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PREFACE

Mathematics is such & vast and rapidly expanding field of study that there
are inevitably many important and fascinating aspects of the subject which,
. though within the grasp of secondary school students, do not find a place in the
curriculum simply because of s lack of time.

Many clssses and individual students, however, may find time to pursue
mathematical topics of specisl interest to them., This series of pamphlets,
whose production is sponsored by the School Mathematics Study Group is designed
to make material for such study readily accessible in classroom quantity.

Some of the pamphlets deal with materisl found in the regular curriculum
but in a more extensive or intensive manner or from a novel point of view.
Others deal with topiecs not usually found at all in the standard curriculum.
It is boped that these pamphlets will find use in classroocms in at least two
ways, Some of the pamphlets produced could be.used to extend the work done by
8 class with a regular textbook but others could be used profitably when teachers
want to experiment with a treatment of & topic different from the treatment in the
regular text of the clsss. 1In all cases, the psmphlets are designed to promote
the enjoyment of studying mathematics.

Prepared under the supervisicn of the Panel on Supplementary Publications of the
School Mathematics Study Group:

Professor R. D. Anderson, Department of Mathematics, Louisiana State
University, Baton Rouge 3, Louisianas

Mr. Ronald J. Clark, Chairman, St. Paul's School, Concord, New Hampshire 03301
Dr. W. Eugene Ferguson, Newton High School, Newtonville, Massachusetts 02160
Mr. Thomas J. Hill, Montclair State College, Upper Montclair, New Jersey

Mr. Karl S. Kalman, Reom 711D, Office of the Supt. of Schools, Parkway at
2lst, Philadelphia 36, Pennsylvania 19103 .

Professor Augusta Schurrer, Departuent of Mathematics, State College of Iowa,
Cedar Falls, Iowa

Dr. Henry W. Syer, Kent School, Kent, Connecticut
Professor Frank L. Wolf, (arleton College, Northfield, Minnesota 55057

Professor John E. Yarnelle, Department of Mathematics, Hanover College,
Hanover, Indiana
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FOREWORD

Thic pamphilet ihtroduces the pupil to the notion of a msthematical
model by which the solutlon of an actual problem can be attempted. It
shows how one can start with a very simple case, which may not be very

realistic, and change the conditions to approach those which do exist.

By way of preparation, the pupil should be tamiliar with quadratic
equations, geometric progressions and inequulities. The number of proofs
j¢ limited. The computation is not very difticult, and, cxcept for two
eramples, 1s not extensive. In the two cxamples, the pupil sees how the
ctanging condltions ygraduslly bring ubtout a revercal of u ¢ituation, namely,
the number of two kinds of t'irh which can survive when one fish ic the food

of the other.
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THE MATHEMATICAL THEORY OF THE STRUGGLE FOR LIFE

1. Introduction

During World War I, the Italianc were unable to send their fishing tleets
into the Adristic since their enemy was nesrby. Af'ter the war, the Itelisns
recumed fishing on s large scale. They were umazed to find that there were
fewer fish of the kind that they had been catching than there had been before.
They expected, of course, that since they had not been catching these ish for
four years, that there would be many more ol them.

The leaders of the Italisn f'ish industry came to Professor Vito Volterrs,
one of the greatest Itslian mathematicisnc, snd asked him if he could give an
explanation. He worked out & mathemstical theory of the "Struggle for Life .
In thig pamphlet, we shall try to explaln some of his main ideas in terms of
high school algebra. Additionsl material on the topic is given In the bib-
liography at the end of the pamphlet.

Je Growth of & Singlc Yopulstlion, Simplest Version

Let ug concider a population of bacteria in a culture dish or in your
blood stream. Supﬁose that we determine the populstion every day by some
method or other which will glve uc 8 reasonably asccurate number. We shall use
the expression  "to count the population" but we are not going to actuually
count 1,000,000 bacteria. We are reasonsbly certain that the number of
bacteria will depend upon the length of time that our experiment has been in
Drogress.

In the came way that you have used, say, £{x) - x + . and found thai
£+ - 7 4+  we are golng to 1ot ¢t be the number of days since we bepan
the experiment aad x(t) be the population on the t-th day. x(0) it the
initial population, x(1) fs the population sfter 1 day, and so on.

Suppocge that we obtain the following recults:

N
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t xgtz change in population
0 1,000,000 10,000
- i 1,010,000 10,100
2 1,020,100
3 1,030,301
L 1,040,604
5 1,051,010
Tatle 1.

The change in population during the first day is the population at the end

of one day minus the population at the start, that is, x(1) - x(0). Thus, we

find that the change during the first day is

x{1) -_x(o) = 1,010,000 - 1,000,000 = 10,000.
Similarly, the change during the second day is

x(2) - x(1) = 1,020,100 - 1,010,000 = 10,100.

The first example of Problem Set 1 is to complete the table.

buring each day any particula: bacterium has a certain chance of Irepro-
ducing and s certain chance of dying. Say that the chance, or probability,
of reproducing during the period of 1 day is .03. That is, suppose that,
on the average, 3 bacteria out of 100 reproduce during 1 day. Suppose
also thst the chance of any psrticular bacterium dying during this period is
-02. Then the excess of births over deaths is 1 out of 100 per day. In
other words, the relative rate of growth is .01 per day.

We can state this result in the following way. The relative rate of
growth during the first day is the ratio of the change in population to the
whole population. In our example, this would be:

x(1) - x(0) . 1,010,000 - 1,000,000
x(0 ' ] 2

Problem Set 1
1. Copy Table 1 and leave space on the right for an additional heading.
Complete the column {n Table 1 entitled "Change in Fopulstion ",

2. Label the space on the right "Relative Rate of Growth ", Compute the
relative rate of growth of the populstion for each day. Carry out
your computation to 2 decimal places. What do you notice?

2 Neligrl
y
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Assume that the relative rate of growth remains constant. Predict the
value of x{6)}.

X - x{6

Solve the equation = .0l for x(7) as the unknown.

x(t + 1) - x(t)

Solve the equation x(T)

=r for x(t) as the unknown.

The Simplest Version, Continued

As & first approach, on the basis of & great deal of experimentation, we

shell assume that the relative rate of growth of the populstion is & constant.
If this constant is :0l, then we obtain the following equations:

x{1) - x(©)

M) 2(0) | gy

x(2) - x({1

M2 ) |
- X{2

) o) |

and, in general,

3.

L,

(t +1) - x{t)
X ) « .0l

Problem Set g

Solve the first of the above equations for x(1) in terms of x(0O), the
second for x(2) in terms of x{1), the third for x(3) in terms of
x(2), and, in the general case, for x(t + 1) in terms of x(t).

Obtain an expression for x(2) in terms of x(0).

Similarly, find expressions for x(3), =x(4), and =x(5) in terms of
x{0).

Suggest a formula for x{t) in terms of x(0).

If a 15 the first term of a geometric progression and r ic the
common ratio;

(s) Wnat is the formula for the i term?

(b) Wnat is the formula for the (n + 1) temm?

(¢) Wnich term is x(5) if x{0) 1is the first term?

(@) Which term is x{t) &s x(0) 4is the first term?

o~
o
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Qur next step is to solve our problem about bacteria for any relative
rate of growth. Let us assume that this rate of growth is s constant, r.
Then we have the equstions:

x\l) ~ x{0

x{0 =T

or x(1) ~ x(0) = rx(0)
x(2) - x(1) « rx(1), ...
x(t + 1) - x(t) « rx(t)

Problem Set 3

1. Solve the f'irst of the sbove equations for x{1l) in terms of r and
x(0), for the second for x(2) in terms of r and x(1), and, in the
genersl case, for x(t + 1) in terms of r and x(t).

2. QObtaln an expression for x(2) in terms of r and x(0).

3. It x(3) = (1 + r)x(2), obtain an expression for x(3) in terms of =
and x(0).

L. suggest a formula for x(t) in terms of r and x(0).

5. What is the formula for finding the amount of money, A, if P dollars
is put in the bank and left to be compounded annually for n years st

r per cent?

€. Compare your results in Exercise 4 and Exercise 5.

So far we have imagined that the population is counted every day. We can
> consider what happens if we use a different time interval. Suppose that
we count (estimate) the population every h days. The number h night be
7 {weekly observgticns), gt (hourly observations), or any other number we
choose. Let us assume that the relative change in populstion per unit time
is a fixed number r.
Then our observations are made at the times:

t - O’ }1’ Ph’ Sh, 00y nh, «s ey
and the olserved populstions are

x(0), x(n}, x(&n), x{sh), ..., x(nh), ...
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The changes in population are
x(n) - x(0), x(2n) - x(n), ..., x{{n+ 1)n) - x(nh)
and the relative changes are

x(h) - x(0)  x(h) - x(h)
x{0) ? x(h)

’ etc.

The relative rate of change is given by the formula:

relative change
length of {ime interval

relative rate of change =

Thus, during the first time interval, the relative rate of change is:

 x(n) - x(0 x(h) - x{0)
'L'L:?(ETL'l*h’J'_mﬁi—

By our assumption, this must be equal to the given constant r:
- . x(h) - x(0)
- hx(0

x{(h) - x{0) = rhx(0)

and we obtiain

Problem Set E

1. Write the equations for each of the other time intervals: x(2h), x{3h),
x{nh), and x((n + l)h).

2. Solve these equations to ekpress x(h) in terms of x(0), x({(2n) in
terms of x{h), ..., and x((ni-l)h) in terms of x(nh).

3. Find x(n), x(2n), ..., x{nh) in terms of x{0)}.

4, Remember that t = nh and show how the last equation of Exercise 3
can be written as x({t) = ctx(o).

5« Give 8 formule for the constant ¢ in terms of r and h.

6. Compare the results in Exercise 4 and Exercise 5 with the compound
interest formulas for cases in which the perlod of compounding is
semi -annually and quarterly.
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7. MNak~ ®» table of the values of C for various values of r mnd h.

r 2 ¢ . B ¢ r 1 ¢
1 1l 5 i 2 1

1 5 S5 2 5

1 .1 ] .1 b) .1

1 Ql 5 .01 2 Q1

1 .0C1 5 .001 2 001

8. Let C(r,h) be the value of C for given values of r &nd h. Compute
€(1,.001)° and compare with €(2,.001); C(.5,.001)2 and compare with
c(1,.001).

S. Prove the inequalities:
() If r>0, then (L+1r)°>1+ or

n+l >l + (n+ 1l)r

() If r>0, and (1 +r)®>1 4+ nr, then (1 + r)
(e) (1.000001)1s000,000,000 « o

(d) Find a nusber n such that (1.000001)% > 1,000,000

4. One Population, More Realistic Model

As.you can see fram Problem Set 4, if a population grows according to the
law of the previous section, then it ultimately becomes larger than any number
you may choose. This is not very plausible. For s bacterial population in an
agar dich or in a man's blood stream is strictly limited in size. There is
Just not room enough for more than sc many, and besides, they would be using
up thelr food supply and be poisoning their enviromment (as well as the man!)
with their waste products.

We say that the mathematical model, or mental picture, of the growth of
the population is not realistic enough. As in most other problems in which we
try tO apply mathematics to the real world, we find that the real world is too
complicated for our poor feeble human minds to grasp. Hence, we try to
idealize and simplify the actual situation until we obtain something easy
enough for us to handle. We try to pick ocut the most important features of the
resl problem and incorporste them into a mathematical model. We often start

-




out with a very simple mathematical model. Atter we have studied it thoroughly
and understand this first spproximation to the real world, we then, step by
step, introduce new idess to make our model more realistic.

This is what we shall do now. Our previous model assumed a certain
basic relative rate of excess of births over deaths, and that this basic rate
is constant. As a first attempt to improve this, let us asssume a correction
which takes into sccount the rate at which the population uses up its food
supply and poisons its enviromment. Let us assume that this correction is
proportional to the size of the population.

We can express our assumption in mathematical langusge like this. Before,
we assumed that r, the relative rate of change of the population, is constant.

Now we are assuming that r depends on the size, x, of the population:
r = R - cx.

Here R 1s the basic rate of excess of births over deaths, end c¢x 1gs a
correction proportional to the size of the population. We assume that R
and c¢ are positive constants.

T+ we observe the population every h days, then the equation expressing
the relation between the population x(t) and x(t + h) at successive
ooservations is

x{t + h) - x(t)

TIE) = R - ex(t).

If we solve this equation for x{(t + h) as the unknown, then we can predict
the population h days from now provided that we know the populstion now
(at time t). .

Problem Set 5
1. Solve the equation for x{t + h) and put your result in the form
-
x(t+8) = () x(e) - () (x(%)

2. Let R=.0l, h=1, ¢ = ,000001 and x{0) = 1,000,000. Make a table
showing the populstion at various times.

t x(t)
0 T, 500, 000
1
3
4
5
’




3+ Work out tables for the following cases for t = 1, t=s 2.

R h [ x(0)
.01 1 .000001 1,000,100
.01 1 .000001 900, 000
.01 5 .000001 1,000,100
.01 .01 . 000001 1,000,100
L. what is the significance of x = é?
You have obtained an equation of the form:
o
x(t + 1) = a x(t) - b(x(t)) (1)

for predicting the population at the time t + h in terms of the population
&t the time t. The values of & snd b were found in Exercise 1 of
Problem Set 5. '

We can give a graphical process for finding the prediction. First we

draw the graph of the equation

y = 8x - bxe (2)

(v iz x(t+h) and x s x(t) in Equation (1) . You recognize this curve
s one of the family of parabolas.

Now it you have the graph of an equation, it is easy to calculate y
from x graphically.

We chall illustrate 8 method, which can be used, with an equation somewhat
different from ours. Let us use:

3
¥y = bx - %— = Px)

The combined graph of our illustrative equation and y - x looks like
thig:
Y

y=x

o e o o

oy

F(x) X

[ Y
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Now if x s given, we locate the corresponding point on the x-axis, go
3
vertically to the curve y = ix - E—, then horizontally across to the line

¥ = X, then vertically down to the x-axis again. This newv point on the
3
x-axis will represent the number kx - %— .

If you apply this process to the graph of
x(t + h) = a x{t) - b(x(t))2
(y = ax - bx°)

and start with x = x(0), the initisl population, you wilil obtain x(h), the
population h days later. If you repeat the process, using x(h) now, you
will obtein x{2h). If you iterate the process, you will cbtain successively
x(3n), x(kh), ete.

Problem Set 6

1. For what values of x(t) is it true that x{t + h) = x(t) ? Glve the
biological and the graphical interpretation. '

2. Let E be the non-zero solution of the previous problem. If x(0) < E,
is x{n) > x(0) or is x(h) < x{0)? What happens if you iterate the
process? How does x{t) behave for large t?%

3. Ifr x(0) = %3 what is x(h) ? What happens from then on? (See Problem

Set 5, Exercise 1 for the value of b.)

L, If %-( x(0) < %-, what can you say about x{(h) ? What happens from
then on? (See Problem Set 5, Exercise 1 for the value of a.)

5. If x{0) >»§q what can you say ebout x{h) ? What is the biological
interpretation? Can you suggest any limitation of our model? How
might it be improved? '

6. Let z(t) = E - x{(t) be the deviation of the population from equilibrium
at the time t. Show that z{t + h) is related to z(t) by an equation
of the form:

2
2(t + B) = A 2(t) + B (2(t))
where A and B are constant. Find formulas for A and B in terms
of R, h, and o. Show that if R and ¢ are given, then A >0 for
all sufficiently smsll values of h.
l-A
B

7. Show that if |z{t)] <

, then Jz{t + b)| < |z(L)}.




5. One Speciles Preying on Another

Imagine now that ve have a leke containing minnows and pike, and that the
minnows are part of the food supply for the pike. We assume that these
populations are observed every h days, and we denote the populations of
minnows and pike at the time t by x(t) and y(t) respectively. As before,
we express the laws governing the changes of these populations in terms of
the relative rates of change )

r - x(t + h) - x(t) r oo 2it +B) - y(t)
x h x{t) ’ Y h y{t)

Let us examine rx &t a time when the populations are x and vy,
respectively. We assume that there is & certain basic rate of excess of
births over deaths for the minnows, given by a positive constant &. There is
8 correction for the size of the minnow population, which uses up its food
supply and poisons its environment, and we assume that this correction is
proportional to x. This correction contributes a tem -bx, where b is
& positive constant. Furthermore, the more pike there are, the more they eat
the minnows. If we assume & constant rate of consumption of minnows per pike
per day, this gives us a correction of the form -cy, where ¢ is a positive

constant. We thus arrive st the equation

r =a-Dbx- cy, (1)

expressing the relative rate of growth of the minnow population when the minnow
and pike populations are x and y, respectively.

Reasoning in the same way, we srrive at the equation
r, = A+ Bx-Cy (2)

where A, B, and ( are positive constants. Notice that the more minnows
there are, the more food there is per pike, and the better it is for the pike.
This explains the term Bx, with a positivé coefticient.

We can then set up the equations describing how the populations change
from the time ¢t to the time t + h:

x (¢ +h) - x(t)

() =a - b x(t) - ¢ y(t), (3)
y(t +hh3r Etg’(t) = A+ B x(t) -Cy(t) . (4)

In Probleam Set 7 you will solve these two equations tfor x(t + h) and
¥{t + h) as unknowns.

10

AL e S

RPN  I3



IR e A B PN A FIRITRNE O LR G N R LA S SR R e e S

-

¥e can nov do some numerical experiments. We can assume mumerical values
for the coefficients a, b, ¢, A, B, C, and the time interval h. We

can then see what happens if we start out with different initial states

x{0), y{(0) . We can represent a state of the populations by means of a
point (x,y) in the plane. This enables us to picture the various possi-
bilities.

Problem §EE 1

1. Solve Equations (3) and (4) for x{(t + h) and y(t + h) and express
your results in the form:

x(t +h) = x(6)(___ v x(8) + ___ y(s))
y(t + 1) =y(e) (___+ ___ x(t) + __ y(¢))

Warning! Some of the coefficlents are negative.

2. Assume the followlng values

I

8 = .05 b= .000001, c = .00002,
A = -Dl, B = aml, C = -0001-

Take h = 1. Work out the changes in the populations if the initial
populations are X, = 16,000 and Yo = 2000. Tsbulate your results

like this

t X N4

0 16,000 2,000
1

2

3

L

b)

Carry out the calculations to t = 25.

3. We say that x is stationary at the state ({x,y) if, when x(t) = x

and y(t) =y, then x(t + 1) = x(t). Similarly, we define the states

at which y 1is stationary.

Show on graph paper the set of states (x,y) at which x is stationary
in the situations in Exercise 1. Show also, on the same sheet of graph
paper, the states at which y 1s stetionary. What is the intersection

of these two sets of states?

11
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6.

In the situati s in Exercise 1, what is the set of points (x,y) such
that
x>0, ¥>0,

and 1f x(t) = x and y(t) =y, then x(t + 1) > x(t)? These are the
states at which x 1s increasing. What elementary geometric figure is
formed by the points representing these states?

What elementary geometric figure is formed by the set of states
(x,y} a8t which y {is increasing?

Show on your graph paper the sets of points (x,y) at which x >0 and
Yy 2 0, which represent states at which

(8) x and y are both increasing;

(b) x 1is increasing and y 1is decreasing;
(c) x 1is decreasing and y 4is increasing;
{d) x and y are both decreasing;

(e) the populations are at equilibrium.

Work Exercise 2 as far as t = 15 using the values

a=1, b= .1, c=.2,

A=., B=., C=.1.
Take h = 1 and the initisl stete x =2 and y - 3. If you wish, you
may think of x and y as measured in thousands. Notice that now the
minnows are the main food supply for the pike, s0 that if there are not
enough minnows, the pike die off.

Set up the general fomm of the equations describing the situation where
two species, say pike and mackerel,prey on the minnows. Try at least one
numerical experiment to see what happens 1f you assume different rates of
excess births over deaths and of eating minnows for the two species.

Set up the general form of the equetions deseribing the situstion where
the main food supply of the minnows consists of algse, and the minnows are
the main food supply of the pike. Try at least one numerical experiment.

Summary and Some Extensions

In parts 2 and 3 we saw how the simple assumption of constant relative

growth rate leads to the geometric progression as a mathemstical description

or model of growth for & single population. This model, when applied to human
populations, is often referred to as the Malthusian model, sf'ter Thomas Malthus

12
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see (6) . In Problem Set 4, Exercise 5 this model was expressed by the

formula
x(t) = ctx(O),

and we can see from the formula that when ¢ > 1, x{t) will be larger than
any preassigned number if t is large enough. To avoid this "explosion"

and make our model more realistic we can assume that the limits of the
environment act to decrease the growth rate as the population size increases.
A biologist might explain this by saylng that as the population size increases,
its ability to contaminate a closed environmeni also increases. 1 ¢

represents this rate of contaminstion, we have
r =R -c x(t).

Experimentalists have found this model useful to describe the growth of fruit
fly populations in = laboratory system (see Lotka (5), p- 69). As another
example, the table below shows the population of the United States from 1790
to 1950 along with predicted values using the formula

«(t + h) = 1.31 + 1.26 x(t) - .00122 (;(t))g ,

where h = 10, expressed in years.

Year Population (millions) Predicted
1790 3.93
1800 5.31 6.28
1810 1.2k 7.98
1820 9.64 10.40 ¢
1830 12.87 13.38
1840 17.07 17.37
1850 23.19 22.51
1860 31.44 29.97
1870 38.56 39.85
1880 50.16 48.23
1890 62.95 61,64

i 1900 75.99 76,04
1910 91.97 $0.32
1920 105.71 107.04
1930 122.78 121.29
1940 131.67 1:8.11
1550 150.69 146.5Y

what is predicted for 19607

13
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Finally, we considered two populations, one species rreying on the
other. This predator---prey relation required a pair of simultaneous
equations to describe the changing population sizes. As mentioned in the
Introduction, Volterra used & similar model to study the relstionship between
the numbers of sharks and soles in the Adrigtic. A graph of these relations
might look like Figure 1.

The ‘equations for growth used above are called difference egustions
because they use the differences

x(t + k) - x(t)
b

In practice, the equations are often simpler to handle if we study the
differences as h becomes very small. As h approaches zero the difference
cquation approaches what we call a differential equation. Differentisl
equations are the ones used in the references; but you should be able to
understand the examples given in these books with the ideas you have learned
here. For further reading on difference equations, with other applications,

see 3.

Still another way to extend what we have done here is to use a model
which allows for the chance variation in the population size at any time.
Such models work with the Erobsbilitx that the population will be of & certain
size, rather than with the population size itself. Bartlett (1.) gives a
complete account of these models.

14
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Figure 1.

Movement along ABCDE represents increasing time. x - number of soles,
¥y = number ol sharks; numbers may represent thousands of unimals. At B the
sharks have Jjust learned about the soles and begin to incresse as th:ir
food supply increases. By the time D is reached, the sharks have eaten so
‘mich that they begin to die off from lack of food supply, asllowing the soles
to increase unmolested from A to B when the cycle begins all over agsin.

Figure 1. is & rough graph of le-hex = 3.5e y

Some points on the graph sre:
X y
1.8 6
2 1.8, 14.4
3 .9, 21
4 S, Pl
5 8, oo
6 1.0, 18
! 1.6, 1L,k
8 3.8, 9
8.0 5, 6
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MATHEMATICAL THEORY OF THE STRUGGLE FOR LIFE

Answers

Problem §g§ £

;
b

samj Q*‘d" i'

t x(t) .| Change in Fopulation | Relative Rate of Growth
o | 1,000,000
1 | 1,010,700 10,000 .01
2 | 1,020,100 10,100
3 | 1,030,301 10,201
L | 1,040,604 10, 303
5 1,051,010 10,406
x{l) - x{(0) 1,010,000 - 1,000,000 10,000
= —h—-‘——-——;&_ B em——— = .
x{(0 1,600, 000 1,000,000 = O
xi2) - x{1 . 1,020,100 - lIOlOgOOO N 10,100 . .0l
x(1 1,010,000 1,010,000 ~

x{t+1) - x(t)

x(6

x{5

x(6) - 1,051,010
1,051,010

x(6)
x(6)

x(7)

x(t)

n

[l

X(t) -

= .Ol

X = -Ql

= .Ql

(.01)(1,051,010)

1,061,520

(.01)x(6) + x(6) = (L.01) x(6)

x§t+lz

™1

correct to one significant digit.

+ 1,051,010

18
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Aruitoxt provided by Eic:

. x(3)

%L} - x{Q
x{0

A R BT R p e

Problem Set 2

-.Ol

x{(1) - x(0) = (.01)x(0)

x{1) = (1.00)x(0)

In similar manhner:
x(2) = (1.01)x(1)

x(3) = (1.c1)x(2)

x(t+1) = {(1.01)x(t)

x(2) ~ (1.01)x(1)

x(2) = (1.

x{(2) =

i

x(3)
x{4) =

x{5)

x(t) =

{a) nth term -8 r

(1

(1
(1
(1

(1

(1

01)(1.01)x(0)

.01)°x(0)

.01)(1.01)2x(0)
.01) *x(0)
.o1)*x(0)

.01)?x(0)

.o1)x(0)

n-1

(b) (n+#l)st term = a r°

(e} x(5) is the sixth term

(d) x(t) is the (t+1) term

15
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Problem Set 3

Yo x{(1) = r x{(0) + x{0)
= (r+1)x(0)

x(2) = r x{1) + x(1)
= (r+1) x(1)

x(t+1) = r x(t) + x(t)
= (I‘i‘l) X(t)

2. x(2) = (r+1) x(1) &nd x{1) =« (r+1) x(0)

thus
x(2) ~ (r+1){(r+1)x(0)

= (r+1)% x(0)
3. x{3) < (1+r) x (2) and «x{(2) = (1+r)2 x(0)
thus
x(3) = (1+r)3 x(0)
Lo x(t) = (1¢r)® x(0)

5. A= (14r)% P

6. Same pattern

20
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Problem Set &

1‘ (a) %#'gl = I

x(k) = r b x{(0) + x(0)

x{h) = (r b + 1)x(0)

() B . .

x{(2h) = {r b + 1)x(h)

r

(38) - x{h)
(e) % h)x(Qg) =

x(3h) = (r b + 1) (x(2h)
(4) x(nh) - (r b+ L)x (n-1})h

(e) x{(m*1)n) = (r 1 + 1)x(nh)

x(h) - {rh+l)x(0)

x(0h) = {rh+l)x(h)
x(3n} = (rh+l)x{2h)
th)a(munxﬂm4m)

X ((ml)h) = {rh+l)x{nh)

3. x(h) = (rh+l)x(0)
x(2n) - {rh*l)(rh+1)x(0)
x(2h) = (rhe1)” x(0)

x(3n) ~ (rh+l)(rh+1)® x(0)

r

(rhs1)3 x(0)

r

x{nh) = (rh+1)® x(0)

&2
~1

ERIC
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5.

x(nh) = (ch+1)® x(0) and t = nh

t
e'e x(t) = (:lrh-l-l.)E x(0)
x(t) = ct X(O)

1
[ (rh+13E

. A(2t) = ?(g +1)2 .t P, where c¢ = (% r+1)2

A(lt) = P(E + l)ut . ot P, wvhere ¢ = (% Hl)h

r h h c r h ¢
1]1 1 (1.5) 211 3

1{ .5 5 | (1.25)° 2] 5 |(2)°

1] . 1 | (1.05)10 2] .1 |(@.2)¥°

1| .o oL | (1.005)"%° ol o1 | (1.02)1%
1] .o0 .00 | (1.0005)190 F 21 001 | (1.000)L00

1
C = (r h + l)h

1
¢ (r,h) = (rhx‘-l).E

e(1,.001) = (1.001)*0%

e(1,.001)% = (1.001)2%%® ana o(2,.001) = (1.002)10%
e(1,.001)% > (2, .001)

e(.5,.001)% = (1.0005)2%° ang o (1,.001) = (1.001)L000

e(.5,.001)° > o(1,.001)

Hint: Use binomial expansion for approximations.
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G.(a) Prove If r>0 then (L+r)°>1+er
Proof (1 + r)2 “1+2r+ 10
(1 + r)2 -(1+2r) = r°
(1 + r)2 - (1 +2r) >0 since P >0

o (1 + r)2 >1+2r Q.E.D. since a>b iff a-b>0

n+l

{(v) Prove If T >0 and (1 + )" 5 1 + nr, then (i+r) >1 + (n#l)r

Proof (+r)®>1+ar—>n>0

(1+7)%(1+r) > (1+nr){l+r)

)n+l

{(1+x dl+nr+r+ nr2

n+l

(1+r) >1 + (n+l)r + ny®

(1+r)n+l ~ {1+ (n+l1) ] > nr2 >0 since n>0, nél
and r > 0

P (1+r)n+l > 1+ {n+l)r Q.E.D.

(c) Prove (1.000001)+7000,000,000 o 1 501

Let n = 999,999,999 and r = .00000L

then (Ler)"*L 1,000,000, 000

- (1.000001)
thus  (1.000001)2000,000,000 « 1 | (599,999,999 + 1)(.000001)
(l.OOOOOl)l’QOO’OQO‘OOG > 1,001 > 1.001

1,000, 000,000

e {1.000001) > 1.001

(a) (n+1)(.600001) > 1,000,000
{(n+l) > 1,000, 000,000,000

n > 1,000,000,000,001

Probler Set 5

o x(t+h) - x(¢

TERC =R -cx (t)

x{(t+h) = (Rh + 1) x(t) - h ¢ (.x(t))2




2. If R= .01, h=1, c= .000001, x(0) = 1,000,000

t x(t)

0 1,000,000

1 10, 000

2 10, 000

3 10, 000

4 10,000 -

5 10,000

3. R h ] x(0) x{(1) x(2)

.0L 1 «0000QL 1,000,100 89,900 G, 00
.01 1 - 0000QL 900,000 100, 000 $50,000
.01 .5 | .000001 | 1,000,100 500, 000 400,000
.01 .01 | .000001 | 1,000,100 | 1,000,000 | 1,000,000

Exsmples for Number 3.

R=.01, h=1, c=.000001, x{0)= 1,000,100

x (t+h) = (Rn+1) x(t) - he (x(t))?

x(1) = x(0+1) = ((.01) 1 + 1)(1,000,100) -(1)(.000001)(1,000,100)°
= 9:900-99
= §,900 {2 significant figures)

x(2) = x(141) = ({.01) L + 1)(9,900) - (1)(.000001)(9,500)°

9, %00 (2 significant figures)

M
R=.0l, h=.5 «¢=.000001, x(0) =1,000,100

x(.5) = x(0 + .5) = ((.01)(.5) + 1) (1,000,100) - .5 (.000001)(1,000,100)°

#l

500, 000 (1 significant figure)

x(1) = x(.5+.5) - ((-01)(-5) + 1) (500,000) - (.5) (.000001)(500,000)°

= k00,000 (1 significant figure)

then r = Q.

e2})9]

k. The relative change of populstion, r - R - ¢ x. Thus, if x =~

2l
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1. If x(t+h) = x(t) then

x{t) = {(Rn + 1) x(t) - he (x(t))2
R

e x (t) =0 or x(t) = o

The population at time t 1is zero or the relative change of population

is zero.

2, Let E = g. If x{0) < E then

(a) fiﬁlzlrg§91 =R-c¢x(0)>R-c¢c (g) =0

x(r) > x(0)
(b} x(h) will remsin greater than x(0)

(¢) x(t) approaches x(0O)

3. (a) 1Ir x{0) - % where b = hc
then x(h) = thz 1 he 5
(hc)
Rh R
“he ¢

(b) The relative rate of change is zero.

. 1 8
L, It = < x{0) < 5
2

y ax ~ bx

e c 2
2 & 8 2] a.,¢ , 8
AL v AR - LR 3

thus (a - 1) >x (h) >0

glso (a - 1){a-ab+b) > x {’h) > O

5. Ir x(0) > % then x{h) <O

5
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6. z{t) « E - x(t) where E = g—
thus x(t) = E - z(t) 50 that
2(t4b) = E = x(t+h) = (1-Rh) 2(t) + he (2(¢))°

A=1-Rh B = he

7. Prove if |z(t)| < 3R, then [a(tsn)] < |a(t)]

Proof
1) Assume the conclusion is false or lz{t)] < |z{t+n)]

2) - |z(t+h)] < z(t) < |z(t+h)|

3) w(t) < (1 - RB) 2(t) + hc (2(t))° when z(t+n) >0
L) l—-hél'—ﬁh) < z{t) when z(t+h) >0

5) 152 < z(t)

6) But the hypothesis [z(t)] < -l—_Bﬁ > - -lg—A < z(t) < -l—éé
7) Thus, we have a contradiction so that |z{t+h)| } f2(t)]

8) |z{t+h)| # |2(t)]| since they could be equal only if he = 0 and
Rh =1 vhich leads to ¢ =0. But c £0 since Esg.

9) Thus by the trichotomy property, f2(t+h)| < |2(t)|. Q.E.D.

Problem Set 7

1. x(t+n) - x(t) (ah+l - dh x(t) - ch ¥(t))

y{t+h) = y(¢) (Ah+l + Bh x{t) - Ch y(t))

PR



2. Example:
x(0+1) = x(1} = 16000 ((.05)(1) + 1 - (.000001)(16000)-(.00002)(2000))
= 16000 (.994) = 15904 = 15,900 (to 3 significant figures)
(NOTE: It {s emsier to multiply 16000 by .006 and subtract.)

y{0+1) = y(1) = 2000 ((.01) 1 + 1 + (.00001)(16000) - (.000L)(2000))
= 1940, (to 3 significant figures).

{Answers may vary somewhat depending upon the number of significant
figures which are kept.)

t x(t) | y(t) t x(t) | ¥(t)
.0 | 16000 | 2000 | 13 15590 1685
1 15900 1940 14 15600 1680
2 15800 1890 15 15610 1677
3 15700 1850 16 15625 1675
I 15650 | 1820 17 15640 1673
5 15620 1790 18 15655 1671
6 15600 1765 19 15670 1670
7 15580 1745 20 15685 1669
8 15570 1730 21 15700 1669
9 15570 | 1720 | 22 15715 1669
10 15570 1710 23 15730 1670
11 15570 1700 2k 15745 1670
12 15580 1692 25 15760 1671

n

O or xza—-ﬂ

3. x{t) = x{t+1) when x =

A+Bx

y{t) = y(t+l) when vy 5

Q0 or y=

Ab+Ba

Intersection of the two sets is y = T

X Ca-Ac
* Cb+Be

L, {a) bx+cy<a

(b) Bx-Cy>A

n)
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Bx-Cy=A

ué-cg =

The remaining parts of 5 follow

5.
8z-cy4 >4 } :
bx +tcy<a 3
L
£ %
A
)
from the gbvove figure.
6. t x(t) y{t) t x(t) y(t)
0 2 3 2.58 3.86
1 2.4 3 2.50 3715
2 2.78 3.12 10 2.50 3.66
3 3.06 3.34 11 2.52 3.60
4 .14 3.57 12 2.59 3.57
5 3.05 3.78 13 2.65 3.58
6 2.97 3.89 14 2.70 $.61
T 2.75 3.93 15 2.72 3.6k

7. If x(t) represents the populstion of the minnows at time ¢t

y{t) represents the population of the pike at time t

z{t) represents the populstion of the mackerel at time ¢t

then

x{t+h) = x(t) (a h+l-cy(t)-daza(t)-0v thD

where r, =8~ bx - cy - dz end s,

constants.

Also

r, = A + Bx(t) - Cy(t) - Dz{t)

also

b,

| yten) - g(t)

Cy

r, =+ Bx(t) - Fy(t) - §a(t) -

h y(t)

z(t+h) - z{t)

h z{t)

!? )

d are positive

QR it

&

X
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8. x = populmtion of algae at time ¢t
y = population of minnows at time t
r = population of pike at time t

rx-l-bx-cy#dz
ry-A-Byi»cx-Dz
rz-a(-ﬁz-#r}'

Thus for example

x{t+h) - x(t)
hx(t)

g - bx{t) - cy(t) + de{t) =

Qo
-
N




