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Purpose

The issue: ¢f how to dezermine mastery test reliability is lexs than fully
settled, particulariy when it comes to the issue of which index to use. The
purpose of this siuc~ was == shed some quasi-empirical light on . e subject by
examining four rejaz—vei: -e: ant indices, with attemtion to th imterrelation-
ships of score distr+buz-m- zhape, mudality, ard preximity of -wasttery cutoff
score to arzas of hessvy szr-» densizy (modes). The four singl. dministration
indices examined wer- (some:zimes variations or revisions -f) th»se due to
Brennan and Kane (1¢°" | =wvnh (1973), Marshal =znd -aerzel (1 3, and
Subkoviak (1976a).

Many investigzstor '~ nis fi-.id 1w0ld tha" w=stery st re “2Hility
should deal with t—= .~r zency of mastery rome:ste-y decz—< |, ar of allo-
cation to mastery -cate- . -sTwer tsw zhe classiwal notien 5 c=nsistency of

sc<re jtself. Fl1' -= - .ns . .ar noividual's sactual sccre i= pmrallel or
ree=ated testing . t¢ . .ms ire noo corsideres importamt. T - cizimed,
urm=ss they a'lso ra5uill 0 consist: T maste - state -atemorizavons. Yet,
vi- ng the situat 1w ;. 7icaiTy, & is k2= pressad not *m cvunclude that
sivvi s grouped nea~ 1+ - .. -7 smmulc somehor Tntribums Tesc .) the mastery
tegyi 5 rxliability the  11: tnose —iat ane mrve distant v om the cutoff.
Th--  <w2nption in t* © 7 1v was focused on the values of those imdices when
the -uttx™f score s razar ' or far from the momfs) of the distrttwation.
Pro&=sare

A computer prot ‘. dezigned and writtan by the authors, generated item-

by-e :aminee response \Grrre-t or incorrect) matrices, according o parameters
selected to control :core distribution shape. mcdality, mean, and variance.
From each matrix, the sm#+ distrioution was #wmined, and test indices were
calculated for al” int=wral cutoff scores. lInax valwe as a function of cut-
of f score was graphed, = w:. 5 the relatiwe remuency distribution of scores,
so that score distributm ss1ape and mode.sj/» cutoff score, and index value
could be visually comparec. The rationale ffor doing this was that, for a
given score distribution sh@ne, index values smould be relatively lower when
cutoff score is near a moge and relatively fhizher when cutoff score is in an
area of very light score -amsity, if the ‘mme« is to reflect the property



mentioned ear?ier.1

Five types of score distr-ibutions we~= “mvestigated: bell-shaped (\.),
highly negatiez1y skeweo unimmdal (/") ), rmmodal with a stronger mode at the
upper end (n/_ ), symeetric timodal with omes well separated (AA), and
symmetric bimlal with modes mear each othe~ [\ ). These shapes were only
@pproximatels ibtained. since the computer program has ouilt-in random error
components i order to simuiate the results oF actual tast-taking situations.
zach score d=stribution shape was investigat=s for tests of 3, 10, and 20
items.

Indices?
A. Index oFf -=esencab 'y, M. (Breemnan and Kane, V977

Brennar and kane .choose mpt to czil —his @ reliabilitty index, for reasons
discussed ir. the —eferai. cited. It was inclwded in this study, however, in
order to see whetmer 1: uhe-ed any properties with the ethmwers. The index is
similar to that ¢~ Lavina~ ,n "°972), but is based on gemser-iizability theory
rather than class cai tess —heory. T~he index is definer in ==rms of expected
squared c=viationz —rw -he cutoff swore, C.

B. 1. 2 single-aoristration estimate (Huyrr. 1976) o* =ne kappa coefficier—,
K (Conen, 1930).

This estimate zss.mes thist true scores follow a beta Ziszribution with
parameters estimats« Trem the mean and varismmnce of the observer score distri-
bution; responses cn taralizl tests are indspendent and fullow the binomial
error model.

2. A single-admi~ :trati - estimate of =he coefficient of zgreement (pro-
portion o7 consictent decisior.), » (Husmer, 1976°.

The same assumpt an: app ¥ hers.

C. Another singie-admmms rati.m estimatz o7 the coefficient c- agreement,
P, (Subkoviak, 1576).
This index is based or === asx:.mptici that the probability that each

1 It is recognized that niier .ritzria may be employed in evaluating
reliability indices. In this z=oer, however, the criterion addressed is
whether the indices reflect szmme «-stribution mode(s).

2 Appendix A contains all commuz’r+ formulas used.




binomial form, and incorporates a true score for each person estimated via
linear regression using observed score, and observed score mean and variance.
D. The mean split-half coefficient of agreement, B (Marshall, 1976),
which is a revision of an earlier formulation (Marshall and Haertel, 1975).
This index is equal to the mean (over persons) proportion (over all
possible test splits) of consistent mastery decisions on a hypothetical
double-length test, scores on which can be estimated in a variety of ways.
Five different methods, or models, for estimating double-length test scores
or score distributions were used in this study, and are outlined in Appendix
A.
E. In addition, four of the above indices -- «, p, P, B (Huynh, 1978;
Subkoviak, 1977; Marshall, 1976) -- can be generalized to multiple mastery
states (more than one cutoff score.) These generalized indices were also
investigated in this study, but only for the case of three mastery states.
F. Because of the close association between « and the fourfold correlation
index (phi coefficient), ¢ was also calculated on the basis of quantities

generated in the calculation of coefficient 8, in order that «
might be compared with ¢ for each model.
Results

Although the study generated a great deal of data, the focus reported
here is on the degree to which the indices reflect score distribution modes.
1. The index of dependability, M(C), is clearly different from the others,
and the conclusion is that it measures quite different things. It did not
reflect score distribution modes (except, of course, when the distribution
was unimodal and the mean and mode coincided, since, as Brennan and Kane
indicate, M(c) always has a minimum at X.) 1In fact, M(C) shows the same rela-
tionship to xr21 as Livingstons's index does to XR2¢0: the minimum value of
each coefficient, occuring at the score distribution mean, equals the
respective Kuder-Richardson estimate. '

3 A more complete report will soon be available and may be cbtained by
writine either of the authors.




2. Coefficient « also measures very different things than do p, Pc,and B,

as its formulation suggests. Not only did it not reflect score distributi -
modes (except, by coincidence, when the distribution was bimodal at the
extremes), but it behaved in the very opposite way for unimodal distribu=toms,
having a maximum rather than a minimum at the mode for symmetric distribkmziions
and near the mode for skewed distributiions. This is because k takes on —ks:
maximum value in the vicinity of the test mean.

3. Huynh's p did reflect the score moaes for unimodal distributions--that- ..
distributions which approximate one of the beta family, in accordance wit e
assumptions for that index. The coefficient did not, however, rerlect sc- =
modes when the shape of the score distribution was bimodal, whick is ofte ‘he
case for mastery tests, unless the modes were so extreme as to copy ome - -
J-shaped or U-shaped beta distributions (a situation which is not likely o
happen in the real world, particularly when guessing occurs). Based on the
research of this study, the authors hypothesize that the p coefficient w ' 'd
fare better on this criterion if Huynh had chosen a predictive Bayesiam bets-
binomial approach (Aitchison and Dunsmore, 1975), akin o D. I. in Appendi, A,
even though that approach is slightly more complex. Although earlier resegi~ch
(Subkoviak, 1978) recommended the Huynh procedure, it should be noted - -
Subkoviak's study dealt only with unimodal distributions closely approx:

a beta distribution. It is 1ikely that the recommendations would have -

t

otherwise had bimodal distributions similar to those in this study beer st
gated.

4, Subkoviak's P, generally reflected score modes very well, for both
unimodal and bimodal distributions. The one exception was when the dis cien,

was bimodal and the modes were close together, particularly for short < 4

But since this type of score distribution is atypical, the Subkoviak ar "z 1 -s,
overall, highly satisfactory.
5. Of the five estimation models for Marshall's coefficient 3, model 2 w .a-the

4 In this situation, a compound rather than a simple binomizl model wmxii: i “are
better; in all other cases the simple and compound binomial models yieumer
nearly identical results, supporting Subkoviak's (1978) findfmgs.

(op



Model 1 reiizcted szov: -7m=s, but uniformiy not as well as did models 2, 4,

anr- 5, exes4pt when tie urst—ibution was urrmodal. Models 2 and 4 were nearly
idesmtrical . wme oniy erzegtion being the situation described above for Subkoviak's
PC' ¥odel &-is tmus — == preferable of the two for reasmms of simplicity. Thus
the @oice remrrow:s @ - to models 4 and 5. Model 5 yiefdec m=tter results in
the = ~tuz=tior: descri#™ above, and slightly petter resuits when the ttwo modes
are wizdeiy s==mrac=:. Mdel 4 yielded better results fc- smort *--'  for the
asyme=tric biwme! =::° Other than that, tie two model: were compaxnle ond
yieim * very se*“is=—urv results vis-a-vis the mode reflection ¢' it-rion.

6. - - the thr ze—sasezer—state indices, a trimodal distribution was constructed;
ps Fn and £ model I T 4, and 5 were calculated for varims  pimations of

cuto™™ score=. Of wee=, - and B; did not r=flect score muEs. 2 g the other
three  mode < iic merpretation is more 4ifficult, however. dinc= thé _graphs

involweo showl: be .-g7mensional (index value as a function v =he two cutoff
scores . amt in. ¢ Jul.er program was not set up to handle tf s sitwation. The
author= plan 'n resazci this topic further.

7. Tt=Is studis produci=: another significant finding , which —wight have been but
was nr— deduceer Tathe=—-:ztically beforehand, and thus rendere- an element of
surpri==. Although -+ following results have not yet been proved rigorously
(the @:thors :re work ng on it), the computer-calculated =mpirical evidence is
so overwhelmiing <hat w- feel secure in claiming the following conjectures:

1) Sincie r req. ires assumptions about a beta-binomi=! distribution, if
anayy s a+«.mptionz (For a double- rather than single-l--ngth test) are postu-
lated or coe ficient 3, model 3, the two indices are idetical, i.e., p = Bi.
Thi.. aglaim= why coefficient g, model 3, had unsatisfac=ry characteristics.
Thi. -.ajectiire (and the two to follow) is backed up by ower 300 pairs of
calmy . ==d imdex values indentical to three decimal placec, over all ranges of
cute™ -core, distribution type, and test length. Moreover. one would suspect
that = used the predictive Bayesian formulation as suggescted earlier, it
would umser these conditions equal B,.

ii) Zince k requires the same assumption as does p, whenry the phi
coefficies™ is calculated according to the formula in Appendix A under model

3, K3, .

~I



iii) Since PC, entajls e=sumptions about bincarial error and a reseascion
estimate of true score, if .analogous (for 2n items) assumptions are mamie for
coefficient g, modei 4, the two indices are idemtical, i.e., PC=.€U.. Xt is
further aypotimsized that ¥ e compound binomiz] model were used Fer ‘jc’
then under theee: conditions = would equal g _

It is appmment, then, =n:- the question . f whether to employ tees 4uynh p
or Subkovial ~, or Marshz1’ - is not relevamt, since each of the =st two
is a spe:ial imiance of the thi -1 more general coefficient, when te==
appropria*s : ;sEmptions are wns=wed. The question instead should ©z which
set of asssumrtions is approwr-iz== for the situation.
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Appendix A : Symbols and Formulas

Different authors use different symbols for the same thing. In order to
minimize confusion, we have in this paper used a set of symbols that are
as close as feasible to the authors' originals yet which are in common
usage and have the same meaning throughout. If this is a compromise, we
hope it is a compromise in favor of consistency and clarity.

Symbols

In what follows, these symbols have a common meaning:

n = number of test items

N = number of persons

x = an obtained test score, 0 < x.<n

ftx) = frequency of score = in the obtained score distribution

X = test mean

Si = score variance

c = mastery cutoff score (where X > C denotes "mastery"), 0 <cC<n
@ = Kuder-Richardson formula 21

@ = Kuder-Richardson formula 20

Computing Formulas

A. M(C) (Brennan & Kane, 1977)

P — . 2
M(C) = ] - n—-f £

(X - )% + &°
ool

B. 1. « (Huynh, 1976; Cohen, 1960)

— _2 _2
K = (pllpl)/(pl pl)

n
where p11 = z’ Ch(a:,a:')
x, =
n
and p = .Zch(x)
T

11




Here, h(x) is the univariate negative hypergeometric density,
(%)B(a+x, ntb-z) /B(a,b) and h(x,x”) is the bivariate density,
(%) (2)B(atx+x”, 2ntb-z-z") /B(a,b) in which B represents the beta

function and a and » are parameters estimated by

(1-&
a=X “)
a

21
_ [1-a
(n-X) —2—1-)
a
21

P (Huynh, 1978)

o
0

c-1 n
p= 1 h(x,x°) + Y hl(z,x”)
x,x"=0 x,x°=C

where h(x,x”) is as previously defined.

P, (Subkoviak, 1976)

—- n
o=y 20 fz) <@(xgc)]2 + @-P(xzc‘)])z
x=

. _ noo n-g
in which P(x>C) = jzc(j)ex (1-6,.)

where 6 re, esents the true scere of a person with obtained score

|

of x and is estimated by

— x _
6‘1.— a“(n) + (1 a“)(

S [

o

4



D. B (Marshall, 1976)
In what follows,
y = a possible score on a hypothetical double-length test, 0<y<2n

f(y) = estimated frequency of score y in the (hypothecial) double-length
test score distribution
on 7

c-1 2C-2 n+C-1

1
=i (y) + Fly) B (y-[c-1] ,c-1) + ) f(y)-H (C,y=C) + ) J
’ U yEOf y yzc y Y J y=2aC Y y=n+C'f (y)

where Hy(ﬂ,wu is a partial sum of hypergeometric terms:

M(y.)(zn-y.
H (4,) = ) ZZ_J
= (%)

Note that the second term in the brackets above vanishes when ¢=1 and

the third term vanishes when C=n.
In this, f(y) can be estimated in a number of ways. We have chosen
five estimation techniques which correspond with the different models

for coefficient B discussed in the presentation.

I

Predictive Bayesian beta (Aitchison & Dunsmore,1975)
n 2n

fy) = 5 fw) (%) Blarory, 3ntb-z-y) /Blarz, ntb-z)
x=0

where B is the beta function and a,b are estimated as in the Huynh

procedure.

13




Jwo

B

Compound binomial (Lowd, 1965; adjusted for 2n items)

n

xQ
fly) = xEOf(x) - b(y;2n,0.) - [] * (20106 _(1-6J ]
' £ £

2n-
. _(2n Y Y
where b(y,Zn,ex) = (z/) ex (]-ex)

L= o Z) ¢ 0 [E)

- -2n(2n-])6x2 + 2y(2n-])6x - yl(y-1)

D
i

Lal
Il

2 2
n (rz-])STT

k =
X (n-Xx)-S %-ns_?
z 1r

in which Sﬁ2 is the variance of the item difficulties.

Beta distribution with parameters that are functions of the
obtained score distribution(similar to that used for Huynh's

coefficients, but adjusted for 2»n items).

fty) = 0 (%) Blaty, 2ntb-y)/B(a,b)

\ v’

where B,a,b are as before.

Binomial Regression (similar to that used by Subkoviak in his

index, but adjusted for 2n items)
n
_ (2, Y 2n-y
fly) = xzof(a:) (y)ex (1-6 )

where ex is as in Subkoviak's coefficient.

fromcr
b‘on




5. Averaged "double binomial"
This one was conjured up by the authors in an attempt to find
an f(y) estimate that does a better job than do most of the others
in echoing the modes of the obtained X distribution. Although
mathematically less defensible, its empirical properties are
genéra]]y good.
Fly= T2 010051, 200 nel T 1. on T 2l
Y 1 z=1

2/(0)B(1,en+1) + Lf('x/'l B(l,2n+l) - B(’l,Zn-i-l/.'Ji' 2] (n)LJ. -B ('I,Zn-r'-ul
(x+%) (x-%) 7 j
n n n

v
where Bv(r,s) = J tr'l(l-t)s'ldt and t =

S8

Other models were considered but rejected either as too complex and
not worth the trouble or on the grounds that preliminary research
showed them to have undesirable characteristics. The former

category includes various methods which involve aresine transforma-
tions and some methods suggested by Wilcox (1978) (to whom we
acknowledge appreciation for suggesting the Aitchison & Dunsmore
ference); the latter category inciudes the unbiased (Eulestimate

of 8. and a predictive Bayesian model with vague priors. Preliminary

research also showed that model 3 outlined above fell in this category,

but it was retained for comparison purposes.

15




Indices which allow multiple mastery states. For this study, no more than

three mastery states were considered; the following formulas have been
simplified accordingly. In these formulas, X is the lower and ¢ is the
upper cutoff score, 0<K<(C<n.

1. k(K,C) = (p.-py)/(1-p,) (Huynh, 1978)

K-1 c-1 n
where p. = )  h(x,z") + )  (z,x”) + ] iz, z=7)
x,x =0 z,x =K z,x =C
K-1 2 Cc-1 2 n 2
and p,=| ] hiz) + { ) h(x% + [-2 h(xi
x=0 x=K x=C

where % is as defined for «,

p(k,c) = p. as defined above.  (Huynh, 1978)

N

3. P(K,C) (Subkoviak, 1977)

l v . 2 2 2
5 L f(x) [(me) + (my )%+ (1-my —m, )

P(K,C) =
x=0
c-1 . "o
where m, = 3 ("o I(1-0 )"
Kx SoANgT x
J=K
T, J n-g
My = jzc(j)ex (1-6_)

and 8 1is as defined for P, .
x c

16



4. B(K,C) (Marstml1, 1976)
X-1 2K-2 20-2

B(K,C) ‘"‘1]7 ) fiy) + ) f(y)H (y-[K-]],K-U + ) fly)H (u,v)
y=0 y=K Y y=2K Y

n+C-1 2n
+ )Y fly) - H (eyy-c) + }  fly)
y=2C Y y=n+c

where f(y) depends on the model,
u=max (K,y- {C— 1.])
v =min (C-1, y-K)
and Hy(l,wﬂ is as cefined for B.
Note that the second term in the brackets vanishes when X=1 and the

fourth term vanishes when C=n.

F. Calculation of Phi Coefficient

_ AD - E?
¢ = TA7E) (D+E)

n+C-1 2n
Y fly)-H (C,y-C) + ) f(y)
y=2C Y y=n+C

where 4

c-1 20-2
Y fty) + ] fy)-H (y-[c-1],c-1)
y=0 y=C Y "

L]
il

E = (N-A-D)/2

The above expressions for A and D can be seen to be derived from the

formula for coefficient B.




Appendix B

Example of a Graph
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Appendix C

Y mcc) (Brennan & Kane, 1977)
Z « (Huynh, 1976)

N p {Huynh, 1976)

X P, (Subkoviak, 1976)

Q 8 model 1

A 8 model 2

+ B model 3 Variations of g (Marshall, 1976)
¥ 8 model 4
<> B8 model 5 ,/

X ¢ model 3




