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Ih'rarts=I and II (Hannan 1978a,b re have atgued that-soci

studies of changes in:me_ritariables shold be modeled as .sto

differential equations; WeLhave shown that. at leas for 1

can obtain" explicit solutions

no obvious impedimenis

conventional paneT data

pibbabiiity:densiti

estimating the parameters of

now' tiltn',att,eation to the

this strategy. But we,-;cannot b

,literature. Whi the problem

actical detai

s,odirectly fro

of est mating SDEls has

--J

studled,
1

almost all work has considered time
4

focus on panel analysiS, we .must mod fy the usual st

begin. b'y considering.tWo broad approaches to

sere

9

E's.- One involves estimating structural
1

parameters dire tly, from

integral equations; the second uses discrete approximations. We argue fo

the former strategy anO,outline
'

obvicius maximum likelih od estimation

approach in. the panel context.- -In any realistic application of the
A

meth- we propose, disturances'will,be autbcorrelted, The problem of
. a

autocorrelation stands as the major obstacle' to.soUnd infe enc concerning

dynamic models We thus dev6tOconside -bi- attention his omplication\

specially in the-:context of estimation from pooled crosssectio and

time series designs.

After presenting the large sample estimation theoryi turn

Monte Carlo evidence on the small Sample p, ropertie4 of the pooled estmators

we

we use
4

n particular we contrast the performance,of maximum likelih

d heperalized least squares estimators.

In the final section we raise a very impoTta Pra4ical,problem:

unequal spading o_f observations. Virtually all methodological on



,paeel analysis dasume

tha sociologists often o

it is importentyta extend_ .

advantages of' 'using
=

treatment of ."unequally add data.

t.data are *gually spaced.' ime. We suggest

Ain data with much less re Ularapacing.

our strategy to such cases. One of the main
. _

Thus\

continuous time-models is that they permit systematic

Illustrate his -advantage

how maximum likelihood estimators may be adApted to

1- Twa Approaches

We begin with broad strategic considerations.
?

d show

handle unequal spacing.

lysis a iiitegral-

equations for the purpose of eblaininglestiMated of,dynamic as

etched P4agnen-(1978a) hai obvious appeal. This strategy highlights

conneatian betwpe the mathematical model and the,sta istical Model.

iso permits' use of .standar=d estimation techniques The strategy has

one drawback that in

he\case of sy!tms

ete-rs in estima

'equations

tances limits its 'value sharply..

it -is difficult to impose constraints
, 7

xdmple that theory implies

x of parameters_of the endogenous-

ion. Suppose;

that onu the ntrieS in 5,the:Matr

portion o the syst- is_zero

using data generate stima

constraint eStImation% One

,

The eienvalue-igenvector .approach for

a does net permit us to, use this

p

parameter olknar/rn"

'Will be less, than

general rule that

'larger variance than her-consistent estimators-that use them.

This 1imita iOn has motivated statisticians

consequence is non-zeta estimates

Moreover, estimates of-othe

.

fullyafficDnt.i., The. latter is ljuS an instance of

imators. that ignore constraintsc nsisten

econamet-ician§ to

seek - e,ffic ent estimators. Most attention -has focused on so-called

exact dlsrtete

-This

approximatio antic d erential equations.

rategy eplaces L e continuous -time model'with a discrete-time



nalogue

) Obnver

a paraMeter &hat,,c when made 'sufficiently smal

he.proper ckintinuovs-time model. The advantage

-t-

onptrainps on parameters may be employed routinely.
.

_

of th a

(pea n
r.

estimate

del.

Ekact, se ete
/ 4

Me series eta

bel dat4. Ek e

do nos' attcmt sd h

etely on contlnuous-time modelingsince the

-ed.Aan approximation to the caWtinuouS -time

oxiMation Ftima s have beeh develOped and appl

gergstrnm 19764-bUt not, tognir knowledge, to

to panel dpplfdations apppar,not to be trivial.

I'

an enioi gage but continue tocfocus on the

equatio directlx. most important
7

concerns the spacing of observationS.--TheconsideratiOn-in thi

"exact disc-rete,ap oxtmatbon" pproach requires:equally,apaced observations.._

ajsse of sociological re -ar'oh.

We .ehoos _etc) ret the cost of efficieney in
s.

estimation. As lo as we use reasonably' large qampler, the price should

not be too high. However, when systems of equations are to be estimated

frOm equally space data oh small samples, it __ worth Investigating they;-
7

alternative approach. 7e do not pursue this problem here.

2. Sin uation Models

Ih' Par we treated the following simple extension

where

stochas

adt bY dt,± cXd ad

is normal Brownia

t

the OH proses

--ion. This model may ;.considered as

(1)

is negative feedback or linear pgrtia adjust-ent odel with a

single (eons exogenous Variable. As we inditated in the last chapter,
4

on (with initial 'condition Y(0) = Y_)



all N units :olio

Y.(t-)

.the same process, we may:write

entities at

+ b Yi,(0) + c X. +Z.(t) (i - 1

are availab

(4)

As long as the disturhAnce process de is indenndent from observation
ti,

)

to observation, that the 8 are independent and lentically

distributed, this model:may be`analyd by ordinaryleast squares (OLS).
c

In factt, under the generalized Gauss-MA- koy theorem OLS is a best lineaE

* * *
unbiased (BLUE) estimator of a , b , c , and lhat is, among the clasS

of linear unbiased estimator it has smallest yarianc Since the

disturbances' are normally distributed OLS is identical- to maximum likelihood,'
e

-*
This fact'considerably simplifies the probloem of using a b

*
c to

estimate the structural parameters a, and

Maximum likelihdod estimat -s hay tton- invariance property:

monotonic '(i e., order-preSerying) iunttions of MLE are also E.

,:comparing b

a.

and b In (2) and (4)',we see

(5)



Consequently S =-1n
At

ML. This fact does not hold

V

is a maximum likelihood es

when OLS. i mit IL)

ator as for as
,

enerally for least s44ares estimators

Least sqtares estimators retain consistency

under nonlln transformations but lose4aOmptotic efficiend
:.'.

)

lic

In much subStailtive work he exogenous variables will, not be
41/

time. .The solution, of the, differential equation innrolves
Ii a

constant

terms of the form

over

7
(vee gennan 1978a)

A

f(s)ds

e function of i e Coleman (1968) remarked that do on

1

sefent prctice when a,unknown is to assume that the
-,,

a
exogenous variable(s) change

equation has4he for
r t

inparly over Arne. Then the integral

sae 10.14):

Y(t) =-a b Y c ;LA
0 2

which ma e analmd,-by'OLS or ML. Of course, __e
o

,,

ing dynamic behavior exogenoUs ariables give different
- ; . , ,4 ,

hypotheses concern-

equations.

dynamics

stimation'

This matter may- ot e treated mechanically. . After all, the

the outcome variable mast4epend on the _ --_a_
.,;

, variables. Unless
x
we specify the latter WelL(wa cannot have much hcpe of

doing a good j'ob with the former; 'Nonetheless, for psi iplicity we focus
4

attention an the simplest assumptions concerning f(s).)

-.---4\.Systems 'of Equations ft

it

Next consider the Ample linear sys

dY1 = a dt + b Y -(t)dt + b

c,:dt L,

ilYtc(t ) = aKdt + Y (c)dt dt +
1 1

Xdt



where th%- f3ke " are inaepen Tent norm_ n motion processes.

We expreSs this syseem more compactly as

dx(E) ads EX EdI3 (7)

where E oI, I is a K hy idehtity matrix. In PartII (Hannan 978b), we

saw that (7) ,e in egrated with initial condition y( yield

e-BAt

kik'

re I is a K by K identity Matrix. Since the disturbances are independent

c(t) has a simple structure Each
k
(t) is

and E [t E 0 for Thus the linear

(8)

Brownian motions
2

N(Cft,
.a

, ,k- Ore
2b

2bk

system a

/(t) a + B c u t E(t
4

(9)

has independent" disturbances . It is, in fact,, a recursive system e do

not need "simultaneous equations estimators "). Again OLS and MI are

equivalent. They give asymptotically

of. a B c , and d

biased arta' effi\cient estimators

There employ the eigenvalue-eigenvector method of Pa I, Section-5'

to estimaVo 13 from B . It is,'thee

of and c from ate, E and B. We may also, if we wish, calculate standard

errors of =these parameter vectors from the estimated s'tanda d errors of

simpleproblem in 'algebra to recover

N

. All these calculation may be done with any of a set

widely available computer rouriAes for extracting oisenvec, s and
z-

Pnvalties.



, . .

h systeacase po _sonly,dne new inference issue, raised'at,the-
.o ,

. ,

The procedue
/
ye u*se, does noCIellipl.oy constraints parameters in16.

.

esult, fully. efficient when such ct

_ $

have'have,not yet mentioned the practical complication that pervades' most
I

. discusStons of temporal autocorrelation of, disturbances. Wide

is are appropriate.

experience reveals that factors iteed from:our models are at least

moderately stable 'over time. As a resit disturbances tend to be correlated
A

a

over time. When ddsturbances are autoCorrelated- (i.e.,'correlated over time),
4 4,

the eftcts of omitted variables are usual45, confounded. with the. e fects of, 4-4

\

'he lagged' dependent variables(s) Y This is a standard problem in panel'

analyai Unless autocorreln

good estimate's

n is handled properly, we will not obtain

If dynamic parameters. The problem is particularly

with continuous time models in twhich all paramete

since antocorrelatioapartic larly affects.

1972; Hannan and Young 1977).

Although. we suspect autocorrelation in 'practir i,applica--
)

tions, the' sroH = developed .s o far does n reflect this. Recall

severe

estimates depend °ni-
p-,

imates of B (see Johnston

t

,

that is a Brownian motion process mirh' independent increments. Thus

the increment in soCeessive periods are independent(thls is not true

in gene's Markov processes as we

modify the model

a systematic mad

eomplicA

asked -in Part IV.. o we must

to deal wifh the autocorrelation prObleM in
,

the random forcing function, relaxing the independent

S to introdLice individual-specincrements assumption. The,alternativel

V.



rame rs- (effects of Lable individual characteristics) into th

atdchas differential equation.

pf cOurse,,tbj.e two strategies may be combined.
*v.

contrast the substantive interpretations that fit one or thapother.

134t it is useful to

The strategy .of introducing unit-specific,effeces'fits weIJ those circum-

stances in which the omitted causal variables

over the study period. en the omitted

study period, the Alternative

work has relied, on the

outlining this

are approximately constant

flahl- change greatly over the

procedlmse is called foi Our substantive

unit-specific effect. approach. Let us begin by

roach. Once we have done so, we,will be in a better

poAitiori to clarify the nature of the alternative procedy

5. Unit-Specific Effects

Suppose that the-,N unit _under study change according to the same general.

process (7) but that each-unit has a distinct "constant" rate of change.

In the study of individual careers these constants' might. include

physiological characteristics (e .g, energy, lever, enduring features .

of 'personality, status origins, ethnicity, 1 in gla- is ti c styles, etc

In studies of anizations, they would include material- infrastructur
*

characteristics physical arramgedents tile features-of work

technology, long-standing political alliances,

'members etc. For each unit, summarize the effects of all such stable
77\

ultural attributes of

IP I

omitted variables as a si gle quan k
or the i unit ia the kth

i

equation). In other words, each .unit has its .own dynamic .process (due to

the mik) but the remaining parameters are constrained to be the same fet all

A

units. Tin we must consider the system of NK equations:
1

. ,yt k

10



or, equivalently:

dY(t) i'dt + Mdt BY (t

'wtiere- is an 1 by N vector ones.

dt + + Z

The.system of equations in .(i1) has solution' with initial con-,

dition Y(t )
0

=1 BAt
Y(t)7 B B a- - I) + B ec x' + E(t) (12)

(10)

As before more compactly as

.

Y(t) = + IYi + B Y c
*
x' + E(C)

And this model differs' due only. to the presence of M
4

(13



Suppose the model in (11 )is to ect but the:analys

ubobservable vriables those effects 'ere suffigried

estimates

Ir

i(t) = 4- 11 To

where U(t) = M

It a easy to show that OLS gives biased es4mates B a and c

the factors in M are constant, they affecE Y at Call timed including Y_

Thus,'M must be correlated with Yo.

Consequeatly'OLS "gives Credit" to Y- for the e ffe ti
w -0

biased estimates of B , and thus of X11 the parame_ers, o
---,

And this bias is usually substantial as we illusrate below.

ear 1 i

(15)

This gives

model.

This is an instance of the clas ic autocorrelation problem
I ,

raised.

When: the effects, in M are ignored and thereby forted into

a

the disturbance, the4latter must become 'positively iAcicor elated.'

Failure'to'acknowledge this, i.e., using estimators that assume U(_

is unco -elated with Y leads to bia

"two--ave" panel does not contain enough- 5,prmation for this

autocorrelation problem to be orrected.-
- -

effects of omitted varthbles are congtant

t' as, long_ as the

= M), this autocorrelation

problem

6.

e

easily handled by a change in research design.

Estimatored Cross - Section and Ti

Biomet clans (Henderson 1952) and econome ricians (huh 1959; ,Balestra and

Nerlove 1966J have proposed estimators for such models ta,,a dis- ete-time

framework. Hannan and Freeman (1178)

continuous-time model. 'Before

-a. b

ied similar estimators to a

ssing theestimators, we must addr

4

d methodological issue: whether the unit- specific components are

co(ide fixed or trcct,i.

12



As Sea (1970).notes the fixed effe _ perspective fits situations

_

in which all the interest attaches the units under study and do effort
44'

will-be made to generalize findings bther.units. Then then m are con-

sidered a set of NK parameters to-he estimated. When the units studied

chosen ,to represent dome broader class 'of units (i.e., some population-of

I_Lits), the random effects pe:spectiv
.

,

appropriate. Then the proper .strategy

mo e' xeneral dist ibutIon of. unit-specific effects acid .

a i ,#c the general prbcess generating-unit effett

treat t lose in

_-.Then interest

n. th: parameters, not of the units, 'but of the distribution

The di qibution of the m typically involves far fewer than
rij

saal'y we assume that the population distribution is no

-t-i- specified by two parameters, the mean and variance.

Dice etween the fixed and random perspectives is usually discussed

mental .esign context. Consider for example the income maintenance

rat discussed in earlier chapters. We implemented thr=ee levels of income

s-.- - r.d four tax rates. For example, we use tax rates of 50%, OZ, and 80%.

yt

t-ere were .6 scientific or policy interest in any other tax rates, a fixed
0

ff cts model would be appropriate. However, we wish to generalize findings

to other tax rates, e.g., 60%; thus we adopt a random effects perspective.

But when interest focuses on discrete alternatives, e.g., research on the effec-

tivenea3of several qualitatively different organizational design programs

rehabilitation programs, a fixed effects framework may 'often be more appropriate.

In this chapter we consider effects of unobserved variables. Should these

be treated as fixed or randem? Since we cannot even



12

enumerate -the factors whose effects are summarized in m., it seems

awkward to treat these as fixed 'effects One might still argue that the

units were chosen because they have some (unmeasured) properties of special

scientific interest and that the operttes are rized in.m...

So the choice among the two perspectives appears once again to turn on the question

of whethgr the units were chosen to be representative of some broad

crass or whether they were selected because they have some very

-
distinctive property. We suspect that most empirical research in the

social sciences comes closer to the former than the latter. If so,

he random - effects model is more generally applicable. We have

focused on this model in our substantive research. Nonetheless we grant

that both models have social science utility and we discuss estimators

from each perspec

It suffices to consider only single eqU__'-n models as we noted above.

Suppose we have measurements on the stochastic process Y
i
(t)

tO' -1
t and assume that

at times

same stochastic differential equat4ion

generates all the observations. We specify the following pooled model:

* _*
-I-bY.: X + e..

i,t-1 it

...,N; t = 1,...,T)

Y a
it

Fixed Effect Estimators

(16)

When the m. (3, = 1, .. are considered fixed parameters, estimation
i

of (16) is simple. As long as T we merrily add dummy variables

for each unit (i.e., variables that are unity for observations unit

and zero for observations on all other ut :s). Alternatively we may

oh---rerV tLon,.-1 as (IlvL

-
-1

and ap2Ly ordinary lea:_t quars,

unit (where Y., E Y. )7
1 t it

it (17)

er the assurtion$ of the dynamic



model, these OLS estimators are again maximum likelihood.
0

both

estimators areasymptot cally unbiased and efficient.

13

Note that the constant exogenous variable has been lost in (17).

In th pooled "within-unit" regression, one cannot estimrate both un

parameters and the effects of exogenous variables that do net vary over

e. We do not, fact such a limitation in the random effects model,

c can indeed be estimated.

A*.
The m, are recovered from estirlla (I7)_ by straight-

forward algebraic oPerations (see Sear le '(1970 )). These are
0

general iz ations of the procedures used to recover the intercept

Model, nd new iss

unit= specific

essio= of variables taken as deviations from

So once we have chosen the proper design, the pooled multi -wave

arise in estimating the fixed effects model for

change.

Random Effects E:itimato

The alternative perspective considers m, to be random variables

over units bLit constants over Ttie usual specification is rha-

the m. are independent and identically distribution from normal

distribution with mean zero and variance c *

E

Then the m ha
-i

to N

= o

-e the sale
?

==

Since the

al l

further assume

opQrties but are transformed from N( )

m

_-.a
2bAt

)

unobserved random variablesi they may be considered

a component of the disturbance for purposes of ostimation. To emphasize

15



this fact we write the model as

*_

Y. a b Y_ C X U.
It i,t-i 1 It

it'
Under our assumptions the disturbance, it

mean zero and co ariance stru e:

2

m,

where 0 is .5

2b

b c

If we arrange observations in

-Nthe next T from unit'

if

1

14

(18)

a no rmal distribution with

and t = CI

( 9)

so that the firs T are from ludic 1,

etc. The.variance-covariance matrix of disturbances

has 11-e simple block diagonal form:

UI
4

'477-

with V

and = G
M-

*

V

each block has the t iccure:'

(22)

(23)

Note.tha the proportion of "error variance that is un it -specific.

That is it nay be considered a measure of the inipo tance of the unit-

IT

specific effects relative to the Brownian motion noise process. The

parameter p is called the aotocorrelation coefficient for the nit specific



15

effects model. The simple model we are considering holds that units, ace

homogenous in fhe sense that P is constant ovr units.

Before considering estimators, we consider the systems case. For sim-

plicity we continue to focus on the case where x is constant. The model may

be written:

where

11' Y12''''

Xt-1 Y10' 711'.-'

xil xll

at

YN1"'"-YNT)

YN "" YN
T-1

x IN x

N
x
-JN

where is an NT x 1 vectors of ones

u

and

= (a

At this point it is natural to search for a consistent estimator

which avoids the problem in the disturbances. The existence of such an

ator is suggested by the fact that we can transform (24) in such

(24)

a way as to produce ,..11-bellved" disturbance:,,, That we need is, to find

a matrix which when applied- to (24) yields

_=1/2 t

= t.

_-1 2

(25)

(26)



No,thing in thewausal str dture has been changed and we can apply,

orciina-y least sq ares to (25). Because of (26) OL$. applied

16

CheJtrensormed Model is now a consistent and asymptotically Za.fficient
,

The procedure suggested in (29) is an application of the widely

useful neralized. least squares-(GLS) approach.to estimation. The

application of,. GLS to pooled model is commonly advocated in the

econometri

Since

and biometric literatures erlove, 1971; Sea-

we will make continued reference

1971).

b the GLSdstimator we

a somewhat more formal reprbsenation. The GLS estima

-GLS

where

V2-1D ).1:Q )

and (cf. f(annan and

whe

0

o . s
-1

Young, 1974)

'41
-1

11'/T) (1/S )(11'/T)

9

s a ,(T x 1) vector of one.

The form .of GLS trans (27)

as follows. The peculiar feat

cross - sectional (botwe.en-u

need

s,defined as

(26)

(27)

can be intuitively motivated

f pooled models is the hso of both

and longitudinal (within unit -) variation



to estimaft

implicit ,Ch_

Causal parame rs. The rfchness ofuthe data presents an

ice, how to weight one type of variation felative to another.

square uses p to weight the two types of information.

To see this', constder_ h \case where p = 0. Then S
-1/2 andobsei

titns 'are transforped'in (25). by an

Generalized least

p.

identit,y transformation. GLS reduces

OLS where cross-gettional and time series variation are weighted

proportioately to N and T (see Maddala, 1971).

when P = = Wit
2

the etOr ex

This transformation averages observe-

va ions over tAme for each unit. The result is a regression

on grouped observations where all of thb wei ght,is placed On cross -'

sectional variation. In" cases where p takes on a value 07SP 1, GLS weights

time series variation inversely to P. StIch a weighting sjeems appropriate

since p meajures redundancy in the time, series, me) edundancy, the
.

lower the weight attached to longitudinal variation.
r:t

So far have treated p as known a priori. But we know of no

realistic case here sociological researchers have priorknoledge of thy,

value of ,p. Thus we consider methods of esti Ling p and properties

of generalized least squares estimators that use estimates of c

The most widely used procedure for estimating P uses the fine

effects estimator discus-3L: in the previous 5cction.

be used to calculate ri as follows,. To estimate

Nerlove 7l)

2
). (m * m 1.7/N

i =1

L

restilts of LSC can

of
2

need an s mate or ,1*
m

4

(28)
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An obvious etptimatot of am

*+

J,UV regression divided by NT

14_ , 2=
2a */(u *
m m

-en

Squared residuals frcai the

Nerl ve choSt irr (12.29Y over e,maAmum likelihood ,atima:te to

avoid negative vilues of P (which are impLausible", in most applications')
°

Unfortunately the estimatoein (12.29)' is upwardly biased (at'least
tN.

all samples) with the magnitude of the bias'inversely related

Recall that GLS requires'consisent estimStes of P. The bias in,

9)

p does not hoWever, appeari to unduly damage the resulting GLSf estimators

(AEllerniya, 1967). We study this issue Eurt belew. To acknowledge

the fact that we are using estimates) 9f p'rat r than-the true values,

it is more precise to eefer to thi's estimator

IMGLS gt 1 yt
ied generalized least squares*(

estimator is consistent and

`it uses biased e timates of P.

asymptotically efficient even though

All that is required'for these large

sample properties is that a be a
1

cortsistent esM.matOr of P.(Aitken 1934).

Empirical searchers Are often more concerned with the behavior of estimator

in small or moderate size,samples. Arid, the bias in P may'be'damaging in

such samples. We, report results on small sample properties below.

Finally, to may form maximum likelihood estimators for the rando

effects model. 'Since the uj are joint normally distributed, this
it

amounts tot _ standayd MI regression problem. Estimates of a ,

2 Land P mdy be found by maximizing the log likelihood function



Sitice both

als constiaimc

are ,17p s

2r -, ly

hon-negatiV2

(bath unconstra

' W
-1

u

e may maximize

sample operties (consistency, efficiency) discussed

V.ons.' However, unlike cases discussed

identical fors case with the-best, leas

vThere are, three

his point,

good 1 urge

artier applica

is not

stimator, MGLS

asons why the two estiohtors will differ. First, least

squares and 1.11, estimates of variance components differ.

round procedure while ML est, mates all parametersSecond, WLS is a t-

simultaneously. Finally, there is nn closed-tom 'solution to ;(30)

KE are- found by iteration Thus the numerical-valires'af MLE'deperd as

well on the shape ofyithe likelihood'function and the quality of

the -iterative procedure.

Thus there a

( \

o major alternative approaches to the stimat

of dynamic parameters in models with random unit- specific effec

maximum likelihood and generalized least squares. There is actually a

third estimator that might be considerea.t The fixed-effects LSO

estimator is also consistent and asymptotically consistent for th random-

effects model iAmemaya 1967). Of the three, ML is preferred in large

samples fc reasons discus ed earlier. It re1tains minim variance

properties under the non-linear t ansfoumations required to go from

integral to,different 1 equations-. But what abou =t smaller samples.

Throughout-the discussion we have relied n large-sample theory ft

As ent oncd earl itis important for empirica l researchers to

2 1
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obtain some-in-formation about the behavior of such estimators in small and

oderate sized samples-. Two issues are important here

the efficiency 'ofth0 various consistent estimato
'

we :a.nt t compare

s in finite samples, and

, we also want to ptmpare the performance 'of the consistent estimators with

those of iaaonsistent estimators (01.,S f-- example) which may'have smaller

meam squared-error in small samples (cf. Hud, 4972 We have not yet seen

analytial results on these issues. So we consider the results of Monte

Carib experiments on the mall simple properties of the various estimators.

Monte Carlo S ies of Small Sam le P o-erties

miarize results from two simulations that used the same structure.

The two studies partially overlap but a Study some different estimators.

We concentrate hereon the sitlar cases so as to give an o'erall comparison
,

.

-.

of all the
,

estimItors under, consideration. For more details see Hannan

and Young (1974, 1977) and Tuma and Young (1976)

Data Generation. Both studies generated data that fits the following

model:

Y = ; Y. y X. u.
it 1 t,

it

(31)

-where the compOnents of u.
E
have the properties stated i Section S. The

exogenous variable has the structure:

0.1t O.) X -t 'w itt -I

where the wit are independent normal variables. In these respects the

'Simulations followed Nerlove s (1971) procedure. However, they differed
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from, Nerlove in four respects: 'First, we Have chosen the,number

ofindividuai N as Tlf y and the number'of cime qperio T as-=

fivei-Whereas N _love chose-twenty-five and ten, respectively.

We/ chose the former values of N and T because they are pre/entative of

man available datd 8econd, we have generated pseudo-random

e edge-tail elgor thm,=tecommended

21

variates by Marsaglie=s rectang

as best by Knuth (1:969), -rather than the method detribed by Nerlove

1

(1971). Third, we have studied somewhat different combinations of

parameter values. In each combina_ibn we set a = 0.0'and

We selected five, values for P: 0.0, 0.25, 0.50, 0.75, and 0.90. To

examine the dependence of estimator quality on Lie relative strength of

effects of the Lagged endoeeous'and exoge_nous variables, chose three -mbin,

= titans of b, and (b,c) = (0.3,1.0), (0.8,1.Q), and 0.8,0.5). Thu

examined a tot 31 of fifteen combinat*ions of par eter values. Fourth,

for each combination of parameter values we generated 100 sets of

data, where Nerlove generated 50. The additional data sets: give increased'

confidence about the properties of estimators.

Estimators: udy the behavior of the following iAei ators:

(1) Ordinary least squares (OLS). A consistent estimator only when

P = O.

-(2 ) Least squares with constants (LSC), the fixed-effects

estimator. Consistent and asymptotically efficient.

(3) "True" generalized least squares (GLS) using known

values of p. A minimum variance consistent estimator.

(4) Modified generalized least squares (MGM) with calculated

as in (29) from an LSC first stage estimator, Consistent

and asymptotically efficient.
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(5),Maximum likelihood constrained (MLC) with a?.'40 and 0

Asymptotically unbiased and efficient.

Maximum likelihood unconstrained (MLU): asymptotl ally unbiased I

but inefficient relative to LC.-

An initial set of parameter estimates must be provided to find the ML

stimates in both methods ) and (6). 'We, compared the nce of

P- starting values for five different parame er combinations,

(a total of 500 =data sets) using unconstrained ML: the LSDV estimates

a

and the true values used to generate the data. The two types of

initial, e neArly identical final .estimates. for the

four combinations in which p > 0. For d 0 the two sets of paraC;WL

estimates differed in only a hAldful of cases, and by a negligible amount.

Trefore, because of the cost

-e used the

nvolved in abt4ining the LSDV estimates,

e parameter values as starting, estimates in all remain

estimations. We report only the results obtained from using this

latter type initial estimates.

Whereas N: love (1971) used the Fletcher Powell algorithm (1963)

programed by Wells (1967) to maximize L, Tuna and Young (1976) used the Gill-

algorithm (1972) programmed by Wright (1975). Both algorithms are

iterative procedures and are based on modified steepest descent methods

of function minimization. Gill, Murray and their coworkers (1972a, 1972b)

have Shon that the Gill-Mu-ray algorithm converges more rapidly and

mor,reliably 'ian the Fletcher- Powell algorithm. H ever, when both

converge they, report that the two algorithms give extremely similar

estimates dIT the function optimum for a variety of .functions.

Tuma and Young's (1976) treatment of contraints on parameter values for .



2
a and p dftarted Markedly from Nerlove's (1971). Nerlove strained a

.
.

to be positive by. maximizing L with respect to a rather than a
2

. He'limposed

o./

2
a-.pannegativity constraint on p by equating it with sih 8 and maximizin'g

L with respectcto e rather. than p. As Nerlove'acknowledges, this-method

of applying constnilint& causes L to have

to e since sin 0 is a periodic funct

multiiple maxima with respect'

Murray (1972') warns against

employment of trigonometric constraints.ainEs. Such a procedUr can,increase

thy nunlinearity of the function be maximized and cause the maEri: of

second derivatives. (which must be negative definite at the maximum of

likelihood function) to become singuplar or ill-conditioned.

ML i'The Gill-Murray algorithm used by Tuma and Young (1976) for estima

tion utilizes a projection method of optimization that permits any feasible

equality or inequality constraints to be imposed on parameter values.

For a detailed discussion of this constrained optimization procedure,

see dill and Murray (1972). This method does -not increase the non-

arity af the function being optimized or the number of Local maxima.

To our knowledge there is no previous evidence indicating_` the

magnitude of the effects of constraining c and c on ML parameter

estimates for the model we have simulated. Thus, we do not know

whether the mean squared errors (MSEI-s) of the constrained estimates

and
2

of p and a ill be appreciably smaller than the unconstrained

versions, Further, we do not know the effects of constraining p

and c on the quality of the estimates of y
1
and y2 Finally, it

important to learn whet -her the poor performance of

Nerlove (1SA) resul

this model r from the implementation of parameter constrain

ML method iT

from the small- sample- properties of ML estimation



Results: before looking at meam squaredorror.and bip of
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4

estimators we comment on the effectiveness and practicality af the

maximum like ihoogl procedure used This issue has heightened importance

in the present context as Nerlove (1971) in a very influential paper
.

report., that MI.F. failed to converge on most occasions and thus did
0

stand as serious - practical alteAatives to Tumia and You4 (1976V

that implementation of the ML methods was both successful and practical.

Not only did ML estimation converge to a solution for every data set, but

also the time required for this was short. the average the ML solution

was found in four to ten iterations, depenling on the particular

combination of parameter vaiues. The Mic and MILT methods required

nearly identical numbers of iterations to converge. For both methods

several more iterations were usually needed for high values of p,

especially yhen = 0.8,y 0.5 ). These highe numbers of

iterations occur tagether Ch poor quality of the ML estimate- of p

2
and p at described'more fully-later in this section. It is helpful

to know which pai-ameter combinations led to activation of constraints.

Obviously for the cases in which no constraints were activated, the

MLC and MLU estimates are identical. The constraints that a

positive and that p be less than _equal to one were never brought

into play (cf. Nerlove 1971). 't-lowever, the constraint -hat p be

activated in about Sixty percent of the cases in wgichnonnegative was

p 0. (7 === 1.0; tnd p- 0.90. Thus the quality of MIX'

and MLU estimators is

of parameters.

-likely to differ except for these combinations



We begin our assessme
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the quality of the stimators by cOmpar-

ing overall mein squared errors averaged over the five choices of p.

These are reported in Table 1. Overall the OLS and LSC estimators

Table 1 about here

are inferior as we expecLed. The simulation results agrEe with the

large-sample theory irk that OLS has largest MSE in each case. Moreover,

these two estimators are notably poor in estimating Y, and, as we have

noted rep a -dly, this failure 'has serious consequences 'in analysis of

ntlnuous-time models.. On the baAis of these results and the further

Widence in Hannan and YOung'(1977) we advise against use of OLS and

1SC for random-effects models(' Henceforth we direct attention oily

to the MGLS and ML estimators.

The relative quality of the ML and MGLS estimates varies according

to the size of the. ratio, of Y the coefficient of the lagged endogenous

variable to Yr the coefficient of the exogenous - variable. We find

that ALL is'Superior when the effect-of the lagged endogenous variable

is -small in comparson_tc the effect of the exogenous variable While

MGLS is best when the opposite is true. As we report below, the

dependence of the relative quality of the ML and MGLS estimates of

regression coefficients on the relative effects of Y_ and Y_
2

becomes

.

even more apparent whem the mulatiOn 'results are not aggregated

r values of p

We now turn our attention to a more detailed xamination of the

performance- of the MLU and MLC estimates, contrasted to each other

27
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and to the best of the least squares methods, MCL We use the,-

measure:

= 100% * bias(e)j0. *

For both yi and Y2 the % biases ofkthe MI,C and MLU es- ate- are very

similar adross all parameter combinations see, Tables 2,and

spectWely).

Tables 2 and 3 about herd

Both ML and NGLS methods display consistently ow 7.biases

in. Y2 across all parameter combinations., However, h methods of

estimation produce widely varying % biases in y_
1.

of yi and y2 the % bias in--ML estimates of tends to become worse as

For each combination

P increases. However,, for the first two combinations of Y and
2

there is-a'downturn in the % bias for very high values of p. On the

other hand, the MCLS a -s of y
I
are downwardly biased for low

values of P but the % bias' increases monotonically as p increases,

approaching A negligible 7 bias for P = 0.9.

Of course, the NSE's reported -eatlier also-depend on the

variances of-estimators. However, there are only slight differences

between the two ML and MCLS in variances. For both types of eStimAtors

the variance falls off sharply as P increases. As this is the

interesting patters in the variances we do not report the actual

(see Yuma and Young,1976, Tables 4 and 5).

Finally we Abok at estimates of P. both MLU and MLC estimates
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of p the biase's are usually negative and very similar see Table 4).

Table 4 aboiit here

The magnitude of the bias in P is somewhat smaller for MLC than for

MLU when 0,1 0.8, y2 0.5, 0.25 < p < 0.7V but slightly larger

for MLC than for U when p 0.0. The size of the bias in ML

estimates of p tendS to increase as p increaes; however, for two

of the three combinations :he regression,coefficiants there is

a downt'irn in the bias in p as the value of p becomes very large.

The M. and MGL$ methods perform optimally at opposite ends of

p continuum. Whereas ML estimates of p are almost always downwardly

biased, he MC LS estimates of p are almost always upwardly biased. And,

as we found in our examination of the % biases of y, the performancethe

of the ML method tends to he best when NGLS is at its worst, and vice

versa. Thus, we find that while the bias in NI esthnates of p is

greatest for high values of © and least for low values the

opposite is true for MGLS. The MGLS estimates of p=are most biased

when p is near zero and least biased when p is near unity.

Nonetheless, the ML and MGLS methods have'two obvious

(1)'there is an inverse relationship between % bias in Y1 and bias in p,

and (2) ibsolute values of the biases in Y
1
and P are positively

aSsociated. These similarities_are curious bechAse the ML 'and MCLS

methods have opposite signs to the biases of their estimates of p and

Though the two methods diffefoltamatically in their tendencies
= t

to attribute s ability in the dependent variable to serial correlation

29



residuals for individual units rather than to inertia in the

dependent variable, for both methods there are

28

That is, forboth methods error in one direction in estimating.

the strength of serial correlation of residuals is accompanied by

error in the opposite direction in estimating the strength of the

lagged endogenous variable.

We conclude that both MI. and NUS performrelatively well with panel

data of the size usually available to sociologists (N 50, T = 5).

They clearly outperfOrM OLS and MEW. It appears that MGLS does best

when y
1
is small. This implies that MGLS has best small sample properties

When systems e -studyadjusi -rapidly relative to the time scale chosen

(or, under the alternative interpretation, have strong negative

feedback ). On the other hand, N1E:appear preferable for systems

that adjust more slowly. In light of previous work on these issues,

perhaps the most important conclusion ts that both ML and MGLS are

practidal and appear. to have good small sample properties.

We also provide at least a partial answer to the AueStion: Should natural

constraints on parameters be imposed'? Tuma and Young (1976) find, as

did Nerlove (1971), that" in practice only the donnegativity constraint

on p at issue because. other natural constrain are never violated.

These result show that in terms of the mean squared error of yi

and y2, MI estimation with constraints on p has a slight advantage

over that without constraints. Clearly constrained ML.estima

gives ore reasonable estimates of p beca-se it prevents ; from

having a negative value, which is contrary to the assumptions of



the model. In Addition, the constrained Mi estimates of the regression

coefficients always have a smaller variance than the unconstrained ones,

and this usually compensates or ,occaioually larger biases in the

constrained estimates,. Still, the differences between the constrained

And unconstrained ML estimates are never large- -and always negligible

for those parameter combinations in which ML estimates are superior in

quality to -MGLS estimates. Consequently,.thia research provides no

evidence that omitting constraints on p will seriously damage the

quality of ML estimates of regression coefficients in the model.

10. LJE!gmAlly:Ipaced Observations

To this point.,'we have assumed equally spaced panel observations.

long as waves in the panel are repeated with constant period for. all

Units, several aPproaches mat on have merit. We saw that two

broad strategies have been proposed. Within each strateiy, several

estimators have good properties. But once ire venture beyond this
a

face greatly limitedstandard.'design,to consider unequal:spacing,

alternatives. In, act only one strategy and one estimator appear
.

feasible:: maximum likelihood applied to intgral equations.

Two classes of designs may yield unequally spaced data. The first

the conventional -ltiwave panel where.the length of.lags between

waves varies. but is the same for all unita.:. In field research such
-

-variab,ility in the timing ofwavesmay e from the vagaries of

flows of research funds, problems of entry into sites, renewed

interest in some earlier panel, etc For 4 x Is (1975)
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three-wave panel of finance agencies has a three-year lag between the

first o waves'and a six-year lag between the second and the third. The

WidelTana3,yzed.Sewell (see, for example, Hau er and Sewell 1975) panel
. ,

f Wisconsin high school seniors was interviewed in 1957, 1964, and 1976.

Exactly the same sorts of problems arise in archival research since

official-i .ges often release data at intermittent intervals. Morebver,

researchers using secondary sources,must often depend on the timing of

-several scholars or groups of,_scholars.Tbey are this often confronted

with, unequally spaced data

The'second, perhaps, more Imp rtent, problem concerns timing that

varies from unit to unit., This problem may also arise foie the reasons
u:L

discussed above. Some indiViduals may be "lost" to a panel and only

recovered at some later tine. however, there is a more systematic

reason why the tuning of observations may vary among units, Panel o

servations may vary among units. Panel observations may be linked to

events that are generated by a stochastiO process. Sometimes this is

done thin a retrospectivedesign. For example, the Parnes (1975)

woman panel" contains work.histories at marriage, at first birth, etc.

Since different women have different timing of events, the panel will

have extreme unequal spacin

We argue that sociologists ought to study coupled changes in

qualitative and quantitative outcomes (e.g. marital statius and earnings

One fruitful approach to such systems involves studying changes in

quantitative variables over periods that begin and end with events

(changes in state or qualitative variables). We surmise that,

are to make progress on the important class cf problems that involve

tore



coupled changes in quantity and quality, we

analyzing unequal spaced panel data.

solve the, - problem of

The firs ype of unequal spacing is usually, deal with ..by

analyzing pairs waves eparately4' gut this is'an unsatisfactory

solution in many instances since it obviates the possibility of adjusting

for tftit-specific disturbances. In most sociological applications,-such

a'failure makes a real difference An estimates ofrthe parameters

underlying continuous-time model from different lags. Shand we be

'tempted as a consequence to treat'the data as generated by several

the

discrete-time' processes with different lags, therd another problem. As

we showed the4,is no metric available to compare results

from different lags when the process is viewed as discrete in time.

Thus the analyst cannot draw sound inferences about stability or change

in the process. He has not one but two or more processes. Thus there

is a tremendous loss of generality. So the analyst with panel data

with the simpler form of unequal spacing faces two unhappy alternatives:

report different estimates of one process with the fear that the

differences reflect only autocorrelation bias) or report estimates

several discrete-time processes for the same substantive problem (where

the lag structures are determined by the peculiarities of the research

design).

We have not seen any analysis of data of the more extre

unequal spacing that pays attention to these methodological problems

type of

Moreover, we -have not yet found any systematic treatment of the general

problem. So, despite its obvious practical hmportance and its possible

substantive importance, the issue of how to estimate



models'from unequally-space&data has received su _Tingly little

attention. We attribute this lacuna to the-common preoccupation with
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discrete-time models, in the socis_ sciences. We now show_ that Shifting

to a continuoustime perspective suggests solutions to unequal Spacing

problems.

10., I for U e fall. -aced Observations

The simplest case concerns the linear stochastic differential'

equation with nounit-specific components:

dY(t) v a dt + bY(t)dt +'cX(t)dt + cat.

where' a
t

is a normal Brownian motion (1)has solution (subject to initial

conditions Y(

60,

X(t0) XO and assuming K(t)- changes linearly overYo,

b
) + e

aLY.
+ 1 X.

'13

+ e
b(t-s)

d_

0

BecauseAt
i
varies, each unit has its own set of parameters in the integrated

form. Let us rewrite as

- L

We know that is N where

. d-
10X10 1 1 (34)

.

-2bAt
0

a
2

(I-e
2b

Consequently we may write the likelihoami function

3 4
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. where

r
lo

exP 2

1/2

e.2

g + 1 2
20

/27-fro

defined in (35). But un er. the model,

si2 .

* *
a -- b Y

see (32), A bi, c
1
- and d

i
are explicit ,functions'ons

paratieters of interest.

the dynamic

(35)-

36)

(37)

- -Since the At, are observed data, this likelihood may be maximized with

respect to a, t

derivatives

and a., This requires writing out first and second

(36) with respect to these par te s and using these,

expressions in one of the standard iterative routines. We havt adapted the

Gill-Murray_algorithm, used to estimate rates, for this purpose. We will

illUstrate the procedure below.

Suppose one has reason to believe that each unit changes in res-.

ponce to unobserved constant factors as discussed above. then the model is

dY (t) = adt 4 bY(t)dt + cl(t)dt +.m dt + od0
t

(381

same conditions stated above, has solution

bAt. bAt. bAt
1) + e Yio c(e - 1)Xio y 7 1 ,71. 1Ax

b bAti

subject-to the

a(eb
1

b

Y.

+
b

a
1

where (t) = ml

bAti

+ e.X + d
1 iO

9

(41)
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On cannot. identify a2 from only two Waves of ohservati However;

when three or morelwaveq are'available on each unit, all-the dynamic

parameters maybe identified.

-NTN

Let us consider the general case where the number of 'obse at ions

varies from unit to unit. We denote the number of observations on unit i

by T. and let it = tt,j+1 where t
ij

is thp,jth observation on

the ith unit. Then we write a paroled model aefollows:

bAt-:
e- -11-1

bAt
e -12-

11_

bAll'
e Y10

"12-e Y

A

1 Tiy
11T1 -1

"11

u
N,TN

1

TN

(42)



Where--

c.

U12

12

6
NTINI

And, ""disturbance "" vector ©f the .integrates form is,N( , E)-with-
.

a

S
N

wi-ch

3 7



t.

_2 bat.1
1-e 2

A 0-

m
i

bAt bat.,
Til) (e 11_1)

t.
e
bA11-1 bAt.

.36

-2b
02 1-e

2b

NOw 2 may be expressed ag a function of obServable v-

as above. Since is normal, we may

and estimate parameters by standa

gables Y.1,.

e an explicit likelihood fund

erativeglgorithms. Rather extensive

programming is required, however, to make this scheme operational., Our

research group is currently conddcting

of these methods to sociological data

Conclusion's

his work in preparation for application-'

The thrust ckf this repor-thas been 00* that e can use:.aVa lable

thods to solve many the practical problems that arise in apply Continuous-
.

continumo-State models in Sociological
.

shown that sociologists have begun to o--estimate imp ititlY'.( y use of norMal

esearch. In part we have-.

theory assumptions with determinigtic ffiodels)linear change models driven

Brownian motion. Only a slight chin -'in Perspective is required for the



37

.usual estimates to be transformed into estimates of a,simple probabilistic'

model for change in quantitative variables.

We have devoted considerable atterition to the likely problem of

cautocorrelation. We suggest.rhatalcombination of Brownian motion

disturbances and unit-specific permanent effects may apply meaningfully'

1

to a variety of::socl9logical analyses.

.estimators for-pooled cross-section and time series da a may be used

profitably. We showed that both ,geieralized least squares and maximum

If so,. modes extensions, of available

likelihood estimators have good properties for sample sizes typically used-,

by soc ologists.

Finally, we illustrated -one o the major advantages of comajor

modeling of social processes:

unequal spacing'in

inuous-time

the ability to handle data collected with..

The maximum likelihood estimators tae discuss may

be extended to this caa04.n '4 straightforward, though 'tedious, way.
bP .



FOOTNOTES,

stUdies.are n in the engineetfng literature, where tlieleiftf

"filtering" is used

review.

iead of "estimation " - -see Jazwinski-(1970) Fora

The tablea

Young (1977) and Tuma an

additional detail,

hat fallp-WcOntain excerpts from various tables

Young, (1976.) Both'reportaconts n considerable

ative'outcome will be measured

in the:same-interviews. Singer 410:Epilerman (1976) have.(-deMonitrated
- , -

that434pel, studies of discrete: qualitative ) stochaStic process

should not use a constant lag be Uten waves, Wirt should be irregularly.

spaced. If this advice is folio he quantitative records from such

interviews will have the structure we discuss here.

40.
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Tabld 1

Mean Suared Error of Estimates

(Cases averaged over all* values of p; each
entry based 9 500 sets of estimates)

= 0.3, e = 1.0

OLS 6.449 .348

LSC .822 .239

MGL .226 .194

MLC .169 .182

U .175* .182

1.0

OLS 1.592 341.

LSC .748 .228

MGLS .146 .198

MIX .720 .199

M1U .722 .199

fi
b = c = 0.5

OLS 2.420

LSC 3.865 .220

NGLS .925 .194

2.352 .208

M1.11 2.415 .218

Ali entri$ jtl this t:ibiL hav ipLitA by



Table 2

Percent Bias

(Each entry based on 100 sets of estimates

P = 0.0 0.25
\

Y1 - 0. - 1.0

k NUJ 0.01* 3.7

G -1.2 3.7

MGLS- -22.4 -12.2

= 0.8, y2 - 1.0

MI.L1

MGLS

Y 0.8_

MLU

MILC

MGLS

0.21 9.3

-0.8 9.2

7.3 -2.4.

0.5 0.75 0.9

3.9 2.3 0.9

3.9 2.3 0.9

-5.9 -1.5 -0.1

6 14.2 6.4

13.£6 14.2 6.4

.3 1.9 1.7

-0.4 16,7 21.4 23.4 23.9

1.5 15.8 21.0 23.3 23.9

-19.0 -12.4 -7.7 -1.8 1.9

All entries in this table have been rounded off t© the nearest tenth
of a percent.

4 6



Pe

Table

cent Bias in
Y
2

Percent Bias

P

(Each entry based on

0.0

= 1.0

1.1b0 sets

0.25 0.5 0.75 0.9

- 0.3, y2

MLU -0.07.,'-, -0.0 0.1 0.1 -0.0

MLC 0.1 -0.0 0.1 0.0 -G.0

Ole

MGLS -0.3 -0.4 -0.3 -0.2 -0.1

Y
1
= 0.8

'

Y
2

1 0

MIX 0.0 -1.6 -1.6 -0.4 0 ;4

c 0.1 -1.6 -1.6 -0.4 0.4

MGLS -0.1 -0.3 -0.2 0.0 0.0

y = 0.8,
1

= 0.5

MLU 0.0 -2.5 -3.1 -2.8 -1.5

MLC 0.2 -2.0 -2.6 -2.6 -1.5

MGLS -0.9 -1.4 -1.1 -0.5 0.0

All entries in this -able have been rounded of the nearest tenth

of a percent.



Table 4

Bias of

(Each entry based on 100 sets of -Mates

1.0Y1

0.8 y2 = 1.0

MIX

MLC

0.0 0.25 0.5

7.006 -.040 -.048

.017 -.040 -.048

.254 .215 .145

-.007 -.169 -.345

.Q16 -.166 -.344

.325 .320 .219

-.005 -.273 -.519

.017 -.242 -..491

.445 .477 .340

0.75 0.9_

-.025 -.008

-.025 -.008

.064 .021

-.398 7,101

-.398 -.101

.092 .027

72B -.766

74718 766:

.047


