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Problems and ures in assessing and ohMaining fit of

data to the Rasc:-. de_ are treated in the taper. The

assumptions embodid LI_ the model are made explicit ant

it is concluded that statistical tests are needed wIljTI:t

are sensitive to deviations such that more than one item

parameter would -e -..ed for each iter, and such th-0 more

than one person r would be needed for each p -stn.

Statistical gooci----'=f:i.t tents, base-' on the cond.

maximum 2ikeliho-1 fates of the item pamameters, rich

can detect these 7.-Ale -,.-.:Lnds of deviatior are prea-ente .

Common sources 0: .L27.7.tion also in.smt,fied, as the

tests needed to th-t7.---r-7.-t. them. ?roblems the use of

tests to ass 7i-= ch_scusse,' some i..71,,,:iga-

tions of power ...re a d=77: -rion

between use of -± -loch... as a crit-rion ar.d ae

irrj*trument the L. --r-:len= of =oodner.s3-of-fit mr-2111 in

dt-tferent -.--t-c7r1.7_ex._s dismuszed. FioaLL .:77_ is

cc -eluded that -1-0.e' w_ch can 4= ide:-,tt=fied as -_.>fitzing

.1d not be to c f: to -7odel;

---:ead other a-ot of _en be taken s cft: =aping

0- items into Tenecus smbsets_
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Introduction

Theorists and_practicionf. -s ore to an increastmg extent focussing

attention on what is called the latent trait ( v) models within

test theory Baker, 1977; Hamhleton & wok, 19-7). The LT models

specify a reiationshi%r betweec obserle examinee performance

mnd an unobale3 vable pra=t assumed to Llmderlie _7erformance. Their

great power -Lems fr:7)in t!-.a fact that miurameters describing

Ctaracteristj'os of 1±le test items can 1-..a estimated in such a way

that they invariant from one group of persoas to another,

and estimai 7, of the abilty of person:: can be -lade in such a

way that th,_,,y are invari-,:t=t fr= one pie of _terns to another.

The family LT madels. nay many members (Lord 6- Novick, 1968;

Hambleton, Tyviaatlam. Cos-pk, Gifford, :.-77) but the

most impor-_ant -mes F. -TR t(-) be certain: models for itchotomous

items, based on locisr-1 ^ ftincticns. The simplest these is

the Rasch mode: (Rasch, 19450, 196E), cr the 1-parrar,eter logistic

model. In the Fassn z="0 -L one parameter only is to describe

each item, but t2::..:re are also ether modc.is such ,13- the 2- and

3- parameter (1irntaum, 19E8) , iLn which a±Litional para-

meters are used escrihr7 charactert_s Los of r _'teems.

The Rasch model 'as im:Jortant t_aeoret:LZ1 and practical advan-

tages when it .7:c:rtes to :;:re estimatior rr- parameters ,Ahdersen,

1973a; Fischer 1974 Gustafsszm, 19--). The relative simplicity

of the Rasch model IIso mns it eas7- to apply the motel in

solving oracticalmeasu eat probl, such as linki77.g and

equating tests op it zi: teL,s, carrying cTat tailored testing,

constructing item _star. and soi on (c.7- Wright, 1977a'. These

reasons are sufficient ^ why- the Rasch model Is the LT

model most frequently

The LT models have Very diratle characteristics which make

possible the solution oL -,!,-,as tlrement problems which are diffi-

cult or impossible to so-777-,1,4_thin the framework of classical

test theory. But the modeLls .-tail strong assumptions about

the nature of the data, =amt :mess these assumptions are ful-

filled, the validity of ±±e r-sults of applications is

endangered. The Rasch rnr7:-.e2 L-7. the most constrained one, and
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it is also the model which entails the strongest assumptions.

The question of whether the data fit the models or not is

therefore of great importance.

More specifically, there are three reasons why the question

of fit is an important one. In the first place, it is important

to realize that if the assumptions are fulfilled for a set of

data, then all the desirable characteristics of the LT models

are logical implications of the mathematical structure of the

models themselves; the validity of applications need therefore

not be empirically proven if the data fit a model. Secondly,

in some cases fit to a model is an important end in itself,

because the models, and above all the Rasch model, formalize

desirable characteristics of measurements (cf. Gustafsson,

1977; Wright, 1977b). Thirdly, in those cases where, for some

reason, it Ls necessary to use an LT model without the data

fitting it, it is essential that the deviations from the model

are reasonably well-known, since different applications are

endangered to different degrees depending on the type of

deviation.

This paper deals with the problems of assessing and obtaining

fit of data to the Rasch model. This model is concentrated

upon because of thL advantages it has over other models, and

because it entails the strongest assumptions.

Ever since the model was first formulated by Rasch (1960) the

problem of fit has bean studied, and statistical tests of

goodness-of-fit have been developed (Wright & Panchapakesan,

1969; Andersen, 1973b; Martin-L8f, 1973; Fischer, 1974; Mead,

1976a, 1976b). But there are factors which motivate another

treatise on the subject.

The development of computational algorithms (Gustafsson, 1977,

1979) has made another class of statistical tests of goodness-

of-fit available for general use. These are based on the

conditional maximum likelihood approach to estimation of item

parameters in the Rasch model (Andersen,1973b; Martin-L8f,

1973), and they have better statistical properties than most

other goodness-of-fit tests. Even more important, however, is
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the fact that there are such tests, only described in an un-

published report by Martin-L8f (1973), which are sensitive

to deviations from the model that are difficult to detect

with other methods. These statistical tests are presented in

the paper, along with a presentation of the conditional approac'-

to estimating the item parameters.

The sensitivity of different statLstical tests to different

sources of deviation from the Rasch model has mot been much

studied, and an at tempt is made tc shed light upon this proble,,,

A few studies of the power of the goodness-of-fit tests as a

function of factors such as sample size and number of items

are also presented.

Closely associated with the problem of fit is the question cf

the robustness of the model. Analyses of that problem are

presented in relation to one particular kind of application

the equating of tests.

Strategies used to obtain fit of data to the model are also

discussed and problems inherent in the most commonly used

strategy are identified. On the basis of that criticism an

alternative strategy is outlined.

1. The Rasch model and its assumptions

According to the Rasch model, the probability of a correct

answer to an item is a function of two parameters only, one

describing the difficulty of the item (ai, i=1,...,k) and

one describing the ability of the person taking the test

(Cv, v=1,...,n). If we denote a correct answer to item i by

person v as Avi =i the probability of this outcome is:

P(Avi
.lic

v
,a.) = exp(Cv-ai)

1 + exp(F.11-ui)

The item characteristic curve (ICC) is a central concept

in LT theory. The ICC is the function relating the probabi-

lity of a correct answer to an item (i) to the ability

variable (E). From (1.1) follows that the ICC for an item in
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the Rasch-model is:

(1.2) fi(C) =
====7-:(E-ai)

_ exp(C-ai)

The :CC is a ft7.7. of one parameter only, tile :_tem parameter,

or term be used interchangeably, the cLafficul-..tv.

In tlidimensionality assumed since

is cc. y one 7raarame:_ cf ability. Hote.ver, we wall nee , a nore

exac c zaidimensionality. Lord and Ncriricik 19.68)

.1---,i-zicans of unidimensionality in LT mc eLs

One cf the: lef_- :ions (p. 359) is actually a thc-±fr--7,-iarr: of

dimensabnav order but here it has, along 7w1:::1 scale

chanarz it -71-:a.-_on been rewritten as a definition )77 una-

dimenmd_ona:iAty:

:Lonsi.d._ a se, of k items and one latent trai7==_ which
exa:7=-7:=.=_.e performance on all items in a set.

WIT.0 can Taw re7.7.resent each examinee as a point on the
wait. Next: onsider all the examinee populations that
:==_T he of in7-t'est for this set of k items. Assume that
(r-ch 2-lem is dministered just once to each examinee,
nd co.asider 7ne conditional frequency distribution
(over pee-ale' of item score for any fixed value of s.

thi s (unc_;servable) distribution is not _the same for
11 popu_a-rions of examinees, then ther= must be one
m- psycr:IoLogical dimension in addition to C, that
scr:.minate among the populations of interest. In
efintg the complete latent space, therefcr2, we must
'IcImfe these additional dimensions. Thus, definition,
the complete latent space the conditiona_ distribu-

_on Df item score for fixed C is the same for all
:, zmii7tions of interest.

From t ls definition of unidimensionality follows :hat the

ICC for- an item is invariant for those populations used to

define compLete latent space.

The c-cher definition of unidimensionality given by 1-_,ord &

Novic (li.-463) is founded on the concept of local CaT condi-

tional statistical independence. If we use the alzebraic

notation A .=a . to represent the score, 0 or 1, of person v
v:.

to item i, the assumption of local statistical independence
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can be written:

(1.3) P(A
vl

=a
vl

,A
v2

=a 72"'"Avk =a ).
Are

.=a
v

Thus, if local independer7ce holds the probability of an exams wee

response paLi..,rzrn is givet_bv the product of the probabilit = of

the item re=p--,nses, and -±7.e Lord and Nc-ick (1968, p.540) d,s-±ini-

tion says that if (1.3) for some -eal-valued trait ' the

measurements--tisfy a L7._t_dLmensional latent-trait model.

This ahm--_rac:._ iefinition _Ls iven a more concrete meaning :tuen

formulate-:2 _follows:

individual's De---rmance depends on a single uncr-
lvtrog =it if, giver yi ;; value on that trait, nothinc
fv: can be learnec: from him that can contribute to the

won of his oe: 'a finance. The proposition is that
t=1-7 It zent trait is tt--3 only important factor and, once a

s value on the :Irait is determined, the behavior is
=do: in the sense f7,f. statistical independence" (Lord &

-ic 1968, p. 538)

The dt_fererce between the definitions of unidimensionality

is tha the latter one ex _citly introduces the assumption of

local gtatstical indepery ce. However, there is no conflict

betweE_T-the r.wo definitions since the assumption of local

statical independence equivalent to the assumption that

the La=ant variable under consideration spans the complete latent

space --crd & Novick, 1968, p. 361).

It is also necessary to consider another attempt to define uni-

dimensionality. Lumsden (1978) formulated a statistical model

in which both items and persons are located on an attribute

continuum (latent variable). In contrast to the Lord & Novick

approach the items, and not the persons, have a point location

on the continuum, while the persons are assumed to have a

distribution of attribute locations, resulting from moment to

moment fluctuations. The distribution of attribute locations

is not assumed to be the same for all persons, taking into

account the possibility that persons may differ in reliability

(Lumsden, 1977).

In the Lumsden formulation, unidimensionality of the items is

assured by the fact that they are located on the same attribute



continuum. However, the Lumsden model is not irr-idtmensional in

the sense of Lord and Nov-Ick's definition, which is best seen

if the Lumsden formulation is formalized. One way to do this

is to generalize the Rasch model, taking into a=count the

possibility of varying person reliabilities, b7 adding another

parameter for each person,(pv, v=1,...,n), wh=ch, in accor-

dance with Mead (1976b), will be referred to a the sensitivity

parameter:

(1.4) P(A
vi

= 11C ,q)
v

, ) =
explpv(v-cri)

1+ expOvV,v-cri

This model will be referred to as the Lumsden =del. In this

model the PCC's (person characteristic curves: Ln which for

each person the probability of a correct answer is shown as

a function of item difficulty, are not paral:el , with the

sensitivity parameter reflecting the slope 0: the PCC.

In the Lumsden model knowledge of a person's ability parameter

which can be interpreted as the mean of :iis distribution

of attribute locations, could not alone explain his performance,

since the sensitivity parameter would also be needed. Therefore,

the Lumsden model is not unidimensional in the sense of Lord

and Novick's definition of the term.

It is in all likelihood impossible to obtain separate estimates

of the v and the tpv parameters, so the Lumsden model is not

useful as an LT-model. It is useful, however, as an alternative

model to the Rasch model in investigations of fit since it does

specify a certain kind of multidimensionality.

Another assumption in the Rasch model is that all the items have

the same discriminative power, i.e. that all the ICC's are

parallel. The meaning of this assumption is most clearly seen

if the Rasch model is contrasted with the Birnbaum (1968) model,

or the 2- parameter model which introduces another parameter

for each item, the discrimination parameter (ai,i=1,...,k).

According to the Birnbaum model, the ICC for an item is:
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(1.5) f

expai(-6i)

1+ expai(-6i)

The discriminatic oarameter reflects the relation between

performance on 27 __-7em and the latent variable, and if the

discrimination ?=_-_aueter is different among the items in a

set, the ICC's be non-parallel.

The discrimin&tian parameters are different if the items in

addition to the cainmon latent trait reflect different "specific"

factors and/or if they are differently affected by random errors.

However, it is- difficult to define a specific factor as opposed

to another latent variable, of which Lord and Novick (1968) were

aware:

The psychometrician is likely to wish to define his comp-
lete latent space to include all "important" psychological
dimensir-s that affect performance on a given set of items
and to exclude those variables that comprise "errors of
measurement". Unfortunately, it seems logically impossible
to distinguish objectively those variables that are simply
"errors of measurement" from those that are not (p. 340).

Thus, even at the level of formal definition it is difficult to

make a distinction between the assumption of unidimensionality

and the assumption of homogeneous item discrimination.

The specific factors are assumed to be uncorrelated with the

ability measured by all the items and with the specific components

of all the other items. However, even though the specific factors

can fulfill the assumptions of orthogonality when we confine our

attention to a specific sample of items, they are not likely to

do so in the "population of items" (cf. Lumsden, 1978). Since

generalization is practically always intended beyond a certain

set of items, the distinction between the assumption of uni-

dimensionality and the assumption of homogeneous item discrimina-

tion becomes even more difficult to uphold.

Three assumptions in the Rasch model have been discussed: the

assumption of unidimensionality, the assumption of local statis-

tical independence, and the assumption of homogeneous item

descrimination; these are also the assumptions commonly associated

with the Rasch model (cf. Gustafsson, 1977; Hambleton et al.,1977).



It has been concluded, however, that the assumptior, of uni-

dimensionality and the assumption of local statistical

independence are either identical, or inseparable, and alio

that it is difficult to uphold any clear distinction between

the assumption of homogeneous item descrimination and the

assumption of unidimensionality.

It does seem that the Rasch model assumptions can be violated

in basically two ways: either a model is needed to describe

the data which contains two or more parameters for each person,

which would be a violation of the assumption of unidimensionality;

or a model is needed which contains two or more parameters for

each item, which would be a violation of the assumption of the

form of the ICC's; or, of course, a combination of these.

If the Rasch model holds true for a set of data the item parameters

are invariant from one group of persons to another and the person

parameters are invariant from one group of item to another. But

if more than one parameter is needed for each person, such as is

the case in the Lumsden model, for example, the person parameters

will not be invariant for groups of items. If more than one para-

meter is needed for each item, such as is the case in the Birnbaum

model, for example, the item parameters will not be invariant for

groups of persons. This forms the basic rationale for the statis-

tical methods of investigating fit to the Rasch model. The statis-

tical tests will be taken up later on, after the basics of the

conditional maximum likelihood approach to estimating the item

parameters in the Rasch model have been presented.

2. The conditional approach to the Rasch model

There are several different approaches, ranging in mathematical

and statistical sophistication, to the problem of estimating

the parameters in the Rasch model from a set of observational

data. There are, for example, simple methods suited for hand

calculations (e.g. Wright & Douglas, 1975). But these methods

introduce further assumptions, such as an assumption of normality

of the distribution of person parameters, and these methods are

only approximate. When the user of the model has access to a

computer, better methods of estimation become available.



The most commonly used methods of estimation are based on the

maximum likelihood approach. However, two entirely different

maximum likelihood estimators have been defined for the item

parameters in the Rasch model. One is what is called the

unconditional maximum likelihood (UML) approach in which the

item parameters and the person parameters are estimated

simultaneously. (Wright & Pachapakesan, 1969; Wright & Douglas,

1977). The other is what is called the conditional maximum

likelihood (CML) approach, in which the likelihood function for

estimating the item parameters is expressed in the item para-

meters only, through conditioning on raw score (Andersen, 1973a;

Fischer, 1974; Gustafsson, 1977).Only in the Rasch model is this

possible, because raw score is a sufficient estimator of the

person parameter.

Only the CML estimator yields consistent estimates of the item

parameters (Andersen, 1973a; Fischer, 1974), but the UML estimator

is the one most commonly used (Wright & Douglas, 1977). There

are two reasons why the theoretically inferior UML estimator has

been used instead of the CML estimator. In the first place, the

CML estimates are computationally more cumbersome than the UML

estimates and they have even been impossible to compute for

anything but short tests. Secondly, it has been shown (Wright

& Douglas, 1977) that if a correction is made of the UML estimates,

they come close to the CML estimates.

If the similarity between the estimates obtained with the UML

and CML approaches was the only issue in the choice between the

two approaches, '.ere would be little reason to use the CML

approach. There is, however, another, more important difference.

On the basis of the CML approach it is possible to devise

efficient statistical tests of fit with known statistical pro-

perties, while under the UML approach only approximate statistical

tests have been formulated.

The computational problems in relation to the CML algorithm have

recently been solved (Gustafsson, 1977, 1979) so that now the

CML estimates can be obtained for long tests (80-100 items, say)

as well, and most often with a relatively limited amount of

computational work. Therefore only the CML approach will be
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considered in detail in the sequel of this paper.

The mathematical notation becomes greatly simplified if an

antilogarithmic transformation is made of the parameters in

the Rasch model such that ev= exp(v) and c =exp(-a
i
). The

probability of observing the outcome A
vi

=a
vi

can then be

written:

(0 vEi)a vi

(2.1) P(A
vi

=a
vi

10 v' i )=
1+0

v i

We want to estimate the parameters from the answers of n

persons to k items, and assemble the scores into the matrix

((a
vi

)). The raw score for person v is:

(2.2)
k

ry = E a
vii=1

and the total number of correct responses to item i (the item

score) is:

(2.3)
n

s. = E a
vi

v=1

Those persons who have 0 or k correct answers must be excluded

from the ((avi)) matrix since no estimates of their parameters

can be obtained and items with 0 or n correct answers must be

excluded for the same reason.

Consider first a given examinee with raw score ry and person

parameterev.Givenasetofitemswithparameters(c.), the

probability that this examinee obtains any score vector (avi),

assuming independence of the responses, is:

0
r a

vi
k (0 vci)a vi v

v c
i

Pf(avi)10v,(Ei)}=
(2.4) i=1

1+0
v

C. II (1+0
v
c.)

i

To be able to express this probability as a conditional proba-

bility, given score rv, we must know the probability of obtain-

ing score ry given 0v. This latter probability is given by the

sum of the probabilities of all possible ways of obtaining the

13



score rv
, that is the sum of all the expressions such as

(2.4) in which the vector (avi) sums up to r.

A given score r obtained on k items can of course be obtained

in [

k different ways. We will need a special notation to be
r

able to express this in a simple way. Define:

k a
(2.5) Yr {(c.

i
)} = E E Eivi

Ea =r i=1
vi

The yr{(e)} (or, for short, is is called the elementary

symmetric function of order r in the parameters (6i).

We can now write the probability of obtaining the score r,

given e
v

and (E.):

k (0 ei
v r

)

a
vi

r
v y

P{rI6 ,(E.)}. E
v

v
(2.6)

Eavi
=r i=1 1+0

v
E (1+0

v
e
i

)

Thus the conditional probability of obtaining any vector (avi)

with the total score rv, given the score rv, is:

(2.7)
Fq (a) ) }=vi

k
a

P{(a
e.vi

)le ,(E.)1vi v i=1

P{rlev,(ei)} Yr

If independence is assumed between examinees, the conditional

laelihoodofthedata.matrix((avi )) is easily obtained. The

logarithm of the likelihood function can be shown (Fischer,

1974; Gustafsson, 1977; Wright & Douglas, 1977) to be:

k k-1
(2.8) logA= E siloge4- E nr logyr

i=1 r=1

where n
r

is the number of persons with raw score r.

Estimation equations for the item parameters can be derived

from (2.8) (Fischer, 1974; Gustafsson, 1977; Wright & Douglas,

1977). The greatest problem in solving the equations, which

must be done iteratively, lies in efficiently and accurately

14



computing the yr and their first derivatives with respect to

each of the items (y
r
(i)

) and sometimes also their second deriva-

tives with respect to the items two at a time (y(')). However,r2
as was shown by Gustafsson (1977, 1979) it is possible to devise

recursive formulas that can manage these tasks.

It is not necessary to treat methods for estimating the person

parameters since it is possible to avoid estimation of these

in evaluations of fit. This is quite fortunate since the

statistically correct method of estimating the person parameters

is impossible to apply in practical work (Fischer, 1974, pp. 239-

240).

3. Goodness-of-fit tests for the Rasch model

All the goodness-of-fit tests are based on the principle that

implications of the model assumptions are tested against

observable results. But there are several implications of the

model assumptions and the tests can technically and statisti-

cally be constructed in many different ways, so there are

several goodness-of-fit tests for the Rasch model.

Rasch (1960, 1966) showed that it is possible to devise a

test of the model in which no use is made of estimated

parameters. This test, which is a generalization of Fisher's

exact test for a 2x2 matrix is, however, computationally so

cumbersome that it has as yet proven impossible to put it

into practical use. Therefore, all the goodness-of-fit tests

in practical use, employ estimates of parameters in the model,

and tests based on the UML- and CML-approaches differ greatly.

Wright and Panchapakesan (1969) developed within the framework

of the UML-approach, a test of overall fit and a test of item

fit based on comparisons between observed and theoretically

expected frequencies of correct answers to each item at

different levels of ability. Mead (1976a, 1976b) extended

this approach into a method based on analysis of residuals in

the fitted model, using analysis of variance procedures and

plots of the residuals. This procedure allows detection of

different types of deviation from the model, such as guessing,

15.



speededness andlearning effects.

The distributions of the teststatistics formulated within
the framework of the UML-approach are unknown, however. The

chi-square and z-distributions have been relied upon, but

simulation studies indicate that even though the means of

the distributions conform to the expected ones, the variances

may depart substantially (Mead, 1976b).

Within the framework of the CML-approach goodness-of-fit tests
have been formulated (Andersen, 1973b; Martin-Lof, 1973) which
have atleast asymptotically known distributions, and which have
been shown to be parametric counterparts to Fisher's exact test
(Martin-Lof, 1974b). These tests are presented below.

Tests sensitive to variations in the ICC's

It has already been concluded that if a set of data fit the
Rasch model, the item-parameters (or the ICC's) will be in-

variant for groups of persons. Andersen (1973b ;cf Martin-

Lof, 1973) has presented a conditional likelihood ratio test
of model fit from this starting point.

To compute this test the item parameters are estimated using

the total sample of persons, and also within g disjoint

subgroups of persons with n. (j=1,...,g)persons in each. In

each estimation of the item parameters a maximum of the
logarithm of the likelihood (2.8) is obtained. We can call the

maximum obtained for the total group of persons Ht and the

maximaobtainedforthesubgroupsH.(j=1,...,g). The following
test statistic can then be written:.

(3.1)
g

logy = Ht- E H.
j=1

Andersen (1973b) has shown that -21ogA is asymptotically

chi-square distributed with (g-1)(k-1) degrees of freedom
When each n4. co.
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This test is sensitivi-._ to differences in the ICC's for different

groups of persons and will therefore be referred to as the A-ICC

test. However, the persons can be grouped according to different

criteria, and depending upon how the grouping is done the test

is sensitive to different violations of the model assumptions.

One possibility is to group persons according to level of per-

formance on the test, i.e. according to raw score. When used in

this way the test is sensitive to variations in the slopes of

the ICC's, i.e. it guards against the alternative hypothesis

that the Birnbaum model, or a model with even more parameters

for each item, would be needed to describe the data (cf. Andersen,

1973b). We will use a special name of the test for this important

kind of application: the A-ICCSL test, with the postfix SL chosen

to indicate that the test investigates the homogeneity of the

slopes of the ICC's.

But the persons can also be grouped according to other criteria

such as sex, social background, or school, just to mention a

few. When used in this way the A-ICC test is a test of uni-

dimensionality since it follows directly from the definition

of unidimensionality that the ICC for an item must be invariant

for groups of persons. This holds true in particular when the

grouping is not confounded with level of performance since then

the test would also be sensitive to variations in the slopes

of the ICC's.

Martin-Lof (1973, pp. 128-129) has suggested another test which

is sensitive to variations in the slopes of the ICC's and it

will be referred to as the ML-ICCSL test. This test is asympto-

tically equivalent with the A-ICCSL test but it is of quite a

different construction. In the ML-ICCSL test the item parameters

are only estimated for the total group, and the test is computed

from the differences between observed and predicted frequencies

of correct answers for persons with different raw scores (score

groups).

Let nir denote the observed frequency of correct answers to

item .i for those persons who have r correct answers. A corres-

ponding predicted frequency can also be determined: The conditional

probability that a person with raw score r answers item i correctly
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E y
r-1
(i)

can easily be shown to be . Therefore, if the model is
Yr

true for the data, the following relationship should hold

approximately true:

(3.2)

(i'nrEiyr_i
nir =

Yr

The ML-ICCSL test takes as its starting point this relation-

ship and from the deviations between observed and predicted

frequencies a chi-square sum is built up.

If we label the vector

n
lr

n
kr

=(qr) and call the corresponding

vector of predicted frequencies

tics is:

(1)
nrElyr

-1

Yr

n E
(k)

r k
y
r-1

Yr

=(tr) the test statis-

k-1

(3.3) T = E {(qr)-(tr)}1{((Vr))}-lf(gr)-(tr)}
r=1

in which quadratic form ((Vr)) is a variance- covariance matrix

of order kxk with elements defined as follows:

(3.4)

n E.y (i
r 1 r_

Yr

n .E y(i0)
r
E
1 r-L

Yr

in the diagonal

for ij



Martin-Lof (1973) has shown that the test statistic is asymp-

totically chi-square distributed with (k-1)(k-2) degrees of

freedom when each n
r
-+03.

In (3.3) the summation is made over all score groups. If, however,

some n
r
=0 we have to restrict the summation to those R groups

in which n
r
>O. The degrees of freedom then are (k-1)(R-1).

When k is large, the test is quite tedious to compute since it

requires computation of k-1 matrix inversions as well as the

second derivatives of the symmetric functions. It can be noted,

however, that the actual inversion of the matrices can be avoided:

Scheffe (1959) has shown that the quadratic form can be computed

by evaluating two determinants instead, which requires less

computational work.

The ICCSL tests give information about the homogeneity of the

slopes of the ICC's, but they do not give any information of

value concerning the reasons for poor fit. Due to the lack of

a statistical test of item fit with a known distribution under

the CML-apprcach, graphical methods have been resorted to. This

is no great sacrifice, however, since the logic of testing the

fit of single items can be questioned (see section 7 below),amd since

descriptive information is needed more than anything else.

The relationship (3.2) can be rewritten so that it expresses a

relationship between proportions of correct answers, instead

of frequencies. If, for a fixed item, the observed proportion

is plotted against the predicted proportion, the points for the

score groups should fall along a straight line with a slope

of unity, even though the points as a function of stochastic

variation will be spread around the line of unit slope. This

graphical test will be referred to as the GR-ICCSL test, since

it is sensitive to variations in the slope of the ICC's.

The plots that are observed in applications of the model tend

to have many different appearances. However, 3 different types

account for the absolute majority of the patterns observed.

The first is where the points actually fall close to the line

of unit slope, and this indicates fit to the model. The second
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type of pattern appears when the observed proportion of correct

answers for the lower score groups is higher than the predicted

proportion, while at the same 'cime, the observed proportion is

lower than the predicted proportion for the higher score groups.

A low discrimination parameter would be found for such an item

if the Birnbaum model was applied. The third pattern, finally,

appears when the observed proportion for the lower score groups

is lower than the predicted one and when the observed proportion

for the higher score groups is higher than the predicted one,

and it reflects the case when the item has too high a discrimi-

nation parameter.

Test sensitive to variations in the PCC's

The tests presented above all investigate the invariance of

the item parameters for groups of persons and they will there-

fore be referred to as ICC-tests. Practically all other tests

of fit which have been used also belong to the group of ICC-

tests and in particular to the sub-group of ICCSL-tests. It is

easily shown, however, that there may be violations of the

assumptions of the Rasch model which cannot be detected with

these tests. Lumsden (1978); for example, showed that the PCC's

may be non-parallel, while the ICC's are parallel.

To investigate the hypothesis that the Lumsden model, or another

model with more than one person parameter is in fact needed to

represent the observations, one could study the invariance of

the person parameters for groups of items. However, a test

constructed straightforwardly from this point of departure

would have less than optimal characteristics, since a very large

number of parameters would have to be estimated, and since it is

practically impossible to estimate the abilities conditionally

on item score.

It is, however, not necessary to estimate the abilities to per-

form the test. A conditional likelihood ratio test , founded

on the CML estimates of the item parameters, which tests the

hypothesis that two groups of items measure the same ability

has been presented by Martin-1,6f (1973, pp. 135-136; cf. Leun-

bach, 1976).
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To campute the test it is necessary that the items be grouped

into two disjoint sets. Let us say that there are kl and k2

items in the two sets, respectively, and that ki+k2=k. Further-

more, let n be the number of persons with raw score r1 onrir2

the f:.imst set and raw score r
2
on the second set. W .n the item

param=ters for the total set of k items are estimat .naximum

of the logarithm of the likelihood function (2.8) f ained

(H
t

) and when the item parameters are estimated for set

separately, the corresponding maxima H1 and H2 are fined.

The following test statistic can then be formed:

nn
2 r r k

k
1

k
n

(3.5) logA= -E E n log 1
2 + E n log +H

t
-H

1
-H

r=0 r
2
=0 1r2 r=0 r n

r

1

n

Martin-Lof (1973) has shown that -21ogA is approximately chi-

squar distributed with kik2-1 degrees of freedom when n-)-c.o.

The test can be applied with the items grouped according to

different principles, and depending upon how the items are

grouped the test will be sensitive to different violations of

the assumptions. One possibility is to group the items according

to item score, i.e. difficulty. Then the test investigates the

hypothesis that a model of the Lumsden type would be needed to

account for the observations, i.e. that the person sensitivity

parameters differ. In this special kind of application the test

will be referred to as the ML-PCCSL test, since it tests the

homogeneity of the slopes of the PCC's.

But the test can also be applied with the items grouped according

to different hypothesized dimensions. In this kind of application

the test is, of course, a direct test of unidimensionality, and

when used in this way it will be referred to as the ML-PCC test.

It should also be pointed out that the test will also be sensitive

tc a difference in the mean value of the discrimination parameter

for the two sets of items. Within the sets of items the discrimi-

nations can vary, however, without this being detected by the test

as long as the mean discrimination is the same.
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With the possibility of varying person sensitivity parameters in

mind, the question of person fit to the model is actualized.

Under the CML approach it is at least theoretically simple to

construct a test of person fit.

An expression has already been derived for the probability

of obtaining any given score vector, given a certain raw score

(2.7). A p-value is obtained if the probability of all more

extreme score vectors, i.e. those with a lower or the same condi-

tional probability of being observed, is summed up. Unfortuna-

tely this test is computationally cumbersome since even with

few items the total number of possible score vectors is very

large.

A computationally more feasible test can be constructed if the

items are grouped into sets. Consider the case when only two

sets of items are used, with k
1

and k
2

items. Let us, for any

given person, denote the raw score on the first set r1 and the

raw score on the second set r2, with r
1
+r

2
=r. Denote further

the symmetric functions of the corresponding orders in the item

parameters, estimated with both sets pooled, as yr :1 and y
r :2,

1 2

respectively. It is then easily shown (cf. Leunbach, 1976) that

the conditional probability of obtaining the raw scores r1 and

r
2

is:

(3.6) P(r1 Jr)

Y r 1 :2

r

A p-value for the fit of the person is obtained if the probabili-

ties of allequally or more extreme combinations of raw scores on

the groups of items are summed up.

A test of this kind is easy to compute. It can be suspected to

have a low power, however, and the power would also be very

different for different raw scores if the same grouping of

items is used. Power can be increased however, if the test is

generalized to more than two groups of items and if a different

grouping is used for each raw score.
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It must be pointed out that a test like this cannot be applied

to all the persons in a sample, since the signdficance level

would then be seriously disturbed. Only when a single randomly

chosen person is observed does a statistical test of person

fit have any meaning.

4. Sources of deviation from the Rasch model and how they

are detected

In the previous section we have seen how it is possible to

devise statistical tests of the fit of data to the Rasch model,

either through investigating the invariance of item parameters

for groups of persons or through investigating the invariance

of person parameters for groups of items. Both these groups of

tests, the ICC- and PCC-tests, are tests of unidimensionality

but they are not equally sensitive to different deviations and

a deviation that may be detected with one test may be impossible

to detect with another test.

There are a number of identifiable sources of threat against

the Rasch model, and it is of course of great interest to

clarify which statistical tests are needed to detect different

types of deviations. Such sources of deviation are discussed

below.

Item heterogeneity

Item heterogeneity, in the sense that different groups of

items measure different abilities, is of course a violation

of the assumption of unidimensionality.

As long as there is some basis for an a priori grouping of

the items according to different hypothesized dimensions the

most straightforward way to investigate this kind of deviation

is to use the ML-PCC test. This is also the method to be

recommended, but we shall first see if there are other methods

with which item heterogeneity can be detected.
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In presentations of the Rasch model (e.g. Gustafsson, 1977)

it has been implied that item heterogeneity can be detected

with ICCSL tests. As long as the items measuring different

abilities have different discrimination parameters the ICCSL

tests do in fact detect item heterogeneity, but it is of course

conceivable that there are no detectable differences in the

slopes of the ICC's for the different groups of items, in which

case an ICCSL test would not detect multidimensionality.

That this may be the case was shown with generated data by

Gustafsson and Lindblad (1978 ; cf. Brink, 1970). They demon-

strated that the A-ICCSL test did not reject the Rasch model

even for data generated according to an orthogonal 2-factor

model, which in that case was due to the fact that every item

related in the same way to a composite of the two latent

variables involved. Of course, if this test and the other ICCSL

tests fail to detect multidimensionality in generated data, it

is also possible that they may fail to do so with empirical

data.

An example will be presented to show that this is not just a

highly unlikely possibility, but that it may actually happen

in reality. Muthe'n (1978) analyzed, as an illustration of a

newly developed method for factor analysis of dichotomous

items, 15 items in a questionnaire assessing the personality

variable internal-external locus of control (Rotter, 1966).

There were data for 391 persons. The factor analysis showed

that there were three lowly correlated factors among the 15

items.

The fit of these data
1) to the Rasch model has been investigated

with the A-ICCSL test
2)

, and a very good fit was found (x2=22.4,

df=28, p<.76). Since there is no reason to distrust the factor

analysis it seems that the A-ICCSL test in this case is not a

test of the unidimensionality of the items in the questionnaire.

Additional support for this conclusion is obtained if the data

are also analyzed with the ML-PCC test, with the items grouped

into three scales according to their highest loading in the
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factor analysis. There were 6,6 and 3 items in the scales.

Applying the ML-PCC test to two scales at a time, the following

results were obtained: 1 vs 2: x2=123.8, df=35, p<.00; 1 vs3

X2=42.3, df=17, p<.00; 2 vs 3:x2=60.0, df=17, p<.00. These results

show clearly that the three scales measure different

dimensions.

In this case we must draw the conlusion that th.2 ICCSL-tests

are not sensitive to multidimensionality among the items, and

a warning must be issued, to not accept fit to the model, as

shoi4.1n by an ICCSL test, as evidence of unidimensionality.

To test this kind of multidimensionality in a more proper way

within the framework of the Rasch model, the ML-PCC test should

be used. That test, however, is a confirmatory test which

requires that the items be grouped into sub-sets before any

analysis is performed, and often the prior information is too

weak to provide an adequate basis for this. In these cases, it

does seem necessary to use factor analysis to obtain information

about the dimensionality of the observations.

It is well known that factor analysis of dichotomous items has

many problems, both when phi-coefficients are used (Ferguson,

1941) and when tetrachoric correlations are used (Gourlay, 1951;

Lord & Novick, 1968, p. 349). Factor analytic methods specially

designed for dichotomous items have, however, recently been

developed (Christoffersson, 1975; Muth-en, 1978). Statistically

these methods are attractive but they involve great computa-

tional complexities, which at present limits their usefulness

to smaller sets of items (less than 20, say; Muthen, 1978).

However, even though there are still unsolved problems in

factor analysis of dichotomous items, the factor analytic

methods are likely to give much information about the dimen-

sionality and grouping of the items that ts impossible to obtain

in any other way. It should also be pointed out that even quite

imperfect factor analytic methods can be used, since the results

are checked with the ML-PCC test. Thus, for example, if a factor

analysis of phi-coefficients has produced "difficulty" factors

(Ferguson, 1941) these can be detetted with the ML-PCC test.
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Item bias

If certain groups of items are systematically too easy or too

difficult for certain sub-groups of the sample, this represents

a special case of item heterogeneity which is referred to as

item bias. An example of item bias may be that certain items

favor the boys in a sample, while certain other items favor the

girls.

Item bias can be detected in two ways. One possibility is to

use the ML-PCC test, with the items grouped into internally

homogeneous scales which are supposed to give different

"profiles" of performance level in different groups. The other

possibility is to use the A-ICC test, with the sample of persons

divided into groups, such as boys and girls.

Speededness

Speededness of the test is obviously a violation of the model

assumptions since if a person does not have time to attempt an

item, any statement about the probability of a correct answer

as a function of ability is meaningless.

In a speeded test the items early and late in the test measure

different abilities as long as "speed" and "power" are not

perfectly correlated, so speededness can be detected with the

ML-PCC test, if a proper grouping of the items is used.

Speedness is also possible to detect with the ICCSL tests. Persons

with low raw scores do not even attempt the items late in the test,

so those items will appear to have too high a discrimination (cf.

Mead, 1976a, p.9).

Guessing

If guessing takes place, which is particularly likely when multiple-

choice items with few response alternatives are used, the ICC

cannot be represented with one parameter only; a model like the

3-parameter model (Birnbaum, 1968) is needed to represent such

data adequately.
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Guessing can be detected with the ICCSL-tests if the items

are of unequal difficulty and the persons have unequal ability:

too many low-ability persons will answer the difficult items

correctly, whereby they obtain too high a raw score, which in

turn Implies that on the easier items where the proportion of

guesses is smaller, the low-ability persons will appear to

perform too poorly. The easier items will thus appear to have

too high a discrimination and the more difficult items will

appear to have too low a discrimination.

Mead (1976b, p.96) showed that guessing also affects the

apparent value of the person sensitivity parameters, so

guessing can also be detected with the ML-PCCSL test.

Non-independence of responses

The assumption of local statistical independence implies that

the response made by a person to an item must be independent

of the responses to the other items in the test. This assumption

can be violated in several different ways, such as by learning

effects and by constrained responses. If, for example, four

responses are derived from a question requiring the pairing

with respect to meaning of four given English words with four

given Swedish words, those of the examinees who know three of

the answers will automatically have their fourth answer correct

as well. Or, to take another example, if the answer given on

one item affects the answer given on another item, the assump-

tion of local statistical independence will be violated.

As has already been pointed out, the assumption of local

statistical independence is equivalent to the assumption of

unidimensionality, and non-independence of responses can be

detected with the ML-PCC test, if the items thought to be

affected by such non-independence are grouped into one group,

and the other items grouped into another group.

Heterogeneous item discrimination

The ICCSL-tests are by definition sensitive to variations in

the discrimination of the items, so this kind of deviation
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from the Rasch model can easily be detected.

As has already been pointed out, it is, however, quite difficult

to differentiate between violations of the assumption of uni-

dimensionality and violations of the assumption of homogeneous

item discrimination. This question was discussed at a rather

abstract level in section 1, and here a few more comments will

be made in relation to a concrete example.

Gustafsson (1977, pp. 63-69) analyzed an inductive reasoning

test composed of number series items and found that two items

gave evidence of too low a discrimination. The quite obvious

explanation was that these items posed a much higher demand

for arithmetical skills than did the other items.

The poor fit of these items was interpreted as being due to

multidimensionality, which is reasonable according to any

definition of unidimensionality. For example in a factor analysis

the two items might define a factor of their own. However,

had there been only one item of that kind the item set would

have been unidimensional according to the Lord & Novick

definition of unidimensionality, with a large item-specific

component for the item posing high demands for arithmetical

skills.

This illustrates the very blurred line of distinction between

multidimensionality and heterogeneous item discrimination and

that models which allow the item discriminations to vary do

not easily allow generalization beyond the specific set of

items analyzed.

Heterogeneous person sensitivity

Lumsden (1977, 1978) drew attention to the fact that person

reliabilities may differ. If that is the case, the person

sensitivity parameter in the Lumsden model (1.4) would be

different for different persons, which is a violation of the

assumptions of the Rasch model.
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This kind of threat against the Rasch model has not been studied

at all, but the possibility of varying person reliability must

be taken seriously, both for practical and for theoretical reasons.

In principle,heterogeneous person sensitivity parameters can be

detected with the ML-PCCSL test, but this is probably not the

best way to study this kind of phenomenon. The test is likely

to have a low power only, and it is sensitive to many other

sources of threat as well. Furthermore, it is not likely that

it will ever be possible to estimate the person sensitivity

parameters, so not very much is gained by only knowing that

they differ.

A better approach may be to try to find another varir'1,1e,

correlated with the person sensitivity parameters, a.d to use

the A-ICC test with the sample grouped according to level of

performance on this other variable. If the level of the person

sensitivity parameters differs between the groups, it will be

found that the item parameters are not invariant over the

groups (cf. Lumsden, 1978). Such an approach would allow a

more powerful test of the hypothesis, and a proxy for the

person sensitivity parameters would be available. An important

problem is of course what variables are likely to be related

to intra-individual variability, but it does seem that personali-

ty variables are useful; Rankin (1963), for example, found

that the reliability of reading tests was higher for introverts

than for extraverts.

Should it be found that the person sensitivity parameters

in ordinary applications do show a substantial variation, this

would imply great problems from the point of view of the Rasch

model, since it would not be possible to use the same model

for all persons. Such a finding could be quite useful from a

prediction point of view, however, within the framework of

moderated regression (e.g. Ghiselli, 1965).

Discussion

A rather long list of possible sources of deviation from the

Rasch model has been compiled, and no doubt the list could
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be made even longer. However, two important conclusions emerge.

The first conclusion is that it is possible, in principle at

least, to detect the deviations from the Rasch model, even

though at times an active search is necessary. The other con-

clusion is that the ICCSL tests do not suffice to make a

complete evaluation of fit. Nevertheless, tests sensitive to

variations in the slopes of the ICC's are those that have been

primarily used, and if such a test has not shown a poor fit,

this has been taken as an adequate overall fit of the data. The

ML-PCC test, which has never been used before, is, however, a

necessary complement to such tests.

5. Problems in the use of statistical tests to assess fit

From the discussion above, the reader may have gained the

impression that statistical tests can be used without any

problems as long as they are in principle sensitive to a

certain deviation. This is, of course, not so. In fact, the

use of statistical tests is fraught with several problems,

of which it is necessary to be aware.

Very large samples form a special source of problems. This

is because no model can ever be supposed to be perfectly

fitted by data, so with a sufficiently large sample any model

would have to be discarded. In connection with this problem

Martin-Lor (1974a) stated:

This indicates that for large sets of data it is too
destructive to let an ordinary significance test decide
whether or not to accept a proposed statistical model,
because, with few exceptions, we know that we shall have
to reject it even without looking at the data simply
because the number of observations is so large. In such
cases, we need instead a quantitative measure of the size
of the discrepancy between the statistical model and the
observed set of data... (p,3).

Martin-Lof (1974a) derived such a measure, called redundancy,

from concepts in the statistical information theory, which on

an absolute scale measures the deviation between a statistical

model and a set of data. This measure can thus be used when

the fit of a large set of data is investigated, even though

it does not seem very useful until there are tens of thousands

of cases (Gustafsson, 1977, pp. 57-61),at least not for short
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Another way to come to grips with the problems caused by large

sets of data is to replace the inferential methods with descrip-

tive methods, based on graphical descriptions of the deviations.

With some experience it it thus quite easy to use the GR-ICCSL

test to judge the size of magnitude of the variations in the

slopes of the ICC's.

Problems are also caused by samples that are too small. Thus,

the statistical tests are only asymptotically chi-square

distributed, so with samples that are too small there is a

risk that the test-statistic does not have the distribution

assumed.

It has been argued that the A-ICC test requires a large sample

to be applied with confidence (Mead, 1976b, p.34; Hambleton

et al.,1977, p.63). Some preliminary simulation studies indi-

cate, however, that the asymptotic properties of this test

apply reasonably well already with as few as 50-100 persons

within each group (Gustafsson, 1977, p. 54-55). The ML-ICCSL

test, however, does not enjoy as good properties in this respect

as does the A-ICCSL test. This is because the former test uses

the results for each score group, while in the A-ICCSL test small

score groups are pooled; therefore, the asymptotic properties

come inte force for much smaller samples for the A-ICCSL test

than for the ML-ICCSL test. It does seen wise to be cautious in

interpreting the results from the ML-ICCSL test when any score

group contains less than 10 observations, say.(Empty score groups

cause no problems, however).

A greater problem caused by small samples is that the power

of the test may be too low to detect even sizeable deviations

from the Rasch model. Since the power of the tests is a function

of a large number of factors, it seems impossible to give any

generally valid rules for the sample sizes needed to detect

deviations of different sizes. However, to give some general

information about the power of the tests and to study the effects

on power of different factors, some simulation studies have been

performed.
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Study I: The power of the A-ICCSL test against heterogeneous

item discrimination

Many of the deviations from the Rasch model appear as varying

item discrimination, so it is important to have at least some

rough information about the power of the ICCSL-tests against

this kind of deviation. Only small samples of person will be

used, so only the A-ICCSL test will be studied.

In the simulations the following factors were varied:

Number of items: 15 and 30.

Test design: One set of "peaked" tests and one set of "spaced"

tests were simulated. In the peaked tests all items had a

difficulty of zero at the log scale. The spaced tests contained

the difficulties -2,-1,0, 1 and 2, with three items at each

level of difficulty in the 15-item tests, and with 6 items at

each level of difficulty in the 30-item tests.

Amount of deviation: To simulate a small amount of deviation,

the discrimination parameters 0.8, 1.0 and 1.2 were used, with

each discrimination parameter being represented by the same

number of items at all levels of difficulty. To simulate a large

deviation from the model, the discrimination parameters 0.5, 1.0

and 1.5 were used.(cf. Hambleton & Traub, 1971).

Sample size: 150 and 300.

Standard deviation (SD) of person parameters. The person

parameters were sampled from two normal distributions with zero

means, one with a small SD of .71 and one with a large SD of

1.22.

For each combination of levels of these factors 100 sets of

data were generated according to the Birnbaum model, using the

feedback shift,register generator (Lewis & Payne, 1973) as the

basic generator
3)

. The data were analyzed with the A-ICCSL

test, with the score groups grouped in such a way that the

parameters were practically always estimated within two roughly
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equal-sized sub-groups. In some cases it was impossible to

compute the test (cf. Gustafsson, 1977, p. 49), so for some

combinations the results are based on a lower number of

replications than 100.

The percentage of replications in which the p-value of the

test was lower than .05 is shown in Table 1 for all the

combinations of levels of the factors.

Insert Table 1 about here

All the factors studied affect power. The sample size and
number of items tend to influence power in the same way, at

least fnr the peaked test, which shows that the number of

responses analyzed is important.

Deviations are more easily detected in a peaked test than in

a spaced test. This is because the amount of information in

a response is at a maximum when the probability of a correct

answer is .50 and in a spaced test there are fewer such

occurrences than in a peaked test. Had the mean of the distri-

bution of person parameters been varied as well, a lower power

would have been found when the mean of ability differs from

the mean difficulty of the test.

The SD of the person parameters strongly affects power. In

fact, when the SD is zero, the test has no power whatsoever

against this type of deviation (cf. Wright, 1977b). That this
is the case is not always realized; Wood (1978),for example,

reported that the Rasch model fits random data -- and seemed
surprised at the finding.

When a large amount of deviation is present in the data, the

test provides an adequate power in almost all instances. The

most notable exception to this is when the factors combine

most unfavorably, i.e. a short and spaced test, a low SD and
a small sample.
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When there is a small to moderate amount of deviation, the

power is adequate only in the most favorable combination of
levels on the factors.

One should hesitate to draw any general conclusions on the
basis of a study as limited in scope as this one. It does

appear, however, that as long as the SD of ability is not too

low (around 1.0, say) and the difficulty of the test is
adequate for the sample, a reasonable power to detect moderate

heterogeneity of the item discriminations is obtained when
10 000-20 000 responses are analyzed.

Study II: The power of the A-ICCSL test against guessing

If guessing is a factor affecting performance, this tends to
affect the apparent value of the discrimination parameter in
the Birnbaum model.For easy items a high discrimination is observed,

and for difficult items a low discrimination is observed. Some

simulations have been performed to study the power of the A-ICCSL

test to guard against this type of deviation from the Rasch model.

It would make only little sense in making simulations on peaked

tests when guessing is the threat; the test has any power only

when there is some variation of the item, difficulties. Therefore,
only spaced tests, designed in the same way as in Study I, were
included.

Only one amount of deviation was studied: all items were supposed

to have a value of .20 on the guessing parameter in the 3-para-

meter model (Birnbaum, 1968), and all the discrimination parameter;
were assumed to be unity.

Except for these changes in the design, the study was carried out
in the same way as Study I, using the same levels on the other

factors, except, of course, that the data were generated according
to the 3-parameter model.

The results are presented in Table 2. Again, all the factors



Insert Table 2 about here

affect power and they do so, of course, in the same way as was

found in Study I. It is found, however, that in no case is the

power adequate for the 15-item test, and only with a high SD

and a sample of 300 persons is the power large enough for the

30-item test.

Comparing the figures presented for the spaced test in Table 1

with those presented in Table 2, it is found that with a guessing

parameter of .20 the effect on the apparent discrimination is

somewhat larger than what was labelled a small variation in the

item discriminations. It would seem, however, that here too

some 10 000-20 000 responses would be needed to detect presence

of guessing of this amount, granted that the SD is not low and

that there is a substantial variation in the item difficulties.

Study III: The power of the A-ICCSL test against both heteroge-

neous item discrimination and guessing

Only rarely can it be suspected that there is only one kind of

deviation from the Rasch model in the data. To study the power

of the A-ICCSL test against two sources of deviation, a study

was performed in which both guessing and varying item discri-

mination was present.

The same design as in Study II was used, except that the

discrimination of the items was also varied, using the

discrimination parameters 0.5, 1.0 and 1.5, with each discri-

mination parameter being represented by the same number of

items at all levels of difficulty.

The data were generated according to the 3-parameter model and

again 100 replications were used.

The results are presented in Table 3. As compared with Study II

the power is higher, as would be expected from the fact that

another sizeable deviation has been introduced. But comparing
5



Insert Table 3 about here

the results with those obtained in Study I, when a large amount

of deviation was simulated for a spaced test, a lower power is

found when guessing is alsc introduced. This is because these

two kinds of deviation partly cancel out: the easy items with

too low a discrimination and the difficult items with too high

a discrimination obtain a more "normal" discrimination as

consequence of the guessing.

Examples could easily be constructed in which the effects of

two deviations on the discriminations cancel out completely,

resulting in no power whatsoever of the test to discover any

of them. Of course, it is also possible for different deviations

to work in the same direction, so that the deviations magnify

each other.

Discussion

The simulation studies presented here indicate that the A-ICCSL

test should be sufficiently powerful against alternative models

of the 2- and 3-parameter type if samples of 500-1 000 persons

are used and if the tests contain about 20-40 items. It must

be kept in mind, however, that the SD of ability is a factor

critically affecting power, as is the range of item difficulties

when guessing is present.

The possibility of trading relationships between different

violations must be taken seriously. Using a goodness-of-fit test

only, it is not possible to decide whether there are one or more

deviations from the model, so this information must be taken

from other sources. For some types of possible deviations this

is not difficult. It should be possible to judge from the item

type wheter or not a substantial amount of guessing is present,

and if a test is speeded, there tends to be a large amount of

omitted responses for the items late in the test. If such sources

of deviation can be identified it should be seriously considered

if any goodness-of-fit test should be carried out at all; it is

already known that the Rasch model cannot be expected to fit the

observations, and there is a risk that there will be trading

relationships between those deviations, and others not so easily

detected.



When the problem of too large samples was discussed, it was
suggested that descriptions of deviations using graphical metods
should be used. This recommendation also applies when there is
a risk that the sample is too small; a deviation impossible to
detect with a power-less statistical test may be possible to
detect with a graphical test.

Only the power for the A-ICCSL test has been investigated
here, and similar investigations could be carried out for the
other tests. It is not expected, however, that very different
conclusions would be arrived at. Thus, the ML-PCC test seems
quite powerful when "normal" samples are used, as long as there
is some variation'in the abilities measured by the different
groups of items.

6. Evaluating fit in different measurement contexts

The question of fit is of course not an absolute one and it is
quite obvious that the purpose for which the model is used should
decide how to treat the goodness-of-fit problem.

It does seem possible to make a distiction between two major
classes of application of the Raschmcdel into which the goodness -
of- -fit problem enters differently. In the first of these the
Rasch model is used as a criterion, against which characteristics
of the observations themselves are evaluated. This kind of appli-
cation is based on the fact that the Rasch model formalizes
desirable characteristics of measurements, (i.e. unidimensiona-
lity and sufficiency of raw score as an estimator of ability,
cf. Gustafsson, 1977, Wright, 1977b),and fit to the model is
used to draw inferences that the observations in fact enjoy
these desirable characteristics.

In the second class of applications, the Rasch model is used as
an instrument to solve one or more practical measurement problems,
such as linking and equating tests, carrying out tailored testing,
optimizing tests, constructing item banks and so on (e.g. Wright,
1977a),In this kind of application, the solution of a practical
measurement problem is the main objective, and the characteristics
of the observations themselves are important only to the extent
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that they help/prevent the achievement of the end.

Evaluating fit when the Rasch model is used as a criterion

It is fairly commonly accepted that in work with a theoretical

orientation the scales into which observations are assembled

should be homogeneous (e.g. Lord & Novick,. 1968, p.351). As

was pointed out by Lumsden (1976), the notion of unidimensiona-

lity has, however, been seriously neglected both by constructors

of tests and by test theorists.

The unidimensionality assumption of the Rasch model, along

with the availability of goodness-of-fit tests makes, in

principle at least, this model useful in investigations of the

unidimensionality of sets of cbservations.

It can be noted, though, that doubts have been expressed as to

the possibility of using the Rasch model as a criterion of

unidimensionality. Speaking primarily about the Rasch model

and the normalogive model, Wood (1976) stated:

And:

These item response models seem to be remarkably elastic
concerning the motley collections of items they will fit
(Wood, 1976, pp. 258-259).

It looks as if, by one means or another, heterogeneous
collections of items can be made to fit response models
even though inspection strongly suggests that the items
are not congruen;L, as where groups of items call on
psychologically distinguishable processes... (Wood, 1976,
p. 260).

The background of these statements is almost certainly that

incomplete evaluations of fit have been made. For the Rasch

model only ICCSL tests have, no doubt, been employed, and it

has already been shown that such tests may fail to detect even

serious violations of the assumption of unidimensionality.

Thus, it is obvious that when the Rasch model is used as a

criterion, high standards of fit must be set, and it is

necessary that several tests which each guard against different
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deviations from the model are applied. In addition to ICCSL

tests, the ML-PCC test should have a central place in this

king of application, since the latter test forms a direct

test of unidimensionality.

This test, however, requires that the items are grouped into

subsets before it is computed, which implies that information

about the dimensionality of the observations must be taken from

other sources. It has already been suggested that factor analysis

is useful in this context, but also information derived from a

careful scrutiny of the items and observations of solution

processes, are likely to be useful (cf. Cronbach, 1970, pp.

474-475).

When the Rasch model is used as a criterion, the power of the

statistical tests is essential. Whenever it is suspected that

the power is insufficient, a closer look at the problem should

be taken, perhaps through conducting a specially designed

simulation study in which the characteristics of that particular

situation are represented.

The use of the Rasch model as a criterion is above all of

interest in work with a theoretical orientation. This implies

that the items must be constructed from theoretical starting

points, and these theoreticalnotions should also direct the

evaluation of fit. In such work the Rasch model is also likely

to prove useful to test specific hypotheses about test items,

Without it being regarded a failure if the model is rejected.

It is true that most test construction is essentially atheoretical
and, as has been pointed out by Levy (1973), there is only a Weak

relation between test theory and psychological theory:

Statistical manipulation of test results is sometimes used
as a poor substitute for operational control of item content
and format at the test development stage. Much needed are
tests constructed to test hypotheses, and fewer hypotheses
about tests (Levy, 1973, p. 37).

This state of affairs is not likely to change as a funct!on of

adoption of the Rasch model. Should, however, a greater theoreti-
cal sophistication come about among test constructors, it is
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likely that the Rasch model will be found to contribute to

their work.

Whitely and Dawis (1974) spoke in a similar vein:

"...the lack of impact of the Rasch model in test develop-
ment is due more to the current status of trait measurement
than to the properties of the model.(p.77).

Evaluating fit when the Rasch model is used as an instrument

The Rasch model can be used as an instrument to solve a range

of practical measurement problems (e.g. Wright, 1977a). Here

too, the fit of the data to the model is important, but the

question of fit is nevertheless subordinated to the solution

of concrete measurement problems. This implies that lower

standards of fit can sometimes be set, that all possible

deviations from the model assumptions need not necessarily be

considered, and that in fact large deviations in the data from

the model assumptions can sometimes be tolerated.

If it is known that a set of data fit the Rasch model, it

follows from the mathematical structure of the model itself

that it can be used to solve practical measurement problems.

The reason, however, why the Rasch model sometimes might be

used as an instrument, in spite of poor fit, is that deviations

from the model do not necessarily jeopardize applications.

Unfortunately, very little is known about the robustness of the

Rasch model against different types of deviations for different

types of applications, and this is an area where much research

is needed.

Some research has been carried out, though, and it may be

instructive to consider some of that in greater detail to see

how the goodness-of-fit problem can be handled when the Rasch

model is used as an instrument.

The area of application where most research on the robustness

of the Rasch model has been carried out is on the equating of

tests, i.e. expressing on the s....me scale raw scores obtained

on different tests. In principle, this problpm is easily solved

with the Rasch model through first estimating the item parameters



for the two tests on a common scale, and then deriving the

ability scales which specify the conversion of raw scores into

estimates of ability (e.g. Wright, 1977a; Rentz & Bashaw, 1977).

It has been shown (e.g. Wright, 1968; Whitely & Dawis, 1974)

that estimates of the mean of ability for a group derived from

easy and difficulty items in a test come quite close. In those

studies the data did not fit the model, which indicates that

the estimates of ability are quite robust against deviations

from the model.

However, Slinde .1 1 Linn (1978) argued that it should also be

possible in vertical equating of tests (i.e. equating tests of

different difficulty) to use the item parameters estimated in

any group of persons to estimate the abilities in any other

group of persons. They compared the means of ability estimates

obtained from easy and difficult tests for groups of different

levels of ability, using item parameters estimated either within

the same group of persons, or estimated within a group of persons

of another level of ability. It was found that a reasonably good

vertical equating could be achieved when the item-parameters

estimated within the groups were used, but not when item-para-

meters estimated within another group were used. On the basis

of these results, Slinde and Linn (1978) questioned the useful-

ness of the Rasch model in solving the problem of vertical

equating of tests.

It should be pointed out that a partial explanation of the

poor results obtained by Slinde and Linn (1978) is that they

used an illegal grouping of the sample into levels of ability;

they used performance on a subset of the items only as the

basis for the grouping, a procedure which introduces a spurious

lack of fit even when the data fit the model (Gustafsson, 1979b).

However, Slinde and Linn (1979) have presented another study

which allowed very much the same conclusion.

The Slinde and Linn requirement that it should be possible to

use the estimates of parameters from any group of persons is

a reasonable one, since in some cases this is necessary in

equating tests. It does seem rash, however, to draw a general
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conclusion about the inability of the Rasch model to solve the

problem of vertical equating on the basis of a few empirical

studies alone, and without supplying any reasons for the failure.

Slinde and Linn (1978, 1979) suggested that an LT-model which

allows the slopes of the ICC's to be different might be needed

to solve the problem of vertical equating. Of course, in the

presence of heterogeneous item discriminations the item para-

meters will always differ when estimated within groups of

different level of performance, but depending upon the exact

the kind of violation of the assumption of homogeneous item

discrimination, the biasing effects in vertical equating will

be different.

Some simple simulation studies have been performed to illustrate

this. Data were generated to follow the Birnbaum model for three

tests with 60 items in each, 30 of which had the difficulty -1

and 30 of which had the difficulty 1. In one of the tests the

item discriminations were not correlated with difficulty, there

being 10 items each with discrimination parameters 0.5, 1.0 and

1.5 at each of the levels of difficulty. This test will be

referred to as the ZCORR test. In another test there were 10

items with discrimination 1.0 and 20 items with discrimination

1.5 among the easy items; among the difficult items there were

10 items with discrimination 1.0 and 20 items with discrimina-

tion 0.5. This test will be referred to as the NCORR test, since

it simulates the case when there is a negative correlation be-

tween discrimination and difficulty, such as is the case when

the test items allow guessing. Finally, in the third test (PCORR)

the frequencies of items with high and low discriminations were

reversed at the two levels of difficulty as canpared with the

NCORR test, to simulate a test with a positive correlation be-

tween discrimination and difficulty, such as tends to be the

case for a speeded test.

For each of these three tests data were generated for 1 000

persons, with the ability parameters being sampled from a normal

distribution with zero mean and unit standard deviation. Persons

with a score equal to 30 or lower formed a "low" group, and the

rest of the sample formed a "high" group. The item parameters



for the total set of 60 items were estimated within the two

groups, and the mean of ability for each group was estimated

separately for the easy and difficult items, using the item

parameters estimated'both within the same group and the other

group of persons.

Table 4 presents, for the easy and difficult items separately,

Insert Table 4 about here

the difference between the means obtained when using the item

parameters estimated within the same group and those estimated

within the other group. It could of course be argued that the

differences between means obtained on easy and difficult items

should be presented instead, since the problem of vertical

equating is studied. In this case however, these are not direct-

ly comparable,since some of the persons in the high group had a

perfect score on the easy items and some of the persons in the

low group had a zero score on the difficult items.

The figures presented in Table 4 show that for the ZCORR test

only small differences are found when the estimates of ability

are based on item parameters estimated within groups of diffe-

rent levels of ability. For the PCORR and NCORR tests, however,

there is a large bias, with the direction of bias being diffe-

rent depending upon the sign of the correlation between item

difficulty and item discrimination.

Using figures presented by Slinde and Linn (1979), the corres-

ponding differences have been computed for that study. The

pattern of differences found coincides with that found for

the NCORR test, as might be expected from the fact that the

test analyzed by Slinde and Linn (1979) was a multiple-choice

test heavily influenced by guessing.

This brief analysis thus makes it likely that the negative

conclusions drawn by Slinde and Linn as to the possibility of

using the Rasch model as an instrument in the vertical equating
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of tests was due to a negative correlation between item difficulty

and item discrimination in that study. Had a test with the same

amount of deviation but with a zero correlation with difficulty

and discrimination been analyzed, a much more positive conclusion

would have been arrived at.

It must be stressed that this analysis of the robustness of the

Rasch model is very limited in scope and allows very limited

generalizations only. Thus,attention has been confined to the

estimates of the mean of ability for groups of persons, but it

is well known that in the presence of heterogeneous item discri-

mination the Rasch model is less efficient than other LT models

(Hambleton & Traub, 1971; Reckase, 1978). Parenthetically, it

should also be pointed out that Andersen and Madsen (1977) have

recently presented a superior solution to the problem of estima-

ting the parameters of the latent population distribution. The

robustness of that method against deviations from the Rasch

model assumptions remains as yet to be studied.

The purpose of this digression has been to show that the Rasch

model sometimes is quite robust against deviations from the

model assumptions, while at other times it is not robust at all.

This suggests that when the Rasch model is to be used as an

instrument on data not fitting the model, the deviations from

the model should first be analyzed and described, and it should

then be investigated whether the model is robust against these

deviations for the particular application intended.

Of course, the Rasch model is best used as an instrument when

the data fit the model. It should therefore also always be in-

vestigated if it is possible to obtain fit of data to the model.

Strategies for doing this are discussed in the next section.

7. Obtaining fit of data to the Rasch model

It does appear that, on the whole, a rather simple strategy is

followed to obtain fit of data to the Rasch model. This standard

procedure may be described in the following, somewhat simpli-

fied, way: a set of items is given to a sample of persons and

an overall ICCSL test is computed. If this test is significant,
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which is usually the case, the p-value of fit to the model of

each item is computed, or a graphic test of item fit is made,

and those items which do not fit are excluded. A new overall

ICCSL test is then computed, usually with the same sample of

persons, and unless a non-significant value on the test

statistic is obtained, the process is carried out again, ex-

cluding more items, until a reasonably good overall fit is

obtained.

It is submitted here that this strategy is likely to result

in a spurious fit only, and that it should only rarely be used.

In view of current practice this is a strong assertion, but

several reasons can be cited in support of it.

4.46.7 11 u.J %;;Vill r711VW11 GA."JVC, 1.11,4%. Vlly

ICCSL tests represent only a partial evaluation of fit to the

model, and they can fail to detect even very serious deviations

from the Rasch model. Other tests, and above all the ML-PCC

test, should therefore also be used to study item heterogeneity.

Another reason why the strategy based on exclusion of items

should not be used is that there may be trading relationships

between different violations of the model assumptions, as was

shown in Study III in section 5. Consider for example a slightly

speeded multiple-choice test with heterogeneous items. Speeded-

ness and guessing tend to affect the discriminations in opposite

directions and item heterogeneity may also affect, the discrimina-

tions. It is very likely that a large proportion of the items in

such a test which do show a good fit do this because the effects

of the different violations cancel out. If "poor-fitting" items

are excluded, a good overall fit, as evidenced by an ICCSL test

will eventually be obtained, but that good fit has been obtained

through capitalizing on such trading relationships, and on chance

effects. When this kind of "fit" has been obtained, the implica-

tions which are otherwise associated with fit of data to the

Rasch model do not hold true.

A third reason why items should not be routinely exclued is that

there may be deviations from the model where other steps should

be taken to obtain fit. If, for example, the main reason for the
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poor fit of a set of items is that the examinees have been

given too short a testing time, the best way to obtain fit is

to give the test with a more liberal time limit. Or, to take

another example, if the test consists of multiple-choice items

with a few response alternatives on which the subjects have

been given the instruction of guess if they do not know the

correct answer, it does not seem wise to select those items

which appear to fit the model in spite of the guessing; instead

the opportunities to guess at all should be minimized if the

Rasch model is to be used.

But there is also a fourth, and even more important reason

why development of Rasch scales on the basis of exclusion

of poor-fitting items cannot be recommended as a general

strategy. This is because tests of fit of iff.ms, in

the presence of gross deviations from the model, are in principle

illogical: the basic requirement of the Rasch model is that the

items shall be homogeneous, so what is tested is, in fact, if the

items fit with each other, not if they fit the model. If tests

of item fit indicate that just a few of the items do not fit,

this can of course be interpreted as showing that these items

do not fit with the other items, and hence not the model. But if

a larger proportion of the items show misfit, the item set is

so heterogeneous that there may be subset of items in the set,

each of which shows a good fit to the model, but which do not

fit with each other.

Suppose for example, that a set of items all measure the same

ability but that they have different discrimination parameters

(which is, of course, a highly hypothetical situation). If items

are excluded on the basis of tests of item fit, those items will

be retained which have an intermediate level of discrimination.

But there is no assumption in the Rasch model which says that

items shall have an intermediate level of discrimination; all

that is required is that the items shall be homogeneous with

respect to discrimination. Thus it may well be possible to

select a subset of highly discriminating items which fit the

model. If the scale is to be used to measure individual

differences, such a scale composed of highly discriminating

itmes will have better properties than a scale composed of
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items with an intermediate discrimination, at least if the

discrimination is not so high, and the difficulties not so

uniform that the attentenuation paradox appears (Loevinger,

1954).

In passing, it can be noted that studies have been carried out

(e.g. Tinsley & Davis, 1972) in which the Rasch model has been

compared with other methods for item screening. In these studies

the tests of item fit have been used to select items for the

Rasch scales, and it has not been realized that items which

appear to have too high a discrimination could have been selected

just as well.

Other examples where tests of the fit of single items may give

absurd rpsults are easily envisaged. If, for example, a set of

items is heterogeneous in the sense that two dimensions are

covered, an ICCSL test may, but need not, indicate a poor fit.

But if a process of item selection is carried out we will end

up, at best, with a scale covering only one of the dimensions

in the original set. What should be done in such a case is of

course to sort the items into internally homogeneous subsets

each of which will show a good fit to the model.

Gustafsson and Lindblad (1978) presented an empirical example

of that situation. In analyses of a test of English grammar

for Swedish students it was found that a set of items measuring

knowledge of irregular verbs did not fit the model. But in a

separate analysis of these items it was found that they did fit

the model, as did the rest of the items, after some poorly

constructed items had been excluded. Had the items measuring

knowledge of irregular verbs been excluded, that would have

implied an undue narrowing of the scope of the test, but through

forming two scales instead of one, both kinds of items were re-

tained.

The Rasch model has been critisized by several authors (e.g.

Goldstein & Blinkhorn, 1977; Whitely, 1977; Wood, 1978) because

it has been thought that the strong assumptions of the model

make it necessary to exclude items not fitting the model. Wood

(1978), for example, said:
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By narrowing the scope of the tests in order to fit
the Rasch model, we may run the risk of throwing out
the baby with the bath water, even though the measure-
ments have desirable, perhaps even necessary, proper-
ties....(Wood, 1978, p. 31).

This criticism is warranted if it is assumed that only one scale

is to be used, but not otherwise; any degree of heterogeneity

can be represented with the Rasch model as long as several diffe-

rent scales are constructed (cr. Lumsden, 1976, p. 267).

From the list of problems associated with the exclusion of poor-

fitting items to obtain fit, the skeleton of an alternative

strategy can be outlined. First of all the likely causes of the

poor fit should be identified. If among the likely sources of

deviation there are factors other than item heterogeneity, the

proper actions should be taken to remove those threats against

the model (i.e. remove speededness, guessing and so on). It

should then be investigated if the item heterogeneity is so

severe that the items should be grouped into homogeneous

subsets, or if a few poorly constructed items can be excluded

to obtain fit. In the next step; any suggested scale should be

cross-validated on another sample of persons with further items.

In order for such a strategy to be successful,a very good

kowledge of the sample, the testing situation and the content

of the items is necessary; otherwise it will be impossible to

trace the different sources of deviation and to group the items.

The goodness-of-fit tests are likely to contribute in the

evaluation of fit, but they can certainly not replace subject

matter knowledge.

Concluding remarks

If anything, it should stand clear from the discussions in this

paper that it is difficult both to evaluate and to obtain fit

of data to the Rasch model. It can only be hoped that this does

not detract users from the Rasch model, because if used properly

there are sometimes large theoretical and practical gains to be

made, and especially so if the goodness-of-fit problem is given

due attention.
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Closely associated with the Rasch model is the theory of specific

objectivity (Rasch, 1960, 1961, 1977) which says that it should

be.possible to compare objects (persons) independently of agents

(items) ead agents independently of objects. When data fit the

Rasch model specifically objective comparisons of items can be

made, as well as specifically objective comparisons of persons.

But users of the Rasch model must bear in mind the following

caution, made by Rasch himself:

In an empirical science specific objectivity can never
be fully ascertained if the objects and/or agents is
an infinite set; it can only be set up as a working
hypothesis which has got to be carefully tested, e.g.
by exposing an extensive body of objects to a wide
range of agents and analyzing the reactions. And
whenever additional data are collected we must be
ready to do it over again -- possibly having to
revise previous optimistic conclusions. (Raseb,
1965, p. 8, with some changes of notation).
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FOOTNOTES

1) I want to thank Bengt Muthen for kindly giving me access

to these data, and also those persons acknowledged by

Muth6n (1978) for having originally contributed the data.

2) These computations, and all others reported in this paper,

were made with a FORTRAN IV computer program (PML3), written

by the present author for use on IBM 360/370. PML3 computes

the CML estimates of the item parameters, and estimates of

the person parameters. The program also computes all the

goodness-of-fit tests presented here, except for tests of

person fit. A copy of the program written on tape may be

obtained at cost from Jan-Eric Gustafsson, Institute of

Education, University of Goteborg, Fack, S-431 20 MOLNDAL,

Sweden.

3) I want to thank Philip Ramsey, now at the City University

of New York, for putting into my hands this exellent random

number generator.



Table 1

Percentage of successful replications in which the

A-ICCSL test rejected the Rasch model at the 5

percent level in the presence of heterogeneous

item discrimination.

SMALL AMOUNT OF DEVIATION

Test design

Peaked Spaced

Number of items NUmber of items

15 30 15 30

Sample size Sample size Sample size Sample size

SD 150 300 150 300 150 300 150 300

Lag 11 15 15 44 15 11 21

High 26 51 44 80 13 33 22 60

LARGE AMOUNT OF DEVIATION

Test design

Peaked Spaced

Number of items Number of itens

15 30 15 30

Sample size Sample size Sample size Sample size

SD 150 300 150 300 150 300 150 300

Low 53 89 89 99 28 67 57 64

High 99 100 100 100 81 98 97 100
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Table 2

Percentage of successful replications in which the

A-ICCSL test reject the Rasch model at the 5 percent

level in the presence of guessing.

Number of items

15 30

Sample size Sample size

SD 150 300 150 300

Low 12 16 15 32

High 26 48 59 96

Table 3

Percentage of successful replications in which

the A-ICCSL test rejected the Rasch model at

the 5 percent level in the presence of guessing

and varying item discrimination.

Number of items

15 30

Sample size Sample size

SD 150 300 150 300

Low 10 35 32 77

High 53 94 90 100
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Table 4

Differences between estimates of means of

ability using parameters estimated within

the same group of persons and parameters

estimates within the other group of persons

TEST

Slinde & Linn (1979:ZCORR PCORR NCORR

Easy items

Low -.02 -.45 .39 .62

High .14 .50 -.36 -.30

Difficult items

Low -.13 .40 -.44 -.48

High .02 -.44 .40 .62
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