DOCUMENT RESCRE

RD 167 365

SE 026 732

TITLE

Our U.S. Energy Puture, Teacher Guide, Computer Technology Program Environmental Education Units. Northwest Regional Educational Lat., Portland,

INSTITUTION

SPONS AGENCY

National Inst. of Education (DEEW), Washington,

D.C.

PUB DATE '

NOTE

Jan 78 37p.: Por related documents, see SE 026 733-741;

Contains light and broken type particularly in

computer printouts

AVAILABLE PROM

Office of Marketing, Northwest Regional Educational Lab., 710 S.W. Second Ave., Portland, Oregon 97204

(\$3.75)

EDRS PRICE DESCRIPTORS MF-\$0.83 HC-\$2,06 Plus Postage.

*Computer Assisted Instruction: *Energy: Energy Conservation: *Environmental Education: Futures (of Society); Instructional Materials; Policy Pormation; *Secondary Education: *Simulation: Social Studies

IDENTIFIERS

*Energy Education

ABSTRACT

This is the teacher's quide to accompany the student quide which together comprise one of five computer-oriented environmental/energy education units. This unit explores the possible effects of the thirteen main energy-related decisions proposed in President Ford's 1975 State of the Union Address. The computer program at the base of the unit simulates the effects of any combination of the decisions on energy supply and consumption, on domestic production and reserves, and on pollution. This unit is designed for grades 9 through 12 and can be used in social studies or in environmental science. The teacher's guide presents: (1) unit objectives: (2) background information on the lessons or parts of the unit along with study questions: (3) notes on using the unit in class; and (4) program documentation with a sample run. (MR)

Reproductions supplied by EDRS are the best that can be made from the original document.

COMPUTER TECHNOLOGY PROGRAM ENTAIL EDUCATION UNITS

OUR U.S. ENERGY

Total Control of		U	TTTTT	U	IJ	RRRRR	EEEEE
r	1	: 1	ĭ	1)	1)	A A	Ë
F'	í	1)	Т	U	11	R R	E
EFST	U	:	T	U	U	RRRRR	EEEE
F	! ;		T	U	u	R R	E
F	()	1.	T	U	U	R R	E
F	Üί	jt j	T	U	JU	R R	EEEEE

TEACHER GUIDE

US DEP. MENT OF MEALTH FOUCHTION & WELFARE MATE NAI, INSTITUTE OF FOUCATION

COURT OF THAN DEEN REPRO-CIONER EXAMPLE AND CINER PROMO THE PERSON OR DROADS THON OPEGIN AND THE RESOLUTION OF COMMON TATLE OF MALE AND COMMON OF THE HAND OF THE ADMINION OF THE OF FORCE ON CONTION OF THE OF PERMISSION TO REPHODUCE THIS MATERIAL HAS BEEN GRANTED BY

CATHY WINTERS

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC) AND USERS OF THE ERIC SYSTEM."

NORTHWEST REGIONAL EDUCATIONAL LABORATORY 710 S.W. Second Avenue, Portland, Oregon 97204

-Telephone (503) 248-6800

ADDITIONAL PUBLICATIONS

Additional Publications Available in the Area of Computer Technology are Listed on the Last Page of This Footlet

This edition is based on earlier developmental work conducted with a limited test sample. The material was reviewed in order to correct any noted technical errors prior to printing of the October 1977 edition. Movever, purchasers are urged to first run the sample simulation program provided in order to determine any needed or desired adjustments prior to actual use. The Laboratory would appreciate hearing from users concerning any suggestions for corrections to subsequent editions.

First printing, October 1977; Second printing, January 1978

Published by the Northwest Regional Educational Laboratory, a private nonprofit corporation. The work upon which this publication is based was performed pursuant to a contract with the National Institute of Education, Department of Health, Education and Welfare. The opinions expressed in this publication do not necessarily reflect the position or policy of the National Institute of Education, and no official endorsement by that agency should be inferred.

This publication is not printed at the expense of the Federal government.

ISBN 9-89354-502-3

TABLE OF CONTENTS

INTRODUCTION TO THE U	MII					-									
Unit Description .															1
Reasons for Studying	g the	Unit								•	•				2
Objectives															2
BACKGROUND INFORMATI	ОИ														
Introduction														•	4
Defining Independent	ce .								,						4
Study Question															4
General Effects of l															
Study Questic															5
Electricity Consump															5
Study Questle															
Geothermal and Sola															
Study Quesile															
Gasoline Consumption															
Study Questle															14
THE "FUTURE" MODEL				,											
The Effects of Deck	sions														16
Parameters and Hov											•	•	•	•	18
NOTES ON USING THE UN	IT IN	CL	ASS												21
PROGRAM DOCUMENTATION	ON.														22
Sample Run of FUT															23
NAMED TO SERVE AT THE PERSON OF THE PERSON O				-	-	-	-	-	-	-	-	-		-	

INTRODUCTION TO THE UNIT

Unit Description

Subject Area: Social Studies

Topic: Energy supply and demand in the United States between 1975 and 1985.

Abstract: This unit explores the possible effects of the thirteen main energy-related decisions proposed in President rord's 1975 State of the Union Address. The program FUTURE at the base of the unit simulates the effects of any comb nation of the decisions on energy supply and consumption, on domestic production and reserves, and on pollution.

Computer Language: BASIC

Grade Level: 9-12

Program Name: FUTURE

Reasons for Studying the Unit

Three of the most important issues facing the world today are the shortage of energy, economic problems, and pollution. At least part of the difficulty in dealing with these issues is attributable to their interdependence: the energy crisis produces economic problems; the economy, in its industrial output, produces pollution; the pollution problem is an important constraint in choosing solutions to the energy crisis. Because of this interdependence, decisions relating to energy, the economy, and pollution are extremely complex. The U.S. has goals in each of the areas that are incompatible with goals in the other areas. Solutions for the energy crisis may create more serious economic and pollution problems; strengthening the economy may lead to more serious energy and pollution problems; reducing the level of pollution may depress the economy and cause greater energy shortages.

The purpose of this unit is to provide students with an appreciation of the complexity of energy-related decisions by allowing them to try out the decisions President Ford proposed in his 1975 State of the Union Address in their attempts to solve the energy problem without increasing inflation and pollution. Even though President Ford's energy plan is several years old, its goals address energy problems which still confront our country today. President Carter also has energy independence as one of the top priorities of his administration. Although the two presidents' plans differ somewhat, this unit is still appropriate for study as an example of a comprehensive energy plan. It may be desirable to extend this unit to include a comparison and analysis of President Carter's energy plan.

Using the computer simulation called FUTURE, the student selects among the thirteen proposed decisions and evaluates their effects on the energy and pollution problems using a computer simulation called FUTURE. The use of the computer is made necessary by the great complexity of the simulation; energy consumption by five users from each of five sources and pollution of eight different categories are differentially affected by thirteen possible decisions over a time span of ten years.

Objectives

This unit allows students to make energy-related decisions like those proposed for Project Independence. When the unit is completed, the students should be able to:

- 1. List the goals and options associated with Project Independence.
- 2. Describe the effect of each option on
 - a. Energy supply and consumption
 - b. Domestic production of oil, natural gas and coal
 - e. Pollution

*,

į.,

- 3. Describe the relative effects of increasing energy supply and reducing energy demand on
 - a. Total consumption
 - b. Domestic production and reserves of oil, natural gas, and coal
 - c. Pollution
- 4. Describe an energy plan which optimizes the trade-off between reducing dependence on imported fuel and level of pollution.

BACKGROUND INFORMATION

Introduction

This section provides background information in five areas relevant to President Ford's tenets for Project Independence as defined in his State of the Union Address, 1975. It discusses the concept of independence, the general effects of Project Independence, electricity consumption, geothermal and solar energy, and gasoline consumption. Although the student material for the U.S. Energy FUTURE unit does not deal directly with any of these areas, it provides a context in which they can be discussed. The following background information in each area concludes with questions which you might wish to use in class discussion or as the basis of class projects.

Defining Independence

The Arab oil empargo began in October 1973. In November 1973, President Nixon proposed Project Independence, which he defined as "the potential to meet our own energy needs without depending on any foreign enemy--foreign energy sources." He suggested that the goal of total self-sufficiency could be met by 1980.

President Ford has redefined Project Independence as meaning the degree of self-sufficiency necessary to avoid economic disruption from the withholding of energy by foreign suppliers. This degree of self-sufficiency does not mean zero imports; it means cutting oil imports to about 4 million barrels of oil a day in 1985 (about 8 x 10¹⁵ BTU's per year), the amount imported during the oil embargo from non-Arab suppliers.

Study Questions

- 1. According to the FUTURE simulation, is it possible to have total self-sufficiency by 1980? By 1985? Why do you think President Nixon proposed total self-sufficiency as a goal?
- 2. Does President Ford's plan cut oil imports to 4 million barrels a day by 1985? Why do you think President Ford proposed cutting imports to 4 million barrels a day as a goal?

General Effects of Project Independence

Following are four of the major effects anticipated from Project Independence:

• Energy prices would increase. Gasoline is expected to stabilize at \$.65 per gallon. Assuming a 5% annual rate of inflation, the price of gasoline would be \$1 per gallon in 1985.

ERIC

R

- Environmental damage would increase due to increased use of high-sulfur coal, increased strip-mining of coal and surface mining of oil shale, increased use of nuclear reactors to generate electricity.
- Economic instability might result from an inflationary increase in energy prices and an interest-raising demand for money by industries attempting to meet the goal of Project Independence (shifting from oil and gas to coal, developing synthetic oil and gas, producing cars with 40% better mileage, etc.) This might lead to greater unemployment and a recession. On the other hand, the activity stimulated by new development could, in the long run, improve economic conditions.
- International relations might be threatened if other countries see Project Independence as a new isolationism—that is, we solve our own energy problem by relying on our domestic resources, but, we don't help countries having fewer resources, e.g. Japan, solve their energy problem. President Ford has tried to reassure our allies, saying that Project Independence will enable the United States to help the rest of the world by allowing us to eventually become a major exporter of energy.

Study Questions

- 1. President Ford's goal was to reduce our dependence on imported oil. In attempting to achieve this goal, however, we jeopardize other goals—like low energy prices, an unpolluted environment, economic stability, and good international relations. Which of these five goals do you think is most important? Why? Defend your choice against someone who disagrees with you.
- 2. Play the role of a consumer, the president of a large labor union, a member of the Sierra Club, or a representative of the Japanese government. Which of the five goals do you think is most important? Why? Defend your choice against someone playing another role who disagrees with you.

Electricity Consumption

Electrical utilities are unique as users of energy in that they produce as well as consume energy. The energy produced by the electrical utilities is consumed by two of the five energy users assumed by the FUTURE program: industry and residential/commercial.

Predicted electricity consumption for 1975 and 1985 is shown below. These figures assume that 1975 trends continue, i. e., that no Project Independence decisions are made. The numbers are in units of BTU x 10^{15} .

USER*	1975	1985	
Industry	3, 4	6.9	
Residential/Commercial	5, 3	13.9	1
· Total	8,7	20.8	والمتأثثان ومنا أد

You will notice that the totals are about 40% of the energy consumed by electrical utilities in a standard (no decisions) run of FUTURE. This is because the conversion efficiency for electricity generation is about 40%; 60% of the input energy is lost.

You will also notice that residential/commercial users consume most of the electricity, 61% in 1975 and 67% in 1985. Table 1 shows specific residential uses of energy in a single home. You may wish to use these data in asking students to consider how they might conserve electricity in their homes. The actual numbers, which apply to an average-sized home in Portland, Oregon, are not as important as the relative size of the numbers as reflected by the figures for percent of the total.

The greatest use of residential electricity is for heating. One obvious way to conserve electricity used for heating is to lower the thermostat setting. Table 2 shows annual electricity consumption for heating at different thermostat settings. As this table shows, the energy savings is 3.1% for every degree the thermostat setting is lowered. As with Table 1, the Table 2 data apply to a typical home in Portland, Oregon.

Another way to save on heating is to insulate a home. It is estimated that full insulation as opposed to the standard insulation present in most homes, will reduce electricity consumption for heating by about 20%.

After heating, the greatest residential use of electricity is for the water heater. It takes 1 kilowatt-hour of electricity (3,412 BTU's) to raise the temperature of 4.1 gallons of water 100 degrees. An automatic dishwasher requires 8 to 10 gallons of hot water. A tub bath requires 10 to 15 gallons of hot water; a shower requires 8 to 12 gallons: Automatic clothes washing requires about 18 gallons of hot water.

ERIC

*Full Text Provided by ERIC

Source: Hughes, B. Public Policy: U.S. Energy, Environment and Economic Problems. American Political Science Association. Washington, D.C., 1974.

TABLE 1
YEARLY ELECTRICITY CONSUMPTION FOR A SINGLE HOME

	KILOWAT- HOURS	BTU x 10 ⁷	% OF TOTAL
Electric Heat	28,000	9,83	59.04
Water Heater (family of 4)	7, 200	2,46	14.77
Range	2,400	, 82	4.92
Lighting	1,800	. 61	3, 66
Refrigerator/Freezer (standard)	1,200	.41	2.46
Food Freezer (20 cubic feet)	1,200	.41	2, 46
Dishwasher (includes hot water)	1,200	- 41	2.46
Clothes Dryer (5 loads a week)	1,200	.41	2.46
Furnace Fan	1,080	. 37	2, 22
TV (color)	600	. 20	1.20
Stereo/Radio	480	. 16	.96
TV (black and white)	360	. 12	.72
Electric Blanket	300	. 10	. 60
Iron	240	. 08	.48
Automatic Washer (hot water not included)	180	. 06	.38
Fry Pan	180	. 06	.36
Radio	1.80	. 06	.36
Coffee Maker	120	. 04	. 24
Waste Disposer	60	. 02	.11
Toaster	60	. 02	, .11
TOTAL	48,840	16, 65	

TABLE 2
THERMOSTAT SETTING AND YEARLY ELECTRICITY
CONSUMPTION FOR HEATING*

SETTING	KILOWAT-HOURS	BTU x 10 ⁷	% CHANGE FROM 70° CONSUMPTION
75	38,264.0	11.35	15.5
7 4	32,371.2	11.05	12.4
73	31,478.4	74	9. 3
72	30,585.6	10.44	6. 2
71 .	29,692.8	10, 13	3.1
70	28,800.0	9. 83	0
.69	27,907.2	9, 53	-3.1
68	27,014.4	9, 22	-6.2
67	26,121.6	. 8. 92	-9.3
66	25,228.8	8.61	-12.4
65	24,336.0	8.31	-15.5

^{*} Source: Pacific Power and Light Company

Study Questions

- What can an individual citizen de to, reduce the consumption of electricity?
- 2. How will reducing the consumption of electricity reduce our dependence on imported oil and natural gas, conserve domestic oil and natural gas, and reduce pollution?

Geothermal and Solar Energy

Geothermal energy (based on heat from the earth's interior) and solar energy (based on heat from the sun) are possible alternative sources of energy for electrical generation. Both are relatively "clean" sources with respect to environmental damage. The technologies required for their large-scale use are, however, at least a decade away. Because of technological uncertainties, it is difficult to predict the future contribution of each source to total electrical generation. Estimates of the contribution of geothermal energy to total electric power in the U.S. in the year 2000, for example, range from 10% to 20%. Solar power is even more uncertain.

The Pacific Gas and Electric Company is already operating electric generators in California's Sonoma Valley using hot water from geysers. Geysers also produce electricity in Larderello, Italy and heat buildings in Reykjavik, Iceland. We don't, however, have to rely on geysers for geothermal energy. We can reach hot rock by simply drilling a hole in the ground. If you drill deep enough, say from one to three miles, you reach rock having extremely high temperatures, maybe 800° or 900° F. When you drop water into the hole, you can produce steam which can be used to drive electric generators. Unfortunately, the steam that is produced by this process is not powerful enough to generate electricity efficiently. There is also a possible pollution problem—the steam may contain large quantities of sulfur.

The use of solar energy for electric generation obviously requires sun. This means that solar power plants would be most feasible in very sunny regions of the country, e.g., the southwest and southern California. Even in these areas, the heat that could be collected from the sun wouldn't produce steam that was hot enough to generate electricity with optimum efficiency. With less than optimum efficiency, the electricity produced would be extremely expensive—some experts believe that the cost of electricity produced by solar power would be 100 times as great as that produced by coal, oil or gas.

Solar energy is, however, an economically-feasible alternative to electricity for home heating. Solar energy heats a home by heating water, which is then passed through radiators inside the house. As shown in Table 1 on page (which is discussed in the section on "Electricity Consumption"), home heating accounts for a major portion of residential electricity consumption. The

9

ERIC

widespread use of solar energy for home heating would, therefore, produce a significant reduction in residential electricity consumption and, consequently, in the consumption of oil, gas, and coal by electric utilities.

Study Questions

 Estimated contributions of geothermal and solar energy for 1975 and 1985, with and without Project Independence, are shown below.* The numbers are BTU's x 10¹⁵.

StandardWith	out Project Indeper	dence
	1975	1985
Geothermal	0.3	0.8
Solar	0.0	0.0

With Project	Independence	· · · · · · · · · · · · · · · · · · ·	e de
	1975	1985	
Geothermal	0,3	3, 9	* *
Solar	0.0	1.0	,

Assuming that geothermal and solar energy will be used by electric utilities instead of oil and natural gas, to what extent would these alternative energy sources change the 1985 predictions of program FUTURE with the Project Independence decisions (decision options 1, 2, 3, 4, 5, 6, 10, 11, and 12)?

^{*} Hughes, B. Public Policy: U.S. Energy, Environment and Economic Problems. The American Political Science Association, Washington, D.C. 1974.

 Estimated energy usage by electric utilities in the year 2000, without Project independence, is shown below.* The numbers are BTU's x 10¹⁵.

, OIT	GAS	CÓAL	HYDRO	NUCLEÁR	GEOTHERMAL	SOLAR	TOTAL
9.9	11.0	36,6	6.0	40.2	1.9	0.0	114.6
1				'a .			

Project Independence is predicted to increase the contribution of nuclear power to 52.8, of geothermal power to 11.8, and of solar power to 3.0.* What impact will the geothermal and solar power produced by Project Independence have on energy usage by electric utilities in 2000? Could we export significant amounts of energy?

3. How could the use of solar energy for home heating reduce our consumption of oil, gas, and coal and increase our ability to export energy?

Gasoline Consumption

Transportation is the biggest user of oil, primarily in the form of gasoline. One of the key goals of Project Independence is to reduce gasoline consumption by 20%. Decisions 6, 7, 8 and 9 in program FUTURE, which are listed below, are all assumed to reduce gasoline consumption:

- 6—Increase price of oil and natural gas by taxing imported and domestic oil and gas and deregulating the price of domestic oil and gas
- 7.--Increase price of gasoline by direct excise tax at the pump
- 8--Reduce supply of gasoline by rationing
- 9--Reduce supply of gasoline by allocation

Decisions 6 and 7 will reduce gasoline consumption if gasoline is "price elastic," i.e., if the demand for gasoline falls as the price rises. The graph on the next page, which is included in the Student Guide for U.S. ENERGY FUTURE, suggests that gasoline is not price elastic—consumption falls when the supply is limited, but not when the price rises. This graph, of course, doesn't prove that gasoline is not price elastic. First, it is possible that a price of 55¢ a gallon is not high enough to reduce demand. What would happen if the price were 65¢ or 75¢ a gallon? We don't know.

^{*} op. cit.

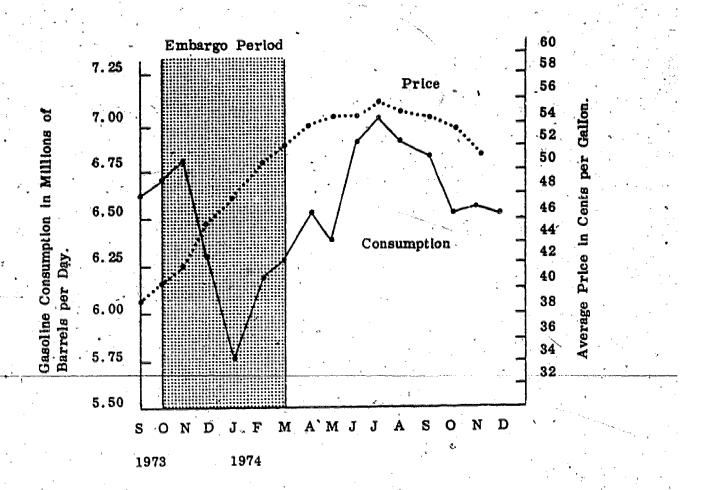


Fig. 1. Conditions produced by the oil embargo.*

Source: 'Newsweek," January 27, 1975 and Federal Energy Administration

Second, the large increase in consumption in 1974 occurs during the summer months, the months when consumption is always highest. We should compare consumption in the summer of 1974 with consumption in the summers of 1970, 1971, 1972 and 1973. If consumption in 1974 was less than the level predicted from the 1970-1973 data, we could conclude that gasoline is price elastic. In the absence of these data, we can use the data shown in the graph in Fig. 1 to compare consumption in September and October, 1973 (representing low price and an embargo, respectively) with consumption in September and October, 1974 (representing high price and no embargo, respectively). The small difference suggests little price elasticity.

Another way to evaluate the price elasticity of gasoline is to ask people if they would reduce their consumption of gasoline if the price increased. The unit ATITUD, which is intended to supplement U.S. ENERGY FUTURE, contains data on public attitudes toward the energy crisis collected by pollsters Louis Harris and George Gallup in polls conducted in January, 1975. The data relevant to price elasticity is:

• "If the price of gasoline goes up 10¢ a gallon, do you believe you will cut down your driving?"

YES 49% NO 48%

 "If yes, will you cut down your driving a great deal, some, or only a little?"

> A great deal 11% Some 26% A little 11%

If behavior is related to attitudes, it appears that the reduction in demand produced by a 10¢ a gallon rise in the price of gasoline will not be great. Why? Are people simply unwilling to cut down their driving or would such a cut be too difficult? Another Gallup question from January, 1975 is relevant:

 "Suppose you had to reduce the number of mlles you drive by one-fourth. How difficult would it be for you to meet this requirement--very difficult, fairly difficult, or not at all difficult?"

Very difficult 31% Fairly difficult 23% Not at all difficult 40% Don't know 6%

About half of the people believe that it would be difficult to reduce their driving by the amount required by Project Independence.

^{*}Neither the price of gasoline nor the rate of consumption has changed substantially between the end of 1974 and the summer of 1977; the three-year period provides no additional data to determine "price elasticity."

What does "difficult" mean in this context? We don't know for sure what the people responding to the Gallup poll meant, of course, but the data in Table 3 might give us some idea by suggesting where the cut in gasoline consumption might be made. Table 3 shows gasoline consumption by all users for the second and third quarters of 1974. The obvious nonessential use is pleasure driving in passenger cars. If all pleasure driving was eliminated, we would have reduced gasoline consumption by 20%—the goal of Project Independence.

Study Questions

- 1. Does the graph in Figure 1 above showing the relation of price and consumption of gasoline prove that gasoline is not price elastic? Why?
- Do public attitudes suggest price elasticity? Do students, teachers, and townspeople have attitudes different from those reported in the Gailup poli? (The ATTITUDE unit can be used to answer this question.)
- 3. Table 3 below shows that we could reduce gasoline consumption by 20% if we eliminate all pleasure driving. Do you think that this would be difficult for you to do? Do you think that it is necessary?
- 4. Increasing the price of gasoline (FUTURE Decisions 6 or 7) would presumably cause us to reduce our consumption by reducing demand—that is, we couldn't afford to drive as much. Rationing or allocation (FUTURE Decisions 8 or 9) would cause us to reduce our consumption by reducing supply—we couldn't buy more gasoline even if we could afford it. Assuming that both would be effective, which method—reducing demand or reducing supply—seems best to you? Why? Which is the fairest method? Do you think that rich people and poor people would have different opinions? What about people who must drive great distances as part of their jobs versus those who don't? Or people who live in big cities versus people who live in small towns?

TABLE 3

GASOLINE USAGE: SECOND AND THIRD QUARTERS, 1974*

USER	BARRELS/DAY	BTUs/DAY 9	6 OF TOTAL
Passenger Cars	4,970,000	26.09 x 10 ¹²	73.1
Work Pleasure Personal Business	1,770,000 1,360,000 1,020,000	$\begin{array}{c} 9.29 \times 10^{12} \\ 7.14 \times 10^{12} \\ \hline 5.36 \times 10^{12} \end{array}$	26.0 20.0 15.0
Business/ Government	820,000	4,30 x 10 ¹²	12.1
Trucks	1,430,000	7.51×10^{12}	21.1
Farm Vehicles	200,000	1.05×10^{12}	2.9
Other	200;000	1.05 x 10 ¹²	2,9
TOTAL	6,800,000	35.70 x 10 ¹²	100.0

^{*} Source: U.S. Department of Transportation

The Effects of Decisions

The thirteen possible decisions used in the FUTURE simulation are:

- 1. New oil wells on the outer continental shelf
- 2. Wells on the Naval Reserve at Elk Hills, California
- 3. New oil wells on the Alaskan Naval Reserves
- 4. Produce synthetic oil and gas from coal, synthetic oil from shale
- 5. Convert utilities from oil and gas to coal
- 6. Increase price of oil and natural gas by taxing imported and domestic oil and gas and deregulating the price of domestic oil and gas
- 7. Increase price of gasoline by direct excise tax at the pump
- 8. Reduce supply of gasoline by rationing
- 9. Reduce supply of gasoline by allocation
- 10. Produce cars with 40% better mileage
- 11. Encourage better insulation in homes
- 12. Encourage more efficient appliances
- 13. Accelerate the building of nuclear power plants

The effects of each decision on the value output by the program are shown in Figure 2. Note that the layout in Figure 2 is identical in layout to FUTURE's printed output. The numbers in the boxes are the decision numbers. If a number is in a box, the decision has an effect on the value represented by the box. Decision 13, for example, has an effect on the consumption of oil, gas, and nuclear power by electric utilities. If a number has a "minus" sign, the effect of the decision is to reduce the value. If a number has no sign, the decision increases the value. Decision 13, for example, reduces the electric utilities' consumption of oil and gas but increases their consumption of nuclear energy.

TOTAL U.S. ENERGY CONSUMPTION

Sources and Consumption (BTU x 1015

en en literatura (h. 1864). Esta en	ou .	Gas	Coal	Hydro	Nuclear
Industry	-6	-6	6		
Electrical Utility	-5, -12	-5, -12	5		12
Transportation	(-3, -7, -8, -9), -10			* i	
Residential/ Commercial	-i1	-11			
Nonenergy					
	DOMESTIC	NONRENEWA	BLE ENERGY	77	

Consumption

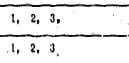
OIL. Coal 1, 2, 3, 4 1,2,3,4,5, (6,7, 4, 5, 6, 11, 12 8,9),10,11,12

BTU x 1015 Source Total

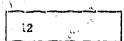
				Reserv	<u>es</u> •			
	ĺ	Oll			Gas	<u>.</u>	Coal	
	-1,	-2, -3	·	, ' e		-4,	-5, -6	:
, / , ,	- 1,	-2, -3	Œ	1		-4,	-5, -6	, ,

 $\text{BTU}^{1}\text{x }\text{10}^{15}$ Years Remaining

Air Pollution 5, 6, (-7, -8, -9), -10, -11, -12 (-6, -7, -8, -9), -10 Carbon Monoxide Sulfur Dioxide 5, 6, -11, -12


Land Waste from Strip Mining

4, 5, 6


Water Pollution:

Brine from Oil Wells: .-1, 2, 3

OIL

Radioactive Waste

Parameters and How to Change Them

1. Total U.S. energy consumed in 1975 is represented by the matrix of values shown below. Row and column totals and percentages are calculated from these values. To change the matrix, change the DATA statements at lines 5000, 5010, 5020, 5030 and 5040 for rows 1, 2, 3, 4 and 5 respectively.

Gas 10.4	Coal 5.6	Hydro 0.0	Nuclear
10.4	5.6	0.0	
a contract of the contract of	1 . *	3.3	0.0
4.6	9.2	3.6	2.6
e e e e		and the second s	0.0
8.5 0.4	0.4 0.1	0.0	0.0
	0.6 8.5 0.4	8.5 0.4	8.5 0.4 0.0

2. The grand total of U.S. energy consumption (81.9 x 10¹⁵ BTU's in 1975) is assumed to increase at a rate of 5% per year. To change the rate of increase, change line 425. If you wanted a 4% annual increase, for example, the statement of line 425 would be:

$$425 \text{ LET T9} = \text{T9} + \text{T9} * .04.$$

 The percentage of the total consumption which is used by industry, electric utilities, transportation, residential/commercial and nonenergy changes each year as shown below:

USER	CHANGE
Industry	59
Electrical Ütilities	. 89
Transportation	09
Residential/ Commercial	3 3
Nonenergy	.14

To change these values, change the DATA statement at line 5050. Note that values are preceded by two zeros, e.g., for an annual reduction of -.59, enter -.0059.

4. The percentages of energy consumption from each source by each user change each year by the amounts shown below.

USER	OIL	GAS	COAL	HYDRO	NUCLEAR
Industry Electrical	. 01	008	003	0	0
Utilities	. 002	007	. 0	008	.013
Transportation	.003	003	O O	0	0
Residential/					
Commercial	. 003	002	 001	0	0
Nonenergy	. 01	008	0	0	0
					*

- 5. Beginning reserves of oil, gas and coal in BTU's x 10¹⁵ are 580, 1032, and 40960 respectively. To change these values, change the DATA statement at line 5080.
- 6. Domestic production of oil and gas in BTU's $\times 10^{15}$ for each year is respresented by the values below:

	YEAR		OIL PRODUCTION	GAS PRODUCTION
,	1975		24:2	22.6
	1976	'	24.6	22.8
	1977	· · ·	24.9	23.0
	1978		25.3	23.2
	1979		25.6	23.4
].	1980	te	25.9	23.6
-	1981	i	26.2	23.8
	1982	•	26.4	24.0
-	1983		26.7	24.2
1	1984	- · · · ·	28.2	24.4
-	1985		29.8	24.6

To change these values, change the DATA statements at lines 5100 and 5120 for oil and gas, respectively.

7. Each decision changes appropriate assumed values by the amounts shown below:

	DECISION	VARIABLE NAME	AMOUNT		
	1	W1	3.20		
	2	W2	0.34		
	3	W3	1.40		
	4	M1 (oil)	2.10		
		M2 (gas)	1.00		
	5	B 1	0.45		
•	6	B2 (trans.)	2.10		
	A .	B6 (industry)	0.45		
ŀ	7	B2	2.10		

NOTES ON USING THE UNIT IN CLASS

Before using the program, ask all students to read the Student Guide to U.S. ENERGY FUTURE and to try to anticipate the effects of the various decisions. Anticipating effects can be done individually or by the entire class as the goal of a discussion period.

The questions printed at the end of the manual are intended to help guide students in their use of the program. They are asked to determine the effects of each decision separately and the effects of several decisions made together. This can be done by individual students or, in the usual case where the availability of terminals is limited, by the entire class. In determining the effects of several decisions together, the Project Independence decisions should be made.

After using the program, ask students to go through a values clarification exercise, evaluating the relative importance of reducing our dependence on imported energy, stabilizing the economy, and controlling pollution. After they have ranked these goals, they can evaluate Project Independence and their own plans with respect to achieving their valued goals.

PROGRAM DOCUMENTATION

GRT-FUTURE HUN FUTURE

DO YOU NEED INSTRUCTION STYES

THIS IS A SIMULATION OF ENERGY SUPPLY AND CONSUMPTION IN THE UNITED STATES FOR THE YEARS 1975 TO 1985. IT ALLOWS YOU TO MAKE THE KIND OF ENERGY-RELATED DECASIONS FACING DUM COUNTRY IN 1975 AND TO SEE THE EFFECT OF YOUR DECISIONS AFFECT OUR TOTAL EVERGY YOU WILL BE ABLE TO SEE HOW YOUR DECISIONS AFFECT OUR TOTAL EVERGY CONSUMPTION. THE PERCENTAGE OF THE TOTAL CONSUMED BY INDUSTRY.

MECTRIC UTILITIES, TRANSPORTATION, RESIDENTIAL AND COMMERCIAL USERS, AND NONENERGY USES. YOU WILL ALSO SEE HOW YOUR DECISIONS AFFECT THE PERCENTAGES OF TOTAL ENERGY OBTAINED FROM SOMESTIC SOURCES AFFECTS OUR RESERVES OF OIL, GAS, AND COAL.

YOU CAN MAKE ANY COMBINATION OF DECISEOUS FROM THE 13 POSSIBLE DECISIONS LISTED BELOW. AFTER YOU SEE THE LIST, YOU WILL BE ASKED TO ENTER YOUR DECISIONS AND A QUESTION FARK WILL CE TYPED. ALL YOU, HAVE TO DO IS TYPE THE NUMBER CORRESPONDING TO A DECISION YOU WANT TO MAKE AND THEN PRESS, THE CARRIAGE RETURN BUTTOM. QUESTION MARKS WILL KEEP APPEARING UNTIL YOU EXTER A TOY (ZERO). AFTER YOU ENTER YOUR ENERGY DECISIONS YOU VILL BE ASKED TO INDICATE HOW OFTEN YOU WANT TO SEE INFORMATION DISPLAYED. YOU CAN SEE (1) ALL YEARS FROM 1975 TO 1985, C8) ONLY 1975 AND 1985, OR (3) ONLY 1985. WE RECOMMEND EITHER (2) OR (3) SINCE (1) REQUIRES SO MINUTES TO PRINT.

THE NUMBERS THAT WILL BE PRINTED ARE EITHER PERCENTAGES OR BRITISH THERMAL INVITS (BTO) TIMES TO TO THE ESTA POSSER.

POSSIBLE DECISIONS

- I. NEW OIL WELLS ON THE OUTER CONTINENTAL SHELF.
- 2. VELLS ON THE NAVAL RESERVE AT ELK HILLS, CALIF.
- 3. NEV OIL WELLS ON THE ALASKAN NAVAL RESERVES.
- 4. PRODUCE SYNTHETIC OIL FROM COAL AND SHALE.
- 5. CONVERT UTILITIES FROM OH, AND GAS TO COAL.
- A. INCREASE PRICE OF OIL AND NATURAL GAS BY TAXING IMPORTED AND DOMESTIC OIL AND GAS AND DEREGULATING THE PRICE OF DOMESTIC OIL AND GAS.
- 7. INCREASE PRICE OF GASOLINE BY DIRECT EXCISE TAX AT THE PUMP.
- 8. REDUCE SUPPLY OF GASOLINE BY MATIONING.
- 9. REDUCE SUPPLY OF SASOLINE BY ALLOCATION.
- 10. PRODUCE CARS WITH AUZ BETTER MILEAGE.
- 11. ENCOURAGE SETTER INSULATION IN HOMES.
- 18. ENCOURAGE MORE EFFIC. ENT APPLIANCES-
- 13. INCREASE THE NUMBER OF NUCLEAR POVER PLANTS.

ENTER YOUR DEGISIONS

73

75

78

79 70

HOW OFTEN DO YOU WANT INFORMATION DISPLAYED? .1 # ALL YEARS. 2 # 1975 AND 1985. 3 # ONLY 1985.?2 1975

			SOUR	CE.			<i>'</i> ,
USER	OIL	GAS	COAL	HYDRO	NUCLEAR		PERCENT
INDUSTRY	6.4	10.5	4.0	0.0	0.0	21.0	The second
ELEC UTIL	5.6	a. 1	8.9	3-6	2.6	21.8	26. K
TRAN SPORT	18.5	0.7	0.0	0.0	O • O	19 - 3	23-5
RES. /COM 'L.	7.0	7.5	0.4	0.0	0.0	15.0	18-3
NONENERGY	3.9	0.7	0.5	0.0	⊙+ 0	4.8	5 - 8
TOTAL	38.5	23. 7	13.5	3+6	2.6	81.9	
PERCENT	47.0	28.9	15.4	4=3	3.1		
DOMESTIC .	24.2	21.3	13.5				
PERCENT	62.8	39∙3	100.0		,		
			£				

-DOMESTIC RESERVES

FUEL STU X 10:15 YEARS AT 1975 HATE OIL 555-8 22.9669
GAS 1010-7 47.4507
COAL 40946-5 3033-07

1985

			SOURC	E			
USER INDUSTRY ELEC UTIL TRANSPORT- RES-/COM'L. NONENERGY	3.4 25.9 9.3 7.8	GAS 13.3 4.5 1.0 10.1	COAL 5-0 25-7 0-0 0-5 0-4	HYDFO 0.C 7.7 0.0 0.0	NUCLEAR 0.0 5.6 0.0 0.0	TO TAL 26 · 5 47 · 1 27 · 0 20 · 1	PERCENT 20+3 36-2 20-7 15-4 7-4
TOTAL PERCENT	54· 6 42· 0	30· 6 23· 5	31•7 24•3	7•7 5•9	5 • 6 4 • 3	130+1	
DOMESTIC PERCENT	29 · 8 54 · 4	28. 2 28. 2	31+7 100+0		i e		

DOMESTIC RESERVES
FIJEL BTU X 10+15 YEARS AT 1985 RATE
OIL 283.8 9.52349
GAS 761 26.9858
COAL 40721. 1284-49

DO YOU WANT TO RUN THE SIMULATION AGAIN? NO

DONE

25/20

FUTURE Program Listing

```
GET-FUTURE
LIST
 FUTURE
   REM FUTURE ENERGY SUPPLY AND CONSUMPTION SIMULATION
   REM W. BEWLEY, NUREL
   DIM BSC103
   LET 05=0 5=0 7=08=0
5
 7
   LET 55=S6=S7=S8=S9=N=0
    PRINT "DO YOU NEED INSTRUCTIONS";
    INPUT BS
15
     IF B$[1,1]="N" THEN 700
20
25
     GOTO 4000
40
    REM A HOLDS SOURCE X USER MATRIX, P HOLDS YEARLY CHANGE IN
50
    REM PROPORTION USER CONSUMPTION, R HOLDS ROW TOTALS, C HOLDS
    REM COLUMN TOTALS
60
70
    DIM AC5,51,PC51,RC61,CC61,BC5,51
80
    DIM AS( 10)
    DIM OCITIO GELLO
85
    LET AS="1234567890"
90
91
    LET 19=0
    PRINT "HOW OFTEN DO YOU WANT INFORMATION DISPLAYED?"
96
93
    PRINT "1 = ALL YEARS, 2 = 1975 AND 1985, 3 = DNLY 1985.";
94
    INPUT Z5
95
    MAT R=ZER
96
    MAT C=ZER
97
    IF Z5<1 OR Z5>3 THEN 93
100
     MAT
           READ A
110
     MAT READ P
112
     READ 01, 61, C1
115
     MAT
           READ O
116
     MAT
           READ G
120
     FOR I=1 TO 5
     FOR J=1 TO 5
122
     LET R(I)=R(I)+A(I,J)
124
     LET C(J)=C(J)+A(I,J)
126
128
     VEXT J
130
     NEXT I
     FOR I=1 TO 5
131
132 FOR J=1 TO 5
     LET B(I, J) = A(I, J)/R(I)
133
134
     NEXT J
     LET T9=T9+R[I]
136
138
     NEXT I
140
    LET D=1975
     IF Z5=3 AVD D=1985 THEN 148
141
142
     IF Z5=2.AVD D=1975 THEV 148
     IF Z5=2 AVD D=1985 THEY 148
143
144
     IF Z5=1 THEN 148
     GOTO 390
145
148
     PRINT LINCA)
149
     PRIVI D
150
     PRINT
     LET H-1
155
160
     PRINT
     PRINT " "," "SOURCE"
170
     PRINT TABC3); "USER"; TABC15);
180
           "01L";TAB(22);
181
     PRINT
182
     PRINT "GAS"; TAB(29);
```

ERIC

183 PRINT "COAL"FTABC363;

```
PRINT "HYDRO"; TAB(43);
 184
      PRINT "NUCLEAR" (TAB(54);
 185
 186
      PRINT "TOTAL"; TAB(60);
 187
      PRINT "PERCENT"
 190
      PRINT "INDUSTRY"; TAB(14);
 200
      LET I=1
 210
      GO SUB 1000
 550
      PRINT "ELEC (ITIL"; TAB(14);
 230
      LET I=2
240
      GOSUB 1000
    PRINT "TRANSPORT.";TAB(14);
 250
 260
      LET I=3
 270
      GOSUB 1000
 280
      PRINT "RES./COM'L."; TAB(14);
 290
      LET I=4
 300
      GOSUB 1000
      PRINT "NONENERGY"; TAB(14);
 310
 320
    LET INS
 330
      GO SUB 1000
      PRINT
 340
      PRINT "TOTAL"; TAB(14);
 350
      GO SUB 1300
 360
 370 PRINT
 375
     PRINT
     PRINT "DOMESTIC"; TAB(14);
 380
    -GOSUB 3000
 390
 400
     REM CALCULATE NEXT YEAR'S VALUES
     LET, D=D+1
410
      IF D=1986 THEN 520
415
420
     LET W=T9
     LET T9=T9+T9*.05
425
     FOR I=1 TO 5
440
450 LET RCIJ=((RCI]/W)+PCIJ)*T9
455
     NEXT I
     MAT C=ZER
462
465
     FOR I=1 TO 5
     FOR J=1 TO 5
470
475 IF ACI, JI=0 THEN 490
     LET A(I,J)=B(I,J)*R(I)
480
     LET CCJJ=CCJJ+ACI.JJ
485
     NEXT J
- 490
     NEXT I
500
     GO SUB 1500
505
510 GOTO 141 ·
520
    RESTORE
525
     PRINT LIN(3)
     PRINT "DO YOU WANT TO RUN THE SIMULATION AGAIN";
530
540 INPUT BS
    IF B$[1,1]="N" THEN 990
550
554 LET 05#06#07#08#0
     LET S5=56=57= S8= S9=N=O
556
    PRINT "DO YOU WANT THE LIST OF POSSIBLE DECISIONS";
560
570
    INPUT BS
580 IF B$[1.1]="N" THEN 700
     PRINT "POSSIBLE DECISIONS"
590
595 - PRINT:
600 PRINT "1. NEW OIL WELLS ON THE DUTER CONTINENTAL SHELF."
808
    PRINT
605 PRINT "2. WELLS ON THE NAVAL RESERVE AT ELK HILLS. CALIF.
607 PRINT
```

ERIC

```
510
      PRINT "3.
                  NEW OIL WELLS ON THE ALASKAN NAVAL RESERVES."
  612
       PRINT
                  PRODUCE SYNTHETIC OIL FROM COAL AND SHALE."
  615
      PRINT "4.
  617
      PRIVT
  680
      PRINT "5.
                  CONVERT UTILITIES FROM OIL AND GAS TO COAL."
  652
       PRINT
       PRINT "6.
                  INCREASE PRICE OF OIL AND NATURAL GAS BY TAXING IMPORTED!
  68 S
      PRIVT "
 686
                  DOMESTIC OIL AND GAS AND DEREGULATING THE PRICE OF DOMEST
  627
      PRINT "
                  OIL AVD FAS."
 628
      PRIVT
      PRINT "7.
                  INCREASE PRICE OF GASOLINE BY DIRECT EXCISE TAX AT THE PM
 630
 632
      PRINT
      PRINT "8.
                  REDUCE SUPPLY OF GASOLINE BY RATIONING."
 635
 637
      PRINT
      PRINT "9.
 540
                  REDUCE SUPPLY OF GASOLIVE BY ALLOCATION."
 642
      PRINT
 645
      PRINT "10.
                   PRODUCE CARS WITH 40% BETTER MILEAGE."
 647
      PRINT
 650
      PRINT "11. ENCOURAGE BETTER INSULATION IN HOMES."
 652
      PRINT
      PRINT "12. ENCOURAGE MORE EFFICIENT APPLIANCES."
 655
 657
      PRINT
 550
      PRINT "13. INCREASE THE NUMBER OF NUCLEAR POWER PLANTS."
 570
      PRINT LIN(4)
      PRINT "ENTER YOUR DECISIONS"
 700
      INPUT D9
 710
 715
      IF D9>13 THEV 6000
      IF D9<0 THEN 6020
 716
      IF D9=0 THEN 970
 720
      IF D9=6 THEN 910
 721
 722
      IF D9 <= 5 THEN 730
 724
      IF D9 <= 9 THEN 728
 72K
      LET D9=D9-3
 727
      GOTO 730
 728
      LET D9=6
 730
      GOTO D9 OF 740,760,780,800,820,840,860,880,710,900
 740
      REM WELLS ON DUTER CONTINENTAL SHELF
 745
      LET 05=3.2
 750
      GOTO 710
 760
      REM WELLS AT ELK HILLS
 765
      LET 06= . 34
 770
      GOTO 710
      REM WELLS IN ALASKAT RESERVE
 780
 785
      LET 07=1.4
 790
      GOTO 710
 800
      REM OIL FROM SHALE & COAL
 805
      LET 08=2.1
 810
      GO TO 710
 820
     TREM CONVERT UTILITIES TO COAL
 825 LET S5= 45
 830
      GO TO 710
 840
      REM REDUCE DRIVING 20%
      LET S6=2-1
 845
 850
      GO TO 710
860
      REM CARS WITH BETTER MILEAGE
.865
     LET 57=2.3
870
     G0 TO 710
 880 REM HOMES WITH BETTER INSULATION
 885
     LET S8= 1 - 5
```

890

G0 TO 710

```
REM INCREASE NUCLEAR CAPABILITY
 900
 305
      LET N= . 18.
 905
      GO TO 710
 910
      LET S9=-45
 920
      GO TO 840
 970
      PRINT LIV(2)
 980
      GO TO 40
 990
      STOP
      REM PRINT A LINE OF THE MATRIX WITH ROW TOTAL AND PERCENT
 1000
 1005
       LET G=1
 1010
       FOR J=1 TO 5
       LET T=A[I,J]
 1020
       REM PICK OFF 100'S DIGIT
 1030
 1031
       LET A=INT(T/100++0005)
 1032
       LET F= 1
 1033 GOSUB 2000
       REM PICK OFF 10'S DIGIT
 1034
       LET A=INT((T-(A*100))/10+.0005)
 1035
 1036
      IF T<100 THEN 1040
 1038 LET F=0
      GO 5UB 2000
 1040
 1042
       REM PICK OFF 1'S DIGIT
 1045 IF T<100 THEN 1060
 1050
      LET A=100+(10*A)
 1055
      GOTO 1070
      LET A=10*A
 1060
      LET A= INT(T-A+. 0005)
 1070
 1075
       LET F=O
 1080
       6020B 8000
       PRINT "."
 1100
 1105 REM PICK OFF .1'S DIGIT
      LET A=INT((T-INT(T)++0005)*10)
 1110
      LET F=O
 1115
 1120
       GOSUB 2000,
      IF G=7 THEN 3260
 1122
      IF G>1 THEN 1140
1125
      IF T=R(I) THEN 1180
1130
       IF T=(R[1]/T9)*100 THEN 1200
 1135
      PRINT TAB(14+J*7);
 1140
       GOTO G OF 1150, 1335, 3080, 3150, 3180, 3230, 3260, 3300
 1145
 1150
       NEXT J
       IF H <> 1 THEN 1370
/ 1152
      PRINT TAB(54);
1155
      IF G>1 THEN 1340
 1158
      LET T=R(I)
 1160
      GOTO 1030
 1170
       LET "T= (R[ [ ]/T9) * 100
 1180
      PRINT TAB(60);
.1185
 1190
       GOTO 1030
 1200 PRINT
 1210
      REM PRINT COLUMN TOTALS AND PERCENTS
 1300
       LET CC61=T9
 1302
      LET H=1
 1305
      LET G=2
 130B
      FOR J=1 TO 6
1310
1320
       LET T=C(J)*H
1330
      GOTO 1030 -
 1335 IF J=5 THEN 1152
 1340
```

```
PRINT
1342
      IF H <> 1 THEN 1370
1345
      LET H= 100/T9
1350
      PRINT "PERCENT"; TAB(14);
1360
1365
      GOTO 1310
1370
      RETURN
      REM CHANGE BASE VALUES ACCORDING TO DECISIONS
1500
      REM CONVERT UTILITIES TO COAL
1501
1502 LET A(2,3)=A(2,3)+S5
1504
      LET C[3]=C[3]+S5
      LET A(2,1)=A(2,1)-S5/3
1506
      LET C[1]=C[1]-S5/3
1508
     LET A(2,2]=A(2,2]-2*(55/3)
1510
      LET C(2)=C(2)-2*(55/3)
1512
      REM REDUCE DRIVING BY 20%
1513
1514
      IF D>1976 THEN 1521
      LET A(3,1)=A(3,1)-S6
1515
      LET R(3)=R(3)-S6
1516
      LET C[1]=C[1]-S6
1518
      LET : T9=T9-S6
1520
      REM CARS WITH BETTER MILEAGE
1521
      IF D<1978 OR D>1980 THEN 1542
1522
      LET A(3,1)=A(3,1)-S7
1524
      LET R[3]=R[3]-S7
1526
      LET CC1J=CC1J-S7
1528
1530
      LET T9=T9-S7
      REM BETTER HOME INSULATION
1541
      IF D> 1976 THEN 1553
1542
      LET A[4,1]=A[4,1]-S8/3
1543
      LET R[4]=R[4]-S8
1544
      LET C[1]=C[1]-S8/3
1546
      LET T9=T9-S8
1548
      LET A[4,2]=A[4,2]-2*(58/3)
1550
      LET C[2]=C[2]-2*(58/3)
1552
      REM NUCLEAR CAPABILITY
1553
      LET A(2,5)=A(2,5)+N
1554
      LET C(5)=C(5)+N
1556
      LET A(2,2)=A(2,2)-2*(N/3)
1558
      LET C(2)=C(2)-2*(N/3)
1560
      LET A(2,1)=A(2,1)-(N/3)
1562
     \LET C[1]=C[1]-(N/3)
1564
      REM TARIFF ON OIL AND GAS -- INDUSTRY SHIFTS TO COAL
1566
      LET A(1,3]=A(1,3]+S9
1568
      LET C[3]=C[3]+S9
1570
      LET AC1,1]=A(1,1]-S9/3
1572
      LET C[1]=C[1]-S9/3
1574
      LET A[1,2]=A[1,2]-2*(59/3)
1576
      LET C[2]=C[2]-2*(59/3)
1578
      FOR I=1 TO 5
1580
     FOR J=1 TO 5
1582
      LET B(I,J)=A(I,J)/R(I)
1584
-1586
      NEXT J
      NEXT I
1588
1590
      RETURN
      REM CONVERTING NUMERIC TO ALPHA
2000
      IF A=0 THEN 2030
2010
2020
      PRINT ASCA, A);
      GOTO 2040
2025
2030
     IF F=1. THEN 2035
      PRINT AS[10, 10];
.2032
```

```
GOTO 2040
 2034
 2035
       PRINT " ";
 2040
       RETURN
 3000
       REM CALCULATE AND PRINT DOM. & FOR. SUPPLY & DOM. RESERVES
 3010
       REM OIL
 3012
       LET J= 1
 3015
       LET G=3
 30 I B
       LET. P= D-1975+1
 3022
       LET RI=O(P)/C(1)
 3024
       GOTO P+1 OF 3026, 3026, 3026, 3032, 3032, 3036, 3036, 3036, 3040, 3040, 3040
 3026
       LET T=R1*C[1]+05+06
 3027
       IF 06<.3 THEN 3060
       LET 06=06+.1
 3028
 3030
       GOTO 3060
       LET T=R1+C[1]+05+06
 3032
 3034
       GOTO 3060
 3036
       LET T=R1+C[1]+05+06+08
 3038
       GOTO 3050
 3040
       LET T=R1+C[1]+05+06+07+08
 3050
       LET 07=07+1.4
 3060
       LET RI=T/C(1)
 3065
       IF D<1980 THEN 3070
 3067
       LET 01=01-T+08
 3068
       GO TO 3071
 3070
       LET 01=01-T
 3071
       IF Z5>1 AND D=1985 THEN 1030
 3072
       IF Z5=2 AND D=1975 THEN 1030
      IF Z5=1 THEN 1030
 3075
       REM GAS
 3080
       LET J=2
 3082
 3085 LET G= 4
 3090 LET P=D-1975+1
 3110
       LET R2=G(P)/G(2)
 3120
       LET T=R2+C(2)
       LET GI=GI-T
 3140
       IF Z5>1 AND D=1985 THEN 1030
 3141
       IF Z5=2 AND D=1975 THEN 1030
 3142
 3145
      IF Z5=1 THEN 1030
       REM COAL
 3150
       LET J=3
 3152
 3155
       LET G=5
3160 LET C1=C1-C[3]
 3170
       LET T=C(3)
       IF Z5>1 AND D=1985 THEN 1030
 3171
       IF Z5=2 AND D=1975 THEN 1030
 3172
      IF Z5=1 THEN 1030
 3175
#3176
       GOTO 3360
3180
       PRINT
       PRINT "PERCENT"; TAB(14);
 3190
 3200
      LET G=6
13205
      LET J=1
      LET T=R1*100
 3210
       GOTO 1030
 3220
3230
      LET G=7
3235
      LET J=2
3240
      LET T=R2*100
3250
       GOTO 1030
 3260
      PRINT TAB(28);
      PRINT "100.0"
3270
```

```
3300
       PRIVT
 3310. PRINT
       PRINT "DOMESTIC RESERVES"
 3320
       PRINT "FUEL", "BTU X 10:15", "YEARS AT"; D; "RATE"
 3325
       PRINT "01L",01,01/(R1*C(1))
 3330
       PRINT "GAS", G1, G1/(R2*C(2))
 3340
       PRINT "COAL", C1, C1/C[3]
 3350
 3360
       RETURN
 4000
       REM INSTRUCTIONS
 4010
       PRINT
       PRINT "THIS IS A SIMULATION OF EVERGY SUPPLY AND CONSUMPTION IN THE
 4015
      PRINT "INITED STATES FOR THE YEARS 1975 TO 1985.
                                                            IT ALLOWS YOU TON
 4020
       PRINT "THE KIND OF ENERGY-RELATED DECISIONS FACING OUR COUNTRY IN 5
 4025
       PRINT "AND TO SEE THE EFFECT OF YOUR DECISIONS ON OUR EVERGY FUTURE
 4030
       PRINT "YOU WILL BE ABLE TO SEE HOW YOUR DECISIONS AFFECT OUR TOTALE
 4035
       PRINT "CONSUMPTION, THE PERCENTAGE OF THE TOTAL CONSUMED BY INDUSTED
 4040
       PRINT "ELECTRIC UTILITIES, TRANSPORTATION, RESIDENTIAL AND COMMERCE
 4045
       PRINT "USERS, AND NONENERGY USES.
                                           YOU WILL ALSO SEE HOW YOUR DECISE
 4050
       PRINT "AFFECT THE PERCENTAGES OF TOTAL ENERGY OBTAINED FROM DOMESTO
 4055
       PRINT "SOURCES AND HOW THE USE OF DOMESTIC SOURCES AFFECTS, OUR RESE
 4060
       PRINT "OF OIL, GAS, AND COAL.".
 4065
       PRINT
 4070
       PRINT "YOU CAN MAKE ANY COMBINATION OF DECISIONS FROM THE 13 POSSIB
 4075
       PRINT "DECISIONS LISTED BELOW. AFTER YOU SEE THE LIST, YOU WILL BE
 4080
       PRINT "TO ENTER YOUR DECISIONS AND A QUESTION MARK WILL BE TYPED. B
 4081
       PRINT "YOU HAVE TO DO IS TYPE THE NUMBER CORRESPONDING TO A DECISIO
 4082
       PRINT "WANT TO MAKE AND THEN PRESS THE CARRIAGE RETURN BUTTON.
 4083
       PRINT "MARKS WILL KEEP APPEARING UNTIL YOU ENTER A 'O' (ZERO).
 4084
       PRINT "YOU ENTER YOUR ENERGY DECISIONS YOU WILL BE ASKED TO INDICAR
 4085
       PRINT "HOW OFTEN YOU WANT TO SEE INFORMATION DISPLAYED.
                                                                   YOU CAN"
 4086
       PRINT "SEE (1) ALL YEARS FROM 1975 TO 1985, (2) ONLY 1975 AND 1985
 4087
       PRINT "(3) ONLY 1985. "WE RECOMMEND EITHER (2) OR (3) SINCE (1) RED
 4088
 4089
       PRINT "20 MINUTES TO PRINT."
. 4090
       PRINT
       PRINT "THE NUMBERS THAT WILL BE PRINTED ARE EITHER PERCENTAGES OR"
 4091
       PRINT "BRITISH THERMAL UNITS (BTU) TIMES 10 TO THE 15TH POWER."
 4092
 4093
       PRINT LIV(2)
 4094
       GOTO 590
 4095
       REM A
       DATA 6. 4. 10. 6. 4. 0. 0
 5000
       DATA 2.6,4.1,8.9,3.6,2.6
 5010
 5020
      DATA 18.6..7.0.0.0
 5030
       DATA 7,7.6,.4,0,0
 5040
       DATA 3.9,.7,.2,0,0
₹ 5045
       REM P
       DATA -- 0059 -- 0089 -- 0009 -- 0033 -- 0014
 5050
       REM Ol.G1.C1
 5075
 5080
       DATA 580, 1032, 40960.
 5090
       REM O
 5100 ---
       DATA-24+2,24+6,24+9,25+3,25+6,25+9,26+2,26+4,26+7,28+2,29+8
 5110
       REM G
       DATA 21.3,21.9,22.5,23.2/23.9,24.5,25.3,26.26.7,27.4,28.2
 5120
       PRINT "THERE ARE ONLY 13 POSSIBLE DECISIONS. TRY AGAIN."
 6000
       GOTO 710
 6010
       PRINT "PLEASE ENTER ONLY POSITIVE NUMBERS."
 6020
6030
       GOTO 710
 9999
       END
```

Publications Available in the Area of Computer Technology*

Environmental Education Units

Five environmental education units are available for student use, with guides for the teacher and the student. The computer language in each case is Basic. The suggested grade levels are 9-14. The most common use is in classes of social studies, science, mathematics, environmental education and computer sciences.

- Our U.S. Energy (FUTURE) Teacher Guide (32 pp.) and Student Guide (26 pp.)
- The Global Energy Situation (EARTH) Teacher Guide (40 pp.) and Student Guide (23 pp.)
- A Computer Simulation of the U.S. Energy Crisis (ENERGY) Teacher Guide (24 pp.) and Student Guide (28 pp.)
- Computer Oriented Exercises on Attitudes and U.S. Gasoline Consumption (ATTITUDE)
 Teacher Guide (21 pp.) and Student Guide (25 pp.)
- A Computer Oriented Problem Solving Unit (CONSUME) Teacher Guide (15 pp.) and Student Guide (49 pp.)

Elements of Computer Careers

This book introduces high school students to the world of computers through problem solving, simulation and hands-on activities. By developing the skills learned in the text, students experience the many careers related to computers. It can be used in a classic om setting without computer hardware, with a romote terminal or with a computer installation. A Teacher's Guide and Student Guide accompany the text.

REACT (Relevant Educational Applications of Computer Technology) Course 1

Computers in Education: A Survey

The course provides 30 hours of instruction for all educational personnel to develop an understanding of computer equipment and operation, to communicate with computers, to use computers in education and to understand the impact of computers on society. The course is composed of nine units, or "packages," which can be used for a structured course or workshop, individual self-study or as independent reference materials.

REACT (Relevant Education Applications of Computer Technology) Course 2/Teachers

Computer-Oriented Curriculum

The course provides 30 hours of instruction for teachers to develop an understanding of applications in social studies, English, business education, sciences and mathematics. The course is composed of applications in each of the five subject areas which can be used for a structured course or workshop, individual self-study or as independent reference materials.

Computer-Based Methods for Educational Decision Making: An Introduction and Guide for School Administrators

This guide acquaints decision makers with the practical application of operations research in management and administration.

Computer Applications in Instruction: A Teacher's Guide to Selection and Use

This guide acquaints the teacher with the rudiments of computer hardware, programming languages, different roles the computer plays in instruction and how to evaluate and select appropriate computer application materials for classroom use.

Office of Marketing Northwest Regional Educational Laboratory 710 S.W. Second Avenue

Portland, Oregon 97204

ERIC

^{*}For descriptions, prices and ordering source, contact: