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PREFACE

Mathematics is such a vast and rapidly expanding field of study that
there are inevitably meany important snd fascinating aspects of the subject
vhich, though within the grasp of secondary school students, do not find a
rlace in the curriculum simply because of s lack of time.

Many classes and individusl students, however, may find time to pursue
mathematical topics of special interest to them. This series of pamphlets,
whose production is sponsored by the School Mat ematics Study Group, is
designed to make material for such study readily accessible in classroom
quantity.

Some of the pamphlets deal with material found in the regular curric-
ulum dbut in a more extensive or intensive manner or from a novel point of
view, Others deal with topics not usually found at all in the standard
curriculum. It is hoped that these pamphlets will find use in classrooms
in at least two ways. Some of the pamphlets produced could be used to
extend the work done by a class with a regular textbook but others could
be used profitably when teachers want to experiment with a treatment of s
topic different from the treatment in the regular text of the class. In
8ll cases, the pamphlets are designed tc promote the enjoyment of studying

mathematics.

Prepared under the supervision of the Panel on Supplementary Publications
of the School Msthematics Study Group:

Professor R. D. Anderson, Louisianas State University

Mr. M, T'hilbrick Bridgess, Roxbury Latin School, Westwood, Massachusetts
Professor Jean M. Calloway, Kalamazoo College, Kalamazoc, Michigan

Mr. Rorald J. Clark, St. Paul's School, Concord, New Hamushire
Professor Roy Dubisch, University of Washington, Seattle, Washington

Mr. Thomas J. Hill, Oklahoma City Public Schools, Cklshoma City, Okla.
Mr. Karl S. Kalman, Lincoln High School, Philadelphia, Pennsylvanis
Professor Augusta L. Schurrer, Iowas State Teachers College, Cedar Falls
Mr. Henry W. Syer, Kent School, Kent, Connecticut
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FUNCTIONS

This pamphlet is essentially Chapter 1 and Section §
of Chapter & of the SMSG text, Elementary Functions. A few
wminor changes have been made for clarity and to make the
material self contained. Some background materisl on sets
and 8 section on functions as sets of ordered pairs have
been added.

It 1s intended for use as a unit in any course following
8 course in plane geometry und one-and-a-half or two years
of algebru.

The material contalned herein is basic to an under-
standing of the trigonometry of real numbers and the calcu-

lus as well as many other paris of mathematics.
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FUNCTIONS

i. Sets.

One of the most natural and familisr idess of human experience 1s that of
thinking about and identifying a collection of objects by means of a single
word. Examples of such words are family, team, flock, herd, deck (of cards),
collection, and so forth. We shall use the word gset when talking sbout such a
collection, and we shall restrict owrselves to sels thgt are clearly enough
defined so that there is no possible ambiguity about their members. In other
vords, a set is 8 collection of objects, described in such a way that there is
no doubt &g to wheother & particular object does or does not belong to the set.

As an {llustration, think of the collection of books, pencils, tablets,
etc., that is in your desk. You can easily tell whether or not a particular
object belongs te this set: 1f an object is in your desk, then It ls a member,
or element, of this set; if an obJject is not in your desk, then it’'lu not an
element of this set. It is important teo understand that it does not matter
what obJects are in your desk; to be an element of this particular set, the
only requirement ic that an obJject be in your desk and not somewhere else.

We have at our disposal two methods tor describing a set: (1) tue tabula-
tion method, in which we list or tabulate every clement of u« set, and (2) the
ruie method, in which we describe the elements of & set Ly come verbal or
symbollic statement witrout actually listing the elements. This latter method
was used in the preceding paragraph when we defined a set Ly speclfyling that 1t
sontained all the objecty in your desk. Other illustrations of the rule method
1o - detining o cet are the following: the set of all boys and girls whe uttend
your schoul the set of people who live in your home, the cet of booreg in your
gschool library, or the et of colors your mother is golng to use In redecora-
ting her kitchen. '

Although the rule method for def..ing 8 set will be used predomirantly,
there are caces in which the only teasible way to define o set is by actually
tabulating its elements. This may be because the elements of & set are not
required to have anything in common except membership in the set. It i» truc )
that most, It not mll, of the scts we shall be talking atocut will consiat of
things which are naturally assembled together, as, for cexumple, thc set ol
whole numberc. Nonetheless, a set may consfst of things which have ro olvious
relation except that they happen to be grouped together, Just as the cet of
obJects which & ninc-year-old boy calls his "treasure' may consio. of & yo-yo,

an Indian-bead penny, & ball made of packed tinfoil, a coliection of mutih
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books, a dried grasshopper, a pocket knife, and & pack of baseball cards. Per-
baps such an example will help to clarity the idea that & set is a collection
of things, not necessarily alike in any other respect, and that membership in
the set is to be emphasized.

The notation which is customarily used when defining a set, whether by the
tabulation meﬁhcd or the rule method, will be illuctrated by another example.
Consider the question: What is the set of all coins in your pocket at this
moment? (The answer in this case might be the set with no elements--the empty
set!) Suppose that you have three pennies, two nickels, a dime, and s quarter
in your pocket, the pennies and nickels being distinguished by different dates.
The set called for by the rule is the collection of these seven coins and no
others. Using the tabuletion method, we symbolize this by writing:

S = {1915 penny, 1937 penny, 1959 penny, 1942 nickel,
1950 nickel, dime, quarter],

Capital S5 15 the name tor the set, and the names of the elements of the set
are enclosed in the braces. The order in which the elements are listed within
the braces does not matter. Alternatively, we may denote this same set by

enclosing the rule in braces:
§={*: * 1is a coin in your pocket].

This is read, "S 15 the set of all * such that * 1is a coin in your pocket.”
The colon following the first * is a symbol for the phrase "such that", and
the symbol * stands for any unspecified element of the set. We could Just as
well have used ¢, or x, or §, so that S = {c: ¢ 1is a coin in your pocket}
1o still the set of coins in your pocket. The symbolism {*: * ...)] is
often called the "set-builder" notation.

In summary, we have illustrated two alternative ways for defining any
particular set: (1) the tabulation method, and (2) the rule or set-builder
method. As emphasized earlier, each of these methods has the essential charace
teristic that every obJject may be classified as either belonging to the set or
not belonging to the set. In some cases either method can be used, as we d4id
in describing the set of coins in your pocket. In other situations only one of
the two methods may be practical.

To indicate membership in 8 set we use the Greek letter € ({epsilon).
Thus, if & is an element of the set 4, we write a € A. (This may be read,
"8 1s an element of the set A," or "a 1is a member of the set A," or "a
belongs to the set A," etc.) Likewise, we may wish to indicate that b is
not an element of A. In thic case we use epsilon with a diagonal line drawn
through it, indicating negation, and write b ¢ A.

8



At this point it may be helpful to review the ideas and symbolism of set think-
ing by means of exanples of sets whose elements are numerical. Both the rule
method and the tabulstion method will be used in defining the sets.

D« {d: d is an integer and O0< d < 9}
= {O: 1, 21 3s 1“: 5: 6; 7: 8: 9}-
E= {e: e is an even integer and e ¢ D}
= {0, 2, &4, 6, 8}.
M= {m: m is a positive integral multiple of 3 and m < 20}
= {3, 6, 9, 12, 15, 18].
5 1is an element of the set D: 5 ¢ D.
5 1is not an element of the set E: 5 £ E.
P= {x: x is a positive integer)
= {1, 2,3, 4% 5, «+}, The dots here signify that we do not stop
at 5 but keep on going indefinitely. A set such as this with
an unlimited number of elements is called an infinite set,
whereas sets D, E, and M, above, are finite sets.
€ 1is an element of the set P: 2 ¢ P,
g is .ot an element of the set P: % ¢ P,

Exercises 1

1. Use both the tabulation method and the rule method to specify the follow-
ing sets:
(a) the vowels;
(b) the prime numbers less than 20;
(c) the people who live in your house;
{d) the odd multiples of three which are equal to or less than 21;
(e) the two-digit numbers, the sum of whose digits is 8.

2. Reprecent the following sets by the rule method and tell why the tabula-
tion method may be difficult or impossible:
(a) the set of students in your school;
{b) the integers greater than 7;
(c¢) the people in your community who found & ten-dollar bill yesterday;
(d) the books in your school library;
(e) the rational numbers between o2 and 3.

3. Find a rule which will definc the sets whose element:s are tabulated in
each of the following:
(a) A= {2, 4, 6, 8, 10};
(b) B= (-3, -2, -1, 0, 1, 2, 3);




(¢} C=1{(1, 4, 9, 16, 5);
(d) D= (2,5, 8, 11, 14, 17);
(e) E= {123, 132, 213, 231, 312, 321).

2. Definition of Function.

One of the most useful and universal concepts in mathemstics is that of a
function, and this pamphlet, as its title indicates, will be devoted to the
study of functions.

We frequently hear people say, "Cne function of the Police Department is
to prevent crime," or "Several of my friends attended a socisl function last
night," or "My automobile failed to function when I tried to use it." In
mathematlics we use the word "function" somewhat differently than we do in

ordinary conversation; as you have probably learned in your previous study, we
use it to denote & certain kind of associstion or correspondence between the
members of two sets.

We find examples of such association on every side. For Instance, we note
such an association between the number of feet a moving object travels and the
difference in clock readings at two separate points in its Journey; between the
length of a steel beam and its temperature; between the price of eggs and the
cost of making a cake. Additional examples of such associations occur in
geometry, where, for instance, we have the urea or the circumference of a
circle associated with the length of its radius.

In all of these examples, regardless of their nature, there seems to te
the natural idea of a direct connection of the elements of one set to those of
another; the set cof distances to the set of times, the set of lengths to the
set of thermometer readings, ete. It ceems nutural, therefore, to abstract
from these ve "‘~us cases this idea of association or correspondence and examine
it more closely.

Let us start with come very simple examples. Ouppoce we take the numbers
1, &, 3, and &, and with each of them associate the number twice as large:
with 1 we associate o, with 2 we associate 4, with 3 we associate 6,
and with 4 we associate 8. An association such &5 this is called a funct ion,
and the set {1, 2, 3, 4} with which we started is called the domein of the
function. We can represent this association more briefly if we use arrows
instead of words: 11—, 2=k, 3=6, L —~ 5, There are, of course, many
other functions with the same domain; for example, 1=, D= |, § = D, b=,

It happens that these two examples deal with numbers, but there are many

functions which do not. A map, for instance, associates esch point on some bit
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of terrain with & point on & piece of paper; in this case, the domain of the
function is 8 geographical region. We can, indeed, generalize this last ex-
ample, and think of any function as a mapping; thus, our first two examples map
numbers {nto numbers, and our third maps polints into points.

What are the essentisl festures of each of these examples? TFirst, ve are
given a cet, the domain. Second, we are given 8 rule of some kind which asseo-
clates &n obJect of same sort with each element of' the domain, and, third, we
are given scme idea of where to find this associated object. Thus, in the
first example above, we know that if we start with 8 set of real numbers, and
double each, the place to look for the result is in the set of all real numbers.
To take still unother example, if the domain of a function is the set of all
resal numbers, and the rule i{s "take the square root', then the set in vhich we
must look for the result is the set of complex numbers. We summarize this
discuscion in the following definition:

Definition 1. If with each element of a gset A there 1c associated in
some way exactly one element of & set B, then this ascociation is called s
function from A to 3. .

It i{s common practice to represent a function by the letter ¢t (otler
letters such s ¢ and h will also be used)., If x ic an element of the
damain of a function £, then the object which { ascociates with x isg
denoted #{x) (read "the value of t at x" or simply "f at x" or "t of
x"); $(x) {5 called the image of x. Using the arrow notation of our exam-

rles, we can represent this symbolically by
£ x— £{x)
(read "t takes x into f£{x)"). This notation tells us nothing about the
function £ or the element x; It is merely a restatement of what £{») means. .
The set A mentioned in Definition 1 is, as has been stated, the domain

of the function. The set of all objects onto which the function mups the ele-
ment of A (5 called the range of the funetion; in set notation,

range of f = {f{x): x ¢ Al.

The range may be the entire cet B mentioned i{n the definition, or may be only
8 part thereof, but in either case it is included in B,

It {s often helpful to illustrate & function as a mappling, showing the
elements of the domain and the range as points and the function as a set of
arrows from the points that represent elements of the domain to the points that
represent elements of the range, as in Figure 1. Note that, an a consequence

of Definition 1, to each element of ithwe domaln there corresponds one und only

l1
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Figure 1. A function as & mapping.

If this condition is not met, as in Figure 2, then the mapping pictured is not
8 function. In terms of tae pletures, a mapping is not & function if two
arrows start from one point; whether twe arrows goc to the same point, as in
Figure 1, is immaterial i{n the definition. This requirement, that each element
of the domain be mapped into one and only one element of the range, may seem
arbitrary, but it twns out, in practice, to be extremely convenient.

g —Q-Q3

Figure 2. This mapping is not & function.

In this pamphlet, we are primarily concerned with functions whose domain
and range sare sets of real numbers, and we shall therefore assume, unless we
make explicit exception, that all of our functions are of this nature, It is
therefore convenient to represent the domain by a set of points on a number
line and the range a&s & set of points on Another number line, &s in Figure 3.

12
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Figure 3. A function mapping
real numbers into real aumbers.

More specifically, consider the ruoetion £, discussed earlier, which
takes each element of the set ({1, 2, 3, 4} into the number twice as great.
The range of this function is {2, 4, 6, 8} and f maps its domain onto its
range &s shown in Figure 4. We note that, in this case, the image of the
element x of the domain of f 1is the element 2x; hence we may write, in
this instance, f(x) = 2x, and f is completely specified by the notation

£: x=+2x, x=1, 2, 3, k.

wh

TN D~y D

Pgure 4. f: x=2x, x=1, 2, 3, &4,

In this case, the way in which f maps its domain onto its range is
completely specified by the formula f£{x) = 2x. Most of the functions which
we shall consider can similarly be described by appropriate formulss. If, for
example, f is the function that takes each number into its square, then it
takes 2 into 4 (that is, £(2) = 4), it takes -3 into 9 (that is,
£{-3) = 9), and, in general, it takes any real number x into x=, Hence, for

;
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i ulis

this functlion, f£(x) = xe, and we may write f: x = x°. The formula

£f(x) = xE defines this function £, and to find the imege of any element of
the domain, we can merely substitute in thi. formule; thus, if a - 3 is a-
real number, then f£{a = 3) = (a « 3% - 8% - Ga + 9. Similarly, if we know
that & function t has f£(x) = 2x = 3 forall] x € R (we use R to repre-
sent the set of real numbers), then we can represent f in our mapping nota=
tion az f: x-—*2x - 3, and to find the image of any real number we need only
substitute {t for x in the expression 2x - 3; thus f(5) = 2(5) - 3 = 7,

£(/2) = o/2 - 3, and if k + 2 is a real number, then
flk +2) =2(k+2) -3 =2k+ 1.

Stricetly speaking, a tunction is not completely described unless its
domain is specified. In dealing with a formula, however, it is & common and
convenlent practice to assume, if nc other intormetion is given, that the
domain includes all real numbers that yield real numbers when substituted in
the formula. lor example, if nothing further is said,.in the function
i x-*-%, the domain is assumed to be the set of all real numbers except O;

this exception is made because % is not & real number. Similsrly, if  is

— o
& function such that t(x) V1 - x°, we assume, in the abcence of any other
informatlion, that the domain is (x: -1 < x < 1}, that is, the set of all resal
numbers frem -1 to +1 inclusive, since only these real numbers will give
us real sguure roote in the expression for t(x). When a function ic used to
descrlbe 4 physical situation, the demain is underst.oé to include only those
numbers thut are physically reulistic, Thus, if we are describing the volume
ot a valloon in terms of the length of its radius, £: r—V, the domain would
include only positive numbers.

"a& set of stateuents about the

A huwnorist once <efined mathemntics as
twenty~rourth letter of the alphabet”, We may not agree about just how funny
this statement is, but we must agree that it contains an element of the truth:
we do make x  work very hard. It is important to recognize that this arises
out of custom, not necessity, and that any other letter or symbol would do just
as well. The notations f: x—*xg, f: h— he, rnn t— tg, and even
'y B -—flj all degscribe exactly the same function, subject to our agreement
that x, n, t, or # stands for any real number.

“Another way of looking at a function, which may help you to understarnd
thiv section, iu to think of it as a machine that processes elements of its
domuin to preduce elements of its range. The machine has an input and an
output; if un element x of {ic domain is fed on a tape into the machine, the

element f{x) of the range will appear as the output, as indicaled in Flgure 5.

14
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Figure 5. A representation of s function as & machine.

A machine can only be set to perform & predetermined task. It cannot
excreise Judgment, make decisions, or modify its instructions. A function
machine § must be s2t so that any particular input x always results in the
same output f(x); if the element x 1s not in the domain of £, the machine
will jam or refuse to perform. Some machines--notably computing machines--

actually do work in almost exactly this way.

Exercises 2

1. Which of the following do not describe functions, when x,y ¢ R?

(a) f: x=3x -4 (d) f: x=glly <x
(b) £ X = x5 (e) f: x=—5x
(¢) t: x—y = x< (£) f: x—16 - x°

AN Depict the mapping of a few elements of the domain into elements of the

range for each of the Exercises 1{a) and (c) above, as was done in

Figure L.

3. Specify the domain and range of the following functions, where x,t(x) e R.
b f1. o x=+x"
{e) £: x—Vx (e) £ x—*—E—i—-—

x° - L

b, If £ x=s2x+ 1, rind

(a) £{0); (¢) £(100);
(v) rf-1); (a) £(£).
G

-

%
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5. Glven the function f: x-*xe - 2 + 3, find

(a) £(0); (e) f(a);
(0) r£(-1); (a) #£(x - 1).
6. If f{x) = #x§ - 16, find
(a) £(4); (c) £(5); (e) f£(a -1);
(v) £(-5); (d) £(a); (£} £x).

7. Ir £ x—e%xs - 12)(2 + 23-8-}: - 20 has the domsin {l, 2, 3; 1“}:

(&) find the image of f, and {b) depict f as in Figure &.

8. If x e R, given the functions
1 x=—ex
and I

=
g: x— X

are £ and g the same function? Why or why not?

Q. What number or numbers have the image 16 under the following functions?
(&) f: x=—x°

(b) f: x=2x

/2 + 112

(e) £: x—

3. The Craph of a Function.

A graph is & set of points. If the set consists of all points whose
coordinates (x,y) satisfy en equation in x and y, then the set is said to
be the graph of that equation. If there is a function f such that, for each
point (x,y) of the graph, and for no other points, we have y = f(x), then we
say that the graph is the graph of the funetion f. The graph is perhaps the
most intuitively {lluminating representation of a function; it conveys at a
glance much important information about the function. The function x-~ xe,
(when there {¢ no danger of confusion, we scmetimes omit the name of a functicn,
gas f in f: x=— xe) has the parsbolie graph shown in Figure 6. We can look
at the parabola and get a clear intuitive idea of what the function is doing
to the elements of its domain. We can, moreover, usually infer from the graph
any limitations on the domain and the range. Thus, it is clear from Figure 6
that the range of the Iunctlion there graphed includes only non-negative numbers,
and in the function f: x=— V25 - x° graphed in Figure 7, the domain
{x: ~5 <x <5} and range (y: O<y <5} are easily determined, as shown
‘by the heavy segments on the x-axis and y-axis, respectively.

o 1g
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Fgure 6. Graph of the function f: x— x“.

Figure [. Graph of the function f: x— /25 - x“.

Another illustrstion: the function
. X -
f: x==, 2<x<6

has domain A = {x: 2 <x <6} and range B = {f(x): 1 < £(x) < 3}. In this
c@se we have used open dols at 2 on the x-axis and at 1 on the y-axis to
indicate that these numbers are not elecments of the domsin and range, respec-
tively. See Figure &.

y
¥--3
Range
L4
X
o % g
| Domain_ !
Figure B. Graph of the function f: x-*‘§, 2 < x < G,
11
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As might be expected; not ‘ery possible graph is the graph of & function.
In particular, Definition 1 requires that a function map each element of its
domein into only one element of its range. In the language of graphs, this
says that only one value of y can correspond to any value of x. If, for
exanple, we lock at the graph of the equation xg + yg = &5, shown in Figure G,
we can
Y

{0,-5)

Figure 9. Graph of the set S = [(x,¥): x° + y° = 25},

see that there are many instances in which one value of x is associated with
two values of y, contrary to the definition of function. To give a specific
example, {f x = 3, we have .y = 4 or y = -4; each of the points (3,4) and
(3,-&) is on the graph. Hence this is not the graph of a function. We can,
however, break it into two pieces, the gragh of y = ¥ - x~ and the graph of
“~
y = -/3 - x° (this makes the points (-5,0) and (5,0) do double duty),
each of which 1s the graph of a function. See Figures 10 and 11.

Y
Q5 S,
59 50 {0,-5)
Figure 10. Figure 11.

Graph of y=1/25-2. Creph of y = -Y&5 - x°.

18
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Ir, in the xy-plane, we imagine all possible lines which are parallel to
the y-axis, and if any of these lines cuts the graph in more than one point,
then the graph defines & relation that is not a function. Thus, in Figure 12,
(a) depicts a function, (b) depicts & fune*ion, but (c) does not depict a
functicon.

B
*

/\_//il‘— X
~

(a) (b) (

3
?

Figure 12. Function or not?

Exercises 3
1, Which of the following graphs could represent functions?
(a) Y — (v) y
—
! i
i [ i
‘ i ;L x x
| —
i f
i |
— q
H
{
Y
(c) y l (a)
l é X

2. Suppose that in (&) above, f: x~ f(x) 1is the function whose graph is
depicted. Sketch

(a) g: x=e -f(x); (p) g: x-—f£{-x).

1319



S Graph the following functions:
(a) 1 x—2x;

(b) £ x-*-:lz ;
(e) f: x=ey =4 -x and x and y are positive integers;

(d) £ x—'-v’h-x.

L, Graph the following functions and indicate the domain and range of each by
lieavy lines on the x-axis and y-axis, respectively:
(8) £ x=y=x and 2<y <3;
"
(b) £1 x=v9 - x°;

(¢) f: x=vVXx and x < &.

4. Constant Functions and Linesr Munctions.

We have Introduced the general idea of function, which is a particular
Kind of an assoviation of elements of one set with elements of another. We
have 8lso interpreted this idea graphically for functions which map resl num-
bers into real numbers. In Sections 2 and 3 our attention was concentrated on
general ideas, and examples were introduced only {for the purposes of illustra-
tion. In the present section we reverse this emphasis and study some particu-
lar functions that are important in their own right. Ve begin with the sim-
plest ol these, namely, the constant functions and the linear functions,

Let us think of & man walking north along a long, straight road at the
unitform rate off 2 miles per hour. At some particular time, say time ¢t = O,
this man pusged the milepcst located cone mile north of Baseline Road. An hour
befors this, which we shall call time ¢ = -1, he passed the milepost locsted
one mile south of Baseline Road. An hour after time t = 0, at time t = 1, he
passoed the milepest located three miles north of Baseline Read. In order to
form a convenlent mathematical picture of the man's progress, let us consider
miles north of HBasellne Roud as positive and miles south as negative. Thuc the
man passed milespost -1 at time t = -1, mifepost 1 at time t = O, and
milepost 5 at time t = 1. Using an ordinary set of coordinate axes let us
plot his position, as Indicated by the mileposts, versus time I1n hours. This

gives us the graph shown in Figure 13.
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Figure 13. Graph of the function f: t—d = 2t + 1.

In t hours the man travels 2t miles. Since he is already at milepost
1 8t time t = 0, he must be at milepcst 2t + 1 at time t. This pairing of
numbers is an example of a linear function. '

Now let us plot the man's speed versus time. For all values of t during
the time he is walking, his speed is 2 miles per hour. We have graphed this
information in Figure 1k,

{ Speed

. U .

-1 0 _{ 2 3 A s Time

Figure l&. Graph of the function g: t=—s =2,

When t = -1 his speed is 2; when t = 0 his speed is 2, ete.; with each
number t we associate the number 2. This mapping, in which the range con-

tains only the one number 2, is an example of a constant functien.

Definition 2. If with each real number X we &ssociate one fixed number

¢, then the resultant mapping,
£ x=c,

is called a constant function.
The discussion of constant functions can be disposed of in & few lines.

The function we Jjust mentioned, for example, is the constant function
g: t=— 2. The graph of any constant function is a line parallel to the hori-
zontal x-axis. Constant functions are very simple, but they occur over and
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over again in mathematics and science and are really quite important. A well-
known example from physics is the magnitude of the attraction of gravity, which
is usually taken to be constant over the surface of the earth-~though, in this
age, we must recognize the fact that the attraction of gravity varies greatly
throughout space.

The functions we examine next &lso occur over and over again in mathemat-
ics and science and are considerably more interesting than the constant func-
tions. These are the linear functions. Since you have worked with these
functions before, we can begin at once with a formal definition.

Definition 3. A function f defined on the set of all real numbers is
called a linear function if there exist real numbers m and b, with m £ 0,
such that

£f{x) = mx + b.

Example 1. The function £: x—2x + 1 is a linear function. Here
£7](0) = 1, (1) = 3, £(-1) = <1. This function was described earlier in this
section in terms of t, with f£{t) = 2t + 1. Its graph can be found in Figure
13.

We note that the graph in Figure 13 appears to'be 8 straight line. As s
matter of fact, the graphs of all linear functions are strsight lines (thst is
why we call them "linear" tunctions); you may be familiar with a proof of this
theorem from an earlier study of graphs. In any case, we here assume it.

An important property of any straight line sepment is its slope, defined
a5 follows:

Definition 4. The slope of the line segment from the point P{x ) to

11
the point Q(xe,yg) is the number
)"2 - yl
- x
2~ %1
provided x, £ X,» If x, =x,, the slope is not defined.

Note that, by Definition &, the slope of the line segment from the point

X

Q(xe,ye) to the point- P(xl,yl) is

Y1 = s
ST
But
= y
Xy Xy o Xg Xy
50 that it {s immaterial which of the two points P or Q we take first.
Yo = ¥
Accordingly, we can speak of ;ﬁ———;l #s the slope of the segment Jjoining the
AR

two points, without specitying which comes first.
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What about the geometric meaning of the slope of & segment? Suppose, for
the sake of definiteness, we consider the seguent Joining 1,2} and Q(3,8).
By our definition, the slope of this segment is 3, since ?’:_f' =3 (or

%?f—% = 3). Note that this is the vertical distance from P to Q divided by
the horizontal distance fram P to Q, or, in more vivid language, the rise

divided by the run.

o (3,8)
rise (6 units)
P(1,2M
run (2 units)
4
Figure 15.

Let us think of the segment FPQ as running from left to right, so that the run
is positive, If the segment rises, then the "rise" is positive and the slope,
or ratic of rise to run, is positive; if, on the other hand, the segment falls,
then the "rise" is negative, and the slope is therefore negative. The steeper
the segment, the lsrger is the absolute value of its slope, and conversely;
thus we can use the slope as 8 numerical measure of the "steepness" of a
segment.

We have stated that slope is not defined if Xy = X5 in this case, the
segoent lies on a line paryallel to the y-axis. It is impertant to distinguish
this situation from the case y, = v, (and X, # xe), in which a slope is
defined and in fact has value Q; the segment is then on a line parailel to the
X=8xis.

If & line is the graph of & linear function f: x-mx + b, then for any
x, and X, X, # X, the slope of the segment Jjoining (xl,f(x19 and
(xe, f(xea is, by definiticn,

f{x;) - £(x;)  (mx, + b) - (mx; + D) .
= = 2

I | - B |

in other words, the slope m is independent of the choice of Xy and X5

X

and is therefore the same for every segment of the line. Hence we may consider
the slope t{o be a property of the line as 8 whole, rather than of a particular
segment. We shall also simplify our language 8 little and speal of the slope
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of the graph of & function as, simply, the slope of the function. We see,
moreover, that we can read the slope of & linear functicn directly from the
expression which defines the function: the slope of f: x=tmx + b is simply
m, the coefficient of x. Thus, the slope of the linear function 1! x=+2x+1
is 2, the coefficient of x, and, similarly, the slope of g: x=- -5x is S

Since the slope of a linear function f: x=,mx + b is the number m # G
it follows that the graph of a linear function is not parallel to the x-axis.
Conversely, it can be proved that any line not parallel to either axis is the
graph of same linear function. We assume that this, also, is known to you from
pPrevious work, and the proof is iherefore omitted.

If the graphs of the functions i‘l: X=m x4 bl and 1‘2: X =+ mX + b2
reet, there must be a value of x which satisties the equation fl(x) = fg(x),
that is,

m,x + bl = WX+ be,
or
(ml - me)x = b, - b,
b2 -b
Ir my # m,; then the value x = rra— satisfies this equation, and the
€ 1

lines do indeed meet. If nm, = o, and bl = bE’ the functions £, and f

are the same, and there is oily one line. If m = m, and by F ;2, the °
egquat{on has no solution, and the lines do not meet. We conclude that lines
wvith the same slope are parallel, and that two lines parallel to each other but
not to the y-axis have equal slopes.

Note that lines having zero slope, that is, lines parallel to the x-axis,
are graphs of constant functions. On the other hand, lines for which no slope
is defined, that i}, lines parallel to the y-axis, cannot be graphs of any
functions because, with one value of x, the graph associstes more than one
value~~in fact, 11 resl vsalues,

Example 2. Find the linear function g whose graph passes through the
point with coordinates (-2,1) and is parallel to the graph of the function
fi1 x=+3x =5,

Solution. The graph of f {s & line with slope 3. Hence the slope of
g€ is the number 3, so that g(x) = 3x + b, for some as yet unknown b.

Since g(-2) = 1, thic implies that 1 = 3(-2) + b, b = 7, and thus
g(x) = 3x +7 for all x € R.
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1.

3.

9.

10.

11.

Exercises &

Find the slope of the function f if, for all real numbers x,

(a) £(x) = 3x - 7; () ar{x) = 3 - x;

() £(x) =6 - 2x; (d) 38(x) = 4x - 2,

Find a linear function f whoge slope is «~2 and such that
(a) £{1) = k& (e} £(3) = 1;

(b) £(0) = =7; (a) £(8) = -3,

Find the slope of the linear function f {f £{1) = -3 ané
(a) £(0) = k&; (c) £(5) =5;

(b) £(2) = 3; (a) £(6) = -13.

Find a function whose graph is the line Joining the points
(a} P(1,1), Q2,4); (e) P1,3), 1,8);

(b) P(-T:l*}: Q("S‘:O)i (d) P(l,li-), Q('E:h).

Given ! x=t=-xx + 4, $'ind 8 function whose graph i: parallel to the

graph of f and passes through the point

(a) P(1,4); (e} H1,5);

(b) ¥(-2,3); (a) P{-3,-4).

If ¢ is & constant function, £ind f£(3) if

(&) £{1) =5; () £(8) = -3; (¢) £(0) = 4,

Do the points P(I,S), Q(S,-l), and S{7,-9) all lie on & single line?

Prove your assertion.

The graph of a linear function f passes through the points P(100,35)
and Q(101,39). Find

(a) £(100.1); (e) £{101.7);

() £{100.3); (a) r(99.7).

The graph of a linear function { passes through the points 1(53,25)
and Q(54,-15)., Find

(a) r(53.3); (e} r(5h.4);

(v} £(53.8); (a) r(52.6).

Find a linear function with graph parallel to the line with equation
X = 3y +4 s C and passing through the point of intersection of the
lines with equations 2x + 7y + 1 =0 and x - 2 +8 = 0,

Given the points A(l,2), B(%,3), ¢{7,0), and I{3,-1), prove that ABCD
is a parallelogram.
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12. Find the coordinates of the vertex C of the parallelogram ABCD if AC
is a diagonal and the other vercices are the points:
(n) Al1,-1), B(3,4), D(2,3); (v) a(0,5), B{(1,-7), D{&,1).

13, If { 4is a real number, show that the point ®t + 1,2t + 1) is on the
graph of ! x~2x - 1,

14. If you graph the set of all ordered pairs of the form (t - 1,3t + 1)
for t € R, you will obtain the graph of & lineur function f. Find £(0)
and f£(8).

15. 1If you graph the set of all ordered pairs of the form (t -1 ,t2 + 1)

for t e R, you will obtain the graph of a function f. Find £(0) and
r(8).

16. If the slope of a linear function f is negative, prove that

f(xl) > f(xe) for x, < X..

1 2

5. The Absolute-Value INunction.
A function of importance in many branches of mathematics is the absolute-
value function, f: x=+|x| for all x € R. The absolute value of & number

describes the size, or magnitude, of the number; thus, for example,
{2} = |-2l = 2 (read |2| as "the absolute value of 2"). A common defini-
tion of |x| is the following:

Definition 5.

x, if x>0
x| =
-x, if x < 0.

A consequence of this definition is that no number has a negative abso-
lute value (-x 4is positive when x is negative); in fact, the range of the
absolute-value function is the entire set of non-negative real numbers.

A very convenient alternative definition of absolute value is the follow-
ing:

Definition 6. |x| = /x_e .

Since we shall make use of this definition in what follows, it is impor-
tant that you understand it, and you must therefore be quite sure of the mean-
ing of the square-roct symbol, Y. This never indicates a negative number.
Thus, for example, /?:§F§ = /5 = 3, not -3; Yx is nev - negative. It is
true that every positive numbter has two real square roots, ‘e of them positive
and the other negative, but the symbol Y_  has been assigned the Job of
repregenting the positive roct only, and if we wish to represent the negative

root, we must use a negative sign before the radical. Thus, for example, the
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number % has two square rocts, 45 and -45.
The graph of the absolute-value function is shown in Figure 16,

Yy
4

» X

Figure 16. Craph of the function f£: x=- |x].

You should be able to see, from the first definition of this function given
above, that this graph consists of the origin, the part of the line y=x
that lies in Quadrant I, and the part of the line y’'= -x that lies in Quad~
rant Il. )

There are two important theorems about absolute values.

Theorem 1. For any two real numbers & and b, |ab]| = |a] «|v].

Proof. la] + b = G2 A2, ngg? = fab)® = lab].

Theorem 2, For any two real numbers a and b, |a +d| < |a| + [p].
Proof. By Definition 6, Theorem 2 is equivalent to

J + 1) < VIR Jg— (1)

Now, if x and y a&are two non-negative numbers (i.e., positive or zero)
such that x <y, then x2 < yg. For, if x < y, we know that there is a non-
negative number, h, such that x + h =y, Then xg + Zhx + h2 = ye where
chx + h2 is a non-negative number. Hence xe < yE. On the other hand, if
x2 < _ye, it follows that x < y. JFor, irf x2 < ye, we have O < yg - xg =
(y + x}(y - x) and, since x and y are non-negative, so is y + x. 1In
fact, y + x is positive unless x = y = 0 and, if y + x is positive,
Y = » cannot be negative since the product of a positive number and a negative
nunber {s & negative number. Thus either x =y =0 or y - x > 0 so that
X <¥e In either case we have x <.

From these remarks and the fact that vac + b, Ja©, and Jo° are all

non-negative numbers, it follows that (1) holds if and only if

(a + b) = 8%+ 2ab + b° < 8% + o Ja #g_ +bo. (2)
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But {2) is certainly equivalent to .

Eabse/gufgg
so that we conclude that (1) holds if and only if

&b < Jat Yoo (3)

Now, inequality (3) is easy to prove. It one of & and b 1is negative
and the other positive, then 8b < 0 and J;E J€§ >0 so that (3) holds with

the <« sign. Otherwise
eb - Ja2 o2,

Hence, in any case (3) holds and therefore (1) holds.

Thus, for example, |{~2)(3)| = |-6] = 6=12.3 = |-2] |3},
(-2} + (3)] =1 <5 =2+3=[-2] +]3], and
[(-2) + (-3)] =5 =2+3=[-2] +[-3].

Exercises 2

1., {a) Tor what x € R is it true that J;§ = x%

(v) For what x ¢ R is it true that J;§ = -x7?
2, (a) For vhat x ¢ R is it true that |x - 1] =x - 172

(b) ror what x € B is it true that |x - 1] = -x+ 1

(¢) Sketch a graph of f: x— |x - 1}.

(d) Sketch & graph of f: x= |x] - 1.
3. Solve

(a) [x] = 14 (b) fx+2 =7; (¢) |x -3|=-1.
4, Yor what values of x is 1t true that

(a) lx-2l<1; (a) Jex - 3] < 0.0k ;

(v} |x -9 »>2; (e} |4x +5] < 0.127

(L‘) !x""h‘{ <Oc2;

2

S. Show that x x+ x| for all x € R.

by

6. Show that la - bl < |a] + |v].

it

7. Show that %(a +b + |a -b|) is equal to the greater of & and b.

Can you write a similar expression for the lesser of 8 and Db?

8. Sketeh: y = |x| + |x - 2{. (Hint: You must consider, separately, the
three possibilities x <0, 0 < x <2, and x > 2.) -

9. If 0« x < 1, we can multiply both sides of the inequality x < 1 by the

]
positive number x to cbiain x° < x, and we can similarly show that

2 2 L
“
X7 <X, x < x>

¢ 2 }
then |[x° + 2x] < 3{x|.

, and so on. Use this result to show that if Ix] < 1,

§
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10. Chow that, if O < x < k, then xe < kx. Hence, show that, if |x| < 0.1,
then |x° - 3x| < 3.1]x]. '

11, For what values of x is it true that {xg + 2x| < 2.00L|x|?

6. Composition of Functions.

Qur consideration of functions, to this point, has been concerned with
individusl functions, with their domains and ranges, and with their graphs. We
now consider certain things that can be done with two or more functions some-
what &5, when we start school, we first learn about numbers and then learn how
to cambine them in various ways. There is, as & matter of fact, & whole alge-
bra of functions, Jjust as there is an algebra of numbers. Functions can be
added, subtracted, multiplied, and divided. The sum of two functions & and

g, tor example, is defined to be the function
£+ g x— f(x) + g{x)

which has for domein those elements that are both in the domain of { and the
domain of g; there are similar definitions, which you can probably supply
yourself, for the difference, product, and quotient of two functions. DBecause,
for example, the number (i + g){x) can be found by adding the numbers f(x)
and g(x), it follows that tnhils part of the algebra of functions is so much
like the familiur algcebra of nunbers that it would not pay us to examine it
carefully. ‘here iz, however, one important cperation in this algebra of
functions that has no counterpart in the algebra of numbers: the operstlion of
composition. |

The basic idea of composition of two functions is that of a kind of "chain
reaction” In which the tunctions occur one after the other. Thus, an automo-
bile driver knows that the amount he deprecses the accelerator pedal controls
the amount of gauoline fed to tue eylinders and this in turn affects the speed
of the cur. Agauln, the momentum of a rocket sled when it is near the end of
its runwvuey depends on the velocity of the sled, and this in turn depends on the
thrust of the propelling rockets.

Let us look at a specific illustration. Suppose that I 1s the fuaction
Xx= 3x = 1 {thic might bte & time-velocity function) and suppose that ¢ 1s
the function x= ng (this might be & velovity-energy function). Let us
follow what happens when we "apply" these two functions in succession--tirst
f, then g--to a particular number, say the nunber 4., In brief, let us first
calculate £(4) and then calculate g(f(h)). {(Read this "g of 1 ot 4".)

First calculate (4}, Since t 1g¢ the function x=— x - 1,
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£(L) = 3.4 -1 = 11. Then calculate g(f(h)), or g{ll). Since g is the
function x = Exe, glll) = 2- 112 = 242, Thus g(r(h)) = g{11) = 242, In
genersl, g(i‘(x)) is the result we cbtain when we first "spply" f to an
element x and then "apply” g to the result. The function x-*-g(f(xa
is then called a composite of f and g, and denoted gf.

We say & composite rather than the composite because the order in which
these functions occur is important. To see that this is the case, start with
the number 4 s8gain, but this time find g(&) first, then f(g(h)). The

results are as follows:
g(d) = 2.4% = 32 and f(g(u)) = £(32) = 3-32 -1 =95,

Clearly g(f(&)), which is 242, is not the same as f(g(&)), which is 95,
Warning. When we write gf we mean that £ is to be applied before
g and then g is applied to f{x). Since f is written after g is written,
this can easily lead to confusion. You can avoid the confusion by thinking of
the equation -{gf'){x) = g(f(x)}.
It may be helpful to diagram the above process as follows: If gf is the
function x—'g(f(x)) and fg is the function x—*f‘(g(x)), we have

gf fg
4-—~i——pn——il—ar242 40 >3t 595

Note particulsrly that fg 1s not the product of f and g mentioned
eariier in this section. Wwhen we want to talk about this product, f-g, we
shall always use the dot as shown. Incidentally, for the above example, we
have (fog)(h) = £(4) g(h) = 11 .32 = 352 = 32.11 = g(h) . £(4) = (g £){L).
To generalize this illustraticn, let us use x instead of 4 and find

algebraic expressions for (gf)(x) and (fg){x). We do this as follows:
o
(e0)(x) = gfe(x) = al3x - 1) = 2+ (3x - 1)

(rg)(x) = f(g(x)) = f(Qxe) = S(Exg) S 1= 6x° -1,
Again, note that (gr)(x) and (fg){x) are not the same so the function

and

gf 1is not the same as the function fg. In symbols, gf # fg. If, now, we

substitute 4 for x we obtain
(gf)(4)

(£g)(k) = 6445 - 1 = 95,

These results agree with the ones we obtained above.

o(3 vk - 1)° = 2bp

and

bl

We are now ready to define the general p-ocess that we have been illus-

trating.

ol
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Definition 7. Given two functions, f and g, the function x=+g(s(x))
is called a composite of £ and g and denoted gf. The domain of gf is
the set of all elements x in the domain of £ for which f{x) is in the
domain of g. The operation of formming & composite of two functions is
called caomposition.

Example 1.  Given that f: x=+3x - 2 and g: x= % forall x e R,
find

(a) (g£)(x) (c) £{glx) + 3
() (££)(x) (@) £{slx) - £(x))
Sclutien.

(a) (af)x) = g(x)) = g(3x - 2) = (3x - 2)°

(b) (££)(x) = £(£(x)} = £(3x - 2) = 3(3x - 2) - 2= 9x - 8

(¢) rle(x) +3) = 20 + 3) = 3(x7+ 3) - 2=3x>+ 7

(a) r(g(x) -r(x)) - (X =3x+2) m3(10 ~3x+2) - 2=3% -9x + 4

If we think of a function as a machine with an input and an output, as
suggested in Section 2, we see that two such machines can be arranged in tandem,
so that the output of the first machine feeds into the input of the second.
This results in a "composite" process that is analogous to the operation of
composition. It is illustrated in Figure 17. In this figure the machine for
f and the machine for g have been housed in one cabinet. This compound

macaine is the machine for gf.

Ry

Figure 17. glf(x))
Schematic representation of the composition of functions.

Note that the machine for gf will jam if either of two things happen:

(a) It will jam {f a number not in the domain of ¢t 1is fed into the
machine.

(b) It will jam if the output £(x) of £ is not in the domain of g.
Thus, once again ve see that the domain of gf is the set of 8ll elements x
in the domain of f for which f£(x) is in the domain of g.

We have noted that the operation of composition is not comuutative; that
is, it is not always true that fg = gf. On the other hand, it is true that

t2p)
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this operation is associative: for any three functions £, g, and h, it is
always true that (fg)h = £(gh). We shall not prove this theorem; we shall,
hovever, illustrate i1ts operation by an example.

Example 2. Given It x--'x2 +x+1, g x=x+2,and hix—--X-3,

fin@
(a) tg; (e} (fg)n;
(b) gh; (d) £(gn).
Solution.

(a) (£g)(x) = {x+2)2+(x+ 2) +1=x2+5x+ 7, so
fg: x«'xg + 5x + 7
(b) (gh)(x) = (-2x - 3) + 2= -2x - 1, so gh: x= +2x -1
(¢) (fe)h: x=(-2x - 3)% +5(-2x - 3) + 7
(@) flgh): x=—{-2x - 1)+ (2x - 1) + 1
It is not altogether obviocus from these expressions that (fgih and f£{gh)
are the same function. But if you will simplify the expressions you will see

that they are indeed the same.

Exercises 6

(]
1. Given that f: x=+x" -1 and g: x—x+ 2 forall xe R, find

(a) (fg)(-2); (e) (f£g)(x);

(v) (gr)(0); () (ef)x);

(e) (ee)(1); (&) (rgdx) - (Fd(1)
(@) (£re)(1); x -1

2. let it be given that ¢t x=—a8x + b and g x—cx +d for all x ¢ R.
(a) rFind {fg)(x).
(b) Find {(gf){x).
(c) Cowpare the slopes of fg and gf with the slopes of f and g.
(d) Formulate & theorem concerning the slopc of 8 composite of two linear

tunctions.

1
3. Suppose that £ x—vi for all real numbers x different from zero.
{a) Find (r£)(1), (r£)(-3), and (£r)(8).
(b) Deseribve 1t camplctely.

h. let it te given that G x—=x and f: x=x+ 2 for all x ¢ R.
(a) Find tJ and Jr. (¥First find (£J)(x) for all x ¢ R.)
(b) Find & function g such that g = J. (That is, find g such that
(re)(x) = Mx) for all x € K.)
(¢) Find a function b such that hf - J.  Compare your result with

that ot (1),

Q 3 I3
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5, (a) If £: x=x° and g: x—#x3, find expressions for (fg)(x) and

(gr)(x).
(b) Ir £: x~x" and g: x—x", find expressions for {(fg)(x) and
(gr)(x).

6. (a) If &£ x= x° and g: x—-'xs, find an expression for (f- g)(x),

where f.g 1is the product ¢f f and g; that is,
(£-g)x) = £{x)g{x). Compare with Exercise S{a).

(b) It f£: x=>x" and g: x=x" forall xeR (where m and n
are positive integers), find an expression for {(f.g)(x). Compare
with Exercise 5{b).

7. Suppose that f: x—*x+2, g: x=*x -~ 3, and h: x=— xE for all
% € R. Find expressions for
(a) (r.g)x); (a) (gnhi(x);
(6) ((£+gn)(x); (e) {(m). (en))(x).
(e) (th)(x);
8. In Exercise 7, compare your results for (b) and (e). They should be the

same. Do you think this result is true for any three functions £, g,
and h that map real numbers into real numbers?

9. Would you say that f£(g.h) = {fg) . (fh) for any three functions f, g,
and h that map real numbers into real numbers?

10. State which of the following will hold for all functions f, g, and h

that map real numbers into real numbers:

$h + gh;
fg + fh,.

(£ + gl
f(g + h)

1

1l. Frove that the set of all linear functions is associative under composi-
tion; that is, for any three linear functions f, g, and h,

t{gh) = (fg)h.

7. Inversion.

Quite frequently in science and in everyday life we encounter quantities
that bear a kind of reciprocal relationship to each other. With each value of
the temperature of the air in an automobile tire, for example, there is .
asgociated one and only one value of the pressure of the air against the walls
of the tire. Conversely, with each value of the pressure there is associated
one and only one value of the temperature. Two more examples, numerical ones,

will be found below.

)
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Suppose that £ is the function x=ex + 3 and g 1is the function
X=*Xx = 3, Then the effect of f 1is to increase each number by 3, and the
effect of g is to decresse each number by 3. Hence { and g are recip-
rocally related in the sense that each undoes the effect of the other. If we
add 3 to a number and then subtract 3 from the result we get back to the
original number. In sywbols,

(g£)(x) = g{t(x))

Ll

glx +3) = (x+3)-3

1
tod
L

Similarly,

ft
»

(rg)(x) = f(g(x)) £f(x = 3) = (x-3)+3

As 8 slightly more complicated example we may take

f: x=»2x -3 mdg:xﬂ&%i

Here f says, "Take a number, double it, and then subtract 3." To xeverse

- this, we must add three and then divide by 2. This is the effect of ithe

function g. In symbols,
(gr)(x)

s(f(x)) = g(2x - 3) = (2 '23} * 3 x.
Similarly,
{(rg)(x)

£(g(x)) - f(%i) = 2%} - 3= x.

In terms of our representation of & function as a machine, the g machine
in each of these examples is equivalent to the f machine running backwards;
each muchine then undoes what the other does, and if we hook up the two ma-
chines in tandem, every element that gets through both will come out jJust the
sane as {t originally went in.

We now generalize these two examples in the following definition of
inverse functions.

Definition 8. Ir f and g are functions so related that (rg)(x) = x
for every element x in the domsin of g and (gf){y) =y for every element
y in the dumain of 1, then [ and ¢ are sald to be Ilnverses of each other,

In thic case both f and g are sald to have an inverse, and each i5 said to

be an inverse of the other.
As 8 further example of the concept of inverse functions let us examine

the tunctions f£: x = x° and £: X= 3&. In this case
(tg)(x) = f(g(x)) = f(jJ§) = (3J§)3 = x
(e)(x) = ee(x) - glx®) = - x

and

for atl x « K.
Ir a function 1t takes x into y, that is, it y = £(x), then an

inverse g ol § must take y right beck into x, that is, x = g(y). I

we make a pieture of a function as a mapping, with an arrow extending from

e
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eack element of the domain to its image, 85 in Figure 18s, then to drav &
picture of the inverse function we need merely reverse the arrows, as in Figure

18

. X, ) X, |
N,‘ [\4)"
" :><l:’ ><:ly
s Xy
k | A "
A B .

Figure 18a. A function. Figure 18b. Its inverse.

We can take any mapping, reverse the arrows in this way, and get a
mapping. The important question for us, at this point, is this: If the
original mapping is a function, will the reverse mapping necessarily be a
function alsoc? 1In other words, given a function, does there exist another
function that precisely reverses the effect of the given function? We shall
gee that this is not always the case.

The definition of a function (Definition 1) requires that to each element
of the domain there corresponds exactly one element of the range; it is per-
fectly all right for several elements of the domein to be mapped onto the same
element of the range (the constant function, for example, maps every element
of its domain intc one element), but if cven one element of the domain is
mapped {nto more than one element of the range, then the mapping Just isn't a
function. In temms of a picture of a function as a mapping (such as Figures 1
and 3), this means that no two arrows may start from the same point, though any
nunber of them may end at the same point. But if two or more arrows go to one
point, as in Figure l%a, and if we then reverse the arrows, as in Figure 19b,
we will have two or more arrovs starting from that point {(ac in Figure 2), and

" i{s used to

the resulting mapping is not 8 function. Since the word "inverse
desccribe only & mapping which is & function, we can conclude that not every
function has an inverse. A specific example is furnlshed by the constant
function r: x-=+3, since 1{(0) =3 and f£(1) = 3, and inverse of f would

have to map 3 onto both O and 1. By definition, no function can do this.




"% ’?l"t e J’*
l | l |

Xg | Xy |
| ' '}
| ' A h
A 8
Figure 19a. Figure 1Gb,

The preceding argument shows us just what kinds of functions do have

inverses. Ry comparing the situation in Figures 18a and 18v with the situation
in Figures 15a and 19b, we can séé that a function has an inverse if and only
if no two arrows go to the same point. In more precise language, a function f
has an inverse if and only if Xy # x, implies f(xl) ¢ r(xa). A function of
this sort is often called & "gne-to-one" function. A formal proof of this
theorem will be found in the next section.

3.

Exercises 7

Find an inverse of each of the following functions:
(&) x=ex - 7; (b) x=»5x + 9; {c) x—*-:‘;-

Solve each of the following equaticns for x in terms of Y and compare
your answers with those of Exercise 1:

1
(8) y=x=1; (b) y=5x+9; (c) y=3.

Justify the following in terms of composite functions and inverse func-
tions: Ask someone to choose & number, but not to tell you what it is.
"Ask the person who has chosen the number to perform in succession the
following operations. (i) To multiply the number by 5. (ii) To add

6 to the product. (11i) To multiply the sum by 4. (iv) To add 9 to
the product. (v) To multiply the sum by 5. Ask to be told the result
of the last operation. If from this product 165 is subtracted, and then
the difference is divided by 100, the quotient will be the number thought
of originally." (W. W. Rouse Ball)
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8. One-to-One Functions.

Defrinition 8 leaves unanswered one important question: Can a function
bave more than one inverse? That is, if £ and g ave inverses of each
other, does there exist & function h # g such that f and h are also
inverses of each other? As you might suspect, the answer is no, but we shall
not prove it here. Consider, however, & picture of 8 function as a napping,
with arrows going (as in Figure 18s) trom points représenting elements of the
domsin to points representing elements of the range. To represent the inverse
function, we merely reverse the direction of each arrow, ss in Figure 18b. It
seems intuitively clear that there is only one way to do this.

The fact that & function can have at most one inverse Justifies our use
of a distinctive notation for functions which are inverses of each other. If
f and g are such functions, then we can say that g 1is the inverse of ¢
and wvrite g = 71, We resa ™t
£ = g-l. Thus, (f-l)-l = f.

‘Warning. Although the notation £+ is strongly suggestive of "1 divi-
ded by ", it has nothing whatever to do with division. All it means is that

(££78)(x) = x ana (£71)(y) = y. {

We now prove the basic theorems which relate to the existence of inverses.
Theorem 3. If a function £ has an inverse, then f(xl) # f(xe) vhen-
ever x, and x, are two distinct elements of the domain of f.

as "f inverse". Similarly we can write

Iroof. We shall prove this theorem by assuming the contrary and then
deriving a contradiction. Hence we assume that f(xl) = f(xe). From this we
see that f-l(f(xl)) S f-l(?(xQZ). Now, f-lf(xl) = x; and f-lf(xg) = X,
so 1t follows that Xy = Xpe But the elements Xy and x, are supposed to
be distinct (i{.e., X £ xg). This contradiction proves the theorem.

A vivid expression is used to describe funetions £ for which
f(xl) # f(xg) whenever x, £ X,. This is the expression "one-to-one". If a
function has an inverse, then by Theorem 3 it is one-to-one. Note that in this
case the equation f(xl) = f(xe) implies that x, = x..

We point out that the idea of & one-to-one function is fundamental to the
process of counting a collection of objects. When we count & set of things we
associate the number 1 with one of the things, the number 2 with another,
and 50 on, until all the cbjlects have been paired off with whole numbers., We
do not give the same number to two different obJjects in the collection. In
short, this "covnting" function is one-to-one. As ancther example, suppose
that there are 300 seats in a theater, and suppose that each seat is occupied

by one and only one patron. Then, without counting the people, we can conclude

that there must be 300 people sitting in these seats. These two examples
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deal with finite sets. On the other hand, the idesa of & one-to-one function is
fruitful even when the sets invelved are not finite. Indeed, most of the
applications deal with sets of this kind.

Now that we knouw that every function which has an inverse is one=-to-one,
it i35 natural to ask if the converse is true. Does every oneeto=one function
have an inverge? You might guess that the answer is yes. This is the content
of Theorem 4.

Theorem 4. If f is & function which is one-to-one, then £ has an
inverse,

Proof. Using the hypothesis that f 15 one-to-one, we shall construct a
function which will turn out to be f-l. Given an element y of the range of
f, then, since f is one-to-cne, there exists oune and only one element x in
the domain of f such that y = f(x). Now, associste the element x with the
element y. This association defines & function g: y=— x. The domain of g
is the range of f and the range of ¢ 15 the domain of f. Finally, since

(rg)ly) = £({x) =y
and

(gr)(x) = gly) = x,
we see that f and g are inverses of each other. Therefore { has an
inverse and f-l = g

Definition Y. A function { is sald to be strictly increasing if its

graph is everywhere rising toward the right; if, that is, for any two elements

and x, of the domain of f, x; < x, implies f(xl) < f(xe).

An important corollary of Theorem 4 concerns strictly increasing functions.

X1
Corollary. A function { which is strictly increasing has an inverse.
Proof. If Xy

either x, < x,, in which case f(x,) < f(xg) by hypothesis, or x

1 2
which case f(xe) < f(xl}. In either case, f(xl) § £(x,). Hence £ is one-

and X, &are any twe elements of the domain of £, then
&
< Xy in

to-one and therefore has an inverse by Theorem 4.

A similar result holds for strictly decreasing functions; see Exercise 5.

Theorems 3 and & provide an answer to owr first question, which was:
Under what circumstances does a function have an inverse? We summarize this
answer in Theorem 5.

Thecrem 2. A function hac an inverse if and only if it iz one-to-onc.

As we might reasonably expect, there exists a rather simple relationship
between the graph of a function f{ and the graph of its inverse f-l. 1f,
for example, r and 5 are ral nurbers such that r = £{(s), then ¥{s,r)
is, by detrinition, & point of the graph of f. MRt if r = £(s), then
5 = f‘l(r), and it follows, again by definition, that Q(r,s) is a point of
the graph of f-l. Since this argument is quite general, we can conclude that,

(Y]
n
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for each point F(s,r) of the graph of f, there is & point Q(r,s) of the
graph of r'l, and conversely; either'graph can be changed into the other by
merely interchanging the first and second coordinates of each point, To pic-
ture the relative positions of P and Q, we should plot a few points and
contesplate the results. (See Figure 20, in which corresponding points of
each pair Fs,r), Q(r,s) bave been joined together.)

¢
Py3,5) ¢
Q(5,3)
P{1,2)
G Q2,n
Q(~4,0)
P{i-1)
P(0,-4)
Figure 20.

The presence of the line L = {{x,y): y = x} illustrates & striking
fact: ﬁith respect to the line L, corresponding points are mirror images of
each other! Thus we see that the graph of the inverse of & function £ is
the image of the graph of f in 8 mirror placed on its edge, perpendicular to
the page, ulong the line L. This fact suggests the following (messy) way to
obtain the graph of £ © from that of f. Merely trace the graph of f in
ink that dries very slowly, and then fold the paper carefully along the line
L. The wet ink will then trace the graph of £+ automatically. (See Figure
21.)
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Figure 21.
Exercises 8
Find the inverse of each of the following functions: '
(a) x=slx -5; (v) x-‘%-*ss (¢) x=x° - 2.

Solve each of the following equations for x in terms of y and com-
pare your answers with those of Exercise 1l:

(a) y =ix -5; (v) y-%+8; (e) y-x3

'2-

Justify the following in terms of composite functions, inverse functions,
and functions which associate integers with ordered pairs of digits. "A
common conJjuring trick is to ask a boy awong the auydience to throw two
dice, or to select at random from a box a8 domino on each half of which is
a8 pumber., The boy is then told to recollect the two numbers thus obtained,
to choose either of them, to multiply it by 5, to add 7 to the result,
to double this result, and lastly to add to this the other number. Fram
the number thus obtained, the conjurer subtracts 14, and obtains a number
of two digits which are the two numbers chosen originally." (W. W. Rouse
Ball)

We know that each line parallel to the y-axis meets the graph of & func-
tion in at most one point. For what kind of function does each line
parallel to the x-axis meet the graph in at most one point?
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5. A function £ is said to be strictly decreasing if, for any two elements

x; and x, of its domain, x; <X, implies r(xl) < f(x2). Prove that

every strictly decreasing function has an inverse.

6. (a) Sketch a graph of f£: x-*-xe, x € R. Show that f does not have
an inverse.

(b) Sketch graphs of £ x«-xg, x>0 and f

determine the inverses of fl and fe.

(c) wWnat relationship exists among the domains of f, £, 80d f2 (fl

is called the restriction of f to the domain {x: x> 0}, and ¢

is similarly the restriction of f tc the domain {x: x < 0}.)

2: x*xg, x < 0, and

2

7. (a) Sketch & graph of f£: x—-x/i: - x: and show that f does not have
an inverse.
(v) Divide the domain of f into two parts such that the restriction of
f to either part has an inverse.

8. Do Exercise 7 for 1 x--*.x2 - Lx,

9. Divide the damajn of £f: x-— x3 - 3X 1into three parts such that the

restriction of f <to each has an inverse.

9. Functions as Sets of Ordered Pairs.

Our first example of & function was f: x—2x, x =1, 2, 3, 4. We
have f£(1) = 2, £f{2) = 4, £(3) = 6, and £(&) = 8, It is often useful to
indicate this correspondence between the elements of the domain of 8 function
(here, {1, 2, 3, 4}) and the elements of the range (here, (2, &, 6, 8}) by
-writing down the pairs (x,f(x)). Thus in our example we have the set of pairs

((1,2), (a,4), (3,6), (4,8)}.
learly the order is important in these pairs; (2,1) is not a proper pair
far our function f although (1,2) is. We call pairs of numbers (a&,b) in
which the order of the elements is to be considered, ordered pairs, and con-

trast them with sets where, for example, {a,b} = (b,a] --order is not signif-
icant.

If our domein is not a finite set we cannot, of course, list a1l of the
ordered pairs associated with the function but we can use our set-builder nota-
tion to indicate symbolically sll such pairs. Thus if we have f: x~— 2x
wvhere the domain of f 1s the set of all real numbers, we may write for the

associated set of ordered pairs

{{x,2x): x € RJ.
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Similarly, if we have I: x=»x" where the domain of t 1is the set of all
integers, the associated set of ordered pairs is

{(x,xg): X an integer}.

We see that to every function is associuted 8 set of ordered puirs. Is
it true that, ceonversely, a function may be associated to every set of ordered
pairs by defining £ as f: first member of ordered pair, second member of
ordered pair? The example

{(1,2), (1,3)]

shows that the answer is "no" since we would have 1= 2 and als . — 3,

contrary to Definition 1 where we required that exactly one element of tue
range of a function be associated with an element from the domain.

If, however, ve consider only sets of ordered pairs in which any two pairs
that have the same first element also have the same second element, it is clear
that we csn s0 define 8 function corresponding to this set of ordered pairs.,
Thus

((1,5), (2,3), (1,5)]

describes the funetion f with domain {1,2] and range (5,3] where 1=—5
and 2= 3%, {There is, of cuurse, no need to list (1,5) twice. We have
(1,50, (2,3), (1,5)) = ((1,5), (2,3)).)

In fact, methematiciuns sometimes define a runction as a set of ordered
palre in which whenever two pairs huve the same first element they alco have
the same second element. Thus, for example, instead of writing f: x-=+ 2%,
X ¢ B they write

£ = {(%,2%): x ¢ R},

We have indicated that it is easy to rass from looking at a function as a
correspondence or mapping to cousidering it as z certain kind of set of
ordered pairs and conversely. Which approach is used is simply a matter of
convenlence; we use whatever upproach seems most useful for our purpoces.

From our discussion of inverses of functions in terms of one-to-one func-
tious it {s easy to see when a function, &8s a set of ordered rairs, has an
inverse; we simply requird that whenever {wo ordered peirs ol our function have
the came second element, they also have the sume {irst element. Thus the

function
= {(ljj)) (‘\,_‘j)}

has no inverse since (1,3) and (0,3) have the same second element but
different first elements, By Theorem 5, the same conclusion would be reached

If we repgarded  as the mapping 1=+ 3 and =3 since we would then have
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£(1) =3 and £{2) =3 but 1 # 2; i.e., the mapping is not one-to-one.
If s function does have an inverse it is easy to cbtain it in the ordered-
pair approach; we simply reverse the order in the pairs. Thus if

= {(1,5), (2,3))
we have -1
£ = ((5,1), (3,2}
ir
£ = {{x, ¥): x e R)
ve have

£t . {(3&,::): x € R}
or, letting y = 3& so that y3 = X,
£ - (y,y)): v e Rl

Exercises 9

1, wWrite the following functions, defined as mappings, as sets of ordered

pairs:
(a8) f: x=--3x -1, xe¢ {0, 2,5}; (ec) £: x—2, x an integer;
(b) f£: x=+ x3, x € R; {(a) f£: x=»x, x €R.

2. Write the following functions, defined as sets of ordered pairs, as
mappings:
(a) {{0,1), (2,3), (4,5)};
(b) {(x,/x): » & positive real number} ;
{¢) {{x,-1): x € R};
(d)  {(0,=2), (~1,4), (5,15)} .

3. Which of the following sets of ordered palrs represent functions and
which do not?
(a) ((2,3), (5,1), (6,1), (3,2)};
(v} ((1,8), (2,3), (3,2), (2,5)];
(¢) ((-1,1), (3,-2), (0,0)};
(¢) ((-1,2)}.

L., Whi:h of the functions of Problem 3 have inverses? For those that do,

write the invérse as & set of ordered psirs.

5. Do ac in Problem 4 for the functions of Problem 2.
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10. Summary.

This chapter deals with functions in general and with the constant and
linear functicns in particular.

A function is an association between the objects of one set, called the
domain, and those of another set, called the range, such that exactly one
element of the range is associated with each element of tke domain. A function
can be represented as a mapping from its domain onto its range.

The graph of a function is often an aid to understanding the function. A
graph is the graph of & function if and only if no line parsllel to the y-axis
meets it in more than one point.

A constant function is an assocciation of the form f: x=- ¢, for same
fixed real number ¢, with the set of all real nuwbers as its dcomain. The
graph of a constant function is a straight line parallel to the x-axis.

A linear functlon is an association of the form f: x - mx + b, umw# 0.
The domain and the range of a linear function are each the set of all real
numbers. The graph of a linear function is & straight line not parallel to
either axis, and, conversely, any such line is the graph of some linear func-
tion.

The slope of & line through }(xi,yl) and Q(xe,ye) is

Yo~ 9

2" %
it X, # X5e If X, = X,y 1O slope is defined, and the line is parallel to the
y-axis. Lines with the same slope are parallel, and parallel lines which have
slopes have equal slopes. The slope of the graph of the linear function
f: Xx=+mx + b Is the ccefficient m; this nunber is slso called the slope of
the function.

>
The absolute-value tunction is conveniently defined as f: x— /x“. The

—

domain of this function is the set of all real numbers and the range is the
set of all non-negative real numbers.

If t and g are functions, then the composite function fg 1is
fg: x=f g(x) , with domain all x in the domain of g such that g(x) is
in the demain of f.

Given & function f, if there exists a tunction g such that (gf)(y)=y
for all y in the domain of f and (fg)(x) = x for all x in the domain
of g, then g s an inverse of f. Not sll functions have inverses. A
necessary and sufficient condition that a function have an inverse is that it
be & one-to-one functlion; i.e., & tfunction f such that f(xl) # f(xe) 1f
x, # %,

A function may also be considered as 8 set of ordered pairs in which it

twvo pairs have the same first element they also have the same second element.
38
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2,

Miscellaneous Exercises

Describe how tc obtain the camposite, fg, of two functions f and &
when the functions are considered as sets of ordered pairs.

Which graphs represent functions? Which of these functions have inverses?

& A

va) (c) (e)

What is the constant function whose graph passes through (5,2)%

For what values of 8, b, and ¢ will f: x= axe + bx + ¢ bea con-
stant funetion?

What is the constant function whose graph passes through the intersection
of LI: y = 3x - 2 and LE: 3y - bkx +5 = 07

At what point do Ll: y =ax + 4 and Lys ¥y =5x+Db intersect? Do

they always intersect?

Write the linear functions fl and f2 whose graphs intersect the x-axis
at P(-3,0) at angles of 45° and -45°, respectively.

If 10x+y - 7 =0, what is the decrease in y as x increases from
500 to S05%7 Wwhat is the increase in X 8as y decre.ses from -5C0

to 507

Write the equation of the line through (0,0) which is parallel to the
line through (2,3) and (-1,1).

o~
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1.

12,

13.

1L,

15.

10.

18.

19.

20,

Write the equation of the line which passes through the intersection of

le y=6x+k and L y = 5x + k and has slope % .

o
Write the equation of the line which is the locus of peints equidistant
from Ll: 6x + 3y = 7 =0 and LE: ¥y = =25 + 3.
write the equation of the line through (8,2) which is perpendicular to
{has & slope which is the negative reciprocal of the slope of)

Ll: Y = x + 3,

In & manufacturing process, & certain machine requires 10 minutes to
wvarm up and then produces y parts every t hours. If the machlne has
% hour and 95 parts after ruaning
l% hours, find & function f such that y = f(t), and give the domain
of ft.

produced 20 parts aftter running

Ir AKCD is a parallelogram with vertices at A(0,0), B(8,0), c(12,7),
and D(4,7), find

(a) the equation of the dingonal AC;

(b) the equation of the diagonal BD;

(¢) +the point of intersection of the diagonals.

Repeat Problem 1k, using parallelogram ABCD with vertices at A(0,0),
B(xl,O), C(xg,yg)) and D(Xg = xl.! YE)‘

Given the constant furctions f: x=a, g: x=+b, and h: x=c,
determine the compound functions 1(gn) and f{hg). Does this result

indicate that gh = hgt

Find an inverse of the linear functicn 't x=—mx + L.
Find & tunction £ such that It = 1.

Sretch & graph of':
(a) (x) = iiL‘

X i
(b)) Ix] o+ Iyl =13
(e) y =[x =1} - fx=+1}.
Ir t(x) = 0ox - Hoooand g(x) = 3x + k, determine = so that 'y - ¢f,

/‘w fr——

Ir £(x) = x° and glx) = Y6 - xL, find the domains of 1y und g1
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Suggestions for Further Reading

Allendoerfer, C. B., and Cskley, C. O.

Fundamentals of Mathematics. New York: MeGraw-Hill
Book Co., 1959. Chapter 9. Defines funcetion in
terms of ordered pairs and gives many exauples
of functions.

Brumt'iel, C. F., Eicholz, R. E., and Shanks, M. E.

Algebra II. Reading, Mass.: Addison~Wesley Publish-
ing Co., 1962. Chapter 6. Begins with a discus-
sion of sets and relations. After defining func-
tion in terms of ordered peirs, the authors empha-
size the mapping approach and consider the concept

of & continuecus functlon.

Evenson, A. B,
Modern Mathematics. Chicago: Scott, Foresman and Co.,
1962. Chapters 5-6. A quite detailed discussion

of functions. Chapter 5 discusses the more general

concept of "relations'; Chapter 6 begins with the
ordered pair approach and then moves to the mapping

vicwpeint.

Rose, J. H.
Algelra. New York: dJohn Wiley and Sons, 1ub3,

Chapters 1-2. Chapter 1 1s on sets. Chapter &
discusses functions as mappings.




