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PREFACE

Mathematics is such a vast and rapidly expanding field of study that

there are inevitably maay important and fascinating aspects of the subject

Which, though within the grasp of secondary school students, do not find a

place in the curriculum simply because of a lack of time.

Maay classes and individual students, however, -.say find time to pursue

mathematical topics of special interest to them. This series of pamphlets,

whose production is sponsored by the School Mathematics Study Group, is

designed to make material for such study retJily accessible in classroom

quantity.

Some of the pamphlets deal with material found in the regular curric-

ulum but in a more extensive or intensive manner or from a novel point of

view. Others deal with topics not usually found at all in the standard

curriculum. It is hoped that these pamphlets will find use in classrooms

in at least two ways. Same of the pamphlets produced could be used to

extend the work done by a class with a regular textbook but others could

be used profitably when teachers want to experiment with a treatment of a

topic different from the treatment in the regular text of the class. In

all cases, the pamphlets are designed to promote the enjoyment of studying

mathematics.
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FOREWORD

'

This pamphlet is essentially a reprint of Chapter 5
of the text titled "Intermediate Mathematics" published

by the School Mathematics Study Group.

The purpose of this publication is to make available

to classes of students some new materials to be used in
conjunction with standard programs. A class in second-

year algebra using a standard textbook could, with some

preparation, study the topic of "Complex Numbers" from

this pamphlet. In order to do this, the students would

need some experience with the properties of the "Real
Numbers".
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COMPLEX NUMBER SYSTEMS

1. Introduction.

Consider equations of the form

(1a) ax2 + bx + c 0,

where a, b, c are real numbers, a / O. It is assumed that we

understand the method for solving such equations and that the

results depend in a very essential way on the value of the dis-

criminant, b
2

- 4ac. If b
2

- 4ac > 0, the equation has two

real solutions; if t
2

- kac 0, the equation has one real solu-

tion; if b
2

- 4ac < 0, the equation has no real solution.

We ask whether we can extend our number system to include

numbers of such a character that every quadratic equation with

real coefficients has a solution regardless of the value of its

discriminant. It is the task of this pamphlet to make such an

eXtension of the system of real numbers. Actually we shall find

that the system we derive.for this purpose is a richer one than

we bargain for: it gives us the solutions not only of all quad-

ratic equations with real coefficients, but also of all polynomial

equations of whatever degree with real coefficients. Even this

does not quite describe the richness of the system we derive, but

it is too soon to tell the whole story. Let it suffice to say

that no further extensions will be necessary for the purposes of

ordinary algebra.

The simplest example of a quadratic eqvation with a negative

discriminant is the equation

(lb)

If this equatiyr 4ritten in the form (1a) we have a = 1,

b 0, c 1, and tne disortminant is

b
2

- 4ac . -4,

so that we know that it has no real solutions. We can see this

without evaluating the discriminant. Since the square of each

real number is non-negative, we have x
2

0 for any real number

x. Thus, if x is real, x
2
+ 1 > 0 + 1 - 1 > 0, so that no

real number is a solution of equation (lb).
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To start we will look for a number system in which equation

(lb) has a solution. It will turn out, in Section 5, that in this

system every quadratic equation with real coeffiCients has a solu-

tion. Perhaps if you review the method of solving the quadratic

equation you can see why this should be so.

Before undertaking our extension of the system of real num-

bers, it would be useful to look at the procedure followed in

Chapter 1 of the SMSG text in Intermediate Mathematics each time

the number system was extended. In this chapter the properties of

the real number system were developed by starting with the natural

number, followed by a consideration of the system of integers.

After this came the rational numbers and finally the real numbers.

In this development it was assumed that a new system could be con-
_

structed which would: (1) have as many as possible of the alge-

braic properties of the old system; (2) include all the numbers of

the old system, in such a way that the new and the old algebraic

operations, when applied to numbers of the old system, would be

the same; (3) contain new numbers of the kind we need. We then

discovered the rules for operating with the new numbers as logical

consequences of the properties we asskmed. For reference, a

"List of Basic Properties of the Real Number System" is included

in the Appendix.

Proceeding in the same waywe now seek a new number system

which contains the system of real numbers with all its familiar

properties and also contains a number satisfying x
2

1 = 0,

Equation (lb). We shall designate the system by the letter C

and call it the system of complex numbers. Following are the

specific properties we require of C:

Praperty C-1

(I) Two operations, addition (+) and multiplication (.)

are defined in C. (It is to be understood that the

result of an operation defined in a system is a number

in the system, but when we wish to emphasize this fact

we will say that the system is closed with respect to

the operation.)

(11) Addition is associative and commutative.

(iii) C possesses one and only one additive identity.
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(iv) Each element of C has one and only one additive

inverse.

(v) Multiplication is associative and commutative.

(vi) C possesses one and only one multiplicative identity.

(vii) Each element of C, other than the additive identity,

has one and only one multiplicative inverse.

(viii) Multiplication is distributive with respect to

addition.

Propertz C-2

Every real number is a member of C.

(ii) The sum of two real numbers in C is the same as

their sum in the real number system.

(iii) The product of two real numbers in C is the same as

their product in the real number system.

(iv) The additive identity in C is the number 0 of the

raals.

(v) The multiplicative identity in C is the number 1

of the reals.

Property C-3

The set C contains a special element i which has the

property

i i
2

-1.

We call the special element i the i aEiinary unit.

2. Complex Numbers.

In Section 1 we stated a problem: to find a number system--

that is, a set of elements and the operations of addition and mul-

tiplication defined for the set--having properties C-1, C-2 and

C-3. Now we try to solve this problem. Let us first try to

identify the set of elements.

3



Property C-3 tmplies that C contains at least one member

not in the set of real numbers because the square of no real num-
ber is negative. By C-1, C is closed under the operations of

addition and multiplication, so that if a and b are real
numbers, the product bi is in C since b and i are, and it
follows that a + bi is in C since a and bi are. We see,

then, that all numbers of the form

a + bi, where a and b are real,

are included in C. The number i and every real number can be

written in this form. We have i - 0 + 1 If a is any real
number a - a + 0. i, since 0 .1. - 0. (The statement that the
product of 0 and any number is 0 can be proved for numbers in
C exactly .as it is done for integells.)

Now, however, if we add and multiply numbers of this form,

take their additive and multiplicative inverses, add and multiply
again, and so on, it would seem that we should encounter more and

more numbers of the system not of this form. This is not so!

The sum and product, additive and multiplicative inverses of num-

bers which can be written in the form a + bi, a and b real,

can be written in the same form. We have not proved this, but

after we complete our discussion of operations with these numbers

you will see how such a proof can be constructed.

The results we have stated imply that if there is any system

which solves our problem,then there is a simplest--that is, smal-

lest possiblesystem which solves the problem. This is the system
with the following property.

Property C-4

Each element of C can be written in the form a + bi, where
a and b are real numbers.

We add C-4 to our list of basic properties, thus the system
C which has Properties C-1, 0-2, C-3 and C-4 is the system of

complex numbers.

Historical Note. The adjectives "complex", "imaginary"--and,
by contrast, "real"--which are standard terms sanctioned by years
of ase, serve to illustrate the "controversial" nature of our
four fundamental properties. As recently as a hundred years ago
many mathematicians believed that C-1, C-2, C-3 and C-4 contra-

4
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dieted one another, that is to say, that there could be no system

with all these properties. The proof that this list of properties

is just as respectable as that characterizing the "real" numbers

was achieved tnrough the work of the nineteenth century mathema-

ticians Argand, Cauchy and Gauss. (Such a proof is outlined in

Section 10.) Our continued use of the classical adjectives serves

to remind us of the old controversy and of the work of the men who

resolved it.

Exercises 2

1. For each of the following pairs of number systems state a

property of the first which is not possessed by the second:

(a) integers, natural numbers

(b) rational numbers, integers

(c) real numbers, rational numbers

(d) complex numbers, real numbers.

2. The following equations have solutions in the system of real

numbers if a, b, and c are real numbers. For each equa-

tion name the smallest number system in which the equation

has a solution in the system if a, b, and c are in the

system.

(a) a + x b

(b) ax b (a / 0)

(c) ax + b c (a 0)

3. Write each of the following complex numbers in the form

a + bi where a and b are real numbers.

(c) -1

(d) i

(e) 3

(f)

4. For each of the following paizs of number systems state a

property of the first whi,th is not possessed by the second:

(a) natural numbers, integers

(b) real numbers, complex numbers.

5



Let S be the set of all real numbers which can be written

in the form a + 141/, where a and b are rational numbers.

Show that

(a) S is not the set of all real numbers.

(Hint: Show that 1/.! is not in S.)

(b) S is closed with respect to addition and multiplication

of real numbers.

(c) the additive and multiplicative inverses of a number in

S are also in S.

(d) S, with real addition and multiplication as operations,

has all the properties listed in Property C-1.

S is the smallest part of the real number system which

has properties C-1, contains the rational numbers, and

contains v4!

3. Addition Multiplication and Subtraction.

We now take up the task of deducing rules for calculating

with the complex numbers. The remainaer of this section is

devoted to theorems which L7ive .formulas for the sum, product, and

difference of two complex numbers. We postpone the discussion of

division until Section 4,

Theorem aa. (a bi) + (c + di ) (a + c) + (b + d)i.

Proof: We suppose that a f bi and c + di are any two given

complex numbers. Consider the expression

(a + bi) + (c + di).

Property C-1 assures us that addition in C is associative and

commutative; therefore,

(a + bl ) + (c I. di) (a + c) + (bi + di).

But Property C-1 also ass2rts that the distributive law holds,

so bi di - (b 4 d)i. Hence,

(a + bl) i (0 i di) (a + c) + (b + d)i,

which we were required to prove.

1 C.,



Theorem 3b. (a + bi).(c + di) - (ac bd) + (ad + bc)i.

Proof: Given complex numbers a + bi and c + di, we consider

the expression

(a + bi)(c + di).

Using the distributive law once, we obtain

(a + bi)(c + di) - a(c + di) + bi(c + di).

Applying the distributive law again, and using the commutative

property of multiplication, we have

(a + bi)(c + di) = ac + adi + bci + bdi2.

But -1, so we can write

(a + bi)(c + di) = ac + adi + bci - bd.

Using the commutative property of addition and once again making

use of the distributive law, we obtain

(a + bi)(c + di) = ac bd + (ad + bc)i.

This complet_- the proof.

Example aa. Express the sum of 2 + 31 and 5 21 in the form

a + bi, where a and b are real numbers.

Solu ion: (2 + 31) + (5 + 21) - (2 + 5) + (3 + 2)1 - 7 + 51.

Example 3b. Exprer,s the product of 2 + 31 and 5 + 21 in the

form a + bi, where a and b are real numbers.

Solution: (2 + 31)(5 + 21) - 2(5) - 3(2) + [2(2) + 3(5)]1

- 10 - 6 + (4 + 15)i

4 + 191.

Example 3c. Express the product of 10 2i, and 1 1 111 the

form a + bi, a and b real.

Solution: i- 21 - (1 - i) = -2(1 - 1) = -2 + 21.

Now we consider subtraction. If z iu a complex number

we denote the additive inverse of z by -z, no that by

definition

(3a) z (-z) - 0.

Also, just as with integers, we define z -) - z
1

to be the solu-

tion z of the equation

7



(3b) z
1

+ z z
2'

where z
12

z
2 are given. (We leave as an exercise the proof that

Equation (3b) cannot be satisfiec by more than one complex number

z.) It is easy to see that z2 + (-z1) is a solution of Equation
(3b).

zi 1z2 (-z1)1 z1 ((-z1) z2 1z1
(-z1)] z2

= 0 + z2 = z2.

We have therefore proved

(3c) z
2

- z
1

- z
2

+ (-z )
Our problem now is to find -z when z = a + bi is given.

Let -z x + yi, where x and y are real. Since

we get

(a + bi) + (x + yi) O.

By the theorem on addition (Theorem 3a) this becomes

(a + x) + (b + y)i - 0 0 + 0

and this equation will be satisfied if

a + x = 0, b + y 0,

that is, if x = -a and y -b. Thus, (-a) + (-b)i is an

additive inverse of a + bi, and since the inverse is unique we

have proved

Theorem 3c. If a + bi is a complex number a and b real),

then its additive inverse is

-(a + bi) = -a + (-b)i.

We can now summarize our discussion of subtraction in a

theorem.

Theorem 3d. (a i bi) - (c + di) a - c) + (b d)1.

Proof: Using Formula (3c), Theorem Sa and Theorem 3c we have

(a + bi) - (c + di) - (a + bi) + [-(c + di)]

(a 4 bi) + ((-c) + (-d)i]

- (a + (-c)] + lb + (-d)3i

(a - c) + (b - d)i.

8 I,;



Exercises 3

1. Express each of the following sums in the form a + bi,
where a and b are real numbers:

(a) (1 + 4i) + (3 + 51)

(b) (2 +.6i) + (2 - 6i)

(c) (3 + 51) + 21.

(d) 4 + (r + ri)

(e) (v7 + 31) + (2i + 1)

(f) (-1 + 5i) + 21

(g) 8 +

(h) 3 + (7i - 3)

(I) (5 + 3i) + (7 + 2i) + (3 - 4i)

(j) (3 + 21.) + (/7 + 71) +fli .

2. Add a complex number to each of the following to make the
sum a real number. Can this be done in more than one way?

(a) 2 - 5i (e) -4/17i
(b) x y1 (x, y real numbers) (d) -51

3. Express each of the following products in the form a + bi,
where a and b are real numbers:

(a) (2 + 31)(4 + 71) (i) 61 .3i

(b) (2 3i)(6 + 4i) (j) 71(-21)(l - 6i)

(c) (3 - 1)(1 - 2i) (k) (4 - 21)(3 - 21)(51)

(d) 1(3 + 51) (1) (4 - 31)2(2 - 51)

(e) 1) (m) (2 4- 31)(3 - 21)(6 - 41)

(f) (8 +,./f1)(1 + (n) (c + di)(x + yi)
(g) (3 + 41)(3 + 41) (c, d, real numbers)
(h) (1 i 1)(1 1) (o) (x - yi)(x + yi)

(x2 y, real numbers)

4. Find the additive inverses of each of the following complex

numbers and express them in the form a + bi, where a and
b are real numbers:

(c) 5 - 4i

(0 -4 - 31

(g) a - b1 (a, b real numbers)

(h) x 4 yi (x, y real numbers)



5. ExpresS each of the following differences in the form

a + bi, where a and b are real numbers:

J - (1 - i)

vi

k2 + 31) - (2 - 31)

(1 i) 21

6. Express the following powers of i in the form a + bl

where a and b are real numbers.

(a) (7 + 11i) (2 + 31) (f)

(b) (5 - 6i) - (7 - 81) (g)

(c) (3 + 51) - (3 - 51) (h)

(d) i (1 + 1) (i)

( e ) 1) - (2 +

(a) 13

14

(c) 19

, n is a natural number

7. State a general rule for determining the n-th power of i

where n is a natural number. Explain why the rule works.

8. Express each of the following quantities in the form a + bi,

where a and b are real numbers.

(a) 13 + 14

n is a natural number

(c) 31 + 41(5 - 1)(5 + i)

(d) 7L[(2 - 31) + (41. + 10)]

(e) 1[(31 + 6) - (21 + 7)]

(f) 3(3 + 21) + (b + 81.) - 2(2 - 31)

(g) (b + c - ai)(a + c bi)(a b - el ), here a, b, c

are real numbers.

(h) +

(1) 1(1 - 1)(1. - 2)(1 3)

3
9. Show by substitution that 7 +

equation 2z
2 - 3z 4 2 = 0.

a solution of the

4 Standard Form of Complex Numbers.

Property C-4 asserts that each member of C can be expressed

in the form a + bi, where a and b are real numbers. Our

next theorem states that this representation is unique: given any

complex number z, there Is only, one pair of ral numbers a, b

such that z - a bi.
10



Theorem 4. If a, b, c, d are real numbers, then

a + bi = c + di if and only if a = c and b = d.

Proof: The "if" part of the statement "a + bi = c + di if

a = c and b = d" is clear, since addition and multiplication

have unique results. We have to prove the "only if" part:

a + bi = c + di only if a = c and b d; that is, if
a + bi c + di then a = c and b d.

Suppose, accordingly, that a, b, c, d are real numbers

and that

a + bi = e + di.

Then by the theorem on subtraction (Theorem 3d),

(a - c) + (b - d)i = 0,

and

a - c -(b d)i.

We have to show that a = c and b = d, or what is the

same, that a - c = 0 and b - d = O. Now if b - d were not
zero, we could write

or

a - c
- d

= 1.

But this would imply that i is a real number since a, b, c, d

are real numbers and the difference and quotient of real numbers

are real. Since we know that i is not a real number we con-

clude that b d = O. But if b d = 0, then -(b d)i = 0,

and since (a - c) = -(b d)i it follows that a - c = 0.

This completes the proof.

Example, 4a. Find all pairs of complex numbers x, y for which

2x + 3yi 6 + 3.

Solution: One solution of the problem is x 3, y - 1. If the

problem had required that x and y be real, then by the pre-

ceding theorem this would be the only solution. However, since
we permit x and y to be complex, the preceding theorem is

not directly applicable, and the equation may have other solutions;

x = 3 + 3i, y = -1 is a solution, for example.

11



We can use Theorem 4 to find all complex solutions of this

equation. Let x - a + oil y = c + di where a, b, c, d are

real. Substituting in

we get

or

2x + 3yi . 6 + 31

2(a + bi) + 3(c + di)i = 6 + 3i,

(2a - 3d) + (2b + 3c)i . 6 + 3i.

Since the expressions in parentheses in the last equation are

real, it follows from the preceding theorem that the equation

holds if and only if

or

2a - 3d 2b + 3c = 3;

3 - 2b
c

A
=

2a - 6

Here a and b may be assigned values arbitrarily. Thus, all

the solutions of the equation are given by

3 - 2b . 2a - b,x-a+bi,

where a and b are any real numbers.

The representation of a complex number z as

= a +

where a and b are real numbers, is called the standard form

of z. Note that z is real if and only if b O. (Why?) We

therefore call a the real part of a + bi. The real number b

is called the imaginary part of a + bi. Thus, we can say that

a complex numbel, is real if and only if its imaginary part is

zero. A complex number a + bi in which a = 0 is called a

pure imaglmary number. Thus, a complex number is a pure imaginary

number if and only If its real part is zero. DO NOT CONFUSE the

imaginary part of b of the complex number a + bi with the pure

imaginary number bi. Both the real and imaginary parts of

a + bi are real numbers: they are the real numbers a and b,

respectively. Usually a complex number which is not real is

called imaginary.

12 18



xamples 4b

z Real part of z Imainary part of z Standard form of z

1. 0 0 0 0 + Oi
2. 2 + i 2 1 2 + li
3. 1 - i 1 -1 1 + (-1)i
4. i 0 1 0 + li
5. i

2
-1 0 -1 + 01

In these examples only 0 and i
2

are real numbers; only 0 and
i are pure Imaginary numbers; 2 + is 1 i and i are imagin-
ary numbers.

Exercises 4

1. Find the real and imaginary parts of each of the following
complex numbers:

(a) (1 + 1)2 i)2

(b) 1 + i2 (h) (-1 +

(c) 15 (1) (4 + i) - 7

(d) 5 - i (i) -21 2

(e) 2x + 31 (k) 3i

(f) a - 21 (1) 2i + 1

2. What real numbers must be added to each of the following

complex numbers to make the sum a pure imaginary number?
Can this be done in more than one way?

(a) 3 + 21

(b) -4i
(c) 5 21

(d) 5 -,/ffi

3. Use Theorem 4a to find real values for x and y that sat-
isfy the following equations:

(a) x - yi - 3 + 6i (f) x - y + (x + y)i 2 + 61

(b) 2x + yi 6 (g) (1 + x) + 1(2 - y) - 3 - 4i

(c) x - 5y1 = 201 (h) x + yi = 1 + i2

(d) 8x + 3y1. - 4 - 91 y212
1(1 - x2)

(e) 2x + 3y1 - 4 = 5x - yi 8i (I) (x + 1)2 y

13
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4. Express each of the following complex numbers in standard.

form:

(a) 3 + 21 + 5 + i (f) (4 - i)(3 21)

(b) (3 - 21) - (5 - 21) (g) (1 - 1)(2 + 30(4 + 21)

(c) 3i(4 21) (h) (a + b - ci)(a + b + ci),
where asb,c are real

(d) 6 + 5i - (2 - 3i) numbers.

(e) (3 - 2i)(5 - 2i)
(i) (x + yi)3, where x and y

are real numbers.

5. Suppose z = x + yi, where x and y are real numbers,

and z
2

8 + 6i. Solve for x and y.

Suppose, for the sake of this exercise, that a and b are

complex numbers. Show that a + bi 0 and a - bi 0 if

and only if a 0 and b = 0. Show also that the under-

lined word can be replaced by "or" only when we also assume

that a and b are real numbers.

Show that if z
1

is any non-real complex number, every com-

plex number z can be expressed in one and only one way in

the form z - a +
1,

where a and b are real numbers.

Division.

We have learned to add, multiply and subtract complex numbers.

We now consider division. According to Property C-1 every com-

plex number other than 0 has one and only one multiplicative
1

inverse. We denote the multiplicative inverse of z by so

that by definition

(5a)

Also, we define
z
2 to be the solution of thc equation

z
1

( 5b ) Z,
1
Z =

when this solution exists. (We leave as an exercise the proof

that equation 5b cannot be satisfied by more than one complex

number z.) It is easy to see that if zi / 0, Equation 5b has

the solution
2 z

1

I 1 I rf 1
)

1
Z
1
'[Z

2
k-- =Z

1
Lk- Z

2
= [Z1(2-1.-)]Z2 = 1.z2 z2 .

z
1

z
1

14

2 (0



We have therefore proved

(5e)
z
2 1zo

-1 - -1
1Our task now is tofind the standard form of when

z a + bi is given in standard form. Let us begin by consider-
ing a numerical example.

pcample If z - 2 + 31 find its multiplicative inverse 2z--

in standard form.

Solutier We seek a number x + yi (x and .y real) satisfying

(2 + 3i)(x + yi) - 1.

If we multiply the factors on the left using the theorem on mul-
tiplication (Theorem 3h) we may write

- 3y) + (3x + 2y)1 - 1 + 01.

Hence, from the theorem on standard form (Theorem 4)

2x - 3y = 1,

3x + 2y - O.

Eliminatinfr, y, we have

(4 + 9)x 2.

Hence,
2 -3x

Y
and

2 3.x + yi -3.-7 4

Now we can verify by substitution that

1

2 + 31 1?7

We treat the general case in exactly the same way. Suppose
a + bi, in standard form, is a non-zero complex number. Recall
that this means that at least one of the two real numbers a, b
is not O. If there Is .a complex number x + yi, x and y
being real numbers which satisfies the equation

(5d) (a + bi)(x + yi) . 1,

then by completing the multiplication in the left member we get

(ax - by) + (bx + ay)i = 1.

15
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From the theorem on standaru form (Theorem 4 ), this equation

will be satisfied if and only if

(5e) ax - by = 1,

bx + ay O.

Thus, our problem is reduced to that of solving two linear

equations with real coefficients for the real unknowns x and y.

We solve these equations by elimination. To eliminate y, mul-

tiply the first equation by a, the second by b, and add.

We get
(a2 b2)x

Our assumption that a + bi / 0; i.e., that at least one of the

real numbers a, b is not zero, tells us that a
2

+ b
2

/ O.

Hence, we can write
a

x -
a + b

2

In the same way, we eliminate x from Equations (5e). Multipy-

ing the first equation by by, the second by a, and subtracting

the first from the second, we get

b
2
)y - -b.

As before, a
2

+ b
2

/ 0, so

Now by substitution we can verify that

a f -b N4

a2 4 b2
a2

+ b

is a solution of Equation (5d) so that it is the unique multipli-

cative inverse of a + bi. We state our conclusion as a theorem.

Theorem 5. If a + bi is a non-zero complex number in standard

form, then its multiplicative inverse is

1 a -b
a + bi

a2 + b2 4 (a2
b
2)i.

Now we can combine the results of this section to obtain a

formula for the quotient of any two complex numbers when the

denominator is not D. We could state the result as a theorem,

but the statement would be cumbersome. It is better to remember

a procedure which we indicate by an example.

1 6



pcample a. Find the quotient and express the answer

in standard form.

Solution: By Formula 5c,

-8+-411 (8 5i)(2 +. 11)*

By Theorem 5,
1 2 -3
i=-ST 171.

Combining these two equations and using the theorem on multiplica-

tion (Theorem lib) we obtain

= (8 + 5i)(T3s + i)
2- + 31

31 / 14
rs

as the quotient in standard form.

The following relations involving division of complex numbers

can be proved on the basis of Property C-1 just as it is done for

real numbers.

(50

(5g)

z
1
z
2

- 0 if and only if z
1

or z
2

.-- 0 r both).

z1z3z
1

=
z2

if z
2

/ 0, z4 / 0.
z2"4

z
1

z
3

zz4 4 Z2
(511) '.21 , if z2 / 0, z4 / 0.

z
2

z
4

z2z4

We leave the proofs of these relations as exercises. (See

Exercises 5, Problems 7-9.)

Exercises 5

1. Find the multiplicative inverses of each of the following

c')mplex numbers and write them in standard form:

(e) 1 i

(f) 2 4 31

(g) 1 4 12

(h) 4 - 31

2. Does every complex number have a multiplicative inverse?

3. What complex numbers are their own multiplicative inverses?

4. What complex numbers are the additive Inverses of their

multiplicative inverseb?

17



5. Express the following quotients in standard form:

1

(d)
13 + 51

21

(i) 7-=41-

(1) F.43+;

(m) EitiL-417; a,b real, 2a - bi t 0

(n) ;Ill; mjn real, -m + ni / 0

3x + 2y1.
, x,y real, x - yi / 0

Show that if 21 / 0, the equation 21.z - 22 has no more
than one solution.

7. Write in standard form all complex numbers z such that

and

is zero.
1

is r.

is 1.

8.

*9.

1 1the real part of is 7,

(a) the imaginary part of 2

(b) the imaginary part of z

(0) the imaginary part of z

Prove that
1 2

or both are zero.
2
1Prove that 7--

0

z
3

12 14

1 3Prove that 4

if and only if

2,23
if z

2
/ 0

'

or ----22

zz +2
1 4 2 3 if z / 0, z4 C.

z 22 4

11. Make use of the formulas in Problems 9 and 10 to obtain the

followIng sums and products. Write the answers you obtain

In standard form.

(a) 11:21 + 1.1,4
1,) 1 4- 21 2 - I (el (a + biN2 ta bi)2
(" 3 + 21 ' 'a ' 'a + bli

1 2 + 361 7 - 261 a + bi / 0, a - b1 / 0(c,

(d) ; 21 4- ;

18



*12. Show that the words "in standard form"may be omitted in

Theorem 5 if we suppose merely that a + b2 X 0.

6. ,Q,uadratic

We come now to a crucial test for the complex number system.

Does it permit us to solve equations of the form

(6a) az
2
+ bz + c = 0,

where a, b, c, are real numbers and

(6b) b
2

- < ?

Let us first find the solutions of the quadratic equation on

which we have so far focused our attention:

(6c) z
2

+ 1 - O.

If z is an arbitrary complex number, we have

z
2

+ 1 z
2

- (-1) z
2

- i
2

- (z i)(z + i).

This factorization of z
2
+ 1 shows that if z is a complex

number satisfying Equation (6c), then one of the factors

(z i), (z + i) must be zero, and z must be either i or -i.

Conversely, we see that i and -i both satisfy Equation (bc).

Therefore, we conclude that the solutions of Equation (6,c) are

Equation (6c) is a special case of the Equation

(6d) z
2

= r.

We know that if r is real and positive this equation has two

real solutions. We have just seen that for a special negative

value of r; namely, r - -1, this equation has two non-real com-

plex solutions, i and -i. Let us next consider the general

case in wr7ich r is negative.

If r is real and negative, then -r iS real and posIt1ve,

and v/717 is defined. We have

r (-1)(-r) =

and hence,

r z
2

-
2

( 11717)(z.

)2;

19
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Just as in the discussion of Equation (6c), we conclude that

Equation ((3d) has the two solutions V=7, -117, when r is

real and negative.

For tac case in whieh r is real and positive we introduced

the n,.:tation v/17 to describe the solution set of Equation ((3d):

c'ne solution is v/iF and the second 1/F. It would be desirable

to extend the definition of VP: for negative real r so that the

description of the solution set of Equation ((3d) would be the same

for all r. The question is which of the two solutions V7F,
-1,./7-7 shall we take to be IF if r is negative?

It should be clear that we have the problem of defining

unambiguously for positive r. The problem is resolved by defin-
ing vi-7 to be the non-negative solution of Equation ((3d). The

requirement that vir7 be non-negative is simply an 2..fament

adopted to make the meaning of 07 definite. However, this

agreement makes no sense if the solutions of Equation (6d) are

complex. We have not defined "positive" and "negative" for non-

real complex numbers, and cannot define these terms for complex

numbers in a way which is consistent with their usual meaning.

We must make a new agreement for the case of negative r. Any

agreement which definitely selects one of the solutions 11-7,

-1,/.77 of Equation (6d) will be satisfactory. We choose

and accordingly make the following definition:

Definition a. Let r bc any real number. We define .07 as

follows:

(1) If r > 0, then 4/17 is the unique non-negative real

number w such that w
2

- r.

(2) If r < 0, then Vi7 .

Example ea.

vr.7r

,/7.711f 4/ff . 2/5 i
- 2 i )2 = 4A-72- 4/77 - - 21.

Examzle, eb. Find the product (47-7)(%/717).

Solution: We have

(115)(175) (14/7)(4/75) = i 7,17.

20



Note that it is not correct to say

i/75) 0-5)(-15) i/1715.

The statement 117/7 .4/FF has been proved only for the case in

which r and s are both positive. The statement is also true

if r and s have opposite signs (Exercises 5, Problem 5), but

as the foregoing example shows, it is false if both r and

are negative.

Example 6c. Find the product

number.

if r is any real

Solution: We have to consider two cases. If r > 0 we have

r > 0, and

N4I47 -4,477

If r < 0 we have r
3
< 0, and

2
= r

454/7 = (14/7)(11-7) = i2 -r
2

Now that we have given an unambiguous meaning to for

each real number r, we state as a theorem our previous con-

clusions about equations of the form z
2

- r, where r is any

given real number.

Theorem 6a. If r is any given real number, the equation

z
2

r has the roots Ati; and NIF, and no others.

We now turn to the solution of the general quadratic equa-

tion

(6e) az
2
+ bz + c a, b c real and a / 0.

Recall that we were led to our study of complex numbers because

we failed to find real solutions of Equation (6e) when its dis-

criminant b2 4ac is negative.

Theorem 0 . The equation

az
2 + bz + e - 0, a, b, c real and a / 00

has the solutions

i2 /2-b +vo - 4ac -b 4ac
2a 2a

and no others.

There is nothing new if b
2

- kac > 0; this is the case of

real solutions. We now prove that the formula holds if

21



b
2

- 4ac < 0, although in this case the solutions will not be

real.

(6f)

Divide by a and complete the square.

2 b b
2

c b
2

z + + - + ,

' 4a" 4a

b %2 b
2

- 4ac
(z + 77.) .

4a'

We now have Theorem ba which tells us that Equation (60 has

(complex) solutions whether b
2

- kac is positive, negative, or

zero.

Applying Theorem 6a, we obtain

b - kac b - 4ac
z -+ -A--

.da
or z + Ta- -

4a 4a

/ 2
-b

_ I 2
or z .2a 2a

The proof of Theorem 6b can be completed by show-J-1- that the

numbers obtained actually satisfy the equation.

,Example 6d. Find the solutions of z2 + z + 1 - O.

Solution: a b c . 1. By Theorem ob the solutions are

and

Other statements about the relation between the solutions

and c,)efficients of a quadratic equation can be established. In

particular, if and z
2

are the complex solutions of the

equation

az
2 + bz + c = 0,

then

(6g) -b
z1

a '
z
1 2 a

and
.

(Gh) az
2

oz + c - a(z. z
1
)(z - z

2

The proofs are left as exerciseS.



Exercises 6

1. Perform the indicated operations and write the answers you

obtain in standard form.

(a) jr-7 +4/7-7

(b) -A/75 V7n7

(c) 4/7! + 5/7 -A/7g

(d) ,1047.4/75

2. Write each of the following complex numbers in standard form.

Assume c is a real number.

(a) 1/-(2) (e)

(b) :77 (f) A/7
(c) 4/777 (g) 4/7177
(d) 47e7

3. Perform the indicated operations and write the answers you

obtain in standard form. Assume a and b are positive

real numbers.

a)

(b) 4/77 .4/-4-a2b

) (4/7"-a + i/".7)

(d)

3 .st:F.

( e ) 4/-32a2 - 1-050a2

( f ) 47-7a 1/1--a7:

(g) y4a2 - 2ab - b2 +44(a + b)2

'4. Examine the proof that 0717 --4AVE if a and b are

non-negative real numbers, and explain why the same argument

cannot be used when a and b are negative.

5. show that if r < 0 and s > 0, then AAVE =%/77.
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In each of Problems 6-17 solve the given quadratic equation and

express the solutions in standard form.

6. z
2 + 1 0 12.

7. z
2 + z - 1 . 0 13. 2z 2 + z + 1 = 0

8. z
2 + 2z + 2 = 0 14. z

2
- 4z - 8a - 0 (a real)

19. z
2

z + 1 = 0 15. mz 2 + z + . 0 (m real,m/0)

10. 3z
2 + 2z + 4 . 0 16. z2 iz + 2 - 0

11. z
2
+ 4z + 8 = 0 17. az2 + c . 0 (a,c real, a/0)

18. The equation z
3

- 8 = 0 has the solution 2. Show that

z 2 is a factor of z
3

- 80 and toe this fact to find

two more solutions of the equation.

*19. Suppose z
1

and z
2

are the solutions of az
2
+ bz + c = 0,

where a, b, c are real and a / 0. Show that

z/ + z2 and z1z2

*20. If z
1

and z
2

are the solutions of the equation

az
2
+ bz + c - 0 show that the equation

az
2
+ bz + c = a(z - z

1
)(z - z

2
)

holds for every element z of C. (This formula therefore

provides a "factorization" of the expression az2 + bz + c.)

21. Find the quadratic equations which have the following pairs

of solutions:

(a) z1 = 1 - z
2

. 1 +

(b) z1 i z2 - 2 + i

(c) 0, z
2

- 0

(d) z1 - al + bli, z2 = a2 4 b21; al, bi, a2, b2 being

any four given real numbers.

*22. Solve the equation z
2

= I. [Hint: Writing z in standard

form, z = x + yi, the given equation is equivalent to a

pair of equations whose unknowns are real numbers:

x
2

- y
2

= 0, 2xy 1.]

224
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*23. Solve the equation z
2

24. Find an equation whose solutions are 1 + 21, 1 - i, 1 + 1.

Is there a quadratic equation having these numbers as solu-
tions? If there is one, find it. If there is none, prove

that there is none.

Graphical Representation: Absolute Value.

According to Property C-4 and Theorem 4a, each complex number

a may be written in one and only one way in the standard form

a + bi, where a and b are real numbers. Thus, each complex
number a determines, and is determined by, an ordered pair

(a,b) of real numbers: a is the real part of z, b the

imaginary part of z.

Recalling that ordered pairs of real numbers formed the

starting point of coordinate geometry, we find that we are able

to represent the complex numbers by points in the xy-plane. We
agree to associate z with the point (a,b) if and only if

- a + bi, in standard form, and we set up a one-to-one corres-

pondence between the elements of. C and the points of the

xy-plane.

It is customary to use the expression "Argand diagram" to

describe the pictures obtained when the point (a,b) of the

xy-plane is used to represent the complex number a + bi given
in standard form. Figure 7a is an example of an Argand diagram

showing three points (0,0), (4,-5) (-4,3) and the complex

numbers they represent. Note that

points on the x-axis correspond

to realnumbers and points on z . -4 + 3i
the y-axis correspond to pure

Imaginary numbers. For the

sake of brevity we shall often

say "the point z = x + yi" in-

stead of "the point (x,y)

corresponding to the complex

number z x + yi."

25 81
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The geometric representation of complex numbers by means of

an Argand diagram serves a double purpose. It enables us to

interpret statements about complex numbers geometrically and to

express geometric statements in terms of complex numbers. As a

first example, consider the formula for the coordinates of the

midpoint of a line segment: The midpoint of the segment joining

(x11y1) and (x21y2) is the point (x,y) given by the formulas

X
1

4- X
2 Y1 Y2

(7a) x -
2 Y =

In terms of complex numbers this may be stated: The midpoint of

the segment joining the points z1 = xl + y/i. and z2 = x2 + y2i

is the point z = x + yi given by

(7b)
zl

Z

2

Note that we can express in one "complex" equation a statement

which requires two "real" equations.

Now we can use Equation (7b) to establish a geometric inter-

pretation of addition of complex numbers. Let z1 and z2 be

two complex numbers and suppose that the points 0, zl, z2 are

not collinear. Let z3 z1 + z2 and consider the quadrilateral

whose vertices are 0, z
1'

z
2'

z
3

(Figure 7b). The midpoint of

the diagonal from zi to z
2

z
1
+ zo

Is ; that of the diagonal

from 0 to z
3

is

0 + z
3

z
3

z
1

+
"2

----7-

Hence, the diagonals have a common

midpoint. Since the diagonals of the Figure 7b

quadrilateral bisect each other, the figure is a parallelogram.

Thus, we have a geometrical construction for the sum of two com-

plex numbers: If two complex numbers arc plotted in an Argand

diagram, their sum is the complex number corresponding to the

'fourth vertex of the parallelogram whose other three vertices are

the origin and the two given points (and which has the segments

joining z1 and z2 to the origin as sides.)

26



When the points 0, 21 z2 are collinear the parallelogram

collapses into a straight line and our construction fails. We
shall discuss this case later.

Next we consider the geometric construction of the difference
z2 21 of two complex numbers. Since z2 - z1 z2 + (-z1) we
have only to find a geometric construction of the additive inverse
-2 of the complex number 2. By equation (7b) the midpoint of
the segment joining z and -z is

z + (-z) 0
2

that is, the midpoint is the origin. Thus, if a complex number is

plotted in an Argand diagram, its additive inverse is the complex

number corresponding to the point symmetric to the given point
with respect to the origin (Figure 7c).

We could now describe geometric

constructions for the product and

quotient of complex numbers but

these constructions are not very

illuminating. After we have studied

trigonometry and the relation between

complex numbers and trigonometry we

will be able to state simple and

elegant geometric interpretations of

these operations. Figure 7c

Example 7a. Given zi = 3 + i, and z2 = 2 - 21, make use of
an Argand diagram to find the difference z1 z2.

Solution: Begin by plotting z1 and

z
2° Then locate the additive inverse

of z2, namely -z2. This is easily

done since we know that z
2

and -z
2

are symmetric with respect to the

origin. The point z1 z2 is the

same as z
1

(-z2" (See Figure 7d.)

The geometric representation of

complex numbers suggests a definition

of absolute value of a complex number. Recall that when real

numbers are represented by points on a line, the absolute value

of a real number is equal to its distance from the oriEin.

Figure 7d



Accordingly, we define the absolute value Izi of a complex

number z a + bi to be the distance from the origin to the

point (a,b). Using the distance formula our definition may be

stated algebraically as follows:

Definition 7a. If z = a + bi, where a and b are real

numbers, we write

Izi -442 + b2

and mall 1z1 the absolute value of z.

ExampleTb. Show that the distance between the points z1 and

z2 is 1z2 z11.

Solution: If z1 x/ + yli, z2 = x2 + y1i where xl, yl, x2,

y
2

are real numbers, then by the theorem on subtraction

z2 zi - (x2 - xl) + (y2 - y1)i.

By the definition of absolute value

1z2 z11 xl 4- (Y2 Y1)

and this is the distance between the points (x10 yl) and

(x
2/

y
2
).

When z
1

and z
2

are real numbers we know the following

relations involving absolute value and the algebraic operations:

(70)

(7d)

(7e)

(7f)

1z1-z21 1z11 1z21

!zit
1Z21

Izi + z21 1z11 + 1z21

1 - 1z211 Izi - z21.

These relations continue to hold when z
1

and z
2

are complex

numbers. Formulas (7o) and (7d) aan be proved by calculation

(Exercises 7, Problems 8-9), although we will present simpler

proofs in the next section.

The algebraic proof of Formula (7e) is quite difficult but

we can give an easy geometric proof. Consider the triangle whose

vertices are 0, z1, z1 + z2 in Figure Tb. The lengths of its
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sides are Iz
1 1

I Iz
2

I Iz- + z2I. Why? Since the length of a

side of a triangle is less than the sum of the lengths of the

other two sides, we have

1z1 z21 < 1z11 1z21.
We will show later that when the parallelogram collapses into a

straight line we have either the inequality above or the equation

Iz1 z2I Izil + Iz2I1

This will complete the proof of Formula (7e), which is often

called the "triangle inequality". The discussion of (7f) is left

as an exercise (Exercises 7, Problem 10).

For rurther discussion of the algebra and geometry of com-

plex numbers it is convenient to introduce the notion of complex

conjugate. We do this in the next section.

Exercises 7

1. Plot each of the following complex numbers in an Argand

diagram. Label the points with the symbols zl, z2, etc.

(e) z5 = 2 +

(f) z6 = -4 - 21

(g) z7 =Ain. i

(h) z8 = r

2. Plot the additive inverse of each complex number in

Problem 1. Label the pbint that corresponds to zi with

the symbol -z/, etc.

3 In each of the following problems find z1 + z2 and

zi - z2, and also construct them graphically.

(a) z1 = 1 + 1, z2 = 2 +

(b) z1 = 3 + 2i, z
2
= 2 + 31

(c) z1 = -1 + 21, z
2
= 2 -

(d) z1 = -3 + 4i, z
2

- -1 - 3i

(e) z1 = -3 + z
2

. 1 + 4i

(f) z1 - -21, z
2
= 2 - 4i

(g) z1 --, 3, z
2

= -3 + 51

(h) z1 = 4 z
2
= -4i
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M. Let z
1'

z
2'

z8 be the points given in Problem 1. Use

Equation 7b to find the midpoints of the segments joining

z2 and z5, z3 and z6, z4 and z7, and plot the points

in an Argand diagram.

5. Find 1z1 if:

(a) z 3 - 4i (d) z = i4 + i7

(b) z - -2i (e) z = T +Vfi
(c) z 1 4- i2

6. Show that if z 0, TT "
7. Find the set of points described by each of the following

equations

(a) z = 1 z= Izi (c) z

8. Give an algebraic proof of the equality

1z1z21 = 1z11.1z21,

if z
1

and z
2

are complex numbers.

9. Give an algebraic proof of the equality

zl
z
2 1z21

if z and z
2

are complex numbers, and z
2

0.
1

10. Give a geometric proof of the inequality

1
- 1z

2
1 - z21 .

11. Suppose 0, z1 = a + bi, z2 = c + di are collinear. If

z
3

- z
1

+ z
2

show that z
3

lies on the line through

and z2.

0

12. Prove that the triangle with vertices 0, 1, z is similar

to the triangle with vertices 0, z, z
2

by showing that

corresponding sides are proportional. (Hint: Note that

the length of each side of the second triangle is equal to

1z1 multiplied by the length of each side of the first

triangle.) Use the result to describe a geometric con-

struction for z
2
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8. Complex Conjugate.

Definition 8. If z . a + bi, in standard form (a and b real),
we call a + (-b)i the complex conjupte., or simply the conjugate
of z, and write

= a + bi . a + (-b)i.

Since a + (-b)i . a - bi we may also write

FT-MT. a - bi.

Example 8a. 2 + 31 . 2 - 31; (i)

It is easy to see that the conjugate of the conjugate of a com-
plex number is the complex number itself. If z = a + bi in
standard form, we have

(z) (7-7-.7E) = a - bi = a + bi
EC) that

(8a)

Thus, if the first of two numbers is the conjugate of the second,
then the second is the conju te of the first. We call such a
pair of numbers conjugate.

Although we have not used the tereconju te" before, con-
jugates of complex numbers have appeared in many of our statements
about complex numbers. Thus, for example, the solutions of a
quadratic equation with negative discriminant are conjugate. Also,
the formula for the multiplicative inverse of z = a + bi man be
written

1
a + bi

or

(81))

zl

From Equation (8b) we get immediately

(8c) z = 1z12.

This last equation is important enough to deserve statement as a
theorem and a new proof.
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Theorem 8. z is jz12.

Proof: If z a + bi in standard form, then

(a bi)(a bi) a2 (bi)2 a2 b2i2 a2_b2(_1)

a2 + b2 + 132)2 . lz12.

Now that we have proved Equation (8c) independently of

Equation (8b) we can derive (8b) from (80. In fact, it is con-

venient to use Theorem 88 directly in dividing complex numbers.

The following example is illustrative.

zakaajl 8b. Find the quotient

Solution: The conjugate of 2 + 31 is 2 - 31. Multiplying
2 - 3iby and using Theorem aa and Equation 5f, we get

-;±-4 31

(2)(8) - + [8(-3) + 2(4)]i

2
2
+ 3

2

31 -14 31 14-f7 rsi
If we plot z and 7 in an Argand diagram (Figure aa),

-7 = -a bi

Figure 8a

we see that is the reflection of z in the x-axis; that is

z and are symmetric with respect to the x-axis. Similarly,

-7 is the reflection of z in the y-axis. From this diagram,

or by direct calculation, we also see that z + = 2a and

z = 2b1. With these equations we can express a and b in

terms of z and 7. We thus obtain the following theorem:
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Theorem 8b. If z - a + bl in standard form, then

z + = 2a, z - . 2bi;

or
1

a = r(z + z), b - z).

Observe that since a complex number is real if and only if its

Imaginary part is 0 and pure Imaginary if and only if its real

part is 0, Theorem 8b has the following corollary.

;orollary. The complex number z is real if and only if z

and pure imaginary if and only if z

Theorem 8b permits us to state any relation between the real

and imaginary parts of a complex number z as a relation between

z and 7. In particular, many statements of analytic geometry

can be expressed as a relation of this kind. Before considering

examples we state the following theorem which simplifies the com-

putation of conjugates.

Theorem 8c. If zi and z
2

are any complex numbers, then

(a z+ +zi z2

(b) z1 z2 z, c ;

(c) 7-1 777; ;

z z

(d) (71)
2 z

2

The proofs are left as exercises (Exercises 8, Problem 5).

Examlz 8c. Show that, for any zo the reflection of the point

31z + 2 in the x-axis is the point -311 + 2.

Solution: The reflection of a point 31z + 2 in the x-axis is

its conjugate, 71= Using Theorem 8c twice we obtain

3iz + 2 = (3i)Cz) + r T7T1(7) 4- 7
= -31T 2,

which was to be shown.

Example 8d. Show that the circle of radius 1 with center at

the origin is the set of all points z which satisfy the equation

z .z - 1.
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Solution: There are two possible approaches. We can start with

the definition of this eIrcle as the set of points whose distance

from the origin is 1, and use the fact that the distance of the

point z x + yi from the origin is 14. Then z is on the

circle if and only if

1z1 = 1.

Squaring both sides of this equation and using Theorem aa we get

z 1z12 . 1.

however, we can also start with the equation of the circle

from analytic geometry:

x
2 + y2 = 1.

If z x + yi then by Theorem 8b

x 7(z + 7) y 7,(z - 7).
Substituting for x and y, we obtain

+ z)32 + - z)12

or

4:.(7 + z)2 - it(7 z)2

Simplifying, we have

z 7 = 1.

Example Be. Show that the segments which join the points

zi = x/ + y1i and z2 - x2 + y2i to the origin are perpendicular

if and only if the product z1 .T2 is pure imaginary.

Solution: Again, there are two approaches. We can either express

the geometric conditions immediately in terms of and z2, or

state them first in terms of (x
11

y
1

) and (x
2'

y
2
), and then use

Theorem 8b. We will follow the first approach.

The segments joining z1 and z2 to the origin will be per-

pendicular if and only if the triangle with vertices 0, zl, z2

is a right triangle. By the Pythagorean Theorem this will be true

if and only if

1z112 + 1 z
2

34
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Using Theorems 8a and 8c this equation may be written

zinc' + z272 (z1 - z2)(71 ---i7) (z1 z2)(ç z2)

+ z2z2 zizi zlz2 - z2z/ + z2z2

0 -z1z2 - z2z1

or, using Theorem 8c again and referring to Equation (7a)

ziz2 = -z1z2 = -(z1z2).

By the Corollary to Theorem iab this equation aan hold if and only
if the product z1z2 is pure imaginary.

Finally, we can use Theorems 8a and 8c to establish
Formulas 7c, 7d. We do the first as an example.

Example Eif. Show that Izi -z21 = 1z111z21.

Solution: Since the numbers in the equation which is to be estab-
lished are positive, it will suffice to prove
kJ, Z21 =

1z112Iz2 2
(Why?) We have

12

Izl. z212 = (z111z2)(z1.z2) = (z1-z2) -(z12

(z1.737)(z2;i7 1z1121z212.

This completes the proof.

Exercises 8

1, Express the conjugate of each of the following complex
numbers in standard form:

(a) 2 4- 31 (d) -) (g) 7-17

(b) -3 -4- 2i (e) -21 (h) 4 + i6

(c) 1 - i (f) 1 - (i) -31 + 312
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2. Use conjugates to compute the following quotients. Write the

answer in standard form.

(a) H-it

(b)

(c)

(d)

(e)

(f)

2-14.+51

2 + 31

61
- 41

3 + 21

(s)

(h) 2-i41

(i)
3 + s/Si

(i)
5 -17.

(k) 4/7
-4/75

3

(1)

(m) , a,b real, 2a + 3b1 / 0

(n) x0y real, 2x - yi 0

(0) S1 + 1)(-1 + 21) + (2 - i)
2 - 31

2i
(P) ri Igi 2)(1 - 3)

3. For each of the following sketch in an Argand diagram the

set of complex numbers z which satisfy the given equation.

(a)
z

(b) =

4. For each of the following sketch in an Argand diagram the

set of points z that satisfies 'ale given equation.

(a) z + z - 3 (b) z - = 21 (c) z -7= 3+ 2i

5. Let z1 xl + yli, z2 = y2i be any complex numbers,

xly yl, X2, y2 real. Prove each of the following.

(a) Z
1

+ Z
2

= Y7

(b) z
1
z
2

= z
1
.z

2

z/

(d) (7=) [Hint: Show that
2 z

2

77r7 1
(c) z/ -

k, ) = and usez2 = z2
"2 z

2
[Hint: Show that 1-7F-27 -(z2)

and use (a).1
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6. For any z find the reflection of the point

z3 - (3 + 21)z2 + 5iz - 7 in the y-axis.

7. If z2
(E)2,

show that z is either real or pure

Imaginary.

8. Show that the product z/z2 is pure imaginary if and onlyz,
if is pure imaginary.

z
2

, , 1 1 1 2
9. Prove that 1z1 - z21

2
+ 1z1 + z21

2
= 21z11

2
+ 21z21 .

10 . Suppose z1 and z2 are complex numbers and that

z
1
+ z

2
and z

1
z
2

are real numbers. Show that

either

or

z
1

and z are real,
2

z
1

- z
2

11. Use the relation z 7 1z12 to show that

z
1

z
2

Izil
1Z21

12. Write the equation of the straight line y = 3x 4 2 as an

equation in z and z.

13. Show that if K / C is any complex number and C is any

real number, then kF + kF = C is the equation of a straight

line.

14. Show that the points z1 and z2 are symmetric with respect

to the line y x if and only if

(1 - i)z + (1 + 1)z
2

- C.

15. What Is the relation between the line segments joining

zi and z2 to the origin if the product z1z2 is real?



9. Polynomial Equations.

Linear and quadratic equations are special cases of polyno-
.

mial equations. A polynomial is an expression of the form

(9a) P(z) = aozn + alzn-1 + + a
n-2

z
2
+ a

n-1z + an

where n is a non-negative integer and al, a10 a2, an_1, an
are any given complex numbers, a

1
/ O. The non-negative integer

n is called the degree of the polynomial and the numbers ao, al,

a2, "" an are called its coefficients. A polynomialan-12
equation of degree n is an equation

(9b) P(z) = 0,

where P(z) is a polynomial of degree n. Linear equations are

polynomial equations of degree 1; quadratic equations are poly-

nomial equations of degree 2.

.Examples 21.

(a) 2zi - z2 + z - 2 = 0 is a polynomial equation of

degree 3 with rational coefficients.

(b) z5 -tffz3 + 7z2 - 3 = 0 is a polynomial equation of

degree 5 with real coefficients.

(c) z3 4- 3 - 0 is not a polynomial equation.

(d) 5z3 - (2 - i)z + (3 + 7i) = 0 is a polynomial equation

of degree 3 with complex coefficients.

1
z - 3 + 7 = 0 is not a polynomial equation, but

multiplying by z
2

we obtain the polynomial equation

z
3

- 3z
2
+ 1 = 0. Every solution of the first equation

111 a solution of the second, and every solution of the

second equation is a solution of the first.

Ordinary algebra is mostly concerned with the solution of

polynomial equations. Let us summarize some of the advantages

that the complex number system C has over the real number
system R in connection with polynomial equations.

There are certain quadratic equations whose coefficients are
in R but whiOh have no solutions in R; every such equation

has solutions in C. This was proved in Section 6 for the case

of real coefficients, but it is true even If the coefficients
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are complex numbers. For example, the equation

z
2
+ (1 - 5i)z - (12 + 5i) - 0

has the two solutions 2 + 31 and -3 + 210 a fact which may be

checked by substitution. Methods for finding such solutions are

beyond the scope of this pamphlet. The theorem that the solutions

of any quadratic equation with complex coefficients are complex

numbers is an unexpected and remarkable result. It shows us that

we will not have to extend the complex number system in order to

solve quadratic equations whose coefficients are in C. Recall

that R does not have this property; indeed it was just for this

reason that we extended R to C.

But the merits of C go far beyond this. Every polynomial

equation with coefficients in C has solutions in Cs and indeed

all the solutions that could be expected are in C. This result,

which is known as the Fundamental Theorem of Algebra, comes as an

enormous bonus, when we recall that to solve the simple equation

x
2

= -1 the new element i had to be invented. Conceivably,

one might expect to need a new number j to solve x = -1, for

example. This is not the case! This equation has four and only

four complex solutions, all of the form a + bi, where a and b

are real numb.i)rs. (See Exercises 9.)

The first proof of the Fundamental Theorem was given by Gauss

in 1799. Since then several other proofs have been developed and

although some are quite simple, none is simple enough to be pre-

sented here. We shall, however, make a precise statement of the

theorem in a form which is basic for the study of polynomials.

Theorem 9. Let

P(z)
1
Z
n

+ alzn-1 + + a
n-2

z
2

+ a
n-1

z + a
n

be a polynomial of degree n with complex coefficients. Then

there exist n complex numbers r1 r2, ...0 rn (not necessarily

distinct) such that

F(z) ao(z r1)(z - r2)...(z rn).

If one of the factors in the factorization of F(z) stated in

Theorem 9 is z - r, r is called a zero of P(z); if exactly

m of these factors are z r, r is called a zero of multi-

plicity m. A zero is called a simple zero if its multiplicity

is one; otherwise, it is called a multiple zero. Since the total
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number of factors in Theorem 9 is n, the sum of the multipli-

cities of the zeros of a polynomial of degree n is n. This

may also be stated: The number of zeros each counted with its

multiplicity, of a polynomial of degree n is n.

Since a product is 0 if and only if one of its factors is

it is clear that z is a solution of the polynomial equation

if and only if z equals one of the zeros of P(z). According to

Theorem 9 a polynomial of degree n > 0 has at least one zero

(exactly one if r1 = r2 = = rn) and may have as many as n

zeros (exactly n if no two of the numbers rl, r2, rn are

equal). It follows that every polynomial equation of degree

n > 0 has at least one complex solution, and may have as many as

n solutions, but has no more than n solutions.

Example 21. Discuss the possible number of solutions of a poly-

nomial equation of degree 3. Include examples.

Solution: The equation may have 10 20 or 3 solutions. If it

has one solution, this must be a triple zero (zero of multiplicity

3) of the polynomial. If it has two solutions, one must be a

simple zero, the other a double zero (zero of multiplicity 2) of

the polynomial. If it has three solutions, each must be a simple

zero of the polynomial.

An example of the first case is given by the polynomial

equation

z
3

- 3z
2
+ 3x - 1 - (z - 1) 3

- 0.

The only solution of the equation is z = 1. 1 is a triple zero

of the polynomial z
3

- 3z
2

i 3z 1.

The equation

3 2
z - z z 4. 1 - (z + 1)(z - 1)2 = 0

has the solutions 1, -1. -1 is a simple zero and 1 a double

zero.

The equation

53 +

has the solutions

- z(z - 1)(z + 1) = 0

-1. Each is a simple zero of z z.
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Let P(z) be a polynomial of degree ns

P(z) ao(z - r1)(z - r2 )...(z -

and define Q(z) by

Q(z) = ao(z - r2)...(z - rn).

Then Q(z) is a polynomial of degree n - 1 whose zeros are the
zeros of P(z), except possibly for rls and

P(z) = (z - ri)Q(z).

Now suppose we have to determine the zeros of P(z) and that we
have found one zeros rl. The remaining zeros will be the zeros
of Q(z) and to find Q(z) we have only to divide P(z) by
z r

12
since

P(z)
z - rl

This fact enables us to reduce the solution of a polynomial

equation of degree n to the solution of an equation of degree
n - I once we have determined one solution of the original equa-
tion. The following example illustrates this.

,Example 2E. Find all solutions of the equation z3 - 1 = O.

Solution: The solutions of the equation are the zeros of z
3

- 1.

One zero is obviously 1. We divide z
3

- 1 by z - 1:

z
2
+ z + 1

z - 1 f z3

3 2z z

z
2

2
z z

z - 1
0

The remaining solutions thus are the zeros of z
2
+ z + 11 that

iss the solutions of

z
2
+ z F 1 - O.

Solving this quadratic equation we get the roots + 1 y

1
Thus, the solutions of the given evations are 1
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In this example we observe that, as in the case of quadratic

equations, the camplex roots are conjugate. We can show that

whenever the coefficients of a polynomial equation are real the

complex solutions occur in conjugate pairs; tnat is, if z is

a solution of such an equation, 7. is also a solution. Let z

be a solution of

ao z
n
+ a1z

n-1
+ + a

n-1
z + an O.

Then we have a
to

z
n
+ a1z

n-1
+ + an-1

z + an
. 0

and using Theorem 70 repeatedly we get

z
-13(71n

1 /
co + + a

n-1
(7) + a

n
0.

Since the coefficients are real, ao = ao, al - a., ...,

an
= a

n
and we have

a
o
ci)n + a

1
(F)n-1 + + a + a

n
= 0

so that Is also a solution of the equation.

Exercises 9

1. IDEtermine the zeros and the multiplicity of each zero for

tne following polynomials,

(a) 5(z - 1)(z + 2)3

(b) z4(z + ?_02(z - 3)

(c) (z - 3 + 21)2(z + 1)5

2. Find the zeros of the following polynomials and state the

multiplicity of each zero.

(a) z
5 + z + 3z

3

(b) z + 2z2 + 1

(c) z3 + 3z2 + 3z + 1
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3. Write two polynomial equations whose only solutions are
1 and 2 such that:

(a) the two equations have the same degree;

(b) the two equations are of different degrees.

4. Discuss, with examples, the possible number of solutions

of an equation of degree 4.

5. Find all solutions of z
3

1 = 0.

6. Find all solutions of the following equations, given one
solution.

(a) 3z3 - 20z2 + 36z - 16 z . 4

(b) z3 - 4z2 + 6z - 4 0 z = 2

7. Find all solutions of the following equations, given two
solutions.

(a) z4 + 2z3 + z + 2 = 0 z = -10 -2

(b) z4 3z3 - 3z2 7z + 12 . 0

Find the polynomial whose zeros include 1 and -21 if:

(a) the polynomial has the lowest possible degree.

(b) the polynomial has real coefficients and has the

lowest possible degree.

(c) the polynomial has rea3. coefficients, the lowest

possible degree and -2i is a double zero.

9. Given that 3 +.i/Ti is a solution, find all solutions of

the equation

z
4

- 6z
3
+ 2z

2
+ 54z 99 = 0.

10. Given that 1 -4/75i is a solution, find all solutions of

the equation

z
4

- 2z
3
+ 4z

2
+ 4z - 12 = 0.

11. (a) Find a formula for the coefficients of the cubic poly-
nomial whose zeros are r

1,
r
2'

r
3

if the coefficient

of the highest power is 1.

*(b) Do the same for the quadratic polynomial.

*(c) Make a guess as to the form of a corresponding formula
for a polynomial of degree 7.
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10. Miscellaneous Exercises.

1. If z .., 2 - 3i, evaluate

-z, Izi, 1z12: 1z21, and
z

2. Write a quadratic equation having the solution c + di

and c - di, where c and d are real.

3. Is the set of numbers (1,-1,i,-i) closed with respect

to multiplication? Addition?

4. If z = x + yl, show that

x 1z1 and y 1z1.

5. Sketch the set of points z which satisfy each of

the following conditions.

(a jz - 21 - 3 (c) 1z - 211 < 4

(b) Iz + 21 > 3 (d) 1z - zol 5

6. Write an equation in x and y which is equivalent to

the equation 1z - (2 + 31)1 = 5.

Describe the set of points in an Argand diagram which

satisfy the given equation.

7. Give a geometrical interpretation for the following

relations.

(a) !zit < 1z21 (d) zi + == 0

(b) Izi = 5 (e) zi = 0

(c) z1 + z2 = 0

Find all complex numbers z such that (Real part of

z) - (Imaginary part of z), and 1z1 = 1.

9. Determine all quadratic equations with real coefficients

which have 3 + 2i as a solution.

10. Plot the point corresponding to 3 + Si in an Argand

diagram, then multiply the given number successively

by i, i
2

, and i
3

, and plot the three points which

correspond to the resulting products. Finally, show

that the three last named points together with the

given point form the vertices of a square.
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11. Show that if z
o is a solution of the equation

az2 + bz + c = 0, where a, b, c are real and
b2 - 4ac < 0, then zj; . land
Use the result to describe a geometric construction
for zo.

12. Find all quadratic equations with real coefficients
having solutions z1 and z2 such that zi + z2 = 1
and z1z2 = 4.

13. Find all complex numbers z for which the real part of
i
2

is 0. Show that if z belongs to this set, then
1

also belongs to the set.

14. For what real values of r does the equation

rx
2
+ (1 + r)x + 2 . 0

have non-real complex solutions? For what values of r
does it have only one solution?

15. Show by an example that a - bi need not be the com-
plex conjugate of a + bi.

16. Find the equation of the perpendicular bisector of the
line joining z1 and z2. [Hint: Use the fact that
the perpendicular bisector of a line segment is the set
of points equidistant from the endpoints.]

17. Let zo = xo + yo i. Describe the set of points
z = x + yi which satisfy

z -

the inequality

< 1.
z zo

18. Let z
1

and z
2 be distinct non-zero complex numbers.

Show that z and z
2 represent points in an Argand1

diagram lyingzon a straight line through the origin if
if is real.and only

19. Solve the equation z
4
- -1. (You may find it helpful

to refer to Exercises 6, Problems 22 and 23.)
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20. Show that it is impossible to satisfy all the order

postulates of Chapter 1 in the complex number system.

Consieher the element i. Certainly i / 0, so either

1. > 0 or i < 0 if the nTriehotomy" property is to

hold. Show that each of the assumptions i > 0, i < 0

leads to conclusions contradicting at least one of the

order postulates.

21. Find all complex numbers x, y with the property that

the conjugate of x + yi is x - yi.

*22. If z = x + yi, show that

Ix1 + jy1 <A17f IzI.

11. Construction of the Complex Number System.

In this chapter we have assumed that we have available a

number system (which we called the complex number system) satis-

fying certain imposed requirements (the four fundamental proper-

ties C-1, C-2, C-3, C-4). In a sense we have stated what a com-

plex number system ought to be. On the basis of the imposed

requirements we have learned h to compute in such a system.

It is a fundamental (but sophisticated) question whether

there actually exists a number system C fulfilling the require-

ments we set down in Section 1 and 2. We shall sketch the basic

steps for constructing such a system. Manyof the details will be

left to the reader.

Let us return to our earlier developments. Thel.e we learned

that the rule which associates with the complex number a + bi

the ordered pair of real numbers (a,b) sets up a one-to-one cor-

respondence between the set of complex numbers and the set of

ordered pairs of real numbers. This fact and the information which

we have obtained on how we are compelled to add and multiply in C

motivates the following proposal for constructing, on the basis

of the real number system, a number system which meets the require-

ments we imposed on C.
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Let K denote the set of ordered pairs of real numbers
(alb). These are the objects which we are to "add" and "multiply".
Let us say: (a,b) (cod) if and only if a . c and b = d.

It is necessary to define operations of addition and multi-
plication for K. The nacts we have deduced from the fundamental
properties of the complex number system lead us to believe that
the definitions which we shall put down are "reasonable" when we
keep in mind our mission of constructing a complex number system
with "real building blocks".

We define

Addition: (a,b) + (c,d) . (a + cl b + d).

Multiplication: (a,b).(c,d) (ac - bd, ad + bc).

Note that the operation of "addition" in K is defined in terms
of the ope:ation of addition in the real number system and that
the operation of "multiplication" in K is defined in terms of
addition, subtraction and multiplication in the real number system.
Note that our definitions assure closure of the operations
and of K: the "sum" of two ordered pairs of real numbers is
an ordered pair of real numbers, the "product" of two ordered
pairs of real numbers is an ordered pair of real numbers.

Two remarks ani in order. First, we must distinguish
"addition" and "multiplication" in K from addition and multipli-
cation in the real number system. Two two kinds of addition and
multiplication apply respectively to different kinds of objects.
That is why we use the exaggerated plus sign 4. and the exaggera-

. ted times sign for the operations of "addition" and "multipli-
cation" in K.

Second, we emphasize that 4. and are constructed from
what we learned about addition and multiplication in C keeping
in mind that our correspondence between a + bi and (a,b)

identifies "real part" with "first component" and "imaginary part"
with "second component". The spadework sets in at this stage. We
verify first that K with the addition + and multiplication
satisfies the usual laws of algebra. This verification depends

upon properties satisfied by the real number system. We easily
verify that (0,0) is the additive identity for K, that (1,0)
is the multiplicative identity for K, and that (-1,0) is the
additive inverse of the multiplicative identity.
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Explicitly, we have the following results:

(sob) 4. (0,0) = (a,b), (a,b) (1,0) = (a,b),

(1,0)4- (-1,0) = (0,0).

Verify these three statements.

Furthermore, (0,1) (0,1) - (-1,0).

Hence, K possesses an element whose square is the additive

inverse of the multiplicative identity. This sounds a bit heavy-

handed but tells us that we have grounds for optimism as far as

capturing something that will play the role of the all-important

1. Let us go so far as to deaote (0,1), by 1. We may write

(11a) (a,b) = (a,0) 4- (0,b) = (a,0) (1)20) (0,1)

= (a00) 4- (b,0) 1

Now if we restrict our attention to the special elements of

K whose second components are zero, we see that they behave under

+ and the same way that their first components do under the

+ and of the real number system. That is,

(11b) (a,0) (b0) - (a +

(11c) (a,0) (b,0) = (ab,0).

Verify the statements (11b ), (11c) and also the following two:

(a,0)+(-a,0) = (0,0);

(a,0) (-1- 0) = (1,0), a / Q.

We now define a notion of order among the special elements

of the form (a,0). (Remark: We could not define a notion cf

order in K, even if we wanted to, which would yield the expected

relation among the .pecial elements (a,0). This remark applies

to C also. If we had an order relation in C like that in R

we could expect the square of each non-zero element to be positive.

This would force 1
2 into the unacceptable position of being both

positive andnegative in the sense of the real number system.)

We define

"Less than": ((a,0) ( (b,0)) means (a < b).

It is now possible to show that the set of elements of the

form (a,0) together with the operation of addition 4., the

operation of multiplication , and the relations of inequality

44, satisfy the postulates for the real number system.
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Verify this assertion.

We are thus justified in taking this set of awkward appearing
elements (a20) with addition, multiplication and order so intro-
duced as our real number_system. With this understanding we verify
that K has all the properties imposed on C. Note that (-1,0)

is the additive inverse of the multiplicative identity of our

present real number system and that

(11d) i i (-1,0).

Thanks to the fact that the elements (a,0) may be taken as

the real numbers, Property C-2 is satisfied. By Formula (11d),

Property 0-3 is satisfied. Further, Formula (110) tells us that

Property C-4 is satisfied. There remains to be verified only

that 4. and are commutative and associative, that the dis-

tributive law holds in K, and that each element has an additive

inverse, in order to show that K has Property C-1.

The commutative and associative laws for 4111,b and are

readily verified as is the distributive law. As an illustration

we consider the distributive law:

arid

(a,b) [(c,d) + (e,f)]

= (a,b) (c + e,d + f)

(a(c + e) b(d + f), b(c + e) + a(d + f))

[(aob) (cod)] + [(a,b) (e,f)]

= (ac - bd. bc + ad) (ae - bf, af + be)

((ac - bd) + (ae - bf), (bc + ad) + (be + af))

(a(c + e) - b(d + f), b(c + e) + a(d + f)).

We see that the distributive law holds.

Additive inverse? Since

(a,b) + (-a,-b) = (0,0).

(-a0-b) is the additive inverse of (a,b).

It is now simple to verify that a non-zero element (a,b)

has a multiplicative inverse and hence that the equation

(a,b) (x,y) = (c1d), (a,b) / (0,0)

has a unique solution.



Given (a,b) / (0,0), we verify that

(a,b) ( a
-b )

a2 + b2 a
2 + b

(-a(

" +
a 0) (b

a`
-b 2) (.2 ":4:bb2) +

a + b
a 2))

a + b

. (1,0).

We now conclude that K together with 4- and satisfies

the conditions imposed on the complex number system.

At this stage it suffices to redesign our notation for the

real numbers in K and to designate the real numbers by the

letters a, b, c, to use the standard notations for the

additive unit and the multiplicative unit, and to write + and

for 4- and respectively. With these agreements each complex

number is of the form

a + bi,

where a and b are real, and i
2

-1.



APPENDIX

LIST OF BASIC PROPERTIES OF

THE REAL NUMBER SYSTEM

Taken from Chapter 1 of "Intermediate Mathematics" (MSG)

For arbitrary a, b, c in R:

(Dichotomy) Either a . b or a / b.-a

(Reflexivity) a = a.

(Symmetry) If a = b, then b = a.

E4 (Transitivity) If a - b and b = c, then a - c.

(Addition) If a = b, then a + c = b + c.5

(Multiplication) If a - b, then ac = bc.

A
1 (Closure) a + b is a real number.-

A2 (Commutativity) a + b = b + a.-

A. .(Associativity) a + (b + c) = (a + b) + c.- 3

A
- 4 (Additive Identity) 0 + a a + 0 = a.

A (Subtraction) For each pair a and b of real
numbers, there is exactly one real number c such
that a + c = b.

1
(Clouure) ab is a real number.-

2 (Commutativity) ab , ba.-

(Associativity) a(bc) (ab)c.

-4 (Multiplicative Identity) 1 -a = a -1 - a.

1115 (Division) For each pair a,b of real numbers,
b / 0, there is exactly one real number c such
that bc r, a.

(Distributivity) a(b c) ab ac.



O (Trichotomy) If a and b are real numbers,a
exactly one of the following holds:

a b, a < b, a > b.

O (Transitivity) If a < b, and b < c, then a < c.2
O (Addition) If a < b, then a + c < b + c.

04 (Multiplication) If a < b and 0 < c, then

ac < bc; but if a < b and c < 0, then bc < ac.

O (Archimedes) If a and b are positive real numbers5
and a < b, there is a positive integer n such that

na > b.

26 (Density) If a and b are real numbers, a / b,

then there is a real number c such that a < c < b

or b < c < a. Hence, between any pair of distinct

real numbers there are infinitely many real numbers.

(R) If (a0, a/s a2, ... an ...) and

0,
b
1,

b
2'

b
n

.) are two sequences of real

numbers with the properties

(i) ao al a2 an ...

(ii) 1)0 bl > b2 > > bn

(iii) an < bn, for every natural number n

(iv) bn - an <
1

for every natural number n
10

2

07

then there is one and only one real number c such

that a < c b , for every natural number n.
n n
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