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SUPLEMENTARY UNIT 1
it

SETS

1-1. Introduction

You already are familiar with the word "set." A set of

dishes is,a collection of dishels. A set of dominoes ls a

collectiop,sor group, of dominoes. In mathematicf we use the

word "set",to speak about.any collection of any kind of thing.

In your classreom there is a set of persons. 'Th'ere is alsóca

set of noses, al a'set of desks. You may notice that there

is a relation between the set of persons ill the ropm and tAe

set of noses in the roam.

The language of seta is very useful in describing all sorts

of ,ituations. How is the set of pupili\in your class relited
_

to the set of boys in the class? Compare the number in (meta

following three sets:

the set of pupils in youi class,

the set of boys in your Class, and,

the set of girls in your class.

The following three sets related n a different w4y:

the sat of redheads;

.the set of baboons, and

'the set or redheaded baboons.

7
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In. this chapter we are going to $

sets,And ways in which we can comtline

We shall rind it convenient to invent

4dy relations between

sets toobtain new ones.

same new viords and symbols.

It might be a.good idea to review those, chapters before reading

'further.

1-2. Sets, Their Mombers and Their Subsets

Sets, Ana ,Their Mtneaers

When we speak of a set as a.collection of things, we do

not mean.that the things are all together in one place or.time.

*The set of ail living women is a widely distributed set., You)

will _meet members of this.set all over the world. The set of

all presidents of the Tted States has as members George Wash-

intton and Dwight D. Eiienhower, among others. Name, other

%embers of,this set.

,Thethingsw may not be objects which you can touch or

see. The set of all Beethoven symphonies does not contain any
, .

concrete objects. You may have heard some of its members. The

set of all school orchestralin the United States is a set
#

whose members ary themselies sets of pupils. The set of classes
4

.in.your school is another set whose-members are sets. It is
1110

Aifferent from the set of all students in classes in your

school. Which of these sets hat, more members: Are there mgre

classes orrstudents,in your school?

Sometimes we defpe a set by listing its members. Your

teacher might appoint a comm).ttee to be in charge of the.
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mathematical exhibitts in your class. She may say, l'The members

of the-Exhibits.Committee shall be Lenore, Muri-i1,DIck and Al."

-)
We often name,a Set which is defined in this.wq by listing

names of its members and enclosinuthem in braces:
1 .

'Exhibits Committee m {Lenore, Muriel, Dick, Al}.

We use the symbol "E" (Greek letteir epsilon) to mean

latjaber 2L." Thus we can.express lAhe fact that Lenore is.

on tii% committee by writing

.Lenore E Exhil2its C9mmittee.

We could, state the definition of the committee'like this:

.x E Exhibits Committee if and only if x represents

Lenore or x represents Muriel or x- represents Dick

or x represents Al.

Another way to describe-a set is to state the membership

requirements. These are conditions that something must saisty

in order to get into the set. The Set of persons in your class-

room has a very simple membership requiremeni. The object x

is in the set if x is. a person in your classroom, and only

then. The set of common Imatiples of 4 and 6 is the set of'

ail x for4which it is true that x is a multiple of 4 and

x is a mIlltiple of 6. tou mdght imagine each object in the
1

universe applying for membership in this set. If the object

is not even a whole number, then we throw it out immediately.

If it is a Whole number, we'

is zero, we then divide the

divide it by 4. ,U the remainder

number by 6 and see wEethe'r 6. is a

factor. If x passes this test, too, then A gets its member-

9



ship, card in the set. If it fails any of the tpits, we'rejia .

it.

. We sometimes call the members of a set "elements of the.

set. You are an element of the set'of mathematics stUdents:-

Proeerty

You begin to see Visit for a particulai. set.to be clearly

defined there must be some scheme or device for determining

whether or not a given'element is in the set. __Usually a.set

is described in terms of some property, or provorties, which
se

its eleients have in common. For example,'the set C may be

.thought of as.thipupils 'in your class. The commomproperty'

is that each element is a member of your class. Again, you

may consider set .B as the set ef boysIkyour plass. The

element of this set contain two properties in common: (1) the

. elements are ail in your class, and.(2) the elements are all

boys. Sometimes a sat is described simply by enumerating the

elements. For example, the pet of even whole numbers-may be

described by 14riting.: O, 2,.4, 6, 8, 10 - . What is the

common property inthis set?'

Exercises ,1-2-a

1. List a common property or properties of tihe following sets,:

(a) [Sue, Jane, Dorothy, Mildred].

(b) [Washington, Jackson, Eisenhower].

(c) [1, 3, 5, 7, 9,'11].

(d1 02, 24, 36, 481.

)



Translate th,e following mathematical.sentences into English.

(a) Tom [Carl, Jim, Tom, Robert].

(b) 6 CAO, 2, 4, 6, 8, 10, - - 1.

(c) If X C [Tom, Carl, Bob,. Jim]. then X represents

Tom or X represents Carl, or X -represents Bob,

or X 'represents Jim.

Which of'the following are true?

(a) 4 E:13,, 7, 10, 414

(b). lion C[baboon, tiger, dog, lion].

(c)/ X Er[8, 14, 17, 28] where X is a multiple of 6,

(di X E:[1, 2, 3 4, 5, 6, - - ] where X is'a counting

number.
44

(e. ) Washi ton, D.C. ElAlabama, Alaska, Arizona, West

Virginia, Wisconsin, Wyoming].

4. List the members of the following sets:

(a) The set of X such%that / is a factor of 12 and 30.

(b) The s4t of X such that X plays a violin, or X

plays the viola, or X plays the cello.

(c) The set of X such that X is a wholenumber.
Vt

(d). The set of X such that X is one of the U.S. Fresi-

cents since 1930.

Stibsets

Consider the set of major league baseball teams in New York

in 1959,. This set has one meet!Oer, the New York Yankees Baseball

Club. Its one member is itself a set, among whose members are
1

A

Mickey Mantle and Yogi Berra. The set whose Aly member it a
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ce'rtain abject is not the same as that'oliject. The symbol
)

131 is a name-for the. let Whose' only member is 3.
'

The set, or team, of New York Yankees is a subset of ,

baseball players. Every member of,the team 'is:a baseball player.

In symb61s, we write: _If X C Yankees, then .1 E the set of

baseball' players.

You have been introduced to a new word: that of subsei...

Let us consider another example. Suppose in a class of 25
A.

pupils there are 3'pupils whose first naval begins with

',You can then say that these 3 pupils form A subset of the

class. Again, consider the set of even counting numbers: :

2, 4, 6, 8, 10, - - This-set can be considered as a subset

of the counting numbers: 1, 2, 3, 4, 5

Suppose the.set of pupils in your class, whose first nambs-

begin with "S" is [Sam, Susan, Sally]. l'he subsets of this

set may be listed as follows: [Sam], [Susan], [Sally],

4Swi': Susan], [Sam, Sally], and [Susan, Sally]. Sometimes yre

say that a set is a subset of itself.

Deftnition:

A set R is a subset of a set S if every element of R

is an element of. S.

IV is necessary, at times, to talk_ab-out-the relationship

of 'a subset tO a se't, or, the relationship Of it det Wanother

set. We Say, for exapple, that he set' of e4en counting numbers

(which is a-subset of,the-iountin numbers) is contained in the,

set of counting numbers. To writ this in matheMeti:cal\language

-'\\\ 1 2 k-
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.we,u ft ftse the symbol C7 whiCh ip read *is coritained in."

.64You can now.'write:: i?, U, °, Ctil 2, 3, 41 51 61

Sometimes the symbol 4=D it is also used. This is read "contains.*

Y-O-ti can nOw also write:

11, 2, 3, 4, 5, - - 1=D [2, 4), 6, 8, - =

which reads: The set,of counting numbers contains the set of

even counting numbers. Let the set of your.'class be called

"C" and the set of boys in your class be called "B". You can.

then write:.

B C C, or

CD B.

You may be-helped in this study by use of diagrams. A

mathematician always draws figures or diagrams when possible.

The diagrams used below are called "Venn" diagrams. Consider

again the example B c C. We sketch the following

.This illustrates that the set of boys in yoUr pass is contained

in the set of your class. Again:.

1011illustrate thd-that et of all red.flowers is contained in the
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set of all-flowers. .Let the set of all 1.0 flowers be called

R and the set Of all flowers be called F. The relationship

of R and F can then be.wrAten as:

C F, or

R.

'uonsider the following Ven(n di:agr'am:

This aagram indicates that the set of all red flowers 'below

to the set of all flowers. It also indicates hat the'set of

all tulips belongsto the set of all flowers. Let the set'of
/

all tulips be called T. The 'above relationships may now be

expressed as:

C F, and

T C F.

What can you say.about the ,relationship of set R and set T?

You would certainly have to say that some tulips are red and

are thus contained in the set R, but you certainly cannot

say that TCR is true. Give same thought to this situation

for a while.

Exerciqes

Translate the followirf mathematical sentences into English:

14



1-2

(a)

9

If X C [Red floiers1, en X the set of a-11 flowers.
(10 MCN, and ND M.

3," 5, 7, 9, .11 [1,

Write all

Translate

settences.

possible subsets of the set:
, .1,-* -7

- e 41 A°

the-folldWiqg-EngliShLeentences into mathematical

5 .'164 .

,

(a) The set

(b)

(o)

20, 32] is contained in'the

all vihole numbers.

set of

.The set of the Great Lakes contains the setof Lake

Huron and Lake Michigan.

The set of [Hoover, Truman] is'contained in tiie

'set of all U.S. presidents since 1920.

4. Draw a Venn diagram to illustrate the following:

'(a) The set of the Hudson arid Ohio/Rivers is contained

in the setof all riVers in the United States.

(b ) The set of tigers, lions, and baboons is contained

in the set of all animals.

,The set of 16; 36, and 40 is,contained in the set

of all counting numbers which are multiples of.4. -

(d) The set of 6, 1/2, 3/8 is contained in the set of

,all rational numbers.

Which of the following are true and which are false?

(a) [Al, Tomlp CAl; Bob, .Jack, Tom].

(b) [Sam Sue] C=Plim, Tom, Bob, Sally].

(c) The set of all yellow roses is contained in the set

of all yellow fl4wers.

1.7
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(d [28, 56, 112] C the set whose elements-are multiples

of 4. aftd also 'of 7.

Given'three sets A, B, and C. If AD B and B:D d,

does AID C? Illustrate your answv with a Yam diagram.

173. Operations with Sets,

ynicin

Suppose the set: [Bill, Jim, T?m, Sam) are the boys of'

a class who play in the band.,. Call this.set B. Let the set:

[Sam, Tom, Carl) be

hair.k-* Call this set

boys Prthe sone class who have reA

Now if we combine tbese two sets we

would get the set': [Bill, Gail, j Tom, Sam]. This would

be the set consisting of all elements which belong to set B,

or to set R, or to both sqs. We call this the union of two

sets. The symbol,used is: "kJ". We can now write:

{Bill, Jim, Tom: Sam} L) [Sam, Tom,, Carl

Carl, Jim, Tom, Sam].

If we call the union of these two sets C, then you can write:

B Li R C, and it is read:. B union R equals 'C.

The combining of two sets in this manner is called an gperAtiou.

Before working some problems let us consider another matter

which was introduced by writing B U R

Equality SOs

We iay tha two sets are equaZ if and only if each element
,

of one is also an element of the other. Suppose we have two

sets A and B: If A C B and B CA then we can say A B

1 6
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For example, suppose that in foilr. class th,ere are only four
redheaded pupils -whict we- shall tall set R, and furthermore',
these four redheaded pupils are the only oneshaving their
birthdays in January, which W.e shall call set J. We can'yrite:

R S and J C R, hence R J.
Consider again: B() R = C. If we can write (B U )) C C and
C C (B U R), then we can say: B U R = C. After home thpught

'you should see that 'this is a true statement. Instead of say-
ing that two sets are equal, ,.we sometimes say they are j.denticikl.
This is a good expression since we can say that two sets are
equal if and only if every element of' each is an element of the
pther. .

,Pronrtie37.--

1. Consider .again the two sets, B and R. Do yoli.

suppose that

Let us investigate:
B*U R RU B?

at) R - [Bill, Jim, Tom, Sam} U [Sam, Torn, Carl}

[Bill, Carl, Jim, Tom, Sarni.
RU B = [Sam, Tom, Carl} U [Bill, Jim, Tom, Sand.

= [Bill, Carl, Jim, Tom, Sam} .

You see, then, that BUR =RU B. Does this recall i-c;'")s4ku
What you learned about the "commutative" property? With a'
little thought on the uaign conce(A, you should see that for
any two sets M and, N, MUN =NU 1, and the commutative

property is trUe for sets under the operation of union.
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2. LoyotA think .the foilowing is true

Afrt..) (B U C) 7 (A -

Let-.A 7. 31; ;13 ji, Al; da,12, 5; 6j.

Tfie:. ,A V (B() C) l, 2, 31, [1., 2, 4, 6y

2,-3, 4,.5, 61,

an A U U C il, 2,, 3, 41 L) 12,5, 61

11, 2,3, 45, 61.

You see, then, that in our example; A.41i (B.0 C) mg (At) B) I) C.

This should recall to mind the associative property. oilth

some thought you should ,see that under the operation of union

the associative 'property is true for sets.

xercises 1-3-4 .

1 (a ) If ssp-161 1Red, Blue, Green} and set N tBlue,.

Yellow, White], -find M U N.
.4

(b) Is .MUN -NUM? Why?

-Let A be the set of even Counting numbers; B the set

-of' odd counting numbers; and. C the set of all counting

numbers

(a) Is A U B C? Why?

(b) Is A C C? Why?

(c) Is A CB? Why?

Ad) Is A U B -`13 1) A? Why?

(e) Does BD A? Why?

(f) Draw a Venn diagram to illUbtrate B C C.

() Is A B? Why?
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Given_ three sits R, 5, and, T

(a) I (RU S.) LVT R (.) (51.-i-T) T (RU S)?, Why?,

'0.34 (R1JSCT and" T C. (AO 5).1 then -is
R S T? Nhy?.;.

13

'Let C be the set of pupils in --your class,, S be the
sei of pupils in your school,' and X be the pnly redheaded
pupil in your class. Discuss the following as to whether

'or not they are true.
°(e) X . S. (b) C CS (c) ,C

Id) 8 C (e) X C SD C

(g) .15 X .a subset of C? Of 5?
,-

(b) Is C a subset of S?

Consider two d'oncentric circles. Let X be the
set of points within a circle whose radius is 4 units
and Y be the set of points within a circle whose
radfus is ? units. Draw a Venn diagram to show:
X U Y.

(b) Is X C Y,
.

or Y C X? After giving your answer
complete the statement': is a subset of wiwwwwwww.r..

IntersectioA

,Another ?peation with sets is that of intersection,. Do you

recall this" operation from Chapter 4? lou no doubt remember

that the symbol .for interSection is n . C sider .4s*"ets A.

and B. If we now write: A n B, it is read "A in:tersection B."
,
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. The intersection of two sets is the set of all elements which
. %

belpng ta-boA,sets. For example, let set A be iTom, Sue,
,

Carl, Joanl, and set. B be [Sam,'Sue, Tom, -Sally]. Then,:

f AP,B ... [Sue, Tom];.rpo you remember the following Venn diagram

\

we had several pages backf

.-You Temember a question was raised about the 'relationship of

R and T, where R was the set Of all red flowers and.'T

was the set of tulips. You can now see that the shaded part

of the diagram is RIP, T. This situation presepts us with

another set which we have not mentioned. Are there any yellow

tulips in set R?

Nu.1,1 att

At times we have,a set which is said to be empty. Such

a tt is sometimes called the *null set." For example, the

set of ,yellow tulips contained in the set of all red flowers

is an example of a null set. Suppose there are no redheaded

purfils in your class then the set of redheaded pupils in your

class is a null vet. Another example is the set all voters

who have their legal residence in Washington, D.C. We shall

kuse the symbol "0" (the Greek letter phi, pronounced "fee")

to designate the null set. We say that 0' is a subset of

every set.
2 0
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Froperti

,1 Given two sets M and N: Is it that 14 ri N\.
N n M? Let- .141,16e 14 2., .3, -41. and-i N be [3, 4, .5, -61,1

\`,/ 8

then- M 11NN 13.,.41 "-*And ,N ()M.. [3, 41.. In view of. you4.

previous stUklyou tire led to see_ thatthe commutative jariperty
applies under-the operation of intersection of sets.

2. In a similar manner., given three sets R., a, and T,

it can be shown that the associative property holds. We Would

then have:., R n (5 fl T) (R 5) n T. Select an example of
your own and ,see if you get a true result.

3. Are you reminded of anything by the following, where
R, S and T are three seto?

RU (Sfl T) (R U,S) fl (11 T).
Let R 1.1, 2, 71, s [1, 31 41 .and T [2,
Then R (S T) 2, 71 U ([1, 3, 4J n [2,

[1,,2, 71 U 131 .'

tl, 2, 3, 71
and (II U 3) fl (R U T)

= ([1, 2,7j U [1, 3, 41 ) n cri, 2, 7 U [2, 3, .5"
[1, 2, 3, 4,11 fl 11, 2, 3, 5, 71

= [1, 2, 3, 71.
This illustrates the distributive property of union with respect
to intersection of sets. In working with sets we have two forms
of this property.. We have just Studied one form: namery,
R U (3 (1 T) (R U 3) n (R U T). The other form IS:
R (S T) -(R n 5) ta.) (i; T), which is the aistributive

21
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property oy 'Atersbction-with respect to union of sets: -This
s

is somewhat ifferent from what you st died in wor1c\in4 cdth
-

,

the. counting numbers in Chapter 3. There was .only one form;
--

--

of`-tti.e distribut.ive pràperty:- -namely, multiplication with%

respect to additiOn.

Exercised' 1-3-be

Given the three sets: A .2 [boy, girl, chairl , B igirl,

chair, dogl and C 2. (chair, dog, cat

(a) Find A n B.

(b) Show that Afl C C il A.

(c) Show- that A n (B U C) (A n B) (A:n C)

(d) Show that A rl (B n c) n c n (A fl B).

2. Where 0 represents the null set, and H is any other

set, is the following true? ou H a H kj 0. Explain your

answer. Is 0 H. H? txplain your answer. Under the

operatiic of union of sets, what name may be applied.to 0?

3. Let R represent the set of points on the line segment Tff,

toliw

and. S represent the set of points on another line segment CD.

If R S = 0 then whp istrue about the two line

segments?

(b) 'If R n S 0 then what is true about the two line

segments?

Are there any, similarities between the symbols "Li " and

!Tit, and the symbols " " and " "? Explain your answer.

22
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op'

17

5. 'Draw a Venn diagram to illustrate the intersectiori set cg°,

all m4mbers of the band in your'school 'and

in your class.

1 the pupils

15. Show by use of a figUre the intersection tet of two inter-
,

secting circular regions.1

(a) Let E be the set of even counting'numbers:

12, 4, 6, 8, 1. What must be ,the set F so that

E LJF G,

when C- is theoset of all counting numbers?

(b) What ls the set of-En F?

Given two sets A and B:
I

(a) If A C B, 'is it true that it.) B = B? Explain your

answer.

(b) If ACB, is it true that An B = tri Explain.

1-4. Order, One-to-One Correspondence,
,

the Number of a Set, and, Counting

QrlIr
A

In many situations the order in which we write the elements

of a set'is iamaterial. For example, set A: [Bill, Tom, Sam},

can be written as [Tom, Sam, Bill], or as [Sam, Bill, Tom}

just as well as in the original. Under our-definition of .

equality, all-three of these sets are equal. At times, however,

the-order is important. For example, the name William Thomas

is not the same as Thomas William. If we wrote.theqe two names,

as a-set: [William, Thomasi, then undg.!!r our present framework,4

2 1



18 1-4

we could just as well write the set,as: [Thomas, William},

and the two sets_ would be equal, or identical. An ordered

. set is one,wherein there is an element which is the first term,
'1

anfther element which is a second term, -. and so on.. When we
,

. ,

wish to indicate that the elements of a set are ordered, we

shall use_the symbol: "( )". If we nos.; write the set composed

of the elements Thomas, William in the form: (Thomas, William)

it is not equal tg, the set: (William, Thomas), because the set

'is ordered with the element Thomas in the first positton and

the eSement William in the second position. A set of two ele-

ments written in this manner is'sometimes called an ordered

YOu had some c.ientact with ordered pairs when you made

graphs in Chapter 11. A set such as: (a,\Vo, c) may be re-*,

ferred t'o as an Qtaered tripl_e. This idea may be extended to

many more then 3 elements. For example, the ordered set of

the first n counting numbers: (1, 2, 3, 4, 5, 6, n),

woUld giv us an "n-tuple" where n- may be any counting number.

This i'ded will be used in the sectiorion Cquntirw.

Ordered pairs are very ifrefulflin many branches of mathe-

matics. When you study a course called AnEllytical Geometry,

you will deal' with ordered pairs such as (1, 4), (6, 2), (12, 15),

for example.

Consider the set of people in line before the box office

pf a theater. Is order important in this situation? If you

should try to move ahead of someone already in line, you would

be made to understand, rather quickly, the imponance of order

in thiscase. There are people who consider order important
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enou0 to take a bed rol1.an4 sleep near a box office, so

19

as to be well up iu line when the office opens. Some base-.

ball'fans do thiS for the World Series. Cgn you think of.a

other similar situations? I
#

As you know, 'the following is a true,statement:

[1, 2r31 23.

On the other hand, (1, 2, 3))i (43, 2), because these are

ordered sets. 4 (

".N.0

"Orte-la-Pla CorresDonde4ce

One basic study of sets- deals with the comparison of two

br more sets to see whether or not they are equally numerous..
This is done by matching the elements of the pets. In tAe

opening pages'of Chapter 2 you read that in the long ago a

shepherd probably kept account of his sheep by havinia notched

stick - a notch forseach sheep and a sheep for each notch.

With this arrankemente could tell whether or not any sheep'

were missing by comparing, oromatching,_the set of notches with

the set of sheep. If all sheep were present, we could say there

was a ou-/2-011 correspondence between the set of sheep and the

set of notches.

).p

Consider your class. Suppose 'there f's the same number of

seats in your classroom as th&r are pupils in your class. When

all the pupils are present therf the set of seats and the set

of pupils are in one-to-one correspondence. In other Words,

the two sets are equally numerous. If all pupils are present

and seated in their assigned seats, then' our/teacher can tell

2
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at a glance that, there is 'pel7fect attendance for the day.

Without much more than,a gtence she can tell ho-w_mariy are

absent, if some are not present. How does she do this?, What

cad-you say with respect to brie-to-one correspondence of the
.

following:
%

1. 11, 2, 3;4]; [0, X, A, Vl; LA, B, pl.

2. [1, 2, 3, 4, 5., 6 7, 8 9, 10r; [a,

g, he i, j].

3. [the number of fingers on one hand];

[the number of symbols in a base five system];

d, e, f,

[the number of players on a boys' basketball team
S.

We are now in a position to state a general principle,

with respect to sets and one-to-one correspondence as follows:

Given two 'sets A and B. These two sets are, said to

be in one-to7one cZwrespondence if we can pair, or. match,

tte elements of A, and B such that'each element of

A' pairs with one and only one element of B, and in the

sar matching,process each element of B pairs with one
,

and onlyone element of. A. This principle maytbe stated .

retire precisely in the following way:
t

rli")

c.

Let A and B be sets. There is a one-to-one'correspondence

between ,A and B if there exists a collection H of
4

ordered pairs with the following pnoperties:
a

1. The first term of each pair of H is an element

of A,

2. The second term of each pair of H is an element

of B,

2 6
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Each element of A is a first term of exactly

one pair of Ho

4. REach elemeWof B is a second term of exactly

one pair of H.

In Problem ,2 above let A he the set [1, 2, 3, 4, 5 6,

7, 8, 9, 101, and B the set [a, b, c, d, apf, g, h, 1, jl.

The set H would look like 'this:

(1, a) (6,,f)

b) (7, g).

(3, c) t8, h)

(4, d) (9, i)

(5; e) (10; j).

4

Unless thi cOncept of order is to be taken into considera-

tion, theetatching process may be done in more than pne way.

Consider set A: [Bill, Tom, Sam], and set B: lAnn, Jane-,(a

Susan/. Since these sets have only three elements, we can see

at a glance that th,ere is a one-io7one correspondence between

thew. The matching process, however, can be done in six ways.

Two-of'them are as follows:

Bill ier-> Ann'

Tom ilL4--a> Jane

Sam .*--> SUsan

Bill Ann

Tom Susan

Sam H, Jane

Figure 1-4

r



The; symbol * simply, means,.for example, that

Bill is matched with Ann, and Ann is matched with Bill.

(

Let us oonsider the elements of these two sets again,

and write the sets as follows:

A: (Bill, Tom, Sgm), B (Ann, Jane, Susan).

The notation indicates the two-sets are now ordered.

Of'course, we can still match the elements in six ways. If,

however, we want to Treserve the order, the elementi can be

. matched in only one way as follows:

Bill 1->, Ann

Tom 4f7",P Jane

Sam Susan.

EquivalenCq

,J
Y9 remember when we talked &bout the e0ality of sets,

we said that two sets Were equal,,or ide4ical, if and only

if every element of each is an element of the other. For

example,

[11, 2, 31 [I., 3, 21

because the two sets contain the same elemants. The concept

of one-to-one correspondence Antroduces a new concept of equality,

that of equivalence. We say that two sets which are inone-to-

one correspondence are equivalent: We shall indiOate this fact

by using the symbol * which was use6 in matching the

elements .of sets. Flor example: [Bill, Tam, Sam] 4-4' [And,

jape, 'Susan). Again, given 'tito sets 4 and. B, if we lite:

A B, we mean that there is.a one-to-One corresOondence

2 81.4



Exerc is es I-4-a

Construct tables ,similar to those of Figure 1-4 to /show

the additional f6ur ways in which the two'sete mlay be

matched.

By obServing Figure 174 and the additional tables you

made in Problem 1, you will notice that Bill <--> Ann twice.

Without making tables can you determine $11e number df

possibletmatchings for the sets: .[1, 2, 3, 41 and

[a, b, c, d}?

3. Determine Nhether the following are true or false. Use

examples to illustrate your answers.

(a) Identical sets are also equivalent.'

.(b) -Equivalent sets are also identical.

(c) Equivalent sets may be identical.

-(d) kuivalent sets are never identical:

(e) Identical sets are never equivalent.

4. Construct a matching table for the following sets so that

order will be preserited: (1; 2, 3, 4, 51 6), (x, y, t
416

b, c).

5. Suppose )Fou buy a carton ,of a dozen eggs. Is it necessary

to count the eggs in order to tell whether or not you have

a dozen? Why?

Given two sets x and y. If xC y and *yCx,., can

we say that the two sets are in one-to-one correspondence?

Explain.

2



Are there more points on an arc of a circle than on

its subtended chord? Explain your answer.

The Nug#410 sg. a laI

Given the sets: 1, 2, 3, 4 [0, 1, A Vi. You

notice that there is a one-to-one corresp7dence between.them.

In addition you see that the sets 4re composed of 4 elements.

In fact, any two sets wdltch are in one-to-one correspondence

have the same number of elements. Spts, however, will vary
%

in the number of elements which they contain. This may vary

all the way from iero, the null set, to an infinity of elements.

The word "infinity" is not new to you, becaus you will remember

that there are an infinite number of points on a line, or again,

an infinite number or wholo numbers. A set containing an in-

finite number of elenents is called an tafi4te qq; otherwise,

the set is called a firlipliAL. Since sets vary in the number

of elements they contain, wecan, then, assign a number to a

set: We cy only assign the same'number, however, to those

'sets which have a.one-to-one corresRondence between them. In

this discussion we shall consider only finite sets.

When we wish to talk about the number of a set we shall

use 'the following notation: n(A). This is read: "the number

0.,f'st A. More briefly it is at times read: "n of A."

For the sets.',T

[1, 2., 3, 41 and [0

we can now write:

n([1, 2 3, 41) - n([09

30

A , VI

a



Countira

The use of the counting numbers: (1, 2, 3 4, 5, 6,

7, ), gives us a basic sequence which we may consider as

the numbers of finite sets. Every counting number, then, may

be considered as the number of the set of all oatintiing numbers

up tosand including it.,,

Counting pan be considered is a method of matching between

'any finite set, and a subset of the counting numbers. Let ,us

designate the set of counting numbers as C. Further, let

us label the dubsets 'of C as C
11

C
21

C
30 where

C1 * [1], C [1, 21, C3 = [1,-2, 3], and so on. 65 an
6

example, let us count the set A composed of [Sam Carl,

Tom Jack].

Set A: [Sam, Carl, Tom, Jack]

Set C: [1, 2, 3, 4 5, 6 7, 1.

By matching you see that set A matches with subset C1 of

the set C. Since n(C
4

) 4, then rr(A) 21 4.

Consider set [1.,. 2, 3, 41, and set B: [5, 6, 7j,

which are said to be disjoint. Two sets are said tobe disjoint

-lf they, contain no elepents in common. Now do you remember the

expressin AL) B? Appl3;ing the operation'we get a new set:

[1, 2, 3, 4,-5, 6, 7] Upon matching this new set with C,

4you note that it is C7. So n(A U B) n(C7) 7. -Let us Con-

sider the problem through another.example: .Given the dis-

joint ts, m: [ b, c di, and N: f, gi. Now

Mlj N = la, b; c, d, e, f gj. Upon matching this new set with

,
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C, you notice that it is also

p(M U N) n(C ) 7.

Hence we have:

Do you now notice that the number of the union of the

two disjoint sets may be conSidered as the sum of the number

of the sets?

Exuqises

What is the number name of the following sets?

(a) [1, 2, 3, 4, 5, 61.

(b) [a, b, c d].

(c) [bird, dog, .cat, chair, horn].

(d) [1,X, *, [1, V, A 1.

(e) Which of the above sets have 'the same number?

Suppose a set k matches subset T of anothe'r set S.

What can you say about the number of R in relationship

to the number of S?

Coffsidering only finite sets, if set M matches set N,

and set N matches set R, .what is the relationship of

Set' M to set R?

: How does the number of the set of automobiles being driven .

at this moment compare with the number f the set of their

steering wheels?

By matching the sets C12 and C7, iow. that 7 < 12.

3 2
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6. Given two sets A: (Bob, Sue, Tom,.Joe) and B: (cat,

dog, chair). Find the set A U B. Now match the union of

theae sets with C and determine the number of the union

set.

7. byren the two disjoint sets M: (1, 2, 3, 4),tand
.----

N: (5, 6, 7, 8 9). Find M N and determine. n(M U- N)

by comparing it with C.

(

33
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SUPPLEMENTARY UNIT 2

SPECIAL PIGURES IN PROJECTIVE GEOMETRY

,-

Geometry and Art

In.a certain park there is a row of poplar trees. They are

evenly spaced,.and all the same.size and shape'. Two boys

wanted to draw a picture of thpm. The first said,

"I know that these terees are all the same

size. I know that there is the

same distailce betwsen any-two

adjacent ones. This is how I

? will draW them.

The other said, "The trees furtlher off
7

look, smaller to me, and

even.though I know they are not smaller I will draw them as I

see them," Which of their

plctures do' you like better?

The second boy,used the idea of perspective. This is a v

important idea in art if viv're interested in drawing things the
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r-\
war they really look to us. It is the idea used in giving depth

to a picture.

Of cours6;-not all artists have wanted todo this. In

ancient Egyptian art, for 'example, it was the rule to draw the

pharaoh larger than anyone else in a picture, and the sizes of

other people were made to depend on their importarice.

Not until the end of the Middle Ages did artists make serious

systematic efforts to understand perspective. At that time they

became greatly interested in learning the rulesflihat would help

them picture realistidially the world about them. This period,

whicthistorianscall the Renaissance, was a time of great devel-

opment in science and learning as well as att. It was a time of

new ideas and of a new interest in understanding .the laws of nat re.

It was a time of experiment.

One of the artisis of this period was Leonar:do da Vinci.

Though we remember him best for his paintings, he had a wide range

of interests. Among other things he tried to design a way man

could fly. He believed that a knowledge of science and mathematics

is an essential tool for the. artiSt.

An artist who did a great deal of work in developing rules of

perspective was Albrecht Dexer. In some of his drawings we can

OM
see the way in which he studied these problems. You can find

examples of theu'lin Mat4ematics j Westernrquilug, by Mberis

Klin.e. This-book contains many other pictures you will-also find

interesting.
,

3 5



A mathematician, Girard Desargues, wrote a book about the

ideas of geometry that would be uneful in connection with the

study of perspective. He was the originator of What is called

priziectiore eeometry.

The word "projective" can be understood if we think about

drawing a picture. In drawing a tree, you can think of a line

extending from each point you see to your eye.

Each line intersects the plane of your canvas in a point. The

points in'the picture thus match the points of the tree that we

see. A geometer says that the picture (the set of points) on the

canvas\is a mrojection of the set of points of the tree.

-Ds-

ifere is another example that will help you understand the

sort of problems that occur in projective geometry. Suppose there

is a triangular rose bed in a garden. Suppose an artist draws

this rose bed several times. Perhaps he draws it first as'seen

from a point in the garden., Next he draws it as seen from tkie

top of a high to4ert Perhaps he tries other locations as well".

He will find that in his pictures the rose bed is always triangular.

He will find, however, that the triangle has *different shapes

depending on where ne stanch. He has discovered: The projection
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of a 'triangle is a triangle. Later.we will see another dis-
i

covery that can be made about this situation.

Projectivg

C. 1-64 91. Point Srs

In,this figure,, lines /1 and

AP2 are parallel. Lines drawn from

point P intersect lines and i
2'

One such line intertects 2 in A
1

and Ag
2

. in--A' Another intersects

Ae
1

in B and
2

in' B'. The

figure gives up a way of matching, the

points on dl with the points ,on ,12. To find the point on

.4e that matches C, for example, we woulddraw the line through
2

C and P. The point' where.it intersects 1.2 is the point

that matches C.
..

This matching of one set (the points on 1) with another

set (the
tl°

oints on Ae2) is called a one-to-one correspondence;'
.

N
as we kn w. We have found a one-to-one correspondence between

- the points on II. and the poin s on Iv (Of course, if we

used some other point in place of P. we would find another one-

to-one correspondence between the points on and those on

The two point sets can be matched in many different w:ays.)

'Did you wonder why we.chose parallel lines for and .22?

Let us see what would happe'-if weilid not. In the figure )1

and ,t e'2
are not parallel. We can still draw lines through P

2 7
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cutting A and 4. Point A

on Iv corresponds

to point Al on

2' .

Point B

corTesponds to B'.

Point C is a special

point. It belongs

to both the set of

points on 11 and

theset of points

A line through P that interiects in C also1
.intersects

2. C. In thei corres ond née between
P°ints on4

'el and points on 4-2 .the point C matches itself.

It looks as though we have once again a one-to-one corre-

spondence betwethe points o 2 and the points on 22. But

We need tb top and think Very carefUlly. We'need to remember

that there is one line

Suppose this line (the

in the point D'. DI

. not give-any point on

are very close to DI

E t .is' one Such point .

through P that is;parallel to,21.

dotted line in the figure) intersects 1.2

is a point op
2' but our system does

11 that matcheis it. 'Pointsin Ae
2 that

match points that are very far out on Ael.

There is ilso a.line through P that is parallel to 42.

So there is also a point on 11 'that has no matching point on

Ae-2' We have discovered: Our system gives us a: way of matching

all the points except one on,,e1 with all the pqints except
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one on
2

2-1

Here is another example of a one-to-one correspondence be-

tween sets. This figure shows some of the elements of.the set

of lines through P.

Each of the lines

through P in the

figure intersecis

the line 2 in a

point. The figure

shOws a way of

matching elements

of the set of Tines

through P with

elements of the set of points on I. Thi line A matches the

,point A. The line /
2

cbrresponds to point B.

Again, however, we need to be careful. There is one line

through P that is parallel to J. This line does not have a

mat)ching point on 1. We see that: To each point on AP corre-

sponds a line through To each Yine through P gutDt san

there corresponds a po on J. 7

IhnI4a.U.Idaal

These examples.will helNyou understand an idea that is

very useful ig,projective geometry. It is theidea'of
a.

Acloin; on a line.

In projective geometry we do not use the term "parallel'



A

2-1.

lines." Instead, we use the term "lines that intersect in an

3 5

ideal point." We think of each line as containing one and only

one ideal point, as well as the usUal points we are accustomed

to thinking about. In order to be quite clear, we can call the

usual points real mints. 'When we adopt this-new language, we

can say that Aux two lines in a plane meetin a point of some

sort. Irthe figure, J and 22

meet in t e real point P. and

meet n an ideal point. Formerly3

we woul have said they are parallel.

The two.s atements mean the same,

thing.

In our new language, the set of all points on a line is

made up,of all the real points and, in addition, the ideal point

Let us use this new'vocabulary to describe the one-to-one

correspondences which we have already studied. As we do sos we

will find that it is a very convenient language for describing

these situations.

In this figure we can'now say

that there is a one-to-one corre-

-\or\spondence between the set of -all

lines through P and.the set of All

points on rg. Line Ae
1 corresponds

to the real point A. Line 2
corresponds to the real point B.

we now say, intersectsLine Ael
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line in the 1,0/4 polkgat of

point on I."

2-1

It colresponds to the ideal

'In this figure we cat now say that there

correspondence betwen the set of all points

of all points on ,e2. The real point

A 'on

point A'

corresponds to Zhe real

on A The real:point

C belongs to the set of all points

on Ael and to*the set of all points

on 22., It corresponds to itself.

The point DI on
2

corresponds

to the ideal point on 2j. The point

on,,e1, corresponds to the ideal

nt on .4. (Remember that we now say that

eal point. The line through P and

the ideal point.)

is .a one-to-one

on
I

and the, set .

each line contains

intersects J2.

In thii figure Ael and 22 intersect in an ideal point.

Therei a one-to-one correspondence between the

on .11 and the set of all points'

on The line through P
2'

and

A intersects and 22

corresponding real points.

through F parallel to,

intersects and *2
2

in

The line

and

in an

ideal Imint. This ideal point is an

elemen.t of the set of all points'

"on t. It is also an.element of

set of all points

4 1
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the set of all points on Iv It corresponds to itself in the

one-to-one 'c orrespondence .

We-have introduced theidea of
1
ideal point so that eve$

pair of lines intersects in,a point,',that 1s, "two lines deter-
.

mine a point.". What about the statement, "Two points determine
-

a line," by.which we mean that there is exactly one line throtygh

any two points? This is certainly'trile in the geometry that we

are used to, that is, for two real points. But is,it still

true for projective geometry? Suppose, A is an ideal point and

is a real pointl.prom our definition of ideal points, A

must be on some 21, since from our familiar geometry therfe is
4

exactly one line through A and B. Thus through any

points we can draw exactly one rine except when both of the

points are ideal points. And we can remedy this dellciency by

defining an "ideal line" on which.all the ideal points lie.

This fits in very nicely because then the ideal line will inter-

sect every other line in just ane point -- its ideal point.

' One big advantage of projective geometry is that ndtonly do,

two points'determine a line but tiwo lines determine a point.

00001.Th1 g symmetrical arrangement is very convenient.

The language of fdeal points is new to you. Like any new

language, it seems difficult until one is accustomed to it. The

examples illustrate its advantages. When we use the idea of
3

ideal points we do not have to consider parallel lines as ex-

aeptions to our descriptions.

ea,

42
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You will understand better how the idea of ideal points

originated if you think about railroad tracks. 'When we draw

railroad tracks we draw tham-as though they come together far

away. The idea 9f ideal point is suggested by ihe way parallel

lines sometimes appear to meet whan we draw objects in perspec-

tive..

Of course, if you are building a railroad track the idea

orideal points is not lisefUl at all. When we build railroad

tracks we need,to know, for example, that all the ties that lie

( betweenAhe tracks are.the same length... The idea of length

is studied in ketric geomeiry. Metric geometry usts the idea

of iheasurement'. Projective geometry does not; thi3 is why we say

that projective geometry is matmetric.

You may feel that ideal points seem unnatural. But you

Should remember that all paints, lines, and-planes are ideas.

They are ideas that are developed becEtuse they are interesting and

usefUl for.some purpose.

/
c\ Exerdsseq 27;

Draw 4twd parallel lines. Call them 4 and 12. Mark a

point P between them. By drawing lines through P, find-
,'

a one-to-one 'correspondence between the points on Ael and

the points on V Label the points in your drawing, and

name three pairs of corresponding p ints.

2. Mark points P and Q. Draw a line 1 between them as
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in the figure. The figure:shows

a way of matohing the set of lines

through PC----w±tb the set -of lines

through Q. To -axe line through

A and P correspbnds the line

through A and Q. The line

through B and P is matched

with the line 'through B and

39

Q . In this way we can find

a 'between the set of lines

through P and the set of lines through Q. Draw three

other pairs of lines illustrating this statement.

InLExercise 2, is there a line which belongs both to the ,

set of lines through P and the set of lines through Q?

In Exercise 2, which linek1hrough P corresponds to the-

line through Q parallel to AP? This line through, P

intersects 4 in an

5.- Explain the meaning of the following statement: If P. is

any real point and 1 is any line pdt passing through P,

there is exActly one line which passes through

through the ideal point on

11111111111i

6. In this figure four of the

lines are parallel.

(a) Fotir of the lines
intersect in an

and

41
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(b) The figure shows a system for finding a one-to-one

correspondence between the points of /and the

points of 42. Find the points corresponding to

E, F, and

oe

Desarzues' The9reg,

One of the most interesting ideas in projective geometry is

that contained in Desarguest.Theorem. In order to understand it,

let us think again about a situation we considered earlier; Let

us think about an artiSt who is drawing a,triangular rose- bad

Suppose that he is drawing his picture as he/tees, it from' a
/

tower high above a garden. Here is a sketch that shows the two

triangles the bpundary of the rose bed and the picture of

it on his canvas. Each point on the rose bed is4matched with a

point on the canvas triangle.
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In-the Sketch the vertices of the rose bed are callel A,

B, and C. In the artist's picture, the matching vertices are

labeled A', B', C'. The three lines joining matc ing vertices

all meet in point 0 -- the eye of the artist. The two triangle4

are said to be in perspective.
L, ;

,

We can draw two triangles in the same plane that are id

persgective. In the following figure two such triangles have

been drawn. Again, the vertices of one triangle are matdhed with

the vertices of the other. Again, the lines joining icorrespond-

ing vertices meet in a point.

Exerdsq_ 2-Z

Copy this figure carefully. Extend AB and B' until

they intersect. Do th.e same thing with AC and A'Cl. Do

the same thing with BC and B'CI. You have found three interl-

1Of
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'section points. .1.abe1 them P, Q, and R. Do you notice any-

thing about these three points? They should all lie on.the

same line.

A boy said, "I wonder whether this will always be true if I.

'extend the sides of a pair of triaaglee in.perspective.", He

tried it several times. It appeared to be true each time. Of

course it was sometimet difficult to be 'sure, because he needed

to extend'the lines a long way to find the intersection points.

Re decided however, that it wis prObably always true that the

three points of intersection were on the same line.

"But what about this figare?" asked aziother boy. "In my

triangles, AB and A'IP. have the same direction.. When I ex-

tend them I get parallel lineti. 'There is lo point of intersec-

tion."

4 7
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"I notice something about the figure you have drawn,

though," the first boy replied.. "Those two lines wre parallel to

the line through Q and R. I think that this is another place

where the idea of ideal paint might be useful. We could say

that the three points of intersection are'all on the same line,

but now one of the points-is an ideal Point."

He was right. f it is true that

(a) two tria les are in perspective, and
,

(15) each pair of corresponding sides, extended, has a

point of int rsecion,

then the three points of intersection all lie on A lite.

If, however, there is at least one pair of sides with the

same direction, so that these sides, when extended, form parallel

lines, then we have an exceptional case. The exceptional bases

can be conveniently described by the idea of ideal point.

Of course; the second boy was not satisfied with leaving

the matter 'atthis. 'He wondered why the three intersection points

all were on the same line. Perhaps yau wonder too. If you do,

you will be interested in knowing the way we prove that the points

are always on a line. A proof_makes us sure the statement is

true -- a good proof also makes us understand bAtter the reason.

Let us again think about the garden and the picture. Let

us suppose that:

(a) the plane of the garden and the plane of the picture

are not parallel (this is the way we drew.00the figtire).



(b) none of the pairs cif corresponding sides have the same

direction.

Look at the line through A and 10 and the line th Ough

and BT. This figure will help-you- see-the lines.

s

These tun lines intersect at 0. When we have a pair of inter-

secting lines, we can think about the plane they both lie in.

The line through A and B is in this plane; so is

the line through At and 8'. We supposed that these lines

-aid not have the same direction. We know that two lines in the

same plane that do not have the same direction meet, so we Itn

be sure that these lines meet. P, of course, is the point

4 9
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whei* they meet.

Now let us think about where- P is. P is on the line

'through A and Li This line is on the plane of the garden.

So P must be on 'tie plane of the garden. P is also on the

line through -A and B1,, which is. on the plane of ihe canvas.

So P As also on the plane of the canvas. Now we can put these

two facts together and say: P is on. the ilntersection of two

planes -- the plane of the canvas and that of the garden. The'

intersection of these two planes is.a line.

Now we have prov,ed that P is on.theiline of intersection

of a certain pair okplanes. We can, prove sin pTecisely the same

way that the line through B and C and the line through B'
and' C' meet in a point, which we have labeled Q. We can also

prove, by exactly the same reasoning as that used in the case

of P, that R is on the line of intersebtion bf the plane of

the canvas Aand the plane of the garden. Tben-we can reason the

same way about the point R.

So we can see that P Q, and R all lie on the same

line -- the line where our two planes intersect.

Now we have proved our fact for`two triangles that are in
.

different (and not parallel) planes.

It is more difficult to prove that it is true when the two .

triangles are in the same plane. We can see, however, that if

we took a picture of the garden ag-the canvas, we would really,
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have two triangles in perspective in tIze same plane, and that

the pOints of intersettion of the pairs of corresponding sides

of th 'angles would all be on a line. If you_were more

familiar with the use of geonietric reasonik& in rather complicated

figures, you would not find it difficult to use this idea in

qonstructing a complete proof.

Points .2)ad Lines In DesarzuW Theo em

In the figure we see that

'vertices of the twortriangles,

there are 10 main points: the

the point 0, and thi three

intersection points P, Q, and R. ThelLe are also 10 main lines:

the sides of the triangle extended, the lines through corresponding



vertices of the triangles, and the line on which lie P, Q, ghd

R. By checking the figure you can see that

(a)- through each of the main points there are three of the

special lines, and

(b) on each of the special lines there are three special points.
,

The figUre for Desargues theorem could be used. for a very

"democratid" committee diagram, where, by "democratic" we mean,

that in certain respects ech committee member is treated like

every other one. We could let each of the ten points correspond

to a person 'and each of the ten lines corres'vd to a committee.

If a certain point is on a certain line, then the,corresponding

person would be on the corresponding committee. Then

1. Each committee gis three members and ech person is

-on three committees.
-44

.14

Each pair of,cammittees has exactly one person in coMmon

and each pair of persons is on exactly one committee.

Exerciso 2-3

1. Draw several figures illustrating Desargues' theprem.

One of the remarkable aspe6ts of the figure for Desargues'

theorem is that each point and each line play exactly the

same role. For example, we might think of A as the

"beginning" point in place of 0 and one triangle could be

is Q,- thetaken to be COB. Since the third point on AC

third point on AO is A', and the third point on AB

P, the second triangle must be QA/P. Then the .points of

,12

S.
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inter:section of corresponding sides of the two triangles

should be on a line. Find the line.,"

3. Follow through the steps in Exercise 2 starting with the

point P.

4. The following converse of Desargues' theorem also hoids:

If ABC and A'B'C' are two trianOes and if the ipoints

2-1

P, Q, R are'defined as the intersections of the pairs AB,

A'B', AC, A'C'; BC, B'C' lie on-a line, then AA',

'BB', CC' are concurrent. Draw a figure which shows this.

(Brainbuster) Designate seven points by the numbers:

3, 4, 5, 6, 7. Call the set of three points 1, 2, 4 a

"line and so on according to the following table:
-

'el 22 'e3 24 45 26-Line
<V1

Points 1,2,4 2,3,5 3,4,6 4 57 5,6,1 6,7,2
4

.17

74 3

Show that each point lies on three lines. Is it true that

each pair of points determines a line? Is it true that-a4ch

pair of lines determines a point? Draw a figure which shows

this. (You cannot make all the lines straight and one will

haveTto Sump over another.)

53
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SUPPLEKENTARY UNIIT 3

REPEATING.DECIMALS AND TESTS FOR DI14SIBILITY

3-1. Introduction

This monograph is for the.student who has,studied a little

about repeating decimals, numeration systems in different bases,

and tests for 'divisibility (casting out the nines, for instance)

and would like to parry his investigation a little further, under

guidance. The purpose of this monograph is to give this guidance;_

it is not just to be read. You will get the most benefit from

this material if you will first read only up tp the first set'of
r-

exercises and then without reading any further do the exercises.

They are not justapplications of, what you have read, but to guide

you in discovery of further important and interesting facts. Some

of the exercises may'suggest other questions to you. When this
/

happes,iëehat you can do toward answering them on your own.

Then, after you have done il thAt you do with thatfset of.

exercises, go on to the next section. piere you will find the

answers' io sane of your questions., perhas, and a little more in-

formation to guide you toward the next set of exercises.

The most dbteresting and useful phase of mathematics is the

discovery of new things in the subject. Not only is this the

most inter g pazt of it, but this is a way to train yourself

to discover mor and more important things as time goes on. When

you learned to walk, you needed a helping hand, but you really

had not learned until you could stand alone. Walking was not new
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to-mankind -- lots of people had walkid before.-- bat it was new
to you. And whether or not you woul& eventually discover places

in your walking which no artian had ever seen before, was unimportant.

It was a great thrill when you first foUnd that you would walk,
even though it looked like a stagger to other people. Sb, try
/earning to walk in mathemctics. And be independent d not'

,accept any more help than is necessary.

3-2. Castting oki-tAe Nines

You may know a very simple and,interesting way to tell

whether, a number is divisiikie by 9. It is 'based on the fact that-
a number is divisible' by 9 if the sum of its digits is divisible
by 9 ancr-the-,sumo*f its digits is`citvisible by 9, if the number
is divisible .by 9.. For instance, consider the number 156782.

,The-ium Df its digits is 1 + 5 + 6 + 7/-+ 8 + 2 which is 29,' But
/.29 ie not divisible by 9 and hence the number 156782 is not divis-

ible .by 9.* If' the sec,ond digit had been a 4Instead ,of 5, or if
tt.(i last_ digit had bien 0 instead, of 2, the number would,-have, been

divisible by 9 since the sum of the digits would have been 27
which is divisible bi 9. The test is a good one because it is
easier to add the diglts than to divide by' 9. Actually we Could

have been, lazy and instead of dividing 29 by 9, use' the fact
again, add 'And 9 to get 11" add the 1 and 1 to get 2 and see
that i.nce 2 is not divisible-by 9, then the 6riginal six digit

-.0

number is not divisible by 9.
4

Ilhy is this true? Merely dividing the given numter by 9

swould have teseed 'the result but from that we would have no_idea
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why ii would hold for any Other nuMber. We can ihow what is

happening by wriing out the nuMber 156,782 according to what it

means im ihe decimal nptation:
C.

1 X + 5 X 104 4. 6 X 103 + 7 X1402 + 8 X 10 + 2 =J
. 1 X (99999 + ) + 5 X (9999 -+ 1),+ 6 X (999 +

7 )( (99 + 1) + X (9 + 1) + 2.

Now by the distributive property, 5X.(9999+ 1) 5 X 9999+ 5 IC 1

.and similarly for the other expressions. Also we mayrearrange

the numbers in the sum since addition is commutative. 'So our num-

ber 156,782 zay be written ',

1 X (99999) + 5 X (9999).+ 6 X (999) +

7 X (99)- +. 8 X 9 +(Al + 5 + 6 + 7 + 8 + 2).

Now 99999, 9999, 999; 99, 9 are all divisible by 9, the products

involving these numbers areAivisible by 9 .and the sum 'of these

products is,divisible by 9 Hence the original number will be

divisible by 9 if (1'4. 5 + 6 t 7,4- 8 + 2) is divisible by 9.

is sum is e sum of the digits of the given number. Writing it4t this way hows that no &hatter what the given number is, the

same principle holds.

Exercisqs 3-2

1. Choose four numbers and by the above method test whether or

not they are divisible, by 9. When they are not divisible by
1

9, compare the remainder vihen the sum of the digits is divided

by 9 with the remainder when the number is divided by 9.

Could you guess some general fact from tflis? If you can,

test it with a few otherexamples.
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Given two numbers. First, add them, divide by 9 and take the

remainder. Second, find the sum of their remainders after

each is divided by 9, divide the sum by 9 and take the re-

mainder. The final remainders is the two casA& are the same.

For instance, let the numbers be 69 and 79. First, their sum

is 148 And the remainder when 148 is divided by 9 is 4. Second,

the remainder when 69,01.is divtded'by 9 is 6 and wheri 79 is di-

vided by 9 is 4;,the sum of an'alk.7 is\13, and if 13 is divided

by 9, the remainder is 14. The'result is 4 in both cases. Why

are the two resuits the same no matter what numbers a6 used

instead of 69 and 79? Would a similar result hold for a sum

of three number's? (Hint: write 69 as 7 9 + ,6.)

If in the previous exercise we divided by 7 instead of 9,

would the remainders by th

47

two methods.for division by 7 be

th e same? Why or why n Q1

Suppose in Exercise 2 we considered the product of two numbers

instead of their sum. Would the corresponding result hold?

That/is, would the remainder when the product of 69 and 79

is diiided by 9 be the same as when the product of their re-

mainders is divided by 9? Would this be true in generalr

Could th.ey be divided by 23 instead of 9 to give a similar

result? Cogld similar statements be ml(de,about products of

more than two numbers? a
Use the result of the previous exercise to show that 1020

has a remainder of when divided by 9. What would its re-
.

mainder be when i is divided by 3? By 99?
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6. What is the remainder'when 720 ts divided bSf. 61,

7. You know that when 4 number is written in the decimal noth-

tion, it is divisible by 2 if its last digit is divisible

by 2, and divisible by 5 if its last digit is 0 or 5. Can

you devise a similar test for divisibility by 4, 8, or 25?

8. In the following statement, fill in both blanks with the same

number.so that the statement is true:'

A number written in the system to the base twelve is divisible

by - if its last digit is divisible by If there is

more than one answer, give the others, too. If thebase wel4

seven instead oftwelve, how could the blanks be rillelin?

(Hint: one answer for base twelve is6.)

9. One could have,something like "decithal" equivalents of numbers

in numeration systems to bases other than ten. For. instance,
-r

in the numeration system tà the base seveo,,the septimal equiv-

alent of 5(1/7) :* 6(1/7)2 would be written .567 just as'

the decimal equivalent of 5(1/10 + 6(1/10)2 would be written

. 56
7

in the decimal system. The number .142857142857 --- is

equal to 1/7 n the decimal system and .in the system to the

base seven uld be written .1 . On the other hand,

. 1 (20462 ...) . What numbers would have terminating

septimals in the numeration system to the base 7? What would

the septimal equivalent of 1/5 be in tI system to the base 7?

(Hiql_Temember that if the only prime factors of a number

are 2 and 5, the decimal equivalent of its reciprocal ter-
.

minates.)
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10. Use the result of Exercise 3 tp find the remainder when

9 + 16 + 23 + 30, + 37 is divided by 7. Check your result

,by computingthe sum and dividing by 7.

U. Use the results of the previous exercises to show that

10
20

- 1 is divisible by 9, 7108 - 1 iscdivisible by 6.

12. Using the results of some of the previous exercises if you

wish,shorten the method of showing that a number is divisible

by 9 if thersum of its digits is divisible hY 9.
a

13. Show why the remainder wh;l1n the sum of the digits of a num-

ber is divided by 9 is the same as the remairkdier when the

number is divided by 9.

3-3. Why Does Casting out the Nines Work?

First let us review some'of the important results shown in

the exercises which-you did above. In Exercises 2 , you showed

that to get the remainder of the sum of two rliumbera,, after divi-

sion by 9, you can divide the sum of their remaindets.by 9 and

find its remainder. -Perhaps you did it thits way (there is more

than one way to do it; yours may have been better). You know ig

the first place that any aatural number may be divided by 9 to

get a quotient and remainder. For instance, if the number is

725, the quotient is 80 and tfie remainaer is 5. Furthermore,

725 w 80,1(9 + 5 and you could see from the way this is written

that 5 is the remainder. Thus, using the numbers in the exercise,

you would =write '69 7 x 9 + 6 and 79 = 8 ( 9 + 7. Then 69 + 79

7)1( 9 + 6 + 8 X 9 + 7. Since the sum of two numbers is commutative,

5!)



you may reorder the terms and have 69 + 79 = 7X 9'+ 8 X 9 + 6 + 7.

Then, by the distributive property, 69 + 79 m (7 + 8) X.9 + 6 + 7.

Now-the remainder when 6 .7 is divided by 9.18 4 and 6 + 7 can

be written 1 X 9 + 4. Thus 69 + 79 m (7'+ 8 + 1) )( 9 + 4. so,

from the form it is written in, we see that 4 is the remainder

when the-sum.is divided by 9. It is also the remainder when the

sum of ,the'remaindersj,6 + 7, is divided by 9.

Writing it, out in this filshion is more work than making the

computations the short way,but,it does show what is going on and

why Similar results would,hold if 69 and 79 were'replated by any
I .

other numbers, and; in fadt, we could replace 9 by any other ngm-
,

her as well. One-way to do this is to use letters in place of the

numbers. This has two advantages'. in the first place it helps

413 be sure t)Ot we di4 not make use °of the special properties of

the numbers we had without meaning to do so. Secondly, we can,

after doing it for letters, see that we may replace the letters

by any numbers.. So, in place of 69 we write the letter /a, and

in filace of 79, the letter b. When we divide the number a by

9 we would have a quotient and a remainder. We can call the quo-

tient the letter q and ttie remainder, the letter r. Then we
f

have

"tm

a. (q 9) + r

where r is zero or some natural nutber less ttlan 9. We could do

the same for the number b, but we should not let q, be the quo-

tient since it might be different from the quotient when A is

divided by 9, We here could call the quotient q' and the re-

mainder r'. Then we would have

80
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b = (411' g 9) + ri.

Theh the sum of a and b will be

a + b = (q >0) + r + (q1 X 9) + i" .

Vie can use the commutative p operty to have

a + b = (q X + (q1 9) + r + r'

and the distributive property to have

a + b = (q + q') X9 + r + r'.

Then if r + rl were vided by 9, we Would have a quotient WhiCh

we might call

r" and

and a remainder r". Then r 4rs' = (q" X 9) +

a.+ b = (q + ci') X 9 + (q" X 9) + r"

(q + (IT + ) X 9 + r".

Now r" is zero or less than 9 and hence it is not only the re-

mainder when r + xi' is divided by 9 but Also the remainder when

a + b is divided by 9. So as far as the remaimier.goes, it does

not matter whether ion add the numbers or add the remainders and

divide by 9.

The solution of Exercise 4 goes the same way as that for

Exercise 2 except that we multiply the numbers. Then we would'

have

69 X 79 - (.7 x 9 + 6) X (8 x 9 + 7)
7 x 9 X (6.X 9 + 7) + 6 X (8 ?( 9 7)

- 7 X9 X8 X9 + 7X9 X7 + X8X9 + 6X 7-
The first three prcducts are divisible by 9 and by what wl showed

in Exercise 2, the remainder when 69 X 79 is divided by 9 is the

same as the remainder when:0 + 0 + 0 + 6 X 7 is divided by 9. SQ

in finding the remainder when a product is divided(loy 9 it makes
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no difference whether we uSe the product or the product of the

remainders.

If we were to write this out in letters as we did the sum,

it.wpuld look like this:

a b = (q X 9 + r) X (q1 )( 9 + ,1")

as q' X 9Xcex9+qX9Xr'+rj(q'X9+rXr'.
,Again each of the first three products4s divisible by 9 and'hence

the remainder when a X b is divided by 9 is the same as whet

r r' is divided by 9.

--We used the number 9 all the way above, but the same conclu-

sions would follow just as easily for ahy number in,place of 9,

such as 7, 23, etc.. We could have used a letter for 9 also but

this seems like carrying it too far.

There is a shorter way of writing some of ihe things lwe had

above. When letters are used, we usually omit th'e multiplication

sign and write ab instead of a N:b and 9q in place of 9 X q.

Hence the last equation above could be abbreviated te

ab = qq19 X 9 + qr19 + rq'9 +
or

= 9 X 9qq1 + 9qr' + 9rq' rr'.

But this is not especially important right now.

So let us s

th,e sum of two n

arize our results so far: The remainder when

rs is divided by 9 (or any other number) is

the same as the'remainder when the sum of the remainders is divided

by 9 lor the same other number). The same procedure holds for

the product in place of the sum.

Imn

6 2
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These facts may be used to give quite a short proof of the

important result stated in Exercise 13. Consider again the

number 156,782.. This is written in the usual form:

1 105 + 5 X 104 + 6 X + 7. X 102 + 8 X 19 + 2.
A

Now the result stated above for the product, the remainder when

10
2

is divided by 9 is the same as when the product of the re-

mainders 1 X 1 is divided by 9, that is, the remainder is 1.

Similarly 103 has a remainder 1 X 1 1( 1 when divided by 9 and

hence 1. So all tte powers of ten have a remainder 1 when divided

by 9. Thus, by the result stated above for the sum, the remainder

when .156,782 is divide,d by 9 is the same as the remainder when

1X1 + 5X1 + 6X1+ 7-.X 1 + 8X1 + 2 is divideci by 9. This

last is just the sud of the digits. Writing it this way it is

easy to see that tis works for any number.

Now we can use the result of Exercise 13 to describe a .check

called *casting out the nines" which is not used much in these

days of computing machines, but whiCh'is still interesting. Con-

sider theproduct 867 X 934.. We indicate the fallowing calcula-

tions:

867 sum of digits: 21 sum of digits: 3

934 sum of digits: 16 sum of digits: Z

Product: A809,778 .Product: 3 X 7 m 21

,Sum of digits: 8 + 0 9 + 7 + 7 + 8 39

.Sum of digits: 3 + 9 m 12

Sum of digits: 1 + 2 a. 3 Sum of digits: 2 + 1 3.

Since .the two results 3 are the same, we have at least some chelik

on the accuracy of the results.



,

3-3 59

EA;XciAis 1-1'

1. Try the method of checking for another product. Would it

also work for a sum? If so, try it also.
4

Explain why this shpuld come out as it does.

If a.computation checks this way, show that it still could be

wrong. That is,,in the example given above, what would be an

correct oduct that would still check?

4. Given the number 5.75 3-74 2.73 4,1-72 4. 4.7 + 3. What'

.,is its remainder when it is divided by. 7? What is its re-

mainder when it is divided by 6? by 3?

5. Can Au find any short-cuts in the evmple above analogous to

casting out the nines?

r?

In a numeration system "to the bade 7 what would be the result

corresponding to that in the decimal system which gives cast-

ing out the nines?.

The following is a trick based on casting out the nines. Can

you see haw it works? You ask someone to pick a number -- it

might be 1678. TEen you ask him to form anoti4r number from

the same digits in a different order -- he might take 6187.

Then you ask him to subtract the smaller from the larger and

giv.e you the sum of'all but one of the digits in the result.

(Hemould have 4509 and might add the last thr e to give you
0

14.) All of this would be done without ye seeang any of

the figuringo Then you would tell him that the other digit
rs,
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in the result is 4. Does the trick always work?

3-4

One method of shortening the computation for a test by cast-

ing out the nines, is to discard any partial sums which are 9 or

a multiple of 9. For instance, in the example given, we did not

need to add all the digits in 8101645. We could notice that

8 + 1 = 9 and 4. + 5,ms 9 and hence the remainder when the sum of

the digits i$ divided by 9 would be 0 + 6, 'which is 6. Are there

other places in the check'wh'ere work could have been shortened?

We thus, in a way, throw away the nines. It was fram this that

the name "casting out the nines" came.

By just the .same principle, in a number system to the base 7

one would cast out the sixes, to the base 12 cast out the elevens,

etc.

,3-4 Divisibility by 11

There is a 'test for divisibility by 11 which is not quite so

simple as that for divisibility by 9 but is quite easy to apply.

'In fact, there are t)Orfests. We/shall start you on one and let
0

you discover the other for yourself. Suppose we wish to test the

number 17945 for divisibility by lle Then we Can write it as be-

fore

11.104 103 + 9.102 + 4.101 + 5.

The remainders when 19 and 104'are divided by 11 are 1. But the

remainders when 101. 103, 105 are divided by 11 are 10. Now 10 is

equal to 11 - 1. 103 * 10 (11 - 1), 105 = 104 (11 - 1). That

is enough. Perhaps we have t.old you too much already.. It is
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your turn to carry the ball.

-61

Exoqiso

Without consIdering 10 to be 11 - 1, can you from the above

devise a test for divisibility by 11?

2. Noticing that 10.= 11 - 1 and so forth as above, can you.

devise Another test for divisibility by 11?

We hope you were able to devise the two tests suggested in

the previous exercises. For the 'first, we could grqup thedigits

and write the number 17945 as 1 X104 + 79 102 + 45. &Ince the

remainder when the number 17945 is divided by 11 should be the

.same as the reaminder when 1 + 79 + 45 is divided by 11, that

is, 1 + 2 + 1 4. (2 is,the remainder when 79 is divided by 11,

etc.) This method would hold for any number..

The second method requires a little knowledge of 'negative

numbers (either review-them or, if you have.not had them, omit

this paragraph). We could consider - 1 as the remainder when

10 is divided by 11. Then the original number would have the

saMe remainder as the remainder when 1 + 747 1)3 + 9 + 4(- 1)

+ 5 is divided by 11 that is, when 5 - 4 + 9 - 1 + 1 is divided
vby il. This last sum is equal to 4 which was what we got the

1/4

other way. By this test we stait at thright and alternately

add and subtract digits. This is Ompler than the other one.
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3-4

$xercius 1-4-12
.

1. Test sever4 numbers for divisibility by i1 using the twp

methods described above. Where the numbers re not divisible,

find the remainders by'the method given.

A%

In a number system to the base 7, what number ould we test

for divisibility in the same way that we tested for,11 1,,n the

decimal system? Would both methods given above Work\ 'f)r base

7 as well?

To test for divisbility by 11 we grouped the digits in pairs.

,What number or numbers could we test for divisibility by

grouping the digits in triples? For example we might con-

sider the number 157892. We could fonm.the sum of 157 and

892. For what numbers would the remainders be -t;he'same?

4. Answer the questions raised in Exercise 3 in a numeral system

to base 7 as well as in a numeral system tO base 12,

In the repeating decimal for 1/9 in the decimal system there

is one diglt in the repeatlng portion; in the repeating deci-
e-,

mal for 1/11 in the decimal system, thei..se are two digits in

the repeating portion. Is there any connection between thip0

fac-ts and the tests for divisibility for 9 and 11? What would

be the connection between repeating decimals and the questicns
1 A

6. Could one have a check in which 11's wr4e"cast out?"

raised in Exercise 3 above?

7. Can you find a trick for 11 similar to that in Exercise 1 above?
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3.5. Divisibility by 7

There is not a very good test for divisibility bY 7 in the

decimal system. (In a numeration system to what base would there

be a good test?) But it is worth ,looking into since we can see

the connection between tests for divisibility and the repeating

dedimals. Consider the remainders when,the powel's of 10 are diyid-'

ed by 7. We put them in a little table:

1( 2 3 4 5 67
Remainder when 3 2 6 4 5 1 3.
10
n

is divided

by 7

If yau compute the decimal ecAvalent for 1/7 you will see that

...--the remainders are exactly the numbers in the second line of t4e

.111010 in the order given. Why i is so? This means that if we

wanted to find the remainder Worn 7984 2 is divided by 7 we

would write

7'.x 106 + 9 x 195 + x 1.0 + 4 X 103 +

5 X10? + 3 X10 + 2

.and replace the various paiers cif 10 by their remainders in the

table to get

?XI+ 9 X 5 + 8 X 4 +i,X. 6'+ 5 X2 + 3 X 3 + 2.

We would have to compute this, vide by 7 and find the remaeltiltr.

Tha uld 4as much work as d ding 4 7 in the first place.

So this is not a practical test but it does show the relationship

between the repeating decimal and the test.
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Notice th t the sixth/power of 10 has a remainder of 1 when

it is divi by 7. If instead of 7 some 'other number is taken

which has wither 2 nor,5 as a f4ctor, 1 will be the remainder

when some power of 10 is4divided by that 'number. For instance,
0

there is some power of 10 which has the remainder of 1 when it'is
16.

divided by 23. This is very closely connected with the fact that
.15

the remainders must from a certairn point on, repeate Anbther way

ofoexpressing this result is that one can form a number capletely

Sf 9's, like 99999999 which)is divisible by 23.

2c.Qrci5 q _1=5

Complete the following table. In"doing this notice that it
.

is not necessary to divide 1010 by 17 to get the remainder when it

is divided by 17. .We can compute each entry fram the one above,

like this: 10 As the remainder when 10 is divided by 17; this

is the first entry. Then divide.102, that is, 100 by.417-and tge

that the.remainder is 15. But we do not need to divide 1000 by

17. We merely notice that 1000 is 100 X la and hence the remainder

when 1000 is divided by 17 ig the sameltpas the'remainder when

4P 15 tip, or 150 is divided by 17. This reMANkler is 14. To f.ivid

the remainder lialer;104 is divided by 17, notice-that 104 is equal .

3
,

to 10 X 10 and hence the remainder when divided by 17 is the same

as when 14 X 10 is dividedby 17, that is 4. The table then gives

the remainders when the powers of 10. are divided by various

numbers.

69
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7J 9 11 13 17 19 21 37 1,01 4.1

1

10 1

102

103

10 4

105

106

107

108

109
110 0

1011

1012

1013

1014

1015

io16

7 hat relati
-- 'can between the numbeqof digits in

the re pa:tigileatitcimals -for 1/3, 1/7, 1/9, 1/11, 1/13, etc. 'and'St ern pf th _remainders. Why.doeS' the'asSie show that ,... )

ye digits inJhe repeating portion of. the decimalL2ittlt-

Will 'there be,some other fraction 1/7 which will have
a re .cimal with five digAts in the repeating portion?
How would yo traction 1 rwhilch votild have six digits

Akvs.
in the repeating portion?
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If you Wish to explore these things further and find.that

you need help, you might begin to read some book on the.theory

of nuibera. Also there is quite a little material on tests for

divisibility in "IMathematical Excursions" by Miss Helen Abbott

Merrill, Dover (1958).
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became court mathematician to Frederick the Great (Who was he?

Why was he impor-tant?), a dele tion came to him with a questioni,.

4-1

SUPPLEMENTARY UNIT 4

GRAPHS: OFEN ANg:CLOSED PATHS

ek

4-1. The Seven.Bridges of,KBnigsberg

67

Here is a sketch of the map of the German city of Kdnigsberg

(now caned Kaliningrad). Find ouC why.
"

-

River,

As you can see,

into two branChes 'on

. ." .

4110
o.wom

Ma.

Figure 1

D

a river goes through the city and divides

the east side, and there is an island ln

the middle of Oe river. There ar seven bridges connecting the

island and the,O_Urvnt parts of the mainland.t
fter the great Swiss mathematician Euler (When did he live?)

In thit chapter we shall uIe the word "graph" with a mean-
ing different from that in Unit 1, Nathematics for Junipr HiRh

School., Voluie j.

4
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,"Can a erson go through the city of Xbnigsberg in such a way as

to over each bridge exactly once? We have worked for years

on this problem and have nevdr found an answer." (This problem

was mentioned in Chapter 1.)

Euler replied, "Let me think. The exact shape of the differ-

ent partsof thirCity doesn't matter. It would be simpler to rep-
('

resent them by points and the bridges by lines:

Figure 2

Of course, we only need to show how the tarts are connected by

the bridges. We can lab *. the bridges, say, 1, 2, 3, 4, .5, 6,

and 7. We could describe a path by a sequenci as

AlC3D4A6-13. 5 2 O

'showing the points in the,diagram and the bridges over vihich the

path passes, in the proper order. For example, this sequence

stands for a path which starts at A passes over bridge 1 to

s. r,A;trid :3 'to D, and so on.

' A

4 ion is,"Can we write such a sequence of'letters and

numb'ers in which each pumberppears/justvnce?"
L:

erg were amazed. Their jaws dropped in

73

The men" froth' Ict)ilit

k
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surprise. "Of course," they exclaimed.

ple, now that you explain it. If we had only thought of looking

at the problem in this way, we could have solved it ourselves."

69

"It is really very sim-

They went home and tried to finish the problem.

That evening they sat around a table discussing(the problem.

One of them said, "Let u.s` try some simple case first, just to

get' the hang of it. In ishis diagram

Figure 3

the path A 1 B 2 C 3 A goes over every bridge just once. It is

. a closed path because it comes back to the starting point."

Another man'said, "I can't find a good path ih tlis diagram:

I.

Figure 4

Is this one impossibled \you think?"
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A third man remarked, "You could take the path

A 1B2C3A4D5 C.

4-1

It is an °Dell path because it doesn't come back to the starting

point-. In this diagram there does riot seem.to be a closed path

which goes over each bridge.exactly once."

In this diagram

4 A 3

Figure

5

they could find neither a Closed nor an open path. They worked

hard until way past midnight, and still couA not soiVe their

problem.
4'

The next day they came back to Euler and said., "We have been

thinking about the problem, but still can't seem to solve it.

7here must be some simple idea which we have overlooked. If you

could just get us started on the right track, we are sure that we

can solve it ourselves.*

Euler replied, "All right, let us look at Figure 4 where

therels a.Path which goes over each bridge'once and only once.

'Pie path is described bY a sequence of letters, for the points,

and numbers, for the.bridges. Each number appears just once in

this sequence because the path crosses each bridge just once.*

"Sure enough," they said, "in the sequence

7.3



4-1

A 1B2C3A4D5.0
each number appears just once. The same is true of.the sequence

AIB2C3 A
in Figure 3."

Euler said, "Look'at these sequences more carefully. What

comes before each letter except the first?"
so,

"A number," they answered. "This corresponds to a bridge

leading to the point."
-

"What comes after each letter except the Iasi?"

,

"A number, of course. There is also a bridge leading away

/ from the.,point."

"How many bridges are there for'ilach time thetath goes

through a 'point?"'

"Two bridges. We come into the poiht on one bridge and go

away from

in the pa
,/-

for these

it on another it-idge. For

h, except at the beginning

two bridges."

each time a letterappearz

or end, there are two ntflers

Euler suggested, "L us ca 1' all points of the path, except

for the two endpoints, point . Then for each inner point

of the path there ugo two bridges. Suppose the point B appears

three times as inner point of the path. For instade, look

at this diagram
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Figure 6

and the' path A 1 B 2 C 7 3 B 14:E 9 F 5 B 6 G 10 F. 13 H 12'E
D 11 H. How- many bridges 'are connected to, 13?"

"six," lenswered the men fmm nnigsberg.

"How did you get that?" asked Euler.

"We simply multiplied the number of times the point appears,
by 2, the num r of bridges connected with the point at each.
appe4rance."

"Will this always ,work?" Euler contOued.

"Yes, for every #iner point of the path."

"What kind of number do you get when you multiply some number
by 2?" Euler asked again.

,"Obviously, an even number." he men frail Kenigsberg looked
at'each other, pleasantly surprised. "Then the total number of

A

bridges leading to or from any inner point of the path must be
even., Any child could see that!"

7
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"What about the endpoints, the first and the-last point?"

They thought for a mament. "Let us see. There is a bridge

leading from the first point. Then every other time the path

goes through this point, there are tw bridges. So the total

number of bridges connected to the first point is one more than

even number. In other words, it is an odd rrber. The same

is true of the last point."
e*

Euler questioned them further. "Are you s,4re? MuA the

first point be different from the last point?"

They smiled. "Of course not, Thanks for reminding us not

to overlook tha.t possibility. If the path is closed, that is, if

it comes back to the starting point, then that point will be like
, -

any inner point of the path. Then the number of bridges to or

from that point must be even."

Euler suggested, "It miglIt be a good ideato summarize what

you have f,igured out so far."

They said, "All right. If the path is closed) then there is

an even number of bridges connected to each point. If the path

is _uln, then each of the two endpoints must have an odd number

of bridges. Each of the inner points is connected to an even

number of bridges. Now that we think of it,,the problem is ab-

surdly simple"

The men from nnigsberg bent over the diagram and began

counting. °The pdint C is c'onnected to bridges 1, 2, and 3,
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the point. D to tridges , the point A to bdridges

and the point B to bridges There ire

points connected to an odd .nUmber of bridges and . points

connected to an even number of bridges. Is a closed path poissible?

(Yes, or no?) Is an open path possible? (Yes r no )

Such an easy problem, after all!" (Fill inthe blanks.yourself.)

After thanking Euler, the merry entleme1 from KbnigSberg

went home. On the way, one of them said, "I don't see wiay Euler

has mart a great reputation. We really worked out every\step of

the problem ourselves. All EulIdid was to suggest how \to look

at the problem and ask the right questions." His companions

nodded and replied, "Yes, the problem was really so elemenary

!that any child could have solved it."

What do you think?
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Exerciaqs 4-1

Here are some diagrams with some points connected by bridges

in various ways.

Figure 7

80

-3
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For each diagram list the points which are connected to

an even number of bridges.

(b) List the points connected with an odd number of 1A-idges.

) How many points of each kind are therer in each:diagram?

(a) In which diagrams is it impossible to find a closed path

which goes over every bridge just once?

(b) In which diagrams is it impossible to find an open 'path

of this kind?
r

3. For eadh of the diagrams where it might be possible to have

a path :koing over each bridge exactly once, look for such a

path. If you do find a path, describe it by a sequence of _

letters and numbers.

4. For each of these diagrams rind a closed path starting at

the point B which goes 'over each bridge just once, and

which goes Over the largest/possible number of bridges.

In Figure 4 there are three other paths from A to C which

go over each bridge exactly once. One of them is described

by the sequence A 4 D 5 C 2'B 1 A 3 C. Find the other two.

4-2. What Happens if There Is a Path

A set of points arid brldges, in which each point hasa least

one bridge attached to it we call a graph. The points are talled

vertices (singular: vertex) of the graph. A vertex is called

even if an even number of bridges are connected to it. Otherwise

the vertex i. called odd. A path is called closed if its last
fel

81



77

vertex is the same as its first vertex Otherwise 'the path is

called open. Notice that we are using the word "graph" in a

special way in this chapter. Don't confuse this meaning with

the rrianing in Unit I. Compare footnote bottom of page 67.

By using the same relesoningthat the men from K8nigsberg/

used, with Euler's help you can prove the general statements:

TIleorem 1. If there). , in a a closed path which gops

over each brtdge just an-ctt then every Vertex is even. If there

is an open path of.this kind then there are two odd vertices P.
#

and all the,rest are even.

(A theorem is a statement proved by logica.). reasoning.)

Exercises k-2

I. In the graphs of Exercises I, name the odd and the even'

vertices. How many odd Vertices are there in each graph?

Does there seem tolbe a general princii6ie?
4

State a general principle about the nuMber of Odd vertices

in any graph which seems to be true in all'cases. Diew five

more graphs, and test whether your statement is true in each,

case. Compare your results with those of your.classmates.

In any graph you may classify the vertices more precisely

according to the number of bridges connected with e4ach one. The

number of bridges I ding to or from a vertex we shall call the

kgrelbof ihe vertex. In Figure 2 vertex A is of the 5th degree,

whereas t,he others are of degree 3.
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in, the riOit hand, column in the above tabler xpress "the

i-elation between V and the nunibev Vv. etc. as ap

For eac ofPthe graphs you have drawn, make a table showing

ber of vertices of each' degree,. lite this:
_degree number'of vertiOs

1;\
2

3

et.

a

Nib

How is. the total number vel-tices related to the numbers 0
in the right hand column?

,

N,
4. Call the .total number:.of v.ertices in a graph V.

. . .

be the number .of vertices of degree I, V2 the number of

degree. 2, etc. (The numbers'. V1, yv. -'., are the 'numbers

equation, ,

5. Take any graph. Label the bridge4 with numbers a the ver-
. tices with letters. List all pairi c,onsist-ing of a \vertex

t

and' a bridge connecied .to In Figure 2 the pairs are

I, A2,.A1+,. A5,A6,' 35, 37, Cl, C21 C3, D3, D4, 1)5.

. r 4E,
In .Exercises. 5, in, how many irs does a given bridke occur?

,

'flips,/ is the number of pairs rel.ated 'to the number of bridges?
Let B be the number of bridges. Give ,a formula for the

,z6. \. .

7,
8,7
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number of pairp in'tvms of B.

In Exercise 5, in hpw many pairs does a given vertex Al degree

3 occur?, In how many pairs does a given vertex of degree k

occur? What is the total number of pairs in which a vertex

-of degree 3 occurs? What is the total number of pairs in

which a vertex of degree k occurs?

8. *Give a formula for the total number of pairs in Exercise 5.

in terms of the numbers V V
1 21

V
31 .A

Give'a formula for the total number of odd vertices in terms

of hV
1'

V
2'

V
3

0

10. Let U be the total,number of odd vertices. Give a formula'
.-

for the number (2.B) - U in terms of v1;V etc.

U. Pan you use the .rormula,in Exercipe 10 tiPprove the principle

ou discovered in ExerciPe

,r

ft
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4-3. When Can You Be Sure That There is a Path?

According to Theorem I, if there is a closed path in a graph

which go-es over each bridge exactly once, then'a certain thing is

true. This is a necessarv condition that there be.such a path in

a graph. If a graph does not sattsfy this condition, namely that

all its verticed are e,.ven, then we are-sure that there is no closed

path going over eac bridge Oust once.

Is this condition siffiCiut? If all the vertiCes are even
7.

does there exist a path of this kind in the graph? Eipmine all

the graphs you have.drawn so far. Find the ones which 11E4,7 only

even irertices; Can you find, in each one of these a closed path

going over each bridge once and only once? Can you draw a \

covatereAample, a graph with only even vertices in which there is

no such. path?

Does it seem as though the caadition that the graph have no

odd vertices is sufficient? Compare your conclusiondlith thc;se

of yoUr classmates before\you turn this page.

ai\
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Look at this graph:

Figure 8

Are there any odd vertices? Can. you find a path which goes over

every bridge just once? In fact, Is there any path which goes
.

over both bridges I and 43 If you are not sure whether this is

a graph, reread the definition of a graph. Tkgs wlll teach you

why we.mupt be so careTul in mathematics to 'say exactly *at we

mean.

Thetreuble With Figure 4 is that it is made up of two sepae

rate pieces. There is no use looking for a path which goes over

every bridge unless the.graph is.connected. We s y that a graph is

connected if every vertu can be joiaed toiany'o her vertex by a -

path. .In Figure 4 the vertex' A can, be joined to B and C,
I. -

. ,

. but not to any of the othe*Vertices.

itturnS .Oi.ut that if a connected graph.has no odd vertices,
1

then.there is a closed path which .gpes over every bridge exactly

5once. We s4all ilad. yo-u to discover the proof in two stages.

Theorea 2. If &graph has no odd' vertices, then through

every vertex there is a cicfsed path which dusn't go over any

P
bridge twice.

4

"
.0
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Proof: Suppose Q1 is a vertex of theigraph. Find the

longest path (measured by the number of bridges in it) which

sarts at Ql and doesn't cgo over any bridge more than .once.

Suppose, fn. example, that this1 path has 7

could describe the path roughly like this:

Q1g2Q3Q4Q5Q6Q7418.
Here the subscripts simply help us name the vertices. For example,

idges in. it . We

*

Q2 is the second vertex. We did not bother to write the number's

of the bridges betweekn the names of the vertices. Now suppve
Q8 is not thi same as ,Qi. (

Is this path open or closed?' Is Qg

n inner point or an endpoint of tpis path? What do yoU know

. ai)'out the number of bridges 'sonnecied to an endpoint of a pith?

What was assumed about the total number of bridges connected ta
9y point of the graph? ,Can this ipath contain° all the bridges

4 connec\ted to -Q8?

. If not, then 'there is at least cine more bridge in the graph,
r

connécted,to Q8 but not in this path. If we go liver this bridge,

too, ihen we will have a path 4

QlQ2Q3Q4Q5Q47Q8Q9
starting at 411_ with 8 bridges. This contradicts o

that the longest path, .stiarting at Q1, in the. graph has only 7

assumption

bridgei.
__--

,

Since we g'ot in!to a contradiction by assumi that Q8 was
'not thp same as %, then this assumption must be false,. There-
fore, Q8 is tale Same as ick, so this is a closed path through
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Q1 which doesn't go over any bridge twice'.

Now you are ready for the second stage:

4-3

Thum= 3. If a Winected graph has only even vertices,

then there is a closed path,going over erery bridge just once.

4,0..g. Proof: Suppose you look at the longest such path in the

graph. Color the bridges and vertices of this path blue. ;f

this path does not contain every bridge, then color it red all

bridgeq which are not in this 'path. We are going to assume that

there is a red bridge,rand see what follows. We ciaim'that there

is a purple vertex, that is one colored both blue and red.

To see this,).pke any red bridie and some blue vertex

Since the syaph 16 connected, there is a Path joining either ver-

tex, saT 441. of the given red bridge with the vertex. P. Look

at the Aast red bridge in this path. Suppose it leads from thei

vitrtex Rs/ to the vertei S. Since this bridge s red,. then S.

T.
1:511C010red red. But the .ftext brdge ih the-path is blue. There-

.4fore, _S is.also blue. So S :is:purple..

-

Now look at the graph made uP of the red brfdges, 'whith we
, ( . ,__

,can call.simply ehe & graph. SihFe the blue path is cloied,

theTe is an even num er of blue bridges cohnected to eaCh of its

vertices. Since'the total number of bridges,connected to any ver-
,.

c-teX of the original graph is even, that leaves an even number of

red bridgas rpossibly 0) connected to'any verte.x.



Therefore in the red graph, there is an even number of
bridges connected to,each verte,x. We can apply Theorem 2 to the.,

red graph. Hence there is a closed path in the red graph through
,41e purple vertex S. We have then a picture like this:

Figure 9

Thenthepath PABSGHQJR4CWP isaclosed path
which doesn't go over any.bridge mare than once. This path is
longer than the blue path. This is a contradiction sintte the. _

blue path was '. suppos d to bg the longest, such4 closed path in the ),

graph.
s

Wg got into trouble by assuming that the blue _path did not
co4ain all the bridges . Therefore, it. does contaiil all ofl them.
So the blue'path is sth .. one v/e were looking tor.

Exérctsq

BRAINBUSTER: *Prove,that if sa connected grit;h has. 2, odd vertices .

*rid *all the rest even, then ther.e is an opens path which goes over
every bridge 'exactly onCe.



4-4.' Hamiltonian Paths

_There is another problem Which sounds no more difficult than

Euler's proKem. Yet no one knows the answer. Bebause the first
-

'problem of this kind was solved by the great Irish,mathematician,

Sir William Rowan Hamilton (When and where did he live?), the

paths we seek are named after hini .

A Hamiltoliw Data is a graph in a closed petki which goes4N

through every vertex of the gr4h without.going over any bridge

more than once. A Hamiltonian path does not have to'go oven

every bridge in the graph.' Figure 10 sh.ows a graph with a Ham-

iltanian path:

4Filipre 10

The dotted lirjes represent brilgejs which are not,in the Hamiltonian

path.

dt
I.

a
4xercise 4-4

,

,In which Df-the folloWing graphs is there is gamiltonian
. 1,

1

Path3 Jo.
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(a) (b)

Figure 11

4-4

A necessar'y and sufficient condition for a graph to contain

Hamiltonian pat.h is,unknown. This is one way, for you 'xi become

wOr1d-famous overnight': Good luck to your efforts: We'hope ybu

have lots of fun trying.
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SUPPLEMENTARY UNIT 5

FINITE DIFFERE4CES

5-1. Arithmetic Progressions

Suppose we look at a few interesting sets of numbers to

begin with, and take differences of successive numbers:

Table I

3 4 5 6 n (n 1

1 14.1 1 . 1

*

0

Between each pair of numbers"and on the line below it we write

the difference:

2 -,1 = 1, 3 - 2 = 1, 4 - 3 = 1

It begins to be monotonous after a while. Why di& we have the

number n? It was just to indicate any number (n' stands for

"any").. The next number after n would be (n + 1) since in

this "sequence" you get each number by -addinF 1 to the number be-
at.

fore. (When we have a set,of numbers in some orier, we call it a

"sequence.") What-would be the next one after (n + 1)? What

would be the.one before n? You should rbad this unit with a\

pencil and.sheets.of paper at hand so that you Tay answer these

questions as they occur. You may also have' questions of your,own
4 4

which you would like to try to answer.

There is nothing'especiall;Dstrange about the differences

-being l's since,each time you added.1 to get the next entry.

92



90 5-1

Could you write a sequence in which all the differences are 2's

or 3's or any other number? Any sequence for which the difference

between successive numbers is the same every time is called an

elrithmietic Erogreagign.

Let us look back to the numbes of Table I. There is a

connection with the game of ten pins or bowling. Look at the

triangle of dots below:

II

If we omitted the last line we would have the,usual arrangement

of ten pins in a bowling alley. If there were just one row we

would have the number 1, if two rows the number 3, if three rows

the nuiber 6, etc. These are called ,"triangular numbers. We

write these in

Table II

1 3 6 10 15 21

Differences 2 3' 4 5

If we compare.this table with Table I we can notice.a number

-loaf interesting things. The first entries in the two tables are

each 1. The second entry in Table II is the sum of the first two

entries in Table I, the third entry in Table,II is the Lzm of the

first three entries in Table I, etc. The tenth entry ikTable II

would be the sum of the first lerl'entries in Table I. We could

also say t T1iat the\n-th entry in Table II (we do'not yet have a

formula for it) is the sum of the frst n entries in Table I.
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Another thing we notice in comparing the two tables is

that the differencts in the secodd line of Table II are.the same

as the entries in the first line of Table 1. except for the first

one. Why is this, sO? Of course if we had written in Table II a

third line giving the differences for the Second line ws would,

have had a succession of l's as before.

Now we could find the sum .of the first ten numbers in Table

I by adding them - this would give us the tenth entry in th1e first

line of Table 11, but this would be ratheredious. The is an

interesting little trick that will give us our result with less

effort. Suppose we form another triangle of dots like that above,

turn it upside down and fit it carefully next to the one already

written. Then we would have a figure like:

I
In this picture we haire 5 rows wdth 6 dots/in each row,

which gives 5 6 = 30 dots in all. Hence the number af dots

in the first triangle would be 1/2 x 30,m 15, whih is the fifth

triangular number. If we wanted the 20th triangul r.number we

would/have a triangle of 20 rows. If we make another triangle of

dots and place it as we did for the smaller triangle, we would

ave 20 rdvis with 21 dots each and hence 20 x 21 dots in the two

trtandts togeteer, which implies that in t!ach triangle there
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would be

1/2X 20,X 21

dots. SerfTree0th triangluar number is 210, which is the same

as the sum of the numbers 1, 2, 3, --- up toand including 20.

By this means we would find in the same manner the iiuner of

5 - 1

dots in any triangular array of this kind, that isowe could rind

any triangular number. Let us write a few:

40th triailular% number: 1/2X 40 X 41 = an

100th triangular number: 1/2 X 100X 101 = 5050

120th triangular number: 1/2,X 120 121 . 7260.

In each case'we would take the product of 1 2, the number afd 1
.1

more than the number. We could geta. ormula by letting n stand

for the number ald say that

the n-th triangular number: 1/2 X n X (n+1).
4

Then we would get the above three values by letting n 40,

n ippt, n 0. Any triangular, number we could get by using

1/2 n (n + 1)
*

where this is another way of writing 1/2 x n (n + 1).

'We could alsoget this result without any,referénce to dots
1

4,by use of a trick that is-suggested.by the triangles we drew.

S4ppo4e we 1,,Tnted the 20th triangular numbe-r. Then we do.uld take

the sum in two different orders:

1 2 3 4 ... 17 18 19 20

20 19 18 17 4 3 2 1.

The sum of each column is 21, there are 20 columns an hence the \\,)

sum of the'numbers in the.two rows is 20 x 21 and tha in each
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row is one-half of this. We could do this for any number in
I.

placr of 20 and one war of. showing this would be to write it out
using r, for the num er in place of 20 cn- whatever number we had.

It would look like th
I a 3 (n-a) n

n n-1 n-2 n-3 2 1.

The sum of eac,h column is ii + 1 and there are n coluins.
Hence the sum of all the numbers DT the two rows is,- n(n 4). 1)

and half this is the sum fo-r each row.

We shall find still anottier wair to get -this, swi in the next
section.

4.

'Exircisqs
Write another sequence of numbers tor which' the differences
are all l's. What would be the sum of the first 2Q nuibers?

a

Can you give a formula for the su.m of the\ first n numbers?

2. Write a sequence of numbers for Which the .differencv are all
2,9. What would be'.the sum of the first 20 numbers? Can you

give a fonaula for the sum of the first n 'numbers?

Consider the formula: 2n + 7 (remember tilat 2n means
2 A( n). When ,1/4,n 1, 2Ti + 7 is 2 1 .+ 7. a 9; when n 2$

2n + 7, is 2 X,2 + 7 a 11, etc.' We can form a 't'able N)f values:
n 1 2 3 4 5 6

2n + 7 9 11 13 15 17 19

Carry this table out for the nex -three values _of n. %Use
the numbeTs - 9, 11, )3 ss the first r-pw of a' table and-.

96
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'

then write below this row a row of differences; Do_you notice

any relationship between the formula add these differences?

4. Do the same as in problem 3 for the fozmula 3n t 7 'and .fc;r

2n + 6.
4

5.. Wht would be the diaerences for the numbs defined by the
4

formula 5n -4 7?

6. Write the first 20 odd numbers. Can you find their sum with-i

out just adding them? Can you guess Aat a foimula for the

sum of the first n odd numbers would be? Try to prove yo3.1r

result.

7. Give a formu a for the sum.of the first n - 1 nuMbers in

Table I.

8. Find a fonnula for the se.04m of the following:

1, 1 + d, 1 + 2d, nd. f

9. Give g fonnula for the sum of'the foIl Wing:

%I., 1 + d, 1 + 2d, 1 +, 1)d.

10. Find a farmula for the sum of the same equence of the previous

problem except that 1 is replaced b 100

, #

11. Suppose the first two numbers in a ta1je are

7 and 12.

Write a table starting with these two pumbe'rs for which the

first differences are aU thesame, th t is, in which the

numbers on 4-i first row are in an aiiithtetic ptogression.



12. Write a table'of numbers 4.n an ar thmetic progression. 14,

which the first two'entires are 7 and,5 in that order.

13: 11 you have any two numbersinstead of 7 and 12, or 7 and

:5 could you make a table starting with the two given

numbers in which the numbers of the first,row form anaarith-

,metic progression? Give realons.

/5-. Mere.Sequences'.

Now form a table of the squares of the-inteiers. Recall

that the'square of 3 Is 9 Since 3x 3 9, the square of 5 is

25 since, 5X, 5 52 in 25, etc. We call them "squares" or "square

numbers" because if we wrdte our dots in squares instead of tri-

angles, as previously we would have the following equence of

squares:

S

110

S

S IF

111

0000
.
0000

.

oo

.
o

Ir

Table III
4

1 4 9 16 25 36 49 .. n2 (n + 1)2

3 5 7 9 il 13 ...

2 2 2 2 2 2

O 000
o o I o....

Notice th-kC,the numbers here in the second. row are in an arith-

metic progression and that the differences in.the third row are

roH



all 2's. We call thel nri.mbe s in the second raw of such a table ,

-"first.differe.nces" and thosj in the'thii-d row "second differences."'

What wOuld be tile n-th ten; n the second row, that isv the entry

where w is? (w stands for "what.") This shou1d not 1?e hard to

find since it is the difference of the two numbers abd've it. It is 40

just

Before getting a simpler expressionTor this difference/ Of,,two

squares, let us see how it goes for-some of the number.s. to

write 36 -/.25 = 11 is not especially enlightening. But su pose.we
I .1

write it as

62 - 52 . (5 .4. 1)2 52..

If we use the distributive properteveral times we have:

(5 +.1)2 = (5 + 1) ?( (5 + 1) = 6 X (5 + 1)

And thus

CI

-6.X 5 + 6 x.1 (5 + 1) X 5
+ (5 52 + X .5 +- 5 1

+ 1 - 2. +.2 X 5 + 1.

62 52 ;

e

2 X 5 +

In just the same way we could show that

72 62 r0 2

+ X 6 1 62 = 2 X 6 +

(T y it-and see.) So, putting ,n in place of 5 or 6 or

;lumber, we have

.(n + n2 = n2 + 2n + 1 - n2 = 2n + ;10

,We could-write th.it'in words: The difference,betw'een the

squares of two suacessive integers is 1 more than.twice th smaller

i one. For inst : 121
2

1202 = + 1 = 241. Thi is'a

atever

Inuch simpler cOmpUtation than squaring both*numbeza's and t- ing the
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diffjerence. This can also be shown iasing diagrams of:squares.in

dots, but this is left as an exercise..

This shows that the last entry in the second row of Table III

should be 2n + 1.. We mfght che'ck this: when n. is 1, 2n + 1 is

3; en n is 2, 2n + 14s 5,etc.

The numbers in, the second row are in an arithmetic progres-

siOn. If yim look carefUlly, you wili see that each number insthe
31' )

first. row is lmore than the sum of the numbers to tive left of it

in the row bslaw. Why is this so? Another way of saying this is

that the fifth number in, the fiAt tow the sum of the first five

odd numbers, the sixth number in the first row is the sum of t...he

first s`i.x exid numbers, etc. What yauld be the sum of the first

20 ocid numberS?

We can use th14- to get the':formula for the sum of tdie first

n nUmbers.in still another way'. Start with

(1) 3 +-5 + 7 + + (2n + 1) (n + 1)2 - 1 n2 +

4

otice that 3 is the value of 2n + 1 when n 1, 5 is

thev
(

a ue of 2n + 1 when n 2, etc. Then we can write) ihe left

side/of equation (1) as follows:

r

A

(2 )4 3 + + (2 .x 2 4 1) + C2.,K 3 + 1) + ." (211* 1) .

If we write this in a different lxnier, using the commutative
A

property, we have

2 X f) +' 2 'x 2 -± 2 X 3 + \., + 2n + (1 + 1 + 1 + + 1

where there are ri l's in the parentheses. Then,afro the dis-

tributive property', this c be written

ij
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2 X (1 + 2 + 3 + + n) + n.

If we put this in for the left side of equation tly we ge..t8

the equation:

2x.(1 + 2 + 3 + + n) + n = n2 + 2n.

Subtract n from both sides to get

.2 X (1 4-, 2 + 3 ta.. + n) n2 + 2n - n n2 + n.

:Finally, if we divide both sidestby 2 we Oave

11 + 2 +- 3 +
1.+ n = I(n2 +_n) =:r(n +. 1)

which is the formula w had befor4 for the 4-th triangular number.

This is, of course, aemuch harder. way to find the sum of the

first n integers tkkan by the other methods. But it does give

)us a means of finding the Suit of the squares, for just as we got

the sum of the integers by considering th'e squares1.11e should be

able to get the, sum of the squares of the integers,by considering
%

a table of their cubes: Let us,try it.

Table IV

1 . 8 27 64 125 ,216

7 19 37 61 91 . .

12 18 24 30 ...

6

(n + 1)3

p.

Notice that here it is the secbnd differences which form an

arithmetic progression arkthe third differences 'which are all

the same.

The second ro4( should he connected somehow with the squares

of the integers. To get a clue for this connection, we must.

I 1

p.
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determine the formula for the last term in the second row,

which we have called w. Th'is is just
(n + 1)3 - n3.

To work this gut, 'let c temporarily stand for (n + 1)2 and

have

n + 173 = (n + 1) x (n + -1)2 (n + 1)*x c
n xc + 1 x x c C. .

We found previously that. (n + 1)2 a n2 + 2n +' 1, and replacing
c by this, we have- ,

.

.

13 I 2' , 2
.

(n + li n' n x An + 2n + 1) + n + 2n 4,1
= n 3 + 2n2 + n + n2 + 2n + 1
.Nn3 + 3n + 3 1.

(n + s1i3 =. n n + 3n + 3n - n3 3n2 + 3n + 1.

Thus

To checkthis, let us forti a little table of values:

n
+ 3n + 1

1 2 3 4

7 19 37 61

which checks with the second row of Table IV.

,Frcim.this we are now going to work out the following foimula
rfor th.e sum of t-she first , n sguares:'

5 . 43
i4

2

If you find the algebra too difficult, you can just assume the
formula and go o,n to the exercises after cheng the forMula for
a few values of
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Tolvet the formula first notice that in,Table IV,
8i 1 27 1 :ft'.7 + 19, 64 1- + 7 + + 37, etc. Each

number in the frtst -rOW a ft-er the 11 is' 1 more than the sum .of the
\.-

second'.row, and 'to the 'left of it. That sts,

plus the sum of the numbers in, the second row

through w, which is 3n2 + 3. + 1. Hence we have the 'following
equation:

(2) 7 + 19 +

5-2

lumbers *the
.r
r(n + 1)3

From durwork above we see that the right side of this equa-.
tion is eqgal tc9

3 2 1""n -+, 3n, + 3n + I
and the left s'#de may be written:

(3 x + 3 X 1 + 1) +

(3 22 +. 3 X 2 + 1) +

(3 X 32 + ix 3 1) +

(3 X n2 + 3 x n + 1).
Notice that the numbers after the first multiplication signs are
the squares of- e numbers from 1 to n, the numbers after, the
second multiplication signs a.re the numbers from 1 to n _and the.
last number in each line is 1. So.if wp add by columns ,we have,

using the distributive pmperty:f
3 X (12 + 2 + 32

+ + n2) +

3 X (1 + 2 + 3 + . + n) +
(1 + 1 + 1 + + 1),

0

where in the last line there are a l's. We ha e s the
1/4
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sum of the. squarA of t first n, integers, we know that the

1 -2sum of'the first n integers is + n) and the sum of the
. ,.

lis 1.-1, 5. Hence the expression can be abbreviated to:

3s + 3 X i( n2 + n) + n,

. which is what the left side of (2) reduces to. It we equate it
,

to Iqhat we foOld above for the right side we have:

1 23s + 3 X 1k7n + n) + n = n3 +
32

+ 3n.

Since;

and

/

our equation becomes:
\

33
3n

2
+ 312 + 24 223 4._On2 +

2 ",ei 4

3 X i(n2,

± 6nn2 + 3n =
2

Notice that

sides to get

3s -

4 2n *, 5n and substract

tini2

3n + 5112

2
from both

+ 6A -32/1 2n3 +.
32

+_a
2 2

Finally if we dpi de both pides. by I we -1.ave:the formula

2
s = 2n lu- +

'.\

IMO which is what weated above.

.

1

You should check this for, the first two ,or.three values

of n.
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Exgrciaes 5-2

Alpintdots in the farm of squares, show

%2 2
+ 11 - n w 2n + 1.

5-3

2. Find a formula for the sum of the squa s 'of the first- n even

Antegers. (Yaiymay wantto, make a table firit.)

y. Find a formula for the slim of the sqiaares of the first n odd

integers. Hint: notAce that (2n - 1)2 142 + 1.

Given tlie numbers 4, 7, 12, c61.you fAm'a table beginning

with these numbers'in whic4 the first differences are in air'

ai.ithmetic progression?

-4

5. Answer the same question as that in prob/em 4 but with the

numbers 4, 71, 12 replaced by 10, 5; 11 in that orderk.

N,

6. Given any three numbers, could a table be constructed aving

the given numbers as the first three entries in order and for

which the first differences would be in an arithmetc progres-

" sion? Give reasons for your answers.

7. Find a formula for the sum of the first n ''vubes of integers,

,that is, for 1, 8', 27, 64, etc.

5-3., Finding Formulas that Fit

By the methods we used in the previous sections we could Xind
F

formulas for the sums of cubes, fourth powers,fifth

on but the computations and algebra become more and

It is time we tried something else.

powers and so-

more difficult.

A

As
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We can use some of the same Me-thods to find formulas to

fit some tables of values. Suppose we had the sequence of numbers:

3 7 11 15 19 die

sand 14e wanted a foxmula th'at would fit these values. We could

form a table and take the first differences

Table V

3 7 11 15 19

4's 1; 4.

'These differences are all the saMe, that Ls, the numbers in the

first row are in an arithmetic progression. (Of course the next

va1u4, mtght,not be, but we'are only trying to find a formula which

fits the given values.) From this we might guess that the f9rmula

for.the-numbers infirst row would be af the form: 'an + b

for some *umbers a and b. Suppase we try it to see if it works.

Then the n-th and (n + 1)st entrieS would be

an + b. and a(n + 1) + b

and tlieir diifference,wauld be

a(n +1) + b an - b .1 an + a + b - an - b a

which is the difference. Since all the differences are 4, it

follows that a must be-4 and our formula becomis

4n + b.

lbw when fn pis 1, 4n + b must be the first entry, that is

4 4- - 3
tatla ic h mea-iieihat b must be - and hence the formula seems to

be,
4

'4n - I.
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If we try this for Various values of n see that At works and

this indeed fits the five entries in the first row 9f'the

A

table.
**

Actually we could see that this would have,to work if the

numbers are in an arithmetic progreseion, once we have fixed b

so that the.first entry fits the foriula; for, whatever b is,

.he numbers in the first row would be

4+b. 2x 4+b 3dx 4+b

and the differences are all 4's.

tie.
Really we have proVed more than.we set out Co do. We h-ave

Thesrea: If e first.di^fTerences of a tablp of valuee

are all the.same, call them a then the numbers form an arith-

metic progression And the formUla for the n,..th term is

an + b

where 'b is so chosen that a b is the first' number in the
w

table.

By meanS of thie theorem we could iet a formula to fit any

table of values in an arithtetic progression that is, in which

the first differences are all equal. What about tables in which

thie..is not the case? In order to explore this, suppose we. test

the tables for a few 'formu,l.as to see it.we can make sothe guesses.

.
Table for n(n + 2) a p

2
+ 2n, A

4

3 44 5 '
.

*
\,-

n(n + 2) 3 g 15 24 35

first differences 5 7 9 11

4

1 / 7
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Here the first differences form.an arithmetic progression.
\

(You should check these valuei and empute a feW,more.)

Table for,

n ,1 2

n(n-+ 1)(n + 2)
w

,6 24

First differences 18

Seccind, differences 18
A

n(n? .1)(n + i) *

3
..4

5 6 .-'

60 120 210 "' 336 eifs

-36 .60 _ go 126 -..--

-24 . 30 :36 a

Notice that n(n + 1)(n + 4) is the product of three successive .

integers begitning with n. Hefre it is the second diffprences

which are in an arithmetic progression. This would give US a ,

way of computing the values of n(n + 1)(n 4- 2). successively,

assuming that the second differences are in an arithmetic progrés-
.

.

sion rid matter how far one goes in the table. For instance, the

next second difference Would be 42 * 36 61'the next first

difference Would be 126 + 42 m 168 which meanssthat the next eritry

in the line aboie would.be 336 + 168 = 5O4. iTo check tliis we see

that 504 2R 7 X 8 x 9.. (Notice that every number after the fir-st

line in the table is divisible by 6. Why is this so?)

IP

. Try one more table: .

Table for n(n + 1)(n + '2)(n 4:3)

.21 1 3 4 5 6

n(n++ 1)(n + 2)(n + 3) 24 -12Q 360 840 1680 3024

First diqerences 96 240 ' 480 840 1344

Second differenqe 144 240 360 504

96 '120 144Third ti
-
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Here it is the third differences that are in an arithm-etic progres-
.

sion. "that every ndmber after the first row is divisible

by 24. Why'is this so?

Beforegoing further, ilroutshouldtry bi.t a few for yourself.

gxercises 5-3-a

Find ta,kles of values for each of,the following formulas

and compute first, second, third differences:

(a) n2 + 3n 2

(b) n-t-n

(c) n n

.

glappose you computed a table f9r the fonrula:' n4 - n2 and'

computed the first, second, ttc. differences. Guess how soon

you would come to an d'rithmetic progression. Then check it

tp find out. ^

Now we can come back to the problem of trying to find for- .

mulas that fit certain tables. In the beginning we considered

, triangular numbers and a little later, square numbers. What

. would "pentagonal numbers" be? (You remember that a pentagon is

a five-sided figure - the shape.of the Pentagon in Washington.)

Consider the following figure which is a set of pentagons:

i#
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We call 1 the first pentagonal number and 5 the next. In the

next,pentagon there wdll be 3 dots on a aide and We add three

dides with a total df 3 + 3 + 3 - 2 la 7 dote. (We sVbtract-2
,

for the vertices which 4e Aave.counted twice.)4,The next time

we would a'ad 4 + 4 + 4 - 2, or 10 dots. Each time we add three

more than we did the previous tite. Ir this way we get the follow-

, ing table of pentagonal numbers:

Table VI

1 5 12 22 35

first differences 4 7 10 13

second differences 3 - 3

From'thia and our previous experience it looks as if the

la which would fit this table would be of the form

ari2

tor a properdchoice of the numbers a, b, and c. Let us see



iotit 5-3

q..f this will Work out. Then the n-th 4n1 (n +,1)st term§
,

would be,
Aee

an2 +.bn c and a(n + 1)2 + b(n + a )+ c

and their difference would be

ra x [(n + 1)2 - n21+ b X..L(n +,1 r n1 + 6 -
vt A ,

We haveia1ready fOuntithft An '4 l)i,n2 2n + 1 and hence the

differikire is

a( n l) +.b 2ah +,(a + b).

Now this has to be eRual to the first difference formula. But we

can find th,ie. Since the first difterences of the first differ-

-ences are all 3, the forMula f9r thefirst.difference in the table

must be 3n + r and r, must be 1 to have it give the number 4

when' n . 1. So we have .

This means that

3n + 1 + (a + b)

2a and a + b 1,

which gives a ana b -
1
2'

Hence the formula for the numbers in the first line of Table

VI, the pentagonal numbers, should be

2 1
n - -n + c

2 2

for a proper choice of c. Putting ri 1 /n the formula and

setting it equal .to the first entry, 1, in the table, we get

2
' ^

,2 1 xl+c.. 1 + c
. 2

which shows that 'c must be zero. So our formula for the n-th



4

5-3 109

term in the first row of Table 41 seams to be

' 2 - -111-112
22

-and trying values for n will show'you that it does indeed fit.
,

'Furthermore it has to fit
t

-s4ce the first differences are fixed

and they determine the-entries on ihe first line after the first

entry is given.

Exercises 5-3-b
4

Find formulas which fit each of the following tables of values:

(a) 2

' (b) 5 19

(c) 8 20

7.12 17 22 27

43 77 121

38: :62 92

2. What kind of a formula do yo4 think would fit the following
-

table of values:

2 10 30 468 130 222?

7.

Find the formula which Will fit the numbers in problem 2.

Show that the following. numbers are the hexagonal numbers

(a hexagon is, a six-sided figure).

1 6 15 28 !O

Find a formula for the hexagonal numbers.

Use the methods of this section to find the farmula for the

sum of the first n squares.

6. Have you ever nciticed cannon balls piled in a triangular-
...

pyramid on an old battlefield? There might be a little pile :
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a

N4

with 3 in a triangle on th bottom and 1 on top ,of it, g ving

4 in all. If there were three tiers, the triangleQntrh
.

grolAnd would have 6, plus the four above Would he 10. If
>

there Were four tiers, there would be 10 o the,bottiom with a

total Of 20 irithe pile:. These numbers aise called pyramidal

numbers- and are'

'1' 4 10 20 35. -
Can you discover any relationship between therrand the tri-,

. angular Lmbers? Can you find a'formula for the pyramidal
'4

numbers?4.

Suppose there is a table of values in which the third 'differ-

ences form an arithMetic progression. Can you guess what sort

of a formulaould fit the numbers of the table?

Am. rb%

There is a faMous theorem that every integer can be expressed

as the sum of three or fewer triangularmumbers. Try it out:

1 = 1, 2 = 1 1, 3 3, 4 = 1 + = 1 + 1 + 3,

14 = 1 + 3 +.10, etc.

Notice that the nambers 5 and 14 actually rieed to have three

triangular numbers in the sum. The theorem also says that

every integer which is positive can be expressed dt the sum

of four ,on fewer square numbers, five or fewer pentakzial nutia

bers, etc. You might be interested in trying this out. The

proof is Very difficult.

96 There are some sets

row of differences,

of'numbers that have-the'property that no

no matter how far you go, form an-4
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.-arithTetic progression. Two.such se '-are

'VI 2
22

?3 24

(b) ;1 1. -2

-2rrir ;

13
41

111

where in th,e second sequence each numbec is the sum of the

previous two./ Show-that no matter how many differences you

take, no set will form an arithmetic progrepgion.

*

10. lie know from problem .10 in section 1, that any twp given

numbers may be used to stai-t an arithmetic rogressiOn.
-

Why does thi-s -show-that no matter what.two numbers you may

name, I can find a,formula. like: an + b which has these'

two number as values, for n and 2?

11. Look at problem 7 in section 2 and see if you can answer the

following question: Given any three numbers, we can find a

formula like

an
2

+ bn + c

'which will have the gikn numbers as values when n = 1,

n = 2, n 3?

.12. What kind of a formula do you think would fit any set of four

values? Can you draw any general conclusions?,
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SUPPLEMENTARY UNIT 6,

THE LATEST 19)PE oN alms

6-1..

\

We are going to rei,port to you on fesults.published by'

113

Professor Raphael M. Robinson, of the Univety of alifornia

at Berkeley, in October, 1958, isssue of the Proceedings of the

American Yath'ematical Sodiety. This, will give you some idea of

how research mathematicians are applying high-speed computers to

solve prtoblems about prime

Robinson's note is based o4 calculations cai-ried out during

1956 and 1957 on the SWAC (Standards Wpstern Automatic Computer) at

the University-of California in Los Angeles.

To obtain an idea of the meaning of this work, let us'think

moment about the problem of finding out whether a

a prime. According to the definition of a prime,

given number..

we mtst

find out whether n is divisible by some smaller 'number other

than 1.2 The dost obvious method is to divide n 'birVhe numbers

2, 3, 4, ..8, up to n - 1. If any of these nunlberS divide evenly

into n, then n is not a price. If none of these divisions come
L

out evenly, then n isNL prime. This method requires_ n - 2
,

divisiocis. If n. is about 101m, and if eabh division requires

.001 seconds, t en this\would takg about 1097 seconds. How, many
.,..

seconds are the: e ill a year? .Abpput howlrAny years would this

take?.



We could shorten the work\very much if we till k a little,

If 4
n ds not a prime, then n can be expressed s a product of

/
two smaller numbers:

IP%

n a eb.

If a is the smaller of these.factors, then n is at least

a-a'-a2.

nt a2.
%

Therefore, if n is not a primey then it is divisible by some

number a whose square is at most h. To test whether n is

a prime, it is enough to. diyide n by the numbers 2, 3 se,

up to the largest number whose square,is no larger than n.

If n < 1,000,000, then we do not have to try any, divisors greater

than 1,000, since 1,0002 0 1,000,000. Thus to see Whetiler 999:997

is a prime, we only need to divide by 2, 3,-, 999. By this

method we only need 998 divisions instead of 999,995 divisions

in the previous method.

If n is about 101WI, then this method ripquires only (II
A 7

100about 10 50 divisions, for 1050 -10 50 10 . If each division

takes .001 seconds, how many years would it take by this method,

to test whether h is a prime.

If we wish to test really large numbers, we must look for

, better methods so that we can obtain the answers in a reasona le

time. Therefore, mathematicians try to find special classes of

numbers which have special properties which enable us to reduce

the work even more.
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For exagiple, a'great deal,of woil%has been done on numbers .

which are one less than a power of.9'i. 1We may represen.t such .

numbers in the forth .

8

If m 2, then, r 22 - 1 1 3, whi.ch is a prime. If

m = 4-?en n =24 - 1 m 16 - 1 = 15, which is not a prime". If

m is not a prime, then n- cannot be a prime. But m may bp a

f

prime witliout n being a prime.

ZxerOjes

1. Make a table up*to m = 20:

H

xi 1 3 7 15 31

2. Teft the statements

'If

If

If

m Is. divisitile by 2, then

m is divisible by 3, then

m- is diilsible by 5, then

nis
n

n

divisible by 3..

is divisible by 7.

is divisible by 31.

What is the general lawl

Robinson reports on numbers which-are one more than a small

multiple of a-power of 2, that is, numbers of the form

n lk-2m) + 1,

where k is a small odd nUmber.

He and his group tested for primeness all numbers of this

form with' k < 100 and m < 512, as well as a few larger ntumbers.

First they divided by all numbers,less than 10,000, and for k < 7

they triedidivisori up to 100,000. After eliminating all small

1 7
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factorsj in this way, they then applied a. theOr4m. stated by
,Proth .in 1878; Let us se.e if w

. .
can't get some idea of what

:
Proth's theorem says and-how it is used.Without trying to examine

t ,

4, all of .the

Pro s thearem gives a method of teiting numbers of the ,

, fbrm n (k2m) + 1 for, primeness provided the counting number

k is odd and less than 2m. We canavoid much of the coMplication

of the statement of Prothts theorem if we restrict ourselves to
the case where k is not divisible by 3. Thjas--we may use

k 1, 5, 7, 11, 13, 17,
- 1, 2, 3, 4, 5, 6, 7,

and we are able to test the' numbers n (k2m) for primeness.
For these numbers n Froth's theorem states that

6 .2 .1§. prime Lc And ojily j II ILE a factor gl

2'
3 + 1.

D2es this look mysterious.to you? It is likely that it does,
because you are not a mathematician. It would very probably look

a bit mysterious even to a mathematician if he didn't happen to
be familiar with the special techniques which are needed for a

proof of this particular theorem. HowtVer, if you will accept
our word that it is a true thearem (and a treat many very respect--
able mathematicians will t'estify to its being true) then it
shouldn't be hard to see wharit'sayg and how it is used.

( 11=1

In theff irst place, what does 3 2 + 1 mean? The expression
11:1 is beinggicsed as 'an exponent. The number n we are using2

-,
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here is odd. (hy? What is the form of n?) /Thus, A - 1

n-1
n-1
2

ven, so that is a counting numberi. Thus 3
2

* 1 isei ---
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,just one more than 3 raised to a couAing number-power. To 'test

n for primeness we need only Eind this number and then divide
4

it by n./ , If this division comes out even then n is a prime;

otherwise n is a composite.

What numbers can we test for primeness by this method? Let

us list a few of them in a table and then apply the test to some

of them. Fill in idle blank spaces ih the table below. .Remember

that Froth's theorem requires that 0 < k < 2m, and that we have

restricted ourselves ta numbers is .which are not divisible by 3.

(k.2m) +

1

2

1 3 9
5 3

.2 3 57'
.1 4

5 4 81

7 4 113

11 4 2.
13 4 209

5 33

Now let us see how

To refresh our memories
#

161
, 225

11 5

1 65

321
,

_ 417_-

.

5 545

2.817

17,409

17 2,177

10 7,169

10,241

e test works for a few of the e numbers.

restate it here:



If n_= (k.2111) + 1 where- 0 < k < 2n3 k is not

divisibleloy 3 then n is prime if and only if it is s fáctor-
9,

of

n-1

3 1.

4atule 1: .Let k = 1 and m = 2 so thbt, n = 5. (Look

it .up in the table.) We are testing 5 for primeness. In this

case ni".1 is or 2, so

3 2 .4. ..32 1. 9 + .1 10

n-1

Is n a factor of 3 + 1? Is 5 a factor of 10? Yes, it is,

so the test tells us-that 5 is a prime. loes this check with

what you already know?

Example 2: Let k a And m = 3 So that n

it.up.) We divide-

f
%O.

-.81+ 82

a, 9. (Look

by 9. The division does not came out even, sothe test tells us

that 9 is not a prime., Dods this check with what you already

know about 9?

Example 3: If k 1 and m = 6 then what iS n? The,

table should tell you that n 65. If it doesn't, work it out

again. ail is 32, then, so

n-1
2. 332

= 1,853,020,188,851,842.

129
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We would have to divide this numbes by 65 to continue the test.
)

It would not be worth,the- effort, however, since we ,cAn easily

recognize thtrt-65. has 5 as h factor, and is therefore not a

119

\ Let k = 7 and m = 4 so that n (k.2m) + 1

113. .In thit case the number 3.2 + 3
66

+ 4. is 9 times the

souare of 1,853,020,188,851,842 Plus 1. If you are ambitious y:ou

,may calculate.othis number and divide it by n = 113.. The division

will come out even if you do Your work correctly, so what do you
dik

conclude aboUt 113?

Exzmples 3 and 4 should convince of one:thing. Froth's
gmtrr

theorem is not well suited fpr testing-large numbera for prime-

ness by hand calculation. Howemer, large computers are constructed

expressly to make calculations of the order of the ones whichds-

couraged us above. And they do them quickly! On tbe SWAC the'time

for the test was no more*than liminutes as long as m < 512. For'

m about"1000 and' k 5, or 7 the test took about'7 minutes.
1000 00The numl?er n 0, (7'2 .) + 1. is larger than 103 . Compare 7

minutes with the time it would take the machine to test 10 for

prleeness by trying all .possible factors. Earlier in this section

you got some idea of this4time 'far numbers of the order of 10100

For k 1 the to had previously been carried out for all

m < 8192, and the only primes of this for6 which have been found

are the cases

m k 0, 1, 2, 4, 8, and 16.
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The"?rgest new prime discovered by this work is the case

1947: -"°

(5.21947)'+

If you wish to estimate, this number, fige K *tice that

Therefore . we' have

21947 >

103

21940

1000 < 21° m 102

(210)19It > (1031194 105'62.

Therefore n has more than-582 digits. On.the other hand, notice

that

1

Therefore we have

213 8096 < 104.

n < i. + (8.21947)

41 2195° 41 1 (213)150

4. (104)150 1 lo600

'Consequently n has no more than.600 digits.

4

Remember that b using the theorem of Proth, this prime was

descovexed bi a singl division taking a matter of minutes. By,

using ei)ther of the cruder methods discussed before at least
,-1

0
291

divisions would have been necessary. JeW long would this
,

have-taken at the "rate.of a thousand divisionsper second?

This number'is the fourth largest Oime known at present.

The larger ones are the numbers

- 1

with m 3217 2281, and 2203. The latter two were reported by
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Robinson in the Proceedings of the American Mathematical Society

\in 1954. The largest,one was reported early in 1958 by H. Riesel

in Mathematical Tables and Aids.to Computation (page,-).

Example 5: Estimate th'e number of digits in each of three
.1'

prtmes.*Lie

*Perhaps you would be interested in the general statement of

Proth's theorem. For numbers n = (k.2m) + 1 with k diyisttle

by 3 the important difference in the test for primeness is that

Ir.1

the number 3
2

+ 1 must be replaced by a new number. The num-

ber t6 use ts of the form

n-1
2

a 40- 1

where a is a counting number which may have to be chosen differ-
1

ently, for different values of k and m. The condition which a

must satisfy will be found in the statement of Froth' heorem.

Thoreva: Let 0 < k < 2m and n (le.2 ) + 1. Suppose

is a counting number which has the property: xng, sum of a .and a

'multiple of n is a perfect square. (Alter4t1ve: the sum of

a and a multiple of n ip neve;. a perfect square.)

Than n is a prime if and only.if it is a factor of

n-1
2a + 1.

A

The condition which a must satisfy is rather a strange one.

It would seem that.it might be difficult to,find a number which

satisfies it in some cases. We could never find such a,number



122 6-2

by any nuJer of trial opbrations, fOr the condition which a

must satisfy inNrolves a statement about all Tultiples'of n. We

may relect some choices of a on the basis of a single calcula-
.

tion, though. If k = 3, 'and m = 2 so that n = 3.2
2

+ = 13.
A

then would = 4 do? No, because 117 + a = 117 + 4 m 121 is

a perfect square,. and 117 is a multiple of n = 13. To find a

number a which we can be sure will fit the condition for a given

n, then, we will have to use reasoning. We will have to reason

that, far a certain number a, no matter how many muUq.ples of

n we try, adding a will never give a perfect square. Mathe-

maticians know enough about numbers so that finding such a number

is not a very difficult problem. Aa you may have guessed from the

discussion above, it is possible to show that whenever k is,not

divisible by 3 the number a 3 satisfies the condition of 4tici

theorem. Once we have faund the right number a to go with

can avoid the many tedious ,calculations necessary to test a la

number for primeness. Instead of dividing n by all prime n bers

whose squares areaess than n we need only perform one ca ula-

tion. We simply try the division

n-1

(a 2 + 1) n;

if it comes'out even n is a prime, if not, n is not a prim


