
ED 1 8 550

AUTHOR
UTILE
INSTITUTT

EpoNs AG8

PFPORT NO
PUB DATE
NOTE

DOCUMITNT BESUM B

Beard, M. H.; Barr, A. V.
The BASIC Instructional Program Student Mafuai.
Stanford Univ., Calif. Inst
n social Science.
Navy Personnel Research and Bevelopme
Ui -ego, Calif.
NPRDC-SR-77-2
Oct 76
75p For related docum nts, 007 0922096

-

for Mathematical_ Jc di.us

Center, Sau.

EDES PRIG MF01/PCOA PlUs Postage.
'DFSCRIPTO S College Students; *Computer Based. leaboratorias;

*Computer Science EducatIon;'Glossaries; Input
Output; *Instructional Programs; Programing;
*Programing Languages; Tutorial Programs

IDENTIFI2SS *BASIC

ABSTRACT
Thi, wand 1 is the student's:ma source of

information

about the BASIC instru-ctional Program (BIP) , a "sands -on
laboratOry" that teaches eleuenta'ry programming, in the BASIC
language, and the BASIC language itself. The,manual is organized as areference document for.stadents with no previous programming
experienc Three major ,sections contain (1).an'introduction to thacourse; an explanation of general programming, discussions of
Programming concepts such as input and variables, and the
specification of the BASIC statements used to implement these
concepts, with the syntax and sample programs; and (3) a list and
explanation of the commands that control the RIP system, some omwhich are identical to standard BASIC comiands (e.g., RUN, LIST)'
while others give access to the unique features of BM A. glossary is
appended which' lists all the specialized terms used' in the Manual,explains their use briefly, and give-a references to the sections
where detailed information can be found. -(Awthornmv)

*41k****************** ** ***** * ** 4*** * #? ******44**
Reproductions supplied by MS are the best that can be made

from the original ocument
******** ****4*** **-4**************** ************

'WPM(Spe 1-
or t 7-Rep

DEpANTmENrOr 14EALttf.
epOCATIoNs.WeLr Mee

NATIONAL INSiITUT Or'DUCA tioN

`1,4is 1,0 Nt lin% or EN 11 r Pfiolicr 0 641 t I. Y /1.; Prcr IVF 0 r Ore
f141- wry anima I ION 1114 1(0w mu PpIN I!, or wrW 01.1N lowSI Al r .00 NO1 nat IScmtilY « P14sr INT 01 F It/ At NA FIONA I IWO Tlyz r or
1:1)W.AlloN mm,a OF N11-1u

- TUB R SIC INSTRU :TONAL PROGJSAK STUD_

Nay

H. Beard
L. V. Darr

&kematical Studies in the
nford University

Palo Alto., California 94305

Reviewed by

D. Ford, Jr.

Approved by

James J. Regan
Technical Director

Prepared for

let 1

T MA AL

el Research and Develop en t Center
San,Diego,Cal4fornia

ncea

FOREWORD

.This report Will serve as a handbook .studen uts sing the BASIC
Instructional Program (DIP) which was developed at the Institute for

\

Mathematical Studies in the Social Sciences, Stanford University. Initial
research support for the program was proiided by the Office of NavaX
Research and by the Defense Advanced Researth Projects Agency. Current
advanced development of BUJ io being supported by the Navy PerAonnel Resea c
and Development Center under Advanced .bevelopment Project ZPN07.(Educatioo
and Training Development), Subproject MPN07.32 (Advanced Computer-Based
System for Instructional Dialogues) u der the mission sponsorship of tbe Chief
of Naval Operations (0P-099), .13IP,i _77corporates several-of the advanced.teeh-
niques of computer-assisted instruction that are being tested and evaluated

''

by ZPN07;32. Plans axe'curtently b fog foi.nulated for-a-BIP tryout at the
U.S. Naval Academy, Dr. J. D. fie teher served as tvetnical monitor for th
development.

J. J. CLARKIN
Commanding Officer

iii

S LMARY

The BASIC nstrue ional 1Yrogram (B) is a "hand -son laboratOO
that teaches elementary programming in the BASIC language.; Thismanual is the student's main-source of :information aheut'rhe RIPsystem and the BASIC languag6, The manual. is organd?.ed DO a roferenc
documental ed at students with no previous p_ gramming experience
Section I i °duces the student to the course itself. Section Ibegins with an explanation'of

prograMming.iri.general.'.Disenasion
programming' concepts such as Input and variables are fdllaed by
specificati of the BASIC statements used tg implement ihem;
syntax an a 1 grams are used ac illustrations.- ;Section IIIzlists and exp a e cm-wands that control the BIP system, Sonia,

. are identical to ntandatd BAS 'C commands, e.g.; RUM., LIST) . a d
others give accesste the uniluerfeatAres of 131.P. ginasa y listall the specialized terms used in the manual, exPliainS their isebriefly, and gives references to the-sections wh3ye detailed nfc rnationcan b e found.

SECT1ON
LI

TA LE OF CONTENTS

INT'? ODW:TE_ON T AND THE TERPI [VA!,

Prato

I

I 1 rile BAST': Lunn win, e ,1ricl the BAS [C Pincr nci nol.
I' rog r drn (HI P)

1

. .

1

1 . 3
us ins the Haroin L
S1P n log On

I

1.4- Ta Wog. to HU
1.5 A Sample r.A terac Linn with IIIP 4.
1.6 Seine Fret pE ti 1 ema rAc ter's to Knot,' 9

Error tie ssage\ and CPang ing, Your Pr0c,rjrn 11
)

,F(r i ri RocRAInt INC IN B\AS IC WE r Fl ,I 13
1 Programmirig __./

.
. 13

2 1, of rnel, St orn acid Exec 1 low 15II. 3 Line Numbe rs 16
4 FIND 1611.5 Input/Output 1611.6 PRINT ,

17.IL. 7 Mtn Types inn l V 1 u e s
3

1911.8 v r irrar le sl 20
IL. 9 BASIC Var lob le,s 2211.10 Assignment 22
IL. 11 LET (Ashl gnment) 24

,......$ 11.12 Express ions and Op racors. 25It .13 F3ASIC One rotors 26t .14 VI Pur 2811.15 4 F,AE) . . IA 'FA aEA R.,OPEN 29r I .16 nil 31
11 .17 Program Flow 33,11.17.1 EnEops 33EL .17.2 anal arid Recur 36I 1 .18 . C01.0 37I 1 .19 Relational ioLean One ra _3811 .2 I/ 1 F. . . THE k 4011.21 FOR . . NI K 4111.22 COSUB . B EGINSLIB . RF]l1114N. . . ENDS UR 4411.23 Rune dens-. _ orients. Find Returning Values 4711.23.1 HAI t In Emig t on s 47I 1.23.2 RN[4811.23.3 INT 1 481.2 1-,* s OR 50II. 23.6 ' I, EN 5011.23.6 Eke rDeFined Fun

51T. 24. ()trier Usef ul stn _merits 5211.26.1 STOP
5211.24.2 ___I

II El
52

I

SL.f PIE

111.1

f .2

I 1.1..3
1E1.4

PENDEX A

DISTRIBUTION LIST

(

TABLE OF coNaws ntiwed)

ily GODHANOS

,Cuiric:illim 11;161 1 G n n

.53 .

53
'Program rlanipn1at:ion 55

lie storaile and Aceef- 59
Deali6R With the wrId. 61-

OSSARY._ wzn

SECTION L. INTRODUCtION
I.1 The BASIC Lan u ge and the BASIC Ins one Program (BIP)

course. is designed to help you learn\some fundamental
prograinm concepts through the BASIC language. BASIC is widely
used; it probably available on 'almostany computer system you are.
likely °Linter. 'BIP ia'an acronym for "BASIC instructional
Program," the progra that 'runs this course. It 16 used only for
this purpose and you ill never hear_ of it in another

5

context.

The version of BASIC used in this course is not identical
the many other versions you may find elsewhere. However, the
fundamentals dre the same, and the transition to another version of
BASIC will b

1.2 Usin the Manual 1.2.

This manual is meant to be an easy and .fast source of reference
material. It will be most effective if yo-u have it with-you while you
are working at the terminal. 'Try to'become familiar with the manual,
but do not try to memorize it. Keep itopandy nd refer to it.pften.

The first section of the manual introduces you to BIP :an some'
of the keys on the terminal that you should know about. The main Body of
the manual is the second section, which explains fundamental programming
concepts and structures and describes the language in which you will
write your own programs (namely, BASIC).. The third section lists and
explains BIP's-special.eommandsi. The foUrth part is a glossary of all
the terms used in the mannal, with referen6es to t appropriate sections
for further information.

The manual is not Intend d he a task-by-task guide to the
course. It is.a reference manual that contains a complete description
of all-the BASIC statements `the "sentences" of the language) anti BIP
commands. Especially when you first start programming, a reference
manual contains a larger amount of information that you are not ready
use. You must try, to 1$01Ate'eXACtly.What you're looking for,. and.
ignore information that doesn.'t seem. to relate to your Immediate problem.
This is not easy but it becoMes easier with practice. The glossary igo
usually a good place to start.

Advice: Don't be afraid to make -mistakes: A computer is a
Consistent machine, and you can frequently discover what works anti what
doesn't by trying different ways cif doing something and watchinglAthe
results carefully. The' manua,1--1.0 full of sample progxams that
illustrate how BASIC works. Copy and RUN these'programs whenever you
like.

I.1 ...Vsralin On

.Wneneve'r you want to use a c mputer.- yeti always have to start
hy.establishing communication with the machine someh w, letting the
computer know who you are and what you .want to do. use RIP, you
alwaysostart by "signing on:: with your assigned-RIP number. The details
of the sign-on procedure will depend on where you are and what computer
you are using to take this course, so you willehave to find someone who
knows these details. k

any case, the e thing are always

The terminal will =say

TYPE FOR HELP

and you have si grind on.
work with fill'

r> means_ the key marked "CR" or "R,TUBM" on the' right of the
keyboard, and is an abbreviation for "carriage return."

WELCOME TO IN!'

You will ign.on in this every time you

The key marked "DEL" (on the right-side of
character you typed, J ike a backsP

the keyboard) erases the

Once you have signed on, you will be "talking" to RIP.. You must
a-typ. r> andeach line you type. RIP ;reads and responds to your
commands after you type cr., RIP types a * every time it is ready
for you to type so ething

It It'is not too soon to tell you about signing off. You must sign off
before you leave the terminal. Do it by typing BYE [cr>
to RCP. -The terminal .should print a short message ending with GOODBYE.

Please' d9-444x_16aVa a terminal that has not said GOODBYE to you.

Occasionally, you will be the victim of a "system-et
or a "synuiarash." These are unexpected, unpredictOle, unavoidable
events. You .will know that one has occurred either because your
terminal suchienly prints something like,. " "SORRY, SYSTEM:ERROR" or because
your terminal stops printing anything at ail. Lf you are near any other
people usingtne same computer. you can ask, them wthether they are still
getting any-response; if they are, &I you -aren't, you should probably
find the person_jo knows something about'ES1Pa

1.4 :Talking to BIP

BIP does not present lessons, on programming 1 does not k -_,
questions and wait for you to type correct answers. It does present

\
programming tasks that require you to write BAS1q programs. By
writing, running, testing, and fixing your cum programs, you will
learn a lot about programming. BIP wal help you, not by knowing
the correct answers (many diffe programs can produce the "right"
result) but by identifying err s, giving you more informatIon, and
presenting tasks that build the skills you have developed.

The pattern of tl e. interaction between you and BIP gem rally goes
like this: A

a You ask for a task, by typing TASK. BIP prints out the
requiremea s fora program chat it expects you to
write and run. ,W
You write the program, test lt fx3 it, test it and complete
It You will make a number of errors along he way, many of
which will cause BIP to print an error message, telling
you that it can't understand what you typed, or can'
do what you told ft to do.
Having written the program required by, the task statemt o.

y u type MORE, and BI[' looks at your program to seo
that it works as it shuld. BIP then completes the
task by giving you the "post-task intervigw." In some
cases, the current task will be extended with some
additional requirements.

Wi bin that pattern, many additional things may happen. You
may be fused,. either by the statement of the problem, by.the
error mesa es printed by p.:1194 or by your program doing tithing
you do no expect when you run it. There are specific to deal
rith eae kind mf confusion.'

If the task Is not clear, you may request a HINT or use R
Jo-get a better idea of the output your program. should
produce, you may run a DEMO.
If the meaning of the error messages not clear, 9du may
,type a question mark (.) just after che message
printed. BIP will give you some brief information about that
error. You should also look in the glossary for more`
information,. starting with. the first word or phrase that you
don't understtnd. Use the cross - re ences to find the
information you need.

c If your own program does not behave as you want It to, you
should first LIST it to see exactly what it Says. You should
also use one of the debugging optionsTRACE or FLOWwhich
will show you, in detail, your. program in action.

(continued)

I.4)' (I.4)

If you are already confused just by reading this. go to the
glossary at the end of themanUal and start looking up the words
printed here in upper case, like TASK. Do not try to memorize anything.
Do. try to get an idea of hoW you can find information in tbe manuals.

1.5 A Lairlple Interaction with Big 1.5

This dialogue should give you an idea of what it's like to work
with BIP and illustrate how you can learn from your errors. The

student's typing is underlined; everything else in upper case is 9rinted
by BIP 1 (You will never have to type underlines yourself when you's-use
HIP.) Comments and explanation appear at,the right in lower case.
Remember that, each line of student's typing ends with a -<cr>.

HI

Start by, signing on.___ You hit the
space bar, and the dialogue begins.
(This is the Stanford sign-on. If You
are somewhere else, yours will differ.)

PLEASE TYPE YOUR NLJIIBRR AND _ _E.

1234 CHARLES BOCLE.

JOB 11 ON TTY332, THU DEC

TYPE "?" F'OR HELP,

FII CHARLES!

75 9: 7 -PST

WELCOME TO BIP !!

*TASK

BEGIN TASK: STRINGY
USE THE -SCR- COMMAND TO SCRATCH (ERASE) YOUR PREVIOUS PROGRAM Ii ANY.

WRITE A PROGRAM THAT PRINTS THE STRING "SCHOOL". START WITH THE
GLOSSARY TO FIND OUT WHAT .A STRING IS

A reminder tha
available.

You ask fo

atioin is always

something to do.

RIP describes a program for you to write..

(continued)

.5)

*SCR

4*HINT

HINT #1
YOUR PROGRAM SHOULD hIAVP, TWOSTATEMENTS IN IT: ONE -PRINT- STATEMENT,
AND ONE -END- STATEMENT. DON'T FORGET ABOUT LINE. NUMBERS AN!) DON'T
FORGET THAT STRINGS MUST HAVE QUOTE MARKS AROUND THEM.

c-N4 (1.5)

First, get rid of any old program that's
left over from a previous task.

not sure how to s
a HINT

SO y011.

*DEMO

F.XECUTION,OF THE MODEL

SCHOOL

You take a look a what the.. model does.

EXECUTION COMPLETED AT LINE 99
DEMO ENDED

As you thought, the model ism program
that prants "SCHOOL".

* >7RINT You type what you think is a -PRINT-
statement.

STATEMENTS MUST HAVE A LINE NUMBER
LINE NOT ACCEPTED'. (TYPE FOR HELP)

And you are reminded that you need a
line number

A O SCHOW

:ING'BASIC OP BATOR
N E NOT ACCEPTED. (TYPE FOR HELP)

Rut that must not -b-e' he way to do
You ask for more help by typtag

When you use the line number BIP
doesn't complain.

Now you try p3 say wna_,it is that you
want yoUr program to print,

MOK TO SEE IF YOU HAVE A CORRECT BASIC STATEMENT ON THIS LINE

BIP CaO tell what to do with "SCHOOL"
all by itself. you need a BASIC
statement that does something with the
string "SCHOOL". You decide to consult
the manual.

(continued)

1,10 PRINT "SCHOOL The right idea: a PRINT- statement
that prints'somthing.

SYNTAX ERROR: UNMATCHED QUOTE MARKS
LINE NOT ACCEPTED.. (TYPE 7 FOR 'HELP)

Rut something 15 wrong, and Y
for; more help.

- -

*?

R- 1911'1UEE TITAT ALL STRINGS MUST HAVE -A QuoN AT' TEl1 F EC INNING AND END

7rYPE ? FOR MORE .HELP

*10 PRINT ''SCHOOL"

WAS: 10 PRINT

*RUN

That makes son.

You try aghin on the' -PRINT- statement.

SIP' dIdn' t complain. IC just reminded
you that you have repl 10.

Things Look_good.

'So you try .to -RU - the program t
t. wo rk

ERROR DOCTOR DIAGN: -: NO END' AT-END
-LOOK AT LINE NUMI3ER: 10
TYPE ? FOR HELP..

It doesn t.even run.
an -END- statement.

You Ask for more help.

needs 'to h e

EVERY PLUJGRAM SHOULD HAVE EXACTLY ONE -END-. TEMENT -- THE LAST-
LINE THE, PROGR414

TYPE 7 FOR 1ORE HELP

*- 20 END

And you u nde nd What -s.

So yOu type -an .ipeeptable -END
You think you have written a program
that dges what the task asked _r, so
you type -MORE- to go ot-

12

(continued)

*I1OR

YOU HAVE NOT RIT-N ru, PRC GRAN

Mt:UN

EXECUTION OF YOUR ROGRA11

SC 140CC-4=

kW

1...7 LON ccoPLETE

T-,

LINE

(1.5)

Bu 1 y did t R UN t he proR r , You
haven't nctuJriI ly see Jt pr tnt "sCNOCI,"
ye E,

_

Nom t l c_-- . Yo -nro RrE-vn ran
tit c ho cit any er cur rine i t p rirt_te0 t
si c in g.

'iou wt n t Sur e that rot.' me t

teq°ui tern nts o t t y(-3 a ask
foir ics t ext

YOU A RE IN TASK ST1Z,IN
DO YO 4.1 WANT THE TE)CT -PRINTED (JUT'? -TY PI Y- OR N

5y p lea se

USE TNE -SCR- ND TO SC RA TC (ERASE) YOU it RE\ -%0 EJS R ..hAt I4 IF AN%

WRITE A FRC-KR...1M THAT PRINTS THE QTR 1NG "SCE-IOLA.- . START W I fiH U-1

GLOSSARY TO F IND OUT WRAT A S'T'RING Is

*1.10RE

EYECUTION O F THE NOIJEL,

EYECITTION OF YOUR PEOG
_

LOOKS OK I I

POST TASK I.INTE:RVIEW

RAM

ou t h cug ht duly ca I L ht
--WI T- cca nna rid to rev t he to -1

You y to plo, orn,

cuoipa yo LT-A rain Av i I
[n od el and se=70S tit It voa__its iS; tine
Niow It asks N.;7au tc, ev al u_iat e your-se 1t

HERE I S TNPLCAL, SOLO-ITO:I TO 10 S AS

L0 PRINT "SCHOOL"
99 END

(c _n Lied)

I .5)

DO YOU E ST ND T LL::T ION? (N): Y

Yon lode t Sri miry thy rraodel ks

THINK ABOUT THE: SE<ILI,S USE:11 IN 7.7.111IS TASK, CAC S
TY PE Y I YOU HAvF, HAD ENOUGH WORK W1111 THAT SK
TY PE N IF YOU MC NEED t101RE WORK 'nN IT t

PRINT STR ING LI `MEW,

TASK

*TA SK

BEG IN 'fASK: PLIIHROER

You think you 'd li -e Li rre
wi tr) str ing-5 and (-B----iot;:---11t el ma Cks
BE P will remennx? hn E (1c,, ; you
eat' XUECt m0 stein g,'S la -C.r

The end i 1 thyg

Yoo ask for .argot her

Ill I S PROD PAII SEICOL I) A. SSI CN 11-1F, V ALLIE 6 TCl T 11!,._ VA FIA ELF, N
'THEN IIRINTL" THE UN1 OF N ANO 4 , r

YOo Si e _53orn p Lan{ nit li r Gems. and

*RYE

reiat t ze cho t y-on hn--ve-_ to spend a c
lest a lit_ tlE t fine wf_th the ni an oat

Yo Li a Tgo roaI. 1 ze t yotl d L)n- t rave
.any more t Ow. so yam' si n c)f. f .

SIGNIOF 1.7 1 1-1111H-61)10, DEC :N le, 1975 9:4 1 ; 1 Ar

YOU -itAv E C Niv LE-FED I 'A51=t TODAY:
STRINGY

TOTAL TO DA TiIWO II OUR S
TItt &V I-1411 .AS

TOTAL, S ESS 11)N I: 2

TOTAL TASK C 11MP LE-11:1) 3

DR. MillORY SAWS: "e0t4SInnt yo uRSEL 11 -Mr."

COPY RIGHT (C) 19 13 By MC L 1,,A1111 sTA ,IIINlt1R IINI VIO-(51 ty
GOODBYE CHARLES

And thnt 5-I

1.6 t ne Elel ful Characters to Know

The key marked "CTRL" on the left side of the keyboard works
like aAshift key. You must hold it down while you type a-letter.
For example, to type CTRL-X you have to hold the "CTRL" key down
while-you type X. CTRL is pronounced "control," and letters typed
with the "CTRL" key are called "control characters." CTRL is

breviaced with this mark:
so -IX means the same thing as CTRL-K.

A control character is a special type of command. .You may use
the following control characters at any time:

-x

the delete ley, rked DEL or DELFTE) erases
character you typed.

the ltne you are typing. as for as the
computer is concerned. It is useful if you
discover a mistake you made at the beginning of
the line. After typic2g-X. you should start typing
the line again from the begtnnlng.

Note: the following control characters nave to do with
'editing" the line you are typing. Editing is much easier
to demonstrate t&an to explain, so as soon as you get a-
chance, try out the example shawl below under -N.

'14

-N

erases the word you are typing, but not the whole
line. After typing -V. start that last word Again.
(A word is everything back to the-tast.space, but

. not including the space.)

retypes the current Line. "R is useful if yo
--d words or characters and you don't know what

tnq line really looks like.

retypes the last line you t yped and adds It to the
current llhe. This is so your won'thave to type
an incorrect line all over again. Ose the -EDIT-
commA(Ad to moke any line oaf your program as if it
were the last line you typed in, For example.
EDIT 70 will "bring back" line 70. RIP will print
the line so you can see exactly what it is. than

-.allow you to change it As you please.

retypes the next word of the last line you typed.
(A word is - everything hack to the last space, Emt
no tiding the spmcc.)

9

(continued)

(I.6)

_OW

(I.6)

Example: suppose you just typed:
IQ PRINT "THE FOK JUMPED OVER THE LAZY POC"
and you wanted to change it
Type -N three tines to g

10 PRINT "THE

then type-QUICK BROWN (followed by a spaep) to get
10 PRINT "THE QUICK BROWN

and then type -E to get the end of the line acjoki on
ICS PRINT "THE QUICK BROWN FOX JUMPED UVEK THE LAZY DO_

Try it on your terminal . Also see the example in
Sett:ton-LT.-

I3e- naw-e -coAd

started, pupa space at the end of the lino. so the
words don't un together.

slops the next word of the Last line you typed .
Same as -N followed by W.

iZe these three control characters now. You will need them:

signs you
"hangs up

Emergency escape if , roar terminal

interrupts the running (execution) of your progy4m.
You will occasionally wr ite a program that never
reaches its end, typing or computing interMinahly.
Typing -G may be the onLy way to force it to a halt.
You may want to "abort" your program with -C at

tier times, too--nny time you don't want it to

tUn.all the way to the ENO,.

stops the screen so' that you can read everything
before It disappears off the top.
There may be a key marked "HOLD" on your r

If not, use ctrlshift-0 (push the shift and

the ctrl key at the same line, and type the))
while they are dowm). You don't need to hold keys)
dawn to freeze the screen. Just hit HOLD once and
the screen will Stop within A second or so. When you
want to start the screen moving, hiu,1101,0 agatn. Any
other character will also start thergcreen movin_after
you stop it, but that character will o pot drthe

r en. Ignore it.

1G

1.7 Error psa_K_es and Changing Pr922.ram

"Errors" wer=e mentioned earlier. the context of this curse, an
error is something that BIP knows it cannot handle correctly: For
ex-ample, if you type something like "RASK" when you meant to type
"TASK", BIP %Jill give the error message ILLEGAL BIP GOHMAND
because it can't do anything with the word "BASK ". There are three,
different kinds of errors that ,.BIP detects and tAls you about

a. "Syntax errors" are detected immedinitey u compl6te
your line. There are rules that you must when you give
a SIP command (like the one above) or type a ASIC statement,
BIP recognizes violations of those rules and complains
immediately. (An error you may make frequently is to misspell
a word, as in the example.)

b. "Error Doe_ errors" are detected when you tell HIP to RON
your program. A program is a list of instructions for the
computer to follow; if your program is missing some essential
thirigS, the computer'can't follow the instructions._ BIP
recognizes the absence of these essential things, and
you what's missing.

c. 'Execution errors" are detected as your program is running.
If your BASIC program turns out to be impossible to follow at
some point, DIP,will try to tell you what the problem is.

It is a good idea to LIST your progr m before you make any chariges..
You must make some chAges if BIP prints an error message, or if the
program does not produce the results you want. To make a change
retype correctly the line with the error. Suppose you had the 1

50 PRINT X
and you,decided (or B1P forced you) to change it to

50 PRINT Y
instead. ,Iou could either retype the whol h title. sutbstl tot ing Y to'
X. or you could'EDIT- tilt line (see 1,6) like this:

You type EDIT 5Q, And HIP prints the line as it is now:
_50 PRINT X
It Also prints Che line number for you, ,C) now you type
50 PRINT
Then you type the Y at the end, followed by <er>, and you g
50 PRINT Y

BIP will always tell you what the line was before the change,
as a warning incase you didn't really want to change the line.
this is the came, you must change it hack again.)

If you want to delete a line complete
the "CR" key. Then,_ LIST the program to he sure you have wtrat you wont

e the Line :lumber and

11

S TION II. PROGRAMMING BASIC- WITH RIP

Ais is the main body of the manual. It is organized by complextty
of conc6ts--the most fundamental first, the more advanced later: Since
programming concepts- frequently overlap, however, you will have to
bounce forward and back to find the information you need in a
particular situation.

Do not try to memo_rie tree information, especially the firs ime
you read this section. You may not even want to read this entire
section of the manual at ore cine. Sub-sections that should be read

. together, if you ,choose to read chunks at a time,
11.1 - 11.4 Some'fundeMbentals of programming in BASIC
11.5 I1-11 Input. output, asstgoment, and variables.
11.12 - 11.13 Rxpres ions
11.14 - 11.16 INPUT and REM) statements.
1-1:17 IL.20 Sequence and control of execution.
11.21 -1 11..23 FOR, GNUS, and functions.

Read 1/.24 the first time you see STOP or REM in the model solution.

Programming

A computer is not smart. It can onli _o'what is instr,Juted
do, and every tiny step must be communicated in a that tie
computer can understand. A progr4M is a list a f ustructiona to a
computar .

Lting a program involves three big stages:,
a. Specify in complete detail what the program supposed to do.
b. Translate your statement L f the problem try a language the

computer under
c Check the,prog

it to do.

ds.
0

to be sure that it does everything VOU want

The of-each stage relative to the others may
vary, but none of the three can ever be ignOred just because the
programmer thtnks "it's too easy." In particular. you Must not neglect
the first stage, the detailed description of the problem. It Ia

often useful to write out in English exactly what you want the
program to do, and in what order. You should list the steps vou
would have to follow to solve the problem by yourself; if you cannot
do this, you will not be able to use a computer to solve the problem.
For example, you can ask a friend to give you two numbers, and you can
tell Aim the result of multiplying those numbers together. If You
think about it. you can see that there are a number of steps involve,:

hear it and remember it
Ask for the first number

Ask for the second number

Conti

13

(L)

bear icaod remember it
Multiply and remernr the result
Tell your friend try= result

The more specific you lere in describing each step of the problem.
the easier it will be to complete the second stage. where you translate
your English into a programming language. A computer canno,t understand
English, nor can it guess at your meaning if you give it an instruction
that is only cl o'se to what you meant. The rules governing the syntax,
or grammar, of programming languages are rigid, and you must use the
correct words, the correct piTactuariop. etc . Just remember that your
Englisn' Fist 'although e s-s-0 ri--(ia 1 is not yet a computer
program; 'you must, translate each step in to a series of symbol ic

t r-uc La- exact -ly to-trn -that the cornp=iter,
ugraorting language, can accept. Th is becomes rfluch easier with

practice, just as in "any other fo
3
reign tnnguage.

Trte third stage riting- a program, pheri'e you check everiything
to be sure it all works as you art it to, as as necessary as the other
two. The computer will foilow'exactly the instructions you give it.
lf these instructions do riot say precisely what you meant, the program
-will not quite do what you want. Because programs must be so precise,
it is easy to overlook snail but important details, and very few
programs run "correctly")Ch0 first time. No computer will make up for
your _negligence, so you must check the results of your program at least
as carefully as your triought out the probleM in the first place. This
process, called "debugging," is tedious but necessary. If a program
doesn't work. it's usually the programmer's Fault, notthe computer's.

14

1D

,11,2 Pr9q!71 Storage and Executiron

many programming languages, you first write Your list of
instruccs, and then tell the computer to follow all, toe instructions
irithe list. Your list is sometimes called a "stored program" because
the computer Must store the instructions up until the time that you teli
it td begin-execUting them. Execution c, tolled "runnlhg" the program,

Whether the purpose of the program 14 -1-Perlorm complicated
calculations or Co play a simulated card 'carne, it must hAve some
information on which to operate. This information is called data, and
much of the data required by a program can be stored in the program
itself. The alternative to scoring the data in the program is to have
the user (the petaom who-runs-the program).sup-PLy some dAta- when the,-_
Program stops and asks for it.

For example, a program whose purpose is to prillt a 10 by 10
ratjtiplicatAort table, should have all its information stofcd withift it,It is not necessary to request information when the proRfan is actually
executed--the user simply tells the computer to ruin that particular
Program._ In contrast, consider a program that `play's a me with the
user. Such a program needs to get information as it ru46, since the
Progres1 of a game cannot be planned in advance_ `Due ptogram must
stop anti ask the user for information--what move he wanly to make,
for example. ThiS second kind of program is called 'interactive"
because it requires the programmer t© plan for interac timn with the
user of the program as it runs.

In either type of program, the data that the prograhl deals with
must be kept in the computer in a way that makes it accessible to the
program. This is done by the use of variables of diperent data iypea.
Which are discussed specifically in SectionS T1.7 chrouRn

A word about "the user": Programmers usually Write programs
for other people to use. Whether the program ealeola payroll Checks
or plays a card game, it will be used by someone ocher than the person
who wrote and debugged it. _As you Write your own programa, remember
his hypothetical person called "the user." Try to make your programs

understandable and complete' enough that a friend of Yours could sit
down and run them without any trouble.

It's also a good idea to include "remarks" inside you? prog ram,
with the -REM- statement. A remark (also called a °comNot") is very
simple it's just a note to. yourself that exPleins sometring _thout
the program without affecting the way the program i-uns at all. Youwill be surpr=ised to see how soon You can forget what an " "old" program
(a week Pld. for example) is supposed to do. Rtgiatic5 Char are saved
as part of the program iCself are handy notes to remind mu.

15

(continued)

.2) (11.2)

It is not hard to write a program that does the same thing
over and over, never stopping. To force a program like this to a half,
hold down the "CTRL" key while you type the letter G. A program that
never stops is in an "endless loop" which yqu must stop or "intetrupt."
The =COT0- section (11.18) has an example of this kind of loop.

11.3 Line Numbers 1(.3

Almost ili imp_leientations of BA-IC require you to number_
each line of your program. Each lin or statement, is an instruction
to BASIC, telling it to do some spec fic thing. When you run a BASIC
program, BASIC finds and obeys.the instruction with the lowest Line
number, then/ the one with the next higher number, etc. You need not
type in your statements in order, because BASIC can sort'them out by
line
follow.
numbers
insert

to have

number , but you must number them in the order 'you want BASIC to
A general practice is to use multiples of 10 as your line
so that you have plenty of numbers available if you want to
omething between two already existing lines. IMP allows you
up Co 500 lines in a single program, but most pror.AA-A will be

much shorter.

I I.4 END 11.4

Use: To tell the computer when I.t has finished executing your program-.

Example:
99 END

Remarks:

Every BASIC program must have an END statuimmert. The ENV
statement must have the highest line number in the program.

See STOP 24.1).

11.5 Iraut/DILP11_ 11.5

,This term refers to they roblem of communicat ing with th.= compuier
how you tell it to do something for you, and how yeu make it deliver
the results in:a way you can understand. Most people communicate with
'computers through programs, so the subjects of input and output
deal with providing information to your program that makes it provide
meaningful information to you.

(continued)

16

5)

Input is ihformation that goes into the program. It can be stored
part of the program itself) when the is written, or given

y_tthe user when the program is run.

Output is the visible result of a program's It is
frequently in the form of information i ted the u terminal,

it may be transmitted to a lineprinting device, or t a magnetic
tape, etc. In the case of interactive programs, it is mbortant for the
programmer to_ remember that the output his program print will be r ad
by someone else" and.must be reasonably understandable. A
between a person and a computer is pointless if neither understands

at the other says.

11.6 PRINT

Use: To get your program to=ty somet,h An- on the terminal.

Examples:

40 PRINT 4

40 PRINT Y 10

40 PRINT A$

4Q PRINT "DOG'

40 PRINT 10 < 15

40 PRINT "THE VALUE OF X IS "; X; " MO X i-iQUARED IS X-2

4O PRINT (prints a blank line.)

arks:

Use the PRINT statement whenever you want to have your program
pe SOMOthillg. Anything surrounded by quote marks 15 taken literally

Anything without quote marks is "evaluated" --BASIC figures out what
value is, and PRINT prints that value.

The statement
40 PRINT "X"

prints lust the letter X, because of the quote The st emei-
4° PRINT X

makes BASIC Look up the value of the variable X, then print that
number. There are no quote marks, so BASIC has to evaluate X. (Re
about values, variables, and evaluation in the next few sections.)

continued)

17

(IL t)

Boolean values can he printed
40 PRINT 10 > 9

prints :FRUE, on the terminal, because 10 is

The statement

than 9.

40 PRINT 10 100/2
priatg FALSE. because 10 is not, equal to 100 divided by 2.

"Fancy" PRINT statements:
Using semicolon between two expressions allows you to print

more than one expression on a single line. You may combine different
types of expressions to a PRINT statement. The semicolon allows you
to PRINT hod, literals and variables in one statement. which can make
your program's output look good. For example, you could use two
PRINT statements like this:

PRINT "Y ES"
50 PRINT Y

which would tell the user f the program the value of the variable Y.
,but would take two 1 nea,of output to do lt. A ricer way to do it
would be like

40 PRINT "Y IS "; Y
which would.Ove the same in ma n. but all otl One lit

A more complicated example: Assume that the variable X
value 4,,hnd: the-variable Yhas the value 5, The statement

40.RRINT "TM SUM OF YOUR NUMBERS IS X4Y
will cause BASIC to print

THE SUM OF YOUR' NUMBERS IS 9

The statement
40 PRINT "K Y - 15 IS ";

will cause BASIC to print
X 4 Y . 15 IS FALSE

XtY

Remember to oso spaces inside _ qu,,tnti .40.k. who),
you need them. Some implenentattons i!f i1 a space 1,.
every seMicolon, but RIP's BASIC does nut,

See Variables ,8 r II,1 and Expres: tons (Ii,12, 11.13, 11.19).

18

11.7 Data last! and Values

Most programming languages operate on three different types_

of information:. numeric, string, and Boolean. Many languages do not
allow the programmer tc,combine'diffeveat kinds of information in a
single expression. and it is essential that you understand the
differences.

Numeric information is easy to understand. A number or a
numeric expression is a thing that you can add, or find the squ4re
root of.

A string is a series of characters in a parttcular order, (A
character is something a typewriter can generate, including letters.
numerals, punctuation, and spaces.) You cannot add or multiply strings
as you can numbers, although most languages allow you to perform some
operations on s-trings In the course -you- are taking-, your name is
stored in the computer as a string, which is why the terminal can type
your last name for you when you sign on. A string expression is a thing
that has this kind of value, as opposed to a numeric value.

-lean information is understood b'y the computer to be either
true or falSe. In most programming languages, you can tell the computer
to do one thing if something is true, and another thing if it is false.
The value of a Boolean expression is always either true or false. (The
Word "Boolean" comes from the name of a mathematician named Boole.)

A word about the size of numbers acid tha _ngth of strings in
BIP: Although you can use very large numbers (2-0digits, for example),
BIP is only accurate to 10 places, so very large ntEmli-rersrnvolve very
large errors. Your strings can be quite long (100 characters.
example), but yo only have room for about 60 characters on a line.
So you should keep your numbers to a size cif 10 digits or less, and
your strings tq 60 eharac ers or less_ Boolean information has no
size to speak of; so en gh has been said.

19

maries

he your program is executed, the computer must be able to
know, or to find; the value of all the pieces of information in it As
deeriia A in the previous section, these values my be numeric, string,
or Sooloan.

The information that you program deals with can be extremely
pie, or extremely complex, or anything in between. A primary is

lest kind of information that you can talk about, because the
computer muse go through at most one step to find its value. Numeric
and string primari.es exist in almost all programming languages, either
as literal]. (also called constants) or as variables, requiring
$signment of values.

Literals are very straightforward. What you see is what you_
get; a literal is taken literally. A numeric literal is what you
immediately recognize as a number: for xample, 7 or 6.8. A string
literal is enclosed in quotation marks and 1s something you immediately
tetognize as a sequence of characters: for example, "DOG", or "**!!!",
xhe only slightly tricky thing about string literals is that the
c racrers may be numerals, but the value of the string ig-still a
string,; a6t a number: for example, "6" cannot be added or multipliod.
"6" is Just something that can be printed, like "A" or "XYZ".

The tiler kind of primary is the variable. Variables are used
for values or as "boxes" to hold values. The value of a

able is either a number or a string, depending on what was assigned
the Variable.

Theca= are two kinds of variables. A simple_ variable is a "box" that
holds one value, either one string or one number. A subscripted
variable (often called an "array variable") can hold many values, in
order, all under the same name.

ple variables are like the single boxes below. The first one
l$41 numeric Variable, because the value in the box is a number. The
second i. a string variable, because the value in the box is a string.

1 15 I

mple, the value
D$ is "OUCH".
The variable D$

ti "OLICH"

the variable N is 15, and the value of
ASIC string variables always have thAt

pronounced "D string" or "D dollar"./

20

(continued}

(11.8)

Subscripted variables are like-the multiple bilxes below. Each box
has only one name, but (in this example) three "slots." Each slot earl
hold a value of i'ts own.

(1) (2) . (3)- (1') (2)

I 8 1 - 1 0 1 - 1 5 I D$ I "OH" "HI" 1...1 "OH"
1

In this example, the value of N(1) is 13. N(2) is O. and N(3) 5. The
variable N is being used to hold a list (or "array") of numbers. The
string variable D$ is being used to hold a list or array o strings;
the value of D$(1) is "OH". D$(2) "HI". and D$(3) is "OH", N(1)
is pronounced "N sub I" and D$(3) is pronounced "0 string sub 3."

Each of -the elements in a subscripted Variable can-be treated
as a separate variable. Its Alue can be changed by an assignment

;'Statement,' or it can be comps i-ed to another value. or it can be printed,
etc. Subscripted variables chn have as many elements or "slots" as
you like. See 11.16 for more information about their use.

The important ttliTig to remember about both literals and
variables is that they do not involve any operations or calculations.
In the case of literals, the value is simply the literal. Itselfnothing
is hidden. In the case of a variable, the coMputer can find its value
immediately by looking in the "box" named by the variable, where the
value is stored.

See BASI Variables and Assignment (11,9 11,11).

21

BASIC Variables

Use: To name locations Xor"boxes") where'vllues sire stored .

Examples.:

emarka:
W,numeric variable names a "box" whose contents must have

some numeric value -- -for example. 2.5--that can be changed by
arithmetit operatiohs liktkaddition:or.division,_ A numeric vpriable,
must be a single letter Or a'single letter and a single digit. In

.tbe'above examples. Y'andX2.are numeric variables.

'4%. string variable names.-a,"box" whose:contents must have
some "string"lialne--for example, HORSF--that Can be changed by
the string operation. called "concatehation". A string variable must
be a letter, followed by the $ character. In the above examples,, B$ is
a string variable.

A
See Primaries (11.8) and Assignment '(II ,10 II.11

AssiIpment"

All prograMming languages make extensive use of variables, the,
" "boxes "" used to hold Value's. A program that deal only. with literals
cannot be used in any kind Of general way, since nothing within the
program.can:ever change. For example, a program that adds 2 + 4 has
:1.imited,use,,-but a program that uses variables to hold the values of
twenumberh, then adds them, is obviously more useful, since that
program can add any two numbers.

The mechanism by which variables are given values is cailed
assignment..: The simpleSt form of assignment is this:

<variable> 7 <literal>.
For example:

X = 5
After this assignment Ls done, the Variable X "has the value" 5. Any

'referende,to X (like printing. `it, or_ Adding 1 toit) ih actually a
reference to the'"box" whohe name is X, the box that now has 5 in njit
The value of X can be changed by another assignment, after which every
reference to X will be taken as a reference to that new value..

22

27

continued)

(11.1©)

The value.
c hiping two, or more values. _Thus

X.0-5*4
or, assuming that the variable Yhad
its own,

X 0. Y.+ 1

When the computer executes ar assignmen
these steps=

a. Evaluate the expression on the rligt side of the sign.
b. Put that value into the "box" namedsby the variable on ;he

left side of the "..." sign.

igned to a Variable can be giv_n as an expression,
he value .or X Could be'absigned

laready been assigned a value o

statement: it rollows

Thus, the assignment X z Y +
and add 1 to it. Then assign that
that the value of Y is not changed
variable on the left side of the
confuse your right and lefthanda,
strange values.)

1 means, "Find the value of
result as the value of X." Not

bythiS assignment. Only tW.
sign gets anew value. (Do not .

or your variables will sepm to have

The assignment)(= X + 1 means, " "Find the current. value
of X. Add 1 to it, and assign that new value to X." If X had the
value 9:before the execution of the assignment statement, then it would,
have the value 6 after-the assignment.

Thecontents of the variable on the left side of:thp"" sign
are always replaced by the value of the expression on the right side.
The old value of the variable (whatever 'value it had before the
assignment statement) is lost.

23

Ii'. t1 LET (/!EILEImiaL).

Use To give a value to a variabled

(Note: In BIP's BASIC, you
,

may use either the "=" sign
or he "._" sign in Assignmentstatements. 'the "2 will pr
an underline or as a leftarrow on your'termlnal, and you
it by holding the SHIFT key and typing the letter O.)

Examples,.

10' LET, X

10 "HELLO"

'10 A2 = A2 A- 1

nt as

YPe

10 X$ (1)= "RAINDROP"

(The ward LET is optional.)

Remarks:

BASIC variables are assigned values as explained above in II.10.
Note that the "n" sign does' not indicate equality in.this-context;
instead, in 'assignment statements, "=" and "__" mean something more like
"becomes" or "has the value,of."

The assignment statement in .BASIC
to 'remind you that

LET X 5 and X == 5

both mean .Le 'X have the value 5."

ailed the LET statement,

Remeniber that 'right and left are different, and that
MS = N$

means "find the value of N$. Assign that value.to M$." This LET,
statement not change the value of N$.

A stateme like
100 = X or., "DOG" =-M$

will cause a syntax error from BIP, because you can't assign,a value
to 100 or to "DOG". If you want the value of X to be 100, you should
say- X =100 and if you Want the value of N$ to be "DOG", you
should say 11$ "DOG".

SeeData types, Primaries, and BASIC Variables (9), Also
. see DIU .(ii 6

24

9

12 EXprospions and Operators

A primary can be either. a variable or a literal. ineither case, the computer must,go through at most one
the value of a primary. An operator is a symbol tha

combine or compare two primaries in some way.

12

p.to determine
the computer

Using these definitions,
an expression can be` defined aseither' a primary,'---

Examples: "CAT"
Il

or a primary. ollo d by an. operator, followed by an expression,
Examples:.

W$ & "SONG"
(6+4) * 9'
((6 + Y2) - (A + H)) / X
"DOG " '& (F$ & W$)

-R$ (1, 3) R$
'(A B) OR (D$ "DOG ")

Using the term "expression" in its dion definition, mea thatan expression danbealmost infinitely nomplex Programming languages ,follow a process of evaluating each part of the expression, and thenputting it-all together to find the value of the expression as a whole.(Think of,how you determine the meaning of a. complicated phrase like,"the' sister bf the father of my brother's sister's son's mother.", Acomputer determines the'meaning. or value, of each'part.of an expressionin a similar way.)

More complicated expressions are evaluated from left toand, when necessary, according to-the following rules:

a Expressions within the innermost parentheses are evaluatedfirst,
b. Exponentiation () is done before any other operations.
c. 'Multiplication (*) and division- (/) are done next.d. Addition -(4-.) and subtraction are next.'

This means that you may need to use parentheses to make the computerevaluate-an expression correctly.. In'addition, you should always tisespaces and parentheses to make your expressions easy foryou to read.Extra spaces or extra, pairs Of parentheses will not cause.er

Some examples:

"5 4- 3 / 2 2 is evaluated es 5+
((5+3) /2) 2 i.s evaluated as (3/2

(2-2)) 5'.75

16,

(continued)

-25.

12) (11.12)

One essential h ng to remember about using operators in
programs is that' you ,must be explicit.. Although normal algebr
notation like

A -I- 28

is. clear to you and your algebra book,' it in not clear to the computer'.
Any time you want the program to perform multiplication, you must say
_ o, usually with the multiplication operator "*" The equivalent of
the above algebraic expression is

A -I- 2*B

You will also quicklynotice that your. terminal cannot type
exponents up 'above the base, .Exponentiation is always indicated on
the same line, usually with the "-" operator. (On some terminals,
there 4a.a key with an arroWthat5points upward. On others, you get
the "up arrow" with shift-N.) Thus, to get 17 squared, you must Use:

17 2.

(Remember, spaces e optional. 17-2 is 17 squar

See Operators and Operations (11.13. 11.19).

11.13 BASIC Operators`''

A BASIC operator can be one of ;many different things.
The arithmetic or numeric operatOrs are

exponentiation
multiplication
division
addition
subtraction

The arithmetic operators work in BASIC just as they do in
-other programming languages, as explained in 11.12.

The BASIC string operators are
concatenation

(X, Y) substrings

Concatenation is used to join together two strings. For
example, suppose the value of the string variable A$ is "HELLO
(No 00tice the space after the "' And suppose the value of the'
variable BS-is assigned this way":

B$ a A$ & "THERE."
,

Th0 concatenation of A$ and "THERE." would Make the value of B$
,.. "HELLO THERE."

26

(continued)

(TIM)

Some advice about concatenating strings: If you are putting words
together (as in `the HELLO 'THERE example),, don't forget about the
space. between the, words. If you concatenate "CAR" and "WASH" this way

"CAR" "wAsli"
the result is "dARWASH", which may be just what yo6 want. If you say

"WELCOME" & "HOME"
you get'"WELCOMEHOME" which is probably not what you want You cat'
say either

"WELCOME " & "HOME"
, (space after "WELCOME")

or "WELCOME"- & " HOME" (space before "HOME")
or "WELCOME" Fr " " & "HOME" (space-quoted by itself)
all of which result in "WELCOME HOME". This concatenation

"WELCOME " &" "&"HOME"
produces the same OWELCOMEHOME" result; because the Space s inside
the quote marks as in the other examples.. A spoee inside quote- marks.'
isiust like any other character and becomes part of the resulting
string Dist as any letter would.: Using spaces-to Separate different
parts. of your expression makes your, lines easier to read, but has ne
effect on how the expression Is evaluated-=

A substring is a part of a string. In the example above,
X and refer' t© the "start" and ".Stop".characters in the string.
For example. "PURPLE" (1; 3) means the first through the third
characters in the word PURPLE. The value of "PURPLE" (1, 3) is
"PUR". "PURPLE" (4, 5) is "PL". The numbers can be-variables, so
if the yalue of X was 3 and the value of Y was 5, then "PURPLE" (X. Y)
would be "RPL"..\l'he st-ring can be a variable too, so if the value of
H$ was "PHANTOM", then H$ (X, Y) would be. the same as "PHANTOM" (3, 5.)

and the value would ,be "ANT".

This gub ring "BEAN" (5,5)
would be the fifth. character in the string_ "BEAN" if there were five
characters to begin with. If you specify a nonexistentsubstring
like this one, the result is nothing'.- (See 11.14 for an explanation,
of the "null string. ")

'This substring "BEAN" (3,2)
-would be the'third through the second character in the string "BEAN",
if BIP could Count characters backwards, but It can't-. An "impossible
substring" like this one will cause an execution error when BYP tries
to evaluate it.

BASIC cannot evaluate an expression that contains different
types of values. For example, this expression has no meaning

9 + "NINE"
because 9 is a numeric primary and "NINE" is a.string primary.

See Data Types and Primarips'(I .7 11.8), Variables and Ass
(11.9 II.11), and Boolean Expressions (II.19)

27

nment.

.11.14 JNe!.rr

One:

Kxn

30 INPUT 14'

30 INPUT F$

iser of f prog m to give a. value to, a va

(for er)

30 INPUT X. 1 (for multiple input)

Remarks':

When the. INPUT. statement is executed, BASIC typeS a aolon ()

and waits for the user to type something, ending with the.RETURN key.
Whatever.the user types becomes the value of the variable in the
INPUT statement.'

The only limitation in the'use of INPUT involves numeric
variables and is imposed when someone'runs the program. if a numeric
variable is specified in the program, the user must type a single
number, not a string or any kindof pxpression.. Numbers 1492
or 6.25 will be accepted, butran expression like 3*4 will not. HIP
prints do e tor:Message and lets the user try again.

This .program doubles any number:the user types:

10 PRINT "TYPE A NUMBER AND -CLL 'DOUBLE IT FOR YOU"
20 INPUT
30,

40 PRINT Y-
99 END-

This program does something simple with a string typed,by the user:

10 PRINT "TYPE A FEW WORDS AND I'LL REPEAT TRW"
20 INPUT W$
30 PRINT W$
99 ENO

Note: when, typing a string in response to an INPUT, the user
should not type quotation marks. Also, for strings, if the user types
only the "CR" ky, the string variable is assigned the value "". This. is
called the NULL string. The null string is analogous to the number
0 (zero). It is a known value, something that'has meaning: it means
the LtLirlia version of nothing just as zero means the numeric version
of nothing. Do not confuse the \null string with the character " "
which.is a space.

28

continued)

1.14)

One INPUT statement may be used to allow the user to give
values to more than one variable., For example, this program accepts
two numbers and adds them.-

10 PRINT- "TYPE TWO NUMBERS, ONE AT A TXUE."
20 INPUT X, Y
30 PRINT "THE SUU IS "
99 END

You may specify as many variables in a "multiple input" statement
as .rou'like,:d1Ways separated bra Came. When Lilt's BASIC executes
this statement it prints a colon:for each value to be typed.by the user.
Other implementations of BASIC Work in a different waY.

See Input / Output (II 5) and V -bleb

11.15 R DATA and REOPEN 11.15

Use: To assign stored values to variables.

Examples:.

10 READ X
50 DATA 200

10 READ 11-

20 READ Q
30 READ R
200 DATA 5, 207 50

30 READ A, BS
80 DATA60 "'pop"

60 REOPEN

Bemarks:'

Using READ and DATA combinations allows you to store values
in the program and assign those values to variables at appropriate
times. The statement

READ X

causes BASIC to take a value from the DATA statement and. :ign that
value to the varia.ble'X. For every execUtionof a READ s a emen
there must be a corresponding DATA value.

nued)

29

As shown in the second example above, a DATA statement' may
contain more than one value. BASIC keeps tacki?f-the DATA values,
and after A READ is executed, BASIC moves a pointer to the next value
in the. DATA statiment. In that .second example, the variable P would'
get the value 5, Q would get 20 and.R would get 50.

The third example shows a multiple READ statement. Execution
6I.a multiple. READ assigns values to' -both variables, just as if one
READ immediately followed the either. In the example, execution of
line 30 would result In the-assignmeht.of'60 the variable A and the
assignment of "DO(" try the variable BS. Use .multiple- READ statements

whenever you want to assign values than one variable, all at
the same time.

If a,READ statement is executed, and all the DATA values-have
been "used," an execution error message will be printed (since no
value remains to be assigned). To avoid this error, use a "dummy"
value at the end of the DATA list and stop READing after that value
has been used In this program, -1 is used as the "dummy" that marks
the end of the list of DATA values.

PRINT "THIS PROGRAM PRINTS S(AR7_
20 READ Y
3U .IF Y----, -1 THEN 90.

40 PRINT Y-2
51PGOTO 20.
60 DATA,5, 10. 15, ib, -1
90 PRINT "FINISHED"
99 END

(This program contains a loop. Read about loops in 11.17.)

There'are some limitations on the values you may use DATA
statement. First, such a- value. must be a literal or constantnot
a variable, and not an expresSion. The value must be a number or a
strfrig; if it is a string, it must be enclosed in quotation marks:
Second, any value given in a DATA statement must he of the same type as
the variable to which it will ,be assigned. . Note that in line 80 above
(on the previous page) , the numeric value. 60 corresponds to the numeric
variable A, and the string value "DOG" correspOndA to the string
variable BS. BASIC will give an execution error if, at the time the
READ is executed, the variable and the value are of different type6,.

You may use as many DATA statements as you like in a program.
. The values. given in the statements will be "used" sequentially, as
required by the execution of READ statements. DATA 'statements can

(continued)

30

appear anywhere in the program before the END, andit is a good idea
to locate your DATA fn a place that makes sense to you -FOr example,
if a section of a program.reqUtres READing values from the DATA, put
thg DATA statements at the end of that section ,sothat you can
easily see where the DATA values will be used.

The REOPEWstatement moves the "pointer" bad(td the first.
valup'in the DATA list. The next-READ Statement-will then take the
first DATA value in the lowest- numbered DATA statement in the
programs REOPEN:is useful in situations where you Want to use the
same 'DOA values, .inthe same Order, more than -once.-

See Input / Output `(11.5), Data Types (II.7), and Va able (II.).

II .16 DIM

Use: To.establish the size °fan array subscripted variable'
DIM fa short for DIMENSION.

Examples:

'DIM-L(15)

II -16

10 DIM A$ (50)

Remarks:
a

BASIC needs to lw how long an array before you refer
to any elements Or "slots" in, the array (for example, before you
assign any values to elements of the array). The DIM,Statement
establishes the maximum length-. The DIM statement must precede,(1.e.,
have a lower line number than) any statement that refers to an element
of the array. Usually, the DIM goes at the very beginning of the-
program. There must be one DIM statement for every array-used in,the
program.

Only one DIM may be executed for p give array. In the example
shown below, line 20 is executed only once4 each time you RUN the
program. SIP will stop execution and print an error, message if two
DIEts are executed for- the same array, or if one mm for agiven array
variable is executed twice. This means that you should locate all DIMs
outside any loops in your prograM so-that,aASIC executes each different
DIM only once.

31

(I I.16)

Suppose you statement is-
10 DIM)(-

This means thriftyou may.,not use rno e than 25 elemeh the, array X.

Using fewer'th than 25. will not cause any'probleMs.,

This is a simple program uSing an array. It asks the user for-
three-words, and assigns each word to an element of the array. Then it
prints the words in the:opposite-order.

10 DIM L$(3)
20 PRINT "TYPE THREE WORDS, ONE' AT A TlMF.."
30 INPUT L$(1). L$(2), LS(
'40 PRINT "HERE'S YOUR LIST IN THE OPPOSITE (MOM_
50 PRINT L$(3)
60 PRINT L$(2)
70 PRINT L$(1)
-99 END

The word " ndex" is. used ihconnec ion with arrays th mean the
number that specifies each element. in the array. (The word "subscript"
ip also. used.) r'example, in line 50 above, the index or subscript

the'number 3, and it specifies the third element in the array L.
Mndex" ip--also_ used in connection with loops (see II.17) to mean the
,variable that counts the number of executions of the loop'. This

pi-ogramsis like the previous example, except that it allows the user
to Say how long his iiSt° will be, and then uses a variable as the
index, both ,of the loop and of the array. It also uaes a variable in-
the,DIM statement, after that variable has been assigned by INPUT-'..

10 PRINT "HOW LONG IS YOUR LIST?'
20 INPUT-N
30 DIM L$ (N)
40 PRINT "TYPE YOUR WORDS."
50 FOR I 1 TO N
60 INPUT L$ (I)
7Q NEXT I
80 PRINT "HERE', YOUR LIST IN THE 0 POS TE oRpE.
0 FOR I N TO 1 STEP 1
100 PRINT L$ (I)
1.10 NEXT I

999 END

See Primaries (.8),°FOR . NEXT (IL%21).

32

37

I oPrgram Plow
-_- _ --- 17

When the computer execute red Program, it follows .n
predictable path through the ist n1 instructions that is the program.
In some programming lanRoagesi

h dr of instructions executed
depends simply on the order 'ih vhi,Ch the computer encounters them from
the input device (e.g.,, card by eofq from a card reader or line by
line from a disk file). the lagAlages (including BASIC,' as you know)

line numbers, and the compute- executes instructions in numeric
order,

In either case, all -gu%ges ffive the abi ity to tell the
computer to,followa different (Idet, to go to a different plhce in
the list of instructions nd cart en from there. This is called
"branching" and it can't) either ollond itidnal or conditional.
Unconditional branching s to £ change in the sequence of execution
that will always be cart{ d out reit rdless of anything else in the
program. Unconditional t,ranch.in IA something like telling the computer,
"Don't ask any question%, Just, gale a differenl part of the program."-
Conditional branching aak.0-a queatinn first; whether or nottthe change
in'§equence_is carried euf dePend6 en some, condition being, true.
Frequently it involves looking at J certain variable, and executing
branch if the variable h0 a certsfa value. The program pecifies a
decision to be m'ade by the compdtel"

The ability to make appropriate decisions constitutes the
smartness".of a progTam, rtual.17 no useful program runs straight
through all its statementO. withour ever changing the order of
execution.

11.17.1 Loops .17.1

A loop is series of statemearO that executedFlorethan once.
It is an extremely useful Progtanim g structure. By using, a loop, you
can make the computer do the sSme ,!,.ng many tunes, but you give a set
of instructions only once_, The geoetal form of a loop is this

Start the loop here.
HaVe the program do %0Methlog.
Decide' if the "somethiog" ahonl
If so, go back up and. Start
If not_continue on itQm h%re.

The "something" can he Very
program; 'for .example, a /15.0gra tha

again depending on what tnformitioo
the whole. game is ingide tre loop_

be done, agi
00P-again.

n.

ex. it can he most of the
plays 0. game cart start itself
he user gives after playing once-7-

(continued): ,

A large category of. loops follows this

Set a "start" value.
Set an "end" value.
Set a counter equal to the start minus
Increment the counter,
Po the work.

.

Look at the end valueif the counter is less
the end, go back to the "increment" p1aCe
from there.

Otherwise (i.e., the counter is greater that
continue from here.

eneral, pattern:

char

and

(It. 7..1)

equal to
ontinue

A counter" i's` a numeric va iabld that you use to count something'.
fn this case, counts the number- of times the loop has been
executed--"you increment the counter (add 1 td it) each time you
go through the loop. The counter is also called th6 "index."

This pattern is used in situations where the problem can he
solved by performing the same ,se'quence of steps, perhaps with some
var4-5Ations, a number of times. This is "the work." The number of
time the work" L's done depends on the "start" and end values.
For example, the 'following is a general program, (in no programming
language) that. counts from 1-

Mart - 1

End - 5
Counter a 'start - 1

*Counter --. counter I

Print AoLue of counter
If counter:less than end; go

int goodbye

to

) These three lines
) 'are the loop'. The
} work is to print the
value of the counter.

Different problems require different variations on this gener 1
pattern. For exampre, ie "work" may involve_ a more crmpilc.ited
operations or the counter may be changed by some. value other ,than`
or the order in which the pattern partsare executed may ne-edto h_
different. Once_ the general pattern is understood, however .- it is
easier to see which details-must he changed to solve a: particular
problem, Look (on the next page) at a program .(in no programmipg
language) that Counts backwards 'from a number typed by the user.
Notice the Ways in which it is Offe9eht from the 1-nat:exam-rile.

34

3 9

continued)

17.1

Print hello user, type me number please
Start - whatever number the user types
End zero:.

Counter start
* Print %untie of counter
Counter counter minus one
If counter greater than or equal/to end,
Print goodbye

to *

Loops do work other than counting, of.cOurse. This, final
eXaMple program, (in' no programming language) prints the user's ame-
ns many tip es as he or she Chooses. This programdbeSn't need
start or nd value, because it.isn'X counting anything, but it does
need,to make A comparison to decide whether or not to go t1rough the

,

loop It also needs two string variables, one to hold the user
name and one to hold the users answer _o the yes- o_r -nt questiOn.

Print hello user, Tlease. type your name
J.Isername - whatever string the user types
* Print, shall I say your nameT, yes or no, please) These
Answer1 -whatever the user types). lines
If answer is no, then go to goodbye line } are
Print value of username) the
Co to *

loop
Print goodbye

This loop uses both aconditional branch `("'if the answer is no,, ,")'.and an unconditional, branch ("go-to *"). Sometimes it makes sense to
put the conditional branch at ATe top df the lbop'(i.e.. before ydu

-do "the work"), and then unconditionally go.back up and start again
once you have reached the bdttom,, as in thi.6.enample.

It is not hard to write ,.a program that. ma' -the computer do
the same thing over and over, never stopping." To force an "infinite
loop" like this to.a halt, hold down the "CTRL". key Mille you type the
letter G. Thete isa program in Section II.Wthat has an infinite
loop.

See I1.18r. 11.21 for the BASIC state eots'used to construct

35

Ff

11.17.2 Branch and Return 11.11.2

Frequently, the same set of instructions is used in many
different parts of a program. An efficient way to use these instructions
is to set them up in one part of the program and to branch to that part
from other parts. The sequence of statements that is accessed from
different parts of the program is known as 'a stibroutine.

Since a subroutine can be "called" from different places, it
is important for the computer to know where to "return" to after the
statements in the subroutine have been executed. Most languages have
the ability to remember the place from which execution jumped to the
subroutine and th=en to go back to that place to continue after the
subroutine.

"POT example, consider a program that simulates a game of
blackjack. It might inclOde a subroutine that "deals the. cards" nv
generating random numhers and translating, tho8e numbers into cards from
the deck. In blackjack, the dealer deals cords in two different
situations: either it is the beginning of a new hand, or one of the
players is asking for an another card, in addition to those he holds
already. So, in the blackjack program, the card-dealing subroutine
would be brancned to (or "called") in those different situations.
What happens afterwards depends on what was happening when the dealer
dealt a card. The branch- and - return capability allows the program to
go back to that place after the cards have been dealt, so that play
can continue appropriately. In the first case, the program would only
check to see if all the cards needed to start the game had been dealt.
In the second case; it would have to ask the next player if he wanted
another card.

See 11.22 for tne BASIC statements used to set up subroutines.

36

41

11.18 GOTO

Use: To alter

Example:
70 GOTO 10

11.18

sequence of execution of the program unconditionally.

Remarks:

BASIC executes a program in the order of the line numbers.-
When you say, RUN, it finds the lowest-numbered line and executes
that statement. Then it finds the next higher line number and executes
the statement on that line. And so it goesit's very simple.
The above example would change that order by sending BASIC back to
line 10 every time line 7O was executed.

This program will repeat itself endlessly (until the user
types "G/to stop it). counting from 1 on up.

10 X - 1

20 PRINT X
30 X X +1

40 GOTO 20
50 END

(To stop a program like this, hold
down the "CTRL!! -key -while you-type _he--
'letter G. See Section 1.6.)

Note that once BASIC has executed the line specified in he GOTO
statement.,it zontinues execution from that pdlnt. In s example,
the order of lines executed would be

10,

20. 30, 40, (here GOTO changes thin
20. 30. 40. (GOTO 20 again)
20, 30. 40. (and again)
etc.

The only way to make this program stop is to hold down the "CTRL" key
while you type the letter G. Thig is called "interrupting" or
"aborting" the execution of the program.

If your GOTO statement specifies a non-existent line. RIP
will print an error message before it allows you to RUN the program.

See Program Flow (II.17).

37

11.19 Relational and Boolean Oaerafors 11.19

The BASIC r'elattonal operators are
equal to
not equal to
less than
greater than

<= less than or equal to
>= greater than or equal to

Relational operators are used to compare two values. This comparison
called a Boolean expression, and its value is always either true or
false.

In numeric expressions, the relational operators work as one
normally expects them to. In str_ expressions, relational operators
compare the strings for alphabetic :-d- Thus:

6 6 is true
8.7 5 is true
4 8/2 is faLse
"DOG" -"CAT" is t_ _e

"ALPHABET" < "A" is false

The Boolean operators are
NOT

AND
OR

Boolean operators are used to combine or change Boolean
expressions. Say the variable X has the value 5,

Y has the value 99, and
AS has the value "YES".

Booltan expressions:Now consider the ft)

NOT'

The Boolein expression
The Boolean expression

Th0 express
The express it

The expression

X '.>= 0 is true.
NOT X 0 , is false.

_V < X*5 cl

NOT Y < X*5
is false.
is trite.

"No" is of-1u valeut to

NOT AS "NO"

38

tinned)

.19)

b. AND

An expression that includes AND is true only all
parts are true.

X <> 4 AND Y. <a 100 true.
AS = "NO" AND Y <= 100 is false.

c OR

An expression that includes OR is true if any or allof its
parts are true.

X <> 4 OR I > 100 is true.
A "NO" OR X < 5 is false.
Y > 98 OR AS "YES" is true.

Unless parentheses are used, BASIC applies the Boolean
operators in this order: NOT, AND, -OR. Thos:

NOT AS = "YES" AND Y < 100
is equivalent to

(NOT AS = YES") AND I < too
and the expression is false, because NOT AS = "YES" is false.

AS e "NO" OR NOT X = 6 AND Y > 50
is equivalent to

(A$ = "NO") OR ((NOT X = 6) AND (I > 50))
(f) (

and the expression is true.

If you want to force BASIC to evaluate your Boolean expressions
in-a different order, use parentheses as you would with numeric
expressions. For example,

NOT A$ - "YES" OR Y < 100
is equivalent fo

(NOT AS = 1'YES ") OR (I < 100),

and the expression is true; because 100 is true.

However,
NOT (A$ 'YES"

(t)

As false, because
make a difference if you need to use complicated Boolean expressions.

OR Y < 100)\

(A$ "YES" OR Y < 100) is true. Parentheses can

See Data Types and Values (11.7).

39

44

11.20 IF . THEN I1.20

Use: To modify. the order of execution so that yo
different things in different situations.

Examples:
50 IF B 5 THEN 150

7

50 IF X$ - "OXYGEN" THEN 300

50 IF AS - "REPEAT" AND C 0 THEN 10

program can do

Remarks,:

The IF . THEN statement is executed in the following way:

a. The Boolean expression following IF is evaluated as either
true or false, depending on the values and the relationship
within the expression.

b. If the Boolean expression is false, the sequence'of execution
does not change, and the next ltne*executed will be the line
after the line containing the IF . . THEN.

c If the' Boolean expression is true, the next line executed will
be that specified by the line number after THEN. (One may say
that "control is transferred" to that different point in the
program, since execution will continue from that specified
line, not from the line following the IF . THEN statement.)

This 4hort program uses an IF . THEN to decide whether or
not to Start itself over:

1U .PRINT "TYPE YOUR NAME."
20 INPUT N$
30 PRINT "HELLO, "; N$
40 PRINT ."TO START OVER. TYPE YES' "
-50 INPUT AS-
60 Ii'A e "YES" THEN 10
7U PRINT "OK. GOODBYE."
999 END

Note that only the word YES from the user causes the program
to continue execution (again) from line 10. Anything the user types
that is not YES will be taken as a NO answer. This program is
another example of a loop. The number of times that the loop will
be executed depends entirely on what the user types when the program
is run. Try this: Copy this program, then RUN it. Use TRACE or

FLOW to see hew things work.

See Program Flow (11.17) and Boolean Expressions (11.19).

40

1 FOR . . NEXT

Use: To have BASIC do the counting, incrementing, and checking in
a loop, automatically.

Exa-ples:

10 REM SQUARES FROM 1 TO 5 see 11.24 about R 1'

20,FOR N 1 TO 5 establish "start!' and "end"
30 PRINT N ,do something
40 PRINT N-2 do something else
50 NEXT N add 1 to N. If N

go to 30 again,
more than 5, continue

99 END

10 REM COUNT FROM 10-10 1

20 FOR N Q 10 TO 1 STEP -1
30 PRINT N
40 NEXT N
99 END

is 5 or less.
If N is

to

11 counts backwards
because the step is negative

TI .21

Remarks:

FOR. .NEXT loops save the programmer some work by automatically
incrementing the counter and checking its value against the top value.
The general form of the FOR statement is

FOR <index> < start> TO <end> STEP <howmany>
FOR. .NEXT loops are executed in this way:

a. The "index" variable is assigned the value of <start>.
> b. The statements following the FOR statement are executed

in order.
When the NEXT statement is encountered,

1. The value of howmany> is added to the index.
If no STEP is included,

1 is added. (The value of
the index moves closer to <end>.)

2. If the value of the index has not passed the <end>
value, the statements following the FOR
atatement are executed again -- the loop is repeated
with the new value of the index.
If the value of the index has passed the <end>. the
loop is not repeated, and execution continues from
the statement after the NEXT statement.

41

46

(continued)

(II.21) (II.21)

The FOR statement sets up the "start" and "end" values for the
loop, and marks its beginning. The NEXT statement marks the end of the
loop. The value of the index variable (N in the examples ab9ve)
is changed, and checked against the "TO" value, when the NEXT statement
is executed. All the "work" lies between the FOR and the NEXT.

The following three programs illustrate how l'oops work. All thtee
programs do:the same thing: they all count by twos from two to twenty.
The first program is pretty silly, since it makes the programmer do
more work than is necessary:

10 PRINT "COUNTING BY TWOS"
20 PRINT 2
30 PRINT 4
40 PRINT 6
50 PRINT 8
60 PRINT 10
70 PRINT 12
80 PRINT 14
90 PRINT 16
100 PRINT 18
110 PRINT 20
120 PRINT "WHEW"
999 END

The second program is much better, since
do more of the work:

10 PRINT "COUNTING BY TWOS"
20 N.= 2
30 PRINT N
40 N = N
50 IF'N <= 21 THEN 30
60 PRINT "FINISHED"
99 END

es the computer

-Irs The third. program is even hatter, since it takes advantage of
the automatic features of the FOR . . NEXT structure:

10 PRINT "COUNTING BY TWOS"
20 FOR N = 2 TO 20 STEP 2
30 PRINT N
40 NEXT N
50 PRINT "THAT'S ALL, FOLKS!"
99 END

42

(continued

(21)
-.21)

It is sometimes very useful to put one loop inside another,
or "nest" the two loops. -The following program might be used by the
principal of a school to add up the number of students in each
grade -and in the school as A whole. The "outer loop" is indexed by the
variable 1, and the "inner loop" is indexed by J. The extra lines on
the left show you how the Jloop is nested inside the Iloop.

10 T 7 0
zOS 7 d
25 REM T IS FOR TOTAL IN THE SCHOOL. S IS FOR GRADE SUBTOTALS
30 PRINT "HOW MANY GRADES DO YOU HAVE IN THIS SCHOOL?"
40 INPUT G
50 FOR I 7 1 TO C
60 PRINT "HOW MANY CLASSROOMS DO YOU HAVE IN GRADE ";
70 INPUT C .

80 FOR J 7 1 TO C
90 PRINT "HOW MANY KIDS IN CLASS "; GRADE I

100 INPUT K
I 110 S 7 S K
I 115 REM ADD THOSE KIDS TO SUBTOTAL FOR THE GRADE
. 120 NEXT J

130 PRINT "IN GRADE "; -* " YOU HAVE "; S; " STUDENTS"
140 T 7 T S

145 Rai ADD TOTAL FOR THIS GRADE INTO THE TOTAL FOR THE SCHOOL
150 S s 0.

155 REM SET THE SUBTOTAL BACK TO ZERO. READY FOR NEXT GRADE
---- 160 NEXT

170 PRINT "IN THE WHOLE SCHOOL YOU HAVE " T; " STUDENTS"
999 END

One thing to remember when you nest loops is that the inner loop(s)
must be entirely contained inside the outer loop. RIP won't let you
RUN the program if it has loops like this:

10 FOR X 7 1 TO 10

40 FOR Y. 10 TO 100 STEP 10

70 NEXT X

90 NEXT Y

The NEXT for the Yloop is outside the Xloop completely, which is
not allowed.

,See Program Flow (11.17).

43

11.22 GOSUB BEGINSUB RETURN ENDSUB

Use: To transfer execution to a subroutine, then to
me place.

11.22

turn back to the

Remarks.

A sequence of statements that is accessed from different
parts of the program is called a subroucl-qe. BIP subroutines are
somewhat different-from subroutines in other implementations of BASIC.
A BIP subroutine is a sequence of statements that come between a

BEGINSUB and an ENDSUB. The sequence is only "called" by a GOSUB.
It can terminate either with a RETURN or the ENDSUB, both of which cause
a jump back to the line after the GOSUB that called the subroutine.

Subroutines are useful in a program that uses the same sequence of
statements in a number of different situations, in that they allow the
programmer to write the sequence only once and yet have it accessible
from many different pares of the program. When this sequence has been
executed, control returns to the place from which the sequence was
ea-Red. -Gonityl-tcated programs are also much easier' to debug if they
have subroutines corresponding to the diffe,Tent parts of the job the
program is intended to do. See "Branch and Return" in Section 11.17.2.

Example:

,(.other lines of the program)

50 GOSUB 800
60 PRINT "WE RETURN FROM THE SUBROUTINE."
70 GOTO 999

800 BEGINSUB "NUMERO 0"
810 INPUT X
820 IF X = 1 THEN 850
830 PRINT "X IS NOT 1. YOU LOSE."
840 RETURN
850 PRINT "X IS 1. YOU GET A STAR."
860 PRINT "* * * * *"
870 ENDSUB "NUMERO UNO"
999 END

When line 50 is executed, control is transferred to Line 800. Execution
continues with 800, 810, and 820. If X equals 1, the next lines executed
are 850. 860, 870, and then back to 60. If X is not equal to 1 at line
120. the sequence is 830, 840, and then back to 60.

1)

44

49

(continued)

GOSUB

BEGINSUB

RETURN

ENDSUB

50 GOSUB 800
jumps into the subroutine.
Line 800 must be a BEGINSUB.

800 BEGINSUB "NUMERO UNO"
beginning of the subroutine. The name
(whatever you like, enclosed in quotes) is
optional and has no effect except to help you
see what your program is doiry.

840 RETURN
jumps to the line following the GOSUB; in this
case, line 60. Use as many RETURNS as you like,
for conditional branching out of the subroutine.

870 ENDSUB "NUMERO UNO"
marks the end of the subroritine. It causes an
automatic RETURN to (in this case) line 60.
The name is optional -- use it toimatch up with
the BEGINSUB name if it helps you.

Notice that a BIP subroutine must begin with a BEGINSUB and end with an
ENDSUB, and that these statements must be accessed only by the GOSUB.
A BIB' subroutine does not require you to use a RETURN, since ENDSUB
includes its function. In' BIP, RETURN and ENDSUB are similar to STOP
and END: you may use as many RETURNS and STOPS as you need (including
none at all) , but you must use one END per program and one ENDSUB per
subroutine.

.There\are no jumps, into a subroutine,except by a GOSUB co its
BEGINSUB, And no jumps out of a subroutine except by a GOSUff(to another
subroutine)`. a RETURN, or an ENDSUB. Look at these pairs of `programs
for illustrations of the syntax of subroutines:

no jumping in
;phis example is illegal This example is legal
10 INPUT x 10 INPUT K
20 IF X -=.= 1 THEN 100 20 IF X <> 1 THEN 40

30 GOSUB 100
40 STOP

100 BEGINSUB 100 BEGINSUB

(continued)

(11.22) (11.22)
A** no =ow through" into the subroutine

Illegal Legal
10 GOSUB 100 10 GOSUB 100
20 PRINT "k" 20 PRINT "X"

30 STOP

100 BEGINSUB 100 BEGINSUB

* * *

(the problem with the illegal example is that without the STOP statement.
BASIC could reach and execute the BEGINSUB directly in the sequence of
lide numbers, which is illegal. A BEGINSUB may only be executed
immediately after its matching GOSUB.)

II egal
10 GOSUB 100
20 STOP

no jumping out ***
Legal
10 GOSUB 100
20 STOP

100 BEGINSUB
110 INPUT X
120 IF X 1 THEN 20
130 PRINT "X IS NOT I!"
14'0 ENDSUB

egal
GOSUB 100

100 BEGINSUB
110 INPUT X
120 IF X 1 THEN 140
130 PRINT "X IS NOT I!"
140 ENDSUB

no °subroutine calling itself
There is no right,way for this.
BASIC is not recursive.

100 BEGINSUB
110 PRINT "IN THE SUBROUTINE!"
120 GOSUB 10G
130 ENDSUB

!See Program Flow

46 5

II.2 Functions, Arguments Ohd R Valuesfunctions,
9_ 11.23

1 agine this exchange. on say. IV able this number: 6" and
your friend says, "Okay: 12,0 To dooty :IA. a number is to use that
number in a specific way and then to zi-ve the result back. In this
example* "double" is a function, the 00mber 6 is the attgiinent to the
function, and the number 12 he twit of doubling 6) is the Value'
returned by the function.

"...._

A function is some defiR
It may require no arguments,
number -(see RND). It may re
that doubles a numbers -you
what that something is. Or

like the function that finds

process that produces 'a result.
Ike the function that picks a random
ire like function
t d=1;:Z=i ntthout knowing
may reqUire more than one argument,
he smaller of two numbers--you can't

say something about two numbe0 Without knowing what they both are.

A funct on always returns °ne ValtiO

Keep the special meanings of
Don't confuse them with the ghla

and return in mind.
h meanings of the words.

You may think of a function as a sr,0 thand for some series
of operations. The value returned by d function is used like any
other value in the programming language You are using: you may assign
it to a variable, or use it to a ko1;00 expression, or print it, etc.
Some examples of functions ate given io the next few pages.

A

To generate a random number is siarl-Y to tell the computer
to pick a number. One of the mnst lntert'sting uses for random numbers
in programs that play games: dealiqR egfds, choosing a number for the
user to guess, or choosing a eVe in tfC toe, for example.

11.23,1 Builtin Functions

BASIC has several built -in function
operations that are so frequatly kised
been added to the commands that the ins
list of these functions will Very With
the list is sometimes balled a 116rary
built into BIP's BASIC:

47

That is, there are some
Y programmers that they have
tpreter understands. The exact
he implementation of BASIC, and

The following functions are

(continued)

11.23.2 RND

Use: To generate a random number

Examples:
20!X RND

20 PRINT RND*10

20 B - INT (RND 10 # 1)

Remarks:

The RND function returns a random number greater than 0 and
less than 1. That is, it 'makes the computer "pick a number" at
random the way _you' might pick a card from a deck. RND always pks
a decimal fraction between 0 and 1, so read about INT for interesting
ways to generate anduse_random totegers.

1I.23.2

11.23-.3 INT

Use: To convert a real number into an integer.

Examples:
30 X INT(7.4)

30 PRINT INT (27.98)

30 R INT (RND * 10 1)

.23.3

Remarks :

BASIC thinks. of all numbers as real numbers (i.e., as numbers
with decimal fractions), not as integers. There are many situations
in which a programshould work with only the "integer part" of a number,
and the INT function does the job.

B1P's BASIC, unlike some other i mplementations. interprets
to mean "return the largest integer that Is not greater than th
argument." This means that:

INT (7.4) 7

INT (-7.4) 8 -

because 8 is the largest integer that Is not greater than 7.4.

The argument to the INT function must evaluate a a number.
INT Y*1-0 legal, but INT(A$) is not, because AS cannot be a number.

48

53

con ued)

t.

(11.73.3)

Some uses of INT inclUde:

a. Generating random integers (see RND).
The RND function returns a random number between 0 and 1--a random
decimal fraction. To create an integeN you must first multiply
the random number by 10 (an integer must be at least 1) and then
convert it to in integer:

INT (RND*10)

will return a random integer between 0 and 9, inclusive. The value
of (RND*10) will be greater than 0 and less than 10; it will range
from a low of 0.01 to a high of 9,99.

INT (RND*10 ± 1)'

return a random integer :between 1 and 10, _stride the range of
values (before INT 1.4 applied) is 1.01 'to 10.99. This BASIC statement
assign,s that random value to the variable R:

W'm INT (RND*10 # 1)'

In general,

INT (RND * B 1- A)

will return a random Integer between A and B inclusive.

Dividing "evenly"
a number Y divides another number X ev y, then X/Y is an

integer with ao decimal fraction or "remainder." The Boolean
expression

K/Y INT (X/Y)

will be true only if X is evenly divisible by Y. For
the Boolean 'expression

13/4 INT(13/4)
is false, because 13/4 equals 3.25. and INT(3.25) equals

But 16/8 INT(16/8).

is true:' because 16/8 equals, and INT(2

This program uses INT to determine if the first number given
evenly divi ble by the second number:

10 PRINT "TYPE THE DIVIDEND"
20 INPUT X
30. PRINT "TYPE THE DIVISOR"
40 INPUT I
50 fF X/Y IINT(X/Y) THEN 80
60 PRINT NOT EVEN!} TRY AGAIN.!'
70 GOTO YO
80 PRINT X. IS EVENLY DIVISIBLE BY
99 END

II 23.4 AR

tine: To return the

Examples:
30 S SQR(25)

30 IF SC)R (Y*I0)

30 PRINT "TPE SQUAB

f a.num er Lc expleSsion.

lEt.1 I

OT`09 B IS _ SQR(11)

)Remarks:
The SQR function fioda the pas itIve arviare root of It

argument. The only cri tidone on the arAtament are:

a . it must be an elcpreas ion t ha c eval ua e as number.
b.. It must be greater th.an or equal_ tc zero, since negative

numbers do 007 t tlaws real oqu.s re r© ats.

I .23.5 LEN
4 I -23.5

U To return the lnkt h rink

30 INPUT T$
4.0 L LEN (T$

30 READ Cs
40. X LEN

Remark
The LEN

string argumen t. If
return the value 6.

et ion nurts the rrnrnkaer of char its
e value oft T$ t..ms "1-0M/ATO", t he function tbreould

50

1123.0' User- ine unctions

Use: to return the value, ,of
to'uoe often.

ExaMpl

30 TWICE (N) N*2 '.
40- IF TWICE. (I) > 100,111EN 10
50 REM -BACK -TO 10 TIMES 2 -S.BIG

the 'programmer wants

0 CONCAT R$ & R$
40 INPUT D$
5U:PRINT "I'LL,REPEAT AFTE YOU - "; C NCA

Remarks:

tIOnt implementations of `BASIC, Luciuding llow you to defineyour own functions. In BIN functions may_have only one argument.Both string_and- numeric functions may be defined. example,10 ADDER (k) 1 X4-1
defines a numeric function named-ADDEk, whose argunnerit is X. and whovalue. is X J.- 1.

11.23.6

Defining a function to do something that you have to do more thanonce saves you some trouble in writing your program. For example, ifyour program had to generate lots of random numbers (see- RND and INT,;aboVe). you might define that functiOn,,then
just call it each timeyou needed a random number. This program 18 a simplified illustration:

10 PICKME (X) INT (RND X 1)
20 REM "PICKME" WILL PICK AN INTEGER ET4CEN 1 AND X
30 PRINTs"HERE'$ A NUMBER,BEMEN 1 AND 10:"40 PRINT PICKME (10)
b0 -- PRINT- "-AND HERE'S -A NUMBER. BETWEEN 1 AND 5;1!50 PRINT PICKME (5)
99 END

Aou might copy and run this
function:4 work together.

ogram a fetr times,to se_ how all these

You may define a given function only once in a program, butyou may use as many different.tunct onsas you like, The kind ofexpression used in a function must match the data type of theargument; If the argument is a numeric variable, the expression mustbe numeric, and if the argument is a,.string variable, the expressionmust evaluate as a string. The name of the. function must he at Least3 letters long. It can be very lon020 letters), but since the purposeof functions is to save on typing,
your function names should probablybe less than 10 letters long. You may not use "apeCiaL characters"like

precigida,commas,-or-semituleTts-in the-function name.

53_

11.24' Other aeful Vtatements

11.24.1 STOP

Use: To tell the gni u that it has fin

Example:
50 STOP

Remarks:
Every BASIC program must have an ENDstatem The END

atement must have the highest line number in the program.

11.24

11.24.1

you program.

In addition i you may use as many STOP statements as you
is equivalernt to END, except that STOP mny have any line number.

STOP statements re useful in programs that may terminate many ways.

BIP's BASIC always prints the number of the last line executed
when .a program terminates. Using STOP statements tan be very valuable
t.n debugging a program that has many parts - -Lt can help you locate
problems by causing ,execution to terminate under certain conditions
without confusing the issue by continuing execution with wrong values.
Then the line number st Which the program terminated can help you see
what erroneous condition occurred.

END (11.4) and COStYB (11.22).

11.24.2 REM

Use: To write REMarka inside, your program making it easier to
understand.-

mpl

60 REM 111 STOP WOPING IF X IS TOO BIG.

11.24,2

.,200 REM THE FOLLOWING: 5 LINES CALCULATE :THE

Remarks:

Use a REM statement whenever you like. It does not affect
the execution of your program i- any way.. but it gives youJ1 way
to make notes' about the program you, go along, inside the program.
itself 'You may also .use a REM statement with .ahlank line jUst
make a break between blocks oflines in your program.

,

52

SECTION L L L . BI.P co nons

' Whenever deal with BASIC. you are really communicating with
the, computer on two levels. One level connects you with the BASIC
Language and the computer's ability to execute programs written in BASIC.
The other level connects you with a more general operating system, which
allows yousome control over the world in which your own programs live.'
In this course, the general system. ts HIP, the program that runs everry,'
thifiWYOu..see happening at yourt.erMinati Through RIP. you can write.
and 'execute programs in -BASIC; in addition, you are presented with
programniing tasks and you are allowed to save and modify your programs.
Some of the commands in this' section are identical to those in other
implementations of BASIC an4Some are peculiar to. BIP. You will just
have to learn other commands when you use other versions of BASIC.

Ind'. Curriculum

These commands deal with the programming tasks that orm the
instructional base of 5111.

TASt Start a new prob em. HIP 11 elect
you.

HINT

SUB

E

ENOUGH

Print a Some. tasks haye no hints; some have more
than one. Type HINT to help you understand what thetask requires. For another kind of hint, see REP below..

_ -
pteaent a sub task. Some casks are broken down into
0-21-ts,.. you Can handle all the par.ts, you Can write
the program for the task. Ask for SUBS whenever you
have trouble getting-started on a complicated task.
Finish a sub task with MORE or ENOUGH.

Continue the current problem. HIP does some chec
vi your, program before allowing you to continue-.
in a sub task returns you to the task you came from.

Endthe current task immediately. B1P does not check
Your program, and keeps no record of your haVing
entered that task, ENOUGH in a sub task returns you
to o-the task you came :from.

53

Print = ta,sk.4 TheMODE Print dint a model solution to he

model solution is net necessarily the only way to write
the pre ram. HIP does not take you out of the task.

0 'ExecutJ the model solution. The demo should help you
write your own program by demonstrating one possible
solution to.tne task.

REP

0 TRACE Exec'uta the model solution and show what's happening
at.. the lame 'time. .HIP prints the number of each line
of the model Solution as it is executed and prints
the value oteach variable each time it is alsignett.
Once you have run the DEMO a few times, you know what
the model solution does. Then the DEMO TRACE will
help you -see now che'model works. See TRACE
Section 111.2, If the screen is flashing by tOo,fast
use the HOLD key. (See 'Section 1.6)

,

Present a flowchart-like representation of the model
solution. REP has its own set of commands that allow
you to expand the representation to find out what the

ructure of 't-he.program looks like.

When in REP, Look at the top of the screen for a
reminder of what you-can do. YoUlcan always start
with A<Cr>.- (ReMeMber, <cr> is carriage return.)
Watch tbe_sc_reen.' Then typa.B. C. D. etc
Al, A2.: BI. B2, etc. (followed always.by <c
if these letters and numbers appear in boxes on.
the screen or scethe top.

You can start ever by typing RESET, or get ou
typing- EXIT.'

and / will move ._the screen up and down for you
when the flowchart gets too big to see all of it
at once. (Type shift-N to get he ''up- arrow"

character.)

Yoe write your program in REP. Type EXIT<ct>.
wait for t the left margin, then write your
program or do whatever else.

Prod m ltanipulat1an I1I.2

These commands do not deal with the curriculum, only with the
program you are currently-Writing and running.

'

LIST Print out the current program. his to see what
Your entire program looks'like--i M 1ps.

T <line number>
,

Change a line without typing out the whole thing
all over again. See Section 1.6 for the control
characters that let you change the line. (Editing,
is much easter to demonstrate than to explain. Try
following the example in 1.6.)'

SCR Delete ("scratch") the' current program, wiping the
slate clean so you can start afresh.

ltUNi Execute the programnave BASIC follow your list of
instructions,.. To stop execution of your program
before it reaches-its END, interrupt like this
hold down the "CTRL"-,key while you type the letter G.
See Section 1.6.

SE <statting> <increment>

Renumber the lines of the program. «carting> .s thefirst line_ you,want to have "reSEQuenced," and
<increment> is the distance you want to have between
the lines. For example,

SEQ 100 20
will renumber the lines in your program from line 100
upward, and each-new line number will be 20. more than
the .line number that precedes it. (The new numbers in
this exaimPle, starting ,at 100, would be 100, 120, 140,
etc) Use SEQ when you want to reorganize your program
to make more space available between the existing lines,
so that yoU can insert new lines into the program.

SEQ also changes the line numbers specified in GOT0,-
F. .THEN, and COSqp.statements so that the program

executes exactly as ib did before you decided to
reSEQuence the line nu .-ber

Execute the program and sliow what's happening at the
sage time ,11IP prints the number of each line as it
is executed, hnd prints the value of each variable each
time it is assigned: This is an eectremely valuable
debugging tool. -Use it on a simplle program fixst, to
see exactly what it does. Then use- it any time your
program dOes not seem to do what you intended,

(continued)

1.2)

TRACE 6er0
Execute th4 whole program. The traco will eta
soon on the line numbered tnumberl, is exec ted, and
theti-ace coiltinues to the endyf the program. Ilse

this command if you -know that the first part of your
program is correct and you want to avoid taking the
time Co trace through things that already Work.

TRACE b rl> <number2>
Executes the whole program. In addition, it TRACES
'execution of all lines whose numbers are between
<numberl> and <number2.,
For example,'

TRACE 100 200
executes the entire-program, and prints ling
and variable values ,between lines 100 and 2Q0 lus ive.

Example of TRACE:

For the program:
10 FOR J m 1 TO 2
20 LET X J.
30 NEXT J
40 PRINT "FINISHED!` ""'

'99 .END.

typing "TRACE" will produce
tRACE STARTING AT LINE 10
10: J *m. 1:

20: X 1

30:

20: . X 2

30: - J
40: FINISHED!

h utput

99:

1EXEC1JT ION COMPLETED AT LINE 99

FLOW tA FLOW is a debOgging aid that allows you to watch your
program execute. Your program is disOlayed. can the

een, and the number of the current line b
execute-4 blinks. 'To execute the, next line, press <CR >.

By stepping through the pr[ram in this Way, you have
time to examine the program arid the sequence of
execution.

(c6nt ued)

(I 2) (I .2)

a backward lump or a forward jump of-more than one
statement is executed, an arrow is drawn from the
tatement cUrrently_executing to the statement toile,.

executed next.

The Listing of your program does not include the body
of any subroutines. When a GOSUB statement is executed.
the Program on thescreen is replaced by the subroutine
referenced by the GOSUB instruction. In the upper righ
hand corner, the display indicatPs "MAIN PROGRAM"
"LEVEL XX". where XX is the number orGOSUB's that have
been executed before a RETURN or an ENDSUB is executed.

Any input or-output from the program isdisfjlayed on
the bottom three lines of the screen. The I/O lines
only show the result of the three most recent
statements, as older results disappear from the acre nt-

To stop the executicin of.you_ program before it reaches
its END, interrupt like,this: hold' down the "CTRL" key
While you type the letter G. See_Section-I.b.

4
FLOW mber>

Automatically executes up to the line.given withou
waiting for--your <cr>, (unless it executes an INPUT
statement, which alwaya waits for you to type avalue
When the Specified line is reached, FLOW returns to
normal mode,:and waits for a ccr> after each line is
executed.,.'', 'his feature is useful for FLOWing through
a long program that, is l.argely correct.

FLOW <variable>, <Vatiable>,.

At the top of the screen, there is space for up to SIX
trace variables, selected"by you
these variables is displayed 'and updated whenever
traced variable Changes .its value." You may trace fewer
than six viriables. To trace a subscripted variable.
type its name without any subscripts;

Sample FLOW commands, explained:
FLOW Execute the whole program, waiting. for' your

at each line. Does not trace any variables.

The current value of

FLOW X.sY

Executes- the entire program, waiting for your
<cr> at each line. Shows the Valuts of the
variables X and Y at the top of the screen.

(continue

57

(III:2

FLOW- L

Executes automatically up to line 20
displaying the yalues of A$ and Las H goes.
Stops and waits for you to type,cr? when _it
reaches line 200, continuingin this step.-by-
step mode through the end of the program.

Notice that you may give either the line number
specifi6ation, or the variables-to-be-traced
specification, or both, or neither... If the
line number option is used,; it,must come firat.
The order-in which you type the variable names.
if you use that option., only determinetithe
order in which they are Aisplayed. It does not
ffect the execution of_the,preFtdm'in:any way,.

pile Storage and Access

These commands allow you to keep yOUr programs for hater use.
If you do 'hot save a program, it will disappear when you -sign off.
When you aave a program. you must give it a name. The name can=be
anything you like, but it should not contain any "special characters"
'like periods,.commas, or eMA-cOlOns. Once the program has been saved.

is :called a "fil,e;"

FILES List the names and dates of all =s currently
. ,

aved in permanent storage. e and time
shown tell you when the file was Just SAVEd.
The length is the number of tine in the SAVId
program.

Store.the currentprogram under he <name>
given. ,The name must not be longer than 30
characters. The program is not affected - -it

_

is aimplycopiedto, a permanent storage area,
4

Retrdeve the file of hp<name given. The

current program is _Sqllatched and replaced by
the <name> file. 'The permanent storage of
<name> .ismot'affeeted. (See comments below.)

Retrieve' the <name>:file froM storage d add
t to the tUttent-Oogram, withontS,Ratening
the current program. =BIP will print the
messages DUPLICATEDIAN!E and WAS . . if the

AIERGEd file and the current:program-,have lines-
With the same line numbgr. The "new" line from
the merged file will rePlace the "old" fine that
was already part' of the'eurr nt program. See
comments below.

Erase the <name> file frOM'perMa
:Jhe current program is mdt'affected,

a good idea to -,LIST your current program hefor
verify that 1.tiiiiwhat'yoa wwnt. Always 1,,IST bet

event automatically. SCRatching the current .program
KILL, Since it is,flnal,

torage

you SAVE
e eydu GET.'

Be careful

59

6'4

(II 3)

Your "current Oogram' space" and "permanent storage area" are
two /Irate, things that only communicate with _each other when got, us
the ommands, Remember, that SAVE arid G,EI, make copies from the
curren program to permanent stopge and vita versa. When you GET a

RIP 'copies the rile, from permanen t St° rage.;finto.::' your current
ptOgram space", and leaVes the permanent file exactly as it was. If you
theitmake some changes to.the program, you must SAYE it again if you
Wint.,-the-ehangea to be permanent.

For exa pla, suppose you have SAVEd a program under the name
and 'then sign off Th`e next day yij GET DOG and make some changeS toit If you thensay SAVE CAT, your permanent storage, will have both
DOG `(the old version) and -CAT (the new one) , If you any, instead,
SAVE DOG, then 611 will say "OLDViikSiON DELETED" and you will have
only the new verSine, under- the n6110 DOG. The moral Is If you
want to Ttave:tWo_veksions of_the .progradi, SAVEthe revision: with a new
name. .1f you don't -need the-old version any more,, SAVP: the new :ye
with the same .(old) .name. If you don't' SAVE it at All, the new -ver
(yonr current program) will disappearwhen, you sign off, and only the
old version Will be, in petnianent storage.

WHAT

WHEN

FIX

CA

1

Feint the name and student number the
using the terminal. Use this i nomeun e
left the terminal without .signing
sign him off, he may tese a program,
find him first .).

Print the name of the current task ye
This also allows you to have the probJ
printed out for yon again, thout re
the task.

4

Print the date and time Obvious use..

Leave a message, for the people at Sts ke?d
Use aria whenever you have a probl,em that

'think Stanford. should know about . Please
describe the prob lem-ag7thorohghly es ycC4

ages Left through FIX are read
Typt the <cr? key twice Cc'

your message

evaluat an expression. ' The *Prea
be huMerl c.r:,string,, or BOolean For a

.CALL 6+4 :Y -- ,- --.

would make .BIP print lb. ter
CALC "DOG" & "FOOD"
would make LIP`` print DOCFOOD. Cr
GALC 56' .4,
would make Bill print FALSE..

CALC cannot evaluate
variables.

0

61

66

reaaions' containing,

in

APPENDIX A

.GLOSSARY'

s in UPPIR CASE are eithei'BIP commands or BASIC statements :

abort To stop the. execution ,program before ft '
-,.. reat es its END. -Hold: down 'the ,"CTRL" key' 'while

, yob type the letter, G. "SeeI,6.

arguni ent-
,

The value' r, values perated on by a function
-See' 11.23-

4
=

array Also called a ubs_ ipted variable." a variable
that _may hake many distinct elements, -each of
Whickcan be d ns a 'separate variable.
ee -TI.8, 11.16.

s, aaaaipmcrtt sppiating- a variable name with
of a location'. S16:46 ILA, .II. 11

TAS c =A Widely. used programming liliguage:
Beginners Allpurpose Symbolic instruct on Code:

. ..

'BEGINSUB

the contents

'The BIP BASIC statem that' pt arts a subroutine,
See II

BASIC. strudC i real Program, the' yr gram
that' runs this% course.

Boolean expressions Expreasions whose value is either TOE or
FALSE. Used in making decisions. See -II 19 .

&telling

BYE

CALC

,

characte..

coneatenatiOn

Transferring control a tIifferent part
program rather than following the

numeric :sequence of line numbers.
See 11.17 1.20.

The BIP command that -ends your
the computer.

The BIP com
See 111,4;

ci

0

session with

nd that evaluates an p essidn.

Anything`'. terminal can display: letters,
numbers, -punc tua tier' ispaces, See ,I1.7.

The: string operation that combines two striAgs
into 'one. 'See

constant Ano Vier -word -fo

c ontrol cha c ter

oun ter

4Y4 data

DATA

dec isions

DEMO

DIM

EDIT

END

11 ri.' "- See 11.8.

A s Tec itl,e'onirnari BIP . 6.

i nomneric var iab 1e used to count soriiethiri :

tlisually inc ream ted ever y time some coridi ti n

1u .at.isfieci. See 11-17 .

:n pen er, 1, .info
See II .2-

used by a prog ram

the BASIC sta cement that provides values to
READ statement - Se

5AstCfs nod ify t he order of
execut ion o f your ploR ram, depend ing on
eert:aln conditions. See II. 17 - II. 20.

The Blip c ommand tTha executes the modeL,
co hoc you-how eyrie so lution to the current
cask.. works. DEMO rERAc E executes the model,
end trace s th'e vines of all its var Iahieg at

he -same time. See 1 I. L .

BASIC :stateme --nt that specifies
niAxiinurn nisiber of elements in an array; us uoLly
14;4s at the begirt nir1g of a program using a tr.oys
See . 8, II .1 6.

yrie neJ t hat make s it possible for you
a line in yoor program without c yp trig

er. See 1.6 , 111,2.

A requi red. SAS IC Ifitaternen t which nius c be the
lest line in tile TrogrBm, terminates execution.
See II. 4.

Trie otalernenc t hat ends a a brouaio e.
See

nnot handle
rror rnessag0

Ut the error,

C dete retint3s
7 1. 8 I1. 39.

execute

'ex

FILES

FIX

FLOW

FOR , NEXT

Make the computer do- something, BASIC is said
to execute the lines of a program. i.e., to
follow each instruction in the program. see I1.2.

Part of a BASIC statement to be evaluated:
a primary or operations on primaries.
SeeX 2. 11.19.

The 13IP command that lists the names of _

files in permanent storage. See 111.3.

The RIP command that allows you to leave a
message for Stanford. See

The RIP command tha t executes your program
visibly. one line at a time. See
To im_reztaft_a=xecut4.0_n-,-11k)-vmi---th-al-KL"--

while you type G. See "interrupt" below.

The pair of BASIC statements that 'sets up
a machine-made loop. See 11.17, 11.21.

function A defined process that produces a result,
e,g.. RND, INT, SQR, I,RN. See 11.23.

GET

GOSUR

GOTO

HINT'

IF . THEN

Inc zement

The RIP command that retrieves a previou
SAVEd program so that you can work on it
again. See

y

The BASIC statement that causes a _jump to .a
subroutine. See 11.17, 11.22-

The BASIC statement that allows you to alter
the sequence of execution unconclitionally.
See 11.17; 11.18. Also see "interrupt" below.

The Rip command that prints_ a, hint to help
you with the current task. See 1I1.1.

7
The BASIC statement that allows you to al
the sequence of execution if some condition
is true. See 11.17, 11.20.

To add to the valhe of a numeric variable,
frequently a variable used as a counter.

index

input

L PUT

INT

rrlipt

KILL

LEN

LET

line number

LIST

ter al

location

In an array Variable,
that specifies each e lemon t in the list .

See 11.8, 11.16.

umber in paten the _

In a loop, the number (counter) that keeps
track of the number of times the loop has been
executed; See 11,17. 114.21.

The =aet:of alues supplied to the progr
information all which it operates. See

P

rheBASM statement
ap4CATI. to

sep! 4.

one BAS1C=. u
7ligqf rigem',

tie
5.

t hat allows the user to
var-lab e during seqution.

on that returns th'
oniti-er

ege_r=

ion of a prop -'befor'e it
Ileld do .t1 the whi le

Ore. 6

e B,11" -cdnimaa t ha CesriaaW a file
rmari en t' a t rag e Se6:,

The BASIC function, that
characterso,in st ring.

turas the purnber
ee 11.23.

The BASIC statement that assigns a value
a Vat- iahlb. See 11.11.

kra integer that must precede each 'BASIC
statement; statements are executed in ender of
increasing Hoe numbers. See 11.3.

The BIP command that prints out your program
in the order of the line nunbar e 111.2.

A primaryoSe valve is itself (as Opposcd
a variable). See IT.S.

The place in the compute memory where a
value can be stored; t he= place or "box" named
by a variable. See 11.10.

loop General term for a s-er le s of statemets whose
execution is repeated. See 11.17. rj..2
To interrupt, hold down the "CTRL" ke3Feyht le you
type G. See "interrupt" above . ,,,S',-

A-4

NERCEI

MODEL

numeric

operation

numeric,:

The BIP command that retrieves a file from
permanent storage and adds it to the current
program. See I1L.3.

The BIP command that prints a typical solution,
to the current task. See

Thej3IP command that presents the next part of
a task. Type it after completing a program.
See 1111.1.

Having to do with numbers and their values.
See 11.8.

Te process by which two expressions are used
to specify a new)alue:

AdditioM, subtraction, multiplication, division,
eAponentiation.

string: Concatenation, substririg.

relational: An operation that compares tvo string or numeric
expressions in some way to p duce a
Boolean expression.

Boolean: An operation that combines two Boolean
expressions into a new Boo lean express n.

See 11.12. I1.19

operator The symbol .for an' operation:

output

pr imary

PUNT

numeric: /
sCring: & (Start, stop_

)

relational: < > K= >®
Boolean: NOT AND OR

See 11.12, 11 .11,' IL .

The vistble results of a program's execution
he terminal. See 11.5,

An expression tithout any operac ca-7cither
a literal or a variable. See 1I.7 - 11.8.

The BASIC statement that produces visible
results by causing the terminal, to type
something. See 11.6.

7 9

prograr

KFAD

Rat

II EP

.retu

4.1

RETURN

. RUN

SAVE

CR

S EQ

signing off.

A list of instructions for a computer
follow, written a language that the
computer understands See

The BASIC'atatement/that
a variable; the value is
in the DATA statement.

signs a value to
()red in the program

e 11.15.

The BASIC statement that nothing. It

simply allows the programMer to make notes
within the program.t See 11.24.

The BASIC statement that moves the "Read-data
pointer" hack to the first DATA value in the
program. See 11.15.

The BIP.eommand that presents a flowchart-like_
representation of the` model solution to shOW
you its structure. See 1II.1.

To lietermlne and giv'e back a valne'. All
'4ioris return a value. See

The BASIC statement that causes a jump back from
a subroutine to the place from IA eh the sub-
routine was called. See 11.22

The BASIC function that
decimal fraction between 0
no arguments. See 11.23.

_n random
rid 1 it requires

The BIP.command that tells the computer
execute your program. See

The BIP commana that puts your current p ogram
into perrnanant storage for your next session,.
See

Thy 7comma d that erases your .current
am. Sqe 111.2.

The RIP c o and that renumbers e line's in your
program to give you more available space hetweep
the existing lines. See 111.2.

Ending a session on the _computer
is achieved with BYE: See 1.3.

Signing _

The BASIC function that returns the positive
square root cif its numeric argument.
See 11.23.

staternent A single BASIC insruction occupying one
line of the program. See 11.1 - I f).

string A group of characters in particular order.
Se o I I .7 I 1.8.

d

STOP The BASIC statemenc that may appear at any
place_ in the preg ram and terminates s execution
of the program. See 11.24.

The B IP command t Pa t presents a sOf task .
Use it to ge t the current task broken dowm
into parts. See II .1

SUB

suhscript

stiWscript ed

substr Ing

,nubroixt in e

TRACE

user

1'.

afserdef ined func t ion

v a I Lie

a dumber or owner ic var iiibl o in parentnese,c-i

that specifics an element of an array.

A kind of var at, 1 e, one that can con ta in

more :art ,scitle value at one time. See °ar
See 11.8.: 11.16.

A part of a string See I I -3.

A sequence, ut BASIC Staterriitts that can hr
accessed and executed from different places in
the main program ,,ret erring hack to the 'place

from wh ich it is call ed. See 11 .22.

The BIP colkmand that presents t he next

programming task. Type it after comp 1 et inc.
the prey ions task. See 111 .1

The RIP command tout -both executes .1 program
and Prints out I icui-onihers and variohlwi
is tAXOL'IJA inn progrese,q. See 111.2;
To into rr opt execution. ho Id clown tilL "CTRI." ke
wh 11 e you t ype See ° in to rr upt ° about,

In general, t he person who runs a program.
Frequently, also t he person Who wrote it .

A tune t ion deftneIin yoUr program. which retuclu-f
t he value of r fle,eitlprss ion tna r you spec f V.

See If .23.

The resul t o, I evalliating an expreston or a

f uric t fon . El Lhcc:14:1-61:Ini her or A tit r 1r ,

o r TRUE or FA 1,S E.ri :'cf/'36 I r . r ; 1 1 12, 11.10
,-70

4 4

A-1

74

variable

WHAT

WHEN

WHO

A name q _otation in theecomputer's memory,
a "box" '-'6hgt can hold a numeric or.string
value. See 11.8 11.11.

The HIP command that tells you the name of your
current task and allows you to see the problem
text again. See IIT%4.

The BIP command tha 1- You the dace and
time. See 111.4.

The HIP command that tells you
on at the terminal. See

A-8

ned

