'DOCOMENT ‘RESUME L L

ED- 168 560 * o ‘ -+ - IR 007 095
« AUTHOR pageforde, Hafy L.; Beard, Marney H.
TITLE The BASIC Instructional Praqrém- gﬂpﬂtVlsar's
" .Manual.
INsTiTUT 10N Stanford Univ., Calif. Ingt. for Hathematlcal ;tud;esx
o ‘ in social science.
SPONS5 AGENCY Navy Persgnnél Research and Dévelapmpnt Cﬁnter, sSan
Diego, calif.. . ,

' REPORT NO NPRDCy TN-78-10 _ ‘ ,

EUB DATE - : Apr 78 o e

CONTRACT N-00123-76-C-1543 , N - o

NOTE : 45p.; For-related documents, see IR 007 092-096 -
EDRS PRICE. MFO1/pC02 Plus Postafe.’ N
DESCRIPTORS *Camputer Based laboratories; Computer Managea. -

Instruction; Computer Progranms; *Computer Science
Education; Higher Education; Input Output;
*Instructional Prograuns; Programing; *Eraqraang
Languages; *Supervisors: Tutarlalf Programs

- ABSTRACT v ' :

: ‘This manual for supervisory instructors dgcumant; the
goals, msthcaa. and operation °of the BASIC Instructional Proyranm
(BIP), an interactive problem-solving labaratory that teaches
-€lementary programming in the BASIC language. The first two sections

. describe features of BIP .that may be of interest to, the supervisor,

- especlally the individualized task-gsele¢tion aiqarléhm and the
Curriculum .Information Network (CIN) which stores the relatlan&ﬂlpg
awong elements of the author-written course .material. The reémaining
sections describe in" detall how to supérvise the operation of BiP,
1ncludinq (1) the creation and use of certain files that may be
Hzittén to during BIP execution (e.qg., wvhen there is an error ‘in @
model solution or when a student disagrees with the solution :
checker); (2). how to add' and drop stydents from the course; (3)
details of aﬂﬂlng new tasks to the BIP curriculunm and a descri priron
of the solution checker; and (4) how to obtain student progress
reports. Appendices 1nc1u&é a aescrlptlgn of the technique groups 3nd

,the skills in each, lisgts of syntax and ‘axecution errors, sample
pages from the tasks file, and sample runs of EClasg and Repa:t
Programs. (Authar/CuV) : \ .

| o .
Fek Bk A ke e ot ******$$$$§$$$$* *#*****#*#*%*‘*4# *ﬁ*****#* *#*##ﬂ:&!‘##* LE IR LS E N

k- Eépreductlcﬁs supplied by EDRS are the best that can be made L #
* ; . from the origimal document. r T %
!*#t*#?**##t*?****####%*$$$##ﬁ*##**###*§**a$$#$*$$*$k*$$$#$$$$¥$#é#$*$$

8
i

. .
! ! . - - . o -

i :) . A

é ,
O
(T
(o 0]

N e/
Lt
»

+

ERIC

Aruitoxt provided by Eic:

TEEhniEal Note -78-=10

y B
L B
WS OEPABRTMENTOF HEALTH, ' k]
EOQUCATION A WELFARE
* MATIOMAL tNSTIFUTE OF
EDUCATION
: .
Tisrh, DECUAMFRMT HaY RE Pl HEByo.
BUECED EXACTLY AY RFEFIVED M
THE FEH 0N O ORGAENI JATIGN ORIGIN:

STATED DO HOT HECESSARILY REPRFE -

SEMTOFFICIAL HATIGHAL IHATITUTE OF
ERUCATION PO3ITION OF FOLICY

A

ATIHG T POIN T5 OF ViE W 0H QP INTGHS o Aprld

1978

THE BASIC INSTRUGTIONAL PROGRAM: SUPERVISOR'S MANUAL

Mary L. Dageforde ’
Hafney H, Bearq ‘

Iﬁstitute fDr Math;matiéﬂl Studiea in the Soclal Sciences

. . . Stanford University
Palo Alcto, Callfornia 94305

, Revieved by
S . Jahn D. Ford, Jr,

2

Navy Personnel Research and DgVélapmeﬂt Center

San Diego, CaliEDrﬁia 92152,

=
e I"‘ru::‘

E]

%

[

R4

. FOR EWORD

This rpsearch and development was conddcted 1n responsge to'Navy Decision ¢
Coord lnatigig Paper, Education and Trgining Development (NDCP Z0108-PN) under .
subprojectf 20108-PN.32, Advanced Computer=DBased Sygtems for Instructional
Dialogue, [and tle sponsorship of the Director, Nav%l'EdUCatiDﬁ and Training
(0P-99) . [The overall objective of. the subproject 1s to develop and, evaluate
- advanced fechnlques of fndfvidualized {nstructilon. [N :

This feport is one in 2 serles of six reports dz%ling with the BASIC
(Beginnerys All-Purpose Symbolic Instructlon Code) Instructional Program

(BIP), which 1is 'a “tutorial" programning laboratory designed for the student

who has h{d o previous training in programming. The first report, NPRDC

Speclal Rdport 77-2 (Note 1) was produced as a manual flor students, and

this repgit, as a manual for supervisors in charge of the BIP system. The . .
others dofcern the conversion of the BASIC progran ingo’*he MAINSAIL language

(Note 2), |system documentation (Note 3), conversion’ of the student manual
into the MAINSAIL language (Note 4), and curriculum inf@ﬁmatian networks
for computer—assisted instructlon (Beard, Barr, Gould, & Westcourt, 1978).

5

"The wolk was]peffbfméa!'

, der Contract N00123-76-C-1543\to Stanford University.
The contragt monitors were Dr. :

vho D. Fletcher and Dr. James D, Hollan.:’
= N < . ’ ' = ' B .

J. J. CLARKIN _ , .
. Commanding Dfficer _ : Lo -

.-
N f
i = : " .
- - . s i f
i s

SUM‘IARY . . %

The EASIG Inst Uﬁtiaﬂal'Pngfﬂﬂ (EIP) is ano- iﬁterantlve prablemssalving
laboratory that tefiches elementary pragramming in the BASIC language. This
-manual documents che gaala, methods, and aperatien ai BIP for supervisory

ingtructors. : , ' : , ' . i

- The Eirst two sections describe features of BIP thg; may, be of interest o
. te. ghe supervisor, especially the individualized Easkﬁselectioﬂ algorithm
and khe Curriculum Information Ne twark (GIQ), which' steres Ehe relatinﬂships 8
among Eléméﬁtﬁ of che author-wri. ten course material. :

E N = B

=Y

T

The remaining sections' describe in dgtgii all the necesgary iﬂﬁormscian '
. on how to supervise the operatien of BIP. Se¢z1an 3 describes the creation
and uge of certain files that may be. writ:ten to dufing BIP execution: {eig.,
- when there £s an error in a model solution or when -a’student disagrees with
the E@luﬁiﬂn checker). Section Q*Eells how to add and d rop -gtudents from -
. the course. Section 5 provides detadls of adding new t ska to the BIP cur-
. . riculum and a description of the solution ﬂhEEkEf-A Einallj, Section 6 tells
»fi'“' how to obtain student progress reports. ; . =

. _ S e \ T L e L -

w.f

APPENDIX C-~SAMPLE PAGES TROM THE TASKS FILE

~ SECTION 3. CREATIONND USE -

b
/ b s
e ‘ '

’ CONTENTS A

. SECTION 1. FNTKDDUCl[ON T
SECTION_ 2. "mL BIP CURKLCULUM | oo o L 4 L s, - . .
. z 1 (thF[(Hllm|(sun|H S0 e fan S - - -
2.2 The Curritulim Ilnformat flon N(_twﬂfli, ce e e T
2.3 tlon & o 0 L L L . . .

Individualized Task Sel¢c

"L FIiES - L] LY L] L Y = ="

B

3.1 The MODER File .. o v .. .o . ., .
© 3.2 The ARGUE File c e
3i3 I‘hg FIX File s w2t N - F PR = v s - =
3.4, The HOLES F:Lle IPO e e :
SECTION 4. ADDING AN DROPPENG STUDENTS . . . , o
‘xx . .
- 471" The WHO File ',
!0 2 Histﬂry FilEE . "! - PR LI ST I
4,3+ Drapping EtudenEE . - . e
o L
'SECTION 5. ADDING NEY TASK, .. e e e e e

5. 1 _Dét_:éils aof Tz.a'sl'c Informacion Fc:rmat‘v o=, .« e
3. .2 How the Sﬂluﬁiﬂﬁ Ehe;Eef'ngks e e e a e
. ~5.2.1. Whether to Cﬂ;ck C e C e
T 5.2.2 How Much tq §tore and Gampgre e e
C.005,2.3 SPEQ;fying INPUT, Variables and Values

SECTION 6. STUDENT PBDGEESS REPORTS . . « . v « .o . .

‘REFERENCES = ; i e = 5 a ., o= i . = _@ N » - LI ‘- ® & % A-

et

¥ REFE%ENCE NDTES L - ¥ s w8 e e - s .';v iv LI
APPENDIX A--THE TECHNIQUE GROUPS AND THE SKILLS

APPENDIX B—LISTS OF SYNTAX AND EXECUTION ERRCRS

ARPENDIX D=~SANFLE UNS OF BCLASS AND REPORT PROGRAMS

* -
L] ¥
L
5
L] L
L] ¥
*
L] [
®° &
L)
L] 4
. L
L 3 L]
- "“-_—.r«m—
D* - &
Fa—
- ¥
- -
-
- L]
L] -
L]
- L
- L]
:
-
-
e

LY
=
- s
LI
s =
PR]
5 &
-
P
. B
s =
5 =
A
LI
#
L
LY

15
15
16
17

17
20
20

20
21

25

. qv) % l[5) | . .
A ﬂimpilfigd portion of the curriculum network .

\

© - LIST OF FIGURES

Working through a task . . w i v . o 2 . . .

Selecting the

next task . . . o . . .7

L

L=
=

i

#

7 | 7 . . A
Format for tgrk information in file TASKS .,

i

] : l
. .) A ’ ‘ B ’ \, .
: v SECTIONAL. INTRODUCTION, ' = .

The BASIC Instructional Program (BIP) is a stand-alone, {ully»self@
contained course in BASIC programming at the” high school/college level
(Barr, Beard, & Atkinson, 1976). It is an interactive problem=solving
.laboratory that offers tutorial assistance to students in solving dntro-
ductory programming problems. These problems are presented in an 4n-
dividualized sequence based on (1) a representation of the stiucture of
‘the curriculum and (2) amodel of the student's state of knowledge. '

E T ‘The goal of the tutorial laboratory is informative interaction with

- the student, which is provided by an instructional BASIC interpreter,
. information on BASIC syntax cross-referenced with the” students manual, and
< .debugging aids. The system also has access, through the Curriculum In=
' formation Network (see Section 2.2), to features that the student may use
to help him complete his current problem. These features include hints
(additional informatiorr about the:task) and a’ stored solution program that
can itself be executed. - : ' ‘

This manual d@guments_the goals, methods; and gperatdon D€ the BASIC
Igstructional Program for supervisory instructors. It tells how to set
‘up.new students to add special curriculum, and to obtain student progress
reports, and ‘describes the goals and details of individualized task selec~
tion, 7. : oo : :

AN ’
S - .
N ’,
t‘f
¢ ‘,;E}
é
\ N ———
&
L
.!} .
1
i T .

s

W

_4>A‘ 2.2 Ihé>Cg;§icplum,lgfprmééiqg;ﬂgtWng

SECTION 2. ' THE BLP CURRTCIHLUM

,.Eglqu;;icuium Goals

Prior experience with computer~assisted-instruction (CAI) i% program-

.ming at the'cellege level has convinced us that many students who wish to
learn the fundamental principles and techniques of programming have limited
mathematical backgrounds. More important, they have . little confidence in
their own abilitfes to confront problems $nvolving numeric manipulation.
The scope of the BIP curriculum, therefore; is restricted to teaching the
most fundamental of programming skills and does not extend to material re-
quiring mathematical sophistication. (You may, of course, add such tasks
1f yéur student group is more mathematically oriented.) \gﬁg

The curriculum is designed to give the students practice and instruc~
tion in developing iﬁtetact1v§’prﬂgfams in order to expose them to ugses of
the ‘computer with which they may .pe- unfamiliar. The emphasis is on programs -
that are engaging and entertaining, and -that can be used by other people.
While writing each program, the student keeps in mind a hypothetical user—-

a person who will use the program for his or her own purposes and to whom
- the performance of the program must be intelligible. . Additional demands
“for clarity and organization are forcad by interaétive-pragramming, the in-
' creased noticeability: of "bugs,'" and the added motivational effects.

Numerous' texts weté examined as possible sources for programming principles
that must Leidaveiapa&*in'anrintradUECny course and for the problems that
illustrate these principles. Ideas were incorporated from -(1) general com-

puter sclence textbooks (Forsythe, Keenan, Organick, & Sternberg, 1969); (2)
the notes for 4n introductory programming coursé that.were oriented toward
the ALGOL language but easily generalizablc: (Floyd, 1971), and (3) books -
and notes dealing specifically with BASIC (Albrecht, Finkel, & Brown, 1973;
Coan, 1970; Kemeny & Kurtz, 1971; Nolan, 1969; Wiener & Ross, . 1972). In
addition, problem Sets, from Stanford University's introductory computer
sclence courseswere collected and examined. . ‘ R _

In general, the curriculum provides useful, entertaining, and practical

camputergéf,erienge for students who are not necessarily mathematically
oriented. t gives them the.opportunity to develop programming skills while -
working on problems that are challenging but not intimidating. In these
problems, the difficulties stem .from the demands of logical program organiza-—
tion rather than’ from the complexities of the prerequisite mathematics. A

= 1

\ = o . : ‘ .!, R -

A " The Curriculum ‘Information Network (CIN) is intended to provide the in-

' structional program with an explicit knowledge of the structufe of an author-—

written currtculum. It contains the interrelations between the problems

a) that the author would have used implicitly in determining his "branching"

- schemes, Thus, it allows meaning ful model}ing of the student's progress
-along the lines of his or her developing skills -(not just a history of right
and wrong responses), without sacrificing the motivational ddvantages of

.

A thus, it becomes a model of the student's state of knowle e, since it has

2
. . s 4 .. -
- . P _
. . . . ! ’ #
. B : | .

: :) ¢ . . : -
_humAﬂ organization of the curriculum material., TFor ‘example, in the BIP \
course, the CIN consists of a complete description of each: of 100 progtam- Sg

ming problems in terms of the skills developed in eolving the problems,
Thus, the instructional pregram can monitor the student's progress on
attaining these skills, and choose the next task with an appropriate group
of new skills, The CIN introduces an intermediate step between the tim& .
‘when the student's history igrrecorded and his next problem is selected: %
an estimate of his ability in the relevant skills, not just a record of his-
performance on the problems he has completed. Branching decislons are hased
on this model inetead of being detérmined simply by the seudent s succeass/ .
feilure history on the problems he has emmpleted
‘In this vay, a problem can be preaented for different purpneee to studepts

with different histories. The flexibility of ‘the curriculum -is’, #F course,

multiplied as a result. More importantly, the individual problems in the
" curriculum can be more natural and meaningful; they do not necessarily in-
- vplve only one Skill or technique. :

2.3 ;néigiduelieed;leekfSeleegieg

In BIP, our curriculum goals are the mastery of certain programming tech-= -
niques, such as simple output; using loops, conditional branchles, and arrays;
assignment to Variebles, etc:. The technlques. _are linked in a .linear order,
each having but one "prerequisite" (i.e.; the previous technique), haeed on
dependence and increasing program complexity. They. are interpreted or
described by the list of skills that are required in the solution program..

The skills themselves, which are very specific descriptigns of particular
Vpregremming behaviors like. "print a string literal” or "initialize a counter.
“+variable" are not themselves-hierarchically ordered. Appendix A provides a

- list of the techniques end the skills grouped within those techniques. The
programming problems, or "tasks" are described in terms of the skills they
'uee,-and are selected on the basis of this description, relative to the -
student's history of competence on each gkill. Figure 1 shows a simplified ° .
portion of the curriculum network, and demonstrates the relationship among =).
the tasks, skills, and techniques. “

Computer programming, like many other procedural subjects, 1is better -
learned thEQUgh'EKPEfienee than through direet“inetreetien, especially 4f =
that experience can be paced at a speed sufted to the individual studént.

" Throughout the BIP course, the primary emphasie is placed on the solution of
programming tasks. BIP does.not prgsent & sequence of instructional state-
-ments followed by questions. Instead, a problem is described and the students
. are expected to write their owl BASIC program to sblve it., While developing

a BASIC program for each task, the students are directed to appropriate

. sectlons of the student manual for full explanations of BASIC statements,

’ pfegraﬁming structures, etc. They are alsv encouraged to use the TRACE de~
bugging facility and various "help" options such as HINTs (additional dm~
formation about the task, or the steps r quired to reach a eelutien) and
the DEMO, which-® executes the model solut om -

E

1]
7

OUGRUT . - | SsmPLE | sINGLE
sINGLE [VARTABLES - | VARTABLE
©vALURS , |

READ & INPUT

SKILLS

Print] Print Print Agsign . Assign. .
- string string numeric | |- numeric string

C literal .variable variable , variable variable
{ : EI L™) - w . with. LET with INPUT |

: . 1. | Write a program that Write a program that
. | Write a program that " |'uses INPUT to get a first assigns the value
A\ . prints the string string from the user 6 to the variable N,
"HORSE" L | and assign it to the - ,%pen'ﬁrints the value.

L]

variable W$. ~Print W$.| |of N.

1 e

TASK HORSE TASK STRINGIN @ TASK ASSIGN

* Figure'l. A simplified portion of the curriculum network. .

e

™

_ When & ﬂtud&nL enterq the course, he fiﬁda himsel{ in task GREENFLA e
»which tequlres & twa 11ne program salutinn.l Because this is ExPECQEd

‘ any %indﬁdkth a. Qnmputef he is led thrﬁugh the Ealutién to the ta k in
. very small step%, ' GREENFLAG is the ‘only task in the Qurriculum that pre-
sents texc, asks questigns, aﬁd Expects ;ha student tu type answérs

‘session. HﬁWEV@t, since the student g IEEpDﬂaEE are ftequently ca
that are paszsed to BIP' iﬂte:prEtEfJ he can see the effects of hi
and .he emerges from GREENFLAG having written and executed a genuige program,

- | The sequance of events that occur as the student vorks on a
. shown in Figure 2. When he has finished the task by successfully running .

his program, the student proceeds by requesting "MORE.'" His prbgress is- ‘ e
evaluated after esmch task. In the "Post Task Interview,' he 1¢ asked to e . /
indicate whether or not he feels that he needs more work on the skills . o /

required by the task, whi:h are- listed Separately’fér‘himi’

As soon as the student zcmplczas GREENTLAG therefore, the’ ins;fgptioﬁal, » /
program knows sowgthing about his own Estimatian of his abiliities n ad-" - /
dition, for all future ‘tasks his sglution is ‘evaluated “(by domparing its S C
output ' with thal of the madel sclugiﬂn run on the same test data) and the ’ : ;

‘results are stored with each skill required by the task. The, program then . B Q;;
has two measures of the student's progress in each skill: his selfeavaluas . /. -
'tian and itE th Qﬁppatisaﬂ=test results ‘ o v_' B . /.

_ After. campleting a tagk (he’ may Teave a task withaut @omplating it), the i

, .student is free wither to fequest another, or to work on some programming _ /
project of his own, The algorithm by which BIP selects a next task, if the /

student requests. i, 1is shown . in Figure 3.- The selection process begins

-with the lowest (least complex) technique. All the skills in that technique |/

" are put 1ntﬂ & set Qalled MAY, which will became the set of skills Ehat the , v

ext task ' may uae t Lo 5 '

/"'/

ngipragram than examiﬂes the student's hist@ry on each of \the skills
~ associated with the technique to see if {t needs further warkJ This criteripn .
.judgment 1s the hesrt of the .task-sélection algorithm, and we Have modified |
it often.: Two key counters in the history are assoclated with each skill.
One 1is baged on the results of the solution checker, and monitors the student's
continuing success din using the skill. The othet,is_based on his self-evalua-
tion, and monivors. his own continuing confidence in the skill.. The current
definition of -3 Wigeds workK" skill is one on which either counter i5 zeéro.
For each snccessful use of a skill, both counters are incremented. If the -
student quits a tysk réquifing a particular SkilIE*EhE first counter 1s ’ _—
decremented; if he requests more work on a skill, the second counter is
zéroed. ' Any such 'not yeét mastered' skills aré put into the MUST set..
Eventually the program will seek to find a task that uses\same of these’
"must" skills,

Student

program
"fails"

L

Select and present
task. - '

Student writes- program to solve the préblem§ .

= BASIC
= Hints
- DEMO:

- MODEL:

in;érpreﬁér, ERR DOKTOR -

ébservg exXecution of model solution

see listing of médelfaélutiﬂn after

la a1l other aids exhausted ‘-

[}
- RéfgfeLces tu BIP student manual

|

i

C e .
. T
) VVQJV o :) .Vl . :
. - ; ' S)

/

==

Student ful
- Ready to continue, types MORE, ~

runs program successfully.

Gompérg'student pfagrém to model-
-]. solution,

Update student history.

l .Student program "succeeds

Post -
gelf

tasE iﬁE§tVigw; - Obtain
evaluation, update ™

‘student history.

&

Figure 2. Working;gﬁrcugh a task.

Student Teque sts
* TASK

[, -
-Star t &t lowest techrniique —— -

Move o nexe

- — - 1 highe=

AP e e L) te dniqe -
Add all skills. from - g
carrent techmniqie
to MAY set o N

rj?m:i slkellls that _
NEZDWORK In MLUST set ‘ -~

yeg

Tigheer
el qess
7

Examdne tasks: Find those
with some MUST\skills, rmo
skeills aucside AF MAY

Found HULE
e curriculym.
message to

any

RSN

Studesnr has=s
completad
eu rri ey lum

Pfeéént the tasle with
| thwe greatest number of
MUST skfills

iy

- - Figure j. Selecting the next :’tn’;k ,

=
e
5

O

ERIC

Aruitoxt provided by Eic:

“the cwzrrfeu lum

= r.

Lfno such skills are foung (indicating that the student has mastered
ald the skflls at that technique level), the search process moves up by
one t-echicie, acding all {ts skAlls o che MAY set, then seeking MUST
skills agafn, Orce a MIST ser 12 generated, the search terminates, and

~all of the tasks ar¢ examined. Fhose considered as a possible next task

for the stwdernt rust require (1) at least one of the MUST skills; and (2)
N0 skill s cutslde of the MAY ser . Finally, the task in this group that
regulxes the Largest nunber of MIST skills is presented as the next task.
Thus, in the s Inplified scheme gpown in Figure 1, assuming that the student
had not Jet met the criterion on the skills shown, . the first task to be
i:rgsa;ﬁtgg:f woul d ‘I::’Je --EDR;E‘;E,% beltauge its skill~lies in' the sarliest technique,
and woyld cms titute the first MJST set. Task ASSTGN would be presented
next, sifice {t$ skills come from the next higher technique; STRINGIN would
be pregented 1 ast of tFese three.

Ao {ntetes ting cursiculumn developnent technique has evolved naturally
in this Schwme . If BIFP has selec ted the MUST and MAY sets, but cannot find

2 taske that ne4ts the Above. requi rements, then 1t has found a "hole" in

Mcer writing a message to the HOLES FILE (see Section 3.4)
describh{rdg the nature of the miss Ing task (e.g., the MUST and MAY skills),
the tagkrselec lon procedure exam Ines che next higher technique.

new, epandeal MUST @d MAY sets, And searches for an appropriate task. Again,

Lf none 45 fourd, a new search besins, based on larger MUST and MAY sets.
The onnly sitwatiom in which this Process finally fails to
when the studert has covered al]l of the curriculum,

It generaLes

select a task occurs

£,
Sy

=

O

ERIC

Aruitoxt provided by Eic:

3.2 The MRGUE File

SECTION 3., CREATION AND USE OF FILES

There are three groups of files %ith which you should be familiar. The
first group includes those that may be written to during BIP execution;
namely, the MODER, ARGUE, FIX, and HOLES files., The second group consists
of che WHO £ile, which lists the students enrolled in the course and student
histurg files; aﬁd the third 1s the text file TASKS, which includes the

"description, model solution ,/hints, skills, etc. for each task. The firsc

group is described in this EECtian, and thé second and third groups, in
Sections 4 and 5 respectively.

You should create and Initialize the MODER, ARGUE, FIX, and HOLES files
before any students begin by running the program FMAKE. This program asks
you four questions: '"Do you want to create che MODER . . . ARGUE . . .

FIX . . . HOLES file?" to which you will zespond with a "Y" or an "N."
The file(s) is created and initiated when you answer ''Y.

AlL four files are created the first time you run FMAKE. You should
check ‘these files occasionally (when students are not running BIP). How-
ever, you must not modify them in any way! They are random-access files with
a pointer to the end of the file, where BIP appends further information. rf
you add or delete any ﬁharacterE, this end-of-file pointer will be incorrect,
and you may lose information. What you can do is rename one, (or all) of these
files, create a new file (using FMAKE), and then do whatever you want (e.g
delete messages you've taken care of) with the "old" (renamed) version.

3.1 The MODER File

BIP writes a message to the MODER file vhenever an error is found in a

model solution.) » <ﬁi

Example:

48 MARILYN SMITH
Model error in: CALCULATOR
Execution error ﬁumbEf 5

Each message will give the nature of the eci01r (l.e., Syntas or executlou)
and its error number, See Appendix B for lists of syntax errors and execu -

tlon errors.
&

You should fix the appropriate model solution in the TASKS file (when ne
students are running BIP) and then (as 1ig always necessary after you make a
change to the TASKS file) run the program TODATA to create a new INIT file.

=,

BI? writes a mesaage to thE ARGUE file whenever a student disagrees with
the solution checker.

= Example:
' 99 SUSAN JONES
Argue with task: INIF
Attempt # 1

Program: ‘
-' 10 PRINT "TYPE A NUMBER BETWEEN 1 AND 4"
- : 20 INPUT X o S
30 IE‘X’==1T§EN 70 :
‘- 40 IF X = 2 THMEN 80
50 IF X = 3 THEN 90
60 IF X = 4 THEN 100 -

70 PRINT "YOU TYPED A 1!°"
80 PRINT "YOU TYPED A 2!"
90 PRINT "YOU TYPED A 3!"
100 PRINT '"'YOU TYPED A 4!
999 END

Details:

Too muéh output.

YOU TYPED A 2! t
Look -at the unaccepted student programs shown on the ARGUE f#le. The "Details"”
part of the message lists each line of ‘output the solution checker was looking
for, folldwed by a "t" (4if the student's program produced that sutput) or an
* "§'" (if it didn'td. Other unacceptable or migsing output (as described in
Seztinn 5.2) is also noted under "Details."

- An egamiﬂation of the listing of the student's program, the details from
the solution checker, a knowledge of what the Program was supposed to do (you
should consult ‘a listing of the TASKS file), and of how the solution checker ;}
works (see Section 5.2) should make it clear to you yhy the student's program
was not accepted, You may'wish to contact the student with an explanation.

3.3 The FIX File P

The FIX f£i1le 15 composed of measages sent to you by the students,

Example: L i
55 MARK JOHNSON
s "~ Note: ! .

Terminal 121 is not working.

3.4 The HOLES File
The HOLES file notifies you of "holes'" in BIP's curriculum.

Exanple:

28 JOHN ADAMS
Technique is 5 .
Set that falled-was: must)
Skille in must smet are
55 74 K T =

As explained in Section 2.34 tasks considered .as a possible next task
r the student must require at least one of the MIST skills and no skills
JThug, if BI?P hqs selected the.MUST and MAY sets

ﬁtsi of the, MAY set.
“but cafhnot find a task that meers the above requirementsi then it has found
In this case, BIP's task—sglecﬁi@n algorithi

- sets, and cont lhue the search for an apprgpriaté task.
"Holes"

. It is nmet ﬂEEESSaEy fgr you to take any action,
common, and don't necasssriiy adversely affect BIP's task selection.
the information in the HOLES

ever, 1f you wish to expand BIP's curriculum,
file may guide you in degigﬁing addiﬁiﬂnal tasks

a. "hole' in the curriculum.
will eXamnine the next higher technique, gegerate nevw, expanded MUST and MAY

111 be f 1:1
: How- Ul

' —~ T
{ L I,) o et e e
i SECTION 4. ADDING AND DROPPING STUDENTS = ’

Te " start now students In the BIP course, é%ngﬁ-nﬁd tell them th%if‘
student numbers (any numbers less than or equal 'to 999), create their
history filgs, add their numbers and names to the WHO file (explained
below), give them student manuals, and tell them how to start BIP run-
.ning. The sign on procedure is ‘explained in tKé student manual.

s -)

Two files are dnvolved in the adding and dropping of each BIP student:
(1) the textifile "WHO," which lists each student's number, name, and
(optionally) sex, and (2) the individual student's personal history file,
which Is usad to store information aboutr his current status (what cask he
is currently working on, how many tasks completed B0 far, etr.), a@d past
. performance on tasks and skills.

4.1 The WHQ File

Ny

The WHO file has one line of informatdon for each student cucrently
encolled in the'course, and the end of the file is signalled by the word
"END.". You, the supervisor, have control over the WHO file: you create it

-before any students try to sign on, and you add and delete students from
the course by addipg and deleting lines from the file., It is not mecessary
for the. lines to be arranged numerically, by student number, although you
may wish to keep 1t that way. The format for each student line is: ~

<student Freiabs<first name§§SPECE?flas£ name=<tab><F a% M-, where the
F or M'sex indicarion 1is optional and each tab and space could actuyally be
any number 0f tabs and/br spaces. Here is an example of what the WHO file
would look like 1f there were three students in the course, assigned (by
you) numbers 99~101: N

99 . S5USAN JONES
100 MARK SMITH
101 JANE ADAMS
END

o =

. A student gigns on by telling BIP his number~wud first name. BIP then ‘
cheﬁks to make sure that he 15 enrolled in the coijrse by searching the WHO

file for a line with that number and name., If no such number is found, or

if the name provided by the student does not match the name in the appropriat

line, BIP tells the studént that the number and/or name are incorrect, and

logs him off. The student nust then ask you for the correct information.

4.2 History Files

T

When a student s added to the WHO file, his history file must ;&\iréaiﬂd
and initlalized. Run the program NEWHST? which asks which student(s)\you
wish to create a history for. Type a list of student numbers, separated by

commas and/or dashes, and NEWHST will creiate and {nitialize their histériesg

y

%

[
ot
G

)

The name of the student's history file consists of the letters "HST"
followed by his nu&beri Thus the above three students' history filles
would be "HST99,"™ "HST100,' and '"HST1OLl." History flles are data files
that yauéﬁhbuld ngver try to read or edit. Their informatjon is stored
in a compact form {dentical to the internal representation within the
computer, not readable characters.

4.3 bropping Students

To drop students from ‘the course, simply delete their history files
and their lines in the WHO file. Students that are added subsequently
may, of course, be~given numbers formerly assigned to "dropped'" students,
and set up "as usual. !

-
¥
3 !ff
N
,,a\)
ks
¥
BN

O

ERIC

Aruitoxt provided by Eic:

-

SECTION 5. ADDING NEW TASKS

" The curriculum for BIP is contained in a text file called TAEKS The
file is read by two different programs--TOPATA and INIT.
a. The TODATA program compressas certain essent 121 **f@rmatinn
from TASKS and writes ‘it onto a data file cali:.! JNIT which
I'n rerd when the student signe on, The INTT hggj b uapd
g o inftialfze the currlculum data structure, o

b. Throughout a student's session, BIP reads from the TASKS

ftle to access the text of the current task, its hints

and nodels, etc. The polnters that were inltialized from

the INIT data give BIP efficdent access to the text in

the TASKS file. - -

4

The format of TASKS is therefore somewhat rigid. Figure 4 and the follcocw-
ing informatdon ‘describe the format and necessary contents of the file If
no restriction is specified, none exists: for example, there is no Limit
Imposed on the number of skills allowed In any task.

ot

.1 Dgﬁailg @EfrgskrInfg;@gﬁicq_F@;Est

a. New tasks may be added either between current tasks or at. the end of
the TASKS file. The FIRST page of the TASKS file (which lists the skills
for each technique and which has all the information for the first task,
Greenflag) should remain the first page (see Appendix C, page C-1).

b. The tasks need not Eppaai In numeric order.
c. A task's name and its number must be separated by a bingLE space or
a single tab. The task name may contain only letters, digits, and periods

(no other punctuation or .spaces).

d. The order In which the task informacion is glven 1s important. Foy
each task, the following 1nf3f/}§iun groups are REQUIRED:

*main (or *moreTask), *text, *model, and *skills.
| ¥ ¥ *

All the other information groups are optional. For example, there may be no
hints for a certaln task, in which case there simply is no *hint information.

e. Tasks are either MAIN tasks or MORETASKs. A MORETASK is usually an
extension of 1ts MAIN. It requires a minor modificatien of the program
written for the MAIN task, and 1is presented automatically after the student

completes the MAIN. When the student requests a task, BIP selects from the

MAIN tasks only, and most of the curriculum consists Qf MAINs A MAIN may

. have any number of MORETASKS, which will be presented in the Dfdéf in which

they appear in the TASKS file: MAIN task first, followed by its MORETASKS.,
Appendlx C shows an example of informati for a MAIN task (BACK) and its
moreTASK (Back,1). '

"

*main (or FmoreTask)
ctask name> <tasknumboer:

*text
<task descriptionz

*model
<code line for verifier -- sce
<model solution>z

*hint)

Hint #1

<hint #1>

*

Hint #2

<hint #2>

*

f :

*reqUps 7
<required pperators, separated

*jin(ip= /

sdisabled operators, separated

*reqlns

<required functions, separated
*disFns

<disabled functions, separated

su il et @d

clist of skill pumbers, [H=NUTERITC

<pape mark --— optional -
<blank | ine>

fmailn (or fmoreTask)

<information for subscquent Cashkss

*ondd

]

Fipure 4. TFormat for task infgrmation in

-
Nee)

‘ f. A task may have any number of hints (though four seem to be as
‘many as students are likely to benefit from). Each hint ‘must begin with
the work "Hint" and its number, _and each is terminated by an asterisk on
the line following the hint téxt. The entire group of hints is followed
by a hash mark (/) on the line following the last asterisk. .

'g. The operators (BASIC statements) that can be required or disabled
i

are:
. _IFﬂf
LET INPUT GoTo IF
. REM DIMD, STOP FOR
NEXT GDSﬁﬁ RETURN READ
DATA REOPEN BEGINSUB ENDSUB

Do not require or disable PRINT or END because they are always automatically
required for each task. If more than one operator is required or disabled,
they must be separated by commas.

h. The functions that can be required or disabled are:
NT * RND SQR.

If more than one appears, they must be se parated by commas.

Ll

1. The list of numbers following the " skills" line ‘must be glven in
numeri: order, separated by commas. The 1list of skills is the dascription
of the task that BIP uses when it presents the student 8 next problem, so

the skills should be carefully selected to reflect the Tegquirements of 'the

task. 1e skills' numbers and meanings are included in Appendix A,

J. If a page mark is used to separate one Ldﬁk trom the n¢xL 1L must
be followed by at least one blank line before the "fmain' or *mﬂfﬁTaﬁk“
line.

k. "fend" must be the last thing in the TASKS tile. 1t you add new
tasks to the end of the file, don't forger tu delete the "*eud," add the
new tasks, and then replace "*end" at the end of the file. .

1. Many of BIP's tasks require programs that use INPUT to interact witl
a hypothetical user. Whien the solution checker evaluates a student's program
that includes INPUT, it executes the program with a specified set of values
for the input variahles.- The model solution given in the TASKS file must
include a REM statement for each of the input variables used in the model
program, describing the use of that variable. The format of the REM state
ment {5

<line #> REM <variable name> IS: <description:,

(For example: 10 REM X IS: THE USER'S FIRST ADDEND
o ; 20 REM Y IS: THE USER'S SECOND ADDEND)

i
B

Section 5.2 explalns the coding of the model solution in detail,

19 o0

o

ERIC

Aruitoxt provided by Eic:

Q

ERIC

Aruitoxt provided by Eic:

2
m. The TASKS file is a text file, which make;§§ asy to read and
change. Since BIP depends on the INIT data to provide accurate
into the text file, the TODATA program must be run whenever c
made to TASKS. Any change, no matter how small (e.g., correcting a mis-
gpelled word), means that TODATA must be run.

5.2 How the Solution Checker Works

When the student types '"MORE,'" his program is checked in a few dif-
ferent ways. The actual solution checker procedure 1s not even called if
the student has not RUN the program since the last time he changed it, or
if any of the required operators is missing. Once these two tests are
met, the sdlution checker evaluates/the student's program by comparing its
output to that of the model solution. The mcdel is executed first (in~
visibly), and every line that it prints Is atored in an array. As the
student's program 1s executed (also invisibly), each line of its output

.is compared to-the stored output<4from the medel. Tf that line matches an

element in the model-output array, a flag is set, If, after the student's
program has completed execution, any of the elements in the model-output
array have not been matched, he is.told that his program "doesn't seem to
solve the problem,” and the unmatched elements are listed for him. If all
the model outputs have been matched, he is told that his program "looks
ok," and the pgstetask interview is presented.

In order to allow as much flexibility as possible in BIP's curriculum,
the solution checker involves a number of ccmplizatians.r These fall into
three groups: . (1) determining whether the student's program for a given
task is to be checked-at.all, (2) specifying how much of the output the
checker should store, and (3) specifying the values that the model and
the student's program will be given as input.

5.2.1 Whether to Check !

Mnﬁ

o In the TASKS file the line "#*model' 1s folluwed by a "coding
1ine" that gives the necessary information. 1f the first character on that
line (perhaps the only character) is a semicolon, then the solution checker
will eyaluate the program. Any other character tells ‘the checker to assume
that the student's program is acceptable. The character currently used in
our TASKS file is the number 9.

5.2.2 How Much to Stare and Compare

Unless otherwise specified in the coding, the checker will ignore
all string and nuneric constants. That is, as the model and the student's
pregram areé executed, any expression containing a quoted string or a numeric
constant will not be stored for comparison. By {ignoring string constants,

) BIP allowas the “student to have his program print messages of his choice,

rather than forcing him to make his program say exactly the same things as
the model solution. (For example, where the model might’ print "TYPE YOUR
NAME," the student might prefer’to say "WHAT IS YOUR NAME?"; as long as his
program performs cquivalent computations, he should not be penalized for the

20 20

- nonessential aspects of the program.) Numeric constants in the output’
are ignored because they are rarely useful, and srudents should not .be
allowed to-think (as the data.indicate many have, in the past) that they
should do the computation and simply have BASIC print the already-cal-

culated result, . . ’
For those tasks im which string or numeric constants are es— -

sential parts of the output (e.g., those early tasks that'fequirs a pro=
gram that prints a specified value, for illustrative purposes), the
character "s" or "n'" must ba given in thé coding line. For example, the
model for a very simple task looks like this: °

A
*model 8 ‘ - -
;8 .
10 PRINT "scHooL"
99 END
For this task, the only output from the model that tan be matched by the
student's program is the string constane "SCHOOL"; since che '"s'" appears
in ‘the coding line, the solution checker will store "SCHOOL" when it is -
printed by -the model, and when it is printed by the student's program.
Similarly, the model solution for another easy task is:
*nodel
;n
10 PRINT 3
o 20 PRINT 3.14
99 END
Again, since the purpose of the task is to i{llustrate printing numeric
constants, it is recessary ¢ store the numeric constant output from both
the model and the student'‘'s Frogram. Therefore, the coding line includes
the "m" flag. : o
Finally, two rarely used options may be glven. An "¢ un Lhe
.coding line specifies that the student's program must produce exa.tly the
same number of lines of output., If Nis program prints more than the model
solution, it will not be accepted. A "v'" on the coding line specifies that
all spaces that would appear at the beginning of a line of output are
ignored. Spaces within the ldne are preserved.
5.2.3 Specifying INPUT Yariables and Values
The solution checker evaluates the student's program by executing
it (and the model solutfon) invisibly; therefore, ng interaction with the
student or any other "user" of the program takes place, To evaluate solutions
to tasks that require an ipnteractive program capable of dealing with input
from a user, the solution checker must have access to two kinds of informa-—
tion:. the input values to be invisibly assigned, and the names of the
variables used in the student's programs® As described earlier, each vari-
able in the model solutlon to be aseigned via INPUT must be described
in a speclally formatted REM statement. In addition, the coding line must
Include a list of the value(s) to be assigned to each input variable.
A simple cxample is: -
21 ng
&) a

ERIC

Aruitoxt provided by Eic:

*model ,
: 2 . i
1 REM X IS: THE USER'S NUMBER-

10 PRINT "TYPE A NUMBER"

20 INPUT X
30, PRINT "THAT NUMBER WAS " X
99 END

The samicol&n inddicates that the student's program for this task is to be
checked, The "2" in this example is the value that will be assigned to

the input variable during the invisible execution of the model and the
student's program. Before the solutionghecker begins, it asks the student
for the input variable his program uses; here, it would ask "What variable
do you use for THE USER's NUMBER?" . The description ("the user's number")
comes from the REM statement in the model solution. The advantage of these
complicatidns 1s that they allow the student to use whatever variables he
chooses, rathar thdn forcing on him the same variables used in the model
solution, :

If more than one Ilnput variable is required in the task, their
values are given on the coding line separated by spaces and colons, as in
the beginning of the model solutiom for task CALCULATOR:

*madel r-

;3 215 ¢ 4

1 REM X IS: THE CODE INDICATING WHICH OPERATION

2 REM M 1S: THE USER'S FIRST NUMBER

3 REM N IS: THE USER'S SECOND NUMBER

During invisible execution of the INPUT statements in the model, X will geti
the value 3: M, L5; and N, 4. If the student chose to use the variables

P, Q, and R instead X, M, and N respectively, then his INPUT P statement
would give the walue 3 to his variable P, his INPUT Q would assign 15 to Q,
ete. (The REM sratements are not required in the student's program; they
appear in the model so that the solutlon checker can ask '""What variable do
you use for . . . " and as additional clarification for the student when the
model is sahown te him.)

Finally, 1f the requirements of the task are such that a variable
is to be glven a value via INPUT more than once (e.g., within a loop), the
coding line must include the ligF of values to be assigned to each such
variable. The coding line for EGALCULATOR.1, which prints the results of
different arithmetic operations until the user types 0, looks like this:

kmgde L

21230 :1020730: 456
which means that X (or whatevet’variable the student used for "the"code in-
dicating which operation”) will be assigned the value 1 the first time INPUT
X is executed, 2 the second time, etc. M ("the user's first number') will
be assignad 10 when INPUT M is first executed, 20 when INPUT M is executed
the second time, etc.

3

B
v

i Some of BIP's tasks require the student to generate random num-
bers. For the purposes of the solurion checker, both the model solution
ahd the student's program must use the same "random" number 1if they are to

produce comparable output. Therefore, the coding line must include the' "r"
flag and specified values that will be used whenever the RND function ig
executed during solution «checking. The model solution for task GUESS.1 is:

*model) v
;r 600 .010 : 17 2 16 1 : "YES" '"NO

1 REM Y 1S:. THE USER'S GUESS

2 REM AS$ IS: WHETHER OR NOT TO REPEAT THE GAME
10 PRINT "TYPE A NUMBER BETWEEN 1 AND 25."

20. X = INT (RND*25 + 1)

25 G =0

30 PRINT "'TYPE YOUR GUESS."

40 INPUT Y

45 G =G + 1

50 IF Y = X THEN 200

60 IF Y < X THEN 100

70 REM !! NOW Y MUST BE GREATER THAN X .
B0 PRINT "HIGH" -

90 GOTO 30

100 PRINT "Low"

110 GOTO 30 -

200 PRINT "RIGHT IN "; G; ' TRIES"

210 PRINT "TYPE YES 70 PLAY AGAIN"

220 INPUT AS

230 IF A$ = "YES" THEN 10

999 END)

The "r" tells the solution checker that random value(s) follow. The first
time that the RND function in eithef program is executed during evaluation,
the value .600 will be returned. " Since the statement that uses RND is

20 X = INT (RND*25 + 1)
when the value of X (the random iﬁﬂEgEféﬁpiLkag' by the program) will be INT
(.60 * 25 4+ 1) l6. The values 17, 2, and 16 will be assigned to Y in rurn
as the INPUT Y statement 1is executad repeatedly, 1invisibly simulating the
user's guesses. After the assignment of 16, the values of X and Y will be =~
equal, so the program will execute the INPUT AS statement, where the value
"YES" will be invisibly assigned, causing the program to "pick" another
number. This time . 010 will be returned as the value of RND, resulcing in
X being assigned the value 1. The next available value for Y 1is 1; the
"user's guess' equals the '"random integer," and the value "NO" is 1nvisibly
assigned to A$. Execution terminates.

. ‘ It is clearly impgitangsfat the task author to know exactly how

he wants the model solution and the student's program to execute when he 1 ,
specifies the'input and random values on the coding line. The main purpose
of the values given is, &izFQdeE to test the student's program adequately.
The author must at the shme’ time ensure that the values given cause the model
solution to execute without error, and produce output that can be QCCUFEEEly
compared to an acceptable 8tudent selution.

23 vE?i?

- ceded by a spaeé;

‘ " 1o summarisg thé format requirements of the coding line:

;;iéga gfeiane or more of the following:

Ifbanyjare ﬁééé;fthéy must appear ln alphabetic Qrder. ' They are not pre-

il -

4.

co Valueilists are sequences of numeric or Etring constants used as
values for INPUT 'variables or as values to be returned’'by the RND function.
A value list always begins with a space, and a space 1s used within the list

to separate one value from. another. If anything follows.a value -list, the

end of the list is marked by a colon. If values are speciffed.for more than
~oné varlable, a separate value list (béginning with a space, terminated by
a gnlnn) must be given for each variable.

Ihe,"r" option 1s always followed by its value list. . (The other -

Foptiﬁns do not need ‘values.) 'The value list used for the INPUT vafiables
.'always follows the options,. 1f any., To illustrate a cambinatiﬂn, cansider
. . the -coding for task GUESS: : : ’

ix, gszgS'-s 19 10 14 .

The value .545 will be fetutned when the RND functian is executed string

‘constant autput will be stored for comparison;’ and the values that will be
aggigned tc the iﬂput variable (desc:ibed 1ﬂ a REH statement) are 19 1D
Ifrthe au;hor wished to. allow extra 1eading spaces in the autput (i e., allaw
-the student to print 1eading spaces whether .or not the model does SE), the

1 would be added and thé coding ‘line wculd be

,

3T .545 sv 19 10 14,

t

And if the author wanted to requize the studént to print anly as much ‘as
the model prints, the "e" option would" be ‘added: :

 ';er 545 :8v 19 lQ‘lé,

i

~ SECTION. 6. - STUDENT PROGRESS REPORTS
The BCLASS and REPORT ‘programs provide information on student ﬁfégfeas}s

- The ‘BCLASS . program will give you a. tabular summary .of the progress of -

: any group of students yquﬁsﬁeciﬁy_’ It will, for all students gpecified,

print their namg and number, the number of tasks they have completed, the
number of sessions and hours they spent running BIP, the name of the last

- task :they were in,. and their last sign on date.

, Appendix D.

_written to your terminal), .whether you want information about each student's
- last task only or about all the tasks. he has completed, and whether -or not

. The REPORT progtamswill'giVafiéuva more detailed summary of individual

-‘student .progress on the curriculum. = The options availablé include: ' which

student (a) you want a report for, where you want the output (on a file or

“you want an explanation of the abbreviations used in the report.

x-"Sampléxrﬁns;QE the ‘BCLASS and the REPORT programs are provided. by .

v

. REFERENCES.

- Albrecht, R. L., Finkel, L., & Brown, J, R. BASIC. New York: -W1ley;~ .
1973, S S : : = 7 i

'Eerr,'A., Beerd M., & Atkineen, R. C, .The eomputet as a tuteriel l;meretery

The Stanford BIP project. InternetiOnal Journal of Men“Maehine Studlee

1976, 8, 567~ 595

\Eeerd M., Eert A, V.,'Gould L., & Westcourt, K. Curriculum infermetion
-networks: for computer-assisted instruction CNPRDC TR 78-18). San.Diego:
Navy Personnel Reeeefeh and Development Center, April 1978.

Ceen,VJ S. BASIC New York: Heyden Boek 1970

Fleyd R. W. Notes engprngremming and the ALCDL W lenguege. Stanford, CA:
N Eomputer Science Depertment, Stenferd Unlveteity, 1971 o 2

4

Fefeythe, A, I., Eeenaﬂ, T. A, . Drgemiek E. I., & %ternherg, W. Com eteg

e;lenee A firet course. New‘York Wiley, 1969

Kemeny, J. . G., & Kurtz, T. E.~ BASiQ prog;emming} (End ed.). New Yoeks
‘ Wiley, 1971 ' , ; : - - A e

Nelen, R. L. Intreduetion te computing through the BASIC lenguege,i Hew York:
Holt, Rinehart, and Winston, 1969. o . -

. Wiener, H., & Roee, B. BASIQ wozkbook. Berkeley, CA: Lawrence Hall of"
Seienee, University of California, 1972. : .
A ‘ o
‘ REFERENCE NOTES
1. Beard, M. H., & Birr, A. V. The BASIC. inetructional program:student

.manual (NPRDG %peeie] Rep. 77-2). ,.San Diége Navy Fereennel Research
Vdnd Deve]epment Center, October 1976. :

2. Degefofde, M. L. The BASIC inetruetlenal progrem- CQQVEfSiQE,iﬂﬁq,
MAINSAIL languege (NPRDC Tech. Note 78-11). San Diego: Navy Per-
sonnel Research and Development Center, April 1978, ' :

H

3:‘ Degeforde, M. L. The BASIG inetfeetienel program: Sye;emideeumentef
+ tion (NPRDC Tech. Note 78-12), San Diego: Navy Personnel Research
“and | Development Center, April 1978 ' ’

4, Dageforde, M. L., Beerd M. H., & Barr, A. V. The BASIC inetruetionel_ A
‘ program student manual: MAINSAIE eonvereion (NPRDC Tech., Note 78- 9).
- San Diego: Navy Personnel Reeeafeh end Development Center, April 1978,

27

@O

(.

y

APPENDIX A - - .

THE TECHNIQUE GROUPS AND THE SKILLS

P i TFCHNTQUE CRQUP% AND CTHE SKILLS

nghnique l._ Smele nLtput—afirst programs._ ‘Eiégf
Print nUmeric literal , . .
~ Print string literal T ;o S L,
Print numeric expfessinn [operation on 1i§grals] g
: Print String expzessiun [cgncatanation of literals]

O W b

Technique 2.4;,§§gthgajjag§ignmeﬁ;.

: Princﬁvaiue of numeric variable , _ . L
Print value of string variable” | = = T
‘Print numerie expréssign [Gperatian on variables] : -
-Print numeric expreﬁainn [aperaticn on literals -and. varisbles]

" Print string expression [cancatanatian of va¥ 1ahlés]

Print. string expression [concatanation of variable and 1iteralﬂ
Asaign value to a numeric variable [literal value] :
: Assign value to a string variable [1itera1 value]

R el Rt
[

i

Technique 3 Mare camplicated“assignmgnti'

: 34 Assign to a string variable [value of an expressian] ‘ ffj\
! 35 . Assign to a numeric variable [value of an expression] 5
Y69 Re-assignment of string variable (using its own value)
70 Re-assignment of numeric variable (using its own value)
82 Assign to numeric variable the value of another variaqie
83 Assign to string variable the value af anDtth variable

Technique 4. Mgrggggmpliﬁqggg_gugput.

.28 Multiple print [string literal, numeric variable] , ,
© 29 Multiple print [string literal, numeric variable ‘expression]

30 Multiple print [string 1iteral, string variable] - :

74 Multiple print [string literal, string variable expression] ;;;

Te hﬁique 2 Interacﬁive pragfamsﬁ—INPUT frgm uqér-auéiqgrﬂATA.

H

13 Assign numerlc variablé by “INPUT-
‘14 * Assign string variable by =INPUT- . - ' e - -
- 157 Assign numeric variable by -READ- and ﬁDATAs. o - :
16 Assign string variable by ~READ- and -DATA~. e -
55 The REM statement . . - -

TeghniqUéiﬁ,j‘ggtg ;émpli&gged inpﬁtf

17 "Multiple values in'-DATA- [all numeric]

18 Multiple values in -DATA- [all string]

-19 Multiple values in -DATA- [mixed numeric and string]

22 Multiple assignment by -INPUT- [numeric variables]

23 Multiplesassignment by -INPUT~ [string variables] .

24 Multiple assignment by -INPUT- [mixed numeric .and string]
25 Multiple asdignment by -READZ [numeric]

.26 Multiple assignment by -READ--[string] :
27 Multiple asgignment by -READ- [mixed numeric and string]

e y o

AU T e A-1

Technique 7. Erén&h;ﬂgffptogféﬁrﬁlpﬁi

36 Unconditional” branch (-GOTO-) ‘ o P
.37 Interrupt execution - . oL
,Téchn;ggezg;f'ﬁéglggﬂ gfoéséépns} E R

.38 Print Boolean expression [relation of "string literals]
' 39 Print Boolean expression [relation of numeric literals]
'_v4Q,vaiﬂt Boolean expression [relation of numeric literal and variable]
41 Print Boolean expression [relation gf string literal and variable]
75 Boolean operator =AND-- - . ﬁf- o . .
76 - Boolean operator —OR=- 1
77 - Boolean operator -NOT-

 Techp;qpe 9. ﬁif ggg;gments==condi;;ggal standards.

42 Conditianal’branch [compare numeric variable’ with numeric literall
43 Conditional .branch [compare numeric variable with expressidn]

. 46 Conditional branch [compare two numeric variables]

47. Conditional branch [compare string variable with string literal]
48 Conditional branch [compare two striﬁg variables]

_ 59*;Ihe ~STOP~ statement

ATechnique 10, Hand=made 1oups——it ation

Y
44 Canditianal branch [Eompace Eaug;ef ‘with numeric literal]
. 45 Conditional branch [compare counter with numeric variable]
49 Initialize counter variable with a literal value '
50 ' Initialize counter variable with the value of a Variabla'
53 Increment the value of a counter variable
54 Decrement. the value of a counter variable

Ig;hniggg;;li- Uging loopsd to accumulate. : , L ;

51 Accumulate successive $;}aes into numeric variable. : . ¢
52 Accumulate successive values into string variable

71 Calculating complex expressions [numerdic literal and variable]

.78 Initialize numeric variable (not counter) to literal value

79 1Initialize numeric variable (not counter) to value of a variable

80 Initialize string variable to literal value ' - '

81 Initialdize string variable to the value of anather variable

;2s§§§que lZ.-*UE;gg "duq@y;vyalue toigiggify end of data.

21 Dummy value in -DATA- statement [string].

Technique 13. BASIC functionals. _ v A
- - = = - e &] . L

. . B .) .

20 Dummy value in -DATA- statement [numeric] .

56 zTﬁ_e ~INT- function
57 The ~RND- function : S
58 The =SQR--function ‘ o ! L o

=K

/

'Téchnique 14.1 F,;,..Nﬂxl luops.

61
. 62

63

‘. 54

~Technique 16 Ar:ﬁys. :“” o . _. | :~; }.j‘

BLT
32
33

QFDRn';7_NEXT lﬁﬂpa with literal ‘as filnal value Qf index
"FOR ., NEXT loops with variable as- fLﬁal value of index *

FOR . NEXT loops with positive step size other than 1
'FDR . NFXT laaps with negative step size '

.«‘i‘

60

65

66
67

68

Assign element of string array variable by ~INPUT-"
Assign elément of - numefic array variable by ~INPUT=

L7

Assign eélement of numeric array variable [value ia also a'variable]

The ~DIM- statement .

String array using numeric variable as 1index

Print value of an element of a string array variable:
Numeric array using numeric variable as index

Print value Df an element of a numeric array variable

TEchnique 16 Nesgiggrlqgggf(cngjiacﬁ ins;deiangthgf)-

72
73 -

Nesting lnapa
Subroutines (—GDSUBs and iriends)

A-3

' APPENDIX B

LISTS OF “SYNTAX AND EXECUTION ERRORS

L

L
L2,

“ 19,
20

21.
22,

23.
24,
25.
26,

27..

28,
29,

30.

31,
32,
33,
34,
15,
36.
37.

38.

39,

40.
41.

T 42,

43,
44,

" 45,

46.

LIST' OF SYNTAX FRRORS

"ARIHIHI:I% nrsMArLu'

TLLEGAL VARLABLE™ -
MISPLACED +.0R. - ‘

HMISSING QUOTF HIARKS (UR Illl(AL IUNCIIUN (Ali)
- =RND- TAKES -NO ARQUHPNI&

MISSING ARGUMENT FOR ~SOR-
MISSING ARGUMENT FOR —TINT-
ILLEGAL STRING EXPRESSTON

. MISSING ARGUMENT FOR —-LEN=
S ILLEGAL LINE NUMBER
.ILLEGAL EXPRESSION

NO TEXT ALLOWED AFTER —ENDE

. NO TEXT ALLOWED AFTER —-§TOP—

JUNK AT THE END OF THE LINE
MISSING " " OR "=" IN A =LET-
tUDPINL-HRANCH TO THE SAME LINE

CUUNMATCHED QUOTE MARKS . I
"MISSING OR ILLEGAL LINE HUMBIR

SEMI-COLON IN A ~READ- STATEMENT

“ SEMI-COLON IN AN —INPUT= STATEMENT

ILLEGAL VARIABLE FOR A ~READ- OR -INPUT-
MISSING "THEN" .IN AN <IF- STATEMENT
COMMA IN.A -PRINT=~ STATEMENT . _
ELLEGAL EXPRESSION IN A —PRINT- STATEMENT
ILLEGAL COUNTER VARIABLE IN A ~NEXT-
SEPARATION OF DATA WITH A SEMI-COLON
MISSING 'COMMA BETWFFN -DATA~ ENTRIES: *
INCORRECT DATA : e
ILLEGAL COUNTER VARIABLE IN A —FOR-
MISSING '=" OR " " IN'A ~FOR- STATEMENT
MISSING A "TO" IN A —-FOR- STATEMENT
[ILLEGAL NAME FOR AN ARRAY VARTABLE -
[HCORRECT =DIM= STATEMENT _
COMMA IN A —DIM- STATEMENT °

. MISSING BASIC STATEMENT

INCURRECT FUNCTION NAMI® .
INCORRECT FUNCTION DEFINTTION
INCORRECT PARAMETER NAMFE

ILLEGAL LINE NUMBER , Fa
TOO MANY LINES IN PRQGRAM

"ASSIGNMENT TO AN EXPRESSION -

ILLEGAL BOOLEAN EXPRESSION

BIP COMMANDS. ‘ARE NDT LECAL FOLLDWING A LINb NUMBER

ILLEGAL BIP COMMAND
BASIC STATEMENTS MUST -HAVE A LINF NUHBFR

ILLEGAL CHARACTFR

-

e

e

S21.

=K. T TN Xy
. . hadh) -

it s’
—e
s

~12.

13.
14.

~15.

16,

~17.

18,
19.
20.

.FUNCTION CALL WITH WRONG TYPE OF ARGUMENT

Y

LIST OF EXECUTION ERRORS

“DIVISION BY ZERO NOT ALLOWFED E . ,
. FUNCTION CALL WITHOUT A FUNCTIONWEFINITION
'RECURSIVE FUNCTION .CALL : X

SQUARE ROOT OF A NEGATIVE NUHHFR :

- VARIABLE WITHOUT A KNOWN VALUE

MISSINP SUBSCRIPT FOR SUBSCRIPTED (ARRAY) VARIABLL
MISSING DIM STATEMENT. FOR SUBSCRIPTED (ARRAY) VARIAB[F
TOO FEW SUBSCRIPTS FOR THIS VARIABLE ' o
IMPOSSTBLE SUBSTRING . .. - ,

NON-NUMERIC VALUE FOR NUMFRIC VARIAEih

NO MORE DATA TO READ _

DATA TYPE MISMATCH DURING RFAD

DIMENSION MUST BE GREATER THAN ZERO

'REeDlMENSIDNING A SUBSCRIPTED VARIABLE DURING EXECUIiDN'
“NESTING OF FOR...NEXT LOOPS TOO DEEP :

TOO MANY GDSUES EXECUTED BEFORE EXECUTION OF A RFTURN

RETURN WITHQUT MATCHING .GOSUB ‘ »
tNDEK FOR SUBSCRTFTED(LTST) VARIAELE DUT OF DFCLARED BOUNDS.

TOO MANY SUBSERTPTS

1

FUNCTIOE BEFINED TWICE IN THE ‘PROGRAM

APPENDIX C

SAMPLE PAGES FROM THE TASKS FILE ' -

c-0

¢ ' ©SAMPLE PAGES FROM 1nr TASKS FTLE ,
Y (The techn fqué cand takl s Liat and GREENFIAG are on hol of the TASKS .
FHe, BAGK is on, P 26, BACK.1 on p.27, and ALPN on p. 49) S
. L ¢ . ' - oo L : '
(: fTECHNlU”E, JFIIL%‘ . o -
N o v 2,5,8 ' L S s
Y o 1 h6i7,9,10,11, 2 W
Yy N 14,35,69,70,82,83 C
b 28,729,130, 74 o L
5L : 13, 14,15,16,55 :
R C17,18, 19, zz 23,24, 2; 26,27 S
_ 7 o 36 . IR o
= 8 , 38139,40,&1.75,75 S S
9 S h2,63,46,47,48,59 ;
1o o " by b5, 49,5, _ . . :
. ' O, N2,:71, 78,50 B : Y '
17 oo 20,21 ’ S
vy - IR Y
14 : Hl,02,67%, 64 : o :
s ’Jj.ﬁu 65,66,67,68. . o S
.16 N ¥ : ' ' S
*pmain . . C : , S . - '
CGREENFLAG 1 N : : ‘
krext , , L

Weite a program that prints the number, 6.
—RUNs the pfngram, then, type éMQREﬁ.f;L '

) *mcdel
"
‘ L0 PRINT 6
99 END
Ahint
Hint 71 ;

Langfatulatians' * This is a hint. . ,
~ Your: program should have .two statements: one hPRINT— stntément and
one ~END- statement. Each needs to have a line number, :
) TE you type <HINT~ agatn, you 1] pét annthef hint.
* .
T lint #2 ’ g
Congratulations! This {s the second hint. TIn any task, you can)
_ . type =IINT- as many times as you like. gi. if there are more hints, vou
i will get them. And-as a last feant. you can always type $HDDEIE to
soi¢ the model solution., (But ynu won't 'get 1t.unless vou'yve
exhausted the hints and the demo.) %vgtinn III 2 ig the place En look.
-ry out all the .commands you Like.) :
;' R L S
. L3
*disFns : s a
. INT,RND,SQR - ' ' o

] *'siki:lls' R S 38

1

Aruitoxt provided by Eic:

i , i.‘ .‘l]
~ main 5 : 7 - ,
.+ BACK 65 : ') - : A : ’ . - '
*Eext :
This task and LEB cantinuntian will hélp you count harkwards
Writé a ptggram that counts frnm 10 down 'to 1. In Lhiﬂ task do the
whnle thinp "by hand”, like .this? -
: l. sat some varilable equal to 10. _(Say, X) '
-2, Print the value of the varlable.
3. Subtract 1 from its value. :
" 4.-1f the variable 18 still preater Lhan zZéra, po back tc
~ " step 2. Otherwise- (autamatically) CGﬁtiﬂuE :
5. Print "sdrawkﬂnb gnitnucc g
Uée eTRACE@~¢r <FLOW- to see what yaur’prggfam is doing. ‘Use ’ a
~DEHO TRACE- to see what the model solution is doing.
© kmodel * o o
. 10 X = 10
20 PRINT X
30 X = A-1 A
40 IF X » 0 THEN 20 ’
50 PRINT "SDRAWKCAB GNITNUDC" o . o
99'END - : § ' &
“*hint .
Hint #1- -
"Step 3 means: whaéevet.ghe vslﬁé'af X is, subtract 1 from that valﬁe.
"Assign the result to the variable X. ~Look at "assignment" in the
glossary 1f you are confused.) ' ‘
* o .
r . »
1’*reg0ps" ‘:, S K
IF-LET ’ : ’ ’ . o] . . -
*disOps .~ - ' S
-+ FOR, GOTO -
*gkills . - ' R S ' a'_x'. o j' SRR i{
2,3,11,44,54 — ~ ’ o e
39
S -2 o

. . ~~ : ;
,?"nu,)rct_f'l.':l:alﬂ ' o ;
C O BAGIEL L 6B _ .o .
, CRlext : , : ; [- E
You just saw how to write that counting, lm;p by hnml "using specifie .
Cstatements to agslgn the first value to X, to subtract | from [v, and
to. see if H was low unnm*h to san. _ o - o B ') ..
How - writn a rirmrmm i;lmt lnnlcq like it does ex actlytthe same th[np ' ,
p; ' (count backwards from 10 to, 1), but-this time use a -FOR , , NEXT— ~ - - .
ne :) : Jm:m and make BASIC do'some- ut the work fnr ynu.' G T i
‘ ' t, : . P : : . -7
*model . . : o e
- 10 FOR X = 10 TO | STEP =L o .
20 PRINT X : _
C 30 NEXT X .
: - 40 PKRINT ' l)R/\WIx(‘/\H (FJI['TJI]()C" ,
¢ N 99 END - : _ S o - 5
*hint ; : , _ s
Hint[é#l’ T T Co s *
atartln;‘r with the f!LDESﬂ['y. find out what -FOR , . NEXT-]’nnp% do
and How they do it. NDon“t be confused by extra Andentations, They .
. Just help you see which. statements are "ingide" ‘the lﬁnrj, where thev o
. wlll bL repeated. : : , : .
v N = N : e. : '. . '- : . ‘X . ‘\‘/
*reqUps . S C : L C 'L“ ‘
F()[{ ' ’ o , o o '
,*dIEUPL : » - . , ‘ : L .
fl* LET,GOTO " -)) : A ' oo ,)
#skills | g | I
2,3,61,64 - . S » .\€
B ¢ ' . ,’:7.
. R .
'} :I
5 ’ = .
; 3 40 L (.
B GE’B o e
o \ .

ERIC

Aruitoxt provided by Eic:

*main
ALPH. 43

*text ,
Compare two strings typed by the user. A string is "less than"
another string if it.comes befnrg the string alphabetlra]ly
‘ "APPLE" < "FISH" ‘ is true, ‘

Your program should print something like
APPLE COMES BEFORE FISH '
depending, of course, on the user’s two strings.

*mndef
;e TARTICHOKE"™ : "ASTROLABE"
"N REM P$ IS: THE USER’S FIRST STRING
* 2 REM Q$ 1S: THE USER’S SECOND STRING
10 PRINT "TYPE A STRING — A WORD WILL DO."
20 INPUT P$ '
30 PRINT "TYPE ANOTHER STRING."

40 INPUT 0%
50 IF P$ < Q% THEN 80
60 PRINT QS$; " COMES REFORE “; PS$.
70 STOP
80 PRINT P$; " COMES BEFORE "; QS
99 END
——t
reqOps '
IF INPUT
*disOps ,
LET o
*gkills'

©2,14,30,48

ERIC

Aruitoxt provided by Eic:

_APPENDIX D

42

-

O

ERIC

PAruntext providea by enic [

#

SAMPLE RUN OF BCLASS PROGRAM

Ay
Mhelass .
BIP Student Class—Report Program:
Type a "?" for help at any time.

List of student numbers, please: ?

Type a student number for a single student. or a list of numbers,

separated by commas and/or.dashes.
For example, '

1-30,35,37-40
would get you student numbers | through 30 inclusive,
gﬂd 37 through 40. /
List of student numbers, please: 12,14-25

Where do you want the output? ?
Type a file name if you want the report written ton a file.

Stlgent 35,

If you

want the output written to your terminal right now, just type a <cr>,

Where do you want the output?

BIP Class Summary Report

/
2-JUN=77 11:58:10
Student Tasks Hours
Sessions Last Task

12 MARY zsssar 31 16 15.2 XMAS, |
14 SHIRLEY Jumaml 23 9 10.8 BACKARRAY
15 TOM el 54 16 15,1 ROUNDER
16 SUSAN e : 36 10 11.4 CHANGER
17 DAVID A 27 14 15.7 USFERLOOP
18 KEVIN i Q4 14 13.9 ONDCOUNT
19 JOHN 1N 34 9 16.8 XMAS, 1
20 MIKE RO 23 10 11.9 ARRAYINDFX
21 MARIE i 66 12 15.0 PAY. |
22 BARBARA «EER 32 19 14.1 CHANGER
23 DICK ™ - 52 37 20.3 ROMAN
24 STEVE D) 29 12 13.3 SCISSORS

5 11 12.7 CALCULATOR

25 LAURA Cumwell: 25

That is all!

=

i)
I
—r

]

Signon

23-MAY-77
I-JUN=77
29-MAY-77
29-MAY~77
JO-MAY-77
24-MAY~77
30-MAY=77
1-JUN-77
31-MAY-77
28-MAY-77
1-JUN=-77
29-MAY=77
1-JUN-77

SAMPLE RUN OF REPORT PROGRAM

@report
BIP Student Class-Report Program:
Type a_ "?" for help at any time.

List of student numbers, please: ? :
Type a student number for a single student, or a list of numbers,

separated by commas and/or dashes.
List of student numbers, please: 88,90
Where do you want the output? 7
Type a file name if you want the report written to a file. If you
want the output written to your terminal right’ﬂﬁw.'just type a <cr>.
Where do you want the output?
Short or long form? Type "5" or “L": ?
The short form lists only the most recent task. The long form lists
all tasks, in reverse chronological order.
Short or long form? Type "5" or "L": L
Do you want an explanation of the abbreviations used? Y
Key to the abbreviations in this report:
. who? g8 1f student chose this task, b 1if bip“s selection.
pqo p = passed, q = quit, o = "other": either used
o "enough” to get out, or still in the task.
und? y Lf student "understood the solution,"” n Lf not,
- if not asked. ,

try number of ""MORES" before leaving the task.

arg? y if student disagreed with the solution checker.

mod? y 1f student saw model solution before the interview.

hints "#" {f student saw all the hints, num of hints otherwise
TOTALS FOR
90 JENNY Wi 5 total tnsks 2 sipnons 1.133 hours
lasc signon: 14=MAY-=77 09:31:12
Each Taak: who? pgo und? ¢try arg? mod? hints mins date
SELFCAT ‘b P y 2 n n * 12 14-MAY-77
HORSE b p y 1 n n 1 10 14-MAY=77
ASSIGN b q n 2 y n 1 8 L4=MAY-77
PI b p y I n y * 7 13-MAY-77

[GREENFLAG b p n 1 n n 0 31 13=MAY=77
7 -

TOTALS FOR o .
88 SUSAN sl 8 total tasks 3 sipnons 1,617 hours
last signon: 14-MAY-77 18:20:15

¥
Fach Task: who? pgo und? try are? mod? hints mins date
PLUSFOUR b r 'y l n n l. 12 l4-MAY=77
HORSE b P y l n n 1 f 14-MAY=77
ASS5IGN b p y 2 n n -~ 1 5 14-MAY-77
CAT. 1 h p y l n n 0 5 l4-MAY=77
CAT b v p y 1 n y * 17 13-MAY-77
OPERATOR b q n 2 y n] 1K 1 3-MAY=77
STRINCGY h P y | " i * f 1 2-MAY=77
GRIENFLAG h P y l n i 0 ZH 1 2-MAY-77/
' THAT IS ALL! .
¢
o {
v N
. l
=g
\ ;
- =
15

FRIC [| n

Aruitoxt provided by Eic:

