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PREFACE

Are there basic needs in applied mathematics that are shared by
beginning college students in the social sciences, the natural sciences,
and technology? |

Several topics come to mind that pcint to an affirmative answer:
presenting and interpreting data, finding analytical expressions for
functions from graphs, heing familiar with the properties of elementary
functions, and being conversant with the language of calculus. By pro-
viding for these needs, we enable the students to overcome serious

ohstacles to the understanding of introductory texts in all \hese fields.

The intention of this text is to serve just this purpose.

The first five chapters devalop the skills needed for efficient
numerical calculations, emphasizing the consequences of the inherent
uncertainties of most numbers used in applications. The topics discussed
range from order-of-magnitude estimates through the theory and the use of
the slide rule to the fundamentals of the use of computers. (Although the
importance of the slide rule is declining because of the growing use of
calculators, an understanding of the ioqarithrﬁic scale is as important as
ever.)

The last five chapters examine the basic properties of the elemen-
tary functions, includincj their derivatives and integrals. Special emphasis
is placed on finding analytic expressions from graphical representation of
data.

The book has been written with an interactive mode of learning in
mind. It is suitabie for section work where short lectures, discussion of

text, and problems can be carried out as needed. Whenever we believed



that certain points are best made by having the students tackle them,
these points were included in the questions at the end of the section.
Thus, the questions form an integral part of the course. Many of the
questions can be approached in different ways and thereby present the
opportunity fcn; constructive discussion and a means for improving the
communic_ative skills of the students. There are relatively few drill
problems, Extra problems of this kind can easily be provided by the
instructor.

Because questions are placed after each section, the text may also
be used for individual study.

This book has its origin as the freshman mathematics course in
our Undergraduate Program for Physics-Chemistry Teachers that started
in 1970. However, since then it has also been used extensively by
students in other fields.

The principal contributors to the preliminary edition were Judson B.
Cross, Thomas J. Dillon, Jo Rita Jordan, George Lukas, Leonard T. Nelson,
Poul Thomsen, David B. Teague, and myself.

This book constitutes a far-reaching revision of the preliminary
edition, including much new meterial. The revision was done by Judson B,
Cross, Robin Esch, Romualdas Skvarcius, and myself.

The revision benefited from the feedback of the following professors a
who piloted the course: Leonard T, Nelson and Joseph Van Wie at South-
west Minnesota State College, Henry P. Guillotte at Rhcde Island College,
and Albert G. S.arling and David B. Teague at Western Carolina University.

The work was illustrated by George Fiigulietti and Myma S. Goldblat,
and produced by Benjamin T. R'chards. The bulk of the camera copy was
typed by Caroline E. Rucsell; the typing was completed by Lorraine Perrotta.

The developmen® of this book is ¢ upported by a grant from the National

Science Foundation. This financial support is gratefully acknowledged.

Uri Haber-Schaim
July 1975
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Chapter 1. PHYSICAL NUMBERS

1.1 Mathematical and Physical Numbers; Uncertainty

Numbers mean ditferent things in different contexts. In mathematics
a number is ordinarily considered to be exact. If we refer to the number 2,
we usually mean exactly 2, neither 1.99 nor 2.01, but 2.000..... carried to
as many zeros as you wish to put down. Similarly, in mathematics 3.17
means 3.17000..... . To put it differently, a number in mathematics is
represented by a point on the number line.

The situation is quite different when it comes to numbers which are
the result of measurements. Most measurements are inexact to some extert,
How inexact depends on the type and quality of the measuring instrument,
and on the skill of the experimenter. The handling of such inexact numbers ‘
is a special concern of applied mathematics.

Generally, quantities such as masc, length, time, temperature, etc.,
are found with some sort of measuring instrument. The numerical answer is
read on a scale. As a very simple example consider the measurement of the
width of a piece of paper with a ruler marked in tenths of a centimeter, as

shown in Fig. 1l.1.

HUTH HH m!ilm HHIUH m‘l H!;HHVU ;mmm me ml{mqnn ml HH]H Tm lmtﬂil IHL}H ﬂ! llm mu
METRIC ! 5 L

Fig. 1.1
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If you showed the drawing to several people and asked them to read
the ruler as carefully as possible, you would probabfy get a variety of an-

swers clustered around 5.43 cm. A list of answers might be

5.41 5.44
5.43 5.47
5.42

The last entry is obviously wrong, because the piece of paper clearly

does not extend even as far as the middle of the interval between 5.4 and 5.5
on the ruler. It would be hard to argue convincingly that any one of the other
answers is righi and all the others wrong. The reason Is that since the ruler
can be read to no closer tian about 0.02 cm, none of the answers are clearly
incorrect except the last. It is most likely that the true value of the width of
the paper lies close to the middle of the interval between 5.41 and 5.45.
Expressing it differently, we can say that from the measurements the width x
of the paper lies in the interval '

5.41 <x < 5.45
The usual shorthand for this is

x=5.43 +0.02
When we state x = 5.43 +0.02, we do not mean that 5.43 is the "true value”
for the width of the piece of paper. All we mean is that the true value Is
somewhere in that interval. The interval half-width 0.02 is called the un-
certainty in the number. Notice that it has a reasonable value — about how

closely the ruler can be read. A number like this, which has an uncertainty

. resulting from measureme:t, is called a physical number. A physical aumber

corresponds to an interval on the number line, and not tc a point as woes a

mathematical number (Fig. 1.2).

0.3 0.3
}‘-——*———.-{
i 4 } ++
: 1 , !
~1 0 ! .6 2

Fig. 1.2 The ohysical number ‘1.5 +0.3 is represented by an interval on the
number line. It is shown in this figure by ine heavy section of the number
line between 1 and 2.

10



Notice also that the uncertainty 0.02 is only a crude estimate, not
a precise figure. It probably slightly overestimates the error, as we would
wish to do In careful work. Thus the ends of the interval 5.41 < x < 5.45
are actually somewhat "fuzzy" and we are pretty sure that the true value of
x does not lie exactly at either end of the interval.

It would be nonsense, in this example, to claim an uncertainty of
0.018, or 0.023. We have no basis for claiming thaf much precision. We
can, however, see that 0.02 {s adequate while 0.01 may not be, and there-
fore state the uncertainty as 0.02 cm.

Some physical numbers are the result not of a single measurement,
but of much scientific work. Examples are the speed of light,
(2.997925 +0.000002) X 1010 cm/sec, and the mass of an electron,
(9.1090 +0.0002) x 10-28 g, Much effort has gone into obtaining such accu-

rate values — {.e., making the uncertainties this small.
L 9

- Questions
1. Figure 1.3 shows an ammeter scale. 4 6
() Read it as precisely as you can. ‘i\\“\\m\\m'hm’uu/ ,,,/;:'/
(b) List your reading together with \\\6\\\ Amperes "f'/
those of all your classmates. Are any oc.
of the readings okviously wrong ? reg. 1.3

{c) Decide on a physical number which plausibly represents the ag-
gregate of readings, expressing it both as an interval and in "+" form.
(d) Compare your answers to {c) with others. |

2, There are really two sources of error in reading ammeters: the read-
ing error, as discussed in Question 1, and the inaccuracy inherent
in the mstmment. The latter is called a systematic error. Typlcally
the manufacturer might certify the accuracy of ar. ammeter as 2 per
cent of full-scale value. Taking this into consideration, what is the
current measurement shown in Fig., 1.37? Express this physical num-

—

biar in both interval and “+" form.

11
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3. TFigure 1.4 shows the angular position of a pointer.
Repeat the steps of Question 1 for this pointer.

4. Write the following physical numbers in "+" form.
(@) 4.4 t0 4.6 (c) 4.432 to 4.451
(b) -2.1to-2.0 (d) -1 to +7

5. Draw the section of the number line between 1 and 7.

(d) indicate the following physical numbers on it:
3.9+40.2, 3,.0+0.4, 5.0 +0.3, 2.9 +0.1,

Fig. 1.4

3.1+0.2

(b) Which of the physical numbers above could possibly result from

the measurement of the same object?

0. Are the "one" and "60" in the statement "one hour equals 60 minutes®”

mathematical or physical numbers?

1.2 Significant Digits

Writing a physical number with its uncertainty is good practice, but

i{s sometimes cumbersome and unnecessary. For example, it may be enough

for us to know that a physical number is 35 without being concerned whether

the uncertainty is +1 or +2 or even #3. It is general practice in such cases

to state the number simply as 35, with the implied understanding that the

last digit may be off either way by at most a few units. If the uncertainty

happens to be +0.1 or +0.3, we can convey the approximate uncertainty with-

out spelling it out, by expressing the number as 35.0. The fact that we have

added another digit implies that the uncertainty is definitely less than +1,

but probably more than +0.1. To take another example, the physical number

35.04 indicates that the uncertainty is less than +0.1 but more than +0.01.

Meaningless digits must be omitted in representing physlcal‘numbersv

in this way. The physical number 21.34 +0,25 has an uncertainty in the third

digit. Writing tﬁis physiral number as 21.34 is deceptive, because this im-

plies only an uncertainty in the fourth digit — an accuracy about ten times as

great as the number actually hac. This physical number should be written as

21.3. Similarly, writing 35.0 is deceptive if the uncertainty s as large as 1.

12
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-’ If a phy s_i.cal number is writtenYm. Stly, a’ll digits are significant,
except for thof&zems which serve only as place- _holders for the dectmal
point. For example, the physical number 35.18 has four significant digits;
35.0 has three (provided the number is coirectly written and the zero really
means plus-or-minus a few 0.1's), 35.00 has four, 0.0018 has two, the
zeros to the left serving only as place-holders. Note that eaeh of the nuin-
bers 2.4 cm, 0.024 m (meters), and 0.00C024 km (kilometers), has two sig-
nifxpant digits. This last trio demonstrates why place-holder zeros are not
cot;nted as significant. | '

A prob’i;m*?arlses with numbers like 10,500 kilométers.. Are the last
two zeros significant digits, or are they just place—rplgers? For example,
10,500 kilometers is the distance from Quito, Ecuador, to Brazzaville, Congo.
There is no certain way of knowing from this added information if the last
two digits are significant, although the fact that they are both zero makes
one suspact that they are not. It happens in this case that they are ind\eed
not significant, since the distance was found by making measurements on \

a map so small that the distance could not be measured to better than about ‘ ~ -
+100 kilometers.

It is good practice to use powere—ef——ten notation to show the number
of significant figures of such numbers. since 10l =10, 102 = 100, 103 = 1000,
etc. we can write the number 10,500 £100 as 1.05 X 104 or 10,5 x 103, or B 7
105 x 102. In each of the three representations we see that there are three
significant digits; and the power-of-ten acts as a decimal locater. Thus it
would be good practice to write]the Quito - Brazzaville distance in one of

these forms, to indicate clearly that it is known to only about 100 kilometers

accuracy. .

1o
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Questions

1. Given the following physical numbers, express them in sigrilftcént-

digits form.

(@) 17.3 0.1 (d) 17.3 45
(b) 17.3 40.001 (€) 16.6+1
(¢) 17.3 +0.5 (f) 16.6+0.2
2. To how many significant digits is each of the following numbers
given?
(@) 67.03 (e) 4.700
(b) 145.00 (f) 2.75x 105
(c) 241.75 () 2.750 X 105
(d)- 0.03001 (h) 5000
3. ‘;Given the following physical numbers in significant-digits form,
give plausible equivalents in "+" form.
(@ 8.3 ‘e) 830.0
() 0.00083 | (f) 2.4cm
() 0.0008300 (@) 0.024 m
(d) 830 (h) 2.75%109m
4, Use a ceniimeter scale to measure the long dimension of this pége

in your book and give the result in
(@) "+" form.
(b) significant-digits form.

5. In each of the following, a physical number {s given without any in-
dication of its uncertainty. Very rcughly, what would you guess the
uncertainty to be ? ‘

] (@) Bostocn, 7 miles (highwé’y sign).

(b) Centerville, pop. 1271 (sign obviously several years old).

(c) Yesterday's baseball a@ance 10,372 (newspaper article).

(d) 20,000 attend mass rally (newspaper headiine).

‘(e) 7.4 inches of rainfall in recent storm (weather bureau report).

(f) 450 calories per serving of aprole pie (from an article on dieting).
(g) ' 2 pounds of coffee (from a grocery store).

(h) 39.37 inches in a meter (from a handbook).

14




1.3 Addition and Subtraction of Physical Numbers

The addition of the two mathematical numbers 7.9 and 5.6 obviously
gi\}es 13.5. Now consider the addition of 7.9 10.2 grams of saltto 5.6 :£0.1
grams of salt. The result could be as large as (7.2+ 0.2) + (5.6 + 0.1) -

(7.9 + 5.6) + (0.2 +0.1) = 13.5-- 0.3 g, or it could be as small as
(7.9 - 0.2) + (5.6 - 0..)=(7.9+5.6) - (0.2 + 0.1)=15.5-0.3g. The
result is thus 13.5 9.3 g3; we role Ihaw e uncertainties have added. °

By considering in this fashion the largest and smallest values the

result could have, we find the corresponding general rulq: 4
(A +a) + (B +b) = (A+ B) £(a + b) +1)

Similarly, if 5.6 +0.1 g of salt is taken away from/7.9 £0.2 g the

amouht remaining could be as large as (7.9 + 0.2) - (5.6 - 0.1) ={7.9 ~ 5.6)
4+ (0.2+0.1=2.3+4+0.3g, and coulu’be as small as (7.9-0.2) - (5.6+0.1)

= (7.2; ~5.5) - (0.2+0.1)=2.3-0.3g. The difference of these two physi-
cal numbers is thus 2.3 40.3 g, and we see that uncertainties add in subtrac-
tion as well as in addition. (Since subtraction is equivalent to addition of
the negative, we could have dedvced this from our eatlier formula for addition.)
We have thus

(A+a) - (B+h) = (A - B) +(a+b) (2)

This completes the formulation of the rules for addition and subtrac-
tion of physical numbers. However, in practice there are special cases
worth considering. Suppose first that one of the uncentainties is much smallear

‘ than the other — say b is much smaller than a. This may be written b << a,
(Note that by convention a and b are both positiva.) Then the uncertainty may
be taken simply as a. For example, consider the sum (5.3+0.2) + (3.418 +0.003).
It would be rather silly to write the result as 8.718 +0.203, since the first

number is known only to within 0.2, an additional uncertainty of 0.003 is
meaningless. We would nrdinarily write the uncertainty as simply +0.2. If
the result is written in significant-digits form it should be written 8.7, not
8.718 nor even 8.72. Note two things that have happened: the larger uncer-
tainty has "swampéd“ the smaller, and some significant digits in the more

accurate number have lost their significance in the sum.,




In the example;"{me have been discussing, to {llustrate the b.<< a
situation, A and B h d comparable magnitudes. More usually whenb << a
we have alsc iBl<<TA}. Consider ‘or example (5.31 +0.03)+(0.0128 £0.0001}.
The result is 5.3 f-j—_0.0B, and one must accept the necessity of throwing away
the last two digtts of B, which have become insignificant in the sum. Much
as one might wish to write the result as 5.3226, this would be quite mislead-
ing.

In extreme cases B can be totally "swamped" by the uncertéinty inA.
Consider for example the addition of the physical numbers 3.7 £0.1 and
0.016 +0.002. This mighkt arise in the following way: The thickness of a
steel plate is measured with a ruler §nd found to be 3.7 £0.1 mm. The
thickness of aluminum foil is found with a micrometer to be 0.016 +0.002 mm.
Then the plate and the foil are pressed together, ard the combined thickness
is measured with a ruler. The result of this final measurement would probably
be 3.7 +0.1, the same as the first measurement.

The point 1s that the uncertainty in the steel plate is already about
six times the thickness of the aluminum-foil. Thus, adding the foil to the
plate does not measurably (uning a ruler) increase its thickness or the uncer-
tainty of the measurement.

Next, irres%:ective of the relative sizes of the uncertaintles, let us
consider the effects of the relative sizes of A and B. If these are of nearly
the same size, nothing remarkable happens whgﬂn they are added; however a
dramatic loss in significant digits can occur wi\en one is subtracted from the
other, Thus 29.27 - 29.18 = 0.09 is a calculation in which three significant
digits are lost.

In general terms, in the subtiaction (A +a) - (B +b) = (A~ B) +(a+b) it
can happen that (A - B) has a ‘magnitude much less than either A or _B_, and
perhaps comparable with or even less than the uncertainty (@ + b). . It is im-
portant to recognize this loss of significant digits when finding the difference
of nearly equal numbers. _

We may summarize our discussion in three "mles‘-of-thumb" for the

addition and subtraction of physical numbers:

1¢
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1. When uncertainties differ widely, the larger one governs.

2. Don't save digits which have become insignificant.

3. Be on guard to detect the loss in significénf digits which occurs
when taking the difference of nearly equal numberé. and if possible avoid the

necessity of such a calculation.

Questions )
1. Add each of the following pairs of physical numbers.

(@) (2.71 +0.03) + (0.01 +0.01)
(b) (47.8 £0.1) + (1000 +1)
(c) (0.007 +0.001) + (0.0003 +0.0001)
(d (63 1) + (2 £0.5)
(e) (8 +1) + (11 #3) + (14 +2)
@ (3.740.1)+ 10 X (0.016 +0.002)
(Part (£} corresponds to adding ten sheets of aluminum foil to the -
steel plate discussed in the text.)
2. Calculate the answer to each of the following operations involving

physical numbers.

(@) 12.5+ 26.8 ' () 12.5+ 26.8+ 1,32
(b) 12.5+2.68 (f) 2.5% 102 -1.8x103
(c) 12.5+ 0.0268  (g) 1.01x103-9,8x 10%
(@) 26.8+12.5+ 1.32 (h) 6.31 %105+ 2.12 x 102
3. One technique for weighing an animal is to weigh oneself on a bath-

room scale while *>lding the animal, and while not. Explain why
this technique works better for a large dog than for a small kitten.
4. Pediatricians sometimes advise new parents not to weigh their baby

too frequently. Can you think of a reason for this advice?
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1.4 Computations with Physical Numbers . . ‘

Wishing to measure the density of a fluid, you determine that a vol-

ume of 151 +2 cmd has a mass of 212.1 40.5 g. Nominally the density is
then 212.1/151 g/cm3, but what is the uncertainty ? o

Thig brings up the difficult but important ciuestion of carrying out cal-
culations with physical numbers beyond additions and subtractions. To drew
conclusions from experiments, some calculation is usually required, and it
is important to know reliably the uncertainty in the result. In the present ex-
ample the most obvious approach 1s to calculate the smallest and largest val-
ues the result can have. The smallest possible value, obtained by making
the numerator as small and the denominator as large as possible, is
211.6/153 = 1,383 g/cm3. By simila;reasoning the largest possible value
is 212.6,/149 = 1.427 g/cm3. Thus the answer lies in an interval of length
1.427 - 1.383 = 0.044 and the center of the interval is -;-(1.4274-1.383) =
1.105. Thus the density would be given as 1.405 £0.022 g/cm3.

It is quite all right to state this result as 1.40 +0:.03, enlarging the
interval slightly in order to simplify the answer, if one is not concemed with
obtaining the closest passible éstimate. It is, however, incorrect and mis-
leading to state the result as simply 1.405 g/’cm3 without stating the uncer-
tainty; this would in;ply four significant digits of accuracy, whereas we
really have at best only three.

Sometimes this amount of care 1s not needed in computations; we may
be satisfied with a general indication of the uncertaim;'y of a result, rather
than a strictly correct interval. In this case significant-digit form may suf-
fice {or physical numbers entering the calculation, and it may be §ossible to
ir;‘fer how many digits should be kept in the final result, so as neither to sac-
rifice truly significant information by quoting too few digits, nor to imply
more inférmation than is actually present by quoting too many. In general,
one rule of thumb should be kept tn mind: it is unusual for the number of
significant digits to increase during a calculation.

When more care is required, i.e., whén one wants really to kngw the

intarval in which the result of a calculation Lies, perhaps the best general

18
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advice is: (1) Work with the numbers in interval form, not stgmﬂcanﬁ;digit
form, as the latter is too crude for this purpose; (2) Calculate the smallest
and the largest value the answer could have, as in the example we gave; |
(3) Be careful not to introduce additional errors by'car'rying too few ‘places
in the calculation. o '

This last point is known as carrying "guard digits" to prevent round-
off error. Round-off error, as its name suggests, is the error incurred when
a .dgcimal is truncated or rounded, as will continually occur in a computation
of any length. While it is misleading to state a result to more apparent sig-
nificant digits than really known, there is absolutely nothing wrong with
carrying extra digits in the intermediate stages of a calculation, and in fact
this is recommended. This occurs very commonly. when the computations are
done by a computer.

The pmduct.of two physical numbers occurs so often that it deserves
special consideration. Suppose we wish to compute C +c = (A +a) (B +b), and
assume that A and B are positive with a <A and b < B. Then the smallest and
largest values of the product are (A - a) (B - b) and (A + a) (B+b); C is the
average of these and 2c¢ the difference, so that

(A +a) (B 4b) = C +c = [AB + ab] +[aB + bA] (3)
Frequently the term ab in Equation (3) will be so small compared to AB that it
can be negleoted. Thus, the uncertainty in AB equals (aB + bA); the uncer-
tainty 1n A times B, plus the uncertainty in B times A.-
We shall return to the matter of the behavior of uncertainties in mul-

tiplication and division {n Chapter 3.

1
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Questions
| 1, Using the measurad values
x=1,1+0.1
y=0.5+40.1
252.0+0.2
compute carefully each of the following physical numbers:
(@) xZ+y (b) 5—:;21 (c) -—”;‘ * 3

A crude estimate of the mean radiﬁs of the earth is 6400 +100 km.

(@) What is the resulting value of its volume? ‘
(b) Gliven that the earth's mass ts €.0 +0.1 x 1027 g, calculate its
mean density in-g/cm3. |
The piece of paper in Fig. 1.1 was determined to have a width of

5.43 £0.02 cm. Suppose its length is measured to be 6.44 +0.02 cm,
Assuming that its shape is perfectly rectangular, calculate its area as
a physical number.

By plotting A and A + a horizontally, and B and B + b vertically, inter-
pret Equation (3) graphically in terms of the areas of various rec-

tangles.

How should Equation {3) and the accompanying discussion be modified

if one of the factors, say A, is negative?

Many calculations involve both mathematical and physical numbers.
Suppose the radius r of a circle {s £.0 £0.1 cm. Compute lts circum-~
ference L = 2nr. Are the numbers 2 and » physical or mathematical
numbers ? To how many decimal places need = be expressed in this |
calculation?

If a is much smaller than the magnitude of A, show that the magnitude

: a
of the uncertainty in the reciprocal of A ta {s approximately Kz- )

L]
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The power, in watts, consumed by an elec&ic circuit is the product
of voltage E and current I, in volts and amperes respectively. Sup-
pose voltage is\ measured by a voltmeter accurate to +2 volts, and
current by an ammetef good to +0.03 amp. What power corresponds
to each of the following pairs of nominal readings? (Be sure to give
your answer as physical numbers.) .

(@) E=110, 1=1.,25 (c) E=2, I=5,51

() E=115, I=0.04 (@ E=2, 1=0.04

Use a centimeter scale to find the araa of the cover of this book in
(@) ~mZ (square centimeters).

(b) mmz‘ (square millimeters).

Suppose that the base of a certain Egyptian pyramid is found upon
measurement to be very nearly a square 100 +2 meters on a side.
The height ‘s measured to be 100 +5 meters. A piece of stone taxen
from It having a mass of 357.5 £0.2 grams is found to displace 100 +3

cubic centimeters of water. What is the total mass of the pyramid?



Chapter 2. COMPARING NUMBERS AND SETS OF NUMBERS

2.1 Comparing Numbears by Ordering and by Difference

In Egyptian mythology the souls of the dead were welghed in a bal-
ance against an ’ostrich feather. Pc':r salvation It was cruclal thét the soul
be heavier than the feather—but it didn"t matter by how much. This is an
example of comparison by ordering, where the only information required is
which of two numbers s larger.

More down-to-earth examples where numbers are compared by simple
ordering are readily found: Furniture movers need cnly to know which is
larger, the width of a door or the width of a plano; in order to decide wheth-
er the piano can be taken by that route. In selecting a portion of food one
mtghé pick the largest if one i{s hungry; or the smallest if on a diet. Ina
track meet the broad-jump event is won by the longest jump, no matter how
little this jump exceeds the second best. |

Sometimes, however, just ordering numbers is not enough to tell us
what we wish to know. For example, in following a baby's growth, one is
probably interested not only .n the fact that the baby's welght is greater
than it was a year ago, but in how much greater. As another example, sup-
pose you were deciding from which of two dealers to buy a certain automo-
bile. If one price was substantially lower than the other (say, several hun-~
dred dollars) you would probably choose that one. But if the prices were
nearly the same, the decision might be made on othér grounds —for example,
convenience"and reliabiitty of servi_ce. Here we clearly must know not only
which is cheaper but also by how much.

To make this sort of comparison we calculate the difference between
the two quantities by subtracting one from the other. Of course, sincea-b
does not equal b - a, we have to decide which difference to use. It is par~
ticularly important to be consistent as to which number is subtracted when
we describe a change in a given quantity. Consider the change in hourly

<R
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temperature readings or d@ily stock-market quotations. One always gives
the change in going from the earlier to thé later reading, and therefore sub-
tracts the earlier reading from the later one. A change in temperature of
50C means that the tamperature increased 5°C. A change of -3 points on
the stock market means in everyday language that the market dropped by
three points.

Expressing the change in a quantity by the later value minus the
earlier is so common that it is designated by a special symbol, the Greek
capital letter A (delta). For example, if t represents temperature, At stands
for the change in temperature, i.e., later temperature minus earlier. Since
At can be positive or negaﬂve it can be used to express both increases and
decreases.

If two quantities are to be compared by taking their difference, they
must have the same units, or be converted into the same units. For example,
there is no sense in subtracting one inch from three feet to get two as the
difference in length. One can get the difference in length by converting
three feet to 36 inches, and subtracting one inch ffom that. The resulting
length difference of 35 inches doés make sense.

In finding the difference between two physiz:al numbers, it is impor-
tant to keep in mind the warning in the previous cha- ter about possible loss
of significant digits. Consider, for examp'e, {5.46 +0.02)cm - {5.43 £0.02)cm,
wt.ich might bé the difference in the widths of two pieces of paper. The re-
sult, 0.03 £0.04 cm, is inconclusive in telling which piece is wider. Note
that whereas the original valges -were good to three ‘'significant digits, the

difference hardly has one significant digit of accuracy.
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Questions
1. In which of the following situations would you be satisfied with a

comparison by ordering? In which by taklr{g a difference? In which
would neither forin of comparison be useful ? R

(a) Decidl'ng whether a book will fit into a certain shelf of a book-
case. |

(b) Choosing among cabinets to fit into a kitchen, making as cluse
a fit as possible.

(c) Deciding whether your reducing diet i{s going well.

(d) Describing the height gain of a child over a one-year period.

(e) Selecting the baseball player with the highest batting average.
(f) Deciding which of two baseball players, with known batting
averages, to hire fo‘r a team.

Suppose that Consumers Research measured the following gas mile-
age figures for six sample new cars:

(@) 13.7 (miles per gallon) (d 11.9

() 12.8 (e) 13.9

() 14.1 (f 13.2

Which model performs best? From these data, does it appear that gas
mileage will be an important criterion in choosing which model to
buy? Make up a hypothetical new set of data which would change
yous answer to this problem. ‘

Table 2.1 gives the rate of unemployment in the United States, as
the number of unemployed per 100 workers, for the years 1963 through
1971. ”

(a) When was uneniploymerit per 100 workers greatest?

(b) When was it least? '

{c) What kind of comparison did you use in deciding on your answers
to (a) and (b)?

24
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TABLE 2.1
Unemployed Change in
Year _perlo0 Unemployment
1963 5.7
1964 5.2 T
1565 4.5 -
1966 3.8 e
1967 3.8 T
1968 3.6 -
1969 ' 3.5 - \
1970 4.9 T
1971 5.9 -
4. (a) Fill in the third column of Table 2.1 with the change in the un~-

.employment rate per 100 workeis between each two consecutive years.
(b) Between which two consecutive years did imemployment in-

crease most rapidly ? Decrease most rapidly?

5. Give an example of a comparison of two nearly equal physical numbers

where almost all significant digits are lost by taking the difference.

2.2 Comparing Numbers by Ratio

Often numbers are compared by stating how\ many .times one is larger

than the other, rather than by how much they differ. For example, a 100 cm
rod ts 50 times longer than a 2.0 cm pleée of chalk, though the difference
between them is 98 cm. To find how many times a is larger than b, we cal-
culate the ratio of a to b, 1.e., we divide a by b. Like subtraction, division
is not commutative: fg-does not equal %, and thus one must be careful which
one uses. If we speak of the ratio ot 3 to b, we mean %. The ratio E on the
other hand, is the ratioof bto a. - o w

If two quantities are to be compared by finding their ratio, they must
be expressed in the same units, as is the case when two quantities are com-

pared by taking their difference. If they are given in different units, one of
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them has to be converted to the units of the other. Consider the following
example: It takes one commuter 1 hour and 12 minutes to commute to-work;
another commuter gete to work in 27 minutes. How many times longer does
it take the first person to get to work than it takes the second person?

First, converting hours into minutes, 1 hour = 60 minutes, and the tirst man
72 min.
27 min.

takes 60 + 12 minutes = 72 minutes. The ratio ylelds = 2.7 times
longer.

In the last example it would also make sense to compare the times it
takes the commuters to get to work in terms of difference: It takes the first
72 minutes - 27 minutes = 45 minutes longer. However, if it takes an air~
plane 20 minutes and a cyclist needs 40‘1:2 hours to cover a given distance,

the difference in times would be about 40 hours. This would also be true if
' 40 X 60 min.
20 min.
= 80 in the other, a2 significant differ-

it took the airplane 30 minutes. A comparison by ratio shows

40 X 60 min.
30 min.

ence; here the ratio carries information which the difference does not.

= 120 in one case and

As 1n comparing physical numbers by difference, ~shen comparing
them by finding their ratio we must pay attention to significant digits. For

example, the ratio of the lengths of two nails, one’5.52 cm long and the
5.52 cm ‘

other 2.3 cm,is 5.3 cm

= 2.4, a physical number having only two signifi-

cant dlgits.
/ N The idea of order of magnitude is essentially related to comparing

numbers by ratio. It is particularly useful in discussing very large or very

small quantities. If the ratio g— of two positive numbers @ and b is about 1
(say, between L and 2), we say that a and b are of the same order of mag-

2
nitude. If a is about 10 times b (or between 5 and 20 times), it is said to

be one order of magnitude larger than g; If the ratio is about 100 = 102, the
numbers differ by two.orders of magnitude.

To illustrate the usefulness of orders of magnitude, we 'show in
Table 2.2 the masses of the sun and some of its planets measured in units -

of earth mass.

- 20‘ A
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- TABLE 2.2

Sun 3,3x105 . Mars 1.1 x 10-1
Mercury 5.5 % 10-2 Jupiter - 3.1~ 102
Venus 0.81 Satumn 0.94 x 102
Earth 1.00 Uranus 1.4 x10
Moon 1.2 x 10~2 Neptune 1.7 x10

Clearly, the masses of Earth and Venus ai2 of the same\order of magnitude,
that of Mars being one order of rﬁagnitude lower aixd Sat two orders of
magnitude higher.

We see from Table 2.2 that Jupiter's mass is between two and three
orders of magnitude larcer than Earth's. Here we are in a gray area; the two
do not differ by two orders of magnitude, nor do they differ by three orders.
The idea of order of magnitude is thus highly approximate. |

Frequently this lack of precision, or "fuzziness" in the idea of or-
der of magnitude, is not at all a disadvantage. On the contrary, it can be
just what we need to express a valne which is fuzzy by nature. Consider,

for example, the question of how long man, homo sapliens that is, has

existed on earth. Anthropologists and archeologists differ in their interpre-
tation of the very fragmentary evidence which has been found, and more-
over (at least according to the bulk of scientific opinion) tt« evolution of
ma‘n was probably a gradual process, in which no precise transition point
can be convincingly demonstrated. To séy that man's tenure on earth has
been of the order of magnitude of one million years expresses our state of
knowledge of this value well; the.vames two million and 500, 000 years are

not ruled out, as in fact they should not be.

Questions

1. If a is twice as big as b, what can you say about the ratio of b to
a? About the ratioof ato b? |
2. If ais pigger than b, and ¢ is bigger than d, what can you say about

the ratio of a to b, as compared to the ratio of ¢ to da?



If a ts biggerthan b and b is bigger than ¢, and all these numbars
are positive, what can you say about the ratio of a to b, as com-
pared to the ratio of a to ¢c? What can you say if all the numbers
are negative? - |

The ac;es of two brothers have a constant difference. What happens
to the ratio of ‘gtélr ages as they grow older?

e

In which of the following situations do ratios provide the best iorm
of comparison? In which would taking the difference between the
two MItles be more meaningful ? In which would you merely use

| ordering ?

(a) The sizes of two armies engaged in battie.

(b) The welights of two opposing foot.béll linemen.

(c) The sizes of two families.

(d) The altitude of én airplane and the height of a mountain over
which it is about to fly.

Brand A beer claims to have 21 million bubbles in a bottle, to

Brand X's 20 million. Compared by differ§nce, this is a million bub-
bles more for Brand A; compared by ratio, Brand A has 1.05 times as
many bubbles as Brand X. Which comparison do y'oﬁ’/think Brand A .
will put into its advertising (assuming that bubbles are a good thing) ?
Why ? Which ts\t'he most meaningful mode of comparison in this case?
Brand B cigarettes claim to have two micrograms of tar and njcotine

in each cigarette to Brand Y's three micrograms. (A microgram i§ a ,
millionth of a gram.) Give the comparisons by difference andfatio,

and answer the same questions as for Brand A beer in the pré(:edlng
questicvn, | |
Advertising aﬁd pubilc relations provide many examples of pms qf

comparison. Wh¥? Find two or three examples cf numerical compar-:@

)
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9. A large meteorite has @ mass of 5 X 104 xilograms. The earth has a
mass of 5.983 X 1021 metric tons. '(One metric ton is 1,060 Kkilo-
grams.) Wha. is the ratio of the mass of this meteorite to the mass
of the earth? How many orders df megnitude larger is the earth's
mass than the mass of the meteorite ? |

10. Suppose that in the two quadratics

P=a; +ax+ a3x2

Q = b, + byx + byx?
the coefficients a,, a5, a3, by, by, §nd by all have order of mag-
nitude 1. ‘
(@) If x has order of magnitude 1)-8, what are the orders of magni-
tude of P, Q, PQ, and :P) ? Write approximations for these four quan-
tities.
(b) Answer the question of part (a) if x has order of magnitude 108,

2. 3' The Fractional Difference: Per Cent

K\\Euppose that in six months a baby's weight increased from 15 1b to
25 Tb and the weight of a boy increased from 60 1b to 70 lb. In both cases
there was a change in weight of 10 lb, yet from a practical point of view: the
two changes are quite differént: for the baby it means new clothes, but for
the boy it pmhabt’y/does not. This is true because the change in weight of

the baby is a much larger fract{on of its original weight, ﬁfs—lé = 0.67,

whereas in the casé of the boy E—-&)—-@ = 0,17. This method of comparison
has sam'ethin'g in common with both the preceding methods. The numerator
Aw = 25 - 15 is the difference between the baby's earlier and later welights,
"i.e., his change in weight; the denominator, 15, is the weight he started

out with. The entire expmssion‘%w =23 1'515

is the ratio of the change in

weight to the original weight.

The quantity 2 ; 3

prd\vides a means of judging whether a difference is large or small, compared

is called the fractional or relative difference. It

with an orlgtn% or base quantity.
o _

»
s



Since a and b must have the same units to make the subtraction

meaningful, the quotient b ; 2 is a pure number independent of the units in

which a and b were expressed. Note glso that it must be clear whether you

mean b ; 2 or b ; a! i.e., whether you are comparing the difference with a

or with b. With changes in the same quantity, as with the growing baby, it

is the earlier or orlglnal value against which the companson is made. "The

fractional difference by which 90.0 differs from 80.0" means

90'20- 080'0 = 0.125, and "the fractional differencé by which 80.0 differs
from 80.0" is Lo'go 30 0~ _o.111. These two fractional differences are of

course not equal; thus one must be careful to avoid ambiguily in dealing with
fractional differences.

Obviously, the denominator cannot be zero; for example, it is mean-
ingless to talk about the fractional increase in profits during the first year

of operation of a new business.

Another way of looking a* a fractional difference is that b 2%~
presses the difference per unit of a, i.e., how much the quantity changes

for each unit of it that was there originally. For example, for each pound of
baby that you started out with, you ended up with 0.67 pounds extra at the
end. As we shall see later the word per is generally associated with divi-
sions.

Often 1t is useful to express a fractional difference not per un’t but
per hundred units; in fact, this is the usual practice. The result is referred
to as the "percentage difference." In the case of the growing baby, the
fractional difference, 0.67, in its two weighis corresponds to 0.67 X 100=67
per cent.

Percentage is frequently used to express concentration. Thus & nut
mixture containing 20 per cent cashews has 20 pounds of cashews in each
100 pounds. A 5 per cent salt solution is usually defined to be one contain-
ing 5 g of salt in each 100 g of solution. We could equally well say 5 pounds
of salt in each 100 pounds, or simply 5 units of salt in each 100 units, or

S units per 100. (The term "per cent,” in fact, comes from the Latin for

*“for each 100.")

&
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‘ When we use a percentage to express a fractional difference, we are
stating the number of units of the difference corresponding to each 100 units
of the original quantity. A welght gain of 5 per cert is a gain of 5 units for
each 100 units of the original amount (or 0.05 units for each 1 unit). If the
original amount was 50 pounds, then a 5 per cent gain would amount to
(0.05) X 50 = 2.5 pounds. If the original amount was 300 grams, then a 5
per cent' gain would be a gain of (0.05) x 300 = 15 grams.

Percentage differences are frequently used to express the uncertamty
of a physical number. For example, 50 +3% means that the uncertainty is
3 per cent of 50, or (0.03) X 50 =1.5. Thus 50 +3% = 50 £1.5. These two

forms expressing uncertainties are called relative uncertainty (expressed

here in per cent) and absolute uncertainty respectively.

To convert from relative to absolute uncertainty one carries out the
steps
A+p% = A+(0.01) pA
Conversion from absolute to relative uncertainty is given by
A+a=A(+ %)
For example
50 +1.5 = 50(1 £°552) = 50(1 £0.03) = 50 +3%

Questlons

1. A 12-pound baby eats a four-ounce jar of baby food for a meal. His
160-pound father eats a total of one pound of food for a meal. |
(a) How much does each eat relative to his body weight?
(b) Which eats more relative to his weight than the other?

2, Between the years 1950 and 1960, the population of Arizona increased
from 750,000 to 1,302,000, In the same period of time, the popula-
tion of Arkansas weni from 1,910,000 to 1,786,000.
(a) What was the change In the population of each state?
.(b) What was the ratio of increase to initial population?
(c) Wt was the increase in population per 1000 people ?
(d) What was the relative change in population?

A1l
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In a given year A receives $300 'n interest on $6000 in a savings
account. In the same year, B receives $200 on $3500 in a savings
account in a different bank. Which bank pays the higher rate of in-
mmﬁ?"

A's salary was raised from $10,000 to $11,000 per year, and B's
salary from $15,000 to $16,300 per year. How would you compare
their raises? ‘

By what per cent does 90.0 differ from 80.0? By what per cent does
80.0 differ from 90.0? Answer the same questions for 100.0 and
200.0.

By what fractional or per cent difference does 1.00 meter exceed .
1.00 );ard? What is their ratio? (1 inch = 2.54 centimers, exactly;
this is the definition of the tnch.)

Suppose you read that a newspaper's circulation increased by 5,025
in one year.

(a) Does this figure tell you that the newspaper's circuiation in-
creased significantly during the year?

(b) How would you answer part (a) if you knew that the circulation
at the end of the year was 20,100? Was 2,010,5007

Some numbers and their relative uncertainties are given below. How

many digits are significant in each of the numbers 7

(@) '1.37492 to 1%
(b) 2.30476  to 0.02%
() 2.3 to  0.02%
(d) 0.005982  to 5%
(e 100.1 to 1%

4In the preceding pfoblem, express each of the numbers using abso~

lute uncertainties. Omit meaningless digits.

Express each of the following numrbers using per cent uncertainties:

(@) 100 43 . (d) 200 £100
(b)Y 250 £5 (e) -0.5+0.05
(c) 250 +1

3
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Fly-by-Night Alrm;es announces a 2000 per cent increase in passen-
ger miles ﬂown this year over last year. What other information
would be required for a meaningful assessment o< the situation? |
Return to the problems on beer and cigarettes at the end of the pre-
cedinc section. Calculate the fractional differences. Is this a
meaningful mode of comparison in elither case?

Amalgamated Goosefeathers sold 10,000.0 bushels of the product
this year, a 50 per cent increase over last‘ year. How many did they
sell last year? If their sales were a 50 per cent decrease, how many
did they sell last year? ' '

The first steel mill in 3 new country was built this year, and has
produced five tons. What is the most meaningful way of comparing
this year's steel ﬁmdﬁction with last year's? What problem arises
with comparison by ratio and by fractional difference?

A 1s.100.0. B is 10.0 per cent larger than A. C is 10.0 per cent
larger than B. How much larger is C than A?

A merchant sells a certain i{tem at a retail price 50 per cent greater
than the wholesale cost. During a sale the retail price is reduced
by 20 per cent. What percer.iage profit does the merchant make on
that item during the sale?

(a) For any two numbers A and B, find the general relation between
their ratio and their fractional difference. Express the relation in
words.

(b) Find the general relation between their difference and their frac-

tional difference and express it in words.
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2.4 Sgect‘flc Quantities

If you are told that a large can of a certain brand of peas costs 37
cents and a small can costs 19 cents, you cannot judge which is the better
buy. You need to know the amo:t;nt of peas in each can. If you find out‘th;t
the 37-cent can contains 17 ounces and the 19-cent can contains 8.5 ounces,
you are in a good position to choose between them. You divide the price by

the weight to get the cost per ounce for each can. For one can this is
37 cents

17 ounces
the other it is

= 2.18 cents per ounce (often written 2.18 cents/ounce) and for

19 cents \
8.5 ounces
two numbers represent the cost of one ounce of peas and can be compared to

= 2.24 cents per ounce (2.24 cents/ounce). These

find out which is the better buy. In this example the cost of one ounce of
the contents of the large can is less than the cost of one ounce of the con-
tents of the small can, so the large can is the better buy. The cost of peas
per ounce is called a specific quantity. (Wg are assuming, of course, that
both cans contain the same brand and quality of peas, and that you can use
all the peas in the large can.)

In calculating the cost per ounce for peas we divide the cost of a
can of peas by the weight of the peas in the can. The fact that we divide
one number by another does not mean that we have taken a ratio. In fact
we have not. We have a ratio only when we divide two numbers that have
the same units. When we find the cost per ounce of something, the two
numbers we divide are given in different units and the result we get is
meaningless unless we state the units with the number. To say, "The price
of peas is 2.24" is nonsense. To say, "The price of peas is 2.24 cents"
dc2s not make sense either. To say, "The price of peas is 2.24 cents per

ounce" makes sense. Once we know the price of peas from the two cans in

Vi

the same units, namely cents per ounce, we can compare the two prices by

any of the methods of comparison we have discussed.

44
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Questlons

1.

A 15-ounce (net contents) can of peaches costs 23 cents, while a
29-ounce can costs 35 cents. Compare the two costs in terms of
cents per ounce. Which is better?

(a) Five pounds of salt are dissolved in three gallons of water.
How many pounds of salt per gellon of water are in the resulting
solution?

(b) Seven pounds of salt are added to five gallons of water. Is this
solution saltier than that in (a)? How much saltier?

In 1967 it was estimated that in metropolitan areas (cities of
250,000 or more) there were 2,631,000 poor whites and 1,833,000
poor nonwhites out of a-population of 23,824,000 whites and
3,184,000 nonwhites. What informative comparisons can you make
using these four quantities ?

A group of 50 people is in a room of 6.0 m X 8.0 m X 2.5 m. Another
group of 60 people is in a roomof 7.0 m X 7.0 mx 4.0 m. Inwhich
réam are the people more crowded?

In the text we divided the cost of the can by the weight of peas. It
would have been possible to do it the other way around, and get (for
the larger can), the specific quantity %%lff;cfs-s* = (0.46 cugces for
each cent, or 0.46 ounces per cent, or 0.46 ounces/cent. Does
this quantity mean anything, and if so what? Can you thirk of any
advantages it might have over the quantity calculated in the text?
Compare the two cans of peaches in Question 1 in terms of ounces/
cent,

In the text the Guantities 37 cents and 17 ounces are used. Are these

mathematical or physical numbers?
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8. (@) Two hundred and fifty marbles have a total mass of 2750 g.
What 1s the mass per marble (the average mass of one marble) ?

(b) Another collection of 150 marbles has a mass of 1800 g. What
is the average mass per marble in this case? '

(c) In which collection of marbles is the mass per marble greater?
Eow many times greater? _

9. Many things cost more in smaller quant ties: For example, a coal
compaﬁy charges $35 for a half-ton of coal and $60 per ton for quan-
tities of a ton or more; What is the specific cost in the two cases?
What possible reasons are there for this practice of higher unit costs
for small quantities?

10. Sometimes, instead of expressing things per unit, or per hundred
units it is useful to express them per million units. This is espe-
cially true in biclogical applications, where quite dilute, minute
quantities of some substances can have substantial effects. The
term used is "parts per million” (ppm). Givena 5 per cent salt so-
lution, express its concentration in ppm. Given a 15 ppm solution
of vitamin B, express its concentration in per cent. What is the

general relationship between per cent and ppm?

2.5 Comparing Sets of Numbers; Central Tendency

In a lifetime test, one light bulb of Brand A lasted for 1242 hours,
and one of Brand B lasted 1073 hours. What can we conclude from this ?

The fractional difference of the Brand A over the Brand B sampie Is
(1242 - 1073) _ 0.158. That is to say, the A sample lasted about 16 per

1073
cent longer than the B sample. However, on the basis of only this pair of

samples, we can say virtually nothing about the relative performance of
Brand A and Brand B in general.
Suppose then, to attempt to answer this more general question, a

lifetime test is carried out on a sample of 25 bulbs of each brand, with the

results shown in Table 2.3:

e

J¢
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TABLE 2.3. BULB LIFETIMES .N HOURS, RAW DATA

Brand A ‘ Brand B
1242 893 1073 1041
1013 1167 1304 1251
869 998 1243 1462
1149 1417 - 1471 1653
973 1091 1169 1204
1160 1009 941 772
844 897 1368 1309
1302 1026 1265 T 1261
~ 1033 1140 1141 1575
, 1125 839 1322 1381
741 . 1026 1278 1320
1087 940 1404 1135
1003 ‘ 1289

By studying these results we can begin to see a trend of longer life-
times in the B samples, but the situation {s far from clear. We wish to dis-
cuss how data suchasthese canbe organized and presented in order to bring
out more clearly whatever information Is present, and how such data can be
characterized or summarized in brief forms more suited for comparison.

The first thing which might occur to one is to compute the average or
mean of each set of 25 numbers. This of course is simply the sum of the

numbers divided by 25. This calculation is rather tedious, unless one has

a désk computer handy. -
Brand A mean: 1039 hours
Brand B mean: 1266 hours

Now, contrary to our first impression stemming from a comparison of only one
pair of light bulbs, it looks as though Brand B may be superior.

In order to be able to describe mathematicaliy such operations és
computing averages, we introduce the notation ay, 83, 83, .. 83g for the
Brand A values in Table 2.3, and by, by, b3, ... byg for the Brand B values.
Thus a; = 1242 hours, a, = 1013 hours, ... byg = 1135 hours,

:f 'l )



(W

~-30-

Then the average or mean @ of the Brand A group is
a + a + + . e @ +
_ 17878 325
25
This may be written {n summation notation as
arsTo ak
25 k1
The symbol Z is a capital sigma, the Greek S, standing for summation.

S

The k is called the index of summation, and here k is said to "run* from the

lower limit 1 to the upper limit 25. The value of E ay is obtained by taking

k=1
the value of a fork =1, adding the value of a, fork = 2, adding the value
of ay for k = 3, etc. until k = 25 has been reached.
The general formula for the mean of N numbers (X}, X, X3, ... X))

in this notation is:

1 N
X = 'N' E xk (1)
k=1

Let us continue our quest to visualize the data better. As a first
step, we might re-list each set of numbers in order of increasinry value.

The result is shown in Table 2.4.

P
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TABLE 2.4 BULB LIFETIMES IN HOURS, ORDERED DATA

Brand A Brand B

741 1026 772 1289
839 1033 941 1304
844 1087 1041 1309
869 1091 1073 1320
893 1125 1135 1322
897 1140 1141 1368
940 . 1149 1169 1381
973 1160 1204 1404
998 1167 1243 1462
1003 1242 1252 1471
1009 1302 1261 1575
1013 1417 1275 1653
1026 | 1278

Now we can see more clearly that the Brand B bulbs tend to last longer.
Furthermore, we ~an now pick out a number frequently used to characterize
such sets of numbers.

If a set of values contains an odd number of values (as the two sets
of our example do), its median is the middle value of the set, after the set
has been arranged in order. In the two sets of our example, each of which
contains 25 values,‘the medians are the thirteenth values —~1026 hours for
Brand A and 1278 hours for Brand B. If the median value occurs only once,
as in the Brand B set, then an equal number o} values of the set fall above
and below it, 12 above and 12 below in this case. In the Brand A set the
median ‘'value occurs twice, with the result that 12 values fall below the
median, and another subset of 12 are greater than or equal to the median
(only 11 being strictly greater).

For a set containing an cven number of values, the median ‘s defined

‘as the average of the two middle values after the set has been rearranged in

order. Thus the median of the set (2, 3,7, 10, 11,12) is -;-(7 4+ 10) = 8.5.

35
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Summarizing our results, we have .
Medi_an Mean
Brand A 1026 1039
Brand P 1278 1266

We obhserve that the mean and median are fairly close in both cases, the
mean falling above the median in the Brand A case and below in the Brand B
case. In the Brand A case 15 values fall below the mean and 10 above; the
mean docs not have the property that the median does, of dividing the set
into equal-numbered subsets of larger and smaller values.

The mean and the median are both measures of central tendency,

numbers which may be useful in characterizing the typical value of the num-
bers in the set. Here it Is hard to say which is a better indicator of cantral
tendency, as their values are close compared to the spread of the data.
Often, however, the mean and median differ considerably. Thenit is a matter

of judgment which is the better indicator of central tendency.

Questions
1. Suppose the members of the Central High School basketball team
have heights as follows:
6'0" 6'6" 6'5"
6'3" 5'9" 5'6"
6’2" - 6'l" 6'2"
S'10” 6'2" 6'9”
6'0" 5'11" 62"

(a) What is the median height?
(b) What {5 the average height? (See if you can devise a shortcut

for this calculation.)

41
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T 2. The last killing spring frost in a certain locallty occurred on the

following dates:

1961:  April 21 1966:  May 31
1962:  April 10 1967: May 1
1963:  May 10 1968:  March 20
1964:  April 24 1969: = April 2.0
1965:  April 17 1970:  April 44

P

o &) What is the median of these dates?
{b) What is the average?
(c) Based on this data, wiiat can you say about the recommended
date for setting out tonato plants ?y
3. - 1s it easier to compute the median\or the average
( - (@) in an unordered list of 10 numbers?
' (b) in an unordered list of 1000 numbers ?

“"(c) LQan ordered list of 1000 numbers?

4. A sample of 20 members of the class of 1950 of Q12 vy University
have annual salaries as given below:
$ 9,000 $ 13,500
7 ~ 9,200° 14,500
- 9,500 15,000
10,000 16,500
) . 11,000 18,500
11,250 20,000
11,500 26,500
12,200 39’500;
- 12,500 85,000
13,000 120,000

(a) What is the median salary?
(b) *What is the mean salary?
#{c) Does the median or the mean better characterize the income of

the members of the group?
(c) Should the median or the mean be used to plan fund-raising goals?

/ 1i
4




-34-

5. The medlan is preferred to the mean as a measure of central tendency
when cne suspacts that lrresponsible answers are present in the data.
Suppose 20 students are asked to estimate how much time they
spend on homework. Their answers, listed in Increasing magnitude
for easy visualizatlor;, are:
Time Spent on Homework
(in hours per week)
~2 10
0 10
5 11
5 12
7 12.5
7
8
8

.5 14
14
16
10 50
10 200
(a) What is the median? How much would it be likely .o change if
the obviously irresponsible answers were replaced by responsible
ones ?
(b) What is an approximate value for the mean? (Can you think of a
quick way of estimating ?)
(c) Why is the mean so much more sensitive to the irresponsible

answers than the median?

2,6 Histograms and Frequency Distributions

A pictorial presentation of the bulb-lifetime data is possible if we
classify it into intervals. Since the bulb lifetimes range from 741 to 1653

hours, let us take 10 class intervals, with boundaries as shown for Brand A

in Table 2.5. It is then easy, starting with the raw data as given in Table

2.3, to count the occurrences in each interval by making hash marks as

shown in Table 2.5. The resulting numbers of occurrences in each class are

42
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called frequencies. Thus we learn, for example, that five Brand A bulb
lifetimes fell in the class interval of 800 - 899 hours; the frequency for that

class is thus five.

TABLE 2.5. CLASSIFICATION OF BULB-LIFETIME DATA INTO INTERVALS

(BRAND A)

Class Boundaries, - Count of Relative Class

Hours Occurrences Frequency Frequencies Marks

700 - 799 | 1 0.04 749.5

# 800 - 899 HH- 5 0.20 849.5

900 - 995 4Y 3 0.12 949.5

1000 - 1099 - W 8 0.32 1049.5

1100 - 1199 HH— 5 0.20 1149.5

1200 - 1299 \ 1 0.04 1249.5
1300 - 1399 l 1 0.04 1349.5 |

1400 - 1499 | 1 0.04 1449.5

1500 - 1599 0 0.00 1549.5

1600 - 1699 0 0.00 1649, 5

In Fig. 2.1 the frequencies have been pictured in a histogram. Fre-
quencies are plotted vertically, and bulb lifetimes horizontally. Bars are
drawn on the histogram, whose width is the class-interval width and whose
helght corresponds to the frequency of occurrences in the class. Thus, for
the Brand A histogram, the bar for the 700 - 799 interval has height 1 corre-
sponding to one occurrence in that class interval, etc.

The result & a display of the data that allows one to assess its na-
ture more readily than by inspection of a column of numbers. Note the rela-
tionship between area on the histogram and number of occurrences; the ratio
of the area of any bar to the total shaded area equals the relative frequency
of that class (the fourth column in Table 2.5).

If one wishes to esti-nat: the mean from the histogram, it is best to

~

assign to all occurrences in a given class a value midway between the class

1.
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close to the true mean of Fig. 2.1

1039 hours.

vields 1041.5 hours, very

In careful work the class marks should be taken at the midpoints of
the intervals. If in this example the class marks had been taken °t 750
hours, 850 hours, etc. a constant bias in Equation (2) would have resulted,
which, however, in this example would not be significant.

The discrepancy between the true mean and the approximate value
given by Equation (2) is, of course, the result of the information that is lost
in classlfy;ing the data into class intervals. If the intervals are excessively
wide (so that there are only a few of them) this loss of infcrﬁgtlon becomes
serious. On the other hand, if the intervals are very narrow, there will be
a large number of them and the computations become unnecessarily tedious.
Usually a yood compromise is a total of 10 to 20 class intervals. An excep-

tion is when a few of the values are far removed from a central cluster of

14
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values (as in the annual‘ salary data in Question 4 of the preceding section);

in such cases more than 20 intervals may be desirable.

Questlons

1.

Classify the Brand B Bulb lifetime data, from Table 2.3, into inter-
vals by constructing a table of the form of Table 2 .5. Verify that
the Brand B histogram of Fig. 2.: is correct.

On the basis of an intuitive visual ‘nspection of the histograms of
Fig. 2.1, mark the lifetime value that seems to you to characterize
best the central tendency of the data. Now mark in the mean and the
medjan values. Do thesefdo well as indicators of central tendency
for these examples? A{ |

In the light of the h.lstograan Fig. 2.1, can you make a final con-
clusion as to whether Brand A a; Brand B is definitely better? (Note:
the types of such conclusions that are possible, and the manner in
which they may be drawn, is the concern of the field of statistics.)
Write the formula to estimate the Brand B lifetime mean from .the fre-
quancy data you constructed in Question 1. If you have access to a
desk computer, evaluatc this approximation, and compare the result
with the true value.

Suggest a quik:k way of estimating the median of data presented in
histogram form. Estimate thereby the Brand A and Brand B bulb-life-
time data medians. What is the uncertalnty associated witk vour

method ? What were the actual errors in your estimates?

" Suppose you wished to present,in histogrém form, data on the weights

of individuals, in say, the entering freshman class of a certain col-
lege. Suppose the weights range from 96 to 234 pounds, and are re-
ported to the nea»r.est pound.

(a) What class boundaries would it make sense to use, and how
many classes would this yleld?

(b) What class marks correspond to the class boundaries you chose?

Explain why the median dlvides a histogram into two equal areas.

45
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A plece of ice 18 massed before and after melting by 28 students.
The resulting mass-change data are shown in the following histo~

gram:

4.
o l—t 4 -

025 -020 -015 010 005 O 005 OI0 0I5 020
Chonge in mass in groms T

(a) Estimate the median of these data.

(b) Estimate the average. -

(c)  Why would evaporation tend to produce a necative bias in the
mean, while massing errors would tend to produce fluctuations
equally 1'n the positive and negative directions? Which of these
sources of error seems to be more‘ important ? .

(d) What conclusions can be drawn from the aggregate of 28 trials
of the experiment? Could such a conclusion be drawn from a single
experiment ? )

(e) 1s there reason to suspect from the data that some students

have better laboratory technique than others? Explain.

Measures of the Spread of Data ‘
Figure 2.2 shows, in histogram form, three sets of data all with the

mean X = 9.9. Although they have the same mean, these sets of data a'::e'

clearly of different character; they are progressively more and more spreéd

out.

The mean, beln§ a measure of central tendency, is of no help in de-

scribing the spread. How can we measure tie extent of the spread of a set

of data? Our approach will be to consider deviations from the mean and to

apply an averaging process to these deviations.

kD)
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Let us take an example with a somparatively small number of data,
so that the computations will not be unduly lomi . (Fortunately, automatic
computers are very well adapte'd to carrying out the types of calculations we
shall describe and you will learn in Chapi:er 5 how to use a computer to
handle larger and more realistic problems with comparative ease.

Suppose that, over the course of a year and under various driving.
conditions, you make 10 measurements of the gas mileage of your car, with

the following results shciwn in Table 2.6 (these data were taken for a 1962

Volkswagen).
TABLE 2.6
GAS MILEAGE (mi/gal)
25.7 30.1
31.8 28.7
24.7 ' 28.6
25.8 27.1
28.5 31.0

The processing of these data so as to measure the spread is shown in sys-

tematic forn. in Table 2.7

TABLE 2.7
i Xy x| -X (xl—mz
1 25.7 | -2.5 6.25
2 31.8 3.6 12,96
3 24.7 | -a.s 12.25
4 25.8 | -2.4 5.76
5 28.5 0.3 0.09
6 30.1 1.9 3,61
7 28.7 0.5 0.25
8 28.6 0.4 0.16
9 27.1 | -1.1 1.21
10 31.0 2.8 7.84
c;s;::n 282.0 50. 38
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The values are listed in the second column, and by summing this col-
umn and dividing by N = 10, we learn that the mean is X = 28.2 mi/gal.

In the third column the deviations from the mean x; =X are listed.
Of course, some of these are positive and some negative, but their squares,
listed in the fourth column, are all positive.

' The mean of the squared Jeviations is called the variance. By sum-
ming the fourtn column in Table 2.7 and dividing by N = 10,"'we obtain the
value 5.04 for the variance. The variance ls always non—nfegat'ive, being
compuged by summing squares, so it is reasonable to denote it by g2 as is

the usual custom. The general formula for the variance is*
1 Qo | |
s =L ¥ b - ®2 )
i=1

The square root s of the variance is called the root-mean-square de-

viation (rms deviation); of the standard deviation. From Equation (3) we see

that s always has the same units as the original data. In our example s has
the value N/5.04 = 2.24 miles per gallon. -

In Table 2.7 we have carried "guara digits," even though they are
often not significant, and have rounded off only at the end‘. In hand calcu-
lations, especially when no desk computer i{s available, to save time one
often avolids c‘arrying non-sigrificant digits. However, automatic computers
normally carry many olaces at no additional expense in labor. This is desir-
able because it prevents contamination of the final' answer by round-off errors
introducad du:;ing the calculations. |

The dropping of non-significant digits, asa technique for keeping
track of uncertainties, is too crude to be of much use in long calculations
like those we have just dohe. The uncertainty is best estimated here by
making small changes of, say, +0.1 in the input data and recalculating to see

the 'ef‘fect on the final results. If this is done for the above calculation, the

*Some authors use (N-1) rather than N in the denominator, for a technical
reason that need not concemmn us here. '

15
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final value of s is found to range from about 2.2 to 2.3, so it becomes appar-
ent that the answer should be rounded to two dlgits. | )
It s apparent then that the standard deviation has the property that
a measure of spread must have — namely that it is small when the data are
concentrated about the mean, and large when the data are spread out. For
when any value x; is far removed from the mean X, the corresponding term
) - %)% in Equation (3) makes a large contribution to the value of s2. Con-
sider the fourth column of Table 2.7, containing the values (xl - %)% which
are summed in computing s2. We note that most of the contribution to gl
corresponds to the value far mmpved from X. In fact, the highest and lowest
values, x, and x5, alone account for over half of the value of s2 in this ex-
ample. | '
By modifying Equation (3) ‘We can derive a short method for computing
the standard deviation that is usually preferred to the method used in Table

2.7. Expanding Equation (3) we have

s2=- }: (2 - 2% % + %)
Ni=1

N

"lﬁ 1==1 f. (- lem-n- }: %? (4)

The first term in Equation (4) is the average value of xiz. which we shall

®

denote by x—z-:
—~ ;N -’
xz = Tv' xtz
i=1

The second term in Equation (4) is a sum every term of which contains

the constant factor (-2X). Therefore (-2X) may be factored out to yield

z ('2x1—) = (-2—) Z xl
1=1 l‘=1

- -2
But we recognize this as (-2X) times the mean X, so this term equals -2X .

o
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The third and last term in Equation (4) is the sum as | r;a’nges from

1 to N of the constant Ez. Thus it equals

2 2 2
l(:'c'2+5c‘2 +...+X )=l(N3’c’ )=X
N . T -« N
N times
Collecting these results together, we see that Equation (4) becomes
-5 2 2
sl e=x? - 2% +%
— 2
sl=x? -% (5)

This states that the variance is the mean of the squares minus the square of
the mean.

Let us calculate s for our mileage data by this so-called "short"
method using Equation (5). Table 2.8 lists the values of xlz and we see
that their sum is 8002.78. Dividing this by ¥ = 10 ylelds X = 800.28. If
we subtract from this EZ = (28.2)2 = 795.24, we get s2 = 5.04, in agreement

with our previous calculation.

TABLE 2.8

xl : xlz
25.7 660.49
31.8 1011.24
24.7 610.09
25.8 665.64
28.5 812.25
30.1 -8906.01
28.7 823.69
28.6 817.96
27.1 734.41
31.0 961.00
282.0 8002.78

If the data are available only in histogram form, then in order to cal-

culate approximate values of the mean and standard deviation, we assign to

r

|
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each value its class mark. The resulting calculation of s, for the data pic-
tured i Fig. 2.2(b), is shown {n Table 2.9. Note that the mean and the mean
of the squares are weighted averages of the class marks ¢ and their squares
ctz . the weaight factors ft/ N being the fraction of the total number of values

in each class. N

This type of calculation is also useful in the case of data which are
»naturally classified" —that is, data which by their nature can take on only
a relatively small number of discrete values. (For example, sample family

sizes would be naturally classified data.)

| TABLE 2.9
CALCULATION OF MEAN AND STANDARD DEVIATION OF CLASSIFIED DATA
' Class
Frequency Mark
i Interval £ Cy c:i2 ficy fic:l2
1 4 - 5 1 4.5 20.25 4.5 20.25
2 5- 6 0 5.5 3G.25 0.0 0.0
3 6- 7 2 6.5 42.25 13.0 84.50
4 7~ 8 3 7.5 56.25 22.5 168.75
5 8- 9 4 8.5 72.25 34.0 289.00
6 9 -10 6 9.5 90.25 57.0 541.50
7 10 - 11 5 10.5 110.25 52.5 551.25
8 11 - 12 4 11.5 132.25 46.0 529.00
9 12 - 13 2 12.5 156.25 25.0 312.50
10 13 - 14 2 13.5 182.25 27.0 364,50
11 14 - 15 1 14.5 210.25 14.5 210.28
Column Sums 30 296.0 3071.50
% =480 9.7
g2 = 307L:30 g g7)2 = 5,02

30
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Queatlons

1. Why 1s the sum of the numbers in the third column of Table 2.7 zero?

2. Estimaté how the means and the standard deviations of the two dis-
tributions A and B In Fig. 2.1 compare.

3. Hypothetical meanings for the three sets of data in Fig. 2.2 are given
below. In each case discuss briefly the significance of the varying
degree of spread, and state which set best fits the given meaning.

The data sets represent
(a) test scores of sample groups of students on three alternative
tests covering the same material;
(b) failure loads of samples of three different types of sash cord to
be used inside vindow frames; | '
(c) sample lifetimes of three different types of automobile batterles;
(d) trial shot-put distances of the members of three different track
teams. ,

4, (@) In Table 2.7 approximate the standard deviation s by neglecting
all values of (xl - 52)2, except the four largest (that is, replacing the
other six values of (:a:i - ¥)2 by zero). Comiere with the exact value
of s.

(b) Dc the séme using only the two largest values of (x| - %)2.
What point is this question trying to illustrate?

5. Ten students achieve the folloving scores on a test;
8, S, 7, 8, 6, g, 4, - 8, 2, 7

(8) Draw a histogram for these data, and see if you can guess what
the mean and standard deviations are.

(b) Calculate the mean and standard deviations of these test scores
by computing the mean squared deviation in the form given by Equa-
tion (3). How close were your guesses? Which values contribute

most heavily to the standard deviation?

e}
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(c) Recalculate the standard deviation by the short method by com-
puting the s_m of the squares of the data and then ualnj Equation (5).
Compare this with the value you found In part (b). What are the rel-
ative merits of the two computatlonal appmaches?

Calculate the mean and standard deviation of the data of set (a) glven
in histogram form in Fig. 2.2. )
Figure 2.3 shows two sats of data. Set (a) might represent data on ‘
the daily number of customers entering a certain store. Let us sup-
pose that set (b) represents age at the time of marriade.

(@} These two ciata sots differ in a quality that is not directly related
to their central tendency or spread. It is apparent from the shape of
their distribution curves. Try to describe this quality, called “sf:ew-
ness, " in words.

(b) In a set of data that is "skewed," as in Fig. 2.3(b), is the me-
dian displaced from the mean?-_If so, in which direction and why ?
Consider sets of data of the various sorts listed below. In each case
state whether you would expect the data set to be unskewed, as in
Fig. 2.3(a), or skewed, as in Fig. 2.3(b), and why.

(a) Ages at which people contract mumps .

(b) Height of army recruits.

{c) Wealth of adults.

(d) Welight of new dimes.

{e) Weight of old dimes.

(f) Attendance at New York Mets baseball games. '

() Number of home runs hit by members of the New York Mets in

s o e e et
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In the 1960 U.S. census, records were made of the number of éhil—

" dren of women in the age range 40 -44 years, with the following

results: _
TABLE 2.10 ‘
Proportion of o ‘ | Proportion of
Total Women Total Women
No. of Children in Sample No. of Children in Sample
0 0.141 7 0.019
1 0.172 8 0.012
2 0.262 9 0.007
3 0.182 10 0.005
4 0.105 11 0.003
S 0.056 More than 11 0.005
6 0.031

(a) Comment on the degree of skewness of this data set.
(b} Calculate the mean number of children of such women.

(c) Estimate the uncertainty fn your answer to part (b) due to the

0.005 in the "more than 11" category. What assumption did ycu make

about this category in answering part (b) ?

(d) De.ermine the median number of children. When might we use
this as a measure of central tendency? When would we prefer the
mean?

(e) '1f one were interasted in population growth, why mig'ht the above
data be p{te.sferable to, say, dataon U, S. family sizes? Why do you
supposelwomen in the age group 40 - 44 years were chosen rather than

a younger or older age group ?

It
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In order to describe and compare data sets, it |s sometimas useful to

employ the idea of percentile, a generalization of the idea of median.

The median Is also called the 50 percentile, meaning that 50 per cent

of the values fall below it. Correspondingly, the 25 percentile is a
value below which 25 per cent of the values fall, the 90 percentile is
a value below which 90 per cent of the valueé fall, etc.

(a) How might the idea of percentile be used to obtain a measure of
spread?

(b) Use the method you propose to compare the extent of spread of
the two sets of bulb lifetime data given in Table 2.4.

(c) What are the pros and cons of this measure of spread versus cal-
culating the standard deviation?

In 1968 the American League winning baseball scores were as shown

in Table 2.11 (source: Official Baseball Guide for 1969, published

by Sporting News, St. Louis).

TABLE 2.11

Scere No. of Games Score No. of Games
1 38 9 21
2 101 10 21
3 131 11 12
4 159 12 10
5 110 13 6
6 82 14 1
7 73 15 0
8 44 16 1

Total No. Games: 810

(a) Comment on the skewness of this data set.

(b) Give the 10,25, 50,75, 90, and 95 percentile scores.

(c) Calculate the mean and standard deviations of the 1968 winning
scores. (Do this part only if you have access to & desk computer or
equivalent.) Comment on the displacement between the mean and the

median.
)
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Mogt examples of sets of data we have discussed may be charaotar-
ized as having a single "hump, " containing the majority of the data,
with tails on either side. Sometimes data does not have such "nice"
regular behavior. For cexample, the New England Board of Higher
Education, in Facts about New England Colleges, Universities and

Institutes, 1971-72, reported tuition of such institutions in Maine

(for state residents) as follows:

TABLE 2.12
$ 865 $2350 . - $ 400
3525 1020 400
1100 445 400
1210 1850 400
2795 2000 400
2660 1675 550
247 287 450
1650 1600 550
700 1700 400

1530

(@) Plot these data in a histogram, using an interval of $200.

(b) Are these sets of data well characterized by giving the mean and
standard deviation, or would more have to be specified to convey
their general characteristics?

(c) Describe in words the nature of these data. See if you can think

of any possible reasons for any of their characteristics.
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13. ‘According to the 1969 World Almanac and Book of Facts, published.
by the Boston Herald Traveler, the 1968 winning college football
scores for 1173 games were distributad as follows. (These include

the scores of the winners of all games and the tie scores in tied

games.
| TABLE 2.13 i
Score Frequency' Score Frequency | Score Frequency | Score Frequency

0 5 20 48 40 17 60 3
1 0 21 70 41 22 61 1
2 0 22 18 42 34 62 2
3 2 23 32 43 9 63 4
4 0 24 45 . 44 10 64 1
5 0 25 14 45 13 65 2
6 7 26 29 46 14 66 1
7 25 27 51 47 20 67 0
8 3 28 76 48 16 68 6
9 7 29 18 49 12 69 2
10 28 30 31 | 50 9 70 0
11 1 31 48 51 2 71 1
12 9 32 17 52 4 72 0
13 26 33 20 53 3 73 0
14 46 34 36 54 2 74 0
15 3 35 54 55 7 75 0
16 26 36 10 56 5 76 1
17 48 37 23 57 3 77 1
18 12 38 21 58 9 . .
19 13 39 10 | 53 4 . .

100 1




11.

-52-

;I*hts is an example.of a data set exhibiting a good deal of "fine
str\étun"—local peaks and valleys, etc. Describe some of these
features, and explain why these data are so much more complicated
than the winning basghall scores of Question 11. Is there any simi-
larity with the baseball scores data?

Sometimes data is tabulated In unequal interval sizes. Where age is

concerned (Table 2.14) unequal interval sizes are common practice.

TABLE 2.14
Native Born Death Rate
Age Population per 1000
Less than 1 3,414,000  23.4
1- 4 13,380,000 0.9 ,
5-14 29,505,000 0.4 \J
15 - 24 20,091,000 1.0
25 - 34 18,842,000 1.2 {
35 - 44 20,004,000 2.6
45 - 64 28,561,000 10.6
65 - 74 7,699,000 36.1
75 - 81 3,181,000 87 .2
85 and over 625,000 210.6

¢

As can be seen from the death rates, the risk of dying in the first
vear of life is very different from immediatel 7 subsequent years, thus
it makes sense to consider that age range separately. Constmcg a
histogram of the native born population data using the age intervals
given. (Hint: which should be proportional to the frequency, the
height of the bars or their area?) Comment on the skevkness of these

sets of data.

bt
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Chapter 3. NUMERICAL CABQ\ULATIONS
\

3.1 Large and Small Number Calculations

In Chapter 1 we introduce2 the use of powers-of-ten notation. This

way of expressing a number is also called exponentiai nctation because of
the use of exponents of 10. Exponential notation is very useful in perform-
ing calculatiofts with bott large and small numbers.

To make calculations involvi f large numbers expressed in éxpcnen-
tial nctation, recall that 102 x 10P = 103+*b, Thus, for example |

(15x 108 x (3.0 x 105%) = (15 x 3.0) x (106 x 105) = 45 x 1011
In additions and subtractions the numbers given in exponential notation
must be re-expmséed, if necessary, so that the exponents are the same.
For example,

5.32 x 103 + 2.11 x 102 = 5.32 x 103 + 0.211 x 103

- (5.32 + 0.211) x 103
5.53 x 103

The more complex a large-numbe. calculation is, the more useful

n

exponential notation becomes. How much water is used by New York City
in a year? It has been estimated that a typical city uses about 1.4 X 102
gallons of a water a day for each of its residents. According to the 1.‘970
census, the population of New York was 7.89 X 106. Therefore, the city
used, in 1970, about (8.0 X 106)(1.4 x 102) gallons each day, or

(8.0 X 106)(1.4 x 102)(3.7 X 102) gallons every year. This is approximately
4 x 1011 gallons per year.

Calculations involving very small numbers are also often best done
using ekpénenttal notation. For example, given that 1.00 X 103 g of copper
contains 9.4 X 1024 atoms, what is the mass of one atom? It s given by
the mass of the sample divided by the number of atoms :n the sample.

1,00 x 103 g 103
mass of one atom = G —=7577 0.106 x 1083 9

64



The rule for dividing poweru-of-ten‘ls :% = 108-D (eas'uy verified by multi-
plying both sides by mb) . Thus we have
mass of one atom = 0.106 x 103-24 g
= 0.106 X 1021 or 1.06 x 19-22¢

Questions
1. What s 1002 jJustify your answer.
2. Whtch of the following is correct? For the ones thut are incorrect,

aexplain how the person giving the answer went wrong. Change the
right-hand side of the equation to correct the error.

(@ 106x 100 =100 (d) 10-6 is larger than 10-3
) 10-3x 102 =107} (@) 10-4 x 10-3 = 1012
(©) 103 x 102 =105
3. In each of the following lists, indicate the numbers that are equal
to each other. =
a) 0.003 (b) 0.000028
3x 1072 28 x 1073
0.3 x 10-2 s« 2.8x10°°
3 x ﬁz 0.28 x 10-5
4, Using exponential notation, calculate answers to the following:
(a) 2300 X 4600 X 120 o) 2700 0.32% 3000
5. In the text we found an approximate value for the annual water con-

sumption of New York City. How many square kilometers of water—
shed are needed to supply the New York City reservoirs? The annual
rainfall in the New York area is about 1.0 m. To visualize the
amount of water falling on a square kilometer in one year, think of

a rectangular volume whose base is a square with sides measuring
1.00 kilometer and whose height is 1.0 m. Assume that half of the

rain that falls on the watershed gets to the reservoirs.

6
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6.  The total land area of the United States is about 2 X 107 square kilo-
meters. If the land were distributed even{y among the population
(about 2 x 108), approximately how much land would each person
receive? 3

7. The decimal expansion of v is 3.141592653589793.... . It has been’
calculqted by computer to 100,000 cecimal places. This calculation
took 8 hours and 43 minutes of computer time working at an average
speed of over 100,000 arithmetic operations (multiplications or addi-
tions) a second. It has been estimated that the same job using a
desk calculator would take about 30,000 years.

(a) Approximately how many arithmetic operations did the computer
do altogether?

(b) How many times longer would it take to compute w to 100,000
decimal places by desk calculator than by computer?

8. About how many times does an automobile tire (outside diameter
about 75 centimeters) rotate in traveling 10,000 kilometers? If a
centimeter of tread is worn off in going this distance, about how
much thickness of tread is worn off during one rotation, on the
average ? |

9. The speed of light is 3.00 x 108 meters per second. How long does
it take light to travel 10.0 meters?

10. An ordinary land snail can move with a speed of 8 x 10-3 kilometers
(5 x 10-3 miles) per hour.

(a) At this rate, crawling steadily, how long would it take such a
snail to cross the United States?
(b) If the average life span of a snail is five years, how many gen-

erations would this journey represent ?

P
Ve
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3.2 Esttm&tton

Very often, one is interested in getting the approximate magnitude
of some quantity whgn the values of quantities tc be used in the calculation
are not available. Sometimes a rough estimate, of the unknown valuesf can

' bz nbtained using related known information.

For example, suppose you are interested in estimating the total®num-
ber of miles traveled by private cars in the United States each year. If you
know approximately how many cars there are in the United States and how
many miles eabh {s driven durin; a year on the average, then you could mul-
tiply these two numbers together to get the answer. But you do not even
have a rough idea of the number of cars. However, it might be reasonable
to suppose that, very roughly, the average family has four people {n it and
owns one car. There are about 2 X 108 people in the United States and thus
about g-x—“ﬁ = 5% 107 such four-person families. Hence there are about
5% 107 cars. A typical yearly distance for a car to travel, from personal
experience, might be about 104 miles. Thus the total distance traveled by
cars in the United States each year is about (5 X 107) x (104) = 5 x 10l
miles.

How can we estimate the uncertainty in this answer? We might
judge that one car per every two people is definitely hlgﬁef than the true
figure. Simtlarly we might judge that 25,000 miles is definitely high for .
the average yearly distance per automobile. This would imply that the total
mileage is less that 108 x2.5x 104 =2.5x 10}2 miles. By similarly mak-
ing low estimates we can deduce that the total mileage is probably greater
than (2 X 107) x (§ X 103) = 1011 mués. In other words, the true figure is
probecbly not more than 500 per cent more, nor 80 per cent less than our es-
timate of 5% 1011 miles. We are not off by a factor larger than 5 or smaller
than %

Perhaps surprisingly, though, such crude answers are frequently ade-
quate. That is to say, frequently we want to know only the order of magnitude

of a very large quantity such as this. We can say here with assurance that

64
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the order of magnitude of the United States private car annual mileage is
--5x 101! miles. | | |

Sometimes a simple experiment helps one to arrive at a good estimate
of some quantity. For example, about how many words are the‘re in a book ?
To find out, you need to know the number of pages in the book and the aver- -
age number of words on a page. To estimate the latter rimber, one might
count the words in a line chosen at random, ‘and then multiply it by the num-
ber of lines on one page.

Estimation and approximation are not synonymous. In an approxima-
tion the numbers are given and only the culculation is approximate. In an
estimate one or more numbers entering into the calculation are approximated

by an educated guess or very rough measurement.

uastions .
1. About how many revolutions does the wheel of an automobile make

in a trip from New York to Los Angeles?

2. Estimate the uncertainty in your answer to Question 1.

3. In estimating the number of words in a book, why might it be bettcr
to count the words in 10 lines and divide by 10 rather than cohnting
the words In a single line as suggested in the text? |

4. Estimate each of the following, and indicate how you arrived at your
answer:

(a) The total amount of gasoline consumed by automobiles in the
United States each year.

(b) . The number of words in an encyclopedia.

(c) The number of words in an average half-hour news broadcast.
(d) The number of tin cans used in United States homes each year.
(¢) The volume of concrete in une mile of an interstate highway.

S. Estimate the uncertainty in each of your answers to Question 4. Ex-
press each uncertainty in both absolute and relative form. In which

case is the result known only to within an nrder of magnitude ?

L0
Y
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6. Bs'ttmata the orders of magnitude of:

| (a) The number of shingles on a shingled roof.
(b) The number of bricks in a brick house.
(c.) The number of dwellings (including apartments) in your city.
(d) The number of classroom chairs in a given sch&ol or college.

7. Estimate the volume of a warehouse that would be needed to store a
year's production of ping-pong balls in the United States. By how
many orders of magnitude might your answer be off ?

8. How many seconds are there in an average human lifetime?

3.3 First Order Approximations

Consider the following numbers: 1.0332, 1.00563, or 5 ;7.3. They
have one property in common; they are the result of some operation with num-
bers which differ only slightly from 1, These numbers are just examples of

a general class of numbers which can be written as (1+ 5)2. (1 + 5)3, and

1 i where the Greek letter ¢ is customarily used to indicate numbers whose
absolute value is small compared to 1. In mathematical notation this condi-
tion is written as|e| << 1. The values of ¢ in the three examples are
3.9 % 10-2, 5.6 x 10~3, and -2.7 x 10~2 respectively.

In this section we wish to show that there exist useful ways of find-
ing approximate values for expressions of the type 1+ 5)2, 1+ 5)3, and
where| e/ << 1.

Let us start with the first two expressions: In general

l +¢

(1+€)2=1+2¢+¢?

and
(Q+e)3=1+3€+32+¢3

For|e| << 1, the term proportional to ez {s much smaller than the term pmpor-
tional to ¢ in both cases. For example, if ¢ ~ 10~2, then 52 % 10-4, and the
term € 3 ~ 106 {5, of course, still smaller. Hence for|e|<<1

(1+€)2=1+2 (1)

and _
(1+€)3 ™1+ 3 (2)

bt
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. To see what error.is involved in making these approximations we
subtract the approximate expression from the exact one. In the first case
the error s

(L+€)2-(1+2)=¢2
and in the second case
1+e)d-01+3)= 3l +e3=€2(3+¢)

The absolute value oi the factor (3 + ¢) has an upper hound for|e{<< 1; we
can state with certainty that under this condition |3 + e| < 4. Thus the error
is never larger than 4¢2. When the error in an approximation can be shown
to be less than a constant times ez, we say that the approximation is the
first order approximation in ¢. Thus 1 + 2¢ is the first order approximation
for (1 + €)2 and 1 + 3¢ is the first order approximation for (1 + ).

Now let us find the first order approximation to . By long divi-

sion {or by adding "the well-chosen zem"*, € -¢ in th; :uemeratcr, twice)
we find

-11.5:1'“141-552 3)
Forle|<< 1, say|e/< 0.1 the absolute value 1 i El_‘_ 01.9 = 192 Hence if we
approximate T+e by 1 -~ ¢ the magnitude of the error is less than -!92 €.

Hence 1 - ¢ is the first order approximation for T+¢ .
How good any of these first order approximations are depends on the

degree of accuracy required in the particular application. As long as the

factor multiplying ¢ 2 {s less than some known constant we can always esti-

mate the error made in the first order aj vroximation.

Questions

1. To appreciate the usefulness of the first order anproximations eval-

uate the following expressions (i) to first 6rde; ..+ ¢ and (i) exactly:

@) (1+e¢)? fore = -0.007

b) (1=+¢)3 for _ = 0.05
. Lo

(C) 1 + € " € 0-011

*See Appendix 2
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2. Suppose the numbers given in Question 1 are physical numbers with
an uncertainty of one unit in the last digit. Would you need to go
beyond the first order approximation? Woula the first order appmxi-
mation suffice for (1 + ¢)3 where ¢ = 0.4? What is the relative error
in this case?

3. Find the first order approximation for {1 + ¢)4 and prove that it satis-
fies the condition that the error Is less than ¢2 times a constant.

4. For|e|<< 1 the number 1 + S¢is certainly an approximation for 1+ e)d.
(In fact it is a better approximation than 1 + 2¢ .) Why does it not

. qualify as the first order appmxlm(afion for (1 + ¢ 142

-
5. Find the first order approximation in ¢ for %‘i‘ﬁ‘ for[e|<< 1 and use
it to calculate 0.94° | , .
6. Find the first order approximation for _(1_;_5—)7 Use it to calculate
|
1.127

3.4 An Extension of First Order Approximaticas

In the preceding section the expressions we approximated involved
numbers close to 1. Can we use similar approximations for expressions in-
volving numbers close tc a given number other than 1? For example, does
our knowledge that 53 = 125 help us to find 5.073? To put the question in
a more general form does tiie xnowledge of A3 help us in finding an approxi-
mate value of (A + a)3 where|a| <<|Al?

Since A+ a=A(l + %). then (A +a)3 =A3(1 + %)3. From|al<<|Aj it
follows that,%t << 1, thus the ratio 2 how takes the place of ¢ in the preced-

A

ing section, and we see that, to first order, (A + a)3 =~ A3(1 +3§~). We can

use this approximation whenever‘-:-l<< 1, i.e., the relattve difference be-
tween the two numbers A + a and a is much less than 1.
In applications the numbers A and A + a may be dimensional numbers

and hence their values will depend on the units used (e.g., 2 meters or
a
A
<<} is {ndepandent of the units of A,

200 cm). However the ratio — is always a pure, dimensionless number anua

hence the conditlonl i—

£
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Quhstlons

1. Using the first order approximations developed in the preceding sec-
tion and the relations (A + a)2 = A2 1+ %)2 and 1

1

2 2 1an 22 —L_ 1
culate 5.15¢, 7.924, 102.3°, 10.2° and 398.3"
2. What is the relative difference between the areas of two squares

with sides 6.00 m and 6.24 m?
Suppose you wish to apply a first order approximation to calculate
10.23 using the value of 103, and 20.33 using the value of 203. In

ad
.

which case will the approximation be better? (Be sure to specify

which criterion you are using for the quality of the approximation.)

3.5 Relative Uncertainties in Multiplication and Division

The first order approximations developed in the preceding sections
for mathematical nun.bers can‘be applied directly to physical numbers that
‘have small relative uncertainties. Consider a physical number A with an
uncertainty +a. The square of this number will most likely lie between
(A +a)2 and (A - a)2. If|a] << A, it will suffice to calculate the square
to first order in -i-:

(a +)% = (AQ £12 ~ A% 4280 = 201 £2))
Thus, for physical numbers with small relative uncertainties, the relative
uncertainty in the square of the number is twice the relative uncertainty in
the number itself.

Let us now extend this result to the product of two different positive
physical numbers: (A +a)(B +b). The product is most likely to be between
(A+a){s+Db)and (A - a)(B - b).

Suppose that %> % Then it is convenient to choose a number ¢ such
that % = k€ and B sz . where kl is of order 1 and kz is of order 1 or less.

e

(For example, if i— = 0.027 and%= 0.005, we may choose € = 10-2, which

f;‘.'i




maker. ky = 2.7 and ky = 0.5.) Then
(A+ a)(B+b) = AB(1 + %)(1 "'%’
= AB(l + klﬁ)(l + kzﬁ)
= 2
AB[I + (kl + kz)f + klkze ]
Hence, to first order in ¢

(A + a)(B + b) ~ AB[1 + (k; + kj)e]

ol (23

Following the same steps for the lower end of the interval yields

i
(A - a)(B - b)~ AB|1 -(% %)]

hee

(A +a) (8 +b) ~ AB[1 t(i‘ + %)] @

We see that in multiplication small relative errors add.

Hence

Using the first order approximation for reciprocals will show that

small relative errors also add in the case of the division of two positive
A+ A+a A -
B__b isbetweenB bandB+b

= kze ., we have

physlcal numbers. The ratio of Again,

setting A = kle and-g-

2
A+a Altkie)l p (kae)
B - b B(l—-kze) Bu+k1£)1+k2€+l—sz,

Multiplying out the right-hand side we get

- 2 2
an 211 + +
. l} (k1 + kale +(“1"2 YT kge T 1-kge )6

Tne coeiticient of €2 in the last equation has an upper bound for|e|<< 1.

e e -]
r_rl,
U)

Hence to first order in ¢

A+a a_b :
B b“B[l"'“‘l*'k del =3 (1+ A+B) (5a)
Similarly
A - &(l-klﬂ \
B+b B(l+kge) 51 - ke 1 - koe
A - B\l
NB 1~ (A+B)] (Sb)

This proves our claim.
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O .
Questlon . ,

1. For motion at conqtant speed, the distance traveled equals the prod-
uct of speed and time. If the speed is measured within 3 per cent
and the time is measured within 2 per cent, what ie the relative un-
certainty in the éalculated distance ?

2. Extend the proof given in the text for the relative uncertainty of a
product of two physical numbers to a product of three numbers. Com-
pare the speclal case where the three numbers are equal with the
first order approximation for (A + a)3.

3. The sides of a rectangular box are found to be 5.00 +£0.01 cm,

6.00 +0.01 cm, and 2. 00 +0.01 cm.

(@) What is the relative error in each dimension?

(b) What is the relative error in the volume of the box ?

(c) Would your answer‘to part (b) be different if the dimensions of
the bex were 5.02 £0.01 cm, 6.13 40,01 cm, and 1.92 +0.01 cm?

4. " The density of a substance is calculated by dividing the mass of a
sample by its volume. Suppose the sample is a cube. The length of
its side is measured to +2 per cent; its mass is known to +1 per cent.
(a) What is the relative uncertainty in density?

(b) Suppose you have to know the density to a higher accuracy.
Would it be better to improve the measurement of the length of the
side to give a relative error of +1 per cent‘or reduce trre relative

.
error in the mass to 0.2 per cent? ‘

3.6 Finding Square Roots by an Iterative ‘Process
Square roots come up frequently in numerical calculations. Most

squdre roots of mathematical numbers such =2s J7 ~annct be written as exact

decimal numbers. However, in this section we shall show how to calculate

an approximation to any square root witi: as great an accuracy as desired.
A natural way to get an approximate value for J2 is to try possible
values. Since (1)2 = 1 and (2)2 4, N2 must be between 1 and 2. We might

therefore try 1.3 as a first crude approximation. To see how good our guess

‘4



-64-

is, we divide 2 by this guess and get -1—2—3- = 1.54. Thus we know that

1.3%x 1.54 = 2. It is apparent that 1.32 < 2, whereas 1.542 > 2. There-

fore N2 lies between 1.3 and 1.54. We now take a value halfway between
these two values as our next approximation: 1'32+ 01 .34 = 1.42. The differ-

~erence between this approeximation to V2 and the upper and lower bounds,

1.54and 1.3, is 0.12, \ﬂrhich means that the relative error is no greater

0.12
than1 ¥

We can repeat this procedure a second time and thereby reduce the

~ 0.08 or +8 per cent.

difference between the upper and lower bound for 2. Dividing 2 by the last *
guess gives 1—2?2— =1.41. Thus 1.41< NZ < 1.42, and the average of these
two values, 1.415, is not more than + 0.5 per cent in error. This process

can be repeated until the desired accuracy has been obtained. A process

| such as this, in which successively better approximations are obtained by

repeating the same step, is called an iterative process.

An {teratiye process requires a way of starting the procedure and the
existence of a clear instruction of how to proceed from step k to step k + 1.
In the case of finding the square root of 'a positive number N, we have, start-

ing with the initlal guess Xp

1 N
X1 = S(xp+ )
172707 x4
1 N
=+ R 6)
1 N
K =g vy, &
R N, -
xk+1=2(xk+xk)‘ -0, 1‘, 2, LRI

This is called the iteration formula for this iterative process. In Chapter 5
we shall use it as an exar_ﬁple of automatic computation by a computer.

Note that there is only a positive square root of a positive number,
and by conventi'on we mean this square root when we write Az, For example,
N =2, not -2. To indicate the negative square root we must write —'J':E,. and

to indicate both positive and negative square roots we write +/x.

rte ’
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Questions
1. (a) Find v10 to within 0.5 per cent.

(b) When p and q are non-negative numbers, Jpg =p XvJgq . Use this
relation to calculate V20, 200, and ¥2 X 107,

2. Find N¥1/2 to within 1 per cent.
3. Find $10 to within 1 per cent. ‘
1. An iterative process is said to be self-correctizy if it approaches

some number even if a mistake is made at some point in the calcula-
tions. Is the square-root iterative process self-correcting ? Explain.
S. Devise a method for finding cube roots, similar to the iterate method

for finding square roots. (Hint: If x; were the cube root of N we

would have N - Xn. But of course N_ equals some other numbery.
x02 0 xoz

Where must the cube root of N be with respect to x4 and y? How

would you calculate the next approximation x; ?)

3.7 The First Order Approximation for VT ¥ ¢

The iterative process for finding square roots which we developed in
the preceding section can he ursed to find a first order approximation for
N = VT + ¢ where |¢|<< 1. We know that V1 + ¢ must be close to 1, so we

chonse as our first guess xg = 1. The next step gives

_1 Ny _1 l+el_ €

This tells us that

1< AT +%€ <1+§
To be Jure that 1 + % is the first order approximation for VI + e, we:
must show that 1 + - .(1 + %) < constant times ¢ 2. To dec that we proceed
to> the next step in the iteration
_1f e, 1te
"z"z(”z+1+e/2) 7

M;,.‘

¢



Applying long division to the third term gives

2
d+e _ __€°/4
vy R e vy

Substituting in Eq. (7) gives
- _ €%/
Xy 1+¢/2 T +¢/2

Hence, by the same reasoning used in Section 3.3

NT#e - x) sz - "1|=.Ilz'(1 +le/z> e

For ¢ << 1, saye = 0.1, we can-be sure that
-1 1
8\l +e/2

Thus we have shown that the magnitude of the difference between JT1 + ¢ and

< 0.12

1+ £2' is less than a constant times ¢ 2, Therefore, the first order approxima-

tion forN1 + ¢ is

NT+ew~l+e/2 (8)

Questions

l. Could you choose Xg = 1 + ¢ as your starting point in generating the
first order approximation for N1 + ¢ ?

2. Use the first order approxlmatiori to calculate V1.04. Give an upper
bound for the error.

3. Use the relationVA+a=+vA 1 + %to calculate an approximate value
of \/50.

4. Use the relation ¥pa = ¥p X\ and the first order approximation to find

- J1.06x 104 and V2.6 x 1073 |
S. A jet plane is 20 miles from the control tower of an airport and at an

altitude of five miles.
(a) Use the first order approximations for ~A + a to find the line-of-
sight distance from the control tower to the plene.

(b) What was the per cent error in your answer for (@)?

bt ]
"(
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Chapter 4. SLIDE RULES

It is not 'at all tedious to add two 3-digit numbers, but multiplying
them together is a chore. Although In most cases an exact answer is not
required because the original quantities ave themselves not known exactly,
we often need a more exact answer than can be obtained by mental approxi-
mation. A slide rule fills this need admirably. It is nothing more than two
pieces of wood, plastic, or metal with scales engraved on them, joined so
that one slides on the other, but it can be used to multiply and divide quickly
and with considerable accuracy. For example, a mental approximation ap-
plied to the following problem may yield

1

112 X 17 X 45 X 87 _ 112 _ 17 _ 45 1.1, .
32 X 43 X 72 =5y X g3 X g X 7 wAx x5y x80=280

This calculation, worked out on a slide rule in about one minute, gave 75.1.

The answer, worked out more precisely with a desk calculator, is 75.24.

4.1 Multiplication and Division of Powers of Two

In this section we shall put scales on a simple slide rule which will
enable us to multiply powers of two together. Then, in later sections, we
shall see how this slide rule can be made into one which can deal with any
numbers.

The slide rule you need has unlabeled, equally-spaced lines on the
back/. There are two sets of 13 lines on the “fixed, " outer part and two
identical sets on the movable, inner part. To make reference to the differ-
ent sets of lines or scales easier we shall arbitrarily give them names. We
name the upper scale on the fixed part of the slide rule, the E scale, the
upper edge of the sliding inner part, the F scale; its lower edge, the C scale.
The lower fixed scale we shall name the D scale. Write the appropriate

name at the extreme left end of each scale on your slide rule.
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Label the center marks on the E-and F scales with the number 0, the
marks to the right of 0 on each part with increasing integers and to the left
of 0 with decreasing integers (Fig. 4.1).

E “6 5 -4 -3 -2 -4 0 / 2 3 4 5 &

F .6 -5 -4 -3-2 - o I 2 3 4 5 &
Fig. 4.1

£

Now suppose we wish to use the Sllde ruletoadd 3+ 2. In th'.
~ 4.2(a) the two scales are arranged so that 0 on the F scale coincides with
3 on the E scale. With this setting we can add'a number to 3. Tofind 3 + &,

for example, we find 2 on the F scale and read the answer, 5, directly above

Fig. 4.2(3) 3 2

|E-6*5-4-3"2-l G'ZB#J&_J

. +(-4)
Fig. 4.2(b)
_ -
E -6 5 -4 -3 -2 -y 0 / 2 3 4 5 &
L1 11]
T ' T
-6 -5 -4 -3 -2 -| o 1 2 3 4

A\

on the E scale. 'iqure 4.2(b) shows the addition of a neéattve number and a
positive one. If you look above -4 on the F scale you will find the answer to
3 + (-4). Note that without moving the E scal: we can add to 3 any number
between -6 and +3. In effect, what we have done in adding the two numbers
is to adcd two displacements, the arrows in Fig. 4.2(a) aﬁd 4,2(b), toget a
total dlspiacement which is the sum we ars seeking.

Q e

- ERIC - | Y
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Now consider scales C and D. We shall associate each integer on
the E and F scales with the value of 2 raised to that integral power and label
the C and D scales with these powers of two. This gives what is called a

logarithmic scale. For example, we place the number 4 at the marks on the

C and D scale directly below the 2 mark on the F scale (Fig. 4.3). Now each

-2 <1 o0 1 2 3 4 5 &
Lt 1_*_1___+
TT L1111
V4'/&lz4?163264
.
| B
YO Yea Y32 Vo 'lg /4 2 1t 2 4 8 16 32 6%
Fig. 4.3

time you perform an addition, using the E and F scale, you are adding the ex-

ponents of 2 on the E and D scales. Thus you are performing a multiplication

of the corresponding numbers on the C and D scales. To see why this is so,

recall that 10M+n = 10M x 10" and just as with powers of ten, it is true that
gm+n - 7M™ x 2N

for all integers m and n, both pbsitive and negative, and zero.

For example ,’ 1 on the F scale coincides with the mark for 2 on the C
scale and 3 on the E scale coincides with 8 on the D scale. Therefore, whe
we add 1 ard 3 using the E and F scales to get 4, we are, in fact, adding the
exponents of the numbers 21 = 2 and 23 = 8. This is equivalent on the C and
D scales to multiplying 2 X 8.

2143 = 24 = 16
=2l x23=2x 8=16.
As you can see, 4 ontheE scale coincides with 16 on the D scale.

Wwhen we add a negative number td a positive one, using the E and F
scales as in Tig. 4.2(b), we are at the same time dividing one power of two
by another on the C and D scales. This is true bocause if m and n are in- |

tegers, -
2m+(—n) = 2m—n - 2m % 2-n - _:;‘;:

-y vy

ERIC "
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Thus in Fig. 4.2(b) we performed the division -q- =2-1= E' Any displace--
ment to the left of a number is a subtraction and is equivalent to a divislon.
For example, in Fig. 4.4 we have done the subtraction 5 - 3 = 2 using the

5
E and F scales which is g\qutvalent to 25-3 = %3- = 4

Fig. 4.4

|E -6 -5 -4 -3 -2 -

ANARER
.

F -6 -5 -4 -3 3 4 5 o6
Questions
1. Draw rough diagrams showing the relative positions of the E and F

scales on your slide rule after performing the following additions:

(@ 1+4 () 2+ (-3)
(b} -3+ (-1) (@ 0+ 2
2. Give the mumplication problem solved on your slide rule correspond-

ing to each of the additions in Question 1. Write these multiplica-
tions both in exponential form and without exponents.

3. Write the following multiplications in the form 2™ x 2" where m and
n are integers. Do each of the multiplications . using your slide

rule. What addition is being performed in each case?

@ 8xT (© 1x16
(b) é—xi— (d) éﬁéxﬁc‘l
4. Use your slide rule to do the fellowing divisions:
@ = © 3
o 3 @ 2

~1
or
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4.2 Non-integral Powers of Two

The numbers on the C and D scales you have labeled range from EIZ
to 64. With these scales you can easily multiply any pair of these numbers
(numbers which are integral powers of twn) s iong as the product is between
é— and 64. But what if we wish to multiply and divide numbers that are not
integral powers of two? It seems reasonable that numbers between integral
powers of two on your slide rule can be represented by points between the
ones alreaav marked. But how are these intermediate marks to be determined?
On a centime‘cr rule, marked off naly in centimeters, if you wish to indicate
where the half-centimeter marks should be placed you put marks halfway be-
tween the centimeter marks. We can do this, because the centimeter marks
are equally spaced. On a slide rule, however, such is not the case. The
numbers increase more and more rapidly for equal distances on the ﬁile as
one approaches th, right-hand end. The interval on the left end corresponds
to an increase of 515 ~ -;—5 = %4- while an equal interval on the extreme right-
hand side corresponds to an increase of 64 - 32 = 32. What number does the
point halfway between 1 and Z on your slide rule correspond to? Mark off
the point halfivay between 1 and 2 on both the C and D scales. Now sgt the
1 on the C scale at this halfway mark. If we multiply this unknown number

by itselt as si.own in Fig. 4,5, the result is 2. !

Fig. 4.5 New mark
i /2

C SCALE | |

D SCALE

aa——
N o i

New mork

ihe number which when multiplied by itself yields 2 is 2. This is the un-
known number we are looking for. The square root of 2 is close to 1.41, so

label this point as 1.41 cnthe Cand D scales.

[
(N
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Now that we know that the point halfway between 1 and 2 on the C
énd D scales should be labeled 1.41, we can find the values of the points
halfway between the other markings. For example, if we muitiply 4 by 1.41
using the slide rule, we find that the answer is at the point halfway between
4 and 8. But we also know that 4 X 1.41 = 5.64 so this point should be
labeled 5.64.

We have found the value of the mark halfway between 1 and 2 on the
C and D scales to be N2. What about the corresponding mark on the Eand F
s;:aies? This corresponding mark lies halfway between 0 and 1 on these
scales and since the numbers on the E and F scales increase uniformly, the
midpoint has the value -;- We have lgbeled our slide rule- so that the num-
bers on the E and F scales are the powers to which 2 must be raised to get
the values of the corresponding points on the C and D scales. Since thus
far we have studied only integral powers, we have written something new,
namely VZ = 212, That this is reasonable is borne out by the fact that we
can use aP x aM = al*M o get 2V2 x V2 = g2+ V2 2 21 = 3 just as we
can cbntinue to find values of points on the C and D scales, we can extend
our ideas about fractional powers of two to many fractions by considering

points halfway between know" values. This will be seen ir. the following

questions.

Questions

1. (a) Find the value on the C and D scales of each point halfway be-
tween the original marks on the slide rule.
(b) To what number on the E and F scales does each correspond ?

2. Use the method described in Section 3.6 for approximating square
roots to find the number halfway between 1 and 1.41 on your C and
D scales.

3. Now that you know the value of the point halfway between land 1.41
(Question 2), r.ultiply it by other known values o:'x your slide rule to

find the values of some other unknown point_s.
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4. How many points could be labéled, using the half values on your
slide rule and the answer to Ouestion 37

5. (a) How can the cube root of 2 be written in terms of fractional ex-
ponents ? ‘ |
(b) How is each of the following obtainable by taking square and

cube roots
21/4' 21/3‘ 21/6' 21/8‘ 21/12

1.3 A Power-of-Ten Slide Rule

As you have just found out, the apparent limitation of our siide rule

of being able to treat only those numbers which are integral powers of two
can be overcome. Another limitaticn i{s that it can handle only multiplica-
tiors ahd divisions between 61—4 and 64. By making a sufficiently long slide
rule we can deal with numbers as large as or as small as we wish, at least
in principle, but since the slide rule is supposed to be convenient and easy
to use, this would defeat the whole purpose of the instrument.

The solution to this problem lies in the fact that any multiplication
or diﬂsioﬁ can be divided into two parts, one involvine numbers between 1
and 10 and the other involving oply powers of ten. For examplé,

(1.65x 106) x (1,21 x 102) = (1.65 ¥ 1.21) X 108, Thus we need only mul-
tiply and divide numbers which are between 1 and 10. It turns out, there-
fore, that we need only that segment of the slide rule containing the num-
bers between 1 and 10. The rest is superfluous.

It is not’clear that this {s enough. If we have a slide rule which in-
cludes only the numbers from 1 to 10 and try to multiply. say: 6 X 6 by the
method we have described, then the answer will not appear on thesslide rule;
it would lie be?ond the end of the rule. Similarly, if we try to divide 2 by 9
the answer will not appear. However, a slide rule including the numbers
from 0.1 to 100 will take care of such contmgencies. This is because the
procuct of a.ny two numbers between 1 and 10 is less than 100 and the quo-
tient of any two numbers between 1 and 10 is greater than 0.1. In fact, as

you will see later, we can eliminate the need for this extended range of num-

5{
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bers, but first, we shall construct a slide rule covering three decades, from
0.1 to 100, from 10-1 to 102, to see how we can use a slide rule with a range
of 1 to 10 to handle any numbers.

Erase all the numbers you have put on your slide rule. The two new
scales you w!il construct will also be called C and D. Label the first mark
at the left on Loth the C and D scales with the number 0.1. Label the fourth
mark to the right 1. Thus, adding the distance between the first and fourti
mark will correspond to multiplying 0.1 by 10. The fourth mark to the right
-t 1 shou!d therefore be labeled 10 and the twelfth mark labeled 100. The

resulting C and D scales are shown in Fig. 4.6.

Y ! ] !
Fig. 4.6
Questions
1. (a) 1f we multiply the value of the point halfway between 1 and 10

by itself we get 10. Use this fact to find the value at this point.

() Use the answer to (a) to find the values corresponding to the
points halfway between the ends of the other two decades.

(c) TFind tie value of the point one-quarter of the way between 1 and
10. Use this value to find values corresponding to all the rest of the

marks on the C and D scales.

4.4 Division and Multiplication Using Only a One~Decade Slide Rile

With the new C and D scales we have marked off, we can divide and
multiply any pair of numbers between 1 and 10. Now we shall use this set
of scales to show that in fact one can do the same thing using only the mid-

dle portion of a threc-decade slide rule.
-~

-
£

a
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c ol .mg 315 562 | 178 A6 542 10 /18 3lb 562 100 :
C1TT] CPTTTT
D o1 .18 .38 .Lz 1118 21é 5.53) 10 178 Si.b 58.2 (00

o

Fig. 4.7

First, let us see how we can perform divisions using only the middle

5.62
First, 1.78 is located on the D scale and the 5.62 on the C scale positioned

directly over nwto‘ go back by the length corresponding to the
number 5.62. The answer,close to 0.316, can be read directly under the 1

on the C .cale. However, notice that if we multiply the answer 0.316 Ey 10

decade. The division is indicated on the slide rule shown in Fig. 4.7.

(we do this by reading the number on the D scale directly under 10 on the C
scale) we see from Fig. 4.7 that the 10 on the C scalé is almost directly
over 3.16 on the D scale. What about other divisions ? Clearly, either the
1 or the 10 of the C scale must be over the central decade of the D scale in
any division involving two numbers between 1 and 10. If the 1 is over this
portior. of the D scale, the correct answer can be read under it without fur-
ther ado. If not, then the 10 of the D scale is over a number which is ten
times the desired answer. The fact that this is ten times too large is unim-
portant, because we can easily find the location of the decima!l oint by es-
timation. It is clear, for example, that tne answer to the division described

-~

above, -é—% lies somewhere between 0.1 and 1.

In multiplication problems, as in divisicn provlems involving two
numbers between 1 and 10, the answer does not always fall within the 1 to
10 decade. But again, as in division, there is a simplg way tn get the an-
swer. To multiply 3.16 by 5.62 we set the C and D scales as shown in Fig.

4.8(a). The answer falls beyond the end of the center decade of the D scala.

(C ol 8 3p 367 | L7 L6 ez 0 78 316, 582 100 l

NERNEENARINNN
D o1 .78 .36 562 | 118 /e 5.62 10, /78 31.b 58.7 100
4

-
-

Fig. T.8(a)

‘g. tlj;
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As you can see from the figure, it is close to 17.8. However, if we starnt
over again and divide 3.16 by 10 as shown in Fig. 4.8(b), you can see that
the,o‘factor 5.62 falls directly over 1.78, which is just one- ~tenth of the an-

c ol g 3ib 362 | 178 216 562 10 118 3/b 562 100

D o4 178 b .52 | 118 /6 5.62 10 178 3I.b "55.2 100
Fig. 4.8(b)

swer. Again, we are not concerned about the decimal point because we al-
ways find it by estimation. The important thing is that by reversing the end
of the center decade of the C scale that we place over one of the factors,
we can find in the center decade the correct digits of the answer. Thus we
can do any multipilication of numbers between 1 and 10 using only the parts
of the C .and D scales between 1 and 10. First we.try the usual procedure
for multiplication. If the second number, on the C scale, is not over the
center decade of the D scale, we move the 10 of the C scale over the first
number and then the digits of the answer will certairly appear beneath the
second factor in the multiplication. We can, therefore, dispense with the

other two decades.

Questions

1. Which of the following division problems would have answers lying
under the 1 of the C scale and which would have answers beneath

107

@ =%
© 1778 |

2. Perforr the following divisions, using the slide rule only to find the
digits. Use only the center decade of the C and D scales. Find the

correct placement of the decimal point by estimation.

0.0178 (o) 3620
5. 62 ' 0.178 8§

(a)
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3. Perform the folloﬁtng multiplications, using only the center decade
of your slide rule.

(@ o. t‘)r?sxo .0178
(b) 3.15x 56.2
() 17.8x 0.0562 T

4.5 Commercial Slide Rule Scales

Not every division on a ruler is marked with a number. Usually the
number marks correspond to integial numbers of inchaes cr certimeters. The

'subdivldlng marks, being equally spaced, have values that can easily be

determined by inspection and need not be labeled. In the interval between
0 and 1 cm on a centimeter scale there are ten subdividing marks, each mark
correspondﬁng to 0.1 cm. The numbers you piaced on your power-of-ten
slide rule you found by taking successive sqﬁaré roots of 10 and are not
succesive whole numbers, and do not make a decimal scale; it is therefore
awkward to use. To locate the points on a power-of-ten slide-rule scale
corresponding to any numbers we first make a table ('i‘able 4.1) of the dis-
place.-rnents'r and the gqrrespond‘mg numbers using the information on the

scales from 1 to 10 in Fig. 4.7.

- TABLE 4.1
Displacement . Number
0 1.0C
2.5 1.78
5.0 3.i6
7.9 S.62
’ - 10.0 10.00

-

! *In the table, a displacement of 2.5 units equals 1 cm.

g:;
\_ L.‘
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Then we make a graph using the data in this table, drawing a.smooth curve

exactly connecting all the points as shown in Fig. 4.9. (For better accu-

ragy we could calculate ‘ntermediate points to add to the information in
] o

Number
—n WAt ON @Y

kT Fig. 4.9

~— " 0Ol 2345678910

Displacement
Table 4.1 and make a larger graph than that in Fig. 4.9.) We then use the

graph in Fig. 4.9 to read off the displacements for the numbers we wish to
put on the slide rule and make a second table (Table 4.2 is an abbreviated
form of such & table) which we can use to make a power-of-ten slide rule
having convenient numbers and subdivisions.
| TARLE 4.2
Number Displacement

1 0

2 3.01
3 4:77
4 6.02
5 6.99
6 7.78
7 8.45
y 9.03
9 9.54
10 10.00

Or your slide rule you will find an "L" scale (used for finding log-
arithms of numbers) marked off w};h equal divisions. 7This scale goes from

0 to 10 and is the same length as the C and D scales so you can use it to

measure displacements and cl.ack the values in Table 4.2.

~
«

R¥
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A slide rule made commercially has points marked on it which cor- )
respond to convenient numbe_rs. Look at the engraved roints on the C and D
scales on the other side of the slide rule with v;rhtch you have been working
corresponding to the integers laﬁeled 1, 2. 3, etc. Each of the intervals be-
t"ween these numbers is subdivided. However, these intervals do not have
the same number of subdivisions. The interval between 1 and 2 is divided
inio ten labeled parts, 1.1,1.2,1.3, ...1.9, and each of these ih turn is
divided into ten parts by unlabgled marks so the smallest divisions corre-
spond to 0.01. The spacé between 2 and 4 is also divided into ten parts, but
since there is less space each of these ten is divided into only five parts.
Thus the smallest subdivision in this range corresponds to 0.02. Between 4
and 10 the intervals between integers are divided into 10 large intervals, but
the distance between integers is so short that eac;h of these intervals is

divided into only two small intervals, each equal to 0.05. As you can see,

one must be careful in reading the scales on a commercia! slide rule.

Questions
1. Use the graph in Fig. 4.9 to find

(@) the number on a slide rule corresponding to a displacement of

3.5.

(b the displacement corregfmnding to the number 6.5 on the D scale.
2. Perform the following multiplications on a commercial slide rule.

Use exponential notation in locating the position of the decimal

point. ' -
(@) 31.7 x45.6 (c) 863> 748
(b) 0.37 x 7.44 " (d) 0.0C0845x 0.000079 °
3. perform the following divisions on a commercial slide rule:
0.00000049 362
(@ 13 () 5.0043
| 4.3 x 1011 1.07
(b) 376 D 4070
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4.6  Multiple Multiplication and Division :

The slide rule is ideal for long series of calculations. The sliding
crosshair can be set to the result of intermedxate calculations to keen track
of them, but there is no need to read the answer for each multlplication or
dwtsmon. For example, consider the product 22 X 2.3 X 8.9x4.8." First,
you mu! _ply 22 by 2.3 starting with the left end of the C scale over 22,
setting the sliding crosshair over the answer on the D scale. Then, with-
out bothering to read the answer, set the right-hand end of the C scale so
that i* coincides with the crosshair. You are now ready to multiply the prod-
uct 22 % 2.3 by the next factor, 8.9. To do this you simply move the cross-
hair to 8.9 on the C scale. The answer lies directly below on the D scale,
but you do not bother to read it; you just move the right-hand end of the C
scale to this point and then move the crosshair to 4.8 on the C scale to
complete the calculation. Now the answer can be read from the position of
the crosshair on the D scale. The digits are 216.

To find tﬁe decimal point you make a simple approximation:

22 2.3%X8.9%x4,8m20x 2% 9% 5=1800
Thus the correct answer is 2160.
A series of divisions is even easier to do. Take, for example, the

1 . , -
calcu!ation of 7.2 X4.8 s 7" To find the anssver quictly and easily with

out bothering about ‘intermediate answers, you first move 2.2 on the C scale
over the left end of the D scale to divide 2—1—:2- Piacing the %rosshalr orer
the answef at the end of the C scale, you can now divide by 4.8 by mov'ng
the C scale so that 4.8 on this scale coincides with the crosshair. “Yext
the crosshair is moved to tii answer under the end of the C scale. The
final division by 5.2 can n w be made by moving 5.2 on the C scale to co~
incide with the crosshair. The final answer is then read on the D scale be-

low the end of the C scale. The digits in the final answer re 182, Making

*Follow each step in the examples in this section with your own commercial
slide rule. .. ‘ '
f)t")
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a rough approximation of the problem we get

1 1
Sx5x5 50 0-02

so the correct answer is 0.0182.

The tricks discussed in the two examples above are particularly use-
ful in solving caiculatlons that are a combination of both multiplication and
division. Suppose you hav- to calculate

I3IX7X2.5
5x4%x1.9

* The easiest way to do the calculation is to divide 3 by 5, multiply
the result by 7, then divide by 4, multiply by 2.5 and finally divide by 1.9
without reading any answer except the final one to get the digits 138. Ap-
proximation places the decimal point and the correct answer is 1.38.

A vast amount of arithmetical drudgery can be saved by using a slide

rule to perform multiplications and divisions and the results are accurate

enough for nearly all purposes. Once you have learned how to do different
kinds of calcuiations, the only source of error is in reading the scales. Af-
ter you have had sufficient practice in reading the scales, you will find that
you can calculate very rapidly with a slide rule and make very few ermors.

.

Questions

Perform the following calculations without reading any of the inter-
mediate products.
1. (@) 14%xX2.5%x13X%X13
(b) 1.55x2,37 % 110X 226
(c) 7.8%197x2.00x%x7.13
(@ 11.7x9.83x1076x 3,05% 1078

et
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13
ald

11 1
(@) 773%79.8 127

1. 1 3
®) 3% 37006 X 7.1

1 N 1
6.1 % 1047 5,2 x 10-3

(c)

1
3.06x% 109 X 2.14 x 109

(d)

37.6% 12.4 X 8.3
2.7X3.78% 4.1

(a)

63.4 %X 4.73%X7.79
21.2 %X 2.86

(b)

8.72 x 103 x 3.64 X 10-7 x 11.2x 104
11.1x 100X 2.34 X 6.38 %X 10-9

0.0037 X 6.5 % 1010 x 873

) S
41.3 X 18 X 127 X 8.81

2.718 % 3,00 x 108

1 \
e .80 X 0. .
3.14><127><9 80 X 0 667><.4

(e)

On the C and D scales of a 10-inch slide niie;

what is the relative

uncertainty in reading a number between (a) 1 and 2? (b) 3and4?

{c) 9 and 10?

Constant Factors, Ratios, and Uncertainty

Many times in niaking calculations we encounter situations in which

we have to multiply a series of numbers by the same constant factor. For
exampie, in making a map we have to multiply a large number of measuréd
distances by a scaling factor to get the correct lengths to put on the map.
This is easy with a slide rule. All we have to do is set the ::end of the C

scale once (or at most twice) directly over the constant sca’hng factor and

then just move the crosshair to perform each successive multiplication.

]
LU
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For example, i{f we set the 1 on the C scale over 3 on the D scale we can
multiply 3 times any number from 1 to 3.33 merely by moving theqcmsshair
to the number on the C scale by which we yvtsh to multiply by 3 (Fig. 4.10),
and then reading the answer on the D scale. For numbers greater than 3.33

we simply set the other end of the C scale over 3 on the D scale.

g l.........t A z i) ""Wﬁ‘“r‘*w“MWWWWWW*MW%\W \\45\\1:; mx 1 qw I i{J.txmwa
Fig. 1.10

Similarly, if we set the 7 on the C scale over 3 on the D sca.e, as
shown in Fig. 4.11, the ratio of any number (from 1 to 4.28) on the D scale
to the number directly above it on the C scale is §7-= 0.428. For numbers on
the D scale between 0.428 and 10 we set the left end of the C scale over

4.28 on the D scale.

4

m;ﬂatulm'im!\lm;t'mi amez'gm&vlug‘mglmﬁnwms i e A ! Bl L;J.:ét th] ITJ.'{.'.‘."\Mth!!.’{.‘.‘. ih;m.‘,'.'.'.*.gmtzsl.'.';. '.‘.5lﬂthmﬁwsmd¢mkﬁt‘§%ﬁ‘wl\f
Fig. 4.11

The uncertainty in reading any scale is a fixad small distance along
the scale. For example, one might be able to read a centimeter scale to with-
in 0.02 cm. This uncertainty in a langth reading matters much more for short
lengths than for long ones when we are concerned with relative uncertainty.

Consider two extreme cases: a length of 0.50 cm with an uncertainty of
0.02 cm
0.50 ¢

0.02 cm has a2 relative uncertainty of >< 100 = 4 per cent; a readinu

of 20 cm with the same uncertainty of 0.02 cm has a relative uncertainty of

0.02 cm
et et = .1 .
70 & 100 =0.1 per cent

On a "10-inch" slide rule, the C and D scales are about 25 cm long
and, reading from the left end, 1 cm corresponds very nearly to a factor of
1.1. Since the divisions on the scale between 1.0 and 1.1 are almost equal,

0.52 ¢ represents a factor close to 1.002. Suppose you m.ve the left end

{
ERIC -
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of the C scale to @iy position along the D scale. An uncertainty of 0.02 cm

in the reading on the D scale still corresponds to a factor of 1.002. Thus the

fractional uncertainty in reading a slide rule is constant, and all readings on

tka C and DD scale have an uncertainty of about 0.2 per cent.

Questions

1.

To what multiplication factor does a distance of 1 cm on the C and

D scales correspond ? .
If you move the 1 on the C scale to a point directly above 1.50 on the
D sf:ale. |

(a) what ts the ratio of any number on the C scale to the one directly
below it?

{b) what is the ratio of any number on the D scale to the number
directly above it?

On a commercial slide rule there are two adjicent scales labeled A
and B. Each of these i3 a iwo-decade scale and the decades are
just half as long as the C and D scales. What is the relation be-
tween a number on the A scale and the number directly below it on

the D scale? Can you explain why there is this relation?
Problem with student?
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Chapter 5. AUTOMATIC COMPUTATION

L]
t

In the previous chapter you have leamed a number of techniques for
calculating effectively. We now turn to the pmb{em of calculating effectively
when the task involves repetition in one form or another. For this purpose it
is often convenient to use a computer. |

Our motivation for "programming" a computer (writing instructions
that tell the computer how to carry out a calculation) Is similar to the motiva-
ti~n for buiiding a machine to mass-produce a product: the time and money
required to}bulld a machine to stamp out "widgets" is greater than the cost
of making one widget by hand; but after the initial investment, widgets can
be produced cheaply in quantity. Once a program has been prepared, it is
easy to have it executed many timas by a computer. Although computers can
calculate many times faster than the human hrain, speed alone is not the
essence of the power of computers. No matter how fast a computer can cal-
culate, doing a one-shot job on a computer is a wasté ofzttme if it is easler
to punch keys on an electronic calculator (or even do pencil! and paper calcu-
lations) than to write a program to get @ computer to do it. Herce a single
calculation, however involved, seldom requires the use cf 2 computer pro-
gram if it is to be used only once.

There is a further benefit that derives from learning how to program a
computer. A ccomputer has a small "vocabulary" and cannot make the subtle
judgments of the meanings of words and symbols that ﬁuman beings are cap-
able of. Therefore, to write a program for a computer.‘.l one must leam to
think carefully in order to give the precise mstmctmné to the computer that

it needs in order to carry out the desired caiculations.

5.1 Programs
Suppose you are asking another person to average five numbers, using

a desk calculator. The request "Please average these five numbers" will

Y,
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suffice if the other person is knowledgeable in mathematics and competent
in the operation of the desk calculator. "Add up these five numbers and di-
vide by five" is a bit more explicit. However, suppose one is dealing with
a very inexperienced helper who is going to use a certain desk calculator to
find the 'average. If the computation is a one-shot job, it would be easiest
to do it oneself; however, suppése it is to be carried out a great many times.
One might then have to spell out this task in detail as follows:

1. Press the "clear" button® '

2. Punch the first rumber in the keyboard and press the "+" button

3. " " second " " " " " wowo" "
4. " * ¢hird oo " " now o "
5. " “ fouth " " " ] " " v "
6. » " fifth v " " L
7. Punch 5 in the keyboard and press the "+ " button

8. Record on paper the number displayed.

Such a set of instructions is called a program. This very s nple pro-
gram has many of the features typical of programs for mathematical :alcula-
tions, including: ,

(a) Numbers are entered. This is referred to as input.

(b) Computations are performed and intermediate results stored.

(c) Results are recorded. This is é:f;?ﬁ‘d‘fbw (in the above

example the output consists of a simile number).

(d) The instructions are to be carried out in order, starting at the

top. (At the end of each step the affiX "and proceed to the next

step" is implicit.)

(¢) The program can be appli2d not only to one specific set of input

numbers, but to arbitrary sets; therefore, it may be repeatedly useful.

¢

*This erases from the computer any numberslit is storing as a result of carrying
out a previous program.

o : ‘( 4 4
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Note that this program, though more specific than the original state-
ment "average these five numbers," still has meaning only ir a specific con-
text, involving a given type of desk calculator. It is necessary to understand
the context before a program is completely intelligible.

Though we usually do not refer to them as such, the recipes |n cook-
books are, in fact, programs. There the context assumed is a prvpgi‘ly
equipped kitchen, plus a cook familiar with the elementary fechnlquas and
vocabulary of cooking. Similarly, the instructions one might give a stranger
for getting to one's house are, in effect, a program. One usually assumes
then a driver who can count traffic lights, recognize landmarks, etc.

In computer programs the context which is assumed involves such
thint s as memoly storage locations, conventions about how storage locations
are named, and how numbers are entered into them and retrievad from them,
conventions as to what arithmetic operations are available, how the input and
output of numbers can be handled, etc. Rather than listing all of these con-
ventions at the outset, we will let them emerge &s we proceed. )

Let us re—express our program to average five numbers in language
that refers less specifidally to a desk calculator. We need the icdea of a

device in which a number can be stored. 7The commcn name for such & device

is storage register, or simply rr_ ster. Here we will need tw 0 registers,

which we will name X and S. Register X will correspond to the keyboard of
the desk calculator, and register S to the "display.”

Generally, in comgputers, a numb=ar can be retrieved from a register,
with the number stored remaining intact in the register (this is callzd "non-
destructive read-ocut"). When a number is read into a register the number
previously stored is, of course, lost.

Using the storage registers X and S our program which we will refer
to as Program 1 might be as follows:

4y
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PROGRAM 1
. Store 0in S.

* Read the next input number and store it In X.* ;
. Compute X ?s and store the result in S.

.  Read the next input nunisr and store it in X.

1
2
3
4
S. C;nTﬁute X + S and store the result in S.
6. Read the next input number and store it in X.
7. Compute X + S and store the result in S.
8. Read the next input number and store it in X.
9. Compute X + S and store the result in S.

10. Read th2 next input number and store it in X.

11. Compute X+ S and. store the result in S.

12. Compute S/5 and store the result in S.

13. Write S.
Note that at the end of 2ach step all numbers are left in registers. This is
fundamental in computer programming; numbers can never be left in limbo,
anrd It would be incorrect to replace steps 11 and 12 by

11. Compute X+ S

12. Divide the result of step 11 by 5.

Obviuusly a statement such as "compute X + §" must mean "compute
the contents of X plus the contents of S." For the sake of brevity, we prefer
not to incessantly include the words "contents of." Thus a symbol such as
X ’does double duty, serving both as the name of a storage reqister and as a
symbol for the contents of that ragister. Which meaning is intended is for-
tunately almost always clear from the context.

Now assume, for example, that Program 1 is executed using the input
data 20

10
45
15
60

*-As we will see shortly when we discuss input number conventions, in this
program the first input number is read in on this step.

) ¢/
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Such a list of input numbers is always entered into the computer in order,
starting at the top, as input is called for by the program. Therefore in step 2
"the next" input number is the first, namely 20, on step 4 "the next"is 10, etc.

Table 5.1 shows the contents of registers X and & after each step.

TABLE 5.1

Contents Contents
Step of X of S
1 ? ¢ 0
2 20 : 0
3 20 20
4 10 20
5 10 30
6 45 30

7 45 75
8 15 75
9 15 _ 90
10 60 90
11 60 150
12 60 30
13 60 30

The final answer, written out on step 13, is, of course, 30. Any horizontal
line in Table 5.1 gives a “snapshot" of the numbers stored at the cormespond-
ing intermediate point in the co.mputation.. Such a record of the history of

the execution of a program with specific input data is called a trace.

Note very carefully that whereas S is.always the same storage register,
its contents (also referred to as S in Program 1), changes during the calula-
tion, just as the reading of the desk calculator display changes. The dis-
tinction between a register ang its contents, and the fact that the value of
the latter depends on what point has been reached in-the program, must al-

ways be clear when one is dealing with programs.

Q-
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guestlons

1. Do & trace for Progrem 1 appliec to the following input data:
() 14,7,3, -1,8
() 25, 10, 0, 6, -7 .

2. Write programs similar to Pregram 1 which do each of the following:
(@) Compute the average of four numbers.
(b) Compute the average of six numbers.
(c) Compute the product of five numbers.

| (d) Compute the sum and the sum of the squares of five numbers.

3. write an (English language) program for changing a flat tire. What
context are you assuming ?

4. What explanation can you give for the question mark on step lin

Table 5.17

5.2 Loops and Branches; Flow Charts

An obvious inefficiency of Program 1l is that the same pair of steps is
repeated five times. If we modified the program to average, say, 100 num-
bers, this inefficiency would become painful indeed.

Of course, in dealing with a human helper we could say something
like "repeat thus-and-such steps until all input numbers have been taken
care of." However, such a statement is not sufficiently explicit when one
is dealing with an automatic computer. How can we make a program in which
a certain portion is repeated many times?

If step 1 is to perform a desired operation and the instruction step 2
is to go back to step 1, the operation will be performeu many times, but we
have made no provision for determining how many times. This is an example

of an infinite loop, obviously to be avcided in practice. Such a program is

frequently diagrammed as a flow chart, in which arrows indicate the "flow

of control"”:

[1 . Perform desired o;é}éttorﬂ

=

“"[2 . Go bafgk tc_p ;;tep_l]

T T Y
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As our next attew: might try:

——|1. Perform desired operation

T

2. Go back to step 1 the firét
— four times step 2 is reached,
but thereafter go on

'

//Thi“ i< a correct program, and could correctly guide a human capable of doing
t

he counting called for m step 2. However, computers unaided by programs
cannot count. The program must include some explicit device for countlng.
Therefore we introduce another storage register, which we arbitrarily
name K, in which to store a count of the number of times the "desired opera-
tion" has been executed. This adds a good deal of complexity to the logical
structure of the program, which now appears as follows in Program 2:
PROGRAM 2

1. Stofe 0in KJ‘

l

|2, Perform desired operatioil
3. Compute K + 1 and store
the result in K

4. If K <6 go to step 2; otherwise
K<6 go on to the next step as usual

K= 6

[s. Continuation of program

The first time step 3 is reached the contents of K are changed from
0 to 1, following which K stores the number 1, comesponding to the fact that
the "desired oreration" has been performed once. On the second pass through
ster 3, the contents of K are incremented to 2, <tc., so that each time step 3
is comglated K stores the number of times that step 2 has been executed.

Thus register K does function correctly as a "counter. "

9
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Step 4 is a branch: two paths of control lead out of step 4 on the
flow chart. (We l-ave ~2upted the convention of drawing oval-shaped blocks

around such branch points.) The "If K < 6" test in step 4 is a test of whicn

computers are capable, and this "I statement" operation 1.s very fundamental
in computer programming. Between steps 2 and 4 we have a loop, which is
cycled through five times during the running of the program.

Step 1, which sets the counter to zero, is essential; without it the

contents of K, required on the first pass through step 3, would be undefined.

The op_eratlon of step 1 is called initialization, which means the setting up of
initial values in registers used in later computations.

We have in Program 2 the essence of the most important way in which
computer programs take advantage of repetifive features of calculations. The
point is that the instructions for the ogé'rations in steé 2 need be written only

once, even though they are performed many times.

Now'let us go back to our original Program 1 which averages five num-

bers. Reorganizing it into the form of Program 2, we obtain Program 3.

PROGRAM 3
1. Stor2 0 in S.
2. Store 0 in K.
3. Read an input number and store it in X.
4. Compute X + S and store the result in S.
5. Compute K + 1 and store the result in K.
6. IfK <5 gotostep 3. |
7. Compute S/5 and store the result in S.
8. Write S.
9. Stop

Let us abbreviate such statements as "store 0 in 8" as “S = 0." Qur
program then can be written in a briefer form {which incidentally is quite close

to a program written in the BASIC or the FORTRAN computer language).

If,u
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' ] ' .~ 4

PROGRAM 3 (Abbreviated Notation)

1. 8§+0

2. K<0

3. Read input -X
4, S<+«X+S5S

5. K=K+1
6. If K<5Sgotoline3

7. S+S/5
8. Write S
g. Stop

A program that computes the mean of preciseiy five numbers is not of
much general usefulness. However, we can easily generalize our program SO
- as to calculate the mean of an arbitrary number N of values. Let us assume
that the inpnt consists of tie value of N followed by, the N values to be av-
eraged. We shall need an additional register to store N; in fact we may as
- well call this new register by the name N, as our aid in remembering what it

is used for. This time we give the program (Program 4) in the form of a flow

chart.
PROGRAM 4
STA
1. §+0
2. K«0

3. Read input =N

| Y

5. S<+«X+8S
6. K+K+1

l
K<NQ. If K< Ngoto 4)
; =

o E

(8., S<S/N
9. Write S

l

10.

ERIC "4
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Note that only a small part of the program embodies the mathematical
operations of averaging — in fact, only lines 5 and 8. (We will henceforth
refer to the steps of programs as lines.) The business conducted in the rest

of the program is referred to by the picturesque name of housexeeping —

initializing, counting, getting input data into the right places, etc. This is
essential in computer programs because, like the very inexperienced helper,
computers don't know enough to do any of this without being told. Often
there are many different ways of organizing housekeeping operations but no

. matter what way is ured considerable ingenuity is required to keep the house-

keeping free of "bugs, " just as in real life.”

*

Questions.

1. Which lines of Program 4 are examples ot each of the following:
(@) A loop
(b) A branch
(c) Initialization.
2. In Program 4
(a) How many times is the loop traversed ?
(b) How many times is the "K < N" path, returning from line 7 to
line 4, traversed?
3. what is the result of applying Program 4 to the following sets of
input data:
(a) 5, 6.1, 5.6, 6.3, 6.4, 6.1
o 7,1,2,3,4,5,6,7
(' 4,1.3,2.0,3.1,0.4,5.1, 7.6, -1.2
(d) 8, 1.1.2.3,.4.6, 5.1, 6.2
(e) -2.5, 6.1, 1.5, 8.3, 9.11

“In computer and electronic jargon "bugs" are errors in writing a program {or
wiring a circuit) and "debugging” is the process whereby they are located
and corrected. ‘

Loo
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In our develo‘pment of programming, the choice of register names is
to a large e:étent arbitrary, i.e. a matter of free choice for the pro-
grammer. (Often names with mnemonic signtflcance are chosen, as
"N" in Program 4, and also "S" for "Sum." This, however, Is op-
tional.) To illustrate this, write an alternate version of Program 1,
in which the names "Q5," "J2," "J9," and "A7" are used in place of
"s," "K," "N," and "X."

Let the input data to Progi'am 4be3, 1.2, 2.6, 3.4. Do a trace as
in Table 5.1, showing the history of the contents of regtsters'K, X,
and S.

Modify Program 4 so that it will compute the variance of the input
data as well as the mean. The variance is the average of the squares
of the values, minus the rquare of the mean. (Use another register,
named S2, for the sum of the squares of the values read on line 4.)
Do a trace of the program you wrote in answer to Question 6 using as
input data 3, 2, 3, 5. Does the result convince you that your pro-

gram is free of bugs ?

1

«
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Program 5 is designed to find the largest of a set of N numbers:

(a)
(b)
(c)
(d)
(e)

PROGRAM 5

&

1. Read input- N
2. Read input—-B
3. K=1

'

——-—=| 4, Read input =X

'

(5. 1X<Bgoto7)X=B
[x>8

6. B<X

l

7. K+K+4+1|-

!

.____K<?-?C 8. 1f1<<NgotoO

JK = N
g. Write "THE LARGEST IS"
10. Write B

. o

What is assumed about input data?

Do a trace for the input data 3, 5, 4, 6.

How many branches does this program have?
Explain the "bypass" from line 5 down to line 7.

How many times is the return path from line 8 back io line 4

traversed? (Let the first input number N be arbitrary.)

(f)
(g)

How many times is the "bypass"” from line S to line 7 traversed?

How should the program be modified if it is desired to compute

the smallest of the N numbers?

Lig-
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A very common type of repetitive computation, In which a simple
calculation is repeated over and over on different sets of data, is
illustrated by Program 6. Assume that each member of a class of
N students has taken an experimental measurément of the volume \'
and the mass M of a sample of a certain substance. Let the input
consist of the value N followed by the N pairs of V and M. What
does Program 6 then calculate ?

PROGRAM 6

| &

1. Read input —N |
2. K=0

!

r———{ 3. Read {nput -V
4. Read input -M
5. D« M/V
6.

K+-K+1

l

7. Write K, DJ

|

_‘E_i}i@ 1fK<Ngoto_3)

i
.

Now suppose we have a slightly more complicated situation {n which

each student reports a lower bound V1 and an upper bound V2 for his
volume measurement, and a lower bound M1 and an upper bound M2
for the mass. Modify Program 6 so that it will compute for each stu-
cant the lower and upper bounds for the density implied by that stu-
dent's data.

What does your program assume about the input data? ’

1:/.:1
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11. (@) Write a program which will make a table showing n, nZ, and n3
for integral values of n from 1 to 100.

(b) Why does this program apparently have no input?
n

12.  Write a program which will make a table showing n, ) k and
n k=1 .
k2 for integral values of n from 1 to 20.
k=1

13. Construct a program which will, hhike Program 5, find the largest of
N numbers, but which will also produce an integer tndicating which
of the numbers has the largest value. This integer should equal 1 if
the first is the largest, 2 if the second is largest, etc. In casé of
ties, the integer should indlicate the first of the largest values.

14. Construct a proéram which will find the largest and the sacond largest
of N numbers. Hint: After reading N, read the first number into reg~
ister Al and the second Into register A2. Then, if Al < AZ, interchange
the two values, so that it is known that Al > A2 (be careful to do the
interchange correctly!). Then read the next number Into X. If then
X < AZ, that value is unimportant and the process may proceed to the
next input number. If X > A2, then X can replace AZ. An-interchanqe
of Al and A2 may now be necessary, as we want Al always to contain
the largest number read to date, and A2 thé second largest.

Use a register named K to count the number of values that have been
read in to date. To what value should X be set when it is initial-
ized?

15. A table of loan payments (such as house mortgage payments) is to be
pfepared. The table is to have five columns: The first is to be the
month M (numbered 1 to 12) of each payment, the second the year Y,
the third the amount of payment A due at that time, the fourth the
interest charge C accrued over the past month, and the fifth the prin-
cipal P of the loan after that payment. <
The input is to be the month and year of the loaun, the total amount of
the loan (equal to the principal over the first month), the annual per-

centage rate R and the amount to be repaid each month. Assume that

Q 1“”
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the same amount is paid each month except in the last month, when

a lesser payment equal to the entire remaining principal is made.
Construct a program to prepare this table. Assume that‘each month
an interest charge equal to %x P is accrued, and that the monthly
payment A is always greater than this. Note that you will have to in-
crement M until {t reaches 12, but on the next step M will have to be

reset to 1l and Y incremented.

5.3 Basic BASIC

So far we hive been discussing how to construct and organize pro-

grams. We now consider how to express or "code" a program in a computer
language. .The candidate languages include BASIC, FORTRAN, ALGOL, P11,
APL, and perhapc others. We have chosen to use BASIC because it was spe-
cifically designed to be used by non-specialists on a tnﬁe-sharing system,*
and as a result is probably the gasiest computer language to handle at the
start: moreover, computers using BASIC are widely available.

As an example of how to code a program in BASIC we w.ll code Pro-
gram 4 which computes the mean of N arbitrary numbers. Wwe recall that the
input was assumed to consist of the value of N followed by the N numbers to
be averaged. Table 5.2 shows this program written both in the symbolic ab-
breviated English form we have been using, and in BASIC.

You can probably infer most of the rules and conventic% of BASIC by
examining BASIC programs such as this one, in analogy with learning a nat-
ural language by the Berlitz method. However, at the risk of spoiling the

fun, we will explain the conveations and rules of the grammar of BASIC.

A time-sharing system is one which has a central computer connected to a
number of terminals located at different, convenieni places. Each terminal
can be used to run programs and a number of terminals can be used simul-
taneously.
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TABLE 5.2
(Program 4 in Symbolic Form and in BASIC)
Symbolic Form T masic
1. S=0 10 LETS=U
2. K+0 20 LETK=
3. Read input =N 30 READ N
— 4. Read input —-X 40 READX
5. S+«X+S S0 LETS=X+S
6. K+=K+1 60 IETK=K+1
[YES __7. IsK<N? 70 IF K< N THEN 40
NO
8. S<+S/N 80 LET S =S/N
9, Write S 90 PRINT S
10. Stop 100 STOP ~
110 DATA 3, 1.2, 2.6, 3.4
120 END
e e e e ' - .. . . J U —

BASIC was created with a certain teletype keyboard in mind, and as
a result uses only symbols available on that keyboard: letters, numbers, and
a few punctuation marks and special signs. No distinction is made between
upper and lower case letters. Spaces carry no information and may be in-
serted for legibility or omitted as oﬁe wishes.

In BASIC lines can be numbered with any numbers from 1 to 9999,
(from 1 to 99999 on some systems). Notice that in Table 5.2, in the BASIC
column, the lines are numbered ir increments of 10. The reasons for this cu-
rious custom of incrementing line numbers in steps of 10 rather than steps of
1 will be explainad when we discuss the secretariai aspects of BASIC time- b
sharing systems, in which line numbers play an important role.

Now let us discuss each line of Table 5.2. First we have the assign-

ment statement. The first line "S « 0" translated into BASIC reads "LET §=0."

Tiiis means "store the number 0 in register S." Similarly, "S <X+ S" trans-

lates into "LET S =X + S," which means "compute the contents of X plus the

‘« lus
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contents of S and store the resultin §.” Thus, the apparently self-contra-
dictorv statement or line 60, "LET K = K + 1," has the perfectly sensible
meaning "add one .to the contents of K and store the result back inK," or
more briefly "increment the contents of K by one." It is a common complaint
that thié 1s.a mis-use of the equal sign, but no more suitable sign was avail-
able on the teletyp= keyboard for which BASIC was designed.
Svmbols for arithmetic operations may appear to the right of the equal
sign in assignment statements, as in lines 50, 60, and 80. Multiplication
must always be indicated by an asterisk {*J, division by a slash (/}, and ex-
ponentiation hy an arrow pointing upwards (t), while addition and subtraction
are, as you see from Table 5.2‘.. indicated by the usual symbols.
Parentheses may be used as is customary in afgebraic expressions.
Suppose, for example, that
The contents of A equals 2.
The contents of B equals 3.
' The contents of C equals 4.

Then the following BASIC coding lines:
220 LETX=Bf2-4*A*C
225 LETY=1/A+B
230 LET Z = 1/(A+B)

result in the storing of the numbers

32 - 4(2)(4) = -23 in X {on line 220),

%4. 3=3.51inY (on line 225), and
1 :
T 0.2 in Z {on line 230).

o _ Qutput may-be handled as on line 90 in Table 5.2, where the instruction
& ""PRINT S"' ipak;ates that the contents of register S are to be typed out. One
may have several numbers typed out in one P.RIN'I‘ instruction; thus 90 PRINT S,
X, X, N would cause the final contenté of registers S, X, K, and N to be writ-
" ten out. Note the use of commas to separate the names of registers.

The input numbars are included as part of the BASIC program, on line

110, fc -« ~ving the word DATA and separated by commas. These numbers are

“ | | | L
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taken in order, starting at the left, as READ instructions are encountered in
the execution of the program.

READ instructions occur on lines 30 and 40. On line 30, in the sec-
cond column of Table 5.2, "READ N" means "read the next input number and
store it in register N.” (In this program the nuﬁber read in by this instruction
is the first of the input numbers, following "DATA" on line 110, namely the .
integer 3.) "READ X" means "read the next input number and store it in reg-
ister X." If the input data dcgs Aot fit on one line, several DATA lines are
used.

As another example of data input, which incidentally illustrates how
several numbers can be read in by a single READ instruction, consider the

example

1250 READA, B, C

1260 IETX=Bt2-4*A*C

1270 READA, T

1306 DATA 2, 3, 4, 8.5, -9.2, 2.1

From line 1300 we see that the instruction on line 1250 stores 2 in A, 3 in B,
and 4 in C. On line 1270, 8.5 is stored in A (erasing its previous contents,
of course), and -9.2 is stored In F. At this point one more number remains
ready for input, namely 2.1.

Bi‘anching is done with the IF statement. Line 70 "IF K < N THEN 40"
means "if the contents of K are less than the contents of N, then transfer
control to line 40; otherwise continue as usual to the next line."

Other relat{ons can be used in IF statements. A complete list is given
in Table 5.3. Thus "IF W <=Q THEN 850" means "If the contents of W are

less than or equal to the contents of Q go to line 850, otherwise cortinue.”
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TABLE 5.3

[ = l equal

> greater than
< less than
>= gr:ater than or equal to

<= less than or 2qual to

l< > | not equal to

The "END" statement marks the last line of a BASIC program, and
“"STOP" indicates a point at which c\omputatlons are terminated.”*
One point which, however, needs further comment is the matter of

register names. In BASIC these must either be single letters (as A, S, X, Q),

a single letter followed by a single numerical digit (as AS, X0, B9, Q4), or
a single letter followed by an index enclosed in parenthesis such as A(S) or
B(212).

Within these limitations one may name and use a large number of
registers in BASIC — thousands, if necessary. However, the first operati~n
involving any register must be to store a number in it usually by a LET or a
READ instruction. Otherwise, one has a "bug" in the program, which involves
asking for the contents gf a register whose contents have not yet been defined.

This completes our survey of basic BASIC, and covers perhaps one-
third of the total vocabulary of BASIC. This is enough to express quite a large

class of programs.

Que stions

1. A trace of Program 4 was done in Question 2 of Section 5.2. Does this
trace apply to the BASIC version of Program 4 shown in Table 5.27?
2. What change is necessary in order to make Program 4, in its BASIC

form, average the numbers 4.1, 5.3, 6.7, 9.57

irHow to actually run a program in BASIC on a time-sharing terminal will be
discussed briefly in the next section.

11 | | .
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3. What does each of the following BASIC programs do? (Hint: When in
doubt, do a trace.) |
(a) 10 1ETA=2 ) 10 READA,B,C
20 LETB=5 20 LET X = Bt2-4*A*C
30 LETC=12 30 PRINTX
40 LET X = B*B-4*A*C 40 STOP
50 PRINT X S50 DATA 2,5,12
60 STOP 60 END
70 END
(c) 20 LETK=20 (d 20 LETK=0
40 READA.,B,C 40 READA,B,C
50 LET X = B$2-4*A*C 50 LET X = Bt2-4*A*C
60 PRINTX 60 LETK=K+1
70 LETK=K+1 1 70 PRINT K., X
80 IFK< 5 THEN 40 80 IF K <5 THEN 40
100 STOP 100 STOP
110 DAraz2,3.,4 110 DAT: 2,3,4,5,8,10
111 DATA 5,8,10 111 DATA-2,6,-3,4,11,-7,8,9,1
112 DATA -2,6,-3 °99 END
114 DATA 8,9,1
200 END
() 100 LETK=1 (fy 10 LETK=1 . -
110 LET K2 = K*K 20 LETF=1
120 LET K3 = K*K2 30 LETK=K+1
130 PRINT i, K2, K3 40 LETF=TF*
140 LETK=K+41 ‘ 50 PRINTK,F
150 IF K < 101 THEN 110 60 IFK<=10 THEN 30
160 STOP 70 STOP
999 END 100 END
() 40 LETX =0
50 LETY=1
70 LETZ=X+Y
80 PRINT Z
90 LETX=Y

100 LETY=2

110 IF Z < 10000 THEN 70
120 STOP

130 END
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4. Find any bugs present In the following programs, all of which are

supposed to compute 2.5 times (-1.3):

(@) 10 LETA=2.5 ) 10 LETA=2.5
20 LETB=-1.3 15 LET C = A*B
30 LETC=AB 20 LETB=-1.3
40 PRINT C* 25 PRINTC
50 STOP 30 STOP
60 END 35 END

(¢) 19 LETA=2.35 (dd S1 LETAS=2.35
20 LETB=-1.3 ) 52 LETAl0=-1.3
25 LETC/B=A ’ 53 LET CX = A9*Al0
28 PRINT C 54 PRINT CX
30 STOP 55 STOP
35 END 56 END

() 40 LETA=2.5 | (f) 210 READA,B

- 45 LETB=-1.3 212 LET C = A*B
48 LETC=0 215 PRINT C
50 LET C = (A*(B+C)+C)*1 216 STOP
20 PRINT C 218 DATA 2.5,-1.3,1.3,-4.12,62.5
90 STOP ' 219 END
100 END

(g 40 READA,B
250 LET C = A*B
300 PRINT C
1221 STOP
1222 DATA 2.5
1223 END
5. Code the program of Question 6 at the end of Section 5.2 in BASIC,
Include input data such that the program will compute the mean and
variance of the 1C numbers 1,2,3,4,5,6,7,8,9,10. -
6. Code Program 5 in BASIC, using N = 10 input numbers of your choice.
(The program is to find the'largest of these 10 numbérs.) Note: The
BASIC for line 9 ts 'PRINT "THE LARGEST IS".' (THE LARGEST 1S must
be enclosed by quotation marks. If it is not, you have a bug because
the computer reads this as a four word instruction: PRINT THE

LARGEST 1S, which is not part of the BASIC vocabulary.)

| v
ERIC - I1;
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Code Program 6 in BASIC, suppiying input data as follows:

Student Vi V2 M1l M2

R 47 s2 | 112.1 112.6
2 a9 | 54 112.5 112.8
3 | 46 51 111.9 112.4
4 48 50 112.2 112.5

Code the progras: of Question 13 at the end of Section 5.2 in BASIC,
using input data of your choice. |

Code the program in Question 14 at the end of Section 5.2 in BASIC.
Code the program in Question 15 at the end of Section 5.2 in BASIC.
Program 5 is a trot giving a program in two different languages. Dis~
cuss whether this ca'n be considered analogous to a trot giving the
Gettysburg Address in English and in French. What are the points of

similarity between the computer language example and the natural

" language example, and what are the points of difference?

Below is Program 4 expressed in FORTRAN, another very much-used
computer language. The more cumbersome way in which input and
output is handled in FORTRAN, and the fact that FORTRAN distinguishes
between two types of numbers, called "integers™ an;i "real numbers, "
are two of the factors that make FORTRAN somewhat harder to handle
than BASIC at first.

Without trying to understand everything about this FORTRAN program,
see, by comparing it with the other versions of Program 4 {f you can
identify some ways in which FORTRAN is similar to BASIC and some
ways in which the two languages differ.



-107-

SUM=0
K=0 |
READ (5,99) NTOT
99 FORMAT (13)
10 READ (5,98) XNEW
98 FORMAT (F19.5)
SUM = SUM + XNEW
K=K+1
IF (K.LT.NTOT) GO TO 10
. SUM = SUM/FLOAT(NTOT)
WRITE (6.98) SUM

STOP
END
/DATA
003
1.2
2.6
3.4
13. The successive approximation process for computing the square roots

(Scction 3.6) of some number V-generates the following sequence of

iterates:
1 vV
xl = 2 (XO + XO)
1 v
Xy =73 (xy + ;I-)
t_1 v
Xee1 =3 &K * xk)

Write a program _for finding square roots by this method taking L ; L

as the initial guess.
‘Use the fact that for each k, the valve of NV lies in the interval
between x and ;‘V— to obtain a criterion for terminating the iterations

becomes less than 10-9

by writing your program so that when

Xk
the iterations will be stopped.

115
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5.4  Running BASIC Programs

Let us assume that you have successfully "signed on" at a time-
sharing system terminal, with the assistance of a friend or by following in-
structions posted on the wall, so that you are confronted by a "live" terminal
connected to a BASIC time~sharing computer system. Your activity henceforth
will consist mainly of typing in "lines" and pressing the ;'carrlage retum" key
at the end of every line (step). Each time you return the carriage the line of
informatign you have typed in, encoded in some fashion, is ready to go to the
computef Being very fast, the computer is able to look at each terminal
several times a second (this is why it is called a "time-sharing” computer),
‘and take from your terminal a message, namely the encoded line of typing,
whenever one is ready to be sent.

Eventually you will have typed in your entire program, and the com-
puter will execute it. But until that pbtnt is reqched, the computer system
acts as your personal secretary, taking dictation and frequently putting in
its "two cents worth." The computer will have assigned to you a portion of
its memory to be your "work space, " in which it will record the lines you type
in, appropriately encoded. (This will probably be a certain number of "tracks"
on a "disk file," which will be identified for you if you take a guided tour of
the computing cente-.)

The computer, of course, is not really doing any thinking on its own —
it is slavishly following a very long and elaborate program, which has been
written by specialists to control the computer during time-sharing operation.
What you type in is, in effect, input data for this "operating system” pro-
gram, and by means of many branches — IF statements, in effect — the program
can test each line you type in, send you an "error message" if a line violates

certain conventions of BASIC, or store the line in your work space if it passes

all tests.*

*We are here describing a system "dedicated"” to BASIC. BASIC is also avalil-
able on some systems not fully dedicated to BASIC; in this case error messages
do not occur as you type in each line, but only when you attempt to run your
program.

¢ 11“ N
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After you have typed in your er..ire program (or at intermediate points
on demand), the computer system sorts the lines by line number — that s, it
arranges them in increasing order of line nugxpers. _This Is why every line
must be numbered. (Try typing in a line without a number, and you will see
that the computer rejects it, sending you a message of some sort to this
effect.) If the same line number appears more than once, the computer saves
only the last line typed in with that number.

This‘is. in effect, secretarial service, performed for you under con-
tro! of the operating system program. The implications of this service are as
follows:

If you want to correct or change a line, just type in the line you want,
with that line number. That will replace the former vers;on..

You don't need to type your program in order from top to bottom. Just
use line numbers correctly.

If you want to insert one or more lines between two lines of your pro-
gram, just type in lines with intermediate numbers .' This is the reason for the
custom of incrementing line numbers in steps of 10 as in Table 5.2 in Section
5.2: unforeseen insertions are then easy to fit in.

If at any point you want to see what is in your work space, type LIST.
This will cause the system to sort the lines in your work spaces and then type
them out for‘;ou to see.

For example, suppose you type in

: 10 LET A=5
20 LETB =0
10 LETA = 2
~ 30 LET C = A+B
. 200STOP
210END
40PRINT C
20 LETB =3
LIST

Then the computer, under control of its operating system program, will clean
up the contents of youf work space, and type them out; the result will prob-

ably look something like this:
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10 LETA=2
20 LETRB=3
30 LET C = A+B
40 PRINTC
200 STOP
210 END ©

Note that the lines have been sorted, the last version of line 20 has replaced
the earlier version, and spaces have been inserted according to a conventional
pattem.

When you are finally satisfied with your BASIC program, or when you
feel like giving it a whirl, type RUN. The computer will thereupon attempt to
execute your program. If all goes well, you will see your output appearing
on the terminal typewriter; each time a PRINT instruction is encountered in
the program, the register contents referred to are 'sent to your terminal, which
types them out. When a STOP instruction is encountered (or when a bug is
detected by the system), operation ceases, and you may continue typinj input
to modify your program, When you are all done you may sign off by typing
BYE.

Questions

1. Have someone show you how to use the terminal you will be using.
Prepare a sheet for ycur own future use, which includes notes on how
to turn the terminal on, how to sign on, hovy to save and retrieve pro-
grams, how to sign off, and other such useful {nformation.

2. Experiment with typing in a program. Type the lines out of order and
observe how the system sorts them whenever you ask for a LIST, Ob-

serve how lines may be changed simply by retyping them,

.5 Debugging a Program *
Now, how about bugs? In nature, these come in three families (the

phylum {s arthropoda, the class insecta, and the order hemiptera). Computer
bugs can also be classified into families.
The first type of bug includes those which are recognizable by examin-

ation of a single line by itself. These are the least pestiferous as the computer

lig
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immediately recognizes and rejects such lines, and asks you to try agaln.*
For example, if you type
100 LETY-X+W

(accidently hitting the minus sign instead of the equal sign), one of the tests
which the system makes on each line of input will fail, causing the 6perating
system program to type out an error message rather than storing the line in
your work space.

The secm{d family of bugs includes those which the system does not

detect and tell you about until you try to run your program. Here are several

. examples;
(@ 10 LETL=1 (b) 10 LETA=2
20 LETW=1 20 LETB=3
40 LETW=W+K 25 LETC=A+8B
60 PRINTK, W 40 PRINT, A, B, C
75 LETK=K+1 S0 LETE = (A+D)*C
80 IF K < 10 THEN 30 60 PRINTE
85 STOP 70 STOP
999 TND 99 END
(c) 10 READA,B (d) 100 LETA=10
20 LET X = A*B 110 LETK =0
30 PRINT A,B.X 120 LETA=A-1
40 READC,D 140 LET 5 =1/A
50 LETY = X+C*D ( 150 PRINT A,B
50 PRINTY 160 LETK=K+1
100 STOP 170 IF K <12 THEN 120
110 DATA 5.23,-18.7,2.3 180 STOP
200 END 3999 END

In these programs every line by itself is a plausible BASIC line, yet
bugs are present: In examp:e (a) an IF statement refers to a non-existent
line, while line 50 of example (b) refers to a register D whose contents have
not yet been defined (because no number has yet been stored in register D).
In example (c) insufficient data have been provided, and in example (d) divi-

sion by zero occurs on the tenth time that line 140 is executed.

*As remarked earlier, this service is provided only on systems fully dedicated
to BASIC.
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In each case the execution of the program will be aborted at the point
where the bug first causes trouble. An error méssage identifying the trouble
{s sent to the terminal, and the terminal is left in readiness to receive cor-
rections or add‘tions to the program, just as if nc RUN had ever been requested.

In example (a) trouble comes immediately; one of the first things the
BASIC system program does when you type RUN is to check the transfers of
control, sp that in example (a) no calculations will be made. In the other .
three examples, however, some calculations will take place, and some output
of the program will be obtained before the bug causes the computatlohs to be
aborted.

Precisely what will happen in each case depends on the system. Some-
times rather than terminating calculations, a warning message |s typed out,
but the calculations are allowed to proceed. In this case you will have to
deduce what the system did to get around the difficulty {f you are to make use
of the results of the computation.

The error message one receives usually makes it easy to spot and cor-
rect bugs. Scmetimes, however, it can be quite difficult to locate them, and
detective work is required. In that case temporary insertion of extra PRINT
instructions, to yield a partial trace of the calculations, is often helpful in
localizing the trouble. In this way the computer can be used to nelp in the
debugging. ‘

The third family of bugs are those that produce programs which run, .
but just don'it compute what you want to compute. As a trivial example, sup-

3.52
pose you want to compute 2 71 - 1.98 and to that end write the program

10 READA,B.C
20 LET X = A/B-C

30 PRINTX
40° STOP
50 DATA 3.52,7.71,1.98
bu END
3.52
The computer will compute 771 1.98 rather than the result desired. In this

case the bug, which was failure to use parentheses in line 20, cannot be

detected in the compiling and running of the program.

1.2
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Perhaps the best protecticn against such bugs is to vun test cases;
that is, to run youf program with test valucs of the {nput numbers, and com-
pare the numbers the computer generates with independently computed answers.

Finally, to close this brief glimpse into life with the computer, we
should mention the other secretarial services provided by BASIC. These vary
from system to system. However, there should be some means of storing
programs in a users' Jibrary of the system, usually by typing SAVE. In order
to do this you have to give your program a name — on some systems you will
have that done when you start typing it in. Then later you can retrieve your
program from the library and continue working with it. This is obviously a
big help if the program is long, c: you are a slov; typist. Also, it allows you
to use other people's programs. Finally, by typing in SCRATGH, or PURGE,
or KILL followed by the name (ftnd out which applies for your particular sys-
te:%), you may remove the program from the users’ library; it is important to
do this as otherwise the library becomes alutted with old programs.

Some further important secretarial services come under the heading of
EDIT operations. For example, it is possible to extract portions of a program
in the library, or to delete portions. It is possible to combine together a num-
ber of programs or portions of programs into one long program. It is possible
to resequence line numbers. At first you won't need these editing services of
the system, but later when you start writing long programs and combining sub-

programs together, they will come in very handy.

QU&SHORS

1. Determine by experiment what your particular system does when you
type in various incorrect lines of BASIC (line number missing, inad-
missible register names, missgellings of words such as LET or PRINT,
etc.)

2. Four examples of programs with Type “2" bugs were given‘ﬁ\ the text.
Determine by experiment what happens when you try to run these pro-
grams on Qour system. Would the behavior of the system enable you

to locate the bug in each case?
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Type in and run selected BASIC programs you have prepared to date.
(a) Type in and run the square root program you coded in Question 13
of Section 5.3.

(b) Test this program with several input values V. For some values
of V that you use, what Is the approximate per cent error in the square
root whicn the program computes ?

(c) Modify your program so that it types out every iterate X; ,X5.X3,
which it generates. Observe this sequence of iterates for several
test cases, and comment on the manner in which the sequence con-

verges to the answer.



3

A

-115-

) Chapter 6. GRAPHS

6.1  Functions: Independent and Dependent Variables

Some of the most powerful applications of mathematics are those
dealing with change and with relationshirs between changing quantities. As
an example'conslder Table 6.1 which is a record of a temperature sounding

taken at Washington.‘D.C. durlng\ghe early morning hours of August 15, 1936.

TABLE 6.1
- El'evatlon Temperature Elevaticn Temperature
(ft) (°F) (ft) (°F)
20 79 5000 67
1000 74 6000 65
2000 " 76 7000 59
3000 73 8000 56 7
€
4000 70 9000 ' 52 e

."I‘he' data are given in two corresponding columns. The numbers in the right-
hand column refer to the atmospheric temperatures while those In the left-
hand column refer to the corresponding elevations. Neithe. f the two col- {
umns taken by itself is at all useful. However, taken together they convey
information about the relationship between changes in elevation and corre-
sponding changes in temperature. A table such as the above is one way a
relation may be represented.

We may also state relations in words by describing thé conditions we
lmpoée upon the quantities involved. Consider the following: "For each
throw of a die record the value on the side facing up." This is a perfectly
good relation between the value on the face of a die and the ordinal number
of the throw. |

Perhaps the most common way of describing a relation between two
quantities is to write an equation connecting these quantities. For example,

A = vr? expresses a relation between the area A and the radius r of a circle,
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In words, it states that the area of a circle is equal to its radius squared
times the constant »n.

In the relation A = wr2 the symbols A and r are called variacies 5ince
they are used to gepresent many humeric values. In practice whan we are
dealing with a relation such as the above we usually choose a value for r
and then compute the corresponding value of A. That is, we usually think of
A as being determined by r, or dependent on f. Therefore we call A the
dependent variable and r the independent variable. More generally, the de-
pendent variableuis the variable whosée values are obtained after values, of
the independent variable are chosen. These values of the dependent variable
may be computed as in the case of the area of a circle or they may be the re-
sults of measurements as in the case of the data in Table 6.1. There, ele-
vation, the independent variable, was varied expgrimentally and atmospheric
temperature was measured for the corresponding elevations.

In many situations as described above, It Is convenient to think of
one variable depending on the other rather than the reverse. For éxample, it
is more -natural to think of temperature as depending on elevation than of
elgavatio‘ﬁ depending on the temperature. Consequently elevation is choéen
as the independent variable with atmospheric temperature becoming the de-
penden't variable. In other cases the relationship between two variables is
symmetric in nature and we may arbitrarily g_:hoose the independent véfxgabl'é’.\
For example, it is just as natural to say that the area of a square depénds on
its perimeter as to say that the pe?meter depends on the area. "f\

When a relation between two variables is such that for each value of
the independent variable there is only one value for the dependent variablal
the relation is called a function or sometimes a functional relation. All the
permissible values of the independent variable comprise the zmaln of the‘
function whereas all the values of the dependent variable comprise the range
of the funttion. Thus, for example, in the functional relation in which the
value on ;che side facing up on a die is a function of the o:zdinal number of
the throw, the domain consists of all positive integers while the range is
restricted to the integers from 1 to 6. 1 .

2
hY
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Giving the values of the independent and dependent variables in
numerical form s nct the only way of describing a function. The values of
the two variables can also be described in graphical form using coordinates

in a rectangular coordinate system. Figure 6.1 is such a gi'aphlcal represan-

tation of a tirpical electrocardi- - 3
. e -
gram. It provides a co,mpx_'ehen g._g 2 = _‘
“sive view of the variations in § E |
[
- voltage as a function of time, =
o

0O .2 4 6 8 10 12 14 18 18
Time {(seconds)

Fig. 6.1

much more revealing than could
be obtained from any tabulation
of corresponding values. For

this reason we shall discuss graphic presentations of functions intensively

in this chapter.

Questions
1. If each of th«\a following statements expresses a functional relation
between the variables indicated, which of the variables would most
logically be chosen to be the independent variable ?
.(a') The da‘y of the month and the corresponding maximum outdoor
temperatur%.
(b) The atmospheric temperature and the position of the sun in the
/ sky on a sunny day.
(c) The volumes of spheres and their corresponding circumferences.
(d) The volumes of spheres and their corresponding surface areas.
2. A useful categorization of variables is in terms of the values which
they can assume. éometimes the variables take on discrete values
each separatad by some finite difference. Often, however, they take
on all the values contained in an interval on the number line.
(@) Can you give an example of a function whose independent vari-
(able takes on discrete values and whose dependent variable takes
on all values in an interval.

. {b) Cive an e‘x'ample of a function whose domain consists of all

* values in an Interval and whose range has discrete values.

Q [ B

‘ . ISRy
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6.2  Choosing Scales for Axes | &
Wben a function is graphed we usually plot the independent variable
honzontallf and the dependent variable vertically. Thus in Fig. 6.1 time
appears as x-coordinates or abscissas and Is the independent variable while
voltage appears as y-coordinates or ordinates and is the dependent variable.
If ‘we are graphing data from a table, the first step is to choose the
size of the scales, that is, how large an interval will be répresented by
each pair of horlzontal'llnes of thn graph paper and by each pair of vertical
lines. Figure 6.2 repfesents a graph of the data of Table 6.2. Each division
on the vertical axis represents a five-year interval. Obviously, this is not
the only possible choice. The same data are plotted in Fig. 6.3 using dif-
ferent scales: here one division on the vertical axis stil]l represents five
million people while one horizontal division represents a 10-year interval.
Neither graph is incorrect, but the one in Fig. 6.2 has advantages over the
other. If we use a scale like the one shown in Fig. 6.3, on a whole sk zet
of graph paper,the graph will huddle on a small part of the page, leaving
most of the area blank and therefore devoid of information. A more expanded
scale like that in Fig. 6.2 makes it easier to plot' and read the graph accurately.
TABLE 6.2

Population of the United States, 1790 - 1950
From the Statistical Abstract of the United States

Population Population
Year (millions) Year (millions)
1790 3.929 1300 76.094
1800 5.308 1905 83.820
1810 7.240 1910 92.407
1820 9.638 1915 100. 549
1830 12.866 1920 106.466
1840 17.069 1925 115.832
1850 23.192 1930 123.077
1860 31.443 1935 127.250
1870 39.818 1940 132.594
1880 50.156 1945 140.463
1890 62.948 1950 152.271

12¢



Population in millions

150

140

130

120

110

100

90

80

70

60

50

40

20

10

-119-

1

2

1800 1820 1840 1860
* Year

Fig. 6.2. Population of the United States, 1790 - 1950
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{ Fig. 6.3. This graph pre-
sents the same data as in
Fig. 6.2, but plotted using
a different horizontal scale.
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The population data run from 4.0 millions to 152.5 millions, * and
the rulings from zero to 160, well below .the top of the page. The graph
- could be made to cover most of the whole page by using 40 divisions of the -
same size as thdse shown in the figure and letting each represent .

152'548 4:0 _ 3.7 millions instead of 5 millions. Figure 6.4 shows a portion

*Since we cannot plot points on the graph to better than about the nearest -
half million, we have rounded off the population data from which we con- ‘

structed the graph.

S
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of the graph of Fig. 6.2 but with each of the original vertical scale divisions

represexiting 3.7 millions and starting from 4.0 r'nll‘ltons. Such a vertical
63.2

5.8
X

48.4

410

33.6

26.2

Population in millions

4

40 &

1800 1820 1840 1860 1880
: Year
Fig. 6.4

is perfectly legitimate, but it makes plotting and reading the graph laborious.
When the scale runs from zero to 160 millions, as in Fig. 6.2, in intervals of
5 millions, the date at which the population was 25 millions, for example, is
‘ found easily. Since a graph is intended to be a clear visual display of data,
an effort should be made to make it easy to read. Generally, one should
choose the interval represented by one division so that the graph has simple
decimal scales on which decimal fractions can he plotted and read f_:asily
(the scales on a commercial slide rule are examples of this).
If zero on oné or both of the scales is not included on a graph, the
graph may be misleading if one does not keep in mind where a "missing"”
zero is (somewhere off the paper). For example, the pressure changes in
f Fig. 6.5(a) appear to be very large. Figure 6.5(b), however, which includes
-~ zero pressure shows that these changes are, in fact, small. (The difference
in the twq graphs i{s analagous to comparing numbers by their absolute dif-

ference and by their pércentage differance.)

| JARY
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Whether one Includes zero or not depends on the purpose for which
the graph is drawn; there is no general rule. A graph like that in Fig. 6.5(a),
for example, can be misleading t;J someone who sees such a graph for the
first time. (A climatologist, who is often concerned with small pressure
changes, us9s such"graphs all the time ‘and is not misled.)

Sometimes there is no question about what should be done. Suppose
you are taking temperature readings once every minute of a substance as it
cools to room temperature. You can start your graph at time equa: to zero or
at the actual time your watch shows when you stait taking readings. But it
would be pointless to start at temperature equal to zero, since you know the
temperature will not fall below room temperature. In this case, room temper-

ature is the best choice for the origin of the ordinate scale.

Questios's

1. Figure 6.6 contains two graphs on one piece of graph paper. The
lower curve is a plot of the time of day that Venus rose throughout
1968, and the upper curve shows the times Venus set, in the same -
year. )
(a) On what date did Venus rise earliest?
(b) On what date did it set latest?
(c) . On what date was it above the horizon longest?

2. (a) Use Fig. 6.4 to find the population in the years 1810 and 1840.
(b} Repeat (a) using Fig. 6.2.

(c) Are the points easier to locate in (a) or (b)?
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Fig. 6.6. Rising and setting times for Venus in 1968. ("1" on the
horizontal scale represents Jan. 1; "2" represents Feb. 1, etc.)
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3 Figuré 6.7 shows three possible U J 2 '3 4
) S W N N

scales for a graph. On each

one, locate the points: 0.25, 0 '
: P Ly v b oo b e v 4

1.7, 1.8, 2.5, 0.33. Are all

0 | 2 3
three le t
scales equally easy to Lottt e s oo byt
use? If so, why? Fig. 6.7
4, Label or describe scales suitable for graphing the following sets of

data. Make sure, not only that all the data described can fit on the
graph, bt also that lnterpolahon is made easy — that the smalles?
divisions correspond to reasonable numbers.

~ (a) Height between 2 and 6 feet
Age between 0 and 17 years

(b) Public debt between 240 and 380 billlon dollars
Years between 1950 and 19€6.

() Fahrenheit temperature between 32© and 212°
Centigrade temperature between 0° and 100°

(d) Day of year between 0 and 365
Time of sunrise between 4:13 and 7:39

5. The table below gives the masses of steel spheres of different diam-

eters. Draw a graph of the data.

Diameter Mass Diameter Mass

_fem)  fgm) _fem)  f(gm)

. 0.20 0.03 1.20 7.42
'0.40 0.27 1.40 11.76
0.60 0.93 ~1.60 18.00
0.80 2.20 1.80 25.00
1.00 4.30

W2

f . Q .I,f
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6. The table below gives the masses of spheres (made of a more dense

maferial than tron) for different dlameters. Plot these data on a

graph.

Diameter Mass Diameter Mass

_em) fgm) _fem)  (gm)
0.20 0.06 1.20 14.84
0.40 0.54 1.°1 23.52
0.60 1.86 1.60 36.00
0.80 2 4.40 1.80 50.00
1.00 8.60

7. . Compax:e your estimates of (i) the absclute uncertainty and (ii) the

relative uncertainty in determining the change in maximum average

pressure from February to June in both Fig. 6.5(a) and 6.5(b).

6.3 Smooth Curves and Uncertainty

Figure 6.8 presents the data of Table 6.1 in graphic form. The lines

drawn between data points enable us to estimate the temperature at altitudes

N/ :
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Fig. 6.8 .
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other than the ones at which measurements were taken. In choosing what
sort of line to draw on a graph of known data points, one has a wide cholce.
Using straight lines, as in Flg. 6.5, Is a simple choice but not necessarily
the most reasonable. Note that the lines joining successive data points
meet at angles, forming corners all along the graph. If the measurements of
temperature had been made at altitudes other than those listed ih Table 6.1,
the data points would appear at other places on the graph than on the lines,
and consequently lines between these points would meet at corners in places
other than those of Fig; 6.8. The corners have no significance in the phy-
sical relationship of the temperature to elevation, since the temperature
changes in a smooth, regular fashion best described by a graph that is a
smooth curve,

By drawing a smooth curve that includes the points in Fig. 6.8, we
can connect them so that there are no comers. This may be done freehand
or with the aid of a French curve (a plastic template with many different
curves which may be fitted against the points on the gragh to make a smooth

curve). A smooth curve, like that drawn in Fig. 6.9, is not unique, but de-
80T T T

.

~
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500 1000 2000 3000 4000 5000 6000 7000 8000 9000

Elevation in fee!
Fig. 6.9

I.ff)



-

-128-

pends on the judgment of the person drawing the curve. The curve may or
may not pass through the points that would result from addltlonal'measure-
ments, but it is more likely to do so than a series of straight lines connect-
ing the points as in Fig. 6.8. The question raised whenever a line is drawn
through a finite number of data points on a graph is how closely {t approxi-
mates the physical situation being represented. The greater the number of
data points in a given interval, the more accurate the graph is likely to be.
That is, if the temperature had been measured at intervals of a foot instead
of 1000 feet, the points plotted on the same scale as Fig. 6.8 (or Fig. 6.9)
would run together and appear to form a continuous smooth curve on the
graph, closely approximating the actual physical situation.

So far, in discussing smooth curves we have assumed that the uncér—
tainty in the data is smaller than the uncertainty in actually plotting the data.
If the uncertainty in the measurements for data points is larger than this, we
must take it into account in plotting a graph. In Chapter 1 we represented
an uncertainty in a physical number by an interval on the number line. If we
replace a point on each axis by an interval, we replace a point in the plane
by a rectangle. _

Figure 6.10 is a graph drawn without taking uncertainties into ac-
count. It was made from a table of data for the mass and the corresponding
volume of a metal. We have drawn a smooth curve through all the points just
as we dMd in FiB. 6.9. However, if we take into account the uncertainties in
the measurements {the mass was measured very roughly with an uncertainty

of +5 gm and the uncertainty in the volume was +0.5 cm3), the data are

consistent with a straight line, as shown in Fig. 6.11. Note that the straight
line pas'ses within the uncertainty rectangles whose sides are 10 gm and

1.0 cm3. Of course, the wiggly curve in Fig. 6.10 is also consistent with
;he data. But whenever poss(i.b}.e we try to fit data with the simplest possible
';:urve. (Occasionally, however, more refined measurements show that an
earlier and simpler curve ic only an approximation of the relatioh between

the quantities.) N

Ly,

4
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We do not always draw the uncertainty necta%lsron a graph, but in

deciding how to draw a curve through a set of data polﬁt the approximate

size of the uncertainty rectangles must be kept in mind. ‘ .
lf
' Questions
1. The following problem is bast solved using an elcctronic desk calcu-
later or computer: =
For those who watch the stock market, the Dow-~Jones Industrial
. Average"‘ts”vgil information. From issues of the Wall Street Journal,
here are a few days' quotations:
ijJ-Iones Industrial Average (November 19¢9)
Open - 11:00 12;00 1:00 2:00 Close
*Nov.z 856.19 859.75 860.22" 860.61 860.94 860.48

Nov. 10 862.00  863.45 865.69 B65.48 863.52 863.05
Nov. 11 861.07  861.01 858.96  858.83  859.23  859.75
Nov. 12 858.57  857.91 858.43  857.97  857.91 855.99
Nov.el3 853.15  B852.69  850.51 849.52  850.45  849.85
*Nov. 14 849.19  864.88 846.55  B847.45 ° B49.06 ~ 849.26
Nov. 17 846.36  844.24 843.65  843.26  842.99  842.53
Nov. 18 840.81 841.21 842.20  B842.79  843.19  845.17
Nov. 18 845.53  843.26  841.80  941.00  840.62 839.96

*Friday

(a) Take an average value of the Industrial Average for each day and
plot it with the date. (Remember to include week-ends when marking
divisions on the axis.) From the spread of the numbers for each day,
2stimate an uncertainty and use uncertainty lines on the graph. Draw
a smooth curve through the lines.

(b) 1f November 15 had been a tradir~yday, what mir* '@ge been the
Industrial Average ? |

(¢) Can you make a similar guess about the possible average for

November 97? Why, or why not?

/5.
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4
2. The table below gives the masses of different volumes of an alloy.

The uncertainties were: mass, +5 gm; volume, +0.5 cm3. Draw a

graph of the data including uncertainty rectangles.

Volume Mass Volume Mass
femd)  (gm) femd)  (gm}
1 15 10 95
3 25 12 115
5 . 45 13 125
- 7 65 15 ;55
8 85
3. The table below gives the volumes of spheres of different diameter.
Draw a graph of the data.
Diameter Volume Diameter Volume
(cm) __(gm_3_1_ (cm) (cm3)
0.6 +0.1 0.2 +0.1 2.1 0.3 5.0 +1
0.8 +0.1 0.3540.1 2.5+0.3 7.0 +1
. 1.0 +0.3 0.45+0.1 2.7 40.3 8.0 +1
1.1 +40.3 0.8 +0.1 3.0+0.3 12.5+1
1.4 +#0.3 1.0 +1
4, During an experiment with gases, air was allowed to flow past a

heater in a tube, and the teriperature of the air leaving the tube was

measured at virious timeg: The data are tabulated below.

TABLE 6.3
Temperature Time
(°C) sec
23,6 30
24.7 85
27.3 210
28.3 305
29.4 370
30.0 430
30.6 490

I({'
.
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The uncertainty in the temperature measurements is +0.1 degree.
The time Is measured to within +5 seconds. Plot the data with un-
certainty rectangles and draw a reasonably smooth curve through
them. How distorted would the curve have been if you had tried to

draw a chve that exactly passed through all the points?

6.4 Interpolation and Extrapolation

You already have some experience interpolating on graphs — determin-
ing the values of variables between data points or between division marks.
Me did this in Section 4.5 to make a convenient decimal scale for a power-
of-ten sl.de rule and you Qave interpolated between divisions on the graphs
in this chapter.) '

Sometin:ies linear interpolation (interpolating on a graph that has
straight lines connecting the data points) is as good as interpolation from
a smooth curve, but not usually. Table 6.4 gives the distances that can be

seen over the ocean from various heights above the water. These data are

plotted in Fig. 6.12.

) * TABLE 6.4
Height Distance
_(feet) (miles)
.0 0
10 3.9
50 ' 8.7
100 12.3
150 15.1
200 17.4

Suppose you want to know the distances visible from heights of five
feet and 120 feet. First, from the smooth curve you can read values of about
2.7 miles and 13.5 miles respectively. T® compare these numbers with inter-

polation from a line graph, we can use straight lines between the points for
zer> and 10 feet, and between the points for 100 and 150 feet (daslhed lines

on the graph)« Using the lines for interpolation, one gets 2.0 miles and

114
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13.4 miles. This linear interpolation is Zﬁsper cen: low at five feet, and

1 per c'ent low at 120 feet compared to interpolation on th'e smooth c''rve.
The drawing of a smooth curve through or close to many data points

allows us to take account of several adjacent points at once in deciding how

curved to make the segments between points, while a stralght-line segment

is determined by two points only. Thus, interpolation by a smooth curve

uses more than just two pieces of information.
It is worth noting that interpolation in decimal fractions is much eas-

ier if it is done on a graph with a decimally divided scale, as you found out

when you interpolated on the graph in Figs. 6.2 and 6.4 in answering Ques-~

tion 2 of Section 6.2.

14
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The idea of 'int. rpolation can be extended to estlm‘a’tlng values of
variables outside the limits of the known points by extending the ;::uwe a short
distance beyona those limits, and these can then be used to make estimates.
This process is called extrapolation. InFig. 6.12, for example, the dashed
line extending past 200 feet is an extrapolation of fhe curve. The further one
ventures from the known data, the more the curve -deviates from the straight

'line, and the errors in extrapolation increase.

Both interpolation and éxtrapolatlon should be applied with caution.
Extrapolaticn involves venturing into vnknown territory beyond known points
and should not be trusted far from the known data. Interpolation, finding
values between known points, seems to be safer. Not all variables insplre
this confidence, however. T

In Fig. 6.13 the size of the U.S. Army plottea at 10—yea‘r intervals
gives the solid curve. The size seems to increase smoothly with time. If,
however, intermediate points are plotted (:é’s), the dashed curve results and
the enormous effects Qf"WOl";d War II and the Korean War become evident.

In this case, 10-year intervals are too large to provide an accurate graph.

9
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Queéstions

1.

In the third paragrsph of Sectlon 6.4 it is stated that the "linear in-
terpolatton is 26 per cent low at five feet and 1 per cent low at 120
feet.” In terms of Fig. 6.12, how are the flgures 26 per cent low
and 1 per cent low arrived at?

From a few calculations of the volume V= -g- R3 of a sphere (where R
is the radius) you can plot the volumes and the corresponding radii
and then use the graph to read the volume dlﬁectly for any value of
R. Table 6.5 gives a few values for V and R.

TABLE 6.5
R '/ R vV
jcm! (cm3[ (cm! (cm3[
0 0 1.25 7.24
0.25 " 0.07 . 1.40 11.49
0.50 0.52 1.60 17.16
0.75 1.77 2.00 33.52
Y
1.00 4.19

(a)’ Plot the points and draw a smooth curve. From this graph, read
off values of tﬁe volume for radu.of 1.10 cm, 1.50 cm, and 1.80 cm.
b) In which regions of the graph would linear interpolation be reé—
sonable ? '

Using the data points in Table 6.2 draw é’graph of the population of
the United States during the years 1920 through 1950 and extrapolate
it (using a French curve) to estimate the population in 1980 and 2000.

How do your estimates compare with those of your classmates?

. -,
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4, An experiment is done in which a container of water is heated, and

. -~ the temperami'e read every 0.1 minute. A table of the data is:

Time Temperature Time ~ Temperature
(minutes) (°c) (minutes) (°C) -

0.0 | 29.4 0.6 37.2
0.1 30.7 f 0.7 38.3
0.2 31.9 0.8 40.0
0.3 - 33.2 0.9 40.8
0.4 34.5 1.0 42.1
0.5 ~ 35.8 1.1 43.4

(a) Make a dgraph of the data. Considering the accuracy to which
the measurements are given in the table, estimate the size of the
error rectangles. Are they large enough to be significant on the
scale of your graph?

(b) Connect the points with a smooth curve. Does one point appear
to be out of line? Draw a better curve through all the points but that
one. If that point is actuAally in error, how much is the smooth curve
including it distorted in comparison with the curve not including it?
If the apparently "wrong" point is discarded, what is a reasonable
guess for the temperature of the water at that time?

(c) What would you expect the temperature to be at the end of 1.2
minutes ? At the end of 2.9 minutes?

S. Most curves, viewed under sufficiently high magnification, appear
to be straight-line segments over the field of the magnifier. A stmi-
lar magnifying effect can be obtained by plotting the part of the curve
that was magnified on a graph where the divisions of the graph paper
represent very small increments of the variables. This can be demon-

strated quite simply by plotting the squares of numbers for several

choices of scale:
(a) For numbers from 0 to 2 plot the squares of the numbers irom 0 to 2

on the vertical axis, choosing x-coordinates (the independent variable)

on the horizontal axis at intervals of 0.20.

14
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(b) Plot the squares of numbers from 0.4 to 0,6 with x-coordinates
at intervals of 0.02.

(c) Plot the squares of numbars from 0.48 to 0.52 with x-coordinates
at intervals of 0.005.

(d) Using a straightedge us a standard of comparison, see if any of
the three curves can be approximated by a sfralght line fo_r the entire

length.
(e) Plot on a magnified scale the squares of the numbers between

"0 and 0.2, and also between 0 and 0.02. Can these graphs be ap-

proximated by straight lines ? _

In 1973 the postal rates for first-class letters were 8 cents for 0 to
1.0 0z, 16 cents for 1.0 to 2.0 oz, 24 cents for 2.0 to 3.0 oz, etc.
Plot a graph of these pairs of numbers from zero to 5.0 oz.

In an experiment, a coin was tossed-300 times and the frequency of
occurrence of runs of different length of successive heads or of suc-

cessive tails was recorded. The results are plotted in Fig. 6.14,
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Fig. 6.14

This is an example of a graph where it makes no sense to connect
the points or interpolate between them. Each variable can only take
on integral values, so that saying that a run of 3.5 heads or tails
oécun*ed about 16 times Is meaningless.

(@) If the number of aoccurrences of runs of three successive heads

or tails had not been recarded, how would yc 1 estimate it?

145
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(b) The graph In Fig. 6.2 has the population of the United States as
the deperident variable. This variable, obviously, can have only in-
tagral values. Why is each line connecting the points an unbroken
line and not a series of\'i:olnts i'epmsantlng integral values?
Suppose you knew only the points shown on the graph in Fig. 6.15.
At what additional values of x would you like to know the value of

y before sketching the graph? Explain.
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Chapter 7. LINEAR AND POWER FUNCTIONS

7.1 Notaiion

In the preceding chapter we discussed ways of constructing graphs to
display a function. We also pointed out that a graph is not the only way of
displaying a function and that, in fact, tables and rules stated verbally or
algebraically may also be used.

Whenever we can express a function in algebraic terms, we shall do
so for compactness and ease of handling. Thers are no strict rules on what
letters to choose for what purpose, but there are some general conventions
which are worth following since they reduce the need for frequent reminders
of the meaning of symbols

Suppose you want to express the rule "to find the value of the depen-
dent variable, square the value of the independent varlabl?/and multiply it by
some constant.” If instead é;f making this lengthy statement you simply write
as= bcz, without any further explanations, you are not guaranteed that it will
be correctly interpreted, the reader may actually understand it as "to find the
value of the dependent variable a take the tndependent variable b and multi-
ply it by some constant C squared.”

To minimize such misunderstandings the following conventions are
useful. |

(a) Numbers which are not specified but are meant to have a fixed

value for a given function are called parameters and are often ex-

pressed by the first letters of the alphabet: a, b, ¢, d. ... .

(b) Continuous variables are usually expressed by the last letters

of the alphabet, suchas r, s, t, u, ¥. W, X, ¥, and z. In case of

angles Greek letters such as a, 8, and ¢ are also used.
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[c) Variables which are limited to non-negative {ntegers are usually
expressed by the letters i, i, k, 1, m, and n. Applying these cong-
ventions to the rule which we have just spelled out in words could
yield any of the following "spellings"”

y=axZ, s= bt2, x = cz?

and the chances of misreading this to have the second meaning,

y = b2x, are very small,

(d) Often we wish to pick out a number of specific 'values of é vari-

able. These specific values need not be integers, but they can be

labeled xq, Xy, X3, OF in general x; or x, with the cormresponding

values for the dependent variable Ygr Yy Yp. OF in general Yy Of Y-

The integers serve only to distinguish values of a variable one from

another, justas a route number on a bus serves only to identify it.

Integers used in this way are called indices.

(e) Many properties of functions can be discussed without spelling

out the detailed mathematical rule. Thus, a notation is needed to

indicat~ that one variable is a function of another. The most common
one is a shorthand form of the statement "y is a function of x" and is
written as y = f(x) read "y equals f of x." The notation f( ) stands
for a definite rule relating the dependent variable to the independent
variable. The independent variable which ts placed in the parentheses

in f( ) is also called the argument of the function. If we write y = f(x)

and u = f(v) we call the variables by different names, but the under-

standing is that the same rule relates ytox anduto v. If we wish

to indicate different rules, we use different letters such as y = g{x),

y= F(x), or we use indices such as x = f,(8), x = f,(t). etc,

We can think of an equation such as f(x) = 2x + 3 as an alternative
notation for y = 2x + 3. The power of the f(x) notation lies in the ease with
which a value of the dependent varlable can be specified for a given value
of the independent variable; for example, the notation f(3) is used to repre-
sent the value that the dependent variable assumes when the independent

variable is equal to 3. If f(x) = 2x + 3, then £(3y =23+ 3=9. That is,

iC 1 1 ")
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£(3) is obtained by performing the same sequence of opératlons upon 3 that
are performed upon X in the rule defining the function.

The argument of a function, the entity placed in the parentheses in
f( ), may sometimes not be iaentical with the independent variable. For
example, if y = f(x-2), thenx - 2 is the angume;'nt of the function but x is
the independent variable. To find y for a given value of x we first calculate
x - 2 and then apply the rule M) to x - 2. For example, when x = 7,
y = £(7-2) = £(5). "

Questions

1. Given the function f(x) = 3x + 1, find (a) f(10), ) £(3), (c) f(-1).
2. For f(x) = 5, find

(a) £(0)

(b) £(2)

(c) What is the ranye of this function?

3. Make up a functicn f such that £(3) = 7. Can you make up another
function g such that g(3) =

4, Let p = f(s) be the perimeter of a square expressed as a function of
the length of its side s. What is the ruleﬂfor f(s)? Express in words
the meaning of £(3).

5. Let f( ) stand for the rule "take the square of the argument.”
(a) What is flx-1)? '
(b) If y = f{x-1), what is the value of y when x =4,1, -1, -9?

b. Suppose you have a function y = f(x) such that £(3) = 10. If.’“;‘= f(x-2),
for which value of x will z = 107

LY

7.2 Homomorphtc Curves «

Suppose a certuin curve is the graphical display of a functiony = f(x)
Supjose further that we have another curve which has the same size, shape,
and orientation as the first curQé [Fig. 7.1). That is, we can conceive cf
the second curve as being générated from the first by displacing each point

of the original curve a fixed amou‘nt',vEemcally,‘ and a fixed amount horizontally.

gy - ' e
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For example, in Fig. 7.1 the

dashed curve could have been

obtained by displacing the i e 2

solid curve four units vertical- > 3 4

ly upward and three units 4

horizontally to the left. When- < 13

ever two curves are related in

this way, we say that the curves

. 6
are homomorphic.

Fig. 7.1
Let the functions describing two homomorphic curves be given by
y = f{(x) and y = g(x) respectively. How are the two rules f(x) and g(x) re~
latec to each other? To find out, it is best to consider the two possible
displacements in tﬁe plane separately. First, we take a curve displaced

only vertically (Fig. 7.2). Since for each value of x the value of y on the

Y ysgix)

ysfin)

\ : Fig. 7.2 /A
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new curve S\s € units greater than the value of y on the original curve, we
have g(x) = f(x) + ¢, where c-> 0. Thus, .in words, to find a y value of the
new curve for a given x we u's.e the rule of the original curve and add a num-
ber ¢, indicating the vertical dtsplac}emex{t. We can.therefore write the rule
for the new curve as ) _ | o
y=flx)+c | (1)

|
or\.’< Y—C‘-“- fix)
\

y = f(x) then, by an amgument similar to the above, the relationship between

If the homomorphic curve y = g(x) is ¢ units below the oriélnal curve

the two functions can be expressed as g(x) = f(x) - ¢, whers againc > 0.
We can éxpress both upward and downward displacements by writing only
g{x) = f(x) + ¢ and letting c have either positive or negative values.

Let us now take the case of the horizontal displacement shown in

1

Fig. 7.3. The original function is ex-

1

pressed as y = £{») and the function ho- ysh(x)

»
‘\

momorphic to_ it as y = h(x), displaced o
three units horizontally to the right.
Consider a given point on the curve

y = hix), say, x = 7, for which

h(7) = 5. For which value of x is 5

f(x}) = S? Since the curve correspond-

ing to y = h(x) was generated by dis-

rTTTTTTTTFE

placing the curve corresponding to

o

: )
f
f
1 1 14 l_l_\
i0

value of x, for which f{x) = 5, will Fig. 7.3

y = f(x), three units to the right, the 0 5

be three units to the left of 7, i.e., at x = 4.

I general, if the curve y = hi{x) is generated by displacing the curve
y = f(x) to the right by d units (d > 0) (Fig. 7.4), then applying the rule h( )
to any value of x will yield the same number as applying the rule f( ) to
x - d. Hence h(x) = f(x - d) and the rule for,the new curve becomes'

y = fix-d) ‘ ~(2)

15]
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ysf{x) ysh(x)

Fig. 7.4

Here agaln, as with the vertical displacement, our illustration is
based on the homomorphic curve being to the right of the original curve.
However, just as with downward vertical displacements, by denoting dis-
placements to the left by negative values of d we can use the equation
y = f(x - d) for hoth types of horlzuntél displacements.

We can now combine these displacements. Given a functiony = f(x),
the y values on a curve homomorphic to it, displaced ¢ units vertically and

d units horizontally is

y=flx-d) +c (3)
or
y -c=flx-d)
- Questions
| Given some arbitrary curve, how many curves can be constructed
which are homomorphic to it?
2. By use of vertical and horizontal displacements, find whether the

curves given in Fig. 7.5 are homomorphic.

'
\



-145-

Y i
! .
™
. 5 \\
X
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¢ (@)
\
\
X Fig. 7.5
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W
b4 3 - . - o — 4t
T (b)

If & curve AB is homomorphic to & curve CD, and CD in turn is homo-
morphic to EF, is AB homomorphic to EF? Give your reasons.

In plane geomatry one uses the congruence relation: Two plane fig-
ures are said to be congruent if one can be exactly‘superimposed on
the other. How is congruence different from homomorphism?

A curve is described by the rule y = x2. What is the rule for the
curve homomorphic to it, displaced three units horizontally and four

units vertically?
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6. Each of the functions fi(x) below can be displayed by a curve y = f(x).
For each case state the functions for the curves displaced by the

amounts indicated.

Horizontal Vertical
‘ Displacement Displacement
(@) fx) =1/(x+1) -2 10
b) flx) =2 3 -1
() fx) = x/(x+1) 1 0
Z. Let n be the ordinal number of the throw of a die and t the value

showing on the top face, f is a function of n. Call it g(n).

(a) What is the domain and range of g(n) ? '

(b) What is the domain and range of h(n) = g(n+3) + 10?

(c) How would a Agraﬁphical display of h(n) be related to the graphical
display of g(n)?

L)

7.3 Direct Proportions

A very common relation between a dependent and independent variable
is that when the independent variable is doubled or tripled so is the depen-

dent variable. In other words, their ratio is a constant

Y.,
X

Written in the form y = f{x) this says that
f(x) = ax (4)

This function is referred to as a direct proportion and the parameter a is

called the constant of proportionality.

Mathematically the domain and range for this function extends over
the entire rumber line. However, if the variables are not pure numbers but
are measures for definite quantities, practical consideration may restrict the
domain. For example, the circumference of a circle as a function of its di-
ameter is given by f(x) = wx. The diameter of a circle cannot be negative,
hence in this case the function makes sense only for x > 0.

Figure 7.6 shows the graphs of several direct proportions for various

values of the constant of proportionality. Note that graphs of direct propor-

ERC N - 154
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tions constitute a famlly of straight lines through the 6rigln each of which

can be génerated by varying the constant of proportionality.
Y

412

410 y=(0x

l } i
L] 1 k] t

-3Q0 -2%5 -20 -I15 -1.0 _.0O3

Fig. 7.¢

Lines representing functions with positive constants. of proportionality
" are directed upward to the right, while lines which are graphs of functions
with negative constants ~f proportionality are directed downward to the right.

The graphs in Fig. 7.6 could represent a multitude of real situations.
For example, the two lines with a positive constant of proportionality, could
represent the mass of a liquid as a function of its volume (for x > 0) or the
position of a point on a line as a function of time. The line with the nega-
tive constant of proportionality might represer‘ut the force exerted by a spring
as a function of its stretch'; the negative value indicates that the force is

opposite in direction to the stretch.

155
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The steepness of the line is related to the value of the proportionality
constent. Funcﬂone having proportionality constants whose absolute value
is larger have steeper graphs than functions with constants of proportionality
whose absolute value is smaller. To obtain the constant of proportionality
from the graph of the function we can choose any point on the graph and di-
vide its y-coordinate by its x~coordinate. A note of caution is needed here:
the values of the corresponding coordinates must be obtained by reading them
off the scales used alorg each axis. These scales, on the two axes may be
different as in Fig. 7.6, thus finding the values of the coordinates by mea-
suring along both axes.with a ruler would result in errors.

When the dependent and independent variables have dtfferent units,
then the constant of proportionality has the units of a specific quantity ar-
rived at by dividing the unit of the dependent variable by the unit of the in-
depe‘ndent variable {(see Section 2.4). Thus in the examples which we have
just mentioned, the constant of proportionality defined the following specific
quantities respectively: denslty (mass per unit volume), velocity (displace-

ment per unit time) and the force constant (force per unit length).

Questions

1. The relation between feet and yards is given by the equationy = Ix.
(a) What does y represent? What does x represent?

(b) Interpret 3, the constant of proportionality.

2. Which of the foljowing funetions are approximately direct proportions ?
Tor the cases which are, write the corresponding equation and indi-
cate reasonable values for the domain and range of the function for
which you expect the direct propertion to be valid."

(a) The height of a building and the number of floors.
(b) Age and weight.

(c) Welght of a packege and price of postage.

(d) Number of telephone calls and telephone bill.

(e) Weight of patient and amount of medication.

(f) Age of tree and thickness of tree.

I ') ( )I
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For a certain‘kind of paper one sheet is 3 X 10-3 cm thick;

-(a) Plot the thickness of a book 'ma\de with this paper as a function

of the number of pages it has. AN
\
(b) What is the constant of proportionality ? _
(c) What is the algebraic formula relating the number of pages and

thickness?
Figure 7.7 represents the masses of sampies of some substance and

the corresponding volumes.

(c)
(d)

10 1 T : e I
. T .
8 o
f h
6 p%
>
L
4
.
2
S
0
0 2 4 6 8 10 12 14 I6
VOLUME (cm?)
Fig. 7.7
(a) What is the mass per cm3 of this substance?
(b) What is the function that corresponds to this straight line?

What is the constant of proportionality?

On the same graph draw the line correspo\nding to mass vs. vol-

ume of water.

(e)

Given two lines on a mass-volume graph, how can one readily

see which corresponds to the denser substance ?

What is the equation of the straight line through the origin and the

point (-3,6)? Through the pbint (1o0,1)?

157
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6. A stralght line passes through the origin and the point (c,d). How
can one tell the sign of the constant of proportionality of the corre-
sponding relation by just looking at the signs of c and d?

7. Often a c_:onstant of proportionality is given as a rate .‘ What propor-

| tion is implied by the statements: _
(a) the rate of exchange of Swiss francs is 0;32 dollar per franc?
(b) the rate of flow of water over a dam is 50 cm3 per minute?
(c) the rate of interest is 10 per cent?

8. An electronics firm lists the following prices for different quantities

of a certain brand of caﬁacltors as follows:
Lots of 1 - 24 at 48¢ each
Lots of 25 - 49 at 35¢ each
Lots of 50 and up 27¢ each
(@) Plot the cost of the capacitors as a function of their number.

(b) Would you order 23 capacitors?

7.4 The Linear Function

We have seen that the rglation y = ax describes a whole family of
graphs, straight lines passing through the origin, whose steepness is deter-
mined by the value of a. We can, of course, construct lines that do not
pass through the origin and are homomorphic to a line described by y = ax,
by displacing each point on the line corresponding to y = ax by a fixed amount
b in the vertical direction. Tnis procedure changes any function y = f(x) into
y = f(x) + b (Section 7.2). Therefore the function described in the graph
homomorphic to the graph of y = ax becomes

y=ax+b (5)
Because the graph described by this equation is a straight line the fun.ction :

f(x) = ax + b is called a linear function. This function has two parameters

a (a #0), and b. Note that forx = 0, y = b. Thus the line crosses the y-axis

aty = b. For this reason the parameter b is cailed the y intercept. Figure 7.8

shows several lines homomorphic to the line given y = 0.5x, which were ob-

tained by varying b, the y intercept.

15.
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bs2

bs -3
a9 -08

To investigate the meaning of the parameter a in relation to the graph
of a linear function, we graph some fu:gctlons with the same value of b but
different values of a (Fig. 7.9). As was the case with the direct proportion,

b=2 b=2
Y a=10 ar0.5

b=2
0=0.2

Fig. 7.9
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the steepness of the line is determined by a which is therefore called the
slena of the linear function.

If a = 0, Equation (5) becomes
y=b
that is,'the dependent variable has the same value for all values of the in-
dependent variable. For this reason, y = b is sometimes referred to as a

constant function. An example of such a function Is the graph of the density

"of pieces of aluminum versus their volumes (Fig. 7.10). The constant func-
tion is not considered a special ca.e of the linear function since a linear

function by definition has a first degree term in its independent variable.

301
"
E
R
o 20|
£
>
=
c
3 OF
2 10
i L 1 1 1 i i
o) 10 20 30 40 50 60 70
Volume in cm?
Fig. 7.10
Questions
1. Lines homomorphic to that given by y = ax can also be generated by

moving each point a given amount horizontally: y = a(x-d). Does
-his procedure yield any straight lines that cannot be generated by a
vertical displacemer: of the formy = ax + b?

2. Under what conditions does the functicn ¥ - ¢ = alx - d) describe the

~

same straight line as y = ax? - f
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3. The centigrade and Fahrenheit temperature scales are related as fol-
lows: 0°C is equal to 329F, and each 1°C is equal to 1.89F,
(a) Express the temperature in degrees Fahrenheit as a function of
the temperature in degrees centigrade.
(b} Plot the qcorrespondtng graph.
(c) 1Is there a temperature which is expressed by the same number

on both temperature scales?

4. The following table was taken from a Federal Income Tax Brochure:
Taxable |
Income Tax
Not over $500 14% of the Amount
But not of Excess

Over - Over - Over -
$500 $1,000 . $ 70+15% $500
$1,000 $1,500 $145+16% $1,000
$1,500 $2,000 $225+17% $1,500
$2,000 $4,000 $310+19% $2,000

What kind of function describes the dependence of the tax on the
taxable income? Plot the corresponding graph.
5. Write a computer program tc calculate the income tax for taxable in-

comes up to $4,C00. Use the information given in the preceding

problem.

6. A straight line parallel to the y axis does not describe a linear func-
tion. Why?

7. The equation of a straight line can also be written in the form

§+ “ét 1. What are the geometric meanings of m and n?

GA. | 0|
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7.5 Finding the Equation of a Straight Line
' Often the purpose of a scientific experiment is to determine (f there

_ exists a simple functional relationship between two quantities — for example,
between the volume of a gas and its temperature. To get a feel for the nature
of the relationship. the experimental data are usually graphed. As you be-
come familiar with the graphs of some simple fundameﬁtal functions, you
will often be able to get an idea of what kind of functicnal relationship

might exist between the two quantities by looking at the graph.

A linear relationship is the easiest to recognize because it is only
necessary to decide if the points representing the experimental data (taking
into consideration the uncertainties of the measurements) lie close to a
straight line (Fig. 7.11(a)). If they do, then you have to decide how to draw
the line best fitting the points (Fig. 7.11(b)). To do this reasonably well re-
quires practice, which is best obtained by actually doing experiments in a
laboratog;y and graphing the data. However, once the line is drawn, to find
its equation, that is, to determine the values of the parameters a and b in
the expression

y=ax+b
is a purely mathematical question.

Suppose we end up with a straight line like the one in Fig. 7.12.

We rhoose two points, P and Q on the line (as far apart as possible), and
note their respective coordinates (x, .y,) and (xz.yz). Since the points P
and Q are on the straight line their coordinates satisfy the equation

yp = axy +b
and
y2 =axp + b

We can solve these two equations for a8 and b in two steps. First we
subtract the first equation from the second and get
or

Y2 - Y1
a-= -

(6)

X3 =X

I'te
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Using the n\é‘w known value of 8 we can calculate b from
o, : ' b=yl~-ax1
If the slope é_ of a straight line pasging tr;rough the point ("1 .yl) is
given, then we can find the equation of the line simply by substituting the
value of b from the last equation in Equation (§):

y=ax+y, -ax;
or
y=y +alk-x) (7)

In the preceding section the parameter a was defined as the slope.
As Equation (6) shows, it can he obtained by dividing the change In the de-
pendent variable by the corresponding change in the independent variable.
Thus, the élope gives the rate of change of the dependent variable with re-
spect to the independent variable. Any two points on a given stralght line
yleld the same slope. Therefore, the slope of a straight line i{s a property
of the whole line. We shall see in the next chapter that curved lines do not
have this property.

Since only the change in coordinates enters into the calculation of

a slope Equation (6) is often written as

- Ay
87 Ax
Questions
1. A straight line passes througt the points (-2, 3) and (-4, 4).

(a) Draw the line.
{b) What are the values of & x and Ay.
(c) Use them to find the slooe and the y~intercept of the line.

2. A straight line passes through the points with the coordinates

(x, ,yl) and (x2 ,yz) .

(a) Under what conditions will the slope be positive? Negative ?

(b) How would you describe in words a line with negative slope.

)';'




‘ ~-157-

3. Suppose you plot the displacement of a moving point as a function of
| time}and find that the points fit a straight line\\of the formy=ax+ b,
where y is given in meters and x is given in seconds. What are the
units of a and b?
4. Find the équatlon of each of the lines in Fig. 7.137
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5. (a) What is the equation of the line throvgh (-1, 2) with slope =57
(b) What is the equation of the line through (5, 6) with slope %?

6. Write a computer program which computes the values of the parameters
a and b given the coordinates of any two points on the line.

7. The slope of a straight line is {ndependent of the two points selected
to calculate it. Yet the text suggests to choose these points as far

apart as possible. Why?
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Bi Which of the tables below describe a linear ﬂ)nction?
\ Hint: The slope of the linear function (yz - yl)/(xz - xl) is a charac-
teristic of the furction and is the same for any values of x; and x,

which are used to‘.calculate it.
1) 2) (3)

X y X y X Yy

1] -3 0.1] 2.0l 1] z
0| -5 0.2 | 3.01 2| 4
1 -7 0.3 | 4.01 3| 8
2 -9 0.4 , 5.01 4| 16
3 -11 0.5 | 6.01 5 | 32
4 -3 0.6 7.0l 6 | 64
5 15 0.7

| 8.01 |

7.6 The Quadratic Function

In this section we shall study functions of the form y = axz , where a
is a constant. The curve corresponding to this function is called a parabola.

Figure 7.14 shows a number of parabolas corresponding to different values of

~a. As you can see, the parabolas corresponding to positive values of a have

their branches pointing upward, whereas parabolas corresponding to ;iegative
values of a have their branches pcinting downward. Noticc that all the grgpns
are symmetrical at,>1 tr = y axis; that is, the points on the curves to the right
of the y ax.: aiil 1atl directly on the corrésponding points to the ieft of the
< axio 1. the graph paper is folded along the y axis. The axis of symmetry,
the y axis, is callec the axis of the parabola,. and the point of the parabola
which lies on the axis of symmetry is calied the vertex of\the parabola.

Any curve that is homomorpiic to a curve whose equation is y = ax?
is also a parabola. Figure 7.15 shows a parabola whose equation is y = ax?2
and another parabola homomorphic to it with the equation

y - n=alx-m?2 -

= ax2 - 2amx + am?
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As in the case of the linear function, we can find a standard form for
this equation. Because a, m, ?a:nd n are constants, so a;'e the combinations
-2am and (am2 + n), and we shall call the first combination b and the second
combination ¢; that is, -2am = b and am? + n = ¢c. Thus, any parabola whose
axis is vertical is described by a function of the form

y=axl+ bx+cC
where a #'G. This is called a quadratic function. '

Any parabola with a vertical axis is the graph of a quadratic function.

The converse is also true: e'my quadratic function y = axZ + bx + c describes
.a parabola with a vertical axis. This is so because givena, b, and c we can
always transform the equation y = ax? + bx + c into an equation of ithe form

gi
y - n = alx-m)2, which describes a parabola with its vertex at (m,n). To do

this we solve the two equations

-2am=b)
amé+ n=c
. . - b
for m and n. From the first equation we get m = -g. From the second we

get n = (c -amé) and substituting the v'alge of m we have just found, we get,
for the two constants (if a # 0),
m= -,2—3
and e EZ,
°  4a

Using these values of m and n in the equation for a parabola y - n = aix-m)2,

we have .
_bsy L b2
y - {c s = a[x-‘( Za)]
We h- > showr:, therefore, that any quadratic equation of the form

= axz + bx + c describes a parabola with a vertical axis and a vertex at the
bl

b
point (—26. C - aal



-161-

Questlens

1.

G WG bW

-

Consider the function f(x) = wx2. What is its domain and range

(1) if the variables have no geometric interpretation, and (ii) If they
describe the area of a circle as a function of its radius.

Sketch the parabolas corresponding to the fdllowlng functions. Try
to guess the general shape of each parabola in the given domains

before sketching it. Make each sketch on a different sheet of paper.
3 .

=—2

(@) y 2?; for-4<x<4 and 10<x<15
= 2y2

b) y=-7x

(C)y-3=.(x'2)2} -1 <x<§

d) y-1=(x~-2)2

(e) y==x2-8x+18 0<xz<z

Express the parakolay -3 = 2(x-2)2 in the formy = ax? + bx + c.
Express the parabola y = 2x2 - 4x + 9 in the fo‘\n) (y-m) = alx-n)?.
bbla ? '

Describe the axis of a parabola when the constant b in the equation

Does the equation y = 2x% + 2x describe a para

y=ax2 + bx + c |s zero.

What is the effect on the parabola of changing the constant ¢ {n
y=ax2+bx+-;? ‘ |

On a plece of graph paper mark off an x scale running from -3 to 3.
Mark off a y scale from ~10 to 10. Graph each of the following func-
tions using these écales.

(@) x2 - 50x + 100.

(b) 0.05 x2 + 2x + 3

(c) Give an equation for a parabola which is very nearly a horizontal

line for this range of values of x. Plot the parabola. .

1{)',‘1
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7.7 Recognizing Quadratic Functions -from Graphs

In Fig. 7.16, three different functions of x, f, {x), f,x), and f3fx’

are graphed. The question is: Do any of the graphs correspond to a function

é._.;..._,ef the type y = ax2, describing a parabola with its vertex at the origin? This

1s the kind of question which arises when you have a curve passing through
the origin with a shape similar to one of the curves in Fig. 7.16.

-

A simple way to auﬁﬁ' the question consists of calculating x2 for a
number of values of x and graphing y as a function of a new variable z = x2
instead of as a functionof x. If any{“of the graphs in Fig. 7.16 is, in fact,
a graph of the type y = axZ, then the graph of y = az must be a straight line
with the slope a. Figure 7.17 shows the results we get when we graph
y vs. z = x2 using values for x and y obtained from Fig. 7.17. Only the
graph in Fig. 7.17(c) is a straight line with a.slope 0.6. We therefore Infer
that f5(x) = 0.6x2, whereas f; (x) and f, (x) do not express a function of the
type y = ax2. ‘

Another wav to find out if a set of data is compatible with a relation-
ship of the type y = ax2 is to calculate ;5' for different points ‘x,y) on the
original curve and see if this fraction remains approximately constant.

Table 7.1 gives the result of such a calculation made for values of x and y
£.(x)
taken from Fig. 7.16. As you can see, the ratio _::(T is constant within the

accuracy to which the graph can be read.

a4
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TABLE 7.1
f0  falx) E_(f_)
x xz I xz , xz
0.0 -- -- --
0.3 0.78 1.78 0.56
0.5 0.52 1.44 0.60
0.8 0.39 1.13 0.59
1.0 0.34 1.00 0.60
1.5 0.31 0.82 . 0.60
2.0 0.32 0.71 0.60
2.5 0.36 0.63 . 0.60
3,0 0.42 0.58 - 0.60
3.5 0.52 0.54 - 0,60
4.0 0.67 0.50  0.60

If a graph does not pass through the origin, it cannot, of course, be
described by a function of the form y = ax2, but {t could possibly correspond
to the more general formy = ax2 + bx + c. If the graph clearly indicates a
point that {s a8 maximum or a minimum and is symmetrical about a vertical line
perpendicular to the curve at this point, it is possible that this point is the
vertex (m,n) of a parabola and we can look for a relation of the form
vy-n=alx- m)z. We can do this by plotting y - n as a function of (x - m)2
to see if we get a straight line whose slope equals a. Or we can calculate
_(:{-_-n:';_z- to see if this fraction remains very nearly constant for different points
on the curve. If so, the fraction is the value of a. We can then write the
equation describing the curve, since we now know the:values of the three
parameters (3, m, and n) needed to specify the particular parabola with
which we are dealing.

If it is not possible to determine the position of a possible wertex
other methods must be used. We shall illustrate one of these methods which <
can be used to check whether a graph i a parabola and, {f so, to find the
particular quadratic function which describes it. Considef Fig. 7.18 fnqt;ce

L2
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that we have used different scales on the x and y axes to best utilize the
graph paper). The problem is to check if the function could be of the form
y=ax2+bx+c (8)
To find the values of the three parameters a, b, and ¢, we need
three equations. The coordinates of any three points on the graph should
'satisfy Equation (8). Choosing three such points, A, B, and C on the graph
(A and C near the end, and B near the center) with coordinates (x;,¥;),

(x,.y,), and (x5.,¥3), we have the required three equations:

Yy =ax12+ bx1 +cC
YZ = BXZz“" bX2 + C
Y3 = ax32 + bxg+cC

175



-166-

Here the values of (x,,y,), (xz.yz). and (xs.ya) are known and a, b, and ¢
are unknown. They can be found by solving the three equations fora, b,and ¢c.
For the coor;ilnates of the points A, B, and C in Fig. 7.18, the three
equations become
3= a+ b+t+c
7= 4a+2b+tc
27‘= lea+4b +c
which have the solution®
a=2, b=-2, and'c=3
Using these values for a, b, and ¢ as coefficients in the equation
y = ax¢ + bx + c gives the function
y = 2x2 - 2x + 3
describlng a parabola th.at passers through the points A, B, and C on the curve
we started with. The question 1s whether the graph of this function will also
pass through (or at least close\to) the other points on the original curve. To
investigate this we can proceed in different wayc. We can draw the graph
corresponding to the equation directly on the graph o{ the original curve or

we can determine the position (xo,yo) of the vertex of the.p‘.rabola by using

2
the coordinates for the vertex (-Eb;. c - g—a) mentioned in Section 7.6, and
y-y
see |f (x——x—gg is nearly constant for points along the original curve. In
-0

practice we shall find =mall deviations, and we shell have to decide whether
the deviations, whose stze, in part, depends on the magnitude of the errors
in the experimental data used in making the original §raph, are sufficiently
small to allow us to use the equation to describe the experimental data. In
general, we cannot expect that the coefficients in an equation dgrived from

a curve made from the experimental data will be represented by small inte-
gral numbers, as in our example, so the actual work in calculating a, b,

and ¢ will be somewhat harder.

*The solution of simultaneous linear equations is dtscusse/g in the api::endlx.

oy
3

l“
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Questions
1. Which of the curves in Fig. 7.19 to 7.21 are parabolas, and what
are their corresponding functions?
Y Y
8. 25
y
16 A
14 |
/f
20
- A
12 -
10 /
8 18
[
6
fz |
4 P y
10
2 .
11
X
o ! 2 3 /
Fig. 7. 19 5 4
Y I
T T (K] - g;
S 1(
. 1 4
pu— _T RS Tl
4 4
4l 1 % ¢ 3 & 5
A4 |
et Fig. 7.20
0 1 TV
o }‘_,_ ,L.._J,,,,4L~_¢ "“l'_-'
L . i !
T ! 7
DENUEEE NENY{ WSS
o
193 1 + ,
}L {
7
P‘ X
g et il L] 2 | | 3
“ — e o
- . Sy 4 1 A 4--+ A
Ur- ] Fig. 7.21
; y
-3 e
1 (J




Yoo

-168-

-«

2. What restriciion is placed on the parameters of a parabola Iif
(a) one insists it go through (0,0)?
(b) one tneists it go through (1,2)? |
(c) one Insists it go through both (0,0) and (1,2)?
(d) one wants it to pass through (0,0), (1.2), and (2,4)?

3. (a) Ty to fit a parabola to three collinear points (points lying on
the same straight line) by using the procedure of Question 2 on the
points (0,0V, (1,1), (2,2).
(b) What do you think happens in general when one tries to fit a
parabola to three collinear points?
(c) At how many points can a straight line intersect a parabola?
What relation has this to your answer for (b) ?

4. How would you extend the method for recognizing a graph corresbond-
ingtoy = ax2 to recognize a graph corresponding to y = ax3?

v = axN? Are there any restrictions on the value of n?

7.8 Inverse Proportions

We saw in Section 7.3 that a direct proportion is a relation between
two variables such that whe: the independent variable is doubled so is the
dependent variable. Another frequently occurring felation is one where the
effect of doubling the independent variable is just the opposite. In other
words, when the independent variable is doubied the dependent variable is

halved, or in general
flx) = & £ (9)
X

This function is referred to as an inverse proportion. Note that for any value
of x > 0 or x < 0 the corresponding value of y is uniquely determined, however,
when x = 0 the function is undefined and we do not have a value for y. There-
fore, the domain of the inverse proportion consists of all values of x except

x = 0. Just as with the direct proportion, however, if the variables are mea-
sures of definite quantities, practical considerations may restrict the domain.

For instance, the volume of a gas as a function of its pressure is given by .
. '\

1 :'f)'
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f(v) = %. Since volume carnot be negative, the function is meaningful only
forv>0.
In Fig. 7.22 the graphs of y = -a’z. each called a rectangular hyperbola,

are drawn fora = 2 and a = -2. Notice that each rectangular hyperbola con-

Y Y
\\2nd QUADRANT Ist QUADRANT // AN 2nd QUADRANT st QUADRANT 4
AN d 7
N , \ /
- g . /
y:—x\\ /y=x y= =%\ ‘ Sy=x
N /
AN y:—i—
x = X = X
y=2 N\,
X
/ AN
/ AN
/ AN
/ N\ N /
//;rd QUADRANT 41h QUADRANT \ //3rd QUADRANT 4th QUADRANT \
(a) i F[g . 7.22 (b)

»sists of two branches or parts. When a is positive, the branches lie in the.
first and third quadrants of the coordinate system (Fig. 7.22(a)), however,
when é_ is negative they lie in the second and fourth quadrznts (Fig. 7.22(b)).
Furthermore, for a > 0 the line y = -x is tne axis of symmetry of the whole
figure while the line y = x is the axis of symmetry of the individual branches.

For a © 0 the two axes of symmetry are interchanged.

% o

The family of rectangular hyperbolas described by the function vy =
in Fig. 7.23 shows how the value of a affects the rectangular hyperbolas.

In all cases, note that as x increases, y decreases and the curve
gets closer to the x axis, but never meets it. This can be seen by consider-
ing the analytic expressiony = i— describing the curve. If we choose x >> a
(read "x much greater than a") y becomes much smaller than 1 and the curve
is close to the x axis. But we can always choose a still larger value for x,
making y even smaller but still not zero. In fact, no matter how large we
make x, the value of y will never be zero and the curve will never meet the
x axis. The same behavior occurs for very large negative values of x.

-y,

-4
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Fig. 7.23

A line which a curve approaches but never meets _s called an
asymptote. As you can see from Fig. 7.22, not only is a curve representing
y= -3 asymptotic to the x axis; it is also asymptotic to the y axls. To §ee
this, consider the equationy = i. rewritten as X = %. If y s taken ss the
{ndependent variable, increasing positive values of y lead to decreasing

values of x, but x never becomes zero .nd the curve is asymptotic to the

1.
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y axis. The same is true for increasing negative values of y. The intersec-
tion of the asymptotes of a hyperbola (in this case the origin of the coordinate
system) is called the center of the hyperbola.

Since the function x = -:- never equals zero, no matter how larye v is

made, the equation of a hyperbola in the form y =i is undefined for the par-

ticular value x = 0. We say that the function has a singularity at the value

of x that lies on a vertical asymptote.
Following the prccedure developed in Section 7.2, hyperbolas homo-
morphic to the one described by Equation (9) are given by

a
X ~-d

y~-c=flx-d) = (10)

All points on the graph displaying this function are displaced d units hori-
zontally and ¢ units vertically relative to the corresponding points on the

graph of y =§ (Fig. 7.24).

Y

) Fig. 7.24

bt ]

(!
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‘can be rewritten in the standard form

Questions >
a
1. -The equationy -¢ = - d
+ mx + ny =
yx g N
Find the relationship between the parameters a, ¢, d, and the param-

eters m, n, g of the two equations.

2. ‘(a) What are the equations. for the asymptotes of the hyperbola given
byy-c= " i 3 which is homomorphfc to the hyperbola described by
y= 8- ™~

X

(b) What are the coordinates of the center of this hyperbola?
(c) Does the value of a in the equation in part (a) affect the
asymptotes ?

3. (a) Write down the equation for a mctangulér\hyperb‘gla with the
following position of the center C and the following value of the
constant a:

(1) C=1(-2,3) a=1.5

(2) C=(5,0) a=-3.4

(3) C=1(-4,-10) a=-17 S
(b‘_): What are the asymptotes for\each of the curves in ﬁ; ?

4. Show that the graphs-of y versus x corresponding to the following
relations are rectangular hyperbolas. Specify in each case the

center and the asymntotes and then sketch the graphs:

' S
(@ y+ 325"

@
b) y= + 4

X -9

() xy = 3

(d) xy ~x=-2 “ l ‘ }

15
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5.« For which values of x in the functiony = %wlll the vertical distance
of the graph from the x axis be less than
@ 1 |
(b) 1023
{(c) 10-1,000,000
‘H;nt: How are coordinates of points on the graph related to vertical

distance from axes?

6. (a) For which values of x will the distance fn(m the y axis be lers
than S
(1) 1
(2) 10-3

(3) 10-1.000,000

(b) What are the corresponding values of y?

7.9 The Inverse Square Function

When the relation between the independent variable x and the depen-
dent va;lable 1 is given by ,
y=3 | (11)
“we say that y is proportional to the inve_rse square of x. This means that
if x is made n times as large as some initial value, y will be _n% times the
initfal value of y.

Like the functiony = i, the function y = ;%_' {s qefined for all values

a
of x except x = 0. Therefore, graphs of y = x_z fall in two parts separated
by the y axis as an asymptote. Since the same value for y is obtained
whether you insert x or -x in'y = fz'. the two parts are symmetiic about the

y axis (Fig. 7.25).

Y

T 151
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Fig. 7.25

| For larger negative or p'os'itive values of » the cortesponding value of
Y wm get closer to zero, but will never equal zero, no matter how large X
becomes. Therefore, the x axis is an asymptote of the curve. Since the
va;lue of x is equal to the dlstgnce of the curve from the y axis, this distéhce
can be as small as we wish {f we just go to sufﬂcle’(nttly large (positive or
neg‘atlve) values for y. It means that the y axis is a’\'asymptote of the curve
-i{.e., ¥y= x—z has a singularity at x = 0.

Since xZ,is positive for both positive and negative vaiues of x, y
will always have the same sign as a. Thus for positive values of a, the
curve will lie above%he X axis and for negative values of a, it will.lie below
the x axis. Pigure 7.26 is a family of graphs of y n\;z' corresponding to dif-
ferent values of a.

Comparlng Fig- 7.26 and F.lg 7.23, you can see that the grapis of -
y= —l- and YF 2 botu have the x axis and the y axis as asymptotes, but the
two parts of the graphy = 9‘ are symmetric with the line y = -x (lf a>0), as
-the axls of symmetry, whereas neither part of the grarh of y= x_z is symmetric
by itsel‘ However, the complete cuwe is symmetric about the y axis. For
a given Jal‘ne ofa, y= g andy -~ -7 have the same y value for x = 1, that is,

their graphs both pass through the point (1,a). Ferx> 1. %x¢ > x, and so az

152
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Fig. 7.26

-

is smaller than i. But for values of x between 0 and 1, x2 < x; heace, In

this region, fz' is greater than %, as shown in Fig. 7.27. Notice that the

graph olf y= é approaches the x a\x{s\and the y axis at the same rate, but the

4 :
graph of y = <2 approaches the x axis faster than it approaches the y axis.

15,
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The equation for a graph homomorphic to that of y = x_é:?—' where the

intersection of the asymptotes has the coordinates (d,c).instead of (0,0), is

found by replacing x by x >and y by y - ¢ in the equationy = ff' giving

y-cm—30
(x = d)2

Questions .

1. (a) How is the circumference of a circle related to {ts radius?
' ) (b) Suppose there s a source of particles at the center of the circle
and the number of - articles crossing a unit of length on the circumfer-
* ence of a clrcle of radius 1 is n. How many particles will cioss a

unit length on the circumference of a circle of radius r? (Assume that
no particles are lost.)
{c) How is the surface area of a sphere related to its radins?
(@} If particles are emitted evenly in all directions from the center
of the sphare tiow will the number of particles passing through a

unit area of a sphere depend on the radius of the sphere ?

15
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2. On the same graph paper sketch very roughly the graphs of the func-
. o1 1 1 "
tionsy =", ¥y =17, Y=13.¥Y=34+Y=15- Thea draw a detailed
graph of the same functions for 0 < x < 1. What do you predict will

be the general shape of the graph fory = ;—}6

7.10 Recognizing Hyperbolas .nd Inverse Square Functions

The most characteristic features of gfaphs corresponding to functions
of the type y = i and y = ;c% are the asymptotes. The fact that the graphs
have twc branches is usually of little practical value since the relationship
we are looking for often makes sense only for positive values of the indepen-
dent varlable as in the case of pressure and volume. Therefore, the experi-
mental daté will all be on one kranch of the araph. If the graph in question
seems to have the x axis and the y axis as asymptotes, you can distinguish
between the two kinds of functions y = i andy~= ff by locking for symmetry
about the line y = x or y = -x, depending on the sign of a (Section 7.8).
Wh~n considering symmétry it is, of course, important that the same scale
be used on the x axis and the y axis.

If the graph is symmetrical abou&one of these lines you have reason
to believe that it is probably described by a function of the type y = %. This
can be checked by evaluating the product yx for different points along the
curve to see if it remains constant. The value of a i{s then just the product
4 yx. Or you can calculate i for several values ot x and graph y as a function
of i to see if you get a straight line through tt}e origin. If this is the case,
vou can find the value of a by calrulating the slope of the straight line.

If the grapk is not symmetrical about the lme y = x or the lilney = -x
you may che&;k for a furction of the type y = fg, by evaluating the product
yx2 for different points to see if it remains constant. Or you can graph y as
a function of ;lg to see if you get a stralght line through the origin. If so,
the slope will determine the value of a.

If the x axis and the y axis are n«t asyrﬁptctes to the graph, but some
other lines y = ¢ and x = d seem to be asymptotes, you can expect functions

_«L - b a 1
of thé typey -Cc= % - d ory-c¢ m*ﬁnd test if eith :r type of function
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descrthes the curve by plotting y - ¢ as a function of _LE or as a function
of W, or by evaluating the product (y - d}(x - d) or (y ~ c}(x - d)2 for

different points on the curve to see if the product remains constant.

Questlons

1. Tor the curves in Fig. 7.28 decide If they are hyperbolas or inverse

square functions and if they are either, give their equations.
Y \ {

) e
st 1

2 2
! i
™t
(o] . X
I 2 3 4 5 6 ° | 2 3 4 5 ?— X

o] 0
a) b)
( Fig. 7.28 (

2. The general equation for a rectangular hyperbola isy ~ ¢ = x i Q)

(a) What restriction on the constants is made by requiring the
~“hyperbola to pass through (0,0)? -
(b) If we also require the hyperbola to pass through {1,1) and (2.4),
the constants are uniquely determined. Find them.
(c) Write gpwn the equation of the hyperbola passing through (0,0),
(1,1), and (2.4).
(d) Find the equation of the parabola which also passes through the
three points in part (c).
3 Given that a curve has a vertical asymptote at x = 2 and passes
through the origin, list some simple algebraic equati#ns that it
might satisfy. |
4. What is a simple algel;zaic expression which yields a graph asymp-~

totic to the iine y = 2x and having a singularity at x = -17?

"ERIC 15y
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Chapter 8. DERIVATIVES AND ANTIDERIVATIVES

8.1 Function and Slope

in the preceding two chapters, we have seen how a great deal of
empirical information can be represented in graphical form, and in some
simple cases can be reduced to a mathematical rule in terms of power func-
tions. In this chapter we shall show that, in general, when a function is
given in graphical or algebraic form, additional useful information may be
extracted from it. To illustrate this point, we shall give the function de-
scribed by the graph in Fig. 8.1 three different meanings and see what the

additional information is in each case.

Y

- D
C
| :

. i |

- i ' ‘

11 ' A4 | - ll X
X, X, Ky

(1) Consider a straight road going up a hill, and let the xy plane
be the vertical plane that contains the road. Then the graph in Fig. 8.1 de-
scribes the elevation of each point on the road as*a function of the horizontal
distance. To find the elevation for any par@lcular value of X, we simply
read the corresponding value of y off the graéi*n. Thus, for exé‘mple, the ele-
vaticn at x, is greater than that at x;. Alternatively, the graph consists of
three straight segments, each of which is given by an expressicn of the form
y = ax + b. (The values of a and b are different for each segment.}! To find
the elevation at a given point x;, we substitute the value of Xy into the above
equation and calculate the corresponding value of y;.

Suppose no 7 that the quastion is "How hard is it to push a cart up the

road?" 1he amount of push we have to exert does not depend on the elevation
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but on the steepness of the road — that is, its slope. From Fig. 8.1 {t is
evident, therefore, that it is harder to push up a cart at X1 than at Xa. The
slope of the segment AB is greater than the slope of the segment BC.

(i) Let the horizontal coordinate in Fig. 8.1 represent time, and
the vertical coordinate represent position of a car on @ road. Then the gra'ph
gives the position of the car.as a function of time. We can also leam from
the graph (or the equivalent expression y = ax + b) how fast the car is mov-~
ing at any moment. Since v2locity is the rate of change of position per unit
time, it is"given by the slope of the position-time gra?ph. (See Section 7.5.)
From the graph we see that the car moves faster at time x3 than at x,, and
moves at some Intermediate velocity at x, . The fact that at x It 15 farther
away from the starting point has no bearing on its velocity; the slope or rate
of change of a function contains information different from that of the func-
tion itself.

(111} Now let the horizontal axis in Fig. 8.1 represent time and the
vertical axis the cost of living (i.e., the cost of a specified list of goods
and services). The graph then gives the cost of living as a function of time,
If the cost of living Is constant, it is taken for granted. When it goes up,
people begin to complain. When it goes up fast, people are likely to com-
plain more. During which period do you think the population was most irri-
tated? Here again we have an example where a quantity of interest is not
given by the function Itself bl:lt by its rate of change, which can be easlly
extracted from the graph if the graph is made up of straight line segments.

Whatever the graph in Fig. 8.1 is meant to represent, ‘the slope of

each straight line segment i{s given by the coefficientainy=ax+ b. As

A
was shown in Section 7.5, a = zf
Questions
1. Give a possible set of units for the independent variable, the depen-

dent variable and the slope of t..e graph in Fig. 8.1 for each of the

three examples cited in the text.
l :"‘.Aj
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2. The position vs. time graphs of two cars are given in Fig. §.2(d) and

g8.2(b). Which car is moving faster?

L]

00 } 20x10?
E .o~
Z s / E— isx108 F
[~ (=]
o =
< 6o} 2 oxio?
8 Q

40 1 4 1ox 10° A A

.0 11 1.2 400 800 1200
Time(hr) Time (sec)
(o) Fig. 8.2 {b)

8.2 The Slope Function

Most functions we encounter in applications are not linear functions,
that is, they are not represented by straight lines. However, even in the
case of curves we have an intuitive feeling for slope: Everybody will agree

that the parabola y = x2 {n Fig. 8.3 becomes steeper as x increases. What

IOY
/
/
0.5 —
0 0.5 1.0 ‘

Fig. 8.3

we need is a way to translate the intuitive feeling into a clearly defined mea-

sure for the slope of a curve at a given point.

Let us start with the point x = 0.5. To characterize the slope of the
curve at this point we lonk at the peint and its vicinity with a magnifying
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glass. This, in effezrt, is done In Fig. 8.4(a), which shows the heavy portion
of Fig. 8.3, for 0.40 < x < 0.60, magnified by a factor of 5. Note that this |
segment of the curve looks much more like a straight line. Repeating the
process, an additiona)l magnification by a factor of 10 yields flg. 8.4(b),
which covers only the region comesponding to 0.48 < x 7 0.52 . This seg-
ment of the curve now appears to ke very nearly a straight line, which upon

inspection turns out to have slope a = %,Z( very close to 1.0,

0.27

0.25

11111144y 023
04 05 06 0.48 0.50 0.52

{o) Fig. 8.4 (b)

‘Therefofe, {t appears that an answer to the question "What is the
slopc of the curve y = x2 at x = 0.5?" is to say: "It is the same as that of
a stralght line of slope 1.0."

This magnification process is of course cumbersome, and it would be
inconvenient to have to carry it out in practice every tim2 we wanted to know
the rate of change of a function y = f(x) at some value of x. However, we
are syared from having to do this by the simple observation that the magnified
small segment of the curve has almost the s.me slope as the straignt line
which is geometrically tangent to “he curve at any point (xl,yl). In
Fig. 8.5(a), (b), and (c) we have idded the tangent lines to the sections of
the curve shown in Fig. 8.3 and 8.4(a) and (b). We see that the curve does

indeed become less and less distinguishable from the tangent line.

1.
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0.27
Fig. 8.5
0.25
a
0.23 / L i | X
0.48 050 0.52

(c) '

Therefore we define the slope of a “mooth curve at a point (xj,y;) to
be the slope of the tangent line to the curve at that point. This gives the
rate at which y is changing with respect to x at x = x,.

{ a function y = f(x) is graphed, a practical way of finding its slope
at x; Isto lay a ruler down on the graph and adjust its position unti] it

touches the curve at the point (xy,f(x;)) at the correct angle, and then draw

the tangent line and measure a = %ﬁ for this line. Some error in mcasurement
will of cuLarse be present, its size depending on how carefully we draw and

measure the tangent 1i%e, and of course on the accuracy to which the curve

1y -
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3

r
4

{

itself can be drawn from the given data. In Fig. 8.5(a), for example, we

might judge that the points (0.25,0) and (1.00,0.75) lie on the line tangent
' g _ Ay _0.75 _
at (0.5,0.25). This gives a slope value of a Ak = 0.75 1.00,

We can repeat this process for any point on the curve. If for each
point on the curve there is only one tangent, then the slope of the tangent
is a function of the independent variable x. Accordingly this function can be
called the slope function. Frequently the notation f'(x) is used to dencte the
slope function of f(x). Since the slope function is derived from f(x) it is more
often called “the derivative of f(x)."

A word of caution is in order on what {s meant by the line geometri-
cally tangent to a curve y = f(x) at some abscissa x = x,. Several examples

of tangents are shown in Fig. 8.6. The tangent line is sometimes defined as

]
the line which touches the curve but does not cross it at the point in question.

f(x)

(b)

Y
(c)
‘-~“ '(‘)
/ -‘-\/
el ‘
. S - X
/ x' “\‘-
Fig. 8.6
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This is cormrect only in cases like those shown in 'ig. 8.6(a) and'8.6(b). .
However, Fig. 8.6(c) shows that the line tangent to a smoéth‘curvé ‘can cl‘oss ,-
the curve at the point of tangency. Figure 8.6(d) shows tt;e necessity of

specifying that the curve be smooth. At x = X the curve has a corner, and

hence nq single tangent exists there.

)

Questig'/ns‘

1. " Figure 6.2 on page 1194s a graph of the population of the United .
States as a function of time. Use a ruler to draw the tangent to the
curve at x = 1800, 1850, and 1900 and find the rate of growth of the |
population at these times. ‘

2. There are, of course, errors present in the growth rates ycu measured
in Question 1. Investigate the error resulting from constructing and
‘maasuring the slope of the tangent line for x = 1850. (Assume that
errors made in drawing the curve are negligible.) .Draw a line that is
just barely too steep, and one that is not quite steep enough, and
measudge their slopes. From this deduce the uncertainty in your value
of the 1840 growth rate.

3. Repeat the work of Question 1 for the year 1850 only, on the alterna~-
tive version of the population curve, Fig. 6.3, where the horizontal
scale has been compressed. Why is it that the value for the slope
of the curve at x = 1850 comes out about the same as in Question 1,
when the curve appears much steeper at that place?

1. In the case of graphs drawn from cata with errors present, special

care is needed in measuring slopes. An example is shown in

Fig. 6.10 and 6.11 on page 129, where the data were obtained by
measuring masses and volumes of varicus samples of a certain metal.
(3) Explain why the technique used by the person who drew the
graph of Fig. 6.10 is very bad if slope information is needed.

(b) Does your intuition suggest anything about the slope the curve
shquld have? Would this information be helpful In drawing the

curve ?

0 l ‘(,")\
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By graphically mneasuring the slope of the functiony = x2 (Fig. 8.3),

n
-

. plot the slope function. Can you quess from your result the algebraic
formula for the slope function of this curve?
6. By graphically measuring the slope at a number of points, plot the
slope function of the function shown ia Fig. 8.7. Hc.>w is the slope

function of f'(x) related to the function f(x) itself?

aE asaganat

7. Suppose ‘you are steering a boat, trying to keep it on a steady course.
There is involved in this situation a function, namely the compass
heading as a function of time. In what way do you make use of the
value of this function, and in what way do you make use of the value
of its slope?

8. (a) Sketch a curve corresponding 0 @ function with the following
properties: at x = X, f'(xl) >0, forx> Xy the derivative gradually
decreases. Forx, > x,, f'(xz) = 0, and for x > x, the derivative
continues to decrease and is, therefore, negative.

(b) Does the value of f(x,) have a special significance?
{c) Mx;st any point on a curve for which f'(x) = 0 have the same
significance?

9. (a) Consider two smooth functions f(x) and g{x), and their derivatives '

f'ix) and g'(x). If i'(x) > g'(x) over the interval 0 < x <10, does It

1Y
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follow that, f(x) > g{x) ovar the same interval? Use a sketch to ex~
plain ﬂanswer.
{b) In co' intry X the rate of inflation was higher than in country Y

over the same ten-year period. Was the cost of living also h’guer

in country X than in country Y?

8.3 The Delta -‘Process

So far w2 have seen how to find values of the slope function by draw-
ing tangents. If we know the algebraic rule (also called the analytical ex-
pression) for a function, wé can calculate the values of the slope functio~ or
derivative without drawing a graph at all. To see this we return to Fig. 8.5(c).

There the slope of the tangent at x = 0.50 was given by

JA)
a=T!
L X

where &y =y - ¥}, relates to any two points on the tangent, We can, in

particular, choose for Yi the value corresponding to Xy = 0.50, which is of
course the samé as the value of the functiony = x2 at that point; that is,

Y|y = 0.25. If we now choose a sufficiently small Ax, say &x = 0.02, then
the value of y, on the tangent corresponding to x, = 0.52 will be almost the
sage as the value y; = flx;) = x,2 on the curve, (See Fig. 8.5(c).) Thus,

the slope of the tangent is given approximately by

fix1tAx) - f(xy)
az(xl ;{ 1 (1)

The value of the right-hand side of Equation (1) can be calculated directly
from the algebraic rule defining f(x); there is no need to draw the'graph first.
To ir prove the approximation we can reduce the size of Ax. As Ax
decreases, the value of the y coordinate of the point on the tangent will ap-
proach the value of the y coérdinate of the corresponding point on the curve
-as shown in Fig. 8.5. Thus, the error ti.at is introduced by taking the y co-
ordinate of the ﬁoint on the curve instead of on the tangent will decrease to
zero., and the value of the right-hand side of Equation (1) will approach the
slope of the tangent. This process is illustrated in Table 8.1, for X = 0.5

and various values of Ax.

‘ | 1Yy;
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Table 8.1 may suggest to you that as ‘Ax becomes closer and closer
to zero the slope wili get closer and closer to 1.000..... . To put this in

standard mathematical language, it Is likely that as Ax approaches zero,
f(X1+AX) - f(xl)

the value of Ax approaches a limit which gives the value of
_f'(xl):
. C Uum fix,+Ax) - fix))
£'0x)) = ax—0 o (2)
The notation Al}i{r}o is read "the limit as Ax approaches zeroof ... "
TABLE 8.1
| f(x)+Ax) - £(x,)
Ax f(x;) fx +ax) A
0.1 0.25 0.3600000 1.1000
0.05 0.25 0.3025000 1.0500
0.01 . 0.25 3.2601000 1.0100
0.005 0.25 0.2550250 1.0050
0.001  0.25  0.2510010 1.0010
-0.1 0.25 0.1600000 0.9000
-0.05 0.25 0.2025000 0.9500
-0.01 0.25 0.2401000 0.9900
-0.005 0.25 0.2450250 0.9950
-0.001 0.25 0.2490010 0.9990

However, from the table alone it is Impossible to be sure that the
slope will 'not approach 1.00001, at least not without extending the table
until we reach a value ?lose_r to 1.00000. What is needed now is a way to
calculate this limit without resorting to a long table such as Table 8.1.

Substituting Ax = 0 directly into Equation (2) will not dc;l. because it
\fvill yield the meaningless expression of g’ The way to dc it, which iscalled
the delta process, consists cof three setps.

The first step is to construct the ratic on the right-hand side of Equa-~
tion (2) for the specific function whose derivative you wish to find. Inour

case, where f(x) = x¢, this gives

1Yy,
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(xl+z‘.‘.x)2 - Xlz

Ax

The second step may consist of either of two operations. If possible,
the form of the numerator is charged in such a way that a factc;r Ax can be
extracted in order to cancel thg Ax in the denominator.. After the Ax is can-
celed, we are sure to avoid the meaningles- expression % when Ax goes to
zero. In this case, a third step is particularly simple: it consists of setting

*
-\X"—'U. ¥

Let us now carry cut the second step for f(x) = x2:

",x1+i\x)2 - xlz = xlz + leAx + AxZ - xlz = /.\x(2x1+&c)

Equation (2) now becomes
: " Ax(2xyt2:)
£(x)) = Mg — o = Umg (2x1+Ax)

Now there is no longer an obstacle to setting Ax = 0, which is the

third step of the delte process. In this case we get f'(x) = 2x;. For
x) = 0.5, we have f'(x;) = 1 exactly, as was indeed suggested by Table 8.1.
" The delta process works for any value of the variable. Thus we shall
omit the subscript and write in general that for f(x) = x2 the derivative,
£ (x) = 2x, or, in short,
[x2]' = 2x (3)

\:here [ 1' stands for the Jarivative of the function in the brackets.

Questions
1. Using the delta process, find the derivative of f(x) = 5x% - 6x.
2. The derivative of f(x) = x3 is defined as
) +Ax)3 - x3
ft(x) = /—\l}émo (X XA).X X

(a' Change the numerator in such a8 way as to have a factor Ax In it.

(h) After canceling the Ax, what is the derivative of x37?
*If a factor nf > ¢« cannot be extracted from the numerator, then the form of
the numerator must s~mel-.w be changed in such a way as to make i possible
to find the limit of the 1atin a=s Mx =", Ir this chapter we shall look only at
cases where a factor Ax can be extracted. In the next two chapters we shall
see oxamples where the limit will be focund even though a factor Ax cannot he
extracterd,

197
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3. Geperalize the result of Question 2 to find the derivative of
f(x) = x" where n is a positive integer. (Hint: When you multiply
out (x + Ax)", you will get a term x™ and terms with powers of Ax
ranging from Ax to AxB. Why do you have to know only the coeffi-
. cient of Ax?)
4. Consider the fuaction
x2 forx <1
f(x) = {
Ixforx>1
(@) Sketch the function for 0 < x ~ 2.
(b) Does this function have a derivative at x = 17?
(c) What happens if you try to apply the delta process to find the

denvafive atx=17?

3.1 The Derivative of ;lc' and Vx

The first step of the delta process can be applied to any function:
However, the second step may not aiways be as straightforward as in the
examples treated in the preceding section. We shall illustrate this by find-
ing the derivatives of two common functions: ;l('am? Jx.

As with any calculation, it is worth while to get some idea as to what
to expect. Figure 8.8 is the graph of y = ‘1'. What can we tell about the de-
rivative of —1* from the graph? From the few tangent lines drawn in the figure
it is evldent that all tangents slope downward to the right. Hence the derlv-
ative of i is negative everywhere (except at x = 0, which is not in the domain
of i) . For large positive anc'i large negatlve' values of x, the tangents tend to
become horizontal, l.e., [ﬁ] approaches zero. For x near zero, the tangent
points down almost vertically, hence the derivative is very large and negative.

Now we apply the delta process to find th- function'that has the fea-

tures we just described. lor f(x) = ;lc' the first step yields
~

1 A
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1 1 1

Ax |x+ Ax X
(For ease of writing, we have put the Kl; in front of the bracket instead of Ax
underneath.) Carrying out the subtraction, using a common denominator,

gives

l.x—(x-*Ax):l. =AX__ _ 1‘
AX (x + Ax)x Ax  (x + Ax)x (x + Ax)x

Now the third step can be taken by letting Ax = 0, which yields

17 - _1
[x] - -3 (4)
The function -ﬁ)_— indeed has the properties which we predicted from

the graph in Fig. 8.8.

14y
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What can we predict about the derivative of \x from the graph of this
function shown in Fig. 8.97 The derivative is positive, but steadily decreas-
ing as x increases.

To find the dertvative of Vx, we start wt‘th

VX ¥ Ax - VX
AX

To be able to get a factor Ax in the numerator requires replacing VX + Ax N
by (x + Ax) - x = Ax without changing the values of the quotient. This is ac-
complished by muitiplying the numerator and the denominator by NX F OX + X
(see Appendix, page ): |

VX ¥ X - NX _ VX F Ax+ax N+ AX - NX
Ax X + Ax + % AX

x + Ax) - x

_ 1
WX + Ax + Vx) Ax  Vx + Ax +Vx

This completes the second step of the delta process. The third step is

straightforward: for Ax = 0 we have

[Vx) -?\[: (5)
Y
Y= y¥X.
| <+
T
+ 4 X
0 | 2
Fig. 8.9
Questions
1. Although the derivative of VX Is not defined at x = 0, what can you say

about the direction of the tangent to the graph of y =Nx at x =

)
it
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2. Suppose the graph qf y =;1(- is drawn using the same scales on the X
and y axes. For which values of x will the tangent of the curve make
an angle of 1350 with the positive direction of the x axis?

3. Notina that ;1'(‘ = x-1 and Vvx = x1/2, can you suggest (without ‘proof) a
further generalization for the derivative of f{x) = xM for negative as
well as non-integer values of n? (See Question 3 in the preceding

section.)

a .

8.5 Some Properties of Derivatives

If we had to apply the delta process whenever we wished to.find the
derivative of a given fl{nction, it would inde=d bhe very tedious. TFortunately,
this is not necessary, as the following two theorems will show.

(i) If the f'(x) is the derivative of f(x), theathe derivative of
hix) = cf(x) 1s h'/x) = cf'(x), where c Is a constant. In words, the derivative
of a constant times a function is the constant times the derivative of that
functioan. For example, [5x3)' = 5-3x2 = 15%x2.

To prove this theorem we proceed as follows:

t - 1i h(x + Ax) - h(X)
h (X) _AXEZO Ax

In general, if hix) = cf(x), then

h () = Al;ic—nzc cf(x + A:l - cf(x)
_ lim ffx + ax) - £(x)
= Ax—~0 € AX

The factor ¢ 1s a constant and does not depend on Ax. We can,
therefore, apply the delta process to the ratio in the parentheses and then
set.Ax = 0, which yields f'(x). Hence

h'(x) = [cf(x)]' = cf'(x) (6)

(1) If hix) = f(x) + g{x), then h'(x) = f1(x) + g'{x). In words: the

derivative of a sum of functions is the sum of the derivatives of the individ-

[ . 2 -+ 1 - + _J'._.
ual functions. For example: [x% +Jx1' = 2x e .

2(;1
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The proof proceeds along lines similar to those of the proof of the

preceding theorem:

[£(x) + glx)T* =A1;£-n30 (f(x+AxL+gjx2x) - f(x) -_g(gl)

By rearranging the two middle terms on the right-hand side, we have

[f(x) + gx)]' = AI;EO (ﬂHAZ)x_ f0ed g(x*-AxA)x— g(’ﬂ)

We can now carry out the delta process separately for ecch ratio, which

yields the sum of the derivatives:

[f(x) + g(x)1* = £ (x) + g (x) (7)
Questions
1. (a) Express the area of a circle as a function of its radius.
(b} What is the rate of change of the area as a function of the radius?
2. What is the derivative of x, %xz, %x3, l'xn n#0)?
3. (a) What ts the derivative of g(x) = ¢, where c Is a constant? Give

a geometric reason for your answer. Show that the delta process
gives the same result,

(b) Using the second theorem in this section, what is the derivative
of h{x) = f(x) + ¢?

(c) What can you say akout two functions h(x) and f{x), if h'(x) = £'(x)
in a given interval?

1. Using the two theorems in this section, prove that (af(x) + bg{x)}' =
af'(x) + b'g(x), where a and b are constants, (Hint: Apply the second
theorem to the sum, and then apply the first theorem to each term,)

5. Consider the function f(x) = x + l in the interval -5<x<5 (x#0).
(a) How is f(x)) related to f(xz) where xp = 12
(b} Sketch the graph of y = f(x) in the above interval. Is your answer
to part (a) useful in this task?

(¢) At which point is the tangent to the curve horizontal ?

(d) Use the derivative of f(x) to check on your answer to part (c).
p)

¢ 1
<
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8.6 Antiderivatives

Suppose the function f(x) = 3x2 describes the rate at which water

flows into a container. What function will describe the volume of water in
the container at different times? Or suppose that f(x) = 3x2 describes the
slope of a curve as a function of the horizontal coordinate. What expression
wlll.describe the curve itself?

The two questions which we have raised are examples of situations
where a function f(x) is known and we are looking. for another function F(x)
whose derivative is f(x), i.e., f(x) = F'(x). The function F{x) is called an

antiderivative or integral of f(x). From the preceding sections we know anti-

Gerivatives of @ number of functions. For example, an antiderivative of

£(x) = 3x2 is F(x) = x3. Similarly, an antiderivative of f(x) = -;15 is F(x) = ;(1-

The two theorems about derivatives discussed in Section 8.5 can be
restated in terms of antideri‘vatives and then used to find antiderivatives of
related functions.

(1) If F(x) is<an antiderivative of f(x) then cF(x) is an aniiderivative
of cf(x). TFor exaniple, x3 is an antiderivative of 3x4. Hence ‘gx3 is an an-

1 ' .
tiderivative of 3" 3x2 = x%¢. To show the general validity ci this thecorem we

note that for I'' (x) = f(x)
[cF(x)]' = cF'(x) = cf(x)
Hence cf(x) Is an antiderivative of cf(x).
(if) An antiderivative of a sum of functions is the sum of the anti-
derivatives. If F(x) is an antiderivative of f(x} and g(x) is an antiderivative
of g(x) then [F‘(x) +GX)]' = F(x)+ G x) = f(x) + glx) which proves the theo-

Y
rem. *

" Questions X v

¥ ‘
1. Find antig®ivatives of the functions listed in the table below.

1
£(x) 1 x | 2| Vx| x2

F(x)

201



~196-

2, Find antiderivatives of the following functions:
(a) 5x2 (c) fz - x
b) -5Vx (@ 2 - 1
3. Find ait integral (antiderivative) of the following function

- 2
f (x) kg + kyx + koyx
where kg, ky. and kz are constants.
4. Find an integral of f(x) = xM, (Hint: first find the derivative of

xM*l  then use theorem (i) of this section.)

8.7 The Constant of Integration: The Initial Condition

We have been careful, so far, to speak of an antlderivative of a
function f(x) and not the antiderivative. The reason for this is that a func-
tion has a whole family of antiderivatives. Specifically, if F(x) is an anti-
derivative of f(x) so is F(x) + C, where C is any constant. This follows from
the second theorem on derivatives: the derivative of a sum is the sum of the
derivatives, and from the fact that the derivative of a constant is zero. Thus
the antiderivatives of a glven functi‘cm form a family of homomorphic functions
displzced vertically with respect to one another. For example: F(x) = x3 is
an antiderivative of f{x) = 3x2, since [x3] = Ix2 (Fig. 8.10). But se is
x3 + C for any value of C, since [x3 + CJ* = 3x%. The constant C is called

the constant of integration.

We now recognize that the question we raised at the beginning of
Section 8.6 has no unique answer. The whole family of curves y = x3+ C
has the slope function f(x) = 3x2. Any of them could describe the volume
of water as a function of time.

To make the antiderivative unique we have to know its value & some
point x = xy. In the case of the water flowing into the contalner we may
know that at x = 0 there was no water in the container, {.e., atx=0, y=0.
Only the curve y = x3 fulfills this condition and, therefore, uniguely de-
scribes the volume of water as a function of time. Similarly, f x = i1, y=2,

then only the curve y = «3 + 1 satisfies this condition (Fig. 8.10). In gen-

il



| the equa.tion‘wmcﬁ determines the value of C.

Fig. 8.10

eral, if we specify the value of an antiderivative for a given value of the
independent variable, we thereby select a unique member of the family of

homomorphic functions. This condition, known as the initial condition, de-

termines the value of the ‘tonstant of integration. Let F(x) be any antideriv-

ative of f(x}), Then thé condition Yy =F(x1) + C,that is y = ¥y for x = Xy yields. :

-

In the case of f(x) = 3x2 we have F(x) = x3, and y = x3 + C for the
family of antidertyatives. If we look for the antiderivelive that fulfills the
initial condition that for x = 2, y = 10 we have the equation

| 10=234C o C=2 :

\n
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Questions ) & R

1. (@) Find the family of antiderivatives of f(x) = 6x2 + 2.

(b) If you choose the constant of integration to be zero, what is

the value of F(x) atx = 0, i.e., F(0)?

“ () What must be the value of C if you require F(0) = §?
2. 1a) Find an integral F(x), of f{x)= 5x - x% - Wx.

| (b) What is the value of F(x) atx = 1, i.2., F(1)?
o (c) Give another integral of f(x) for which F(1) = 2.
7 3. Two containers are being filled with water at’' the same rate over the .
same time intarval. Do they necessarily have the same amount of
water in them at the end of that tir.e interval? Relate your answer
to Fig. 8.10.
4. The rate of growth of the pnopulation of two citlies over a period of
| three years has beér. the same. Must the two cities have the same

pépuhtion at the end of the third year?

5. What function has the following properties: F'(x) = 3x and F(1) =-%.
6. An astronaut on the moon throws a rock vertically upward. Suppose

the rate at which the rock risés (after leaving the astronaut's hand)
is givenv =10 -~T. 5t where v is given in meters and t in seconds.
What will be the elevation of the rock as -a function of time (f at

t = 0 the elevation was h = 2.0 meters above the ground? (Note:
quite often a function and its derivative are denoted by different
‘letters. In this case v{t) = h'(t). The "v" stands for velocity and

"h" stands for height.)

8.8 Short-Range Predictions
Consider a smooth function f(x) and its antiderivative F(x), about

which we have the follow.in‘g information: ,

(a) flx,) = F'(xy) is known, and

(b) F(x,) is known. | ;
What can you Infer about the values of F(x) in the vicinity of x, ? In other

o : <{re,

£
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words, if we know the value of a function and its antiderivative at a given
point, what can we say about the values of the antiderivative nearby?
Figure 8.5 has shown that near a given point the curve corresponding

to a smooth function is very close to the line tangent to the curve at that
point. The tangent line passinr through the point (xl,F(xl)) has a slope
a=F (xl) = f(xl). Hence the linear function corresponding to the tangent
line is (see Chapter 7, Equaticn (7)):

#(x) = Fix;) + flx;) (x=-x;)
v, substituting Ax forx - xi, this becomes

£xy + Ax) = Flx;) + fx;)Ax
For sufficiently small Ax, we have

Flx) + Ax) ~ £(x; + &)
Hence, for any smooth function

Flxy + &x) = Flx ) + flx))ax (8)

independently of how the function behaves farther away from x, . (See

Fig. 8.11).

Fig. 8.11

----- F {xt) + f(x‘) Ax

)1..0.............................

AX

How small "sufficiently small" is, will vary from case to case, but

for any smooth function for which its value and the value of its derivative

{

f .
< U ‘
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are known at one point, we can predict the value of the function near that

point. This is {llustrated for three different functions in Fig. 8.12. Al

r / /
Y Fig. 8.12 I /

4
- l’#
/

three curves pass through the point (1,1) and have a slope of 2 at th2t point
(note that the axes have different scales). But otherwise they correspond to
cémpletely different functions. Nevertheless, near x = 1 they are very close
to their common tangent line, and Equation (8) can be used to predict the
values of any bf these functions nearx = 1.

This result has many practical applications. For exanmple, suppose
an airpiane i{s sighted. Its position and velocity (the rate of change of po-
sition as a function of time) are determined at a given moment by radar,

One can use Equation (8) to predict where that airplané {s going to be a3 short
time later. This is so because the airplane’s position i{s a smooth function
of time, even when it changes speed, altitude, or direction, The trajectory
6f an airplane cannot have a gap or a sharp cémer.

l‘)‘
\)‘ - . &'U

.

=
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Questlgns

1. At a given instant an airplane is exactly overhead and moving at
250 m/sec due north.
(a) In relation to Equation (8), what corresponds to f(xl}. F(xl)?
(b) Where will the airplane be 1 sec later? 10 sec later? Are you
equa-lly sure of both answers ?

2. A marker on Highway 20 is at an elevation of 850 meters. At that
point the highway has a slope of 0.08, rising tbward the east. What

will be its elevation 150 meters to the east?

-

8.9 A General Way of Calculating Integrals

In the preceding section we saw that if we know the value of a func-
tion and its derivative at x;, we can calculate the approximate value of the
function at x; + Ax (Equatiqn (8)). Suppose the derivative is known through-
out its domain and the function itself i{s known at x, . Then we can find an
approximate value of the function itself for some other value of x, say Xo s
not necessarily rear Xy . This is done by a succession of steps, similar to
the one expressed by Lquatlon (8). Specifically from'the approximate value
of F(xl + 2Ax).

Flxy + 2Ax) ~ Flx) + ax) + flx + Ax)Ax

Substituting from Equatic (8) for F(xl + Ax) yields |
Flx; + 28x) m Flx)) + flx))Ax + f(x. + Ax)ax
We can continue the process and calculate the approximate value of
the function itself at Xy + 3Ax:‘
Flxy + 34x) mF(x) + 24x) + flx; + 2Ax)Ax
~ Flxy) + f(xll)Ax + flxy + ax)ax + flx, + 2 Ax)Ax

2
SFle)+ T flx; + nAx)Ax

n=0
|
204 )
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If we let 5‘2 = x; + NAx, we can generalize the process further to
find '

N-1 .
Fix,) ~ Fix,) + ¥ flx; + naxiax (9)
n=0

Th!s process is illustrated in Fig. 8.13 for the function whose de-

rivative is f(x) = x, api.the tnitial condition is that for X) = 0.4,

F(0.4) = 0.08. For th% simple cdse, the exact answer Is F(x) = %" (Sec-

tion 8.6). The interval between Xy =0.4andx; =1.61s first divided into

X9 - X1
N

Fig. 8.13, the approximation becomes poorer as x increases from X to.x,.

three parts, {.e., N=3 and &x = = 0.4. As can be seen from

It can be improved by decreasing the size of Ax, i.e., increasing the number

Fig. 8.43
Y g :

14t

.21

1.04 '
08¢
06+
04+

o2t

2 O

o 02 ‘6? 06 08 10 12 14

]
X . A 2
of steps into which the interval X, = Xy is divided. In Fig. 8.14 the same
interval has been divided into N = 6 steps with Ax = 0.2. The approxima-
tion, as you can see, is better. If we set Ax = 0.1, dividing the interval

into 12 segments, the approximation is even better (Fig. 8.15).
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By decreasing th2 size of Ax, we approximate the curve correspond-
ing to F(x) by an incre-asingly large number of straight-line segments which
bacome shorter and clcser to the curve itself. In the limit as Ax - 0 (or
N — o) we get the curve itself. The endpoint of the last segment {s then
éxactly F'(xz): |

N-1
F =F + 1 + AX -
(x9) = Flxp) Aim ng f(x) .nAx) (10)

there is a generally accepted shorthand notation for the limit in_ ,
Equation (9): the symbol Z is changed to a stretched "S"; since in the limit
X + n&x takes up all values of x between x; and Xq, itis simply replaced
by x; finally Ax {s replaced by dx. Thus, in shorthand

X9 jl
Flxy) = F(x,) +ff(x)dx (11)
X1
which is read as "integral of f(x)dx from X to X,. "
If we can calculate the integral in Equation (10) for any values of

X then we have solved the problem of finding a function F(x) whose value
is known for one value of x (e.qg., xl) and whose derivative f(x) is known In
its entire domain. The limit of the sum given by Equation (11) gives the in-
tegral or antiderivative of f(x) for which F(xl) is specitfied. : The initial con-
dition is built into this meihod of finding the antiderivative.

Que stions

1. The derivative f(x) of a function Fix) Is known for the values of the

independent variable given in the table below.

X f(x) X f(x)

0 150 2.5 88
0.5 134 3.0 79
1.0 120 3.5 72
1.5 107 | 4.0 65
2.0 97

(a) Calculate an approximate value for F(4) using Ax = 1.0, subject
to the initial condition F(0) = 0.

Plad
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(b) Improve the approximation by using Ax =0.5.

(c) How would you compare the two approximations?

i

¥ 2. (a) Find an approximate value for F(1), the antiderivative of
1 iny =
- flx) = T+x2 subject to the initial condition F(0) = 0, by dividing

the interval between X = 0 and Xy = 1 into five parts.
(b) Repeat part (a) dividing the interval into ten parts.

(c) How do your answers compare?

880 The Area Under a Curve
N-1
The sum Z fix, + nAx)Ax in Equation (9) has a simple geometrical
n=0

interpretation. Each term in the sum equals the area of a rectangle whose
base is Ax and whose height is f(x, + nAx). If we draw the gr'aph of y = f(x),
then these rectanéles touch the graph at their left cormer. This is illustrated
in Fig. 8.16 for N = 4. Here the sum of the areas of the rectangles Is a

rough approximation for the area under the curve.

Y - y-= fix)

Fig. 8.16 /

]

X, X, + AX X, + 20% X+ 3A% . X7 %, + 40x
If we divide the interval x, - x, into a larger number of parts, then

N-1
}: f(xl + nAx)Ax becomes a better approximation for the area under the
n=0

curve y = f(x) between Xy and X9 (Fig. 8.17). This suggests that if we let

ERIC 213
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. X2
Ax -0 by increasing N, the limit of the sum, i.e., the tntegralL flx)dx,
. _ 1
will yield the exact area under the curve y = f(x) between Xy and x, . In
: X
2 X2 -

shorthandj f(x)dx = area under f(x) .

% )

1 X
1

Y y =f{x)

Fig. 8.17 /

X, X, t NAX Xg

We can, in fact, prove that this is the case. The sum of the areas
of the rectangles in Fig. 8.17 is less than the exact area ufxder the curve
y = f(x). However if we add the areas of the small rectangles shown by the
broken lines in Fig. 8.18 to the areas of the rectangles of Fig. 8.17 we get

an area that is larger than the area under the curve. Thus

X2 N-1
Area under f(x) - Z f(x1 + nAx)Ax! < sum of small rectangles
xl n=0

All of the émall rectangles have the base Ax and their heights add
up to f(x;) - flx;). Thus the sum of their areas is [fix,) - flx,)]ax, As
Ax ~ 0, [flx,) ~ f(x;)]ax -0 therefore

X2 N-
if\rea under f(x) Al,énlo 2 f.(x1 + nAx)Ax| ~ 0
/ X1 n=0
or ‘
xz X2 i
Area under f(x) = f{x)dx | (12)
| X1 X1 '

21
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Rewriting Equation (11) as

[
= F -

J"l f(x)dx = F (xz) P(xl)
and combining it with Equation (12) we conclude that area under a curve
y = f(x) between xy and x, is given by the difference of values of an anti-
derivative of f(x) at those points

X2

- Area under f(x) = F(xz) - Fx;)

X1
It is not at all important whici of the family of homomorphic antiderivative
we choose, as long as we use the same one fcr both Xy and Xy - "Thus, the

antiderivative provides a powerful tool for the calculations of areas under

curves.
y=f(x)
Y ' Fig. 8.18
———~-—-]-ﬂ”)
————— === fxg)-tx,)
ngsgutaduih SPPI
|—=i |
Ax
! P X
X, Xo
Questions "
x2 -
1. The proof thatf f(x)dx is equal to the area under the curve y = f(x)
X _
: 1

between Xq and X makes use of the fact that the sum of the areas
of the reciangles is less than the exact area under the curve. This
is true only if the function y = f(x) is increasing over the interval

Xl to Xz.
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(a) Sketch a function y = f(x) which decreases over an interval
Xy to X9

(b) Use rectangles touching the graph at their left corner to esti-
mate the area under y = f(x) from x, to x,.

(c¢) Modify the proof of Sectior 8.10 to show that also in this case
X

X

2
L f(x)dx = area under fix)
Xy

1

(a) From the description of integrals as area under curves, show that

X2 X3 X3
ffM&+ffmw= f(x)dx
X

X1 2 X1
X2 X2
(b) Using part {a) argue thatf f(x) dx = area under f(x) even if
X X
1 1

f(x) both increases and decreases over the interval x; to x;.

Consider a function f{x) > 0 for x| < x <x,. Let g(x) = -fx).
(a) How is the curve y = g{x) related to the cutve y = f(x)?
(b) If F(x) is an antiderivative of f(x), give an antiderivative of g(x).

(¢! How is the area "under" y = g(x) related to the area under y = f(x)?

-

Find the area under the curve y = x2 petween Xy and Xp.

What is the area under the.curve y = ;%4* 5% - 2x3 in the (nterval

1 <$x<£2?

A function is called symmetric if f(-x) = £(x) and antisymmetric if
f(-x) = -f(x). (For example, f(x) = x2 {5 symmetric because (-x)2 = x2

and £(x) = x3 {s antisymmetric because (-x)3 = -x3.) What can you say
X
1 .
about the area under f(x) where f(x) i1s anttsymmetric in the {nter-
) =X
1
val -x; Sx £+ x4 ?

Under what condition will the area under a curve as calculated by

Equation (12) be given in cm? ?

*
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8.11 The Area Function

In Fig. 8.19 consider tue polnt X) fixed and the point X moving along
the x-axis. Then to every value X corresponds a value for the area under the
curve between x,; and X. Or in other words, the area under a curve is a f;mc-
tion of the upper end of the interval for a fixed lower end of the {nterval.

We shall denote this function by A(X) called the area function of f(x).

rX ‘X
J f(x)dx = AX) = Area of f(x) (13)
X1 X1
W
Y y=t(x)
Fig. 8.19
H H X
x X

Now compare Equation (13) for the antiderivative of f(x) and

Equation (11) with X, replaced by X:
X
FIX) = F(xl) +f f(x)dx (11')
3 .
Fquation (11') reduces to Equation (13) for F(xl) = 0. Thus the area function
defined by Equation (13) is the particular antiderivative % £(x) that satisfies

the initial condition F(xl) = 0.
The connection between area function and antiderivative is very use-

ful for getting a general feeling for the behavior of an antiderivative. For

| < A
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example, what are the qualitative features of the antiderivative of the func-
tion represented by the graph in Fig. 8.20 subject to the initial. condition

F(0)=0?
Y
Fig. 8.20
+ 4 - X
0 ! 2 3 4

Note, first of all, that for 0 < x < 1 the area undar the curve is pro-

portional to x. Thus the antiderivative will start off as a straight line with

a positive slope. Near x = 1 the function drops rapidly to zero and stays

there up to x = 2, There is no change in the area under the curve in this in-

terval, thus the antiderivative remains at its value at: = 1. The general

appearance of thé antiderivative between 0 and 2 is shown in Fig. 8.21.

Y
Fig. 8.21

X

—

3

-+
4

™ 4

0

Near x = 2 the function drops rapidly to minus its value between 0

and 1 and stays constant up to x = 4. Since f(x) is negative and constant in

the Interval 2 < x < 4 the area "under” the curve {5 negative and will reduce
the area accumulated from x = 0 at a constant rate. The overall appearance
of the antiderivative for 0 < x < 4 is shown in Fig. 8.22.

A comment about notation {s in order at this point. We have labeled
the independent variable of the area function by X rather than x. The reason

for this change is to avoid confusion between the upper end of the interval

215
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| . * .orX
of integration and all the values inside It; when we writejf(x)dx, x takes up
- x :
N 1

all values between xj and X. Where there is no danger of confusion we can

write F(x) for the antiderivative of f(x) without resorting to an X.

Y
1 - X
0 |
Questions
1. It Is stated in the text the area function of f(x) = c, where ¢ is a con-

stant, is a straight line. What is the slope of this line? .
2. Sketch an antiderivative of the function f(x) described in Fig. 8.23.
Assume F(-2) = 0. Check your answer by finding the algebraic ex-

pressions for the straight line segments and tnen cAlculating their

antiderivatives.
Y
Fig. 8.23
+ + X
-2 2
3. By studying the area under the curvey = f(x) for
_ 1
fix) = T+ x2

find the general features of its antiderivative subject to the initial con-

dition F(0) = 0, What aspects of the behavior of F{x) can you deduce.

el



8.12 - Numerical Integration

N- 1 * X2
Camputing the sum 2 f(:rc1 + nAx)Ax as an appmxlmaticn tof f(x)dx
n=0 X1

can lead‘to long and tedious calcha‘tlons. Whenever possible, therefore, it
is desirable to have this work done by a computer. A flow chart for a computer
program which can be used to do this is shown as Program 1. The program re-
quires that thé values for x;, X5 and _ﬁ'b’e read in at Step 1. After initializ-
ing registers in Steps 2 through 4, th§ value for Ax, represented in the pro-
gram by the register DX, Is calculated in Step 5. Steps 6 through 8 calculate

tf;e-actual sum, using register I as the index. Finally, the sum is printed in

Step 10. (
PROGRAM 1
1. Reacjﬁnput - X1,X2,N
2 Ll
. 3. Sum « 0
- -/,’,/
4. X ~—x1
( 5. DX - (X2-X1)/N
> e 6. I+I+1
7. Sum « Sum+f(X)*DX
8. X «X+DX

l

< N-
1SNl 5 Jf1<N-lgoto6 )

l I>N-1

10. Wi‘lte-Sum




)
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A major limitation of this program is that it provides no information
X2

about the accuracy .. the approximation toj fix)dx. To remedy this diffi-
X
1

culty we can add a routine to check on the exactness of the approximation
and, if necessary, improve it by incrcasing the number of subdivisions.
Program 2 is a version of the first program with these new features

added in. The new program repeatedly doubles N until the approximation to
XZ ‘

v XZ
j’ f(x)dx differs from the true value off f(x)dx by less than some prespec~
ified number E.
PROGRAM 2
1. Read input - X1,X2,E

l

2. DH~ f(X2) - f(X1)

3. DX <« X2-X1

4, Sum « f(X1)*DX
L 5 N«1 ‘

6 ERR « |DH*DX|

} v e e
/ (7. If ERR< Lgotol8 )M 18, Write*Sum]

I ERR> E
8. [+0 - 19. @
g. Sum « 0
10. X « X1

11. N « N*2~

12. DX « DX/2

»13. I«141

14. Sum < Sum + £(X)*DX
15. X « X+DX

y v
< -

[LSN-1 (06, HI<N-lgotold )

I I> N-1

17. Go to 6
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Programs such as Program 1 and Program 2 require that the rule for .

"y = f(x) be specified. Therefore, if the function is presented either graphi-

cally or in tabular form such programs cannot be used. We can modify Pro-

gram 1 to deal with tabular data but the approximation can no longer be made

arbitrarily precise.

Questions

1.

Code Program 1 in BASIC for f(x) = x2 + 4. Use your program to ap-
proxin.ate the area under y = f(x) from x, = 0 to x9 = 2 using four
rectangles. |
Modify Program 1 to approximate the area of a function given in tabu-
lar form. (Hint: You will have to read in values of x and f(x) instead
of computing them.)
Code Program 2 in BASIC for f(x) = x2 + 4. Use your program to ap-
proximate the area under y = f(x) from x; = 0 to x, = 2 to within 0.01
unit squ'ares.
(a) Modify Program 2 to print not only the final result but also the
X9 _

approxima.e value of/ f(x) dx for each value of N.

X1

(b) Use your modified program to approximate the area under
£(x) = x% + 4 from x;=0tox; = 2 to within 0.01 unit squares.
(c) What does the series of successive approximations tell you
about how such approximations are related to the true area?
Modify the program of Question 4 to compute various areas under
f(x) = V1 - x° (see Fig, 8.24.)

(a) First compute the area under f(x) = Jl - x2 from x)=-1to

| Xy ® 0. Use your result to approximate v to four decimai places.

(b) Next, approximate n to four decimal places by computing the
area under f(x) = \/1 - x2 from Xy = 0toxy = 1. How do the two
estimates compare? One would expect the two methods to agree.
Do they?

AW
P
' o
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(c) Use your program to compute the aréa under f(x) = Jl - x2 from .
Xy = -1tox, =1. What happens? Why?

Y
f{x) = 4 i-x®?
-+~ \ Y ' —+— X ‘
-2 -1 0 | 2
v Fig. 8.24
€. (a) For Program 2 describe how the accuracy of the approximation is

determined.
(b) What are the limitations of the procedure used? (Hint: Consider
the results of Problem 5.)

7. (a) Modify Program 2 so that the criterion for accuracy is based on
the comparison of two consecutive approximations. That is, if two
approximaylons differ by less than E the program should print the re-
sult and stop. Otherwise, divide the interval once again and continue

the process.

(b) How does this procedure compare to the one of Progrém 27

(c} Does this criterion work equally well for all integrals ?
' ‘ , X
8. (a) Modify Program 2 so that it can be used to compute AX) =ff(x) dx
. X. .
1

and print out a table of values of X and A(X) which could be used
to graph the :unction”AX).

: . ‘ X
(b) Use the program of part fa) to print a table for A(X) = ] (x% + 4) dx.
. . 0
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X

9. Use the program of Question 8 to print a table for A(X) =f -l'f—:z' .
: 0
10. How could the program of Question 8 be modified to print out & table
X
which could be usea to plot F(X) = P(xl) +f f(x)dx ?
X1
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Chapter 9. THE EXPONENTIAL AND LOGARITHMIC FUNCTIONS

9.1 The Exponential Function y = 10X
In Chapter 4 you learned how to find intermediate points on a power-~

of-ten slide rule by taking square roots of ten. For example, the number on
the D scale represented by a displacement from 1 to a point halfway between
1 and 10 isN10 = 101/2 =3.162. By taklﬁg successive square roots you
found still more fntermediete points. Thus, to find the number on the D

scale lying halfway between 1 and 101/2 you calculated

10172 = (101/2)1/2 = 19174,

By taking successive square roots of 10 you were, in fact, raising

10 to different fractional powers 101/2, 101/4, 101/8, 101/16 ... . LEach
of the terms in the sequence of exponents %, % %, etc., has the form E];'
where n is a positive integer. Using products of fractional powers of the

form 101720 we can find the value of any fractional power of ten to any de-

sired accuracy. For example, i{f we wish to find the value of 100'835, we:

’

first search for a sum made up of terms from the sequence of exponents 5

111 that differs from the exponent 0.835 by only a little. The sum

4°8' 16
-%— + :ll- = 0.75 is close to 0.835, but we can easily get closer to it by add-
ing and subtracting additional well-chosen terms from the series. ‘Thus,
L,1,1_0.875 error . 0.0400
2 4 8 ' o
1,1,1 1 _
> + 4’+ 8”3 = 0.8438 error; 0.0088
1,1.1 1 1
Pk e Bl et el .
2t ats 32 128 0.8359 error 0.0009
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"o find the value of 100-835 we now make use of the law of expo-

nents, a™ - at = aM*", and write

1,1,1 1 1
100'\\835% 102 4 8 32 128
101 1 1 1
- 10%-10% - 10810 3210 128
1 1 1
_ 10210t 1?
d 1
1032 . 10128

We can evaluate each of the fractlpnal powers of ten in the above
expression by taking successive square roots. If we do this (usl'ng a high-

speed calculator to save time), we get for the final result
100-835 & 6.85

~ Using this tedious but routine method, we can find the value of any
fractional power of ten to any degree of accuracy. There are other ways of
calculating fractional powers of ten, but this is the method invented and
used (without the benefit of high-speed calculators) in the seventeenth cen-
tury. i

~ What we have just done is find the value of f(x) in the function

f(x) = 10X forx = 0,835. This new function is called an exponential func-
tion. The rule for this function is "take 10 to the x power, " which is not
hard to do for integral values of x, but, as you have just seen, is not so
easy for many non-integral values of x. However, if we calculate a reason-
able number of values of 10¥, we can draw a graph of this exponential func-

tion, filling in the hard-to~calculate gaps with a smooth curve.

The graph of the expon/cnttal function y = 10¥ is shown in Fig. 9.1.
It rises steeply, passing through the point (0,1), and as x assumes larger
an% larger values, 10% increases without limit, but as x becomes more and

more negative, 10X asymptotically approaches the x axis.
QL
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Questions
1. Using the law of exponents, a™-a" = am*n  show that 1017210 i5 the
square root of 101/M where n = any integer.

Find, using successive square roots, the value of
“(a) 10!/4 |

(b) 100125

(c) 102-3

(d) 10}.125

(e) 1Q-0.25

What are the domain and range of the exponential function y = 10%7?
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A ]

4.. Suppose you have a very long piece of strlrig which you cut into 10

pleces, and you repeat this process of cutting each plece into 10
pleces several times.

(a) Make a graph of the number of pleces of string N as a function
of the number of times n you repeat the prcgess (start with n = 0
when N= 1),

(b) Are you justified in connecting the points you plot by a smooth
curve?

(c¢) What function gives N as a functionof n?

(d) What restriction must you apply to the independent variable of

this function?

9.2 The Exponential Functions y = b* and vy = kbX
In the previous section we discussed the properties of the function

f(x) = 10*, which is a speclal case of the more general exponential function
f(x) = bX where b is any positive number.

We found that we could calculate 10X for any x to any accuracy we
wished by calculating the product of some "well-chosen" successive square
roots, starting with the square root of 10. In similar fashion, we can find
the value of bX for any positive b and any x by starting with the square root
of b instead of the square root of 10. The domain of y = bX for any-allowable
choice of b extends over the whole number line. The range, however, con-
sists of only positive values. The graph of y = bX for various choices of b
{s shown in Fig. 9.2. If b is greater than 1, then as x assumes larger and
larger values, b¥ Increases without limit, but as x gets more and more nega-
tive, b* asymptotically approaches the x axis. For values of b less than 1,
the reverse holds true.

The exponential function s one which comes up very often. For ex-
ample, let us say that the population of wild rabbits doubles each year. If
we start with k rabbits, then after one year we have 2k rabbits, after two
years 2(2k) = 22y rabbits, after three years 2(22k) = 23x rabbits, etc. _After

x years, by the same reasoning, there will be y = {2X)k rabbits. Here we

.,
et .
LT AL
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have a more general form -of the exponer.tial function, namely
y = kb¥
The same function y = kbX describes the total amount of money in a

savings bank account, assuming a constant rate of interest. Let us say that

we start with a principal of m dollars and that the annual Interest is 6 per

Y
0 -
- X ‘ ¥
y=($)" y=(g)" y=6 y=3" y=2"
a -
6 p—
4 y=l.5‘
]
2 -
y=1"
k e 1 — X
-3 -2 ~1 0 | 2 3
-
Fig. 9.2

cent, or 0.06 of the principal. After one year we have 1,06m dollars in the
account, after two years 1.06 x (1.06m), etc., and after x years we have
(1.06)*m dollars. Of course, the balance shown in the account is not really
a smoothly varying function of _:g,‘ since interest {s usually not credited con-
tinuously as it accmes., but is added as a lump sum at fixed Intervals. Nev-

ertheless, if the total time considered is large compared to the time between

224
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interest dates, the function can for all practical purposes be considered
smooth. (See Fig. 9.3.)

Y
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Questions
1. The exponential functiony = kbx-xo, where k, b, and X are con-

stants, reduces to the form y = k'bX, where k' Is a constant. What
is k' in terms of k, b, and x;57?

2. The exponentlal function y = kb®%, where k, b, and a are constants,
reduces to the form y = k'c*, where ¢ {s a constant. Whatis cin

= terms of band a?

9.3 Inverse Functions
In Section 6.1 we defined a function as a relation such that for each
value of the independent variable there 1s only one value of the dependent

variable. We said that we could look at a function graphically, in tabular

0y .,
\)4‘ {_‘)(a
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form, or we could express a function in terms of a rule.

It is sometimes useful to think of a function as a rule by which we
pair off certain numbers with other numbers; we may consider the function {
as a rule that pairs off a number x with the number f(x). Certain of these
rules can be {nverted; that is, another function can be found converting f(x)
back into x. |
g For example, the function f(x) = x + 3 pairs off 0 with £(0) = 3, 1 with .
f(1) = 4, 10 with £f(10) = 13, etc.. The function gi(x) = x - 3 inverts the rule
of f{x) = x + 3 since it pairs off 3 with g(3) = 0, 4 with g(4) = 1, 13 with

g(13) = 10, etc..

It is not always possible to find a function inverting the rule of an-
other function. For example, we cannot find a function that is the inverse
of the function f(x) = x2. The reason is that £(2) = 4 and f(-2) = ti, so a rule
g(x) which inverts the E_ule f(x) would have to satisfy both g(4) = 2 and
g(4) = -2, But if the rule g(x) defines a function, then g{4) must be a unique
number; thus there is no function which is the inverse of f(x) = x2.

Whenever we have a functign g{x) which reverses the rule of a func-

tion f(x), then g(x) (s called the inverse function of flx).

| What {s the graphical relationship between a functinn and its inverse?
Let us first make the observation (Fig. 9.4) that the line y = x i{s the perpen-
dicular bisector of the line segxﬁents connecting the points (a,b) and (b,a),
(c,d) and (d,c), (m,n) and (n,m). Or, to rephrase the statement, the points
(a,b), (c.d).‘and (m,n) are symmetric to the points (b,a), {d,c), and (n, m},

respectively, about the line y = x,

Fig. 9.4
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We know that to graph a function f(x), with values for f(a)‘ e b;
flc) = d.‘f(m} = n, etc., we plot the points (a,b), (c,d), (m,n), etc. Since
the inverse reverses the rule of th.e function, we can graph the inverse by
plotting the points (b,a), (d,¢), (n,m), etc. In view of our observation con-
cerning Fia. 9.4, it is now clear that the graph of the inverse of a function
is symmetric to the graph of the function with respect to the line y = x,
Thus, for example, to sketch the graph of the inverse of f(x) in
Fig. 9.5, even though we have no explicit rule that defines f(x), we can se-
lect a few points (Py, P,, ..., P;) on the graph of f(x) and locate points of
symmetry (Q,, Q,, ..., Q—,) with respect to the line y = x. We then sketch
the graph of the inverse by connecting these points. We can tell by logking
at the graph in Fig. 9.5 that the inverse is a function even though we cannot

write the rule for it in terms of algebralc operations.

-

Fig. 9.5

We stated earller in this section that the functlon y = x% does not
have an Inverse function. We can lllustrate this graphically (Fig. 9.6(a)).
Note that the relation y = #/X reverses the rule y = x2 but it is not a function
since for any x in the domain of y = +VX there are two values of the dependent

l)t . -
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variable y. It is possible, however, to get an inverse function for f(x) = x2
if we restrict the domain of f(x) to non-negative values only. The rule

y = +Vx then defines the inverse function cf y = x2 where the domain of the
independent variable in the functiony = x% has been restricted to non~-nega-
tive values of x, This is shown graphically in Fig. 9. 6(b) where the solid
portion of cach graph shows the function and its inverse function.® The dot-

ted portions are included just to show the complete relation between x and y.

(a)

(b)

*The function y = +Jx is usually written as y = n/x, where the positive sign is
understood. k

: Q 2',; ¢‘j
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Questions
1. (a) Figure 9.7(a) shows the function f(x) = 2x + 1 and its inverse
[
g(x). ;
What {s the algebralp expression for g(x) ? \

(b) Figure 9.7(b) show,é f(x) = 2x + 1 and y = x. .In this figure the

scale on the x-—axls{,has been "stretched" so that the distance from

the originto 1 al_on@\t\he x-axis is twice the corresponding distance

along the y-axis. ’ e -
N
Y
Hx ) =2x ] Fig. 9.7
gix)
b X
d (a) -
Y
ol y=f{(x)=2x+!
6"
y=x
4} -
a—
‘(1,3) _‘_a—’t’
a—
2r b‘__‘_«
.--"’1 i i X
- I 2 3 4
——
(b)
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Lay off, on graph paper, scales like those in Fig. 9.7(b) and
plot the graph of f(x}) = 2x + 1 and y = x. '

Now use the algebraic expression you obtained in part (a) to
plot g(x).
(c) Are f(x) and g{x) symmetric with respect to the liney = x?
(d) Under what conditions are a function and its Inverse symmetric
with respect to the line y = x?

2. Is y = -o/x the Inverse function of a function? If so, what function?

3. Sketch the graph of the inverse of each function in Fig. 9.8 without
" writing any algebraic expressions but by using the graphical rela-

tionships between a function and its inverse.

Y 4

A
\

\\ X X
f/ \
\\
\
\ |
Fig. 9.8
Y Y
X - X
5
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In Fig. 9.9, the functions f(x) = x2, g{x) = 2, and h(x) = V1 -x2
are graphed.

(a) Sketch the graph of the inverse of each function.

(b) Is the Inverse cf any of these functions a function?

Y

Fig. 9.9

r . X

Given a graph of a functlon'. formulate a rule which will tell you,
without going through the graphical construction of an Inverse,

whether or not the invers® s also a function?

Graph the functiony = f(x) = 4 - ‘:}x and then choose a few points on
the graph of f(x) to plot its inverse. Now, using the technique de-

scribed in Section 7.5, write the equation of its inverse.

0 .
231
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7. In Question 6 you gr;:phed the functiony = 4 - g‘x. S;lee the equa~- -
tiony =4 - %x for x, and compare your solution with the equation of
the inverse function that you de;lved in that example. Does this
give you a meth\od of writing the equations for inverses of linear

functions? Try some more examples.

9.4 glx) = log, ox: The Inverse Function of f(x) = 10X

Figure 9.10 shows the result of applying the geometric method for

constructing the graph of an inverse of a function to the function f(x) = 10X,

Y f(x)=10"

(0.3,2) Fig. 9.10
\

alx)= log

(2,03 y

-5+

As you can:see, the inverse of f{x) = 10X {s a function becéuse for each val-

ue of the-lndependeng variable there is only one value of the dependent vari-
“able. It is called a iogarithm'ic function. There is no way to write the‘exact

rule for g(x) using simple algebraic symbols, although we can find gx) for

any positive value of x frenn a table of values of the exponential function

y = 10X, Therefore, we write it as

glx) = loglﬂx

237
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where 109101: means “ftnd the exponent of 10 such that 109X) = % and is
read as "the logarithm of x to base 10." .Note that "log, ," does not repre-
sent a number. Like the symbol "« " it specifies a definite operation.
— From the definition of the logarithmic function it follows that
logigl = 0 since 100 = 1-° _ -
logygl0 = ' since 10! =10
logy 100 = 2 since 102 = 100

-

and for numbers less than 1
logmo.f = -1 since 10"1 = 0.1 -
logy0.01 = -2 since 10-2'= 0.0}

Table 9.1 lists some of the overall properties of the two graphs in
Fig. 9.10 and shows the close relationship between tae functions y = 10¥
and y = log,gx. We see that one graph behaves in just the reverse way

from the other.

TABLE 9.1
‘ f(x) = 10% gx) = logmx

Domain all aumbers on positive numbers

the number line on the number line
Range positive numbers all numbers on

on the number line the number line
Intercept (0,1) with the y-axis (1,0) with the x-axis
Asymptote X-axis y-axis -

The most characteristic property of the exponential function {s ex-

pressed by the law of exponents. Specifically for base 10,

10%1 . 10%2 = 10%1%%2 (1)

What is the.corresponding property for the logarithmic function?

’ Let
y] = 10"_1 and y; = 10*2

) - .
3.}0
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“then by the definition of the logarithmic function”
Xy = log vy a_nd X2 = log y7
Equation (1) can now be written as

X1+X2

"

Y Y, < 10

* Again applying the definition of the logarithmic function we have

X1 + Xy = log (y,y;)
On the other hand

x) + %3 = logy; + logy,
Hence

log (y,y,) = logyy + logy; (2)

In words, the logarithm of the product of two numbers equals the sum of the

logarithms of the two numbers.

Because of this relationship, a table of loga:-'lthms of numbers néed
include only the logarithms of numbers between ] and 10. The tal;le of log-
arithms to the base 10 in the Appendix of this book, for exampie, cjives the
logarithrs of all three-digit numbers from 1 to 10 only, and the logarithms
of these numbers, given to four digits, range from 0 to 1. (For slmpucity.

the decimal points {n the numbers and also in the logarithnis are omitted.)

To use such a table fcr numbers greater than 10 or less than 1, we
express the number as a numher between 1 and 10 multiplied by the appro-
priate power of 10. We then use Equation (2). For example
' log 324 = log (3.24 x 102)
= log3.24 + log 102
0.5105+ 2
= 2,5108

1"'I‘he‘ subscript 10 {s generally omitted when we write logarithms to the base
10. Thus, logy stands for logwy.

234
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Similarly _
| log 0.0324 = log (3.24 X 10-2)
= log 3.24 + log 102
= 0.5105 ~ 2
= -1,4895
Questions i
1. The lav;r of exponents hoids for any number of factors: For example,

4.
S.
6.

10%1.10%2.10%3 = 10¥1tXetx3

(a) Use this extention to show that
logy,Y,¥y = logy; + logy, + logys
(b) Express this result in compact form for the spectal case
Yy = Y2 = VY3
(c) How would you generalize this result to any number of equal
factors ? a
In Equation (2) consider the special case y, = ;]‘l‘ What does the

result tell you about log }1* in terms of log Yy ?
1

The logarithm of the quotient % can be looked upon as the logarithm

of the product a-:; . On the basis of your answer to the preceding
question state in a sentence the relationship between the logarithm

of a quotient and the logarithms of its numerator and denominator.

How is log (x—M related to logx?

How is logwXx related to log to logx?

(a) Graph y = logx for values of x between 100 and 1000.

(b) If you changed the x scale so that 100 became 1000, and 1000
became 10,000, how would you have to change the labeling of the
y axis so that the graph would represent logx in the new domain?
Expand or simplify '

(a) log (ax?)

(b log (=)

Use the table of logarithms in the Appendix to find the logarithms of

Ry
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the following numbers:

(a) 372 | (d) 3.46x 108
. 1
(b) 0.50 (e) 367
1
(c) 0.00437 (f) 0.0z1
g. Use the table of logarithms to evaluate the quantities below:

(a) (1.72)18
b) (2.63)1/3
() (143)-8

9.5 The Functions eX and Inx
Figure 9.11(a) shows two curves of the formy = bX. They arey = 2%

and y = 4%. Both curves have the same y-intercept, (0,1), and both are

approximately straight lines for lxl << 1. They can therefore be approximated

+ +- s + X
-10 -05 ) 05 10 -
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by the function y ~ 1 + ax for x| << 1 where a is the slope. As you can see
from Fig. 9.11(a), at x = 0, y = 4X has a slope greater than 1, and y = 2X
has a slo.pe less than 1. There must exist an exponential function, y = bX,
whose slope at x = 0 is a = 1. This exponential function will have the simpie
approximation y = 1 + x. The base of this function s called e and the graph
ofy=eXandy=1+x, c'lose tox = 0, is shown in Fig. 9.11(b). The figure
shows that, indeed, for |x| << 1, the function 1 + x is a good approximation
for eX, so we write

eXmnl+x Ix] <<1
! We can find the value of the base ¢ by taking both sides of the above

equation to the ;l(' power:

(ex)l/x=eas(1+x)l/x |x|<é1
Since our approximation eX ~ 1 + x becomes better as x approaches zero, we
expect that the approximatione = (1 + x}1/%X becomes better as x approaches
zero. Table 9.2 glves the calculated value of (1 + x)l/x for a range of values

of x approaching zero.

TABLE 9.2

X 1L+ x) 1/%
1 2.000
10-1 2.594
10-2 2.70§
10-3 .  2.717
10-4 2.718
10-9 2.718
10-6 2.718

The tablz shows that for |x] < 10-4 there is no change, to four significant
digits, in the values of (1 + x)}/X. We can say, therefore, that e = 2.718
to four significant digits.

Exponential functions with the base e occur frequently and for this

reason tables of eX and e~X are found In many textbooks and handbooks.

212
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The inverse of the function y = eX Is also common. This logarithmh"
function y = logx, is commonly written as y = Inx to distinguish it from the

only other commonly used logarithmic function, y = log x. *

Y . y-e

Fig. 9.11(b)

09 |-
1 1 i 1 1o L X
-0.18 -0.10 -0.05 o) 005 . 010 0.18
08 -

*Logarithms to the base e are called "natural logarithms," or sometimes
“Naperian logarithms" after their inventor. (Logarithms to the base 10 are

often called “common logarithms.")

24;
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. What is the relationship between logx and Inx? To find it, we take

the logarithm to the base e of x for the case where x = IOY. Thus Inx =y Inl0

Inx
ory = In10 and log:f =y logl0 = y. Thus

logx = Inx

1
Inl0

{s a constant, we see that logarithms to the base 10 are propor-

Since lnllﬂ
tional to logarithms to the base e. _

Another Important property of Inx Is that we can readily derive an ap-
proximation for In (1 + x) for |x| << 1 This is a direct result of the approxi-
mation eX ~ 1 + x. Thus, by definition of the logarithmic function,

In(1 4 x) ~x Ix] << 1
One should not forget that this approximation applies only to logarithms to
the base e. It does not apply to logarithms to the base 10.

Questions
1. What s the relationship between eX and 10%?
2. What {s the value of
(a) elt
(b) el00
3. Use a table of eX to find the fractional error In the approximation

eX ~ 1+ x for
(a) x=10.01
(b) x=0.1
() x=0.5
4. The expression logx = lnllo Inx makes it possible to obtain logx

from tables of Inx. What is the corresponding expression that allows
us to obtain Inx from tables of logx ?
5. Using the table of logarithms in the Appendix ftnd
(@) Inl ’
(b} Inlo0
(¢) Inl100

)

<-4
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6. What is the fractional error in the approximation In (1 + x) = x for
(a) x = 0.001 | ‘
(b) x=0.1
(c) x=0.5

7. If a sum of money increases by a fixed, small percentage atﬁxﬁegular

time intervals, then the amount A at time t in years is given by

A= m(1+_r)nt
n

where m is the amount when t is zero, r is the interest rate and n is
the number of times per year the interest is _added to the principal
(compounded).

(a) Express |1 +"nE nt as eX,

(b) By making use of the approximation In(l + x) = x for x << 1 find
the expression for A when the interest is compounded continuously
(n—~co).

(c) What is the difference between $1000 compounded annually at

6 per cent and $1000 compounded continuously at the same rate?

9.6 The Derivative of y = eX; Exponential Growth and Decay

The exponential function has many applications . To study these ap-
plications we need a knowledge of its derivative.
According to Equation (2) of Section 8.3, the dertvative of the func-

tion f(x) = eX is defined as
ex+L‘x - eX

fex}' = A}cl_nzo A
or Axc
t ex (C - _l
[ex]' = lm =S40 (3)

Unfortunately we cannot write the numerator in Equation (3) in such
a way that Ax in the numerator can be cancelled with the Ax in the denomi-

‘nator. However we know from Section 9.5 that e®¥ = 1 + Ax when Ax <<'1
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and that this approximation approaches an 'equality'ln the limit as Ax = 0.

Therefore Equation \s) becomes

' e eX(l + Ax - 1) -
[eX] A,l(l-".‘o A

eX, (4)

The exponential function (with base ¢) has the interesting property that it
equals its own derivative!
How is this property modified for the more general exponential func~

tion ekX? _Again, applying the delta process we find

[ekX]‘ = lm ek(x"'AX) - ekx _ Hm ekx(ekAx - 1)_
N\ xA-0 Ax Ax =0 Ax

For*any value of k we can choose Ax so small that also kax will fulfill the

condition kAx << 1. Then we appiy the approximation from Section 9.5:

eKOX o 1 + kAX

{_f
znd find

) X(1 + kAX ..411
kxt = ek (1 kx
e = lim = ke
[ekx} = lim ~

In words, the denvatlve‘ of ekX s prcpénional to the fuqc*ttonvtself and the
constant of pmportlo'nauty'ts k. |

What is the derivative of AekX? From theorem (i) of Section 8.5, we
know that the derivative of a constant;t'imes a function is the constant times

the derivative of that function. Hence |
[AekX]' = AleK¥]' = AkeKX ="kAekX (5)

Thus the derivative of AckX g proportional to Askx- itself and the constant of
proportionality k is independent of the value 'df A. Thi _converse of this re-
sult {5 also true. We state it here without .pmc}: r '

Any function f(x) which has the prb}:ertyr' that its derivative is propor-

tional to itself, is an exponential function. Specifically, If

£ (x) = kflx)

then
~ fb) = Ackx
\.. " } ¢

AN Y P

~
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Note t"hat £(0) = A. Hence, A can be sbeclﬂed by an initial condition. For
example, 1£F(x) = 1.5£(x) and £(0) = 10, then f(x) = 10e! - 5%,

In many applications of exponential functions the independent variable
is time and dependent varlable {s the number of such discrete things as atoms,

bacteria, people, etc. In such cases we speak of population functions, and

designate the de_pendent variable by N.

Populati‘on functions change by discrete amounts and therefore have
the property that their graphs are not smcoih curves. But if over a short time
interval, the changes in the slzé of the population are small co;npared to the
total population considered, then for all pract;cal purposes we can consider
a population function to be smooth and speak of a rate of change N'.

In this notatica, if a population function satisfies the equation,

~ N'= kN
then it is of the form
N = Ngek? (6)

where Nj is the size of the population at t = 0.

Questions '
1. Find the derivative of each of the following exponential functions:
(a) 3eX
{(b) 4e~X
(c) 0.5e3X
(d) 5e-0.1x
2. Evaluate each of the derivatives in Question 1 for x = 2.
3. For whic,:ﬁ of the functions in Question { does the value of the func-

tion incrfease with increasing valuas of x7?

4. Which of the following functions would probably be of exponential

form?

(a) s(n), your annual salary n years after beginning your fob if you

have been promised annual pay raises of 5 per cent.

balt B
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(b) £(t), the temperature on a hot day at time t.
(c) n(t), the number of people who have heard a rumor t days after
. it was started.
(d) £(n), your annual salary n years after heginning your. job {f you

¥
have been promised annual pay raises of $700.

5. Figure 9.12 is an illustration of Equation (5). It is the graph of the
decay of a sample of polonium. The atoms of this radioactive ele-
ment disintegrate, changing into stable atoms of non-radiocactive
lead. The rate of this decay is proportional to the amount of poloni-

um present. It does not depend on the age of the sample. The func-

Fig. 9.12
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tion giving the amount of polonium present at any time t, therefore,
has the form of Equation.(6) where Ny is the number of polonium
atoms present at time zero, and k {s negative.

(@) Solve the equation L N, = Nge=0-005t for t. The length of time
b T 0

required for a sample of the element polonium to decay to half its
present size is called its "half life.”

(b) What, approximately, is the half life of polonium that you find
graphically from Fig. 9.12 ?

(c) How does the rate of decay when the sample is reduced in size

to one-half, compare with its initial rate of decay?

The element uranium has a rate of decay glven by
N‘-= -1.5X 10-10 N atoms per year
Draw the graph of N/Nj as a function of t, where Ng is the initial

condition.

Sketch the graph of N/Ny = e*0.005t, s there an analogue of "half
life" for exponential functions w@th positive exponents? (Perhaps

the term would be "doubling time.")

To answer this question, refer to Question 7(a) in Section 9.5. A
large printing press used to print cardboard posters can print just
one color at a time. However, multicolored posters can be produced
by running the posters through the press one time for each color.
From past experience ‘it has been determined that the percentage of
rejects (blurred ink, torn paper, etc.) on a single run is never higher
than 6 per cent. How many blank posters must one begin with if one
needs to producé

(a) 100 one-color posters,

(b) 100 two-color posters,

(c¢) 100 five-color posters ?
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- g, A population of wild rabblts (Section 9.2) muy grow exponéntlally for
some tlme.v But clearly such exponential growth cannot continue in-
definitely due to the limitations in the environment. Very often limit-
ing factors:‘ cause‘ populations which have appesred to grow exponen-
tially for a while to "level off, " to begin to die out, or to exhibit
other erratic growth and/or decay.

Figure 9.13 shows the growth curve of a colony of bees. It is
very nearly exponential for a while and then begins to level off.

The growth curve of Fig. 9.13 Is quite accurately described by the

v 5)

where N is the number of bees at time t and k and K are congtarhts.

growth rate function

The factor X represents the limitation on the rate of growth and
- Fig. 9.13
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on the ultimate size of the colony due to envlmnmental factors.

What Is the significance of K?

t

10. (a) Find the function that represents’the growth of lead formed by
the decay of a sample of polonium initially containing 6 X 1023 atoms
and graph the function using data from the decay curve for polonium

(Fig. 9.12).
(b) Is the time it takes for the lead formed to double in amount a

1

constant ?
L . - :

11. A person hears a rumor and repeats it to three other persons in one
day. ‘Assume that each of these three persons pass on the rumor to
three other persons the next day who have not previously heard it.
The rumor is pas:séd on in this way for 8 days. How many persons
will have heard the rumorl? Is the assumption reasonable ?

N\

12.  Look up the topic of lel’ (carbon 14) datlﬂg. What is the relationship

between this section and Cy4 dating ?

13. (a) Use the delta proces’s and the approximation In(l + Ax) ~ Ax for

X << 1 to find [Inx]'. |
(b) What is the detivative of aeX + b Inx?

14. ° (a) Supposeb> 0. Finda constant k for which b¥ = ekx,
(b) What is the derivative of f(x) = pX?

15. What {5 the derivative QQ(X) = loéx (the logarithm to base 10 of x)?

l16. Compare the derivative of Inx with that of In(cx). Does this compar-
ison contradict the statement of Section 8.7 that "the antiderivatives
of a given function form a family of homomorphic functions displaced

vertically with respect to one another?” Why?

Q | a l
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'9.7  Recognizing Functions of the Form y = Cb*
\  Consider the functions whose graphs are shown in Fig. 9.14(a) and
9.14(b). How can we find if .they are of the form | . , i
‘ - y = Cb* i ’ (7) v
and what are the values of the constants C, and b?
If we take logarithms of both sides of Equation (7) we get the equa-
tion |
logy = logC + x logb | (8)
Now if we let z = logy we see that Equation (8) describes 2z as a iineanj func-
tion of x, t.e., 2z = (logb)x + log C. If the functions are of the form y = CbX
a plot of z = logy as a function of x will bs a straight line. Figure 9.1% illus-
trates an example of 4ust this situation. It is a graph of logy as a function of
x for the function y = 3(2)X. |

\7 Fig. 9.14

(a) ] (b)
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We have included on the graph of Fig. 9.15 a second vertical axis
representing the numbers Y whose logarithms are marked off on the logy
scale. The relative dlsplacements‘\f(t\he numbers on the y scale are the

same as those on the C and D scale of a slide rule.

Ay

Fig. 9.15
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When plotting logy versus x it is tedious to have to look up the loga-
rithm of each value of x plotted. There is a special kind of graph paper,

called semi-log paper, which eliminates this problem. A sheet of semi-log
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scale lines along the x axis are equally spaced like those on ordinary graph

paper. The scale lines on the y axis are not equally spaced, however. The

paper with x and y axes drawn on it is shown in Fig. 9.16. Note that the

' actual displacement from the intersection of the axes to a particular value
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on the y axis, say yq, is proportional to the logarithm of y,. In other j.vords,
equal displacements along the y axis are qi'opomonal to differences in the
logarithms of the numbers actually mgrked on the scale. For example, the
displacement between 1 and 10 equals the displacement between 10 and 100
since log10 - log1l = log 100 - log10=1. To ﬁlct the point (3, log 2) one

just goes to the 3 on the x axis and then moves up to 2 on the y axis.

In plotting the labeled values of ¥ versus x you are really plotting
logy versus x. Semi-log paper is a convenience to help you plot logy versus
x without having to use log tables just as a slide rule helps ynou mulitiply
numbers by adding their logarithms without ever looking up the logarithms in
a table.

To illustrate our method let us find the equation for the function in
Fig. 9.15 whose graph is drawn on semi-log paper in Fig. 9.17. Since the
point (0,3) ts on the graph we get from Equation (7) that 3 = cbl = C so C = 3.
Letting x = 1 in the equationy = 3bX gives y = 3b so to find b we observe that
the point on the graph with x coordinate 1 has y coordinate 6. From the equa-~
tion 6 = 3b we have that b = 2. Our function therefore has as its equation

y = 3 x2%,

This method for finding C and b from the points with x coordinates
0 and 1, respectively, will always work since the line representing the
graph nf y = Cb¥X cén always be extended so as to Cross the vertical lines

x=0andx=1.

There is a iimitation in using semi-log paper to plot exponential func-
tions. One scale division on the horizontal scale can have any value you
chonse but the range on the vertical scale is limited. The one in Fig. 9.17,
for example, can cover only a range of three 'éonsecutlve decades of y val-
ues. Such paper is said to have three cycles. It can be used to plot values
of y from 102 to 105 or from 1074 to 10-1 but not from 10 to 10> or 10-3 to
103, etc. If you need to plot with more than three decades on the vertical

axis you can attach several sheets together or you can use semi-log paper

D ——
,

Jo

with more than three cycles.
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Fig. 9.17
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Questions
l. This question {llustrates the fact that we have lost no generality in

writing our exponential functions in this section in the form y = Ch¥
rather than as y = CekX,

(a) If 3 = ekX for every x, what is k ?

(b) If b*X = e2X for every x, what is b?

2.  Find the equa%ior whose graph is sketched in Fig. 9.18.
3. (a) Which of the graphs in Fig. 9.19 are graphs of a function of the
form y = CbX?

(b): For those graphs in Fig. 9.19 which represent exponential func-

tions find the values of C and b.
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Fig. 9.18
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// 4.  The table below pepresents y as a function of x.
. X ) 4
-3 2.07
-2 2.22
-1 2.67
0 4.00
1 8.00
2 20.00

(a) Plot the data on regular graph paper — the relationship should
appear to be exponential. .

(b) Replot the data on semi-log paper.

(c) The result of part (b) was probably disappointing. Don't glve up.
Find a constant d so that the set of points (x, y-d) do give a stralght
line when plotted on semi-log paper.

(d) Write an equation for these data.

(e) Will a function homomorphic to a function of the form y = CbX
give a straight line when plotted on semi-log paper?

5. The accompanying table gives the world population from 1650 to 1970.
World

Year Population

1650 0.545 x 109

1700 0.610 x 10°

1750 0.728 x 109

1800 0.905 x 109 .
1850 1.17 x10°

1900 1.61 x 109

1950 2.20 x 103

1955 2.69 x 10°

1960 2.92 x10°

1965 . 3.18 x10°

1970 3.50 x 10°

(a) Make a plot of population versus year on reqular graph paper.

(b} To see if the gragh in part (a) 1s an exponential function of the

form y = CbX, plot logy versus x on semi-log paper.

Q )

ERIC £
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() Notice in the graph of part (b) that the portion from 1950 to 1970
is fairly linear. Replot this portion with o larger scale along the
X axis. |
(d) From your graph in part (c), find the values of b and C, and write
the expdnentlal function that describes the population growth from -
1950 to the present. ,
(e) Demographers project a world population of 6.27 X 109 by the
year 2000. Extrapolate your graph in part (c) to the year 2000, and
compare your result with this figure.

6. Make a semi-log graph of the growth curve of the bee population
shown in Fig. 9.13. ’
(a) For about how many days Is the growth of the colony exponential ?
(b) During the exponential growth of the colony what is the time
interval during which the bee population doubles in size?
(¢c) Use the equation given in Question 8, Section 9.6, to find an
equation for the maximum size of the colony of bees described in
the question. |

7. Figure 9.20 is a graph of the density of the atmosphere as a function
of aititude. Here the density is displayed over a fange of nearly

scven orders of magnitude. Is the function exponential? .

Fig. 9.20
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8. In the spring of 1937, eight ring-neck pheasants were introduced on
a protected island off the coast of the state of Washington. Each
Sprlng“a count of their population was made. The results are shown

ln' the table below. Did the colony grow exponentially ?

Year Population
1937 . 8
1938 30
1939 90
‘ | 1940 300
9, Which of the curves in Fig. 9.14(a) and (b) are of the form y = CbX? -

For those that are, write their equations in the formy = ekX,

10. Replot Fig. 6.'.2 using semi-logarithmic paper. What do you conclude?

9.8 Recogn‘zing Functions of the Pogm y = mlogx + b

. In the preceding section we used semi-log paper to identify exponen-"

“tial functions. We can also use semi-log paper to identify and specify log-
arithmtc functions. If we want to determine if a function has the form

| y = mlogx + b . (8)
we plot y as a function of z = lcax. I the function indeed has the form of
Equation (8) we will again obtain a straight line,

We can use semi-log paper to plot Equation (8) with the logarithmic
scale for the x axis as in Fig. 9.¢1. For example, this time the point
(log 5,3) is plotted as simply (5,3) on the semi-log paper. From inspection
we see that the y-intercept in Fig. 9.21 is 2.18. (Note that this is the val-
ue of y when x = 1.)

The slope of the stralght line in Fig. 9.21 {s m = ETL' By choos-
ing points for which logx is easy to compute we can find m without using a
log table. For example, since it appears that {1,2.18) and (10, 3.35) are

on the graph we have that

Ay 3.35-2.18
Alch log 10 - torr 1

me =1.17

so the equation whose graph is givan by Flg, 9.21 sy =1.17 logx + 2.18.
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Fig. ¢.21

1. The following table represents y as a funcuon of x.

X

1
4
10
15
30
S0

Y

4.50
6.10
6.9%
7.10
8.15
8.45

(a) Find the "best" functions of the form y = mlogx + b to fit this

data.

.

(b) FEstimate the error involved in using your function to predict the

value of y corresponding to a particular value of x rather than con-

sulting the table.

rd
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2. Find the equations for the functions whose gra;éhs a‘re'plotted on semi-~
log paper in Fig. 9.22. ' o

A ‘Fig. 9.22
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3. Plot y verses jor x [ur Tables I and II. Decide in each case whether

the 1isteu uwal@ can possibly correspond to a function of the type

7 = miog x. 1f so, find the value of m.

TABLE 7 TABLE 1l
X Y X Y
G.02 7.30 0.02 -3.30
0.08 4,72 0.08 -2.02
0.40 1.71 0.40° -0.67 ’
1.00 0.00 1.00 0.00
6.00 3.35 6.00 1.13
20,00 5.59 . 20.00 1.75
60.00 7.65 60.00 2.30

10G.G0 8.60 100.00 2.52
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(a) Which of the graphs in Fig. 9.23 are graphs of logarithmic func-

tions of the form'y = mlogx + b?

9.23 which were identified as graphs of

(b) For those graphs in Fig.

and b.

m

part (a) find the values of

L]

logarithmic functions In

¢

Fig. 9.23

§

|
‘*E"'?

i

oy

‘;,““tf;

i
uy:

.- e

2R RE LRERE BRI

i

B

1

srde
ety

[P
gl

Aruitoxt provided by Eic:

E\.



- 256 -

9.9 Recognizing Functions of the Form y = ax"
In Chapter ? we considered functions of the type y = ax, where n

was zn integral number. We can also consider functions of the form
| y = axP |

where x is greater than zero ahd n is any number, Integral or non-integral. |

Figure 9.24 shows the shape of several graphs corresponding to a = 1 and

different values of n.

Y Fig. 9.24

"We have already described tn Chapter 7 how to investigate whether
a table of values of x and y represents a function y = ax", where n Is s:ome
integer. For example, if we suspect a relatior} of the form Iy = axz, we plot
y versus the quantity x2. With the aid of logarithms we can now apply a

more general method which will enable us to declide whether the values of
£y, . .

£, }‘

.
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x and y given in a table of data describe any function of the type y = ax!
and, if so, what the values of a and n happen to be.

We shall first assume that a is positive. If the values in a table of
data satisfy y = axP, as we have just defined it, all the given values ofy
and x are positive and we can have a relation between logx and logy. Tak-
ing the logarithm of both sides of y = ax”", we find that

' logy = nlogx + log a
Therefore, if we plot logy as a function of logx, we will get a straight line

with slope n = %8—?;—:—; and a vertical intercept loga (Fig. 9.25).
logY
Fig. 9.25 logy=nlogx+loga
) Dlogy
(0,l0g a) Blog
log X

To avoid using a table of logarithms we can plot the values of x and
y on "log-log"” gfaph naper, which differs trom semi-logarithmic paper by
having a logarithmic scale along both the x and y axes.

l.ot us investigate the nature of the function reprosented by the data

in Table 9.3,
TABLL 9.3

X Y
0 0
0.5 0.195
1.0 0.48
1.5 1.00
2.0 1.63
3.0 3.30
4.0 5.30
5.0 8.00
6.0 10.90
7.0 14.40

<6
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Figure 9.26 is agraphof yas a function of x for this table. From
the shape of the graph it is plausible that the corresponding function is of
the type y = axD, so we plot y as .a function of x dslng log-log paper _
(Fig. 9.27), numbering the scales in the same way as described In Sections
9.7 and 9.8, where ting use of semi-logarithmic paper was discussed. The
x axis and the y axis cross at the point we have labeled (1, 1), corresponding
to (log 1, log1) = (0, Oi . If we wish to plot the point (1.5, 1.00) from Table
9.3, we find the intersection of the vertical line numbered 1.5 and the hori-
zontal line marked 1.00. Note that the point (0, 0) cannot be plotted. Plot-
ting the remaining points, we see that the graph is a straight line, so we know
that a function of the form

' logy = nlogx + loga

describes the data in Table 9.3. The value of the slope is

_Allogy)
N = Allogx)

On log-log graph paper, displacements in inches, centimeters, etc.,

on the paper are proportional to the corresponding differences in logarithms

Fig. 9.26
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of those numbers marked on the scale. Therefore, in Fig. 9.27

Aglogz! kBC BC
A(logx) kAG ~ AC

where k is the constant of proportionality between logarithms and displace-
ments. This means that we can find the slope on log-log graph paper by
taking the ratio of the actual displacements Ay and Ax measured in centime-
ters on the paper; we do not have to find the logarithms of any numbers.
Measuring BC and AC in Fig. 9.25 gives

n___l?&C:Z‘a.So::m__=1 7
AC 2.l cm ’

To find a in the functiony = axl:7, we look at the y intercept in
Fig. 9.27. It shows that whenx =1, y =0.52 = a(1l-7) = a. Therefore, we
conclude that the numbers in the table satisfy the function

y=0.,52x1-7

Fig. 9.27
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"

.28). Because the original functions are of the form y = ax” we

To help you become familiar with log-log paper and the techniques

outlined above, we have plotted the functions shown in Fig. 9.24 on log-log
know that a logx versus logy plot will give a straight line, as Fig. 9.28 in~

paper (Fig. 9
deed shows.
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So far we have dealt only with the case in which a is posit.ve and .
bo;h x and y are positive. This Is necessary because we can only plot points
on log-log paper that fall in the first quadrant of an ordinary graph. If ais
negative and we make the restriction that x is always positive, then y must
be negative. This corresponds to a graph lying entirely within the fourth
quadrant of an ordinary graph. We qannot plot such a fqnctlon on log-log

paper, but instead we can plot the function y = ~(axn),

Questions
l. Determine the slopes of the straight lines shown In Fig. 9.28 to con~

vince yourself that they agree with the value of n given for each
function.
2. (a) Use log-log paper to ascertain if the curves in Fig. 9.29 are of

the form y = axh.

(b) For the curves that are of the form y = ax", find a and n.

22". Fig. 9.29
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Plot the function y = ax on log-log graph paper for several values of a.
You know that a straight line on a sheet of log-log paper corresponds
to a function of the general form y = ax?. How does each of the fol-
lowing conditions restrict the values of a and n? The graph

(a) has negative slope,

(b) has slope zero,

(¢) has a y intercept greater than 1,

(d) passes through the "origin" (the point (1, 1)).

Can one always find the slope of a line on log-log paper by measur-
ing the vertical and horizontal displacements with a ruler and finding
the racio of the two? (Does it matter what units the two displacements
cre measured in? Would It matter if the graph paper had'a dificrent
displacemant for ore cycle along the‘_zg axis than for one cycle along
the y axis?) |

The followlng table, the result of an experiment, gives values for the
force of repulsion F between two el=ctrically charged spheres as a

function of the distance d between thei: centers: | -

Distance, d Force, |
(cm) (arbitrary units

o o " o a o
» e a % m s »

WOMN OO WM hWwW
" »

N WO O BN B D

DO = MM L &

[N
L ]
L

(a) Make a graph from the values in the table using log-log graph
paper. |

(b) Both d and F were measured to #0.05 untts. Draw error rectangles
around each data point. Why are the rectangles not of the same size?

(c) Is the relation between F and g of the form F = kd", where k is a

oo
-
—
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constant? (Note that both d and F are given to only two slgnlflcan%}
digits.) ‘ 4
(d) Compare your value of n with those of your classmates by making

a class histogram. What s the best class vTue of n?

9.10 Scale Stretching by Logarithmic Plotting

In each of the preceding three sections we have made use of loga-
riihuﬂc plotting, i.e., we have chosen to plot the logarithms of at least one
of the variables rather than the actual values of the variable. In each case
we were able to usz some kind of logarithmic plotting to determine the form
of a certain kind of function from {ts graph.

Another important use of logarithmic plotting arises from the fact that
a graph of y versus logx, rather than versus X, can be used to stretch out
the portion . ~ the x axis corresponding to small values of _)_c_.' Thi's is useful
in some cases for clarity of display even when no correspondence with any
logarithmic function is suspected. (The y axis can similarly be stretched
out for the smaller values of y by this same method.) This means that we
can plot data ranging over several powers nf ton wwith the axis scales ex-
panded fcr the smelller powers of ten. For example, suppose we wish to plot

the curv+ passing through the points given in Table 9.4. !

TABLE 9.4

X X

0 0.06
1.0 0.13
2.0 0.53
2.5 1.00
3.0 2.60
3.5 10.00
3.8 32.00
4.0 100.00

Due to the ‘arge range of valucs for x, if we ploty versus x we must
use such a iarge value of x per scale division that the lower part of the curve
is nearly indistingulshable from the y axis (Fig. 9,30).

27
r I



- 264 -

Fig. 9.30
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a

If we plot y versus logx, however, the horizontal axis need go only

from log (0.06) = -1.2 to log (100.00) = 2 and the data points are much more

evenly spaced (Fig. 9.31). A quick way of making such plots is to ploty

versus x on semi-log paper uzing the logarithmic séale for the x axis.

uestions

1.

In the table below T is the time In years it takes the planet to make
one orbit around the sun and R s the distance in kilometers from the |
planet to the sun. Use the table to plot

(a) %as a function of T,

T
scale on the T-axis.

R
(b) = as a function of T on gemi-log graph paper with the logarithmic

R
Planet T T

Merzury 0.24 24.0 > 107
Venus 0.61 18.0 x 107
Earth 1.00 15.0 x 107
Mars 1.90 12.0 x 107
Jupiter 12.20 6.6 x 107
Satumn 29.00 4.9 x 107
Uranus 84 .00 3.4 x 107
Neptune 165.00 2.7 % 107
Pluto 248.00 2.4 x 107

(a) Plot the graph of Fig. 6.12 on'seml—log graph paper, us.lng the
logarithmic scale for the x axis and the three decades from 1to 1000.
(b) What is qained by a semi-log graph compared to the original
graph? | \ |

The distance that electrons can penetrate through a substance de-~
pends on the substance and the energy of the electrons (which de-
pends on their speed). The table on page 266 gives the range-energy

relation for the.penetg'atlon of electrons into aluminum.

2"71 3 .
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Energy, E . Range, R
(Mev) {cm)
4.2 % 10~2 1.0x 103
8.5% 10~2 3.7 % 1073
1.0 x 107} 4.8% 1073
2.0 % 10"} 1.6 x 102
4.0 % 10-1 4.8 x 10-2
1.0 1.5x 10~}
2.0 3.4 x 10"}
3.0 5.4 x 10-1
4.0 7.4x 10"}
5.0 9.5x 10-1

Plot both E as a function of R and, on log-log graph paper, loég E as
a function of log R. Which graph gives the best display of the data
in the table?




Chapter 10. THE SINE AND COSINE FUNCTIONS
' In Fig. 10.1, if the angle @ remains the same but we choose different
values of the hypotenuse r, we have a family of similar right triangles. In
these triangles, the ratios of corresponding sides are equal.
If, on the other hand, we draw a famiiy of right triangles with the
same base x;., as in Fig. 10.2, these triangles are not similar.

Y Y
Here, the ratic r—l depends on the value of 8. The ratio -2 depends

1 2
on the value of 8;, etc.

Fig. 10.1

N
vl

Y Y2 Y3

From Figs. 10.1 and 10.2 we see that there is a clear relatienship be-
tween the ize of an angle and the ratic of certain sides of the right triangle
that contains the angle. This ¢ apter deals with two such relationships, the
sine function and the cosine function. We begin our study with some obser-

vations about angles.

oS
C
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10.1 Sectors and Radians

All circles are similar, but when are two sectors of circles similar?
It ts evident from Fig. 10.3 that two sectors are similar when their central
angles (8 in Fig. 10.3) are equal. In similar figures the ratios between cor-
responding parts are equal. For similar sectors, in particular, the ratio of

the lengths of the arcs equals the ratio of the corresponding radii.

In Fig. 10.3
CD_R
AB T -
SO
CD _AB
R - r

Thu‘s, in similar sectors the ratio of the arc length to the radius is constant;

it is independent of the radius.

Fig. 10.3

This sugaests that the ratio of arc to radius is a convenient measure

for the central angle. The unit.of measuring angles in this way is calied a

radian;

0 (in radians) = Tdios

Since an angle is a ratio of two lengtns, it is independent of the unit of length
used. It is a pure number.

Figure 10.4 shows an angle equal to 1 radian and one equal to 0.1
radian. Since the circumferance of a circle of radius r is 2wr, & fuli tum or
360° equals -2—?- = 2w radians.

[ ~~e .
~ 1 )
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‘| Radian

arc = QOlr

An angle expressed in radians is often written by omitting the unit.
Thus, an angle given as a number only is always understood to be in radians.
For example, an angle of v radians is usually said to be of size v. An angle

of 2 radians is written as just 2.

Fig. 10.5

+
'

Measuring the central angle in radians provides a simple formula for
the area of a sector. As seen from Fig. 1G.S, the area of a sector is propor-
tional to the central angle. The area of a sector of central angle 1 radian is
ﬁ of the area of the circle or-l- - wrl = %rz. Therefore, the area of a sector

2m
of central angle 8 is
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Questions

1. How many degrees equal 1 radian?

°,. 900, and 180° oecur frequently. Express

2. Angles of 30°, 45°, 60
them in radians.

3. What {s the formula for the area of a sector when the central angle is
given in degrees?

4. A right triangle has one leg equal to the radius of a circle and the
other leg equal to the circumference of a circle. ‘
(@) What is the ratio of tl;e lengthks of the two legs ?

(b) How does the area of this triangle compare with the area of the

circle?
S. Find the area of the shaded portion of the ﬂgure in Fig. 10.6.
Fig. 10.6
6. The length of the chord subtended by a small central angle is approxi-

mately equal to the length of the arc it subtends. Also, the smaller
the angle, the better the approximation. You can test these statements
by the following procedure: Draw a semicircle of large radius. Using

your value of R, make a table of

Angle %Arc Length | Length of Chord ‘! Fractional Difference

“or different angles by successively bisecting the central angle about

5 times. In each case the arc length can be calculated ~ud the length

of chord csn be measured with a rular.
1) -
£

- 4 4
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7. The thumb’and the outstretched hand arg‘useful_ instruments for approx-
imate angle measurements. What angle does the width of your thumb
subtend when you stretch ;our arm out?

8. °~ The moon subtends very nearly the same angle from ihe earth's surface
as does the sun. (Think o.f a total solar eclipse.) The moon is ~bcut
2.5% 10° miles away, and the sun is about 108 miles away; what is
the ratio of their diameters? _

9. The moon isv2.5 X 10° milés away and subtends an angle of 0.01 radi-ﬁ
ans from the earth. If it were 4 x 107 miles away, how large an angle

would it subtend?

10.2 Definitions

We say an angle is in standard position if its vertex is at the origin

O of the coordinate system and its initial side BX extends along the positive
x axis (Fig. 10.7). I, in Fig. 10.7, (x,y) are the coordinates of Q, the

point of intersection of the terminal side OB of the angle AOB and the circle,

Fig. 10.7

we define the functions sine 8 and cosine 8 such that

sin 6 =L
r

cos 8 =2
r
where sine and cosine are abbreviated to sin and cos respectively. Notice

14
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that x and y are positive ar negative depending on which quadrant in the
coordinate system each is located. They are, for example, both positive
as depicted’in Fig. 10.7 but, depending on the size of 8, they can be

negdtive. The radius r, however, is always taken to be positive.

// Referring to the figure again, we see from the geometry of the
' diagr~~ that /
rz - xz + yI«!
SO 5
r=yVvx +y
Thus we can write
Y
sin @ = 'Z
X +vy
and
X

cos 8 =
sz + yz

Since sin 8 and cos @ are both functions of 8, there must be a way
to express one in terms of the other. Indeed, from the last iwo equations

it fcllows that:

2 xz xZ + 2 *
sir129~l*c:052!-)=——‘Y + = ) 4
XZ + 2 2 + 2 xZ + 2
or Y X Yy Y
-~ sin2 8+ cos2 g=1

From this it follows that
sin 8 = 1 - coszg and cous 8 = \/1 - sin @

We can, by constructing graphs of the sine and cosine, find
their values for all angles between 0 and 2'17. To construct these g'raphs
we proceed as follows: | ‘

Using a ruler anr a compass, we construct what is called a ;mi: circle
(Fig. 10.8(a)). That is, regardless of the actual length of the radius, we la-
bel it 1 and call this length 1 unit. If the angle x

4
first quadrant with a compass, then the coordinates of the point it intersects

is ¢~ wn by bisecting the

*The notation sin? 8 means take the sine of 8 and square it: that ’is,
sin2 @ = (sin 6)2. Whereas, sin82 means square 6 and then take the

sine of the result. .
£ 98

~.
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on the circle are equal to its sine and cosine. This follows from the observa-

x
tion that forr=1, sin@ = % = -’11 =y and cos@ = i ?15 = X, so y and x have

the same numerical values as sin® and cos .
If we construct scales as shown in Fig. 10.8(a), we can mark off
points directly from the uni* circle. Figure 10.8(a) shows this process for
= -};—, where we see that sln-} ~0.7. InFig. 10.8(b) we have cogstructed
othrer angles and have marked off their sines on the scale. When sufficient
points have been located, they are connected by a smooth curve. This gives
the graph for sin8 as a function of the angle 8 as shown at tixe right {n

Fig. 10.8(b).

Sin 6 Fig. 10.8 (a)
Y

| ] | 8
¥ B ] i
m b 3T 27
2 2

_‘ -’

- sin g : (b}

e
r
-
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Questions
1. 1 0<8) <8, <7, which is larger
. 2
(a) sm 91 or sin 92 :
' (b) cos Gl or (:05_92 ?
2, Plot the following points on a8 coordinate system, and find for

cach point the value of r, sin 8, and cos 8, where 8 is in stand-

ard position.

(@) (3,4)
(b) (5,12)
(c) (6,6)

3. In the following assume 6 < 12[’
(3) If sin@ = —1%, what is cos 87?
(b) If cos 8 = % what is sin 87

(¢} H sin 8 = cos 8, what is sin R? What is 87

4. Show that for any right triangle with sides a, b and c as in Fig. 10.9,

a b
sinQ=E c059=c

B
Fig. 10.9
C
o
9 c
A b
5. Fill in Table 10.1 indicating the sine a.nd cosine fcr each of the angies
8 given in th. talle. '
TABLE 10.1

) 0 ;W- w ELd 2t
& 2 L
cin 8 3 ‘/

cos 8

o
u.-
h -
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12.

13.
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From the graph in Fig. 10.8(b) determine the following values, and

-thion check your results with the sine table in the Appendix.

(a) sin40°
X

(b) sin 12

(c) sin 700

Using a unit circle, draw the graph of y = cos @ for ((’1 L85 2vn.
I
4
may be put back to back to form an equi-

A right triangle having an acute angle of
m
6
lateral triangle with an altitude bisecting one of the angles. Use this

is isoceles, and two right

triangles having angles of

information to construct, in standard position, each on a separate co-
ordinate system, the following angles given in radians and determine

their sine and cosine. S

(a)
(b)

(c)

A boat sails on a course N40OE for 10 miles from point A to point B.

A a3 wiA

How far east and how far north is B from A?
A helicopter climbs at a steady angle until it is 200 m above a point
on the ground that is 300 m from the point of takeoff. What is the

angle of climb?

- On a set of coordinate axes, construct any angle 6. From the

definitions of the sine and cosine functions given in this section,
show that for the 8 you have chosen

(@) sin (v - 8) = ¢in 8

(b) sin (r + 8) = ~sin 8

Repeat the directions for Question 11 and show that

(8) cos (w - 8) = ~cos O

(b) cos (r+ 8) =-cos 0

List all the values of 8 in the interval 0 < 8 < 360° that have the same
(a) sine as 30°

(b) cosine as 30°

J‘J
255
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10.3 Symmetries and Antisymmetries ' {
‘ The graphs of y =cos x and y = sin x are shown in Fig. 10.10,

where the ncgative angles are plotted to the left of the y axis. If we
imagine folding the: left side (negative portion) of the cosine graph in
Fig. 10.10(a) over on top of the right side so that the fold is along the
y axis, we observe that every point on one portion falls on the same polint
on the other. Thus, for any value of x

cos (-x) = cosx (1)
Ingeneral, a function which has the property that f(-x) = f(x) for all x in the
domain of f(x) is called an even function since the even power functions such
as fx) = x2 or f(x) = x~5 have'this property. Hence the cosine function is an
even function. Notice that the graph of an even function must be symmetric

about the y axis. -

Fig. 10.10
Y )
i A $ " x
-2m - 0 L] am
(a) y=cos x
Y
, X
-2m -T 0 ™ 21

(b) y-=sinx
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y When the graph of y = sinx in Fig. 10.10(b) i{s folded over, the por-
tions do nbt coincide. We opsewe, however, that |

| sin (-x) = ~sinx ()
Functions which have the property that f(-x) = -f{x) are called odd functions
since the odd power functions such as f(x) = x or f(x) = x3 .have this propenty.
Thus, the sine function is an odd function and its graph is said to be anti-

symmetric about the y axis.

Questions

1. Cornstruct any negative obtuse angle 8. On the same set of axes
construct the positive angle of t'.e same magnitude. From tho

definitions of the sine ‘and cosine, show that for the 8 you have

chosen
sin (-8) = -sin 8
and
cos (-8) = cos 8
2. Is the graph of y = sin x symmetric or antisymmetric about the

vertical line through x = IZT_ 7?7 Exolain.

3. Referring to Fig. 10.10(a), choose any point on the graph of
y = cos x that lies to the left of the y axis. Locate the corre-
sponding point to the right of the y axis. Are these two points

symmetric or antisymmetric about the origin? Explain.

10.4 Periodicity /

H

If an angle 2 is in standard position and a second angle (0 + 2w

is in standard position, then the two &ngles have coincident terminal sides.
Hence, they will have the same values for their sine and the same value\s#\-
for their cosine. We say, therefore. that the sine and cosine functions

are periodic functions. We also say that both have the same period, 2w,

ERIC L H ‘
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" pecause 2w is the smallest value added to an angle that makes the two
angles co-terminal. We can express the periodicity of the sine and cosine
functions as |
. sin(8 + 2n) = sin@
and
cos (8 + 2w) = cos 8

In general, a function is said to be periodic if there is a number
p # 0 such that f(x + p) = f(x) for all x. The period of f{x) is the smallest
positive value of p.

| In 'ig. 10.11 we have drawn the sine and cosine functions from

0ty 1r. In cach case the graph begins to repcat itself at 8 = 27, and had
we continued plotting for larger values of 8, we would observe that after
cach interval of 2w radians the graphs would repeat-.

Although sin @ and cos 8 are periodic with respect to an angle, the
waorld 1s full of other kinds of periodic functions. For example, the back-

and-forth motion of an automobile piston and a pendulum in a clock, al-

Y Fig. 10.11
l-q-
y3sin x
Fy
0 n 2T n 4m X
_s-p
(a)
Y
a y =COS X
+ + + + X
0 m 21 3n an
-l T
{b?

2ty 0,
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. though not exactly sine functions, are periodic in time and this can he

expressed as

ft+ T) = £(t)
where t is the time to reach a certain position y along the stroke of the
piston and T s the period, the time to complete one back-and-forth motion.
(See Fig. 10.12.)

r T

nof

Fig. 10.12

Dirt roads often develop a repetitive pattern of small ridges aad
valleys running across the road. Water waves, particularly under con-
trolled conditions as in & rirole tank, have recetitive patterns. These
ar- but two of many examp.-.. of 8 periodic function of a length co.ordinate,
which can be expressed as

f(x + L) = £(x)

where x, for example, is the distance as measured from some arbitrary

point on the road and L is thc distance between bumps (or valleys).

Of course, the periodic functions which occur in nature oscillate
between many nurn.erical values, not jus( between + 1 as 1= the case with
y = sin x. Similarly, they need not nave a period of 2w, end the values
at x = 0 need not be either 0 or 1 (as with y = sin x and y = cos x).

'I:he graphs of many periodic tunctions are far from the share of

a sine curve. The position of point A on the movable pin, shown in



Fig. 10.13(a), as a function of the anyle through which the cam is rotated is
an example of a periodic function whose graph i{s not a sine or cosine curve.

The graph of thg displacement as a function of the angle x is shown in
Fig. 10,13(b).

VNSNS Fig. 10.13

(a)
' (b)

Dispiacement

Angle

Questions

1. Sketch the following angles on a coordinate system, and then
express each in terms of a function of an acute angle.
(a) sin 120°
(b) sin 245°
(c) sin -73“-
(d) cos 100°
(e} cos 320°

(fy cos 43“

2. Find the following angles by first expressing them as a function

of an acute angle.

(8) sin (-6109) =
(b} sin %l ' N~

(c) sin 400°
(d) cos (~520°)
. {e) cos 460°
3. What is the period of the function graphed in Fig. 10,13 ?

f
o i)y
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N

o

10.5 Hcmomorphic Trigonometric Functions

Once we have the graphs of the functions y = sinx and y = cos ¥,
we can examine curves homomorphic to them. For example, consider the
function

Y - yo = sin x

y=sinx+ yo
You_will recall from Section 7.2 that the Yo part of this function is an
additive constant; it only moves the graph uvp or down, so the function
oscillates between y = Yo +1.

Now consider the function

y=sin(x-§)

When x = 0 in this function, y = sin (—%) = -0.71, so the graph does not

start at either 0 or 1. The graph of this function is illustrated by the heavy

line in Tig. 10.14. As you can see, each point on the y = sin x curve is

Fig. 10,14
Y
4 m
y=sin(x-g)
| T T m ;g_ X
4 2
1- 7= SIN X

displaced to the right by an amount % For the function y = sin (x + g), each
point on tie y, = sinx curve is shifted by an amount I to the left, as illustra-

2
ted by the heavy line in Fig. 10.15. Notice that in this case the graph of

sin (x + %) is the same as the graph y = cosx (sece Fig. 10.10(a)). Hence,
hi3
cos x = sin {(x+ =) .

2 -
2N |
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Had we shifted the graph of y = cos x to the right by an amount

i)

7 and thus generated the graph y = cos (= - %). then it would coincide

with the gfaph of y= sin x. That s,

.
sin x = cos (x - 5)

¢ Fig.10.15

A

It is because of tnis property of curves homomorphic to the sine and

cosine functions that they are called co-functions and one is named

"sine" and the other "cosine."”
In general, then, we sec that the graph of y = sin (x - xo), where
. (xo > () is the same as the graph of y = sin x moved to the right by X
units, and the graph of y = sin (x —xo), where (xO < 0) is the graph of
y & sin x moved to the left by xo units. This shift of the graph to the

left or to the right is often referred to as 3 change in phase and the

number X, is often called the phease angle.

Nntice that if xo = 4 27, the curve is shifted by exactly one
period and coincides with y = sin x. In other words, as stated in Sec-
tion 10.4, sin (x+2w) = sinx or, more generally,

sin (x + 2n7) = sin X
for any integral value of n. Homomorphic curves given by different

values of n exactly overlap.

FRIC :'.).‘ff '
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v
Questions ‘
1. Sketch the grahof the following functions over the interval
v < x < 3m ~ |
(@) y=sinx
(b)) y=sin (x+ %)
(©) y=sin (x - 60°)
T Sketch the graphs of the following functions over the intetval

- i X _<_ 3w
(a) y = cos x
(b) y=cos (x + %)
(©) y=cos (x - 309
3. F'rom the relation
sin 8 = cos (8 - %)
developed in this section, which is true for any value of 8, show
that in particular, when 8 + ¢ = % then
sin 8 = cos ¢

that is, co-functions of complementary angles are equal.

i, Sketch the graph of y = sin (x + %) . On the same axes, sketch
the graph that is homomorphic to it and has a phase angle of %
Is there more than one way to do this?

S. Write the equation of the graph homomorphic to y = sinx shown in

Fig. 10.16.

Fig. 10.16
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6. Show ti‘at if two functions are homomorphic, they have the same
period, 1. Thatis, prove that if

sin (x+ T) = sinx
then

sin ([x-xo] + T) = sin (x-xo)

1.6 The Functions y = A sin (kx) and y = cos (kx)

Just as with other functions, we can multiply a trigonometric func-
tion by a constant. Thus, the graph of y = 3 cosx is like that of y = cosx
except that each y coordinate is three times greater (Fig. 10.17). The ab-
solute value of the constant coefficient Ainy = Asinx andy = Acosx is

called the amplitude of the function.*

y =3 cos X

Fig. 1C.17

ol

We next examine the graphs of functions of the form y = Yin (kx) for
varinus values of k. We begin with k = 2, that is, y = sin 2x, and make a

table of values. From this table (Table 10.2) we have drawn a graph of the

*More generally, the amplitude of a function is defined as one-half the dif-
ference of the maximum and minjmum displacements from the zero position.

‘)" .
. ) f; \}‘
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functiony = sin2x. As you can see from Fig. 10.18, the function has a

period T = «, half the value of the period of the function y = sinx.

1
Next, examine the graph of the functiony = sin*z*x shown in lFig. 10.19.

Here, vy = singx goes through a complete perfod as x goes from 0 to 4w. So

1
the period of y = s‘m;x is T = 4vw.

In genera!, the value of k in the functions y = sin (kx) and y = cos {(kx)

determines the period T:
- T = 2%
k

where k ir the number of periods in an interval of length 2w,

1
X Ix sin 2x
g — TABLE 10.2
0 0 0
T ™ V3
th 5 :’
s ™ 1 Fig. 10.18
. [:3
4 2
™ i J3 Y
3 3 B (] yssinex __
- \\
™ s *\.y=sin x
- T {} ‘,‘ .
}
I T
3 3 2
i I
— — -1
1 2
ki mo |3
3 3 2
T 2 0

Fig. 10.19
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Que stions

l. Sketch the following graphs con the same set of axes and discuss
where the graphs are increasing, where they .'gre decreasing, and
where they reach their maxima and minima. Determine the period
of each.

(@) y = cos 2x
(b)Y y= cos 3x

- 1
(¢) y= cos 5 X

2. Sketch the following graphs on the same set of axes and discuss
where the graphs are increasing, decreasing, and where they reach
their maxima and minima.

(é) ¥ =2 Ccos X
bY y=3 cos x

(¢) y= %cos X

3. Repeat the directions for Question 2 for the following functions.
(@) v=cos (x+ IZL)
(b y = cos (x—',?)

(¢) y=cos (x+mw)

4, The graph shown in Fig. 10.20 is a cosine function. What is its
equation?

’

\ Fig. 10.20
Y

r \/ + : X
_am 0 an 3 /111 3n
4 . 4 2 )
-; +

2
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The graph shown in Fig. 10.21 is a sine function. What is Its

equation?
Y ‘Fig. 10.21
'dh
(
+ 4 - X
0 n o 3r A 114
8 q [} 4 8
-IT
6. Discuss how the valu. of k will affect the graph of

(@) y=k cosx
(b) y = cos (kx)

{c) y=cos (x +k)

10.7 The Functions A sin k (x -xg) and y = A cos k (x - xp)

Putting together the ideas of the last two sections, we can write

general forms for both the sine and cosine functions. They are
y = A sin k(x-xo) +y,
+
yc>

y = A cos k(x-xo)

All we need to do to sketch either of these two functions is to
sketch the corresponding equation y = sin X or y = cos X and adjust the
y axis, the x axis, the amplitude, and the period, as necessary.

We will illustrate this procedure with an example. To sketch the

function

y=$sin3(x+ ';“2)

we first note that the amplitude is 4. This says to stretch the vertical

axis hy a factor of 4, that is, the maximum is +4 and the minimum is -4.

2Yi,
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_The coefficient 3 tells us therr are 3 periods in any 27 interval.
So we sketch 3 periods of sin 3x, not yet graduating the x axis (Fig. 10.22(a)).

To 'adjust the y axis we note that the sine is zero when the angle

3(x + -112-} = (0, that is, at X = —-i% . Thus the beginning of the sine period is
atx = —--11% . We can now draw the y axis and appropriately graduate the x axis.

remmembering that one period is '3‘31[ units long, as shown in Fig. 10.22(b).

Fig. 10.22
(a)
Y
4ql— '
|
|
/L
_J;. ol n 3m n i / n
| 12 12 12
() y=4sin 3(x+?—2)
Questions
1. Sketch the graphs of

(@) y= 4 sin (x-%)
(b) y=2 sin (x+ )
(c) y= 3 cos (x - %)
2. Sketch the graphs of
(a) y=Zsin(x+1;')-3

(b y= 3 [cos (x-%)'*l] oy
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¢

3. Sketch on the same set of axes the graph of y= -2 sin x and
y = 2 sin (x - 7). What does the sign of the coefficient 2 tell
you about the phase angle of the first function?

4'. Sketch the following graphs and discuss each with regard to
maxima, minima, zeros, period, and pnase angle.

(@) y=2cos (x+ %)
(b) y= 4 cos (2x - )
(¢) y=sin2 (x+ %)
(d) y= sin (3[x - %])

10.8 Recognizing Trigonometric Functions from a Graph

We shall now use the procedure of the last section in reverse.
That is, given a graph of a periodic function, how can we find out if it
is expressible in terms of a sine or cosine function? For example, é:an
the graph in Fig. 10.23, which is a periodic function, be expressed in
the form

y = Acosk (x-xq)?

—epe ] T 7T Fas 10423

-
MI:1 b--r----v--
>

2% 0 anm  7m jom  13W
. 1/
. -3

Since the function is periodic, we can find X by noting that one

' 0
period on the graph extends from - -25” to 'ITE , or 1 total tength of 4.

Therefore, in a 2n interval there is one-half period. Sok = 1 . We also

2
24y
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note from the graph that A= 3. Hence, the function describing the graph
in Fig. 10.23 has the form

1
y=3cosz(x-xo)

where it remains to_'flnd the value of Xo- Notice that the ffrst maximum
occurs at 1;', so this must be the phase angle. The complete equation
is now wrritten as

- 1 ud
y = 3 cos; (x 3)

We are not finished, however, It is not sufficient to conclude that
this equation is indeed the correct function just because the amplitude,
period and phase angle are in agreement with those of the graph. It remains
to test intermediate values for x and y in the function to see if they are

related by a cosine function. |

The tost we use is like the one we have used before to test for
parabolas, nyperbolas, etc. In the case of a curve 'vhich you suspected
was a parabola of the formy - n=a (x - m) you plotted y -~ n as a function
of the quantity (x - m\z. If tre graph you obtamed was a straight Hne you
concluded that the function y - n= a(x - m) was indeed the functior

describing the curve in question.

In the CaAse of the function we are now considering, if we graphy
as a function of cos%(x - %) and get a straight line we know we have a
cosine function. Table 10.3 shows the values of x and y as read from
the gréph in Fig. 10.23 and the corresponding values of cos -l'(x - %) up

2

to x =% . Figure 10.24 was made from this table. The size of the error bars

in Tig. 10.24 is based on an estimate of the errors in reading the values of
y from the graph inFig. 10.23 and in the plotting of Fig. 10.24. As you

can see, a straight line, whose slcpe is 3, passes through all the error bars.

Since the curve in Fig. 10.23 is very smooth between the plotted

values, we feel confident that all-other intermediate points we might cere

" to plotr on the graph in Fig. 10.24 would f=!1 within the error bars.

"f

- P /
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" enel (-
c:os2 (x 3)

1O

T
T
1

Fig. 10.24
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0.78
~1.48
2.08
2.58
2.90
3.00

3

TABLE 10.

We now test tho rest of a complete period by checking for sym-
1 w
cos 3 (x - 3)

0.259
0.500
0.707
0.866
0.966
1.00

. From this and the graph in Fig. 10

v

ima end minima and for antisymmetry about a perpendicular line through
4

in Fig. 10.23 is indeed described up to x
to within the errors of reading and plotting.

el Elm Ele © k|3 El~ v

metry about lirnes perpendicular to the x axis that pass through the max-

X = =
3
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Questions

Determine the amplitude, period, and phase angle of the graphs

(Is there more than

10.25 and then write their equations.

in Fig.

{a)

Iig. 10.25

1
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one answer tn this question?) Choose values of x and check tb

see if they satisfy the equations you have written.

2. Could we have expressed the equation of the araph in Fig. 10~..23 as a

sine function? What would this equation be? Check your result.

3. Two fimctions and their graphs are shown in Fig. 10.26. Label the x

and y axes at the zeros of the functions.

Fig. 10.26
Y
(a) y=2cos(x-n)
N\ / "
/
{
™
Y (b) y=’§sin2(x*%)
/ )
f
~N
4. How would your answer to Question 4, Section 10.6 change if the graph
glven was a sine function?
5. ‘Tow would your answer to Question 5, Section 10.6 change if the given

graph was a cosine function?

ERIC ol
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6. Determine if the graph in Fig. 10.27 represents sine or cosine functions
- by writing the sine and cosine functions that fit the maximum and mini-

mum points on the graph and then checking some intermediate points.

Y Fig. 10.27
TT] T
i'“'_ 1\4- - +- -+ .4‘.5 .1,,.._‘._<,+A__...<p — RS -~
SR SR T " - B S
- L— ton b U Sk e { +-+— :
b - . . 4‘ . -4 ~+ T J 4_,4.__0_4.]
| : L5 + . ]
—«L — : - \ ----- + -4 - S = — 1 4 -~ -
- N L\ |
EL R ) . £l [l
T ! v & {4"*“‘4
1 ?l ' T ¢ N5 ] + - 4 B I
+ T T . ‘: T ! i ¢
:&- ‘- T {I ? -‘-—4 j - S 4 -4
boe4oa . . R _
— T } -15 I b $o ,0...4\.,4_.
o N BN 1* S
7 Pluot the graph of the data in the following table and write the
’ o equation of the sine function it describes. (Graduate the x axis
‘,‘m inteqral numbers of radians.)
x (rad) y
0 -0.90
0.50 -1.42
0.46 -1.50
R 0.60 -1.45
0.90 ~-0.97
N 1.10 -0.45
. 1.20 -0.15
1.40 0.45
1.50 0.72
1.57 0.90
. - 1.80 1.34
1 2.03 1.50
2.20 1.42
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The relationship between the size of an angle and the ratio of certain~-

~

sides of the right triangle that contains the angle can be expressed by,

functions other than the sine and cosine. With the angle in standard (\_ 4

position (Fig. 1¢.28), we now define the tangent function and the co-

tangent function such that i
]
I

tan6 = v |

X b

and | . x ;
Cot — Y . L

(a) Are the tangent and cotangent really cofunctions ?

(b) For what values of @ is the tangent function defi ned ?

(c) For what values of 8 is the cotangent function defined?

(d) Draw the graphs of the tangent and cotangent functions from x = 0,
to x = 2w.

(e) Are the tangent and cotangent functions periodic?

Fig. 10.28

(3a) Is the tangent function odd or even?

(h) 1Is the cotangent function odd or even? ‘

Prove the following relations by constructing the angle § on qoordinate
axes and applying the definition of the tangent.

{(a) tan(-8) = -tan@

(b) tan(r-8) = -tanb

(c) tan(mr+ g) = tan8

305

\

\
\
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11. What values of 8 In the interval 0 £ @ < 2w have the same tangent as
(a) 45° | )
(b) -45°

12.  Sketch ihe following angles on a coordinate system, and thep express

each in terms of a function of an acute angle. -
(a) tan120°
(b) tan245°
(©) tanlf
(d) cot100°
(e) cot 320°
(f) cotﬁgl 4
13. The ramp leading up to a bridge makes an angle of 5° with the hori-
zontal. How much vertical rise is there in a horizontal distance of

10 meters?

10.9 Qualitative Cbservations on the Derivatives of sinx and cos X

The goal of the remainder of this chapter is to find the derivative. of
the sinc and cosine functions. Before doing this, however, we can draw
some conclusions about the nature of these derivatives from the properties
of the sine and cosine functions themselves. In;ther words, we can make
some "ball-park" predictions as to what type of function we expect to turn
up as the derivative of sinx or cosx.

For example, recall that the sine function is periodic with a period of
2x. This means that the graph of sinx for x between 0 and 2r coincides with
the graph of sinx for x between 2r and 4w, An immediate conclusion from this
is that the graph of the slope function for sinx from 0 to 2r must also coincide
with the graph of the slope function for sinx from 2r to 4. More generally,

we can concmde that the derivative of the sine function must be a periodic

function with period 2.

:),:/.‘
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By inspecting the graph of y = sinx {n Fig. 10.10(b), we observe that
the largest value of the slope functicn occurs at the origin (and at multiples
of 2w) and seems to be equal to 1. In fact, it appearc that the range of the
derivative of the sine function is roughly the imverval -1 to 1.

A final observation is that while sinx is an odd function its derivative
is not. For example, the slope of the graph of sinx at x = v is obviously neg-
ative as is the slope at x = -v. Hence, the derivative of the sine function

cannot sstisfy the equation f(-x) = -f(x) which characterizes odd functions.

Note, however, that the slope of the graph of sinx atx = -1'2- appears to be the
same as the slope at x = —’2'-; namely, zero. It is quite likely from the graph of

|
cinx that the derivative of the sine function s an even function.

In summary, we expect the derivative of the sine function to (a) be
periodic with period 2w, (b) have a range from -1 to 1, and (c) be an even
function. |

To find an exact analytic expression for the derivative of sinx it is

natural to start with the delta process. For the derivative of sinx we write

[sinx]' = .lim A—% (sin(x+Ax) - sinx) (3)
Ax~+0

There appears to be no way in which we can cancel out the 4x's. However,
it is possible to derive the addition formula for the sine functions (a formula
for the sine of the sum of two angles) to replace the first term in Equation (3).
We can then write Equation (3) in a form from which we can find the limit as

Ax approaches zero. Then, by a similar process, we can find [cosx]'.

‘-

Questions

1. What are the largest and smallest values that you expect for the de-
rivative of cosx?

2. Cosx is an even function. Is its derivative an even function? An

odd function?

31,
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3. Verify from the graph of the cosine function that its derivative is pe-
riodic with period 2w.
4, If f(x) is a periodic function, not necessartly the sine or cosine func-
tion, must f'(x) also be a periodic function? Why or why not?
5. If f(x) is a periodic function, must its antiderivative be periodic?

Why or why not?

10.10 The Addition Formula for the Sine Function

We shall derive the addition formula for the sine function, where the

two angles a and B are both acute (less than 90°) as shown in Fig, 10.29.

Y

Fig. 10.29

Figure 10.29 is constructed as follows: The angle a is drawn in stan-
dard position with its t,erminal side along OQ, and B is drawn with OQ as its
. riunitial side and OP as its terminal side. The figure is completed by dropping
perpendiculars PM, ON, PQ, and QR. The two angles labeled a are equal be-
cause their sides are mutually perpendicular. In the figure
MP = NQ + PR
MP = OQ sina+ QP cosa

33Ut
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Dividing the second expression by OP, -

MP _ OQ , QP ‘
OP P sina+,0pcc-sa

and, therefore,

sin{a+8)=sinacosB+ cosasinf (4)

This is the addition formula for the sine function. Although our construction
holds only for acute angles, Equation (4) is true for any values of a and B,

incliuding negative angles.

Qgestions

1. Use Fig. 10.30 to show that sin (a+ B) = sina cosB + cosa sinp if
a + B is obtuse, starting with the relation OM = MN - ON. (Hint:

use the relation sin (v - 8) = sin@.)

P Y Fig. 10.30
x
R"'I
ﬂ
v X
2. Show that sin (@ = B) = sina cosB - cosa sinB by substituting 8 = -8

in Equation (2). ‘
Is the addition formula for sin (@ + B) true when one of the angles is

3,
equal to zero?
4, By letting @ = B in the addition formula, derive the éxpression for
sin(2a).
9 | 307
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10.11 The Derivative of sinx

B We are now ready to apply the addition formula for the sine function
to sin (x + Ax) in Equation (3):
sin(x + Ax) = sinx cos &x + cosx sinAx
This changes the expression for [sinx]' to

sinx cos Ax + cosx sinAx - sinx

[cinx] = lim
Ax =0 Ax
and after rearranging:
[sinx] = lim (S_mx(cosAx — 1) + cosx sinAx) (5)
Let us look at each of the two limits in Equation (5) separately. The {irst
limit, lim cos:;x =1 an be looked at as
Ax —~0
 cos {0+ Ax) - cos0
lim A
Ax—0

This is the derivative of cosx at x = 0. A simple interpretation of

the graph of y = cosx (Fig. 10.31) shows that the tangent to the curve at

x = 0 has a slope equal to zero, therefore .
Y Ax -1
lim 22 —= = ( (6)
Ax—0 X o
Y
y =1 Fig. 10.31

The second limit can also be rewritten in a similar way:

sin Ax sin (0 + Ax) - sin0
Iim = lim

Ax—~0 X Ax=0 Ox

Q :}f!\j}
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The right hand side of the }xst equation is the derivative of sinx at
x = 0. In Fig. 10.32 the graph of y = sinx shows the slope of the tangent

‘to the curve at x = 01is 1. Thus

sladk (73

lim
Ax -0 O&X

Substituting Equations (6)/and (7) into Equation (5) yields

[sinx]® = cOsX : (8)

X
Questions
1. (a) What is the period of the function sin2x?
(b) What do you expect the period of [sin2x]’ to be?
2. Find the derivative of éinkx, where k is a constant, using the delta

process. (The following equations will be useful:)

sin kAx =% Um sinkAx

sinkAx
lim ————— = lim k

Ax -0 AX ax -0
n_
g "
derivative of sinx to find an approximate value for singg ? (Hint; See

3. - {a) Given that sin 0.05, haw can you use your knowledge of the

Section 8.8.)

(b) From your knowledge of sin459, find an approximate value for
_“sin48° and sin42°.
~€‘(c) Compare your results with the values given in a table.
4, Give an approximation for sinx nearx =0
‘ (a) when x is expressed in radians.

(b) when x is expressed in degrees.

304
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5. (a) What ts the family of antiderivatives of cosx?

(b) What is the antiderivative of f(x) = 3 cosx that satisfies the ini-
tial condition F(0) = 57
6. Calculate the following integrals
lT_
(2
(a) cos x dx
/0
T
(b) cos X dx

Jo

2w

(c) cos x dx
Jo

(d) What is the geometric interpretation of these integrals?

10.12 The Derivative of cosx

Finding the derivative of cos x invoives steps similar to those used
in the preceding two scctions for finding the derivative of sinx. To be able
to apply the delta process requires that we know how to express cos {x + Ax)
in terms of “he sine and cosine of x and Ax.

Figure 10.29 (reproduced here as Fig. 10.33) will serve to find the
general expression for the cosine of the sum of two angles x and g. From

Fig. 10.31
OM = ON - MN

OM = OQ cosa -~ PQ sina

Dividing both sides by OP:
oM _ 09 PQ
OP‘S OP cosQ OP sina
Thus, :
‘ cos (@ + B) = cosa cosP - sina £infP (9)

.

holds when both @ and B are acute. As inthe case of the formula for

sin (a + 8) Equation (9) holds for all positive and negative values cfa and 8.

!‘j 4 (
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Fig. 10.33

Now that we have an expression for cos (a + B) we can use the .delta
process to find [cosx]'. The derivation is much like that of [sinx]'.

cos (x + Ax) -~ cosx
Ax

[cosx]' = lim
Ax -0

From the addition formula,

cosx cosAx - sinx sinAx - cosX

[cosx] = lim
Ax ~0 Ax
= lim cosx (cosz - 1) - lim sinx (slngx)

These are the same limits that appearted in Equations (6) and (7).

Hence, .
[cosx] = -sinx (10)
Questions
1. Find the derivative of cos kx.
2. Give an approximation for cosx near X = 0 using the approach of .
Section 8.8.
’ 3. What is the family of antiderivatives of sinx?
4, Find an antiderivative of sinkx.

£
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Find the antldeﬂ{vattve of fix) = 10 sinx that satisfies the initial
condition F(0) = 0,
The functions sinx and cosx have the property that [slnx]' = COS X

and {cosx]' = -sinx. Consider the two functions

g 60) = L (X + %) and gy tx) = F(eX - e7X)
Is,there a similar relationship between these functions and their
derivatives?

Suppose a mass tied to the end of a spring oscillatus up and down

(Fig. 10.34). Its vertical position as a function of time is given by

x = 5 cos Int.

L J Fig. 10.34
§ A
M REST
POSITION
A

(a) At what times is the mass at tl;e (1) highest (il) lowest point?

{b) The velocity of the mass is given by the derivative of the post~
tion with respect to time. Find the velocity as a function of time.

(c) What is the velocity at the highest and lowest point? Is this

surprising?

<
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APPLIED MATHEMATICS I
Appendix 1: Algebraic Mar_upulations

1. Some Properties of Numbers

Is it possible to simplify the algebraic expression a and,

" {f so, where does one start? We must remember that the algebraic expres-
sions we ha.ve been working with have involved numbers and variables that
stand for numbers. Therefor% we can handle an algebraic expression as
we would handle any expression involving numbers. Let us review some
properties of numbers that will aid in the simplification of algebraic
expressions.,

Three important properties of the number system are:

1. The Associative Property
() for addition a+b+cl=(a+b)l+c
(bY for multiplication a (bc) = (ab) c

2. The Commutative Property
(a) for addition at+b=b+a

(b) for multiplication ab = ba
3. The Distributive Property

‘(@) a(b+c)=ab+ac, or
(a+ b) c=ac+ bc
Also, we have the definition of subtraction,

4, a-b=a+ (-b)

]

and, finally, some important results of elementary algebra.

5. -a=-1"-a

6. (-a) * b= -(ab)
7. (=) * (-bj=a b
8. -(@a+b)=-a-~b

315
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The assoclative property allows us to remove or insert parenthesgs

between the terms of an algebraic sum (or product). For example, using
the assoclative property we can write (3x + 2y) + (5x + 6) as 3x + 2y + 5x + 6;
and

3x) (4x) as 3 * x - 4 . x; and

(5x+ 3y) + 2(x - y) as 5x + 3y + 2(x - y); and

(ab) (c + d) as ab(c + d
Notice, however, that in an expression like a - (b + ¢ + d} we must be care-
ful because we are not dealing strictly with a sum,. If we rewrite the expres-
sion, using property 8, as a - b - c - d and rewrite this as a + (-b) + {(~c) + (;d),
using property 4, we may now group the terms as we please
(e.g.. (-b) + (-d) + (-c) + a).

ot
The commutative property allows us to change th= order of the terms

of an algebraic sum (or product). For example, we can write:
I+ 2y + 5x + 6as 3x+ Sx + 2y + 6; and
3*x+4+xas3 -4 x*x;and
3(x+3)+6as6+3 (x+3)and
(@+bh) - (c+das(c+d - (a+b)

The distributive property is the one number property that ties multi-

plication and addition together. The distributive property permits us to
write:
3x + S5x as (3 + 5) x; and
abc + ad as a (bc + d); and
(@a-b) (@a+b) as (a -b) a+ (a -b)b; and
u(s+t)+vis+t)as (u+v) {z+1t) and
uls+t)+vis+t)asus+ut+vs+ vt; and

af{b+c+d)asab+ ac+ ad
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2. . Addition and Subtraction of Algebraic Expressions
Consider the expression (5x + 3y + 6) + (2x + 5y + 2). Using the

associative property, we can write it as:
5x+ 3y + 6 +2x+ 5y +2
Now, using the commutative property we can write {t as:
5x + 2x+ 3y + Sy + 6+ 2
Finally, using the distributive property it bgcomes:
(5+2)x+ (_3+ 5y + 6+ 2
Therefore, (5x + 3y + 6) + (2x + S5y +2) = 7x + 8y + 8.

Most of you could have written the sum of the above expressions

upon inspection, and that is the preferred method. However, if asked to

justify your answer you must be able to give the means by which it was
reached. '

Now consider the subtraction of two expressions: (x+y -2) - (3x+5y+6).

‘In this case'we must appeal to the results of elementary algebra and write:

(x+y—2)";- (3x + Sy + 6) = x+y-2)+ (-3x - 5y - 6). We now have an

addition and can see that the answer is -2x - 4y - 8.

Questions

Explain how the right-hand side of each of the expressions below is obtained
by using a number property, definition, or result of elementary algebra. If

any statement is not true, correct it.

1. x2+xy=x(x+y)
2. (a+3)eb=(a+3)-%
3. { u(s+t)+v(s+t)=u+v(s+t)( \x
4. 8x - (3x + 2) = 8x + (-3x + 2) o
5. r+s)u+v)i=r{u+v)+su+v )
6. 3x2 - 7y=21x2y [
7. - (a+b)-c=(a+c)<‘_(b+c)

X
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8. (x'y)-(:'s)'(3+s)=x‘-y-r's(3+s)
9. 3-(7-25)=3+ (-7 - 25) .

Rewrite each c;f‘the following expressions so that it does not contain
parentheses or brackets.

10. -7x - {y -3)

11, (s - 3) -3t

12, (x+y)+3

13. (@ -b)-(a+h)

14. (@a+b) * (a+b)

15. 2 [(3x - 2y) -4 (x +y)]

16. 3y - 2y + 3x - (2x + 3y))

In each of the following, (a‘) find the sum of the expressions, and (b) sub-

tract the second expression from the first.

17. 2a+b+c and a+2b-c

18. 4x + 3y - 7 and 2x - S5y ~ 2
19. 3(s + t) and -2(2s + 1)

20, -(@a-b+c¢) and 3 (2a - 4b + 6)
3. Multiplication of Algebraic Expressions

In Chapter 3, when calculating with powers of ten, we observed
that 10”‘ - 100 = 10”“"n when m and n were integers. Clearly, we could
have nade the same arguments for any number x, that is x XM= n+m
when n and m are integers. This property of exponents, together with the
number properties of the precéding section, guides us in multiplication of
algebraic expressions. %,

Consider the product of the two exprassions 252 and 3st3 Using

the commutatlve and associative properties, we can write their product as:

@) - (-3) - st st

A

‘))41 t
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Now, uslng‘m‘eltinlication and the above property of exponents we'may‘
rewrite the product as - -
| -653t3-

At first glance it seems as though we have no number property
that can help us to multiply (a2 + 2) (3‘a2 + 4a + 1). Remember, however,
that 332 +4a+1 represents a number, call it A temporarily. so we have an
expression of the form (a + 2)A and can apply the distributlve property
to get a2 *A+2+A. Hence, the product (a + 2) (3a + 4a + 1) can be
written as

a® (3a’ +4a+ 1) +2(3%+4da+ 1)

Another application of the distributive croperty permits us to write:

(a) (3a%) + a” (4a) + 2% (1) + (2) (3a°) + (2) (da) + (2) (1)
Simplifying each term of the last expression yields

Ba4 + 4a3 + a2 + 632 + 8a + 2, or, combining terms,

Sa“"+f¢las+7a2 +8a+2
When multiplying long algebraic expressions it is sometimes convenient to

use the long method of multiplication as shown below,

332 +4a+1
az + 2
(1) 334 +‘ 4a3 #"az
(2) 6a> + Ba + 2
(3) \34+4a3+7az+83+2
Rows (1) agd (2) are obtained by multiplying the expression

Saz + 43 + 1 by a-2 and then by 2, respectively. Row (2) is simply placed

so that terms with the came exponent are arranged vertically so that the
final sum, row (3), may be easily obtained. Notice that when multiplying
with this arrangement we are using the same reasoning as before. That is,

we are using the distributive property.

31
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Queastions
1. I m and n are positive integers, show that (an)m =am,
2. Ifnis a positive integer, show that (ab)® = a™p".
Perform the ind!cated multiplications.
3. 2x x3 . x5
4. (szt) - 3
5. (3r)4
6. %D’
7. 3y ° (x2 +y)
8. (2x - 4) (3x + 4)
9, (52 S st+t%) (s+ 1)
10. x-y) (x+y)
11. x -y (x-y -
12.  (m-1(m+2) (m-4) s

13. (4x + 2y) _(3x +vy) v
14. (m3 - 2m2 + m+ 5) (m2'+ 3m - 4)

/‘ 15. (4x - 2y) (4x + 2y)
16.  (x - )3

4, Some Special Products-

There are three products which occur so frequently that they should

be singled out for special attention. These three products are:

x -yl (x+y)=x2-y2

(x+y)2=(x+y) (X+y)=x2+y2+2xy

2+y2-2xy

x-y)=(x-y) x-y) =x
It should be understood that in these products, x and y may be any
algebraic expressions. For example, if we replace x and y in the first
expression by 25 and 3, respectively, we have

(25 - 3) (25 + 3) = 25% - 32
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On the other hand, if we replace x and y in the first expression by ZSz
and t3, respectively, we have ' .
st - 6 @s? + ) = @shH? - }?

To emphasize the fact the above special products involve arbitrary algebraic
expressions, let us rewrite them using A and B to denote two arbitrary alge-
braic expressions.

(1) A-B (A+ B) = A% - B

(2) (A+B) (r+B)= A% + B% + 2a8B

(3) (A-B (A - B) = AZ + B - 2AB

2 + 1) and (a2 - b2 - 1) we can

For example, to find the product of (a2 -b
think of a2 - b2 as Aand of 1 as B, and have a product of the form
(A+B) (A-B)
2

Therefore, (a% - b* + 1) (@ - b% - 1) = @% - b5)% - 1%,

. 2
We can expand this product further if we notice that (a2 - bZ) has the

form of our third special product (A - B) (A - B). Thus

| 2 2 2 2
(a2 - b2) - 12 = (az) +_(b2) -2 (az) (bz) - 17, or simply
adapt-2afp? -1 ©
Questions
1. Is (A + B) (A - B) the same as (4 - B) (A+ B)? Explain.
2. Express in words, the identity (A - B) (A + B) = AZ - BZ.
3. Express in words, the identity (A + B) (A + B) = A% + B2 + 2AB and
(A - B) (A - B) = A2 + B - 2AB.
4, Work the example in this section (a2 - bz + 1) (a2 - b2 - 1) by the

long method of mt 1tiplication.
Perform the indicated multiplications using the special ;Sroducts whenever
possible.
5. (3x + 4y) (3x - ay)

C | 314
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6. (I«Zr-—t.)2
1.3 2
_ 7. ('2—m+-4'v)
8. (x -2) (x+5) (x+2).
9, - (s+2t+3)(s+2t-13)

10, (x - 3y - z)%

11, (m - 2v) (m+ 2v) (m2 + 4v2)
12, [Blx+y) - 21 [3 e+ y) + 4]
13. (a+b-c-d?. |

4. Bxepd

15. [x+y)2-x-y2][x+y)?+ &x-y?2)

5. Factoring
Very often, in the simplification of algebraic expressions, it is

helpful to write a given algebraic expression as the product of other
algebraic expressions, called its factors. There are ;a few basic steps
to follow when attempting to factor an algebraic expression. Although
these steps will not enable you to factor any given algebraic expression,
they do provide a systematic procedure in many cases. )

When all of the terms of an algebraic expression have a8 common
factor we can use the distributive property. This procedure should always

be tried first. For example:

2x3 + 3x2 + 6x = (2x

4(a+b)+(@a-b)la+b)=[a+ (@a-b)]° (a+b)

uw + vw + uy + vy = (uw + vw) + (uy + vy)

2+3:~c+6)'x

={u+v)*w+u+v) -y
=(u+v) ¢« (w+y)
Notice that in each of the above examples we have expressed the given

algelraic expression as the product ol other algebraic expressions (factors).

SHE
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Whenever we seé expressions of the form I-\—2 - Bz, A2 + B2 + 2AB,

or A2 + B2 - 2AB, we should immediately associate tt;em with the factors
(A-B)(A+B), A+ B)z, and (A - B)2 respectively. For example:

T.» factor x?‘ - 12x + 36, notice that two of the terms in this
expression are perfect squares; xz and 36 = 62 , and the third term {s -2
times the product of x and 6. (l.e.: x> - 12x + 36 = 2+ 6% - 2(6)x.)
Thus we have an expression of the form A2 + B2 - 2AB and it factors into
(x - 6) (x - 6). -

If we factor r4 - 16, we get

2
r4 -16= (rz) - (-‘1)z )

= -4) ¢ +a)
but, r2 ~ 4 is also the difference of two squares and equals (r - 2) (r + 2).
Hence,
4 2
r =16=(r-2) (r+2) (" +4)
Consdder the expression (x - 2)2 + 14 (x - 2) + 49, It can be written

as
x-22+ M +2 (M x-2)
Thus, we have an expression of the form

A2+BZ+ZAB where A= {x~-2) andB=7,.

So, x-22+14 (x-2)+49=(x-2)+7) (x-2)+7)
= (x + 5)2

Questions .

Factor the following expressions completely.

2. 322 - 27

3. 3x 2x + 5) + 4 (2x+ 5)

5, 144 a8 - pb?
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6. (a+b) - (c+d>

7. xPy - 2xy? + y3

8. k-22 44 (x-2) (y+4) +4(y+4a°
6. Division of Polynomials in One Variable

It lsﬁcften necessary to divide a polynomial expression in one
variable by another in the same variable. For example, how do we divide
(Zx2 - 18x + 20) by (x - 7)? Before we attempt to divide polynomials, let
us review a method for number division. " |

Suppose you were asked to divide 1760 by 49. The usual long
division algorithm is familiar to most of us, but there is another way to
approach the prcblem. We begin by making guésses. First, let's try 30. ’
If we multiply 30 times 49, we get 1470, which we then subtract from

1760 (step 1). Notice that we haye 290 49 /178D Choices
left over, so we guess again, say S, lg'g/g step 1 30
multiply 5 times 49 and subtract the 245

_—-“} step 2 5
result from 290 (step 2). Observe that 45

we have taken 35 factors of 49 from
1760 and have a remainder of 45. We can summarize our results as
1760 = 49 * 35 + 45

1760 _ 45
a3 - 3t

or
We can divide polynomials by this same "method.of exhaustion.” In fact,
this procedure is probably ea sier for polynomials than it is for numbers.

Consider the division of (sz - 18x + 20) by (x - 7). If we wisely pick

¥2x as our first choice, then notice Choices
\ x-7/2x% - 18x + 20 3%
that we eliminate the first term f2x¢ - 14x
step 11 -4x + 20
of the polynomial when we an + 28 -4
- 4x
multiply (2x) (x - 7) and sub- step 2 { — -8

tract it from Zx?‘ - 18x + 20 (step 1).
Next we choose -4 and repeat the process (step 2). We are left with a

]

* T ¢
Q ‘j'«,..
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remainder of -8 and can summarize our results as

2% - 18x + 20 = (2x - 4) (x - 7) + (-8)

or 2
2x” -18x+20_, _,, =8
2x - 4 2x - 4
Here is another example: '
) T Choices |
x -2x+1 /x . x3
{ 5 - 2t 4 53
Zx4 - x3 sz
{ 2x£l - 4x3 + sz
3x3 - 2x2 3x
3x3 - ze + 3Ix
4x° - 3x "
{ 4x> - Bx + 4
Sx -4

\ .
After four steps we are ‘eft with a remainder of 5x - 4 and can
summarize our results as .
x5= (x3+2x2+ 3x + 4) (x:2 -2x+ 1)+ (5x - 4)

or

5
~3 X =x3+2x2+3x+4+ st 4
X -2x+1 : o ox  =2x+1

Questions
Divide:
. (% - 7t + 10) by (t - 5)
2. (y3-4yz-2+5y)byty-1)

4 3 2 2
3. (6x° + 7x° + 12x" + 10x + 1) by (2x + x + 4)
a. (x> - 1) by &2 + 1)



- 316 -

5. (x5+x3+x) by (x + 1)

6. (Gt‘l - 110 - 12 + 3+ 7) by (2t - 1) -

7. Algebraic Fractions |
An algebraic fraction is just thq quotient gf two algebraic expres-

sions. To deal with algebraic fractions it i{s useful to recall certain

properties of numbers.

The denominator of a fraction cannot equal zero. Therefore, when
x+ 7

x+ 3’ .
variable which makes the denominator zero, in this case x = -3.

we write an algebraic fraction, say we must exclude any value of the

For each number s, there s a uniqgue number which can be written as
%,; such that their product is onge (s * %= 1). Such numbers are called multi-

plicative inverses of each other.

We can defme division in terms of multiplication by multiplicative

inverse:

(o]}
o]
l*2
!
i
o

o |

W e
T~ T

1
and ab
These number properties must be kept in mind when working with

algebraic fractions. Consider, for example,

{x-3) (x-2)
| (x - 3) (x - 1)
Using number properties, we can rewrite this expression as

. 1 [ (x - Z‘L -
(x - 3) % - 3) (x - 1) or since x - 3 and
1

inverses--that is, (x - 3) * o = 3) = 1, we can write the expression as

% - 3 are multiplicative

x -2
x -1

provided that x is not equal to 3 or to 1. When you have recorded the final
result H , it is easy to forget the fact that in order to arrive at that re-
sult you assumeg that x was not equal to 3.

SR
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8. Addition apd S i

Addition and sultraction of .algebraic fractions with common denom-
inators are straightforward operations obtained from number properties in the

following way:

a,¢c_ .1 i 3. 1_atec
b+b-a b+c b (8 + ¢) b b
i-g=1'-l~—c'l=(a-c)'~l—=a—c
b b ° b b b b

Addition and subtraction of fractions with different denominators arc
performed by rewriting the fractions so that they have a common denominator.
a
Supposc we wish to add - + €. 1If we multiply the numerator and denominator

b Jd
of a fraction by the same number we do not change the value of the fraction--

hecause we are just multiplying by 1. Thus we can ‘write E + E as
a d ¢ b_ad, cb_ad+cb |

b odata b bd bd bd ,

1 X
tHore is another example., We can add <t 3 dnd ———— by multiplying

+ 3 -1
e Ly 22X 0L X+ 3 ue o
those frac t:nn.s by % - 1 and M rcspoc tively. We have .
Lo S sy, Xt .
1Y T G A3 2x - 1) + (Jx T+ 3 and since we now have

4 common denomipator, we can add to obtain

-+

Rx- 4 b0+ axh) el rex-
(x + 3) 2x - 1}

2x2+5x—-3

2

In the expression 3 + - = we rotice that the denom-
2 2
s -4 s + 45 + 4
2s 92 Zs
inators can be factored so that =77 == - e e
¢ + ’ —
2 (s‘z - 4) s£+4s+4 (s +2) (s -2)
e e e AMultiplying the first expression b s+ 2 and the second
(g+g)(q+_g)‘ iplying » first expression by ~=7— e sec
by - ields a common denominator,
T IO s’ _ 23 (s+2) o, s° (s - 2)
(s+ 2V (s-2) (s+2){s+2) (s+2){s- 2)(s+£) (s + 2¥s +2) (s-2)
Fhon adding,
I 2 2 3 2 3
Js{s+2)+s” (s-2) 2s +dst s -5 *wﬁ:«t% —
s + + - :
(s+20(s+20s - 2) (54 5% (s -2) (s +2)% (s - 2)
O }t)-

:‘ <Y




-

- 318 -

Questions
Simplify, when possible, the following algebraic fractions.
1 az + b;2 .

* al - b?. A
9 53 + 952 + 20s

s + 95+ 20

; A g4
4 (x - 5) (x + 3)

(x + 3) (x + 4)

The following simplifications are examples of common mistakes. Explain

the faulty reasoning in each case.

5. 7x_ ~2
6 Ju+ 7 _ 7
: 3Ju+ 8 8
5r - 2r _ 3r
7. 7 6 |
x2—2x+5 5
8 2 8
x ~2x+ 8

carry out the indicated operations and simplify when possible:

3. x—-l+x-2
1 1
10. 3_r_r
a
11. +1+2
_XY
12. Y- 3
13, =

324,
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9. Multiplication and Division of Algebraic Fractions

In order to multiply and divide fractions we must recall that for

a <.
two fractions b and rk

oo
a.lo

: % (To find the quotient of two fractions, invert the

ol [ I

divisor and multiply.) To illustrate this latter property, consider the

following proof:

a a,d a,d a.d
_q_*g___:g____b C =b c=b c=_a__g_
b "d ¢ ¢.,d cd 1 b ¢
d d ¢ cd
In the multiplication
353.@:____15531:
4t2 sZ 4t252

notice that since the numerator and denominator have common factors, we

may simplify the result by writing

15$3t_ 15s (szt) _15s | ] = 15s
4t

4t2 s 4t (szt) 4

Dividing (9u3v4 + 18\14v2 - 6uv) by 3ulvl |s equivalent to multiplying

(?lugv4 + lsuqv2 - buv) ° 1 .
' 2 2
Juv
3
Applying the distributive property,
Situsv4 + 18u4v2 _ _buv
BuZ\r2 , ?auzv2 3uzv2
We can simplify by writing
guv? W2e?) | 18u (uivh)  _6w) _ . 2, .2 _ 2.
37 Y. 22 auv) W PO T
3 (u"v") 3{(u“v’) uviu u
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x - 81 x2-2x

It would be a waste of time to proceed by writing :
x.~ 2 §k+3)j,1_c+_g)_=(x-2)(x2+5x+§)=x3+3x2-4x-12

——mne

::4 - 81 x2 - 2x (x‘l - 81) (x2 - 2x) xs - 2x5 - le2 + 162x

because it is almost impossible to tell if the last expression can be sim-
plified. A better method would be to see if any of the numerators or denom-
inators can be factored before multiplying. In the case of this example, we

can write
x-2 . (x+3)(x+2) (x - 2) . (x+2) (x+3)

x4—81 xz-—Zx (X+3)(x—3)(x2+9) x (x - 2)

o (x-2) (x+2) (x+3)
(x + 3) (x - 3) (x° +9) () (x - 2)

Now we can see that there are common factors in the numerator and the

denominator of the product which can be written as:
(x + 2)

(x - 3) (x* + 9) x

3 2
In dividing l; +-3 by (r - 1), our first step is to write the problem
in terms of multiplication by the inverse.
3 2 3 2
r -r %(r-1)=r -r 1
r+3 r+ 3 r-1
Now we write:
r3-r2, 1 =rz(r«_l, 1 _ rz(r-l) =r2
r+3 r-1 r+ 3 r-1 (+3)(r-1) r+3

We sometimes encounter algebraic fractions in which the numerator
and denominator are themselves coméesed of one or more fractions.

Consider, for example, the expression:

141
Q
-1
a
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’ .
Such expressions can be handled easily by first expressing the numerator

and denominator as single fractions, thus obtaining a form you have already

worked with, and then diyviding fractions as usual. In this case we could
write i
1 atl
a_ __d _a*l  _a _atl
| - 1 a-1 a a-1 a-1
a a
Questions
l. In Chapter 3, when calculating with powers o. ten, we worked with

10M
expressions of the form = . Let us now consider expressions of

m 10 {/

the form §'n' where s is any positive number and m and n are positive N
s

integers. Using the fact that

m factors of s

-

in - .
S _ S ¢85 + 85+ s 8
n .
s .S‘- t. .%———.-i—. L] ‘. -h.f
n factors of s
Explain the following result:
lifm=n
r m ’
s m-n
—-=1!s if m>n
n p
s 1 .
l—n-m ifm<n
s
\

Perform the indicated operations and simplify when possible.

.

2. ¢ (3x3y - 5xy2 + styz) : Xy

3. L6u3~9u4v) $ 3uv
’ ,) =

¢ r"~9 .!‘+2 -,

1 2 3

< +2r .r
5 x2+x—6,x-2
. x-1 7 3 ‘
) $

320
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5. Y=3 ;9
b4
2 .
7 4r+8s ., 9r s
: 3rs . 3 {r+s)
YX - Y2 x X -2z
8. . .
yxtyz xX-2 X *
?
9 -Zt 1:2 ]:_ t3 a~
Lt~1 t?.__1 1 -t
T 2 3
10- x+2 . x . X
'L x -1 x2~1 i-x
- | AV
2 + - d
5
11- -~ -
' ;_1
3
1,1
12, & .
-y
13. "l
1_.—
X
s—té -
14. _—
S+E'

!

Determine whether or not the expressions in each of the

following pairs are

equivalent. If not, correct the expression on the right so that they are

equivalent,

15. XYy - Xz, X(XZZ_E)

2 .
2n _A4mn
17 m(m+n) ’ n[(m+n)2j

1
’}n)‘-

-
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To —
19, +-1. o=t
ro r of ~
19 -"l(r-ﬂ)2+~nl(r+£) : 2mr2+lmn2
) 2 2 2 v 2
26, 3 - v; 3(1-%)
1 -8
21. “—;—X; ‘J
urv 14—
Vv
p> .., 2 m+n
220 + lzp
2Zm 2n 2mn
n
m+n nm :
23.
m ! (n+m)2
m+n
7 _7
24 E_L.Y.:_x
1 ] Z [ 2 x
b4
ab
25. (a+b)'(1_(a+b)a
1. 2N 1 N+n t N-n
= e = + (—
26. (N) ; N) (N)

331



- 324 -

Appendix 2: What Can We Do to Equations ?

An equation is simply a statement that two expresslons are equal.

Thus, 2x + Sy=6xy - 7,
x -a=2y2,
and y=3x+4

are equations. Either side of an equation may have any number of terms.
For example, the third equation above has one term on the left side (y) and
two terims on the right siue (3x and 4). ) |

We can manipulate equations in many ways, depending on what we _
want to do. In a given equation we may wish to express one quantity in
terms of the others, or'sclve for the unknown quantity, or isolate certain
terms from others. Sometimes we have to work with two or more equations
éimultaneously. In all these cases it is necessary to know which manipula-
tions are permitted, so as not to invalidate the original equality.

The purpose of this Appendix is to difcuss some of the more common

manipulations that are used when we work with equations.

1. Adding a Well-Chosen Zero

To manipulate cne side only of an equation without invalidating it,
we need to know two propenies of numbers.
The first of these is
. (a) Zere is the only number for which
, x+0=x
for any number X.

property (a) is usually worded "Zero added to any number does not '

change that number." Since an equatiog becomes an equality of numbers when

a number is substituted for the variables, we»,c%n use any property of numbers to

manipulate an equatign into another form.

To illustrate tRe use of this property, sometimes called sladding

a well-chosen zero,” we consider the following equation:
y=xEH6x+2

3.
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and ask the question, "What is the smallest value that y can have in
this equation?"

Since the expression contains an x> dnd an X term, we would

like to combine them Into a square of a sum. Recall that
| (r:\+b)z=a2+2ab+b2
Here we have
xz + 6x or xz + (2) 3)x

To make this a perfect square we need to add 9. But we must also subtract

9 to keep the same value of y. Our "0" =9 - 9,

y=x2+6x+(9-9)+2

9 .
Recognizing x + 6x+ 9 as (x+ 3)2, we can write {

| v=({x+ 3)2 -7
The (x+ 3)2 term is > 0, hence, its smallest value is zero. The smallest
value of y is then -7.

In general, to make a "perfect square" from the expression

2
X +mx+n

2
we have to add 0 (1;-) - (-gl)
2 2 " m.’

: m m _(m
x;\+2(2)x+(2)+n (2)
2 2

m in - m
+.— +____
(x 2) 2

Here is another example of adding “a well-chosen zero."” Given the

N
eguation ¢

=xz-i-:-c+l
Y™ xZ+3x+4

suppose we are required té divide until the degree of the numerator is
smaller than the degree of the denominator. It is m‘uch easier to add 0 to
the numerator chosen in such a-wiy as to make the original numei’ator equal
to the denominator. We see here that the numerator needs the quantity

2x + 3 added to it to make tnis so. Thus, we have

335
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x2+x+]l _xl4x+1+[@x+3) - @x+3)]

Yx2 43+ 4 x2 +3x + 4
_xl+3x+4-(@x+3)_,  _2x+3
x2+3x+4 - X2 + 3x+ 4

Since we are working with one side only of an equation. we are
actually working with an expression. As we have just shown, zero may be
added to any expression'wlthout changing its value, It is common to rewrite

an expression like the following:
1

1+t

Adding "a well-chosen zero" would result in

1 _1+(-t) 1+t _t

1+t 1+t 1+t 1+t
_ 1
=1 t(1+1:)

We can repeat this process of adding g =t - t to the numerator inside the

- parentheses.
1

)zl-t(l-tl—ﬁ

_ 2 (1 _y_o _ 2,1+t-t
1 t+t(1+t) 1 t+t(1+t)
1 - .
l+t)

1+t-1t¢
1+t

y=y1yi-1-tl

1

=1-t+1t2 -3 (

-

This expansion may be carried on to any number of terms. As you would
expect, it gives the same result as does ordinary long division. |
Incidentdlly, the exémple that we have chosen also illustrates the
expansion of @ power series. Notice that each term contains a higher power
of t than the one precédin'g' it. We speak of the term not containing t as
" the "zero-order term," thé term containing t to the first power as the "first-
order term," etc. Fort vei'y much less thanll, each torm is s'igmficantly
less than the one preceding it. When t is a physical number, it frequently -

suffices to retain only the first-order term.

ST T wa
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3

~l 5
-} -
1+t 1-t

’
L

Thi's approximation is valid for values of t so small that t:2 is about the
same value as the error In the value of t itself.
As another example of the expapsion of a power series, we shall

rewrite the axpression

1
1”—-xz
as follows:
1 =1+(x2:xﬂ_l-x2+ x2
1 - x% 1 -x2 ~1-x2 7 1-x2
_ 2 1 _ 21+x2—x2
lfx(m)—1+x( 1 - x2 )

1+x‘2-x2
1 - x2

- 2,4 (=)= 2 4+ x4
= 1+x +x(1_x2)-1+x + x*

)

- : 6 1
= 1+ x2+ x4+ x0 (7 7)

This expansion contains only even order terms. It has no lst, 3rd,
or 5th order terms. However, if we rewrite the expansion as
2 2 2 1
1+ (x7) + (x )2+(x )3(-1—:—xvz)
then we can, for example, speak of the (xz) term as the first order term

in xz, or (xz)?‘ as the second.order term in xz, etc.

Questions
1. Express y = xz + 6x + 11 as the square of the sum of X and a
number, plus a constant.
2. Comhplete the square of the following quadratics:
(a) x2+2x-1=0
(b) 3x2 -2x+6=0
(c) sz‘- 7x+ 16 =0
3. Expand 1—_1—2(3' to second order in x3 by adding well-chosen

Zeros.
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2 ) .
4. Expand —-—;2 to second order in x, and deterniine the accuracy
) T |
of the approximation when x = 0.1.

2. Multiplying by a Well-Chosen Ope

The second property of numbers that we can also apply to expressions

is
(b) One is the only number for which
' x+1l=x
for any number X.

Property (b) is worded, "One multiplied by any number does not

change that number."
As an example of modifying an expression using this property,
sometimes called "multiplying by a well-chosen 1," suppose we want to

find an approximate value of

vVx+h - vx
h

where h << x (very much less than). It is not much help to set h=20

here, because then the expression reduces to zero divided by zero, which

{s meaningless. However, by multiplying by "a well-chosen 1,"

/x+h-vx _(fx+ - vx) Wx+h + /%
h h

(Vx + h + yx

At h-x _ 1
~h(¢x+h+\/;) \/x+h+_-\/;

Now, for h €< x, we can approximate this expression by setting h in the

denominator equal to ze?_. ~
/x+h - /x 1 _ 1
Thus. h ¥ Jxi0+ /x| X

3. t)
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Multiplying by "a well-chosen 1" is useful in factoring expressions.,
Consider the expression
| u+v
If we were asked to factor out a u, we might say that this is not possible
' since no factors of u are in the second term. But if we muitiply by the

"well-chosen 1" where 1 =u °* % and move the % inside, we have
' | 1 _Lu, v
utv=u e u(u+v) u(u+u)
_ v
=u (1 + u)

This particular example arises quite often when v and u are physical nﬁmbers
and v << u. Factoring in this way enables us to see the contribution of v as
a fraction of u.

Another example of manipulating an expression to seé more easily

the contribution of each term to the value of the expression is the following:
Y= a3x3 + aznr:2 +a,x + 3,

For large x each term becomes successively smaller, and by introducing
a well-chosen 1,
3
=___3_a3x (aax3 + a,x% +a;x +a )
b4 asx an 32 ) 1 o

. a a a
_ 3 f2 1,21 1 , o 1
a,x (1+ a3 " x + P 2t a3 " %3
a
we se2 how much smaller than 1 the 5—%— term is.
Questions
1. Show that for h << 1
Vi+h=al+ h
2
[Hint: Lety/l1+h =1+ (-1+ v/1 + h), then multiply this expression
+h +1
py Wil ]

Y (/T+h+1°
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2. Approximate to three places using the ideas of this section:

1
(@) 5793

1
(b) 1.01

3. what Can Be Done to an Equation by Working With Both Sides
Without Invalidating the Equation?

We state four properties of numbers whfch, as we have cited earlier,

are applicable to equations since equations reduce to an equality of numbers
when numbers are substituted for the variables.
() If a. b, ¢ are numbers and a=b, thena+c=Db+c.
This is usually verbalized, "One can add the same number to both
sides of an equality without changing the equality."

(b) If a, b, c are numbers anda=b, thena.c=b-c.

In words, "One can multiply both sides of an equality by the same
number." We point out, however, that multiplying by zero is usc-
less, since this reduces all equations to the ldenfity 0=0.

(c) Ifa, b, ¢ are numbers, a=Db, and c# 0, then % = -2— .
That is, "One can divide both sides of an equality by the same non-

1" L
zero number.

{d) If a=Db, then a® =b", and¥n particular, 1.1 .
a b

In words, "One can raise both sides ¢f an equality to the same

i

power."

We illustrate each of (a), (b), and (c) above by solving

fort interms of r. )
The general approach to this type of equation is to clear the equa-

tion of fractions and then isolate the unknown on one side of the equation.

lg.,
. ““‘}
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We start with property (b), that ts, multiply both sides of the equation by

(t+1).
t
(t+ 1)

Canceliny the (t + 1) factors on the right side we have

rit+1) = s (t+1)

rit+1) =t
We then distribute the product on the left over the sum.
rt+r =t
To isolate t on one side, we add -rt to both sides of this equation
(property (a))
“-t+rt+r=t-rt
which becomes
r=t-rt
Using the distributive 'aw again, we factor t out of the rtgﬁt side.
r=t(l -r
Then dividing both sides by 1 - r (property (c)).

r
1 -1

t =

Notice that when we used property (c), we divided by (1 - 1).
This requires that r ¥ 1, because otheiwise 1| = r = 0, Ingeneral, when
dividing by polynomials that contain a variable, we must be sure that
the variable does not have a value that makes the polynomial zero.

We shall illustfate property (d) with the following equation

mv

by selving the equation for v, that is, getting v all by itself on one side
of the equation. Before we start, it would be helpful to note some of the

restrictions that must be placed on the values of the variables in this

equation. Clearly, c #v, sincec=v would result in a zero denominator.
Also p # 0 and m # 0; otherwise the ciuation reduces to 0 = 0, which

is not very useful. These three restrictions, C £v, p#0, andm# 0, will

l} .‘j .(_i
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&
become more obvious as we proceed with the solution.
Let's do the work now. Squaring (property (d)) gives

2 _ _méyl
p—
-3

2
Next, multiply by 1 - ‘éj . (This ts not zero because c ¥ v.)

<

) (
p2 (1 - 'z—z') = méy2

Using the distributive law on the left yields

2
pz - R—}—'——_-_-mZVZ
C

: 242
To collect the v2 terms we add P—-ZV— to both sides

C
2,2 22 2,2
2 _ PV pTV” 2,2 ¢ BV
Sy 2 S R U

Using the distributive law on the right we have

2
pZ: Vz (mz + Ez-)
2 2 2_2_
To isolate v°, .o divide by mé + o7 (This is not zero because m # 0,

p#0.)

EZ
m2+£'2'

The final step is to take square roots.

Questions

Before manipulating, plan your steps. These problems will actually

occur {f you study physics.

1. '%m\lf2 + -Zl-kx2 =E. Solve for v.
2. T=2x/2. Solve for k.
P v
3. Let L. ('—1)N . Solve for v,.
PZ Vo pA

3
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4, % + % = % . Discuss the best way to rearrange this to calculate a

from a given pair of values for b and c.

4, Solving the Quadratic Equation

As we have seen in Section 1 of this Appendix, when we add the
2 2
"well-chosen" zero (zm) - (én-) to the quadratic equation

x2+mx+n=0

- 2 _ .2
the equation becomes (x + .'2_“..) + 5—“—4l = 0.

The nore general quadratic
ax2 +bx+c=0

can be solved in the same mdanner.

This result is called the quadratic formula where @ and b are the coeffici«ats
of the xz and x term respectively, and ¢ is the value of the constant term.

bz - 4ac in this formula is called the discriminant because it

identifies the character of the roots of the quadratic. When the discriminant
iy zero, the roots are equal (they are -QE%). When b2 - 4ac is greater than
zero, the original equation has two solutions. When the discriminant is
negative, there are no solutions because no number on the number line is

the square root of a negative number.

34)
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Questions

1. Using the quadratic formula, show that the

(a) sum of the roots x, + x =--E.
1 2 a

c
(b) product of the roots x,x, = 3
2. Which of the followlng equations (a) have equal roots, (b) are

factorable, (c) have no solution?

(@) 9=x"+ 6bx (d) 10x> - 4lx - 156 =0
(B) 2x% - 7x+10=0 (e) 4x® -12x+9=0
(c) 12x% -95x -8=0 () 5x% -3x+2:=0
3. For what value of k will the roots of the following equations be equal ?
(@) 3x% + 4k = 5x | -0

b) 4(x - D)% =2 + kx
(c) kx2—3+2kx=0

g. Find the value of k if the product of the roots of

Ix% - 2x - k=0 is 2.
5. Find the value of k if the roots of x> + kx + 4 differ by 3.
5. Substitution

We can substitute for any variable in an equation an expression that
is equal to that variable. For exampie, consider the equation
y=ax3 +bx? +cx+d
If, in addition to this, .
X=u+v
then we are permitted to substitute (u + v) for x in the general equation
wherever an x occurs. Thus, we write -

y=a(u+v)3+b(u+v)2+c(u+v)+d

34,0
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To take another example, suppose we had the following system of equatigns:
(s=v t+ %atz |
Vo -
1 F=m (____2 v1)
t
| Vz - Vl = at

and
- -5
Vl + vz
Wherever we see a t in the system of equations,’ we can replace
2s

it with the equivalent expression ——— .
' v1 + v2
In this case, the three equations become
2s H 2s 2
s=v, (——)+ >a(c— )
v
1 v, + v2 2 1 + v,
(v) - vy)
F=m _22__1.—
—=2—)
Vl + Vz
2s
VZ-Vl_a(v +v) N
1 2 \ ‘
Questions
1. Let it be given that V= 2—;5 and a = g{:r-! . Express a in terms
of R and T.
2. The following occur in elementary orbital problems:

" _4w?R_ __  R3I _
a——ﬁ-,F—-ma,p——k

Solve for F in terms of k, m, and R.

¢

-3, y S = 2wré + 2nrh. Suppose r_and h are related by 2r = h. Find S

in terms of .

- 4, Let y=-’]-;~and x=1t+2. Express y interms of t.
P _ M : .
5. Let p=gppiP= - Eliminate p and express P intermsof M, 'V,
_R_l. and 1-

o . 345
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6. Express v in terms of g and 8 in the followling:
/28
t= g
v =gt y
mC2 mv

and p= ———— eliminate v and thus
V1- = /1 -5
02 - c2

express E in terms of p, m, and ¢c.

7. (d) From E=

<

(b) For p << mc expand your result to second order in —%

6. What Can Be Done to Two Or More Equations ?

When working with two or more equations, we can use any of the
foregoing ideas on any member of the set of equations, namely, adciing
the same expression to both sides and multiplying or dividing both sides
by the same (non-zero) expression. We can also substitute for a variable
in an equation any expressic;n that is equal to that variable. There are, in
addition, the ideas of adding equations, multiplying equations, and dividing
equations. We indicate these operations schematically by writing the
following:

If A, R, (', Dare expressions and {f A = B and C = D,

then A+ C=B+D

A-C=B-D
A_B
C D’

Let us begin with the general solution of two equations in two

unknowns.

(1)

ax+by=c

1 ) 1

= %
a,x ¥ b,y=c, (2)

QOur plan is to eliminate one of the unknowns from this set. arriving at one

equation in one unknown. We can do this by multiplying one of the ‘equations

g

4
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by an appropriate constant such that when the two equations are then added,

one of the unknowns drops out.

a
Specifically, if we multiply the first equation by -'él , then add
this result to the second equation, we get !
a a a a
2. 2 =22 2
(-al)alx+(-al)bly-—(—al)c1 (-ap) - (1)
= 2
azg.{ + bzy CZ ‘ (2)
32 32 22y, ) + @)
0+(b2-g-fb1)y=c2—alc1 al

where the notation at right indicates the operations being performed.

We now solve this equation for y:

C2 ~ a_z_ C1
_ 1
2 a3 1
y= a1Cy - 921
a;hz - azbl
Tc;find X, we take this value of \'y. and substitute it in the first equation in
place of y.
a) X + bly =Cy
ax ¥ bl(:gi - 2221) !
This equation reduces to
N Salhid b
315y = 3P

In a set of n equations in n unknowns one uses this same procedure
to eliminate all the x's below the first and thus reduces the system to n - 1
equations in n - 1 unknowns. We illustrate by reducing a three-equation

system to a two-equation system.

a;x+ by +¢c,z= d, (1)

3% + byy + ¢z = dy (2)

aax + bgy + €32 = ds (3)
‘}‘15)
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a
We replace equation (2) by the sum of equation (2) and (-g%) times equation
a

(1), and we replace equation (3) by the sum of equation (3) and (- 3%) times

equation (1).

alx+ b1y+clz=d1 (1)
az az _ az . a—z
(bz_albl)Y+(Cz—alcl)Z~d2-al dl . ‘(2)-( al)(1)+(z)
(33 33 _ 33 l a3
(b, - 3, b))y + (cq - 3, c,)z=d, - N d (31 = (_al) (1) + (3)

Equations (2') and (3') contain two unknowns and these are solved
as before for the twc-equation case. x is then found by substituting the
values of y and z into equation (1). - '

As an example, we include the solution of a three-equation system.

11
x+zy+2z- (1)
3x +3y+4z=2 (2)
sx + 4y +z=1 (3)
1 1
x+5y+27\—1 (1)
0x+§-y+§z=-1 (2) = -3 (1) + (2)
3 3 " —
0x+§-y—gz=—4 (3") = -5 (1) + (3)
1 1 ‘
= _— = 1
x+2y+zz 1 (1)
3. .5 _ .
2y+zz 1 2")
0y+'272=3 (3" = (2') - (3"
_3
2= 4
%Y"'Zéz:-l (2') < 2
3 5,3
§y+§-(z)=-1
=l(_}_§._‘§)
Y=3%8 " 3 .
_ _2_1 J'jf
Y= 12




x+-;-y+%z=, (1)
x+ >(-22) (=1
N

1

Checks are most important. You should actually substitute these
values for x, y. and z into equations (1), 2), and (3) to show that the
equations are satisfied. . |

Occasionally it is desirable to divide one equation by another. We
illustrate with the following:

let x =10

y'=r\/1-92

1f we want to solve for 8 and r_ (in terms of x and y). we can eliminate r_by

¥

dividing the first equation by the second and equating the quotients.
X 2]

—
—

Yy V1-62

We can now solve for 8. Square both sides and reultiply by 1 - 82

x,2 _ 8%
(Y) = 1. o2

%)% 1 - 6h) = o2

2 X2y = (X2
o2 1+ (312 = ()

(£)2
92 = X 2
X
1+ (y).
Taking the square root of each side:
| X
Y
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| x x
Q= y = 1 Y
+ X - \/xz + ;2
‘/ D Yy
,z
- X
Vx2 +y?
To find £, substitute the known value of 8 into the first equation.
x =10
X=T X
/xz + ;z
Thus ' r= \/xz + Yz
g= —= .
\/:f;2 + yi
\ 3
\“\
. Y
Questions ; '\ ‘
1. Complete the algebra in the text discussion of the general solution
of two equations in two unknowns and show that
N W b
ayb, - 3,b)
2. If the following have solutions, solve. How many solutions are
there? |
(@) x+y+2z=1
2x+y+3z=2
- x+2z2=1
b x+y+2z=1
2x+y+3z=2 ,
3.4

x+z=1

A
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Y 4
c) x+y+2z=1
2x +2y+3z=0 ' \
x+y+z=0 AN
X , '
3. Suppose A= /Xy and B= \/; . Discuss how to find x and y in
terms of A and B alone. |
X
4. Let u—m )
v=—X
x2 + yz

Solve forx and y.
[Hint: ul + vZ = = Yzﬁ-g-l = —z———z-l )-
s k2 - y2)2 bxé+yd)e xE et

7. - Graphical Solution of Two Equations

Simultaneous equations in two unknowns may also be solved
graphically. Since the intersecﬁon qf the graphs of each equation is a
point common to both graphs, this point must satisfy the equation of each
graph, that is, it is a solution to the equations. For example, the_ two
eq'rat{on\s

5x - 2y =4
4x + 3y = 17
each represent a straight line whose graph is shown in Fig. 1. The graphs

intersect at the point (2,3), thus, the solution to the equations s x =2

and y = 3,
Sometimes, as in the case of the two equations
2y - x= 8
2y - x= =3

their graphs do not intersect as shown in Fig. 2. The lines are parallel,
the slopes are equal, and there is no common solution. In these cases, we

call the set of equations inconsistent.
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-4 1-2 |0 4 | 6 X
p 4
Fig. 2

Solve, when possible, the following sets of equations graphically:

y—2=%m+l)
y+1l=6x

1

==(1+
X 6(1 4y)
Ix -2y = 4
2x+1=3 (y - 4)

Yy = 5x

Solve the set of equations in Fig. 1 and show that the solution is

Y .
8
= t
4 N 1
(2,3)
2
4
- |4 18 CARELA W
2
/ N
Fig. 1
Questions
1.
(@) 2x-y=5 (d)
3x + 2y = -7
(b) 4x+ Sy=3 (e)
Ix -2y =
() Sx-3y=4 ()
10x - 6y = -1
2.
consistent with the graphical solution.
3. Find a graphical solutmn of the set of equations
x+y=7
y= (x - 4)
4. Find the roots of the equation

2x% - 5x - 12=0

graphically, and then check your result by using the quadratic

formula.

&

:f«j(
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S. Some Precautions :

We have indicated throughout this Appem/iix that manipulations.
performed on equations must be done so as not-to invalidate the equation.- -
In particular, we cited the cautions to be observed in multiplying or divid-
ing by zero.

Let us look at these two restrictions more closely. Given the
equation
| x=-3=2
we shall multiply both sides by the'quantlty (x - 2), getting

x - A - 2) = 2 (x - 2)
which becomes
x2 - 5x+6=2x-4
x¢ - 7x+10=0
. (x-5x-2)=0

This last equation has two solutions, x =5 and x = 2. The original equa-
tion, however, has only one solution, x = 5. We see, then, that the
equation we started with and the equation we ended up with are not equiv-
alent. It should be apparent that when x = 2, the value of the "multiplier'
we used is zero, which, in turn, led to the extra solution, X - 2. In
situations like this, we call such roots extraneous.

Now we consider an example of dividing an equation by an ex-
pression containing a variable If we have

(x - 3){x-2)=4(x-3)

and divide each side by the quantity (x - 3), we get

(x-3!(x-2)=4§x-32
(x - 3) (x - 3)

x-2 =4
x = 6
Again, the first and last equations are not equivalént, but now the first

equatfon has two solutions (x = 6 and x = 3) and the last equation has only

351
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one. This is because when x = 3 the value of the divisor is zero. So in
this case we lose solutions.

In summary, multiplication or division of an equation by an expres-
sion containing a variable is prohibited for that value of the variable which
reduces the expression to zero.

In Secttoh 2 we made the following statement:

If a=b, thena” =b",
That is, both sides of an equality can be raised to the same power. Letus
e‘xaminelthis idea further. ‘

If we have

and square both sides, we get
x+1l=y
By this process, we do not lose any solutions because any pair of
values for x and y that satisfy the first equation will satisfy the second
equation. H‘owever, x = -2 and y = -1 satisfy the second equation, but
these two values reduce the first equation to the statement /——1— = /:T .

This result makes no sense in the context of the number line because no

number on the line is the square root of a negative number. Squaring the
equation x + 1 =./y, then, has led to extraneous roots.

Another example of where squaring an equation leads to extraneous

roots is the following. If

X=a

then x% = a2

and xé -al=0

or x -a)x+a)=

which has the two solutions x =8, X< -a.
In general, when we raise both sides of an equation to an even
power we will always pick up extra solutions. This is not to say that we

are never allowed to raise an equation to an even power, It is just that

—“
<7

ﬁ‘,-
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when we perform this particular mampulatlon'we must be aware of the con-

SequUences.
If we consider odd powers, no problem arises. If

X=a

then _ x3 = al

and X = 3/53 = a

We nelther gain nor lose solutions. C.

Questions - T

1. Solve for x and check for extraneous roots '
/X + 6 =x

2. Given the two equations f’
y=Vv1-Xx -
Xx=4+ :2

(a) What limitations are placed on x in the first equation?

(b) What is the smallest numerical value that x can have in the

second equation?

(¢} Can you substitute the expression for x from the second equa-
tion into the first equation? Explain.
3. Starting with tiie false equation 7 = 9, subtract 8 from both sides.
7-8=9-8
or -1=+1

Then square both sides

-1n% = m?

which results in a true equation
1 =1

Can you explain what has happened?
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Appendix 3: Inequalitles . . .. .. - - - ——

1. Notation

An tnequality is a statement that two quantities are not equal. If,
for example. 3 # b, then either a is greater than b (a > b), or a is less
than b (8 <b). The symbols ">" and "<" denote the sense of the inequality.

Remember that the tip of the inequality sign points toward the smaller quan-

tity. _
The “continued" inequality a <b <c

means . a<bandb<c

The statement 1<x<2

means "X is between 1 and 2."
We never write 2 <x<-2

for this 1neans 2 <xand x €-2

which is not true for any x.
Instead, we would write x>2o0rx<-2
a > b means a is equal to or greater than b.
a<x<b isread as, "x Is equal to or greater than a and equal to or less
than b."
Finally, when we write
a> 0, we speak of a being positive
a < 0, we speak of a being negative
a < 0, we speak of a belng non-positive
a>0, we speak of a being non-negative
Note carefully the distinction between the negative of a (-a) and

a is negative (a < 0).

By
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2. Properties of Inequalities
P

Like equations, there are certain manipulations that can be performed

on inequalities without invalidating the inequality. that is, without changing
its sense.

(a) Additive property. If a, b, and ¢ are numbers, and if a <b,
then
a+c<b+c
.__u. .f' That is, the same quantity may be added to both sides of an inequality
without changing its sense.
(b) Multiﬁlicative property. If a, b, and ¢ are numbers, and if
a<bandc>0, then
a*c<b-c
That {s, both sides of an Inequality may be multiplied by the same
positive number without changing its sense.
(c) Transitive property. Ifa, b, and c are numbers, and a <b and
b<c, thena <c.
(d) If a>b, then al > b" {f a, b, and n are all positive.
That is, beth sides of an inequality of positive numbers may be

raised to the same positive power without changing the sense of

the inequality.

Notice that the addition property also implies that if a > b, then

a-c>h-c. Thatis, subtracting equal quantities from both sides of an

inequality is equivalent to adding equal negative guantities to both sides.
Also, the multiplicative property implies that if a > b, then % > -:"'
if ¢ > 0 because dividing both sides by ¢ is equiv >nt to multiplying both
sides by the quantity -é—
The multiplicative property does not remain true for inequalities
if we mult.ply by zero or a negative number. In fact, in the latter case it

actually reverses the sense of the inequality. Let's see how.
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- fa>b and c <0 and we add -b to both sides of a > b, we get
o a-b>0

Then multiplying both sides of this inequality by the positive number -c¢

-c{a-b)>0-(-c)
bc - ac> 0
Adding ac to both sides now, we get
bc > ac
or ac < bc

which has the opposite sense from the original inequality, a > b.

Questions
) 3 Show that 1 > 0. (Hint: If 1 <0, then -1 > 0. Remember that

(-1)(-1) = 1, so 1 >0 -~ Impossible! Why?)

Discuss and verify for several numbers. (Prove if you can.)

2. If a>b, ¢c>d, then atc>b+d.
3. If a>b>0 and ¢ >d> 0, then ac > bd.
4. If c>0 and a> b, then a+ ¢ > b.
. 1 1
5. Ifa>b>0,..nena<b.
6. If a>1, thena2>a.
7. f N<a<l, then 22 < a.
8. If &> 0, then‘fl;->0.
9, If a<o, then—;'('().
10. Given i‘x. x>s,s>0,andl1>c>0. Also c2=1—sz. Show

that 1 - x2 < 2 <1 by first showing 2> x>s>0. Why? Then
multiply by é’ and use No. 5.above. Note that 0 <c <1 and use No. 7.
Then use x > s with this result, and ¢ = 1 - s¢ to prove the

result.
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Table of Trigonometric Functions
sin (read down)
o . .1 3 3 4 5 8 a1 8 8
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cos {read up) '
- ‘ Y
[ 35,
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Table of Trigonometric Functions

sin (read down)

o |
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TRIGONOMETRIC FUNCTIONS FOR ANGLES IN RADIANS
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