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Of course,. tHe two strategies may be combined.: But it is useful to
= . - - L * L R

= P -
. ' ! , W , ) . ,
o contrast the substantive interpretations that fit one or thegother.
) : ) . * o ) . i s
The strategy .of introducing unit-specific- effects fits w&i} those circum-
o [ ) . A ' - ! : R s
+ stances in which the omitted causal variables are appraximatély c@nszaﬁt
. & .t ~ N s
) over the study period. JWhEn Ehe omitted rlablegx:hange greatly over the *
-.' . 'study period, the dlternative praceﬁﬁs&-is called for. Our, substantive
. ) : PR » ] - : X T - ,
 work has relied on the unit-specific effect -approach. Let us begin by

aﬁ&lining\fhisrgﬁgréaghg Once we have done so, we will be in a better

éitlﬁn ta clarify ‘the -nature of the alternative p:aaéé?rEE
. ¥ o *

: po )
5. UﬂitiSpééifig Effects : : . L :

i .

Suppose EhaE the N xmlts under study change according to the. Séme ganeral:

’ _ process (7') but that aach Llfllt has a dLSE‘lﬁEE "EDﬁStaﬂt" rate 'r:)f change

In the study of lndu.rlclua,]_ ‘careers” these constants’ mlght lnclude ’ e

T .:%

) ph%sz.alcglc:al Chafattéflhﬁlt:s (e.g.; enefg}r 1ev51§), endurlng features
5 4 s Y

of pérs’éﬁallty, status D’Elglﬂag hn;cﬂg, llngﬁ LSEI c styl es 5 etﬁ_c_,

T In studies of nganizaticnsi they would include matetial“inirastructure
: : ;. o i

atures-of work

: (e.g., cl‘;arac;téfistics of physical arrangements), SE%HLE features-.of wo
techwology, long-standing golitical alliances, cultpral attributes of = - _
< ‘members, etc. For each unit, summarize the effects of all such stable
,; L ] W ) ol , ,
i . ) P _ « . ,Eh . . ' +th
omitted variables as a si gla quantlﬁvik (for the i unit ia the k
- . y . oo - : e R
~equation). In other words, each unit has its.own dynamic process (due to-
) the mik) but the remaining pafameter% re constrained to bé the same for all
; '- N . Lo i : R o ‘ ‘ .E! Lo g&
‘/LlﬂlES. Thus we must consider the svstem of NK equations: .
= A ) 'r i
El

r
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or, equivalently:

S Ay s

&

The system of equations

N

- dition ¥(t )'=

-

1]
I
Ji

Y(e)

L}

dt + |,

at'de + Mdt

hhere;%' is an 1 by N vector of o

Lo -
- BY(r)dt + extdt +_}::::1,;2_?RE

TIEe5.

in ,(11)

=

11

W

:

¥

B Y

| IR f
e
dt + 7
. & yl?
L

(11) -

has solutiom (with fnitial con~

&
at
[=n
+
I )
=
—
(%]
st
=
(]
[z A
o
[
s
=)
el
wo
Ml
re
"—l
et
o
iy

: s . £, 2
, ) , B & , B
- And this model differs from (9) due only to the presence of M .

c(e

BAL ] o
= - Dx' + E(),

=

—_



= . " v = R = xg - = :“ !‘
== oy r “ia-
2 ’& '-%w; 1 : z B
., o Ve - . AN ,
. , ) N ‘ ' ' ¥ -
' - Suppase the madal in (ll) is tarrect but the" aﬂalyst ignares
o . p%ébservgble var;abi&s hase effects are sumﬁgrlzéd in M . Ihat ;ss he'
P oA ) bHnates .~ oo Y L <
F aﬁfgi R TR T ;52, Ly ‘ T o
< B L L OO S
- ) o g . . \ o e,
whete ult) = M + E(6). - S S (15 T
: It{seas to ‘sh \ ‘ L R S
y to show that DLS giVES biased est;matas of B, a, and ¢ . 5imce
. . the factars in M a;a constant, they ‘affect t ¥ at all times including l(tb); -
= . ; . *I,. : ,'. Lo L L
o Thus H must be correlated with YD P ) N :
_ = L X ' . ) ) V \ ’ i" L B TR
7 Consequeﬂtly'DLS "gives credit" to. YO for the eﬁfecté in M. Thls gives
4 B 7 7 L e % . \ .
s ) biased estimates of B , and thus of #11 thE pafametefs of t’he m 71 : '
N And this blas is usually substantial as we illuskrate below. o -
» —_— - T
* This is an lﬂszaﬁce Df the :1a551c autacarfelaﬁlan problem raised- ..
= A Y = s )
. . i :
. . A ) , * L : :
Eafli?f, ‘When the effeztsriﬁ_ﬂ are ignored and ;hegéby far&ed into-,
- . x T . i - i} o -
> “the disturbance, thetlatter must Eeccmé’p@sitively‘agidgarrelaﬁéd!' S
. Failuré‘tc‘aﬁkncwledge this, i.e., using:estimatars that assume U(t) . "
Ls unzarrelaﬁediﬁith Y, teads to _biase *gstimaﬁggﬁi iﬁé qsua; X - :f R
. ' AN : : 8 . .
L : "two-wave" panel does not contain engugh igébrmatian for this ‘¢ B
. B [
ik autaaartelatlan prablem to ba (Drrectedi</?qu as long as tha
5.;f‘effects of lettéd variables are canatgnt (M(t) = M), th;s autocorrelation
) problem is easily handled by a change in réséarch‘éegién.
- = . = S
' P By - . t s o = C A
6. Pooled Cross-Section and Time  Séries Estimator . A
' & - . d
' BleEErlglanS (Henderson 1952) a? econometricgians (Kuh 1959;.Balegtra and
) ' NéleVE 1965) have pro é Ed stimators for suth modéels in,a dlscfété time
. p 4 B i .
- framework. . Hannaq Sﬁd Ftegman (1978)\§§plled similar eatlmatars Eo a - s
VQDnEiﬁuDuSrtimE model, BEfDre dj*quSLng theeaclmatars - we musc addrgsé?
Ny t . . ' i . 1&
‘a broad methadalagical issue: whethef the ut =SP§CLE1E ampmnents are
counsidersd ELY&d or rardum cffects. * ‘ »
'\‘1 - !£ 7 “ - '
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As Séﬁéle;tlBZQ)-ngFes,theifixed effé§5§perspe¢ti%e fits situatioﬁé ,s
in whiéh all §h3‘inte§?5t ag;azhes_tﬁ the units under Etud?i%ﬁd ﬁqxeffcrt
D will-?e mgéevta ée$§£glizé findiné?hééfcéherxuﬁiéé; 'Th%p the' mij are don-
& sidéred aléet'éf NK pafémeéers to bé ésgimaéedi When the units studied dre_-

L] ¥ K - L]

i

= "’ chosen to represent dome broader class of units (i.e., some population’ of 'f“
B Te ¢ f ‘ . .
: 7 e _ i o 7 s . . e 7 R .

u. its), the random effects pe:spective/is appropriate. Then the proper strategy

=5, -
- T ' v 4
0 i *

mo ‘e* t'. general dist ibutlon of Gnit-specific effects armd. to treag ;hoéé in

& .-

: ?Then‘iﬁteiast-

Vool ae iy, awc s Dfiyhe general process generating -unit effects

i

‘4. 8. "5.in. th’ parameters, not of the units, ‘but of the distribution

: Zitotie vkl . The di- tgibution of the mij typically involves far fewer than
. il s s =1 % . -

Ceceteetes . . Usual'y &éﬁassume,that the population distribution is normal.
L

Aéf j.he: ' o ¢o-rlt 1" specified by two parameters, the meadn and variance.

A

~oice etween the fixed and random perspectives is usually discussed

i -.4e _mental .Jesign context. Consider for example the income maintenance

‘niont discussed in earlier chapters. We implemented three levels of income
s.p-r :'d four tax rates. For example, we use tax rates of 507, ibz, and 807.

t.ete were .o scilentific or policy inferest in any other tax rates, a fixed
&

.. ffocts médel would be appropriate. However, we wish to gén&félize findings

to other tax rates, e.g., 607; thus we adopt a random effects perspective.
L . - ;
But when interest focuses on discrete alternatives, e.g., research on the effec-

tivenas of several qualitatively different organizational design programs,

rehabilitation programs, a fixed effects framework may often be more appropriate.

In this chapter we consider effects of unobserved variables. Should these

" be treated as fixed ot rabdom? Since we cannot ecven

h ; b

=

Q .

ERIC i R
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¥ =
‘ enumerate the factors whose effects are summarized in mij it seems
‘awlkward to treat these as fixed effects, One might still argue that the
‘ - - :
. units were chosen because they have some (unmeasured) properties of special
R i
w o scizntific fntevest and that thess properties are summatrizad iﬁ;mij, '§%
s+ So the choice among the two perspectives appears once again to turm on the qu stion
s ' ' : ’
of whether the units were chosen to be representative of some broad
class or whether they were selected because they have some very
A 3
distinctive property. We suspect that most empirical research in the /
. social sciences comes closer to the former than the latter., If so
the random-effects model is more generally applicable. We have .
focused on this model in our substantive research Nonetheless we grant
) that both models have social science utility and we discuss estimators
from each perspective.
) It suffices to consider only single eguati@n models as we noted above.
) Suppose we have measurements on the gtDChastic process { (t)} at times
) Egr Epreres bg and assume that the same stochastic differential equation (1)
: generates all the observations., We Spéiify the following pooled model: .
* % b*' ??i e
Y, =a +m, + Y. ; + X + &,
Tie i i, e-1 it
. (16)
(i =1,...,N; £ =1,...,T)
7 Fixed Effect Estimators

When the m, (i =1,...,N) are considered fixed parameters, estimation

iz
i
Josdl
b
T
=)
T
=
M
[
iy
]
W
'
[
=
g
g
oy
<
i
[a]
[
i
(=
ot
i)
ey

of (16) 1is simple. As long as T
for each unit (i.e., variables that are unity for observations in-the unit

and zero for observations on all other units). Alternatively we may

054 observations as deviations from unit means (where Y., 2 1Y, ):
X t
Y. =Y =a +b (Y, -y + & - £
= (Y : i‘]) it . (17)

and apnly ordinary least squares. #®fler the assumptions of the dynamic

ERIC .M
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model, these OLS estimators are again
i

estimators are-asymptotically unbiased and

N
Note that the constant Exgg 2TIOUS

In this pooled "within-unit' regression,

parameters and the effects of exogenous variables
time. We do not face such a limitatiom in the random

in a comventional linear regression of variables taken as deviations from

.

gfbe (grand) mean. .50 once we have chosen the proper design, tht pooled multi-wave

in estimating the

I
L
=
T
1
g
!
-
Lt
i
-
y
[
%
g
i hu]
1T
=4
Hy
g
Ly

madel, no new -ts model for

The alternative perspective considers the m, to be random variables

E[m%f X,}=0 all i, i ]
= 1 1,'
£ (m# £, 1=0 - all i, i', ¢ .
i 1'e , :
' LS
* } _ 2
Then the m, are transformed from H{0,%
L m
, _
to \I(O 37_%) ' '

Since the MT are unobserved random variables; they smay be considered

omponent of the dlaturbl ce for purposes of astimation. To emphasize
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) * b* % % ]
Y. =a +bY + ¢ X, +u
it i,e-1 i it
* = . .
u, =.m + &. , : .
t i it

Uhder our assumptions the disturbance, u. .,
.'- k3
mean zero and coyariance structure
°E 4T £ ' and e
E u u, = g, + T if 1 = 1i' and £t = €
it it Cr
2 .
: Uéﬁ if i =1i"', £ # ¢t' (19)
0 if 1 # '
2 ;2 2bAtL ’
2 . g .
where O, 15 Eb(l )
If we arrange observations in  (18) 3o that the first T are from udit 1,

4

~the pnext T from unit ‘2, ete. The.variance-covariance matrix of disturbances

has thé simple block diagonal form
f S |
) 0
EG u') = v s (20)
A
‘; ) (:J 4
7 o
v
T 2 2.
with V Ex(gmi + g;) and each block has the structure (21)
< -1
L A . p
s = bl )
? i (22)
L T L. ®
: 2 2 2
and R =9, [/ (T« 4+ 7)) (23)
m : ¢ ' -
Note. that p is the proportion of "error- variance" that is unit-specific.
That is, it may be considered a measure of the impéiﬁaﬁze‘@f the unit-
specific effects relative to the Prownlan motion noise process. The

; R a L - - .
parameter p is called the autocorrelation coefficient for the unit-

-

£

specific



O

ERIC

Aruitoxt provided by Eic:

homogenous

Before

be written:

whers

*, =
=1
[ L.
.
: B

[]

and

1}
Eam™
[

Y

At this

which avoids

estimator is

effects model. The simple

point it is

the problem

i

in the sense that P is co

natural to

n

earch

=

in the disturbances.

=1

u u'. “1 =

/

=

2
u
~t
,

.T. R

ied to ( 24) yields

= 3

tant Qvér unjts.

.

s

i

15

model we are considering holds -that units are

considering estiﬁatars, we consider the systems case. For sim-

plicity we continue to focus on the case where x is constant. The model may

L

624) T

or a consistent estimator

The existence of such an



=
.- -\ ’ .
a ‘5§ - } )
| ‘ | | ~ " ' 16
if - ﬁﬂ§hi§§ in thezgausal structure has been changed and we-can apply. .
) : éféina'y.igésﬁ sqdé?és to {é%)_ Because of (26) Qig;épﬁliEd =. -t |
. " to EhE ftaﬁéﬁprmed &D§21 is now a CDﬂ%iStéDé‘aﬂd a;?PpiDtiCaliy héﬁicieng

o e
The pfﬁﬁedure 5uggésted in (25) is an application of the widely
K +) ) , - ] i

usaful grpe:ailzed least Squ ares (GLS) approach.to estimation. The

. /i ' ;}appllcatlaﬁ of GLS torpooled model E s commonly advocated in Ehév
""_ ) - -, a - ’ ] ) B
ec@ncmeiriz and blcmétrlc lltératufésiggéf}DVE, 1971;-Seafl§; 1971).
. L P Since we will make continued reference ?E the GLS éstimator wedneed
. a sagewhat ﬁara formal fepfésentatién! The GLS estlmatg rs is.defined as
: R . \
=1 -1 . : -
= (Q'Q 'Qy :
LoLs (D‘; 't): Q) Q y ; (26)
where . ‘ e . o )
sV o 0 p
-— 1 g}}
-0 ' s . .0
e/ = 1 .
’ a'l, - -
. ) - ¢
, -1 . ’
. ‘ 0 0 s ] .

transformation (27) can be Lﬂruttlv Ty WDEL

W A

as follows. The peculiar feat is the-U5¢ of both

tional (betwsen-unit) and 1nnf1tudL1;1 (within uﬁlﬁ) variation

3

s
N
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= 1)
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= 5 .‘ !
= * T v
novo%

e

+ =y

e
AT S AV T -1/2 L
To see this) cqhsider thé\ ase where p = 0. Then E_ = andtgbseq?aj

o : el : '8 5 o o =

. ti'ons are tfansfaﬂped *in (25), by .an identity transformation. GLS reduces
, ) N i

! to OLS %here series variation are weighted

, - =
. H

Ganérallzéd least squafgi _i, P to weight the t%é types of information.

&

. prprElDﬁaEEly tu N and T (see Maddala, 1971);' At the oth®r extreme,
- L -1 W . i e

~ \when P = 1§ § _ i%’/t ." This transformation averages observa-

vgiégns over time for each unit. The result is a regression - .
on grouped observations where all of thé weight-is placed 6n cross- ? /

GLs*weights -

e
r
L
e
i
]
]
o
Fa
<
7]
et
=
M
jun]

h
=
M
o

*  ‘sectional v§fiatian. In cases where

tifle series variation inversely to p. Such a weighting seems appropriate

in the time, series, . The ﬁggé redundancy, the

lower the weight attached to longitudinal variation. ™~ Gin
ks N N \‘ g“ i

A : - _ 7 .
So far we have treated p as known a priori. But we know of no

»logical resea%chers have prior-knowledge of the

H
]
o
-
-
L
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vdlue of :p. Thus we consider methods of esti*;tini p and properties
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L
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(i g z %;H}J}Fﬂ - (28)

Q : 19 ‘ L
ERIC | S |

Aruitoxt provided by Eic:



., it is more precise to refer to this estimator,
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An obvious egtimator of g k+ T ls'tﬁa\fum of S%?atéd residuals from the.

: g : 2
LSDV regression divided by leg Then T .
AT a9 s . . , -
g T = ag . . = . A0
. m*/(qm% + ~*)a - : - ' &29)

=%

6

Nerlove ch@sé‘f iﬁ=f12;29f over a ma¥imum likelihood ggtimate to

L]
E} 5 =

. ] ’ s . s . o
avaid negative v é lues of P {(which are implausible” in most applicati@ns?,;
e J §

Unfﬁfcunately the Eatlmataf ln (12. 29) is: upwardly biased (at 1east n%
.9

B

T . =

small samples) with the még tude

\
th bLas*lﬂversely related. to' p.

Hm

B .
Recall that GLS requires ﬁDﬂSLSEEHE esﬂlmézes of p. ’The bias in_
f does not, however, appéantQ unduly damagg the resulting GLS’estimatgfs

i

= e

(Amemiya, 1967). We study this is’sue fur:;:

A -

Ar below. = To acknowledge
¥ - 1

. B .
the fact that we are using estlmaﬁe# of p'rat

2

\er than-the true values,

& L
-

. A1 .-l ~al
é‘ = v(gtg Qt) ! Q_ zt - . =

=

: ‘*HGZS
; i
as modified gengrall zed le st SquarEE (MGES) . - ;
- ’ ¢ ‘ :
“  This es?}matcr is CDﬁSLStEﬂt and aaymptétlgally efficient even though

‘it uses biased esfimates of p.. All that is réqulred for thESE large

samplé properties is that 3 be aﬁzansisﬁent estimatér of p.(Aitken 1934).

.

Emplfical ré#searchers .are often more concerned with the behavior af =23 Cimagor

~

¥

in small or moderate size samples. And, the biag in p may'be'damaging in ;;Ss>

[
=
LG
L
Loy
M
ot
i
£

such samples, W&o weport results on small sanmple proper
. . & - o ;’:;1
, .

Finally, we mav form maximum|likelihood estimators for the random ~

H’"m
U‘
jw)
rr
e
Clu

effects model. ‘Since the uzt are joint normally di this 2

amount s t%;a standard Mk regression pfébl%m; Estimates of a , b ,

2, o . oo
¢, 9°¢ and P mdy be found by maximizing the log likelihood function

st

h

M%;
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: \igians. ‘However,

/.

v

L

Second, qQLS is

éi;;§ﬂ£ are found by iteration. Thus the numerical values' of MLE depend a
o : .

squares and ML es Elmat :s of variance components differ,

[ = .,‘1-

tinlike . cases dlscussed E@ this pDLnt HL is *DE
' !

stimator, . MGLS.
\

m

cas Eh the best 1&352 sqpar

¥ There are. three rgasons why the two estimhtors will differ. First, least

¥

-

n
£

2

Ly

o

=

=i

[

T

"

T

W

S :
[n}

m

£

b

=

.

M

I
sl

3 t;mazés-all pdrameters

Finally,aés Ehéfé‘is nb closed- fprm !DluPlan to QBD)

Ly

= = ) \

well on the shapé @Egtha likelihood :function and the quality of

the ;Eeratlva pro

of dynamic parameters in models with random unit-specific effects:

'I'hua there are two major alternative approaches to

£ ) F

edure. - PN . . ;

\I".h

f

L
=
m
i
L]
s
(s
=
o]
o
g

L

maximum likelihood and generalized least squares., There is actually a

13

Eh;fd estimator that might be considered.® The fixed-effects LSC

¢ . P

estimator is also consistent and as ymptgtlgally Cmﬁhlatént for the random-

91;

effects model ;Amemiya 1967), Of the three, ML is preferred in large

samples for reasons discu

Fa

- 1 , )

sed earlier. IE reta minimum variance

M\

e

properties under the non-linear transformations required to go from

intégfal to . differential equations. But what about smaller.samples%

Throughout™ the discus

As we mentioned

-

B

ion we have large-sample theory g

L]
Ll’l

W

earlier, it -is f?paftlﬁt for empirical researchers to

21

(=]
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abtaln sgme*lnfarmatlanhabaut the behav1cr of such‘éstimatafs in small and:

. : ] N y
ijgdé%ate sized samplesg Two issues are important here! -we want QQ compare,

B . " \}\ e

=¥ i -,
3 ;-wa also want to cﬁmpare the erfcfmance of the consistent estimators with
] & ' * ) —_
thQSE Df iﬁéunsistent estimators (DLS for exampla) which may have smallef
- mean. squared.error in small samples (cf. Hurd, 19722, WE have not yet seen
' analytital results on these issues. = So we consider the fesulté of Monte
¥ L , ) I
Carlb experiments on the ghall sample préperties of the vatiaus estimators.
: ‘ e A :
. . o &
, »?F Monte Carlo S%uﬁiesﬂa§25mall Sample-Properties
T D 7 7 . o~ " 7
L Wi ,summarize results from two simula ns that used the same structure.
. -
N g
{~ The two studies partfially overlap but %%SG Study some diffdrent estimators.
‘.‘* WE concentrate here:on thehs%ailar cases 50 as to give an @§érall comparison
“of all the estimét@rs under. consideration. . For more details see Hannan
L ! ‘ L] E- B
. 1 .
.+ and Young (1974, 1977) and Tuma and Young (1976);
q Data Generation. Both studies generated data that fits the following
* v B [
model
— .
: - Y = Y + X + (31)
. it 171, e=1 To¥ie T Yy
: X / -
= m +
Uik "y “it ’
»—‘;“F
‘where the compbnents of U, have the properties stated in Section 8. The
exogenous variable has the structure:
. X<, = 0.1t + 0,5 ¥ + W
(: it i,c=1 it
where the w,, are independent normal variables. In these respects the
. . ‘simulations followed Nerlove's (1971) procedure. However, they differed
3 JJ
(3]
<2
O
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ff@ﬁ_ﬂetlévé's in four fES?EQtS; First, we have chosen the number
. Y -

'7.cf ﬂndivlduals N as fifty and thé number‘of time periodg T as
five; whéreas N?fiave chos twenty—five and ten, EESPEEEiVElY.

N

PR mang available datéffrts, Second, we have géﬁegéted §52uda—rand@m
= I3 = P N .

L.

- i » . . . ¢

A " .
. . {CHGSE the former valuea of N and T because they are repregentative of

variates by Marsaglia's re ngle-wedge-tail él’éiithﬁ,;rezgmmended’
y glia s g g g ;

Y

i . ‘as best by Knuth (1969), rather tham the method dederibed by Nerlove
: ) . N : o

s ’ -

(1971). Thixd, we have studied somewhat different combinations of

er valuea. In each cor blﬁgﬁlan we set a = 0.0 'and ©

rr

parame

fl *

We sglegtei five values for f: 0.0, D,ZS, 0.50, 0.75, and 0.90.

=

[s]

examine the dependence of estimator quality on Lhe relative stweng
“

effec of the laggzed endogenous®and ex@g%naus variables, we chose

. tiohs of b, and c¢: (b,c) = _(C),B,LC));,(D,SV,LD),i and 0.8,0.5).

examined a total of fifteen combinations of parameter values. Four

for each combination of parameter values we generated 100 sets of

&

. A . e . . .
data, where Nerlove generateds 50. The additional data sets give increased -

. f .
. ) v e

. . ) o . Yt
confidence about the properties of estimators. L

(1) Ordinary least squares (DLS}. A consistent estimator only
pztja Y
-(2) Least squares with constants (LSC), the fixed-effects

estimator. Consistent and ahymptatlnally efficient.

[}
d

(3) "True' generalized least squares (GLS) using known (true)
values of p. A minimum variance consistent estimator.

. o (4) Modified generalized least squares (MGLS) with p calculated

as in (29) from an L3C first stage estimator. Consistent

ERIC @ - | €3
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Thus, we
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£

Estimators: He study the behavior of the following ed¥imators:

when




-
(5) Maximum likeli’i{c:cd constrained (}i.(‘;‘} with o 2% and 0=p=1.

Asymptotically unbiased and efficient.

(é) Maximum likelihood unconstrained (MLU): asﬁmptatiéé;ly unbiased '
. % - .
~but inefficient relative to MLC.- »

-
-

| © An initial}set of parameter estimates must be provided to find the ML

?sﬁimates in both methods (5) and (6). n%eiicmpared thgsgfffgrmance o

I~y

LAy

five different pafamééé:'cambiﬁatiaﬁ
(a total of 500 data sets) using upconstrained ML: the LSDV estimates
"~ and the true values used to generate the data. The two types of
: M
initial estimates produced nedrly identica

L

et
(!
e
=
L
—
u

[
]
re
[N
3
s
(s
1l
Pt
I
o]
e
L
o
i

f

four combinmations in which p > 0. For P =0 the two scts of paraneter

'

“estimates differed in only a hahdful of cases, and by a negligible amount.

herefore, because of the cost invalved in obtaining the LSDV estimates,

’ &

we used the true parameter values as starting estimates in all remainfﬁﬁk;

3 ML, estimations. We report only the results obtained from using thi

e N

L]

4
& latter type of initial estimates. y
Whereas Nerlove (1971) used the Fletcher-Powell algorithm (1963)

programmed by WéilQ‘C1967) to maximize L, Tuma and Young (1976) used the Gill-

“¥Mygray alggfichm (1972) programmed by Wright (1975). Both algorithms are

iterative procedures and are based

n modified steepest descent methods

e
1L
I

o

of function minimization. éillj Murray and their coworkers (1972a, 1972b)

, ~
more reliably €Han the Fletcher-Powell algorithm. %ﬁiner, when both/

1

[y
r

onverge, theys report that the two algorithms give extremely similar

i)

I
L]

timates #f the function optimum for a variety of .function

Tuma and Young's (1976) treatment of contraints on parameter values for

ERIC A - 24
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2% i i . j.e’ . | ,’ 2
0" "and p Mgarted markedly from Nerlove's (1971).  Nerlove constrained 7 _
- N : «

5 5 . é: ‘1 = ¥ ’ i = ° i x : 2 1 . i
to be positive by maximizing L with respect to o rather than o . He /imposed
: : \ ‘ - R ,, ‘ : _ zx' ~ - :
a ponnegativity constraint on p by equating it with sih "6 and maximizing
. - i . - ~ - . . . = n < ) .. < 5
L with respect to 9 rather than p. - As Nerlove™acknowledges, this method

, ’ . ; L
of applying constraints’ causes L to have multiple maxima with respectr Vo
. & - . - . )
to 8 since sin 9 is a periodic function. Murray (197%) warns against

employment of trigonometric constraints. Such a proceduré’can.increase
1

the nunlinearity of the function being maximized and causi th: matrix of

second derivatives (which must be negative definite at the maximum of the
&

likelihood function) to become singular or ill-conditioned. -

4

The Gill-Murray algorithm used by Tuma and Young (1976) for ML estima-

tion wtilizes a projection method of optimization that permits any feasible
. : : .

equality er inequality constraints to be imposed on parameter values.

<

.
2]

For a detailed discussion of this constrained optimization procedure,

seé Gill and Murray (1972). This method does not increase the non-

ligmarity of the function heing optimized or the numbér of local maxima.
’ H =

To our knowledge there is no previous evidence indicating the

T

. - = = - . Rl - .
magnitude of the effects of constraining ¢ and ¢ on ML parameter

estimates for the model we have simulated. Thus, we do not know

L]

whether the mean squared errors (HSE'S) of the constrained estimates

_ , 2 .. . , .
of p and 5° will be appreciably smaller than the unconstrained

versions. ~Frurther, we do not know the éffects of constraining %

~2 ; - . — , : R
and €° on the quality of the estimates of ¥, and ¥,. Finally, it is
2
important to learn whether the poor performance of the ML method iﬁ

Nerlove Ug?i)r75u1ts from the SﬁallasamplerprPEEEiés f ML estimation

3

of this model fr from the implementation of parameter constraints.

B
T

-
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v K Rasuifsz_ Before lD@king'at méanasquéredizrforiani ?i;z of - ;? E |

™ estimators we comment on the effectiveness and practicality of the

. LR . e . . . i \ : , CoL
maximum 1ik§;ihcad ptocedure used: This issue has hgightened importance

in the present context as Nerlove (1971) .in a<vefy influentdial paper

reggfzs.that MLE failed EQ‘QDﬁV erge on most occasiomws and
) ~ P rs . = i . @ .i.'\ . T
: net stand as serious” ptactlc_il altp atives to MGLS. Turff and Ymmg (19761}

Nﬁ

El

‘ that implementation of the ML methods was both successful and practical.
Not only did ML estimation coenverge to a solution for every data set, but
also the time required for this was short. On the average the ML solution

was found in four to ten iterations, depgn?ing on the particular .

combination of parameter values. , The MlC\and MLU methaés faquirgd

L 7 7 . . A
nearly identical numbers of iterations to converge.

For both methods
several more iterations were usually nﬁedpd for high values of o,

T Jﬁ

éspezla}lyﬁgﬁen ( Yy = DiS,wFE D-S ). These higher numbéfs of

' iteratianﬁvoccuf together with poor quality of the ML estimates of El,

2

o and p, as described “more fully-later in this section. It is hslpful

- to know which pafameter combinations led to activation of constraints,
Obviously for the cases in which no constraints were activated, the
MEC aed MIT oo ioaros aco SHamesanl e e 2
MLC and MLU estimates are identical. The constraints that o be
p@sitive and that p be less than or/equal to one were never brought

- into play (cf. Nerlove 1971). ‘vlowever, the constraint that p be
.Y .

i nonnegative was activated in about sixty percent of the cases in which

w
-

P = 0%y = 0.8, v, = 1.0; nd p=0.90. Thus the quality of MLC

and MLU estimators is unlikely to differ except for these combinaticdns

- of parameters,

DO
s~

O
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We begin our assessment of the quality of the stimators by compar-

[3

% -'... - ing overall mean squared errors averaged over the five choices of p,

_Thése are reported in Table- 1. Overall the OLS and LSC estimators

- 2 . ‘ : .
- — — L

. Lo "Table 1 about here
.. , \ 't here

5
M

!
il

. = = e = .

are inferior as we expected. The simulation results agree with the

'large. sample theory in that OLS has largest MSE'in each case. Moreover,
. _ ' ' A A & A Al ‘ K
Ehé%é two estimators are notably poor in estimating Y s and, as we have

sted ‘repeatedly, this failure has serious consequences in analysis of
3 . i

inuous-time models. - On the basis of these results and the further

W
[a™

Lo ::':k%;denée in Hannan and Young (1977) we advise against use of OLS an

= B i

1LsC for rand@m%effe¢ﬁs models{ Henceforth we direct attention c§?§ ‘
@ a: to the MGLS and ML estimators. !
o ;; " ' - The :giative qﬁalit; SE the ML and MGLS estimates vgfiés a;c@rdiﬁgA

to EhaAsiza éf the. ratio of Yoo the,;aéffiéi;nt of Ehé’lagged endageaaus:

- & =
variable, ta Yo» the coefficient of the exogenous -variable., We find -

that ML is superior when the effect of the lagged endogenous variable -
. , . ‘: -77 ’7 7 , B = o 7'
is small in comparison to the effect of the exogenous variable, while

u

ﬁGLS is best when the opposite is true. As we report below, the
dependence of the relative quality of the ML and MGLS estimates of:
regression coefficients on the relative effects of A and Yzﬂbétamas

eveimére apparent when. the simulation results are not aggregated
over values of p.
We now turn our attention to a more detailed examination of the
% » - - ) B C 8 : " .
" performance of the MLU and MLC eStimates, contrasted to each other

[
a

Q . o o 237
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and to the best of the least squares methods, MGLS. We Qée the -.

i
A B
i

& o
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;iSLleaf-aQtGSS all paramet,, e@mbiﬁaiiﬂns’(seeeigbl

.

% bias(8) = 1aoz * blas(a)/e

it

For bgﬁh Tl and Y, the % biases cf{Ehe MLC and MLU estimatef are very

réspe;tivéiy).

& b

in Y, across all parameter comblnatlcﬁs,, chever; Hoth machads of

- o L=

stimation prcduce widely vafylng 7% biases in Tl For each combination

‘W

Gf'yl and YZ the % bias-in ML Estlmatés of Yl Eends to become worse as

p 1n§feasas. However,, for the flrst Ewa CmeLﬂaELDHS of Yl and YZ
there is a downturn in ‘the % bias for very high values of p. On the

other hand, the MGLS pstimates of y, are downwardly biased for low

values of p but the 7 bias increases monotonically as p increases,

approaching a negligible % bias for P = 0.9.

Of course, the MSE's reported eatlier also depend on the

-variances of -estfimators. However, there are only slight differences

between the two ML and MGLS in variances. For both types of Esiiméiéfs

the variance falls off shar ply as p increases. As this is the QS%?

;

interesting pattern in the vafiangés we do not report the a:tualrgiggfes

(See Tuma aﬁd Young. 19767 Tables 4 and 5). &

Flnally we ibmk at estimates of P. In both MIU and MLC estimates

£ ;i t R : Y
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L.

of p the biases are usually negative and vafy'similar_jsée Table 4). 'Pj-

_ —_— e

~ Table 4 abopt here 71%

The magnitgde af the bias in p is SngwhaE:smaLLEE for MLC than for
. MLU when () = 0.8, ¥y=0.5, . 0.25 < p £ 0.75) but slightly larger -
~for MLC than for MLU when p = 0.0. The size of the bias in ML
estimates of p tends to increase as p increases; hcwéver, for two
. of the thfée combinations of the fégrassiéngéééffiéiéﬁts,‘Ethé is .
, La.dcwntu:ﬁ in thérbias in 3 as the value of p'béiﬂﬁéé Qery'larga_
The ML and HﬁLS metﬁads péffarm optimally at ap@csice end% of
1!F% v p contiguumi ﬁheteasgﬂl estimates of g ;ra almggt alway%'dgwnwara;y
; biased, ;Eihe MGLS estimates Vc:f ¢ are almost Ea‘lways upwafély biased. Al;ld;
as we found in our exém}naiian of tﬁg % biases of ;1 the péﬁforman:é
-af'the ML method tends to ‘be best'wheﬁ MOLS 1is at its_vq;st,.aﬁd viaeg
versa. Thus, we find that while the bias in ML estimates of o is
greatesé for high values of g and least fof low vaiues of p,pjust Ehe-g
’ éppﬁsite is true for MGLS. The MGLS éstiﬁatés-cf_p'afg mastrgiased
. when p is near zero and least biased Whéﬁ‘g is near unity@
Nqﬁgﬁhéléssg thé ML and MGLS methods have’two obvious similarities:
. | (1) there is an inverse relatignsﬁip bezween‘x bias in ;i and bias in g,

and (2) ‘absolute values of the biases in Yl and p are positively
asséa:iatad,_ These similarities .ife curious becuase the ML and MGLS

methods have opposite signs to the biases of their estimates of p and

.- af 71. " Though the two methods diffgé}dr§mgtically in their tendencies
: &Y =

to attribute stability in the dependent variable to serial correlatio

o]

i
¥
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" _ of residuéls for individual units rather than to ineréia in'Egg N
: dépénéénﬁ va:iablé, for béth methods Eheré_aré cg%;éﬁzzti5§ effects. )
Tﬁat is, Eﬂriba:h mEEthszéerf iﬁ‘cﬂg_éifectién iﬂ estimating.
¥ ,:iﬂchetstréngth of saffal correlation of residuals is acaémpanieélby
error in the opposite direction in eséimaﬁing the stféngﬁh of the
7 laggéd'gﬁdagenqus variable. | _ - A | ‘- | )
o - = : :
! Heléancluda that both ML and MGLS perform relatively well with panel
data of the size usually avéiiabla to sociologists (N = 50, T = 5). $ )
~7"’1"11:33;? clearly cuéperfdrﬁ DLS and LSDV. It appears that MGLS does best
f when v, is:sméllgblfhis imﬁliés;§hat'MGLS has ‘best small sample pfapérties
N when systems unéer study-adjustvrSPidly relative to the ﬁime scale chésen'

(or, under the alternativa:iﬁﬁérprizatian, have strong negative
R feedback ). On the other hénd, MLE appear preferable for systemsl e ®
thdt adjust more slowly. 1In light of pfe%ious work on these issues,

perhaps the most important conclusion is that both ML and MGLS are
practical and appeaf.té have good small sample properties.

We alsarprévida at least a partial answer to the question: Should natural
cgnstraints'@n parameters be imposed? Tuma and Young (1976) find; as
did Nerlove (1971), that*in practice only the donnegativity constraint

"on p is’'at issue because other natural constraints are never violated,

El =

These results show that in terms of the mean squared error of Y1
and Yy ML estimation with constraints on p has a slight advantage

over that without coastraints. Clearly constrained ML .estimation
= : T T 5 . ,i R -~ _ &
gives more reasonable estimates of p because it prevents ; from '

having a negative value, which is contrary to the assumptions of

R
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the'model. In addition, the constrained ML estimates of the regression

/

coefficients alvays have a smaller variance than the unconstrained oges,

O

ERIC
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and this usually compensates for occasioually larger biases in the

constrained estimates. Still, the differences between the constraired

and unconstrained ML estimates are never large--and always negligible

for those parameter combinations in which ML estimates aEE'égpéfigf i

. . ’ [N )
quality to'MGLS estimates. Consequently,this research provides no

evidence that omitting constraints on ¢ will seriously damage the

2 oo . . ] i .

quality of ML estimates of regression coefficients in the model.
- I . . ’ .

10. = Unequally Spaced Observations : :

4

To this point, we have assumed equally spaced panel dbservations.
long as waves in the panel are repeated with constant period for. all

units, several approaches™to estimation have merit. We saw that two

broad stfaiegié% havévbeenvpfapaséd. Within each stfatég?, several
estimators have good properties. }Eut once ﬁe_veniure beyond this
standard 'désign. to consider unequal spacing, we face g;eatly Liﬁita&
alternativé%. ,Iﬁjfa:t only one sﬁrategirénd one esﬁimaigr appear -

feasible:, maximum likelihood applied to integral equations.

n

[}

Two classes of designs~may yield unequally spaced data. The first

. is the conventional multi-wave panel where the length of lags between

waves varies but is the same for all unit ~ In field research such

variabjility in the timing of waves may arise from the vagadries of
. b = g .. .

flows of research funds, problems of éﬁﬁf§'inta sites, renewed

interest in some earlier panel, etc. For .example, Meyer's (1975)

<

s 7 . o | .

i et
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5 : . . =
. ¥

thféeswave panel.gf fin ance agEﬁéiés has a fhreeiyeat iag bétWéeﬁ the-

¥ ) first two Waves and a six—yéar lag between the segnnd and the Ehird, The

widely analyzed Sewell (sae, fgr éxample, Ha&?&r and Sewell 1975) panel

of Wisconsin high sghaol seniofs was intEEv1ewed in 1957 1964, and 1976.
Exactly thérsame sorts of problems arise in archival research since ,

af%icia;;seéﬁggs often release data at in Ermittent intervals. = Moreobver,
p S P ’
fesea:gths using secondary sources must often depend on the timing of

. . ' s Bl

several s;ho rs or groups of scholars. *ﬁThey are this often confronted

.f with-unéqually spaced dgté;J-Asé" -.'“':1" o . o
< . ' : : g.— " e .7 ! ! !“ ) v .

The' second, perhap% mora ﬁ,pgrtant prﬂblem concerns. tiﬁi 4 that

varies from unit to unit., Th;s p:ablem may also arise fot the reasons.
v

discﬁssed_aﬁcve; Some lnlelduElS may be '"lost'" to a panel §nd Qﬁiy

%geovgféd_at some laier tife. Hgye%er; théré is a more systematic - . |
reason why gheltgping of Qbservaﬁigns may:vary among unitgf Panel ob-.
lsetvati@ns may vary.amgng unitsg Panel obse§vazicﬁs may be‘linééd to
eveﬁﬁsxthat are generated by a Sgacﬁastié process. S@ﬁaﬁimés this is

S : ¢  :: done within a rétréséectivezdésign. . For éxaﬁplé,_the Patﬂ&é(l??Sj“"matqfé
woman panel“ contains wafk:histgfies at marriage, at first birth, gﬁ:.

Since d;ffafent wamen have different timing of events, thé panel wiil

have extreme unequal spacing..

~ We argue that sociologists ought to study coupled chaqges in

qualitative and quantitative outcomes (E.g; marital stathus and eatnings)
One fruitful approach to such systems involves studying changes in

i

‘quantitative variables over periods thgt begin and Endpwizh events

(changes in state or qualitative variables). We surmise that, if we

are to make progress on the important class of problems that involve

5 32
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-eﬁupled changes iﬁ quantity and quality, wevmustgsalva the .problem of -

¢

“-analyzing gnequal spaced paﬁel data.

Q

ERIC =
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- salutiéﬁ in many iﬁSLaﬁc

The fitsé\iypé of unequal ﬁpaaing is usually dealt with EQWW

analyzing paitf Df waves separately But this is an unsatisfactory

u

es since it obviates the passibillty of adjusting

%? ecific disturbannesi In most saciéLagicaliappligaﬁians,ésuch .

a'failure kea a real d;ffarenca in estlmates of ‘the paramazers of the -

underlying continuous-time madél ffam diffafént lags. Shﬂuld we be

’Eempted as a zansequence to treat’ ‘the data as generated by séve:al

dLs:reEe tlmé processés with defErEﬁE lags theré ﬂ? another prcblem As

wg_ghgggd' above, tth%fiS no metric available to cg@parevresulﬁg
from different lags when the process is viewed as discrete in time.

Thus the analysi cannot draw sound inferences about stability or thaﬁge

in the process. He has not one but two or more processes. Thua “there
. e P

is a tremendous loss of ganeralityi' So the analyst w1§h panel data

b=

é;Eh the Simplef form of unequal spazing faces two uﬁhappy alternatives:
report dlff ent Estlmat of one proceéss (with the fear thaE the

differences reflect only autocorrelation bias) or report estimates

: o, 7 _ i ) 7 ‘
of several discrete-time pracesses for the same subsﬁanciva prgblem (where

£

‘the lag structures are de téfm;ﬁéd by ‘the pegullar;tlag of the research

d 5,,7 ),l : ' *

~We have not seen any anal rsis of data Df the more extreme typE of -
L EK _
™. -
unequal spacing that pays attention to these methadalcgical_9r§blemsi

Moreover, we-have not yet S

found any systematic treatment of the general
problem. So, despite its obvious practical importance and its possible

substantive importance, the issue of how to estimate

33
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mcdels frmm unequally spaae&>data has received sur ;;:iﬂgly 1iEElE
o attention. We aEErlbute thls 1acuna to the common preaccupatlan w;Eh
ﬂiscféﬁE*Eimé mode 1s’ ;n‘the F:c; SELEnce: 'We ngw show. thaﬁ Sthtlng o
B T - - : -
’  to a tantlﬂuaus—tlme perspact;va suggests solutigns to unequal spaclng
f L - : . lj . * & )
fprgbiamsi ' .
¢ . - 10.+ MLE fc: Uneqpal]y Spaced Observazlans
’ $ ¥ . . :
Ih& simglest case concerns the linear stochastic differential™
" .
equation w1th no. unit- SPEElfl “components:
;o aycr;) = a dt + bY()dt + eX(t)dt + 0dB_
whafe B is a normal Brownian motion. (1) has solution (subject to initial
canditiéns Y(tD) = ’d, X(tD} = :D and assumiug X(t) ahanges 1inaafly over
‘ o bae, t; Aty . pbAty . y
Ve = a1 +e LI o * el DX+ e (Li-sl ) 1) AX(t)
S b b b VbaE, ,
t, -
" b(t-s) (33)
¥ D .
) BegauSEsAti variesgaéééh unit has its own set of parameters in the integrated
B form. Let us féWfité;(BB) as
Vn'jf}{ +d Qlil(t)**i= A
S R 1 - (34)
o T 20 .
We know that Ei is N(O, Si) where
] 2 by
62 =9 (- ~2bAt ) :
1 2b
Consequently we may write the likelihood function"
, 3.1
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- ‘L(a,b,e,0; data) = I ‘exp [ 2 ] (35)
e i=1 vZmo, %
- i »
or ‘ + £

(36)
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where oy is’ defined in (35). But'undefnthe ﬁgdai;:
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[ (&) = ag =by Yyo =g Xyp = dp aXCep]m OGN

.k

S e ok % ST :
o and, see (32), i’-bi"cf and d, are explicit functions of the dynamic

pataﬁeters of interest. : ) .

;rSiﬁééﬁﬁhE Ati are obsetrved data, tﬁis likelihagé ma& be ﬁaximiéed wiﬁh
respect té a, b, e, andaﬁia This';équires writing out first and second
derivatives ofvg(gﬁ) with re;pEZt to these parameters and using thesé,
éxpféésiaﬁs in éne of the standard itefétive féﬁtinés. We hav%léaapﬁed thé

' Gill=Euffééﬁa;éariﬁhm§used to estimate rates, féf‘thisvégfpgse; We will -
illusﬁfate the procedure below. . L : ’ t
. v

Suppose one has reason to believe that each unit changes in res-

panse to unobwerved constant faQEDra as discuss d above, Then the model is’

dgi(i) = a dt + by (t)dt + cX(t)dt + m. dt + GdE : (38)

. and subject.to the»same conditions stated above, has solution
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One - carinot’ identify gi from only two waves of ebservations. Héwev&fi ‘
. ] ) - I i ) . ) . » . X . ) '
' 'when three of more Wavey are ‘available on each unit, all-the dyrdmic

" parameters may be identified.

Let us consider the general GaSé’Whgré the number of observations

i

“varies from unit to unit. We dénote the number of ﬁbséfvaﬁicns on unit i
. d - let At,; =t, |, -'t,, wHere t,, is the jth observation on
by tl and-1 . 1] i,j+l ij R T _ ":n ° A ton on
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the i’h unit. Then we write a pooled model as follows:
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And, "disturbance" vector of the integrated form is.N(Q, £) with.
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Now Z may be expfessea a§ a fuﬁctlmn of observable variables Y- 1,5;; \
e .
1 “': L
l ‘AX as above. Since L is normal, we may write an Expllclt llkellh@ad funQELax
. and estimate parameters by staﬁdard iterative algarlchms Rather extensiva A
# T prcgramming fLS raquired, hcwever, gg make th;s schéme cperaticnalib Our
regearch group 15 curfently caﬁductlng th;s work in pre atatlcn for appl;caticnﬁ
of Ehé?é)méthﬂds to sociological data. *f’vﬁ{ - .o : .
N Conclusions =~ ﬂ%:1 : . ‘ o

The EhruSt of thig réparz has been to shcw that we can use. available + -
. . . - ’T {

1

"

-zmeEhads to SDlVE many . of the practlcal pr‘

e 3 v L o

g

=tim§i”QDﬂtl§uG§S%StaEE*médélgsinjEDQiDngiEal rasearch! In part we havesnﬁ:

: ﬁhecry assumpt;ans with determinlsﬁ;c madels) llnear chan;
] X !

Brawnianvmatiﬁn;.-Dnly a slight change; ir

Aruitoxt provided by Eic:




S ¥

. usual estimates to be transformed inta estimazés af a. simple ,fcbabilis;ie

-

model for chaﬁge in quantitative variables.‘

We hava dgvated considerabla attentian to Ehe 1ikely problem af

YautOEfoelatioﬂ- We suggest , that: a-combination of Erownian motiﬁn,, 'i
- ] ; Tw * R 2 N

disturbances and unit-specific permanent effects may apply meaningfully’

¥

to a-vari;ﬁj'gffEGciQ;cgical analyses. If so, modest extensions. of available
:.eétimatQES'fof'écgled cross-section and time series daga may be used

profitably. We showed that prhfgeieralized least squares agd maximum __' .
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s likefih@od stimators have good pfap erties for sample sizes typigally used IERE
B . \ . : S

by so%iolagists.

'Finaii§j'we illustrated-one of jthe major advantages of continuous-time
m@deliug of SGC%&?EPfGEESSESS Ebe ability to handle data callect&d with

unequal Spacinéfih tiqa;, The maximum likelihood EstimEEDIE ﬁa discuss may
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be exte ded to thls caueain a straightfufward Ehﬂugh tedious, way. —
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Table 1

Mean Squared Error of Estimates

) N .. i i
(Cases averaged)over all* values of p; each
entry based 500 sets of estimates)
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All entries in this table have been rounded off to the nearest tenth

of a percent.
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Table 2

T

Percent Bias in_

(Each entry based on 100 sets of estimates)

0.25

0.5

— !

46

13,6

13.6
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Table 3
Percent Bias in Yi
Co Percent Bias
(Each entry based on 180 sets of estimates)
g = 0.0  0.25 Q.5 0.75 0.9
Y, =0.3,v, =1.0 .
MLU =0.0%* -0.0 0.1 0.1 =0.0
MLC 0.1 -0.0 0.1 0.0 -0.0
£
MGLS -0.3 -0.4 -0.3 -0.2 -0.1
Yl = D,S, T?- = 1.0
MLU 0.0 -1.6 -1.6 -0.4 044
MLC 0.1 -1.6 =1.6 ~0.4 0.4
MGLS ~0.1 -0.3 -=0.2 0.0 0.0
y =0.8, y = 0.5
1 2
MLU 0.0 -2.5 -3.1 -2.8 =-1.5
MLC 0.2 =-2.0 =2.6 -2.6 -1.5
MGLS -0.9 -1.4 -1.,1 -0.5 0.0

% o . o . .
""All entries in this table have been rounded off to the nearest tenth
of a percent.
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Table 4
Bias of P

(Eaﬁﬁ entry based on 100 séts of estimates)
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-.005
.017
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©~.040

0.25 0.5 . 0.75

=.040 =.048
- 048

.215

L -.345
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-.166
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=.242
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.145

.219

~.025
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!!398
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.340 . i156
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