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FOREWORD

The research presented in this report was conducted' under Project
METTEST (Methodological Issues in Criterion- :Referenced Testing), in the
Unit Training and Evaluation Systems (UTES) Technical Area of ARI under
Army RDTE Project 20Q62722A764. The goal of Project METTEST is to pro-

vide quanti ive methods for evaluating unit proficiency. The means
for achievi this goal include basic research in test construction
. Mmethodolo measurement and scaling models, and dec151onmak1nq impli-

3cat10ns of test score interpretation.

b Related, ongoing programs within the UTES Technical Area include
evaluation of small combat units under simulated battlefield conditions
(REALTRAIN, ARTEP), qualification of tank crews and platoon gunnery
(IDOC), and improvement of the reliability of ARTEP evaluation.

.Anticipated future research under Project METTEST includes the de-
velopment of a computer model for pefformance evaluation, and develop-
voe ‘ment of measurement, scallnq, scoring, decisionmaling, and quality
) control models for use in performance evaluations when criterion-
referenced.testlng procedures are employed. _
* S
ARI research in this area is conducted as an in-house research ef-
fort augmented by contracts with organizations selected as hav1nq unigue
capabilities and facilities for research in a specific area. The pres-
ent study was conducted in collaboration with personnel of the .Univer-
sity of Maryland under Contract No. DAHC19 75-M-0003.
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O%E EIDNER

Te¢hnickl Director (Designate)
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CRITERION-REFERENCED TESTING: A CRITICAL ANALYSIS OF SELECTED MODELS

BRIEF .
— f

Requirement: W

To develop a theoretical base for research and eventual application
of methods for assigning pass-fail scores in personnel and Unit evalua-
tion using the criterion-referenced testing approach.

.

Procedure: o

Relevant'literatﬂre for each of five approaches to criterion-
referenced testing was reviewed. The approaches were compared on the
basis of the following: assumptions and rationale, the interactive ef-
fects,of test length and passing criteria on classification accuracy,,
and areas of applicability. A computational example was prepared  for
each model, and strengths and weaknesses were also evaluated.

N
ey

Findings:

.Four of the five models were able to specify an "optimal" test
length and cutoff score, although they differed as to.the required
parameter estimates from “the test developef. For exaﬁple, expert
"prior" information can be used to reduce test length. Each of the
models also provides an estimate for misclassifications, or Type I and
Type II errors. The models are neither redundant nor interchangeable.
No "best" method was identified. Rather, the selection of a model de-.
pends upon .the particular measurement requirements and constraints as
identified by the test developer. R

. ~
Utilization of findings:

This research probides-qualitative and quantitative guidelines for
developers of rriterion-referenced tests. The models have been applied
to analyze data from the handgun qualification course at- the U.S. Army
Military Police School. Application of thﬁ models has also been ad-
dressed to revision of Table VIII tank gunfery.
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CRITERION- RFERENCED TESTING: A CRITICAL
ANALYSIS OF SELECTfD MODELS

INTRODUCTION

Scoring and decisionmaking models for criterion-referenced testing
deal with two questions of practlcal and theoretlcal importance: (1)
how much test information should be collected to prov1de a basis for
confident decisions about the mastery or nonmastery of trained skills;
and (2) what are the methods of establishing statistically valid stand-
ards of achievement. Criterion-referenced testing (CRT) requires that
the data provide information about performance capabilities measured
against some external criterion (Glaser & Nitko, 1971; Carver, 1974).
Such criteria are properly derived from an analysis of the requirements
for performing specific tasks successfully

Measurement of .mastery implies that CRT's should represent the SklllS

,to be measured with high fidelity. However, serious constraints are

imposed by requiring high fidelity: (1) the time needed to administer

the test may be more than is readily available; (2) the number of exami-

ners needed to admlnlster the test and collect data -may be excessive;
(3) the expenditure of materials used in testing may be prohibitively
high; and (4) the appropriate testing materials Jor apparatus may not
be available for a long enough time.. These constraints place a premium
upon’ limiting test data to the minimum amount sufficient for the desired
quality of decisionmaking. Statistical models offer one means of accom-
plishing this goal. ’ '

Two problems. arise in establishing achlevement standards on CRT's.
The first is related to the congruence betweeh CRT performance and real-
world requirements. . The second is related to the statistical inferences
applied to observed CRT scores.

Before any statistical model can be used .in a CRT situation, the
requirements for mastery over the domain in general must be specified.

N

strccessfully perform the tasks 1ncluded in the domain. Glaser and
Klaus (1963) suggest that "prof1c1ency standards can be established
at any value between the point where the system will not perform at
all and thé”p01nt where any further contrlbutlon from the human com-
ponent w1ll not yield any . increase in system performance (p. 424) .

‘These system requirements may include the human performance com-
ponents of industrial-vocational tasks, m1n1mal competencies in an
educational system, or basic literacy skills. System requ1rements
may also reflect manpower needs, the criticality of the task, or the
consequences of poor performance. Such 1deallzed standards must then
be converted to standards on a partlcular CRT. The conversion process

12

\
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FOREWORD

The research presented in this report was conducted' under Project
METTEST (Methodologlcal Issues in Criterion- :Referenced Testing), in the
Unit Training and Evaluation Systems (UTES) Technical Area of ARI under
Army RDTE Project 20Q62722A764. The goal of Project METTEST is to pro-
vide quanti ive methods for evaluating unit proficiency. The means

. for achievij this goal include basic research in test construction
methodolo measurement and scaling models, and dec151onmak1nq impli-
~vwcatlons of test score interpretation.

Related, ongoing programs within the UTES Technical Area include
evaluation of small combat units under simulated battlefield conditions
(REALTRAIN, ARTEP), qualification of tank crews and platoon gunnery
(IDOC), and improvement of the reliability of ARTEP evaluation.

.Anticipated future research under Project METTEST includes the de-
‘ velopment of a computer model for pe¥formance evaluation, and develop-
v ment of measurement, scallng, scoring, decisionmaling, and quallty
control models for use in performance evaluations when criterion-
referenced‘testlng procedures are employed.
+ . . .

ARI research in this area is conducted ‘as an in-house research ef-
fort augmented by contracts with organizations selected as hav1nq unigue
capabilities and facilities for research in a specific area. The pres-
ent study was conducted in collaboration with personnel of the Un1ver—
sity of Maryland under Contract No. DAHC19 75-M-0003. :

S"if‘ e
O%E EIDNER

Te¢hnickl Director (Designate)
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CRITERION-REFERENCED TESTING: A CRITICAL ANALYSIS OF SELECTED MODELS

BRIEF .
— f

Requirement: W

To develop a theofetical base for research and eventual application
of methods for assigning pass-fail scores in personnel and Unit evalua-
tion using the criterion-referenced testing approach.

.

Procedure: - o

Relevant'literatﬂre for each of five approaches to criterion-
referenced testing was reviewed. The approaches were compared on the
basis of the following: assumptions and rationale, the interactive ef-
fects,of test length and passing criteria on classification accuracy,,
and areas of applicability. A computational example was prepared  for
each model, and strengths and weaknesses were also evaluated.

N
ey

Findings:

. .Four of the five models were able to specify an "optimal" test
length and cutoff score, although they differed as to.the required
parameter estimates from “the test developef. For exaﬁple, expert
"prior" information can be used to reduce test length. Each of the -
models also provides an estimate for misclassifications, or Type I and
Type II errors. The models are neither redundant nor interchangeable.
No "best" method was identified. Rather, the selection of a model de-.
pends upon .the particular measurement requirements and constraints as
identified by the test developer. R

. ~
Utilization of findings:

This research probides-qualitative and quantitative guidelines for
developers of rriterion-referenced tests. The models have been applied
to analyze data from the handgun qualification course at- the U.S. Army
Military Police School. BApplication of the models has also been ad-
dressed to revision of Table VIII tank gunﬁery.
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' The requirements usually describe the Gapabilities of persons who can

\

CRITERION- RFERENCED TESTING: A CRITICAL
ANALYSIS OF SELECTfD MODELS

INTRODUCTION

Scoring and decisionmaking models for criterion-referenced testing
deal with two questions of practlcal and theoretlcal importance: (1)
how much test information should be collected to prov1de a basis for
confident decisions about the mastery or nonmastery of trained skills;
and (2) what are the methods of establishing statistically valid stand-
ards of achievement. Criterion-referenced testing (CRT) requires that
the data provide information about performance capabilities measured
against some external criterion (Glaser & Nitko, 1971; Carver, 1974).
Such criteria are properly derived from an analysis of the requirements
for performing specific tasks successfully

Measurement of .mastery implies that CRT's should represent the SklllS

,to be measured with high fidelity. However, serious constraints are

imposed by requiring high fidelity: (1) the time needed to administer

the test may be more than is readily available; (2) the number of exami-

ners needed to admlnlster the test and collect data -may be excessive;
(3) the expenditure of materials used in testing may be prohibitively
high; and (4) the appropriate testing materials Jor apparatus may not
be available for a long enough time.. These constraints place a premium
upon’ limiting test data to the minimum amount sufficient for the desired
quality of decisionmaking. Statistical models offer one means of accom-
plishing this goal. ’ '

Two problems. arise in establishing achlevement standards on CRT's.
The first is related to the congruence betweeh CRT performance and real-
world requirements. . The second is related to the statistical inferences
applied to observed CRT scores.

Before any statistical model can be used .in a CRT situation, the
requirements for mastery over the domain in general must be specified.

N

strccessfully perform the tasks 1ncluded in the domain. Glaser and
Klaus (1963) suggest that "prof1c1ency standards can be established
at any value between the point where the system will not perform at
all and thé”p01nt where any further contrlbutlon from the human com-
ponent w1ll not yield any . increase in system performance (p. 424) .

‘These system requirements may include the human performance com-
ponents of industrial-vocational tasks, m1n1mal competencies in an
educational system, or basic literacy skills. System requ1rements
may also reflect manpower needs, the criticality of the task, or the
consequences of poor performance. Such idealized standards must then
be converted to standards on a éarticular CRT. The conversion process

12

\
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involves issues of .test validity whic¢h are ‘beyond the ‘scope: of thls
paper. Meskauskas (1976) dlSCuSSeS several methods that have been used

tb brldge the gap Between operathpal‘tests and real-world requirements.
f‘ﬁi @t ’

‘,\ S UL If th&wCRT 1nc1hdes thg entlre full fidelity task, $Such as disas-

sembllng "and cleénlng a particular piece of machinery, then settlng
i mastery staridards is relativeély glear "and- unambiguous ™ ‘However, If the
N ~ CRT 1ncludes only a sample ofythe full fldellty task, or if fidelity is
decreaSed for pract1cal purposes, thep 'mastery standards for the CRT ~
. are not clearcut. Heretofore, the use of arbitrary cutoff scores has -
4 o kept this probiem at a manageable level. Fpr exanple, ob]ectlv&s—ofteg
1nclude a statement of standards requiring a certain minimum percent
. dorpect for attainment of mastery status. Two criticisms can be di-
., rected %t thls concept of mastery. gf :
" First, any percentage correct is a relatlve standard . The defini-~
tion of mastery has been shown (Millman, 1972; Ndvick & Lewis, 1974;
Epsteln & Steinheiser, 1975) to be a function both of the percentage
correct gnd of the mumber of trials or items that comprise the test.

- A more comprehensive definition could be based either upon (1) an ideal-
ization,*such as the proportion of correct answers of all possible test
items, or (2) the p051t10n on an underlying continuum of ability hyooth—A
esized to score= ag examinee on a given test. By stating standards in
‘terms of such an idealization or ability continuum, it is possible to
explicltly define ma%;ery buto?f scores forgany test length.

second criticism refers to the level of ability required for
mastery.' For example, why should one standard (such as 80% correct)
be set rather than another (such as 70% or 90%)°? Perhaps this gquestion
could be answered by empirical studies showing the relationship between
- CRT scores and the transfer or retention of training. The required
level of mastery could also be determined by system reguirements, cr1t1—
cality, and similar factors.

Each of the models discussed in this paper, with the exception of

o Block's (1972) approach te setting standards empirically, assumes that
a well-defined universe of items exists or can be generated. The authors
also assume that the role of the statistical model is to describe accu-
rately an examinee with réspect to that universe. The validity of the
generalization from the uhiverse of items to the real world 4is not in-
vestigated. The models further assume that a mastery'standard relative
to the entire universe can be established. Given these assumptions,
the problem is how to interpret the observations. The following section
discusses theoretical issues which may produce possible solutions. Table
1 then introduces and summarizes the specific models.

The problem of setting standards arises because it is often imprac-
tical to insist upon complete mastery of a task, or even to require a
very high percentage of correct answers to the items comprising a CRT.
Furthermore, it is often impossible to list-all of the potential items

O - o . \\ ‘ ! . Cw
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. Summary Comparison of Some Methods and Models Used imatsiférion-Referenced Testing

. _ ’ . : p
. Theoretical observed ;
) ~. ‘Nature of score: X = score, . ,
"y performance b = #items, A= . Trie score Cutoff score
t Model acquisition  true ability ~ distribution specification .
[} . ' "I k\.— ' l‘v‘ )
' Block Undefined Undefined . Undefined Emplrfsgi, based upon
k ' T I .y external criterion
Crehan Undefined ~ Pre-instr: x = 0 Dichotomous, ‘ Empir}cal; pre-post
’ ' Post-instr: x = my based on pre- - instruction '
; . post instruction- classification ~JMS \
P ‘ : ,
Emrick All-or-rone  Nonmaster: x = 0 Dichotomous, Choose score that best dichotomizes
Master: x =n . master or - observed score distribution, assuming
. v . ~ nomnmaster quessing and forgetting errors, .
o, : . ‘ ‘
Dayton &  All-or-nome  Nommaster: x = 0 . Dichotomous, Choose score that best dichotomizes
, Macready Master: x =n master or observed score distribution, assuming
nonmaster quessing and forgetting errors.
Kriewall-  Continuous (X’A) = 3 Undefined - Choose score such that the sum of
Millman n Ax(1 i é)n - X - probability of achieving at least
(Binomial) X : : that score for nommasters, and, not
. | ‘ " achieving that score for mastérs is
| ‘ * ninimized,
Novick Continuous _p(x}A) = Beta-binomial Calculate posterior probability
et al. n\.X,. n - X : that observed score exceeds the
. A(l-3 '
(Bayesian) e standard.
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Table 1' (continued)

Sumary Comparison of Some Methgds and Models Used in Criterion-Referenced Testing
] Lo

4

, —
” Theoretical observed 7
Nature ,of " score: X = score, | /)
performance  n = 4 items, 4 = True score Cutoff score /"
Model acquisition . true ability 4 distribution specification
T . ;\@9 T
Rasch Continws p(x\A) = Normal " Choose minimum Rasch ability
(logistic) (bi - B estimage. Calculate the abidity
‘ noe : Nestimate’ from observed SCO{e.
I (b, - A) | ‘
i=11+4e k
bi = 1tem difficulty ff
I Classical ~ Continwous  x =4 - e, | W Choose minimum "true" score
! regression Where e = , criterion. Calculate estimated
b " erfor of true score from observed score. .
Measurement A
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of a given task domain. For example, an 1ndef1n1tely;larqe number of

: multlpficatlon items could comprise an item universe from'which a sam—
ple of items are selected. BAn arbitrary standard would determine’ that
the examinee “ansWwering -a specified number (or percentage) of the sam-
ple correctly will be" cla551f1ed as a "master" of multlpllcatlon { The 4
main purpose of the present papex is to evaluate several mathematlcal
models. that claim to.reduce the arbltrarlness in settlnq cr1ter1a>for;
mastery on tests representing a sample of the test-item uriverse. The
motivation for developing models by which criteria for mastery, can be
derived formally arises from the qgohl of trying to-minimize'misclassifi-=
cations (i.e., designating a "true master" as a "nonmaster" or vice °
versa) . The more complex the skills assessed by the CRT, the smaller
-the sample of 1tems, and the more varied the type of performance in~
cluded in the universe, the greater the dantter of misclassification.

- . .Y‘ -
Theoretical Problems for CRT Models

-

Nature of Performance Acquisition. 1Is the a&tainmenﬁ'of maetery'
an "all-or-fione" occurrence, or is there a continuum of varying degrees
of skill acguisition? The widely accepted dichotdmy of master vs.
nonmaster may be oVerly simplistic. The alternagtive is a continuum of
varying degrees of mastery. Both dichotomous, aﬁEquﬁplnuous CRT models
are available in the literature. ‘

-

Measurement Error. One\type of error, similar to the classical’
‘psych tric notion of measurement error, refers to random inappropriate
respon&es due to temporary environmental distractions, lucky guesses,
lapses in attention, etc. The magnitude of such error can be estimated
-and included in the estimation of actual ability and in the determ1na—
tion of test standards and lengths.

A\ second type, kglassification" error, refers to the (usually)
dichotoious classification of an examinee as a masteér or nonmaster.
Tts magnitude and direction are primarily a function of how a cutoff
v, seore is chosen. Classification error will tend to increase as the
. raecﬁracy in estimating actual ability decreases, but a mathematically
‘defined relationship between measurement error and classification error
~has ‘not been derived (Guilford, 1956, pp. 380-384).

Test Length to Distinguish Masters from Nonmasters. One technique
tdé improve ability estimation and reduce the chancé for misclassifica-
tion is to increase the number of test itemS. In some situations this
may be possihle simply by repeating items until the desired- level of
precision is attained. However, in most cases, stest length cannot be
indefinitely increased. Therefore, a statistical model that provides
{ncreased informatign per item is highly desirable. Generally, a CRT -
model should provide sufficient information to decisionmakers so that
they will know the risks of committing false p051t1ve and false nega-
tive errors before the test is conducted.

15
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Overview of Selected CRT Models
LORD Models L g
The CRT models discussed in this paper were chosen to try to illus-
trate’the diversity in approaches to the problems outlined in the pre- .
ceding section. Methods developed by Crehan (1974) and Block (1972)
are ba51ca11y empirical in that ‘cutoff scores are based on empirically
derived requlreﬁents Models derived by Enrick (197Li and by Macready an®
Dayton (1976) dssumea ‘dichotomdus definition pf mastery and analytically
descr&be procedures for establishing cutoff scoresﬁ Kriewall (1969) and-
-Millman (1972, 1974) assume that' responses to test items and examinee
- abllity can be descrlbed by the family of binomial distributions. Their
basic models can be extendea by rapplying the theory of binomial error
quels (Dord &. No¥ick, 1968), ‘Novick and Lewis (1974) discuss the ap-
pllcatlon of a Bayeslan approach to CRT i es. A one-parameter logis- J
tic model (Rasch 1960; erqht 1967) projgdes a practical example of .,
“'® how latént trait theory mav.be applied to CRT data analysls& Finally,
an approach for CRT’'data analysis derived from ‘classical regres§1on
theory, is dlscussbd/ Each model is examined in terms of rationale and -
assumﬁ%lons,'emplrlcal support and appllcatlons, illustrative examples
of 'the type of 1nput refuired and output provided, and critical

r%?valuatlon. ‘ ) LT .

- -

. - REVIEW OF MODELS

[543
)

vy

»Block‘

T

Block's (1§%Q)Mrese§%ih provides. an experimental approach to set- .
ting mastery standards. He studied the relationship between the level
of performance required on each unit of a three-unit instructional se- -
quence and five cognitive and affective outcome variables. ‘The ration-
ale for this study was the intuitive notion that maximum performance on

- an external measure of achlevement ‘would be observed in students having

the most stringent pa551nq requ1rements 1n the instruction. A second

questlon concerned the relationship between scores on an affective

measure of interest amrd attitude' and passing requirements ih instruction.
- ( - .
Block's experiment included four treatment groups that differed

from one instructional unit to the next with respect to the standard

. required for advancement. If the student did not meet the standard
(65%, 75%, 85%, or 95% of the items correct on a 20-item test), reme-

dial instruction was provided. Students in a control group proceeded
rom one unit to the next with no remediation,: regardless of their test
core. Five outcome variables were-défined: achievement, learning tate,

~transfer, iﬂ%erest, and attitude. ' /49

s

Transfer was measured by a 10-item test which required the use of
the learned skills to solve a novel set of problems. 1It-was given both
as a pretest and after instruction’. Interest and attitude were measured

/ using a 24-item questionnaire. ’ ’
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Most of the reséﬁts supported. the intuitive hypothesis. The " @onr

" trod group did consistently worse on acliteyement, tgizfgg;ﬁland'reteh_
tion, than any of the expe 1mentaL\g\*ups, and the . ning curves sug-
gested that high standards early in an instrfictional sequence miy produce "
increased efficiency later/in the sequence. owever, several interesting
exceptions to the intuitive expectations sugges that higher standards
} - .are not always better standards. For example, .the 85% and 95% groups
did not differ from one another on retention or achi'evement me ures, 7,
.although they both differed from the ‘control group. Only. the gé% aroudp - }
produced sustained high . levels of 'interest and attitude. .
.« 5N s /‘/ @ . a
- " "'B¥ock's research squests that a unitary definition of an "opt1mum
\///’ CRT cutting score may be’ questionable. If un1formly high achievement
"+ and transfer are requlrgd at the possible expense of positive 1nterest
and attitude, it may be that ‘the’ highest. ‘mastery standard should be used. N
. However, if some ‘"mix" o cogn1t1ve and affectlve outcomes 1s desired, BN
khen a lower standard sdems approprlate. )

" .f/ |

&

Slmllar studies could be conducted on a w1de range of 1nstructk nal
programs for a wide variety of outcomes. The resul ts| could lead to. &
usable and meaningftl -quidelines for sett1ng cuttlnq Lcores to optimize ‘
a number .of instructional outcome%. Because the results may not be gen- .

+ ., eralizable-across content areas .and 1nstruct10na1 programs, such an op-

. ' timization strategy would require cogtly and extensive' research. = This

" -, empirical verification of a deC1s1on§ak1ng strategy for f1nd1nq opt1mal
mixes of cognltfve/ghd affective. outcomes® does not -mathematically model‘

' any of the problefs* outlined in the pre01ous section of this pa er. A
truly completé scoring and decisionmaking, CRT model would take'lnto ag- )

..copn both «the psychological variables that characterize. optimum learn-. .+

y nd the constraints 1mpoSed by test 1ength cutt1ng scores, and

m1sclass1f1catlon rates. o . -

Crehan - S o e
<, . ‘ B .

", A method used:by Crehan (1974) also re11es heaV1ly on a tra1n1nq
context, for its 1nterprétatlo A The method's rationale ‘for specifying
cuftlng scores is based upon he comparison of the test scores of stu~
dents who have completed trai \ing with the, test scores of “those who have
, not'.yet received training: This method provides a means of assessan o
*_the proportlon of mlsclassrfled students’within each qroup when varidus

cutt1ng scores are . used
ER .

P

4

? (/ Correct class1f1catlon occurs when posttra1n1ng students pass the -
te

st and 'students with no’ training fail the test. Us1n§ a2'x 2 matrlx
. of pass- fa;l and tralnlng—no tra1n1ng for-each cutting score, thevpro—

»

-portion Oof correct classifications Pc can” be obtalned as follows: L G peein
. . . . b ‘ N I»"
" 'Pc {humber who had tra1n1ng and passed +° number who had no train- P

' ’ 1nq and failed] + sum of all four entr1es in the matr1x. ‘ ’
7 : : CIE 4 ? d )
R h . R . ) ' . * " . - PR

'_Y.»( _ , . \ 7 . ‘ : . SR %\.:”.
& i o, . . , * . . . v < ‘v 8
' - g . . i
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A cutting score is found by choosing the score that max1mlzes thom,ro—

! ! portlon of correct.classlflcatlonq e L " i

N . . -
For example, assume that the distribution of seoxes on a ﬁive item
CRT for an untralned group and a groupbthat ha§~comD1eted traiping is
~as follows: . S

L. Number Corrects N No Training - Completed Training
- ', ' " N
- 1 ' .

i

b wN+=O
O~ O M U Oo
S O OO

e . - .
- ¥

j . A series of fourfqld tables in Table 2 dlsplays the relationships be—

' tween cutting score,.pass—fa;l decisions, and the amount of training.
Po, the proportion of correct classifications, is calculated for each
fourfold table. The highest value of Po in this example is found when
three correagt resgpn§es are used as the cutting score. Therefore, for

"this training program, a cutting score of 3 would be recommended as the

optimal cuttlng score. - ‘
o

\ :
The major” strength of this.procedure is that it provides an esti-
mate of the optimal cutting’ score for differentiating between trained
and untrained groups while ‘remaining relatively‘simple to implemént.
However, these two qroups do not necessarily correspond to the cate-
garies of "masters" and "nonmasters" in terms of the ability of group
members to complete an objective. Instead, one might expect the post-
training group to perform less well“than a. qroup consisting entirely of
examinees who have mastered the ob]ectlve, and the pretraining group to.
‘ perform ‘somewhat better than a group of examinees, none of yho'phas
mastered the objective. . ;

v

- The simplicity of Crehan's procedure 'is partially offset by a num-
ber of weaknesses, including the following: (1) lack of a procedure for
estimating the minimum item sample size necessary to keep the probability
of misclassification at or below some .specified level; and (2) lack of
statistical criteria for differentiating between P.'s which "seem" to

be similar (or different). - ’ G

Macready and Day'ton = Fmrick o .

6" ;
Assumptions and -Rationale. Two related probabilistic models that
:ﬂprovide probability estimates of the 2" possible response patterns on
a dichotomously scored, n-item test are discussed in this section
(Emrick, 1971; Dayton & Macready, 1976; and Macready & Dayton, 1975).
, Both models assume that all examinees belong to one of two possible ~

w
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_Table 2

- . . . . -

Example Data Matrices for the Crehan Procedure

Training experience

. Cutting No Completed
; score - training traihing
f/ "

0 + Pass A 20 20
Fail 0 ) 0
Pc = 20/40 = .5

1 Pass _ 10 ° 20
Fail ) 10 0
Pc = 30/40 = .75

2 Pass . ’. 5 20
Fail ’ 15 0
Pc = 35/40 = .875. ‘ :

3 Pass ' 1 .19
Fail 19 - L
Pc = 38/40 = .95

4 Pass , : 1 14
Fail 19 : 6
‘Pc = 33/40 = .825 ’

5 - Pass 0] 4
Fail 20 16 .
Pc = 24/40 = .60

aon
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"true score types for any given aohain: masters, (M); and nonmasters,
(M) Masters are those individuals who ha@e acauired 'the necessary
skills to respond correctly to all items within the domain. Thus for
a three-item test with items sampled from the domain of interest, a
master's true score response pattern would be 111, where a "one” indi-
cates a correct response to an item. Conversely, nonmasters have not
acquired the necessary skills to respond correctly to an? item within
the domain; thus their true score response pattern would be 000, where
a "zero" indicates an incorrect response to an item. This dichotomous
classification of individuals appears reasonable to the deqree that all
items within a domain involve the same skill.

In general, it is assumed that the only way that any non-true score
response pattern can occur is for a nonmaster to make one or more cor-
rect "guessing" errors or for a master to make one or more forgetting
errors. &or the f1rst model (Macready & Dayton, 1975), the error prob-
abilities are unrestricted except for the wusual 0, 1 bounds for proba-
bilities. aj and b; represent the probabilities of a "guessing" and
"forgetting"” error, respectively, for'item i. Furthermore, P(M)- and
P{M) represent the proportions of examinees who are masters and nonmas-
ters, respectively, with the usual restrictions: 0 < P(M) < 1 and
P(M) + P(M) = 1. If local independence among responses is assumed,
then the probability of the ]th observed response pattern on an n-item
test is .

p(§) = p(i|MpM™ + p(3|Mpm)
I n . X, . 1 - xij~ AT
= T 8 P a-ap p(M +
F: n 1 --x., X, .] :
M ob, SRS b.) o (1)
i=1 # J T 4

where Xi5 [0,1] is the score of the ith item for the jth response
pattern. Maximum likelihood estimates of these parameters are obtained
from test data by means of the Newton-Raphson 1terat10n procedure

{Rao, 1965, pp. 302-309). : 'ﬁ

Because of the relatively large number of parametetrs (2n + 1Y under
this first model, there are circumstances in which it is desirable to
utilize a sécond model (Dayton & Macready:, 1976) based on, a more re-
strictive set of assumptions; guessing errors for all items-areAequal
(i.e., a; = a) and "forgetting" errors for all items are equal (i.e., bj
= b). These assumptions. reduce the numbér of parametersyto be estimated
to three for tests composed of any number of items;and aiiow for a

et
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51mp11f1catlon of the formula defining the probability of the occurrence
of- the jth response pattern on an n-item test to

”

' - : s, .n - s,
p(i) =p(3lMm +p (3lm =a’ 1 - a T pim (2)

- n - s: S.
S T (1 -p) 7 pm,

where s: is the number,of correct responses (i.e., number of 1's) in the

response pattern.

Macready and Dayton provide a discussion of how these models can be
used for making classification decisions with respect to mastery of spe-
cific concepts or skills, and .they provide several examples. The dis-
cussion includes the development of procedures for (1) assessing the
adequacy of "fit" provided by the models, (2) identifying optimal deci-
sion rules, for mastery classification that incorporate utility functions
related to costs of false negatives and false positives, and (3) iden-
tifying minimally sufficient numbers of items necessary to obtain accept-
able levels of misclassification.

Example. For the case of a three-item test, there are eight possi-

ble response patterns: (000), (001), (010), (100), (110), (101), (0l1l),

(lll) For the first model, the 2n + 1 necessary parameters correspond
to guessing (aj) and forgetting: (bj) parameters for each item and the
proportion of subjects in the examinee group who are masters.- Maximum
likelihood estimates of these parameters are obtained from the test

data.

For purposes of example for Model I, assume the following.parameter
values: aj = .01, by‘= .20; ap = .05; by = .10; .,a3 = .10, b3z = .05; and
P(M) = P(M) = .5, This might'correspond to a test in which the items
appeared to be qrow;ng 1ncreaslngly easy. For the second model, only
three parameters are found: a, b, and P(M). Again for purposes of
example for Model .FI, assume that the obtained estlmates for the param-
eters are a. = .06, b = .12, P(M) = P(M) = .5. , .

To find the probability of observing each response pattern in a
given examinee group, the probability of observing each response pattern
given mastery status must be multiplied by the proportion of the group
in that mastery status. For this example, each response pattern must
be multiplied by p(M) = P(M) = .5. Table 3 shows the results of these
calculations. : ' .

The mastery/nonmastery decision rule is based on the score that
minimizes the probability of misclassification. Probablllty of mis-
classification is defined as the probability that a master will not
achieve the cutting score times the proportion of masters in the group

11
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Table 3

Probability of Observing Response Patterns Under the

Macxeady and Dayton Models, Assuming P(M) = P(ﬁ) = .5
—/‘
Model T Model 1T
" Response P(response pattern) P(respoﬁse pattern)
pattern, Master Nonmaster Master Nonmaster
000 . .0005 - .423225 -.000864 .415292
001 .0095 .047025 .006336 .026508
010 .00450 °  .022275 .006336c .026508d
100 .0020a .004725 .006336 .026508
110 .0180 .000225 .046464 . .001692
101 - .0380 .000475 _.046464 .001692
011 .0855 .002475 - .046464 .001692
111 .3420 .000025 .340736 .000108
P(M) = .5 P(M) = .5 P(M) = .5 P(M) = .5
. 1 .
o = (.2° x .8Y) (.1° x oY) (.05t x .95% x .5 = .0180.
- ’ 1 ‘
Po = (o1t x .99% (.05t x .95°) (.1° x .oh) x .5 = .000225.
2 ' '
o) = .12° x .88 x .5 = .006336.
o = .o6% x .94° x .5 = .026508.
‘('
!
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plus the probability that a nonmaster will #qual or exceed it times the
proportion of nonmasters in the qgroup. The probablllrloc for both models
and all possible cutting scores arc given in Table 4. '

The final colwnn of Table 4 indicates that for both model:: the op-
t1ma1 cutting score is 2 correct. Note that although the cuttina score
is the same for both models, the misclassification under the richer

"Model I is consistently smaller than Model T1I.

Emrick (1971) developéd a procedurc related to .the restricted form
of the Macready and Dayton model. He gencrated a function for identify-
ing optimal cutoff scores.in terms of relative costs of incorrect
mastery/nonmastery decisions and the ratio of a to b errors. The

optimized formula is . : {
lo . + 1 lo E:ﬁiiﬁl
9173 "n o9 Llp(ﬁ);\
k = ‘ ' (3)
1o ab
TT Ty
where ‘,
k = percentage of items correct required for a”hastery
decision; -
L1 = loss incurred from a false positive;
L2 = loss incurred from a false negative.

This cutscore value is the same as that suggested by Macready and
Dayton under their restricted model when the same parameter estimates
are used. However, Emrick suggests a different approach for parameter
estimation. He constructs a fourfold table relating true mastery state
and observed jitem responses to a single item, with the cell entries
being the error probabilities a and b. Emrick then treats a and b as -
response contingencies and computes a ph1 coefficient to indicate the
correlation between observed single item responqes and true mastery
state: : .

1-a-b o K (4)
V1 - (a - b)2 ‘

He uses the average iteritem correlation of examinee responses to com-
pute an unbiased estimate of the reliability of a single item using the
Spearman-Brown prophecy formula.

phi =

Since reliability is defined as the proportion of total variance
that is true variance, it can be interpreted as an unbiased estimate of
the squared correlation between an examinee's true mastery state and his

~—
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Table 4
fPfobability of Misclassification as a Function of Cutting
Score Under  the Macready and Dayton Models,
Assuming P(M) = P(M) = .5

Cutting P(False negative) P (False positive) P(Misclassification)

score Model 1 Model II: Model I Model 1II Modegl T Model II

0 (all - .- 0 0 .5 .5 .5 .5
pass)

1 .0005 _ .000864, ~ .076775 " .084708,  .077275 .085572

2 .01650 .019872 .0032¢ .005184 .0197 .025056

3 .1580 .159264 .000025 .000108 .158025 .159372

4 (all .5 .5 L 0 ‘ 0 .5 <5
fail) .

S

ar bThe probability that a master will be misclassified when the cutoff
score is set at 2 correct equals the sum of the probabilities that a .
master will get only O or 1 items.porrect times the proportion of mas-
ters in the group. FQr Model ‘I, this probability equals .0005 + .0095
+ .0045 + 002 = .0165. For Model II, .000864 + 3(.006336) = .019872.
dThe probability that a nonmaster will be misclassified when the
cutoff score is set at 2 correct equals the sum of the probabil%ties
that a nonmaster will get 2 or 3 items correct times the' proportion of
nonmasters in the group. For Model I, this probability equals .000025
+ .0N2475 + .000475 + .000225 = .0032. For Model II, .000108 +

3(.00 592) = ,005184.
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or her item response. Hence, item responses, true mastery stat&, and
error probabilities can be directly related through the test reliabil-
ity. If the ratio of a to b is known (or 1f it can be estlmated),
values for a and b can be directly calculated.

For the Macready-Dayton model example values (a = .06, b = .12),
the value of phi is .821. Squaring this}value and applying the Spearman-
Brown prophecy formula for a three—itgm/test indicates that the test re-
liability for this example would be .86. Assuming a loss ratio of 1 and
equal proportions of masters and nonmasters, the value for k in Emrick's
optimization formula-is .4339. This implies a cutting score of 1.3-on
a three-item test, or rounding up t6 the next higher integer, 2. Thus,

- the final result is the same as the result obtained with Macready and

Dayton. . ) ’

Evaluation. An important constraint of this approach is that the
proportion of masters and nonmasters must be equal. (The computations
for the preceding example and a more general form of the Emrick model
are'preéentedvin Appendix A.) ) .

Other possible weaknesses in Emrick's approach to parameter esti-
mation are the subjeéfivity required and the somewhat overly restric-
tive assumptions necessary to implement his approach. 1In addition, the
complexity of both conceptualizing and quantifying L1 and L2 may greatly
compllcate‘the derivation of cutoff scores under these models. '

If the assumptions are met, an optimal differentiation between

masters and nonmasters will result. Furthermore, a means is provided

to determine how many items are needed to keep the probability of mis-
classification at or below some specified critical level. The relation-
ships among test items may also be explored. A major potential weakness
concerns the assumption that learning occurs in an "all-or-none" manner,
with no partial learning or overlearhing. Failure to satisfy this as-—
sumption could produce a poor fit of data to the model, which will in
turn .produce ‘a far less than optimal cutting score.

~

Binomial Model ' . T

Assumptions and Rationale. 1In contrast to all-or-none learn-
ing assumption of the Emrick and Macready models fis the assumption that
Yearning is a continuous process. -A binomial distribution model, first
suggested and derived by Kriewall (1969) and subsequently developed by-
Millman (1972),- defines proficiency as, the probability that a person
will correctly respond to any test item randomly chosen from a speci-
fied domain of items. Proficie may also be defined as the propor-
tion of items that would be correct if all items in the domain could .
be administered. Since the proficiency value can take on values from
zero to one, the model allows for partlal acquisition.

L4
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The following assumptions are pertinent: (1) dichotomously scorable
items, (2) local’ independence of items, (3) no systematic learnihg or
forgetting during test taking, and (4) items equally difficult for any
given examinee. The percentage of items answered correctly is taken as
a point estimate of the examinee's true proficiency. -For a'given. pro-
ficiency, the probability of observing any score may be determined. The
hypothesis to be tested in this model involves the likelihood of ;a speci-
fic score, if indeed the examineée had the given level of“proficiency.

. The basic e€quation for the binomial model yields the probability
distribution of scores. for an examinee with proficiency "p" for repeated
random samples of items of size "n" from a given domain of items:’

Y
24

R

n\ x n- x o
£(x) =(x)p (1 - p) , (5)
where
X = the total/ number of cotrect responses,
f(x) = the pnob,bility of test score x,
: = the binomial coefficient: ) \\\

.n! -
x ! (n - x)!

~

The binomial model can be used to provide two types of information.
First, the proportion correct is the maximum likelihood estimate of an
individual's proficiency relative to the particular domain. .Second, the
model can be used to inv®&stigate the interaction between te length and
classification error when individuals are divided into two g¥Qups. One
group will contain students with proficiency greater than or egual to
some minimal proficiency criterion. The other group will have students
with proficiency levels less than or equal to some maximum nonmaétery
criterion.

o
8

To calculate the expected error in decisionmaking, it is necessary
to specify two parameters. The first is the lowest proficiency level
required for an individual to be considered a master. The second is
the highest profjciency level that a student could obtain and still be
consiéered a nonihster. When these values are set by the decisionmaker,
the probability Of false negative and false pesitive errors for minimal
masters and maximal nonmasters, respectively, can be calculated for any
given test length and cutting score. This procedure, it should be noted,
is generally conservative. That is, if the group contains examinees
with abilities above minimal mastery or below maximal nonmastery, the
number of misclassifications observed will be less than that predicted

by the ngel.
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Example. Suppose that a cutoff score of 80% correct was selected
(i.e., in order to be classified as a master, a student must get cor-
rgct at least 80% of whatever number of items are inc;udedfon the test).

" Assume also that a true proficiency . of 90% is defined as the minimal

mastery level, and that a true proficiency of 70% is defined as the
maximal nonmastery level. The region between these cutoff scores is
an "area of indifference."®' That is, if an examinee's true proficiency
lies between 70% and 90%, the decisionmaker would be indifferent as to
whether the examinee is classified as a master or as a nonmaster.

Values for misclassification error that can be tolerated must also
be specified. Continuing with the above example, assume that the de-
cisionmaker is’unwilling to accept more than 26% of the students whose
true ability is 70%, and he or she wants to reject not more than 19% of
those whose true ability is 90%. Thus, the probabilities of a false
positive and false negative are .26 and .19, respectively. Given these
values, it is possible to determine the minimal number of test items.

The following notation will be used: '

n = the total number of test items, ’

¢ = the cutoff score (in this example ¢ = .8n or the next highest

integer value of .8n since an 80% standard was chosen) ,

x = the observed score, and the formula for cumulative terms of

the binomial distribution is

(:) pr (1 -p" T - (6)
. | |

Specifying that the probability of falsely rejecting a master must
not exceed .19 means that the cumulative probability,ﬁi a master ob-
taining a score from O correct to ¢ - 1 correct musﬁ\gpt exceed .19.
This constraint may be expressed as the inequality

=

™Mz

X

F(x <c-1) <.19. (7)
Therefore,
xsc-1 ny, & x n - x -
.19 < z < )(-9) (.1) ’
- x .
c =0

where p = .9, the minimal mastery level.

S \
A similar relationship exists for nonmasters. Since the probabil-
ity of falsely accepting a nonmaster must not exceed .26, the cumulative

17
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probability of a nonmaster obtaining a score greater than or equal to
¢ must not need exceed .26. The inequality for nonmasters is

< F(x>c) < .26. | , (8

‘

n
26 . (n> (X (3" x , .
) X =c * E '

where p = .7, the maximal nonmastery level.

Therefore,

A

v

Reference to a table of cumulative terms of the binomial distribu-
tion shows that the minimum value of n for which these relationships -
hold is 8. S ’

Since ,.8 (8) = 6.4, a cutoff score of 7 correct is chosen. Sub-
stituting these values for ¢ and n vyields
X =6 '
8 _ .
.19 = I ( > 9* 18" * ang (9)
% .
\ x = O .
x =8 |
.26 = % (8> (n* (8. g (10)
: X
x =7 .

4

These are the numerical:solutions for the above inequalities.

The conservative nature of the model results from the fact that.
the calculations are based on two point values of true proficiency,
70% and 90%. The previous calculations reflect the probabilities of
false-positives and false negatives, assuming that the examinee group
is composed only of people with true proficiehcies of "70% and_90%. How-
ever, if an examinee had a true proficiency of 95%, the probability that
he or she would obtain a score of less than seven correct out of eight
items, and therefore be classified as a nonmaster, may be expressed as

.

. | | ‘
(8> (.95)% (.05)% = * = _oe. S ©(11)
0 X ’

X

ISl

X

This value is considerably less than the probability of a false negative
as previously obtained, .19. :

On the other hand, if a person had a true proficiency equal to 60%,
the probability that he or she would obtain a score of seven or more

18
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correct on an eiqht—lgem test, and therefore be classified as a master,
may be expressed as* '’ - : '

w-
-

X288\ | rx 8 -
——z <x> (.6)" (.4) ¥ = 11, ' (12)
(a_f’x._= 7 i .

— .

This value is much less than the probability of a false positive as pre-

viously obtained, .26.

Millman (1972) has prepared tables which allow the decisionmaker
to reach thégg same conclusions without calculations. His tables also

‘give the expected misclassification error for a variety of test lengths,

cutoff percentages, and true ability levels.

Evaluation. The binomial model actually describes the worst pos-
sible sitwation. For most practical applications, the examinee popula-
tion will contain persons with true ability above the minimal mastery
level and below the maximal nonmastery level. To arrive at a more
realistic estimate of total misclassification,.the equations would have
to be-solved for each representative ability and be weighted by the
proportion of the group with each ability. Such a procedure is, of
course, feasible but its value ‘is questionable. The values obtained
from the simple procedure are overly pessimistic; any decision derived
from empirical data could be no worse, and would probably be better.

A virtue of-this model is that it is relatively straightforward,
being based on the familiar binomial distribution. It is one of the.
simpler quantitative models to derive test lengths and cutting scores.
The model can be criticized, howeverr‘@gcause 5£ its conceptual founda-
tions. Specifically, the output of thé model tells us the probability
that a student will attain a certain test]score, given his or her true
ability level. However, it is by no means.clear or obvious that the
decisionmaker would know the student's #rue level of functioning. 1In-
deed, if the true ability level were known, there would be no need for
models to determine test length and cutting scores. 1In using the bino-
mial model, the decisionmaker has to set estimated (or desired) limits
on the true level of functioning. of the student. This allows him or
her to infer the conditional probability of the observed tesf score,
given the hypothesized. level(s) of proficiency. * This binomial model
is most useful for initial apprqQximations of test length and cutting
score before test data have been collectédz ‘

P |

Bayésian Model

Assumptions and Rationale. If information. can be obtained about
the quality of the examinee population (perhaps on the basis of pre-
vious similar populations) before the test scores are observed, then a
Bayesian model may be appropriate for deriving test lengths and cutting

19
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scores. The input consists of an estimate of “the ability distribution
in the examinee population, and the conditional probabilities that a
randomly chosen item would be answered correctly given some ability
level. The output is :the conditional probability that an individual's
ability equals (or, in some cases, exceeds) some criterion ablfity,
condltlonal upon his or ‘her -test score.
. The Bayesian, llke the binomial, model makes the following assump-
tions: (1) items must be, dichotomously scored, (2) responses are inde-
pendent, (3) items are equally difficult for any given examinee within
a particular ability .group, and (4) there is no systematic learning or ;
fatigue during test taking.” As in the binomial model, ability is de- .
fined as the probability of,responding correctly to a randomly chosen
item from the domain. We will continue to use the term prof1c1ency
(p) when referring to this definition of ability. - N
§ - %

Examples. The first model to be discussed assumes i > 2 discrete
states of mastery.

Epstein and Steinheiser (1975) déveloped a two-step algorithm based
on work by Hershmdb (1971) . The first step yields the probability of
an examinee being 1n mastery state i, conditional on an item. gcore:

<

plt|M) p)

pm |t) = : — (13)
s o A
. i(lp(tA'Mi) p(M,)
where s = the number of states,
t = the item score (0 or 1),
M; = the mastery state being considered,
p(Mj) = the prior probablllty that an 1nd1v1dual is in mastery
: state 1, and
p(thi) = the pProbability of the score t given the mastéry s state

The second step in the procedure combines the decisions for each
item into a final probablllty of .being in. mastery state i, given the
total test score:

'
n v
1
i=1poley -
p(MilT}= P — ==, . (14)
] Py CL T opm |ty .
ull i=1fj=1 )
p(M,)
N
” \
' 20 = .
5369. o N



, where : 2

&/ 3=1,2, ... @ = the number of items and
' T = the total - test Score.

- - Por example, consider the case previously described for the‘blno—
mial model. - Two mastery states are assumed minimal mastery and maxi-

mal nonmastery. , ‘
Q

For the minimal mastery state (Ml), p(tj = correct (1)|M1) = .9 and
p(t = incorrect (O)IMl) .1, for all j: ) ~
For the maximal nonmastery statex (M), p(ty = correct”(l)le) = .7
and p(ty = 1ncorrect (O)]Mz) = .3.
Values must” be given for the priors, p(M;) and p(Mz) Their value

may be determined on the“basis of past experience, or may simply re-

flect the beliefs or expectditions of the evaluator. Three cases will

be considered: p(Mj) —.p(M2) = .5; p(M1) = .12, ‘p(My) = .88; and

p(M;) = .62, p(My) = .38, ‘These ‘correspond to little prior informa-

tion, relatively low’ expectatlons, and relatively high. .expectations.-
/} The example was computed for an observed score of seven correct on an

eight-item test.* The results are shown in Table 5.

4 ¥ .

i For Cases 2 and 3, where prior 1nformat10n favored the nonmastery
and mastery states, the final decision can be made with a relatively -
RBigh degree of confidence. For the case of little prior information,
Case 1, the probabilities of misclassification are greater. The ef-
fects on the final decision of the priors aré also clear. For the equal
priors case “the weight of the observed eV1dence favors a mastery deci-
sion. However, where the nonmastery state is favored in the prior
probabilities (Case 2), the evidence does not overcome the priors and
a nonmastery decision. is made .

Whereas the Epsteéin and Steinheiser: technique seems to offer a
method for reducing the uncertainty in decisionmaking-for a given num-
ber of test items, their prdcedure is limited by the constraint that
only discrete mastefy groups are considered. The second model. to be
reviewed deals with continuous distributions of proficiency and classi-

> fies examinees based upon the probability that th&il Rroficiency equals
or exceeds some minimal criterion. .Novick and, 's ( )
by assuming tha* the d1str1but10n of -examinee p iciencies can be. ap-
proximated by a member of the family of Beta distributions. The prob-
ability of achieving any score-of interest, given the proficiency,
remains binomial. The rm. of Bayes' Theorem is then-a probability
density function of the (form p(Tlx) p(xlT)p(T), where T is the pro-
ficiency and x is the tebt.score, Lo .

If p(x]T) is binomial and p(T) is a Beta distribution, then p(Tlx)
will also be a member of the Beta family. In fact, if the prior
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Chariges in Posterior ProbabilPity of Mastery as a Function
of Changes in Prior Probability of Mastery
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*Computatipnal s't'ps?‘p(t, =1) = .12 x .9 + .88 x .7 = .724

J .1+ 88 x .3= .276

— .= 0) =
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P(‘Mlltj =73-)

II

(le‘sx .9)/.724 = .149

1l

p (M, It =0 = (.12 ¥ .1)/.276 = .043 .
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1@
Tp (M, ]t ) = 149(1 043) = 7 x 10"

p(M |T)-=7x10§' le)(7x10 8127 + 309/88)]-—.205\
p(M, IT) 309/?“%8 (7/36 + .755)] = 796
p (M ng; (.88 x .7)/.724 = .851
pM, It gx% (. 88 x .3)/.276 = .957
Hp(letj) =P.‘851 (.956) = .309 ‘:,‘
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distribution is Beta (a,b) ({ie;, B(a,b)), and a(%core of x isvbb—
served in n trials, then the posterior distribution is B(a + X,
b+n-x.

- -

Continuing with the previous example in the continuous framework,
we shall now consider three prior distributions. Integer values of
a and b, the parameters of the Beta distribution, will be used. We
may therefore use the Incomplete Beta function Ip(a, b), which has the
following relationship to the cumulative binomial distribution:

n n Xfl—‘X . N
z P q = Ip(x’, n-x'+1), (15)

" where n is the number of test trials,, p is the probability of success

on a randomly selected trial, and x' is the observed ‘number of successes.
g
Tabled values are available (Beyer, 1966, Table III1.2). For non-
integer values of a and b, programed numerical methods may be required
(Novick &.Jackson, 1974). '

For the first example, assume that little is known about the exami-
nee population, i.e., a randomly selected examinee may get a test score
that would place him or her in the mastery or nonmastery category with
equal probability. 1In terms of the Beta distribution, this means that
examinee proficiency would be reétangularly distributed, resulting in
a=1, b=1, or B(1, 1) (Novick & Jackson, 1974, p. 114).

For the second case, assume that the prior probability that a ran-
domly chosen examinee has proficiency greater than or equal to .8 is

.12, i.e., P(p 2 -8) = .12. ‘Therefore, 1 - p is used to enter the
cumulative binomial table at the top (since tabled p values stop at
p = -50), and .12 is the table value.

l

However, we cannot use the table until one more parameter is speci-
fied; so let us assume that *the examiner's "certainty of prior belief"
can be quantified as being equivalent to the information that would be
available if a 10-item test were given (Winkler, 1972, p. 187). wWithj
n =10, we find that an entry with a value of .12 in the .20 column .
for a = 10 has an associated x' value equal to 4. Unfortunately, x'
does not equal 4, due mainly to a limitation of the table, since p
values stop at .50 and do not extend to .80 or beyond. Note, however,
that if we let x' = 4 in the cumulative binomial, and subtract the
result from 1, we obtain ' c

lg n (-2)x(-8)n - X, which equals 1 - .1208, or .88.
4 X
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If the table had extended to-p = .8, then the value .879 would have
been found as the entry corresponding to n = 10. and x' = 7. Hence, the
value for x' is 7. Substituting x' =,73and n = 10 in equation (15, we
obtain I,(7, 4) as the Beta distributfoﬁ*which represents the prio
information that P(p > .8) = .12 is équivalent to 10 additional test
trials. -

The third examble considers that the prior probability of a ran-
domly ‘chosen examinee having proficiency greater than or equal to .8
is .62--which is also comparable to information that could be obtained
from a 10-item test. Again, entering the table with n = 10, 1 - p = .2,
we find that a tabled value of .62 this time corresponds to x' = 2.
Substituting x' = 2 in the cumulative binomial and subtracting that
result from 1 yields .38. Again, an extension of the table to p=.8
.would show that when n = 10, a tabled value of .38 corresponds to an
x' value pf 9. Therefore, the parameters for the Beta distribution in
this case are Ip(9, 2).

Having thus derived the prior distributions, let us now consider
some hypothetical test scores, and then derive thgrposterior distributions.
Suppose that a score of seven correct on an eight-item test were
observed. Then the posterior proficiency distributions will be B(a +*
number correct, b + number of trials - "number correct). For the three
examples, we therefore have B(8, 2), B(14, 5), and B(16, 3).

The posterior probability that .an examinee with a score of seven
correct out of eight items has a proficiency greater than or equal to
.8 (i.e., P(p > .8 l 7, 8)) can be found by determining the area in the
upper tail of the appropriate Incomplete Beta function (Winkler, 1972,
Table 5; Schlaifer, 1969, Table T3; Novick & Jackson, 1974, Table A-14).
For the three examples, these values are: I 8(8, 2) = .56; I 8(14, 5) =
¢ ©.28; and T (16, 3) = .73. ) )

2 Since the origin of these values may not be intuitively obvious,
we shall outline the steps required to complete the first example, using
the Novick and Jackson tables.

Step 1: Since p > q, reverse the order, and enter the table with
p=2and q = 8. 3

Step 2: - The table gives the cumulative area (of proficiency);
however, since we want to determine the area in the upper part of the
Beta function, we need to subtract the stated proficiency of .8 from
1, and thereby obtain .2. This represents the symmetric area in the
lower 20% of the distribution.

Step 3: .2 lies between the tabled values of .1796 and .2723,
with associated probabilities (fractiles) of those tabjed proficiencies
equal to 50%-and 75%, respectively.
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Step 4: Interpolation yields the fact that a 20% or less pro-
ficiency would occur 56% of the time; therefore, 80% or qreater pro-
ficiency should also be observed 56% of the time.

N

Novick and Jackson also provide a convenient set of charts (pp.
122-123) “for rapid approximations, although it should be noted that for
the current example, 'the solution is found to be .44 from their. chart
A. This value must be subtracted from 1, since the .44 represents the
cumulative area in the lower portion of the B(8, 2) curve.

If the probability of having a prof1c1ency greater than or egual
to .8 must be at least .5 for an examinee to be.classified as a master,
then a score of 7 out of 8 would lead to a mastery classification only
in the first and third examples previously described. The weight of
the low prior reversed the decision rule in the second example,

[ 3
For another approach to deriving prior distributions, assume that

'prior information can be described as equivalent to 7 correct on a 10-

item test. (This is an assumption not without criticism, as we shall
note in a subsequent section.) Assume also that proficiency is dis-
tributed as Beta--a helpful -and reasonably appropriate assumption. The
mean of the examinees' proficiency then equals (x/n + 1) or 7/11 = .636.
The variance equals x(n - x + 1)/(n + 1)2(n + 2) = 28/1452 = _019.

#Since the parameters are integers, we may once again use the cumulative
binomial as a means of obtaining the Incomplete Beta density function:

10%/10
X
P q

I (7, 4) = 10 - x , (16)
P

¥ ™Mo

=7 X

‘1_'(8 +b) ' x
T(a)(b)

‘Equation (16) is the probability that a given proficiency is less
than or equal to p. We can compute this probability by assigning spe-
cific values to p, as shown in Table 6. The values for P(p > p) up
to the 50th fractile may be found directly (Beyer, 1966, Table III. 2)
for x' = 7 and n = 10. ' Values for .6 and greater can be computed ac-
cording to the cumulative binomial equation (16). When the values
obtained (as in Table 6) are plotted, the result is a -smooth ogive-
like curve (Winkler, 1972, pp. 153, 186; Schlaifer, 1969, p. 438).

ud” 1(1 - u)b ldu.

. To plot the proficiency dlstrlbutlon, we may use the Beta dlstrlbu-
tion functlon

4 ,.J - r (. + b) uﬂ'l( u)b"l
,ﬁ?: T )T' ) 4 Can
W (s (b) | _ |
. i i
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Table 6

Cumulative Estimation of Prior P‘zl'glbabilities for
Various Assumed Proficiencies

~

>
I (7,4), or
p~
p = Proficiency p(p < p)
\\\:}- i * .

1 ' .0000

2 ' .0009

.3 . ,.0106

4 ~.0548

2.5 i .1719

.6 ' .3823

S ,
7 ' .6496

.8 v .8791

* .
‘.9 ‘ .9872
. —_—
/
-l/ )
.
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Values of the proficiency (p) may be chosen, but a = x' = 7, and
b=n-x'"+1=4. Since (n + 1) = n! for intedgers, we can easily

- solve equation (16) + T(a + b) = T'(11) = 10! = 3.6288 x 106; I'(a) =

I'(7) =61 =7.2 x102; I'(b) =T(4) = 3! = 6. Therefore, I'(a + b)/
'ta) T(b) = 3.6288 x 106/(720)(6) = 840. Table 7-shows how values of
f(p) may be obtained.

A plot of the tabled values for p on‘thé abscissa and f(p) on the
ordinate could then be made. Such plots may also be found in Winkler
(1972, se?. 4.3 and 4.4), Schlaifer (1969, sec. 11.1.2) and Novick and
Jackson (1974, p. 112). Note that this is a prior distribution of -
hypothesized proficiencies in which we assumed at the outset that the
information could be characterized as comparable to the information
that would be obtained from observing a score of seven correct on a ten-
item test. ‘ \ -

Evaluation. Bayesian models offer the possibility of enhancing
the assessment of examinee proficiency by using prior information, e.g.,
knowledge that content experts or examiners have about previous similar
exayinee populations. BAs the validity and accuracy of this prior in-
formation increases, fewer test items will be needed to achieve a given
level of classification accuracy in comparison to the binomial model
and in comparison to the Bayesian case of equal priors. As more is
known about the éxaminee population (i.e., the more that prior informa-
tion departs from a B(1l, 1) distribution), the more the variability in
the posterior distribution is reduced, and the more the number of items
to att#in a desired level of accuracy is reduced.

—— .

In comparing the binomial and Bayesian models, note that the former
produced as output the probability of observing a specific score condi-
tional upon some hypothesized true .ability level. 1In the spirit of
classical hypothesis testing, one need not know anything about an exami-
nee's proficiency, except that he or she is more or less likely to come
from the mastery side of the cutoff score. -Since some true level of

‘functionihg must be hypothesized, it is possible to determine the prob-

abilities of falsely passing a nonmaster and falsely failing a master
if the test score suggests a true proficiency level either above or
below the hypothesized true level of functioning. ’

In contrast, the Bayesian model provides as output the probability
that a specific examinee has a true ability equal to or greater than the
criterion (minimal) ability, conditional upon the observed ‘test score.
But since no true ability was hypothesized, false positive and false
negaﬁive error rates cannot be specified as was possible with the bino-
mial model. While both models give the probability that an examinee is
a member of some ability level group, the binomial estimate refers to
the probability of a score occurring condﬁtiona; upon the-assumed true
proficiency; whereas the Bayesian estimate refers to the probability of
a specific éxaminee being at or beyond some proficiency level conditional
upon his or her observed test score.
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E Table 7

o7

Pg}nt Values for Prior Proficiency Distribution

Proficiency
-1 - -1 -1 b -1
values 2 " ta Pl e = sa0m® T Tl - P
.1 b o7.20 x 107 ’ 6.12 x 10 2
.2 . 3.28 x 10° 2.75 x 1077 %
.3 2.50 x 10 \ 2.10 x 10°*
.4 «} . 8.85 x 1074 7.44 x 101
\ .5 { 1.95 x 107> 1.64 x 10°
i .6 2.99 x 10 ° 2.51 x 10°
.7 ,3.18 x 107> : 2.67 x 10°
.8 . 3TN0 x 100 1.76 x/loo
.9 5.31 x 10 2 4.48 x 1071
1
/
>
{
& s i
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There are several difficulties &onfronting the potential.user of a
Bayeslan model for CRT purposes. First, the mathematics can become
rather cumbersome since the Beta distribution must be used when ability
is assumed to be distributed continuously. . Second, a methodological
difficulty arises in the determination of prior probab111t1es (Winkler,
1972, sec. 4.8). -1t is methodologically unsound to merely ask the-exam-
iner of expert to’ﬁstate his priors," since simple human judgment of

5probab111t1es is’ often unreliable, inconsistent, and distorted (Kaplan

& Schwartz, 1975) A method used in the present paper--equating prior -

'1ﬂformat10n ) comparable test length and score information--may be

suitable for purposes of illustration, but it may be difficult to im-

‘plement in applled sertlngs.

<, N
~

- There is at present a dearth of .research about how prior probabili-
ties can actually be obtained from experts. Perhaps a éilr comparison
or forced—cholce procedure could be used in which various combinations
of prof1C1ency (or expected scores) and associated probabilities are
presented to the expert (Steinheiser, 1976). Thus, th- judge's prior
distributiaon would be directly obtained, and the be:t fitting Beta“
distribution used to provlde the necessary parameter vqlues.

Rasch's One-Parameter Logistic Model

Assumptions and Rationale. The latent trait model developed by
Rasch (1960, 1961, 1966) is claimed to yield person-free test calibra-
tions and item-free person measurements (Wright & Panchapakesan, 1969).

The model attempts to reprodiuce an item Py score group matrix in which

n items are ordered by their difficulties,.dnd n -'1 score grdups are
ordered by the raw scores. Cell entries represent the“brobablllty that
item i will be passed by a person in score group j (Whitely & Dawis,
1974). .

There are two parameters in the model. The first is person ability
A; the second is item difficulty D. The odds (0) of a person correctly

. answering an item are equal to the product of the person's ability times

the item's difficulty: O =a x D. If we express the odds as a prpb-.
ab111ty, we find that the probability P of a person with ability A suc-

ceeding on an item with difficulty D can be expressed as A x D
P = :
‘ 1 +AxD

Replacing A and D with their logarithms, log A =a and log D = 4, we

may finally express P as a logistic function (erght, 1967) :

1 .
P = —a <o - - (18)
1 +e

This” model assumes that (1) all items measure the same unidimen-—
sional trait; (2) all items have equal discriminating power and vary

¢
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. e . . ime de
only in difficulty (the_restrictloq of a common dl?ci%mlnation l;ic;
results in a set of nonintersecting item characteriSHic o . .ves ots

e

differ only by a translation slong the ability scale) ; (3 o
and items are locally independent; (4) guessing effects .. negli9tble
and (5) there is no time constraint on answering ite™s (Raschr

Tests comprised of items all of which fit the modey have the foll

lowing properties (Wright & panchapakesan, 1969; whitely, DaWisff}974).

(1) estimates of jtem difficulty parameters will4nct iffer gignt 1=
cantly forrany sample of examinees; (2) estimates O- person abillty
will not differ gignificantly for any sample of callbrgted jrems’ (3)
individual abiljty estimates can be measured on at 1€3St int?rYal'
and perhaps a ratio scale (Wright, 1967); (4) the scale . abilities
is defined regardless of the characteristics of the Subject POPU1a¥}°n
who take the test; and (5) a unique standard error © measurement 1s
associated with each ability Jevel.

The significance of the Rasch logistic model maY¥ be appreciated
by comparing it to "classical" models of test development:'

A psychologjcal test having these general chafaCteriSticS
would become directly analogous to a yardstick that . jgure®
the -length of objects. what is, the intervals O0 ty, yard~
StiCk are independEHt of the 1ength of the obj&?ts' and the
length of individual objects is interpretable Witho,. e~
spect to which particular yardstick is used. I" Copirasts
tests deVeloped according to the classical model hay,  jeithe”
characteristic. The Score obtained by a persol S not jnter~
pretable without referring to both some norm group 5.4 the
particular test form used. . . . No 1origer.woul equivalent
forms need to be carefully developed, sinee meaSUrement is
insgument jpdependent and any two subsets ©f e Qalibfated
item pool could be used as alternative instrum?nts~ jmi
-larly, independence of measurement from a particuly, popU
tion distribuytion implies that tests can be us€d fop o rson®
dissimilar from the standardization populatiorR w%thout the
‘necessity of collecting new norms (Whitely & DaWis, 1974
163-164) .

la~

Examples. calibrating a test using the Rasch mode]
logarithmic abiljty estimate being assigned to everY POsgipie
This estimate ingicates the amount of ability requife§ to achi
raw score. A comparison of the ability estimates asS}gned to
raw score by two samples with different ability distr1§htions
the degree to whick the Rasch model calibrates a test 1nqependen
the ability levei of the calibration sample. .

raw SCorg
eve that
a given
indicate
tly of

-

Wright (1967) studied the respodses of 976 beginni“g'laﬁ Stuf::ts
to 48 reading comprehensiOn items on the L.S.A.T. T© Obtain gamples .
with different abjlity distributions, he selected tW© cohtrastlng

<
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groupS ¥rom his total sample. The lower group included the 325 students
who did poorest on the test, with a top score of 23. The higher group
included the 303 students with the highest scores, with a bottom score
of 33. Wright compared the similarity between the two sets o6f Rasch
ability estimates and the two sets of percentile ranks. Figure 1 shows
the results, in terms of "person-bound test calibration," where a plot
of raw score against percentile rank clearly shows two different ability
groups. If a person is said to be in the nth percentile, “reference must
be made to which group that person belongs. S

After subjecting these same data to the Rasch logistic analysis,
the test scores are transformed into ability measurements along the
ordinate. Fjgure 2 shows that the curves for the best and worst exami-
nees almost completely overlap. ’ : '

The difficulty estimates based upon these dichotomous examinee ,
groups Aare statistically equivalent. Therefore, these estimates are
independent of the ability of the examinees in the calibration sample,
and may{ be used over the entire range of ability. Comparing the cali-
bration curves of these figures shows the contrast between (1) calibra-
tion based upon the ability distribution of a standardizing sample, and
(2) calibration that is free from the effects of the ability distribu-
tion of the examinees used for the calibration.

can ability be measured in a fashion that frees it ffom dependence
on the use of a fixed set of items? If a pool of test items has been
calibrated on a common scale, can any set of items be selected from that
pool to make statistically equivalent ability measurements?

Wrighp (1967) tested these hybotheses by making it as difficult as
possible for person measurement to be item free. He divided the origi-
nal test items into two non-overlapping subtests, the easiest items
comprising one subtest and the hardest items:comprising the other sub-
test. The model predicts that ability estimates based upon the easy
subtest should be statistically equivalent to those estimates based
upon the harq subtest. ' '

The solution required converting the scores to log abilities, .and
then standardizing the differences'in ability estimates. First, for
each score, the corresponding log ability on the calibration curves was
obtained (see Figure 2). For each pair of scores (from the easy and
hard subtests), a pair of estimated log abilities was obtairied. Then,
a standardized difference was found by dividing the difference between
the easy and hard subtest ability estimates by the measurement error
of the differences. If the ability estimates are statistically equiva-
lent, then the distribution of standardized differences should have a
mean equal to zero and a standard deviation equal to oné. The obtained
values Were .003 and 1.014, respectively.

-
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Applications. A more detailed example will show how the Rasch
model was used to analyze the results of a criterion-referenced test
(Kifer & Bramble, 1974). The data, were obtained from 201 college stu-
dentsf taking an 84-item multiple choice examination in introductory

. .edugfational psychology.' After discarding items that did not fit the
el, the final test contained 68 items.

Comparison of the Rasch-derived ability estimates to a criterion
_ . score can proceed in two ways.

The first is analogous to detevmining the probability of committing
a Type I error in classical hypothesis testing. That is, if the cri-
terion ability corresponds to the null hypothesis, we must determine the
probability that an obtained ability could have arisen from random sam-
pling from a distribution with a mean equal to the criterion ability and
a standard deviation equal to the error associated with the criterion
ability.

The second is analogous to determining the probability of commit-
ting a Type II error in classical hypothesis testing. That is, given
an obtained ability estimate and associated error, (standard deviation),
we seek the probability that-:the criterion ability could have been ob-
served from random sampling from the distribution corresponding to the
obtained ability estimate.

Kifer and Bramble chose to define their criterion score as 80% of
the items correct or 54.4 items correct. Their cutoff score was there-
fore 55. A raw score of 55 yields an ability estdthate of 1.69, with a
standard error of .33. Suppose a raw score of 60 were obtained. What
is the probability that this score exceeds the criterion score of 557

. 1 . ki

The solution requires that we find the probability that this score

is part of the criterion distribution, with mean equal to 1.69 and stan- -
ﬂ - dard devisi equal to .33. (1) Kifer and Bramble's parameter estimates

show that an observed score of 60 has .an ability value equal to 2.32.

(2) 2.32 - 1.69 = .63 units of difference between the observed and cri- 1

terion abilities. 3) .63/.33 = 1.91 standard deviations of difference

between the ability values. (4) A table of the normal distribution

shows that 1 = F(1.91) = .03. Therefore, the ability value of 2.32

has a probability = .03 of coming from a normal distribution witha

mean = 1.69 and standard deviation = .33. '

Page 34, para 6, line 3 -- (sp) "deviation" -- not’devision"
There is a second method by which ability estimates may be com-
pared to mastery standards. This method requires the probablléiy that
* the cr1terlon ability is part of the distribution which has a given
(observed) ability as its mean :and the given ability standard error
as its standard deviation. We now need to find the probability that
. the true ability corresponding to a score of 60 does not exceed the
criterion ability. (1) Kifer and Bramble's parameter estimates show
that an observed score of 60 has an ability value equal to 2.32 and a

N
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s standatd error equal to .39. (2) 2.32 - 1.69 = .63 units of difference

»;between the observed and criterion abilities. (3) .63/.39 = 1.62 stan~

iy

i

dard deviaitons of difference between the abiliti < (4) A table of the
normal distribution shows that 1 - F(1.62) = .05. Therefore, the abil-
ity value of 1.69 has a probability of .05 of coming from a normal dis-

" tribution with mean = 2.32 and standard deviation = .39. Therefore,

the probability that an examinee with a score of 60 has a true ability
below the criterion value = .05, which is the Type II error analog that
the criterion score would not be obtained-by ghance given the obtained
ability. %
Anderson et al.- (1968) investigated the ﬁypothesis that Rasch item
easiness estimates are independent of the ability of the calibrating
sample, and that the item easiness estimates are more stable when only
items that fit the model are)considered. Thei ysed the 45-item spiral
omnibus intelligence test for screening appliﬁa@Fs to the Australian
Army or Royal Australian Navy. Samples of 60§ rlecruit applicants to
the Citizen Military Force (CMF) and 874 recrdit applicants to the Royal
Australian Navy were studied. Twelve items were deleted for zero or
for 100% correct responses. Lo

FOr the CMF sample, 30 items (91%) fit the model at the .01 confi-
dence level, and 25 items (76%) fit the model at the more stringent .05

level of confidence. (The level of confidence represents the probability
of obtaining the observed pattern of responses, assuming that the model
is adequate to explain performance on the item.) For the Navy sample,

the corresponding findings were 22 items (67%

)"and 16 items (48%).

A Y A .
. The correlation between the item easiﬁeSsiestimates from both sam-
ples was .958 (based upon 33 items). Whenﬁthe items that failed to fit
the model at the .05 level were deleted, the correlation increased to
.990. It therefore appears that the item §a§iness ratios were indepen-
dent of the ability of the samples from whiich they were computed. It
should be critically noted that an intelliéencé test was used, and that
the two subject populations.probably did nét differ significantly.

In a more recent study, Tinsley and Dawis .(1975) gave four types
of tests (verbal, numerical, picture, and item-symbol analogies) to four
groups of subjects: college students, high school students, civil ser-
vice clerks, and clients of the state Divisioniof Vocational Rehabilita-
tion (DVR). If Wright's (}967) findings could be replicated, then the
ability estimates of.one group should correlate highly with the ability
estimates of another group for the same testly Of the 10 correélations
that were computed (e.g.,-college students and high school students for
the picture test, high school students and DVR clients on verbal analo-
gies), all reached +.999. The invariant relationship between the ability
estimates calculated for a 25-item verbal analogies test for 630 college
students and 90 DVR clients replicated the telationéhip reported by
Wright (1967) and shown in Figﬁie 2. Tinsley .and Dawis conclude that

- 4
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" . Rasch ability estimates are invariant with respect to the ability

of the calibrating sample." (p. 337)

Tinsley and Dawis also investigated the degree to which the item
parameters (item difficulty estimates and z-item difficulty ratids) were
invariant when the analyses were performed on all items of the test.

The correlation of item difficulty estimates for a given test from two
examinee groups tended to be rather large (+.90). Interestingly, cor-
relations close to zeroiWere obtained from the DVR group with both high
school and college students. This unexpected finding may be attributed
to the small (n = 89) sample of DVR subjects. Generally, the item easi-
ness ratios were invariant with respect to the ability of the calibrat-
ing sample of examinees, even though several of the comparisons used
samples of questionable size.

Evaluation. The studies cited have demonstrated that if the assump-
‘tions are met, or even reasonably approximated, then person-free test
calibration and item-free person measurement can be achleved by using
this one-parameter logistic model. Although Hambleton and Traub (1973)
report that a logistic model with an item discrimination index as-a
second parameter provides a better fit to their data, the inclusion of
this second parameter violates ;true "objectlvrty in measurement" (Wright,

1967) . -

Several potential shortcomings may pose some difficulty in success-
fully implementing the model: (1) a pool of items must be developed
that conforms to this item-analysis model, and the items must be cali-
brated (perhaps 20% of the items will have to be either discarded or
revised); (2) the item calibration and standardization procedures re-
quire dozens of items and hundreds of subjects; (3) the model does not
make direct predictions about optimal test lengths or cutting scores as
do the models of Macready and Novick and Léwis; and (4) the mathematics
of the model can become quite complex, posing problems for actually im-
plementing the model and for interpretation of output. However, recent
publications and the availability.of computer programs (erght & Mead,
1975, -1976) alleviate thls difficulty.

The major v1rtues ©f the Rasch mdﬁél can be summarized as follows:
(1) Once a test has been standardized on any group of subjects, it can
be given again to a different group, without the need to create parallel
forms. For example, a test which had been developed by giving it to
"masters” could later be given to "nonmasters." (2) All abilities will
be on the,same scale, regardless of the subset of items from which these
abilities were estimated. Thus, person A can be measured on a hard test,

and person B on an easy test.
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Regression Theory

Assumptions gnd Rationale. The criterion-referenced testing litera-
ture has tended tﬂ’emphasize the supposed dichotomy between classical
test theo d the\emerging CRT theory. The following discussion of
regression as a means\ for assessing mastery is intended to point out
the similarities between several CRT strategie$ and classical theory.
Specifically, both the Bayesian and logistic models produce estimated
distributions of ability, as does classical reqression. A cutoff score
must still be set at some point on the ability (score) distributions,
regardless of what model is used to derive the. distributions. This sec-
tion simply portrays classical regression theory iq terms of CRT theory.

The regression-theoretic approach of the "classical testing model"
(Lord & Novick, 1968) describes the reason for lack of perfect mastery-
nonmastery observed scores in terms of specified or estimated errors of
measurement. The observed score is considered to be an unbiased esti-
mate of an examinee's true score. It is then possible to derive a
regression function that could be used to estimate true scores from
observed scores. The equation for the regression function is
ym_, . (19)

= + -
R(T|X) Lo Xt (L -xr om L ,

.wheré R(TIX) = the true score T given the observed score X, Fyx' = the
, reliabiliﬁyjqf the test, and my, = the mean of the observed scores.

.. The magnitude of several types of error may also be determined.
The error of measurement is the error involved when, for a randomly
selected 'examinee, we take the observed score as an estimate of the
true score. This can be expressed as E = X - T, and the random variable
E, takKing on values of e, is called the error of measurement. The
standard deéviation of this error of measurement, called the standard
error of measurement, can be expressed in terms of the standard devia-
tion of observed scores and the reliability of the test:

S =8 (1 - r )y . (20)

E x xx'
The difference_between the linear reg;essidn estimate and the true
score itself is caYMd the error of estimation, and is expressed sym-
bolically as e = rxx(x - m) (T - mx). . , (21)

The standard deviation of these errors, called the standard error
of estimation, is expressed as s = g \/z'-(l - r ). (22)
e X L XX XX

Example. A graphic representation of the regression technique for
a five—item test is shown in Figure 3. For each observed score, an esti-
mated true score is obtained from R(T,X), and the standard error of
estimation s, is calculated. 'é_cutoff score based upon true scores may

) -5~ .



TRUE SCORE

OBSERVED SCORE

MMWmmMWWMMMMMWHMNMm
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the test, ’

then be specified. (In this example, a true score of 4 correct has
arbitrarily been chosen as the cutoff score |

The output of the regression model, iike that for the Rasch model,
is a set of distributions, e mean of each distribution is the value
for each R(T’X), and the comon standard error for all of the distribu-
tions is S+ If the decision rule requires that all exaninees be classi-
fied as masters when the value of R(TTX) exceeds the criterion, and that
ﬂlmMrwm%smmdEMtoamm%mwdmmmmtMnmemwmﬂ-
ity of misclassification can be calculated.

For persons with, observed scores and estinated true scores helow
the criterion value, the probability that such persons might be misclag-
ﬂﬁwasmmwmmisﬂwmmemwmﬁmofmeﬁﬂdmﬁmew
ceeding the criterion value, For persons with observed scores and
estinated true scores above the criterion, the probability that such
persons might, be misclassified as nomasters is the proportion of the
distribution below the criterion,

These probabilities of misclassification are represented as dotted
aMammmwuwammamwanMH.Hwammma
thnmof@dmﬁmismmﬂwdbummw,mthpmmMHﬁ%

-+ can be readily obtained from a table of normal prohabilities,

Mo final coments are necessaty. First, this procedure uges the
standard error of estimate, rather than the standard error of measure=
ment; s, Will alvays be smaller than sy Since more information is used
inwkﬂﬂhg&emﬁm&dhmsmmwﬁhamw%ﬁmfmmmnmm
in estimating true score as the observed score, Thus, there is good
rwmnmu%tMeﬁmawtmemm%RMminmymdwmofmﬁ
data. Second, the assumption of normality becones important only when
caleulating misclassification errors, If the standard error of estinate
cannot be agsuméd to be normally distributed, it may still be reported,
and may prove to be useful. in obtaining an estinate of the goodness of

'

mmm.mmmmmmmmmmmmmm
Mode] in the sense that the models developed by Dayton and Macready,
Enrick, Millnan, and Sovick are predictive of desired test lengths and
optinal cutoff scores, However, the regression approach does give prob-
abilistic estimates of true scores, given the observed scores. The
assunptions of nomally distributed standard errors of estinate and of
equal standard errors for all ahilities may also be difficult to neet,
mmmmmmmmmmnmmmmedm
mnmahmrmmMMmM,Rmﬂmwmumwmmﬂm

of true scores on observed scores is linear, Tis is a generally rea-

sonzble, thoush perhaps overly simplistic, asswption to make. Because
the regression model has been used for nany years longer than the other
models reviewed in this paper, there is a greater theorstical and

9
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‘empirical literature to back it up than there is for the newer, less
established models. For a more technical critique of the use of re-
gression models for estimating true scores from observed scores, see
Appendix B. A

SUMMARY AND CONCLUSIONS

Nature of Performance Acquisition

Performance acquisition is assumed to be an all-or-none phenomenon,
according to the models developed by Emrick and by Dayton and Macready
. (see Table 1). Hence, these models assume that error-free test per-
formance is also dichotomous. But the binomial, Bayesian, logistic,
and classical regression models assume that performance acquisition is
continuous. Performance on dichotomously scored test items must there-
fore be mapped onto an equivalent position on the underlying ability
continuum (Roudabush, 1974). It is not possible ‘to decide unequivo-'
cally that one assumptibn is more correct than the other, since the
nature.of ,performance acquisition most likely interacts with the par-
ticular type of task. Some tasks tend to elicit unitary, highly prac-
ticed, sequential behaviors, and would seem to be performed in an all-
or-none fashion. Tasks which require multiskilled performances would
more closely approximate the assumptlons of the continuous skill
acquisition models.

“\ )

Measurement Error

.

Measurement error is defined as the difference between observed
test score and true (unobservable) score .that would be obtained if mea-
surement were perfect. .It is most important when one tries to infer a
true "error-free" score from observed data. The Block and Crehan methods
do not estimate a true scorey nor do they deal directly with measurement
error. Rather, they relate observed scores directly to an external cri-
terion. Hence, any systematic error will not be a problem. But random
errors which affect the consistency of observed scores will disturb the
measurement process for individual cases. Fortuitously, such errors
will tend to average out across groups of exanfinees, allOWlng generali-
zations to be made wh1ch should ngvalld in the "long run.’

" The all-or-none models deal with measurement error by stipulating
values for the probability of masters committing errors and for nonmas-
ters guessing correctly. These values are obtained by fitting the all-
or-none models to observed data. Responses from botk mastery and non-
mastery groups can be desc;ibed by binomial distributions.

The "continuous" models of Novick, Rasch, and regression theory
deal with measurement error by reporting a standard error for each true
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score estimate.' In particuiar, the Rasch model provides a check on how
well the model's output approximates the observedlscore matrix (Wright)
and Mead, 1975, 1976). '"Best fit" techniques a required for the
Bayesian and regression models. The binomial models do not rely direct-
ly on observed data, and hence, do not deal directly with measurement
error. Instead, for any hypothesized level of mastery, the models pre-
dict the observed score distribution. Adequacy of the models' predic-
tions can be evaluated by.fitting data to the hypothesized distributions.
A more complete comparison of how these models are affected by meafure-
ment error must await either Monte Carlo simulation studies or consider-
able efforts of empirical research.-

LY

Classification Error

Unlike measurement error, classification error refers to- assigning
individuals to inappropriate mastery level groups--mastexs to the non-
mastery group, and nonmasters to the mastery level group. Such errors
could occur even with error-free measurement. However, measurement
error interacts with classification error, Ffurther complicating the
decisionmaking process of assigning examinees to mastery level groups.
Suppose that, because of measurement error, all estimates of true score
tended to be inflated. For a given decision rule, this would tend to
decrease false negatives and increase false positives. Unfortunately,
constant measurement error is the exception rather than the rule, making
it virtually impossible to correct for it, and therefore separate it

from classification error.

The Block and Crehan models deal with classification error empiri-
cally by comparing the decisions based on a test score with'an external
criterion. Hence, .the classification error can be determined simply by
counting the number of observed misclassifications. Tf examinee groups
remain similar over time, these models probably provide useful and stable

" estimates of misclassification error.

" Because none of the other models incorporates an external criterion,
a direct measure of classification error is not possible. 1Instead, the
models rely on the distributional information obtained for the estimated
true scores. With this information, it is possible to predict the prob-

" .ability of misclassification, given various cutoff scores. Further em-

piricgl work which incorporates an external criterion is needed to
verify the accuracy of such predictions.

- L]

An essential ingredient of decisionmaking on the basis of CRT
scores is the concept of cost--both to the examinee and to the system
which he or she is being prepared to join. Consider the case of profes-
sional licensing, such as for new medical doctors: with an extremely
strigg,criterion, many would fail, morale would be low, and the system
(society) would be deprived of much-needed medical service. However,
with a very lax criterion, more examinees would pass who may not
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(unfortunately) be qualified, and society would thus suffer the conse-
quences of having "nonmasters" in practice. A similar case could be
made for automobile mechanics, military medics, television repairmen,
etc. Emrick's model is the only one that directly incorporates monetary
costs of incorrect classificatidns into its procedures. However, an
objective cost factor could also be incorporated into the other models
quite readily. But none of the models, as developed, deals with more
complex kinds of cost, such as morale, costs to society (which may have
to be - measured in terms of utility, not dollars), or even the cost of
testing as opposed to not testing (Nader, 1976). \

a.

Test Length

For performance-oriented testing, where each item may require con-
siderable time and expense, it is essential to be able to approximate
the minimum number of items needed for good decisionmaking.

Neither the Block nor the Crehan methods explicitly deals with
test length. These models were designed to show what happens when
existing test results are compared to an eitgfnal criterion. However,
since the data are available, it would be possible to reevaluate the
results, assuming that only some of the test items were used. The
regression approach allows for shorter tests,‘but does not provide
for extrapolation to longer tests.

Since the binomial model does not rely or. observed data, ~results
for tests of any length can be predicted. This asp:ct of _.ie nndel is
particularly attractive, since a first approxir ticn to test I r3th can
be easily tried out.

The all-or-none models use observed dats to helr gencrate t-e neces-
sary parameters. Once the values are availakle, it is possible zo pre-
dict the results for tests of any.length. As .. the Bayesian mc3el,
such predictions will be valid only if the exami 1ee groups’ reman rela-
tively stable. . T ’

The Bayesian models can also be used as a predictbr for test re-
.sults of any test length. However, estimates of the values of several
prior probabilities must be specified. In order for the predicted
results-to be applicable to real data, the estimated prior probabili-
ties must be close approximations to the priors as determined post hoc,
after data have been collected. The main feature of this model--to
reduce test length as a function of increasing prior information--will
be minimized to the extent that the prior information departs from cor-
rectly characterizing the population's proficiency under -investigation.

The logistic model of Rasch can only be used to predict the results
- on a test that includes items that have already been calibrated. How-
ever, the logistic nature of the model makes it extremely powerful in
)

B
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-paper, is designeq for item analysis. Other models r€ 1eg t , elt?ed
e r

this respect. gjince the item gifficulty values calculat
the procedure are invariant across examinee groups ©f dlff ring 2 lllty
any subset of jtems can be uged with any group of €¥@ mln <7
more, the errorg assoc1ated with each calibrated iteM ay
which can lead to precise predictions of classification & 710
made up of a subset of the original item pool.

ConceptuaiiZation of Mastery

VI

i

The only modgels that explicitly define mastery aTre 11’0r One
models. Deviatjons from perfection or total lack © § are defy
as measurement error. Mastery is not explicitly gef ned in anY of thg
other models. Ejther test performance is related tO SOmg gther PerfOrm
ance (Block and crehan) Or an estimated true score ©O0 & o tlnuurn 1s
provided. The models can then pe used to evaluate te€st resulté on_any,
specified definjtion of Mastery.

These (contjinuous) models require that the tester be
sitive to system requlrements If mastery is deflned 1n ermS o Ty
high performance, then very few examinees are 1ikely to be ¢l asslfled
as masters; howeVer,‘lf mastery is defined in terms of 1@ demandlng
standards, the tester (and the system) runs.the risk ©f hav ng @ Mas~
tery group that jgs less than adequate. Thus, the'Valldlty the defl\
nition of mastery jin terms of the system requlrements beeome
issue. Empirical studies are needed in specific corlt Nt rea
mine "how much apjlity" a master should have. Lo

xtre’“elz Sen.

~

Characteristics of Items
’

. Only the Rasch 1og1§!!c model, of all the modelS dls ssed

in this
ras
assumptions or as definitions, guch matters as how itéms are S

item difficulty, item homogenejty, and item 1ndependence ce rtainly ig
an item set can be shown to viglate these assumptions Or Qefi nitions,
the application of such a model would be questionable- Li rtle theorety
cal or empirical work has been done to demonstrate the Yopystness

these models to vjplations of the assumptions.

1
L

>
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£ o S . APPENDIX A

o A GENERALIZATION OF THE EMRICK MODEL FOR THE CASE OF
‘ UNEQUAL PROPORTIONS OF MASTERS AND NONMASTERS \

1 ,
Kenneth I. Epstein Vi

. - > .
« ~« The phi coefficient is a leditimate measure of correlation for
. data’ expressed,as frequencies or proportions; it is not appropriate
for conditional probabilities. The entries in the table of measure-
‘ment errors proposed by Emrick and Adams (1970) and Emrick (1971a,
" . '1971b) are cdnditional probabilities. A simple numerical example
 -*llustrates the type of problem which may occur if conditional prob-
-abilities are used to calculate ¢. Assume that a group of examinees
is made up of 80% masters and 20% nonmasters, that 10% of the mastery
”gggqp incorrectly respond to ‘an item, ang that 5% of the nonmmastery
. . .group correctly respond to the item. This situation is represented
" in a fourfold table in Table A-1. :

Tl Table A-1
ﬁg. s - Hypothetical Response Data for
BRI . Masters and Nommasters
B %l
- \\: }'} o True State " Observed #esponse
o o . : . < -
g . .
2, B B , - Wrong Correct
- . . }l
T — Master .10 .70 .80
- P g - Nonmaster .15 .05 .20
ST /N
Yot VTN .25 .75 1.00
| [ . . ,
¢ ’ 3 I °

¢

JThefphi coefficient for Table 1 is:

(.70)  (.28) - (.10) (.05) _ 5774

'.‘,J'. " (b:
- ' J(.80)  (.200 (.25) (.75)

-

.5 n kqi:above represents a valid use of the phi coefficient.
" \‘) FN . * ) -

v . My appreciation to Dr. Géofge Macready for pointing out the problem
: . and suggesting the direction of its solution.

»
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We may now calculate & and B for the above data. O is defineq as
the probability that a nonmaster responds correctly. B is defined as
the probability that a master responds incorrectly. For this example:

N

c

A
Q
1]

a .05/.20 = .750

B .10/.80 = .125

—
1
™
|

-875

These data are represented in Table A-2.

Table A-2

Measurement Errors and Mastery State
for Hypothetical Data

True state Observed response
e Wrong Correct
Mastery B .125 1 - B = .875 1
Nonmas tery 1 = % = .750 o = .250 1
3
~.875 - 1.125 2

The phi coefficient for Table A-2 is:
(.875) (.750) - (.125) (.250)
b = = .6299
(1) (1) (.975) (1.125)

Clearly the two calculated values of ¢ are not in agreement. Table
A-2 is the sort of analysis proposed by Emrick and Adams. It does not
represent a valid application of the phi coefficient.

Fortunately, one can obtain a table of proportions similar to
Table A-1 from a table of measurement errors similar to Table A-2,
simply by multiplying each entry in the mastery row of Table A-=2 by the
proportion of masters, and by multiplying each entry in the nonmastery
row of Table A-2 by the proportion of nonmasters. The general form for
tbis relationship is represented in Table A-3.

~

g 50 .
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Table A-3

Table of Proportions for Obéérvéd Responses _
and Mastery State in Terms of{a,?ﬁ, P(M) and P(M) .

True state . Observed response

" Wrong | Correct

\ . ‘

Mastery . PMB P(M) (1:- B) P(M)
Nonmastery P(M) (1 - o) P(M)a . P (M)

P(M)B + P(M (1 - a)  P(Ma + P(M (1 - B) 1.0

v
The phi coefficient for Table A-3 is derived as’follgws: , [
: I

P(M) (1 -B)P(M(L-a) - P(MB P(Ma

¢ =

VIEMB+ PM (I - a)] [P(Ma + (M) (1 - B 1 p(MP(M)

P(MP(M [(1 - B)(1 - o) - Ba]

VIPMB + P(M) - p(Mal [P(Ma + P(MA- P(MB] P(M) P(M)

"P(MP(M) [1 -8 -]

\/[P(M)P(IT'I)OLB + P(M2B - P(M2 B2 + B(M) 20 + P (M) P (M) - P(M)P(MB -

P(M) 202 - P(M)P(Ma + P(MP(MaB] P(MP (M)

~

P(MP(M) [1-a- B8]

—

P(M) .2 . P(M) P(M) 2

P (M)
af + E?ﬁT B - ETET R 5 a+1-8 - ) o - o + aB]
[p () B (W) ]
[1-a - 8]
o P (M) _ g2 LBPM 2
\E a B+2a8+—————Pm) (B ‘B)+P(M) [a - o]

Finally, we note that for the case where P(M) = P(ﬁ), the formula
above reduces to the formula given by Emrick and Adams:
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[1 -a - B]

¢ =
Vl—a—8+2a8+8—82+dr—a2
[1 - a- B]
AN1- o - 208+ 8%
[1 -a- B8]

\/f'- (a - 8)2

For the example cited in the text,

l1- .06 - .12 .82 ,
¢ = = = .822.
\,1 - .0036 .998
?S If we have a three-item test, upon substituting into equation (3),

we obtain , o=

1o .12, +1 1 F2 03
J1="6 3 ' 1,3

1o .06 x .12
P9\ T - oe T - .1

log .128 + 0
= ' = .4339.
log .0087 Coer

- A
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APPENDIX B

CRITIQUE OF THE SIMPLIFYING ASSUMPTIONS IN USING
REGRESSION MODELS FOR ESTIMATING TRUE SCORES
FROM OBSERVED SCORES '_ -

. James McBride .
Army Research Institute

Since R(T|x) is hot an unbiased estimator of T, the standard devia-
tion of the error of estimate e is not the same as the conditional
standard deviation of the true score for a given observed score. That
is, if e is an error of estimate (% - T), then Gz(elx) = Uz(Tlx) + bias?.
Here, Gz(Tlx) is the conditional variance of the true scores for given
observed scores, which is the distribution portrayed in Figure 3 and used
for inference to the misclassification probabilities.

However, oz(elx) (or equivalently, a2(e)) is then~notbthe appro-

.priate variance unless there is no bias; that is, unless E(Tl%) = T.

And this latter relationship is generally not the case. Estimation of
classification error probabilities using 02(e) as the conditional vari-

-

ance would therefore be inappropriate. "

Linear regression of T on x is a convenient simplifying assumption;
but in actuality, the regression may often be nonlinear. Also, the
distribution of errors may seldom be normal--or even symmetrical; the
same holds true for the conditional distribution of T. In sum, the
estimation of error probabilities from simplified linear regression
models may be considerably distorted due to the above complicating
factors.
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