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Purpose

The issue 0 how to de!sermine mastery test reliability is 1e5s than fully

settled, particularly when it comes to the issue of which indeN t. use. The

purpose of this stuc-f was shed some quasi-empirical light co/i a subject by

examining four relad-velj-e .mat indices, with attention to th interrelation-

ships of score distr-but77n- shape, modality, ari proximity of 7lbsttery cutoff

score to areas of he.wy = Wr densI'dy (modes). The four singl, Idkrinistration

indices examined wer-- .s.om.:-,-.1mes variations or revisions Tf) tisf),w due to

Brennan and Kane ,tuvnh (197i), Marshal and -aertel (7 , and

Subkoviak (1976a).

Many investigator ..- Adis fi:d Aold thar: 7astery des::

should deal with :endy mz.,.tery;r,ow:iEte-y , or of allo-

cation to mastery ate- --77-7/er tiut she class al notion Ct: crf,nststency of

se4re itself. Fl ors r _ar ntr-Hridual's eactual sccr.e it Plerallel or

remeated testing t, . ,are cLrsidered idmortant, t:

ur-7:s they also 1,141 o IconsistE '7 mastE:7 state . rizar-ms. Yet,

vi ng the situaLlui pressd not --fn conclude that

szevirs grouped nea- grEmuld _iamehok. =ntribui: -lesc tile mastery

te..ti'S rrAiability thd, those =rat are mrre distant the cutoff.

Th- fantion in t' iv was focused on the values of those todices when

the -.dt=ef score ; nuEei )r far fr:m the mmiee,t,$) of the distrlhution.

Prore
A computer proc deigned and writte by the authors, generated item-

by-e:aiminee response tc)rrre-t or incorrect) (matrices, according to parameters

selected to control score distribution shape, modality, mean, and variance.

From each matrix, the sort JistriDution wat mined, and test indices were

calculated for al- intemrml cutoff scores. index value as a function of cut-

off score was graphed, ai s the relative Plinwency distribution of scores,

so that score distributidn smpe and modats)), cutoff score, and index value

could be visually comparEc. The rationale for doing this was that, for a

given score distribution sheDe, index values could be relatively lower when

cutoff score is near a nede and relatively himner when cutoff score is in an

area of very light score :arnsity, if the ,ritriex is to reflect the property
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mentioned earlier.1

Five typs of score distributions wrs zrnvestigated: bell-shaped (..%:1,),

highly negatigEly skewed unimudal (,.1 ), nmodal with a stronger mode at the

upper end (Ar._.), symmetric bimodal with .7DOES well separated (11,21) , and

sometric binitok4t1 with -modes wear each other- L111). -These shapes were only

approximatellt. Stained_ since' the computer program has guilt-in random error

components t7f order to simulate the results :5-Factual test-taking situations.

Each score,d,striblution shape was investiga4-( for tests of S, 10, and 20

items.

Indices2

A. Index oT cYaendab'Th4, (Brelmem and Kane, 7'977:

Brennan ant Kane _choose got to call oftils a reliabilit4 index, for reasons

discussed the -IFFEr171J41,: cited. It was incluided in thii study, however, in

order to see whet-tier w inia-ed any properties with the of r s. The index is

similar to that c= ,n '972), but is based on gem-lizability theory

rather than class,ca-i tes: -theory, The index is definer ir terms of expected

squared demiatiorE "=r7r :he cutoff sc.:ore, C.

B. 1. A single-acm=tistration estimate (Hwil.. 1976) 0-7 -=le kappa coefficierro,

K (Cohen, 19,60).

This estimate ass.ges tniat true scores follow a beta tisoritution with

parameters estimatf-,: -7=1-cr. the in and vartmnce of the observer score distri-

bution; responses cn talrallT tests are independent and follow ttle binomial

error model.

2. A single-admi7-trfoti, stinate of=the coefficient of agreement (pro-

portion of consistent decisior., (Hupritr, 1976 .

The same assumpt amp her.

C. Another single-adrTros- cati.-Ir estimate of the coefficient c- agreement,

(Subkoviak, 1576).

This index is based or ass',,mpticl that the probability that each

Berson is assigned to the S;;;ME mastery state on parallel tests =ollows a

1 It is recognized that 7J-Lie,- .J.itaria -may be employed in evaluating
reliability indices. In this er, however, the criterion addressed is
whether the indices reflect 5 (fTstribution mode(s).

2 Appendix A contains all com3:21:;-,- formulas used.
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binomial form, and incorporates a true score for each person estimated via

linear regression using observed score, and observed score mean and variance.

D. The mean split-half coefficient of agreement, S (Marshall, 1976),

which is a revision of an earlier formulation (Marshall and Haertel, 1975).

This index is equal to the mean (over persons) proportion (over all

possible test splits) of consistent mastery decisions on a hypothetical

double-length test, scores on which can be estimated in a variety of ways.

Five different methods, or models, for estimating double-length test scores

or score distributions were used in this study, and are outlined in Appendix

A.

E. In addition, four of the above indices -- K, p, Pc, $ (Huynh, 1978;

Subkoviak, 1977; Marshall, 1976) -- can be generalized to multiple mastery

states (more than one cutoff score.) These generalized indices were also

investigated in this study, but only for the case of three mastery states.

F. Because of the close association between K and the fourfold correlation

index (phi coefficient), q was also calculated on the basis of quantities

generated in the calculation of coefficient 8, in order that K

might be compared with q for each model.

Results

Although the study generated a great deal of data, the focus reported

here is on the degree to which the indices reflect score distribution modes,
3

1. The index of dependability, M(C), is clearly different from the others,

and the conclusion is that it measures quite different things. It did not

reflect score distribution modes (except, of course, when the distribution

was unimodal and the mean and mode coincided, since, as Brennan and Kane

indicate, M(C) always has a minimum at 1(.) In fact, M(C) shows the same rela-

tionship to KR21 as Livingstons's index does to KR20: the minimum value of

each coefficient, occuring at the score distribution mean, equals the

respective Kuder-Richardson estimate.

3 A more complete report will soon be available and may be obtained by

writinc either of the authors.
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2. Coefficient K also measures very different things than do p, Pc,and 3,

as its formulation suggests. Not only did it not reflect score distributi

modes (except, by coincidence, when the distribution was bimodal at the

extremes), but it behaved in the very opposite way for unimodal distribuatmi;-,

having a maximum rather than a minimum at the mode for symmetric distrihatilqn4

and near the mode for skewed distribuUuns. This is because K takes on

maximum value in the vicinity of the te.A mean.

3. Huynh's p did reflect the score mopes for unimodal distributionsthat-

distributions which approximate one of the beta family', in accordance wi:

assumptions for that index. The coefficient did not, however, reflect sc-

modes when the shape of the score distribution was bimodal, which- is ofte

case for mastery tests, unless the modes were so extreme as to copy one _

J-shaped or U-shaped beta distributions (a situation which is not likely na

happen in the real world, particularly when guessing occurs). Based on -404

research of this study, the authors hypothesize that the p coefficient-10,'4

fare better on this criterion if Huynh had chosen a predictive Bayestarr btU-

binomial approach (Aitchison and Dunsmore, 1975), akin D. I. in Appendf/

even though that approach is slightly more complex. Although earlier reseiwech

(Subkoviak, 1978) recommended the Huynh procedure, it should be noted

Subkoviak's study dealt only with unimodal distributions closely approx,

a beta distribution. It is. likely that the recommendations would have

otherwise had bimodal distributions similar to those in this study beer. '-

gated.

4. Subkoviak's p generally reflected score modes very well, for bott

unimodal and bimodal distributions. The one exception was when the dis joA,

was bimodal and the modes were close together, particularly for short 4

But since this type of score distribution is atypical, the Subkoviak a. -s,

overall, highly satisfactory.

5. Of the five estimation models for Marshall's coefficient 3, model 1 ,d the

least satisfactory, for reasons to be discussed in part 7 of this sect-,-)n

4 In this situation, a compound rather than a simple binomial model wculLirtre
better; in all other cases the simple and compound binomial models yie-lider
nearly identical results, supporting Subkoviak's (1978) findings.



Model 1 rected -mss, but uniformly not as well as did models 2, 4,

ani 5, extm)t7 when ile nristribution was urrmodal. Models Z and 4 were nearly

identical; Imre on iv erzeption being the situation described above for Subkoviak's

P -Model 4-is t as-- It preferable of the for reasnnsaf simplicity. Thus

the C3Oke narrows ir. , to models 4 and 5. Model 5 yieildec :letter results in

the --tuatiam descride above, and slightly better resOts when the ttwo modes

are-tertdely sesaTacet. Model 4 yielded better results fc- snort t..! for the

asymmetric blimmdel Other than that, to two models mere coni,-zole nd

very -317N Tesults vis-a-vis the mode reflection c

6. the th.nmEa,:er-.5tate indices, a trimodal distrioution was constructed;

p, 17-r_ and E model 2. 1 4, and 5 were calculated for variaus-, oiudLions of

cuto-= score-,.. Of : and (33 did not reflect score MOOKi, ?Gland the other

three mode Jit Aterpretation is more difficult, however. ince thkgraphs

invol Shatki) be -1;17-Trensional (index value as a function D1-1 :he two cutoff
scores , ant tot: mil.er program was not se: up to handle ti -s sitwation. The

author plan 1,1 researyti this topic further.

7. Thffs stthi :.trodu::: another significant finding , which -Tight have been but

was n=-deduQeec -.latheEtically beforehand, and thus rendereL an element of

surprts..E. Although following results have not yet been proved rigorously

(the b:Ahors xe work g on it), the computer-calculated - empirical evidence is

so uverwhelning that v.-, feel secure in claiming the following conjectures:

i) Sinv:ler req ires assumptions about a beta-binomtal distribution, if

ane:og is a,:,mption: (-for a double- rather than single- 1 - -ngth test) are postu-

lateti )r coefficient 3, model 3, the two indices are identical, i.e., p = 133.

Thi_, ,plains: why coefficient (3, model 3, had unsatisfac7rry characteristics.

---)ject:ffe (and the two to follow) is backed up by over 300 pairs of

calned index values indentical to three decimal placeL, over all ranges of

cuter --core, distribution type, and test length. Moreover_ one would suspect

that used the predictive Bayesian formulation as suggec-ted earlier, it

would urr these conditions equal

ii) K requires the same assumption as does p, wilev the phi

coefficivorr is calculated according to the formula in Append= A under model

3, K=4., .



6

iii) Since P entails aasumptions about binomial error and a nemression

estimate of true score, if _Analogous (for 2n items) assumptions are mmde for

coefficient Si model 4, the two indices are identical, i.e., Pc=L. -_!t is

further nypotheized that :721e compound binomial model were used frrr 7c,

then under tt condition would equal (3:

It is appmment, then, tltr,:17.- t;;,1 question :f whether to employ tIRE iuynh p

or Subkovial T, or Marsha7 is not relevant, since each of the =9...st two

is a star- al imatance of tftethi-1 more general coefficient, when tmE

appropriAtE 'sfemptions are -ns,-;-,Tr-ed. The question instead should DEAuhich

set of353summtjuns is approwriataEFfor the situation.

8
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Appendix A : Symbols and Formulas

Different authors use different symbols for the same thing. In order to
minimize confusion, we have in this paper used a set of symbols that are
as close as feasible to the authors' originals yet which are in common
usage and have the same meaning throughout. If this is a compromise, we
hope it is a compromise in favor of consistency and clarity.

Symbols

In what follows, these symbols have a common meaning:

number of test items

N = number of persons

= an obtained test score, 0 < x.< n

f(x) = frequency of score x in the obtained score distribution

x . test mean

S
2

= score variancex

C = mastery cutoff score (where X > C denotes "mastery"), 0 < C < n

a . Kuder-Richardson formula 21
21

a = Kuder-Richardson formula 20
20

Computing Formulas

A. M(C) (Brennan & Kane, 1977)

- C) 2 62
efr

B. 1. K (Huynh, 1976; Cohen, 1960)

K = (p11- pi) /(p1 -pi)

n
where p = h(x,x')

11 C

n
and P1 h(x)

x=C

11
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Here, 11(x) is the univariate negative hypergeometric density,

(1)B(a+x,n+b-x)/B(a,b) and h(x,x-) is the bivariate density,

(2)(M1B(a+x+x-,2n+b-x-x')/B(a,b) in which B represents the beta

function and a and b are parameters estimated by

a = Yra

b = (71-Y

21 )
a
21 j

1-a(21)
a
21

2. p (Huynh, 1978)

C-1

p = h(x,x') h(x,x")

x, x'= 0 x,x'=C

where hlx,x') is as previously defined.

C. P
c

(Subkoviak, 1976)

Pc = L f(x) (E(X>CJJ
2

C- P(X
>C)72

x=0

j n-j
in which P(X>C) = (n)0 (1-0x)j

,T=C

where 0 represents the true score of a person with obtained score

of x and is estimated by

0 = a
21
(9 (1 -a21) (1)

'4.

1Z
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D. a (Marshall, 1976)

In what follows,

y = a possible score on a hypothetical double-length test, 0 < y < 2n

f(y) = estimated frequency of score y in the (hypothecial) double-length
test score distribution

2C-2 n+C-1 2n -1

1 3 =
1 f(y) f ( y ) ' (y -Eg -) ,C -1) f(y)-H (C,y -C)

Y=0 y=C y
y

=2C y=n41,-

where H (1,m) is a partial sum of hypergeometric terms:

(12nn..-yi)

(2nn

Note that the second term in the brackets above vanishes when C=1 and

the third term vanishes when C=n.

In this, f(y) can be estimated in a number of ways. We have chosen

five estimation techniques which correspond with the different models

for coefficient a discussed in the presentation.

1. Predictive Bayesian beta (Aitchison & Dunsmore,1975)

f(y) = f(x) *(i9 B(a+x+y,3n+b-x-y)/B(a+x,n+b-x)
x=0

where B is the beta function and a,b are estimated as in the Huynh

procedure.
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2. Compound binomial (Lord, 1965; adjusted for 2n items)

n kQ

fly) = f(x) - b(y;2n,ex)
[ 1 2n(2n-l)e (14 )

x=01 x x

(2
y
n)

2n-y

where b(y;2n,ex) = ex (1-ex)

x
a
20 n
r) 4- (1 -a20)

i&

)
) 7

Q = -2n(2n-1)052 2y(2n-l)ex - y(y-1)

n2(n-1)S71.2

k -
X (n-7)-s52-nsiT2

in which S 2 is the variance of the item difficulties.
1T

3. Beta distribution with parameters that are functions of the

obtained score distr- ibution(similar to that used for Huynh's

coefficients, but adjusted for 2n items).

f(y) = N C1,2) B(a +y, 2n +b- y) /B(a,b)

%

where B,a,b are as before.

4. Binomial Regression (similar to that used by Subkoviak in his

index, but adjusted for 2n items)

n
2 Y

f(y) = fix)
/
y
n)

6x (1 -0x) 2n-Y
s=0

where e is as in Subkoviak's coefficient.

14
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5. Averaged "double binomial"

This one was conjured up by the authors in an attempt to find

an f(y) estimate that does a better job than do most of the others

in echoing the modes of the obtained X distribution. Although

mathematically less defensible, its empirical properties are

generally good.

n-1 r r,
B (1,2n4-1.01

/2nlint rj(0)13(1,2n+1) Lf(x) i B(1,2n-f-1) - B(1,2n+lir 2fin) Li -
1 x=1 i.(x4) (x- 2) 1-J in2n

v

where B
v
(r

'

s) = tr-1(1-t)3-1dt and t =
x

.

Other models were considered but rejected either as too complex and

not worth the trouble or on the grounds that preliminary research

showed them to have undesirable characteristics. The former

category includes various methods which involve aresine transforma-

tions and some methods suggested by Wilcox (1978) (to whom we

acknowledge appreciation for suggesting the Aitchison & Dunsmore
f x

ftferem.e), the latter category includes the unbiased (n/ estimate

of ex and a predictive Bayesian model with vague priors. Preliminary

research also showed that model 3 outlined above fell in this category,

but it was retained for comparison purposes.

15
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E. Indices which allow multiple mastery states. For this study, no more than

three mastery states were considered; the following formulas have been

simplified accordingly. In these formulas, K is the lower and C is the

upper cutoff score, O<K<C<n.

1. k(K,c) = (p.-p4)/(1-p*)

K-1

where p. = h(x,x')
" --_n

and p4 = h(x)

X=0

(Huynh, 1978)

C-I

f X h(x,x') f

2 4-

2

x=K x=C
h(X)

h(x, x')

where h is as defined for K,

2. p(K,C) = p. as defined above. (Huynh, 1978)

3. P(K,C) (Subkoviak, 1977)

n

P(K,C) = I fyx)
N (mKx)2 (mCx)2 4- (1 -mKx -mCx)2

C-1

where in.. = S (n.le j(1-e )n-j
icx j=K

n

MCX (
ne
(7)

j (1 8x) 71'7

and 8
x

is as defined for PC



4. a(K,C)

a(K,C) =
1

N

A- 7

(Marshall, 1976)

K-1 2x -2 2C-2

X fcy) X f(y) H (y-(K-11)K-1) X f(y)H (u,v)
y=K y=2K

n+C-1 2n

f(y) -H (c,y-c) f X f(y)
y=2C y=n+c

where f(y) depends on the model,

u = max (K,y 'II)

v = min (C-1, y-K)

and H rl,wd is as defined for S.

Note that the second term in the brackets vanishes when K=1 and the

fourth term vanishes when C=n.

F. Calculation of Phi Coefficient

AD - E2
= (A+E) (D+E)

n+C-1 2n
where A= X f(y).11 (C,y-C) f f(y)

y=2C y=n+C

C-1 2C-2
D = X f(y) 4- X f(y).H (y-[C-1],C-1)

y=0 y=C

E = (N-A-D)/2

The above expressions for A and D can be seen to be derived from the

formula for coefficient S.
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Appendix B

Example of a Graph
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Appendix C

M(C) (Brennan & Kane, 1977)

Z K (Huynh, 1976)

p (Huynh, 1976)

PC (Subkoviak, 1976)

(3 model 1

fi model 2

(3 model 3 Variations of (Marshall, 1976)

)( 6 model 4

6 model 5 i)

cp model 3


