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PREFACE

Mathematics is such a vast and rapidly expanding field of study that there

axe inevitably many important and fascinating aspects of the subject which,

though within the grasp of secondary school students, do not find a place in the

curriculum simply because of a lack of time.

MSAY classes and individual students, however, may find time to pursue

mathematical topics of special interest to them. This series of pamphlets,

whose production is sponsored by the School Mathematics Study Grouppis designed

to make material for such, study readily accessible in classroom quantity.

Some of the pamphlets deal with material found in the regular curriculum

but in a more extensive or intensive manner or from a novel point of view.

Others deal with topics not usually found at all in the standard curriculum.

It is hoped that these pamphlets will find use in classrooms in at least two

ways. Some of the pamphlets produced could be.used to extend the work done by

a class with a regular textbook but others could be used profitably when teachers

want to experiment with a treatment of a topic different fram the treatment in the

regular text of the class. In all cases, the pamphlets are designed to promote

the enjoyment of studying mathematics.

Prepared under the supervision of the Panel on Supplementary Publications of the

School Mathematics Study Group:

Professor R. D. Anderson, Department of Mathematics, Louisiana State
University, Baton Rouge 3, Louisiana

MX. Ronald J. Clark, Chairman, St. Paul's School, Concord, New Hampshire 03301

Dr. W. EUgene Ferguson, Newton High School, Newtonville, Massachusetts 02160

MX. Thomas J. Hill, Montclair State College, Upper Montclair, New Jersey

MX. Karl S. Kalman, Room 711D, Office of the Supt. of Schools, Parkway at
21st, Philadelphia 36, Pennsylvania 19103

Professor Augusta Sohurrer, Department of Mathematics, State College of Iowa,
cedar Falls, Iowa

Dr. Henry W. $yer, Kent School, Kent, Connecticut

Professor Frank L. Wolf, Carleton College, Northfield, Minnesota 750157

Professor John E. Yarnelle, Department of Mathematics, Hanover College,
Hanover, Indiana



FOREWORD

This pamphlet introduces the pupil to the notion of a mathematical

model by which the solution of an actual problem can be attempted. It

shows how one can :-,tart with a very simple case, which may not be very

realistic, and change the conditions to approach those which do exist.

By way of preparation, the pupil should be fsmiliar with quadratic

equations, geometric progressions and inequalities. The number of proofs

3r limited. The L'omputation is not very difficult, and, except for two

e>amples, is not extensive. In the two examples, the pupil sees how the

{q-aneing oonditions gradually brine about a reversal of a ituation, namely,

the number of two kinds of fish which oan survive when one fish is the food

of the other.
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THE MATHEMATICAL THEORY OF THE STRUGGLE FOR LIFE

1. Introduction

During World War I, the rtalianc were unable to send their fishing fleets

into the Adriatic since their enemy was nearby. After the wur, the Italians

resumed fishing on a large scale. They were amazed to find that there were

fever fish of the kind that they had been catching than there had been before.

They expected, of course, that since they had not been catching these fish for

four years, that there would be many more of them.

The leaders of the Italian fiSli industry came to Professor Vito Volterra,

one of the greatest Italian mathematiciens, and asked him if he could give an

explanation. He worked out a mathematical theory of the "Struggle for Life ".

In this pamphlet, we shall try to explain some of his main ideas in terms of

high school algebra. Additional material on the topic is given In the bib-

liography at the end of the pamphlet.

Growth of a Single Population, Simplest Version

Let us consider a population of bacteria in a culture dish or in your

blood stream. Suppose that we determine the population every day by some

method or other whieh will give us a reasonably accurate number. We shall use

the expression "to eount the population" but we are not going to actually

count 1,000,000 bacteria. We are reasonably certain that the number of

bacteria will depend upon the length of time that our experiment has been in

progress.

In the 41ame way that you have used, say, f(x) x 4 and found that

f() _ we are going to let t be the number of days sinc.e we hec;an

the experiment a.id x(t) be the population on the t-th day. x(0) is the

initial population, x(1) if; thc population after 1 day, and so on.

Suppose that we obtain the followine results:

1
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x.C.t1

0 1,000,000

1 1,.010,000

2 1,020,100

3 1,030,301

4 1,040,604

5 1,051,010

Tatle 1.

change in fopulation

10,000

10,100

The change in population during the first day is the population at the end

of one day minus the population at the start, that is, x(1) - x(0). Thus, we

find that the change during the first day is

x(1) -.x(0) . 1,010,000 - 1,000,000 = 10,000.

Similarly, the change during the second day is

x(2) - x(1) . 1,020,100 - 1,010,000 10,100.

The first example of Problem Set 1 is to complete the table.

During each day any particulal bacterium has a certain chance of repro-

ducing and a certain chance of dying. Say that the chance, or probability,

of reproducing during the period of 1 day iq .03. That is, suppose that,

on the average, 3 bacteria out of 100 reproduce during 1 day. Suppose

also that the chance of any particular bacterium dying during this period is

.02. Then the excess of births over deaths is 1 out of 100 per day. In

other words, the relative rate of growth is .01 per day.

We can state this result in the following way. The relative rate of

growth during the first day is the ratio of the change in population to the

whole population. In our example, this would be:

x.(1-2LA21 1,010,000 - 1,000,000=
1,060,b00

Problem Set 1

1. Copy Table 1 and leave space on the right for an additional heading.

Complete the column in Table 1 entitled "Change in Population ".

2. Label the space on the right "Relative Rate of Growth ". Compute the

relative rate of growth of the population for each day. Carry out

your computation to 2 decimal places. What do you notice?

2
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3. Assume that the relative rate of growth remains constant. Predict the

value of x(6).

4. Solve the equation .01 for x(7) as the unknown.

x(t + 1) - x(t)
5. Solve the equation r for x(t) as the unknowu.

x(t)

The Simpleat Version, Continued

Az a first approach, on the basis of a great deal of experimentation, we

shall assume that the relative rate of growth of the population is a constant.

If this constant is :01, then we obtain the following equations:

and, in general,

2.(111411 = .01
x 0

x (t + 1) - x(t)

x(t)

Problem Set 2

Solve the first of the above equations for x(1) in terms of x(0), the

second for x(2) in terms of x(1), the third for x(3) in terms of

x(2), and, in the general case, for x(t + 1) in terms of x(t).

2. Obtain an expression for x(2) in terms of x(0).

3. Similarly, find expressions for x(3), x(4), and x(5) in terms of

x(0).

4. Suggest a formula for x(t) in terms of x(0).

5. If a is the first term of a geometric progression and r is the

common ratio;

(a) What is the formula for the n1.12 term?

(b) What is the formula for the (n + 1)21 term?

(c) Which term is x(5) if x(0) is the first term?

(d) Which term is x(t) 1s x(0) is the first term?

3



Our neXt step is to solve our problem about bacteria for any relative

rate of growth. Let us &UMW that this rate of growth is a constant, r.

Then we have the equations:

or

ag.itillt
rx0

x(1) - x(0) = rx(0)

x(2) - x(1) = rx(1),

x(t + 1) - x(t) rx(t)

Problem Set 1

1. Solve the first of the above equations for x(l) in terms of r and

x(0), for the second for x(2) in terms of r and x(1), and, in the

general case, for x(t + 1) in terms of r and x(t).

2. Obtain an expression for x(2) in terms of r and x(0).

3. If x(3) (1 + r)x(2), obtain an expression for x(3) in terms of r

und x(0).

4. Suggest a formula for x(t) in terms of r and x(0).

5. What is the formula for finding the amount of money, Ay if P dollars

is put in the bank and left to be compounded annually for n years at

r per cent?

6. Compare your results in Exercise 4 and Exercise 5.

So far we have imagined that the population is counted every day. We can

3 consider what happens if we use a different time interval. Suppose that

we count (estimate) the population every h days. The number h might be
17 (weekly observations), (hourly observations), or any other number we

choose. Let us assume that the relative change in population ar unit time

is a fixed number r.

Then our observations are made at the times:

t 00 h, 2h, 3h, ..., nh,

and the observed populations are

x(0), x(h) , x(2h ) , x(_111), x(nb),

4



The changes in population are

x(h) - x(0), x(2h) - x(h), x((n + 1)h) - x(nh)

and the relative changes are

x(h) -x0 x(2a) - x(h)

x 0 2
x(h) etc.

The relative rate of _change is given by the formula:

relative change
relative rate of dhange

length of time interval

Thus, during the first time interval, the relative rate of change is:

ALLiii.9 + h./
x(h) - x(0)

-
x 0 hx(0)

By our assumption, this must be equal to the given constant r:

and we obtain

r
ghl_m_g01

hXfOT

x(h) x(0 ) rhx(0)

Problem Set 4

1. Write the equations for each of the other time intervals: x(Ph), x(3h),

x(nh), and x (ri + 1)h).

2. Solve these equations to express x(h) in terms of x(0), x(2h) in

terms of x(h), ..., and x(n + 1)1) in terms of x(nh).

j. Find x(h), x(211), x(nh) in terms of x(0).

4. Remember that t = nh and show how the last equation of Exercise

can be written as x(t) = ctx(0).

5. Give a formula for the constant c in terms of r and h.

6. Compare the results in Exercise 4 and Exercise 5 with the compound

interest formulas for cases in which the period of compounding is

semi-annually and quarterly.

5
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7. Male: a table of the values of C for various values of r and h.

r h C r. h C r h C

1

1

1

1

1

1

.5

.1

.01

.001

2 .5

.5

.5

.5

.5

1

.5

.1

.01

.001

2

2

2

2

2

1

.5

.1

.01

.001

8. Let C(r,h) be the value of C for given values of r and h. Compute

C(12.001)2 and compare with C(22.001); C(.52.001)
2

and compare with

C(12.001).

9. Prove the inequalities:

(a) If r > 0, then (1 + r)2 > 1 + 2r

(b) If r > 0, and (1 + r)n > 1 + nr, then (1 + r)n+1 > 1 + (n + 1)r

(c) (1.000001)1,°" > 1.001

(d) Find a number n such that (1.000001)n > 1,000,000

4. One POpulation, More Realistic Model

As.you can see from Problem Set 4, if a population grows according to the

law of the previous section, then it ultimately becomes larger than any number

you may choose. This is not very plausible. For a bacterial population in an

agar dish or in a man's blood stream is strictly limited in size. There is

just not roam enough for more than so many, and besides, they would be using

up their food supply and be poisoning their environment (as well as the mans)

with their waste products.

We say that the mathematical model, or mental picture, of the growth of

the population is not realistic enough. As in most other problems in Which we

try to apply mathematics to the real world, we find that the real world is too

complicated for our poor feeble human minds to grasp. Hance, we try to

idealize and simplify the actual situation until we obtain something easy
enough for us to handle. We try to pick out the most Important features of the

real problem and incorporate them into a mathematical model. We often start

6

a



out with a very simple mathematical model. After we have studied it thoroughly

and Understand this first approxlmation to the real world, we then, step by

step, introduce new ideas to make our model more realistic.

This is what we shall do now. Our previous model assumed a certain

basic relative rate of excess of births over deaths, and that this basic rate

is constant. Az a first attempt to improve this, let us assume a correction

which takes into account the rate at which the population uses up its food

supply and poisons its environment. Let us assume that this correction is

proportional to the size of the population.

We can express our assumption in mathematical language like this. Before,

we assumed that r, the relative rate of change of the population, is constant.

Now we are assuming that r depends on the size, x, of the population:

Here R is the basic rate of excess of births over deaths, and ex is a

correction proportional to the size of the population. We assume that R

and c are positive constants.

'r we observe the population every h days, then the equation expressing

the relation between the population x(t) and x(t + h) at successive

osservations is

x(t + h) x(t) R cx(t).
hx(t)

If we solve this equation for x(t + h) as the unknown, then we can predict

the population h days from now provided that we know the population now

(at time t).

Problem Set 2

1. Solve the equation for x(t h) and put your result in the form

x(t + h) ( ) x(t) ( ) (x(t))2

2. Let R .01, h = 1, c .000001 and x(0) . 1,000,000. Make a table

showing the population at various times.

X(t)

0 1,0000000

1

3

4

5



3. Work out tables for thy following cases for t 1, t 2.

2121
.01 1 .000001 1,000,100

.01 1 .000001 900,000

.01 .5 .000001 1,000,100

.01 .01 .000001 1,000,100

4. What is the significance of x 1?

You have obtained an equation of the form:

x(t + h) = a x(t) b(X(t))2

for predicting the population at the tine t + h in terms of the population

at the time t. The values of a and b were found in Exercise 1 of

Problem Set 5.

We can give a graphical process for finding the prediction. First we

draw the graph of the equation

y = ax bx
2

(1)

(2)

(y 1.1; x(t + h) and x is x(t) in Equation (1) . You recognize this curve

as one of the family of parabolas.

Now if you have the gruph of an equation, it is easy to calculate y

from x graphically.

We shall illustrate a method, which can be used, with an equation somewhat

different fram ours. Let us use:

this:

,3
y 4x . F(x)

The combined graph of our illustrative equation and y x looks like

8



Now if x in given, we locate the corresponding point on the x-axis, go

x3
vertically to the curve y . 4x - 71 then horizontally across to the line

y x, then vertically down to the x-axis again. This new point on the

x3
x-axis will represent the nunber 14x .47 .

If you apply this process to the graph of

x(t + h) . a x(t) - b(x(t))2

(y ax bx2)

and start with x x(0), the initial population, you will obtain x(h), the

population h days later. If you repeat the process, using x(h) now, you

will obtain x(2h). If you iterate the process, you will obtain successively

x(3h), x(40, etc.

Problem Set 6

1. For what values of x(t) is. it true that x(t + h) = x(t) ? Give the

biological and the graphical interpretation. .

2. Let E be the non-zero solution of the previous probI,em. If x(0) < E,

is x(h) > x(0) or is x(h) < x(0)7 What happens if you iterate the

process? How does x(t) behave for large t?

j. If x(0) . t, what is x(h) 7 What happens from then on? (See Problem

Set 5, Exercise 1 for the value of b.)

14 If Ts < x(0) < what can you say about x(h) ? What happens from

then on? (See Problem Set 5, Ekercise 1 for the value of a.)

5. If x(0) >1!, what can you say about x(h) ? What is the biological

interpretation? Can you suggest any limitation of our model? How

might it be improved?

6. Let z(t) = E x(t) be the deviation of the population from equilibrium

at the time t. Show that z(t + h) is related to z(t) by an equation

of the form:

z(t + h) A z(t) + B (z(t))2

where A and B are constant. Find formulas for A and B in terms

of R, h, and c. Show that if R and c are given, then A > 0 for

all sufficiently small values of h.

7. Show that if lz(01 <
1 - A

then lz(t + h)! < z(t)1

9



One ppecies Frying on Another

Imagine now that we have a lake containing minnows and pike, and that the

minnows are part of the food supply for the pike. We assume that these

populations are observed every h days, and we denote the populations of

minnows and pike at the time t by x(t) and y(t) respectively. Az before,

we express the Laws governing the changes of these populations in terms of

the relative rates of change

x(t + h) x(t) y(t + h) - y(t)r
x

=
h x(t

r
y

=
h y(t)

Let us examine r
x

at a time when the populations are x and y,

respectively. We assume that there is a certain basic rate of excess of

births over deaths for the minnows, given by a positive constant a. There is

a correction for the size of the minnow population, which uses up its food

supply and poisons its environment, and we assume that this correction is

proportional to x. This correction contributes a term -bx, where b is

a positive constant. Furthermore, the more pike there are, the more they eat

the minnows. If we assume a constant rate of consumption of minnows per pike

per day, this gives us a correction of the form -cy, where c is a positive

constant. We thus arrive at the equation

r
x

a - bx - cy, (1)

expressing the relative rate of growth of the minnow population when the minnow

and pike populations are x and y, respectively.

Reasoning in the same way, we arrive at the equation

r
y

A + Bx Cy

where A, B, and C are positive constants. Notice that the more minnows

there are, the more food there is per pike, and the better it is for the pike.

This explains the term Bx, with a positive coefficient.

We can then set up the equations describing how the populations change

from the time t to the time t + h;

(2)

x (t + h) x(t)
_ a - b x(t) - c y(t) (3)h x(t)

z(t + h) - r(t)
- A + B x(t) - C y(t) . (4)h y (t

In El'oblem Set 7 you will solve these two equations for x(t + h) and

y(t + h) as unknowns.

10



We can now do some numerical experiments. We can assume numerical values

for the coefficients a, b, co Al Bo C, and the time interval h. We

can then see what happens if we stast out with different initial states

x(0), y(0) . We can represent a state of the populations by meams of a

point (x,y) in the plane. This enables us to picture the various possi-

bilities.

Problem Set 7

1. Solve Equations (3) and (4) for x(t + h) and y(t + h) and express

your results in the form:

x(t + h) = x(t)( + x(t) + y(t))

y(t + h) = y(t) ( x(t) + y(t))

Warning! Sone of the coefficients are negative.

2. Assume the following values

a .05, b = .000001, c = .00002,

A - .01, B = .00001, C = .0001.

Take h 1. Work out the changes in the populations if the initial

populations are x = 16,000 and y = 2000. Tabulate your results

like this

Carry out the calculations to t = 25.

3. We say that x is stationary at the state (x,y) if, when x(t) = x

and y(t) = y, then x(t + 1) = x(t). Blmilarly, we define the states

at which y is stationary.

Show on graph paper the set of states (x,y) at which x is stationary

in the situations in Exercise 1. Show also, on the same sheet of graph

paper,the states at which y is stationary. What is the intersection

of these two sets of states?

11



4. In the situati s tn Exercise 1, what is the net of points (x,y) such

that

x 0, y Op

and if x(t) = x and y(t) = y, then x(t + 1) > x(t)? These are the

states at which x is increasing. What elementary geometric figure is

formed by the points representing these states?

What elementary geometric figure is formed by the set of states

y) at Which y is increasing?

5. Show on your graph paper the sets of points (x ) at which x 0 and
y 0, which represent states at which

(a) x and y are both increasing;

(b) x is increasing and y is decreasing;

(c) x is decreasing and y is increasing;

(d) x and y are both decreasing;

(e) the populations are at equilibrium.

6. Work EXercise 2 as far as t = 15 using the values

a = 1, b - .1, c = .2,

A = .1, B = .1, C - .1.

Take h = 1 'and the initial state x 2 and y - 3. If you wish, you

may think of x and y as measured in thousands. Notice that now the

minnows are the main food supply for the pike, so that if there are not

enough minnows, the pike die off.

7. Set up the general form of the equations describing the situation where

two species, say pike and mackerelarey on the minnows. Try at least one

numerical experiment to see what happens if you asSUM2 different rates of

excess births over deaths and of eating minnows for the two species.

8. Set up the general form of the equations describing the situation where

the main food supply of the minnows consists of algae, and the minnows are

the main food supply of the pike. Try at least one numerical experiment.

6. Summary and Some Extensions

In parts 2 and 3 we saw how the simple assumption of constant relative

growth rate leads to the geometric progression as a mathematical description

or model of growth for a single population. This model, when applied to human

populations, is often referred to as the Malthusian model, after Thomas Malthus

12



see (6) . In Problem Set 4, Exercise 5 this model was expressed by the

formula

x(t) ctx(0)

and we can see fram the formula that when c > 1, x(t) will be larger than

aay preassigned number if t is large enough. To avoid this "explosion"

and make our model more realistic we can assume that the limdts of the

environment act to decrease the growth rate as the population size increases.

A biologist might explain this by saying that as the population size increases,

its ability to contaminate a closed environment also increases. If c

represents this rate of contamination, we have

r R - c x(t).

Experimentalists have found this model useful to describe the growth of fruit

fly populations in a laborator7 system (gee Lotka (5), p. 69). As another

example, the table below shows the population of the United States fram 1790

to 1950 along with predicted values using the formula

x(t + h) 1.31 4. 1.26 x(t) - .00122 (x(t)2

where h - 10, expressed in years.

Year POpulation (millions) Predicted-
r(90 3.93

1800 5.31 6.26

1810 7.24 7.98

1820 9.64 10.40

1830 12.87 13.38

1840 17.07 17.37

1850 23.19 22.51

1860 31.44 29.97

1870 38.56 39.85

1880 50.16 48.23

1890 62.95 61.64

1900 75.99 76.04

1910 91.97 90.32

1920 105.71 107.24

1930 122.78 121.29

1940 131.67 18.11

1950 150.69 146.59

What is predicted for 1960?

13



Firmlly, we considered two populations, one species preying on the
other. This predator---prey relation required a pair of simultaneous

equations to describe the changing population sizes. As mentioned in the
Introduction, Volterra used a similar model to study the relationship between
the numbers of sharks and soles in the Adriatic. A graph of these relations
might look like Figure 1.

The-equations for growth used above are called difference equations

because they use the differences

x(t s h) x(tt
h

In practice, the equations are often simpler to handle if we study the
differences as h becomes very small. As h approaches zero the difference

equation approaches what we call a differential equation. Differential

equations are the ones used in the references; but you should be able to

understand the examples given in these books with the ideas you have learned
here. For further reading on difference equations, with other applications,
see 3.

Still another way to extend what we have done here is to use a model
which allows for the chance variation in the population size at any time.

Such models work with the probability that the population will be of a certain
size, rather than with the population size itself. Bartlett (1.) gives a

complete account of these models.

3.4



Figure 1.

Movement along ABCDE represents increasing time. x - number of soles,

y - number of sharks; nuMbers may represent thousands of animals. At B the

sharks have Just learned about the soles and begin to increase as thAr

food supply increases. By the tine D is reached, the sharks have eat-en oo

'much that they begin to die off from lack of food supply, allowing the soles

to increase unmolested from A to B when the cycle begins all over again.

iL
Figure 1. is a rough graph of 10x

-4
e . 3.5e y
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Answers

MATHEUTICAL THEORY OF no STRLEGLE FOR LIFE

Problem Set 1

1. t. I x(t) Change in Population Relative Rate of Growth

1

2

3

4

1,000,000

10010,:1W

1,020,100

1,030,301

1,040,604

1,051,010

10,000

10,100

10,201

10,303

100406

.01

x
2.

1 x (0) 1,010,000 - 1,00q1000
01x 0 1,000,000 1,000,000

x 2 - x 1 1,020,100 - lAlgl000 1R0201._
. .01x 1 1,010,000 1,010,000

xit+1) x(t)
x(t) "

1°1-421x 5
3. . .01

x(6) - 1,01,010
1,051,010

correct to one significant digit.

x(6) - (.01)(1,051,010) + 1,051,010

x(6) . 1,061,520

4. x(7) - (.01)x(6) + x(6) 1.01) x(6)

x(t) x(t+11
' r+1

18



Problem Set 2

1.

x(1) - x(0) . (.01)x(0)

x(1) . (1.01)x(0)

In similar manmer:

x(2) . (1.01)x(1)

x(3) . (1.01)x(2)

x(t+1) (1.01)x(t)

2. x(2) (1.01)x(1)

x(2) - (1.01)(1.01)x(0)

x(2) . (1.01)2x(0)

3. x()) (1.01)(1.01)2x(0)

x(3) (1.01)x(0)

x(4) = (1.01)4x(0)

x(5) = (1.01)5x(0)

4. x(t) (1.01)tx(0)

5. (a) nth term .-- a r n-1

(b) (n+1)nt term . a .ra

(e) x(5) is the sixth term

(d) x(t) is the (t+1) term

19
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Problem Set

7. x(1) r x(0) + x(0)
(r+1)x(0)

x(2) r x(1) + x(1)
14.1) x(1)

x(t+1) r x(t) + x(t)
(r*1) x(t)

2. x(2) = (r+1) x(1) and x(1) (r+1) x(0)
thus
x(2) (r+1)(r+1)x(0)

(r+1)2 x(0)

3. 43) (1+r) x (2) and x(2) - (14-r)2 x(0)
thus
x(3) (1+03 x(0)

2. x(t) = (1+r)t x(0)

5. A - (l+r)n p

6. Same pattern

20



1. (

(b)

Problemi Set 4wall alma

h x

x(h) r h x(0) + x(0)

x(h) (r h + 1)x(0)

x(2h) x(h)
h x(h) r

x(2h) (r h + 1)x(h)

(c)
x(3h) 12h)

h x(2h
r

x(3h) (r h + 1)(x(24

(d) x(nh) (r h + 1) n-l)h

(e) x (n+1)11) = Cr h + 1)x(nh)

, x(h) (rh+1)x(0)

x(h) (rh+1)x(h)

x(3h) (rh+1)x(2h)

x(n11) (rh+i)x((n-1)h)

x (r4+1)h) (rh+1)x(nh)

3. x(h) (rh+1)x(0)

x(2h ) (rh+1)(rh+1)x(0)

Ph) = rh+1r 40)

x(3h) (rh+1)(rh+1)2 x(0)

(rh+1)3 40)

x(nit ) (rh+1)n x(0)

21



4. x(hh) (rh+l)n x(0) and t a nh

.s. x(t) (rh+liE x(0)

x(t) ct x(0)

1

5. c = (rh+DE

7.

r t
.4k(2) + 1)

2t
c Po where o2

A.(4t) + 1)4t ct Po where c r+1)4

h c r h c r h c

1

1

1

1

1

.5

.1

.01

.001

2

(1.5)2

(1.1)10

(1.01)1W

(1.001)/W°

.5

.5

..f,

.5

.5

1

.5

.1

.01

.001

(1.5)

(1.25)
2

.
(1.05)

10

(1.005)
1
(3°

(1.0005) 1C°0

2

2

2

2

2

1

.5

.1

.01

.001

3
.

(2;
2

,

k1.2)
10

.
(1.02)

100

.
(1

14000
.002)

1

8. c (roil) = (rla+1)

c(11.001) (1.001)1W°

c(1o.001)2 (1.001)2000

1

(r h + 1)h

and c(2o.001) . (1.002)1000

c(lo.001)2 > c(21.001)

o(.5o.001)2 = (1.0005)
2000

and c(11.001) (1.001)1"

c(.5o.001)2 > c(11.001)

Hint: Use binomial expanzion for approximations.



9. (a) Prove If r > 0 then (1 + r)2 > 1 + 2r

Proof (1 + 02 1 + 2r + r2

(1 + r)2 - (1 + 20 r2

since r2 > 0

(1 + 02 > 1 + 2r Q.E.D. since a > b iff a - b > 0

(b) Prove If r > 0 and (1 + r)11 > 1 + nr, ihen (1+r)n+1)1 + (n+l)r

Proof (l+r)n > 1 +nr-->n> 0

(l+r)n(l+r) > (l+nr)(1+r)

(1+r)n+1 > 1 + nr + r + nr2

(14.r)nia
> 1 + (n+l)r + nr2

(1+011+1 [1 + (n+1) > nr
2
> 0 since n > 0, n I

and r > 0

(1+r 11+1 > 1 + (n+1)r Q.E.D.

(c) Prove (1.000001)1,000'000,000 > 1.001

Let n 999,999,999 and r .0000001

then (1+013+1 . (1.000001)1,000',000

thus (1.000001)1,0,°X," > 1 + (999,999,999 + M.000001)

(1.000001)1' X°, °°°' > 1,001 > 1.001

(1.000001)1,000P000P000 > 1.001

(d) (n+1)(.000001) > 10000,000

1(n+1) > 1,000,000,000,000

1 n > 10000,000,000,001

Probler set 2

x(t+h) -
1.

h x (t
R c x (t)

x(t+h) = (R h + 1) x(t) h c (x(t))2

23
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2. If R = .01,

3.

. .000001, x(0) = 10000,000

x(t)

0 1,000,000

1 10,000

2 10,000

3 10,000

4 10,000

5 10,000

a

R h c x(0) x(1) x(2)

.01 1 .000001 1,000,100 9,900 9,900

.01 1 .000001 900,000 100,000 90,000

.01 .5 .000001 1,000,100 500,000 400,000

.01 .01 .000001 1,000,100 1,000,000 1,000,000

Examples for Number 3.

R .01, h 1, c .000001, x(0) = 1,000,100

x (t+h) = (Rh+1) x(t) he (x(t))

x(1) . x(0+1) = ((.01) 1 + 1)(1,000,100) -(1)(.000001)(1,000,100)2

. 9,900.99

= 9,900 (2 significant figures

x(d) = x(1+1) (.01) 1. + 1)(9,900) - (1)(.000001)(9,900)

9,900 (2 significant figures)

R = .01, h .5, c = .000001, x(0) = 1,000,100

x(.5) . x(0 + .5) ((.01)(.5) + 1) (1,000,100) - .5 (.000001)(1,00011o0)2

. 500,000 (1 significant figure)

x(1) = x(.5+.5) - ((.01)(.5) + 1)(500,000) - (.5) (.000001)(500,000)2

,= 377:500

4000000 (1 significant figure

4. The relative change of populations r R - c x. Thus if x then r 0.

24
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Problem Set 6

1. If x(t+h) x(t) then

x(t) (Rh + 1) x(t) - he (x(t))2

x (t) . 0 or x(t)

The population at time t is zero or the relative change of population

is zero.

2. Let E --. If x(0) < E then

(a)
x

h x

x(h) > x(0)

(b) x(h) will remain greater than x(0)

(c) x(t) approaches x(0)

, 1
(a) If x(0) , where b he

+ 1 hc, Rh
then x(h) - ----2he

(hc)

Rh R

ne C

(b) The relative rate of change is zero.

1
4. If < x(0) < !

2
ax bx

y -b (x
aiL 2 a

2

x + 7) -b (x
2b 7)-

14bL

thus (a - 1) x (h) > 0

also (a - 1)(a-ab+b) > x (Ph) > 0

5. If x(0) > !- then x(h) < 0



6. z(t) E x(t) where E

thus x(t) E - z(t) so that

z(t+h) E - x(t+h) . (1-Rh) z(t) + he

A . 1 - Rh B he

2

7. Prove if lz..(t)1 < then 1z(t 1)1 < k(t)1

Proof

1) /well= the conclusion is false or k(t)1 < 1z(t+h)1

2) - 1z(t+h)1 < z(t) < lz(t+h)1

3) z(t) < (1 - Rh) z(t) + h c (z(t))2 when z(t+h) > 0

4) < z(t) when z(t+h) > 0

liA 1-A 1-A6) But the hypothesis 1z(t)1 z(t)
BB 1

7) Thue, we have a contradiction so that lz(t+h)1
4 1z(t)1

8) lz(t+h)1 / 1z(t)1 since they could be equal only if he . 0 and

R h = 1 which leads to e = 0. But c 0 since E

9) Thus by the trichotomy property, 1z(t+h)1 < lz(t)l. Q.E.D.

Problem Set 7

1. x(t+11) - x(t) (ah+1 bh x(t) - ch y(t))

y(t+h) - y(t) (Ah+1 + Bh x(t) - Ch y(t))

26



2. &ample:

x(0+1) = x(1) = 16000 ((.05)(1) + 1 - (.000001)(16000)-(.00002)(2000))

. 16000 (.994) 15904 . 15,900 (to 3 significant figures)

(NOTE: It is easier to multiply 16000 by .006 and subtract.)

y(0+1) . y(1) . 2000 ((.01) 1 + 1 + (.00001)(16000) - (.0001)(2000))

. 1940. (to 3 significant figures).

(Answers may vary somewhat depending upon the number of significant

figures which are kept.)

t x(t) y(t) t x(t) y(t)

0 16000 2000 13 15590 1685

1 15900 1940 14 15600 1680

2 15800 1890 15 15610 1677

3 15700 1850 16 15625 1675

4 15650 1820 17 15640 1673

5 15620 1790 18 15655 1671

6 15600 1765 19 15670 1670

7 15580 1745 20 15685 1669

8 15570 1730 21 15700 1669

9 15570 1720 22 15715 1669

10 15570 1710 23 15730 2670

11 15570 1700 24 15745 1670

12 15580 1692 25 15760 1671

3. x(t) x(t+1) when x = 0 or x 2:EX

y(t) y(t+1) when y 0 or A+Bx

Intersection of the two sets is y

4. (a) bx+cy< a

(b) Bx-Cy> A

2`

Ab+Ba
Cb+Bc

Ca-Ac
Cb+Bc

..."21.9kze



5.

6.

Az 4
bx #Cy

VSUOVS*11.

** OOOO
%Yew OOO O Mama

The remaining parts of

from the above figure.

x(t) y(t) t x(t) y(t)

0 2 3 a 2.58 3.86

1 2.4 3 9 2.50 3.75

2 2.78 3.12 10 2.50 3.66

3 3.06 3.34 11 2.52 3.6o

4 5.14 3.57 12 2.59 3.57

5 3.05 3.78 13 2.65 3.58

6 2.91 3.89 14 2.70 3.61

7 2.75 3.93 15 2.72 3.64

If x(t) represents the population of the minnows at time t

y(t) represents the population of the pike at time t

z(t) represents the population of the mackerel at time t

then

x(t+h) x(t) (a h + 1 - c y(t) d z(t) - b x(t))

Also

also

where r
x

a - bx - cy dz and a, b,

constants.

(t+h) - y(t)r . A + Bx(t) Cy(t) - Dz(t)
h y(t)

5

d are positive

zt+h) - z(t)
- ry(t) - z(t)

(h
z(t)

28
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8. . population of algae at time t

y . population of minnows at time t

1, population of pike at time t

r
x

bx - gy

r A - By + cx - D2

rt ss - z +ry

nu for example

- bx(t) - cy(t) + u(t) x(t+4) x(t)
hx(t)

29


