DOCUMBNT FESUME C 3
ED 168 550" ’ o B IR 007 093

AUTHOR beard, M. H.; Barr, A. V. - . . por

TITLE The BASIC Instructional Program Student Manual.

INSTITUTTION Stanford Univ., calif., Inst. for Mathematical Scudieg
S in social Science. . T . A

SPONS AGENCY Navy Personnel Research and Development Center, San .

o - Diego, calif., | S 5 S ot

EEPORT NO : NPRDC-SR-T77-2 = . -, ég§

EUB DATE Qct 76 . A j

NOTE 75p.; For related documehts, see IR 007 092-096

EDRS PRICE MFOT/PCO3 Plus Postage. X

DESCRIPTORS College Students: *Computer Based, Laboratories;

' ' *®Computer Science EducatXon;' Glossaries; Input

| Qutput; *Instructional Prograns; Prograning;

: ‘ ./ *prograning languagess Tutorial Programs
IDENTIPIERS . *pASIC o o o S)
ABSTRACT ¢ % - A :

This manuval is the student's ‘main -source of
information about the BASIC Instructional Program (BIP), a "aands-on
laboratory" that teaches elewentary. programming. ih the BASIC
lanquage, and the BASIC languaqe itgelf. . .The, manual is orgamized as a
reference document for.students with no previous programming: _
experience. Three major .sections contain (1) .an’ introduction to tha
‘course; (2) an explanation of general ptagrammiﬂg,'d;scussi@ns oL -
Frogramming concepts such as input gnd variables, and the .
specif ication of the BASIC statenents used to implement these -
concepts, with the syntax and sample programs; and (3) a.list and
explanation of the cdmmands that control the BIP system, some or
vhich are identical to standard BASIC commands (e.g., RUN, LIST):

i while othefs give access to the unique features of BIP. A glossary is-

| appended whith lists all.'the specialized terms used in the manual,

explains thefr use briefly, and gives references to the sections

‘vhere detailed information can be found. «(Author/CHV) '

¢ . , ' ¢

4

j$$$§$*§i¥*§$t%%#$¢$*$*#*ﬁ*#$$$$§¢a#ﬁ*ﬁi#*#t##*#*#******###***$$$$¢§$$¢
* Reproductions supplied by EDRS are the best that can be made *
b _ I from the original document. _ ¥
#*$*$$*¢$**§$$¢¢#gaﬁ$at*#&*$$§$$*¢a¢$*fi$;$$$s**g$**$**$$$¢¢$¢$*$$*$¢¢*

L

&

; . ’ . L s
' s

L . i o .)

. . S US DEPAHTMEMY GF HEALTH, :

. . \ . 'EQUCATION R WeLE AR E :

o - L HNATIONAL iNSTITYTE Jc tober
NPRDG Spectal'Report 77-2 Eouchrion 80" Jctgber 1976

. o, TS DOCUMENT A WEEN g Preos ! '
' o DUILED EXALTLY s HECEIVE D P iom . : ’

. . THT LR SON Ol GRGANI 23T 10N oR thi, -
i - AT iNeIT l'?l”iﬂ OF YIE w ol CIPIRg IS
STATEN . OU NOT NFCFYSARILY TR L

SERTOLEICIAL NA 1I0NAL jrg 5T TWT Foaf '
FOUCATLON pOSITION Ot peatic y .
) 1]))) =
1]
5 5

'+ 'THE DASIC INSTRUCTIONAL PROGEAM SIUDENT MANUAL

ED168558

L4

: - ‘ : M. H. Beard
i Coa _ y . . A.°V. Barr

1

Igstituce for Mashematical Studles in the Social Scfences
e o EQS%ﬁgﬂfofd University . '
o ~ Palo Alto, California 94305

=

Reviewed by o . i

*{7_ o ' 1. D. Ford, Jr, 5

¥

Approved by
- : James J. Regan Ch
' Technical Director

“Prepared for

Navy Personnel Research ana'Davglﬁpmenﬁ Center
San Diege,_ California

- = apd

L Co07093

I

5

| , \
[|
// | SR

. [| C
FOREWORD = | - .

*
£

This: repcrt will serve as a handbook fpor students using the BASIC
‘Instructional Program (BIP) which was i;vélnped at the Institute for \
Mathematical Studies In the Social ScienPEb, Stanford University, Initigl
research support. fDT the program was pqu;deﬂ by the 0ffice of Naval’ -

. "Reséearch and by the Defense Advanced Regearch Projects Agency. Current
advanced development of BIP i= being supported by the Navy Persdonnel Rescarch
. and Development Center under Advanced DLVElement Project ZPNO7 ,(Education

and Traindng Development), Subproject ?PNG7 32 (Advanced (GmPuLEI*BQELd

System For Instructional Dialogues) under the mission sponsorship of the Chief’
of Naval Operations (OP-099), .BLP iﬁpurp@ratﬁs several-of the advanced tech-—
niques of EnmpuEEf -asgisted inétructﬂgn that are being tested and evaluated

by ZPN07.32. Plans are ‘currently béing formulated for -a -BIP tryout at the
U.S. Naval Academy, Dr, J. D. Fletcher served as tg;hnicgl monitor for thi:

development.

R . ;/ . i
. =, .] -r,) . R
3. J. CLARKIN v N \
Commanding Of ficer - Lo (. | . _ \
. - \E
\ =

1id°

e

SUMMARY

]
onal Program
programming

The BASIC' Instrueti
,that teaches elementary

(BIP) ig 2

"hand-s-—-on labnrgtéky” .
Ain the BASIC language. Thig ol

manual is the student’s mdin-éource of informatfon ahout ‘the sz_;7 .
 Bystem and the BASIC language, The manual is orgamized gs a refeérenct
- document aimed. at gtudentcs with no previocus programning Eﬁpefieﬁgg,
Settion 1 irtroducey the student to the course ftself, section 11!
= ~begins with [an explanatdon of prﬂgramming-;n,generai_‘;Discdssigﬁg ‘of
programming \concepts wuch as dnput and variables are fal lovwed by ‘Fe
specificatiol of the BASIC statements used tq 1mﬁlement_{EEmi he |
syntax aﬁﬁgga‘ le programs are used as il;ustfaﬁiansﬁﬂfgectian II1:
lists and explalns the commands that control the BLP Syst&ﬁa_‘SQmE!"
~are identical to “standard BASTC commands, (e.g., RUN, LIST)., apd =~
others give access:to the unfque features of BIP. fThe glossaty listg
all the specialized tearms used in the manual , explaing thedr yse *
briefly, and-gives'fefafEﬁ;gs to the sections whgre detailed information,
can'be found. o Tl Ty S .)
¢ p ' - -
e -
& . =
B ;b ‘. ' . .
=) = . %‘ .
1] " . K
j«)
v * -
: - y

) t
) * s f
V' . . :
v . TABLE OF CONTENTS ©
g - P
. : . : ") _ ’ R » p”,,—
» SE;&)}'E[UH. I - I,\"fllh)DUf’fZ']'l’_i)N TO BIP AND THE TERY INATL,]
, B . I.1 The BASIC Lanewipe and the BASIC [nstcructional
s o - . Program (BIP) l : |
B Using the Manual) gl
X [.3 Silening On 7
.4 - Talking to BIP - 3
1.5 A Sample Téteraction with BIP - v 4.
. 1.6 Some ‘Hel pful Characters to Know - . 9
} [.7 krror Uesslrey'and Changing Your Pfﬁg;am f : 11
_ o : , o B
4 © - SECTION .11 ; PHQLRAndlwﬂ N ﬁaqrc WL CH B[P 13
LIt " programming) s L 13
[i.z° lrogrim. Storagq ahd - Execution - | 15 -
[1.3, ‘ Line Numbers o ' . ' 16 .
11,4 ~ END | L : la. ..
I1.5 . - Input/Output \ T 16
I1.6 - pRINT ' 3 N 17
. IL.7 - pata Iype1 and Y3luaes -~ i : . 1.
1,8 - Pflmarlé%" ‘ ‘ C20
o Ir.9 o+ BASIC Vafidblgs i 22
’ IL.10 - Assipnoment . 22
1,11 .. LET (?séigﬂmEﬂt) , : 24
e 112 .- Fxpressions and Opdrators . - 25
11,13 " BASIC Operators : Lo 26
IT.14 . [INPUT e b T - 28
II.15 ' READ . . DATA and RFOPEN ' e 29
IL.16 - . pro . L |
[I.17 ~ 'Prosram Flﬁw - © 33,
LI.17.1 Loops , 33
[1.17.2 Branch and Retuf 36
S CIL.8 . oo : 37
A : LI.19 " Relational gwd 'Hoolean Operators S 38"
. ’ [1.20" UF. . . THEN - , : I iy 40
) 1121 FOR .. NEKX . , S S
ot LLL22 . GOSUB-, BFLlN%UE . ¢ RETUEN . ,-ENDSURB Lt
o Iy EunCtLDns Arguments, and Returning Valiues 47
[1.23.1 Built—In F'uﬂct»{\n% ') : ' 47 ¢
[1,23.2 RND o : t 48
, [1.23.3 N[] 1 o 48
I1.28R4 - Sor ' ?_ @ ' 50
11, 2375 LEN ' " - 50
11.23.6 = Uger—Defined Futhlﬂﬁg N ' 51
. 1. 24 . Other ‘Useful statements . ' 52
[L, 24,1 STOP) | 52
L. 24,2 RBT ’ 52

,Q

ERIC

Aruitoxt provided by Eic:

SEQTTON

I
[Ir.1
(1r.2

I1r.3 -

IIL.4

TABLE OF CONPENTS (Gontinted)

BIP COHMANDS

LCurricylom Hanipypaeien
‘Program Manipulation
Elfilf—' Storame and Access
Nealing with the y,rld,

APPENDIX A, ' IGLOSSARY v

DISTRIBUTION LIST

1

1

o

| Y/
. ' ﬁ~&,

TRV RN N
D

T i

(W]

A=n)

A = SECTION I, 'INTRDDUCTIGN \ : 1.1
I.1 The BASIC Lﬂngqgge and the BAhIL [nitruc innnleporam (BIP)
A

g course is designed to heilp ynu 1éarn\qnme Eundamental :
programm concepts through the BASIC lamguage. BASIC is widely \
used; 1t [iX\probably 3vai]ah1e on almost .any computer system you are
-likely td emgounter. BIP is an acromym for "BASIC Instructional
Program," the progtam that runs thisg course. It is used only for
this purpose and you will néver hear. of it in annthersCﬂntexC.)

The version of BA%IC qud in this course is not ddentical w1th
' the many. other versions you may find elsewhere. However, the ' ' .
fund amentals are Lhe same,; and the transition te another versian ﬁf
BASIC will be easy.' :

—t
P

: I.Z Using,ghe Manual

- This msﬁuAL is megnt ta be an easy and - East source of reference
material. It will be most effeetive if you have it with.you while you
are wgrkiﬁg at the terminal, 'Try to become familiar with the manual,
l::ut do not tfy to memorize it, E\eep ltgﬁaﬂdyfnd refer to it Gft?ng

i

_ The First section of the manual intfoduces you to BIP and some’
of Ehe keys on the terminal that you should know about. The main body of
the manual is the second section, which axplaiiq Eundampntal programming -
Qoncepts and ‘stractures and describes the lanpuage in which you will
write your own programs (namely‘ BASIC). The third section lists and
‘explalns BIP's -special .commands’. The fourth part is a glossary of all ‘
the terms used 1in the manual, with referenzes to tﬁ% appropriate sections -
for fu:ther infarmatign._

' The manual is not intend%d to be a task-by-task ghlﬂe to the
. course., It is.a reference manual that contadins a campléte description
~ 7+ of all .the BASIC statements thef sentences" of the language) and BIP
" commands. Especially when you first start programming, a reference
" marual contains a latge*amau t of lnfDrmatlﬂﬂ that you are not ready t
‘use. You ‘must try to isalstg ‘exactly what you“re looking for,. and .
igncre information that daésn t seem to relate to .your immediate problem,
» . This is not easy, but {1t bezamés easier with practice, The glpssary ig;
" . ;-usually a good place to szaft

- ‘Advice: Dﬂn’t be afrsid to make-mistakes, A Cﬂmputar is a

SR - consigtent machine, and you can freq921t1y discover what works and what
o doesn’t by trying diffefenx ways of doing something and k@tchingﬂthe
results carefully., The manqa%‘iﬁ full of sample programs that
illustrate th BASIC works. G@py and RUN these pragrams whgnEVEf you
like, . . | ’

i -
L r
= .

N

ERIC

Aruitoxt provided by Eic:

-

1.3

_ ‘WheneveTr you want to use a ﬂDmpUEPF ynu always have to tart
by.;stablishing communication with the machine somehow, letting the
computer kfiow who -you are and what you .want to do. %k use BIP, you
alwaysestart by "signing onl' with your assigned- BIP number, The details
of the sign-on procedure will depend on where you are and what computer
you are using to take this course, so yQu willthVE to flnd someone who
knmw% thesa details 1] ;-

P,

In any case, these things are always true:

= i
" The terminal will say | ' ’ ‘ .
S Yy i - . . .
_ bt O ATt _
~ . WELCOME TO BIP!!
: SN - . . N
TYPR ? FOR HELP o g

* Lo L o V“R S \

and you have signed on, You will sign.on in this w¥y every tim&=yaﬁ
work with BIP. ' : C (k ’ [
‘cr> means the key maﬁked "CR". or . "RFTURN" on the’ right side of che
keybaﬂfd and is an abbreviation fo cafrlige return.,

Thé key marked "'DEL" (@n the right side of the kéybaard) erﬁges the
last character ynu typed like a backspace.

‘Once you have signed on, you will be "talking" to BIP.,. You must
~type <cr> to end each line you type. BIP reads and fESpDndS to your
L commands after you type <cr>, BIP typES a b every time it is ready
- far yuu tn type samething._

It' i5 not too soon to tell yau about’ sipﬁ1ng off. You must sign off
befora you leave the termdinal. ‘Do it by typing BYE <cr>
to- B[P The terminal .should pfint a shatt message endlng with GDQDBYE

S

Ple se dQsﬂQLEIéEVE a':ermiﬂal that has not Said CDQD to you.

DSCasianallyi yﬂu will be the victim of a. Systém errn:
‘ or a "systemdrash.” These are uneéxpected, unpredictable, unavoldable
+ . events. You will know that one has occurred either hecause: your

. terminal SuddEﬁly prints sﬂmething like " SORRY, SYSTEM. ERROR" or because
, your tarminal stops prlnting anything at all. If you are near any other

people using the same computer, you can. ask, them whether they are still

"getting any* cesponse; if they are, ggﬁ you aren’t. you should probably

Eind the pErSGﬁ %PD knows something about "BIF;

1

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

L.4 Talking to BIP

i
B

BIP does not present léssans on pfagramming. It daea not ask ~
questiona and walt for you to type correct answers. It does present
pregramming tasks that require you to write BASI§ programs. By
writing, running, testing, and fixinp your own programs, vyou will
learn a lot .about programming. BIP will help you, not by knowing

the correct answers (many differpnt
result) but by identifying errg
presgnting tasks that build ¢

The pattern Gf the inceractian between yau and BIP generally goes

programs can produce the "right"
‘s, giving you more infurmatian._and
the skills yqu have develaped

like this. -

error mess) ges printed by BIP, or by your program doing g ething
you do not/ expect when you run it, -There grélspecific wagf

You ‘ask for a task, by typing TASK, BIP prints Dut the
'rEquifemencs for a program. that it expects you tn ; '

velte and run. >

You write the program, test i{t, fix it, test it, and camplete
it. You will make a number of errors along the way, many of
vhich will cause BIP. to print an ‘error message, telling

" you that it can’t understand what you typed or can’t

do what you told it to do. . v —
Having written the program required by, the'Easkiqtatem21t,
you type MORE, and BIP looks at your program to see S

that it works as it should. BIP then completes the

task by giving you: the "post-task intervigw." . In some
‘cases, the current task will be extended wath some
sdditianal rEqU1EEmERES
hin that patterﬂ. many additional thlngs may happen. You.
""fQQEd either by the statement of the problem, by .the

to deal

el kind of caﬁfusiani e . P

If the task 1s not cléari you may request a HINT ot use REP.
.To.get a better idea of the output your program should
xpfﬂducéi you. mgy run a-DEMO.)

ILf the mean'ing of the error ‘messages s not - clear, ?éﬁ may
,type a question mark (?) 1uﬂ after the message is

printed. BIP will give you some brief information about that
error.. You shauld also look in. the glossary for mare

» infﬂrmation,‘startiﬁg with the first word or phrase that you

.doni"t understind. Use the cross-—references to find thc
information you need S . :

"If your own program does not behsve as you want it to, yau

should flfst LIST it to see exactly what it says. ‘You should'
also use one of the debugging options—=TRACE or FLDanwhich
will show you, in detail, your program in action.

L - ! (continued)

1.4

H

(13

i‘A .
(L.4)

' HI CHARL& !

=) ﬁ
Sfa s : _ '7 i -
e - B - (1.4)

o i
!

[f you are already confused just by reading this. g0 to the

gglnssary at the end of the: manual and start looking up the words

printed here in upper case, like TASK. Do not. try to memorize anything.
Do. try to get an idea of how . you can find information in the manuale.

(=1
haif

I 5 A Ssmple Interactign with BIP

This dial@gue shDuld give you an idea of umat it’s like to Wéfk !
with BIP and {llustrate how you can learn from your errors. The

student’s typing 1is underlined- everything else in upper case is Hflﬂted

by BIP,’ (You will never nave to type underlines yourself when you»use

"BIP.) Comments and explanatiaﬂ appear at'the right in lower case.

Remember that each line of student’s typing ends vith a <cr>.

: Start by signiﬂg ﬂg,m You hit the
g, - gpace bar, and the dialogue begins.
" (This is the ‘Stanford sign-on. If you
are somewhere else, yours will differ.)

HI ° S | | : e

ELLASE TYPE YOUR NUHBER AND NAME.
1234 CHARLES BDGLE. ; .

&

JOB 11 ON T y332 ~ THU DEC 18 75 9:37AﬁeFST

WELGOME 70 BIP II ﬁ\‘
TYPE "?" FOR HELP o | o
- . A reminder that infarmatlnh is always
availabie '

*TASK - . . - You ask for something to do.

" BEGIN' TASK: SIRINGY
USE THE -SCR- COMMAND TO SCRATCH (ERASE) YOUR. FRFVIOU& PRGGRAH IF ANY,

WRITE A PRDGRAH THAT PRINTS THE QTRING "SCHOOE"; -START WITH THE
GLOSSARY TO FIND OUT WHAT A STRING 15, . . '
) BIP describes a program for you to write
" (continued)
L]

>-xl()

ﬁﬁﬁh) . | _ . R | | A J
(;.5) N fi‘ : A 'fs\xf (1.5)

- ‘L MSCR : #First get fid of any old program that’s
L e : . left over from a previous taﬂk i
AMHINT . ' : .. You’re not sure how to start, so you

m——— T " ask for a HINT.
HINT #1 . S

- TGUR PROGRAM SHDULD HAVE TWO STATLMFNIS IN. TT: ONE ﬂPRINF— STATFMINT
: AND ONE -END- STATEMENT. DON’ "T FORGET ABOUT LINE, NUMHFR%. AND DON” I -
. FORGET THAT %TRINGS MUST HAVF QUDFE MARKS ARDUND THEM. :

o ~ *DEMO . S : _.Yaujzake a look at-what the.model does.
FXECUTION ‘0F THE MODEL o B

1 , o . | o
scﬂoaL x | - | -

FKECUTIQN COMPLETED AT LINE 99

ZL RENO ENDED .
| As you thought, the model is a program

_ that pfiﬂt% "ELHDDL"

o

*PRINT . ' You type what you think is 5 —PRINT-
S =) ' statement

BASIC STATEHENTS MUST HAVE A LINE NUHBER

LINE NOT ACCEPTED, CTYPE ? FOR HELP) - ' _ . o,
‘ ~ And you are reminded thqt you need a .

" line number

' ’ S . L .
»*10 PRINT . _ .. When yau use the line number, BIP
B St QJ P doesn’ t agmplain : . L
et LRl "SCHOQ&Q e o . Now you tfy to say what it isg that you
ffjfx”, B ittt . : V,Wsnt your prngram to print. .

o
- MISSING-BASIC OPERATOR :
 LINE NOT ACCEPTED, (TYPE ? FDR HELP)
o - A ' But that must not be the way to do it
: You ask for more help by typing a o
% ..

a

—

QHLGE TD SEE IF YDU HAVE A CQRRECT BASIC STATEHENT oN- THIS LINE

B S | " BIP can’t tell what to do with "SCHOOL"
‘ ' - © . all by itself. ‘You need a BASIC
L : o statement that ﬂae% somethifng with the
o R N o string "SCHOOL". You decide to consult
C s LI C T the manual. : :
0 ‘ (continued)
5

17

L*L0 PRINT "'SCHOOL, . ' The right idea: a —PRINT- statement -
ﬁﬁqﬂfnﬂuaauaﬁegﬂ -, that prints someéthing, !

SYNTAX ERROR: UNMATCHED QUOTE MARKS

LINE NOT ACCEPTED. ~(TYPE 7 FOR HBLP)

'
'

But sometbing is wrong, and you ask”
for more help., . . _ .

%7 : ..

© RIMEMBER THAT ALL SIRI&GSfHUST HAVE A" QUOTE AT THE BEGINNING AND END S
TYPE ? FOR MORE MELP - - o PN R
, ‘ ' " That makes sense. S R
3= = . . . -) .
. *lo PRINT "SLHOOI" © : You try again on the ~PRINT- statement.
-wAS; 10 PRINT _ . :
BIP*didn’t complain. Lt just remindéd
you that you have replaced: Ilné 1D '
Things lank .good.
*RUN - , - : 'So yDu tey tg ~RUN= the pfagtam to see
e . s T if it wnrkg . . o T
ERROR DOCTOR DIACNOSI& NO END AT FND : -~
) -LOOK AT IINE NUMBER: 10 o : i : L ?
"TYPE ? FOR HELP. . ‘ ' : - . :
R .o S _ - It doesn’t.even run. It needs to have
PR C - : ' . an -EN[-- Scatement_
*7 77?.“ . T . ' You ask for more hplp.
IVERY ERGBRAH HHQULD HAVE FXACT]Y ONE = -FND=- STAIEMENT —— THE‘LAST
LINE OF THE PROGRAM :
TYPE 7 FOR MORE HELP , N ,
" ' And you understand What it"means. E
%20 END SR E 'S0 you type- an acceptable -END—, }
L e ' You think you havé written a program T
- ' ' .-that does what the task asked for, so o
v you type -MORE- to go on: :
Cen (cortinued)
6
) ‘ 12
e - - . i - . *
O

ERIC

Aruitoxt provided by Eic:

3 =
L]
3 -
LF
e
1
= R

ERIC

Aruitoxt provided by Eic:

4
==

& , i
« *RUN : . [t again,

i

e BXECUTEON "COMPLETED AT LANB-20, oo oo

ta

(L.5) o I (Ls) i

*MORE - .

YOU HAVE NOT RUN THE PROGRAM. - :
but you idm’'t ~RUN— tPe prerram. Yeau
‘ i haven 't actwal ly seen 4t print "SCHOQL"

ye,’ '

. EXBCUTION OF YOUR PROGRAN

SC HOOL,

Youlr Tro ftan £an

B RN vithout any errors, and {t printed tre
str Ing.

AWHAL.. . : - You want to makie Sur e that you neg the
Ll - Teguirements of tre task, so you =sk
fob ics texe again, e

- N

il

YOU ARE IN TASK STRINCY.

DO YOU WANT THE TEXT PRINTED OUT? TYPE Y OR N.

Y) Hdes | please.

USE THE -SCR— COMMAND TO SCRATICH (ERASE) YouR PREVIOUS PROGRAM, 1F ANY,

WRLTE A PROGRAM THAT PRINTS THE STR ING "SCHOQL' . START WLTH THE
GLOSSARY TO FIND OUT WHAT A STRING I§.

= - .
As wou thoygtBt ., Yuu can 2lways us e Lle

—WHAT- commmard review the task,

* MORE ~YouTre realy to go on,

EXECUTION OF THE MOULEL

EXECUTION OF- YOUR PROG MM
LOOKS oK il . EIP compazes yoeh poespram V‘VLL“ Llhe

' model, ind gefos that vours is tLpe .

v Nouw [t asks wou to evaluate yourse 1t
POST TASK INTERVIEW

HERE LS A TYPLCAL SOLUTION TO THI S TASK:
L0 PRINT "SCHOOL"
39 END - , ‘

v

(c m‘Lt {nwed)

O

ERIC

Aruitoxt provided by Eic:

(L.5)

DO YOU UNDERSTAND THE SQLETION? (Y/N): Y

You underscand why the model =orks.

THINK ABOUT THE SKILZS USED T THIS TASK, FOR FACH EKI\;Li
TYPE Y IF YOU HAVE HAD ENOUGH WORK WTITH THAT si¢ IBI2
TYPE N IF YOU THINK YoU NEED MORE WORK ON [T -

PRINT STR ING LI TERAL : ™
; - " You £hink vou'd likKe to do nore
with steings Aand quiot Ati on macks .
BIP will rememper £hat f acc; ¥ou
can exXpect moTe steing@s lacer -
TASK STRINGY COMPLETED,
: The end of this lask.

*TA SK ' : You ask for anmgr her

- BEGIN TASK: PLUSFOIR

THIS PROGRAM SHOUL D A SSLGN THE VALUE 6 TO THE NUMER [C VARIABLE N.
THEN PRINT THE SUM OF N AND 4 .
. You see Zome upfani ligr Cerss, and
realize that ypy have to spend at
least a little tdme with the manual .

*RYE : © You also realigze that you don’ t Pave
y =
e any motre time, 30 you sign off .

SIGNOFF ; THURSDAY, DECIMBER 18, 1975 9:4) 38AM - p T

YOU AV E COMPLETED | “TASK T 0DA.Y:
' STRIN Y

TOTAL TINKE TO DATEz 800 HOUR S
TIME DN TODAY : .06) HIURS
TOTAL S ESS loNS: 2

TUTAL TASKS COMPLETED = 3

(5]

¥ * it 5* A p=
DR. MITTORY SATYS: '"CONSIPER YO URSELF AT HOME,
E()p\’ﬂ[{;ﬁ‘i‘ C) 1973 by THE LELADD STANFORD JUNIOR UNY VERS[Ty

GOODBYE, CHARLES .)
And that™ s 4]l .

L4

ERIC

Aruitoxt provided by Eic:

1.6 géms Hélggq} Characters to Know , * A 1,

.-]
The key marked "CTRL" on the left side of the kevboard works
like a_shift key. You must hold it down while you type a “letter,
For ‘exanple, to type CTRL-X you have to hold the "CTRL" key down
while“you type X. CTRL is pronounced "control." and letters typed
wich che "CTRL" key are called "control characters." CTRL is f
abbreviated witn this mark: - -
s0 "X means the same thing as CTRL-X .

A control character is a special type of command. . You may use
the following control characters at any time: :
“A (or the delete key.,Smarked DEI or DELETE) erases ¢
] last character you typed.
N

X "erases'" the line you are typing, as far as the

> computer is concerned. 1t is useful if you
: discover a mistake you made at the beginning of

the line. After typimp “X, you should start typing
the line again from the beginning .

Note: the following contro] characters have to do with

"editing" the line you are typing. Editing is much easier

to demonst rate than to explain, so as soon as‘you get a -

chance, try out the example shown below under SN, -

"W erases the word you are typing, but not the whole
line., After typing "W, start that last word dgain.
(A word 1s everything back to the™last. space, but

- not including the space,) !

R retypes the current line. °R is useful {f vou’ ve
erysed words or characters and you don”t know what
the line really looks 1ike. :

“E retypes the last line you typed and adds it ta the
current line. This {s so you won't have to type
an incorrect line all over again. (lse the -—ED[T-
command to mgke any line of your program as {if it
were the last line you typed in. For example,
EDIT 70 will "bring back" line 70. BIP will priac
the line S0 you can see exactly whar it is, then

—~allow you to change {t as you please.,

N retypes the next word of the last 1ine you typed,
S . !)]
(A word 1is .everything back to the iast space, but -
not including the space.) -

(continued)

Example: suppose you just typed:
10 PRINT "THE FOX JUMPED OVER THE LAZY DOG"
and you wanted to change it.
Type "N three times to get
10 PRINT "' THE 4
then type -QUICK BROWN (followed by a space) to get
10 PRINT "THE QUICK BROWN co
and then type "F to get the end of the line tacked on:
|0 PRINT "THE QULCK BROWN FOX JUMPED OVER THE LAZY DOG"
Try it on ych tarminal Also see the example in
Seccion T.7: - U /

~Before-you-type-"F o0t-TN- o -a-line you have al egady. - -

started, pufﬁa spdce at the end of the line so tha
words don’t run together.)

skips the next word of the Last lime you typed.
Same as ~N followed by ~W.

¥** Memorize these three control characters now. You will need them:

T (1.6)
§
~s
~z
~G
» HOLD
\‘1

ERIC

Aruitoxt provided by Eic:

signs you of f. Emergency escape if your terminal
"hangs up”.

{nterrupts the running (Exeﬁutiﬂﬂ)'ﬂf yéut ﬁfaéf&mj
You will occasionally write a program that never

.reaches 1ts end, cyping or computing interminably.

Typing "G may be the only wvay to force {t to a halrt.
You may want to "abort" your program with G at
other times, too-—any time you don’t want (t to

rurr all the way to the FENI-, ;

stops the screen S0 that you can read everything
before it disappears off the top.

There may be a key marked "HOLD'' on your terminal.

[f not, use ctrl-shift-0 (push the shifc key and

the ctrl key at the same time, and type thdhletter O
while they are down). You don’t need to hold the key(s)
down to freeze the screen. Jusc hit HOLD once and

the screen will stop within a4 second eor so, When you
want to start the screen moving, hit HOLD again. Any
other character will also start the/Hcreen moving after
you stop it, but that character will alEa pftﬁg*a§Xthp
screen, Ignore it, 2

o

Cal

. 1.7 Error Messages and Changing fggf Program — R 4

"Errors" were mentioned earlier. In the context of this course, an
- error is something that BIP knows it cannot handle correctly. For
7 rgj ~example, if you type something like "RASK" when youl meant to type
T f "TASK', B1P ‘will glve the error message ILLEGAL BIP COMMAND
%i) because it can’t do anything with the word "RASK". There are thrae .
different kinds of errors that BIP detects and tdlls you about:

o a. "Syntax errors"” are detected 1mm9d1§§eﬁ; aftprf you complece
. your line. There are rules that you must fHlllow when you give
- a BIP command (like the one abave) or type a BASIC statement,

BIP recognizes violations of those rules and complains

- ' immediately. (An error you may make frequently is to misspell
i a word, as 1in the example,) 4
o b. "Error Doctor errors” are detected when you tell BIP to RUN

' your program. A program 1s a list of lnstructions for the
computer to follow: if yuuf program is missing some essencial
things, the computer‘can’t follow the instructions. BIP
H‘s . . recognizes the absence of EhESE eggential things, and]]
you what”s missiﬁg- !

"Executlon errors" are detected as. your progranm is running.
' If your BASIC program turns out to be impossible to follow at
gome polint, BIP will try to tell you what the problem is.
It is a good idea to LLST your program before you make any changes.
You must make some chiﬁges if BIP prints an error message, or 1f the

el

program does not produce the results you want, To make a change,
. retype correctly the line with the error. QUprse you had the line
- 50 PRINT X
and you decided (or BIP forced you) to change it to
50 PRINT Y

Instead. « You vnuld either retype the whole line, subscituting ¥ to;
X, or you could —EDIT- the line (see 1.6) like this:

You type EDIT 50, and BIP prints the lLine as ic 1ls now:

50 PRINT X
It also prints the linme number for you, so noy you ‘type "N to get
; 50 PRINT , ,
o » Then you type the Y at the end, followed by <cr>. and you get
' 50 PRINT Y
&
- BIP will always tell you what the line was before rhe change,
" as a warning in.case you didn’t really want to change that line. (I[f

thia is Ehe case, you must change it back apain.)
1
If you want to deléte a line completely, type the 1line number and
the "CR" key. Then. LIST the program to be sure you have what you want.

11

ERIC | ,

Aruitoxt provided by Eic:

SECTION II. PROGRAMMING IN BASIC WITH BIP

) TLis 1s the main body of the manual. It 1is organized by complexity
of concépts——the most fundamental first, the more advanced later.” since
programming concepts frequently overlap, however, you will have to
bounce forward and back to find che informatién yvou need in a
partitular situation.) ' .

-Do not try to memorize the Information, especially the firSt time
you read this section. You'may not even want to read this entire

. ¢ Section of the manual at ome time. Sub-sections that should be read
. © % . together, if you choose to read chunks at a time, are:
Il.l - I1.4 Some ' fundamentals of programming in BASIC.
LI.5 - I1.1! Input, ouwtput, assignment, and var iables.

I1.12 - 1Z2.13 Bxpressions.
o _ Ll.14 - 1E. 16 _ INPUT and READ statements., :
\ II.17 - IL.20 Sequence and control of execution,
" [1.21 = 11.23 FOR, GOSUB, and functioms.
Read 1I.24 the first time you see STOP or RFM in the model solution.

[

1.1

A computer is not sgmart. It éan inﬁggb‘whac it 15 instruGted 5
do, and every tiny step mus:i be communicated in a [form that the
computer can understand. A program is a list of nstructions to a
conputar . :

Writing a program involves three big stages: \
a. Specify In complete detall what the program 4§ suppased to do.
, b. Translate your statement of the problem i#ffo a language the
| . computer understands, o .
¢. Check theigfagram to be sure rhat it does everything VOU want
it to do.

The difficulty of each stage relative to the others may
vary, but none of the three can ever be ignored just because the
programmer thinks "{t’s too easy."” 1In particular, you must not Neg lect
the first stage, the detailed description of the problem. 1t is
often useful to write out in English exactly what you want the
progran to do, and im what order. You should lige the steps vou
would have to follow to solve the problem by yourgelf; {f youy cannot
do this, you will not be able to use a computer to solve the problem,
For éxample, you can ask a friend to pive you two numbers, and You can
tell him the result of multiplylng those numbers together, 1If you
think about it, you can see that there are a number of gteps {nvolvey:
Ask for the flrst number i
Hear it and remember 1t s \
Ask for the second number

B \C@ﬂtlﬂueﬂ)

Q . ’ [¢
ERIC _ ' . , 13 -

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

Iastructions—tnr exactly the foitm that the computer,-through a3 . -.. .

- ‘ . -

(L) = , | Sanb

Al

Hear it®and Eememhér it .
Multiply and femaﬂﬁgr the result ¢
Tell your friend thd result

The more specific you #re in describing each step of the problenm,
the easier it will be to complete the second stage, where you translate
your English into a programmding language. A computer canﬁqt understand
Englisn, nor can it guess at your meaning if you give it an instruction
that is only close to what you meant. The rules governing rhe syntax,
or grammar, of pf@éramming languages are rigid, and you musr use the
correct words, the correct puactuatiop, etc. Just remember that your

TEORTISRYI1st of stéps, dlthough essential, is not yet a computer

program; ‘you must translate each step into a series of symbolic

programming language, can accept. This becomes much easier with
practice, just as im "any other E%féign lanpguage. . .

The third?siagé in writing a progranm, fne e you Eheck everything®
to be sure it all works as you want it to,” is as necessary as the other
two. The computer will follow exactly the instructgions you give it.

[£ these instructions do not say precisely what you meant, the program

4ill not quite do what you want. Becausé programs must be so precise,

it is easy to overlook small but important details, and very few
programs run ""correctly” jthe first time. No computer will make up for
your negligerce, so you must check the results of your program at least
a8 carefully as you thought out the problem in the first place. This
process, called "debugging,” is tedious but necessary. If a program
doesn’t work. 1£’s usually the programmer’s fault, notlthe computer’s.

i !

14

-

) .
AN, :
»I1.2 Program Storage and Execution gz,z
4 [n many programming languages, you first y,ite Your list of

instruct¥ens, and then tell the compyter to fg)jow all .pe instructions
in-the list. Your list is sometimes called a "orofed pgggram” because
the computer must store the instructions up uneil the time that you tell
f%f ' . 1t to begln execlting them. Execution it alled "runniyg" the progran.
‘1 QT -
i 7 Whether the purpose of the program 1% 't perfof™ copplicated
‘ -7 calculations or to play a simulated card ‘game ¢ mMUSC pave some
information on which to operate. This inforMa¢ion is tglled data, and
much of the data required by a program can be stored in ghe progran
\ itself. The alternative to storing the data 1ﬁ'ghe Prog ranm 18 to have
the usef (the pefgon who runs the pf@grgm)-snpply §0me é§ga'when the
program Stops and asks for it. -7

i . T - . . . g R
y F@? eXample, a program whose purpese 1s to print a |g by 10
* myltiplication table should have all jits inforpaeion stoped within it.
It 18 not necessary to request information whey rhe Propgam is actually
., executed--the user simply tells the computer tg pun thay particular
. ﬁfagram{ In contrast, consider a pProgram that*plays a pgme with the
user. Such a program needs to get ipformation as it rupg, since the
Prggré5§ of a game cannot be planned in advancg K The pbégram must
stop ant ask the user for informatiop.—what Moye he WaNtg to make,
for example, This second kind of program 1S cgjled intgractive'
because It requires the programmer to plan for intefactign with the
. user of the program as it runs. :

3 s

In elither type of program, the data that th, prORran deals with
must be kept in the computer in a way that makeg it &ccCegsible to the
Program. This is done by the use of variables ,f differgnt data types,
Which are discussed specifically in sgctions Iy, 7 ghfoug, II.9.

A word about "the user'": Programmers usual |y write S rograms
for other people to use. Whether the program czlculltes payroll checks
or plays 8 card game, it will be useq by someén, ocher tpan the person
who wrote and debugged {t. As you write Your ayn pfO8ragps, remember
thig nypothetical person called "the yger." Try to Make gour programs
understandable and complete’ enough that a frieng of Yourg could sit
down and run them without any trouble i

——
[t’s also a good idea to {nclude "remarks" inside yas? program,
= with the -REM- gtatement. A remark (a]so calleq g "commgat") is very

Simple: 1t"s just a note to yourself that eXplgins SOmeping about
the program without affecting the way the proRrgy runs ap all. You
will be surprised to see howWw soon Yoy can forger what an 'old" program
(a week pld, for example) 1s supposed to do. RpMarks thye are saved
as part of the program itself are handy notes tg remind y,u.

7 {gontinued)
. ﬁ.i .
‘ <
Q - { v

ERIC -

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

=

(I1.2) . ‘ = : ' (11.2)

It is not hard to write a program that does the same thing
over and over, never stqopping. To force a program like this to a half,
hald~dqwﬁ the ""CTRL" key while you type the letter G. A program that
never stops is in an "endless loop" which yqu must stop or "interrupt.”
The -GOTO- section (I1.18) has an example of thig kind of loop.

I1.3 Line Numbers 1.3

Almost all implementations of BAGIC
each line of your program. Each lin
to BASIC, telling it to do some specific thing. When you ruan a BASIC
program, BASIC finds and obeys .the instruction with the lowest line
number, ther/ the one with the next higher number, etc. You need not
type in your statements in order, because BASIC cangsort: them out by
line number, but you must number them in the order “you want BASIC to
follow. A general practice is to use multiples of 10 as your line
numbers so that you have plenty of numbers available if you want to
insert something between two already existing lines. 'BIP allows you
to have up to 300 lines in a gingle program, but most prai?m%% will be

much shorter.
. .
) Zﬁ \\x\

Il.4 END , _ : . CIL.4

require you tu number
r

., Or statement, is an inscruction

=

Use: To tell the computer when if has finished executing vour program.

u

»ﬂﬂw

Example: :
99 END

Remarks: .
Fvery BASIU program must have an END statemeat. The END
statement must have the hiphest line number in the program.

See STOP (11.24.1).

L

[1.5 Input/Output IT.5

.This term refers to the problem of communicating with the computer:
how you tell it to do something for you. and how you make (it deliver
the results in’'a way you can understand. Most pEﬂplE communicate with

‘computers through programs, so the subjects of input and output neally

deal with providing information to your program that makes it provide

meaningful information to you. -
(continued)

O

ERIC

Aruitoxt provided by Eic:

frequently in the form of information Qxinted op“the ude

‘Examples: o

(11.5) ‘ (11.5)
- [

Input 1s information that goes into the program. It can be stored \

(as part of the program itself) when the progTam is written, or given

byjthe user when the program is run.
7

Dutput is the visible result of afprogram’s ey

ECu’gDn e is

of it may be transmitted to a lineprinting device, or t

tape, etc, In the case of interactive programs, it is
programmer to remember that the output his program prints hp—
by gomeone else., and .must be reasonably understandable. A 1"1Dgl'
between 8 person and a computer is pointless if neither underqtand% - *
what the cher says, ’ T

-~
1.6 PRINT . . N ' 11.6

Use: To get your program to.type something on the terminal . J

40 PRINT 4 SRR 'f ,
40 PRINT Y + 10
40 PRINT AS
40 PRINT "pog!'
40 PRINT 10 < 15
40 PRINT "THE VALUE OF X I§ "; X3 " AND X SQUARED s ', X72
40 PRINT (prints a blauk line.)
Remarks:
Use the PRINT statement whenever you want to have your program
Lype something. Anything surraunded by quote marks 1s taken literasiiy

Anything without quote marks is "evaluated"—-BASIC figures out what
its value is, and PRINT prints that value.

The statement i 5
40 PRINT "X"
prints just thellEEEEE X, because of the quale marks . The statement '

40 PRINT X \\
makes BASIC look up\the value of the variable X, then print that
nunber. There are no quote marks so0 BASIC has to evaluate X. (Read
ahout values, variables, and evaluatian in the next few sections.)

(continued)

17

29
. Fod

O

ERIC

Aruitoxt provided by Eic:

(Ii.6)

loolean values can be printed too. The statement
40 PRINT 1Q > 9 .)
prints TRUE on the terminal, because 10 is greater than 9.

40 PRINT 10 = 100/2 /
2

prints FALSE, because 10 1is not, equal to 100 divided by 2.

"Fancy" PRINT statements:
y ¢
Using a semicolon between two expressions allows you to print

" more than one expression onm a single line. You may combine different
types of expressions in a PRINT statement. The semicolon allows vou

to PRINT both literals and variables in one statement, which can make
your program”s output look good. For example, you could use two
PRINT statements like this: '

40 PRINT "y 18"

50 PRINT Y]
which would tell the user of the hfugfam the value of the variable Y,

.but would take two lines,of output to do it. A nicer way to do it

would be like this:
40 PRINT "Y 158 "; Y
which would' give the same information, but all ou one line.

A more complicated example: Assume that the vartable X has the
value 4,.and: the "variable Y has the value 5. The statement

40 PRINT "THE SUM OF YOUR NUMBERS 18 "3 X+Y
will cause BASIC to print

THE SUM OF YOUR''NUMBERS IS 9

The statement
40 PRINT "X + Y =
will cause BASIC to p

15 [8 "7, X+¥=15
rin
X +Y 15 IS5 FALSE

L

1]

Remember to use spaces Inslde yods_ quotalica moika whet o

you ﬁee% them, Some implementations of “BASLGs insert a space [,
every %gm{calnni but BIP’s BASIC does not,

See Variables (IL.8 - I1.11) and Expressions (11.12, (1.1, 11.19).

i &

o

18

I1.7 Data Types and Values ‘

v Most programming languages operate on three different types
of information: aumeric, string, and Boolean, Many languages do not
~ ' allow the programmer to.combine different kinds of information in a
single expression, and it is essential that you understand the
0 _ differences,

s

Numeric information is easy to understand. A number or a
numeric expression {s a thing that you can add, or find the square
root of, ‘ 2 : o :

A string is a serles of éhafacters in a particular order. (A
character is something a typewrliter can generate, including letters,
numerals, puﬁﬁtuatigni and spaces.) Yéﬁ'canﬁa: add or multiply strings -
48 you can numbers, although most languages allow vou to perform some
operations on strings. In the course -you are taking, your name is
stored in the computer as a string, which i{s why the terminal can type
your last name for you when you sign on. A string expression is a thing
that has this kind of value, as opposed to a numeric value.

Boolean information is understood by the computer to be either
true or false. In most programming languages, you can tell the computer
to do one thing if something is true, and another thing if it is false.
The value of a Boolean expression is always ef{ther true or false. (The
word "Boolean'" comes from the name of a mathematician named Boole.)

. . . = o — — ’
A word about the size of numbers and tha length of strings in
BIP: Although you can use very large numbers T%deigits, for example) .
_ BIP is only accurate to 10 places, so very large numbers Tavolve very
* large errors. Your strings can be quite long (100 characters, Por
exampla), but yaﬁ only have room for about 60 characters on a line.
So you should keep your numbers to a size of 10 digits or less, and
your strings tg 60 characfers @ragéssi Boolean information has no
size to gpeak of, so enoygh has been said.

FRIC ~ ;

Aruitoxt provided by Eic:

ERI

Aruitoxt provided by Eic:

LL,8 Pyimaries _— 1T.8.

Whan your program is executed, the computer must be able to
know, or to find, the value of all the pieces of information in it., As
described in the previous section, these values may be numeric, string,
or Boolean. - j '

The ' infﬂrmaﬁlqn that yout program deals with can be extremely

‘8imple, or extremely Cﬂmplex. or anything in between. A primary is

the simplest kind of information that you can talk about, because the
computer must go through at most one step to find its value. Numeric
and gtxing primaries exist in almost all programming languages, either
as literals (also called ccnstancs) or as varlables, requiring ,
assfignment of values.,

Literals are very straightforward. What you see is what you
get; a literal is taken literally. A numeric literal 1is what you
immediately recognize as a number: fot example, 7 or -6.8. A string
literal is enclosed in quotation marks and js snmething you immedigtely
recognize as a sequence of characters: for example, "DOG", or "*x|1|",
Ine only slightly tricky thing about string literals is that the
ﬂnarsctars may be numerals, but the value of the string iz still a ,
string, not a number: for example. "6" cannot be added or multiplied.
”6” is just samething that can be printed, like "A" or "XYZ'".

The other kind of primary ls the variable. Variables are used
as names for values or as "boxes" to hold values. The value of a
variable is either a number or a string, depending on what was assigned
Lo the vartable. ' '

There are two kinds of variables. A simple variable is a "box" that
nolds one value, either one string or one number. A subscripted
variable (often called an "array variable") can hold many values, in
order, all under the same name.

Simple variables are like the single boxes below. The flrsac one
i1sa numeric variable, because the value in the box is a number. The
sacond 1§ a etring variable, because the value in the hox is a string.

N |15 | , DS | "oucH" |
[n this example, the value of the variable N is 15, and the value of
the variable D$ is "OUCH". (BASIC string variables always have thdt
dollar #lgn. The variable DS is pronounced "D string" or "D dollar''.)

(continued)

QO

ERIC

Aruitoxt provided by Eic:

v (11. 8)

(I1.8)
Subscripted variables are like-the multiple boxes belaw Each box
has only one name, but (in this example) three "slots.'" Each slot can
hold a value of its own. CL
(1) 7 (2) &) (1% (2) &=
N ! 8 l' l D , d' 5 ' DS l ”DH” l!s-l |iHIii l;.s' !IDHH I

In this example, the value of N(l) is 8, N(2) is 0, and N(3) is 5. The
variable N is being used to hold a list (or "array") of numbers. The
string variable DS is being used to hold a list or array of scrings;
the value of DS(1) 1s "OH", DS(2) 1is ""HI", and DS(3) is "DH" N(1)

is pronounced "N sub 1" and DS(3) 1is pronounced "D string sub 3."

) Each of -the elements in a subscripted variable can-be treated

as a separaté variable. Its yalue can be changed by an assignment
gtatement, or it can be compaked to another value, or it can be printed,
etc. Subscripted variables chn have as man y elements or "slots" as

you like. See I11.16 for more information about their use.

The important thing to remember about both literals and
variables is that they do not involve any operations or calculations.
In the case of literals, the value is simply the literal itself-—nothing
is hidden. In the case of a varlable, the computer can find its value
immediately by looking in the "box" named by the variable, where the
value is stored,

o
See BASIU Variables and Assignment (11.9 - [1.11).

21

0o
o

11 9 BASIC Vnriablesr',' T R SR

f:, Use' To name 1ocations (or "boxes)'wheFE'vaIUES are stored.

. X B ..__
. N

“ - h amples. LT L o '.., Lo T

‘Alnumeric variable names a "hox" whose contents must have . v
‘some numeric vaLue~~for example._~6 ‘or 2.5-—that can be changed by #
" arithmetic operations liké\addition or division, A numeric variable-
'must be a single letter or a single letter and a single dipit. In
« the’ above examplea. Y and'XZ .are numerie variahles.

,_'-:" J =
, L ; Ly . . ,
’ fA string variable names-a "box" whose contents must have .
some "'string" Va}ue~~for example. HORSE—==that &an be chanped by
‘the string operation called concatenatinn A string variable must N

be a letter. followed by the $‘charaeter. In the above examples,. BS is
a etring variable. . . T

i

Seé‘Pfim“fieS (I11.8) and Assignment (II.10 - II.11).

- ﬂIL}lO Assignment’ I1.10
o s ALL programming 1anguages make extensive use nf variables‘ the,
' "boxes" used to hold values. A program that deals only with literals
cannot be used in any kind 6f general way, since nothing within the
‘ program can ever change. For example, a program that adds 2 + 4 has
’ ‘limited:use; "but a program that uses variables to hold the values of
') two* numbers.-then adds them, 1s obvinusly mﬂre uqeful since that
program can add any two numbers. _ : - '

’

f'The mechanism by which ‘variables are given valugs is Eﬂlled
assipnment.- The simplest form of assignment is this:
<variable> = <1iteral> o Ce . B
; For example: . 5 ' L : S :
> X =5 . . : ; : _ S
% After this assignment is done. the variable X "ha5 the value 5. Any
- ‘reference. ro X (like printing. it or: adding 1 to .it) is aetually a
reference to the "box" whose name 1s ¥, the box that now has 5 in‘it.
'The value of X can be changed by another assignment, after which every
reference to X will be taken as a reference to that new value.. '

o

L

. o ,
r e
. . . . '

(cnntinned):

R Co T

Aruitoxt provided by Eic:

(IT.10)

H

o c'_zz,m) :

N A Ths vslus sssignsd to a varisbls can be givsn a8 an exprssslon,.
ST e cnmbining two, pr more vsluss. .Thus ths value. of X could bs sssignsd as

‘Ko 5*4 - ' ’ 0
or, assuming that ths Vsrisble Y: had sltsﬂdy bssn ﬂssignsd a vslur of
ita own, o :
X =Y +1

' e . b .
- :When the computsr executes sn sssignmsnt ststemsnt‘ it fbllows
these steps: . ‘
, : a. Evaluate the exprsssian on the right sids of the . "='" gign.
' o b. Put that value into the "box'" named by the vsrisbls on' the

lsft side of ths "=" gign,

=

ihus, ths assignment X=Y+1 means, "Find the value of
and add.1 to it. Then assign that result as the value of X." No tje
that the wvalue of Y is not changed by ‘this assignment. Only th&
variable on the left side of the = sign fiets a.new value. (Do not .
confuse your right snd left.hands, or your variables will seem to have -
strsngs Vsluas) ‘

;

]

s The assignment X=X +1 means, "Find the current.value
. 0f X, Add 1 to it, and assign that new value to X." If X had the .
value 5 before the execution of the sssigﬂmsnt statement, then it would.
hsvs the vslus 6 sfts: the assignment ’

Ihs contents of the varilable on the left side of- the "t sigﬁ
are always replaced by the value of the sxprsssisn on ths right gide. -
The old value of the variable (whstsvsr ‘value it had bsfsrs Ehs
assignment statement) is lost.

28

ERIC

Aruitoxt provided by Eic:

UL LET (Asoigoment) .

Use: To pive a valua to a vafiablea=

'(Naﬁez In"BIP s BASIL you’ may use- aithe: thex" " gipn
or the " _"'sign in asesignment statements. The " " will print 1%_
an underline or as a lefceartgw on yuuf termjnal 1nd you typE

Examplesi
10'LET X = 5

10 BS,; "HELLO? | ?
1o A2 = A2+ 1 L
16 x$?(1)’% "RAINDROP"
.Afiﬁe éﬁfdtLET is éptiﬂﬂal;) S _ N ' ‘

Remarks: : . v .
BASIC variables are assigned value5 as explained above in I1.10.

- Note that the "=" sign does not: indicate equality in.this ‘context;
instead, in 'assignment statements, =it ﬁﬁd " " mean something more like

"bgcbmés or ""Has the value of " R o fﬁf

The assignment Stscement in BASIC is called the LET statement,
to remind you that . . ‘ ’

LET X _ 5 and - X =5 .
" both mean “Let‘x have the value 5."

Rememher that ‘right and left are dlfferant, and that

MS = NS + . .
‘means "find ;he value of N$g Assign that value to M$." This LET.
statement will not change the value of NS.

A statemekt like <

- 100 = X or- ~ "DOG" =M$ -
will cause a syntax error from BIP, becduse you can’t assigfn. a value
to 100 or to "DOG". 1If you want the value of X to be 100, .you should
say. X =°100 and if you want the value of M$ to be "DoG", you-

should say M$ = "DOG",

ﬂ!l\

See Data Eypes, Frimarles, and BASIG Variables (II.7 - II 9). Also
see DIH (II 16).

24

™

v

@i.lz Expteaaiana and Dperacnfé_ - oo ‘ ’ v ‘ II.12

A primary can be Either a variable or a litgral In
either tage, the cnmputet must B0 - ‘through at most one g
the value of a primary. An operator is a Hymbol that
to cnmbine Or compare two primatiea in some way. @:’

2p.to determine
¢11s- the computer

Using these definitions. an expreasion can be defined ag
Either a p:imary A e :

Examples: "CAT"

. . B .

E

or a prima:y follgwed by an operator, followed by an expression,

_ Examples X + 1
W$ & "qDNG" a .
(644) * 9" ’ ’
((6 + Y2) = (A + H)) / X

- "DOG" & (F$ & WS) - ., -.
"R$ (1, 3) & R§

(A >m B) OR (D$ = "DOG'")y

)

Using the term Expression":in itE own definition means that
an expression can.be almost infinitely qamplex Prngramming languages |
follow a process of evsluating each part of the expression, and then '

‘putting it-all together to find the value of the expression as a whole,

(Ihink of how you determine the meaning of a complicated phrase like.
"the sister of the father of my brother’s sister’s son’s mother," A
computer determines the meaning, or value, of each part .of an expression
in a Bimilar way.) ; ' . '
More gﬂmplicatgd expressions are avaluated from left to right
and, when necessa:y. according to .the following rules:
a, Expréssiﬂns within the innermnat paréntheses are evaluated
first. ‘ :
b. Expanentiatian (™) 1is done before any other operations.
C. “Multiplication (*) and division (/) are done next, '
d. Additian {+) and subtfactinn (-) are next.

This means that you may need to ‘'use parentheses to make the computer
evaluate .an expression correctly. Im addition, you should always use
spaces and parentheses to make your expressions easy for .you to tead
Extra spaces or extra pairs of parentheses will not cause.errors,

. Some examplés:

54+ 3/ 2 "2 1is évaluated as 5 + (3 / (272)) = 5775
((5+3) /2) 2 1s evaluated as (8/2) "2 .= 16, a
PR . , R (continﬁed)
) 25 ' i

(- o - o S ana

\ o . : .) e B _‘ .i
One essential thing to remember about using operators in =)) -
programs ia that you must be Explicit . Although normal algebraic ~

notation like - - v
A+ 28 | . 3
is clear to you “and your slgebra ‘hoolk, 1t is not clear to the cpmputer o i
Any time you want the program to perform multiplicacinn, yDu must say
so, ugsually with the multiplication vperator "' | The equivalent of -
the above algebraic gxpression is . e o - :
3 A+ 2%B : s
You wiLI also quickly notice that your. terminal cannot type : Co .
exponents up 'above the bdse.. .Exponentiation is always indicated on
the same line, usually with the """ operator, (On some terminals,
there 18 a key with an- a:rﬁw that - pnints upward. On others, you get S
. the "up arrow" with shift-N.) Thus, to get 17 squared, you must use ’
o 17 -2, ' .
‘ (Remember, spaggs'sre a?tianéli 1772 is also 17 squsréJ)
e See Dperatgrs and Qpefazians (11, 13 II,lQ); ;- : x‘ » ' i I
I1.13 BASIC Operators' -. I1.13
A BASIC operator can be one of pan§ different things, v
e 1

(8]
The arithmetic or numeric operators are

exponentiation L , ’ oo
* “multiplication. ' ’ ' \
/ . - ddvision :
. + addition - -
’ - ' . subtragtian

) The afithmetic aperatnrs wark in BASIC 1ust as they do in
-ather pfagramming languages, as Explained in II. 12

The "BASIC string aperatars are '\ .)
& concatenation
(X, Y) ° | substrings —— T .
Concatenation 18 used to join together two strings. For~
example, suppose the value of the string variable A$ is "HELLO ". .
(Ngtice the space after the "0".) And suppose the value of the |
variable B$ -is assigned this way%:. : ' -
_ BS = A$ & "THERE." ’
Thevcancatepation of AS and "THERE." would make the value of B$
i "HELLO THERE. ' " :
fcantinued)v

A

. S 26 53],;

B “ N ;1 ‘ \,‘- A . .
(HL.13) S co e (1e.03y -
Same advice about concatenaLing gLrings If you are putting words
Eogeghef (as inthe HELLO THERF example),, don’t forget about the
apace betweéen the words, If you conﬂatcnate "CAR” and "WA%H" this way
! "C-AR" & "wAsﬂﬂ
the result is "CARWASH", wnich may be just=what ynu want. If you say
. "WLLFQME" & "HOME"
you get "WELCOMEHOME", which is probably not what you want. -You can
say either '

"WELCOME " & "HOME" - , (sﬁage afcer_"wELCDﬂE")
or "WELCOME" & " HOME" ‘(space before "HOME")
or "WELCOME" & " ' & "HOME" (space quoted by itself)

all of which result in "WELCOME HOME". This concatenation
' " "WELCOME"&" "&"HOME" :
produces the same "WELGCOME HOME' result, hegause the space 1is inside
. . the quote marks as in the other examples A space inside quote mark%
{ is .just like any other character and becomes: part of the resulting
) strinp just a8 any letter would. Using spaces to separate different
" parts of your expresaion makes your lines easier ta read, but has nD
. effect on how the Expressiﬁn is evaluated.

e A substfing 15 a parz af a string. 1In the example above,
‘X and Y refer to the "Etart" and "stop" .charactérs in the string.
For example‘ "PURPLE" (1, 3) means ‘the first through the third
c¢haractérs in the word PURPLE. The value of "PURPLE" (1, 3) is
"PUR". "PURPLE" (4,-5) is "pL". ‘The numbers can be ‘variables, so.
if the value of X was 3 and the value of Y was 5, then "PURFLL" (X, Y)
would be "RPL".\. The string can be a varilable too, so if the value of
H$ was "PHANTOM", then ‘H$ (X, ¥) wauld be. the same as "PHANTOM" (3,
and the value would be "ANT". _ . .]-

This. substring o "BEAN" (5, 5)
would be the fifth. character in the string "BEAN" if there were five
characters to begin with, If you specify a nonexistent substring
like this one, the fesult is ncthing (See I11.14 for an Explanatian

: . of the "null string.") S N\
) Thia substring = "BEAN" 63 2) :
' would be the third through the second character in the string "BEAN"
if BIP could cDunt characters backwards, but it can’ts ‘-"impoqﬁible

substring” like this ane will cause an-execution EETDE when RIP tries
to evaluate 1it. : ' :
. BASIC cannot evaluate an expregqiﬂn that caﬁta1n5 diFferent
types of values., For example, this expression has no meaning
9 + "NINE" ~ o 0
+ because 9 is a numeric primary and "NINE" is a .string primary.

Seé Data Types and Primaries *(II1.7 - I1.8), Vaflables 3nd Asqigﬁment
(II 9 - II 11). and Booléan FxPr ssions (II1.19) .

Al

JLLL 14

whieh iq a space.

L4

INpUT

Use? To élléw,tné”uéer»off;ﬁgxpfagfém'ca give a value tg,a variable,

L

Examples: . . I L
30 INeuT N (for 4, number)
30 INPUT FS (for o btring) <\
.30 INPUT K,'d$) (faf‘mﬁléiple*inpuﬁ)*‘a kj oy
'Reﬁgfks'

When the. INPUT statement 18 executed, BASITC EYBE§~§ colon (:)
and waits for the user to typc something, ending with the. RETURN key
Whatever ‘the user types bEPﬂMEE the value of tha variable 1in ‘the

INBPUT s:atement

The unly limitation in the ‘use of INPUT involves numeric

: vafiables and is imposed when someone 'runs the program. 1if a numer 1o

variable is ?pEEifiEd in the program, the user must type a single

’number, not a string or any kind of expression. Numbéfg like 1492
~or 6,25 will be accepted, but an Expfﬁaslﬂﬂ like 3%*4 will not. BIP

prints an erfor message and lets the user try again o |

In;s .program dﬁubles any number the user types:

10 PRINT "TYPE A NUMBER AND '1°LL DOUBLE IT FOR YOU"
20 INPUT Y s , :
D30 Y =Y R2 : : . .
40 PRINT Y S : 4
99 END ' ‘

Fhis program does” samething qimple with a string EYﬁEﬂ by the user:

10 PRINT "IYPF A FEW WORDS AND I°LL REPEAT THLH"
" 20 INPUT W$ _

30 PRINT W$ - S ‘a o i
99 END T . :

Note: when typing a string in responsé to an INPUT, the user
should not type quotation marks. Also, EGF strings, if the user types

only the "CR" kdy, the string variable is assigned the value "". This is

called the NULL string. The null string is analogous to the number

0 (zero). It is a known value, Something that has meaning: 1t means
the string version of nothing just as zero means the numeric:version
of nothing. Do not cgnfuse the \null strlng with the chafacter o

(continued)

- 28

-

S araw L Coaraw

. One TNPUT statement may be used to allow the user to give
values to more than one vafiable For example. this program accepts
two numbers and adds them-. o . '
10 PRINT "TYPE TWO NUHBERS ONE AT A TiMF " C
20 INPUT X, ¥ - . -
JO PRINT "THE SUM IS ", X+Y
99 END

£

* You may specify as many vafiables in a 'mﬁltiple input" statement.
as you' like, always separated by a comma. When B¥P s BASIC executes
this statement, it prints a colon for each value to be typed: by the usgﬁ
Other: implemenzatiﬂns nf BASIG wark in a diffetent way, .

See Input / Output (II.5) and Variables" (II 9). g

I1.15 READ .-. DATA and REOPEN o | 1115

Use: To assign stored'values to variables,

Examgles=1 _
‘10 READ X
50 DATA 200

10 READ P - X
20 READ Q o Cr r)
"30 READ R - E
200 DATA 5, 20, 50

L . 30 READ A, BS
80 DATA 60, '"DQGH

© 60 REDEEN : T

Remarks: :)
Using READ and DATA ccmbinatiaﬂs 3llgws yau to store values

in the program and asgign those values ta variables at appropriate
Sl times. The statement ' ' '
-) RFAD X ' '
o causes BASIC to taka 4 value fram the DATA statement and ‘assign Ehat
value to the variablg X. For every execition of a READ staiizfnz

there must be a carrespanding DATA value.

 (cﬂnEinqéd)”

29

Srers) .. o o N S

‘ As shown in the second example ahove, a- DATA statement may: ¢
contain more than one value. BASIC keeps lrack of the DATA values,
and after a RFAD is executed,- BASIC moves a pointer to the next value
in the DATA statément: In thﬂE!SECﬂﬂd;EKEmplé‘ the variable P would’
‘get the value 5, Q would get 20, and R would pet 50.

_ The third exaiiple shows a multiple RFEAD statement. FExecution
¢f. a ‘multiple. READ assighsxvalue% to both variables, just as if one
READ 1mmediately followed the other. In: the example, execution of
ﬁvline 30 would result in the %ignment nF‘ﬁD to the variable A and the
assignment of "DOG" to the variﬁh1e BS, Use multiple RFAD statements
whenever you want to assign values td more than one variable, all at
the same time.‘”- : S

If a.RFAD statement i8 executed, and all the DATA values-have
been "used," an execution error message will be printed (since no
"value remains to be éssigﬁed); To avaid'Lhig Erfar, use a_"dummy"

has been used. In this pr@gram, —1 is UnEd as the dummy that marks
Ehe end of the list Qf DATA values. = o B

10 ‘PRINT "THI% FROGRAM PRINTb EQUAREH"
20 READ Y :
30 IF Y'= =1 THEN 90
40.PRINT Y™2
¢ . 50+GOTO 20" , o .
60 DATA.5, 10, 15, 20, -1 L
99 PRINT "FINISHED" '
T 99 END '

(ThiE program CunLalﬂH a Lanp Read- about loops in IIi17;5
o o a L w S
“There ‘are some limitations.on the values you may use in\@ DATA
statement,., First, quch a value must be a literal or Cnﬂqtantddﬂﬂt
, a variable, and not an Exprgssian. The value must be a number or a '
-Scffhg; if it i¢ a string, it must be enclosed in quntat1cn mafks. .
Second, any value given in a DATA statement must be of rthe same typé as
the variable to which it will be assigned. . Note that in line SD above
(on the previous page)., the ﬂ&meflﬂ value. 60 corresponds to’ the numeriﬁ
variable A, and the string value "DOG" CDfEESpDﬁdS to the qtring‘
vﬁgiable BS. BASIC will give an execution error if,-at the time the
N READViS'execuEed tHe vaflable and. the value are of different typeé_

» You may use as many DATA statements as ynL like in"a program.
The values given in the statements will be "used" sequentially, as
required by_tne execution of READ statements. DATA %Esgeméntsvcan'

(continued)

ERIC . -

Aruitoxt provided by Eic:

(IL:15) (i1.15)
appear anywhere in the program before the END, and. it is a good 1dea
to locate your DATA #n a place that makes sense to you, For example,
if a section of a program requires READing values ‘from the DATA, put
the DATA statements at the end of that gection .80- that you can o
easily see where the DATA values will be used. ‘

The REOPEN statement moves the "pointer” back to the first

~-value in the DATA list. The next READ statement will then take the

first DATA value in the lowest-numbered DATA statement in the

'pfag:ams REOPEN 18 useful in situations where you want to use Ehe-'

same DATA values, in the same order, more than once.

See Igput-/,DuppuE:(IIiS), DétalTypes (II.7), and Variables (I1.9).

I v

11.16 DIM 1116
Use: To establish the size of an array (a subggriﬁtéd vafiablé).
DIM 1's short for DIMENSION... ' ' "

* Examples: | o

aﬂ‘DIH“L(lS)

10 DIM AS (50) o o . .
Remarks: _ : . _ o

BASIC needs to know how long an a::sy‘will_gé before you refer
to any elements or 'slots" in. the array (for .example, before you
assign any values to elements of the array). The DIM statement

- .establishes the maximum length, The DIM statement must precede.(i.e., °

have 'a lower line number than) any statement that refers to an’ element
of the array. Usually, the DIM goes at: the very beginning of the-
program. There must be 6ne DIM statement for every array used in.the
program. ' ' ' |

: 2

‘Only one DIM may be executed for a giventarréy. In the example

a
“shown below, line 20 1is executed only once! each time you RUN the
.program. BIP will stop e

execution and print an error, messape if two

DIMs are executed for. the same array, or 1if one DIM for a plven array
variable is executed twice, This means that you should locate all DIMs
outside any loops in your program, 5o’ ‘that. BASIC executes each different
DIM only once. - - B c ' :

[

Suppose your DIM statement is _ ' g o
10 DIM X (25) T Co S "
This means that you may not use mOIL than 25 elemeiits in thearray X,
Using fewer than 25 will nat chuse agy probhlems., '
b B | - . .
, This is a simple prngrdm uainp an. array. It asks the user for. ’
Lh:ee words, and aaaigns each wotd to an clement af the array. Then it
prings the words in the opposite: Drdet : ' '
10 DIM LS(3) - ’ .
20 PRINT "TYPE THREE WORDS, ONE AT A TIMF "
30 INPUT LS(1), L5(2), L$(3) -
"40 PRINT "HERE"S YOUR LIST IN THE DPPDSITE ORDER."
50 PRINT LS(3) S ; _ o
60 PRINT LS(2) ' P N
70 PRINT LS(1) ' '
99 -END o
The word "index'" is used in'connection with arrays to mean the
number that specifies each élement in the array, (The word "subscript"
is also used.) For example, in line 50 above, the index or subscript
‘Ls the' number 3, -and it specifies the third element in the array L.’
. M™ndex" ig also used in connection with loops (see I1.17) to mean the
Evariable that counts the number of executions of the loop. This.
pragram ‘ig like the previous example, except 'that it allows the user
to aay how long his list- will be, and then uses a variahle as the
index, both of the loop and of the array. ' It also uses a variable Lnf
the. dDIMa statem;nt‘ after that varilable has been aﬁ51gned by hINPUT%.

L0 PRINT "HOW LONG IS YOUR LIST’"
20 INPUT N :
30 DIM LS (N)
40 PRINT "TYPE YOUR WORDS."
50 FOR'T.= 1 .TO N
60 INPUT LS (I)

70 NEXT T S :
80 PRINT "HERE®S YOUR LIST IN THE npunsi{: ORDER."

4o FOR T = N TO | STEP =] .
100 PRINT LS (I) :
L10O NEXT I

999 END

See Primaries (IL.8), FOR . . NEXT (I[.21).

[
b

w
=]

S ILL17 P:gﬁggm‘quﬁ

i

L o ar

' When the computer exgﬁutea a jtbrPd program, it fnllgws ‘a
predictable path throug) the Adge °F ingtructiong that is the program,
In some programmirg Langgﬂgés the Ordér of instructions executed
depends simply on the oyder 1h wh 46N the computer encounters them Erom
the. input device (e.g., z4rd by- ngd from a card reader or line by
line from a disk file). Otheyp 1Lanflages (including BASLC, as you know)
use line’ numbers, and the cﬂmbutef ngcutes instructions in numeric

order,
R s,

In either caqe, 311 Lﬂﬂgua ag Mive the. abilicy to tell the
computer to follow:a différentAﬂ Jet, to go to a different place 1n
™ the list of instructiong and Qérr Op from there, This 1s called:
"branching" and it can he @1thgp }ﬂQDnditiﬂﬂﬂl or cgnditinnal
Unconditional branching fﬂfefa to # change 1in the sequence of execution
that will always be carpqed oy Eggardleqs of anything else in the
program. Unconditional bianchin 18 samething like telling the computer,
"Don‘t ask any questiong, Just , t® 5 different part of the program."
Conditional branching aggﬁ a quegﬁi n first; whether or not: the change
in' sequence is carried ayf dEpénd, on some, condition being true. -
- Frequently it involves’ 1@§kiﬂ§ at 2 certain variable, and executing thé
- branch 1f the variable hgf a Qgr,, 4" value. The’ program specifies a
.decision to be made by the Cﬂmputgi . ' . !

The ability to mské afPropri, e déﬁisinns Constitutes the _
"smartness .of a progran Vi:tually no useful program runs stfaight
through all its sgatEmEnt§‘ Withauﬂ ever changing thé order of
execution.

‘11.17.L' Loops’. . » . L 1L 17, 1

A lnnp is-a series Df Stateme gr that is executed more’ than once.
It is an extremely usefu) PEORpgnin4"R strufture, By using a loop. you
~ can make the computer do ghe Same t/ing many times, but you glve a set
- of inatructions anly oncg, The o ﬂgbsl farm of a loop iS this:
Start .the lanp here. . .
. " . Have ‘the program do g@méthin ‘ T
. Decide’ if the "gomet{nR" ahgulé be done affain. '
‘If so, go back up ang 8tary the Loop ‘again .
If not,. continue on frOM hepe '

The sameﬁhtng" can hg Véfy Qnmﬂlex It can pe most of the
program; ‘for example, a peORram . ¢ plays a game can start itself
- again depending on what {,fOrmayy . the user gives after playing obce--
- the whole.game is ingide che 1qap o . : -
¢ . : R

(continued). ,

ERI

Aruitoxt provided by Eic:

[

(Li-li.l)! " (Ir.17.1)

‘A large category of loops follows this general pattern:

i

o

Set a "étﬂft” value.

Set an "end" value,. :

Set a counter equal to thé ngrt minus 1
“In¢rement the counter.

-

i

Do the work. . ' g

lLDﬂk at the end value—vif che counter is lesg than or Equal tD
' the end, go hack to Ehé "increment" placé and continue
‘from there. ., : K .
cherwi%e (i.e., the cDunter is greaterlthan the'end value),
;nntinue from here, L N o
A "EGuREEf' 1% a numcric vafiahlﬁ Ehdt you uqe to - count BnmELhinp
In this case., 1t counts the number of times the loop has been-
exoegute dnsyou increment the countér (add 'l to :it) each time you

go thrnugh the loop. The cnuntar is also Ealled thE "index."

4 This pattern is. u%ed in qituatluﬁq where the problem can- be
solved by performing the game sequence ﬁf steps, perhaps with sume

"vazgatians, a nuquf of times. This is "the work," The number of

thEi‘ the work' is done depends on the "start" and "end" ‘values,
For example, the following is a general prcgram (in no” programming

élanguage) that counts, ffcm 1 to 5

Start = | . ¢
kEnd = 5
Counter =‘srart - 1

*3Counter = counter + | } These three limes
Print valye of counter }.are the loop. The
15'2uunt€f=1é55vthanrend: go to * } work is to pring the
ST ; ' T value of the counter.

‘?rint'gﬂadﬁye,

"Different problemq require diffEEéﬁf ‘variations on this feneral
pattern. For ExﬁmplL. the "work" m may involve a more complicated SEE of.
Dperationﬂ,xur the counter may h& c an;éd by some. value other than 1,
or the order in which the pattern parts are executed may need. to be

~different, - Once. the general pattern is understood, however ,’ it is

easier to see which details. must be changed to qolve a parrlcular
problem.. Look (on the next page) at a program (in no programmipg
1angua?e) that Fuunts backwards from a number typéd by the user.
Notice the ways ln whlch it is dlffégent from the ‘last éxﬂmple

. 5

&, &

e . S . {continued)
- 'S .t N . : : P,

34

@

(11.17.1) _‘ L e o KR (ILE70D)
- : Lo o . st S
'Erint hellﬁ user. type me a number please
%+ Start = Whateuer number. the user types
“End = zerg '! - o .
Counter =‘start e EE o 4 .
“* Print galue of counter

y o . Counter = counter minus one _

"~ If counter gréater than or’ equal:tﬂ end go to *
Print gnadbye :

o Loops do work other than counting, gf cnurse._ This final]

Exampla program (1n no programming Ianguage) prints the user’s: name.

as many tipfes as he or she chcases._ This program ‘doesn’t need a

start or 4nd value, becausé it isn’t counting anything, but it does
'vneed to /Mmake : cﬁmpafisgn to decide whether Oor not to go f%rgugh the
~lgﬁp d4ain. It also needs two. string variables, one te hold. the user”s
/ and one to hold the user’s SHEWEE ta the YESdeﬁﬂE question. '

! h . ’ T= . &

Frint hello user, .please type your name _
JUsername = whateuef string the user types

4

: , * Print.shall T say your name? yes or no, please -} These

: _ Answer| =.whatever the user types "} lines

If answer is no, then go to gHDdbye line } are

Print value of username = o } the

_ .Go to * : , E "~} loop

! . . Priﬂt gocdbye ! o ! '

) This ngp uses both a cOnditiQnal brsnch “("if the answer is no., .; L

—e and an unconditional branch ("go- to x| Sametimes it makes sense to

put the conditional branch at xhe top of the ldop ' (i.e., before you
do "the work"), and then unconditionally go back. up and start again
once yau have reached the battcm, as in thisd, Example

) It 18 not hard to write -a@ program that. mskEs the computer do

the same thing over and over, never stopping. “ To fowce an "infinite
loop" like this to.a hale, hald down the "CTRL" key while. .you type the
lEtEEr G. Thete 15 a program in Secticﬂ I1.18 *that has an infinite

Vlaap

K

¥

Aruitoxt provided by Eic:

’

ERIC

Aruitoxt provided by Eic:

‘Situations:! either it is the beglnning of a new hand, or one of the

[I.}7.2 Branch and Return T . .t7.2

Frequently, the same set of instructions is used in manv
different parts of a prdgram. An efficient way to use these instructions
is to set them up in one part of the progéam and to bran)
from other parts. The sequence of statements that is a
different parts of the program is known as a subroutine.

2]

°
Since a subroutine can be '"called" from dlfféfent places, it
C

is impertant for the computer to know where to "return' to after the
statements in the subroutine have been executed. Most languapes have _
the ability to remember the place from which execution jumped to the *

subroutine and then to go back to that place to continue after the .
subroutine, o

oy
¥

‘For example. consider a program that %imulate; a pgame of
blackjack., 1Tt might include a subroutine that "deals the, cards' by
generafing random numbers and translatine thosc numbers into cards from
the deck. In blackjack, the dealer deals cards in two different
players is asking for an another card, in addition to those he holds
already. So, in the blackjack program, the card-dealing subroutine
would be brancned to (or "called") in those different situations.
What happens afterwards depends on what was happening when the dealer
dealt a card. The branch-and-return capability allows the program to
g0 back to that place after the cards have been dealt, so that play
can coantinue appropriately., 1In the first case, the prugfaﬁ would unly
check to see if all the cards needed to start the gam L t
In the second case, it would have to ask the next player if he wanted
another card.

See 11.22 for thne BASIC statements used to set up subroutines.

IL.18 GOTO : ; é I1.18

Use: To alter the sequence of execution of the program unconditionally.

Example:
70 GUTO- 10

Remarks:
. BASIC executes a program in the order of the line numbers .
When you say RUN, it finds the lowest—numbered line and executes
that Stathent. Then it finds the next higher line number and executes
the statement on that line. And so it poes—-—-it’s very 51mple
The above example would change that Dfder by sending BASIC back to
line 10 every time line 70’'was executed,

This program will repeat. itself Endlessly (untll the user
Eypes “Gs to stop it), counting from | on up.

I (To stop a program like this. hold

10 X =
i) 20 PRINT X ’ down the "CTRL' key while you- type the -
30 X = X+l -letter G. See Section I.6.)
40 GOTO 20
50 END

*

Note that once BASIC has executed the line specified in the GOTO
statement, it continues execution from that point. 1In t;is example,

the order of lines executed would be ' f
' 10, .
20, 30, 40, (here GOTO changes things)
20, 30, 40, (GOTO 20 again)
20, 30, 40, (and again)
etc.

The: only way to make this program stop is to hold down the "CTRL" key
while you-type the letter G. This is called "intertupting
"aborting" the execution of the program.

If your GOTO statement specifies a non—existent line, BIP
will print an error message before it allows you tm RUN the program.

See Program Flow (II.17).

ERIC - . ¥

Aruitoxt provided by Eic:

11.19 rRélé;igna} and Boolean Operators

Tne BASIC relational operators are

equal to

not equal to

less. than

greater than

less than or equal to
greater than or equal

<x

WM W
1]

' Relational operators are used

to

to compare two values,

11.19

This comparison

called a Boolean expression, and its value is always either true or

false.

In numeric expressions, the relational operators work as one
relational

normally expects them to,
compare’
3] is
is f.
is

is

6

B A S
"DOG" >- "CAT"
"ALPHAB ET"

{— llAii
The Qpalean operators are
. NOT
AND
. OR

Boolean operators are used to combine or change Boo.lean

expressions. Say the variable

Now consider the followinp Roo
NOT” '
- The

The

a.
Boolean expression
Boolean expression

The
The

expression
expression
AS

o The expression

NOT AS

QO

ERIC

Aruitoxt provided by Eic:

In stri
the strings for alphabetic\order.
: true

-

fg expressions,
Thus:

X has the value 5,
Y has the value 99,
AS has the value
lean expressions:

is
is

- &
P,
o

”N””
'IN(}l!

L]

is eqiuivalent

operators

and
liY ESH .

true.
false.

lse.

fa
true,

(1]

to

(continued)

is

(11.19) _ | (11.19).
b. AND . /r
An expression that includes AND is true onlyt if all its
¢ parts are true,
X <> 4 AND Y <= 100 is true,
AS = "NO" AND Y <= 100 is false.
c. OR

An expression that includes OR is true if any or all-of ies
parts are true.

X <> 4 0RY > 100 . is true,
AS = "NO" OR X < 5 is false.
Y <> 98 OR AS = "YES§" is true.

Unless parentheses are used, BASIC applies the Boolean
operators in this order: NOT, AND, OR. Thus,
NOT A$ = "YES" AND Y < 100 te
is equivalent to .
_.. ANOT A$ = YES") AND (Y < l00Q). . .
and the expression is false, because NOT AS = "YES" is false.

AS = "NO" OR NOT X = 6 AND Y > 50

is equivalent to
(A5 = "NO") OR ((NOT X
(f)) ((

and the expression is true.

1]

6) AND (Y > 50))
) ())

P

I[f you want to force BASIC to evaluate your Boolean expréssiaﬂs
in a different order, use parentheses as you would with numeric
expressions, For example‘

NOT A$ = "YES" OR Y < 00
is equivalent %o

(NOT AS = "'YWES") OR (Y < 100)

(f) (t) '

and the expression is true, becauge Y <100 1is true.

However, ’
NOT (A$ = "YES" OR Y < 100)'
(t) (t) ,
.is false, because (AS = "YES" OR Y < 100) is true. Parentheses
make a difference 1f you need to use complicated Boolean expressions.

Ry

. See Data Types and Values (I1.7). -

[nd
[+

% =

44

.\)

ERIC

Aruitoxt provided by Eic:

. §

I1.20 IF . . THEN -~ ; ' 11.20

different things in different situations,

Examples: " .
50 IF B > 5 THEN 150
.
50 IF X$ = "OXYGEN" THEN 300
50 IF AS = "REPEAT" AND C > 0 THEN 10

Remarks: . .,
The IF . THEN statement is executed in the following way:

a. The Boolean expression following IF is evaluated as either
true or false, depending on the values and the relationship
within the expression,

If the Boolean expression is false, the sequence of execution
~does not change, and the next line‘execited will be the line
after the line containing the IF . . THEN,

c. 1If the Boolean expression is true, the next line executed will

be that specified by the line number after THEN. (One may say
that "control is transferred" to that different point in the

o

line, not from the line following the IF . THEN statement.)
This short program uges an IF . . THEN to decide whether or
not to start itself over:

10 -PRINT "TYPE YOUR NAME."

20 INPUT N$

30 PRINT "HELLO, "; N$

40 PRINT TO START OVER, TYPE °YES”."

50 INPUT AS :

60 I#A$ = "YES" THEN 10

70 PRINT "OK. GOODBYE." -
999 END

Note that only the word YES from the user causes bLhe program
to continue execution (again) from line 10. Anything the user types
that is not YES will be taken aza a NO answer. This program 1is
another example of a loop. The number of times thdt the loop will
be executed depends enticely on what the user types when the program
is run. Try this: Copy this program, then RUN it. Use TRACE or
FLOW to see how things work.

See Program Flow (I1.17) and Boolean Expressions (I11.19).

40

I1.21 FOR . . NEXT : t 11.21

Use: To have BASIC do the counting, incrementing, and checking in
a loop, automatically.

Examples: T :
10 REM SQUARES FROM | TO 5 see I11.24 about REM

20FOR N =1 TO 5 establish "start" and "end"

30 PRINT N .do something

40 PRINT N72 do something else

50 NEXT N add 1 to N. If N is 5 or less,
g0 to 30 again, If N is
more than 5, continue to 99,

99 END

: 10 REM COUNT FROM 10°TO | !! counts backwards

20 FOR N = 10 TO 1 STHEP -1 because the step is negative
30 PRINT N N

40 NEXT N
99

Remarks : .

FOR. .NEXT loops save the programmer some work by automatically
incrementing the counter and checking its value against the top value.
The general form of the FOR statement is)

FOR <index> = <gtart> TO <end> STEP <howmany>
FOR, .NEXT loops are executed in this way:

a. Tne "index" variable is assigned the value of <gtart>,
> b. The statements following the FOR statement are executed
" in order. ' ' :

When the NEXT statement is encountered, °

[}

- l. The value of <howmany> 1is added to tbe index.
- If no STEP is included, | is added. (The value of
the index moves closer to <end>.)
- 2. 1f the value of the index has not passed the <end>
value, the statements following the FOR
atatement are executed again —- the loop s repeated
e g with the new value of the index.
3. If the value of the index has passed the <end>, the
loop is not repeated, and execution contlnues from
the statement after the NEXT statement.

' ' (continued)
41

ERIC - o, o s

Aruitoxt provided by Eic:

¥

S

(I1.21) ’ (11.21)
Tne FOR statement sets up the "start" and "end" values for the
loop, and marks its beginning. The NEXT statement marks the end of the

loop. The value of the index variable (N in the examples above)
is changed, and checked against the "TO" value, when the NEXT statement
is executaed. All the "work" lies between the FOR and the NEXT.

The following three programs illustrate how loops work. All three
programs do the same thing: they all count by twos from two Lo twenty.
The first program is pretty silly, since it makes the programmer do
more work than is necessary:

10 PRINT '"COUNTING BY TWOS"
20 PRINT 2 '
30 PRINT 4
40 PRINT 6
50 PRINT 8
60 PRINT 10
70 PRINT 12
4 80 PRINT 14
90 PRINT 16
L00 PRINT 14
110 PRINT 20
120 PRINT "WHEW"
999 END

The second program is much better, since it makes the computer

v E

do more of the work:

10 PRINT "COUNTING BY TWOS"
20 N. = 2

" 30 PRINT N
40 N =N + 2
50 IF N <= 2§) THEN 30
60 PRINT "FINISHER"
99 END

, The third program is even better, since it takes advantage of
the automatic features of the FOR . . NEXT structure:

10 PRINT "COUNTING BY TWOS"
20 FOR N = 2 TO 20 STEP 2

30 PRINT N
40 NEXT N
50 PRINT "THAT"S ALL, FOLKS!"
99 END ‘
p (continued)
Y =

42

ERIC | 47

Aruitoxt provided by Eic:

(I1.21)) . ‘ L (1.2D)

It is sometimes very useful to put’ one loop inside another,
or "nest" the two loops. -The following program might be used by the
principal of a school to add up the number of students in each o
grade -and in the school as -a whole. The "outer loop" is indexed bv the
variable 1, and the "inner loop" is indexed by J. The extra lines on
the left show you how the J-loop is nested inside the I-loop. '

10T 0
208 =0 (
25 REM T IS FOR TOTAL IN THE SCHOOL, S IS FOR GRADE SUBTOTALS
30 PRINT "HOW MANY GRADES DO YOU HAVE IN THIS SCHOOL?"
40 INPUT G)
=== 50 FOR I =1 TO ¢
© 60 PRINT '"HOW MANY CLASSROOMS DO YOU HAVE IN GRADE ": I

L}

I
I 70 INPUT ¢ .
'~ 80 FOR J =1 TO C ,

90 PRINT "HOW MANY KIDS IN CLASS "; J; " IN GRADE "o

100 INPUT K o e
110 8 = s +K -
115 REM ADD THOSE KIDS TO SUBTOTAL FOR THE GRADE

120 NEXT J
. 130 PRINT "IN GRADE "; I; " YOU HAVE "; §; " STUDENTS"
I . 140 T =T+ § :

| 145 REM ADD TOTAL FOR THIS GRADE INTO THE TOTAL FOR THE SCHOOL
1 au L ; \

I

b

50 § =0
155 REM SET THE SUBTOTAL BACK TO ZERO, READY FOR NEXT GRADE

—=== 160 NEXT 1
170 PRINT "IN THE WHOLE SCHOOL YOU HAVE "; T; " STUDENTS"
999 END
One thing to remember when you nest loops is that the inner loop(s)
must be entirely contained inside the outer fﬂﬂpi BIP won’t let you
RUN the program 1if it has loops 1like this: ’ '

10 FOR X = 1 TO 10

40 FOR Y 5!10 TO 100 STEP 10
70 NEXT X

90 NEXT Y

The NEXT for the Y-loop 1s outside the X~loop completely, which is
not allowed,

See Program Flow (IT.17).

43

48

O

ERIC'

Aruitoxt provided by Eic:

x

1L.22 GOSUB,.. . BEGINSUB . . RETURN . . ENDSUR 11.22

Use: To transfer execution to a subroutine, then to return back to the
same place,

. 14
Remarks:’

parts of the program is called a subrou€iae, BIP subroutines are
somewhat different- from subroutines in other implementations of BASIC.
A BIP subroutine is a sequerice of statements that come between a
BEGINSUB and an ENDSUB. The sequence is only '"called" hy a GOSUB.

It can terminate either with a RETURN or the ENDSUB, both of which cause

a jump back to the line after the GOSUB that called the subroutine.

. Subroutines are useful in a program that uses the same sequence of
statements in a number of different situations, in that they allow the
prugrammer to write the sequence only once and yet have it accessible
Erom many different parts of the program. When this sequence has been
executed, control returns to the place from which the sequence was

~caltled:—~Complicated programs are also much easier to debug if they

have subroutines corresponding to the different parts of the job the

program is intended to do. See "Branch and Return” in Sectien II1.17.2.

Example:

. (other lines of the program)

50 GOSUB 800 :

60 PRINT "WE RETURN FROM THE SUBROUTINE."
70 GOTO 999

800 BEGINSUB "NUMERO UNOQ"
810 INPUT X
B20IF X =1 T
830 PRINT "X 1
840 RETURN

850 PRINT "X IS 1. YOU GET A STAR."
B60 PRINT "* * * % x'

870 ENDSUB '"NUMERO UNO"

999 END

=
[u]

EN

50
NOT 1.

YOU LOSE."

W

When line 50 is executed, control is transferred to line 800. Execution
continues with 800, 810, and 820. 1If X equals l, the next lines executed
are 850, 860, 870, and then back to 60. If X is not equal to l at line

" 820, the sequence gs 830, B840, and then back to 60.

(continued)

44

49

GOSUB .| 50 GOsSUB 800 -
jumps into the subroutine,
Line 800 must be a BEGINSUB.

BEGINSUB 800 BEGINSUB '"NUMERD UNQ"

' beginning of the subroutine. The name
(whatever you like, enclased in quotes) is
optional and has no effect except to help vou
gee what your program is d@iqfi

RETURN 840 RETURN
o jumps to the line following the GGSUB; in this
case, line 60. Use as many RETURNs as you like,

- for conditional branching out of the subroutine.
. ENDSUB ..870. ENDSUB "NUMERO UNO"

marks the end of the subroutine, It causes an
automatic RETURN to (in this case) line 60.

The name is optional -— use it to mateh up with
the BEGINSUB name 1if it helps you.

- Notice that a BIP subroutine must begin with a BEGINSUB and end with an
ENDSUB, and that these statements must be accessed only by the GOSUB.
A BIP subroutine does not require you to use a RETURN, since ENDSUB
includes its function. In BIP, RETURN and ENDSUB are similar to STOP
and END: you may use as many RETURNs and STOPs as you need (including
none at. all), but you must use one END per program and one ENDSUB per
subroutine. o

, .There are no jumps . into a subfautineggicepz by a GOSUB to its
BEGINSUB, and no jumps out of a subroutine except by a COSUB:. (to another
subroutine), a RETURN, or an ENDSUB. Look at these pairs of programs

 for illustrations of the syntax of subroutines:

*%% no jumping in k%
Itis example is illegal " This example 1is legal

10 INPUT X 10 INPUT X
20 IF X = 1 THEN 100 20 IF X <> 1 THEN 40

30 GOSUB 100
40 STOP

100 BEGINSUB | 100 BEGINSUB
\\ ' - (continued)
‘V\ = ‘ - ie .
45

(I1.22) . " C (I11.22)
**% no "flow through" into the subroutine **%
Illegal Legal .
10 GOSUB 100 _ 10 GOsUB 100 .
20 PRINT "X" ' 20 PRINT "X"

30 STOP

100 BEGINSUB : 100 BEGINSUS

(the problem with the 1illegal example is that without the STOP statement,
BASIC could reach and execute the BEGINSUB directly in the sequence of
line numbers, which is illegal. A BEGINSUB may only be executed
immediately after its matching GOSUB.)

**%% no jumping out *%%

Illegal Legal

10 GOSUB 100 10 GOSUB 100

20 SsTOP 20 STOP

100" BEGINSUB 100 BEGINSUB

110 INPUT X ’ 110 INPUT X

120 IF X = 1 THEN 20 120 IF X = 1 THEN 140
130 PRINT “X IS NOT 1!" 130 PRINT "X IS NOT 1!"
140 ENDSUB 140 ENDSUB .

**% no gubroutine calling itself X%

. Illegal) There is no right;Way for this.
.10 GOSUB 100 BASIC is not recursive.

100 BEGINSUB

110 PRINT "IN THE SUBROUTINE!"
120 GOSUB 10C

130 ENDSUB

! See Program Flow (II.17)

\,?;
3
11.23 Eugct;én§J Arguments and §E££§§£E& Values 11.23

. - E
- Imagine this exchange. you say #POuble this Number: 6" and

your ffiémj 53_‘{5,_,"Dkayi 12+ To ﬂéubléi a number ls to use that

. number in a specific way ang then , 4VYe the result back. 1In this

; example, "double" is a functjoR, tpe ,uMber 6 is the argument to the

A function, and the number 12 (the tegyl? of doubling 6) is the value’

. v»«, . - . . - q7

teturned by the function.

- A function is some defingd Progec, that produces’a result.

It may require no arguments, llke . " fUnction that picks a random
number -(see RND). It may regulre o,. sTgument, like the funetion

that doubles a number--you qgzp t doupie Something Without knowing

. what that something is. Or ¢ may fquite more than one. argument,
. like the function that finds ghe Sma11ef of two numbers—-you can’t

say something about two numhbgy8 Withgyt knowing what they both are.
A function always returng ©ne valuyé'

Keep the special meaningg f arpy,gft and return in mind.
Don"t confuse them with the rggular'éggliSﬁ meanings of the words.

You may think of a functyp? as , _pPrthand for some series
of operations. The value ragylned by 2 function iS used like any
Other value in the programming lang,.. . Vou are using: you may assign
it to a variable, or use it yp A Bogy pf expression, or print it, etc.
Some examples of functions ayg 8ive, (p the next few pages.

To éenerage a random numpgf 1s sim }y to tell the computer
to pick a number. One of the y0St ;. #Sting uses for random numbers is
in programs that play games: dealing afds, choosing a number for the
user to guess, or choosing a goVe i, (f¢“tac-toe, for example.

¥

I1.23.1

11.23.1 Built-in Functions

BASIC has several built-y,; funayy ;4. That is, there are some
operations that are so frequagfly ugeq PY programmers that they have
been added to the commands thyf the 4 ¢Ppreter understands. The exact
liat of these functions will vAEY Wipy the implementation of BASIC, and
the 1ist Ls sometimes talled , 'lihrary”- The following functions are
built into BIP"s BASIC: ' ' :

’ (continued)

92

ERIC

Aruitoxt provided by Eic:

11.23.2 RND . 11.23.2
" User To generate a random number

Examples:
20:X = KND

20 PRINT RND*10

20 B = INT (RND * 10 + 1) ' \

e

Remarks: - .

The RND function returns a random number greater than O and
less than 1. That is, it makes the computer "pick a number" at
random the way you might pick a card from a deck. RND always pt
a decimal fraction between 0 and 1, so read about INT for interesting
ways to generate and use random integers,

11.23.3 INT | . o 11.23.3

Use: To convert a real number into an integer,
Examples:
30 X = INT(7.4)

30 PRINT INT (-27.98)
30 R = INT (RND * 10 + 1)

Remarks:
BASIC thinks of all numbers as real numbers (i.e., as numbers
with decimal fractions), not as integers. There are many situations
in which a program should work with only the "integer part" of a number,
and the INT function does the job.

BIP“s BASIC, unlike some other implementations, interprets INT
to mean "return the largest integer that Is not greater than the
argument.' This means that: ’

INT (7.4) = 7 . : ,

INT (=7.4) = -8 . . : . .
because -8 1s the largest integer that is not pgreater than -—7.4.

- ! The argument to the INT function must evaluate as a number,
INT(Y*10) 1ia legal, but INT(AS) is not, because AS$ cannot be a number.

{continued)

48

ERIC

Aruitoxt provided by Eic:

(11.23.3) N i _ = 3 (11.23.3)
Some uses of INT include:

a. GCenerating random integers .(see RND).
The RND function returns a random number between 0 and l--a random
. decimal fraction. To create an 1nteg€§‘ you must first multiply
the random number by 10 (an integer must be at least 1) and then
" convert it to an inteder: e

y INT (RND*10)

will return a random integer between 0 and 9, inclusive. The value
of (RND*10) will be greater than 0 and less than 10; it will range
from a low of 0.0l to a high of 9.99. :

INT (RND*10 + 1)- B "
will-return a random integer between 1 ‘and 10 .since the range of
values (before INT 1is applied) 1is 1.0l to l0. 99. This BASIC statement
Sssigns that random value to the variable R: :

R = INT (RND*lO +1)

'1 In general,

t INT (RND * B + A) _

will return a random integer between|A and B imclusive. ~ .

b. Dividing "évenly".

If a number Y divides another number X &évemiy, then X/Y is an O ' -
integer with no decimal fraction or '"remainder." The Boolean -
expression : ;

X/Y = INT (X/Y) ,

will be true only if X is evénly divisible by Y. For Example,

the Boolean expression s
13/4 = INT(13/4) ,

1s false, because 13/4 equals 3.25, and INT(3.25) equals 3.

But 16/8 = INT(16/8)
1s true; because 16/8 equals 2, and INT(2) equals 2.

This program uées INT to determine if the firsc number. given
is evenly diviﬁ%ble by the second number :

10 PRINT "TYPE THE DIVIDEND"
20 INPUT' X .- -
. 30° PRINT "TYPE THE DIVISOR"
40 INPUT Y
50 IF X/Y = INT(X/Y) THEN 80
60 PRINT 'NOT vanﬁ TRY AGAIN." : ‘ ;
70 GOTO 10 ' .. N .

’ 80 PRINT X; " IS EVENLY DIVISIBLE BY "; Y
99 END - :
3 ﬁ!‘
A

o | 5y

(123,46 SQR o C1L23.4
Use- To return thE Bquate Tooat of g, numerde expresginn.
Examples'
30 § = SQR(25) . ° !
30 IF SQR (¥*10) > N THEN 1O
30 PRINT TPE SQUAREZRéDr OFB [S"3 5 SQRCB)
Eemafks » - .
The SQR Eungtinn fitms the pnﬂitive Eq“dfe IQDE of 4its
argument.. The cmly resttictions fm the arsument are; : .
.. . eo=

a., 1t musl: be an E;:pfess ion that: eugL uaces as a number,
b.. 1t must be greater than or eqiaLl to zero, since negatiye -

an - numbers do port BEVE real square roots,
11,2305 LeN T R 1.23.5
Li_sé: To return the lemch g | o
- Exampleg:- S o o D
30 INPUT TS . Lo) : ,
30 READ ¢§ -~ o 7 e T

40'X = LEN (G$)

Rema:ks. . : :
" The LEN function Couyrita the ﬂumbei of r:,har:ac ters in its
string argument. “1f the vﬂiue of T§ was "T‘OMATD"‘ t he func Flc:f\ wéuld

return the value 6,

- S S ! 'S
. AY - S
50 95

" I1.23,6' User-Defined Functions

Uset! to return the valuer@ffany;exPFEEEiﬂn the ‘progranmer wants
to 'use often, . :

Examples: _ -

30 TWICE (N) = N*2 S 7 |

40 IF TWICE (19 > 100 -THEN 1p S o s .

5Q RIEM BACK TO 10 IF 1 TIMES 2 IS . BIG . | o -

30 CONCAT (RS).= R$ & RS |
40 INPUT DS . ; e
+ 30 PRINT "I°LL REPEAT AFTER YOU ~ "; CONCAT (DS)

Renarks: . o))

Host implementations Of BASIC, including BIP, allow you to define
your own functions. In BIp, functions may have only one argument, v
Bo th string_and-numeric- functions may be defined. " For example, =~ - .

10 ADDER (X) = X+1 - - e o S
defines a numeric function named -ADDER, whose argument is X, and whose
value - is X + 1, § - : L ’

Defining a function to do sdﬁéthing that you have to do more than T,
Oonce saves you some trouble in wrlting your program. For example, 1f ° :
your program had to generate lots of random numbers (see-RND and INT, : .
above) , you might define that function; then Just call it each time -
you needed a random number. This pProgram is a simplified illustration:

L0 PLCKME (X) = INT (RND * x 4 |) L e
20 REM "PICKME" WILL PICK AN INTEGER BETWEEN 1 AND X
30 PRINT "HERE’S A NUMBER BETWEEN | AND 10:" L
40 PRINT PICKME (10) = . o -
~-20-PRINT-"AND-HERE'S A" NUMBER B ETWEEN 1 AND 5:"

60 PRINT PICKME (5) . o Lo , :
99 END g

You might copy and run this Program a few times. to see how all these
functions work together, _) co

- You may define a given function only once in a4 program, but _
you may use as many difféféﬁﬁ_funétiﬂﬁsgﬂﬁ you like. The kind of .4
expression used in a function muse match the data type of the
argument; ILf the argument 1g a pumeric variable, thé‘éxpfegsian mist
be numeric, and if the argument s a,string variable, the expression
must evaluate gs a string.. The nane @f'thezfunctian must be at least
3 letters long. It can be very long (20 letters), byt since the purpose .
of functions 1s to save on typing, your function names should probably

be less than 10 letters long. You may not use "sp —?5L'Ehaf3§}?E§lﬁffT,S,_ff,tzwg

wlike_péfigdsiueammasycgr:semistniﬁns*lniThé“EEﬁEtiEEMﬁamEZ I =

51

1L.24° Gghg;[ﬂsgful §tgtem2ﬁﬁe B ‘ e . I1.24

IL.24,1 STOP A . - o 0 uae

-

- Use: To tell thg cnmputét that 1t haa Einished executing yaut progran .

Example:
50 STOP .

Remarks: ..) o
- Every BASIC program must have an END, statement., . The END

statement must havg,ihg»higbest-liﬂe number -in the program,

In addition, you may‘usé as many STOP Etateménts-és you like.

?fSTDP is equivalent to END, except thst 3THP may have any line number,
'STGF statements are useful in pragtams that may terminaté in maﬂy waya.

BIP’s BASIC glhmys ptints the numbef of the last line executed
when a program terminates, Using STOP Statements ¢an be very valuab le
in dEbugging a program that has many pattgfait can:help you locate
problems by causing execution to terminate under certain conditions

without confusing the issue by continuing execution with wrong values.

Then the line number at which the pragram Eerminated can help yﬂu see
what erroneous canditLun occurred. : L

Sée END (1I.4) aﬂd'GDSHB (1r,22),

11,24.2 REM S - S § T
Use: To write REHafks inside your pfe&tam‘ making it easier to
‘ undefscand o . .
f Eigmples;u: . I SR "‘é.fi;’y
60 'Rm\l!! STD[—’ LC]DPING IF X Is roo BIG L

. 200 RAM THE FGLLDHING 5, LINE? CALFULATF THE AVERAGF

¢ i

Remarks:

Use a RFIM statement whenever you dike. It does nat affect
the execution of your program in any way,. but it gives you a way
to make notes about the program as you. go along, inside the program.

-ieself. You may also use a REM astatement with a:blank line 1u5t to.
make a break be;wgen blacks Df lines iﬁ yaur prcgram.

AN

=" : .] .
SECTION IIL. - BIP COMMANDS = - R ,
' Whenever you deal vith BASIC. you are really communicating with
‘the computer on two .levels, One level connects you with the BASIC
Language and the computer”s ability to execute proprams written in BASIC.
The other level Connec’ts you with a more general operating system, which
allows you some control over the world in which your own programs live,
In this course, the general gysten 15 BIP, the program that runs evedy—" .
thing’ you see happening ét’y@uf‘tetﬁiﬁal&”;Tﬁréuﬁh'ﬁIFG you can writé - .. -
. -and execute programs in BASIC; in addition, you are presenteéd with
programming tasks and you are allowed to save and modify your programs.
Some of the commands in this section are identical to those in othar
lmplementdations of BASIC aﬁ@“éamévare peculiar to BIP. You will just

. have to learn other commands when you use othér versions of BASIC., .
it I11:1° Curriculum Manipulacion o S & 149!

" These commands deal with the programming tasks that form the
instructional bage of BIP, - '

TASK: . Start a new problem. BIP will=salect it -for
. you. - - i o
HINT . ° pPrint a hint. Same:ﬁasks have no hints; some have more
' than'?neg Type HINT to melp you understand what the (
tisk requires. Tor another kind of hint, see REP below,

o . sus Préééntjﬁ.sib'Eégk{>fSDmé-tasks—are broken down Into
S T ' pares: - If you can handle,all the parts,.you can write
' ’ ._the program for the task. Ask for SUBs whenever you

-~ have trouble getting started on a complicated task,
Finish a sub task with MORE or ENOUGH, BRI
Continue the current problem. BIP does some checking
“df your, program before ‘allowing you to continue. MORE
16 a sub task recurns you to the task you came from,

T

o ENOUGH © End ‘the current task immediately. BIP does not check
’ JRE your program, and keeps no record of your bhaving
" o " entered that task, ENOUGCH in a sub task returns you
to “thé task you came From. - 3

!
7 e . . s

c . . . (continued)
o , <y . . .

'-; y ‘v;d\

(1I1.1) S o . (I[I 1)
MODEL - bprint dut] mﬂdel sﬂlutiﬂn to :he gurrent ‘tagk. The
' model sgolution is not necassarily the only way to write
the prmgram. BIP does not take you out of the task.

DEMO , "Exécuté the mgdei snlutign. ‘The demo Shﬂuld help you
' - write your own program by deman%tfaging one passible
golution to the task. o

y DEMO TRACE Executa the médel solution and show what” happening
IR : © . at’'the ‘same time. ‘BIP prints the number of each line
’ of the model solution as it is executed and prints
the value of each variable each time it 1is asaigned
Once you have rtun the DEMO a few times, you know what
the model solution does. Then the DEMO TRAGE will
‘ help you see how the 'model works, See TRACE in
e ' Section III. 2. -If-the screen i8 flashing- by too’ fast,
' L “. use tha 'HOLD key., (See ‘Section 1.6.)

REP Present a-flawehsrtalike PEPEESEﬂégtiQﬁ of the model
' saLutibn. REP has its own set of commands that allow
you to expand the rEpEESEﬂEEtiQn to f;nd ouc what the
stfucture of the. program laaks like :

When in-REP.‘lDQE at the tﬂp Gf the screen for a-
reminder of what you-can do. You;can always start
with A<cr>. . (REMeﬁbEf, <cr> 1is carriage return.)

4 - Watch the screen. - Then type.B, C, D, etc., or

o KL, A2,:Bl, B2, ste. (followed always.by <cr>)
‘ ' - Af. ‘these letters and numbers appear in boxes on.
the screen or atc, the top. - . :
Ygu can Etaft oyver by typing RFSET, or ggr out by
typing EXIT,
f"§§~ ;'and / wiLl mOVE the screen up and down for you
i vhen 'the flowchart gets too big to see all of it
s S at once, CTypé shift-N to get the ™ "up-arrow"
S character .) o
¥ 15 ’ - 5 . \. . e . . .) ‘ N
:*vJ&*. /. " You cannot write your program in REP., " Type EXIT<cr>,
. wailt for the * at the left margin, then write yDuf
program or do whatever else, : o s

4

Iype é’“?" to get~help‘fr§m REP, -

54"

|

III 2 P:agram Hanipulatian . _‘ ' - . ITI 2

rnese commands do not desl with the cufriculum. nnly with the

program you are CuffEﬁtly writing and EUﬁninE.

LIST

/

Print out -the QUEFEHE progran . Use this to see what.

your entire program looks' like-—it helps.

EDIT <line numbér; .

_SCR

RUNG

TSee Sectign I 6.

Change a line without typing out the whale thinq
all over agnin. See Sectlon 1.6 for the control
charactera that let you EhﬂnFE the line., (FEditing

18 much eagjer to demonstrate thaﬁ to- explain. Try
fallﬂwing the example in 1.6,)'

'Delete ("Ecratch") the current program., wipiﬁg the
glate clean 80 you fan start afresh, ’

Execute the pragtamhﬂnave EASIC lelDW ynur Iist of

iinstructiansi, To Stép execution of yﬂur program

before it reaches™its END, interrupt like this:
hold down .the "CTRL",key while you type the letter G

SEQ <Etarting> {incfementé

- Renumber the lines of the pragram. iSﬁaftingk ds the -

.first line you want to have "reSkQuenced," and

‘<increment> is the distance you want to have betueen

: the lines, For example, *

SEQ 100 20 :
will renumber the lines i{n your program frnm line IDO
upward, and each.new line number will be 20 mote than -

. the line number that precedes it. (The new numbers in

this example, starting .at IDD. would be 100, 120, 140,

etc.) Use SEQ when you want to reorganize your program
to make more space available between the existing lines, '
80 that you can insert ngw 1ines into the program. :

S

SEQ also :hanges the line numbers specified in GOTO,:

<~ 1F. .THEN, and GOSUP. statements so- that the program

executes exactly as it did before you dec.ided to-
reSEQuence the liﬁe numbe:s. : :

Exscute the program and diow what’s .happening at the

-safe time. : BIP prints the number of each line as it

is executed, and prints the value of each variablé each
time it 1is aﬁsigned This is an ep tremely valuable
debugging teol, -Use it on a simplle program first, to
see exactly what it does. Then usé it any time your
program dpes not seem to-do- wha t yﬁu Lnﬁended

(continued)

Ll

-+ (111.2) : A , or (111.2)
TRADE <number¢; ' i s : -
Exéeuﬁes thé whole p:agram. The trace will start as

goon as the line numbered <numberl> is. exacuted, and-
the trace continues.to the endxpf the program. Use
_ thig command 1f you know that the first - part of your
- program 18 correct and you want to avoid CEKLng the
‘time to trace thr@ugh things that already work.

: TRAGE <numberl> inumber2>

Executes the whole program. In addition, it TRACEs .
‘execution of all lines whose numbers are between -

<numberls> and <number2>, : i
For example, : ’ .
TRACE 100 ZQD
executes the entire program, and prints 11ue numbers .

- 'and varfiable values between lines 100 and 200 Elusiwe.'

Example of TRACE: -
oo —_—

For gha'prﬂgfamé v
10 FOR J = 1 TO 2
20 LET X-= J.

h C . . . 30 NEXT J
' = ‘ . 40 PRINT "FINISHED!" ’
. S99 END. y
Typing "TRACE" will produce this uutput*
TRACE STARTING AT LINE 10 .
102 T =] o :

20z X=1 '
30: J =2
20: X =2
30: - J =3 : ‘
40: E‘INI HED! -)
99:

- EXBCUTION COMPLETED AT LINE99

FLOW ¢t FLOW 45 a debugging ald that allows you tc wateh ynur
- program execute. Your program is displayed on . the T~
.Bcreen, and the number of the current line be)
execused blinks, 'To execute the next line, ptess <CR;

By . stapping through the pt@gram in this way, you have
time ‘to examine the pragram and the sequence of
execution,

(ebntinued) -

(L1, 2) - - o (HI 2)

If a backward jump or a forward jump of more than Qnef__é :
statement is executed, an arrow is drawn from the Sy
o statement currently, Executing to the statement to be.
n executed next. : . \ o ,

The listing of your program does not include the body
. of any subroutines. When a GOSUB statement is executed,
‘the program on the screen is replaced by the subroutine
referenced by the GOSUB instruction. 1In the upper fight
hand corner, the.display indicates "MAIN PROGRAM" or .’
* . "LEVEL XX", where XX {s the number of GOSUB’s that have
been ekecuted before a RETURN or an ENDSUB is éxecuted.

Any inputy or output from the pfagfsm is disélsyed ‘on
the bottom three lines of the screen. The I/0 lines
only show the result' of the three most recent 1/0:

stacements. as: older results dissppear frnm the screen

To stop the exezutidh Df your progranm before it reaches
1ts END, interrupt like.this: hold down 'the "CTIRL" key
: while you typa Ehe letter G. ;LSee Sectian 1.6, W
v . +# : ' :
' FLOW inumber; EEREERN N R
¢ Autamstigally executes up.to the line given w1thaut
wailting for- ;your <cr> i(unless 1t executes an INEHT,,
statement, which always waits for you to type a.value).
When the- Spécified line is reached FLOW returns to its
normal modé, and waits for a <cr> after each line is
. S executed..”.This feature is useful for FL.OWing thrcugh
L o o a long progran that {s largely correct,

B FLDW <variable>, <variable>, . ; o - : a
S At tne top of the screen, chere is space for up to SIX
g trace variables, selected by you., The current value of
“3 thesa variables is displayed.and updated whenever a
' -traced variable changes its value." You may trace fewer
than six v‘fiables To trace a subscripted variable,’
-type its. name withnut any subscfipts.;
Sample FLDW cgmmandsi explained . .
FLOW Executes the whole program, waiting for your <cr>
! '~ at each' line.” Does not trace any variables. R .

-

i _ . ; _’ FLDW X.* Y ' v v
A : Executes .the entire pragram, wsiting for yaur .
T o ' <cr> at each line. Shows. the valuks of the .
o ' ' vsriahles X and Y at the top of the cheen

(cantiﬁued)

57

62

- (1XL.2) : S (I11:2)
" : FL{)H 200, AS, L

R Executes auzﬂmatically up to 11ne 200,
displaying the values of A$ and L as t goes.

Stops and waits for you to type <cr> when it
' reaches line 200, continuing in this step-by-

EtEp mnde ‘through the ‘end af the pragram.

N@tice that you may give either the line number A
speeificaticﬂ, or the vgriables—ta—bEEtraced o .
specification, or both, or meither.' If the '
‘1ine number option is used, it must come first.
The order: in vhich yau type the variablé names.,.

; if you use that- ﬂptiﬂﬁ, only determines the
o :) © . . order in which they are displayed. It does. not
g ' :) . afi’ﬂt ‘the" executian of; the p:ﬁgzﬁm in ‘any . way.zu

Ty

=

III.3 File Storage ind Access . R R I11.3

Thesg commands allow you to keep yﬂur prﬂgram% for later use
If you do not save a program, it will disappear:when you ngn off.
When you .Bave a program, you must give it a name.. The name. can be
anything you like, but it should not contain any "speclal characters'"
: jlike periods, . -commas; - gr semiﬂ "léns. Once . the program has_been saved,
e s célled a 'file. - T 0 E A

FILES : ’ 7 o, ¢ List the names and dates of all ; ES curfently
: © _ saved in permanent storage. The date and time

ghown tell you when the file was last SAVEd.
" The lengﬁh is Ehe number of Lings in the SAVEd

prugfam — v
s 'fﬁﬁAVE <name>: : " Store. the guqrent-prcgram,ﬁnder the <name>
e . gilven, .The name must not he longar than 30 v

 characters. The program is not affected—-1it o
vff;is siﬁbly EGpiEd to, a permsnent %Lorage areaf“"
S : IR ‘ el e
“« . GET <name> . Retﬁieve the. file gf the insme? givan. The.
ST e T -CUErEﬁt program ‘is SGRatchEﬂ and replaced by
ot L N ~ the <name> file. ‘The permanent storage of :
' ' ' ‘ ﬁnameinis:nat¥éffeétédi (See comments below.)

... MERGE. <name> Retrieve the <name>. fila from’ st@ragﬁgaﬂﬁfgdd
S " C " 4lt to the current. prcgram, withaut SCRatching -
e o ;the current program, EIE will print the
! , fmessﬂges DUPLICATED- LINE and WAS: » « » Lf the
IR o ' . *fMERGEﬂ file and the current pfngtam have 1lines”
- : L T Qith the same line numbgr. The "new" line from
' e .. the merged file will teﬁlace the Mold" line that

i i
N , . . . wasg already part of the turrent pragram. See‘
o o L '-Enmments below: : g
S o KILL <name> = . Etase the <name> file frdh permanent storagEﬁ

%Ihe current program is njt affected.

It -is a gaud idea ED LIST yqur current pfngram hefare you- SAVE
it, to verify that it Lavwhst you want. Always LIHT befare ygu GET,"
- ko prevent autamatiﬂglLy SCRatching the current pragram. Be cafeful
'fwith KILL since it is final, - : SR

a3

4

;(cqntinued)

€

(I11.3) } | S L amy

these
current program to: permanent’ stotage and vite ve
'file, BIP capiea the file from permanént storage
program space, and leaves thie permanent file exac:
then make some changes to .the program, you nust SAVE it again if “you
‘wart the- chanpﬁs to be permanent : , . Ly

b

Your "current program’space' and "permanent storage area" are’

ommands, Remember, that SAVE. and GET make coples from the
When you GET a

nto. ‘{your current
'y as it was. If yﬂu

For exampla, suppuse you have EAVLd s pragrsm und ér the name DOG

“and then sign off. The next day you GET DOG and make - gome. changes to

it.’ If you then -say SAVE CAT, your permanent’ Stnragvaill have both

1DQG (the old’ vergion) and. CAT (the new one). If you say; inﬁtead

SAVE DOG,. then BLP will say “GLD VERSION DELETED" and you will have
only the new versipn, under the name DOG. The moral is: . If you

i_want_to ‘have two. vefsions of. .the program,. 'BAVE the revision with. a new _
“name. . If you don’k need the: Dld versian any-more, SAVE the new" versian .

“with the same (0ld) name. If you don’t SAVE it at all, the hew version:
(your’ curfent pzagramr wiil disappear whgn ycu sign off, and- Dnly thei
old version wi‘l be 1n pefmanent stcrage . S

=

B SES

P I

two é{arate things that .only communicate with each other when you use.} o

IX1.4 Dealing With the World ~ . - . SN

= . : 2

_using the terminal. Use this if someone has
left the terminal without signing off. (T you
sign him off, he may lose a prngram. SO tty‘ca
ifind him firac) o

CUWHAT o Print the name of the current task ycu age’ in,
‘This also allows you to have the p:ablpm Text

. o o s+, . - printed out. EDE ycu,again‘ withﬁu; restarting
SRR » . Ao S fthe gask L ‘ o . _)

(R .

. WHEN e P:iﬂt the déteihhd'timé_* Obvious use..

FIX : =Leave a message. for the people at stanford .

: ' " Use this whenever you have a problem thar. yuu!
‘think Stanford’ should know about . Please

"describe the pfublémaagﬁ?hnrgughly as ynu can 3

hif'HEEEagES left thraugh FIX nrc”read daily, nr S
. thereaboytisi-s. . {ce o

'your messagé . .
€ LR 4 . %
e . R
evaluateg. :

" be nufer
.CALC 6+4 .
‘'would mske BIP print lD
CALC "DOG"'& "FOOD" IR
'muld mske BIP print DDGFDOD "ci'if

13 x'¥.'

Dﬁ

rwauld make BIP print FALSELHA '
B . , CALC cann@t g@aluatejégpteésigﬁﬁ-¢Gnté;ﬂing
’ ' -variables. TR T .
: : a) .
i i + . 5,-‘;“ R
' o _6_,_ i
4 : _‘f ”‘;'x':.
i X
0 :
»
i 66

Pxint the name and student number of the ﬁersen -

4 . X : x r.
3
.) | N
e .
)) x |
& 3 ‘
: 3
. . A ‘
'
: l |
, 1
. !' ‘
i
) .
£

. 'GLOSSARY, .

R

&

S ARPENDIXA .

 concatenation

Co
Lo
R
I

" See Ii 17 - 11.20.

¢ Qh_&leQEEI‘ '

W o+)
; L
5 © - APPENDIX A . :
e GLOSSARY * .,
- e . M L
‘ -wgtds in UPPER CASE are Eitheé’BIP_gﬁmmandsaﬁp BASIC statementsi . % .
R T . S SRRV -
. o, L . . i‘\ . o dn 5, ,‘) RS '.{‘\:;
abort ' "To Btop the.execution of “a .program before 1t ’
o) . reaches its END. -Hold down the,"CTRL“ Key' while, -
o - . ygu type Lhe 1etter G. “SEE J 6 o hee TR
ket : R ""”,;‘”1s¥;
'afguﬁaﬁt" ST The valué crfvaluea uperated on by a functicn . L
PRI L e See’ I1. 23 Tl et
A " - o R o ;g , | .
érfay ' AlSD called a "subscripted variable," a variable
‘ . 7 - that may have many distinct elements, -each of
3 which: can be treated- a8 a Separste variable.
i [ee ii B IL 16, e ‘ _ P
. ¥] o : . s or o A Tt e, e T ,Tf_:i;—,b,»r_,:f—,;— .‘.‘,
, aEéignmgn§) i_;_; A ssaciaLinp a V§fiible name with the cﬂntents
‘.'5'1'. o T 'Qf a lccaticn. ‘Se II IDH I1.11. L b
= . ..:;‘,'!v; e : ’
©BASIC .. . -A Widely ‘used- ptmgramminp lgpguage . .
,q.' ' k BeginnErs Allﬂpurpasa Symbaliﬂ Inatfuetioﬂ Cadeilw
'iBEGINSUB ,_Af The BIP BASIC statement thaL Etafts a Sub:gutinpi,f~L
L ‘Seé IT. %E} : e .)
© BIP L "BASIC Instruﬁttpnal Prmgram,' tbélﬁrégtgmix
’ B that runs this“caurse.) ; T
Boolean expfesaians ExprESSiﬂﬁS whase value 15 either TEUE or. .
Cs ga g e FALSE. Used in: making decisions. SEE 11 19
' bréﬁEhing; i ;. ' ransferring cﬂntrﬁl v fﬂifferent paft of
' ' %%he program rather thnn‘fﬁllcwing the R

numeric ‘sequeace of line numbers L »-5:f"-”j:;-f

BYE The BIP command chat end% your sessinn with. :
_ . the cnmpube: See 1. 3 1. 5 L Co "
- CALC - {" _:The BIP ccmmsnd that éValuatES an Expressian_
. See IIL.4, U Dt ’

Anything ‘a” terminal can display letters._
numbers. punctuaticn‘lar qpa:es, See 1.7,

iThe %t[ing operatian that comb1nes two Etrings
SEE 11,13 '

’into one.

iw. . constant

4

dec igions

EDIT

END

T ENDSUB

Aruitoxt provided by Eic:

. control character

+Zn general, ,iﬂfc::mgitic?n ysed by a progzan .

"t ask works.

)

4no ther word for "Literal." See II.8.

2

A s pecials€onmarid to BIP, e To6e

Ancmeric var iab le used’ to count something:
usyally dncremen ted ewvery time some condi tion
ds "matisfied, See II_17.

See II.2.

The BASIC starzemém‘: tirat provides valuey o

2 READ statepent . Seé IT. 15

BASTC s abilicy to riod if:y the order of

efecut o of your program, dependling on

cerrain condiclors, See I1.17 - 11.20.

The BIF commard thad e xecutes the model |

t ¢ show you=-hov one so lution to the curresat

DEIMQ TRAC £ executes the model,

an traces the values of all its variables ac ' .
the -same time. See IZ‘[I-L- '

. The BASIC statement thst*‘péc’ifies t he

maximum niumber of eLlements in ad array; ugually
géks at the begin nirag of a program using arrays .
See II1.8, IL,]6. ;

Tte BIP command t hat'makes it possible fnr_- yesu

,ﬁr::l ¢dhapge a line 1in your pngram without t¥ping

iﬁ over. See 1.6, III.12.

A reguiredgEAslc statement which must be Ehe’
l1ast line in the DProgram; terminates execylion.
see 11, 4.

T‘h error messwe
" about the error, & ° o

£
_ifminastha .
- W.7 - 11,8, 1,19,

» *

1

execute Make the computer do something, BASIC is sald
to executa the lines-of a program. i.e., to
follow each instruction in the program. See II.2.

“expression Part of a BASIC statement to be evaluated: 1‘
" a primary or operations on primaries,
See ¥T.12, I1.19.

ts the names of the e

- FILES The BIP conmand that list
rage. JSee 11I.3,

' ‘ files in permanent sto

FIX ' . The BIP command that allows you to leave a
’ message for Stanford. See II1.4.

FLOW The BIP command that executes your propgram
visibly. one line at a time. See TII.2.
e TO R B LUPE—- O RECUL- u:mff AgLé—ﬁéw:F—Ehg—'lQlHl:" ey
’ ‘while you type G. See "interrupt” below.

FOR ., . NEXT : - The pair of BASIC statements that 'sets up
. X a machine-made loop. See II.17, 11.2l.

function A defined process tnat produces

// e.g., RND, INT, SQR, LEN. See 1

[]
~

iy . . :

GET e The BIP command that retrieves a previously
SAVEd program so that you can work om it
again, Sse IIT.3,

GOsuUB , . . The BASIC statement that causes a jump to.a
subroutine. S8ee I[I.17, II.22.

GoTO The BASIC statement that allows you to alter
the sequence of execution unconditionally.
Seea 1] I[I.18. Also see "interrupt" be}mui

HINT) - The BIP command that prints a hint to help
’ you with the current task. See TIL.l.
o o b b A f o
. . Ve ‘(.f
' IF ., THEN The BASIC statement that allows you to alter
' K ' the sequence of execution if some condition
is true. See I1.17, II.20.

[1]

increment ' To add to the valhe of a numer (¢ variable,
frequently a variable used as a counter.

£ S

L

ERIC 4«

Aruitoxt provided by Eic:

In an array variable, e number in parentheses ' -
that specifies each element in the list.
See 1I.8, T11.16.

index '

In a loop, the number (counter) that keeps
track of the number of times the loop has been
executed. See II.l17, 11221.

- o

input The set nf values supplied to the program; the
L : Lnfarmailan Dh which it operates. *<

i . See 11.5.

INPUT Tha:BASIC scétemenﬁ that allows the user to \
;sign a value to 'a vardable duflng exgaution,
Seer 1414 7 |

IHT‘

_ N ;ng;EVSIC fuﬁ&tinn that returné the?integer oty '
T T T T T oS T e e F7p3f] . ’ -

numEEt;‘;f;S%

5 iﬁ%@ﬁﬁupt ﬁTQLb- e’ execution of a Prog Wb hed=
‘Yregohes its END, Hold dowp:the 'ET%LJ' ekey while
T yau&ﬁygé the letter“@-» SéE;I ﬁ;“ o r

y & .

“ R

IhE’BiP cbmmand tha “andses a” “file From.
E

KLLL S % o
ST et 3, S

"pErmaﬁent EEGrng; ¢

i

.‘,;-s.»' : ' -

3
The, EA%IC functicn that PEEUEHS the pumbaf of
characterqvin a)strlng QEE I1,23.

The EASIC statement that assigns a value to
See I1.11.

_ LET . ,
- o a,vsriéblé;
thst must precede each BA%IC

statements are executed in order of o
See 11.3, ’

A iInteper
statement;
ine reasing

.~ line number

O

ERIC. ..

PAruitext provided by enic [ERREES

]

LIST

literal

-1

location

The BIP command
In the order of

A primary-uhose

a variable).

line numbers.
}

that prints out your program

the line numbers.:

value 1s itself (as opposcd to
See 11.8, o

bee 111.2.

The place in the computer”s memory where a

value can be stored;
gby a varjable,

General term for a series of statemepts UHUEE

executlon is repeated.
hold down thé "CTRL" keyabile you

To interrupt,
type G.

See "interrupt"

See T1.10.

See [1.17,

above.
« 5

t he. plage or "box"

namned

1. 21

G

‘!\'
X

Fs

N

L7

. . . P]
i ‘) _ ") ,.,[h B ..'Vi‘, F‘,J g .)
» s "MERGE . e Tﬁe BIE command that retrieves a file from
{ . - permanent storage and adds it to the current
. program. See IIL.3.
MODEL The BIP command that prints a typical solution '
; to the current task. See [II.1.
MORE S The BIP command that presents the next part of
- - 3\35;Q‘ : a° task. Type it after completing a program.
v - See I1L.1.
numeric - Having to do with numbers and their values.
- See I1.8.
gperation : The process by which two expressions are used
tD specify a new Jsalue:
‘numerio; Additinh subtraction, multiplication, division,
efponentiation.
string: Cencatenation, substring.
‘- relational: An operation that compares two string or numer ic
‘ expressions in some way to prbduce a
Boolean expression.
) ‘ Boolean: An Dpérati@n that combines two Boolean
;e expressions inte a new Boolean EKPFESSiDﬁ
See 1I.12, 1I.19, Ck“f
Yo o £ . :)
operator The symbol .for an' operation:
e . : numeric: . + - % /- . S - !
o stying: & ' (start, stop) Y o
; - v relational: m < > <= o= ' I
\ Boolean: NOT AND OR)
‘ © See II.12, II.13.°1IL. 9. .
output '~ The visible results of a program’s execution A\
on the terminal., See II.5.
" pr imarcy ; ‘ An expression without any operation--either
. ' a literal or a variable. See 11.7 - 11.8.
DRINT : . The BASIC scatemént that produces visible
ot results by causing the Eermiﬂal to. type
gsomething, See II.6.
A-5 .
N
\) oo B ’ - R : o -~

ERIC " . . ey

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

program

READ

R ¥

signing off

T SaR

Ly

A list of iﬂSEqutiDﬁS for a cofinuter to

follow, written ﬁi a language that the
compuger uﬂdérﬁtands See 1I.1.

The BASTC“gtaLemenE{that assigns a value to
a variable; the value is stored in the program
in the DATA statement. See II.15,

Tne EASIC %tatément that does nothing. It
simply allows the prugrammer to make notes
within the program.! See I1.24.

The BASIC statement that moves the "Read-data
pointer' back to the first DATA value in the
program. See 1L[.15, : .

The BIP command that presents a flowchart—like.
representatioh of the' model solution to show
you its scructure. See TIT.l.

To determiné and give back a value. All

\funécians recurn a value. See I1.23,. g
A f, ‘7 .

'The BASIC statement that causes a jump back from

a subroutine to the place from which the sub-
routine was called. See I1.22.

The BASIC function that retufnggi random
decimal fraction between 0 and 1) It requires
no arguments, See II.23.

The BIP. command that tells the computer to
execute your program. See 111.2.

The BIP command that puts your current program
into permanant storape for your next session,

;,SEE IIr.3. ~ _ 'y

_— Thg BIP command thac erases your .current
"o ptagram See 111.2. :

V;ii

- The BIP command that renumbefs the lines in your

program to give you more availahle space between
the exiscing lines. See III1.2.

Ending a session on thegcamguter, Signing off
is achieved with BYEs See I.3.

The BASIC function that returns the positive
square root 4f its numeric argument.
See 11.23.

i

[l

stAarement

P
[t
"~
[N
—
e

=3

[y

sUB

subscript

stbscripred

substring |

S L.

-

TRACE

usar

i

:

vser=defined functinn

value

O

ERIC ~ -

Aruitoxt provided by Eic:

programming

i
‘ﬂ

on ocecupying one
IT.1 = T11:3. °

A single BASIL inscructio
line of the progra See
in a parcicular order

A pgroup ol characters

See 11.7 - 11.8.
@ |
The BASLIC statement that may appear at any

place in

the program and termimates execution
of the program, “:

I1.24,

See

3

-
The BIP command that presents a1 suB task.
Use it to pget the current task broken down
into parts. See IT1.1. -
a number or numeric varighle in parentheses
that specifies an element of an array.
A kind of variable, one that can contain
ore Ehan one value at one time. See "array"
See T1. 8 CITL16.
A part of a string[See TI1.13
A sequence, of. BASTC statements that can he

and executed from different P1aﬁéj in
ram,-returning back tﬂ the place

rl.22

accegsed
the main prog
from which it
N _
The BIP command that presents the next
task. Type it after completing
task. S(lj TIT. l- .

is called, G&ee

the previous

rhatkﬁqth executes a proasyan
iables

NaL ’
prines

commyigd

The
and armnd va

See 1T, .
hnld down the "CTHY

"interrupt" above.

. o
out llnu“nﬁnhers
prog
uﬁPCutinn_

i, &ee

r

A% eXecution FosEs0H
To intervupt

while yoau type

the person who
the person who

runs a program,

wrote 1it.

In
Fraequently,

peneral,
also
A function defined.in your program, which
the value of rhe expression that you specilv,

See 10,23,

T o -
The result of PVJlUﬂtlnP an Expf&éqfhn Or 2
-) g
function. JthQ:,d numh;l. hr oA atring,
or TRUE or FALSE 7, 11,12, 11. lq

Al . R s
N : I.i’
4 -
) hY
A ; ' \ " { ! |

keovr

refarns

" variable

/
WHAT
-
WHEN
5 WHO
i L
%
4
- "
4 #
. r‘§
-
[
O

ERIC

Aruitoxt provided by Eic:

A name Tgt‘a lqcatinn in thej ;cmpucer s memnory,
a "box" ¥hdt can hold a numeric or .string
Walué; See 11.8 - II.11. :

-

The BIP command that tells you the name of your

current task and allows you tn se€ khe problem
text agaln. See 1II%4.

The BIP command that: félls y@u ‘the date and
time, Sea III 4, S

laa

The BIP command that tells you who is’%iénéd
on at the terminal. See II1.4. .
“w
\
:
£ .
Lt vg 5 s
- . . &L

. A-B &

X 3 'r'

o 5 ' i .

