= . -

‘. L}

"fp 168 559

- AUTHOR
. TITLE

INSTITUTION

SPONI AGENCY

*

FUB DATE

_CONTRACT ',

NOTE

' FEPORT NO

" EDRS®P RICE

CESCRIPTORS

IDENTIFIERS
4 -

ABSTRACT

.FMF01/PCc03 Plus chtage- Y T)

!

' RRSUNR
A " 1H Q07 094

'Dageforde, Mary L.; And Others * ;
The BASIC Instru& ional Program Student ganual
MAINSAIL Conversipn. S AP | o
‘stanford Univ., Calif. Inst. for gathematicar, StudLes

K

‘. in- social Sciencel

Navy Personnel Relsearc) andxﬂévelbﬁment‘Cégte:!,Sam
Diego, calif. r } C , | :
NPRDC-SR-78-9 . g _ c /

Apr 78 i : .. /
N-00123~76~C=~1543 \ |

65p.; For related ﬂqcﬁmenisg gee IR 007 (92-0%6

College Students;| *Computer Pased Laboratgriess
*Comput2ar Science|Education; Glossaries; Inpat
Output; *Instructional Programs; Programing;
*Prograning Languages; Tutorial Prograns: -
"RMAINSATIL b ‘

This nanual is the studeft's main source pf -

inie&ﬁéticn.abaut the BASIC Instructiomal Program (BIp), "wands->n
laboratory" that teaches elementary programming in the BASIC ..
languaqe, which hay been converted in'to’ MAINSAIL, a langyage desigued -

. for portability on a brpad class of compu®ers. The napual is -

- Grganlzed ag a refarence document for sthidents with no previous.
- Frogramming experjence. Three major sections contain (1) an
introduction to the course; (2) an explanation of general

Frogramming, discissions of programming concepts sich as

i nput and

' variables, and the specification of -the BASIC statementS jsed to
implement these concepts, with the ‘syntix and sample programs; and
vy, A3y -a 1list and explanation of the commapds that coptrol the pIP
- "mystem, some of which are identical to standard BASIC compands (€eg -y
RON, "LEST). vhile_others give access to the unique feature of BIP. A

9lossary is appended which lists all the specialized terumg

used in-

the manual, explains their use briefly, and gives referendes to the
séctis§s wher2 detalled information.can be found. (Authox/CMV)

e .

S §§**$ig#ﬁ**#f%é*##txﬁﬁigﬁfﬁ**&#ﬁ#*ii#ﬁka**ag¢$$*¢aa$*a##¥*$$*f¢$¢$$¢3$#
S Reproductions supplied by ‘EDRS are the begt that can bel made .
A, -

=:tii¥*ii¢siigt*$*¥gwt;*

s

-

- ' % S : - Kl s
- .]) . ! e

i Lo oy A ' -\

from the original document. .

2

~' . : ’, ‘] ‘r"l . }‘

L

*
E

Xe e ek skttt ook oo o o 0 R oo 0okt ol ok e oK o o e e o K
: o _ : - S -

l—-n |
ERIC

Aruitoxt provided by Eic:

NPRDEC ¢

U DEPARTYMENT OF HEALTH,
. R FOUCATION BWELFARE
) u ’ ATONALIMITITUNE OF
M e . EfxUc AfjON .
. . ™ .
s THIS LOCUMEN T #iAs BEF M u(l‘un, . . 5 €1
SR 78-9 . ©DUT EDCEXAC N Y AS BECEIED § ROAR -"\Pl'if-j-']978
1 T . THEPF HAON € CHGANIF ATIOH QR IGIN.)
* ARG BT i‘l‘llﬂL[)[V*Fw [31: 511 TR0 o
STAYEDI OF) MG NECIRRAHIL ¥ BF PHT - .
C\ CaT A SENTOERICIAUNATIONAL TR Fitly Fgfr
FOUCATION POSETION D PO ity

‘ ' THE BASIC INS STRUCTIONAL PROGRAM °
STUNENT MANUAIL: MAIN ATL CONVERSION.

= ,'. i " ; 2 . v N
! L Mary 1. I):;ggfargle o ™
) ' Marlan Beard b
[M Avron V. Barr _ .
IHHLIEULE for HuLhemdtigal Studie" in the Social: Schnc;a
Stanford Unlversity iE .
. Palo. Altﬂ California 94705 L A
i = -
. 7 -
V- " S
e - oo Reviewed by
A ' \ : John D, Ford, Jr. e ‘
- ! . =
' 4
s I
;“ ! /
\)
; El
e -
. : e
Navy Personnel Research and Development Center
’ San Dlegt, California 92152 :
: ‘ . '57@/
1 . . ’ - - Lo
}25\’ - ' w
. 7 v
i -
2 - 7

#
'
!
i
{
E
,
=
.
£,
: ¥
ff

L * FOREWORD v - T

|

Cgérdingtiﬁg Paper, Education and Training Development - (NDCP=Z0108-PN) under
3 subproject Z0108-PN.32, Advanced Computer-Basad Systems for Instructlonal
Dialogues, and the sponsorship of the Dircétor, Naval Iducation and Training
(OP-99), The overall objective of the subproject ‘18 to develop and evaluat e
advgnegd'techﬁ4QUéa of individ&a}iiﬂd instruction, = -

This research and developmént was conducted Ln response to Navy Decislon

This report ls one ln'a gerdes of alx degling with the BASIC (Begin-
7 ner's All-Purpese Symbolic Instruction Cade) Instyuctlonal Trogram (RIP),
which 1s a "'tutorfal" programming laboratory desdgned for the student wlch
- no prévious tralning in progranming. The others concer (1) the original,
' ‘ BIP student manual (Note 1), (2) the converslon of BIP into the MAINSAIL
programming language (Note 2), (3) BIP system documentat ion (Note 3),
(4) ‘the BIP supervisor's manual (Note 4), and (5) curriculum information
networks for computer—asslsted instruction (Beard!'ﬂaﬁf, Gould, & Wesacourt,
1978). This report differs from Note 1 in that 4t fncorporates changes
resulting from the MAINSAIL conversion. ' - y

&

w This report 1¢ intended for use by students gging"thg BIP, system, " The.
work was performed under Contract NOO0123-76-~C=1543 to Stanford University.
The ‘contract monitors were Dr. John D. Tletcher and Dr. Janes D. Hollapr

-) . , ‘ o

J. 3. CLARKIN - .
Commanding Officer’ : : ¢

L ’ ' ' . -
\ . ‘A .

. | -SUMMARY ’ f} }
7 ~The BASIC Instructional Program (BIP) is a "hands-on lahoratory"
that teachés elementary programming in the BASIC
" 1s the student's main source of information about the LIP Bystem and
‘the BASIC language. It 1is organized ag a reference document aimed at
students with no previous Programming experience. :

e i

&

ot

.

<

language.’ This manual

Rl

1 .ng : . . = i :
: _ ! b
. e CoNrrﬁig = o ,'
¥._ B ‘!7. I‘."

» ! . C .
SECTTON. 1. INTRDDUFTIGH B T

The BaAsTC Laﬂguagé and an BASIC Instructional

. Using Lh; Manual , ., T

Nto BIP . L, , . . e e

18 Interaction with BIp . e e

Some Hel ful Keys to Know , , ..,,
sages-and Changlng Yaur Program . ,

e AN I P N

t SECTION 2. PRGQRA['ING INLﬁASIC Wit Bzﬁ P S

I I

.
Vo

wm‘Mwﬁu&uMwa
s
g

O

20y (ﬁSSignment) L
Exprésaicng and Dperatc@s B T T T
- BASIC Operatuts N : :

INPUT | . . . T [e - e e
.READ .=, DATA and KEOPEN + v b v v w v e e w e v . s e s . 25
DIM o« Lo s s e e L S et e e e e e e
Program Flow ;xg T e .

LT\ . : . ; L

27,1 LO0ps . v i e .

o 2.17.2 Brdnchggnéﬁﬂéiqrn:

\ =~ 0 D

.
SR S C K %
- " om owm om

o
L]
e
.
»

»
L]

"

L]

I

4 GoTO . - s e s . d . D T T T s - s
9 Relatlﬂn§§i§2d Eaalean Dperatnrs S h et e e e e e e e e e 32
O IF & « THEN,,, . . '
LUFOR & w NEXT & v 0 il e vt o w s e e s o G

2 GOSUB . , 'BEGINSUB , .| RETURN .- . EFDSUB-.; RV 1)
3., Functiong, Arguments, /aﬁd Returning| Values . ., ,, .., , w40

L | S . : , .
"*ZsEB,L'aBUiltsin FUHCELQE4 e e e e e e e e e e 41
S 2.23.20 RND O e e e e e e e .
~2.23,3 INT i.;;. T S
2.2y.4 -SQR . . A e e e e e .]
2.23.5 LEN | L st e e . .
2:23.6 Userwpefined Funetfons L4 L0, L L,

: 43

W o ' "
“.'“‘-_ P)

S vii

\
2.24 Dther Usefr

!
ol
.2

2.24
2.24

SECTION 3.

.) [V
B lad T e

CLOSSARY .

'REFERENCE .

i
ol
[#ix
—
M
'
— 4-.{2
=1
o
=]
T
e

STOP * LI | i ";. L] *

REM = !"'! L T |
"BIP COMMANDS .'.

Curriculum Mandpulatdion
_ Program Manipulation .
Flle Storage and Access
Dealing With the World

.

= . ' - = - s] =

= ' * = LI J

REFERENCE NOTES ; .. , . ., . .

DISTRIBUTION LIST . .+ o % o o oo v v o i e v o . .

; 1 - o - | i i

’ / { x . . *
: L] ’ = . : 1
- . i
1

- R [\ _ RN | =
_ : /‘_ : SECTION 1. INTRODUCTION . = |

AR o L R
1.1 "ThefﬂﬁSIQ_Langpage*aggfgﬂé BASIC Instructional Program (BIP)

‘ . This ‘course 18 designed to help you learn some fundamental program-
‘ming concepts through the BASIC language. BASIC is widely used; it is ™
probably available on almost any. computer system you are likely to en-
counter. BIP 18 an acronym for "BASIC Instructional Program," the pro-
gram that: runs this course.. It is used only for this purposeé and you
will never hear of it in another context. - o

- : . ; i g
ed in this course is not identical with the.

Find elsewhere. However, the fundamentals are

to another version of ‘BASIC will be easy.

The version of BASIC u
many other versions you may
the same, and the transitio

1.2 Q?ing;thé,ﬁanua;
\ T - : S, - : _ . .
; This-manual is meant fto be an easy. and fast gource of ‘reference,
material. It will be mostfeffective 1f you have it with you while you are
working at the terminal, [y to become.familiar with the manual, but do
not try to memorize it, Kpep it handy and refer to it often. o
[; . R ‘ . T
‘The first section of| the manual introduces you to BIP aﬂd.scmekéf;thg
keys on the terminal that you should know about, The main body of the manual
is' the second section, whilch explains: fundamental programming jconcepts and
. 'structures and describes fhe language in which you will write |your own pro-
" grams (namely, BASIC). THe third section lists and explains BIP's. special
commands. The glossary 1ists all.the specialized terms used in the manual, , -
and refers to the appropriate sections for further information. '

I

: The manual 1s not ifitended to be a task-by-task guide to the course,
e It is a referefice manual that contains a complete description of all the
BASIC statements .(the '"segtences' of the language) and BIP commands.,
Especlally when you first |start programming, a reference manual contains a -
large amount of informatidn that you are not ready to use. You must try to)
- isolate exactly what you're looking for, and to ignore information that
doesn't seem to relaté to [your immediate problem. This is not easy, but it
" becomes easiexr with practice. The glossary is usually ‘a good place to start.

dld to make mistakes. A computer is a consistent -
intly discover what works' and whit doesn't by trying
different ways of doing something and watching .the results carefully. The

-+ manual 1s full of sample priograms that 1llustrate how BASIC works. Copys and
- RUN these programs whenever| you like, R

/ Advice: Don't be af
mdchine, and you can frequ

1.3 ' Signing On .

: . Whenever you want to'use a computer, you always have to start by
_establishing communication with the machine somehow, letting the computer
know who you are and what you want to-do. Ask your supervisor how to

.~ originally sign on to the cémputer and start BIP running. Then the terminal

will say . ‘ o _ o) ’

WELCGOME TO BIP!,!' |
Please type yéur number and fitst name.

Type your BIP numbar, a space, ycur first name,\and a carriage éLturﬂ)
(which is probibly a key marked "CR" or "RETURN" on your keyboard, ab-
breviated by <cr> throughout{ this manual) . The terminal will say ""HI";
and you are signed on. - You will sign on in this way, every time you work
with BIP. - . : :

In case you make 'a typing mistake, there may be a key marked "DEL" o
"DELETE“ on your keyboard that etases the. last character you typed, 1like a
backspace. If not, 'go ahead and type a <cr>, BIP will tell yau%ét doesn't
"know who you are and will sign you off autumatically. Then you can start
all over an7 dD yaur sign on correctly. i S

¥

-Once you have signed on, yau will- be "talking" to BIP You must . type
<cx> to end each line you type. BIP reads and responds to your commands
after you type <er>. BIP types a * avery time it 1s ready for ypu to
type something. - L e B '

“It is npt oo soon to teil.j@u'abaué’signimg off. You must sign off

‘before you, leave the terminal. Do it by typing BYE <cr> to BIP, The terminal

should print a short meéssage ending with GGQDEYE;

Please do not leave a terminal that has nﬂt said GQDDBYE to you.

g

Dccasicnslly, .you will be the vigtﬂm of a: systém EfrDr or a systém
crash." These are unexpected, unpredictable, unavoidable events, You will

-kncw that one has Dccurred gither becaugg yﬁur terminal suddenly prints - /ﬂin

anything at all. If yau are near.any ather pecple using tha same EﬂmpuEEI
you can ask them whether they are still getting any response; if they are,
and you aren't, yau should prgbably find the persnn who knows ‘something about

BIP,

glgé (Talkigg;ﬁa BIP

. BIP dges ﬁgt present lessgns on programming. It does not ask questions
.and uait for you to type correct answers. It does present pragfamming tasks
-that require you to write BASIC programs. By writing, running, testing, and
fixing your own pfugrams, you will learn a lot about prcgrammiﬁg; ‘BI? will
help you, not by knowing the correct answers (many different pragrams can
produce the "right'" result) but by identifying errors, giving you more in-
f@rmaticn, and presénting tasks that build on the 'skillstyou have deviémped

'IhE.paEEEfﬁ Qf‘;he interactign betwéeen yau and BIP genéfally goes like
this: ' - o " -

a. You ask for a task, by typing TASK. BIP prints out the require-
ments for a program that it expects you to write and run.

§ e

.
o

. . b. ‘You write rhe program, test it, fix it, test it, and complete . . ‘
' ' it. You will make a number of errors along the way, many of -
. which wil) cause BIP to print an error message, telling N el
- you that it can't understand what you typed, or ‘can't do what
you tald it todo. . L ' a

o

c. Héving'wtitteﬁ_ﬁhe_pragram reqiired by the task statement,
you type MORE, and BIP looks at your program to see that . o
. 1t worke as 4t should. "BIP then completes the.task by : ¢
glving you the "post-task interview." 1In some cases, the ' _
current task.will be extended with gome additional require- -
-+ mentg. - . . T W
'/' . Within that pattern, many additional things may happen. 'You may be -
- confused, either by the statement of thé‘pfgblam; by the error mesgages
printed by BIPF, br by wour program doing something you do not expect wheh, .
./ ' you rum it.. There are specific wvays to deal with each kind of confusion.

a. If the task ks not cléar, you may-request a HINT or use REP.
To gat 4 . better idea of the output your program should pro-
. ‘duce, you may run a DEMO. : . _
' b. If the meaning of the error messages 1s not clear, ‘you may.
type 4 questlon mark (?) just af er .the message is printed.
BIP will give you some brief infg§ﬁ§;ian about that error,
You shuwuld #lso look in the glossary for more information, .
X © starting with the first word or phrase that you don't under- ' & i
* . - stand. Use the cross-references to find the Information you . ' i
need, : : : ' ' - '

/

¢. If your own program does not behave as you want it to, you
- should first LIST it to see exactly what it says.* You should
! also use the debugging option ~TRACE~- that will show you, in
.o detail, your program in action. ' v : -
.- .. If you are already confused just by reading this, go to the glossary
at the end of the manual and staftilaoking up the words printed here in
~upper case, like TASK, Do not’try to memorize anything. Do try to get an
idea of how you can Find information in the manual. o e

1.5 AﬁSange Interaction with BIP Co o i'}'-

£
, . This dialegue should give you an idea of what it's like to wopk“&ith o
‘. BIP and illustrate how you can learn from your errors. The student's typ- o
" ing 4s underlined; everything else in upper ‘case 1s ptinted by BIP. (You
will never have to yype underlines yourself when you use BIP.) Comments . '
and explanations appesr at the right in lower case. Remember that each line -
of student's typing ends with'a <cr>. -

régart BIP. running, and sign on.

e ' WELCOME T0 BIP 1t

[=z]

PAiSay

PLEAS TﬁRF YOUR NUMBLR AND FIRST NAMF)
123 CHARLES _

HI GHARLES)

fTéSKF v o ‘ ' Yau ask fo SGmething to da.

i

BEGIN. TASK: STRINGY
" USE THE ~SCR- COMMAND TO SCRATcH (ERASE) YDUR PREVIGUS PROGRAM, IP ANY;

WRITE A PROGRAM THAT PRINTS THE STRING "scﬂooﬁ". START WITH THE GLOSSARY
TO FLND OUl WHAT A STRING IS. : ‘

BIP describes’a program for you to wrlte,

a

"*SCR) 'ﬁ; ' ' _ First, :get rid of any old program that's
' : ’ . ' ,-left over from a previous task.
AHINT _ " . You're not sure how to start, so you
L, o ‘ apk for a HINT.
HINT #1_1 . s oy T
: ' H

&OUR PROGRAM SHOULD HAVE TWO STATEMENTS IN IT: ONE —PRINT— STATEMENT,
AND GNE *END— STATEMENT.. DQN'T FDBGET ABOUT LINE NUMBERS AND DON'T
FORGET THAT STRINGS MUST HAVE QUQTE MARKS ARDUND THEM-

:*DEMO L o ' o J Yau take a lack at what the model daes.
EXEEUTIQN QF THE MODEL. L - A SO
- SCHQOL
EXECUTION CDHPLEIED AT LINE 99
DEMD ENDED
. Ag you thought, .the model 1is a’pragram
. hat pr;nts "SCHDDL" FOR You,
#PRINT o o - ‘ Yﬂu type ‘what yau think is a =PRiNT*ﬁ
e) :) : agatement & -
“BASIC STATEMENTS MUST HAVE ‘A LINE EUMBER S ?
LINE NOY AGCEPTED. -~ (TYPE ? FDR HELP). \ "
, o . : And you are rémindad that you nged a
Lw : ‘1ine number. ' :
?1@1FRINI L S whgnv§@u QEE'EhE? Ine number, BIP
L o 7 : * ' deoesn't cémpl . .
’ ?20,”SQHQUL" o , B ,7 ’ ﬁ%ﬁ you try ta(aay what ;tiis@thaﬁ yoau i
o . wgnt your program to ‘print. gH‘\\
i - : LT i . . ! ;
S . | : _ o :

LT

" MISSING BASIC OPERATOR
_LINE NOT ACCEPTED.

dA‘\;

- %10 PRINT "SCHOOL

" LINE NOT ACCEPTED.

‘WAS: 10 PRINT

. LOOK AT LINE NUMBER: -10

k7 [y

F IR

)

L=

- (TYPE.? FOR HELP)

*7

= B

™\

AL

o ment that does something with the string

Y e

UNMATCHED QUOTE MARKS
(TYPE 7 FOR HELP)

C %y / - : o .

g [
. REMEM E, IHAT ALL STRINGS MUST HAVE A

TYPE/? FQR MORE HELP) o
f : : :

0_PRINT

"SCHoOL"

H

TYPE 7 FOR HELP

EVERY PROGRAM SHQULD HAVE EXACTiY ONE
THE PRDGRAM

_VThe”fight idea:
' that prints sgmethimg.f

_fBuE samgthing iE wrang,.and yﬂg ask
" for more help. .

-BIP didn't complain.

4

But that must not be the way to da it.

. You ask for more help by typing a """

: CHECK TO, SEE IF YDU HAVE A CDRRECT BASIC STATEMENT ON THIS LINE

EIP can' t tell what to da with "SGHODL”
all by ftself. You need a BASIC state-

"SCHDDL", you dacide to cansult the’
maﬂual *

a HPRINTE stAtenent

&

QUOTE- AT THE BEGINNING AND -END.

‘That makes sense.

You tfﬁghgain aﬁ thé mPRINTﬁ’étaﬁémenti
C e “ B 4 o

It just reminded

Low
s you that-you have replaced line 10.
) Things 1nak gggd .) ‘
;fEUN Sa'ycu try to ~RUN~ the prcgram to sed
' : Af it warksi oo '
'ERROR DOGTOR DIAGNOSIS: NO 'END' AT END =~ o

!

It doesn't even run. ,It;ﬁeeds to have

an ﬁENDﬁ statement,
You ask fnr more héip

—END— STATEEENT—ﬁTHE LAST LINE OF

.o o . o _

TYPE ? FOR MORE I[ELP : , S
‘ ' ‘ And you understand what it means. *
N L . g o
*20 END . - .~ 80 you ‘type an acceptable’-END-.,
) ’ ' - -You think you have written a program -
" that daes ‘what ithe tagk asked for, so

. ‘ yuu type =MDRF~ to’ go on.
. s 3 N L_
*MORE . X

) o o L
'YOU DID NOT RUN THE PROGRAM. o ' S
. ‘ ' But you, didn't —RUN- the program. Ynu

, _ /haven't actually seen it print "SCHOG
C ' o yet,' , .
*RUN . . ' -7 . Try again.

EXECUTIDN OF YOUR PRQ?&AH

SCHDDL L , o .

’ . : 4

E;EGUTI@NﬂGOHPLETED AT LINE 20 L ’ - - ,
PR S Now it looks .fine. Your program ran

- - without ‘any" errors, and it pfiﬂtéd the -
. string.
*WHAT ' - b . "~ You want to make Sure tha't you ‘met -the
“ ' ’ .+ requirements of the task, 'so you ask ‘
for its text again. N R
YOU ARE IN TASK STRINGY. - Sy

DO YOU WANT THE‘TEXT PRINTED OUT? (Y OR.N) Y !

s S N o

Yes, please. [

béE Tﬁi -scna bQMMA TO SCRATCH (ERASE) YOUR ?REVIGU$’PRDGRAM, IF ANY.

/

| WRITE A PRDGRAM THAT PRINTS THE STRINC "SCHQOL" START WITH THE GLOSSARY
TO.FIND DUT WHAT A STRING IS. : -

' . As yéq thought. You can alvays use the
y , 4 N . " ~WHAT- command to review :he task.
- ’MORE 5'é' . - ' ~ You're ready 'to go on. K
EXECUTION .OF THE MODEL
EXECUTION OF YOUR.PROGRAM
~ LOOKS oK!! 7; , BIP compares your program with the

model, and sees that yours is fine.
Now.1it asks you to evaluate yourself,

T -

POST TASK INTERVIEY -
HERE IS A TYPICAL SOLUTION TO TEIS TASK: | »
19 PRINT "SCHoOL"
99 EMND

DO YOU UNDIRSTAND THE SOUTION? (Y. 0B N) Y, /

t s)
You understand why the model works.

o THINK ABOUT THE SKILLS USED IN THIS TASK » FOR RACH SKTLL
TCPE Y IF YOU HAVE HAD ENOUGH WORK WITH THAT SKILL.
TYPE - N IF YoU THINKK YOU NEED MORE WORK OM [T,

PRINT STRING LTTERAL (Y OR N) N = .

You t hink 370u ¢ Like to do pore
vich strings and quotation marks .
\ BIP will remember that facty you
- . ‘can eXpett noER strings 13@?‘;&'*
TASK STR INGY COMPLETED. The end of this t asle,

You ask for arzother. &
s

1 ASK
BEGIN TASK: PLUSFOUR) T o
THAS FROSRAM SHOULD ASSIGN THE VALUE 6 TC THE MMIRLC vV ARLABLE N, S
THEN FRIDNT THE SUM OF N AND 4, ‘ ¢

b d LA
s o

You soe Some udfamil dar Eetiy=s, aen
Tealize that you Pave.to spend at
4 least a little time wich the Map Llal

,‘_"EBE-:E ' ' You also resﬂli;é that you dorz't have
7 Zny more tife,” so you sign off.
SIG”NDFF; L8-MAY-77 17:50:18 /
YOU HAJVE CDi;*{PLJETED 1l TASK(Sy TELS SESS LUN :
STRINGY

ToTAL TIME T0 DATE: . 800 HOURS
"% TIMT ON TODAY: .067 HOURS

TOTAL SESSIONS: 2

TOTAL TASKS COMPLETED: 3

COPIRIGHT (C) 1973 BY THE LELAND STANFOGRD JUNIOR UNVIRS ITY

GOODBYE, CHARLES.
And that's gl).

i
)

,

-

Q

ERIC

Aruitoxt provided by Eic:

1.6

1.7

erro

i

Some Hélp

ful Keys to Know,

-

r ls smmething that BIP knows dt cannot handle correcly,

i

\ B
<er ? Abbreviation fo¥ the carriage return key, drohably
marked CR or RETIURN on- you=T keyboard, Evexy lire You
type must be ended with a carrjage return,
DEL (or S , ,
DEL.ETE > Eras—gs the last charas:it er Hou l:y’paci.
HoLD Stops the screer: 0 that you can re ad ev Er}’tl’jingﬁ s
“ before it disappears of f the top.
There may be a Icey marked "HOLD'' orz your terminal.
If not, gsk youx superv iso¥ what key or Reys aré used
"for this purpose. If wou have 2 HOLD key, Just hitcing -
it once will stop the screen withirz a second or so
Vhen you want teo start the scleen moving, hic HOLD
==~ . again. -Any-other qhaf&ctgﬁ will-akso &L:ats the scTeen
moving after -vou stop it, but that charactar yifl also
print on the screen. Ignaﬁe it. . . v
R . ‘ ‘ ¢)
Error Messages and Changing Your Progr am : "
Error Messages and Changing Your Progeim .
"Er ror=" were mentioned earlier. In the corrtext of thisg cowrs

¢, 4an

Fox e xample,

{f you type something like "RASK" when "TASK" was the work you meant to

type,

Bip will

‘sive the errdr message ILLEGAL BIP COPMMAND be cautse 1t

do anythimg with the Incorrect word, There are thiree d{f;ex ents kind
grrors that BIP detects and tells you .abnut'

a, 'Syt
- lirze,

ax errors’ are detected immed lately aSter vbo comp let
There are rules that you musc fol low when you glwve

command (like the one above) or type a4 BASIC statenerit. B

-

recognizes violations of those rulas and compladins imiedia

(Arz exror you may malee fraq\L.ﬂnt Iy 4s to misspell a word, a
thes e}camplt,)))

b. "Exrror Doctor errors

follow; if your progran {s mdss fing some essential things,

PUt &r

can't follow the Instrueefons, BIP mecopnizes the a

of these essential thimgs, and tells you what's nf gsaing -

c. "Exec
your
point

ution errors" aredetec Ted as your program ls puondng .
BASIC program t&irnk out to be imJossible to follow at
s, BIP will try totell =ou whiAr the problem {s.

i3

can' t
3 of

¢ ¥wour
a BIP
13
tely.
s fn

't oare de técﬁed when you relld BIP to RUY youx

prepgram, - A program is a 1ist'of Lnst tuctions far the comp uter To

thee cop—
bsenca

It
Ei‘;eme

It 45 a good idea to LIST your p=ogram bLiur wou mAake arty whafiges. Yo
changes if BIP prints an exrror message, or Lf~thee prosran dpe s

must make some

the line with the error or use the CHANGE corfnamd (set Secti-on 1.2),
had the 1 lne

your

ind

50 PRINT

you decid o

"THF RESULT IN "GALLONS I5 *7: H/Y
(or BIP forced you) to change, it co
. 1]

o

g

not produce the réesults you want. To make a change, efther recype carrectly

Suppos €

i

- .
50 'PRENT "THE RESULT IN GALLONS IS "; Y/X

’ = . B »7 ;’1 . _ _ =
instead. You-.could retype the line, tﬁfnging the positiong of ¥ and Y,
or you could yse the command . ’ :

CHANGE "X/Y¥" TO "Y/X" IN 50
(or, since the "T0" and the "IN'" are optional,
CHANGE " /X" "Y/X" 50). -

) BiP will always tellﬁ?au what the lime was before the chaige, as a
-wafning in case you didn't really want to change that 1line, (If this is .
the case, you must change it back again.) PR

- If you wgiz to délete a.-line completely, type the line nunber, and the
"CR" or "RETURN" ‘key. Then LIST the program to be sure you have what you

want.

¥
S
i
ke
4
L
o
O

ERIC

Aruitoxt provided by Eic:

i

=

/ ! ‘ ' -
SECTION 2. PROGRAMMING TN BASIC WITH BIP

This is the main body of the manual. It 1% organized by complexity
of concepts--the most fundamental first, the more advanced later. Since
programming concepts frequentdy -over lap, however, you will have té bounce
back and -forth tg Eind the infafmatiﬂn you need in a particulaf gsituarion.
i —
Do not try to memorize the Information, especially the first tlme
you read%thi% section. You may not even want to read this éntire sect lon
of the manzal at one- thé. Subﬁecticns that should bhe read tmgethgr if
yau choose to read chunks- at a time, arve:

-4

.7 2.1-2.4~-Some fundamentals of programming in BASIL
\ 2.5-2, lleeiﬁput output, assignment, and variables, _

“2.12- 2”13-§E$EI§ESiOﬂS] ; - . oy
2.14-2.16=~INPUT 'and READ statements. e *
2:17-2.20-~8equence and control of execution. *
2.21-2.23-~FOR, GOSUB, and functiuisl

Read 2.24 the first time you see STOP or REM in the model solution.

A computer is not smart. It can only do what it is instructed to do,
and every tiny step must be communicated in a fofum that the computer can
understand. A program is a 1list of instructions to a computer, -

Writing a program Involves three blg stages:
3. Specify in complete detall what t(he program is supposed to do.

b. Translate your staccment of the problem into a language the com-
puter understands.

c. Check the program to be sure that it does everyting you want 1t
to do. : ,

The difficulty of cach stage relative to the others may vary, but nux
of the three can ever be ignored just because the programmer thinks "it'
toer @asy.” In particular, you nust not neglect the first stage, the detailed
d criptioﬂ of the prgblam. It i often useful to write out in Eﬁ§1151
eggctly whst you wvant che program to.do, and in what order. You should
list the Etgps You would have to follow to solve the problem by yvourself;
Lf you cannot do this, you will not be able to use a computer to solve the
problem. For example, you can ask a Friend to glve you two numbers, apd you T
can tell him the result of multiplying those numbers together. If you think !
about 1t, you can see¢ that there are a number of steps involved:

Ask for the firat number.

llear 1t and remember 1it.
Ask for the sccond number.

I¢

Hear if and remember’ L[t

ﬁamz \ Multiply and remember the result. i
%53% Tell yfjur friend the resulr.
¥§§‘ he more épegific you mare in describing each Step of 'the problem, o
©© athe e ler {£ will be to complete the sécond gtage, where you translate
. your Engliﬁ@ into 4 programming language. A computer cannot understand)
- E_nglizh nor’ At guess at your meaning if you give it an instruction X

v that is only cla ﬁata what you meant., The rules governing the syntax,
or grammar, of. prwgramming languages are rigid, and you must use the ‘
correct wnrd§, the corfect punctuation, ete. Just. repember that your
. English list of steps, alth@ugh essential, 1s not yet a ¢omputer program;
you must translate each step into a series Gf symbolic dnstructions in
©. exactly thé form ghat the CémEFtEf through a programming ‘language, can
TTT Y Taceept. This becomes much éaster-with prsctice “Just ag in any other
- fareign language,, : '

The third scage iﬂ‘ﬁriting a program, where you check everything

.to be.sure ic, all works as you want it to, is as neqpsslry as the other,
tvwo. ‘The computer will follow exactly thE iﬁstfﬂ@ti@ns you give it., If
these instruitians do not say precisely what you meant,, the program will
not quite ‘do what you want. < Because prograns must be so precise, it is
easy to Dverléﬂk small” but importaht details, and very few programs run
"correctly' the first-time, No computer will make up for your negligence,
so you must check the results of your program at least as garefully as you
thought out the problem in the first place. This process, called "debug-
ging," 1is tediﬂus but necessary. If a progran d@esﬂ t- WDrk, it"s usually
the programner's fault, not the computer's.

i

2,2 Program Storage and Execution '
. 4%
‘In many pfagfamming languages, you first write yﬂdr list of ipstruc-
tions,’ and then tell the computer to follcw all the inagructians in the L
list. Your lizﬁ is sometimes called a ""stored progran' because the Cﬂmputetx

" must store the |[instructions until you tell i§ to begin executing them.
Execution 1s called "running" the program. ,

Whether the purpose of the program is to perform complicated cal-
culations or to play a simulated card game, it must have some information
on which to operate. This information is called data, gnd much of the data
required by a program can be stored in the program itsELf In BIP, the

. alternative to storing the data in the program 18 to have the user (the
person who runa the program) supply some data when the program stops and
asks for it, &

For example, a program whose purpose 1s to print a2 10 by 10 muleiplica-
tion table ghould have all its infogmation stored withies Jdt. 1t dis not
necessary to request information when the program is actually executed--the .
user simply tells the computer to run that particular program. In contrast,
consider a program that plays a game with the user. Such a progran needs
to get information as it runs, gince the progress of a game cannot be plan~
ned in advance. The program must stop and ask the user' for information--

- what move hé wants to make, for example. This second kind of. program {is
called "interactive" because it requires the programmer to plan for inter-
action with the uger of the program as it runs.

o 12
ERIC - | : ,

Aruitoxt provided by Eic: - P

= +

In eiched type of program, the data that the program deals with must

be kept fn.rhe computer such that it is actessible to the program. This

is done by the use of variables of different data types, which are dis-
cGssed specifically in Sections 2.7 through 2,9, |)

A word about "the user": Programmers usually write programs for other
people. to use. Whether the program calculates payroll checks or plays a
card game, it will bé used by somedne. other than the person who wrote and
debugged ie. As you write your owh programs, remember- this hypothetical
person aalled "the user." Try to make your programs understandable and
complate- engugh so that a friend of yours could sit down and run them witp-
out any trouble. :

. . ¥ . Y Q
It's also a good 1ded to include "remarks" inside your program, with _
'the ~REM- statement. A remark (also called a "comment™) is very simple:
1t's just a note to yourself that explains something about the program with-
out -affeczing the-way the program runs at all. You will ‘be surprised to
sée low soon you can forget what an "old" program (a week old, for example)
is supposed, to do. REMarks that are saved as part of the program itself '
aTe handy notes to remind you.
. . A Y R
.- It £s ndt hard to write a program that does the same thing over and
over, never stopping. A program that never stops 15 in an "endless (or
"infdnite') 1pop" which you ‘must stop or "iInterrupt.'" BIP itself -helps
you watch out' for .this., Aftrer executing a large number of statements, BIP
will stop execution, tell you it' thinks your program may be in an infinite
‘loop, and ask whether or not you want to continue execution. You should
© probably say "no" and -LIST- your program, Then try to figure out why it
nay have been in an infinite loop. :

El

Afie ~GOTO- saﬂti@ﬂgfzils) has an example of this kind of loop.
2.3 Line Numbers

Almost all imélemenﬁatiaﬁ% of BASIC require you to number each line

. of your program. Each line, or statement, is an Lnstruction to BASIC, tel].

ing it to.do some specific thing. When Vou runm a BASIC program, BASIC ’
finds and obeys the instruction with the lowest line number, then the one
with the next higher number, etc. You need not type in your statements in
order ,” because BASIC can sort.them out by line number, but you must pumber
them in the order you want BASIC to follow. A general practice is to use
multiples of 10 as your line numbers so that you have plenty of numbers
‘available {f you want to Insert gomething between two already existing liney..
BIP allows you to have up to 500 lines in a single program, but most programs
will be much shorter, ' :

f:

i .
2.4 END ©

Use: To ﬁell the computer when it has finighed executing your progran,

Examp le: = . ¢
99 IND, '

13 19

y

,ss**ii e
Remarks: | ' - N
B - Every BASIC nggfém msst have an END statement. The END statement
Wy 4e Pave the highesy line numbét: in the program.

L4

see STOP (2:24.1), L o o iv

£

1In] ut /Out th

L
o

This term refers to the problem of communicatimg with the computer—
hggey§u tel] it.to do something for you, and how you pake it deliver the
Tegults IN 4 way You can understand, Most feople communicate with camputéﬁs
Xhgough Programs, So the ‘subjects of Input and;output really deal with pro-
Viging Information to your program that makes {t-provide meaningful informa-
Yion €0 FOU, \ . o

= E = . -
y Inpugx 145 information that‘gEES'iﬁED‘the program. It can be stored (as
Dart of the program jftself) whén the program is writfen (see the -READ— and
“~DATA- S€ctionm, 2.15), or given by the user.when the program 1s run (dee
the -INPUT- gectiom, 2.14). - I

Output is the visible result of a program's execution,. It is frequently

i, che form of information printed on the user's tef:%ﬁal this will be the
Vse EQI al]l the BIP programs you write), or it may #e transmitted to a line-
brypting device, O a magnetic tape, etc. In the case of interactive pro-
. Rrams, 1t 1s impoFftant for’ the programmer to remember that the output his
“Rrograh Prints will he read by someone else, and must be reasonably under-

Stapdable. A dialogue between a person and a computer 1s pointless if
&fiﬁhg? undgfstands what the other says. :

\ Cor ;
R, g PRINT

——

Use: To get Your gsﬁgﬁam to tyée something on the terminal.

Exgmplgs; - ;

"3 40 PRINT ¢4 L J
40 PRINT ¥ 4+ 10
.40 PRINT A$
- 40 PRINT "DoG" ¢
40 PRINT 10 < 15 . . -
40 PRINT “rHE VALUE OF X IS "; X; " AND X SQUARED IS "; X72
40 PRINT (prints a blank line.)

Remarkg; - .
t _ Y
Use the PRINT statement whenever you want to have ybur program
Qype something. Abything surrounded by quote marks 1s taken literally,
Qﬁytbing Without quQte matks is "evaluated"--BASIC figures out what its

Yalue 18y and PRINT prints that value.

19

14

N

40 PRINT "X"

prints just the letter X, because of the quote marks. The statement

40 PRINT X -

.
=4

makes a BASIC look up the value of the variable Xy tuah,~rint that number,

There are no quote marks, so BASIC has to evaluate X, - \Read about values.
variables, and evaluation in the next few sections.)

Boolean values can be printed too. The statement

b

40 PRINT 10 ».9 .

%

prints TRUE on the tarminal because 10 is greater than 9.

& ~ .
S S

prints FALSE, because 10 is rot equal to 100 divided by 2.

"Fancy" PRINT statements:

Using a semicolon between two expreésiané allows you to print more.
than one expressicn on a single line. You may combine different types of
expressions in a PRINT statement. The semicolon allows you to PRINT thh
literals and variables in one statement, which can make your progran's

‘output look ggad Farzéxamyle, you could use two PRINT statements like
thias; , .

40 PRINT "Y 18"
50 PRINT Y
which would tell the user of the ptogiam the value of the variable Y, buc
would take two lines of output to do it. A nicer way to do it would be like
this: .
40 PRINT "Y IS "; Y
which would give the same information, but all on one line.

A more complicated example: Assume that the variable X has tha value
4, and the vardable Y has the value'5. The statement

40 PRINT "TQEESUN 0F YOUR NUMBERS 1S "'; X+Y
will cause BASICVtg print
THE SUM OF YOUR NUNBERS IS 9
The statement

40 PRINT "X + Y = |5 I8 "; X+Y=15

>
Q1

15

will cause BASIC to print
X+ Y = 15 IS5 FALSE
Remember to use spaces inside your quotation marks where you need
them. Some Implementations of BASIC insert a space for every semicolon,

But BIP's BASIC does not. ,

See Variables (2.8-2.11) and Expressions (2.12, 2.13, 2.19).

™ - e o o«
2.7 Data Types and Values -

o Most programming languages operate on three different types ¢f. in-
formation: numeric, string, and Boolean. Maiy languages do not allow the §

programmer to combine different kinds of information in a single exprasslnn
and it is essential that you understand the diffaren;ea y

) Numeric infctmatimu is easy to understand., A number or a numeric
Expressicn is a §hing that you can add, or find the square root of.
A string is a series @fkcharacters in a particular order. (A character

is something a typewriter can generate, including letters, numerals, punctua-

’ tion, and spaces.) You cannot add or multiply strings as you can numbars,
although most languages allow you to perform some operatlons on strings. Im
the course you are taking, your name is stored in the computer as a string,
which is why' the terminal can type your first ‘and last name for you when you
glive qhe -WHO- command, A string expressien is a thing that has this kind of
value, 'as opposed to a numeric value. : :

Boolean information is understood by tlie computer to be either truevor
false. In most programming languages, you?can tell the computer to do one
thing if something is true, and another thing if 1t is false (bEE the -IF-

statement, section 2.20). The value of a Boolean expression 1s always elther
true or false. (The word '""Boolean" comes from the name of a mathematician

named Boole.) . ' N

A word about the size of numbers and the length of sirings in BIr:
Although you can use ve'{ large numbers (20 digits, for example), BIP 15
only accurate to 10 plgces, so very large numbers involve very 1arge errors,
Your strings can be quite long (100 characters, for example), but you only
have room for about 60/characters on a line. 5o you should keep your numbers
to a size of 10 digits or less, and your strings to 60 characters or less.
Since Boolean information has no size to speak of, enough has been said.

=

2.8 Primaries

When your program is executed, the computer must be able to know, or
to find, the value of all the pleces of information in it. As described in

- the previous sectlon, these values may be numeric, string, or Boolean.
~
16
(&) ' ' 7 .

ERIC : : "

Aruitoxt provided by Eic:

" The information that your program deals with can be extremely simple, .
extremely complex, or anything in between. A primary is the simplest kind

. of Lnformation that you can talk about, because the computer must go through
at most one step to find 1ts value: Numeric and string primaries exist in

almost all programming languages, either as literals (also called constants)

OL. as variables, requiring assignment of values. N
: , - . o . e
Literals are very stralghtforward., What you see is’ what you get; a
literal is taken literally. A numeric literal is what you immediately .

recognize as a number: for example, 7 or -6.%8, A string literal is enclosed
in quotation marks and is something you immediately’recognize as a sequence
of characters (for example, "DOG" or "EkI1I"), The only slightly tricky
thing about string literals is that the characters may ‘be numerals, but the

- value.of the string is stil] aiéﬁfing, not a number: ‘for example, "'6" can-
not be added or multiplied® "§"-like "A" or *"XYZ'"-—1{s just scmething thae
can be printed. :

" The other kind of primary is the variable. Variables-are used as names
for valués or as "boxes" to hold values. The value of a variable is either
a number or a string, depending én what was asasigned to the variable,

There are two kinds of variables. A simple variable is a '"box" that
holds one -value, either one string or one number. A subscripted variable
(of ten called an "array variable") can hold many values, in order, all under
the same name.) ’

. = B ‘ .

Simple variables are like the sin le.boxes below. The first one is

8 numeric varidble, because the vdlue in the box is a number. The second is
a string variable, becau;a the value in the box 1is a string.

N i_jfiJ D$ lﬁzfgggiu

In thise examplei the value of the varilable N 1s 15, and the value of the
variable D3 1is "OUCH" (BASIC string variables always have that dollar sign.
The variable D$ 1s pronounced "D string"” or '"D dollar").

: 7 7 ,

Subscripted variables are Like the multiple boxes below. Each box
“has only one name, but (in thief example) three "slots." "Each slot can hold
a value of 1its own, [

(W @ W -

R JE A PESLELF
1

3)

e To=m=m | I | 71
st o) fs] cos o rowd U me ow
In this example, the value of N 1) 1a 8, N(2) is 0, and N(3) 1is 5. The
variable N is being used to hold a list_ (or "array') of numbers. The string
variable D$ 18 being uséééta hold a Iist or array of strings: the value of

D3 (1) 1s "OH"; D$(2) 1is "HI"; and D$(3) is "OH" (see above). N(1) 1s pro-

nounced "N sub 1" and D$(3) 1s pronounced "D string sub 3."
. 8

17

.

Each of the elements In a subscripted variable can be treated as a
separate variable, Its value can be changed by an assignment statement,
compared to another value, printed, etc. Subscripted variables can have
as many elements or "slota'" as you like. See 2.16 for more information

about their use.

_ The imparﬁantgthing to remember about both literals and variables
is that they do not involve any operations or calculations. In the case
of literals, the valoe 1s simply the literal igfself--nothing is hidden
In the case of a variable, the computer can find its-value immediately by

_looking in the "box" named by the variable, where the value 1s stored.

See BASIC Varlabiles and Assigpment (2.9-2.11) .

ol

.9 BASIC Variables

Use: To name locations (or ''boxes') where values are stored.

Examples:

g "f?
: TOX2 -
BS

Remarks:

4
A numeric variable names a "box" whose contents must have some
pumeric value (e.g., ~b or 2.5) that can’be changed by arithmetic opera-
tions like addition or divisdon. A nuperic variable.myst be either a
gingle letter or a single letter and a single digit{ In>the above examples,
Y and X2 are numeric varlablés.

A Stri{lg varlable names a “box'" whose contents m{J—-L have some
"Ettin&“ value (e.g., "HORSE™) that can bg changed by the string operation
.¢called "concatenation.” A string variable must be & letter. followed by the
$ character. In the above eramples, B$ 1s a string variable.

See Primaries (2.8) and Assignment (2.10-2.11).

.2.10 Asgjgnﬁenz &

All programming languages make extensive use of varlables, the "boxes

Vi

used to hold values. A program that deals only wilth literala cannot be
used in any kind of genaral wayy since nothing within the program can ever
change., Tor example, & program that adds 2 + 4 has limited use, but a pro-
gram that uses variables to hold the values of two numbers, and then adds
them, 1s obviously more ugefuli since that program can add any two numbers

The mechanism by which variables are given values 1s called assignment,

3 HIC L.
= -~

The simplest form of- gusigument 1s thia: ¢

2variable> » <li{teral>

b) .

18
) .

O

ERIC R o

Aruitoxt provided by Eic:

%

Fﬁf example: : -

-t

5

e

o i X

After this assignmént 18 done, the vardiable X "has the value'" 5., Any

reference to X (like printing it, or adding 1 to it) is actually a

referance to the "box" whoge pame i1s X, the box that now has 5 in it.

* The value of X can be changed by angthar assignment, after which every

reference to X will be taken as & reference to that new value.

e ' The value assigned to a varlaple can be given as an expression com~
bining two or more values, Thus the value of X could be assigned as

L

B "X = 5%4
. or, as8uming that the variaple Y had already been assigned a value of its
QWi - o '

I : :
* When the computer execytes an assignment statement, It follows these
ateps: - .

o 4, Evaluate the eéXpregsion ﬁn the g;, slde of the "=" sign.
b, Put that value into .the "pox'" named by the variable on the

left side of the "=" sign,

Thus,, the agsignment ¥ = Y +] means: "Find the value of Y, add 1.

to it, and then assign thag result as the value of X." Note that the value
of ¥ islggg changed by thig agsignment. Only the vardable on the left side
of the % gign gets a new valuye. (Do not confuse your right and left hand%
or your vafiablés will seen to have gctrange values,)

) The assignment X ="X 4] meansg: "Find the current value of X, add 1
i3] it. and asslgn that new ygjue to ¥. If X had the value 5 before the
execution of the assignment gratement, it would have the uslue 6 after che

agsignment.

X The contents of the variable op the left side of the "=" sign are
! always replaced by the valye of the gxpression on the right side. The old
value of the variable (whateyer Valug it had before the assignment statémeant)

{1 Josr. - .

»

2,11 LEY (Assignment)

Use: To glve a value to. a varjable.

ii 114 Y “

g sign or the.
(a left~arrow) sign (1f youyr keybaafd has @ne) in assignment statements.
The "+" will print as an Underliﬂé or as a left-arrow on your terminal,)

) (Note: 1In BIP's 7ASIC you May use elther the

Y
ERIC B o /

Aruitoxt provided by Eic:

. Examples:

10 LET X = 5 N
10.8$ _ "HELLO" ‘

10 A2 = A2 + 1
10 X$ (1) = "RAINDROP"

- (The word LET is optional.)

Remarks ' T
&<) : % .
R BASIC vardables are assigned values as explained above in 2.10,
Note that the "= sign does not indicate equality in this context; instead,
in assignment statements, "=" and " " mean something more like "becomes' or

ﬁss?;ggs the value of."
o The assignment statement in BASIC is called the LET statement, to
remind you that)
=1

LET X 5 and X =5

.both mean "Let X have the value 5." ' ~

¥ Remember that right and leftr are different, and that

means: "Find the value of N$, and assign that value to M$. This LET state—
ment will not change the value of ‘NS,

A statement like @

-

100 = X or "Due" = M3

will cause a syntax error from BLP, because you can't assign a value to

100 or to "DOG" either. If you want the value of X to be 100—you should say
X = 100. - If you want the value of M$§ to be "DOG"=-you should say M$ = "DOG"
to be correct.

See Data types, Primarles, and BASIC Variables (2.7=-2.9). Also see
DIM (2.16).

' 2.12 Expressions and Operators

A primary (see 2.7) can be either a variable or a literal. In either
-ase, the computer must go through at most one step to determine the value
f a primary. An operator is a symbol that tells the computer tp combine or
ompare two primaries in some way,

oo on

FRIC- -

Aruitoxt provided by Eic:

Using these definitions, an expression can be defined as elther
a primary B

~ Examples: ''CAT"
. B

or a pfimary followed by an operator, followed by an expression.

Examples: X +°1
Ws & "SONG™.
. (6+4) * 9
(6 +Y2) - (A+B)) /X
"DOG" & (FS & WS)
R$ (1, 3) & RS
(A >= B) OR D$ = '"DOG")

Using the term “expression" in its own definition means that an .
expression can be almost infinitely complex, Programming languages follow ~
a process of evaluating each part of the expression, and then putting it
all together to' find the value of the expression as a whole. (Think of
how you determine the meaning of a complicated phrase like "the sister of
the father of my hrother's sister's son's mother.”" A computer determines
the meaning, or value, of each part of an expression in a similar wé¥.)

* More complicated expressiaps are evaluated from left to right and
according to the following rules T o

b

¢ Expressions within the innermost parentheses are evaluated first,
Exponentiation (*) is done before any other operations.
Multiplication (*) and division (/) are dome next.

L=n ‘\W

[=PR o]
.
(=%
[
[aJ
i
o}
pet
o
+
—
I
=]
jo
L]
=n
it
|
]
[ad
r
[
o]
=]
-~
]
P
]
=
i}
pous
]
i
¥

This means that you may need to use parentheses to make the computer evaluate
an expression correctly. In addition, you should always use spaces and
parentheses to make your expressions easy for you to read. Extra spaces or
extra pairs of parentheses will not cause errors.

Some examples: .

5+3 /27 2 1s evaluated as 5 + (3 / (2°2)) = 5.75
((543) /2) =2 is evaluated as (8/2) ~2 16
One Egséntigiithing to remember abouf using operators in programs 1s

that you myst be explicit. Although a normal algebraic notation like

i
A + 2B

is clear to you and your algebra book, it 1s not clear to the computer. Any
time you want the program to perform multiplication, you must say so, usually -
with "*" (the multiplication operator). The equivalent of the above algebraic
expression 1s

Ny

A = 2%B,

: ’ a 26

. You will also quickly notice that your terminal cannot typé Expﬂnegtﬂ
.up above the base. Exponentiation is always indlicated on the same line, ° '
~usually with the "1t gperator.- (On some: terminals, there 18 a key with an:
arrow that points-upward. cherwise, use 2 asterisks.) Thus, to get 17
"squatédg ;you must use - : ' '

(Remamber,xspaﬂes .are aptionali 17 2 is alsa 17 squared)
SEE Dperators and - Operations CE 13, 2. 19)

2.13 BASIC Dperazurs

3

L A BASIC Gpérataf can be @ne ‘of maﬂy diffefent thiqga.; Thé érithﬁetic
* or numeric nperators are’ ‘ .

‘exponantiatiOn'

+*¥ Multiplication P LN
/ division 7 c AR
i addition ’

subEraEtian o

The arithmetic oparatars work in BASTC Just as they do 1n Dther pra=
grsmming lsnguages, as Explained in.2.12. zk# -

The BASIC string uperators are

T Ccﬂcataﬁatian is used to julﬂ tcgether two strings. For example,
_suppose_the value of the. string variable A$ is "HELLO " (notice the space
. “after .the’ "G") And suppose - the value of the variable B$ is assignéd this
way: - _

%

BS '= A$ & "'THERE." "
"The gongatenégion of AS and "THERE." would make the'valdéxaf=3$

"HELLO THERE." . Co ‘
. . &

\ A nge advice about cancatenatimg gtfings. If you are putging words

tagether (as in the HELLO THERE Example), don't forget about the space

between che uords. If you concatenate ' "CAR" and "WASH" this way

"CAR" & HWASH“
the regult is: "CARWASH"——which may be just’ what you want. If you say

!

""WELCOME“ & "HOME" | SN 7 -

V-yau get “WELCDMEHDME"?ﬁwhich is prcbably nat whdt you want. You xcan say
either ‘ : '

Q ,'--;a N ; | J 71:‘ -K. | vhgy?lAl‘ . : i-' “f

¥]

, "WELCOME ", & "HOME" . .. (space after "WELCOME")
or . "WELCOME'" & " HOME" o - __(space before '"HOME")
or "WELCOME" & " " & MHOME" - - . $g(epace quoted by itself)

: a;l nf which result in "WEﬁbDME HOME"; this concatenation
"WELCDHE"&" "&"HDME"‘ ’ L ' S o - ! .

o prdUEES the same "WELCOME HOME" result because the space 1s inside

L " the' quote marks as in the other Examples. A space inside quoterméfks is

' just like any other character and becomes part of the resulting string just
as any letter would. Using spaces to separate different parts of your
expression makes.your lines easler to read, but has no effect on haw the’

. expression 1s evaluated.

- A substring 1s a part of a string., In the example above, X and Y W ,
~refer to the "start" and "stop" characters in the string. For example, : A
- "PURPLE"™ (1, 3) .means the first through the third characters in the word -
. PURPLE. The value of "PURPLE" (1, 3) is "PUR" and that of "PURPLE" (4, 5)
~ 1s "PL"; .the numbers can be variables, so if the value of X were 3 and‘the
value of Y‘wgre 5, then "PURPLE"™ (X, Y) would be '"RPL"; the string e¢an be :
-a variable .too; so if the value of H$ was 'PHANTOM"-=then H$ (X, Y) wqud
" be the same as. ""PHANTOM". (3, 5) and "ANT" would be the value.)

L&
t

. This substring "BEAN (5 5) - A

would e the f1fth character in the string "BEAN" if there were five

- characters tc begin with. If you specify a nonexistent substring like
this one, the result is nothing. (See 2 .14 for an Explanation of the "null
string.'). : - : :

This subs ti,g‘"BEAN" (3,2) - - S

wauld be the third through the sgcpnd character in the string "BEAN"==

~ 4f BIP could count characters backwards, but it can't. An "impossible
. substring' like this one will‘cause an executiﬂn error’ wbéﬁ BIP. tries to
. evaluate ig. s -
oo BASIC caﬁnat'evaluaté”én expression that contains diffEfEnt types af .
‘values. FD: example, this expresgign has no meaiﬂﬂg
- : i) . \ o
.) ﬁ? + "NINE") » ..) =
because ins a numeric primary and "NINE" 15 a string primary. -
s RS ~ See Data Types and Pfimaries (2.7-2.8), Variables and Assignment’

(Z 9§2 11), and. Boolean Expressions (2 19)

e
I

6 .

Co % 2,140 INPUT

. . .

Uase: To allow the user of the pfagrgmﬁto give a value to a variable.

. : ‘ r
Exémples; = o ,
E : !: . : E
"~ 30. INPUT N —_ gfof a number)
30 INPUT FS§ . (for a string) =-
4 30 INPUT X, B$. "(for multiple input)
Remarks: . o,

. - < : .
When the INPUT statement 1s execu;ed BASIC types a calan ()
and waits for the user to type something, Endiﬁg wich the RETURN- key
Whataver the’ uset types becomes the‘value cf the variable in. the, INPUT
gtatement. ~ . .

The only limitation in the use of INPUT involves.numeric variables
and 1is imposed when someone runs the program. If ‘a numeric variable is
,Specified in the program, the user must type a single number, not - a string
or any kind of expression. “Numbers like 1492 or 6.25 will be acaepted but
an’ expression like 3%4 will" not. _BIP prints an error message and lets the

user. try again.
EY

This prégfam_dcubles aﬁy number the user types: EE L e

10 PRINT "TYPE A NUMBER AND I'LL DOUBLE IT FOR YOU"

sl 20 INPUT Y -
T e 30 Y = Y*2. . ,
‘ " 4O PRINT Y - ¢ - ' . T |
L - 99 END . . .) ’ S - f' ‘e

20 INPUT W$ S - At
© 30 PRINT W$ - -~ _ f N E .-
‘99 END . . - S 7 w.
Note. When typing a string in response to an INPUT the ‘'user should
not type quotation marks. Also, for strings, if the user types only the "CR"
or "RETURN" key, the string variable 1s assigned the value " This is called
the NULL string. The null string is analogous to. the number 0 (zero). It is
a known value, samething that has meaning: : It means the string version ofy
1ﬂothing just as’zero means .the numeric version of nathing.« Do not. confuse
thé null. Etring with Ehe Eharaater:" '——which 1s a space. -

Dﬂé\ENPUT statement may be used to allow che user to give values to more
. than oné vgriable.- For example, this program accepts two numbers and. adds-
them. , |,

- 10 PRINT "IYPE. TWO NUHBERS ONE AT A TIME."
. 20 INPUT X, Y ' . : e

30 PRINT "THE SUM IS "; X+Y - . :

.99 END . . , i o Co |

R &

.t

[

You may specify as many variables in a "multiple input" statement
as you like, always separated by a comma. When BIP's BASIC exécutes this
statement, 1t prints a colon for each value to be typed by the usér. Other
implementations of BASIC work in a different way, .

See Input/Output (2.5) énd Variables (2.9).

2.15 READ . . DATA and REOPEN =~ . A)

»- Use: To assign stored vaiueg to vafiableaf

X'Exémplgs: v
10 READ X . S .,
50 DATA 200 - -

10 READ P. . - >‘ o B o
20 READ Q- = - | o FS/»
.30 READ R

&' " 200 DATA 5,.20, 50.

30 READ A, B$

, 80 DATA 60, '""DOG"

< ‘
60 REOPEN

‘Remarks: -, - fi - | - % . T

, Using READ and DATA combinations allows you to store values in .
the program and taiassign those values to variables at appropriate timiﬂ,
The statement) - ' ' '

READ X . . = . S ; , o
causes BASIC to take a valie from the DATAxs;égement.and asgign that value

to the variable X, For every execution of a READ statement, there must be
a corresponding DATA value.) : . o

» o As shown in the second example above, a DATA statement may contain
more than one value. BASIC keeps track of the DATA values, and after a READ
is executed, BASIC moves a pointer to the next value in the DATA statement,
‘In that second example, the variable’P would get the value 5, Q would get 20,
and R would get 50,) 5 ' ' . ‘

- “The third example shows a multiple RFAD statement., Execution of a -
multiple READ assigns values to both variables, just as if one READ immediately
followed the other. In tHe example, execution of line 30 would result in the -
assignment of 60 to the variable A and the assignment of '"DOG" to the variable
B$. -Use€ multiple READ statements whenever you want to assign values to more
than one variable, all at ‘the same time. ' L »

. : N = T . : = X >

v . i L . T

-

been

If
"uged,"

oo o S L JoT e
a READ statement 1s executed,. and ‘all the DATA values have
an execution error megsage will he pringed (since no. value

remaing to be Essigned) To .avold, this error, use a- dummy value at the
end of the DATA list. and. atop’ READing after that: va%éﬁéhss been used, In
this pragram,“ﬁl is used as the "Hummy" that marks the end ﬂf the -1ist of

DATA values.

(This program Eéntaingra loop. Read about loops in 2.17.)

10

20
.30
40

S 50
60

90

99

There

i statement.

typESf

=You ma

7

PRINT "THIS PROGRAM PRINTS SQUARES" |) o

READ Y .
IF Y = -1 THEN 90 o ; , _
PRINT Y*2 A C . 2
GOTO.20 : . ’ ' : .
DATA 5, 10, 15, 20, =¥

PRINT "FINISHED" = ' - N o
END. ‘ N - AT

£ L

are some limitations on the values you may use in a DATA |

‘First, such a value must be a literal or constant--not a variable,
and ﬁot an expressinn ‘The value must be a number or a string:; if it is.
oa Etfiﬁgp‘it must be enclosed in quotation marks. Second, any value. given
in a DATA statement must be of the same type as the variable. to which it

will be assigned Note that in line 80 above the numeric value 60 cor-
" responds to -the numeric variable A, and'the striﬁg value '"DOG" corresponds
‘- to Ehe string variable B$. BASIC will give an' execution error if, at the
.. time Ehe READ 1s- executed the variable and the (alue are of different .

y uge as many DATA statement&,as vou like,in a pfogram. ~The

values given in the statements will be '"used" sequentially, as required by
zhe»gxeau;ien“cf READ statemgnts. ‘DATA statements can appear anywhere in
the program before the END, and it is a good idea to locate your DATA in a
piace that- makes sense to you,., . For example, if a section of .a program re-
-quires READng values from the DATA, put the DATA statements “at -the end of
that section so that you can easily see whefe Ehe DATA values will be used.

The RE

DPEstEatement moves the "pointer" back to the first value in

‘the DATA 1list. The next READ statement will théen take the first DATA wvalue
in the lowest-=numbered DATA statement 1In the program. REOPEN 18’ useful in
situations where you want tg use the same DATA values, in the same ﬂrder,

more than onee.\

2.16

10;91}1 A$ (50)

put/Ducput (2 5) Data Types (2. 7), and Variables (2 9).

See In
‘ T4 A
DIM
Use: “To eatabllsh the size of an array (a subs:ripted vazi&ble)
DIM 15 ‘short. for DIMEN ION.
,Examg}es.
10 DIM L(15) =

“\

\

?}'F ¢

Ly] ‘ i :
. : i LI

L

Remarks: i

BASIC needs to know how long ‘an array will be before you refer
to any elements or '"slots" in the array’ (for example, before you assign
any vdlues to elements-of the array), " The DIM statement establishes the -
maximum length. The DIM statemednt must precede (i.e., have a4 lower line '
number than) any statement\that refers to an element of the array. Usually,

. the DIM goes at the very beginning: ofa the program. There must be one DIM ‘' %

‘statement for every array used in the program. . i’ '

' B _ Only one DIM may be executed for a given array. In the exagyple

shown beio?, line 20 is executed only once .each. time you RUN the progrem.

" BIP will stop execution and print an erfor message if two DIMs are executed
for the same array, or i1f one:DIM for a given array variable 1s executed .
twice. This means that you dhould .Jocate all DIMs outside any loops in
your program, so .that BASIC executes each different DIM only once.

" ¢Suppose your DIM étstement is

=

. B

10 DIM X, (25) .

. . This mééns §hat you may not Wise more than 25 elements in the array X. Using
fewer than 25 will not cause any problemse o ' ’

. . This 'is a simple program using an array,~ It asks the user for
three wurds, and assigns each word to an element of the array, Then it
© prints the words in the gpposite order. - . : :

i A
..o, 10 DIMLS$(3) o o .
= '+ 20 PRINT "TYPE THREE, WORDS, ONE AT A TIME,"
30 INPUT L$(1), L$(2), L$(3) . . _
40 PRINT "HERE'S YOUR LIST IN THE OPPOSITE ORDER."
* 50 PRINT L$(3) . _ ’ ' o
. 60 PRINTL$(2) ' * e
70 PRINT L$(1)
99 END

. S . The word, "index" 1s used in connection with arrays to mean the .
number that specifies each element in the array. (The word "subseript" is’
also used.) For example, in line 50 above, the index or subscript is the

_ number 3, and it specifies the third element in the array L. "Index" is
~ also used in connection with loops (see 2.17) to mean the variable that
counts the.number of executions of the’ loop. This program {§¥like the pre-
vious example, except that 1t allows. the user to say how long his list will
" be; and thef uses a variable as the index, both of the loop and of the array.
It also uses a variable in the ~DIM- statement, after that variable has been
-assigned by ~INPUT-. ' ‘ o T : ' :

v P

L
£

oo 010 PRINT "ncw LONG IS YOUR LIST2"
o .20 T§IPUT N I . g
.-30 L$(N) ,
o 40 PRINT "TYPL YOUR' WORDS." . o ~ , e
NI . 50 FOR'I = 1L TO N - R . @
60 INPUT L$ (I) : a '
_— . 70 NEXT I - '
“i° "« . 80 PRINT "HERE'S YOUR LIST TN THE OPPOSITE DREER\"
o ' 90 FOR I = N TO 1,STEP -1 =~ - .
100 PRINT L$ (1) ‘ , S
110 NEXT I - .] L .
-Qggm R " »

*-L o SEE Primaries (2 8), FOR ;. NEKT (2 21)

44

17 Prcgram Flow E

" When the computer éxecutes a stored program it fallows a predictable
path through the 1ist of instructions that is the program. In some program—
aning languages, the order of instructions executed depends simply on the.
order in whiech the computer’ encounters them from the fnput device (e.g.,
‘card by card from a card reader or line by line from a disk file). Other
languages (including BASIC, as you knc 2 -ugse line numbers, and the camputer
._exacutes insttugtions in numeric arderi

H HA‘-, -

In élthér zase, all languages have the ahility to tell the tomputet
to follow a different order, to go to a different place in the list of in-
" structions and carry on from there,. This is called "branching" and it can
be either unconditional or conditional. Unconditional branching refers to”
- a change in the sequence of execution that will always be carried out re--
gatdless of anything else in the progtam.:\Uncgnditiongl branching is some-
* thing like telling the t@mputer, "Don't ask any questions, just go to a dif-
-ferent part of the program." . Conditional branching asks a question first:
whether or not the change in Eequencé 1s carried out depends on some con-
" dition beilng true. Frequently it involves looking at a certain variable,v
and executing the branch if the variable has a certain valuei The pfogram
_specifies a decision to be made’ by the. ccmputer. ‘

.The ability to make appropriate decisians constitutes the ' Emartness"
of a program.- Virtually no useful program runs straight thrnugh all its
statements, without ever Qhanging the order of execution.

2.17.1 Loogs

, A loop" ia a series of statements that 1s executed more than
. once. It is gh extremely useful programming structure. By using a loop,
-you can make the computer do the same thing many times, but you give a set,
of instructions only once. The genetal form of a lgcp is this. '

LY

o

28 l

()

: 'Start the loop here.’
A Have the program do something, :
Decide if the "something' should be done again.
If 8o, go back up and start the loop ‘again. = .
If not, continue on from hére.) ' o

R T
. 7 The "something" tan be .very complex. It can be moat of the -
pfogfaﬁ; for ekample, a program that plays a game can start itself again
depending on what information the user glves after playing once~~the whole
game is inside the loop.’ ' S a
A large category of loops follows this general péztern:
b set a "start" value.
' ‘ Set an "end" value, . v
- .Set a counfer equal to.the start minus 1.
I Incremeng?fhe counter,)
Do the wotrk.. . o : ,
Look at the end value-—if the counter is less than the end,
80 back to the "increment" place andcontinue from there. -
Otherwise (i.e., the counter is equal to the end value),
- continue from here, T . :

- A'"counter" 1is a numéric variable that you use to count something. In this
case, it counts rhe number of times.the loop has been executed--you incre-
-ment the counter (add 1 te it) .each time you go through the loop. The
' counter is'also called the "index." 0 S :
S : -)) c; .

- _This pattern is used in situations where the. problem can be
solved by performing. the same sequence of steps, perhaps with some varia-
tions, a number of times. This is "the work."- The number of times "the
work' is.done depends on the "start" and "end" values., For example, the
following 1is a general program (in, no programming language) that counts
Cfrom 1 to 5: S . B : : '

Y : !

&

%

Start = 1
"End = 5.
Counter = start -1 , :
* Counter = counter +-1 These three lines
- Print valueof counter : are the loop. The-
If counter less than end, go to * work is to print the
' ~ ‘value of the counter.

&

- Print ‘goodbye
: , Different problems require different vartations on this general
. pattern. For example, the "work" may involve a more complicated set of opera-
~ tions, or the counter may be changed by some value other than 1, or the order
in which the pattern parts are executed may need to be different. Once the
" general pattern.is understood, however, it is easier to see which details
must be changed to solve a particular problem. The following 1s a program
(in no programming language) that counts backwards from a number typed by
., the user. Notice the ways in which it 1s different from the last example.

¥ =

‘) . - . _ : L ,
’ Pript -hello user, type me a numberiplease
Start = whatever number .the user types
End" = zero ’

‘Counter = start . E Al ') Mﬁﬁug) {
* Print value of éb nter - . '
: Counter = counter minus one ‘
. 1f counter greater than or equal to end go. to *
,Pfint oodbye : o o
o ' o

sLnops do. work other than counting, cf course, This final

. example ptagram (in no prcgramming ‘language) princa the user's name as many
.times as he Qt»EhE chooses, ' This program doesn't need a start or end value,
because it isn't counting anything, but it .does need to make a comparison

to decide whether or not to go through the loop again. It also needs Ewa
string variables, one to hold the usfr 8 name, and one to- hold the user's - |

answer to the yes-or-no question, -

. R ¥
: . . . L x '
- ~ Print hello user, please type your name
"~ ‘Username = whatever string the user types

o - * 'Print shall I sdy your name? yes or no, please These five
% . Answer = whatever the user types. -+ : (lines
. If answer is no, then go to goodbye line | are the °
'iPrint value of username . , : , léﬂp;*)
Go to * _ ’ z v ‘ S
Print gaodhye . : ' . (

This 1oap uses bath a cﬁnditiaﬂal branch ("if’ the answer ¥s no,..") and an
. unéonditional branch ("go to’ *"), Sometimes it makes sense to put the 'con=-
ditional branch at the top of the loop (i.e., before you -do. "the work"),
and then uncanditiaﬁally go back up and statt dgain once you have reached
the b@ttom, as in- this example. - s 4. , : L

‘ It is not hard to write a program that makes the ;Qmpugsr do
the same thing over and over, never stopping, in which case your program is
said to be in an "infinité:loop." After a large number of lines have ‘been
executed, BIP will stop execution, mention sthat it thinks your program is in
an infinite loop, and ask you whether or not it. should continue execution.

“You should say "no" (unless you have a very long or complicated program that
you think really isn't in an infihité loop), check your program carefully to
gee why it might be in an endless loop, change 1it, and then run It again.

An example-of a program that has an infinite lﬂop is given in SEEtiﬂﬁ 2 18.

See 2.18-2.21 for ‘the BASIC statements used to ccnst;uct lcgps.f

201702 Branéh\and’ﬁEtufﬁ

A Frequently, the same set of instructions 1s used in many dif-.
- ferent parts of a program. An efficient way to use these instruatigﬂs is to
get them up in one part of the program and to branch to that part from ofher
parts. The sequence of statements that is accessed from differeﬁt .parts of
- ‘'the ptagram is known as a subroutine. :

O | o 5355
S : o : 30

A1

_ . ~Sincera subroutine-can be "called" from different places,

it is important for the computer, to know where«to "return" to.after the N

statements in the subroutine have been exec ed, Most languages have. -

the ability to remember the’ place,from whicdiexecution Jumped to the sub=
~routine and then to go back to that place to continue after thefsubroutinéh

_) For ‘example, ‘consider a program that simulates a game of .
blackjack. It might include a subroutine that '"deals the cards' by generat=

- ing random numbers and translating those numbers imto cards from the deck.

- In blackjack, the dealér deals cards in two differéent situations: elther -

at the beginning of a new hand, or wh€n“one of the players asks for another .
card, in addition to those he holds already. 5o, in the blackjack program,
the -card-dealing subroutine would be.branched to (or "called!) in those dif-
fereat situations. What happens afterwards depends on what was happening

- when the dealer dealt a card. 'The branch-and-return capability allows the
program to go back to that place after the cards have been~ dealt, so that
Play can continue appropriately.. In the first case, the program would only
check to see.if all the cards needed to start the .game had been dealt. In
the second ,case, it would Kave to ask the next player if he wanted another °

card. - ° R : _ N

I

e See 2.22 for the BASIE sﬁatementsiuéed to set up’subroutines.

2.18 GOTQ | - -) . o S

‘Use: 'To alter the se@ueﬁééxaf‘execution'cf‘thg'pragram unconditionally,

gxaﬁplez

70 GOTO 10 . o o .
Remarks: L ; L. - S
. - T) N,

~ BASIC executes a program in the order of the line numbers. :
When you say RUN, it finds the lowest-numbered line-anﬂ=éxecutes that state-
ment. ‘Then it finds the next higher line number and executes the statement
- on that line. And so it. goes-~1it's" very simple. The above example would
.change that order by sending BASIC back to line 10 every time line 70 was.
executed. : . o : .

R : This program will repeat itself endlessly (unt1l BIP tells the user
that it may be in an infinite loop and the user tells BIP to stop execution),

counting from 1 on up. .

X =1 ,- . v . % :
PRINT X o ' : ' .
X = X+1 ' e
GOTO 20 o '
"END

ey
L]

jo R ol o R}

2
3
4
3

a4

" Note that once BASIC has ekecuted the line E@eéifiédlin the GOTO statement,
it continues execution from that point. In this example, the order of lines.

executed wnuld be - . , v)
0, L . e : . .
20, 30, 40, "(here GDTD\Ehanges tééﬁps) ‘ "
20, .30, 40, . (GOTO 20 again) ' .
‘20, 30, 40, '(and agaim) to : ' :
etc. ' _ .

&/ : : - —- :
BIP helps you discover when your program ;é in an infinite loop by counting.
the number of statement eiecutians, stopping after a large number DFFthem,
telling you it thinks your program is in an 1nfinite 1@@9, and asking yuu
whether or not to cantimue execution.

If your GOTO statemEﬁt apecifies a non—éxistent line," EIP will
print an error message bafare it allgws you to RUN the pragram-

See Ptagfam Flgw (2 17)

2.19 'Rela;iqna;,gnd ;ﬂglggg-ﬂgggatgrg

The BASIC relational operators are E ' : ')

= equal to- a« ,

<> not equal to = ' : o A
< less than s ' C
= greater than)

<= less than or equal to

‘= greater than or equal to

Relatinnal operatats are used to compare two values. This comparison . is
" called a Baalean Expressian, and its Value-is always either true or false.

. In numeric expressions, the rélational operatcts work as ane'nagmally
expects them to, In string expresaions, - relatinnal apératﬂrs zampare the -

' Strings for alphabetic Drder, Thus:

6 =6 © is true _ o .

8,7 »= 5 7 is true. o I

4 <>-8/2- -1is false - o ' e
"DDG" = "CAT" . is qua‘ i‘ . . . L

"ALPHABET" < "A" " 1is false .
The Boolean operators are

NOT —
"AND . .
OR . ’

Bgalean aperatgrs are used to cambine or change Boolean ExPIESSiEns.

Y has the value 99, and
A$ has the value '"YES"

37

s_.i '.’i.'“, ‘ -.‘ 32] -."!

B iNaw consider the fnllawing Baalean expfesaigns. R
‘a, NDT oo W o
The Boolean expressiqn X »= Q . ' ls true,
The ‘Boolean expreasion . NOT X >=0 “1s false.
. " The expression = Y < X%5- . 1g false,
" .The expression ,© - ~NOT Y < X*5 - 18 true., | o
- . o 13 . - . -~ :;) . .
. The expression . A$ <" U"NO" 18 equivalent to
EA | NOT A$ = "NO '~ o« L
o, b. AND <
. ‘ _ An expression that includes AND ig true nnly if all its parts
. : - are true, - . 2
Du—— ‘ - o, i = i .
c X <> 4 AND'Y <= 100 -+ 18 true,
A$ = "NO" and Y <= 100 is false.
.c. OR- E '
An expfessinn that includég OR 1is true if any cor all of its patts
-are true., : :
X <> 4 OR Y > 100 © is true.
A$S = "NO" OR X < 5 _ is false.-
. Y é?'?& OR AS = "YES" ~1s true, ’
; D Unless parentheses are. uaed BASIC applies the Boolean operators
‘An this m:'der, NOT, AND, OR, Thus,._: l §
"f NDTA$5"EES"ANDY<1OD‘_ o oy
is equivalent to o : : c E -

(NOT A$ = "YES") AND (Y < -100)
and’ the Expressigﬁ“is false because NOT A$ = "YES" 15 false. .
PR . . ’

A$ = "NO" OR NOT X = 6 AND Y > 50

§

is équivaléntvtﬂ _ ,)
o (A$ = "NO") OR ((NOT $ = 6) AND (¥'> 50))
R G @)

and the expression is true.

&

1f you waht to farce;EASIC to evéiuate ymngéggiggn expressfﬁns in a
different arder use parentheses asg you would with numeric expressicns. .For

example,
* &
u s
. 33 . 38

= R
B 4 : . . : i . ;

NOT A$ = "YES" OR Y < 1000 = = - R
'isnequiﬁaléntWta~' : - : S o S

(NOT A% = “YEs"yaQR\hY <1000 . L K

Ll . (f) " (t)) o V o R : e L
. and the?éxpressymyiﬁ true, because Y < 100 is true.’ |
Hawevet,
NOT (as = "YES" OR.Y < 100) R o "
(t) 1 ‘ (t-) : K o V i i

'-15 false, because (A$ - “YES" OR Y < 100). is- true. . Parentheses can make a
differenca 1f you.. need -to use :smplicated Boolean expressions, B

!Sge Datg ‘Types’and Values_(Z.?).
'2.20 IF . . THEN .

,Useé To madify the order of execution so tha§ your prcgzam can da

different things in different situatians. : .
Examples: , !
50 IF B > 5 THEN 150 ~ -~ -~ - ° S

w50 IF X$ = "OXYGEN" THEN 300 .
50 IF A$ = "REPEAT" AND C.>'0 THEN 10 . .

‘Remarks:

-

o THE:IF - THEN statement 1s executed in the fall@ﬁing Qay:

a. The Boolean expressicn following IF 15 evalua;ed as either -
true or Ealse, depending on the values and the relatianship

within the expression.
bfffif the Boolean expression is false, the éequente‘ﬁf-éf&gutiﬁh -
does not change, and the .next line executed will be: the line ..
after the line cantaining the IF . . THEN. S ‘

c. 1If tha ‘Boolean expression is true, the next line Executed will :

be ‘that specified by the line number after THEN, ~(One may say _ -

-~ that "cantral ‘18 transferred" Jto that different point in the

B . program, Since execution will chtinuE from that specified
‘ line, not from the line following the IF ., . THEN statement.)

3

This short prﬁgram ‘uses an IF , , THEN to décide whether or not
. to start itself over: - ' . N : S . : v

.10 EEINT "TYPE' OUR NAME W IR
20 INPUT N$ ' Lo .
30 PRINT "HELLO, "; N§ ' ' S

40 PRINT "TO START OVER, TYPE 'YES' "

- 50 INPUT AS - o
60 IF 'A$ = "YES" THEN 10

~ 70. PRINT "OK. GOODBYE."

999 END - o

&

1
i

'Nate that only the wcrd YES fram the user’ causes the prggram to
 continue execution (again) from line-10. Anything the uger: types that .is .
not YES will be taken as a NO answet. ' This program is another examplé of

a loop. The number of times that the. loop will be executed. depends éhtirely
" on what the user types when the program is run. Try thisi Capy this ptggram,
»‘then RUN it. Use TRACE or FLOW to see hgw things Wka ;

Seg Pfggram Flow (2 17) and Bnalean Expressicna (2. 19)

2,21 FOR .,,73531 . .

&

Use: To have BASIC da the counting, 1ncrementing, and chegkiﬂg in
' a l sap, autgmatigally.. . ,

[

.ExampIES?

10' REM SQUARES FROM 1 to 5 See 2.24 about REM.

‘20 FOR N =1 T0 5 .Establish "start" ‘and "End "
* 30 PRINT N - ' Do something, . - .
~40 PRINT N2 ’ Do something else. .
50 NEXT'N =~ . " Add 1 to N, IfNd4s5 or 1355.

go to 30 agaiﬂ, If N is more
-than 5, cnﬁtiqpe to 99

99 END - . R

10 REM COUNT FROM 10"T0 1 ' I counts backwards begause
20 FOR N = 10 TO 1 STEP -1 "the step ‘is negative.
- 30 PRINT N "5 . i :
40 NEXT N . ' ' o . _
.99 END . ; R o o I ‘
Remarks: -
FOR . . NEXT laaps save the prcgrammer some . work by autamatically
inc:ementing the counter and checkingﬂits value against the tcp value. ThE,
general form of the FOR Etatement is _ o O

" FOR <iﬁdex? = <gtart> TO <end> STEP <howmany>

1
H

35

FOR . . NEXT Loops are executed in this way: .
. , a. The "index" variable is assigned the value of <start>.
' > b. The gfatements following the FOR statement are executed

in crder. - L

* ¢. When the NEXT statement 1s encountered,

- . - (1). The value of <howmany> is added to thé index.
h - If no STEP is included, 1 is added. (The value of
- the index moves closer to <end>.)7
) - (2) If the value of the index has not passed the <end>
- value, the statements following the FOR ’
} ~ statement are executed again--the loop is repeated
At with the new, value of the index. -

(3) If the value of the index has pagsed the <end>, the
loop is not repeated, and execution centinues from
y, the statement after the NEXT statement.

The FOR statement sets up the "start" and "end" values for the
i loop, and marks its beginning. The NEXT statement marks the end of the
“ 7 loop. The value of the Index.variable (N in the examples above} is changed,
and checked against the "TO" value, when the NEXT statement is executed.

-~ All the "work" lies between the FOR and the NEXT.

The fc%}owing three programs 1llustrate how loops work. All three
programs do the same thing: they all count by twos from two to twenty. The
first program is pretty silly, since it makes the pragrammér do more work
than is necessary:

10 PRINT "COUNTING BY TWOS"
20 PRINT 2

30 PRINT 4

40 PRINT 6

50 PRINT 8

60 PRINT 10

70 PRINT 12

80 PRINT 14

90 PRINT 16

100 PR%NT 18
110 PRINT 20

120 PRINT "WHEW"
999 END

The second program is much bEEEEE; since it makes the computer do
more of the work: '
10 PRINT "COUNTING BY TWOS"
: N =2
- 30 PRINT N
40 N = N+ 2
50 IF N <= 20 THEN 30
60 PRINT "FINISHED"

99 END o
; . %11

36

The third program is even better, since it takes advantage of
the automatic features of the FOR . . NEXT structure: -

10 PRINT "COUNTING BY TWOS"
20 FOR N = 2 TO 20 STEP 2

30 PRINT N

40 NEXT N) .

50 PRINT "THAT'S ALL, FOLKS!"
99 END .

- . It 1s sometimes, very useful: to put one loop inside another; that
is, to "nmest" the two loops. The following progrgm might be used by the
principal of a school to add up the number of students in.each grade and
in the school as a whole. The "outer loop" is indexed by the variable I,
and the "inner loop" is indexed by J. The .extra lines on the left show
you how the J-loop 1is nested inside the I-loop.

ey

o N
o .

{ T IS FOR TOTAL IN THE SCHOOL, S IS FOR GRADE SUBTOTALS
PRINT "HOW MANY GRADES DO YOU HAVE IN THIS SCHOOL?"

INPUT G - . :
~-== S0 FOR I =1 TO G - ‘
60 PRINT "HOW MANY CLASSROOMS DO YOU HAVE IN GRADE "; I
70 INPUT C : .
80 FOR J = 1 TO C
90 PRINT '"HOW MANY'KIDS IN CLASS "; J; " IN GRADE "; I
100 INPUT K : | .
1108 = S + K
115 REM ADD
120 NEXT J
130 P)
140 T =T+ 8§ o
» 145 REM ADD TOTAL FOR THIS GRADE INTO THE TOTAL FOR THE SCHOOL

150 § = 0 o
155 REM SET THE SUBTOTAL BACK TO ZERO, READY FOR NEXT GRADE -
--r~ 160 NEXT I | .
8 170 PRINT "IN THE WHOLE SCHOOL YOU HAVE "; T; " STUDENTS"-
999 END : |

g R
COoOWmoo
z
]

NT "IN GRADE "; I; " YOU HAVE "; S; " STUDENTS"

One thing to remember when you nest loops is that the inner loop(s) must be.
- entirely contained inside the outer loop.” BIP won't let you RUN the program
if it has loops like this:

10 FOR X = 1 TO 10 ’
40 FOR Y = 10 TO 100 STEP 10 .
70 NEXT X

. B : !

90 NEXT Y ‘
42

37

&

®

jhe NEXT.fo the Y-loop 1s outside the X-loop completely, which
is not allowed. :

See Program Flow (2.17).

‘Notice these requirements o6f each of the four statements:

GOSUB ’ 50 GOSUB 800
- Jjumps into the subroutine.
- Line 800 must be a BEGINSUB.

BEGINSUB 800 BEGINSUB '"'NUMERO UNO" s
‘ beginning of the subroutine. The name
(wvhatever you liKe, enclosed in quotes) 1is

optional and has no-effect except to help
you see what your program is doing.

‘RETURN 840 RETURN
g ‘jumps to the line following the GOSUB; in
this case, line 60. Use as many RETURNs
as you like, fer conditional branching
out of the subroutine.

ENDSUB “870 ENDSUB ''NUMERO UNO"
marks the end of the.subroutine. It causes
an automatic RETURN to (in this case) line
'60. The name is optional--use it to match
up with the BEGINSUB name if it helps you.

Notice Ehatsa}BIP subroutine must begin with a BEGINSUB and end with an
ENDSUB, and that thése statements must be accessed pnly by the GOSUB. A BIP
subroutine does .not require you to use a RETURN, since ENDSUB includes its
function. In BIP, RETURN and ENDSUB are similar to STOF and END: you may
use as many RETURNs and STOPs as you need (including nene at all), but you
must use one END per program and one- ENDSUB per- subroutine. -

There are no jumps into a subroutine except by a GOSUB to its
BEGINSUB, and no jumps out of a subroutine except by a GOSUB (to another sub-
routine), a RETURN, or an ENDSUB. Look at these pairs of programs for ’
illustrations of the syntax of subroutines:

*** no jﬁmping in #*%* _
This example is 1llegal This example 1is legal

10 INPUT X 10 INPUT X
20 IF X = 1 THEN 100 20 IF X <> 1 THEN 40
. ' 30 GOSUB 100
; ; 40 *STOP
100 BEGINSUB 100 BEGINSUB

13

w
< 38

2.22 GOSUB ., . BEGINSUB . . RETURN , . ENDSUB

Use: To transfer execution to a subroutipe, then to return back to
the same place.
~ . :

Rémafks:

) A sequence of statements that is accessed from different parts of
the pfogram is called a subfqutine.' BIP subroutines are somewhat different
from subroutines in other implementations of BASIC. A BIP subroutine is a
sequence of statements that come between a BEGINSUB and an ENDSUB. The
sequence 1s only "called" by a GOSUB. It can terminate either with a RETURN

. or the ENDSUB, both of which cause a jump back to the line after the GOSUB
- that called the subroutine. ' : .

Subroutines are useful in a program that uges the same sequence of
statements in a number of different situations} in that they allow the pro-
grammer to write the sequence only once and yet have it accessible from many g
different pafﬁs of the program. When this sequence has been executed, con-
trol returns to the place from which the sequence was cal?ed. Complicated

~ programs are also much’ easiér to debug if they have subroutines correspond-
ing to the different parts of the job the program is intended to do. See
"Branch and Return" in Section 2.17.2,
Example: J
: . (other-lines of "she program) .
' . R
50 GOSUB 800
60 PRINT "WE RETURN FROM THE SUBROUTINE." A
70 GOTO 999
800 BEGINSUB ''NUMERO UND"
810 INPUT X
820 IF X = 1 THEN 850
830 PRINT "X IS NOT 1. YOU LOSE."
840 RETURN
850 PRINT "X IS 1. YOU GET A STAR."
860 PRINT "* * % & *"
870 ENDSUB "'NUMERO UNO" ,
999 END .
A
When line 50 is executed, control is transferred to line 800. Execution
continues with 800, 810, and 820. If X equals 1, the next lines executed
are 850, 860, 870, and then back to 60. If X is not equal to 1 at line 820,
the sequence 1s 830, 840, and then back to 60.
;] .)
s /
K

39 !

% no "flow through" into the subroutine *

Illegal
10 GOSUB 100
20 PRINT "'x"

90 PRINT "Y"
100 BEGINSUB

&

(The problem with the illegal example is that, after
statement in line 90, BASIC would reach and execute
numbers, which is illegal.

in the sequence of line

Legal

10 GOSUB 100
+ 20 PRINT "X

90 STOP

100 BEGINSUB

executing the PRINT
hé BEGINSUB directly
A BEGINSUB may only

be executed immediately after its matching GOSUB.)

Ak k
Illegal
10 GOSUB 100
20 STOP

WibDrBEG;NSUB
110 INPUT X

no jumping out %%

Legal
10 GOSUB 100
20 STOP

100 BEGINSUB

110 INPUT X
120IF X =1
130 PRINT "X
140 ENDSUB

THEN 140
IS NOT 1!"

% no subroutine calling itself *%*

120 IF X = 1 THEN 20

) 13 PRINT "X IS NOT 1t"
145 BKDSUB
Illegal

10 GOSUB 100

BEGINSUB
PRINT "IN T
GOSUB 100
ENDSUB o

100
110
120
130

See Program Flow (2.17).

- There_1is no right way for this.

BASIC 1s not recursive (its subroutines
cannot call themselves).

L]

HE SUBROUTINE!"

2,23 Functions, Arguments, and Returning Values

Imagine this exchange.
:ie d says, "Okay: 12." To

Laul

specific way and then to give the result back.

You say,
double a number is to use that number in =a

"Double this number: 6" and your

In this example, 'double"

Ls a Eunc;ian, the number 6 15 the argument to the function,-and the number
12 (the result of doubling 6) is the value returned by the function.

A functlon is some defined process that produces a result,

e
It may

require no arguments, like the function that picks a random number (see

RND). It may require one argument,

you can't double something without knowing what that samething is.

may require more than pne argument,

like the function that doubles a number--

Or 1t
like the function that finds the smaller

of two numbafs==yau csn t say sgméthing about two numbers without knowing

what they both are.

4,

.,

w g5

A function always returns one value.
Keep the spedial meanings of argument and returp in mind. :Don't
confuse them with the regular English meanings of the words.

~ You may, think of a function as a shorthand for some series of opera-
tions. The value returned by a function is used like any other value in
the programming language you are using: VYou may assign it to ‘a variable,
use it in a Boolean expression, print it, etc. Some examples of functions
are ggfen in the next few pages, '

To generate a random number is simply to.tell the computer to pick a
number. One of the most interesting uses for random numbers is in programs
that play games: dealing cards, choosing a number for the uler to .guess,

or choosing a move in tic-tac-toe, for example.

2.23.1 guiltainf§pnctians

.-
BASIC has several built-in functions. That is, there are some
operations that are so frequently used by programmers that they have been
added to the commands that the interpreter understands. The exact list of
these functions will vary with the implementation of BASIC, and the list is
sometimes called a "library."” The following functions are built into BIP's
' BASIC: °
2.23.2 RND

e &

—

> ﬁ;}: To generate‘a random number
Examples: ”
20 X = RND
20 PRINT éND*iO
20 B = INT (RMD * 10 + 1)
Remarks:
The RND function returns a random number greater than O
and less than 1. That 1is, 1t makes the computer -Ypick a number" at random
the way you might pick a card from a deck. RND always picks a decimal fraction

between 0 and 1, so read about INT for interesting ways to generate and use
random integers,

2.23.3 INT

Use: To convert a real numger into an integer,
rﬁxamples: !

30 X EEINT(?gé)

30 PRINT INT (-27.98)

30 R,= INT (RND * 10 + 1)

. o "

AN 46

" Remarks: B ' : eff
BASIC thinks of all numbers as real numbers (i.e., as numbers

with decimal fractions), not as integers. There are many situatiqng in

which a program should work with only the "integer part"” of a number, and

the INT function does the job.

BIP's BASIC, unlike some other implementations, interprets INT
to mean "return the largest integer that is not greater than the spguﬁent."

This means that:

1

-
53

(7.4) =
(-7 é) = 98 .
b
because -8 1is the largest integer that is not greater than -7.4.

The argument.to the INT function must evaluate as a number.
INT(Y*10) is legal, but INT(AS) is not, because A$ cannot be a number.

Some uses of INT include:
a, Generating téﬁddﬁ integers (see RND).
The RND function returns a' random number between 0 and 1--
a random decimal fraction. ,To create an integer, you must first multiply
the random number by 10 (an integer must be at least 1), and then convert
+ 1t to an integer * :

INT (RND*10)
J .
will return a’random integer bEEWEEﬁ 0 and 9, inclusive. The value of
(RND*10) will be greater than 0 and less than 10; it will range from a low
of 0.01 to a high of 9.99.

INT (RND*10 ~+ 1)

will return a random integer between 1 and 10, since the range of values
(before INT is applied) is 1.01 to 10.99. Thi% BASIC statement assigns
that random value' to thE vafiahle R:

2,
R = INT (RND*lD + 1)
In general,
INT(RND * (B - (A = 1)) + A)
will return-a random Integer between A and B inclusive. - —
b. Dividing "evenly."

If a number Y divides another number X evenly, then X/Y
1s an integer with no decihal fraction or "remainder." The Boolean expression

X/Y = INT (X/Y) -
2=

? 42 47

/

will be true only if X ib evenly divisible by Y. For example, the Boolean
expression - : o

13/4 = INT(13/4)

is false, because 13/4 equals 3.25, and INT(3.25) equals 3,

But
16/8 = INT(16/8)

1s true, because 16/8 equals 2, and INT(2) equals 2.

Thigf%fcgram uses INT to determine 1if the first number given
. 1s evenly divisible by the second number:
. N
10 PRINT "TYPE THE DIVIDEND"
20 INPUT X) !
‘k 30 PRINT "TYPE THE DIVISOR"
40 INPUT Y
50 IF X/Y = INT(X/Y) THEN 80
60 PRINT "NOT RVEN! TRY AGAIN."
. 70 GOTO 10
80 PRINT X} " 1S EVENLY DIVISIBLE BY " Y
99 - END
2.23.4 SQR

User ‘To return the square root of a numeric expression.

Examples:
30 S = SQR(25)
30 iF SQR (X*10) > N THEN 10
30 PRINT "THE SQUARE ROOT OF B 1S '"; SQR(B)-
Remarks:)

{
The SQR function finds the positive square root of {its
argument. The only restrictions on the argument arew:

a. It must be an expression that evaluates as a number.
b. It must Be greater than or equal to zero, since negative
numbers do not have real square roots.
2.23.5 LEN
Use: To return the length of a string.

Examples:
30 INPUT TS
40 L = LEN (T$)
30 READ C$
40 X = LEN (C$)

N
Co

43

Remarks:

The LEN function counts the number of characters in its
string argument. If the value of T$ was "TOMATO"--the function would re-
turn the value 6.

&
2.23.6 User-Defined Functions
Use: To return the value of any expression the programmer
- wants to use often. ;
Y
Examples:

30 TWICE (N) = N*2
40 IF TWICE (I) > 100 THEN 10
50 REM BACK TO 10 IF I TIMES 2 IS BIG

30 CONCAT (R$) = R$ & R$
40 INPUT D$:
. 50 PRINT "I'LL REPEAT AFTER YOU - "; CONCAT (D$)

" Rématks:

Most implements%ians of BASIC, dncluding BIP, allow you to
define your own functions. In BIP, functions may have only one argument.

Both string and numeric fynctinns may be defined. For example, .
10 ADDER (X) = X+1 _ F

defines a numeric function named ADDER, whese argument is X, and whose value

Defining a function to.do something that you have to do more
than once saves you some trouble in writing your program. For example, 4if
- your program had to generate lots of random numbers (see RND and INT, above),
" you might define that function, then just call it each time you needed a
random number. This program is a simplified illustration:

10 PICKME (X) =-INT (RND * X + 1)
20 REM "PICKME" WILL PICK AN INTEGER BETWEEN 1 AND X
. 30 PRINT "HERE'S A NUMBER BETWEEN 1 AND 10:"
’ 40 PRINT PICKME (10)
50 PRINT "AND HERE'S A NUMBER BETWEEN 1 AND 5:"
60 PRINT PICKME (5)
99 END .

qu might copy and run this program a few times to see how all these functions
work together.

w49

You may define a given function only once in a program, but

you may use as many differéﬁt functions as you like. The kind of expression
used in a function must match-the ‘data type of the argument: If the argument
ig a numeric variable, the expression must be numeric,” and if the argument

- is a string variable, the expression must evaluate as a string. The name of
the function must be at least three letters long. It can be very long (20
letters), but since. the purpose of functions is to save on typing, your
function names 'should probably be less than 10 letters long. You may not
use 'special characters" like periods, commas, or semicolons in the function
name,

- 2.24 éthgr Useful Statements
2 %1 stop | ;
Use: To tell the computer that it has finished executing your
program,
- Example:
e ... 50 STOP..... .

Remarks:

Every BASIC program must have an END statement. The END
statement must have the highest line number in the program. :

In addition, you may use as maﬁy STOP statements as you like.
. STOP 1is equivalent to END, except that STOP may have any line number. STOP
» statements aré useful in programs that may ierminate in many ways.

BIP's BASIC always prints the number -of the last line executed
when a program terminates. Using STOP statements can be, very valuable -in de-
bugging a program that has many parts--it can help you locate problems by
causing execution to terminate under certain conditions without confusing the
issue by continuing execution with wrong values. Then the line number at)
which the program terminated can help you see what erroneous condition occurred.

See END (2.4) and GOSUB (2.22).

L

2.24.2 REM

Use: To write REMarks inside your program, making it easier
to understand.

Examples:
! 60 REM 1!l STOP LOOPING IF X IS TOO BIG.

200 REM THE FOLLOWING 5 LINES éAiCULATE THE AVERAGE:

- -

45

Remarks:

Use a REM statement whenever you like. It does not affect
the execution of your program in any way, but it gives you a way to make
notes, about the program as you go along, inside the program itself. You
may also use a REM statement with a blank line just to make a break between

blocks of lines in your program.

o

B
P
T,
N
&
'
vilh
F]
N
~ -
=

- -

e

b 5y

i

N

SECTION 3.__BIP COMMANDS

7

" Whenever you deal with BASIC,t;:z\ﬁre really communicating with the
computer on two levels., One level connects you with the BASIC language
and the computer's ability. to execute programs written in BASIC. The' other
level connects you with a more general operating system, which allows you
some control over the world in which your own programs live. In this course,
the general system is BIP, the program that runs everything you see happening
at your terminal. Through BIP, you can write and execute programs in BASIC;
in addition, you are presented with programming tasks and you are allowed to
save and mgdify your programs. Some of the commands in this section are
identical to those in other Iimplementations of BAJIC and some are peculiar
to BIP. You willsjust have to learn cther commands when you use other
versians of BASIC. s : . -

3.1 Currisulum Manipulation ¢ -

These commands deal with the programming tasks that fqrm the instruc-
tinnal base of BIP,

£

TASK Start a new problems - BIP will select if for you; "~

HINT Print a hint. Some tasks have no hints; some have more
than one. Type HINT to help you understand what the
task requires. .

MORE Continue the current problem. BIP does some checkling
of your program before allowing you to continue.

ENOUGH End the current task immadiately. BIP does not check
’ your program, and keeps no record of your having i
entered that task,

MODEL \ Print out a model solution to the current task, The
‘ : model solution {s not necessarily the only way to write
: - the program. BIP does not take you out of the task.
DEMO Execute the model solution, Th; demo should help you

write your own program by demonstrating one possible
solution to the task.

DEMO TRACE Fxecute the model solution and sh#w what's happening at

5¢1.- the game time. BIP prints the number of each line of Lthe
5(: model solution as it {s executed and prints the value df
/ cach varlable each time It ia assigned. Once you have

run the DEMO a Few times, you-know what the model solution
does, Then the DEMO TRACE will help you see how the model
. _ works. See TRACE In Section 3,2. If the screen is
' flashing by too fast; use the HOLD key, (See Section 1.6.)

47 '

3.2 P:@gramrﬁgqiﬁg;atign :

These commands do not dedl with the curriculum, only with the program

yau are currently writing .and running. #
4 =

LIST Ptint out the ﬁurrent’pragrami Use this to see what
your entire program looks like--it helps. You may
also list just certain lines of your program by fol-
lowing the command LIST with either a single line
numbgr or two line numbers, separated by dashes. For

- example, LIST 50 would list just line 50; LIST 40-70
o would list all lines with line numbers between 40 and
70, inclusiue

SCR Delete ("scratth") the current program, wiping the
slatewcleag g0 you can start afresh.

RUN Execute the pragramsﬂhave BASIC follow your list of
instructions., .

o , SEQ <starting> fincremgnt?) . .
¢ Renumber the lines of the program. <starting> is the
first line you want to have 'reSEQuenced," and
<increment> is the distance you want to have between.
the lines. For example, '

SEQ 100 20

will renumber the lines in your program from line 100
upward, and each new line number will be 20 more thhn
the line number that precedes it. (The new numbers in
this example, starting at 100, would be 100, 120, 140,
_etc.) Use SEQ when you want to réorganize your pfagfam
to make more space available between the existing lines,
so that you can ipnsert new lines into the program:

-8EQ also changes the line numbers specified in GOTO,
IF . . THEN, and GOSUB statements so that the program
executes exactly as it did before you decided to
reSEQuence the line numbers. *

SEQ 10 10 is the default, meaning that if you type
Just 5EQ, 1t 14 assumed you meah SEQ 10 10.

CHANGE "<string 1>" TO "istring 2>" IN <line range>

Change part of a line or lines without typing them
all over again., This command will change every
occurrence of the characters in <string 1> to the
characters in <sgtring 2> in all the lines given in
'<1ine range>, The words "TO" and "IN" are optional.

03

48

P T
.

<line range> can be (1) a single line number, : -
(2) specific line numbers, separated by commas, or :

- (3) two line numbers separated by a dash, in which. -
case’all lines whose numbers are between those two
numbers are checked. If no <line range> is §iven,

, then EVERY line in your program is checked.

This command is best illustrated by examples.
Consider the line -
r 10 PRINT "THIS 1S AN EXANPLE FOR THE CHANGE COMMAND" .
’ - with "EXAMPLE" misspelled. To fix it you could either
retype the whole line or give the command
CHANGE 'NP" TO "MP" IN 10 ' ,
(or CHANGE "NP" "MP" 10, since "TO" and "IN" are optional).
Note that if you had said : r
_ CHANGE' "N' TO "M" IN 10 -
line 10 would be changed to
10 PRIMT "THIS IS AM EXAMPLE FOR THE CHAMGE COMMAND".
which is clearl} not what you'd want,
o _ <string 1> and <string 2> do not have to be of the same
- e “length. For example, if o
"THIS IS AN EASY EXAMPLE FOR THE CHANGE COMMAND"

is what you wanted your statement to be, you could give .°
give the command ' .

CﬁéNGE " E" TO " EASY E" IN 10 R
and then later- if yaﬁrdecided that the ward>ﬁEASY" is not
what"you wanted, you could eliminate it with the command

CHANGE " EASY" TO "' IN 10 .

If you wanted to chanée the number 10 to the number
. 20 in lines 30, 80, and 110 of your program, you could
give the command - - - o
CHANGE "10" TO""20" IN 30,80,110
_ You cfuld also give the command
; . A CHANGE "'10" TO "20" IN 30-110
ag long as none of the lines between 30 and 110 have
_occurrences of "10" that you DON'T wgnt to change.
‘To change "10" to "20" éverywhere in your program simply
type the command ST : . ' ’
s . o
" - CHANGE "10" TO "ED?"

" and it would be done.

49 LY P

'TRACE; o Execute the: pragrﬂm and show what's happening at the
o ' . same time, BIP prints the number’of each line as it
" 18 executed, and prints the value of each variable each

. T time it 1is assigned. This is an extremely valuable
L . debugging tool. Use it.on a siMle program first, to
T . see exactly what it does. Then use it any time your -
. ' program does not seem to do what you intended,
TRACE ":ﬁumber1:* SR - e,
. . Executes the yhgle program. The trace will start as
: -° . poon as the line numbered <numberl> is executed, and
" " the trace contindies .to the end of the program. Use
this command 1f you know that the first part of your
program is cotrect and you want to avoid taking the
time to cracg thtaugh things that already wurk. 8
TRACE <ﬁumber1> €number2> 5 :)
:] . o Executes -the whole program. In additian, it TRACEs
‘?;éL‘“!”Tf‘*“"”f"*‘f’fg'exacdfian of 'all 1ine&™ ﬁﬁgse numbers are belweéen ’
e <nunberl> and inumbEfzs
= .) LT ‘ ., .) ‘Fﬂf EKEJTIPlE, B
- TRACE - 10 | ’\
executes the* 2 pragfam, and prints line nunibers ,
. . and. variable vs;ues between lines IDD and- 200 in:luaive.
'.iE:c&mple of TRACE:
.For the pragrém' e , ,
10 FOR- J-= 1:TO-2 - T i S
2GLETK§J A T
) o S "30 NEXT J S fe
T S PR XAD PRINT "FINISHED'" R
Typiﬂg "TRACE“ will prgduge this Dutput
. " /IRACE STARTING AT LINE 10 -
S . 1o ¥ =1 e
. . 20: X=1 .
, : S0y g =20
ST 20, X =2 ; ‘
t , - ; 30: J=3
: - /o 40: FINISHED! .
¥ .. ‘ ¢ . . 99: . . R
' v : o TKECUTIDN CDHPLETFD AT LINE 99
5 v

3.3 . File Storage and Aécass : : 4

Thesa cammands allow you to keep your programs- for. 1sLer use. If
you do not save a program, it will disappear when' you sign off. When ynq’
save a program, you must give it a name, .The name can be .anything you
like, but 1t should not contain any "Epugial characters" 1like periods,

commas, or’gemicolons. Dnce the progran has been sévgd it 18 called a,

"filé ‘ii‘. .

FILES List the names and dates of all files cu:rently
s saved in permanent storage. The date and time
- shown tell you when the file was last SAVEd.
The length is the ﬂumber af linea in the SAVEd
program, v

SAVE <name> Stcfe the current pragraﬁ under the <pame>
given. The name must not be longer than 30
"characters. The program is not affected—-it
————18-8imply-copled to a- parmaﬂent storage area,

GET. éname? \?etrieve the file @f ﬁhg <name> given, The

: urrent program is'SGRatched and replaced by
‘the <name> file. The permarent storage of _
iname? is nut affected (See comments below.)

o,

MERGE <name> .Retrieve the <name> file from stcrage and add
C ~ 4t to the current program, without SCRatching
the current program. BIP will print 'the
- messages DUPLICATED LINE and WAS: . . . if the
MERGEd f£ile and the current program have 1ines
- with the same line number. The "new" line from
‘the merged file 'will replace the "old" line that
wag already part of the current program.- See
comnents’ below. -) . : -Z:a= A

i KILL ‘<pame> Erase the iname? fila from permsnent statagei
’ fhe current program is ngt aiEEcted.

It is a g@ad idea to LIST your current program before you SAVE it,
tﬁ;uerify that iﬁpia vhat you want- -Be careful with KiLL, since it ds
final o

Your "current program space' and ~ permznent storage. area" are two B
separate things that only communicate with each other when you use these
commands. . Remember that SAVE and GET make copies from the current program.
to permsHEﬁt storage and vice versa, When you GET a file, BIP ‘coples the
file from permanent storage into ycur current program space, and leaves
the permanent file exactly as it was., If you then make some changes t /the

‘program, you must SAVE it again 1f yﬂu vant -t he changes to be perﬁanant

11

51 - .

: Fuf exnmplp, suppose you hnve SAVEd. o program ander thv‘nnmv noG,
and then sign off, The next day you GET DOG and make gofic Lhnngrs to 1t.
- If you then say SAVE CAT, your permanent storage will have bath DOG. (the
. #.0ld versdon) and CAT (the.new one). TIf you say, instead, ghVF DDG " thien
~* BIP will say "OLD VERSION.DELETED' and you will have Dnly ‘the new version, -
under the name DOG. - The moral 1s: If you want to have two versions'of -
the program, SAVE the revision with a new name. If you don't" need the Gld
version any 'more, "SAVE the nev version with the same (old) name. If you -
“don't SAVE it at 511, the new version- (your current progran) will disappear
'._when you sigﬂ ofE, and iny the ald versdion will be -1in permanent staragg. '

3.4 Dealing With the erLd S
s WHO %Jg¢ Prlnt tHe name and student number of the persgon -
- "7 - .,using the terminal. Use this Lf gomeone has

- ‘ . left the terminal without signing aff . (If you ~
L o . .~ - soign him off, he: may laae a program, 80 try to '
- ’ © find him first D : ‘

WHAT- _ Print the name of the current Lask yau ‘are 1in.

- ' This also allows you to have the problem text
printed out for yau again withﬂut restarting
the: task.

WHENi .-XPrint h ate and time. vaiéus_uaé.

Leave ‘a message for your supervisor, Use ‘this
lwhenever you have a problem that you think he
or .she should know dabout. Please describe the
problem as: thoroughly as" ycu can. Type the.

<c¥> key twice to end your mesaage.

o]
ed,

K CALC ~ ° Evaluates an Expreasinn-3 The ezptegsicﬁ can’
’ T .. be numeric, string, or Bnnleani. For example,

S0 CALG o+’ e :f:%f&;;* L
would make BIP print 10. or . "? S
CAI.C "I)DG" § '"f‘DDD" '
wauld mske BIP print DDGFDOD Dt
' CALC. 556 :

wauld make EIP print FALSE

=

5 . =

CALC cannot evaluatg expreasians Qﬂﬂtaining
variables_ o

GLDSSARY

‘ Wcrds Ln UPPER CASE are either BIP c@mmands or BASIG sLatements.‘ .

argumant '

assignnent

. BASIC '§5'§

BEGINSUB

-BIF‘vﬂ;

Boolean expressions

branching

 CALC .

CHANGE

‘character

>

.. concatenat ion

constant

counter: .

A widely used prcgramming language. Eeginnéra
:VAllgpurpaEE Symbalic Instruction nga. .

’ jA number ic vafiabIE»gsed o count samething
" usually incremented every time some canditian:ﬁ
. 1la satisfied. See 2. l7

- The value or valUEs aperated on by a Eungtian.

See 2, 23 e LT e . o
Alsm nalied ‘a- abbsﬁfipégd &ﬁriabie,' a variable =
that may-have many distinct elements, each of

which cdn ‘be’ treated as a separate variéble.

See 2.8, 2.16.

=1 , L
Assaciating a variable name with the contents
of a Jaﬁatigﬂi See 2, lD 2711' ‘

i

-The BIF BASIC statement thst Etatts a subtautine T

See 2 22

:j-"BASIE Instructiﬂnal Pragrsm" the program that o
»,runs Ehia course, "5Jt e N

Expressians whase value is either TRUE or FALSE_

Used 1in making decisiansi See 2.19,

Transfetring control to a different parﬁ Gf

" the program rather than following the numeric
. sequence of lina numbers. See 2.17-2,20.

The ﬁi? cammand that ends yéur seasion With

the cc:mputex:; See 1.3, 1.5.

The BLP *mmand_théﬁ'evaluates an expression,

See 3.4.

ThE BIP cammand that makes ic pcssible for you
to change a line or group of lines in your:

» program without typing them over. -See 3.2, -

;Anythinéﬁa terminal can.diéﬁlay; 'lettérs,
- numbers,.punctuatign; ét=spaces! See 2.7,

The striﬂg Dpefatiﬂn ‘that EDmbiﬂEE two sﬁrings

into ome. See 2. 13
=Y

An@tﬁeﬁfﬁgrd for "litefal.ﬁ..Sea'E.S;

s 58

data

DATA .

debugging -

“'F:fdeeisions"

* DEMO

END

endless loop

ENDSUB
ENOUGH -

' error

‘evaluation

execute’

qexpfessiéﬁ'

" In general—

. in your program.

’ the game time.. -

.Lﬁfgfmatinﬁ uaed by program,

The BASIC statement that ptavides vnluga 'to
a READ statement. See 2. 15.

\
The proceas of finding and cufrecting errors
(which computer programmers call "bugs'')
See 1.7, 2. 24,1, 3,2,

BASIC's ability to modify the order of

. execution of your program, depending on

certain eonditioaa. Sea 2. 17-2.20.

. The BIP command that executes the madel

to show you how one solution to the cutrent
task works.. DEMO TRACE executes the model,.
‘and traces thé values of all its varisblea at
See 3. li- ST

The BASIC statement that specifies the maximum

number of elements in an array; usually goes -
at the’ hegiﬁning of a ptngfam usiﬂg arraysir

Uy See 2 8 2,16.

' follqw each 1ﬂstructian in the" prugram.

-

* “'primary . or apEfaticps on primaries._

e raquifed BASIC statement which must be ﬁhEA

last. line in the program. ‘It terminates

executign. See 2.4,

!;nother term far "infinite laop." See'2,

2.17.1, 2. 18

S s

" The BIP | BASIC statement that Ends a subroutine.'

See 2.22. g

"Fhe BIP cﬂmmand that terminates the cureent
task without completing it. Sae 3 1. . '
Snmething that EASIC kn@ws it cannot handle
correctly. 'BIP. prints out an error message
to tell yau what it knawa about the error.
See 1 7. :

[

" The prﬂcess by which BASIC determiﬁes che

value of “an expressian_ See 2. 7 2, 8 2.19,
3,
Hake ,the computer do somathing, EASIC 1s ‘said:’

to'execute the. lines of a pfﬁgram l.e., to

!Part of ‘a BASIC statement to be ewaluatad: A
See 2, 12,

219

. S i5 9

Seé 2. 2;

FILES

&

FIX

FOR . . NEXT.:

function

GET

GOSUB.

3:G§f6;

 HINT

HOLD: key "~

IF . .. THEN

increment’

‘Andex

Infinite laop

=L,

:}igpgt'

g

U

D

o

ThL BIP cammnnd that jists the names of the

filLE in permnnent stcrngp

- mgchine-made lagp.

. hever atopping.

- Se¢e 3,3,

The BIP command that allows you to leave a
message for your superviscfi See 3. 4.

The pair of BASIC scatements that sets up
See 2.17, 2. 21;

‘A defined process that pruduces a result,
..., RND, INT, SQR, LEN. See 2.23.

¥
The BIP command that fetrieves a previously
SAVEd program so that you can work on it
again. See 3.3, !

The BASIC statement that cguses a jump to a
subroutine. See 2,17, 2.22, : S

The BASIG sgatement Ehst allaws you to alter
- the EEqUEHEE of . axequtian unconditicnally.

) See 2. 17 2. 18 ‘ v) L -
The BIP cnmmand ghat pfintg a hint to help .
you with the current task. See 3.1. . “

A key’ nn yaur termlﬂal that will stop the
-gcreen .80 that you cdn read everything before
1f disappears DES the top. See 1. 6.

The BASIC Etatement that allows’ you to alter
the sequence of executian if some canditian
is true. ' See 2 17 2. EQ : »

Té add to the value of a numeric variable,.'
ffequently a vgriabie used .as a counter,

In an array variable, the number in parentheses
that specifies EECh element in the list,: .-
See . 2. 8, 2 16.

In a lgcp, ‘the number

track of the number of times the IDGp has been

Exeauted. See 2. 17 2 21, .

" A pragram is said to be 1in an "iﬂfiﬂite Toop"

when it does the” same. thing over and over, .
See 2.2.% ff? 1, 2.18. .

The sét of valies suppliéd to the program; the
infcrmaticn on which it operates. See 2.5.

o

'fi;é- L ,(?ijﬁ

DUﬂtEf) that. keeps. L

INPUT - ' : The BASIC ‘statement that allows the' usay to
assign a value to a Vafiﬂble during Exaﬂutinn.

See 2,14,
INT ' ' - E " The BASIC function that returns the 1nteger
! ' part of a real number. Sge 2.23. ,
KILL S . -~ The BIP.ngmaﬂd that erases a_file-frﬂm
C permanent storage. See 3.3.
LEN : - ‘ The BASIC function that returns the nﬂmbef of .
' ' !characters in a Etring SEE 2.23, o ’ -
LET W - ' = The BASIC statemeng that assigns é value to
a variable. See 2,11, o - _ .
line number : : An integéf that must pfecede each BASIC

.8tatement; statements are executed in ovrdar of o
increasing 1ina numbars. See 2. 3

LIST . L , ‘The BIP Egmmand that printa out your program
g ' in. Ehg order ofvthe line numbers. See 3.2.
g 11;@:31 _ . A primary whose value 1is itself (as oppoged to -
N) - a variable) See 2.8,
.- location ' ‘ " The place ih the éémpuger s memory where a -

value can be stored; the place or "bcx" ﬂaqed
by a variable. See 2.10.

loop. ff_; - -General term- for a series of statementy whose
- executlon 1s repeated. See 2.17, 2.21,,

 MERGE - . '+ The BIP command that retrdeves a file from
P ' permanent stcrsge and adds it to the :urtent
‘pragram. SEE 3 3. ,

HOﬁEL: | o The BIFP cammand that prints a. typical salutiun’
T : A\ tu the current task. See 3,1.

' 'MORE - : The BIP ggmmand that preseﬁts the next ﬁatt of ' T

Fé : a task. Type it after completing a program,

: B SEEV Sill) -) .)

ﬂumerié : - Having to do with ﬂumbEIS and their vaiue3;
i See 2.8.) v

. operation { : ' " The ptﬂcess by which two expressians are used
7 to specify a new value:

-fnumericzv _ - Addition, subtractinn multiplicatian. divisian,
‘ \ Expﬂnentiatian.b . :

“iE
(-

Lot

string: .-. - Concatenatfon, substring. ' .
telatiaﬂsi: ' ~An aperatian that compares twa string or numeric- e
B " expressions in some way to produce a Baalean ;
expfessian. , . A
: Boolean: : An operation that Egmbines two Bualegn expreasians
’ a . intg a new Boolean expression. 523»2712 2.19.
opérator ? S The symbgl for ‘an Qperatiﬂn' o , s .
numerics: ¥ Fon)
 string:’ o & (start, stap)
relational: ' = <> < > <m o>a
- . Boolean: ' . . NOT AND OR
output ' o .. - The visible results uf a- prugram 8 execution ® °
A : on. tha terminal See 2.5. : o
é;imafy >' R _ An Exprassian withgut any operaﬁians—eithef . .
’ a literal or a‘variable. See 2(7 -2.8, S e
PRIND. ' .. The BASIC statement that produces visible -
"~ results by causing the terminal ta’type '
‘sgmething See 2, 6 .
program - ' , ' - A list Qf iﬁsthEtiDﬁE ‘for a computer to
' " :fallnw, written in a language that the
'campuEEt uﬂdEfEtEndS. See 2.1. -
-»,, il . N —.<_§ = - TS - T
READ' - - S ' -The BASIC Etatement that assigns a valua to
S " . a variable; the value is stored in the program
I - <An the DATA statement, See 2.15. = :
CUREM . . "The BASIC Etatement that does nathing. It ‘
’ ’ o b - . .simply allows the programmer to make notes
R - within the program.. See 2,24, o o k}a
REOPEN -7~ . . The BASIC statement that moves the "Read-data
T L ! pointer" back to the- first DATA value in the
sa S ..i . program. See 2.15¢ _ o \
return o " To dete:miﬂe and giVE bagk a value. All
' : ' functinns return a value, See 2,23, '
“"RETURN - o ' The BASIC statement that causes a jump back f:cm
') g subroutine to the place from which the sub- -
routine vas called. See.2.22, - :
- §
’ &
v
- ,
- 6o
57— ™

RND - . The BASIC function that‘returns a random o
decimal fraction between 0 and 1. It requires -
no arguments’, See 2,23, o

“RUN . _ “ . The BIP command. that tells the cgmputer ED
' ’ - execute your prﬂgram. See 3. 2 e
. - i
The BIP eammand that puts your current program
. into permanent stcrage for ycur next sessilon.

See 3. B.E‘F :
" The BIP ccmmanﬂ that erases ycur current *
) pragram. See 3.2. -
;ﬂ'

| SEQ iff”- T -”f. ‘The - BIP command that renumbers the lines in .your’
o ' N ' pragram to give you more Evsilable 8space bet éen'-{.wf%
the exiating liﬂesi See 3.2, .

R

P Eigﬁ¥ﬂgﬁﬁff'i;. . Ending a ses ion on the ngputef,77S§éﬁing”§§£7Wﬂ;;ri“:‘.
; s Ve ST is achieved ith BYE. See 1, 3 R
SQR o "j=f' . _.i;s The BASIC Eunctian that=return5 the pcsitive
C S . . S Square ragt Qf Lts ﬁumeria afgument.: Seebg~23

" statement - ' ;;;ﬁ_ . e single BASIC instructian Gccupying one
oo T e line of the prcgram. See 2. 1 -2. 3y

A group cf characters in a particular orde

: string
. _See 2, 7—2 8,

ST - RS k* .
- 8top . . The BASIC sﬁatement that mayaappear at: any .
' v ~place in the program and terninates execution

of the pragram See 2.24,

subscript = = " a number or numeric variable in parenthasea
-that Epecifies an alemént cf ‘an’; afzay, ’
T
“sﬁbszriﬁfed L - A kind of variable, one that :an'égﬁtain
o ~ +~ ', more:than one value at one time., See "array." :
: . 7.7 See 2.8, 2.16. ' : o '

. .. . y .
substring .ok 5 A part of a string. See 2,13, .
subroutine R A seqﬁénce}bf BASIC sthtements‘that can be
') y - A8ccessed and executed' from different plaees in
the main program, returning bagk to the place
ffom which it‘is called.

TASK et ' ' The BIP command that presents -t
' ’ ¢ 'programming task. Type it after gampleting
the previous task. ‘See 3. 1, .

sg 63 - |

L

WHEN -

WHO .

TRACE

_user

Ber~defined finction

value

Variabkg

The BIP cﬁmmand that both executes a prggram
and prints out line numbers and varlables o ' .
as executian pfnngEEEE Seg:l E Cos

In general,” the person who runs a prngram.
_‘Ffequenrly;,also the person who wrote it.

‘A fungticn definedﬁin your prcgram,_which returns
the value- Qf ‘the gxpressian that: yau Qpecify.
See 2, 23 . e

‘The rasult ai eva&uacing an expressi@n or a : s
." . - function. Either a number, or a string,
~or TRUE or PALSE. See‘z 7, 2.12, 2.19,
. o [
A name far % location in the. computer's memory,
- a "box" that can hold a numértc ar Eﬁring
“-;valut. SL@ 2 B 2 11

_ Thg ‘BIP cﬁmmanw that talls you ‘the nape of | yaur R
“ currents task: and-allows you, to, see the problem o
Eext again. See 3 4 _§:= » .- e
! : & . 3
-The BIP command that tells you’ thaadata and. e

U time, See 3.4. R o ;gfsggs
5 _ . . ' ' ’ Coa
' ‘ TheéBIP eommand that tells yau ‘'who 1s 8 gnei S

59

#i : A ' o
. N i - . o4

,—!“i 4 v
' . 7 . " REFERFNCF : :) ”.
Beard M.y Burr, A V., Gdgzd Liia WEscaurL, K. Curriculum Anformation -
etwuka for com utezwsistdfistruc;i (NPRDC TR 78-18).. San Diego:
Navy Personnel Resoarnh. and Develapment Centgr, April 978 - : zt*’b'“;

REFERENCE NDTES

"1. Beard M. H., & Batr, A, V.l The BASIC instructiunal pragram studant
.manual (NPRDC Speaial Rep. 77-2). San Diege* Navy Persunnel Research
~and ngeiupment Eamter. October 1976. ' : e
_ é? Dagéfarde, M. L. Thﬂ BASIC 1nstruutiunal prugﬁam‘, Gunversiap into
- MAINSAIL language (NPROC Tech, Note -78-11). San Diego: . :Navy Personnel
B Research and Develapment Center, April 1978.
X - s f
B Dagefurde H L. ‘The §ASiC inétructiunal prugfam;;fsystem ducumentatiun
.- (NPRDC Tech. Note 18~12)c San Diego: Navy. Fgrsunnél—Reueafuh*aﬁd*" LT
c Develupment Cenger, April 1978 R f S e

é. :Dagefarde M, L & Bu&rd H H The BASIC in&tructggﬁal p:agram"
" Supervisor's manual (NPRDC “Tech,

Note 78— lD,_ San Didgo: Navy Persﬂnnel
- Regearch and Develmpmanﬁ Center,. N - :

April 1978,

i -~ C.
- s B F B N . N = .
o oo 1 S AR G
A . o S o N sLe &
- ; . : . LU oo

¥ afudt § ; ,"" A .
* vl K 7. e
. -
iy o L A
. oo R "
5 H
N . ¥ = .
. _f
AE‘ E a ° = . ??i'
= b L
B s A
! . - “ ! fat,
= - ’ 5 . e
. E 5 & ’ 2) " [
3 “ N E3 . *
e t f S .
5 - 0 . :
4 . ; ; ;
. ke
: EEE B
R =
' = : ’ﬁv"
i 8l u
5 . < TR L
s P50 .
f
4
L)
* 4
= 2
5 :{—j;‘-
3
N R [
| ; .
e) ﬂ
= ==y g P - -~ V
(s ¢
T .
X .
. i
< i 7 !
a2 -
v 65
. J .
s g . :
» ot {?gé X 5 i

