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PRESENTING A MODEL OF MATHEMATICAL PROBLEM SOLVING
by Alan H. Schoenfeld

. Background and Overview

In brief, my work in problem solving and this paper in paﬁti£u1ar
éea? with the following two questions:
1. Can we characterize those strategies or behaviors which enable
experts to solve problems well, and
2. Having <identified components of expert prohlem solving, can we
train students to use some aspects of expert strategies, and
thereby improve the students’ problem solving?
My answer to both questions is a qualified and circunscribed "yes,"
but T should specify what I mean by "improve students’ problem solving"
before 1 elaborate. My standards (at least ideally) are rather strict. If
a course is in general problem solving skills, then the students in the course
should show a distinct improvement on a variety of problems not at all directly
related to those in the course, when compared to a contral group. In a general
problem solving course, any problem at all, if the students have the appropriate
background knowledge, is “fair game"s in a mathematics problem solving course
for freshmen, any problem through freshman mathematics, or not requiring more

background than freshman mathematﬁ:é, is "fair game." Indeed, the testing

‘should be done by someone who has no contact with the course save for a de-

scription of the backgrounds of the students and a ballpark idea of what
"reasonable" problems are; the person(s) conducting the course should have
no idéa of the contents of the tests.

Under those conditions, one cannot be too sanguine about the success

of a semester, or even a year-Tong course in "general problem solving". Little



enough is known in detail about useful problem solving strategies, even in
rather narrow problem solving domains, and less is known about how to teach
them successfully. My decision, therefore, was to stay within one subjecﬁ
area -- mathematics, A number of "useful" strategies for mathematical prob-
lem solving have been described (mostly based on Polya's “heuristfcs“); yets,

attempts to teach mathematical problem solving via heuristics have, géneraiiy,

" yielded rather unclear results. There are, in my opinion, a number of reasons

that instruction in mathematical problem solving via general problem solving
strategies has had only marginal success, among them:

1. the strategies have yet to be described in sufficient detail;

2.  they are descriptive, rather than prescriptive; and

3:  there are too many potentially useful strategies!

By "insufficient detail," I mean that the way we describe certain
problem solving strategies are appropriate as a convenient label for a class
of behaviors, but not detailed enough to specify how the 1abé1ed technique
or st;ategy can be used. Consider the phrases "establish and exploit sub-
goals" and "consider ;péﬁiai cases," two common heuristic strategies; How
does one establish the subgoals in the first place? Having generated some
plausible subgoals, how does one choose among them? Having reached a sub-
goal, does one exploit the method of solution, the result, or something else
about it? And for problems 1ike
Let P(x) and Q(x) be polynomials with "reversed" coefficients:

) N ,
P(x) = ian'xn and Q(x) = ZaN_ﬂx".
pelh

n=0

u

Determine and prove a relationship between the roots of P(x) and Q(x):
b. Let N be a positive integer. Determine the qumber of Divisors of N;
c. Show that in any circle, the central angle which cﬁts off a given arc

is twice as large as the inscribed angle which cuts off the same arc;

2.

3



the phrase "consider spacial cases" takes on rather different meanings.

Frankly, I suspect that students will be unlikely to use the strategy on

problems rasemkling these unless they have seen how to do so on thege or similar
Next we come to the distinction between descriptive and presargggb]emS-

tive stratagies. Much of Polya's works and that based on it, demonstrates the

utility of heuristics hy exemplifying their usagei that is, hy showing how

the heuristic approach results in rather elegant problem solutions. Yet

"this work rarely suggests why particular strategies were chosen, leading

some to complain that in reading Polya's work ane can only be a spectator

to his tours_de force witheut hope of being able ta imitate them (Karplus, 1978).

For a problem solving scneme to be useful, it must be prescriptive: that is,
it must suggest how and when to use particular prohlem solving techniques.,
Further, a long list cf’techniques, even if prescriptive, will be
of Tittle value unlass it is embedded in some sort of manageable strycture.
The problem solver needs a means of narrowing down the collection of poten-
tially useful étrategies, and for effective budgeting of problem salving
resources, As one such example, consider techniquas of integration in first-
year calculus, In indefinite integration, the individual techniques (inte-
gration by parts, hy partial fractions, substitution, etc.) are nearly algo-
rithnic and shauld present no major difficulties, but student performance is
often worse than one would expect, This is becayse one must not only Know
how to use a particular technique; one must know that it is the "right" tech-
nique to wse. In an experiment designed to test the utility of such global
strategies (Schoenteld, 1978), students taught a selection strategy signifi-
cantly outperfarmed thase who studied the “usu&Tﬁ way (working lots of pr@b1emé)
with less study time, In general Pfcbiem SQ]Qinéx where there iy a larger
variety of potantially useful strategies and their application is far more
subtle than in integration, the need for an overall organizational scheme is

3.
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a1l the much greater. Such a scheme is a model of "expert" problem solving

in mathematics, based on observations of prafeséiana? mathematicians solving

a large numbar of problems. In my problem solving course, students afe taught

to follow the model of expert problem solving; in effect, I try to train them .
to think like experts. The course has been offered to upper division mathematics
majors at U,C. Berkeley, and just this past term to Tower division liberal arts
students at Hamilton College. The model, the course, and the results will be

described below,

2, The Madel

The model outlined in figures 1 and 2 is meant to be both dynamic
and prescriptive: all other Factaﬁs being equal, the model provides a guide
to the problem solving process. In the analysis stage of solving a problem
(the fifst bax of figure 1 and the first section of figure 2), the problem
solver first faces the problem and grapples with it until (a) he or she has
a "feel" for it, (b) the problem has been reformulated in a useful analytic
way, and (c) the problem domain and the basic approach to the problem have
been (temporarily) settled upon, In slightly more detail, the problem solver
first reads (and rerveads, if necessary) the problem and summarizes critical
information contained in the problem statement including "givén“ and "goals."
[f appropriate, a diagram is drawn; special cases many be exanmined to exemplify
the problem and see the range of passible or plausible answers; ballpark esti-
mates of ordar of magnitude might be made. A mathematical context for the
problem (say analytical geometry vs. Euclidean geometry) is established, and
the problem may be re-cast in that context. (If one chooses to solve a prob-

lem using analytic geometry, the given terms such as "eircle” may be translated




ScHEMATIC OUTLINE OF THE PROBLEM-SOLVING STRATEGY
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FREQUENTLY USED HEURISTICS

ANALYSIS

xS e

1) DR A DIAGRAN 1F at all possible.
7o EXAMINE SPECIAL [ASES:

3} Cose soeclal values to everolify the problem and get 8
"foe]" for it,

bi Examing Timiting cases to aaplore the range of possibilities.

¢} Set any integer parameters equal to 1, 2, 3,..., In sequence,
and look for an Inductive pattern,

3) TRY 70 SIMPLIFY THE PROBLEM by
2) explofting symetry, or

b) "Without Loss of Generality" arqunents ({ncluding scaling)

EXPLORAT [ OM

—— —— e

[) CONSIDER ESSENTIALLY EQUIVALENT PROBLEHSE
A) Replactng conditions by equivalent ones.
b) Re-conbining the elements of the problem in different ways,
¢) Introduce auxilfary elements,
d) Re-fornulate the problem by
ifchweﬁpwwxunarmhﬂm
1) consdering argument by contradiction or contrapos Live

m)ummﬂwmmimumdwﬁmmm@n;
propertfes

Z) CONSTDER SLIGHTLY MODIFIED PROBLEMS :
3) Choose subgaals (abtain partial fulfilinent of the condi tions)
b) Relax a condition and then try to re-impose it.

¢) Decompase the domain of the problem and work on it case by

Q

| ’

EXPLORATION {cont fnued)

3) CONSIOER BROADLY MODIFIED PROBLEMS:
1) Construct an analogous oroblem with fewer variables.

b)- Hold 411 but gne variale fixed to determine that varfabley
Impact,

ﬂquMWH@mﬁummmwmﬁmm
1) fom |
1) "glvens"
111) conclusions,
Remenber: when dealing with essfer related problens, you should
try to explolt both the RESULT and the METHOD OF SOLUTLON on the

yiven problem, o

VERIFYING YUUR SDLUTION

1) OOES YOUR SOLUTION PASS THESE SPECIFIC TEsrs:

8} Does ft use ol thelpertlﬁent data?
bl Does 1t conform to ressonable estimates or rregictions?

¢) Does 1t withstand tests of symetry, dimmsion analysts, or
Yacaling?

2) ODES IT PASS THESE GENERAL TESTS?
4) Cen 1% be obtained di tferently!

b) Can 1t be substantated by spetfal cases!?
¢) Can it be reduced to known results)
d) Can 1t be used to generate something you kow? .r

(£1gure 7) -




into equations, étci). Finally attempts are made at preliminary simplifica-
tions, so that a "clean" and well-formulated version of the problem is ready
for further study.

Properly construed, design is not localized into one box on the
flow chart in figure 1, but is rather an "efficiency expert" whose role it is,
at all points of the solution process, to ensure that the problem solver is
using his or her time and energy wisely. In general, some principles to be
adhered to in design are: (1) one should keep a global perspective -~ at any
point in a problem solution the problem solver should be able to say what is
being pursued and why; what the options were; and what will be done with the
results of the present operation, and (2) one should, unless there are strong
reasons to do otherwise, proceed hierarchically. That is, solutions should

be outlined first at a rough and qualitative level and elaborated in detail

when warranted (that is, breadth before depth). As an example, the problem

solver should not get involved in solving a messy set of equations until g;,
(i) alternatives which might make the solution unnecessary have been exp]cred;ﬁgF
(ii)it is clear that the solutions to the equations will help later on in_;ﬁgr
problem, and (iii) other parts of the solution have been elaborated to ;ﬁé pDint

, 7
that it is clear that the energy spent in solving the equations will:fot be

was ted.

As you can see in figure 2, exploration is d%videggfﬁto three stages.

Generally, the suggestions in the first stage are eithgpﬂéésier to employ than
those in the second stage, or allow the prDb1§TM§QlW§§#tc stay "closer" to the
original problem; likewise for the,reTation}bé%ween stages 2 and 3. Unless |
there are reasons to do otherwise, the probiem solver in the exploration phase
briefly considers those suggestions in stage 1 for plausibility, and then

selects one or more and tries to exploit it., If the strategies in stage 1




prove insufficient, one proceeds to stage 2, and if need be, to stage 3.

If substantial progress is made at any point in this process, the pﬁabiem
soTver may either return to design to plan the balance'of the solution or

may re-enter analysis, with the expectation that the insights gained in explor-

ation will allow for a "better" reformulation of the problem.

g Implementation needs little comment. Verification, on the other
= hand, deserves more mention if only because it is so often slighted. At a
local level, one can catch silly mistakes. At a global level, by reviewing
the solution process one can often find alternative solutions, discover connec-
tions to other subject matter, and, on occasion , become consciously aware of
useful aspects of -the problem solution which can be incorporated into one's

global strategy.

3. The Instruction

The HamiTton College academic calendar contains a three-and-a-half

week long winter term, during which students enroll for one course only. The
course enrollment this past year was 19; we expect similar enrollments (15-20)
in coming years. Roughly half of the students are liberal arts majors, the
rest potential science majors; most are freshmen or sophomores with one or .
three terms of college mathematics. Allowing time for testing and normal
bureaucratic chores, this leaves fifteen or sixteen two-and-a-half hour Qiasses‘
devoted to problem solving; there is time for ample assignments between classes,
with no other academic distractions. Thus, except for the brevity of the instruc-
tional period (three weeks offer little time for ideas to "sink in"), we have
an unusually good environment for problem solving instruction.

In general, the course follows the model. At the beginning of the

course the students are given the outlines in figures 1 and 2, along with a more -

9 8. ¢
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extended discussion of the model. On a "normal" day the class is given a
handout with four or five problems; the students break into groups of three
or four and work on the problems for a while. Then the class convenes as a
whole, and solutions to some of the problems are discussed. As much as pos-
sible, the instructor tries to present solutions to problems within the con-
text of the model. Where possible, "cues" are pointed out; the use of par-
ticular heuristic strategies is stressed; aspects of p1aﬁning discussed, in
detail (see below). In general, there is time for a discussion of perhaps
half of the problems on the handout; the rest are made an assignment, to be
discussed in a future class.

As a brief indication of the level of detail, iet us consider
the classroom discussion of the problem "construct, with straightedge and
compass, the common external tangent to two circles." Some one suggested
that the class consider an easier related problem, "construct the tangent
to a circle from a point." The discussion of whether or not this was a good
jdea (if we found the construction, would it help solve the original prob1em?)
led to a discussion in general of efficient ways to budget problem solving |
resources, To pose a related problem, or a subproblem, is to introduce an
intermediate step between the givens and goals. This brings with it a series
of questions and decisions: What is the 1ikelihood of solving the intermediate
problem, and how much work is involved? What is the Tikelihood of being able
to use the solution towards the solution of the original problem, if you are
able to solve it? How much information do you have about either?. Which should
you try First?i For the above problem, we decided to see if the simpler problem
could bhe exploited (it can), since someone remembered that it was a standard
construction -- so that we could assumedly discover it, once we knew for certain

that it would be useful.

17




4, The Results

The course in mathematical problem solving, based on the model
outl]ined in section 2, has now been given twice: once at Berkeley in 1976,
and this past winter at Hamilton College. More precisely, two very differ-
ent courses based on the same model of expert performance have been given at
Berkeley and at Hamilton. Given the complex web of skills required for
"expart" performance in mathematics, I first offered the course at Berkeley
for junior and senior undergraduate mathematics majors. The idea was that,
while it might not be possible to condense a great deal of mathematical

knowledge into a short course, it might well be possible to pull together

for the students much that they had seen but had not yet recognized or codi-
fied for themselves. In a sense, then, I was saying "you have seen much of
what I am about to show you, but not in coherent or organized fashion. In

the normal course of events you would, over the next few years, discover that
some of those strategies which you have used intermittently work rather con-
sistently for you; you would, without being fully aware of it, come to use
them more often. [ shall single them out for you and make them explicit;

being aware of them in this way, you can accelerate your development as a
problem solver."

In large part, that is what happened (see "Can Heuristics be
Taught?"). It was safe to assume that the students had a basic mastery of
mathematical "tools of the trade," but, as early assignments and classroom
sessions showed, Tittle of the general strategic abilities of the expert.

By the time of the final exam, the students were sglving some problems they
had been unable to approach coherently at the beginning of the term. Also,
on part of the exam they were asked to indicate how they would approach a

variety of problems if given ample time to work on them. Generally speaking,

10.




they had learned to read some of the "cues" experts read in problems; these
included deciding to approach certain problems by induction, by contradiction,
by examining simpler analogous problems, etc.

Yet, despite these students' talents (respectable), predilections

‘(mathématics majors, all) and backgrounds (upper division students), there
were clear Timits to what they could ingest. For example, problems which
shared a similar deep structure but looked different on the surface weke
rarely recognized as being related (having used a sum of squares one way in
one problem, the students failed to see’tﬁat the next problem they were given,
although much more complex in form, contained essentially a sum of squares |
and could be solved in the same way as the previous one). In fact, it might
be most accurate to say that the students had learned a "first order" approxi-
mation to the model of expert performance. They knew, for example, that the
f‘presance of an integer parameter meant it might be appropriate to calculate
a few cases and look for a pattern. Given the *problem "How many subsets with
an even number of elements does a set S with n elements have?" they would
reliably calculate for n=1, 2, 3, 4 ané draw the appropriate conclusion. But
g%véqsgbe problem "how many divisors does the integer N have?" they would cal-
culate a few cases, see no apparent pattern, and have no clear idea of how
to proceed.
The sjtuation at Hamilton was somewh . different. Due to a misunder-
standing, "techniques of prcb1em-séiving"iwas listed in the catalogue as a
- freshman level course. While this was frightening, it prdvidéd an opportunity
to see if the more advanced backgrounds of the Berkeley students were truly
necessary (as I had suspected), or whether it would be possible to teach aspects.3
of the expert m@déi to students whose mathematics backgréuﬁds, for the most part,'l
went no further than éa1cu1us. As an extra complicating variable, class size :
was 19, as opposed to the 8 I had taught at Berkeley. |
| | n. . |




In brief: fear was not justified, but concern was. The difference
in level and background of the students had a tremendous impact on the running
of the class. Topic coverage was changed, in that only problems solvable by

the use of high school mathematics were used. But more than that, the depth

i

of analysis and sophistication of the problems we discussed was lowered sub-
stantially. For example, consider the probiem
d. Determine which numbers of the form aaa...a (the digit a is fepéated

n times) are perfect squares.

This was used as a problem on a take-home midterm in the Berkeley g
course (and the students did well on it); it was discussed in class, over the
period of a week, in the more recent version of the course. Ostensibly, the

'; reasoning needed to saolve the prob1em 15 stra1ghtforward,;and cai1s For nath1ng
beyond high school mathematics. The Dbservat1cn that all perfect squares and
in one of the digits 1,4, 9, 6, 5, or 0 ru1es out strings of 2's, 3's, 7's,
and 8's immediately (and a string of 0's is trivial, of course). A string of
5's is 5 times a string of ones; since a'perfect square whichlhas ane factor
of 5 must have at least two, and a string of ones does not have a factor of
5, no string of 5's is a perfect square. Likewise for factors of 6. Thys the
only candidates are strings of 1's, 4's, and 9's. Factoring out 4's and 9's,
the question becomes: when can a string of 1's be a perfect square? An inves-
tigation of all squares of the form (50n + m)z, where m ranges from 1 to 50,
shows that none of these end with even two 1's. Thus the only squares'out of
all the candidates are 0, 1, 4, and S. |

In my opinion, the difference between the two groups of students’
performances on this problem was not a function either of general intelligence
or of mathematical aptitude; as much as I could tell, there were no major

differences between the two samples of students.
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What was vdi fferent, howewver, was the nature of the mathematics to which the
steaden s had l:%éer’l exposed, Through the calculus, the mathematics curriculum
consists of what nn ght be called didactic mathematics: students are shown
we*‘ﬂsdéf% ned teckmiques ¥or salving certain classes of problems, and are ex-
pected to apply these techniques more or less directly. (This is much the
same for using the quadrati ¢ formula in high school or solving max-min problems
in calculus.) Thus the Hamil ton students (for the most part) had not been
exposed to typical patterns of abstract mathematical thought. It is these
lines of thaught, and the way they are used in solving problem (d), which

nake it hard, The argunent is essentially inverted and négétive; it proceeds
by ruldng out altermatives, Instead of asking "is this number a perfect square?”
ve ask "what properties do perfect squdres have?" The realization that perfect
squares end ip certaira dgi ts mean that those that end in other digits are
ruled out as candidates. Liké;ﬁse, we eliminated strings of 5's and 6's
th;%ougﬁ contradictions: because a perfect square must have an even number of
factors of 5 and 6, and these did not, they were removed FTQI;‘I consideration.
Then, the realizatiaon that looking at the 1a§t digit did not provide enough
informati ona ciuses a quick reversal: “ﬁhat can [ say about the last 2 digits
of a perfect gquare?" The problem, then, is to find a representation which

is converniént for doirmg so, “Then the final argument is again negative: the
list of perfect squares we <btain does not contain any which end in two 1's,

so 1o stying of 1's more than 1 digit long is a perfect square.

High school mathematics? Only ostensibly. For many of these stu-
dents, the notion of mithemat-ical proof is very ha‘zy and the rationaie for
proving things even nore so; they are not familiar with the paradigms of
nathemati cal proof whi ch more "advanced" students take for granted. This, as

nuch as Jinitations om usable subject matter, determines what can and cannot

13.




be done in such a course. "Problem solving" becomes more narrowly defined.
Students in the course were given matched pre- and post-tests.
Since the course énded Tittle over a month ago, much of the data has yet to
be analyzed; the comments here are provisional and based on preliminary inves-
tigations. It is very clear that certain problem solving strategies can be
Tearned reliably by the students, even @ve% the short term. for example, the
notion that an answer can be guessed empirically, and theﬁ verified was unfam-
jliar to the students. On the pre-test and post-test, respectively, were the
problems ‘
e. What is the sum of the first 89 odd numbers, and
f. What is the sum of the coefficients of (x + 1)7'2
Four students out of 19 saw that the sum of the odd nunbers gives

2 respectively, so that the answer to (&) is 89%; another

1, 4, 9, 16, ..., n
éix paired terms at the beginning and end of the sequence (Gauss' argument)

to get the ansyer. Four of those explicitly remembered having seen the Gau53s
type argument before., On the post-test, 16 of the 19 students solved thé prob=
Tem completely. In the course, no problem even vaguely resembling (f) in
surface structure was discussed,

There were comparable results for two problems which could be argued
by contradiction. Seven of the students thought to argue by contradiction on
the pre-test; on the post-test, 14 did -- although the post-test problem was
substantially harder than the pre-test problem, and only eight solved it.

In general, where specific "clues" were present in problem structure
(such as in problems which can be solved by induction, éf "fower variables") |
the students recognized the clues on the final exam and did éignificantiy
better on it than they had on the pre-test. For other problems, where it is

hard a priori to single out a “proper" approach, the results.are Tess clear.

14,
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Pre-test to post-test comparisons indicate that the students became more
‘F1uent at generating p1§usib1e approaches to problems; we have the students'
subjective measures of their performance on the matched probiems, and the
Dbjecfive scoring to back this up. Statistical tests have not yet been run
to see if their performance is significantly improved on the more difficult
problems; 1 suspect that the results on those problems alone will not be sig-
nificant. In fact, it is in dealing with general strategies -- to generate
and evaluate plausible approaches to a problem, and to budget one's resources
efficiently -- that the course needs most to be revised. Much of the three
weeks of intensive problem solving was spent providing the students with the
togls they needed; the cost of this was that I ccuid;natfspend enough time

on broader dssues. To some degree, this was a pi1at study of both the instruc-
tion and the test instruments. To pass on a quote passed on to me by Jill
Larkiny "First courses, 1ike first pancakés,;rafe1y turn out right." The
proportions in the recipe for the course will be changed somewhat, but the
ingredients will remain pretty much the same. The course clearly had an
impact, reflected in the test data analyzed so far and in course evaluations3

the next time around I hope for more.

15,
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