing 13 the means to return from the subroutine to the main
_program. The last instruction carried out in any subroutine is an indirect-
addressed 3!?. It jumps to the address which is stored in the first location
of the aubEOutine. In other words, it jumps back to the next instruction after

the point in the main program where it had left off to carry out the subroutine.

<l

@ ' ') ' ' 40

Octal . i}
® location Muemonic Code Meaning ST
400 ClA 7600 Clear the accumulator.
401 JMS 450 4230 Juzp to the addition subroucine which
® starts in Loc. 50 curremt page (-650.).
402 DCA 406 3206 After returning from the addition sub-
~ voutine, store the sum in 'C* and -
clear the accumulator.
¢ 403 . HLT 7402 Stop the program, addition completed.
404 (the value - ' ‘
“of 'A')
405 - (the value - . .
o of 'B) .
406 (the location to .-
store the sum 'C')
450 0 0000 The addition subroutine; location 450
® , 1s the storage area to place the return
address.
451 TAD 404 1204 Get the value of 'A' and put it into
‘ the accumulator. :
® 452 TAD 405 1208 Get the value of 'B' and add 1t to
the value of 'A' in the accumulator.
453 JMP I 450 5650 Get the returm from subroutine -
address in Loc. 450 and jump to 1it. 1
@ Remember that a JMS 1is a memory reference instruction and 80 we still have

the limits of directly addressing only locations in page zero or the current
page. If the subroutine is in another page, we must use indirect addma.ing to

. jump to it, therefore, when possible it may be convenient to put subroutines
into page zero so that they may be addressed di:éctly.

0
When the program executes the imstruction in '&018 (IS 450), it will first

b

® store in location 450, 401 + 1 = 402, the next instruction to be executed when

returning from the subroutine.

-

-~

Mmmmpnmmmmuhmmmbym :
@

1 to the address in the JMS instruction, {.a., 650 + l = 451. It then mF“

the instruction is 451 (TAD 60&), then :l.n &2 (TAD 605). then 1t resches
'thoimtmctionto leave the subroutine (JMP I 4350). It gets the address coan~ -
tatoed in location 430 (1.e., 402),.and Jumps to thac location. Thavefors, it | ;-."
juzps out of the subroutine and back to mmmﬂqmmmm It

deposits :he results of the addition, and then stops (DCA 406, HLT).

Note again that _the computer does not execute the instruction in the . o
addregs of the JMS instruction. It stores in that location the address of the
inetruction after the JMS. |

Note that indirect addressing 1s used to return from the subroutine to the ®
main program.

The general structure of nn/n-m:rug':tton subroutine is: .

 Octal | : . . @
Memory
Location Contents
X 0 -
\ ®
\ .
. . °
(m instructions) '
. . .
X+(m+1) JMP I X
@
4., |
@

42

BXERCISE 4.4
mn.mpnmchmxcmamumm:unmmm

" which are divisible by thres (3) from the mumbers 1 to 2710. and thn store

these nusbers starting in location moo.. Start the progres in location 6003.

%

A

Solution: To test & number A to mtludnr it :I.o.d:lmibh'by thres, m:dl_y '

subtract three from A until the result is either '0', which indicates the mumber
is divisible by three, or the result is less than ‘o', hdmuns :lut the mj-?-
ber is not divisible by three. The mnemonics for tha program aod subroutins
and the corresponding octal codes are siicn u'* follows: ‘(CIA. CIA, IAC, SPA,

SNA, and SZA are microinstructions - see mpccr S)

l.ocation Mnemonic Code | ' Meaning
600 © CLA 7600 Clear accumulator ‘
601 TAD K27 1215 Find the negative value
602 c1a 7041 of 27, and use this
603 DCA COUNTR 3216 as the counter..
604, LOOP, TAD TESTD 1221 Calculates next number
605 IAC 7001 to be tested and store
606 DCA TESTD 3221 in location 621.
607 TAD TESTD 1221 Add number to be tested to the
: ncculuhtor.
610 - JMS 650 . 4250 Jump (current page) to subroutine
starting in location 650.
611 CLA : 7600 Clear accumulator
612 1SZ COUNTR 2216 Increment counter and halt if zero.
613 JMP LOOP 5204 Return to beginning of loop
614 HLT 7402 Halt execution
615 K27 0033 0033 Constant 27, = 335
40

616 COUNTR, 0000 0000 Location tg-#tore counter
617 MINUS3, 7775 7775 8's complement of '3, or (~3)
620) 1000 1000 Starting location of where numbers

divisible by three are to be stored.
621 TESTD, 0000 0000 - - Contains nusber being tested |
(The Subroutine) ’

&

650 SUIII!; 0000 Cos 0000 Storage location for return sddress.

' 651 TAD MINUS3 . 1217 Subtract '3" from number being
) t”td. b’ m (-3)0

652 SPA SKA 7550 This ,n:lctomtmction (see Chapter 5)

| ’ . will skip the next instruc if
the contents of the ac tor “is
greater than '0°. - :

653, P 655 5255 Jump to the test for a '0' accumu-

‘ lator. _‘
654 .. JMP 651 5251 " Repeat loop until result is less thaa,

or equal to, zero.

655 SzZA 7440 This microinstruction will skip the
next instruction if the contents of
the ‘accumulator is zero.

656 JMP I SUBRTN 5650 Jump back to main program to get next
number.

657 TAD TESTD 1221 If divisible by three, store

660 DCA I 620 3620 in location starting at 10008.

661 182 620 2220 Get location for next nuamber to be
stored

662 JMP 656 5256 Jump back to location 656 to exit
subroutine.

Note again how the use of names or labels for certain addresses makes the

program much easier to follow.

Autoindexing

When using indirect addressing, care must be taken when using mesoxy

locations 00104 through 0017,. When one of these locations is addrested in-

directly, the content of that location is iuncrementad by ons, rewrittea into

the same location, and used as the effective address: of the current instruc-

tion. Mregutusednhudwymmmmnmhofdmam:

using the ISZ imstruction to step through the table.

' EXERCISE 4.5

Write a program using autoincrementing to clear locations 2()00a to 27"3'

Solution:

Location

0010

0200
0201
0202
0203

0204
0205
0206
0207
0210
| 0211

0212

INDEX,

CLEAR,

CONST,

COUNT,

1nstruction

*10

*200
CLA CLL
TAD CONST
DCA CONST

TAD TTABLE

/AUTOINDEX REGISTER

/CLEAR ACC AND LINK

/GET PERMANENT COUNTER

/STORE IT FOR USE

/GET ADDRESS OF LOC ONE
/BEFORE TABLE BEGINS

/STORE 1T IN AUTOINDEX REG
/USE AUTOINCREMENTING
/UPDATE COUNT, SKIP IF ZERO
/LOOP BACK

/HALT, FINISHED

/COUNTER

/TEMPORARY COUNTER LOCATION

Location | Instruction ‘
0213 TTABLE, TABLE-1 /TABLE ADDRESS -1
#2000
2000 TABLE, (table values) /TABLR STARTS HERE
$

. Inahcaboveprogm.theny:bols*mdSwere_usedm:euthéasmnr
program special things. These will be explained in a later chapter.

: EXERCISE 4.6

Use sutoindexing to search all of core for am occurrence of the number

12345,
Solution: ‘
Location Instruction
*0
0000 ° NUMBER, 1234 /TRIS IS THE NUMBER
' *10
0010 ENTRY, 0 /USED FOR AUTOINDEXING
200
0200 BECIN, CLA CLL /CLEAR ACC AND LINK
0201 TAD NUMBER /GET WUMBER
0202 CIA /GET ITS NEGATIVE
0203 DCA COMPARE /STORE IN COMPARE
0204 DCA ENTRY / INITIALIZE AUTOINDEX REG
0205 REPEAT, CLA CLL /CLE. R ACC AND LINK

40

® . _.._.f
® 0206 . . TAD I ENTRY /GZT ¥IRST VALUE
0207 TAD COMPARE /ADD A -1234
0210 SZA _/SKIP IF 1234 18 FOUMD
® 0211 DM REPEAT . /RETURN IF 1234 IS NOT FOUND
- onz ' TAD ENTRY /PUT ADDRESS OF 1234, TN ACC f
0213 . omr | /sTOP e
° 0214 COMPARE, O /TEMPORARY LOCATION ‘
s -. o
Note that the program stops with the address of the location in vhich
o 1234 was found in the accumulator.
ANSVERS 70 CHAPTER 4 QUESTIONS .
e, Question 4.1 ‘ h
TAD 43 = 001 0 0 0 100 011
"TAD" "dirécﬁn “page "location 408"
. . address zero”
® = 001 000 100 011 = 10434
DCA I 500 = 011 1 1 o 1 000 000
| "DCA" "I" & "curreat 100,
® : page .)
= 011 111 000 000 = 3700
I1SZI413 = 010 1 1 O 001 o011
® - 010 110 001 01l |
= 2613,
JMPTI23 =~ 100 1 1 0 001 011
) = 101 110 DOl Ol1 |
= 5613

“\} ‘ .l'l

&7

DCA 100 - 011 0 0 1 600 000 I

= 0l1 001 000 000

- 3100a

TADI & = 00 1 0 O i00 o1l
= 001 100 100 O11
- 143
Question 4.2

Indirect addressing would have to be used to access them because when
the computer is executing instructions on some given memory page, it can
directly access constants or variables only from the "curreant page"” or from
"pagé gero”. If a program extends beyond one memory page .1n length, and, all
the instructions need to access the same data directly, the dats must be on a
page which can be accessed by all pages, i.e., page zexo. For example, memory
pages 4 through 10 would mot be able to directly access data "defined" on page
11, but'tﬁéy could access the data on page gero. therefaré if direct access
were important it would be nacasaarf to locate all the data for the long ;tn-
gram on page zero. Of course, 1f the penalty of an extra word snd the slower
access time of indirect addressing are not critical, then the data may be stored
on any page and accessed indirectly.

Note that when indirectly addressing data not on page 0, it is convenient
to put the pointer to the data on page 0, so that the pointer may be used by

any page without being repeated on that page.

Question 4.3
, Octal
Location Mnemonics Contents
2008 CIA ‘) 7600 Clear the acc.
201 TAD 211 1211 Set the counter in
loc. 242 to negative
202 DCA 212 3212 7 (=7)

- «‘1‘3

o

[
Location

R ——

203

204

205
206

207

210

211

212

213
214

1000
1001
1002
1003
1004
1005
1006

Mnesonics

TAD I 213

.182 213

1Sz 212

JMP 203

DCA I 214

" HLT

the number
7771

0000

the address
1000

the address
640

Octal
Contents
1613

2213

2212
5203
3614

7402
7m
0000
1000

0640

(Store the

1

48
Add the number, whoss address
is 1in loc. 213 to the acc.
Increment the pointer in loc.
. 213; it now points to ths next

‘mﬂcr to be added.

Increment the couater in loc.

212; 1s it = sero? -

No; jump back and add the next
number

Yes; deposit the sum in the
location whose address is in
loc. 214.-

Stop the program; finished

The no. (-=7) in 8's complement
form.

The counter location

The address of the lst no. to

. be added.

The address of the location to
store the sum.

7 octal numbers
to be added in
these locations.)

49

ZEARTIR 3
Microinstructions

Soms of the previcus exsrcises used saveral imstructions that were not
11isted in Table 3.1, such as CIA, “clear the accumilator”, and HLT, "halc”.
—m-mmumnm:oammwmmmmmm

tructions. They are called llc:c:lutru:um because in a 12 bit instruction
word single bits are each interpreted as an gmm. vhereas in the llmry
Reference Instructions, the emtirs 12-bit word is one instruction to the computer.
Therefore, if the programmer writes some valid combination of bits set to '1’ in
s microinstruction, each 'l' will be translated int> an opcn::hn.‘ The operations
are determined by the positions of the 'l' bits in the word (i.e., which bits are
.nec). Microinstructions have a 3 bit cperation c.-.ode. just as the memory refar-
ence instructions do. To epecify that an instruction word is a microinstruction,

the first three bits are set to 111 (-78):

bit#¢ o0 1 2 3 4 3 6 7 8 9 10 11

11111

. operation
code

The genersl concept of having single particular bits in an n~bit instruction
word representing different commands to the computer's control unit is called
MICROPROGRAMMING. |

There are twn groups of microinstructions for the mf-sz

Gmupl...................lhnipuhtechecontentscf)
the accumulator and the link

Groupz...................?riurilyfor::uting
operations

Ju

o

-~

The LINK 1s s register, like the accumulator, except thet it is pmly oms
'*biﬁ long. It acts as what could be called an “"overflow” register for the ac-~
cumulator. If, for example, an addition operation resulted in s 'carry’ beyond
12 bits, the link would "catch” the mrﬂc;:w |

0Q------------IO0EOTrTnm

Link Accumulator

The microinstructions give the programmer a way of using the link to his

advantage in some problem situation, such as the -@um additon overflow.

The Group 1 Microinstructions:
Bits 00 through #2 are set to 'l’' as the ﬂcmm:mtm operation code.

But unlike the memory reference instructions, the remaining nine bits do not
specify an address in memroy. Bit #3 is set to '0' to indutt.e "Group 1".
Then:
1. When bit 4 is set to 'l', the instruction is Clear the Accumulator;
the mnemonic 1s CLA. The accumulator is set to all zeros.
111010000000
2. When bit #5 18 set to 'l' the instruction is Clear the Link; the
mnemonic is _q_é.. The link bit is sat to zero.
| 111001000000
3. When bit #6 is set to 'l', the instruction is Complement the Accusu-
lator; the smamonic is CMA. Any bit of the accumulator that was a
"1 will be set to '0' and any bit that was a '0' will be set to 'l’.

111000100000

Y
~

3.

8.

51

coe Y
When bit #7 is set to 'l1', the instruction is Complement the Link;

-8

the mnemonic 1s CML. 1If the Link was a '1', it will be set to '0';
if it was a '0' it will be set to . |
111000010000

When bit #8 1s set to *1' and bit #10 1s set to '0', the instruction

1s Rotate the Accumulator and Link Right: the mnemonic is RAR. A
loop is formed between the accumulator and the link and all bits in

the loop are shifted oné position to the right. Example:

Iyl
e
AR
\.

tl1r1 01 1 001011060 >
(Before "RAR)

Link Accumulator

ojij1 10110010110

(After "RAR)

Link Accm]}ator [
When bit #8 is set to 'l' and bit #10 is set to 'l’', the instruction

{
is Rotate Accumulator and Link to the Right Twice; the mnemonic is

RTR. The result is the same as doing "RAR" two times in a row.

111000001010
when bit #9 is set to 'l' and bit #10 is set to '0’', the imstructiom

is Rotate the Accumulator and Link Left; the amemonic is RAL. The

and link are shifted one position to the left.

result is the same as an RAR, except that t*e bits of the acemlnt;:{

111000000100 .
When bit #9 is set to '1' and bit #10 is set to '1',: the instruction

is Rotate the Accumulator and Link Left Twice; the nic is RTL.

The instruction is the same as doing RAL two times in a row.

111000000110 °

~—

:)11

)

'f)x

PR B

& . o 52 .

9. Whea bic £11 1s set to 'l', the imstruction is Iacrement the
'. M, :hemnicianc mcnmuaramrmadhy 1.
111000000001

_Table 5.1 below susmarized the Group 1 -icroinJQtnctions:

TABLE 5.1 _
Mnemonic Octal Code = Meaning
CLA 7200 (Clear Accumulator
CLL 7100 Clear Link
TMA 7040 ngple-ent Accumulator ‘
cML 7020 ~ CoMplement Link
RAR 7010 Rotate Accumulator (and Link) Right
RTR 7012 Rotate Twice Right | -
RAL 7004 Rotate Accumulator (and Link) ;pf:
RTL 7006 Rotate Twice Left
. IAC '

7001 Increment ACcumulator

There is an advantage to eagh bit in a mi¢roinstruction being a particular
command. The progranner can form certain valid combinations of these instruc-
tiong, i.e., hc can set more :hnn one bit :o "1' 1in a given microinstruction
word. One can then think. of each of these valid conbingtions as a very saall,

\
ircomplete "program".

. e
EXAMPLE 5.1
Using Group 1 microinstructioms, what ig the binary (octal) coding of the ®

instruction "Clear the acgunulatdk and clear the 1ink"? (The mmemonic is written

CLA CLL).

, Ty

‘ | - | © 83

¢

Solution: The operation code 1is 111 (-73); for "Group 1", bit #3 is set to

'0'. To command a CLA, bit #4 1is set; to commsnd a CLL, bit #3 is set:

CLACLL = 111 o 1 1 000 000
operation Group CLA CLL
code 1 -

then, CLA CLL = 111 O11 000 000 = 73008

EXAMPLE 5.2

What is the microinstruction coding for "Rotate the accumulator and link

three places to the right"?

Solution: To rotate the accumulator and link once to the right the instructionm
would be:
bit # 0. 1 2 3 45 6 7 8 9 10 11
111000 0010 0 = = 70;08
To rotate the accumulator and link two more places to the right, the in-
struction would be:
bit # 0 1 2 3 4 5 6 7 8 9 10 11
t1 110000010 1 0= 7012s

Note that bit #10 would have to have the value of 'l' and '0' at the same time

in order to write the command "Rotate 3 places right” in one instruction word.

| Therefore this instruction is impossible to write 'in one 12-bit microimstruction

" word, and the correct code would be two words long:

RAR 7010,

m L] L] L] L] 70128

The Group 2 Microinstructions:

In the PDP-8, octal numbers take on the range of 00008 to 77778' Both
positive and negative numbers are represented within this range of octal num-

bers. The range of the positive and the negative octal numbers are as follows

D4

(remember that negative octal numbers are obtained by taking the 8's comple-
ment of the positive octal apumbers):

N

Positive oooos to 3777a (0,, to 2@67l

10 o

Negative 77775 to 40005 ((-1;5) to (-2048,,))

8
Note that the main di.ff.crmo' bemu positive and nmuvc(' octal numbers 1is
that bit #0 of the negative numbers is set to a 'l'; and that bit #0 of the
positive numbers is set to a '0'. ‘Certain tests are provided for handling
negative as well as positive m;rq and are covered by the "Group 2" micro-
instructions.

The Group 2 microinstructions give the programmer the ability to make cer-

tain tests on the accumulator and also the link and to make a decision based on

‘the results of the particular test. Whether the result of the test produces a

"true" or "false" condition, will determine vhather the next :Lns:rucu?n follow-
ing the microinstruction will be executed or will be gkipped. This allows the
programmer to branch control .to other parts of the program depending on whether
the accumulator is positive, negative, zero, or some other combination of these;
or if the link is a '0' or 'l’'. |
Bits #0 through #2 are.se: to 'l.' as the microinstruction éperand code.
Bit #3 1s set to a '1' and bit #11 1is set to a '0' to specify "Group 2". Then: |
1. When bit #4 1s set to a 'l', the imstruction is Clear the ator;
the mnemonic 1s CLA. The accumulator is set to all zeros.
11 111000 O0O0OTUO0COO0O
2. When bit #5 s set to a '1' and bit #8 is set to a '0’, the instruc-
tion is Skip on Minus Accumulator; chevu;etio;uc is SMA. If bit #0 of
the accmiator is a '1',which indicates a negative number, the next
instruction will be skipped; otherwise, the next instruction will be
executed.

1 11101000 O0O00O0

—r ‘ 'Ju

3.

4.

3.

6.

S

»

3.

Vhen bic #6 1a set to a '1' snd bic #8 is eet to s '0', unmm-'“*
tion .is g!;g on Zaro Accumulator; the snemonic is SZA. ‘xt the con-
tm:ot:hnlecmhmmnn.mm:mmmmlh
skipped.
- 11110010000 O,
When bit #7 is set to a '1' and bit #8 is set to a '0%,.the instruc~
tion is Skip on Nonzero Link; the mnemonic is SNL. The link bit cen
bave either ome of two values, @ '0' or a '1'. If the link bit is a-
'17, the next instruction will be skipped. B '.
1 11190001 0O0TGCO0O

When bit #5 1is set to a '1' and bit #8 is set to a 'l' the instruction
is Skip on Positive Accumulator; the mmemonic is SPA. £ bit #0 of the
accunulaco; is .2 '0' which indicates a ﬁnai:iva mumber, the next in-
struction will be skipped.

| 111101001000
When bit #6 1s set :oa'll"mdbir. #aidut. to a 'l’', the instruc-

tion 1is Skip on Nongero Accumulator; the mnemonic is SNA. If any bit

in the nccu-ﬁi-:or has the value of '1', the next instruction will be

skipped .

1 1110 0101 0 OO0
When bit #7 is set to a 'l’ and bit #8 1s set to a 'l’', the imstruction

1s Skip on Zero Link; the mmemonic is SZL. If the link bit is '0', the

next instruction will be skipped.
1 111000110 0O
When bit #8 1s set to a '1' and bits #5, #6, and #7 are all '0', thg

instruction will perform an Unconditional Skip; the mnemonic is §§g}

A possible use for this instruction might be that the programmer may

.

a mmmmmmwumeu

be rfomdmnn.udhnnndofmmsmmu,nm

mtru:ummhmumcdse
111100001000

9. muznuucm.'x' the instruction vill perfors an Isclusive -

OR of the Switch ter with the. itor mmug

momm contents of the sccumlator will be replaced with the

result of the OSR instruction. | p
111100000100

Example: |

| 001 100 101 101 (Accusulator)

L

101 001 100 110 (Switch Register Setting)

L .

101 101 101 111 (After OSR. Result is in Acc.)

10. When bit 10 s set to a '1', the instruction will perfoii a Halt;

. the smmemonic is HLT. This instruction viu actually halt the current
_mcution of thg. pt‘omn, nnd can be inserted any'here witht.n the pro-
gram to nigml an end to the program. llnce that xn.r ca-nnd- may also
be m.::ed anyvhere in the program to provide an aid in "debugging”,
1.e., finding errors in the program during mcuti.an (Show that the
octal code for A HLT 4¢ 76028' u was used in the previous e:ércues).

Table 5.2 below summarizea Group z‘dcromtmctiom:

TABLE 5.2
Moemoate Code
cLA 7600 Clear the Accumulator
SMA 7500 Skip on Minus Accumulator

SZA 7440 ' Skip on Zero Accumulator

U

4 E
| . 7 @
) %20 skp on- goum Link |
SPA 7510 Skip on gpd.u,y. Accusulator . |
. su | 7430 | on Zero Link ‘ '
.. s 1o 7810 SEIP unconditicnally. o
C om 7404 © inclusive OB, Switch Reglater
2 ‘ - with uegnh:or
‘ HLT 7402 BaLT ‘ ®
: In the following two exercises, take the time to verify that the given
‘octal codes are correct, and thenwork through the programs by hand and then
verify ~the results by running tha programs on the PDP-8. .
EXERCISE S.1
Determine the contents of locations 4275, 430, and 431 after exacution B
of the. following program:
Location Mnemonic " Code
400 . CLA CLL 7300 ®
601 | TAD 426 - 1224 x
) 402 | RAL 7004
403 RTL 7006 ®
404 | SMA 7500
405 IMP .42 5207
406 DCA 427 3227 @
407 ' SNL 7420 |
410 IMP .46 5216
411 TAD 425 1225 @
sz ORAR g 7010

413 DCA 430 3230

®
Location . Meemoute Code
® a4 S szL | 7430
als mr 7402
416 . ‘ TAD 426 1226
e 417 cA | 7040
420 I 7001
‘ 421 DCA 431 ' 3231
o 422 oo 7020
- 423 “ M -7 5214
426 o128 1725
o | 425 | © 4266 4266
426 ’ 0015 ' 00135
- 427 0000 | 0000
o 430 0000 - 0000
| 431 | 0000 0000
Remember that:
* 1. Rotate the accumulator and tha link when performing the rotate
instructions. |
2. The instruction DCA 27 in location M)G8 will deposit the contents
o of the accumulator in l.ocation 4278, ciur the accumulator, but
will not alter the contents of the link.)
3. The instru_c:ions CMA, IAC, in sequence, will find the negative
® value of ;:he contents of the :ccmlacpr. in the‘ two's complement
binary form. (8's complement octal)
o

(e

Lt R y . . g -
CoL LT : . ki
R ‘ SRR L‘[,) ‘"‘?."’-'*1:."’??&

Solution: After the program is executed,

Detersine how many numbers are posit:iée (not including zero), nega:ive.x or

Loe. bz')a will contain 72308
Loc. 430 will contain 6133
Loc. 431 will contain 7763

!
{

I

Repeat the previous mrc;l.a substituting the fofldvins values:

Loc. 5263 now contains 41238
Loc. 425 now contains 2744

Loc. ‘26 now contains 0050

EXERCISE 5.2

39

A group of ten (10) octal numbers are stored in location 30008 to 30"8'

zero and store these three tallies in comsecutive maemory locations.

L]

Location

600
601
602
603
604
605
606
607
610
611
612
613

Mnemonic
CLA CLL
TAD 624
CMA
IAC -
DCA 625
TAD 1 626
SPA SNA
JMP .43
1SZ 627
JMP. .+6
SZA

JMP .43

b

Code

7300
1224
7040
7001
3225
1626
7550
5212
2227
5217
7440
5216

@he 10
numbers to
be checked)

614
615
616
617
620
621
622
623
624
625
626
627
630
631

3000
3001
3002
3003

3005
3006
3007
3010
3011

18z 631
MNP 42
I8Z:630

1Sz 626
182 625
P .-15
BLT
0012

3000

2231
3217
2230
7200
2226
2225
5208,
7402
0012

3212
3014
0025

6625

7200
1210

2567

Three
Tsllies

*
61 s -

I: is possible to combins microinstructions in cmdnt to pntto:n @ore
than one operation at a time. When combining udcrotnattu:tinn- there are
two things that must be considered, (1) that the resulting group of micro-
{nstructions can be coded properly, and (2) that there is a d.d'!.al.n order
or sequence in vhich the microinstructions are performed during the mcur.:lm
of the program. |

When vorkina with combined microinstructions, it will be helpful to
refer to the bit ut.:inp for the Group 1 and Group 2 ‘ntcrcm:mcuou:
Group 1 microinstructions ' '

pied 0 1 2 3 & S5 6 7 8 9 10 11 Ve

1 1 1 0.CLACLL QI OL RAR RAL 0/1 IAC

operation zero speci¥les 0: rotate one place / /
code = 7, Group 1 . ' 1: rotate two places ' j

|

: |

Group 2 microinstructions : ,/ ‘
i

bic# 0 1 2 3 & S 6 7 8 9 10 1

SMA SZA SNL 0/1
1 1 1 1 CLA oS Sor sxp OSR HLT O

operation one specifies ~N: SMA, SZA, °NL zerc specifies
code = 78 Group 2 1: SPA, SNA, SZL Group 2

Refer to the bit settings given for the Group 1 and Group 2 mlcroinstruc~
tions and mote that a Group 1 microinstruction cannot be combined with a Gtoup . @
2 microinstruction. The reason for this is that bit #3 cannot bc set to a
'0' and a '1% at the same time. Thus, the instruction to "complement the asccu-

& 9

mulator and skip on a nonzero link" could not be written as one line of in-

structions:
CMA SNL | (illegal)
’ but instead would be vritt?n as two separate lines of instructions: o
CMA (70408)
- SNL (710508)

‘)‘u

Microinstructions can be combined within a particular group (efther Growp
1 or Group 2) by setting the proper bits to a '1'. A common instruction which
is used at the beginning of a program is “clear the sccumulator amd link bit".
These two mmm:m:m- can ba vd.tm as one line of iastructiouns bocun
they are both Croup 1 nicminltmtionn The code for the instruction can be
written as:

CLA CLL (7300)

(Note that bit #3 1s set to "0’ to indicate a Group 1 microinstruction, bit #4

is set to '1' to "clear the accumulator”, and bit #5 1s set to 'l' to "clesr

*
hY

the link bit".)

EXAMPLE 5.3
Wr.te the group of microinstructions to form the negative of a number

presently in the accumulator (i.s., the 2's complement of the number).

Solution: To obtain the negative of a number, the procedure is to complement
each bit in ‘tha accumulator (all 1's would be changed to 0's and all 0's
would be changed to 1's), and then increment the accumulator, in that order.
The instruction to do cﬁis would be the two Croup 1 sicroinstructions, CMA
and IAC. The instruction then could be written as:

CMA IAC (7041)
or more commonly as:

CIA (7041) "Complement and Increment Accumulator"

The problem that exists is vhether the instruction CMA IAC is going.to be

interpreted by the computer as "complement and increment the accumslator"” or
as "increment the accumulator and then complement it". Thus order is important

in the execution of the microinstructions and it is necessary for the: programmer

s - 9
to know in what ordsr ths combined microinstructions are to be exacuted.
(Mote that this is only necessary uhn two or more microinstructions are
combined to form one line of instructions.) This is the ides behind .
SEQUERCING, whereby there is s definits order in which the microinstructions
will be executed by the computer. . Note that even ehnudh a group Qf aicro=-
m:mcu:;mg, may be coded properly, the' ssquence of execution may be differeat
from that which the programmer had iatended. The logical sequences by which
the computer will execute a group of aicroinstructions followe:

Group 1 Logical ~ Group 2 logical
Sequences —Sequences
1. CLA, CLL 1. Either SMA or SZA or SML.
Both SPA and SMA and SZL.
2. CMA, CML - 2. ClA
3. IAC 3. OsR
‘Q m. m. m. ln - ‘. mlr

According to the logical sequence for execution of Group 1 microinstruc-
tions, the combined microinstruction CMA IAC (7041), will be interpreted

correctly and will form the negative of the number presently in the accumula<

tor. There are a few things to note about the Group 2 "skip" microinstructions.

First, the "skip" microinstructions are divided into two groups, the logical
OR group, and the logical AND group. Whenever two or three microinstructions
are combined from the OR group, the next instruction will be skipped if any
one of the conditicns are met. If two or three m.. -oinstructions are cnubined.
from the AND group, -the next instruction will be skipped only 1if all of the
céhditionn are met. Secondly, microinstructions in the OR group cannot be
combined with instructions from the AND group because bit #8 of the Group 2

microinstructions would have to be set to a '0' and a '1' at the same time.

.
.
i

L,

[

-
- -
.
’ ' 64
. * *
L]
~

In the following exexcises, different sxsmples will de given on combining
alcroinstrictions. It will be belsful to refer back to the different bit
ssttings for the Croup 1 and Group 2 wmicroinstructions snd also the logical

sequences of execution for each group.

EXERCISE 3.3

~ Write the octal form for the fo?hwﬁ: groups of microinstructions and
also what each group will actually do. Identify any illegal combinztions and
" explain why they are not possible. - ‘.

1. CLA CLL CMA OML

2. CLL RTL HLT

3. SMA SZA ClA

4. SPA SNL

5. CLL SPA

6. CLA SHA SZA

7. BRAR RIR

8. SNA SZL

9. CLA CLL IAC RAR

10. CLA SPA

Solution:
1. CLA CLL OMA CML
111 011 110 000 = 73608
Clear the accumulator and clear the link, then complement the accunulgtor
and the link. After execution the accumulator will contain 111 111 111 111 =

7777 or -1, and the link bit will be set to a 1.

b

» «

2. CLL BTL HLT

An 1llegal combination bacause Group 1 and Group 2 microinstructions
cannot be combined.

3. SMA SZA ClA : ' '

111 111 100 000 = 77405 | .

Skip the next instruction 1f the contents of the accumulator is less than
or equal to zero, and then clear the accumulator. (SMA and SZA belong to the
OR group and also bit #8 of the Gruup 2 microimstructions is set to & '0').

4. SPA SNL o .

Aa illegal combination because the OR group and the AND group "skip"
microinstructions cannot be combined.

5. CLL SPA

An illegal combination becnﬁse Group 1 and Group 2 microinstructions
canno% b2 combined.

6. CLA SMA SZA

111 11: 100 000 = 77408 ‘

Same as (3).. The ordéf of writing this combined microinstruction is not
inp&rtant and will not affect the order of executibn.of the microinstructions.

7. - RAR RTR '

An 1illegal ccmbination because bit #10 of the Group 1 microinstructions
would have to be set to a '0' and a 'l' at the same time.

8. SNA SZL

111 100 111 000 = 7470,
.Skip :ﬁ;ineht instruction 1if the contents of the accumulator is not equal

to zero and if the link 13 equal to zero. (SNA and SZA belong to the AND group

and also bit #8 of the Group 2 microinstructions is set to a 'l'.)

t.,

v e

) v

&

9. CLA CLL IAC RAR (Illegal on PDP-8/8).

-

111 011 001 001 = 73118

Clear the accumulator and clesr the link, increment the Mur. then

rotate the contents of the accumulator and ‘the 1link one bit position to the

right.

This instruction will clear the accumulator and move & 'l’' 4ato the

1ink bit. Note that this instruction could also have been written as:

10.

mmm-nbo'a
CLA SPA

111 111 001 000 = 77104 Q

-~ -

Skip the next instruction if the conteats of the accusulator is greater

than or equal to zero and then clear the accumulator. !ht& that the order

this combined microinstruction is written in is of no importance.

1.
2.

3.

QUESTION 5.2
Repeat the previous exercise for the following groups of microinstructions:
CLA IAC RTL |
CLA SMA SZL
SNA CLA
CMA SZA

4.

SMA SZA S ClA

EXERCISE 5.4

 Write the set of microinstructions and their correspording codes for each

of the fcllowing sets of instructione:

1.

Clear the accumulator and clear the link, increment the accumulator,

and then complement the accumulator.

2.

Clear the accumulator and then skip on a nonzero link.

%)

‘ﬁ-

3. Rotate the accumulator left, clear the ncculnliﬁnr. and then skip -

on & gero accumulator.

Solution: ’ ' i

1. CLA CLL IAC QMA would be wrong because this instruction would comple-
ment :hcAac;u-uln:or before incrementing it. The correct set of 1nl::§ctinnl
would be: |

CLA CLL IAC (7301g)
an - (7040g)

2. CLA SHL (7620;), .

Not; thét order of execution is nocfinportant for this instruction, but
the actual result would be to first exe‘cutc the nicroinstx;uction SNL and then
-clear the acé@ator. p
3: BAL (7004g) |

su (72908)
SZA (74305)

RAL and CLA cannot be combined, nor can CLA and SZA be combined.

The following is a list of combined microinstructions which are commonly

-

used:
» . .
Microlnstructions . ‘Code : Meaning -
* CLA CLL <7300 ‘ clear acc., clear link
* CIA 70&1\ o complepent ‘and’ increment the acc.
((MA IAC): | | :
. v i :
LAS 7606 load the acc. with the value of the
(CLA OSR) ‘ switch register
STL 7120 set 1iAk~pit toa '1' /

(CLL CML)

-

* Indicates that it is used frequently.

Microinstructions Code Mesuning ,

®) ax 7204 put link bit into bit 11 of acc.
(CLA RAL) '
ClA IAC 7201 set acc. to "1’

o ‘ STA 7260 set ace. to '-1'
(CLA OMA) ‘
CLL RAR 7110 shift positive number 1 :mi
CLL RAL 7104 shift positive mmber 1 left

o CLL RTL 7106 clear link, rotate 2 left *
CLL RTR 7112 clear 1ink, rotate 2 right
SZA CLA 7640 skip 1f acc.~0, then clear acc.

e . SZASNL 7460 okip 1f acc.=0, or link 1s 'l’, or

both

SNA CLA 7650 . ekip if acc.$0, then clear acc.

® ‘ SMA CLA ﬁ 7700 | skip 1f ’ncc.<0, then clear acc.
SMA SZA | 7540 skip if acc.<0, then clear acc.
SMA SNL 7520 ‘skip” 1f acc.<0, or link 1s '1',

. ‘ or both

f. * SPA SNA 7550 skip 1f acc.>0
SPA SzL . 7530 ?g%p_if acc.>, and 1f link is

o SPA CLA 7710 .skip if ace.>0, the; clear acc.
SNA SZL 7470 skip if acc.$0, and liok is '0'

) ANSWERS TO CHAPTER 5 QUESTIONS

¢ * Question 5.1 |
After the program is executed: -

4; | Location 427 will contain 0000

Location 432 will contain 0000

-~

Location 431 will contain 7730
* Indicates that it 1is used frequently.

R

Question 5.2
1. CLA IAC RTL

111 010 000 111 = 72078

Clear the accumulator, iucrement the accumulator (set tke uecunulatar to .

'1'), and then rotate the contents of the accumulator and link bit two places
to the left. |
2. CLA SMA SZL
An 1illegal combination because the OR group and AMD group “skip” micro-
instructions cannot be combined. '
3. 3N LA
111 110 101 000 = 7650,
Skip the next inétmction 1f the contents of the accumulator are nonzero,
then clear the accumulator.
4. CMA SZA
An illegal combination because Group 1 and Group 2 microinstructions can-
not be combined. |
5. SMA SZA SNL CLA
111 111 110 000.- ‘17608 |
Skip the next instructfion if either the contents of the accumulator are

negative or zero or if the link bit is a 'l’', and then clear the accumulstor.

70

Input/Output
We will now learn how to get information into and out of the computer.
| Unul.mmoﬂymn.eoﬂddoﬁumhymmmmmm
reading the lights on the front of the computer. Obvicasly his is & tedious
and very slow process. Fortunately there ars instructions availsble which
nlltovul :omcmmfomdm'nmatdchnnduhuhm:&mu:c
to type out its information. These are the imput/output instructions (IOT in-

structions). The code for these instructions is as follows:

110 six bits three bits Instruction register

OP code Device Select Command Pulses

The OP code is octal 6. Six bits are Nused to identify the device for
vhich an operation is to be performed. Thess bits are sent out to all devices,
Qs are the three bits used for commands. Each device has a device selector
vhich decodes the six bits of information and if the particular device has a

code equal to the six bits, thén the selector allows the three comsand bits to

" pass to the dm;:é. In this way only the selected device receives the commands .

This is illustrated in the following figure.

g

- T
~
(Ve

7

- Usually each device needs to communicate with the computer to indicate

that it has data for the co-put‘f. or -that it 1s ready to receive ditn from
the computer. This 1s accomplished by use of a signal called a "flag". The
flag is used to indicate that the device is either ready or busy. The computer
has the capability to do instructions of the following sort:

1. Transfer data and/or operate the device |

2. Test the statua of the flag

3. Clear or set the flag

One instruction in particular is useful. This is the ggég_gg_g;gg_inr
struction. This allows the computer to skip the next 1ast;uccion if a par-
ticular device's flag is set. This is facilitated by the SKIP BUS on the PDP-8.
If the bus sees a signal and a skip instruction is being executed then the next
instruction is skipped. The use of this imstruction will be illustrated ia the
next section. Note that the only device able to cause such a skip 1is the one
being addresscd by the six bits of the I0T instruction used for device select.

An 1llustration of the IOT instruction is comsunication betwe?n a teletype
keyhonrd‘and the computer. Whenever a key is struck, the telétype prepares a
series of high and low voltages, tep;eaenting 1's ana zgeroes, puts these into
a keyboard buffer register and then sends a signal to the computer (flag) that
the buffer has data. If the computer is programmed to tpspond. the' computer
then puts this bit pattern into the accuqulator register. What happens to
the pattern from there depends on the user's program. Since the information
must go thrdugh the accumulator register, we obviously need some mechanisam to
inform the computer that the information is coming so that the accumulator does
not have some data from angthe: program which would be legt'when the accumulator
gets the information from the teletype. This informing is accomplished by the

setting and clearing of a keyboard "flag". The status of this flag 1s then

'Y - o ' 72

-

monitored by a specific set of IOT instructions called the Teletype XKeyboaxd/

Reader Instructions. The flag being set indicates that the kayboard buffer
contains information and 1s ready to send it. These instructions are easy to
" learn since there are only four of thes.
. \
Teletype Reyboard Instructions
Mnemonic Octsl Meaning
° KSF 6031 " Keyboard Skip on Flag - Skip the next
' instruction if the keyboard flag is
. related (caused by the presence of in-
: : formation in the keyboard bduffer regis-
ter, i.e., a key has been pressed).
) KCC 6032 Clear the accumulator and clear the
keyboard flag.
KRS 6034 Move the bit patterm in the keyboard
buffer to the accumulator register.
o KRB 6036 Perform KCC and KRS.
/' An example routine which would read one typed character and store it in a
° location called TYPED is - |
KCC /CLEAR THE FLAG
KSF /SKIP IF FLAG IS SET
e MP .-l
KRB : /READ KEYBOARD BUFFER
DCA TYPED
TYPED, 0 /STORE TYPED CHARACTER HERE
® :
Since the flag will be cleared until a key is pushed, the computer «ill be
° in a continuous loop between the two instructions
. KSF)
JMP .~1
until a key is pushed.)

.’ ‘_lr

73

A nicely symmetrical concept and commends exist for sending information
oQi of the computer. The "flag" now is a printer flag and it 1is “set" uhgn'
the prianting part of the teletype is ready to accept a character, while the
flag is "lowered"” or reset during the ptiqzing process. The repertoire for

output is:
.thlagzgg Printer Instructions
Mnemonic Octal ' ' Meaning
TSF : 6041 Skip the next instruction if the printer
flag is “"set".
TCF 6042 Reset or clear the printer flag.
TPC 6044 Move the bit pattern from the accumula-
' tor register to the printer buffer
register and print the character.
TLS 6046 Perform TPC and TCF.

Suppose that we have the bit pattern, called the ASCII code, for the
letter ™M" stored in a location we called "EM" and want it to be printed by

the teletype. A short sequence of code to do that could be:

EM, 315
* s
CLA CLL
TLS /RAISE FLAG INITIALLY
TAD EM /PUT ASCII CODE FOR M INTO ACC.
TSF - /WAIT FOR FLAG
JMP .-1
TLS /PRINT M

Note that here there will be a continuous loop between
TSF
JP -1

until the printer raises 1u£mmie;emgic'-ruayu§yp.'. then the TSF
will be uti.f:led and therefore will skip the JM¥ .~-1 instruction causing the
-letter M.to be printed by the TLS thctm

Again nor.ice the basic difference bemen these I/0 hstruc::lonn and all
the other instructions we have encountered previously. We now have ths capabil-
ity ¢f having the running of a program be dependent on some external me. in
this case the change in the status of an external mm flag. Previously the
only way we could have altered the running of a program once it started wvas to
push.the STOP button. This concept of having the nmning\gf a program be depen-
dent on external events is the basis for "interrupt prograsming” or real-time
computer usage as it is sometimes called. |

Until now all the instructions we have asked the computer to execute have
been linear in the sense that one instruction followed the other in a line of -
successive operat?ons. We may have had JuMPs, but these were still linear in
that:

a. a given instruction vas executed;

b. the next instruction was a JuMP to -s‘m other location;

‘c. the next instruction to be executed after the JuMP was at the loca-
tion which has been JuMPed to.

@ There are several situations where it would be very helpful if we could
suddenly suspend, or interrupt, a program which is running, run another program
for a while, then return to the previous program. This is exactly what INTERRUPTS

e d>. There are at least three main situations where we want this ability.

v

) M:ch.mu:uumuuﬂthmmm,‘mhu ,f
a teletype or magnetic tapu unit, hchthemmmdmui:michudy'
to send or data at the same instant so thers must be some commmication

“between them.to dstablish this instant. . S .

2. If a computer is being used to run or monitor some sort of procass,
such as an experiment in a lab or & steel mill, we would like the computer to
respond to an emergency situation quickly rather than having to wait for aoin
low priority program to finish runaing.

| 3. 1f a computer is being used in "timesharing”, 1.0...uhere ecve:nl:usatn
are using the computer simsltaneously, we would like the corputer avnilnb#lity,‘
to go from user to user so quickly that all users feei they have the ccnn;:er |
exclusively. | | "

To make full usage of the spued of the computer we would like it :3'petfotl
some useful calculations while vaiting for external device flags rather; than
just looping endlessly as in the previous examples. This can be accongiished

through two new instructions: : !

Mnemonic Octal Meaning ’ .
10N 6001 Turn the interrupt capability on.
IOF 6002 Turn the interrupt capability off.

When the interrupt capability is om, and a device flag is set, the computer
will finish the single instruction it is executing but then instead éf executing
the next imstruction of the program will automatically disable the interrupt sye-
tem and execute a hardware JMS 0 instructionm. '?rcn our previous descriptions you
should remember that this will cause the location of the next imstructiom to be
executed by the interrupted program to be placed into address 0 and will cause
the execution of the instruction at address 1. It is the ptogr;uner's respon-
sibility to write the interrupt service subroutine which begins at address 0.

~.

- "j

¢ — ‘@

76

»
The last instruction of this subroutins would naturslly probably be a

e 1 o | _
which would return control to the program which was running at the time the
interrupt occurred since :ha..ms 0 stored the return address at location 0.
Note again that the JMS 0 is hardwired or automatic, while the programmer must
write the JMP I O, :oncmfmmucem:.mmua‘fnni timé com~
puting is therefore that while the computer is rumning some non-—essential
program, usually called a hecksround program, it can be interrupted by a flag
from an external device which causes the computer to devote itself to irocesam
this interrupt. Upon completion of the interrupt processing, or foreground
program, the conpuéer resumes running the background program where it had left
off. - '

Timesharing is possible because most I/0 equipment is much slower than
thé conpunef. 1f a person is sitting at a teletype, the conbuter caﬁ nornally
execute éhousands of instructio;;.betunen au#cessive key presses by the user.
By allaiing the user only a ‘ery short length of time, say 1/100 of a second,
then moving to a second user, again for 1/100 of a second, then returning to
the first user, the computer will then perform seemingly impossible tasks of
servicing two users simultaneously! s;nce this switching between users is
done via interrupts, there is no seeming interaction between the‘pro;tans‘of
the two users and each will feel that he (or she) has the full usage of the
computer to herself (or himself). Of course, with large, fast computers, it s
possible to sefvice many users "simultaneously.” A large computer may be
reading/printing with 50 teletypes, be reading from several card readers and

printing on several _ine printers all at once.

-’If,‘

Tha following 11ustrates the use of the interrupt facility sod inter-
rupt programming.
Mesning ‘

Location Instruction
%0 ')
0000 0 /LEFT FREE POR RETURN ADDRESS
0001 - JiP 1 SERV /JMP INDIRECTLY TO SERVICE
. ROUTINE
0002 . SERVE /ADDRESS OF SERVICE ROUTINE
#1600 >
1600 SERVE, SKSCF /SKIP ON SCOPE FLAG
1601 SKP /SCOPE FLAC NOT RAISED
1602 JMP SRVSCP /I 170 SCOPE ROUTINE
1603 KSF . /SKIP ON KEYBOARD FLAG
1604 SKP /KEYBOARD FLAG NOT RAZSED
1605 JMP SRVKEY /JUMP 70 KEYBOARD ROUTIKE
1606 TSF /SKIP ON PRINTER FLAG
1607 SKP /PRINTER FLAG NOT RAISED
1610 JMP SRVPNT /JUMP TO PRINTER ROUTINE
1611 . :

Note that locagion 1 has an incivect jump to SERV. SERV is the symbolic
pame of location 2 and location 2 has the symbolic nase of location 1600 in
it (SERVE).

Note that at locatio 1600 and following, there are a number nf skip type
{nstructions. These are used in the PDP-8 to determine which device has caused
the interrupt. The PDP-8 has only one line to indicate that an interrupt has
occurred. Therefore when an interrupt has occurred, it could have been caused
by any device attached to the interrupt bus of the machine. The set of skips
used above is called a skip chain. When the above chain determines which
device has caused the interrupt, a JMP to the appropriate routine is caused,

and the device {s serviced. An example follows for the keyboard routine.

Location Instruction Meaning
*1650
1650 SRVKEY, KRB /READ DATA INTO ACC.
1651 DCA I LOC5 /STORE DATA INDIRECTLY
1652 INC LOCS /UPDATE POINTER
1653 ION /TURN ON INTERRUPT SYSTEM
1654) JIP 1 O /RETURN TO MAIN PROGRAM

A 4

0L

»

78

) -

, In this service routine one datum s brought into ths accumulator and
stored 1n mewory. The pointer is updated and then the interrupt system is
turned back on. Remember that it was automatically turned off when the
interrupt occurred. What would happen if another interrupt occurred just
after the ION and before exscution of the JMP I 07 The new interrupt would -
destroy the contents of location 0 disallowing return to the location in the
main program from which the machine was initislly interrupted. Since this 1is
intolerable, the PDP-8 ION instructiom does mot actually turn the interrupt
system on until after execution of of the instruction following the ION.

This allows return from the currant interrupt before another can be accepted.

SUMMARY
Input and output and control of devices by computer is usually accomplished
by an interrupt cabability uhicﬁ allows a prdaran to be interrupted, anothar

program to be run and then followed by a retd;n to the previous program.

i

CHAPTER 7

-

_ ‘ Assembler
It was mentioned in Chapter 3 that the programmer could use a program
called.the Assembler to translate his mnemonic-codad program into the binary
coded instructions which the computer understands. There are several ways
in which a programmer may prepare and subwmit his mpenonic piograi to the PDP-8.
The lnstructions for preparing such a tape will be given later. -
Rafering £o Exercise 3.3, the simple addition program would be snbnit:ad
to the aAgenbler in the following "file":
*30
ClA
TAD A
TAD B
"DCAC
HLT
* 50
" A, 0707
B, 0070
c, 0000
$
Note that symbolic names are nﬁw used to represent the memory locations
which hold the two numbers to be added and the resulting sum. When the assembler
translates the instruction "TAC A", it 'looks' for the definition of "A" in the

file ("A, 0707") which meaas "A represents a memory location which holds the

number 07178". "250" is an instruction to the assembler to locate whatever

follows in the "file'", beginn’ g at locatiom 50:

Therefore: 'A' is in location 50 snd has a value of 0707
'8’ 13 in location 51 and has a value of 0070
'C' 18 in location 52 and has a value o} 0000

Also, the assembler instruction "#30" tells the assembler to start the
instructions of the program at‘loeation 30.. Therefore, the 1ns::uq:1bn "cLA"
will be in location 30 and the ;nstruction "DCA C" will be_in location
(3043)=33.

The dollar sign ($) is important! It must be at the end of the input to
the assembler. It tells the assembler "end of the file ﬁo be assembled.” If -
it is omitted, it could result in a "crash”, a fatal programming error. When
the assembler translates the file, it will result in the ;a;n binary (octal).
coding that was developed by hand in Exercise 5.3., The procedire to use the
assembler will be covered lafer in this chapter.’ ‘

In the example above, 'A', 'B' and 'C' are referred to as sywbolic addrusas.. '
The programmer does no:\have to figure out what absolute (oxr relative) numeric
address they represent as in the examples in bgeceding chapters. They may be

up to six (6) letters and numbers in length, but cannot begin with a number. -

Examples: At
Valid inwnlid
BUFFER 12X
A 78P
X
SUMS

The symbols can be used anywhere in a program as long as they are defined.

Examples:

[) ‘ ‘ ¢ -.
JMP END "END" 19 defined as the location containing
. the instruction "HLI". The computer, upon
. ~ execution, will jump to the line of the pro-
. gram with the "HLI". . X
END, - HLT . : . . ¢
2. . —) ' .
DCA SUM The cmut& will deposit the contents of the .
. acc. into the location defined by the label :
. "SUM", which initially is deffned as contain- ®
.« . ing zero (0000).
SUM, 0000 . '

Note that the comma (,) must appear after the definition of a symbolically

addressed location: ¢

SUM, 0000

END, HLT - ' ¢
NOTE: If a program had the instruction "JMP ENI')“ and the programmer forgot to o
'define' a location with the name "END", an assembly error would occur and the
program could not be assembled until "END" is defined, or, if "END" defined a
location which contained a number instead of an instruction, "JMP END" would @
still jump to this defined location "END" and try to exeeut; f:he mmb'er st;re'd . !
there. This would ptdbabl}r result in an error.. \ ' ol
COMMENTS: The progrsmmer can, optionally, attach a small 'mtet'ex‘plqinins any .
program step if he desires. These notes are called c@nnts~ and are ignored .
by the assembler if they are preceded 'b'y a slash (/). If the slash is not used,
the assembler will try to translate t?xe comments into instru\ctions,; and errors o

‘ will occur. Examples: . . ' o
e

., -CLA * /Clear ‘accumulator to .staxt work
® LT ‘
JMS ADD ’ l.!ﬁnptoeubmt:l.ne '?ADD",
®) B, HLT /End of program o .
. ADD, 0000 /Bagin subroutine "ADD"
o . JMP I ADD /End of subroutine "ADD"

One of the greatest labor saving acts of the assembler is that it permits
.the prograunar to do 1ndirecc addressins wi:hou: having to do the tedious word
coquing. This .may be acconplished in one of two ways:

1. Explicicly by use of the letter I after the instruction; .

2. Intrinsically by use of the Pseudo-op "PAGE". N .

[/In the above ekanple the eféect of the"I" in JMP I-ADD was ‘to inform the
assembler that we wagt to jump to ADD indirectly, i.e., we want to jump to the
location in cq.e yﬁosg address is stored in the word called ADD. Although ;ﬁ
this example, the 1nd1r§ét addressing was for a return from a subroutine, the
samé ‘usage of "I" will allow a jump or accessing of an} lécatinn in core. Note

I | that- Qere the' assembler does all the dirty work; it finds the relative address.
¢ of ADD and encodes it into the instruction word at JMP I ADDl. | "
The second metﬁod. that of usiﬁg the Pseudo-op ""PAGE", is even more power-
" ful. ."PAGE" is called a Pseudo-op’ (pseudo-operator), because it is not a com-

puter instruction which we want the essembler to encode into machiae language,

. ¢,
but it is rather a command to the assembler. I: says that we want uo more

4

instructions encoded into the current page and that the next instruction to be
encoded should begin on the mext page. If this instruction is jiven before the

page is filled with code, there will be sowe unus2d words lefg. The assembler
\ ’

f

€ o . Ty

) .

will then use these words to store addressss for indirect references. Agailn,

the assesbler does all the dirty -rork. For example in:.

NEXT, IAC |
PAGE "
: . :
JMP NEXT
2 PAGE

s '
I1f the PAGE pseudo—op 1s Used using CAP 98 (the cross assembler using

the PDP-9) then the page desired must be explicitly id;ntifiad. If it 1is not,

then CAP 98 assumes thatiyou mean page 0. In CAP 98 the PAGE pseudo-op is not

needed to allow references to off page locations. The asaenbler:uill'codé ;he‘
instruction using indirect addressing and uﬁes the last locations on that page

to ?ode the full address, just as if you had reserved those locatfons with the

PAGE Pseudo-op. **The cross assembler running on the PDP-11 does not allow use
of the PAGE pseudo-op nor does it ailow addréssing directly any off page loca-

tions exéept page 0.*;

The assembler will find the addres: of NEXT, sto:2 this address in the
Tocation following the last encoded instructior before the second "PAGE", and”
then encode the JMP instruction as an indircet jump. The assembler then allows
easy access across page bounda:;es. The only conceru of tire programmer is that
"PAGE" be declared to allow sufficient excess words on the current page for all
indirect addresses. Since begimmer programs usually do not need to be "tiéhc"

in the sense of not wastiag core, a good rule is to issue "PAGF" after about

every four paper pages of wfitten code..

*

® . x ® 54

- PPAGE" ucnlyng-ofmrdpuado-opsvhmmnﬂlym
® more convenient than it first appears. De;aun of these others may be found
in any DEC literature which discusses the}AL—D Asaai:l.er.. however, we have
here provided enocugh to enable thp reader to write -emin;ful ProOgrams nowv.

® / All we have said cun be summarized very briefly:
. ! . . .

Summary of Rules for Writing Mnemonic Programs using the PAL-D Assembler:

1. The first line-of code must be

o
wvhere xxxx is the octal address where we want the first instruction encoded.
. . b}
.’ Note: Do not use locations 2()08-20108 or 77508-17518. This will be explained
later.
2. All locations which we want to reference by name must be defined by
® the name followed by a comma. For example:
SEVEN,7
® I
TAD SEVEN
‘ *
3. We may use indirect addfessing by specifying it explicitly using the
letter "I". For exampl .:
. L)
OTHER, 5 _
JMP I OTHER
o

4. Ve may tell the sssembler to use indirect addressing for referencing’
locations in other pages by issuing PAGE befors the page is filled with codse.

5. We may comment on any line by using a slash (/).

6. The last line, physically, of our program must have only §.

Remenber that we have been talking niout input to the assemblex. You
may remesmber that we stated befor; that the input to the assembler is a ﬁunched '
paper tape. The directious for meking the tape are in the mext section. The
nornal sequence, then, for ; beginner to use the PDP-8 is:

1. Vrite the program in MNEMONTCS following the rules we have given for
the assembler. . |

2. Use the EDITOR program to make a puncha§.papor tape of the an:nnuﬁc
program. | | -

3. Use the ASSEMBLER to convert the mnemonic paper tape into a binary
paper tape. '

4. Use the LOADFR to read the binary.papqt ;ape and load it into the
core memory of the computer. '

5. BRun your program by putting its starting iocation into the PC register

via the panel switches.

The Disk Operating System

A common feature of the PDP-8/I é:;;hter“is a package of programs, including

the assembler and other utility programs.

These programs are not kept in magnetic core memory, but are stored on a
peripheral memory device called the DISK. A disk is a bulk storage oﬁvice, con-
sisting of a rotating magnetic disk onm which "1"'s and "0"'s are recorded by
magnetizing a small area of the disk's surface. The disk on the rue-8 ﬁas a

capacity of 831,488 12 bit words. (RKO1 ‘disk unit)

Ge

o/

~

The user gets access to the disc and to any of the tasks for which prograas
have been written by use of a program called the MONITOR. \'!hnmm'um
the Monitor, by means of typing commands on the teletype, to 'fetch' from the
disk the desired utility program(s), such as the assesbler. This section will

| prémt three of ths available utilit-y programs to get the reader to begin using
the disk systea: '

1. the Editor

2. the Assembler

§
\

3. the Loader .

1. The Editor - a program which will accept the pro;;'mr's fiic_ (such
as the example Qt the beginning of this chapter) and to punch a pap@: tape
(called the source tape) of the file which can be suimitted to the Assembler.
It can also be used to correct typing errors, and to add or delete lines of
instructions.

2. The Assembler - accepts the source tape created by the Editor, and
translates it into binary instructions which the computer can execute; also will
list any serious programming errors (such as illegai 1m:tu§tionl); punches a

binarj;-éoded paper tape of the translated program to be submitted to the Loader.

3. The Loader - a program which reads in a binary~coded program tape and

loads the instructions and/or data into locations in memory; the program would
then be ready to execute by operating the front panel.
‘ To preparé a program fot_emut:lon on the PDP-8, using the disk system,
the prégramet will follow a certain sequence of steps. The sequence of steps
is as follows: |

As with the assemller, we present here only the éiniz;m instructioas to
enable you to prepare a tape of a meaningful program. Fuﬁl details of all op-~

tions are in DEC literature describing the SYMBOLIC EDITOR program. The basic

ERIC ‘ : U

87

idea of the editor is that it presents you with an empty "file" ox scratch
pad, correct any typink‘e;rora, and then tell the editor to punch out on paper
tape the contents of the scratch pad. Therefore, whenever you type to the
editor, your typing may be one of twp distinct classes. |
1. The material may be text which you wish to be written on your actatchpag.
2. The material may be a command to the editor. |
To differentiate between thesa types, the editor lives in two differeat
"modes”, the text mode and the command mode. TB change the editor's mode type

the keys as shown here:

Eae

The wmost important editor commands are:

Command Meaning
A " Append the following text, i.e., write it om the
scratchpad.
L List the buffer, i.e., type the entire contents

of the scratchpad.

' ~ _ nL List line n.
, P Punch the buffer, i.e., punch a paper tape of the
[]ﬁhz‘ contents of the entire scratchpad.

Ju

~

Command Meaning
nﬁ Délete line n.
nl Insert the next text bafore line n.

Again, } represents the RETURN key. With thesu few commands, you should
be able to type and correct a small program. |

We have previously given the prﬁpe; sequence of steps to rumning a small
program. jAssuming that you have written such a sunlh program, we now give you
step-by~step directions for doing so. Good luckf. E

1. Turn the teletype "on" (th§ knob on the louﬁt right hand side of the
teletype should be turned to the LINE position).

2. Load 76008 into the switch register and press LOAD ADD (7600 1is the
starting address of the Monitor), and then press START.

3. If the teletype responds with a ".", the monitor is ready to accept
a command from the programmer. If the teletype does not respond with a “.”, a
procedure called "Bootstrapping the Monitor” must be done. The resident Monitor
area, locations 7600 through 7777, may have been destr;yed or altered ?nd can .be

resﬁored by manually loading into the computer the following bodcqtrnp routine:

Location Contents
0200 . 6603
0201 6622
0202 5201
, 0203 5604
o
0204 7600)
7750 7576

7751 7576

After loading in the above program, set the switch register to 0200,
prass LOAD ADD, and then press START. The teletype should respond with a -
”."; the Monitor is ready to ac;:ep: a command from the pmp“:.

Step 1: Prepare the tape for the Assembler by using the Editor (EDIT)
prograa stored on disk; (Note: the doubly underlined portious uu indicate

characters typed out by the computer while r are. singly under-

lined.
. EDIT 3 (Call the editor program)
* OUT - T:)) N
-
*
* IN - T: }; (These commands tell the Monitor that input

and output will be handled by the teletype)

(No options)

*A Y ('A' 1s the Editor command APPEND which will
append (or add) to the Editor buffer (at
this time the buffer is empty; as the program
is entered, the buffer will begin to fill))

Type in program to be assembled; be
sure to end with a § or a fatal error
411 result. .
Press CONTROL and FORM keys at the same
time to return Editor tu command mode,
which is denoted by an "#*". Make any
corrections necessary by using the given
editor commands. '

:

* - Turn the teletype to the LOCAL position, curn
on the tape punch by pressing the ON button,
press the IS button on the teletype to
punch a er for the tape, and then return
the telefype to the LINE position and press
the OFF button on the punch.

P (Editor command to punch the entire contents

of the buffer)

Ju

Turn on punch
® (Bditor will puﬁch buffer after -
hitting carriage returm)
N Turn off punch ~
'® Press CONTROL and C Keys (Return
to Momitor
Step 2: Assemble the program by using the utility program PALD. The
assembler must read your entire tape three timas. . :
o . PALD)
* OUT - T:)
¢ hud
* IN - T: }
e . *
’/ *O0PT - T §
' Place tape in tape reader with the control
@ ’ on STOP or PREE
Press CONTROL and P Keys
Turn on the reader
@ | PASS 1
Turn off reader at end of tape
4 Reload tape reader
® : Turn on PUNCH
o Type CONTROL and P Keys - a leader is punched
Turn on reader when leader is completed
s : | | PASS 2 - BINARY TAPE IS PUNCHED

Turn off reader at end of tape

‘ Trailer is punched
¢ Q . ‘9'3

91

Turn off punch

Reload tape reader

Press CONTROL and P Keys

Turn on reader

PASS 3 - LISTING TYPES (the memory loca-

tions, their octal contents, and the

program are all printed out)

Turn off tape reader at end of tape
(The computer will return
to the Monitor), and then
print a "."

If the assembler found any errors you must go back to the editor and

make a new source tape.

Step 3: Load and execute BEINARY tape using the utility program LOAD.

. LoAD ¥ | -

»

IN - 'r:},

y

ja 1=

7]
s |
1
v

(g

Press CONTROL and P Keys
Turn on tape reader

Machine will stop after ﬁape 18 tead;
turn off tape reader.

Press CONT button on front panel of
computer

Computer will loop in resident monitor

1>

Press CONTROL and P Keys, coanputer returns
to nonitor, prints a "."

To execute the program:

Press STOP button on front panel of computer

ERIC . - Y

Set Switch Register to the starting address
of the program -

P ' . Press LOAD ADD, then press START
| EXERCISE 7.1 -
® Go back to Exercise 3.3 and use :he. disk monitor system to: create first
the sourcae tape, then the binary-coded tape, of the program, and load the
program into memory; then execute the program.
o
- Solution: The following page is a copy of the print-out from the teletype it
includes the commands typed by che Programner and t.hc corresponding co-pucer \
P " responses.
The Editor and Assembler (PALD) communications are shown. The Loader
print-out is not shown.
° Note that: (1) A dollar sign ($) must be at the end of the source tape that

is submitted to the Assembler.

(2) When using the Assembler:

7‘ J(a) The first time the source tape is read in, the teletype
will print nothing, unless the assembler detects an
error.

@ (b) The second time the tape is read, the teletype wiil print
meaningless “g}arbage" (see following page)

(c) On the third read, the teletype prints a listing of the
® ' program along with the memory location and octal code of
each instruction. Then it will print an alphabetical

1isting of all symbols in the program, and their octal

@ locations (a symbol tadle).

Ju -

*OUT-T:
®
IN-T:
*
ROPT-
R
Lk T)
CLA
TAD A /GET A
TAD B /ADD B TO IT %
DCA C /STORE THE SUM
HLT /STOP
*5¢
A, @797
B, ©97¢ ‘
C, ©¢90 ~—~ /STORE THE SUM HERE
$
*P
*3p _
CLA
TAD A /GET A
TAD B /ADD B TO IT
DCA C /STORE THE SUM
HLT /STOP
*5@
A, @707
B, @07¢
c, @odd /S1ORE THE SUM HERE
s .
* PALD
*QUT-T:
* €
*IN-T:
*
#*QPT-T
4
*30
3930 7200 CLA
@831 1950 TAD A /GET A
@932 1@51 TADB /ADD B TO IT
@933 3952 DCA C /STORE THE SUM
#9346 7492 p HLT /STOP
®5

98590 9787 A, 0787
#9851 9978 B, 89/6
P952 0099 C, Po9¢ /STORE THE SUM HERE

A 9050
B #8951
c 9952

~

EXERCISE 7.2

fh
Repeat Exercise 6.1, except use the program from Exercise 4.4.

Solution: The following five pages are a‘cppy of the iditot and Assembler
'dialogue’'. Note that the programmer made several typing errors when he
created the file using the Editor. The erxrors are circled; he also forgot
che instruction “BLT". The second and third follouins sheets show how the
errors were corrected. The basic schemes are:

(1) Get the line which is in errvor.

(2) Delete that line. '

(3) Imsert the correct line.

OR

Insert the Jine(s) which was (were) missed.

Table 6.1, which follows the output from the teletype, lists the Editor

commands. .
NOTE: (1) When the "k th" line is deleted (*kD), the old (k+l)th
line becomes the new k th line.

(2) Hhen inserting a line (*JI), the new text is inserted
before the '§ th' line, and the line count is adjusted.
Also, after all the new text is typed in, hit CONI!DL
and FORM keys (together) to indicate 'end of new text'
to the Editor, or anything else typed in will still be
read by the Editor as 'new text'. After hitting CONTROL-
FORM, the Editor will respond with a "a" {it's ready for
a new command.

(3) "#%600" 1is counted as a line; it is line 1
"%650" is counted as a line; it is line 19
The line count is done in decimal, mot octal.
After all the corrections were made, the programmer continued the

processing of the program (punch the source tape, call PALD, etc.)

T: : \ '

*IN-T:
*
*0PT-
2 *A
690
CLA j
TAD K27 /GET 27 dncl- AND
. CIB /FORM -27

DCA COUNT /USE AS COUNTER
TAD NUM /GET LAST NO.
IAC /FORM NEXT 3 # TO TEST
DCA NUMB /AND STORE IT
TAD NUM /GET IT AGAIN
JMS CHEK3 /JUMP TO SUBRT-
CLA
/ ISZ COUNT /ADD 1 TO COUNTER-@?
~ JMP LOOP /NO ,JUMP
K27, #4933
COUNT , §96¢
MIN3, 7775
WHERE, 18890
NUM, @609
*650
CHEK2 , #9980
LP, <TAD MIN3 /SUBTRACT 3
SPA SNA /RESULT>@?
JMP ZTEST__/NO
. JMP LP! /YES »JUMP TO LP1
ZTEST, SZA JACC .=§?
END, JMP ICHEK3/EXIT SUBRT-
TAD NUM /ACC.NOT ZERO,STORE #
DCA I WHER /AT ADDR. IN WHERE
1SZ WHERE /UPDATE STORING PTR.

JMP END
$
*4L

CIB /FORM -27
*4D
*41

CIA /FORM =27
*41,

CIA /FORM -27

27L
END, JMP ICHEK3/EXIT SUBRT. ‘ .
®*27D

*271

_END, JMP I CHEK3 /EXIT SUR BRT.

*27L
END, JMP I CHEK3 /EXIT SUBRT.

*29L '
DCA I WHER /AT ADDR. IN WHERE

*29D

%291
DCA I WHERE/AT ADDR. IN WHERE

#15L
K27, 933

*15D

#151 .
K27, $933 /33 OCT.=27 DECI.

#18L .
WHERE, 1698

*18D

%181
WHERE, 1009 /FIND -ADDR FOR STORING HERE

#6L
*6D
*61
#6L
LOOP,

*8L

*8D

*81
*8L
*14L
K27,
*141

*14L

*21L

TAD NUM

TAD NUM
TAD NUM

DCA NUMB

DCA NUM
DCA NUM
#8933
HLT

HLT -

CHEK2, 8080

*211

CHEK3, 0989

*21L

CHEX3, #9990

*22L
LP,

#22D

#221
LP1,

*22L
LPl,

®

e

TAD MIN3

TAD MIN3

TAD MIN3

7GET LAST NO.

/GET LAST NO.

/GET LAST NO.

/AND STORE IT

/AND STORE IT

/AND STORE IT

" /YES,STOP -

/YES ,STOP

/SUBTRACT 3

/SUBTRACT 3

/SUBTRACT 3

ey

97

Tethtu "“6 k“:

*p
*60¢
@ CLA .
TAD K27 /GET 27 DECI. AND "
CIA TH -7
DCA COUNT /USE AS COUNTER
- ' 1LOOP, TAD NUM /GRT LAST NO.
IAC /FORM NEXT ¢ TO TEST
® DCA NUM /nm §TORE IT
TAD NUM /GELy IT AGAIN
JMS CHEK3 /JUMP TO SUBRT.
- CLA
1SZ COUNT /ADD 1 TO COUNTER.#?
JMP LOOP /NO ,JUMP
L2 HLT /YES,STOP
K27, #933 /33 OCT.=27 CECI.
COUNT, 09¢#9
MIN3. 7775
WHERE, 1699 /FIND ADDR FOR STORING HERE
® NUM, @880
*658
CHEK3, #d#9
LP1, TAD MIN3 /SUBTRACT 3
SPA SNA ° /RESULT>#?
JMP ZTEST /NO
° JMP LP1 /YES ,JUMP TO LIl
ZTEST, SZA. /ACC.=§1
END, JMP I CHZK3 /EXIT SUBRT.
TAD NUM /ACC.NOT ZERO,STORE #
DCA I WHERE/AT ADDR. IN WHERE
1SZ WHERE /UPDATE STORING PIR.
® _ JMP END
$
@
e
[

.l v/ ~'

- PALD

*IN-T:

*OPT~T
+4

609 7200
#6981 1215
682 7641
#6983 3216
#6846 1221
9685 7091
#6086 3221
687 1221
9619 4250
9611 7209

9612 2216

$#613 5264
#6146 7492
#615 €933
8616 Po8d
#617 7775
0620 19400
#621 Pnd

#8650 poed
#651 1217
9652 7550
#653 5255
8654 5251
8655 7448
#656 5658
#657 1221
#6690 3629
#661 2229
#662 5256

CHEK3 $659

COUNT $616

£656
K27 $615
LOOP #6904
LP1 9651
MIN3 @617
NUM #621
WHERE @#62¢
ZTEST 655

*609
CLA :
TAD K27 /GET 27 DECI. AND
CIA /FORM -27

DCA COUNT /USE AS COUNTER
LOOP, TAD NUM /GET LAST NO.
IAC /FORM NEXT & TO TEST
DCA NUM /AND STORE IT
TAD NUM /GET IT AGAIN
JMS CHEK3 /JUX) TO SUBRT.
CLA
ISZ COUNT /ADD 1 TO COUNTER.#?
JMP LOOP /NO ,JUMP
HLT /YES,STOP
K27, #933 /33 OCT.=27 DECI.
COUNT , $0¢6
MIN3,7775
WHERE, 1880 /FIND ADDR FOR STORING HERE
NUM, 9809
#6598
CHEK3, 8890
LP1l, TAD MIN3 /SUBTRACT 3
SPA SNA ./RESULT>#?

JMP ZTEST /NO |
J¥P LP1 /YES ,JUMP TO LP1
ZTEST, SZA /ACC.=§? - -

END, JMP I CHEK3 /EXIT SUBRT.
TAD NUM /ACC.NOT ZERO,STORE #
DCA 1 WHERE/AT ADDR. IN WEERE
1SZ WHERE /UPDATE STORING PIR.
JMP

lu‘,‘

79

<

Qe

100

TABLE 7.2

Summary of Editor Commands

Command Format(s
READ R
APPEND A
LIST a
al
m,nL
m P
npP
n,npP
TRAILER T
NEXT N
nN
KILL K
DELFTE aD
m,uD
INSERT) §
nl
CHANGE nC
a,nC

MOVE m,n$kM -
GET G
' nG

Meaning

Read incoming cc::‘lnd sppend to buffer
until a form feed is encountered.

Append incoming text to any already in
the buffer until a form feed is encountered.

List the eatire buffer.
List the lins n.
List lines a through n.

Proceed and output the entire contents of

the buffer and return to commend gode. .-

Output line n, followed by a form feed.
Output lines m through n, followed by a
form feed. ' '

Punch four inches of trailer.

Punch the entire buffer and a form feed;
kill the buffer and read next page.
Repeat the above sequence n times.

Kill the buffer.

Deleate line n.
Delete lines m through n.

Insert before line one all text until a
form feed is encountered.

Insert before line n until a form feed is
encountered.

Delete line n and replace it with any

" number of lines from the keyboard until

a form feed is encountered

Delete lines = through n, replace from
keyboard as above until form feed is
encountered. .

Move and insert lines m through n before
line k.

Cet and list the next line begimning with
‘ tas. L Y . ‘
Get and list the next line after line n
which begins with a tag.

'IUT:

SEARCH

END FILE

101

TABLE 7.2 (continued)

1(/

3 Meaning
Search the entire buffer for the character
specified (but not ‘echded) after the
carriage return; allow modification when
found.

Search line n, as above, .allow modification.
Search lines m through n, allow modificstion.

Process the entire file (perform enocugh
NEXT comuands to pass the remaining input,
to the output file) and create an. end-of-
file indication; legal only for output to
the system device. If the low-speed paper
tape reader is used for input while per-
forming an E command, the paper tape reader
will eventually run out of tape, and at
this point typing a form feed will allow
the command to be completed.

You now know all there 1s to know about digital computers. Yes, that is
® stretching the truth but you do now know how digital computers work. No
matter how large or complicated the coqmter looks, ths CPU just uu there
and fetches one word at a time fmm. does something with 1:, then goes
® to the next instruction, etc., etc. !ou now understnul how a mﬁm can’
communicate with a person or many persons via teletypes or how a coqmi:ar can
monitor many events "simultaneously” through interrupts. You saw how it was
P neécessary to have service programs to do anything useful with ; computer be-
cause just operating it by its switches is hopelessly slow and tedious. So
now you know what an operating system, just a collection of derl'vtce progi-ans.
® is. You saw how the Assembler, a .prostan. can save you much of the dirty,
tedious work 1n writing programs. By using the Assembler it is possible to
write a still tore comrlicated program called a Compiler and Violal we bhave
) FORTRAN, BASIC, etc. These allow the user to be concerned even less with the
internal workings of the computer. So now no matter howv impressive a digital
computer installation you see with fapc drives and disc drives, and printers
-] and punches and readers and teletypes and cathode-ray tubes and light pens
and....and...., you know that, at the bottom of it all, in the panel behind
the switches, the computer jtiat fetches a single instruction from cou., does
o something with it, goes to the next one, etc., etc. Of course, it may do this
half a million times in the time it takes you to say -

The End.

IU(,

symbols-

103

APPENDIX

BINARY OCTAL - DECIMAL NUMBERS

Number Radix ®
All numbar systems have associated vith them, a number called the radix
or base. The radix is the number of symbols contsined in the particulir
gumbar system. In the decimal number system, the radix is 10 because it com-
tains 10 symbols ranging from 0 - 9. |
In the octal number system, the radix is 8 because it contains the nynbéls
0- 7.

Example: What is the radix of the binary number system?

Solution: The bLinary nuzer system as a radix of 2, the 2 symbolsa contained in
it are O an& 1.

Notice that the value of the radix in each number systém is 1 greater than
the highest possible value in that system.

In the binary number systen,Q:hc highe;t possible value is 1. The radix

18 1 greater than l,~or 2.

: &
Example: What is the radix of the "number system" which contains the following

1

69AYZO0F157F

Solution: Since there are 1l symbols in this particular number system, the

radix is 11.

Radix Point

g

In all number systems, the radix point, or decimal point is the separation

between the ‘ntegers and fractional part of the number system. Because the

Ly,

<

,&

104

radix point is omitted in computer ulculatzldns.' integers will be the subject

of this-appendix.

Subscripts
Because number systems share symbols, it is sometimes difficult to
:ecogniée the number system to which a particular number 'belongs.
For example, the number 7601 could belong to the decimal nusber system
and to the octal number system. To clearly define which number system 7601
belongs to, the number is followed by ‘1:9 radix subscript, or subscript.
Therefore, 76018.belonga to the octal @gr system, and 7602)1m belongs

to the decimal number system.

Example: Show that the numbers 40, 101, 19 belong to the decimal number

system.

Solution: 40 101 19

10° 10° "710

Example: Show that 40, 101, belong to the octal number system.

Solution: 404, 101,

Example: Show that 40, 101 belong to the binary number system.

Solution: 1012 ———~The symbol "4" doesn't belong to the binary sys:eil, 80

the number 40 cannot be designated as belonging to the binary number system.

Number Position
Consider the decimal nux;:ber 6947:
The 7 is said to be in"the Oth or units position.

The 4 is said to be in the lst or tems nosition.

Ly

()

105

NQhMmbein:hemdhmdmdsmim.
The 6 is said to be in the 3xd or thousands position.

The rightmost poqitioﬁ has a value of one (units bosicicn). and pro-
ceedipg to the left, the next position has a value which 1s the radix (in |
'this case, 10) times tﬂe preceeding positional va;ué. The next position has
a value 10 times the preceeding positional va;uu,’and so on. |

These positional valués can be expressed in poﬁars of the radix value.

Also, thepuabers occupying each position can be called the ;oefficiahc

of that particular position.

| Example: Exprésa 6947,, in terms of its coefficients, radix, and positional

values.

3 2 0

Solution: 6 x10° +9 x 10> + 4 x 10' +7 x 10¥ =~

6000 + 900 + 40 + 7 - 6947,

Example: Express 705lo in terms of its coefficients, radix, and positional

values.

Solution: 7 x 102+ 0 x 10! +5 x 10° =

700 + ¢ | + 5 - 70510

Example: Express 097050, fn terms of its coefficients, radix, and positional

_values.

1 (

3 +0x 100 =

2

Solution: 0 x10° +9 x 10* + 7 x 10° + 0 x 10° + 5 x 10

0 + 90000 + 7000 + 0 + 50 + 0 = 9705010

-

Notice in the previous example, the 0 value coefficients contributed nothing to

the value of the number.

Decimal Equivalent of Binary Mumbers .
@ Just as decimal numbers can be represented in this form, so can binary

and octal numbers.
In the binary number system, the position values are based on the powers
o of m Then, the Oth position %has a value of 1, the Ist poo:l.ﬁion has a value
of 2 times the Oth position, or 2, the 2nd position has a value of 2 times the
2nd position, or'A, anh 30 on.
@ In this way, any number in any number system can be expressed in its

decimal equivalent.

Example: What is the decimal equivalent of the bimary number 101107

Solution: : Position #: 43210
. Number: 1011 02
° ax2y+@+ax2Hhrax2h+© = 16+46+2 = 22,
Whereas, 2% = 16, 22 =8, 22« 4, 21 w2, 20 =}
Example: What 1is the decimal equivalent of 1100,?
. .
Solution: Position #: 9876543210
Number: 0000100100
Ax2)+@x2h) = 32+44 = 36,
P
+ Decimal Equivalent of Octal. Numbers
In the octal number system, the position values are based on péwers of 8.
@ ' The Oth position has a value of 1 (or 80 = 1), the lst position has a value of
8x1%8 (or 81 = 8), the 2nd position has a value of 8 x 8 = 64 (or 8° = 64),
and‘so on.
@

Example: What is the decimal equivalent of the octal number 7157

107

Solution: Position #: 210
Coefficient: 71 5

7x8H+ax8)+ (5x8% =

448 + 8 + 3 . - &6110 /

Exanple: What is the decimal equivalent of the number 6103,?
Solution: Positivn §#: 3 2 1*0
Coeffig:lcn:: 6103

6x8) +1x8)+ @0+ (3x8%) =

3072 + 64 + 6 + 3 - 313910

Example: Express the number (51010; in its decimal equivalent.

8

¥

Solution: - Position #:

543210
Coefficient: 001010
() +©) +(1x8)+ () +(1x8H+ () =

0O + 0 + 512 + 0+ - 8 +0-520m

Notice in this example that 001010 could also have been considered a
binary number, 0010102. However, the decimal equivalent of 10102 is 1010 which
greatly differs from 52010. .
| In all of the previous examples, conversion was from the particular number
system to the decimal number system which everyone is familiar with.

Conversion from the decimal number system to a particular nuxber system

will now be considered.

Binary to Decimal Conversion

, Example: Convert 3710 to its binary equivalent. To accomplish’this, repeatedly

divide the decimal number by the radix of the number system being considered.

In this example, begin by dividing 37 by 2:

|

4

Y

108

mer-l Oth position

Solution: 37 ¢« 2= 18
i8e2s= § Remainder = 0. lst position
9e¢2= 4 Bemainder = 1 2nd position
§+2= 2 Remainder = 0 3rd position
2¢+42= 1 Remainder = 0 4th position
2+1= 0 Remainder = 1 Sth position
Therefore, 3710 = 10()101z

In this conversion, 37 was divided by 2 which is 18 and & remainder of
1. This first remainder fills in the Oth position of the bivary sumber. 18
was then divided by 2 to get 9 and a 0 remainder, this remainder f;.lledinthe
next position, the lst. 9 was next divided by 2 to get 4 and a remainder of

1. The 1l filled up the Ind pos&ion. 4 was divided by 2 to get 2 and a re-

: mainder of 0 which filled the 3rd position. 2 was divided by 2 to get 1 fand
a 0 remainder which went into position 4. .1 was divided by 2 to get 0 and a
1 remainder which was put in position 5. Repeated divisions by 2 will yield
zeroes, which ’neans that the power of two does not exist for those p;rticular

positions.
Example: What is the binary equivalesdt of 03,,?

with 1 remainder Oth position

Solution: 03 +2=1
1] +2=0 with 1 remainder lst position

03m - moz

Example: 10,, has what binary equivalent?

Solution: 10 ¢4 2=5 wjich remainder of 0 Oth position
S+ 2s=2 with remainder of 1 .18t position
2+42s=1 with remainder of 0 2nd position
l1+2=90 with remainder of 1 3rd position

. mm = 10102
L,

109

w:&mmm
Dec?.nltom:ﬂcmwrmummluhdmmmm.mmﬁ

.

as the conversion radix.

Exasple: What is the octal equivalent of 59101

Solution: 59 ¢« 8§ =7 wvith 3 remainder Oth position
1« 8.- 0 . with 7 remainder 1st position
5910 - 738

Example: What octal number is reprasented by 0991102

= 123 with remainder 7 Oth position

Solution: 0991 « 8
123 « 8 = I5 with remainder 3 ist position
15¢8= 1 with remainder 7 2nd position
1+8= 0 vith remainder 1 3rd position
0991m - 17378
Grouping - Binary to Octal Conversion

The computer uses éhe'binnry number system in its calculations. But
writing out long rows of binary numbers is very tiresome (write
10001010!0011100110 five times to get an idea). Binary to octal conversion
simplifies the handling of binary numbers.

First, the bihary number is grouped into threes starting in the Oth

position.

.

Example: Group 100011101011011010 into threes.

Solution: 100 O11. 101 011 011 010 ‘ "
Because zeroes do not add value to a nmumber, then can be included so
that there are always three binary numbers to ‘ach grmib which is called a

triad. This "addition" always takes place on the left side.

)

Q 1,‘_“

-

a

110

Exarple: Group 1011 into triads.

Solution: 001 011
Next, place tke decimal value of each group below it and group the numbers

together.

Exasple: Comvert 101110001, to octal.
Solution: 101 110 001

3 6 1
101110001, = 561

8

mre101-1x2§+1xz‘l’-s
10=1x22+1x2 =6
00l =1x2 =1

Example: Convert 1000, to octal.

Solution: 001 000
1 0

1000, = 'ms (=8

2 10>

Grouping ~ Octal to Binary Comversion

’

To convert a number from octal to binary reverse the above process.

$
Example: Convert 1768 to binary:

Solution: 1 7 6
T 00! 111 110
176 = 0011111102 - 11111102

Zeroes were added :6 the octal '1' to form the left triad.

L

COMPLEMENTING

Complementing is 1n§ortant in & computer, because it allows the computer

to subtract numbers "easier", by adding negative numbers.

) Y

111]

1's Complement
" The 1's complement of a binary number is a number formed by inverting ‘_
all of the digits: "

'

. | . . i ‘r . o ..
Exagple: What 1s the 1's complement of 11001021 : . ; @
Solution: _ Number: 10010 :)

 Complesient: 01101 | " .
. 'Example: What is the 1's complement of 11,,? .- ’ ®
-) *
Solution: Convert 111‘0 to Binary
11,, = 1010, | | °
Number: 1010 '
1's Complement: 0101 (A
’ ()1012 is the binary 1's complement of decimal 1l. ‘®
2's Cogplement
The 2's complement is found by adding 'l1' to the 1's complement.
| o
. ' ' '
Example: l:hat 1s the 2's complement of 100192?
Solution: Number: 10010 | .
1's complement: 01101 e
+ 1
2's complement: 01110 . .
le: What is the 2's complement of 11,.? ®
Example: W omp 10
Solution: Simce 11,, = 1011,
Number: 1011 : R : ®
1's complement: 0108
+ 1 -
. 2's complement: 0101
: ®

® 112
. - "R's" Complements .
®) . The R's complement of an octal mmber can be found by subtracting the

-

given number from the next highest power of 8.

m: What is the R's complement of 17560,?

. .
Solution: neemse 1756()8 contains 5 digits, the next power of 87 above 17560
is 1000008 or 85. | | '

[Power of 8: 100000 Note that arithmetic is octal.

Number: ~17560
R's complement:. 60220

. A
Example: What is the R's conp%enent of 77g7

*

Solution: There are 2 digits in 77, so the next highest power of 8 is 82 or
® 100.

, Power of 8: 100

Number: =77

® R's complement: 1
¥
"R~1" Complement
'. The R-1 complement is found by subtracting 1 from the R's éonplnent.
Example: What is the R-1 complement of 175607 —~
8 Solution: Power of 8: 100000

Number: -_U_SQQ
R's complement: 60220
® -
R-1 complement: 60217

15(1

m

The R's complement 1is analogous to the b.tnary 2's complement.

The R's complement is analogous to the binary 1's complement.

Another way to find the R mdl-l;.nnplmutocgnmcm
specified octal number to b:lmy Forn.:ﬁnt: numbers 2's and 1's coiplmta
and then conwvart back to octal.

Example: Find the R and R-1 complement of 17560,.

L ‘ e ;
Solution: 1 7 5 6 0

001 111 101 110 000
Nuber: 001 111 101 110 000
l's complement: 110 000 010 001 111
2's complement: 110 000 010 010 000
1's complement: 110 000 010 001111
B-1 complement: 6 0 F—}z{,' 17 = sz,

2's complement: 110 000 010 010 000

R's complement: 6 0 2 2 0 = 602208

NOTE: The R's complement is often referred to as the eight's complement and

the R~1 complement as the seven's complement.

b
~

