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4. - | SETS ' .
1-1. Introduction

You already are faﬁiliar wiih the word "set."® A set of
} . dishes is.a collection of diahes; A set of daminoes is a
cdllectiqp, or group, af dominoes.ﬂ In mathematiqe we use the
word 'sct‘ to speak about any collection of any kind of thing, -

. L )
o~ In your classreon there is a set of persons. There is alsd'a

set of noses, agg a'set of desks. You may notice that there
13 a relation between the set of persons in the ropm and the

set of noses in the room, '

-

' The language of sets is very useful in describing all sorts

of ;ituations. How is the set of pupils\;n ycur class relsated
. .
to the set of boys in the class? Compare the’number in each

following three sets: ‘
the set of pupils in your class,
\ A
. | ! _
: the set of boys in your class, and_ - o .
_ the set of girls in your class.
The following three sets gre related in a different way:
k\ the set of redheads, o
the set of baboons, and
/ .
"the set of redheaded babéons. ?
o , ;o . N
o o¥
' R 4
j / ‘
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_‘ i In ‘this chapter we are going to :iudy relations between
sets,,gnd ways in which we can combine sets 20 -obtain ;ew ones.
~ We shell find- it convenlent to invent some new uerds and symbols.
It‘might be a - goed idea to review those.chapters before reading
further. "~ __— .‘ ‘ | s

¢ .

, . _
.1-2, Sets, Their Members and Their Subsets

_A ' When we speak of a set as a .collection of thinge _we do
not mean~that the things ere all together in one place or‘time.
‘The . set of all living women is a widely distributed set. You\\
.will meet members of this set all over the world. The set of .

- all presidents of the Uifted States has as members Geerge Wash-~
'.intton and Dwight D. Eisenhower, among ethers. Name other
qembers of this set.
'TheJ%hings' may not be objects which yeu Cae touch or

eee. The set of all Beethoven eymphqnies does not contain)any
conerete objects. You may have heard some of its members. The
:set of 'all school orchestrad in the Unlted States is a’set

., whose members are themselyes sets of pupils. The set of classes
.in ‘your school is another set whoee-members are sets. It is
'digg;rent from the QERVQf all students in classes in your
school. Which'ofjteese sets has, more members: Are there more

N

L . ¢

| \ Sometimes we deﬂ‘Pe a set by listing its members. Your )

classes or,students.in your, school?

teacher might appoint a committee to be in charge’of the.

b Tt
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mathematical exhibits in your class. She may say, "The members
of the Exhibits Committee shall ‘be Lenore, MurEET?\Dick and-Al.'

We often name a set which is defined in this way by liéting

names of its members\and enclosing/them in braces: .

- T Coe
"Exhibits Committee = {Lenore, Muriel, Dick, Al}. ~

;  We use the symbol “"g" (Greek iette} epailon) to mean

o

"is §|mgm§gz Qf." Thus we can express the fact that Lenore is.
A  on tihe committee by writing SO ' S S
/ . Lenore €' Exhibits Committee.
We couldistate the definition of the committee like this:
X € Exhibits Committee if and only if x' represents
- Lenore or . x represents Muriel or x- represents Dicg
, or x 'represents Al. . K : \T
< | ’ y
" Another way to describe a set is to state the membership
requiremonts. These are conditions that something must satisfy
in order to get into the set.. The set of persons in your class- .
roomﬁhas a very sxmple membership requiremenJ The objeot i
is in the set if x 1is a person in your classroom,” and only
then. The set of common multiples of 4 and 6 is the set of
all x for%whicp it is true . that x 1is a multiple of‘L and
x is a mdltiple‘of 6. You might imagine each_ooject'in the
universe applying fgr membership in this set. If the object
is not even a whole number, then we throw it out immediately.
If it is a whole number we divide it by k. If the remainder
.‘\ is zero, we‘then divids,the number by 6 and see wilether 6 is a
factor. If x passes this'test, too, then x‘ gets its membor;

¥

<

“ . Ay B
0 . o . : 0 . .
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ship card in the set. 1f it fails any of the*Qegts, we reject

it‘ ’ ‘A ‘ \ -t | - ) * ' A‘ -."‘ . , ‘.Q
e . . . |
. We sometimes call the members of a set "elements of the.

*
-
-~

set.® You are an element of the set of mathematics studentss

Property ‘ T .
You begin to see that for a particulai set' to be cleafly
defined there must be some scheme or device for determining

-

whether or not a given element is in the set. Heuelly a_set
is described in terms of some property,‘or prepprties which:
its elements have in(common.' For exampie, the set C may be
thought of as theTpupils‘in your class. The comien.prcperty‘
~ is that each element is a member of - yeur class.’ Again, you
may consider eet B as the set ef boys ih your class. The
element of this set contain two prOperties in common: (l) the
‘.~elemente are all in your class, and_ (2) ‘the elenents are all
boys. Sometimes a sat is described sxmpiy by enumerating the
elements. Fer example, the eet of even whole numbers may be
described by ériting; 0, 2,.4, 6, 8, 10 = -~ -~ . What is the

common property in-this set?

-

. ‘ , .
r

-1. List a common property or properties of dhe following set&.

-

(a) {Sue, Jane, Dorethy, Mildred} . 'I ‘ .
» (b) {Washington, Jackeon, Eisenhower}.
(c) {1; 3, 5, 7y 93'11}'

(d) {12, 24, 36, 48].
L B
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2; Translate the following gathematical-sentenées into Ehgl?sh.
(a) Tom &£ {Carl,. Jim, Tom-, Robert} .
(v) 6 €0, 2,4, 6,8, 10, - - = }.
- (e) If X &€ {Tom, ?ari, Bob, Jim} then "X represénts
Co - Toh; or X represénts Carl, or X ~repreéénts Boh,

or X ‘represents Jim.

3. 'Wﬁich of'the following are true? ' ' o ,

(a) 4 €13, 7, 10, 4}.* N

(b) lion,GZ{baboon tiger, dog, lion}. L ’

(c)f X €1{8, 14, 17, 28] where X is a multiple of 6. |

(d) X € [1, 2, 3, by 5, 6, - - -] where X is‘a counting
number. : . o | _ 3

(e) .Washiﬁg;;;, D.C. € {Alabama, AlaSka, Arizona, -?-, West
Virginié, Wisconsin, Wyomingf.

4. List the members of thé'following sets: ,
(a) The set of X such.that X 1is a factor of 12 and 30.
(b) The sét of X such that X plays a violin, or X
| plays the viola or X plays the cello. f
(c) The set of X such that X is afyhole number., = ° X
(d). The set of X such that X is on; of the U.S. Pr831-

cents since 1930.

»

e | Consider the set of major league baseball teams in New York
in 1959. This set has one memﬁer the New York Yankees Baseball i

"_“"

=" Club. Its one member is itself a set, among whose members are
) A
Mickey Mantle and Yogi. Berra. The set whose only member is a

& i

. 1

”
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certain object is not the saﬁe as that'oBEECt. 'The symbol
. . . ’ ] . )t
{3} 4is a name for thezeet ﬁhosﬁ only_member is‘3c

L
«

The set, or teanm, of New York Yankees is a §g§§g§ of

baseball players. Every member of.the team isia baseball player.\

.In symbols, we write: If X €fYankeee then I Elthe eet of
'baseball players. N ) - '

. l. . . ' | i ‘

You have been introduced to a new word: that of gubset.

.Let us‘coneide} anotpgf einmple. ‘Suppose in a class of 25
‘pupile there are 3 pupils whose fifst'nan 'begins with " "
' You can then say that these 3 pupils form a subset of the
class. Again, consider the set of even counting nnnbere-

'2, L, 6, 8, 10, - - = . This set can be considered as a eubeet
of the counting numbers: 1, 2, 3, u, 5, 6, '= =~ . -

Suppeee the. set of pupils in your class whoee firsﬁ naﬁesi
begin with *S* is {Sam, Sﬁsan. Saily} The subsets of this
set may be lg;ted as follows:"{ am}, {Susan}, {Sally}

'{SQEf Susan}, {Sam, Sally}, and {Susan, Sally}. Sometimes we

. say that a set is a subset of itself. |

Refinition:
- A set R is a subset of a set S if every element of R
is an element of« S.
. i ‘ | | N )
Iv is necessary, at ‘times, to talk. about the relationship
of ‘a subset to a ee@ or, the relationehip of a set po another
eet. We eay, for example, that the set of even counting numbere

(uhich is a subset of~the Qountin numbers) is contained in the,

set of counting numbers. To writ this in mathematical\language’

< . L . . \ ;.\Y\\l 12 \‘

\



. wefkse theisymbol ARG Whidh is read "is contained in."
You can now write:: {2, 4, 6, 8, - - -1CH1, 2,3, &, 5,6, = --].

Sometimes the symbol " " is also used.- This is read‘"contains.” :
. B ‘,\ . - o .

You canh now also write:
[ 4

A ]

'y | e,
11, 2, 3, 4, 5, - - -} {2, 4, 6, 8, -~ =1,

-
- {
B IS

which reads: The set of counting numbers contains the set of
. ° ’t . . . “ . *
even counting numbers. Let the set of your class be called

"C*" and the set of boys in your class be called "B". You can

then write:. .

~ . ‘ -

BCC, or
CDB.

— N

You may_be-helped in this study by use of diagrams. A
mathemdtician always draws figures or diagrams when possible.
The diagrams used below are called "Vénn"‘diagramé. Consider

efg&in the example B(_ C. We sketch the following
‘ | .

"~

- .This illustrates that the set of boys in your class is contained

in the set of your class. Again:

[3

illustrates. that th et of all red. flowers is contained in the

1.3

5
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. set of al;-flpwerSL"Let the set of all red flowers;be‘célled

A

A

-

-

R and the set of all flowers ﬁa called F.. The;;elationship

of‘ R and F ‘can then be. written as: |
| R -RC& or

S TR

|
\

. Donsider the following Venn diagram:

t

Al flowers

«a

'Thié diagram indicates that the set‘cf all red flowers.belqng§

to the set of all flowers. It also indicates that the set of

¢

all tulips bélangg to the set of gll f_lm;ers. Let the set’ of
all tulips be called T: The hbov; ?elapionsh{ps may now be
expressed as: : l |

‘ R(::?, and

TCPF. "~ ~

What can'you say.aboﬁt the relationship 6f set R and set T?
You unﬁld certainly have ﬁo say that some tulips are red and
are thus contained in the set 'R, but jou_certainly cannot
say.that T(::é is true. Giv? some thought to this situation

-

for a while. - ) : <

- / Exe | 142-

~
-

1. Translate the followigg mathematical sentences into English:

.‘&

. , Ry
. - o 1

N

]
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N RN (a)  If X€E {Red flayers} /then X C the set of all flowers.
. " (y) MCN, and N:) M. R 7 - P

: . N . 5;‘&::,_
(C) {1’ 3’“ 5, 7‘, 9’ ll - = _'}C{li 2! 3! ’1‘"!-5! 6’ - -~ }' }
2. Write 'all possible subsnts of tbe set, {Q‘ 5. 6} e
‘ K e “ ‘ ‘& "!é ';'qk:.\F J?. ‘ i
3. Translate the fellowigg Englishasentences into mathematical

w
(a) The set {12, 20, 32} 4is contained in the set of

B, .
N
O .

- | .(b) The set of the Great LaKES"bontains the set of Lake 5

sattences. . - 4 | "
all whole numbers.

Huron and Lake Michigan.
- \ (c) The set of {[Hoover, Truman] is’ contained in the

~ V "set of all U.S. presidents since 1920.

b’
Lo Draw a Venn diagram to iilustrate the fal¥owing: ' ‘
‘(a) The set of the Hudson arid Ohia/Rivers is contained ‘/ |
| in the seteof all rivers in the United States.
(b)‘ The set of tigefs, lions, and baboons is contained

in the set of all énimals. )

- - L ) ' - l
X 7 (c) ,The set of 16; 36, and 40 is contained in the set .
of all couﬁting_numbers which are multiples of ‘4,
’ o (d) The set of 6, 1/2, 3/8 1is contained in the set of |

U

.all rational numbers. | . ‘

-

5. Which of the following are true and which are false?
j ]

. (a) {Al, Tom} D {Al, Bob, .Jack, Tom}.

(b) {Sam, Sue} C {Slim, Tom, Bob, Sallyj.

(c) The set of all yellow roses is contained in the set

-

.

: of ail yéllow fl&wers. , ,
- Q ‘ i , . I [ . ) i
7
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(d ) {28, 56, 112} C the set whose elements- are multiples

of 4L and also of 7. ;

€

6. Given three ééta A, B, and C. If ADB and BD C,
does A:) C? Illustrate yogr‘answgr with a Venn diagram.,

L U

1-3. Operapions with Sets,

Supposé the set: iBill Jim, Tom, Sam} are the boys §f'
~a class who play in the band. Call this set B. Let the set:
[Sam, Tom, Carl} be e‘boys i the same class who have red
hair.>’ Call this sgtuwﬁ. Now if we combine these two sets we
would get the set: {Bill, Carl, Jim, Tom, Sam}. This would
be the set consisting of all elements which belong to set B,
or ﬁo set R, or to both ée@s. We call this the union of two
‘sets. The symbol jused is: "U". We can now Write:
| | {Bill, Jim, Tom} Sém}\J {Sam Tofm,, Carl

J{Bill, Garl Jim, Tom, Sam}.
If we call'th union of these two sets C, then you can write:

BUR=C, and it is read:. B union R equals C.

The combining of two sets in this manner is called an gperation.

Before working some problems let us consider anog%ermatter

which was intreduced by writin%/ BUR = C,

_SHﬁllﬁx Qi._ﬁiﬂ
We say thaé two sets are gqual if .and Only if each element

of one is also an element of the other. Suppose we have two .

sets A and B: If ACB and BC A then we cansay A =B,

16

A
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‘ For example sﬁp‘pose that in y‘odr\ cléss there a.re‘ only fol_ir
redheaded pupils -which we shall call set R and furt.hemoz'e |
these four redheaded pupils are the only onés&having,their ' -
birthdays in January, which we shall call set \\g We can write:

RC ¥ and JCR hence. R = J.

Consiéler again: BU R = C. If we can write (B U )¢ axid‘
~CC (BUR), then we can say:‘ BUR=C, Af\ter/;éome thought
"you should see that this is a true statement. ‘IngtEad of say-
:ing that two sets are equgl;;we sometimes say.they are jdentical.

This is a good expression since we can say that two sets are

equal ifand only if every element of each is an element of the

‘.. pther.

~l. Consider again the two sets, B and R. Do yoy

-

suppose that D .
T "BUR =RU B?
Let us investiga;e: | _
BU R = {Bill, Jim, Tom, Sam]} U {Sam, Tom, 'C:arl}
= {Bil1l, Qgrl; Jim, Tom, Sam}. -
RU B = {Sam, Tofn Carl}U‘{éill Jim, Tom, Sam}’
i

Bill Carl, Jim Tom, Sam}
You see, then, that B U R = RU B. Does this recall W
. what you ‘léarned about the "commutative" property? With a

little thought on the M conceﬁat you should see that for

14

any two sets M and N MUN=NVY M, and the commutat.ive
L)
property is true for sets under 'the operation of union.

.

)
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’ 2. Doyou think the following is true” B "*_ : & _
Au((ByUC) = (AU B)UL., -~ 7 e
- Let . A = fi1‘2,‘3}; ;B.- ils‘A}; C.‘,[Z, 5, 6}. .-, «

Then:. , AU (BU C) = {1, 2, 3

i, 2, &, 5, 6} . S

, T‘{lt 2"3; 4,i5, 6}) t'» §
(AU B) U C = il: 2:‘ 39 1+} U {2a‘.5,' 6} ~.
| 'h{l’Azf‘B) ke, 5, 6}. ' 3 -

_ You see, then, that in our example; AU (BU C) = (A0 B) U C.

-

and

This should recall to mind the associative property. With

some thought you should,see that tunder the operation of union

the associative property is true for sets.’

Exercises 1-3-
1. (a) If set— M = ‘{’Red., Blue, Green} ‘a_nd set N = {Blue, .
s Yellow, White], find M UN, |
(b) Is.MUN=NUM? Wny?

2. ;I‘..et A be t)he -set of ev’e.n counting numbers; B the set |
-of 0dd counting numbers; and.C the set of all counting
numbers / . ' o

(a) Is AU B =C? Why?
(b) Is ACC? Why?
(c) Is ACB? Why?:

. {d) Is AUB =BUA?. Wyy? 0 o
(e} Does B A? Why? ' - ! |
(fa) Draw a Venn diagram. to illustrate B C, ) - *
" (g) Is A =B? Wny? Co
: P
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: B C »
, _'-. BEVCGiﬁendthree sets R, S, and T.
T 'V‘Eé)‘ Is. (RUSIUT =RU, (sU T) =1 U (RU S)%¢ Why? ,.
| (bJ Syppose (RU STCT | and” TC (,R‘U S) then is !

gwe;aushm mw=f\ﬂ Lo ﬁf

&4, 'Let C be the set of pubils in‘iour'elaes S be the
N ' set of pupils in ysur school,'and X' be the only redheaded
pupil in your class. Discuss the follewing as to whether
fqr not. they'are true. | - \ _v !
. (a) XE S, (b) CCSs () C =8
o ﬂ'f'TM-ngi_jﬂ X€c  (f) sDc
BT (g) Is X a subeet of C? Of 857 |

. ) :
) (h) Is C a subset of 57 ' - 4
| " “ . | ) ( | ‘ - !
- 5, (a Consider two éeqcentric circles. Let X be the
fqg»f , set of points within a circle whose radius is L units

and Y be the set of points within a circle whose

radius is 2 units. DfaW'a Venn diagram toﬁshow#

Xuy.. - | ’ ’ ‘ f TR
(b) 1Is XCY,' or YT X? After "'giving your anewer; |

'complete the statement? __ 1s a subset of f .

dntersection Ty
Another epeFEtien with sets is that of intersection. Do you
recall this eperatlon from Chapter 4? You no doubt remember
- that the symbel for intersection 1sn "f\" Cet51der sets A,

"and B. If we now write: ANB, it is read "4 intersection ‘B."

~
¥
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The intersection of two sets is the set of all elements which
be%Png to‘boﬁﬁ sets. For example, let set A be { Tom, Sue,
’Carl, Joan}, and set B be {Sam, ‘Sue, Tom Sally}. Then:K
o A'ﬂ B = {Sue, Tom} ‘Do you remember the following Venn diagram

r -~ -

we had several pages back?

All tiowers ,

All red
flowers

‘You .remember a question was‘raised about the relationship of
R and T ~where R was the set of all red flowers and T
was the set of tulips. You can now see that the shaded part
rof the diagram is R AT, Thia situation presents us with
| another set which we have not mentioned. Are there any YellOW

hd

~tulips in set R?

m_ﬁ . 4 o e
At times we have a set which is said to be empty. Such
a (Et iS«oometlmes called the *null set." For example, the
set of yeilow-tulips conéained 15 the set of all red flowers
1s an example of a null set. SﬁppoSe there are no redheaded
; pupils in your class then the set of redheaded pupils in your
class is a null set. Another example is the set all voters
who have their legal residence in Washington, D.C. We shall\
.use the symbol "@" (the Greek letter phi, pronounced "fee")‘

to designate the null set. We say that @ is a subset of

'every set. 2(1 ' —
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Properties . - L ~| -

.1. Given tuo‘sets M and N: Is it tx?ue that HnN-
Nnm Let ,1&}33 {‘1 2, 3, 4} and’ N ‘be ' {3, by 5, 61,
"then MH\N- 3. 4} “and NﬁM-{B L} " In viewof yo%

previous stud‘ﬁyou are led to see. thatthe commutative prdgerty

applies under/the operation of intersection of sets.-

c .

-

2. In a similar manner, given‘three sets R, S and T,
it can be shown that the associative property holds. We would
then have:, R ﬂ-(Sﬂ T) = (RN S) NT. Select an example of

. your own and see if you get a true result.

| 3. Are you reminded of anything by the-,foiléwing, where
R, S gr;d T are three sets? ‘ (/‘
 RUGSNT) = (RUSI A (RUT).
Let R = (1,2, 7}, 5={1,.3, 4} and T~ {2, 3, 5].
Then RU (SAT) = {i, 2, 71U ({1, 3, &} N {2, 3, 5})
)' | C=11,.2, 7} U (3] -
= {1, 2, 3, 7}
and (RUS)ﬂ(RU’T‘) = | ;
({1, 2, 7}y {1, 3, 41D N (M, 2,27ilJ {2, 3, 5})
=11, 2,3, 4, 71N {1, 2, 3, 5, 7} -
- {1, 2, 3, 7]. | | |
~ This illustrates the distri}zutive property of union with respect
to intersection of sets. In working with sets we have two forms
-of this property. We have just studied one form: hamely,
RU(SNT) = (RUS)N (RUT). The other form is:
RN(SUT) =RNS)VU (RNT), which ié the distributive

\-Ff/l

&1

N
A

 t .
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property, oréénterséction -with reSpecg‘to union of sets:. -This

. is somewhat

Rfferent from what you stqgéed in work}ng wWith

the. countlng numbers in Chapter 3 There was only one form.

<

of‘the dlstributlve property . namely, multiplicatlon w1th*

reSpeet to addltién.

Lo’

-~

_\I : | . E se 1-3-b" .
Given the threeAsetsﬁ A = [boy, girl, chair}, B = {girl,
chaif, dog} and C = {éhair, dog, cat}
{a) Find AN B. _ ‘ | | | |
(b) Show that AN C = CN 4. | . .
_{c) Showthat AN (BUC) = (ANBIY (4.0 C).
(d) Show ﬁh'at An(BhC) = C{) (AQB). |

N

Where @ represents the null set, vand H is any other

set, 1is the follow1ng true? PU H =HU @. Explain your

" answer. Is ¢ H = H? Expiain your answer. Under the

operatiiF of union of sets, what name may be applied to @7

Let R represent'the set of points on the line segment AB,

and. S represent the set of points on another line segment Co.

{a) 1 ‘ROS = ¢, then what is true about the two line
segments?
(b) If RMNS # @, then what is true about the two line

segments?

a

Are there any similarities between the symbols "™U" and

"f\"g\ and the symbols " + " ~and ™ . "? Explain your answer.

f

22
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5. Draw a Venn diagram to illustrate the intersectiod set of

N all mémbers of the band in your school and §&l the pupils
in your class. ‘_ s |
. ' L - ) o |
{; 6. SHow by use of a figure the intersection &et of two inter-

g
. secting circular regions.%

7. ’-(a) iet E be.the set of even ccunﬁing‘n#mbers: ,
) {2, 4, 6, 8, ---}. What must be the set F so that
, EUF=¢c, -
wﬁen C- is thegSet of all countlng numbers?

(b) What 4s t‘.he set of - EN F?

-

- 8. Giveﬂ two sets A and B:

(a) If ACB, s it true that AUB .= B? Explain your

’ answer.
} .

(b) If ACB is it true that A/ B = &7 .Explain.

¢ . -
R -
.

1-4. ‘Orderﬂ.One-to-One Correspondence,
the Number of a Set, and Counting T
Order \
. of a set‘is immaterial. For example, set A: {Bill, Tom, Sam},
can be Qritten as {Tom, Sam, Bill}, or as {Sam, Bill, Tom},

just as well as An the original. Under our"defiinition of

equallty, all ‘three of these sets are equal. At times, however,

the order 15-1mportant. For example, the name Wllllam Thomas
is not the same as Thomas William If we wrote, these two names,

as a- set: §Willia§, Thomas}, then, undér our present framework,

In many situations the order in which we write the elements

| | S - - ‘ ’\\
A Y - ) )
O ‘ ' . 2 3 Lo ) Y
1 R 5 ’
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:set is one wherein there 1s an element which fs the first term,

18 . _ 1-4
. - ‘ '
we could just as well write the set-as: {Thomas, William},
, .

and the two see\ would be equal or identical. An ordered

H

]

-'anuther element whlch ig a second term and se on.  Wwhen we

wish to indicate the% the elements of a set are ordered we
shall use.the symbol: . "( )¥. If we now write the set composed

of the elements Thomas, William in the form: (Thomas, William)

it is not equal to the set: ((Wiiliem, Thomas), because the set

}

¢is ordered with the element Thomas in the first position and

the e}emenﬁ William in the second‘position. A set of two ele-
ments written in this manner is sometimes called an gzd_ged
pair. You had some contact with ordered pairs when you made
graphs in Chapter 1l. A set such as: (a b, may be re-
ferred to as an ggdg:gd triple. This idea may be extended to
many more then 3 elements. For example, the ordered set of

tﬂe first n counting numbers: (l 2, 3, 4, 5' 6 *++, nj,
would give us an ‘n-tuple" where n~” may be any counting number.

This. Edea will be used in the secticu1on Counting.

F)

Ordered pairs are fery e¥eful’in ﬁany branches of mathe-

matics. When you study a course called Apglytical _gg_g&gx

you will deal' with ordered pairs such as (1, 4), (6 2), (12, 15),

for example.

Consider the set of people in line before the box office

of a theater. Is order important in this situation? If you
: o ’ \
should try to move ahead of someone already in line, you would

A

be made to understand, rather quickly, the impenQence of order -

in this) case. There are.people who consider order important
s : , N

¢
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as to. be well up‘fn line when the office opens. Some base-.

otber simllar situations? ‘ ,- , ‘LJ{

\seats in your classroom as téfiﬁ are pugils in your class. When

~ ¥ -

'enoegh to take a bed roll,and sleep near a box office, so

\

ball‘fans do this for the World Serles. Can you think of

A
As you know, the following is a true, statement:

(1, 273} = {1, 3, 2i. ’

. On the other hand, (1, 2, 3) x\3 2), because these are
ordered sets. K T \ :
. -~ .
“One-to-Oge and_n_ﬂ

One basic study of set& deals with the comparison of two
br more sets to see whether or not they are equally numerous,’
ThlS‘ES done by matching the elements of the sets, 1In the ‘_ -
openin% pages’of Cha§§er 2 you read that in the long ago a -
shepherd probably kept account of his sheep by having a. notched
stick - a notch for,each sheep”and a sheep fo:_each.notch.

~

With this arrangementﬁpe could tell whether or not any sheep

[

% i - B - -
were missing by comparing, ore.matching, the set of notches with

the set of sheep. If all\sheep were presenp; we could saekthere

‘wasAa one~to-~one cQ:gesbgndgg§§ between the set of eheep and the

set of notches,
»

Consider your class. Suppose there is the same number of

all the pupils are present "then the set of seats and the set

f

of pupils are in one-to-one correspondence. In other ﬁords,

the two sets are equally numerous. If all‘pupils are present

-

’ $ T *
and seated in their assigned seats, theefxgggjteacher can tell
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at a glance thap\theée is perfect attendance for the day.
Without much more than a gPance she can tell how marny are

‘ absent, if some are not present. How does she do this?,_ What
. # . - ) '

e 2

", car-you say with respect to dne-to-one correspondence of the -

« following:

1. {1, 2, 3741 {0, x, A, Vi; {4, B, ¢, D}.
2. {1, 2,3, 4 5, 647,8,9, 10 {a, b,c,d,e f,
’ g\’ h:“‘i: j}' “ ’ . -‘j

‘ ¢

3. {the number of fingers on one hand}; ( )
i . .
§ ¢

{the number of players on a boys' basketball team]}.

with respect to sets and one-to-one correspondence as fOllOWS‘

{the number of symbols in a base five system} ;

‘We are now in a position to state a general principle

Given two sets A and B. These two sets are /said to

be in one—to—oné cBrreSpaﬁdence if we can pair, or match, *
~ lthe elements of A and B such that‘each element of

A" pairs J;th one and only one element of - 'B, and in the

sape matphing‘pno;ess each element of B pairs with one

and only lone elanent of A. This prlnciple may ,be stated!

. )
ore precisely in the following way: ¢ ‘JF4

‘Let A and B be sets. There is a one-to-one’correspondence

between . A and B if there exists a collectlon H of
{

ordered pairs with the following properties:
1. The first'férm of each pair of H 1is an element
of A, , A

2. The second term of each pair of H is an element

of B, S

ERIC | : . .28
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Consider set A: {Bill, Tom, Sam}, - and set B: {Ann, Jane,

’Two-of'then are as follows:

1-4 o o . 21

3. Each element o{“A“ is & first term of exactly.
one pair of H, |
- k. ’Eaéh_élemen;‘of B is a second term of exactly

one pair of H.

In Problem 2 abpvé’let A be the set {1, 2, 3, 4, 5, 6,
7, 8, 9, 10}, and B éhe set {a, b, c, d, ef, g, h, 1, j}.
The set H would look like. Eﬁi;- |
(1, a) (6, f)
(2, b) (7, &)
(3, ¢)  f&, n)
ey @) (9, 1)
N O ie) (19, ). |
. ' a T . -
- Unless the concept of order is to be taken into ccnsidera-

-~

tion, theymatching process may be done in more than one Way.
Susan}. Since these sets have only three elementé, we can see
at a glance that there is a one-to-one correspondence between

them. The matching process, however, can be done in six ways.

S R .
Bk T St B © Bet B ] Bet B
Bill «<—> Ann’ , Bill «<—> Arn
Tom <> Jéne R ~ |Tom <—> Susan
'Sam € Susan | Sam <—> Jane l*’jj
. .‘ \, | | '
o Figure 1=

27
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~ The symbol ™ <> " simply means,- for example,' that

¥

Bill is matched with Ann, and Ann is matched with Bill.

(

Let us consider the elements of these two sets again,
T 'and write the sets as follows: S o . .

-A: (Bi11, Tom, Sam), B; -{Ann, Jane, Susan). .

The notation indicates the two ‘sets are now ordered.

‘-

Of‘course, we can still match the elements in six ways. If, -7

however, we want to preserve the order, the elements can be

. matched in only one way as follows: | : Y
|  Bill <> Amn - | .

- ' Tom <> Jane
Sam <> Susan. ' -

‘ch r%manbcr when we tclked about the eqpality of séts, A
- we s§id thét two sets were equal, -or idenpicai, if and only ‘
if every element of each is an element of the-other: For
example, . L | ﬂ- .
M, 2,30 =11, 3, 2} )
because the two sets contain the same elements. The concept
cf one-to-one correspondence antroduces a new concept of equality,
that of ggnixglgngg We say that two sets which are in one-to—
one correspondence are equivalent. We shall indicate this fact
bf using the‘symboi " <", ;which was cseg in matching the
elements .of sets. .For example: {B11l, Tom, Sam} <—>» [And, = —o
Jcpe,‘Suscn} Again, éiven two sets A and E if we u&ite.

A <> B, we mean that there is a one-to one correspcndence

x\\ | .

* Q- f; \Al ] ¥ L ' 28
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Exercises 1-4-a \

Gonstruct tables similar to those of Figure l-4 to ‘show
. ‘ o
the additional four ways in which the two sets may be

matched.

s . . -/

By observing Figure 1-4 and the additional tables you

made in Problem 1, you will notice that Bill <+> Ann twice.

Without making tables can you detormine the number of

- possible lmatchings for the sets: {1, 2, 3, 4} and
. A | '

‘{a: b, ¢, d}?

L

Determine whether the following are true or false. Use

examples to illustrate yowr answers.
t‘ - - - .

{a) 1Identical sets are also equivalent;r

»

" (b) - Equivalent sets are also identical.

t

(c) Equivalent sets méy be identical.
-(d) Equivalent sets are never identical. ' ‘\\

. o
(e} Identical sets are never equivalont.A

Construct a matching table for the following sets so that

order will be preserved: (1; 2, 3 Ly 5, 6), (x, v, t;

a, b, ¢).

Suppose You buy a carton of a dozen eggs. Is it necessary

to count the eggs in order to tell whether or not.you have

‘a dozen? Why%

Given two sets x and y. If ny and ny,. can

we say that the two sets are ln one-to—one correSpondence?

Explain. L Y '
2N
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7. Are there more points on an arc of a circle than on

W

its subtended chord? Explain your answer.

mmmg:am

" Given the sets: {1, 2, 3, a}‘“’“a\\{o 1 ‘/\ V} You
notice that there is a one-to-one eerrespoﬁdence between them.
In addition you see that the sets are composed of & elenents.
In fact, any two sets wﬂhch are in one-to—onexcorrespondence
have the same number of elements. Sets;'hoﬁeyer, will vefy
in the number of elements ﬁhichfgﬂey contaan.‘ This‘may vary
all the way from iero, the null set, to an‘infinity of elements.
The word ”infiniéy"'is-not n:w to you,‘because,you:will remember
Fhat there are en infinite nnmbe:"of points on a line, or again,
an infinite number of wholg numbers. A set conpaining an in-
finite number of elements is called an iniiniig set; otherwise,
the set is called a figi&g,gg& Since sets vary\in the number
of elements they contain we can, then, assign a number to a
set. We cgp only assign the same‘number, however, to those

'sets which have a‘one-to-~one corresgondence between them. In

this discussion we shall consider only finite sets.

: ‘7
When we wish to talk about the number of a set we shall

use the following notation. n(A). This is read. "the number v
of 'set A.". More briefly it is at times read: “e- of A."

Fer the setq% A _ o :
| L, 23, Wland {0, 1, AL . W
we can now write: ‘ ) o ~

S alln, 2, 3, 41) = nl{o, 1, A, VI).

. .
. ‘ { ‘ « . 30 ' ‘..ff
~ * ‘.

A
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Sounting |

The use of the counting numbers: (1, 2, 3, 4, 5, 6,

7y *00 ), giveé us a basi¢ sequence which we may consider as
. P . ’ 3 ’

the numbers of finite sets. Every counting number; then, may | ’

be considered as the number of the set of all oduntlng numbers

X up to ‘and including lt.‘

Ccuntlng can be con81dered as a method of matching betwaen
/,any finite set and a subset of the countlng numbers. Let,us
designate Ehe.set of counting numbers as C. Further, let

" us label the subsets of € as Cl,_Gz, 03, .o { where

¢y = 11}, .0y = (1, 2], Cy = {1,2, 3}, and so on. gs an /

example,\let us count the §et. A composed of {Sam, Carl,
Tom, Jack]. . | . v ‘ o
'Set A ’{Sam,Carl;‘Tom, Jack} o | ' }
Set C: {1, 2, 3, &, 5, 6,7, ++ }]. |
Sy matching you sgew;haé set A ﬁmépches with subset Ch Aof
the set’ c. Since n(Ch) =4, th;n» n{A) = 4.

[}

Consider set A:- {1, 2, 3, 4}, and set B: [5, 6, 7},

“thqﬁ are said to be disjoint. Twé sets are said tobe disjoint

L
<

- ~1f they, contain no elements in common. Now do you remember the

expression A U B? Applfing the aperation‘we get a new set:

{1, 2, 3, 4,-5, 6, 7}. Upon matching this new set with C, ‘

you note that 1t is Che So n{A U B) = n(C ) = 7. ~Let us con-

51der the problem through another example .Giyen the dis-

joint $@ts, M: /ip, b, ¢, d},.- and N: {g, £, g}]. Now
d

MU N = {a, b, ¢,/d, e, f, g}. Upon matching this new set with

»-

\ 31 ) 1
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C!

aMUN) = n(C,) = 7.

you notice that it is also. C%. Hence we have:
A : )

t

Do you now notice that the number of the union of the

two dis joint sets may be considered as)ﬁhe sum of the number

éf the sets?

. l..

E s@s l=4-—
What is ‘the numbqr name of the following sets?
(a) {1, 2, 3, &, 5, 6}.
(b) {a, b, ¢, d}. . |
(c) {bir&, dog, cat, chair, horn}. |
(@) (2,%x, * O, v, Al

(e) Which of the above sets have ‘the same number?

Suppose a set ,ﬁ .matches subset T of anothéy set S.

-t

what can you say about the number of R in relaﬁionship

tc the number of S? o | ',

4 /

Considering only finite sets, if set M mpatches set N,

and set N matches set R, what is the relationship of
set’ M to set R? |

1

How‘does the numﬁer of the set of automobiles being driven
at this moment compare with the number Af the set of their

steering wheels?

FEIRGNE Y

e

A

By matching the sets C12 and 07, ow. that 7 < l2.

32
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Given two sets A: (Bob, Sue, Tom,.Joe} ‘and  B: [cat,

dog, chair}. Find the set A | B. Now match the union of

' these sets with C and determine the number of the union

set. f(

G}ven the two disjoint sets M: (1, 2, 3, 4}, and
- " ' i
N: {5, 6, 7, 8 9)., Find M N and determine. n{M U- N)

by comparing it with ¢, -

v



o _ ~ SUPPLEMENTARY UNIT 2
SPECIAL FIGURES IN PROJECTIVE GEOMETRY K

2-1, Geometry and Art

L)

* i
~ |

In a cerééin park thgre 18 a row of poplar trees. They are
evenly spaced,+and all the same size and shape. Two boys

| wanted to draw{gpicture of them. The first said, |
"I know that these trees are all the same
size. I know that there is the

L4
same distance between any two

adjacent ones. This is how I
* will draw them." /

]

=3 . ’
The other said, "The trees further of% look, smaller to me, and
even though I know they are not smaller I will draw them as I
see them." Which of their. ”

< .
pictures do you like detter?

Y
A ‘- QQ
| <} DR
*

The second boy‘gsed‘the idea of perspective, This is a vq§i
. important idea in art if we“are interésted in drawing things the

*®

- t};
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way they really look to us. It is the idea used ir giving depth &
\ : , . .

to a picture. . : . ,
| ;o ‘ | ‘ | R
Of course, not all artists have wanted todo this. In |
ancient Egyptian art, for example, it was the rule to draw the \\

"pharaoh larger than anyone else in a plcture, and the 51zes of

other people were pmade to depend on their importance. .o
. !

Not until the end of the Middle Ages did artists make serious

systematic efforts to understehd perspective. At that time they

e .
became greatly interested in learning the rules #hat would help
T y
them picture realistie¢ally the world about them. This period, - ;////

whicﬁxhisterians‘call the-Renaiesance, was a time of great devel-
opment in science and learning as well‘as art. It was a time of
new 1deas and of a new interest in understandlng the laws of natyre,.

It was a time of experiment.

+ i -~

One of the artists of this period was Leonardo da Vinci.
Though we remember him best for his peintings, he had‘e wide range
of interests. Among eEher things he tried to deeign a way man
could fly. He believed that a knowledge.of ecience and mathematics

’*

is an eseentiai tool for the_artiét.

»

An artist who did a‘great deal of work in developing rules‘of <
perspective was Albrecht Direr. In some of his drawings we can
sg% tﬁe way in whice he studied these problems. You can find
examples of theQBin Math'ematics ip Westerm Dglgg:g, by MMFris -
Kline. This-eook contains many other pictures you will“also find

interesting.

. L85
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- A mathematician, Girard Desargues, wrote a book about the

-

) 1deas of geometry that would be useful in connection with the e
; s+ Study of perspective. He was the originator of what is called
. ' ; }
v , Rrodective geometry.
The word "projective® can be understood if we think about
‘drawing a picture. In drawing a tree, you can think of a line d
extending from each point you see to your eye.
) M ‘
-

Each line intersects the plane of your canvas in a point. The

points in‘the picture thﬁs match the points of the tree that we
5

see. A geometer says that the picture (the set of points) on the

canvas\is a projection of the set of points of the tree.
T ' . . o

.Here is another exampié that will help you understand the
sort of problems that océur‘in‘projactive geometry. Suppoée there
is a trianguiar rose bed inia garden, Suppose an artiét draws
this rose bed several times. Perhaps he draws it first.as'seen
from a point in the garden. Next he draws it as seen from the
top of a high toie;i Perhaps he tries other locations as welIi
He wi}l fiqd thaﬁ_in.his pictureS‘thé rose bed is always triangular.
He will find, however, that the triangle has 'different shapes

{

depending on where ne stands. He has discovered: The projection .

. . C e . .
- Q A - 3(}’.

[

! o
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of a triangle is a triangle. Later we will see another dis-

. . ,
covery that can be made about this situation.

Projective g in a Plage --
One-te-One Cotfescondences of Point Sets

In,this figure{ lines .21 and . p
422 are parélle%. Lines drawn from

‘point P intersgct lines.,ﬁl and fz. A Cc

One such line intersects .21 in A |

and ;22 .in-—-A'. Another intersects
£, in B and £, in B'. The -
figure gives ug a way of matching the

points on ‘él with the points.on .£,. To find the point on

,ﬁz that matches C, for example, we would draw the line through

C and P. The point'where.it intersects £ .is the point

2
that matches C. . B ’

-

This matching‘of one set (the points on «ji) with ano;hér
set (the points on Afz) is called a one-to-one cofrespon&enceg;
as we Eﬁgi; We have found a one-to-one cérrespondence between
‘the points on é& and the points on 122? (Of course, if we
uéed,some other point in place of P. yé'would‘fin& énother one-
to-one correspondence between the points on All and those on _Eé:
The two point sets can be matched %h many diffﬁrent wéys.)

'Did you wonder why we 'chose parallel lines for ,21 and ‘22?'
| Let us see what would‘happéﬁ\if we ;id ndt.f In the figure ,fl

-~ -

and 422 are not parallel. We can still draw lines through P

-

-

E}? | >
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cutting ‘21 anc ‘é;.“ Point A .“'

on .£yv corresponds |
to peint A' on |
.22.. Point B
correcpnnds‘to B',

Point C is a special

point. It belongs
. to both the set of - ~ .

*  points on ’Zl 'acd
'the set of points
,; on 2 A line through P that int.ersect.s Zl in € also
T\\\V | ;intersccts Afz in " €. In the correspondence betwcen points on
h | ‘él and points on Azz the point C matches itself.

, ‘It looks as though we have once again a one-to~one corre-A ;
'Spondencc betwe;\Bthe points on ‘81 and the points on zg But
‘we need to‘S&SS»and think very carefully. We" need to remember
that there is one line through P that icfparallel to. ’gl‘
. Suppose this line (the dotted line in the figure) intcrsects 4@

in the po;;i D', D‘ is a point on 42 but our system does
. not give any point on .é& that matches it. P01ntsnfn Agz that

are very close to I match pcints that are very far out on ,f

E'’.is’one _such point.

There is also a- line through™ P that is parallel to ,ﬁ
So there is also a point on Agl that has no matchlng point on
\ _ ‘22. We have discovered: Our sygfem gives us & way of matching

all the points except one on. ‘21 with all the points except

A
A -
vy

2 I

t et
. ' : 3 : SN
Q \ ‘ 8 -
, A
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one on —éz' | - | | .

Here is another exagéle of ; one-~to-one cbrresppndence be-
tween séts. - This figure shows some 6f the elements of the set
of lines thré;gh P. |
Each of the lines . - .

. through P 1in the ;

' figure intersects
the line .Ag in a
point. The figure

shows a way of

ﬁatching elémenté
of the set of lines o o .
through P with 4 |
elements of ﬁhegsetﬂof points on L. The‘line _j& matches the
.point - A. The line ‘22 corresponds to point B. '

Again, however, we need to be careful.} There is one line
through P that is parallel to gg. This line does not have a
matyching point on 2. We see that: To each point on p cofre-
. To each line through P sxcept one -
ond. 1 |

- sponds a line through

yd there corresponds a poi

 The Idea of Ideal o R
These examples will help, you undérstaqd an idea that is
very useful in projective geometry. It is theidea of an"ideal
Dpoint on a line. ‘ T ‘

4 . . .,

In projective geometry we do not use the term "parallel

o o 39
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.

1lines." Instead, we usé the term "lines that intersect in an
ideal point."™ We think of each line as containing one and only
one ideal point, as well as the usual points we are accustomed
to thinking about. In order to be quite clear, we can call the
usual points real points. When we adopt thiS'nen language, we
can say that gny two lines in a plane meet in & point of some
sort. In the figure, ‘gl and Aez | o
neet in :§e real Point P. ‘91 fF&

.33 meet An an ideal point. Formerly

we would have said they are parallel.

The two-sSkatements mean the same .

7, -

. <
In our né% language, the set of all points on a line is-

thing. - a e

made up, of all the real points and, in addition, the,ideal point

Let us use this new vocabulary to describe the one-to-one
correSpondencés which we have already‘studied. As we do so, we
will find that it is a very convenient language for describing

-4 . ) -

these situations.

In this figure we can now say 4%
that there is a one-to-one corre-
“—-/\spondence between the set of all
lines through P ann.the set of gll /

. points nn‘xg. Line Afl correSponds“.

to the real7point *A. Line 2
corresponds to the real point B,
Line AgB . we now sn;A intersects

TR

<«
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C belorigs to tlie set o¢‘ all points

en ,Z It corresponds to itself.

-p The point. D' on ,22 corresponds

N

36 ) o * 241

L]

line ,8 in the i_dg_al po@& of L. 1t corresponds to the ideal

4
int on é’

"In this figure we can now saj that there is a one-to-one -
corfeeponder_ice between the set of all points on 'Zl and the set.
of all point.s on jz.‘ The real point |
A on jl corresponds to the real

point A' on 2: The real point ,

on ’Zl and to "the set of ell points

to the ideal point on '21 The point
E ohgfl, cofres;mnds to the ideal _
at on 2. e (Remember that we now say that each line contains
,ﬁeal point. The line through P end E intersects ,2 .
"in the ideal point.) - | L. <

In thié figure ,81 and 132 intersect in an ideal point.

There 1s a one-t.o-one correspondence between the set of all paints

-on ‘21 and the set of g_l_ points

on éz., The Iine through P and

P ‘
A intersects '-21 and 'Zz’ in - ‘ S
cenresponding real pe;nts. The line | | -
ehreugh P parallel tq_;%;ﬂand A f'sL. l
22 intersects "Zl' and‘lz in an
~ideal point. This ideal point is an .
elem.en_t__ef ﬁhe set of all points - | o JZ '

. “on 21‘ It is also an element of 41 "

.
o Foy
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the set of all points on /’£2' It corresponds to itself in the
‘ R v

s -~

- one-to-one ¢ orrespondence. .,

We ‘have introduced tl_ic idea of ideal point so that ev %r
pair of iines intersects i{ka point,ﬁ,that 'i;s,' "two lines deter-

t

’ _mi‘ne a point ." What about the statement, "Two points de‘ter'mine . /,
a line," by-which we mean éhat: there is exact.'lyk one line through '
. any two point;s‘f Thié is certainly ;.nle in the géqmetry that we
| are used to, that is, for two reél points. But is Lt still .
true for projective geometry? Suppose: A is z;n-__ideal point and |
B is a real point’:) From our defin®tion of idéél points, A |
- - must be on some 2 s, ®ince frcm our familiar geometry there is
| exactly one l:ine through A and B. 4T}ms through any g.iq‘ of
) poiﬁ{.s we can draw exactly one ‘Tige except whenkboth of‘the ‘
® e points are ideal points. And 'w,e can -femedsr this "de;ficiencly by
defining an *jdeal line" on ﬂhich.ail‘the ideal points lie.

"

.".4

This fits in very nicely because then the ideal line will inter-

sé;ct e'very other line in/jg\st one point}: ~= its ideal point. .

v One big advantage of projective geometry is that nctonly do.

‘ two points determine a line but qwo. lines determine a point. - (
AThié smetrical‘arrangement is very convenient.
. - ‘ -‘ - )
9 | ' The langwage of Ifdeal points is new to you. Like any new

lan’gu_ag'e, it seems difficult until one is accustomed to it. V'The

- examples illustrate its advantages. When we use the idea of*

— T

. ideal pdints we do not have to consider parallel lines as 'e.x'-
¢eptions to our descriptions. %

-
hl . .
‘

12 e
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You wiil undefecand better how the idea of‘ideal points
N oriéinated if you,thdnk eboutzrailroad tracks. 'When we draw
‘railroed irecks we draw themfes theugh they come together far
away. The idea ¢f ideal pcint is suggeseed by the way paraliel
. lines sometimes appee:‘todneet-whep we draw objects in perspec-
tive., - ' |
!

Of course, if you are buildiné a railroad track the idea
of” ideal points is not useful at ail. When we build railroad
'{tracks wve need'to.kncw; fcr'example that all the ties that lie :
betueen the tracks are .the same length The idea of lengtﬁN
is studied in mg;;ig gecmee}y Metric geometry uses the ‘idea

cf’measurement. Projective geometry does not; this is why we ely

that projective geometry ie ngn*mg&:ig.'

You may feel that ideal points seem unnatural . But you
should cemember that all points, lines, and planes are idees.
They are ideas that are developed because they are interesting and
| ueeful for. some purpese.‘ ¥

o \\ Exercises 2-1 |
1. Draw two parallel lines. Call them 4 and 2,. Mark a
pcint P between them. By drawing lines through P, find-
a qQne-to-one cOrreepondence between the pcints on ffl and
the points on Aﬁ Label the peints‘in your drawing, and

name three pairs of corresponding i;dnte.

2. Mark points P and Q. _Draw a line eé between them, as

V4
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in the figure. The figure‘shows
" a way of matohing the set of lines

through Pwith the set -of lines
through Q. To the line threugh

° A and P correSponds t.he line )
through A and Q. The line
through B and P is matched | |
- with the'l;ne fhrough B and Q. In this wﬁy-we can find
a ' ; _ : between the set of lines:
) through P and the set of lines through Q. Draw three
-iw S other pairs of lines‘illusﬁrating this statement.

3. In Exercise 2, is the:e a lihg which belongs both to the .
set of lines through P and the set of lines through Q7
? ) ! ' ) ‘

4. In Exercise 2, ﬁhich linethrough P ‘corrﬁsponds to thefi
line through Q parallel to /2 This line througl P

intersects ,2 in an : .« &

‘n

) 5,- Explaih the meaning of the\}olléring statement: If P is
any reél point and £ is any line ndt passiﬁg through P,
there is exactly one line which passes through P and
thrcugh the ideal point on Ag

6. In this figure*four of the
lines are parallel,

(a) Four of the lines
) intersect in an
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(b) The figure shows a system for finding a one~to-one
T S
correspondence between the points of ‘gl and the

o points of ‘22. Find the points correSponding to

).i | E, F, and G'. /
v : . ; _ . -
Desargues' Iheorem é |

| Gne of the most interesting ideas in projective geometry is
that contained in Desargues’ Theorem. In order to understan§ it,

" let us think again about a situation we considered éarlier; ;et ‘
us think about an drtiSp who is drawing a, triangular rose bed
Supﬁose that he is drawing his picture as hi/iéés it from a
tower high above a garden. Hére’is sketch that shows the twe

triangles -~ the boundary of the rose bed and the picture of

-

it on his canvas., Each point on the rose bed is matched with a

]

point on the canvas triangle.
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In"the sketch the vertices of the rose bed are called 4,
-B, and C. In the artiét's'picture,'the matchingévertices are

labeled A', B', C'. The three lines joining matciing“vertices

all meet in point O -~ the eye of the artist. The two triangles
are said to be in perspective. . |

o
, + { \ .
, We can draw two triangles in the same plane that are in
perspective. In the following‘figure two such triangles have
been drawn. Again{ the vertices of one triangle a;e’matdhed with

the vertices of the other. Again, the lines‘joining‘cornespondw

-

ing vertices meet in a point. Ve ‘

¢

Exercigq, 2-2
Copy this figure carefully. Extend AB and A'B! until

they intersect. Do the same thing with AC ‘and A'C'. Do

-

the same thing with BC and B'C'. You have found three inter~
1 - .

- | IR 1
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‘'section points. *;abel them P, Q, and R. Do you notice any-

thing about these three points? they should all lie on.the

same line.

A boy said, "I wonder whether this will always be true if I

extend the sides of a pair of triangleé in,pe:spective.{ He
tfied it seQeral times., It appeared to be true each time; of
course it was sometimeg difficuit to be hﬁre, because he needed
ﬁé ex;;nd'the lines a long way to find the intersection poinﬁs.
He decided, however; that it was probably always true that the

three points of intersection were on the same line.

"But what about this figure?" asked arother boy. ."In my
etrianéles, AB and A'B". h?ve the same direction.  When I ex-
- tend them I get parallel lines. There is no ﬁoint of intersec-

tion."

47
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i | notice something about the figure you have drawn,
thongh," the first boy replied. “Tﬁose'two lines are parallel to
the line through Q and-\R. I think that this is.another placé
where the idea of ideal point might be useful. We could say
that the three pointé of intersection are all on the same line,

but now one of the points-is an ideal point."™ - :
4 .

~ He was right. [f it is ﬂrue tﬁat
(a) two trié les are in perspective, and
« (B) each pair of correSponding sides, extended, has a
point of.int rsection,
-~ then the three points of intersection all lie on a 11&@.
. If however there 1is at least one pair of sides with the
 same direction, so\that these sides, when extended, form parallel
lines,'thgn we have an exceptional case. The excepticnal-bases

can be conveniently described by the idea of ideal point.

Of:course; the sécond boy was not satisfied with leaving
the matte}"gz,this. "He wéndered why the three intersection points
all were on the same line. Perhaps you wonder too. If you do,
yéu will be interésted'in knowing the iay we prove thét the points *
" are always on a line. A proof_makes us sure the statement is

true -~ a good proof also makes us understand’gsﬂter the reason.

/

Let us again think about the garden and fhe picture. Let

‘.us suppose that: |

(a) the plane of the garden and the plane of the picture
are not paraliel (this is phe way we &retﬂyhe figﬂre).

! 19
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(b) none of the pairs*of corresponding sides have the same
direction. ‘

,Look at the line through A and A' and the line thr¢ugh B

and B'. This figure yill help ‘you see- the lines.

i

These two lines intersect at 0. When we have a pair of inter-
secting lines, we can think about the plane the& both lie in.
The line through A and QB is in this plane; so is

the line through .A'; and. B'. We supposed that these lines

~did not have the same direction. We know that two lines in the

-

‘same plane that do not have the Same direction meet SO we qEn

be sure that these lines meet. P, of course, is the point
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where they meet .
. | N - : ) ,
Now let us think about where - P is. P is on the iine

"W

through A and B. This line is on the ﬁlané of the garden.
So P must‘he on £h  plane of the garden. P is also on the
line through -A' and B, - which is on the plane of the canvas.
So P 4s alsq on bhe plane of the canvas. Now we cén put these
two facts together and say: P is on the lnterSeCtion of two
planes ~~ the plane of the canvas and that of the garden. The’

intersection of these two planes is a line. 2

-

L] i y
Now we have proved that P is on_the Aine of intersection

of a certain pair o&_plénes. We éan, prove in "precisely the same |

way that the line through B and ¢ and the line threugh B'

~and* C' meet in a point, which we have labeled, Q. We can also

prove, by exactly the same reasoning as that used in the case
of P, that R 4is on the line of intersettion of the plane of
the canvas and the plane of the garden. Then-we can reason the

same way about the point &. L &
\

So we can see that P, Q, and R all lie on the same

1ine - the line where our two planes intersect.

 Now we have proved our fact for “Xtwo triangles that are in
l‘-“/
different (and not parallel) planes.

It is more difficult to prove that it is true when the two .

triangles are in the same plane. We can see, however that if

we took a picture of the garden aﬁﬁf;he canvas, we would really
‘

“

R ‘ f;()
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have two triangles in perspectlve in the same plane aﬁd that
" the pdints of infersection of the palrs of corresponding sides
of th 1angles would all be on a line. If you were more
familiar with the use of geometric reasoning in rather compllcated /
figures, you would not find it difficult to use this idea in

constructing a complete proof. I o 1

¢

In the figure we see that there are 10 main points: the
' : . .
‘vertices of the two  triangles, the point O, and ;H"three
intersection points P, Q, and R. There are alse 10 main linés:

‘the sidgs of the triangle extended, the lines through corresponding

o
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“

.yertices of the triangles, and the line on which 1lie P, Q, ahd

R. By checking the figure ydﬁ can see that =--
(a)° through each of the main points there are three of the
special lines, and | |

(b} on each of the special lines there are three special points,

The figure for Desargues' theorem could be used for a very
“democratie",committee diagram, whefe by "demecretic“ we mean,
that in certain respects egch committee member is treated like

every other one. We could let each of the ten pOIHtS cerrespond

to a person and each of the ten lines correspgpd to a commlttee..

If a certain point is on a certain llne then the corresponding

person would be on the correspondlng commlttee. Then
\ 1. Each committee. g&b three members and each person is
“on three committees. . ‘ '

2. Each pair of committees has exactly one person in common |

'and each pair of persons is on exactly one committee.

E c'e s 2~

1. ‘Draw several-flgures illustrating Desargues' theoremT

é.-‘bne of the remarkable aspects of tﬁe figure forDesergues'
theorem is tget each point-and eaeh line play exactiy the
same role. For example, we might think of A as the
"Seginningf point in plaee of /9/ and one‘triengle\?ould be
taken to be COB. Since the thirg point on AC‘ is"\Q,~ the
thirdlpoint on A0 is A', and the third point on AB is .

P, the second triangle must be QA'P., Then the points of
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a intersection of corresponding sides of the two triangles

should be on a line. Find the line./
r . 3 e~

3. Follow through the steps in Exercise 2 startirng with the

#

point P. Co)

L. The following‘converse of Desargues' theorem also holds:

If ABC and A'B'C' are two triangles and if the points

- P, Q, R are‘'defined as the intersections of the pairs AB,

e

A'BY; AC, A'C'; BG, B'C' 1lie on-a line, then AA!,

"BB', CC' are concurrent. Draw a figure which shows this.’

S,A (Brainbuster) ﬁésignate seven pdiﬁts by the numbers: 1, 2,
3, 4, 5, 6, 7. Call the set of three points 1, 2, 4 a
"line ,ﬂin and so on accob&ing to the foliowing tabléﬁ

\
D | : - SRR
B Points 1,2,4  2,3,5 396 by 537 | 5,6,1 ‘6:7:2 7,1,3

Show that each point lies on three lines. 1Is it true that

each pair of points determines a line?  Is it true that —each
pair of lines determines a point? Draw a figure which shows
this. (You cannot make all the lines straight and oﬁe will

have to jump over another.) ‘
ﬁ v b
/
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" SUPPLEMENTARY UNIT 3
REPEATING,DECIMAQS AND TESTS’FOE DIVISIBILITY
3;1. InQrééucticn
¢

I\. - This monograph is for the student who has studied a little \ 
about repeating decmmals numeration systéms in. dlfferent bases,
and tests for divisibility (casting out the nines, for 1nstance) .
and would like to carry his investigation a little further, under

| guidance. The purpose of this monograpb is to give this guidanceL

| it is not just to be read. You will get the most benefit from |

’ thié E§terial if‘you will first read only up te the'first set ‘of ,
exercises and then without‘reading any fufther do the exercises.'
They .are not Just'applicatlons of what you have read, but to guide
you in discovery of further important and interesting facts. Some
of the exercises may‘suggest other questions to you. When this
happenszfgee what you can do toward answering' them on your own,
Then, after you have done all that you cﬁn do with that fset of /f
exercises, go on to the next section. There you will find the
answers £o some of your questions perhags, and a little more in—

formation to guide you toward the next set of exercises.

. ' b - - h Y

The most -ihteresting and useful phase of mathematics is the
./;iscovery of new thiﬁgs in the subject. Not only is.this the
most ‘inter g paxt of it, but this is a wajrto train yourself
to discover mord and mors impcrtaﬁt things as time goes on. When
you learned to walk, you needed a helping hand, but you really

had not learned until you could stand alone. Walking was not new

(‘ -~
o - ) ‘ . {)‘:
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. to mankind -- lots of people had walked before.-- bit it was new

vto'you _And whether or not.you would eventually discover places.

in your walking which no man had ever seen before, was unimportant.

\ nIt was a great thrill when you first found that you eould walk

even though it looked like a stagger to other people. So, try

learning to ‘walk in mathemetics.- And be independent 7/33 not
/

oaccept any more help than ie necessary. =

b1

N
3-2.4 Caseing s¥t the Nines

You may know a vegy'simple and‘inpereeting way to tell

whether a number is’ divisihge bf‘9 It is based on the fact that-

: a number is dlvieible by 9 if the sum of its digits is div1sible

| by 9 and‘the sumMbf its digits is” dﬁvisible by 9, if the number °

is divisible by 9. For instance, consider the number 156782.
,The -sum nf 1ts d;gits is l + 5 + - 6+ Zr+ 8 + 2 which is 29.' But
29 is not dlvisible by 9 and hence the number 156782 is not divis-
~ible by 9.° Ii‘ the second diglt.. had been & 3 ﬁnstead of 5, or if
-the last, digit had been D instead of 2, the number would -have been
, divisible by 9 since the sum of the digits would have been 27

which is divisibleby 9. The test is a good one because it is,
Lt ) . o ; ) '
easier to add the digitsthan to divide by 9. Actually we could

" have beer lazy and instead of dividing 29 by 9, use the fact -

again, add “Mand 9 to get 11, add the 1 and 1 to get 2 and see
that éince 2 is not divisible-by 9, then the original six digit
number is not divxsible’by 9.

. ‘ S
Wby is this true? Merely dividing the given numBer by 9

\wouid have tested the result but from that we would haye no idea

&
“-\‘
).

.\‘,

——
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‘ ber 156,782 may be written

A LH‘
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&

why it would hold for any dther number. We can show what is

happening by writing out the number 156 782 accordlng to what it
o~

| means in ﬁhe decimal ngtation' o - -

*

-1x105+5x10‘*+6x103+7x102+sx10+2-
'1x(99999+1) *+ 5 X (9999 + 1) 46 X (999 + 1)7s

7X(99 +1) +.8 x (9 + l) + 2,
Now by the distributive property, 5 X (9999+ 1) = 5 X 9999+ 5 X l
- and similarly for the other expressions. Also we may rearrange

the numbers in the sum since addition is commutative. 'So our num-

£

.1 X (99999) + 5 X (9999).+ 6 X (999) +
S TX(99) 4 X9 (15647482,
Now 99999, 9999, 999 99, 9 are all div1sible by 9, the products
involving these numbers are-divisible by 9. and the sum of thesé
preducts is, divisible by 9. Hente the original number will be
leisible by 9 if (1 + 5 + 6+ 7+ 8+2) is div1sible by 9.

is sum is ie sum of the digits of the given number. Writing it.

" Out this way shows that no #iatter what the given number is, ‘the

“same principle holds.,.

E ises -2
1. Choose four numbers and by the above method test whether or
not they are d1v151ble by 9. When they are not divisible by
9, compare the remainder ﬁhen the sum of the digits is divided
by 9 with the remainder when the number is divided by 9.
Could you guess some general fact fram this? If you can,

test it with a few other examples.
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l 25 Given two numbers. First, add them, divide by 9 and take the
| remainder. ~S_ecend, find the sum of ehe;r remainders after
each is divided by 9, divide the sum by 9 and take the re-
hain&er.“ The finel reeainders is the two casge are the same.
| For instance, let the numbers be 69 and 79. First, their sum
is IAS'Bnd the remainder when lLS is div1ded by 9 is 4. Second,
the remainder when 69 is divided by 9 is 6 and when 79 is di-
vided b§ 9 ie 73 .the sum of ? an®.7 is'13, and if 13 is dlvided
by 9, the remainder is‘k The ‘result is 4 in both cases. Why
are the two results the same no matter what numbers are used
instead of 69 and 79?‘ Would a simllar‘resul; hold for a sum

v

of three numbers? (Hint: write 69 as 7. 9 + 6.) o

3. Ifin the previous exercise we divided by 7 1nstead of 9,
| weuld the remainders by two methdds.for dlvision by 7 be
the same?‘ Why or why-nqyé?

Lo Supeoee in Exercise 2 we considered the product of two numbers
instead of their sum., Would the corresponding result hold?
Thatgis,~would the remeinder when the produce of 69 and 79
is divided by 9 be the same as when the product of their re-~
mainders is’divided by 97 Would this be true in general?
Could they be divided by 23 1nstead of 9 to give a similar

/ reeult? Could similar statements be mqﬁe .about products of

"more than two numbers? @
5. Use the result of the previous exercise to show that 1020
has a remainder o;/ﬁ when divided by 9. What would its re-

mainder be when if is divided by 3? By 997

o7
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* 6. What is the remainder‘when 720 is divided by 67

7. You know that when.f humber‘is written ‘in the decimal not&-
tion,* it is div1sible by 2 if its last digit is divisible
by 2, and divi31ble by § 1f its last digit is: O or 5. Can

you devise a similar test for divisibility by 4, 8, or 25?

8. In the following statement, fill in both blanks with the same
) number. so that the statement is true:’ | |
A number written in the systém to the base twelve is divisible ~
by ___.  if its last digit is divisible by ___. If there is
' more than one answer, give the others, too. If the,base we£¥ \\
'MX\‘# seven instead of twelve, hgy could the blanks be filledin?

. (Hint: one answer for base twéi?e is6.)

9. One could have samething like "“decimal"® equivalants of numbers
Ain numeration systems to bases other than ten. For instance, .

in the numeration system to the base seven, the septimal equiv-

alent of 5(1/7). + 6(1/7)2 would be written .567 Just as

the decimal equivalent of 5(1/10 + 6 1/10)2 would be written

.567 in the decimal system. The number 142857142857 ... is -

equal to 1/7 in the decimal system and. in the system to the

base seven

1N

uld be written .1 . On the other hand, |
620462 ---)7 . What ﬁumbers would have tenﬁinating
septimals in the numeration system to the base 77 ‘What would
the septimal equivalent of 1/5 be in tﬁg system to the base 77
(Hingtp\remember that if the only prime factors of a number
are 2 and 5, the decimal equivalent of its reciprocal ter-
minates ) _' | v

fad

- ’ . J 8
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10. -Use the result of Exercise 3 to find the remainder when
. | / | |
9+ 16 + 23 + 30 + 37 is divided by 7. Check your result

-~ by computing the sum and dividing by 7. | %i
. ,

]

11. Use the results of the previous exercises to show that

20 108

10°7 - 1 is divisible by 9, 7'0° - 1 is.divisible by 6.

12, Using the reegits of some of the previouS'exerciées if you
wish,sherten the method of showing that a number is divisibie
by 9 if the sum of its digits is divisible by 9.

- A

13. Show why the remainder when the sum of the digits of a num-
| ber is dlvided by 9 is the same as the remainder when the

L

number is dlvided by G. ‘
\ . ‘ . //’
3-3. -Why Does Casting out the Nines Work?

-

First let us review some ‘of the important results shown in

" the exercises which- ycu did above. In Exercises 2», you showed
that to get tee regainder of the sum of two qumbers* after divi-
;31on by 9, yoe can divide the sum of their remainders by 9 and
find its remainder. “Perhaps you did 1t this way (there is more
'than one Qay to do it; yours may have been better). You know in
the first place that any aatural number may be divided by 9 to
get ‘a quotient and remainder. For instance, if the numb%r is
725, the quotient is 80 and the remainfer is 5. Furthermore,

725 = 80.X’9‘+ 5 and you could see from the way,this is written
thét’s is the remainder. 'Thus, using the numbers in the exercise,
you would. write 69 =7 X 9+ 6 and ?9 =8 X9+ 7. Then 69 + 79 =

7X 9 +6+8X9+ 7, Since the sum of two numbers s commutative,
00

i
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you may reorder ﬁhe terms and have 69 + 79 = 7X 9 + 8 X9 + 6 + 7.
Then, by the distributive property, 69 + 79 = (7 + 8) X 9 + 6 + 7,
Now ‘the remainder when 6 + 7 is divided by 9.is 4 and 6 + 7 can

be written 1 X 9 + 4. Thus 69 + 79 = (7+ 8 + 1) X 9 + 4. So,

from the form it is written in, we see that 4 is the remainder
11
when the sum_is divided by 9: It is also the remalnder when the

sum of the remainders,. 6 +’7é.is divided by 9. >

Writing it out in this féshion is more work than making the
computations the short way but.it does show what is going on and |
why similar results would‘héld if 69 and 79 were replaéed by any

, other numbers, and, in fact, we cbuld replace 9 by\ahy other num-

ber as well. One way to do this is to use letters in place of the

v . ( - - .
nugbers. This has two advantages} In the first place it helps

us be sure thét we did not make use ‘of the special properties of

v
the numbers we had'without meaning to do so. Secondly, we can,

after doing it for letters, see that we may replace the letters

by any numbers. So, in place of 69 we write the letter,a, and

- in place of 79, the letter b. When we divide the number g b}

9 we would have a quotient and a remainder. We can call the quo-

tient the letter g and the remainder, the letter r. Then we

h
ave "

a.-= {(¢q X9} +r
where r 1s zero or some natural number less than 9. We couid do’
the same'fofxthe number b, but we should not let q, be ;ngquo-
tient since it/mighﬁ be different from the quotient when a 1is

divided by 9, We here could call thé quotient q' and tﬁe re-

| mainder r!'. Then we would have

6
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« b = (q' X 9) + rt,
Theh the sum of a and b will be
a+b=(qgX9) +r+(q'X 9) +r',
we can use. the commutative prtoperty to have
a+b=(qgX9 +(q¢"Xx9) +r+r!
and the distributive property to have
o a+b=(q+q') X9+r+r'.
‘Then if r+rf weregaﬁ\}ded by 9, we would have a quotient -which
we might call q" and a remainder r*. Then r +'r' = (g" X 9)_+.t
.r" and | | | ‘ |
Y a+b=(qg+q') X9+ (q"X9)+r"
Q\ o = (q + q' + q*) X9 + ",
Now r* &s zerojor less than 9 and hence it is not only the re-
. mainder when r '+ r! is‘diviAQd by 9 but also the remainder when
a +b is divided by 9. So as far as‘the remainder goes, it does
not matter whether you add the numbers or add the remainders and

divide by 9.

The éolutian of Exercise 4 g;es the same wéy as that for
Exercise 2 except that we multiply the ﬁumbers. ‘Then we would -
have

69 X 79 = (7 X9+ 6)X (8 X9+ 7)

=7X9 X sx9+7)+6x(8x9+7)

'7X9X8X9+7)<9X7+6X8X9+6X7
The first three products are divisible by 9 and by what w? showed
in Exercise 2, the remainder when 69 X 79 is divided by 9 is the
same as the remainder when O + O + 0 + 6 X 7 is divided by 9. So

in finding the remainder when a product is di%ided‘hy~9 it makes

. - . * -
- o0} : '
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rd

‘r Xr' is divided by 9.

\-f »
|
no difference whether we use the product or the product of the

remainders.
’ 7

If we were to write this out in letters as we did the sum,
it.would look like this: i
axXb=(qgxXx9+r) X(qg"'x9 +yr'
-q“X‘QXqJ‘ x9+qx'9 Xr! +rXq'X-§+rXr'.

Again each of the first three pfodpctaJis diviéible'by 9 and hence

the remainder when a X b is divided by 9 is the same as wheh

{
“We uéed the number 9 all the way above, but the same conclu-

sions would follow just as easily‘for any number in.place of 9,

such as 7, 23, etc. We could have used'a letter for 9 also buﬁ.

this gseems like carrying it too far.

' There is a sharter way of‘wfiting some of ﬁhg things Wwe had

above. When letters are used, we usually omit the multiplication
—

sign and write ab instead of a X b and 9q 1in pi’éca of 9 Xq.

Hence the last equation above could be abbreviated to®

Vi

ab = quglx 9 + qrtg + rq'9 + rrt N

or ‘ . s
" ab = 9 X 9qq' + 9qr' + 9rqg' + rr'.

L3

But this is not especially important right now.

of

ISo let us symmarize our results so far: The remainder when
the sum of ﬁwo n:§§@rs is divided by 9 (or any‘other«number) ié

the same as the remainder when the sum of the remainders is divided
by 9 {or the same other number). Thé‘same-procedure holds for

the product in place of tbe sum. |

. y

62 ':_ .
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These facts may be used to give quite a short procf of the}
~ important result stated in Exercise 13. Consider again ‘the
number 156,782. This is written in the usual form:
1}(1_05+5$<m‘++6;<1o?+7_>,<1o2+8x1p_+2‘.‘
Now the result stated above fqr‘zhe product, the remainder Qhén
10% is divided by 9 is the same as when the product bf the re-~
mainders 1 X 1 is-divided by 9, that is, the r-malnder is 1.
Similarly 102 has a remainder 1 X 1 X1 when divided by 9 and
hence 1. So all the powers of ten.have a remainder 1 when divided
by 9. Thus by the result stated gbove for the sum, the remainder
when 156, 782 is divided by 9 is the same as the remainder when
1XI+5x1+6XL+7Xl+8x1+2isd1videdby9.wThis
'last is just the sum/of the digits. Writing 1t this way it is

easy to see that thls works for any number.
AN

Now we can use the result of Exercise 13 to describe a check -
called “"casting out the nines® which is not ‘used much in these
days of computing machlnes, but which’ is still interesting. Con-
sider the-;poduct.867 X 934. We indicate the fcllcwing calcula-

tions: ,
867 su; of digité: 21 sum of digits: 3
934 sum of’digits: 16 sum of digits: 7
Prd&uct:‘-@OQ,??S | .‘ : "Product: 31}<7 = 2]

.Sum of digits: 8 + 0+ 9+ 7+ 7+ 8 =39
Sum of digits: 3 + 9 = 12 |

Sum of digits: 1 ; 2 =3 g Sum of digits: 2 + 1 =~3.
fSince the two results 3 are the same, we have at least some cheqk
on the accuracy of the results.

. - 3
s 3
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~ | 1. Try the method of checking for another product. Would is

also work for a sum? If so, try it also.
| | ¥

2. Expla%n why this sgpuld come out as it does.

3. If a-compunatioh‘checks this way,*show that it_still could bé
i iwr_ong. That is, 'in the example given above, what would be an

correct oduct that would still check?

] | v 4 |
L.  Given the number 5.7° + 3-7“ +2.73 4 1.7 4 4.7 + 3. What
is its remainder when it is divided by. 77 What is its re-

\ mainder when it is divided by 67 by 3?7

' 5. Can‘yéu find any short-cuts in the example above analogous to

y oo " casting out the nines?

6. In a numeratlon system to the base 7 what would be the result
correSponding to that in the decimal system whmch gives cast-

ing out the nines’l

¢ 7o The follow1ng is a trick based on cast1ng out the nines. Can

—t (w‘( (

L you see how it works? You ask someone to-pick a number -- it
. | ~ ' ' -
‘ might be 1678. Then you ask him to form anotger number from

the same digits in a different order -- he might take 6187,
Then you ask him té subtract the s;aller from the larger and
give you the sum of ‘all but one of the digits in the result.
(Hg;would have 4509 éné’mighﬁ add the last three to give you
14.) All of this would be done witheug‘;Euffgielng any of

the figuring. Then you would tell him that the other digit

64
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\ ‘ r
in the result is 4. Does the trick always work?

One methb& of shortening the'éomputatian'for a test by cast-
 ing aﬁt the nines, is to discard any'partial sums which are 9 or
a multiple of G. for inétance,\in the examplergiven, we did.not
need to add all the digits in 810,645. We could notice that
8+1=0and 4 + 5 =29 an;\;ence the remainder when the sum 6f
the digits i dividea by 9 would be OA+ 6, which is 6. Are there
other places in the check where work ¢ould have been shortenqd?‘
Wé tﬁus, in a“way, throw away the nines. It was from this’that
the name "casting out the nines" came. | |

By Jjust the Same principle, in a number system to the base 7

one would cast out the sixes, to the base 12 cast out the elevens,

etc. ¢

~

3-4. Divisibility by 11 h

There is a test for divisibility by 11 which is'hot quite so
simple as that‘for divisibiiity by 9 but is quite easy to applg.
In fact, there are tyf yests. We shall start you on one and let
_you discover the ot@e: for yourself. Suppose we wish to %est the
number 17945 fcé'di§isiﬁility by 11 Then we ¢an write it“as be-

» s

fore ,

; | 1.20% + 7.103 + 9.10% + 4.20 + 5, |
The remainders when 192 -and th are div1ded by 11 are 1. But the

remainders when 10, 103, lO5 are divided by 11 are 10. Now lO’is
equal to 11 - 1. 107 = 10% (11 - 1), 10° = 10% (11 - 1}. That

is enough.  Perhaps we have told you too much already. It is

R 65
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your turn to carry the ball, | .

E;g;gigg; 3=k =3 |
1. Without conslderlng 10 to be 11 - l, can you from the above
devise a test for lelSibillty by 11? '

2. Noticing.that 10 = 11 - 1 and so forth as above, can you
devise another test for divisibility by 11?7

-

We hope you were able to devise the two tests suggested in
the previous exercises. _Fof the first, we could grqyp"the‘ﬁigits-‘
and write the number 17945 as l,X'104‘+ 79‘X 102 + hsi‘ Hepce the
:emainder when the number 17945 is divided by 11 should be the
. same as the reaminder when 1 + f9 + 45 isreivided by 11, that
is, 1 + 2 + 1 = 4. (2 is the remainder when 79 is divided by 11,

etc.) This method would hold for any number. .

The second method requires a little knowledge of negative
numbers (either review-them or, 1f you have not had them, omit
this paragraph). We could consider - 1.‘as the regglnder when
10 %s divided by 11. Then the original number would have the
same remainder as the remainder when 1 + 7(- 1) )3 + 9 + 4(-1)

+ 5 is divided by 11, that is, when 5 - 4 + 9 -7 +1is diyided
by 11. This last sum is equal to 4 which was what we got tﬁe |
other way. By this test we start at the\right and alternately

)

add and subtract digits; This is gimpler than the other one.
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Exercises 3-4-0 : ¢

* 1. Test several numbers for divisibility by l; usmng the two

methods described abave. Where the numbers ‘are not divis}ble,

find the remalnders by’ the method given.

. - o
2. In a number system to the base 7, what number ould we test

for divisibility in the samé way that we tested\for 1ll in the
decimal syétem? Would both methods given above ﬁprﬁyﬁgr base
7 as well? T | | \.

3. To test for divisbility by 11 we grouped the digiﬁs 15 pairs.
.. What nuﬁber or-numbers could we test for divisibility by
‘grouping the digits in triples? For example we might con-
sider the number 157892. We could form the sum of 157 and

- 802, For what numbers would the remainders be uhe same?

a

L. Answer the questions raised in Exercise '3 in a numeral system

to base 7 as well as in a numeral system to base 12.

~

5. In the repeating decimal for 1/9 in the decimal system there
is one digit in the repeating portion; in the repeating dec1~
mal for 1/11 in the decimal system, the¥e are two dlgltS in |
the repeating portion. Is there any connection between thigp
facts and the tes@gﬁ{or divisibility for 9 and 11? What would -
be the coﬁnecpion bétweén repeating deci@als and\?he questiens

' A

raised in Exercise 3 above?

“

6. Could one have a check in which 11l's we}e"cast.out?"

*

<
7. Can you find a trick for 1l similar to that in Exercise 1 above?

87
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' 3-5. Divisibility by 7 .

b

- ~ There is not a very good test for divisibility by 7 in the
deéxmal System. (In a numeration system to what base would there
-be & good test?) But it is worth looking into since we can see
the connection between tests for divisibiAity and the repeating

~ dec¢imals.- ucnsider the remainders when, the powe}s of 10 are divid-

ed by 7. We put them in a little table:
5 'l L o ’
n 1 2 3 4 5 6.7
Y S

' Remainder when 3 2 6 4 5 1 3.
| %\on is divided |

by 7 | | )
P ‘
If you compute the decimal eqdivalent for 1/7 you will see that
. - '~ the remainders are exactly the numbers in the second line of the
) ~ tig;n in the order given. Why 1 is s0?7 This means that if we
wanted to fin& the remainder xﬁen 7984532 is divided by 7 we
| would write » _ | :
g .‘ 7'x106+'9x105+8x1o e 4 X103 ¢ ;
| | 5 X102 + 3 X10 + 2 | ’ - o

And replace the various p;Lers of 10 by their ;emainders in the

table to get :
% L T

7x1+9x5+sx1++5(x6+5xz+3X3+z.' |
We would have to compute this, vide by 7 and flnd the remg&ﬁdgr.
Tha?-#@ld bg as much work as d?&ding b\& 7 in the first place.
30 this 18 not a practical test but it does show the relationship

between the repeating decimal ang the test.
BN

4

' , 6:&9 ' . ‘ /
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~
‘Notice th;t the sixth'power of 10 has a femainder of 1 when

it is divi by 7. If instead of 7 some other number is taken

. which has gglther 2 nor 5 as a fé;tor, 1 w111 be the remainder
when some power of 10 1s'divided by that number. For instance,
there is some power of 10 which ha§ the :emainder ofAl when it is
divided by 23. 'This is very closely conhected with.the fact that
,the ;émalnders must from a certaln p01nt on, repeat. Another way

o, 'ofeexp essing thls result is that one can fonm a number completely

of 9'5 like 99999999, whlchjls d1v131ble by 23

Camplete the follow1ng table.‘ Invdoing this. notice that it -
¢ 1is not necessary'ta dLVlde lOlO by 17 to get the remalnder when it
is divided by‘l?. .Wp can compute each entry from the one above,

. like this: 10 is the remainder when 10 is divided by 17; this'.

is the first entry. Then divide.10%,

that is, 100. by~l7 and ige
that the .remainder is 15. But we do not need to d1v1de 1000 by
"+ 17. We merely notice that 1000 is 100 X 1Q and hence the remainder

#ﬁen lODO is divided by 17 is the samefpas the ‘remainder when

-

P, or 150 is divided by 17. This rema¥qger is lh. To find
the remainder ﬁhen 104 is divided by 17, notice that 10% is equal .
“ 6 10° X 10 and hence the remainder when divided by 17 is ‘the same
.as khen 14 X 10 is divided'by 17, that ié L. The’table then gives

the remalnders when ‘the powers of 10 are d1v1ded by varlous

: numbers. a : : '
. R | Q. o ‘ .

¢ ‘&" Tt
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¢ 3 7) 9 11 13 17 19 21 37 101 41

1 o 1

10 1 301 10 |

10° 1 2|1 15 | |

103 1 (6| 1] TR |
§ 104 1|y |1 ‘

5 * , | A

10 1 |51 6 . \7,

10% 1 1.1 ! 9

107 1, L s :

108 1. 1 16 | |

107 11 1 7,

]:01.0 1 1 2. \ ’
" 101t 1 1 ) 3. L

1012 1 1 13 3 I P d

1083 L1 1 LA B I

1014 1 1 |8 »
- 1019 1 1 12 B R

O A"
Bt o\ S

Fi*a\what*relétigﬁsh"”"
the re g@cﬁpg*aecimals for 1/3, 1/7, 1/9, 1/11, 1/13, etc. and

*u can between the number&of dlgits in

-

‘remalnders. Why does' the‘table show th%t 'Q«~£~

- réui;_" “ﬁfimal with five digits in the repeating portion?
How would youﬁ%iﬂﬁfa ﬂractlon l/? which would have six digits -
IR

in the repeating porticn? - ‘h‘ag?~¢f;%“fgf

-

79
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If you ﬁish_to.éxplore these things further and find that
you need h;lp, you might begin to read some book on the-theory
.of numbers. Also thefe is'quiﬁe a little material on tests for
'divisibility in "Mathenatical'Excursions”'by MisS_Helen Abbott
Merrill, Dover (1958).*; _ | | | '

e . -~

4
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SUPPLEMENTARY UNIT 4, \

GRAPHS: OPEN AND CLOSED PATHS®

A

! ‘ L 4-1. The Seven~Bridges of ~KBnigsberg

-~

-

Here is a sketch of the map of the German city of KBnigsberg

-

(nnw called Kaliningrad) " Find out why._

. (\{\ R - . g
| - Figure 1 |
_ S |

As you can see, a river goes through the city and divides
into two branches on the east side, and thére is an island in
the middle of Qhe river. There arg seven bridges connecting the .'
island and the, §i§ger§9t parts of the mainland.

W& ‘f\“*x ('.-.“M &\‘t‘:\\ﬁ ~ ‘
s ﬁf%ev the great Swiss mathematician Euler (When dld he live?)

i\"

N became court mathematician to .Frederick the Great (Who was he?

tion came to him with a queStipg;‘Ayl.

~

. ~ Why was he important?), a dele

*In thik chapter we shall use the word "graph" with a mean~ )

ing different from that in Unit 1, Mgthematics for Junior High
School, Volyme II. N .
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erson go through the city of Kbnigsberg in such a way as

over each bridge exactly once? We have worked for years

on tnis pfnblem'and have nevér found an answer." ({This problem ~

was mentioned in Chapter . 1.)
' 4

Euler replied, "Let me think. “The exact shape of the differ-
ent partsof thé/zlty doesn't matter. It would be simpler to rep-

/
resent them by points and the bridges by lines:

Figure 2~ .,

\
. y |
Of course, we only need to show how the barts are connected by

‘the bridges. We can labg the bridges, say, 1, 2, 3, 4, 5, 6, ,
and 7. We could descfibe a path‘by a sequence as
| © A1C3DLAG6BS52C |
Showing the points in the.diagram and the bridges over ﬁhich the
path passes, in the proper crder. For example, this sequence,,
stands for a path which starts at A, passes over bridge 1 to

G, theu ‘egs ﬁygrphridgé 3 to D, and so on.
M\\“«:,‘ ﬁé }}1 ';' 2

- ‘\,‘-_\ ‘ g“ﬁ"k %’v
'm u étion is, "Can we wrlte such a sequence of letters and
q

",n}{\tn [y .
ﬁﬁﬁ"i&ﬂ S |
The men’ from Kbm&gﬁberé were amazed. Their jaws dropped in -
* ‘ : ) Y

, ~ ‘ .
O ‘ “ ’ I(? 'v‘
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sﬁrprise. "Of course," they exclaimed. "It is really very sim-

}at,you explain it.  If we had only thought of looking

ple, now t
at the problem in this way, we could have solved it ourselves,"”

They went home and tried to finish the problem.

That evening they sat around a table diécussing the probleq.
One of them said, "Let ué‘try some simple case first, Jjust to

get'the hang of it. 1In éhis d{agram

. Figure 3

the path A 1 B2 C 3 A goes dver every bridge just once. It is
:a‘glgggg path'because it comes back to the starting point."

Another man ‘said, "I can't find a good path in this diagram:

.

Figure 4 | . - : ,
Is this one impossible,/doﬁyou think?"
' e -~ 3 :

- ERIC g , P
o ' i ‘ : 7(’
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A third man remarked, "You could take the path
’ | A1B2C3ALDS5C.
- It is an gpepn path because it dcesn‘t come back to the starting
point. In this diagram therg does not seem’ to be a closed path

which goés over‘each‘bridge'exactly once."

In this diagram

! | . ) 3 3 c 5 —E - 'J \

Figure 5.

-

they could find neither a closed nor an open path. They worked
hard until way past midnight, and still could not solve their

problem. .
¢ ey : N
The next day they came back”to Euler and said, "We have been
thinking about the problem, ‘but still can't seem to solve it.
There must be some simple idea which we have cverlooked. If you
could just get us started on the right ‘track, we are sure that we

3

can solve it ourselves.®

Euler replied, "All right, let us look at Figure 4 where
there 'is a path which goes over each bridge‘oﬁce and only once,
ﬁhe path is described by a sequence of letters, for the points,
and numbers, fer‘the_bridges. Each num?er appearé Just once in

this sequence because the path crosses each bridge just once.®

£

"Sure enough," they said, "in the sequence

Yk A A e




'Al1B2C3A4DS5C .
each number appears just once. The same is true of_the.sequencé | |
) Al1B2C3A B R

in Figure 3."

Euler said, "Look at these sequences more cérefully; What

comes before each letter except the first?"

Y

"A number,"® they answered. "This corresponds to a bridge
leading to the point." . ‘

"What comes after each letﬁer'except thellasi?” :ﬂ
‘\‘

"A number, of course. There is also a bridge leading away /fj
+ from the paint. '

/
“How many bridges are there for’ Qach time thepath goes
thra;gh a point?"- A
"Two bridges. We come into the point on one bridge and go
away from it on another ¥ridge. For each time a letter~appears
a 4
in the pg h, except at the beginning or end, there are two n&i@ers

for these two bridges.

' ©  Buler suggested, "Let us ca{é%all points :f the path, exéept'f
- for the two endpoints points. Then for each inner point
of the path there aze two bridges. OSuppose tﬁe péint‘ B appearé
; | three times as QQ inner pecint of the path. Fof instanég, look

at this diagram Y / . -
/ -~ ’

t
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P - Figﬁfe 6 -\\

'S

.

N

‘and the path A 1B 2 C 7 D‘3 B L'E9F 5 B 6 G 10 F 13 H12'E

8 D11 H. How many bridges are connected to: B?"

. m

"Six,'! ‘ﬂnswered the men from KBnigsberg.
o \. © o . ‘ ‘

"How did you get that?" asked Euler.

"We'simply multiplied the number of times the point appears
by 2, the nnmtfr of bridges connected with the point at each

-

appeerance.
"Will this ajways \work?" Euler continued.

: L .
"Yes, for every inng: point of the path."

=

"What kind of number do ycu get when you multiply some number

by 2”" Euler asked again.

. "Obviously, an even number.® The men from K8nigsberg looked
at ‘each other, pleasantly sufprised “Then the total number of

bridges leading to or from any inner point of the path must be

even. Any child could see that'“

1, -
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"What about the endpoints, the first and the‘last point?"

They thought for a moment. "Let us see. There is a bridge
ieading from.the first point. Then evéry'oﬁher time the péth |
goes through this‘point, there are two bridges. So the total
number of bridges connected to the first point is one more than

¥ an even number. In other words, it is an odd qfﬁber; The same

is true-of the last ébint.“,

-

Fuler questioned them further. "“Are you sgre? Must the
) : . ' / -
first point be different from the last point?"
' . : A

They smiled. "Of course dot._ Thanké for rehindinguué not
lto overlook thét possibility; If the path is g¢losed, that is,‘if
it comes back to'the‘starting pOint,‘then that point will be liké'
any'inﬁerfpoint of the path. Then ﬁhe hu@ber of bridges to or

from that pdint must be even."
. A /
Euler suggested, "It might be a good ideato summarize what

you have figured out so far."”

They said; "All right. If the path is clesed, then there is
an even number of bridges.connected to each point. If the path
is open, then each of ﬁhe two epdpoints must have an odd number
of bridges. Each of the imner points is connected to an evén
number of bridges. Now that we think of iﬁ,-the pfoblem is ab-

surdly simple."

N : The men from K®nigsberg bént.over the diagram and bégan

counting. "The point C is connected to bridges 1, 2, and(3,

Lo
£ Y
. L.

S : . , ?S)
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the point. D to bridges , the point A to bridges
, and the point B to bridges ~ There are

*

points connected to an odd number of bridges and points

,cbnnected to an even number of bridges. Is a closed path possible?

Y, ? ? Yes '
( es, or mo ) Is an open path possible ( es,fggaggl)
Such an easy problem, after all!™ (Fill the blanks yourself.)

3 . ) . ! .

~

1
After thanking Euler, the merry gentlemeh from K®nigsberg
went home. On the way, one of them said, "I don't see why Euler

has such a great reputatlon. We really worked out every\step of

the problem ourselves. All Euleg did was to suggest how\to look
. N .

at the problem and ask the right questions." His companions

nodded and replied, "Yes the problem was really so elemed%ary

that any child could have solved it."

What do you think? S

o,



Exercises 4-1

Here are some diagrams with some points connected by bridges

in various ways.
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l. (a) For each diagram list the points which are connected to
an even number of bridges. | )
(b) List the points connected with an odd number of b?idges.7

\\\ (¢) How many points of each kind are there in each. diagram?
s $ .

2. (a )“;n which diagrams is it imposs1ble to find a closed path
‘which goes over every bridge just once?
(b) In which dlagrams is it impossible toAflnd an open ‘path ‘

LI P

of this kind? . '

3. For each of the diagrams where it might be possible to have
a path geing over each bridge exactly once, look for such a
path. If you do find a path, describe it by a sequence of

o

letters and numbers. T\

L. For each of these diagrams find a élosed path starting at
y the point B which goes over each bridge just once, and

which goes over the largeéi/possible_number of bridges.

5« In Figure k there are three other paths from A to C which
\ g0 over each bridge exactly once. One of them is descrlbed

by the sequence A 4 D 5 C2B1A3C. Flnd the other two.

[ . <

L=2, What Happens if There Is a ﬁath - \

A set of points a%d bridges, in which each point hasat least
' one'bridgebattached to it, we call a Zraph. The points are talled

{

vertices (singular: vertex) of the graph. A vertex is called

\\; even if an even number of bridges are connected to it. Otherwise

the vertex ig cal%?d odd. A path is called closed if its last

. o~
81




' vertex is the same as its first vertex) Otherwise ‘the path is
called gpen. Notice that we are using the word "graph" in a
special wéy in this chaptef:*-Don’t confuse this meaning with

the m%aning in Unit 1. Compare footnote bottom of page 67.

« By ﬁsing the same reasoningthat the men from K8nigsberg’

used, with Euler's help, you can prowve the general statements:

Theorem 1. If there is) in a g%aph, a closed path which goes

~
»

over each bridge just once, then every vertex is even. If there

is an open path cf.this kiné, then there are two odd vertices,

*

and‘all tba»rest are even. o~
{

-

(A theorem is a statement proved by logical reasqning.)

4

Exercis -2
1. In the graphs of Exercises 1, name the odd and the even’

§ errtices. ‘How many odd vertices are there in each graph?

Does there seem to‘be a general principle? o
&
v 2., State a general principle about the number of odg vertices
' T

in any graph which seems to be true in all ‘cases. Dgfw five
- more grarchs, and test whether your statement is true in each

case. Compare your results with those of your classmates.

S

In ahy graph you may classify the veftices more precisely
according to the number of br;dges conniFted with each oné. The
number of bridgesé}ﬁgéing to or from a vertex’we shall call the

- | desreqgof the vertex. in Figure 2 vertex A is of the thdégfee,

whereas the others are of degree 3.

[}
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- be the number of vartices of degree 1, 'V2 the number of

=2

_iasr_@e nmhﬁr_nf_m.isﬁi_
. , ; .
1l s -~
J\\ ’
H 2
- :% o o
. 3 N - -
4 .
’ [ 8
. [ . 5 . _ . o ' ~
etc . - ~ . M * ) ¢ ‘

L4
-

_How is.the total number of vertices related to the numbers

"in the right hand column? | |
- . o N
Call the total numben\of vertices in a graph V. Let:ﬁvl

b
degree.2 etc. (The numbers Vyy Jps +-*, are the numbers

e

in the ri; t hand column in the above table ) ExprQSSAthe

relatlon between V and the numbe;s Vl, 2, etc. as an

*

4o~

" Take any graph. Label the brldgeé with numbers a

. equatiop. R \\i
the ver-

. tlces«w1th letters. List all palr§ con51st1ng of a wertex

and ‘a bridge connected to Lt.. In’Flgure 2 the pairs are

.named. - .- o - -
. WAl, A2, Ak, A5A6, B5, B7, Cl, C2, C3, D3, Di, DS.

s ) ) . g . ' . + - . Y
In-Exefcisa.S in how many'g-irs does a given bridge occur?
@

¢« How is the number of palrs related to the number of bridges?

Let B be the number of brldges. AGive,a formqla for the



k-2 | . )

number of pairs in. terms of B.
“ : e " .
7. 1n Exercise 5, in how many pairs does a given vertex of degree
‘; - 3 occur? In how many pairs does a given vertex of degree 'k
occur? What is tha total number of .pairs in which a vertex
-of degree 3 occurs? ~What is the total number of pairs in

" which a vertex df degree k occurs?

8. Give a formula for the total number of pairs in Exercise §

1in terms of the numbers V,, V,, V see |
1s , V1. Vo, Vg,

-

9. Give a formula for the total number of odd vertices in terms

of “V,, Voo V3, °00

~)

10. Let U be the total_number of odd vertices. Give a formula '

-

for the’ number (2 B) - U in terms of Vl V ’ %3, etc.

- ll Qan you use the formula in Exercise 10 to prove the prlnciple )

‘you discovered in Exercisé 2?2

»

.xd ‘
‘ »
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‘A-B. When Can You Be Sure That There is a Path?

Aécofding to Theorem 1, if there is a closed path in a graph
uhich goes over each bridge exactly once, then "a certain thlng is
true. ‘This is a{nggg§§§£x condition that there be such a path in

{
a graph If a graph does not satrsfy this ccndltion, namely that

(

all its vertices are even, then: we are. ‘sure that there is no elosed

path g01ng over eacﬁ'bridge uust once.

Is this conﬁdﬁion gnifigign;? If all the vertices ére‘even 7
does there exist a path of this kind in the graph7 E;pmine all
. the graphs you(kave drawn SO far.' Find the ones whxch Ha\g only

even vertices. Can you find, in each one of these a closed path

-

going over each brldge pnce and only once? Can you draw a \
ggunggzgxamglg a graph with only even vertices in which there is,
no such path? o Co _ ” R '

= : ,

. Does it Seem as though the candltlon that the graph have no
T ¢
odd vertices is suff1c1ent? Compare your conciusions g(kh those

of your classmatbs before\you turn thls page.

o . -
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Look at this graph:

» Figure 8

Are there any odd vertices? Can. you find a path which goes over

e&ery bri&ge just once? In fact 15 there any path which goes‘\

’over both bridges 1 and 4? ' If you are not sure whether this is

a graph, reread the definition of a graph. Th#s will teach you

why we must be so careful in mathemahlcs to say exactly what we

J

-~

mean. - o i
>

: Tﬁe‘t:éuble with Figure 4 is that it‘is made up of two sebaf
rate pieces. Theée is no use looking for a peth which goes over
every bridge unless the graph is connected ﬁe say tha} a graph is
connected if every vertex can be joined to-aeychher vertéx by a
path. ‘In Figure &4 tﬁe vertex ' A can. be joined.cc B and G,

but not to any of the other: \‘fertices{. ’

g"turns.ant that if a connected graph has no odd vertices
then there is a ¢losed path which goes over every bridge exactly :

once. We s@all ﬁead.you to dlscover the proof in two stages.

r

.
A ]

\ Ihggzgm 2. If g grapi hes*no odd’vertices then through °

every vertex there is & cldsed path which dqesn't go over any -

. bridge tw1ce. : . . "J

2
U *
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Proof: Suppose Q; is a vertex of the&greph Find the
longest path’(measured by the number of bridges in {t) whioh
\ sterts at Ql and doesn'tho over any bridge more than once.
Suppose, far.example that thls.path has 7 idges in.it. Wwe
’.could deso}ibe nhe peth roughly like this: ?r
| Q122Q3QLQ5Q5Q7Q8 K
Here the subscripte simply help us name- the vertices. For example

Q2 is the second vertex. We did not bother to write the numbers
of the bridges between the names of the vertices. Now supque
an is not the same as Ql. Is this path open or closed’ Is QSQ‘ B
&n inner point or an endpoint of this path? What do yol know
. about the number of bridges Gonnected to an endpoint of a path?
~ What was assumed about the total number of bridges connected to ’

any point of the graph? Can thie‘path contain all the bridges
{

' iconneo@ed'to ”QS? , :
+ If not, then there is at least one more bridge in the graph \\;l
connécted to Qg but not in this path. If we go over this bridge, -
too, then we will have a path .- : o o

.. . CE
. - A’} . - - ‘.

\?. :
2%838,9599R704% ™~

- starting at 6 with 8 bridges. Thls contradicts o aSSumption '

-

that the longest path,ls&arting at Q;, in the graph|has only 7 ]

./""> , bridges . ’ - - ' ! d g ’; v ﬁA f

i
j

" Since we got into. a contradiction by assumi that QS was
‘not the same as Q1 ‘then thls assumption must be false. There- '5

fore, QS is the same as Ql, S0 this is a closed path through‘




18& - | N \ | : oy s
91” which doesn;t go éver any bridge tkicel‘
Sow you aré ready for the second stage: p
, Theorem 3. If‘a gemnected graph hgéiéﬁiy even vertiées,

theﬁ there is a closed path. going over eéery'bridge just once. ‘
- ' ‘ . N

>~ Proof: Suppose you look at the longest such path in the
graph. Color the bridges and verticés of this path blue. RE

this path does not contain every brldge, then color in red all

bridgeg which are not in this path. We are going to assume that
. there is a red bridge, ‘and see what follows. We claim that there

is a purple vertex, that is one colored both blue and red. ¥

To see this tﬁﬁke any red bridge and some blue vertex P.
Since the graph i$ connected, there gs a path joining either ver-
tex, sgyL Ql‘ of the given red bridge_withAthe vertex . P. Look
at the Jast red bridge in this path. Suppose it leads from the%i<
;vert'e;g R to the verteX S. Since this bridge s red, then S
« 1i8'golored red. But the -next bridge in thé"éath'is blue.{”Thé}El f.
. . 1 s :

*forle, _S is.élso blue. So S ;ié:purpie._

Now look at the graph made up of the red bridges which we
‘;can call. simply ﬁﬁe red graph. Sinqe the blue path is closed
_ there is an even num er of blue bridges cohnected to &ach of 1ts

verticas. Since ‘the total number of brldges connected to any ver-

r

"tex of the oréginal graph is even, that leaves an even number of

B

red brldges Ipos§1bly Ochonnected to any verth,

. - i .
. : A ‘ . : ¢
! RN ”~

. - * . B
- T -.1 0 ' ‘
- ‘y I
- SR - 83
. . : - {
. - N 2 - “ - 7
:
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Therefore in the red graph, there is an even number of
bridges connected to. each #ertex. Wé can.epply Theorem 2 to the~

red graph. Hence there is a closed path in the red graph threugh
/fge purple vertex S. We have then a picture like this:

Figure 9

-

Then the path PABSGHQJRSCDELTFP isa closed path

‘which doesn¥t go over any.bridge.mare than once. This path’is
| lohger than the blue peth.- This is a contradlctlon sin&e the

" blue path was”™ supposed to ‘be the longest such{ closed path 1n t.hg
‘ gr*aph - o ‘ . L '
by . R B ' 9

. We¢ got 1nto trouble by assumlng that the blue path dld not .

N x

”

D

con%aln all the brldges. Therefore, it does contain all oflthem. '

So the blie’ path is the one we were looking for.

‘I\ Esé ::C I §§ A;"E

~—

BRAINBUSTER Prove that if a connected grnph ‘has. 2 odd vertlces

.-fhnd alI ‘the rest even then there is an open path whith gees over

¥
every bridge exactly once. ‘ .

- N « oy . .
L ' N .

- T e




h—h;“Hamilponian Paths

§ i

_ There is another'ﬁroblem which SOunds no ﬁore diffigulﬁ ﬁhaﬁ
'Euler's’proﬁiem. ~Yet no Qne knows the answer. Betayse the first
‘problem of this kind was solved by the great Irish mathematician,
Sir William Rowan Hamilton {When and where dld he live?), the

,paths we seek are named after him.

A r_-;_am;mm m is a graph in a closed path which goes<\
through every vertex of the graph wlthout going over any bridge -
more than once. A Hamiltonian ‘path does not have to g0 over

every bridge in the graph - Figuyre 10 shows a g;aph with a Ham-

1lt@nian path' . o \
. : ‘é
, ’ CRS
h - A S -
;"‘ iy k/
] SRV R Y Vo
’ St ‘Figure 10
v ‘ o e o 2.- ' L . . '
The dotted lipes,represent-bri!ges which are not, in the Hamiltonian
. path.’ LS - R
. - -. /:., . s i ‘ ’1‘4 . . *“ ’ -
N . -, Exercise 4=l
oot g ' o o . .
" - . .In which of the following graphs is there is Ramiltonian
- ‘ T . * ) ' . {.
1y -  path? D e
‘ ."- x -~ -
» ﬁa “ S '!)0




(a) o (w ey

Figure 11

A necessar’y and sufficient condition forga graph to contain
_i‘Hamiltonian path is unknown. This is one way. for you ?o become
world famous Qverﬁight; Good luck to your efforts! We hope ybq'

have lots of fun trying. - ' / R




\ ; SUPPLEMENTARY UNIT 5 -
' - Y \
| - FINITE DIFFEREHCES -
5-1, Arithmetic Progressions

Suppose we look-at a few interesting sets of numbers to

begin with, and take differences of successive numbers:

Table I
 1 2 ’3 _;L 5 6 +.. n (n1l) ...

~ ’ i 1 1‘& 1 1 1 es s 1. s
*r : " ) N ) . .

Between each pair of numbersand on the line below it we write

é

the difference: - .

- 2 =] = 1,f3 -2=1, hgf 3 = l,'.}. .

It begins to.be monotonous after-a while. Why'did'we have the
nupberu_n? It'was‘juét to indicate any number .(n‘ sténds for -
"any"). The next-gumber after n would be (n + 1) since in-
“this *se@ugnce" you get eéchfnumbe; by-adding 1 to the number be-

N L)
. fore. (When we have a set of numbers in some'oﬁger, we call it a

LY
2

sequence.") Whatrwould be the next one after (n + 1)? What
would'bé the .one beforé .n?7 You should read this unit with ay
pencil and.sheet -of papér'aﬁihand_so that you may answer these
questioﬁs as they!occué. You may also have questions of your. own

which you would like to try to answer. : \?25\\'

- There is nothing especially strange about the differences

_beihg l's_singé‘each time you added 1 td get tge:next entry.

-

[ 3

o
S L0l




90 » . - - 5-1.
Could youiﬁri{é a sequence in which &ll the differences dre 2's
or 3'5 or any other number?  Any sequence for which' the differenée
between successive numbers is the same every time is called an
arithmetic progression. S
i . h o
Let us look back to the numbers of Table I. There is a {;>

-®

connection with the game of ten pins or bowling. Look at the

triangle of dots below:

\

If ge omitted the last line we would have the _usual arrangement
_of ten pins in a bowling alley. If there were just one row we
would have the number 1, if two rows the number 3, if three fows
the number 6, etc. These a;é called "triangular numbers." We
write these in | |
Table II

@&

1 3 6 10 15 21 28 ...

Differences 2 3 4 5 6 7 ...

If we compare - this table with Table I we can notice. a ﬁumber

~eof interesting things. The firsp entries in the two tablgg are
: éach.l; The second‘entry,in Table ITI is the sum of the first two
| entries in Table I, the third entry in Table II is the sum of the
,first three entries 1n Table I, etc. The tenth entry in Table II
_would be the sum of the flrstféén entrles in Table I. Wé could

also. say t at the\n -th entry in Table II (we do'not yet have a

formula for it) is the sum of the first n entries in Table I.
> i (}'} '

= )




‘Jf"_..-

] ,
,rhicﬁ gives 5 X 6 = 30 dots in all. Hence the number of dots

<

Another thing we notice in comparing the two tables is |
that the dlfferences in the second line of Table II are the same
as the entries in the first line of Table I except for the first
one. Why is this sb? Of course 'if we had written in Table II a
third line giving the differences for the second line we would.

have had a succession of 1's as before.

Now we could find the sum -of the first ten numbers in Table

I by adding them - this would give us the tenth entry in the first

line of Table II, but this would,be.rather tedious. Ther¢ is an
interesting little triék that will gife us our.result-with less
effort. Suppose we form anotﬁer triangle of dots like that above,
turn it upside down and fit it carefully next to the one already

written. Then we would have a figure like:

In this picture we have 5 rows with 6 dots/in each row,

in the first triangle would be 1/2 x 30 = 15, whtqi is‘the fifth

triangular number. If we wanted the 20th triangul r number we

"wouldrhave a triangle of 20 rows. If we make another triangle of

dots and place it as we did for the smaller triangle, we would

R -~ .
ave 20 rows with 21 dots eagh and hence 20 x 21 dots in the two

-

triépgﬁes tqgetﬂer, which implies that in gach triangle thers
- . . , ‘ \‘\ v/ ’
.\\\ Nd

A4y

L

..

)



would be . o | ﬂ{f'

- " 1/2 X 20 X 21

dots. S5 Thre—2Oth triangluar number is 2lb, which is the same

as the sum. of the numbers 1, 2, 3, *+¢ up toand including 20.

-\ ‘ N .
C/f By this means we would flnd in the same manner the nuqéer of

: dots in any trlangular array of this kind that is, we could find

any triangular number. Let us write a few:

o

-

" 40th £r1aﬁ§paartnumber: 1/2 X, 40 X 41. = 820

100th triangular numfer: 1/2 X 100 X 101 = 5050
120th triangular number: 1/2 X 120 & 121 = 7260.

- N

In each case we would take the product of 1, 2,.the number agd 1

\ ——ny
more than»the number. We could get‘a<€orqula by legting n stand

for the number and say that

AN

the n-th triangular number-” 1/2 X n X (n+1). .2

L

'Then we would get the ‘above three values by lettlng n = LO

B

n = 100, n{//izo. Any triangular number we could get by usxng -

1/2 n (n + 1)

-

-where this is another way of writing l/é Xxn X (n + 1}.

&

We could alw:gat this result w1thout any.reference to dots

- o

<0y use of a trick that is- suggested by the triangles we drew.

Supper we Qénted the 20th triangular number. Then we could ‘take

\\5.

the sum in two different d@ders ' ‘ -~
' . 1 2 3 4 ...17 18 19 20
’ 20 19 18 17 4L .3 2 1.

-

The sum of each column is 21, there are 20 columns an

sum of the numbers in the .two rows is 20 X 21 and tha

Y

95 .

§

hence the x}
r/

in each

4
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row is one-half cf this. We could do this for any number in
placg'éf-éo_énd one wa -0fi showing this would be to write i%-out
using é' fér £he numper in place of 20 or whatever number we had.
It would look like thits: | N
1 2 3 A ees (n=1) n

. ®

n 'l n-2 n“B s e 2 lp
The sum of eagh column is n th and there are n columns. (/

- Hence the sum of all the numbers ilf the two rows isf"n(n 4 1)

and half this is the sum for each row.

~
Al

We shall find still anogﬁer waj to get-this\éuﬁ in the next
- ] . * ‘ "
section.

. . ‘ : ﬂ :
B . 5-] S~
1.' Write another sequence of numbers for which’the‘differences
~are all 1's. What would be the sum of’ the first 2Q numbers?
- Can you give a formula for the sum of thexfirst n numbers?

2, Write a sequence of numbers.fer whlch the dlfferean§ are all

)
2‘3.' What would be the sum of the first 20 numbers? Can you

I #
'give a fonnula for the sum of the first n numbers?

™~
3. Consider ‘the formula: 2n * 7 (remember that 2q\‘means
2 x n) When gp = l 2n +7 s 2X 1+ 7 = 9; when n = 2{
\I 2n + 7 iS} X2+ 7= 11, etc. We can fonn a table\bf values-
n 1-2.3'4-56 -

‘2% + 7 &9"1,1 13 15 .17 19

r. “ - ) .I\' . LS '
Carry this table out for the next .three values of .n. ‘Use

Ve

_the numbers - 9, 11, K?, **+ as the first row of a table and
a . 4 , |

i
L)

- . . . - .
L .
« , v -
.

A ' | iR . . 96 )



oL . o L B . - - 5e1
then write below this' row a row of differences, Do_yoh notice

any relationship between the fbnngla and these differencés?

/
.
” . H

L. Do the same as in problem‘3 for the formula 3n + 7 «and fér ,

2n + 6.

/' 5.. What would be the differences for the hum?gﬁs defined by the

formuld 5n + 77

-4

6. Write the firét 20 odd numbers. Can you find their sum with-
‘out just adding them? Can you guess ﬁhat a formula for the
]gb sum of the first n odd numbers would be? Try to prove your

]

result. | . | S
7. Give a formuié for the sum of the firsﬁg n -1 nuhbers in

‘Table I. : -

NGRS RS R 3 . -

-

8. Find a fommula for the iym.of the foll@wihg: B
| | 4 nd { |

1, 1 + d, l+2d, -+, 1/+
S. ‘Give a fonnula for the sum of ‘the fobluwing.

;

Y1, 1 +d, 1+ 24, --f,l+ ;x-l)d

-

10. Find a formula for the sum of the same

11, Suppose the first two numbers in a tai{e are

numbers on é;é first row are in an anithmetlc progresslon.

s °
\ .
e . .v A
, b e ‘ -
- N - o "
. /7
f - . N ! * Y + .
. Y \ N
. . ’ } . ‘
5 .
: .
. : :
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4

12. Write a table nf numbers in an ar thmetic progression'ina4

which the first two - entires are 7 and 5 in that order.,“’

. 131 If you ‘have any two numbers instead of 7 and 12, or 7. and
| l5, could you make a table starting with the twn given ‘

nunbers in which the numbers of the first.row form an arith-

metic pragression? Give reasons. |
i : //S-é.{ More .Sequences .
= ) - Ty . -]
QOW foﬁn a table of the squares of the ‘integers. Recall
that qﬁe'square of 3 is 9 since .3 X 3= 9 the Square of 5 is

L4

. 25 since: 5,X 5 - 52 =25, etc. We call them *squares" br *square
numbers“.because if we Qrdte our dots in squares ingtead of t:i-
angles, as previously we would have the following gequence of
Squares:‘ ‘

F

a o' s 0

s 8 »

» » » »

» o o &

L [ ] L] [ ] L
s o ~o' .

® o o o -0

s & » o o »
s 0\0 - .
» . » » [ ] [ ]
s o & o o »

Table III

L 4 916 250 36 49 ..
"3 s 7 9.l 13 L) W
' 2 2. 2 2 ‘a2 ... 2 -

Notice thxfnthe numbers here in the second row are ln an arith-

SN .
\ metic pragre331on and that the dlfferences 1n the third row are

t

; R 4 .
. 95
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-

all 2's. We call th% ndmbers in the secéhd row of such a table

-

Mfirst. differences" and thos¢ in the-’ thlfd row "second dlfferences.

‘What would be the n;th~term_ n the second row, that is, the entry

where w 1is? (w stands for "what.") This éhogld_not he hard to
find since it is the difference of the 'two numbers above it. It is
~ ‘ ¢ : . /“ ‘ ’ ‘ .

t

"j!'.xst . : * . , , : )

4 . ¢ '

~) . - (n + 1) ;fnz. . j
y ' | ’ : [

-~

Before getﬁlng a slmpler expre531on'Tor this dlfference of two
squares, let us see how it goes for some of the numbens. jst to

write 36 -125 = 11 1§ not especially enlightening. But su pose we_
write it as o | . SN e |
: 62 _ 52 2 (5% 1)2 - 52

v
e

L

If ye.uée the_di§tri§uti§e prapertygﬁevéral ti@es we Eave:gﬂ
(5 + 1) (5+1)\X(5+1)-6x‘(5+1) '
| - =6 X546 X1=(5+1) X5
‘,,,+(5'+1)xi'=f5 FAIX5 45 X1
R *2 X5+ 1.

I

! ¢ :
i ‘ T ¥ ..L‘.'
And thus ‘ ” * ? ) ' ,g-z
| 6° - 5° 52+2xé+1-52=2’x5+1.-"
. ﬁ D - H . ' ‘\
In just the same way we could show that e b

nhumber, we have . !

P -2 =6 X641 -6%=2X6+ 1,

| : A - A

(Try it-and see.) So, putting -n in place of 5 or 6.or whatever
' ' A
| e
\(n+l)2—n2=n2+2n+1—n2‘=2n+;,l.

j ' S . y

| We could write this in words: The difference betweer| the

s

'squares of two successive integers is 1 more than twice the smaller

| one. For instghce: 121

2 .120° =2 X120 + 1 = 241, This is'a

“ . : 1 | . RN . . ‘
much simpler computation than squaring both‘numbers and taking tue

* . ; ‘ . IS . . . {
. [ : N . - "
*

\ . gy

:
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différence. This can also be shown using diagrams of squares-in f

dots, but this is left as an exercise..

- @

. ‘ ‘ . ° { o
This shows thaﬁ the last entry in the second row of Table III
should be 2n + 1.. We might check this: when n is 1, 2n + 1 is
33 4;33 n is 2, 2F'+ l‘Ag 5, etc. -
: '

The numbers in, the second row are in an arithmetic progres-
1 ‘sign, IfAyéu lpgk carer%}y, you will iee ﬁhat each'number in‘tﬁe 
first.row is 1 more than the sum of the numbers to theé left of it

! in the row bélow. Why is this s0? Ahotﬁer way of.saying this is
 that ﬁhe fifth number(in‘the figép row i's the sum of the first five

qu numbers,'the sixth number in the fist row is the éum of the

first six 6dd mumbers, etc. What would be the sum of the first
.20 odd numbgfé? )
. S S

. . : i .
We can use this' to get the"formula for the sum of the first

, : n ﬁﬁmbers.in still another way: Start with

(1) 3.+:5+ 7+ «-« + (2n + 1) “(n+1)%«1=n%+2n.%

- - e f

¢ . ' - . N -
*‘“/rﬁ\b§§tice that 3 is the value of 2n + 1 when n = 1, 5 is
o= S - - : A ' ) 3 )
o the(;a ue of 2n + 1 when n = 2, etc. Then we can writée the left

-

- T .
)

4 . side-of equation (1) as follows:

—~—

+ (22X 3+ 1) + =70 ¥ (20 + 1),

‘ *

i S0 (2 x ;»lf v (2x241)
‘ff we gpgteifhis in a diffefent\prder, using the commutative .
property, we have R ' - . -
2xf+"2'x02'f2‘x3+\.\.. +2n+(l+l+i+--n+l)
where phere are n l'; in the pareﬁtheses. Then,’from the d;é—
tributive property, this‘€9x be written ‘ |

» . . }u() _ ‘
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,2X(1+2+3+---+n)+n..

If we put this- in for the left side of equatian (l) we getéh

- the equation: 3 Q ) {

2

- 2x(1+2+3+---+n)+n-n +2n.

Subtract n from both sides Eo get

2 | 2

.2x4(1+\2*3t---+n)-n +2n - n=n“ +n.

N : o
/Finally, if we divide both sides, by 2 we have "
JRPEN

P

142 +3+ «c0 4+n -%{hz + n) -;n(n + 1)
v ' Ko
which is the formula we had beforé for the n-bh triangular number,

3: 7 This is, of course, afmuch harder way to find the sum of the

* first n 'integegs than by the other methods. But it does give
Jus a means of finding the suff of the squares; for just as we got
the sum of the integers by considering the squares _we should be
able to get the'sgm of the squares of the integers}by considering

N\ ’ I A -
a table of their cubes. Let us . try it.

*

" | | Table IV -
1. 8 27 64, 125 216 cer n? “(m+ 1) L.
7 19 37 61 91 oo .' w .
12 18 24 30 ... o
L6 6 .~_6“~ A LT

Notice that here it is the secbnd dlfferences which form an
arithmetic progression aﬁﬁ;the third differences which are all

the same. | - o

- C
o .
L

' The second row should be connécted somehow with the squares

of the integers. To get a clue for this connéction, we must: .

. L

’ ’ | . ' . ‘ £ . \
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determine the formula for the last term in ‘the second row,

which we have éaLled w. This is.just‘
(n +1)% - 03,
To work this qut, let ¢ temporarily stand for (n + l)? and

ha#e
m+1)2 =+ x(n+1)2=(n+1)xc. °
‘ ' ’ ’ i
] ' -nx\c+lxc‘-‘nxc+c~.

We found previously that (n + l)zﬁ' n® + 2n # l,{’ahd replacing

.

c by this,ke have- | N ' .
(n + 1)3 = nx {n®'+2n + 1) + 1 + 2n ¥1

(o« - = n3 + 2n2‘+ n + n2 + 2n + 1
SN 4 . .

‘ a'n3 + 3h2 + 3n + 1.,
-+ Thus \< .
Y e+l cpden3s 3n2 +3n+1 - n? =30 + 3n + 1,

To dheckthis, let us form a little table of values:

a

n 1 2 3 4

A

- which checks with the sécond row of Table IV. ' T
,Frah,this-we are now going to work out the following fqpmula

|

(" for the sum of gﬁg first .n squares:

s = ZBE* %nz *a, | )

*

A - + .

hd -~

If you find the algebra too diffiéult, you can just assume the
formula and go on to the exercises after ches&%ng the formula for

a few values of n. 9

by
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- \To et the formula first notice that in Table IV, . §
8 - §N\V7 27 =1 +° %h:‘l9 6& =1+ 7 +19 + 37, etc._ Eaéh

number in the first TOW after the\f is 1 more than the sum of the

\
qpmbers iR the second.row and tothe left of it. That'ds,

A
C( P

(n + 1) i§1 plus the sum of the numbers ig the second row
through W, which is .3p + 3g.+ 1. "Hence we have the ‘following
equatlon . t |

(2) : 7+19+37{+ LA (3n $ 30+ 1) = (ne1)3:

R : ’ '

From ourwnrk above we See that the right s&de of this equav

-

tion is eg¥§l te, .

s

2

n? -+ 302"+ 3o+l - n’ + 3n2

+ 3n,
and the left‘sgée _may be wrltten. B

3X1% +3Xx1+1)+ _ &

(3x22+3x2+1)+

(3x3% +3x3+1)+
K . SRR SR
2 ) .
+3xn+l)¢ 2

L] 4

INotice that the numbers after the first multiplication sigpé are T~

(3 xn

the squares of‘ﬁpe numbers from 1 to n, the numbers'aféer‘the
[ .
second multiplicatlon Signs‘are the numbers from l,to n and the,

last number in each line is 1. So-if we add by columns«we'have, o

vy
4

using the distributive property: s '
| 3 X (12 + éé + 32 + iy n2) + ‘

3X (1 +2+ 3+ oo +'n) + g ¢
- ) ”‘(1+1+1+....+1), |

where‘iq the last line there are m 1l's. We have called s the

\.J f o :x" ) \\

-d
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..
~ . ) »

sum of the squareg of ?hf/first n. integerg,Iwe know that the

“ . \
sum of the first n integers is l(n + n) and the sum of the

“n 1's is, W' Hence the expression can be abbreviated to:

-

sides to get

35 + 3,X l(n + n) + n,

which is what the left side of (2) reduces to. If we equate it .

to what we foyhd above for the right side we have.
‘ 38 + 3 X 5( +n) +n = n3 + 3n + 3n.

Since: o - |
- l . n .22_11! l(n +n)~,--1n—_jn

‘and

| o 2 , ¢
n3+3n2+3n_‘.333*§2L+§n,

/o C

our equatlon becomes: ‘ v
¢ s,.ln +Jn+an .an3 2énf+6g.." '
* L
" ) ‘ 2‘+ —‘ .
Notice thatv‘Bn + 2n = 5n andrsubsgract‘ 33—5-—5n from both

e

Vo 3 .’g-.é;m én_znz-ﬁ\ 20’ + 30 +n

Finally if we q;vide both sides- by 3 we have the formula

-~

é N .
- ‘. : 3-0: 2:+ Coe
; N . 8 g S K

which is what'ge\ifated above.
) » ot ' .

3 | -
: X . ) . o , 1. .
Tou should check this for, the first two or-three values

of n.

[

\

>

-
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1. Using dots in the form of squares showlﬁh\&L
(n_+ l)2 n° = 2n + 1.

¢

e ) i - ‘ - .
", 2. Find a formula for the sum of the squaJLS“of the first- n even
- integers. (Youxmay wantto make a table flrst ) ’ S '»le"'

N

3. Find a formula for the sum of.the squareé of tpe first n odd
integefs. ‘Hint: not ice that (2n - l)2 = Igz.- bn + 1. .

. R ‘ | ‘ o A
" 4." Given the numbers 4, 7, 12, can-you fJ%m a table beginning

with these numbers'in which the first differences ére in. an” AN
. . . ) b . ‘
abkithmetic progression? {
,:( S ¥ ) _
'5. Answer the same‘qpestion as that in problem 4 but with the "i | P
numbers 4, Z, 12 replaced by 10, 5§} 11 in that ordem. : . . -
¥ ) x. . . ‘. ‘. \

. 6. Given any three humbers, could a table be‘constructed heving
the given numbers as the first three entries in order and for

which the first differences would be in an arlthmetic progres- '

* sion? Give reasons for your answers. : , | -
¢ L '
7. Find a formula for the‘sdm of the first n 3cubes of integers, )
_that is, for 1, 8, 27, 64, etc. - ” . B . :
3 . | {
1\ ’ ' ‘ . ;
. . 5-3. Finding Formulas that Fit .

N ~-

i .0 &A .
By the methods we used in the previous sections “we could flnd
I
farmulas for the sums of cubes, fourth powers,fifth powers and 80 -
on but the ccmputations and algebra “become more and more dlfficult.

£

It is time we tried something eélse.

- - - t
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We can use some of the same mfﬁhods to find formulas to
,; | fit some tables of values. qupose we had the sgquence_of numbers:
' 3 o7 1 15 19 ees |
and we wanted a fonnula that woulé fit these values. We could
form a table and take the first dlfferences -
Table V
3 7 11 15 19 -
bk kT b

These dlfferences are all the same that is the numpers in the

. first row are in an ar1thmetic progression. (Of course the next

-

valu§>might not ne, but we are only trylng to find a formula which

fits ;hg given values.) From this we might guess that the formula -
ﬂor.thefnugpers in th \first'row.would be ¢f the form: - an +'b
ifoé'some numbers‘ja and b. Suppose we try it to see-if it works.
" Then thi n-th and (n + 1)st entrieé would'be | '

¢

"
- an + b.and a(n+ 1) +b .
s and their dqfference would be .
| y a{n + 1) +b ~an ~-b = an +a+b-an -{b = a
‘f o which is thé difference. Since all the differences are 4, it o
follows that "a must be "4 and our formula beccm/; f .
' 4n + b. p
] * ‘Wow when fn #is 1, 4n + b musE be ;he first entry, that is
| . s Ak
R which means~that b must be . - 1 and bence the formula seems to
) be, " 5 | - ’ —
- 4n - 1. |
. . . “
) Fo : o )
— ]*16' .
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If we try this for Various values of n we see that it works and
. ) ; ‘ r . . , ’
this indeed fits the five entries in the first row of the

table. o o Y
Actually we could see that this would have to work if the -
‘numbers are in an arithmetic progression, once we have fixed b’

so that the.first entry fits the formula; for, whatever b is,
. \

fhe numbers in the first row would be ' S
| b 4L+b: 2xL4k+*+b 3X L+b . NS

and the differences are all 4's.

s
Really we have proved mofe thaﬂ;we set out to do. We Hawe ~
- the - AR _
Theoren i;,the first.diffgfegceé of a table of values
are all the.same, call them a, then the numbers form an arith-

metic progression'ahd the formula for the n-.th term ié

Q ' an + b
' where 'b is so chosen that a + b is the first number in the
) ) © & . ¥ ) . \ I
tablel. . | } ‘ Vs . B "

.y . &
¢ 1)

By means of thié theorem we could get a formula to fit any

table of valpes in an arithhetic progression,‘fhat is, in which

|

. . the first differences are all equal. What about tables in which
. ’ ) ) . ‘ f’

thig .is not the case? In order to explore this, suppo%e %eAtest
ﬂ‘ .

the tables for a few formulas to see iffwe can make some gueéses: .

¥ : Table for q(ﬁ +2) = pz +2n .
[] ‘\ -~ -
¥ ‘n \J:_ % 3 . l’ , 5 \-ﬂgn \ .
B n(n + 2) 3 8 15 2 35 e LT
first differences \ 5 7 9 11 N

]“;7 ‘ L
/
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Here the first differences form an arlthmetic prognession.

(You should check these values$ and cgmpute a few more.’)

X

Table for. n(n+ 1)(n + z) o ’

n 1 2 30 b 5 6 e
n{n '+ 1)(n + 2) 6 24, 60 120~ 210 ~ 336 e
First difference;. 18 36 60 . 90 126 *- |

Secdnd‘differences - 18 24 . 30 f36 ice
.A . -~

Notice that n{(n + 1)(n + #) is the product of three successjive .

integers begirining with n. Here itfis the second'differences

LI )

=9

which are in an arithmetic progression. TQis would give us a
way of computing the values of‘ ﬁ(n + l)(n + 2). succasgively,
aSSuming that the second dlfferences are 1n an arithmetic progreés-
sion no matter how far one goes in the table. For instance, the )
next second difference would be = 36 + 6, the next first
difference would be 126 + 42 = 168 which means ‘that the next eritry
in the line above would.be 336 + 168 = 504. | To check this we see
that 504 = 7 X8 X 9. (Notice éhat every number after the first
line in the table is divisible by 6. Why 15 ;Fls so?)

t

Try one more table: .

Table fof n(h +.l)(h + é)(n + 3)

- n .1 2 .73 4 5 6
n(n++ 1)(n + 2)(n + 3) . 24 -120 360 8L0 1680 .. 3024

. First differences T g6 ‘42A0 s héO :840 L 34d
Second‘differenée ' - C 144 240 360 ; 594~ '
«Third'diffe{eﬁcéa B ‘ 96  A20 144
- . - % LT -
A . N Fag k s

- v -y \
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. . . - - . . A - . ) . .- .{ i -
\
ﬁere it is the thlrd dlfferences that are in an arithmetic progres-

sion. N¢élce EE?t every nﬁmber aftar the first row is div1sible {
by 24. Why is this 8o? ' - o : ‘ '

— ~ o, } { l . ' ) . /-
o ' . . ‘\% ,i%_ . : ] .
) ' Before‘going further,‘you should try out a few for yourself. ot

. Exercises 5-3-a
. ) - ’ !\
1. Find tables of values for each of , the following formulas

and compute first, second, third differences.

(a) ne + 35.# 2 - a ‘ ‘ R ﬁ*f.
, 5 . . )

(b) R—E—Jl
(c) n>+n - ' o, N

e
»

2. Suppose you coméﬁted a table for the fomulas nh -‘n2 and ‘ i

L] -

computed the first, second, etc. differences. Guess how soon
B _ .

‘ 4¢?' you would come to an drithmetic progression. Then check it

to find out. L
y  Now we can come back to the problem of trying to find for-
/S mulas that fit certain tables.‘ In the beg{nning we considered

, ;fianéular‘numbers and a little later, square numbers. What
would “pentagonal numbers® be? (You reme&ber that a pentagon is
‘a five—si&ed‘figure - the shapetof tge Pentagon in Washington.)
-\ Consider the following figure which is a set of pentagons:

-




‘for the vertices which we have counted twicq;)*;The next time

d '-.- ‘ ’ * , | ’[0

53 L P L) 107

We call 1 the first pentagonal number and 5 the next. In the

next;penmagén there will be 3 dots on a side and we add three
’ . . “ .

Sides with a total of 3 + 3 + 3 - 2 = 7 dots\ (We subtract 2

" we would add 4 + 4 + 4 - 2, or 10 dots. Each time we add three -

more than we did the pfe%iods time. . In this way we get the follow- :

ing table of pentagonal numbers:

Table VI .
1 5 12 .22 35 T
s . '.a\
first differences = L 7 10 13 |
.second differenceé ’ 3 .3 '3

From this and our previous experience it laoks as if the

formula which would fit this table would be of the form

an? .+ bn + ¢ g

for a proper,hoice of the numbers a, b, and c. Let us see

s * -

-~
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ot ’ . ’ t & ‘ . ‘ ‘ - .
A3f this will work out. Then the n-th énd (n +.1)st termsg |
. . ! ! - L T “ b } .
WQUla be . ; _i'-:..' :‘“ \ ¥ - . « -
an? + bn + ¢ and a(n + l)2 ' b(n +1) + ¢
\ { ; )
“and their difference would be T t
r‘ax[(n+l)2-n2] +b;<L<n+J1.z fajw-c. N
We have. already fbunﬂ tﬁﬁt %n % lfé 2 - 2n + 1 and hence the
~diffe e is ' o r'e B ' *
TREC | o ’ _ :
v ~a{2n + 1) + b = 2an +.{(a + b).

Now this has to be eqpal to the first di fference fofmula. But we(fg

can find this. Since the first dif?erences of the first dlffer- ‘
"ences are all 3, the formula fqp the- first dlfference in the table

must be 3n + r and r must be 1 to have it give the numbér I
when n = 1, So we have .

~

3n + 1 = 2an + (a + b).‘_
This means that-. _ . ,

, . 2a =3 and a N i/I;
which gives a = % ~and b = - %;. | )

\

Hence the formula for the nunbers in the fifst line of Table

*

VI, the pentagdnalvnumbers, should be

\% n° - %n +c'

for a proper choice of c¢. Putting' n = 1 In the formula and

<

setting it‘eépal'to the first entry, 1, in the tabie, we get

1l i’% x 12 - % X1l+c=1+c¢

which shows that ‘¢ must be zero. Qo our formula for the n-th .

P

il
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" term in tﬁe first row of Table?ngseems to Se R ,; | c
Lo ) E 2 ' - .’;
d,. 4 "}\ %n - _n - 1L2:—n é ' . :

\

- and trying values for n will show’'you that it does 1ndeed fit.
A’
-Furthermore it has to fit- 51gce the first differences are fixed

¢

and they_dete:mine'the‘entrias on the first line after the first

{

entry is given.

~ ‘ . , o .  § ’
i ‘ s ~la . - i
. Y Mi—h : — Ay
1. Find formulgs which fit each of the following tables of values:.
. _
(a) 2 7 .12 17 22 27 o 1
Yt (e) 5 19 43 77 121 * ‘ ”

"(c) 8 =20 38 62 92

g

2. What kind Qf a formula do yoy think would fit the’ follow1ng

~

]

table of values- \

- 2 10 30, ~6§\\ii30 2227 R
- - . 4 \. : N~——
.o ~ _ .

~ 3. Find the formula which will fit the numbers in problem 2.

L. Show that the foilowing¢numbers are the hexagonal numbers
(a hexagon is a six-sided figure).
o1 6 15 28 45

Find a formula for the hexagcnal.numbers.

- 5.‘ Use the methods of this section to find the formula fof the

; sum of the first n squarés.

-

6. Have you ever noticed cannon balls piled in a triangular -

pyramld on an old battlefield? There might be a little pile

»

Tio

~
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\ i .
~ . - 3

]

-
with 3 in a triangle on the bottom and 1 on tOp of it, giv1ng
4 in all, 'If thére wer& three tiers the triangleynn th

ground would have 6, plus the four above wculd be 10. If
there were four tiérs, ﬁhere would ba loquﬂ

total of 20 in® thevpileﬁ These numbers are called pyramidai 11

numbers- and are’

. l\ 4 lO 20 35 .;o.'.

Can you discover any relationship between them and the tria

angular Eumbers? Can you find a formula for the pyramidal

{ -

numbers?
&.

* ‘Suppose there is a table of values in which the third differ-

ences form an arithmetic progression. Can you guess what sort

' of a formulaswould fit the numbers of the table?

9

- . ».
There is a fahéus theorem thaf every integer can ke expressed
as the sum of three or fewer tr1angular‘numbers. Try it out:
1=1, 2=21+1, 3= 3, 4 =1+ 3J 5 =141+ 3, e,
1 = 1 +'3 + 10, etc.

Notice that the ndmbers 5 and 14 actually need to have three
triangular numbers in the sum. The theorem ayfo says that

every integer which is positive can be expressed a% the sum

of four on fewer square numbers, five or fewer pentagi?al num-=

bers, etc. You might be interested in trying this out. The

proof is very difficult. r | T

]

There are some sets of numbers that have- the property that no
. .

row of differences, no matter how far you go, form an*®

Ty

the,bottpq with a .
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-Tgrithgétic ?rogressiéh, Twﬁ'suqh sété‘are(;\ .” ’
('31 2 2% 23' ! 214' Fod _;‘2“‘ ' .ﬁ'.T ;o A
1 1 2 3 5 8 .13 21 '~.ﬁs‘l g
where in tﬁglsecond sequénce éach ngmbae i8 the sﬁm 6} the

‘previous two. Show-that no matter how many diffe;ences you

take, no sét will form an arithmetic progression.
. )
 J ' . ' ~

lO,{W@ know from problem.go in section 1, that any two gifen
numbg%s méy bé used to start an arithmetic rogression.
&hy does thiggshow‘that no matter what;two‘numﬁers you ﬁay
name,’I;can find a;fonnula_like: an + b 'wﬁich has these-

$ T o :
two numbegp)aa values. for n = 1 and n\- 27?

‘ ‘ * -

<

11. LookK at problem 7 ifl section 2 and see if you can answer the

fdllowing question: Given ény‘threé numbers, we can find a

L

fomula like

~

an2 + bn + ¢ .

} »

-which ﬁill havefthe gi&tn numbers as values when .n = 1,

n=2,n=3? .

s - - |

-12. What kind of a formula do you think would fit any set of four

. ) .
values? Can you draw any general conclusions?
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We are going to roport to you on ;esults published by
' Professor Rsphsel M. Robinson of the UniverSLty of Qalifornia ‘
) at Berkeley, in October, 1958 issue of ,the Proossdings of the
;4 American MathEmatical Society. This: w1ll give you some idea of

- A Y
.

" how research mathematicians are applylng high speed computers to Co

e

-

solve pﬁoblems about prlf/s N - I s

Robinson S note is based on calculations carried out during
1956 and 1957 on ‘the SWAC (Standsrds Western Automatic Computer) at

the University of California in Los Angeles.
s

To obtain an idea of the meaning of thls‘work Iét us‘think
for a moment about the problem of findlng out whether a giVen number.
™ is a prims. According to the dsfinitlon of a prime, we mustf
find out whether n is divisible by some smaller number other
than 1.. The most obvious method is to dlvide n by the numbers
2, 3,‘h, ***y upto n - 1. If any of these-numbers:divide evenly
into+n, then n 1is not a pfime. If none of these divisions come
out evenly, then n is% prime. This method requlresl n -2
divisions. If n. ~is about ‘10100, and if eaéh dlvision requires °
.001 seconds then this\would take about 1097 seconds. How many
seconds are theSe in a year? Abgut. how txany yesrs would this :
'.tske? ' ' |

¥
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We could shorten the work very much if we ;Einﬁ\a little,.’ \

If n' is not a prime, then n can be expressed @s a product of

v

two smaller numbers:
n = a-<b.

If a 1is the smaller of these factors, then n. is at least
aca’="a<. | = «‘

pt> a®.

\

then it is divisible by some

_ . “
Therefore, if n 1is not a primey
/(” ‘number a whose square is at most n. To.test whether n is
a prime, it is enougﬁ to divide n by the numbers 2, 3, <«--

?

up to the largest number whose square. is no larger than n.

If n<1 000 000, then‘we do not have to try any. divisors greater
‘than 1,000, since 1,000° = 1, 000,000. Thus to see whether 999,997
is a prime, we only need to divide by 2, 3,***, 999. By this

method we only need 998 divisions instead of 999,995 divisions - ‘t>

~

in the previous method.

100

If n 1is about 10777, then this method requires only (Lt

about 105° divisions, for 10°0.10%0 - 10100[" If each division
(\ takes .00 seconds how many years would it take by this method
to test whether h 1is a prime.' , & \

N\ : '
. If we wish to test really large numbers, we must lpok for =
le//

better methods so that we can obtain the answers 'in a reasona
time. .Thérefdre,-mathematicians try to find special c¢lasses of
numbers which have special properties which enable us to reduce

the work even more.
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, ‘For exé;ple, a ‘great deal of wey@xhas been done on numbers

.. which are one less than a power of?f. ?We may réggeseht such .

»

4 -

| numbers in the fbrd . S - o ' o
\\ o { ~ | . - 2m Sl ' L0 R \
If m =2, ﬁhen( § *‘?? -1=%-1 - 3, _which is anrime; If
m = k3~ then n Qféh -1l=16~-1= 15, which is not a prime. If
. . m 1is not a prime, then n- cannot be a prime. But m may bp a
prime witBout n béing a prime; - ”.; o, ”

. w‘ - ‘ ' ‘
1. Maké a table up'to m = 20: ' ‘ o

o mﬂl! g’ 3, Lp s 6] 7] '&!_2{_30.[' 11l 2] 130u-20
3 b 1) 31 7 15] 31Jf B !‘ o | Lo n y

L N

. 2. TeSt the statements S l | o .
CCIf m is.divisihla by 2, then n;\is divisible by 3..

' "If m is divisible by 3, then n is divisible by 7.

If m0~is dit¢isible by 5, then ‘'n is divisible by 31.

What is the general law?

Robinson reports on numbers which-are one more than a small
multiple of a power of 2, that is, numbers of the form
’ n = (k-2") + 1,

whefe k is a small odd number.

He and his‘group tested for primeness all numbers of this .
fofm with k < 100 and m < 512, as well as a few largér numbers.
First they divided by all numbers less than 10,000; and for k < 7

they tried/divisors up to 100,000. After eliminating all small

\

: Q | \ ! / 7 _ .
ERIC ) _ . .
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factorséin this way, they then applied a theofhm\stated by —
, _/gProﬁh in 1878 Let us see if w{%can't get some idea of what ’
o AN .

Proth's theorem says and‘how it s used:thhout trying to examine

»

-, al} of_the details. L {:Q L '-f%~

ﬁro?h's gheorem gives a method of testing numbers of th;;
& form n = (k-2") +1 for primeness provided the counting number
k is odd and less than 2 . We canavoid much of the complicatlon
of the statement of Proth's theorem if we restrict ourselves to
the case where k 1is not divisible,by 3. Thus-we may use ¢
k=1, 5,7, 11, 13, 17, - f

m"l23h,567,;"' | o

and we are able to test the numbers n,L (k 2%) + 1 fcr primeness.

-

For these numbers -n Proth's theorem states that .

6.2 'n is prime if aud only if it is a factor of
\ n_! "!
. - Y 3
Does this look mysterious,to you? It'is likely that it does,

because you are not a mathematician., It would very probably look

a bit mysterious even to a mathematician if he didn't happen to

b

bi'famiiiar with the special pechniqueé which are needed for a
proof of this particular theorem. Howﬁ#er, if you will _accept

our‘wordlthat it is a true thearem (and a great many very respecti

able mathematicians will testify to its being true) then it

shouldn’t be hard to see what It’sayg and how it is uged.
. R .

(T 0=] - .
In thelf irst place, what does 3 2 4 1 mean? The. expression

Bgl is beiné1cged as an exponent. The number n\ we are using

.

o | . ]JL\S)
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here is odd. (ﬁky? What is the form of n?) ‘Thus,;n - 1 is

qven, so that E%l is a counting number ! Thus 3

S | is

,just one mofe than 3 raised to a,couﬂting number - power. To test

. n “for primeness we need only find thiﬁfnuﬁber and then.divide

VN S . A -
it by n!ﬂ If this divisfon comes out even then n is a prime;

]

otherwise n is a composite.
| o S
What numbers can we test for primeness by this method? Let
us list a few of them in a table and then apply the test to seme
' &
of them. Fill in the blank Spaces in the table below. Remember
that Proth s theorem requires that 0 < k < 2m and that we have

restricted ourselves to numbers kl_whlch are not divisible by 3.
- A

EEEEN .
Kn = (k.27) + 1 .1k
—

n = (k-2%) + 1

k | m m
: 111 3, 51 5 S
RS 5) Lzl s 225_
13 9 o111 ] 5 (
513 ' A 1. 65
713 57 | 6 321
' 114 5 k17 .
5 1 4 81 5 545
7 14 113 - L 2,817
11 | 4 | _ 17,409
‘ 13 | &4 209 | 17 2,177
1 51{ 33 1 - 10 7,169
| _JL 10,241 | -

\ \ .
.

Now let us see how {tle test works for a few of tﬁéje numbers.

To refresh ocur memories restate it here:
’ A
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? -

If n.= (k-2") +1 where 0<k<2® ani k is not
divisibde by 3 then n is prime if and only if it is a factors.
of A ' | b )

( ; n-1
- 35"4—1.

#

Exagple 1: Let k=1 and m =2 so that n = 5. (Look
it up in the table.) We a?e testing 5 for primeness. In\this
case 55; is 'g pr.g,} 80 )
-~ S |
3 2 ',+1-3_2-+1-'9+_1-10.

- -~

P
n-1

Is' n a factor of 3 2 + 1? Is 5 a factor of 10? Yes, it is,
80 the test tells us-that 5 is a prime. Does this check with

what jqu already know?

Example 2: Let k = l and m = 3 so that =n = 9, (Look -

it up.) We divide-

' asl - -
32 +1=3%41=81+1 =g

by @. The di#iaion does not come out eveh, so the test tells us
that 9 is not a prime., Doés this check with what you already

know abaut 9?

-

Example 3: If k=1 and m = 6 then what is n? The.
table should tell you that n = 65. If it doesn't, work it out
2
32. 41 =33241a 1,853,020,188,851,842. \
0' ’\ {’
120

again. Bk 35 32, then, so
. - » \

/

F 3

o\
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We would have to d1v1de this numbex by 65 to contlnue the test. ,

r , =

It would not. ‘be wqrth ‘the- effort, however, since we can easily

recognize thet\éirhas 5 as & factor, and is therefore not a

prime.. t, : g
o o , : ' _ <
v Example 4:+ Lét k =7 and m =4 so that n = (k-2%) + 1 =
113. .In this case the number 3,2 + 1 =3 + 1 1is 9 times the
\

§gg§;g of 1,853,020, 188 851 842 plus 1. If you are ambitious you
may calculateuthis number and lelde it by n = 113. The divmsion.
- will come out even if you do xsur work correctly, so what do you

conclude about 113% SR

Exzmples 3 and & should cenviuce és of one.thing. Preth'
theorem is not well suited for testing large numbers. for prlme-
ness by hand calculation. Howemer, large computers are constructed

expressly to make calculatioue of the order of the ones uhichcﬁs-

coufaged us ebove} And thedeorthem quiekly! On the SWAC the time
) for the test wes no more than l— minutes as long as m < 512. For‘
m about 1000 and’ k = 3 5, or 7 the test took about 7 minutes.
' The number n= (7 21000) + 1  is larger than 10300.‘ Compare 7 _
mlnutes with the tlme it would take the machine to test 10300 for
primeness by trying all possible factors. Earlier in this section

you got some idea of this‘time'fer numbers of the order of 10100,

. For k =1 the tgéiyhad previously been carried out for all
m < 8192, and the only primes of this form which have been found °
are the cases

-

m=0,1, 2, 4 8, and 16.

\‘l‘ ‘ ‘ ) ’:31 . .
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The'%argeat new prime discovered by this work is the case
k-S,M‘l‘?h?' | -,_‘*" - .

N ns= (5.2194'?) + k::

If you wish to estimate this number, fin;

10° = 1000 < 21° -
. Therefore. we have . L .
3219h7 > 21940 o (210)19% o (103)19% o 14582,

THereforé n has more than 582 digits. On the other Qeﬁd, notice

that "~ ] f \ 1 '- - oy
R | 213 = 8096 < 10, ;
o ‘ , ‘ ¥ 5
R Therefore we have » ' N Cg

n<l+ (8 21947) - 1% (23-219k7) 'i!z
a1 + 21950 - i + (213)150 o W{

/

\ <+ (10’*)150. =1 + 10600; ‘

=

, i ‘ 3 .
Consequently n has no more than.600 digits.

~. pea——

* ‘

Remember that by using the theorem of Proﬁh, this prime was
df%covered by a sinéfe division taking a matter of minutes. B}V
using e%@her of the cruder methode dlscussed before at least . '

O291 divisions would have been necessary. MW long would this )

have taken at the rate of a thousand divisions -per second? -

This number’ is the fourth largest prime known at presenﬁ.
The larger ones are the numbers

\&‘ . n ‘ 2m -1 , s

with @ = 3217, 2281, and 2203. The latter two were reporfed by
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Robinson in the Proceedings of the American Mathematical Society
Nin 1854. The largest one was reported early in 1958 by H. Riesel
? v : | A
in Mathematical Tables and Aids_ to Computation (pagexég).

Example 5: Estimate the number of digits in each of three

&

O

"% Perhaps you would be interested in the general statement of
Proth's theorem. For numbers n = (k-2") + 1 with k divisible
by 3 the important diffeqenée in the test for primeness is that

- Bzd

the number 3‘2 + 1 must’be replaced by a new number. The num-

ber to0 use is of the form

n-1 -

a 2 <t 1

A

_ﬁhere a is a counting number which may have to be chosen differ-

R}

|
ently. for different values of k and m. The condltlon which a

must satisfy will be found in the statement of“Proth'iﬁ&heor&m.
. N N

Theorem: Let 0 <k <2® and n = (k*2®) + 1. ‘Suppose a

is a counting number which has the property: ,po sum of a and a

‘multiple of n is a perfect square. (Alternative: . the sum of

a ‘and a multiple of n i§ pever a perfect square.

Then n is a prime if and only if it is a factor of
' n-1 | /
a + 1. ‘

A

’
The condition which a must satlsfy is rather a strange one.

It would seem that.it might be dlfficult to flnd a number which

€

satisfies it in some cases. We could never find such a _number

«

23
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maticianps know enough about numbers so that finding such a number

A = )
/ ’

. - .

122 o | 6-2

by any nug?er of.trial opérationé, for the condition which a -

must satig?y'inéolves;a statement abéut'all,multiples'of n. We

may zg;gg; some cholces of a. on the basis of a single calcula-

tion, though. If k = 3, ‘and m =2 sothat n=3.2%2 +1 =13
then would  a -.h do? ‘No, because 117 + a = 117\+ L = 121 1is %
a perfect square, ahd 117 is a muitiple of‘ n =13, To find a
number a which we can be sure will fit the condition for a given
n, then, we w1ll have to use ;ggggn;ng We will have to reason
that, for a certaln number &, no matter how many mul/iples of

. . -

n we try, adding a will never give a perfect square. Mathe-

is not a very difficult problem. As you may have guessed from the
discussion above, it is possible to show that whenever Kk is/not
divisible by 3 the number a = 3 satisfies the condltion of the

theorem. Once we have found the rlght number a to go with n

can avoid the many tedious salculations necessary to test a la
number for primeness. Instead of dividing n by all prime n bers

whose squares are less than n, we need only perfom one callcula-

tion. Ne 31mpiy try the division

. . n-1
: ' 2

(a + 1) + n;

o
if it comes-out even- n 1is a prime, if not, n 1is not a prime.

- ——



