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IL

PREFACE

Are there basic needs in applied mathematics that are shared by

beginning college students in the social sciences, the natural sciences,

and technology?
Several topics come to mind that peint to an affirmative answer:

presenting and interpreting data, finding analytical expressions for

functions from graphs, being familiar with the properties of elementary

functions, and being conversant with the language of calculus. By pro-

viding for these needs, we enable the students to overcome serious

obstacles to the understanding of introductory texts in all 1.hese fields.

Thi2 intention of this text is to serve just this purpose.

The first five chapters develop the skills needed for efficient

numerical calculations, emphasizing the consequences of the inherent

uncertainties of most numbers used in applications. The topics discussed

range from order-of-magnitude estimates through the theory and the use of

the slide rule to the fundamentals of the use of computers. (Although the

importance of the slide rule is declining because of the growing use of

calculators, an understr4ndng of the logarithmic scale is as important as

ever.)
The last five chapters examine the basic properties of the elemen-

tary functions, including their derivatives and integrals. Special emphasis

is placed on finding analytic expressions from graphical representation of

data.
The book has been written with an interactive mode of learning in

mind. It is suitable for section work where short lectures, discussion of

text and problems can be carried out as needed. Whenever we believed
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that certain points are best made by having the students tackle thein,
these points were included in the questions at the end of the section.
Thus, the questions form an integral part of the course. Many of the
questions can be approached in different ways and thereby present the
opportunity for constructive discussion and a means for improving the

communicative skills of the students. There are relatively few drill
problems. Extra problems of this kind can easily be provided by the

instructor.
Because questions are placed after each section, the text may also

be used for individual study.

This book has its origin as the freshman mathematics course in

our Uniergraduate Program for Physics-Chemistry Teachers that started

in 1970. However, since then it has also been used extensively by

students in other fieldi.
The principal contlibutors to the preliminary edition were Judsbn B.

Cross, Thomas J. Dillon, Jo Rita Jordan, George Lukas, Leonard T. Nelson,

Poul Thomsen, David B. Teague, and myself.

This book constitutes a far-reaching revision of the preliminary
edition, including much new mEterial. The revision was done by Judson B.

Cross, Robin Esch, Romualdas Skvatcius, and myself.
The revision benefited from the feedback of the following professors '

who piloted the course: Leonard T. Nelson and Joseph Van Wie at South-

west Minnesota State College, Henry P. Guillotte at Rhode Island College,

and Albert G. 51.arling and David B. teague at Western Carolina University.

The work was illustrated by George Filgulietti and Myrna S. Goldblat,

and produced by Benjamin T. R.chards. The bulk of the camera copy slas

typed by Caroline E.. Russell; the typing was completed by Lorraine Perrotta.

The development of this book is E ,Ipported by a grant from the National

Science Foundation. This financial support is gratefully acknowledged.

Uri Haber-Schaim
July 1975
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Chapter 1. PHYSICAL NUMBERS

1.1 Mathematical and Physical Numbers; Uncertainty

Numbers mean different things in different contexts. In mathematics

a number is ordinarily considered to be exact. If we refer to the number 2,

we usually mean exactly 2, neither 1.99 nor 2.01, but 2.000 carried to

as many zeros as you wish to put down. Similarly, in mathematics 3.17

means 3.17000 To put it differently, a number in mathematics is

represented by a point on the number line.
The situation is quite different when it comes to numbers which are

the result of measurements. Most measurements are inexact to some extent.

flow inexact depends on the type and quality of the measuring instrument,

and on the skill of the experimenter. The handling of such inexact numbers

is a special concern of applied mathematics.

Generally, quantities such as mass:, length, time, temperature, etc.,

are found with some sort of measuring instrument. The numerical answer is

read on a scale. As a very simple example consider the measurement of the

width of a piece of paper with a ruler marked in tenths of a centimeter, as

shown in Fig. 1.1.

Fig. 1.1
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If you showed the drawing to several people and asked them to read

the ruler as carefully as possible, you would probably get a variety of an-

swers clustered around 5.43 cm. A list of answers might be

5.41 5.44

5.43 5.47

5.42

The last entry is obviously wrong, because the piece of paper clearly

does not extend even as far as the middle of the interval between 5.4 *and 5.5

on the ruler. It would be hard to argue convincingly that any one of the other

answers is right and all the others wrong. The reason is that since the ruler

can be read to no closer than about 0.02 cm, none of the answers are clearly

incorrect except the last. It is most likely that the true value of the width of

the paper lies close to the middle of the interval between 5.41 and 5.45.

Expressing it differently, we can say that from the measurements the width x

of the paper lies in the interval
5.41 < x < 5.45

The usual shorthand for this is
x = 5.43 +0.02

When we state x = 5.43 +0.02, we do not mean that 5.43 is the "true value"

for the width of the piece of paper. All we mean is that the true value is

somewhere in that intemal. The interval half-width 0.02 is called the un-

certainty in the number. Notice that it has a reasonible value about how

closely the ruler can be read. A number like this, which has an uncertainty

resulting from measureme:it, is called a physical number. A physical ;iumber

corresponds to an interval on the number line, and not to a point as uoes a

mathematical number (Fig. 1.2).
0.3 0 .3

-1 1
0 I 1.6 2

Fig. 1.2 The physical number 1.6 +0.3 is represented by an interval on the
number line. It is shown in this figure by tne heavy section of the number
line between 1 and 2.



Notice also that the uncertainty 0.02 is only a crude estimate, not
a precise figure. It probably slightly overestimates the error, as we would

wish to do in careful work. Thus the ends of the interval 5.41 < x < 5.45
are actually somewhat "fuzzy" and we are pretty sure that the true value of
x doe.s not lie exactly at either end of the interval.

It would .be nonsense, in this example, to claim an uncertainty of
0.018, or 0.023. We have no basis for claiming that much precision. We
can, however, see that 0.02 is adecittate while 0.01 may not be, and there-
fore state the uncertainty as 0.02 cm.

Some physical numbers are the result not of a single measurement,

but of much scientific work. Examples are the speed of light,

(2.997925 +0.000002) x 1010 cm/sec, and the mass of an electron,
(9.1090 +0.0002) x 10-28 g. Much effort has gone into obtaining such accu-
rate values i.e., making the uncertainties this small.

Questions

1. Figure 1.3 shows an ammeter scale.
(a) Read it as precisely as you can.

(b) List your reading together with

those of all your classmates. Are any
of the readings otviously wrong?

4 .6
.2

voNtoVniiiirthin
\N`

0 Amperes
D.C.

. 1.3

(c) Decide on a physical number which plausibly represents the ag-

gregate of readings, expressing it both as an interval and in "+" form.

(d) Compare your answers to (c) with others.

There are really two sources of error in reading ammeters: the read-
ing error, as discussed in Question 1, and the inaccuracy inherent
in the instrument. The latter is called a systematic error. Typically

the manufacturer might certify the accuracy of ar, ammeter as 2 per

cent of full-scale value. Taking this into consideration, what is the
current measurement shown in Fig. 1.3? Express this physical num-

ber in both interval and "+" form.
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3. Figure 1.4 shows the angular position of a pointer.

Repeat the steps of Question 1 for this pointer.

4. Write the following physical numbers in "+" form.

(a) 4.4 to 4.6
(la) -2.1 to -2.0

(c) 4.432 to 4.451

(d) -1 to +7

Draw the section of the number line between I. and 7.

(a) indicate the following physical numbers on it:

3.9 +0.2, 3.0 +0.4, 5.0 +0.3, 2.9 +0.1, 3.1 +0.2

(b) Which of the physical numbers above could possibly result from

the measurement of the same object?

10 0
20

VbI)1 I
/0 \

30
60 N.;

70

so-
90

Fig. 1.4

6. Are the "one" and "60" in the statement "one hour equals 60 minutes"

mathematical or physical numbers?

1.2 Significant Digits
Writing a physical number with its uncertatnty is good practice, but

is sometimes cumbersome and unnecessary. For example, it may be enough

for us to know that a physical number is 35 without being concerned whether

the uncertainty is +1 or +2 or even +3. It is general practice in such cases

to state the number simply as 35, with the implied understanding that the

last digit may be off either way by at most a few units. If the uncertainty

happens to be +0.1 or ±0.3, we can convey the approximate uncertainty with-

out spelling it out, by expressing the number as 35.0. The fact that we have

added another digit implies that the uncertainty is definitely less than +1

but probably more than +0.1. To take another example, the physical number

35.04 indicates that the uncertainty is less than +0.1 but more than +0.01.

Meaningless digits must be omitted in representing physical,nurnbers

in this way. The physical number 21.34 +0.25 has an uncertainty in the third

digit. Writing this physiral number as 21.34 is deceptive, because this im-

plies only an uncertainty in the fourth digit an accuracy about ten times as

great as the number actually has,. This physical number should be written as

21.3. Similarly, writing 35.0 is deceptive if the uncertainty is as large as +1.



.0/ If a physral number is vgitterVo?rrEz:tly, all digits are significant,

except for thaiter-zeros which serve only as place-holders for the decimal

point. For example, the physical number 35.18 has four significant digits;

35.0 has three (provided the number is correctly written and the zero really

means plus-or-minus a few 0.1's), 35.00 has four, 0.0018 has two, the
r

zeros to the left serving only as place-holders. Note that each of the num-

bers 2.4 cm, 0.024 m (meters), and 0.000024 km (kilometers), has two sig-

nifipant digits. This last trio demormtrates why place-holder izems are not

codnted as significant.
A problem arises with numbers like 10,500 kilom6ters., Are the last

two zeros significant digits, or are they just place-V1cAers? For example,

10,500 kilometers is the distance from Quito, Ecuador-, to Brazzaville, Congo.

There is no certain way of knowing from this added information if the lait

two digits are significant, although the fact that they are both zero makes

one suspect that they are not. It happens in this case that they are inceed

not significant, since the distance was found by making measuremenes on \\

a map so small that the distance could not be measured to better than about

+100 kilometers.

It is good practice to use powers-of-ten notation to show the number

of significant figures of such numbers. Since 101 10,102 = 100,1b3 = 1000,

etc. we can write the number 10,500 ±100 as 1.05 x 104 or 10.5 x 103, or

105 x 102. In each of the three representations we see that there are three

significant digits; and the power-of-ten acts as a decimal locater. Thus it

would be good practice to write the Quito- Brazzaville distance, in one of

these forms, to indicate clearly that it is known to only about 100 kilometers

accuracy.
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Questions

1. Given the followirw physical numbers, express them in significant-

digits form.

(a) 17.3 +0.1 (d) 17.3 +5

(b) 17.3 +0.0b1 (e) 16.6+1

(c) 17.3 ±0.5 (f) 16.60.2
2. To how many significant digits is each of the following numbers

given?

(a) 67.03 (e) 4.700

(b) 145.00 (f) 2.75X 105

(c) 241.75 (1) 2.750 105

(d),- 0-.03001 (h) 5000

3. ',Given the following physical numbers in significant-digits form,

give plausible equivalents in "+" form.

(a) 8.3 (e) 830.0

OA 0.00083 (f) 2.4 cm

(c) 0.0008300 (g) 0.024 m

(d) 830 (h) 2.75 X 105 m

4. Usc a centimeter scale to measure the long dimension of this page

in your book and give the result in

(a) "±" form.

(b) significant-digits form.

5. in each of the following, a physical number is given without any in-

dication of its uncertainty. Very roughly, what would you guess the

uncertainty to be?

(a) Boston, 7 miles (highvbliy sign).

(b) Centerville, pop. 1271 (sian obviously several years old).

(c) Yesterday's baseball at9dance 10,372 (newspaper article).

(d) 20,000 attend mass rally (newspaper headline).

fe) 7.4 inches of rainfall in recent storm (weather bureau report).

(f) 450 calories per serving of apple pie (from an article on dieting).

(g) 2 pounds of coffee (from a grocery store).

(h) 39.37 inches in a meter (fmm a handbook).

14
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1.3 Addition and Subtraction of Physical Numbers

The addition of the two mathematical numbers 7.9 and 5.6 obviously

gives 13.5. Now consider the addition of 7.9 ±0.2 grams of salt to 5.6+0.1

grams of salt. The result could be as large as (7S., + 0.2) + (5.6+ 0.1)

(7.9 + 5.6) + (0.2 + 0.1) = 13.5 0.3 g, or it could be as small as

(7.9 - 0.2) + (5.6 - 0..) = (7.9 + 5.6) - (0.2 + 0.1) - 0.3 g. The

result is thus 13.5 ±0.3 g; w r,o!r. .:le uncertainties have added.

By considering in this fashion the largest and smallest"values the

result could have, we find the corresponding general rul

(A +a) + (B +b) = (A + ±(a + b) 11)

Sirhilarly, if 5.6 +0.1 g of salt is taken away from 7.9 +0.2 g. the

amount remaining could be as large as (7.9 + 0.2) - (5.6 0.1) = ;7.9

+ (0.2 + = 2.3 + 0.3 g, and coulalbe as small as (7.9-0.2)- (5.6+0.1)

= (7.9 - 5.5) (0.2 + 0.1) = 2.3 - 0.3 g. The difference of these two physi-

cal numbers is thus 2.3 +0.3 g, and we see that uncertainties add in subtrac-

tion as well as in addition. (Since subtraction is equivalent to addition of

the negative, we could have deduced this from our ear her formula for addition.)

We have thus
(A +a) (B +b) = (A - B) +(a + b) (2)

This rompletes the formulation of the rules for addition and subtrac-

tion of physical numbers. However, in practice there are special cases

worth considering. Suppose first that one of the,uncertainties is much smal13r

than the other say b is much smaller than a. This may be written b << a.

(Note that by convention a and b are both positive.) Then the uncertainty may

be taken simply as a. For example, consider the sum (5.3+0.2) + (3.418 +0.003).

It would be rather silly to write the result as 8.718 +0.203, since the first

number is known only to within 0.2, an additional uncertainty of 0.003 is

meaningless. We would ordinarily write the uncertainty as simply +0.2. If

the result is written in significant-digits form it should be written 8.7, not

8.718 nor even 8.72. Note two things that have happened: the larger uncer-

tainty has "swamped" the smaller, and some significant digits In the more

accurate number have lost their significance in the sum.
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In the example:we have been cliscuss!ng, to illustrate the b.<< a

situatton, A and B h d comparable magnitudes.. More usually when b << a

we have alsolB1 <<tA1. Consider !.for example (5.31 ±0.03)+ (0.0128 ±0.0001).

The result is 5,3-. +0.03, and one must accept the necessity of throwing away

the last two dioits of B, which have become insignificant in the sum. Much

as one might wish to write the result as 5.3226, this would be quite mislead-

ing.
In extreme cases B can be totally "swampe'd" by the uncertainty in A.

Consider for example the addition of the physical numbers 3.7 ±0.1 and

0.016 +0.002. This migl't arise in the following way: The thickness of a

steel plate is measured with a ruler pa found to be 3.7 +0.1 mm. The

thickness of aluminum foil is found with a micrometer to be 0.016 +0.002 mm.

Then the plate and the foil are pressed together, ar,d the combined thickness

is measured with a ruler. The result of this final measurement would probably

be 3.7 +0.1, the same as the first measurement.

The point is that the uncertainty in the steel plate is already about

six times the thickness of the ajuminum,foil. Thus, adding the foil to the

plate does not measurably (to,ing a ruler) increase its thickness or the uncer-

tainty of the measurement.
Next, Irrespective of the relative sizes of the uncertainties, let us

consider the effects of the relative sizes of A and B. If these are of nearly

the same size, nothing remarkable happens when they are added; however a

dramatic loss in significant digits can occur when one is subtracted from the

other. Thus 29.27 - 29.18 = 0.09 is a calculation in which three significant

digits are lost.
In general terms, in the subtlaction (A +a) (B +b) = (A- B) +(a+ b) it

can happen that (A - B) has a -magnitude much less than either A or Bo and

perhaps comparable with or even less than the uncertainty (a + b).. It is im-

portant to recognize this loss of significant digits when finding the difference

of nearly equal numbers.

We may summarize our discussion in three "rules-of-thumb" for the'

addition and subtraction of physical numbers:



-9-

1. When uncertainties differ Widely, the larger one governs.

2. Don't save digits which have become insignificant.

3. Be on guard to detect the loss in significant digits which occurs

when taking the difference of nearly equal numbers, and if possible avoid the

neceSsity of such a calculation.

Questions

1. Add each of the following pairs of physical numbers.

(a) (2.71 +0.03) + (0.0140.01)

(b) (47.8 +0.1) + (1000 +1)

(c) (0.007 +0.001) + (0.0003 +0.0001)

(d) (63 +1) + (2 +0.5)

(e) (8 +1) + (11 ±3) + (14 +2)

(f) (3.7 +0.1) + 10 (0.016 +0.002)

(Part (f) corresponds to adding ten sheets of aluminum foil to the

steel plate discussed in the text.)

2. Calculate the answer to each of the following operations involving

physical numbers.

(a) 12.5 + 26.8 (e) 12.5+ 26.8 + 1.32

(b) 12.5 + 2.68 (f) 2.5 x 102 - 1.8 x 103

(c) 12.5 + 0.0268 (g) 1.01 x 103 - 9.8 x 102

(d) 26.8 + 12.5 + 1.32 (h) 6.31 x 105 + 2.12 x 102

3. One technique for weighing an animal is to weigh oneself on a bath-

room scale while 3.1:ling the animal, and while not. Explain why

this technique works better for a large dog than for a small kitten.

4. Pediatricians sometimes advise new parents not to weigh their baby

too frequently. Can you think of a reason for this advice?
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1 .9 Computations with Physical IlLumbers

Wishing to measure the density of a fluid, you determine that a vol-

ume of 151 +2 cm3 has a mass of 212.1 +0.5 g. Nominally the density is

then 212.1/151 g/cm3, but what is the uncertainty?

This brings up the difficult but important question of carrYing out cal-

culations with physical numbers beyond additions and subtractions. To drew

conclusions from experiments, some calculation is usually required, and it

is important to know reliably the uncertainty in the result. In the present ex-

ample the most obvious approach Is to calculate the smallest and largest val-

ues the result can have. The smallest possible value, obtained by making

the numerator as small and the denominator as large as possible, i§

211.6/153 = 1.383 g/cin3. By similar reasoning the largest possible value

is 212.6/149 = 1.427 g/cm3. Thus the answer lies in an interval of length

1.427 - 1.383 = 0.044 and the center of the interval is 1(1.427+1.383) =
2

1.405. Thus the density would be given as 1.405 +0.022 g/cm3.

It is quite all right to state this result' as 1.40 +0 enlarging the

interval slightly in order to simplify the answer, if one is noiconcerned with

obtaining the closest pc;ssible estimate. It is, however, Incorrect and mis-

leading to state the, result as simply 1.405 g/cm3 without stating the uncer-

tainty; this would imply four significant digits of accuracy, whereas we

really have at best only three.
Sometimes this amount of care is not needed in computations; we may

be satisfied with a general indication of the uncertainty of a result, rather

than a strictly correct interval. In this case significant-digit form may suf-

fice for physical numbers entering the calculation, and it may be possible to

infer how many digits should be kept in the final result, so as neither to sac-

rifice truly significant information by quoting too few digits, nor to imply

more information than is actually present by quoting too many. In general,

one rule of thumb should be kept in mind: it is unusual for the number of

significant digits to increase during a calculation.

When more care is required, i.e., when one Wants really to know the

interval in which the result of a calculation lies, perhaps the best general



advice is: (1) Work with the numbers in interval form, not significant-digit

form-, 46 the latter is too crude for this purpose; (2) Calculate the smallest

and the largest value the answer could have, as in the example we gave;

(3) Be careful not to introduce additional errors by carrying too few places

in the calculation.
This last point is known as carrying "guard digits" to prevent round-

off error. Round-off error, as its name suggests, is the error incurred when

a ,decitnal is truncated or rounded, as will continually occur in a computation

of any length. While it is misleading to state a result to more apparent sig.-

nificant digits than really known, there is absolutely nothing wrong with

carrying extra digits in the intermediate stages of a calculation, and in fact

this is recommended. This occars very commonly when the computations are

done by a computer.
The product of two physical numbers occurs so often that it deserves

special consideration. Suppose we wish to compute C +c = (A +a) (B +b), and

assume that A and B are positive with a < A and b < B. Then the smallest and

largest values of the product are (A - a) (B b) and (A + a) (El + b); C is the

average of these and 2c the difference, so that

(A +a) (B +b) = C +c EAB + al)] +[aB + bA] (3)

Frequently the term ab in Equation (3) will be so small compared to AB that it

can be neglected. Thus, the uncertainty in AB equals (aB + bA); the uncer-

taintl in A times 13, plus the uncertainty in B times A.

We shall return to the matter of the behavior of uncertainties in mul-

tiplication and di.vision in Chapter 3.

I :)
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Questions

1. Using the measured values
x 1.1 + 0.1

y 0.5 ± 0.1

z 2.0 +0.2
compute carefully each of the following physical. numbers:

(a) x2 + y y

2. A crude estimate of the mean radius of the earth is 6400 ±100 km.

(a) What is the resulting value of its volume?

(b) Given that the earth's mass is 6.0 +0.1x 1027 g, calculate its
mean density irrg/cm3.

3. The piece of paper in Fig. 1.1 was determined to have a width of

5.43 +0.02 cm. Suppose its length is measured to. be 6.44 +0.02 cm.

Assuming that its shape is perfectly rectangular, calculate its area as

a physical number.
4. By plotting A and A + a horizontally, and B and B + b vertically, inter-

pret Equation (3) graphically in terms of the areas of various rec-

tangles.
5. How should Equation (3) and the accompanying discussion be modified

if one of the factors, say A, is negative?

6. Many calculations involve both mathematical and physical numbers.

Suppose the radius r of a circle is 5.0 +0.1 cm. Compute its circum-

ference L = 2nr. Are the numbers 2 and Tr physical or mathematical

numbers? To how many decimal places need n be expressed in this

calculation?
7 If a is much smaller than the magnitude of A, show that the magnitude

of the uncertainty in the recfprocal of A +a i's approximately
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8. The power, in watts, consumed by an electric circuit is the product

of voltage E and current I, in volts and amperes respectively. Sup-

pose voltage is measured by a voltmeter accurate to +2 volts, and

current by an ammeter good to +0.03 amp. What power corresponds

to each of the foflowing pairs of nominal readings? (Be sure to give

your answer as physical numbers.)

(a) E = 110, I = 1.25 (c) E, = 2 I = 5.51

(b) E = 115, I= 0.04 (d) E= 2, 0.04

9. Uee a centimeter scale to find the area of the cover of this book in

(a) ,7m2 (square centimeters).

(b) mm2 (square millimeters).

10. Suppose that the base of a certain Egyptian pyramid is found upon

measurement to be very nearly a square 100 +2 meters on a side.

The height is measured to be 100 ±5 meters. A piece of stone taken

from it having a mass of 357.5 +0.2 grams is found to displace 100 ±3

cubic centimeters of water. What is the total mass of the pyramid?
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Chapter 2. COMPARING NUMBERS AND SETS OF NUMBERS

2.1 Comparin9 Numbers by Ordering and by Difference

In Egyptian mythology the souls of the dead were weighed in a bal-

ance against an ostrich feather. For salvation it was crucial that the soul

be heavier than the featherbut it didn't matter by how much. This is an
example of comparison by ordering, where the only information required is

which of two numbers is larger.
More down-to-earth examples where numbers are compared by simple

ordering are readily found: Furniture movers need only to know which is

larger, the width of a door or the width of a piano, in order to decide wheth-

er the piono can be taken by that route. In selecting a portion of food one

might pick the largest if one is hungry; or the smallest if on a diet. In a

traci meet the broad-jump event is won by the longest jump, no matter how

little this jump exceeds the second best.
Sometimes, however, just ordering numbers is not enough to tell us

what we wish to know. For example, in following a baby's growth, one is

probably interested not only n the fact that the baby's weight is greater
than it was a year ago, but in how much greater. As another example, sup-

pose you were deciding from which of two dealers to buy a certain automo-

bile. If one price was substantially lower than the other (say, several hun-

dred dollars) you would probably choose that one. But if the prices were

nearly the same, the decision might be made on other groundsfor example,

convenience-and reliability of service. Here we clearly must know not only

which is cheaper but also by how much.
To make this sort of comparison we calculate the difference between

the two quantities by subtracting one from the other. Of course, since a - b

does not equal b a,. we have to decide which difference to use. It is par-

ticularly important to be consistent as to which number is subtracted when

we describe a change in a given quantity. Consider the change in hourly

22
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temperature readings or daily stock-market quotations. One always gives

the change in going from the earlier tO the later reading, and therefore sub-

tracts the earlier reading from the later one. A change in temperature of

SOC means that the temperature increased 50C. A change of -3 points on

the stock market means in everyday language that the market dropped by

three points.
Expressing the change in a quantity by the later value minus the

earlier is so common that it is designated by a special symbol, the Greek

capital letter A (delta). For example., if t represents temperatu're, At stands

for the change in temperature, i.e., later temperature minus earlier. Since

At can be positive or negative it can be used to express both increases and

decreases.
If two quantities are to be compared by taking their difference, they

must have the same units, or be converted into the same units. For example,

there is no sense in subtracting one inch from three feet to get two as the

difference in length. One can get the difference in length by converting

three feet to 36 inches, and subtracting one inch from that. The resultincl

length difference of 35 inches doFs make sense.
Ir

In finding the difference between two physical numbers, it is impor-

tant to keep in mind the warning in the previous cha: ter about possible loss

of significant digits. Consider, for examp'e, (5.46 +0.02)cm - (5.43 +0.02)cm,

wl..ich might be the difference in the widths of two pieces of paper. The re-

sult, 0.03 ±0.04 cm, is inconclusive in telling which piece is wider. Note

that whereas the original values .vere good to three 'significant digits, the

difference hardly has one significant digit of accuracy.
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Questions

1 In which of the following situations would you be satisfied with a

comparison by ordering? In which by taking a difference? In which

would neither form of comparison be Useful?

(a) Deciding whether a book will fit into a certain shelf of a book-

case.
(b) Choosing among cabinets to fit into a kitchen, making as close

a fit as possible.
(c) Deciding whether your reducing diet is going well.

(d) Describing the height gain of a child over a one-year period.

(e) Selecting the baseball player with the highest batting average.

(f) Deciding which of two baseball players, with known batting

averages, to hire for a team.

2. Suppose that Consumers Research measured the following gas mile-

age figures for six sample new cars:

(a) 13.7 (miles per.gallon) (d) 11.9

(b) 12..8 (e) 13.9

(c) 14.1 (f) 13.2

Which model performs best? From these data, does it appear that gas

mileage will be an important criterion in choosing which model to

buy? Make up a hypothetical new set of data which would change

your answer to this problem.

3. Table 2.1 gives the rate of unemployment in the United States, as

the number of unemployed per 100 workers, for the years 1963 through

1971.

(a) When was unemployment per 100 workers greatest?

(b) When was it least?
(c) What kind of comparison did you use in deciding on your answers

to (a) and (b)?

24
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TAUB 2 61

Unemployed Change in
Year per 100 Unemployment

1963 5.7

1964 5.2

1965 4.5

1966 3.8

1967 3.8

1968 3.6

1969 3.5

1970 464.9

1971 5.9

INERMImmaIMP.

...ilmat

IMPOIMAIRMIPM.

amMampo...1

4. (a) Fill in the third column of Table 2.1 with the change in the Lin-
o employment rate per 100 workcLs between each two consecutive years.

(b) Between which two consecutive years did unemployment in-

crease most rapidly? Decrease most rapidly?

5 . Give an example of a comparison of two nearly equal physical numbers

where almost all significant digits are lost by taking the difference.

2.2 Comparing Numbers by Ratio

Often numbers are compared by stating how many times one is larger

than the other, rather than by how much they differ. For example, a 100 cm

rod is 50 times longcr thon a 2.0 cm piece of chalk, though the difference

between them is,98 cm. To find how many times a is larger than b, we cal-

culate the ratio of a to b, i.e., we divide a by b. Like subtraction, division

is' not commutative: I does not equal 12-' and tlius one must be careful which
b a

one uses. If we speak of the ratio ot a to b, 'we mean I. The ratio on the

other hand, is the ratio of b to a. *Ai
If two quantities are to be compared by finding their ratio, they must

be expressed in the same units, as is the case when two quantities are com-

pared by takipg their difference. If they are given in different units, one of

e..
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them has to be converted to the units of the other. Consider the following

example: It takes one commuter 1 hour and 12 minutes to commute to.work;

another commuter gets to work in 27 minutes. How many times longer does

it take the first person to get to work than it takes the second person?

First, converting hours into minutes, 1 hour = 60 minutes, and the first man
72 min.takes 60 + 12 minutes = 72 minutes. The ratio yields =27

2.7 timesmin.
longer.

In the last example it would also make sense to compare the times it

takes the commuters to get to work in terms of difference: It takes the first

72 minutes - 27 minutes = 45 minutes longer. However, if it takes an air--

plane 20 minutes and a cyclist needs 4042 hours to cover a given distance,

the difference in times would be about 40 hours. This would also be true if

it took the airplane 30 minutes. A comparison by ratio shows 40 x 60 min20
min.

40 x 60 min.
= 120 in one case and 30 min. = 80 in the other, a significant differ-

ence, here the ratio carries information which the difference does not.

As in comparing physical numbers by difference. 'Then comparing

them by finding their ratio we must pay attention to significant digits. For

example, the ratio of the lengths of two nails, one '5.52 cm long and the
5.52 cmother 2.3 cm,is 2.3 cm - 2.4, a physical number having only two signifi-

cant digits.
The idea of order of magnitude is essentially related to comOaring

numbers by ratio. It is particularly useful in discussing very large or very

sMa11 quantities. If the ratio of two positive numbers a and b is about 1
1(say, between and 2), we say that a and b are of the same brder of mag-
2

nitude. If a is about 10 times b (or between 5 and 20 times), it is said to

be one order of magnitude larger than b. If the ratio is about 100 = 102, the

numbers differ by twoorders of magnitude.

To illustrate the usefulness of orders of magnitude, we show in

Table 2.2 the masses of the sun and some of its planets measured in units

of earth mass.
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TABLE 2.2

Sun 3.3 x 105

Mercury 5.5 x 10-2

Venus 0.81

Earth 1.00

Moon 1.2 x 10-2

Mars 1.1 x IV'
Jupiter

Saturn 03:911 4-101202

Uranus 1.4 x 10

Neptune 1.7 x 10

Clearly, the masses of Earth and Venus m tha of e same order of magnitude,

that of Mars being one order of magnitude lower Old Sat two orders of

magnitude higher.
We see from Table 2.2 that Jupiter's mass is between two and three

orders of magnitude larger than Earth's. Here we are in a gray area; the two

do not differ by two orders of magnitude, nor do they differ by three orders.

The idea of order of magnitude is thus highly approximate.

Frequently this lack of precision, or "fuzziness" in the idea of or-

der of magnitude, is not at all a disadvantage. On the contrary, it can be

just what we need to express a value which is fuzzy by nature. Consider,

for example, the question of how long man, homo sapiens that is, has

existed on earth. Anthropologists and archeologists differ in their interpre-

tation of the very fragmentary evidence which has been found, and more-

over (at least according to the bulk of scientific opinion) ti, evolution of

man was probably a gradual process, in which no precise transition point

can be convincingly demonstrated. To say that man's tenure on earth has

been of the order of magnitude of one million years expresses our state of

knowledge of this value well; the values two million and 500,000 years are

not rifled out, as in fact they should not be.

Questions

1. If a is twice as big as b, what can you say about the ratio of b to

a? About the ratio of a to b?
If a is bigger than b, and c is bigger than d, what can you say about

the ratio of a to b, as compared to the ratio of c to cl?



3. If a is bIggerthon b and b Is bigger then c, and all these numbers
are positive, what can you say about the ratio of a to b, as com-
pared to the ratio of a to c? What can you say if all the numbers

are negative?
4. The ages of two brothers have a constant difference. What happens

to the ratio of tifir ages as they grow older?

In which of the following situations do ratios provide the best form

of comparison? In which would taking the difference between the

two iirmiities be more meaningful? In which would you merely use

ordering?

(a) The sizes of two armies engaged in bathe.

(b) The weights of two opposing football linemen.

(c) The sizes of two families.

(d) The altitude of an airplane and the height of a mountain over

which it is about to fly.
6. Brand A beer claims to have 21 million bubbles in a bottle, to

Brand X's 20 million. Compared by diffence, this is a million bub-

bles more for Brand A; compared by ratto, Brand A has 1.05 times as

many bubbles as Brand X. Whi,ch comparison do you think Brand A

will put into its advertising (assuming that bubbles are a good thing)?

Why? Which is the most meaningful mode of comparison in this case?

7. Brand B cigarettes claim to have two micrograms of tar and rotine
in each cigarette to Brand Y's three micrograms. (A microrar1')i a

millionth of a gram.) Give the comparisons by difference and atio,
and answer the same questions as for Brand A beer in the pniceding

question.
Advertising and public relatiorfs provide many examples of pc(c.an tes of

comparison. W ? Find two or three examples of numerical compar-;

isons fmtb sources, explain why they were done the way they

are, arIargue for their relevance or irrelevance.

Z)O
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9. A large metebrite has a mass of 5 x 104 kilograms. The earth has a

mass of 5.983 x 1021 metric tons. (One metric ton is 1,000 kilo-

grams.) WM. is the ratio of the mass of this meteorite to the mass

of the earth? How many orders of magnitude larger is the earth's

mass than the mass of the meteorite?

10. Suppose that in the two quadratics

P = al + a2x + a3x2

Q = b1 + b2x + b3x2

the coefficients al, eV *33' b 1
and b3 all have order of mag-

nitude 1.

(a) If x has order of magnitude 10-8 what are the orders of magni-
Ptude of P, Q, PQ, and ? Write approximations for these four quan-

tines.
(b) Answer the question of pa:t (a) if x has order of magnitude 108.

2.3 The Fractional Difference: Per Cent
'Suppose that in six months a baby's weight increased from 15 lb to

25 lb and the weight of a boy increased from 60 lb to 70 lb. In both cases

there was a change in weight of 10 lb, yet from a practical point of view the

two changes are quite different; for the baby it means new clothes, but_for

the boy it probabrr does not. This is true because the change in weight of
zb - 15

the baby is a much larger fraction of its original weight, 15
- 0.67,

70 - 60
whereas in the case of the boy =

60
0.17. This method of comparison

has something in common with both the preceding methods. The numeyator

Aw = 25 - 15 is the difference between the baby's earlier and later weights,

i.e., ills change in weight; the denominator, 15, is the weight.he started

out With. The entire expressions-62-: - 25 15/5 is the ratio of the change in

weight to the original weight.

The quantity is called the fractional or relative difference. It
a

provides a means of judging whether a difference is large or small, compared

with an originkl or baserquantity.

0
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Since a and b must have the same units to make the subtraction
b - ameaningful, the quotient a
- is a pure number independent of the units in

which a and b were expressed. Note also that it must be clear whether you
b - a b - amean or b

i.e., whether you are comparing the difference with a
a

or with b. With changes in the same quantity, as with the growing baby, it

is the earlier or original value against which the comparison is made. "The

fractional difference by which 90.0 differs from 80.0" means
90.0 - 80.0 - 0.125, and "the fractional difference by which 80.0 differs

80.0 0.0 - 90.0from 90.0" is -0.111. These twofractional differences are of90.0
course not equal; thus one must be careful to avoid ambiguity in dealing with

fractional differences.
Obviously, the denominator cannot be zero; for example, it is mean-

ingless to talk about the fractional increase in profits during the first year

of operation of a new business.
Another way of looicing at- a fiactional difference is that b -ea- 3X-a

presses the difference per unit of a, i.e., how much the quantity changes

for each unit of it that was there originally. For example, for each pound of

baby that you started out with, you ended up with 0.67 pounds extra at the

end. As we shall see later the word is generally associated with divi-

sions.
Often it is useful to express a fractional difference not per un!t but

per hundred units; in fact, this is the usual practice. The result is referred

to as the "percentage difference." In the case of the growing baby, the

fractional difference, 0.67, in its two weights corresponds to 0.67 x.100=67

per cent.
Percentage Is frequently used to express concentration. Thus a nut

mixture containing 20 per cent cashews has 20 pounds of cashews in each

100 pounds. A 5 per cent salt solution is usually defined to be one contain-

ing 5 g of salt in each 100 g of solution. We could equally well say 5 pounds

of salt in each 100 pounds, or simply 5 units of salt in each 100 units, or

5 units per 100. (The term "per cent," in fact, comes from the Latin for

"for each 100.
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when we use a percentage to eicpress a fractional cliffenanceg we ate

stating the number of units of the difference corresponding to each 100 units

of the original quantity. A weight gain of 5 per cent is a gain of 5 units for

each 100 units c.if the original amount (or 0.05 units for each 1 unit). If the

original amount was 50 pounds, then a 5 per cent gain would amount to

(0.05) x 50 = 2.5 pounds. If the original amount was 300 grams, then a 5

per cent gain would be a gain of (0.05) x 300 = 15 grams.

Percentage differences are frequently used to express the uncertainty

of a physical number. For example, 50 ±3% means that the uncertainty is

3 per cent of SO, or (0.03) x 50 = 1.5. Thus 50 j3%= 50 +1.5. These two

forms expressing uncertainties are called relative uncertainty (expressed

here in per cent) and absolute undertainty respectively.

To convert from relative to absolute uncertainty one carries out the

steps
A ±p% = A +(0.01) pA

Conversion from absolute to relative uncertainty is given by

A +a = A(1 +2-)A
For example

.5
50 ±1.5 = 50(1 +1) = 50(1 +0.03) = 50 +3%

50

Questions

1. A 12-pound baby eats a four-ounce Jar of baby food for a meal. His

160-pound father eats a total of one pound of food for a meal.

(a) How much does each eat relative to his body weigh*?

(b) Which eats more relative to his weight than the other?

2. Between the years 1950 and 1960, the population of Arizona increased

from 750,090 to 1,302,000. In the same period of time, the popula-

tion of Arkansas went from 1,910,000 to 1,786,000.

(a) What was the change !n the population of each state?

.(b) What was the ratio of increase to initial population?

(c) Wlt was the increase in population per 1000 people?

(d) What was the relative change in population?
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3. In a given year A receives $300 interest on $6000 in a savings

account. In the same year, B receives $200 on $3500 in a savings

account in a different bank. Which bank pays the tagher rate of in-

terest?
4. A's salary was raised from $10,000 to $11,000 per year, -and B's

salary from $15,000 to $16,300 per year. How would you compare

their raises?
By what per cent does 90.0 differ from 80.0? By what per cent does

80.0 differ from 90.0? Answer the same questions for 100.0 and

200.0.
By what fractional or per cent difference does 1.00 meter exceed

1.00 yard? What is their ratio? (1 inch = 2.54 centimers, exactly;

this is the definition of the inch.)

7. Suppose you read that a newspaper's circulation increased by 5,025

in one year.
(a) Does this figure tell you that the newspaper's circulation in-

creased significantly during the year?

(b) How would you answer part (a) if you knew that the circulation

at the end of the year was 20,100? Was 2,010,500?

8. Some numbers and their relative uncertainties are given below. How

many digits are significant in each of the numbers?

(a) 1.37492 to 1%

(b) 2.30476 to 0.02%

(c) 2.3 to 0.02%

(d) 0.005982 to 5%

(e) 100.1 to 1%

In the preceding problem, express each of the numbers using abso-

lute uncertainties. Omit meaningless digits.

10. Express each of the following nuribers using per cent uncertainties:

.(a) 100 ±,3 (d) 200 ±100

(b) 250 ±5 (e) -0.5 ±.0.05

(c) 250 +1
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11. Fly-by-Night Airlines announces a 2000 per cent increase in passen-

ger miles flown this year over last year. What other information

would be required for a meaningful assessment of, the situation?

12. Return to the problems on beer and cigarettes at the end of the pre-

ceding, section. Calculate the fractional differences. Is this a

meaningful mode of comparison in either case?

13. Amalgamated Goosefeathers sold 10,000.0 bushels of the product

this year, a SO per cent increase over last year. How many did they

sell last year? If their sales were a 50 per cent decrease, how many

did they sell last year?

14. The first steel mill in a new country was built this year, and has

produced five tons. What is the most meaningful way of comparing

this year's steel production with last year's? What problem arises

with comparison by ratio and by fractional difference?

15. A is 100.0. B is 10.0 per cent larger than A. C is 10.0 per cent

larger than B. How much larger is C than A?

16. A merchant sells a certain item at a retail price SO per cent greater

than the wholesale cost. During a sale the retail price is reduced

by 20 per cent. What percer.tage profit does the merchant make on

that item during the sale?

17. (a) For any two numbers A and B, find the general lelation between

their ratio and their fractional difference. Express the relation in

words.

(3) Find the general relation between their difference and their frac-

tional difference and exress it in words.
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2.4
If`you are, told that a large can of a certain brand of peas costs 37

cents and a small can costs 19 cents, you cannot judge which is the better

buy. You need to know the amount of peas in each can. If you find out that

the 37-eent can contains 17 ounces and the 19-cent can contains 8.5 ounces,

you are in a good position to choose between them. You divide the price by

the weight to get the cost p.E. ounce for each can. For one can this is
37 cents - 2.18 cents per ounce (often written 2.18 cents/ounce) and for

17 ounces
the other it is 19 cen.ts - 2.24 cents per ounce (2.24 cents/ounce). These

8.5 ounces
two numbers represent the cost of one ounce of peas and can be compared to

find out which is the better buy. In this example the cost of one ounce of

the contents of the large can is less than the cost of one ounce of the con-

tents of the small can, so the large can is the better buy. The cost of peas

per ounce is called a specific quantity. (We are assuming, of course, that

both cans contain the same brand and quality of peas, and that you can use

all the peas in the large can.)
In calculating the cost per ounce for peas we divide the cost of a

can of peas by the weight of the peas in the can. The fact that we divide

one number by another does not mean that we have taken a ratio. In fact

we have not. We have a ratio only when we divide two numbers that have

the same units. When we find the cost per ounce of something, the two

numbers we divide are given in different units and the, result we get is

meaningless unless we state the units with the number. To say, "The price

of peas is 2.24" is nonsense. To say, "The price of peas is 2.24 cents"

dc?.s not make sense either. To say, "The price of peas is 2.24 cents per

ounce" makes sense. Once we know the price of peas from the two cans in

the same units, namely cents per ounce, we can compare the two prices by

any of the methods of comparison we have discussed.
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Questions

1. A 15-ounce (net contents) can of peaches costs 23 cents, while a

29-ounce can costs 35 cents. Compare the two costs in terms of

cents per ounce. Which is better?
2. (a) Five pounds of salt are dissolved in three gallons of water.

How many pounds of salt per gallon of water are in the resulting

solution?

(b) Seven pounds of salt are added to five gallons of water. Is this

solution saltier than that in (a)? How much saltier?

3. In 1967 it was estimated that in metropolitan areas (cities of

250,000 or more) there were 2,631,000 poor whites and 1,833,000

poor nonwhites out of a.population of 23,824,000 whites and

3,184,000 nonwhites. What informative comparisons can you make

using these four quantities?

4. A group of 50 people is in a room of 6.0 m x 8.0 m x 2.5 m. Another

group of 60 people is in a room of 7.0 m X 7.0 m x 4.0 m. In which

room are the people more crowded?

5. In the text we divided the cost of the can by the weight of peas. It

would have been possible to do it the other way around, and get (for
17 ounces

the larger can), the specific quantit,y 37 cents - 0.46 ounces for

each cent, or 0.46 ounces per cent, or 0.46 ounces/cent. Does

this quantity mean anything, and if so what? Can you think of any

advantages it might have over the quantity calculated in the text?

Compare the two cans of peacheJ in Question 1 in terms of ounces/

cent.

7. In the text the quantities 37 cents and 17 ounces are used. Are these

mathematical or physical numbers?
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(a) Two hundred and fifty marbles have a total mass of 2750 g.

What is the mass per marble (the average mass of one marble)?

(b) Another collection of 150 marbles has a mass of 1800 g. What

is the average mass per marble in this case?

(c) In which collection of marbles is the mass per marble greater?

Eow many times greater?

9. Many things cost more in smaller quant:ties; For example, a coal

company charges $35 for a half-ton of coal and $80 per ton for quan-

tities of a ton or more. What is the specific cost in the two cases?
What possible reasons are there for this practice of higher unit costs

for small quantities?

10. Sometimes, instead of expressing things per unit, or per hundred

units it is useful to express them per million units. This is espe-

cially true in biological applications, where quite dilute, minute

quantities of some substances can have substantial effects. The

term used is "parts per million" (ppm). Given a 5 per cent salt so-

lution, express its concentration in ppm. Given a 15 ppm solution

of vitamin B, express its concentration in per cent. What is the

general relationship between per cent and ppm?

. 5 Comparing Sets of Numbers; Central Tendency

In a lifetime test, one light bulb of Brand A lasted for 1242 hours,

and one of Brand B lasted 1073 hours. What can we conclude from this?

The fractional difference of the Brand A over the Brand B sample is
(1242 - 1073) = 0.158. That is to say, the A sample lasted about 16 per

1073
cent longer than the B sample. However, on the basis of only this pair of

samples., we can say virtually nothing about the relative performance of

Brand A and Brand B in general.

Suppose then, to attempt to answer this more general question, a

lifetime test is carried out on a sample of 25 bulbs of each brand, with the

results shown in Table 2.3:

36
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TABLE 2.3. BULB LIFETIMES ;II HOURS, RAW DATA

Brand A Brand B

1242 893 1073 1041,

1013 1167 1304 1251

869 998 1243 1462

1149 1417 1471 1653

973 1091 1169 1204

1160 1009 941 772

844 897 1368 1.309

1302 1026 1265 1261

1033 1140 1141 1575

1125 839 1322 1381

741 . 1026 1278 1320

1087 940 1404 1135

1003 1289

By studying these results we can begin to see a trend of longer life-
times in the B samples, but the situation is far from clear. We wish to dis-
cuss how data such as these can be organized and presented in order to bring

out more clearly whatever information is present, and how such data can be

characterized or summarized in brief forms more suited for comparison.

The first thing which might occur to one is to compute the average or

mean of each set of 25 numbers. This of course is simply the sum of the

numbers divided by 25. This calCulation is rather tedious, unless one has

a desk computer handy.
Brand A mean:

Brand B mean:

1039 hours

1266 hours

Now, contrary to our first impression stemming from a comparison of only orie

pair of light bulbs, it looks as though Brand B may be superior.

In order to be able to describe mathematical:y such operations as

computing averages, we introduce the notation al, a2, a3, a25 for the

Brand A values in Table 2.3, and b1, b2, b3, b25 for the Brand B values.

Thus al = 1242 hours, a2 = 1013 hours, ... b25 = 1135 hours.



-30-

Then the average or mean 71 of the Brand A group is
al + a2 + a3 + a25

a = 25
This may be written in summation notation as

25
1 r
25 1- ak

k=1

The symbol E is a capital sigma, the Greek S, standing for summation.

The k is called the index of summation, and here k is said to "run" from the

25
lower limit 1, to the upper limit 25. The value of E ak is obtained by taking

k=1

the value of ak for k = 1, adding the value of ak for k = 2, adding the value

of ak for k = 3, etc. until k = 25 has been reached.

The general formula for the mean of N numbers (x1, x2, x3, xN)

in this notation is:

_ 1Xjq= EXk
k=1

(1)

Let us continue our quest to visualize the data better. As a first

step, we might re-list each set of numbers in order of increasing value.

The result is shown in Table 2.4.
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TABLE 2.4 'BULB LIFETIMES IN HOURS, ORDERED DM

Brand A Brand B

741 1026 772 1289

839 1033 941 1304

844 1087 1041 1309

869 1091 1073 1320

893 1125 1135 1322

897 1140 1141 1368

940 1149 1169 1381

973 1160 1204 1404

998 1167 1243 1462

1003 1242 1252 1471

1009 1302 1261 1575

1013 1417 1275 1653

1026 1278

Now we can see more clearly that the Brand B bulbs tend to last longer.'

Furthermore, we can now pick out a number frequently used to characterize

such sets of numbers.
If a set of values contains an odd number of values (as the two sets

of our example do), its median is the middle value of the set, after the set

has been arranged in order. In the two sets of our example, each of which

contains 25 values,othe medians are the thirteenth values-1026 hours for

Brand A and 1278 hours for Brand B. If the median value occurs only once,

as in thr Brand B set, then an equal number 01 values of the set fall above

and below it, 12 above and 12 below in this case. In the Brand A set the

median'value occurs twice, with the result that 12 value's fall below the

median, and another subset of 12 are greater than or equal to the median

(only 11 being strictly greater).
For a set containing an oven number of values, the median 's defined

as the average of the two middle values after the set has been rearranged in
1

order. Thus the median of the set (2, 2
3, 7, 10,11, 12) is (7 + 10) 8.5.
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Summarizing our results, we have
.

Median
.

Mean

Brand A 1026 1039

Brand P.,
, .

1278
...

1266

We observe that the mean and median are fairly close in both cases, the

mean falling above the median in the Brand A case and below in the Brand B

case. In the Brand A case 15 values fall below the mean and 10 above; the

mean does not have the property that the median does, of dividing the set

into equal-numbered subsets of langer and smaller values.

The mean and the median are both measures of _central tendency,

numbers which may be useful in characterizing the typical value of the num-

bers in the set. Here it is hard to say which is a better indicator of central

tendency, as their values are close comparEd to the spread of the data.

Often, however, the mean and median differ considerably. Then it is a matter

of judgment which is the better indicator of central tendency.

Questions

1. Suppose the members of the Central High School basketball team

have heights as follows:
6'0" 6'6" 6'5"

613" 519" 5'6"

6'2"

5'10" 6'2" 6'9"

6'0" 5'11" 6'2"

(a) What is the median height?

(b) What is the average height? (See if you can devise a shortcut

for this calculation.)
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2. The last killing spring frost in a certain locality occurred on the

following dates:

1961: April 21 .1966: May 31

1962: April 10 1967: May 1

1963: May 10 1968: March 20

1964: April 24 1969: April 20

1965: April 17 1970: April

cal What is the median of these dates?

(b) What is the average?

(c) Based on this data, can you say about the rezommended

date for setting out tomato plants ?\

3. Is it easier to compute the median or the average

(a) in an unordered list of 10 numbers?

\IL (b) in an unordered list of 1000 numbers?

16) I.Q9n ordered list of 1000 numbers?

4. A sample of 20 members of the clasS of 1950 of 01:4 Ivy University

have annual salaries as given below:

$ 9,000 $ 13,500

9,200 14,500

9,500 15,000

10,000 16,500

11,000 18,500

11,250 20,000

11,500 26,500

12,200 39,500

12,500 85,000

13,000 120,000

(a) What is the median salary?

(b) ',,What is the mean salary?

e(c) Does the median or the mean better characterize the income of

the members of the group?

(c) Should the median or the mean be used to plan fund-raising goals?
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5. The median is preferred to the mean as a measure of central tendency
when one suspects that irresponsible answers are present in the data .

Suppose 20 students are asked to estimate how much time they

spend on homework. _Their answers, listed in increasing magnitude

for easy visualization, are:

Time Spent on Homework
(in hours per week)

-2 10

0 10

5 11

5 12

7 12.5

7.5 14

8 14

8 16

10 SO

10 200

(a) What is the median? How much would it be likely .o change if

the obviously irresponsible answers were replaced by responsible

ones?
(b) What is an approximate value for the mean? (Can you think of a

quick way of estimating?)
(c) Why is the mean so much more sensitive to the irresponsible

answers than the median?

2.6 Histo9rams and Frequency Distributions

A pictorial presentation of the bulb-lifetime data is possible if we

classify it into intervals. Since the bulb lifetimes range from 741 to 1653

hours, let us take 10 class intervals, with boundaries as shown for Brand A

in Table 2.5. It is then easy, starting with the raw data as given in Table

2.3, to count the occurrences in each interval by making hash marks as

shown in Table 2.5. The resulting numbers of occurrences in each class are
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called frequencies. Thus we learn, for example, that five Brand A bulb

lifetimes fell in the class interval of 800-899 hours; the frequency foi that

class is thus five.

TABLE 2.5. CLASSIFICATION OF BULB-LIFETIME DATA INTO INTERVALS
(BRAND A)

Class Boundaries,
Hours

Count of
Occurrences Frequency

Relative
Frequencies

Class
Marks

700 - 799 1 1 0.04 749.5

800 - 899 Wf- 5 0.20 849.5

900 - 99S hi 3 0.12 949.5

1000 - 1099 "fifF it' 8 0.32 1049.5

1100 - 1199 4+4+- 5 0.20 1149.5

1200 - 1299 1 1 0.04 1249.5

1300 - 1399 i 1 0.04 1349.5

1400 - 1499 1 1 0.04 1449.5

1500 - 1599 0 0.00 1549.5

1600 - 1699 0 0.00 1649.5

In Fig. 2.1 the frequencies have been pictured in a historam. Fre-
quencies are plotted vertically, and bulb lifetimes horizontally. Bars are

drawn on the histogram, whose width is the class-interval width and whose

height corresponds to the frequency of occurrences in the class. Thus, for
the Brand A histogram, the bar for the 700- 799 interval has height 1 com-

sponding to one occurrence in that class interval, etc.

The result a display of the data that allows one to assess its na-

ture more readily than by inspection of a column of numbers. Note the rela-

tionship between area on the histogram and number of occurrences; the ratio

of the area of any bar to the total shaded area equals the relative frequency

of that class (the fourth column in Table 2.5).

If one wishes to Psti.nat., the mean from the histogram, it is best to

assign to all occurrences in a given class a value midway between the class
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boundaries. These values,
called class marks, are given
in the last column of Table

2.5. Denot, g the frequencies

by fk and the class marks by
ck, the resulting approximate . 0

600
mean is given by

1 t-,
= 2, fk Cic (2.)

k=1
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6 BRAND

3

2

where N = E fk is the total
k=1

number of occurrences and n
2

the number of classes. For
the Brand A mean lifetime this

SOO 1000 1200 1400 1600 1800

LItscess (hours)
111111111111111

6 BRAND A

yields 1041.5 hours, very
600 1300 1000 1200 1400 1600 1800

Lifetime (hours)

close to the true mean of Fig . 2.1
1039 hours.

In careful work the class marks should be taken at the midpoints of

the intervals. If in this example the class marks had been taken ,t 750

hours, 850 hours, etc. a constant bias in Equation (2) would have resulted,

whch, however, in this example would not be significant.

The discrepancy between the true mean and the approximate value

given by Equation (2) is, of course, the result of the information that is lost

in classifying the data into class intervals. If the intervals are excessively

wide (so that there are only a few of them) this loss of information becomes

serious. On the other hand, if the intervals are very netrow, there will be

a large number of them and the computations become unnecessarily tedious.

Usually a good compromise is a total of 10 to 20 class intervals. An excep-

tion is when a few of the values are far removed from a central cluster of

4 4



values (as in the annual salary data in Question 4 of the preceding section);

in such cases more than 20 intervals may be desirable.

Questions

1. Classify the Brand B Bulb lifetime data, from Table 2.3, into inter-

vals by constructing a table of the form of Table 2.5. Verify that

the Brand B histogram of Fig. 2.1 is correct.

On the basis of an intuitive visual inspection of the histograms of

Fig. 2.1, mark the lifetime value that seems to you to characterize

best the central tendency of,the data.. Now mark in the mean and the

median values. Do thes do well as indicators of central tendency

for these examples?

3. In the light of the histogram f Fig. 2.1, can you make a final con-

clusion as to whether Brand A or Braild B is definitely better? (Note:

the types of such conclusions that are possible, and the manner in

which they may be drawn, is the concern of the field of statistics.)

4. Write the formula to estimate the Brand B lifetime mean from.th`e fre-

quency data you constructed in Question 1. If you havil access to a

desk computer, evaluatc this approximation, and compare the result

with the true value.

5. Suggest a qui0c way of estimating the median of data presented in

histogram form. Estimate thereby the Branu A and Brand B bulb-life-

time data medians. What is the uncerta4nty associated with your

method? What were the actual errors in your estimates?

6. Suppose you wished to present, in histogram form, data on the weights

of individuals, in say, the entering freshman class of a certain col-

lege. Suppose the weights range from 96 to 234 pounds, and are re-

ported to the nearest pound.

(a) What class boundaries would it make sense to use, and how

many classes would this yield?

(b) What class marks correspond to the class boundaries you chose?

7. Explain why the median divides a histogram into two equal areas.
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8. A piece of ice is massed before and after melting by 28 students.
The resulting mass-change data are shown in the following histo-

gram:

11.1

6

4

1

2

0 I tfT7 mil 171
-0.25 -0.20 -0.15 -0.10 -0.05 0 0.06 0.10 0.15 0.20

Change in mass in grams

(a) Estimate the median of these data .

(b) Estimate the average.
(c) Why would evaporation tend to produce a necative bias in the

mean, while massing eaors would tend to produce fluctuations

equally in the positive and negative directions? Which of these

sources of error seems to be more important?

(d) What conclusions can be drawn from the aggregate of 28 trials

of the experiment? Could such a conclusion be drawn from a single

experiment?

(e) Is there reason to suspect from the data that some students

have better laboratory technique than others? Explain.

2.7 Measures of the Spread of Data

Figure 2.2 shows, in histogram form, three sets of data all with the

mean 3 = 9.9. Although they have the same mean, these sets of data are

clearly of different character; they are progressively more and more spread

out. The mean, being a measure of central tendency, is of no help in de-

scribing the spread. How can we measure tie extent of the spread of a set

of data? Our approach will be to consider deviations from the mean and to

apply an averaging process to these deviations.
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Let us take an example with a lomparatively small number of data,

so that the computations will not be unduly long. (Fortunately, automatic

computers are very well adapte'd to carrying out the types of calculations we

shall describe and you will learn in Chapter 5 how to use a computer to

handle larger and more realistic problems with comparative ease.
Suppose that, over the course of a year and under various drivinct

conditions, you make 10 measurements of the sas mileage of your car, with

the following resultia shown in Table 2.6 (these data were taken for a 1962

Volkswagen):

TABLE 2.6

GAS MILEAGE (mi/gal)

25.7 30.1

31.8 28.7

24.7 28.6

25.8 27.1

28. 5 31.0

The processing of these data so as to measure the spread is shown in sys-

tematic font. in Table 2.7
TABLE 2.7

I xi xi - f (xt - )21

1 25.7 -2.5 6.25

2 31.8 3.6 12.96

3 24.7 -3.5 12.25

4 25.8 -2.4 5.76

5 28.5 0.3 0.09

6 30.1 1.9 3.61

7 28.7 0.5 0.25

8 28.6 0.4 0.16

9 27.1 -1.1 1.21

10 31.0 2.8 7.84

Column
Sums

282.0 50.38
..

46
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alto

The values are listed in the second column, and by summing this col-

umn and dividing by N = 10, we learn that the mean is 3f= 28.2 mi/gal.

In the third column the deviations from the mean xi = are listed.

Of course, some of these are positive and some negative, but their squares,

listed in the fourth column, are all ppsitive.
The mean of the squared deviations is called the variance. By sum-

ming the fourth column in Table 2.7 and dividing by N 10, we obtain the

value 5.04 for the variance. The variance is always non-negative, being
computed by summing squares, so it is reasonable to denote it by s2 as is

the usual custom. The general formula for the variance is*

N
s2 r (xi R12 (3)

N 4-i=1

The square root s of the variance is called the root-mean-nuare de-

viation (rms deviation); at the standard deviation. Fmm Equation (3) we see

that s always has the same units as the original data. In our example s has

the value sis. 04 = 2.24 miles per gallon.
In Table 2.7 we have carried "gukva digits," even though they are

often not significant, and have rounded off only at the end. In hand calcu-
lations, especially when no desk computer is available, to save time one

ofcen avoids carrying non-sigiiificant digits. However, automatic computers

normally carry many places at no additional expense in labor. This is desir-

able because it prevents contamination of the final answer by round-off errors

introduc3d during the calculations.
rhe dropping of non-significant digits, as a technique for keeping

track of uncertainties, is too crude to be of much use in long calculations

like those we have just dohe. The uncertainty is best estimated here by

making small changes of, say, +0.1 in the input data and recalculating to see

the effect on the final results. If this is done for the above calculation, the

*Some authcirs use (N-1) rather than N in the denominator, for a technical
reason that need not concern us here.

!;
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final value of s is found to range from about 2.2 to 2.3, so it becomes appar-

ent that the answer should be rounded to two digits.

It is apparent then that the standard deviation has the property that

a measure of spread must have namely that it is small when the data are

concentrated about the mean, and large when the data 'are spread out. For

when any value xi is far removed from the mean 5, the corresponding term

(xi - S)2 in Equation (3) makes a large contribution to the value of s2. Con-
sider the fourth column of Table 2.7, containing the values (xi - TE)2 which

are summed in computing s2. We note that most of the contribution to s2

corresponds to the value far removed from L. In fact, the highest and lowest
values, x2 and x3, alone account for over half of the value of s2 in this ex-

ample.
By modifying Equation (3) we can derive a shOrt method for computing

the standard deviation that is usually preferred to the method used in Table

2.7. Expanding Equation (3) we hack;

N
s2 = E (42 - 2xiN+ 3Z2)

1=1

1 N 2
= E xi2 E (-2x131) + TIER'

1=1 1=1 1=1

(4)

The first term in Equation (4) is the average value of x12, which we shall

denote by x2:
N w".

x2 = xi2
N

1221

The second term in Equation (4) is a sum every term of which contains

the constant factor (-231). Therefore (-237) may be factored out to yield

1 1 r.
E (-2xiN) -(-2 L3?) xi
1=1 1=1

But we recognize this as (-2R) times the mean )1, so this term equals --2x .
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The third and last term in Equation (4) Is the sum as i ranges from
21 to N of the constant x . Thus it equals

1e( 3.c,s2 x2) =1(N 3.12) 3.e2

N times

Collecting these results together, we see that Equation (4) becomes

s2 = x2 - 2N2 5e2

s2 = x2 - R2 (5)

This states that the variance is the mean of the squares minus tht: square of

the mean.
Let us calculate s for our mileage data bi this so-called "short"

method using Equation (5). Table 2.8 lists the values of x12 and we see

that their sum is 8002.78. Dividing this by N :3 10 yields ,c2 = 800.28. If

we subtract from this x = (28.2)2 = 795.24, we get s2 = 5.04, in agreement

with our previous calculation.
TABLE 2.8

xi
1

x .c.
I

,

25.7 660.49

31.8 1011.24

24.7 610.09

25.8 665.64

28.5 812.25

30.1 -906.01

28.7 823.69

28.6 817.96

27.1 734.41

31.0 961.00
,

282.0 8002.78

If the data are available only in histogram form, then in order to cal-

culate approximate values of the mean and standard deviation, we assign to
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each value its class mark. The resulting calculaticin of s, for pie data pic-

tured in Fig. 2.2(3), is shown in Table 2.9. Note that the mean and the mean

of the squares are weighted averages of the class marks ci and their squares

c12, the weight factors fi/N being the fraction of the total number of values

in each class.

This type of calculation is also useful in the case of data which are

"naturally classified" -that is, data which by their nature can take on only

a relatively small number of discrete values. (For example, sample family

sizes would be naturally classified data.)

TABLE 2.9

CALCULATION OF MEAN AND STANDARD DEVIATION ot CIASSIFIED DATA

i Interval

Frequency
ft

Class
Mark

Ci 2
1

fici f1c12

1 4 - 5 1 4.5 20.25 4.5 20.25

2 5 - 6 0 5.5 30.25 0.0 0.0

3 6- 7 2 6.5 42.25 13.0 84.50

4 7 - 8 3 7.5 56.25 22.5 168.75

5 8 9 4 8.5 72.25 34.0 289.00

6 9 - 10 6 9.5 90.25 57.0 541.50

7 10 - 11 5 10.5 110.25 52.5 551.25

8 11 - 12 4 11.5 132.25 46.0 529.00

9 12 - 13 2 12.5 156.25 25.0 312.50

10 13 - 14 2 13.5 182.25 27.0 364.50

11 14 - 15 1 14.5 210.25 14.5 210.25

Column Sums 30 296.0 3071.50

- 296.0x 30
= 9.87

2 3071.50
8 30 (9.87)2 = 5.02
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9uestions,

1. Why is the sum of the numbers in the third column of Table 2.7 zero?

2. Estimate how the means and the 'standard deviations of the two dis-

tributions A and B in rig. 2.1 compare.

3. Hypothetical meanings for the three sets of data in Fig. 2.2 are given

below. In each case discuss briefly the significance of the varying

degree of spread, and state which set best fits the given meaning.

The data sets represent

(a) test scores of sample groups of students on three alternative

tests covering the same material;

(b) failure loads of samples of three different types of sash cord to

be used inside window frames;

(c) sample lifetiMes of three different types of automobile batteries;

(d) trial shot-put distances of the members of three different track

teams.

4. (a) In Table 2.7 approximate the standard deviation s by neglecting

all values of (xi - Z2, except the four largest (that is, replacing the

other six values of (xi - Z2 by zero). Comre with the exact value

of s.
(b) Dc the same using only the two largest values of (xi - Z2

What point is this question trying to illustrate?

Ten students achieve the follor.ing scores on a test:

8 5, 7 8, 6, 9, 4, 8 2 7

(a) Draw a histogram for these data, and see if you can guess what

the mean and standard deviations are.

(b) Calculate the mean and standard deviations of these test scores

by computing the mean squared deviation in the form given by Equa-

tion (3). How close were your guesses? Which values contribute

most heavily to the standard deviation?
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(c) Recalculate the standard deviation by the short method by com!-

puting the s At of the squares of the data and then using Equation (5).

Compare this with the value you found in part (b). What are the rel-

ative merits of the two computational approaches?

6. Calculate the mean and standard deviation of the data of set (a) given

in histogram form in Fig. 2.2.

7. Figure 2.3 shows two sets of data. Set (a) might represent data on

the daily number of customers entering a certain store. Let us sup-

pose that set (b) represents age at the time of marria0e.

(a) These two data sets differ in a quality that is not directly related

to their central tendency or-spread. It is apparent from the shape of

their distribution curves. Try to describe this quality, called "skew-

ness," in words.

(b) In a set of data that is "Skewed," as in Fig. 2.3(b), is the me-

dian displaced from the mean?...._11 so, in which direction and why?

8. Consider sets of data of the various sorts fisted below. In each case

state whether you would expect the data set to be unskewed, as in

Fig. 2.3(a), or skewed, as in Fig. 2.3(b), and why.

(a) Ages at which people contract mumps..

(b) Height of army recruits.

(c) Wealth of adults.

(d) Weight of new dimes.

(e) Weight of old dimes.

(f) Attendance at New York Mats baseball,games.

(g) Number of home runs hit by members of the New York Mats in

1973.

5 4
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In the 1960 U.S. census, records were made of the number of chil-
dren of women in the age range 40-44 years, with the following

results:

No. of Children

TABLE 2.10

Proportion of
Total Women

in Sample No. of Children

Proportion of
Total Women

in Sample

0 0.141 7 0.019
1 0.172

,
8 0.012

2 0.262 9 0.007

3 0.182 10 0.005
4 0.105 141 0.003

5 0.056 Nloreth3n 11 0.005

6 0.031

(a) Comment on the degree of skewness of this data set.
(b) Calculate the mean number of children of such women.
(c) Estimate the uncertainty in your answer to part (b) due to the
0.005 in the "more than li" category. What assumption did yc,u make
about this category in answering part (b) ?
(d) De:ermine the median number of children. When might we use

this as a measure of central tendency? When would we prefer the
mean?

(e) 'If one.were interested in population growth, why mig.ht the above

data be preferable to, say, data on U. S. family sizes? Why do you
suppose women in the age group 4'0 -44 years were chosen rather than

a younger or older age group?
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10. In order to describe and compsre data sets, it is sometimes usefut to

employ the idea of percentile, a generalization of the idea of median.

The median is also called the 50 percentile, meaning that 50 per cent

of the values fall below it. Correspondingly, the 25 percentile is a

value below which 25 per cent of the values fall, the 90 percentile is

a value below which 90 per cent of the values fall, etc.

(a) How might the idea of percentile be used to obtain a measure of

spread?

(b) Use the method you propose to compare the extent of spread of

the two sets of bulb lifetime data given in Table 2.4.

(c) What are the pros and cons of this measure of spread versus cal-

culating the standard deviation?

11. In 1968 the American League winning baseball scores were as shown

in Table 2.11 (source: Official Baseball Guide for 1969, published

by Sporting News, St. Louis).

TABLE 2.11

Score No. of Games Score No. of Games
, -

1 38 9 21

2 101 10 21

3 131 11 12

4 159 12 10

5 110 13 6

6 82 14 1

7 73 15 0

8 44 16 1

Total No. Games: 810

(a)

(b)

(c)

Comment on the skewness of this data set.

Give the 10, 25, 50,475, 90, and 95 percentile scores.

Calculate the mean and standard deviations of the 1968 winning

scores. (Do this part only if you have access to a desk computer or

equivalent.) Comment on the displacement between the mean and the

median.
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12. Mcvot examples of sets of data we have discussed may be character-

ized as having a single "hump," containing the majority of the data.

with tails on either side. Sometimes data does not have such "nice"

regular behavior. For example, the New England Board of Higher

Education, in Facts about New England Colleges, Universities and

Institutes, 1971-72, reported tuition of such institutions in Maine

(for state residents) as follows:
TABLE 2.12

$ 865 $2350 $ 400

3525 1020 400

1100 445 400

1210 1850 400

2795 2000 400

2660 1675 550

247 287 450

1650 1600 550

700 1700 400

1530

(a) Plot these data in a histogram, using an interval of $200.

(b) Are these sets of data well characterized by giving the mean and

standard deviation, or would more have to be specified to convey

their general characteristics?

(c) Describe in words the nature of these 'data. See if you can think

of any possible reasons for any of their characteristics.
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13. According to the 1969 World Almanac and Book of Facts, published

by the Boston Herald Traveler, the 1968 winning college football

scores for 1173 games were distribut3d as follows. (These include

the scores of the winners of all games and the tie scores in tied

games.

TABLE 2.13

Score Frequency Score Frequency Score- Frequency Score Frequency

0 5 20 48 40 17 60 3

1 0 21 70 41 22 61 1

2 0 22 18 42 34 62 2

3 2 23 32 43 9 63 4

4 0 24 45 , 44 10 64 1

5 0 25 14 45 13 65 2

6 7 26 29 46 14 66 1

7 25 27 51 47 20 67 0 .

8 3 28 76 48 16 68 6

9 7 29 18 49 12 69 2

10 28 30 31 50 9 70 0

11 1 31 48 51 2 71 1

12 9 32 17 52 4 72 0

13 26 33 20 53 3 73 0

14 46 34 36 54 2 74 0

15 3 35 54 55 7 75 0

16 26 36 10 56 5 76 1

17 48 37 23 57 3 77 1

18 12 38 21 58 9

19 13 39 10 59 4

100 1
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'this is an example,Of a data set exhibiting a good deal of ufine

atticture" local peaks and valleys, etc. rescnthe some of these
features, and explain why these data are so much more complicated

than the winning baseball scores of Question 11. Is there any s!mi-

larity with the baseball scores data?
11. Sometimes data is tabulated in unequal interval sizes. Where age is

concerned (Table 2.14) unequal interval sizes are common practice.

TABLE 2.14

Native Born Death &its
Aat PopulatIon per 1000

Less than 1 3,414,000 23.4

1 - 4 13,380,000 0.9

5 - 14 29,505,000 0.4

15 - 24 20,091,000 1.0

25 - 34 18,842,000 1.2

35 - 44 20,004,000 2.6
45 - 64 28,561,000 10. 6

65 - 74 7,699,000 36.1

75 - 84 3,181,000 87.2

85 and over -625, 000 210.6

As can be seen from the death rates, the risk of dying in the first

year of life is very different from immediatell subsequent years, thus
it makes sense to consider that age range separately. Construct a
histograth of the native born population data using the age intervals

given. (Hint: which should be proportional to the frequency, the

height of the bars or their area?) Comment on the skewness of these

sets of data.

ti I
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Chapter 3. NUMERICAL CAtCULATIONS

3.1 Large and Small Number Calculations

In Chapter 1 we introduced the use of powers-of-ten notation. This

way of expressing a numb,r is also called exponential netation because of

the u3e of exponents of 10. Exponential notation is very useful in perform-
ing calculatiods with both lame and small numbers.

To make calculations involvirT large numbers expressed in exponen-

tial nctation, recall that 108 x 10b = 108+b. Thus, for example

(15 x 106) x (3.0 x 105) = (15 x 3.0) x (106 x 105) = 45 x 1011

In additions and subtractions the numbers given in exponential notation

Must be re-expressed, if necessary, so that the exponents are the same.

For example,

5.32 x 103 + 2.11 x 102 = 5.32 x 103 + 0.211 x 103

= (5.32 + 0.211) x 103

= 5.53 x 103

The more complex a large-numbe. calculation is, the more useful

exponential notation becomes. How much water is used by New York City

in a year? It has been estimated that a typical city uses about 1.4 x 102

gallons of a water a day for each of its residents. According to the 1970

census, the population of New York was 7.89 x 106. Therefore, the city

used, in 1970, about (8.0 x 106)(1.4 x 102) gallons each day, or

(8.0 x 106)(1.4 x 102)(3.7 x 102) gallons every year. This is approximately

4 x 1011 gallons per year.
Calculations involving very small numbers are also often best done

using exp&iential notation. For example, given that 1.00 X 103 g of copper

contains 9.4 x 1024 atoms, what is the mass of one atom? It is given by

the mass of the sample divided by the num'oer of atoms in the sample.

1.00 x 103 g
mass of one atom = = 106 x 1°39.4 x 1024 1014 g
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10aThe rule for dividing powers-of-ten.is ip 108-b (easily verified by multi-,

plying both sides by 10b). Thus we have
mass of one atom ix 0.106 x 103-24 g

= 0.106 x 1021 or 1.06 X 22g

QUestions

1. What is 100? Justify your answer.

2 Which of the following is correct? For the ones that are incorrect,
explath how the person giving the answer went wrong. Change the

right-hand side of the equation to correct the error.

(a) 106 x 100 = 100 (d) 10-6 is lamer than 10-3

(b) 10-3 x 102 10-1 (e) 10-4 x 10-3 = 1012

(c) 10-3 x 102 = ur6
3. In each of the following lists, indicate the numbers that are equal

to each other.
;a) 0.003

3 x 10-2

0.3 x 10-2

3 x

Using exponential notation,

(a) 2300 x 4600 x 120

(b) 0.000028

28 x 10-5

2.8 x 10-5

0.28 x 10-5
calculate answers to the following:

4700 x 0.32 x 5000
(b) 13 x 0.0046

5. In the text we found an approximate value for the annual water con-

sumption of New York City. How many square kilometers of water-

shed are needed to supply the New York City reservoirs? The annual

rainfall in the New York area is about 1.0 m. To visualize the

amount of water falling on a square kilometer in one year, think of

a rectangular volume whose base is a square with sides measuring

1.00 kilometer and whose height is 1.0 m. Assume that half of the

rain that falls on the watershed gets to the reservoirs.
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The, total land area of the United States is about 2 x 107 square kilo-

meters. If fhb land were distributed eveniy among the population

(about 2 x 108), approximately how much land would each person

receive?

7. The decimal expansion of Tr is 3.141592653589793 . It has been

calculated by computer to 100,000 decimal places. This calculation

took 8 hours and 43 minutes of computer time working at an average

speed of over 100,000 arithmetic operations (multiplications or addi-

tions) a second. It has been estimated that the same job using a

desk calculator would take about 30,000 years.

(a) Approximately how miny arithmetic operations did the computer

do altogether?

(b) How many times longer would it take to compute IT to 100,000

decimal places by desk calculator than by computer?

8. About how many times does an automobile tire (outside diameter

about 75 centimeters) rotate in traveling 10,000 kilometers? If a

centimeter of tread is worn off in going this distance, about how

much thickness of tread ls worn off during one rotation, on the

average?

9. The speed of light is 3.00 x 108 meters per second. How long does

it take light to travel 10.0 meters?

10. An ordinary land snail can move with a speed of 8 x 10-3 kilometers

(5 x 10-3 miles) per hour.

(a) At this rate, crawling steadily, how long would it take such a

snail to cross the United States?

(b) If the average life span of a snail is five years, how many gen-

erations would this journey represent?
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3.2 Estimation
Very often, one is interested in getting the approximate magnitude

of some quantity when the values of quantities tc be used in the calculation

are not available. Sometimes a rough estimate of the unknown values can

le r)btained using related known information.

For example, suppose you are interested in estimating the totallnum-

ber of miles traveled by private cars in the United States each year. If you

know approximately how many cars there are in ti.ie United States and how

many miles each is driven durirr a year on the average, then you could mul-

tiply these two numbers together to get the answer. But you do not even

have a rough idea of the number of cars. However, it might be reasonable

to suppose that, very roughly, the average family has four people in it and

owns one car. There are about 2 x 108 people in the United States and thus

2 x 108
about = 5 x 107 such four-person families. Hence there are about

4
5 X 107 cars. A typical yearly distance for a car to travel, from personal

experience, might be about 104 miles. Thus the total distance traveled by

cars in the United States each year iF about (5 x 107) x (104) = 5 x 1011

miles.
How can we estimate the uncertainty in this answer'? We might

judge that one car per every two people is definitely higher than the true

figure. Similarly we might Judge that 25,000 miles is definitely high for .

the average yearly distance per automobile. This would imply that the total

mileage is less that l08 x 2.5 x 104 = 2.5 x 1012 miles. By similarly mak-

ing low estimates we can deduce that the total mileage is probaMy greater

than (2 x 107) x (5 x 103) = 1011 miles. In other words, the true figure is

probebly not more than 500 per cent more, nor 80 per cent less than our es-

timate of 5 x 1011 miles . We are not off by a factor larger than 5 or smaller

than
5

Perhaps surprisingly, though, such crude answers are frequently ade-

quate. That is to say, frequently we want to know only the order of magnitude

of a very large quantity such as this. We can say here with assurance that

f '4
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the order of magnitude of the United States private car annual mileage is

--5 1011 miles.
Sometimes a simple experiment helps one to arrive at a good estimate

of some quantity. For example, about how many words are there in a book?
To find out, you need to know the number of pages in the book and the aver- -

age number of words on a page. To estimate the latter rumber, one might

count the words in a line chosen at random, and then multiply it by the num-

ber of lines on one page.
Estimation and approximation are not synonymous. In an approxima-

tion the numbers are given and only the culculation is approximate. In an

estimate one or more numbers entering into the calculation are approximated

by an educated guess or very rough measurement.

cstions
1 About how many revolutions does the wheel of an automobile make

in a trip from New York to Los Angeles?

2. Estimate the uncertainty in your answer to Question 1.

3. In estimating the number of words in a book, why might it be bettc:r

to count the words in 10 lines and divide by 10 rather than coUnting

the words in a single line af; suggested in the text?

4. Estimate each of the following, and indicate how you arrived at your

answer:

(a) The total amount of gasoline consumed by automobiles in the

United States each year.

(b) The number of words in an encyclopedia.

(c) The number of words in an average half-hour news broadcast.

(d) The number of tin cans used in United States homes each year.

(e) The volume of concrete in une mile of an interstate highway.

5. Estimate the uncertainty in each of your answers to Question 4. Ex-

press each uncertainty in both absolute and relative form. In which

case is the result known only to within an order of magnitude?

4111
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6. Estimate the orders of magnitude of:

(a) The number of shingles on a shingled roof.

(b) The number of bricks in a brick house.

(c) The number_of dwellings (including apartments), in your city.

(d) The number of classroom chairs.in a given school or college.

7. Estimate the volume of a warehouse that would be needed to store a

year's production of ping-pong balls in the United States. By how

many orders of magnitude might your answer be off?

8. How many seconds are there in an average human lifetime?

3 .3 First Order Approximations
1

Consider the following numbers: 1.0392, 1.00563 or They0.973'
have one property in common: they are the result of some operation with num-

bers which differ only slightly from 1. These numbers are just examples of

a general class of numbers which can be written as + )2f ( 1 + )3, and
1- where the Greek letter e is customarily used to indicate numbers whose

1 +
absolute value is small compared to 1. In mathematical notation this condi-

tion is written as rel<< 1. The values of e in the three examples are

3.9 x 10-2, 5.6 x 10-3, and -2.7 x 10-2 respectively.

In this section we wish to show that there exist useful ways of find-

ing approximate values for expressions of the type (1 + )21 (1+ E), and

- where I EI < < 1 .
+

Let us start with the first two expressions: In general

(1 + )2 = 1 + 2 + 2

(1 + = 1 + 3t + 3e 2 + E 3

For lei << 1, the term proportional to e2 is much smaller than the term propor-

tional to e in both cases. For example, if e Pi 10-2, then 2 1cr4, and the
term e 3 ms 10-6 is, of course, still smaller. Hence for)el << 1

(1 + MO 1 4' 2C (1)

(I + CS 1 + 3E (2)

and

and

t3 6
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To see what error is involved in making these approximations we

subtract the approximate expression from the exact one. In the first case

the error Ls
(1 + )2 - (1 + e 2

and in the second case
(1 + e)3 - (1 + 3E) In 3e2 +e3 =f2(3 +

The absolute value of the factor (3 + E) has an upper bound for lel<< I; we

can state with certainty that under this conditioni3 + fl< Thus the error

Is nevsr larger than 4 2. When the error in an approximation can be shown

to be less than a constant times f 2, we say that the approximation is the

first order approximation in E . Thus 1 + 2E is the first order approximation

for (1 + 02 and 1 + 3e is the first order approximation for 0. + E)3.

Now let us find the first order approximation to . By long divi-
1 +

sion (or by adding "the well-chosen zeront, E in the numerator, twice)

we find
1 1 2

= - f (3)
1 4- f

1 + 1 +

1 1 1 10
For Ici << 1, say I(I < 0.1 the absolute valuell < -079- la 9-. Hence if we

1 10 3
approximate -i+e- by 1 - f the magnitude of the error is less than f

1
Hence 1 - f is the first order approximation for

How good any of these first order approximations are depends on the

degree of accuracy required in the particular application. As long as the

factor multiplying (2 is less than some known constant we can always esti-

mate the error made in the first order aivroximation.

Questions
1. To appreciate the usefulness of the first order a nproxlmations eval-

uate the following expressions (i) to first ordei ..1 f and (ii) exactly:

(a) (1 + )2 for E = -0.007

(b) (1 + )3 for = 0.05
1

(c) . = 0.011

*See Appendix 2
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Suppose.the numbers given in Question I are phisical numbers with

an uncertainty of one unit in the lest digit. Would you need to go

beyond the first order approximation? Would the first order approxi-

mation suffice for (I + )3 where e In 0.4 ? What is the relative error

in this case?
3. Find the first order approximation for (1 + C)4 and prove that it satis-

fies the condition that the error is less than 2 times a constant.
Forlef<< 1 the number 1 + 5e is certainly an approximation for (1 + e)4.

(In fact it is a better approximation than 1 + 2e .) Why does it not

qualify as the first order approxinntion for (1 + )4 ?

5. Find the first order approximation in e for HI forlel<< I and use
1.04it to calculate Kir

e

1

6. Find the first order approximation for Use it to calculate
1

itrg
3.4 An Extension of First Order Appoximations

In the preceding section the expressions we approximated involved

numbers close to 1. Can we use similar approximations for expressions in-

volving numbers close to a given number other than 1? For example, does

our knowledge that 53 = 125 help us to find 5.073? To put the question in

a more general form does the nowledrje of A3 help us in finding an approxi-

mate value of (A + a)3 where Lel <<IAl?

Since A + a = A(1 + then (A + a)3 lc A3(1 + 2-)3. Fromiat<< !Alit
A A

follows that Al << 1, thus the ratio now takes the place of e in the preced-
A

ing section, and we see that, to first order, (A + a3 A3(1 +31). We can

use this approximation wheneverld<< 1, i.e., the relative difference be-
A

a

tween the two numbers A + a and a is much less than 1.

In applications the numbers A and A t a may be dimensional numbers

and hence their values will depend on the units used (e,g., 2 meters or

200 cm). Howover the ratio a is always a pure, dimensionless number ariu
A

hence the condition << 1 is independent of the units of A.

fi
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stions
1. Using the first order approximations developed in the preceding sec-

tion and the relations a)2 = A2 (1 + P)2 and__1

A A + aF 1. +
cal-

culate 5.152, 7.922, 100.32
10.2L- '

and 98
A

4.3"

2. What is the relative difference between the areas of two squares

with sides 6.00 m and 6.24 m?

3. Suppose you wish to apply a first order approximation to calculate

10.23 using the value of 103, and 20.33 using the value of 203. In

which case will the approximation be better? (Be sure to specify

which criterion you are using for the quality of the approximation.)

. 5 Relative Uncertainties in Multiplication and Division

The first order approximations developed in the preceding sections

for mathematical numbers can be applied directly to physical numbers that

have small relative uncertainties. Consider a physical number A with an

uncertainty +a. The square of this number will most likely lie between

(A + a)2 and (A - a)2. If << A , it will suffice to calculate the square

to first order in a
A'

(A +a)2 = (A(1 +-1)]2 A2 +2Aa = 42(1 +q-i)

Thus, for physical numbers with small relative uncertainties, the relative

uncertainty in the square of the number is twice the relative uncertainty in

the number itself.
Let us now extend this result to the product of two different positive

physical numbers: (A +a)(B +b). The product is most likely to be between

+ a)(Is + b) and (A - a)(B - b).

Suppose that -a > -b Then it is convenient to choose a number E such
A B

that a = klf and = ke , where k1 is of order 1 and k2 is of order 1 or less.
.,t

(For example, if ?x- = 0.027 and 0.005, we may choose E = 10-2, which
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maker. k1 = 2.7 and k2 0.5.) Then
(A + a)(B + AB(1 +1)(1 + 1121)

= AB(1 + k1e)(1+ k2e)

ix AK1 oci k2), k1k2,2]

Hence, to first order in
+ a)(B + b) as ABU + (k1 + k2)(

= AB + +

Following the same steps for the lower end of the interval yields

a) (B b)ad AB 111

(4)

Hence

We see that in multiplication small relative errors add.
Using the first order approximation for reciprocals will show that

small relative errors also add in the case of the division of two positive
A +a "' A + a A aphysical numbers. The ratio of is between 1--37:i-) and Again,

setting -a = k and -B = k2f, , we have
A 1

A+ a A(1+ kid =A(1 + k ) F
(k 2d2)

B - b B(1 - k2E) B 1
1 + k

2
+ 1 - kzf

Multiplying out the right-hand side we get

= 1 + 0(1 + k2)e + k1k7 +A A
4. I -k2

0c2)2

Tne coefficient of E 2 in the last equation has an upper bound for 11<< 1.

Hence to first order in E

AB 2; -110. + Pr.1 + k2)E] = -11( + + (5a)

A-a=AU-k1() A
B b B (1, + k2e) c"i(1 k1e)(1 k2

TA3- - 11--+ (5b)

Similarly

This proves our claim.
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Questions

1. For motion at constant speed, tke distance traveled equals the prod-

uct of speed and time. If the speed is meagured within 3 per cent

and the time is measured within 2 per cent, what is the relative un-

certainty in the calculated distance?
Extend the proof given in the text for the relative uncertainty of a

product of two physical numbers to a product of three numbers. Com-

pare the special case where the three numbers are equal with the

first order approximation for (A + a)3.

3. The sides of a rectangular box are found to be 5.00 +0.01 cm,

6.00 +0.01 cm, and 2.00 +0.01 cm.

(a) What is the relative error in each dimension?_

(b) What is the relative error in the volume*of the box?

(c) Would your answer to pprt (b) be different if the dimensions of

the box were 5.02 +0.01 cm, 6.13 +0.01 cm, and 1.92 +0.01 cm?

4. The density of a substance is calculated by dividing the mass of a

sample by its volume. Suppose the sample is a cube. The length of

its side is measured to +2 per cent; its mass is known to +I per cent.

(a) What is the relative uncertainty in density?

(b) Suppose you have to know the density to a higher accuracy.

Would it be better to improve the measurement of the length of the

side:. to give d relative error of +1 per cent or reduce the relative

error in the mass to 0.2 per cent?

3.6 Finding Square Roots by an Iterative 'Proc9fss

Square roots come up frequently in numerical calculations. Most

square roots of mathematical numbers such -7(1nmit be written as exact

lecimal numbers. However, in this section we shall show how to calculate

an approximation to any square root with as great an accuracias desired.

A natural way to get an approximate value for -./2. is to try possible

values. Since (1)2 = 1 and (2)2 = 4, V2 must be between 1 and 2. We might

therefore try 1.3 as a first crude approximation. To see how good our guess
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2is, we divide 2 by this guess and get = 1.54. Thus we know that1.3

1.3 x 1.54 = 2. It is apparent that 1.32 < 2, whereas 1.542 > 2. There-

fore 42 lies between 1.3 and 1.54. We now take a value halfway between
1 . 3 + 1 54these two values as our next approximation: 2 0

. = 1.42. The differ-
.

erence between this approximation to and the upper and lower bounds,

1.54 and 1.3, is 0.12, Which means that tne relative error is no greater
0.12than 1.42 Ao 0.08 or ±.8 per cent.

We can repeat this procedure a second time and thereby reduce the

'difference between the upper and lower bound for 42 . Dividing 2 by the last

guess gives - 1.41. Thus 1.41 < < 1.42, and the average of these
1.42

two values, 1.415, is not more than +0.5 per cent in error. This process

can be repeated until the desired accuracy has been obtained. A process

such as this, in which successively better approximations are obtained by
repeating the same step, is called an iterative process.

An iterative process requires a way of starting the procedure and the

existence of a clear instruction of how to proceed from step k to step k + I.

In the case of finding the square root of a positive number N, we have, start-

ing with the initial guess xo

(6)

1
=k+1 2

-(xk
+ -N-), k = 0, 1,2, .

xk

This is called the iteration formula for this iterative process. In Chapter 5

we shall use it as an example of automatic computation by a computer.

Note that there is only a positive square root of a positive number,

and by convention we mean this square root when we write .s1.7. For example,

NIT = 2, not -2. To indicate the negative Square root we must write and

to indicate both positive and negative square roots we write ±4i.c..
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Questions

1. (a) Find %in to within 0.5 per cent.

(b) When 2 and a are non-negative numbers, \rp-ci = x srci . Use this

relation to calculate sin , 1200, and 2 )N,F7177.

2. Find q112 to within 1 per cent;

3. rindcylo to within 1 per cent.

1. An iterative process is said to be self-correctila if it approaches

some number even if a mistake is made at some point in the calcula-

tions. Is the square-root iterative process self-correcting? Explain.

5. Devise a method for finding cube roots, similar to the iterate method

for finding square roots. (Hint: If xo were the cube root of N we

wouid have xo. But of course N2 equals some'other number
xoL 0

Where must the cube root of N be with respect to x and y? How

would you calculate the next approximation x1?)

3.7 The First Order Approximation for V1 + f

The iterative process for finding square roots which we developed in

the preceding section can be uFed to find a first order approximation for

N = Nil + f where If 1 << 1. We know that Vf + E must be close to 1, so we

choose as our first guess xo = 1. The next step gives

1 +( xo 2

c
xi = -2 xn

u
+ = 1.1- -1+i

This tells us that

2

To be jure that 1 + -2 is the first order approximation for VI + , we

must show that + 1 4- < 6onstant times 2. To do that we proceed
2

to the next step in the iteration

(7)
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Applying long division to the third term gives

1 +
2/4

Substituting in Eq. (7) gives
c 218

x2 = 1 + E/2 1`4.

Hence, by the same reasoning used in Section 3.3

E x11<lx2 - x11 7
81 +1E12

For <I( 1, say E = 0.1 we can-be sure that
( 4.1/2)1 0.12

E
2

Thus we have shown that the magnitude of the difference between 41-Ti and

1 + f- is less than a constant times E2. Therefore, the first order approxima-
2

tion for 41-77i is Ji+cvl+/2 (8)

Questions

1. Could you choose xo = 1 + E as your starting point in generating the

first order approximation for 47-ri ?

2. Use the first order approximation to calculate VF.Ta. Give an upper

bound for the error.

Use the relation OX-7-1- a = NrA + -a to calculate an approximate value
A

of %AZ .

4. Use the relation NiriEt = sJ x Nrci and the first order approximation to find

%/1.06 x 104 and Ni2.6 x 10-3

5. A jet plane is 20 miles from the control tower of an airport and at an

altitude of five miles.

(a) Use the first order apprOximations for %)i-c-r-a* to find the line-of-

sight distance from the control tower to the plane.

(b) What was the per cent error in your answer for (a)?
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Chapter 4. SLIDE RULES

It is not at all tedious to add two 3-digit numbers, but multiplying

them together is a chore. Although in most cases an exact answer is not

required because the original quantities en3 themselves not known exactly,

we often need a more exact answer than can be obtained by mental approxi-

mation. A slide rule fills this need admirably. It is nothing more than two

pieces of wood, plastic, or metal with scales engraved on them, joined so

that one slides on the other, but it can be used to multiply and divide quickly

and with considerable accuracy. For example, a mental approximation ap-

plied to the following problem may yield

112 x 17 x 45 x 87 112 17 67 z4XIXIX SO SO
32 x 43 x 72 32 43 72 2 2

This calculation, worked out on a slide rule in about one minute, gave 75.1.

The answer, worked out more precisely with a desk calculator, is 75.24.

4.1 Multiplication and Division of Powers of Two.

In this section we shall put scales on a simple slide rule which will

enable us to multiply powers of two together. Then, in later sections, we

shall see how this slide rule can be made into one which can deal with any

numbers.
The slide rule you need has unlabeled, equally-spaced lines on the

back% There are two sets of 13 lines on the "fixed," outer part and two

identical sets on the movable, inner part. To make reference to the differ-

ent sets of lines or scales easier we shall arbitrarily give them names. We

name the upper scale on the fixed part of the slide rule, the E scale, the

upper edge of the sliding inner part, the F scale; its lower edge, the C scale.

The lower fixed scale we shall name the I) scale. Write the appropriate

name at the extreme left end of each scale on your s/ide rule.

I



Label the center marks on the E and F scales with the number 0, the

marks to the right of 0 on each part with increasing integers and to the left

of 0 with decreasing integers (Fig. 4.1).

-6 -5 .4 -3 -2
i del I I I

F -6 -5 -4 -3 -X

I 0 I 2 3 4 5 6

1 1 II 1
-1 A 3 4 5 6

Fig. 4.1

Now suppose we wish to use the slide rule to add 3 + 2. In Fig.

4.2(a) the two scales are arranged so that 0 on the F scale coincides with
3 on the E scale. With this setting we can add'a number to 3. To find 3 +
for example, we find 2 on the F scale and read the answer, 5, directly above

Fig. 4.2(a)

-4 -3

3 a
A 3 4 5 6

Fig. 4.2())
(-4)

Mem41Li0111.

I I I 1

-2

1 I-6 -5 -4 -3 -2 1

1 I14 i0
I

on the E scale. riciure 4.2(b) shows the addition of a negative number and a

positive one. If you look above -4 on the F scale you will find the answer to

3 + (-4). Note that without moving the E scald we can add to 3 any number

between -6 and +3. In effect, what we have done in adding the two numbers

ig to add two displacements, the arrows in Fig. 4.2(a) and 4.2 (b) , to get a
total displacement which is the sum we ar6 seeking.
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Now consider scales C and D. We shall associate each integar on

the E and F scales with the value of 2 raised to that integral power and label

the C and D scales with these powers of two. This gives what is called a

logarithmic scale. For example, we place t/te number 4 at the marks on the

C and D scale directly below the 2 mark on the F scale (Fig. 4.3). Now each

-5 -4 -3 -2 Z 3 4 6

c Yu gib Vs Y4 VL 1 Z 4 16 31 64

b4 Vy 'fib '15 V4 7z

Fig . 4.3

time you perform an addition, using the E and F scale, you are adding the ex-

ponents of 2 on the E and D scales. Thus you are performing a multiplication

of the corresponding numbers on the C and D scales. To see why this is so,

recall that 1Om+n = 10m x 10n and just as with powers of ten, it is true that

4 8 16 AZ 64

2m+n 2m x 2n

for all integers rn and n, both positive and negative, and zero.

For example, 1 on the F scale coincides with the mark for 2 on the C

scale and 3 on the E scale coincides with 8 on the D scale. Therefore, whc

we add 1 ard 3 using the E and F scales to get 4, we are, in fact, adding the

exponents of tne numbers 21 = 2 and 23 = 8. This is equivalent on the C and

D scales to multiplying 2 x 8.
21+3 = 24 = 16

= 21 x 23 = 2 x 8 = 16,

As you can see, 4 on the E scale coincides with 16 on the D scale.

When we add a negative number to a positive one, using the E and F

scales as in Fig. 4.2(b), we are at the same time dividing one power of two

by another on the C and D scales. This is true 1-,;ause if m and n are in-

tegers,
2m+(-n) = 2m-n = 2m x 2-n 2m2n
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23 1
Th-us in Fig. 4.2(b) we performed the division -271" IP 2- = -i. Any displace-
ment to the left of a number hi a subtraction and is equivalent to a division.

For example, in Fig. 4.4 we have done the subtraction 5 - 3 = 2 using the
25

E and F scales which is equivalent to 25-3 = =7= 4.
2

Fig. 4.4
2 3

2 3 4 6

- 6 -3" -3 -2 0 I Z 3 4 5

Questions

1. Draw rough diagrams showing the relative posttions of the E and F

scales on your slide rule after performing the following additions:

(a) 1 + 4 (c) 2 + (-3)

(13) -3 + (-1) (d) 0 + 2

2. Give the multiplication problem solved on your slide rule correspond-

ing to each of the additions in Question 1. Write these multiplica-

tions both in exponential form and without exponents.

3. Write the following multiplications in the form 2m x 2' where m and

n are integers. Do each of the multiplications, using your slide

rule. What addition is being performed in each case?

(a) x (e) 1 x 16
16

1
(b)

1 x (d) x 64

Use your slide rule to do the following divisions:

64 1

(a) T-6-
(c)

32 1

(b) T (d)
8

t- r
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4.2 Non-integral Ptnvers of Two
1

The numbers on the C and D scales you have labeled range from 64

to 64. With these scales you can easily multiply any pair of these numbers

(numbers which are integral powers of two) as long as the product is between

1 and 64. But what if we wish to multiply and divide numbers that are not
64
integral powers of two? It seems reasonable that numbers between integral

powers of two on your slide rule can be represented by points between the

ones alreaay marked. But how are these intermediate marks to.be determined?

On a centimeter rule, marked off naly in centimeters, if you wish to indicate

where the half-centimeter marks should be placed you put marks halfway be-

tween the centimeter marks. We can do this, because the centimeter marks

are equally spaced. On a slide rule, however, such is not the case. The

numbers increase more and more rapidly for equal distances on the rule as

one apptuaches a, right-hand end. The interval on the left end corresponds
1 1 1

to an increase of -3i - while an equal interval on the extreme rightr

hand side corresponds to an increase of 64 32 = 32. What number does the

point halfway between 1 and 2 on your slide rule .:;orrespond to? Mark off

the point halfway between 1 and 2 on both the C and V scales. Now set the

I on the C scale at this halfway mark. If we multiply this unknown number

by itself as slmwn in Fig. 4.5, the result is 2.

Fig. 4.5

New mork

New mark

C SCALE
1

D SCALE

2

Ike number which when multiplied by itself yields 2 is 42. This is the un-

known number we are looking for. The square root of 2 is close to 1.41, so

label this point as 1.41. on the C and D scales.
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Now that we know that the point halfway between 1 and 2 on the C

and D scales should be labeled 1.41, we can find the values of the points
halfway between the other markings. For example, if we multiply 4 by 1.41

using the slide rule, we find that the answer is at the point halfway between

4 and 8. But we also know that 4 x 1.41 = 5.64 so this point should be

labeled 5.64.
We have found the value of the mark halfway between 1 and 2 on the

C and D scales to be 47 , What about the corresponding mark on the E and F

scales? This corresponding mark lies halfway between 0 and 1 on these

scales and since the numbers on the E and F scales increase uniformly, the
1midpoint has the value We have labeled our slide rule so that the num-
2

bers on the E and F scales are the powers to which 2 must be raised to get

the values of the corresponding points on the C and D scales. Since thus

far we have studied only integral powers, we have written something new,

namely 41 = 214. That this is reasonable is borne out by the fact that we

can use an X am = an" to get 21/2 214 = 21/42+0 = 21 = 2. just as we

can continue to find values of points on the C and D scales, we can extend

our ideas about fractional powers of two to many fractions by considering

points halfway between known values. This will be seen in the following,

questions.

Questions

1. (a) Find the value on the C and 0 scales of each point halfway be-

tween the original marks on thc slide rule.

(b) To what number on the E and F scales does each correspond?

2. Use the method described in Section 3.6 for approximating square

roots to find the number halfway between 1 and 1.41 on'your C and

D scales:
3. Now that you know the value of the point halfway between l'.and 1.41

(Question 2), r.ultiply It by other known values on your slide rule to

find the values of some other unknown points.
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1. How many points could be labeled, using the half values on your

slide zule end the answer to Question 3?

(a) How can the cube root of 2 be written in terms of fractional ex-

ponents?
(b) How is each of the following obtainable by taking square and

cube roots
21/4, 21/3, 21/6, 21/8, 21/12

1.3 A Power-of-Ten Slide Rule

As you have just found out, the apparent limitation of our slide rule

of being able to treat only those nemtlers which are integral powers of two

can be overcome. Another limitatic n is that it can handle only multiplica-
1

tiors and divisions between and 64. By making a sufficiently long slide
64

rule we can deal with numbers as large as or as small as we wish, at least

in principle, but since the slide rule is supposed to be convenient and easy

to use, this would defeat the whole purpose of the instrument.

The solution to this problem lies in the fact that any multiplication

or division can be divided into two parts, one involvinry. numbers between 1

and 10 and the other involving only powers of ten. For example,

(1.65 x 106) x (1.21 x 102) (1.65 ' 1.21) x 108. Thus we need only mul-

tiply and divide numbers which are between 1 and 10. It turns out, .there-

fore, that we need only that segment of the slide rule containing the num-

bers between 1 and 10. The rest.is superfluous.

It is not clear that this is enough. If we have a slide rule which in-
..

cludes only the numbers from 1 to 10 and try to multiply, say, 6 x 6 by the

method we have described, then the answer will not appear on the slide rule;

it would lie beyond the end of the rule. Similarly, if we try to divide 2 by 9

the answPr will not appear. However, a slide rule including the numbers

from 0.1 to 100 will take care of such contingencies. This is because the

product of any two numbers between 1 and 10 is less than 100 and the quo-

tient of any two numbers between 1 and 10 is greater than 0.1. In fact, as

you will see later, we can eliminate the need for this extended range of num-
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bers, but first, we shall coriStnict a slide rule covering three decades, from

0.1 to 100, fr3m 10-1 to 102, to see ho* we can use a slide rule with a range

of 1 to 10 to handle any numbers.
Era3e all the numbers you have put on your slide rule. The two new

scales you will1 construct will also be called C and D. Label the first mark

at the left on both the C and D scales with the number 0.1. Label the fourth

mark to the right 1. Thus, adding the distance between the first and fourtl",

mark will correspond to multiplyirN 0.1 by 10. The fourth mark to the right

-it I shou2d therefore be labeled 10 and the twelfth mark labeled 100. The

resulting C and 1--) scales are shown in Fig. 4.6.

IC

0.1

I 'III
0 0.1

Fig. 4.6

100

I 1100

Questions

1. (a) If we multiply the value of the point halfway between 1 and 10

by itself we get 10. Use this fact to find the value at this point.

(b) Use the answer to (a) to find the values corresponding to the

points halfway between the ends of the other two decades.

(c) rind te value of the point one-quarter of the way between 1 and

10. Use this value to find values corresponding to all the rest of the

marks on the C and D szales.

4.4 Division and Multtplication Using Only a One-Decade Slide Rile

With the new C and D scales we have marked off, we can divide and

multiply any pair of numbers between 1 and 10. Now we shall use this set

of scales to show that in fact one can do the same thing using only the mid-

dle portion of a thrt.:3-decade slide rule.
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.08 .31b .1bZ I 1.79 3le 5.8? ID aft N4 56.2 /DO '

I I I I I I 'I III
1 I 1 1 1 1 1 I I

iP 0.1 70 .316 .5e2 I 1.70 ale 5.1 50 171 51.1, 03,Z 100

Fig. 4.7

First, let us see how we can perform divisions using only the middle
1.78decade. The division 5.62 is indicated on the slide rule shown in Fig. 4.7.

1.78 is located on the D scale and the 5.62 on the C scale positioned

directly over it e e one ta go back by the length corresponding to the

number 5.62. The answer, lose to 0.316, can be read directly under the 1

on the C ..cale. However, notice that if we multiply the alower 0.316 by 10

(we do this by reading the number on the D scale directly under 10 on the C

scale) we see from Fig. 4.7 that the 10 on the C scald\ is almost directly

-over 3.16 on the D scale. What about other divisions? Clearly, either the

1 or the 10 of the C scale must be ovf;r the central decade of the D scale in

any division involving two numbers between 1 and 10. If the 1 is over this

portion of the D scale, the correct answer can be read under it without fur-

ther ado. If not, then the 10 of the D scale is over a number which is ten

times the desired answer. The fact that this is ten times too Ilrge is unim-

portant, because we can easily find the location of the decimal point by es-

timation. It is clear, for example, that tne answer to the divi,ion described
1 73above' 5.-62 lies somewhere between 0.1 and 1.

In multiplication problems, as in division problems involving two

numbers between 1 and 10, the answer does not always fall within the 1 to

10 decade. But again, as in division, there is a simple way to get the an-

swer. To multiply 3.16 by 5.62 we set.the C and D scales as shown in Fig.

4.8(a). The answer falls beyone ale end of the center decade of the ID scale.

I C 0.1 478 .3 b .162 1.79 3 !b .62 I 15 3/4\54.2 100

7-1
0.5 .170 .3* .5b2 1.78 ale 542 iCt

Fig. ..4".8 (a)

78 51.b 6. 1071
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As you can see from the figure, it is close to 17.8. However, if we start

over again and divide 3.16 by 10 as shown in Fig. 4.9(b), you can see that

the;44ator 5.62 falls directly over 1.78, which is just one-tenth of the an-

IC

o.i 179 .31fr la 1 1.79 316 f6? 10 /IS 31.6 56.2 100Iti 1 1 1

1 1 1 1 1 1 1.1 I

D 0.1 .176 .316 .51.2 t 1.79 3/6 5.62 10 178 514 $6.Z !00

Fig . 4.8 (b)

swer. Again, we are not concerned about the decimal point because we al-

ways find it by estimation. The important thing is that by reversing the end

of the center decade of the C scale that we place over one of the factors,

we can find in the center decade the correct digits of the answer. Thus we

can do any multiplication of numbers between 1 and 10 using only the parts

of the C and D scales between 1 and 10. First we try the usual procedure

for multiplication. If the secdnd number, on the C scale, is not over the

center decade of the D scale, we move the 10 of the C scale over the first

number and then the digits of the answer will certainly appear beneath the

second factor in the multiplication. We can, therefore, dispense with the

other two decades.

Questions

1. Which of the following division problems would have answers lying

under the 1 of the C scale and which would have answers beneath

10?

(a)

(b)

(c)

5.62
3.16

1.78
5.62

1.00
1.78

2. Perform the following divisions, using the slide rule only to find the

digits. Use only the center decade of,the C and D scales. Find the

correct placement of the decimal point by estimation.

0.0178
(a) 5.62

(h
5620

0.178
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3. Perform the following multiplications, using only the center decade

of your slide rule.

(a) 0.0?178 X 0.0178

(b) 3. a x 56.2

(c) 17.BX 0.0562

4.5 Commercial Slide Rule Scales

Not every division on a ruler is marked with a number. Usually the

numbor marks correspond to integral numbers of Inches,cr certimeters. The

subdividing marks, being equally spaced, have values that can easily be

determined by inspection and *need not be labeled. In the interval between

0 and 1 cm on a centimeter scale there are ten subdividing marks, each mark

corresponding to 0.1 cm. The numbers you placed on your power-of-ten

slide rule you found by taking successive square roots of 10 and are not

succqsive whole numbers, and do not make a decimal scale; it is therefore

awkward to use. To locate the points on a power-of-ten slide-rule scale

corresponding to any numbers we first make a table (Table 4.1) of the dis-

placements* and th'e corresponding numbers using the information on the

scales from 1 to 10 in Fig. 4.7.
TABLE 4 .1

Displacement Number

0 1.0C

2.5 1.78

5.0 3.16

7.5 5.62

10.0 10.00

*in the table, a displacement of 2.5 units equals 1 cm.
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Then we make a graph using the data iii this table, drawing a smooth curve

exactly connecting all the points as shown in Fig. 4.9. (For better accu-

r y we could calculate interMediate points to add to the information in
a

,

10

9
8
7

cu

E 5
2 4

3
2

0 2 3 4 5 6 7 8 9 10
Displacement

Table 4.1 and make a larger graph than that in Fig. 4.9.) We then use the

aaauauuirnsiiiaiaia
1111111111111111111PAI
111111111111111.111111
111111111111.w4IIII
111111111111111121111111
110111111111,2111111E11
11111111114111111111011
111Mill111111111111111 Fig. 4.9

graph in Fig. 4.9 to read off the displacements for the numbers we wish to

put on the slide rule and make a second table (Table 4.2 is an abbreviated

form of such a table) which we can use to make a power-of-ten slide rule

having convenient numbers and subdivisions.
TABLE 4.2

Number Displacement

1 0

2 3.01

3 4 ;77

. 4 6.02

5 6.99

6 7.78

7 8.45

9.03

9 9.54

10 10.00

Or your slide rule you will find an "L" scale (used for finding log-

arithms of numlless) marked off w,Lth equal divisions. This scale ooes from

0 to 10 and is the same length as the C and D scales so you can use it to

measu:.e displacements and ct-Ick the C*31.11es in Table 4.2.



-79-

A slide rule made commercially has points marked on it which cor7

respond to convenient numbers. Look at the engraved points on the C and D

scales on the yther side of the slide rule with which you have been working

corresponding to the integers labeled 1, 2 3, etc. Each of the intervals be-

tween these numbers is subdivided. However, these intervals do not have

the same number of subdivisions. The interval between 1 and 2 is divided

into ten labeled parts, 1.1, 1.2, 1.3, ... 1.9, and each of these ih turn is

divided into ten parts by unlabeled marks so the smallest divisions corre-

spond to 0..01. The space between 2 and 4 is also,divided into ten parts, but

since there is less space each of these ten is divided into only five parts.

Thus the smallest subdivision in this range corresponds to 0.02. Between 4

and 10 the intervals between integers are divided into 10 large intervals, but

the distance between integers is so short that each of these intervals is

divided into only two small intervals, each equal to 0.05. As you can see,

one must be careful in reading the scales on a commercial slide rule.

Questions

1. Use the graph in Fig. 4.9 to find

(a) the number on a slide rule corresponding to a displacement of

3.5.
(13) the displacement corre'sPonding to the number 6.5 on the D scale.

2. Perform the following multiplic;ation:, on a commercial slide rule-

Use exponentlial notation in locating the position of the decimal

point.
(a) 31.7 >< 45.6 (c) 863 Y749

(b) 0.37 x 7.44 (d) 0.000845 x 0.000079

3. Perform the following divisions on a commercial slide rule:

(b)

0.00000049 362

43 (c) 0.0043

4.3 x 1011 ,41 1.07
376 (." 4070



4.6 Multiiile Multiplication and Division

The slide rule is ideal for long series of calculations. The sliding

crosshair can be set to the result of interinedtate calculations to keep track

of them, but there is no need to read the answer for each multiplication or

division. For example, consider the product 22 x 2.3 x 8.9 x 4.8.* First,

you mu! t3ly 22 by 2.3 starting with the left end of the C scale over 22,

setting the sliding crosshair over the answer on the D scale. Then, with-

out bothering to read the answer, set the right-hand end of the C scale so

that if coincides with the crosshair. You are now ready to multiply the prod-

uct 22 x 2.3 by the next factor, 8.9. To do this you simply move the cross-

hair to 8.9 on the C scale. The answer lies directly below on the D scale,

but you do not bother to read it; you just move the right-hand end of the C

scale to this point and then move the crosshair to 4.8 on the C scale to

complete the calculation. Now the answer can be read from the position of

the crosshair on the D scale. The digits are 216.

To find the decimal point you make a simple approximation:

22 x 2.3 x 8.9 x 4.8f, 20 x 2 x 9 x 5= 1800

Thus the correct answer is 2160.

A series of divisions is even easier to do. Take, for example, the
1

calcu!ation of 22 4.8 5.2' To find the answer guicYly and easily with-
. x x

out bothering about.intermediate ansWers, you first move 2.2 on the C scale

over the left end of the D scale to divide 2.2' Placing the crosshair o fer

the answer at the end of the C scale, you can now divide by'4.8 by mov'ng

the C scale so that 4.8 on this scale coincides with-the crossliair. Jext

the crosshair is moved to th answer under the end of the C scale The

final division by 5.2 can n w be made by moving 5.2 on the C scale to co-

incide with the crosshair. The final answer is then read on the D scale be-

low the end of the C scale. The digits in the final answer lre 182. Making

*Follow each step in the examples in this section with your own commercial

slide rule. 5,7;
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a rough approximation of the problem we get

1
= = 0.02

2 x x 5 50

so the correct answer is 0.0182.
The tricks discussed in the two examples above are particularly use-

.
ful in solving calculations that are a combination of both multiplication and

division. Suppose you hay' to calculate
3 x 7 x 2.5
5 x 4 x 1.9

The easiest way to do the calculation is to divide 3 by 5, multiply

the result by 7, then divide by 4, multiply by 2.5 and finally divide by 1.9

without reading any answer except the final one to get the digits 138. Ap-

proximation places the decimal point and the correct answer is 1.38.

A vast amount of arithmetical 'drudgery can be saved by using a slide

rule to perform multiplications and divisions and the results are accurate

enough for nearly all purposes. Once you have learned how to do different

kinds of calculations, the only source of error is in reading the scales. Af-

ter you have had sufficient practice in reading the scales, you will find that

you can calculate very rapidly with a slide rule and make very few errors.

Questions
Perform the following calculations without reading any of the inter-

mediate products.

1. (a) 14 x 2.5 x 13 x 13

(b) 1.55 x 2.37 x 110 x 226

(c) 7.8 x 197x 2.00 x 7.13

(d) 11.7 x 9.83 x 10-6x 3.05x 10-8
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12. (a) 2.3 x 9.8- 127

1 1 3

-3-' 4.006 7.1

1
(c) x 1

6.1 x 101 5.2 x 10-S

(d) 3.06x 104 x 2.14 x 163
1

37.6 x 12.4 x 6.3
3. (a) 2.7 x 3.78 x 4.11

(b)

(c)

(d)

(e)

63.4 x 4.73 x 7.79
21.2 x 2.86

8.72 x 103 x 3.64 x 10-7 x 11.2 x 104
11.1x 106x 2.34 x 6.38 x 10-3

0.0A37 x 6.5 x 1010 x 873
141.3 x 18 x-x 8.81127

2.718 x 3.00 x 108
13.14 x-x127

9.80 x 0.667 x 4

4. On the C and D scales of a 10-inch slide -Lille; what is the relative

uncertainty in reading a number between (a) 1 and 2? (b) 3 and 4?

(c) 9 and 10?

4.7 Constant Factors( Ratios, and Uilcertain_ti

Many times in ri,akiAg calculations we encounter situations in which

we have to multiply a series of numbers by the same constant factor. For

example, in making a map we htve to multiply a large number of measure'd

distances by a scaling factor to get the correct lengths to put on the map.

This is easy with a slide rule. All we have to do is set the;end of the C

scale once (or at most twice) directly over the constant scaling factor and

then just move the crosshair tc, perform each successive multiplication.
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For example, if we set the 1 on the C scale over 3 on the D scale we can

multiply 3 times any number from 1 to 3.33 merely by moving the,crosshair

to the number on the C scale by which we wish to multiply by 3 (Fig. 4.10),

and then reading the answer on the D scale. For numb9rs greater than 3.33

we simply set the other end of the C scale over 3 on the D scale.

C

,111iIIrt#11#{11111:,111131141.1111,1111111411111Viti

Fig. 4.10

3 f
iii114111141114111tilifNiftujuli

Similarly, if we set the 7 on the C scale over 3 on the D sca:e, as

shown in Fig. 4.11, the ratio of any number (from 1 to 4.28) on the D scale

3

to the number directly above it on the C scale is = 0.428. For numbers on
7

the D scale between 0.428 and 10 we set the left end of the C scale over

4.28 on the D scale.

3 4

1111111044141,0/11i1,1/111011WIIIiWiliiiilliitliVilf100;714.411111.111,40,4111.144t1
3 1 t s 4 s I / I I 2

1 ,

l lii/111141,4,111111/),),11411!1! IP/A*1411k
3 W

1

11044#119 144141-7.
4. I

Fig. 4.11

The uncertainty in reading any scale is a fixed small distance along

the scale. For example, one might be able to read a centimeter scale to with-

in 0.02 cm. This uncertainty in a length reading matters much more for short

lengths than for long ones when we are concerned with relative uncertainty.

Consider two extreme cases: a length of 0.50 cm with n uncertainty of
0.02 cm

0.02 cm nas a relative uncertainty of 0.50 cm
x 100 = 4 per cent; a readin,4

of 20 cm with the same uncertainty of 0.02 cm has a relative uncertainty of

0.02 err' 100 = 0.1 per cent.
20 cm

On a "10-inch" slide rule, the C and D scales are about 25 cm long

and, reading from the left end, 1 cm corresponds very nearly to a factor of

1.1. %nee the divisions on the scale between 1.0 and 1.1 are almost equal,

0.1:12 cm represents a factor cl()se to 1.002. Suppose you mt.ve the left end
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of the C scale to algiy position along the D scale. An uncertainty of 0.02 cm

in the reading on the D scale still corresponds to a factor of 1 .croz . TtiuS the

fractfonal uncertainty in reading a slide rule is constant, and ill-readings on

th.e C and D scale have an uncertainty of about 0.2 per cent.

atlejtyLna
1. To what multiplication factor does a distance of 1 cm on the C and

D scales correspond?

2. If you move the 1 on the C scale to a point directly above 1.50 on the

D scale,

(a) what is the ratio of any number on the C stale to the one directly

below it?
(b) what is the ratio of any number on the D scale to the number

directly above it?

3. On a commercial slide rule there are two adjicent scales labeled A

and B. Each of these i3 a '0mo-decade scale and the decades are

just half as long as the .2', and D scales. What is the relation be-

tween a number on the A scale and the number directly below it on

the D scale? Can you explain why there is this relation?

4. Problem with student?
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Chapter 5. AUTOMATIC COMPUTATION

In the previous chapter you have learned a number of techniques for

calculating effectively. We now turn to the problem of calculating effectively

when the task involves repetition in one form or another. For this purpose it

is often convenient to use a computer.
Our motivation for "programming" a computer (writing instructions

that tell the computer how to carry out a calculation) is similar to the motiva-

tin for building a machine to mass-produce a product: the time and money

required to build a machine to stamp out "widgets" is greater than the cost

of making one widget by hand; but after the initial investment, widgets can

be produced cheaply in quantity. Once a program has been prepared, it is

easy to have it executed many times by a computer. Although computers can

calculate many times faster than the human brain, speed alone is not the

essence of the power of computers. No matter how fast a computer can cal-

culate, doing a one-shot job on a computer is a waste of time if it is easier

to punch keys on an electronic calculator (or even do pencil and paper calcu-

lations) than to write a program to get a computer to do it. Heri:e, a single

calculation, however involved, seldom requires the use of a computer pro-

gram if it is to be used only once.

There is a further benefit that derives from learning how to program a

computer. A computer has a small "vocabulary" and cannot make the subtle

judgments of the meanings of words and symbols that human beings are cap-

able of. Therefore, to write a program for a computer, one must learn to

think carefully in order to give the precise instructions to the computer that

it needs in order to carry out the desired calculations.

5 . 1 Programs

Suppose you are asking another person to average five numbers, using

a desk calculator. The request "Please average these five numbers" will

9
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suffice if the other person is knowledgeable in mathematics and competent

in the operation of the desk calculator. "Add up these five numbers and di-

vide by five" is a bit mote explicit. However, suppose one is dealing with

a very inexperienced helper who is going to use a certain desk calculator to

find the average. If the computation is a one-shot job, it would be easiest

to do it oneself; however, suppose it is to be carried out a great many times.

One might then have to spell mt this task in detail as follows:

I. Press the "clear" button*

2. Punch the first number in the keyboard and press the "+" button

3. ,, .. second " " 11 11 N 11 II 11 11

4 .
VI third . I. 11 11 " II 11 11 II

5. . . fourth II I! 11 11 II 11 11 11 SI

6. ,. fifth i. ,. ,, 1, 11 11 11 11 II

7. Punch 5 in the keyboard and press the "+" button

8. Record on paper the number displayed.

Such a set of instructions is called a program. This very s mple pro-
.4

gram has many of the features typical of programs for mathematical calcula-

tions, including:

(a) Numbers are entered. This is referred to as invut.

(b) Computations are performed and intermediate results stored.

(c) Results are recorded. This is I, fe"rgirtzt ut (in the above

example the output consists of a sinte number). '
(d) The instructions are to be carrie out in order, starting at the

top. (At the end of each step the affi "and proceed to the next

step" is implicit.)

(e) The program can be applied not only t'o one specific set of input

numbers, but to arbitrary sets; therefore, it may be repeatedly useful.

*This erases from the computer any numbers it is storing as a result of carrying

out a previous program.

.9 4
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Note that this program, though more specific than the original state-

ment "average these five numbers," still has meaning only in a specific con-

text, involving a given type of desk calculator. It is necessary to understand

the context before a program is completely intelligible.

Though we usually do not refer to them as such, the recipes Ln cook-

books are, in fact, programs. There the conteA assumed is a praprly

equipped kitchen, plus a cook familiar with the elementary techniques and

vocabulary of cooking. Similarly, the instructions one might give a stranger

for getting to one's house are, in effect, a program. One usually assumes

then a driver who can count traffic lights, recognize landmarks, etc.

In computer prcigrams the context which is assumed involves such

thint s as memoiy storage locations, conventions about how storage locations

are named, and how numbers are entered into them a (IQ retrieved from them,

conventions as to what arithmetic Gperatiens are available, how the input and

output of numbers can be handled, etc. Rather than listing all of these con-

ventions at the outset, we will let them emerge as we proceed.

Let us re-express our program to average five numbers in language

that refers less specifically to a desk calculator. We need the idea of a

device in which a number can be stored. The common name for such a device

is storage register, or simply rr,.. ster. Here we will need tvo registers,

which we will name X and S. Register X will correspond to the keyboard of

the desk calculator, and register S to the "diplay."
Generally, in computers, a numbca can be retrieved from a register,

with the number stored remaining intact in the register (this is callcd "non-

destructive read-out"). When a number is read into a register the number

previously stored is, of course, lost.
Using the storage registers X and S our program which we will refer

to as Program 1 might be as follows:



PROGRAM

1 Store 0 in S.

2. Read the next input number and store it in X.

3. Compute X rs and store the result in S.

4. Read the next input numr and store it in X.

5. Compute X + S and store the result in S.

6. Read the next input number and store it in X.

7. Compute X + S and store the result in S.

8. Read the next input number and store it in X.

9. Compute X + S and store the result in S.

10. Read tha next input number and store it in X.

11. Compute X + S and store the result in S.

12. Compute S/5 and store the result in S.

13. Write S. .

Note that at the end of Jach step all numbers are left in registers. This is

fundamental in computer programming; numbers can never be left in l!mbo.,

ard it would be incorrect to replace steps 11 and 12 by

11. Compute X + S

12. Divide the result of step 11 by 5.

Obviudsly a statement such as "compute X + S" must mean "compute

the contents of X plus the contents of S." For the sake of brevity, we prefer

not to incessantly incluth the words "contents of." Thus a symbol such as

X does double duty, serving both as the name of a storage register and as a

symbol for the contents of that ragister. Which meaning is intended is for-

tunately almost always clear from the context.

Now assume, for example, that Program 1 is executed using the input

data 20
10
45
15
60

*As we will see shortly when we discuss input number conventions, in this
program the first input number is read in on this step.

9 t:
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Such a list of input numbers is always entered into the computer in order,

starting at the top, as input is called for by the program. Therefore in step 2

"the n9xt" input number is the first, namely 20, on step 4 "the next" is 10, etc.

Table 5.1 shows the contents of registers X and .ifter each step.

TABLE 5.1

Contents Contents
Step of X of S

1

2 20 0

3 20 20

4 10 20

5 10 30

6 45 30

7 45 75

8 15 75

9 15 90

10 60 90

11 60 150

12 60 30

13 60 30

The final answer, written out on step 13, is, of course, 30. Any horizontal

line in Table 5.1 gives a "snapshot" of the numbers stored at the correspond-
.

ing intermediate point in the computation. Such a record of the history of

the execution of a program with specific input data is called a trace.

Note very carefully that whereas S is.always the same storage register,

its contents (also referred to as S in Program 1), shanges during the calula-

tion, just as the reading of the desk calculator display changes. The dis-

tinction between a register and its contents, and the fact that the value of

the latter depends on what point has been reached in-the program, must al-

ways be clear when one is dealing with programs.
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Questions

1. Do a trace for Program 1 appliec to the following input data:

(a) 14, 7, 3, -1, 8
(b) 25, 10, 0, 6, -7

2. Write programs similar to Program 1 which do each of the following:

(a) Compute the average of four numbers.

(b) Compute the average of six numbers.

(c) Compute the product of five numbers.

(d) Compute the sum and the sum of the squares of five numbers.

3. Write an (English language) program for changing a flat tire. What

context are you assuming?

4. What explanation can you give for the question mark on step 1 in

Table 5.1?

5.2 Loops and Branches; Flow Charts

An obvious inefficiency of Program 1. is that the same pair of steps is

repeated five times. If we modified the program to average, say, 100 num-

bers, this inefficiency would become painful indeed.

Of course, in dealing with a human helper we could say something

like "repeat thus-and-such steps until all input numbers have been taken

care of." However, such a statement is not sufficiently explicit when one

is dealing with an automatic computer. How can we make a program in which

a certain portion is repeated many times?

If step 1 is to perform a desired operation and the instruction step 2

is to go back to step 1, the operation will be performeu many times, but we

have made no provision for determining how many times. This is an example

of an infinite loop, obviously to be avoided in practice. Such a program is

frequently diagrammed as a flow chart, in which arrows indicate the "flow

of control":

---,oil. Perform desired operatio

70 2. Go back to 3tep 11



As our next might try:

11. Perform desired operation

Go back to step 1 the first
four times step 2 is reached,
but thereafter go on

hi- I= a correct program, and could correctly guide a human capable of doing

the counting called for in step 2. However, computers unaided by programs

cannot count. The program must include some explicit device for counting.

Therefore we introduce another storage register, which we arbitrarily

name K, in which to store a count of the number of times the "desired opera-

tion" has been executed. This adds a good deal of complexity to the logical

structure of the program, which now appears as follows in Program 2:

PROGRAM 2

< 6

0 in Kj

2. Perform desired operation

Compute K + 1 and store
the result in K

If K < 6 go to step 2; otherwise
go on to the next step as usual

iK = 6

[5. Continuation of prograiTli

The first time step 3 is reached the contents of K are changed from

0 to 1, following which K stores the number 1, corresponding to the fact that

the "desired operation" has been performed once. On the second pass through

step 3, the contents of K are incremented to 2, etc., so that each time step 3

is completed K stores the number of times that step 2 !las been executed.

Thus register K does function correctly as a "counter.'
ci
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Step 4 is a branch: two paths of control lead out of sttp 4 on the

flow chart. (We 1.ave 20pted the convention of drawing oval-shaped blocks

around such branch points.) The "If K < 6" test in step 4 is a test of which

computers are capable, and this "If statement" operation is very fundamental

in computer programming. Between steps 2 and 4 we have a loop, which is

cycled through five times during the running of the program.

Step 1, which sets the counter to zero, is essential; without it the

contents of K, required on the first pass through step 3, would be undefined.

The operation of step 1 is called initialization, which means the setting up of

initial values in registers used in later computations.

We have in Program 2 the.essence of the most important way in which

computer programs take advantage of repetitive features of calculations. The

point is that the instructions for the operations in step 2 need be written only

once, even though they are performed many times.

Nowlet us go back to our original Program 1 which averages five num-

bers. Reorganizing it into the form of Program 2, we obtain Program 3.

PROGRAM 3

1. Store 0 in S.

2. Store 0 in K.

3. Read an input number and store it in X.

4. Compute X + S and store the result in S.

5. Compute K + 1 and store the result in K.

6. If K < 5 go to step 3.

7. ,ompute S/5 and store the result in S.

B. Write S.

9. Stop

Let us abbreviate such statements as "store 0 in S" as "S 0." Our

program then can be written in a briefer form (which incidentally is quite close

to a program written in the BASIC or the FORTRAN computer language).



-93-

PROGRAM 3 (Abbreviated Notation)

1. S 4- 0
2. I( 4-0
3. Read input X
4. S..-XS
5. K +
6. If K < 5 go to line 3
7. S S/5
8. Write S
9. Stop

A program that computes the mean of precisely five numbers is not of

much general usefulness. However, we can easily generalize our program so

as to calculdte the mean of an arbitrary number N of values. Let us assume

that the inpnt consists of the %alue of N followed b., the N values to be av-

eraged. We shall need an additional register to store N; in fact we may as

well call this new register by the name N, as our aid in remembering what it

is used for. This time we give the program (Program 4) in the form of a flow

chart.

PROGRAM 4

1. S 0

2. 1( ...- 0

3. Read input N

4. Read input --X
5. S +
6. K + 1

K<NCTif K < N go to 4
K = N

S4-S/N
9. Write S

10.
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Note that only a small part of the program embodies the mathematical

operations of averaging in fact, only lines 5 and 8. (We will henceforth

refer to the steps of programs as lines.) The business conducted in the rest

of the program is referred to by the picturesque name of housekeeping

initializing, counting, getting input data into the right places, etc. This is

essential in computer programs because, like the very inexperienced helper,

computers don't know enough to do any of this without being told. Often

there are many different ways of organizing housekeeping operations but no

matter what way is uFed considerable ingenuity is required to keep the house-

keeping free of "bugs," just as in real life.*

Questions
1. Which lines of Program 4 are examples ot each of the following:

(a) A loop

(b) A branch

(c)

1. In Program 4

(a) How many times is the loop traversed?

(b) How many times is the "K < N" path, returning from line 7 to

line 4, traversed?

3. What is the result of applying Program 4 to the following sets of

input data:

(a) 5, 6.1, 5.6, 6.3, 6.4, 6.1

(b) 7, 1, 2, 3, 4, 5, 6, 7

(c' 4, 1.3, 2.0, 3.1, 0.4, 5.1, 7.6, -1.2

(d) 8, 1.1, 2.3,.4.6, 5.1, 6.2

(e) -2.5, 6.1, 1.5, 8.3, 9.11

In computer and electronic jargon "bugs" are errors in writing a program (or
wiring a circuit) and "debugging" is the process whereby they are located
and corrected.
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4. In our development of programming, the choice of register names is

to a large extent arbitrary, i.e. a matter of free choice for the pro-

grammer. (Often names with mnemonic significance are chosen, as

"N" in Program 4, and also "S" for "Sum." This, however, is op-

tional.) To illustrate this, write an alternate version of Program 4,

in which the names "Q5," "j2," "j9," and "A7" are used in place of

"S," "K," "N," and
Let the input data to Program 4 be 3, 1.2, 2.6, 3.4. Do a trace as
in Table 5.1, showing the history of the contents of registers K, X,

and S.

6. Modify Program 4 so that.it will compute the variance of the input

data as well as the mean. The variance is the average of the squares

of the values, minus the -quare of the mean. (Use another register,

named 52, for the sum of the squares of the values read on line 4.)

7. Do a trace of the program you wrote in answer to Question 6 using as

input date 3, 2, 3, 5. Does the result convince you that your pro-

gram is free of bugs?
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8. Program 5 is designed to find the largest of a set of N numbers:

PROGRAM 5

K < N K < N go to 4.)
=,N

9. Wite "THE LARGEST IS'
10. Write B

4. Read input

X 1B

(a) What is assumed about input data?

(b) Do a trace for the input data 3, 5, 4, 6.

(c) How many branches does this program have?

(d) Explain the "bypass" from line 5 down to line 7.

(e) How many times is the return path from line 8 back to line 4

traversed? (Let the first input number N be arbitrary.)

(f) How many times is the "bypass" from line 5 to line 7 traversed?

(g) How should the program be modified if it is desired to compute

the smallest of the N numbers?
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9. A very common type of repetitive computation, in which a simple

calculation is repeated over and over on different sets of data, is

illustrated by Program 6. Assume that each member of a class of

N students has taken an experimental measurolment of the volume V

and the mass M of a sample of a certain substance. Let the input

consist of the value N followed by the N pairs of V and M. What

does Program 6 then calculate?
PROGRAM 6

START

1,
L

Read input N

2. K 0

3 Read input V
4. Read input M
5. ID 4- WV
6 K K + 1

8. If K N go to 3
= N

9.

10. Now suppose we have a slightly more complicated situation An which

each student reports a lower bound V1 and an upper bound V2 for his

volume measurement, aad a lower bound M1 and an upper bound M2

for the mass. Modify Program 6 so that it will compute for each stu-

Lant the lower and upper bounds for the density implied by that stu-

dent's data.
What does your program assume about the input data?
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11. (a) Write a program which will make a table showing n, rt

for integral values of n from 1 to 100.

(b) Why does this program apparently have no input?

and n3

12. Write a program which will make a table showing n, E k and
k=1

E k2 for integral values of n from 1 to 20.
k=1

13. Construct a program which will, hke Program 5, find the largest of

N numbers, but which will also produce an integer indicating which

of the numbers has the largest value. This integer should equal 1 if

the first is the largest, 2 if the second is largest, etc. In casii- of

ties, the integer should indicate the first of the largest values.

14. Construct a program which will find the largest and the second largest

of N numbers. Hint: After reading N, read the first number into reg-

ister Al and the second into register A2. Then, if Al < A2, interchange

the two values, so that it is known that Al > A2 (be careful to do the

interchange correctly!). Then read the next number into X. If then

X < A2, that value is untmportant and the process may proceed to the

next input number. If X > A2, then X can replace A2. An-interchanqe

of Al and A2 may now be necessary, as we want Al always to contain

the largest number read to date, and A2 the second largest.

Use a register named K to count the number of values that have been

read in to date. To what Jalue should K be set when it is initial-

ized?
15. A table of loan payments (such as house mortgage payments) is to be

prepared. The table is to have five columns: The first is to be the

month M (numbered 1 to 12) of each payment, the second the year 11,

the third the amount of payment A due at that time, thk, fourth the

interest charge C accrued over the past month, and the fifth the prin-

cipal P of the loan after that payment.
The input is to be the month and year of the loan, the total amount of

the loan (equal to the principal over the first month), the annual per-

centage rate R and the amount to be repaid each month. Assume that

I ;
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the same amount is paid each month except in the last month, when

a lesse l'. payment equal to the entire remaining principal is made.

Construct a program to prepare this table. Assume that'each month

an interest charge equal to X P is accrued, and that the monthly
12

payment A is always greater than this. Note that you will have to in-

crement M until it reaches 12, but on the next step M will have to be

reset to 1 and Y incremented.

5.3 Basic BASIC

So far we hive been discussing how to construct and on3anize pro-

grams. We now consider how to express or "code" a program in a computer

language. The candidate languages include BASIC, FORTRAN, ALGOL, PI./1,

APL, and perhaps others. We have chosen to use BASIC because it was spe-

cifically designed to be used by non-specialists on a time-sharing system,*

and as a result is probably the easiest computer language to handle at the

start; moreover, computers using BASIC are widely available.

As an example of how to code a program in BASIC we w.11 code Pro-

gram 4 which computes the mean of N arbitrary numbers. We recall that the

input was assumed to consist of the value of N followed by the N numbers to

be averaged. Table 5.2 shows this program written both in the symbolic ab-

breviated English form we have been using, and in BASIC.

You can probably infer most of the rules and conventiors of BASIC by

examining BASIC programs such as this one, in analogy with learning a nat-

ural language by the Berlitz method. However, at the risk of spoiling the

fun, we will explain the conventions and rules of the grammar of BASIC.

A time-sharing system is one which has a central computer connected to a
number of terminals located at different, convenient places. Each terminal
can be used to run programs and a number of terminals can be used simul-
taneously.
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TABLE 5.2
(Program 4 in Symbolic Form and in BASIC)

_

Symbolic Form

I41*ES -7. Is K < N?
1NO

1. S -
2. K 0- 0

3. Read input --4-N

4. Read input X

S. S *-X + S

6. 1( + 1

8. S SAT

9. Write S

10. Stop

BASIC

10 LET S = U

20 LET K = 0

30 READ N

40 READ X

50 LET S = X + S

60 LET K = K + 1

70 IF K < N THEN 40

80 LET S = S/N

90 PRINT S

100 STOP ;-

110 DATA 3, 1.2, 2.6, 3.4
120 END

BASIC was created with a certain teletype keyboard in mind, and as

a result uses only symbols available on that keyboard: letters, numbers, and

a few punctuation marks and special signs. No distinction is made between

upper and lower case letters. Spaces carry no information and may be in-

serted for legibility or omitted as one wishes.

In BASIC lines can be numbered with any numbers from 1 to 9999,

(from 1 to 99999 on some systems). Notice that in Table 5.2, in the BASIC

column, the lines are numbered ir. increments of 10. The reasons for this cu-

rious custom of incrementing line numbers in steps of 10 rather than steps of

1 will be explained when we discuss the secretarial aspects of BASIC time-

sharing systems, in which line numbers play an important role.

Now let us discuss each line of Table 5.2. First we have the assign7

ment statement. The first line "S 0" translated into BASIC reads "LET S = 0,"

This means "store the number 0 in register S." Similarly, "S 4-X + S" trans-

lates into "LET S = X + S," which means "compute the contents of X plus the
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contents of S and store the result in S." Thus, the appareritly self-conh-a-

dictory stateme.nt or line 60, "LET K = K + 1," has the perfectly sensib!e

meaning "add one to the contents of K and store the result back in K," or

more briefly "increment the contents of K by one." It io a common complaint

that this is a mis-use of the equal sign, but no more suitable sign was avail-

able on the teletype keyboard for which BASIC was designed.

Symbols for arithmetic operations may appear to the right of the equal

sign in assignment statements, as in lines 50, 60, and 80. Multiplication

must always be indicated by an aste'risk (*), division by a slash V), and ex-

ponentiation by an arrow pointing upwards (t), while addition and subtraction

are, as you see from Table 5 indicated by the usual symbols.

Parentheses may be used as is customary in afgebraic expressions.

Suppose, for example, that
The contents of A equals 2.

The contents of B equals 3.
The contents of C equals 4.

Then the following BASIC coding lines:

220 LET X = Bt2 4 *A * C

225 LET Y = 1/A + B

230 LET Z = 1/(A+B)

result in the storing of the numbers

32 - 4(2)(4) = -23 in X (on line 220),

1+ 3 = 3.5 in Y (on line 225) and
2

1

2 3
- 0.2 in Z (on line 230).

+

Output mayte handled as on line 90 in Table 5.2, where the instruction

"PRINT S" 1,114cates that the contents of register S are to be typed out. One

may have several numbers typed out in one PRINT instruction; thus 90 PRINT S,

X, K, .N would cause the final contents of registers S. X, K, and N to be writ-

ten out. Note the use of commas to separate the names of registers.

The input numbers are included as part of the BASIC program, on line

110, fc .ving the word DATA and separated by commas. These numbers are

1
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taken in order, starting at theleft, as READ instructions are encountered in
the execution of the program.

READ instructions occur on lines 30 and 40. On line 30, in the sec-

cond column of Table 5.2, "READ N" means "read the next input number and

store it in register N." (In this Program the number read in by this instruction

is the first of the input numbers, following 'DATA" on line 110, namely the

integer 3.) "READ X" means "read the next input number and store it in reg-

ister X." If the input data does Aot fit on one line, several DATA lines are

used.
As another example of data input, which incidentally illustrates how

several numbers can be read in by a single READ instruction, consider the

example

1250 READ A, B, C
1260 LET X = Bt2 - 4 * A * C
1270 READ A, F
1300 DATA 2, 3, 4, 8.5, -9.2, 2.1

From line 1300 we see that the instruction on line 1250 stores 2 in A, 3 in B,

'and 4 in C. On line 1270, 8.5 is stored in A (erasing its previous contents,

of course), and -9.2 is stored in F. At this point one more number remains

ready for input, namely 2.1.
Bianching is done with the IF statement. Line 70 "IF K < N THEN 40"

means "if the contents of K are less than the contents of N, then transfer

control to line 40; otherwise continue as usual to the next line."

Other relations can be used in IF statements. A complete list is given

in Table 5.3. Thus "IF W < = Q THEN 850" means "If the contents of W are

less than or equal to the contents of Q go to line 850, otherwise continue."
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TABLE 5.3

equal

greater than

less than
gr.tater than or equal to

less than or raqual to

nc,t equal to

The "END" statement marks the last line of a BASIC program, and

"STOP" indicates a point at which cfmputations are terminated.*

One point which, however, needs further comment is the matter of

register names. In BASIC these must either be single letters (as A, 5, X, Q),

a single letter followed by a single numerical digit (as A5, X0, B9, Q4), or

a single letter followed by an index enclosed in parenthesis such as A(5) or

B(2I2).
Within these limitations one may name and use a large number of

registers in BASIC thousands, if necessary. However, the first operati-n-1

involving any register must be to store a number in it usually by a LET or a

READ instruction. Otherwise, one has a "bug" in the program, which involves

asking for the contents of a register whose contents have not yet been defined.

This completes our survey of basic BASIC, and covers perhaps one-

third of the total vocabulary of BASIC. This is enough to express quite a large

class of programs.

Questions
1. A trace of Program 4 was done in Question 2 of Section 5.2. Does this

trace apply to the BASIC versiOn of Program 4 shown in Table 5.2?

2. What change is necessary in order to make Program 4, in its BASIC

form, average the numbers 4.3., 5.3, 6.7, 9.57

How to actually run a program in BASIC on a time-sharing terminal will be
discussed briefly in the next section.
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What does. each of the following BASIC programs

doubt, do a trace.)

(a) 10 LET A = 2 (b) 10

20 LET B = 5 20
30 LET C = 12 30
40 LET X = B*B-4*A*C 40
50 PRINT X 50
60 STOP 60

70 END

do? (Hint: When in

READ A, B , C
LET X = Bt2-4*A*C
PRINT X
STOP
DATA 2,5,12
END

(c) 20 LET K = 0 (d, 20 LET K = 0

40 READ A,B,C 40 READ A ,B , C

50 LET X = 2-4*A*C 50 LET X = 102-4*A*C

60 PRINT X 60 LET K = K + 1

70 LET K = K + 1 70 PRINT K,X

80 IF K < 5 THEN 40 80 IF K < 5 THEN 40
100 STOP 100 STOP

110 DAM 2,3,4 110 DATA 2,3,4,5,8,10
111 DATA 5,8,10 111 DATA-2,6,-3,4,11,-7,8,9,1
112 DATA -2,6,-3 999 END

114 DATA 8,9,1
200 END

(e) 100 LET K = al 10 LET K = 1

110 LET K2 = K*K 20 LET F = 1

120 LET K3 = K*K2 30 LET K = K + 1

130 PRINT :;, K2, K3 40 LET F = F*K

140 LETKKI 1 50 PRINT K,F

150 IF K < 101 THEN 110 60 IF K < 10 THEN 30

160 STOP 70 STOP

999 END 100 END

(g) 40 LET X 0
50 LET Y = 1
70 LET Z = X + Y
80 PRINT Z
90 LET X = Y

100 LET Y = Z
110 IF Z < 10000 THEN 70

120 STOP
130 END
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4. Find any bugs present in the following programs, all of which are

supposed to compute 2.5 times (-1.3):

(a) 10 LET A = 2.5
20 LET B = -1.3
30 LET C = AB
40 PRINT C
50 STOP
60 END

(c) 19 LET A = 2.5
20 LET B = -1.3
25 LET C/B = A
28 PRINT C
30 STOP
95 END

(b) 10 LET A = 2.5
15 LET C = A*B
20 LET B = -1.3
25 PRINT C
30 STOP
35 END

(d) 51
52
53
54
55
56

(e) 40 LET A = 2.5
45 LET B = -1.3
48 LET C = 0
50 LET C = (A*(B+C)+C)*1
20 PRINT C
90 STOP

100 END

(9) 40
250
900

1221
1222
1223

READ A,B
LET C = A*8
PRINT C
STOP
DATA 2.5
END

(0 210
212
215
216
218
219

LET A9 = 2.5
LET A10 = -1.3
LET CX= A9*A10
PRINT CX
STOP
END

READ A, B
LET C = A*B
PRINT C
STOP
DATA 2.5,-1.3,1.3,-4.12,62.5
END

5. Code the program of Question 6 at the end of Section 5.2 in BASIC.

Include input data such that the program will compute the mean and

variance of the 1C numbers 1,2,3,4,5,6,7,8,9,10.
Code Program 5 in BASIC, using N = 10 input numbers of your choice.

(The program is to find thelargest of these 10 numbers.) Note': The

BASIC for line 9 is 'PRINT "THE LARGEST IS".' (THE LARGEST IS must

be enclosed by quotation marks. If it is not, you have a bug because

the computer reads this as a four word instruction: PRINT THE

LARGEST IS, which is not part of the BASIC vocabulary.)
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7. Cods Program 6 in BASIC, supplying input data as follows:

Student 1/1 V2 M1 M2

1 47 52 112.1 112.6

2 49 54 112.5 112.8

3 46 51 111.9 112.4

4 48 50 112.2 112.5

8. Code the prograni of Question 13 at the end of Section 5.2 in SASIC,

using input data of your choice.

9. Code the program in Question 14 at the end of Section 5.2 in BASIC.

10. Code the program in Question 15 at the end of Section 5.2 in BASIC.

11. Program 5 is a trot giving a program in two different languages. Dis-

cuss whether this can be considered analogous to a trot giving the

Gettysburg Address in English and in French. What are the points of

similarity between the computer language example and the natural

language example, and what are the points of difference?

12. Below is Program 4 expressed in FORTRAN, another very much-used

computer language. The more cumbersome way in which input and

output is handled in FORTRAN, and the fact that FORTRAN distinguishes

between two types of numbers, called "integers" and "real numbers,"

are two of the factors that make FORTRAN somewhat harder to handle

than BASIC at first.
Without trying to understand everything about this FORTRAN program,

see, by comparing it with the other versions of Program 4 if you can

identify some ways in which FORTRAN is similar to BASIC and some

w4ys in which the two languages differ.
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SUM = 0
K = 0
READ (5,99) NTOT

99 FORMAT (13)
10 READ (5,98) XNEW
98 FORMAT (r10.5)

sum = sum + XNEW
K = K + 1
IF (K.LT.NTOT) GO TO 10
SUM = SUM/FLOAT(NTOT)
WRITE (6, 98.) SUM
STOP
END

/DATA
003
1.2
2.6
3.4

13. The successive approximation process for computing the square roots

(St-xtion 3.6) of some number V generates the following sequence of

iterates:

1 v
x2

,

= 1 (x + V)
k+1 2 k ..k

1 + V
Write a program for finding square roots by this method taking

2

as the initial guess.
Use the fact that for each k, the value of NrIT lies in the interval

Vbetween xk and to obtain a criterion for terminating the iterations
2ck V

by writing your program so that when lxv - becomes less then 10-5,
xk

the iterations will be stopped.

1E)
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5.4 Running BASIC Programs

Let us assume that you have successfully "signed on" at a time-

sharing system terminal, with the assistance of a friend or by following in-

structions posted on the wall, so that you are confronted by a "live" terminal

connected to a BASIC time-sharing computer system. Your activity henceforth

will consist mainly of typing in "lines" and pressing the "carriage return" key

at the end of every line (step). Each time you return the carriage the line of

informati n you have typed in, encoded in some fashion, is ready to go to the

compute . Being very fast, the computer is able to look at each terminal

several times a second (this is why it.is called a "time-sharing" computer),

and take from your terminal a message, namely the encoded line of typing,

whenever one is ready to be sent.
Eventually you will have typed in your entire program, and the com-

puter will execute it. But until that point is reqched, the computer system

acts as your personal secretary, taking dictation and frequently putting in

its "two cents worth." The computer will have assigned to you a portion of

its memory to be your "work space," in which it will record the lines you type

in, appropriately encoded. (This will probably be a certain number of "tracks"

on a "disk file," which will be identified for you if you take a guided tour of

the computing cente-.)
The computer, of course, is not really doing zny thinking on its own

it is slavishly following a very long and elaborate program, which has been

written by specialists to control the computer during time-sharing operation.,

What you type in is, in effect, input data for this "operating system" pro-

gram, and by means of many branches IF statements, in effect the program

can test each line you type in, send you an "error message" if a line violates

certain conventions of BASIC, or store the line in your work space if it passes

all tests.*

*We are here describing a system "dedicated" to BASIC. BASIC is also avail-
able on some systems not fully dedicated to BASIC; in this case error messages
do not occur as you type in each line, but only when you attempt to run your
program.
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After yoti have typed in your er.,:ire program (or at intermediate points

on demand), the computer system sorts the lines by line number that .is, it

arranges them in increasing order of line nunibers. _This is why every line

must be numbered. (Try typing in a line without a number, and you will see

that the computer rOscts it, sending you a message of some sort to this

effect.) If the same line number appears more than once, the computer saves

only the last line typed in with that number.

This is, in effect, secretarial service', performed for you under con-
*

trol of the opei-ating system program. The implications of this service are as

follows:
If you want to correct or change a line, Just type in the line you want,

with that line number. That will replace the former version.

You don't need to type your program in order from top to bottom. just

use line numbers correctly.
If you want to insert one or more lines between two lines of your pro-

gram, just type in lines with intermediate numbers. This is the reason for the

custom of incrementing line numbers in steps of 10 as in Table 5.2 in Section

5.3; unforeseen insertions are then easy to fit in.

If at any point you want to see what is in your work space, type LIST.

This will cause the system to sort the lines in your work spaces and then type

them out for you to see.
For example, suppose you type in

10 LET A=5
20 LET B = 0
10 LET A = 2
30 LET C = A+B
200STOP
210END
40PRINT C
20 LET B = 3
LIST

Then the computer, under control of its operating system program, will clean

up the contents of your work space, and type them out; the result will prob-

ably look something like this:

I i
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10 LET A 2

20 LET B I= 3
30 LET C A+B
40 PRINT C

200 STOP
210 END

Note that the lines have been sorted, the last version of line 20 has replaced
the earlier version, and spaces have been inserted according to a conventional

pattern.
When you are finally satisfied with your BASIC program, or when you

feel like giving it a whirl, type RUN. The computer will thereupon attempt to

execute your program. If all goes well, you will see your output appearing

on the terminal typewriter, each time a PRINT instruction is encountered in

the program, the register contents referred to are sent to your terminal, which

types them out. When a STOP instruction is encountered (or when a bug is

detected by the system), operation ceases, and you may continue typin3 input

to modify your prog,-am. When you are all done you may sign off by typing

BYE.

Questions
1. Have someone show you how to use the terminal you will be using.

Prepare a sheet for your own future use, which includes notes on how

to turn the terminal on, how to sign on, how to save and retrieve pro-

grams, how to sign off, and other such useful information.

2. Experiment with typing in a program. Type the lines out of order and

observe how the system sorts them whenever you ask for a LIST. Ob-

serve how lines may be changed simply by retyping them.

.5 Debugging a Program

Now, how about bugs? In nature, these come in three families (the

phylum is arthropoda, the class i nsecta, and the order herniptera). Computer

bugs can also be classified into families.
The first type of bug includes tfiose which are recognizable by examin-

ation of a single line by itself. These are the least pestiferous as the computer
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For example, if you type
100 LETY-X+W

(accidently hitting the minus sign instead of the equal sign), one of the tests

which the system makes on each line of input will fail, causing the operating

system program to type out an error message rather than storing the line in

your work space.
The second family of bugs includes those which the system does not

detect and tell you about until you try to run your program. Here are several

examples:

(a) 10 LET 1: = 1 (b) 10 LET A = 2
20 LET W = 1 20 LET B = 3
40 LET W = W + K 25 LET C = A + B
60 PRINT K, W 40 PRINT, A, B, C
75 LET K = K + I 50 LET E = (A+D)*C
80 IF < 10 THEN 30 60 PRINT E
85 STOP 70 STOP

999 ",:,ND 99 END

(c) 10 READ A, B (d) 100 LET A = 10

20 LET X = A*13 110 LET K = 0

30 PRINT A, B , X 120 LET A = A 1

40 READ C , D 140 LET B = 1/A
50 LET Y = X+C*D 150 PRINT A,B
60 PRINT Y 160 LET K = K + 1

100 STOP 170 IF K < 12 THEN 120
110 DATA 5.23,-18.7,2.3 180 STOP

200 END 9999 END

In these programs every line by itself is a plausible BASIC line, yet

bugs are present: In exampie (a) an IF statement refers to a non-existent

line, while line 50 of example (b) refers to a register D whose contents have

not yet been defined (because no number has yet been stored in register D).

In example (c) insufficient data have been provided, and in example (d) divi-

sion by zero occur; on the tenth time that line 110 is executed.

*As remarkid earlier, this service is provided only on systems fully dedicated
to BASIC.
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In each case the execution of the program will be aborted at the point

where the bug first causes trouble. An error message identifying the trouble

is sent to the terminal, and the terminal is left in readiness to receive cor-

rections or addlions to the program, just as if no RUN had ever been requested.

In example (a) trouble comes immediately; one of the first things the

BASIC system program does when you type RUN is to check the transfers of

control, sp that in example (a) no calculations will be made. In the other

three examples, however, some calculations will take place, and some output

of the program will be obtained before the bug causes the computations to be

aborted.
Precisely what will happen in each case depends on the system. Some-

times rather than terminating calculations, a warning message is typed out,

but the calculations are allowed to proceed. In this case you will have to

deduce what the system did to get around the difficulty if you are to make use

of the results of the computation.
The error message one receives usually makes it easy to spot and cor-

rect bugs. Sometimes, however, it can be quite difficult to locate them, and

detective work is required. In that case temporary insertion of extra PRINT

instructions, to yield a partial trace of the calculations, is often helpful in

localizing the trouble. In this way the computer can be used to help in the

debugging.
The third family of bugs are those that produce programs which run, .

but just don'i. compute what you want to compute. As a trivial example, sup-

pose you want to compute 7.71 - 1.98 and to that end write the program

10 READ A,B,C
7.0 LET X A/B-C
30 PRINT X
40 STOP
50 DATA 3.52,7.71,1.98
b6 END

3. 52The computer will compute - - 1.98 rather than the result desired. In this
7 71

case the bug, which was failure to use parentheses in line 20, cannot be

detected in the compiling and running of the program.
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Perhaps the best protection against such bugs is to ...un test cases;

that is, to run your program with test values of the input numbers, and com-

pare the numbers the computer generates with independently computed answers.

Finally, to close this brief glimpse into life with the computer, we

should mention the other secretarial services provided by BASIC. These vary

from system to system. However, there should be some means of storing

programs in a users' library of the system, usually by typing SAVE. In order

to do this you have to give your program a name on some systems you will

have that done when you start typing it in. Then later you can retrieve your

program from the library and continue working with it. This is obviously a

big help if the program is long, or you are a slow typist. Also, it allows you

to use other people's programs. Finally, by typing in SCRATCH, or PURGE,

or KILL followed by the name (find out which applies for your particular sys-
/tem), you may remove the program from the users' library; it is important to

do this as otherwise the library becomes glutted with old programs.

Some further important secretarial services come under the heading of

EDIT operations. For example, it is possible to extract portions of a program

in the library, or to delete portions. It is possible to combine together a num-

ber of programs or portions of programs into one long program. It is possible

to resequence line numbers. At first you won't need these editing services of

the system, but later when you start writing long programs and combining sub-

programs together, they will come in very handy.

Questions

1. Determine by experiment what your particular system does when you

type in various incorrect lines of BASIC (line number missing, inad-

missible register names, missvfflings of words such as LET or PRINT,

etc.)
2. Four examples of programs with Type "2" bugs were givenN the text.

Determine by experiment what happens when you try to run these pro-

grams on your system. Would the behavior of the system enable you

to locate the bug in each case ?
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3. Type in and run selected BASIC programs you have prepared to date.

4. (a) Type in and run the square root program you coded in Question 13

of Section 5.3.
(b) Test this program with several input values V. For some values

of V that you use, what is the approximate per cent error in the square

root whicn the program computes ?

(c) Modify your program so that it types out every iterate X1 ,X2 ,X3,

which it generates. Observe this sequence of iterates for several
test cases, and comment on the manner in which the sequence con-

verges to the answer.
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Chapter 6. GRAPHS

6.1 Functions; Independent and Dependent Variables

Some of the most powerful applications of mathematics are those

dealing with change and with relationships between changing quantities. As

an example'consider Table 6.1 which is a record of a temperature sounding

taken at Washington* D.C. during \the early morning hours of August 15/ 1936.

TABLE 6.1

IMMO' Elevation
(ft)

Temperature
(0r)

Elevatic,n
ift)

Temperature
en

20 79 5000 67

1000 74 6000 65

2000 76 7000 59

3000 73 8000 56

4000 70 9000 52

The data are given in two corresponding columns. The numbers in the right-

hand column refer to the atmospheric temperatures while those in the left-

hand column refer to the corresponding elevations. Neithe, the two col-

umns taken by itself is at all useful. However, taken together they convey

information about the relationship between changes in elevation and corre-

sponding changes in temperature. A table such as the above is one way a

relation may be represented.
We may also state relations in words by describing the conditions we

impose upon the quantities involved. Consider the following: "For each

throw of a die record the value on the side facing up." This is a perfectly

good relation between the value on the face of a die and the ordinal number

of the throw.
Perhaps the most common way of describing a relation between two

quantities is to write an equation connecting these quantities. For example,

A wr2 expresses a relation between the area A and the radius r of a circle.
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In words, it states that the area of a circle is equal to its radius squared

times the constant i.
In the relation A = irr2 the symbols A and r are called varlak-aes since

they are used to irepresent many numeric values. In practice when we are

dealing with a relation such as the above we usually choose a value for r

and then compute the corresponding value of A. That is, we usually think of

A as being determined by r, or dependent on r. Therefore we call A thel

dependent variable and r the independent variable. More generally, the de-

pendent varialNkis the variable whose values are obtained after values, of

the independent variable are chosen. These values of the dependent variable

may be computed as in the case of the area of a circle or they may be the re-

sults of measurements as in the case of the data In Table 6.1. There, ele-

vation, the independent variable, was varied experimentally and atmospheric

temperature was measured for the corresponding elevations.

In many situations as described above, it is convenient to think of

one variable depending on the other rather than the reverse. For exampleit

is more natural to think of temperature as depending on elevation than of

elevatiori depending on the temperature. Consequently elevation is cholen

as the ,independent variable with atmospheric temperature becoming the de-

pendent variable. In other cases the relationship between two variables is

symmetric in nature and we may arbitrarily choose the independent ve'r-iialst--

For example, it is Just as natural to say that the area of a square depends on

its perimeter as to say that the per,Ineter depends on the area.

When a relation between tirvo variables is luch that for each value of

the independent variable there is only one value for the dependent vartab

the relation is called a function or sometimes a functional rel on. All the

permissible values of the independent variable comprise the main of the

function whIreas all the values of the dependent variable comprise the range,

of the furttion. Thus, for example, in the functional relation in, which the
.7

value on the side facing up on a die is a function of the ordinal number of

the throw the domain consists of all positive integers while the range is

restricted to the integers from 1 to 6. / ;2.1
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Giving the values of the independent and dependent variables in

numerical form is nct the only way of describing a function. The values of

the two variables can also be described in graphical form using coordinates

in a rectangular coordinate system. Figure 6.1 is such a graphical represan-

tation of a t'ypical electrocardi- 3

gram. It provides a comprehen- Ds v.
2 =

--sive view of the variations in '3 I> I

voltage as a function of time,
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1. 1.6 1.8much more revealing than could .6 1 LO 12 4
Time (seconds)

be obtained from any tabulation

of corresponding values. For
this reason we shall discuss graphic presentations of functions intensively

in this chapter.

Fig. 6.1

Questions

I. If each of the following statements expresses a functional relation

between the variables indicated, which of the variables would most

logically be chosen to be the independent variable?

(a) The day of the month and the corresponding maximum outdoor

ternperaturel.

(b) The atmospheric temperature dnd the position of the sun in the

sky on a sunny day.

(c) The volumes of spheres and their corresponding circumferences.

(d) The volumes of spheres and their corresponding surface areas.

2. A useful categorization of variables is in terms of the values which

they can assume. Sometimes the variables take on discrete values

each separated by some finite difference. Often, however, they take

oh all the values contained in an interval on the number line.

(a) Can you give an example of a function whose independent vari-

able takes on discrete values and whose dependent variable takes

on all values in an interval.

(3) Cive an example of a function whose domain consists of all

values in.an interval and whose range has discrete values.

1
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6.2 Choosing Scales foi Axes

When a function is graphed we usually plot the independent variable

horizontally and the dependent variable vertically. Thus in Fig. 6.1 time

appears as x-coordinates or abscissas and is the independent variable while

voltage appears as y-coordinates or ordinates and is the dependent variable.

If we are graphing data from a table, the first step is to choose the

size of the scales, that is, how large an interval will be represented by

each pair of horizontal lines of the graph paper and by each pair of vertical

lines. Figure 6.2 represents a graph of the data of Table 6.2. Each division

on the vertical axis represents a five-year interval. Obviously, this is not

the only possible choice. The same data are plotted in -Fig. 6.3 using dif-

ferent scales; here one division on the vertical axis still represents five

million people while one horizontal division represents a 10-year interval.

Neither graph is incorrect, but the one in Fig. 6.2 has advantages over the

other. If we use a scale like the one shown in Fig. 6.3, on a whole si-aet

of graph paper,the graph will huddle on a small part of the page, leaving

most of the area blank and therefore devoid of information. A more expanded

scale like that in Fig. 6.2 makes it easier to plot and read the graith accurately.

TABLE 6.2

Year

Population of the United States,
From the Statistical Abstract of the

Population
(millions)

1790
United

Year

- 1950
States

Population

1790 3.929 1900

_(millions)

76.094
1800 5.308 i905 83.820
1810 7.240 1910 92.407
1820 9.638 1915 100.549
1830 12.866 1920 106.466
1840 17.069 1925 115.832

1850 23.192 1930 123.077
1860 31.443 1935 127.250
1870 39.818 1940 132.594

1880 50.156 1945 140.463

1890 62,948 1950 152.271
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of the graph of Fig. 6.2 but with each of the original vertical scale divisions
representing 3.7 millions and starting from 4.0 Millions. Such a vertical

63.2

5E.8

48.4

41.0

33.6

-52 26.2
0.

11- 18.s

11.4

4.0

1111111 11111111111/11
11111111111111111111111111111111111111111,1111
111111111111111111111MMI11111111111111aM

11111111111111111111111111111M111"41111111111

111111111111MMIIIIMIERIMEd1111111111111

11111111111111111111111111IMM11111111
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11111111M=11111111M11111111111111111111111111111111

111111111111211111111111EMIMIll
11111111111111211111111111111111111ENIMI
IIIMPINAMME11111111111111111111111

1800 1820 1840
Year

Fig. 6.4

1860 1880

is perfectly legitimate, but it makes plotting and reading the graph laborious.

When the scale runs from zero to 160 millions, as in Fig. 6.2, in intervals of

5 millions, the date at which the population was 25 millions, for example, is

found easily. Since a graph is intended to be a clear visual display of data,

an effort should be made to make it easy to read. Generally, one should
choose the interval represented by one division so that ihe graph has simple

decimal scales on which decimal fractions can he plotted and read easily

(the scales on a commercial slide rule are examples of this).
If zero on one or both of the scares is not included on a graph, the

graph may be misleading if one does not keep in mind where a "missing"
,

fzero is (somewhere off the paper). For example, the pressure changes in

Fig. 6.5(a) appear to be very large. Figure 6.5(b), however, which includes

zero pressure shows that these changes are, in fact, small. (The difference

in the two graphs is analagous to comparing numbers by their absolute dif-

ference and by their percentage differance.)
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Whether one includes zero or not deper.ds on the purpose for which

the graph is drawn; there is no general rule. A graph like that In Fig. 6.5(a),

for example, can be misleading to someone who sees such a graph for the

first time. (A climatologist, who Is often concerned with small pressure

changes, Uses suctigraphs all the time And is not misled.)

Sometimes there is no question about what should be done. Suppose

you are taking temperature readings once every minute of a substance as it

cools to room temperature. You can start your graph at time equal to zero or

at the actual time your watch shows when you sta:t taking readings. But. it

would be pointless to start at temperature equal to zero, since you know the

temperature will not fall below room temperature. In this case, room temper-

ature is the best choice for the origin of the ordinate scale.

guestioi-s
1. Figure 6.6 contains two graphs on one piece of graph paper. The

lower curve is a plot of the time of day that Venus rose throughout

1968, and the upper curve shows the tiMes Venus set, in the same

year.

(a) On what date did Venus rise earliest?

(b) On what date did it set latest?

(c) . On what date was it above the horizon longest?

2. (a) Use Fig. 6.4 to find the population in the years 1810 and 1840.

(b) Repeat (a) using Fig. 6.2.

Cc) Are the points easier to locate in (a) or (b)?
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3, Figure 6'.7 shows three possible V I 2 3 4

scales for a graph. On each
one, locate the points: 0.25, 0 I 2 3

1 I 1 illiAliJi i
1.7, 1.8, 2.5, 0.33. Are all

0 1 2 3three scales equally easy to 11111 1 11 t l

use? If so, why? Fig. 6.7

Label or describe scales suitable for graphing the following sets of

data. Make sure, not only that all the data described can fit on the

graph, 13.:t also that interpolahon is made easy that the smallest

divisions correspond to, reasonable numbers.

(a) Height between 2 and 6 feet
Age between 0 and 17 years

(b) Public debt between 240 and 380 billion dollars
Years between 1950 and 1966.

(c) Fahrenheit temperature between 320 and 2120
Centigrade temperature between 00 and 100°

(d) Day of year between 0 'and 365
Time of sunrise between 4:13 and 7:39

The table below gives the masses of steel spheres of different diam-

eters. Draw a graph of the data.
Diameter

fcm)
Mass
(gm)

Diameter
(cra)

Mass

0.20 0.03 1.20 7.42

0.40 0.27 1.40 11.76

0. 60 0.93 1. 60 18.00

0.80 2.20 1.80 25.00

1.00 4.30
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6. The table below gives the masses of spheres (made of a more dense

material than iron) for different diameters. Plot these data on a

graph.

Diameter Mass Diameter
...igthn

Mass

0.20 0.06 1.20 14.84

0.40 0.54 23.52

0.60 1.86 1.60 36.00

0.80 4.40 1.80 50.00

1.00 8.60

7. Compare your estimates of (i) the absolute uncertainty and (ii) the

relative uncertainty in determining the change in maximum average

pressure from February to June in both Fig. 6.5(a) and 6.5(b).

6 3 Smooth Curves and Uncertainty

Figure 6.8 presents the data of Table 6.1 in graphic form. The lines

drawn between data points enable us to estimate the temperature at altitudes

8 0

64- 7 0

;

6 0
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01.0221112111111111111111111111111111111111111
1111111111111111111111111111111111111111111
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11111111111111111111111111111111113111111111111
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other than the ones at which measurements were taken. In choosing what

sort of line to draw on a graph of known data points, one has a wide choice.

Using straight lines, as in Fig. 6.a, is a simple choice but not necessarily

the most reasonable. Note that the lines Joining successive data points

meet at angles, forming corners all along the graph. If the measurements of

temperature had been made at altitudes other than those listed ih Table 6.1,

the data points would appear at other places on the graph than on the lines,
and consequently lines between these points would meet at corners in places

other than those of Fig. 6.8. The corners have no significance in the phy-
sical relationship of the temperature to elevation, since the temperature
changes in a smooth, regular fashion best described by a graph that is a

smooth curve.
By drawing a smooth curve that includes the points in Fig. 6.8, we

can connect them so that there are no corners. This may be done.freehand

or with the Aid of a French curve (a plastic template with many different

curves which may be fitted against the points on the graph to make a smooth

curve). A smooth curve, like that drawn in Fig. 6.9, is not unique, but de-

8 0

50

111111111111111111111111
azutehminuminiummuni
lummuligistmlimainummlim
inummoliammuminlimml
Ira11111111111111111
111111111111111121111aiumumwminum
111111111111111111111111111111110111111111
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Fig . 6 . 9
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pends on the judgment of the person, drawing the curve. The curve may or

may not pass through the points that would result from additional measure-

ments, but it is more likely to do so than a series of straight lines connect-
ing the points as in Fig. 6.8. The question raised whenever a line is drawn
through a finite number of data points on a graph is how closely It approxi-
mates the physical situation being represented. The greater the number of
data points in a given interval, the more accurate the graph is likely to be.
That is, if the temperature had been measured at intervals of a foot instead

of 1000 feet, the points plotted on the same scale as Fig. 6.8 (or Fig. 6.9)
would run together and appear to form a continuous smooth curve on the

graph, closely approximating the actual physical situation.
So far, in discussing smooth curves we have assumed that the uncer-

tainty in the data is smaller than the uncertainty in actually plotting the data.
If the uncertainty in the measurements for data points is larger than this, we

must take it into account in plotting a graph. In Chapter 1 we represented

an uncertainty in a physical number by an interval on the number line. If we

replace a point on each axis by an interval, we replace a point in the plane

by a rectangle.
Figure 6.10 is a graph drawn without taking uncertainties into ac-

count. It was made from a table of data for the mass and the corresponding

volume of a metal. We have drawn a smooth curve through all the points just

as we dd in FiZg. 6.9. However, if we take into account the uncertainties in

the measurements (the mass was measured very roughly with an uncertainty

of +5 gm and the uncertainty in the volume Vas +0.5 cm3), the data are

consiste.nt with a straight line, as shown in Fig. 6.11. Note that the straight

line passes within the uncertainty rectangles whose sides are 10 gm and

1.0 cm3. Of course, the wiggly curve in Fig. 6.10 is also consistent with

the data. But whenever possible we try to fit data with the simplest possible

curve. (Occasionally, however, more refined measurements show that an

earlier and simpler curve IF only an approximation of the relation between

the quantities.)
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We do not always draw the uncertainty rectan on a graph, but in

deciding how to draw a curve through a set of data points the approximate

size of the uncertainty' rectangles must be kept in mind.

Questions
1. The following problem is best solved using an elz,Aronic desk calcu-

later or computer:

For those who watch the stock market, the Dow-Jones Industrial

Average is irtQl, information. From issues of the Wall Street Iournal,

here are a few days' quotations:
Dovi-Jones Industrial Average (November 1969)

*Nov.7

Nov. fo

Nov. 11

Nov. 12

Nov..13

*Nov. 14

Nov. 17

Nov. 18

Nov. 19

\.

.Open 11:00 12:00 1:00 2:00 Close

46

856.19

862.00

861.07

858.57

853.15

849.19

846.36

840.81

845.53

859.75

863.45

861.01

857.91

852.69

864.88

844.24

841.21

843.26

860.22-

865.69

858.96

858.43

850.51

846.55

843.65

842.20

841.80

8k0.61

865.48

858.83

857.97

849.52

847.45

843.26

842.79

941.00

860.94

863.52

859.23

857.91

850.45

849.06

842.99.
x

843.19

840.62

860.48

863.05

859.75

855.99

849.85

849.26

842.53

845.17

839.96

*Friday

(a) Take an average value of the Industrial Average for each day and

plot it with the date. (Remember to include week-ends when marking

divisions on the axis.) From the spread of the numbers for each day,

estimate an uncertainty and use uncertainty lines on the graph. Draw

a smooth curve through the lines.

(b) If November 15 had been a tradinrNgliay, whai Oh. 'Are been the

Industrial Average?

(c) Can you make a similar guess about the possible average for

November 9? Why, or why not?
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2. The table below gives the masses of different volumes of an alloy.
The uncertainties were: mass, +5 gm; volume, +0.5 cm3. Draw a

graph of the data including uncertainty rectangles.

Volume Mass Volume Mass
lcm3) (gm) (cm3) (gm)

1

3

5

8

15 10 95

25 12 115

45 13 125

65 15 155

85

The table below gives the volumes of spheres of different diameter.

Draw a graph of the data.

Diameter
(cm)

Volume
lcm3)

Diameter
(cm)

Volume
(crn3)

0.6 +0.1 0.2 +0.1 2.1 +0.3 5.0 +1

0.8 +0.1 0.35+0.1 2.5 +0.3 7.0 +1

1.0 +0.3 0.45+0.1 2.7 +0.3 8.0 +1

1.1 +0.3 0.8 +0.1 3.0 +0.3 12.5+1

1.4 +0.3 1.0 +1
4. During an experiment with oases, air was allowed to flow past a

heater in a tube, and the temperature of the air leaving the tube was

measured at v-trious times: The data are tabulated below.

TABLE 6 . 3

Temperature
(oc)

Time
(sec)

23.6 30

24.7 85

27.3 210

28.3 305

29.4 370

30.0 430

30.6 490
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The uncertainty in the temperature measurements Ls +0.1 degree.

The time is measured to within +S seconds. Piot the data with un-

certainty rectangles and draw a reasonably smooth curve through

them. How distorted would the curve have been if you had tried to

draw a cre that exactly passed through all the points?

6.4 Interpolation and Extrapolation

You already have some experience interpolating on graphs determin-

ing the values of variables between data points or between division marks.
pAre did this in Section 4.5 to make a convenient decimal scale for a power-
of-ten shde rule and,you have interpolated between divisions on the graphs

in this chapter.)
Sometimes linear interpolation (interpolating on a graph that has

straight lines connecting the data points) is as good as interpolation from

a smooth curve, but not usually. Table 6.4 gives the distances that can be

seen over the ocean from various heights above the water. These data are

plotted in Fig. 6.12.
TABLE 6.4

Height
(feet)

Distance
(miles)

.0 0

10 3. 9

SO 8.7

100 12.3

150 15.1

200 17.4

Suppose you want to know the distances visible from heights of five

feet and 120 feet. First, from the smooth curve you can read values of about

2.7 miles and 13.5 miles respectively. NI compare these numbers with inter-
polation from a line graph, we can use straight lines between the points for

zero and 10 feet, and between the points for 100 and 150 feet (dashed lines

on the graph) Using the lines for interpolation, one gets 2.0 miles and.
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13.4 miles. This linear interpolation is 264per cen; low at five feet, and

1 per cent low at 120 feet compared to interpolation on the smooth cirve.

The drawing of a smooth curve through or close to many data points

allows us to take account of several adjacent points at once in deciding how

curved to make the segments between points, while a straight-line segment

is determined by two points only. Thus, interpolation by a smooth curve

uses more than just two pieces of information.

It is worth noting that interpolation in decimal fractions is much eas-

ier if it is done on a graph with a decimally divided scale, as you found out

when you interpolated on tho graph in Figs. 6.2 and 6.4 in answering Ques-

tion 2 of Section 6.2.
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-

The idea of*int. rpolation can be eiXtended to estimating values of

variables outside the limits of the known points by extending the curve a short

distance beyond those limits, and these can then be used to make estimates.

This process is called extrapolation. In Fig. 6.12, for example, the dashed

line extending past 200 feet is an extrapolation of the curve. The further one

ventures from the known data, the more the curve deviates from the straight

line, and the errors in extrapolation increase.
Both interpolation and extrapolation should be applied with caution.

Extrapolaticn involves venturing into unknown territory beyond known points

and should not be trusted far from the known data. Interpolation, finding

values between known points, seems to be safer. Not all variables inspire

this confidence, however.
In Fig. 6.13 the size of the U.S. Army plotted at 10-year intervals

gives the solid curve. The size seems to Increase smoothly with time. If,

howevar, intermediate points are plotted (es), the dashed curve results and

the enormous effects of World War II and the Korean War become evident.

In this case, 10-year intervals are too large to provide an accurate graph.
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Questions

I. In the third paragraph of Section. 6.4 it is stated that the "linear in-
terpolation is 26 per cent low at five feet and 1 per cent low at 120

feet." In terms of Fig. 6.17, how are the figures 26 per cent low
and 1 per cent low arrived at?

4 3From a few calculations of the volume V= R of a sphere (where R
3

is the radius) you can plot the volumes and the corresponding radii

and then use the graph to read the volume dir:ectly for any value of

R. Table 6.5 gives a few values for V and R.

TABLE 6.5

V R V
(cm) Isish

0 0 1,25 7.24

0.25 0.07 1.40 11.49

0.50 0.52 1.60 17.16

0.75 1.77 2.00 33.52

1.00 4.19

(a)' Plot the points and draw a smooth curve. From this graph, read
off values of the volume for radii of 1.10 cm, 1.50 cm, and 1.80 cm.

(b) In which regions of the graph would linear interpolation be rea-

sonable?

3. Using the data points in Table 6.2 draw k graph of the population of
the United States during the years 1920 thmugh 1950 and cpctrapolate

it (using a French curve) to estimate the population in 1980 and 2000.

How do your estimates compare with those of'your classmates?

1 4,;
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4. An experiment is done in wt,ich a container of water is heated, and

the temperatuie read every 0.1 minute. A table of the data is:

Time Temperature Time Temperatum
(minutesl PC) (minutes), PC)

0.0 29.4 0.6 37.2

0.1 30.7 0.7 38.3

0.2 31.9 0.8 40.0

0.3 33.2 0.9 40.8

0.4 34.5 1.0 42.1

0.5 35.8 1.1 43.4

(a) Make a graph of the data. Considering the accuracy to which

the measurements are given in the table, estimate the size of the

error rectangles. Are they large enough to be significant on the

scale of your graph?

(b) Connect the points with a smooth curve. Does one point appear

to be out of line? Draw a better curve through all the points but that

one. If that point is actually in error, how much is the smooth curve

including it distorted in comparison with the curve not including it?

If the apparently "wrong" point is discarded, what is a reasonable

guess for the temperature of the water at that time?

(c) What woula you expect the temperature to be at the end of 1.2

minutes? At the end of 2.9 minutes?

5. Most curves, viewed under sufficiently high magnification, appear

to be straight-line segments over the field of the magnifier. A stmt.-

lar magnifying effect can be obtained by plotting the part of the curve

that was magnified on a graph where the divisions of the graph paper

represent very small increments of the variables. This can be demon-

strated quite simply by plotting the squares of numbers for several

choices of scale:

(a) For numbers from 0 to 2 plot the squares of the numbers from 0 to 2

on the vertical axis, choosing x-coordinates (the independent variable)

on the horizontal axis at intervals of 0.20.

14
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(b) Plot the squares of numbers from 0.4 to 0.6 with x-coordinates

at intervals of 0.02.
(c) Plot the squares of numbers from 0.48 to 0.52 with x-coordlnates

at intervals of 0.005.

(d) Using a straightedge as a standard of aomparison, see if any of

the three curves can be approximated by a straight line for the entire

length.

(e) Plot on a "magnified scale the squares of the numbers between
0 and 0.2, and also between 0 and 0.02. Can these graphs be ap-
proximated by straight lines?

6. In 1973 the postal rates for first-class letters were 8 cents for 0 to

1.0 oz", 16 cents for 1.0 to 2.0 oz, 24 cents for 2.0 to 3.0 oz, etc.
Plot a graph of these pairs of numbers from zero to 5.0 oz.

7. In an experiment,' a coin was tossed-300 times and the frequency of

occurrence of runs of different length of successive heads or of suc-

cessive tails was recorded. The results are plotted in Fig. 6.14.
100

t= 80

8 60
0
u 40

cr 20

-a

1 2 3 4 5 6 7 8 9
Number of successive heads or tolls In o run

Fig. 6.14
This is an example of a graph where it makes no sense to connect
the points or interpolate between them. Each variable can only take

on integral values, so that saying that a run of 3.5 heads or tails

occurred about 16 times is meaningless.

(a) If the number of occurrences of runs of three successive heads

or tails had not been recnrded, how would yc I estimate it?

10
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(b) The graph In Fig. 6.2 hat the population of the United States as
the deperident variable. This variable, obviously, can have only in-
tAgral values. Why is each line connecting the points an.unbroken

line and not a series of.points representing integral values?
8. Suppose you knew only the points shown' on the graph in Fig. 6.15.

At what additional values of x would you like to know the value of

before sketching the graph? Explain.
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Chapter 7. LINEAR AND POWER FUNCTIONS

7.1 NoMtion

In the preceding chapter we discussed ways of constructing graphs to

display a function. We also pointed out that a graph is not the only way of

displaying a function and that, in fact, tables and rules stated verbally or

algebraically may also be used.
Whenever we can express a function in algebraic terms, we shall do

so for compactness and ease of handling. Them are no strict rules on what

letters to choose for what purpose, but there am some general conventions

which are weath following since they reduce the need for frequent reminders

of the meaning of symbols
Suppose you want to express the rule "to find the value of the depen-

dent variable, square the value of the independent variable,and multiply it by

some constant." If instead d making this lengthy stategiont you simply write

a = bc2, without any further explanations, you are oot guaranteed that it will

be correctly interpreted, the reader may actually understand it as "to find the

value of the dependent variable a take tte independent variable b and multi-

ply it by some constant c squared."

To minimize such misunderstandings the following conventions are

useful.
(a) Numbers which are not specified but are meant to have a fixed

value for a given function are called parameters and are often ex-

pressed by the first letters of the alphabet: a, b, c, d, .

(b) Continuous variables are usually expressed by the last letters

of the alphabet, such as r, s, t, u, v, w, x, y, and z. In case of

angles Greek letters such as a, 9, and 4) are also used.

1 4 ,
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.(c) Variables which are limited to non-negative integers are usually

expressed by the letters j, J, k, I, m, and n. Applying these cori-

ventions to the rule which we have just spelled out in words could

yield any of the following "spellings"
y ax2, s = bt2, x = ez2

and the chances of misreading this to have the second meaning,

y = b2x, are very small.

(d) Often we wish to pick out a number of specific values of a vari-

able. These specific values need not be integers, but they can be

labeled xo, xl, x2, or in general xi or xn, with the corresponding

values for the dependent variable yo, yi, y2, or in general yi or yn.

The integers serve only to distinguish values of a variable one from

another, Just as a route number on a bus serves only to identify it.

Integers used in this way are called indices.

CO Many properties of functions can be discussed without spelling

out the detailed mathematical rule. Thus, a notation is needed to

indicat,- that one variable is a function of another. The most common

one is a shorthand form of the statement "y is a function of x" and is

written as y = f(x) read "y equals f of x." The notation f( ) stands

for a definite rule relating the dependent variable to the independent

variable. The independent variable which is placed in the parentheses

in f( ) is also called the argument of the function. If we write y f(x)

and u = f(v) we call the variables by different names, but the under-

standing is that the same rule relates y to x and u to v. If we wish

to indicate different rules, we use different letters such as y g(x),

y = F(x), or we use indices such as x = fl(t), x = f2(t). etc.

We can think of an equation such as f(x) = 2x + 3 as an alternative

notation for y = 2x + 3. The power of the f(x) notation lies in the ease with

which a value of the dependent variable can be specified for a given value

of the independent variable; for example, the notation f(3) is used to repre-

sent the value that the dependent variable assumes when the independent

variable is equal to 3. If f(x) = 2x + 3, then 1(3) = 2 3 + 3 = 9. That is,
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f (3) is obtained by performing the same sequence of operations upon 3 that

are performed upon x in the rule defining the function.

The argument of a function, the entity placed in the parentheses in

f( ), may sometimes not be iaentical with the independent variable. For

example, if y = f(x- 2), then x - 2 is the argument of the function but x is

the independent variable. To find y for a given value of x we first calculate

x - 2 and then apply the rule ri-4 to x - 2. For example, when x = 7,

y = f(7 2) = f(5).

Questions

1. Given the function f(x) = 3x + 1, find (a) f(10), fb) f(3), (c) f(-1).

2. For f(x) = 5, find

(a) 1(0)

(b) f(2)

(c) What is the range of this function?

3. Make up a functicn f such that f(3) = 7. Can you make up another

function g such that g(3) = 7?

4. Let p = f(s) be the perimeter of a square expressed as a function of

the length of its side s. What is the rule for f(s)? Express in words

the meaning of f (3).

5. Let f( ) stand for the rule "take the square of the argument."

(a) What is f(x-1)?

(b) If y = -1), what is the value of y when x = 4, I , -1, 79, ?

6. Suppose you have a function y = f(x) such that f(3) = 10. If .f(x- 2),

for which value of x will z 10?.

7.2 Homomorphic Curves -

Suppose a certain curve is the.graphical display of a function y f(x).

Suprose further that we have another curve which has the same size, shape,

and orientation as the first curve (1',ig. 7.1). That is, we can conceive of

the second curve as being generated from the first by displacing each point

of the original curve a fixed amount vertically; and a fixed amount horizontally.
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For example, in Fig. 7.1 the
dashed curve could have been

obtained by displacing the

solid curve four units vertical-

ly upward and three units

horizontally to the left. When-
ever two curves are related in
this way, we say that the curves

are homomorphic.
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Let the functions describing two homomorphic curves be given by

y f(x) and y = g(x) respectively. How are the two rules f(x) and g(x) re-

lated to each other? To find out, it is best to consider the two possible

displacements in the plane separately. First, we take a curve displaced

only vertically (Fig. 7.2). Since for each value of x the value of y on the
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new curve i\i; c units greater than the value of y on the original curve, we

have g(x) f(X) + c, where c-> 0: Thus, .in words, to find a y value of the
new curve for a given x we use the rule of the original curve, and add a num-

\
ber c, indicating the vertical displa03merh. We can.therefore write the rule
for the new curve as

)or
y = f(x) + c

y c = f(x)

If the homomorphic curve y = g(x) is c units below the original curve

y = f(x) then, -by an amument similar to the above, the relationship between

the two functions can be expressed as g(x) = f(x) c, where again c > 0.

We can express both upward and downward displacements by writing only

g(x) = f(x) + c and letting c have either positive or negative values.
Let us now take the case of the horizontal displacement shown in

Fig. 7.3. The original funiction is ex-
,

pressed as y = f(x) and the function ho-
momorphic to_it as y = h(x), displaced

three units horizontally to the right.
Consider a given point on the curve

y = h(x), say, x = 7, for which
h(7) = 5. For which value of x is

f(x) =: 5? Since the curve correspond-

ing to y = h(x) was generated by dis-

placing the curve corresponding to

y = f(x), three units to the right, the 0

value of x, for which f(x) = 5, will

be three units to the left of 7, i.e., at x = 4.
WI general, if the curve y = h(x) is generated by displacing the curve

y = f(x) to the right by d units (d 0) (Fig. 7.4), then applying the rule h( )

to any value of x will yield the same number as AT3plying the rule f( ) to

x d. Hence h(x) = f(x- d) and the rule for4the new curve becomes

y = f(x- -(2)

(1)

10

5

Fig. 7.3
10
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V

yzt (z) yath(4

F ig . 7.4
Here again, as with the vertical displacement, our illustration fs

based on the homomorphic curve being to the right of the original curve.

However, just as with downward vertical displacements, by denoting dis-

placements to the left by negative values of d we can use the equation

y = f(x -d) for both types of horizuntal displacements.
We can now combine these displacements. Given a function y = f(x),

the values on a curve homomorphic to it, displaced c units vertically and

d units horizontally is

X

or
y f(x - + c (3)

y c = f(x- d)

Questions

1. Given some arbitrary curve, how many curves can be constructed

which are homomomhic to it?

2. By use of vertical and horizontal displacements, find whether the

curves given in Fig. 7.5 are homomorphic.
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3.

If a curve

A
B

is hom
om

orphic

to a curve

C
D

,

and

C
D in turn

is hom
o-

m
orphic

to E
F,

is A
B

horm
arnorphic

to E
F?

G
ive

your

reasons.

1.

In plane

geom
etry

one

uses

the congruence

relation:

T
w

o

plane

fig-

ures

are

said

to be congruent

if one

can

be

exactly

superim
posed

on

the

other.

H
ow

is congruence

different

from

hom
om

orphism
?

5.

A curve

is described

by the

rule

y =

x2.

W
hat

is the

rule

for

the

curve

hom
om

oiphic

to it,

displaced

three

units

horizontally

and

four

units

vertically?
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6. Each of the functions f(x) below can be displayed by a curve y f(x).

For each case state the functions for the curves displaced by the

amounts indicated.
Horizontal

Displacement
Verti.cal

Displacement

(a) f (x) = 1/(x+ 1) -2 10

(b) f(x) = 2 3 -1

(c) if(x) = x/(x+ 1), 1 0

7. Let n be the ordinal number of the throw of a die and t the value

showing on the top face, I is a function of n.. Call it g(n).

(a) What is the domain and range of g(n)?

(b) What is the domain and range of h(n) = g(n+ 3) + 10?

(c) How would a graphical display of h(n) be related to the graphical

display of g(n)?

7 .3 Direct Proportions
A very common relation between a dependent and independent variable

is that when the independent variable is doubled or tripled so is the depen-

dent variable. In other words, their ratio is a constant

Written in the form y = f (x) this says that

f(x) = ax (4)

This function is referred to as El direct proportion and the parameter a is

called the constant of proportionality.
Mathematically the domain and range for this function extends over

the entire number line. However, if the variables are not pure numbers but

are measures for definite quantities, practical considertion may restrict the

domain. For example, the circumference of a circle as a function of its di-

ameter is given by f(x) wx. The diameter of a circle cannot be negative,

hence in this case the function makes sense only for x 0.

Figure 7.6 shows the graphs of several direct proportions for various

values of the constant of proportionality. Note that graphs of direct propor-
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tions constitute a family of straight linesthrough the origin each of which

can be generated by varying the constant of proportionality.

12

- 8

-4- 6

-10x

I I I 4 1 1 1 4 1 I I x
-30 -2.5 - 2.0 -1.5 -1.0 0_5 0.5 1.0 1.5 2.0 2.5 3.0

Fig. 7.6

Lines representing functions with positive constants of proportionality

are directed upward to the right, while lines which are graphs of functions

with negative constants .-)f proportionality are directed downward to the right.

The graphs in Fig. 7.6 could represent a mugitude of real situations.

For example, the two lines with a positive constant of proportionality, could

represent the mass of a liquid as a function of its volume (for x 0) or the

position of a point on a line as a function of time. The line with the nega-

tive constani of proportionality might represent the force exerted by a spring

as a function of its stretch; the negative value indicates that the force is

opposite in direction to the stretch.
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The steepness of the line is related to the value of the proportionality

constant. Funct\kons ijaving proportionality constants whose absolute value

is larger have steeper graphs than functions with constants of proportionality

whose absolute value is smaller. To obtain the constant of proportionality

from the graph of the function we can choose any point on the graph and di-

vide its y-coordinate by its x-coordinate. A note of caution is needed here:

the values of the corresponding coordinates must be obtained by reading them

off the scales used along each axis. These scales, on the two axes may be

different as in Fig. 7.6, thus finding the values' of the coordinates by mea-

suring along both axes.with a ruler would result in errors.

When the dependent and independent variables have different units,

then the consthnt of proportionality 'has the 'units pf a specific quantity ar-

rived at by dividing the unit of.the dependent variable by the unit of the in-

dependent variable (see Section 2.4). Thus in the examples which we have

Just mentioned, the constant of proportionality defined the following specific

quantities respectively: density (mass psi unit volume), velocity (displace-

ment per unit time) and the force constant (force per unit length).

Questions
1. The relation between feet and yards is given by the equation y = 3x.

(a) What does y represent? What does x represent?

(b) Interpret 3, the constant of proportionality.

2. Which of the foljowing functions are approximately direct proportions?

For the cases which are, write the corresponding equation and indi-

cate reasonable values for the domain and range of the function for

which you expect the direct proportion to be valid.

(a) The height of a building and the number of floors.

(b) Age and weight.

(c) Weight of a package and price of postage.

(d) Number of telephone calls and telephone bill.

(e) Weight of patient and amount of medication.

(f) Age of tree and thickness of tree.
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3. For a certairrkind of paper one sheet is 3 x 10-3 cm thick;

(a) Plot the thickness of a book made with this paper as a function

of the number of pages it has. \.
(b) What is the constant of proportionthty?
(c) What is the algebraic formula relating the number of pages and

thickness?
4. Figure 7.7 represents the masses of samples of some substance and

t-he corresponding volumes.
10 mem es mom ...s minamrommomm.....mommuma ormindmmommummommormiumummonam..mossommummungssimmummumm
m mumummeummmummanms....m n mu
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MMOMMOMMOMMUMMINIMMMEMEMEMMOMME
MMOMEMMOOMMOMMEMOMMOOMOMMERMismmummemommomarommummumum
MOOMMOMMOMMOMMIMMOOMMINIMMMEMMOMM
IMMOOMMOOMEMMOMMMOMMOMMMEMOMOMMM
MEMMOMIWAMOMOMMOMMOIMMOMMOMMEMMM
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VOLUME (cm3)

Fig. 7.7

12 14 16

(a) What is the mass per cm3 of this substance?

(b) What is the function that corresponds to this straight line?

(c) What is the constant of proportionality?

(d) On the same graph draw the line corresposnding to mass vs. vol-

ume of water.

(e) Given two lines on a mass-volume graph, how can one readily

see which corresponds to the denser substance?

5. What Is the equation of the straight line through the origin and the

point (-3,6)? Through the point (100,0?

1 5
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6. A straight line passes through the origin and the point (c,d). How

can one tell the sign of the constant of proportionality of the corre-

sponding relation by Just looking at the signs of c and d?

7. Often a constant of proportionality is given as a rate. What propor-

tion is implied by the statements:

(a) the rate of exchange of Swiss francs is 0.32 dollar per franc?

(b) the rate of flow of water over a dam is 50 cm3 per minute?

(c) the rate of interest is 10 per cent?

8. An electronics firm lists the following prices for different quantities

of a certain brand of capacitors as follows:
Lots of 1 - 24 at 48 each
Lots of 25 - 49 at 35c each
Lots of SO and up 27 each

(a) Plot the cost of the capacitors as a function of their number.

(b) Would you order 23 capacitors?

7.4 The Linear Function

We have seen that the relation y = ax describes a whole family of

graphs, straight lines passing through the origin, whose steepness is deter-

mined by the value of a. We can, of course, construct lines that do not

pass through the origin and are homomorphic to a line described by y = ax,

by displacing each point on the line corresponding to y = ax by a fixed amount

b in the vertical direction. This procedure changes any function y = f (x) into

y = f(x) + b (Section 7.2). Therefore the function described in the graph

homomorphic to the graph of y = ax becomes

y = ax b (5)

Because the graph described by this equation is a straight line the function

f(x) = ax b is called a linear function. This function has two parameters

a (a e3), and b. Note that for x = 0, y = b. Thus the line crosses the y-axis

at y = b, For this reason the parameter b is called the v intercept. Figure 7.8

shows several lines homomorphic to the line given y = 0.5x, which were ob-

tained by varying b, the y intercept.
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Fig. 7.8
-4

To investigate the meaning of the parameter a in relation to the graph

of a linear function, we graph some functions with the same value of b but
different values of a (Fig. 7.9). As was the case with the direct proportion,

b=2 by:2

a=10 G*0.5

-2

-4

2 4 6

Fig. 7.9

b=2
a=0.2
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the steepness of the line is determined by a which is therefore called the

slerva of the linear function.
If a = 0, Equation (5) becomes

y b

that is, the dependent variable has the same value for all values of the in-

dependent variable. For this reason, y = b is sometimes referred to as a

constant function. An example of such a function is the graph of the density

.of pieces of aluminum versus their volumes (Fig. 7.10). The constant func-

tion is not considered a special ca.e of the linear function since a linear

function by definition has a first degree term in its independent variable.

3.0

2.0

1.0

1.0 2.0 3.0 4.0 5.0 6.0 70
Volume In cm3

Fig. 7.10

Questions
1. Lines homomorphic to that given by y = ax can also be generlted by

moving each point a given amount horizontally: y = a(x d). Does

.:his procedure yield any straight lines that cannot be generated by a

vertical displacemer::. of the form y = ax + b?

2. Under what conditions does the functicr. y - c a(x- d) describe the

same straight line as y = ax?
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The centigrade and Fahrenheit temperature scales are related as fol-

lows: 00C is equal to 320F, and each 10C is equal to 1.80F.

(a) Express the temperature in degrees Fahrenheit as a function of

the temperature in degrees centigrade.

(b) Plot the corresponding graph.

(c) Is there a temperature which is expressed by the same number

on both temperature scales?

4. The following table was taken from a Federal Income Tax Brochure:

Taxable
Income Tax

Not over $500 14% of the Amount

Over -
But not
Over -

of Excess
Over -

$500 $1,000 $ 70+15% $500

$1,000 $1,500 $145+16% $1,000

$1,500 $2,000 $225+17% $1,500

$2,000 $4,000 $310+19% $2,000

What kind of function describes the dependence of the tax on the

taxable income? Plot the corresponding graph.

5. Write a computer program to calculate the income tax for taxable in-

comes up to $4, COO. Use the information given in the preceding

problem.

6. A straight line parallel to the y axis does not describe a linear func-

tion. Why?
7. The equation of a straight line can also be written in the form

+ ic 1. What are the geometric meanings.of rn and n?
m n
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7.5 Finding the Equetion of a Strataht Line

Often the purpose of a scientific experiment is to determine if there

exists a simple functional relationship between two quantities for example,

between the volume of a gas and its temperature. To get a feel for the nature
of the relationship, the experimental data are usually graphed. As you be-

come familiar with the graphs of some simple fundamental functions, you

will often be able to get an idea of what kind of functional relationship

might exist between the two quantities by looking at the graph.

A linear relationship is the easiest to recognize because it is only

necessary to decide if the points representing the experimental data (taking

into consideration the uncertainties of the measurements) lie close to a

straight line (Fig. 7.11(a)). If they do, then you have to decide how to draw

the line best fitting the points (Fig. 7.11(b)). To do this reasonably well re-

quires practice, which is best obtained by actually doing experiments in a

laboratory and graphing the data. However, once the line is drawn, to find

its equation, that is, to determine the values of the parameters a and b in

the expression
y = ax + b

is a purely mathematical question.
Suppose we end up with a straight line like the one in Fig. 7.12.

We rhoose two points, P and g on the line (as far apart as possible), and

note their respective coordinates (x1 ,y1) and (x21 y2). Since the points P

and 9, are on the straight line their coordinates satisfy the equation

y1 ax1 b
and

y2 = ax2 + b

We can solve these two equations for a and b in two steps. First we

subtract the first equation from the second and get
y2 - y1 = a(x2 - x1)

or

Y2 Yla - x2 -
(6)
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Fig . 7. 1 1(a)
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A

Using the noW known value of a we can calculate k from

b - ax1

If .the slope a of a straight line passihg through the point (x1,y1) is

given., then we can find the equation of the line simply by substituting the

value.bf b from the last equation in Equation (5):

y = ax + y1 - ax1

y = y1 + a(x (7)

In the preceding section the parameter a was defined as the slope.

As Equation (6) shows, it can he obtained by dividing the change in the de-

pendent variable by the corresponding change in the independent variable.

Thus, the slope gives the rate of change of the dependent variable with re-

spect to the independent variable. Any two points on a given stralght line

yield the same slope. Therefore, the slope of a straight line is a property

of the whole line. We shall see in the next chapter that curved lines do not

have this property.

Since only the change in coordinates enters into the calculation of

a Slope Equation (6) is often written as

or

Questions
A straight line passes through the points (-2, 3) and (-4, 4).

(a) Draw the line.

(b) What are the values of h..\x and Ay.

(c) Use them to find the slope and the y-intercept of the line.

2. A straight line passes through the points with the coordinates

(x11y1) and (x2 ' y2)

(a) Under what conditions will the slope be positive? Negative?

(b) How would you describe in words a line with negative slope.

I 6.
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3. Suppose you plot the displacement of a moving point as a function of

time and find that the points fit a straight linkof the form y = ax 4 b,

where y is given in meters and x is given in seconds. What are the

units of a and b?

4. Find the equation of each of the lines in Fig. 7.13:
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5. (a) What is the equation of the line throvgh (-1, 2) with slope -5?

(b) What is the equation of the line through (5, 6) with slope

6. Write a computer program which computes the values of the parameters

a and b given the coordinates of any two points on the line.

7. The slope of a straight line is independent of the two points selected

to calculate it. Yet the text suggests to choose these points as far

apart as possible. Why?
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Which of the tables below describe a linear f)nction?

Hint: The sl6pe of the linear function (y2 111)/(x2 - x1) is a charac-

teristic of the function and is the same for any values of x1 and x2

which are used to calculate it.
(1) '2) (3)

x y x Y x

-I 1 -3 0.1 2.01 1 2

0 1 -5 0.2 3.01 2 4

1 ' -7 0.3 4.01 3 8

2 -.9 0.4 5.01 4 16

3 -11 0.5 6.01 5 32

4 -13 0.6 7.01 6 64

5 -15 0.7 8.01

Y.

7.6 The Quadratic Function
In this section we shall study functions of the form y = ax2, where a

is a oonstant. The curve corresponding to this function is called a parabola.

Figure 7.14 shows a number of parabolas corresponding to different values of

a. As you can see, the parabolas corresponding to positive values of a have

their branches pointing upward, whereas parabolas corresponding to negative

values of a have their branches pointing downward. Notice that all the griphs

are symmetrical al, t!- dx16; that is, the points on the curves to the right

of the i ax sill idti directly on the corresponding points to the left of the

ux I: the graph paper is folded along the y axis. The axis of symmetry,

the y axis, is called the axis of the parabola, and the point of the parabola

which lies on the axis of symmetry Is cal:ed the vertex of the parabola.

Any curve that is homomorphic to a curve whose equation is y ax2

is also a parabola. Figure 7.15 shows a parabola whose equation is y = ax2

and another parabola homomorphic to it with the equation

y n = a (x m)2

= ax2 2amx + am2
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As in the case of the linear function, we can find a standard form for

this equation. Because a, rn, find n are constants, so are the combinations

-2am and (am2 + n), and we shall call the first combination b and the second

combination c; that is, -2am = b and am2 + n = c. Thus, any parabola whose

axis is vertical is described by a function of the form
y = ax2 + bx + c

where a G. This is called a quadratic function.
Any parabola with a vertical axis is the graph of a quadratic function.

The converse is also true: any quadratic function y = ax + bx + c describes

a parabola with a vertical axis. This is so because given a, b, and c we can
always transform the equation y = ax + bx + c into an equation of the form

y n = a(x - m)2, which describes a paraboll with its vertex at (m,n). To do

this we solve the two equations
-2am = b

am + n = c

for m and From the first equation we get m = --2a. From the second we

get n = (c-am2) and substituting the, val4e of en we have just found, we get,

for the two constants (if a 0),

and
.2a

b2
n = a

Using these values of rn and n in the equation for a parabola y n = a(x- rn)2

we have
b2 1)(c - 4a

(--3122a '

We h- 3howrt, therefore, that any quadratic equation of the form

ax + bx + c describes a parabola with a vertical axis' and a vertex at the
b2,point (--2a , c 4a

I)
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1. Consider the function f(x) = wx2. What is its domain and range

(i) if the variables have no geometric interpretation, and (ii) if they

describe the area of a circle as a function Of ifs radius.

2. Sketch the parabolas corresponding to the following functions. Try

to guess the general shape of each parabola in the given domains

before sketching it. Make each sketch on a different sheet of paper.
3

-
(a) y = ix2 for -4 < x < 4 and 10 < x <15
(b)

2

(c) y - 3 =.(x - 2)2 -1 < x < 5
fd) y 1 2)2

1

=

(e) y = x2 - 8x + 18 0 < x < 2

3 . Express the parabola y 3 = 2(x-2)2 in the form y = ax2 + bx + C.

4. Express the parabola y = 2x2 - 4x + 9 in the fo m (y- m) = a(x - n)2.

5. Does the equation y = 2x2 + 2x describe a parab la?

6 Describe the axis of a parabola when the constant b in the equation

y = ax2 + bx + c is zero.

7 . What is the effect on the parabola of changing the constant c in

y = ax2 + bx + ?

8. On a piece of graph paper mark off an x scale running from -3 to 3.

Mark off a i scale from -10 to 10. Graph each of the following func-

tions using these scales.
(a) x2 - 50x + 100.

(b) 0.05 x2 + 2x + 3

(c) Give an equation for a parabola which is very nearly a horizontal

line for this range of values of x. Plot the parabola.

I
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7.7 Recognizins Quadratic Functions-from Praphs

In Fig. 7.16, three different functions of x, f1(x), f2(x), and 131x)

are graphed. The question is: Do any of the graphs correspond to a function
ef the type y = ax2, describing a parabola with its vertex at the origin? This
is the kind of question which arises when you have a curve passing through
the origin with a shape similar to one of the curves in Fig. 7.16.

A simple way to agaile the question consists of calculating x2 for a
number of values of x and graphing y as a function of a new variable z = x2

instead of as a function of x . If anyOf the graphs in Fig. 7.16 is, in fact,

a graph of the type y = ax2, then the graph of y = az must be a straight line

with the slope a . Figure 7.17 shows the results we get when we graph

y vs. z = x2 using values for x and y obtained from-Fig. 7.17. Only the

graph in Fig. 7.17(c) is a straight line with a.slope 0.6. We therefore infer
that f 3( ?c) = 0.6x2. whereas f 1(x) and f 2(x) do not express a function of the

type y = ax2.
Another way to find out if a set of data is compatible with a relation-

ship of the type y = ax2 is to calculate 3 for different points fx,y) on the

original curve and see if this fraction remains approximately constant.
Table 7.1 gives the result of such a calculation made for values of x and y

f3(x)
taken from Fig. 7.16. As you can see, the ratio -To- is constant within the
accuracy to which the graph can be read.
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TABLE 7.1

f1(x) f(x)
x2 2

f3(x)

x2

0.0
0.3
0.5
0.8

1.0
1.5
2.0
2.5
3.0
3.5
4.0

MP 4!

0.78 1.78 0.56

0.52 1.44 0,60

0.39 1.13 0.59

0.34 1.00 0.-60

0.31 0.82 0.60

0.32 0.71 0.60

0.36 0.63 0.60

0.42 0.58 0.60

0.52 0.54 0,60

0.67 0.50 0.60

If a graph does not pass through the origin, it cannot, of course, be

described by a function of the form y = aX2, but it could possibly correspond

to the more general form y = ax2 + bx + c. If the graph clearly indicates a

point that is a maximum or a minimum and is symmetrical about a vertical line

perpendicular to the curve at this point, it is possible that this point is the

vertex (m,n) of a parabola and we can look for a relation of the form

y n = a(x- rn)2. We can do this by plotting y - n as a function of (x 102

to see if we get a straight line whose slope equals a . Or we can calculate

no2 to see if this fraction remains very nearly constant for different points

on the curve. If so, the fraction is the value of a. We can then write the

equation describing the curve, since we now know the values of the three

Parameters (, rn, and n) needed to specify the particular parabola with

which we are dealing.
If it is not possible to determine the position of a possible Kertex

other methods must be used. We shall illustrate one of these methods which c

can be used to check whether a graph it a parabola and, if so, to find the

particular quadratic function which describes it. Consider Fig. 7.18 !notice
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Here the values of (c191,1), (x2 y2). and (x3, y3) are known and a, b, and c

are unknown. They.can be found by solving the three equations for a, b,and c.

For the coordinates of the points A, 8, and C in Fig. 7.18, the three

equations become
3 = a + b + c
7 = 4a + 2b +

27 = 16a + 4b + c

which have the solution*
a = 2, b -2, and c =3

Using theso values for a, b, and c as coefficients in the equation

y = ax2 + bx + e gives the function
y = 2x2 - 2x + 3

describing a parabola tieat passeF through the points A, B, and C on the curve

we started with. The questicr Ls whether the graph of this function will also

pass through (or at least close to) the other points on the original curve. To

investigate this we can proceed in different way: We can draw the graph

corresponding to the equation directly on the graph oZ the original curve or

we can determine the position (x0, yo) of the vertex of the purabola by using

the coordinates for the vertex (--, c - b2) mentioned in Section 7.6, and
2a 4a

yo
see. if

cx x )2
is nearly constant for points alonc the original curve. In

practice we shall find Fmall deviations, and we shell have to decide whether

the deviations, whose size, in part, depends on the magnitude of the errors

in the experimental data used in making the original 4raph, are sufficiently

small to allow us to use the equation to describe the experimental data. In

general, we cannot expect that the coefficients in an equation derived from

a curve made from the experimental data will be represented by small inte-

gral numbers, as in our example, so the actual work in calculating a, b,

and c will be somewhat harder.

*The solution of simultaneous linear equations is discussed in the appendix.
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2Ligstl_ega

1. Which of the curves in Fig. 7.19 to 7.21 are parabolas, and what

are their corresponding functions?
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What restriction is placed on the parameters ot a parabola if

(a) one insists it go through (0,0) ?

(b) one !nsists it go through (1,2) ?

(c) one insists it go through both (0,0) and (1,2)?

(d) one wants it to pass through (0,0). (1,2), and (2,4) ?

3. (a) Tty to fit a parabola to three collinear points (points lying on

the same straight line) by using the procedure of Question 2 on the

points (0,0), (1,1), (2,2).

(b) What do you think happens in general when one tries to fit a

parabola to three collinear points?

(c) At how many points can a straight line intersect a parabola?

What relation has this to your answer for (b)?

4 How would you extend the method for recognizing a graph correspond-

ing to y = ax2 to recognize a graph corresponding to y = ax3 ?

y = ayn? Are there any restrictions on the value of n?

7.8 Inverse Proportions

We saw in Section 7.3 that a direct proportion is a relation between

two variables such that whe, the independent variable is doubled so is the

dependent variable. Another frequently occurring :elation is one where the

effect of doubling the independent variable is just the opposite. In other

words, when the independent variable is doubled the dependent variable is

halved, or in general
f(x) =

This function is referred to as an inverse_proportion. Note that for any value

of x 0 or x < 0 the corresponding value of is uniquely determined, however,

when x = 0 the function is undefined and we do not have a value for y There-

fore: the domain of the inverse proportion consists of all values of x except

x = 0. Just as with the direct proportion, however, if the variables are mea-

sures of definite quantities, practical considerations may restrict the domain.

For instance, the volume of a gas as a function of its pressure is given by
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f(v) Since volume carnot be negative, the function is meaningful only

for v 0.
aIn Fig. 7.22 the graphs of y = each called a rectangular a
x

are drawn for a = 2 and a = -2. Notice that each rectangular hyperbola con-

\ 2nd QUADRANT

z

1st QUADRANT / \ 2nd QUADRANT 1st QUADRANT

/yzil
Y: \

/ 3rd QUADRANT 4th QUADRANT \ 3rd QUADRANT 4th QUADRANT \

(a) Fig. 7.22 (b)

sists of two branches or parts. When a is positive, the branches lie in the

first and-third quadrants of the coordinate system (Fig. 7.22(a)), however,

when a is negative they lie in the second and fourth quadrznts (Fig. 7.22(b)).

Furthermore, for a > 0 the line y = -x is tne axis of symmetry of the whole

figure while the line y = x is the axis of symmetry of the individual branches.

For a 0 the two axes of symmetry are interchanged.
The family of rectangular hyperbolas described by the function y =!

in Fig. 7.23 shows how the value of a affects the rectangular hyperbolas.

In all cases, note that as x increases, y decreases and the curve

gets closer to the x axis, but never meets it. This can be seen by consider-_
aIng the analytic expression y = describing the curve. If we choose x '5> a

(read "x much greater than a") y becomes much smaller than 1 and the curve

Is close to the x axis. But we can always choose a still larger value for x,

making y even smaller but still not zero. In fact, no matter how large we

make x, the value of y will never be zero and the curve will never meet the

x axis. The same behavior occurs for very large negative values of x.
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A line which a curve approaches but never meets .s called an

asymptote. As you can see from Fig. 7.22, not only is a curve representing
ay = asymptotic to the x axis; it is also asymptotic to the y axis. To see

this, consider the equation y = 4-1, rewritten as x If s taken as the

independent variable, increasing positive values of y lead to decreasing

values of x but x never becomes zero ,_nd the curve is asymptotic to the
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y axis. The same is true for increasing negative values of y. The intersec-

tion of the asymptotes of a hyperbola (in this case the origin of the coordinate

system) is called the center of the hyperbola.
aSince the function x = never equals zero, no matter how larqe v is

amade, the equation of a hyperbola in the form y = is undefined for the par-

ticular value x = O. We say that the function has a singularity at the value

of x that lies on a vertical asymptote.
Following the procedure developed in Section 7.2, hyperbolas homo-

morphic to the one described by Equation (9) are given by

ay - c = f(x-d) x d
(10)

All points on the graph displaying this function are displaced d units hori-

zontally and e units vertically relative to the corresponding points on the

graph of y = -,9-c (Fig. 7.24).
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1. The equation y
a
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can be rewritten in the standard form
x d

yx + mx + ny = g

Find the relationship between the parameters a, c, d, and the param-

eters rn, n, a of the two equations.

2. (a) What are the equations for the asymptotes of the hyperbola given
aby y - c =

d
which is homomorphic to the hyperbola described by

x
a= ;?

(b) What are the coordinates of the center of this hyperbola?

(c) Does the value of a in the equation in part (a) affect the

asymptotes?

3 (a) Write down the equation for a rectangulaillyperbola with the

following position of the center C and the following value of the

constant a:
(1) C = (-2,3) a = 1.5

(2) C = (5,O) a =

(3) C = (-4,-10) a = -17

(b) What are the asymptotes for each of the curves in (

4. Show that the graphs'of y versus x corresponding to the following

relations are rectangular hyperbolas. Specify in each case the

center and the asymptotes and then sketch the graphs:

(a) y + 3

6 .

(b)

(c) xy = 3

(d) xy x

41,4,
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3For which values of x in the knction y = x will the vertical distance
of the graph from the axis be less than
(a) 1

(13) 10'25

(Tc) 10-1,000,000

Hint: How are coordinates of points on the graph related to vertical

distance from axes?

(a) For which values of x will the distance frim the y axis be lers
than

(1) 1

(2) 10-5

(3) 10-1,000,000

(b) What are the corresponding values of y?

7.9 ThiIrjaejit_SALwe Function
When the relation between the independent variable x and the depen-

dent variable y is given by
a

Y
(11)

we say that y is proportional to the inverse square of x. This means that.

.if x is made n times as large as some initial value, y will be times the

initial value of y.
aLike the function y = x, the function y = a is defined for all values

of x except x = 0. Therefore, graphs of y = fail in two parts separated

by the y axis as an asymptote. Since the same value for y is obtained
whether you insert x or -x iri y =1-, the two parts are symmetlic about the

y axis (Fig. 7.25).
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For larger negative or positive values of Y.. the corresponding value of

y will get closer to zero, but will never equal zero, no matter hoW large x

becomes. Therefore, the x axis is an asymptote of the curve. Since the

value of x is equal to the dist6ce of the curve from the y axis, this distce
can be as small as we wish if .we just go to sufficiently large (positive or

negative) values for y. It means that theyaxis is Arasymptote of the curve

i.e., y = a has a singularity at x = 0.
Since x2is positive for both positive and negative values of x, y

will always have the same sign as a. Thus for positive values of a, the

curve will lie aboveihex axis and for negative values of a, it will lie below
a

the x alas. Figure 7.26 is a family of graphs of y --siz corresponding to dif-

ferent values of a.
Comparing Fig. 7.26 and Fig. 7.23, you can see that the graphs of

/a
y = and yr -A boti3, have the x axis and the y axis as asymptotes, but the

two parts of the graph y = !are symmetric with the line y = -x (if a > 0), as

-the axis of symmetry, whereas neither part of the grauh of y.= -LI is symmetricx2

by itself. However, the complete curve is symmetric about the y axis. For

a given vatte of a, y = 431- and)/ = -3-zaz have the sarne y. value for x = 1, that is,

their graphs both pass through the point (1,a). Fcr x> 1., x2 > x, and so xa2

LS'y4
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Fig 7.26

X

a
is smaller than x. But for values of x between 0 and 1, x2 <" x; heace, in

a a
this region, e2 is.greater than as shown in Fig. 7.27. Notice that the

graph of y '=
1 approaches the x axi.s\and the y axis at the same rate, but the

4graph of y = 2- approaches the x axis faster than it approaches the y axis.

/ j
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The equation for a graph homomorphic to that of y = , where the

intersection of the asymptotes has the coordinates (d,c).instead of (0,0), is

found by replacing x by x and y by y - c ip the equation y = ez, giving

a
-d)2

Questions

1. (a) How is the circumference of a circle related to its radius?

(b) Suppose there s a source of particles at the center of the circle

and the number of articles crossing a unit of length on the circumfer-

ence of a circle of radius 1 is n. How many particles will,CCOSS a

unit length on the circumference of a circle of radhis r? (Assume that

no particles are lost.)

(c) How is the sUrface area of a sphere related to its radif!s?

(a ) If particles are emitted evenly in all directions from the center

of the sphere, tow will the number of particles passing through a

unit area of a sphere depend on the radius of the sphere?

Is.i
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2. On the same graph paper sketch very roughly the graphs of the func-
1 1 1 1tions y = x, = =37, 'Y y = Then draw a detailed

graph of the same functions for 0 x < 1. What do you predict will
1be the general shape of the graph for y = x10?

7.10 Recognizing Hyperbolas and Inverse Sguare Functions

The most characteristic features of graphs corresponding to functions

of the type y = and y are the asymptotes. The fact that the graphs
have two branches is usually of little practical value since the relationship
we are looking for often makes sense only for positive values of the indepen-

dent variable as in the case of pressure and volume. Therefore, the experi-
mental data will all be on one branch of the graph. If the graph in question

seems to have the x axis and the y axis as asymptotes, you can distinguish

between the two kinds of functions y and y = ;(22- by looking for symmetry

about the line y = x or y = -x, depending on the sign of a (Section 7.8).
Wh,-)n considering symmetry it is, of course, important that the same scale

be used on the x axis and the y axis.
If the graph is symmetrical about one of these lines you have reason

a
to believe that it is probably described by a function of the type y = x. This

can be checked by evaluating the product yx for different points along the

curve to see if it remains constant. The value of a is then just the product

yx. Or you can calculate x for several vaLies of x and graph as a function

of
1 to see if you get a straight line through the origin. If this is the case,

you can find the value of a by calculating the slope of the straight line.
If the grapia is not symmetrical about the line y = x or the line y = -x

ayou may check for a furction of the type y = 72- , by evaluating the product

yx2 for different points to see if it remains constant. Or you can graph y as
1a function of -7-3 to see if you get a straight line through the origin. If so,

the slope will determine the value of a.
If the x axis and the axis are rit asymptotes to the graph, but some

other lines y = c and x = d seem to be asymptotes, you can expect functions
a a

of the type y c = 3--c or y c = (x_d)-29and test if eith ;r type of function

1.SL)
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1
describes the curve by plotting y - c as a function of ----d or as a function

x
1of (7.-z2-, or by evaluating the product (IP d)(x d) or (y c)(x - d)2 for

different points on the curve to see if the product remains conitant.

Questions

1. For the curves in Fig. 7.28 decide if they are hyperbolas or inverse

square functions and if they are either, give their equations.
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(a) Fig. 7.28

111.1111111111111011111

mumiauuamuua
.1111111111111011111111111111111

11111111111111=1011=
111111111111111111111111111
11111111111111111111111111111111111111

11111011111111111111111111111111
INIMU11111111111111111M111
1111111111M11111111111111
1111111100111110111111111111
11111111111M31111111111

IMMICIVLIP

(b).

4

a
2. The general equation for a rectangular hyperbola is y c - d)

(a) What restriction on the constants is made by requiring the

hyperbola to pass through (0,0) ?

(b) If we also require the hyperbola to pass through (1,1) and (2,4)

the conetants are uniquely determined. Find them.

(c) Write down the equation of the hyperbola passing through (0,0)

(1,1)/ and (2,4)..

(d) Find the equation of the parabola which also passes through the

three* points in part (c).

Given that a curve has a veriical asymptote at x 2 and passes

, through the origin, list some simple algebraic equatins that it

might satisfy.

4. What is a simple alge!)1d1c expression which yields a graph asymp-

totic to the line y = 2x and ha ing a singularity at x = -1?



Chapter 8. DERIVATIVES AND ANTIDERIVATIVES

8.1 Function and Slope

in the preceding two chapters, we have seen how a great deal of

empirical information can be represented in graphical form, and in some

simple cases can be reduced to a mathematical rule in terms of power func-

tions. In this chapter we shall show that, in general, when a function is

given in graphical or algebraic form, additional useful information may be

extracted from it. To illustrate this point, we shall give the function de-

scribed by the graph in Fig. 8.1 three different meanings and see what the

additional information is in each case.

X

Fig. 8.1

(1) Consider a straight road going up a hill, and let the xy plane

be the vertical plane that contains the road. Then the graph in Fig. 8.1 de-

scribes the elevation of each point on the road aslia function of the horizontal

distance. To find the elevation for any particular value of x, we simply

read the corresponding value of off the graph. Thus, for example, the ele-

vation at x2 is greater than that at xl. Alternatively, the graph consists of

three straight segments, each of which is given by an expression of the form

y = ax + b. (The values of a and b are different for each segment.) To find

the elevation at a given point xl, we substitute the value of x1 into the above

equation and calculate the corresponding value of y1 .

Suppose no that the qui--.stion is "How hard is it to posh a cart up the

road?" ihe amount of push we have to exert does not depend on the elevation

4

wpi
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but on the steepness of the road that is, its slope. From Fig. 8.1 it is
evident, therefore, that it is harder to push up a cart at x1 than at x2. The
slope of the segment AB is greater than the slope of the segment BC.

(ii) Let the horizontal coordinate in Fig. 8.1 represent time, and
the vertical coordinate represent position of a car on a road. Then the graph
gives the position of the car as a function of time. We can also learn from
the graph (or the equivalent expression y = ax + b) how fast the car is mov-

ing at any moment. Since volocity is the rate of change of position per unit

time, it irgiven by the slope of the position-time graph. (See Section 7.5.)

From the graph we see that the car moves faster at time x3 than at x2, and

moves at some intermediate velocity at xl. The fact that at x1 it is farther
away from the starting point has no bearing on its velocity; the slope or rate

of change of a function contains information different from that of the func-

tion itself.
MO Now let the horizontal axis in Fig. 8.1 represent time and the

vertical axis the cost of living (i.e., the cost of a specified list of goods
and services). The graph then gives the cost of living as a function of time.
If the cost of living is constant, it is taken for granted. When it goes up,
people begin to complain. When it goes up fast, people are likely to com-

plain more. During which period do you think the population was most irri-

tated? Here again we have an example where a quantity of interest is not
given by the function itself but by its rate of change, which can be easily
extracted from the graph if the graph is made up of straight line segments.

Whatever the graph in Fig. 8.1 is meant to represent, .the slope of
each straight line segment is given by the coefficient a in y = ax + b. As

was shown in Section 7.5, a -

Questions

1. Give a possible set of units for the independent variable, the depen-
dent variable and the slope of Le graph in Fig. 8.1 for each of the
three examples cited in the text.

I
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2. The position vs. time graphs of two cars are given in Fig. 8.2(d) and

8.2(b). Which car is moving faster?

100

80

80

40
1.0 i.1

Time(hr)
1.2

Fig . 8. 2 (b)

8.2 The Slope Function

Most functions we encounter in applications are not linear functions,

that is, they are not represented by straight lines. However, even in the

case of curves we have an intuitive feeling for slope: Everybody will agree

that the parabola y = x2 in Fig. 8.3 becomes steeper as x increases. What

1.0

0.5

0
0 0.5

Fig. 8.3
1.0

we need is a way to translate the intuitive feeling into a clearly defined mea-

sure for the slope of a curve at a given point.
Let us start with the point x = 0.5. To characterize the slope of the

curve at this point we look at the point and its vicinity with a magnifying
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glass. This, in effect, is done in rig. 8.4(a), which shows the heavy portion

of Fig. 8.3, for 0.40 < x < 0.60, magnified by a factor of 5. Note that this

segment of the curve looks much more like a straight line. Repeating the

process, an additional magnification by a factor of 10 yields Fig. 8.4(b),

which covers only the region corresponding to 0.48 '=" x p0.52. This seg-
ment of the curve now appears to be very nearly a straight line, which upon

inspection turns out to have slope a = very close to 1.0.
Ax

0.3

0.2

0.4 0.5
(a)

0.27

0.25

x 0 23
0.6 0.48

Fig. 8.4

0.50
(b)

X
0.52

"Therefore, it appears that an answer to the question "What is the
slope of the curve y = x2 at x = 0.5?" is to say: "It is the same as that of

a straight line of slope 1.0."
This magnification process is of course cumbersome, and it would be

inconvenient to have to carry it out in practice every time we wanted to know

the rate of change of a function y = f(x) at some value of x. However, we

are svared from having to do this by the simple observation that the magnified

small segment of the curve has almost the s, me slope as the straight line
which is geometrically tangent to the curve at any point (x11y1). In

Fig. 8.5(a), (b), and (c.) we have idded the tangent lines to the sections of

the curve shown in Fig. 8.3 and 8.4(a) and (b). We see that the curve does

indeed become le1;s and less distinguishable from the tangent line.
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1.0 0.4 0.5

(b)

X
0.6

0.23 X
0. 48 0.50 0.52

Cc)

Therefore we define the slope of a f-mooth curve at a point (x1,y1) to

be the slope of the tangent line to the curve at that point. This gives the
rate at which y is changing with respect to x at x = xl.

If a function y = f(x) is graphed, a practical way of finding its slope

at x
1

is to lay a ruler down on the graph and adjust Its positton until it
touches the curve at the point (x1,f(x1)) at the correct angle, and then draw

Athe tangent line and measure a = for this line. Some error in measurement
Ax

will of cLarse be present, its size dependire; on how carefully we draw and
measure the tangent uie, and of course on the accuracy to which the curve
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itself can be drawn from the given data; In rig. 8.5(a), for example, we
might judge that the points (0.25,0) and (1.00,0.75) lie on the line tangent

at (0.5,0.25). This gi#es -a slope value of a = =20tg

We can repeat this process for any point on the curve. If for each

point on the curve there is only one tangent, then the slope of the tangent

is a function of the independent variable x. Accordingly this function can be

called the slope function. Frequently the notation f1(x) is used to denote the

slope function of f(x). Since the slope function is derived from f(x) it is more

often called "the derivative of f(x)."
A word of cautido is in order on what is meant by the line geometri-

cally tangent to a curve y = f(x) at some abscissa x = xl. Several examples

of tangents are shown in Fig. 8.6. The tangent line is sometimes defined as
the line which touches the curve but does not cross it at the point in question.

.111M.R.,

Fig. 8.6

ib)

X

f
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This is correct only in cdses like those shown in rig. 8.6(a) anc1-8.6(b). .

However, Fig. 8.6(c) shows that the line tangent to a smooth-curve 'can cVoss

the curve at the point of tangency. Figure 8.6(d) shows the necessity of

specifying that the curve be smooth. At x = x1 the curve has a corner, and

hence no single tangent exists theje.

Questipns

1. Figure 6.2 on page 1194s a graph of the population of the United .
States as a function of time. Use a ruler to draw the tangent to the

curve at x = 1800, 1850, and 1900 and find the rate of growth of the

population at these times.

2. There are, of course, errors present in the growth rates you measured

in Question -1. Investigate the error resulting from constructing and

maasuring the slope of the tangent line for x = 1850. (Assume that

errors made in drawing the curve are negligible.) Draw a line that is

just barely too steep, and one that is not quite steep enough, and

measke their slopes. From this deduce the uncertainty in your value

of the 1840 growth rate.

3. Repeat the work of Question 1 for the year 1850 only, on the alterna-

tive version of the population curve. Fig. 6.3, where the horizontal

scale has been compressed. Why is it that th2 value for the slope

of the curve at x = 1850 comes out about the same as in Question 1,

when the curve appears much steeper at that place?

4 In the case of graphs drawn from oata with errors present, special

care is needed in measuring slopes. An example is shown in

Fig. 6.10 and 6.11 on page 129, where the data were obtained by
measuring masses and volumes of various samples of a certain metal.

(a) Explain why the technique used by the person who drew the

graph of Fig. 6.10 is very bad if slope information is needed.

(b) Does your intuition suggest anything about the slope the curve

should have? Would this information be helpful in drawing the

curve?
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41,

5. By graphically measuring the slope of the function y = x2 (Fig. 8.3),
plot the slope function. Can you guess from your result the algebraic

formula for the slope function of this curve?
6. By graphically measuring the slope at a number of points, plot the

slope function of the function shown Fig. 8.7. How is the slope
function of V (x) related to the funntion f(x) itself?
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Fig. 8.7

7. Suppose you are steering a boat, trying to keep it on a steady course.

There is involved in this situation a function, namely the compass

heading as a function of time. In what way do you make use of the

calue of this function, and in what way do you make use of the value

of its slope?

(a) Sketch a curve corresponding '-o a function with the following

properties: at x = xl, f' (x1) > 0, for x > x1 the derivative gradually

decreases. For x2 > x 1, ft (x2) = 0, and for x > x the derivative

continues to decrease and is, therefore, negative.

(b) Does the value of f(x2) have a special significance?

(c) Must any point on a curve for which f'(x) = fl have the same

significance?

9. (a) Consider two smooth functions f(x) and g(x) , and their derivatives

f'(x) and g' (x) . If i'(x) > g'(x) over the interval, 0 <c < 10, does it
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follow that,f(x) 4(y) over the same interval? Use a sketch to ex-

plain icir answer.
(b) In Antry X the rate of inflation was higher than in country Y

over the same ten-year period. Was the cost of living also h'guer

in country X than in country Y?

8.3 The Delta .Process

So far we have seen how to find values of the slope function by draw-

ing tangents. If we know the algebraic rule (also called the analytical ex-
pression) for a function, wd zan calculate the values of the l(-)pe function or

derivative without drawing a graph at all. To see this w.e return to Fig. 8.5(c).

There the slope of the tangent at x = 0.50 was given by

x

where Ay = y2 - y/ , relates to any two points on the tangent, We can, in
particular, choose for y1 the value corresponding to x1 = 0.50, which is of

course the same as the value of the function y = x2 at that point; that is,

yi = 0.25. If we now choose a sufficiently small Ax, say L\X = 0.02, then

the value of y2 on the tangent corresponding to x2 = 0.52 will be almost the

sake as the value y2 ---- f(x2) = x22 on the curve. (See Fig. 8.5(0.) Thus,
the slope of the tangent is given approximately by

f(x1f!Nx) f(x1)
a (1)

Ax

The value of the right-hand side of Equation (1) can be calculated directly

from the algebraic rule defining f(x); there is no need to draw the.graph first.

To ir prove the approximation we can reduce the size of Ax. As Ax

decreases, the value of the y coordinate of the point on the tangent will ap-

proach the value of the y coordinate of the corresponding point on the curve

-as shown in Fig. 8.5. Thus, the error tLat is introciuced by taking the y co-

ordinate of the point on the curve instead of on the tangent will decrease to

zero, and the value of the right-hand side of Equation (1) will approach the

slope of the tangent. This process is illustrated in Table 8.1, for x1 = 0.5

and irarious values of A:-(.
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Table 8.1 may suggest to you that as Ax becomes closer and closer..
to zero the sive WY.I get closer and closer to 1.000 To put this in

standard mathematical language, it is likely that as Ax approaches zero,

"x1+11x) f(x1)the value of Ax approaches a limit which gives the value of

f'(x1):
f(x1+Ax) - 1(x1)

f' (x1) = Aug) Ax

The notation lim is read "the limit as Ax approaches zero of ...
0

TABLE 8.1

Ax f(x1) f(x1+Ax)
f(x1+Ax) f(x1)

Ax

0.1 0.25 0.36C0000 1.1000

0.05 0.25 0.3025000 1.0500

0.01 0.25 3.2601000 1.0100

0.005 0.25 0.2550250 1.0050

0.001 0.25 0.2510010 1.0010

-0.1 0.25 0.1600000 0.9000

-0.05 0.25 0.2025000 0.9500

-0.01 0.25 0.2401000 0.9900

-0.005 0.25 0.2450250 0.9950

-0.001 0.25 0.2490010 0.9990

It

(2)

However, from the table alone it is impossible to be sure that the

slope will not approach 1.00001, at least not without extending the table

until we reach a value loser to 1.00000. What is needed now is a way to

calculate this limit without resorting to a long table such as Table 8.1.

Substituting Ax = 0 directly into Equation (2) will not do, because it
0

will yield the meaningless expression of 0- The way to do it, which is called

the delta probess, consists of three setps.
The first step is to construct the ratio on the right-hand side of Equa-

tion (2) for the specific function whose derivative you wish to find. In our

case, where f(x) = x2, this gives



(x14.Ax)2 x12

The second step may consist of either of two operations If possible,

the form of the numerator iss changed in such a way that a factor Ax can be

extracted in order to cancel the Ax in the denominator. After the Ax is carj-
0celed, we are sure to avoid the meaninglesz expression when Ax goes to
0

zero. III this case, a third step is particularly simple: it consists of setting

-NX = 0

Let us now carry c-iut the second step for f(x) = x2:

1+Ax)2 1
2

1
2 + 2x

1
+ Ax2 2 = Ax(2x

1
+Ax)

Equation (2) now becomes
Ax(2x1+Z"::)

f' (x1) N L1,1170
lim (2x +Ax)

.x-.01

Now there is no longer an obstacle to setting Zsx = 0, which is the

third step of the delta process. In this case we get P(x1) = 2x1. For

x1 = 0.5, we have P(x1). = I exactly, as was indeed suggested by Table 8.1.
The delta process works for any value of the variable. Thus we shall

omit the subscript and write in general that for f(x) = x2 the derivative,

f'(x) = 2x, or, in sl-Art,
[x2] ' = 2x (3)

where [ I ' stands for the 02rivative of the function in the brackets.

Questions

1. ljsing the delta process, find the derivative of f(x) = 5x2 6x.

2. The derivative of fx) = x3 is defined as

fi(x) = lim (x+Ax)3--Ax--0

(ca Chai,ge the numerator in such a way as to have a factor Ax in it.

(h) After canceling the Ax, what .is the derivative of x3?

If a factor of ,` cannot-be xtracted from the nuraerator, then the form of
the numerator must s-,me!r,w be changed in such a way as to make it:possible
to find the limit of the lei() Ax - ). Ir this chapter we shall look only at
cases where a factnr Ax can be extrricted. In the next two chapters w..? shall
see examples where the limit will be found even though a fact()r Ax cannot he
extrarteri,

I 9;
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Generalize the result of Question 2 to find the derivative of

f(x) = xn where n is a positive integer. (Hint: When you multiply

out (x + A4)11, you will get a term xn and terms with powers of Ax

ranging from Ax to A.xn. Why do you have to know only the coeffi-

cient of Ax?)

9. Consider the function
x2 for x < 1

f (x) =
3x for x I

(a) Sketch the function for 0 < x 2.

(b) Does this function have a derivative at x = 1?

(c) What happens if you try to apply the delta process to find the

derivative at x

1
9. 1 The Derivative of x and .4i-c

The first step of the delta process can be applied to any function:

However, the second step may not always be as straightforward as in the

examples treated in the preceding section. We shall illustrate this by find-
'

ing the derivatives of two common functions: x anC

As with aLy calculation, it is worth while to get some idea as to what
1

to expect. Figure 8.8 is the graph of y = x. What can we tell about the de-
1rivative of from the graph? From the few tangent lines drawn in the figure,

it is evident that all tangents slope downward to the right. Hence the deriv-
1ative of is negative everywhere (except at x = 0, which is not in the domain

of 1). For large positive and large negative values of x, the tangents tend to

become horizontal, i.e., [11 approaches zero. For x near zero, the tangent

points down almost vertically, hence the derivative is very large and negative.

Now we apply the delta process to find th- function that has the fea-
t 1

tures we just described. ror f(x) the first step yields
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Fig. 8.8

Ax [1

1

x + Ax x

(For ease of writing, we have put the in front of the bracket instead of Ax
A.x

underneath.) Carrying out the subtraction, using a common denominator,

gives
1 x - (x + Ax) I -Ax 1

Ax (x + Ax)x Ax
_

+ Ax)x (x + Ax)x

Now the third step can be taken by letting Ax ,--- 0, which yields

{x1.1 1 (4)

1The function indeed has the properties which we predicted from

the graph in Fig. 8.8.

1 !!
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What can we predict about the derivative of Nifc-from the.graph of this

function shown in Fig. 8.9? The derivative is positive, but steadily decreas-

ing as x increases.
To find the derivative of we start with

+ Ax
Ax

To be able to get a factor Ax in the numerator requires replacing N.lx N5c--

by (x + x = Ax without changing the values of the quotient. This is ac-

complished by multiplying the numerator and the denominator by Nix + Lx +

(see Appendix, page ):

\ix + Ax sir( + Ax + Nri N5c-

Ax Nix + Ax + \ix Ax

+ Ax) x
+ Ax \ix + Ax + sJ

This completes the second step of the delta process. The third step is

Ftraightforward: for Ax = 0 we have

(5)

Questions

1. Although the derivative of is not defined at x = 0, what can you say

about the direction of the tangent to the graph of y = & at x = 0?
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1
Suppose the graph of y = is drawn using the same scales on the x

and y axes. For which values of x will the tangent of the curve malie

an angle of 1350 with the positive direction of the x axis?
1

3. Noting that = x-1 and Vi= x1/2, can you suggest (without`proof) a

further generalization for the derivative of fix) = xn for negative as

well as non-integer values of n? (See Question 3 in the preceding

section.)

*it

8.5 Some Properties of Derivatives

If we had to apply the delta process whenever we wished to.find the

derivative of a given function, it would indeed be very tedious. Fortunately.

this is not necessary, as the following two theorems will show.

(I) If the P(x) is the derivative of f(x), thel the derivative of

h(x) = cf(x) is h"xl cf'(x), where c is a constant. In words, the derivative

of a constant times a function is the constant tirnef; the derivative of that

function. For exarnp!e, [5x3]' = 5-3x2 = 15x2.

To prove this theorem we proceed as follows:

Um h(x + Ax) h(x)
Ax_.0 Ax

In general, if h(x) = cf(x), then

lim cf(x + Ax) cf(K
Ax

Ax-0 c
Um (fix + Ax) f(x))

Ax

The factor c is a constant and does not depend on Ax. We can,

therefore, apply the delta process to the ratio in the parentheses and then

set Ax = 0, which yields f' (x). Hence

h' (x) = [cf(x)] cf'(x) (6)

(it) If h(x) = f(x) + g(x), then h'(x) = P(x) + g'(x). In words: the

derivative df a sum of functions is the sum of the derivatives of the individ-

ual functions. .For example: rx2 + Nifel' = 2x +

h'(x) =
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The proof proceeds along lines similar to those of the proof of the

preceding theorem:

Mx) + g(x)1' =
tim (05_42:\y) + st(x*Ax) ax) - e(x))

k Ax

By rearranging the two middle terms on the right-hand side, we have

tf(x) g(x)1, licm0 (f(x+Ax) L(L) g(x+Ax) (x))
Ax

We can now carry out the delta process separately for e,ch ratio, which
yi.e ids the sum of the derivatives:

[f(x) + g(x)1' = V(x) + g' (x) (7)

Questions

1. (a) Express the area of a circle as a function of its radius.

(b) What is the rate of change of the area as a function of the radius?
1 1 1

2. What is the derivative of x x4 xo nxn
2 ' 3 ' ( 1 0)?

3 (a) What is the derivative of g(x) = e, where e is a constant? Give

a geometric reason for your answer. Show that the delta process

gives the same result.
(b) Using the second theorem in this section, what is the derivative

of h(x) = f(x) + c?

(c) What can you say about two functions h(x) and f(x), if hlx) = f' (x)

in a given interval?
4. Using the two theorems in this section, prove that (af(x) + bg(x))' =

af'(x) + b'g(x), where a and b are constants. (Hint: Apply the second

theorem to the sum, and then apply the first theorem to each term.)
1

5. Consider the function f(x) = x + in the interval -5 < x < 5 (x 0).

(a) How is f(x1) related to f(x2) where x2 = j- ?

(b) Sketch the graph of y = f(x) in the above interval. Is your answer

to part (a) useful in this task?
(c) At which point is the tangent to the curve horizontal?

(d) Use the derivative of f(x) to check on your answer to part (c).
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8. 6 Antiderivati Yes

Suppose the function f(x) = 3x2 describes the rate at which water

flows into a container. What function will describe the volume of water in

the container at different times? Or suppose that f(x) = 3x2 describes the

slope of a curve as a function of the horizontal coordinate. What expression

will describe the curve itself?
The two questions which we have raised are examples of situations

where a function fix) is known and we are looking, for another function Fix)

whose derivative is f(x), i.e., fix) = Fix). The function F(x) is called an

aptiderivative or integral of f(x). From the preceding sections we know anti-

cierivatives of a number of functions. For example, an antiderivative of

f(x) = 3x2 is F(x) = x3. Similarly, an antiderivative of f(x) =
2

is F(x)
x

The two theorems about derivatives discussed in Section 8.5 car: be

restated in terms of antiderivatives and then used to find antiderivatives of

related functions.
If F(x) ision antiderivative of fix) then cr(x) is an antiderivative

1

of cf(x). For exaniple, x3 is an antiderivative of 3x2. Hencr.:
3

is an an-

tiderivative of -3 3x2 = x2. To show the general validity cl this theorem we

note that for F'ix) = f(x)
= cf"(x) = cf(x)

Hence cllx) is an antiderivative of cf(x).

(ii) An antiderivative of a sum of funct ons is the sum of the anti-

derivatives. If Fix) is an antiderivative of f(x) and i(x) is an antiderivative

of g(x) then [Fix) + G(x)]' = F'(x) + Gqx) = fix) + g(x) which proves the theo-

rem.
Questions

1. Find antriagiOivatives of the functions listed in the table below.
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2. Find antiderivatives of the following functions:

(a) 5x2

(b)

(c) -

(d) 2%.5c- I

3. Find aii integral (antiderivative) of the following function

f(x) = k0 + k 1x + k 2x2

where ko, ki, and k2 are constants.

4. Find an integral of f(x) = xm. (Hint: first find the derivative of

xm+1, then use theorem (i) of this section.)

8.7 The Constant of Integration: The Initial Condition

We have been careful, so far, to speak of an antiderivative of a

function f(x) and not the antiderivative. The reason for this is that a func-

tion has a whole family of antiderivatives. Specifically, if F(x) is an anti-

derivative of f(x) so is F(x) + C, where C is any constant. This follows from

the second theorem on derivatives: the derivative of a sum is the sum of the

derivatives, and from the fact that the derivative of a constant is zero. Thus

the antiderivatives of a given function form a family of homomorphic functions

displaced vertically with respect to one another. For example: F(x) = x3 is

an antiderivative of f(x) = 3x2, since rx31' = 3x2 (Fig. 8.10). But se is

x3 + C for any value of C, since rx3 + CP = 3x2. The constant C is called

the constant of integration.

We now recognize that the question we raised at the beginning of

Section 8.6 has no unique answer. The whole family of curves y = x3 + C

has the slope function f(x) = 3x2. Any of them could describe the volume

of water as a function of time.

To make the antiderivative unique we have to know its value kt some

point x = xi. In the case of the water flowing into the container we may

know that at x = 0 there was no water in the container, i.e., at x = 0, y = 0.

Only the curve y = x3 fulfills this condition and, therefore, uniquely de-

scribes the volume of water as a function of time. Similarly, if x = 1, y = 2,

then only the curve y = x3 + 1 satisfies this condition (rig. 8.10). In gen-

.2
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-40

Fig. 8.10

eral, if we specify the value of an antiderivative for a given value of the

indopendent variable, we thereby select a unique member of the family of

homomorphic functions. This condition, known as the initial condition, de-

termines the value of the `tonstant of integration. Let F(x) be any antideriv-

ative of f(x). Then the condition y1 =F(x1) + C, that is y = y1 frIr x = x yields

the equ4tion WITiell determines the value of C.

In the case of f(x) = 3x2 we have F(x) = x3, and y = x3 + C for the

family of antidertFatives. If we look for the antiderive-Ave that fulfills the

initial condition that for x = 2, y = 10 we have the equation

10 = 23 + C or C = 2

2o;
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Questions

xv.

1. (a) Find the family of antiderivatives of f(x) = 6x2 + 2.

(b) If ybu choose the constant of integration to be zero, what is

the value of F(x) at x = 0, i.e., F(0)?

(e) What must be the value of C if you require F(0) = 5?
2

2. (a) Find an integral F(x), of f(x).---- 5x 2- - 3.6it

(b), What is the value of F(x) at x 1 , i . . , F(1)?

(c) Give anOther integral of f(x) for which r(1) = 2.

3. Two containers are being filled with water ats the same rate over the

same ttme intarval. Do they necessarily have the same amount of

water in them at the end of that tir.te interval? Relate your answer

to Fig. 8.10.
4. The rate of growth of the population of two cities over a petiod of

three years has beer. the same. Must the two cities have the same

populAion at the end of the third year?

6.

What function has the following properties: F'(x) = 3x and F(1) =-
1

An astronaut on the moon throws a rock vertically upward. Suppose

the rate at which the rock risls (after leaving the astronaut's hand)

is qiven v = 10 where v is given in meters and t in seconds.

What will be the elevation of the rock as a function of time if at

t = 0 the elevation was h = 2.0 meters above the ground? (Note:

quite often a function and its derivative are denoted by different

'letters. In this case v(t) = h' (t). The "v" stands for velocity and

"h" stands for height.)

8.6 Short-Range Predictions

Consider a smooth function f(x) and its antidprivative F(x), about

which we have the following information:

(a) f(x1) F'(x1'.) is known, and

(b) F(x1) is known.

What can you infer about the values of F(x) in the vicinity of x1 ? In other
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words, if we know the value of a function and its antiderivative at a given
point, what can we say about the values of the antiderivative nearby?

Figure 8.5 has shown that near a given point the curve corresponding

to a smooth function is very close to the line tangent to the curve at th.-.4.

point. The tangent line passinr,, through the point (x1,F(x1)) has a slope
a = F' (x1) = f(x1). Hence the linear function corresponding to the tangent

line is (see Chapter 7, Equo*-1(;n (

i(x) = F(xl) + f(x1) (x-x1)
substituting Nx for x xl, this becomes

f (xi + Ax) F(x1) f(xl)Ax
For sufficiently small AK, we have

F(x1 + Ax) (xi + Ax)

Hence, for any smooth,function

F(x1 + Isx) F(x1) + f(x1)Ax

independently of how the function behaves farther away from x l' (See

Fig. 8.11).

Fig. 8.11

(8)

How small "sufficiently small" is, will vary from case to case, but
for any smooth function for which its value and the value of its derivative
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are known at one point, we can predict the ve.Ae of the function near that
point. This 1s illustrated for three different functions in Fig. 8.12. All

Fig. 8.12

-0.5 0 0.5 1.0 15 2.0

three curves pass through the point (1,1) and have a slope of 2 at that point

(note that the axes have different scales). But otherwise they correspond to

completely different functions. Nevertheless, near x = 1 they are very close
to their common tangent line, and Equation (8) can be used to predict the

values of any of these functions near x = I.
This result has many practical applications. For exathple, suppose

an airplane is sighted. Its position and velocity (the rate of change of po-
sition as a function of time) are determined at a given moment by radar.
One can use Equation (8) to predict where that airplane is going to be a short

time later. This is so because the airplane's position is a smooth function
of time, even when it changes speed, altitude, or direction, The traj,ectory
of an airplane cannot have a gap or a sharp corner.

.
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Questi9ns
1. At a given instant an airplane is exactly overhead and moving at

250 rilsec due north.

(a) In relation to Equation (8), what corresponds to f(x1./, F(x1)?

(b) Where will the airplane be 1 sec later? 10 sec later? Are you

equally sure of both answers?

2. A marker on Highway 20 is at an elevation of 850 meters. At that

point the highway has a slope of 0.08, rising toward the east. What

will be its elevation 150 meters to the east?

8.9 A General Way of Calculating Integrals

In the preceding section we saw that if we know the value of a func-

tion and its derivative at x1, we can calculate the approximate value of the

function at x
1

+ Ax (Equation (8)). Suppose the derivative is known through-

out its domain and the function itself is known at xl. Then we can find an

approximate value of the function itself for some other value of x, say x2,

not -necessarily pear xl. This is done by a succession of steps, similar to

the one expressed by Equation (8). Specifically from the approximate value

of F(x1 + 2Ax).

F (x1 + 2 Nx) l'(x1 + Nx) + f(x1 + Ax)Ax

Substituting from Equatic (8) for F(x1 + Ax) yields

F(x1 + 2Ax) F(x1) + f(x1)Ax + f(x: + Ax)Ax

We can continue the process and calculate the approximate value of

the function itself at x
1

+ 3Ax:

+ 3Ax) F(x1 + 2Ax) + f(x1 + 2Ax)Ax

AtIF(x1) + f(xi)Ax + f(x1 + Ax)Ax + f(x1 + 2Ax)Ax

2

+ E f(x1 + nax)Ax
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If we let x2 = x1 + Ix, we can generalize the process further to

N-1
Nx2) E f(x1+ rulx)ax

n=0
(9)

Th!s process is illustrated in Fig. 8.13 for the function whose de-
rivat:ve is f(x) = x, a tivthe initial condition is that for xi = 0.4,

x2F(0.4) = 0.08.. For th% simple cSse, the exact answer is F(x) = (Sec-
2

tion 8.6). The interval between x1 = 0.4 and x2 = 1.6 is first divided into
x2 - xi

three parts, i.e., N --,-. 3 and Ax -
N

- 0.4. As can be seen from

Fig. 8.13, the approximation becomes poorer as x increases from x1 to x2.

It can be improved by decreasing the size of Ax, i.e., increasing the number

1.4

1. 2

1.0

0 8

0.6

0.4

0 2

Fig. 8.43

0.2 0.4 0.6 0.8 1.0 1.2 14 16 1.8
x

X2

of steps into which the interval x2 - x1 is divided. In Fig. 8.14 the same

interval has been divided into N = 6 steps with Ax = 0.2. The approxima-

tion, as you can iee, is better. If we set Ax = 9.1, dividing the interval

into 12 segments, the approximation is even better (Fig. 8.15).
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Fig . 8.14
1

0.2 0.4 06 0.8 10

x I

Fig. 8.15

x
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21. i

1
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,

By decreasing Oa size of Ax, we approximate the curve correspond-

ing to F(x) by an increasingly large number of straight-line segments which

bilcome shorter and closer to the curve itself. In the limit as Ax 0 (or

N co) we get the curve itself. The endpoint of the last segment is then

4actly F(x2):

N-1
F(x2) = F(x1) + Urn E gx1+ nAx)Ax.. (10)

Ax n...0

Ihere is a generally accepted shorthand notation for the limit in.

Equation (9): the symbol E, is changed to a stretched "S"; since in the limit
xi + nAx takes up all values of x betweei, x1 and x2, it is simply replaced
by x; finally Ax is replaced by dx. Thus, in shorthand

x2
F (x2) = F (x1) +1 f (x)dx

xl

which is read as "integral of f(x)dx from x1 to x2."
If we can calculate the integral in Equation (10) for any values of

x2, then we have solved the problem of finding a function 11(x) whose value

is known for one value of x (e.g., x1) and whose derivative f(x) is known in

its entire domain. The limit of the sum given by Equation (11) gives the in-

tegral or antiderivative of f(x) for which F(x 1) is specified." The initial con-

dition is built Into this method of finding the antiderivative.

Questions

1. The derivative f(x) of a function F(x) is known for the values of the

independent variable given in the table below.

x f(x) x f(x)

0 150 2.5 88
0.5 134 3.0 79
1.0 120 3.5 72
1.5 107 4.0 65
2.0 97

(a) Calculate an approximate value for F(4) using Ax = 1.0, subject

to the initial condition F(0) = 0.
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(b) Improve the approximation by using Ax

Cc) How would you compare the two approximations?

(a) Find an approximate value for F(1), the aritiderivative of
1f(x) = subject to the initial condition F(fl) = 0, by dividing

the interval between x
1

= 0 and x2 = 1 into five parts.

(b) Repeat part (a) dividing the interval into ten parts.

(c) How do your answers coMpare?

8S0 The Area Under a Curve
N-1

The sum rr_. f(C1 nAx)Ax in Equation (9) has a simple geometrical
n=0

interpretation. Each term in the sum equals the area of a rectangle whose

base is Ax and whose height is f(x1 + nAx). If we draw the graph of y = f(x),

then these rectangles touch the graph at their left corner. This is illustrated
in Fig. 8.16 for N = 4. Here the sum of the areas of the rectangles is a
rough approximation for the area under the curve.

Fig. 8.16

f(s)

#.6oc x,+2ax xl4 iAx . x2 = + 4.6x

If we divide the interval x2 - x
1

into a larger number of parts, then
N-1
E f(x1 + nAx)Ax becomes a better approximation for the area under the

n=0

curve y = f(x) between xi and x2 (Fig. 8.17). This suggests that if we let
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x2

ttx - th.0 by increasing N, e limit of th.e sum, i.e., the integral f(x)dx,I
1

will yield the exact area under the curve y = f(x) between xi and x2. In
x2 x2 _

shorthand' f(x)dx = area under f(x) .
xi xi

Fig. 8.17

x, xi+ nAx

y.f(x)

We can, in fact, prove that this is the case. The sum of the areas
of the rectangles in Fig. 8.17 is less than the exact area under the curve

y = f(x). However if we add the areas of the small rectangles shoWn by the

broken lines in Fig. 8.18 to the areas of the rectangles of Fig. 8.17 we get

an area that is larger than the area under the curve. Thus

x2 N-1
Area under f(x) E f(x1 + nAx)i\xl < sum of small rectangles

x1 n=0

All of the imall rectangles have the base Ax and their heights add

up to f(x2) f(x1). Thus the .sum of their areas is [f(x2) f(x1))Ax. As

Ax 0, [f(x2) f(x1)]Ax -.0 therefore
x2 N-1

Area under f(x) lirn E f(x14-n1x)xi4x-0 n=0

or

lx2Area under f(x) = f(x)dx (12)

xl xl
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Rewriting Equation (il) as
rx2

f(x)dx = F(x2) - F(x 1.)
Jx1

and combining it with Equation (12) we conclude that area under a curve

y = f(x) between xl and x2 is given by the difference of values of an anti-

derivative of f(x) at those points

Area under f(x)
x2

Xl
= F(x2) F(x1)

it is not at all important whic:i of the family of homomorphic antiderivative

we choose, as '..ang as we use the same one for both x2 and xl. Thus, the
antiderivative provides a powerful tool for the calculations of areas under

curves.

xl

Questions

x2

x2
1. The proof that f(x)dx is equal to the area under the curve y = f(x)

xl

between x
1

and x2 makes use of the fact that the sum of the areas

of the rec',angles is less than the exact area under the curve. This

is true only if the function y f(x) is increasing over the interval

x1 to x2.
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(a) Sketch a function y f(x) which deereases over an interval

x1 to x2.

(b) Use rectangles touching the graph at their left corner to esti-

mate the area under y = f(x) from x1 to x2.

(c) Modify the proof of Sectior 8.10 to show that also in this case

f(x)dx = area under 0.x)
1

(a) From the description of integrals as area under curves, show that
x3 x3

fx2 f(x)dx +1 f(x)dx = f(x)dx
xi x2 xi

f x2 x2

th(b) Using part (a) argue at f(x) dx = area under f(x) even if
xl x1

f(x) both increases and decreases over the interval x1 to x2.

3. Consider a function f(x) > 0 for x1 Ix 1x2. Let g(x) =

(a) How is the curve y = g(x) related to the curve y = f(x)?

(b) If F(x) is an antiderivative of f(x), give an antiderivative of g(x).

(c) How is the area "under" y = g(x) related to the area under y = f(x)?

4. Find the area under the curve y = x2 between x1 and x2.

3
5. What is the area under thecurve y = 5x - 2x3 in the interval

6. A function is called symmetric if f(-x) = f(x) and antisymmetric if

f(-x) = -1(x). (For example, f(x) = x2 is symmetric because (-x)2 = x2

and f(x) = x3 is antisymmetric because (-x)3 = -x3.) What can you say

about the area under f(x)

val -x1 4/x ..1.+ x1 ?
-xl

where f(x) is antisymmetric in the inter-

7. Under what condition will the area under a curve as calculated by

Equation (12) be given in cm2 ?



-209-

8.11 The Area Function

In Fig. 8.19 consider the point x1 fixed and the point X moving along

the x-aKis. Then to every value X corresponds a value for the area under the
curve between x1 and X. Or in other words, the area under a curve is a func-
tion of the upper eild of the interval for a fixed lower end of the interval.

We shall denote this function by A(X) called the area function of f(x).
IPX !X

f(x)dx = A(X) = Area of f(x)
Jxl x

1

ro(x)

Now compare Equation (13) -for the antiderivative of f(x) and

Equation (11) with x2 replaced by X:

11X) = F(x1) +1 f(x)dx
x

1

(13)

(11')

Equation (11') reduces to Equation (13) for F(x1) = 0. Thus the area function

defined by Equation (13) is the particular antiderivative tit f(x) that satisfies

the initial condition F(x
1
) = 0.

The connection between area function and antiderivative is very use-

ful for getting a general teeling for the behavior of an antiderivative. For
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example, what are the qualitative features of the antiderivative of the func-

tion represented by the graph in Fig. 8.20 subject to the initial condition

FM) = 0?

Fig. 8.20

Note, first of all, that for 0 < x < 1 the area under the curve is pro-

portional to x. Thus the antiderivative will start off as a straight line with

a positive slope. Near x = 1 the function drops rapidly to zero and stays

there up to x = 2. There is no change in the area under the curve in this in-
terval, thus the antiderivative remains at its value at ; = 1. The general

appearance of the antiderivative between 0 and 2 is shown in Fig. 8.21.

Fig. 8.21

4 4 I X
2 3 4

Near x = 2 the function drops rapidly to minus its value between 0

and 1 and stays constant up to x = 4. Since f(x) is negative and constant in

the interval 2 < x < 4 the area "under" the curve is negative and will reduce
the area accumulated from x = 0 at a constant rate. The overall appearance
of the antiderivative for 0 < x < 4 is Shown in Fig. 8.22.

A comment about notation is in ord.pr at this point. We have labeled
the independent variable of the area function by X rather than x. The reason
for this change is to avoid cohfusion between the upper end of the interval
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X

of integration and all the values inside it; when we write f(x)dx, x takes up
x I

all values between x1 and X. Where there is no danger of %.-onfusion we can

write Flx) for the antiderivative of f(x) without resorting to an X.

Questions
1. It is stated in the text the area function of f(x) = c, where c is a con-

stant, is a straight line. What is the slope of this line?

2. Sketch an antiderivative of the function f(x) described in Fig. 8.23.

Assume F(-2) = O. Check your answer by finding the algebraic ex-

pressions for the straight line segments and tnen cAlculating their

antiderivatives.

Fig. 8.23

3. By studying the area under the curve y = f(x) for

1
f(x) 1 + x2

find the general features of its antiderivative subject to the initial con-

dition F(0) = O. What aspects of the behavior of F(x) can you deduce.
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8.12 Numerical Integration
N-1 x2

Computing the sum E gxj-+ nax)6.x as an approximation toi f(x)dx
n=0 xi

can lead to long and tedious calctirations. Whenever possible, therefore, it

is desirable to have this work done by a domputer. A flow chart for a computer

program which can be used to do this is shown as Program 1. The program re-

quires that the values for x1 , x2 1. and N-ge rsead in at Step 1. After initializ-

ing regitters in Steps 2 through 4, thla value for Ax, represented in the pro-

gram by the register DX, is calculated in Step S. Steps 6 through 8 calculate

theactual sum, using register I as the index. Finally, the sum is printed in

Step 10. (
PROGRAM 1

X 4-xl

5. DX tX2-X1) N

If I N-1 go to 6

I > N-1

11.
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A major limitation of this program is that it provides no information ,

x2

about the accuracy t...; the approximation to f(x)dx. To remedy this diffi-1
xl

culty we can add a routine to check on the exactness of the approximation
and, if necessary, improve it by increasing the number of subdivisions.

Program 2 is a version of the first program with these new features

added in. The new program repeatedly doubles N until the approximation to

f(x)dx differs from the true value of f(x)dx by less than some prespec-
xl xl

ified nurnber E.
PROGRAM

Read input --X1,X2,

I < N-1

2. DH f(X2) f(X1)
3. DX X2-X1
4. Sum f(X1)*DX
5. N 1

6. ERR IDH*DX1

. If ERR < E go to 18

8. I 0
9, Sum 0

10. X 4-- X1

11. N N*2^
12. DX - DX/2
13. I .-I+1
14. Sum 4- Sum + f(X)*DX
15. X 4- X+DX

ERR < E

1 . If I N-1 q o to 13

N-1

17. Go to 6

18. Write --Sum

19.
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Programs such as Program 1 and Program 2 require that the rule for ,

y = f(x) be specified. Therefore, if the function is presented either graphi-

cally or in tabular form such programs cannot be used. We can modify Pro-

gram 1 to deal with tabular data but the approximation can no longer be made

arbitrarily precise.

Questions ,

1. Code Program 1 in BASIC for f(x) =;x2 + 4. Use your program to ap-

proxin.ate the area under y = f(x) from x1 = 0 to x2 = 2 using four

rectangles.

2. Modify Program I. to approximate the area of a function given in tabu-

lar form. (Hint: Yop will have to read in values of x and fix) instead

of computing them.)

3. Code program 2 in BASIC for f(x) =x2 + 4. Use your program to ap-

proximate the area under y = f(x) from x1 = 0 to x2 = 2 to within 0.01

unit squares.

4. (a) Modify Program 2 to print not only the final result but also the

x2
approxima..e value of f(x) dx for each value of N.

fxj
(b) Use your modified program to approximate the area under

f(x) x2 + 4 from x/ = 0 to x2 2 to within 0.01 unit squares.

(c) What does the series of successive approximations tell you

_about how such approximations are related to the true area?

S. Modify the program of Question 4 to compute various areas under

f(x) = fi - x2 (see Fig. 8.24.)

(a) First compute the area under f(x) =1-1 - x2 from x1 t= -1 to

x2 0, Use your result to approximate IT to four decimai places.

(b) Next, approximate IT to four decimal places by computing the

area under f(x)w - x2 from xl sz a to x2 = 1. How do the two

estimates compare? One would expect the two methods to agree.

Do they?
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(c) Use your program t&compute the artia under 1(4 az NE X2 from

x
1

= -1 to x2 = l What happens? Why?

Fig. 8.24

E. (a) For Program 2 describe how the accuracy of the approximation is

determined.

(b) What are the limitations of the procedure used? (Hint: Consider

the results of Problem 5.)

7. (a) Modify Program 2 so that the criterion for accuracy is based on

the comparison of two consecutive approximations. That is, if two

approximations differ by less than E the program should print the re-

sult aiid stop. Otherwise, divide the interval once again and continue

the process.

(b) How does this procedure compare to the one of Program 2?

(c) Does this criterion work equally well for all integrals?
rx

8. (a) Modify Program 2 so that it can be used to compute A00 = f(x)dx
xl

and print out a table of values of X and MX) which could be used

to graph the :unctiole-Arro.
X

(b) Use the program of part (a) to print a table for ADC) = f (x2 + 4) dx.
0
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Use the program of Question 8 to print a table for A(X) = 1+v.
0

10. How could the program of Question 8 be modified to print out a table
X

which could be usea to plot F(X) = rix1) f(x)dx?
Xl



Chapter 9. THE EXPONENTIAL AND LOGARITHMIC FUNCTIONS

9.1 The Exponential Function/. = 10x

In Chapter 4 you learned how to find intermediate points on a power-
of-ten slide rule by taking square roots of ten. For example, the number on

the D scale represented by a displacement. from 1 to a point halfway between

1 and 10 is 4TO- = 101l2 = 3.162. By taking successive square roots you
found still more intermediate points. Thus, to find the number on the D
scale lying halfway between 1 and 10112 you calculated

N/101/2 = (101/2)1/2 = 101/4.

By taking successive square roots of 10 you were, in fact, raising
1/16101/8101/4,10 to different fractional powers 101/2, 10 . Each

of the terms in the sequence of exponents 1 1 1 etc., has the form 2n,
1

2' 4' 8,
where n is a positive integer. Using products of fractional powers of the

form 101/2n, we can find the value of any fractional power of ten to any de-
sired accuracy. For example, if we wish to find the value of 100.835, we

first search for a sum made up of terms from the sequence of exponents 12'
1 1 1

4 8 16
that differs from the exponent 0.835 by only a little. The sum

' '

1 + 1 = 0.75 is close to 0.835, but we can easily get closer to it by add-
2 4
ing and subtracting additional well-chosen terms from the series. Thus,

= 0.875 error: 0.0400
2 4 8

1+1 0.8438 error: 0.0088
2 4 8 32

1 1 1 1 1 = 0.8359 error: 0.0009
2 4 8 32 128
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-To find the value of 10.835 we now make use of the law of expo-

nents, ani an = arn+n, and write

1 1 1 1 1

100.35 02 4 8 32 128

1 1 1 1

=
2 4

10 10
8

10 10
32 *10

128

1 1 1

102'104 108
1 1

1032 10128

We can evaluate each of the fractional powers of ten in the above

expression by taking successive square roots. If we do this (using a high-

speed calculator to save time), we get for the final result

100.835 0$ 6.85

Using this tedious but routine methol, we can find the value of any

fractional power of ten to any degree of accuracy. There are other ways of

calculating fractional powers of ten, but this is the method invented and

used (without the benefit of high-speed calculators) ill the seventeenth cen-

tury.
What we have just done is find the value of f(x) ln the function

f(x) = 10x for x = 0.835. This new function is called an exponential func-

tion. The rule for this function IS "take 10 to the x power, " which is not

hard to do for integral values of x, but, as you have Just seen, is not so

easy for many non-integral values of x. However, if we calculate a reason-

able number of values. of 10x, we can draw a graph of this exponential func-

tion, filling in the hard-to-calculate gaps with a smooth curve.

The graph of the exponintial function y 10x is shown in Fig. 9.1.

It rises steeply, passing thrclugh the point (0,1), and as x assumes larger

ant larger values, 10x increases without.limit, but as x becomes more and

more negative, 10x asymptotically approaches the x axis.

Z26
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Fig. 9.1

Questions

1. Using the law of exponents, am an am+n, show that 101/2n is the

square root of 101/11 where n = any integer.

Find, using sucèessive square roots, the value of

(a) 10114

(b) io0.125

(c) 102-5

(d) 101.125

(e) 10'4)-25

3. What are the domain and range of the exponential function y = 10-x?
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Suppose you have a very long piece of string which you cut into 10

pieces, and you repeat this process of cutting each piece into 10

pieces several times.
(a) Make a graph of the number of pieces of string N as a function

of the number of times n you repeat the process (start with n = b

when N = 1).

(b) Are you justified in connecting the points you plot by a smooth

curve?
(c) What function gives N as a function of n?

(d) What restriction must you apply to the independent variable of

this function?

9.2 The Exponential Functions y = bx and i= kbx
In the previous section we discussed the properties of the function

f(x) = 10x, which is a special case of the more general exponential function

f(x) = bx where b is any positive number.
We found that we could calculate 10x for any x to any accuracy we

wished by calculating the product of some "well-chosen" successive square

roots, starting with the square root of 10. In similar fashion, we can find

the value of bx for any positive b and any x by starting with the squaz* root

of b instead of the square root of 10. The domain of y = bx for any'allowable

choice of b extends over the whole number line. The range, however, con-

sists of only positive values. The graph of y = bx for various choices of b

is shown in Fig. 9.2. If b is greater than 1, then as x assumes larger and

larger values, bx increases without limit, but as x gets more and more nega-

tive, bx asymptotically approaches the x axis. For values of b less than 1,

the reverse holds true.
The exponential function is one which comes up very often. For ex-

ample, let us say that the population of wild rabbits doubles each Year. If

we start with k rabbits, then after one year we have 2k rabbits, after two

years 2(2k) = 22k rabbits, after three years 2(22k) i= 23k rabbits, etc. After

x years, by the same reasoning, there will be y = (2x)k rabbits. Here we

f )
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have a more general form-of the exponential function, namely
y = kbx

The same function y = kbx describes the total amount of money in a

savings bank account, assuming a constant rate of interest. Let us say that
we start with a principal of m dollars and that the annual interest is 6 per

-3 -2

Fig. 9.2

2 3

cent, or 0.06 of the principal. After one year we have 1.06m dollars in the

account, after two years 1.06 x (1.06m), etc., and after x years we have

(1.06)xm dollars. Of course, the balance showil in the account is not really

a smoothly varying function of x, since interest is usually not credited con-

tinuously as it accrues, but is added as a lump sum at fixed intervals. Nev-

ertheless, if the total time considered is large compared to the time between
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interest dates, the function can for all practical purposes be considered

smooth. (See Fig. 9.3.)

1000 Fig. 9.3

4e-
800 y=100 (1.06)1

600.

Soso0 400

.0
6

200 ...
OW'S**

10 20

Number of years

30 40

Questioeic

I. The exponential function y = kipx-x0, where k, b, and x0 are con-

stants, reduces to the form y = )(lax where k' is a constant. What

is k' in terms of k, b, and xo?

2. The exponential function y = kbax, where k b, and a are constants,

reduces to the form y = k'cx, where c is a constant. What is c in

terms of b and a?

9.3 Inverse Functions
In Section 6.1 we defined a function as a relation such that for each

value of the independent variable there is only one value of the dependent

variable. We said that we could look at a function graphically, in tabular
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form, or we could express a function in terms of a rule.
It is sometimes useful to think of a function as a rule by which we

pair off certain numbers with other numbers; we may consider the function f

as a rule that pairs off a number x with the number f(x). Certain of these

rules can be inverted; that is, another function can be found converting f(x)

back into x.
For example, the function f(x) = x + 3 pairs off 0 with f(0) = 3; 1 with

f(1) = 4, 10 with f(10) = 13, etc.. The function g(x) = x - 3 inverts the rule
of f(x) = x + 3 since it pairs off 3 with g(3) = 0, 4 with g(4) = 1, 13 with

g(13) = 10, etC..

It is not always possible to find a function inverting the rule of an-

other function. For exampl,?, we cannot find a function that is the inverse

Of the function fix) = x2. The reason is that f(2) = 4 and f(-2) = 4, so a rule

g(x) which inverts the rule f(x) would have to satisfy both g(4) = 2 and
Er

q(4) = -2. But if the rule g(x) defines a function, then g(4) must be, a unique

number; thus there is no function which is the inverse of f(x) = x2.

Whenever we have a function g(x) which reverses the rule of a func-

tion f(x), then g(x) is called the inverse function of f(x).
What is the graphical relationship between a function and its inverse?

Let us first make the observation (Fig. 9.4) that the line y = x is the perpen-
dicular bisector of the line segments connecting the points (a,b) and (b,a),

(e,d) and (d,c), (m,n) and (n,m). Or, to rephrase the statement, the points

, 13) (c,d), and (m, n) 'are symmetric to the points (b, a), (d,c), and (n, m),

respectively, about the line y = x.

Fig. 9.4
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We know that to graph a function f(x), with values for f(a) = b:

f(c) = d, f(m) = n, etc., we plot the points (a,b), (c,d), (m,n), etc. Since

the inverse reverses the rule of the function, we can graph the inverse by

plotting the points (b, a), (d,c), (n,m), etc. In view of our observation con-

cerning Fig. 9.4, it is now clear that the graph of the inverse of a function
is symmetric to the graph of the function with respect to the line y x.

Thus, for example, to sketch the graph of the inverse of f(x) in

Fig. 9.5, even though we have no explicit rule that defines f(x), we can se-
lect a few points (P1, F2, ..., F7) on the graph of f(x) and locate points of
symmetry (Q1, Q2, ..., Q7) with respect to the line y = x. We then sketch
the graph of the inverse by connecting these points. We can tell by looking

at the graph in Fig. 9.5 that the inverse is a function even though we cannot

write the rule for it in terms of algebraic operations.

Fig. 9.5

We stated earlier in this section that the function y = x2 does not

have an inverse function. We can illustrate this graphically (Fig. 9.6(a)).

Note that the relation y n INN reverses the rule y st x2 but it is not a function

since for any x in the domain of y ±..5( there are two values of the dependent
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variable y. It is possible, however, to get an inverse function for f(x) = x2

if we restrict the domain of f(x) to non-negative values only. The rule
y = +.5i-then defines the inverse function cf y = x2 where the domain of the

independent variable in the function y = x2 has been restricted to non-nega-

tive values of x. This is shown graphically in Fig. 9.6(b) where the solid

portion of each graph shows the function and its inverse function.* The dot-

ted portions are included just to show the complete relation between x and y

(a )

(b)

2

Fig . 9.6

*The function y = -hrx is usually written as y = Nrx, where the positive sign is
understood.
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Questions

1. (a) Figure 9.7(a) shows the function f(x) = 2x + 1 and its inverse

g (x) .

What is the algebraic expression for g(x) ?

(b) Figure 9.7(b) show* f(x) = 2x + 1 and y = x. ,In this figure the

scale on the x-axis has been "stretched" so that the distance from
the origin to 1 along\t,he x-axis is twice the corresponding distance
along the y-axis. I

Fig. 9.7

(b)
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Lay off, on graph paper, scales like those in Fig. 9.7(b) and
plot the graph of f(x) = 2x + 1 and y = x.

Now use the algebraic expression you obtained in.part (a) tn

plot g(x).

(c) Are f(x) and g(x) symmetric with respect to the line y = x?

(d) Under what conditions are a function and its inverse symmetric

with respect to the line y = x?
2 . Is y = -Nri the inverse function of a function? If so, what function?

3. Sketch the graph of the inverse of each function in Fig. 9.8 without
writing any algebraic expressions but by using the graphical rela-
tionships between a function and its inverse.
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Fig. 9.8
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ii1111111.1111M11111111



-228-

4. In Fig. 9.9 , the functions f(x) x2, g(t) 2, and h(x)

are graphed.

(a) Sketch the graph of the inverse of each function.

(b) Is the inverse cf any of these functions a function?
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1111111111.11111WANINI
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111111111111101M111111111
111111111111111111111111111111111

11111111111111111111111111111111111

X

Fig. 9.9
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5. G!ven a graph of a function, formulate a rule which will tell you,

without going through the graphical construction of an Inverse,

whether or not the invergb is also a function?

6 Graph the function y f(x) 4 - '13x and then choose a few points on

the graph of f(x) to plot its inverse. Now, using the technique de-

scribed in Section 7.5, write the equation of its inverse.
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7. In Question 6 you graphed the function y as 4 - x. Solve the equa-
4tion y = 4 - 3x for x, and compare your solution with the equation of

the inverse function that you delived in that example. Does this

give you a method of writing the equations for inverses of linear

functions? Try some more examples.

9.4 g(x) = logux: The Inverse FunCtion of f(x) = 10x

Figure 9.10 shows the result of applying the geometric method for

constructing the graph of an inverse of a function to the function f(x) = 10x.

f(x)=101

2.0 (0.3,2)

1.5
\.

\
1,0

\

Fig. 9.10

g(x)-= log lox

(2,6.3)
X

-15

t.0 1.5 2.0

As you can.see, the inverse of f(x) = 10x is a function because for each val-

ue of the.independent variable there is only one value of the dependent vari-

able. It is called a logarithmic function. There is no way to write the exact

rule fot g(x) using simple algebraic symbols, although we cap find g(x) for

any positive value of x frcin a table of values of the exponential function

y = .10x. Therefore, we write it-as

g(x) = logle

23;-'
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where loglox means "find the exponent of 10 such that 109(0 X" and is

read as "the logarithm of x to base 10." _Note that "log10" does not repre7

sent a number. Like the symbol " r " it specifies a definite operation.

From the definition of the logeirithmic function it follows that

1m101

log1010 =
log10100 =

0 since

1 since

2 since

100 = 1-

10 Pc 10

102 = 100

and fdr numbers less than 1

1c41001
logi00.01 = -2 since 10-2 *Ti: 0.01

-1 since 10-1 = 0.1 trce

Table 9.1 lists some of the overall properties of the two graphs in
Fig. 9.10 and .shows the close relationship between trie functions y 10x

ahd y = log10x. We see that one graph behaves in just the reverse way

from the other.

Domain

Range

TABLE 9.1

f(x) = 10"

all aumbers on
the number line

positive numbers
on the number line

Intercept (0,1) with the y-axis

Asymptote x-axis

g(x) logux
positive numbers
on the number line

all numbers on
the number line

(1,0) with the x-axis
y-axis

The most characteristic property of the exponential function is ex-

pressed by the law of exponents. Specifically for base 10,

10x1 10x2 lox14112

What is the.corresponding property for the logarithmic function?

Let

= el and y2 m 102cyl l 2

(1)
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then by the definition of the logarithmic function*

x1 = log y1 and ..x2 = log y2

Equation (1) can now be written as

Y1y2 10x1+x2

Again applying the definttion of the logarithmic function we have

x1 + x2 = log (y1y2)

On the other hand
x1 + x2 = log y1 + log y2

Hence

log (y1y2) = log y1 + log y2 (2)

In words, the logarithm of the 1;:roduct of two numbers equals the sum of the

logarithms oi the two numbers.

Because of this relationship, a table of logarithms of numbers need

include only the logarithms of numbers between l and 10. The.table of log-

arithms to the base 10 in the Appendix of this book, for example, gives the

logarithms of all three-digit numbers from 1 to 10 only, and the logarithms

of these numbers, given to four digits, rang.e from 0 to 1. (For simplicity,

the decimal points in the numbers and also in the logarithms are omitted.)

To use such a table fcr numbers greater than 10 or less than 1, we

express the number as a number between I. and 10 multiplied by the appro-

priate power of 10. We then use Equation (2). For example

log 324 = log (3.24 x 102)

= log3.24 + log 102

= 0.5105 + 2

2.5105

*The subscript 10 is generally omitted when we write logarithms to the base
10. Thus, logy stands for log10y.
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,

log 0.0324 log (3.24 x 10-2)

log 3.29 + log 10-2

= 0.5105 - 2
= -1.4895

Questions
1. The law of exponents holds for any number of factors: For example,

10x2
103 10x1+x2+x3.

(a) Use this extention to show that
log y1y2y3 = log + log y2 + log y3

(b) Express this result in compact form for the special case

yl = Y2 = Y3*
(c) How would you generalize this result to any number of equal

factors?
In Equation (2) consider the special case y2 = y1 What does the

result tell you about log in terms of log yi.?
Y1

a
3. The logarithm of the quotient can be looked upon as the logarithm

1of the product a On the basis of your answer to the preceding
b

question state in a sentence the relationship between the logarithm

of a quotient and the logarithms of its numerator and denominator.

4. How is log (x-n) related to log x ?

5. How is logqiCrelated to log to log x?

6. (a) Graph y = log x for values of x between 100 and 1000.

(b) If you changed the x scale so that 100 became 1000, and 1000

became 10,000, how would you have to change the labeling of the

5r. axis so that the graph would represent log x in the new domain?

7. Expand or simplify

(a) log (ax2)

(b) log (-35)

Use the table of logarithms in the Appendix to find the logarithms of

Z)'i f
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the following numbers:

(a)

(b)

(c)

372

0.50

0.00437

(d)

(e)

(f)

3.46X

367

108

0.021

9. Use the table of logarithms to evaluate the quantities below:

(a) (1.72)18

(b) (2.63)1/3

(c) (143)-8

9.5 The Functions ex and lnx
Figure 9.11(a) shows two curves of the form y = bx. They are y = 2x

and y = 4x. Both curves have the same y-intercept, (0,1), and both are

approximately straight lines for lxi < < 1. They can therefore be approximated

y=4

-U0 -0 5
241

0.5 10
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by the function y 1 + ax for !xi << 1 where a is the slope. As you can see

from Fig. 9.11(a), at x 0, y = 4x has a slope greater than 1, and y = 2x

has a slope less than 1. There must exist an exponential function, y = bx,

whose slope at x = 0 is a = 1. This exponential function will have the simple

approximation y j + x. The base of this function Is called e and the graph

of y = ex and y = 1 + x, close to x = 0, is shown in Fig. 9.11(b). The figure

shows that, indeed, for lxi << 1, the function 1 + x is a good approximation

for ex, so we write
ex 1 + x lxi << 1

We can find the value of the base e by taking both sides of the above
1equation to the x power:

(ex)1/x (1 +101/x lxi «
Since our approximation ex rzs 1 + x becomes better as x approaches zero, we

expect that the approximation- e (1 + x)1/x becomes better as x approaches

zero. Table 9.2 gives the calculated value of + x)l/x for a range of values

of x approaching zero.
TABLE 9.2

(1 + x)1/X

1 2.000

10-1 2.594

10-2 2.70

10-3Ivo
2.717

10-4 2.718

10-5 2.718

10-6 2.718

The table shows that for lx1 < 10-4 there is no change, to four significant

cliatts, in the values of + x)1/x. We can say, therefore, that e = 2.718

to four significant digits.
Exponential functions with the base e occur frequently and for this

reason tables of ex and ex are found In many textbooks and handbooks.

2.1,2



-235-

The inverse of the function y = ex is also common. This logarithmt

function y loge, is commonly written as y lnx to distinguish it from the

only other commonly used logarithmic function, y = log x.*

-O. 5 -0.10 -0.05

02

005 0.15

Logarithms to the base e are called "natural logarithms," or sometimes
"Naperian logarithms" after their invent(Thr. (Logarithms to the base 10 are
often called "common logarithms.")

.2 4

X



-236-

What is the relationship between loqx and lnx? To find it, we take

the logarithm to the base e of x for the case where x 10Y. Thus lnx = y In10
Inxor y =

In 10
and log x = y log10 = y. Thus

1log x = ln 10 lflX

Since
In

1

10
is a constant, we see that logarithms to the base 10 are propor-

tional to logarithms to the base e.
Another important property of lnx is that we can readily derive an ap-

proximation for In (1 + x) for fad << 1 This is a direct result of the approxi-

mation ex 1 + x. Thus, by definition of the logarithmic function,

In (1 + x) mz% x ix! « 1
One should not forget that this approximation applies only to logarithms to

the base e. It does not apply to logarithms to the base 10.

Questions

1. What is the relationship between ex and 10x?

2 . What is the value of

(a) el?
(b) el00

3. Use a table of ex to find the fractional error in the approximation

ex 1 + x for

(a) x = 0.01

(b) x = 0.1

(c) x = 0..5
1

4. The expression log x = lnx makes it possible to obtain log x
In 10

from tables of In x. What is the corresponding expression that allows

us to obtain In x from.tables of log x ?

Using the table of logarithms in the Appendix find

(a) In 1

(b) In 10

(c) In 100
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6. What is the fractional error in the approximation In (1 it x) ad x for

(a) x = 0.001

(b) x = 0.1

(c) x = 0.5
7. If a sum of money increases by a fixed, small percentage at regular

time intervals, then the amount A-at time t in years is given by

A = m (1 + lnt
n

where rn is the amount when t is zero, r is the interest rate and n is

the number of times per year the interest is added to the principal

(compounded).

(a) Express 1 + I:( n
nt as ex.

(b) By making use of the approximation In (1 + x) CZ x for x << I find

the expression for A when the interest is compounded continuously

(n-oo).
(c) What is the difference between $1000 compounded annually at

6 per cent and $1000 compounded continuously at the same rate?

9.6 The Derivative of y = ex; Exponential Growth and Decay

The Fixponential function has many applications. To study these ap-

plications we need a knowledge of its derivative.

According to Equation (2) of Section 8.3, the derivative of the func-

tion f(x) = ex is defined as

[ex), ex+" ex
Ax

or
ex(eAx I)

[exP = lirn ax
(3)

Unfortunately we cannot write the numerator in Equation (3) in such

a way that Ax in the numerator can be cancelled with the Ax in the denomi-

nator. However we know from Section 9.5 that eAx 00 1 + Ax when Ax << 1
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and that this appmximation approaches an equality in the limit as Ax

Therefore Equation %.1) becomes

ex(1 + Ax 1)
(ea)1 lim = ex

bac -0 Ax
(4)

The exponential function (with base e) has the interesting property that it

equals its own derivative!
How is this-property modified for the more general exponential func-

tion ekx? ,Again, applying the delta process we find

[ekx], = lim
ek(x4-tlx) ek_x ekx(ekAx 1)

xA-0 Ax Ax 0 Ax

For'any,value of k we can choose Ax so small that also kAx will fulfill the

condition kAx << 1. Then we appiy the approximation from Section 915:

ekAx c4 1 + kAx

?.nd find

[ekx]. = ekx(1 + kAx
= kekx

Ax Ax

In words, the derivative of ekx is proportional to the fuVion\ftself and the

constant of proportionality is k.
What is the derivative of Aekx? From theorem (i) of Section 8.5, we

know that the derivative of a constant iimes a function is the constant times

the derivative of that function. Hence

{Aekx)" =,Afek-nt = Akekx =;.kAeloc (5)

Thus the derivative of Aekx is proportional to Aetkx- itself and the constant of

proportionality,k is independent of the value .of A. ThiL.converse of this re7

sult is also true. We state it here without proof:

Any function f(x) which has the pro.perty: t t its derivative is propor-

tionill to Itself, Is an exponential function. aPecifically, if

then
f'(x) kf(x)

f(x) Aekx

ss
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Note that f(0) = A. Hence, A can be specified by an initial condition. For

example, if11(x) 1.5f(x) and f(0) = 10, then f(x) = 10e15*.
In many applications of exponential functions the independent variable

is time and dependent-variable is the number of such discrete things as atoms,

bacteria, people, etc. In such cases we speak of population functions, and

designate the dependent variable by N.
t-

Population functions change by discrete amounts and therefore have

the property that their graphs are not smooih curves. But if over a short time

interval, the changes in the size of the population are small compared to the

total population considered, then for all practical purposes we can consider

a population function to be smooth and speak of a rate of change N'.

In this notatica, if a population function satisfies the equation,

N' = kN

then it is of the form
N = Noekt

where No is the size of the population at t = 0.

(b)

Questions

1. Find the derivative of each of the following exponential functions:

(a)

(b)

(c)

(d)

3ex
4e-x

0.5e3x
5e-0.1x

Evaluate each of the derivatives in Question 1 for x = 2.

3. For whic,41 of the functions in Question i. does the value of the func-

tion increase with increasing valu3s of x?

4. Which of the following functions would probably be of exponential

form?

(a) s(n), your annual salary n years after beginning your lob if you

have been promised annual pay raises of 5 per cent.
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(b) f(t), the temperature on a hot day at time t.

(c) n(t), the number of people who have heard a rumor t days after

it was started.

(d) f(n), your annual salary n years after beginning your,job if yuu

have been promised annual pay raises of $700.

5. Figure 9.12 is an illustration of Equation (5). It is the graph of the

decay of a sample of polonium. The atoms of this radioactive ele-

ment disintegrate, changing into stable atoms of non-radioactive

lead. The rate of this decay is proportional to the amount of poloni-

um present. It does not depend on the age of the sample. The func-

10

0 9

0.8

0 7

0.6

A 0 5
No

0.4

0.3

0,2

0.1

Fig. 9.12
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tion giving the amount of polonium present at any time t, therefore,

has the forth of Equation.(6) where No is the number of polonium

atoms present at time zero, and k is negative.
-0.(a) Solve the equation t Noe005t for t.No = The length of time

required for a sample of the element polonium to decay to half its

present size is called its "half life."
(b) What, approximately, is the half life of polonium that you find

graphically from Fig. 9.12?

(c) How does the rate of decay when the sample is reduced in size

to one-half, compare with its initial rate Of decay?

6. The element uranium has a rate of decay given by

N' = -1.5 x 10-10 N atoms per year

Draw the graph of Is1/1\10 as a function of t, where No is the initial

condition.

7. Sketch the graph of N/N0 = e+0.005t. Is there an analogue of "half

life" fpr exponential functions with positive exponents? (Perhaps

the term would be "doubling time.")

To answer this question, refer to Question 7(a) in Section 9.5. A

large printing press used to print cardboard posters can print just

one color at a time. However, multicolored posters can be produced

by running the posters through the press one time for each color.

From past experience-it has been determined that the percentage of

rejects (blurred ink, torn paper, etc.) on a single tun is never higher

than 6 per cent. How many blank posters must one begin with if one

needs to produce

(a) 100 one-color posters,

(b) 100 two-color posters,

(c) 100 five-color posters ?
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lt population of wild rabbits (Section 9.2) may grow exponentially for

some time. But clearly such exponential growth cannot continue in-
definitely due to the limitations in the environment. Very often limit-

ing factors cause populations which have appeared to grow exponen-

tially for a while to "level off," to begin to die out, or to exhibit
other erratic growth and/or decay.

Figure 9.13 shows the growth curve of a colony of bees. It is
very nearly exponential for a while and then begins to level off.

The growth curve of Fig. 9.13 is quite accurately described by the

growth rate function

N' = kN(K

-

where N is the number of bees at time t and k and K are conttants.

(K - NThe factor 1-7)
represents the limitation on the rate of growth and

100,000

80,000

6Q000
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14.4 40 000
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20,000

0

Fig. 9.13
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on the ultimate size of the colony due to environmental factors.

What is the significance of K?

10. (a) Find the function that represents'the growth.of lead formed by

the decay of a sample of polonium initially containing 6 x1023 atoms

and graph the function using data from ihq decay curve foy polonium

(Fig. 9.12).

(b) Is the time it takes for the lead formed to double in amount a

constant?

11. A person hears a rumor and repeats it to three other persons in one

day. Assume that each of these three persons pass on the rumor to

three other persons the next day yvho have not previously heard it.

The rumor le passed on in this way for 8 days. How many persons

will have heard the rumor? Is the assumption reeisonable?

12. Look up the topic of C14' (carbon 14) dating. What is the relationship

between this section and C14 dating?

13. (a) Use the delta proces)s and the approximation + Ax) Ax for

x << 1 to find [Inx]' .

(b) What is the'delivetive of aex + b inx?

14. (a) Suppoee b > 0. Find a constant k for which bx ekx.

(b) What is the derivative of f(x) bx?

1 5. What is the derivative ok(x) = log x (the logarithm to base 10 of x)?

16. Compare the derivative of Inx with that of In (cx). Does this compar-

ison contradict the statethent of Section 8.7 that "the antiderivatives

of a given function-form a family of homomorphic functions displaced

vertically with respect to one another?" Why?

251



- 249 -

9 Recognizing Functions of the Forrn_y Cit

\ Consider the functions whose graphs are shown in Fig. 9.14(a) and

9.1.4(b). How can we find if they are of the form

y Cbx

and what are the values of the constarlts C, and .b?

If we take logarithms of both sides of Equation (7) we get the equa-

tion

'(7) \r":

log y = log C + x log b (8)

Now if we let z logy we see that Equation (8) describes z as a linear func-

tion of x, i.e. z = (log b)x + log C. If the functions are of the form y Cbx

a plot of z = log y as a function of x will be a straight line. Figure 9.1.5 illus-

trates an example oflust this situation. It is a graph of ldg y as a function of

x for the function y = 3(2)x.

20
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We have included on the graph of rig. 9.15 a second vertical axis

representing ihe numbers y whose logarithms are marked off on the log y

scale. The relative displacements. f the numbers on the y scale are the

same as those on the C and D scale o a slide rule.
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When plotting log y versus x It is tedious to have to look up the loga-

rithm of each value of x plotted. There is a 1,pecial kind of graph paper,

called semi-log paper, which eliminates this problem. A sheet of semi-log

Zrj
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on the y axis, say yo, is proportional to the logarithm of yo. In other words,

equal displacements along the y axis are proportional to differences in the

logarithms of the numbers actually marked on the scale. For example, the

displacement between 1 and 10 equals the displacement between 10 and 100

since log10 - log 1 = log100 - log10 = 1. To plot the point (3, log2) one

Just goes to the 3 on the x axis and then moves up to 2 on the y axis.

In plotting the labeled values of k versus x you are really plotting

log y versus x. Semi-log paper is a convenience to help you plot logy versus

x without having to use log tables Just as a slide rule helps you multiply

numbers by adding their logarithms without ever looking up the logarithms in

a table.
To illustrate our method let us find the equation for the function in

Fig. 9.15 whose graph is drawn on semi-log paper in Fig. 9.17. Since the

point (0,3) is on the graph we get from Equation (7) that 3 = Cb° = C so C = 3.

Letting x = 1 in the equation y = 31ax gives y = 3b so to find b we observe that

the point on the graph with x coordindte 1 has y coordinate 6. From the equa-

tion 6 = 3b we have that b = 2. Our function therefore has as its equation

y = 3 x 2x.

This method for finding C and b from the points with x coordinates

0 and 1, respectively, will always work since the line representing the

graph of y = Cbx can always be extended so as to cross the vertical lines

x = 0 and x = 1.

There is a limitation in using semi-log paper to plot exponential func-

tions. One scale division on the horizontal scale can have any value you

choose but the range on the vertical scale is limited. The one in rig. 9.17,

for example, can cover only a range of three consecutive decades of y val-

ues. Such paper is said to have three cycles. It can be used to plot values

of y from 102 to 105 or from 10-4 to 10-1 but not from 10 to 105 or 10-3 to

103, etc. If you need to plot with more than three decades on the vertical

axis you can attach several sheets together or you can use semi-log paper

with more than three cycles.
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The table below represents y as a function of x.

x

-3 2.07

-2 2.22

-1 2.67

4.00

1 8.00

2 20.00

(a) Plot the data on regular graph paper the relationship should

appear to be exponential.

(b) Replot the data on semi-log paper.

(c) The result of part (b) was probably disappointing. Don't give up.

Find a constant d so that the set of points (x. y-d) do give a straight

line when plotted on semi-log paper.

(d) Write an equation for these data.

(e) Will a function homomorphic to a function of the form y = Cbx

give a straight line when plotted on semi-log paper?

The accompanying table gives

Year

the world population from 1650 to 1970.

World
Population

1650 0.545 x 109
1700 0.610 x 109
1750 0.728 x 109
1800 0.905 x 109
1850 1.17 x 109
1900 1.61 x 109
1950 2.40 x 109
1955 2.69 x 109
1960 2.92 x 109
1965 3.18 x 109
1970 3.50 x 109

(a) Make a plot of population versus year on regular graph paper.

(b) To see if the graph, in part (a) is an exponential function of the

form y = Cbx plot log y versus x on semi-log paper.
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(c) Notice in the graph of part (b) that the portion from 1950 to 1970

is fairly linear. Rep lot this portion with a larger scale along the

x axis.
(d) From your graph in part (c), find the values of b and C, and write

the exponential function that describes the population growth from

1950 to the present.

(e) Demographers project a world population of 6.27 X 109 by the

year 2000. Extrapolate your graph in part (c) to the year 2000, and

compare your result with this figure.

6. Make a semi-log graph of the growth curve of the bee population

shown in Fig. 9.13.

(a) For about how many days is the growth of the colony exponential?

(b) During the exponential growth of the colony what is the time

interval during which the bee population doubles in size?

(c) Use the' equation given in Question 8, Section 9.6, to find an

equation for the maximum size of the colony of bees described in

the question.

7. Figure 9.20 is a graph of the density of the atmosphere as a function

of altitude. Here the density is displayed over a range of nearly

seven orders of magnitude. Is the function exponential? .

Fig. 9.20

100 200 300 400 500 600 700

ALTITUDE (km)
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8. In the spring of 1937, eight ring-neck pheasants were introduced on

a proteated island off the coast of the state of Washington. Each
L.

spring a count of their population was made. The results are shown

in the table below. Did the colony grow exponentially?

Year Populatjon

1937 . 8

1938 30

L939 90

1940 300

9. Which of the curves in Fig. 9.14(a) and (b) are of the form y = Cb3c?

For those that are, write their equations in the form y = ekx.

10. Rep lot Fig. 6.2 using semi-logarithmic paper. What do you conclude?

9.8 Recocintzinq Functions of the Form y = mlogx + b

In the preceding section we used semi-log paper to identify exponen-

tial functions. We can also use semi-log paper to identify and specify log-

ari.thmtc functions. If we want to determine if a ftnction has the form

y = mlog x + b (8)

we plot y as a function of z = log x. If the function indeed has the form of

Equation (8) we will again obtain a straight line.

We can use semi-log pap.lr to plot Equation (8) with the logarithmic

scale for the x axis as in Fig. 9.'1. For example, this time the point

(log 5,3) is plotted as simply (5,3) on the semi-log paper. From inspection

we see that the y-intercept in Fig. 9.21 is 2.18. (Note that this is the val-

ue of y when x = 1.)

The slope of the straight line in Fig. 9.21 is m = By choos-
. Alog x

ing points for which logx is easy to compute we can find m without using a

log table. For example, since it appears that (1, 2.18) and (10, 3.35) are

on the graph we have that
=_2i_y__= 3.35 - 2.18

Alogx log 10 - 1 ""
so the equation whose graph is giv3n by Fig. 9.21 is y = 1.17 logx + 2.18.
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Questions

1. The following

1 g . (.; . 11

table represents y dS a function of x.

4

10
15
30
50

4.50
6.10
6.95
7.40
8.15
8.45

's_41_.

(a) Find the "best" functions of the form y = miogx b to fit this

data.

(b) Estimate the error involved in using your function to predict the

value of y corresponding t o a particular value of x rather than con-

suiting the table.
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-2. Find the equations for the functions whose gra hs are plotted on semi-
.

log paper in Fig . 9.22 .

'Fig. 9.22

N111111
I 111111111111

1111111111111 11
II -OMNI

4111,111 itill
,5 , 06 0.7 0.8

10 ,,...
Pr 8 9 ll

3. Plot y. vers,,s ir x `rubles I and II. Decide in each case whether

eu L.,.:11.0 can possibly correspond to a function of the type

y = miogx.

TABLE

lf so, find the value of rn.
TABLE II

0.02 7,36 0.02 -3.30
0.08 4.72 0.08 -2.02
0.40 1.71 0.40 -0.67
1.00 0.00 1.00 0.00
6.00 3.35 6.00 .13

20.00 5.59 20.00 1.75
60.00 7.65 60.00 2.30

100.00 8.60 100.00 2.52

I
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4. (a) Which of the graphs in Fig. 923 are graphs of logarithmic func-

tions of the fornfy = mlogx + b?

(b) For those graphs in Fig. 9.23 which were identified as graphs of

logarithmic functions 1.4art (a) find the values of In and b.

I0

9

8

7

6

5

4

3

_2

0

-2

-4

Fig. 9.23
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9 .9 Recognizirm Functions of the Form v = axn

In Chapter 7 we considered functions of the type y = axn, where n

was an integral number. We can also consider functions of the form

y axn

where x is greater than zero and n is any number, integral or non-integral.

Figure 9.24 shows the shape of several graphs corresponding to a = 1 and

different values of n.

4

3

2

F4g . 9.24
Y:x Y:x

0 2 3 4

We have already described in Chapter 7 how to investigate whether

a table of values of x and x represents a function y = axn, where n is some

integer. For example, if we suspect a relation of the form y ax2, we plot

y yersus the quantity x2. With the aid of logarithms we'can now apply a

more general method which will enable us to decide whether the values of
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x and y given in a table of data describe any function of the type y = axe

and, if so, what the values of a and n happen to be.
We shall first assume that a is positive. If the values in a table of

data satisfy y = axe, as we have Just defined it, all the given values of y

and x are positive and we can have a relation between log x end log y. Tak-

ing the logarithm of both sides of y = axe, we find that

log y = n log x + log a

Therefore, if we plot log y as a function of log x, we will get a straight line

with slope n A(1°g y) an d a vertical intercept log a (Fig. 9.25).
&nog x)

Fig. 9.25

tog Y

(0,1o.ga) Wog x

log yznlogx+log a

aiog y

log X

To avoid using a fable of logarithms we can plot the values of x and

y on "log-log" graph papor, which differs from semi-logarithmic paper by

having ci logarithmic scale along both the x and y axes.

t us investigate the nature of the function reprosented by the data

in Libio . 3.
TABLE 9 .3

0 0

0.5 0.15

1.0 0.48

1.5 1.00

2.0 1.63

3.0 3.30

4.0 5.30

5.0 8.00

6.0 10.90

7.0 14.40
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Figure 9.26 is a graph of y as a function of x for this table. From

the shape of the graph it is plausible that the corresponding function ts of

the type y = axe, so we plot y as ,a function of x using log-log paper

(Fig. 9.27), numbering the scales in the same way as described in Sections

9.7 and 9.8, where the use of semi-logarithmic paper was discussed. The

x axis and the y axis cross at the point we have labeled (1, 1), corresponding

to (log 1, log1) = (0, 0). If we wish to plot the point (1.5, 1.00) from Table

9.3, we find the intersection of the vertical line numbered 1.5 and the hori-

zontal line marked 1.00. Note that the point (0, 0) cannot be plotted. Plot-

ting the remaining points, we see that the graph is a straight line, so we know

that a function of the form
log y = n log x + log a

describes the data in Table 9.3. The value of the slope is

n =
A(log
A(logx)

On log-log graph paper, displacements in inches, centimeters, etc.,

on the paper are proportional to the corresponding differences in logarithms

16

14

12

10

8

6

4

2

0

Fig. 9.26

1 2 4 5 6 T
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of those numbers marked on the scale. Therefore, in Fig. 9.27

A(log y) kBC BC
n =

A(log x) kAC AC

where k is the constant of proportionality between logarithms and displace-

ments. This means that we can find the slope on log-log graph paper by

taking the ratio of the actual displacements Ay and Ax measured in centime-

ters on the paper; we do not have to find the logarithms of any numbers.

Measuring BC and AC in Fig. 9.25 gives
BC 3.5 cm

n -
AC 2 .1 cm 1 7

To find a in the function y axl. -7, we look at the y intercept in

Fig. 9.27. It shows that when x = 1, y = 0.52 = a (11.7) = a. Therefore, we

conclude that the numbers in the table satisfy the function

y 0.520.7

uiq. 9.27
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So far we have dealt orly with the case in which a is posit1ve and _

both x and y are positive. This is necessary because we-can only plot points

on log-log paper that fall in the first quadrant of an ordinary graph. If a is

negative and we make the restriction that x is always positive, then y must

be negative. This corresponds to a graph lying entirely within the fourth

quadrant of an ordinary graph. We cannot plot such a function on log-log

paper, but instead we can plot the function y = -(axe).

Questions
I. Determine the slopes of the straight lines shown in Fig. 9.28 to con-

vince yourself that they agree with the value of n given for each

function.

2 . (a) Use log-log paper to ascertain if the curves in Fig. 9.29 are of

the form y = axn.

(b) For the curves that are of the form y = axn, find a and n.
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Fig. 9.29

1111111111211111111111
OMOMMOMOMMMOOMMOMMOM
OMMIMMEMMEAMMOMORMWM
MMOMMEMMEMINIMMOMMOMM
IIMEMOMMENUMMEMMERMINIM
INIMMEMOMMAMMEMMUMMINIM
IMMEMMEMMEMPIONIAMEMM
MINIMOMMIUMMMEMMINIMME
IMMEMMUNCOMMINEMMOM
MEMMOMMIMOMMEMENMEMME
MMMEMMMIIMEMMOMMMOMEM
MOMMEMOAMMOMMINOMMOMM
MINIMMEMMUMMEMWMOMMEMM
MMOMMUMMOMMMUMMEMMEM
IMMINIVMMOMMEMMOMMOMM
ORAMMUMOMMERAMMOMMOMM
IMMMINIMMIMMAM MINIMME
WISI!4UlI1IISIIRlIR
UMMMOMERWMUMM MEM=
gigiuiuiiaiauiaisuoncammummumm immumw

4
X

6 8 10 12 14 16 IS 20



- 262 -

3. Plot the function y w ax on log-log graph paper for spveral values of a.

4. You know that a straight line on a sheet of log-log paper corresponds

to a function of the general form y axn. How does each of the fol-

lowing conditions restrict the values of a and n? The graph

(a) has negative slope,

'()) has slope zero,

(c) has a y intercept greater than 1,

(d) passes through the "origin" (the point (1, o).

5. Can one always find the slope of a line on log-log paper by measur-

ing the vertical and horizontal displacements with a ruler and finding

the ratio of the two? (Does it matter what units the two displacements

vie measured in? Would it matter if the graph paper had.a different

displacernant for ore cycle along the x axis than for one cycle along

the x axis?)
6. The following table, the result of an experiment, gives values for the

force of repulsion F between two eletctrically charged spheres as a

function of the distance d between then centers:

Distance, d
(cmt

Fot ce , F
(arhttrarv units)

3.4 7. 3
3.8 6.1
4 .4 5.2
4 .7 4.0
5.4 3 . 4

6.2 2.7
6.9 2 .

7 .9 1 . 7

8 .7 1.2
10 .6 0.7
13.1. 0. 5

(a) Make a graph from the values in the table using log-log graph

paper.

(b) Both d and F were measured to +0.05 units. Draw error rectangles

around each data point. Why are the rectangles not of the same size?

(c) Is the relation between F and d of the form F kdn, where k is a
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constant? (Note that both d and F are given to only two significant:7

digits.)
(d) Compare your value of n with those of your classmates by making

ra class histogram. What is the best class v ue of n?

9.10 Scale_Stretching by Logarithmic Plottinsf

In each of the preceding three sections we have made use of loga-

Milli-tic plotting, i.e., we have chosen to plot the logarithms of at least one

of the variables rather than the actual values of the variable. In each case

we were able to uF:-: some kind of logarithmic plotting to determine the form

of a certain kind of function from its graph.

Another important use of logarithmic plotting arises from the fact that

a graph of y versus iogx, rather than versus x, can be used to stretch out

the portion the x axis corresponding to small values of x. This is useful

in some cas?s for clarity of display even when no correspondence with any

logarithmic function is suspected. (The y axis can similarly be stretched

out for the smaller values of y by this same method.) This means that we

can plot data ranging over several powers ef tc itli the axis scales ex-

panded fcr the smaller powers of ten. For example, suppose we wish to plot

the cuiv, passing through the points given in Table 9.4.

TABLE 9.4

0.06
1.0 0.13
2.0 0.53
2.5 1.00
3.0 2.60
3.5 10.00
3.8 32.00
4.0 100.00

Due to the carge range of values for x, if we plot y versuS x we must

use such a iarge value of x per scale division thqt the lower part of the curve

is nearly Indistinguishable from the y axis (Fig. 9.30).
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If we plot y versus log x , however, the horizontal axis need go only

from log (0.06) = -1.2 to log (100.00) = 2 and the data points are much more

evenly spaced (Fig. 9.31). A quick way of making such plots is to plot x

versus x on semi-log paper using the logarithmic scale for the x axis.

QaMions
1. In the table below T is the time in years it takes the planet to make

one orbit around the sun and R is the distance in kilometers from the

planet to the sun. Use the table to plot
(a) T as a function of I,

(b) T as a function of T on emi-log graph paper with the logarithmic

scale on the T-axis.

R

Planet T T

Mercury 0.24 24.0 v. 107
Venus 0.61 18.0 x 107
Earth 1.00 15.0 x 107
Mars ' .90 12.0 x 107
Jupiter 12.30 6.6 x 107
Saturn 29.00 4.9 x 107
Uranus 84.00 3.4 x 107
Neptune 165.00 .2.7 x 107
Pluto 248.00 2.4 x 107

2. (a) Plot the graph of Fig. 6.12 on semi-log graph paper, using the

logarithmic scale for the x 'axis and the three decades from 1 to 1000.

(b) What is gained by a semi-log graph compared to the original

graph?

3. The distance that electrons can penetrate through a substance de-

pends on the substance and the energy of the electrons (which de-

pends on their speed). The table on page 266 gives the range-energy

relation for the penetration of electrons into aluminum.

fr.I j
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Enemy, E Range, 11
(May) (cni)

4.2 x nr2 1.o x 1()-3
10-38.5 x 10-2 3.7x

1.0 x 10-1 4.8 x 10-3
2.0 x uri 1.6 x 10-2
4.0 x 10-1 4.8 x 10-2
1.0 1.5 x 10-1
2.0 3.4 x itrl
3.0 5.4 x 10-1
4.0 7.4 x 10-1
5.0 9.5 x 10-1

Plot bc,th E as a function of R and, on log-log graph paper, lo;g E as

a function of log R. Which graph gives the best display of the data

in the table?



Chapter 10. THE SINE AND COSINE FUNCTIONS

In Fig. 10.1, if the angle 0 remains the same but we choose different

values of the hypotenuse r, we have a family of similar right triangles. In

these triangles, the ratios of corresponding sides are equal.

If, on the other hand, we draw a family of right triangles with the

same base xl, as in Fig. 10.2, these triangles are not similar.
ylHere, the ratio depends on the value of Q. The ratio L dependsr2

on the value of 02, etc.

Fig. 10.1

From Figs. 10.1 and 10.2 we see that thbre is a clear relationship be-

tween thc ize of an angle and the ratic of certain sides of the right triangle

that contains the angle. This c apter deals with two such relationships, the

sine function and the cosine function. We begin our study with some obser-

vations about angles.

c
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10.1 Sectors and Radians

All circles are similar, but when are two frsectors of circles similar?

It is evident from Fig. 10.3 that two sectors are similar when their.central .

angles (9 in Fig. 10.3) are equal. In similar figures the ratios between cor-

responding parts are equal. For similar sectors, in particular, the ratio of

the lengths of the arcs equals the ratio of the corresponding radii.

In Fig. 10.3
CD R

AB r

CD AB

R r

Thus, in similar sectors the ratio of the arc length to the radius is constant;

it is independent of the radius.

10.3

This suggests that the ratio of arc to radius is a convenient measure

for the central angle. The unit.of measuring angles in this way is calied a

radian; arc(in radians) = radius

Since an angle is a ratio of two lengths, it is independent of the unit of length

used. It is a pure number.
Figure 10.4 shows an angle equal to 1 radian and one equal to 0.1

radian. Since the circumference of a circle of radius r is Zirr, a fuli turn or
2nr

360o equals = 2r. radians.



269 -

arc = alr

An angle expressed in radians is often written by omitting the unit.

Thus, an angle given as a number only is always understood to be in radians.

For example, an angle of IT radians is usually said to be of size m . An angle

of 2 radians is written as just 2.

Fig. 10.5

Measuring the central angle in radians provides a simple formula for

the area of a sector. As seen from Fig. 10.5, the area of a sector is propor-

tional to the central angle. The area of a sector of central angle 1 radian is
1 1of the area of the circle or 71-r2 = ir2. Therefore, the zarea of a sector

21T 21r 2

of central angle 9 is
1 ,)

A = 9r-
2

277
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Questions

1. How many degrees equal 1 radian?

2. Angles of 30° 450, 60° 90° and 180° occur frequently. Express

them in radians.

3. What is the formula for the area of a sector when the central angle is

given in degrees?

4. A right triangle has one leg equal to the radius of a circle and the

other leg equal to the circumference of a circle.

(a) What is the ratio of the lengths of the two legs?

(b) How does the area of this triangle compare with the area of the

circle?

5. Find the area of the shaded portion of the figure 41 Fig. 10.6.

Fig. 10.6

6. The length of the chord subtended by a .;mall central angle is approxi-

mately equal to the length of the arc it subtends. kso, the smaller

the angle, the better theapproximation. You can test these statements

by the following procedure: Draw a semicircle of large radius. Using

your value of R, make a table of

Angle Arc Length Lengtkof Chord Fractional Difference

"or different angles by successively bisecting the central angle about

5 timps. In each case the arc length can be calculated and the length

of chord can be measured with a ruler.
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7. The thumb`and the outstretched hand are useful instruments for approx-
*

imate angle measurements. What angle does the width of your thumb

subtend when you stretch sour arm out?
The moon subtends very nearly the same angle from die earth's surface

as does the sun. (Think of a total solar eclipse.) The moon is AbGut

2.5 X 105 miles away, and the sun is about 108 miles away; what is

the ratio of their diameters?

9. The moon is 2.5 x 105 milc!s away and subtends an angle of 0.01 radi-

ans from the earth. If it were 4 5c 107 miles away, how large an angle

would it subtend?

10.2 Definitions
We say an angle is in stbndard position if its vertex is at the origin

0 of the coordinate system and its initial side OA extends along the positive

x axis (Fig. 10.7). If, in Fig. 10.7, (x,y) are the coordinates of Q, the

point of intersection of the terminal side OB of the angle AOB and the circle,

Fig. 10.7

we define the functions sine 0 and cosine 0 such that

sin 9 X

cos 9 = x

where sine and cosine are abbreviated to sin and cos rer.:pectively. Notice
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that x and y are positive nr negative depending on which quadrant in the

coordinate system ea.ch is located. They are, for example, both positive

as depicted-in Fig. 10..7 but, depending on the size of 0, they can be

negative. The radius r, however, is always taken to be positive.

Referring to the figure again, we see from the geometry of the

diagr--, that

S

Thus we can write

and

= x.2 + y2

r = x2 + y2

sin 9 = /2vx + y

cos 0 = v/r/-7x + y
Since sin 9 and cos 0 are both functions of 0, there must be a way

to express one in terms of the other. Indeed, from the last 1.wo equations

it follows that:

or

2 x2 x2 + y2
*

sin2 9 + cos2 9 - +
x2 + y2 x2 + y2 x2 + y2

From this it follows that

sin 9 =

sin2 + cos = 1

1 -cosQ nd cos 9 = - sin

We can, b} co.ristructing graphs of the sine and cosine, find

their values for all angles between 0 and 217.. To construct these graphs

we proceed as follows:

Using a ruler an, a compass, we construct what is called a unit circle

(Fig. 10.8(a)). That is, regardless of the actual length of the radius, we la-
IT

bel it 1 and call this length 1 unit. If the angle is (4- wn by bisecting the
4

first quadrant with a compass, then the coordinates of the point it intersects

*The notation sin2 9 means take the sine of 9 and square it: that is,
sin2 9 = (sin 9)2. Whereas, sine2 means square 9 and then take the
sine of the result.
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on the circle are equal to its sine and cosine. This follows from the observa-
Y _ Y xtion that for r = 1, sine = = y and cos 9 = = x, so y and x have

the same numerical values as-sin 9 and cost:).

If we construct scales as shown in Fig. 10.8(a), we can mark off

points directly from the unf* circle. Figure 10.8(a) shows this process for
1T

9 7- -4 where we see that sin kg 0.7. In Fiq. 10.8(b) we have constructed
4

other angles and have marked off their sines on the scale. When sufficient
points have been located, they are connected by a smooth curve. This gives
the graph for sinG as a function of the angle 0 as shown at the right in

Fig. 10.8(b).

sin e Fig. 10.8 (a)

0
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Questions

1. If 0 < 01 < 92 <1, which is larger:
(a) sin 9 or sin 92?

. 1

(b) cos 91 or cos' 02 ?

2. Plot the following points or. a coordinate system, and find for

each point the value pf r , sin 9, and cos 9, where 9 is in stand-
ard position.

(a) (3.4)

(b) (5,12)

(c) (6, 6)

3. In the following assume 9 <

(a) If sin 0 = 5 what is cos 9?
13

(b) If cos = 1, what is sin 9?
2

(r) If sin 9 = cos 9, what Is sin A? What is A?

4. Show that for any right triangle with sides a, b and c as in Fig. 10.9,

asin = -6- cos 9

5. Fill in Table 10.1 indicating the sine and cosine for each of the angles

9 given in th. tal Ie.

TABLE 10.1

IT

sin 9

cos 9
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6. From the graph in Fig. 10.8(b) determine the following values, and

then check your results with the sine table in the Appendix.
(a) sin 40°

(b) sin-L
12

(c) sin 70°

7. Using a unit circle, draw the graph of y = cos 9 for '0 0 2.
8. A right triangle having an acute angle of 1T-4 is isoceles, and two right

triangles having angles of/1.6 may be put back to back to form an equi-
lateral triangle with an altitude bisecting one of the angles. Use this

information to construct, in standard position, each on a separate co-.

ordinate systems the following angles given in radians and determine
their sine and cosine.
(a) 41.

IT

3

(b)
4

(c)
6

9. A boat sails on a course N40°E for 10 miles from point A to point B.

How far east and how far north is B from A?

10. A helicoptex climbs at 'a steady angle until it is 200 m above a point

on the ground that is 300 m from the point of takeoff. What is the

angle of climb?

11. On a set of coordinate axes, construct any angle 0. From the

definitions of the sine and cpsine functions given in this section,
show that for the 0 you have chosen

(a) sin (IT - 0) = sin

(b) sin (TT + 0) = -sin 9

12. Repeat the directions for Question ii. and show that
(a) cos (Tr 0) = -cos 0
(h) cos (ir + 0) -cos 0

13. List all the values of 9 in the interval 0 < 9 < 360o that have the same

(a) sin. as 30°

(b) cosine as 300
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10.3 Symmetries and Antisymmetries

The graphs of y = cos x and y = sin x are shown in Fig. 10.10,
where the.ncgative angles are plotted to the left of the y axis. If we

imagine folding thc left side (negative portion) of the cosine graph in

Fig. 10.10(a) over on top of the right side so that the fold is along the

y axis, we observe that every point on one portion falls on the same point

on the other. Thus, for any ialue of x
cos (-x) cosx (1)

Inggeneral, a function which has the property ihat f(-x) = f(x) for all x in the

domain of f(x) is called an even function since the even power functions such

as f(x) = x2 or i(x) = x-6 havethis property. Hence the cosine function is an

even function. Notice that the graph of an even function must be symmetric

about the y axis.

rig. 10.10

(b ) y =sin x

X
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When the graph of y = sinx in Fig. 10.10(b) is folded over, the por-

tions do not coincide. We observe, however, that

sin (-x) -sinx 12),

Functions which have the property that f(-x) = -fix) are called odd functions

since the odd power functions Such as f(x) x or f(x) x3 have this property.

Thus, the sine function is an odd function and its graph is said to be anti-

symmetric about the y axis.

Questions

1. CoLstruct any negative obtuse angle O. Qn the same set of axes

construct the positive angle of 1°.e same magnitude. From tho

definitions of the sine 'and cosine, show that for the 0 you have

chosen
sin (-9) = 0

d nd

cos (-0) = cos 9

Is the graph of y = sin x symmetric or antisymmetric about the
Tr

vertical line through x 2 ? Expl3in.

3. Referring to Fig. 10.10(a), choose any point on the graph of

y = cos x that lies to the left of the y axis. Locate the corre-

sponding point to the right of the y axis. Are these two points

symmetric or antisymmetric about the origin? Explain.

10.4 Periodicity
If an angle C is in standard position and a second angle (0 + 21r)

is in standard position, then the two Engles have coincident terminal sides.

Hence, they will have the same values for their sine and the same valne?----

for their cosine. We say, therefore, that the sine and cosine functions

are periodic functions. We also say that both have the same perib4, 21r,

2s
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because 2w is the smallest value added to an angle that makes the two

angles co-terminal. We can express the periodicity of the sine and cosine

functions as
sin (9 + 2) = sin 9

and
cos (0 + 27r) = cos

In general, a functi.on is said to be periodic if there is a number

p 0 such that f(x + p) = f(x) for all x. The period of f(x) is the smallest

positive value of R.

In Fig. 10.11 we have drawn the ine and cosine functions from

0 to 4r. In each case the graph begins to repeat itself at 9 = 2w, and had

we continued plotting for larger values of 9, we would observe that after

each interval of 2w radians the graphs would repeat.

Although sin@ and cosi) are periodic with respect to an angle, the

world i s full of other kinds .of periodic functions. For example, the back-

and-forth motion of an automobilc piston and a pendulum in a clock, al-

Fig. 1Q.11

(a)

(b)
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though not exactly sine functions, are periodic in time and this can he

expressed as
f(t T) = f(t)

where t is the time to reach a certain position y along the stroke of the
piston and T is the period, the time to complete one back-and-forth motion.

(See Fig. 10.12.)

Fig, 10.12

Dirt roads often develop a repetitive pattern of small ridges and

valleys running across Vie road. Water waves, particularly under con-

trolled conditions as in a rinple tank, have repetitive patterns. These

ar but two of many of a periodic function uf a length coordinate,

which can be expressed as
f(x + L) = f(x)

where x, for example, is the distance as measured from some arbitrary

point on the road and L is the distance between bumps (or valleys).

Of course, the periodic functions which occur in nature oscillate

between many numerical values, not Jug( between + 1 as i.: the case with

y = stc x. Similarly, they need not nave a period of 2fr, and the values

at x = 0 need not be either 0 or 1 (as with y = sin x and y r: cos x).

The graphs of many periodic function are far from the shape of

a sine curve. The position of point A on the movable pin, shown in
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Fig. 10.13(a), as a function of the angle through which the cam is rotated is

an example of a periodic function whose graph is not a sine or cosine curve.
The graph of thip displacement as a function of the angle x is shown in

Fig. 10.13(b).

(a)

100

Fig. 10.13

Angle

Questions

1. Sketch the following angles on a coordinate system, and then,

express each in terms of a function of an acute angle.

(a) sin 1200

(b) sin 2450
77T

(c) sin
4

(d) cos 100°

(e) cos 3200

(f) cor,
411-

3

2. Find the following angles by first expressing them as a function

of an acute angle.
(a) sin (-610°)

5.1r
(b) sin

2

(c) sin 400°

(d) cos (-5200 )

(e) cos 4600

3. What is the period of the function graphed in Fig. 10.13?
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10. 5 Hcmomorphic Trigonometric Functions

Once we have the graphs of the functions y = sin x and y = cos x,

we can examine curves homomorphic to them. For example, consider the

function

y y = sin x
y = sin x + yo

You will recall from Section 7.2 that the yo part of this function is an

additive constant; it only moves the graph up or down, so the function

oscillates between y = yo + 1.
Now consider the function

y = sin (x

When x = 0 in this function, y = sin 7-) = -0.71, so the graph does not
4

start at either 0 or 1. The graph of this function is illustrated by the heavy

line in Fig. 10.14. As you can see, each point on the y = sin x curve is

Fig. 10.14

Tr IT

displaced to the right by an amount For the function y = sin (x + -2), each
4

point on the y, = sinx curve is shifted by an amount - to the left, as illustra-
2

ted by the heavy line in Fig. 10.15. Notice that in this case the graph of

sin (x + is the same as the graph y = cos x (see Fig. 10.10(a)). Hence,
2

cos x = sin (x + -2 )
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Had we shifted the graph of y = cos x to the right' by an amount

and thus generated the graph y = cos (x: -2-). then it would coincide
2
with the graph of y = sin x. That is,

sin x = cos

Fig. 10.15

It is because of tnis property of curves homomorphic to the sine and

cosir functions that they are called co-functions and one is named

"sine" and the other "cosine."
In general , then, we see that the graph of y = sin (x - xo), where

(x0 ()) is the :ame as the graph of y = sin x moved to the right by xo

and the graph of y ---- sin (x -x0), where (x < 0) is the graph of

y = sin x moved to the left by xo units. This shift of the graph to the

left or to the right is often referred to as 3 change in phase and the

number xo is often called the phase angle.

Notice that if x = + 21T, the curve is shifted by exactly one

period and coincides with y = sin x. In other words, as stated in Sec-

tion 10.4, sin (x +2.7) = sin x or, more generally,

sin (x + 2nTr) = sin x

for any integral value of n. Homomorphic curves given by different

values of n exactly overlap.
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Questions
1. Sketch the graNkof the following functions over the interval

< x < 31r:

(a) y = sin x

(b) y = sin (x + IT-)
3

(c) = sin (x - 60°)

Sketch the graphs of the following functions over the inteival

< x < 311.

(a) y = cos x

(b) y = cos (x I)
4

(c) y = cos (x 300)

3. From the relation
sin 9 = cos (9 -

2

developed in this section, which is true for any value of 9, show
-n-

that in particular, when 9 + 41=7, then

sin 0 = cos 4,

that is, co-functions of complementary angles are equal.

I. Sketch the graph of y sin (x + L). On the same axes, sketch
4

the graph that is homomorphic to it and has a phase angle of 1.

Is there more than one way to do this?

5. Write the equation of the graph homomorphic to y = sin x shown in

Fig. 10.16.

Fig. 10.16
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Show ti,at if two functions are homomorphic, they have the same

period, 1. That is, prove that if
sin + T) = sin x.

thvn
sin (fx-xo] + T) = sin (x-xo)

13.6 Thp_fluictions = A sin)Lk_Oaoc)
Just as with other functions, we can multiply a trigonometric func-

tion by d constant. Thus, the graph of y = 3 cosx is like that of y = cosx

except that each y coordinate is three times greater (Fig. 10.17). The ab-

solute value of the constant coefficient A in y = A sinx and y = A cos x is

called the amplitude of the function.*

We next examine the graphs of functions of the form y = in (kx) for

various values of k. We begin with k = 2, that is, y = sin2x, and make a

table ,)f values. From this table (Table 10.2) we have drawn a graph of the

*More generally, the amplitude of a function is defined as one-half the dif-
ference of the maximum arid minimum displacements from the zero position.
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function y sin2x. As you can see from Fig. 10,18, the function has a

period T =.11., half the value of the period of the function y = sinx.
1Next, examine the graph of the function y = sinx stiown in Fig. 10.19.
2

Hero, y sinlx goes through a complete period as x goes from 0 to 41T. So
2

1
the perp.)d y sinTi x is T

In geni3u,I, the value of k in the functions y = sin (kx) and y = cos (kx)

detorminos the period T:
2TrT =

where I; i. the ninnher of periods in an interval tit. length 2Tr.

.00"""'

sin 2x

0

IT

211.

7

2T1- 41.T.

3

4 2

6 3 2

Tr

ti

-y -sin 2x

0

TABLE 10.2

Fi . 10.18

1fy sin x .

., %

TT% 311%27/ %/ %

% I/ %

S. //
di.,,,...

Fig. 10.19

X

41T
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Questions

1. Sketch the following graphs en the same set iaf axes and discuss

where the graphs are increasing, where they are decreasing, and

where they reach their maxima and minima. Determine the period

of each.
(a) y = cos 2x

(b) y = cos 3x

(c) y = cos lx
2

2 . Sketch the following graphs on the same set of axes and discuss

where the graphs are increasing, decreasing, and where they reach

their maxima and minima.

(a) y = 2 cos x

(b) y = 3 cos x

(c) y = cos x

3. Repeat the directions for Question 2 for the following functions.

(a) y = cos (x + IL)
2

(b) y = cos (x 7-)
2

(c) y cos (x +71- )

4. The graph shown in Fig. 10.20 is a cosine function. What is its

equation?

Fig. 10.20
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5. The graph shown in Fig. 10.21 is a sine function. What is its

equation?

,Fig. 10.21

6. Discuss how the valut_ of k will affect the graph of

(a) y = k cos x

(b) y = cos (kx)

(c) y = cos (x + k)

10.7 The Functions A sin k. -x ) and y = A cos k (x -x0)

Putting together the ideas of th e. last two sections, we can write

general forms for both the sine and cosine functions. They are

y = A sin k (x-xo) + yo

y = A cos k (x -x0) + yo

All we need to do to sketch either of these two functions is to

sketch the corresponding equation y = sin x or y= cos x and adjust the

y axis, the. x axis, the amplitude, and the perfod, as necessary.

We will illustrate this procedure with an example. To sketch the

function
TT

y = -10 s in 3 (x +
12

we first note that the amplitude is 4. This says to stretch the vertical

axis by a factor of 4, that is, the maximum is +4 and the minimum is -4.
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_The coefficient 3 tells us them. are 3 periods in any 27r interval.

So we sketch 3 periods of sin 3x, not yet graduating the x axis (Fig. 10.22(a)).

To adjust the y axis we note that the sine is zero when the angle
IT3 (x +) = 0, that is, ,3 t X = -12

Thus the beginning of the sine period is
12

at x --1IL We can now draw the y axis and appropriately graduate the x axis.
2 2Tr

remembering that one period is units long, as shown in rig. 10.22(b).
3

rig. 10.22

(a)

(b) y=4sin 3(x+)

Questions
1. Sketch the graphs of

(a) y= 4 sin (x -
(b) y = 2 sin (x4- TT)

(c) y2-- 3 cos (x -.1r4f)

2. Sketch the graphs of

(a) y = 2 sin (x 7:4-) - 3

(b) y = 3 [cos (x 7:4) + 1] '.:?(.
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3. Sketch on the same set of axes the graph of y = -2 sin x a-nd

y = 2 sin (x Tr). What does the sign of the coefficient 2 tell

you about the phase angle of the first function?

4. Sketch the following graphs and discuss each with regard to

maxima, minima, zeros, period, and phase angle.
(a) y = 2 cos (x +

(b) y= 4 cos (2x - n)
(c) y = sin 2 (x + 114)

(d) y = sin (3 [x 12-1)6.

10.8 Recognizing Trigonometric Functions from a Graph

We shall now use the procedure of the last section in reverse.
That is, given a graph of a periodic function, how can we find out if it
is expressible in terms of a sine or cosine function? For example, can
the graph in Fig. 10.23, which is a periodic function, be expressed in

the form

y = A cos k - x0) ?

2

3

7 4 7 liT 1011

3 3 3 3
13 7

Fig. 10.23

Since tho function is periodic, we can find k by noting that one
2nperiod on the graph extends from - to 10Tr , or 3 total length of 4n.
3 3

1
Therefore, in a 217 interval there is one-half period. So k = We also

2
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note from the graph that A 3. Hence, the function describing the graph

in Fig. 10.23 has the form
1 ,y = 3 cos -(x x

o
)

2

where it remains to'find the value of xo. Notice that the frrst maximum

occurs at -3 , so this must be the phase angle. The complete equation

is now 1.0,r1tten as

1 iTy = 3 cos- (x
2 3

We are not finished, however. It is not sufficient to conclufie that

this equatkm is indeed the correct function just because the amplitude,

period and phase angle are in agreement with tho'se of the graph. It remains

to test intermediate values for x and y in the function to see if they are

related by a cosine function.

The test we use is like the one we have used before to test for

parabolas, hyperbolas, etc. in the case of a curs.t... which you suspected

was a parabola of the form y n = a (x rn
)2 you plotted y n as a function

of the quantity (x in)
2. If ti-e graph you obtained was a straight line you

concluded that the function y n = a(x m)
2 was indeed the functior

describing the curve in question.

In the case of the function we are now considering, if we graph y
Tr

as a function of cosi (x -) and get a straight line we know we have a
2 3

cosine function. Table 10.3 shows the values of x and y as read from
1 TT

the graph in Fig. 10.23 and the corresponding values of cos -2 (x - -3) up

Tr
to x = -3 Figure 10.24 was made from this table. The size of the error bars

in Fig. 10.24 is based on an estimate of the errors in reaaing the values of

z from the graph in Fig. 10.23 and in the plotting of Fig. 10.24. As you

can see, a straight line, whose slepe is 3, passes through all the error bars.

Since the curve in Fig. l0.23 is very smooth between the plotted

values, we feel confident that a11.other intermediate points we might care

to plot on the graph in Fig. 10.24 would fP.11 within the error bars.
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We now testthe rest of a complete period by checking for sym-

metry about lines perpendicular to the x axis that pass through the max-

ima end minima and for antisymmetry about a perpendicular line through
41Tx = 3 . From this and the graph in Fig. 10.24 we conclude that the curve

in Fig. 10.23 is indeed described up to k = -II by the'function y = 3 cos12(x-3)

to within the errors of reading and plotting.
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Questi9ns
1. Determine the amplitude, period, and phase angle of the graphs

in rig. 10.25 and then write their equations. (Is there more than

Fig. 10.2S (a)

(h)
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one answer to this question?) Choose values of and check tel

see if they satisfy the equations you have written.

Could we have expressed the equation of the araph in Fig. 10.23 as a

sine function? What wobld this equation be? Check your result.

3. Two functions and their graphs are shown in Fig. 10.26. Label the x

and y axes at.the zeros of the functions.

Fig. 10.26

(a) yr- 2cos(x-n)

(b) yr.- sin 2(x, TT6 )

4. How would your answer to Question 4, Section 10.6 change if the graph

given was a sine function?

5. .!ow would your answer to Question 5, Section 10.6 change if the given

graph was a cosine function?

3(.11
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Determine if the graph in rig. 10.27 represents sine or cosine functions

by writing the sine and cosine functions that fit the maximum and mini-

mum points on the graph and then checking some intermediate points.

Fig. 10.27

Plot the graph of the data in the following table and write the

equation of the sine function it

ein integral numbers of radians.)

x (rad)

describes. (Graduate the X axis

0 -0.90

0.30 -1.42

0.46 -1.50

0.60 -1.45
0.90 -0.97

1.10 -0.45
1.20 -0.15

1.40 0.45

1.50 0.72

1.57 0.90

1.80 1.34

2.03 1.50

2.20 1.42

3
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The relationship between the size of

sides of the right triangle that contai

functions other than the sine and cos

position (Fig. 10.20, we now define

tangent function such that
tan@

and

(a)

(b)

(c)

(d)

(e)

an angle and

na the angle

ine. With th

the ratio of certaini,
can be expressed yyI \\

e angle in 7tandarqi

the tangent function and the c?-

cote = 1.

Are the tangent and cotangent really cofunctions?

For what values of 0 is the tangent function defined?

For what values of 0 is the cotangent function defined?

Draw the graphs of the tangent and cotangent functions from x = 0,

to x 2w .

Are the tangent and cotangent functions periodic?

(a) Is the tangent function odd or even?

(b) Is the cotangent function odd or even?

10. Prove the following relations by constructing the angle g on coordinate

axes and applying the definition of the tangent.

(a) tan (-C) = -tan@

(b) tan (Tr - 9) = -tan@

(c) tan.(w+ 9) = tan 9

3o3



- 296 -

11. What vAlues of 0 In the interval 0 5 0 5 2r have the same tangent as

(a) 45°

(b) -45°
12. Sketch the following angles on a coordinate system, and then express

each in terms of a function of an acute angle.

(a) tan 1200

(b) tan245°
7ir

(c) tan-1-

(d) cot 1000

(e) cot 320°
41T

(1) cot7
13. The ramp leading up to a bridge makes an angle of 50 with the hori-

zontal. How much vertical rise is there in a horizontal distance of

10 meters?

3

10.9 Qualitative Cbservations on the Derivatives of sinx and cos x

The goal of the remainder of this chapter is to find the derivative. of

the sine and cosine functions. Before doing this, however, we can draw

some conclusions about the nature of these derivatives from the properties

of the sine and cosine functions themselves. In other words, we can make

some "ball-park" predictions as to what type of function we expect to turn

up as the derivative of sinx or cos x.
For example, recall that the sine function is periodic with a period of

2w. This means that the graph of sinx for x between 0 and 27r coincides with

the graph of sinx for x between 2ir and zin. An immediate conclusion from this

is that the graph of the slope function for sinx from 0 to 2n- must also coincide

with the graph of the slope function for sin x from 271- to 4r. More generally,

we can conclude that the derivative of the sine function must be a periodic

function with period 2r.
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By inspecting the graph of y = sinx in Fig. 10.10(b), we observe that
the largest value of the slope function occurs at the origin (and at multiples

of 2n) and seems to be equal to 1. In fact, it appears that the range of the

derivative of the sine function is roughly the Menial -1 to 1.
A final observation is that while sinx is an odd function its derivative

is not. For example, the slope of the graph of sinx at x = 1T IF obviously neg-

ative as is the slope at x = -IT . Hence, the derivative of the sine function

cannot satisfy the equation f(-x) = -fix) which characterizes odd functions.

Note, however, that the slope of the graph of sinx at x = -1T- appears to be the
2

same as the slope at x -11-- namely, zero. It is quite likely from the graph of
2

si'ix that the derivative of the sine function is an even function.
In summary, we expect the derivative of the sine function to (a) be

periodic with period 2n, (b) have a range from -1 to 1, and (c) be an even

function.
To find an exact analytic expression for the derivative of sinx it is

natural to start with the delta process. For the derivative of sinx we write

[sinxr = lim -1-, (si.n (x+ax) - sin x) (3)

There appears to be no way in which we can cancel out the Ax's. However,

it is possible to derive the addition formula for the sine functions (a formula

for the sine of the sum oi two angles) to replace the first term in Equation (3).

We can then write Equation (3) in a form from which we can find the iimit as

4x approaches zero. Then, by a similar process, we can find [cos xV

Questions

1. What are the largest and smallest values that you expect for the de-

rivative of cos x?

2. Cos x is an even function. Is its derivative an even function? An

odd function?
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3. Verify from the graph of the cosine function that its derivative is pe-

riodic with period 2w.

4. If f(x) is a periodic function, not necessarily the sine or cosine lung-

tion, must f'(x) also be a periodic function? Why or why not?

5. If f(x) is a periodic function, must its antiderivative be periodic?

Why or why not?

10.10 The Addition Formula for the Sine Function

We shall derive the addition formula for the sine function, where the

two angles a and 1-i are both acute (less than 900) as shown in Fig. 10.29.

Fig. 10.29

Figure 10.29 is constructed-as follows: The angle a is drawn in stan-

dard position with its terminal side along OQ, and p is drawn with OQ as its
2--

initial side and OP as its terminal side. The figure is completed by dropping

perpendiculars PM, QN, PQ, and QR. The two angles labeled a are equal be-

cause their sides are mutually perpendicular. In the figure

MP = NQ + PR

MP = OQ 'sin a + OP cos a
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Dividing the second expression by OP,

and, therefore,

MP = PQ sin« + cos a
oPOP op

sin (a + = sin a cos p + cos a sin p (4)

This is the addition formula for the sine function. Although our construction

holds only foe acute angles, Equation (4) is true for any values of a and 13

including negative angles.

Questions

1. Use Fig. 10.30 to show that sin (a + j3) = sina cos13 + cos a sinI3 if

a + 0 is obtuse, starting with the relation OM = MN - ON. (Hint:

use the relation sin (Tr - 9) = sine.)

Show that sin (a (3) = sina cos p - cos a stnf3 by substituting 0 =

in Equation (2).

3. Is the addition formula for sin (a + p) true when one of the angles is

equal to zero?

4. By letting a = 13 in the addition formula, derive the expression for

sin (2a).

3(r.
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10.11 The Derivative of sinx

We are now reaqy to apply the addition formula for the sine function

to sin (x + Ax) in Equation (3):

sin (x + Ax) = sin x cos Ax + cos x sin Ax

This changes the expression for [sinxr to
sinx cos Ax + cOsx sin Ax sinx

[cinxlt = lim
Ax Ax

and after rearranging:

kinx]i = Iirn
(cos Ax - 1)

s in x( sin Ax)+ cosx
Ax AxAx 0

(5)

Let us look at each of the two limits in Equation (5) separately. The first
cos Ax - 1

limit, lim can be looked at as
AxAx 0

lim
Ax-.0 Ax

cos (0 + Ax) - cos 0

This is the derivative of cos x at x = O. A simple interpretation of

the graph of y = cosx (Fig. 10.31) shows that the tangent to the curve at

x = 0 has a slope equal to zero, therefore

cos Ax - 1
lim 0

Ax 0 Al(

The second limit can plso be rewritten in a similar way:

sin Ax sin (0 Ax) sin 0
lim lim

Ax 0 Ax Ax -00 Ax

X

(6)
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1

The right hand side of the 1:4st equation is the derivative of sin x at

x = 0: In Fig. 10.32 the graph of y = sinx shows the slope of Ulm tangent

to the curve at x = 0 is 1. Thus
sin Ax

lirn -__ = 1
Ax -0

Substituting Equations (6) and (7) into Equation (5) yields

[slnx = cosx

(7)

(8)

Questions

1. (a) What is the period of the function sin 2x?

(b) What do you expect the period of Esin2xr to be?

2. Find the derivati..,e of sinkx, where k is a constant, using the delta

process. (The following equations will be useful:)

sinkAx Hifi ksinkAx sinkAx
lim Ax Lix 0 ,

kAxkAxAx 0 Ax 0
TT

3. (a) Given that sin-6 0.05, how can you use your knowledge of the

derivative of sinx to find an approximate value for sin7g ? (Hint: See

Section 8.8.)

(b) From your knowledge of sin 450, find an approximate value for

sin 48° and sin 42°.

(c) Compare your results with the values given in a table.

4. Give an approximation for sinx near x = 0

(a) when x is expressed in radians.

tb) when x is expressed in degrees.

3
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5. (a) What is the family of antiderivatives of cosx?

(b) What is the antiderivative of f(x) = 3 cosx that satisfies the ini-

Cal condition F(0) = 5?

6. Calculate the following integrals
Tr

f 2

(a) cos x dx
0

(b)

fIf

COS x dx
0

f(c) cos x dx
0

2ir

(d) What is the geometric interpretation of these integrals?

10.12 The Derivative of cos x
Finding the derivative of cos x involves steps similar to those used

in the preceding two sections for finding the derivative of sinx. To be able

to apply the delta process requires that we know how to express cos Cx + ax)

in terms of ':he sine and cosine of x and tix.

Figure 10.29 (reproduced here as Fig. 10.33) will serve to find the

general expression for the cosine of the sum of two angles a and From

Fig. 10.31
OM = ON MN
OM = OQ cos a - PQ sina

Dividing both sides by OP:

OM (.29 r22
= cosa - sina

OP OP OP

Thus,
cos (a + 5) = cosa cos5 - sina tn3 (9)

holds when both a and 5 are acute. As in the case of the formula tor

sin (a + 5) Equation (9) holds for all positive and negative values cf a and 5 .
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Fig. 10.33

Now that we have an expression for cos (a +13) we can use the Jelta

process to find [cosx]' . The derivation is much like that of [sinx] .

cos (x + Ax) - cos x[cosx] = lirn AAx x

From the addition formula,

Hence,

[cosx]' JAM
cosx cos,Ax - sinx sin Ax cosx

= Ax

= lim cosx (
Ax

cos Ax - 1) - lirn sinx (sin Ax)

Ax 0 Ax Ax

These are the same limits that appeaed in Equations (6) and (7).

[cosx) = -sinx (10)

Questions

1. Find the derivative of cos kx.

2. Give an approximation for cosx near x = 0 using the approach of

.Section 8.8.

3. What is the family of antiderivatives of sinx?

4 . Find an antiderivative of sinkx.

311
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Find the antideritrative of f(x) = 10 sin ,. that satisfies the initial

condition F(0) = 0.

The functions sinx and cosx have the property that (sinxr = cosx

and [cos = -Wiz. Consider the two functions

1
g1(x) = (ex + e-x) and g2 (x) = --(ex e-x)

2

6. Is,there a similar relationship between these functions and their

derivatives?

7. Suppose a mass tied to the end of a spring oscillatos up and down

(Fig. 10.34). Its vertical position as a function of time is given by

x 5 cos 3Irt.

Fig. 10.34

REST
POSIT ION

(a) At what times is the mass at the (I) highest (ii) lowest point?

(b) The velocity of the mass is given by the derivative of the posi-

tion with respect to time. Find the Velocity as a function of time.

(e) What is the velocity at the highest and lowest point? Is this

surprising?
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APPLIED MATHEMATICS, I

Appendix 1: Algebra Lc Manipulations

Some Proeerties of Numbers 2 a +3-
b

Is it possible to simplify the algebraic expression
a

and,a

if so, where does one start? We must remember that the algebraic expres-

sions we have been working with have involved numbers ahd variables that

stand for numbers. Therefor% we can handle an algebraic expression as

we would handle any expression involving numbers. Let us review some

properties nf numbers that will aid in the simplification of algebraic

expressions.
Three important properties of the number system are:

1. The Associative Property

(a) for addition a + (b + c) = (a + b) + c

(131 for multiplication a (bc) = (ab) c

2. The Commutative Property

(a)

(b)

for addition

for multiplication

a+b=b+a
ab = ba

3. The Distributive Property

(a) a (b + c) ab + ac , or

(a /- b) c = ac + bc

Also, we have the definition of subtraction,

4.

and, finally, some important results of elementary algebra.

5. -a = -1 a

6. (-a) b = -(ab)

7. (-a) (-b) = a b

8. - (a + b) = -a b
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The associative property allows us to remove or insert parenthesqs

between the terms of an algebraic sum (or product). For example, using

the associative property we can write (3x + 2y) + (5x + 6) as 3x + 2y + 5x + 6;

and

Ox) (4x) as 3 x 4 x; and

(5x 47 3y) + 2(x y) as 5x + 3y + 2.(x y); and

(ab) (c + d) as ab(c + d)

Notice, however, that in an expression like a - (b + c + d) we must be care-

ful because we are not dealing strictly with a sum. If we rewrite the expres-

sion, using property 8, as a-b-c-d and rewrite this as a + (-b) + (-c) + (-d),

using property 4, we may now group the terms as we please

(e.T. , (-b) + (-d) + (-c) + a).

The commutative property allows us to change th.. order of the terms

of in algebraic sum (or product). For example, we can write:

3x + 2y + 5x + 6 as 3x + 5x + 2y + 6; and

3 x 4 x as 3 4 x x; and

3 (x + 3) + 6 as 6 + 3 (x + 3); and

(a + b) - (c + d) as (c + d) (a + b)

The distributive property is the one number property that ties multi-

plication and addition together. The distributive property permits us to

write:

3x + Sx as (3 + 5) x; and

abc + ad as a (bc + d); and

(a b) (a + b) as (a - b) a + (a - b) b; and

u (s + t) + v (s + t) as (u + v) z + t); and

u (s + t) + v (s + t) as us + ut + vs + vt; and

a (b + c + d) as ab + ac + ad



. Addition and Subtraction of Algebraic Expressions

Consider the expression (5x + 3y + 6) + (2x + 5y 4' Using the

associativ v. property, we can write it as:
5x + 3y + 6 + 2x + 5y + 2

Now, using the commutative property we can write it as:

5x + 2x + 3y + 5y + 6 + 2

Finally, using the distributive property it becomes:

(5 2) x + (3 + 6)-y + 6 + 2

Therefore, (5x + 3y + 6) + (2x + 51r+ 2) = 7x + Sy + 8.

Most of you could have written the sum of the above expressions

upon inspection, and that is the preferred method. However, if asked to

justify your answer you must be able to give the means by which it was

reached.
Now consider the subtraction of two expressions: (x+ y -2) - (3x+ 5y+ 6).

'In this casePwe must appeal to the results of elementary algebra and write:

(x + y 2) (3x + 5y + 6) = (x+ y 2) + (-3x - 5y 6). We now have an

addition and can see that the answer is -2x - 4y - 8.

4.

Questions
Explain how the right-hand side of each of the expressions below is obtained

by using a nuMber property, definition, or result of elementary algebra. If

any statement is not true, correct it.

1.1 x2 + xy = x(x +

2. (a + 3) b = (a + 3)

3.

4.
5.

6,

7.

1

u (s + t) + v (s + t)=u + v (s + t)

8x - (3x + 2) = Sx + (-3x + 2)

(r + s) (u + = r (u + v) + s (u +

3x2 7y = 21x2y

(a + b) c = (a + c) (b+ c)
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8. (x y) (7 s) (3 + s) = x r s (3 + s)

9. 3 - (7 - 2s) = 3 + (-7 - 2s)

Rewrite each ofethe following expressions so that it does not contain

parentheses or brackets.

10. -7x -3)

11. (s - 3) 3t

12. (x + * 3

13. (a - b) + h)

14. (a + b) (a + b)

15, 2 [(3x - 2y) - 4 (x + y)]

16. 3y - (2y + 3x - (2x + 3y))

In each of the following, (a) find the sum of the expressions, and (b) sub-

tract the second expression from the first.

17. 2a + b + c and a + 2h - c

18. 4x + 3y 7 and 2x - 5y - 2

19. 3(s + t) and -2 (2s +

20. -(a b + c) and 3 (2a 4b + 6)

3. Multiplication of Algebraic Expressions

In Chapter 3, when calculating with powers of ten, we observed

that lOrl 10n = 10m+ n when rn and n were integers. Clearly, we could

have n,3de the same arguments for any number x, th:q is xn xm = xn+m

when n and rn are integers. This property of exponents, together with the

number properties of the preceding section, guides us in multiplication of

algebraic expressions.
Consider the pioduct of the two expressions 2s2 and -3st3. Using

the commutative and associative properties, we can write their product as.:

(2) (-3) s
2 s t3

1
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Now, using.multinlication and the above property of exponents we may

rewrite the product as
-6s3t3

At first glance it seems as though we have no number property
2

that can help us to multiply (a
2 + 2) (3a + 4a + 1). Remember, however,

that 3a2 + 4a + 1 represents a number, call it A temporarily, so we have an

expression of the form (a 2 + 2)A and can apply the distributive property

to get a 2
A + 2 A. Hence , the product (a 2 + 2) (3a 2 + 4a + 1) can be

written as
a

2 (3a + 4a + 1) + 2 (3a2 + 4a + 1)

Another application of the distributive property permits us to write:

(a
2) (3a

2) + a2 (4a) + a2 (1) + (2) (382) + (2) (4a) + (2) (1)

Simplifying each term of the last expression yields

3a4 + 4a 3 + a2 + 6a2 + 8a + 2, or, combining terms,

384 + 483 + 782 6a + 2

When multiplying long algebraic expressions it is sometimes convenient to

uie the long method of multiplication as shown below,

382 + 4a + 1

a
2 + 2

(1) 3a
4

+* 4a 3 2

(2) 6a2 + 8a + 2

(3) + 4a + 782 + 8a + 2

Rows (1) a el (2) are obtained by multiplying the expression

382 + 4a + 1 by a2 and then by 2, respectively. Row (2) is simply placed

so that terms with the iame exponent are arranged vertically so that the

final sum, row (3), may be easily obtained. Notice that when multiplying

witt, this arrangement we are using the same reasoning as before. That is,

we are using the distributive property.

31
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Questions

If m and n are po'sitive integers, show that (an)in = an in .

2. If n is a positive integer, show that (ab)n = anbn.

Perform the ind!cated multiplications.

3. 2x x3 x5

4. (s
2 t) t3

5. (304

6. (a
2b 3)3

7. 3y (x2 + y)

8. (2x - 4) (3x + 4)
,9. ts 2 - st + t2) (s + t)

10. (x +

11. (x (x

12. (m-- 1) (m + 2) (m 4)

13. (4x + 2y) (3x + y)

14. (m3 - 2m2 + m + 5) (m + 3m 4)

15. (4x - 2.y) (4x + 2y)

16. - 03

4. Some Special Products-

There are three products which occur so frequently that they should

be singled out for special attention. These three products are:

1r) (x+ y) = x2 - y2

+ y)2 + y) = x2 + y2 + 2 x y

y) 2 = = x2 + y2 - 2 x y

It should be understood that in these products, x and y may be any

algebraic expressions. For example, if we replace x and y in the first

expression by 25 and 3, respectively, we have

(25 - 3) (2 5 + 3) = 2S2 - 32
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On the other hand, if we replace x and y in the first expression by 2S2

and t3, respectively, we have

(2S2 - t3) (2S
2 + t3) = (2S2)2

-- (t3)2

To emphasiie the fact the above special products involve arbitrary algebraic

expressions, let us rewrite them using A and B to denote two arbitrary alge-

braic expressions.
(1) B) (A+ B) = A2 132

(2) + 13) (P. + B) = A2 + B2 + 2AB

(3) B) (A-B) = A2 + B2 - 2AB
2 2

For example, to find the product of (a b + 1) and (a2 - b2 - 1) we can

think of a2 b2 as A and of 1 as B, and have a product of the form

(A + B) (A

Therefore, (a
2 - b2 + 1) (a2 b2 - 1) = (a

2
b

2
)
2

1

We can expand this product further if we notice that (a2 - b2)2 has the

form of our third special product (A B) (A B). Thus
2 2

(a2 b2) - 12 = (a22) +.(b2) 2 (a2) (b
2) - 1 2 , or simply

a4 + b4 2a2 2

Questions

1. Is (A + B) B) the same as (A - B) (A + B) ? Explain.

2 . Express in words, the identity (A B) (A + B) = A2 - B2.

3 . Express in words, the identity (A + B) (A + B) = A2 + 132 + 2AB and

B) = A2 + B2 - 2AB.

Work the example in this section (a
2 - b2 + 1) (a

2 - b2 - 1) by the

long method of mt Itiplication.

Perform the indicated miltiplications using the special products whenever

possible.
5. (3x + 4y) (3x - 4y)
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6. (2r t)2

1 .3 2
( m + v)

2 4

8. 2) (x+ 5) (x + 2).

9. (s + 2t + 3) (s + 2t 3)

10. - 3y - z)2

(m 2v) (m + 2v) (m2 + 4v2)

12. [3(x +.y) - 2] (3 + + 4]

13. (a + b c d)2

14. (3x +

15. [(x (x [(x + + 142

Factoring

Very often, in the simplification of algebraic expressions, it is
helpful to write a given algebraic expression as the product of other
algebraic expressions, called its factors. There are a few basic steps
to follow when attempting to factor an algebraic expression. Although

these steps will not enable you to factor any given algebraic expression,

they do provide a systematic procedure in many cases.
When all of the terms of an algebraic expression have a common

factor we cdn use the dthributive property. This procedure should always

be tried first. For example:
22x 3 + 3x + 6,4 = (2x2 + 3x + 6) x

4 (it + b) + (a - b) (a + b) = [4 + (a - b)] (a + b).

uw + vw + uy + vy = (uw + vw) + (uy + vy)

= (u + w + (u + v) y

= (u + v) (w + y)

Notice that in each of the above examples we have expressed the given

algel.raic expression as the product of other algebraic expressions (factors).
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2 2 2 2
Whenever we see expressions of the form A- - B , A + B + 2AB,

or A2 + B2 - 2AB, we should immediately associate them with the factors

(A - B) (A + B), (A + B)2, and (A B)
2 respectively. For example:

T. factor x2 - 12x + 36, notice that two of the terms in this

expression are perfect squares; x2 and 36 = 62, and the third term is -2

times the product of x and 6. (i.e.: x2 - 12x + 36 = x2 + 62 - 2(6)x.)

Thus we have an expression of the form A2 + B2 - 2AB and it factors into

(x - 6) (x-6).
If we factor r4 - 16, we get

4 - 16 = 0.2)2 - (4)2r

= (r2 4) (r2 + 4)

but, r2 - 4 is also the difference of two squares and equals (r - 2) (r + 2).

Hence,

as

r4 - 16 = - 2) (r + 2) (r2 + 4)

Cons4der the expression (x - 2)2 + 14 (x - 2) + 49. It can be written

- 2) + (7)2 + 2 (7) (x - 2)

Thus, we have an expression of the form

A2 + B2 + 2AB where A = (x 2) and B = 7.

So, - 2)2 + 14 (x - 2) + 49 = ((x 2) + 7) ((x - 2) + 7)

+ 5)2

Questions
Factor the following expressions completely.

1. 3x 18

2. 3z2 - 27

3. 3x (2x + 5) + 4 (2x + 5)

4. s2 8s + 16

5. 144 a8 b2



- 314 -

6 + b)2 (c + d)2

7. x2y 2xy2 + y3

8. 2)2 + 4 (x 2) (y + 4) + 4 (y + 4)2

6. Division of Polynomials in One Variable

It isloften necessary to divide a polynomial expression in one

variable by another in the same variable: For example, how do we divide

(2x
2 - 18x + 20) by (x 7) ? Before we attempt to divide polynomials, let

us review a method for number division.

Suppose you were asked to divide 1760 by 49. The usual long

division algorithm is familiar to most of us, but there is another way to

approach the prcblem. We begin by making guesses. First, let's try 30.

If we multiply 30 times 49, we get 1470, which we then subtract from

1760 (step 1). Notice that we have 290

left over, so we guess again, saY 5,

multiply 5 times 49 and subtract the

result from 290 (step 2). Observe that

we have taken 35 factors of 49 from

1760 and have a remainder of 45. We can summarize our results as

1760 = 49 35 + 45

49/1760 Choices
1470
290

step 1 30

245-1 step 2 5
45

or 49 49
1760 +.41.5.

We can divide polynomials.by this same "method

this procedure is probably easier for polynomials

Consider the division of (2x
2 - 18x + 20) by (x -

V2x as our first choice, then notice

that we eliminate the first term

of the polynomial when we
multiply (2x) (x - 7) and sub-

tract it from 2x2 - 18x + 20 (step 1),

.of exhaustion." In fact,

than it is for numbers.

7). If we wisely pick
Choices

2xx- 7)/2x2 - 18x + 20
12x2 - 14x

step 1 - 4x + 20

step 2 - 9x + 28
- 8

-4

Next we choose -4 and repeat the process (step 2). We are left with a
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remainder of -8-and can summarize our results as

2x2 - 18x + 20 = (2x - 4) 7) + (-8)

or
2x2 - 18x + 20 7+

2x 4 2x 4

Here is another example: Choices
2 / 5x- 2x + 1 /x x3

{ x5 - 2x4 + x3

2x4 - x3
22x

2x4 - 43:3{ 2

3 2x2 3x

{ 3x3 - 6x2 + 3x

4x2 - 3x ..

4x2 - 8x + 4
5x - 4

After four steps we are left with a remainder of 5x 4 and can

summarize our results as
x5= (x3 + 2x2 + 3x + 4) (x2 - 2x + 1) 4; (5x 4)

or
x5 - x3 + 2x2 + 3x + 4 +

5x 4

x2 - 2x + 1- 2x +

Questions
Divide:

1. (t2 - 7t + 10) by (t - 5)

2. (y3 - 4y2 - 2 + 5y) by (y - 1)

3. (6x
4 + 7x3 + 12x2 + 10x + 1) by (2x

2 + x + 4)

4. (x5 - 1) by ix2 + 1)

4 ,4
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5. (x5 + x3 + by (x + 1)

(6t4 - lit3 - 12t2 + 3t + 7) by (2t - 1)

7. Algebraic Fractions
An algebraic fraction is Just the quotient of two algebraic expres-,

sions. To deal with algebraic fractions it is useful to recall certain

properties of numbers.
The denominator of a fraction cannot equal zero. Therefore, when

we write an algebraic fraction, say x + 7
'

we must exclude any value of the
x + 3

variable which makes the denominator zero, in this case x = -3.

For each number s, there is a unique number which can be written as
1 1
s such that their product is one (s i= 1). Such numbers are called multi-

plicative inverses of each other.
We can define division in terms of multiplication by multiplicative

inverse:

and

a 1
a b = = a 17.3.

These number properties must be kept in mind when working with

algebraic fractions. Consider, for example,

(x - 3) (x - 2)
- 3) 1)

Using number properties, we can rewrite this expression as

1 (x 2) 1

(x - 3) 3)
or since x 3 and are multiplicative

(x - (x - 1)
1

inverses--that is, (x 3) (2.7-75--) = 1 we can write the expression as

x - 2
x - 1

provided that x is not equal to 3 or to 1. When you have recorded the final
x - 2result - 1

it is easy to forget the fact that in order to arrive at that re-
x

sult you assumed, that x was not equal to 3.
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8. Addition and StAbtract,ion ofjaciebraiglosaigaL
Addition and subtraction of.algpbraic fractions with common denom-

inators are straightforward operations obtained from number properties in the

following way:
a e 1 1 a + c

+ = a + (7
b

= (a + c)
b b b b

a e 1 1 1 a c
-b -b a e

b
(a - c)

b

Addition and subtraction of fractions with different denominators arc

perli mod by rewriting the fractions so that they have a common denominator.
a c

Suppose we wish to add + If we multiply the numerator and denominator
b

of a fraction by the same number we do not change the value of the fraction--
a c

because w(! are just multiplying by 1. Thus we can write + -as
b d

d d c b ad
+

el) ad +
+ =bddbbdbd bd

1
liore is A nother example. We can add -x + 3 and 2x - 1 by multiplying

2

2x - 1 x + 3these tricti ns by
2
------ --1 +

and respectively. We have
x x 3 '

1 ., 1 (2x - 1) x2 (x + 3)
+ .,. - + and Si I1CO we now haVO

7: 4- 3 7 - 1 ().: + 3) (2X - 1) (lx 11 ( + 3

.i com Mon iemiminater, we can add to ()I tdin
, 3 2 3 2

(2x I) + kx + 3x ) x + 3:.: +

x + 3) (2x 1) 22x + Sx - 3

2sIn the expiesion we i otice that the denom-
s

2 - 4 s + 4s 4

s s2 2
mators can be f actored so that -1-'- (s + 2) (s 2)

2
(52 4) s + 4s + 4

Multiplying the first expression by and the second

, s 2ny :------ yields a corn mon denominator,
.; -

+ s
2 2 s (s + 2)

(s + 2) (s - (s + 2) Is + 2 s + 2) (s - 2) (s+2)

rho n adding ,

s2 _Ss - 2)
s + 2)(s + 2) (s 2)

25 (s + 2) + 32 13 2) . + 4s + s 2s2
(s + 2) (s + 2) (s 2) (5 + 2)2 (s 2) (s + 2)2 2)

rjo
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Questions

Simplify, when possible, the following algebraic fractions.

a2 + b2

1.
a2 b2

s 3 + 9s 2 + 20s

s 2 + 9s + 20
4 4s

2.

4.

r2 s2

(x 5) (x + 3)
(x + .3) (x + 4)

The following simplifications are examples of common mistakes. Explain

the faulty reasoning in each case.

5.

6.

7

8.

7x 2

7x

3u + 7 7=
3u + 8 8

Sr 2r 3r
7 6 1

x2 2x + 5

x2 - 2x + 8

Carry out the indicated operations and simplify when possible:

4 3
9. x 1 x 2

10.

11.

1 1

3 r r

a
a + 1

12.
3

13.
3s

2 2+ 4s + 3 ss - 9
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Multiplication and Division of Algebraic Fractions

In order to multiply and ciivide fractions we must recall that for
atwo fractions and

d
a c ac
b d bd

a c a d (To find the quotient of two fractions , invert.the
b d b c

divisor and multiply.) To illustrate this latter property, consider the

following proof:
a ad ad a.d

a c b b c b c b c a d* = _ _ _
b d c c d cd 1 b c

d d c cd

In the multiplication
33 St 15s3 t

4t2 s2 4t2s 2

notice that since the numerator and denominator have common factors, we

may simplify the result by writing

15s 3t 15s (s20 15s 15s1 -
4t2 s 2 4t (s2 t) 4t 4t

Dividing (9u3v4 + 18u4v2 - 6uv) by 3u2v2 is equivalent to multiplying

1
19u3v4 + 18u4v2 Guy)

3u2v2

Applying the distributive property,

9u3 v4 18u4 v2 Am_
3u2 v2 3u2 v2 3u2v2

We can simrilify by writing

2 2 2
v 18u2 (u2v2) 6(uv) Z

3uv2 4. 6u
2 -

3 (u2v 2) 3(u2v2) 3uv(uv) uv
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x - 2 (x 4. 3) + 2)
To multiply:

- 81 x2 - 2x

It would be a waste of time to proceed by writing

x.- 2 (X + (x + 2.1 Cx - 2) + 5x + 6) x3 + 3x2 - 4x - 12

- 81 x2 - 2x (x4 - 81) (x2 - 2x) x6 - 2x 5 - 81x2 + 162x

because it is almost impossible to tell if the last expression can be sim-

plified. A better method would be to see if any of the numerators or denom-

inators can be factored before multiplying. In the case of this example, we

can write
x 2 . (x+ 3) (x + 2) - . (x+2_) (x+3)

x4 - 81 x2 - 2x + 3) - 3) (x + 9) x - 2)

- 2) (x + 2) + 3)

+ 3) 3) (x2 + 9) (x) 2)

Now we can see that there are common factors in the numerator and the

denominator of the product which can be written as:
lx + 2)

(x 3) (x2 + 9) x

3 2-
In dividing

r
+ 3

r by (r - 1), our first step is to write the problem
r

in terms of multiplication by the inverse..

3 2 3 2

4 (
r rr - 1) - r + 3r + 3

Now we write:

r
3 2 r2 Jr - 1) 1 r2 (r - 1) r

2
- r

r + 3 r 1 r + 3 r - 1 (r + 3) (r - 1) r + 3

We sometimes encounter algebraic fractions in which the numerator

and denominator are themselves composed of one or more fractions.

Consider, for example, the expression:

1 + 1a
1 - 1a
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Such expressionS can be handled easily by first expressing the numerator

and denominator dS single fractions, thus obtaining a form you have already

worked with, and then diyiding fractions as usual. In this case we could

write
1

1 a + 1
+

a a a + 1 a _ a + 1
_ _

1 a - 1 a a - 1 a - 1
I -

a a

Questions

1. In Chapter 3, when calculating with powers o ten, we worked with

10mexpressions of the form
10
---T . Let us now consider expressions of

snithe form --F-1 where s is any positive number nd in and n are positive

integers. Using the fact that
rn factors of s

S
In sss..s

sn s.s.s..1D
n factors of s

."Explain the following result:
1 if m = n

r srn
I

:,.-.. ,

m n-- s1 if rn **% n

sn
1 -1-n m if -rn < n

s

Perform the indicated operations and simplify when possible.

2. c (3x
3y - Sxy2

+ 6x3 y3) xy

3. (63 9u
4

11 v) 4 3uv

4.
9 . r + 2

r2 + 2r r 3

2x- + x 6 x 2
5. x 1 3
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7.
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4r .+ 8s 9r2s

3rs , 3 + s)

yx - yz x x z
yx + yz x - z x

9. 2t
1 2 1 tt 1

t2 t3[
t

10. [x + x - 1

2 '+ 4
5

11.

12.

13.

14.

2 - 1

s t
s t

x3
1 x

Determine whether or not the expressions in each of the following pairs are

equivalent. If not, correct the expression on the right so that they' are

equivalent.
xy xz

15. x (X - 2
z z

16.
1

c v 1 -

2n 2

17. m (rn
n (m + n)2)

SNP

) I )
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18 .

19 .

20.

21 .

ro r

2m n(r - )
2 2

3 - v;

u v
u + v

ror

m n , 2
+ (r + i

2 2

3 (1 - i)

2 12mr + mn

22 .

23 .

24 .

2 2
P._

'
2,02 IP

2m 2n 2 mn

7 7

7 '

nm

(n + m)2

ab
25. (a + b) .(1 ; a

(a + b) a

26.
2N 1 N+n N-n

. )
N

2
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Appendix 2: What Can We Do to Equations?

An equation is simply a statement that two expressions are equal.

Thus, 2x + 5y= .6xy 7,

x - a = 2y2

and y = 3x + 4

are equations. Either side of an equation may have any number of terms.

For example, the third equation above has one term on the left side (y) and

two terms on the right side (3x and 4).

We can manipulate equations in many ways, depending on what we

want to do. In a given equation we may wish to express one quantity in

terms of the others, or solve for the unknown quantity, or isolate certain

trrms from others. Sometimes we have to work with two or more equations

irnultaneously. In all these cases it is necessary to know which manipula-

tions are permitted, so as not to invalidate the original equality.

The purpose of this Appendix is to dircuss some of the more common

manipulations that are used when we work with equations.

1 . Addthg a \Ai ell

To manipulate one side only of an equation without invalidating it

we need to know two properties of numbers'.

The first of these is
(a) ,Zere is the only number for which

x + 0 = x

for any numbir x.

Property (a) is usually worded, "Zero added.to any number does not

ci change that number." Since an equation becomes an equality of numbers when

a number is substituted for the variables, wep use any property of numbers to

manipulate an equat19n into another form.

To illustrate tlie use of this property, sometimes called :adding

a well-chosen zero," we consider the following equation:

x- 2 + 6x +,y
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and ask the question, "What is the smallest value that y can have in

this equation?"
Since the expression contains an x

2 and an x term, we would

like to combine them into a square of a sum. Recall that
(a + 2 = a2 + 2ab + b2

Here we have
2 + 6x or x2x + (2) (3)x

To make this a perfect square we need to add 9. But we must also subtract

9 to keep the same value of y. Our "0" = 9 9.

y = x2 + 6x + (9 - 9) + 2

Recognizing x2 + 6x + 9 as (x+3)2, we can write

y = (x+ 3)2 - 7

The (x+3)2 term is > 0, hence, its smallest value is zero. The smallest

value of y is then -7.
In generar to make a "perfect square" from the expression

x2 + mx + n
2 2

we have to add 0 = (F)
2 2

2x + 2 (.92)x + (la) + n (12)
2 2 2

2 4n - m2

2 4

Here is another example of adding "a well-chosen zero." Given the

equation
x2 + x + 1

Y x2 + 3x + 4

suppose we are required to divide until the degree of the numerator is

smaller than the degree of the denominator. It is much easier to add 0 to

the numerator chosen in such a.w3y as to make the original numerator equal

to the denominator. We see here.that the numerator needs the quantity

2x + 3 added to it to make tnis so. Thus, we have

e 31)
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x2 + x + 1 x2 + x + 1 +j(2x + 3) - (2x+ 311
-x2 + 3x + 4 + 3x + 4

x2 + 3x + 4 - (2x + 3) =
2x + 3

1
x2 + 3x + 4

-

Since we are working with one side only of an equation, we are

actually working with an expression. As we have just shown, zero may be

added to any expression without changing its value. It is common to rewrite

an expression like the following:
1

1 + t-

Adding "a well-chosen zero" would result in
1 1 + lt-t) 1+ t t

1 + t 1 + t 1 + t 1 + t

= 1 t 1 + t

We can repeat this process of adding = t - t to the numerator inside the

parentheses.
1 1 + t - t 1

Y 17+7 = 1 -t( )=1-t(1-ti-7-1.t)

= 1 - t + t2 (-
1

1 ) = '1 - t + t2
(1 + t

t
- t)

+ t 1 +
, 11 - t + t2 - t-q (-)1 + t

This expansion may be carried on to any number of terms. As you would

expect, it gives the same result as does ordinarl% long division.

Incidentally, the example that we have chosen also illustrates the

expansion of a power series. Notice that each term contains a higher power

of t than the one preceding it. We speak of the term not containing t as

the "zero-order term," the term containing t to the first power as the "first-

order term," etc. For t very much less than 1, each tfIrm is significantly

less than the One preceding it. When t is a physical number, it frequently

suffices to retain only the first-order term.
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1 - t
+ t

This approximation is valid for values of t so small that t2 is about the

same value as the error in the value of t itself.

As another example of the expansion of a power series, we shall

rewrite the expression

as follows:
1 1 + (x2 - x2) - x2 x2

x2 + 17-72-c1 - x2

2 1 2 1 + x2 x2
=. 1 + x (-1--70") 1 + x ( 1 x2 ')

1 + x2 + x4 ( 1 )- 1 + x2 + x4 (1
+ x2 x2)

1 - x2 1 x2

1 + x24 x4 + x6 1 - x4.

This expansion contains only even order terms. It has no 1st, 3rd,

or 5th order terms. However, if we rewrite the expansion as

1 + (x2) + (x2
2 3 1

)2 + (x
)

then we can, for example, speak of the (x ) term as the first order term

in x2, or (x2)2 as the second order term in x2, etc.

Questions
2

1. Express y x. + 6x s- 11 as the square of the sum of x and a

number, plus a constant.

2. Corhplete the square of the following quadratics:

(a) x2 + 2x - 1 = 0

(b) 3x2 - 2x + 6 = 0

(c) 5x
2 - 7x + 16 = 0

1
3. Expand 57- to second order in x3 by adding well-chosen

zeros.

3 3
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24. Expand to second order in x, and determtne-the accuracy
1 -

2

of the approximation when x =.- 0.1.

2. Multitabrigo by a Well-ctlos9n Oze

is

The second property of numbers that we can also apply to expressions

(b) One is the only number for which
X 1 x

for any number x.

Property (b) is worded, "One multiplied by any number does not

change that number."

As an example of modifying an expression using this property,

sometimes called "multiplying by a well-chosen I," suppose we want to

find an approximate value of
Vx + h -V.

where h x, (very much less than). It is not much help to set h 0

here, because then the expression reduces to zero divided by zero, which

is meaningless. However, by multiplying by "a well-chosen 1,"

17-471) (vc-7-7 iTc)
h h

x h-x 1

h (A7-11 + VT() Vx + h

Now, for h < x, we can approximate this expressfon by setting h ii the

denominator equal to zero.
+ h

Thus,
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Multiplying by "a well-chosen 1" is useful in factoring expressions.

Consider the expression
u v

If we were asked to factor out a u, we might say that this is not possible

since no factors of u are in the second term. But if we multiply by the
1 1

"well-chosen 1" where 1 = u and move the inside, we have

1 u
u v = u (u v) = u +

= u (1 +

This particular example arises quite often when v and u are physical numbers

and v cz< u. Factoring in this way enables us to see the contribution of v as

a fraction of u.
Another example of manipulating an expression to see more easily

the contribution of each term to the value of the expression is the following:

y = a 3
x3 + a2x2 + alx + ao

For large x each term becomes successively smaller, and by introducing

a well-chosen 1,
a3xy = 3- (a3x3 + a2x2 + alx + ao)
a3x

a2 al
= a3x3 (1 +

1
+ 2 +a3 x a3 x

3 2
we sea how much smaller than 1 the -F3-- term is.

Questions

1. Show that for h < 1

ao 1

a3 x3 /

V'l+ii 1 + -122

[Hint; Let 1/1. + h = 1 + (-1 + vrrli--h), then multiply this expression

(11 + h +
by
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Approximate to three places using the ideas of this section:

(a) Tlig

(b)

3. What Can Be Done to an E uation b Workin With Both Sides
I I t out nva at ng t e qua ion

We state four properties of numbers which, as we have cited earlier,

are applicable to equations since equations reduce to an equality of numbers

when numbers are substituted for the variables.

(a) If a., b are numbers and a = b, then a + c = b + c.

This is usually verbalied, "One can add the same number to both

sides of an equality withbut changing the equality."

(b) If a, b, c are numbers and a = b, then a c = b c.

In words, "One can multiply both sides of an equality by the same

number." We point out, however, that multiplying by zero is usc-

less, since this reduces all equations to the ideniity 0 a- 0.

(c) If a, b, c are numbers, a = b, and c # 0, then c c
That is, "One can divide both sides of an equality by the same non-

zero number."
1 1

(d) If a = b, then an = bn, andtn particular, =
a b

In words, "One can raise both sides of an equality to the same

power."
We illustrate each of (a), (b), and (c) above by solving

r = -t + 1
for t in terms of r .

The general approach to this type of equation is to clear the equa-

tion of fractions and then isolate the unknown on one side of the' equation.
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We start with Property (b), that is, multiply both sides of the equation by

+ 1).
r (t + 1) = (t+ 1)(t + 1)

Canceling the (t + 1) factors on the right side we have
r (t + = t

We then distribute the product on the left over the sum.

rt + r = t

To isolate t on one side, we add -rt to both sides of this equation

(property (a))
-rt + rt + r= t rt

which becomes
r = t rt

Using the distributive !dW again, we factor t out of the right side.

r = t (1 -

Then dividing both sides by 1 r (property (c))

t
I r

Notice that wkIn we used property (c), we divided by (1 .

This requires that r X 1, because otheiwise r = 0. In general, when

dividing by polynomials that contain a variable, we must be sure that

the variable does not have a value that makes the polynomial zero.

We shall illustrate property (d) with the following equation

MY

v2-

by solving the equation for v, that is, getting v all by itself on one side

of the equation. Before we start, it would be helpful to note some of the

restrictions that must be placed on the values of the variables in this

equation. Clearly, c v, since c = v would result in a zero denominator.

Also p # 0 and m # 0; otherwise the emilation reduces to 0 ---- 0, which

is not very useful. These three restrictions, c # v, p 0, and m 0, will
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4
become more obvious as we proceed with the solution.

Let's do the work now. Squaring (property (d)) gives

o2
2

v2
- y4

Next, multiply by 1 - (This is not zero because c v.)

p2 (1 4 m2v2

Using the distributive law on the left yields

v2

2 2
2 P-IL-

m
2

v
2

P c2
2 2p__y_

To collect the v2 terms we add 7 to both sides

2 2 2 2 2 2
2 p_y_ Ey_ m2v2

P e2 c2 c2

Using the distributive law on the right we have

p2 = v2 (m2 +
2

D2
To isolate v2, divide by m2 + (This is not zero because m 0,

c2

p 0.)
_P2 -2 - v2

The final step is to take square roots.

Questions
Before manipulating, plan your steps. These problems will actually

occur if you study physics.

1. 1 my2 + Ikx2 = E. Solve for v.
2 2

2. T = 2Tr . Solve for k.

Pl vl N
3. Let = () . Solve for v2.

P2 v2
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4. Discuss the best way to rearrange this to calculate a
a b c
from a given pair of values for b and c.

4. Solving the Quadratic Equation

As we Save seen in Section 1 of this Appendix, when we add the
2 2

"well-chosen" zero (-2 -)
2

(--) to the quadratic equation

x2 + mx + n =

m.2 4n - m2
the equation becomes (x + =

4
0.

2

The more general quadratic
ax2 + bx + c =

can be solved in the same manner.
2 b c

3C + -X + = 0
a a

2 b b2 b2 c
x ;lc 4a2 4a2 a

b
2 2

b - 4acx + ) =za 4a

x = +
2 a 2a

\A2 - 4ac
x

4ac

2a

This result is called the quadratic formula where a and b are the coeffici,..nts

of the x2 and x term respectively, and c is the value of the constant term.

b2 - 4ac in this formula is called the discriminant because it

identifies the charaoter of the roots of the quadratic. When the discriminant

i!; zero, the roots are equal (they are - ). When b2 4ac is greater than
2a

zero, the original equation has two solutions. When the discriminant is

negative, there are no solutions because no number on the number line is

the square root of a negative number.

3 4
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questions

1 . Using the quadratic formula, show that the

(a) sum of the roots x1 + x2 = --a

(b) product of the roots x x =1 2 a

2. Which of the following equations (a) have equal roots, (b) are

factorable, (c) have no solution?

(a) 9 = x2 + 6x (d) 10e - 41x - 156 = 0

(b) 2x 2 - 7x + 10 = 0 (e) 4x2 - 12x + 9 = 0

(c) 12x2 - 95x - 8 = 0 (0 5x2 - 3x + 2 = 0.

3. For what value of k will the roots of the following equations be equal?

(a) 3x2 + 4k = 5x

(b) 4 (x - 1)2 = 2 + kx

(c) kx 2 - 3 + 2kx = 0

4. Find the value of k if the product of the roots of

3x2 - 2x - k = 0 is 2.

5. Find the value of k if the roots of x2 + kx + 4 differ by 3.

5. Substitution

We can substitute for any variable in an.equation an expression that

is equal to that variable. For example, consider the equation

y = ax3 + bx2 + cx + d

If, in addition to this,

then we are permitted to substitute (u + v) for x in the general equation

wherever an x occurs. Thus, we write

y = a (u + v)3 + b (u + v)2 + c (u + v) + d
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To take another example, suppose we had the following system of equations:

and

1s = v
1
t +

2
-at2

F = m

v2 - vl = at

Zst v + v2

Wherever we see a t in the syitem of equations: we can replace

it with the equivalent expression 2s
v

1
+ v2

In this case, the three equations become

2 s i 2s )2

s vl + v2 2 + v2

(v2 - v1)
F m, 2s

+ v2

2sv2 - = a (v -)

Questions
TrV

1. Let it be given that V = 21TR and a - 2

T
Express a

of R and T.

2. The following pccur in elementary orbital problems:
4/r2R R3

a = -712, ; F = ma;

Solve for F in terms of k, rn, and R.

I S = 27rr2 + 2irrh. Suppose r and h are related by 2r = h. Find S

in terms of r.
1

4. Let y = and x = t + 2. Express y in terms of t

in terms

S. Let
P P

Eliminate k and express P in terms of
RT

R,. and T.
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6. Express v in terms of a and s in the following:

2s

v = gt

c2 my
7. (a) From E -

2
and p - eliminate v and thus

v 14
v2

c2 c2
express E in terms of E, rn, and c
(b) For p << mc expand your result to second order in

6. What Can Be Done to Two Or More Equations ?

When working with two or more equations, we can use any of the

foregoing ideas on any member of the set of equations, namely, adding

the same expression to both sides and multiplying or dividing both sides

by the same (non-zero) expression. We can also substitute for a variable

in an equation any expression that is equal to that variable. There are, in

addition, the ideas of addinc; equations, multiplying equations, and dividing

equations. We indicate these operations schematically by writing the

following:
If A, B D are expressions and if A ---- B and C = D,

then A+C=B+D
A -C=B-D

A B

C D.

Let us begin with the general solution of two equations in two

unknowns.
a1x + b1y c (I)

a
2
x+b2-v=c

2
(2)

4

Our plan is to eliminate one of the unknowns from this set, arriving at one

equation in one unknown. We can do this by multiplying one of the 'equatTons
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by an appropriate constant such that when the two equations are then added,

one of the unknowns drops out.
82

Specifically, if we multiply the.first equation by , then addal
this result to the second equation, we get

82(- ) a x +al 1

a2 a2
(-57)b1Y (-c)c1
a2x + b2y 2

.. ,
D

a
2

O + (132 a 1 y c2
1 71- c1

where 'the notation at right indicates the operations being performed.

We now solve this equation for

Y

a2c2 - ci

82
b b

2 al 1

a1c2 a2c1
Y ai,b2 - a2b1

To find x, we take this value of and substitute it in the first equation in

place of y.
alx + bly = cl

alc2
a

a2cl c
11x

+ b
1

( alb2 a2b1

This equation reduces to b2c1 - b1c2
x a1b2 a2b1

In a set of n equations in n unknowns one uses this same procedure

to eliminate all the x's below the first and thus seduces the system to n 1

equations in n 1 unknowns. We illustrate by reducing a three-equation

system to a two-equation system.

a
1
x + b 1y + c1z = d

1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3
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a2
We replace equation (2) by the sum of equation (2) and (-7-) times equation

1 a3
(1), and we replace equation (3) by the sum of equation (3) and (- al) times

equation (1).

alx + bly clz = (1)

a2 a
2 2

a2
(b

2
b

1
)y+ (c

2
- c

1
)z=d

2
d

1
(2`) = (--ai ) (1) + (2)

al "aial
(33 a3 a3 a

(b 3
b1 )y+(c 3 --c )z=d

3
d

1 1
(3') =

3
(1) + (3)

al al . al

Equations (2') and (3') contain two unknowns and these are solved

as before for the twe-equation case. x is then found by substituting the

values of y and z into equation (1).

As an example, we include the solution of a three-equation system.

1 I
x +

2
y +

2
z = 1 (1)

3x + 3y + 4z = 2 (2)

5x + 4y + z = 1 (3)

1
x + -2-y +

1 (1)

3 5
Ox + + z = -1 (2') = -3 (1) + (2)

2

3 3Ox + y z -4 (3') = -5 (1) + (3)
2 2

1 1 (1)

(2')
2 2

Oy + 8 z = 3 (3") = (2') - (3')
2

3
z =

3 5
-2-y + = -1

3 5 3

2 2
) = -1

4
2 15 8

= (-- )
3 8 8

23
-12

(2')
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1 1x+ iy+ 1z=,1
1 3+ (--) = 1
2 4

+ 1

1
x + 2

23

23
12

3
8= 24

(1 )

Checks are most important. You should actually substitute these

values for x, y, and z into equations (1 ) (2), and (3) to show that the

equations are satisfied.
Occasionally it is desirable to divide one equation by another. We

illustrate with the following:
Let x = r0

y = rfl - 02

If we want to solve fo'r 9 and r (in terms of x and y, we can eliminate r by

dividing the first equation by the second and equating the quotients.

9

We can now solve for 9. Square both sides and ruultiply by 1 - 0

(112
`3(' 1 - Qz

(1)2 (1 92) 92
y

92 (1 ()2) =

(s)2
92

Taking the square root of eacn side:

2
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To find.r, , substitute the known value of 0 into the first equation.

Thus

Questioris

x = re

x = r
ifx2 + y2

r Vx2 + y2

r = Vx2 + y2

0 -
2 + y2

1. Complete the algebra in the text discussion of the general solution

of two equations in two unknowns and show that
b2c1

- a
b

1
c

2
x alb2 2b1

2. If the following have solutions, solve. How many solutions are

there?
(a) x + y + 2z = 1

2x + y + 3z = 2

x + 2z = 1

(b) x + y + 2z = 1

2x + y + 3z = 2

x + z 1
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(c) x + y + 2z = 1

2x + 2y + 3z = 0

x+y+z= 0
3. Suppose A = OW and 13=

terms of A and B alone.

4. Let

v
x2 + y2

Solve for x and y.

[Hint: U2 + v2 (x2 _ y2)2

\,

Disauss how to find x and y in

7. Graphical Solution of Two Equations

Simultaneous equations in two unknowns may also be solved

graphically. Since the intersection of the graphs of each equation is a

point common to both graphs, this point must satisfy the equation of each

graph, that is, it is a solution to the equations. For example, the two

ewtations
5x 2y = 4

4x + 3y = 17

each represent a straight line whose graph is shown in Fig. 1. The graphs

intersect at the point (2,3), thus, the solution to the equations is x = 2

and y = 3.
Sometimes, as in the case of the two equations

2y - x=--- 8

2y x = -3

their graphs do not intersect as shown in Fig. 2. The lines are parallel,

the slopes are equal, and there is no common solution. In these cases, we

call the set of equations inconsistent.

3 4
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Fig. 2

Questions

1. Solve, when possible, the following sets of equations graphically:
W.

(a) 2x y = 5

3x + 2y = -7

(d) y 2 =1- (x + 1)

y + 1 = 6x
1

(b) 4x + 5y = 3 (e) x = ( + 4y)

3x 2y = 5 3x 2y = 4

(c) 5x 3y = 4

10x 6y = -1

(f) 2x + 1 = 3 (y

y = 5x

4)

2. Solve the set of equations in Fig. 1 and show that the solution is

consistent with the graphical solution.

3. Find a graphical solution of the set of equations

x + y = 7

y = (x 4)2

4. Find the roots of the equation
2x2 - 5x - 12 =

graphically, and then check your result by using the quadratic

formula.

X
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5. Some Precautions

We have indicated throughout this Appendix that manipulations.

performed on equations must be done so as not-to invalitiate The equation.-

In particular, we cited the cautions to be observed in multiplying or divid-

ing by zero.
Let us look at these two restrictions more closely. Given the

equation
x - 3 = 2

we shall multiply both sides by the quantity (x - 2), getting

- 3)(x - 2) = 2 - 2)

which becomes
x2 Sx + 6 = 2x 4

x2 7x + 10 = 0

5)(x - 2) = 0

This last equation has two solutiong, x = 5 and x = 2. The original equa-

tion, however, has only one solution, x = 5. We see, then, that the

equation we started with and the equation we ended up with are not equiv-

alent. It should be apparent that when x = 2, the value of the multiplier

we used is zero, which, in turn, led to the extra solution, x 2. In

situations like this, we call such roots extraneous.

Now we consider an example of dividing an equation by an ex-

pression containing a variable If we have

(x - 3)(x - 2) = 4 (x - 3)

and divide each side by the quantity (x - 3), we get

(x 3) (x - 2) = 4 (x - 3)
(x 3) (x - 3)

x - 2 = 4

x = 6

Again, the first and last equations are not equivalent, but now the first

equation has two solutions = 6 and x = 3) and the last equation has only
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one. This is because when x = 3 the value of the divisor is zero. So in

this case we lose solutions.

In summary, multiplication or division of an equation by an expres-

sion containing a variable is iffohibited for that value of the variable which

reduces the expression to zero.
In Section 2 we made the following statement:

If a = b, then an = bn

That is, both sides of an equality can be raised to the same power. Let us

examine this idea further.

If we have
v'x+l = /IT

and square both sides, we get
x + 1 = y

By this process, we do not lose any solutions because any pair of

values for x and y that satisfy the first equation will satisfy the second

equation. However, x = -2 and y = -1 satisfy the second equation, but

these two values reduce the first equation to the statement J1 = rr
This result makes no sense in the context of the number line because no

number on-the line is the square root of a negative number. Squaring the

equation ITT-I = IT, then, has led to extraneous roots.

Another example of where squaring an equation leads to extraneous

roots is the following. If

x = a

then x2 = a2

and. x2 - a2 = 0

or a)(x + a) = 0

whIch has the two solutions x = a, x = -a.

In general, when we raise both sides of an equation to an even

power we will always pick up extra solupons. This is not to say that we

are never allowed to raise an equation to an even power. It is Just that
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when we perform this particular manipulation we must be aware of the con-

sequences.
If we consider odd powers, no problem arises. If

x = a

then x3 = a3

pnd x = = a

We neither gain nor lose solutions.

Questions

1. Solve for x and check for extraneous roots

2. Given the two equations

= x2

x = 4 +

(a) What limitations are placed on x in the first equation?

(b) What is the smallest numerical value that x can have in the

second equation?

(c) Gan you substitute the expression for x from the second equa-

tion into the first equation? Explain.

3. Starting with ti,e false equation 7 = 9, subtract 8 from both sides.

7 8 = 9 - 8

or -1 = +1

Then square both sides
(-1) = (1)2

which results in a true equation
1 = 1

Can you explain what has happened?



- 346

Appendixl_z IrTqualitiet .

1. Notation

An inequality is a statement that two quantities are not equal. If,

for example, a yi b, then either a is greater than b (a > b), or a is less

than b (a < b). The symbols ">" and "<" denote the sense of the inequality.

Remember that the tip of the inequality sign points toward the smaller quan-

tity.
The "continued" inequality a < b <

means

The statement

means "x is between 1 and 2."

We never write

for this ineans

which is not true for any x.

Instead, we would write

a < b and b <

1 < x < 2

2 < x < -2

2 < x and x < -2

x > 2 or x < -2

a > b means a is equal to or greater than b.

a .te x < b is read as, "x is equal to or greater than a and equal to or less

than b."
Finally, when we write

a > 0, we speak of a being positive

a <* 0, we speak of a being negative

a < 0, we speak of a being non-positive

a > 0, we speak of a being non-negative

Note carefully the distinction between the negative of a (-a) and

a is negative (a < 0).



- 347 -

Properties of Inequalities
ors-.

Like equations, there are certain manipulations that can be performed

on inequalities without invalidating the inequality, that is, without changing

its sense.
.(a) Additive property. If a, b, and c are numbers, and if a b,

then
a +c<b+ c

That is, the same quantity may be added to both sides of an inequality

without changing its sense.

(b) Multiplicative property. If a, b, and c are numbers, and if

a < b and c > 0, then
ac<bc

That is, both sides of an inequality may be multiplied by the same

positive number without changing its sense.

(c) Transitive property. If a, b, and e are numbers, and a < b and

b < c, then a < c.
(d) If a > b, then an > bn if a, b, and n are all positive.

That is, beth sides of an inequality of positive numbers may be

raised to the same positive power without changing the sense of

the inequality.

Notice that the aeldition property also implies that if a > b, then

a h c. That is, subtractinq equal quantities from both sides of an

inequality is equivalent to adding equal negative quantities to both sides.
a b

Also, the multipl:cative property implies that if a > b, then >c c

if c > 0 because dividing both sides by c is equiv Int to multiplying both
1

sides by the quantity c

The multiplicative property does not remain true for inequalities

if we mult:ply by zero or a negative number. In fact, in the latter case it

actually re,,erses the sense of the inequality. Let's see how.
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If a > b and c < 0 and we add -b to both sides of a > b, we get
a b > 0

Then multiplying both sides of this inequality by the positive number -c

-c (a - b) > 0. (-c)

bc ac >

Adding ac to both sides now, we get

or

bc > ac

ac < bc

which has the opposite sense from the 3rig1nal inequality, a > b.

Questions
1. Show that 1 > 0. (Hint: If 1 < 0, then -1 > 0. Remember that

(-1)(-1) = 1, so 1 > -- Impossible! Why?)

Discuss and verify for several numbers. (Prove if you can.)

2. If a > b, c > d, then a + c > b + d.

3. If a > b > 0 and c > d > 0, then ac > bd.

4. If c > 0 and a > b, then a + c > b.
1 I

5. If a > b > 0, then a < b

6. If a > I, then a2 > a.

7. If 0 < d < 1 , thru 12 < a.
1

8. If > 0, then > 0.a

If a < 0, then < 0.
a

10. Given > x, x s, s 0, and 1 > c > 0. Also e2 = I - s2. Show

that I - x2 < < I by first showing -z5.7 x > > 0. Why? Then
1multiply by and use No. 5.above. Note that 0 < c < ) and use No.

Then use x > s with this result, and c2 -4 1 - s2 to prove the

result.
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Appendix 4 : Tablet

- LOGARITHMS OF MOMS'ERS

0 1 -2 3 4 3 6 7 8

110 0000 0043 00S6 0128 0170 0212 0253 0294 0334 0374
12. 6414 0453 0492 0531 0599 0607 0945 0682 0719 0755

ta 07y3 0828 0164 0899 9954 009 1004 1058 1072 1t06

13 1139 2173 1)°6 1239 1271 1303 13:5 1397 1399 :430

14 2461 1492 1523 1553 2534 1614 1644 2673 1763'2732

-
15 1761 1790 780 SO47 1875 7993 1931 :959. 1987 2014

36 200 2968 2095 2122 2148 3z75 220* 2227 2253 2279

17 1304 1330 2355 2380 2405 2430 2455 2480 2504 2529

28 2553 2577 2901 2625 2648 7672 2695 7,18 2742 2765

19 2788 3810j 2833 2850 2878 1909 2973 2945 2997 2989

20 3010 303 3054 3075 3096 3118 3139 3160 3181 3201

21 3222 3241 3:61 3284 3304 3324 3345 3365 3385 3404
22 3424 3444 34(4 3483 3502 3521 3541 3569 1579 3598

A$ 3617 3636 3(.35 3674 3692 3711 3729 3747 3766 3784

24 3802 3820 3838 3856 3874 3892 3099 3927 3943 3962

2 3979 3997 4014 4931 4048.4065 4087 4099 4116 4233

4150 4166 4183 4200 4230 4232 4249 4265 4281 4298

3 4314 4330 4340 4362 4378 4343 4409 4425 44 :0 5 6

4472 4487 4303 4518 4533 4548 4564 4579 4594 4

20 4634 4639 4654 4669 4683 460 4713 4728 4742 4, 7

30 4771 4786 4800 4814 4829 4843 4857 4871 4886 00

31 404 4928 4942 4955 4049 4983 4997 301* 5024 5036

33 5051 5065 5079 5092 szos 5119 5:32 5345 5159 5172

33 505 5:98 5211, 5224 5237 525o 5263 5276 52.89 5302

34. 5315 532S 5340 5353 5366 5378 5391 5403 5416 5418

31 5441 5453 5465 5478 1:490 5502 5514 5527 5539 5551

39- $563 5575 5587 $599 3111 5023 5635 5647 5658 5670

87 568.1 5°94 5705 5717 ç;iqi 3740 5732 5763 5775 5786

38 5798 5809 5821 583: 5845 3855 5S06 5877 5SSS 5899

39 5911 5922 5933 5044 59ii SONG 5977 5988 5999 6010

40 9021 690 6017 6053 0064 4075 64,85 6996 6107 6::7

42 6t28 6:38 g 6169 6179 61:40 611,1 6201 9212
i--

0222

43 "3' 62' 0223 6=63 6274 62S4 6294 6304 6314 0325

43 6335 63 6355 6365 6375 6385 6395 6405 6415 6425

44 6435 64 4 6454 6464 6474 6484 6493 6593.6513 6573

4* 6332 6542 .555s 6561 6571 65So 6590 0599 6609 660
46 6628 9937 6946 6956 6065 6675 0654 6693 6702 6712

4i 6722 6730 6739 6749 675846
-7-7

fif"Mh-77- -7-5 -794
6803

4 6817 6821 6830 6839 6848 6857 6866 bS75 6384 6893

49 6992 691: 6910 0925 6937 6946 6955 6964 6972 698:

50 6990 6998 7007 700 7074 7033 7042 7050 7059 72167

51 797617984 7095!7101 7110 7113 7126 7135 7143 7153

32 7160 71(0 7t77 7185 7193 7202 7210 77:6 7279 7235

53 72431 7251 7239 7267i 7275 7284 7292 7300 7308 7316

34 7324 7331 7)00 7348 "036 7364 7372 7380 7388 7396
_ 1

iv 0 : 3 3

7427
7505
7482
7657
7731

7803
75

7945
89:4
8082

849
8215
828.0

8344
8407

8470
S:31
850
6652
8710

8768
85125

8882
8938
8993

12047
9I01

9154
9206
9258

9309
9369
9410
9460
9509

9557
9905

9652
9699
974

9791
9836
9881
9926

9969

4

7435

7513
7589
7664
7738

7892
7882

7952
8021
8089

8156
8222
8:87
8351
8414

8276
8537
8597
8657
8716

8774
8851
888-

8945
8998

9053
9106

9159
9212
9263

9313
9365
9415
9465
9513

9562
9609
9657
9703
9750

9795
9842
9886
9930
9974

5 6 7 8 9

:1

11
39

69
61
63
63

. 64

2
:/

60

75
71
73

73
74

771

5
79

85
5:
83
83
84

rii9294

li9395

89

90
92
92

93
94

icopi

:1
99

----

7404
7482

7559
7634

7709

7782
7853

24
7993
8962

6129
8195
8261
8325
8385

8452
8515
8573
$633
8692

8751
8808
3365
8921

5976
. ,

9031
9065
038
9191

9243

9343

9445
9494

9541
951J0

96 8
96J5

I

77/
9823
9868

9912
9956

7412
7490
7566
7642

7716

79,9
78642

7931
Sow
84469

8236
8202
8267
8351
8395

8457
8529
8579

8630
8698

8756
8814
8371
A07
487

9036
9090
9143
9106

9248

^199
eo50
9400
9450
9499

9547
9,595

9643
94,9
.9736

9714
9827
9872

9917
9961

7419
7497
7574
7649

7723

7796
788
7938
Soo;
8075

842
8209
8274
8338
8401

8463
8;25
8555

845
8704

8763
88,0
6876
5932
8987

9042
9096

9149
9201

9253

9304
9355
9405
9455

9504

9S52
9600

9647
9694
9741

9786
9832
9877

9921
9965

7443
7520
7597
7672

7745

7818
7889

7959
4028
8096

816:
8228
8293
8357
8420

8432
8543
8603
8063
8722

8779
8837
8893

8949
9004

9058
9112

9165
9217

9269

9330
9370
9420
9469
9518

9166
9014
966s

9708
9754

9800
9845
9890
9934
9978

745!
752b
7604
7679

7752

7914
/i90

7966
8035
81422

809
8235
8:99
8363

8426

8488
851q
8609
8669
8777

8785
3.842

6899
6954
9099

9063
9117

9170
9212

9274

9325
9375
9425
9474
9523

9571
96z9
9666

9713
9759

9803
9850
9894
9919
9953

7459
2836
7612
7686

7760

7832
7903

7973
8041
8409

,

8176
8241
8306
8370

843318439

8494
6555
8615
8675

8733

8792
8848
89424

8960
9015

9069
9122

9175
9227

9179

9330
9380
9430
9479
9518

9576
9624
9672

9717
9763

9809
9854
9899
9943
9987

7466
7543
7619
7694

7767

7839
7910
7980

6045
8:26

802-8189
8246
8312
8376

8500
1561

8621
668:

8739

8797
8854
Soso
8965

9020

9074
9128
9180
9212

9254

9315
9355

9415
9464
9533

9582
9628
9675

9722
9768

9614
9859
9901
9942
9991

7474
7551
7017
77421

7774

7846
79s7

1987
50SS
8:22

8284
834
8382

8445

8506
8567

8627
8646

8745

8802
8859
805
8972

9025

9079
9133
9186
921:

93

9049
939c

9449
948c

9533

ON
964i
9011c

9721
9771

Iti
ii1a

9951
999(
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Table of Trig000mobic Fund on

sin (road down)

.0 _ .4 .5 .6 .7 .8 .9

.0° .0000 .0017 .0035 .0052 .0070 .0087 .0105 .0122 .0140 .0157 .0175 560
10 .0175 .0192 0209 .0227 .0244 .0262 4279 .0297 .0314 -.0332 .0349 88°
20 .0349 .0366 .0384 .0401 .0419 .0436 .0454 .0471 .0488 .0506 .0523 87°
3° .0523 .0541 .0558 ,0576 .0593 .0610 .0628 .0645 .0663 .0680 .0698 580
4° .0698 .0715 .0732 .0750 .0767 .0785 .0802 .0819 .0837 .0854 .0872 850

50 .0872 .0889 .0906 .0924 .0941 .0958 .0976 .0993 .1011 .1028 .1045 84°
8° .1045 .1063 .1080 .1097 .1115 .1132 .1149 .1167 .1184 .1201 .1219 830
7° .1219 .1236 .1253 .1271 .1288 .1305 .1323 .1340 .1357 .1374 .1392 58°
8° .1392 .1409 .1426 .1444 .1461 .1478 .1495 .1513 .1530 .1547 .1564 81°
9° .1564 .1582 .1599 .1616 .1633 .1650 .1668 .1685 .1702 .1719 .1736 80°

10° .1736 .1754 .1771 .1788 .1805 .1822 1840 .1857 .1874 .1891 .1903 790
/ 11° .1908 1925 .1942 .1959 .1977 .1994 .2011 .2028 .2045 .2062 .2079 78°

12° 2079 20% 2113 2130 .2147 .2164 2181 .2198 .2115 .2233 .2250 77°
13° .2250 .2267 2284 .2300 .2317 .2334 .2351 2368 2385 .2402 .2419 78°
140 .2419 .2436 .2453 2470 2487 .2504 .2521 .2538 .2554 .2571 .2588 75°

-15° 42588 2605 2622 2639 .2656 .2672 .2689 2706 .2723 .2740 .2756 74°
18° .2756 .2773 .2790 .2807 .2823 .2840 .2857 .2874 .28%. .2907 .2924 73°
17° -.29244 '2940 .2957 .2974 .2990 .3007 .3024 .3(40 .3057, .3074 .3090 72°
18° .3090 .3107 .3123 .3140 .3156 .3173 .3190 ..3206 3223 .4239 .3256 71°
19° .3256 .3272 .3289 .3305 .3322 .3338 3355 .3371 .3387 .3404 .3420 70°

200 .3420 .3437 .3453 .3469 .3486 .3502 3518 73535 .3551 .3567 .3584 880
21° .3584 .360p .3616 .3633 .3649 .3665 .3681 .3697 .3714 .3730 .3746 680
22° .3746 .37a, .3778 .3795 .3811 .3827 .3843 3859 .3875 .3891 .3907 870
23° .3907 .3923 .3939 .3955 3971 .3987 4003 4019 4035 .4051 .4067 68°
240 .4067 .4083 .4099 .4115 4131 .4147 .4163 4179 4195 .4210 .4226 85°

25° .4226 .4242 4258 .4274 4289 .4305 .4321 .4337 4352 .4368 4384 84°
280 .4384 .4399 .4415 4431 .4446 .4462 4478 .4493 .450( .4524 .4540 83°
27° .4540 .4055 .4571 :4586 .4602 4617 4633 4648 .4664 .4679 .4695 820
28° .4695 .4710 .4726 4741 .4756 .4772 4787 4802 4818 4833 .4848 81°
29° .4848 .4863 .4879 .4894 .4909 .4924 .4939. .4955 .4970 .49145 5000 800

30° .5000 .5015 .5030 .5045 .5060 .5075 .5090 .5105 .5120 .5153 590

31° 5150 .5165 .5180 .5195 .5210 .522: 52421 5255 .5270 .5284 5299 590

32° :5314 .5329 .5344 .5358 .537.) 5388 .5402 .5417 .5432 .5446 57°
330 .5461 .5476 .5490 .5305 .5519 5534 5548 .5563 .5577 .5592 58°
34°1 92 .56 .1021 .5635 .56506 .5664

. .
.5678 .5693 .5707 .5721 .5736

$5° 5746 : Su .5764 .5779 .5793 .5807 .5821 5835 .5850 .5864 .5878 54°
38° .58'8 .5906 .5920 .5934 .5948 .5962 :5976 .5990 .6004 .6018 53°r ,6018 2 .6046 .6064 .6074 .6088 .6101 .6115 .6129 .6143 .6157 52°
us° .6157 .6170 .6184 .6198 .6211 .6225 .6239 6252 .6266 .6280 6293 51°
39° .6293 .6,307 .6320 .6334 :6347 .6361 .6374 6388 .6401 .6414 .6428 50°

40° .6428 .6441 .6455 .6468 .6481 .6494 .6508 .6521 .6534 .6547 .6561 490
410 .6564 .6574 .6587 .6600 .6613 .6626 .6639 .6652 .6665 .6678 .6691 48°
420 .6691 .6704 .6717 .6730 .6743 .6756 .6769 .6782 .6794 .6807 .6820 470
43° 6820,_ .6833 .6845 .6858 6871 .6884 .68% .6909 6921 .6934 .6947 460
44° .6947 --- .6972 .6984 .6997 .7009! ,7022 .7034 .7046 7059 .7071 450

.9 .7 .8 .5 .4 .3 .2 .1 .0

cos (road tral



45"
486'
47"
48"
49."

so'
51"
52

.7071

.7193

.7314
.7431
.7547

,7660
.7771
.7M0

53" .7'486
154 8040

55" 8192
58 .0.00

57
58
59

so
81
82
83'
64,

sa'
ss
87
88

70
71
72
73
74

75
76
77
78
79

80'
81
82
83"
84

85-
88
87
88
83'

44387

8480
8572

8(4,0
.87-141

8829
84114/

8988

.91)(43

413;
'03
772.

933N

43.'7

9;1 I

lull 3

(0);q
"793
"744
9781
9814,

'0448
.4877
9403
4925
994

2

.9481)

.9994

.99(M

- 351 -

Table of Trigonometric Ftextions

.1 .2 .3 .4 .8 .6 .7 .8 .9

.7083
.7206

..7325
.7443
.7559

.7672

.7782

.7891

.7997

.81011

8202
831111

83%
,849t)
8581

434,1,41

8838
8918
8444;

.9070
9143
"212
9278
1,342

9410
44111
951r,
9;68
.4,17

kit 14

lin /7
"7414
"785
98 '11

94451

.4t4su
9905
9428
.9,147

.9977
.9487
.9995
9999

.9

.7096

.7218

.7337

.7455
7570

.7683
7793
,7902
.8(X17
8)11

8211
.8310
.8406
.8499
8594)

SON
8763
14846
8926
9003

4078
9150
epic?
9285
9348

"409
9400
9521
9573
'4,22

"004
9711
4751
9784
9823

(1854
.9882
994)7
9930
9949

9978
.444444

4495
.99(49

.8

.7108

.7230

.7349
.7466
.7581

.7694.
.7804
.7912
.8018
.8121

.8221_
.8326
8415
.8508
.8599

.8686
8771
8854
8934
9011

4085
9157
42);
9291
9354

9115
4472
9527
41578
44127

9(173
9715
9755
9792

982(

9857
9:485
9910
,44932

9951

.9966

.9979

.9989
99%
9999

.7

.7120
7242

.7361
.7478
.7593

.7705
7815
.7923
.8028
.8151

8231
.8329
.8425
.8317
.86t

.8:05
8780

884)2
.8942
9018

.9092
9164
111 732

.41 ,98

.931,1

.9421

.4478

.41532

'&5/43

%32

"672
9720
9759
47%
9$ 79

()Kb(
9888
(0)12
9934
.9952

.9%8

.9980
00141

99%
94/109

.6

sin (NW down)

.7133
.7254
.7373
.7490
.7604

.7716
7826
.7934
.8039
.8141

.8241

.8339

.8434

.852r,

.8616

.8704
.8788
.8870

9071,

.91tX)

.9171
.9239
.9304

IF.43t

9421;
9483
9537
.95t4A

.9t,81

.9724

.97(13

.97944
.9833

98413
_9890
.9914
.9931,
.9954

940
9981
91014 )

9997
1 000

.7145

.7266

.7385
.7501
.7615

;727
.7837
7944
8049
8151

.8251
.8348
.8443
.8536

.8625

.8712
87%
.8878
8957
.9033

.9107
9178
923;
4311
9373

'0432
'04810
10542
415443

9/141

h (St)

.9728
97(17
4/803
983(1

041)
/81/3

f0117
94)3S
9951,

'$071
9982
.9991
to N7

-11XX)
-

.7157
..7278
.73%
.7513
.7627

.7738

.7848
7955
.8059
.8161

.8261
,8358
.8453
.8;45
.8634

.8721

.8805
8886
8965
9041

.4114
9184
.9252
.9317
9379

(4438
9494

9;98
91)41)

'1732
9771)
.9801)
'0839

.98119
9895
4919
9944 I

9957

'0)72
9983
.9992
9997

000

.3

.7169

.7290

.7408

.7524

.7638

.7749

.7859
7965
.8070
.8171

.8271

.8368

.8462
8554
.8643

.8729
.8813
.889,
44973
9048

9121
9191
.9 759

.4323
.4385

9444
.9500
"553
44,03

It 14

973fi
9774
9810
9842

9871
9898
9921
0942
9959

44184
($493

9998
1.000

.2

.7181

.7302

.7420

.7536

.7649

.7760

.7869

.7976

.8080
.818)

8281
.8377
.8471
.8563
.8652

.8738
.8821
.844)2
8980
.4056

9128
.9198
92415
9330
9391

.9449
4,505
('558
4( los
'4)55

91,99
9741)
"778
9813
"845

'1874
9900
94423

94143
991,0

'$47.4
.9985
.9993
99914

1.01X I

.1

.7193

.7314
.7431
.7547
.7660

.7771

.7880

.74.416

RU90
.8192

.8290

.8387

.g480
8572
.8660

.8746
4.0419
89i0

9043

.9135
92(13
'&27 2
9331,

i1)7

'1455
"511
4/50
.44,13
44059

.97113)
974.1
9781
(0411)

.9848

9877
9903
4975
,($145

q9h2

44°
43°
42°
41°
40°

39°
380
37°

34°
33'
32-
31
30°

29°
28
27-
26)
25°

24
23
22'
21"
20'

19'
18'
17-
18-
15-

14
13'
12"
11"
10"

9'
9.
7
8 "
3 4

&7t) 4

9986 3
. 9'094 2

9998 .1-
1 0"

.0

ce (mad up)
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TRIGONOMETRIC FUNCTIONS FOR ANGLES IN RADIANS

.00
. 01

. 03

.04

.05

.06

.07

. 08

.05

Cos
.00000 1.00000
. 10000 0.99995
. 02000 .99980
. 03000 .99955

.03999 .99920

.04998 .99875

.05996 .99820

. 06994 .99755

:07991 .09680

.08988 .99595

. 09983 .90500

.10978 .99396

. 11971 . 09281

.12963 .991'),

.13954 .i(402',

. 15 .14944 .98877

16 15932

. 17 .10919 .P.")Th

.19 .17903

. 19 .1:00P;

.20
. 21

1.22

.23

.2f1114i,

. 2H23

.22790
23771)

.24740

.27CH
. 77 .26673

,2763(.,

29 .2(3595

.30

.31

33

.34

.35

.36

.37

.38

.39

. 32404

. 33349

34290
. 35227
.36162

. 37092

.38019

'0)7

..17001

-W

, 17 ih"/

'171 i4

'34

.9')233

.J4924

. 94604

.94275

. 93937

. 93590

.93233

.92866

.92491

Rad. sin Cos

.40
41

. 42

. 43

. 44

. 45

. 46

47

. 48

.49

. 30
.51

. 38942

. 39861

.40776

. 41687
. 42594

.43447

.44395

. 45289

.46178

. 47063

.70 .f,4422

.71 .65183

.72 .65938

. 73 .66687

.74 .67429

.75 .68164

.76 68892

.77 .69614
. 78 .70328
.79 .71035

. 92106

. 91712

. 91309
. 90897

. 90475

.90045
. 8%05
.89157
. 88b99
. 88233

.Ffih

.764144

.75910

. 75181

.74517

. 71847

.73169

.72484

.71791

. 71091

.70385

Rad. Sin Cos

.80 .71736 .69671

.81 .72429 .68950

.82 .73115 :682.22

.83 .73793 .67488

.84 .74464 .66746

.85 .75128 .65998

.86 .75784 .65244

.87 .76433 .64483

.88 .77074 .63715

.89 .77707 .62941

.90 .78333 .62161

.9! .78950 .61375

.92 .79560 .60582

.93 .8TI162 .59783

.04 .8075t, .58979

15 .81342 .58168
.91, .81919 .57352
.97 .82489 .56530

.03050 .55702

.99 .8'0,03 .54-869

1.00 .94147 .4030
1.01 .04683 .53186

1.,12 .85211 .52337

.0,', .85730 .51482

.04 .86240 .50622

.86742 .49757

1.6t .87236 .48887

1.0! .87720 .48012
;.0H .88196 .47133

,Hro,03 .46249

1.10 .89121 .45360

1.11 .89570 .44466

1,12 .900.10 .43568

1.13 .90441 .42666

1.14 90863 .41759

1.15 4.91276 .40849

1.1 ) 91680 .39934

1.17 92075 .39015

1.18 .92461 .38092

1.19 .92837 .37166.

Rad. Sin Cos

1.20 .93204 .36236

1.21 .93562 .35302

1.22 .93910 .34365

1.23 .94249 .33424

1.24 .94578 .32480

1.25 .94898 .311p2

1.26 .95209 .30582

1.27 .95510 .29628

1.28 .95802 .28672

1.29 96084 .27712

1.30 .96356 .26750

1.31 .96618 .25785

1.32 .96872 .24818

1.33 .97115 .23848

1.34 .97148 .22875

1.35 .97572 .21901

.36 .97786 .20924

1.37 .97991 .19945

1.38 .98185 .18964

1.39 .98370 .17981

1.40 .98545 .16997

1.41 .98710 .16010

1.42 .98865 .15023

1.43 .99010 .14033

.44 )111'} .11042

.45 .99271 .12050

1.46 .99387 .11057

1.47 .99492 .10063

1.48 .99588 .09067

1.49 .99674 .08071

i.50 .99749 .07074

1.51 .99815 .06076

1.52 .99871 .05077

1.53 .99917 .04079

1.54 .99953 .03079

1.55 .99978 .C12079

1.56 9994 .01080

1.57 1.00000 .0008G

1.58 .99996 -.00920

1..59 .99982 .01920


