
DO 0 ENT F UNE
44

1D-168 60 IR 007 095

ABIHOF
TITLE

INSTITUTION

SPONS AGENCY

FEBORT NO
PUB BATE
CONTFACT
NOTE

EDIRS
DESCRIPTORS

ABSTEhCT

Dageforde, Mary, L.; Beard, Marney B.
The BASIC structional Prograi: Supervisor's
Manual.
Stanford Univ. Calif. fnst. for Mathematical Studies
in Social .1c.lence.
Navy Personriel Research and Development Center, can
Diego;
NpPDOerTN--/B-10
Apr' 70
N-00123-167C-1 43

TiOrrela-related d- u n.s, see IS 007 092-06

MF01/PCO 2 Plus Postale.
*Computer Based Laboratories; :compp_tex-Maeagea.
fnstruction; computer Programs; 4CoMpuer Science
Education; Higher Education; -Input OutpUt;,
*instructional Programs; Programing; ,-*Programing
Languages; *Supervisors; TutorialfPrOgrams

-This manual for supervisory instructors documents tiht!

goals, methods, and operation of the BAS;C Instructional Program
(BIP), an interactive problem-solving laboratory that teaches
.elementary programming in the BASIC language. The first two sec-L.1.0ms
describe features of UIPAhat may be of interest to the supervisor,
especially, the individualized task - selection algorifhm and the
Curriculum Information Network (CIN) which stores the relationsna_ps
among elements of the author-written course material. The remaining
sections describe in detail how to supdrvise the operation of BIP,
includin,g (1) the creation and use of certain files that may be
written to during BIP execution (e.g., when there is an error
model solution or when a student disagrees with the solution
checker); (2) how to add' and drop students from the course; ()

details of adding new tasks to the BIP curriculum and a descLip
of the solition checker; and (U) how to obtain student progress
reports. Appendices include a descriptip of the technique group
the skills in each, lists of syntax and execution errors, sample
pages from the tasks file, and sample runs of BClass and Report
Programs. (Author/CMV)

*** ******** *4. ******* ** * * *

Seproductions supplied by EBBS are the test that can be made
from the origidal document.

********** *******44* **********4***********

Te. tca! Note7

IT; PAP:at/IFNI CAT I-ItAlf
ELK/CA/10Ni WrLf
NATIONAL INS TITTUrt or

EOLICA/ION

1)(.}(I/AAF 141 IlthS Ili N RGrw euEan!,Y lir(r FD I
DIE' PER 014(-^III
AT ING IT IIQIN TS OT orINIcos
srArt C./O NOY N TC FS5ApilL 1/TIIPI/F
mm Orricim #raenwrmr or.
COI)Cnriono ro5lt ION OP

THE BASIC INSTRUCTIONA PROCRAN: SUM_

Nary _ Qageford
Harney 11. geard

April 1978

MA AL

Ins tute' for Mat hematical Studies in the S cial .Sciences
Stanford Univer6ity

Palo Alto, California 94305

Reviewed by
John D. Ford, Jr,

Navy Pelson el Research and Vey loPMerlt Center
San Diego, California 92152

This
Benrcl inat

sub ejec
Dialogue
(OP).

advanced

This
(Begirme

(BIP), 1.411

-46, has 1-1

Special. R

this .re.

others
(Note 2
into
for com

FOR EWORD

arch ana do ve?oprlent was conducted in response to'` avy DeciSion
Paper, Education and Training Development (mCr 7,010B-PN) under,

0108-PN.32, lAdvan ed Computer -Bated SYstems for Instructional
d the sponsorst1ip ref the Naval Education and Training
overall objective of the su;project is to develop and, evaluate

hniques of individualized instruction. \

ort 18 one 1-4,0 sir les of six reports dealing with the BASIC
All7Purpose Syobol is Instruction Code) InStruetional Program

c1:1 is a "tuterla14 prdgromming laboratory d_signed for the student
d no Previous frothily inprograming. The report, NPBDC
port 77-2 (Note 1) wa produced as a manual or students, and

as a manual fot supervisors in charge of t e lap system. The
rn the conversion of tli BASIC program into' \the MAINSAIL language

system documentation (Note 3), conversion'of the student manual
NSAIL language (Note 4), and curriculum infoation setwerks

t_-- assisted instruction (Beard, Barr, Gould, & esteourt, 197B).

Thg
'The coat

k was.perf_
t monitors

J. J. CL
Commanding leer

tract 100123-76-C-1543 to Stanford Univers
'Fletcher and Dr. JaM s D. Hellan.:

The WIC
laboratory that
manual document
instructors.

to

ancL'

amore

11144ARY

ctionar Pr (BIP) is an interactive problem-solving
ches elementary pragramming in the BASIC language. This

the goals, methods, and Operstioti-of DTP for supervisory

firer two sections de :vibe features of BIP ttlat may, be'of interest
upervisor; especially the individualized task - selection' algorithm
Curriculum Information N twqrk (GIN), which'etdres the relationships
:merits of the author-wri co course material.

The r atning sections describe in detail all the necessary informitton
on ow to supervise. the operation of BIP. Section 3 describes the creation
and use of certain files that, may be written'to during BIP execatiowte.g4
when there is an error in a model solution or when-e'ptaent disagues with
the solution checker) . Section 4.tells how to add and Oop 'students from
the coUrse. Section 5 provides details of adding new asks to the BIP cur
rieulum and a description of the solo ion checker. FinallY, Section'6 tells
how to obtain student progress reports.

,SECT1ON 1. 1, TRODUCTIOV

TJON 2. TUJ HIV OURRI[CUIU

2 "yi. OnseGods
2 .2 The CurriZ,,oL66 Info -111:

'individualized T40 Sol. ction

w

SECTION 3. CREATLONO USE .s

3.1 The MODJEA File
3.7 The ARGUE Filo K

3.3 The FIX File
3.4 The HOLES File

Page

11.

SECTION 4. ADDING ANM bRO

4.:1. The WHO File
4.2, History Files .

4.3-. Dropping Students

SECTION 5. ADDING NEW TASK

5.1 Details of. T nk Info nation Format
5.2 How the Solut on Ole-ker.Works

5.2.1. Whether to =

5.2.2 tow Much t store and Compare
5.2.3 Specifying XNPHT, Variables and Val es

A SECTION 6. S UDENt PROGRESS REPORTS .

REFERENCES .

REFEIZNCE NOTES

APPENDIX A- -THE

APPFNDIX BLIST

APPENDIX 0SAMPLE 5 PRON ME TASKS F

AP.PEU11 1X D--SAMPIEA014. OF IICLAS AND UPC

V

el V

Ai

Qt E GROUPS AND TRE SKIL

SYNTAX AND EXECUTION ERRORS .

17

17

20

20

20
21

25

27

. 27

A-0

. B-0

-LIS OF FIGURES

A a milltIfed ortion of the enrrlculum network

Working t

Selecting then next tas

on! h a task .

a a 6 @

to k informs_ on file TASKS

6 a a 4. 4

'Page

18

SECTIONAa. INTRODUCTION.

The WIC Instructional Program (BIP) is a stand - alone, fully self-
contained course in BASIC programming at the`- -high school/college level
(Barr, Beard, & Atkinson, 1976). It is an interactive problemsolving
_laboratory that offers tutorial assistance to students in solving intro-
ductOry programming problems. These problems are presented in an An-
dividualized sequence based on (1) a representation of the structure of
the curriculum and (2) a,model of the student's state of knowledge,

The goal of the tutorial laboratory is informative interaction with
the student, which is provided by an instructional BASIC interpreter,
information on BASIC syntax cross-referenced with, the student' manual, and
debugging aids. The system also has access, through the Curriculum In-
formation Network (see Section 2.), to features that,the student may use
to help him complete his current problem,. These features include hints
(additional information about the task) and a-stored solution program that
can itself be executed.

This manual documents the goals methods; and operation o the BASIC
lqstructional Program for supervisory instructors. It tells howto set
Up.new 4tudents to add special curriculum,. and to obtain student progress
reports, and describes the goalS and details of individualized task se-lee-,
tion.

2.1,Curricu Um Goal

sEcTION ruP CtJRfl CIFLUM

Prior experience with computerassisted-itistruct on (CAI) 4program-
.ming a t the'c011ege level has convinced us that many students who wish to
learn the fundamental principles and techniques of programming have limited
mathematical backgrounds. More important, they have little confidence in
their own abilities to confront problems 4involving numeric manipulation.
The scope of the 3IP curriculum, therefore, As restricted to teaching the
most fundamental of programming skills-and does not extend _to material re-
quiring mathematical sophistication. (You' may, of course, add such tasks
if your student group is more mathematically oriented.)

The curriculum. is designed to give the students practice and instruc-
tion'in developing interactive programs in order to expose them to uses of
the computer with which they may_be-unfamiliar. The emphasis is on programs
that are engaging and entertaining, and that can be used by other people;
While writing each program, the student keeps in mind a hypothetical user--
a person who will use the program far his or her own purposes and to whom
the performance of the program must be intelligible. Additional demands
for clarity and organization are forced by interactive programming, the in-
creased noticenGility-of "bugs," and-the added motivational effects.

Numerous texts were examined as possible sources for programming principles
that must bedeveloped in an introductory course and for the problems that
illustrate thope principles. Ideas were incorporated frill-a .(1) general com-
puter science lextbOoks (Forsythe, KeenanOrganick, & Sternberg, 1969), (2)
the notes for art Introductory programming course that-were oriented toward
the ALGOL language but easily generalizablc (Floyd, 1971), and .(3) books
and notes dealing specifically with BASIC (Albrecht, Finkel, & Brown, 1973;
Coan, 1970; Kemeny & Kurtz, 1971;- Nolan, .1969; Wiener & P.oss,,1972). In
addition, problem Set% from Stanford University's Introductory computer
science c urseSvwere collected and examined.,

In general, the curriculum provides useful, entertaining, and practical
computerce erience for students who are not necessarily mathematically
oriented, t gives them the,. opportunity to develop programming skills while'
working on roblemnr that are challenging hut not intimidating. In these
problems, the difficulties stem -from the demands of logical program organize-
ion rather than from the complexities of the prerequisite mathematics.

The Curriculum 't formation Network (GIN) is intended'to provide the in-
structional program With an explicit knowledge of the astructure of an authors

curriculum.- It contains the Inierrelations between the problems
that the author would have used implicitly in Iletermining his "branching"
schemes. Thus, it allows meaningful modelling of the student's progress
along the lines of his or her developing skills (not ;lust a history of right
and wrong responses), without sacrificing the motivational advantages of

human orfanizatIon of the curriculum mate ia,l. For example, in the BIP
course, the CIN consists of a complete c e. crtp ion of each.of 100 program-
mng problems in terms of the skills.deve .oped in solving the problems,
Thus, the instructional program-can moniter the stUdent's progress on
attaining these skills, and choose the next task with,an appi.opriate group
of new skills. CIN introduces an intermediate step between the tim
when the student's history isrrecorded and his next problem is selected:
thus, it becomes a model of the student's state of knowlAgesince it has
an estimate of his ability in the - relevant skills, not just a record of his
performance on the problems he has completed. Branching decisions are based
on this model instead of being determined simply by the student's success/
failure history Zn the problemsite has completeU.

In this way, a problem can be presented for different purposes to studeVts
with different histories.- The flexibility of the curriculum course,
multiplied as a result. More importantly, the individual problems in the
curriculum Can be more natural and meaningful; they do not necessarily in-
volve only one skill or technique.

2.3 Individualized Task Selection

In BIP, our curriculum goals are the mastery of certain programming tech-
niques, such as simple output; using loops, conditional branches, and arrays;
assignment to variables, etc. The techniquesNare linked in a` .linear order,
each having but one "prerequisite" (i.e;, the previous' technique), based on
dependence and increasing program-complexity. They. are interpreted or
described by the list of skills that are required in the solution pi.ogram..
The skills themselves, which are very specific descriptions of particular
programming behaviors like. "print a string literal" or "initialize a counter.

"variable" are not themselvewhierarchically ordered. Appendix A provides a
list of the techniques and the skills grouped within those techniques. The
programming problems, or "tasks" are described in terms of the skills they
Use, and are selected on the. basis of this description, relative to the
student's history of competence on each skill. Figure 1 shows a simplified
portion of the curriculum network, and demonstrates the relationship among
the tasks, skills, and techniques.

Computer programming, like many other procedural subjects, is better
learned through experience than through direct instruction, especially 1
that experience can be-paced at a speed Eit4 ted to the individual student.
Throughout the BIP course, the primary emphasis is placed on- the solution of
programming tasks. BIP does -not present a sequence of instructional state-
-ments followed by questions. Instead, a problem is described and the students_
are expected to write their own BASIC program to sblve it. While developing
a BASICprogran for each task, the students are directed to appropriate
sections of the student-manual -for full explanations of BASIC statements,
programming structures, etc. They are asp encouraged to use the' TRACE de-
bugging facility and various "help" options such as HINTS (additional in-
formation about the task, or the steps rtquired to reach a solution) and
the DEMO, which'executes the model solut2ot!.

TECHNTWES

SKILL

TASKS

SIMPLE
VARIABLES

VALUC

Print
string

nt
ing
lable

Print
numeric
Variable

Assign.
string
variable
with INPUT

Write a progra
prints the.strin g
"HORSE"

TASK HORSE

Write a program that
'uses INPUT to gei a
string from the user
and assign it to the
variable W$. Print

TASK STRINGIN

-Write a program that
first assigns the, value
6 to the variable N,
hen 'prints the value.

of N.

TASK ASSIGN

gure'I. A simp ed portion of the curriculum network.-

When a stu'Lnt enters the course, he finds hiMself in task GREENFLA
which. equires -Itne program solution. Because this is expect(ed
be his first programming experience, and perhaps his fitstinteracti6n of
any icindrwith a Irputer, he is led through the solution to the to 'lc n

very small step, -GREEMFLAG is the only task in the curriculum th_ e-

sents text, asks questions, and expects he ,student to type "answers
which alleviates, the trauma of being told to write a; program in his first
session. However, since the student's responses are frequently co ands
that are passed to BIP's interpretert he can see the effects of hi= input,
and.he emerges froth GRENFLAG having written and .executed a gentli n program.

The sequence of events that occur as the student works on a sk is
shown in Figure When he has finished the task by successful y running
his progiam, the student Proceeds by requesting "MORE." His p gtess is'
evaluated after each task. In the "Post Task interview," he asked to
indicate whether or not he feel6 that he needs more work on skills
required by the task, which are listed separately for him.'

As so the student completes GREENFIAG, therefore, e instructional
program knows something about his own estimation of his ab ities. to
dition, for 1,futureTtasks his solution is evaluated '(by omparing its
outp6t-with that of the model solution run on the same test data) And the
results .are stored with each skill required by the task. The, program then
has two measure of the student's prOgress in each skill his self-evalua-
tion and its owh eopparison-test results.

After mmpleting a task (he may leave a task without iompleting it), the
.student is free either to request another, or to work on some programming
project of his own. The algorithm by which BIP selects a next task, if the
student requestS.lt, is shown-in Figure 3.- The selection process begins
with the lowest (least complex) technique. All the skills in that technique 'I/
are put into a set called MAY, which will become the set of skills that the,
text task "may

`N.
The program kte examines the student's history on each of the skills

associated with the technique to see if it needs further work. This criteriA
Judgment is the heart of the task-selection_algorithm, and we _eve modified
it often.' Two keyr counters in the history are associated with each skill.
One is based on the results of the solution checker, and'imaniters the student's
continuing success in using the skill. The other is_ based on his self-evalua-
_tion, and monitors his own continuing confidence in the skill., The current
definition of -a ,'needs work" skillis one on which either counter is zero.
For each successful usebf a skill, ,both counters are incremented. If the
student quits a tq,sk requiring a particular skill the first counter is
decremented; he 'requests, more work on a skill, the second counter is
zeroed. Any suclOnot yet mastered" skills are put into the MUST set..
Eventually the program will seek to find a task" that uses some of these
"must" skills,

Student
program
"fails"

__-

Select and present

Student writes-program to solve the p

- 'BASIC interpreter, ERR DOKTOR

- Hints

DEMO: observe eiecution of model solution

MODEL: see listing of model Solution after
all other aids exhausted r'

References to BIP student manual

Student nans.program successfully.
-Ready to ,continue, types moRg.

Compare student program to model-
=solution. Update student history.

_Student program "succeeds"

Post task interview. Obtain
self evaluation, update

.

student history.

Figure through a task.
_

S tar- t at

Yut ,sniffs that
EZMORIC In MUST set

any
dn

ru ST

}TR

r1,10 !o
2ligher

Ygs

-+s: NAM those
with SOcIle MUST Oki J 8, rao

mut side

Found ROLE. irt
eurr I cu Itun . -Send
message to f le

Fig ure 3 Sale ct iu & next

Student haE
conpl et ed
cu rr i eu Juni

t f Suct-1,-sf-dlls are found ,firrlicating that the student has mastered
alb t }1e skf:-110 a that techmicine le-Nei), the search process moves up by
one t,chnicIfte,' aeldimg all its skIlls to the MAY set , then sqeking MUST
skx1Ls again. Once a 111.15T set i generated, -the search terminates, and

t he tasks ar-e examined. --rihoe considered as a, possible next task
for take st-Laclertt Inds t r equ /re CO at last one of the MUST skills, and (2)

o sk=111.--9 o'llESide- of tile MAY set.. :Finally, the tas1(in this group that
Tequizeg the a rig3e1 n-umber of mi)ST skills is presented as the next task.
Thi s, in the siaq:Dli-Jtel scheme sr_town in F igure 1, assuming that the student
had. not Yet met Che criterion on the sRills shown, the first task to be
presented would De OitSC,,hacause its Akill 'lies in the earliest technique,
and wczlniel cons ti-D.ute t ie first muST set. Task ASSTGN would be presented
no t, since Its ki 1s cone from the next higher technique; STRINCIN would
be presente d L ast- of t Lies e three.

Ara inte tes tin -__111r.310 rleV elcJpinent technique has uvulved [naturally
in this Bch enle If >lIF has se lac tea the NUST and MAY sets, but cannot find
a t -is k. trot ae &ts the boy - re -11.0,_ renients, then it has found a "hole" in
the cu-..cu lurn After writing a message to the abLEs FILE (see Section 1.4)
desri__bira Ih'e na tun of the ra Issing task (e.g., the MUST and MAY skills) ,
the tn skL-se lee ',Ito-a procedure en(ala in _s' the next higher technique. I t generates
aeu.r, a xp431ti el rqus7 and MAN et r, And searches for an appropriate task. Again,
if norie i-s found, a nevi search he ms, baERed on larger K1 S7 And MAY sets.
the only sicoaCiom to v../hich this yroceSs finally fails to select a task occurs
when t he student Thas cc-Fvered all of t 1.1.e curr leulutn.

SECTION 3. CREATION AND USE OF FILES'

There are three groups of files kith which you should be familiar. The
group includes those that may be written to during BIP execution;

namely, the MODER, ARGUE, FIX, and HOLES files. The second group consists
of the WO Mile, which lists the students enrolled in the course and student
history files; and the thrd is the text file TASKS, which includes the
description, model solution,/hints, skills, etc. for each task. The first
group is described in this section; and the second and third groups, in
Sections 4 and 5 respectively.

You should create and initialize the MODER, ARGUE, FIX, and HOLES files
before any students begin by running the program FMAKE. This program asks
you four questions: "Do you want to create the MODER . . ARGUE .

FIX . ROLES file?" to which you will respond with a "Y" or an "N "
The file(s) is created and initiated, when yob answer "Y."

All fOui files are created the-first time you run EMAKE. You should
cheek 'these files occasionally (when students are not running BIP). How-
ever, you must not modify them in any way! They are random-access files with
a pointer to the end of the file, where BIP appends further information. rf
you add pr delete any characters, this end-of-file pointer will be incorrect,
and you may lose information. What you can do is rename one. (or all) of these
files, create a new file (using MAKE), and then do whatever you want (e.g.,
delete messages you've taken care of) with the "old" (renamed) version.

1 The MODER File

BIP writes a
model solution.

age to the MtiDER file whenever an error is found in a

Example:

48 MARILYN SMITH
Model error in : CALCULATOR
Execution error number: 5

Each -age will give the nature of the eiioi (i.e., syuta.A or
and its error number. See Appendix B for lister of syntax errors and execu-
tion errors.

You should fix the appropriate model
students are running BIP) and then (es I
change to the TASKS' file) run the prog

DIP w -ssage

the solution checker.

solution in the TASKS tile (when no
always necessary after you make a

am TODATA to create a new INIT

ARGUE file whenever a student disagrees with

Example:

99 SUSAN JONES
Argue with task: INIF
Attempt If 1
Program:

10

20

30

40

50
60

PRINT
INPUT
IF X
IF X =
IF X
IF X

"TYPE A NUMBER BETWEEN

1 TMEN 70
2 TftEN 80

3 THEN 90
4 THEN 100

1 4"

70 PRINT "YOU TYPED A 1!
80 PRINT "YOU TYPED A 2!"
90 PRINT "YOU TYPED A 3!"
100 PRINT "YOU TYPED A 4!"
999 END

tails:

Too much output.

YOU TYPED A 2!

Look-at the unaccepted student programs shown on the ARAJE ftle. The "Details"
part of the messAge lists each:line of output the solution checker was looking
for, follOwed by a "t" (if the student's program produced that output) or an
"f" (if it didn't). Other iinacceptabre or Mining output (as described in
Section 5.2) is also noted under "Details."

An examination of the listing of the student's program, the details from
the solution checker, a knowledge of what the program was supposed to do (you
should consult a listing of the TASKS file), and of how the solution checker
works (see Section 5.2) should make it clear to you why the students program
was not accepted. You may -wish to contactthe student with an explanation.

3.3 The le

The FIX file is composed of messages sent to you by rite students.

Example:

55 MARK JOHNSON,
Note:

Terminal 121 is not working.

The HOLES File

The HOLES file notifies you of "holes" in

Example:

28 JOHN ADAM
Technique is 5
Set that faLledy.was. must
Skills in must set are

55 74

12 1C3

As explained in.Sect on
the student must require a
si the. MAY set. j'hus,

but c find a task that meets

on ldered as a po-ssible next task
one of the MUST skills and no skills
has selected the.M.JST and MAY sets
above reluirements, then it'has found

a. "Hale" in the curriculum. to this case, BIP's task-selection algorithm
will examine the nel{t, higher technique, geaerale new expanded MUST and MAY
sets, and cantinue the searcn,for as appropriate task.

It is riot necessary for you to take any a-__ "Bole will be fairly',
common, and don't necessarily adverdely affect BI P's task selection. Bow-
ever, If you wish to expand BtPws curriculum, the information in the ROLES
file may guide you in designing additional tasks.

13

eCTION 4. ADDING AND DROPPINC STUDENTS

T now students In the DIP cuur , nsign and tell them their
student numbers (ny numbers less than or e=qual `to 999) , create their
history filia, add their numbers and names to the WHO file '(explained
below), give then student manuals, and tell then how to start BIT run-
,ring., The sign on procedure is-explaiftedin the student manual.

Two files are involved in the a ing and dropping of each OF student:
(1) the tetw4ile "00," which lists each student's number, name, and
(Oiptionally) sex, and (2) the individual student's personal history file,
which Ls used,t0 store information about his current status (what task he
is currently working dn, how -many tasks completed `moo far,- ent.), AM past

,performance on1 tasks and skills.

4.1 The

The WHO fiile has one line of information each student curre4tly
enrolled in the `,course, and the .end of the file is signalled by the' word
"END." You, the supervisor, have control over the WHO file: you create it
before any Students try to sign on, and you add and delete students from
the course by adding and deleting lines from the file. It is not necessary
for the-lines to be arranged numerically, by student number, although you
may wish to keep it that way. The format for each student line is:

<studeut name<space,:las name(tab<F or M>, where the
F or Mtsex ltnclicawtor, is optional and each tab and space could actually be
any number -abS'and/br spaces. Here is an example of what the WHO file
would look if thereiwere,three students to the course, assigned (by
you) numbers 101:

99 USA JONES F

100 MARK SMITH
101 N5 ADAMS
END

A student
checks to,make
file for a fin
if the name pr
line, HIP tell
logs him off.

on by ceiling BIP his number-,ud first name. Bit' th(±11

sure that he is enrolled in the coarse by searching the AO
h that number and name. If no such number is found, or

Tided by the student does net match the name in the appropr
the student that the number and/or name are incorrect, and

The student must then ask you f ©r the correct information.

4.2 ElELary_21192

When a student is added to the WHO file,
and initialized. ftUll the program NEWIIST? whici
wish to create a history for. Type a list of
commas and/or dashes, and NEWHST will cres

t.

15

higory rile must tx\created
sks whiCh student(s)\you
dent numbers, separated by
initialize their histories.

Th'e name of til student's history file consists of the letters "LIST"

followed by his nunber. Thus the above three students' history files

would be "HST99," "HST100," and "HST101." History files are data files

1

that you shbuld ngyer try to read or edit. Their information is stored

in.a comact form identical to the internal representation 'within the

computer, not readable characters.

4.3 Dropping

To drop students
and their lines in th
may, of course, be,-.10verl
and set up-as usual.

course, simply delete their history f
. Students tilat are added subsequently

numbers formerly. assigned to "dropped" students,

to

SECTION 5. ADDINIt NEW TASKS

The curriculum for BIP is contained in a text file called TASKS. The
file is read by two different programs--TOPATA and INIT.

a. The TODATA program compreases certain essential 't -lfortnat ion

from TASKS and writesjit onto a data file call:t44NIT, which
The 'NTT used

to inii liiiize the curriculum data . atrueturo.

la rend when the studont signs nn.

b. Throughout a student's session RIP reads from the TASKS
file to access the text of the current task, its hints
and models, etc. The pointers that were initialized from
the INIT data give BIP efficient access to the text in
the TASKS file.

The format of TASKS is therefore somewhat rigid. Figure 4 and the folicw-
ing information describe the format and necessary contents of the file. If
no restriction is specified', none exists; for example, there is no limit
bmOohed on the number of skills allowed in any task.

5.1 Details of Task Information Forma

a. New tasks may be added either between current task's or at the end
the TASKS file. The FIRST page of the TASKS file (which lists the skills
for each technique and which has all the Information for the first task,
Greenflag) should remain the first page (see Appendix C, page C-1).

The tasks need not appear in numeric order.

c. A task's name and its number must be separated by a single space ot
a single tab. The task name may contain only letters, digits, and periods
(no other punctuation or-spaces).

d. The order` in which the task infornsurion is given is import tit. trot

each task, the following informftiort groups are REQUIRgli:

All the
hints f

*main *mor Task), *model, and *skills.

nformation groups are optional. For exampl there may be no
tairi task, in which case there simply is no *hint information.

e. Tasks are either MAIN tasks or MORETASKs. A MORETASK is usually an
% extension of its MAIN. It requires a minor modification of the program
written for the MAIN task, and is presented automatically afterthe student
completes the MAIN. When the student requests a task, BIP selects from the
MAIN tasks only, and most of the curriculum consists of MAINs. A MAIN may
have any nOmber of MORETASKS, which will be presented in the order in which
they appear in the TASKS file: RAIN task first, followed by its MORETASKS.
Appendix C shows an example of .nfcrtmatis for a MAIN task (BACK) and its
moreTASK (flack. 1).

17

*main (or *moroTask)
<task nam'e> <taskounhor>

*text
<task description)

*model
<code line for verifier =- see Section 5,2) #

<model. solution>

*hint
Hint #1
<hint /)1 2)

Hint i2
<hint /05

Are(WpS
<required

*disOns

erators, separated by commas>

<disabled operator,i, --n.parimd by comma

*regFm
<reouirocl functions; separated by commas'

*disFns
<disabled functions, separated by corlmaf,

*skills
<list of skill nunboL,, IN-WI-R I (WhLK, ,cpdtoLed by

<paRe mark -- npiihnot-
<blank I ine)

*main (or *morcTask)

<information for snhsoquent

*end

Figure 4. Format for task information in file TASKS

18

21

f. A task inay have any numrr of hints (though four seem to be as
many as students are likely to benefit from). Each hint must begin with
the work "Hint" and its number,,and each is terminated by .an asterisk on
the line following the hint text. The entire grdup of hints is followed
by a hash mark (#) on the line following the last asterisk.

'g. The operators (BASIC statemen
a

that can be required or disabled
4

LET INPUT GOT° IF
REM Dri.46, sTop FOR
NEXT COS_ RETURN READ
DATA REOPEN BEGINSUP, ENDSUB

Do not require or disable PRINT or _,_ because they are always au -1 atically
required for each task. If more than one operator is required or disabled,
they must be separated by commas.

h. The functions that can be requ

INT RNI)

red 1 e i ate;

If more than uric appears, they must be separated by commas.

i. The list of numbers fulIowing the "'skills" line-must be given in
numeric otder, separated by commas. The list of skills Is the description
of the task that DIP uses when it presents the student's next problem, so
the ski4118 should be carefully selected to reflect the requirements of 'the
task. The skills' numbers and meanings are included in Appendix A.

j. If a page trark is used to separate one task trout the next, It must
be followed by at least one blank line before the " "*main" or "*moreTask"
line.

k. "end" must be the laat thing in the TASKS tile. it yokl odd new
tasks to the end of the file, don't forget to delete the "kedd, add the
new tasks, and then rep,iace "*end" at the end of the file.

1. Many of BIP's tasks require programs that use INPUT to Inteiact with
a hypothetical user. Flh=n the solution checker evaluates a student's program
that includes INPUT, it ecutes the program with a specified set of values
for the input variables. The modsel solution given in the TASKS file must
include a REM statement for each of the input variables used in the model
program, describing the use of that variable, The format of the REM state-
ment is

variable name> IS: 'Aescriptien.

(For exam le: 10 REM X IS TIlE USER'S FIRST ADDErn
20 REM Y IS TIlE USER'S SECOND ADDEND)

Section 5.2 explains the coding of the model solution

19

a

The TASKS file is a text file, which makest easy to read and
change, Since RIP defends on the INIT data to provide accurate pointers
into the text file, the TODATA program must be run whenever a change is
made to TASKS. Any change, no matter how small (e.g., correcting a miss
spelle0 word), means that TODATA must be run.

5.2 How the Solu on Checker Works

When the student types 'MORE," his program is checked in a few dif-
ferent ways. The actual solution checker procedure is. not even called if
the student has not RUN the program since the last time he changed it, or
if any of the required operators is missing. Once these two tests are
met, the solution checker evaluates,"the student's program by comparing its
output to that of the model solution. The model is executed first (in-
visibly), and every ltne that it prints-is stared in an array. As the

student's program is executed (also invisibly), each line of its output
.is compared to. the stored outputiftom the model. T that line matches an
element in the model-output array a flag is set. If, after the student's
program has completed execution, any of the elements in the model-output
array have not been matched, he is.told that his program "doesn't seem to

solve the problem," and the unmatched elements are listed for him. if all

the model outputs have been matched, he is told that his program "looks
ok," and the post-task interview is presented.

In order to allow as much flexibility as possible in MP's curriculum,
the solution checker involves a number of complications. These fall into

three groups:. (1) determining whether the student's program for a given
task is to be checked-at-all, (2) specifying how much of the output the
checker should stare, and (3) specifying the values that the model and
the student's program will be given as input.

5.2.1 Whether to -hock

the TASKS file, the line
line" that gives the necessary information_
line,(perhaps the only character) is a semieo
will evaluate the program. Any other characte
that the student's program is acceptable. The

our TASKS. file is the number 9.

5.2.2 How Much o Store and coll211:e

flowed by a "codinA
the first character on thaL

then the solution checker
tells the checker to assume

character currently used in

Unless otherwise specified in the ceding, the checker will ignore
all string and numeric constants. That js, as the model and the student
program are executed, any expression contsini. ng a quoted string or a numeric
constant will hoL be stored for comparison. by ignoring string constants,
ElIP allows the student to have his program print messages of his choice,
rather than forcihg him to make his program say exactly the same things as

the model solution. (For example, where the model might print "TYPE YOUR
NAME," the student might prefer'to say VILAT IS YOUR NAME ? "; as long as his
program performs equivalent computations, he ihould not be penalized for the

20

nonessential aspects of the program.) Numeric constants in the output
are ignored because tliaey ate= rarely useful, and students should not,be
allowed to.think (as the data.indicate many have, in the past) that they
should do the computation and simply have BASIC print the already-cal-
culated result.

For those tasks which string or numeric constants are es-
sen,tial parts of the output (e.g., those early tasks that require a pro-
gram that prints a specified value, for illustrative purposes), the
character "s" or "n" must bo given in thk coding line. For example, the
model for a very simple task loOks like this:

odel
;s

10 PUN' "SCHOOL"
99 END

For this k, the only output from the model that can L. by the
student's ogram is the' string constant- "SCHOOL"; since the "s" appears
in'the coding line, the solution checker will store "SCHOOL" when it is-
printed by -the model, and when it is printed by the student's program.

Similarly, the model solution f6r another easy task is:

model

;n

10 PRINT 3
20 PRINT 3.1i
99 END

Again, since the purpose of the task is to illu
constants, it is necessary to store the numeric
the model and the student's program. Therefore,
the "n" flag.

atc printing numeric
output from both

coding line includes

Final ly, twcf rarely used options may be giveu. ", on rite
coding line specifies that the student's program must produce exa-tly the
same number of lines of output. If this program prints more than the model
Solution, it will not be accepted. A "v" on the coding line specifies that
all spaces that would appear at the beginning of a line of output are
ignored. Spaces within the line are preserved.

5.2.3 INPUT Variables and Values

The solution c
it (and the model solution
student or any other "user"
to tasks that require an int
from a user, the solution el

input values
variables used in the stud-
able in the model solution to
in a specially formatted .114M

include a list of the value(0)
A simple example is:

Lion:. the

evaluates the studen t's program.by exe,uting
nvisibly; therefore, no interaction with the
f the program takes place. To evaluate solutions
active program capable of dealing wall-input
raker must have access to two kinds of informs-

to be invisibly assigned, and the names of the
programs As described earlier, each
assigned via INPUT must be described
merit., In addition, the coding line

to be assigned to each Input variable.

2_

va

must-

X IS: THE USER'S NUMBER

10 NT "TYPE A NUMBER"
20 tUT X
34 PRINT "THAT NUMBER WAS "; X
99 END

The semica In indicates that the student's program for this task is to e

checked. The "2" in this example is the value that will be assigned to
the input variable during the invisible execution of the model and the

student's prosrem. Before the solution :hecker begins, it asks the student

for the input variable his program usesrhere, it would ask "What variable

do you use for THE USER'S NUMBER ?" The description ("the user's number")

comes from the RIM statement in the model solution. The advantage of these

complicatiOns is that they allow the student to use whatever variables he

chooses, rather than forcing on him the same variables used in the model

solution,

values are
the beginn

than one input variable is required in the task, their

given on the coding line separated by spaces and colons, as in

of the model solution for task CALCULATOR:

d 1 c
3 15 : 4

1 REM X IS THE CODE INDICATING WHICH OPERATION
2 REM M IS THE USER'S FIRST NUMBER
3 REM N IS: THE USER'S SECOND NUMBER

During invisible execution of the INPUT statements in the model, X.will get4

the value M, i5; and N, 4. If the student chose to use the variables

P, Q, and R instead X, M, and N respectively, then his INPUT P statement

would give the value 3 to his variable P, his INPUT Q would assign 15 to Q,

etc. (The REM statements are not required in the student's program; they

appear in the Model so that the solution checker can ask "What variable do

you use for , " and as additional clarification for the student when the

model is shown to him.)

Fins_ y if the requirements' of the task are such that a variable

is to be given a value via INPUT more than once (e.g., within a loop), the
of values to be assigned to each suchcoding line must include the 1:

variable, The coding line for

different

which me
dicating
X is exec
be assignn
the second t

ALCULATOR.1, which prints results of

lthruetic operations until the user types 0, links like this:

I

3 0 : 10 20 30 : 4 5 6

X (or whatever' variable the student used for "the code in
(aeration ") will be assigned the value 1 the first time INPUT

2 the second time, etc. M ("the user's first number") will
when INPUT M is first executed, 20 when INPUT M is executed

etc.

2,2

Some of MP'stasks require the student to generate random num-
bers. For the purposes of the solution checker, both the Model seintion
and the student's program must use the same "random" number if they are to
produce comparable output. Therefore, the coding line must include the'"r"
flag and specified values that will be used whenever the RND function is
executed during solution ,checking. The model solution for task GUESS.1 is

;r .600 .010 : 17 2 16 1 : "YES" "NO"
1 REM N,IS:.- THE USER'S GUESS
2 REM A$ IS: WHETHER OR NOT TO REPEAT THE WOE
10 PRINT "TAPE A NUMBER BETWEEN 1 AND 25. "
2a - INT (RND*25 1)
25 G =0 0

30 PRINT "TYPE YOUR GUESS."
40 IN_ Y
45 G -V 1

50 IF Y a X THEN 200
60 IF Y < X THEN 100
70 REM !! NOW Y MUST BE GREATER THAN X
80 PRINT "HIGH"
90 GOTO 30
100 PRINT "LOW"
110 GOTO 30
200 PRINT "RIGHT IN "- " TRIES"
210 PRINT " "TYPE YES TO P -Y AGAIN'"
220 INPUT A$
230 IF A$ 'YES" THEN 10
999 END

The "r" tells the solution checker that random value(follow. The first
time that the RND function in either prOtram 1,s executed during evaluation,
the value .600 will be returned. 'Since the statement that uses RND is

20 X -- INT (RNID*25

when the value of X (the random irieg r "pliAked" by the pi:ow:am will tie 1N1'
(.60 * 25 1) = 16. The values 17, 2, and 16 will be assigned to Y in Lurn
as the INPUT Y statement is executed repeatedly, invisibly, simulating the
user's guesses. After the assignment of 16, the values of X and Y will be
equal, so the program will execute the INPUT A$ statement, where the value
"YES" will be invisibly assigned, causing the program to "pick" another
number. This time .010 be returned as the value of RND, resulting in
X being assigned the vaTue 1. The next available value for Y is 1; the
"user's guess" equals the "random integer," and the value "VO" is invisibly
assigned to A$. Execution terminates.

It is clearly imp_ for the task author to know exactly hou,
wants the model solution and the student's program to execute when he

1

specifies theJnput and random values on the coding line. The main purpose
of the values given is, o course, to test the student's program adequately.
The author must at the a time ensure that the values given cause the model
solution to,execute without error, and produce output that can be accurately
compared to an acceptable student solution.

23

To summarize the format requirements of the coding line:

Optiens are one or more of the' f011owin,

If any:are used
ceded by a spade

n,

they must appear in alphabetic order. They are not pre7

Value lists are sequences of numeric or string constants used as
vanes for INPUT-variables or as values to be returnedby the'. functi6.
A value list always, begins,with a space, and a spade is used within the list
to separate one value from another. If anything follows.a value list, the
end of the list is marked by a colon. If values are sPecified-for more .than
one variable, a separate value list (beginOng with-a space, terminated-by
a colon) must be given for each variable.

The "r" option is always followed by its value list. . (The other
'- options do not need values.} The value list used for the INPUT variables
always fbllows the options, -if any., To illustrate a combination:consider
the coding for task GUESS:

.545 :s 19 10 14

The value .545 wild be returned when the END function is executed; string
constant output will be stored for comparison;'and the values that will be
assigned.to the input variable (described in a PIM statement) are 19, 10,
apd:14, in that order, each succesdive. time the INPUT statement is' executed.
If the author wished to.allow extra leading'spaces in the output (i.e., allow
the student to print leading spaces whether -or not the model does so), the
"v" optlen would be added, and the coding line would be

r .545 :svq9 10 14.

And if the author wanted to requ the student to print only as much as
the model prints, the "a" option would be added:

;er .545 :sv 19 10 14.

24

27

SECTION,6. STUDENT'PROGRESS REPORTS

The BOLASS and REPORT ;programs provide information on student progress.
°

',The KLASS program will give you a tabular summary .of the progress of
an group of students you specify. It will, for all students specified,
print their name and numbe'r, the number of taske they have, completed, the
number of sessions and hours they spent running DIP, the name of the last
task they were in, and their last sign on date.

The REPORT program-will give:you a more detailed summary of individual
`student.progress on the curriculum. The options available include: `which
student(s) you want -a report for, where you want the output (on a file or
written to your terminal), -whether you want information about each student's
last task only or about all the tasks he'has.completed, and whether-or not

:you want an explanation of the abbreviations used in the report.

Sample runs tf the 'KLASS and the REPORT programs are provided by
Appendix D

25

Albrec
1973

Finkel, L.,

REFERENCES.

Own, d. R. BASIC. New York: Wiley,

Barr, A., Beard, M., & Atkinson, R. C. The computer as a
The. Stanford BIP project.- n na onal' Journal of n
1976,.8, 567-596.

uto
Ach

al Laboratory:
e dies,

Beard, M., Barr, A. V., Gould, L., & Westcourt, K. Curriculum -info
'.networks; for computer-assisted instruction (NPRDC TR 78-18).
Navyfersonnel Research and Development Center, April 1978.

Conn, BASIC. New York: Hayden Book," 1970.

Floyd, R. W. 1,ALGOL_Wlanuae.
Computer Science Department, Stanford University, 1971.

Forpythe, A. I., Keenan, T A.,,Organick, E. 1., EA.- ernheig
science: A first course New York:. Wiley,' 1969.

Kem ny, J. G., & Kurtz, T. E. IAEILEEsupulalla, (2nd ed.).
Wiley, 1971,

Nolan, R. L. Introduction to co u n hrou
Holt, Rinehart, and Winston, 1969.

Wiener, H., 45'lloia

Sciencei Univers

1. Beard, M. H.,
manual (NPRDC
and .Devil oment

ration

n ego:

Stanford. CA:

mnPuter

New York:

h the BASIC.lan-ua Nest York:

B. BASIC workbook. Berkeley,
y of California, 1972.

2. Dageforde, M. L
MAINSAIL lan pa

REFERENCE NOTES

Lawrence Hall

A. V. The_BASICtinstructional program-student
pecial Rep. 77-2). Diego: Navy Personnel Research
Center, October 1976.

The BASIC inatructIonal ro ram: Conversion into
(NPRDC Tech. Note 7811). San Diego: Navy Per-

sonnet Researdh and Development, Center, April 1978.

Dageforde, M. L. The BASIC instructional m: S stem document a-
tion (NPRDC Tech. Note 7812). San Diego: Navy Personnel Research
and Development. Center, April 1978.

4.: Dageforde,' M.
-o ram s:uden

San Diego: Navy

Beard, M. H., & Barr, A. V. The BASIC in- onal
manual: MAINSAIt conversion (NPRDC Tech. Note 78-9).
ersonnel Research and Development Center, April 1978.

27

APPENDIX A-

THE TECHNIQUE GROUPS AND THE SKIL

Te ha

-THE TECHNIQUE GROUPS AND THE `SKILLS

ue 1. aim le o ut--

1 Print numeric literal
2 Print string literal
5 Print numeric expression [operation on 1 erals]
0 ' Print string expression [concatanation of literals]

Technic ue 2. VariahinorIL.

3 Print,tvalue of numeric variable/
.4 Print value of string variable
6 Print numeric expression [operation on variables]`
7 Print numeric eXpressionloperation on lite als and. variables]
9 Print string expression [concatanation of va:iables]
10 Print string, expression [concatanation of variable and literati
11 Assign value to a numeric variable [literal value]
12 Assign value,to a string variable [literal value]

TeChniqueu More corn licate&assinment.-

34 Assign to a string variable [value of an expression]
35,- Assign to a numeric vatiablejvalue of an expression]
69 Reassignment of string variable (using its own value)
70 Reassigamentof numeric variable (using its own valUe_
82 Assign to numeric variable the value of another variable
83 Assign to string variable the value of another variable

Techniiue 4. More com licated tutu

28 Multiple Print [string literal, numeric variable]
29 Multiple print [-string literal,numeric variable expression],,
30 Multiple print [string literal, string variable]
74 Multiple.print [string literal, string variable expression]

Techni ue 5. Interactive programs77JNPUT from _user. -uSin DATA.

Assign numeric variable by =INPUT-
14 Assign string variable by -INPUT-
15- Assign numeric variable by 7READ- and -DATA-
16 Assign string variable by -READ- and -DATA7.
55 Thee REM statement

Technique 6.: More complicated input.

17 Multiple values in LDATA- [all numeric]
18 Multiple values in 7DATA- [all string]
19 Multiple values in -DATA- [mixed numeric and string]
22 Multiple assignment by -INPUT- [numeric variables]
23 Multiple assignment- by -INPUT- [string variables]
24 Multiple assignment by -INPUT-:, [mixed numeric,and st
25 Multiple assignment by -READL [numeric]
.26 Multiple assigament,by -READ--[string]
27 Multiple assignment by - READ- [mixed numeric and

A-1
31

ing]

_ring)

Technique 7'. Branehing7=program flow.

36 Unconditional` branch (-COTO-)
37 interrupt execution

Technique 8. Boolean expressions.

_38 Print Boolean expression
39 Print Boolean expression
40 Print Boolean'expression
41 Print Boolean expression
75 Boplean Operator -AND-
76 Boolean operator -011-
.77 Boolean operator -NOT-

Technique 9

[relation
[relation
[relation
[relation

of'string literals]
of numeric literals]
of numeric literal and variable]

string-literal,and variable] .

IF statements--conditionel

42 [compare

43 [compare
46 [coillOare

47_ [compare

48 [compare

59 The -STOP- statement

Conditional branch
Conditional ..branch

ConditiOnal,branch
Conditional branch
Conditional branch

andards.

numeric variable with numeric literal]
numeric variable with expressidn)
two numeric variables]
string variable' with string literal]
two string variable's]

Technique 10. Hand-made loops -- iteration.

44 Conditional branch [comp4re 'counter with numeric literal]

45 Conditional branch [compre Counter with numeric variable]

49 initialize counter variable with -a literal value
50' Initialize counter variable with the value of a variable.
53' Increment the value of a counter variable
54 Decrementthe value of a counter variable

R.

Techniue Usiri loop = to accumulate.

.51 Accumulate successive va ea into numeric variable.

52 Accumulate successive values into string variable

71 Calculating complex expressions [numeric literal and variable]

75 Initialize numeric variable (not counter) to,literal value

79 InitializenumeriC variable (not counter) to value of a variable

80 Initialize string variable to literal value
81 Initialize string variable_to the:value of another variable

Techni to sign y_ end of data.

20 Dummy value in -DATA- statement [numeric] .

-21 Dummy value in -DATA- statement [string]

Techniue l3. BASIC functionals.

56 The -INT- function
57 The -RD= fUnction
58 The -SQR--function

A=2

Techni ue 14

61 FOR-

62. FOR
-61 FOR
64 FOR

FOR .NEXT .boo.

NEXT loops.with'llteral as final Value :)f. index
NEXT loops With variable as flaal value of index.
NEXT loops with positive step
NEXT loops with ,negativestep

Technique l6 y
I

Arra s.

size other than
size

31 'Assign element of string array variable ly -INPUT-
32 Assign element of-numeric array variable by ,INPUt-
33 Assign aleMent of numeric array variable [value is also variable]60 The -DIM- statement
65 String array using numeric variable as index
66 Print value of an element of a String array variable
67 Numeric array using numeric variable as index
68 Print value ol an eleMent of a numeric array variable

Technique l6. Nesting loopa (one loop inside anoblier.

72 Nesting loops
73 Subroutines (-GOSUB- and friends)

A-3

APPENDIX B

LISTS 1:Y.01_1(AND EXECUTION ERRORS

B-0

LIST' OF SYNTAX ERRORS

'JJARENTHESIS MISMATCH
ILLEGAL VARIABLE-
MTSPLAGED

4. MISSING QUOTE MARKS (()It ILLEGAL FUNGI ION CALL)
, S. RND-. TAKES NO ARGUMENTS

6.. 11ISSING ARGUMENT FOR LSOR-
MISSTNG ARGUMENt'FOR

H. ILLEGAL STRING EXPRESSION
9. MISSING ARGUMENT FOR -LEN-
II; -',ILLEGAL LINE NUMBER
12. ,ILLEGALEXPRESSION ,
13: No ma ALLOWED AFTER -END -'
14.' PI() TEXT ALLOWED AFTER 4TOP-
15. JUNK AT THE- END OF THE LINE
16. MISSING,":" OR "z." IN A 4ET-
'7. tooPtNG RITANGH TO THE SAME LINE
48. TMMATCHEMIOOOTE HARKS
19. misStm OR JLLECAL LINE NUMBER
20 SEMI-COLON IN A -READ- STATEMENT
21., SF111 -COLON IN AN - INPUT -' STATEMENT
22. ILLEGAL VARIABLE FOR A -READ- OR - INPUT --
23. KISSING "THEN",IN AN STATEMENT
24. COMMA IN.A, -PRINT- STATEMENT
25. ILLEGAL EXPRESSION IN A - PRINT- STATEMENT
26. ILLEGAL COUNTER VARIABLE IN A -NEXT-
27. SEPARATION OF DATA WITH A SEMI -COLON
28. :MISSING -COMMA BETWEEN -DATA- ENTRIES'
29. INCORRECT DATA
30. fUgoAt GOMM VARIABLE ,IN A -FOR-.
31:. MISSING OR " IN'A -FOR STATEMENT
32. MISSING A "TO"- IN A -FOR- STATEMENT
33. ILLEGAL NAME F AN ,ARRAY VARIABLE
34. ANCORRECT- -DIM-, STATEMENT

COMMA IN A 71)1M- STATEMENT
MISSING BASIC STATEMENT

37. INCORRECT FUNCTION NAM
38. INCORRECT FUNCTION 6EFINITION
39-: INCORRECT PARAMETER NAME

ILLEGAL LINE NUMBER-
41. TOO MANY LINES IN PROGRAM
42. 'ASSIGNMENT TO-Ad EXPRESSION'
43. ILLEGAL BOOLEAN EXPRESSI014,.,
44.- MP-COMMANDS:ARE NOT LEGAL FOLLOWING A LINE NUMBER
45. ILLEGAL RIP COMMAND
46. BASIC STATEMENTS' MUST MANE A LINE NUMBER
47. ILLEGAL CHARACTER'

B-1

-DIVISION BY ZERO NOT ALI0t4ED.
2. FUNCTION CALL WITHOUT A FUNCTION EF I ITION

3. .RECURSIVE FUNCTION CALL .

4. SQUARE ROOT OF.',A NEGATIVE NUMBER '.

5 VARIABLE' WITHOUT, A KNOWN vALpt.:.
b. MISSI'IG LIBSCRIPT FOR SOBSCRIPTED ORRAY) VARIABLE
7.' MISSING DIM STATEMENT, FOR SUBSCRIPTED (ARRAY:) VARIABLE
8. TOO -FEW SUBSCRIPTS FOR THIS VARIABLE
9. IMPOSSIBLE SUBSTRING
10. NONNUMERIC VALUE FOR NUMERIC -VARIABLE.._

11. NO MORE DATA TO READ
12. DATA TYPE MISMATCH DURING :READ ..

13. DIMENSION MUST BE GREATER"TUAN ZERO
14. RE-DIMENSIONING A SUBSCRIPTED VARIABLE DURING EXECUTION'
15 'NESTING OF FOR...NEXT LOOPS TOO DEEP
16, TOO MANY ,GOSUBS 'EXECUTED BEFORE EXECUTION OF A RETURN
17.. RETURN WITHOUT MATCHING,O0SUB
18= INDEX FOR SUBSC4IPTED(LIST) VARIABLE OUT OF DECLARED BO -DS::
19. TOO MANY SUBSCAPTS

_.: ,-- .,

20. ,FUNCTION, CALL WITH ,WRONG TYPE OF ARGUMENT
21. FUNCTION DEFINED TWICE IN THE PROGRAM

APPENDIX C

SAMPLE PAGES FROM THE TASKS E

C-0

AN19.E PACES FROM' 'HIE TASKS 1,11.F.
(The. 1-echn I (nu .:and ski Ils I.1 F t `a n d CRITNIMAC are on p...1 'tile TA

ItACK s on p.26, BACK- 1 on p.27, and A1.P11 on n. 49).

TECHNIQUE SKI1.1,S
1

3,4,6 ;7,9,10,11,12
14,35,69,7p 82,83
2M, 29, 30, 74

5 13,14,15,16,55
6 17,18,19.22,21,24
7 -36

38,39,40,41, 75., 76
9 112,43.46,47,48.59
10 , 45. 49, 3'1,5/)
I ',I , 78, HO

20,21
, 5/

16 61,
31,6(), 68
72

rain
JREEOPLAC

*text
Write a program that 'prints the numhe
-RUN- the program, then. type ,4,11_)RE.

,26.27

*mode
'9

10 PRINT 6
99 END

KS

*hint
flint 01

Congratulations! This is a hint.
Your- program should have -two statements: one PRINT statement, and

one -END- statement. Each needs to have a line number.
I f you type Aura- again, you`11 get another hint.

Din t #2

Congratulations! This lz the second bint. in any task, you can
type -HINT- as many times as you like. . if there are more hints, y I

will get them And .as a last resort, you an always type -MODEL- to
see the model solution. (But you won' t get -unless you'ye
exhausted the Innis and the demo.) Section I 1'. 2 Is the place to look.
Try out a 11 the _commands you 1),Ice.)

*disFns
-INT,RND,SQR

*Skills

C-1

*main
BACK,

xt
This task and continuation will, help yogi count backwards.

Write a program that counts from 10 down In this task,
whole thing "by hand ", `.like tfiis:

set some variable equal to 10. .ay. X)

Print the value of the variable
3. Subtract 1 from its value.
4. if the variable is still greater ha zero. go back to

step 2. Otherwise-(automa 'cal y) continue.
5. Print " drawkcab gnitnuoc"

Use -TRACEo - FLOW- to see what yoor program is doing se

-DEMO TRACE-

*mOdel

*hint
Hint #1

see Wdt the model soluLiOn is doing.

10 X
20 PRINT X
'30 X .X-1

Q IF X > 0 THEN 20
50 PRINT "SDRAWKCAB G TNUOC"
99' END

Step 3 means: whatever the value of Xis, subtract 1 from that value.

Assign the result to the variable X. Look at " "assignment "" in the

glossary if you are confused.

eoOps
IF,LET

*disOps
FOR,COTO

*skills-
2,3,11,4404

C-2

hAcr.1 66

*
You

No

t

rw how to wr Itc_ tnt cowl n Inop "b
toments to nAtiign the first value Co X. to
Nee it L t wci tow (,!notigh stop.

using specific
I from- it. and

write a program Olt looks like It i1 s ex actfyA the same thing
time use n FOR . NEXT

you.

(count backwards from 10 to;l)..but this
loOp and make RASIGdosome of .the work

*model

o IUR X m 1.0 TO 1 STI.:P

PRINT X
NEXT X

40 PRINT 'SDRAWKGAI ilTNI C
99 END

*hint

rting with the glossary. find out 'wt-fat FOR . NEXT loops do
w they do it Don't he confused by extra indentations. They.

just help you see which statements arc aside- the loop,- where they
1 be repeated.

and

11

regOps
FOR

*disOps
[J TO'

*skills
2.3.61.64

40

*main
ALM-43

*text
Compare two strings typed by the user. A string is "less than"
another string if it.eomes before_ the string alphabetically:

"APPLE" < "FISH" is true.

Your program should print something like
APPLE COMES BEFORE FISH

depending, of course, on the user's two strings.

- *model
;e "ARTICHOKE" : "ASTROLABE"

/-1-,REM PS IS: THE USER'S FIRST STRING
2 REM OIS: THE USER'S SECOND STRING
10 PRINT "TYPE A STRING A WORD WILL DO."
20 INPUT PS
30 PRINT "TYPE ANOTHER STRING."
40 INPUT OS
50 IF PS < OS THEN 80
60 PRINT QS; " COMES BEFORE "; PS
70 STOP
80 PRINT PS; " COMES BEFORE "; QS
99 END

*reclOps

IF, INPUT

*disOps
LET

*skills
2,14,30,48

APPENDIX D

SAMPLE RUNS OF BCLASS AND REPORT PROGRAMS

SAMPLE RUN OF BCLASS PROCRA

Phelass

HIP Student Class-Report Program:
Type a "?" for help at any time.

List of student numbers, please:
Type a student number for a single
separated by commas and/orAashes.
For example,

1- 30,35,37 -40

would get you student numbers 1 through
and 37 through 40.

student, or a list of numbers,

List of student numbers, please: 12.14-25

Where do you want the output?
Type a fide name if you want the

inclusive, 35,

port written to a file, If you
want the output written to your terminal

Where do you want the utput?

Student

12 MARY MOW
14 SHIRLEY AMMO
15 TOM 1011100
16 SUSAN MOW
17 DAVID Jim=
18 KEVIN =MOWN
19 JOHN WIMMMOON
20 MIKE ONINIt
21 MARIE
22 BARBARA MOW
23 DICK ONO
24 STEVE MOO
25 LAURA

That is all!

,At now, lust type a <et).

BIP Class Summary Report

2-JUN-77 11:58:10

Tasks Hours
Sessions

31 16 15.2
23 9 10.8
54 16 15,1
36 10 11.4
27 14 15,7
44 14 13.9
34 9 16.8
23 10 11,9
66 12 15.0
32 19 14.1
52 37 20.3
29 12 13.3
25 11 12.7

D-1

Last Task

XMAS.1
BACKARRAY
ROUNDER
CHANGER
USERLOOP
ODDCOONT
XMAS.1
ARRAYINDEX
PAY.1
CHANGER
ROMAN
SCISSORS
CALCULATOR

Last Signon

23-MAY-77
1-JUN-77

29-MAY-77
29-MAY-77
30-MAY-77
24-MAY-77
30-MAY-77
1-JUN-77

31-MAY-77
28-MAY-77
1-JUN-77

29-MAY-177

1-JUN-77

MP LE RUN OF REPORT PROGRAM

@report
BIP Student Class-Report Program:
Type a "?" for help at any time.

List of student numbers, please: '?

Type a student number for a single student,
separated by commas and/or dashes.

List of student numbers, please: 90

ist of numbers,

Where do you want the output? ?

Type a file name if you want the report written to a file. If you
want the output written to your terminal right niw, u t type a <cr>.

Where do you want the output?

Short or long form? Type "S" or "L": ?

The short form lists only the most recent task. The long form lists
all tasks, in reverse chronological order.

Short or long form? Type "S" or "L": L

Do you want an explanation of the abbreviations used? Y

Key to the abbreviations in this report:
who s if student chose this task, b if bip s selection.
pqo p passed, q quit, o "other": either used

"enough" to get out, or still in the task.
und? y if student "understood the solution," n if not,

- if not asked.
try number of "MORES" before leaving the task.
arg? y if student disagreed with_the solution checker.
mod? y if student saw model solution before the interview.
hints "*" if student saw all the hints, num of hints otherwise

TOTALS FOR
90 .TINNY OMMP 5 total tasks 2 sign ns
lsat signon: 14-MAY-77 09:31:12

Each Task: who? pqo und? try arg? mod? hints mins
SELFCAT b p y 2 n n * 12

HORSE b p y 1 n n 1 10

ASSIGN b q n 2 y n 1 8

PI b p y 1 n y
* 7

GREENE G b 'p n 1 n n 0 31

hours

date
14-,1AY-77

14-MAY-77
1.4-MAY-77

13-MAY-77
13-MAY-77

TOTALS FOR
88 SUSAN MOM 8 total tam
last signon 14HAY-77 18:20:15

3 signons 1.617 hours

Each Task: who? pqo mid. tr«_ nrC7 mod? hints mins date
PLOSFOUR b P Y I n n 1 12 14OAY-77
HORSE h p Y I n n E 6 14MAY-77
ASSIGN b P Y 2' n n- I 5. I4MAY-77
CAI.! h P y 1 n n 0 5 14mAY-77
GAT h ,r p y 1 n y * 17 111IMY-77
OPERATOR h q n 2 y n 1 18 13MAY-77STR1HOY h p y

I n n * 6 12MAY-77
CHITNFLAC h p y

I n n 0 28 12MAY-7/

TRAT IS ALL!

