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PRESENTING A MODEL OF MA7HEMATICAL PROBLEM SOLVING

by Alan E. Schoenfeld

L, 13 a -:rounc and Overview

In brief, my work in problem solving and .his paper in particular

deal with the following two questions:

1. Can we characterize those strategies or behaviors which enable

experts to solve problems well, and

Having identified components of expert problem solving, can we

train students to use some aspects of expertstrategie$ and

thereby improve the students' problem solving?

My answer to both questions i s a qualified and circumscribed "yes,"

but r should specify what I mean by "improve students' problem solving"

before I elaborate. My standards (at least ideally) are rather strict. If

a course is in general problem solving skills, then the students in the course

should show a .distinct improvement on a variety of problems not at all directly

related to those in the course, when compared to a control group. In a general

problem solving course, any problem at all, if the students have the appropriate

background knowledge, is "fair game"; in a mathematics' problem solving course

for freshmen, any problem through freshman mathematics, or not requiring more

background than freshman mathematics, is "fair game." Indeed, the testing

should be done by someone who has no contact with the course save for a de

scription of the backgrounds of the students and a ballpark idea of what

"reasonable" problems are; the person(s) conducting the course should have

no idea of the contents of the tests..

Under those conditions, one cannot be too sanguine about the success

of a semester, or even a year-long course in "general problem solving". Little



enough is known in detail about useful problem solving strategies, even in

rather narrow problem solving domains, and less is known about how to teach

them successfully. My decision, therefore, was to stay within one subject

area -- mathematics. A number of "useful" strategies for mathematical prob-

lem solving have been described (mostly based on Polya's "heuristics"); yet,

attempts to teach mathematical problem solving via heuristics have, generally,

yielded rather unclear results. There are, in my opinion, a number of reasons

that instruction in mathematical problem solving via general problem solving

strategies has had only marginal success, among them:

it the strategies have yet to be described in sufficient detail;

2 they are descriptive, rather than prescriptive; and

3: there are too many potentially useful strategies!

By "insufficient detail," I mean that the way we describe c

problem solving strategies are appropriate as a convenient label_ for

ain

class

of behaviors, but not detailed enough to specify how the labeled technique

or strategy can be used. Consider the phrases "establish and exploit sub-

goals" and "consider special cases," two common heuristic strategies. How

does one establish the subgoals in the first place? Having generated some

plausible subgoals, how does one choose among them? Having reached a sub-

goal, does one exploit the method of solution, the result , or something else

about it? And for problems like

Let P(x) and Q(x) be polynomials with "reversed" coefficients:

Q(x) = IaN.n

n=0 nmO

Determine and prove a relationship between the roots of P(x) and Q(x):

Let N be a positive integer. Determine the number of Divisors of N;

c. Show that in any circle, the central angle which cuts off a given arc

is twice as large as the inscribed angle which cuts off the same arc;

P(x)
n

and

2.



the phrase "consider special cases" takes on rather different meanings.

Frankly, I suspect that students will be unlikely to use the 5 tegy on

problems resembling these unless they have seen how to do so 00 these or similar
problems.

Next we come to the distinction between descriptive and presor1P-

tive strategies, Much of Polya's work, and that based on it, demonstrates the

utility of heuristics by exemplifying their usage; that is, by showing how

the heuristic approach results in rather elegant problem solutions. Yet

this work rarely suggests why particular strategies were chosen, leading

some to complain that in reading Polya's work one can only be a spectator

to his tours Oe_force without hope of being able to imitate them (Karplus, 1978).

For a problem solving scheme to be useful, it must prescriptive: that Is,

it must suggest how and when to use particular problem solving techniques.

Further, a long list of techniques, even if prescriptive, will be

of little value unless it is embedded in some sort of manageable structure.

The problem solver needs a means of narrowing down the collectioh of poten-

tially useful strategies, and.for effective budgeting of problem solving

resources. As one such example, consider techniques of integration in first-

year calculus. In indefinite integration, the individual techniques (inte-

gration by parts, by partial fractions, substitution, etc.) are nearly algo-

rithmic and should present no major difficulties Out student performance is

often worse than one would expect. This is because one must not only know

how to use a particular technique; one must know that it is the "right' tech-

nique to use. In an experiment designed to test the utility of such global

strategies (Schoenfeld, 1978), students taught a selection strategy signifi.-

cantly outperformed those who studied the "usual" way (working lots of problems)

with less study tittle, In general problem solving, where there is a larger

variety of potentially useful strategies and their application is far more

subtle than in integration, the need for an overall organizational scheme is

4



all the much greater. Such a scheme is a model of "expert" problem solving

in mathematics, based on observations of professional mathematicians solving

a large number I problems. In my problem solving course, students are taught

to follow the model of expert problem solving; in effect, I try to train them

to think like experts. The course has been offered to upper division mathematics

majors at 1.1,C. Berkeley, and just this past term to lower division liberal arts

students at Hamilton College. The model, the course, and the results will be

described below,

2. The Mode

The model outlined in figures 1 and 2 is meant to be both dynamic

and prescriptive: all other factors being equal, the model provides a guide

to the problem solving process. In the analysis stage of solving a problem

(the first box of figure 1 and the first section of figure 2), the problem

solver first faces the problem and grapples with it until. (a) he or she has

a "feel" for it, (h) the problem has been reformulated in a useful analytic

way, and (c) the problem domain and the basic approach to the problem have

been (temporarily) settled upon. In slightly more detail, the problem solver

first reads (and rereads, if necessary) the problem and summarizes critical

information contained in the problem statement including "given" and "goals."

If appropriate, a diagram is drawn; special cases many be examined to exemplify

the problem and see the range of possible or plausible answers; ballpark esti-

mates of order of magnitude might be made. A mathematical context for the

problem (say analytical geometry vs. Euclidean geometry) is established, and

the problem may be re-cast in that context. (If one chooses to solve a prob-

lem using analytic geometry, the given terms such as "circle" may be translated

4.



SCHEMATIC OUTLINE OF THE PROBLEM OLVI NG STRATEGY

Given Problem

ANALYSIS

Understanding the Statement
Simplifying The Problem
Reformulating the Problem

Useful Formulation;
Access to Principles

and Mechanisns

Minor

Difficulties

More-Accessible
Related Problem

or
New Information

Structuring the Argument
Hierarchical Decomposition:
global to specific

Schematic Solution

Major

IMPLEMENTATION

Step-by-Step Execution
Local Verification

Tentative Solution

VERIFICATION

Specific Tests
General Tests

Verified Solution

fficulties

EXPLORATION

Essentially Equivalent
Problems
Slightly Modified
Problems
Broadly Modified
Problems

igure 1)



fRE LIEN111CS

ANALYSIS

I) DRAW A UlACIRAM If at All possible,

?' ExAMME SPECIAL CASES:

A) Nose Special values to e erollfy the problem and get a

"feel" for it,

h) Examine llmitlng cases to explore the range of possibilities,

c) Set any integer parameters equal to 1, 2, 3,,, in Sequence,

and look for an induttive pattern.

3) TRY TO SIMPLIFY THE PROBLEM by

a) exploiting symmetry, or

b) "Without loss of Generality'` arguments (including scaling)

EXPLORATION

I) CONSIDER ESSENTIALLY EQUIVALENT PROBLEMS:

A) Replacing conditions by equivalent ones.

b) Re- combining the elements of the problem in different ways,

c) Introduce auxiliary elements.

di Re-formulate the problem by

I) change of perspective or notation

II) considering argument by contradiction or contrapositive

iii) assuming you have a solution, and determining its

properties

2) CONSIDER SLIGHTLY MODIFIED PROBLEMS:

a) Choose subgoals (obtain partial fulfillment of the Condi Iona)

b) Relax a condition and then try to re-impose it,

t) Decompose the domain of the problem and work DO it case by

case.

EXPLORATION (continued)

3) CONSIDER BROADLY MODIFIED PROBLEMS:

a) Construct an analogous Problem with fewer variables.

b). Hold all but one variable fixed to determine that variable]

impact,

c) Try to exploit any related problem which have Similar

I) form

II) "givens"

Iii) conclusions.

Remember: when dealing with easier related problems, you should

try to exploit both the RESULT and the METHOD OF SOLUTION on the

given problem,

VERIFYING YOUR SOLUTION

I) DOES YOUR SOLUTION PASS THESE SPECIFIC TESTS:

a) Does ft use all the pertinent data?

b) Does it conform to reasonable estimates or mredictions?

c) Does it withstand tests of toiletry, dimension analysis, a'

4 scaling?

2) DOES IT PASS THESE GENERAL TESTS?

a) Can It be obtained differently?

b) Can it be substantiated by special cases?

c) Can it be reduced to known resultS?

d) Can It be used to generate sOmithing you know?

(figure 2)



into equations, etc.). Finally attempts are made at preliminary simplifica-

tions, so that a "clean" and well-formulated version of the problem is ready

for further study.

Properly construed, design_ is not localized into one box on the

flow chart in figure 1, but is rather an "efficiency expert" whose role it is,

at all points of the solution process, to ensure that the problem solver is

using his or her time and energy wisely, In general, some principles to be

adhered to in design are: (1) one should keep a global perspective -- at any

point in a problem solution the problem solver should be able to say what is

being pursued and why; what the options were; and what will be done with the

results of the present operation, and (2) one should, unless there are strong

reasons to do otherwise, proceed hierarchically. That is, solutions should

be outlined first at a rough and qualitative level and elaborated in detail

when warranted (that is, breadth before depth). As an example, the problem

solver should not get involved in solving a messy set of equations until

(i) alternatives which might make the solution unnecessary have been explored,/

(ii)it is clear that the solutions to the equations will help later on in

problem, and (iii) other parts of the solution have been elaborated to .04 point

that it is clear that the energy spent in solving the equations will1fot be

wasted.

As you can see in figure 2 exploration_ is divided4Wto three stages.

Generally, the suggestions in the first stage are either to employ than

those in the second stage, or allow the problem WAT to stay "closer" to the

original problem; likewise for the relation between stages 2 and 3. Unless

there are reasons to do otherwise, the problem solver in the exploration phase

briefly considers those suggestions in stage 1 for plausibility, and then

selects one or more and tries to exploit it. If the strategies in stage 1

7.
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prove insufficient, one proceeds to stage 2, and if need be, to stage 3.

If substantial progress is made at any point in this process, the problem

solver may either return to design to plan the balance'of the solution or

may re-enter analysis, with the expectation that the insights gained in gala':

ation will allow for a "better" reformulation of the problem.

Implemell needs little comment. Veri ation- on the other

hand, deserves more mention if only because it is so often slighted. At a

local level, one can catch silly mistakes. At a global level, by reviewing

the solution process one can often find alternative solutions, discover connec-

tions to other subject matter, and, on occasion , become consciously aware of

useful aspects of the problem solution which can be incorporated into one's

global strategy.

The Instruction

The Hamilton College academic calendar contains a three-and-a-half

week ion winter term, during which students enroll for one course only. The

course enrollment thii past year was 19; we expect similar enrollments (15-20)

in coming years. Roughly half of the students are liberal arts majors, the

rest potential'science majors; most are freshmen or sophomores with one or

three terms of college mathematics. Allowing time for testing and normal

bureaucratic chores, this leaves fifteen or sixteen two-and-a-half hour classes

devoted to problem solving; there is time for ample assignments between classes,

with no other academic distractions. Thus, except for the brevity of the instruc-

tional period (three weeks offer little time for ideas to "sink in "), we have

an unusually good environment for problem solving instruction.

In general, the course follows the model. At the beginning of the

course the students are given the outlines in figures 1 and 2, along with a more

/ 0



extended discussion of the model. On a "normal" day the class is given a

handout with four or five problems; the students break into groups of three

or four and work on the problems for a while. Then the class convenes as a

whole, and solutions to some of the problems are discussed. As much as pos-

sible, the instructor tries to present solutions to problems within the con-

text of the model. Where possible, "cues" are pointed out; the use of par-

ticular heuristic strategies is stressed; aspects of planning discussed, in

detail (see below). In general, there is time for a discussion of perhaps

half of the problems on the handout; the rest are made an assignment, to be

discussed in a future class.

As a brief indication of the level of detail, let us consider

the classroom discussion of the problem "construct, with straightedge and

compass, the common external tangent to two circles." Some one suggested

that the class consider an easier related problem, "construct the tangent

to a circle from a point." The discussion of whether or not this was a good

idea (if we found the construction, would it help solve the original problem?)

led to a discussion in general of efficient ways to budget problem solving

resources. To pose a related problem, or a subproblem, is to introduce an

intermediate step between the givens and goals. This brings with it a series

of questions and decisions: What is the likelihood of solving the intermediate

problem, and how much work is involved? What is the likelihood of being able

to use the solution towards the solution of the original problem, if you are

able to solve it? How much information do you have about either? Which should

you try first? For the above problem, we decided to see if the simpler problem

could be exploited (it can), since someone remembered that it was a standard

Construction -- so that we could assumedly discover it, once we knew for certain

that it would be useful.



4. The Res 1

The course in mathematical problem solving, based on the model

outlined in section 2, has now been given twice: once at Berkeley in 1976,

and this past winter at Hamilton College, More precisely, two very differ-

ent courses based on the same model of expert performance have been given at

Berkeley and at Hamilton. Given the complex web of skills required for

"expert" performance in mathematics, I first offered the course at Berkeley

for Junior and senior undergraduate mathematics majors. The idea was that,

while it might not be possible to condense a great deal of mathematical

knowledge into a short course, it might well be possible to pull.tole=ther

for the students much that they had seen but had not yet recognized or codi-

fied for themselves. In a sense, then, I was saying "you have seen much of

what I am about to show you, but not in coherent or organized fashion. In

the normal course of events you would, over the next few years, discover that

some of those strategies which you have used intermittently work rather con-

sistently for you; you would, without being fully aware of it, come to use

them more often. I shall single them out for you and make them explicit;

being aware of them in this way, you can accelerate your development as a

problem solver."

In large part, that is what happened (see "Can Heuristics be

Taught?") 7t was safe to assume that the students had a basic mastery of

mathematical "tools of the trade," but, as early assignments and classroom

sessions showed, little of the general strategic abilities of the expert.

By the time of the final exam, the students were solving some problems they

had been unable to approach coherently at the beginning of the term. Also,

on part of the exam they were asked to indicate how they would approach a

variety of problems if given ample time to work on them. Generally speaking,

10.



they had learned, to read some of the "cues" experts read in problems; these

included deciding to approach certain problems by induction, by contradiction,

by examining simpler analogous problems, etc.

Yet,. despite these students' talents (respectable), predilections

(mathematics majors, all) and backgrounds (upper division students), there

were clear limits to what they could ingest. For example, problems which

shared a similar deep structure but looked different on the surface were

rarely recognized as being related (having used a sum of squares one way in

one problem, the students failed to see that the next problem they were given,

although much more complex in form,'contained essentially a sum of squares

and could be solved in the same way as the previous one). In fact, it might

be most accurate to say that the students had learned a "first order" approxi-

mation to the model of expert performance. They knew, for example, that the

presence of an integer parameter meant it might be appropriate to calculate

a few cases and look for a pattern. Given the.problem "How many subsets with

an even number of elements does a set S with n elements have?" they would

reliably calculate for n=1, 2, 3, 4 and draw the appropriate conclusion. But

given_the problem "how many divisors does the integer N have?" they would cal-

culate a few cases, see no apparent pattern, and have no clear idea of how

to proceed..

The situation at Hamilton was somewh different. Due to a misunder-

standing, "techniques of problerasolving"mas listed in the catalogue as a

freshman level course. While this was frightening, it provided an opportunity

to see if the more advanced backgrounds of the Berkeley students were truly

necessary (as I had suspected), or whether it would be possible to teach-aspects,

of the expert model to students whose mathematics backgrounds, for the most part,

went no further than calculus. As an extra complicating variable, class size

was 19, as opposed to the .8 I had taught at Berkeley.

11,



In brief: fear was not justified, but concern was. The difference

in level and background of the students had a tremendous impact on the running

of the class. Topic coverage was changed, in that only problems solvable by

the use of high school mathematics were used. But more than that, the depth

of analysis and sophistication of the problems we discussed was lowered sub-

stantially. For example, consider the problem

d. Determine which numbers of the form aaa...a (the digit a is repeated

n times) are perfect squares.

This was used as a problem on a take -home midterm in the Berkeley

course (and the students did well on it); it was discussed in class, over the

period of a week, in the more recent version of the course. Ostensibly, the

reasoning needed to solve the problem is straightforward' And calls for nothing
i

beyond high school mathematics. The obSei'Vation that all perfect squares and

in one of the digits 1, 4, 9, 6, 5, or 0 rules out strings of 2's, 3's,' 7's,

and 8's immediately (and a string of O's is trivial, of course) . A string of

5's is 5 times a string of ones; since a perfect square which has one factor

of 5 must have at least two, and a string of ones does not have a factor of

5, no string of 5's is a perfect square. Likewise for factors of 6. Thus the

only candidates are strings of l's, 4's, and 9's. Factoring out 4's and 9's,

the question becomes: when can a string of 1's be a perfect square? An inves-

tigation of all squares of the form (50n # 02, where m ranges from 1 to 50,

shows that none of these end with even two l's. Thus the only squares out of

all the candidates are 0, 1, 4, and S.

In my opinion, the difference between the two groups of students'

performances on this problem was not a function either of general intelligence

or of mathematical apti tude; as much as I could tell, there were no major

differences between the two samples of students,



What was di If- _, howe 'Ier, vias the nature of the mathematics to which the

stoden is had t =een eAposed. Through the calculus, the mathemati cs curriculum

consists of what mi qht be cal led didactic mathematics : students are shown

W el 1-clafi ne el Vecrini clues for sail wing certain cl asses of problems, and are ex-

pected to apply these teohniqiues more or less directly. (This is much the

same for using the duadrati c -formula in high school or solving max-min problems

in Cal oulut.) Thus time Hariti -ton students (for the most part) had not been

exposed to typical patterns of abstract mathematical thought. It is these

lines of thought' arid the way they are used in solving problem (d), which

make i t hard, The Argument_ is essentially inverted and negative; it proceeds

by ruling out al-tematives. Instead of asking "is this number a perfect square?"

we ask 'what properties do pe-rfect squares have?" The real ization that perfect

squares end in certiti digi is mean that those that end in other digits are

ruled out as c anc:IidAtes I= ikerise, we eliminated strings of 5's and 6's

through contradictions: because a perfect square must have an even number. of

factors of 5 and 6, and these did not, they were removed from consideration.

Then, the real ization that locking at the last digit did not provide enough

informatl on2 causes a quick reversal: "what can I say about the last 2 digits

of a perfect s-quare?" The problem, then, is to find a representation which

is convenient for doing so. -Then the final argument is again negative: the

list of perfect squires we obtain does not contain any which end in two l's,

no String Cif l's more than 1 digit long is .a perfect square.

Hight school matherialics? Only ostensibly. For many of these stu-

dents, the noviori of mathematical proof is very hazy and the rationale for

proving things even more so; they are not familiar with the paradigms of

mathematical proof vihi ch more "advanced" students take for granted. This, as

much aS limitations or usable subject matter, determines what can and cannot



be done in- such a course, "Problem solving" becomes more rawly defined.

Students in the course were given matched pre and post-tests.

Since the course ended little over a month ago, much of the data has yet to

be analyzed; the comments here are provisional and based on preliminary inves-

tigations. It is very clear that certain problem solving strategies can be

learned reliably by the students, even over the short term. For example, the

notion that an answer can be guessed empirically, and then verified was unfam-

iliar to the students. On the pre =test and post -test, respectively, were the

problems

e. What the sum of the first 89 odd numbers, and

What is the sum of the coefficients of (x 1)31

Four students out of 19 saw that the sum of the odd numbers gives

1, 4, 9, 16, n2 respectively, so that the answer to (e) is 92 another

f.

six paired terms at the beginning and end of the sequence (Gauss' argument)

to get the answer. Four of those explicitly remembered having seen the Gauss-

type argument before. On the post -test, 16 of the 19 students solved the prob-

lem completely. In the course, no problem even vaguely resembling (f) in

surface structure was discussed.

There were comparable results for two problems which could be argued

by contradiction. Seven of the students thought to argue by contradiction on

the pre-test; on the post-test, 14 did -- although the post-test problem was

substantially harder than the pre-test problem, and only eight solved it.

In general, where specific "clues" were present in problem structure

(such as in problems which can be solved by induction, or "fewer variables")

the students recognized the clues on the final exam and did significantly

better on it than they had on the pre-test. For other problems, where it is

hard a pry ol to single out a "proper" approach, the results,are-less clear.



Pre-test to post-test comparisons indicate that the students became more

fluent at generating plausible approaches to problems; we have the students'

subjective measures of their performance on the matched problems, and the

objective scoring to back this up. Statistical tests have not yet been run

to see if their performance is significantly improved on the more difficult

problems; I suspect that the results on those problems alone will not be sig-

nificant. In fact, it is in dealing with general strategies -- to generate

and evaluate plausible approaches to a problem, and to budget one's resources

efficiently -- that the course needs most to be revised. Much of the three

weeks of intensive problem solving was spent providing the students with the

tools they needed; the cost of this was that I coulc(notspend enough time

on broader issues. To some degree, this was a pilot study of both the instruc-

tion and the test instruments. To pass on a quote passed on to me by Jill

Larkin; "First courses, like first pancakes, rarely turn out right." The

proportions in the recipe for the course will be changed somewhat, but the

ingredients will remain pretty much the same. The course:clearly had an

imPact, reflected in the test data analyzed so far and in course evaluations;

the next time around I hope for more.
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