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PREFACE

Mathematics is such a vast and rapidly expanding field of study that

there are inevitably many *portant and fascinating aspects of the subject

which, though within the grasp of secondary sdhool students, do not find a

place in the curriculum simply because of a ladk of time.

Mislay classes and individual students, however, may find time to pursue

mathematical topics of special interest to them. This series of pamphlets,

whose production is sponsored by the Sdhool Matematics Study Group, is

designed to make material for such study readily accessible in classroom

quantity.

Some of the pamphlets deal with material found in the regular curric-

ulum but in a more extensive or intensive manner or from a novel point of

view. Others deal with topics not usually found at all in the standard

curriculum. It is hoped that these pamphlets will find use in classrooms

in at least two ways. Some of the panphlets produced could be used to

extend the work done by a class with a regular textbook but otherr could

be used profitably when teachers want to experiment with a treatment of a

topic different from the treatment in the regular text of the class. In

all cases, the pamphlets are designed to promote the enjoyment of studying

mathematics.

Prepared under the supervision of the Panel on Supplementary Publications
of the School Mathematics Study Group:

Professor R. D. Anderson, Louisiana State University

Mr. M. rhilbrick Bridgess, Roxbury Latin School, Westwood, Massachusetts

Professor Jean M. Calloway, Kalamazoo College, Kalamazoo, Michigan

Mr. Ronald J. Clark, St. Paul's School, Concord, New Hamszhire

Professor Roy Dubisch, University of Washington, Seattle, Washington

Mr. Thomas J. Hill, Oklahoma City Public Schools, Oklahoma City, Okla.

Mr. Karl S. Kalman, Lincoln High School, Philadelphia, Pennsylvania

Professor Augusta L. Schurrer, Iowa State Teachers College, Cedar Falls

Mr. Henry W. Syer, Kent School, Kent, Connecticut



FUNCTIONS

This pamphlet is essentially Chapter l and Section 9

of Chapter 4 of the SMSG text, Elementary FUnctions. A few

minor changes have been made for clarity and to make the

material self contained. Some bacKground material on sets

and a section on functions as sets of ordered pairs have

been added.

It is intended for use as a unit in any course following

a course in plane geometry and one-and-a-half or two years

of algebra.

Tbe material contained herein is basic to an under-

standing of the trigonometry of real numbers and the calcu-

lus as well as many other parts of mathematics.
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FUNCTIONS

1. Sets.

One of the most natural and familiar ideas of human experience is that 6f

thinking about bind identifying a collection of objects by means of a single

word. Examples of such words are family, team, flock, herd, deck (of cards),

collection, and so forth. We shall use the word set when talking about such a

collection, and we shall restrict ourselvea to sets that are clearly enough

defined so that there is no possible ambiguity about their members. In other

words, a set is a collection of objects, described in such a way that there is

no doubt as to whether a particular object does or does not belong to the set.

Az an illustration, think of the collection of books, pencils, tablets,

etc., that is in your desk. You eau easily tell whether or not a particular

object belongs to this sett if an oL,]ect is in your desk, then it is a member,

or element, of thia set; if an object is not in your desk, then it'io not an

elemeat of this set. It is important to understand that it does not matter

what objects are in your desk; to be an element of this particular set, the

only requirement in that an object iJe in your desk and not somewhere else.

We have at our disposal two methods for describing a set: (1) the tabula-

tion method, in which we list or tabulate every element of a set, and (2) the

rule method, in which we describe the elements of a set by some verbal or

symbolic statement without actually listing the element:7.. This latter method

was used in the preceding paragraph when we defined a set by specifyin6 that it

contained ull the ob,:leotl: in your desk. Other illustrations or the rule method

definine u set are the following: the set of all toys and girls wlo attend

your school tho .7et of people who live in your home, the zet of books in your

school library, or the :'et of colors your mother is going: to use in redecora-

ting her kitchen.

Although the ruk! method for def,,..ng a set will be used predomim,antly,

there are cases in whiyh the only feazihle way to define a set in by actually

tabulating its elements. This may be because the elements of a set are not

required to have anything in common except membership in the set. It trJe

that most, if not all, of the sett.; we shall be talking ai.out will consiLt of

things which are naturally assembled together, as, for example, the set of

whole numbers. Nonetheless, a set may consist of things which have re olvious

relation except that they happen to be grouped together, :ust as the set of

objects which a nine-year-old boy calls his "treasure" T,ay consis, of a

an Indian-head pl-n!*, a ball made of packed tinfoil, a ,2,_,Iection of matH1



books, a dried grasshopper, a pocket knife, and a pack of baseball cards. Per-

haps such an example will help to clarify the idea that a set is a collection

of things, not necessarily alike in any other respect, and that membership in

the set is to be emphasized.

The notation which is customarily used when defining a set, whether by the

tabulation method or the rule method, will be illustrated by another example.

Consider the question: What is the set of all coins in your pocket at this

moment? (The answer in this case might be the set with no elementsthe empty

sets) Suppose that you have three pennies, two nickels, a dime, and a quarter

in your pocket, the pennies end nickels being distinguished by different dates.

The set called for by the rule is the collection of these seven coins and no

others. Using the tabulation method, we symbolize this by writing:

S (1915 penny, 1937 penny, 1959 penny, 1942 nickel,

1950 nickel, dime, quarter).

Capital S is the name for the set, and the names of the elements of the set

are enclosed in the braces. The order in which the elements are listed within

the braces does not matter. Alternatively, we may denote this same set by

enclosing the rule in braces:

S (*: is a coin in your pocket).

This is read, "S is the set of all such that * is a coin in your pocket."

The colon following the first * is a symbol for the phrase "such that", and

the symbol * stands for any unspecified element of the set. We could just as

well have used c, or x, or *0 so that S = (c: c is a coin in your pocket)

is still the set of coins in your pocket. The symbolism (*: ...) is

often called the "set-builder" notation.

In summary, we have illustrated two alternative ways for defining any

particular set: (1) the tabulation method, and (2) the rule or set-builder

method. As emphasized earlier, each of these methods has the essential charac-

teristic that every object may be classified as either belonging to the set or

not belonging to the set. In same cases either method can be used, as we did

in describing the set of coins in your pocket. In other situations only one of

the two methods may be practical.

To indicate membership in a set we use the Greek letter E (epsilon).

Thus, if a is an element of the set A, we write a A. (This may be read,

"a is an element of the set A," or "a is a member of the set A," or "a

belongs to the set A," etc.) Likewise, we may wish to indicate that b iu

not an element of A. In this case we use epsilon with a diagonal line drawn

through it, indicating negation, and write b A.

2



At this point it may be helpfUl to review the ideas and symbolism of set think-

ing by means of examples of sets whose elements axe numerical. Both the rule

method and the tabulation method will be used in defining the sets.

D (d: d is an integer and 0 < d < 9)

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9).

(e: e is an even integer and e D)

. (00 2, 4, 6, 8).

M bst: m is a positive integral multiple of 3 and m < 20)

= (3, 6, 9, 12, 15, 18).

5 is an element of the set D: 5 E D.

5 is not an element of the set E: 5 E.

P (x: x is a positive integer)

= (1, 2, 31 4, 5, ). The dots here signify that we do not stop

at 5 but keep on going indefinitely. A set such az this with

an unlimited number of elements is called an infinite set,

whereas sets D, E0 and M, above, are finite sets.

2 is an element of the set P: 2 P.

z- is ot an element of the set P: j P.
3

Exercises 1

1. Use both the tabulation metbod and the rule method to specify the follow-

ing sets:

(a) the vowels;

(b) the prime numbers less than 20;

(c) the people who live in your house;

(d) the odd multiples of three which are equal to or less than 21;

(e) the two-digit numbers, the sum of whose digits is 8.

2. Represent the following sets by the rule method and tell why the tabula-

tion method may be difficult or impossible:

(a) the set of students in your school;

(b) the integers greater than 7;

(c) the people in your community who found a ten-dollar bill yesterday;

(d) the books in your school library;

(e) the rational numbers between 2 and 3.

3. Find a rule which will define the sets whose element are tabulated in

each of the following:

(a) A (2, 4, 6, 8, 10);

(b) B (-3, -2, -1, 0 1, 2) 3);

3



(c)

(d)

(e)

C = (1, 4,

D = (2, 5,

E = (123,

9,

8,

132,

16, 25);

11, 14, 17);

223, 231, 312, 321).

2. Definition of Function.

One of the most usefUl and universal concepts in mathematics is that of a

function, and this pamphlet, as its title indicates, will be devoted to the

study of functions.

We frequently hear people say, "One function of the Police Department is

to prevent crime," or "Several of my friends attended a social ftnction last

night," or "My automobile failed to function when I tried to use it." In

mathematics we use the word "fUnction" somewhat differently than we do in

ordinary conversation; as you have probably learned in your previous study, we

use it ta denote a certain kind of association or correspondence between the

memLers of two sets.

We find examples of such association on every side. For instance, we note

such an association between the number of feet a moving object travels and the

difference in clock readings at two separate points in its journey; between the

length of a steel beam and ite temperature; between the price of eggs and the

cost of taaking a cake. Additional examples of such associations occur in

geometry, where, for instance, we have the urea or the circumference of a

circle associated with the length of its radius.

In ail of these examples, regardless of their nature, there seems to be

the natural idea of a direct connection of the elements of one set to those of

another; the set cf distances to the set of times, the set of lengths to the

set of thermometer readings, etc. It seems natural, therefore, to abstract

from these vs '4,us cases this idea of association or correspondence and examine

it more closely.

Let us start with Lame very simple examples. Suppose we taRe the numbers

1, 2, 3, and 4, and with each of them associate the number twice as large:

with 1 we associate la with 2 we associate 4, with 3 we associate 6,

and with 4 we associate 8. An association such az this is called a ftsiction.,

and the set (1, 2, 3, 4) with which we started is called the domain of the

fUnction. We can represent this association more briefly if we use arrows

instead of words: 1-a 2, 2-4. 4, 3 $.6, 4 -.4. 8. There are, of course, many

other functions with the same domain; for example, 1-* ;7, i'-* 1, 3 * 2, 4 -4. 5.

It happens that these two examples deal with numbers, but there are many

functions which do not. A map, for instance, associates each point on some bit



of terrain with a point on a piece of paper; in this case, the domain of the

function is a geographical region. We can, indeed, generalize this last ex-

ample, and think of any function as a mapping; thus, our first two examples map

numbers into numbers, and our third maps points into points.

What are the essential features of each of these examples? First, we are

given a set, the domain. Second, we are given a rule of some kind which asso-

ciates an object of some sort with each element of the domain, and, third, we

are given some idea of where to find this associated object. Thus, in the

first example above, we know that if we start with a set of real numbers, and

double each, the place to look for the result is in the set of all real numbers.

To take still another example, if the domain of a function is the set of all

real numbers, and the rule is "take the square root", then the set in which we

must look for the result is the set of complex numbers. We summarize this

discussion in the following definition:

Definition 1. If with each element of a Get A there is associated in

some way exactly one element of a set B, then this association is called a

function from A to B.

It is common practice to represent a function by the letter f (other

letters such as e and h will also be used). If x is an element of the

domain Of a function f, then the object which f associates with x is

denoted f(x) (read "the value of f at x" or simply "f ,at x" or "f of

x"); f(x) is called the ,image of x. Using the arrow notation of our exam-

ples, we can represent this symbolically by

f: x e

(read "f takes x into f(x)"). This notation tells us nothing about the

function f or the element x; it is merely a restatement of what f(x) means.

The set A mentioned in Definition I is, as has been stated, the domain

of the function. The set of all objects onto which the function maps tl.e ele-

ment of A is called the range of the function; in set notation,

range of f = (f(x): x 1 A).

The range may be the entire set B mentioned in the definition, or may 12e only

a part thereof, but in either case it is included in B.

It is often helpful to illustrate a fUnction as a mapping, zhowing the

elements of the domain and the range as points and the ft;nction us a set of

arrows from the points that represent elements oV the aumain to the points that

represent elements of the range, an in Figure 1. Note that, an a consequence

of Definition 1, to each element of the domain there corresponds one and only

5 11



one element of the range.

Figure 1. A function as a mapping.

If this condition is not met, as in Figure 21 then the mapping pictured is not

a fUnction. In terms of tne pictures, a mappigg is not a function if two

arrows start from one point; whether two axrows go to the same point, as in

Figure 1, is immaterial in the definition. This requirement, that each element

of the domain bz mapped into one and only one element of the range, may seem

arbitrary, but it turns out, in practice, to be extremely convenient.

A

Figure 2. This mapping is not a function.

In this pamphlet, we axe primarily concerned with functions whose domain

and range art sets of real numbers, and we shall therefore assume, unless we

make explicit exception, that all of our fUnctions are of this nature. It :is

therefore convenient to represent the domain by a set of points on a number

line and the range as a set of points on another number line, as in Figure 3.

6
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Figure 3. A fUnction mapping
real numbers into real numbers.

04

More specifically, consider thc f.nction f, discussed earlier, which

takes each element of the set (1, 2, 3, 4) into the number twice as great.

The range of this function is (2, 4, 6, 8) and f maps its domain onto its

range as shown in Figure 4. We note that, in this case, the image of the

element x of the domain of f is the element 2x; hence we may write, in

this instance, f(x) g. 2x, and f is completely specified by the notation

f: x-* 2x, x - 1, 21 3, 4.

Figure 4. f: x -* 2x, x 1, 2, 3, 4.

In this.case, the way in which f maps its domain onto its range is

completely specified by the formula f(x) 2x. Most of the ftnctions which

we shall consider can similarly be described by appropriate formulas. If, for

example, f is the fUnction that takes each number into its square, then it

taker 2 into 4 (that is, f(2) 4), it takes -3 into 9 (that is,

f(-3) 2gm 9), and, in general, it takes any real number x into x. Hence, for

7

13



this function, f(x) = x , and we may write f: x--Px
2

. The formula

f(x) = x2 defines this function f, and to find the image of any element of

the domain, we can merely substitute in thi. formula; thus, if a - 3 is a.

real number, then f(a - 3) - (a - 3)2 a2 - 6a + 9. Similarly, if we know

that a function f has f(x) - 2x - 3 for al] x E R (we use IR to repre-

sent the zet of real numbers), then we can represent f in our mapping nota-

tion as f: x-0 2x - 3, and to find the image of any real number we need only

substitute it for x in the expression 2x - 3; thus 1(5) - 2(5) 3 , 7,

f(1/7) ol5 - 3, and if k + 2 is a real number, then

f(ic + 2) = 2(k + 2) - 3 , 2k + 1.

Strictly speaking, a function in not completely described unless its

domain is specified. In dealing with a formula, however, it is a common and

convenient practice to assume, if nc other information is given, that the

domain includes all real numbers that yield real numbers when substituted in

the formula. l'or example, ii' nothing fUrther in said,.in the function

f: x-*
1
, the damain is assumed to be the set of all real numbers except 0;

1
this exception is made because is not a real number. Similarly, if f in0

funetion w.,:h that f(x) 11 - x
2
, we assume, in the absence of any other

information, that the domain is (x: < x < 1), that is, the set of all real

numbers from -1 to +1 inclusive, since only these real numbers will give

us real square roots in the expression for f(x). When a function in used to

describe a physical situation, the domain is understod to include only those

numbern that are physically realistic. Thus, if we arc describing the volume

of a balloon in terms of the leneth of its radius, f: rP V, the domain would

include only positive numbers.

A humorist once (efined mathematics as "a set of stataJents about the

twenty-fourth letter of the alphabet". We may not agree about just how funny

this statement is, but we must agree that it containn an element of the truth:

we do make x work very hard. It is important to recognize that this arises

ouu of custom, not necessity, and that any other letter or symbol would do just

aa well. The notations f: x-- x , f: h-0 h
2

, f: t* t
2

, and even

f: if 01f all describe exactly the same fUnction, subject to our agreement

that x, n, t, or stands for any real number.

'Another way of looking at a function, which may help you to understand

this section, is to think of it as a machine that processes elements of its

domain to produce elements of its range. The machine has an input and an

output; if :in element x of its domain is fed on a tape into the machine, the

element f(x) of the ranee will appear as the output, as Indicated in Fie,ure .

8
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Flgure 5. A representation of a function as a machine.

A machine can only be set to perform a predetermined task. It cannot

exercise judgment, make decisions, or modify its instructions. A function

machine f must be szt so that any particular input x always results in the

same output f(x); if the element x is not in the domain of f, the machine

will jam or refuse to perform. Same machinesnotably computing machines--

actually do work in almost exactly this way.

Exercises 2

1. Which of the following do not describe functions, when x,y c R?

C.

(a) f: 3x - 14-

(b) f: x-- x3

(c) f: x-goy x2

(d) f: x.--0 all y < x

(e) f: -"
(f) f: x.-+ 16 x2

Depict the mappinE of a few elements of the domain into elements of the

range for each of the Exercises 1(a) and (c) above, us was done in

Figure 4.

3. Specify the domain and range of the following functions, where x,f(x) E R.

(a) f: x x

(b) f: x.-4. x2

(c) f: x-0 47

4. If f: x-4. 2x 4. 1, find

(a) f(0);

(1:) f(.-1);

(d) f:
- 1

(e) f:

-

(o) f(100);

(d) r(i).

9



5. Given the fUnction f: x--6 x
2

- 2x + 3, find

(a) f(0); (c) f(a);

(b) f(-1); (d) f(x - 1).

6. If f(x) - 16, find

(a) 1'00; (c) r(5); (e) f(a 1);

(b) f(-5); (d) f(a); (f) f(n).

4 3 2
7. If f: x--0--x - 12x

2
+ x - 20 has the domain (1, 2, 3, 4),

3 3

(a) find the image of f, and (b) depict f as in Figure 4.

8. If x E R, given the fUnctions

f: xPx
and

x
2

g: --+

are f and g the same fUnction? Why or why not?

9. What number or numbers have the image 16 under the following functions?

(a) f: x-6 x2

(b) f: x--0 2x

(c) f: x ix, + 112

3. The Graph of a Function.

A graph is a set of points. If the set consists of all points whose

coordinates (x,y) satisfy an equation in x and y, then the set is said to

be the graph of that equation. If there is a function f such that, for each

point (x,y) of the graph, and for no other points, we have y f(x)) then we

say that the graph is the graph of the function f. The graph is perhaps the

most intuitively illuminating representation of a function; it conveys at a

glance much important information about the function. The function x--4.x
2

(when there is no danger of confusion, we sometimes amit the name of a ftncticn,

as f in f: x
2
) has the parabolic graph shown in Figure 6. We can look

at the parabola and get a clear intuitive idea of what the function is doing

to the elements of its domain. We can, moreover, usually infer from the graph

any limitations on the domain and the range. Thus, it is clear from Figure 6

that the range of the function there graphed includes only non-negative numbers,

and in the function f: x-0.1125 - x2 graphed in Figure 7, the domain

(x: -5 < x < 5) and range (y: 0 < y < 5) are easily determined, as shown

by the heavy segments on the x-axis and y-axis, respectively.

10



Figure 6. Graph of the function f: x--. x2.

Figure y. Graph of the function f: x /25 - x2.

Another illustration: the function

f x 2 < x < 6

has domain A = (x: 2 < x < 6) and range B = (f(x): 1 < f(x) < 3). In this

case we have used open dots at 2 on the x-axis and at 1 on the y-axis to

indicate that these numbers are not elements of the domain and range, reopec-

tively. See Figure 8.

Figure 8. Graph of the function f: x

11
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As might be expected, not 'ery possible graph is the graph of a fUnction.

In particular, Definition 1 requires that a ftnction map each element of its

domain into ally one element of its range. In the language of graphs, thi.;

says that only one value of y can correspond to any value of x. If, for

example, we look at the graph of the equation x
2
+ y

2
25, shown in Figure 9,

we can

5

Figure 9. Graph of the set S ((x,Y): x2 Y2 7;4 25).

see that there are many instances in which one value of x is associated with

two values of y, contrary to the definition of function. To give a specific

example, if x 30 we have.y si 4 or y -4; each of the points (314) and

(3,-4) is on the graph. Hence this is not the graph of a fUnction. We can,

however, break it into two pieces, the graph of y = 45 - x2 and the graph of

y -125 - )e- (this makes the points (-5,0) and (5,0) do double duty),

each of which is the graph of a function. See Figures 10 and 11.

Figure 10.

Graph of y

3.2

(0,-5)

Figure 11.

Graph of y -1/25 - x`7

8



If, in the xy-plane, we imagine all possible lines which are parallel to'

the y-axis, and if any of these lines cuts the graph in more than one point,

then the graph defines a relation that is not a fUnction. Thus, in Figure 12,

(a) depicts a function, (b) depicts a func'ion, but (c) does not depict a

function.

(a) (b)

Figure 12. Function or not?

EXercises

1. Which of the following graphs

(a)

0--41
(c)

X

0.

could represent functions?

(b)

(d)

2. Suppose that in (a) above, f: f(x) is the function whose graph is

depicted. Sketch

(a) g: x- -f(x); (b) g: x--f(-x)

131.9



3. Graph the following functions:

(a) f:

(b) f: ;

(c) f: xey 4 x and x and y are positive integers;

(d) f: -1177,

4. Graph the following functions and indicate the domain and range of each by

heavy lines on the x-axis and y-axis, respectively:

(a) f: xey x and 2 < y < 3;

(b) f: x-06 - x';

(c) f: xoiti and x < 4.

4 Constant Functions and Linear Functions.

We huve introduced the general idea of function, which is a particular

kind of an association of elements of one set with elements of another. We

have also Interpreted this idea graphically fur functions which map real num-

bers into real numbers. In Sections 2 and 3 our attention was concentrated on

general ideas, and examples were introduced only for the purposes of illustra-

tion. In the present section we reverse this emphasis and study some particu-

lar functions that are important in their owm right. We begin with the sim-

plest of these, namely, the constant functions and the linear functions.

Let us, think of a man walking north alone a long, straight road at the

uniform nate of 2 miles per hour. At some particular time, say time t 0,

this man passed the milepost located one mile north of Baseline Road. An hour

before this, which we shall call time t = -1, he passed the milepost located

one mile south of Baseline Road. An hour after time t 0, at time t 1, he

passed the milepost located three miler, north of Baseline Road. In order to

form a eonvenient mathematical picture of the man's progress, let us consider

miles north of Baseline Road as positive and ml les south as negative. Thus the

mall passed milespost -1. at time t -1, milepost 1 at time t 0, and

milepost 3 at time t - 1. Using an ordinary set of coordinate axes let us

plot his position, as indicated by the mileposts, versus time in hours. This

gives us the graph shown in Figure 13.
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Figure 13. Graph of the function f: t d = at + 1.

In t hours the man travels 2t miles. Since he is already at milepost

1 at time t 0, he must be at milepost 2t + 1 at time t. Thi- pairing of

numbers is an example of a linear function.

Now let us plot the man's speed versus time. For all values of t during

the time he is walking, his speed is 2 miles per hour. We have graphed this

information in Figure 14.

Speed

2

1

:t dti Time

Figure 14. Graph of the function g: tPs - 2.

When t -1 his speed is 2; when t = 0 his speed is 2, etc.; with each

number t we associate the number 2. This mapping, in which the raage con-

tains only the one number 2, is an example of a constant function.

Definition 2. If with each real number x we associate one fixed number

el then the resultant mapping,

f: xc,

is called a constant function.

The discussion of constant fUnctions can be disposed of in a few lines.

The function we just mentioned, for example, is the constant function

g: tP 2. The graph of any constant function is a line parallel to the hori-

zontal x-axis. Constant fUnctions are very simple, but they occur over and
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over again in mathematics and science and axe really quite important. A well-

known example from physics is the magnitude of the attraction of gravity, which

is usually taken to be constant over the surface of the eaxth--though, in this

age, we must recognize the fact that the attraction of gravity varies greatly

throughout space.

The functions we examine next also occur over and over again in mathemat-

ics and science and axe considerably more interesting than the constant fUnc-

tions. These are the linear functions. Since you have worked with these

fUnctions before, we can begin at once with a formal definition.

Definition 1. A function f defined on the set of all real numbers is

called a linear function if there exist real numbers m and b, with m / 0,

such that

f(x) = mx + b.

Example 1. The function f: x--o. 2x + 1 is a linear function. Here

f(0) 1, f(1) 3, f(-1) 3' -1. This function was described earlier in this

section in terms of t, with f(t) 2t + 1. Its graph can be found in Figure

13.

We note that the graph in Figure 13 appears to be a straight line. Az a

matter of fact, the graphs of all linear fUnctions are straight lines (that is

why we call them "linear" functions); you may be familiar with a proof of this

theorem from an earlier study of graphs. In any case, we here assume it.

An important property of any straight line segment is its slope, defined

us follows:

Definition 4. The slope of the line segment fram the point P(x1 to

the point Q(x2,y2) is the number

Y2 Y
1

x2 - xl

provided xl / x2. If xi = x2, the slope is not defined.

Note that, by Definition 4, the slope of the line segment from the point

Q(x
2
,y

2
) to the point P(x

1 1
) is

But

Y1 - Y2
-xl x2

Yl - Y2 Y2 - Yl

- - xxl x2 x2

so that it is immaterial which of the two points P or Q we take first.
Yi

Accordingly, we can speak of ` as the slope of the segment joiniag the
x2 - xl

two points, without specifying which comes first.
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What about the geometric meaning of the slope of a segment? Suppose, for

the sake of definiteness, we consider the segment joining P(1,2) and Q(318).
8 - 2

Ay our definition, the elope of this segment is 3, since Try . 3 (or
2 - 8

3/. Note that this is the vertical distance from P to divided by
1 - 3
the horizontal distance fram P to Q, or, in more vivid language, the rise

divided by the run.

Figure 15.

Let us think of the segment PQ as running from left to right, so that the run

is positive. If the segment rises, then the "rise" is positive and the slope,

or ratio of rise to run, is positive; if, on the other hand, the segment falls,

then the "rise" is negative, and the slope ia therefore negative. The steeper

the segment, the larger is the absolute value of its slope, and conversely;

thus we can use the slope as a numerical measure of the "steepness" of a

segment.

We have stated that slope is not defined if xl = x2; in this case, the

segment lies on a line parallel to the y-axis. It is important to distingUish

this situation from the case yl = y2 (and xl i x2), in which a slope is

defined and in fact has value 0; the segment is then on a line parallel to the

If a line is the graph of a linear function f: xemx + b, then for any

xl and x2, xl x2, the slope of the segment joining (x1 f and

(x
2,

f is, by definition,

f(x2) f(x,) (mx2 + b) - (mx1 + b)
m;

x2
x x x
1 2 1

in other words, the slope m is independent of the choice of xl and x
2'

and is therefore the same for every segment of the line. Hence we may consider

the slope to be a property of the line az a whole, rather than of a particular

segment. We shall also simplify our language a little and spea), of the slope

17
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of the graph of a function as, simply, the slope of the function. We see,

moreover, that we can read the slope of a linear function directly from the

expression which defines the function: the slope of f: x-+mx + b is simply

m, the coefficient of x. Thus, the slope of the linear function f: x 2x+1
is 2, the coefficient of x, and, similarly, the slope of g: x--0 -5x is -5.

Since the slope of a linear function f: + b is the number m ??

it follows that the graph of a linear function is not parallel to the x-axis.

Conversely, it can be proved that any line not parallel to either axis is the

graph of some linear fUnction. We assume that this, also, is known to you from

previous work, and the proof is therefore omitted.

If the graphs of the functions fl: x + 1)1 and 12 x--0m2x + b
2

seet, there must be a value of x which satisfies the equation f1(x) 1' 2(x),

that is

mlx + bl m2x + b,D)

or

(ml 1112)x b2 131'

b
2

- b
1If m / m then the value x satisfies this equation, and the

-mi m2

lines do indeed meet. If ml - m2 and b
1

= b2, the functions f
1

and f
2

are the same, and there is only one line. If m
1

= m
2

and b
1

b
2'

the

equation has no solution, and the lines do not meet. We conclude that lines

with the same slope are parallel, and that two lines parallel to each other but

not to the y-axis have equal slopes.

Note that lines having zero slope, that is, lines parallel to the x-axis,

are graphs of constant functions. On the other hand, lines for which no slope

is defined, that fs, lines parallel to the y-axis, cannot be graphs of any

functions because, with one value of x, the graph associates more than one

value--in fact, all real values.

Example 2. Find the linear function g whose graph passes through the

point with coordinates (-2,1) and is parallel to the graph of the function

f: - 5.

Solution. The graph of f is a line with slope 3. Hence the slope of

g is the number 3, so that g(x) = 3x + b, for some as yet unknown b.

Since g(-2) = 1, this implies that 1 = 3(-2) + b, b 7, and thus

g(x) = 3x + 7 for all x R.
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Exercises 4

1. Find the slope of the function f if; for all real numbers x;

(a) f(x) = 3x - 7; (e) 2f(x) 3 x;

(b) f(x) 6 - 2x; (d) 3f(x) = 4x - 2.

2. Find a linear function f whose slope is -2 and such that

(a) f(1) =

(b) f(0) -7;

(c) f(3) , 1;

(d) f(6) . -3.

3. Find the slope of the linear function f if f(1) = -3 and

(a) f(0) = 4;

(b) f(2) 3;

(c) f(5) - 5;

(d) f(6) - -13.

4. Find a function whose graph is the line joining the points

(a) P(1,1), Q(2,4); (c) P(1,3), Q(1,8);

(b) P(-7,4), Q(-5,0); (d) P(1,4), Q(-2,4).

5. Given f: x -0( 4, find a function whose graph is parallel to the

graph of f and passes through the point

(a) P(1,4); (c) P(1,5);

(b) r(-2,3); (d) P(-3,-4).

6. If f is a constant function, find f(3) if

(a) f(1) 5; (b) f(8) = -3; (c) f(0) . 4.

7. Do the points P(1,3), Q(3,-1), and S(7,-9) all lie on a single line?

Prove your assertion.

8. The graph of a linear function f passes through the points F(100,25)

and Q(101,39). Find

(a) f(100.1); (c) f(101.7);

(h) f(100.3); (d) f(99.7).

9. The graph of a linear function f passes through the points r(53,25)

and Q(54,-19). Find

(a) f(53.3); (e) f(54.4);

(b) f(53.8); (d) f(52.6).

10. Find a linear function with graph parallel to the line with equation

x - 3y + 4 . 0 and passing through the point of intersection of the

lines with equations 2x + 7y + 1 - 0 and x + 8 ----. 0.

11. Given the points A(1,2), $(5,3), C(7,0), and D(3,-1), prove that ABCD

is a parallelogram.
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12. Find the coordinates of the vertex C of the parallelogram ABCD if AC

is a diagonal and the other verciees are the points:

(a) A(1,-1), 2(3,4), D(2,3); (b) 44(0,5), 23(1,-7), D(4,1).

13. If t is a real number, show that the point F(t + 1, 2t + 1) is on the

graph of f: x-* 2x - 1.

14. If you graph the set of all ordered pairs of the form (t - 1 s3t + 1)

for t R, you will obtain the graph of a linear !Unction f. Find f(0)

and /(8).

15. If you graph the set of all ordered pairs of the form (t - 1 st2 + 1)

for t E R, you will obtain the graph of a fUnction f. Find f(0) and

r( 8).

16. If the slope of a linear function f is negative, prove that

f(x1) > f(x2) for xi < x2.

5. The Absolute-Value rUnction.

A function of importance in many branches of mathematics is the dbsolute-

valae function, f: x-* 13(1 for all x H. The absolute value of a number

describes the size, or magnitude, of the nuMber; thus, for example,

121 v. I-2 2 (read 121 as "the absolute value of 2"). A common defini-

tion of 1x1 is the following:

Definition 2.

if x 0

1x1

-x, if x < 0.

A consequence of this definition is that no number has a negative abso-

lute value (-x is positive when x is negative ), in fact, the range of the

absolute-value function is the entire set of non-negative real numbers.

A very convenient alternative definition of absolute value is the follow-

ing:

Definition 6. lx) .

Since we shall make use of this definition in what follows, it is impor-

tant that you understand it, and you must therefore be quite sure of the mean-

ing of the square-root symbol, V--. This never indicates a negative number.

Thus, for example, A-3)-2 x 17? = 3, not -3; is nev negative. It is

true that every positive number has two real square roots, ke of them positive

and the other negative, but the symbol 1 has been assigned the job of

representing the positive root only, and if we wish to represent the negative

root, we must use a negative sign before the radical. Thus, for example, the

20
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number 5 him two square roots, 415 and 45

The graph of the absolute-value function is shown in Figure 16.

Figure 16. Graph of the fUnction f: x xl

You should be able to see, from the first definition of this function given

above, that this graph consists of the origin, the part of the line y = x

that lies in Quadrant 1, and the part of the line y -x that lies in Quad-

rant 11.

There are two important theorems about absolute values.

Theorem 1. For any two real numbers a and b, labi la! - 1bl.

Proof. Ial Ibl )172.),P 4767 = Aab)2 = labl.

Theorem 2. For any two real numbers a and b, la + < lal + Ibl.

Proof. By Definition 6, Theorem 2 is equivalent to

< + 17. (1)

Now, if x and y are two non-negative numbers (i.e., positive or zero)

such that x < ys then x
2
< y

2
. For, if x < y, we know that there is a non-

negative nudber, h, such that x + h y. Then x
2
+ 2hx + h

2
= y

2
where

2hx + h
2

is a non-negative number. Hence x
2
< y

2
. On the other hand, if

2
< .y

2 2 2 2 2
, it follows that x < y. FOr, if x < y we have 0 < y - xx =

(y + x)(y - x) and, since x and y are non-negative, so is y + x. In

fact, y + x is positive unless x y 0 and, if y + x isTositive,

y - cannot be negative since the product of a positive number and a negative

number is a negative number. Thus either x = y = 0 or y x > 0 so that

x < y. In either case we have x < y.

From these remarks and the fact that 42 + b2, 471 and 47 are all

non-negative nuMbers, it follows that (1) holds if and only if

(a b)2 a2
2ab + b2 < a2 4 2 I:7 + b2. (2)
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But (2) is certainly equivalent to

so that we conclude that (1) holds if and only if

ab<Ya 47 ( 3 )

Now, inequality (3) is easy to prove. If one of a and b is negative

and the other positive, then ab < 0 and 4:7 > 0 so that (3) holds with

the < sign. Otherwise

ab 45 4;5

Hence, in any case (3) holds and therefore (1) holds.

Thus, for example, 1( -2)(3)1 1-61 2. 6 2 .3 . 21 131,

+ (3)1 1 < 5 . 2 + 3 = 1-21 + 131, and

+ (-3)1 = 5 = 2 + 3 1- 1 + 1-31.

1.

2.

Exercises 2

(a) For what x e R is it true that 47 x?

(b) For What x c R iS it true that 47 - -x?

(a) For what x E R is it true that lx - 11 = x - 1 ?

(b) .i.br what x E B is it true that lx - 11 =- -x + 1

(c) Sketch a graph of f: x-* lx - 11.

(d) Sketch a graph of f: x-* lx1 - 1.

3. Solve:

(a) lx1 = 14; (b) Ix + 21 - 7; (c) lx - 31 - -1.

4. For what values of x is it true that

(a) Ix - 21 < 1 ; (d) 12 - 31 < 0.04 ;

(b) lx - 51 > 2 ; (e) 14x + 51 < 0.127

(c) ix 41 < 0.2;

5. Show that x2 > x. lx1 for all X E R.

6. Show that la - < lal 1b1.

7.
1

Show that -75(a + b + 1a - b1) is equal to the greater of a and b

Can you write a similar expression for the lesser of a and b?

8. Sketch: y lx1 + Ix - 21. (Hint: You must consider, separately, the

three possibilities x < 0, 0 < x < 2, and x 2.)

9. If 0 < x < 1, we can multiply both sides of the inequality x < 1 ly the

positive number x to obtain x
2
< x, and we can similarly show that

4
X <.x,x ,..x, and so on. Use this result to show that if lx1 < 1,

then ix
2

+ 2x1 < 31x1.

22 r)
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10. Show that, if 0 < x < k, then x
2
< kx. Hence, show that, if ix1 < 0.1,

then ix
2

- 3x1 < 3.11x1.

n
11. For what values of x is it true that Ix'. + 2x1 < 2.0011x17

6. Composition of B11nctions.

Our consideration of functions, to this point, has been concerned with

individual functions, with their domains and ranges, and with their graphs. We

now consider certain things that can be done with two or more functions some-

what as, when we start school, we first learn about numbers and then learn how

to combine them in various ways. There is, as a matter of fact, a whole alge-

bra of functions, just as there is an algebra of numbers. FUnctions can be

added, subtracted, multiplied, and divided. The sum of two functions f and

g, for exsmple, is defined to be the function

f + g: f(x) + g(x)

which has for domain those elements that are both in the domain of f and the

domain of g; there are similar definitions, which you can probably supply

yourself, for the difference, product, and quotient of two functions. Because,

for example, the number (f + g)(x) can be found by adding the numbers f(x)

and g(x), it follows that this part of the algebra of fUnctions is so much

like the familiar algebra of numbers that it would not pay us to exanine it

carefully. There is, however, one important operation in this algebra of

functions that has no counterpart in the algebra of numbers: the operation of

com)osition.

The basic idea of composition of two functions is that of a kind of "chain

reaction" in which the functions occur one after the other. Thus, an automo-

bile driver knows that the amount he depresses the accelerator pedal controls

the amount of gasoline fed to the cylinders and this in turn affects the speed

of the car. Again, the momentum of a rocket sled when it is near the end of

its runway depends on the velocity of the sled, and this in turn depends on the

thrust of the propelling rockets.

Let us look at a specific illustration. Suppose that f is the fulction

x-0 3x - 1 (this might be a time-velocity fUnctio) and suppose that g is

the function x-.4. 2x- (this might be a velocity-energy function). Let us

follow what happens when we "apply" these two functions in succession--first

fj then g--to a particular number, say the numher 4. In brief, let us first

calculate f(4) and then calculate g(f(4)). (Read this "6 of f of WI.)

First calculate f(20. Since f is the function x-4. ix -



f(4) = 3 .4 - 1 = 11. Then calculate g(f(4)), or g(11). Since g is the

fUnction x- 2x
2

g(11) = 2. 11
2

= 242. Thus g(f(4))= g(11) = 242. In

general, g(f(x)) is the result we obtain when we first "apply" f to an

element x and then "apply" g to the result. The function x-4. g(f(x))

is then called a composite of f and g, and denoted gf.

We say a composite rather than the composite because the order in which

these functions occur is important. To see that this is the case, start wdth

the number 4 again, but this time find g(4) first, then f(g(4)). The

results axe az follows:

g(4) = 2.42 = 32 and f(g(4)) = f(32 )_3- 32 - 1 = 95.

Clearly g(f(4)), whfch is 242, is not the same az f(g(4)), which is 95.

WarninE. When we write gf we mean that f is to be applied before

g .and then g is applied to f(x). Since f is written after g is written,

this can easily lead to confusion. You can avoid the confusion by thinking of

the equation .(gf)(x) =

It may be helpfUl to diagram the above process as follows: If gf is the

ftnction x- g(f(x)) and fg is the fUnction x--..f(g(x)), we have

gf

4 I g-11. 242

fg

4 32 95

Note particularly that fg is not the product of f and g mentioned

earlier in this section. When we want to talk about this product, f.g, we

shall always use the dot as shown. Incidentally, for tho above example, we

have (f g)(4) = f(4) g(4) - 11 .32 = 352 = 32.11 = g(4).f(4) = (g.f)(4).

To generalize this illustration, let us use x instead of 4 and find

algebraic expressions for (gf)(x) and (fg)(x). We do this as follows:

(gf)(x) = g(f(x)) = g(3x - 1) - 2.(3x - 1)2

(fg)(x) f(g(x)) f(2x2) = 3(2x2) - 1 = 6x2 - 1 .

Again, note that (gf)(x) and (fg)(x) are not the same so the function

gf is not the same as the function fg. In symbols, gf / fg. If, now, we

substitute 4 for x we obtain

and

and
(gf)(4) = 2(3 .4 - 1) = 242

(fg)(4) = 6 .42 - 1 = 95.

These results agree with the ones we obtained above.

We arc now ready to define the general process that we have been illus-

trating.
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Definition Given two fUnctions, f and g, the fUnction x-og(f(x))

is called a composite of f and g and denoted gf. The domain of gf is

the set of all elements x in the domain of f for which f(x) is in the

domain of g. The operation of forming a composite of two functions is

called composition.

pcample 1. Given that f: x-e 3x - 2 and g: x-4. X5 for all x E R

find

(a) (gf)(x) (c) f(g(x) + 3)

(b) (ff)(x) (d) f(g(x) - f(x))

Solution.

(a) (gf)(x) gkf(x)) = g(3x - 2) = (3x - 2)5

(b) (ff)(x) f(f(x)) f(3x - 2) . 3(3x - 2) - 2 . 9x - 8

(c) f(g(x) + 3) . f(x5 + 3) . 3(x5.+ 3) - 2 = 3x5 + 7

(d) f(g(x) - f(x)) f(x5 - 3x + 2) 3(x5 - 3x 2) - 2 . 3x5 gx + 4

If we think of a function as a machine with an input and an output, as

suggested in Section 2, we see that two such machines can be arranged in tandem,

so that the output of the first machine feeds into the input of the second.

This results in a "composite" process that is analogous to the operation of

composition. It is illustrated in Figure 17. In this figure the maehine for

f and the machine for g have been house...i in one cabinet. This campound

mac-nine is the machine for gf.

\
Figure 17. g(f(X))

Schematic representation of the composition of functions.

Note that the machine for gf will jam if either of two things happen:

(a) It will jam if a number not in the domain or f is fed into the

machine.

(b) It will jam if the output f(x) of f is not in the domain of g.

Thus, once again we see that the domain of gf is the set of all elements x

in the domain of f for which f(x) is in the domain of g.

We have noted that the operation of composition is not commutative; that

is, it is not always true that fg = gf. On the other hand, it is true that
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this operation is associative: for any three fUnctions f: g: and h: it is

always true that (fg)h f(gh). We shall not prove this theorem; we shall:

however, illustrate its operation by an example.

,E5:ample, 2. Given f: x.-0 x2 + x + 1: g: x + 2, and h:x -- -2x-3,

find

(a) fg; (c) (fg)h;

(b) gh; (d) f(gh).

Solution.

(a) (fg)(x) = (x + 2)2 + (x + ) + 1 = x2 + 5x + 7

fg: x- x2 + 5x + 7

(b) (gh)(x) = (-2x - 3) + 2 -2x - 1, so gh: x--0. -2x - 1

(c) .(fg)h: x (-2x - 3)2 5(-2x - 3) + 7

(d) f(gh): - 1)2 + (-2x - 1) + 1

It is not altogether obvious from these expressions that (fg)h and f(gh)

are the same function. But if you will simplify the expressions you will .300

that they are indeed the same.

Exercises 6

1. Given that f: i and g: x--+x + 2 for all x e R, find

(a) (fg)(-2); (e) (fg)(x);

(b) (gf)(0); (f) (gf)(x):

(c) (gg)(1); (e) (fg)(x) - (fg)(1)

(d) (frg)( 1);
x 1

2. Let it he given that f: x ax + b and g: x-+ cx + d for all x e R.

(a) Find (fg)(x).

(b) Find (gf)(x).

(c) Compare the slopes of fg and gf with the slopes of f and g.

(d) Formulate a theorem concerning the slope of a compo:dte of two linear

runctions.

1

J. Suppose that f: x-4.- for all real numbers x different from zero.

(a) Find (ff)(1), (ff)(-3), and (ff)(8).

(b) Describe ff complctely.

4. Let it be given that : x x and f: x x + 2 for all x c R.

(a) Find fj and jf. (First find (fj)(x) for all x

(b) Find a function g uuch that fg j. (That is, find g such that

(fg)(x) j(x) for ail x

(c) Find a function h suL.h that hf j. Compare your result with

that of (b).
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5. (a) If f: x--P x2 and g: x--0 x3, find expressions for (fg)(x) and

(gf)(x).

(b) If f: x--oxin and g: x-0 xn, find expressions for (fg)(x) and

(gf)(x).

6. (a) If f: x- x2 and g: x x find an expression for (f g)(x),

where f .g is the product cf f and g; that is

(f g)(x) f(x)g(x). Campare with Exercise 5(a).

(b) If f: x-- xm and g: x-oxn for all x E R (where m and n

are positive integers), find an expression for (f. g)(x). Compare

with Exercise 5(b).

7. Suppose that f: x-*x + 22 g: x-0 x - 3, and h: x-e x2 for all

x R. Find expressions for

(a) (r- 8)(x); (d) (gh)(x);

(b) ((f g)h)(x); (e) ((fh) . (gh))(x).

(c) (fh)(x);

8. In Exercise 7, compare your results for (b) and (e). They should be the

same. Do you think this result is true for any three functionm fl g2

and h that map real numbers into real numbers?

9. Would you say that f(g h) (fg) .(fh) for any three functions f, g,

and h that map real numbers into real numbers?

10. State Which of the following will hold for all functions f, g, and h

that map real numbers into real numbers:

(f + g)h = fh + gh;

f(g + h) = fg + fh.

11. Prove that the set of all linear functions is associative under composi-

tion; that is, for any three linear functions f, g, and h,

f(gh) = (fg)h.

7. Inversion.

Quite frequently in science and in everyday life we encounter quantities

that bear a kind of reciprocal relationship to each oth?.r. With each value of

the temperature of the air in an autommbile tire, for example, there is

associated one and only one value of the pressure of the air against the walls

of the tire. Conversely, with each value of the pressure there is associated

one and only one value of the temperature. Two more examples, numerical ones,

will be found below.



Suppose that f is the function x-*x + 3 and g is the fUnction

xox - 3. Then the effect of f is to increase each nuMber by 31 and the

effect of g is to decrease each number by 3. Hence f and g are recip-

roc:Illy related in the sense that each undoes the effect of the other. If we

add 3 to a number and then subtract 3 from the result we get back to the

original number. In symbols,

(gf)(x) g(f(x)) = g(x + 3) (x + 3) - 3 = x.

(fe(x) m f(g(x)) f(x 3) = (x - 3) + 3 . x.

Az a slightly more complicated example we may take

f: x-0, 2x - 3 and g:
2

Here f says, "Take a number, double it, and then subtract 3." TO reverse

this, we must add three and then divide by 2. This is the effect of the

function g. In symbols,

(gf)(x) = g(f(x)) g(2x - 3 3) 4- 3

(fg)(x) f(g(x))
2

2 - 3 = x.

In terms of our representation of a function az a machine, the g machine

in each of these examples is equivalent to the f machine running backwards;

each machine then undoe..; what the other does, and if we hook up the two ma-

chines in tandem, every element that gets through both will come out just the

same as it originally went in.

We now generalize these two examples in the following definition of

inverse functions.

Definition 8. If f and 6 are functions so related that (fg)(x) = x

for every element x in the domain of g and (gf)(y) = y for every element

y in the dLlmain of f, then f and g are said to be inverses of each other.

In this tqlse both f and g are said to have an inverse, and eaeh is said to

be an inverse of the other.

As a further example of the concept of inverse functions let us examine

the functions f: x-* 3e) and g: x-* 31/7. In this case

Similarly,

and

(fg)(x) = fg(x)) = f(31) = (31W = x

e(f(x)) 3473

for ail x h.

If a function f takes x into y, that is, if y f(x), then an

inverse g of f must take y right back into x, that is, x g(y). If

we make a picture of a function as a mapping, with an arrow extendine from
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each element of the domain to its image, us in Figure 18a, then to draw a

picture of the inverse function we need merely reverse the arrows, as in Figure

1

Yi

A

Figure 18a. A function.

Yi

Figure 18b. Its inverse.

We can take any mapping, reverse the arrows in this way, and get a

mapping. The important question for us, at this point, is this: If the

original mapping is a function, will the reverse mapping necessarily be a

fUnction also? In other words, given a function, does there exist another

fUnction that precisely reverses the effect of the given function? We shall

see that this is not always the cane.

The definition of a function (refinition 1) requires that to each element

of the domain there corresponds exactly one element of the range; it is per-

fectly all right for several elements of the domain to be mapped onto the same

element of the range (the constant function, for example, maps every element

of its domain into one element), but if even one element of the domain is

mapped into more than one element of the range, then the mapping just isn't a

fUnction. In terms of a picture of a function as a mapping (such as Flgures 1

and 3), this means that no two arrows may start from the same point, though any

number of them may end at the same point. But if two or more arrows go to one

point, as in Figure 19a, and if we then reverse the arrows, as in Figure 19b,

we will have two or more arrows starting from that point (az in Figure 2), and

the resulting mapping is not a function. Since the word "inverse" is used to

describe only a mapping which is a function, we can conclude that not every

fUnction has an inverse. A specific example is furnished by the constant

function f: x-0 3, since f(0) 3 and f(1) - 3, and inverse of f would

have to map 3 onto both 0 and 1. By definition, no function can do this.
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Figure 19e. Figure 19b.

The preceding argument &howl us just what kinds of functions do have

inverses. By comparing the situation in Figures 18a and 18b with the situation

in Figures 19a and 19b, we can see that a fUnction has an inverse if and only

if no two arrows go to the same point. In more precise language, a function f

has an inverse if and only if xi ?i x2 implies f(xi) f(x2). A function of

this sort is often called a "one-to-one" function. A formal plITOOf of this

theorem will be found in the next section.

Exercises /

1. Find an inverse of each of the following fUnctions:

(a) x-0 x - 7; (b) x 5x 4- 9; (c)

2. Solve each of the following equations for x in terms of y and compare

your answers with those of EXertise 1:

1(a) Y x - 7; (b) y 5x + 9; (C)

3. Justify the following in terms of composite fUnctions and inverse func-

tions: Ask someone to Choose a number, but not to tell you what it is.

"Ask the person who has chosen the number to perform in succession the

following operations. (0 TO multiply the number by 5. (ii) To add

6 to the product. (iii) TO multiply the sum by 4. (iv) TO add 9 to

the product. (v) TO multiply the sum by 5. Ask to be told the result

of the last operation. If from this product 165 is subtracted, and then

the difference is divided by 100, the quotient will be the number thought

of originally." (W. W. Rouse Ball)
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8. One-to-Cne FUnctions.

Definition 8 leaves unanswered one important question: Can a fanction

have more than one inverse? That is, if f and g mre inverses of each

other, does there exist a function h / g such that f and h are also

inverses of each other? Az you might suspect, the answer is no, but we Shall

not prove it here. Consider, however, a picture of a fenction as a mapping,

with arrows going (az in Figure 18a) from points representing elements of the

domain to points representing elements of the range. To represent the inverse

function, we merely reverse the direction of each arrow, as in Figure 18b. It

seems intuitively clear that there is only one way to do this.

The fact that a function can have at most one inverse justifies our use

of a distinctive notation for functions which are inverses of each other. If

f and g are such functions, then we can say that g is the inverse of f

and write g f
-1

. We read f4 as "f inverse". Similarly we can write

f g
-1

Th us, (f -1 ) -1 f.

Warning. Although the notation f
-1

is strongly suggestive of "1 divi-

ded by f", it has nothing whatever to do with division. All it means is that

(ff-1)(x) x and (f-if)(Y) = Y.

We now prove the basic theorems which relate to the existence of inverses.

Theorem 1. If a function f has an inverse, then f(xl) f(x2) When-

ever x
1

and xo are two distinct elements of the domain of f.

Proof. We shall prove this theorem by assuming the contrary and then

deriving a contradiction. Hence we assume that f(xl) = f(x2). From this we
-1 "1 / "1 e %see that f

-1
(f(x

1
)) f

2
;,) Now, f f(x) x

1
and f foc

2
) x

2)
so it follows that x

1
= x

s'
But the elements x

1
and x

2
are supposed to

be distinct (i.e., xl / xo). This contradiction proves the theorem.

A vivid expression is used to describe functions f for which

f(x
1

) f(x
2

) whenever x
1
/ xo. This is the expression "one-to-one". If a

function has an inverse, then by Theorem 3 it is one-to-one. Note that in this

case the equation f(x1) f(xo) implies that xl x2.

We point out that the idea of a one-to-one fUnction is fandamental to the

process of counting a collection of objects. When we count a set of things we

associate the number 1 with one of the things, the number 2 with another,

and so on, until all the objects have been paired off with whole numbers. We

do not give the same number to two different objects in the collection. In

short, this "counting" function is one-to-one. Az another example, suppose

that there are 300 seats in a theater, and suppose that each seat is occupied

by one and only one patron. Then, without pountine the 222E12, we can conclude

that there must be 300 people sitting in these seats. These two examples
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deal with finite sets. On the other hand, the idea of a one-to-one fUnction is

fruitful even when the sets involved are not finite. Indeed, most of the

applications deal with sets of this kind.

New that we knew that every function which has an inverse is One-to-one,

it is natural to ask if the converse is true. Does every one-to-one function

have an inverse? You might guess that the answer is yes. This is the content

of Theorem 4.

Theorem L. If f is a function which is one-to-one, then f has an

inverse.

Proof. Using the hypothesis that

function which will turn out to be f
-1

f, then, since f is one-to-one, there

the damain of f such that y = f(x).

element y. This association defines a

is the range of f and the range of g

and

f is one-to-one, we shall construct a

. Given an element y of the range of

exists one and only one element x in

Now, associate the element x uith the

function g: x. The domain of g

is the domain of f. Finally, since

(fg)(y) = f(x) = y

(gf)(x) g(y)

we see that f and g are inverses of each other. Therefore f has an

inverse and f
-1

= g.

Definition 2 A function f is said to be strictly increasing if its

graph is everywhere rising toward the right; if, that is, for any two elements

x/ and x, of the domain of f, x1 < x2 implies f(x1) <

An important corollary of Theorem 4 concerns strictly increasing functions

Corollary. A function 1 which is strictly increasing has an inverse.

Proof. If x
1

and x
2

are any two elements of the domain of f, then

either x
1
<

2'
in which case f(x

1
) < f(x

2
) by hypothesis, or x

2
< x

1,
in

which case f(x2) < f(x1). In either case, f(x1) f(x2). Hence f is one-

to-one and therefore has an inverse by Theorem 4.

A similar result holds for strictly decreasing functions; see Exercise 5.

Theorems 3 and 4 provide an answer to oer first question, which was:

Under what circumstances does'a function have an inverse? We summarize this

answer in Theorem 5.

Theorem 1. A function has; an inverse if and only if it is one-to-one.

As we might reasonably expect, there exists a rather simple relationship

between the graph of a function f and the graph of its inverse 1'

-1
. If,

for example, r and 0 are rsal numbers such that r f(s), then i'(s,r)

is, by definition, a point of the graph of f. But if r = f(s), then

u f (r), and it follows, again by definition, that g(r,$) is a point of

the graph of f
-1

. Since this argument is quite general, we can conclude that,
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for each point P(8,26 ) of the graph of f, there is a point Qi(r,$) of the

graph of f 1, and conversely; either graph can be changed into the other by

merely interchanging the first and second coordinates of each point. TO pic-

ture the relative positions of P and Q1,1, we should plot a few points and

contemplate the results. (See Figure 201 in idhich corresponding points of

each pair P(s,r), g(r,$) have been joined together.)

Figure 20.

The presence of the line L = ((xly): y = x) illustrates a striking

fact: With respect to the line LI corresponding points are mirror images of

each other! Thus we see that the graph of the inverse of a function f is

the image of the graph of f in a mirror placed on its edge, perpendicular to

the page, along the line L. This fact suggests the following (messy) way to

obtain the graph of f
-1

from that of f. Merely trace the graph of f in

ink that dries very slowly, and then fold the paper carefUlly along the line
-L. The wet ink will then trace the graph of f
1

automatically. (See Figure

21.)
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Figure 21.

Exercises 8

1. Find the inverse of each of the following fUnctions:

(a) x- 4x - 5; (b) + 8; (c) x-+ x3 - 2.

2. Solve each of the following equations for x in terms of y and com-

pare your answers with those of Exercise 1:

(a) y . 4x - 5; (b) y + 8; (c) y a x3 - 2.

3. Justify the following in terms of composite functions, inverse functions,

and functions Which associate integers with ordered pairs of digits. "A

common conjuring trick is to ask a boy among the audience to throw two

dice, or to select at random from a box a domino on each half of which is

a number. The boy is then told to recollect the two numbers thus obtained,

to choose either of them, to multiply it by 5, to add 7 to the result,

to double this result, and lastly to add to this the other number. From

the number thus obtained, the conjurer subtracts 14, and obtains a number

of two digits which are the two numbers chosen originally." (W. W. Rouse

Ball)

lie know that each line parallel to the y-axis meets the graph of a func-

tion in at most one point. For What kind of function does each line

parallel to the x-axis meet the graph in at most one point?
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5. A function f is said to be strictly deereasing if, for any two elements

x and x
2

of its domain, x
1
< x

2
implier f(x

1
) < f(x

2
). Prove that

1

every strictly decreasing fUnction bas an inverse.

6. (a) Sketch a graph of f: xe x2, X E R. Show that f does not have

an inverse.

(b) Sketch graphs of fl: x--« x2, x > 0 and f2: x-. x2, x < 0, and

determine the inverses of fl and f2.

(c) What relationship exists among the domains of f, fl, and f
2
? (f1

is called the restriction of f to the domain (x: x > 0), and f2

is similarly the restriction of f tc the domain (x: x < 0).)

7. (a) Sketch a graph of f: x-014 - x and show that f does not have

an inverse.

(b) Divide the domain of f into two parts such that the restriction of

f to either part has an inverse.

8. Do aercise 7 for f: x- x2
- 4x.

9. Divide the domain of f: x- x3 - 3x into three parts such that the

restriction of f to each has an inverse.

9. Functions as Sets of Ordered Pairs.

Our first example of a function waa f. x-- 2x, x = 1, 2, 3, 4. We

have f(1) . 2, f(2) = 4, f(3) = 6, and f(4) . 8. It is often usefUl to

indicate this correspondence between the elements of the domain of a function

(here, (1, 2, 3, 4)) and the elements of the range (here, (2, 4, 6, 8)) by

°writing down the pairs ,f(x)). Thus in our example wr have the set of pairs

((102), (2,4), (3,6), (4,8)).

Clearly the order is important in these pairs; (2,1) is not a proper pair

flr our function f although (1,2) is. We call pairs of numbers (a,b) in

Which the order of the elements is to be considered, ordered an,2, and con-

trast them with sets where, for example, (alb) (boa) --order is not signif-

icant.

If our domain is not a finite set we cannot, of course, list all of the

ordered pairs associated with the function but we can use our set-builder nota-

tion to indicate symbolically all such pairs. Thus if we have f: 2x

where the domain of f is the set of all real numbers, we may write for the

associated set of ordered pairs

((x,2x): X E R).
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Simtlarly, if we have f: x- x where the domain of f is the set of all

integers, the associated set of ordered pairs is

2%
(0t,x ): x an integer).

We see that to every function is associated a set of ordered pairs. Is

it true that, conversely, a function may be associated to every set of ordered

pairs by defining f as f: first member of ordered pair, second member of

ordered pair? The example

((1,2), (1,3))

shows that the answer is "no" since we would have 1-0 2 and a.1, 3 y

contrary to Definition 1 where we required that exactly one element of tne

range of a function be associated with an element from the domain.

If, however, we consider only sets of ordered pairs in which any two pairs

that have the same first element also have the same second element, it is clear

that we can so define a function corresponding to this set of ordered pairs.

Thus

[(1,5), (° 3), (1,5))

deecribes the function f with domain (1,2) and range 5,3) where 1-4.5

and 2-4' 3. (There is, of ceurse, no need to list (1,5) twice. We have

((1,5), (2,3), (1,5)) - 1(1,5), (2,3)).)

In fact, mathematicians sometimes define a function as a set of ordered

pairs in which whenever two pairs have the same first element they also have

the sarie second clement. Thus, for example, instead of writing f:

they write

f = ((x,a): X C R).

We have indicated that it is easy to pass from looking at a function as a

correspondence or mapping to considering it as a. certain kind of set of

ordered pairs and conversely. Which approach is used is simply a matter of

convenience; we use whatever approach seems most useful for our purposes.

From our discussion of inverses of functions in terms of one-to-one func-

tions it is easy to see when a function, as a set of ordered pairs, has an

inverse; we simply requir% that whenever two ordered pairs oi' our function have

the eame second clement, they also have the OUMe first element. Thus the

function

f [(11J), ( : ,l')"
has no inverse since (1,3) and (2,3) have the same second element eut

different first elements. By Theorem 5, the same conclusion would be reached

if we reearded f as the mapping 1-4.3 and 2--4. sihce we would then have
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3 and f(2) = 3 but 1 i 2; i.e., the mapping is not one-to-one.

If a function does have an inverse it is easy to obtain it in the ordered-

pair approach; we simply reverse the order in the pairs. Thus if

f = ((1,5), (213))
we have

%,
f ((5,1), 0,2)J;

if

f ((x,3&): x e R)
we have

f-1 z ((34,x): x R)

or, letting y = so that y3 = x,

f-1 «Y,Y 3): Y E R)*

Exercises 2

1. Write the following functions, defined as mappings, as sets of ordered

pairs:

(a) f: xe 3x - 1, x E (0, 2, 5); (c) f: 2, X an integer;

(b) f: xe x3, x c R; (d) f: x.'x, X E R.

2. Write the following functions, defined as sets of ordered pairs, as

mappings:

(a) 1(0,1), (2,3 ), (4,5)) ;

(b) ((xpc): r. a positive real number) ;

(c) ((x,-1): x R);

(d) ((0,-2), (-1,4), (5,15)) .

3. Which of the following sets of ordered pairs represent functions and

which do not./

(a) ((213), (5,1), (6,1), (3,2));

(b) ((1,4), (2,3), (3,2), (2,5));

(c) ((-1,1), (3,=2), (0,0));

(d) ((-1,2)).

4. Whi.7h of the functions of Problem 3 have inverses? For those that do,

write the inverse as a set of ordered pairs.

5. Do as in Problem 4 for the functions of Problem 2.
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10. Summary.

This chapter deals with functions in general and with the constant and

linear functicaos in particular.

A function is an association between the objects of one set, called the

domain, and those of another set, called the range, such that exactly one

element of the range is associated with each element of the domia-in. A fUnction

can be represented as a mapping from its domain onto its range.

The graph of a function is often an aid to understanding the function. A

graph is the graph of a fUnction if and only if no line parallel to the y-axis

meets it in more than one point.

A constant function is an association of the form f: for some

fixed real number c, with the set of all real numbers as its domain. The

graph of a constant function is a straight line parallel to the x-axis.

A linear function is an association of the form f: x--omx + b, m / 0.

The domain and the range of a linear function are each the set of all real

numbers. The graph of a linear function is a straight line not parallel to

either axis, and, conversely, any such line is the graph of some linear func-

tion.

The slope of a line through I"( 1,y1) and Q(x21y2) is

Y2 Y1

x2 - xl

if x
1

/ x,. If x x2, no slope is defined, and the line is parallel to the

y-axis. Lines with the same slope are parallel, and parallel lines which have

slopes have equal slopes. The slope of the graph of the linear function

f: x-Pmx +b is the coefficient m; this number is also called the slope of

the function.

The absolute-value function is conveniently defined as f: x
ix 2

. The

domain of this function is the set of all real numbers and the range is the

set of all non-negative real numbers.

If f and g are functions, then the composite function fg is

fg: x-0 f g(x) , with domain all x in the domain of g such that g(x) is

in the domain of f.

Given a function f, if there exists a function g such that (gf)(y) = y

for all y in the domain of f and (fg)(x) = x for ail x in the domain

of g, then g is an inverse of f. Not all functions have inverses. A

necessary and sufficient condition that a function have an inverse is that it

be a one-to-one function; i.e., a function f such that f(x
1

) f(x ) if

xl x
a

A function may also be considered as a set of ordered pairs in which if

two pairs have the same first element they also have the same second element.
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Miscellaneous Ekercises

1. Describe how to obtain the copposite, fg, of two !Unctions f and g
When the functions axe considered as sets of ordered pairs.

2. Which graphs represent functions? Which of these functions have inverses?

3. What is the constant function whose graph passes through (512)?

4. For What values of a, b, and c will f: x* ax2
+ bx + c be a con-

stant function?

5. What is the constant function whose graph passes through the intersection

of Li: y = 3x - 2 and L2: 3y - 4x + 5 = 0?

6. At what point do Li: y = ax + 4 and L2: y = 5x + b intersect? Do

they always intersect?

7. Write the linear functions f and f
2 whose graPhs intersect the x-axis

at P(-310) at angles of 45° and -45°, respectively.

8. If 10x + y 7 = 0, what is the decrease in y as x increases from

500 to 50b? What is the increase in x as y decre,.ses from -500

to -5C5?

9. Write the equation of the line through (0,0) which is parallel to the

line through (2,3) and (-1,1).
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10. Write the equation of the line which passes through the intersection of

y 6x + k and L2: y 5x + k and has slope

11. Write the equation ef the line which is the locus of points equidistant

from L
1

: 6x 4- 3y - 7 . 0 and L
2

y = -2x + 3.

12. Write the equation of the line through (8,2) Which is perpendicular to

(has a slope Which is the negative reciprocal of the slope of)

gy = x + 3.

13. In a manufacturing process, a certain machine requires 10 minutes.to

warm up and then produces y parts every t hours. If the machine has

produced 20 parts after running hour and 95 parts after running
2

317 hours, find a fUnction f such that y = f(t), and give the domain
4

of f.

14. If AILD is a parallelogram with vertices at A(0,0), B(8,0), C(12,7)

and D(4,7), find

(a) the equation of the diagonal AC;

(b) the equation of the diagonal BD;

(c) the point of intersection of the diagonals.

15. Repeat Problem 14, using parallelogram ABCD with vertices at A(0,0),

B(x
1'

0), c(x
2'
y
2
), and D(x

2
x
1,

y
2
).

16. Given the constant functions f: x-0 a, g: xob, und h:

determine the compound functions f(gh) and f(hg). Does this result

indicate that gh his?

17. Find an inverse of the linear function f: x-0 +

18. Find a function f such that ff = I.

19. Sketch a gra

(a) f(x)

h of:

( b ) Ix!

(c) y . H - - Ix + 11.

20. If f(x) and g(x) = 3x + k, determine k so that c

21. If f(x) x and g(x) 1/16 - x', find the domains of 1'6 and gf

) 4-



Suggestions for FUrther Esalia

Allendoerfer, C. B., and Oakley, C. O.

FUndamentals of Mathematics. New York: McGraw-Hill

Book Co., 1959. Chapter 9. Defines fUnction in

terms of ordered pairs and gives many examples

of functions.

Brumfiel, C. F., Eicholz, R. E., and Shanks, M. E.

Algebra, 11. Reading, Mass.: Addison-Wesley Publish-

ing Co., 1962. Chapter 6. Begins with a discus-

sion of sets and relations. After defining func-

tion in terms of ordered pairs, the authors empha-

size the mapping approach and consider the concept

of a continuous function.

Evenson, A. B.

Modern Mathematics, Chicago: Scott, Foresman and Co.,

1962. Chapters 5-6. A quite detailed discussion

of fUnctions. Chapter 5 discusses the more general

concept of "relations"; Chapter 6 begins with the

ordered pair approach and then moves to the mapping

vicw7oint.

Hose, J. H.

Algebra. New York: John Wiley and Sons, 196.

Chapters 1-2. Chapter 1 ls on sets. Chapter 2

discusses functions as mappings.

1.1


