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PREFACE

The original not+ivation for developing this cigrse was
to increase the ufficiejfy of classrcom présentation of
mathematical concepts . t rough tle use of grephic aids and
bphotographic projection. The basic concepts occurring in
single variable czlzulus were derelcped gréphically in
sequential dréwings, then photographedl in color slide trans-
parencies. In cléas:oom lecture presentations these slides
were used either tetally or sunpiemented with -chalk board
as detail expansion reguired. Results of this innovation
have been published.

Commeéntaries on all (atout 400) slides were compiled and
*his, with audio tapes, became the basis for another inno-
vation: this independentkstudy couxrse for college calculus.
Results of this are ready for puklication.

All teaching lnnovations for these courses have been
conducted at South Dakota State University, whicb has very
excellent audio-visual facilities, includihg special class-
rooms and dial ace2ss equipment. This has been especially
helpful in making this innovaﬁion possible.

A grant from the Natiaﬁal Science Foundation has provided
funding for the time and materials necessary to complete this
work over the past two years.

»

Gorman R. NMelson

South Dakcta State University
Brookings, South Dakota
August, 1971
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RATIONALE FOR COLLEGE CALCULUS COURSE
Gorman R. Nelson

Mathematics Department
South Dakota State University

A‘beginning course in College Calculus should reveal a structure

~in which the 'student sees the specific categories of subject matter

" as parts of a larger system. Such a structure is inherent in the

course but generall t is not obvious, and unless some overt motiva-

tion exists to synthesize the Table of Contents into a unified struc-

£

\‘_ ture, the student ends up with a fragmented proficiency in the course.

He may well be able to perform specific manipulative skills without

ever understandi&g what larger sigrificance it has.
Felix Klein, the German mathematician, mentions three objectives
for the math student:
1. A scientific survey of thejstructure.
2. Skill in handling problems. _
3. An appreciat‘on of the significance of mathematical
thought for a knowledge of nature and: modern culturq.
These objectives are still generally acceptable in math analysis

courses, but their relative importance will vary according to the

, Students area of specialization.

Couise dgsign factors must be'concefned with the environment of
the learning process. I wish to consider two situaﬁ;ons: 1. The
classroom situatiqn with students, teacher and teaching aids. 2. A
teaching media laboratory and small unit seminars. The course de§ign

is more critical in the second situation since it possesses less of

4
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the classroom versat§i§ﬁ? for supplementation. Course material
designed for the second situation will be félly adequate for the first
but not necessarily vice versa. |

Course content and organization is essentially determined by the
nature of the course but its pedagogical appeal is limited only by |
the sKkill and imagination of the author and teacher; The content can
bé judged immediately and the pedagogical appeal can be estimated
but generally this requires testiné in use.

A Table of Contents for this course requires t insertion of
some means for ideﬂ:;fying the structure of the system without
~diminishing the >bjective of the .mmediate task.

The appeal here is neither to the historical nor chronological
development of the ideas but rather to the idea of mathematics as a
tree of knowledge, which one sees as a related whole.

Since the idea of the function ié hasic to all concepts introducec
in this course, such as: limit, dérivative, continuity, extreme,
integral anc¢ many others, it is natural éo use this concept as the
unifying structure and wellspring of other concepts.

There is a growing opposition today to scientific education
of the individual as just a reliable component in a technological
. society. Ih particular, eduation in matheﬁatics must extend beyoand
the boundary of proficiency in technolooy as a means to furnishing
indus+ry with a component in its stratagem. |

Scientific education should involve behavioral change. How we
look at the universe says something about us. How we see the universe
and ourselves in it is enxargeé by understanding the mathematical

abstractions taken from the universe. A preoccupation with technical

)

~
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proficiency diminishes this understanding and awareness of self in
this structure. I do not imply by this that technical proficiency
is without value-;-ohly that understanding the abstractions must
precede it.

The mathematical concepts found in Calculus are abstractions
evolving frém centuries of man's observation of the universe. These
abstractions put into mathematical thought are not easily compre-
hended from a definition. It is questioneble that an abstraction
can ever be taught exolicitly but by presenting the concept in sever- .
al forms the student grasps the abstraction as tﬁe common property
of several phenomena. Then a definition.has meaning.

Motivation for understanding math concepts should not be left
to chance but should be inherent in the mathematical environment to

which the student is exposed.
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THE ‘FOIJ.OWING INFORMATION IS GIVEN TO AID YOU IN DIRECTING YOUR
SCHEDULE TO FINISH AT THE END OF THE TERM:

Tests are scheduled as shown for each unit. These tests
are tco serve you as a measure of your proficiéncy over the unit.
If your tested proficiency is nbt a "C"” level or better you may
take an additional test after further study.

You must attend the scheduled meeting for one hour each
week. Time and place will be determined to fit your sckedule.
This period will be-used for personal aid as neé@ed and dis-
cussion of material from the Educational Media Center. Youkmay
spend as much time in the Center as is needed to master the
material presented. It is impoftant that you respond to all
programmed materiél pertinent to our weekly meetings.

If-necessary, additional personal help will be provided
to meet your special needs.

All programs in the Educational Media Center are listed
in She E.M.C. Directory.
~

Don't make the mistake of doing your programmed wor&
“tomorrow;. This will inevitably lead to poor comprehension

and retention of knowledge.

~ If you don't understand -- ASX !.




No. of No. ¢f Prog. No. of Sets Tests

UNIT Programs in E. M. C. of ProblemS' lates
1. Functions 12 4
2. Limits 20 7
3. Derivatives 17 6 5
4. Applications of 18 8 5
Derivatives
5. Integral 18 8 5
n 6. Applications of 5 3 2
' Integral ‘

Fifteen school days are allowed for each urit.
You may go faster if you wish, but a slower speed
will make it difficult to finish by the end of

the semester.
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MATH ANALYSIS I: Calculus and Analytic Geometry has more to do

-with concepts as a way of thinking than a supply

of recipes to be used as the occasion demands.

These are the resources available to you in this course:

1.

2.

Textbook: Refer to the Reading Program at the end of FUNCTION
' PROGRAM.

The Educational Media Center. Most of the ideas or concepts

will be presented here in audio and visual means. Sample

problems will be workedliiﬁo. You may ugse this facility any

time it is open.

£

This course guide will direct your work agﬁfé;ordinate it
with the E.M.C.

Seminars will be held once a weel (1 hour) to discuss any

-

A

question relative to this work.
Private tutorial help will be available for your special needs.
Work which you hand in will be corrected and retqrned for

your benefit.

A Easis for qradiQ; will be Adiscussed at a seﬁlnar meeting.

You can procéed at your own pace, but you must finish by the

end of the semester. You may attain any degree of proficiency

you choose.

14 s
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FUNCTION PROGRAM

The function concept is basic in all fundamental
ideas of calculus. In fact, calculus may be considered
as a special analysis of functions. The program which
follows will guide you in becoming proficient-in the
use and undérstanding of the function corcept. Follow
it carefully.

You must take whatever time is necessary to meet
the implied objectives. Programs are numbered at the

left ﬁargin. Refer to the Reading Program for reading

assignments.
PROGRAM
l.Lecture: Educational Media Center
Subject: Basic Funczion Concept. (.ecture)
_1. Develops meaning of a function
2. Defines function.
3. Shows how a function is developed.
4. glgebrai: and Transcendental Functions.
5.' Classes of Function.
6. Range and Domain.,
’ obiectivgé for each conéept are implied in the
| text and lecture content and reinforced in work sheets
anq\pr’blems.
2. Read: ‘Refe; tovheadinq Program #2 at the end of the function
Program. |

10
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3.Problem Educational Media Center
Study: : ‘ : |
You may, if you prefer, work through the following
examples before going to the center for confirmation
of your work. Or, you may work in the center and
confirm your work after each example. |
These examples and the problems which follow are

intended to help you understand and apply the function

concept.

Given: f(x) = x? - 3x + 1

Find: f({x + h) -~ f(x) h#20
h

Function notation directs you to find f£(x + h) when

the function given is

F(x) = x2 - 3x + 1
Hence,
f{x + h) = (x + h)z - 3(x + hf + 1
Simplify and subtract £(x). You may divide by h since

h= 0 is not included in the domain.

Example 2.

Find the equation of a li.ae passing through the
“points (2,£(2)) and (5/2,£(5/2)) where f is defined by:
. - £(x) = 2% - Sx
| Use the two point form for the equation of a line.

Use functiqﬁ notation to f£ind the two points. For

1]



4 .Problems:

9=
instance, (2,£(2)) becomes (2,-2). Put your anmr :
in the form:

ax + by + ¢ = 0

EXample 3.

Write the equation defining a function G such that
G(A) is the surface area of a sphere, and A is the
great circle area of the sphere.

The surface area of a sphere is

A = 4my?
Example 4.
If: A - §_:_§§ (n +0,1,2.,...and A = X)
n+l +
Expféss:: |
Al‘Az'Alo’All as functions of x. D

Refer to Problem Assignment Prograﬁ -~ Functions.

1. If f(x) = x%2 - x + 1, €£ind:
a. £(0) b. £{-2) c. £{2%)
d. f£(a) s, f(a + h)

2, If £(x) = x - 5x + 6, f£ind:

f(x) - f{a)
a. X - a , X ¢ a

b. £(x +hh) —_ £ (x) , h o o




N , 2 - g -
S 3.01f Py =X X2 4y

i}

G({x) = x + 1
x+1l, x#2
H(x) =
‘ x ., X = 2
Explain carefully how the functions defined by these

equations differ and how they are similar.

4. Find the zeros of the functions defined by:
A, F(x) =x2 +2x + 1
b. f(x) =x2 +x -1

c. hix) = X2 =1
, x-1

d. g(x) = x3

3. H(x) = 4 - x2

5. Find the slope of the line connecting the two points
(1,£(1)) and (-l,f+l)) for the function defined by:
f(x) = x% -3 +1

6. An open top box is constructed from a flat sheet
8" x 4" by cutting out corners a" square. Devélcp
the equation defining a function of all such boxes.

What is the domain and rangé'for this function?

\\

LS

' 2
7. 1f Hl =X -1 x # 1

As x approaches 1, what does H(x) appear to approach?

&

Q B ,. , 13
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Seminars:

5.Read:

6.2roblem
Study:

-11-

‘Refer to Program 4, for problem asgsignment at the end

of this Function Program.

Every week (1 hour)

~
Refer to Reading Program § 5 --Functions

Educational Media Center: Refef to Center Directory.
Since functions are so important in this course,
anything that can be ddne to increase the comprehension
of the nature of functions is also irportant. The
graphing of function is a visual means of grasping some
of the basic qualitiés of functicns and is the sole
reason for graphing. At this level we must resort mostly

to positioning points (ordered pairs) on the cartesian

 plane and connecting these to form the graph.

You will probably be unfamiliar with most functions
defined in the set of problems. This is part of the
exercise, to develop in yourself the ability to analyze
different functions graphically. Later in the course

we will supplement point plotting with additionas tech-

niques in graphing.

Consider now:

Examplé S.

The defining equation is
g(t) = |t + 1].

............
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The independent variable is t, the dependent variabie®
is g(t). The most difficult part is how to handle abso-
lute éalu; notation. We shouid naturally be motivated
to recall how this is defined, i.e.

éi ‘ It +1] = +1 if & + 1 >0,(t > -1)
.It + 1] = -(t + 1) if (t - i) <0, (£t <=1)
Naﬁ try to graph this in two parts to acccgodate'

’the two casee, l.,e., ¢t > ~]1 and ¢ < -1,

Example 6.

Graph th2 function defined by: -
C(x) = 2% + 27X ‘
This problem like many others in this section is import-
ant not only as an exeruvise in graphing but as a means
of bécoming familiar with a function which will be used
later. So, while doing the work, you should also observe
the nature of the function revealed by your graph. Don't

get so absorbed in the technique of graphing that you

fail to observe the nature of what you have done.

7.Problems: Graphs of Functions. Refer to assignment Program #7 --
v

Functions.

8. Read: Refer to Reading Program § 8 ~- Functions

9.Problem  Educational Media Center 4
Study: :
Combination of Functions. This is a difficult section

and requires more than the usual amount of efforf.'

15
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Example 7. ' e

Probably'the most difficult part of this section is
that dealing with the composite function. In this |
problem we afe to find the composite function f o g
where,

f(g) < x2 - 1
Ag(x)'=-3x + 1

f o g means to find f(g(x)). If the math notation
for functions is observed carefuliy, then when

£(x) = x2 -.2 |
£(g(x)) = (g(x))2 - 1

Complete the problem.

Example 8.

The purpose of this problem is essentially to en-
able you to become .familiar with the manipulation in-

volved in composite functions.

If £i{x) = &,
then flg(x)) = ¥g{x)
and we must find g(x) such that
glxy = x
Example 9,

The objective again is‘to provide you with means

to master the manipulative technigue for the composite

function.
If Fi(x) = x + 1/x

. - 1
then FoP= (x+ 1/x) + = =

I
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Simplify this and determi%e the domain.

10.Problems: Combination of Functions. Refer to Assignment Program --

Functions. Hand in;“

11.Review: Repeat PROGRAM 1. Refer to Assignment Prograg -

~:
-

Functions.

-~

12.Problems: Refer to Assignment Program -- Functions. Hand in.
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READTNG PROGRAM -- Functiors

All reading assignments refer to your texthook,

Calculus with Analytic Geometry, Johnson and

/ Kiokemeister, 4th Fditior.

Program # 2. Definition and Types cf Functions. Pages 58 - &0
t 5. Graphs of Functions. Pages 63 - 66.

§ 8. Combination of Functioas. Pages 67,€8.

PROBLEM ASSIGMMENT PROGWANM -- Functions

All references are to a. Textbook - Johnson and

Kiokemeister, and h. ycur Program Manual.

Program & 4. Work and hand in Problems 1 - 7,'Program Hanuai.
¢ 7. Vork and hand in Prob;ems'l. 1 -6, II. l,3.5,7,
9.11. Tektbook. Pace 66.
#10.' + 2k and hand in Prob;ems I. 1l - 8. Text Page 68.

$12. Work and hand in Problems 1, 2. Textbook, Page 70.
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The following commentary on Functions may be

used with PROGRAM 1.

Slides 1

=

21
25
27
35

48
54
61

20.
24.

26.

34.

47.

53.

60C.

62.

Defining a Function

Implied Domain and Range
Famous Functions

Creation of a Function

Graﬁhic Portrayal of Functiomns,
Intervals, quments

Graphs of Functions

Constant n

Trig Functions

"



LECTUPE ~-- FUNCTIONS

Slide 1. We are defined by how we look at the universe.
2. All of calculus is based on an understanding of the
function concept. Without this, very little ‘of what follows

will be understood.

3. The mathematical idea of a function is one of the most
fundamental concepts in‘theofy and application of mathemapics.
Since all the new mathematical concepts which occur in
calculus have their genesis in the function, it is natural to.
evolve these from the nature of the funcﬁion.

But first, what is the mathematical idea of a function?

4. We begin with a set of real numbers which is shéwn as

set A. . ‘\?
| -

5. From the elements of set A we will generate another set
of elements {y) according to some rule. Call the new set B.
Note that if we wish to sﬁeak'of one &lement of set A without
identifying it we call it x. That is, we can say the element

" x which is contained in set A is either 1, 2, 3 or 4. The
same ngtation is used for set B. As yet we don't know what

the elements y of set B are.

. Q ) 20
‘ EMC ! . ‘
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A simple rule, which is represented by the lower case £,

is chosen. The rule £ is: Multiply each x in A by 2 and add

1l to form a corresponding y in B. We now have a specific
means for generating set B. From this procedure some mathe-
matical notation is' also generated to help us undérstand

vhat is going on.

The flow of action is from set A to set B. Each element
in A is operated on according to rule f. The corr=sponding
element in set B is identifiable Ly the notation used here.
For instance, in set B, tﬁe letter f followed by 1 in paren-
theses, which is read f of 1 means that rule £ is to operate
on the element 1 of set A to produce the corresponding element

y in set 83, f£(2) means rule f operates on the number 2 of

"set A to form its corresponding element y in set B. In like

manner f(3) and £(4) are elements in B corresponding to 3 and
4 ip set A.

By use of this functional notation we are able to observe
immediately the correspondence of elements between sets A
and B. That is, we know 1 goes with £(1), 2 with £(2) and
so forth.

Some nevw descriptive words are often uséd here to ex-
press this idea of corresponding elements. PFor instance, we
can say that f£(1) in set B is the image of 1 in set A. This
is a pictorial way of saving if element 1 is exposed to ﬁule
¥ it reflects the‘image of 1 as £(1). 1In like manner £(2) is

the image of 2 and so on.

21
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Still another descriptive picture evolves from this pro-
cess of forminy set B. we can say that 1 of set A maps intc
f(1) of set B, 2 maps into £(2) and so on. .

The distinction should be noted here that the nntation
for the rule is f while the notation for each element y of
Bis £(1), f(Z! or in general f(x).

These various mathematical notations are important to a

clear understanding of the literature of mathematics.

Ve simplify again by using the mathematical notation to
express the rule f. The expression 2x + 1 says very succinct-

ly what rule f is.

: Hegceforth we will generally use only the mathematical

forﬁ to express the rule.

Performinc the‘operation indicated by £(1) will produce
3. 7(2) will produce 5, £(3) = 7 and £(4) = 9.

The elements y of B derived from the elements x and rule
f are shown here in correspondence with the elements of set
A. The rule f could be written v = 2x + 1 which as an equa-
tion then defines the y value for a givén x value. If we.
wish to represent an equation in a general form, that is,
without stating the rule precisely, we say y = f(x). 'The
variable nature of x and y in the form of an equation is

indicated but we are stating precisely what values x may

have here by listing them.

<2
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It is possible now to form ordexed pairs of numbers from

the corresponding eleménts of each set. 1In ing this there

'ig the détural,tendency to put the x element First and the Yy
element second as: (1,3), (2,5), !3,7) and-A4,9). The

notion of ordered pairs evolves from this.

The set f of ordered pairs is called a function. The

. elements of set f are the ordered pairs. Each ordered pair

has a first ana second component. The set of first components
of each ordered pair are given the name of doméin.’ These are
1, 2, 3, and 4. The x notation which represents each member
of this set is often given the descriptive name of "indepen-
dent variable” for the reason tﬁat the y value is determined
by the x value. The set‘of second components 3, 5, 7 and 9
taken from the set f is called the range. The y notation

which represents these numbers is called the dependent vari-

-able since its value depends on the value of x.

No mention has yet been made of restrictions in either
set A or B. The ‘dea is now presented that whatever rule or
device is used to form the set it must contain the restriction
that the final set does not have duplication of first compo-
nents. That is, no first components can be repeated. For
instance, if our first two ordered pairs had been (1,3) and
(1,5) then this set would not be called a function. i;;W\\ﬂ
reason for this certainly does not evelve from anything we
have done thqs far. The explanation lies in reasons neot yet

apparent., One immediately acceptable reason is that we want
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13.
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no ambiguity as to what value of y we have corresponding to
aﬁy value of x in tﬁe function. This does not preclude ha#iné
any duplication of x components in the crdered pairs. Addi-
tional reasons for this restriction ﬁill become apparent as
our investigation continues.

Notice that the same notation f is used to identify the
set of ordered pairs as was used.to identify the rule. This
will cause no ambiguity in understanding and is a generally
accepted notation. These two meanings are certainly not one
and the same. One cannot always tell from the rule what the
set of ordered pairs will hé. But for convenience we will
accept the duplication of letter identity for both meanings.

In context this causes little or no concern.

For convenience we define a functioh as: "A set of dis~
tinct ordered pairs having no two first components the same.”
Identical ordered pairs are accepted as one ordered pair.

You will notice that the elements of this set are the
ordered‘pairs and that the parts of the ordered pairs are
called components. The set of first components of each
ordered pair constitutes the domain and the set of all second

components constitutes the range.

Here are shown set £, g and h. Are they functions?
Consider set f which contains three elements of ordered pairs.
No two first components are the same, hence it is a function.

Consider set g. Here again we have the elements of

<1
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15.
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17.
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ordered pairs, but since the first two are not distinct they
count as only one ordered pair. The two distinct ordered
pairs do not havé repeated.first components, hence this is
also a function. o '

Consider set h. Again we find three elements of ordered
pairs but now we also find the first component of each orderxed

pair are the same; hence this set is not a function.

Consider now a new rule which we identify by the lower |
case letter g. The rule is in mathematical shorthand and
explicitly states that for every x we consider we will find
the corresponding g(x) by squaring each x and subtracting 1.
However, nothing is said about what values of x should be
chosen. When a function is defined without a specified do-
main we will assume it defines the set for all real values of

domain and range so defined.

We define the domain here as the numbers 2, 1, 0, -1 and
-2. What are the corresponding elements g(2), g(l), g(0),
g(-1) and g(-2)?

Y
-

For g(2) we square 2 and subtract 1 to get 3.
In like manner we get g(l) = 0, g(0) = -1, g(-1) = 0 and
g(-2) = 3 to form the ordered pairs as shown. '

This is the function g.

The zeros of a function are those values of the domain



18.

19,

20.

21,

for which the~co:respo§hing value df the range is zero. We
observe here that the zeQQs are at 1 and ~1. Algebraically
these may be found by éétting g (x) =‘0 and'solvingﬂx? ~-1'=0
for the corresponding values of x.

The domain is here defined explicitly as being those
values of x in the closed interval [-2;2]g Since all
possible numbers included between and including -2 and 2 are

an infinite set they cannot be enumerated. Hence the missing

ordered pairs are indicafed'by three dots as shown.

Another means for defining the set of ordered pairs is
shown here. This is read "Th~ set of ordered pairs (x,g(x))
such that g(x) = x2 - 1 and x has all values‘in the closed

The number of different functions is unlimited. However,
most of the functions wé work with can be classified by
obvious characteristics which they possess. Most of these
you are familiar with in varying degrees. There is no inten-
tion here to imply these are the most impdrtant classes, but
only to observe that many functions have qualities which
permit them to be classified by name. For instance, 1. is
represeptative of linear functions.

All of these classes of functions will be examined later.

A function defined by an equation for which no specific

4
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23.

domain and rangé is given has a domain implied as being those
real numbers x which define a real number y. .

| For instance, consider the equatinn'y =x +1. It is
apparent that each real number x defines a real number y.
In this case the implied domain igiall.real numbers. Such a

domain yields all real numbers as value of y., hence the range

‘also contains all real numbers.

The implied domain of the function defined by the equa-
tion y -~ /X% is not quite so obvious. #First, it is necessary
to knaw that v=? is, by definition, always positive. That is:
/x? is x if x is positive, vx? is -x if x is negative, and
zero if x is zero. Hence the domain may be any real number
X. The range implied by this domain will be all real numbers

greater than or equal to zero.

The implied domain for the functibn‘defined by
y = /x? - 1 |

differs from the prévious function in that the radicand

(x2 - 1) must be greater than or equal to zero if it is to

have a real number as its square root. For instance, if

X = 0 the radical -1 yields no real number. The condition to

be.satisfied by the radicand must be
x2 - 1 i 0

. OF

%

V)
tv
e



-Qe

This implies x > 1 or x <.~ 1 as the largest domain.
For these values of x the correspouding y values include all

positive numbers and zero.

24. The three equations:
“ 2
- X6 =1
l. H(X) _x_-T X f 1l
S 2. F(X) =x+1

&

| ‘ , x2 -1 '
’ ; 3. G(x) u{-x_--l' x# 1
‘ 3/2. X = 1

alli define functions. Careful consideration of(these equa-
tion; will reveal that F(x), G(x) and H(x) heve the same °
implied domain excepting at x = 1. G(x) and F(x) both in-
cludé x = 1 in the domain but have different co.responding
values of G(1) and F(l). H(x) does not include x = 1 in its
domain. You should observe carefully that the functions, as
sets of ordered pairs, defined by these three equations are
O —,ident}cal except for the ordered pairs at x = 1. H has no
ordered pair at x = 1. For G the orderead p;ir is (1,3/2)
and for F the ordered pair is (1,2).

F(x) and G(X)“have/the same implied domain, that is, all
real numbers. Their ranges differ only by one value.

Record and study these equations. They vill be used

later in consideration of. limits. -

B 25. . Some of the greatest scientific discoveries are couched

in the language of the function. Equation 1. defines a

ERIC R 28
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function. ¢ is the independent variable producing values of

X. éciende and engiheering are predominantly éngrossed in
the study and investigation of functions as mathematical
models.

. Bquation 3. is Einsteﬁn's discovery relating enérgy and .
mass. What a profouné discovery to be expressed in such
simple mathematical languagé.
| These are but a few of the many equations shown here
defining functions with which you are probably already
familiar. | 3 ~

Consider equation S.

This is Newton's di§covery in which.he cxpresses force
of gravitation as a function. Assume m; to be the mass of
the earth, m, the mass of the moor. Then if G is constant,

and the independent variable d is given, the set of ordered

pairs (d,F) expresses the phenomena of gravitational force.

The means of communicating this law of gravitation is mathe-
matical. Probably one of the strangest phenomena in all of

science is the capacity of mathematical thought to portray

aspects of nature. This is somewhat less surprising if one

‘considers that these abstractions were derived from observa-

tion of nature;

Title -~ Elemental Creation of a Funqtion

&

Most functions which are developed in science and engi-

neering are prcbably not the major scientific discoveries

Q)
N
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29.

30.

31.

32.

33.
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but involve more of detailed analysis. To show . what sense
a function is used as a ﬁathematical model we first take a
simple condition and show how a fua?tion can he generated to
portray one aspect of this condition and from the defining

equation we will observe in detail how .this function is used'

to further comprehend the nature of the condition it degcribes.

First consider a sheet of material having the dimensions

shown.

We form a box by cutting squares from each corner as
shown here. We can intuitively discern that in some way the
box volume depends on the size'of the cut-outs. It is this
condition we concern ourselves with. 3

LS

Call the side of the cut-out squares "a". You can

obsexrve at this stage what the dimensions of the box will be.

In terms of the given dimensions and the dimension "a*, what

will be the length, width and the height of this box?

~ We are to find L, W and H in terms of the given dimen-

sions. L is equal to 8 - 2a, W equals 6 - 2a and H is just a.
The volume of the box is length times width times height..

By taking this product we have

.o

Volume = (8 - 2a)(6 - 2a)a

30
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or if the product operation is performed then
V(a) = 48a - 3832 + 4a3.

We now have an equa£ion which defines a set of ordered
pairs, having an implied domain and range of all values of a
and V. Hewever,‘the nature of the problem reveals that the
ordered pairs are without meaning if dimension "a" is more
than 3 and certainly it cannot be less than zero. So, for
the condition of our concern we take the domain as all valueé
in the closed interﬁal zero, three. Intuitively we observe |
that the volume of the box will be zero at both of these end
pdints, but what happens to the volume for the remaining
values of "a" is defined by the ordered pairs.

in developing this function we gave meaning to the‘mathe—
matical abstraction of numbers. That is, Qe gave a number of
length, of wid+h and of height and another number the meaning

of vplume.

We observe here several sizes of a hox corresponding to

different values of "a".

Title: A Graphic Portrayal of Functions,(n-

- Probably everyone has at some time seen and performed

- the game of conneéting numbers on a paper surface with lines

and observed the emergence of some recognizable ohject. The
numbers alone gave little clue to their pattern but in con-
nected form meaning emerged.

In a similar manner it is possible to take a set of
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38.
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ordered pairs, wiich by themselves‘give little evidence of a
péttern, but reveal a meaningful pattern when connected
graphically, The sole purvose of this game is to reveal the
structure of the function. BAgain, it is assumed evervone
listening to this lecture knows, to some degreé, the tech-~
nigque of;graphing; hut iﬁs purpose and what can be read from

it might not bhe so obvious.

The Cantor-Dedekind axiom makes the deceptively simple
statement that all real numbers can be put into one-to-one

correspondence with the points on an infinite straight line.

Numbers are here given the meaning of length or distance

vhich they do not inherently have. This must not be incver-

preted  as meaning that the sum of an infinite number of

.points equais a length but rather that segments or interxrvals

of a line can be represented by numbers. Segments refer to
lengths or parts of a line, while an interval is considereé
as the set of numbers included hettreen two numbers.

All integers, rational and irrational numbers and zero

are assumed to have an ordered position on this line.

. phe mathematical notation of two numbers enclosed in
brackets as shown here is called a closed interval and indi-
cates the set of numbers on the line shown in red between 0

and 2 and including 0 and 2.

The open interval (2,5) does not include the end points

32 g
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but does include all points (numbers) between these two

numbers.

The number (1,3] s called a half open or half closed
interval. The parantheses indicates 1 does not belong to
this set of points (n&%bers)'and the bracket indicates 3 does

¢

belong to the set.

o~ L]

Shown here is a segment of the(infinite line. The seg-

ment is the portioh from a to b. wedare directing attention

here to the portion of the line indicated instead of a set of

numbers indicated hy an interval. ﬂirection of_phe line seg-
ment can be implied by Jlabelling the segment from a to b as
against the opposite direction from b to a. The magnitude of
the segment i3 given as b - a, and is simply the magnitude

from zero to "b" minus the magnitude from zero to "a".

The magnitude of the segment indicated by red dimension
lines would be b - a. Notice thz:fiﬁen though a' is, in this
case, a negative number the magnifude of the segment is still

h“a.

The segment can also be written using the notation cf

abscolute values to assure the positive sense of magnitude.

h{"
Irrational numbers may bhe positioned as shown here using

the hypotenuse of a right angled triangle.

3.3



B ~15~

44. The Cantor-Dedekind axiom permits locating all real
numbers in order on the horizontal l.ne called the horizontal
coordinate axis. Only the integers are indicated, the posi-

tion of the remaining numbers are assumed.

45. -Suppose now another line is drawn, perpendicular, toethe
horizontal line such that their zero positions are coincident.‘
This arrangement is called a cartesian or rectangular coordi-
nate system and permits a graphic portrayal of ordered pairs
of numbers. |
Assume ‘the infinite vertical coordinate axis also con-

taines all real numbers.

46. Ordered pairs of numbers are posit;oned on this coordi-
nate system plane in this manner: assign the value of the
first number to its appropriate vosition on the horizontal
coordinate axis. For instance, if the ordered pair (1,-3)
is to be positioned, the point on the horizontal axis corre-
sponding to 1 is found, and asgumed carried all along the
perpendiculiar line shéwn. Tnen.the second number (-3) is
positioned on the vertical coordinate axis and carried along
its vertical line. The point of intersection of the two
lines is given the pbtsition (1,-3).

It is important to note that as a conseguence of the
Cantor~-Dedekind axiom this system of positioning does not
have diffe:ent ordered pairs occupying the same pos;ticn on

the plane. That is, there is a one-to-one correspondence

CERIC o
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between all o:degbd pairs and the points on the infinite
plane described by this coordinate syétem}

Ordered pairs éefined by an equation such as:

£(x) = x2 - 4 |

may be positioned on the coordinate plane . Obviously, all
the ordered pairs can't be placed since f is an infinite set,
butf by placing a few points and connecting theée poiﬁts, a |
very close estimate of the set can be observed. For instance,
the set |

{(-5/2,2%)(-2,0) (-1,-3) (0,~4) (1,-3) (2,0) (2%,2%)}

is a subset of f.

If these are pcsitioned on the coordinate plane and
connected as shown, a fairly good picture of the entire set
is obtained.

The second component of each ordered pair is often
called "the value of the function", or just "the function”.
By looking at the graph of f we may observe:

1. Where "the value of the function"” is negative
or positive,

2. The intercepts or zeros of the function,

3. Uhere the "function" is increasing as x is
increasing.

‘4. How fast it is increasing for various domain
values.

5. Where in the domain the "function" changes from

decreasing to increasing.

Jd73
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It is probably not obvious whyﬂthese observations are
important, but it shouid become so as we advance in this study.
Several functions are next exhibited which ‘are useful in

later discussions.

Constant function

K(x) = a
F(x) = |x]|

G(x) = |x - 1| |

H(x) = TxT

f(x) = [x]

1 X is irrational

F(x) = ’

0 X is rational

’

All equations so far considered have a common special
quality: £from the defining gquétion.the ordered pairs are
generated by the algehraic operations of addition, maltipli~
cation, extraction of roots and raisfné to powers. For
instanée, the equation

1. g(x) = x® -1

is an algebraic equation because the ordered pairs are gener-

ated by the operation of multiplication (x » x) and addition
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(-1). Other equations which do not have this quality are

- those trigonometric, loqarithnic or exponentxal functioﬂs

such as:

2. h(®) = sin @

3. y= log x

4. y = cX

It is not possible to generate ordered pairs by algebraic

operations from such equations. The reason is, of course,
that these functions are not algebraic in origiu. For
instance, the trigonometric functions are geometric in origin
while others require operations that are neither algebraic
or nor geometric. Functions which are not algebraic are

called transcendental functions.

Before proceeding with generating the trig functions we
need one more number, i.e. the constant 7. Again we consider
the circle with a radius of 1 unit.

Diviéed into tenths as show.

Take this length. 1lay it alorg the cir.u:ference as

shown. Mark the initial point (1,0) and the terminal point.

Extend the radius measure again along the circumference

and again mark the terminal point.

Continue in the same way. We now have three units of

measure on the circumferense. Continue once more.
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61.

62.
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The diameter mark is crossed at .14. Hence, the total
length of the half citcle measured in units of the radius is
about 3.14. This number is called v and is the ratio of
circunference of a circle to its diameter. Or, as shown
here, is the ratio of half the circumference to half the
diameter (=r). |

Since f may be any numbe. the number 7 is valid for aay

size circle. That is, w is dimensionless.

The length of arc along the circumference for this unit
circle is indicated at positions w/6, /4, n/2, 3n/4, w, 7n/6,
3n/2 and 2w, all measured from the start position. That is,

from the starc position to 7/6 or a-out 1/2:the length of the

radius, m/4 is about 3/4 of the radius along the arc, etc.

These values are commonly used since they represent fraction~
al parts of the circle, such as 7/6 is 1/6 of a semicircle
or 30°.

We could use any real number to represent a position
along the circumference. Each number would represent the
measure of radii along the circumference from the start posi-
tion. A positive number is measured c.c.w. and a,neqativé

number is measured c.w.

Ordered pairs may now be generated from this unit circle.
‘A length along the circumference is revresented in units
of radius and called 6 (theta). For instance, from A to B is

a length n/4 times the length of the radius. This length is

38



-20~

called m/4 radians. At position B on the unit circle the
value of x on the coofdinate system may be determined from
the broken line drawn perpendicular to the x axis. This
value appears to be about .7. The ordered pair (vr/4,.7) is

called the cosine function. In equation form this is repre-

~sented by x = cos 8. All the ordered pairs found for 6 and

its corresponding x value constitute the cosine function.

The elements shown here are a suﬁset.

A(0,1), B(n/4,.7), C(w/2,0), D(5n/6,-.86), E(m,-1)
F(8n/6,-.5), G(3n/2,0), H(-1/4,.7)

The sine function is generated in a similar manner using

‘the y value with each 0.

The equation representing this function is
y = sigaf.
This is also an infinite set. The set
{a¢0,0), B(n/4,.7), C(®/2,1), D(57/6,.5), E(r,0),
F(én/G,-.SG), G(3n/2,-1), H(-1/4,-.7)}
is a subset of the sine function.
A fairly extensive set for the sine and cosine function
are found in the set of "trig tatles”.

From these two functians, the remaining trig functions

can also De generated.

an
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l.Lecture:

2.Read:

" 3.Problem
Study:
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LIMIT PROGRAM

The mathematical concept of the limit of a function
pré%ides a valid mathematical basis for the concepts
on derivative, integral and others. Without a firm
undersfanding of limits, it is not possible to under-

stand basically what follows.

Educational Mejia Center. See the E.M.C. Directory for
v
Dial access and Slide location.

A slide commentary fodlows the Limit Program.

Introduction to Limits. Refer to Reading Program # 2

at the end of the Limit Program.
Educational Media Center
Examples 1., 2., 3. See E.M.C, Diréctory for Dial Access

and Slide location.

Example 1.

Find: ‘

limit x° - 4
x+2 X - 2

Before you observe the solution to this problem try

writing out each step giving detailed reasons explaining

what you are doing and why; then observe the solution.

40
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4.Problems:

5.Read:

-
Example 2,

I€: £(x) = x2 ~ 2x + 3
Find:

limit £(x) - £(1)
x~1 X - 1

Perform the operations indicated in the numerator.
Try dividing the denominator into the numerator and

then find the limit,

Example 3.

Given: The parabola y = x2

Find: The limit as x approaches 1, of the secant
line passing through the two points (1,1) and (x,xz).

Refer to Problem Assignment at end of Limit Program.

Definition of Limit of a Function. See Reading Program #5

These Theorems are frequently used in theory and
problem solving. They should be remembered:

Theorem 1. Limit mx + b=ma + b
‘ X-a

Theorem 2, Limit b + b
x+a

Theorem 3. Limit x = a
X-a

Theorem 4.
If: £(x) = g(x) for every x in domain K
except at x + a within K

Then: Limit £(x) = Limit g(x)
x+a X+g

Record here the definition of limit given in the text.
» 41
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Educational Media Center. See E.M.C. Directory for

Dial Access.
Subject: Verifying limits from definition.

Examples 4,5.

Example 4.

Show by use of the limit definition that:

limit 4x -~ 1 = =5
X~=-1

We must show that:
for f(x) = 4x ~ 1, L = -5, a = ~-1.
Definition:
l. For every € > 0
. 2. There is a § > 0 (x # =1)
Such that:
3, f£(x) is in (1 - €, L + €)

4, when x is in (a - 8, a + &)

Proof:
From definition 3. (f({x) = zx -1, L=<5, a = ~1;
l. 4x ~-1is in~ 5 ~g, = 5 + ¢
or 2.A ~5~¢c<4x ~-1< -5+ ¢, is equivalent.
simplifﬁ 2., first add 1 to both inequalities.
3, ~4-gc<hbx<-4+c¢ |
Then divide by 4.
4. ~1-F<x -1l+3

It is important here to note from step 4. that

42
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f(x) is‘in {5 =€, -5 4+ é)

-1-£ - £
when x is (=1 7’ 1+ 4).

Compare this with the Limit definition steps 3. and
4. Since a = -1, we need only choose

. 5 ) %
and then we have shown

l. Forxr every € > 0

2. There is a § 5_%

such that
3. f(x) is in (- 5 - g, - 5 + €)
. . § < &£
4., When x is in (-1 ~- 68, -1 + §) ~ 4
x # -1

This procedure is not a method for finding the
limit, only for verifying if the limit exists. The

value of the problem is in its use of the limit definition

.Example 5.

Prove the limit L does not exist.

limit 12+ 2] =1, f(x) =lx* 2]
L=L, a= =2
X + 2
X + 2 X > -2
fix) = Ix + 2) _
X + 2 x < -2
not defined X = ~2
Hence, for x > ~2 . ' v )
limit %52 - 1imit 1 =1 Why?
‘x‘*"‘2+ X+ 2 x.n.-Z"' y

)



for x < -2

limit ={X *+ 2) - 14mjt -1 = -1 Why?
x+-2" (X +72) X>-2" ‘
Since limit f£f(x) # 1limit £(x)
' x+at x-a”

limit f(x) does not exist.
x+a ‘

7.Problems: Refer to Problem Assignment Program # 7.

8.Read:  Refer to Reading Program # 8

Continuity of a Function

Give particular attention to definitions and theorems.
The idea of continuity is important as a quality of

. functions, since some concepts of calculus apply only

to _functions which have this quality.

l. The following limit theorem should be

remembered: e
: !
Y If: - limit f(x) = b limit g(x) = ¢
x-a x-~a
Then:

l. limit (f + g) (x) = b + ¢ :
x=a . '

2. limit (fg) (x) = bc

X-~a-
3, limit (£) () = b c 70
' x-a g ¢

4. A polynomial function is continuous at
every number.
5. A rational function is continuous in its

domain.
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9.Problem
Study:

L)

2. This is a good time to review that part of the
limit lecture (Program 1) in.which continuity

is discussed,

Educational Media Center. “See E.M.C. Directory for Dial
Access and Slide Location. - |
Subject: Limit Problems.

{
Examples 6, 7.

Example 6.

Find:

‘limit  (x° + 4x2 ¢ 2/%) (a 2 0)
X-+a

Application of the limit theorem which states that
the limit of a sum of functions is the sum of the limit
»f the functions permits writing the problem

limit (x5 + 4x2) - limit 2V%
X*a X-+a

(limit vx = va)
X+a

Exanple 7.

Discuss the continuity of the function defined by:
fix) = l%l Sketch the'graph.

Do this in twd parts:
1. For x >0 |x] = x
And f(x) = 1
2. For x < 0 x| = -x

And f(x) = -1
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10.Problems. Refer to Problem Assignment & 10

1l1. Read: One-Sided Limits. Refer to Reading Program # 11,

12.Problem Educational Media Center. See E.M.C. Directory.
Study:’
; Subject: Oneersided limits.

Examples 8, 9.

Example 8. (See Example 5.)

Find the limit if it exists:

limit ]x 2]

+
x+~~2- X + 2
Note for x < -2 the problem is simply:

limit (-1l) = -1
K~=2"

Give reasons for each step.

Example 9.

limie 2% Ix - 1]
x-1% x =1

For x > 1 the problem is written

- i 2% (% =°1)
l;zig {x - 1)

13.Prcblems: Refer to Problem Assignment Program # 13,

14.Read: Infinite Limits and Limits at Infinity.

Refer to Reading Frogram # 14.
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15.Problem  Educational Media Center. Refer to E.MN.C. Directory
- Study: . , .
Dial Access and Slide Location.

Examples 10, 11, 12.

-

Example 10,
Find:
limit IJEE—-
X~ - X
Write this in the form

1
S

x2" x

limit |

¥+

and apply appropriage limit theorems to get:

limit 1
00
Timit I, _limit 1

X+ X2  Xew X

Example 11.

Find:

2
[x"] - 1
x.sl"' X - 1

Recall that,

2

X =n, if n < x2

<n+1

Hence;
limit x2 = 0
x~1"
and, |
1imit [x?] - limit 1
x=~1" x+1 = —
. limit x2 - limit 121
- x=1" x+1"-




l6.Problems:

17 eReadE

Example 12.

Determine the vertical and horizontal asymptotes,

and sketch,

P = 12

A vertical asymptote occurs at x = a

where , N
limig F(x) | or 1limit F(x) equals t =,
Xx~a x~a~
Observe:
2x < s 2x -
limie ——— . = limit = -
ot (x + 2)2 waz= (x + 2)2

The horizontal asymptote will exist at y = b

where:

limit — 2% = 0
300 X< + 4x + 4

Refer to Problem Assignment # 16.

Limit Theorems. See Reading Program # 17.

1. In addition to the limit theorem previously given,
you must know, understand and be able to apply tne
following theorem on limit of composite functions:

Theorem: '

Given: The composite function
(g (x))

1f: (@), limit g(x) = b
X-+a

(b). £ is continuous at b

Then: limit f£(g(x)) = £(b)
| Xx-a

48



2. Theorem:

If: limit €(x) = b,

X=a
then:
limit PEGY = VIImit £(x) = /B
‘ x-a x-+a
if Vb

18.Problem Educational Media Center. See E.M.C. Directory.
Study: - ’
' Examples 13, 14.

Example 13,

limit Yy ¥ 2)°
y+-3

Write this in the form:

;/71ih11 y +2))°

y+-3
Example 14.
Find: limit Y4 *+ X = 2
x+Q x

Simplify by rationalizing to:

] limit (/@ + x - 2) (¥ + x + 2)
| x~0 (/4 + x + 2

19.Problems: Refer to Assignment Program # 19.

20.Review: 1. All Lab .Lectures. Use the script where it is helpful
in going over slides where more time is required.
2. All Prcoblem Study exanples.
3. Sample tests.
4. Prohlems at chapter ~:nd.

4!



PROGRAM

READING PROGRAM =~LIMITS

2. Introduction to Limifs.

Johnson & Kiokemeister, Pages 73 - 77.

5. Definition -- Limit of a Function

Johnson & Kiokemeister, Pages 78 - 83

8. Continuity of a Function

Johnson & Kiokemeister, Pages 85 -~ 87

11. One-sided Limits
Johnson & Kiokemeister, Pages 89 -91
Review the Limit Lecture, Program 1, discussing

left and right hand limits.

14. Infinite Limits and Limits at Infinity.
Johnson & Riokemeister, Pages 92 - 97,

Review Limit Iecture Program ¢ 1.

17. Limit Theorems.

Johnson & Kiokemeister, Pages 98 ~ 103.



Program

& 4.

8 7.

# 10.

# 13,

§ le6.

#129.

-]_2-
PROBLEM ASSIGNMENT PROGRAM ~-~- LIMITS
All references are to fextbook (Johnson & Kiokemeiste:
unleas otherwise indicated. Hand in all progrémmed
problems when completed.
Page 77. Problems 1,1, 3, 5, 7, 9, 11, 13,

Page 84, Problems I, 1 ~ 12,

Page 88. Problems I, 1 - 10.

Give detailed reasons where required.
Page 91 ff. Problems I, 1 ~ 6.
Pages 97, 98. Problems 1, 1 -~ 6, 7, 9, 14,

Page 103. Problems I, 1 - 11.



LE:'ZTURE -= LIMITS

Slide 1. In the following discussion on limits an intuitive
development is considered first and theh related to the
definition of the limit of a function. The idea of the
limit of a function has immediate importance in understand-
ing the basic concepts of Calculns which follow. You will
be confronted with some rather illusive logic. If it isn't
clearly understood the first time through, go over it again.
The final definition of a limit must carry with it an under-

'standing of how this applies to functions.

We begin first with an intuitive idea of a limit in
which only‘an implied function is involved. That is, the
function is not at first defined by an equation and, in fact,
is not interpreted as a function. The equation is then

introduced and the limit concept is related to this.

2. We begiq.with the intuitive idea of a limit.

The rod at position B is three units high made as
shown by stacking three one-unit rods, two red and one blue.
The other blue rod at positicn A is one unit high.

s;ppose. at position B, thé top one-unit rod is cut in
half, the top half is removed and placed on top of the one-
unit rod at position A.

This uperation makes the B rod 2 1/2 units in height
and the A rod 1 1/2 units in hgiqht as shown in the next
drawing.

-
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3.

4.

S.

The operation iz repeated by cuttiag in two the remain-
ing half-unit blue rod at position B. The top half of this

is remcvad and again placed on the rod at positio. A.

This makes the rod at position B 2 1/4 units high and
at position A the rod is 1 3/4 units high.

If the operation is repeated agaih and again then a
procass is described whereby the remaining portion of blue
rod at position B, as shown,.is cut in-half, and the top
half placed on the accumulated sections at posiéion A. 1If
this process is continued ad infinitum, what is the smallest
rod at position B found in the process?

The si¥uation is real, the question is valid, but no
precise number answer can ke given. The best answer seems
to be: there is no smallest rod at B fcuﬁd in this process.

However, a precise answer can be given if the question
is changed to this:

What number I has these two qualities:

l. Every rod found in the process at position B
is larger than L, and
2, No rod is smaller than L?
The number I = 2 has these two qualities. Every rod is
la.gex than L = 2, and no rod is smaller than L = 2,

A similar situation exists at position A, where no
largest rod is‘found in the process but where the number
L = 2 is such that: _

1. Every rod found in the process a. A is

w3
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spaller than L, and
2. No rod is larger than L = 2,
The limit of the process at both positions A and B is
said to be L = 2 even though 2 is never found in the process.
This idea of limit can be nut in a more useful form if
it is couched in a mathematical language. To do this, some

mathematical notations are needed to encompass the ideas.

First, suppose the green band has the width shaﬁn.
Epsilon (e) is a number greater than zero representing the
width‘above‘L = 2, and below L = 2, Bence; on a vertical
scale the green band is from L -~ ¢ to L + €.

For the value of € shown every height of rod at A and
B in the continuing orocess will lie with L - € to L + €.
And in féct there seems to be, intuitively, some point in

the process where this is true for every ¢ > 0 no matter

how small € becomes.

If, for every € > 0, there is some point in the process
such that, for every continuing step, rod heights A and B
will lie within L - ¢ to L + ¢, then the limit of the pro-
cess is said to be L. Observe that, since € > 0 the length
L is never required in the process, but the limit is said to
be L if the described condition holds.

The same process 1s presented next in. a slight varia-

'tion, accomodating still more mathematical notations,

A line F is drawn from the top of the original unit

rod at position A to the top of the original three-unit rod

o
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at position B. The positions X~ are all {é:sthan 1 and |
positions x* ar; all greater than 1 and represent lengths
along the base line from the zero position. The correspond-
ing rod heights A; and By are where the rods intersect the
line F. In this case the height of A, at x = 1/2 is 1 1/2
and height of B, at x* = 3/2 is 2 1/2, and corresponds to
the first operation of removing the.top half of the top unit
rod at B and piacin§ it on top of A. The idea of a function
is néw more clearly defined by the ordered pairs, x'and

corresponding rod height.’

The heights of A, and B, correspond to the x~ = 3/4
and x¥ = 5/4 pqsitions 9f tHe base line. The ordered pairs

(3/4,A,) and (5/4,32) are indicated in this step.

3
process continues by permitting x~ and xT to approach 1 by

The height of A, at x~ and Bg‘at g+ are shown. As the

an amount half of & (delta); then of course the height of
A and B approaches 2. Observe that § represents the dis-
tance from x~ to 1 or 1 to xt.

Again, however; there iF no largest A or smallest R.

The green band shown here has a width L - ¢ to L + €,
For the value of § shown every x~ and x* in the continuing
preceés will have the corresponding heights of A and B
within this green band.

'In fact, if for every € > 0, however small, there is a
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eo:reséonding value of § > 0 such that heights A and B are
within'L - € to L + € for all x , x¥ values between 1 ~ §
and'l + §, then cthe limit of the process is L = 2, Note
that the'limit L = 2 does not require that L = 2 be found
in the process. |

q

SQppose in the beginning the top half of the remaining
blue section at B‘is discarded instead of placin? it on
top of A. Then for all values of x , A remains 1 unit and

as x*

approaches 1, B decreases to approach 2.
In this process it is no longer possible to say that

for every € > 0 there is some point (8) in the process such

~that all values of x~ and x* have corresponding values of A

and B in the green band. Hence, this process has no limit.

The intuitive limit L = 2 found by the process of re-
moving the top half of the top unit from B and placing'it
on A is a suitable basis for the important concept of the
limit of a function as defiped by an equation. The idea is
basically the same but the process is now‘descriSed mathe-~
matically and is much more flexible and rigorous.

First, the equation

defines a set of Drderéd pairs for all values of x, except
x =1, If x ~ 1 is divided into x% - 1, then
H(x) = x + 1

and if x = 1 is removed from the domain of this equation

-~
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then the same set of ordered pairs is defined by both
equations. For instance, if x = 2, H(2) = 3 for both
equations. o;, if x = 0, H(0) = 1 for Foth equations. These
crdered pairs, (2,3) and (0,1) describe the height of the
original rods B and A at the beginning of the process. How~
ever, instead of using rod heights to describe the. process

the value H(x) of the ordered pairs defined by the equation

H(x) = §;_§_%. N
will convey the same idea if x is permitted to take values
éf half the :emaininglinterval to 1 from bath x~ and ¥
positions. That is, x~ takes on values of 1/2, 3/4, 7/8,
15/16 .etc. and x*, 3/2, 5/4, 9/8, 17/16, etc. The corres-

pondiné values H{(x) will then descrihe the process.

For instance, for x™ = 1/2, the broken red line repre-
sents as length ;he value H(x~) or in this case H(I/Z) and
from the defining equation H(1/2) = 3/2 units. Likewise, the
value if x* = 3/2 has the correspandinglﬂ(x+) or H(3/2) =
5/2 from the defining equation.

To convey the same idea of diminishing B and increasing
A, the values of x~ and x* and corresponding H(x") and H(x")

must be chosen so x~ and x* approach 1 by 1/2 the remaining

interval. If this is done then the original process is

described exactly but by using a mathematical notation for
the idea. The limit of the process of increasing H(x~) and
decreasing H(x%) is still L = 2,

This idea is next put into better mathematical form.
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First, the symbol 6 is used to provide an interval about
"% ='1 but not including x = 1. This interval is from

l1~-6¢tol + 6 ag shown here, x ¥ 1.

14. The symbol ¢ provides a band width about L = 2 from
L -¢€ tc L+ ¢c. The mathematical idea of  the limit of the
function is now expressed in this form:

o2 :
For the function H(x) = X2 - 1

function as x~ and x* approach 1 is L = 2 if:

l. For every ¢ > 0, however small, forming a

band width L — ¢ to L + €

15, | 2. there is a corresponding § > 0 about 1, (not
including 1l.) forming an interval of 1 - §
to 1 + 6, such that;

16. whenever %~ ., x? is in the interval, 1 - &, 1 + §,

the heiéht H{x} is in the interval 1 - € to L + €.

\ Of course, as € > 0 is chosen smaller, so must the
value of § be chosen smaller. For this function, that
always appears possible<b§ simply choosing § < €.

| In simplified form then: by calling x~ and xt just x,

limit H(x) = L
x~1 . ~.

if: for every € > 0 there is a corresponding § > 0
such that when x is in 1 ~ § to 1 + &, H(x) value is between
L ~-€tol + €. i

It isn't enough to sﬁaw‘a corresponding § for the one

08
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18,

€ >0 showﬁ here. It must ke possible to show that for
every € > 0, hovever small, there is a corresponding 6§ > 0
such that when x is 1 -~ 6, 1 + §, H(x) is in L ~ e, L + €.

As shown here, whenever x (either x~ or x*) is in the
1 -6, 1+ 8 interval the‘eorresponding H(x) (vertical red
lines) terminates in the L - ¢, L + € interval.

The condition where rod A rema%ns a constant height
equal to 1, and B decreases as before is described mathemati~
cally by the equation;

: 71,(0 < x < 1) Domain
E(x) = « - .
11+ %x,(1 <x<2) Domain

The graph of this equation looks like this. x wvalues
aré measured on the bhase iine and values of H(x) are verti-

cal distances from this., For values of x between 0 and 1

H(x) is a constant value equal to 1.

limit I(x) =1
x=~1-

The notation means the limit as x approaches 1 from
values of x less than 1 (corresponﬂing to x~ values) and
hence is called a left hand limit,

For every epsilon (ei about H(x) = 1, every x' in the
left hand interval 1 - § to 1 has its corresponding H(x")
in the interval 1 - €, to 1 + €.

Also

limit H{(x) = 2
x-1*

implies that only values of x greater than 1 are considered,

¥
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or only x* values, and the limit is a right hand limit,
since: Q
For every € > 0, there is a § > 0 such that every
x* in the interval 1 to 1 + § has its corresponding
H(x") in the interal (2 - &, 2 + ¢€).
Clearly the fgmits are not the same, since

limit "H(x) = 1
x~1"

limit H(x) =2
x~1*

and

although the left and'right hand limits exist, since

limit H(x) # limit H(x)
x+~1 -1+

The limit H(x) does not exist.

x-~1
19, For a function H(x) to have a limit at x = a
limit H(x) = 1limit H(x) = limit H(x)
x-a x~a~ x~at
20. In finding the limit of the function

H{x) = x2 - 1
- *
as x approaches 1, observe that x = 1 is never used and vet
the

limit H(x) = 2
x=1

Since x = 1 is not used in describing the limit process, the
function can have any value or no value at x = 1,

For instance, the function ahown(here
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x+l,[x#l
/2 , Lx = 1

G(x) =

defines exactly all ordered pairs defined by H(x) and one
more, i.e., x =1, G(l) = 3/2 or (1,3/2).

21. Returning to the original process of decreasing one rod
and increasing the other, tﬁe'éuestion is asked: What num-
ber L has tﬁese qualities: ‘ N |

l. Every rod lgngth G(x~) is smaller than L,
2. No rod length G(x™) is larger than L?
Again, L = 2 has this quality even though G(1) = 3/2 which
does not equal L. |
Also,
1. Every rod G(x%*) is larger than L = 2,
2. No rod ¢(x*) is smaller than L = 2.
Since the value of the function G at x = 1 is not .
essential to describing L = 2, G(1) can have any value or ‘

no value at x = 1, and

linit G(x) = 2
x+~1

22, The mathematical description of the limit femains un-
aitared. That 1is:
” l. For every ¢ >‘0,'however small,
2. There is a § > 0.
such thaf:
3. Vhen x is in (1 - 6§, 1 + ¢8), x # 1
4. G(x) is in (L - €, L + ¢€). |
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Hence,
limit G(x) = 2
x~1
23. Finally, suppose the function defined by
2 -
H(x) = x*-x—':—']f

is changed hy adding the ordered pair (1,2). Call this
function ”
F(x) = x + 1.

It differs from H(x) by only the one ordered pair (1,2).

24. Again L = 2 satisfies the two conditions;
1. Every F(x") is smaller than L = 2,
2. Mo F(x") is larger than L = 2.
Also, |
1. Everv F(x*) is larger than L = 2.
2. Mo F(x%) is smaller than L = 2.
However, there is;ene unique quality about the function F(x)
and that is: |
F(l) = L = 2.
When this cuality exists for any function, then that function

is said to be continuous at that value of x..

25. The mathematical description of the limit again remains
, unaltered. That is;
l. For every ¢ > 0

2. There is a § > D
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such that;
3. When x is in (1 - §, 1 + §) x. # 1

4., F(x) is in (L ~ ¢, L + €).

In this case:

limit F(x) = F(1)
x-~1

This statement impliés:
| 1. That the limit exists.
2. That x = 1 is in the dogain of F(x).
3. That the limit L of F(x) is F(1).

wWhen these three conditions hold, the function is continuous.

Note that for

2
H(x) = X - l

x ~ 1
x = 1 is not in the domain. Hence, H(x) is not continuous
at x = 1.
Also,
[x+1, x#1
G(x) = 4
3/2 , x=1
and
G(l) # L

since L = 2 and G(l) = 3/2.

Hence, it also is not continuous at x = 1. The idea of
function limits and the related idea of continuous functions
are important to understanding the basic calculus concepts

which follow.

GaJ



-13-

28. . Since:
limit £(x) = 5 €(x) = 2x + 1
X2
If:
1. For every € > 0 . .
2. There is a § > 0
such that: ‘

3, When x is in 2 ~ 6§, 2 + §,
4. f(x) is in 5 - ¢, 5 + ¢,
The limit can now be proved from the definition.

From definition part 4., £(x) is in 5 - €, 5 + €, hence,

29, 1. 5-¢ < £f(x) <5 + €& (f(x) is in L-e, L+4t)
or: since f£(x) = 2x + 1

Solving for x;

Simplify:

Note here that when x is in (2 - €/2, 2 + €/2), £(x) is in
(5 -¢, 5+ €).
4. This is equivalent to parts 3., 4. of the
defi.ition if § is chosen < e/2.
Hence:
1. For every € > 0
2. Choose 8§ < g/2

And

ERIC | | | by
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3. When x is in 2 ~ 6§, 2 + §

4. f(x) will be in 5 ~ ¢/2, S5 + /2.

The limit of a function also includes two somewhat

different conditions. Suppose

f(x) = &
X

thgn
limit 1

depends on whether x approaches zero from positive or

negative values of x.

 1imit % = - o

x~0~
and

limit L = 0

x_.,0+ X .
and

limit % = 0

]
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PROGRAM

l.Lecture:

DERIVATIVES

The concept of Derivative of a Function is one
of the major concepts of this course. You should
direct your efforts to mastering this idea in the
twq categories of a. theory, b. technique.

It is possible to do well in part b. without actually
understanding the meaning of the derivative (part a.).

Part b. is revealed essentially in workin; pro-
blems. To be really proficient you must understand
the ideas behind the prebléms. "Getting the answer"
here is of secondary importance. A “"correct answer”
simply suggests that your technique in following math

rules is probably correct but doesn't necessarily

imply that you understand the ideas or concepts.

Educational Media Center. See E.M.C. Directory for
Dial Access and slide location.
Subject: Derivative Concept.

Be prepéred to go over all or parts of this lec-
ture more than once. Use the slide text included at
the end of this section‘for detail study. Take notes

on parts you can't follow and ask your instructor

-about it.



2. .Read:

3.rcnblem
Study:

-2—-

Derivative -- Definition and Tangent Lines.

Refer to Reading Program # 2 (Derivative)

Relate your reading t& the lecture on this subject.
This isn't repetitious reading; it is'supplementary.
Give special attention to the definition of the deriva-

tive and the math motation used. You must not only know

AN

the definition -~ it must be meaningful to you. Study
the method used to find the derivative of a fvnction.

Write 6ut4your system for doing this.

ot

Educational Media Center. See E.M.C. Directory for Dial
Access and Slide location. |

Your major objective here is learning the technique
of finding the derivative. This includes knowing the
correct mathematical operations to perform and how to
perform them. Of secondary importance is the technique

of finding the equation defining tangent lines.

Example 1.

Find the derivative of the function
F(x) = x~2

Finding the derivative nf functions is neccessary
and in most case3s a fairly simple task. These problems
are designed as exercises to help vou understand how the
derivative of a function is formed from a function.

Xeep in mind there are always two {unctions involved
in this process:

1. The given function f(x)

67



2. The derivative of the given function
f'(x); . .
It is the relationship between these two functions that
forms the basis for much of our future effort.

;Since

' f(a + h) - f(a)
£f'(a) = limit
- h~0 h

This must be evaluated for F(a), hence:

F'(a) = limit E(@at h) - F(a)
h~0 h

= limit Jfa + h)~2 - a~2
h-~0 h

Simplify this algebraically and find the limit if

it exists.

Example 2.

we are to find the equation for the tangent and
normal line to the graph of a function defiﬁed by
£(x) = x2 - 3x + 2 at (2,£(2)).
To see vhat you are doing’ you should sketch the
function given. It helps to write this in the form
f(x) = x2 - 3x + 9/4 - 1/4
obtained by "completing the square".
Then
£(x) = (x - 3/2)% ~ 1/4
and the vertex of the parabola is at point (3/2,-1/4).
Additional points can be'plotted and the point (2,£(2))

located. Now find f£'(a) where a = 2, and proceed with
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the problem. |
- ‘ £'(a) = 1imst Lfat h) - f(a)
- | h=0 h-

« limit ((a+h)? = 3{a+h) + 2 - (a®-3a+2))
h~0 h

f'(a) = 2a - 3
or
£f'(2) = 4 - 3 =1
‘The slope of the tangent line is i} The slope of

the normal is the negative reciprocal, or

Now complete the problem with the appropriate graph.

4.Problems: Refer to Assignment Program # 4. (Derivative)

e
%
N

5. Read: Continuity of a function -~ Differentiation Formulas.

Refer to Reading Program # 5.

Remember:

1. Theorem 5,5. I the function f is different-
iable at a, then f is continuous at a. (The -

converse is not true.) What iIs the converse?

2. If limit £(x) = f(a)
X+8

then 1limit £(x) = limit if (x)
x~a*t x~a~

3. ‘The derivative of a constant is zero.
Dk = 0
4. The derivative of x is 1.

Dx = 1
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5. The derivative of the vower function
Dx? = nxh-1 .
6. The derivative of a constant k times a function
f(x)
Dkf (x) = kDf (x)

7. The derisative of the sum of two functions is

the sum of their derivatives.

-~
L8]

F(f + £) = Df + Dg. ‘
8. The‘éerivative of the product of two funitions
(fg)a /
D(fg) = fDg = gDf

3

9. The derivative of the quotient of two functions

g2 g #0

6 .Problem Educational Media Center. See Directory for Dial Access
Study:
and Slide location.

Examples 3, 4, 5.

Example 3.

We are to differentiate
Glt) = (3t2 + 1)2
’ Write this in the foim |
G(t) = (3t2 + 1) + (3t2 + 1)
and use the product formula. (No. 8)

VWork out the details and verify your work.

Example 4.

. - 2 1 42
Given: _ G(x) (x< + ;2)

ERIC | S




7 .Problems:

Find C'(x).

It might be easier to write this as

Glx) = (X1 + 1y2
: xz .

and use the product formula, and quotiept formula.

Example 5. ’

Find_the derivative of
G(x) = |x3 - 1]
Since there is no formula for differentiating an absolute
value, this ig first removed by u-e of the definitioni
for absolute values. Write the function as,
G(x) = x3 -1 for (x3 - 1) >0
Glx) = ~(x3 - 1) for (x> _ 1) <0
G(x) =0 for x3 -1=0
The derivati&g of each of these can be easily found along

with the domain. Does the derivative exist at x = 1?

Refer to Assignment Program $ 7.
Differentiate

1. f{x) = x3 + 3x3 ~ 6

2. Fir) = (x2 - 2x + 1)°
3. G(x) = (%2 - 1)(x° + 2x + 1)
2
: -1
4§, H(x) = ix_j
5. h(X) = X
x; - 1

6. F(x) = (x - 1)

7. f({x) =



1
L
1
W
]
L
<
t
~N

8. g(x)
9. FP(t) = g°

= ~1 1 |

4

8.Lecture: Educational Media Center. See E.M.C. NDirectoxy.

Subject: The Chain Rule.

9, Read: The Chain Rule. Refer to Reading Program # 9.

Remember:

1. D(f o g) (a) = Df *(g(a)) Dgla)

DEXY = r £¥~1 pf (r rational)

10.Problem Educational Media Center. See E.M.C. Directory for Dial
Study:
Access and Slide Location.

Examples 6,7.

Consider first a previous problem:

Example 6.

Given: G(t) = (3t2 + 1)?
Find: G'(t)
Use the differentiation formula
nfr = ref-l pe
letting
f = 3¢t + 1 and . r = 2,
then immediately,
G'(t) = 203t + 1) D(3t2 + 1)

or,

Gr(t) = 2(3t2 + 1)6t = 126(3t° + 1)

~1
V)




Example 7.
Given:  h(z) = [3-2-%

Find: h! (z)
Recall:

pff = rff~1 pe

Suppose the problem is written;

e (L= 2\
h(2) T’

and
f is given by %_%_E

You can now apply the above formula directly'but

you will need the quotient formula to finish the problen.

Example 8.
Given: Fly) = (y - %)3/2
CFind: | £'(y) = 3/2(y - )7 F(y - 1)
Y Y

l11.Problems: Refer to Assignment Program # 1l1l.

12, Read: Implicit Differentiation and Higher Derivatives. See

ar

Reading Program # 12,

13.Problem Educational Media Center. See E.M.C. Directory.

Study:
Examples 9, 10,
Example 9.
Given: xy2 -y +6x=0
Find: y' Use implicit differentiation,
\(o 7. |




Suppose xyz

-y + 6x = 0 is solved for y. Then
y = £(x). Actually in this case it is possible to solve

for y, using the quadratic solution;

y = -1 + /1 - 4-x°6X _ -1 /1 - 24x2
2X = i;c

- 1% /1 < 2ax:

Hence, y = f(x) =
2X

In many implicit functions it is not possible to
solve explicitly for y in terms of x. However, assume
it is and that

y = f(x).
Then to emphasize this, write
xy2 -y + 6x = 0
as |
%f(x%) - £(x) + 6x = 0
Now apply the Chain Rule to each term °
foz(x) + f?(x)Dx - Df(x) + D6x = 0
or
x + 2£(x) ¢ £'(x) + £2(x) * 1 - £'(x) +6 =0
Solve for £'(x)

£1(x) (2%xE(x) - 1) = = 6 -~ £°(x)

2
HOEIRS IR

Since y = f(x)

+ v2

%:F\

y' = -



Example 10.

Given: x + x2y2

-y =1 (1,1)

Find: Equation of the tangent line at the given
point to the given curve.

We must find y'(1,1) to get the slope of the
requifed tangent line. Then use the point siope to

find the required line.

14.Problems: Refer to Assignment Program # 14.

15. Read: Notation for Derivative. PRefer to Reading Program # 15.
Remember:
1. Chain Rule in Leibnitz notation.
2. Product formula in Leibnitz notation.
3. Differential y (dy = £'(a) dx).

4. Geometric interpretation of dy, Ay.
l16.Lecture: Repeat PROGRAMS 1, 4.

17.Problem  Refer to Assignment Program # 17.
Review:

The purpose ir working rroblems is to reinforce
your understanding of the concepts involved and to
provide practice in applying this knowledge. Keep in
mind these objectives as you are working the problems.

If you blindly follow a rule to "get an answer" your

proficiency is greatly diminished,
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READING PROGRAM -~ Derivatives.

All references are to the textbook, “qhnson and Kioke-

meister, unless otherwise noted.

Program § 2. Derivatives —-- Definition and Tangent Lines.

Pages 106 - 111.

§ 5. Continuity of a Function
Differentiation Formulas

Pages 113 - 119,

# 9. The Chain PRule

Pages 120 - 124.

#12. Implicit Differentiation and Higher Derivatives.

Pages 125 -~ 128.

$15, Notation for Derivatives

Pages 122 - 132.
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ASSIGNMENT PROGRAM -~ Derivative.

All pave references are to the textbook, Johnson and

Kiokemeister, unless otherwise indicated.

Hand in all assigned problems. They will be corrected

and returned to you.
Program # 4. Page 112. Prohlems I, 1 -~ 9.
$ 7. Problems 1 - 10, Program Manual
Page 119, I Problems 1 -~ 10.
Page 120 II Problems 1, 5.
B11. Page 124, I Problems 1 - 9, 11, 13, 15.

$14. Page 128 I problems 1, 3, 5, 7, 9, 1l.

$17. Page 133. I Problems 1, 2, 5, 7, 10.
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Slide 1. Title The Derivative of a Runction
The mathematical concept discussed iiere is called the deriva-
tive. And, since it is derived from a function it is generally

referred to as the derivative of a function.

2. It is especially in:;oortant that the function concept be under-
stood as a set of distinct ordered pairs having no two first compo-

nents the same.

3. All functions will having a defining equation. For instonce
in the function defined by the equation

Ux) = 3x2
- ordered pairs may be derived as follows:
u@) = 3
giving the ordered pair (1,3)
u@) = 12

giving the ordered pair (2,12) and so forth., Observe also the

notation:
U(z + a) = 3(z + a)?
which has the ordered pair
((z + a), 3(z + a)?)
Without the defining equation of a function there is no way

to find the derivative of the function. This doesn't mean that if

'R
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a function is defined by an equation that the function has a

derivative. Many functions have no derivatives.

The derivative of a fimction is itself a function. It is to
the relation between these two fimctions that we direct out atten-

tion. Most math concepts are abstractions. That is, they are

~ ideas viewed apart from the concrete.

For instance,r the concept or abstraction of roundness, is
inkerent in these concrete examples. If the idea of roundness is
abstracted from these items it can then be applied to any item
having this property. It is important to be able to distinguish
between the abstraction and the concrete examples. That is, we
would not say _"rmmdness is an orange' but rather, an orange is

a ccmc:rete example of the quality ot roundness.

Most math concepts are defined in mathematical notation or
theorems. However, unless one understands the idea involved first,
the definition provides litiie nelp. t}ﬁtéldness can be defined in
a mathematical sense by the fumction defined by x2 + y2 + z2 = r2,
but this provides limited help in understanding the concept of

roundness unless

as shown here a concrete example of the graph of this function is
used with it.

The definition of the derivative f'{(x) of the function f(x)
is defined by this mathematical notation

£(x) = 1im f{x+h) - f(x)
h-+0 h

if the limit exists.

~3
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This describes the concept mathematically but gives little aud

to any depth of understanding.
Several concrete situations are next presented interpreting

this definition in explicit mamner.

Title Velocity and the Derivative

Velocity and speed have similar meaning ar}d will, at first, be’
used interchangeably although velocity has the quality of direction
of motion not usually asSocia;;ed with speed.

Suppose a car starts in motion from the rest position shown

here.
It increases in speed.
And finally moves out of view increasing in speed as it does so.

Of particular interest are two qualities exhibited by the car.

1. position of the car on the road and
2. speed of the car.
These qualities are different but inseparable.

Suppose the car could be timed as it reached certain marks on

the road. For instance the car starts in motion at the zerr mark.
Reaches the 36' mark 3 seconds later.
The 49" mark at 3 1/2 seconds from start,

The 64' mark at 4 secénds from start,

8
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17, And finally crosses vhe 100' mark in 5 seconds from start
,The ordered pairs of time and position found from this are:
(0,0), (3,36), (3 1/2, 49), (4,64), (5,100) and fom a function -
defining tim~ and position of the car. The first components of
these ordered pairs are the domain of the function and the second

components are the range.

18. Let t be the independent variable and L(t) the dependent
variable then it might be assumed that the equation L(t) = 4t?
having the domain (t = 0, 3, 3 1/2, 4, 5) defines the function as

- measured. Assume this equation is valid for all values of (t) from

zeré to § inclusive. |

The position of the car is then described for every t in the
closed interval [0,5]. This equation is a mathematical description
of the quality of po-ition of the car at each instant but says
nothing ex~-licitly about the quality of speed of the car at each
instant.

Whe Jer the quality of speed is, vhis function does not
explicityly define it.

19. Consider the two positions (3,36) and (5,100): These are
ordered pairs from the position function, but they also say somstaing
about speed, since if the car moves from 36' to 100' in two seconds
then this implies a speed of

1.9_03;_11?. - 32¢/sec.
The car is in the condition of speeding up, hence it can't be
said its speed is actually 32'/sec. during this 2 second interval,

81
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but is either slower or faster than this amount and is correct at

only one instant in this interval of time, To improve the descrip-

tion a smaller interval of time could be used, say fram 3 to 3 1/2

seconds or 36' to 49°'.

20. This gives

49 - 36

172 = 26'/sec.

as the speed. Again, since the car is increasing in speed over this
interval it is accurate at only one instant. The remaining time

it is either slower or faster than this amount. T

48]
b

Instead of taking a fixed interval suppose the interval is made
variable by letting the letter h represent a positive number. Then -
from the defining equation for position, the expression for speed -

could be written .
22. L(3+h) - L(3) . L(3*h) - L@3)
t
(3+h) - 3 T Jus  h

The interval can now be made small by making h small appmaching zero.

23. Use the defining position equation to find L(3 + h)

24. L(3+h) = 4(3+ h)2 = 36+ 24k + 4h2
2 .
25, Speed = lﬁ‘hlﬂh for any h.

By making h z»all the interval is made rwall until as h+ 0 a
mathematical expression for speed at one point of position is actually

82
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26, Simplifying: by cancelling h froam numerator and denominator
e , .
) .o < ‘ P
Speed = lim 2%h + 6" 24" /sec. at t = 3 .

This is a precise mathematical representation of the quality of ‘
speed for the car, but it is given for only one instant, (t = 3) \
and says nothing about the speed at aiay other peint.

27, ~ Instead of making the position at 36' fixed suppose it is a
general posigion, called I:(t). then 1let ‘thz‘ other position be
L(t + h). Position L(t) occurs at t seconds and L(t + h) occurs

at (t + h) seconds, hence

28. The expression becomes:

L9

L(t +h) - L(t) |
(t_*-h-)-tk ‘

The velocity is then defined as shown. This is very general since
from the position equation ‘
L(t) = 4t2
r\
. L(t + h) and th) can be brought arbitrarily close together by

making I as small as necessary. As h is squcezed toward zero a
mathematical expression describing the qualit- of spead is obtained

for any position in our consideration.

2

29, This can be said mathematically by the expression

.

limj L(t+h) - L{t)
h+0 h
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But now since the speed is prgcisely determined by the position
function its direction is also detommined and therefore it is
advisable‘to use velocity instead of speed. The only information ..
used in finc}j.ng this expréssion is that given by the position function

30. Compare this with the definition of derivative f'(x) for the
function £(x)

£'(x) = 1lim f(x+h) - f(x)
h-+0 h :
Since these two expressions are identical in form, it can be assumed
that the expression for speed, if the limit exists is actually the

derivative of the position function,

L{t) = 4t2

and can be called

31. ; _
L) = 1im 20 - L) L oocity
h+20 h y
2
- 32, To evaluate this expression; L(t+h) - L(t), must be found from
the position function L(t) = 4t2.
33. The lim LB - L(Y)  pecomes:
h+0 h
*im ﬂt“‘h)z “ 4t2
'b -+ 0 h
This may be simplified algebraically to
3. Line S.
im 4t2 + 8th + 4hf - 422

h+0- h

; 81
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The first and last tems in the mmerator may be cancelled. Divide

_an h from the denominator into the remaining mumerator terms. Then

as h - 0 this expression simplifies to L'(t) = 8t.

The two qualities of position and speed associated with the car
in motiop are now precisely described mathematically by the two
functions one of which is the derivative of the other. For any
position of the car say at t = 3 and L(3) = 36 the velocity of the
car is 24 feet per second. . )

This is a concrete example of thé derivative of a fuimction and
must not be construed as a definition of the derivative. To say the
derivative is a velocity would be like saying roundness is an orange.
Velocity is an example of a derivative of a (bo\sition function.

The idea of rate will be used in the next concrete i;lterpreta—
tion. The dictionary definition of rate is the amount of something
in relation to units of something else. Applied to this example
rateis the amount of change of position in relation to unit change
in time. It is from this that rate is given ti:2 meaning of velocity.
However, rate can be applied in other ways as will be shown in the
following example. |

THE DERIVATIVE INTERPRETED GRAPHICALLY

The derivative may also be interpreted graphically. In doing
this the Cantor-Dedekind axiom is used. This axiom assumes .a;l real
hmbers can be placed in one-to-one correspondence with the points
on an infinjte straight line. The reél mmbers are in this case
given the meaning of length or-position on a line. Any real positive
or negative mumber can tne:: be positioned from zero in the asppropriate
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direction ofthg line. - If two such lines are placed perpendicular
to each other a plane is determined such that any two munbers will

detemine a unique position of the plane.

These two lines, ca]:led coordinates axes, are shown perpendicu-
lar to each other. It is assumed each line is infirite in length
and contains all real mumbers. Each position on the black axis is
assumed to extend along an intersecting black line, and each position
on the red axis is assumed to extend along an intersecting red line.
The zero position is called the origin.

Same of the ordered pairs defined by the equation L(t) = 4t2 are
given here: allerdered pairs are elements of the function set.

Ali f:;rst camponents of these elements are a set called the damain--
these are the black numbers. Ail second components are a set called
the rangeé of the function--these ax"e the red numbers.

For any ordered pair the first camponent is positioned along the
black axis; the second along the redms For instance, the
ordered pair (1,4) is positioned by the intersection of the black
and red lines at the 1, and 4 position on the axes.

It is quickly apparent tha: such numbers as 64 canmot be found
on the red scale as shown.

Hence the scale is chdmged as shown here.

The ordered pairs are positioned on the cartesian plane, labelled
as (1,L(1)), (2,L(2) et:.c.*in which L(1) = 4 and L12) = 16.

The assumption is made that if all ordered pairs of the
defining equation were so positicned they would form the curved line

L
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as shum This line is a two space visualization of the entire set
of ordered pairs defined by L(t) = 4t? in the domain -4 < t < 4.
It is visually distorted because the sca;,le was changed in one direc-
tion and not in the other. However, the relative shape of the
graph is visible. :
Note the two. positions (3,L(3)) and (4,L(8)).

L(3) and L(4) are represented by positions on the range axis
md3m4bycorrespmdhxgpﬁsitimsmthedmainaxis. The
change in position from L(3) i:ox.(4)mmemgecamredtom
corresponding change from 3 to 4 on the domsin is described by the
general idea of rate.

In this case rate as the amount of something 'i.n relation to
urits of something else becomes: The amount of change of range per
unit change in domain. |

For the two points considered:

The rate is expressed by

L) - L(3) . 64 - 36

4 -3 1 28

Or, the amount of change in position of the range for a wnit change .-
in domain is 28'"/inch.

The equation L(t) = 4+”? describes each point on the graph but
just as with the car it does nct express how fast the range is
changing as the domain changas.

The expression for rate shwn describes this but not piecisely,

since it assumes this cate occurs over the ertire domain 3 to 4.

87



-11-
~ 47, If a smaller interval is chosen such as from 3 to 3 1/2 then from
 L(3) to L(3 1/2) the rate is

.49 - 36 .
—_— = 28" /inch
1/2 /in

The rate of change of range compared to domain is not constant, when
compared to the rate over the previous interval.

48, For an interval change of 1/4 the range changes at the rate of
25"/inch, indicating again that the rate is not constant even over

the smaller previous interval.

49, Attempting to find the rate gs change in range compared to a
corresponding change in domain ir an interval approaching zero
requires again making the interval variable. That is, consider

(3,L(3)) and ((3 + h), L(3 + h))
where h is a small positive mumber.
50. The rate is expressed in line 1 as

L(3 + h) - L(3)
h

and when the defining equation is used to simplify this it becomes

24h + 4h?
) h
2s given in line 2.
51. If h approaches zero then the rate is 25"/inch. This gives the

rate of change of range compared to the domain precisely but mly
ammepositionwhemt- 3 and L{3) = 36.

" 8«
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52, To find this rate for any other position, assume the general
positions at P; and P. Pl is positioned by the ordered pair

(ty, L(ty))
and P by
((ty + h), L(ty + h)).
S3. The rate is then given in line 1. as

L(ty + h) - L(t))
h

If h is pemitted to approach zero this form is again identical
to the definition of vhe derivative and on simplifying can be called
L'(t), as the derivative of L(t) or,

L'(t) = 8t

which in this case expresses the rate as change in range compared
to the change in damain at each positimvof dminje on the graph.

If t = 3 the range is changing at a rate 24 times the domain
change.

54. THE RUNCTION DERIVATIVE AS THE SLOPE OF A TANGENT LINE
55. The function defined by
L(t) = 4t2 -4 <t<4

is shown in‘graphic form where each position on the graph expresses
an ordered pair of the function.
For the particular ordered péirs shown the rate is given by:
~A .

84 ‘
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L(4) - L(3)
4 -3

and express the change in range for a corresponding change in domain.

A line S (called a secant line) drawn through these points has
a slope (m), which is identical to the rate. Rate, then, as change
in range compared to change in duna.i.n' is equaluto the slope of the
line through the points considered.

Consider the secant line S and the angle 0 (theta) it makes
with the positive direction of the x axis. This is called the angle
of inclination of line S.

The tangent of 8 is also expressible in identical form to the

- slope and rate.

Hence the rate, slope and tan @ are all equal. If the .two

~ points are expressed in general fom using (t,L(t)) and ((t + h),

L(t + h)) and rate is expressed as:

1im k(t*h) - L(t)
h 70’ h

{

then the secant line\t\hrmgh these points becomes the line tangent

to the curve, having a slope equal to its tangent of inclination
which is equal to the derivative of the function. This is an
important relation and one which should be understood i e§d1
meaning.

At any point (t, L(t)) -n the graph of the function L(t) = 4t?
the slope of the line tangent to this curve at this point has the
seme value as the derivative L'(t) of the functiom.

90
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The temptation exists to define the derivative as being the
slope of the tangent line. This is another example of calling
roundness an orange. The derivative is defined as statement 2.
which equals all the items in statement 1.
Since L'(t) = 8t the slope can be expfessed at any value t.
For instance, if t = 3,, L'(3) = 24 and tan 0 = 24 = m. In the
final examp’e, presented next, a function is generated and its

derivative is given £till another meaning.
THE BOX RUNCTION

From a sheet 6" x 8" in size a box is formed by cutting out the
corners and folding up the remaining strips to form the sides. Each
corner cut out is a square '"a'" inches on a side. This becomes the
height of the box when the box is formed.

From the dimension given the length is (8 - 2a), the width
is (6 - 2a) and the height of the box is "a". The volume is given
by the product of these three dimensions. When multiplied together

and simplified the volume expressed in equation fomm is
V(a) = 48a - 28a® + 4a’

This has meaning only when "a" is greater than or equal to zero or
less than or equal to 3 since the box will exist only for these

numbers. llence, the function dcmain is
0<ac<3

When 'a'' equals zero the plate is defined having a volume of
zero. This is the firsi ordered pair shown in the left colum,
Boxes corrusponding to "a" ~ .5, 1.5 ana 3.0 are shown with their

]



63.

64.

-65.

66.

67.

68.

69.

70.

-15-
corresponding ordered pairs.

~ Assume the cyPinder shown helds 30 cubic inches of water which i
is pemmitted to drain into the box as it changes size for different

values of "a''.
For "a" = 1/4 inch the volume indicated is about 10.3 inches.

For "a'" = 1/2 the volume indicated is 17.5 cubic inches.
Although "a'' doubled V(a) the volume did not.

For "a" = 1 inch the volume indicated is 24 cubic inches. Again

doubling "a" did not double the volume.
How does the volume change as dimension '"a" changes?

Applying the idea of rate as the amount of something in rela-

tion to units of something else the expression becomes:

Rate as the amount of change of volume in relation to unit
change in dimension '‘a'".
For instance, the change in volume if dirension ''a" changes

from 1/2 to 1" is 24 - 17.5 or 6 1/2 cubic inches.

Rate can then be expressed using the function notation 17.5 =

V(1/2) and 24 = V(1) as:

V) - v(1/2)
1-1/2 .

This implies that the change of volume is constant over this interval
of 1/2 inch change in dimension "a'.

or cubic inches per inch.

There is no way of knowing if this is true unless the expression

LA
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which ‘descrii:es the rate is over an interval of dimension "'a" so
small as to approach zero.

To do this, dimension "a" = 1/2 is left in the general form of
"a" with corresponding volume V(a) as shown in red shading'.' If h is
a small positive number the interval from "a"' toa+hhas a
corresponding volume change from !'l(a) to V(a '+ h). Change in dimen-
sion ""a" of an amount h induces a corresponding change in the |
volume of V(a + h) - V(a) and the rate

is expressed as

V(a + h) - V(a)
h

for any interval h.

To make the interval small let h approach zero. The expression
then becames

Lim V(ath) - V(a)
h 0 ho .

which is again the same expression as the definition for the
derivative of a function and hence can be called V'(a). The meaning
assigned tb this expression is the change u: volume as dimension ''a"
changes.

To evaluate this limit V(a + h) must be expressed from the

defining equation
V(a) = 48a - 26a? + 4a3

In line 1. The equation is given,
In line 2. The mathematical notation for the derivative V'(a) is

given.

43
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Line 4. expresses this as

V'(a) = lim V(a+h) - V(ia)
h+0 (a*+h)-a

To evaluate line 4. V(a + h) - V(a) must be evaluated in temms

of the given function. First find V(a + h).
From line 1. /
V(ath) = 48(a+h) - 28(a+h)2 + 4(a+h)3

When expanded and arranged in descending powers of h this is written

V(ath) = 48 - 28a + 4ad + h(48 - 56a + 12a2) +
h2(-28 + 12a) + 4h3

The terms shaded red in line 5. are identically line 1. or just
V(a). Since in line 4. this amount shaded red is subtracted in the
mumerator, it is then equivalent to the remainder of line 5. and each
tem of this remainder has h as a multiplier. Cancel this with the
h in the denominator or line 4., shaded in blue. Then, line 6.

Vi{a) = lim (48 - 56a + 12a2 + h(-28 + 12a3) + 4h2)

h-+0

As h 0 the tems shaded in blue approach zero and are dropped.

The remaining tems are the derivative of the function V(a). That

is in line 7.
V'(a) = 4a - 56a + 12a?

This equation defines a fimction as a set of ordered pairs (a,V'(a)).
For every a in “he damain, V'(a) expresses the rate as change in
V(a) compared to "a'' at any value "a",

4
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79. The function V' (a) is the derivative of the function V(a).
Using line 7'.

V' (1/2) = 48 - 56 1/2 + 12 - (1/2)%2 = 23

Hence when a = 1/2 inch /the volume is changing at the rate of 23
cubic inches per-inch.

80. The process of finding the derivative of a fumction is shown
here forthe function | |

U(x) = 3x? - X

It should be observed and recorded.

f} ~
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THT CPrI;1 TULY

The Chair 2ule

Theorem: The Chajin Pyula

If:
1. f(x) is a function of x and X(t) i= a
function of t.
2, f and X are differcntiable Functiqnq.

Ther.
th(x) = D f(x) - Ptx(t)
Cr ir Leilnitz notetion:

af _ dr  dx
dat ~ dx ° dt

In this lecture the ijea of commosite functions i
portrayed geometrically and from this the Crain ™ule i=

deduced ~howinc betv zueh functions are Aifferentiated.

A srecific function F(x) ~ x2 + 1 iz shown in graphic
form over a small nortjon of its domain. The inderendent

variable is x,.

Anothar function is added sbowving x(t) = /&,
X is pow the demendent variable and t is the indenendent
variabie. The imnlied dorain for x(t) = vt is, of course,
t 2 0. "or any such value of t, x({) is defined, nrocducinc

an ordered ovair of this function. PFPor irastance, if + = 4,

96
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L
x{(4) = 2 and the cordered pair (t,x(t)) is (4,2). If

| ! ; ™\ g
f(x) is determined or vhen t = 4, f£(x) = 5 rroducing

this value of x is then amlied, to the cother function

the »rdered pgit (4,5). All ordered mairs mroduced in

this manner define a function called a composite function.
This is vortrayed hetter by tipping the qgraph as

shown here.

The x coordinate axes are now juxtanosed. 2nd <since

the scales are the same they can ke placed together.
The action is from t to x(t) and then frcm x(t) to
£(x) in determining ordered nairs of the compesite function

fix(t)).

In the furction x(t) = /YT the value t, in the domain

produces the rangz valae x(tg),

and value t produces x(t).

Apply these values X(tc) and x(t) to the domain of

the function f(x) = x2

+ 1 to nroduce the corresponding
range values f(x(t,)) and £(x(t)). As.a composite function
the change in dcmain-fram t, to t nroduces a change in
range from f(x(t,)) to f£(x(t)). This mav be expressed

as a rate in quotient form.
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The quotient

£(x(8)) - £(x(ty))
t - tg |

exprasses the rate as change in domain of the function
x(t) = v/t comparasd to the corrcsponding change in range

of the function f(x) = x? +fl.

Multiply and divide this quotient by x(t) - x(ty).
Notice the different notation used for x(t) and X(to)
when thesc values arc used with the function £(x). The
values arc the same; just the notation is altered to
accomodate the two functions.

It.is assumed that all valuestigs well defined in
the quotients.,

The rate is still expressed by the product guotient
over the domain from t, to t.

The instantaneous rate of change requires taking

the limit by letting t approach ty-

This limit defines the rate as change in f commarcd
to t or simply the derivative of £ with resoect to t.

Since the limit of the product of the two quotioents
is thé produéﬁ of the linmics of the two guotients, this

may be written in the form:

limit f£(x(t)) ~ £(x({tg))

t+to ; =
t - t,

limit £(x(E) = £(x(to)) 1. . x(t) = x(tg)
X =~ xO t - to

08
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As t apnroaches t,r X approaches X, so the respective

limits kecomo:

14, . af _af | dx
dt -~ d&x dt
15, The conclusion for the Chain Rule theorem is
‘established.

"9
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' APPLICATION OF THE DERIVATIVE

PROGRAI1

Educational rfedia Center. See E.™M.C. Directory for Dial

Access and Slide locatior..

Refer to Reading Program #2(Application of the Derivative)
-~

Educational Media Center. See E.M.C. Directory for Dial

Access and Slide location.

Examples '1, 2.

Example 1.

Verify Rolle's Theorem by finding the values of
x for which F(x) and F'(x) vanish.-
F(x) = 3x - x3
Recall Rolle's Theorem:
If: F(x) = F(b) = 0, F(x) is continuous
Then: for some X, such that a < x5, < b
‘ F'(xo) =
Find those values of a and b such that F{a) = F(b) = 0,
Then find X, such that F'(xo) = (.

This problem simpiy verifies Polle's theorem,

1460



4.Problems:

5.Lecture:

6.Read:

7.Problem
Study:

-2-
Example 2, '

Verify that the Mean Value Theorem holds, or give a

reason why it dees not, for:

x -1
x

g(x) = a=1, =3

Note that the hypothesis for the Mean Value Theorem is
satisfied. That is, g(x) is continuous in [1,3], and

g'(x) = iz exists in (1,3)- hence the theorem does apply.

So

g(b) - afa)
b a

= g'(xc) a < X, < b

Yoa can now find X, to verify the theorem.
Refer to Assignment Program & 4.

Educational Media Center. See E.M.C. Directory for Dial

Access and Slidc location.

Subtiject: Extrema of a runction.

Applicétion of the Derivative. See Reading Program § 6.

Educational Media Center., See E.M.C. Directory for Dial
Access and Slide location.

Examplies 3, 4, 5.

Example 3.

In what interval (domain) is this function strictly

increasing and strictly decféasing?

C(x) = 4§ - 4x ~ x2

Tyl



g8.Problems:

¢.Lecture:

-3-
Find

G'(x) = -4 - 2x
Where G'(x) > 0, the function G(x) is increasing. Also,

where G'(x) < 0 the function G(x) is decreasing.

Example 4.

Find the extrema of
gl(x) = 4 - x2
and sketch the graph.
Find the critical points ¢ from g(x) = 0. Then g(¢)
is the extremum. Determine wherz the functjon is in-

creasing, where it is decreasing and the zeros of the

function. This will aid in c¢rarhing.

Example 5.

Find the extrema and graph:

3. 3x2

G'(x) = ze - 6%

G(x) = 2x

Critical poimts: C, = 0, C, = 1. G(Cl) and G(Cz)

1 2

are the extrema.

Refer to Assignment Program # 8.
Educational Media Center. See E.M.C. Directory for Dial
Access and Slide location.

Subject: Concavity of a Functicn and Second Deri-

vative Test.

1 2
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10.Read:

1l.Problem
Study:

-4-
Refer to Peading Program & 10.

Educational Media Center. See E.M.C.Directory for Dial
Access and Slide lucation.

Examples 6, 7, 8.

Example 6.

Find the extrema of the function using the second

‘derivative test:

3 4 ax? - 3x - 9

F(x) = x
First find F'(x) and the critical points. Then f£ind F"(x)
and test the critical points. Compute the extrema from

F(x).

Example 7.

Find the extrema of
F(X) = x vx + 3

Use whatever test is most convenient.

Example 8.

Find the points of inflection of

y‘:z
xi + 2
and sketch the graph showing tangent lines at the point

of inflection.

12.Problems: Refer to Assignment Program § 12,

102 A



lB.Read:

14.Prchlem:
Study: .

15.Proplems:

i16.Reaa:

17.Problem
Study:

18.Problems:

s

Refer to Reading Program # 13.

Educaticnai Media Center. See E.M.C. Directory for Dial
Access and slide location.

Examples 9, 10.

Example 9.

An open box is made from a sheet of metal 10" x 14"
by cutting out corners and folding up the sides to form
the box. What size box will have the largest volume?

Example 10.

2

What point on the graph of y© =-4x is nearest the

point (s,1)?

Refer to Assignment Prcagram # 15.

Refer to Reading Program § 16

Educational Media Center. See E.M.C. Directory for Dial

Access and Slide location.

Example 11l.

The position function of a point moving on a straight
iine is given by:
s(t) = ¢3 - 382 - 24¢,

Describe the motion of the point.

Refer to Assignment Program # 18.
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READING PROGRAM -- Application of the

. Derivative.

All page numbers refer to the textbook, Johnson and

Kiokemeister, unless otherwise noted.
Progrém § 2. Extrema of a Function. Pages 136 - 141.

§ 6. lionotonic Functions, Extrema and First Derivative

Test. Pages 142 - 150,

$10. Concavity and Second Derivative Test. Pages 151-~156.
#13. Applications on the Theory of Extrema. Pages 158-164.
$16. Velocity and Acceleration. Pages 162 - 172

164
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ASSIGNMENT PROGRAM ~-- Applications of the

Derivative.

All page numbers refer to the texthook, Johnson and

Kiokemeister.
PROGRAM § 4.. = Page 141. I Problems 13 - 20.
§ 8. Page 150. I Problems 1, 7, 8, 11, 12, 17, 24, 29.
#l2. Pages 156, 157. I Problems 3,6,11,14,20, 26.
#15. Pages 164, 165. I Problems 1,5,8,11,12.
#18. Page 172. I Prohlems 1,5,8,10.
Q ' J0Y A




Slide 1.

THE MTAlN VALUI' TIECPE'

One of the armrplications of the derivative of a
function is its use in deriving a very important theorem

called The *““ean Value Theorem. Thisvledture develons

the essential hackground in the form of three theorems

and then uses this to establish The ''ean Value Theorem.

The ""ean Value Theorem

If- 1. f is a cortiruous function in a closed
interval [2.10]
2. f' is defined in the open interval (a,h)

Then: there exists a nurber X in (a,b) such that

£(H) - f(a '
( & - a(a) - £ (xc)

It isn't possible at this time to explain why
this theorem is important hut as the calculus is developer
the repeated aprlication of this theorem will testify

to its usefulness.

The form If....Then.... will e used to simnlify
the presertation of ~hat is assumed as hyvothesis or
rremise and vbhat conclusion may he derived from this.

The premise is precisely stated. No more nor less
than «what is nemded to deduce the conclusion is assumed.

Consider now The Fxtreme Va’ue "“eorem.

7‘?5
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If: a function f is continuous on a closed interval [a,b]
Then: the function £ has - | -
1. 2 minimum value called small m on {a,}] .
2, A maximum value called capital ™ on [a,H .
The minimum and maximum values refer, of course, to
the second component of the ordered pair defined by the
equation. That is, for some value of x (call it Xy),
which is the first ccmnonent, the corresponding second
component is the smallest (m) or largest (") in the
interval considered. The ordered nairs‘are (xl,m) and
(xz,M). Pn effort should alwavs he made to think in
terms of ordered pairs vhen considering functions.
The importance of the hynothesis ic shown for
the function f(x) = x, defined, not on a closed interval
as required bv hyovothesis, but on the half owen interval
1< x< 2,\ﬁakinq it imnossible to tell what the largest
or maximum value * is, If it isn't clear why no largest
value is so determined, try finding it. The minimum

value is otvious, m enuals 1.

A second case is considered in which the function

is defined by
' 1

f(x) =
(x-1)2 ,

The graph indicates an asymptote at x = 1: hence no
maximum value * is obtairakle in the closed interval

[0,2] since the function is not continuous.

10
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5. In case three the function is continuous on the

» ¢losed interval [ash] . The valves for small and éapital

f - M are shown.

6. In the second hacquouﬁd theorem tvo more vpremises
are added to the hypothesis. We xetain the first ypremise:
If. l. The function f is continuous on the in~
terval capital I. (Notice the notatiog
f € C which literally means f is contair-

U ed in the set of continuous fgnctions.)

(And add:) 2. f' exists in interval I

o ' . . flx,) is a minimum or maximum in I,
’ )
. . Then:
f'(x ) = 0.
o
| y S A The function f is sketched in red. The interval

I is also indicated, along vith two values in I called
. x, at vhich the smallest and largest second comvonents

occur. Suppése f(xo) is a/minimmm,
8. Then in the wroof, for a suitably small value of
h, £(x, + h) > £(xg,) or’f(xo + h) -~ f(xo) 2 0 for any h.
. ~ h must not be so large it exceeds the domain specified.
for h > 0

f(xo + h - f(xo)
h

>0

-

The détted line indicates the valué of x4, + h and

‘ B 1) 2
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also the vert.ical height f(xé + k).

10.

11.

12,

If h < 0 then the :ucﬁient is reversed in sign
giving,

f(xy, + W) ~ fx
h

)
°f <o

The left dotted line indicates (x5 + h) for h < 0

and the vertical reight is f(x, + P). )

Consider what happens if h is made small anproaching

2ero.

This is equivalent to taking the limit as shown.
By hypothesis the limit does exist and is f'(xo). Hence

as h - 0 the two inequalities must become equal but !ha

-only point at which they can be equal is zero.

Hence, if a function is continuous and its derivative
exists in some interval I and if f’(xo) is a maximum or

minimum in I, then f'(xo) = 0,

The third background theorem is called lolle's
theorem. The hypothesig is in th;ee narts:
If: 1l. 2 function £ is,continuou§ in a closed
interval [a,b]
2., £'(x) is defined in the.open interval (a,b)
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" Then: f'(xo) = 0 for.at least one 8° iﬁ the open
interval (a,b).

The fiist two parts of this hypothesis are the same
as for the nrevious ﬁheorem. *dding the third part
permits us to deduce the conclusion.

13. It f(a) = £(h) = 0 for a continuous fun;tion then;

one of these conditions must always be ore<ent:

-

Case 1. fhe function can be a straight line from
a to b as shoﬁn. \

Case 2. It can ke partially positive aﬁd vartiaily
negative,

Case 2, Or all positive or all negative.

14, Note that Rolle's theorem includes the hypothesis
for the twovprevious theorems. Pence, in each case these
theorems can bhe apnlied: -

Case 1. Since £f(x) = 0 for every x then f£'(x) = 0
for all x in (a,h).

Case 2. f(x) is rositive someplace Eetween a and b.

| Then by the extreme value theorem a maximum

value, call it Xy exists and by the second
theorem f’(xo) = 0 since x, is an interior
point. ) |

Case 3. The sane reasening applies where the“func-
ion value becomes negative, excepting now

the minimum value is f(xy) and £'(xy) = 0.

¢

It is possible there may be several such values Xoe

104
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17,

18.

19,

20.
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These will be called critical poin;é.
In establishing Rolle's cheorem the thfee cases
were possibie because of the third premise:
fla) = £(t) = 0.

The “ear. Value Theorem mav now be deduced from

Rolle's theorem.

Title; The Mean Value Theorem

The function f is continuous in the closed interval
{a,b] and the derivative exists in the oven interval

(alb) [

The secant line (green) drawn through the two

points (a,f(za)) and (»,f(b)) has a slore given by,

f(b) - £(a)
F = a

slope =

This is the form for the slove of a line throuah two

points.
Another line L narallel to this is moved outward...
Further......

Until it is just tangent to the given secant line.

Assume the x value of the tangent line is X,. Then the

- slope of the tangent line is f'(xo) and is equal to the

slope of the secant line, hence,

I'1g
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22.

23.

24.

25.
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L

' - £(I') - f£{a)
f-(*o)A b ~-a

which is to be proved.

In order to prove this, the function f is recon-
structed to comply with the premise of Rolle's theorem
reéuiring f(a) = £(b) = 0.

First f(x) is lowered for each x in [a,b] an
amount f (a) to prédﬁcé,the dotted curve f(x) - f(a).

The slope m, is the same as the seéant line and has the |

equation,

y = m,(x ~ a)
valid for every x in {a,b] .. Vext, the dotted curve is
lowered at each x in the domain an amount equal to the

y value of the green dotted line at that point. Then,

the solid red curve is formed, defined hy f(k) -f(a) -y(x)

as a result of these overations.

Call this function capital

Flx) = £(x) - £(a) - L) = £0a) (x - 4

where the last term y(x) has been renlaced by’its equal

-~

my{x - &) and my is the slope of the secant line. The

valuesf?(af and F(b) must be found,
3

t

This function cavital F(x) satisfies the vremise of

Rolle's theorem. That is, F(a) = 6 and F(b) = 0,
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26. The derivative of the function capital F(x) is
found to be simply:

£1(x) - f(bl)) : g(ﬁ)

27. By Rolle's theorem this must equal zero for some x,
call it x4, in the interval (a,b).

Hence,

~ £(a)

1 fb

which was to be proved.

28. The Mean Value Theorem




Slide 29.

30.

31.

e

Extrema of a Puncé&on.

The concept of funétion has been ipvclv%d in evgry
basic mathematical idea discussed so far. The concept of
the derivative of a'fuﬁction was again a fﬁﬂction\related
to its primitive through the oneration of differentiation.
Since most of the action in science is involved with
functions it isn't surpriéing that effort is made to ox-
%fse the.characteristics of varioas fgnctions. It is not
generally obvious why;certain qualities such as extrema
of functions aré important, but it should become so as

applications reveal this, '

Consider the function defined by the eguation given

at the top of the slide, that is;
£(x) = x3 - 5x2 + 6x.

In column 1. at the extreme left, values of x are given
between x = 0 and x = 3. In the sccond column the
corresponding values of f(x) are showm. For instance,
when x =0, £f{x) = 0., vhen x = .2, £(.2) = 1. Vhen
x = .4, £(.4) = 1.664. Note that f(x) is increasing in
value untiY x equals .%. .Then for further increases in
the value of x, the value of f(x) dccreases to -0.448 at

¥ = 2.8. And finally f(x) aéain increases to zero.

Using thesg ordered pairs of the éomain and range
the gfﬁph of thigvfunétion is constructed as shown here,
revealing the characteristics of the function graphically.
For instance, the zeros of the function at x = 0, 2, and

3 arc showh. It can be observed that the values of the

’{{3
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function are positive betweenvx = 0 and x = 2 and negative
‘between x = 2 and x = 3.
A function may alsc have the quality of increasing

or decreasing in a given domain.

32. Observe the domain values a, b and ¢ as shown in
rcd on the x axis. Also the x values Xy and X,. Notice
that X, is greater than Xqe |

 The function f is said to be inereasing from x = A
to B, if for every x;, X, in this demaiﬁ,

> x, and strictly in-

£(x,) > £(x)) when x, 1

creasing if:
f(xz) > f(xl) when x5 > X,.

Also the function f is decreasing from x = b to ¢
if for every x; and x, in this domain,ff(xz) < f(xl)'
strictly decreasing if

f(xz) < f(xl) when Xy > xl.

If the function is increasing or decreasing it is
said to be monotonic, or if the function is strictly
increasing or strictly decreasing then the function is
strictly monotonic. This function aopears to be strictly
monotonic.

‘The derivative of a function is useful in establish-
ing the domain where a function is increasing or
decreasing.

Fcr instan;e, for the interval [xz, x1] the mean

value theorem 1is :

lig
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34.
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"

f(xz)f¥ f(xl)

X5 - g = £'(qd) X, <d<x

If: £'(d) > 0, and xz > xq
Then both numerator and denominator of this quotient
must be greater than zero. That is, £ix,) - f(xll must
be positive, sincc Xy - xl is positive, hence:
f(xz) > £(x;)
which is the condition for a strictly increaging function.
Alsc, ‘
If: £'(d) <0 and x2 > x3 Or Xy - X; > 0
Then: The denominator is positive so the numerator
must be negative, implying that
f(xz) < £(x31)
which is the condition for a strictly decreasing function.

You mAay therefore use the derivative in this manner

" to predict where a functirn is increasing and where it is

decreasings~ That is, values of the éomain which make the
derivative f'(x) prsitive are those values of the domain
where the function f{x) is incioasing, and domain vaiues
whero £'(x) is negative are those values where £(x) is

decreasing.

In the saconé line, for the functinn:f(x), the

derivative f'(x) is given as
£'(x) = 3x? - 10x + 6,

For the same domain valucs given in column 1. the

-



35.

36.

37.

38.

39.

40.
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values of f'(x) are given in column 3. Mote when x = 0
£'(0) = 6, and when x = .2, £'(,2) = 4,12, Vhen x = o4,
£'(.4) = 2.48. When x = .6, £'(.6) = 1.08 and then when
x = .8 the sign changes and £'(.8) = -,08. The derivative
of a functioh may be interpreted as the slopc of the tan-
gent line to f(x) at x. Giving £'(x) this meaning,
several values of x and f'(x) are next shrwn as tangent

lines.

For x = .4 £'(.4) = 2.48, The black line shown
tangent to the red curve has the slope m = 2.48 = tan o
where o is the angle ~f inclination, or the angle this
line makes with the positive direction of the x axis
(about 68°). Of most importance is the prsitive quality

ot £'(.4) indicating an increasing function.

For x = .6, £'(16) = 1.08. The slope is still peosi-

;ive (about 450).

It x= .8, f'(.8) = -.08. The slepe is nrw negative,

indicating s decreasing functinn
At x = 1.0 £'(1) = -1.
At x = 1.2 f'(l.z) = -1.68.

A composite »f these values rnughly traces the curve

and reveals ancther characteristic of functions. That is,

4
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42.

X = Cl = ,784 and C2 = 2,56,

-13-
where its maximum value is iocated. Since the maximum
value must nccur vhere €(x) changes frem increasing to
decreasing, it must be where the sleme £ (x) changes from
positive ;o negative. Hence, the maximum value nf f£(x)
cccurs at £°'(x) = 0, which is some valur of x betwveen
X = .6 and X = .8. An cbvicus mrtivation is to find
those values of

f'(x) = 0.
Or,

3%% - 10x + 6 = 0.

Solving:
3x2 - 10x + 6 = 0.

These arc called critical valuos and are the x values
wherc ﬁhe herizental slepe occurs. 2And where 2 herizontal
slope cccurs, a maximum value ~f the function cccurs, or
possibly A minimum value as shown at Cye

These maximum *d minimum values ~f the function are
called relative extrema since they ~ccur in the restricted

domain, [0,3].

If the graph were not shown it would still be prssible
tn distinguish which value nf C preduces the relative
maximum and which produces the relative minimum; by
oksarving that frnr the relative méximum the slope is posi-

tive for x less than Cl and negative fnr x greater than él‘
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Hence £(C;) is a relative maximum.

The relative minimum occurs at Cz'where the slope

changes from negative for x less than Cz to positive for

X greater than C,.

43, This is compiled into the first derivative test fqr

relative extrema of a function:

1.
2,

5.

Solve f£'(x) = 0 for critical values C.
If for: x<C f'(x) >0

x > C f'(x) <N
Then: f(C) is a relative maximum.
or:
If for: Xx<C f'(x) <0

X>C f£'(x) >0

Then: f(C) is a relative minimum.

In the cxamples given in the lab. program special

cases of this test will be shown.

43. Concavity of a Function

The term, concavity of a function, refers to the

. pictorial imago of the graph as curving downwards or

curving upward, This idea is useful in probing the naturc

of a function f(x) in much fhe same manner as the deriva-

tive ‘£'(x) was useful in the investigation of extrema of |

a function.

45, - Consider again the function defined by

I'ig
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£f(x) = w3 - 5x2 4 6x
and its first and second derivatives
£'(x) = 3x2 - 10x + 6

and, f"(x) = 6x -~ 10,

In column 1 values of the domain are given with the
corresponding values of spérfunction, £{x), given in
column 2, and the corresvonding values of the function
f'(x) given in column 3, and the corresponding values:

of the function f" (x) given in column 4.

In column 3, where the derivative f'(Xx) is oositive
such as 6,4.12, 2.48, 1.08 the function f£(x) (column 2)
is increasing as x increascs as shown by the red arrow
pointing upward. Where the derivative is negative in
column 3 the function is dccreasing as shown in column 2
by the arr-w pointing dOWAward. Where f'(x) is again
positive f(x) is increasing.

The values of the function £'(x), given in column 3,
have their corresponding derivative values given in

column 4. For instance, when x = 0, £'(0) = 6 and

£ (0) = ~10. Since a negative derivative implies

decreasing function it is assumed that where column 4 is

negative, f'(x) in column 3 is gecreasing.
Where column 4 is negative the bluec arrow 1 indicgtes

a decreasihg function f'(x), and where column 4 is posiéiﬁe

the blue arrow 2 indicates an increasing function £f'(x),

I14
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i8. This information is shown here grhphically. The
' valucs of x and f(x) may be read from the graph. The
corresponding first and second dorivatives aﬁe given in
red and blue respectively.

Beginning with x = ,2 the first derivative value is
4.12 and the second derivative value is -8.8. Fcf x = 4,
the values becomc 2.48 and -7.6. Note that the slope of
the tangent lines is decrcasing, that is, it is gettihg
less steep as indicated ky observation. 'Tﬁis is cbnsis-
tent with the ﬂngative second derivative. That is, the
the negative second derivative means the first derivative
is A decreasing function,

The condition of decreasing slope holds until abou:
x = 1.6. The blue second derivat.ve values are negative
as shown throu out this interval. The nature of the
decreasing slope produces the concave downward quality
of the graph and is detected by the negative soconé de-~
rivative. Th~t is, vherever the second derivative valuc
is noga&ive the graph'will he curving downward, or will
be concave downward,

Between X = 1,6 and 1.8 the second derivative valucs
(blue) change from negativé to positive, indicating now
that the values of the slope of the tangents are increcasing
as shown. That‘is, at x = 1.8, the first derivative value
(in red) is ~2:28, and increases to ~2.0 for x = 2.0 and
to ~1.48 at x = 2.2, etc. This is consistent with the
‘positive value of'the second derivative (blue) in this

¢

A
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X intcrval. The hature of the increasing slépes here

‘}; " produces the concave upward auality of the graph, énd may

f be detected hy the pnsitive values of the second derivative

An important point (ordered pair) is where the graph

changes from concave upward to concave downward. This is
at the point where f£f"(x) is neither positive nor negative,
but wherg f“(gp = 0, or in this , = 6x ~ 10, oxr x = 1 2/3,
This value of x is given the‘descriptivé texm, "point of

. | | iaflection”". It is found by equating the second deriva-
tive - to zerc and sol&ing for x. This pcint is useful in
graphing, but of greater importance is the detectinn of

concavity by use nf the second derivative.

49. | For instance, at the critical point found b& solving
.- f'(k) = 0, or X = .784.the sccond derivatiye value is
negative indicating a concave dewnward nature of the
grabh. But this implies that the graph is below the
tangent linc at this point, and henée at this critical
point a maximum extremum is indicated
At the other critical peint, x = 2,55, the second
derivative (blue values) is nnsitive, vhich indicates the
concave upward nature of the graph, implying all the
graph is above the téngent line to the curve at this
critical poiﬁt. ﬁence, a minimum éxtremum:is indicated,
This is compiled into a statemont called:

The Second Derivative Test for Extrema of a Function.

Y

,
PR
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50, I€ ¢ is a critical number for the function £ and f£'
is defined in some interval about ¢, then:
: 1. £(c) is a relative maximum if £"(~) < 0.
2. f(c) is a relative minimum if f"(c) > 0.
Analytic proof of this theorem is not difficult and

will establish the intuitive approach taken.

51, First, consider';he analytic detectién of concavity
of a function at any value of x = a by use of the second
derivative of the function. B

The function f(x) is revealed graphically by the red
curve. The.point "a" in the domain at éhout 1.2 on the
x axis locates the point (a,i(a) on th~- graph.

Tﬁe black line T drawn tangent to the curve at this
point reveals the nature of the concévity. If the graph
f(x)‘is below the tangent line T the graph is said to
concave downward. If the graph were above this tangent

line it would be concave upward.

52, ' Analytically this can be determined by observing the
directed distance called g(x) and shown as a blue dimen-
sion line;& If the value (length) T(x) were known then, if
T(x) were subtracted from f(x), the value L(x) would he
defined. That is:

53. L(x) = £(x) - T(x).

I
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This is defined for every x considered in the neigh-
bcrhood‘gf *a'., L(x) is zero at “a", but if L(x) is
negative then this iﬁplies that f(x) is below T(x) for
every x in the neighborhood about a, and hence means the

curve is concave downward.

54. f(x) is known and T(x) can be found hy using the
peint (a,f(a)) and the line slove equal to f'(a). Hunce,
for the tangent line, T(x) - f(a) = f'(a)(x ~ a) defines

every point on this line for every x considered. Simpli-

"

- fying:
1. T(x) = f(a) + £'(a) (x - a).
Then: |
Lix) = f(x) - f(a) ~ £'(a) (x - a_. /

[
Apply the mean’ value theorem to the first two terms*on,thé

right side of 3. That is,

55. 2. f (x) fa) = £'(b) (x - a) {(where "b" lies

between x and a).
Hence: ' ‘
3. L{x) = £7(b)(x ~ a) - £'(a) (x - &)
or 4. L(x) = (£'(h) ~ £'(a)) (x - a).
-‘ Now, since detection of conéavity is to be by use of

tne second derivative, suppose

56. rf“(x) < 0 in the domain under consideration.

‘Then this means thaz for x < a f£'(x) > f'(a) since the

Q ‘ ];‘
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negative derivgtive of a function means the functic- 3
decreasihg, for every x in the dohain considered. As the
domain increases the derivative value decreases. ' This is
true for any x < a, so, if b is in thi§ domain then for
b<a f£'(b) > f'(a).

Also for x > a since f"(x) < 0 then £'(x) < £'(a).
And if x = b is in this domain, then £'(b) < £'(a). Apply
this to

57. 5. L(x) = (£'(k) - £'(a))(x - a)

If: x § a, 6: (x - a) < 0 and, f'&b) > f'(a{

or £'(b) - £'(a) > O
Then: L(x) is negative.
If: X >a, or (x-a) >0 and £'(b) < £'(a)

or £'(b) - £'(a) < 0 |
and | |

L(x) is again negative,

This cssentially establishes the second derivative
test for extrémé since if "a" is a critical point "c",
then the same results follow and concavity downward at a
critical point implies a maximum extremum.

In exactly the same manner the concave upward casc

can be verified.

. f




PROGRAM

l.Lecture:

2.Read:

3.Problem
Study:

ANTIDERIVATIVE

PROGRAM

Educational Media Center. See E.M.C. Directory for Dial
Access and Slide location.

Subject: Develops the recovery of the posificn function
from the velocity function and relates this to the anti-

derivative as the érea function.
Refer to Reading Program # 2. (Antiderivative)

Educational Media Center. See E.M.C. Directory for Dial

Access and Slide Location.

Example 1. - ‘ ;

Given the velocity function of a moving object

vit) = %t

Estimate the distance the object travels in three
seconds by using 1/2 second subintervals and assume the

maximum velocity in each subinterval.



Example 2.

Given.the éame “unction defining velocity, estimate
the distance using 1/2 second subintervals but estimaté
distance in each subinterval hy usiﬂb the minimum

velocity in each subinterval.

Example 3. <

Given the function definad by
£(x) = 1
X

Compute I (P) and C (P) for the regular partition of

[1/2,2] into 6 subintervals.




.

P

4.Problems: Refer.to Assignment Program # 4.
5.Read: Refer to Reading Program # 5.

6.Problem Educational Media Center. See E.M.C. Directory for Dial
: Study: o
\\ Access and Slide Location.

Subject: Sigma Notation

Example 4.

Prove by the Mathematical Induction Theorem that:

n
r il = %n(n + 1) (2n + 1)




7.Lecture:

8.Read:

g.Problem
Study:

‘Example 5.
Evalgate:
a2 2
L (ai + b)
im)

Educational hedia Centexr. See E.M.C. Directorvy for Dial
Access and Slide location. |

Subject: Theory of the Integral.
Refer to Reading Program # 8.

Educational Media Center. See Directory for Dial Access

and Slide Location.

'Example 6. .

Find the area of the region bounded by the graph of
£(x) = x° and the lines x = l, x=3, 7=0.

\ 1.8



Example 7.

Evaluate: {2 x3 ax

Example 8.

Evaluate: {3 (z + 1)2 dz

Example 9.

%2

> dx

Evaluate: {5

led)
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10.Problems: Refer to Assignment Program # 10.
11.Read: Refer to Reading Program # 11.

12.Pro§lem Educational Media Center. See E.M.C. Directory for Dial
Study:
Access and Slide Location.

4

gxample 10.

Evaluate: f2 (x3 + x%) dx

-t

Example 1ll.

Evaluate: {“ (VX + 1)2 dx

130




Example 12.

Evaluate: {2 x{¥X + 1) dx

N

13.Problems: Refer to Assignment Program # 13.

14 .Read:

15.Problem
Study:

Refer to Reading Program # 14.

Educational Media Center. See E.M.C. Directory for Dial

- Access and Siide Location.

The following egquation evolved from the lecture on

"Theory of the Integral®™ and the Fundamental Theorem of

Calculus.,
n 5
limit I G{x;)Ax; = f° g = G(b) - G
1Tax|] i1 $)8%4 = J7 @' (x)a {b) (a)

In the limit of the sum Ax; has a precise meaning
necessary to comprehension of e sum. However, in the
integral dx has no meaning. It is simply vestigial of
Ax.

Finding antiderivatives has been a matter of recall-

~ ing what derivative produéed the function. For instance,

J | 131}



since,
Dx2 = 2x

obtainéd froﬁ the derivative formula

Dx" = nxn~1
The reverse process of finding the antiderivative

(1) n+l
n X
Ix" = 1

seems reasonable. That is,

5
4 o X°
Ix 5

Suppose, however, that
(2) D FT is considered, then
(3). DFf =r FI"l pF = rFr'l F'
by the chain rule for derivatives. Also since
(4) / DFF = FY = [y FX~1 p¢
it is clear that any expression that is of the form
(5) "y r¥-l p

must have the antiderivative FT.

Example 13.

Suppose we wish to find

{z (1 + xH¥% x? . ax
Recall first that dx has no particular meaning and
consider the problem jist
{2 (1 + 2x3)% x2
From (4) assume F = 1 + 2x°
then F' = sz

r ~-l=13k and r = 3/2

o ’e?3
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then if
~{"(1 + 2x3)% x? ax

is written
1l 2 2 3 Iy Aoy 2
£ 3 { 5 (1 + 2x°)7=6x
6

Note that % . and % . % has in no way changed the

-

identity of the problem. However, the problem is now
exactly of the form

0
and hence eqguals

PE|2 = (1 + 2x3)%/2] = (1 + 2 - 29)¥/2 -3

Probably you will find this form ﬁreferable to that
given in the text; which can then be mastered after this

method is understood.

Example 14.

Evaluate the integral:

f—! 1
~3  (4x-1)?

i33



Example 15,

Evaluate
2 ,]_~. ...]:.’i
{ xg(l )% adx

Example 1l6.

Evaluate

tz
J T+ ae¥y2 dt
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'16.Prcblems: Refer to Assignment Program §& le.

&

17.Problem Educational Media Center: fee Directory for Dial Access
Study:
and Slide Location.

Example 17.

Sketch the graph of £ and g in the given interval
on the same coordinate svstenm.

t f(t) = (1 - t) g(x) = {" (1 - t) at

Example 18.

Evaluate:

1 n
{ x(x% + a%)? ax

2



E§ample‘19.

" Find the limit if it exists.
limit st 1
it {F 5 ax

+

18.Problems: Refer to Assignment .Program # 18.

A
Y
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READING PROGRAM ~- Antiderivative

All page numbers refer to the textbook, Johnson and

Kiokemeister, unless otherwise indicated.

PROGRAM # 2. Completeness Property -~ Intermediate Value Theorem.
Pages 185 -~ 194 |

§ 5. Sigma Notation. Pages 195 - 197

# 8. Upper and Lower Integrals, Integrals,’Fundamental

Theorem of Calculus. Pages 198 - 213

#11. Integration ¥Formulas. Pages 214 - 216 .

£

$14. Change of Variable -- Integration. Pages 217 - 219
‘ ’ Compare this method to the method given in Program

# 15.

137




PROGRAM # 4.

#10.
§13.
$le.

#18.
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ASSIGMMENT PROGRAM ~~ Antiderivative

All page numbers refer to the textbook, Johnson and

Kiokemeister, unless otherwise indicated.

Page

Page

Page

Page

Page

Page

194,
204.

213.

216,

219.

222.

Problenms

Problems
Problems
Proolems
Problems

Problems

138

1, 3, 5.
1, 3, 5, 8.
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1~ 16.

3,5,8,11,13,14,19,21,22.
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Slide 1. Title The Integral Concept (Antiderivative)

2.

~~Goxman R. Nelson

All basic mathematigal ideas contained in Calculus are
re{gted in a precise and naturalrway. For instance, from
the concept of a function the idea of the derivative evolved
and frpm this, motivation developed for the limit concept
of a funétion.

It would bLe difficult, if not impossible, to understand
these concépts as isolated idcas, since the nétural relation
hetweeh them is essential to comprehension. |

Another basic idea in this relation is called the anti-
derivative of a function. This is first examined intuitively

and finally in & more mathematicaliy vigorous manner.

The derivative concept was developed as a mathematical
description of the quality of velocity when only the quality
of-position was k¥nown. In this slide a car was assumed to
have a position degined Ly the equation
‘ L(t) = at?
From this function anothcr function was derived describing
the velocity at any time t. The derived cquation

L'(t) = 8¢t
conformed precisely to the definition of a derivative and
hence was called the derivative of ithe position function.

The mathematical process of differentiation was developed

as the.

limit f(x + h) - f(x)
h -0 h

and shown to have meaning as the rate of change of £ com-

pared to Xx.
: 139



3.

.
-~ 2 - "

The velocity‘function evolved naturally from the posi-
tion function. Suppose as shown here the velocity function
| +L'(t) = Bt |
is known. Can the pgsition function be retreived naturally
from this?

Since di énce is the product of veloéity and time,
then the distance from the zero position defines position
at time t., Since the car is incréasing in velocity it is
assumed tha; velocity can only be approximated fbr any in-
terval of time. It alsé seems natural that the smaller the
interval of time corisidered the closer the approximation
becomes., For. instance, if the car_starts as shown at zero
position then 1 second later its velocity as L'(l) feet per

second. If this value is assumed for the entire interval

- then the distance in the first second is L'(l)-1 fecet. Of

course this is an approximatinn since the velocity is not
constant in this time interval, and the maximum velocity

was chosen tc compute the distonce.

In the intérval of time from 1 to 2 seconds suppose the
velocity is assumed constant at L'(2) feet per second, then

the distance in this interval is L'(2) * 1 feet.

In the time interval from 2 to 3 seconds the distance
is appreximated by taking the velocity at. 3 seconds or
L‘(S)'feet per second. The distance is then L'(3) * 1 feet.
Estimating the distance traveledvthroughout all five time

intervals and adding these gives an approximation tec the

140
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distance traveled and the position L(t) from thc zero
pOSitiQn . | “
Hence L(t) is approximated

L(t) = L'(1)*1 + L'(2)°1 + L'(3)°1 + L'(4)-1 + L'(5)+1

Eval?ating each product and adding gives the distance
from zero to be 120 feet. This is 'a rather poor approxima-
tion to the known 100 fect, and obviously occurs because the
velocity is not constant in each interval and the maximum
value in cach interval was chosen to computc the distance.
It seems natural to suppose that a better approximation can

be made by taking smaller intervals.

The intervals of time are here shortened to % second

and the distance is approximaﬁed by the sum
L(t) = L' (%)% + L' (1)*% + L' (3/2)°k + L'(2)-% + L' (5/2) %
L'(3)+% + L'(7/2) % + L' {4) % + L' (9/2) % + L' (5) -}

Again the maximum velocity is chosen in each interval in
computing distance.

An important transition in meaning of these terms can
be made here by observing that cach term is a product of
L'(t) and a constant. For instance, consider the term

L' (5/2) %
Assume this is the graph of L'(t) = 8t,. The value of

L' (5/2) is then the length‘of the dotted line from the base
line at 5/2 &idthe graph, and has thé value determined by

14
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| | -

L'(5/2) = 8 - 5/2. This is multiplied by %, which is the
distance between intervals. It is apparent that this term
which expresses distance a§ velocity multiplied by time can
also be interpreted as area. And so it is with every term

in this sunm.

The first term L' (k)% hgcomes area Ay, the second
term L' (1) % hecomcé Az and so on to Ay, which‘is L' (5) 4.
Evaluating all terms gives the sum 2 + 4 + etc. to + 20.
This sum is 110 feet --again an overestimate to the correct
value 6f_1oo feet but better then the first approximation
of 120, BHowever, this approximation now has a double mean-

ing. It can also be interpreted as the red arca.

Suppose the subintervals of time are const;ucted e
mathematically by dividing the cntire interval Af time into
n equal parts. That is, subtract from the timc at the
finish of the run, the time at start and divide by the
number of subintervals desired. If a is the tiwme at start
and b the time at finish, then

b - a
n

is the time in each of n subintervals., Or if cach division

line defining the subintervals is marked as tg for the

beginning and then tl' tz, t3, étc. up to the final time
tﬁ' then the lenath of time for each subinterval

n

of for any specific subinterval t, - ti g .
142
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12,

13.

-5-

The subintervals of time are all equal and are deter-

mined by the integer n. For instance, if n = 5, then the

- first case of 1 second subintcrvals is given. If n = 10,

then the second approximation of % sccond subintervals is
given. The subintervals of time depend on the values of

n, a2 and b.

With the starting time at zecro, 2 = 0. If b is assumed

b

to be the finish time then cach subinterval beccomes just e

The progressive values of time on the base are from
t, which is the starting time, to the first time interval

which' is tl or %, then t2 or 3% etc. Each subinterval of

time is the same but the time increases by this amount across

the base, up to the final time at 3% or t,.

On this base the sum of products is constructed in which

each term is a product of velocity and time but represented

by an area. The interval from t_, to t i % and the arca

9 10
Alo as one of the terms is

L1108y . b
n n

The sum of all terms bocomes:

. b . b ~v 1 4D .b ' 3b .h .o e 1 & QE
L(b)“’L.(H) H*‘L(—E)#L(-—B—)H"' +L(n)n

The form of this sum is now cxamined for increcasingly

large values of n.

1. L(t) = L'(%)'% + L'(2b).b +.e.4 L' (b)Y D
, n n n n

Note: Ifn=5and b= S5

>

143 :
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15.

G-

L(5) = L"(1)°1 + L'(2)°1 4+°°* + L'5.])

which was the first estimate found =120
If n =10 aq? b=5

L(S)= L' (k)% + L' (1)} +-+«+ L'(S5).%

which was the second estimate found = 110.
Suppose the sum is simplificd by replacing the functinn

notation L' by the given function. That is L'(t) = 8t. Theq
2. L(® =8()D +8(20)-b + g(3b)-b 4...s g@b).b

n n n n n n n

n
or
b2
3. L(b) = Bﬁg [L + 24+ 3 4°+++ n]
The sum of the first n integers is
4. 1 + 2+ 3+ 4+ ¢+ +« +n=4(n) (n+1)
Hence,

2
5. L(b) = 8%2 %(n® + n) = 4b2 + 4%

From this it is immediately apparent that the limit of this
expression as n becomes infinite reduces the térm ﬁg-to
zero. That is, as the size of the subintervals become
smaller the sum of the products approaches just 4b“4 as
given in line 6,

Since b is any arbitrary time t this cquation can then
be written

L(t) = 4¢t2
For b=¢t =15 ¢this is
L(5) = 4:52 = 100

which is the exact distance or position which the car was

144
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17,

Y &
known to have. But in addition to this recovery, the

transition to a geometric interpretation is complete.

That is, the position function

L(t) = 4t2
recovered by the procasg of taking the sum of the products
as the.numher of such products increases to infinity can
be identified with the area shown here éhad&d in red. This
area may also be computed rather éasily by the triangle
formula,

A = & base * altitude = &b * h
whefe h is found to be L'(b) = 8b, hence,

A=kb « 8b = 4b2

The process involved in retrieving the position function
from the velocity function suggests a means for reversing
the process of differentiation indicated by ‘

D L(t) = L'"(t).

The notation uscd for the reverse process is an elong-
ated / as shown in line 2. This is read "the antideriva-
tive of L'(t) = L(t)". The operation is called antidiffer-
eﬁtiation, or integration and the function obtained from the
process is called the antiderivative.
| In many cases the antiderivative of elementary fuhctions
is quite obvious. -

For instance, if £f'(x) = 2x

2

then fF'X) = x* + ¢ (c a constant)

since the derivative gives f£'(x)

143
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19.

20.

21.

22,

ED

The antiderivative of a function as related to the arca
boundod by thc graph of the function and the axis of its
independent variable is examined now for several functions
and in greatcr detail. First consider the function

f'(x) = kx

The arca-shaded in blue is a triangle and has the arca
of & the base times the altitude. For the dimension shown
this is just

Alx) = ¥x2

That is: & the base x times the altitude kx = Exz

In line 1. the derivative of the area function is equal
to the function f£'(x), hence in line 2. this is expressed
in mathematical notation as the antiderivative of f'(x)
from 0 to # equals f(x), by use of the symbol f. This is
read as "the antiderivative of f'(x) evaluated from 0 to x

is f(x)."

Supposc
g(x) = 1/3 x2
has the graph shown.
Then the antiderivative of g(x) should be the‘arca
function A(X), or using mathematical notation

Jg(x) = A(x)
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Finding A(x) for this arca has complications not fcund
in the previous example where A(x) had the elemental forn
of a triangle. Howevér, the process of finding the area
suggested in the beginning by taking rectangles of variable
width can be tried. |

23. Suppose the cstimate is made first using heights of
'réctangles which are maximum in any interval as shown here,

having n equal divisions.

24. The function domain which is the base of the area is

given by b-a or since a = 0, just b: This divided by the

.

number of intervaligg;ovides n subintervals having bases,

all equal, of % . | '

25, The value of x at each division point along the x axis

b

is given in terms of b and n, The first division is =,

the sccond is 3% the third is 3B e¢c, up to the last-which

!
n
is E% or just b. The area of the rectangle shaded blue is

is given by taking the hoight which is | /

//
height = g(9§ ) _ N/
times width = %
or, _ ‘
A, =1/3 1222 - b
2 n n
26, - The first and all following rectangles are fcrmed from
s , 147




27,

28.

Qlo-
the prcuct of width (:’T) and the maximum height in the in-

terval as given by the function

A=k 1.2

A, =2 1. @2

PR
ete. .

ek

Each product is of the form g(xi)(xi - X3.1)

Note also that in each product the common factors are

1, bana (2,
3 ' n n
These can be removed from each term leaving only the squared

integers from 1 to n.

At the bottom of the slidc this is civen as a sum of
all A's from 1 to n or

n
x A‘ - l(E)SElz + 22 + 32 -+ QOQSZ-QQ + nzl
jer * In

where each A is a product of a value of the function and a

small interval of the domain.

In line 1. thc sigma notation is used to indicate the
sum of the first n rectangles of area A. The symbol I is
the Greek letter sigma and means in mathomatical use the
summation of Ay for all values of i from 1 to n. as shown.

In line 2. the notation implies the sum of the first 1°
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30.

31.

-11-

—~

integers where i has values from 1 to n, : Fy
or

n PRS
£ 12212422 432 4 4% 4eoes (-1)2 4+ 02
A=l

By using the Theorem on Mathematical Inéuction this

sum can be shown to equal

1

z e n . (n+l)  (2n+1)

3

. as given in line 3. This-isn't obvious bﬁt time won't be

taken here to establish this equality. This will be proved

in a later v»roblem.

Recall that the sum of the rectangles was found to be
Ta o=Li®y3. %n(n+i)(zn+1)

j=1 1 3'm '

Replacing theléum of the first n integers squared by its

equal, linc 4., provides the sum of the'ﬁreaé of the recec-
: N

tangles. Or

I Ay = 327 -1 ame) (2ne1)

This can be simplificd by cancellation of the n's.
Then as the number of rectangles is groatly increased, that

is, as n -~ «, This can be written; showh in line 5. as,

. n . 1.3 3 1
Limit I Ay = limit T8° (2 + a 52)

n~s i=al N~

or, using more explicit notation

. 144
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32.

33.

34.

35.

Limit g (x,) ix;-x ) = limit 1 3(2 + 3 + 1 )
-~ A AL RAALE Rl | Amit I§b *n T nl

o im]l 5 i=

As n becomes infinite the terms_% and %2 approach zero

leaving the sum

A= zb3
This is presumed to be the area under the curve.
That ?s
Alb) = 33
or A(x) = 1y3

The area A{x) shaded blue is 1 x3 as shown in line 1.

9

Note that again the derivative of bounded area is precisely
g(x), or as shown in line 3..
The antiderivative of g(x) from 0 to b, is equal to

A(b).

In every case considered so far the maximum value of

e function was used in estimating the intervals of dis-

tance or arca. What ecffact is produced by using the

minimum values of the function in each surinterval in re-
trieving its antiderivative? |
Consider the graph of tho function G(x) as shown,

having vertical boundaries at x = a and x = b,

The base of the area from a to b is partitioned into
n equal parts. Each division line is identificd by x with

a subscript as shown, such as Xqr xl cte.
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37.

38.

39.

-13-

Vertical lines erected on this base form the sides of

the sub arecas.

The dot shaded sub arcas are shown in which cach is the
product of a subinterval of the, basc such as X, - X3 or in
general (x;_; - X;) and the maximum value of the function
in this subinterval. Since the function is monotone in-
creasing this is always the right side of the subinterval.

The area of the second rectangle jis G(xz) * (x, - x1) etc.

2
The sum of all such areas is given in the form
| n
Su ziil G(xi)(xi - X5-1)
Notice again the form of the product of each sub area.
| This is called the upper sum, S,, since it is an uppet'

bound of the area under the curve.

In éimilar manncr the blue shaded areas are shown here
in which each sub arca is the product of the minimum value
of G(x) in cach subinterval, and the subinterval. The
second rectanglc here would have an area G(x) (x5 - x;).
The.sum of all such arcas is

n . A
t‘SL ﬂigl G(xi_l)(xi - Xj-.1)
called a lower sum since the estimated area is a lowér

bound of the actual areca under the curve.

By super-imposing Sy on Su the difference may be observ-

ed as the clear dotted arca. What happens to this differ-
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ence as the subintervgls.a:e increased in numhér is of
immediate concern. |
The subintervals (xi'— X;.1) arc all equal and common

to the corresponding products so these are replaced by the

“ simpler notation
Ax, = (xi\f %X45.1) \\\\
40. Su and SL are shown with this notation in line 1.
Sy - SL the clear dotted shaded area is just
n .
I [G(x.,) - G(x;_4)]) Ax
Y i : i-1 i
as given in line 2.
41. In line 3. an interesting consequence of taking the
sum is observed.
n
iEIIG(xi)-G(xi__l)] = [G(xi)—G(xo)] + [G(xz)-G(xl)] +
[G(x3) = G(x5)] +r--4 [G(xn_l) - G(xn)]
Notice that each value of Gi' excepting the first and last,
N has a positive and necgative term and so vanish. That is,
f£rom G(xi) in the first term, G(xl) in the second is sub-
tracted. In fact, all terms vanish except G(x,) and -G(xq).
Hence in line 4 |
L | Sy = Sp = [G(x,) - G{xy)] bx
. and since each subinterval
A = B - a
4 n ?
this can be written in line 5 as,
- = [ - b~ a
Su SL [C(b) Gla)] ( = )
R T o 15
ERIC - 12
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42,

43.

44,

-15~
Remember this expression for the difference, Su -‘SL

and;

cbserve on this dArawing that G(b) - G(a) is the height of
the dot shaded column and the base is simply,E_%_i . As
n becomes infinite the base goes to zero and the difference
Sy ~ sL vanishes.

It appears that the same area is found whether §; or
S;, is used in the process. Also the same form of products

was uggd as in all previous cases.

Suppose the same interval [a,b] is used Rut the parti-
tion is not required to form equal subintervals. That is,
(xq9 = Xp) need not equal (x5 = x1) etc. The partitioning
points are still called Xgr ¥1¢ Koo Kg_q0 X" X o Each
subinterval is given the notation Axi, where the subscript
identifies its position in [a,b]. That is, 8x, = X1"Xq0

Using this and previous notftion Su may be given in

mathematical notation using the same form of a sum of pro-

ducts of a function and a subinterval of its domain.
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47.

48.
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In forming each sum S, and S, the maximum or minimum

L
value of the function is used respectively.

Suppose any. other value of x in each subinterval is
chosen to form the sums of prpducﬁs. That is, in the first
sub area suppose any other value of x = él is chosen instead
of X, Or X; to form the sub area. Then if this is done for
each sub area, since G(x;_;) < G(8i) < G(x,) it may be

deduced thét

S, < S < 8

L u

Retain this for future use and return to the differenqe
areas as shown here in clear-dot shading.
n
S, = Sy, -iil[G(xi[_* Glx;_q)] Bx;
The largest of these subintervals Ax; is called the.
"norm" for this partition. It appears to be the first sub-

interval X, =~ X, = Axl. If this valve is substituted for

(o)
each Axi then

in line 3.
Sy = Sp <L [6(x;) = Glxgq)] |lax,|]

The inequality exists because the norm is larger or equal

to every other Axi. The notation used to identify the norm

are double parallel bars.

The summation of

n
151 [G(x,) - G(xi~{3}
,-)4



49.

y be telescoped to
G(Kn) - G(xo) : : N

or, ;n iine 4.

§, - Sy, < [6(b) - G(a)] |]|ax|]

If the norm is chosen so

€
Hexll < gmy=em

then

8y = S, < ¢ for every ¢, and
hence

su = SL'
Since SL < Si < Su then

Su = 5 = SE = S,

And if this limit exists for any pg;titiqning then,
: ph b
limit £ G(&y) Axy = S§ = 7 G(x) dx
| 1ax]|=0 i=1 a
Observe the form of the sum of the products, that is,
G(£s) times Bxy N4
The Fundamental Theorem of Calculus may be deduced
from this statement. A}l efforts so far have béen directed
to evaluating sums such’as:
n
151 G(§,) Ax%
Such sums when they exist were recognized as the anti-

derivative of ¢ and could geometrically be identified with

the area bounded by the function graph, the vertical lines



-——

-13-

on the base and the axis of the independent variahle.
Finding this area proves ta be rather formidable for all
but the mgst elementary functicns. The vrocess of finding

antiderivative is called antidifferentiation and is repre-

*

sented hy
e (x) ax
a.
50. The Fundamental Theorem of Calculus
51. Evaluation of such sums is greatly simplified by use
of the

Fundamental Theorem of Calculus.

Observe in line 1. the telescoping sum
n :
i:l [6x, - Gx; ;] = G(b) - G(a)

Pefer to slide 41. for explanation of this if it is
not recalled.

In line 2. the important Mean Value Theorem is applied
to each of the subintervals implied in line 1. That is,
in line 1. suppose i = 2, then G(xz) - G(xl) implies an
intexval Xy = Xy and so on for all the sums considered.

In each of these subintervgls (xi - xi?l) the mean
value theorem gives line 2. That is, e

Glxy) - G(x;_4)
X; = %X 4

= G‘(Ei) ( (xi__l < E’i < xi)

If each (xi - X ) is given the notation Axi then this

i-1
ig written in line 3. as

LRIC | 56



52.

53.

54,

-19-
- 1

G(xi) G(xi_li = G'(§y) Axi
Equation 4 is recalled from slide 49. For some value

of the norm |]Ax]| > 0, this can be written as given in

line 5. where,

| £ 6eeg) bxy = fPe'tx) dx] <&

for all 3 < || ax |]
‘ This says simply that the difference between the left
side of equation 4. and the right side differs by an amount
less than ¢ for some norm || Ax ||. And for every € > 0 |
there is a norm for which this diffétence holds.

Two substitutions are now made for I G'(§;) 8x; in

line 5. First from line 3. G'(Ei) Axi is replaced by

G(x,) - G(x, ,) or
. n ’ n
I G'(E,) 8x, = I [G(x,) = Gix,_,)]
j=1 b i oyay i-1

. which is then replaced by its equal from line 1. to give in

line 6.

|iG(b) - Gla)] - (Fex) ax| <e

Since this inequality is‘true for all ¢ as deduced from
line 4. it may be deduced finallv that

ﬁb G' (x) dx = G(b) - G(a)

This equation implies the Fundamental Theorem of Calcu-~

lus and permits an easy evaluation 0Of the definite integral

" when the antiderivative of the function is known.
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The form . ‘
G' (x) dx
should serve as a reminder of the form of the products
which produced this sum. Otherwise the expression dx has
no significant meaning.

&his theorem must be known for future use.
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The process, in summary, cevolved in rather precise

steps These should be carefu;ly observed.

l. The idea began with a function
L'(t) = 8t

Thé‘brime was retained only to suggest that this was
a derivative of some function. In this case representing
veloc}gy of a car.

2,' The given function L(t) was obtained by differen-
tiation. S.me process, called antidifferenti>tion, was
needed to rcversc the process and obtained the position
function L(t).

3. This suggestcd a division of the total time of
travel in subintervals., Note; the subdivision occurs on
the domain of the function. 1In thesce subintervals, distance
was computed as the product of the funcﬁion defining velo-
city. aﬁd the subintervals under consideration. The total

distance was approximated by adding these products.

4. Increasing the numbcr of subintervals improved

the approximation: hence, finally, by taking the

n
Lim I L'(tj) (t; - t;_4)
e gm0 4T il

the function L(t) was recovered.

5. This process was called antidifferentiatien and
represented by the symbol given in slide 17.
The ideas involved in this process are considered in

greater detail in what follow:.
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PROGRA!;
1.Read

2.Problem
Study:

PROGRA!l ~~ APPLICATIONS OF THE INTEGRAL

Areas. See Reading Program # 1. Poplication of 'the

Integral.

" Educational Media Center. See E.M.C. Directory for Dial

Access and Slide location.

Example 1.

13

Find the area of the region bounded by- the curves

y = x3, y=0, x=1, x=3

Example 2.

Find the area bounded by

y=v/x+4,y=0, X

il
o
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Example 1.

Find the area bound bLy

yz = 4x, X = 1

3.Problems: See Assignment Program # 3. N

4 .Read: - See Reading Program § 4.

5.Problem Educational fedia Center. See E.™.C. Directory for Dial
Study:

Access and Slide Location.

Example 4,

Find the volume ‘btained by rotating the region about
the x axis.

y = xz, y =0, x=2

Example 5.

Find the volume obhtained by zotating

y=s , x=1, x=3, y=0
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6.Problems:

' "7.Read:

8.Problem
Study:

9.Problems:

-3~

See Assignment Program # 6.
See Reading Program { 7.

Educational Media Center. See E.M.C. Directory for Dial

Access and Slide Location.

Example 6.

Find the work done in stretching a spring from its

natural length of 12" to 18" if 4 pounds of force is

needed to stretch it 1".

See Assignment Program # 9.
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READING PROGRAM -- Application of the -Integral.

Program § 1. Areas. Pages 246 - 253.

Al

# 4. Volume. Pages 253.~ 259.

# 7. Work. Pages 260 -~ 265.

ASSIGNMENT PROGRAM -- Application of the Integral.

Program ¢ 3, Page 252. I Problems: 1, 2, 3, 4, 5, 7, 2. «
¢ 6, TFage 258. I Problems: 1, 3, 4, 9.

§ 9. Pige 264, I Problems: 1 - 6

TN

: N
7All page numbers in the Reading Program and the
Assignment Program refer to the textbook, Johnson

and Kiokemeister.
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