
4

JO 49 559

AUTHOR ,)ageforde, Mary L
ITTLE The BASIC Instru

MAINSAIL ConverEd
INSTITUTION 'Stanford 'BON.,

&a-Social Sole
PONS AMC! .11avyJ,orpmnel:

Diego.) Calif.'
litPOin NO NPRDC-'SR 7B-9
VUB DATE, Apr 78-
,CONTRAc? N-063123-76-C-154
NOTE 65p.; lor relate

DOCU MI N

DR5°P RICI !"'MF01/PC03 Plus P
CO TORS College Students;

*Computer Science.
Output; *Instruct
*Program,ing Langu

IDENTIFIERS 1*MAIRSAIL

STRACT

info`-mati n about the BASIC Instructiotal Program,(BIP),
laboratory" that teaches elemen bry progremming in the B
language, which ha:71 been convert -d into MAINSAIL, a fang
for portability on a broad class of competers. The Manual
Rrganized as a reference document fogir sreudents with no pre
prograiminq experlence. Three, major sections contain (1) an
introduction to the course;. (2) an pxPlanation of general
programming, discdssions of prograhming concept sUch as
v.arlableS, and the speciffcation'of -tHe BASIC statements
implement theSe Concepts, with the "syntax and sample proq
A)-a list and explanation of the commands that control t

sOile of which are ,identical tc standard BASIC coal
RUN, "LIST) while others give access to the unique features
llossarY is,appended which lists all the specialized term,
the' manual, explains their use briefly, and gives rOeren
sections her detailed information,caa be found, (Aufhpr

AndOther
anal Program

if list. for Mat em

arch and -elopmeut

doc6ments,

tage.
*Computer pasd Labora
Education; ossaries;
anal P_rog rams Programi
ges; Tutorial. Programs

IR 007

Manual;

_tidal, ;Stu

rf.' :, ter,

1

I

092'1)96

I

r es;
aput
g;

This manual is the ututleift" main source
"h a'r ds-

C
desi d

**#*
R prOdUc

******* **

US

nput and
sec to
ams; and

SIP
ands
ct D2 P.
used i.n
s to the
MV)

4*** *** ** 4******
ns upplied by E the best that cat

from the original document
***************** 0:*****4 -**

ory made'.

NRRI S1

U DEP AR YMCHT OF titc.ALTH,
UcAt AWELFARr.
tIONAL INiTI10,1 (IF

EDUC

Um 1 MA 1 T IN I
'rpm fti-ux+1.C., II T.! AC « «we
TIIF C)N (JR rinc-,ANI,TAtioN0

Tir4U, r Or. pi, vir At op or.i
rA HI (K.) NOrr, fA int y

=

'cl-411ogi-iclAt,t4minroi OFr I to P4 PM itoto (),14 pcp !Y

April .)7H

TFE BASIC INSTRUCTIONAL PROGRAM
I INT MANUAL: MAINSATL,CONVMSION

Mitry L. DaReforde
Merian Beard

.Avron V. Barr

Institute for Ma U: -natical Studies In the See at acre
StAnfordUnivermiLy

PniaAlto, California 94305

lc

Reviewed by
J61 D. Eo£a,

Research and De elopment Ceat
Sea Diege, California 92152

FOREVORh

'h i9 resear h and development was conducte.cl in r to Navyljeci:4ion
Coordinating raw, Education and Training Development (NDCT-10108-PN), under
subproj6er Za108-PN.32, Advanced CoMputer-Based .V9temn for Instructional .

Dialogues, grid the sponsorship of the Direttor, Natinl Education and Training,
(0P-199). The overall objective of the subproject in to develop and evaluate
advanc0 technique° of individtlited instruction,

This report in one in's twries of six dealing with the IBA I((Begin--
ner's All-Purpoae Sy6holic fnatru&ion Code) Instructional Program (gip),
which is a "'tutorial'.' program mirig laboratory designed for the, student with
no ptaVieus training in progrtfMming. rho' ethers concelli (1) the original,
BIP studeht imnual (Note 1), .(2) ,the conversion of IAIP into tile MAINSAIL
peoliramming language (Note 2), (3) DIP nysteM documentation (Note 3),
(4).the ancidrvisor's manual (Note 4), and (5) corrictilsm informatibn
networks for computer-assisted instruction (heard, Darr, Gould, & Wescou
1978). Thin report differs from Note L in that it incorporates changes
resulting from the MAINSAIL conversion.

op This reppri= l intended for use by students uoing the BIP. system. The
work was performed under Contract NO0123-76-C-1543 o Stanford University.
The'contraet monitors were Dr. John D. Fletchex and Dr. Javen b. HoTialier:

1. CIAJ(KIN

malanding Officer

iii

-SUMMARY

the BASIC Instructional Progran ORP5 is 'a "hands -on laboratory"
that teaches elcmentary prograrTning in the WIC language.' This manualis the student's main source of information about the'BIP oysters and
the IlAsIc language.- It is organized as a reference document aimed at
studoncs with no previoUs programming experience.

SECTION 1. INTRODUCTION . .

1.i AIC Language and e BASIC Instruetianal Program .(orr,
, vsi G anunl

. .

1.3 Sig0
_

Page

1.4 Talkie to SIP 1
0 * 0 0 1@ 1 0

1 5 A Som 1 InteractiOn with air . 4 6 g' . 6

1.6 Sorne I Keys to Know

1.7' Error lea s,and Changing Your Program

1 SECTION 2. P

2'. 1 Progranunin
2.2 Program

AS IC WITH BTO

and Execution
23 Line Al

. . . .

2.4 END 6 6 0 . 6 LS
2.5 I.ripu .

. . .

. . . 14
2'6 PRINT

. . . 14
2.7

16
2'8 Prim .

. . ..4-2;9 BAS ari bie& : ,....
. . . IS2.10

.
.....

. . . .

. 0 . . 18
2.1

19
2.

1gnmenr) . H
lExpres -- and Operators

..
. . . '. .. .N. . . .

.

. . 20.:
3

2.14 its11S31.1.,,,

-.ors - :, .: . , . . . - ,, . 22
0 0 242.15 READ:. . DATA and RE013

. 25
2.16 DIN . . ., . . . 94464w. 0 i ... 26
2.17 Prog,rarti Fla _

28

6

1

1

2

3

8

12

2.17.1 LoOps
2.17.2 Or4nch

2.18
2.19
2,20

2.21

'COTO
Relat bi nd Boolean Operators

.

IF TUEN.
FOR . NEXT .

n -4

'2.22 COSVI3 'BECINSUP RETURN = 1SU
223 FunCtiOns, Arguments, /arid Returning Value

Funct.kon
RND

L2-23.3
,SQR

2.23.5 LEN

23.6 UserDeflhed Fun

e

vii.

28

30

31

34
35 .

-39

40

* 6 . 41
. . . . 41
0 4 . 1 0 4, 41
. , 4 . 43

. :
. 43

4 0 4 44

Useful Statements

2.240: STOP 6 .. 4 . .

2.24:2 REM . 4 4 @e9# 4'4

SECTION 3. 'DIP COMMANDS . .

3.1 Curriculum Man pnlation

3.2 Program Manipulation

3.3 File Storage and Access . .. ,. . . ,

3.4 Dealing With the World . . . @

1 .
GLOSSARY .

.REFERENCE

REFERENCE NOTES

:DISTRIBUTION LIST.. .

. 6 . 2.

45

.45
214 44660444 @ 4 45

. 0 47

. 47

. ',. '. . . . 4 0 . 4e

. . 4 0 4 0 51
P 0 0 .52

. 53

. .. 0 I . 61

61

viii

EEeTION 1. INTRODUCTION

1.1 ''The BASIC La: Instructional
.4

(BIP)

This course ie designed to help you learn some fundamental program-
ming concepts through the BASIC language. BASIC is widely used; At is
probably available On almost any computer system you a6 likely 'eo en-
counter. :BIP is an acronym for " BASIC Instructional Program," the pro-
gram that runs this course.. .1t is used only for this'purpose and you
will never hear of it in another context.

The version of BASIC u ed in this course s not identical with the.
many other versions you may ind elsewhere. However, the fundamentals are
the same, and the transitio to another version of'BASIC will be easy.

1.2 UainK the -Manual
177

This-manual is meant to be an easy, and fast source of'reference
material. It, will be most .effective if you` have it with you while you are
working at the terminal ry to beccmefamiliar with the manual, but do
not try to memorize it. _ep it handy and refer to it often.

:The first section-o the manual introduces you o BIP add.some 6 the0
keys on the terminal that ou should know about. The main body of the Manual

1

ie:the:second section, wh ch explains fundamental programming concepts and
uctUres and describes he language in which you will write your own pro-

grams ' (namely, BASIC). T e third section lists and explains 1We-special.
commands. The glossary 1 all,the specialized terms used in the manual,

,

and refers to the appropr e sections for further information.

The manual Is not iltended to be a task -by- -task guide to the course.
It 'is a reference manual bat contains a complete description6fall the
BASIC stateiments'.(the."si noes" of the language) and BIP commands.
Especially when you first start programming, a reference manual contains a
large amount of informati n that yoU'are not ready to use. You must try to
isolate exactly what you' a looking for, and to ignore information that
doesn't aeon to relate to your immediate problem. This is not easy, but it
becomes easier. with practice. The glossary is usually a good place to,s art.'

Advice: Don't be of id to make mistakes. A. computer is a consistent
machine, and you can frequ ntly discover:141'11A works and whit doesn't by tryin
different ways of doing so ething and watching .the results carefully. The
manual is full of sample p ograms:that illustrate how BASIC works. Copyvand
RUN these programs whenever you like.

13

Whenever you want to use a compute you always have to start by
establishing comMunication with the machine somehow, letting the computer
know who you areand what you want to-do. Ask. your supervisor how to
originally sign on to the computer and start BIP running. Then the termina
will say

WELCOME TO BIM

Please type your number and first name.

Type yoUr DIP number,Aa space, your first nd. a carriage r turn
(which is problbly a key mar ed "CR" or "RETURN" on your keyboard, ab-
breviated by <cr> throughout this manual). The terminal will say "RI";
and you are signed on -You ill sign on In this way,every time yoU work
with BIP.

In case you make a typing mistake, there may be a key marked "DEL-" or
"DELETE" on your keyboard that erases the,, last character ypu eyp like a
backspace. If-not, 'go ahead`. and type a <cr>. BIT, will te71,1 you it doesn't
know.,-who you are and will sign you off antomatically. Then you n start
all over an do your sign on correctly.

-Once you have signed on, you will'Ventalking" to BIP. You must,type
<cr to end each.line you type'. BLIP reads and responds to your commands
after you type <cr>.. BIP types a * -every time it is ready for ypu to
type something,

It is not too soon to tell you about signing off. You must sign off
before you. leave _e terminal. Do it by typing BYE <cr> to BIP. The terminal
should print a short-message ending with GOODBYE.

Please do not leave a terminal that has not said GOODBYE, to you.

Occasionally, you will be the victim of a."sydtem error" or a "system
crash." These are unexpected, unpredictable, unavoidable events. You will
know that one has occurred either because your terminal suddenly-prints
something `like "SORRY, SYSTEM ERROR" or because your terminal stops printing
anything at all If you are pear.any other people using the same computer,
you can ask them whether they are still getting any response; if they are,
and you aren't, you-should probably find the person who knows something about
BIP

e
1.4 Talking:,to BIP

\

RIP does' not present lessons on programming. It does not ask questions
and wait fOr yon to type correct answers. It does present programming tasks
that require you to write BASIC programs; By writing, running; testing, and
fixing your own programs, You will learn a lot about programming. BIP will
help you, not by knowing the correct answers (many different programs can
prodUce the "right" result) but by identifying errors, giving you more in-
formation, and presenting tasks that build on the Skills%you have developed,

thi
The pattern the interaction between you and BIP generally goes like _

You as
men

a task, by typing TASK. SIP prints out the require-
a. Program that it expects you to write and run.

2

'You.write
it. You
which will
you that
you told i

4

prog a testit, fix- it, tes
make a number of errors along
use BIP to print an error messy
can't mnderstand 'what you typed,
to'do.

it, and complete
he way, many of
e, telling
or 'can't do what

Haying 'written.the,program reqdired by the task statemen,
you.type M , and BIP looks at your program to See that
it works A4 it should. 'MP then completes the. task. by
giving you, the "post-task interview." In some cases, the
current task,will be extended with `Home additional require-
ment.s..

Within that
confused,' either'.
Printed by BIP
you run it.. There

rn, many additional things may happen. 'You may be
statement of thg prob;em, by the error mesqages

our program doing something you do' not expect wheh,,,=
specific ways to deal with each kind of confusion.

If the task is not clear, you may- request a PINT or use REP.
To get abetter idea of the output your program should pro-
duce, you may run a DEMO.

If meaning of the error messages is not clear, you may.
type a queAtton mark (7) just after .the message is printed.
BIP, will give you some brief infoiOtalion about that error.
You 3huuld 41so look in the glossary for more information,
start'irg with the first word or phrase that you don't under-
stand. Use the cross-references to find the information you
need.

If your o47n program does not behave a.s you want it to, you
should first LIST it to see exactly what it says." You shOuld
also use the debugging option -TAACE- that will shoW ydu, in
detail, your program in action.

If you are already confused just by reading this, go to the glossary
at the end of the manual and start looking up the words printed here'in
upper case, like USX. Do not to memorize anything. Do try to get an
idea of how you -can find information in the manual.

1.5 A Sam n with SIP

This dialogue should give you an idea of hat it's like to
BIP and illustrate bow you can learn from your errors. The student's typ-
iqg is underlined; everythink else_ in upper'ease is printed by DIP. ,(Youwill never have to hype underlines yourself when you use BIP.) Commentsand explanations-appear at the right in lower ease. Remember that each line
of student's typing ends with!'a <cr>.

BIP,running, and sign on.

PLEASE rwE YOUR NUMB ER, AND FIRST N
123

HI C S!

*TASX
t

'ou Lisle for something to do.

BEGIN. TASK STRINGY
USE THE ,,,SCR- COMMAND TO SCRATCH ,(ERAS) YOUR PREVIOUS PROGRAM, IF ANY

WRITE A PROGRAM THAT PRINTS THE STRING "SCHOOL; START WITH THE GLOSSARY
TO FIND OUT WHAT .A STRING IS

*SR

*HINT

HINT PI

HAP describes a program for you t

First,get.rid of any old program that's
left over from a previous task.

You're not sure how to start, so you
40k for a HINT:

*OUR PEOG SHOULD HAVE TWO STATEM NTS IN IT: ONE -PRINT- STATEMENT,

AND ONE STATEMENT. DON'T FORGET ABOUT LINE NUMBERS, AND DON'T

FORGET TIM STRINGS MUST HAVE QUOTE NARKS AROUND THEM.

EXECUTION THE MODEL.

SCHOOL

EXECUTT N CO
DEMO ENDED

*PRI

ET _ AT LINE 99

You Cake a look at what the model does.

Ao you thOught,-the model is al program
that prints "SCHOOL" FOR YOU.

Y ou ,type what you think is a -PIZTNT-
statement.

BASIC STATEMENTS MUST RAVE A LINE 'NUMBER
LINE NOT ACCEPTED. (TYPE 7 FOR HELP).

Arid you are
line number.

*10 PI NT

eminded that you need

When You use theme number, BIP
doesn't compl

Now you try:to say what itis'that
went your program to'print.

10

MISSING BASIC OPERATOR
LINE NOT 4CCEP (TYPE.? FOR I E p)

But that must net be the way -to do it.
You-ask for more help by typing a "?"

CHECK TO SEE IF YOU IAVE'A CORRECT BASIC STATEMENT ON THIS LINE

SYNT ERROR: UNMATCHED QUOTE MARKS
LINE OT ACCEPTED (TYPE ? FOR HELP)

HIP can't tell what to do with "SCHOOL"
all by ftself. You need a BASIC state-
ment that does something with the string
"SCHOOL"; you decide to consult the
manual.

The right idea: a -PRINT- statement
that prints meth ng.'_

eihing is wrong, and yon ask
e help.

MEMBER THAT ALL STRINGS MUST RAVE A QUOTE -AT THE BEG IN

TYPE,? FOR MORE HELP

10 PRINT "SCHOOL

WAS: 10 PRINT

*RUN

That makes

You try again on the -PRINT- statement.

-HIP didn't complain. It just reminded
you that you have replaced line 10;
Things look good.

So you try to -RUN- tha program to see'
if it works.

ERROR DOCTOR DIAGNOSIS: NO 'END' AT END
LOOK AT LINE NUMBER: 10
TYPE ? FOR HELP

It doesn't even run. It needs to have
an -END- statement.

You ask for more

EVERY PROGRAM SHOULD HAVE EXACTLY ONE,-END- STATEMENTTHE LAST LINE OFTHE PROGRAM

TYPE FOR MORE H4LP

*20 En

*MORE

YOU DID NOT RUN THE PROGRAM.

*RUN

EXECUTION OF YOUR PROS

SCHOOL

EXECUTION COMPLETED AT LINE 2

Arid you understand what it means

So you type an acceptable:- -

.You think you have written a program .
that does--whattbe talk asked for, so
you type -MORE- to go on.

But you didn't -RUN- the Program. You_
:haven't actually seen it print "SCHOOL'

yet.

Try again.

*WHAT

Now it looks ,fine. Your program ran
without any'. errors, and it tirinted-the
string.

You Want to ma re that you- net the
requirements of the task, .so you ask
fOr its text again.

YOU ARE IN TASK STRINGY.
DO YOU WANT THETEXT PRINTED OUT? (Y OR_N) 'Y

Yes, please.

USE Tilt -SCR- OMMAND TO SCRATCH (ERASE) YOUR PREVIOUS PROGRAM, IF ANY.

WRITE A PROGRAM TRAT PRINTS THE STRING "SCHOOL"; START WITH THE GLOSSARY
TO.FIND OUT'WHAT A STRING IS.

4

*MORE

EKECUTION ,OF THE MODEL
EKECUTION OF YOUR-PROGRAM

LOOKS OK!!

As you thought. You can always use
command to review the task.

You're ready to -go on.

DIP .compares your program with -the
model, and sees that yours Is fine.

asks you to evaluate yourself.

6

ie

pcsr TASK INTERVIEW

TERE IS A TYPICAL SOI.UrION TO TI-EIS TA

1C) PRINT "SCHOOL"
99 END

DO YOU 'UNDER TAD THE SOLITII01? Y.

You L-.7-mdersC the mode,

TI-EINK A130171 THE skiLLs IJsEr3 I 1 vii5 TASK POB EACH SK ILL ,
TYPE r IF YOU HAVE HAD E3101 ;DH WORK 14-17111 111A1 ST ILr,
TYPE N IF YOU THINI YCLf 'ICED L-1ORP_, WORK Ot

PR INT s-nurc LITERAL. (Y OR N)

TA K STR INGY COMPLETE.

You t Utak y'ou 11.1<ct
witch strings Land quota
HP will remember that
curl eApect Mo'ee string

The end _ this t ask.

You alc for another.

orks.

_ do ot.)re
Lion marks .
facts you

BECIN TASK: PLLISFOUR
THIS 'ROCK 1 SHODLID ASSICN 'THE VAZULE 6 TO THE NUMERIC. V LAB LE
THEN PRIINT THE `SUM OF N AND 4

*DV

SI6NOFE: 18-? Y-77 17;50:

You s Soul^u nt I L- a.01
=spend at

4 lea st a lit 1a ttrile wl r1j the man t

realize that you

-You rAl-so reAlize citai you de
zany more you gign of

YOU LIME CODIPLF.TED 1 TAS14(S TEliS SOSS.aON

STgINCY

7OTAL TIKE TO DATE: .800 HC,INEH
TME ON rODAY:' .067 HOURS
TOTAL SES SIGNS : 2

TOTAL 7As KS COMP LET ED: 3

COPIRICRT (C) 1973 Ey TIE LE 1,A[STNI1FORD Ju 4IC R UNIVERS ITY

GOOPHY1, CHARLE,S

And t s a11.

1. 6 Some to Know,

ALdareviation fol.- the carriage return ley, lzr
narked CR or RETI11111 on- _you, Every
type must be ended with a tar riagf; re turn,

DEL (or
DELETE> Eraaps the last charact er you typed:.

-ba

line you-'

HOLT StopS the screen go the t Nu can read es; erythjn
before It disappears of f tIne top.
There mhy be a key marked r11101D" ors your t rr to _
If not ask your supery tsor what. key or Keys are u seed-
-for this purpose, If you -have a HOLD Icoy, iurst
it once will stop the s creak` '141r hire a second or .
%en you want t cD start the scleen Trovin, fit. 11C)Lb

Any-other c,I,taireTcte7.g' 0-alA seat t he se leeli
moving of ter -you stop i t, but that ch'aractZr wi 1 its o
print on the screen. I gnoce it

I. 7 Error r__._.and Changin Your Proirjaz

"Ertoro" were mentioned e=arlier TO time context of Mts cogs; e,
error 1s something that HIP krxws, cannot handle correc e xarnpt'e,
if you type oomething like "RASK" when "TASK" was thc2 owork you meant to
type, DI? will give the errdr message 1L1_,VGA,1 SIP COPILA-NI) hacaulse it czan' t
do any thtvg with the incorrect word. 'There Are three d efer enC kinds of
errors that Ip detects and tells you abovit ,

"Syntax errors" are detected imrned tat ely after 7-,,./60 corn :lets e you
There are rules that you Trui-1,t follocw.vArlien you g

command (like the one above) or tyiDe a BASIC stntallierat. SIP
reogr-lizes violations of the .$e rubs and ccmt,la ins irOinedia to y.

error you may make frifbuttmtli-y As to misspe12 a word , a s in
the example:)

b. "Error Doctor errors." are de tee ced wh eh yoLi r et). 13I1 to FtU N y-'04

prcpgrarn. A program is a list of frist rut-, tions for
follow; if your prop t-am is m iss some essen tial 711thteercolin-
put can't follow t he tit S t r r-le t vn .153. 131, P rex; °wiz es the a bsemee
of these esgential t h inns , and cells you what 's rot

C. "F.>cecution errors" are deter wed its yow program
'5n11you r BASIC program gins out to be impos sible to r rill -ow at -some

point , BIP will try t o tell you what the prob lent I 8.

It is a good idea to LIST your program hefor e yo
must make sonic changes if HIP prints ari error message,
not pr odu e t he re6ults you want. To niake a change, of
the line With the error or use the CHANGE coilnamd (see
you had tie 1 ine

50 PRINT7 "THE RESULT IN 'GALLONS 1

and you dead eel (or HIP forced you) to ch -nge it

intake a[1.-y huatg 8. Y oil

if- ty-t.,e prwilram doe a
retype ccnrrec cly

tion 3. 2). 5 up pe e

SO 'PRINT- "THE RESULT IN GALLONS I

instead. You =could retype the line, he posi tioes
or you could use the comdand

y

MANGE "K/Y" TO "MC IN 50

(or, since the "TO" and'the "IN" are optional,

CHANGE "x/V1"71/X" 50).

Blp will always tellteu what the lloe was before the
watning In case you didn't really want to change that line_
the case, you must change it bark again.) if-N

"CR
c

want.

and

1---aaaz

th
as a

If you ant to delete 111ine completely, type the line ft and the
RETURN" -key= Thdh LIST the program to be sure you have hat you

-Tie: 2. PROGRAMMING IN BASIC WITH SIP

This is the Main body of the manual. It t organized by complexicN
of conceptsthe most fundamental first, the more advanced later. Since
programming conceptsfrequently=overlap, however, you will have to bounce
back and -forth ta find the information you need in a particular' situation.

Do not try to memorize the information, weoially the first time
you read, his sectivn.. You may not even want to read this entire section
of the manual at one time., Sub.sections that should be read togethei, if
you choose to read chunks at a'tiMe, are:

2.1-2.4Some fundamentals of programming' in 8A IC.
205 - 2.11 -- ,Input, output, assignments and variables,
2.12-2J1L-E)Cpressions.
2.14-2.1.6--INPUT'and READ statements.
2.-172.0--,Beluen-ee'and control of execution.
2.21 -2.23--FOR. GOND, and functions.

Read 2.24 the first time you see STOP or REM in the model solution.

laagmlaa

A computer is not smart. It can only do yhat it is instructed
and every tiny stop must be communicated in a fotm that the computer
understand. A program is a list of instructions to a computer.

Vriting a program involves three big stages:

to do,

Specify in complete detail what the program is supposed to do.

b. Translate your sty
puter understands.

the problem into a language the can=

c. Check the program to bt sure that does everyting you went
to do.

The difficulty of each stage relative to the others may vary, but none
of the three can ever he ignored just because the programmer thinks "it's

easy." In partic ar, you must not neglect the first stage, the detailed
d criptionof the problem It is often useful to write out in Entlish
exactly what you want the program to,do, and in what order. You should
list the steps y_cal would have to follow to solve the problem by yourself;
if you cannot do this, you will not b able to use a computer to solve the
problem. For example, you cat ask a friend to give you two.numbers, and you
can tell-him the reault of multiplying those numbers together. If you think
about it, you can ace that there are a number of steps involved:

Ask for the first number.
Hear it and remofther it.
Ask for the seeond number.

Hear it and remember
Multiply and remember the result.
Tell your friend the result.

he more specific you ?are in describing each step the problem,

-the will be to complete the second stage, where you translate
your Eng into a programming language. A Computer cannot understand
English, nor it guess at your meaning if you give it an instruction
that is only c lcto what you meant. The rules governing the syntax,
or grammar, proeamming languages are rigid, end you must use the
correct words, the correct punctuation, etc. JuStTemeniber that your'
English list-of steps, although essential, is not yet computer program;
you must translate each step. into a series of symbolic j'astrectIons in
exactly the forth that the cbmkuter, through a programming language, can
Accept. -Thi:5-becOmes much eaSier=Vith-practice,AuSt -as in arty other
foreign language.,

The third stage irCwriting,a program, where you check everything
to be,aUreirean works as you want it to, is as ne+ss ry as the other,
No. The computer will. follow exactly the instructions you give it. If

these instructions do not say precisely what you meaatblie'program will
not quite, do Oat you want.44BeeauseprograAs must be so precise, it is
easy to overlgok small` but importaht details, and very few Programs run
"correctly" the firsttime. No computer will make up for your negligence,
so you must check the results of your program at least as carefully as you
thought out the problem in the first place. This process, called "debug-
ging,'" is tedious but necessary. If a program doesn't- work, it's usually
the programhet's fault, not the computer's.

2.2 Pro ra_____&_zaSCIeatteeurion

In Many programming languages, you first write your list of instruc-
tions,' and then tell the computer to follow all the instructions in the -

list. Your 1.1:t is sometimes called a "stored program" b r,ecause the compute
must store the instructions until you tell it to begin executing them.
Execution is c lied "running" the program.

whether the purpose of the program is to perform complicated cal-
culations or to play a simulated card game, it must have some information
on which to operate. This information is called data, and much of the data
required by a program can be stored in the prograM itself. In IMF, the
alternative to storing the data in the program is to have the user (the
person who runs the program) supply some data when the program stops and
asks for it.

For example, a program whose purpose is to print a 10 by 10 multi')
tion table should have all its infoation stored Witli . It is not

(7necessary to request information wh n the program is actually executed - -the
user simply tells the computer to run that particular program. In contrast,
consider a program that plays a game with the user. Such a program needs
to get information as it runs, since the progress of a game Cannot be plan-
ned in advance. The program must stop and ask the user' for information- -
what move he wants to make, for example. This second kind ofpregram is
called "interactive" because it requires the prograMmer to plan for inter.,
action with the user of the program as it ru

12

In either type of program, the data that the program deals with must
be kept to,the computer such that it is accessible to the program. This
is done by the use of variables of different data types, which are dis-
cfisaed speCtfically in Sections 2.7 through 2.9. .

A word about "the user": Programmers usually write programs for other
people to use. Whether the program calculates payroll checks or plays a
card game, it will be .used by someone, other than the person who wrote and
debugged it. As you write your own programs, remember-this hypothetical
person nailed "the user." Try to make your programs understandable and
complete enough so that a friend of yours could sit down and run them with-
out any trouble.

it" also a good ldaa to include "remarks" inside your program, with,
'the 7REItl- statement. A remark` -(also called a "comment") is very simple:
it's just a note to yourself that 64lains something about theTptogram with-
out-affe&ting the-waS, the program runs at all. You will be surprised to
sde how soon you can forget what an "old" program (a week old, for example)
is supposed\to do. REMarks that are saved as part of the program itself
are handy notes to remind you.

It ,f..s n4t hard to write a program that does the same thing over and
over, never stopping. A program that never stops is in on "endless (or
"Antinite") 1pp" which you must stop or "interrupt." BIP itself helps
you watch outlfor.this. After executing a large number of Statements, BIP
will step executfoni tell you it' thinks your program ma§ be in an infinite
loop, and ask whether or not you want to continue execut n You should
probably say "no" and -LIST- your program. Then try to figore out why it
may have been in an infinite loop.

Fie - GOTO-- section (2,18) has an example of this kind of loop.

2.3 byre Numbers

Almost all implementations of BASIC require you to number each line
of your program. Each line, er statement, is an instruction to BASIC, tell-,
Jag it todo some specific thing- When you run a BASIC program, BASIC
finds and obeys the instruction with the lowest line number, then the one
with the next higher number, etc. You need not type in your StAtemento in
order,'because BASIC can sort -there out by line number, but you must number
them in 'the order you want BASIC to follow. A general practice is to use
multiples of 10 as your line numbers so that you have plenty of numbers
available if you want to insert something between two already existing lines-.
BIP allows you to have up to 500 lines in a single program, but most progrSas
will be' Ruich shorter.

.4 ENT)

use; To tell the computer

Examp le:

99 IND. (

13

has finished executing

kemarks:

-fvery BASIC program musti4 have an END statement. The ENT) statement

!nave the highest line, numbA in the program.

See STOP (2.2k/

1_11:L2LALE:tiL

Phis term refers to the problem of communicatiag with the computer--
you tell it. to do, something for you, and how you Rake it deliver the

`waits in a way You can nderstand. Most People communicate with compute`)s
.0144 prograffis, su the 'subjects of 1npUt andrnutput really deal with pro-

\riding informktion to your prograd that makes Lt'provrde meaningful inforraa-

kicm c° Y°11. It

lnp is information that-goes 'intothe program. It can be stored (as
-Nit of the program itself) whe91=the program is written (see the and

NAATA- ection, 25), cir given by the user.when the program is run (gee
the, 114TPT- seetiol 2.14).

0 ?tput is the visible result of a program's executie It is frequently

in the for of infotlnat do printed on the user's te 1 na this will be the

base for all the BI' programs you write), or it may transmitted to a line-

t)rdatng device, to a magnetic tape, etc. In the case of interactive pro-
%ramS, it is impercant for the programmer to remember that the output his
Ogram Prints Will be read by someone else, and must be reasonably under-

andobl. A dial n ue between a person and a,compacer is pointless- if
Nithec understands what the other says.

6 PRINT

Use: To get Your p

amip1

40 PRINT 44

40 PRINT
-40 PRINT 0
-40 PRINT "ON"
40 PRINT 10

4Q PRINT "TREY
40 PRINT

grin something on the terminal.

Remarks:

UE OF X IS " AND Y SQUARED X-2

prints a blank line.)

Use the PRINT satement whenever you at to have your program
Cype gom hing. AnYthingsurrounded by quote marks is taken literally.
1\11yaling without quqte marks is "evaluated"--BASIC figures out what its
Niue iof and PRINT prints that value.

The statement

40 PRINT "X"

prints just the letter X because of the quote marks. The statement

40 PRINT X

makes a BASIC look up the value of the variable Xv t4 4 int that number.
There are no quote marks, so BASIC has to evaluate X.° knead about values;
variables, and evaluation In the next few aections.)

Boolean values can be printed too. The ste

40 PRINT 10

Prints TRUE on the terminal, because 10 is greater than 9.

40 PRINT 10 = 100/2

prints FALSE, because 10 is riot equal to 100 divided by

"Fancy" PRINT statements:

Using a semicolon between two exprOsions allows you to print more
than one pxpresqicn on a single line. You may combine different types of
expressions in a PRINT statement. The semicolon allows you to PRINT both
literals and variables in one statement, which can make your,program's
output look good. For example, you could use two PRINT statements like
this:

,

40 PRINT "Y
50 PRINT Y

hiCh would tell the user of the pto84-um the value of the variable but
would take two lines of output to do it. A nicer way to do it would be 1,ike
this:

40 PRINT "Y IS ";

which would give the same information, but all on one line.

A more complicated example: Assume that the variable X has Zhe Value
4, and the variable Y has the value'5. The statement

40 PRINT "THTH,SUM 017 YOUR NUMBERS IS "; X +Y

ause BASIC to print

ThE SUM OF YOUR NtCRS IS 9

The statement

40 PRINT "X ® 15 IS ";

15

`-\

will cause BASIC to print

X 4- Y 1;5 IS FALSE

Remember to use spaces inside your quotation marks where you need
them. Some implementations of BASIC insert a space for -every semicolon,
but BIP's BASIC does not.

See Variables (2.8- 2.11) and Expressions (2.12, 2.13, 2.19).

2.7 Data Types and Values

Most prokramming languages operate on three different types of in-
formation: numeric, string, and Boolean. Many languages do not allow the
programmer to combine different kinds of information in a single expression,
and it is essential that you understand the differences.

Numerle'information is easy to understand. A number or a numeric
expression is a thing that you can add, or, find the square root of.

A string ...is a series of characters in a particular order. (A character
is something a typewriter can generate, including letters, numerals, punctua-
tion, and spaces.) You cannot add or multiply strings as you can numbers,
although most languages allow you to perform some operations on strings. In

the course you are taking, your name is stored in the computer as a string,
which is why'the terminal can type your first andlast name for you when you
give the -WHO- command. A string expression is a thing that has this kind of

_

value, as opposed to a numeric value.

Boolean information is understood by Ole computer to be either truesor
false. In most programming languages, youlcan tell the computer to do one
thing if something is true, and another thing if it is false (see the -IP-
statement, section 2.20). The value of a Boolean expression is always either
true or false. (The word "Boolean" comes'from the name of a mathematician
named Boole.)

A word about the size of numbers and the length strings in BIP:
Although you can use ye- large numbers (20 digits, for example), BIP is
only accurate to 10 pl_ces, so very large-numbers involve very large errors.
Your strings can be q- _e long (100 characters, for example), but you only
have room for about 60 characters on a line. So you should keep your numbers
to a size of 10 digits or less, and your strings to 60 characters or less.
Sind Boolean: information has no size to speak of, enough has been said

2.8 Prima'

When your program is executed, the computer must be able to know, or
to find, the value of all the pieces of information in it. As described in
the previous section, these values may be numeric, string, or Boolean.

16

The information that your program deals with can be extremely simple,
emely complex, or anything in between. A primary is the simplest kind
information that you can talk about, because the computer must go through

at most one step to find its value. Numeric and string primaries exist in
almost all programming languages, either as literals (also called constants)
ot,as variables, requiring assignment of values,

Literals are very straightforward. What you see is' at you get; a
eral is taken literally. A numeric literal is what you immediately

recognize as a number: for example, 7 or A string literal is enclosed
in quotation marks and is something you immediately'recognize as a sequence
of characters (for example, "DOG.:' or "*k!!!"). The only slightly tricky
thing about string literals is that the characters maybe numerals, but the
value,of the string is still a 'string, not a number: 'for example, " cannot be added or multiplied. "b"--like "A" or""XYZ"--is just something
can be printed.

The other kind of primary is the variable. Variables are used as names
for values or as "boxes" to hold values. The value of a vati,able is either
a number or a string, depending 6r1 what was assigned to the variable.

There are two kinds of variables. A simple variable is a "box" that
holds one-value, either one string dr one number. A stt1?sc-silatil variable
(often called an "array variable") can hold many values, in order, all underthe same name.n

Simple variables are like the sing ,boxes below. The first one is
a numeric variable, because the value In the box is a number. The second
a string variable, becaupe the value in the box is a string.

N 15 1 D$
1

I "OUCH"'

In this example, the value of the variable N is 15, and tke value of the
variable D$ is "OUCH" (BASIC string variables always have that dollar sign.
The variable D$ is pronounced "D string" or "D dollar").

Subscripted variables Lire like the multiple boxes below. Each box
-has only one name, but (in thiey example) three "slots Each slot can hold
A value of its own.

(1) (2) (3)
ij

N 1 81 ,.. Oi 51"--J

(1)

D$ "011"1 L.

(2) (3)
1 ----1 C-----1Irma

in this example, the value of N N(2) is 0, and N(3) is 5. The
variable N is being used to hold a fiat or "array") of numbers. The string
variable D$ is being useeto hold a list or array of strings: the value of
D$(1) is "OH"; DS(2).1.8'"H1 "; and D$(3) is "OH" (see above). N(1) is pr
nounced "N sub 1" and D$ (3) is pronounced "D string sub 3."

Each of the eler er to in a subscripted variable can be treated as a

separate variable. Its value can be changed by an assignment statement,
compared to another value, printed, etc. Subscripted variables can have

as many elements or "Slots as you like. See 2.16 for more ,information

abbut their use,

The important-thing to remember about both literals and variables ,

is that they do not involve any operations or calculations. In the case
of liteals, the value is Simply the literal i$self-- nothing is hidden.
In the case of a variable, the computer can find its value immediately by
looking in the "box" named by the variable, where the value is stored.

Spe BASIC Var1abl-e4a, kind Assignment (2.9-2.11) .

2.9 BASIC Variables

Use: To name Locations r "boxes") where valuee ar

Examples:

X2-
13$

Remarks:

AAlume-ic v
numeric value (e.g.
tions like addition
single letter or a sink
Y and K2 are numeric var

able, names a "box" whose contents must have sonic
fl5) thpt can''be changed by arithmetic opera-

vision. A. numeric variable ist be either a
fitter and. a single diglt, In above examples,

. t

A string variable es a "box" whose ceatents mutt have some
"string" value (e.g., "'HORSE ") that can bt changed by the string operation

called "concatenation," A string variable must be a letter followed by the
$ character. In the shove examples, B$ is a string variable.

See Primarip

.2.1° Assignment

And Assignment (2.10-2.11) .

All programming make extensive use the "Loxea

used to hold values. Pprogram that deals only with literals cannot be
used in any kind of gem rnl tray,(since nothing within the program can ever

change. For example, a prog that adds 2 4 has limited use, but a pro-
gram that uses varlablea to hold the values of two numbers, and then adds

them, is obviously more use u.l, since that program can add any two numbers.

The mechanism by oh
The simplest form of-assignMe

=variables m lit'eral>

ables are given values is called assignment.
s this:

18

example:

X

After assignment is done the variable X "has the value" 5.. Any
to X (like printing it, or adding 1 to it) is actually a
to the "box" whose name 14 X, the box that now has 5 in it.

The v f X can be changed by another assignment, after which every
reference to X will be taken as reference to that new value.

le value assigned to a variable can be given as an expression com-
wo or more values. Thus the value of X could be assigned as

'X a 5*4

or, assuming that the variable Y had already been assigned a value of Its
own,

ate

.4- 1

When the mputer ex ecut es an assignment statement, these

Evaluate the expression on or' the riaht side of the "" sign.
Put that value into the "box" named by the variable on the
left aide of the ". sign.

r us the assignment x . Y + 1 Means: "Find the value of Y, add 1,
to itY and then 'assign that Oeault 4S the value of X." Note that the value
of not changed by this assignment. Only the variable on the left aide

.-

of sign gets a new value. (De not confuse your right and left hands,
or your variables will seem to have Strange values.)

The assignment X + 1 means: "Find the current value of x,
and assign that new value to X." If X had the value 5 before

ex otitiOn of the assignment statement, it would have the value 6 aft
aignment.

the

The contents of the arevariable or' the left side of the ".." sign
always Ileplaced by the value of the expression on the right side. The old
volae of the variable .(wha tever value it had before the assignment scat meat)
islost.

2.11 L.,q_LIA1182YYTILL

110e: To give a value to. a variable.

(Note: In BIP's HASID, you may use either the ".." sign or the ",-"
(a 1 rrow) sign (if your keyboard has one) in assignment statements.
The print as an underline:or as a left-arrow on your terminal.)

19

Examples:

10 LET X = 5
10_11S "HELLO"
10 A2 = A2 1

10X$ (1) _ROF"

(The word LET is optional.)

RemaYks:

BA IC variables are assigned values as explained above in 2.10.
Note that the does not indicate equality in this conteXt instead,
in assignment statements, and "" mean something more like "becomes" or
"his the value of."

The assignment statement in HASID is called the LET statement,
remind you that

LET X 5 and X o-5

both mean "Let X have the value 5."

Remember that right and left dlfier -nt, and that

M$ NS

means: 'Find the value of NS, and
meat will not change the value of

A statement like

100 X or "D_

assign that value to-MS. This LET sr

will cause a syntax error from BUJ, because you can't assign a value to
100 or to "DOG" either.- if you want the value of X to be 100--you should say
X = 100.- If you want the value of H$ to be "DOG"--you should say M$ a "DOC"
to be correct

See Data types, Primaries, and HASiC Variables (2.7- 9). Also see
DIM (2.16).

2.12 Ex+ressions and 0 --rat°

A primary (see 2.7) can be either a variable or a literal. In either

case, the computer must go through at most one step to determine the value
of a primary. An operator is a symbol that tells the computer p combine or
compare two primaries in some way.

20

Using these definitions, an expression can be defined as either
a primary

Examples: !!CAT"

. B

or a primary followed by an operator, followed by an expression.

Examples: X 1-'1

W$ & "SONG"
(6+4) * 9

((6 (A B)) / X
"DOG" & (F$ & W$)
R$ (1, 3) & R$
(A >-= B) OR D$ "DOG")

Using the terra "expression" in its own definition means that am
expression can be almost infinitely complex. Programming languages follow
a process of evaluating each part of the expression, and then putting it
all together tri'fimI the value of the expression as a whole. (Think of
how you determine the meaning of a complicated phrase like "the sister of
the father of my brother's sister's son's mother." A computer determines
the meaning, or value, of each part of an expression in a similar

More complicated expressiuus
according to the following rule

are evaluated f-om left to right and

a; Expressions within the Innermost parentheses are evaluated first.
b. Exponentiation (') is done before any other operations.
c. Multiplication (*) and division (/) are done next.
d. Addition (+) and subtraction (-) are next.

This means that you may need to use parentheses to make the computer evaluate
an expression correctly. In addition, you should always use spaces and
parentheses to make your expressions easy for you to read. Extra spaces or
extra pairs of parentheses will not cause errors.

Seine examples:

5 ÷ 3 / 2 ,aluatcd as _"2 5.75
((5+3) /2) "2 is evaluated as (8/2) 16

One essential thing to remember abou using. operators in programs is
that you m at be explicit. Although a noral algebraic notation like

+ 2B

is clear to you and your algebra book, it is not clear to the computer. Any
time you want the program to perform multiplication, you must say so, usually
with "*" (the multiplication operator). The equivalent of the above algebraic
expression is

2*B

21_ 2G

t

You will also.-quickly notice that your terminals cannot typd exponents

up above the base. EXponentiation is always indicated on the.same line,
usually with the "^" operator.- (On some-terminals, there is a key with an:

arrow that points upWard. Otherwise, use 2 asterisks.) Thus), to get 17

squared,, .you .must use

2 or 17 *

(Remember, spaces are optional. 17 "2 is also 17 squa ed.)

See Operatore and-Operations:(2.13, 2.19).

2.13 BASIC Operators

iA BASIC operator can be one of many different things.` The arithmetic
or numeric operators.are

exponentiation'
Multiplication
division
addition
subtraction

The arithmetic operators work in BASIC4ust as they do n- o iet

fag- language, -as explained in2.12._

The BASIC string operaws are

& concatenation
(X, Y) subOtrings:

Concatenation is used to jo ntogethertogether two strings'. For example,

.suppose the value. of the.String variable A$ is "HELLO "''(notice the space

after ,the'"0"). And suppose-the value of the variable B$ is 'assigned this

way:

A$ tTHERE."

The concatenation of A$ and "THERE." would make the value of B$

"HELLO THERE."

Some advice about concatenating s, tr ngs:. If you are putting words
together(as in the HELLO THERE example), don4t fOrget about the. spade
between-the words. If you concatena=te "CAR" and "WASH" this way

"CAR" & "WASH"

the result is"CARWASH"--which-maybe just' what you' want. If you say

"WELCOME" & "HOME" --\

you get "WELCOMEHOME"--which is probably riot What you want You can say

either

"wucomi; & "HOME"
or "WELCOME" & " HOME",
or "WELCOME" & " " & "HOME"

space after "WELCOME ")
(space berore "HOME ")
(space quoted by itself)

all of which result in YELN6OME 10 E"; this concatenation

"WELCOME"&" "&"HOME",

produces the'same "WELCOME HOME" result, because the space is inside
thequote marks as.in the Other examples. A space-inside quote marks,is
just 1-ike any other thafacter and_ becomes part of the resulting string just
as any letter would. Using spaces to separate different parts of your
expression makes your lines easier to read, but has no effect on hew the
expression is evaluated.

A substring is a part of a string. In the example above, X and Y
refer to the "start" and "stop" characters in the string. For example,
"PURPLE" (1, 3) .means the first throughthe-third characters in the word-
PURPLE'. The value of "PURPLE" (1, 3) is "PUR",and that of "PURPLE" (4, 5)
is "PL";.the numbers can be variables, so if the value efa were 3 and*the
value of Y were 5,'the6 "PURPLE"' (X, -Y) would be "RPL"; the string can be
a variable.tooi so if the value of 41$ was "PHANTOM"--then H$ (X, Y) would
be the same as "PHANTOM'', (3, 5)° and "ANT",would be the value.

This substring "BEAN" (5,5)

iwoulebe the fifth character in the string "SEAN " -if there were five
characters to begin. with. If you specify a.nonexisient substring like
this one, the result is nothing. (See 2.14 for an explanation of the "null
string.")

This substrihk "BEAN" (3,2)

would be the-third through the second character in the string "BEAN"-
if SIP could count characters backwards, but it can't. An "impossible.

;zubstring" like this one willcaUse an execution error when BIP P-tries to
evaluate it.

BASIC cannot evaluate. an expression that_ tains different types of
-values. For example, this expression has no mean n

9 + "NINE"

because T'is a numeric primary and "NINE" is a string primary.

See Data Types and Primaries (2.7 -2.8), lariablea and Assignint.
(2.9-2.11) andBoolean Expressions (2.19).

23

2&

4 'INPUT

Use: To allow the user of the p ogram:to give

Examples:

30, INPUT N
30 INPUT F
30 INPUT X, B

Remarks$

or a number
or.a string

(for multiple input)

value' to a variable.

. When the .INPUT statement is executed, BASIC types a colon.(:)
and waits for the user to type something, ending with the RETURN key.
Whatever the'User types becomes the value of -.the variable in=the, INPUT'
statement..

The only limitationA.n the use of INPUT involves.numeric variables
and is imposed when someone runs the program. numeric variable is
specifiedin.the program, the aser.must tyi,e a single number, -not's string
or any kind'of expression. 'Numbers like 1492 or 6.25 will be accepted, but
an expression like 3*4 SIP prints an- error= message and lets the
user, try again.-

This program doubles any number the user types:

10 PRINT "TYPE A NUMBER AND I'LL DOUBLE IT FOR YOU"
20 INPUT Y
30 Y Y*2..

40 PRINT Y
99 END.

This program does something simple with a string typed by the user:

IO PRINT "TYPEA FEW WORDS AND I'LL REPEAT THEM"
20 INPUT 14$'

: 30 PRINT W$.
-99 END

Note., When typing a string in response to an INPUT the user should
not type quotation marks. Also', for strings, if the user types only the "CR"
or "RETURN" key, ,the string variable is assigned the value "". This is called
the NULL string. The null string is analogous ,to the number 0 (zero). It is
a known:value, something that has Meaning:-, It means the, string version ofi,
,nothing,just as'.zero,meena.the numeric version of nothing Do not confuse
the null,strint with the character"--which is a .space.

One NPUT statement_msy be used to allow the use to give values to more
than one variable. For example, this program accepts two numbers and adds
them.

-10 PRINT "TYPE TWO NUMBERS, ONE AT A T
20 INPUT X, Y
30 PRINT "THE SUM IS X+Y
99 END

2
24 29

ti

You may specify as many variables in a "multiple input "" statement
as you like, always separated by a comma. When Bir,. BASIC executes this
stAeement, it prints a colon for each valde to be typed by the usdr. Other
hmplementations of. BASIC work in a different way.

See Input/Output (2.5) kind Variables (2.9).

2.15 READ . DATA ;Ind REOPEN-

Use: To assign stored values to variables.

'Examples:

10 READ X
50.DATA 200

10 READ P.
20 READ CI,'

30 READ AR

200 DATA 5,.2 50.

30 READ A, B$
BO DATA 60, "DOG"

6b REOPEN

Remarks:

Using READ and DATA combinations- allows you to store values in
the program and to assign those values to variables at appropriate time
The statement

READ X

causes BASIC-to take a value from the DATANstatement and assign that valUe
to the variable X. For every execution of a READ statement, there must be

corresponding DATA value.

As shown in the second example:above, a DATA statement may contain
more than one value. BASIC keeps track of- the DATA values, and after a READ
is:executed, BASIC moved a pointer to the next valunn the DATA statement.
,In that second example, the variable!? would get ithe value 5, Q would get 20,
and R would get 50.

The third example shows a multiple-READ statement. Execution of a
multiple READ assigns. values to both variables, just as if one READ immediately
followed the- other. In ti* example, execution of line-30 would result in the-
assignment of 60 to the variable A and the_ assignment of "DOG" to the variable,
B$. 'Use multiple READ statements whenever you want to assign values to more
than:one Variable all at the same time.

4

25

If e'REAP statement in executed, and all the DATA values have
been "used," an execution error message will be printed (since no.. value
remains to be assigned). To avoid. this error, use` aldummy" value at the
end of the DATA list end stop'READing after that-vaAhas been used in

this' program,'-1 is used as the °dummy': that marks the end of the list of
DATA values.

10 PRINT "THIS PROGRAM PRINTS SQUARES"
20 READ Y

,30 IF Y -1 THEN 90
40 PRINT Y^2
50 GOT0.20
60 DATA 5, 10, 15, 20,
90 PRINT "I INISHED"
99 END

This program contains a loop. Read about loops 2.170

There are some limitations on the values you may' use in a DATA
statemint. First, such a value'must be 'a literal or constant--not a variable,
and riot an expression. The value must be a number or a string; if it is.

oa sttingr it.must be enclosed in quotation marks. Second, any Value.given
in a' DATA statement must be of the same type as the variable to which it
will, be assigned. Note that in line 80 above the numeric value 60 cor-
responds to-the numeric variable A, and'the string value "DOG" corresponds
to the string variable B$. BASIC will give an executton error if, at the .

time the READ is 'executed, the variable and the value are of diffe ent
typee:

'-You may use as many DATA stateMenta as you like ,in a program. The
values given in the statements will be "used" sequentially, as required by
the execution.sof READ statements. 'DATA statements can appear anywhere in
the program before the END, and it is a good idea to locate your DATA in a
place that makes sense to you. For example, if a section of ,a program re-
-quires REARing values from the DATA, put' the DATA statements at the end of
that section so that you can easily Ape where,the DATA values will be used.

The REOPEN statement moves the "pointer" back to the first value in
the DATA list. The next READ statement will then take the first,DATA.value
in the- lowest-numbered DATA statement in the program. REOPEN is useful in
situations where you want to use the same DATA. values, in the same order,.
more than once.

See input /Output (2.5), Data:Types. (2.7), and Variables (2.9).

2.16 DIM

Use: "To establish the size of an array' (a subscripted variable
'DIM is.shartfor DIMENION.

Examp

10 DIM L(15)

10 DIM A$ (50)

26

Remarks:

BASIC needs to know how Ion an array will be before you refer
to any elements or."slots" in the array (for example, before you assign
any values to elemenisof the array). The DIM statement establishes the
maximum length. The DIM 'Statement must precede (i.e., have a lower line
number than) any atatement\that refers to an element of the array. UsuallY
the DIM goes at the very beginning 4.,the program. There Must be one DIM
statement for every array used in the program.

Only one DIM may be executed for a given array. In the exa pie
shown below, line 20 is executed only once each time ;you; RUN the prog .

BIP will stop execution and-print an error message if two DIMs are executed
for the same array, or if one'DIM for a given array variable is executed
twice. This means that you dhould locate all DIMs outside any loops in
your program, so that BASIC executes each different DIM only once..

',Suppose your DIM statement is

to, DIM X (25)

This means that you may njrtte more than 25 elements in the array X. Using
fewer than 25 will not Cause any problems e.

This:is a simple program using an array,- It asks the user for
three word eina assigns each word to an element Of the array. Then it
prints the words in the Apposite order.-.

10 DIM -L$(3)

20 PRINT "TYPE THREE WORDS, ONE AT A TIME
30 INPUT 14(1),-L$(2) , L$(3)
40 PRINT "HERE'S YOUR LIST IN.THE OPPOSITE ORDER "
50 PRINT j,$(3)
60 PRIUMS(2)
70 PRINT L$0)
99 END

The worct"index" is used in connection with arrays to mean the
number that specifies each element in the array. (The word "subscript" Is
also used;) For example, In line 50 above, the index or subscript is the
number 3,-and:it specifies the third element in the array L. "Index" is
also used in connection with loops (see 2.17)'to mean the variable that
counts the number of executions ofthe'loop, ,This program itPclike the pre-
vious example, except that it allowatheuser to say how long his list will
be; And thert;uses a variable as the index, both of the loop and of the array.
It also uses a variable in the -DIM- statement, after that variable has been
assigned by -INPUT-.-

27

10 PRINT "10W-LONG IS YOUR LIST?"
20 I/MUT
Jo okm L$ (ti)

40 :PRINT "TYPE YOUR WO S "

50 FOR4I TO N
60 INPUT 0 (1)
70 NEXT
80 PRINT "HERE'S YOUR LIST TN THE OPPOSITE 0 ERP
90 FOR I s',14 TO 1kSTEP -1
100 PRINT L$ (I)
110 NEXT
999 MD

See Primaries (2.8), FOR .. NEXT (2.21).

2.17 Program Flow

When the computer executes a stored program, it fpllows'a predictable
path through the list of instructions that is the'program. In some program-,

.ming languages, the order of instructions executed depends simply on the
order in which the computer encounters them from the input device (e.g.,
Card by Card from a card reader or line'by line from a disk file). Other
languages (including BASIC, as you knot') -use line numbirs, and the computer
executes instructions in numeric order.

In either case, all languages have the ability to tell the compu er
to follow a different order, to go to a different place,in the list of in-

structions and carry on from there._. This is called "branching" and it-can
be either unconditional or conditional. Unconditional branching refers to

a change in the sequence of execution_ that will always be carried out re--
gardless,of anything else in the program. ,Unconditional branching is some-
thing like telling the computer, "Don't ask any questions, just go to a dif-
ferent part of the program." Conditional branching ,asks a question first;
whether or not the change in sequence is carried out dependp on some con-
dition being true. Frequently it involves looking at a certain variable,
and executing the branch'if the variable has a certain value. The prograi
specifies ,a decision to be made'bythe computer

The ability to make appropriatedecisions constitutes tlie "smartness"

of a program. Virtually no useful program runs straight through all its
statements, without ever changing the order of execution.

2.17.1 Loops_.

A loop'is a
once. It is 211 extremely
you can make the computer
of instructions only Once.

series of statements that is executed more than
useful programming structure. By using a loop,
do the same thing many times, but you give a set.

The general form of a loop is this:

28

,Start the loop here.'
Have the program do something.
Decide if the "something" should be done again.
If sb, go back up and.start the hoop' gain.
If.not, continue on from hdre.

The "something" -tan be,very'complex. It can be most of the
prograrn; fOr example, a program that plays a game can start itself again
depending on what information the user gives after playing once--the whole
game is inside the loop.

A la;ge category of loops follows this general pattern:'

, Set a "start" value.
Set an "end" Value.
.Set a court' equal to the start minus

7tIncrement the counter.
Do the'wotk-
Look at the end value--if the counter is less than the end,
go back to:the "increment" place and continue from,there,

Otherwise (i.e., the counter 'is equal: to the end value),
continue from here

,A'"coun er" is a numeric vdriable that you use to count something. In this
tase, it counts the number of timesthe loop hat'been executed--you incre-
ment the counter (add 1' to it)-each time you` go through the loop. The
counter is also called the "index."

C
This pattern is used in situations where the, problem can be

solved by performing the same sequence of steps, perhaps with some varia7
tions, a number of times. This is "the work.",- The number of timed "the
work" is done depends on the "start" and "end" values. For example, the
following is a general program (in,no programming language) that counts
from 1 to 5:

Start 1

End 5

Counter 0 start -"1
* Counter counter 1-1
Print value.of counter
If counter lest than end,

Print goodbye

These three lines
are the loop. The.

to'* work is to print the
value of the counter.

Different problems require different variations on this general
pattern. For example, the "work" may involve a more complicated set of opera -
tions, or the counter may be changed by some value other than 1, or the order
in which the pattern parts are executed may need to be different. Once the
general pattern is understood, however, it is easier to see which details
must be changed tO solve a particular problem. The following is a program
(in no programming language) that countsbackwardS from a number ,typed by
the user. Notice the ways in which it is different from the last eXamplt.

29

Print .hello user, type' me a number%pleane
Start = whatever
End.= zero
".Counter 6 start
* Print value of titer

Counter ..counter minus one
If counter greater than or equal to end, go to *

Print goodbye

Loops do,Work other than counting, of course. This final
example program (in no programming language) prints the user's name as many
.times as he or-she chooses. .Thia program doesn't need a start or end value,

because it isn't counting anything, but it.does need to make a comparison
to decide whether or not to go through the loop again. It alsoneeds two
string variables, one to hold the u name, and one to'hold the user's

answer to the yes br-no question..

number the user types

Print hello user, please type your name
Username = whatever string the user types
*.Print shall i say your name? yes or no
Answer = whatever the user types
If answer is no, then go to goodbye line
Print value of username
Go to *
Print goodbye

please These five
lines
Are the
loop.

This loop uses both a conditibnal branch ("if the answer is no,..") and an

unconditional branch .("go to'*")'. Sometimes it makes sense to put the:con-

ditional branch at the top Of theA.00p:(i.e., before you'do."the work"),.

and then unconditionally go back up and start dgain once you have reached

the bottom, as in this example.

It is not hard to write a program that makes the compu r do

the same thing over and over, never stopping, in which case your program is

said to be in an. "infinite,loop." After a large number of lines have been

executed, DIP will stop execution, mention-that it thinks yciur program is in

an infinite loop, and ask you whether or not it. should continue execution.
You should say "no" (unless you have a very long or complicated program that

you think really isn't in an infihite loop), check your program carefully to

see why it might be in an endless loop,.change it, and then run it again.

An example-of a program that has an infinite loop is given in Section 218.

See 2.18-2.21 for the BASIC statements used to construct loops.

2.17.2 Branch and Return

ferent part
set them up
parts. The
the program

Frequently, the same set of instructions is used in many dif-

of a program. An efficient way to use these instructions is to
in one part of the program and to branch to that part from other

sequence of statements,that is accessed from different. parts of

is known as a .subroutine.

30

Stne .a.sub_outine-c nbe "'called" from different places,
it.is jmportant for the computer, to. know, where.to "return" to,after'the:
statements in the subroutine have been execised. Most- languageshaV6
theability to remember the'placefrom whit_ execution jumped to the sub-,.

;routine and then to go back to that place to continue after the subroutine.

Poi example,' consider a program that Simulates a game of
-_blackjack. It might include a subroutine that--4deals -the cards" by senerat-,

ins random numbers and translating those numbers into cards froM the deck. ..-

In blackjack, the dealer deals-cards in two different situations: either
at the beginning of a new hand, or whasnne of the players asks for'another
card-, in addition to those he holds already. So, in the blackjack prOgram,
the,card-dealing subroutine would be,branched to (or "called* in those dif-
ferent, situations. What happens afterwards depends on what was happening
when the dealer dealt a card. The branch-and-return capability allows the
program to go back to that place after the cards have been.dealt, so that
'pay can continue appropriately+ In the first case,, the program would only
check to see:if ill-the cards needed tn.start the game had been dealt. In
the ;second,case-- it would-haVe to ask the next player if he wanted another'
card.

.See 2.22 or the BAST statements --ed to set np4subroutines.

2.18 GOTO

Use To alter the sequenee,of execution of he program unconditionally.

Example:

70 GOTO 10

Remarks:

BASIC executes a program in the order cif the line number

When you say RUN,-it finds the lowest - numbered line and-executes that state-
ment. -Then it finds the next higher line number and executes the statement
on that line. And so it,goes--it's'very simple.. The above example would
,change that order by sending BASIC back to line 10 every'time line 70 was
executed.

This program will repeat itself,endlessly (until-BIP tells the user
that it may be in an infinite loo
counting from 1 on up._

10. X _1-

20 PRINT X
30 X It X+1

40 GOTO 20
50 :END

and the user.

31

tells BIP to stop execution

Note that once BASIC has executed the line specified in the GOTO statement,
it continues execution from that point. In this example, the order of lines.
executed would be

10,

20, 30, 40,
20, .30, 40,

'20, 30, 40;
etc. .

(here- GOTO changes tti

(GOTO 20 again)
(and again)

Cd! \,
BIP helps you discover wilts your program is in an infinite loop by counting,
the number of statement aecutions, stopping after alarge number of them,
telling you it thinks your program is in an infinite loop, and asking you
whether. or not to continue execution.

If your GOTO statement specifies a'non-existent line,' BIP will
print an error message before it allows you to RUN the program.

2.19 Relational and Boolean-O erators

The BASIC relatiohal,operat- are

equal to'
not equal to
-less than
greater than
less than or equal.to
greater than or equal to

Relational operators are used to compare two Values. This comparison.is
called a Boolean expression, and its value'is always either true or false.

In numeric expressions, the-relational operators.. work as one normally
expects them. to. In string expressions, relational op& ators compare the
strings for alphabetic order. Thus:

6 6

8.7
4 <> 8/2
"DOG" "CAT"
"ALPHABET" < "A"

The Boolean operators are

NOT
AND
OR

is true
is true._

is false
is true'
is false

Boolean operatorware used.to combine or change Boolean expressions.
Say the variable X has the value 5,

Y hae the value 99, and
A$ has the value "YES"

32

Now consider following Boolean expressions:

NOT
The Boolean eepr e ion X » 0
The Boolean expression NOT X . 0

The expression
The expression

The expression

< X*5-
NOT I X*5

A$ "NO"
NOT A$ "NO"

true.

false.

false.
rue,

equivalent

AND

An expression that includes AND is true only if all its parts
are true.

X <> 4 AND 1 100 is true.
A$ "NO" and Y 100 is false.

c. OR.

An expressi
are true.

hcludes,OR is true if any .or all of .its parts

X <> 4 OR Y > 100 is true.
A$ "NO" OR X < S is false.
Y <> 98 OR A$ "YES" is true.

Unless parentheses are used, BASIC applies the Boolean operators
this order;' NOT, AND, OR. Thus,_.

NOT A$ "YES" AND Y <'100

equivalent to

(NOT A$ "YES") AND (I 100)

and'the expression is false, because NOT A$
r

A$ 'NO" OR NOT N 6 AND Y 50

equivalent

"NO") OR -((NOT e 6) AND
f)

and the expre n,is true.

If you want to force' BASIC to evaluate you ool
different order, use parentheses as you would with numeric expressions. For
example,

"YES" is false..

n expressfons in a

-NOT A$ "YES" OR Y < lOO.

equivalent -to-

(NOT A$ '-im "YESI'..- 100)

and the: "'expression, is true, because Y < 100 Is true.

JA falae, because. (A$ R "YES"' OR Y < 100). - 'true. . Parentheses can make a
difference if you need to use complipated Boolean expressions.

See DatajYpe

2.20 IF .= . THEN

Use: To modify the order of execution so that your pro
different things in different situations.

Examples:

50 Ik' 'B > 5 THEN 150

50 IF XS "0XYGEN" THEN .300

50 IF 0 "REPEAT" AND C. '0 THEN 10

'Remarks:

can do

The IF THEN statement is executed in the following way:

The Boolean expression following IF is evaluated as either'
true or false, depending on the values and the relationship
within the expression.

a.

If the Boolean expresaion is false, the sequence of eilecution
not change, and the.next line executed will be theline

after the line containing the IF . THEN..

If the Boolean expression is true, the next line executed will
be that specified by the line number after THEN, (One may say
that "control is transferred"ito that ditferent point in the
prograM, Since execution will continue` from, that specified
line, not from the line following the IF . . THEN statement.)

This short program uses an IF . . THEN to decide whe
to start itself over:

10 PRINT "TYPE:1 UR NAME."
20 INPUT N$
30 PRINT "HELLO, "; N$
40 PRINT "TO START OVER, TYPE 'YES'."
50 INPUT A$
60 IF'A$ "YES" THEN 10
70. PRINT "OK. GOODBYE."
999 END

not

Note that only the word YES from the use causes the program to
continue execution (again)-from line'l . Anything the user types that;is
not YES will be taken as a NO answei. This piogram is another example DI
a loop. The number oftimes that the lOop will be executed depends 4heirO.y
on what the user types when the program is run. Try this: Copy this program,
then RUN it Use TRACE or FLOW to see ho'w things work.

See Program Flow (2.17) and Boolean Expressions (2.19).

2.21 FOR . NEXT

Us To have BASIC do the counting, incrementing, and checking in
a loop, automatically.;

Exa plea:

10 REM SQUARES FROM 1 to 5 See 2.24 about REM.
20 FOR N 1 TO 5 Establish "start" and "end,"'
10 PRINT N Do something.
,40 PRINT N"2 Do something else.
50 NEXT'N Add 1 to N. If N is 5,or less,

go to 30 again. If N. is mpie
than continue to 99.

99 END

10 REM'COUNT FROM 10-T0-1'
20 FOR N 10 TO 1 STEP -1

-30 PRINT N
40 NEXT N
99 END

Remarks

counts backwards because
the step is negative.

FOR . NEXT loops save the programmer some work by automatically,
incrementing the counter and checking, its value against the top value.' qhe
general form of the FOR statement is

tart' TO <en& STEP <how nany>

35

FOR . NEXT Loops are executed in this way:

^-<

a.

> b.

The "index" variable is assigned the value of <start>.
The Jlatements following the FOR statement are executed

in order.
When the NEXT statement is encountered,

(1) The value of <howmany> is added to the index.
If no STEP is included, 1 is added. (The value of

the inde'x moves closer to <end>.)-
(2) If the value of the index has not passed the <end>

value, the statements following:the FOR
statement are executed againthe loop is repeated
with the new, value of the Index.
If the value of the index has paved the <end>, the
loop is not repeated, and execution continues from
the statement after the NEXT statement.

The FOR statement sets up the "start" and "end" values for the

loop, a -d marks its beginning. The NEXT statement marks the end of the

loop, e value of the IndexVariabIe OT th6-6-kampu-s: above? is -changed,

and checked against the "TO" value, when the NEXT statement is executed.

All the "work" lies between the FOR and the NEXT.

The following three programs illustrate how loops work. All three

sprograms do the same thing: they all count by twos from two to twenty. The

first program is pretty silly, since it makes the programmer do more work

than is necessary:

10 PRINT "COUNTING BY TWOS"
20 PRINT 2
30 PRINT 4
40 PRINT 6
50 PRINT 8
60 PRINT 10
70 PRINT 12
80 PRINT 14
90 PRINT 16
100 PRINT 18
110 PR NT 20
120 PRINT "WHEW"
999 END

The second program is much better, since it makes the computer do

more of the work:

10 PRINT "COUNTING BY TWOS"
20 14 2

30 PRINT N
40 N ff* N 4- 2

50 IF N <® 20 THEN 30
60 PRINT "FINISHED'
99 END

36

The third program is even better, since it takes advantage of
the automatic features of the FOR . . NEXT structure:

10 PRINT "COUNTING BY TWOS"
20 FOR N ,-- 2 TO 20 STEP 2
30 PRINT N
40 NEXT N

50 PRINT "THAT'S ALL, FOLKS!"
99 END

It is sometimes, very useful' to put one loop inside another; that
is, to "nest" the two loops. The following progrip might be used by the
principal of a school to add up the number of students in each grade aria
in the school as a whole. The "outer loop" is indexed by the variable I,
and the "inner loop" is indexed by J. The.extra lines on the left show
you how the J-loop is nested inside the I-loop.

10 T 0
20 S = 0
25;REM T IS FOR TOTAL IN THE SCHOOL, S IS FOR GRADE SUBTOTALS
30 PRINT "HOW MANY GRADES DO YOU HAVE IN THIS SCHOOL?"
40 INPUT G

---- 50 FOR I = 1 TO G
60 PRINT "HOW MANY CLASSROOMS DO YOU HAVE IN GRADE 1 I
70 INPUT C
80 FORD 61TOC

1 90 PRINT "HOW MANVKIDS IN CLASS " IN GRADE "; I
1 100 INPUT K
1 110 S S K

115 REM ADD THOSE KIDS TO SUBTOTAL FOR THE GRADE
120 NEXT J

130 PRINT " "IN GRADE "; I; " YOU HAVE "; S; " STUDENTS"
140 T = T S

145 REM ADD TOTAL FOR THIS GRADE INTO THE TOTAL FOR THE SCHOOL
150 S 0
155 REM SET THE SUBTOTAL BACK TO ZERO, READY FOR NEXT GRADE'
160 NEXT I
170 PRINT "IN THE WHOLE SCHOOL YOU HAVE "; T; " STUDENTS'
999 END

One thing- to remember when you nest loops is that the inner loops) must be
entirely contained inside the outer loop. HIP won't let you RUN the program
if it has loops like this:

10 FOR X = 1 TO 10

40 FOR Y 0. 10 TO 100 STEP 10

70 NEXT X

90 NEXT Y

37

The NEXT fer the Y-loop is outside the X-loop completely, which
not allowed.

See Program Flow (2.17).

'Notice these requirements of each of the four statements:

GOSUB

BEGINSUB

'RETURN

ENDSUB

50 GOSUB 800
jumps into the subroutine.

- Line 800 must be a BEGINSUB.

800 BEGINSUB "NUMERO UNO"
beginning of the subroutine. The name
(whatever you like, enclosed in quotes) is
optional and has no ct except to help
you see what your ogram is doing.

840 RETURN
'jumps to' the line following the GOSUB; in
this Case, line 60. Use as many RETURNs
as you like, for conditional branching
out of the subroutine.

`870 ENDSUB "NUMERO UNO"
marks the end of the. subroutine. It causes
an automatic RETURN to (in this case) line
60. The name is optional--use it to match
up with the BEGINSUB name if it helps you.

Notice that s,BIP subroutine. must begin with a BEGINSUB and end with an
ENDSUB, and that these statements must be accessed only by the GOSUB. A BIP,

subroutine doesnot require you to use a RETURN, since ENDSUB includes its
function. In BIP, RETURN and ENDSUB are similar to STOP and END you may
use as many RETURNs and STOPs as you need (including none at all), but you
must use one END per program and one ENDSUB per subroutine.

BEGINSUB,
routine),
illustrat

There are no jumps into a subroutine except by a GOSUB to its
and no jumps out of a subroutine except by a GOSUB (to another sub-
s RETURN, or an ENDSUB. Look at these pairs of programs for
ons of the syntax of subroutines:

*** no jumping in
This example is illegal
10 INPUT X
20 IF X I THEN 100

BEGINSUB

This example is legal
10 INPUT X
20 IF X <> 1 THEN 40
30 GOSUB 100
4OBTOP

100 BEGINSUB

38.

a0X

2.22 GOSUB BEGINSUB RETURN . ENDSUB

Use: To transfer execution to a subrout e, then to return back to
the same place.

Remarks:

A sequence of statements that is accessed from different parts of
the ogram is called- -a subroutine.' BIP subroutines are somewhat different
from subroutines in other implementations of BASIC. A .BIPsubroutine is a
sequence of statements that come between a BEGINSUB and an ENDSUB. The
sequence is only "called" by a GOSUB. It can terminate either with a RETURN
or the ENDSUB, both of which cause a jump back to the line after the GOSUB
that called the subroutine.

Subroutines are useful in a program that uses he same sequence of
statements in a number of different situations; in that they allow the pro-
grammer to write the sequence only once and yet have it accessible from many
different park of the program. When this sequence has b,en executed, con-
trol returns to the place from which the sequence was cal ed. Complicated
ppagramp are also much-easier to debug if they have subroutines correspond-
ing to the different parts of the job the program is intended to do. See
"Branch and Return" in Section 2.17.2.

Example

(other, lines h program)

50 GOSUB 800
60 PRINT "WE RETURN FROM THE SUBROUTINE."
70 GOTO 999

800
810

BEGINSUB "NUMERO UNO"
INPUT X

820 IF X 1 THEN 850
830 PRINT "X IS NOT 1. YOU LOSE."
840 RETURN
850 PRINT "X IS 1. YOU GET A STAR."
860 PRINT "* * *n

870 ENDSUB "NUMERO UNO"
999 END

When line 50 is executed, control is transferred to line 800. Execution
continues with 800, 810, and 820. If X equals 1, the next lines executed
are 850, 860, 870, and then back to 60. If X is not equal to 1 at line 820,
the sequence is 830, 840, and then back to 60.

39 4

Illegal
10 GOSUB 100
20 PRINT "X"

no "flow hrough"Jnto the subroutine
Legal
10 GOSUB 100
20 PRINT "X"

90 PRINT "Y" 90 STOP
100 BEGINSUB 100 BEGINSUB

(The problem with the illegal example is that, after executing the PRINT
statement in line 90, BASIC would reach and execute the BE0INSUB directly
in the sequence of line numbers, which is illegal. A BEGINSUB may only
be executed Immediately after its matching GOSUB.)

no jumping out ***
Illegal Legal
10 GOSUB 100 10 GOSUB 100
20 STOP 20 STOP

100 BEGINSUB 100 BEGINSUB
110 INPUT X 110 INPUT X
120 IF X 1 THEN'20 120 IF X = 1 THEN 140

g
13 PRINT "X IS NOT 1!" 130 PRINT "X IS NOT 1!"
14 k NDSUB 140 ENDSUB

Illegal
10 GOSUB 100

no subroutine calling itself
There,is no right way for this.
BASIC is not recursive (its subroUtines
cannot call themselves).

100 BEGINSUB
110 PRINT "IN THE SUBROUTI !"

120 COSUB,100
130 ENDSUB

See Progra' Flow (2.17).

2.23 Functions Ar ts and Return Values

Imagine this exchange. You say, "Double this number: 6" and your
friend says, "Okay: 12." To double a number is to use that number in a
specific way and then to give the result back. In this example, "double"
is ai function; the number 6 is the argument to the function, -and the number
12 (the result of doubling 6) is the value returned by the function.

A function is some defined process that produces a result. It may
require no arguments, like the function that picks a random number (see
RND). It may require one argument, like the function that doubles a number--
you can't double something without knowing what that something is. Or it
may require more than pne argument, like the function that finds the smaller
of two numbers--you can't say something about two numbers without knowing
What. they bath are. .1.

40
45

A function always returns one value.

Keep the spedial meanings of argument and return in mind. Don't
confuse them with the regular English meanings of the words.

You may, think of a function as a shorthand for some series of opera-
tions The value returned by a function is used, like any other value in
the programming language you are using: You may assign it to'a variable,
use it in a-Boolean expression, print it, etc. Some examples of functions
are g ven in the next few pages.

To generate a random number is simply to, tell the computer Co pick a
number. One of the most interesting uses for random numbers is in programs
that play games: dealing cards, choosing a number for the uAer toguess,
or choosing a move in tic-tac-toe, for example.

0
2.23.1 Built-in Functions

BASIC has several built -in functions. That is, there are some
operations that are so frequently used by programmers that they have been
added to the commands that the interpreter understands. The exact list of
these functions will vary with the implementation of BASIC, and the list is
sometimes called a "library." The following functions are built into BIP's
BASIC: 1

2.23

Tp generate a random numb

Examples:

20 X=

20 PRINT RND* l0

20 B = INT (RND * 10 + 1)

Remarks:

The RND function returns a random number greater than 0
and less than 1. That is, it makes the computer-spick a number" at random
the way you might pick a card from a deck. RND always picks a decimal fraction
between 0 and 1, so read about INT for interesting ways to generate and use
random integers.

2.23.3 INT

Use: To convert a real number into an integer.

,Examples:

30 X = INT(7.4)

30 PRINT INT (-27.98)

30 R ,= INT (RND * 10 + 1)

Remarks:

BASIC thinks of all numbers as real numbers (i.e., as numbers
with decimal fractions), not as integers. There are many situations in
which a program should work with only the "integer part" of a number, and
the INT function does the job.

BIP's BASIC, unlike some other implementations, intery ets INT
to mean "return the largest integer that is not greater than the a Uthent."
This means that:

INT (7.4) = 7
INT (-7.4) = -B

because -8 is the largest integer that is not greater than -7.4.

The argumentto the INT function must evaluate as a number.
INT(Y*10) is legal, but INT(A$) is not, because A$ cannot be a number.

Some uses of INT include.

a. Generating random integers (see

The RND function returns a1 random number between 0 and 1--
a random decimal fraction. ,To create an integer, you must first multiply
the random number by 10 (an integer must be at least 1), and then convert

, it to an integer: 44

INT (RND*10)

will return a random integer between 0 and 9, inclusive. The value of
(RND*10) will be greater than 0 and less than 10; it will range from a low
of 0.01 to a high of 9.99.

INT (RND*10 1)

will e urn a random integer between 1 and 10, since the range of values
(before INT is applied) is 1.01 to 10.99. This BASIC statement assigns
that random value'to the variable R:

R = INT (RND *l0 + 1)

In general,

INT(AND * (B - 1)) + A)

will return-a random integer between A and B inclusive.

b. Dividing "evenly.

If a numb- Y divides another uumber_X evenly, then X/Y
an integer with no deci al fraction or "remainder." The Boolean expression

X/Y = INT (X/Y)

42 47

will be true only if X it evenly divisible by Y. For example, the Boolean
expression

13/4 = INT(13/4)

is false, because 13/4 equals 3.25, and INT (3.25) equals 3.

But

16/8 INT(16/8)

is true, because 16/8 equals 2, and INT(2) equa

This'iprogram uses INT to determine if the first number ,given
is evenly divisible by the second number:

10 PRINT "TYPE THE DIVIDEND"
20 INPUT X
30 PRINT "TYPE THE DIVISOR"
40 INPUT Y
50 IF X/Y INT(X/Y) THEN BO
60 PRINT "NOT EVEN! TRY AGAIN."
70 COTO 10
BO -PRINT-XI IS EVENLY DIVISIBLE BY "; Y
99-END

2.23.4 SgR.

Use: To return the square root of a numeric expression.

Examples:

30 S SQR(25)

30 IF SQR (X*10) N THEN 10

30 PRINT "THE SQUARE ROOT OF B IS "; SQR(B)-

Remarks:

I

The SQR function finds the-pbsitive square root of i
argument. The only restrictions on the argument are':

a. It must he an expression that evaluates as a number.
b. It must be greater than or equal to zero, since negative

numbers do not have real square roots.

2.23.5 LEN,

Use: To return the length of a string.

Examples:

30 INPUT T$
40 L LEN (T$)

30 READ C$
40 X 0 LEN

43

string argument.
turn the value 6.

The LEN function counts the number of characters in its
If -le value of T$ was "TOMATO"--the function would re-

2.23.6 User-Defined Functions

Use: To return the value of any expression the programmer
wants to use often.

Examples:

30 TWICE (N) = N*2
40 IF TWICE (I) > 100 THEN 10
50 REM BACK TO 10 IF I TIMES 2 IS BIG

30 CONCAT (R$) R$ & R$
40 INPUT D$
50 PRINT "I'LL REPEAT AFTER YOU - "; CONCAT (DS)

Remarks:

Most implementations of BASIC-, Including BIP, allow you to
define your own functions. In BIP, functions may have only one argument.
Both string and numeric f-nJons may be defined. For example,

1

10 ADDER (X) = X+1

defines a numeric function named ADDER, whose argument is X, and whose value
is X + 1.

Defining a function to.do something that you have to do more
than once saves you some trouble in writing your program. For example, if
your program had to generate lots of random numbers (see RND and INT, above),
you might define that function, then just call it each time you needed a
random number. This program is a aimplified illustration:

10 PICKME (X) =,INT (RND * X + 1)
20 REM "PICKME" WILL PICK AN INTEGER BETWEEN 1 AND X
30 PRINT "HERE'S A NUMBER BETWEEN 1 AND 10:"
40 PRINT PICKME (10)
50 PRINT "AND HERE'S A NUMBER BETWEEN 1 AND 5:"
60 PRINT PICKME (5)
99 END.

You might copy and run this program a few times to see how all these functions
work together.

You may define, a given function only once in a program, but
you may use as many different functions as you like. The kind of expression
used in a, function must match-the 'data type of the argument: If the argument
is a numeric variable, the expression must be numeric:and if the argument
is a string variable, thg expression must evaluate as a string. The name of
the function must--be at least three letters long. It can be very long (20
letters), but since. the purpose of functions is to save on typing, your '

function namesshould probably be less than 10 letters long. You may not
use "special characters" like periods, commas, or semicolons in the function
name.

2.24 Other Useful Statements

2.24.1 STOP

Use: To tell the computer thit it has finisher executing your
progrM.

Example:

50 STOP

Remarks:

Every BASIC program must have an END statement. The END
tatement must have the highest line 'number in the program.

In addition, you may use as many STOP statements as you like.
STOP is equivalent to END, except that.STOP may have any line number. STOP
statements are useful in programs that may Lerminate in many ways.

BIP%a BASIC always prints the number:of-the last line executed
when a prograt terminates. Using STOP statements can be, very valuable.in de-
bugging a program that has many parts--it can help xdu locate problems by
causing execution to terminate under certain conditions without confusing the
issue by continuing execution with wrong values. j Then-the line number at
Which the program terminated can help you see what erroneous condition occurred.

See END (2.4) and GOSUB (2.22).

2.24.2 REM

Use: To write REMarks inside your p gram, making it easier
to understand.

Examples:

60 REM III STOP LOOPING IF X IS TOO BIG.

200 REM THE FOLLOWING 5 LINES CALCULATE THE AVE

45

Remarks:

Use a REM statement whenever you like. It does not affect
the execution of ypur program in any Way, but it gives you a way to make
notes:about the program as you go along, inside the program itself. You
may also use a REM statement with a blank line just to make a break between
blocks of lines in your protram.

SECTION BIP COMMANDS

'Whenever you deal with BASIC, you are really communicating with the
computer on two levels. One level connects you with the RASIC,language
and the computer's ability, to execute programs written in BASIC. The other
level connects you with a more general operating system, which allows you
some control over the world in which your own programs live. In this course,
the general system is BIP, the program that runs everything you see happening
at your terminal. Through HIP, you can write and execute programs in BASIC;
in addition, you are presented with programming tasks and you are allowed to
save and modify your programs. Some of the commands in this section are
identical to those in other implementations of BASIC and some are peculiar
to BIP. You will just have to learn other commands when you use other
versions of BASIC.

rt

3.1 Curriculum Manipulation

These commands deal with the programmjqg tasks a rm the instruc-
t °nal bage,of)1.11).

TASK Start a new probTemi- BIP will select if for you.

HINT Print a hint. Some tasks have no hints some have more
than one. Type HINT to help you understand what the
task requires.

MORE

ENOUGH

MODEL

Continue the current problem. BIP does some checking
of your program before allowing you to continue.

End the current task immediately. BIP does not check
your program, and keeps no record of your having
entered that task.

Print out a model' solution to the current task. The
model solution is not necessarily the only way to wr
the program. HIP does not take you out of the task.

to

DE1NO Execute the model solution. Thy demo should help you
write your own program by demonstrating one possible
solution to the task.

D TRACE Execute the model solution and shiA-14 what's happening at
the same time. HIP prints the number of each line of the
model solution as it is executed and prints the value Of
each variable each time lt ls assigned. Once you have
run the DEMO a few times, you -know what the model solution
dues. Then the DEMO TRACE will help you see how the model
works. See TRACE in Section 3.2. If Che screen is
flashing by too fasti use the HOLD key. (See Section 1.6.)

3.2 j1F!!!gm Manipulation

you
These commands do not deal with the curriculum, only with the program

are currently writing and running.

LIST Print out the current program. Use this to see what
your entire prograM looks like--itt helps. You may
also list just certain lines of your program by fol-
lowing the command LIST with either a single line
number or two line numbers, separated by dashes. For
example, LIST 50-would liStr- just line 50; LIST 40-70
would list all lines with line numbers between 40 and
70, inclusive.

SCR Delete ("scratch") the current program, wiping the
slate,clean So you can start afresh.

RUN Execute the program--have BASIC follow your list of
instructions,

SEQ <start ng>
RenuMber the lines of the program. <starting> is the
first line you want Co have "reSEQuenced," and
<increment> is the distance you want to have between,
the lines. For example,

SEQ 100 20

will renumber the lines in your program from line 100
upward, and each new line number will be 20 more Wan
the line number that precedes it. (The new numbers in
this example, starting at 100, would be 100, 120,. 140,
etc.) Use SEQ -when you want to reorganize your program
to make more space available between the existing lines,
so that you can ijisert new lines into the program.

SEQ also changes the line `numbers, specified in COTO,
IF . THEN, and GOSUB statements so that the program
executes exactly as it did before you decided to
reSEQuence the line numbers.

SEQ 10 10 is the default, meaning that if you type
just SEQ, it is assumed you meah SEQ 10 10.

CHANGE "<st ng 1>" TO "<string 2>" IN <line range>
Change part of a line or lines without typing them
all over again. This command will change every
occurrence of the characterS in 'string 1> to the
characters in <Qtring 2' in all the lines given in
<line range>. The words "TO" and "IN" are optional.

48

(

<line range> can be (1) a single line number,
(2) specific line numbers, separated by commas, or
(3) two line numbers separated by a dash, in which,
case'all lines whose numbers are between those two
numbers are checked. If_no <line range> is tiven,
then EVERY line in your program is checked.

This command is best 111ustrated,by examples.
Consider the line

10 PRINT "THIS IS AN EXANFLE FOR THE CHANGE COMMAND"

with "EXAMPLE" misspelled. To fix it you could either
retype the whole line or give the command

CHANGE "NP" TO "MP" IN 10

(or CHANGE "NP" "MP" 10, since "
Note that if you had said

CHANGE "N" TO "M" IN 10

line 10 would be changed to

10 PRINT "THIS IS AM EXAMPLE FOR THE CHANGE COMMAND"

ft
I "IN" are optional).

which is clearly not what you'd want.

<string 1>_ and <string 2, do not- have to be of the same
length., For example, if

"THIS IS AN EASY EXAMPLE. FOR THE CHANGE COMMAND"

is what 'you wanted your statement to be, you could give
give the command

C _GE " E" TO " EASY E" IN 10

and then later'- if you decided that the w d,"EASY" is not
whatyou ,wanted,. you could eliminate it with- the command

CHANGE " EASY" TO "" IN 10

If you wanted to change the number 10 to the number
.

20 in lines 30, 80, and 110 of your program,,,yon could
give the command

CHANGE "10" TO'"20" IN 30,80,110

You culd also give the command

CHANGE "10" TO "20" 4IN 30=110

as long as none of the lines between 30 and 110 have
occurrences of '10" that you.DON'T want to change.
To change "10" to "20" everywhere in your program simply
type the command

CHANGE "10" TO "20"

and it would be done.

49',

Execute the program end show what's happening at the
same time. DIP prints the number'of each line as it
is executed, and prints the value of each variable each_
time-it is aosigned. This is an extremely valuable
debugging tool. Use it on a smile program first, to
see exactly what it does. Then use it any time your
program does apt seem to do what you intended.

CE <numbe 1>

TRACE <numb

Executes the whole program. The trace will start as
soon an the line numbered numherl> is executed, and
the trace continues to the end Of the program. Use
this command if you know that the first part of your
program is correct and you want to avoid taking the
time to trace through things that already-work.

<number2>
Executes the whole program. In addition, it TRACES
execution of all lines WITose numbers are between
<nuMberl> and <number2>.
For example,

TRAC E ltd

executes the program, and prints line numbers
and-variable va -ues between lines .100 and 200 -inclusiv

.Example of TRACEt

For the pro-grain

10 FOR- 1-T0-2
20 LET X J

30 NEXT .1

40 PRINT "FINISHED!"
99 END

Typing "TRACE" will produce
-TRACE STARTING AT LINE 10
10: J 1

20: X --- 1

30: J 2

20, X 2

30: J =' 3

40: FINISHED!

his output:

99:

EECUTiON COMPLETED AT b INE 99

5Q-

FileAtoraisa and Access

These comhands allow you to keep your programs- for. later Use'. If
you do not save a prOgrom, it will disappear when you sign off. When you
saVea program, you must give it a name. The name Can be .anything yoU
like, hut it should not contain any "special characters" like periods,
commas, or semicolons. Once the program has been saved, it is called a,
"file.".

FILES List the names an&d tea of all files currently
saved in permanent storage. The date and time
shown tell you when the file was last SAVEd.
The length is the number of lines in the SAVEd
program.

awm <name'. Store the current program under the <name>
givep. The name must not be longer than 30

-characters. The program is-not affected--it
is simply copied-to a-permanent Stbrage area.

gi§
GET.namer etrieve the file of the <name> .given. The

urrent program is'SGRatched and replaced by
the <name> file. The permanent storage of
<nae> is not affected. (See comments, below.)

MERGE 'names Retrieve the <name> file from storage and add
it to the current program, without SCRatching
the current program. DIP will_ print the
messages,DUPLICNTED LINE and.WAS: . . . if
MERGEd file and the current program have linea
with the same line- number. The "new"'line from
the merged file 'will replace the "old" line that
was already part of the current program See
commenta.helow.

KILL <n Erase the <name> file from permanent storage.
The current program is not affected.

It is a good idea to LIST your current program before you SAVE it,
o v iify that is what you want. Be careful with KILL, since it

fins .

Your "current program space" and
. perhanen storage, area" are two

separate things that only communicate with each other when you use these
Commands. ,Remember that SAVE and GET make copies from the current program,
to permanent storage and vice versa,,, When you GET a file, ElP'eopieathe
file from permanent storage into your current program space, and leave-
the permanent file. exactly as it was If you then make some changes t the
program, you must SAVE it again if you want the changes to be permanent1

51

!xample, suppose you have SAVEd a program /under the name D
and then sign off. The next day you GET DOC and make sOinc!changes to it.
If you then say SAVE CAT,. your permanent storage will have WO DOG. (the
old version) and CAT (the.new one). rf you say, instead', SAVE DOC then
B1P will any "OLD VERSION-DELETED" and you will have only:the new version,
under the name DOG'.- The moral is If yOu want to have two versions' of
the -program, SAVE the revision with a new name. If you don't need the old
version any .more, SAVE the new version with the same (old) name. If you
don't SAVE it.at all; the new version (your current Program) will disappear
when you sign off,, and- only the Old version will be in permanent Storage.

3.4 Lisg-lintiorld.

Print t e name and student number of the person
using le terminal. Use this 11 someone has
left t the terminal withoutsigning off., (If you
sign him off, he -may lose a program, so tty to
find him first.)

T.

WREN

FIX

CALC

Print the name of the current task yO4 are in.
This also allows you tp.hame .the prOblem text
printed-out for you again, without restarting.-
the task.

Print the date and e. Obvious use.

Leave `e message for your'supery sor. Use this
whenever you have a problem that you think he
or she should know about. Please describe ,the
problem as thoroughly as-you can, Type the.
<et> key twice to end-your message.

Evaluates an expression.1 The expression can
be numeric, string, or Boolean. Fo example,

-CALC 6+4-

would make PIP print. 16.

IBC 'DOG J-FOOD"

would make TIP. print DOGFOOD.

_CALC

would make BIP' print FALSE.

CALC cannot evaluate expre
variables.

ons containing

52

Words

GLOSSAL

UPPER CASE are either BIP commands or RASICstatements.

The value .or values operated on by a function..
See 2.23.

assignment

BASIC

INSUB

BIP

Boolean expressions

branching

BYE

CALC

"character

con aten

constant

counter.

Also called a ''subacripted variable," a variable
thatmay have many distinct elements, each of
which can be'treated as a-separate variable.
Sea' 2.8',, 216.

Associating a-yariable name with the contents
of a locatinn. See 2.10 2.11.

A widely used programming language: Beginners
All-purpose , Symbolic Instruction Code.

The BIP BASIC statement that starts a subroutine.
See 2.22.

that"BASIC Instructional Frog
_ns this course.

Expressions whose value
Used In making'deciitions. See 2.19.

:he pro

either TRUE or FALSE.

Transferring control to a different.sh rt of
the program rather than-following the numeric
sequence of'line numbers. See 2.17-2.20.

The ill' command that ends your session with
the computer. See 1.3, 1.5.

The BIT command. .that evaluates an expression.
See 3.4.

The BIT command that makes it possible for you
to charge' a -line or group of lines in your
program without typing .then over ,See 3.2.

Anythinga terminal can display: letters,
numbers,.punctuation, or-spaces. See 2.7.

ion The string operation that combines two string's
into one See 2.13.';

Another. word for "literal." See Z.B.

A numberc variable used to count somet
usually incremented every time some condition
is satisfied. See 2.17.

53

data.

DATA

debugging

decisions

DEMO

E

endless loop

8NBSUB

ENOUGH'

error

execute'

In general, ion used by progr See 2.2.

The BASIC statement that provides valUes to
a READ statement. See 2.15.

\

The process of finding and correcting errors
(which computer programmers call "bugs")
in your program. See 1.7, 2.24.1, 3.2.

BASIC'S ability to modify the order of
execution of your program, depending on
certain conditions. See 17-2.20.

The BIP command that executes the moder,
to show you how one solution to the Curren
task works. DEMO TRACE executes the model,
and traces the values of all its variables at
the same time._ See 3.1.

-The BASIC statement that specifies the maximum
number, of elements in an ray; usually goes
at the beginning of a program using arrays.
See 2.8, 2.16.-

A required BASIC statement which must be the
last line in the program. It terminates,
execution. See'2.4.

nether term for "infinite romp." S

2.17.1, 2.18.

The BIP BASIC, statement that ends a subroutine.
See 2.22.

The 13IP c

task with
mmand that term ri_atjes the current
ut completing it. See 3.1.

Something that BASIC knows it cannot handle
correctly. BIPprints out an error message
to tell you what it knows about the error.
See 1.7.'

The procees.by which BASIC determines the
value of an expression. See .7-2.8 2.19.

Make the computer do something. BASIC is said
to execute the-lines of a program, i.e. to
follow each instruction in the program. See 2.2.

Part of 'a, BASIC
,

,primary o oper
tatement to be evaluated: A
Jolla on primaxies. See 2.12,

S.

r.

FIX

FOR . .

function

GET

GOSUB

COTO

HINT

HOLD key

IF THEfl

The HIP command-that Ants the names of
files in permanent storage. Sec 3.3.

the

The DIP command that allows you to leave a
.4message for your supervisor. See 3

The pair of BASIC st
.a machine-made loop,

A defined process th
_e.g., RND, INT, SQR,

The BIP command that
SAVEd program so that
again. See 3.3.

emento that sets u
gee 2.17, 2,21.

produces a result,
EN.. See 2.23.

r

rieves a previously
you can work on it

The BASIC statement that causes a jump to a
'subroutine. See 2.17, 2.22.

The BASIC statement that allows you to alter
the sequence Of axecution_unconditionaily.
See 2.17, 2.18:

The BIP command that prints a hint to help
you with the current task. See 3.1.

A key-on your terminal that will stop the
tcreen.so that can read everything before
if -disappears o f the top. See 1.6.

The BASIC statement that allows you to alter
the sequence of execution if some condition
is true. 'See 2.17, 2.20:

increment

gindax

nfinite loop

_input

To add to the Value-of a numeric variable,
frequently a variable used as a counter.

In an array variable, the number in parenthebe
that-specifies each eleMent in the list.
See 2.8,.2.16. .

In a loop, the number ounter) that 'keeps .

track of the number of times the loop has been
executed. See 2.17, 2.21.

A program is said to be in an "infinite le
when it does the4aame think over and over,
never stopping. See 2.17.1, 2.18.

)
The set of valuet supplied to the grog
information on which it operates. See 2.5.

.

6o

INPUT The BASIC 'statement that allows the' U
anaign a value to a variable during e
See 2.14

INT The BASIC function that returns the t
part of a real number. See 2.23.

KILL

LEN

LET

line number

LIST

litera

location

hop

ERGE

MODEL

IRMIE

numeric

operation

numeric:

U ion.

The BIP. command that erases a filefrom
permanent storage.- See 3.3..

The BASIC function that returns the n.0 ber
characters in a string. See 2.23.

The BASIC statement that assigl_ a value
a variable. See 2.11.

An integer that must precede each BAS
statement; statements are executed in Or
increasing line numbers. See 2.3.

_ =

The BIP command that prints out your pro rare

in the order ofithe line numbers. See 3.2.

A primary whose value is itself (as opposed to
a variable). See 2'.8

The place in the computer's memory where a
value can be stored; the place or "box" Ilani.ed
by. a variable. See 2.10.

General term -for a series of statement whose
execution is repeated. See 2.i7, 2.21.

The BIP command that retrieves a file tram
perManent storgge and adds it to the current
program. See.1.3.-

The BIP command that prints a= typical so on
to the current 'Cask. See 3.1.

The BIP command that presents the next part
a task. Type it after completing a prog
See 3.1.

of

Having to do with members and their values.
See 2.8.

The process by- which two express ons Are used
to specify a new value:

Addition, subtraction, multiplication, division,
exponentiation.

56

Operator

output:

primary.

PRINT

pr gr

READ'

REM

.REOPEN

string: Concatenation, aubst ing.

relational:

Boolean:-

numeric:
string:
relational:
Boolean:

RETURN

An operation that compares two string_ or nUmeric,
expressions in some way to produce a Boolean
expression.

An operation that combines two Boolean expressions
into a new Boolean'expresaon.

The ymbol for an operation:

* /

(start, stop)
m am

NOT AND OR
See 2-.12, 2.13, 2.19.

- The visible results of a-program's execution
am the terminal. See 2.5.

An expression without any operation--either
a literal or a'variable, See 27-2.8.

The BASIC statement that produces visible
results by ,causing the terminal to type,
something. See.2.6.

A list of instructions for a computer to
follow, written in a language that=the
computer understands. See 2.i.

The BASIC statement that assigns a value to
a variable; the value is stored in the program
in the DATA statement. See 2.15.

The BASIC statement that does nothing. It
simply allows the programmer to make notes
within the program. See 2.24.

.The BASIC statement that Moves.the "Read -data
painter" baCk to thelirst DATA value in the
program. See

To determine and give back'a value. All
functions return-a value. _See 2,23.

The BASIC statement that causes a jump back from
a subroutine to the place from which tile sub-
routine was called. See 2.22.

RND

''RUN

The BASIC. function that-returns a randem
decimal fraction between 0 and 1. It require
no arguments See 2.23.

The BIP command that tells the computer
execute your program. See 3.2.

The BIP command that puts your current program
into permanent storage for your next session.
See

The BIP ,command that erases your current
program. See 3.2.

The BIP command that numbers,the lines
program to give you more available space
the existinkjines.' See 3.2.

Ending a session on the computer. Signing off
---isahieved with BYE.. See 1.3.

The BASIC function that returns the positive
,square ro C.of its numera.-argument .See. 2

'A 'single BASIC- instruction occupking one
line of the proiram. See 2.12.3:'

A group of charactra in a particular order.
See 2.7 -2.8.

a ,

subscript

'subscrip-ted

substring

subroutine

TASK

The BASIC statement that may appear at any
place in the program and terMinates execution
of the program. See 2.24.

a number or nuutertc variable in parentheses
that specifies an element of an array.

,A ?kind of variable, one that can Contain
more .than one value at one time. See "array."
See 2.8, 2.16.

Apart of a string. See 2.13

A sequence of BASIC sthtements that can be
accessed and executed'from different places in
the main program, returning back to the place
ftlom which it` is called. See. 2.22.

The BIP command that presents the next
programming task. Type it after completing
the previous task. See 3.1.

TRACE'

.user

-variable

The DIP command that both execute program
and prints out line numbers and .var tables
as execution progresses. See-3.2.

In general; the person who runs a pr
Frequently- also the person who w

A funet
the value
See 2.23.

efinedkin your progr
he expression that- y

h returns
Oecify.

The result'of evaluating an express
function. Either a number, or a string,

TRUE or 'FALSE. See-247, 2.12, 2.19.
j

A name for location in the-computer's memory,
a "box" that can hold a numeric or string
value. See 2.8- .11-.

The BIP nct that'tells you the name of.=your
currents-tas and allows you to, see the problem.'
text. again. See 3.4,

The BIP command that tells you theedate and
.1)

time. See 3.4.

The::BIP command that tells you who is `ned
on. At the terminal. See 3.4.- ,

4
59

Beard N. 'Bar
etworks for c
avy Personnel R

REFERENCE

L- & Wescourt Curriculum information
d i ruction (NPRDC TR 78-18).. San Diggo:

d Development Centex, pril 1978.

REFERENCE NOTES

1. Beard, M. H., & B A. V. The BASaictionalistudent
manual(NPRDC Special Rep. 77-2). San Diego: Navy Personnel Research
and Development Centerp October 1976,

Dageforde, N. L. 3alsOIA2ElullslualmassmnaLSTmmtlmLaL2MAINSAIL language WPRDC Tech. Note 78-11). ,San Diego; Navy Personn
Research and beveiopmeo't Cener, April 1978.

Dageforde, M. L,
ANPRDC Tech. Note.
DeVelopment'Cente

Dageforde, M.
SuperVisior's

_Research and Deve

C in ctieeal
7 San

r, April 1978.

em doCumen:a

rd The BASIC, ingtru onal o ram :
PRDC.Tech Note 78-10 San Di
one Center, April 197

nnel

-61

