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ABSTRACT

A Monte Carlo Study was conducted to evaluate six models commonly used

to evaluate change. The results revealed specific problems with each.

Analysis of covariance and analysis of variance of residualized'gain

scores appeared to substantidfly and consistently overestimate the

change effects. Multiple factor analysis of variance models utiliz-

ing pretest and post-test scores yielded invalidly low F ratios. The

analysis of variance of difference scores and the multiple factor

analysis of variance using repeated measures were the only models

which adequately controlled for pre-treatment differences; however,

they appeared to be robust only when the error level is 50% or more.

This places serious doubt regarding published fihdings, and theories

based upon change scotT.an4,1yses. When an investigator is collecting

data which have an error level less than 50% (which is true in most

\_situations), then a change score analysis is entirely inadvisable

until an alternative procedure is developed.



A MONTE CARLO STUDY OF SIX MODELS OF CHANGE

Charles R. Corder-Bolz

The desire to observe and understand the forces that cause change

is fundamental to educational and social scientists. Change phenom-

ena include such intriguing aspects of life as the acquisition of

knowledge, the reduction of anxiety, positive changes in self-

concept, and the increase of. productivity in human interactions.

-These phenomena are most validly viewed within the context of change.

Therefore, the concept of change is basic to the educational and

social science researcher. The measurement of various constructs and

their change has reached a high degree of sophistication. The very
. I

reliability and validity of such measurements can be estimated. The

scientist can choose from a wide array of measurement instruments that

include questionnaires, interview techniques, and observation pro-

cedures. The critical7issue, however, is one of how the scientist can

evaluate the observed changes and choose from among various contrast-

ing hypotheses regarding the nature of the change phenomena.

There are two broad categories of methodologies of the study of

change. The first category includes the various approaches based upon

experimental design considerations: Characteristically, experimental

design approaches utilize two or more paralfel groups which receive

different treatments. The analysis of variance model can then be used

to analyze the post-treatment scores. The intent is to assess change
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through the observation of differences between groups caused by the

various treatments administered to the different groups. Random

assignment to the groups should result in independent and equivalent

samples. Unfortunately, true randomization is difficult in the

"real" world and, thus, there are often important differences between

the groups prior to the administration of the treatments. These pre-

treatment differences sometimes have profound influences on post-

treatment group observations. Consequently, researchers have a ser-

lious desire to control initial or potential-initial differences' be-

tween treatment groups. This desire leads them to the second category

of approaches based upon mathematical methods designed to eliminate

pre-treatment differences between groups when evaluating changes in

those groups.

A number of statistical models and computational procedures are

included in this second category. Probably the most commonly used

statistical approach to the control of pre-treatment differences is

that of difference scores or simple change scores. This approach

involves the subtraction'of a pre-treatment observation from each

post-treatment observation. Thus, a subject's change score is del

rived by subtracting his pretest score from his post-test score. The

result is theoretically the change caused by the treatment. If the

measurement tool used has.a 100% reliability, then this difference

score should be a valid measurement of the change. The concern arises

from the fact that most instruments used to measure educational or

behavioral change are plagued by a degree of unreliability. Unre-
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ability is, in effect, error in the measurement process. It is

assumed that this error is independent in each given observation.

Therefore, each observed score is a function of what can be called a

true score plus the measurement error associated with the observa-

tion. If people are tested, whether pretested and/or post-tested,

then each test score is composed of both a true score and the

independent error component. If the people do not change between the

two testings, then the two true scores for each should equal each

other). In this case, obtained difference scores would contain no.

..really true score, but rather be composed entirely of error. Like-

wise, theoretically, in situations where there is change, a differ-

ence score would contain, the difference between the true scores, or

true-score delta, plus the error associated with the first measure-
J

ment and plus the error associated with the second measurement.

Though a measuring instrument may yield data with an acceptable level

',of error, the difference scores resulting from two uses pf the measure

could contain a very high level of error. For example, if uestion-

noire had a reliability of .90, then approximately 80% of the variance

of the scores would be so-called true scores and approximately 20% of

.

the variance would be error. If a treatment increased the true scores

by 10% or accounted for 10% additional variance in the true scores in

'the post-test, then the4rue-score delta component of the difference

score should reflect the 1016 variance in the post-test true score that

is independent of the pretest true score variance. Hbwever, the error

associated with the second as well as the -first measurement are

3,
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independent of each other and independent of the true scores. There-

fore, the error component of the difference score would include, or

could include, the 20% error variance from the first measurement plus

the 20% error variance from the second measurement. The error level

of the difference score would likely be the 20% associated with the

measuring instrument and could be as high as the sum of the error

levels associated with both of the two measurements. Theoretically,

such a difference score would have a signal-to-noise ratio of 1:2 and

could be as high as 1:4. This is in contrast to the signal-to-noise

ratio of 8:2 normally associated with the questionnaire. Therefore,

from a measurement theory perspective, the use of difference scores or

simple change scores is very questionable.

DuBois (1957), Lord (1956; 1963), and McNemar (1958) have recom-

mended the use of "residual gain" sores as a preferable substitute to

the use of "raw gn" of cores. In this procedure, a gain is

expressed as the deviation of post-test score from the post-

test /pretest regression line. Thus, the part of the post-test

informatidn that is lineally predictable from the pretest can be

partialed out. The residual, or the residualized gain, is then used

to evaluate the change by eliminiting any pretest differences or

biases in the difference scores. A concern with the use of retidual-

fzed gait scores is the consequence of'pariialing out the pretest
2

information. The information that the post-test and pretest scores

have in common is what can be considereA.,As the true score component

of the pretest score. This true score component of the pretest score

4
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has predictive value. The error component of the pretest score has no

predictive value and, therefore, has no function in the regression

procedure. Ostensibly, when the pretest is used as a predictor, the

effect is to remove the true score information from the post-test

scores, The concern is that the residual or that which the pretest

cannot predict is, in effect, the error in measurement plus the

possible gain in true scores. Consequently, as with difference

scores, residualized gain scores run the risk of being primarily

composed of error.

A fourth approach to the analysis of change is the multiple

factor analysis of variance model. The treatment conditions are

represented as a dimension in the analysis and the pretest versus

post-test scores are two levels in an additional dimension: The

effect is to partition or separate the various sources of variance

suchas treatment effects and pritest effects. With this model, the

investigator is able to isolate and evaluate possible pretest dWer-

ences among the subjects as well as possible treatment differences

between the subjects. If there is a difference or change due to one

or more of the treatments, this will result in a greater pretest to

post-test difference for one of the treatments in comparison to the

other treatments. This effect will be reflected in the interaction

component of the analysis. Specifically, the change is evaluated by

the F ratio of ttlt mean square interaction over the mean square error.

However, the analysis of variance model assumes an independence amona

-all observations. In the present situation, preest and post-test

5



measurements;oannot be assumed to be entirely independent. Thus, this

particular model is rarely used and is included herein mainly for

comparison purposes.

A fifth approach to the analysis of change involves a refinement

of the analysis of variance model which accommodates multiple mea-

surements derived from the subjects. This procedure, which is

commonly referred to as a repeated measures analysis of variance, is

computationally similar to the above-mentioned method of multiple

factor analysis of variance. However, there are additional sums of

squares and mean squares which reflect the effects of between-subject

differences and the interaction between the subject and treatments.

As with the multiple-factor analysis of variance, change is evaluated

by the pre-post test and treatment interaction term. However, despite

tie d ;ctions made in the theoretical foundations, the F ratio for

this it -act ion should have exactly the same value as the F ratio

leneratec by a one-way analysis of variance_ utilizing difference

scores Jennings, 1972).

A Ath approach to the analysis of change is the analysis of

covariance model. The pretest is used as a covariate in an attempt to

control for pretest differences between subjects. The variance of the

post-test scores that is linearly predictable from the pretest scores

is partialed out. The model is similar to the anal is of variance of

residualized gain scores except that the former is based upon within--

treatment group regression whereas the latter is based upon a regres-

sion across the entire sample. One of the problems with this approach

6



is that the traditional covariance model assumes an independence of

measurement of the covariate and th0 dependent variable. More

specifically, there is a necessary assumption of the independence of

4 the error associated with each of the two measurements. Clearly, the

use of pretest scores as a covariate to analyze post-test scores

violates this assumption. Furthermore, the analysis of covariance

model also theoretically suffers the problem of high error levels.

When the pretest is used as a covariate, the result is the removal of

the true score information from the post-test scores that is also

contained in the pretest scores: The residual is the error of

measurement plus any change in the true score values.

information could contain a diSproportionate amount of

The issues of the evalua,tion of change _remain unresolved because

the various theoretical positions approach the problem from different

assumptions, and therefore have no common ground from which a common

assessment can be made. A particularly important difference in

, perspectives is the concern over the proportion of error in change

scores. The research community was stunned, if not confused, by

Overall and Woodward's (1975) demonstration that the power of -tests of

The resultant

error.

significance is maximum when the reliability of' the difference scores

is zero. The best advice to date had been not to measure change at all

(Cronbach & Furby, 1970).

In situations in which the uncertainties cannot be resolved in a

theoretical manner, insight can often be gained from a Monte Carlo

study. In this kind of study, artificial data is generated such that
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they,confAm to a''; sired structure, Various data sets are generated
_ .

to' reflect the' variousdifferenCes of data *meters that. are of

concern. ,Then one or more -data analysis Models are used to analyze

the data to determine the extent to which the models give valid

resaltst In the case of the evaluation of change,.insight might be

.gaineny,cpallerating'sets of data with known characteristics, such as

error level, treatment effects, and pretest differences, then apply-
,

ing. the various apprOaches to the data sets. The results -would

provide a basis_ for a-direct comparison of the models.

Method

The basic method was to simulate the traditional treatment

versus control group experiment in which each subject is pretested and

post-tested. The two groUps were composed of randomly assig ed

3 subjects, with an arbitrary number of 20 subjects per group. On

group represented the treatment group which received some kind of

experimental treatment and the other group represented the tradi-

tional control group'which either received no treatment or a neutral

treatment. Each hypothetical subject was measured on the particular

dependent variable before the. administration of the treatment and was

again measured on the same variable after the administration of the

treatment. Each preteSk Obseriation Yijk can be represented as a

function of Tij, a true. score, plus an-error term, Ei31, such that the

'expected value of any,-Yi i is equal to the true score Each post-

test observatiOn Yijk can be reprAepited as a function of Tij, plus

the treatment -effect, x. plus E such that the,d5rected value of
i j2 .

13
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Y
ij2

is- equal to;.+ X. Tij represents the-true score associated

with the particular observation, x represents the change in the true

score associated with aparticular treatment, and E
ijk

represents the'.

error ,associated with the particular observation of the particular

subject.

The general design was to generate a random normal population

that conformed to specific parameter values. These populations

consisted of 6,500 observations each. Then, for each simulated

experiment, there were 20 subjects or'observations randomly selected

from the population.

Three basic parameters were explored: Several data sets were

generated such that there were differences in the amount of change

caused by the treatments. Varying proportions of error variance were

incorporated in the pre- and post-test scores. Furthermore, dif-

ferent amounts-of pretest differences were represented in the data

sets.

Three treatment levels were explored. In the first level, there

was no difference between the means of the parent populations. In the

second level, the_popultiom means differed such that the expected F

ratio of the difference of means of samples taken from each of the two

populations would equal 4.098, which would have an associated proba-

1

bility of approximately 0.05. In the third level, the population

means differed from each other such that the expec.ed F ratio of the

difference Of means of samples taken from each of the two populations

would be 7.353, with an associated probability of approximately 0.01.

9
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Six levels of eri4or variance were explored. Samples were taken

from populations. of scores which were composed froth the following

levels of error variance: 0%, 10%, 25%, 35%, 50%, and 60%. The

variance of the scores that wist-cafTed error variance was unrelated to

the variance orithe scores that was regarded as true score variance.

The error variance, cE2, was normally distributed with the mean,

p = O. The magnitud4 of aE2 was dependent upon the relative amount of

error variance in the particular population.

In order not to confodnd the magnitude-of error variance with the

magnitude of obServed score variance, the variance of observed scores

a
E
2 was maintained at a constant 1.0. The observed, scores were a

linear combination of true scores and error components which were

ectively multiplied by their weights cl and c2. If xl.is from a

popu ation of true scores, rand if x2 is from a population of error

term then the proportion of error variance in observed scores Yi,

which are a linear combination of xl and x2 can be determined by the

weights of the linear combination.

If Y
ij

=,C
1
X
1

4 .0
2
X
2
or if p

Y
= C p + Cpxi 4,2 X2

a 2.= C 2 a
x

2
ax

2

If 2 = i;and x2 = 1, then a r
1

2 = 2 c22.
2

Simply, thus if a2 = 1, then c12 + c22 = 1.

From the above equations, if xi is the true score component.and x2 is

the error component in the observed score Y, it can be seen that c12
1



plus c22 should equal 1.0 in all simulated conditions. The proportion

of error-variance,,o2
'

was therefore equal to' the squafe* the

"14 near weight for'the error component, c2. Thus, the weights for the

linear combination can be computed by taking the square root of the

respective pecenta6es of true score variance and error valance.

Three'amounts of pretest differences of initial between-group

differences were also explored. While different models 'or techniques

may or may not be able to handle various levels of .error or may
I

introduce different kinds of 'distortions at different probability

levels, the ultimate interest is in how well each procedure is able to

evaluate change validly even though there may be initial between-
,.

group differences. In the first level, there was no difference

between .the means of 'the pretest populations being "sampled. In the/

second level, the OPulation means differed such that the expected F

ratio of difference of means of samples takeh from each of the two

populations would be 4.098, with an associated probability of approx-

imately 0.05. In the third level, the population means differed from

9
each other such that the expected F ratio of the difference of means

of samples taken from each of the two populations would be 7.353, with

an associated probability of approximately 0.01.

In summary, populations were generated and subsequently sampled

which met the following definitions:

Pretest control: Y
ill

= C
1
T
i11

+
C2E111

Pretest treatment group:

1,

Y. =C1 T
i21

+r+ C

11
b

1 G

.121

.;



where T is a true score from a standard normal population, T N(140),

E is the/ error component from a standard normal population,

E N(1,0), a is the treatment effect, Tr is the initial between-group,

differenctr751 is the weight for the true scores, and C2 is the weight

for the error components.

The inclusion of"varying amounts of error Variance is important

in this kind of study. Since the-social scientist operates with data

that have. a substantial leve of error, it is of considerable impor-

tance to see how varying le els of error may influence the validity of

the results of various proCedures. In studies of this nature, there

arervarious ways to interpret the meaning of error variance. In, this

study% the primary interpretation of error variance is that it

reflects the reliability of the measuring instrument being simulated.

The error levels of 0%, 10%, 25%, 35% 50%, and 60% can be interpreted

as representing respectively approximate test reliabilities of 1.00,

0.95; 0.87, 0.80, 0.70, and 0.63:

Three treatment levels, six error levels, and three pretest

difference levels were Utilized, thus 51 original experiments were

simulated. Each time an experiment was-simulated, four new popula-4'.

tions, each of size 60500 and each of Othich conformed to the above

specifications, were generated. From each of these four populations,

12



a sample of 20 observations were randomly selected to sim41ate a two

group, pre- and post-test experiment.

The data from each "experiment" were then analyzed using six

models:

1) One-way analysis of variance of post-test scores

2) One-way analysis of variance of difference scores

3) One-way analysis of variance of residualized gain scores

4) -TIWo-way analysis of variance

5) Repeated measures two-way analysis of variance

6) Analysis of covariance

The appropriate F ratio tolevaluate theshAnje was computed for each

model for each "experiment."

The simulation of the 54 experiments was replicated a total of 50

times. Therefore, an overall total of 2,700 experiments was simu-1

%

lated. Across the 50 replications, the mean of the F ratios for each

model used'in each "experiment" was computed. These mean F ratios were

used to evaluate the performance of the six models. The observed mean

F ratios were statistically compared with the expected F-ratio

valuel. Since the same "data." were analyzed with all six models, all

models had a common basis of evaluation.

Results

In the cases in which the observed F ratios were anticipated to

be approximately equal to the expected F ratios, such as the one-way

analysis of variance of post-test scores with no pre-treatment dif-

ferences, the observed mean F ratios tended to be slightly greater'

13
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than the expected value, probably because of the highly skewed nature

of the F-distribution. Otherwise, the results indicate that the

random number generator used to create the populations worked ade-

quately. The fluctuations, from the expected values are within the

range of sampling error. The mean F ratios generated by.each analysis

procedure in each of the simulated experiments in which there were no

initial between - groupifferences are presented in Table 1. The mean

F ratios for the simulated experiments using the ,second and third

level of initial between-group differences are respectively presented

in Tables 2 and 3.

One-way analysis of variance of post-test scores. The observed

mean 'F ratios for the simulated experiments in which there were no

initial between-group differences indicate that this procedure worked

as expected. Only 1 of the 18 observed mean- F ratios was signi-

ficantly different from the expected value. However, when initial

pre-freatment differences are present, clear;ly invalid and misleading

F ratios are generated. All of the conditions with second and third

level pretest differences resulted in observed mean F ratios for the

one-way analysis of variance that were significantly different from

the!expected values.

Two-way analysis of variance. The fact that this model violates

the assumption of independence amongst pretest/post-test observations

was demonstrated by the invalid estimates of the treatment effects.

The F ratios fiat the treatment dimension were relativley consistently

lower than expected. Furthermore, the pretest differences effects

14



were 8bns.istrently underestimated by'an tve4 larger margin. However,

the value of the F 'ratios generated seemed to be relatively unaffected

by the various levelsoof error variance. The treatment-pre/post

interaction effects proved to be clearly invalid estimates of the

change effects. For these effects, the F ratios were all signifi-.

cantly different from the expected values.

Two-,tay analysis of variance using repeated measures. This

procedure does not cause the analyst to make the unwarranted assump-

tion'of complete independence amongst all the scores. Instead, there

is assumed to be a dependence among the pretest and post-test scores

and therefore is represented by the inclusion of,a subject dimension

in the analysis. The observed F ratios were relatively unaffected by

the treatment levels. For example, with no-pretest differences, at

the 50% and 60% error levels; only one of the six observed F-ratio

means was significantly different from the expected value. However,

the amount of error variance vastly effected the validity of the

observed F ratios. With no-pretest difference, the simulated experi-

ments with 0% to 35% error produced 9 out of 12 observed mean F ratios

which were, significantly different from the expected value. Even at

the 35% error level where the expected F ratio was 7.353, the observed

11(

mean F ratio wa 11.171. At the 50% error variance level, the
s,

observed mean F atio finally dropped to 9.389 and at the 60% error

variance level, the mean F ratio was 7.487. The estimates of change

effects were relatively undisturbed by initial between-group differ-

ences. Even at the third level of pretest differences, there was he

15



same number of observed mean /F ratios which differed significantly

from the expected value. However, regardless of the amount of initial

between-groyp differences, this model was adversely affected by error

levels less than 50%.:

Analysis of covariance% This procedure was relatively un-

affected by differences in ilhe treatment levels. However, the F

o

ratios generated by this procedure appeared to have been directly

affected by the amount of error variance in the data. Only at the 60%

level of error variance were the observed mean ratios not signif-

icantly different from the expected values. At the 35% error variance

level when the expected F ratio was 7.353, the observed mean F ratio

was 13.400. At.the 50% error variance lir, the observed mean F

ratio was 11.713, while again the expected value was 7.353. At the

60% error variAcce level for the third treatment level, the observed

mean F ratio was 8.620. When initial between-group differences were

introduced, the observed mean F ratios even further deviated.from the

expected values. At the thjrd_level of pretest difference, the

observed mean F ratio for the 35% error level was 18.568 while the

expected F ratio was 7.353. At the 50% error level for the, third

treatment level, the observed mean F ratio was.17.860; at 4he 60%
0

error variance lever, the observed mean F ratio was 17.667.

One-way analysis of variance of differences scores. This pro-

cedure produced exactly the same values for the F ratios as the two-

way analysis of variance using repeated measures. Even though the

mean squares produced in the two procedures had different values, the

16



final F ratios were exactly identical-toe the tenth decimal place. An

example of a comparison between the two sets of results is presented

in Table 4. As lyfith the two-way analysis of variance using repeated

measures, the one-way analysis of variance of difference scores

proved to be unaffected by the initial betweeff;group differences.

However, the amount of error variance greatly affected the validity of
r

the F ratios generated.

One-way analysis of residualizecigain scores. The results of

this procedure were very similar to those of the analysis of cover-
,

iance, though generally, the F ratios computed by this procedure were

slightly lower than those computed by the analysis of covariance.' The

-value of the observed mean F ratios was greatly affected by-the/amount

of error variance and the amount of initial betWeen-group difference.

The error variance levels of 0% to 35% resulted in 9 out of 12

observed mean F ratios being significantly different than the ex-
--,/

pected value in the no-pretestTdifference conditions. At the 50% and

60% error levels, 1 of the 6 observed mean F ratios was significantly

different from the expected value. The introduction of between-group

differences 'caused the observed F ratio's to have even higher values,

such that' even at the ',60% error variance level, when there were

between-group differences at the third level, the observed mean F

ratios were on the order of.three times that of the expected, -ratio

value. At the second and third level of pretest differenes,-32 of 36

//observed mean Ftatios were significantly different from the expected

values.

17
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Discussion

These results reflect two kinds of phenomenon. The first is the

ability of various statistical procedures to produce valid estimates

t

-of change effects without being disturbed by posible initial be-

tween-group differences. The second is the ability of the various

procedures to validly compute change effects in the context Of error

variance.

The effects of initial between-group differences, or pretest

effects, is the ultimate purpose of this study for it is these very

effects that the, models studied were designed to_, accommodate and

overt di. The very rationale for the Measurement and the evaluation

of change caused by some treatment is based upon the supposition that

treatment effects can be best evaluated within the context of some

kind of universal baseline. It has been urged that even the most

robust of between-group experimental designs ultimately contaminates

the assessment of the change that occurs. Of the six procedures, only

the analysis of variance of difference scores and the two-way analysis

of variance using repeated measures apparently are not affected by

pretest differences. These two models, which have,proven. to be

essentially the same, apparently are able to accurately assess the

treatment effects regardless of any possible biases as to initial

differences between groups. The analysis of covariance model is

apparently insufficient in that it results in highly inflated F

ratios. Similarly, the analysis of variance of residualized gain

scores is apparently insufficient in that it also results in highly

18



inflated F ratios. As expected, the one-way analysis of variance of

post-test scores does not prove to be a valid way to estimate

treatment effects when there are prior between-group differences.

While the two-way analysis of variance model proves to be unaffected

by pretest differences, it apparently produces low-estimates and,

therefore, invalid estimates of the treatment effects.

Probably the most important result of this study, or insight

providild by this study, is the effect due to the amount of error

J

-variance. These six models evaluate treatment effects by using a

gener:ar statistical structure based upon two independent estimates of

non- 'eatment variance (error variance) such that the two estimates

differ from each other as a function of expected sampling distribu-

tions. These two independent estimates are used to form a ratio.,

When the observed ratio is greater than the expected ratio, then the

investigator can interpret the statistic as indicating the presence

of a treatment effect. In a situation where there is no error of

measurement, the only sources of variance are within-group (indi-

vidual-differences variance) and treatment variance.,* The one-way

analysis of variance of post-test scores procedure is well suited to

this situation. However, the elimination of pretest effects results

in the removal of individual differences within each group and leaves

only the between-group differences. When data are analyzed by

extracting pretest values on an individual-by-individual basis, and

if there is no error of measurement, then the resultant values or

scores for an individual in a given group is the treatment effect

19



itself. In the absence of error, each individual experiences the same

treatment effect. Therefore, each individual within a group has the

same score. Thus, within-group variance is eliminated. When there is

no within-group variance, the necessary secoid independent estimate

of the error is unavailable. Therefore, there is no basis for a

statistical evaluation.

In a condition in which there is no error, models such as

analysis of covariance, one-way analysis of variance of residualized

gain scores, one-way analysis of variance of difference scores, and

two-way analysis of variance using repeated measures, which "control"

for pretest differences and thus eliminate within-group variance,

were totally unable to validly evaluate the effects-of the treatments.

This weakness in these models wa; not only apparent when the error of

measurement was 10% and 25%, but also when the error was as high as

35%. The analysts of covariance procedure continued to give invalid

estimates of the change effects at the 50% level of error. It should

be kept in mind that a 35% error of measurement translates into a

0.806 measurement reliability.

The concern for error variance can be viewed within. a wider

context. The various-populations, which were generated and then

sampled, were defined in terms of constant treatment differences and

constant pretest differences. These differences were constant in

that every observation within a population differed by the same value

from the observatibns in the other populations. The populations were

further defined in terms Of:proportion of error (though the error had

20



a mean.of.zero) which was randomly assigned and added to each member

of the populations. Thus, the popU4ations had within-population or

within-group variance that was interpreted as measurement error.

Within this context, there was no treatment error in that every member

of the population was affected by the treatment to the same degree.

Furthermore, there were no other sources of error variance. Consider-

ation was given also to exploring the impact of treatment error. This

would reflect the more realistic situation in which a treatment

affects subjects in slightly different degrees, more commonly called

treatment by subject interaction. However, the inclusion of a second

source of error variance would have resulted simply in a higher level

of error variance, something already evaluated by the dimension of

level of error of measurement. Theoretically, there would be no

interactive effects between multiple sources of error since error

variance is independent and has a mean of 0. A possible realistic

exception is the situation in which the treatments have different

levels of variance. In general, the dimension of measurement error can

be interpreted within the broader context of general experimental

error normally associated with educational and psychological experi-

ments.

Summary

The results of this Monte Carlo study substantiate earlier

concerns regarding the evaluation of change. The results revealed
.

specific problems with each of the six statistical models.. While the

behavioral and educational researcher may be able to measure various

21
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cgange phenomenon, there is now serious question as to whether or not

he or she is able to statistically evaluate the change. Analysis of

covariance and analysis of variance of residualized gain scores

appear to be entirely inappropriate. MOtiple factor anal s of

variance models utilizing pretest and post-test scores appear to

yield invalid F ratios. The analysis of variance of difference scores

and the multiple factor analysis of variance using repeated measures

are the only models which can adequately control for pre-treatment

differences;'ohowever, they appear\ to be robust only when the error

level is 50% o more. This places serious doubt regarding published

findings, and theories based upon change score analysis. When an

investigator is collpcting data which have an error level less than

50% (which is true in most situations), then .a change score analysis

is entirely inadvisable until an alternative analysis model is de"Vel-

oped.
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Table 1

Expected and Observed Mean F- ratio Values

With. No Pre -Test Difference

xpected
-"Value

\
\

One-way
ANOVA

Two-way
ANOVA

Two-way
Repeated
Measures

Analysis
of

Covariance

ANOVA of
Oifference

Scores

ANOVA of
Residualized
Gain Scores

,

Treatment .

Level
0% Error

1 1.056 0.992 0** 0** 0** 0** 0**

2 4.297 1.636** (a** .** .** 4,190.432**

3 7.353 8.088 3,362** a** .** 4,662.504**

,
10% Error

1 1.056 1.291 0.085** 0.821 0.879 0.821 0.868

2 4.098 3.654 1.889** 16.954** 17.171** 16.954** 16.867**

3. 7.353 8.495 3.352** 32.703** 34.275** 32.703** 33.396**

25% Error

1 1.056 0.980 0.263** 1.020 1.073 1.020 1.078

2 4'.098 4.249 1.661** 7.664** 8.662** 7.664** 8.653**

3 7.353 7.661 3.737** 15,278** 17.176** 15.278** 17.156**

35% Error

1 1.056 0.829 0.354** 1.025 0.825 1.025 0.815.

2 4.098 4.817 1.882** 5.229** 6.355** 5.229** 6.294**

3 r 7.353 8.628 4.052** 11.171** 13.400** 11.171** 13.279**

50% Error . ,

1 1.056 1.082 0.600** 1.146 1.164 1.146 1.153

2 4.098 5.243 2.371** 4.814 6.229** 4.814 6.293

3 7.353 9.048* 4.683** 9.389* 11.71t* 9.389* 11.611**

60% Error

1 1.056 0.892 0.737** 1.229 0.977 1.229 0.971

2 3.098 .4.733 2.212** 3.911 5.008 3.911 4.9460

3 7.353 6.644 4.196** 7.487 8.620 7.487 8.629

* p(t) < .05

** P(t) < .01

where t
(observed mean F-ratio) - (expected F-ratio)

2
standard deviation of,observed F-ratios) / aT
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Table 2

Expecte and Observed Mean F-ratio Values With

Seco Level Pre-Test P fference

Expected
Value

One-way
ANOVA

Two-way
ANOVA

Two-way
Repeated
Measures

Analysis
of

Covariance

ANOVA of
Difference

Scores

ANOVA of
Residualized
Gain Scores

Treatment ,

Level
.

0% Error
l

1 0.464 3.** 0** 0** 0** 0**
II

0**

2 4.098 16.618** 1.649** ..** m**
. -** 1.133.626**

3 7.353 19.452** 3.222**- .s** ..** m** 1.433.624**

10% Error

1 0.464 5.735** 0.140** 1.472 1.787 1.472 1.591

2 4.098 15.502** 1;639** 16.199** 18.698** 16.199** 16.423**

3 7.353 20.424** 3.284** 31.998** 33.593** 31.998** 28.747**

25% Error .

1 0.464 4.193** 0.232** 0.868 1.099 0.868 0.978

2 4.098 13.396** 1.835", 7.612** 11.288** 7.612** 10.220**

3 7.353 20.021** 3.965** 16.508** 22.409** 1,4.508** 20.169**

35% Error

1 0,464 4.001** 0.361** , 1.119 1.753 1.119 1.636
4

2 4.098 16.923**' 2%175** 6.098* 12.070** 6.098* 10.414**

3 7.353 19.201** 3.404** 9.459* 16.560** '9.459* 15.082 **

50% Error .

0.464 4:405** 0.864 1.935* 2.824** 1.935* 2.645**

2 4.098 14.421*w 1.867** 3.994 9.106** 3.994 7.938**

3 7.353 17.8e1** 4.145** 8.737 15.259** 8.737 14.202**

60% Error

1 0.464 4.445** 0.626** 1.062' 2.490** 1.062 2.326**

2 4.098 14.924** 2.354** 3.848 10.529** 3.848 9.460**

3 7.353 17.911** 3.571** 5.950 14.104** 5.950 12.888*

* p(t) < .05
** p(t) < .01

where t
(observed mean F-ratio) 7 (expected grad)

(standard deviation of observed F-ratios)/VTT
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Table 3

Expected and Observed Mean F-ratio Values4ith

Third Level Pre-Test Difference

Expected
Value

One-way
ANOVA

Two-way
ANOVA

Two-way
Repeated
Measures.

Analysis
of

Covariance,

ANOVA of ,

Difference
Scores

ANOVA of
Residualized
_Gain Scores

Treatment

Level

'

0**

1.697**

3.518**

0%' Error

0**

**

**

10% Error

0**

**

..**

0**

**

0**

664.300**

371.070**

1

2

3

1.056

4.098

7.353

9.027**

19.371**

29.444**

1.489

20.833**

34.995**

1.123

18.452**

34.333**

tit

1.304

16.588**

25.979**
)

1

2

- 3

1.056

4.098

7.153

7.171**

21.491**

30.270**

0.109**

1.963**

3.489**

1.123

18.452**

34:333**

Error

1

,,,,

2

. 3

1.0456

4.098

7.353

8.809**

21.739**

26.600**

0.357**

1.770**

3.999**

25%

.1.39

6.959!*

16.276**

Error

2.687** 1

11.553**

23.144**

1.395 cz7--

6.959**.

16.276**

2.322**

9.042* *..

18.854**

1

2

3

1.056'

,4.098

7.353

8.839**

18.473**

27.416**

0.528**

1.596**

3.852**

35%

1.539

4.944

10.723**

2.782**

10.231**

18.568**

1.539

4.944

10.723**

2.339**

8.312**

15.394**

1

2r
3

1.056

4.098

7.353

7.944**

20,788**

25.636**

0.564**

1.954**

3.729**

50% Error

1.129

4.202

7.961

3.531**

11.835**

17.860**

1.129

4.202

7.961

3.088**

9.502**

14.932**

0.461**

2.238**

3.169**

60% Error

0.738*

4.151

5.558**

3.311**

12.316**

17.667**

0.738*

4.151

5.558**

'2.794**

9.863**

13.675**

1

2

3

1.056

4.098
...

7.353

7.679**

19.867**

28.1354*

* p(t) .< .05
** p(t) < .01

(observed mean F-ratio) - (expected F-ratio)
where

(standard deviation of observed F- ratios) /i



Table 4

Summaries of One-way Analysis of Differences Scores and Two-way

Analysis of Variance With Repeated Measures

One-way Analysis of Variance,of Difference Scores

Between

Within

Sum of Squares

16.549.

39.996

d.f.

1

38

Mean Square

16.549

1.052

F

15.723

Total 56.545 39

Two-way Analysis
--
of Yarial With Repeated Measures

Between-

Sum of
Squares d.f.

Mean

Square

Treatmeq .0.488 1 0.488 .327

,`Treatment x Subject 56.731 38 1.492

Among

Pre-Post Test 4.210 1 4.210 8.000

Treatment x Pre-Post 8.274 1 8.274 15.723

Treatment x Pre-Post x Subject 19.703 38 0.526

Total 89.702 79
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