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Preface - B
. € )

y . ) N o
5'

‘.‘ A sound knowledge of mathematicg is becoming 3 prerequ1site for
‘:ypitful work in an ever-1ncreas1ng number of endeavors. This knowledge
n:yt lnclude why mathematical processes work as well as how they work

is nqt emough for today S children to learn mathematics by rote.:

Cnildren now in elementary shcool can be expected ‘to fade problems
which we cannot foresee Tnese problems will be solved not by knbwledgel
of mathematical facts alone, but by knowledge of ‘mathematical methods

- for attacking problems. New and as yet unknown problems may 1nvolve
gnd in fact will require, new and as yet unknown.mathematics for their )
solutions haturally, we cannot teach th1s unknown mathematics, but: we
can and must teach methods of mathematical thinklng as well as the basic

N

content of mathematics.,

In'generalffschools today are becoming increasingly awvare of the

need to orfent the teaching of .mathematics in accord w1th a conceptual

dev pment of mathematical ideas. .Yet, too frequently ar assumption

S made that for a population of children that is considered to be

culturally depr1ved'; rote learning is still the only enswer to learning -

¢ mat:azaélcs. This course of actiod would further depr1ve these children
A feafure of th1s text is an attempt to attend to problems that may be
.assoc1ated with the culturally disadvantaged. S ‘ -

. The 1ntroductory chapte1 begins w1th a descr1ption of the. culturally
d1sadvantaged based on psychological findings. It cont1nues with the
.physicald social, and psychological env1ronment in- wh1ch these children

y function in tReir pre- school years. The next concern is w1th the char-~
Facteristics manifest 1n the culturally disadvantaged children as they
.enter school Finally, 1mplications for~teach1ng these- children are

discussed in this chapter

Cnapters 1 through 17 present mathematical content relevant
7_:to teaching in ‘the primary grades. All topics which’ arepincluded_in .
the texts for the School Mathematics Study Group Books K and. 1 are
; i treated, but from a more sophisticated point. of view. Other topics have
dbeen included-whenithe>development has warranted it. As Book K end 1

)
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dc ot develop top1cs 1n the same. sequence, adaptation of this course to
&’S a' nartlcu__ar grade may necess1tate sorie - minor change in the order of (,;. .

otudﬂnsr these materlals The tiwo tables below 1dent1:f‘y each chapter St

in Book K and 1n Book l w.th the chap'ter 1nvthis book that pertains '

to the same topics., - Tnus, the sequence of the. chapters in the inservice NS
_ text 11sted 1n tne rlght hand column mlght serve as a ‘guide for-the order
' 1,n the studying. . - / S T
", Chapter .in"Boo{c‘ K - Cle .‘ K Inservig:e_ Chap_ter" '
. 2 : _Re‘cogni-‘zinigl’. Geometric ‘I"‘ifgdres" .; . ve I S L ; "'. '
"3. " Compérison of Sets — o \" 2.
ol '_“oubset of & Sgt - ~i ’ _ ¥ e
5. Joining and Remov1ng _ _ ‘ "; " AR b )
6 Comparlson of Sizes and Shapes . ": e 1k, 16’ ‘\'j
7. Ordering of Sets ‘ . “ - T2, - .
g 8. 'Addltlonal Actlvrtles (geometrlc shapes) ST : 11 L t
" 9. Uslng Numbers mth Sets @ e I o ) o . 3, 6 /\ h
',. . ‘_.\7 \. . _ . . . v
‘Ch.ap'ter in Beok I R ; Inservice Ghapter s e
- 'l'. : Sets and’ Numbers o o oo 1, oo .
. Numerals and the Number Line . s 3,5 \
'Sets of Ted™ : < . 6 L ' .
W Introductlon to Addltion and Subtraction /- " y ’.;' .
5. Recognlzln.g Geometric Flgures " o .- "’x - ;‘5,l 11 "
= A. PFlace Value and Nv.meratlyon S e 6 R
‘ 7. ddition and Subtraction o _'7& . ‘{_. -~ _7.,_9\' R
8. rrays “and Mtﬂ.tlplication P O B
v 0. artitions and Rational Numbers / R i\, Yoy .13 T
10.  Linear Measurement’ . o . X‘, . v-'é:.- 1k, 1_6‘ LN
o . . . "‘-‘.'. ) .,;‘._ . ‘ \.

Both. Books' ."?and 1 start w1th the notion Of s‘et ‘a, primitive . v
notion on wh1ch other matnematical concepts ml], be’ ‘built * After this ® \ -
- - development,.thq orde;s in presentat_ion of topics 'd.iff,e,r considerably.. Lo
The ‘reason for the difference is},largely in considera'thioa‘. of cbncept ‘
develou}nent 'of‘ children at the differjént levels, For example 1m the
gindergarten program, it makes gense to start with activities asgocihted
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. w+th geovetnic concepts.s1nce these act1v1t1es 1nvolve working w1th e ..n

) ’aﬁﬁliar odgects sucn as boxes and. tin cans: These activities els) mot -;"f . .
.. - require.as nign*a level of abstraction as does the nurbér coniept //_1'

.
’

& Moreover, tney are act1v1t1es that encourage the'learning of sort1ng R

- and’ claSSifying -of oowects and 1deas; an implicit ifsnot explic1t

e A
AN .o

' 7requ rement. for learning nUmoers in partlcular and mathematicc 1n‘ T, : .o
Q.l“gederal . On the other’ nand the first grade course starts with the',“"

' ol
) conceot of numbér'right afterathe development of sets hecause the {n

A number concept is at hand by then Book 1 “then bullds upon the pne ) .

e liminary groundwork laid in the mindergarten course and extends the(
concémt of ‘numbers to those great@r than * 9.~ _ } . S

7:, Another example 1llustrat1ng differences 1n sequence may be seen -j :
) é in ghe -order of presenting the arithmetic operations * Ih Book l
subtraction 1mmed1ately follows addltldn, whereas-in the inserV1ce text
multiplieation follow= addition« The order as presented 1n Book ‘1"

.

Cu, 1s ‘the onefoy which children usually learn these operatlons, the ‘\.
AR procedure adopted for the 1nserv1ce text digtusses f1rst the primary T
.y ﬂ operations of addition and multiplication and then brings into focus .ff L

tne seéondary operations for subtraction and lelSlon as the inverse P .

operations of,add1tion and multiplication respectively RIS o C R,
. . e -

- o Tne remainder of the book consists of‘three appendices containing : f\.h_f"';

background‘information 'Appendix A is a description of the DMSG ';"-\; ‘J: -

1

-

mathematics program for grades K 3 Here, 1s d1splayed a nhart showung : T. v .

- ]
the scope and organization of nﬁthematical contents in these grades*-_The‘ .

. 1nclu51on of Such a’ chart’ is 1ntended to provide perspective to the Zfaw_”:-.,. y

- I “ re

. teacning of mathematics 1n tne elementary school by show1ng when §:1 certar

topic occurs, how its occurdnce is related to other top1cs 1n“the cequenc ,
Y ey, “'-__
and when it recurs again 1n the sp1ral of the-curriculum : D , Y

* - T

- j' Appendix B attends to language and mathematical learnipg “ The ;4“;f o

'\
- .

acareful building of understanding and correct use of mathematical language

thrdugh aural -oral experiéhces is con51dered . Particular examp]es and
suggestions useful to teachers cf young.chrldren ‘are 1ncluded

vt P
ER R ."'

&
< Aopendix C conta1ns 1nformation gathered irom observations and

= testing of children who used the School Mathematics Study Group texts,' “A'_L :n jﬁ
 MATHEMATICS FOR THE ELEMENTARY SCHOOL, ‘Books” K.and 1 durjng the schegi © . .
year l96L 65 These results-are taken from a comparative sbudy of e ':'
children descri}_aed 14 the 1ntroductory chapter DESCRIPTION OF ! CULTURALLY T,

DISADVANTAGED CH'.[LDREN . e ST - R ot 5
N ‘. . . . Ta . . 111‘ . . N A »
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n1s book has been written with &an- inseIV1ce course in mindjy however,
‘oped that the text is suffic1ently 1ucid to be understood easily

‘s

: ‘i.Oj the reader. It is assumed that greater comprehenslon and interest will
R derlve from d1scusslon between an instructor and 1nservice teachers» For
. this puroos ) . the problems thatqhave been inserted at - appropriate intervals
n in each cnapter (as’opposed to a set of exerclses at the end of E?ch chapter)

R may be an 1ntegral part of d1sucsslons for clarlfying fine point
oo . 4
deenenlng understandlng “ O j o y' PO " ;_1

4 - . i

Wben it was felt’ that some commé§t .on pedagogy or’pther relevant

and for

remarks might contr1bu e toward cetter understandlng and teachlng of the b
concepts, ‘these' comments “are 1ncluded under the sectlon, ARPLICATIONS 0 =
: TEACHING at the end of. the qhapter From 1nservice1meetings and other” S
contacta w1th teachers in the prlmary grades, a few questlons perta1ning
:ﬂ’ to varlous toplcs have been observed to recur. We hope that . by selecting .
) ,some OI these: frequently asked questlons when they are relevent to the
chapter and expandlng on the underlying concepts, we can resolve some
o of the dlfflCUltleS that may haye arisen.z For want-of a better handle,'
we ‘'shall label such. sectlons, QUESTIONJ It is important to note" that .
\-’a large part of what is presented hére ig background materiad. for you, =
as ‘a teacher, andfis not intended to be’ transmitted to your students per. se f.’“
we nope toat as yolu read the text and do the exerc1ses, you will increase 2
your understandlng of. some bas1c notions underl ng the mathematics that -: »
Jou are teacning, and that, in genéral this text3w1ll prove useful. . . v

-
M . [N

.311 . .1In the;preparatlon of this’ book ‘we have drawn on materials produced N

J'. bg "the School Mat&ematics Study Group, .and in particular, STUDIES oy o ]
. 4 MATHEMATICS Volume IX, A BRIEF COURGE IN MATHEMATICS FOR ELEMENTARY’ .

»\;- SCHOOE TB@CHERS For Jthe use of these materlals, we offer acknowledgement

3

Vo 3 T . ) -
a
. . -
. B , -
. . S ; :
Y « . X .. - )
¢ B i .
S ' - S N
\ ) -t '
A . - & . e . R <
B . - -
— .. ]
y L s
t L .
o P
Sy - ~ o v — ’
' ' - . ~ e -° ©
- ro L.
. r
- . .
L) - / ) . W ¢
- o o ’ .
. ¢
- T .
X - ¥
b -
o
~ ~ .
.. . -
] N \
. 4
S

ERIC

Aruitoxt provided by Eic:

Me o



\
\

. “*‘!’—‘—\? - T, ) R
: . - ‘ e, . ’ v
. o, . o . TABLE. OF CONTENTS .
: . . . | LA S ' . e
: ' : : e e SN . . L
. : : ’

BREFACE. . . . v v vn v v u s vl v s

Chapter 0O.. DESCRIPTION OF CULTURALLY DISADVAN‘I’AGED CHILDREN dee e

2. COMPARING SETS . ' o v . . i, £, . e el e 29
'3. WHOLE NUMBERS: . .". . .-,Z,,;j. L 1§
. SET OPERATIONS « & « o vvs s v v woe v v v v T X

b
5. INTRODUCTION Te GEOMEI‘RY.. T A =
6. NUMERATION - NAMING NUMBERS. . & « oo e oo u {ov s s

7
8.

ve

ADDITION o o v %o v v 5w Toe o o v Se atweri e o ae 4 w1130

. . MULTIPLICATION R U DR s 1
SIS 9 SUBTRACTION.a. IR I AT S L IR

T 100 DIVISTON .t L ek e e b e e e D e 1
" 1}, ELEMENTS OF GEOMETRY . Joam e e e e 183
12 ADD,ITION'AND SUBTRACTION 'I‘EC}H\IIQUES Ve e el e e 199
13.  INTRODUCING RATIONAL NUMBERS . RN e e e 213
14. PREMEASUREMENT CONCEPTS. « oo o & w & we% v e o o4 v 2. 241
BTN MJLTIPLICATIONAND DIVISION TECHNIQUES + « v  «; « o . . 267
" '16.  MEASUREMENT. \.A._. T = B
R 7. STRUCHURE, . . .-. . ST e e e e 299 -
- Appendix A. MMM*}EMATICS PROGRAM GRADES K3, + v o« .0u i v 0. . 307
' 'B. LANGUAGE AND MATHEMATICAL INSTRUCTION. + o . . o 4 . & . . . 311
C. NUMBER CONCEPTS OF DISADVANPAGED CHILDREN. . .« '+ .\ . . . 383"
ANSWERS TO: E}CERCISES R R LR R <. 333
GLOSSARY + . .. .- A A P w2

.
[ . -
-
PR ) .
\
- '
N} -
e
- N -
y )
{ - \
. S B
2 A - PR o
EV
J o i
s . < N HA .
. . M
“ -~ ~ Ve ' .
— S 2
. R ~ .
. N a
~ 4 e t
' a ' L} od o
p -
. . ya ‘ )
! ’ N A— .
E ' P
. ) ! s ¢
, - s . -
3o . 7
B .o : ' o .
. ’
. | R4 .
—— - . s ! ' 5
N . / Lo
1 i) : . ~




Chapter O 3 _
= ( DESCRIPTION OF CULTURAELY DISADVANTAGED CHILDREN

A 2

I. Introduction

' . .. /' '
From a variety of so ces, data have been accumulatlng which explaln
the disadvantaged position of the culturally deprived child as he starts

school. If we review some of the conditlons within the family and .' t

'neighborhood which theSe children experlence dur1ng th*!r pre- school years,
then the characteristics of these dlsadvantaged chlldren become.
. more meaningful . f__ _' '

The two maj by cniteria used in defining people classified as
”'culturally disadvantaged are (l) low” economic status, and (2) 1lack

in middlé-class cultvre. The actual family. income'may

vary fnpm one s udy to- another. A max1mum famlly 1ncome of $2 000 Per
disadvantaged in-some studies; an 1ncome below $h 000

“may def1ne thi group for others working with them.

' The crit'rion of lack of participatlon in middle class culture 1s
more difficulL to specify, but relates most closely to the va}ues placed
-upon educatidn.‘ The lack of’ books, of parental examples o{’readlng and
| success in education, and the lack of: stimiXlation to ach1eve are all

parts. of this non-particlpation in middle class culture. . . )

)
" " The c turally disadvantaged group cons1s+s mainly of urban

slum-dwelling people, particularly because the United States population

is becomipg increasingly more urban. This faet does not however, preclude
inclusiQ of such marginal subsistence groups as segregated rural Negroes,
3 dwellers in the depressed areas of Appalachia, and many American Ind1an

. 'groups/from the ranks of those described as culturally d1sadvantaged.

: II} Contributing Factors T T '~' L "_ ) l“, :_. -

/ . -

- élf ve look ‘to the home and environmental c1rcumstances that influence
thes

children in ways which -are apparent at school entry, the physical .
-living conditions as well as the quality of ‘the parent child 1nteractlons
are most striking. There are, .of course, exceptlons to these observatlons
8 that rash gengrali;ations should not be made.. We mention some of the

more.salient'observations in order to alert the reader t6 these factors.

=
H
<
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AV A. Physical Living 'Conditions - - o e
. . . L4 .

The living conditions provide a partlcular kind‘of setting within
. which the parent child interactions take place. The - crowding of. dwellings o
in disadvantaged areas of large cities allows for little privacy, solitude,
or quiet. Not only are there likely to be many people occupying a qmall
apartment but the dwelling ‘units are close upon'each other. 1In other
Words .the density of people for the physical space -is very high. What

¢

¢ o this means for a young child is that he has. almost no place to play ’
w1thout being either 'underfoot" or out on the street. He is constantly
.subjected to noise from the family, television, neighboring households,

'and street act1vity.

“ The child in the disadvantaged home 1s not likely to have books or ‘
magazines available to look at.nor to have read to him. He is not likely

to have a variety of toys, w1th which hé can amuse himself nor toys which

-

encourage sharing. +The possibility of developing gross and fine muscle .

.i coordination and independent 1mag1native play through dnaw1ng, futting,
and building ‘blocks, for example, ave lacking. He 1s less likely to
have been taken on trip% outs1de the imm@diate ne1ghborhood—-to the 200,
parks, a farm, museums, or, ‘even to the- library Thus, ‘the experiences R
of these children prior to schoal’ entry have been different froﬁ those

"of childrenqpf mlddle class families and much. moré ‘highly restricted

" in var1ety : _ C \'”-;i' ;' o

P o
- Hostility of the Bavironment ' " T

« - In the above section the typical household situatlon was descr1bed
'The character of the neighborhood ‘as the broader social sett1ng, also

,1nfluences these children in ways wh1ch are apparent at” school entry
The environment of the d1sadvantaged is described as hostile because

of the higher rates of delinquency, disease, -and death in, the1r ne1ghborhoods.]
Whether or not these cond1t;ons can be called hostile, the follow1ng

4

_ conditions are, at the least, not. conduc1ve to mov1ng outs1de the home or

"relat1ng to the community. First, fewer’public recreational fac1litfes

are lOCated in these areas than- in areas of higher income residences ,i }

T S T '
lFOr stud1es supporting these and the 1mmediately follow1ng statements,l

dee Sextan, Patricia C. Educatidn and Income.. New York: The Viking
Press, 1961 : . L N . . '

2 R N @ . . . .
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N S ) - . '
Second school buildings in these areas tend to have less adequate-
equipment and facilit1es for such activrties as stience and art to

-'mention two of many whieh could be c1ted Third, contacts out51de
_the immediate neighborhood have frequently been w1th authority

;'figures--policemen, welfare workers, or schaol, OfflClalS The school

' is likely to be assoc1ated‘w1th this authority and resented rather than

'_-considered an important resource for help and development di potential
- v

N

‘;' hE C.; Parent Child Rélatlonships R

- ;does not consist of mothen father and their chlldren ¢he effects of

. othér compositions of the family unit must be cons1dered SInc many of

these hdmes the father is not. present The household often consists t

' ,of mother children, and possibly other female adults such as ‘an aunt

. . or maternal grandmother _There ° . may be cons1derable instability both 1n

* . example,. a maternal aunt and her childreg may move 1nto the hgusehold

if there is.a cr1s1s in therr lives, or a Chlld may leave h1s mother :
* and move to a relative s home ;1 has mother takes & JOb -
< hal

What ‘emerges -is a fon of - "extended family wh1ch prov des a cart
H 3

safety and_ securlty;against whet may be percelved as the hostlle world

: performéhce, is thét’ of a d1rected 1nteract10n between the -adult and )
'the child.. The mother in the culturally dlsadvantaged home is not e

Since the bas1c family unlt amqng many_pf the disadvantaged groups

-

the living arrangements and in the adults 1mportant to the Chlld For .

o

: What lack appears most signiflcant, especlally for the Chlld') school -

"\

: likely to spend time 1n conversing with one -of her children alone, nor in,

sitting down to teach him-a spec1f1c Sklll such as tying his- shoelacec

Superv1sion of the child is handled by any of the adults available,
by. older 51b11ngs, or none. : T

5

" To elarify the term/aadult chlld 1nteractlon g let us use two
Jtypical s1tuations 1n a two-year old's exploratlon of h1s env1ronment
He may reach‘for something hot, or poke a finger into the ‘eye of his
‘baby slster o uner, who isg: llkely to‘ﬁe preoccupled w1th the sheer
physical demands of life, does not exﬁlaln why the child's behavior ’
'will be harmful to him or the baby, rather she w1ll yell at\hlm, ‘

“"Stop that'", or "Bad- boy'”; or slmply‘slap him.

O

ERIC

Aruitoxt provided by Eic:



The 1mplicatlons of mother ' s response for the two-year- old are
-several F1rst there is no verbal spec1f1catlon of what, exactly,
the undesired act was. He may interpret mother s slap as meanlng

that reach1nrr or touching is wrong: and therefore, punishable. Thus,

'shere is no. opportunity for learnlng a d1scr1mination between the

act of reaching or touch1ng and the’ conseguence s of reaching for certain f .
’obJects (1n this 1nstance, hot) or touching (the baby! s eye). . What th1s'
' k*nd of punlshment is likely to achieve, if used- as the usual means of
'vdlsc1p11he, is a st1fllng of reaching and touching This will eventually
;’ dlmlnloh the ch1ld‘s curlosity by reduclng his explorations of his

- immediate env1ronment. B . » _;A s
sgcond 1mpllcation Jf mother! s use of "Stop that‘" or’ a slap

is that 1t does not prov1de a model for complex verbal behavior, The,

Chlld needs te listen to language forms 1n order “to pattern his own .

language both in terms of range of’ vocabulary and complexity of - expression.-

L N
PO Also,'he needs the\experlence ‘of verbally expres51ng hls questions, L
. * -
- ;-_reasonsk, d feelings in order to learn to communlcate verbally.
ol . 'L . . ’

A thlrdllmpllcatlon of mother s response in the ear? er cited
rsaid in

response to his reaching oropoklng, that a big boy you are to be able,

examples is fq{ the child's self concept. If mother

ﬂ

to reach S0 high (onto the stove or 1nto the erib)Y But, you mustgbe": .
- careful T hot things or baby's eyes, then there is somel"increment T
f;;. in g pos ve»concept of* h1mself. He is growing and is capable ‘of new
accomplishments By slapplng or telling him that he is a bad boy, however,.ﬂ
._~’ ; h1s image %f himself i deflated. ¥hat - is likely to evolve in th1s settinglv
' 1s an- image of the good Chlld a5 one who stays .out of the way and. who 1s - N
qulet. Th1s is not the child who will ach1eve 1n school through h1gh

motlvatlon and str1v1ng. )
- .

A further-polnt should be made about the relatlonships between mother‘
and child as contrlbutlng to the chlld's behav1or as we see him at school =
antrance. If the mother has not had many years of formal education herself,

she dlll be less aware of what exper1ences ‘she could prov1de which would

\eventuallj gzlp her child in school.

D. Planning and Scheduling of Time <
A characterlstlc df many disadvantaged familles, partly related to
biedr living conditlons and partly related to.thelr sub-culture, is the

SR L T ;5°t e i L
1'.’ :ih{ o ‘. g . A . B g :

ERIC

Aruitoxt provided by Eic:



v : P - ‘

' lack of a famiéy schedule or routine. Meals are not eaten at regular
RS

times, nqQr is ‘there a set bedtime for the children It is seldom that
the family sits down to a meal together

S
4'.There are two effects of th1s lack of time-pl;nnlng and ;Qutlne
“which are likely to cause difflculties in the young child's adjustment'
“to school. The first”has to do?with adapting to & routine and working
'independently within,time\limits} "The second has to do with verbal. ..

o development .

" Let us deal, first with the use of time. *The chlld who has not
' exper1enced some scheduling of activities at home will not be able,-'
aw1thout considerable help, "to gdapt to a school rout1ne--a time to
{start a given activity w1th the class and a time to finish up that
- activity when directed This means less self d1rectlon and less abllity
to.¥ork independently In addition, be1ng on-time has no meanlng unless
4n-expectations have been establlshed that certain events ~oceur at particular

times and some consequences may follow from not be1ng on time.

Without the experience of planning time and us1ng periods of time
4w1thin the day for particular actlvities, the child is less ‘1likely to be
able to’ develop longer-range more abstraCt goals which involve both
'planning longer blocks of time and sequencing time. It may well be that

the demands of career plans 1nvolv1ng partlcular steps both 1n the immediate
.and more-remote future are not possible without these early experiences
Successful performance in specially selected courses 1n high school, along
'w1th sumrer jobs to earn money, id order/to-enter college involves such
":sequenced long- term planning. When a mother explalns to her pre- schcol
child that he may. play with his friend at a certain time, after his- nap,
; . or when she says that he may watch television until supper at 5 30, she
4 may be laying the foundation for later’ longer-range goal orlented plannin

. ., o The fact that the family does ‘net sit down together for a meal or
for discussing the day's happenings permits\fewer opportunities for _—

: .llverbal interaction< The child does not have the experience of - hearlng,
attending to, or participating in complex verbal expression. “The child
who does’ not participate with adults in such verbal interchange has little-
opportunity to be heard to be corrected end therefore to have his

-blanguage modﬁfied and expanded - At -school entrance, the child comes’ 1nto 4
a situatlon where there are expectatioqs that he express his ideas ip 'jf ’

jﬁverbal interchange with an adult. The situation is strange and unfamlllar
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_He must 1earn to adapt to this new kind of interaction as well as to learn

the language neces=ary in order to partic1pate.

In d1scussing the mother child 1nteractlons earlier in thls chapter, _7f-
-, it was, pointed out. that the mother does not use complex verbal explanatlons
_1n d1rect1ng her child's behavior. More physical, rather than verbal
, means of d1sc1pline, plus the lack of conversatlon among femily members,
. .comblned with the lack of d1rect teaching, contr1bute to the development v
. of a child experlentially llmited in both the content (vocabulary, varidty,

and complex1ty ‘of speech forms) and the structure of such verbal communication.

ot
. .

E.. Lack of Preschool Experience - e

A source of enrichmefit for some young children, though usually not
‘for the- deprlved child, has been a year or more of nursery school prior
to school entry. Slnce nursgery schools have trad1tionally been pr1vately -
'funded therefore requirlnéjtultion, they have not,’ -in the past been .
~available to the d1sadvantaged groups.' With the 1ncreas1ng governmental
'concern for the economlcally depr1ved segments of our'populatlon, such
_programs as ProJect Headstart will undoubtedly have’ 1nfluence on the

_exper1ent1al development of - these chlldren.

_ jI. : Character1-st1cs of Cultu.rally Disadvantaged'Childrenl : . _ '
In the two preced1ng sections we have descrlbed certain character1st1cs
~ “ of culturally dlsadvantaged families wh1ch influence their chlldren S )
behav1or by the time they start school. In- this sectlon, ye ‘shall" descr1be
s, 'feellngs and behaV1or of these children in the beg1nn1ng school years

'resultlng from the family and broader env1ronmental 1nfluences. ) .
- .A. Self Concept A' . ’ ’. o . - . \

leen the conditlons of a hostlle env1ronment, of the1r famllles

. | being the have -nots" economically and. soc1ally, and’ of the lack of

k experlences d1rectly relevant to classroom learnlng, these chlldren ..
are not likely to have p051t1ve feellngs about themselves nor of society.

‘7'. ' .Most crucial in- the context of this book are the!r feellngs about their _

comnetence for succeed1ng in school. For’the : Npgro Chlld especlally, the: /

effects of preJudlce, segregation, and inferior status are llkely to lead
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__learning that the1r chances fo; success are relatively llmlted d

‘they are likely to meet with frustration and confusion, if not failure, i

'adult males with whom the child does have contact are generally not those

presentlng a p1cture of responslblllty or successful ach1evement as

.to negative feellngs of h1s own worth 2‘ These feelings, in turn, lead

to Ilttle mot1vatlon or str1v1ng for success since these ch1ldren are"

o : ' _

Since these children do not have the basic skills or know%how for..

‘._immediate adaptation ‘and successful performance in the claSsroom situation, -

N

. very quickly Indeed they may not be aware of instances in which they w

may have reJected avenues leading to success. The effects of such experiences :'

will further detract from their feellngs of competence

;Somewhat less tangible, but worthy of mention,.is the observation
that these children}do not‘have as’differentiated a self- concept as.do
_more privileged children By differentiation is meant the perception of -
one's self as a unlque 1nd1v1dual with certain characterlstlcs, preferences,
and w1shes which form an 1dent1ty d1st1ngu1sh1ng one from others 'Eﬁst
reasons suggested for this lack of glearer d1fferentiat10n are- negative

That 1is, there is. not an intense relationship between a parent and, an

"1nd1v1dual child *in these fam1l1es, nor is the treatment of a glven child

Lnd1v1duallzed As a result these’ chlldren d1splay less self- concern,
less canpetltlveness, and less motivatlon for self 1mprovement These are
facets of 1ntr1ns1c mot1vat10n wh1ch many teachers rely on to keep ch1ldren
in a given task T

v

There is a special problem in the development of a'self—cOnceptlin}-'

boys from culturally disadvantaged homes This arises from the lack ofb

_é stable father.. As pointed out eariier, in many of these homes the -

father is'abSent There may be adult males. in and out of the home, but

.the presence of these potent1al models is llkely to ‘be temporary. ThlS

s1tuatlon does not allow for a stable relat10nsh1p with an adult male

vhom the boy may use*as a model for 1m1tatlon and identification. “ The -

measured by the standards 1mpllc1t within our schools - LR

F01 a deta1led discussion of this topic, see Ausubel D and Ausubel,

. Pcarl “Ego development among segregated Negro ch1ldren, in Passow,

A, Harry, Education in Depressed Areas. New -York: Teachers College,
Columbia University, 1963. - '

s
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- -~ . . -

The language with which the culturally deprived child comes to school

§ is likely to. be d1fferent from the’ mor . advantaged chlld's in two maﬁor

' 1s in the quallty of verbal expression.

: over a toy telephone before he 1s able to speak directly w1th another o
. child or with a teacher. ' ’

ways.3 -Thé f1rst 1s 4n the - quantlty of. verbal expression, and the second

Concernlng quantity, chlldren from disadvantaged homes tend to’ speak‘
in” short phra es. A monosyllabic response to a teacher E request or i_
question is typical. It 1s not uncommon to. see kindergarten children o
of this group s1tt1ng side’ by s1de at a table in a classroom and not

'having any verbal" interchange at all. In certain pre- school enrichment

' programs it has been found necessary, in many . 1nstances, to encourage

i chil& to express himself verbally by talking to an imaginary person

_ The dlfference between disadvantaged and more advantaged children ;
‘is less llkely to be seen in verbalflabelllng. Thet is, children from"
the d1sadvantaged groups can give names to commonly seen obJects, €uch, .
as a ‘"dog, pencil, box, key: If the obgect, or referent, is rarely

exper1enced in low income. env1ronments,-(e g., "nest"” whichxis experlenced

1n rural environments or glraffe" which * requires books or a trip to n bl

the zoo) these words are not likely to. be known by. the. children.

.,

’ The major qualltative differences lie 1n the elaboration of languages--.
“in complex1ty of grammatical expresslon and in. the more, abstract language
which goes hend in hand’ with conceptual development The experiences of
these children have not prepared them well for simple classificatory
behavior, such. as comparing toys or other classroom materials on.- such
dimensions as size,’shape, color, number. They" do- not,bawe the; vocabulary
for expnessing such class1ficatlons or, comparlsons, nor have they had
experiences which have made them attend to the attributes of objects.
Chlldren from the middle class, both more experienced verbally and more

avare of abstractlng from attributes, are better able to state a concept

. v . . . .

L - . . - . R
* S : ' S \

,

anis discussion will not deal with the child from a non-English speaking
home since this presents another kind of language problem beyond the scope .
of this section.--.

. . ‘.
~ - Y



%Anllcltly when glven p1ctu1es all of Wthh f1t that concept .On the

i othar hand lower class chlldren lse more conérete attr1butes and noﬂ _
-necessarlly the essent1al ones. ‘o 1llustrate this 1dea, Johnu stud/ed _ R
a group of Negro lower: and middle class ‘first. graders She present d. o
:them with pictures of four men at. work e .policeman, a doctor, a: farmer,~ o

. a sailor + The m1dd7e class chlldren more Irequently said’ tney wer¢ .
alike because all were’ "men’' cg&*beonle ) whlch are category labeﬂs o P

. ‘ ¢
- The: lower-class chlldren focused on)non-essentlal attr1butes With17FCh - ‘l. -

JK

.

statements as "look the same' ""llke ‘each other".

C.. Sensory development

‘ |

Lacklng the experlences ‘of attendlng to attrlbutes of obJect : ' i
dlscussed in the prev1oué section and lacking the experlences of ﬁooklng '
~'at books, these chlldren are ‘not llkely to be as ready for the ‘di's crim natlon : uﬁJf_
'and attentlon demanded by pr1nted‘mater1als Teachers workinl w1th the e S

chlldren have found. that “they are eas11y confused gbout ‘the task to be Co
. done by many p1ctures;or numeralc on a page, they qu}ckly lose the1r‘pl;¥es,
" one page 1n a workbock is- readlly confused w1th another vh1ch has s1mllar\

".delemeﬂts,A ~ - '... = L 'n; ! o SRS R

: Whether the1r eye- -hand coord1nat10niﬁs less well developed is not \ :
as: cruclal4an issue here as "the fact that they have not. had the opportun1t1 S
to use penclls, crayons, and scissors. Their experlences in seelng pr1nted )

llnes ‘and pactures w1th1n books and f1nd1ng meanlng from them are. 11m1ted \ .
1

;v In the area of audltory d1scr1m1nat10 _the d1sadvantaged child '\E
does not attend as ﬂell to teacher d1rect10ns ‘nor to her 1nstruct10n, : \','
probably for two reasons: First, he 1s‘easlly d1stracted by extraneous : A
'sounds or activities. Secondly, and partly resulting from.the first;’ 'T }\
he’ 1s?27ss able to d1scr1m1nate dhat is the sound to be listened to from ”. : \ »

the nodse which 1mp1nges . A B B : S

. /bu. Motlvatlon to achleve school goals - f. _ . ‘ \
Considerlng the’ p1cture presented of the pre school envlronment of a E X

. Chlld from a dlsadvantaged ‘group and knowing the expectatlons of the school . ( \
for task- orlented act1v1ty, the discontlnulty between ‘the two settlngs | s \

s strlklng. " The child has much to unlearn_, as well as to learn. He . : \

2J'Jo'hn, Vera P. "The 1ntellectual development of slum children: some |
"preliminary’findings." Amer. J. Orthopsychiat., 1963, 33, 813 822 o

e

O
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must learn the exnectations of the- séhool and especlally the demands of
his teacher, w1thout consider1ng content learning at all! ﬂ@;*

'

- " lower- class families toward the schools and of the discrimination (often

- 'unconscious and unintenfional) on the part of the school in dealing with }
' lower- class parents and children The work of understanding such attitudes -

on both\‘Taes 18 not to be minimize Quite apart from such factors,

‘gi.' - : A.Much has-been written on the antagonism and defensivenesa>of '

a however, the difficulty in transition for the child -entering school can o
' readily be. seen He often lacks the long -range. goals which can be achieved
through school success, s well as the intrinsic motivation to learn for '~
self improvement" ' e e :

mplications for Teaching‘ R o L s

L ,‘ In the previous section of this chapter, a p1cture was sketched of
. . the child from a. d1sadvantaged group at the time he entered school In

this section an attempt will be made to apply the understandlngs derived
e from the: descr1pt10n of contrlbutlng factors and resultlng character1st1cs S
. . to the teaching of disadvantaged chlldren fn order to. discuss teaching,v

;references w1ll be made to- the performance of the\‘_ch}ldren on school

' tasks and in test situations /
. .

A, Impllcatlons for Teacher Attitude ‘ v

. \ L . .

R It is very 1mportant for a teacher in the prlmary grades to be avare
o that. the performance of these disadvantaged children in their early school

years 1s not necessarily a good 1ndicat10n of their‘potentlal Their =

[y

,
"earlier experiences have not well prepared them for ithe - demands made by .«
the school therefore they are not as ready for school It should be

kept in mind that their rate of learnlng can be ‘vexry rapid on tasks wh1ch

‘ do not depend on»pnior learn1ng that they have not had ) i

UA
¢

‘In th1s same vein test results should be interpreted w1th1n the
context of your knowledge of these chlldren Spec1f1cally,,there are a

. number ‘of fatets of standardlzed tests and of the testing s1tuatlon ~
r which contribute to the1r poorer performance F1rst we can go back to
the v1sual and aud1tory d1scrimination llmltatlons d1scussed in Sectlon
IIT of this chapter If the test d1rections are’ presented verbally, the

child may not clearly understand what he 1s expected to do--assumlng '
tbat he is able- to attend sufficiently long to hear what'ls said. Thenj

"\
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assumlng that-the test 1s D'roup admlnlstered he 1s expected to use a.
pencll to mark certain symbols on a paper or booklet wh1ch 1nvolves both’
& some dexterlty in us1ng thc pencrl and maklng rather f1ne d1scr1m1natlons
.among-the symools on the page. In addltlon to th1s, the relatlvely shortja
?attention span of these children compounds to the problem. '

i A test- thch is t1mea adds another factor. contr1but1ng to the. poorer
performance on dlsadvantage ch11dren These ch11dreq are not accustomed

to worklng w1th1n a time schedule as many m1ddle class chlldren are,

- ¥

Other Iactors that contrlbute to poorer test performances of - thlS'
'group are part1cularl¥ relevan+ to 1ntelligence ‘tests. These are lack -
~ of pract1ce or test ”knod-hod' lack pf\ motivation to do well Inadequate
h'lrapport v1th the examlner, and the cultural loadlng of the tésts o *

themselves wh1ch ‘disérimindtes agalnst these Chlldren, ] o :v,. N

This d1scusslon of the factors 1nfluenc1ng test performance is placed
,under the headlng;'”lmpllcatlons for:Teacher Att1tude"' ‘for the- purpose of.
i 1ncreas1nr your avareness, that a set of tdst~scores dc&s not permit .

earning rates, or potent;al

" accurate Judgments of what the capac1t1es,'
performance of drsadvaﬁtawed ch11dren may be 1n _the future. Such fest’

f' scores give 1nformatlon on how a’ g}ven child is performlng at a partlcular
p01nt 1n time. How the same child mlght perform glven opportun1t1es to

«

compensate for some of thése limiting conditions.is a maJor challenge ;
tow the °chogls at p#esent, in att1tude,vas well as behavi or.‘w /ﬁ

Thc final admonlshment cbncernlng attitudes toward the culturally
dlsadvantaged chlld is to keep in- m1nd his earller experlences wh1ch may
make for dllficultles 1n his relatlonshlp to you; ‘as his teacher, in his

'adaptatlon to the school routine, and in his unfamlllarlty w1th the

uork e’pected . N ! . -' S
: o ) s c ) . . . . . . T ) .
/»\\B .Implications for Teacher Behavior , 4 .” S S
S . . .
N © Given- some knowledg _of tg/‘background and resultant character1st1cs

‘of dLsadvanta*ed (hlldren 'vhat can a teacher do to aid in- the1r development

' and school ororrecs'> Four 3ungestlons are glven here wh1ch, it is hoped,

) ' .-lﬂ.pruv1de suidelines for- your wvork and relatlonshlp to them.
- Dt :
Thn 11rst “uggcstlon and pérhaps the most 1mportant, ‘is to mainta1n

v a A*m and .,uppov'tlve relatlonshlp w:Lth these chlldren. Although thls

O
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may sound 1ike an oft stated platltude, it is partwculary important for

the groups that we are dealing w1th and it can be acted upon in a variety

of meinlngful ways. In as many. ways as p0551ble provlde experiences which

‘will enable the children to be successful Qonversely, avoid situations

fthat may produce frustration and failure. These chlldren need the .

: board to help John. -Do not allow. Andy o take over and complete the .task..

reassurance that can be affbrded by your attention and by regular and

frequent praise. Thelr need for experiences in suceessful completion ‘

;

of tasks means that you must ‘be careful and discrimlnatlng in what you
ask each 1ndividual to, do. For exanmle, suppose you ask.John to pair.’
the members of two sets of objects at the flannel. ‘board, and he is -
unable to manage this' task. “You then ask Andy to 80 .up to the flannel

' Make certain that what Andy does is helping, by doing one pairing only,_

and that it 1s John'who actually; completes the taskwsuccessfully’

Y] . v

T The var1abi11ty in performance 1evel of chlldren in these classes

which will be dlscussed in Appendix c, makes it 1mperat1ve that you deal
,w1th disadvantaged children ind1v1dually erd that you' assure each child

the experlences of completing hls work, w1th expectatlons of success at

encouragement af” the children? S verbal expre551on.- Given their
”limltations 1n audltory d1scrim1nation and their inexperlence w1th

" . more complex . language structure they may not be able to. understand

’\

vhatever hls current level of performance.

~
’,

. The next two suggestlons concern your own language and your-

ydur language ea51ly. ThlS w1ll be particularly true if you use- long,
complex explanatlons or dlrections They need short, " simply stated
directlons until: such time that’ they are able to understand ‘more complex’
verbal expre351ons, feel more certain in their reIationship to you and

you are sure they are able to perform what is being asked of them._ f,

»

Complementary to the slggestion concerning, your language is that of
encouraging the chlldren S verbal expression wherever possible. They

need the experience of expre551ng, through words, their 1deas and wishes*®"

- +to you as well as to. tHe other chlldren There are many ways in whlch

this can be accomplished only a ﬂéw will be suggested here. By asking ..

- children to describe objectsaéthe obJects belng used for set construction,

the toys they are. play1ng w1th thghplctures “they have drawna you. are .

_.both encouraglng ve;bal expression and ‘making them aware of éttributes i

or propfrties {colo y texture, 51ze).

. . ) . .
' TN . .
.

Fj
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_Another device which has heen found'verY'helpful is the use of word

.

problems If the teacher starts By telllng stories wh1ch have problems/

.. In them which she expects the children to ansver verbally, she can. soon

get the children to make up such problems for the class to ansver. :

The  last suggestlon keeplng the chlldren 1nvolved, is certalq;y
appllcable to all chlldren It is especlally important for.the dlsadvantaged

-children. Your. knowledge of these chlldren will be of great asslstance

in this, as- will’ ‘the age of the ch1ld1en Wlth young chlldren, yow cén o -%a.'

'use many sensory- motor exper 1ences for. teaching, there can be much more

actavity involv1ng concrete materlals from wh1ch abstractlons can be made
. ) -7

In summary, ctart your teachlng 4t ‘the level at wh1ch the chlldfén_

are able to function use their assets, and maintain a high level. of _"d

aspiration for yourself and for your puplls I ‘ o .

e : -

.. -\ : v” --.. .._ \
A / -




.-+ LCHAPTER1 = - SN
' INTROIUCTION I S I

i

one of these is the concept of~set. ‘This . concept occursy for example, in
dealing with sets,of'points, sets of’ numbers, sets of objects. The. most N

general of these of course, are séts of . obJects.. From these sets we

' basis fot- the number concept and’ serve as pre-number ideas.

" - ¢ S

WHATISASET . RN _' C e

Y

In speaking of collections of objects, special words may be used with

reference to specia.l collections such as: . . '_ . .
herd of cattle (set of cattle), s
-flock_of. geese' {set of geese), '
pride of lions (set of lions),

-navy (set of ships), |
- span of horses (set of horses)

e

of* things:  Some examples of. sets—of things are:

,

.
‘th_e furnitilre‘ in a'r‘oc'>m,

the monkeys in’the 200, e . S L.

the doors in a roem,. ' o ~ o -

the children in the cl'ass, . o
© the books in the libra.ry .

’ : : : .
Each obJect in a set is- ca.lled a member or an element of the set.

If the obJects on Yyour desk are a- pencil a book, a ca.lendar, and a blotter,
then each of these is a member of the set of things on your desk; each child

- in your class 'is a member of the set of children in your class.

& v . A, set may consist of a variety of obJe‘cts- A prime characterastic
of a set is that there {5 a method or rule whereby set membé%'ship or .
nonmembership can be  determined. Consider the following examples.. - -

O
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" There are 8 few ideas that occur over and over again in mathematics, S

ultimately extract ‘the concept of number. Thus, gets help form a primitive .

‘ Each of" these may be equa.lly descri'bed as a set & set is Jus‘b a‘-collection )
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Cw, "the set tnat is not shared by objects that are not members Of the set.

within braces (-} to denote the set s0 specified. Thus,

"l,)f Suppose wve consider the ‘set of - wheel toys.‘ We ask- the .
question, "Is a doll a member-of the set?" Since g doIl L

. 1S not @ wheel toy, it is not a member of the set' A
.wagon, “on the other’ hand is a member of the set since St

: . 1tis a wheel toy. e ' .

-

w*, - Suppose we consider the set of objects on. the teacher s

I ~ desk. The criterion for determining whether -or not'a
particular obJect is a member of the set is, "Is this'
object on the teacher s desk?"

In both examples, there is a property that is shared by . members—of

The common property of" being a’ wheel toy, thus, is the rule that determines
_ membership in the set in the first example. The common property of being
on the teacher S desk is the rule that determines membership in the
second set. o s
.V-BROBLEMS L R R
1. What are the members of the set of = S
, ag the Great‘Lakes of ‘the United States?
b.» the days of the weekg -
'é.f the objects in Dlsie s purse? °

e . v ‘ R

d:,2. fDetermine which of the" objects listed below are‘members of the set- ‘\

| 6F animals.- . SR o |
_ . e ,
a. carrot o o 2
b.. lion ‘
Ci',tiger . . s
d. tree * o ,;‘.'
e e. cat’ -’. U ¢

. DESCRIBING SETS

-

" There are~various‘ways'in which a set.may be specified In the case
of the'set concistlng of California, Oregon, and Washington, we may specify

the set by listing all the members.: A class roster is thus a means of ¥

specifying a particular set; a reading 1ist is a means of specifying another

set.. I the reading list consists of the book titles, The Story of Pigg,
A Day in Maine, and Make W Way for for Duckling s We can enclose these titles

: o
~

*Solutions for.problems in this chapter are on page'27 .
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¢ 1% a nqtati for "the set whose members are ‘The Story of Plng, A Day in Maine," .

_' and Make Way fgr Ducklinvs.' The braces are an abbreviation for the words
~tithe set whose members are." Note that the items in the - listing are--'*r' : .

1

Separated.by chr as. .. s s I
- There are-o asions when‘it'is inconvenient or.impractical:to specify'-
the set by list" g all its membPers. For example, the set of all, states
" of the United tates requires a: listing of 50 states,‘the set’ of all
inhabitants in the United States may require a listing of more than 200.
million names. £ there is an explicit common property that may be" used
to characterize

e members of the ' set, then such a description ney be
RN . ’ L . ) . 7 v T
. . &dequate. Th

’ .
[the states of the United States) ,,

he set being considered. 'For'convenience, we' may use abletteri._ .

\specifies
) i »

cular set, and once: so identified refer to this )

United States by the letter A ; then we can write : .
[states in the United States] -

Thereafter, the set of states in the United States may. be- referred to
_simply as A. anventionally, qapital 1etters -are used for this ‘purpose.-

We have mentioned that a class roster is a means of specifying a’
particular set. Note that a child's neme is not. listed more than once in
specifying the set.. Once he is listed he is designated as-a. member of the;
set. By the. seme token, {(d, e, r} 1is the set of all letters in-the’ word

‘

"deer as well as in the word red" .

PROBLEMS '.'_.," VLo R

" 3. Using a common property, describe the set specified by -«

g a. (Alaska, Hawell, Washington, Oregon, California) - S
. b; {Maine, Vermont, New Hampshire, Massachusetts, ‘Rhode ISland, S
N\ - .Connecticut] . . . .

_’c. (red, yellow, blue]
EWAI‘ Sms -" . : . . . : . B ~
When we write

[states ‘ih the Unjted States]

O
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we meari that A end- {states in the United States] ‘are symbbls or names,“

t-ﬁfor the same,thing._ thnpver ve use the equal sign M= as in
. . Ry oL e b
;.l S '- L 5 + 2 7

'rjlfwe‘shall mean that the two sets of symbols are names for the same thing,

" in this case 5 “+ 2" ’and 7" are both names for ‘the same numbﬁr’

B -
RO Note that {the. first 5 letters of the English alphabet] is
.o identical with {a,‘ 5°8s d, e] To' indicate that we. have one ‘and, the- .
. “iisame set, ve say that these are. eg sets and we write - ' : .|

[the first 5 ’etters of the, English alphabet) = {a, b,' c, d, e).

In other words, if A 1s a set and B is a set, then

[N

Ckem o v e

- if botp sets have exactly the same members. 4 ) ) _‘._

- Stnce the set consisting of the members Rosa, Eddy, and Leon is ,

Qidentical with the set consisting of the members Eddy, Rosa, and. Leon,
«.We can write . ’ . ﬁa

[Rosa, Eddy, Leon] = [Eddy;SROSa, Leon] .4 .3..

the that the order in listing the elemhnts of a set’ is immaterial in
specifying the set.~ The same set is specified by two different listings

-wof the same. members. ".‘ ~ .' - - . L
: PROBLEMS ’
4. Are any of the following four sets equal? ..' B th"“,l_ N,
A=1(1,35 . R o
B'= [numerals representing the first three positive odd numbers]
2 ~C=(135) . . o "" ..
S D= (9) E : . S e
. E'= (the:digits in the mimerel 1351} ' s Ty
SUBSETS . .. . - S e "“.,'

e
‘

-A set is a collection of elements. The selection of certain elenents
from a given set will.form a set. For example, from

-~

!
PR

A_[a,b &d, e} W
we ey form ‘a” set consisting of the elements,' 8, ¢, di.

PR

B = [a, c, d) S :‘~.“?g '
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We say that B is a su’bset of - A Set B is sald to be a. su’bset of. a. set
-A, 1¢ ea.ch element of B is also en’ element of A. Ms, :

v

[Rosa., Ed&'] 1s a su’bset of [Rosa., Ed&', Leon]

because ea.ch mem’ber of [Rosa., »Edc_hr} is a mem’ber of [Rosa., Ed&', Leon]
. However, . o o o S

[Rosa., Anthony} 1s.not a subset’ of [Rosa., Ed&', Leon},

because Anthony 1s not a menber of . [Rosa., Eddy, Leon}.

0bserve tha.t if

' A= [a.,b c, ,e_} a.nd B_[b, e e., d}

then 1t is true tha.t every element of B is -an element of A (remem’ber
the order of listing of the elements is imma.terial) S so B is'a subset
of A Since/ A= B this exa.mple illustra.tes tha.t dne of the su’bsets
that ma.y be formed from a glven “set is simply the: glven set. This may :
be so taken for granted the,t the need to make such 8 sta.tement is not a.t
a.'l.l appa.rent. However, this. fact will hs.ve some undertones for us, ‘as

for exa.mple , when we exmne certa.in special cases for su’btre.ction.

" Ve heve noted tat N
[a., b, ¢, d,° e} a.nd B= [b, e, c, a, d]

theh B 154 subset of A; . 1t is equally"true thet A 1s'a subset of

B, We cen also see that T L G
H‘AISASUBSEIOFB(,]I‘B' s
: . ISASUBSEI‘OF A. M); :B- - . '.., _.'A' " ' ,

PROBLEMS '_ .
5. Wnten expression states tgxat the letter. '5“ 1s en- element p

" of the set of lettgrs in the word. "Fridey'"? S o
a. y is an element of [Friday} ‘ e - T
Des [y} is ‘ant element of [Friday} ' o C
ves Y. is ‘an element of ' (F, I, 1, d, a, y}c . '-" o

1

[y} 48 en element of (¥, r, i 4 8y) R
LTom, Ha.rry} 15 & subset of - [Tom, Diek, Ha.rry} Neme six different

subsets of [Tom, Dick, Ha.rry} Le B . ciro T

T . . . . . ) . .. . L ey
. . N N . * . N . L I, . - : LA - Lt
. o ~ . .
.
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1& ET WITH ONE MEMBER AND THE EMPPY SET" ~-

e

. The set of all vowels in the word "cat" is a set with1justpone member,
- That is to;sa&, o ‘ ST . o
. {the vowels in the .word "cat"]lJ {a).

This is an'example of a set with a single member. .It may conflict with our
'intuitive sense "to think of a set with a single member sipce, in ordinary
’ language, the word ' set connotes more than one object in ‘the’ collectlon.
-An ‘even ‘more bizarre set that we shall Bescribe is the set that has no’
members. Both of these mathematical concepts--of a set with one member
'.and of ,the set with na members--are convenient ones moreover, a vital

question of logic requires the existence of such entities._

Logically, unless the concept of a one-member set is considered it
dould maké no etse to come up with ."a" ‘&s the set of all’ vowels in the:
— word "cat”; the letter. "a" " does not answer the question: "What 15" the
set of all vowels in the .word 'cat'?" Likewise, the same question of logic
mey enter into the consideration of the set with no members. A plea may %
be made that the question itself meeds to be Yeworded. Instead of asking,
"What is the 'set of vowels in the word fcat'?" 1t may be’ more appropriate'
- to ask, "What is the vowel in the word Leat??h This may sound sensible, '
| but it does require a prior knowledge of the answer. Quite often, we do -
' not know how many solutions we mey have to a problem. With the understanding
A that there may be ‘one, more than ohe, or no members in a set; there would -
'_;be no need to rephrase the question each-time a speciaJ ‘situation is
- encountered. For«example, the question,‘"What is the set of boys enrolled
. in this school?" might be equally applicable to- ‘the Yale, Columbia and. -

Vdssar populations--or to one in which Just one boy happens to be enrolled
»
i In thinking about a set with one member, there is a strong inclination

to think of the set and the member that constitutes the set as one and the
- same thing and it is important to distinguish between the two. A case in
‘fpoint might be_given, for example, in the cataloguing of . books in the school

library. Under the category of classics might be Just the one book ‘
~ Treasure Island. By itself, the book ‘is not the same as th; set of classics..
va another book is added to the collection, the set of classics has changed;‘

I

L - ' b

;‘ . “Treasure Island has not changed.

. ty sef is the set with embers. Thus, the set of. all,boys i’
by o Ihe emply set no.m ’ s
enrolled in Vassar is an example dfithe empty set. The set of ‘atl months

¥
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is also a member.of A Another way to say this is '

APPLICATIONS TO TEACHTNG

-,having nine Sundays is ancther example of the empty—set. There may be

many ways “of illustrating the empty set but any le of the empty 'set

‘has the same members as any other example of it because none of them has

‘A notation for the empty set is { }. The empty space between $he braces

indicates that there are no members;lh the set.s ' Another notation that is
used for the empty set 1s the symbol ¢b With the first way of. denoting

the empty set the question may arise. as to whether we'had forgotten to list

the ele .within the braces. With the symbol ¢ this. problem does
not arise. - k o : :

Recall that B 1is saild to be a- subset of A if each member of™ B
A 4

B. IS A SUBSET oF A IF THERE IS NO MEMBER
“OF B WHICH IS NOT ALSO A MEMEER OF A.

¢ -

Both statements say exactly the same thing. Asha consequence of,ty

oy,

second\statement the ‘empty set is a subset of

A = [Rosa} Eddy, Leon, Anthony]

_There 1is no-member of ()} that is not also & member of A. The empty-

set'has rio members. Thus, "the empty set is a subset of every-set.
PROBLEMS . ‘ Co o -

-
°

T. Which of the f°110Wins are é’qual sets? - - i _
[women gho are 20 feet tall]

A= (2, e, 1; o, u} - . D=
B=( y . -7 E £ (the vowels in the English
C L (Mondey) : _ alphabet)} -‘
- F = (the days of the week]

8t Which of the sets in the .above list is a subset of another
" in the Iist? ° ’

A

While both symbols,. $ and - ( ], have been used here to denote “the

'any nembers. 'I'his 1s why we say -the empty set; there is only one such set.

empty set; it is best to avoid introdueing too many,symbols simultaneously..

Sirice the braces'have been used for sets'cbnsisting of many memberg as
well as for sets with one member we have kept to ‘the use of the braces,
( ), for the empty set for students in the“

dogs have ‘the advantage ‘of suggesting no meﬁberb*in the set.

21
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' As indicated above, the set with one member and the empty set may

' not seem to be easy concepts to present. Many teachers have, however,

s

R

>

. during reading, © . - N S .

reported that: childrpn have been able to grasp these concepts. quite-h _
easily. Singce these sets will Wtimately be associated wlth.the numbers.
1l and O, they need to'be included in our experiences with sets. There
should Ye emphasis on the use of the- article "the" in referring to the
empty set. As in many other instances, for this level ‘the emphasis is

largeiy by precept and example. on the part of the teacher; there needs to .

be constant awareness of the proper use of. language.

Both the proper use of.language and the delibérate stress on certain
critical terms are particularly important in view of the listening habits
of some children. Some may not be able to grasp all that is said in .
long. expressiops. Some will attend to only part of vhat is said. Th{s,
aside from the cavelier reference to . 'the' empty set' as "an empty set",
there may b confusion between the words "set": and 'subset": Unless
conscious effort is made in enunciation, ‘these . terms may sound alike to
the youngsters. In additioﬂ to marked effort in the proper use: of
language, constant and natural use of new, terms throughout the day as
occasions may arise has been found to be helpful. For example, -there
may be meny instances of subsets that can be pointed out;. during play

period, E .-

.

"a' subset of the class that is on team A",

s

"g subset of the ducklings in the pond"?, .

‘during'music,

'»’and'so an. ' '_ : o E ‘ . o o ' .

. concept to-teach and a variety of_experiences~may need to be provided

"a subset of the class that is playing the pianof,
A v .
S

Team membership offers excellent reinforcement of the fact that

rearranging the members does not change the set. This is not an easy

leading to this notion., -Some childrer are quite convinced’that each

_time there is a new arrangement of the seme members,_a new set is formed.

By way of illustration we might mention that the same'members meke up

O
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the set (team) regardless of who 1s on first base, who is on second'and
so on.® If there 1s any change in membership, a different team is actually
formed Another illustration may be given in changing seat. assignment

22
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in the classroom, the same -set (class) of students is in each arrangement.
Books ‘be arranged differently on a shelf. Ir there is no change in
member hip, each arrangement gives us the same set of books. The students
will e faced with this concqgt again and again._ For exemple, when.'we

begin to compare sets of objects or. whenwwe partition a set into subsets

this

we want to communicate the concept that a. set is degfined: by the members,
it ddes’ not matter how widely spaced thes'= members may bé. Forvexample,

is th

-

choose sides by grouping the members of each team together. Once
membership is determined "the same members constitute the same,

team T gardless of location of the individuals. The set of classics

catalo uing. Some of “these books may. be clustered in groups fog a display;
be on various shelves, some may be out on loan, spatial arrangement
is immaterial to defining the set.’ ' '

goal, through this discussion, has been to emphasize that set
membersh p is independent of spatial arrangement. However, we recognize f

the intu tive aspects in visual perception. In a visual display, the .

spatial rrangement of a set of objectg mey suggest a natural grouping.
Thus the rrangement . .
X R . ~ -~ °
XX XXX S UXX XXX : XXX XX
R X XX X X XX x%- X o XX XXX
. ’ : ‘ E »
might sug st 3 _groups of ten objects. Later on, when we examine the

basis unde\lying our numerstion system, we do capitalize on this tendency
to group ‘on-the basis of spatial arrangement. For example, to arrive at

a particular decimal numeral a set of objects may be spatially grouped ';J f}”
into subsets of 10's and 1'sy, and sﬁ-on. -

23
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As was mentioned in tﬁe introduction, we' shall ultimatelz\ellcit the
concept of numbers from sets of objects. In- particular, we shall associate '

a set w1th one member the number 1. While it is true tha

set with one
member.cannot be considered (from the standpoint of. logic) befo 4a person
has a’ concept of the number 1, nonetheless, it w1ll be foum
: unlversally the children will al&yady have "one' "in their vocabulary. ,TheK

=

word ' single may cause d1fficulty,f0r some chlldren. . From a teaching .
4 standpoint, ve. may rely on using the®words "one" and ,a'single" interchangeabl
to communicate some-needed concepts. Again,'classes react'differently to'the'

situation. Some teachers report success because the word "single" has been
<

foreign~to the students' vocabulanyL

il e 2
v

'~¥l.w, Along w1th emphasizing the natural us e*of language, we' would like to .
"emphasize the natural presentatlon of. toplcs. By this, we mean a de-emphasis
on -decree: that 1s we do not wish to- say thes 58 are the th1ngs yau must
learn and this. is the wvay you learn them' By natural 'presentation\,' we also
mean - minimizing forced feed1ng. Atf times, it may appear that teaching '
certain concepts reaches an. impasse. Subsequently, in conjunction with
‘presentation of some d1fferent topic, some student's remarks may - reveal i
- ‘ that what had appeared to be an impasse beiore is no longerﬁone. It is
' likely that -some incidental 1earning -has- occurreda It 1s also likely that
'Ithere 1s re1nforcement with other disc1plines that together with the
presentatlon Jxlﬁwthematlcs, help to br1ng the concepts into focus. There
is 11ttle rieed to insist on complete mastery 1mmediately. Oftentimes it

is best o proceed with other developments when an impasse is apparent and

. ret//’dtﬂ,khe topic sometime in the future.
ot

k\ T

'lQUESTION' ' ‘ e

"How is it that the empty set is a subset of every set?"

‘- A subset is a relative concept in the sense that it must be’ considered

in relationbto a given Let. If every member (element) of a set ‘B is also

an element of a given set A, then B is &’ subset of (A, ' 4

Suppose A = {house, tov,.animal}»

* - and B = (house, tey]) ,

O
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9

Since each element of B--namely, house, toy--is an element of A, B”ﬂ' LT

/f-—/yalifies to be. a subset of A ’ L - ' o V4

0y

e

"consists merely of the letter- Ve" [e] is the single member set, \\\;; ;“

-To say that each element of B isl an element of A is logically

. equivalent to say that there is no element of B that is not ‘an element

of A. It 1s by- this second ‘rephrasing that we can see more clearly that

the empty set 1s a subset of every set. Compare the empty set with -
[house, toy, animal] Is it true that there is no member of ¢ that

is not a member of A? Certainly. Compare ¢ with B = “(house, toy)e

Is it true that there is no -member of . ¢ that is not a member of B?

_Clearly, we can apply this criterion comparing ¢ with any set and arrive
‘at- the samd?conclusion. Therefore, the empty set’ is a subset of every set.

.

A

To illustrate,,we may consider the question, What is the.subset.of o

~ this class whose members wish- to fail this course?" If there are no members,

l\r

<
Another difficulty arises in connection with thinking of a set with

then this particular subset 1is the empty set.v

a single member, Since a set is said.to be a collection, the question is .

whether one can consider a single object a - collection. If we think of -

"all objects that meet such and such conditions' as an alternate way of S

determining set membership, then the set of all vowels in the’ word red".'

3,

- (al1 vowels in the\zord "red"] AR N
Lo N . ] : o o -
: A
‘. T YOCABULARY
Elements of & Set* L Member of a Set*
Empty Set* ' -\-b _ ﬁ.' Set*
EQUal Sets* oy e -vl.SubSet*-.- . ;
Improper Subset* l.: o - T : ';, T e
> P ) S )

1

*The asterisk indicates that the term or phrase alSo appears in the

-,glossary at” the end of.ihe book . . - _ . .

] A
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_l'. List the. elemex\ts of each of the follow‘ing sets whose descriptions are: '
(the days of the. week whose ‘names . begin with the letter W); R

(o. (positions on a baseball’ team] ; e - - ' '-?
T ‘c'. - (months of the year whose nsmes ha.ve less than six lettersl.,
- u d {whole numbers between T a.nd 8) s 3 R . S
(.";““f e. (the age on the nea.rest birthday for the- students’ in your classroom) )
| Tf. (the capitals of J’apan and England] HE .-7

& (the colors of the. rainbow] - - ’ Y o
'--2, Write a description of the get: .,,".'
- &+ {Alaska, Hawa.ii] _ R

-~ D (snips,-snails, puppy-dog tails] -

-

3 'Describe the common property of the- elements of (cat lion, tiger]

'k, 'Which of the following pairs of sets -are equal?

a. (17} eamd (T1) » T R
b. (letters in the word bundle] a.nd (n, a, b 1, u, e) .o
'c..(-,q,¢] “and (q,.,¢] : B .

d. . (zero) and - {peacocks"" ‘native to the North Pole]
e. (1, 2,3, 1&] and. (a, b, c, d] '
£, ~f[a.re] and [ere.]

L

g; (M 1, s, p] and - (the letters in the- word "Mississippi“] S

. 5. For ea.ch of the following, decide whether the statement is true or

false and sy, : o "
- a.'.._ 3 is'a subset of (l, 2, 3). - .
“ " . {ego} is a subset of (ego, Je, I] . - B R -

: °‘. It is possible for a set to be eque.l to. one of its subsets.
{all birds in ‘the worldl is a subset of (a.ll hens in the world]

N

6. vGiven the se‘f A‘ [rose, bee, tulip, beetle, da‘ndelion], write the-.y-

subset of A described by : e
. ..a,‘_" (pla.nts]‘” . ";wb“ . B . -
. . be .{insects) ;'\"Q, R . . N ] L. :

% c. (singers) .
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SOLUTIONS FOR FROBLEMS '~ R -

< 1. ‘a. Erie, Huron, Michigan,.Ontario, and Superior. . =.:‘

- Monday, Tuesday, Wednesday, ‘I‘hursday, Fridsy, Saturday, and Sunday.

o, . '”c.. This set is not, well- defined. The set of.objects dePends on .which.
Elsie. Even if Elsie is uniquely identified 1t will be agreed that
tne set of objects changes “In’ time. In order to specify the set

e
3

e it 1s necessary to cons1der a particular Elsie-gt a particular moment.'
A 2.‘ b, ¢, ‘and e are members'of the set." 8. and d are not members of

ot the set because a carrot is not an animal, nor is a tree.

3. :a. {211 ‘states of the United States which border ‘on the Pacific Ocean]
' b. {the New England states) IR AP . .

{the primary\,eolors )

-

,,« ke Sets A, ibh"B nd E  are equal. No- others dre equal. Cl' 1s a sinéle‘

A memoer set whose element s the numeral for one hundred thirty-five.

R ‘I‘he fact that no commas separate the digits, mekes 1t different from

‘ R ) 3, 5. D contains the numeral for nine. E\ren though the sum of L

S _"f".‘»"».t -~ 1y 3, and 5 is 9, 9 itself is not another .neme for -1, 3, 5. D L

S * woula be equal to "{1 + 3*+ 5] l +.3+5 would be the single

- element of . the set“ The. "reason E is “the same as. A end B is
'.'that the digits of" the numeral 1351 are 1, 3, 5 and 1. Recall, .

Phe however, that en element is not reneated in a set, s0 the 1 should

.

only be mentioned onCe.

' "_'-5.'?, Co only.., “1s incorrect because [Friday] is a single membe5:~ set

5 S whose element 1is the name of the fifth day of the week which is not J
R e ¥yi -be- and - d. are incorrect because (y) s a set. Neither

[Friday] ngr (F, r, i d, 8y y] have eany members which are
'-"».themselves sets, - o '

6. 5 ‘I'om], [Dick] {Harry] {(Tom, Dick}, .(Dick, Harryl, -(Tom, Dick, ,
g A_E B=D "'}’ . e Do

.t 8,-.¢C and B are subsats of F

iy o - U .‘ N o '\\.v e -

L2

O

ERIC

Aruitoxt provided by Eic:



S < .- CHAPTER 2 - -~ B
. . ' COMPARING SETS - . .
", BASIS OF COMPARISON é, . o : L ;f-

2

' One of the ways that we have used to specify a set is to describe it

by the prOperty that the elements have in common. rI’his method of classifying
"things can be: ex‘cended to help dié‘tinguish one kind of set from another. e

' Associaued with this is the question‘& '"What charactéristic does one set _ h

have in cammon with another set?" Essentially, ‘this is a classification
pro'blem that is one step removed from identifying the common property

of elements within the Set. For example 3 while “the sets

[lion\, tiger, leopa.rd] and- ¢ = [elephant, deer, cow,.horse)
are not equal, both of these a.re sets of, animals, and may be’
fdistinguished from B = [house, ‘tree, salt, rock].

' .
~ - .

A further distinction might e that A is a set of « carniWorous anima.ls .
“and . C ‘Ls a set of herbivorous arrimals. The point is. that .sets’ may be
e compa.red with another. N o T '

N

OHE-TO ONE CORRESPONDENCE . j 1 . T ' S o ' . (’
One way o*‘ compa.ring two sets is by an element-by-element pairing. :
That is, an element of one sets is paired with an elemeht of the: other set\.
To indica% 8 pairing we shall draw a double-headed arrow"oetween the - '

two. members. Thus e R : *

B oL
‘ VY A

‘.

1t

r

.[ti'i'er', J ‘ ar, .‘lion', leopa_rd]-'

= ‘(house, tree, salt, rock) ' .
R is,'paired with . salt, R
L __is paired with “tree; N R
* T s paired wi‘th . ,,.-hous'gé‘,. . ’ Lo _' . ‘ ‘.59‘{
’ . -1s palred with rocKe - ‘ o o
sy I . . o A " " . o o .
" s q 'i * o .
.\. R S N
. " ' A .
P P .\
: 5 N :
. . R .
s 29 : - .
iy ; o “
'.,_ ., ':J +

O
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i m ) PR
: Another illustration o§ a pairing may be given by -

IR

A {tiger, Jaguar, lion, leopard]

e ::><:; .y ;>N(/,' ‘- . | =
: "B (house, three, salt rock) . _ o rtt"

For oun purpose, the concern 1s not 50 much that. ”lion" is paired

with “EESK7 &s' that ‘one member of A 1is paired with one member of B.
Nptice that 1n pairing the elements of B with those of A, -each element
~of . B is paired with an element of A and ‘each element of A is paired’
w1th an element of B. When this happens, then we say that the ‘sets mateh; )

'also, de sey that we have a one-to- -ong correspondéﬁce between the elements
< of the two sets. It can be seen that whether we can get a one-to-one v
) correspondence betweg the’ elements of two sets does not depend, -:on Which';
element ,of B is paired with which element of- "A, For example, the
nairings may be established by either of the,diagrams abbove, In the first’
diagram it is- easier to see at a glance that the - pairing is a one—to dhe

~ —_

correspondence than when -the arrows are, crossed ' RN ot

ORDER_NGSETS\ . }' e

In pairlng the elements of - %A w1th those of B (shown below) there
' is a member .of». B~ wh1ch is not pa1red with any. élement of A Tﬁis will -
e’ 80 regardless of how the: elements are paired. Tn+this case, ve say
. .. \

+ that .B has more members than A, o _ Lo B .
e T ‘A= {cat dog, moUse} SRR % L e
SR B . AR SR
B ‘B~= [Mary, Jo Blll Peggy} " ' T

[

that A has fewer members than B. ,Thus we can compare .

W,

A has'more members than B : ' . L L e
Lo A has fewer members than ‘B, - T - -'ff'w'
_' Furthermore, all this can be accomplished wi%hout counting. .Suppose‘;

- _C' is. the set of all children in the school and S 1is the” of seats in

' the school aud1torium._ By pairing, we can determine without counting '
whether one set has more members than the other, one set. has fewer members%
than the other, or the sets match. i St

. . " .. - Ny 4 £y i . ..'..m ’ -
- . ’ -~ . H ! o . :
,. ; . ’ . . ? ) ‘ ° T " . .
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. l_. ‘. Which of the following pairs of sets match? For those “that do. not.
* match, state which set has more members. B ’ '
- & (letters. in the word "group"] ‘and [g.,‘ Q"v:P: r, u],
- b, (23) end (232) . .
o >c. ‘A= (1, 2, 3,4, 5) and B-[c,d,e,f]
+, 4. B [c,_d, e, £] and C =z [oyster, walrus, carpenter] -
e. A=1(1,2,3,14, 5] ~and C [ oyster, walrus, carpenter]

2, -:vState vwhy ‘'we do not necessarih' have a one-to-one correspondence
, between the children in your class and their first names.

3% Show two different one-to-one correspondences between elements of .
* the following pairs of sets. "

.

- a. A= (animal, vegetable, mineral] and o
o o . B & (carrot, plutonium, hippopotamus} PRI D
b A= [anil’na.l, vegetable, nﬂ.neral ) end. | e ;
- .. C = [ ot,. pltrtonium, beets] S
, c.;'f\ = [animal, vegetabg.e, mineral] and o s
Coe . D = [iron, giré,ffe,s%amip] g

In one of the abov’e problems we considered three set‘s, A B C
where _ ..f.) . ' '

. ) o f\ -[i 2'3:‘&’) 5).'6.“
oL L BEe, 4y e 1) and, - '
' ’ e [dyster, wa.lrus, ca.rpenter]

' .Note that A has more members than B and that B has more members .
*than o Moreo| Ty 1t can ’oe seen that A ‘has more mémbers than- e,
- This illustrates an important property called the transitive prgpertx.
This. property =ih/important because it provides ﬁs with some. means df
) "working with nqmbers later. 'I'he propert& m&v’ be stated in general

R H

'5_"-" terms as follows- IR - / : P
el SR oA msmonﬁmmnsmm B,

LA e amTE B Mstmommmnsmm c .
A I 'mz&mﬁoanmmsmm c. 1




O
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This property is derived without recourse to counting. The cbnclusion

: sanctioned by this property 5ives us-~the. comparison of "A and -C .with

. & set, B, acting as’ intermediary. (In 8 sense, it tells us how " A

_ compares with C uslng B as:a "yardstick".) Clearly, a transitive

members than B, no general conclusion can be made.
", C = [oyster, walrus, carpenter ‘cabbage), then A has more ‘members

o If A=

property is 51milarly applicable when A has fewer. members than B,

and B- has fewer members than C That is~ P - ';‘;

" - ]I‘AHASFEWERMEMBERS'I’IMNBAND_A-__' S
R T B HAS FEWER MEMBERS THAN C, THEN . o
¢ A HAS FEVER MIMBERS.THAN C. - \

Furthermore, a similar property holds when th%,sets match as we shall

show later. - . | o '.{

'
-

Observe that if A has more members than B and 1f ¢ hes more

»
.

qu a;cample 1f A= (1; 2,.3, u 5] " B=(c, d, e), and

-

than B, C‘ has more-members than B, ,and A has mere members than c.

(1, 2,3,% i] , B = [c, d, e}, and' C = [oyster,‘walrus ]}:

c‘arpenter, .cabbage klng] then A has’ more,&!embers than B l!c \1}&3 "..%"_

more members than ‘B, and A matches c.

If A = {l 2' 3, 4 5], -B = (e, 4, e] and € = [oyster, walruB(
carpenter, cabbaga, king, owl, pussy- cat] then A has more members

than _B - C . hasxmore ¥ members than B, and ‘A has fewer members than C,.

'L e . ) . ; - -

Thus, 1f A has more members than B and C. has more members

than B, 1t is possible for A’ to ‘hdve more members than C to have
° .

fewer members than - C, or“to match C, So in this case w& cannot
determlne the order of A. and C co

'By the transit1ve prcpeﬁéy, we have a way of ordering sets that’ a
do not mateh. If A= (1) é 3), B %,[a, b,Ac, d, e, £}, and
¢ =1z 5,0, * ), then as’ A has feWer members than c and C has
. Tever members than B we dan conclude that. A" has fewer membe;e #han B.
'A C B,

If D [carroﬁs, cabbage, ‘carpenter, carousel, castenet] ve see

Slnce A" has fewer members than B We might order these setS'

that C has fewer members than D and D has fewer members than )
B. Here by repeated. comparison,"D would ordered between C, and -

'B. Thus 'we' might order these sets ”ﬁ_ c, AD, ‘B.. Of course, the dets
may be ordered equally ‘well by the "more than relation“ For our purpose,l

- <&
. AR

oY

»

LB

-

cs

a A
o



ordering by the "fewer than" relationywill lead directly to the ordering

" of numbera according to increasing size.

. " . _' ." . ) . " s .'"..l

» , EnuIVALENT SETS oo o T . RS
e e . ~."v,'- :
' a‘,_'_' One of the possible outcbmes from the pairing of the elements of two o T4

_' sets is that the sets matoh. If each element of A 1s paired w1th exactly

matphes Another wa;y of,“ciescribing t'his is that the elements of the

. i t

' sets are’ in one-to one orresEoﬁdence.. A th1rd way of sayi g-’

A IS QUIVALENT“‘O ﬁ

\thi s is that

'J.'he equivalen(:e relation is trans tive.‘ Ir D= [l 2, 3, Ay 5)
L -'[C, ’ eﬂ’ ) 3} and w_‘
'~" then D is equivalent to L

[oy'ster, walrus, carpenter, cabbage, kingl,s

_L J.s equivalent to W and D 1s equivalent
- 'to W, 4We can say this in generai Tor any three sets "'A'," B_',. and C

1 11,..'  (a) T A IS EQUIVALENT O B ; \AND B IS - R
IR :
" \" ld. v " . EQUIVALENT TO:- C THEN A 18, EQUIVALENT
‘t°\“ SR “o e R . ‘, . .
. iﬁﬁ}‘f;{)us consider the following sets: . J : - '-.' ) . ' ‘."
< 4 - B "‘ r. ' . . . ‘.‘ L o e )
T
_.,_A—[a) )c} ‘ ) ' ..‘ : :
. . Czla 87, 6 €} oz
| D—[Aﬁ'}){ S
the following o el _
R I o
(l)'f‘\. has niore- members than' B if:';hf."‘;"
(‘2? S 1is equivalent to ‘A o '
o s has more members than ' B :
Ky ¥ is equj,valent, to. B
. (5) L has more me.,mbers than D.-

4 ’ ' -7 . o : (]

, 3 ] 1 geheral we can say for any four sets A B, C, and D - .
S I & HAS MORE MEMBERS THAN B, AND . T Gl
S N, IR s EQUIVALENT TO A A D oIS’ AT,

LT R -
EQUIVALENT TO. B, THEN C. H.AS MORE- ' "-”'.\ .
,3. MEMEERS. THAN 5. Lt o . R
= ' _M,-n . R . . ST -
_ A similar‘ statement may be made in obnnect,ion with thel ”fewer than - i
relation.. The.t 1s, . ' ST . SRR St B
1 ' [
.‘ - ’
33 “pog .
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A ..,.>|‘A. o

.

?

S (b) IF A IS EQUIVALENT T0 B, THEN o
-\\\\\ ; B IS EQUIVALENT 0 A. P :

"This is a property that the “more tha.n relation dées not have, "That o
v is to say, if A has more members tha.n B, then it is not true that
B has more members than A, Neither (}does the _"fewer than" rela,tion .
have this property.

[
It A=(1, 2, 3, L 5] and B = {3, 1, 4, 2, 5], then certainly
A is equiva.lent to B In fact, here, A= ‘B, Recalling that by A B
. e, mesn that both A and B represent the same thing (they are names
’fpr. the .same thing) it is cléa.r that a-set is equivalent ;to itself;
o that 18, Mo T - :-"'

R 2

b L]

, ™~ .
(c) A IS EQUIVALENT TO A.

This is. a.nother property that the non-equiva.lent relation‘s do not have. .
It is not true that LA has more members tharf A ‘nor is’ *it true that -
. A has fever members tha.n A 'f.;" P o :!~
: ks ‘4, ’
. On the su.l;ace, the statement that a set is equiva.len,t to itseli: .'
. may seem rath.er trd.via,]. This 1s a.nother of those statemen‘ts that .
Cwill have some repercussions later ‘when we dea.'L wi,th numbers.u It is

, not any more trivia.l then- to assert that - O

2+5=7bwwm.7;ﬁj o ..%.1 _.g.

Moreover, as was pointed out before 5 the 1ast two properties stated for
equiva.lent sets do distinguish equiva.lence from non-equiva.lence.

&
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Equivalence relations possess all three of the properties mentioned which

have been identified by the letters (a) ( ), and (c
. -,PROBLEMS ‘ t
'h. Write the order of the following ‘sets, beginning with the set

".that has the fewest numbers.

A
Tt . L : .
ey R R
B A

.

the word "peacock"}

. . a. A (letters of the alphebet in
' B =(letters of thé alphabet in the vord "letters"}

_ C= (letters of  the alphabet in- the* word, "MlSSlSSlpP "} 9 i
- D = (letters of the alphabet in the word "mathematmcs”}

b, A= (1,2 3, 4); B=1(23,5 7,11, 13); u .

. C= [a, ;¢ d; e, fl; D= 1{ )
5. Show how the transitive property may be applied to the follow1ng
. » sets. , h
. A= [lion, tiger, leopard elephant mouse, cat)
B = (house, tree, salt, rock) ‘
‘ C= [the days of the week) Py . ‘ ‘
. -6, d If A, B, C are ‘the sets defined in Problem 5, and D, E, F ..

areothe sets so that

D is equlvalent to A
E is equivalent to B. ’
, . F &s equivalent to °C,
'.what iikthe erder of D E, F?

,'( N

h

&,

Te L gh. hasumore members than B, and C has more
&@iqh set*has the most members?
8. If "B has more members than A, and C haslmore members than A,
whi¢h set has the least members? ‘3{’; , o ‘
©' ' APPLICATIONS TO TEACHING . ' ' 4 L

By the pairings that we have stated . above, one member of a set is
paired with exactly ene member of a second set. Thus,

» that we cannot completely pair the members. Ir A n
B, there will ‘be at least one member of B that will be left unpaired

it may be poss1ble

fewer members than i

Furthermore, in a pailring, no more than one element of. A 1is paired .
~with a particular element of B. Sc% if A has more elements’ than B
there_will be ‘at least one element of A- that will be left unpaired.

o : : ‘ S e

O
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‘_rounding off process is n

“the nearest tens, the numbers _J- CoL

If no element of either A or - B 1s left unpaired, then we have a

one-to one correspondence (abbreviated‘ l 1 correspondence)
., . }

There,are many manyng-one correspondences. For-’ example, the.

y-to- one. In rounding.offuwhole numbers to

~

©3B, 36, 37, 38 39, 40, 41, k2, 43, Lk

are eéither "rounded-up" or rounded down" to 40. -So this is a

. ten-to-one correspondence.

Y

Our main congern here is with l 1 correspondence. We use

‘1- l correspondence for comparing sets according to how many.elements

they have., This in turn gives us & basis for comparing numbers. Aside L

from this, there will be many occasions in the mathematical career of the

students, in ‘which 1-1' correspondence will occur.

°

The students have been accustomed to thinking about pairs of objects

_.that are alike for example, pairs of mittens, pelirs of ‘shoes, pairs of

socks, and 80 on.” : In our examples we have avolded the use of the word

o pair in this context because we do not want this restriction to get

in the way . of the concepts associated with numbers and with counting

In our development we start with pre-number concepts thatrdo not require
the knowledge of numbers. - From these concepts we derive the concepts of
numbers. Our concentration on set- comparison by equlvalence is to prepare:

for the concept’ that if sets are equlvalent then they generate the same

Vnumber.

‘The word "equivalent" may cause difficulty for some children. However,

~this may be again a matter of individual reaction.. Some teachers have

" found that’ some chlldren apparently cope with this word successfully

" because the word is fbrelgn to the children's vocabulary. The phrase

"as many as" is also used in conjunction w1th developing the notion of

:equivalence. ‘Phe word in th1s phrase are more easily handled, but the

- longer phrase demands more attention on the part of the children.- Some

'_children may attend to.only part of the phrase. For. example, in response

-to the request to produce a set with as many members as a given set the

child maj merely produce one with m Yy menbers. : : )

36

J



The notion of separating objects into equivalent sets or classes

also underlies our thinking of many names for a number. For example,

. ~._1 2 3 5 . :

e . 2 ¥ ¥ B’ ST A .
all name  the. same number, and we can think “of all these fractions as being
@% the seme equivalence class._ Any fraction in this- class is equivalent N
to another and wé may use any onesfraction in th1s set as a representative
~of* the set. Usually, we choose the. fractlon that is reduced toflowest
terms as the representative and consider that th1s represents the- number.
But this 1s not always‘the_case. For example, if_we have the proplem

. - : : .

12
2 "3

.

neither the fraction: 2 nor % are convenient representatives for the numbers
" that we have id mind. From the set of fractions for one—half

{l T2 -3 k.5 } ; h o
o » 2’ '[;J ‘61 . ‘B‘J lo; » o e ..v . ' . . R
S L. . - : o "
and thg set of fractions for two-thirds o . . |
A 6 8 10 )
_‘ LB )

.

our problem. Thus -

6,

+ _§ - '
12 .12 : *

-

or

win

and so on. Out of these, the ones we consider to be the most convenient -

'onés to'use‘are the ones with the.least common denominators.

QUESTION ,‘

not.match?"

This is in reference to the transitive property £ "more than" or‘r
"ifewer than" ( page 29) Teken out of context the qu stion would be
inappropriate. For sets,that match, a transitive property applies, but
this does not give a way of ordering sets in ‘theé manner that we have in-

mfhd: according to the_number of elements. By this cr1terion, one

N

ERIC

Aruitoxt provided by Eic:



~

set that matches another cannot\be\saTﬁ'to have a higher or lower order
_‘than the other. S ' '

IfA=(a, b, c,q, e, £
: C B [ace king, queen, Jack} o
Vo C- [book wagon} -~
p=¢
: ' Ev;_'[,b,c},

then no»tbo of the sets match. 'Comparing A with ' B, we see that
B has fewer members thin A. 'éo, in increasingforderbof the number
- o b of elements,'we have B, A. Comparing 'C ‘with B, v see that
' C. has fewer elements thean B. By the transitive property, .C has
V~Ieker elements than B end B "has fewer elements than A, means
C has fewer elements than A. Thus, in 1ncreas1ng order, we have

C, B, A -and similarly by repeating this process we can get the

order . ~
- » " ) -
i D, C, E, B, A
/'\ S : VOCABULARY .
As Many As (As Many Members As)* - More.E;an (More Members Than )% _
Equivalent Sets* - : One -t0»-One Correspondence*
Fewer Than (Fever Members Than)* Pa1r1ng* )
‘Mateh* T i - Trans1tive Property

S © 'EXERCISES - CHAPTER 2

1.. If the sets match, show a pairing. If they ‘do not, tell which set o

~' has fever members than the cther ‘ ' . .
e A=(DO, 0, A %) b. C = (cow, tyee, blimp}
B2 (x, I, v, M ¢} . D = (dirigible, ‘trunk, milk)
2. _Order'the sets;_X,. Y,_ Z. . “v . .b v
X=1{1,2) | - [3, b, 5,6} ™ = (789]

3. Glorla is taller than Andrea, and Mary is taller than Glor;a .
Car the concept of trdn51tivity be applied here’ 'If not, why not?

If so, what conclus1on can be drawn?

'

Iy, In attemptlng to place the elements of ‘P inm ,l -1 correspondence with

the elements of Q, . if we' ryn ‘out ofumembers of P before we " run out

‘of elements of Q, what can.be said of the relationship between P

ceand Q7 -~ . - >
o d ' 38
. b
i “~ .
. é:% I
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5. k 'l'he elements of which sets can be put in a 1-1 correspondenc.f"f\/

. a. A= (living human beings] ‘B = [functioning human brains]
b. C = (socisl security numbers] D = (income tax. returns filed)
c.. BE= '[consonante in "I"]‘ F = [women who have ‘been. president

of the U. 8.) | -

d. G = {(the human senses] H [normal number of toes on a.dog's |
. hind foot} v L o

- 6. HName three ways of. describing the fact that- A matches B.

)

SOLUTTONS FOR PROBLEMS.

'These sets match. In fact they are ual, so one natural" '

' L.
~ ¥ peiring would be to pair each member with: itself
o b. These’ sets match. There is only one pairing since each is a

‘ ' single member set. (23} . R “-':_ Mo _ o
o B = R o ?’
. c. AandB donotmatch A= w30 5}, . . - '
e - . ) gsi i i, ;] | R

' B there is o elerden‘ﬁ of A left o\rer An any pairing,' o ‘

s ,‘A . hu more members than- B RO g f".' CE
"':'3:, has more nembers tha.n :j’ "-".7"-' . “ S

A hes more members than C

2. 'I'here may ‘be more then one child having the same first na.me

' N
3. _a. A= [ani‘nel vege{a‘ole, ny.n ral} | .
T B [ca.rrot, plutonium, hippopotamus] = o

Y

“ {an , vegetable, min§ral]

{carrSt, plutonium, hippopotamus) .~

a » m.:»,_
1}

{animal, veée{a‘oie, mi3eral]
{ca rot,.pint_ '

nium, be€ts)

[mimn#e}ged%:eralfl _
. : ] )
[ca.r , plutonium, b¥ets)

, 3etable , minerall
pi

[ir

{(animal, vege able eral)
{1roff} fe, tutnip) .

e, turnip)

.U#'Ubob
[}




-'( - - \
v
) :

’ . . [ S

) L P
..:l/\ X g ,-":f;. ] . ﬁ < ‘ = e ;. . _.( . \ -
: The order requested Isf.C,._B,--A,, B C ENEPRRN e

EED R - o

I3

. WP.;*D, A':4B or D, My C.* Since B and C are equivalent

,1;3f sets,‘they must occupy the same position in any ordering

5, Since B has fewer members than A and A has fewer members ' .
]
than C » gt must be true that B Has fewer membeérs than C. - _

or TR

,;'_'-'57.
C 'has'more members than A; A has more members than B

Therefore C' has™ more members than B 3{3ﬁ

€. e increaslng order of A; B, C'is B, A, C;. D, B and‘ FooJ

must. be ordered E,. .D, F Jbecause equivalent sets must’ occupy
4

the seme posltion in any’ ordering e
7. By trans1tiv1ty, we can order the sets as B, "A, C, _startiné ’
w1th the’ set that has the fewest elements % B ‘ :; L -

T

8. _A. This 1s a case in which we cannot determine the order of 4
B and C. We only know that both have mgre nwnmers than ‘hl '
1..*"_

e . ~
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. Chapter 3, L
S WHOLE NUMBERS ., '+

, .

NUMBER DROPERTY OF SEIS . = - - '. A -

The concept “of number is developed from the concept of sets. In
Chapter 2 we compared sets on the basis of character1st1cs which they
>~_had in common. We also ordered sets. In this chapter we srall focus

our attentlon on -one of these common propertlé% and develop the concept -

., of number. ) .
. Recall that sets:can e compared accordlng to. dlfferent cr1ter1a.
*fﬂA set of red balloons a a set of red blocks share the common characterlstlc

of color A set of blue ‘blocks, . a set of green blocks and'a set of red

. blocks are each composed of elements which are blocks._' )

of two sets,;they vere sa1d to be equlvalent Forﬁetample, (Ieon, Rosa

Eddy] is equlvalent to [a, , ¢} because their members can be paired
with none left over. It is, certa1nly~poss1ble to neme many other sets
which are equlvalent to these, 1ndeed we could never exhaust all the
possibllitles. These ‘sets share a common property, that is that. they

have the same: number of members. PR A

.lSlmllarly_the sets

. G e, o) o
N _-r: . B .[&6_ f‘Q:f,‘?} o B
ta, o1 -
(Don, Len)

ot

- C

D

are each equivalent to Any other in this list.

of each having two elements.

r Every'set has this number property

‘Sets ‘which are equlvalent have the same number To slmpllfy the termlnology,

(A)._ We can rephrase the®

Teg v ; Bl . . ..

" ”*We shall call this the card1nal number of the set. Cardinal number will
3 ‘be dlscussed later.. . ’ ' .
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I 2. Identify the nmnber of the sets using the notation N( )

m'mssm's AANDBAREEQIJIVAIMT.
THENN(A) N(B) . T |

'Note that this does not say A B The. statement A= B‘_ i's‘only true -

if A and B nhave the same | members

.momus" ~ L “ . 7. L - v
1. Describe a property whi;ch the following two sets have in’ common with
ea.ch other. -~ | R
D = (doll, balloox‘z, tinker toy] .
W = (block, wago ] R v R

-

a. 8z(b, 4,1, n, J] . o
b. P= (2, ., 5 ") L
' (letters in "abbreviation") '

o
[
[}

3.. Given:

[r; e, .8., d] "

A= .
B=(2,4,6,8 10 12,14 o »
-c=[0A¢,o#x1 S
D= i %,é} Y T
Find : T : g
‘a. N(A) . o
b. N(B). , 3 . NS
R A T S A A
ORDERED SET§. . - -, 1 . R <

"y 2 S s »
Frequently, the elements of a%set present themselves ina natural order

. For instance R most English speaking people would list the members of the set

of/wve‘l?as [a,, &, 1, o, u}. Tt is natural to: 1ist the elements in this

rder because this is.the order in which they were learned It is, convenient

bece.use without undue checking gne can be sure he has not’ omitted<'a.ny member'-‘

¢ 4 <
. 2
#*Solutions for problems in this chapter are on page 51.

! _ B ST

. . . :.;,_:;- '8 -._‘._,
. "ua . o i e

1 - , .,.-' N . {.”._. ,

45 e




) v .\-“, '5\ .

X | . \ \ By . ey '
- Swwularly, 1t 1s natural to‘list the’ members of the set of letters of
the alnhabet as : ,'7' . %“ N :f; B I f, oo

la, b,'C:_.,;d e, T, g:» 3. 1: JJ k: 1, m: m, 0, P: q; r: SJ t u)
My Wy, Xy Y: Z] : ; |

LN

;' . ‘~‘ - L -‘;
In ordlnary drltlng we write thls set as. . . AU T

{a, b, c, et . 'L] , '_-'_..'-: o _ .\'.__ s \\:\ :

- - Ce ."'\ - ) L . P BN ’ . . " - .o ) o !

The three dots, ..., mean "and so o#jin the same manner!, They are used-
to indicate the omission of certain members oy S . ot

. . . . .. i R R
) . N . B P ) T W } R <@ v

Essentially, to "order" thlngs 1s "o llst -or arrange them in some

e:partlcular fasnlon. One can then say - of each element which of the other o

elements it precedes We do this by comparlng palrs\of elements 1n 9\' N -

BN
the list and de01d1ng,wh1ch element precedes the’ othe The word-

nrecede; may be replygfed by "above", 'below shorter‘than“, "greater

than", and so on dependlng ori the elemen;s &o be ordered

//Tor oxample, cons1der the set of pahes Lk" o 5:',_ o S .
. --." o [James, Wllson, Sm1th Alton); . o
. [ ) ! by . '
If we order these:elements alphabetlcally we have.
[Alton, James, Smith, Wllson] P
Ve oall this aet an ordered set . ST )
L R o ' .
STANDARD, SETS S N ' o
’ ’ i " N . . . . L’. .
.Lct us ;taullsh some ordered sets beglnnlng w1th the set “{1).
s ‘ R 1
Ve “zontinue . - L
'[l, 2], ; ‘ y '\\ -
’ [l.:' 2, 3]“:. v - \ .
. ‘ oY > A
: | fl’ 2, 3 l*’]: ' '
"and o - - ;' : o '. : | o i

eets. ,Thus

' (1) is a subset of .[l' 2],‘
{3, 2']\ is & subset of W, 2 3],

and so on.

O
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By ¢'omparing these sets, called standard s'eit ,-__ we can determine which

belongs before the o‘bhers in ordering these sets. For example, ve -see

immediately that +(1, 2, 3] belongs before (1,02, 3, &, 5,. 6} 1in ordering
these standard sets. . &/ e
I - L N o
< ':PROBLEMS o I

« 2

o la- ‘For each of the following sets, state whether the elements are
' 'appa.ren:tly ordered; 1f an order is a.ppa.rent describe what® might

) "'_;be the determina.tion ‘of the order b B S N

, e (1,2, 3 L, 5] _ 3 ,
- ;jfb, [5,<ut 3, 2,1} T L o
, ‘ ’ . t-»l [acgordion, a.lba.tross, bra.in, bubble, ‘gum, humbug] . T

[student tea.cher, princi al, superintendent]
. .[father, son, mother, dau;er] -

(fa.ther, mother, son, da.ughter] . R :

-, ,5":-. [q, w, e, r, t, ¥y u’_.i’ o, p]} T | o e

one (5, 40,3, 20

5. @ Given ‘i ordered set, ° DR

RS T ’ A

[thumb index, middle, ring,- pinky] R
a-_" b"S‘I\i‘ow' the 1-1 correspondence between the elements of H

L3

:~and & standard set.

e

b. If. 8 = [Dorothy, Rosie, Laurie, Na.ncy, Susa.n] glve'd. subaet o '
“of H that {s equivalent to §; what, is N(s)?

’_ ‘e, Describe how counting osour fingers implies finding a set L S

‘that is equivalent to a-;standard set of number na.mes

CARDINALITY AND ORDIVALITY T e - i
N ; ’ : . 5"-._ N ' ' ' . :
 Let us consider the sets '

, A= {Deane,, Leo] I ' o i
. “ B = (Don,. Len] Lo .
a . h ‘ . C = (Ruth, Margaret] Lo~ ,
._A“‘" "ID [E‘laine Mabell

Ea.ch of these sets are equivalent to any other, since the elements

.o "of any two of the sets ca.n be put into 1- l correspondence Let us -

- e,

consider all the sets equiva.lent to any one of these’ given sets, for .

. exa.mple [Deane, Leo] Among the sets equivalent’"‘to this set is the

4

- e

9 . | . . : N ’ B
Sj:\ . ' oo
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. B S Y ,

o

standard sete £, '2} These sets all'possess a common property théir
equivalence to the standard set (1, 2}. This property 1s independent _
of the elements of the set,. We call this common property :the number. twoc\ S
We"say the numBer property of the set N [Deane,‘Leo] is- 2. We write

. this N(A) = 2. This number property ©of a set is the cardinal number Lo

or cardinallty of the set and the number itself a cardlnal number..wf

Similarly?the number property of [l] l; -[l 2, 3] : 3,

and 50 on. Notice that the number property‘\F any stdndard set is the . ' B

number named by the last elemqnt in the set. The emp

ty*éet is assigned.
the cardlnal ‘nuber zero "uﬁpat i5 . N(B) = ‘0. The words "one , “eight",

n1nety-n1ne , and " 89 on, are names of cardLnal numbers - Th1s concept C N

an be consldered entirely separately Jrom the phenomenon of order.. o *' T R

Much}has been saidv bout the orderlng of sets and of elements within "7

. LA
. setsa In th1s ﬁgference, the words. ﬂafét and last have been used. ”hem_ 1l\§%.’_
: fact that we can talk about the th1rd letter of the alphabet o: the .
» fiftieth state of the Unlon, depends on the ord1nallty of ‘numbers. . The . ‘ ’
b words first, second thirty- elght .and so on are names of ord1nal numbers.L_' ‘ '
These are 1ndependent of quantlty and can only be cons1dered relatlve to . .

some frame of -reference:. “That 1s, we cannot speak of the third quarter .
. in a: Tootball game w1thout implying that there were a first ahd a secoﬁﬁ iy
quarter. However, the th1rd quarter only refers to one of the implied _” i§" 1 .

three ouarters. Both aspects of number are contained in the statement
Jimmy is the third child of our seven children. Note that an ord1nal

number requlres a set of at least the correspondlng cardinal number of .

-

members.' Jimmy is the thild Chlld requires at least 8 set of three.

On the other hanq? a cardlnal‘number does not- necessltate ord1nallty of

its members. The number two is the property of (chlcken, egg], the : e

_‘question of the ordlnallty oI the members of this. set has occup1ed m1nds
for years®! : R

. e
. . »

" At thls point, we want to remark on the commbn usage of language w1th
ﬂ reference to the ordlnailty and cardinallty of numbers Qulte-often, as

in the case of _"Page 3", & number is meant to be used in an ordinal sense’

?even though 1t 1sl

i

.ated as &’ cardinal numbe%;. The ident1f1catlon ‘"Page 3"

refers to the thlrd of a’ serles of pages rather than to three pages R
. - - -4\.». n .
. . a' ot R . . '

O
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PRO.BLEMS o

e

r . 6.ﬁ Identifyfeach number in the following .85 to whether the use is Y
' orainatior Sardinal. | ,
. There are '3 blocks on the table.;u
b.-:John is number 5 in line.{'v R
c.. My address is 164 State Streeu'iﬁfy
d. .Seventeen children are’ in this class. '...w
é. -Joyce read Chapter 7 last night .

. &
, ) . . 3

~

T Identify each number in the follow1ng statements as to whether the
/j - uselis.qrdlnal or. cardinal N Lo

You will find that 'of all"
l?, Part 2 contains materlal that_

. FINITE AND INFINITE SETS

. . o Vel - o
The set of cardlhal numbers, when arranged in order, is endless‘

gw;ﬁ‘ _: G1ven any standard set, it is: always possible to find another set w1th,

e . larger cazdlnality We say that the set of dardlnal numbers 1s infinite.
Any nonemptM set 'A which is equivalent to a standard .set is called -
a f1n1te %et’ ?I bther words, if a set A is 2 finite set, 1ts elements
‘can be counted and such a countlng would»come to;ah.end
: Examples of finite sets are 3\ :
/" v . . ‘-\
"-\A L - [a, 3y G ey X, ¥, z) '-'.7," o )
Q = [children in this class} : . “\\~ : S
’ . L] L B
R = (houses on Main street] . L
. C Examples_oi 1nfinite sets are. - " ﬂ;l’.
NI . . e (cardinal numbers] = [O 1,2, ...}" B .i:;
) , L pe [even;pardinalfnumbers} =ﬁ{0;‘2,'4’ E;_]; ’ o
+ ORDER OF NUMEERS' T S o
The numbers named by the set of numerals - _ ' N -
MO (o 1; 2 o)
are- called the whole numbers As in'thetcaseéoﬁ:.""
N A {a, b, c’ . X, y,’z},," )
N i i.hi’ :
. p sy :
o ¥ o Sl e
o y] ! o ¢
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: 2 . .. s .
» N " [y

' . we have used the three dots to indicate the omission of certain elements._
‘The difference in the use of. the’ three dots in e v e

o . e e ‘ A . P
J oo .

'1is that’ no ‘end is indica‘Eed 1n" the list of whole numbers. The.fset;of .
whole numbers is en infinite set. /. : - A T

< : ) o : B N : e
: R Lo ¥ LN A .

R If zero is omitted from the set I 1

¥

e have the set of counting numbers' or. natural numbers... Thus ,%he set

.of counting numBers is o L oo ,v.:_":'-'..,‘s:_

w..+; Whole numbers can_

-sets ‘such as

fay by e5a, e e T et

- .|e.nd -

{1 2, 3,#5)

nt

Hence th' cai:dinal number of these sets is

.5-

number of P A
and henee 3 is less *bhan 5 W‘ write this .f : -. ‘_-' C T’

The symbol " mea'n’s its less than PR . R ‘
- . . . . P . R

"-“ When the elements of the ‘set of whole numbers‘ is written in order, »

S
-

-0 l 2, ..;, each number is less then any number that succeeds it in® the .' .
- . e .’.' v . -

. sequence Thus T T PR

) . R S

o<1\2~43<h~..:_f
«sigq.temént"a < 5 mpay be wri,t'ten ‘

R . . .
- . . v

[

: The

or b 5" '1Thé"‘:émb Je
5 ha.n".



. B . . . . Cm ..

n"

v

: : .4 i . . . ) . . ,..? -.'>
If we choosewany iwo whole numbers a and b, exactly one'éf'the
follollng statements is true:" ' o

B
. s " Q.
3 i .

. . s ' . e <fb

vAp
-

PROBLEMS . - t

° 8. 'If 8 = (b, d f e, "), and A= [a, b, r, e, .’

L v, i,-, of n} put&the sets 1n11hcreas1ng order ‘and then order e

.)

their numbers us1ng th§ gymbol ;<~”’

IR
v

.1‘&f' Wlthout know1ng the numbers of two sqts, say X and Y what ’
o .mmtbetmeol MX) and - NIN ' o

Lo NN \1

APPLICATIONS TO TEECHING C - R

e 77

) &

DY ks

L ”he foﬂus on, sets and other pre-number concepts provides a back—

bround for the concept of number 1ntroduced in this chapter.~ If there

>

3 la 8 ‘l .,:corzespondence between the elements of” two sets, then they o

7

are saldfxb be ethvalent and have the same cardlnal number'Or the same
.o number pruoerty To determlne whether there is & "1-1 correspondence
Lz?b "~ .between' the slements of tUo sets, qn ‘element -of one _set iSjpalred with

o an element of the other set :Thq uéé‘of the , word pair is non-mathematical.
5 ¥
' ‘The two elements that . are ass001ated form a p&lr
- . ‘ .
For dur purpose, once a pair is so determlned neither of the :

A e

'"velement in the pdlr is to be'. ass001ated with any other element to
ﬁwalolm another palr "~ Thus, for A _.[a b, ¢, d} and B €9’ -* [j
C)} if g deCLde to pair b with A, we havg .

( N ., -
A--g-_- [a, b, C‘ d} . . . \
< gs' - B = '<39 *, 0,00 0
ll, in the attempt to get' a | 1- 1 correspondence' b is paired with
4 tnen b ishot to be paired with any other member of 'B. L Ne1ther is
A ‘to be paired 'Lth any other member. of A. 'Thus we cannot seek q 1-1

uor;esponaence hetween the members of A and B by

AflA.=

g -
i
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"' Of course, b may have been, selected to be pa1red WIth-',<0 at the outset

Q

. . a T .
oy i . . . ’ .®
. ~ o . - . ..

v
[ * .
L

Then ‘b 1is not %o be pailred with * g, a, or O ,-.:nor is J to

Ie

4 : § :
be paired with a; df’ d. The one- topmany and man“-to-one cmrrespondences
illustrated 1in these last two d1agrams as well s many- to many corresnondence A

4
will be discussed in the. next chapter -t e . o
. ] e v
.. v 3 Sl .
In the children s books the paiplngs are indlcated bj (.onneﬂzl-nrr 11nes - :‘

from one objeet. to another mych as we have msed the arrols on these oapes
Special attention may need to’ be- devoted to explalnin" the meanlnb ol.the
extra lines (dotted or othqrw1se) on the Drlnted page as they may e a
source of - confu51on Having the Chll.leﬁ trace over these lines themselveg
,may be helpful Thus they are act1vely engaged in conneculng or pairintr . "n}',.~
the objects For the same reasoh act1ve pa1t1c1pation in palrlng objects - -

on the - flannel board using yvarn to define thee pairings Wil be helpful

‘ The pairlngs may result in exhausting the elements' of one set w1thout

exhausting the. elements of the other When the‘elements of both sets are;
1I

exhausted simultaneously, the- sets match.. S

Pairing thén refers to &he elements and matchlng to the sets.

When the- sets match _they are sa1d to be equ1valent Thus equivalence

' implies the same number of elements. Note that equal sets are al"ays

equivalent Sets ‘are equalqnnly if they have the same members; therefore,

v . the number of elements must be the same. However,.lt 1s not true,that

equivalent sets must neces§ar11y be equal. {1, 2, 3,.+; 5) and

‘F"CF_TZ‘_3' ¢‘“6?_—ETE‘equivalent—buirtnrb—euuat*—there—re—a—~l1l—ee¥¥eseeﬁdeﬁeee——>—~

v '

between the elements of these two =et= s T . '

Just as the determlnatlon as to whether” the number, properﬁ!es ct
two sets are equﬁl depends on whether the sets match, the ordew of twg S .
numbers’ depends on the result of set comparlson If. A has fewer members

than B then, N(A) < N(B) The characterictics ascr1bed 40 numbers

- derive ‘from characterlstlcs observed.for sets, not'the other way around.

- row ‘and he still skips aroypd countlng the anects in‘a random fashlon it

Occa51onally, 8 child may understand ﬁil correspondence and the

‘process of counting, but still may be unsuccessful Jpdcause he canndt»keeoA

track of what he hhs counted and what he has not counted Lor such a

'child it may be necessary to actually sugge®t some systematlc strategles L.

in attacking the probLem JFor examp}e, if the objects are in a horiaontal

~.. ' might’ be suggested that he proceed from ieft to right as tn I'eadLNg .
o e ' )

“ . S ‘ - . )



- and_ B = (shoe, wagon; doll},
. both A and - B

4
In counting, "1t .does not matter which element of a set is paired with
a given element in the appropriate - standard set.i The same number property
By contrast in. ordinal
.use of numbers, it.:is assumed that there 1is a pre -determinéd order in the
given set as well as in the standard set That is, the elements are.

ordered by associating with each element as -the. first, second, third element

18 obtained regardless of the pairings used,

’

and so on_.as, the case may be. The ordinal numbers may not be in the vocabulary

-of some children. However, 1t has been obserVed that ‘meny children do know

. what these words mean. ,In such cases, apparently some incidental learning

A
has occurred .

. ' ’ - ) .
. QUESTION ~ - ST

“What is ‘the difference between ‘equivalent sets' and equal sets‘?"

- If A and -B denote sets, to say that A = B, we mean that A
~Thus, if A=

‘we can say that A and B. are equal

and B are both snames for the same set [shoe, doll wagon }

consist of the same members.

On the other hand the requirement for sets to be equivalent 1is less
if the. sets mateh, then they are. equivalent.- Thus, if *
then both sets have the

A 1is equivalent to-
C."If A is equal to” B, then ,
A and |

demanding.
[shoe, doll, wagon] , ¢},

Hence,

and C={a, b
same number property (both sets match)
C even though A 1is not equal to.

A and. B ,are necessarily equivalent have _exactly the _“

same members, therefore the: umber of members are\ ecessarily equal.
JIf A is equivalent to - B,
equal Having the same nurbet of members does not mean that these sets

then A and B are: not necessarily.

R must therefore be identically constituted

i

.Cardinal Numbersf, . o

L ..
< - VOCABULARY - . .

. Natural Numbers

Counting.Numbers'. .
Finite Set® -
5; Greater Than® : >
. Infinite Settf” o : '
less Than® = . . : ‘

. . . -
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RCISES - CHAPTER 1

3

1. .Name the number property of the sets:

. a. | '[], A, O, O) . 4. (letters in the word "deeded"],
fﬂi " b, [2&3] ' . ST e, (the number of vowels in:'"bureau")
- e, (zero) ' . £. (cownting nuibers leds than 1)
.2, .‘_Here'are four sets: A= [a; B‘, c, d4}. '
' B = (1, 2, 3)
‘ c=() . o '
D=l a, 8,7 - R U

Identify the number properties of these sets; write all the

relationships you can, using the numbers and the- symbols <&,
»

=, >. For example, 3 < L.

3.  Suppose you,want to explai@\“wide"'to someone who speeks no English’
and you do not speek his language. How would you.go dgbout conveying
to him the idea, of "'wide"? ‘ ' .

H%'_-M = (man; fish, ape, amoeba, 11zard] . ’ _ _ ' d
Rewrite the elements of " M in some more 1ntu1t1vely logical ‘order

and describe how it is determined '

5. List the elements of 9, 6, 11, &, 3,1,'10, 8, 7, 5, 2] ~in such

a way that 1ts number can be determined without countlng.

.

SOLUTIONS FOR PROBLEMS - - L

~

.

di. Answers may very; e.g., they are both sets of objects which are

children S toys

4?
2. a. (S).: 5
b, N(B) = b _ v .
c. Since A'=.[a, zg r, e, v, L, %, 6; n],aN(A) = 9.
C e K C |
b 7 '
c. 6
d. 3
_h. -a. The elements are listed in increasing‘order. 3
" by .«The elemen‘ss are listed in decreasing order._

N ’

¢.  These words are in. alphabetical order.

zq} d. . This descr1bes the positions in the ascepding hierarchy in

a school

ERIC
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Males listed first in décreasing order of age and then females l
,_" are listed in order: Bf age. ’ . R
,f._fTwo apparent rules: of order opera te here also The adultsu'
_are listed before the children and male takes precedence over

A female. . - S ' o - .

.

8. No order'is obvious, so "not apparent" onld be correct'
'_~However, the. letters happen to he in the order in which
‘they appear on'the th1rd row of. a standard typewriter.

h. Again no order is apparont If the set is renamed by the.
.MOrdS'[lee, four; one, .three, two}, you can see they are

\

~ in alphabetical order. = S
5. a. H= [tIu'mb, irtdex, micidle,'ring, pi{ﬂ(y} - A
‘ [) 2:‘ 3: ,', 5} .
".b. The subset of . H which is equi#alent to 5 1is the improper
subset H = (thumb, index middle, ring, pinhy] vN(S)_:
as part a. ‘shows. T o
. As one counts, he is listing the elements of 8 standard set..
When counting on bur fingers, we usually touch one and say a
" number. This is pairing fingers with numbers so that the

sets match. Hence we have found a set, a set of fingers,

‘which 1s equivalent to {l 2, 3J.

5

cia, 'Cardinal f -
., " .
b. Ordinal ° N
¢. Ordinal h : l
o » d. Cardinal. . ) e -
\Y. - Ordinal’, f )
a = 7. . Cardinal numbers are: "two", "zero", 30", "one"; those used as'’
. ordinal numberi:are:'"Three" AL L o
* 8. f.The sets in"’ 1ncreas1ng order are P S A~ Since N(S) =95,
) . N(P) = &4 ana N(A) 9, the numbers must be ordered L <5 <09,
< ; .

9. Exactly one: of ;he follow1ng/p€atements must he true. y '

N(X) <N(Y) % N(x) = N(Y)%%r N(x) > N(Y). *

3 . AT © F? I
BN a 1 .
. ‘a .. . L " ) Ce \.
p:\' ’:; .,.;..} N
5 . .
- ‘ ' B 52
~ . ‘- . 1
> -‘ . ot
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~ Chapter 4
| ' SET OPERATIONS

£

 SET UNION-

=

. Let us join the elements of sets A \end B to form a new set. This~
new set consists of all the elements belonging to ~A or B or both vw:,*:
and is called ‘the union or join of A and B._ We write. ;

AUB_[AODQ#XBX}
and read A U B" ‘as‘ Uy union B"'

This process of joining two, sets: 1g called an’ oBeration on sets.
Since we Jjoin just two sets at a time it is.called a binary operation

For our present purpose, ‘we use’ this operation of joining onlwaf the two
sets do not have any members in common. The elements A C) El' are
lzmembers of A but not of B. It 1s equally true that none of ‘the. members .
of B - is a member of. A. If two 'sets do not have any - members in common,
as in this case,. then we say. that the sets are disjoint sets. For example,
the set.of boys in a classroom and the set of girls in the classroom are
disjoint sets; the union of these two sets is the set of boys and girls

in the classroom
. PROBLEMS

"

1. ‘Find the union of each pair of sets P

LS

a. A= (1); B {2}. )
b. A={1,2); B= (3) T e o ‘
S A=1(1,2,3); B=[) e —
4. D=-1, 2, 3); L=I(a,b, cyd, e
e L:fa, b,%,a e} D=1(1,2 3
r . ’ ] “', T g
£ o A . ~ )

. ) .

%Solutions‘foriproblems il this chapter are on page 66.
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£.78 =8, b, c,74, ,1,2,3); G=( a B, v, &)

J

g D=1(1,2,35; 6=( o, 8, Y, 8) S -
‘h. L= {a, b;.c, 4, el; A=, 2,3, a, B8, 7,.5)-'

“a. Whlch of the problems above 1llustrates the result of the unlon o
.of'a set with the empty set°
b, If A is a set,.what is Au( )2

-

3. If v=_" [aardvark bear, cougar, deer, elephant fox glraffe
hyena, 1bex, ‘jackal kangaroo, llama)

W= . '[aandvsark colgar, fox, Jackal)

5
a -
P4
1t

ey s _ d X {vear,’ deer, elephant . giraffe, hyena,,ibex; kangaroo,
: llama) what is WU X2 - '

ﬂ _,RLOPERTIES UNDER UNIQN. ¢

are a few propertles under the unlon operatlon that w1ll

have 1mportant bearlng for us when wevwork with numbers if.

B,
and G

{Anthony, Barry, Charles,-Dougla§
[Ethel, Florence,, Grace},
then B U G = (Anthony, Barry, Charles,

Florence, Grace)

uglas, Ethel,'“

'and GU B

(Ethel, Florence, Grace, AnF‘ony, Barry

Charles, Douglas)

3
]
1

s

Observe that: G y B has the same members as 'BjU G, h nce’ W,

. e GUB BvUG

In fact, it is always true that for any two sets it is mmaterial whether ), o

the first set is Joined to -the" second or the second is [jained to the flrst,

the - same set results by’ the union. . To express this fac , e say that R 3{g

.

5

3 e | THE OPERATION OF UNION OF SE‘I‘S IS COD'MU‘I‘ATIVE e

-Ia.other words, 1f A and B are, sets the commutatlve property under

the union operatlon states that

AY

e ’ T . A U-.B =Buy A%\m . e . .'."a._‘
r’Another way toqdescribe this is:':under the union_operatiOn, the order )
2 , € : . z o R o,
.. _.of joining does not matter. . — { S E Z
\. o .
] a ‘ 54



instances of commutative operations.- For exampie, it makes _ -

. noidifference in 'what order the left .sock or the right sock is put on. , ,
3 The final result of applying the operation o both objects is identical"zﬁ”‘*$‘—§§§;§?

’

. in ¢ ch case. o : L .

_Taking three red marbles from & sack four green marbles from a

g
second sack and putting these~together into a third sack is another

,.illustration of a commutative operation. Taking four ‘green marbles
from ‘the second sack and three red marbles from the first to- put

together into the third sack would net the same result.
o 0n the ‘other hand there are situations where the results do .
2.depend on the order. in which the operation ‘is carried cut. For example, A

applying a coat of red ‘paint on. top of a coat of green paint gives a
different visual effect than reversing this procedure.} Therefore, .1t

sets. se o fo
° obtatned. Tofillustra"
then '
If.«ﬁ.qr[ a, " '

e

(DUL)UG.

‘As
this is indicated by the union with G (T
successively by this process. The,possib



o~ ” : a
1

~ "j - If D, L, and G~ are as above, ‘we see that we can get the _
result of (D u'L) L G Let' Us now cqn51der the unlon of L and: - %~
"t G, and then 301n,th1s set to "D._ The ‘union of L and G 1is '

J-
v
T

L u G = [a) ‘b,, 'C d e] U [ a:) 'ﬂ) ‘Y, 6] "'.-".tn“-;{}' ' . ‘,.

\v,"

R R S S B, v ).
© The union of - D and this set is tH&A®

Du (_LUG) =‘.[l 23]U (a, b, ¢, d,e, a, B, 7, 8}
vlf v. oo - = {1, 2, 3; ah b, c,d, e, a, B, ¥, 08}

/

vCompared dlth ."C~: o :.' 'vhrﬁ '. I

s

_ (DU L) U G —r[l 2 3, a, b, c, d;‘e, a

that we hawe above,'it is clear that the same set results frOm ‘the two

din [

) ﬂ)’ ‘Y)

-nrocedures. In general , _ B

"FORSE‘I‘S A, B*"AND"c- ITIST;%UE]' S
THA‘I‘ (AUB)uC Au(BUC) S

__;dhat is conueyed by thls property is that B may be joined w1th elther
:f.A or C first the final result of the union of all three sets will .

_ ”be the same. That is %o say, B. may be dssociated first with A to
a ' form AUB or. B- may be associated flrst Wlthr C to form B U C;

". B I3

“the unlon of e1ther of” these with the remaining set,_(C or A -as the
. case’ may be) 1s the same in both cases. ThlS is what we mean when we b
¢ ' say that the union of sets is an associative - operatlon. 3 In other words,l
. in- a. union 1nvolv1ng three sets,-the different ways thelsets are .grouped

to fdrm unions in the 1ntermediata stage does not affect the final result‘ >

o Because we have thls option 1n grouping, (A u BJ U C and- . "n'
'[.' "‘A u (B ue) denote the same set Consequently, e need not spec1fy
" in the notation how the union is to be accompllshed Tﬂegﬁfore,,the. °

e . _notatlon may be simpllfled by djopping “the parentheses %n writing
" P . A
- AU B uc.: v B

B

Since AZU BUul isa set, the union mey be extended ! ain and again._
With the same kind of analysis, it is clear that the associative property

under the union operatlon is equally applicable to more than three sets.

O
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‘A third property that‘will‘be of interest to us is one illustrated
Jﬁhe-example {1, 2 3] u { } As the union is composed of all the
*. &lement's in each’ of't

el
the union is preciseJ.q

_ (l 2, 3} Therefore, we must Have Ty

f,xt’ . n
" In generaI, if A is a set, then it is true that

7~ Aoy - h : ,;

_This is parallel to the situation in arithmetic when O ls involved in,
v’
3 +0 = In fact, it will be p01ntea out that the

.addition) Suchvas'.

.Then

{a, e, T1".
;Sometimes we shorten relative complement of B to A" to ?"the ;

Bll '», o

‘Notice that if C = A - B, then o S

11_43 : : -',‘ l " BUC = A : - T :

Notice it € is the complement of B then "B is the complement =

Coof C, S L v - o

‘Many examples of complements abound 1n actual situations. 'For
.7 : example the set:of boys in the: classroom 1s the complement of the set
of girls in the classroom These are dlsjoint sets that together complete
the set of boys and girls in the classroom The set of vowels and the.-
set of consonants might be another example of complementary sets. A
‘complementary set. w1ll also be referred to as'a remainder set. Thls' “

concept will be developed further when we talk about subtraction

. . . :
3 . ) - . . I -

57 yd )
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ﬁ If M= [the male presidents of the United States before 1965]

s'?. g State which of the followingdactivities are commutative.-*

SE‘I‘ INTELRSEGI‘ION AD PROPERTIES '

PROBLEMS . '. AR |

4. " In each of the following problems, state which property or
properties are indicated ARV " .
_a-_[a, ,c}U{d e, f, 8} = (4 e, £, s]U[a,.b cl _ _
e .b.AAU(BUC,) AU(CUB) Vo S

c.‘“All ‘the ‘children in K-l or the children in. the second grade

grades "_,Q

Given: A=11, 2, 3

'D:-=.-'_.E-lfsz‘2

a. The relative'complement of A to D

b. The relative' complement of c to E. - : Lg
c. (Auc)usB n ,o T
d. Dyc L RN '

and = {the. fpmale presidents ‘of the United States before 1965]
thenr MU F = M. State the property indicated.

7.
Y

"ijlabb Go two- ‘blocks west and then'three blocks north.
‘ * Put .on the left, shoe and then the right shoe ;f
”1a\c. Put- on socks and then shoes. o TR

PR 3

sd Open ‘the door and’ then walk into the room.

.

e. .Close the hatch and then submerge the submarine.. S 1":-."’i
f. Put on the hat and then the Jacket. '

\

<:..:,f- [ ' .) . L . ‘
In the union, a\third set is created from two giveﬁksets by pooling

L3

. “together all the eleménts in each of the two ‘sets. There ‘1s another standard

"w@y of creating a third set from. two given sets Suppose that one group for ’

' ”reading consists of Charlie, Linus, Lucy, and Snoopy Suppose also, that
7‘one group for mathematics consists of Lucy, Snoopy, Schroeder, Charlotte,

ERIC

Aruitoxt provided by Eic:

and Violet ‘Then we have two. sets, L ‘ an e
w0 R = [Charlie, Linus, Lucy, Snoopyﬂ i
oo ;
A - M= [Lucy, Snoopy, Schroeder, Charlotte, Violet] .“ _
' s 4 ’ . ‘ ‘ ’ 3
PN B s
o * ¢ . » T ) ‘




e s e e
: 4
‘- L'ucy and Snoopy are members of both.

.

These' sets are not

“In fact c'ommon'membe'rs o"' %ets sL}ggest a n‘atural set of elements--
'_namely, the- set consisting 'o "#}é'members,that the séts have in- common
. Associated w1th two 5giiven s'é 'then is the _set whose members are”

srrrultaneously elementé, ‘of.” o‘!}ﬁ‘.

iven aets : ThlS s'et operation 1s" cal jed’

the iftersection of the two ltEJi and 1is; denoted by the. symbol " n' et IR '(\
S - N - L
T‘hus’ H - 'I . : i " "." .: ’ “ ""‘ i i » ‘~
' "‘_; g -f RN M'= [Lucy, Snoopy} . L "‘
g WAl rls the case ‘of the union, the 1nte‘rsec.%‘z'on is also lj.niquely defined
:'Eor any two sets, a s1ngle set is detem‘ined by their 1ntersection .
o . & °.
5 ‘.'_-, R N.M draws on members of - R for its creation the 1ntersectlon

) must neceasarily be a subset of . R. L1kew1se, RN M myst necessarlly

s . be a subset of M. Thus,, the intersection is a subset of both sets N

’ . A i

' ';{: ‘Even when two . sets are dlSJOln‘t we can speclfy a stt of the common
elements, this'is s1mpl} the set. that has no members. Recalllng that the
°mpty set is'a’ subset® of every set] we see that the statement ..

THE EMPTY SET IS THE ENTERSECTION OF TWO DISJ'OINT SETS

.

‘is consistent Wl'th ‘the observatipn we have Jus't made namely, téat the
1ntersectlon must be a subset of, each set. Related to th1s, of course, is
~that -the intersectlon of a set and its- complement is the’ empty set ‘I'his 1s
‘_by v1rtue of the” fact that a set and its complement are disjoint.- Another
consequence of the fact. that the 1ntersectlon mist be a subset of. each of its
generating ‘sets’ relates° to the 1ntersectlon of a subset w1tvr its super set

Thls w111.‘ be’ the theme o‘,t‘ one of the Droblems to follow.

PROBIEMS

PR
i

s 8. For each of the following problems, state whether' Cr represents .
P : the unuon or the 1ntersection.v : T o ‘ '

T h= 11, 2 3, 1+] “B=(2 4 5, 9), C= ‘(2', L)

2

T Y 2,3, _3-: (4,5, 6,7), C=11, 2, 3,4 5,6,7)
e »‘-A =i{1; 2, 3], B =:(k, 5,6, 71y C = ) -
T WA= (1, 2,3, 0k, 5],. B'= (1,52, 3), C=1(,2'3 .
\ el A= (1, é,'j3, k), B=(1,2,3 4, C=(1,2 3 4 . -
f As 1, e, 3, LL,],, S (), e ) - .
: 'ag-_ﬂfanL( )2, 3,8, B=0), C=(1,23,4
h A =.‘ (stockholders of Linus I/mports, Inc. ]__ e .
B =§,[ stockholders of Susan "Exports, Ltd.}, ; -'<.' .
L= [stpckholders of -both corporations] S v R
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[T

.fstockholders'of'Linus Imports, Inc']

{. . _'_»:,w,. RO

w..
o

[stockholders of Susan Exports, Ltd, ) I‘flftbjs“

.Q
n

[Stockholders .of the Linus- Susan merger] {EEIT’I

9. \Flnd the 1ntersection of each: , o Lo
' 8.’ A= Ld/hb h, ¥, k, oy m,%, z}, B = [c, Ch h j, 0, r,.w, x]

b. A= (browm- eyed, green-eyed, blue-eyed raven haired brunette,f-l}j: Y
blOndA platinum], : L ‘“ .v'f -“'.' ERER
. . . B = (pink-eyed, blue-eyed, ox- eyed black—eyed red headed -

blond, gray-haired] L B

. .lO. If B is .8, subset of "A, what is A n B?

We have examined properties of sets under . the union operation in
view of poss1ble appllcations to numbers. -Bveti more we shall f1nd that
these properties are equally. appl1cable to séts of geometric objects; -

The same 1s true about properties of sets under the intersection oper

o Ve have seen .that- if . SR : -_i/, J 0LV
R - . S L // o e :
. oo o . .R = [Charlie, Linus,‘Lucy, Snoopy] ;,, i
' .  end M= [LuCy, Snoopy,’Schroeder, Charlotte Violet],

o
o

o o then RN M= [Lucy, Snoppy] .

rNote that .M N R" is also [Lucy, Snoopy] It is obviously a point in '
. logic that 1f Lucy and Snoopy are members common to R and M hen

“these. same ‘elements. are members -that are common to M and R\ 1ou;ﬁé -

description of this character1st1c corresponds to the analogous situation\l'
for the union' ' '

THE OPERATION OF INTERSECTION OF. SETS IS COMMUTATIVE

That is to say, under the 1ntersection operation the drder of intersection
Cis. lmmaterial _ o oo j_ . o o '

Now since the intersection of two sets is a8 set, we may consider the

poss1bility of 1ntersect1ng this get. W1th yet another set. To illustrate,

suppose F -,[., b, ¢, 4, e, f] -and S = [b, d f, h]. Then ' SR -0
. FNS=(a, b, c,q e,\f] n,d £, 0 -
S LA e ’
e = (b, 4, f]
2 | . AN

since b, 4, and f are elements of both F and S. If T [b; é,
e, f, h}, then the 1ntersection of Fn s with T would be '

N

. ’ (Fns)nT=[bdf]n[,c,efﬁ] ,
L L 2 P

Y60

BT

O
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. . “® T Co el . ! U - ¢
; . . ¢ L . . .
-~ .. . . " .

As’before, the parentheses around F and 5 indicate‘the '

jr grouping of . these sets to form the first 1ntersection. Thus, 1ntersectlon

. t -
of sets may be formed success1vely one upon another Just as’ unlons may be
* . formed. sa%cessively. ‘Paraliel to oux prev1ous 1nVest1gations of the unlon,
Loy we may pursue the question regardlng the resultébf grouping these same '
e h,three setée dlfferently. The question then, mlght be' "How does FN (ST]T)
.,. i I
R ’compare with - (F ns)n T?" Tq,answer thls, flrst observe that pvf-f.,;.
C = S b , PSS o
‘ S nT:[b,d 7, h’]n[b, c, e,f hl S _
I S L P h]- . e O
L “Therefore, " ' ¢ - -'5' s s :
CFa(snT) = fa; b, <, a, el f].ﬂ[b T, h] Vel TR 7
, TN LA AR T L SO

"77 'Thls clearly glves the same result that we ebtalned above for (F n S) n T

In general we “have the assoc1ative property under 1ntersectlon°:n “_
'FOR SETS A, B, AWD. c, I/I')IS t;RUE ’I‘HAT T

(AnB)nc ArT(BnC)

."'
I

».and we may s1mpllfy both of these express1ons by dropping the'parentheses°. L

'(AnB)nc (Bf‘lC) ANBNC,

.On reflection, this must be so.. In all these ‘cases, the final result ﬁ..:Ay '

V”ls the set of all elements that all three sets have ‘in common..‘,;"‘_-' l ﬁ;

Set intersections w1ll play an important role in’ our: work with

! num ers and9%1th geomﬁ@ric obJects In part1cular when ‘we disouss._}_ S
'1the ratlonal numbers we w1ll seé that they flgure very prominently,; :

f 'suchwas in reducing fractlons and f1nding com@on denomlnators :
. ‘4'. ¢ ) . ) ’\-'v_ v. ) . . 9 . . : . , ..‘_ . ‘
A55.)
,hvB,' and C are the sets spe01f1ed below illustrate the
[ v "-,'. ¥
dassodﬁ&tlve property under 1ntersectlon by dlfferent grouplngs_
- -+ .for . AT anc ; f\_ ‘ :
. aA= (203, 5, 5, 6"7, B 9810, 31 |
‘ | "B‘='-[2, ,u'6;'8 1o 12], eI -
‘ “".,b.“-fA'='{2, i,6; 8, 10 121, B = (3] . '
.G [2 by 7 11] T
. . .. i .. R ' "g - o b-: "‘~. : J .
v Vel A= {2 b, 7, 11],; B. = [3,,..,-'.’-,- I
S e e, u 6, 8,10, 12} e o
. a ~l,. o ‘- -n."-"'}' f ;‘ h . / t }»‘ ) - . ..
TR | ¢ R 57 S LR ~
. v itk ' '.'T | - c 6

O
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If A- and B are d1sjolnt what would be the intersection
AN E n°ey Whst wSaa be the intersectlon,b A nBn c nop

-

12. o
' cee NZ?
THE PRODUC‘I' SE‘I' T e "a.}

» In the prev1ous sections of this chapter we showed different ways that
=a§%h1rd set may be. created from two given sets.

[l

5 ’ There is another vay bf producing a set from two given sets. - This is.;

to form all poss1ble pairs of elements of the two sets.” The formation of

)
" such sets will be linked ﬂirectly to multiplication of numbers as-well as
to craph1ng :

.

»

Suppose in the kindergarten Joe, Mary and Peter can play with blocks,

_ pa1nts, wagon, on turtle. Each Chlld may pick a toy to play with., How
- meny’ comblnations are there? . )
Joe -- blocks ' Mary -- blocks " Peter -- blocks ° -
Joe --'paints Mary }- paints ‘Petkr -- paints
Joe -- wagon Mary -- *wagon < Peter -- wagon
Joe -- turtle Mary -- turtle Peter -- turtle
'From this llst we see that there are twelve combinations. Inthis
example we have two sets: Co _ : -
€ ='(Joe, Mary Peter) . "
T = [blocks, paints,‘wagon turtle} |,

of child and toy form a set of all possible pairs
in whlch the first menber. of the pair is an element of set C and the

. The combinati ons

second member of thg pair is an element of \T.

.

If ve use initials we have .

tJ M, P}
T = [b: b, W, t}

*All the comblnatlons-(called ordered pairs) we formed are . o
(3, %)y

(M)\ b)1

. (B, b),

(J: P):
(M: P)_:..
(P. D),

(3, w),
(M: W_):
(P, w),

(7, £};

M, t), o

A
. S
where. (J b) ‘means the combination Joe-blocks. »The set of all these
ordered pairs forms a set, called the produc set or cartesian product

- The product set of. c end T is represented by the symbol C X T N
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In the product set we have a set whose elements arennot single

‘*‘“eiempnts Yt ordercd pairs. “No member of & pfoduct'—‘t is'a member of

C ] . v X
; either generating set. e _% . , r
4Consider L ‘ S . - e ’
L =(a; by e} - - SR

- | ﬁ'& a,2). ‘. R

~ Then AXB is the "set

-

v[(a, 1), =, 2), (b 1), (v, 2), (c, 1) (c, 2)}.
. Now let us form B x A. BXA is the set s . ' .
e (@, a) (1 b), (1, <); (2, a) (2, b) (2, c)]

.W The pair (1 a) is different from the pair (a, 1) By comparing
AX B and B.X A we see that A X B 1is not equal to B X A, but

4

. . . NAXB)=NBXA. . o .

. BROADERCONCEPIdf‘A'I}NION-‘Z" o e e e

+- # - In our discussion of the union, the concept of this operation was‘made'
"'_on the basis of tvo. disjoint sets. The reason for this restrictionqﬂs that
eventually we intend to link this concept to the addition of whole numbers

Actually, the definition of union dogs not have this restriction

.")
,TIEUNIONOFAANDBISTHESET : } 2t
wuossm.mmursmmmmsor.« OR

MEMBERS QF B OR OF BOTH A AND B.

~
That is to say, elements -of A UB are members of at least one of the -

~two sets, A, B, With this definition, the concept of a union is broadened

.~

td encompass Joining‘sets that have members.in common as well as sets that

are-disjoint. For example, if
. .

, A= ( %, 0, A]and-B[*',ADoJ],
+ . then - N
o _ AUB_[*,O ADQJ]
©Note that the common merbers % ‘and A are not 1isted more than once;
this in accord with our previous agreement on the. specification of a set.

The properties thiat we have noted before under the restricted operation
still hold for the broader concept of union




. PROBLEMS ) . R * N

E .. 13. For each pair of sets given below, find AU B, AN B, and A X B

a. A= (a, b;c, d, e, B=c, e 1} _
., b A= (e, e, £}, B~ (a, b, ¢, 4, e} - o : ’
o A={a, b, c}, B ={a, b, c) o
4 A=la, 0, ¢), B={4,e} .' s

b, If A is & set wnat is 'A U A?
SUMMARY OF PROPERTIES = _ :

. .

A summery of the propertles for sets that we have mentioned 4n this
chapter is catalogued below, where Ay B, -and C are sets. These are

propert1es that will be partlcularly meaningful for us when we deal with

‘e

numbers or sets of p01nts o o, . S )

- . P : : . Y
1. The union and 1ntersectlon of sets are commutative H

) . ’ D
‘ ) AUB BU A _and'~ AﬂB BﬂA
) . 'Note nerée that the order of operation is immaterial.
-y [ .
3 .
- The union and i’n.tersection of*sets are associative @
Au(ByC) .

Y+« (uBmuec ,
A~2%Bnc). . -

. -~ " (AnB)n ¢

. @ . . .
" Note here that: the grouping for the operation is immeterial..

«

¢ 3. AU ) =4 o Lo R A
[ * . ) . ) , A. . .
APPLICATIONS TO TEACHING 1. r .

“ Tne concept of jolning disjoint sets has been reported to be fairly-

N

easy for. chlldren to comprehend Apparently, Join is aword that is used

e occpslonally in other s1tuatlons Sets of buttons, &oks, or other concrete we

objects may be Jolned with other sets of any conicrete objec,ts to communtcate
’ ~

Y

in a natur‘!1 way?tne notlon of #union. .. .

L o i
J -The notion,of a conm’utative opergtion can also.be rendered ina . '
concret’e form s’ch és books from the shelf joined with books on the desk

the same\ set . of books is in the I&on

and bfokc on the desk jolned with +book an the shelf. In either casg
/;\The words "unipn!’ and "connnutat:l.ve'_' .

. v . s
" need hot e introduced &t this point. ) . ' o £
L AR A R
- ' e . ’ o '1 .Q .
~ LA ’ N # . :
. ) S T - . 1 “ )
L e o ;
, o « B -
T 'y H
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The concept of intersection is not introduced until the second .

grade*and formalized#my##m-third—grader——However‘ wes_can see that it

has propertief that are analogous to those for the unlon ib shall i
make use of the 1ntersection in the next chapter on geometry as well

».

“as in our treatment of ratiomel numbersxf
The cartesiafl product will be used'here mainl& in conneotfon'with
multiplicatlon and with graphlng when we use ordered palns of numbers
-to locate points in the plane. The numbcrrline 'dll Qe introduced here -
. along with the presentation of whole numbers -in Chapter 7. Eventually, -
* the stuﬁent w1ll encounter the cartesian product in terms of relatlons
between two sets. The various correspondences between the elements
state which elements of- one set are related to which elements of another’
-set. Then, a principal undertaking will’ be to study the characteristics
associated w1th various kinds of relationc . From.this will evolve the
“important study of functlons. Graphing, df course, gives a p1ctor1al
representation of relations Thus, .graphing will be a valuable support

for establishing some of the underlylng concepts of relatlons

»

As we have hinted in the text, the notlon of a relat1ve complement
will be, -applied to eur development of the.concept of subtraction. In the
npresengation'of thes 'deas, teachers have reported that they find it
helpful to use-the_words P;émer" or "left over" prior.tc the particular
lessons. - ‘ | '
. QUESTION _ - : , . .

"Why is the intersection of two disjoint sets the empty set?"

The intersection of sets consists of all members that the sets have-

‘in common.’ Thus, if A = {1, 2,3, 4} and B = {2, 4, 6, 8], then i
- L N . .' ) A n B [2 l’-]'

2 and L4 are elements of both A and B, Now, if C = {1, 2, 3, }4)
*and D [a b c,.d}, C and D ‘are dlSJOlnt because the sets have no

° members in common. By this token, the set consisting of elements that

these two gets have in common is then made up of no members {nother way -

“of stating th}s is !

N 0 ) . <

. c ND=¢g .
) . | .
7
N \
, v ! .
. ' [ I8 ’ : ’
; 65 ,
P
Ayt 1y
N . - RNy
% ) ‘.

O
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) ) 'VOCABﬁLARY. | o }Q_

* Associative | /'. ’ Oﬁerationsf.. . ,
Binary Operation Ordered Pair . L 2
Cartesian Product®* - - o Product Set*
Commutative . I . .Relative‘Complement of a Set* _
Complemeﬁtf . I SR ‘Renainder'Set . '1'&&;3
Disjoint Setg® . .- * " Remaining'Set*
Intersection- - - . ‘ {. ”-.Union . )
. EXERCISES - CHAPTER h ' » g'f,

l.f fa.' Find the union. and the intersection of A and B tf
A=, 2 3 4 53 and B=(1,3,5). T
'b. If B isa subset 3f A, whatis Ay BY DT )

c. If B is a subset of A, what is AN B?

2. ;Explain how the union and the intersection of any set with the
empty set agree with your findings in Exercise. 1. )

..b‘ ¢

3. A recipe callsafor separating egg whites from egg yolks and
',emphasizes the particular order these are: to be added. Explain
the . implication of these directions for the cake-mixing operation. .,

.‘h. State which of the following situations are associative,
’ a. Putting peas and carrots together, and adding water.
R .'bﬁ Eating hot dog, mustard and coffee.
Paying for groceries with a quarter, a dime, and a nickel
4 d. Putting kerosene with fire, and adding water

f 5. ‘ State why the intersection of two sets is always a subset of their

r -
..union o
1
o o SOLW%ONS\E{Q_R_ PROBLEMS o
.. : . B " ] ‘ wr o
e 42 R e N
v. (1,23 . 7w LT B
: : ot oo - . :
c ‘,[l,.. 3} . o &
d. (1,98 3, a, b, ¢, d,. e} R _
e. ®%'b,c,d,e, 1, 2,3} = [l 2,:3, 8, b,"c, d, e); same,as in 4.
f [a,iﬁ, c, d, e, 1, 2, 3; «, 3,, v, &) o
. . . - ) . N B . . . 'tv. .
v ', o
o 66 ) 13, 3

..
v

“a



\-

g- .'“[1: 2, % a, ﬁ:-, 7: 6} . -

:::) ‘ " h. (a, b, c,d, e, 1,23, a, By .7 &); same as'in £.
i 2. a. le - . s : .
[ « b. AU()=a ' L :

~3., WUX=V

=
[

~Commutat1ve property under unlon . .
b. Commutatlve property under unlon, only order of B ang C~
‘is changed .

le. Associative-property under ynion.

5. a. (4, 5] - S L
‘h. (b, 5,9) -
c. (1,23 45,6 1,8 T
d. [1 2 3, 4 K, 6, 7, 8) ' RS
6. The union of "M and the empty get-is M. 7 L -
T, a;_ Normally commutative, this depends on the layout of the blocks,
» ' also on the location - If the locatlon of the startlng polnt is _
3 +blocKs south of the north pole, then walking 3 blocks north
the north pole is reached At thai polnt there is no westerly
directlon, everywhere 19Ysouth
b. Commutative ' . .o d
c: 'Not'conmutative ' |
~d. Not.commutative
'e.ﬁ Not komnutative :
© 'f. Commutative " . . ,
. . . &
‘ ¢ .38, ‘,a: Intereection. . .
“ . eoowaton o vy ~
. ,c:"Intersection , . )
/ -’du. Intersectlon - ) .
N a:é Intersectlon, in e later section of thls ‘chapter, "Broader
, ' Concept “of a Unlon , 1t will turn out that this is also the
' Qbunion of .A “and B. -
f Intersectlon ‘ i‘ : Tk
¢ :é .Union ' " ;. . "
hy Interseation , ) ‘ .
, . - * . v
. 1. Union i ‘
_ " _ Sy . .
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%"9 '?’.; [h, o) w] ‘

5 A g ._q.‘~ z{blue eyed ”blond}

>

\_

0. If X s subset bf ‘A, then 'A n BoB .
ll ""9'.-‘ (hnB)nc =2} h 6,. 8 10 12] nt3; 6, 9, 12] = (6 12]

‘. ~ CoAn(BnC)x [51 2! g 12} 0, (6 12} = (6,,»12} N
s . (A nB)n C = (6, QJ@] LR ﬁw, 11) = "] E C .

g
v
v : '. , .
R -

[ .

- LA n (3‘9 c) = [ 6 8, 10 12] n ] ( } S £ ..
. ""," (An B) . Co=uf. J a,xll', 6, &, 1o, 121 ( .]' -' ;o
N ~an (B. 0 c) = [2,,4 7 11} rf 6 12} : S
. 12 . The empty set“ ‘in eithéi’v cese"'& 3 \’
L .4."‘ - o . . ,;.
‘13- 7 AUB-— (a,h, C,Ad e, £); ‘AnB [,e], g .

- : A B (a, ’c) (a, e, (a, ), (b ) (5, e)‘ ('5 f), ‘

i e - o " _ _‘c) (c“ e-) (c, f) (d, c) (d e) (dl f) ','
IR x(e, c) (&,7q), ,xf)], the pairs may B llS‘ted
. -~ .: in a dlfferem‘qhorder, for example, (d 'b‘.e:) mey — ' _
- »z‘, o _‘llsted as [thes %St Buir. However, ‘the order of 'the
e a ‘;v ! wi'thin ‘each pair must be observed v :
R e AbB bu't" (e d) ’,vi‘sv'{lq-.t’;:.é-.’t"f_.l'le
i Pt e,' fv];f' A,r) B_,,=~[c,”.e'},;

(eitad; (e, o (o
a) (ef %), <ﬂ_;,g>,,'

—
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the set operatigns to generate

Bes‘des beliﬁ% uralqdirecti h: which to move at this Juncture, B
vé‘ v 9 ‘ S

geometric flj e -nd rtaiﬂ-of the1r properties will be useful ‘in :

extending 1»: % ‘“" -hapters ahead

e ch to geometry in.a @ay that will be - .

post helpful ";:small children That is, we will cons1der

,_‘& "c "_ . _"'
4concrgﬁ§»obgecjd‘

K 1nformation

%

ice cream cone

box ,f

' 'Dlscus31on of the characteristics Qf -these shapes fac111tates familiarity ‘:gs

?" £ 'withAsome of the vocabulary: associated w1th them.

-
T .t
ﬂ -3 .fv_ 3 4
v ) Syepepmp— -
" .l' N . 1
’ e
5 ..
43 . -t .
I, . .

ove draw;ngs are examples of typical representatlons of

ﬁi:]geometrif‘ solids There may - be gome difficulty in v1s‘alizlng the .

(aﬁﬂimens1onal nature of tie. figures since the draw1ngs are restricted to
two dimenwsions.’ The dotted 11nes are 1ncluded to aid perception They
. represent parts of the figures which would not be v1sible from this

vantage point.’ .»ff'}"'v

In all ofstnese flgures, the "inside" is not filled. The object
.- 1dentif1ed by (a) ,looks 1ike a block. It 1§ not like a block in terms . °
<of.being‘cqmposed.o£ matter-such as wood. It is shaped like a block

ERIC
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but J1is nollow. Pny51cal “bJects wh1ch can be associated w1th the geometric

) QOles 1llustrated are’'a

Cwill be develoned more thorouoply in a later chapter

hoe box (1nclud1ng the: lld), an empty oatmeaI\\~§

.bO/ dltP the 11d on, and’a balloon ' Thus the word "solid" in geometrlc

‘v uuuuu nas the mathematlcal meanlng of three d1men31onal rather-than the
‘_common usage of "fira" or "not liollow". o oy

Te figures (a)'vf(b);‘ and (c) above can ‘be abstracted from _
nnmerans_cnyelcal obJects whlch are avallable to the "teacher and chlldren
Each ras cnaracterlstlcs which convey the 1deas e want to teach. For
example, oy looking at and touchlng mpdels of (a), cnlldren will learn
£0 recognize "straight" and "flat" objects:with "eorners". In (b)g
they. will feel a "rounded" object which also has "edges" ‘and "flat" .
parts, but no "corners". The third figure illustrates a'"rounded"'snrface
dlt'Out ed"es ‘or corners. '

v .

Fox our purposes in developlng some basic concepts and vocabulary,

we d111 concentrate only on Flgure (a). The subject of geometrlc sollds-

a‘ ,2
R iy

gl (a)

This "box" (more formally; a rectangular prism) is made of six
flat surfaces which are called faces of the-prism. ‘'The face of a

geometric solid is a flat surface of the, soiid

Were two fa”es meet is an edge of tne SOlld Each face of thlS

Y]
> .

4
fL’LLe nas a bodndary of four edges. - The- skeleton “of the prism is

made up 01 twelve edges

One otiher cvaracterlstlc wh1ch e w1sn to identify . in the above

solid is that it nas™ corners where three edﬁes come together. Each .
- i5.a vertex (nlural' vertices) of the prisme Tote that any two of these -

thrée edges would meet at the same place and form the same geometrlc flgure.
Thus tre tdo ?1rures to the right below .

¢ . : 5

Y.



T

equally well locate the’ vertex of the prism identified by V. Thus,

S e,

fJﬂ A point of a geometric figure may sometimes be designated a vertex,

/

4

v

-2 Which of the figures'have edges hut no vertices?.,

'sa vertex ‘may be~determined by the meeting of two edges of a face.

_-however, ‘even though it is not the meeting of two edges of 8 face
This is the case, for example, with the vertex of a cone. - .
. PROBLEMS® _

1. How many faces does' this solid eontain?

1 =
Py )

) B I

' . .
b - 5
-~ ) f o

NORR O (a)

.POINTS ANDPATHS S St

The basic ingredient of all geometric configurations is what is
called 8 poi t A point may be thought of as a precise location.. Points

are represented by dots og a peper or as the end- of a sharply pointed pencil .o

All of these are visuﬂl aids ‘to assist, us~ip conceptualizing the nature L

;of a point.

These representations are merely & tempts to symbolize the idealized

: geometric entity called a point The diffitulty is that a point is an
L'”idea rather than a physical obiect. The point Which we representgpy a, dot,
" no matter how small ‘the dot, covers. many locations N : v

: N .
When we arrive at the description of a point ‘as an exact location, i

this is not a definition of 8 point in.the formal sense If ve say a

point is an exact location, xact locatioh must be understood._’The

'.dictionary might define- location as a position in space" 'Position in

'épace might refe? ‘us. back “to point. If none of these words were meaningful ‘
to us, the - dictionary would hardly clarify nmatters. However, the circularity
in dictibnary definitions is necessary becauSe there 1é only a finite )
_ number of- words accessible in ghe dictionary Eventually some word in the
chain, of definitions must reappear., Implicit in thisﬂis that at least one.

.
-"' - - P v

'_"6sdlutions“to problems in this chaptér_are}on page 84. o . ”i
S K . . ."""'.'-. X Oy o . . - . Y
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v word in the cha1n must be simply understood so that othens miy'be'aefined
sen

in terms of it. "Poiat" is such .a vord in geometry In a se it is

4'"flrst word in the vocabulary of geometry, and we say 1t 1s ‘an

v
N

unde11ned te*m

Once tne concept‘of polnt 1_:_ derstood ,we will agiin rely on... - ?Jib ’fv
> represeztlng polnts~by marks -on pape?ﬂto facilitate discusslng them o
“>:;_ They are commonly labeled‘by capltal letters The drawing represents
B xpolnt P or slmply P by which a polnt 1s understood '

_.... ‘4‘5’3& . _' ‘.... | S LA " v' .- o - ' ..: | b . N
ol o v L ‘LP t _
N ' : Lo L v, - e P ’ N . . . . . ». * :._»
. '; . Eery geometrlc flgure is.a- set of polnts A curve is a set of ’
"§'~ - Do)nts followed ;h*mov1ng along a path from one polnt to another ' :
’ » i . s . . u A Lo v
,%g v . \ e ,
) L Y _‘: .
.. - r ' \ A ] " v ‘
|

. Thus the draw1ng above represents a pathr from point A ‘to polnt B
or from: polnt B to polnt A: It is. evident that there are other

curves :f‘rom A to '_'B; 1ndeed there are 1nf1n1tely many .

Innerent in the- notlon ‘of path is the idea of cont1nuity -There
may- not Ye gaps in a path Neither of the drawings below is a path —_—
’ \‘from C to " D. s » oo s ' ’ ‘
'F." . -

. Accordlng to the str1ct mathematigal deflnltlon, curves do not have to be:
. continuous : we ‘however w1ll conslder only those that are. Hereafter,:y"
‘ ; oy leurve! _we shall mean & continuous curve Portlons of the path or

tke entlre nath may be stralght As a-path may be used to speclfy the

-‘ set of oxnts in a-curve, any of the following figures represents a; curve o
Vo P to §. s et . PR ST o
rom Pt G e . - < s AL
. T ) _f" N - N R N .. o . R . i .o : . N ...
. . . i . [P ) Lo . . - X
. . s . P . - - e~ . : : ' L s
. o ) : R . . . N o :
. R T T S e . S °
. ’ > B
P [
! R
. I 8. . ' - ~ o
. . . - R T
. L BRI
- - L : s Y
5 . 72 ! 4 ! B . .
; " 3
! Y . - . . , ..'_'
b . 79 . G g
' N -8 . ’ rE
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het us represent two points by the dots below labeled A and B

"we now trace several paths from polnt A to,polnt' B as shown above

SR . . .
T . P ) ‘ . - e ';' T
- One of the paths shown in the p1cture is of spec1al 1mportance It i
‘the’ most dlrect path from A to ﬂhlszgath represented below, is.
.a,'called ‘a- 11ne segment “:” ) T o
- ' R o . ]
' A,'%\ - ‘ s B

‘;‘;The symbol'for/this llne segment is AB or- BA and mhe po

B are called the e ndpolnts of * AB. A 11ne segment is named
'two endpolnts Slnce both 1B and BA denote the . same, se{
.order 1n whlch tne endp01nts are’ named 1s 1rrelévant Wlth the con%ept e
. of llne segment we can now 1dentify an-. ggge ,of a rectangular prlsm asv
R : BRI A . :
a: line segment Lo ?”.." S Lo .

. A AP DI S T A
.PROBLEMS - EER T S -; L R
igﬂlyg Represent: BB such' tnat it can aléo be named asithe-dnion-of RO
L A, KT . _— X o ‘
AT AQ, QML' and B L

C R : t s ) PN \
. e / g 13 ¢ -
. R s ()‘L) '
LY * . o

) ’

* L A ' : N . x

Lo g -l L y . . ,‘ ] [ . S ,? )

;PROBLEM R SR
!~;-3. ﬁState whether or not each of the follow1ng figures represents a curve

S afram Alto B T T S Y
\ RN . e . . - ‘\~~ S : V o

K . Ao\ a3 AK\/B ‘ A/U\QZB\ +

2 ] SR '."' . - P
: W e L O
(b R - . : T LR
’ ., .“, :l" ) . i
LII\IEJ smmwrs i E ﬁl » /



By ‘0 ‘ ) I N S : X '-. , C
;9“ a

’\IP the same AB of problem l&\ assume Q is between A and M.
Qtate all other possible relat/ionships oﬂ one - point being between
two other points R : el L

By AB is implied the set of péints, A, B, and all points between N
' them. _ Thus the ‘notion of betweenness is intuitively deriﬁed, However,. S
e there ey be need. to clarify what is meant by "between". If. 4, B, ¢, oo
o a.re three points ag indicated in (a), it may be quite na.tural to
consider that B is between ‘A and C. Ew\{\en i the points were as in

o .

“w.
Qe
e
Qe
> e

@ (b)_f @

(‘b), ‘or (c) _one might concede that B is between A a.nd c. But if
the three points were as in (d) ‘the question as to which point is"

betWeen whigh other two poi.nts is not ‘80- easily T solved. .

Implicit im the decision as to whiéh -point is between(tyo others Lo
appa.rently is a bcurv:e connecting these points. . If a curve pa.sses through '
the three poi.ns as in (e)" then B is between 'A “and C - L

“ Iu (f) A is between B and C @and in.z (g) C i-s between A and ‘» g
'. __',B._ ’I'his, of course, can be d,one for points. whi‘ch we may have considered o
. sufficiently clear withmagards tﬁbetwe\!nness. Thus, in (h),‘ A is
between B and c. Eventua.lly“, a lgumber will De assocé.ated with each L
pair of - po:[nts. We will call’ thisﬁnumber the d!stance from oge poiﬁt to .
the other. Betweenness can then be ﬁted in terms of :istances, ‘ Even ’,\ j'
with this deﬁnition ) & curve\ iis involyed in “the cdnoept of guistance. "THe '
connnon sense interpretation of- betweenness, whan no,. curve is specified is
ooy simply that “the points are to lie along a{\\straight p’e.'Bh * When welsay that '
5 ' _ ‘a point is between two others, it will be out erstanding theu, that the ‘i‘
-" three points are all on the sa& Jine segment j R o

i

R

b

ERIC

Aruitoxt provided by Eic:



— - .- - - - e

Once a llne SEgment is: deflned by the locatlon of 1ts two endpolnt'_“

and 217 tne nolnts between them it determlnes two dlrectlons._ If we f.\: .V;,'“'”
. 1ma°1ne extendlng a glvennsegment 1nfin1tely far 1n both ‘of. these directlons,'.

3.we co ncelve of a "eometrlc llne. o ,“" S f 3n"’3~' “;“',,, R
: . B > :_\f,,---. o S R A
A c1rcular1tx_w1ll be noted 1n deflning a llne and betweenness.-5A~f St

r-.'line ig cwncelved of’ as an ettenslon of a, segment and a segment Is deflne&

W as’ tne set con51st1ng of twd endp01nts ‘and all the polnts between. On the PR

' other, nand between 1s stated if terms of . polnts on a llne.. Th c1rcalarlt

Lois unav01dable 1n uexanltldns, and ultlmately, we must accept thesg notions

'fas Drlnutlvé{ nd.undefined Thus, 1n geometry, a line is accepted 51mply

The drawlng represénts the 11ne formed by‘extendlng PQ in both :i ;!.;fw;r‘”l
-1;~of its determlnea alrectlons " The arrowheads are used to 1nd1cate that R
th e extens1on is 1nf1m1te. Ve adopt the notatlon. PQ for éhe 11ne e 4;}.' }"‘f

contalnlnr tne tdo wolnts P and \Q\ 1n order to distlnguish it from .
5 )
llnei e;ment PQ' Jrltten ‘as PQ Ve could also refep.to the llne agiE

.., W&Q, “‘*w -and 80 on. In general ady two p01nts in the set of po;nts

.771n tne 1wne may be erd to name 1t “rAgaing order does not matter. {;f.

. . L 9; . e . .ﬂ - ow oy

o LA , e -
' .‘}, : It is 1ka_rtant not to use thls term1nology loosely.- A lme has

no e d Olﬂtq,hyhlle a llne segment must’ have two endpolnts.

) ST : e i :
Jo.,trat we undelstand thq;*eometrlc concept of a p01nt .we may

" now r1cl;ne 'eonetnlc space or 51mply space as e set of all polntsnd S -d~j"}

, ‘The‘;sual oonnotatlon of ~1”‘the set of all points in a v .1;.; i Jﬁfé

. ‘tnnee Jinen isn, ertent ‘mne notlon of - space in the*more general sense,_.' .
as, slnul/, a. ‘set 'af all. p01nts, i extended to the branches of mathematlcs : , )

. Cother th dn. i ometrja “Thus, tn probablllty, the set of'all posslble ont-_lfji' :j o

.The : '_. A

Nl e

"lrcomed of d,certaln dbflnltwon is descrlbed as the sample space{]

meanlnv 5f space Lu uenerally determlned by the conteit in which 1t 1s

v ooused. :Unless cherulse indicated, . :space 1n th1s tekt w1ll refer to

infinite,.tﬁree-dimensional'space RN e ~='.-- T :
_— e P . TR '
e N . 75 ' o v
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_'PLANE'_

. as the floor, tabletops and faces of blocks ,should be examined and felt,

E2 -

’ .

Let us nov consider a subset of the. set l&'points of space called e
a pl e. Again we do not give a formal definition of the plane

Any flat surface such as- the flootr, the top. of the desk or a piece
of paper suggests the idea of a p ane. Like the line, a plane is unlimdted
face -used to represent a pld nly repgesents

The notion of the infinite extent of'the plane is approached by thinking

in tenns of anlever eApand}ng tpbletop and s0 on.

SIMPLE GLOSED CURVES = - .

In our discuss1on of segments, we-considered paths bq;ween two: points
’47\ N
and observed that each of the paths descr1bes a curve.. A path thus specifies
a set of! p01nts known as a curve from A to B. When A and B coinc1de,

‘the curve is said to be closed Thus, each of the diagrams illustrated

. represents a curve. The onesuappe&rlngfon the second row are closed curves.

B L

“itself. To describe the fact thatnthe curve does not cross itself we

Of the closed curves that we have drawn, the first- three are

d1st1ngu1shed from the last two. None of the first three curves crosses
1

. o . . &
say it is simple. By simple closed curve we shall mean a get of points :
in &a plane represented by a path that begins and ends at the same point _
and Qoes not cross itself. ' ' Co
. . . . ol ot .
Simple closed curves have the 1mportant property of separating the

rest of the plane into two d1sJo1nt subsets, the interior .(the subset * " -

v - 4 e . . . a-

N N
‘5. . 'l = >.?”i»".:.l. 55:3 e
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-

rd

i of the plane enclosed by “the curve) and the exterior.; Thus, . w1€h & 51mple

closed curve there is a natural partmﬁionlng of a plane into thrée disjoint

.1

subsets: o °

<

L

14

¢
bl

(l) the set of points that are enclosed by the agrve

%' (2) the, set of points that are on ‘the ‘curve &

curve nor on the curve.

S

a" I kY

(33 ‘the set of pointgpthat are ne1the§.enclosed by the

N

ks

With the separatlon any curve in’ thé plane connecting a point of the,

interlor w1th a point of ‘the exterior necessarlly intersects thg, simple

closed curve. ‘I'h1s is 1llustrated-by the Weqo%ow, .where c is' the

simple closed curve, P is an 1nterior point
P and- Q.

exterior

f,

&

Y
“Ha)

8. Wnich of the curtes in Problem 6

.closed curves?

; N}

.
”

>,

»-(b)

and. "A 1s a plane curve connecting

is an exterior pof

i ,cv‘),

. . *
Which are simple.but not closed?

i

J, .

{a)

- b

Yf' .Mhlch of the above curves are closed°' Which is s1mple and»closed°
. 'J

1s,aqunion-of two simﬁle

*

' 9. It the letters oﬂ the alphabet were prlnted in block typle without
e serlfs (no "ta;lsf), which letters indicate simple ‘closdd curves?

_ABCD...




i

17 10. .a. Can a curve be drawn from A Lo B without crossing the given
curve? from A to C? from A to D? from A to E?
¥

State the reason\for each case.

N - b. From which point in ﬁpe above diagram is it 1mpossible tordraw
' & curve to any other point w1thout 1ntersecting the curveV .
POLYGONS S ‘ _' o : )
- #n important class of simple closed curves is the class of polygghs.
‘A pglzgon is a simple closed curve that is a union of line segments. Not

all unions of segments form simple closed curves. For example, the undion

o of two- segments may again be a segment In the picture below, thg¢ union
. "
‘ .~ A B c D .
. .:J, v ‘ ~ . Lo ! ’
s ) . ! ° ’ ‘ .. . .

“of AC- and 'EB is"ﬁﬁ- the union‘is simple, but not closed. Nor is _
‘any ‘of the flgures below a simple closed curve although each is’ a union

! of line segments.’ Triangles, quadrilaterals, pentagons, and SO Oy - .

. L : Y
are emamples of~polygons. Note that AD \above contains: many other segments.
“For example, AB 1is contained in AD, EC. is’contained in iD, AD 1s )
: ,;_T'contained in itself, and so on. hlkew1se, with segments of & polygon,
' segments are conta1ned in segments. If a segment. of a polygon is .
contained in no segment other than itself then this segment 1s called a ot
s1de of the polygon For ‘example, ‘PR is a s1de of ‘the tr1angl€

,shown below. _ i~

- triangle KR quadrilateral * ﬂ.'pentagon :
- . . . s " Y 3 . . . )
Lo . . . 4 78 -

e
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A polygoh. of three sides is a trian le’)fqn;-sides, K:3 guadrilateral,

of. the sides are the vertices of the- poll on./ Note that each vertex
‘is a common endpoint of “two sides. Note also that the number of sides

. is the same as the number of. vertices

CONGRUENT SEGMENTS

Congruence is a verylimportant and complex ideg with many,consequences
+ 1in geometry. We shall confine ourselves‘to an intuitive approach to the
dea of congruence. That is, if one geometric configuration is an exact

copy Pf another, we shall say that the two figures are congruent. .

To decide whether two segments aré congruent, we can mske a tracing
. of one and see whether or not the tracing fits exactly on the other.
~ If they, fit exactly, the segments are said to be congruent - It is, in this -
'sezse; lhat markings on a ruler perform the function of the movable copies
.of-segments L ] :
PROBﬁZﬂ!b ,,__J o : |
. L ]
ll’ Make a tracing of CD F1t this copy on BB to see whether

or not® AB and CD are congruent. e

L.

] 7 S . - C.- . - D ) o o . ~
. ‘ , L o
1%, Which of the following pairs of line .segments are congruent?
< ) ) : : : o
a. - R S ! 4 . )
P Qo
" b. R T
X Y
’ >

1

‘THE NUMBER LINE

Congruent segments give us a way of rélating numbers with points on
a line. This is the _case with the number line. . Given any two points on
a line, a segment is determined. We can continue to mark off points, one

after another S0, that each- segment is congruent to the first.4

2 - -
5 : )

ﬂt’ ’ . 4.
T SR 1 : .
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v

-

X 2nd 3rd e _
.:“'. . Tre 001nt.> may be labelled O 1, 2, 3,4, e in_the order of the _'.'
. whole nwmnbers. A’Lthougn ‘one can asslgn t‘hese labels from right to lefét
conventlonally vie - proceed TtHm left 0 rlght. .When points are labelled
' thus, tae nw bers assocgqated with the pomts are ‘talled the coord1nates

. of thne uomts, and the line together with, its coordlnates is’ called
. . tl'e number line. ) :ﬁ? © .

A : . ot
» .. o e . .
- AP o - . S

ey
sy

+
]

. o " » ' The Numbeg Line B .
. . y e L 4’# _ | b - .-
. : Q ! L
k . e Te ‘number lme tuu? ves us a 1-1 correspondence between the
(&

end ointe ¥ congr Ent segments and the set of whole numbers. :

- ) Tiat 1M each endpsint is ass oc1ated with one and only. one whole number,
; ‘ o

9 and each whole number is assoclated with one and only one endpoint of

¢ _t::"g cong -nimt se ._ents on the line. This device is qua_te usefu],\ﬁor us. .. N

It - naoles ug to visualize the o'rder of‘ numbers by the position..of -

. &dérresponding p
N -

.9 . s . : s
s on the line. We will later conmect ﬁera_tlons . .

- in aritimetic witif cperations on the number line. -

¢ o PROBIEMS . _ - L

~

,lj. nat is the smallw,vhole number represented on the number 1ine? Y

1. Wrat can you s 53y about every namber represented by a p01nt on the

Aumbe'r iine that lies to the I‘lﬁ’h't of a glven point?

\

b APPLIGATION.T;O_ TmACH’ING R . L _ / .

-~

_ . . BN

_,vg L)b cally, ‘as geometric figures are made up of p01‘hts, one should begin
the study of geometry with the concept ol what constituteg a point. Lines,‘v

curves; nlanes snlids, qnd spaces may be generated from a pomt.

.

oc“pltc whe ,.].OL,J.CEll b&uls, the sets of geometrlc objects that children
.. - have to manlpulate‘are seta of- ’three dimenslonal objects. 'These are the, _
~ "oncrete oogecte 'rh1ch prov1de ch‘lldren with’ expe’rlences from which. they can .
abstzact the mathematlc,al concepts ‘ For th1s rea’son we begin w1th models of *
solids, R’om thé models, we- 1dent1fy faces, - edges and vertices. Once

identified, we can use these prlml‘tIVE elements to construct other geometric
' B .4 o

" o S )
» .o 80 . . ,. -

TR

A ¥

P
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. 1‘. . . - s, ‘.w . "\" s )
L4 ’ L N - " * v N - " .
% ' - R :
v , . : 7 R o . | -
figures. FKor ex@mple, "skeletons" of - klds and prf'skms are ‘unions of ..
) “. . .. .

certain line segmen"ae g B

«,

_ g For children, the_ approach tﬂ closed.

' must be - emphasized that. any. closed figu ;
N called a solid", even though it 1s hollow.'
' consisting only of the’ faces is a "cold d"
‘box is a solid" ' A

8 Y
’ .' §0 that the children may ma_’ -,
stick models of polygons ;'.-
R
. ‘used for’ the’ sa;ne purpose ;

,.models should prove ysgful, _

‘, . R ;{5 . { _
-_ Mo”t oupi_ ,s,seem =to be 1nterested m i

it would n.ots"’%e a@propr%ate .to 1dent1fy¢a ! gllzas a»‘circle or'a recta ‘ ler ' o

'L 3 16‘4 4 N
’nc{,mns 1o be ma

t . 3 {

pgism as, a rec o

'ted that 1’n the stgdy of geometry, each g& the "f‘
a ane _:and a plan? may be reg&rded ag'a primitlvé
ve clieis jng’ othér géon@ﬁnc ob]ects Eidee,
1\&’ ela%ent an;l ﬂ'f 'o'xn':-;.jq g

.;'.

els,,u& mlcrht move toz an’

Using varioug ‘phys cal obJects as-m
ever shrinking . dot as repgesentatlon of a p01nt ﬁe cow‘@t o’ oomt %‘

that we have in mind is “thus an abstraction from visual. moﬁc g0 ey ﬂ S
idealized concept' that of an exact position mv1%g no lé‘n uh,‘*&; mdth

In other words, havmg no d.imenslons Tne -space thg Q‘nIy think o a.-‘ ..

. ‘ -..t"..::“ 81 - 8',") ,
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o " ofeas three- dimpnsional space can be visualized as the set. of all possi'ble'
paigions in t‘his spacéo Cer‘bainly we can imagine that wherever there '

. o is a‘loce!tion,,we canx.yisualize\a point “the" totality of all positions »

' * thus Eills , the spe.ce a1 about ua This is an accountfor our N o

~5efinition of space a's the set of all points However, the definition '--,..

‘L

‘ is a. good’deal wore far-reaching than this The word “al,l" may’ have BN
o .

many frames Of reference e G :' \ ~:'_.'
‘”’)’-"n Com g. P . VN

Ii“( we think of the pla‘ne 88, the idea_llzing Of? eve},expanding table,
wed ”see thst this too” is couﬁ:osed of a collecj;ion point@namely, Q__

th‘= points loéated on the imag*lned surface. With Arefe‘rence tg this surfac
- : LA S ¥
e ‘the collecgion ofg all points sd” restricted‘ a.s also a spa\:e Thi‘s is~'thB§

. space we cB11 Yhe plane‘ Because tghe plane occupies an e'5'ctent along a .
. o _' dimegsion- whd.c} we might#conceive of as leng(%h and along one which We
) ’midht cortceive of- as’ width, theﬁplane“dlsv said ‘to. extetid aloné-! two.,dd;me‘nsions&,
o ~'.' .Anothe,r my‘\o'l" say#ng tgis is i .the pz @"’%
Y. that has o, ’daickness’% Slmil‘a;‘ly sp£7 -_ ]
o space is~dependenti~upon how much “this’ "tll" encompa»sseé, w. _
/ it ts the, et A ® ibual tergiﬁgology snd wimgout oth::%_ »
e : / qualificafiorf‘ by “"spaﬁwthe: ex/standingris t'he space of three
‘ dimensidqs is n"aﬂt &_,,‘ COR : : :

spacé (\one J

v 'ﬁ :!‘; . W‘

Betw en* oo - " S TR ' Line ent;. N
< TR : 2 *‘Q ’ e
g ' CloSed Curve* y e Numher Line* g
E Congruence* o ‘ e & 'T_", Path* A
Congrvuent F ' '
9ongruent Segnlents*
ICoérdinates*‘_ ,3 - ,': t A ﬂ
Curve* I “‘ | ) ,- s Polygon* . ,
o LA : ’ R T T
.. Edge L & g, :‘? Quadrilateral | o &ﬂ
Endpoints .- .- ® R 94, Rectangular th ?3 , .
Exterior (outside). of & "“‘!} . -Simpd ‘Clo§ed vex
PO . c s . o ._ R
» Simple Clos‘ed L&veg 'Spa . s, )
. S _ R _
_ e Face e LT ’ oo anngle* 4 e ‘ -
o Geometric Sélids ‘ L I‘xex&‘ a Polygon*
‘Hexagon* . S v" % ‘Verte“ of a. Prism* o
- Interlor (inside) of a _ . :
T _' ’ S:mele Closed Curve* ."l"" .
Line* - / IREIRTI "
~ 4 i 50, . A ~
/ Lt . ;
") ° :‘ . ‘- ', '. 82 N ) v
- . 2 ek . -
» o - {
Y 3% .
I : - .
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o if R EXERCISES' - CHAPTER 5

¢ L e

”-l‘ ‘fDraw 8 representation of a geometric solid shaped like the pyramids ]

}of Egypt How many vertices does it have? . ,
2. _lExplain the differences between AB and 1B, ' v

>3. '~How many different lines mey contain

'; " ~a. one certaln point? ,
"~ b.. one certain pair of points? R " - o i -
b, If any of the following statements are false, rewrite them correctly
a. Two p01nts determine a line segment )
. b. Three p01nts determine a plane. : »
c¢. The intersection of two planes may be a;line.“
'5.:f Show why Bq cannot bejdivided'into disjointAsegments S0 that
ZA “thefunionAis Q. ' S " ‘ ,
B » .ﬂ:'R Q- ) N ¢ '
6. _ afﬂlln the following figure, which of the points, A, B, C, is
‘ bntweeh the other tiio? A A
PR v | .
' b. If three points are connected by a curve, is one point necessarily ’
between the other two? '
7. a/’ .}f'a'railroad'does'not have - spur tracks and does notvcross' E
. JZ-J itself .what.points form the boundary restricting the extent o
’ of & train's Jjourney? . . ‘ ‘ . v
" b. To restrict the extent of a ship s operation, what kind of
. ".1‘ boundary might«%e required? ) N . v
c.u What kind of boundary might be required to restrict the extent '-
T of an airplane operation? . .
"d. What Kind of boundary might be required to restrict the extent
of & submariue opexation? S . , : &
- . . T
’ 8. If one number is greater than another} what do- you know about ’ -%@v
. their Positions on the nqpber line? . . Lg& -
- 93 a. According to the outlines’ for Boogs K -371in Appendix A, ‘in )
ey

: which grades are blosed curves presented formally as -8 topic?

b. In which grades .are topics discussed using basic concepts of ;
q : s

closed curves7- o ¢ . . A .

S L , e ("0
- v .. 0 : o ¥l . .

. - N s - . S - R L
S . P b B . i

2
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3., (»v) and (a) represent curves“from A to B;- (a) representsa

" (c¢) The twd simple closed curves whose union is figure - (c)

b

+

8 i

: SOLIMSFORPROBLEMS e EE

7 . . [ o : 'I T, o <Y N i i '

~a. only. The rounded su.rface intersects the two- faces An two edges, E
b. and d. Huve both vert1ces and faces, c. ‘has nell?sm;i‘f
e. has'a vertex -as well as a face , S ~

cirve from A’ to A or from B toB There are two curves

’ represented from A “to B, however, (c) is not a curve from. ., |
.. . ) - . . . ! - ’
A to. B, it is not continuous., ) "
. RIS . : . A 14

A §. .M _ B or . A "M Q@ . B :

Figure corresords to the fi rst. p.ossih.il.{ilty shown in 4. Q is o y N
.betwee‘n A and B: M 1is between A and B; M 1s between'’ :

Q and B. '

(b)) and (a); Thé;-curv_es (a) and  (c) ,cross_themselves olice )

~and so are not simplé ’ , L

(b) .and ~(c); (b) 1s the onl:,r curve both slmple and closed.

) t ° : & - A : .
D, 0 are 1mple clgé curves. .
c’e, I, J, L, M, N, 5.0, v@, Z aré simple but not closed.

. e * . . ’ e
. a. The curve is s1mpl%n&losed therefore the plane is’ separated ,§

1nto ‘3 disjoint s ts,,the interlor of the c¢urve, the curve,
and the exterior oﬁ"the curve . E and B are in the 1nterior,

D- is"in the'cfurve, A and C are ‘in the exterior
; Ty

Thus no curve can connect .A to B, A to D, or A to E
without . crossing the curve. A and C can be connected by

8 such a curve, however.

b, D any curve that conta1ns D inter'se.,cts the curve at least !
- once, namely at D. : - ?
. v N .
R :
: F, . i . . L . o e




ll.l o
(b).
13. 0

- o to the right of a given P‘s_ RS
14.. The coordlnate of every point & _ .
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R - v Cha.pter 6 . _' A o . .
R NUMERATION NAMING NUMEERS .. . iw :
T T
. INTRODUCTION, T e S

&
In this chapter we shall consider explicitly the important distinction

between numbers and their names.. We shall concentra.te our’ a.ttenti&z to
lschemes for naming’ whole numbers, that is, to the problem of numera.tion. . e

. 1
A\ . . . .

"5WH0LENUMBERSANDTHEIRNAMES S
We know tha.t the whole number "twelve N for exa.mple ‘is ! property L=
of the set S e ' T IR
e ,‘ ¢, 4, e, f.,..'g',"_h' 1,851 0

and - of*allx‘fsets equivalent to this set The word "twelve is a name
~ for this number property a.nd is not the number itself ' Simila.rly, the
g Wr numeral "12" i another name for this same number.:» -This is ;
" true ‘also for the numeral "XII", wra.tten in the Roman system of nota.tion.

In fact, when we write . R

g
.

“."‘"'""' T '}""".:""_ T B ,'."'T\ e 'V"’ ’ x[I ="12' 7 ; ' ' " '."l. -

: xwe simply\are a.sserting tna.t\ ")C[I" a,pd "12" . are two different ns.mes | IR
for the same thing, that is ‘names -for the sare number. O - s

,!
v

,,As we now consider principles of numera.tion, it is important for _
.us to. lgeep clearly in mind that number and numeral are not synonymous. S .
A number is a. concept an’ a.bstra.ction. A whole number is one kind of .-_' o,
number, and in va.rious preceding cha.pters we, ha.ve considered selested . . : ‘
aspects’ of the whole number system “On the other .hand, -a numeration o
system is 8" system for naming numbers, thus, it is a numeral ,system. ' ) ) ‘
. In this cha.pter, we 'shall be concerned with numera.tion systems for naming :
/ﬁlol\e numbers. -Our emphasis will be on the numenames or numerals,

ra.ther than on the numbers themselves. T . P

']’ N .\ i R . R e

, ANCIENT NUMERA’I‘ION srsmas

P Man, during the course of ‘his history, did not alweys use our. .-
familia.r Hindu-Ara.bie numera.tion system His ea.rliest schemes involved
Iittle more “than tally marks, such a‘s_ / for 'one" x // -for "o ,
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N

rd .
?

":zﬁ/// for "tnree g etc Such prlmitive schemes were far- irom effectlve
- T,  and' ef fic t particularly when’ deallng w1th larg umbers !
T . I, . ' *

e The Egyptlans the Ch1nese, -the Greeks the Romans; and‘others'all‘
developed numewatlcn systems that were improvements upon prlmitlve tally
: ' i scnemes : However none oﬂ\these was ‘as soph1st1cated as - the, one developed
'%.; vl;“ by the Hlndus, which ‘evolved lnto the Hindu- Arablc system we', use today 5\\
e 'Hevertheless, a brief cons1deration of-at leasf .one of these earlier

.‘d,-numeration systems can be of 1nterest and can glve an appreciation of k
. /'e"\;v-. Ve
. o .
BT

‘..

) Y l:
. Ormre of the Greek systems of numeratlon used twenty seven’ basic symbolg:

l'the’tdenty four letters of the Greék alphabet an obso ete letter aqp
’ -~ - WG letters borrowed Trom the Phoenlcians Each of these basic symb0153
.named 7 particular number Other numbers were named by combinlng ba§1c;

" symools accordlng to- established prlntlples or "rulesr g

’ Let us illustrate a mod1f1ed vers1on of th1s Greek system by using
'as bas1c symbols the twenty s1x 1etters of our ownr alphabet and’ one

. B )
addltional arbitrary symbol YZ ’ The number named by_each. basic_sxmbol

?

‘is 1ndlcated below in. terms of our own Hindu Arabic numerals._"i f,ﬁi;' .
oas1 ot .J':v=.1‘oj S st Tt
| . | _g.; ‘2‘_ | ' X - 2(5 C ":UT = 2vo. ) ; "ﬂ* . ‘f._:_ .
) B " L2300 ow=geet
R P . M=140 V= hoo - 'h
T E=5 ° S N=50 W =500 L
F-6 . S 0=60 X 6007 T
’ G=7 . P =70 ‘Y=700 L
O Q=80 . % z-80 . T L
I=9 R =90 . L - 9oo -

A compound symbol such as "PD" "is 1nterpreted to mean

ld~ : A, . " '- .‘-. K N 70 - h Or 71{_
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in"our own system: ’Sinilarly, ‘q . ST T S
. "WKH" means 50‘0 + 20 + 8 _or’.' 528,; U P
: . "RV means," 200 £ 90, qor, 290, add . 0 .
' . NS sl
' "U'F"  means 300 ¥ 67, ~or 306 @ o
! . ?
. in terms of our. fa.miliar numerals o
. SR S .
Notlce that the sy'mbol '"DP"' wou.ld be! 1nterpreted to mean - h +70, B
s or Tl Thug, it wou.ld be true that ) Lol . . - N
. . - PD - DP. - ‘.‘. R ) o . . , - , .
However, we shall agree that 1n. such 1nstances weﬂshall wrlte the basic
"symbol for the larger ‘number to the left of the/ bas1c sy-mbol for the . °
;smaller number Thus, the preferred Form would be PD 1nstead of DP "'\
Simllarly, 1t would Ve true that . _ . ' '
. Of- these six d1fferent names foz the s@.me number, the preferred form : - ‘
wouldbe,.WKH_:.'-""'_ R A
"PROBLEMS* PR T coohy
L _l. .‘,_Elpress fach’ of these modlfled Greek system numerals as fam111ar
' Hlndu.Arabic numera.ls.‘ o LT L " o .t o ﬁ- o
a. M@u AB e X4, vC VII g J
2. . Express cach of these H1ndu Arabq.c numerals fn 'the preferred form
.of modlfled Gree}ﬁ SYstem numeral's ST e AT
: L . ' o o v
ol ‘!!3 .]_‘b__. 735 el ,210 d 504 e, 888 L
£ 3. Does the mod1f1ed' Greek}system ‘have a- bablc smbql for the number :.»
" zero"" If sc izhat 1s-fthat Symbol? . If not, why 1is- such 8 bas:Lq ;;, .
symbol 'not used: ln the system? UL o : ,‘ N :_;- P Lo
,tv e ﬂ. oo ‘ - .
But’Twhat about na:nlng numbers greater “than V. RI, or 999? We L R
e cannot name such numbers mthout some fu.rther agreement’or extenslon R e

O
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: of symbols, tne slash mark“.‘?efers to only the one symbol tha‘b“«;ls 1mmed1ate1y R

ook "j:_Exp?:,i’ss each of t vese mod1f1ed Greek system numerals as fam111ar

-~

of the system. So,
mdlcate thet ‘t’,he number named by &’ bas1c sy'mbol 1s to be multlplled by'_"

one - tnousand (1000) - Taus,. S
.('.zijfv;ﬁ_l: S £ méans$ . 1000 X 5, ‘or 5000
T Y / P -means lOOO X 70 /9—1-‘70;000
T B and / T means 1000 X 200 or. 200, 000 |

“in te'rns of our, famlllar numerals In a numeral Qom’ed of a collectlon PR

. Hlndu Ai‘ablp numerals R o RIS .>
- . - . ! e, ' . \.‘
.__.‘_’ ‘ R Lt "—‘_ . i a . H -
/BIMG TRRN /Q/AUL st f . /V/ORC
o You undoubtedly have noticed that the\number "ten."b is. of parthular

agnlflcance in. the mod1f1ed Qreek numeration system ' For 1nstance, the .

S&"Inbols J K Crs Q, R' nemed multlgles ‘of ‘ten {10, 20 80 9@), ﬁ
and the svmbcls S,_ , Z,V named multlples of.- ten tens er-one . ... -
.nurdred (100,,200 800 900) O }“ RO

‘o FEATURES OF NUMERA‘I'IQN SYSTEMS

. _1s the oas1c'numberthat we use for grouplngs w1th1r1 the system

.Je may say that. ten

.., N s

v . ; -.-'.‘ e B T

~ o - CotT .

A Yo . N, . s e

; Manﬁ‘numer}tion systems have three »features that am s:;g_ni'f;icanoe Coe

as we. turn to a cons1deration of our o.wn Hmdu-Arablc system. S v N . o

. RN

l. One of these features 1s that of base, a ba51c number ‘}n terms R

of whlcn we effect grouplngs w1thin t‘he system o This number may- or may

‘not b(e ”ten CIf the base is.’ "tesu we often refe.l;\; pithat’ system as

& defimal system. ("DeC1ma.l”u 1s derlved from t’ne La,t

"'ten" \ ) . “ ) : ‘ co .,;. ‘.; -
. . . L ; - -_ ? . :. o , .\; . ‘
2. Another feature is a set. of basic symbols‘)r number names From' Lo
'these., .all otner numerals are bullt., As we: shal'.L see, the choice of
base witen determlnea the number pf baslc symbols used w1thin a numeratlon
. ; . St e _.\ ..P. 2
Sy.Stem . ." . - . "‘ - » . " L L ) -‘ X .'. L B FREE PP _'" . "T R e
. Cs R e ' 'ilﬁtf' i
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3. A third "eature is a set of principles or rules for combining
b8.51c symbols to form othe* humerals so that every "’ible nu:nber may be
' namerk in terms of tn ese "“asxc svrvbo’*s o'x.y It is ’ntm.n this t:nrd
feature tr‘at we nnd a nrmc*n-e that sets the r1*"1du-14c:'=0ﬂc syste"l ana*‘t
from otners that’ x)*‘eceded it. e are referring, of course, to’ tng_.

principle ©of place value. S ¢ C

THE!INDUARABIC\IUMERATIONSYST‘;M S LT

Lé.t'us examine each of the preceding features as it relates.,

" specifically to our Hindu-Arsbic nwnera‘tion system. + S

1.0 The Hindu- Arabic -numerati ov §yste"1 is’a decimal system: its

3.

base is ten. Tris is seen clea:‘ly tne Tac‘t that’ we ﬂntern*et the

¢ numoer - "sixty-three", for exampl e, as "six tens and tnree (ones‘)",
"Sixty" itself.means ‘six teas". This fedture may be illustrated in

[
H

2]

. N
the groupings velow for the interpretation of the number "sixty-three”
L . . . ’ . - . '

.': . ! ' (Xxxxxxxxxx) o ‘ )

- Iy B + ‘ . N
P (xxxxxxxXxxX
. i ’ . . o :
. . T XX XXXXX XXX -,
. - - ' _‘ :
. . xxx_.)_cxxxx’xx) B
! . 7
N A : X X X, o .
DI [ . ~
’ - - e
13 ..y - . . t. -
‘ !2 The Eindu-Arsbic numeration’ system utlllzsc ter baS"C‘Sy'I!lbOlS
. N R e T ' - -
" ordigits: O, 1, &, ¢, ¥735,5,, 8, 2 such thét : .
. L o . J
. . o \. )
.- t ) s O names the number zers; -
. L N ¢ . N
. : . - % 1 names ihe number one; .. -
R .- s . . T . o~
E » G . 2 nemes ine nurper two; : Lt
, . TR Lo 5 . . ]
L - : .. \ G onames the number three; .
e Ve 4 " names the number four; .
_ . Coat - _ o . I
L o . 5 nares the nuxber Tive; | BN
.. i : H ¢ - - - o . a
U : ‘ L7 .. . N . . S~
P * 2 . namesythe number $ix; b
n; , . ’ _
% b . 7 names the numver seven; -
» = -, " N
oYW ~ a0 i- ~ . - o)
. >t Lo 2 nazmes.the nunthr eignt; .
¥ . - ,
S ‘1 ' y " and" 2 names the number nine.
' .- N : . . . .
. Q< : . . . “
bR . . .
'.5 - .- - . - o
1 X s . 4
. s ; ‘ .
s - N b v
> * A . . '
. : . - 91 X
. v - * * I'"’v '
e . ) . . P .

O
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Notice the inclusion of a symbol for zero: O. This is in marked

contrast to systems such as the Greek, the Roman, etc., that had no

zero symbol. The need for a zero symbol.in the case of the Hindu-Arabic
" system is z"elated.'closely to the place value principle discussed in the
._ following section. . . R o /

3. The Hindu-Arabic numeration system utilizes.a principle of.
place value, along m.th principles of addition and multiplication,-in
order to combine basi.c symbols or digits of ‘the system to name whole
numbers g'reai:ér thén nine. We are quite familiar with the fact thet in
the numeral 2222, for instance, each digit 2 does not have the same

1

value". The "value" of each .2 is deterfined by its place or position

in the numeral as a whole: : ' -
| 2222 - ,
- ‘ I l——2 ones .
- : -2 tens
. o . _ 2 hundreds
B o . ) thous'andls . - 33

Or, we may c_onirey the -same.idea i‘mv'a:slightly different way:

: , . 2 2 é\ 2 e -
. ; . ' 2 X1, or 2 s "
. : . . +2 X’10, or 20 T . .
' | R 2X 100, "or 200 1 F
R ) : L -2 % iooo Cor 2000, ¢ ';////
‘  Here wénsee *Ere principle of multmllcatlon 1n assoma‘tlon m.th the / g yd
Ulace-value principle. . . cT T e B Ll /

- _ L : S y

' VA
) We frequently find it 1e1pfu.1 to ,use an expanded form of notation/ 3
to emphasize both the multmllcatlve and‘ a.dchtl‘Ve pnnc:.ples that apBly

to the interpretation of a nume*al such as  2222: /

. . /
2022= (2 x 1000) + (2 X 100) £ (2 x 10) + (2 X 1)

. -
P

. None Of the 'mtat* ons used t’r*us fa. has made e@llcrt e ixﬁportant
role of the base, ten, in dete*'zhlnln,g tne place va.lues Bach place to
* -the lefy of trle ongs Ulave ina numera:L hes associated with it’ a “value" ..

.~/ that is ten- tlmes the value assoc1ated m.th thé place immediately to.

its right. ror tr'e' nu.meral 2222 we can show this important’idea in .
’ . ’ " . . ; }_“. . . . : A: -
. . :’ 92 : S ‘

O
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-2 X 1

2Xx10x1 R
2 X 10X 10X 1

2X 10X 10X 10X 1

g (2 X 10 % 10 x ‘10) + (2 X 10 x\%o) + {2 x 1o) + (2 x1).

P ”Je importance of the zero symbol, 0,3 In connectlon with our
v/‘ce-value numeration system is reflected in numerals such as 2220, >
#2202, 2022, 2200, and 2002.. Without the zero symbol such numerals '
could net be distinguished readily from 222 (in the case of 2220,
2202, and 2922) or from 22 (in the case of 2200, 2020, and 2002).
'Without some‘symbol to denote "not any in a particilar place, a nuieration
system with a place value prlnC1ple would not be feaslble In fact, the’
relatively late 1nvent10n of &' symbol for 'not any" (a symbol for the
number pertaining to the emnty set), was the reason - for the relatlvely

late creatlon of a place-value nume*atlon system

’

-

The following chart may be helpful in summarlzlng -some of the

ideas just dlstussed regardrng our numeratlon system.

*
’
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R - g - Lo
— g , SR
. Y& g "', ‘:, ' ; . '/. : .\‘
v A /MI//mns i ‘ ,Hou.m;nﬁf v U/?I}.‘S
i Lttt K Y ‘ I '
' , ) l'.l,"‘ : , ‘ . ‘,r/‘ / . |
* o ' ! “ . / 7 , ) '1
, - fens fes | hundreds P tens | ones Auan./: ﬁns ones
10,000,000 " /,000,06{‘ /00,9% 10,000 ,‘/,000' 100|101 1

| 1040x/0:i0r0x 0110
: g

‘,;/Or,/Oi-'f?OrI'Orlos/o

o
‘.

10 10/+/0x/0%j0)

10v]0+/0+/0

10+104/0

.:? |

o

1%

Con31der the numeral T 20, Ohdé/which we read as!

;he/ciear, for example, when we say

11205 009" )

0 Iy
AV

‘ {
t,

WMMMmMmmmm mmmmm"m+NWor

"seven million, two hmdred five thousahd forty-six",

(Notlce thet the word "and" is not {ised in reading mumerals for whole numbers, Othervise, it vould not

l

wmmmmmmmﬁm%mwm7mMgmmmmmmommmm'

5 thousands, 0 hundreds, 4 tens, 6 “ones. Slnce 0 ten~thousands and 0 hundreds both result in

zero, these ey be omltted in he 1nterpretat10n Thus, 7,205,046 means: 7 mllllons, 2 hundred-thousands, -
,5 thousands, b tens '

6 0 es

‘mmm+mmwzm M%,w

{1 x 1,000,000) +

(2><100 oo)

(5 x 1 ooo)

(b X 10) +

i

(7x10x10x10x10x10x10) (exloxloxlox}mlo

| []l\ﬁ:

Aruitoxt provided by Eic:
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Me also may use an expaned notation form

\ .

%th'w |
x1ox10x10)

Y

(h X 10)

(6><1)
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s
'wo ooo) s (o‘X 100)++ (9°% 1’) Y _; : RS
10'x 10 X 10) * (4 X 10 x 10) + (3,x 1) T m Ce e
: lOXlelOXlO)+(5'x10x10x10)+(o~XlO) L
6. ess each of these base ten numerals in three ways as shown in .- R
2ty illustratlve examPle below. . - c. - :
. fodip1e: 4257 = bOOO + 200 + 50 + 7 ° P -
. 4357 = (L'x 1000) + (2 X3100) & (5 % 10) (k1) -
‘ 4257 = (4 x 10 x 10 X 10) (2x10x1o) + (5 x 10) + (7x1)
' a. 618 b. 7350 el w0702
¢ 4
Ae -
= -~ ~ - ’ M
( <o
\ -
. . -
¢
101 '
: AL . B

>
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R ;J - . . et . . ’ ooy f o - :
. GROUPING B FOURS (BASE-FGUR NUMEIRATION srsm) RN VRN
" ._-k We are fanglia.r witb grouping ‘objects by tens in connection wlth our :
. . decimai Dlace-value numer_a%ion system. For insfencer ' o o
. e, il Vo ' / _ Numb_er:.of'_‘_ ' Basé Ten .
o o _ . ) .j;'. o~ | Tens . 'Qnes":'_ © Numeral | |
- % . - 1 1
e ) ’ 2 2 SRS
- . ‘ R R -
XXX . . s
. : ... 3\/ .3
Ploloey T -y L
oo \ . 5 5 R
Y xooooox : & B 6
‘ . . ’ 7 ) T ’ ‘ ’ ..
. — > o
pevvoveed ’ i 8 8 . /‘\/
\ ' -
- of ! »
XCOOEEX . 9 9 f
. - - T >
| 1 o ° 0 | ¢
’ by ‘ . :
C | oo x 1 1 n -
x 172 2~ 12
(] ke 1 3 13 |
. - .
(oe00aae] . o SN R 3k
Geome] oo - | 1| 5. 15 .
T H o .
wee T | 2 |3 a3 | o
/ y = _ L P N
V Suppoe tbat we agreed to group obJects by fours rather than by tens.- N
Suppose, for example, that instead-of grouplng fourteen objec’cs as o
- : @ 000t " 1 ten and ’4 ones. © E

:we had grouped the fourteen objects as - . )
@ @ - xx "3 fours a.nd 2 _ones, 2

ERIC
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We certa.inly have not changed the number of objects.- ‘fourteen. We have
only cha.nged the wa,y in v.hich these four'teen objects are grbuped as

3 fours a.nd 2 ones™ rathe- ,than .as "1’ ten-and- 4 ones". T .|
Sy , . .

*The numerals of our base.ten place value -system rei’lect a tens-and-
" ones’ zroupins, as', T L ea ot
. ve , ~ones * S . _ -
. "ten(s-) SN

Would it be possible to ‘develop & base-four place-value numeratlon scheme

whose merels *eflect a fours-and- ones grouplng, as, "

L : . T, . .
4 ..

3 2 BRI

ones oo
%ours I

Iet us use sets of one, two, three, e nfteen ob,]ects to see how

such a ba\e four numeral system m.gnt be developed ) ThlS is- done in the':

chart on the opposlte _page whlch mcludes c:ontrastlng base ten numerals.
R o

Nc'te that in the de01mal system, each set of ten obJects is grouped‘__ _'/

a‘s/ 1l ten and the number of these grou’os is indicated in the fens place.

'I’hus, 23 is 2 tens and 3 ones, and the number of ones left ungrouped

is glven by the dlglt .3. The possible digits in ‘the ones blace are then

. a.n;>r of the numerals O l 2, 35 ooy 9 Slmilarly, gromms of tens are

regrouped 1nto hundreds when‘ there are ten or mo.re of these groups 5 gro‘ups

of’ hundreds are regrouped into thousands when *t"zere av'e ten or more of the
v hundreds, and_ so on, Thus, ady digit in any blace is one OI trxe numerals

0 1,.2, 3,.. ,'-9~ A slm.lar analysls shows. that any di gl‘t in base four

numeration system is one of the numbers O 1, 2, 3 s1nce any number xof"

- groups exceedlng 3 would be, regrouged” into groups of tne next larger slze : :
\ . . R

L . d . . '
°© ’ B - . L e
. - . o . . . N

O
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: o . ) quber of-  |'Base Four B.;aé.e'";i"en '
T, ﬁ“ours‘ Ones h-\Nun'leral Num,e_ra.l
. < LI e 1 1 7
| ‘ . ‘ 2 ! 2 2
o0 - NI 3
o oK 1 0 " 10* L.
o55 X 1 r | on 5
. oo Rt 2 12 6
B o e 3 .13 7
’ ' 2 ]a 0 |7 2. 3
~_1@ x ¢+ | e 1 2L, 9,
*_  ch 2 2, o2t L. 10
= . - 2
o o a2 7 3. 23 11
ERERER - | 3. 0 f 0 12
B B B x| 3. 1 N T13
o R B 302 32 14
' Booeg (oo oo wex |, 3 | 3 33 15
"*'. a ' We ne;w fa"ée ; plrloblem.; Wrat, fo’r instance, does ‘dl:lé nume"*‘&;.l "13"
. mean: 1 tén and 3 'one.s""’ or "X four and 3 ones"? We commonly ’
. reso...ve thls.n*'oblen 1n,tne Iollonng day _- ’ <t )
If we see tz‘.é num?*zﬂ. "‘3”,' for examole, we ass;me that it'is >

w*':\.uten 1n oase ten and unaerstand it to mean "1 ten.and 3-.ones

Tnis simaly ;ol" ows fam:.llar convenulon ; ' \ '
- If, on the otﬂe- ..and,-.be m.sh to write a numera.l to, convey a vase
four ,grouplng such as 1

four and 3 ‘ones" we agree to ‘use* tne form

nq Lo
~‘3fou.r - - .
num&a.l I's ‘written. : - . -

Tne subscript - "four?, indicates the base in which-the

. *Thais numeral should be "read: one, zero, base four. ' Succeeding numerals
“in tms colum would be read' one, one, base four; one, twg; Dase.four; . -
one, ihree, base. four; etc. ’ v , - T T -
— == ’ . B

\.’: '._ 98

R T 104 o

. i \

O
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. On occasion, when showing the base ten numeral for thirteen, Iomfﬂ\

instance, we may, vrite "l3t instead of simply "13", Jjust to be

certain that there is no misunderstanding. Thus, we, agree that ._ .

13 = l3ten"

However, be sure to keep cleariy in mind that
. e :
im'

N %
| 13413, .
and that . . o
. - 13ten # l3four' . ' ;
In fact, it is true that . ; : ' -
. . . 13ten = 31four' v
and that ) _ ) ﬂ
13four = Yten'
PROBLEMS T
- ) . ’ - 4~
7. Write "Yes® or "No" to indicate whether each of these is-a true
statement. v .
o8y Lien Tlrour % Spoyr 73 y
) } . .= 1 = ’
B Zpur = 2en 4 0=10,

\ - ¢

8. Express each of these base four numerals as base ten numerals.
‘o N . . -
a. 21 b. 30, ' c. 12 .
four Tour : . four
9. ‘Express each of these base ten numerals a2s & base four numeral.

.

a. 8 ' v. 1k ; e. 11

Lo~

10. Using base four numerals: - , ' N

"

a. Name the even whole nuﬂoers less tnan sixteeh.

b. Name the o0dd whole numbers not g*eaue* than fifteen.

EXTENDING,GROUPING_gi’FOURS

. Our base ten numeration system in"_udes Mo*'e than' jwst two places,
‘a tens place and a ones place. olked1se, 2 oase four numeratlon system
1ncludes more than just a fours place ahd a ones place. We now consider

an extens1on of grouping by fours

e symbol # means "is n?y-egual-to”:' S "

ERIC
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_' We know that. ninety nine is the greatest whole number that can be
' names as & two-place numeral in"our base ten numeration system: 99.

Tbe next whole number, ten tens, or one hundred, necessitates a new

A place to the left of tens place. Thus, we name ten tens or one Hundred

with thevnumerales ’ - _ .
’ » N c .
. ‘ l O O [ b ) .
t : - ’ Lms : ‘-
. I - tens ‘ ;

ten tens or hundreds

N

Similarly, 1“1fteen is tre last wn ole number than can be named with

a two-place numeral in'a base four numeration system. 33. The next

whole number, four fours or s1¥teen, necess1tates a’ new-place.to the

left of fours place. Thus we rame four rours or slxteen with tne RIS
numeral : A :

. ur
ey * . . -
ones
’ ,L‘ . L3
fours = o ,
- : R four fours or sixteens '
The following diagram’may telp us interpret & numeral such as
\ o -
232, . - .
four _ - .
- ) . . ¢ ¥
<. p ) _ _
. x| | B =
" T
' 2 sets’of 3 “sets 2 ones
Iour fours .. of four
' or sixteen AN
o o - . : - ‘,'/ A . vz
Taus, 232, is anotherwmame Tor 46, : 232 = L6,
USy iy e ' "Pten* ““rour .
-~ ~ N . ‘A._
.
, . . . , .
. ) |
.
| . 1
¢ o
] - -
. -
s v - .
N, ‘ '
- - -
100
. ch e
. Jo
[ ’ - . - ‘
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The _piane values assoclated with a base four numeration s

e

ysten

follow ‘the ‘same pattern as do the plate values associsted with a base’

ten numeration system, as shown in this chart: -

P .\ Base .X Base X Base . Base X Base. Base__' One
Ten X Ten X Ten Ten X Ten’ ‘Ten One
(Thousands) (Hundreds) '
Four X Four X Four Four X Four Four " Bne
(Sixty-fours) (Sixteens) t
o = - BN
-4 ’ Thuf,.the numeral h2123four- may be interpreted as:

——

P '“21?:3féhr = (E x L xh X L)+ (E X b4 x L) + (

v
-

.. '2123f0ur =(2x §h) + (l’x 162 +
2123;,011r =128+ 16 +.8 + 3
. .’) C. ) '
Tooagy, =155 (i.e., 155, ) .
‘ll \"o" '
" pROBLEMS . . - -

|

11, Express each of these base four numerals

(.2><l+)+(3xl)

: ¥ ]
%'- 3l?four 02- ‘332four
- - : . . . 9 . ) LY
d. 23_01four e. 1_30four
“ ¢
OTHER BASES

A set of objgpts may be.érqpped in terms of bases other than ten

2% h) + (3% 1)

as = base ten nugleral.

'3Olefour

R KN

. or four. Cénsidéf, for insggnce, a set of 23 dbjeéts thét_are grouped

first by sixes,,then by sevens, and:then by eights.
. i '

> B ) (D) e
G
Gy s

4

S S | . ».101107_" |

N . -

O

ERIC
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sixes and ones, or P
3 ‘ 2 ’ 3551x~

3 sevens and 2 ones, or -32

2 eights and 7 ones, or 27

o

seven

eight _

~



e . ‘ < N : . . . - . *
R - T S
s ’ s - ' N T
o« -,

&'hese 1llustrations po:|7'1t to the fact “’chat t e plaf'e‘-value nattern
assonlated w:l.th base ten a.nd base &‘our may be gpplled to other bases

as well. F«on 1nstam:e Co <
. by ;. .
. BXxEXxBxXB | BxBxB: | BXB - B* |1
. 10 X 10 x 10 10|10 x 10°x 10 [ 1'% 10 | 10 | 1
-'10000- fof 200 100 - f10 ||
Tl ExExBxn T hxhxy | onxy by
. 256 fo 0 e 16 | b1 b,
3X3x3x3 | 3x3x3 | 3x3.| 3|1 x
o8l v 9 1
2X2x2x02 2x2%x2 | 2x2 2 11
15 3 L 2 1.
. : R 0
5X5x5x%x5 1'5x5x5 | 5x%x5 5 11
b g5 ° "7 o1zs 25 5 |1
ExExExS . ExExB 5% 6 06_’ 1
+ 1296 | 216 1 36 S
TXTXT X TXTXT T xTT T )
2ko1 343 Lo~ 7T g1
. :
hS . . R - )\. .
: 8x8Bx8x:2 §Xx3 x5 S x38 g 1.1
. Logs .}, 512 & S I
9XIXx9Ix9 | 93x3x3 [axs |9 |
8561 ~29 51 5| 1 .
A. - - -
) : « "3 'Gemotes bese. - ‘ BRI o =*
> - 02 . e
\ . 168 .
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A chart such as «the following one may be helpful in showing for
the whole numbers one through twenty-five thelr numerals in each of

K

i) .

these bases. E : - _ o .

¥ BASE
. T e : . ? :

‘E _Nirie Elght ~ Seven Six  Five ‘Four'  Three TwvO .
1 1. 1 v 1t 1, 1
2. 2 2 2 2 2 10
3+ 3 3 3 .33 30 - 100 1L

by oy LW, 4 10 11”100
5.5 5 5. 5 10 1 12 103\
6 6. 6 6 10 1 12 20 Mo
7 7 77 10 h 12 13, -2 1
8 8. 10 ‘11 12 13 20 22 1000
9 10 .1 12 13 Cab - o2 100 1001

‘10° . 11 12 13 -1k .20 22 101 1010
1 12 13 .15 =2 23 102 1011,
12 13 14 is 20 .22 30 110 1100,
13 1L 15 16 2 23 31 111 1101
14 15 16 20 - 22 2L 32 112 > 1110
15 16 17 21 23 0% 33 120 1111
16- 17 20 22 2k 3 100 . 121 10000 .

17 . 18 21 23 25 32 ‘101  -122 10001
18 20 22 2 30 733 /102 200 10010,

19 2 ‘23 25+ 31 3% 103 . C 201  .1o011
20 22 2k 26 32 - 4 110 - 202 10100
2 a3 25 30 33 4w 210~ 10101,
22 2k 26 / 31 3% L2 112 211 10110
23 25 27 32 .35 k3 113 212 10111

2 26 30 33 k0 B 120, 220 11000

3L 34 b1 100 12 - 281 11001

s o

¢

-

As seen from the chart, the base numeral elways appears as’ lO when
written in.that pa:rtlcular bdse system. Similarly, 1n a partlcular base
system the numeral 100 elways designates the number obtained by mul_ti-
plying the base by itself. ; : o ] . .

4




. . . y

C o, . . . N . . -

The place-value pattern for a particular base is used whenevesswe
wish to rewrite a numeral in that base as a base ten numeral. Consider,

for‘ingtance, the place-value pattern applied to the numeral 2h35nine:

®

7 . \
R ' 243 zune ‘

5 X one -

I

=3 X nine . _ .

4 x nine xiunine

2 X nine X nine X nine

P ’ . . B
Infterms_of this'patt%rn we may write:

2435 ine = (2X9Xx9%x9) +(hx9x9)+(3x9)+(5x1)
S = (2% 729) + (5 x 81) + (3% 9) + (5x 1)
= 1458 £ 324 £ 27 +'5
-'_' 181k L - .

Suppose that we were concerned with the numeral 2h3SSix , instead

of the'numeral_ 2h35nine
- &

-. Then, the base six place-value pattern would
pergit us to write: ° _ _‘ SRS

S1X

245, = (2X 6 X 6% 6)+ (bx6x6) +(3x6) +(5x1)

(2x216) + (k% 36) +(3x86) +(5%x1) o
%32 + 14k +18 +5 B '

=599 S

/

* PROBLEMS ~ . -.

l2. Express each of these 25 a base-ten numeral,

. - 17’ . 3
. & 3h21five o 50'height . e h653seven
. . 1Y
. 2022 e 3012,
' 104
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A NOTE ABOUT NOTATION -
- 2 i

{ We have been expressing varieus nondecimal' oa& numerals as base

ten numerals ‘In this work we moved directly into base ten Just as ‘soon
as we expressed a nondecmmal base numeﬂ&ia}n an expanded form ' For
instance,.. vhen ve write

—
+

o 213*+five =(2x5x%x5Xx 5) (Lx5x5)+(3%x5)+ (& X-l)

. We have. expressed all numerals on the rlght-hand sidef of the equatlor in

base ten notatien.

.

If for some reason we had wished to .express ?_13’4-f ve in an

expdnded form within base five frather than in base ten), “then we would
need to use base five notatio’n thre,ugh‘out the equation. We might convey

this idea by vritlng L
213hfive = (2 x 10 x 10 X ;ijive + (1 X 10 x Wo)Plve + (3 x 10)five

(th)flve‘:'_ . . Lo : .

Thes‘e two notatlons a.re in keeping with the fact that 5tén = lofive .

. P
“On still othef. occas:.ons an exoanfd form for ?_131+fl mght ‘be

-

e@ressed as .

?_1314- (2 X five X five X five) + (1 X five X five) + (3 X five), . =

fve
. + (4 x one) . . o

In such an instan ce we have expressed the base cons:.stently as the word

five °

1

five", thuIvoidlng_the place-value nukerals 5ten or 1O

In prac#ice we select wnichever of these forms is pest for a -

particu.l.ar purpose. .
. »

N . . : . »
\ E .

SUMMARY _ : :
Tbe mein purpose of this cbapuer has bee to'assist in developing
a deeper understandlng of our Hlndu—nraolc numeratlon system, a decimal
or base tenssystem that utilizes a principle of place valte. .In addition
to a consideration of this system itself, attention was directed to two
things that hopefully contributed to this deeper understaﬁdlng (1) a
‘podified Greek.numeratlo system which had no place-value prlncrple,

.and (2) place-value numeration systems having bases on.her n.ban ten

1

O
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}
This latter material/should have clarified the fact that tbe princ1ples
/

. which underl e Dur Hindu—Arabic numeratioh system are not determined

by the fac’ that its base.is ten. These principles are more general~ones

which can Jbe applied with other bases .as well, The case of the decimal

ut. a. specific illustration of a more general case.

o ' oughout this chapter we sougbt to emphasize tbat any numeration .
syst is & scheme for naming numbers, Although a,y partlcular number

/
may be named in various ways, the-properties of a number are not affected

by the way in which it 1/5 named, -

APPLICATTONS 70 TEAcer ‘ - : ‘ "f"

‘Frequently we display sets of objects in ways that emphas1ze the
decimal base of our numeration system. For instance, we may displey a

set of 53 objects as 55 rows of 10 objects, andi 3. more:
. [ LN e, .

‘A

‘'

. . 0000000000 .
" olooooooo0o0o0

OO0 000000 O

'o’oooooo'o'oo

O|OOO'OO-OOOO v

0 oo. o : -

N

5 Representations such a s do help children to think about collections
of objects in terms of {sets of ten "and some more”,'and conseqdéntly
direct attention uo\thJ

——

decimal btase of our numeration system. ThlS is. -
true of any. representau‘ion that displays collections of objects as sets
' of ten, regardless.of whether they are arranged in rows, 1n,bundles, or

. 1

whatever,; \

The develonment of |the place val € concept is a different and more
difficult matter. The p.ace value idea is associated with the numerals
we use, and may or may not be reflected in the way-in which a set of

objects is arranged. |

In the numeral 53 ithe 5 ‘is in. *e"s place and'uhe 3 is in
¥ ones place; qowever whe% a set of 53  objects is displayed in rows of
ten,(and some ones), as aoove the display itself does not suggest the .
idea of 2 tens place and a ones Dlace in our numeral system. But we may
move in the direction of this idea by showing a collection of 53 objects

’106
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~ in such a way that sets of 10 are placed at the left ef the ones.™ A~

- o e} ) .o . © y o

oo - oo oo "o 0 : oo F
0 0 O \ooéo' 00 o0 .r000 .+ 00O ' T
o

©co0o0o0. ) LOOCO0 . 0000 0000 . 000

With some objects we often show each set of ten as & "bundle" r‘_q_ther : s

than as shown asbove. 'In eiﬁhef jnstance, we show the sets pf ten to - .

* the left of the ones, "hinting™ &t the place value idea aSsociated with- o
rumerals. We“oft‘en.. further thls "hi'nt-ing'.' -by using 'p]Ta;ce va;lu dekices R
in which sets of ten or bundies of ten ere placed in "pockets" . o

TENS, and ‘Temaining “single objects a;‘é placed in "pockets" ‘marked

< An abacus rei:resentat_i_on of . 53 clearly is associated much more -

closely with the place, velue principle. . : -

»

—

Here 'fhe number of tens and the number-o'f ones aie shown by the beadé .
in different positions. The numbe_f of tens and the number of ones a.lsov .
may be shown by tally marks (as at the left below). or by digits ('as at . i — ke

the.right velow) -in appropriate positgons.

Tens * Ones " | Tens _Ones

o R EE

3

We should be aware of the different purposes and uses that are

associated with two forms of nuriber charts: i ‘

‘.



©

Counting Chart

- - ’ ) -
. . - -

. 4 -
< - N i
o . Ifre 3| ») s 6 7] -8 3 | 10
. L[| 13 |2k | a5 f6 4 17 | 18 |19 | 20
‘)--»: A e e | | s | 26 o7 | &8 [-29.| 30| --
- 131032 |33 |3k |35 | 36| 37 | 38| 39.] o
S I P R T RSN
- - =" Y g ; +— T ——
. Numeral Chert
. - .. N
H - J = l )
r . .| . ;
. 0 |, 1-f%e 3 bl 5 61 7 8 9 |
‘ 0 (1 he 13| 1wk fas | 16 |17 |18 | 19
o 20.| 2 (22 |'23 | & | 25 | 26 | 27 | 28 | 29
& 30| 3L {32733 | 3 | 35|36 |37 3839
A bo o d2 pou3cl-kh lus |l oue | our | a8 | ug
’- N ) - ._- ' ’ : *
’ The,Counting Chart highfights ten as the base of our numeration
s system.r I' we locate 35 , for 1nstance, ‘on the Counting Chart, it
clearly may be associated with 3 rows of lO fblocks" and 5 "blocks"
- in the next row. ’ '

The_Numeral Chart highlights an important feature of the structure
of our numerals.- The first row of numerals 1ists the ten basic symbols
or digits used in our numeration system. The second row of numerals’

' thludes those w1th L in tens place; the third rovw, those with 2
in tens Place, etc. ) » ’ b
> - Each chart has its approprlate place in an instructional program.
. ' If a child is able to complete correctly ‘an example such as

L7 = tens + ones

this does not guarantee that he also can complete correctlj an example
‘ ) . - L

108
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such as o C - ' -

4 tens + 7 omes =

- .
- The develonment of an unde*standlng of the place value nrﬁncinie demands
that children expWOre its meanlng and aunlﬂcat“on with a varlety of
representatlons end in a Nariety of ways. Suggestlons mede here *egard; s
ing numbers le'ss tnan one hundred can be extended, of course, to»apply.

to numbers. greatey than ninety-nine.

QUESTION a - o e

fv"Why do we nave to teaéh"other base numeration systems?"

Cont*ary to the belief of nmry lay persons, the reason for"teaching
other base numeratlon systems such as;oase-two ‘numeration is not due to-
the 1ncrea51ng influence of, computers in our 30ciety._ The main 1ntent10n
is to sharpen our understandlng of our own,dec1mal numeration system. I;
is. not the ultlmate goal that the: c’nldren snould be able to computg .
with fa0111ty in other nume*atlon systems. In the attempt to understand
“how and why tre dec1mal system works, often rote computation dulls our -
sense to what occurs in the computatlon by the mere fact of being too’
familiar with t“e mechenics '~ By ?orcing curselves to see the grouping and
*eg*ﬂupwng that may be necessary in other bases, for example, we see
more keenly tne rationale bexnind so-called, carry;ng and borrow1ng .

To iilustrate, the traditional metned of dealing with finding the combined:

. . ey . .

lengtﬁ of an oﬁject 1 foot 3 Ches and another 1 foot 7 Tinches ..

is presented:

1 foot 2 dinches - . .|
3 foot 7 inches . . oE
. 2

feet 15 inches ~
One may shudder to £ind youngsters "carrying" without regard to what is

‘being carried: R oot

1=

" foot . 8 inches ' T

1. foot 7 inches _
-3 feet 5 1inches S

e |

~Here, it is clear 3¢ Uus that twelve of the units called 1nches" are

required for regrou 1ng 1m:o eac" :oot and the combined lengtn should be.

2. féet 15 inchesy or, reg rodg-nb, T feet =z 1inches. The associated '

-

~

se twelve; fdt =

computation is in %

: + 17 "= 33 .
welve - twelve “twelve.

'. | 1‘o9 11 5 |

O
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Base-Four System

Counfing Chart

Decimal System*

Digit*

G

true.
a. 7000 + 600 + 50 O7ooo + 60 +5 -

b

{

-f.

1. ‘In each:ring‘write

_ - VOCABULARY -

"~ Base (of a numerdtion system)* '

’ o« : - 3

Numeral* Ty
Numeral Chart
Numeration System%‘

Place Viiue*"

EXERCISES - CHAPTER 6 R .

'

= or > or < 'so thatethe sentence will be

1236, ghto 1234
1+32;L”‘ ' 3Elfive

400 @ 3100flve

3120,

..(3xlooo)+ (8xlOO)+ Lxl)O3&O

-

O(3xl.x1+xl.)+ 1-->,<1+x"1+)+_2x1)

2. Express each of the follcwiné as basé-ten (decimal) numer&lé_

d.

ﬁ!

103
six

72

nine . :
llllfi e . s

.b.

SOLUTIONS FOR -PROBLEMS

. e

YIE

c. 620 o d. k03 - e 999

c. 1T .~ 4. WD - e. ZQK

It is not needed since the system has no place-value pr1nc1ple

&’ 13
eueight
¢ '123five
1 e 4T
-2.i a. ocC
3. Mo ‘
L. a. 2747
5. . a. 749
- e. 5024

b. 8;330
b. 8306

f.+ 70609

e. h60093
c.. 2751 ~d. 46083 ;
~ g 8403 - -~ h. 95060 '

e T L



.»-t"\_ S

o 3

v 6. a. 618% 6000 +—;00_i_80 + 4
(6><’L1000)+(1x1000)+(8x10)+(!+x1) _
{6 x10 x 10 x 10) + (1 x 10 x 10) + (8 X 10) + (h x 1)
- 7350:+ 7000 + 300 + 50 o
S (T x 1000) + (3 x 100) + (5 & 10)
(7 %10 X 10 X 10) + (3% 10-% 10) + (5 x 10)

\

1

e ho702 uoooo £700 42 S -

1

f/——-—\\ (u X 1oooo) + (7% 100) + (2x 1) .
‘ ' (L X 10.X- 10 X 10 X 10) + (7 x 10 x 10) + (2 x 1)

7. a. Yes - b. Yes+~ ¥ TYes Sa Mo (b=10, )
o _ Lt _ _ ' Pour
" .8. a. 9 Y - e. &
9 e ~20four P 32w G- v 2t our
10. a_... Ofoulf’ efour{'lofo'ui"{ 12four’ 2Ofour’ 22four’ 3Ofour’ 32four'
- b. 11, 2

lfour? Bf‘oq.r’ four"‘l:ifour’, four’ 23fou_r"_3.lfour’v 33four'
1. e b b, 126 o 198 ¢ 4. 177 e. 108
12 a: (3 X 125) + (h x 5) + (2 x 5) + (1 x 1)-— h86

b. (5%x512) + (6x 64) + (7 x8) *+ h x 1)

300k

e (ix 3 (6xb9) 4.5 xT) + (3x 1) = 170k
a4, (2xBl)+(1x9)+(2x3)+ (2%x1) =179

e,  (3 x 567 + (2% 64) + (1 x L)+ (2x 15 = 902‘

¢




S " CHAPTER 7 R
- ADDITION I . o ..

. - -

..

.The four basic operations of arlthmetic are addi’tion, subtraction,
mﬂ.tiplication a.nd division. A binary operation in mathematics is a way
of associating with an ordered pair of numbers a Lmique third number.

A ordered pair is a set of two objects, not necessarily. different, ong
of” which is designated as the first object of the pair. If dog is the ..
first element of an ordered pair and cat is the. second element, we usually
write (dog, cat) to indicate the ordered pair. T

. When we are performing the operation of additioa, we associate the
number 8 with the ordered pair (6, 2). When we are performing the
" operation of subtraction, we associate L' with -this_saxae ordered pairr,'
(6, 2). For the operation of multiplication, 12 is .associated with
(6, 2)_ end for division, 3 is associated with (6,2). '

 UNION QF SETS AND ADDITION . o
D B

The wion of disjoint sets. 1s the basis for i‘fhe concept of adding

whole numbe rs.

} Ie
. A= .{a, b, ¢, d, é} :
B = (x,, -;}, i
' .Ithen .

AUB=1(a, b, c, d e, x, ¥, 2}

We know that N(A) =5, N(B) =3 and N(AUB) =5+3, or 8. .

The sum of the-cardinal numbers of two.disjoint sets is defined

1

\

as the cardinal number of the union of the two sets.

We say

345 =8

113 . C ' - o
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: Three.and',Sb are called addends,_\8 *is the.sum.. : e

v When-we start w1tn two d1s301nt sets ‘and form the uhion, we are
operatlng on sets. Wben ve stért with tuo numbers and get a thlrd we '

"are operating on numbs;s - Addltlon is 2 bég operaticn on the cardrnal

- "

,numbers associated f;{ﬁ two disjoint sets.
f © We .call addition a b1nary operatlon because we operate on Just
) two numbers at a8 time. Unlon is an operatlon on sets. .Addition is

an operatlon on pumbers. We-join (form their unlon).sets and we add numbers.
PROPERTIES UNDER ADDITION e

-

Slnce addltlon is associated with tne amion of sets, we can expect that

nropertles under the union oneratlon may nave itplications for the
- ' addltlon operation. We observe f1rst that the unlon of ‘two sets i85 a s

set. Tbls, of course, 1s from.the definition of wmion. As a whole

number may be assigned to eny finite set, Corresponding to'the fact that
s : ' THE UNION OF TWO SETS IS A SET,

e nave. ) o

THE SUM OF TWO WHOLE NUMBERS IS A WHOLE NUMBER: -

Bobh of these are statemen%s of closure properties. The first is the
closure nroperty of sets under unlon and the second is the closure

property of whole numbers under addltlon ‘If an operation that is

deflned on & set is such that the result is an element of- the same set,

then we say that the set is closed under the operation. For example,

- Ty

let us conslder ‘the “set of whole numbers
w=1{0, 1,2, ...}
and the oneratlon deSCrlbed by “doubi 1%-tne number

é . Then we see .

~

the doubling of . 1 gives'.

2
the doubling of 2 gives .4,

the doubling of '3 gives &, and so on

In other words if we ne*form thls operatlon on any whole number we get
its double. That 145%%%>result of nerformlng the operation on any whole
number n is 2 Xm. Since doubling any whole number is again a whole
number we say the set of whole numbers is closed wnder the Operation '

.~

of doubling. RN

N

11k
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1. For thls reason, we can write

vtlh.ere’f_ore, : (3 + L) + 9

A T R -

When we add any two whole nmbers the result is a.'Lways a whole nmber
This mea.ns that. every tlme we add two “whole numbers, the result 1s a.lways

v.in the ‘set of whole numbers A consequence\ of th:.s property is that we
-"ma.y repeat the operatlon using the sum as one of the addends.

E S

Another property of sets under union. pe,r‘talns to the order of opera'Elon.
If A -and- B are ‘sets, the result of joining 4. to "B 1s the same as '

Jon.ning B to Ar We surmarize this by say'ing tha.t the unlon 1s a’

comnutatlve operation. For any sets A and B

‘.

‘ -

. — A.UB=BLIA. T

.-

Correspondlng to 'thlS , we have }the commutative property of whole numbers.-

under a.ddltlon. For any whole numbers a and' b,

. . ~a+b=> + a. o _ 1
a
. For instance, the sum of 3 and &4 (wh:.ch may be wrltten 3+ 14-)

and the sum of L and 3 (written 14- + 3) both are the same mmber,

, 3 + L4 = 14- + 3
.t : . (
Both 3 +\iz»~an/d 14- + 3 name the same number :
A .
. We have said'above that a consequence of 'bhe‘ closure property under .
addition is that the operation ma.y be ‘repeated on the sum. For exa.m,t_nle,

since 3+ L4 is a whole number we m:.ght add another whole number. say, .

.9, to the sut. This would be 1ndlcated in the grouplng of 3 +4 in .
parentheses, thus: . - ' . h [

SRR (3 + u)~;'9

Since._:the sum 3 +L4 is a.lso 7, the expx;ess:.on (3 + 14-) + 9 means the

sum 7+9, oz, in other: words, 146.' PFhat 1s to say, »

(3 +L4)+9=7+9, and T+ 9 =16;

7 +.9 .' . . ' . . .. .
IO _ 16.

.“S_ince 16 1is atwhole number, this process may be continued as needed.

'Thus, we mzy add.'say, 5, to ‘the result of (3+ 4) +9 to get the’ 4

result of ((3 + 4) +9) +5, which is the seme as 16 + 5, or 2l.
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N a.

Our next concern is to pursue the concept of grounlng the addends.

Recall that fo* sets, the grouping under unlon did nqt chang; the
s

. resulting set. That is,. union is said to be an aSSOC1at1ve operation.,

i numbers unde* addltlon.

Consequently, both (AUB)UC. and AU (BU C) give rise to the same

number nroperty Therefore,, we have the a53001at1ve nronerty of whole bl

«

- FOR WHOLE NUMBERS 'a, b, AND ¢,

e '(a + b) +ec=a+ (b+ él:'

"If "A has the number property 3, B has the nﬁmber bropert&'

: v
R and C has the. number property 9, then AU B has the number

"nrcperty 7 and {AUB)U C hes tne number property 7 + 9, or 16.

independently

For these same sets B UC has the nuzber p*onerty 13 and ‘AU (Bu C)
has the" number proverty 3+ 13, or 16. Bi C are of course, all
disjoint since addition is de*ﬂved from the wnion of d’SJOlnt sets. To
trace "the ﬁachinerf behind this n*operty,-we can dlsplay (a +Db) +¢

and- a + (o + ¢) as follows:

o GEE+r 34k g)
. 1l

prre
3
+
O

W
+
"

w

.t

.ﬁith the vertical equal s*gns 1nd’catﬁng ecuallty as we read verticallm

This may be 1ntern*eted as ;OllOJS'
(J &) +9

3+ (h_+ 9) =

1
-

9 = 16;
+ 13 = 16.

-~

(V3]

Since” 16 = 16, we can follow the chain thus:

numbers 3

t

(+4) +3—=7+ 9—-16;1643 + 13—=3 + (4 +9). "~

Prom this, we conc‘uée that °'+ LY o+ 9 =3+ (4 +'9) The assoc1at1ve
property states that t”lS cqaracterlstﬂc is not restricted to just the
L ang 9; it hnolds.for apy whole numbers a, b, .and c;

bl
that 1is, (a +o)+c=a+ (o+ec). '

W
121’
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?he property for closure allows us to reoeatedly add as- many numbers -
i ~§% we wlskp The commutatlve aud assoc1at1v@ propertles dllow us fo do -
the addlngrln whlchever way we please, as, long as each.adaend ;s &ppropx;&tela"

N

" ‘accounted ?o* _ For examnle, we may *eculre the sum

pov ) .-

3+q+9+++7 s _fa

‘

) Closure states that ‘this can be done nmerely adéd any two, then contlnue
- to add eny of the other addends to the result and so on. Commutat1v1ty
and assocxatlvity say, that if ug4so choose,vwe are free to plck approprlate

_combinatlons at will. . o o .
PR . s .
‘>"' For 1qstance, in the above examnle, it nay be deslrable to look .
' §- -
. for combinat*ons of ten swnce addlng one ten to another 1s tasy for us

_For the _above sum, we may then find. 1t convenlent to group in the ' i’uﬁ
-following way: (6 + 1), (31+ . -Hence, the scheme of our procedure

. and the reasons permitting us to use this scheme is:
N . .. - Y N .

W

T 9 b T = (34 8) + (9 M)+ T
T o ;,:. =(3+8) + (& + 9) + 7 Commutetiye Property
; ' E =3+ (6 + (b + 9) Associative Property

. ) =3+ .[(6+ L) + 9] + 7 Associative Property
=3 + 7 + [(6 +,h)’+ 9] ' Commitative Property

.
4

(3+ 7) + (6 +4)+9 Associative Property
"The use of the commutative and assoc1at1ve properties of addition

allows¥s to go ﬂeap-frogglng and 2dd any two pairs of numbers we choose - :
in finding tbe sum of many numbers. Use of tife commutative add associative
"properties also is tne basis for cpeckwug addltlon By adding in the opposm

direction. ' For examnle, to add - .

T .',.

we might add up end have _ ‘ ) Coe

O 4+ O\

[(8+4)+8] +3,

If we add down we have’ . : _ . } -
S . (3% 8)+h)wB. : o
-
.. . :
> . ll?

O
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We can”show that these two name the same number because ‘of the commutatlve

: and assaciative nrone*tles : , o o o .

[(8 + h) + 6] = (8+4) + (6+3) Associativé Property
; (8 +4) + (3 +8) Commutative Prbpefty .
=(3+6)+ (8+14) Comutative Property .','
(3 +6) + (& +)8) Commutative’ Property -
i {(3+ 6)‘+ 4] + 8 Aesociative Property
" PROBLEMS* - - )rﬁ . -

B s

1. Which of the follow1ng statements are examples of the commutatlve

S

n*onerty under addition?

a. 7+8=8+ ]

‘

b. 9+8=84+9 .
c. (7T+8)+9=(8+7)+9
a. (7+8)+79= T+ (8 +9)
e 78=87 o .
£, (T+8)+9=9+(7+8) - RO

g T+8+ 9:=9+8+7

2.  Which of the followlng statements are examn§§s of the associative

nroperty under addition?

a. (7+8)+9=(71+8)+9

b, (7+8)+9=7+(8+9) _

c. (T+8)+9=9+(7+8) ~ -~ B
: d. T+ B8+9=(T+8)+) ' ' '

P e. T+8+9+10-= (7 +8) + (5.+ 10) ) .
) £ T+ (8+9)) +0=(B9)m ) +20 T
g (T+(8+23))+10=7+((8+9)+10)

;- 3. - Which property or properties of w%cie numbers undef addition 'f‘
! make(s) each of tne _ollowlng true° o _ ' - ©
L el (T+8)+(9+%0) = (9+0) + (T w8). .
i (18 (9 +10) = (7 +-8? ;;}o +9) R
c. FT+8=15 ST T
_ S , &
d. 7+8+9 +.10 lo+9+,8+‘§§§7 _
e. 188=987 Lo
274 (8 9 ¥ 102 (7 +8) + (9 £10)
8 T+8+9+10=1(7+10)+ (8+9)

°
[e3

* Solutipns‘tO'prob%emsjin.thté;ehapter #ill be found on page. 128.
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" «for the above observation' is:

N .-

Another property of sets under the union operation that is significant

" for ‘the addltion operatwon is one that 1s connected Wlth the~union of a
~set with the-empty set. We have observed before that if A is a set
“thenti A u { } = A. Since the number property of the empty set is O,

if the number property of A is a, then the correspondlng statement

e ' o .,
FOR ANY WHOLE NUMBER a,

a+0=a ~ ———
1

i

' Qf course,.because of*the commutative property, we- .also have O + a = a.

Since addition of .0 ,to any number produces that 1dentical number,

0 1is calded the 1dent1ty element with resuect to addltion No other

element plays this same role The Droperty referred to above is known

as the property of zero under gddition, or in short the addltlon
‘property | of zero. '
ADDITION oy TﬂE NUMBER LINE

A
The operatlon of addition may be vividly pictured on the number llne.

Recall that the number line is constructed by placing marks on a line so
that the segmegt,between any two neighboring marks is congruent to one
chosen‘segment. Tnis was accomplished by laying off .copies of the chosen

segment end to ‘end. The chosen segment determines a unit in the number line.

0 1 2 3 4o 5 6 7
o visualize 2+ 3=5, let us first locate’ 2 and 5 ‘on the
number line;, notice that between 2 “and 5 .are 3 units. Furthermore;

we can observe that between ‘0 and 2 are 2 units.

0 1 2 3 L5 6 7

¢

This process'may be more effectiuely indicated by arrows as illustrated

below, showing 2 + 3 =

'S L - 2 3 7 —
4
- 0 1 2 3 b 5 6 7
- 5 - s
L2+3=5
. 119



[ ] . . . 4

The above dieg*am shows an addition using fhe number line. More than
this, however, the example may be 1ntproreted 2lso as an illustration of ’
the closure property. 4#n arrow of -2 wits "followed by" an arrow of 3
units is associated with an arrow of a whole number of units. "Each unit
may be feéérdeg as a steb.. Thus, 2 steps followed by 3 steps result
ina total of 5 steps. Note that the steps originate from 0 as .
starting 001nt and that we advance in accord W1th the increasing order

of .numbers..

‘ :
Cons1de* now the sum 3+ 2 on the number line. Here, 3 steps
'a*e followed By 2 .steps.and it is clear that we get the same result
as before. Incornorating the diagrams: for.3+2=5 and 2+ 3 = 5°

into a single dlagram we can ‘illustrate tbe commutatlve property

under addltlon . . : N
T 3- ——2
‘VO B % —t— s e —t—
1 2 3. &k 5 6 7
= —5 —— .
. 2 - 2 S ) )
- $ + ¢ —— —— . P
- 1 2 2 L 5 6 7
- . ‘!j — )

The assocwatlve property can also be illustrated using the number

‘line. ﬂouever, the process is more involved. As an example, we know that

(é‘+ 3) + b =2+ (3+14).

The

irst expression, (2 4 3) + &, mey be illustratea by a simble
extenseon of=the above method. An arrow of 5 units results from the
2 and 3 unit arrows. To this, is abutted (attached end to end) the

. L unit arrow, thus . . y
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—_—2 L 3 —
0 1 2 3 ! 5 78 9
. 2+ 3 - : 4 o
(2e3) k=9

N

"This of course,’'is analogous to the chain of statements
(2+3)+L4=5+4=09.

The illustration for the second expression, 2 + (3+4), isnot

as direct. For this, it may be more helpful to start with the analogous

situation first. In analyzing 2 + (3 + L), we note that 3 + L = 7;
; -
that is " 3+ 4" and /"7" are names for the same number. Thus,

A

.:' L 2+ (3+14) =2+ 7'=9. 13

Accordingly, we are seeking an arrow COrresponding to 3+ 4, This arrow

is then abuttéd to6 the arrow of 2 wnits to arrive at the result for.

2+ (34 4). . . e
‘ - 3 . ——— - - :
0 1 2 3 4 ; ; ? B ? o
e )
—2 3+ b —t
;,i ' ]2+Q+w\ -
) | .-. 2 + (3+8)=9
.. : . '

.The diagramming may be simplified by transferring tbe arrow for 3 + L
directly onto the 2 wnit arrow as is shown below by the dotted lines:-.

-
M

2126
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T8 I~._& 3 W75 & 1 B3

2 . 3+ 4

10

v

]
1

2+ (3+4). | ,
It is by incorporating the diagrams for (2 + 3) +4 =9 and for
2+ (3% L) =9 that we show associativity. L

4 2 + 3 - !i .1 . e ’
[ -
(2+3)+4 N
~-\\ 3 I *‘\\‘
“~ . o N -
o 1,2 3 .k 5 .6 71 &~ 9 0
—_ o . o
2 N - 3%k

2+ (3+4)

. ~ Frequent use of the number iine to illustrate addition of whole numbers
vill promote familiarity with properties under addition. Thus the mumber -
line -can help a great deal in working with mumbers and in answering questions
sbout numbers. l ‘ : .

£
Ve

PROBLEMS
k. Draw number lines to show the following addition examples.
s 34629 ' ) o N
" b. Lb+5=9 R ’
c. (3+6)+7=16" v
a. 3+ (6+71) = 16 . -

5.  Draw ﬁmn'b'er' lines to show that the ,following‘ numbers_a
under addition. ' )
a. 3 and 5
"b. -30 and 50
c. (3+6) and 7

comutativé .




6. Are the diagrams in Prdblem 5c  the same as those in Problems \4c
. w :
and 4d? Why or why not?

»

“\\\\’7. How would arrows be’ used to inditate advanc1ng from one point on the
whole number line to the next point? What does thls.suggest_about
‘the whole number immediately following a giﬁen whole number a?

N

'SUMMARY OF PROPERTIES ' - o

~
The properties of addition developed so fear for whole numbers ma&
be summarized as follows, where a, b, and c¢ "are whole numbers

1. The set of whole numbers is closed under addition. o

el I

a'+.b 1is a whole number s

L ‘ o : i
e 2.  Addition of whole numbers is"& commutative operation.

_é.+b=b+a
. . —t®

3. ~Addition of whole numbers is an associative operation.

rd

™~ . ‘
(a+b)+0='a‘f(b+c) . _
4. There is an identity element O fov addltlon -

_'. a+0=0C+*a=a.

NUMBER SENTENCES R o

e

In developing fhe properties of numbers and various operations on

numbers, we Have been using a rather special language involving: :

R

. " Symbols for.ﬁumbers, such as:, 1, 5,'2, 9, 3,

ce3
Symbols for operatlons, such as: - f,‘ X3

R . de Symbols showing relgtions between.numbers,

o _ ' such as: =, >, <.

A great deal of mathematics-is in the form of sentences about numbers

or number sentences as they are called. \Sometimes the sentences make true
.statements as in "9+ 5 = 14", ;sometlmes the number sentences are false
as in "5 + 7 = 11". Whether it is true or false no more disqualifies’
the statement as a sentence thad the statement, "George Washington was

3

vice president under Abraham Lincoln" fs disqualified as a sentence.

125 =
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"Any number sentence has to have a "verdb" or "verb form". The qnes .
we have encountered s¢ far are: ""is'equal to", "is less than", "is
greater thsn . The symbols which we use for these verbs are’ listed below

with a number sentence illustrating the use of each.

»

- . . - <

) 5 i . -
=3 "is equal tb"; ' 3+ k=T

. . - <; "is less thean"; . . 5<2%X5
> ; "is greater than"; 1 £ 1 >7 " ,

- 4

. As we have noted, verbal‘"sentences may be_true;. "George Washington
was the first President of the United States,” or false:. "Abrsham Lincoln
was the first President of the United States. - We also encounter sentences~
such as:  "He was the first President of the United States." - If read out

~ of context, it may not be known to whom "he" referred and it may thus be

impossible to determine whether the sentence is true or false. -In fact,.

" [0 was the first Presldent of the United States may be a test question
requinng the name of the man for whlch it would be a true sentence. Such

a sentence is called an gpe_ ‘sentence ‘and is of great usefulness not only

1n history tests but in many other situatlons as well. Open number sentences
are the, ba.sis of a great deal of work in arithmetic. Solving a problem
in'arithmetié, for_‘ex_a.u@leﬂ, incorporates ‘the notion of an open sentence.

As an 1llustration, the problem

+;{ m’ay. be stated: T +5 = D or .’{ +5 = -

. The nmner'that makes 7 + 5. = D "a true statement is the solution for_
7 o o . ’
+ &

PV
n_n

Open number sentences are called egus,tions if the vez_'b_in them is "=
' Sentences with dny of the other verbs listed above are called "inequalities”.

'
»
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-+ PROBLEM

8;_ Write & ">, or = 1in each blank so each mathematical sentence

is true.- - .
T a8 6 LT
: be 3+4 16 ‘
e (20430 (30 + 20)
d. (200 +800) . (200 + 700) o -
e (1200 +1000) ___ (1000 + 1200)

APPLICAIIGNS T0 TEACHING . T

L Addition is associated with the union of disjoint sets.
By this, the commitative property is clearly'illustrated whether we
Join the first set to the second set or the second set to the first

the union consists of the same members. Recording results of joining

" sets using numerals may cause some difficulty without some intermediate

. vsteps. For example, from the diagram
X X X X
X X . X X
X X X X .

“some children might not be able to procéed directly to-the number’
sentence ;5 + 1 = 6.

A suggestion is to separate this problem into different tasks.
Use of ‘the flannel board to display objects in- each set will be helpful,

.Then the ‘numerals nay be written below each picture with the numeral
" for the union showing the addends.

X X X X
X
X . X X X
X% . X . X
5 e nE 1 541




R This may be followed by a review of the procedure the next day, writing
6 be'low 5 + 1 and finally, completion of the equation __  + __ N
= " Some ‘teachers have reported considerable success with providing
each child a specially outfitted ‘cigar box forthis task. The 1id of the
box is lined with some flannel material on which three frames have been

drawn. Beneath these frames appear the "skeleton" sentence, . +

= _* . That is, the personalized flannel board.looks something like this:

.

4 -

v " ’With each problem, the child constructs sets with color paper cutouts
that he has in the box, and completes the corresponding number sentence .
) wz.tk} construction paper cutouts oh which have been written various numerals. -

) Tn formng their own sentences to accompany a pictorial situa.tion, -
" some children may have difficulty getting the "=" symbol in the right
place ' Drawing a double line. between the appropriate fram.es may help S

with the" assoc1ation of‘}deas . - o

# . . : - . o
>

L ’ ) .

. The'. use of the’number line has been reported to be extremely helpful.

A number line is fastened to each child's desk; the child eventually
operates independent of this device in accord with his own rate of °

-

development. - S RN

QUESTION - S - ..

"Wny do we say that en operation is a way of associating an ordered peir
of numbers with a unique third number? Isn't it true that both (6,2)
‘o and (2 6) result in 8 for addition?” C .

v : . M
o~

A It is true that both (6, 2) eand' (2, 6) result in the same o
’ number  under add.'Ltlon. This is the property which ve: “call the commutative

property of whole numbers under addltion, illustrated here by -

v
-

» 6+2=2+6. ‘ ‘

~

~

126 -
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The necessity for considering an oberation as associated with an ordered
pair is more sharply brought to the fore when the operation is not '
comuta‘éive, as for example, in subtractionm, 6.- 2 .and 2 - 6 do not
have the same result, and it is a vital issue which of the two numbers
‘18 considered the ﬁ.rst number and which ‘the second under the operation.

Addend* ) ‘ Identity Element* -
" Addition» " Inequalitles -

Associative Property of Addition* Fumber Sentences .
Closure Property of Whole ‘I'hnnbers . Ordered ?air . .
under Addition* Sum* W . :

Commutative Property of Addition* ‘ /
- Equation® . ' o ' 5

e ©  EXERCISES - CHAPTER 7 =~

. 1. 1f,the operation™of addi.fion is applied to each ordered pair below, -
vhat whole number is associated to each ordered pair?

a. {3, 8) . a. (2%, 36)
b, (9, 8) * e. (36, 21;); )
ce. (16, T) - 2 (1, 16)

2. Which orderéd pairs in Exercise 1 give the ‘same uumber?' Why?

. 3. VWhich of the following sentences are true for any whole numbers

& and b2 Wy? -

_a. (a.,+:b)+_0=a+‘5 o ) B . e

b. (@+b)+9,=a+(b+9) ' o Vo
c. (@+d)+ec=(b+a)+c ~ - BRI i '

3

a.’ 3+ D 10 . o
b. T+16= [:] ' o :
e D+ 8 = 1 _ . ’ P L»

a. [J+ 99 =500

. L, .By inspection give a whole number tha.t makes ea.ch sentence below true

Te



. 5.. What propertles of addition of whole numbers are 1llustra.ted 'by each

"of the follow'ing statements? . : : :
a. 5+ 7= 7+5 ' .

b. 3+0=73 .

¢, 8+ {(6+4)=(8+6)+1L . .
d. 8+ (9+7)=8+(7+9)

e. 0+18 =18 & N .

£, L+ (9 N =fo+m sk . .

- SOLUTIONS FOR PROBLEMS

2 b, d, e, g
a. commutative property
b. 'co_xmnute.tive property .
c. closure property ' _ T -
d. commutative property ) c
~e. na property, statement is false ‘
- f. associative property _ : T
' g.' commute.tlve. and associatzl!ve 'property. )
L a - 3— 6 - -
o™+ + ' * ) -
0 1 2 3.k 5.6 7 8 9 10,
\ - ' :
. 4 5
. o 1 2.3 ‘L . 5. 5 10 :
9 - )
. 3 _. 6 - . )
. . 15 16
01 2 3 k5 6 7. 8 91011 12 13 14 15 16 17 )
s B 3 + 6 - . - - 7 "_.. '~_.~:" ’r"..‘
: . . X
— — (34 6) + TH———————=
128 ) e .' ] .; ) . . o .
. 1 )q,.? b .,'1 - . o fv:;:.v.- P :
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01 “@-\3 L 5 6 7 8 910111213 14 15,16 17

. 3S——— 6+ 7 —

N - '3+(6+‘7v) s

w
N

N

b,

o—e——so—= BN

0 10 20 30 %0 50 78 9 T

e T30 4 50— T e S

——50———30—= -

0 10 20 30,40 50 60 70 80 90

. sl - LA
: 50 + 30— -,
. " - Lo o

ce

—3 6 B

c 123 b5 5 7.8 é_;ﬁ’c@fli 12131k 15 16 17718 .
— 346 . .. T 7 - | .

S - - — (3+8) by — —-
X . . . . RSP o) L . 'y ST e e -
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comrta.tivityof(3+6) and 7. © o

g 3 6~

‘61?_'31?\5\678910111213%151’ 1718
SR 7 S - nl S S

3+6

]

L — ——— 7+ (346)

No; 4 and La $how a.:wciativityof 3+6+7, 5c shows

> LS [N

Abuttigg a1l unit arrow to an artov corresponding to a given pumber.
o 'I’hi& shows that the whole mm’ber after a given- whole n\mber ;a is
'_ob‘beined by adding’ 1 to a.’

. ~'£-’.
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. § MULTIPLICATION C N
m:rm'cmomm TEE PRODUCT SET R - .
Multiplication of whole numbers 1is a binary operation which. &ssociates
vith tvo whole owtbers ca.l‘_ﬁed factors and a unique third whole number called .
the product '-';-’_ ~ -
i Multiplicatioh is related to the product set of th sets just as .
addition is rela'ted to the union of two. dis,joint sets.. The product set E
B ” of -two sets ‘A a.nd. '.B results from a process of pairing each element of-
Co et A w:Lth each element -of set B. = For example let _
’{'/ I K T, Lo <L T . .'. » . o
S ‘_,.A- ta,’d, ¢} . DT
‘ _'.«- ‘ ) {o A} '
- We ﬁnd 'the product set A X B “oy pairing each element of A with »
each elemen't of iB as sh& below o ‘ P
"This is the set of ordered pairs, Ax B = {(a, 0), (e, 4), (v, 0), (b, &),"
(c O) (c A)} An orderly arrangement of these pairings is called an: a.rray /3-«
\'\ There are 6 different pairs three_ rows and two columms as shown ‘on the
leftbelow..'__‘ N _0._~;' A ) L
_ ,r-, _a'.' (a, 0} (a, &)

..b.'_ (b: O).' (b’ A)
G- (c, 0) _ (c,a) .

. 6 -diffe_rent_pairs

“

% numbér property of A X'B' is T e _
2 v N(AXB) =3x2 or 677 S
" . . ) . R . . E
> T
x 3 ‘ S vl
1:7'
Bl .’
<4 '_"
. R e e
g R0 ,

O
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}of countlng sets as follows. - 5

This cardinal number is called the product of .3 and 2+ The product,

" written 3 X 2, and read "three times two" is defined as the nufber

property of A X B when N(A) =3 and N(B) = 2. The array of- AXB

may be drawn as shown on the right above. The product is the- number of

dots in the array. L g R

‘ Notice ‘that a 3 x;e array may be~viewed as the union of. three d1s-

~3
P

other words, 3 X 2 may he“thought*of;és_the sum of three twos,

-

<.
a‘,_ :

The product 3 X 2 may also be thought of as the union. of two
disjoint sets each having three elements. Thus, 3 X 2 may be- thought

AN

of as the sum of two threes,

.

- 3x*2=3+"-.3. o | L

Bvery product involving counting nUmbers may be represented by

“an array. Some arrays are shown‘below

L - -
IR e
> 'A"‘_"»"o 0 0 O 0 0 0 h
S 5|00 o0 0 3 0 ;0
T a0 0 0 0 00 670 o
0 000 "3x5 =35
. 5% 4 = 20 '

On the basls of such arseys, de can thlnkrof multipllcatlon in terms
RS

o, LN . K
NN “ [RRIN .

hIVEN NUMZBERS a “AND b, AN & BY b
*. RECTANGULAR® ARRAY OF OBJECTS CAN BE CON- .~ _
" STRUCTED. SUCH THAT THERE ARE a ROWS AND : o
. ' b COLUMNS IN THE ARRAY. THE NUMEER, :
. " aXxXb; ISTHENUMBEROFOBJ’ECTSINTHEARRA‘I

jolnt SZ§S each hav1ng 2 elemedts “Inv S A .

L4

L 2P



ane ) .
e ) ) i
I . . »

PR e e

l Draw arrays illustrating the following products.

a 3X5 ' X3 L ' .
b, B X2 ‘ ' e-.'.~8 X5, v L
el c. 2 x 6 _ £f. 99Xy L

2. Given A= (a, b}, B=1(0, A [0, R). Find; Ax'B; Find BXA =
' What is N(A X B)? What is N(BXA)? Is AXB+BX A? Is N(AXB) =
NBxA?. . o

PROPERTIES UNDER MJLTIPLICATION : R
In the ‘above , we have related multiplication to the product set.

The resultrof the operation of multipiication on &ny pair of numbers is-
ca.lled ‘the product of the two numbers.

When we examined *the wnion of two sets to get an insight into the .,
properties under addition, we observed that the wnion of the tyo sets" ’J.So _
a set. The product set may similarly be examined to gather scme infor-
~mation gn the properties of the set of whole numbers under multiplication.
. _ As in the case of union, the product set of two sets is also a set. Tt
’ is true ‘that the elements of the product set are not elements of the Ffriginal
.. sets--;hey are ordered- pairs of these elements. "But, the crucial point
is that the ca.rtesian product is a set, snd a number property may be
assigned to this set. From this, we can intuitiver accept the closure. s
property of whole numbers under multiplication.' X

- v
S

. THE PRO]IICT OF TWO NUMEERS IS A WHOLE NUMBER.

*If A= {a, b, c, d} and B = ( a, B, 7, 8 €}, then the product
set "A X BV is a set with 20 members. We. have seen that if A £ B,
then the car‘tesian §§oduct BX A is different from A X B since the.
pairs are crd&ed ,For example, (fE.‘.&_ﬁ) "is a member of- AXB wher y )
(B,a) li's,a. member ‘of B X A. By'dieplaying the members of B X A% gs: 3
" had done._for A.X«B we should see that B X A ealso has 20 members':

133 R
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B%.A - [('.a,a)» ‘(.a.,'b), (@), { a8
(R, (B9, (B (859,

_ L ._("_'r-,:a") ('1,b) ( 'r,c),':;f:';"/'i"

A Lo .v(.ﬁ,a) (8 b), oy
.".- (e,a), (t_,b), (-t,c),

Therefore, even ‘chough A x B e B X A, " both product sets are equivalent,'
_ that 1s they ha.ve ’t,he same nu.mber property

Notic from the e.bove displays that an arrgy of 5 disjoint sets

‘ each having &4 members, a.nd an arrey of " 4 dlSJOin't sets, each having
. ,_5 members, have the same number property '

- L . sets, 5 members "5 sets, L members

& " in each set ) ~+  in each set

Since mﬂ.tiplication refers, only to the number properties of sets
1nvolved in the carte51an product the fact that the carte51an product
is not commutatxve has:-no bearing on the conmutatlvlty under multlpllcation.‘
C It is stfll true’ that the set of whole numbers is. connnuta‘bive under

‘mﬂ.tiglicatlon, that is

FOR ANY WHOLF NUMBERS A AND "B, AX B = BXA,
In the example that wechave used, 4 x5 =5x%xL4. .A 4 by .5 array
has the same number of 'members'as a’ 5 by b4 array.

] ﬂ@e array as a um.on of 4 dlSJoin't sets, each having 5 . members
also shows that L X 5 can be computed by the successive addltlon.
A . 'L addends ) . \ -
D e - N e,
. 5+5+5+5,
‘that 1s, 5‘ is. used as en addepd 4 times. (This is sometimes
referred to as the repeated addition deseription of multiplication.)

i3
133
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Although multiplication of vhole numbers.may be described in terms of
repeated addition, it mst be remembered that miltiplication is defined
as an- operation on two numbers and is independent of addition. The
operation showing the ‘association of & third number with a glven pair
may be 1ndicated for example, by the usua.l method: L4 X5 =20 or
simply (4,5)—=20. "(4,5)—>20" may be read: "to 4 and 5 is A
assigned the number, 20". Likewise, addition may be so described; l
thus (4, 5)—= 9 may refer to an operation of addition. - -

r

3¢ Dra.v'two arrays to illustrate that 3 X L =4x 3 N : <—/ ' '
b, Is it possible to drav an array to illustrate 3 x 0? Why -
or vhy not? - T

-

' 5. For each operation given below, state which arithmetic operatiom .,
1t refers to. '

Ca. (2, 5)—-10 ‘ , d. (1,1)—=1
~b. (3,5)—"8- . e, (1,1)—=2\
co (5,00—5 - £, (g,2)—=k T

6. - In.adding, there is a pa.rticula.r number & such tha.t a+a=a;"
K find this number.

7. In mitiplication, is there a number such that & X a = a?
Is there.more than one’ numbeg, & such ‘.ha.t aXa=a?

o .- _

T Ve iiave defimed multiplication as a binary opera.tidn, that 1s,/1t is

~an operation on two numbers at a time. To find the product of three mmbers,

for example 3, &4, " and 5, we may nmlf.iply 3 and ‘4 and get the product
T 12.’ We know tha.t this product is a whole number because the set of whole -

numbgrs is closed under the operation of addition. We then miltiply 12

and 5 and get the product 60. - ‘

| We-write this

(3 x-‘h) x's’

125 : . O~
= 60.
Ve might have multiplied 4 and 5 .getting the product 20 a.nd then
multiplied 3 and 20 getting the product 60. We write this
3x(bx5)=3x20 S .
= 60. '

I:5
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In either ‘case, the pro;iuct is the éanié; that is
C(3x#) x5 =3x%(4x5).
O'bservation of severa.l examples’ and our 1ntuition convince us that
the order in which we associate the factorsin multiplication does not,
affect the product.

This is true in genersal. o
- FORANYWHOIENUDIEERS a, b, and ¢
(axb)Xc=ax (ch)

»

"~ This {s called the associative Erogertx of whole numbers under multiplication.

¥ ) : . ) ' -
N

. . G-
For the example that we. used above,
- - (3x L) x5=12x5 =60 -
" -and ' . ) :
3x (4 x5)=3x%x20=60.
" Alternately, this may be written as follows:
" . (3xL) x5 3x (kx5)
: 1 I .
12x75 3 X 20 )
. : It ' s I
60 = 60
Showing again that (3'X L) X 5 -3.x (4 x 5) by virtue of the statement
60 = 60, that is to sey, both expressions name the same numbér.

‘ The physical model of a box made up of cubica.l blocks with dimensions’
a by b by g, may-be used to illustrate the associativity of
multiplication. . ‘ Coe T

. . e
’ . L '
N\
[X >\ ’ - < .
- aX b blocks in each vertical b X ¢ blocks in each horizontal
) slice; ¢ vertical slices. =~ _ . . slice; a horizontal slices.

Model illustrating the associative
property of multiplication.

“136 ‘ ' ) ..
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The number of blocKs in such a box is/ (a X b) X e and is also
ax (b x c) indicating that it is true that (a X b) X c =ax (b X c).

- PROBLEMS

8. Show that 2 X 3 X 4 = 8x 3 involves both the commutative and the
_assoclative properties of multiplication. ’ ’ '

~

9. What property or properties are involved in each of the following?

a. 2x2xXb=2x12 d. 2x3xb=2xhkx3
b. 2x3x1+=3x_8. e. 2Xx3xhk=3x2x%xkh
S 2x3xb=6xk f. bx3x2=L4kx3x2

Just as we 'could."pick and choose" pairs of addends in & sum,
the commutative and assoclative prbperties under muwltiplication allow
us to "pick and choose" pairs of factors in‘a product. For example,

: ‘ _ & ,
. - . ' - /’

) 100

8xLx5x25x%x2-= 8000
1

Y

: Natural combl\}g‘cmns y':.eldmg téns, hundreds, gmd 0 on. mlght make for

ease 1in computa ns. To be sure, for ‘bqe same prod'uct ‘one can proceed
to c_ompu‘t;e 'labo sly as *‘ollows, PR ‘_" o - '.-;. :
. TRl .,1 L __' L R *

. L. <y N S .
Co . Vel .

8 x h-X'5%%x 25 X 3"

" ;, o | %b/ kooo/ 8000.,‘. S N

4
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10. Show by grouping with ‘parentheses how a X b X ¢ X 4 may be
' regarded as a product imrolving 3  factors instead of ‘b for
. each of the following

Py

a, 2x3x.hx5=2-x3x20

" b, ?x3xhx5=6-xh-x5_

“Co 2x3xh-x5=_2x12x5

The number 1 occupies, with respect to nmltiplice.tion, the same
position that " 0 occupies with respect to a.ddition. Notice tha.t

1X3=3Xl=3,

:'_"- : : 1x5=5x,1=5; ‘ . : ‘-
: \ 1x6;6x1-=6,' o B - T

1x8=8x1=28,

It is true that 1 Xa = a for all numbers 8 because a 1 by a.
a.rrs.y consists of only one row he.ving a members, and “therefore the
entire a.rray contains exactly * & members,

5 : 6 -

—mst—. . - e encst—— Ct et —,
l[o o o o -} ) . l[- LI 0} - - l{- v e o o‘- -‘0}
1x5=5 A - 1x6=6 o ; Y 1x8=8

. - ' ST , ‘
Since 1 X a = a8, the number 1 is called the identity element
for multiplication., The property is referred to as the roperty of
1l under nmltiplice.tion

>

FOREVERIWHOLENUMEER a, lXas=

Beca.use of the commtative property under nmltiplica.tion, we also
" have ax1l=a,

 While O does not act as the identity in miltiplication, it does
have a special role., The number of members ina 0 by 3 atray (that
' is, an array with 0. rows, each vith 3 members) is O because the
set of members of this array is empty., In general, if a 1is a whole
nunber, the number of members ina O by a array is 0; .thus,

FOR EVERY WHOLE NUMBER a, O X a = O.
It is also true that a X 0 = O, -

138 o -~ i
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The characteristics of O in miltiplication of "annihilating"
(so to speak) all numbersvexcept' Qi'in the product has an important .
conseq_uence. If eny factor is 0, B the product is O.

LI . What has been done so far shows that zmltiplication, as. well as

< addition, is an operation on the wholg numbers which has the properties
-of closure, comutativity and assoc:Lativity. There is™a special number
1 that is an identity for multiplication jusf as O 4is an identity
-for addition. Moreover, O plays a special role in .multiplication for
which there is no- corresponding property in addition.

There is another important property that links the operations ‘of
additior and’ multiplication. This property which we shall now study
As the basis, for example, for the following statement: '

3

~l&x.(7+2) = (5 xT7) +(h><2)f_

»

This example may be verified by noting that both 4 X (7 + 2) a.nd N
(b x 7) + (& x 2) give the same result:

L xA(7 +2) =k x9 =36, and

M
AN

-.(11-'X 7) + (& xlg) =28+ 8 =367 /

- ‘The property is ca.lled the distributive property . of multiplication over
i ad&ition. i :Tre. distributive pro~eerty states that if a, b and ¢ are
y w'h’ole numbers, then . ' _ ~ , B .

(b +c) = (axD) +(axc).

‘o

S The distributive property,r'na:"y be iiiustrated by considering an a
by (b +c) array. ' | '

- ' ‘. . 139
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It is true *bha.*b_' this a.:rray is formed from an a by b array and an '

a by ¢ a.rray. ’

o

An b array - . An. a by ¢ array

Cons uen*bly;' the number a X (b + ¢) of medbers in the large array
is th sum of (a Xb) and (a X c),. the numbers of members of the

s. That is, ax(b+c) (axb)+(a><c)

Since miltiplication iis comnuta*bive, both the "left hand' and .
the "right hand" distributive properties hold, that is, '

sy

i.ef‘t'hahd' a X (b +c)=(axb)+(axqd), _and
Righthe.nd- (b+c)xa=(bxa)+(cxa).

For example, by these distributive properties,

’

Li. Leftmana: 3x(5+8) =(3x5) +(3x8), ea
© Right hand: (4 +7) X2 = (4 x e) + (Fr%.2).

_Reca.ilin’g,that when we say A =B wemean A a.n‘a ‘_‘B‘V;both name
the same thing, then if A = B, It really mskes no difference whether
we write A =B or B = A, With.this in mind, since the left hand
distributive property says that a x (b +¢) and (a x b) + (a X c)

.bo‘bh name” the same number, the statement
ax(b+c) (axb)+(axe)

. can equally well be written as ° : o e

. . (a xb) + (axc) ‘.a><'-(b+c)./'

For "example; ' )

~
8 . 3

(3x5) +(3%8) =3 x (5 + 8).

I

Sim:Lla.rly, the righ‘b hand dis*bribu‘bive property mey be expressed as elther

(b+c)Xa—(bXa)+(c><a)
or

<,

| . (box a) + (cxa)= (b+2)xa. SR

wo

.
o




Fbrexa.mpie,;'f .
S (hx2)+(7x2) (h+7)x2.

e
-

‘\

L
»

The distribh‘l:ive property 1is. very importent as it is the bésis for

"

WL 8

computing e product of two n u@ers.

‘Left napd: (5 X 4) F(5x6) =5x (k46
' ' =5 x10 = 50; also -
(T+3)x9
10 X9 = 9. - el

Right hand: (7 x' 9) +(3x9)

. »

The convenience may be further illustrated by the following examples:

(9 x17) + (9 x 83) ='9 x (17 + 83) = 9 x 100 = 900;

(24 % 17) + (26 x 17) = (24 + 26) x 1T =750 x 17 = 850; .
(854 x 673) + (146 x 673) = (85L + 146) x 673 = 1000x673 = 673,000,
(84 x 367) + (84 x 633) = 84 x 1000 = 84,000. ,

PROBLEMS o R S

*a

"~ 11. TUse the distributive property to compute -each of the following- .
a. (57 x 7) + (57 x 93) Do S
b. (57 x 8) + (57 % 93) : - lEmt: 8=T7+1] ‘
12. Show that (57 x 5) +'(57 X 5) = 57-X 10 by the distributive . .
property. . , y ' ‘ o
£
One might question whether addition gistributes over multiplication.
Thet is, is it always the case that ]

aa+(b><c) (a+b)x(a+c)?

 This would be false if &ny ‘set of numbers &, b aund c can be found ’

. that would disprove the statement. For example, & =1, b =3,, and

= 2';ma:7’_bé tried. For these values, , 3

a+ (bxec)= 1+(3x2)—l+6 7, but -

(a+b)x(a+c) (1+3)x(1+2) la.x3

"So it ‘cannot be stated that a + (b X ¢) is always equa.‘L to
(a xb) +(a xc)

W
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 SUMMARY QOF -PROPERTTES | 7
The properties of multiplication developed se far for 'whole numbers
may be swmarized as follows, where a; b, end c are whole' humbers.

1. Whoi.e. iztunbere are CLOSED_ under m:ltipliéation:
',( " axb is a whole number. v
.20 . Multiplic'ation is a COMTA‘I‘IVE operation: A
- - axb = bxa..,"
3 Multiplication is an ASSOCTATIVE operatiozr" -
(axb)XC=a_X (bXC‘).

L. There is an IDENTITY .elemeni_: 1 for multiplication:
» a X l = a. o
5. Multiplication is DISTRIHJTIVE over addition: .
: Cax(b+e)= (aXb)+ (axec). _ ?
6. Zero has a special multiplication property: o
D 0Xxa =0, T
 MULTTPLICATION USING THE X LINE L - A :

Throngh the interpretation of mt:ltiplication as repeated addition, ’
. multiplication mey be 11lustrated on ‘the number line. For example,
3X L4 means 3 addends, each -addend being 4. That is,

[

3xh h+h+h

Therefore , this may be represented by 3 successive arrows as shown below:

~
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LF On the other hang, -4 x 3 means 1+ addends*of 3. The representation ..
gt v - X R
. the'number l—ine is as follows: * o L
i o . . . 4 ) o . .
3 - 3 . it 3 3 . / a.
0 1 2 3:4 567 89 10 11 12 .
_ ‘12 C v
) s s

l;l"X.3 =

As.we can see, the two representa.tions a.bove a.re different, however, '
both of these yield t"he “Same result.

" By combining these two in a single .’
ﬂhgram we illustrate the commta.tive property nnder umltiplica.tion. -

e
d

,

When more’ tha.n two factors are involved,. this +00 may be 1llustratéd
For example, to show (2 X 3) XL, we have the following._

& -
MG _61231»5 6 .. 18 , ‘
i T 2x3 2 X3 T 2x3  2x3 - - .
.‘ . Y . . ) " o
A ,-—.—(2x3)xh — —et S ' -
. ’ . P : ..‘. " - ' e "94 ‘ ' . . . \;k'. .
T % . - ked - - e 4 ’: v
LS (2 x 37 X4 =2k _ .
. . . . : 4 ’ Lo . i
ALikewise, 2 X (3 X 4) may be shown by obtaining two (3 x 4) ‘“arrows"
and abutting them. By combining the diagrams for . (2x3) x4 and '
Cex(3x W), associa.tivity may be fllustrated, ~, - Ea) .
: '-1 . . . . - . . . : f:’ . :'.':";‘ . »
- 13. Represent m;itil.plicatisn"bn the number line for 2 X (3 X 4).
. . ! ,r‘:«"’tl
APPLICATIONS TO TEACHTNG o R

" We introduce the array as 8 mea.ns of providing rea.diness for the x i
‘concept of multiplication. The recta.ngula.r arrangements of” flannel.
" board ob,jects » blocks on the floor, penes in the wihdow, eggs in a carton
may a.'Ll be described. as arrays. If we have an array such as<-

n

RV
oM

)
N

N



lead the cbildren to recognize that th.is gn.a.y' be thought of a.s three sets
'oﬂ two caté in- ea.ch set or as two sets of th.ree cats in each set. .- Tt

.“v.

. o
.I:'.

' Comutativ:.ty under multiplication may. be. conveyed by a.rranging chairs" ;
facing the boa.rd for exa.mple in an: a.rray- of 10 rows, 2 to each Tow.
. Waen the. ché.irs are turned - 90° irom the: origina.l direction, there will

-be. 2 rows, 10' to each row. In each case (10 X 2 .of 2X10), . the
- number of cbildren is 20: I '

i '.\" .~"-."§ . . ~
- . : . g . ‘|

. 'The associative and gaistributive p‘roperties are not presented mtil
" the Second’ g‘z‘ade, To 1llustrate the distri'butive property k sacks,
" each containing, say, 5 red blocks and 3 ‘yellow blocks may be used.
 Thus, ix: t“ne’x L sacks,. there are 20 _red blocks a.nd 12 yellow blocks, '
" or, 32 blocks.,'y-._'_\"'_f_'-_"_ AL R P

e

'1-

L. S .
. . [ . .o -

TR T <5_+3> (ux_s)+cux3>
Cgmsmoy ol S s

" "Ig there any practlca.l situatlon that requires students to know what -
the d1stribut1ve nroperty 1s all about"" S | .f; B ,_‘._ }_-_ ": B

' As 1ndicated in the text the question for exa.mple, of the auditori‘um
seating may be a very practical situation to“the children, or the fact
- that there are ocbasions when one can make computation ea.sier may be
very pra,ct.ica.l "bo: some. Lea.ming to recognize that’ : -
- IRCARS : - . "-"‘~"‘:v'-.-\.

ax(b+c)v (aX‘E}+(aXc)
(a X b) + (a'X c) .atx (b+ .c)‘

LN

s

Ty say exactly the same thing is gquite 1mportant.~ L&ter, tbis is applied
to factoring many expressions as a step in solving equations. That ‘is '

a ver'y practlca.l 51tuatipn for some studedts.” " ’

- o

e Aside from this we make use of this’ property whenever we mu.ltiply
- Dby numbers named by twe.or more digits. ‘I’he fact that we multiply

ERIC

Aruitoxt provided by Eic:




e T : e .

- -each-o:"the dgits, 7 and 2, individually by 4 it -thé problem

. ) :'.. . 'I .
72 PR is based upon this property B L ’ . e,
LY T oy T .
.-I '. - o ' P ' t x ).L a -
~ BN ] i .. 288 : -
' . SRS R i

This is ’because 72 X b= (_70.

o

2) X'b° singe T2 @nad (70+2)=" - . 7

i ._a.re nazpes for the same number Thus' .
: ’ ’ L . . N
- " 72X b = (rzo + 2) X4 P SN
_= 280 + 8 0 .’. ..“ ’ ' [} - “
This sane property may be applied to smaller numbers.- For example,
i 5 x 8- Ay e, rewritten 5 % (3 +5) since 8. an\i (3 + 5) %ﬁame L
the same number. By the distnbutive property_, S T _ ‘ :
> ",K"*". ,"’ ‘ » . .
»,;-_:\-_;-""sx(3+5) (5x3)+(5x5) A
< SIS L,

Thm a "large" factor may be brolren down as the sum of two or more
smaller addends {n thls case-, 8iis, thought of s 3+ 5.. Alt’hqugh s o
‘l:here are activities in Book l leading to this pr,operty, the topic '

is not openly treated until the end, of Grade~ R R N TR

Pl

L. RN o
N :

HE Arrayl' . 1’ ;';‘. it
i Associative'Property
of Multiplication *

Closure Property of Whole

lfumbers under Multiplicatmn* '

i-'ﬁistriputive Property of e
Mxltiplication over Additlon*

. -.‘ .
e et ¢

T

__Property of One under Multlpl:_satlon* :

Faétor&:-i
Identit;‘,.r" Element*
Multlpllcatlon* -
Product*- - - _" x :
Product Set* Lk 3

-

ST EDCERCISES-CHAPTERB I DR
1. Show by try'lng tO 1ndicate the steps in repeated additmn how the R
. ,comtrtative property of multipllcatlon would smlify the calculatlon

of 1000x3

—
s =~
L -
.

N

'<;:.
- .‘
. Ml " . v
« N . '. ". » I.‘
TS . .
Lo ' Y b
S e VT N Ty Do
U . e - ..
- - ... ' et
A oo . U T I T
i . , : : YL
" Sdy



R °

- ' . » L oe . .
2. 'Wnat mathematical senténce is suggested by each of the arrays below? ,

"", c... s . g e

3. Mr. Rhodes is ’buying a two-tone car. The compa.ny offers tOps in
P colors and bodies in 3 coiors. Draw an arrsy that shows. the
. va.r:l.ous possi’ble results, assuming that none of the body colors
:'.sre the same as any of the top colors

. .
1& Mr. .Rhodes is buying a two-tone‘ c_ar.;' Colors a.vaila.ble for the_ 5
frr o top are: red, ora.nge,&ellow greer and blue. Colors a:vai%.a.{ble g
IR - for.the body -are: red?( yellow and blue. Draw an array to show
the various possible iésults. I Mr. Rhodes insists that the car

nmst be two- toned how many choices does he have?

. .5, A ensemble of swea.terg a.nd' skirt is offered with the swea.ter s.vaila.'ble
o in five different colors a.na the skirt in 4 colors. The sEirt also
" ' cames in either straight or flare style for each of the L colors.
How many different ensembles are possi'ble‘Z

RN

6. Here is ,an array separated into two sma.ller e.rrays.

e o e & s e s e « o . e e e »

IR o e o Fre.e ._?.' e e e e e e e » * -
T o h=4x8 ..(p‘=l+x3) (q Lxs5) -
AR 2 ArrayA Arre.yB Array C 7
C a. How mdfy dots a.re in Array A7 Array B? Array C? '
Y Y -
‘ ~ b, Does n=p+q?-
g ~
™

c. Poes kx 8'= (& x 3) + (bXx5)2

’F A familia.r puzzle problem calls for pla.nting iO trees in an ’

~3

- orthard so, there are 5 rows with . RO

N 4 trees @ eacg TOW. The solution o .
b . 1s in the fordf the star shown in = * e e .
&5' . the figure to A& right. Wy ‘doesn't S ' -

this star illustrate the product of 5 : . .

o e e : 2

- ".; : e . .. i L .
. . . . %6

: b . 151 .
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F -
-

. [

~ : - ' e L
8. . 'I'he middl‘e section of an auditorium seats .28 to'a row, and each
' side section seats 11 to a row. What is the ca.pa.city of, this SR S
auditorim 1¢ Shere are 20 such roys? . '( .
. » ®
9. Use the commtative and’ associa.tive properties to get the a.nsuer .
’ quickly by "picking and choosing a.ppropria.te combihations: o i
S 5xhx3IxX2X1 . a " v
3 ’ c . . -
,'b. 125x7x3x8 R - »
) ‘ .. L
c. 250x1hxhx2 [ . ,' . T
10. Wha.t does the’ followi'ng opera.tion indica.te for 3 x h? 2 A _
. . ?
- . Y (3, h) ' oLt e
. VR .
e . ’ : (14:, 3) ;s : “ .- ®
11. ' Make ea.ch of the following a trhe statemnt illﬂstra.ting the ‘
distributive property. . . N
- .. - » ce
a. '3_><'(h+'__)=3xh)=~(3><3, P L T
. b. 2x'( +5) = (2x4) + (__x5) T
el (6+h) (X _ )+ @3x_) o
»d.f(2X7)+(3X )=+ _)xT '
1 ko * ’ - ‘ )
. SOLUTIONS-FOR PROBLEMS °
1. = 00000 ' o &
' 0000 o _ -
00060 “ -
= .b., 00 h
' 7 .
00 .«
. oo % ‘ o
oo -
o )
- O. 0 .q‘ . //
oo - ' ' -
, €. 000000 f
000000 4
' ‘ - - «
’- .
A J
r l.) - ’
., : N
. . o . -t .
9. 13 é: [ -
& . v -
’ A ~ M
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. o'oo0
000 , i -
ad . CO0®
. » oo o -
000
ocoo
0 00
€. 0.0.000-
: ccooo0
) 0000 0
. g 00000 ¢ °
©o0go0o0 .
. . o'go °
coooo . .
cocoo0o0. - “
f. oooo \
. coo0o0 g D
N coo0o0 ot
' coo’o 3
-, L0000
. 0,0 0 O
coo0o0
e . 0000
] — . ’
: 0000 ' : , N
2. AxB={((a,0)(a,8)(a,0), (a,®), (6,0)(0,8)(6,00), (5,R))
Bx A= ((0,a), (0,0), (a,8), (8, ®), (R,a), (B,p)(0,a)(O,p)3 -~
T N(AxB):-8, N(BxA)=8 AxB#BxA, NAXB) = N(BxA).
-~ - 43:" 0000 " 000
;s 0000 000 -
i 0000 ocoo
" 3 x le 0 00 e . . .
| bx3 L
: ' . . . . » .J : '
T 4. No, 3 X O 1is the number property of the empty set.
.‘ “
. . s ) o .
. _ 10 ’
" . -‘. ) lzs . .
! ) )
0—-’ Es
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'S. a. maltiplication d. miltiplication

" b. addition o e. addition .
c. addition f. addition or multiplication
64 a = 6‘

7. Yes; elthera=0 or a=1

8. 2x3x%E=22x(3x4) associative property
- o = 2% (4 x3) commtative property -
=(2x 4) x 3 associative property -
=8x%x3 renaming
# 9. a; 2Xx3xb=2x(3xk)=22%12 associative -
- b. 2%x3xh = (2%3) x4 associa“qivé
' = (3x2) x b " . commtative _
=3X (2x4) ‘ : associative Lo
=3x8 ' '
c. 2x3xks= (2 x 3) x L=6x%xk - a‘sso‘c{ative
d. 2x3xb=2xkx3 - comutative
e. éx3xl+=3x2xl+ 1 * commtative
£, Lx3x2=L4X3X2 S noné “involved b B
10. a. '2x3xhx5=2x3x(1:'§<5)' =2x%X 3% 20
b, 2x3xLbx5=(2xX3)xkx5=6xkx5 "
2x3.x1+x5"=2x(3'_x1+)x5=2'5<12'x5-.'

C 1. e (57T x7) + (57 x 93) = 57 x (7 + 93) =57 X.100 = 5700 -
b, (57 %x8) + (57%x93) = (57 x (1 +7)) x (57 + 93) _
= (57 x 1) + (57 x 7) + (57 x 93) = (57 x 1) + (57 x (7 + 93))
= (57 x 1) + (57 x 100) = 57 + 5700 = 5757

120 (57x5) + (5Tx5) =57 x (5 +5) =57 x 10 = 570.

-0 » 8 12 16"20”214,'
3%k i _ 3xh
2% (3 xk)




Chapter 9
SUBTRACTION

!EEEREMAMGSEI’

If A = {Cornelia, Selly, me, Emily, Elsie, Edward, Douglas}
end if B = {Cormelis, SeIly Emily, Elsie}, then B 1is a subset of A.
When B 1is specified as a subset of A, another subset of A is simil-
taneously specified- namely, by all the. elements of A that are not
elements of B. In this way, an operation is defined producing from
A ‘and B, a set.called the ¢ ﬂlemento_f B relative to A, or more

simply, the remaining set. Thus, if C = (Jimmy, Edwerd, Douglas], .
and A and B are as above, 'then C 1is the remaining set.’

Together,, the uwnion of B amnd C is A,' so the two subse'ts . - '

"complete" the given set. Sirce C is composed of elements ‘that are
not elements of.. B,. 1t is clear that the intersection of B and C
is the empty set. In fact, these last two: s'ta:temen'ts can be used as
the basis for defining the relative complement or remaining set. We
denote the operation by the symbol "M, For exa.mple if :
A= (0, A,0,%,)) and B= (0,0}, then A-3B= {4, *,}. This
is read "The relative complement of B to A is the set (A, *x,d)".
Of course, the goal is to connect this operation with subtractiom, = °~
and this goal is immediately a.chieved by looking at the a.ppropria:ﬁe
numbér properties. Note that in this example, the. number property ot
A 1S .5, the number property of B is 2, and the number property
of A-3B is 3 In. general, it is true that '

. (A - B) = N(a) - N(B).

Since the definition-of A - B requires B to be a subset of A,

" there are eviden'tly‘ restrictions oo B. B- can be .the'eiﬂPtY_ set; B can

be iden'tica.l to .A these two sets, A and the empty set, establish the
limits on B. Consequently, if N(A) = a -and N(B) =b, we have the
restrjctions b >0 eand-b < ea. (The symbol ">" combines ">" and
Rl to 1ndica:te 1s grea:ter then or equal to"; similarly. "< is rea.a
"is'less than or equal 'to" ) The restrictions cen be incorpora.ted into
"the one statement, O £v < a; tha:t is, the number of elements in B
cannra.nge from O to the nm’ber of elements in A. These limitations

~
. Yy
% .
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-From this, weé get the difference

fer snbtraction are eventually relaxed vhen the set of numbers that we

haée to work with is-extenaed to include more than just the whole numhefg.

The pattern of development proceeds thus: from.hbservations on complementation,
the characterlstics of subtractlon‘are examined; from examination of the ;"
eharacterlstlcs, the operatlon is extended As & result, numbers other

than whole numbers mey Pe introduced. For example,

[ R if A =-{a, b, c, d, e} and

B={a, b, c}, then A-B-= {d, e}.

-

L , N(A) - N(B) = N(A - B); that is
: '-':..»f ’ 5 - 3 = 2, h
. The Suatement 5 -.3 2, .may in turn trlgger the question whether

sméémcéorr AS INVERSE - -

subt ra\tlon may be defined for any -two whole numbers., For example is
5 = 8 defl&ed7 If we limit ou*selves to the set of whole numbers, -
the answer 1s' no". - But by reassesslng the behavior of subtraction, 1t
is nos51ble to introduce new members to the number system so - that sub-

traction is always defined in the system.

The example, 5 -8, brings out two important features of the
subtractionvoperation. Since no whole number lsvthe result of 5 - 8, Lo
the set of whole numbers is not closed under subtraction. Contrasted
with 8 - 5, . which does yield a whole nufiber for an answer, we see .that
in.general; if 2 and b are ﬁhole.nnmbers, it is not true that. a - b
is the same as' b - a. Thus, subtraction is neither closed nor. conmutatlve.
These are negative results, they tell us some of the'pronerties that -
subtraction does ngtﬁhave. Nevertheless, +hese are 1mportant results.

!

)

Subtraction is not restricted to only negative resﬁlts, however; -

nor is uhe operation of getting remaeining sets S0 restrlctea. A noteworthy

result- nay be stated thus: " ] - ’. ¢

A-BUB=4.. -

In WO*dS'. If we form the remaining set A - B, _and then form the union .

. of it with® B,.. we hgve the original set, A:- Dlagrammatlcally, the i

situation: may be illustrated as follows:

! o . . -

56



O

ERIC

Aruitoxt provided by Eic:

A B A -3 (4 -B)YB

Similarly, if we start out - with a set, X, and join a8 disjoint
set Y to it, we get .XUY. Now if we take the conmlement of Y relative

to, X|JY, then ve have (XxUY) - ¥, which turns out. to be X, the
original set. That is, '

-~

(XUY)-Y xS

. Because of these two situations, we say that union’ and complementatlon are =~

- inverse operations. In effect_,.on_e. operation "undoes" what is done by_
1 the 'o"tﬁer‘. "Corresponding to these propertiés under set operations, we ‘

have similar properties unde’r addition and sub'traction: )

e

~IF'aANDbAREWHOIENUNLBERSAND T ‘.
R . :

b < a,.. THEN (a-‘o)+b a;- AND, IF a
AND b... ARE “ANY WHOLE NUMEEES (a +'1) - b =

Th'erefox:e 1 subtréctlon and addltlon are 1nverse operatlons whenever the
“two qperations are possible or. defined.

’ .

DEFINITIONS OF SUBTRACTION

-

We have defined the difference as the number property of the rema.lning

. sej;. ~“This gives us a means of flndlng a~b 1f a is a number and if

b 1is a number less than or equal to a. We first choose & set, A,

such that N(A) ~a; next we pick & set, B, which is a ‘subset of A

angd such that N(B) =b, b {a. These two sets determzne the remainlng

L set, - B. The number, a - b, 1is the number of elements in A J B

‘a-b N(A—B)

For exaumle, 1f a=5 and b .= 2,' we can choose A to be the set

TAS{0,0,0,% 5}

" 'Next we- éan choose _ B to be the suoset ..

.B = (a,*].



v
—

A-B=(0,0,8. -

5-2= N(A-B):

_'Also, if we had chosen a dyfferent set, A, for exa.mple A= [V W, X Y, 2
and any two member subset this set as B, the result would still be

-

@

.

-one-to-one correspondence If a is a number a.nd if b is a number with
2 ,‘b < a, we start by choosing a set A with N(A) =a end a set B,
disJo:Lntcfrom A with N(B) - b,

)-,__ . '

. ’ ' ) -
Next .we choose a, Si c, . dlSJOlnt from both A and B in such
a wa.y tha.t A and (B UC).

are in one-to- one’ cqrrespondence.' That is,

. In other words, hanng _chosen approprrate dn,s,joint sets A a.ndu'?B we

set A, The nmbe’of members in- such"e set C tells us "how many more

ERIC

Aruitoxt provided by Eic:



v B = (X, Y} . .
. 'y g ~
= (0, 4,0, %, E})
leaving some elements of A unpaired. We look for a set, c .(dis,joint
- from B) so that BUC will match®’A., Thus, if C={«,B,8}, then
the elements of- BUC ‘can be put into one-to-one correspondence with
those of . A. . o o ’ -
' : - BUC = {}f’:]i"f’ ?""D ' - e
. o’-“o*l’}. . . <.
. e, f o
Now by the second defim.tion of ™ subtraction, the result of 5 -2 '1is
5 C')’ 3. The most . .
import:ant thing to say about this deflm.tlon of subtractlon is- that it )
always gives exactly the same result as the first definition. o ~ .
inl - e ' T
'_:-,‘PROBLEM o e ) s A

2.' Use the second definltlon given above of subtract:.on to compute

e

in detail*'7 - 3 ‘ :' Do . . .
Now the ques‘tion naturally arises as to why we should ‘bother with ;
: two~ ‘different definitions if they both give the same result. Why not- . ..
.. use ,just one of them? ' i . ‘

Cer

'I‘he reason’ is* th'at there are two quite gifferent kihds of ‘problems.
th'at we: conmonly meet and it is 1mpo*'tant “to know that the same mathematlcal
: operat‘lon can be used to sol've both kinds of problems ) o T

- The first klnd is the "take away ty'pe~

v ’ ST e

'Fred has 5 dollars and loses two of tbem."_ '_-H"'ow many dollars - s

- . .
° s

does he havlleft""

s the "how many more” typee. .1

" The second kind
- - 'J

- “Fred has 5 dollars.., Bill has 2 dollers, HQw many \ )
more dollars does Bill need in order to have as many das N L
Fred”" L

3 :"- : -

L3

The first deflnition of subtractlon f1ts very we’.b;L w1th the ,
take away" type of problem, and the second fits very wel}v w;rth the

how meny more" typ‘e._ But in each case the problem is so]-;ved by

. . e . .
means of the subtractlon'.. 5 = 2= 3 #

N
-

L

155 _ )
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. since tHis is the same numbe¥ as a
3 Y B L e,

The. statement that we have on page lh8, relating addition to

to subtractlon, ‘namely - T : o
e, o (a-b)+b L
’gg'lves us yet another insight into the concept of subtrac’tion. If a-b
1s some number c, then we have : ,\
. v, : ,
c+b=a. b ,

In: other words, ‘a - b -is tha.t number ¢ such that a =c +b. Tnis
j“is‘ why ve can say that e .

.\0. -

T L =c I AND ONLY IF,, & = c + b;

. " o

these two statements mean exa:ctl;\?l the same thing.
. "x \
From ‘t'his point of new, snbtract:.on is def:.ned as the opera.tion ‘

of finding the unknown addend, ¢, in the ad_d:Lt:Lon problem'

~

a=C+_b' o _. .".'_.. . .

b. For example;

1t

Lo
Ty
V]
.

it 1sNre that’ - 0
‘ S 5,2:3..§nd5.’3_=

e . s b

a - b=c .and ,aé c + "'o_"-mea'_n'the same..thing.

' arfd subtraction racts . I - S .

S

- -h'_ When does an addltlon fact not glve two subtraction facts

© . -
. .. 9
L. .

There are two reasons why 1t 1s 1mporta.nt for teachers to understa.nd .:

- .

th1s way of thinking about’ subtractron, as well as the other t‘wo.. The
flrst is that this is the way ‘that chlldren usually think- when they are
developlng thelr. skills in comp_utatlon. The second ;s thatq as t_:hildren

‘move through school, and study other kinds of nm'ners,“snch as rational . -

e

we. .o

lg | ;

g Worklng m.th whole numbers 6, 4, and 2 show.the related eddition'

23
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decimals 3 negative numbers, etc., ‘they will meet this idea of defining
Subtraction in terms of addition aga.in and aga.in. g ) -

~

. It is importam; to realize tha.t all three definitions of subtraction
~are equivalent and yield the same properties. '

Paomms UNDER SUBI'RACTION o

We have noted the proper‘ty of subtracticrn that points to its role
" as an inverse of additiona. Two properties of the whole numbers under-
'this operation that we want to highlight now involve the empty set.
Recall that with the union, we have, ' - e

)

'AU{ }~A

oW

The corresponding’ statement. for‘.nu,imbers is for any whole .ni.z_n.:'ber 8,

'v .. e _; . S e 4,
88y the same thing. { ce + O + a, we a.lso have O +'a f—_":;'a",_f-
which is the same as 0..- a - a.- Hence, in addition to the inverse ’

properties, .

i

'FQmenomﬁms 'a and b, WITH azb (Q-b)-{-b

1
P
.

- FOR ANY WHOLE NUMBERS =27 and b, (a+b)-b=a

BN . v

- we have the following two properties of zexo under subtraction:

. POR-ANY WHOLE NUMEER g, & - O = &; <

FOR. ANY WHOLE NUMBER a, & ~a = O.

EROBLEMS . . - R oy -
5 ?By a definition of subtraction, we see that a.- -b. = c if and '
-only if a=c +b, and that (a - b) + b.= a. ’v{hich properties
are exemplified by.the following? )
. a. (202 - 200) + 200 = 202
' b. (y-x)+.x=.y '

e, [(30-15)-5l+5=15 %
d.'5+0=5.‘.- ' S
) e. 5-0=5 '
- . 1{;1 K
- 0L

O
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6. Does the sentence ?"- 7) % 7 5 ‘make sense for whole ‘numbers)
3.

w,./

Te Show 'by the use of the.properties 'of addition e.nd subtra.ction that s i
Co the -followipg sentence 18 true: . . oo - PR

. X oLl . T
B . . vh- . - . t -7 s L
I’f b > 8.; -7 (b - &) -‘ Y a.

. K3 N a .

Check that it ‘is t2 ',.i;y using severa.l pa.irs of nmnber,s. e

SUBTRACTION USING THE '

TP we consider sn'btrscﬁoﬁ with respect to the representation of
numbers usingvthe number fin e can, illustra.te meny of its importe.n %

prooesses and properties .

.

Wha.t is the a.nswer to, 9 h? We s’ca.rt‘ on the, nm'ber line at’ 9 ,
and take awvay - or move to the 'left 1;» units thus amving at 5, which

is bur ansver. N ) ST S P IS o :

. N . . EERAN ]

20T 9=k
) A o . . . . o

"In Chapter T we illustrated the use of the number fine to show'
. j-" the associative property o'f addition. Sub_traction does not have..the 5
. '_ as,sociative prgpe'_rty'for - T - : )

5

A

~

]
[e¢]
I
n
n
o\l

(13-5)-2

while T S T e

t B 13--(5-'2) 13-3 10.,__ B L e
‘These examles 'are illustrated on number lines 'below. The first ﬁgure
shows that 137-5 = §,.. and this result is used to get 6{ from 8 - 2,

’ The second shows that 5 -2=3, eand thig result is used to get 10

f‘romlB-_B... : < -
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01.2 3456 7 8 9 1o 112 13 1)+ 15
._“».,_,-_,.._..(13 5) 2 2-_- S S PR

p) .
. . . : R
-2~ ' .

) ; I & .
— - S
01231+56'7891011121311+15...}' )

b—5 - 28 - ' N S
\;' \\\ , ,

\\\\ \\\~\ .

) - < 13 v
\\ / -...

13 - (5 - 2)—-*‘-—5 2. - _ "

\ 13 .- (5 - 2) -3 =10 . v:;" "

Hence, it is not.true that (13 - 5) -2 names the same nmnber as 13- --:(;5 = 2) _
and we express this by the nmnber sentence. . o S S c
. . -
. (13 - 5) -2 *,?3~' (5 - 2),

“-where’ the fsymbo]_, n" . means "is not equal to". .

- N

| APPLICATIONS TO TEACHING <

Some chlldren find it difficult to visualize set removal. For them
pa.r‘titioning and ringing a subset is not enoughj; they camnot seem to

: appreciate tha.t the objects have been remorved since the ob,jects are: still

much in evidence Covering up the objects to be removed or crossing them

¥ out with an x may help communicate removal. S'Lmil&rly, using a cup to

cover up a subset of beans, for example, has been fourd to be effective
in teaching set remorval
. S 19




. 3 . . . e
' . o -, m B
PN ¢

On the other_hend, removal may .have been S0 convincing that it .causes
Cdifficulty with trritlng ‘the number sentence associa‘ted Wl‘th the removal.
For exa.mple, 1n trying to connect the expression 5 -2 with 3, nly i
the numbers for the original set and. the remaining se;__may be recorded' - ‘
i tne)other suoset has been removed, so’ the ch11d cannot understand wby
ﬂts nuznber must be recorded In that’ case_Y intermediate stages in the .
removing process may be suggested Thts: may be’ in the form of a class . . B
act1V1ty,' fo”'- examole w1th a set of beans. . The number of the set may . by
first be recorded a subset may next be separated, counted, and the number . b
-_' F.\recorded ~Rezzzova.'.l. may be accorzmllshed by coverlng ‘the set removed (as with

W and flna.lly, the: number in, the remalning set 1dentified and, récorded._

——

s

\ é
Intermedlate stages forﬁ“'i’écordmg\of numbers in the ringing of set
o . members nay aJ.so be prov1ded For example, the follbw:.ng suggests va;,'tcms ~—\

poss1b7e stages for 5 -2=3, S T ,,._.y
B X+ X X X X X
! CX J . :
“ X X -
S 5.2 i 3 - %
N ’ = o ) N .
The concept of inverse may prove difficult. For this, a variety of
examnles"may be required showing si-tuations?which have’ inverses such as R

’ ‘Talling asleep and waking wp, say, or nuttlng..on a coat and ta.king it off. .
"_However, sometimes it is not the lack of: understanding -of the concept that
is 'causmg dlfflculty, it may-be- tm ng to verba.hze the "doing and undoing
that the cnil dren fina aif flcult v - o

1

g "Wrat. is neant':.-by the. statement a - b =,c. if and only if a= C"-i; b?"- :

b

' 'T?f.?e - °ta ue'"ent s equi val& nt.to~ o‘ senarate statements, | ?'V .' - bx_
a'= ¢.¥ b" : n"d' Ma ,f"c_l+"b_' if - a_-.b: ve'. " Its application here
'r:DWe, ne.y 22 in a 1vingh he solu'tlon to 5 - 3 oy findlng thé .
"mfsaing addend" :gf;‘:au is 5 -32 7 .. , . r"'-‘_ o
T . : :

By t*’ aoove,

un
) T

w

\

O
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1 P . .
ES . ) - 3 . -

.8 : i . P . L
- . ~ d

~

That is to sa.'y, 5 - 3. ' is that number- c such that ‘j =c + 3, !noreover,

the number(s) that ma.kes 5=c +l3 a true statement are tb.e only ones.
that qualify to be 5 - ,3 Slnce 5=c+3 istrue only if "o is 2-,

then' 5 - 3 must be 2. <L .. -

' ' o VOCABUIAKY - . At
Complement* : e : _ Remaining Set* )
Difference® - 7_—_L"S—Etraction* A

A}

Inverse Operation®s - T T

3e

o

L,

>

:.7.

8.

2.

-IH={OO 0,0,V ,R®, OQ}
*m,é:{O O}

’ . ) . . -

s EXERCTSES -.CHAPTER 9

4@ovopo/
ooy .

~amm »azab

Jointo B aset C disjoint from B ‘such that BUC =

exhibit A -‘B

. (SN

"It from a set of 8 members we remove & set of 2 members, “how

'manyvmeMbers does the resulting set nave?

wa-itn, 0, 0,00
NG Y DA@E@O}

exhibit B such that AUB ‘What is N(B)Z

Show a representation on the nymber line which illustrates the fact-
that_ 10 - 3 =7. Use the same figure to illustrate the idea that
=T+3., .

Show a represent!tion on the number line whigh 111ustrates that the

associative property does not hold under the operation of subtr?ction.

(9.-6) - 3 Fo-(6-3) -

What operation is the inverse of adding 7 to any number? What is

.

the inverse of subtracting 8?

Ir,A and- B "are dis,joint i1lustrate that (AUB)- = A.
What happens 1f A anhd B are not d1s301nt°-

T , .
. _ '1 f;ff ) - X
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CRN ~ : C R . ‘ % : 0
e . SOLUTTONS FOR PROBLEMS
"1, - Choose A = (0, 8,0,%,0,&,®) witn x(4) =T, .'3
'Choose B = { /Q,0) which is a subset of A end N(D)
., A~BF=(0,06,8 a8 - s
'~ By*@efinition, we ¥now that 7 - 3 = N(A B)‘-.

y : v : - h o
2. Choose A'= {0, &, 0, *,0,5,@}- Csigh N(A) =T . e
' Choose . B Zifa, b 5. ¢} ¥ - 4 with  N(B) = o
;Ho;r choose a sgt C disjoint from both A ,aﬁa_ B.
c=1(8,%,8,8 ama L - NG =
.80 that by.matching (BUC) Vith A+ we cam put BUC in
one-to—one eﬂrrespondence with A,

| " }
. s !ﬂﬁ_{o,a,a,*,o,e,@}

By.aefinition we know thet 7 -3 _’N(_c) = k. .

- : -

3. By using whoIe numbers 6, 1& we can illustrate the fact that 'a
2 -b=c a.nd & =¢ + b. mean the same thing.. Thus. T
. : '

. Rs - _ , . a
. and 6.,— ‘1& =3 because 6 =2 +4
PR o ‘6‘--2 L because 6 =Lk + 2.

4.° When a = b, them a+b=c 'give‘s only one ;ubtra.ction".fa.ét; -
ngmely a=c -b, For exampl#, 3+ 3 =6 and 3 =6 - 3, .
™ * .

oy

5. . 8 Inverse propei'ty of a.d.a‘ition‘ and subtraction o Etg )

h ‘b. inverse property. of a.aditi_oz; and .subtraction ,
_ ¢, inverse propetty of additioz; and subtraction showing grouping
 within the pa.renthesés. 30-- 15 is another name for, 15. ..

®a, 1identity property of zero for sddition (Zero added to any mumber -
results in that number.) ' | ’

e, identity property of zero for subtra.ction (Zero subtra.cted from
any number results in that number,)

." ¢ (5 - 7) 7 does not mdke sense in the present context because,

5 - 7 1is not a whole number. /For any numbers .a& .and b,
¢ (a.-.b')+b=a. if 'azb; N

T P . ’ Co»
. & A e .
. .

D 11

£
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5 :
=b if b >a we use the

commutative

p%qper‘_ty of addition getting a + (b - a). = (b - a) + a, -which

7. To show that ‘g + (v -;a)
v’.
.
{‘
[ B P
o . i
~ -
 J
L
G
* . -
.
". ¢ ]
‘e .
) l.‘ /.
é » ’y
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e . . K
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by the third item in Propertiés of Subtraction is equal to D.
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‘Chapter 10
DIVISION «

,“-

te

DIVISION' p

In Chapter 8, .a rectangular array.of a rows with b members
4n each row was used as a physical model for a X b .From this and
from other models, the properties of multiplication for- whole numbers .
were developed. We saw that multiblica'ﬁion of whole nuznbers has the ’
properties of closure «comutativity, a.nd assoc1ativity, and tha.t mtti-
‘plication is distribuﬂive\ over addition. Also., the numbers 1 eand 0 -
have the special properties that / . _ . | -
. lxa=axl=a, &d
. O><a=,a-><0-0’

4

The first three’ properties exactly parallel the seme three properties .
for addition, and 1 plays a role -for mdtiplication closely corresponding
to that of O for addition. The 51m11arity in behavior of the two operations
leads to the quest:.on as. to whether there is an operation which bears to . , B
multiplication a similar relation as subtraction does\to addition; na.m,ely,

an inverse or ugdoing operationm. The answer to'this is the operation -

-called division.

i B To find the product b x5, we cougted tpe number of members in a |

L by 5 egray or in’ h",‘ disjoint sets w:.th 5 members in each set.

An associated- p'roblezn is ﬁs’cart with 20 objects and ask how many disjoint
Subsets there are in this sset if each subset is to,have 4 members. In
terms of arrays, the question is "if a set of 20 members is arra.nged 4

to a row, how many rows will-there be?" The answer is 5.

b'd X . X b'd .
x x X - x
e x x x . X - :
C X X X x : )
- x  x x x :
R o ., 20 o“njectsi arranged L %o a row.
e - >
—— .« - —) .
* @ k .
' - ' 165
- 0o
. , °1 63 )

O
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; fﬁ many cases there would be no answer to tbe questlon . For example,.
20 objects arranged 6 to §~row does not give an exact number of rows.
It is true that ordinarlly we¢do carry out such a division process as
20 divided by 6, obtaining'a quotlent and a remalnder In speaking of
division as an oneratlon in the set of whole numbers, however, the
expression "20: divided by 6" is meaningless because it is not 2 whole
number The process as indicated by 6/———3 remginder 2, will be more

fully developed later when the technlques of division are di

S

tussed rn,
detail. It will then be pointed out that for any ordered Adir (a, b) ]
with b ¢ 0, “we may develop a divisron process. :
, . . ‘

To enswer the question, "how many disjoint.subsets are ;there ina
'set of- 20 . if each.Subset is to have & members’", we formed an array
of 20 objeéts arranged 4 toa row. When.we form this array, we are-
partitioning the set of 20 into'equivalent sets. By partitioning a set,
we mean senaratlng it into dlSJOlnt subsets. Thus, the fact that a set
of 2C. may “be partltloned into 5 equlvalent subsets, each havi;g. k .
members, shows us that 20 = & X 5 and 20 =5 x &, Thevnuéﬁer,' 5, v
which is thus assigned to the ordered pair (20, %) is_calied the guotien%.
and the operation which produces 5 from"(20, 4) is called divisiod; .

The normal symbol for the operation of division is + . Thus 20 + 4 = 5.

\

The oertitioning, of course does not have to be shown as an array. Either

”dlagram aelow, for exampTe, gives the result of 12+ 3

12 objects, 3 in Set of 12 opjects in d1s301nt _ _

each row. . «~subsets, 3 ‘sbjects in each subset.

. For the ordered vair (20, 6) there is no such whole number that can -
be atteehed; nor ds there for (5, ;5). So, under the operation of division,
(20, 6) or (5, 15) are not defined in the set of whole. numbers. Division
;herefore does not-have the properfy of closure in the set of whole numbers.
Thé last case for (5, 15) is simply an exemple of the fact that in the
ordered pair of whole numbers (2, D),- if b >a, and = #£0, the operation

.of division never yields a whole rnumber.

o g :
-3 .
. 3“ B .
4 H ; .
) h s rw AN
4 P - . ,
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PRQBLEMS* _ . .

-

v d. Find the whole number attached tg each of the follow1ng ordered pairs

under the operatlon of divisioh; 1f there is none, explain. .

-

a (20,5) ¢ (6, 1) e (64, 8)
b. (4, 28) & (72, 9. . . - f£. (2, T) '
‘ | . | . . . B - s g. (11-7, 7)

v

2. a. Display en arrey to show 28 + 7.

, ®. Illustrate 28 +7 bya partitionlng that is other then an .arTay.

.

By partitioning, we have obtalned 5. as the resu;t of, 20+ L because
=35 X 4, This is similar to the missing addend. approach to subtraction.

Here we say that a+ b is that number c such that a = c¢ X b. That is,
- ', B - -
. a+b=c IFANDONLYIF a=cXb.

Thus, c is the missing factor of a = c X b for given mmbers a and
b, with=b £ 0.

€

.

DIVISION AS INVERSE ' ' ‘
In the - same way as subtractlon is the inverse of addltion division
by a number n may be’ thought of as the 1nverse of multlpllcatlon by n=n.

Thus, -

- . .’ -.‘,
_(8x3)'+ 3 =8 and (17xl+)'+ b= 17,7

EoVever, caution must be exercised in-thinking aBout multiplication.as

the, 1nverse of division. because it Is true that ~

(15 +3) x 3 = 15, while (8 =3) X 3 is meaningless
since 8-*—3» 1s not a whole number. This is similar to the caution we
mist exercise 1n thls "doing and uhdoing" process with subtraction; thus while

o : (5 - 3) + 3= 15 1is perfectly -acceptable,
.z . -.13) + 13 1is mezsningless
e . (5 -13) +13 geningle _
s #51nce “t5 - 13) is ndt a yhole number. Of course, the restriction will
be removed Iater wherl the set:of whole numbers is extended to include

umbers FTor whlch "8 +3 and 5 - 3 bhave meaning.
. e .
-4

*Soglutions for problems in-this chapter on.page 180.

- .

¢ o w7y
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’ VPROBIEM. _ - ' E o s
3. "Tell whether each of the follom.ng S'tatements is true or whetfhei_‘
.1t is meaningless for whole numbers . o - B
a9 -9=3 L e (3*9)X9=3
b. (9+3)-‘9=3' e £ (9x3) +3=9
e (329)+923. .. cgn (9%3)x3=9
*oa (3x9)yE3=a9. T BRI

."Tm.@{g_?/.l @92N msro R

_ T’he operation of dinslonawa's cqnnecte% to tha operation of multi- :
--_-'plication by the statement that e &, 03 N

s .-‘.- el E :

) . . R PN ST
T F .a+-g _Cc 1fa.ndonly1f.la_cxb and b;éO

' ".Since l e.nd O played sneCial roles in multiplication it may be ,apnropriate

_to pay pa*‘ticu_ar attention to tne‘ftwo numbers .in diviaion. . :

[ b"‘

If b , then we have *l=c if and only 1f‘a = c >< l

Recalling the snecial property o. 1 under multiplrcation, we have ' _ ""
e l =C; hence, a and c’_ renreéent ghe same number, a.nd for a.ny o .
whole number a, ekl s e "On thé other hand, “17s b, is not & vhole EEERe

number unless b =1 1f»b ;é 1 there lS 1o’ whole number c spch that. .

1=¢ Xb | ;‘:_.{_‘__,_‘__‘;_._, e

th?é‘ number 1 acts, somewhat’ Iike/ an-

e thadentity element for multi- ‘- '
"‘=a><l the number lisl_' L

oy division only if it is to the R

! ] _ : \ ;sion, we za.n note that the @? of, ‘

_O-' gin division. Brie »i s, / may be smmnarized as foll;?s‘i_«l - ’.';_'1 .

O+b =c 1if a_ﬂ'd{ -__' I b. . For b ;é O is ti',p.e_i'

If o= O ;a,ve O + - et

o . any mumber ¢, the reSul%y of ©
_ specify af\mique nlgmber, hence . ,
. ® .THEQOPERATION OF DIVISION TS NAANED. FOR O + o
ER e ' p o SR -
yonTE R ti68 -
.%;-,' R ot '- . 1?1 ‘ - ' .
;«# . ‘ 0 . * ™ .
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3 . N
'j%:notb\er s1tua‘b3.on. Since a +_O =

a +0. vhere‘\,};& ;4 0 is. :_)_;f‘
if and only if éﬁi ¢ X 0, :-v
l‘lave a contradictlon in term&;o:'v’ %
a # O and came to the com’:

0 for’ whatever number c¢,. we
ed out w:.th the assumption that
a = O. For 'thls reason,

"—O IS UNDETE‘]I\IED

0

PROBLEM

b, Tell whether each ! :
_ number, - or, ca.nnot 5 ﬂ;.;ferm:,_ned; if pOSSl:ble, name .the whole nuftber.

T
20 numbers.;and b>a.

. 3 j‘ber and' ~’o ,1- 0.

j;"

o o

'*be ‘E’wen to show“that the wtole numbers are not
.. For example, . wh‘lle 6 +3=2, 3+6 is. not a
! se same two examples show that 6 +3£3+ 6, hence

' the operatlon‘a\‘ not commutative. - To see' ‘that d:.v:Ls:.on is not associative,

Ty

again ma.ny examples may be produced _ ’vIe ’need only one example, and such ‘
an- example 1s the followlng' T

P S
4 5 (12 + o) + 2 =2+2=1, but
: | 12 7 (6 * 2) =120+ 3=k,
5 R - _ ) |
" dlfferen;;zesults obtained, for (12°+ ) £ 2 ‘on the one hand, and
for 12 + (6 on the other, shows tnat, in general, it is not true
thatfg(a +b) ? c equals I (b +. c) o . L . _
R - - "_‘ . _A. ' ' '
o .w’%ﬂ&f . PO S . . -
' ’ _"169'
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'So far, division with respect to whole numbers has revealed itself .
as an operatio hat does not have the propertles of closure, commutatrv1ty
z and associati . Furtbermore, division by 0 is 1mpossible To free
" :ourselves from the impression that not much can be said about this operation,
we need to consider only the important notion that division by b 1is-the
~inverse of the operation_of_multiplication by b. That is, (a X b) +b =

provided, of course, b_#!@){j‘;

PROBLEMS Tﬁ__

5." For which of the following is it true that (a +'b)+ c = a+-(b_4-c)? S

a. 4 +2 +2 - ‘ .9 +9 =1
b. 4 +2+1 . T. 9+3+1'
c. 2k +6 +2 - g 0=+9 +3

d. 0+5 +1

6. From the results of the preceding exercises, under what, conditions
will (a +b)+c=a+ (b +c)?

S

DIVISION USING THE NUMEER LINE

-We can illustrate-division using the number line by partitioning a
segment into coggruent subsegments. For éxample, to'illuétrate 6 = 3;
we can partition a 6 unit’segﬁent into 3 congruent subsegments, each

" of which o L . ‘

PRDl,

+ n

o
]
n
w ot
+=
Ul
[o)}

1s congruent-to the segment from. 0 ‘to 2. Thus, thii partition conveys

the concept 6 + 3 = 2. Cleariy, this is associated with the representation
N of multiplication on the line in which"three 2 - unit arrows or 2 unit
segments are abutted, resultlng in a 6 vnlt arrow or a 6 unit segment
The assoc1ation may/be thought of as: one operatlon is the inverse of the.

other, or, from the point of view that' '

6 +3=2 if and only if 6 = 2 X 3.

Another method of illustrating division on the number line.is‘reiated
' to considering division in terms, of repeated subtraction. This concept will
be discussed in further detail invChapter 15 when the division techniques -
o ' 170 -
» 175

2
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are discussed. We cen indicate here,. however, .this use of the number line

, in‘order to compare_ﬁith the use shown above. Beginning with 6,

. we ask: gHow many tlmes can 3 be subtracted’ Corresponding to this,
we can show divislon uslng the number line as in the above figure. .

In this case, since subtraction is performed twice, 6 +3 =2, ”ﬁﬁiThfv

13

. ~ . >

PROBLEM -

-

T. _a; Show by partltlonlng a segment on the number line that 10 + 2 = 5;

b. Sbow by partltlonlng & segment on the number line that 5+ 2

does not yleld a whole number.

COMPOSITE NUMBERS

Rectangylar arrays form the basis for what used to be known as thev

“rectangular numbers” by thé ancient Greeks. If a number n  ced be
presented as other than a*1 by n array, then the .n is said éb be
a rectangular number. Foriexample, 6 may be represented by;a 2 by
3 arrey, so 6 is a rectangular number. Now we call such’a number

2 composite numoer,-.6 2% 3, so 6 is "composed" of 2 and -3.

12 is also a compos1te number; either a 3 by 4 rectangular array or
a 2by 6 _rectangular array may be usQ_ as a model for the composition
of 12. Hodever, 2% 2X 3 also shows how 12 mny be composed. ft
-is true that’ 1f 2 whole number n may be "decomposed into more than two
factors (otner than 1 eand n)? then it can Be decomposed. 1nto two
factors other than "1 and n. .Hence, such a number would. be consldered,
"also a rectangular number, It is simply that fhinkiné in terms of the
compoSitlon puts the focus more on analyzing the number than thinkghg

“in terms of* rectangular arrays that can be formed.;.

Since 12 =3X b4, we have regarded 3 end h as factors of 12.
- As we have nOued there are other factors of '22. For example, 2 1is
a factor of’ 12 because¢ there.is a whole number whose product with 2

is 12. That is; « 2 1is a factorof 12 because 12 is 2 times a whole .

171

O
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' : .
automatically qualifies
actors ¢f 12 may be

~ -

number; in this case, the whole mumber is
6 to0 be also a factor of 12. A'complete 1
cata.logued as follows.

4

s ‘12' 1x12, so 1 and.12 are factdrs of 125+ . -
l2=2X6, so 2 and 6 are factors of 12; -

It

. l2=3XL4, so 3 and & are factors of 12, o
12 =4 x 3,- so 4 end 3 are factors of 12; vl

C o~ 12 =6 X2, so 6 and 2 .are factors of 12; -

T 12 - 12 X 1, e 12 end 1 are factors of 12;

Thus, 12. has 1,.2, 3, 4, 6_ and 12 as factors. 5 1is notafactor-
e of 12 because there is- no whol‘é’mgmber n- such that the mathematical

L
- sentence co e R - . ‘

Py

‘ . " lé'= 5 Xna e ( . ' '

.

is“‘ﬁggf. ﬁeither are 7 8,9,10, 11 and any’ whole number greater than 122 °

-, factors of 12. (Notice that the last three statements in the display give
: ., no information on. factors that was not contalned in the fn.rst “three state-
- ments and we could have done without them )

P
2

-~

‘It is clear that since ~_' =1 x~ n, any whole number un_ has }l -and
. o as factors. However, there are many whole numbers for Vthh these are
w‘ the t_>n£ factors. For exau@le' 1 and ‘5. are the only factors of 5, .
"1 and 7, are the only factors of 7;- and 1 and 13 are the only
factors of 13; and SO on. _Such numbers will be of 1ntere,st--for,us and
are speclally des1gnated. -b \\ ) h ' ‘ '
+ ANY VHOLE NUMEER THAT HAS EXACTLY TWp DIFFERENT WHOLE
S NUMEER FACTORS (NAMELY ITSELF AND .1)° IS A PROME NUMEER.

_Note that tm.s definiton excludes *1 from the set of pnme numbers .bedause
1 does not have two dii!ferent factors. . It also excludes O -from the set
of pnmes since 0=0 x n - for any whole number n; any &hble.number is -
a factor of O. In essence, the prime n.umbers a.re those that can only be
associated with a "1 by ) a.rray (for w' l) For. exa.mple, let us
- consider an array for 7. Placn:tg two objects in each row, we can complete :
j&i.n a.rray ‘with 6 objects; the _seventh ‘object makes the array incomplete.

CEEEN
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4 has been eliminated because it is a multiple of 2

Similarly, : -

o,

3, 4, 5, or 6 objects in & row induce incomplete arrays with 7 obJects.

S A1l whole numbers greater: than l may now be class1f1ed accordlng to
whether they are prime or composlte. Over 2,000 years ago “the mathe- '
maticlan Eratosthenes devised an easy and stralgntforward method for sortlng
prime numhprs from a list of whole numbers. To find the prime numbérs
less than 50, for example, the whole, . numbers from O 'through 49 are’
listed as bélow. O and l} are crossed out since they are not primes: -

2 1is a prime, but every other_even number nas 2 as a fdgtor, so all
even numbers greater then 2 are crdssed_out.;

g X 2, 3 K 5 F 1, & 9 ..
X, 11, ¥, 13, M, 15, ¥, 17, 8, A9,
- 2, 21, 2, .23, A, ., X, =, 28 w, -
3¢, 31, 3, 33 ¥ B, ¥ 331, B 33,
b, 1, LbE, o b3, MG M5, U6, LT3, 48, b9

Continuing with this, 3 is "savedﬁ and 3 X2, 3X 3;"3_xmk, .}.,: are
"eliminated";.that is,-ell "multiples” of 3 greater then 3 X1 are
eliminated~ - s ﬁ '

a . o

Gl L @ F @ W ) 6| LA %
‘10, 11, |12, 4, 0 | 19,
';‘392": 3L, 32’ e 35: Ry 39”
30, | M, [ M2, | 3] Wy | VS | Wy b |

In- this second chart the numerals that are shaded represent numbers that

are "eliminated" after the screening as "multiples of 2 (1 is liminate’

before the screening) " The slash marks 1ndlcate screenlng as: "multgplg f?;

“end all other multiples ‘of -5 -eliminated and so on. Thus, eventuallyh
azrive at the set of all prlme numbers less tﬁan 50: . ’ R
L B S

.~ . i"'“

o«



2, 3, 5, 7, 1, 13, 17, 19, 23, 29,-31 T, 1, 43, k7).

» ‘ It .can be shown that this screenlng process needs not be carr1ed beyond 7
. for prime numbers. less than 50 since 49 = TXT. Ir 49 is the product
of two whole numbers a. ‘and b and one of these is greater than 7, then
. the other must be less than 7 This tells us that any factor greater tha.n
V T wou.ld,.have Jbeen ellminated when its chpa.nion factor (which is léss than

7) f"—considered ‘ 4' o e . - '
R ‘ . o T o ’
i\PROBIEMS e e N ..
;\8 Express each of the, following»nmbers as products of two’ factors 1n
5 several ways, or tndicate tha.t it is 1mpossible to do so. e ..'\ ’
f"" a. 18 ‘,. ‘:“’ ' - c. 30 . ’ g;"' LT
'-/_/' ' b'f." 6‘ ) < o4, 1 : ‘i
!; 9. Iist all the numbers that could be called “factors ;
. i ) N .
! Y- of the number 30, VN e
" b. of the number 19, o . SR
| ..c. of the pumber 2k.. . : T
~ FACTORING COMPOSITE NUMEERS. : oo SR _
_’ A prime.number cdn be expressed-as the product of counting’ numbers
. 'in one and only one way, namely the product of, 1 and itself. Thus
‘ -3 =3X ‘l, - ) a _ - )
. '~5 =5%1, _ )
3 . =7x1, .
" E . '
T 11.x1
A composite number has more’ than one factor expression. For example, *°
some factor express1ons of 214» are ‘. N - : e
[ . .
S b =1x 21a AR
- " - o F L e B '
1 i o ‘v ] 5 - %x 12. ) ~ .
) : -> e 2 le =3x 8 .u oot . ) ‘ ]
S A 6 o RN
N e oL L y ;__' e .
- ‘ A Ao hx2x3 SR S
e ez 2 PR ;
{ . 2 x5 x 6 T Ty ’
) =.2 &2 X 2»Xa3. “'_.',_, r N » | ';_
. . ' . ) . . . . . B 2 . . .
. - -
a’;\ \Q . L ) M N
o o .
-~ - ’ : . . ‘Q '
. o o . R
- - ' a W 4 . N
7 “‘, . —‘/ . - - 7,
oot toe . R ﬁ_ N ‘
A N ) - a » 0’ s‘h ' e
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Notice 1n theeexpressi‘bn 2Xx2X %hx 3 all the factors"are prime R
mmbers.-- 'Because -Of this. i't is called e complete factorization or the .2
pr:l.m factba.'ization of .24 It expresses 218- ‘as a product_of prime_ ' .

,;}_"”bery PR ' R CoLeA
o . A . .o S P oL

}Bvery composite number can be factored that is, it can be. written
as the produc:t. of at least two factors each of which is less than the ':-*-Z :
number itself If ome or more of these factors is e comosite numbe:c o

-it ‘can be ’n’itten as the product of still smaller factors. This process
cannot g0 gn indefinitely since the factors , which are counting numbers 5
are getting sma.ller, a.nd ‘the smallest counting number is E.\rentua.lly (I
we must come to a factor expression each of whose factors is a prime ] '
“For' éxample Ty 7 _
St 360 = 6x60 " T Co L
: Lo, i=e2x3xéo O R
e TR sax3xSxaa ;,l' : i - |
-~ BRI "=2x3x5xex6 B

3x5>¢2x2x3

. ' : 3'6‘0=£9xh0 ‘ ‘
3 = =3x3xh0 . S T
- =3%X3x5%8 o S
Al oo maxaxsxexb. T 0
L SRR I 7=3><3><5“><2><2><2 EIREES
4 e -_-=’2x2>_<_>_3x3'o' % R
; | - =2x2X3X3%x10 * s
L ='2x'2 x:3'~x_.=3x2><5- ' “o
. . .t » ®
¢ o i J“: L S

‘Notice that a.lthough in each case above we started m.th a different
pair of factors,uthe eomplete factonzation was %the’ same except fol’the B '-‘,4
.pn. r in which the prime factors were written.. ..‘,E.This is always true. o "

E\rery composite number can be wntten as the product of primes in one

and only dne way except for 1319 order in VhiCh the prime faCtOBS are wri'tten. T
. ) ‘- . T .
. et
‘ . e T e . A
‘ T R T N S e s :
e

O
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PROBLEM o o \

- . - . . ° ) . - .
10. Find the prime factorization of *each of the following.

e, 8 . . d. 160.

- >, . » ‘ . N ";‘ )

y b ?7"/3'\‘ _ e. 1k, : LA R

LT £, 210 , _ - ’
'GREATEST COMMON FACTOR * - ' . ]

_ : ¥’ . ‘
Let us consider the numbers 8 and 12. We see that both 8

and. .12 are even numbers, hence they both have a factor 2. Recause 2

is a factor of both 8 and 12, we say it is a common factor’ of' ﬁhe numbexs -
. \ LN . T ——— —

All whole numvers are divisible by 1, hence 1 is ag
.. of all wholé numbers. Therefore when we-look for common facty

numners, we need only look for aumbers greater than 1,

P .. ¥ e

know that l is one of the commmon factors.»?

det us ask ourselves what factors are common factors of 8 and 12

a =
‘ 8=1x8 A 1=lx12 '
T =
> B=z2xk . . .~ le=2x6
R N L3 L3 f "
. 8=2x2x%x2 = 3%k '
’ =3X2x2. "
The set cof all factors of
4. s .Ine set of all factors of 12  is
M "-” - .
"a ) . A . ." [l 2; 3; l" 6 12]

o

" - The set of common faciors of '8 and 12 1is the intersection'of the

. two sets above. . ’ . . . I

Hence; the common factors of and 12 are 1, 2,4 -

.Do the numbers 3 and 8 ‘have any. common facters other than 1? .

Tre set “of all factors of 5 is ¢ .
1, 33. - : .. s
Trhe set of all factors of 8 is SR ) : ’
. e 1L 0e L, 8}. A

Tre intersection set of these two sets is

- o 4 @y » ) o #
’ < ' 176 o R
’ .‘\\‘ . 3 e .
E - 173 s
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ﬁ‘& T ."A- o .;' : . o z’/

~t A e

ey, o DR

ROV B _
{enddp 5 and. .8 have only one commoD factor, 1. The amswer to dur

- e

Qnstion then 1s "The mmbers 5 and 8 do not have gy commQn factors
other, than LM e ) - n R
- Som sets of numb;,s have many common factors and sofne sets have only
1 as a com:op, factor. - , . ) o ) 1

B

_ The greatest’ elemen‘g ‘1}1 the set of commos facto*s of several numbers
-’ .
18 called the greatest common factor of »these numbers. We see then that

4 1is the greatest common factor of%8 and 12 1 is €hé greatest -

A

cammen, factor of "5 and 8. - : ‘ &
LI e e * 4 E ] ? - :v
X Writing the set, of &ll factors of a number is sometlmes troublesom?

especially if the number has many factors. ‘An eas:.ezj way to find *the

«

V@reatest cemnon facter of several numbers is the uee ‘of their cogplete

- > - " . l ..
factorization. S ... - T I
- 2 .
Suppose -we wish to find the greatest common factor & 36 e, J‘@ A
and 7T72. We find the colplete factorization of t_ne numbers: S
-~ . . . d .“r- = '\ . ! @
36=2x2x3x3 (2 X 3) x 223 T .
- . v ) v ’ .
% . b2=2%X3X7= (2><3)><7 ,
v . . N . l -
T2 =3%X2X2 x3%3 (2x3)x2x2x3
' B

Notice that each number has 2 as a common fac‘gi,r and 3 as a cormon

g‘;fetor; Hence 2 X 3=6 is a common factor of them. All the cg:mm'on,

factors of 36, k2,’and 72 are 1, 2, 3 and 6. The greatest common S
n-factog of these numbers is 2 X 3=6. . ’ o . o
"PROBIEM : R L
_)l. Find the greateet eon‘mon %ictpr of thes setg of nuibers /below . é R
- 6, 8 ;__ . //‘*\ f . . -
b. 3, 8, 12 . ' ‘ S
c. 2k, 16 ’ 4

©d.. 36, 48, 56-



BN . . v

] . 4 " . . ‘
APPLICATION TO TEACHING ) : : v o,

L . . “

: I\ A

The toples of factors, composite numbers, and prime numbers will not
Qbe pre%ented until the secona grade. A start on this' is glven in the

first grade when we count 'by twos. Of course, in terms of multiples)
the even numbers are éimply the multiples of 2. Similarly, multiples
of. 3 ‘are’the entries in the "3. times” table, and so on. :

s . Sy o

We have noted thet since 3 1is & factor of 12, we can say thet .
12 is a multigle of 3. Both factor and multiple originate from the same

' concept' theregis a whole number n such ‘that 12 = 3 Xm.. A "‘iple

is vieved from the standpoint of the number being composed' a factor is

*

< viewed from the standpoint of a number, going into the composition as a
"buildi,ng block”. Beginning in Grade 5, the children will be introduced
to the Funda.ment&l Theorem of Aritbmetic - when a whole number is "decom-
posed” into the primitive building blocks of prime numbers, this decom-
position will be reve&'Led as unique that is, a-whole number is made up
of" ones and only ope set of primitive blocks}ich we call the primes.

"'At that ,time , the children will be taug_nt the complete factorization
. of .a, whole number (or, ‘the i)rime de;:ompo_s,ition). Complete factorization _
is a natural lead-in to a correspondingrféct‘orizétion ink algebra, yhich -

e

yielde, among other things, solutions to algebraic equations.-.‘
: - _ R . . v

. : . . .
K3 . . . -

*  QuESTION®"
"Doesn't{ 6+ 3 =\2 show that division is closed in the set of whom_u’\mbers'
The statement," 6+ 3= 2, asserts that there is a whole number that. .
answers’the qu_estion "Whet is 6 divided by 3?" To sey’that division
-is closed in "the set of whole humbers means that ﬁwithout exception, for
* any who;!_.'é'nmnbers a and b, b # O we must be able to: find a whole 3

" number represented by' a + b. Since examples can be found tor deny that .

-7 it is'always true that a + b’ results in a whole number, we cemnot say

( that division is closed in this set. For idstance, 3+ 6 is not a-

. whole number. One example cannot be used to prove a general. sta'tement.

T .."

O
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T VOCABULARY
Common Factor ; .
Complete Factorization *
Composite Number * .
, T Division * -

Factor *

P
-
[

) ' " Prime Nugber *
. Quotient * '

EXERCISES - CEAPTER 10"

.-

,Greates’; Common Pactor
Inverse Operation *
, Prime Factorization*

1. Rewrite each mathematical sentence below as a’division sentence.

Fi'z;d the unimown factor. . ' T
a. nX5=20 : d&. nx9=7T2
b. pX k=28 o e. nXx8=~64
c. nX1l=6 . ' - f. gx0=0

2. Tell whether each of the following is more readily visualized by a
~ rectangular array.of 7 rows or by disjoint subsets with 7 1in

" each subset..

8. 1+2 pieces of candy are to be divided equally among 7 children.
b. 1+2 pieces of candv are to be packaged T pleces to a package.

. 3. &na.chhg band always forms an array when it marches.
"lﬁces to use meny different formations.
band has "59- members.

"_-,;, .m%re- mbe;. ) dhy’

-

The leader
Aside from the leader, ‘the
The leader is trying very hard to find one

b+ Does divi,,i:o'n ave the commutative property. Give an exa.mple to

e e . R,

su.@snt* ate vour answer. . ] -
- R SN ’

> 5. Rs:pr"&s eac;(?"the follom?ag numbers as a product of two smaller

numbers of irdicate that it ix,,impossi’ble to do this:
., s
S, fas 12 e. 317 e. 8 ,fé.-35' i. 39 k. 6
b, 36 4.0 7 - f£..11 n: 5. j. k2 1. M\

6. Factor each mumber belowcompletely )
a. 16 ° ' d. 90
LT b, 2 : e. 1uk
/ " e. 63. r. M -

Ly

O
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7. .Find the greatest common factor of each set of numbers below.

a.. 2,3 . e. 3, 8, 30 - '
P . 15,8« - . ; cf. 12, 16 . .
C. 6,.16 . s I 8.0 9, 33, 21 ’ ) Ll
‘ % N s _ -~
Y d. 3, 12,15 ¢ h. 8, 16, 56 N
' g - Py S B mcc e c e mc——————
3 [ ’;V ) & .
) , MITIONS FOR PROBLEMS Y
. T 3 I '
F a. L o ke c . ,
‘b. Noné; 28 >4 and k;é 0. N . . :
. _ . .
.e. 6 . o
. d Hd
a. 8- i » »
e. 8 « ' : _
£, 6 - T - * N . '..
g.” None;- there is no ;@ row a¥ray.of 47 members
2. a. .. 3, . 2.
. . .
. . Y . ‘.. ®
. .. R
. .
- R ’ R .Q F - -
9 9 A B . * R Q
g 3 & 6Trua e ‘3} e. "Meaningless : .
v ’ ©. True ) : £. True
o c. ‘Meaningless o g. True .
[ 1 ) d . . ' -
2 * d. True
. e °
. a. _Wnole numoer, 2 N
X & .
: ©. Not a whole number .
- e © Wnole number; 1 . ‘
d. 'Not a whole number 4 “
.e.__ Whole number; O -
- f. Wncle number;. -1- , _
g. Cannot be determined: meaningless if b = 0; not a whole n ber
- if b > 1.
' h. Cannot be dét_emined: zero if a = O0; not a whole number if
a#0. o |
" i. Wnole number; O v: B » a
i "j. _Carthot bg,dete*mi*zéd mea.nlriéless if b =0; (.rlole number al
. Sk if b = 1;-waole numbe"' If ©.>1 and b is a factorof a: - .-
- not a wnole aumoer 1f b >l and b 1is not a factor of .

. . v
' ‘ . ~ - - N
» . .
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N
k. Cannét be determined; wmdefined if a'=.b,'= 0; the whole number o
1l if a=1Y #o0. ' R )

o

5. a; Falge =+ = ° . e. True - 5
" b. True o 4 _£. True _ o
. False 1 - Y g.. True

d. True -

}

o
H
,
N4
w
=
A

: b. L,
5 < = 1
0 1.2 t 3° 4
. " The coordinate of

8. “;3x6 ‘2x9,1x18 (or6x§
'§x3, 1x6 ’
'4c.,e;<~15, 5x6

. .~ are not essentla..ly dl\ff’erent

1, 2, 3 5,6 10 1;, a.ncL 30

. 1 amd 19 5“ ,,“,_;» . ;J .

e. The set of facto*'s oﬁ' _2_5» = {l 2’3,& },8 3‘2 2L}

10. ex2x2
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g€ . Chapter 11 -
L m.mm'rs & GECMETBI R

: In Cha.pter 5 we intrgauced some geometric concepts using pbysical _
objects such as blocks baﬂs,, ‘boxew, cans, s.nd ice crea.nr cones as models. ':-;_
- From these models, we conceiyqd 1dealized sets of points\such as rectangular
solids, spheres, cylinders,, "€o es, se?nents, e.nd so on. Thene is another
| set of points which is impprtant in geometry. This geometric configmration R
. can be fomed by extending a line segmeni in one direction only This C

figure is called a gz A ray is incﬂ'cated. below. T i \ -

) ! LI YO X - . - . . ‘\ . “‘...

SN,

R . 3

< T2

Y- ! ‘X .

NS e N

. o . ’:': "-" N ‘_..‘

" The ray shown above is formed vy extending AB *through B gz: AC *_‘ :"-. «
I Wt

.- - through C - The notation for This, rayas B & E Jdn co‘g:tr&‘st

“ ?rlth the notation for segments e.ne. ligs,fin na.nﬂng*'rays ‘the or&er of ‘r\ S
points is significant. A ray- haﬁ on%endp n and it‘d.‘s ne.med, fix%‘t :
“The second letter can name a.ny other point &n ‘ray. . As indicatei »
below, ﬁ and ﬁ are not eqlml sets ,'$:There are commnn;poinifs {n E -

-

two sets., However, point - X .,is in oﬂ? bu‘g'is r&ﬂ point in m“ J *
-— e . . R . Y
PN fx -'iM:% L& A R s

Note that the arrow 'in the nom:nclfatu;"‘e MP des}gnates whic . "
“the endpoint of the ray; it is not the 1ntention%mky the orientation" - ". t "
of the ray as it sppears. In’ facf it would %sgble to ori&lt -
the arrows in conformity with al‘i pos51ble ori nta.tions .of thz ray. )

'n_ g wd
1}

PROBLEMS* B g-@.

. R

- . B

1. Represent TR and show Q between Pt and-» R.

follomng denote the same ray. ." % g+

ﬁ@"@ﬁiﬁ'ﬁﬁﬁiﬁ

183’ _

<, . . . . -
L ! l

&.b

(Jl
. d

‘.\Y.' .‘ ’- .
) ¥

e e o N
o ow - Lt

O

ERIC

Aruitoxt provided by Eic:



Y - -
-

2. a. - What 1is the implicatiomof the statement E = CB? L
'b. Does EK 1’33 ~have a similar conotation? A

, 3. Ref‘errmg to the draw ﬂng belOw’ rename the sets in smple notation.v

5

_ a. ﬁnioﬁ;of:-ga,  65- aﬂd BE
b, Ihtersectfoniof AB and ZC.

: c. -Intérsection of TA and ED.
d. '_Intefsection of TD and .

e Ué}on-of' EX anda EC. . -

N

Anothe‘r fundamental géometric figure recognized in many familiar shapes
is an angle. The formal deflnltlon Jis:z.an angle is the union of two rays

whih have a cozmon endnon.nt but which are not subsetg of -the same llne.

-

- The exa:nﬁle shown is the union of AB and AC. Their common endpoint *
is said to be the vertex of the angle. Rec¢all that vertex alsb. applies
to geometric solids and their faces. In each c'ése: it is the intersectioﬁ .
~of apbroprlate edges. Sl"ularly, nere, the vertex of“ an angle is the
mtersectlon of the two sets OJ. Domts in the rays The rays are called

the sides of the angle. - ) -

- Our angle is denoted by [BAC or- LCAI.B,. ‘where thg middle letter
identifies the wvértex. The 'ofher two letters name one point distinct
_frpm the vertex on each~of the two sides. 'Often, simply [A will bé
written instead of ABAC. This notation cannot be used if more than

" one angle is drawn at vertex A.

RSN

O
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A D . »'gf f ‘

. - ' ’ "a

mea.nt in the figure above. : g ?
. : _ - 4

. PROBLEMS

h a. Na.me in three ways- the angle shown.
. b. Identify the sides of this angle.

. 5. Identify &ll angles in the figure below.

o -
-

6. Can V¥ and WY be sides of an angle?

REGIONS _ )
Since a polygon is a simpie closed curve, it is the set of points on
the curve; These points should be distinguished from the set of points
enclosed by the curve which we call the interior; the two sets are disjoint.
A circle is also a simple closed curve, and it also has an interior. The
union of a s1mp1e closed curve and its igterior is called a region We
‘refer to a triangular region, rectangular region, polygonal region, or’
circular region, ete., indicating that the- simple closed curve is a triangle,

recta.ngle, polygon c1ch_.e ete.

To denocte a pla.ne region in a dia.gra.tﬂ, t}ée interior of the simple
closed curve is usually shaded. ‘I‘o denot e interior only, the o
_interior is shaded but the polygon is drawn in &gxed outline as 1s -

shown in the figures below.

¢ ;& _%ﬁ

N i . 1
(%4 . 8 [
‘ 1 T ey S
R N BE TN ,

4 | RO v ]
recta.ngle recta.ngula.'r region interior of  union cf‘ i_nterior
: : rectangle of rectangle and -

o ‘ - part of rectangle
-;:":: 8 ¢ '
: 185 1 (e
‘ A

O
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conem'r ANGLES '..“" o _ .

-
¢

In Chapter 5. we deflned two geometrlc flgures as congruent if one

is an’ exact.copy of the otner, » ' '
Stppose we are given two angles, éABC and - [?QR, and we wishﬂtoﬂ
'\ find out if they are congruent. We make a tracing of

- /ABC, say - [A'B!C'. .We now place e trac1ng on [?QR “$uch.thet ray
L . "
falls on QF and B' fdlls o’ Q (lQ’S is shown above at the right.
Now if BYA'. falls on QP we say that [ABC is cdngruent to [?QR " ;:

" A "necial angWe thﬁt makes f*equent anbearances in mathematlcs is &
_ tight angle. No formal deFlntlon is given at this time. Instead we will

~describe.'wha-t is meant by a right angle in much the same way that you will

convey the concept to your students. i .

oxl

s Y v W, L.
- The above drawing represents two right angles, [XVX and ZWVX.
The angles are congruent, and the union of a side of one and a.side of; the

.

other is a line.

If a piece of paper were folded twice, as the drawing below indicgfes,
end it were then urfolded, the creases suggest segments of two Iines.-whose -
intersection is theé point R.  Thus, R is the vertex of four rlght angles

whose_sides are the extensions of appropriate Dalrs of creases

. o B!
= T L
. 1
I ] ¥ -
- ‘|IIIIIII"\ $ !
Fold 1 . Fola2 Unfolded with  *.

creases -dotted .

-, . . .

O
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~ 7. Idéntify ell angles -which sppeer to be right angles.’
. E 3
8. Which of the folloyiné pairs of angles are.congruent? . E . ",
a. . ' : S g
b. teorL s
’ Y
N .
. \~ c_ A‘
\ - -
\ .

We have discussed'éongruent segments and congruent.angles.’ Now we
shall discuss congruent regions. ' C : ’

Two geometricAreg;ons are cpngrﬁenf\;f one is an exact copy of the

. 'other. ‘Suppbse wejhave the two triangles ﬁiptured below. .
S B Y o N

. L= — T ¥ z
. Firé% we meke a tracing of triangle ABC.:. Now we éu%\glopé the
boundary. We place this tracing oh trisngle ZYX in any way that does
ndé-distort the region. If the tracing fits exactly'the‘secoﬁd région,
wefégy §h§ pyd'regiéns‘aré congruent and tﬁeﬁbbundariesAare congruent.

)
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To summarize, to decide whether or not two regions are congruent'
(1) We meke a tracing of the boundary of one region. _
, (2) We {ry to match this tracing to the other regicn
'qgs) If the tracing matches the second region with no
e g:? distortion to either, then the boundaries.and the R

-

. reglons are congruent. ‘ : a

- 1

A The ‘moveble.- copy is needed because the geometric figures to be com--
pared are sets of p01nts, and ‘as such have fixed locations. Clearly,

. we cannot continue this matching process too long. A copy of a solid-

,of congruenqe is not attempted until'the children study geometry from a
more formal standpoint W+ : ‘ o _\ E

2 ~

In the light of congruence, we may restate the requirements of special o

geometric figures . For example, any. two edges of a cube are congruent
_segments, and any. two faces of a cube are congruent regions. Similarly,
. : L]

we canonote_the congruent 3ides of a parallelogram and so om.

e 4 . . - - ?

' -
¢ - (S e . - . ’ .
, . . v

‘may not be matched and fitted into another 'solid. A more refined concept :

- . . h . [ T .

_PROBLEM : oL o

- — . L ,

: . X o
©.9.  Which of %the followi?g,pairs of ,regions are congruent?

a.: : e ,

.

< <

CLASSIFICATION QF POLIGONS > . - - C .o :

A polygon-Is‘E‘srmple closed curve that is a wnion of line segments.

If itdis a union,of th.ee line segments, it is a triangle; of four line
segments, a quadrilateral -of five segments, a pentagon, of six segments,
sa hexagon, and so on.’ L | '\z SNl - . 5
NN ' AN L . . :

- . - N 7 " ~ . . -

. . 1 [ - : . . .
. .o L 188_1 T A <
. . . ) - : o L ] a . \ % J . St -

O
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, ] S C, o
‘ R l‘ - G

- The, segments which Torm the. polygon are called it sides. The endbeints'
+.of the sides are the vertices of the polygon. Note that«each vertex is K4

: common endpolnt pf two sides. Also, the numbér of vertlces is the same’,

-i asﬂthe number»of-szdes.;_ S w7 e _
. , - R :2' B . ‘ . . . .’.‘ . - . . ) ’.. ,-‘b
QUADRILATERALS : S . k o . - e .
;;A g lateral 1s a nolygon of four sides. The figures below'are; o
. all quadrllaterals. . . _ S
. . . . : ..
, ‘ ) J -

PSR
-

T of quadrilaterals,'subfa;ilies“ere identified. 5he rectangles constitute

“'All sides of a’ square are congruent Thus, in the famlly\

-

z -

Rectangles are speclal kinds of quadrllaterals.- A1 %he angles of a.
rectangle are congruent.. Souares, in turn, are sneclal klnds of rectangles.

3

v L A - .7 -

4. . : :

N o - square ‘rectangle - - . /,

~ N

'E’subfamlly of tne quadr*late*a_s and’ tne squares constltute -a subfamily-
\
~of the rectangles.. ‘Another sucfamlly' tqe quadrllaterals are the

] narallelogzams.‘aneln‘onnos1te s1des are segments of llnes whlch are

L .oon the same nlane and wnich do not 1ntersect As rectangles also nossess

-

*ectangles ‘are 2 subfamlly of nara_lelograms. Another

-

this characterlstlc,

vsubfamily oﬂ*the na*allelograms are the *hombl (sfngular rhombus) Each"

's1de of a. rhombus is cong*ueot to eacn othe* side. So a Square 1s both a -

R

snec1el elnd of>s *ectang and a snecval kind of a “hombus. e

v

3
BN

L

R e

‘ A i BRI S
: P SRR - 5 b
. P . N s &
& .‘ K v : P - »
x%
X .
: . . I
by il » E R p . .. .
"+ parallelogranm , ; rhombus - - B .
. L . 2 L . . .
- o ’.‘. . <« a.
< T e o
- ,»0-' [+ B v 0'(' i o .
1 ,"‘" ,..‘ . '-\-v A ‘r .\3 b .
f*The te*n angle ol & oolygon at & oartlcu_a* ve*tex is a language of
. éfponvenlenceico mean cneaangle having that vertex-end such- tnat the na*tlcular )
f  stdes o’ ¥ne golygon oelong‘to tne ”ajs ol "the ang_e. . .o b
' ¢ ',‘- Y . ’, .. i I . ' f'b. L e ? .
: ) o o ' . € TP ! . M
; R Fle o s S Tz T el N
‘ ' L . St -,189 LI R -
" . b ‘ ‘ T PR . g ’ - H '. . h R
C . .o . ey i S ¢
- . . - . -8 L 1. S X
: L] M %

O
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By this kind of classification, we get a generic chain that',ma_.y be

indicated By ‘the folloving diagram o ST LR
PR _ i~
.t - simple closed curves <\
. . ST SN
] S . \ -
< vI . . \ . ] . 4" ..
- 4 N \‘ - , | i . . /~
\ polygons p . (/
‘/ - IE RE . . . . . / :
s i quadrilaterals- . ‘ﬁﬁ:::zsg Co fo i
3 : i . oo T .
, ; P ; X s » _ \
v/ 1 & ° . ~—
y . L Lo

L e o rhombi'zc:;7 ' Ly
> o ,//f(<f/ o ;
' . 5 squares . [:] S T
et ¥ L X ) . L 4—"-
) . S - o
AT gl is & polygon of three s1des. A triangle may also be .

Jdeflaed as & set of three points, not all on the same line, and the three
line- segments joining these three points as ehdpoints.- . o”

There are three special triangles which shall e, of specigl interest £
~to us.’ They‘are the equilateral the isosceles and the right‘triangles.- '

.

., . . R -

B An guilateral trlangle is.a triangle each of whose sijes is congruent ihvf
v‘to the. others.. In other words, an equilateral triangle has three congruent ' -
ﬂﬁleSides" A S R 3

: " An isosceles triané;e isia tniangle with at1least‘two of its.sides _— R
congruent. Sv, every equilateral triangle is also an isosceles triangle, : ﬂt‘:

. Axri g: trian gle is a triangle one of whose angles is a right angle.:
‘-" . ) . - e, ‘ < . . ! .
i . ) 5 . N N
.' -1~ -.k II. N 150 .. -
: 13z . e
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‘right triangle " 1isosceles T équilateral
triangles . triangle

-

¢
A right friangle-uay or may uot be.isoscelés; but it cannot be équi%ateral.;

PROBLEMS

" 10. Which figures pictured below are polygons?

.

v . - ’ .
11. WhicH figures pictured below are quadrilaterals?

&. - : . ) ‘C. . e.




12.  Wnich of the following are true statemen
a. Every squaré is a'rectangle.
b.. All right -triangles -are qua
c. All equilateral triangles

‘d. " A parallelogram gs. 2 ettangle I ' ' . o
e. A squere is a polygon , S ) S,
- APPIICATIONS TO’ TEACEING . N . ’ ) ‘s

_ Geometric configu.rations are sets-of points or wnions of such@e s.
A point is a.set with a single member. A segment is the wion off si

. member sets. The unio%o ooints is a set and thus, the two oigigi .

: constitute a geome/té configu.ration, sogdo a point and & c}réin’d 80 on.

.' F}om the union of certain segments or curves, ve obtain ,sfchftamiliar '
/f gures as trwangles, rectangles, circles, pyrami.ds Z

Erete ob,jects which prcrvide
abstract the mathematical * -

of three-dimensional objects. These are t

_children with experiences” from which 3

3

concepts, For this reason, we be %A models of sol:.ds From the models,

we identify faces, edges, and Cnce 1dentified we. can use these .

primitive elements to d:cm/st C’t(O‘th r geometric figures. For example,-
"skeletons' o"' pyrami {j isms are unions of certain line segments. '

< 'Eventually,' her, & 'nds of primitive elements will»e introduced to

“serve as building ‘.,4 for various geometric! figures. These building’

~blocks m. 4 Jects called s1mplexes. They include fig'ures such as . .
v "- regions, and triangular pyz'amids. The configura.tions

complexes can be answered by relating complexes to the. building locks.
¢ Moreover, certain kinds of com'olexes give rise to special sets of points
called convex sets which play a signa.ficant role in the branch of mathematics
called linear programmmg. Linea:r progra.unm.ng has many applications in
business and in the nhys:.cai and socia_'L sciences. The contact which the
children at this level have with sin@lexes&.nd complexes are mainly in -

terms of polygons and other sin@le closed curves or. solids consisting of

'edges., Such experiences wili form a basis for future experiences in mthematics. .
$‘ . .

T.oof particula,r interest are complexes that are closed fig'ures. Snch

. complexes may speciiy where solutions to certain existing problems may be

TP e ~ 4 ) . . -,
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found Closed figurea do not have points that can be deslgnated as the

' 1nitial point and the endpoint. A circle, an oval, a triangle, a figure-

eight, the surface of a rectangular box are all examples of -closed flgures.
Fbr children,_ the approach to closed figures is entlrely geometric. It

- must be emphasized that any closed figure that does not lie in a plane is

called a "solid", even though it is hollow. For example, 2 rectangular
"box" consisting only of the faces is a "solid"; the "skeleton" of a
rectangula.r. box is a "solid". "

It is a good idea to display a set o>\vooden Enodels “that are nc‘t,‘too
smllaad Enc‘€urage the children to exa.minJ and handle them for several
daya before beginning the chapter "Recognizing Geometrlc Figures". Tracings

~

of the faces of the solids may be made on a large sheet of paper and displeyed
g0 that the children may match a face of a solid to its tracing. Wire ‘or

-stick modela of polygons whose sides are congruent to edges of solids may ‘

be.used fox the same purpose. Matching pictures of solids with the.

appropriate models should prove useful in helping the children to V’J.suallze
drawings of 3 -dimensional solids Most pupils seem to be interested in
finding ob;jects. at home which quallfy as cyllnders and rectangular boxes

and so on. .. S : . , ‘ . .-

Solid figures may be identifled as blocks, boxes, or balls. For example,

a triangular pyramid may be referred to as a block with langular faces;
but it would not be appropriate to 1dent1fy a ball as a c:. cle or a rectangular
prism a,s a rectangle. Basic distinctions to Ye made for 1e .children- at

. 'th:!.s ‘time dre: g -

straight edge vs. rounfed edge; .
% ) flat region vs. :rounded regibn;

. - flat figure vs. solid figure.

Al

We have stated thet in the study of geome‘t’.ry, each of the follom.ng

objects, point a line, and a pla.ne may be regarded as a primltive

element. By these, ve can deflne other geometric objects. Likewise, a"

3 space may serve as a prlmitive element ‘and it is from thls standpoint

tha.t we consider points, lines, planes, sne.ées, as elements of- geometry.

~

v
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"What is meant by saying that a rectangle is'a special kind of quacirilateral?“

«’

quadrilateral is-a polygon having exactly four sides. - Thus any of
the following represents a quadrilateral L <.

-
.

.It can be seen that, of these, a rectangle qualifies to 'o'e a'quadrilatera_l;
it is a four-sided polygon.' However, it distinguisnes itself by the special

‘ _ additional requirements hav'ing all angles that are congruent. Note too,
that a square fulfills all requirements for-a rectangle, being a polygon,
hav-ing four s1des, and having angles that are all congruent to. each other.
The Square ; however, has the addltional requirement of having a1l sides
that are congruent. By the sa.me token that a rectangle . is a special kind

' ‘of a quadrilateral, 8 square’ ie then a special kind of a rectangle.

bl ¢

~

%rocmmm_ *
-’_Angle* - . | . ' Rectangular Region
‘Circular Region v B Region * : r 4
Congruent Regions -+ . ~ Rhombus .
‘Bquilateral Tria.ngle’* N o Right. Ahgle *
Geometric Conflgura‘tion o ~ Right Triangle*
Isosceles Triangle * - ; ' Side of an Angle * ' .I'_
Parallelogram / ' . Side of a Polygon * g :
' Plane Region * /-/ . : Square * . .
“Polygon * ',//- T " Triangle * )
Polygonal Reglon N ; o Triangular Region' ’
quadrllateraﬁ. * Vertex of an Angle*
Ray * / . N ' -Vertex of a Polygon *
Rectangle * ; o /_' N
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ED(ERCISES-CHAPTERII

ctionof Kﬁ end CB “be?

M quadrilaterals are rectangles.
<. A1 rectanglés are squares.

d.,». Al pa:ra.llelogra.ms are polygoné :
. Polygons aré simple dlosed curves.-
. f. A.'Ll 1sosceles tria.ngles are polygons. ,
e \ *

e

a. ;
_ RS v U

'C. . .'

a. ~

€. )

, - |
19, .
195

e . L v

the union of — ra.ys o B artd _C_iﬁ, 1s a line whaf will the

DR

w
5. Which ‘of ‘the fo]_lowing pairs of @flgures are congm nt?

[
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?Q and ﬁ are the same. ray or PQ\T

and’ RQ. are the same- ra.y 01\1 d RQ } - _',.- L

X AB CB . implles ‘A=C..A an.cf c ,must name the same point

. the endpoint of the, ra.y A B
_ c - '
b. BK- B indlcates only that A and C are on the same ra.y

Tt 1s not necessary that A =C. » -

B A .c e e e
;.. or . ’.‘- 2 . ’ ‘-

B B C A

a. -E—E B 1 \‘ - .
b. B, : ‘ . 4

c. C-!I' .o R

d. CD . . ‘ .
fe. E or any other notation for the li_ne' ) s ) P

a. [PQR; [Q; [RQP ‘
b. @ and QK ‘
[cFE; [c=a; [=; JFE; LDFC* [cz:s, (2 [m [nFA

No. ‘I’here are two possible figures named vx- and WK

e ®

. .Case 1 .. Case 2 , o

In order for VX to be a side of an angle, V must be the ver‘téx;
similarly, .for WX to be a side, W mst be the vertex. This is
not tme in Case 1. In Case 2,” V=W but VX end WX are not

iwo rays, so the deflnltlon of an angle is not satisfled
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Chapter 12

. 1 N

ADDITION AND SUBTRACTION TECHNIQUES ..

o . s v
v .
. 1

-
o -

v We have used sets to describe addition and. subtz:ac:tion end to . /
develop its properties. Knowing that 5 + 3 is theé number of members

“in AU B, . where A is a set of § members and B is a disjoint set /

.of 3 members, we may count the members of A UB and d1scover / T
tha.t 5+ 3 is 8. Knomng that 5%.3 =8, from the definition /_
of" subtraction, we cen see that 8 - 3 = 5 This is fine, but it doe.s/

not really help us much 1f we want, to determine 892 + 367 or 532 - 278
-To do problems li}ge these quickly and accurately is & goa.l of real

importance. .It is' a goal whose achievément-ié made muich ‘easier,in our

deeimel system of -numeration than in, for instance, the Chinese or

Egyptien systems. ‘ A AR s
Thi's’ chapter is conc‘em'e-d with explaining the whys and- wherefores

of .so- ca.lled "carrying" and "borrom.ng,' in the processes of computing

sums end dlfferences Regrouplng is a more. accurate term for "e&rr:ying“ )

and borrom.ng and will be used throughout this 'text -

We must ‘pecall. how our system of numeratlon m.th base. ten is bullt

" What does -the numeral ‘532 stand for" It stands for 500 + 30 + 23

_-\-

or 5 hundreds +.3 tens + 2 ones, or ~aga1n, since oné hundred stands«

~for 10 tens, 532 stands fo*‘ 5 groups of ten tens i 3 groups of

rd

ten + 2 ones. A,_so if we knpw that a number has 2 ’groups of ten tens

"and 7 groups of ‘ten and ones,’ we can write a numeral for tha‘t number

" in the Torm (2x[10x10])+(7x10)+(8x1) or 200 + 70 +,8.= 278,

When we write' the numeral in thls stretched out way, we have wrltten it

in exnanded form. - . _ -_" ‘ . _
o HEGROUPDLG USED IN ADDITION e ' - )

3

Let us assume that we know the addltlon facts for all the one- dlglt
whole numbers and’ that we undérstand our decunal “system of numeratlon.
How does this help us? Let's try some examples. Suppose we want the

sum of - 42 and 37. _Since we are adding (4 tens + 2" ones) and

[y . -

5.. :-, . . - : - o

< f‘::.
199. &)



(3 tens + 7T ones) we get (7 tens + 9 ones) which-we can-write -
'as 79, _ B o T '

Essentia.lly what we are doing is finding how many groups of tens
o a.nd how ma.mr units we have a.nd then using our system of numeration 0
- ~write the correct numerg.l. We m‘ay show this in several differ?nt qu;msf
or algorithms, such as:

L. o
e ;
(a) |3 tems + 7/>nes (v) 130 +7 {e) | 37
o 4 +tens + 2 ones - |- 4% + 2 - k2
‘{7 tens + 9 ones = 79 0+9 =19 ° S (7T+2)
- ' ' - <70 (30 + ko)
. . . 1 79
Or we way use an equation forni such as~ o ) A
37 + 1#2_= (30.+7) + (40 + 2) ”
= (30 + b0) + (7T +2) . - .&pplying the associative
=70 +9 _ . and g_:o\tﬁmgtative' properties
< =79 - . - '
Let us now add 27 é.nd "35 . This tide we have (2 Ate:n‘s +'7 - ones)
+ (3 tens ¥ 5 ones) whlc‘n zay be illustrated: l -
_ * Bxxxxxxxx.x], ‘ XXX XXXX
* / . } RS - )
St .'Bxxxxxxxxx] \ . o :
i .- 2 tens + . 7 ,ones *
[x;xxx‘xkxx_xx['.- _ _ XXXXX°
A . ,
[xxxxxxxxxx]| o ‘ -
[x xx xxxxx x x| Y . o A
’ 3 “tens E ) + 5 ones :
By putting thes;e. groups together.we now have: - S IR
[xxxxxxxxxx| '
&xxxxxxxx'xx]]v o © ;
' [xxxxxxxxxx]| XXXXXXXXXXXX
[x.x X' x x x x.x x x| - L ’ ‘
i} lxxxx‘fxxxxAxl
5 tens o + ** 12 ones o
. . - L]
- ' 200 E
R ~ :
@&

- 11X A
O
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We now r.egr'oup the 12 ones and get a.notvher set of 1 ten and 2 onés.

»

Jixxxxxxxxx]_ : X X

1l ten . + 2 ones

We now add (5 ‘tems + 1 ten) + 2 ones.

. 0. .

S [xxxxxxxxxx]| -
r , 5
L. o ExxxxxxxX x| A ' -

[Fxxxxxxxxx]| ' i X x o
xxxxxxxxxx| ' J s
. . - . N .
[xxxxxxxxxx]. - . -
= = . .
frxxxxxxxxx] | /! B
. R — . , )
- S tens + 1 ten R T 2 ones
) = 6 tens . + 2 “ones = 62 .
Of, algorithms such as these may be used: v
- : ' - 3 3
(a) |2 tens + 7 ohes . (b) |20 + 7 o)l 27 ’
3‘ tens + 5 ones - - R . 30+5 . 7 N +35
5 tens+ 12 ones, or - -}50 + 12, or . 12 (7 +5)
R : ' : , ¢« - .
’ 5 .tens:+ 1 _ten + 2. ones, or[~ . 50 + 30 + 2, or 50 (20 + 30)
. - S [ 2 -
16 temns + 2 onés = 62 60 + 2 = 62. N '

Using an'eéuéﬁion form we may write: !

(20 +7) + (30 +5) o .

\2’{' + 35 = Lo
T e Applylng the associativ
. : N (20 +30) + (7 + 5) and commutative properties

=50 + 12 . . ) " .
=50 + (10 + 2) ° PR :
_ . ‘ Applying the gssociative
- (.59 * 10)_~+ 2 property A
=60 + 2 ' - : .
e ‘ . .

\

We may txtend these same ideas to the addition of two whole numbers,
. each greater than 100 . Suppose, for instance,.that we were gdding '
568- and 275 : - C ! i

| .A - ',. --.'.}'\

O
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Xa) |5 hundreas + 6 tens +.8 ones
2 hundreds + 7 +tens + 5 ones.
{7, hundreds + 13 tens + 13 ones, or

7 "hundreds + 14 tems + 3 ones, or .

if:,, 8 hundreds + 4 +tens + 3 ones = 8434

or we may.write

(b) ‘1500 + 60 + 8 cor (e) 5§8 o
’ 200 * 70 + 5 1 B L1 - y i !
700 + 130 +13 , or 13 (8 +5)
700 + 1450+ 3, 0r | 130 (60 + 70) -
L (B0 o+ 3=83] 0 ¢ | 700 (500 + 200)
) ’ R | 8w

Precisely the same process is used in adding three or more numbers.
Once again the properties of additlon are important. Thus:

563 + 787 + 138h can be‘thought of as follows:

563 = 500+6o+3= (5xloo)+(6-xlo)+(3'x1)
. '787 = 700 + 80 +.7 = (7 x 100) + (8 x 10) + (7 x 1)
1384 = 1000 + 300 + 80 + 4 = (1 X 1000) + (3 x 100) + (8 x10) + (& x 1)
' (1xlooo)+(15x_100)+(22x‘10)+(11+,x 1)
\. and the sum 563 + 787 + l38h K : N : R

= (1 x 1000) + (15 X 100) + (22 X 10) + (1% x 1)
(1 x 1000) + [(1 x 2000) + (5 x 100)] +.[(2 X $00) +
(2% 10)] + [¥1 x 1 + (4 x1)]

{(1 X 1000) + (1 x 1000)] + [(5 x 100) + (2 x 100)] +

‘ [(2xio)'+(lxlo)]+(l+x1) ' .
(2 x.1000)¢+ (7 x 100) + (3 x 10) + (4 x 1) .
2000 & 700 + 30 + 4 - Cge v
2734 f o C

t
* ’

This is usually abbreviated a great deal But 1t is ‘important that the
underlying pattern be understood ‘and the abbrev1at1ons recognized. Thus:
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. PROBLEMS*

. A PROPERTY OF SUBTRACTION

273% numerals we get: _2735 »

1.  Find the sum, 38 + 737+ 22, By aolalgorithm that shows' clearly

how the sum is obtained from'the addition-Tacts for. O through
L o L J ‘
9 only. : ._> s PO . _') . . »

pa

" 2. Show the indiv1dual steps requlred in applylng the. asfociative

and commutatlve laws to show that .

. (30+7) + 5o+8) 3o+5o)+(7+8)

e E
N »

Just as we worked tbe same problem by various methods to get-an _
insight into the addltion process we shall now study the subtnaction E
process by.examlnlng various technlques."Let‘us use absimple example

4

to illust*ate‘the procedures.

Using an’ equaulon form for flndlng the value. of the unknoun addend )

n in n + 23 = 58 and ompar%pg this with the usual algorlthm identlfles

a property of" subtraCulon_that is used extensively in computatlonal work.

We write: ’

I

58°- 23 = (50 +‘48) - (20 +3) .

The property of subtractlon that deserves our "special attention is ‘that
"which will enable us to’ express (50 + 8) - (20 + 3) in a useful_form.:

-

- ..

*Solutions.for’probléms in this chepter are on page 211.

-t

. .. .

o . 03028 R .

e /500 % 60+ 3. . o563 .,
: 700 + 80 + T cen be written with $lof .
S b ", vpartial gums 138
1000 + 300 + 80 + &4, indicated &s: : 1L 'sum of ones
_ S . R " .220 sum of tens N
lbOO + 1300 + 229.+ l% . . 1500 sum of hundreds
: Lo . . . ~1000 sum'of,thousands
. . ' ¢ ! T Lo o .
" and ‘the operation may be still further abbreviated to: - i
. (D@(D ) . ' N o Ty »_'7
s 563 - o | o 563 o e el
a 787 Finally, by omitting- -~ 787 : ~ L
. 1384 " even ‘the- "carry over" 1384 ) o B

e



rl

:';',. . The usual procedure for subtracting is by the vertical elignment,

58
. - 23,
which may be expressed as either of the following: _
aX B - o
"~ _(a) |5 tens + 8 ones - ;(b). 50 + 8/\ .
2 tens + 3 ones ° R 3 B ’
3 tens +5 ones = 35 { 30+5 =35

-, In the algorithm (b) above, notice that 3 is subtracted from- 8 and -
. 20 1is subtracted from 50 to arrive at the tens and ones in the .

difference. In 'equationt_ form, this entire process is written:

58 - 23 = (50 +'8) --(20 +3) = (50 - 20) + (8.- 3)
) ) =30 +5 . ’
. 35 -
- “ We ma}f state ‘the property, which allows (50 +8) - (20 + 3)

to be reexpressed as (50 20) +(8 - 3) , mare generally in the
following way: )

IF ONE NMEER IS a +b AND A ~

SECOND NUMBER IS c + d, AND IF

a>c AND b>d, THEN (a+b) - r

(c+a)="(a-c)+(b-a) S
) ¢

We shall see repeated use of this. property, along with regrouping,

throughout the rest of this chapter. -/, :
Next let us interpret subtraction, such as - 17 fro_m 1!-9 > in.
terms of set removal. From a’ set, A, of 1+9 objects remove a sub- -
‘o oset, B t, of - l’{fjects, leaving a remainder set, A'-B, whose
nuzber is to be Specified. o - L

~ We can take for A a collection of 49 x's 'a.rra.ng'ed as follows: -

Lxxxxxxxxj. o - -

.

o Lxxxxxxxxj : '

TXXXXXXXXX

LxxxxxxxxxJ

Bxxxxxxxxx]

205




: ] - - .
Wow we need to pick a subsét B .of A which contains 17 members,

. Then-thé number of members of the remainder set A - B will be L9 - 17 .

There are menmy ways to choose B . One of thesm is\this:

. ' [Yxicxxxxxxx]
. : .
,,[adxxxxxxxxx]- :

A : ' o, xxxxxxpxxx

'chxx.xxxxxxjff : ’ ~—3

ﬁxxxxxxxxgx] : . - ' ' .

‘ But when we' choose B this way, the remainder set A - B is not easy

to count. ' Some of the original bundles of ten have been broken up, and
fonly pieces of them are in A -B.

It is mich better if we choose B so as to either include all of '.

a bundle of ten or none of it. Here is one way: . -

[xxxxxx‘xxx.)ﬂ

. rx::xxxxx'xxxl : I
A 1 X X XXXXXIXxX
: Ifxxxxxxxx:ﬂ . {B

[xxxxxxxxx:ﬂ ‘ - -

Now it is easy to ~ot.nt the rema.inoer set A - B. 'It can be done
in two steps.: Looking at the right hand side above, we see that the ..
nunber of ones in the remainder set 'is ‘9 - . 7 =2 . Looking at the left
hand side above, we see that the number of bundles of ten in} the remainder
- set is % - 1,‘=. .3' . Therefore the number of members in the remainder set

_13"32.- _ o

: - An important thing %o notice is that since we dealt only with com= -
‘plete bundles of tem, we could :!ount these using only "small" Aumbers. - -

Nov, let us exa.mine in the -same way another problem- 32 - 17 =1 . )
We can pick A to be a set of 32 x's :

° . - .

rxxxxxxxxx:ﬂ;

A4|,7xx-'xxxxxxx35| ' X%

[xxxx'xxxxx:ﬂ'

We need to pick a ‘subsét B with 17 meuwbers, that is, one bundle of

ten a:nd 'seven ones. .But A ‘Thas only two ones, soO we will have to use

Y

A3

O
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some of the members of A in the bundles of tery As ve saw ebove, it

- —i8 best if we use only ghole bundles. Therefore?’jwe will ta.ke one of:

" » the bundles of ten in A, change it to 10 ones, and pus'.it with the
2 omes. ‘Now A looks like this: ,,‘r,.r

Lxxxxxxxfo

A S XXXXX xxx'xxx
lxxxxxxxxﬂ ~ . .

Now it is easy to see hoy we can pick & convenient subset B which
has 17 ‘members. Here is one: -

-Iil;xxxxx;x..x?l ) , :
A[ixxxxxxix-?]l xv.xx/xxxxlxxxxx-
' / \B
? . .. . ! _
It is easy to count the_ :re'zpainde'r set A -B » The number of
ones is 12 - 7 =5 and the number of tens is 2 - 1 = 1 . Therefore
32«17 1is 1 ten add'- 5. ones, or 15, and n = 15.

3

Rather than object representation ve may use algorithms such as
these to subtract 17 from 32 : !

- {
“(‘a) 3 tens + 2 ones =2 tens 12 ones

1 ten + 7 ones =1 ten + 7 ones

1 ten + 5_ones=l5‘

o~

or o

(b) 30 + 2
10 + 7

20 + 12
10 + 7
10 + 5= 15

4 . _ )
Or we may use an equation form, as ) o :

32--17 = (30+2) - (104+7) SN

. =(20+12) < (10 +7) . _

(20 - 10) + (12 - 7) 7
w+s i |
15 ' R ' | '

thice that the renaming of (30 + 2) a; (20 + 12) involves an

_ 'applicatioﬁ of the\.'assoc/iative property of 'haddition, in tHat

. (30 +2) =([20 +10] +2) = (20 +[10 +2]) = (20 + 12)..

i



. -;.l -. .
We may- 'éubt"ract larger numbers , of course, simply by extending the
principles and procedures used with smaller numbers. Consider,“-'for

. 1nstance, subtracting 276 from 523 .

) Since we ca.nnot subtract 6 ones from 3 oqes nor T <ens from
-2 tens, renaming is required In detail we ma.y write

5 hundreds + 2 tens + 3 ones 5 hundreds + (l ten +1 ten) + 3 ones.
' ) 5 hundreds-+ (1 ten + 10 ones) +. 3 ones.
, e : - . =5 -hundreds + 1 ten + 13 ones. ‘.
' . . ' o= (k4 hundreds.l hundred) .+ 1 ten + 13 ones.
' ’ = (4 hundreds + 10 tems) + 1 ten + 13 ones.
= 4 hundreds + 11 tens + 13 ones.

: Ordina.rily this procedure is simply 1ndicated by
-5 hundreds +2 tens + 3 ones =4 hundreds + 11 tens + 13 ones.

) We may now complete the problem 523 - 2"('6 by writing

S hundreds + 2 tens + 3 ones 4 hundreds + 11 tens + 13 ones
2 hundreds + T tems + 6 ones = 2 hundreds + T tens +..6 ones
. ' . © 2 hundreds + 4 tens + T ‘ones = 247

or we may write ' DR S ' S

400 + 110 + 13 - -
200 + 70+ 6
200 + 40 + T = 247

©500 + 20 + 3
200 + 70 + 6

or e may use an equation form, such as
: . Y 4
523'- 276°= (500 + 20 + 3) - (200 + 70 + 6)
(400 + 110 + 13) - {200- + 70 + 6)
(400 - 200) + (110"~ 70) + (13 - 6)

= 200 + 40 + T ]
= 247 . .
We eventuallyvmay shorten such algorithms to the form o .
Ol I S o : .
523 or simply 523. . . S
-216 oL -8
aL7 -

205
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PROBLEMS ' L ' _ o
3 -

3." a. In the property (a+b) - (c+ d) = (a -c) + (b i a) ,
why are the conditions a > ¢ and b >d needed? !

- b, Give an illustration of the difficulty encountered if the
<

conditions are not met. fi . : .
’+._ oA W with an, appropriate se’b A, and subset, B. , the
subtraction of )+3 and 27 . - '

.

b. Show the same subjbraction in equation form.

‘ Techniques of addition and subtraction may be explained in terms
of ou.r decimal numeration system, coupled with regrouping and applications .
of the commutative and associative properties of addition. Subtraction

techniques utilize a special property of” subtraction; m,

If a,b,c, and d are whole numbers such that » P
a>c and b >d, then it is true that '

- '(a+b)-‘,(c+d)=(a-c')+(b'_d)._ . ‘

This lspecial property may be explained in terms of the definition of -
subtraction in relation to addition, coupled with the commutative and
associative properties of addition.,

APBLICATIONS TO TEACHING

'If young children are to compute with understaﬁding, it is essential .
that they have an adeguate understanding Qf our numeration system with
its base of ten and its principle of place value. They also need to
have ample opportunity to manipulate sets. of ob,jects as the basis for
developing appropriate algorithms

Al,_.,orithms such as these grow readily from manipulations of sets of
ob,jects- '

s

n
&
oo
(S
3
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1. 42+36=1

(a)- y '=bens + 2 ones- . (v) - ho + 2
3tens+60nes N 3o+6 .
7tens+80nes-78 , '('.O+8778

'2.‘__69-21;:2 : | .

(a) '6 tems _I+ 9 ones -l BO.+9
2 tens + 4 ones 4. ' o0+ b
R tens~+'5 ones 5"1&5‘ . 4o + 5 =45

’r

' These same a.lgorithms sexrve young children wgu_ when regrouping and re-

naming are involved'

e

.58 +17:= _
(a) 5 tens + 8 ones .(b)_,. 50'.4- 8
, ) ltenm + 7 ones , 10+ T _
" ¥ 6 tens + 15 onesy or- | 60+15, 0r '
7-tens + 5 ones = 75" J0.+ 5=1T5
81 - 35 = : - . . . ] ..)

(a) 8 tens +:l one =7 tens +.11 ones
3 tens +_§ ones”

-

"3 tens '{\5 ones
4 tens + & ones =46

.+}l

15
60 .
5

(b) 80wl =

3045

(e) 58 .

70 + 11
=30+ 5

‘1&0+6

Each child’ is not expected to be equally ‘at ease with all algorithms.
He should 'be encouraged to work with the form with which he is most com-
fqrtable. Eventua.lly he will shorten that algorithm to g more efficient

_ form, but he snouid not be hurried into doing this.

Computing with

- understanding takes precedence over computing with a highly efficient

"form in the earlierstages of learning.

a

=u5'



QUESTION . X ' B
"Does the property, (a +b) -(¢+d)=(a-¢c)+ (b- d) "if aDe

. o . B -
and b > d ‘meen that we gannot perform subtraction for whole mumbers if
. the requirements 8 2>c and b>d are not met?

To .a certain extent this assu@tion is correct, but with this
assmnption, is a distortion 1n interpretation.' If neither ‘of these
requirements is met, then 1t is true that there is no who‘.Le number for
(a +1) - (c + d). For example, if -a 2, =3, c=L4, and d=35,
- then

(@+3)- (4+5)

‘ 5-9. ‘ _ _

‘Since 5 - 9 1is not a whole _nmumber, subtraction cannot be performebfor -
(2 + 3) - (4 +5) in the set of whole numbers. By the same token, i

neither can (20 +.3) - (ko + 5) ‘be performed as can be seen also in
the vertical arrangement'

(a +1p)°- gc l_+ d)-'

.
-45

However, as illustrated in the example 32 - 17, . which is (30 + 2)
. - (10 +7),. we have 30 > 10 but 2 < 7. Still, it is-possible to
perform this subtraction in the set of whole numbers, we rename 30 + 2
as 20 + 12 by regrouping. Then;
‘ 32 - 17 = (20 + 12) - (10 + 7),

and the requirenzents o 2c end b>d are fulfilled.. The onJJ time
that such renaming ca.nnot occu.r to satisfy- the requirements is when

. (a + 1) < (c + d); for example, (20 +5) - (LO + 3} cannot be
perfozmed in the set of whole numbers.

oL VOCARJLARY
Addition * . ' ) Commutative Property of Addition *
. L Algorithms * . o /E&nded Po/r:n * '
) Associative Property of Addition * Regrouping I
Borrowing ‘ . . . Subtraction ¥ l o
. 2102 1 _g_ . )
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Ca - . EXERCISES - CHAPTER 12
1. For each of these_examples, i::q?fﬁsiﬁ@ the three addition
n

algorithms Just illustrated i e preceding section. -

? " c. 1&86""766:
? : ’ 926 =1 -

a. 246 + 139
b. 777 + 964

- . ¢
2. 'For each of these examples, compute using the two- subtra.ction
. algorithms illustrated in~the preceding section.

a. T6h - 199 = ? . .TI0-287 =12
b. 402 - 138 =1 ‘._ a. 800 -39 =1
. . ‘ .
3. Compute 7"{1& + 926 using an equation “form.
b, _Compute 800\\396 .usirrg}ﬁ equati‘on form. ’
| ‘ SOLUi‘IONS @ PROBLEMS

1. 38473.+22=384+(73+22)
‘ 38 + [{7 tens + 3 ones) + (2 tens +2 ones)]
38 + [(7 tens + 2 tens) + (3 ones + 2 ones) ]
= 38 + (9 tens + 5 ones)

=38+ 95

= (3 tens + 8 ones) + (9 tens # 5 ones)

\

(3 tens + 9 tens) + (8 ones + 5 ones)
12 tens + 13 ones ‘ )

(1 hundred + 2 tens) + (1 ten + 3 ones)
1 hundred + (2 tems + 1 ten)l + 3 ones

1 4
n 1} 1}

1 hundred + 3 tens + 3 or_xgs
133 . o

5. (30 +7) +(50 +8) =([30 +7] +50) +8 ‘associative property
‘ . = (30 + [7 +50]) +8  associative property
= (30 + [50 + 7]) + 8  commtative property
= ([30 +50] +7) +8  associative property
= (30 +50) * (7 + 8) associative property

4]
Fd
oo

21




- s, . @ Ipordexfor a -c and b - d .to have meaning, it ‘i's

con, necessary th&_zt- a>c and b >d . These eonditions also
assure that a +b > c'+ & which makes (a +1b) = (c +a)
meanihgful ‘- '

. . -

b, For example, let a=T, b s 5,c=8, a =--2' so that '
' azc_:. s not true. Then (& +b) - c+d) 7+5) - (8 +2)
© . =12-10=2", amd, (a-c)+(b-a)=(7-8) +(5-2)
(T-8)+3=2 T7-"8 is not a whole number, so the
‘proberty; is undefined If neither conditlon had been true

(af +b) = (¢ +4d) would not have been defined

]

4, .a. Exxicxxxx'xEJ

- &
[ .
E_xxxxxxx;cxl -
* A : N XXX |
[xxxxxxxxxx|
: Ecxxxxxxxxx] ' e -

MA) = 43

or, regroupeg, N \/_/ -

- (X xxxxxxxx x|

Cp -

Alx;xxxxlxxxxx} . XXXXXXXprxXxxXxxXxXxX
. = \
- B

fx x x_x'xxlx X x x| _ . -

6. 43 - 27/= (ko
| (30
(30
10 + 6
=16

+3) - (20 +,75 . . "
;3) - (20+.7) o o
20) + (13 -7)

[}
+

1]
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problems that convince us of the need to extend our number system to include 7

REGIONS AS MOD?EI;S FOR RATIONAL NUMBERS LR

e . : .Chapter 13 R
INTRODUCING RATIONAL NGMBERS |

- -~ f .

All our work with numbers up totthis point has beerr with the set of

whole numbers; we have pretended- tha.t they are ‘the r.!nJQr numbers that exist :T'
. and wve ha.ve seen how “they and their opera.tions beha.ve. Our number linges
" have been ma.rke_d o at the points whieh- correspond to whole numbers; 3

leaving containing meny points that are not named. Using only whole

.numbers-At is clear that meny division problems cannot be worked (for

exa.mple 3 + h), that is, the set of whole numbers is not closed under w
the operation of division. ’. .

- . . . v

'of naming points between those -named by whole nmbers on the number line,

" Fow thé problem of assigning numbers to "parts of wholes ,. the problem . g

and the problem of lack of ¢losure under dlvision -of whole numbers are .three

more than the whole mmbers. In-the. hi‘storical development of numbers the

. problem of mea.surement (which wild-ve considered in Chapter _16) was probably

a significant motiva.tion in forcing the extension of aumber systems to more
sophistica.tion tha.n mérely countlng and numbering.

In our extension of the number system to include what we will call
rational numbers (but which a.re frequently celled "fractional numbers 1) I ¢

- we-wills proceed much as we 1aid with the whole numbers. " That is, . we will

start with plfwsical models for sueh numbers e.nd from ‘these develop some
concepts about them. L . . : N

In setting up plvsic&l models for ra.tlonal numbers we usua.lly begin

.by designa.ting some "basn.c unit", for example, & rectangular region,

a circular region, a segment, or & collection of things.  This basic unit _
is then pa.rtitioned into a certa.in number of congruent parts. THese parts, - .

‘ compa.red to the unit, give us the ba.sis for a model for rational nmbers.'

L. M . -

2
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. For exanple, let. us identify as .
our -basic unit a square reg-ion and { ' .
suppose this is pa.rtitioned into two\

congruent parts as shoy ‘:.n Figure (a). < -\

We 'wa.nt to associate a number with the N . {
shaded part of the square region. Not -k -
_onlx do we want a numbez;,; we want as _ o E
| neme for this number, a numeral which . (a)'. - (b)
- will remind us of the two congruent’ parts ‘ -
‘we haxfe, of which ome is shaded. The
'numeral is the obv:.ous one, 2,[ ead .
"one-half". If" our wnit is partitioned into three congruent pa.rts and
if two of them are shaded, as in Figure (b), the numéeral -§- reminds us o
that we are associating a number with two of three congruent parts of a
" wmit. Observe that our numeral still uses notions expressible by whole
numbers; that- is, a basic um.t is pa.rtitioned into "three congruent pa.rts
with two of- these considered
In the figures beiow, a rectanguCLar region'ser\{es as the unit.
(e) - - (@) .
The numeral % expresses the situation pictured in Figure (e), nameiy'
_ the unit region partitioned into four congruent regions,’ of which three
are shaded. And, of course, _the numerel 3 expresses the situation
represented by Figure (d) the basic um.t partitioned into six’ congruent
regions, of which five regions are shaded : '}-.i i =

More complicated situations art represented in the next drawings ’ y ._‘,
N
In each case the basic unit is the rectangular region heavily outlined by
solld 1ines ’ In some -of these, the shaded region designates a region

N
. EY

‘the same as or more than the basiec. region, hence numbers equal “to or greater

-



.

- . 4
‘
<

. than one. Thus_Figure-(e) shows the basic . unit pa:tiﬁioned_inﬁa five )
parts, all of which are shaded. The numeral %_-desgribes this model.

- . ’

il
—~ .
ot

(e) Physical model for

*x""s

Unit . ) 2 .
(f) Physical model for '

=\

[

S N
[l F =

R i
S
1 .
e & o o w d b
I . -
]
1 .
W, L

. In Figure (f), the,unit reglon is partitioned into four congruent regions,
and five such- regions are shaded ‘the numeral E describes this model.
Exemine the other situations illustrated and verify that in each case

" the region_shaded.is indéed a_médel for'the rational number named: under

it. . - ' S : Lol

216
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Models using regidns of various shapes

- -

»

: Regions of other shapes can also be used as models for rational

numbers. Some such regions, with associated numerals, are plctured
above. In each case, you can verify that the model involves identifica-
tion of\a unit region, partitioning of this region into congruent regionms,

and consideration of a certain number of these congruent regions.

For the sake of simplicity, ‘we have used as models only plane
~regions. Frequently, we use sglig regions, also, as models for rational
" numbers. The interpretation given to such models is but an extension of.
that used with plane regions. In this chapter we shall only use plane
regions as unit regions. - . ' ) ' R .
PRORLEMS* - | o - K

- 1. Draw models for:

2 12
& 3 d. 5 '
<4 . o _ 7,
be » g . . . €. . 7 R \
. 3 . 0
. C. -é- f. g

*Solutions for the problems in this chapter sre on page 237.

e
217 -
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E N . e . . ) o . , . e ) k4
2. ‘ahy 'a.re" the following Pictures not good models for ration_a.l‘ numbers? = *

-we mark off the unit segment into 2 congruent pa.rts and count off. 1 .

’ K 3

¢
R SN

Y

ﬁ ‘ewat numbers do the shaded portions of the following models ) ) .

illustrate? Lo S : o

& @ (e @

NUMEER LINE MODELS FOR RATIONAL NUMBERS

Anothe¥ standard physical medel for the idea of a rational number
uses the number line. The way we locate new points on the number line -

parallels the’ procedu.re we followed with regions. - After we mark off a= | _) '

‘unit ‘Segment and pa.rtition it into congruent segments, we then count -
 these parts. Thus, in order to lpcate the point corresponding to

5)

of themd. This point corresponds to %

(o]
S
Im
-




$

‘In like manner, to. locate % » we partition a unit interval into

h congruent parts and count off - 5 ,of these parts. We havevaowllocated

the point which we: associate with % . _ .

5 iarts o E ‘ ) <L

®

$
b
>

.

Once we have this method in mind ‘we.see that we can associate a
point on the number line with all symbols such as E ; B E , etc.,

as 1llustrated below.

-

‘3 parts @ . - -~ g a
‘ 3ﬁ4l " 2 3 4 S
ﬂ; P Y Y N _—
U\ —— . X ’ ) .
unit - B o - .
5 parts B . - o , /
0 5/8 1 2 . -3 & . h
—-booo-oooesd 4 4 b
] _ S
- unit, ' ‘ T ' R
. e y :
’ ' v 9 parts S o s
o - I . - 294 33 4
09004000 b o0 b— —b——»
T N : . "
. i unit : _ YL
, g . : ) o
PROBLEM o
e o . N
"4, Locate the point associated with each of tge following on a separate
number line, . - A e . §7;é:g} e A
- K} . &f_", ".r. ’ e
. 9 . 4 %éfpgf i &
° 1 N . . - -.g o .. T -‘.' ‘
5. 3 L, 1 T
. o . ?
e ; - 8 ~
©“ 5 S
e ' K , .
: 218 '
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Sets of obJects arranged in arrays may serve as models for rational \ .
‘numbers, as in the {llustrations below. In each figure the unit set or

-

arrey is bounded by solid lines. ' -

00000 [55 &
_@@@@@ BERCE-

A A

AN

(‘a) A model for 5 ‘ B2 . . éé
(b) A model fcr % é é

- e o (c)‘ A model

@

=~ : or 2
e leas
O 00
(;) Am:ode.l‘fo; 3 ._l-. i@ @ _ i | L

@_ﬁ@'.@
AR 4

® &
@ 9|
© &
o O

— 2 .

EE ®

2

(e) A model .f_or

=l o

In Figure (a), for-instance', one of the fwo. rows’of the unit -array
is shaded With this model we may associate the rational number % . .
In Figure (c), four of the four rows of the.unit- a.rray are shaded, and -
with this model we’ may assoclate the rational number -E ‘I’here are two
unit arrays in Figure (d) with two rows in each array. Thtree of the rows
are shaded, and with this model ‘We may associate the rational number % .
Notice that in each instance the rational number associated with a )
particular model is independent of the mimber of elements in each row .

" of the a.rray For example: we woula associate the same rational - -

b Cal )
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number, % s with either of the arrays below.

. o000 -~ 0e0000O0OCGOS
Y X e00000O0OCGO

X X YXRXEXXXXX]

- .looo 000000000

Cor

Notice that we also may associate the rational number % with a
representation that is nqt an a.rray, such as:

90|00 ;00,00
, ® o'no}-o‘
- I H X X H-X-)

(4

~

" . in which a unit set is partitioned into four equivalent subsets, three
" of which are to be considered. - . - _ ’

5. Show_' an arra&'as a model for each of these,

5 3 T . b 7 5
8...3 b. -8' Ce :7 d. = e‘. 'E- f. —2-

SOME VOCABULARY AND OTHER CONSIDERATIQNS

The ‘numbers for which our regions segments and arraysfre models
are called rational numbers.. The particular numeral form in which these

numb'ers often a.re e@ressed is called a fraction. - Many. different fractions
' designate the same rational number. We have here again the distinction

between a number and names (numerals) for that number.

'In this chapter we are conc.erned with those rationa.'L mumbers that
can be named by a fraction of the form %' where a represents a whole
number and b represents a counting number (i.e., a whole number other
than zero). In effect this definition restricts us to a consideration
of the nonnegative rational numbers. The-complete set of rationsal
numbers consists of. #hose numbers of the specified form, 2 , and their-

b
. opposites or negatrves.

O
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X3 o i , _
Referring to our models we see that b , the @enominator, always

is the xiumbéi" of congruent parts or eqﬁi'va.leﬁt- subsets into which a

unit has been pa.i'titioned while a , the-numerator, is the -number of

. - these congruent parts or equiva.lent subsets that are being used One-
of several reasons why the denominator is never zero is that it would be
nonsense to _speak .of a unit as being divided into zero parts; it surely
ca;not be partitioned into fewer than one part.

Y

" The- following i’igure shows several number lines: one on which we'ha.ve_
located points corresponding to 0, 1, 2, 3 , ete.; one on which we have

_'iocated pointé correép‘onding, to 3 .; one on which we have
located points corzje'sponding to ; one on which we have

located points.corresponding to L E , ete.; and one on

2
- ‘ : 0 1 2 L. '
which we have located points corresponding to T>85+8+8578 ete. _

| 2 3
1 L
—————t 1 ! L
0 1 2 3
T T ] t
"__l . . .l ‘ a l. . [
0 TR 2 3 -1 5. [

. 2. 2 2 2 2 L2 -2
— o——o —' o—0o—0—'—0—0—0—»
o 1 2 3 4 s [} z 8 2 10 o2
3 4~ 4 4 - a 4 4 3 4 a 3 3 3

As we look at these number lines, we see that it seems very aaturael

: ~to think of‘ % , for exmmple,. as being ‘associated with the zero point.
For we a:z'e zrea.lly, so to speak, counting off O segments. Similgrly,_
it seems natura.l to locate 9 % and 8 as 1ndicated. '

I
'

ol

=22

%)

2,
L

O
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-denominatbr- 8~- When we do this we ~see, among otler. things, that =

Now let us put the five number lines together, as shown ih the

.,. figure below. In other words let_us'carry out on & single line the steps

-

-

i 3
' 1 3
1 3 B [
[ 1 2 3 4 s s
2 2! 4 2 2 2 2
e 1 2.3 4 5 & 1 8 3 1 @& R
4 4 4 4 4 4 4 4 4 4 4 4 4
: . ¢
0123456789101 231K 151617181922222326
8 8 8 8 8 8 8 8 8 8 88 88 8 8 888 8 8 88 8 8

for locating in turn points eorresponding to the rational numbers with
denominator 1 , with denominator 2, vith denominstor 4 and'with
é ,
E’ and 8 all correspond to the same point on the number line, or, in-:
other words, are all names (numerals) for the same rational mmber. We
S : = ~ ‘

see also that %»,'%., % 5 end so on, name the ?oinfs we have formerly
named;with uhole.nnﬁbers. Furthermore we see that f£hc£10ns such es 2

%., % , %’, end the like also name points that have fbrmerly been named

by whole numbers. ' Fractioéns which name the same. pqint on the number line,

and which therefore name the same rational number, are called gguivalen

' fractions. Notice that_corresponding to each whole number there'is a -

set of equivelent fractions. . Consequently,fthere is a one-to-one
conreépondence between the set of whole numbers and a'particula;'subset
of the set of rational numbers. Furthermore, it can be shown that a .

one-to-one correspondence may be established between/;ne set of whole’
numbers end the entire set of rationals. ' '

EQUIVALEM FRACTIONS IN “HIGHER mas“ K ' v i

Recognlzlng the same rational number under a variety of disguises :
(names) and being able to change the names of numbers without changing

- the numbers are great conveniences in onerating efficiently with rational’

2



num.bers., Such an addition problem as. +'2—' is certainly worked out -

most efficiently by considering the equiva.lent problem_ % + % )
equivalent_ ‘because E names the same number as -3—2 and % names the

. 8 . . )

same number 8s 735 - .
The figures illustrate a way of using Sur unit region model to show™~—
that % and 1—82 “are equivalent fractions, :that is, that —§- ~and -i%

" name the same number. First we select & unit region and pa.r'tition it

into three congruent regions by vertical - _ ” . j S~

lines as, shown in Figure (a). - Figure - . — — NG i

(b) shows the shading of two of"these (a) E i ‘
regionswto.represent —§- . “ If we re- . ;hﬁds ]

turn now to our unit region and -

partition each of the former three . f’ T

congruent ;s by horizontal lines ‘k';(?)'_i’fﬁp—-b—; :

into four congruent part_.s,' we heye . - ;'-."T"—r-' - _ _

the unit partitioned into 3 x 4 =32 ..  twelfths % - .

congruent parts, as showm in Figure
(c¢) If the unit partitioned in this

' 2>U+__§_ -
T2t .

Model showing

win
:]

way is now ‘superimposed on the model

N

for % , we get the model shown in

Figure (d) uhich 'shows’ that esch of the two shaded regions in t-:he model
t M (73 .

for % is pa.r'titioned into four regions, giving 2 X )-l- 8 smaller con-

gruent regions .shaded. Hence the model showing 8 of 12. congruent

parts represents the same - number as the model showing 2 of 3 congruent

o~

.parts. |
. _ . (e): 3
The number lines in Figures (e) _ —_—
N T . —— ——o— Lo
-« and (f) demonstrate this same equiva- 0 - 2 T
. 3

lence. In Figure (e), —§- is shown - (£) s o -
by partitioning the unit segment into . <—(’)—0—0—0—0—0—0—0—H~0—0—‘——

3 congruent parts and using two of these -
to mark a point.  If eéc_h of the- 3

congruent parts of the unit is now Xumber 1ine model showing that -

-

. : . e 2 _2x4 8 .
;oa.r'titioned into &4 congruént parts, 3T IXTCI :
. 223t L24. * B
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the unit segment then contains. 3 X 4 = 12 parts while the 2 original
parts used to mark’ now contain__2 X 4 -8 eongruent parts, as shown
in\Figure (f). ’Hence,.the sane point is named by %% as was.formefiy

named by % : R L .

I3 ‘

To put tHis»in more general terms;‘donsiﬁéf’the'ffaction % where

b represents the number of parts a unit has been partitioned into and
a the nurber of. these parts marked in the model. -If éach of the b
parts is fu;ther paititioneo'into 'k congruent parts, the unit then con-
tains b xk congruent parts. At the‘same,time, each of the a parts

. is further partitioned into k pargs so that there %111 be a X K-

smalle;'congruent parts marked in the model. Hence, represents

a Xk
g | B Xk
the same number as % formerly did. . Symbolically:

aXk
Xk

o'lp
o

I

where ' k represents any counting number. Hence, for instance,

3 3x2 .6 3 _’3 X3 9. 3-3xh 12
’.'g__,__1+__x2=y8’ or E_T_X}_l_e.j oi' .K--h—ﬂ -z, etc.4

.41' ' bur.knowledge'of.muitiples‘of_numbers can be used to good advantage
when each of‘two fractions such as %' amd % is to be changed to i
,ﬁhigher terms” so that each fraction has the same denominator.

The set of miltiples of 6 1is (6 ,»12 ; 18, ok , 3Q , 36, . .M.} .
The set. of multiples of h4 is (&, 8r, i2 ,:16 , 20, 2&», .. .l} .U

s

. The intersection of these two sets is (12,24 ,36,4, ...} and
any member of this intersection can serve as the Ycommon denoﬁinator" for

the new fractions. The least common denominator would be 12 ,vof.

course, so that

gy

ol -
1

F1H

o

: 5 5 x 2 . 3.3x3_9
l'."'( - . B— and E_rx—j_ 2

or alternately,

and so on.

O
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,6., Draw both a unit region model and a number line model to illdbtrate
2L T
tllat 3= E .

7. Supply the missing numbers in each of the following.

W 3.3x 2k b, 1o o, — o1k
*5T5x R © BT32 T 12 TRk
8. - S}Secii‘;;ﬁ‘l "e"ysed in each case to change the first fracggon
' to the sechnd ' ‘ ¢
v . 1. Ixk_28 . _
B TWxr - ET — .
Sl k2 )
A\l bc E—m,k—_ .

EQUIVALENT FRAC‘I'IONS IN PLOWER TERMS"

Expressing a fraction in "lorwer terms" (often called "reducing"
fractions) is simply reversing, or undoing, the process used to express
2 % X 10 20

. T e _ - '

. ﬁ‘actions in "higher terms". For exa;;nple-, 3 =3 x lO 30 and, .

_ 20 _20410 _2 10_10+2a_5
undoing this process, 30.530+10 -3 ° Simila:ly, T = T,L_ = 2
% = %g—:% = % ) -Jil—gl = &% =“$ 'and so on.  In general: - )

) . F A COUNTING NUMEER, ¥, IS AFACTOR OF = '
’ a_‘adk '
BOI'H a ANDb s THEN b & k"

‘In this case we say that the fraction % has been changed to "lower terms”.
C It should be noted that while it is always possible to change a fract:l.on -
. to m equivalent one in- "higher terms" with denominator ‘any desired
multiple of the original denominator, it is not.always poss:l.ble to re-. ‘
name ("reduce") a. f.raction using a specified divisor’ (factor), since

one. cannot- always divi.de & counting numb er by a countipg number. For

exa.mple, % can be renamed uging 2 as a d:l.v:l.sor, but not by using 3,

while -3- _cannot be changed to any "lower terms". We sometimes say ‘that

57 ! - —

225 -

1
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.

a fraction which cannot be changed to any "lower terms , such as J—‘-,'

%, ete.s, 1s in simplest form or lowest terms.

Putting fractions in lowest terms or simplest form is a convenient
skill, but its impc;rta.nce has been overrated. The. superstition that
. fractions mist always, ultimately, be written in this form has no mathe- .
ma.tical basis, for only different names for the same nunber are at issue:
It is often convenient for purposes of further computa.tion or to ma.ke
explicit a particular interpretation to leave .results in _other tha.n
simplest form. However, whege simplest form is de'sired we can proceed
by repeated division in both nunerstor and denominator, or we ca.n use the
greatest common’ factor of both numera.tor and denominator as the- k by -
which both should be divided. The examples displayed below ‘should-be -
4 . sufficient to 1llustrate both procedures for writing a fraction in
simplest form . ) o T v
(af 12 _122+2_ 6 _6 &2 % v | o

12z (2x2)x3

1

20 =" {2 x 2) x:5

. So the grea.test common factor of 12 and 20 {is
_2x2=L and 12 12+ 4 3.

‘ - 20°20x L5 .
“.E.l’oh. @]2_69 : . - '
®lz2 . ®hp L

E CE) ]
"So the greetest common factor is :

2Xx2x13 =52, and : S

- - -10k_ 10k+ 52 2
e - 'E‘ 'Eof 52 5 _

. : : ) A

Obsérve that for a ffraction"such as’ % the greatest common factor

- L ) . IS .
« .

O
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of 5 and 9 is one, and consequently the fraction already is in its -

' lowest terms. It is true that g = g—%—% = g , but, there is no need to .
.perform such a division. R . : 3
[ ’ °
PRGBEEMS S ,

r

9. For each of the following, give one equivalent fraction in "higher
' terms" and give three equivalent fractions in "lover terms® , in-’

’

"~ cluding one. in lowest terms.

*

8.

say t , of. the numerator and denominator an& use  f . to write

E

the fraction

b.

in simplest form.

30 PO .30 _
8.-: 'rs ) f = . -rs =
.24 o
’b- 31 £ = . . . 31 =
" 39 o 39
¢ 53 = — . 527 :

EQDAIITY AND ORTER AMDNG RATIONAL NUMBERS

21‘_ ) 30 ‘ . ’ . AR
& . . .

10. 'Why would it not make sense to speak of a fraction raised to
"highest terms"? _
11. For each of the folloying, specify the greatest coumon factof ‘

Iirst let us -recall’ the three possible re1ations that may exist‘
betveen two whole numbers, . One and only one of these"
- three things is true: )

m and n

m=n (m is equal to n),

m>n- (m 1s greater-than n)

m<n (mis less than_n)

i

A similar statement. can be made sbout tvo'rationai numbers,

and

alo

2
b:

olp oip oip
A\V4
alo

alo
—

N\
aln !
—

. olp olp olp .

227

is equal to

205

-

£
d
is greater than

is less than °

3



6 P {
812 T B

’

‘9

5

3

3.

fnsider these’ three sﬁecific examples;

L

8%

v

How may we compare the rational numbers in each example to determiné

.whether the first number of each pair is equal to ©or greater than, or,

less than the second number ofoed!h pair? Of the several approaches
that might be taken, we.shall illustrate.the one in which each pair of
'fractions is expressed in terms of equivalent fractions whose denomina-

~ tors aré the same.:

least common denominator. Thus:

S

2.

To

it

To

it

To

it

6

compare g and- %

mist be true that

‘compare g and %

mst be true that,
compare % _and %

mist be true that

6
g

._Now let uS'summarize each of

a significent obsérvation.in each

1.

2,

3.

B<

since

instance°

K

e

'

“

g = é% It also;is true that- 6:x°12 =
7.5

B>%

5 2

8<§

8x9.
» It also is true that 7 x 6 >8x5.

. Tt also is true t_n_at 5%3< 8x2.

N

6.18 9

8 2k 13

8§24 6 -2F 0 &0
5 15" L .16
§=35,5 75 ad

‘e

In particular, the common denominator will be the

18 18

18
—=§K"@ -éK=-éK

these three comparisons and also meke

It is extremely dangerous to generalize on the basis of isolated

;examples’ However the preceding examples do illustrate aﬁr&mportant

:'set of relations that can be demonstrated to be true for all nonnegative'

- .rational numbers 2 and

s
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b .

e
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>

N ato

alo

228

[p]
52

if and only if ,axd =b X ¢ .
if and only 1f axdpbxc.

if and only if axd<¢bXxc.

)




B

’. 'Ihus, we have a very s.imple and convenient way for determining
" Whether or not two rational .numbers are equal and, if not equal, a very
simple.and, convenient uay for ordering them.

PROBLEM' t

12. Make each of the following statements true by writing = or >
or < in the ring.

- 6 9 . o 30 15
e TE-OTG - 30 ¢ BB
3. 36 95 - - 143~ 1043
¢ 10O% = B\JT0 - =3UTs

RATIONAL NUMBERS IN MIXED FORM

" Each of us is famlliar with the fact that a rational number whose

- pame 1is %_, for example, also may be named in the .",mixe'd form" -sometimes .

called a "mixed numeral®, l% (We do not say "mixed number" because l%
is a numeral that is a name for a number, and not a ‘numeral. } Let us use

. the number line to examine briefly some of the assumptions mderlying our
use of the fa.miliar mixed¢ form for na.ming certain rational numbers.

- . L I
o 177 2 EE N & 1. M8
3 -3 3 3 - 3 3 3 374 -3
1 2 - 2 1 2
0 - L= = 1 R = . 2 = :
> 3.3 3 3 2 7 .57
Consider, for instance, the use of % and’ J_%. ‘to hame the same N
) . ¥ e - ‘
o R ER
-'-‘:'rational number. i We bftén' state that"% = l% ) Behind this statement
here is the assumption, among others, that rational numbers ca.n be
_ 5. 3 2 N s - _’ L . ,’.‘__'.
ded: £ == +==1+==1= .. ’
adeds 3t3=lr3=13. SRR

Or, consider the statement that % 3

_the ability to add rational numbers "is omne of the ings underlylng our
: in‘.berprete.tion of. 2]3—' , since: % =g % = g + —'= 2% e

§ P %

:Re o
P

al . He_r"e-’?'again we see that v: .

et

i



It is beyond the scope of this'chapter to give any systematic
consideration to the addition of rational numbers. However, we did wish
to point out that this operation is implicit in an interpretation of the

‘ mixed form for a rational number.

i Another importa.nt implicit assumption is considered in the
following section. A - - ‘

. : B : I SO
- . LT
- RATIONAL NUMEERS AND DIVISION = ¢ ° ' o R

.

Thus far rationa.l numbers have been interpreted in terms oﬁ several
models' “unit regiqns partitioned into congruent reglons, undt sets or
a.rrays pa.rtitioned into. equiva.lent subsets, and unit segments nsiz:titidned
into congrhent- segments. We.shall now look more closely at the inter-
pretation of rationa.l numbers ‘on the number line.

<en

- For an example we sha.ll cons1der 7: We partition the unit - seg- . -
- ment into four congruent subsegments and count tl‘ree of them. Each .

interval’ in the partition pfpresents - t 3 therefoigr'three-fourths is .
‘the union of thfee-ef the subsegmentsq Numer@i_y this implies _
that ﬁ_ is defined as 3 11: S _'i' S E
. | '

(&) ---4—0—%'.—0—-.—0—.—« >-—o—o—= 0—0—0——

o : CoReg ST o
Similarly, the union of four of these segments abut@ed end- to end . 1 3
represents L XIZ or 3 P ‘as shown in (b). ' o Lt :

;.. of multiplication for the produ.c't - . : .M:\."‘»
. 3 1L 1 1 12 . "
l‘x£= kx(3o<%=«:;(#-><3) x£=_l2x£-—1r—3 .
. ) h .“ :'-' ;\'. - . i
i ) o ; RN
. 230
Y r -
( 231
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P SO R - - . . 4 ) i
'l'he folloving equalj.ty derived from *the preceding vork is of particul‘
'interest' ) L s . .. :

PR =

e "t A.,: . e e
e ; o I

It demonstrates tha.‘E there is & number of the form

that satisfies the
equation g » o &x &3,

olw

.

. ot

nama.y, n-'— %.' '__Associated with this equation is the quotient 5 = 3 2 x

This had no meaning in the set of whole numbers, but we see now that the
set . of rational numbe,rs provides the number E as equal to’ 3 + 5

. a" R e .
S : Recall the use of the n}m?ber line in illustrating divisiOn, say of L
o 6+ 3 ."’A 6 unit segment is pa.rt;:_tloned irto ,.3". congruent sub-

, . segments._ Each subsegment is congruent to the segment From O to 25 ,

" and thus, “6.4.3.22, A s:.mllar parti'tloning of & 3 unit segment ,
i:nto iy congruent subsegments ca.n bé associated with 3 ». & . As

'_ -Figure (b) above shows, each $u1&gment is congruent to the segment ‘_':.-,

)

D

":from O to E s thus just:.ﬁ'ing 'furth& that 3+ 4= E T kR

'

R
This 1s but one 1llustration of an 1@ortant relation be’cween

rational numbers and division. In general, it is “true that ‘ - .-; '
\ ) ..:'. a _ : . . -
-« SRR

vhere | a _is any who'le number, b .is any <ounting .number, a;nd their

quotgemt is the re,tional number b ~ Thus, for every whole number a
2.
,and ﬁor every countlng nuzber b there is a- ratlonal number® %. such
F7Rt T o . '
that e T - \ : .
.o S - P b é < . . o -
I - = . -
% Xg = e .
-~ ~J - . /
N 3 ". . - '
o . I8 e 'l‘.,_
oo e O ("'
13: a. Tind n 43 xn =5,
. R :
b}.\ 'Show the div .1. the number lme. .
‘ i . .o R -
SNy L
N ' ;/ " M >
. B ) :
. r
PRy * : .
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\Ammmm*rornums.? D

-

. . next whole- ?.mber after l068 ER a.nd sp on. What 1is the next ra.tional .
er

-Hence,

- is _E'

Vi

Rational numbers are different in many ways from whole numbers.
One such difference is apparent if we recall that for any'whole number
'next" whole number 1is. a.nd then ask, in a
similar vein, what the next" rational number is a.fter any given rational.
number. .For., exa.nrple, 1& is the next; whole numher a.fter 3 ’ 1069 is the

one can always say what the '

number a.ft snggested as :t‘he next onej we can- observe '

is su.rely between -]5 a.nd

2

tha.n does

.

Pl
r—'r'o\

A
that._ 0 13
l7§ has a'better claim to being next to L

: 5 . If
it is then suggested that 15

uilm_wlm

1-4 be rega::;ded as the next numb,er after =

12 - 7..- gty ‘13
-3 e BIEm % k.

To carry this one step .further, we can squelch anyone who

we can observe that is closer to % 'tha.n-

7
is' 12 .
suggests -% as being the next number a.fter ]2“ by pointing out that

1, 2k 13 26+ ", w 1.
5—1?8 d o = ES ’so that 7:8 is mOre nearly next to 5 th

It is clear that this process could be carried on indefin;Ltely

and, furthermore, would apply no matter what rational number was in-
That is, we can never identify a next" rational' number a.fter
any given rational number.

volved.
A similar uguqent would show that we can-
not identify a number 'just before a give,’nm_rational number.

. N - . A . .
A number line with a very large unit is shown to, illus_trate_ the
process we went through in‘*searching for the number “next" to" -]—2“ .

_— : N ., ¥

- e

213

R
N LY

Oq-
Ny
-
i~

Another way of expréssing what' we have been talking about 1s to say
that between any %wo rationa.l numbers 5. there is ;:Lvays a third’ ;rational

e number, in fact, there are more rational numbers than we could 'count.

: .Mathematicians sometimes describe this by saying that the set of rational

numbers is dense. Th& word Is not importar;t “to us, but 65 descriptive

of the packing of points representing rational numbers_clos.er a.nd,‘__c_loser .

232 . . . ., 'f'.- '/ L v'

- 235

[ 2 v



;.:’.; ) ;‘h; ‘ k' - . . . . : .1’:_: »' . . , ] . . .ﬂ
) togetner on the number line. Altnougn we. can visualize that the p01nts
. representi'ng the rational numbers are densely packed there ar;f many

points on the number line whose coordinates are not rational numbers.

~ . . "3:'.':_‘ < '- . .. '_ . - 3
Mazry points a.re associated with numbers such as ;t i 2 y -/— , and so

‘Qn. We are not going to corsider such,, numbers in this tex‘t but we

mention them to indieate that the number line is not yet complete., There

- is a point associated with every ratione.l number but there 1s not a
rational number for every' p01nt ' : . o -

PROBLEDE

14.. Neme the rational numbers )associated with the p01nts A,B,C, -
D, and 'E below, ?where A 1is halfway*between l and 2, B
‘halfwey betweer 1. and A , ete, . "

~

e ¢
;l
|

~>

L - F ...v.

6 -

15. How many numbers are »there between 1l and the number associ;ated
with point E 2

k)

= -. o . . ° . .
SUMMARY - | ,*5'

2 .

Every nonnegative rational number can be representea by many aif-

_).

ferent fr_actions of the form % , ‘Where ‘a designate# a wyfiole number

Vi
\ . <.

-and b des\'ignat‘es a counting number.. All frac'tions for the same

~ : v

-rational number are said to be equivalent The problems of changing
a fraction to "higher terms” or to "lower terms" or to lowest terms
are essentially problems of rene.ming.. ‘In this connection we use to
» advantage the fact-‘*that‘ ‘ > -

2ALLN

" .
= A{where’ k @esighates a counting number)
2' . . . . A .

end also ‘thérfact that."
:;’ _‘% : ; (vhere k designates a factor of a and b ).

. - ". 3 -

D<)
S

O
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Aruitoxt provided by Eic:



Equality and order among the nonnegative rationalqnumbers can be
established on the basis of these c0nditions-::‘” ' #’~ﬁﬁﬂ

- §og1rem iy xn N
e - TS U
.§>§-. if.andosq,'x-‘i'n axd>bxc. '
‘ % <'% _,if'and only/i;j aXxdgbxe., : le
We have seen that a rational er may be’ used to designate the.

jand any counting number, b. :

a
.b.'

"quotient of any whole number; a -,

a+b =

Finally, we have p01nted t0 the «fact that between any two rational
numbers, no matter how close they are to each other, there are many
other rational numbers. Among other things this means that unlike the
whole numbers, one cannot identify the number that comes "Jjust before"
or "just after" a given rational number. g

- .

'APPLICATIONS TO TEACHING .. . o

We have emphasized the use of several different models in developing
ideas about rational numbers: * i N

4

a. unit regions (plane and solid), partitioned into congruent
- ..regions,

b. unit segments, partitioned into congruent segments; and
c. unit arrays (or sets), partitioned into equivalent subsets,

Children encounter eaoh of these models iniconneotiongwith their

everyday. experiences, such as:

.

a. displaying a fractional pert of a candy bar,
b, displaying a fractional part of a piece of string,
c. displeying a fractional part of a bag of marbles,

. It is important that children have ample experience with each of the
,models identified if children are to be able to apply rational numbers
- correctly and effectively. Variety of representation is imperative in

- this connection.

O
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" QUESTION
"Why do you not insist on changing improper fractions to mixed numerals?"

The plea is not SO much to have nmbers expressed 1n one form or l
another as it is to have the pupils realize that the various forms are names
for the same. numbers. Sometimes it is more convenient to have the mixed
numeral formf then the improper fraction form. Sometimes it is the other

way around.

1 .
For example, an answer of -22 for the number of pounds of candy is

more mea.nlngfully stated as 71 pounds. If more computations ‘ﬁeed to
be made on this answer, say, to find the price at 37¢, it would be

’ 'po'lntless to expresss % as 7— .and change it again to -]2;2 to obtain
the product. . )
VOCABULARY

-Array oo N _ : Mixed Form.*

Common Denominator S Mixed Numeral *

Congruent Segments |, ' ' No'miegafive Rational Nﬁmber
Denominator * S Numerator * . )

Dense . - . Rational Nmn‘Ber L

Division * : - i?ectangular Region

“Bquivelent F*‘actlons * Simplest Form *
) Fraction * T " Solid Regjon. *

Fractional Numberé * . Square Region

Greater than % ° : " Unit * - o
Higher Terms o ‘ .Unit Region ¥ . !
Least Common Dénominator o Unit Set,

~

Lower Terms

252235

O
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" EXERCISES - CHAPTER 13

Using rectangular regions as ‘your unit regions, represent ea.ch of

the following by pa.rtitioning the units a.nd shading in pa.rts.

. £ £, %I
ol . 3
d 15; b.- %

Using unit segments on number lines, represent each of the fractions
a-h of Exercise 1.

Using arrays or equiv&lent sets, represent eacl‘i of the fractions ’ '
a -h of Exercise 1.

Most of the followling figures are models for rationsl numbers. Some
of them a.re not models because the unit has not been partitioned
into congruent parts. F8r each one ‘that is a proper model, give

- the rational number vhich is pictured.




These are illustrative oply.

. SOLUTIONS FOR PROBLEMS

Many models may be used.

S 1.

» . X
. % A ‘ C | e oo o0 0]
. " 5 e ole oleo! .
g - ~ o N I xxxxy I
3B i o000 e ofe olo o
B R ._w.o..voo.ooﬂ" o o|e o0 Ol
ot B . I TRNNAYE .4._..,0...0 * e /o olo O
ot g e i-q 0 mgeial (00000 00[ |g4feeleo
'e : . P . Inl.l
g g R
. AVW . * ... X o7 g
g opo o
, + o o o - : )
O . .,quwm.. AN 2
T B CAR . :
{-} « - . g .
: . . . R i® O 0O 000 —— —
1y g o ¢ o 5 @ *e , olee o 0! P
-2 . J|leeeocoocoo| |®®® 99 Q.
“ « Tt al 000 000 00|
“ —t 3P eee0 0000 i
L 8 T i 0% e 000 00,
. g J B s . |eeeelee @0
- S B S :
. Q w (2] ’
%) TG My w8 -
: £ % ol - = 1. m .
a & . mie :
o M . J 3.5&
H B o _ . eee0ee00| . . .
a m - 2 'eee e @0
_ m b o~ o . © 9 | eeeeeo0 ®e 0000,
B O \ : -~ - |eseeeo0 ©0 0000|
ﬁ M 2_.4. % . L ....... oo o uIOIm._
g .m . . . c b . .< . ' .
m o~ o o el [T nm 4] . o]
L) L L] 3 I
a (18] = - n -
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10.

12.

:13.

1k,

15.

or

8. k=4 " b, k=3 c. k=21

'Higher terms; many ansvers, €,.g.: Lower t.erms; any of thesei|Lowest tenﬁé:

. 48 ko 12 8 6 4 2 2
- 72 2 108 7 360 * S Br1375°%73 3
(p, B0 180 Ao Lo 15206 5 3 1 1
P 120 240 .2 WY : 36°%°12°16°6 2 -2
a &axk } y ’ L
~Since in 5 P Xk _lshca.n be any counting number, there 1s no

-

1imit to how large the numerator and denominator can.become.

o 30 +15 _ 2. . 39413 3
a, f—ls’II-S*—lS_g Ce f—;l3.,—52.’13—

2k #12 2 T
b. f=12,—6ﬁ=-§ . ,

30 A\ 15 -
Ce 'gg 58’“.

® 2
.d.%@ls. el _2%@% . Lb3em\1043

13 103

A . _ B ) c - D . )

3 1 5 1 9 L, 17, .1 33 1,

5 (.O’I' 1-5) $ (or\,lE) 5 g (_or 13) 1 (oz.' 113) 53 (or.1-3-§ |

‘More than can be counted (actuelly "infinitely many"). . : :
238

235



5. Consider the points labeled A, B, C, D and E on the

o B A - C
number line ~— —e— o - o
0 _D . E RN B
a. Give & fra.ctiorn name to ea.ch. of the points. ) . S
b, . Is the rational number located at point B less tha.n or E

greater than the one located at D ? Explain your answer.’
cos In terms of the marks on this number line, vwhat two fraction
names could be assigned to the point A ? -

‘.

6. In’terpret on the number line the following: -

20 20 23,3
., — =14 b. = : . == 4=
& T C T “ 35=%
7. Show on the number line the equality: '
.2 _ _3'
B 12

8. Tell which of the following fractions are in "simplest form".
' 6'11 7 12 510 7 kK2 10 13 2

T —

iz T:TQ’.:E:%}]@:T:T_@';-Z:‘E’

o 9 Foi' "ea.ch palr of rational numbers named below, indicate ":w'he't"ner the
' first is equal to ‘the second, greatet than the second, or less than

":;‘the? second.

101 .. 15 .. 13 9
_:.’é‘E " B> B '__'.‘:_2.'6:1'8
R Tt '
- T St 320 2

s 10. Express each of these in mixed form,
1 ° ' . . - .
5 7 15 21 - 34 56
< a. 'H b. -8— . Ce. -§- d. 1—5' e, -1-2-
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" then, can be the emtpy set or it can have members; it is the empty. set .

‘INI‘ROIIJ’CTION . . » _ R y

. Certain basic geometric figures and concepts have been preserted in-
Chapters 5 and 11. I{eca.ll that common physical objects provided-the
foundations on which the development. was built. It vas done this vay
because this is the wae( in which geometncal ideas are conveyed to young
children. Little was said at that time sbout geometnc solids. This topic
will now be extended to gain fa.miliarity with associated vocabulary and.
cha.racteristics as ha.s already been accomplished for.meny plene figures.

—

The notion of _congruence which has appeared in the earlier discussion
will also be a vital concept in the following development. It will pro-<
vide a means of ordering sets of points whlch will in turn lead to the
concept of "measure. By this, we do not mean ordering the polnts as we
have done on the number line. We m_ea.n ass1gn1ng en order to sets of
points as for e;'ca.mple; among variods segments among plane regi'on:;, or
_solid regions. . The corresponding measures are for lengths, areas, ‘and
volumes. Thus,"we can compare the "sizes" of different geometriczob,jects.
The concept of measure will be discussed in Chapter 16. In tE.is, :hjtpter,
we want. first to 1dentify some of the geometncal relationships a.g"’arcon-
figurations by their mathematical names and next, to cla.nfy__the concept

of ordering sets of polnts. -

mﬂ{RSECTEGANDPARAIm -

°

.The terms intersecting and parallel are fa.miliar though common usage
,in describing physical phenomena. We speek of a road that runs parallel
"to a railroad track, or we speak of the intersection of Polk and Fell
Streets, and so on. ‘These everyda.y references describe, a.lthough somewhat
more loosely, he sa.me relationships f*that the terms imply 1n_g__ome$ry

Reca.ll that intersection is one of. the set operations dealt with

- earlier. The intersectioq of two sets ylelds a set whose members are

those which the two sets have in common. The intersection of two sets,

S gy




if the two a.re]disjoint.

Lon ]
Street run pargliiel, there 15 no intersection. Technically, we would

- simply say the lintersection is empty. However, the less formal des-
cription, that "there 1is no intersection", 1s often used in geometry

Thinking again of an example of streets, if First ,Street. a}d Second

for ‘the more accurate description, "the intersection is empty"

Consider the lines AB and CD as our two sets of points The
operation of intersection may yield the empty set, a single point or a
.. 1line. The dravings illustrate these possible situations, =

‘ ~In general, "do intersect" or simply ntersects" implies the inter- .
' section has meubers; "do not intersect" implies the intersection is empty.

Although we have only used lines as examples » any sets.of points can
"be considered from the point of view of whether they do or do.not inter-
" sect. A line may intersect a plane in a line, a point, on_ not at-all; if
| there is no inter'section, the line is said to be parallel to the plane. :I‘wo

planes may intersect in a line, a pla.ne, or not at all if they do not
intersect *they are said to he pa.rallel.

-

In space, it is possible that two lines are not parallel and still
do not intergl t. Plcture 2 road.which passes under s railroad bridge. The
bridge is not parallel to the road; but does not intersect the road
CD a.nd AB in this drawing provide enother example of nonintersecting,

ERIC
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nonpa.rallel lines, Kein) is nét parallel to H H neither do
1ntersect. '

Pa.rallelism for lines may ve stated:

TWOIMSAREPARAIIM,IFTEEYIIE]ITHE
SAMEPLANEANDDONOI]ITERSE(H‘ )

- If S a.nd T are sets of points, certa.in subsets of S and T

" may be said to be’ parallel vhen S and T are parallel For exa.mple, ke
btvo segments are parallel if tﬁey are subsets of parallel lines.
"Also, two regions are parallel if they are subsets of two pa.ra.’L'Lel
‘planes. A line may be parallel to-a plane, and so on. " Note that 'Gﬁ
and Iﬁ' in the above ‘drawing are subsets of parallel pla.nes but are

/ not considered to be parallel. Lines not lying in the same plane. are
sald to be skev, “their intersection is em'pty Note also that a plane
‘and a point that is not in the pla.ne may be subsets of parallel pla.nes,
but we do not say that the point is parallel to the Plane.

- PROBLEMS®
1. . Identify the intensections' of the geometrical figures named, They

refer to the draving. If the intepgection is the epxpty set, state
whether the figures are parallel or not.




I

. i . . N
R . .

.. D - end, FC :
‘ khe ‘plare region with vertices ?'D, E,F . ey
and the plane region with *vertlr?es A, D,

E, H . R i : : .
¢ TE amd W@ B T
. . d. 'E_H._,,: and the plane'region with vertices . A
_ A, B, 6 H - ' ' |
= A o R
PRISMS T i W

P . 3

LN In Chapter 5, s. rectangula.r prism Vas identii‘ied a.nd looked at - Y
" .briefly. It was noted that it was. composed of six’ pla.ne regions ca.lled s ‘,

faces. The intersection of any two faces may be eurpty If two facef_s,- _:""N

_ g
" "do intersect", however, r}:helr intersection is a segment called an

-y

"edge.  In the same ma.nner, intersect;,ng -edges determine a point called ';‘

- S oL 0t e
a vertex. ‘I’hgs, the above rectangaiar prism is theunion of its six[" - L
faces contains twelve edges and eight vertices,’ Tts shape was a‘bstracted
from a: rectangula.r box, all of its faces are’ rectangula.r regions.
The pictures below of & deck of cards pushed’ into an oblique posi-
tion is also a model of a. reccangula.r prism. The. criteria for a prism -
are. simply o S |
“there are tve: congruent polygoneal -regions :
lying irffparallel,plé.nes, and the edges _
which do not belong to these parallel planes A Y

are _ail parallel to one another.

O
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" Thus in th.ep;figuresf.b:elow, the first is a prism but the other two 'arec

. Congruent po1ygaay /'~ Congruent Polygonal ' Bages parellel; < ¢ ©.

regions in.paratiel .. - * -regions in para’r.lel - polygonal regions -
planes, edges paral_,lel. .. ' Dlanes; edges not.: . * . :not congruent.{»
L para.uel * . T

R AREIN

The congruent regions in the parallel planes afe called bases of
the prism, and the prism may be identified accoraing to th;e kind of
" bases it has. ‘For example, the rectangular prism has rectangular regions .
" for bases; the.prism shown in. the: figu.re at the left above is a penta.-
gonal prism; either of: the figures below Iis & triangular prism.

_‘_:-."\,. B R . . - t

W I

The faces of a prism that are not ‘bases are ca.l_led the lateral

v feces. Note that : ‘each lateral face is a parallelogra.m region, ‘the -
‘boundary of each lateral face consists of two parallel edges called
- lateral gges and two sides of* é’ongruent polygons. The two sides of the

congruent polygons are also 'paril.lel thus' the’ ‘boundary of each lateral T
-

face is a parallelogram.. - \ﬁ.ﬁ-&

&

v

' a : If the ‘bases of a prism are also para.llelogram regions, the prism

R is called a para.uelepiped. Thus, the rectangular prisms are, a. su‘b-
family of the parallelepipeds. A cube, which is the union of six
congruent sqQuare regions, is another kind of specialized rectangular
'prism and, hence, is also a parallelepiped. A generic chain of quadri- :
lateral prisms can thus ‘be formed- ,just as- was identified for quadriI“ terals. :

~ - . ‘.

*Imagine the top of the first figure given a twist. .
+Imagine cutting the first solid at & slant to the ‘base,:




The-above “two pictures of the deck of cards illustrate another
: property by which prisms are classified. In the first case] the lateral o N
. faces are rectangula.r regions, in the second drawing they are pa.rallelo-_ -
l A;urgram regions only. The first is a'right prism; the second” 1s~an oblique
: ;"__";prism. The laferal faces of right prisms .a.re rectangles. The tri- .

_':'_."&ngu'la.r prisms shown above are right prisms. A cube is a right prism - . Py .
. .'all of ¥hose faces are recta.ngula.r regi'ons gnd, more specifica‘!.ly, a.re o
squa.re regions. i N
g ) e
H“: i ) " .‘ ‘ .7-..:_. - " » . ’ . s '...;- 3 .-, .
PROBLEMS Ca - e R T
2. 8. Select the figures which represent prisms and give the name , o
. which best describes each. - L '
\ b. For those figures which do not represent prisms s state why
Yoo s they fail to quafiﬁ' L SR s

. .I . .
Tt
-

N AN ~
e Lo .,
A - - .
Lo -
’ L ST s N
Lo . )
’ »” B . '
e v - -
. . . . . - (LN
. “ £ »
L - -t e *,
~ . " \ .
J . 4 LIRS
R o
. i
: . - .
e Lo 4 . o~
. - Ty
. NN e .
- ~— . : % . R
~ B - »
: 2h6 . R
-
- / .‘Q) - -7 4
D q 0 " » N
. v - R . ) '
T . A - -
, X - -
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solids, na.me:l.yu ;:y_ramids.\ As is the case for Prisms, there are a great
Each must satisfy these .

v

w2 ,,

B

'I'he drawi!gs above repi'esent examples of a familiar set of geometric .

o5 a.riety of sizes and shapes of pyramids.
cr{teria. ’

1.. thHeére is a polygonal ;';egion called the base,
2. there isa point cal%eda, the apex not in the

¢ by its base.
so it is a square pyramid.

W
edges intersect;’
' §. $ L.
3. each lateral face is a:trizngulariregion
‘determined by the apex and a side of'_the'base.

-

..4’

.

58
Which of the following are drawings «of pyramids”

2 b

pentagonal pyramid respectively,
ap e}fs’ B i

-~”PROBLEMS

N

ere all the latera.l

o

s

" 'Analogous w the classifiica.tion of prisms, a py'ra.mid is identified .
In the first figur _fabove the base is a square reglon, and
The  others are a triangular pyramid and a

A, B, and C denote their respective

e -

@@.@k

<t
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8.
b.

Ce

d.

. What' az'e the possible intersections of two latera.l faces- of a

State an a‘opropriate name for this pyramid.

Jdentify the apex.

" How nﬁmf edges does it have?

How many facié.s_ dogﬁ it have? *

[t
S

3

py’ramié" -

247 24.}' |

a




. . et .
R X — L
Although we‘have/not discussed—alI geometrie solids ;hat are,the & .
union of flat surfaces,.we shall now turn our. attention to solids with |

.

non-flat. surfaces. \These two figures represent cylinders. The two ‘faces ®

. ~ L
‘ ' . - L4

- ’ - < .

¢, o~ .-

- e ‘e

- ¢
. ¥ . .
4 . h . \ - .
. N . E . ‘ - ¥ ’. . hl

must be cbngruent regions in parallel pIanes. The§ are called‘bases of .

the' cylinder, which'is consistent with the other uses'of the same term. _ .
Although the examples show cylinders wi'. circular bases this is not a-= o
'requirement o*‘cyIIndefs‘E r— : hall_not.conshhn:.___

-(are then congruent circles. and are edges of the cylinder.

cylinders with. bases of other configurations, so the discussion will be .

limited to efrculas” cylinders. The boundaries of the congruent bases

a

L] .'r ‘
,The remaining rounded porﬁion of the simple. closed surface which

defines the cylinder is its lateral'surface.. The distinguishing

" ¢ch istic of a surface which 1is not flat is that a segment deter-

mined by two of its p01nts 1s ‘not necessarily a subset of the surface.
The drawing below°illustraues this feature; AB is not a subset of the
lateral surface of”the cylinder. 1In fact-all points of AB between A

and B -ere in the’ interior of the cylinder. 2 S

<
L
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% is posszble to find segments uhich are subsets of the lateral
surface of @ cylinder however, such as CD .5 In fact, this. is a means

by which the la eral surfate is specified s we shedl show below.

. -
.- - . . . -

- ' . f ~
> L 3 ¢ ~
s %
: 28 '
- S > .
v 245 . .
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L ]

. EdEh of the bases has a center; therefore a segment is determined
by these two polnts. The line containing this segment may be»referred

- to as the e gz-centers. Consider. any plane of which this 'segment is
a subset, It will intersect the bases in two segments called diameters,
'such as AB and CD 4in the figure. Each endpoint -of one diameter is
to be paired with the appropriate endpoint of the other diameter in order

to be able to describe the set of points in, the lateral surface. The
appropriate endpoints of the respective diameters dre those which K

determine a segment that does not 1ntersect the line of centers. Thus,

in thé drawing, A is paired with T and B ispaired WTE D. T

I
.

v By considering a different plane, we will obtain two new pairs of
: points. If all such pPlanes are conceived,. all such pairs are generated:
Then e say we have defined a correspondence between ‘the points in the

boundaries.of the two congruent bases. Any two points which are thus
paired are>corresponding points., '

~* ¥

Each of these pairs of‘corresponding points determines a~segment
parallel to the segment‘connecting the centers. Tne union of all seg-
ments determined by corresponding points is the set of points in the
desired surface. Each segment .is said to be an element of the cylinder.
Any two clements are parallel. In the_figure,,ﬁﬁ and XY are elements
and therefore are parallel ' T »

4

O
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. . } .

The precéding descriptién for generating'the laterél-surface is
fathe; involved. bTbis.is because we want to specify the particular
correspondenie we -have in mind since other pos;iblé configurations can
be formed with the required bases. "If a different correspondence’ were
defined between the points of the boundari 3 gure as in (a) and (Db)

. below might evolve. . SN | '

# : .
(a) . ¢ N - I
—— CoC T - » T '_ Aﬁ
We can now state that a circular cylinder myst satisfy these
criteria: R N
. >
1. there are two congrudent circular regions in

parallel planes;
2. there is a surface which is the union of a?l
segments detérmined by corresponding points of

" the bourdaries of the bases.

Refefring back to our first two examples of cylinders in this
_ section, the first is a.right circﬁlar cyiinder; the second is oblique.
In prder to be a right circular cyliﬁdér, every element of the cylinder.
must form right angles with each segment of & base which iﬁtersectg'if.v

It is apparent on reflection that there is a distinct similarify
between the cylinder and the prism. They each héve congruent regions
in barallel planes. for bases. If an appropriate correspondence were

. set up between the ?pints of fhe sides of the bases of a prism, and if
1ine segments joining them ?Ere considered such thet they are parallel,
fhen:the lateral faces would be specified. I# fact, the'onlygdifference
is that the bases of a pri§mlmu$f be po;ygongi‘rggiops vwhile those of a

circulai cylinder mugt be circular regions. 'It is the case that a cylinder

\

250
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can be defined in such a way as to include\nrisms as a subfamlly of
cylinders; however, this will not be done for the elementary level.

. < . .
By the same token that ‘cylinders are_analogous'to:prisms; cones

are anslogous to pyramids. As with cylinders, we will restrict the

plane region of-«a cone p a circular shape and designate it as the base

* of the cone. The point which is not in the same plane és the base .

describes the apex. The lateral surface is not so difficult to describe

in this figure. It is simgly,;bs«set’bl Tine segments determined by the:
apex and each point~of’fie circular boundary of the base.

-~

’

PROBLEMS

7. State a definition of cylinders so that prisms would be a sub- -
family of cylinders, namely polygonal cylinders.

8. Describe.or draw representations of the intersectibnsvof a.plane
end a right circular cylinder if the plane does intersect the,
cylinder and is o
a. parallel %o the bases;

* b, parallel to the line of centers;

Ce not parallel to the base nor the line of centers.

SPHERES .

The final solid to be 1ncluded is the sphere. As is the case for a
circle, a sphere has a center, All segments connectiné the center of the
sphere and a point on the sphere are'congruent. Indeed, this specifies

the sep of points in the sphere.. They are:
all endvoints of congruent segments
which.naye'qne'endpoint in common,

but noteincluding their common endpoint;



The congruent §egments are radii (singula.r_: radius). The union of two
radil which are each subsets of the same line is a diameter. In the

'figure,'o is the ceﬁter’, A0 and OB are.radii and therefore congruent,

end AB 1is a.dismeter. = . ‘

A hemisg"h'éz"fe is half.of a sphere. Any plane that I_contains the
center of a splg,e.re will "cut off" a hemisphere. ot '

PROBLEMS

9. Identify the intersection of
a. . a plane and a sphere;
b. the center and the sphere;
Ce a diameter and ‘the sphere;

d. the center of the sphere and one of its ‘hemispheres.

ORTERING SETS OF POINTS

The ordering of sets is not a new topic. Chapter 2 was devoted:
to .the comparison of sets according to order and certain prope;’/tj,?es "c')f)
ordered sets. The. approach taken was to i)ai_r ‘the members .'of fﬁe “two E
sets in question. Then 1t was possible to decide whether one s‘g't h_é.d‘; *
more or fewer members thaﬁ the cher.or whether the two .sets were
equivalent. If we try to'use the same process"‘vriti‘}' sets of points, -
difficulties are 'encbuntergd which make thevprocedu'z_'e_ impossible.

ERIC

Aruitoxt provided by Eic:



Teke, for example, two segments, MN and XY¥. Each is an infinite
set, and therefore if we begén pairing points we would never exhaust the

M PO N
' X W Y

- '

points of either set. This alone eliminates pairing as a means of orderipg.

o .Tben, how are segmento, and sets of points in general, ordoredz We
can resort to our concept of congruence to assist us. It has been estab-
lished intuitively that two line segments are congruent if a movable

copy of one can be matched and fitted exactly on the other. A sim%lar

procedure serves to indicate whether curves, polygons, plane regions and

... 'S0 on are congruent. It does not prove useful in determining whether or

not solid figures are congrﬁenf” however, since-a movable copy of a.
. solid cannot always be matched”and fitted exactly on the other intact:
:For example, 8. solid block ‘cannot be fitted into another solid block

X *‘Tf\tVO séts of p01nts are not congruent we can still conceilve of
an order between them. Suppose you measure the dimensions of this book :
CIts length is shorter than one yard. You are essentially carr&ing out _
8 comparlson of set size with the aid of a movable copy. The 3ets belngLﬂ
compared are an. edge of your book and a standard yard defined by the
United States Bureau of Standards }n.Wash;ngton, D. C. TheAmoyable copy
is a yard_stick and ito scale i% a.record of the length of the standard. 3By
_stating that the length of the edge of the book s shorter:than ome yard,
we are orderlng the sizes of two physical representatlons of line segments.

“

In partlcular, you book is shorter than thé. standard yard.- .‘3{.

- Geometrical. segments are handled,in-a similar fashion. Suppose it
is desired to order tbe two setsv MY and XY. "We make a copy of EW,~-

ar

o
<y
.
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d:add. at‘e‘d_.'fﬁyigti’ié dotted segment, and lay it over XY . We have already

said‘ that if-__they fit exactly, then W and “XT would be congruent. 'If,
h';'_,_.however, they do not, one’of two situations must exist. by vill be
congruen" o a proper ‘subset of MN or MN will be congruent to a
proper sﬁbset of XY . In the first instance, we. would sav . is

' &orﬁer than M§ cr, equivalently, MN is longer than XY . " The second
- possibility is interpreted as MN is shorter than XI or XY is

- ‘longer than MN . Ou.r—example demonstrates the first case, since peq

"i,s c.x)ng_rnent to & proper subset of MN . We can order the sets by

M. N

i

X - Y

n

P Lo .' - A s equ:.Va.'Lent to B -
S T A has moe members i:hat B H T
' ' B w - A.' *s feuer members than

‘Note that "AB is longer than C'D" doest
then CD . We are sayﬁzg nothmg abaut "Ecw .many" in relating infinite
sets; By repeated comparison' it '

not mean AR - has more members

. segments. , MR as.'."r.." o

the dlagram illustrates. Hc find that ?-QRV *

QRis
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poynts, one on each ray, exclusive of the ver‘cex. Thus P is in the

In Chapter' 16, these order relationships will be restated in terms
of numbers associate_d' with segments. These numbers will be the measures

.of the segments. By our ordering, however, we have done no measuring

The second kind of geometric figures that we wish to order is angles.
An angle is the set of points defined by the union of two ra.ys which have
a common endpoint end which are not subsets of “the same line. Just’ss
simple closed curves sepa'.rafe a plane into three snbsete (the curve, its
inte_rior and its exterior), angles cén be thought of as doing the same
_j;hing A point is in the interior of an angle if 1t-lies between two

A ." -

J

-1nterior of - [ABC a.nd Q “is in the interior -of [DEF P' is in the
exterior of [DEF a.nd R is an ex'tenor point of [A‘BC

To- order two a.ngles, we rely on & movable copy of one in much the
same menner as we did fér segments. For the angles pictured above, we -

_could place a copy of [ABC over [DEF SO that cne. side of the CORY

' ' .:..‘COin01deS with one side, of [DEF The figure beldw shows one’ way the

-

ERIC
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'-'-\copy ‘can’ be p051tloned. If the second’ side of the copy a.lso coincldes :

with the second side of [DEF ‘we would say .

., -

. L [ABC :.,s congruent to’ LDEF ‘ .' -~

(See Chapter 1l for a dlSCUSS’iOD of congruent angles)

N

R ,A://
3. vl .
/-: N _
. C i
P ¢ -
F -
. :f-'k
) ) 7
%9-%.,;
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If it is not possible to get such a coincidence, as it is not for the :
ones- pictured above, we define an order.- Tte that the .polints of BA
except the endpoint B, 'lies in the interior of [DEE‘ Whenever this

phenomenon holds, we say <

L[ABC 1is smaller than /DEF '
or, equiva.lently, LDE:F is larger than [ABC . If it happened that
. the interiors of the two angles have points in common and that BA
-excepf -£or B, were a subset of the exterior of / TEF , -then

at -‘f .

R ZABC is la.rger than —LDEFm
- [DEF is spaller than [ABc ,1:1

Conslder,ing a third angle, LGHI , we find that GE 5 except for
G , lies in the exterior of LABC and in the interior of « LDEF . Two

~

. st a.tements expressing this a.re [GHI is’ larger than LABC .and [‘GHI/\
"'~.-1s smalle*' than [DEF . In- mcreasmg order, we could write LABC
[ GHI [/ DEF . As *‘or segments, this( procedu.re can be repeated in-

definitely for as- man:/ "angles; as we wish. Congruent angles would occupy
. S S e
. the same nosi ion in t?'e or‘der.

*,

e 'Tne, eflnltlon of measurement for a.ngles will not be :I.ncluded in
Chap‘ce:; 16 because it is no‘c treated in the K-1 text materials. It has _

been 5scussed here to indicate that the orderlng of sets.of points can
be’ accompllshed for figures other then segments. It is actually possible
to use congruence as a means of ordering regions and solids also, although
it is a bit more complicated. It is not possible, however, . to order

" unlike sets of nolnts,.*hat is, we cannot order segments and angles, nor
seguments and plane reglons, and so on. '

°

. 6

J

Do
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O
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PROBLEMS
10. Represent Kf E? :'jd EF . such that their order from shortest.
i —

to.longest is TP, AB , & . = .. o C3

11, Place the sets represented by the angles below in increasing order.

T o -

B

e _ ;o S .
12, Can you devise a means of ordering the two regions .shown below?

-

»
) -

B

IS

Teachers have found it mos_'helpful to have 1n the'room a wide
collection of objects vhich illustrate geometrical solids. Children

ZalSo enjoy bringing such Objects from home.' Effective ways of us1ng L
"Ethese and other models have been recommended in this section of
R _ - LS
.~ Chapter 5. '

) * On the next pages are included four patterns to be used in con-
structing geometrical solids out -of paper. Hav1ng the children observe
your demonstration.of a construction emphasrzes two aspects of solids.

. Many are the union of plane regions that do not lie.in the same plane

and' they are holldw. .

. _The ideas in the pre- measurement sectipn are. most 1mportant fhe
children should be asked to narticipate as much as possible 1n maninulat- '
ing figures to compare their sizes both to understand congruence and . .

~ order’ °They often experience some difficulty in. v1sualizing congruent
regions if they have different orientations, so practice should be.
provided with this in mind. _ R '

e
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PRISM Construction of a- square. %ism. . . : -
‘1. Drav a rectangle with vertfces A,B,C,D as shovn. . L
2."» Draw, as shown three other re”cta.ngles congruent to the recta,ngle
o already drawn with tabs. o :
%, Draw the two squa.res aloéng ++XB and. DC with tabs, as shown. R -
.. ‘Cut "around the boundary of .the figure and :olq along the dashed 1ine L1
- segments, . T
5:  Use scotch tape or paste t 4. the model *together. The ta’bs will o
. help give rigidity to the % X el. zou mmf vant to trim them some if :
©  You.usescotch tape. . BN <
6. The bases of this rectangul.&r-. U
square prism., - ., '
“T.  This pigture has been DR
+ . length of AE as. 1 i/a}' _a%d Zhat. o: a " ,%
1 1/2" X1 1/2" b lp"_':-.sq'_iéije_.p‘_ 4, -}_ - ST A
. N : [T “ .. . ‘
v ‘ K - : . .- ..
. o
1 T2 CNG
wd I .-
. o 1 R
e i l | - N 1
= | | . i-
F | | . &
b I 7| |
L L |
' | 1
R - | .
: | |
‘ [ N -
| | | 2
. =
: " | - o
I 1 - |
| |
| |
B Lo
| f 2
|- O
| 1
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YRAMID - Construction o% a square pyra.mid.

R D L
~ - B T T

,-'j_‘._-‘._'.\ .

Trav a square with, vertices A°,' B, E ad’ shown. :

‘Draw the arcs with centers at 'A. a.nd B a.nd radius AB Label
: the Intersectiohn shown as C . . ;

Draw dashed line segments.. iC a.nd ;BC to form "dashed" equilatera.ll
triangle with vertices: A°, B’ C . Draw ta2bs as shown. L :
Repeat step 3 to obtain "dashed" equlla-teral triangle with vertlces

£,D s, F with_tabs as shown.
Drav the equila‘ﬁeral triangle shown on BD - a.nd iE . . i :
Cut around the’ bounda.ry and fold along the dashed line segments. :

Fasten with scotch tape or paste. The tabs will help in putting the

model together. :You may want to trim some-of them if you use scotéh tape.

This picture has been reduced photographlcally. The orlglnal model
had the J\.engths of AB as - 2" ,

&
Ut
 gy!



' C!I.INDER, - Construction of .a circula.r cylinder.

1. Draw the rectangle with vertices A B Ty T D . * N
2. Draw two .congruent circles with. radius as shown. In order to ma.ke the "
‘model easipr to construet, . - R - ’
- these circles can be tan- — : “';_ 4. - Fold into the forin of
gent to the reptangle. ;. & circular cylinder.”
. 3. Cut around the boundary .. HUse scotch tape or
. ‘of the figure. Do not  paste to.fasten the ..
.. separate the circles . model together, Place
. from the rectdngle. ‘BC on AD first.
' I Fasten the bases
last. Do not fold
the tab at BC . Lap

3 - 1 over: D and paste -
. o , épr fasten with tape. e
A A e .
- { ° Y IR
PO . . _ . o - S e
>
! -
>
S : &
- ‘.:‘ .
.. .
. N 3.
. . .
o

, 5 «: ’I'his picture has’
'\ been reduced , - -
"photographically... . . =~
. The origindl model
““had bases of radius !
l" vith the lengths

of AD and’ AB  as TR
1&" and epproximately ...

6 H ,-, respectiveiy

"RADIUS { "
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CONE - Construction of & circula.r cone. : o : ",,--', e

l. Use a ccmpass to draw a circle with a radius as shown in the dia.gra.m.

: Iraw tabs as shown. = -

2. Cut around the boundary of this figure. The circula.r region~= will be
the base of the cone.

3. TUse a compass to draw & semicircle vith a. &.radius as shown in th;e dia-"
gram. C 15 the center of the circle. AB 1is a diameter. Draw the

, tab as. shown: ’ '

4. Cut around this figure. :

5. : Fasten AC- to "BC with scotch tape or. paste S0 that AC falls on BC .

6. " Fasten the base to .this model by folding the tabs a.nd uszng scoteh

' tape or paste.
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QUESTION
""How do ordering points, orderlng sets of points, ordered sets, and ordered
pairs differ’" - - S 2

-

Orderingjpoints is connected with our development of the‘number line, "3;

'Here, w1th the designation of 8 particélar point as starting point and.
with a given segment. selected as a unit, the line ‘.‘Ls marke%off at equallyw A
snaced intervals and the marked points are. ass001ated with the whole numbers
o in the ususl sequence. o, 3, 2,. 35 cen ff 'The number line is next— N,
filled.in by assoc1at1ng poﬂnts oetween those named above: with other .
rational numbers” s&gﬂ as . 2, 3, %, and S0 on. In Efe) doing, any two .
v points named in the number line are ordered wmth the designation of .which
. . precedes the otner Consequentlyi all tne points named in the number line.

are ordered. s

- "+ Ordering sets.of points may.be illustrated b& taking two sets of

points in the plane. Spppose‘these ars represented in A and B below.

‘ o _ ) A . _ AN
KT : ] .

We want to convey tne not’on that agrees with our 1ntu1t1ve sense: tha

B occuypies more space than A. Counting the number of points in each set .

’

. - would*not-do since each set contains an infinite number of points LA
scheme is sought wnereoy we cax still assign a number to each set to aﬁ; )
indicate an;order in""size" Thus, - 2 number evolves as a measure--such

s .

as area volume len n etc. In so doin we are ordering sets of points. *
b b b b < .

@ The set of rational numbers is an example of an ordered set. The letters

” N N - .
in the alphabet are another example of an ordered set. - Although, with sets
in general, we state that it is immaterial in what order ‘the elements are

listed, in an ordered set, for ény two members, it is possible to designate

- .wn@ﬂinmnber precedes the other. By associmtion with membérs of the ordered

. ’ N -,
J . . .
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»5et of rational numbers, for example, the points in.the' raticnal number
'\. line become an ordered set. ,._.‘_S.imilarly, sets of‘point_s may be ordered

via their measure. . o .

An ordered LiE. arises from- the product set. 4An illustration of
an ordered palr may be the ‘element denoted (4 3) 4 1t is agreed
‘than an order must be observed in the naming of the conmonents L and
3. . This may be, for example, the designation Tor the child 1in the
« )-l-th row! 3rd seat. _Thusy the notation in thé theater tlcket stub, D3,
may be indicative of an ordered pair. Or, when you say, "Pred and Meggie.
are president and secretary of the Clamdiggers Society, resp_ectively
- _ &n order is induced in -the pair, (Fred Maggie) ‘

R . - s ~

Lo - ...
. - .

© VOCABULARY

» pex . o P.ara_l].el . .
¢ Bases (of a geometnc figure)* ParaJ,Z_I'J_eJiepiped'-_-
’ Centen (of .a phere) " Pentaéona} Pri_sm-
€one a _' e ’ ., Pentagonal Pyramid
Cube . ' T Prism .
) Cyi;nder | 4 Pyramid =~
° Ed,ge;* ' .o ‘ 5 -‘ . Redius {of a sphere) |
| Element (of & cylinder) ) Right#Circular Cylinder.
¢ "  Hemisphere ’ - e -Skew Limes ‘ ;.
-%rit%rsectior'l' * ’ Sphere w0 S .. ) *5
E ,.-La:-teral Edges ,. : Lo Square Pyram?d ) ' B : , .'.»‘"'

%_‘. -Triar_lgular Prism * - _ . .
:; . . . : N

o

Laiggal Faces

L Lateral Surface . . TIriangular Pyra.m:.’d
»ﬁ ¢ ) ] ' ] 5:5 . - .
Bine of Centers * - ;Vertex (of a nnsm) * . -
” 3 . L P i)
L] . e 91 L4 . ’ &
< . 3 ' '

" I ‘, ‘ w
4+ ‘{ [ .‘- + -”: s -
. iﬁah * - s
' y . v “fc B
i
. 5 _ : .
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EXERCISES - CHAPTER 1k

£

Why is the following definition of parallel segments not suff1c1ent

to, detérmine what we mean by parallel segments?

-

Two segments ‘are parallel if they lie } )

.in the same plane and do not intersect.f

_What are the sets which may result in the intersection of a line

'and a plane?

% °

- Construct a paper medel of a square pyramid usiné;the pattern on
‘pege . h 4

How many edées does a triangular pyrEmid have?

How many edges does a rectangular pyxamid have’ .
If the base of a pyramid-has n

.pytamid have?

Wy

sides, .how many edges does the

-

Identify by a drawing the intersection of a. plane parallel to A0
and the cone, if A 1is -the apex and 0 1is.the center of the base.

Assume the plane intersects the cone in more than one pbint.

Which of the following solld regiocns must be -cpuvex sets’

8.

sphere; ' b.

circular cylinder,

Ce

.

>

quadrilateral pyramid.

State in increasing order the sides of the triangle.
. _ 7 _

.
KaSt
AR -

f

B

X : K%

-

'Why is-it "incorrect to say EET is a subset of the interior of

[MAL

-

b



. SOLUTIONS FOR PROBLEMS

e . .i" .

1. a C b, DE c. [ ] ; they are parallel d. E e. ( } ; not parallel.
2. a. (&) Eube; : (B) right pez%agonal prism; © (F) non-convex
quadrilateral prism.
b. (c) _There are not 2 congruent parallel bases, the lateral
edges are not parallel. _ ' .
(D) The congruent faces are hot polygonal the" lateral surface
is not-the union of parallelogram regions.

(E) The parallel Pases are not congruent the lateral edges -

‘are not parallel o . ,
3. .
koo (B), (), (@), () T " ' L
5. +a. quadrilateral pyramid ' o - o -
" b, D ’
c. 8 _ .
d.. 5 : oL } ‘ R
6. A lateral edge'or the apex o . .

7. A cylinder is a geometric solid which is the union'pf two similarly
oriented,parallel_regions whbse'bounderies are simple closed curves
and all the segments determined by correspondihg points of the

congruent boundaries. S :

. -

8. a. & circle; b. =a rectangle or a segment congrient to the

- segment connectlng the centers, Ce '

9. &, acircle, a point, or ('} ; b. ( }; the center'is not part of

the séhere; c. two points--the endpoints of_the diameter; [ ]
10.* C D -A . B, E B o p
SN
0 ? ,ﬂ‘ 1, :rw':,h v
» §a, - ° * s o . a .
: * . . - . . .
. 26 * R ) -
: o S 205 280 K : ' . -
R : g ST T S .
] 5 .
» h . «
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1. ‘fe, /_B,,[A

12. We can pa:z'tition one region, meke movable’ copies and lay them on

‘the other region.

"If they fit, we will say they have the same size.
If they do not one will be 1a.rger than the other.

Excess .
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’ Ch&_zp%er 15 . o _ o B
- e mmnuunWAMDWmmnmmmwm T .
mmIPme NUMBERS GREAm THAN TEN
. 3 - ’

'The _a'bii ‘ tc compute mth understarx@:.n,5 e.nd sklll when multlplylng
. _ greater then lO depends upon several things. Among

‘these: are: knowledge of bas:.c multi@l‘i’catiqn facts abllity to use a ‘
multiple of lO as 8 factor, famiiiari,‘tﬁ Wi‘ﬂbw dec‘mal place vdlue R
numeration system, and ability to apply ﬂ!ultiplication propertie‘s

. )
(connnuta,tiv associatlve odisyributive ove:’ ddition _etc ) e
% ." 2 ‘. \' v . :

.‘,

First let us cons:_der the product of 1&. a.nd 12 M for vhich we ma.y

display the array B i' T C C .ffé : j
o ' _\ ' ’-_‘.} ) . e T :{- . N
. oQo0 oo0booo Q 0io _ o
4 ©000v0:000 0.0 00 . Toa :
. ., ., 000000000 000-
' : o000 Qoo OO0 -
x ,_".',‘. ’ S ] e . -
‘.' < .- R ‘!}" s - ) . oo .". \

" By partitioning ‘the array~into two arrays so that each row ha’s 3.ess than

lO membev's, we need to use onl?" ba51c multgp ca%ion facts, the distrl-g', .

;1 12 @Fo;: 1ns’qance, we may

- ncn‘der to com_pute uhe produc LR% "'y _
h by -7 erray a.nd 8k by-'i',w

partition the 4 by 12 ar

‘ @rra’y C
» ”
e -
7 . N
P '
¥
P n :

= Lox (7+ 5’) s
g§§§;<7) (4 §§55

+:20 . & B
-ua ;) g‘

A Lo o
. ¢ .‘ v 4 v
il - .

R JIRS g . ¢

." '3‘- > . g 4
LS o .

- . e o .

) N . .
L S TR I .
. L0 B . .

. FAN" - -

. * >
. b . t

N ,f"%‘j —— -

MOwL L

O
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system ve . commonly int'.
to partition the gg

¥ Thus, b x 12 =

. S
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,v 2 array id&xf

,In order'to:acco,fi
multiplication f”,_._‘ y

To ringﬁg}?&duct b x 10, ve look at

- 10 + lO +- lO +;lO

B

T

.¥

hxeo hx(10+10)

ho .

*t 1@ as lO +. 2 e it would be more natural
(o] a:rays in this way: ’

tiples of ten. . This is done far the children,

Similarly, all multiples of ten are considered by adding or counting
qﬁtens. Tu:thermore, to multiply 3 and 20 then can be thought of as:

__(hjleo)_+ (4 x 10)

2 40 + ko
‘f‘ =8

b 20 = i x (2 x 10)

' ="(4 x 2) x 10
< 8 x 10



—

In the sa@é way,‘multipléé of tens of tens, or hundreds can be preégnted,
and so on. t \ 1 - ,

. Returning to the product of & vand 12, it can now be completed. . o

bx12 =4 x (10 +2) - _ : -
o= xa0) s tex ) B
: . TR B | R
- 18 | o ST . -

-

We often use vertical algorithms such as these ‘to effect the seme compu-

tation. - E . , v )

(a) | (0+2) {° . (] 2 7 I
x L " or .. x4 xi + 8 or
Lo+ 8 =48 _ . %o 3 Bl .

(¢) {12 B (@) [2] . - (a1
x—% (4 x2) | Toor . ' x—%' or eventually simply ~ xﬁ%
4 (4 x 10) ; 1 s S -

- 38 . o I8 | . :

As another example, consider the product of the numbers 3 and 28 :

_ P "3 x 28 =3 x (20 + 8).
: : : T = (3x20) +(3x8)
' R
-8 A
T _ ,
'EEQEEEHr' e ’E_' ' " "f_: >

1.  Show the.multiplication of 3 and 28 in more detailed form,

-

particulerly in going from 3 X 20 to 60 and in going from
60+ 24 to 84 . : o '

.

We also may use one vertical algorithm or another to record our -
. ®3olutions for prob}émﬁ in this chapter are on page 280. N
e , : _ ) o
1S . - —_——
' RS T

269

‘ Wy
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thinking vhen multiplying 3 and

28

(a) ] (20 + 8) (v) " | 20 8
X 3 * or X3 ' x3 + 2k or
-l - ®w. % , -
-8 + L4 =84}
.(c) sl 28 . (a) | 28 (e) { 28
. X 3 or X3 or eventuelly simply - X 3|
2L (3 x 8) 2L - , BL
’ 60( 20) 6 .
JBE | g )

"Now let us extend our computation to an example such as 4 x 236 .
-. - Ve shall be fairly deta.iled in our ﬁrst illustra.tion:

1&X236_1LX(200+3O+6)
(% x 200) + {4 x 30). + (4 x 6)
[4 x (2 x100)] + [4 x (3 x10)] + (4 x.6)
[(4 x 2) x 100) + [(4 x 3) x 10] + (4 X 6)
(8 x 100) + (12 x 10) + (4 x 6)
. & 800+ 120 + 24 :

= 800 + (100 + 20) + (20 + k)

- (800 + 100) + (20 + 20) +-4

-
]

A

[y

=900 + ko + 4 -
_ = 9k '
t - .
- PROBLEM .. - v N .
>_‘2. Justiﬁr ea.ch step of the procedure just illustrated for the product
Cof 4 ana 236 e O : |
We may record ‘our thinking‘ in several ‘w'ayslﬁsing';\re_rtical aigori-thms: }
(a) | (200+ 30+ 6) () | 200 30 6 - 8oa| |
- X 4~ or’ x box b x4 ¥ 120|
BOO + 120 + 26 . - |- %o - I % + 2k
_ 900 + 40 + L .= ghh I m
(e) | 236 N (a) [ 236" (e) | 2361 -
N LR ;o o L x_ 4f -
2k (4 x 6) or 24 | .or eventually [)nng
120 (k. x 30) 12 - -
.800 (& x 200) 8
i | oL
- 270 _
: 249 )



we have seen repeatedly that use is made of the distributi
“of multiplication over addition. Further extensions of mult lication to
.'computations suSh as 23 X 45. invoive even greater use of this prdperty.
" However, specific consideration of these extensions 1is beyond the scope
;-'of this' chapter. T ‘ ‘ ' I

. . . -
. . -

° . .

' PROBLEM _ R LT, f ~F

f3, Use one of the vertical algorithms identified above by (a) - (€

to illustrate each of these products3 R e. respectively. For -

S f»_example, use (a) ‘as a model for e '“@h _ .
C.oShas w3 and-23° b, 5 mua. 17 o e. 4 and 38
R M 2u"a2%5£39?'~i: e." .6 and. 13Q“' - ' B

' DIVISION ALGORITHMS e S

First Tet us recall that a problem Such as. 2k s h n* may be
_interpreted to mean that we are to find the number n such that -
n. xik We may . illustrate this “in the following way, using a num-__'
ber line representation on which we have identified mpltipies of H

A . ' ’ " S '
. X .

R | o SRS e
.4 -8 . 1’k v S -20 .24 . 228 .
: ——— —+— — —t : L EreE—— o
4 . Ix4 ~ 2x4 . 3x4 - 4x4 - 5x4 - '6x4° . . 7x4

" With point P we Rave associated 24 and also 6.x L . ‘Since the

‘ association of .a number with’ ‘a point is unique, we know that 6.x 4 = 2k
and that 6. is the number n such that, n X4 = 2k . Let us recall'.

» what 6 X Y means, using: the number line. It has been interpreted in -

terms of repeated addition, namely ;h 4+ 4+ 4 + b+ 0, .

et 4 et 4 et 44—y
L . i, , v |
0 1.2 3 45 67 8 9 1011 121314 151617181920 2 22 23 24 I
—— ' — 6x4=264 — ' —=1

Because dividion'is the inverse Gperation of multiplication and subtraction.
,is the inverse operation of addition, it is reasonable to expect that -
" division may be interpreted in terms of subtraction. This is indeed true.

- -

SRR -1/ B A
O
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Py i - L . : .

24 +YL

"Thus, can be showa on the number line as repeated sﬁbtraction.
: R " )
f— G ——f—— § —f"—— § ———p"—— G ———"—— g y— g {

‘8.9 10 1l 12 43 1415 16 17

18 1I9. 20 21

24+4=6

22 23 24

-

The nroceduie'illustrated above can be stated in terms of numberS'

—

from eh wehsubtract 4 and then contlnue to subtract 4 from eachi'

remainder in turn, until reaching a remainder that is less than b .,

For 1rs§ance-

2 20 16 13 8 .
Lk ke ey -k " .
20, It I . B I [

‘Since therefarelé

we know that 6 X L = 2&

8

¢ &
Freque ,iy we uhovz these subtractions in a more- compact

- form such as that ehown at the rlgnt

‘

Our work might be shortened if,_fér instance, we
subtracted.nultiples of L that are greater than U ,
~ . .. . T R N

such as: . oo g

:
.
[N}

14
.
n
o+

(2 fdurs) or (2 % 4)_.
(3 X 4) .
(l X- h)

ol

L4
i
—
n o

*(3.fours)

¥

+

N

€1 four)

ol

A total of 6 Pours bas been subtracued 51nce

Clex ) s (3xW) - (1x Lb (22541 xk

Repeated subtractlon, then, nroviaes the rationale for d1vi51on ‘

algorltbms.

if we are d1v1ding larger. numbers-~ for example, he +, 3
: o '_.r -
. < . T.272. .
< Te
.” A% N i
272

——

Using multlp-es of the d1v1sor can be of great advant

ERI
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such suotractlons ahd the resultlng remainder is O

R T R T
NRCRCIRN S

N
]

ol 4= &%




(&) } 2. or simply
1-28  (8x3=2y) T -
18 .
-15 (5x3=15)
73 e _
- 3 -(1x3.’=-: 3) -
- 0 (I x 3% &2
_ , &:s&w
. Thus, 2h+3_1l?{"
(a) | k2 | . or simply
- 30 (10x3-3o). ‘ .
1 12 -
- 12 (hx3_12)‘ LT
o (1% x 3.= )N

of '3 were used.

-.-As before, of- course

h2 + 3

(v) - {37827 - -
-
|
15 5
3.
3 1
o %
“(v¥ | [3152
- 30|~ 10
Sley o
124, &
o0 1%

lh , even though dlfferent multiples :

Choosing multlples of . uen ‘may again be more natural

and more simple eventually. . However, childrep v111 begln with the 7%
.'smaller ‘multiples and take larger Jumps in aocordance with their .:
maturity. o s e
Next let us consider an example such as 101 ¢ 8 = n'. R
O 8 .16 24 3 -4 48 ‘5 64 72 80 88 96 104
——t + t $ + —— + ¢ - + . ——m
Ox8 1x8 “2x8 3x§ '4x8 5x8 ' 6x8 7x8 -8x8 9x8 10x8 'Hx8 2x8 13x8
Clearly there is no whole number’ ; such tnat n x 8 =101 ,'since
12°x 8 = 96 and 13 x 8 a 1ol+ and there is no whole number between
12 a.nd 13 . ) _' . ) . .' '_, - ‘\1". - AN
: _Let us explore‘the-situation:furfier inaxh;s'vay:
o w e *_ " . “ ' :
(a) fpao1 .k RPN VI 1) STl N
. . D s N s IS ¢ .
N -8 (10x8 =801~ L , 80 10 | -
2l . or simply , 21 . S .
116 (2x8=16)], 16 2|/ S
. 5,212 X 8 = 965 ® ) - -5- 12. & - .
S T R 12 "{ Cs S o .$ 5 1. i
~ . Jor. eventually (c) 87101 . -2, N ‘ L S
S 8 ey IO 3
. _° . , e e
?\ - 21 ’ ‘¢ - - »
. L. lg - . L] . .';;._" _
: . e ' Y S “
. _
' ‘ §‘° f@ b ' . .a.,
‘Thus, although there is no whole number n such-that. n X8 y10h, 2.,

‘we have determined: that 101 = 96 + 5 or " 1QL ?'1-2 X 8) % 5p.. HowdVe®,

SR



O
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' ve are it permitted o rité’ something Such as 101 #8=1275, -

since "12 r 5" is not a name for a number. ’

In general if a is any whole rﬁxmber and b is any c’ounting :

nmnber, we may associate with a ¢ b or & the sentence-

b entel
A Lo C ] - L
o ) o a ="(n‘xb) +r .
con;monly written in the form n L
o S 'y
9 @

for which n is a unique whole number such that ('n X ‘b) 'S a8 and.
r < b .~ For example, 20 ¢ 3. can be. associated with = - e

P

v

_ .62
-3
(6><3)+2 or.” 3[20

g

vhere - a = 20 , b, = 3 ; n‘_ 6 and“*r=2. In more.:detaill, the  common -

- algorithm would appear' g R '2_ R
A Y- - ]
3f2a . -
S 18 ¢ . i

Ny 'Zhus," 6x3= 18 :‘:s to be subtracted “from - 20 to find the remainder.'.

~ " "In order to subtract ‘then, 18 must be less ‘than or equal to 120,

COIf the remainder, 2, had been- greater ‘than o equa.l ta 3 ’ »we:* couldx’;:‘

v, .

' have found a larger multiple of . 3 to subtract from 20 .

‘The condition that r < b has a further implication. It is cer-
"-tainly true that 20. + 3 can be associated with this equation-

, . ¥
o S '20 (1x3) +17

[ 5 .

:(i Simila.rly, o = (2 x. 3) +1l+
T Lo 20:(3_x°3’) + 117 ...1-;4 K v .
S e x3) e 8T e
R ,—1('5'>'<3)‘ R
s “20=(6x3) + 2

stood, however, that ‘when we wish to know what 20 dnvided by - 3- is,
we want the qu'ltient expressed bas the la.rgest possible whole number plu‘s"
a nonnega‘qive re.mainder. (Note that there .is a.lway_s a remaiz__ider._ _When :

.

>“4:}~_;~’ N rfzyg“

' vare all valid equations associated with 20+ 3 .- It is generally 'under- '




b is a factor of a, it happens to be O .) Thus by restricting the'
remainder, r ; to be less than the divisor, b , we assure that n will
be the largest whole ‘number of times b 1is éontained in a , and so we
only associate with 20 ¢+ 3 the equation we want:

’ 3 ’ .

-

- 20=(6x3)+2,

Now let us use division algorithms to find n and r for this
v S -

expression: 250 ¢+ 7 or ak oy v . . )
'u. &_ i v .
(&) 0 - . or (b) |77250 or, using - -
L= 10 (2o0xT) | 10| 20 . larger multiples: . '
110 ’ 110 ' Ve _
- 70 (10x7)| 1 10| 10 77250
o | R =1
- 28 (4x7) - - 28 L .3 :
- . 12 32 35,
- 1 (x| - 7)1 o1 32
5- (35 X 1) ) ) 51 35 -
. h ’ . 35 e T« T » ’
or eventually (e) |77250 - A : S
. . 21 - /‘£° .
2 > —m v ¢ ’ K 3
‘ 35 - ~
> e -
s .

e

Thus, for a =250 ‘and b =7 , We see thet™ n ='35“‘ and r=5.

We therefc-a"r/e-_may éssociate with 250 # 7 or -2,?—0 the sentence '~ ' -
: 250 = (35 x7) +5 . /
. :‘,. 5 35 X ). . 5
PROBLEMS - . )
4. For each of the following write éh equation of the form ‘ .
A g:(nxab)+r,suchthat«(n:xb)'ga and r<b. q' g
a. 38 +5 b. 79+ 3. Ce. 112 4 b
.57 8 © 106 , :
d. -y . e,. 3 . f. 5 . . ) .

Se 2 Rewrite' the.general equation for the special case where r.=0 .

1

- .- .' | _q‘ . * 275 , 275 L e




o - . -
ey " S enn T8
T T, - CoBsider the example T#g 3 =n, or — =n: _
L B A i . 3 .
\" N . o ’ .
357h ®
- «c0| 20 -
2 o ., ' -]—_-E ) 5 .
L. ' e 12| &k 7
: 3 . , 2| 2k : B

This algorithm proxc;,des us with a great deal of information. ':

PO S

First, since the remainder #s not zero, we know that there is no
whole number n~ such that ¥FXxn = T4 .* That is; 3 is not a factor
of Th. - - - S . -Af: .
CEE Ry a F°oos

< ' -

Second, *the algorithm gives us the informa.tion we' need to replacg
n and r- in the eﬁuation 7% = (n X 3) + r so that (n X 3) < Th
and r<3. We now mey writ.e - N i '

) A (eth)ﬁE - i '

Third, althqugh‘thei'e is no whole pumber n such that 3 Xn =Tk ;_
there very definitelj‘is -8 rational number 4. such that 3 X n = Th . ﬁ

One name;for that ratiopal number is %—h , ‘since 3 x -% = T4 . The -
. w4 - N n . Lo . .
» i . algorithm gives“us the information needed to name this rational number

in a different wey, int mixed form. From our knowledge ¢f rational .

-

. _ o
numbers we know that 2 (the remainder)qgs -3% of '3 (the divisor);

< B 5 . _ -
that is, 2 = 3 X 3 . We then may assert that :
€ L L2 a2 s Th 2 2
e * k4 =2k + S =24 or ==2k+Z =242,
Thr3=2 s 3 3 3 3 ,
Thus, - we know that ' o - . R ‘
. T X 2 o 2 : o
- o ‘.3-b<(21++§)-..3xah§-771.+". | R 3
b
Divisions with larger nuifipers follow ,the same ideas we have developed
but are beyonid the scope 3f this chapter. - ' -
: ?ROBIEM _ - oo-
. 6.‘ For each exercise of Problem L, express the quotient as a rational
o number in mixe&__form or as a whole number.
- “ . -
]
*
v ~.
- . . . . : i . . . - . B
L )

_ o < o /) . 3 N 276 . ) . . . -
O

O
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‘the more efficient is the algorithm.

R andr(b‘

SOMMARY

. In the development of nmlt'iplica.tion algorithms we used extensively
the dis’:ributive property of multiplication over additid n coupled with .
the renaming of\ a factor in accord with our decimal Place value numeration
scheme. For instan"ce,' in order to effect the product of L and 23,

- we ren/amed 23 as (20 + 3) and then applied the distributive propertg'

-

1+x(20+3) (1+x20) +(1+x3)
In the development of division algorithms we utilized a process of
"repeated subtraction” in which we successively subtracted multiples of
the divisor. We saw. that the greater the size of the multiples used, .

The division algorithm gives the information necessary to associate

with a ¢+ b or % (where a- is any whole number and b is any counting'
nunber) either of two things- ’ ‘

1. ‘anequation ‘of the form a=(nxb)+r', where (nxb)Sa

-

2. a rational number in mixed form whenever 2a>b and b is

o n&\‘ractor of a. - N

A special\case of goth 1. and 2. arises when- r =0 ; that is,
vhen b {15 a factor of a.. ’ d ’
s L, - : .

'Apsmcmons 0 TEACHING '

It is important that algorithms are developed from the standpoint
of being written records of thinking Patterns used when computing. Thus,

ge can expect that children?®s- algorithm., will cha.nge with the passing of

time. At first the multiplication and division algorithms may be more
lengthy and less efficient than at a later Stage of work. We should
allow children to use those algorithms that are most helpful and sensible
to them. We may encourage them to shorten algorithms over a period of
time, but children should not be forced to use more -efficient algorithms

' .prematurely

- ey



QUESTION .
f"Isn t the platform‘ method terribly 1neff1c1ent for d1v151on’” =~

To an adult who already knows. how to compact his compuiatlonal
technlques, it may be lrmediately apparent that 275 + T = 39— - For
the child in the bgginning stages of learning these teéhnlques, a
-strategy should be provided whereby he can.attack such problems'piecé-
meal withoui beiﬁg overwhelmed by the task. T?ﬁgk he might begin with
the algorithm indicated in (a): ~ O .

(a) (v) : (o) 4
, 97 ) L
7/275 | ' o 1/275 ’ CT7/275 )
70 |10 . 2] 30
205 . 5
.70 110 6 9
135 . 2| 39 -
- 70 |10
5 .
J 270
30 N
a3 * - ’
S
711
A
. -'0

- Iatér,‘thé student may learn to reason with himself that

7%1 =7, so Tx10.

- qZ@!‘!‘L:lk, so 7X 20
> T Tx3=21, sc TX320
X:¥f= 28, so 7 X 40

T0; 70 < 275
"1L0; 140 < 275
210;+—210 < 275
-280; 280 > 275.

. Tre reéylt L3, 30 is the g*eatest rultiple of 10 that is contained
;| in %he-gubtienf: Sermiler argu,ents oring out a refirzment of (a) as.
that in (b). ¥itn practice, he ,an then pe led to the usuzl short

. | ] .
dizision form (c). :

The point is, an.apparently X"inefficien‘_r.f’ method allows the studert
to attack the probiem in bite size commensurate xith his meturity. Ovbser-
vations attest to the fact tnat youngsters too, will learn to recognlze
that they can’ improve 5; the metnoq--esnecvally with gentle prodalng.
When they do *eallze the ﬂnef’lzﬂency"t ey will shift to various refinements
- at rates that. vary from one individuel to an*tke* Ultimately, some may

O
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i

get t0 the point wh/é‘re they may see right away that 275 s, 5 less
than 280, so 275 + 7 is % ‘short of ko ( = @), arriving instantly

‘at 40 -‘% ors 39—.?— for the 'a.nswerv.' But we a{’;e not advocﬂating that every-

one must get to such a sfage._of proficiency.’

Another important point for consideration i{s that the "platform" @

- method does relate directly with ‘ﬂe"kind of activity assocjated with

the’ introduction to division. Wl’g';xx%P ‘mewbers, removing a gﬁbset
having Fq membérs, 268 mémbers Min; another set of 7, leaves

. 2612" S Obviously, this is ineffi’;cierit, and we may turn_,;fb removing

ten subsets at a time, leading us to the method *descTibed :;Ln {a).
. - : : :»

L VOCABULARY '
Algorithm * . ' °  Distributive®Property of
" Array * . . . ' y Multiplication over Addition *
Associative Property ’ ) :-'?‘%ivisio'n Algorithm '
o " '
of Multiplication # . Remainder . s
. e ) .
Commutative Propegrty L] ) * ) . %
-, of Multiplication y e 7 - )
! N - .
9 .o - NS 2
» EXERCISES - CHAPTER,15
1. -yse several g)‘.ffe!ent algarithms%o compute each of these:
. ' e, X :
Pl s -
. > . x
b X8 & é . d. | 5

. s ] _
2. A_ssoci%te two things with each of the following: can equation of

v 'Tﬁefoim‘as(nxb)-i;r where (nXb)<a and r <b; and.
a rational number in mixed form (or a whole number if b is a .
® factorgof a). \\\ . , o
a. 38:6 s c. 125+ 8 N )
* b, 99+ ko . d. 84+ 3° .
3?.' a. Using the’ cormon division a'lgorithm, find the qubti"en£
k2= 7.

b. Reiate this algorithm to the more primitive algorithms ‘used by .

the~children when they are first introduced to division.
L. In-a=(axb)+r, explain way n X b <a.,and r<hb.
. R = : ’ .

hAVE BN
R . ——

W

-

.

o
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SOLUTIONS -FOR PROBLEMS

N

x (20 + 8) ; R I -~

1. 3vx28 3 : -
=(3x20) +(3x8) B
( BN .

) . = (3 x 2p10)+ (3 x 8)i 4
. « = (6x10) +(3%x8) F
- = 60 +a2’+ R . E . -
S = (60 + 20) +. h | -
. =80 + L . o
-

. 2. L x236=hx goo £30 + 6) R‘énamizi‘é o
S BT = ") "___ l+x3o) +<1+ x6)

N . = 800 + (1oo 50,
-'"':_N L. ) '_."_._'d‘
W = (Bootvloo) 0y
: = 900 N l+o + lx» Qﬁ.é'dipg ’

. ~>~“" 3
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' the polnts, some new concept'must be developed.- The concept of 'measure-
‘ment” 1is applicable not only to line segments.but in a closely related

'is'cons1dered to have a certein. exact length For instance, the end-

_ Chapter 16 - - ‘
'.-.v N - N A' A . . .. -
l A =~ ’ . . s O 5
.INTRODUCTION '
e B / B o
N Measurement is one of the connecting links between the physical : L ‘

Aworld around us and mathematics. So 1s counting, but in a «different way.

We count the numher of books on the desk, but measure the length of the

_desk. Measurement is also a connecting link between ‘numbers and geometric
_figures. To. measure &. line segment 1is to assign'a number to it. This . "%

Vcannqt be done by counting the points of the segment since there are

infinitely many points in any:segment. To. take the place of counting

fashion to angles, areas of regions, volumes of solids, weight time,
work energy, and many other concepts or physical entities.,

THE MEASURE OF A SEGMENT _ _
In mathematics we think of the endp01nts of a line segment as being

eXact locations in snace. The line segment determined by these endpoints

.points A snd B of A -are exact locations in space, and AB itself’
-has an exact length as one of 1ts propertles.. Exact iength ‘then 'is a

] proper*y‘of all,segments. In our,intui ive concept of congruence, we

have $aid that two segments are congfuent if 2 movable copy of one can
be "matched and fitted exactly" on the other. This may beAinterpreted
as meaning;that the two segments have the same length. Thus, the common
property of:congruent segments is the same length. ‘Non-congruent seg- ]

ments. have different lengths which ensble them to be ordered. When we

_compare AB  with any other segment such as CD , one and only one of S

these three things is true:

4B IS LONGER THAN" €D, OR , A

B IS EXACTLY AS LONG AS CD, OR - 3 . |

A3 IS SHORTER THAN CD. ‘ o t

. - - A B &
. - ) o

AY
ouoty
as'
f

. 283 o

(el
V-

»
0



ﬁ' . . °

In’the.case of finite sets,.gxeeination revealeé a property on the
basts of which the sets qou;d-beié%mpared. That is, one set could match
a secondéd set or it“cou1d have more d# fewef members than the second set.
At thet 'point, ‘numbers were as ociated wx h. $he prope*ty. In tﬁe same e
hey, we wish to assocfevefnééaé;s wiith the property of length of segments.

, This is:the objective of meégtrEment, or finding the length of 8 segment..

.

.

Let us describe the nrecess ofgasurement as 1t anplles to linte

- segments. Tbe first step is to cboose

.- serve as one unit.

a.

“(We should Tecoghize that this selection of a unit is an afbitrary

\ .
choice we'nake Dif’erent people might wellvehepse different units and

. lotO“l”a1ly hey have giving rise to much confusion. -For ekamnle : .

of his ofitstretched arm. lmagine the éonfusion when the king died if
the 'néxty one uas of much dlffe*ent stature. Veiious standard. units will
ve discyssed a 11 tle later but Meanwhile we return to the choice of: 7

- as our ~nit, recognizing the grbitiariness of this choice.)
d Now it 1s possitle to conzeive o‘ a 1ine segment €D , such that
_the unit RSv can te laid¢ off e/a“tWJ twice along cD ,'as suggested in
~ the next drawing

AT - ‘

”%er ¥V ag*ee"e': “he weasure of CD,/is the number 2 and the length

of D 1s exa:t-y 2 units, althougn CD can de represented only

- ’

*"::" .

£ . . & .
P 8
: . 28k
s 23;4‘ !
* ’%A g I\,"f ’

O
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aﬁproximateiy by a drawing. In the same way, line segmehts of lenguh {oni

2 -'.‘K .
’

exactly"3 units, of exactly L unlus or exactly any 1arger number of-*

-units are con"eptuaWIy possivle, although sucn.’lne segments can be drawnf -
Lo .

P

only epproximately. In fdet, if & line. segme 1t is very long -- .say a I
“million inches long - < no one”would want to try to draw it éven approxi-
o mately} but we can Suill thlnk‘of sucn a Segment. o o
] -Ve can also concelve of a‘ﬁlne segnent . 2B s such.ghat thé unit,
RS ﬁill_not "£it into" AB a\wbole|number of times a2t 211. AB is a :
© line Segment such that starting it . A-_:-‘tbe unit RS an be laid off 3
— .- - uNT _ v N ~
) L —— ! :
) R%——JS - .. /
’ UNIT ), UNIT | UNIT UNIF . :
‘- ! — A ™ 7 — ™ T ﬁ.—k = - ~
. -— + Ly 4 “ . P .
A ; o 8 e

times along A3 reachingﬂ Qe which is between A and B s éithough ir.

. t were ﬁaid off L times %e would .arrive at a point” P which is well
. -
beyond 3. What can ve salc‘abouu'uhe,l?ngth'of A8 ° Well, ~surely
I has lehgth greater 3255 3 units and less then L units. In this -
.- .parfggular case, vwe can also estiwa*e-vistalWy ‘%at the 1engtb of AB

2
‘1s nearer to 3 units *han to L '“1,5, so that to tre nearest unit

.

« the length of. Zﬁ is 3 units. This is the best we can do without e
yon31dexlng ’ra~u10"a< varts of units, or else shiftfzg to a sqaller "
unit. P '_ SR T

. ST N . - o P

i Another way of des:ribiﬁé length 0. the nearest unit is, by using R

.. ‘the word ”megsure”;' Thus the measure of ‘A3 ,- denoted m(Kﬁjlé is' the o

-, .

;. nitwber” 3, " It is understood';n the use of nmeasure that it'does not
“ a -
nebessa:ily-dgsw ite oxatt:~e1gt ‘Lf two seg*ents have the same length,

“,

Jolt
we know they are ~0ﬂgr"e:u an ﬂ they have the same® measure. Two segments. .
a

ey a

specified unit are not necessarily -

D R e g . ’

congruent.’ However df WO Segments nave the same measure for every
e e ; > B - .

with the same measure in té “f

. specified unit, no matter how small,_unej must be congruent.
SR , . .- .
- _ N oS
- ;Y' . . 'E‘... .
M | ' i N '

. - .

. :

- . ;7 285 ! ~ °

ERIC

Aruitoxt provided by Eic:



- PROBLEM * . T
1. Using the unit . -—o find the measure of each of the fol-iow:_Lng :
segments to the nearest unit.

(e)
- {a)
2. Using the unit o——e - find the measure of each of the’segments

in Problem 1 fo the,..-nea.rest unit, S

Tc help us 1 estlmating whether ‘the measire of- a segment is say,
3 or L, we need to bisect our unit. RS 1is again shown as our unit )
with T bisecting BS so that RB.is congruent to T8 and &S is__ LN

used to measure Mi . . -~ .
T y ! - .
R e———oS
- N P
‘M N L I 9 o >
— } + — ' + ——

Ir; l,ayi/n'g'off».tne' unit along.- MK , labeX /P the endpoint of the ' -
. first unit that fe.lls on or oeyond N and label Q the enii' of .the
.precedin’g-uni* just as you did for AB on the preceding page.- I.fsing
RT. (which has just been determined) to aid in measuring 2B , ve 'oa.n/
.ch.eck that BP is longer then RT . and that. the measure of BB is
3, or m(ﬁj =3. Above, NP 1is shorter then RT and m(MN) - L L

There is nearly a.ways ‘a decisi,on to be made about whether Qr not to
count the last unit which ‘extends beyond the endpoint of the- segment
being measured. The reason for this is that it is rare in_deed for the

‘unit to fit an exact number of fii_nes from endpoint to endpoint. It.Is

- ’

vt 4

. . . . .
*30lutions for problems in the chapter are on page 298, L.

»

N
S
3 G

O
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well to realize now that measurement is approximate and subject to error.
-’ The "error" is the segment from the end of .the segment being measured to . ' .

~

. the end of the last unit being counted.. In A8 , the: érror is, B, T
" in MN( s 1t is FB. We note that the’ error in anv measurement is alva.ys

~ 3

at most half the unit being used. S \

Let us emphasize one thing about ‘;erminology. .Ina phrase simlla.r
Mdline seghment of 3 units" ve mean “'the measure Qf- the line seg-
- ment in. terms of a pa.rticular unit is the number 3 v, The poiht here ‘ ‘
. is simply to have a way of referring to the numbers involved so that

they cen be added multipl,ied,.etc. . Remember that we have learn'e'd

how to apply arithmetic op'erations only to numbers.b You ‘dont't add yard,s : f'

any more than you add apples. .Lf you have 3 apples and- 2 apples

s you l'ga.ve 5 apples altogether because : . v g
o . ) . S ,,.",é .
. o ' . . . . 3 -+ 2 = 5. . . ' . ’ . - ."-‘
* *You add numbers, not yards nor apples.. -~ = | - S e "“
e o _ o B e ) o R
As we shall see shortly, the use of different units. gives‘ rise L
to different measur-es for the same se@uent.- Thus, if we consider MN ' Sy
. ' . t n(MN) = 6 for the unit - XL . and . _ o ﬂ ; o
B . o(MN). =4 in terms of_the unit. K5 , - . T Cs
as the figure indicates. - - - .
K £ o, ) .
u — : ; — eow
. : . ‘ e
. + — . SRV ~'.£‘“"/
: R s - s T2 B il
' ‘ ‘ . ; AT
: - e ‘ -,
- T T - B
STANDARD UNITS , . . "

) Numbers of people each um.ng their own um.ts would have difficulty '
comp& ing. their resul'ts or communlcating with each other. ?‘or these '
reasons- certain units have been a.greed upon by large numbers of people

and such umts are called standard units.
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>
HlstorlcalI§ there have been many standard units used to* measure
lire segments such asa yard an.anch dr,a mile. . Such a variety is) o

great convenience. An inch is & su1table standa.d un1t for measuring®

the edge of =2 sheet Qf paper but hardly sat1sfactory fdr f1ndinguthe

'llength of- che school corridor.. While a yard is H satlsfactory standard
b for measurlng the school corridor it would not be a sensible unit for .

.finding the distance between Chlcago and Phlladelphla.‘

»

»

" Such.units of llnear measure as inch, foot yard and mlle are ;
commonly used standard uhits 1n the Brltisb American system of measur s.

In the eighteenth century 1n France & group of scientists developed the

ystem of measures which is-gnown the nmetric sy;tem using_a new '
ﬂwﬁaﬁmmt. o o o e s -
RN In the metric system, the basic standard unit of lengthbis the

meter, ~h1~h is approx1macely 39.¥| Ainches or a little mare than

-r~

1 yard. 2 The metric system is in common use in allscountries except
-those‘in'yhich :nglls. is the maln language snoxen andcis used by all
scientists ir. the world including those in English speaklng countrles.
’Actually, the ore oI-icial_standa.d unit for linear measure éven in the .
United States is the mete.; and- the correct sizes of other uhits such as

.. the .centimeter, inch, foot and yard are specified by law with reference .
. - . B .

. » s
N N PR B,

tyo L“é Drln:lbal acvanuaée o’ the me,r ¢ systexm over the Br1t1sh-

.to the neter. . oL : . .

'American system lne; in t“e fac tnav the metr1~'system has been des1gned
for ease of r-onvev'sl.o.. tetween the various metric units by exp101ting the ;

decimal‘system of numerationd Instead of having 12 . 1nches tb ‘the foot,

35' feet to the yé}@tand lTéO. yards;to the lle the necrlc system has _‘
. k . :

‘IO nllllne ers"to zp centimeter, 10 centin euers .to a dec1net‘r and o f

" 10 deczimeters to a meter. -Ihis makes_conuers1ons between units very
gLe . ‘ .

-~ - Bl ‘
o . Lo & ) . .
. e8sSy - - 2 Foo M . . e
: - . . . X ‘., . X . .
‘. F RS . - . . . 3 °

<ﬁg o far we Ha'c ualc'"ocnlng avout metric u i s larger than the meter. ”
- by
r

o

‘ ’v ) L&. L . - . - Y - 3 . . - !
. --T%& most "5f“ ul ofy thess lsithc vifometer, which is defined.to be l 000
. ” s .

c'*éLers. Thé ?1lo~e er~*§ ,ne-:etric uriit which close ly Borresponds to

-

4 he nrrcwsn-nmerlaan mile. “turf,s out that one kilometer is a llttle‘

.

O

ERIC

Aruitoxt provided by Eic:

[



- - We have already ﬁoteﬂ that in the metrie system; ﬁQe4meter is the:
’
unit which corresponds abbrox1mate7y to the yard in tne Br;tlsh-Amerlcan

\

-system. -The metric Unit which corresnonds to the 'inch is thg centimeter -

which is one-hundredth of a. meter. A meter is-almost 1O 1nches S0, 1t

takes about- 2% centimeters to make an inch or to put it anothcr kay

a r'entimeter\:!.s about é% or b of an 1nch Below are 1llustrated

snale of 1nches and a scale of centlmeters so. Jou can~conpare uhem

Centiﬁeters -

w0 l 2° 33 4. 5° 6 “ 7 8 9 (o SRR I SR VX 1?
o boos 2 oL 30 .4 ) 5
. s , . -
. In_ches i . R . o - - v : M R . . _. I .
o_. - . e; : . S . o . s e

-
C

- P d -. . -

SCALESAN’DRUIERS LI T

Once a standard uni such as a yard, meter or mile is agreed unoh;“‘_f3"

the creation “of.. a.EGhle greatly'slmnllfles measurement i

- LT, e . ..‘
A SCALE IS A NUMBER IINE WITH THE SEGMENW FROM "..”'lﬂ' e o
"0 TO 1 CONGRUENT TO THE UNIT BETNG US"D - T o

.

©ov A scﬁle can be’ made Jlth a non-standarc un lu or ﬂlth-a stancard uﬂlt.

A RULER IS Iy STRAIGHT EDGE ON WHICH A SCAIE USING

ASTANDARDUNI"‘HAS BEEN MARKED., - S P ﬁ

If we use the: 1nch as. bg; unlu in ﬂazlng a ruler we have a2 measuring '; f; “
) ‘device designed to glve s readlngs to the neares irch. ‘MOSu ordlnary‘ )

rulers are mar&ed with the Lnlt one-sixteen fh»gf-ancinch-or with.the %

ualt one mlllimeuer., ) f f_ S e “' . ., ,

@APPRO}GMATENATURE'QF-MASURE L S B
4 " Any measuremeéé Ox the 1engeh of 2 seg“ent made ‘with a ru‘er is, : fb. i

at best,. approx1mate Mhep a sesment is to be-veasufed, a scaTe oased ‘ : B

on a unit appronrlate to tqe p Irpose of the measuremenu 1s se’ected v

,'The unit i's the segment with endp01nts at two consecutlve scale d111s10ns

of the ruler. " The scale is Dlaced on the: segméht kluh uhe zero-a01nt of c

" the scale on: one«endpoint of t e segwent. " The m mber wh;ch corresnoncs

o

to the division point of the scale earest the otn er endp01..u O;‘uJe )

O
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gegment s 'thé measure of the segment.

to the nearest unit.
* then we have a situation’ in which two line segments, apparently not the

@ different unit segment It should be elear th

" R o
’
'

Thus, every measurement is made

¥f the inch is the unit of measure Yor our ruler,

same length, may have the same measure, in terms of a spec unit.
A 1 B ] CL L N L ND
- — —d
L L | : , ) "
INCH . 7 \
In inches, m(CD) = m(AB) = 2 . s,

J L]

Fcr the same two segments we may get a differeng measure if we, use
+the unit is changeﬂ

Thus, 1f we decide touge the centimeter as our unit,

the sca}e changes.
.y and m(CD) = 6 .

the fiékre below shows that in centimeters m(AB) =
Now the ﬂeasures do indicate that there is a difference in the lengths

A ".’l, ' . B - C . . .. D
. .“; I' .- .
Ty ' . " . .

. K _ . . ;
— v
CENﬂMETER. . ’

' SN , - In centimeters, m(CD) >w(AB) = o

of the two segments.
we are gble to distinguish between the léngfhs of two non-congruent seg-

‘ments which_in terms of a larger unit gthe inch) havelthe same measure,

Notice that by using a smaller unlt (the centimeter)

If measurements of the same segment are made in terms of different units,

the error in the measurements may'be different since it is‘at most half

Jthe unit being‘used Thus, if a segment 1s measured in inches the error

cannot be more. than half an inch, while if it 1s measured in tenths of

an inch the error cannot be more than half of a tenth of an inch. As a,

result if greater precision is desired in any measurement a smaller
) ‘v oy .
R

_unit should be used. : .

Sometimes it 1s more:convenient to'record a length of 31 " inches -

as 2 feet 7 )inches. Whenever a length is recorded using more thin

one unit it is understood that the accuracy of the measure i§,indicated

| L 290
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"1t is to either. Lk ya. 2 ft. 2 in. or h ya. 2 ft. 4 in.//z/le
Y

:‘completely, thap is

Lo ,/ _ - Y o g
- v )
by the. smalles: junit named. A length of 4 yd. 2 ft. 3 in, 1is meaegreé///‘

to the nearest inch. That is, it is'closet to 4 yd? 2°ft. 3'iﬁ. an

.;‘/t/tha
to 4 ya. 1 ft. or L4 yd. 3 ft. However, if this segmerit wé) measured
to the neerestfinch we would have to indicate this by 4 y 2 ft O in,’
or L4 ydn2 ftr '(to the nearest inch). There is/a ver, real difference

h yd. 2-ft. is interpreted t6 mean a length closer to

in the precision of these measurements. When e’'me surement is: made to

the nearest foot, the interval within whic

foot; when the measurement is made to é/nearést inch the interval
n/bincﬁ This is because the end

-ﬁalf & unit on either side of

the }ength may very is one’

within which the length may vary iﬁ/9
t

of the last unit counted may lie 0

the end of the segment.
: R . :
A very important property o

-, . .
11 'segment;\qe that any line segment
. . A o L ‘ - .
may be measured in termg/of given unit. This means that no matt?r
how small the unit

lay off the unit
/

“be, ere ié a whole number n , such that if we
‘timet along’ AB starting at A we will cover Kﬁ.
)a point yill.he;reached that'As at the Point B or
beyond the pofnt B on A8 r ’ ’ ' ’

i LA

- \r

The Yength of a line- egment is{a property of the line segment<whieh

we may Measure in terms Of different units.‘ Theoretically,-two segments‘

as

have Ahe same length , and only if, they gre\amngruent* We run into
trguble thinking an talking affout length because; in practice, measure-
ent of length ‘is Mmade in terms of units and, 'as we saw gbove, two lines
-which are really/different .in length may both be said quite truly to have
length 2 inches to the nearest inch. 1

A vivi illustration of this trouble will emerge if we think about .

-,

an applic ‘tion-of linear ‘measurement to the calculation of the perimeter

of a polygon. - By definition'

'THE PERIMETER. OF % POLYGON IS THE LENGTH OF THE .
LINE. SEGMENT WHICH IS THE UNION OF A SET OF NON-
OVERLAPPING LINE SEGMENTS CONGRUENT TO THE SIDES
OF THE POLYGON. A

- / ’
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Thus the perimeter of polygon ABCD is the length of TEI where ‘
EL 1is the urtion of EI FG GE and HI which are rgspectively ) ) :
congruent to AB BC /, CD and DA . If we pvié pins at p'oints A, N

B,C and D and stretch«aa taut thread around the polygon from . A

back to A , wvhen we/ strai_g}}ten out our thread we will have a mociel of

a segment congruent/to = . ! e o . o
» ’ﬁxeNQength of / EL we know intuitlvely, is the sum of the lengtﬁs ¢
of the four segmenth wheh we consideér length as an intrinsic property » s
of segments. But, when we talk abous lengths as measured in terms of - ' »
certain units we may run into the following situation:

b
1 . ’ .

| g” CENTIMETER SCA\E 7
. I INCH scm.r—: A

', To the nearest centimeter m{AB) = ]\— m('_CK AB 1is congruent.
to DE BC 1is congruent to EF CA is congruent to FG but m(m) = 10 .
This is because to the nearest millimeter m(AB) = m(BC) = (-CA) =.33 , .
and to the nearest millimeter m(DG) = 99 -and to the nearest centimeter
this means m 11}) = lO' Even 1f we measure our sefments to the nearest
“inch we find m(AB =-m(BC) = m(TA) = l and we would expect the measure
o§ the perimeter to be 3. But we findi«' m{ DG) =11+' . This reminds us, .
again that ’the measure of a length is a‘lrays, at best, an apprd;dnnatiori -
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cratet one is given a ruler with units marked in T
!

a ruler with linits  marked in inches. The first says
i 23 t long and 2 feet wide, the second says 14/ 1 " 4o inches
ﬁ'by 28 inches., Explain why they could both be righc ] s : ‘J

-ate.’-The

3 .
4, * Bot%ucﬁildren\are'asked to find the perimeter of tHe

first one says 10 feet, the second’says 136 inc _ A string

'is then passed around the crate, stretched out thelchildren Bre
asked t measure the string o find the perizﬁ; This time the
first one - says ll feet the sfecond one inches, Which ;e; \

sults arﬁlcorrect?u Explain th discrepancy between the results,
\ / e . * ’ \“7T’
We have indicagted in this development' é%at length is the common
property posse sed by segments that are congruent in much the same way
.*that a number ﬂs the -common property of all sets that are equivalent
Corresponding to the length of ésgivedwsegment a whole number is ‘L
‘attached which we call itbs méasure. Note that this:measure dep%pds on-
-the unit selected and, as we have seen, is what one normally considers .
‘ the measure to the nearest unit, ‘Thus, lengtﬁ is approximated B%}:he
meagure,,with the approximation being closer and closer as the u is
finer and finer. ‘This 1s the case for any measure whether it)describes’
length, time weight or any other measurement. \

When we say: that a segment has a measurement of 3% inches, for
* instance, the implication is, that the unit is the quarter-inch.: Thus,
a measure of 3H is actually 13 s since 3H inches means 13
quarter-inches. When a measure i's expressed as a rational number the
understahding is, therefore that an approximation is made to the : %‘
smallest unit indicated, as for -example, the quarter-inch mentioned above.s "
- Starting with the “concept of measure as a whole number, a meaning may now
C o o :

P

O

O
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" be attached to a measure given in ‘terms of a’ratio%al.number. With

P N
reference to the smaller unit, the measure is the whole number of the I

 smaller tnits; with reference to the larger unit, the megsure may be -

stated .as’ a rational nsmber,

On,E“line, a segment can always be found that would be congruent
to some segment. It is then possible to ehoose two points on a line so
that the segment determ;ned by the two points would be congruent to the
unit for a particular meésure. If the two points on the line were
identified as ‘O and li, then a number lin€ may be constructed such %
that the unit on-the number line ie‘congrUent‘to the unit for“the'measure.

Now, suppose that the length of a given éegment is to be determined; -

.Clearly, there would\be a segment on the number line from O +to a point

having a rational nunmber as its coordinate that would approximate the
given segment in length. 1In ﬁact, by finding the segment on the number
line with O as one of the endpoints (the left endpoint) that ts\con-
gruent to the segment being measured, it should be possible to obtain the
measure by the coordinate of the other endpoint. By this, any nunber
that may be associated with any point on the number line as its coordinate
may be assigned'as the measure of a segment, and two segments are said.
to be of the same length if\they have the same measure regaidless of

the unit used. Length,’conceived of as the common property of congruent
segments, isualslight departure from length in ordinary languaege usage,
as for ekample, in stating that the length of a 6e§k is 4 feet. The

'explanation of length as the common property of congruént seghents more °

accurétely emphasizes its mathematical meaning.

-y

>
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"Why is 1

« ) !
\ e \ : 3 1 ~

N . . . I L -

N oo ot

QUESTION-

L"':
N .
. < I
C, A
. R hd . ! ] « ve

\ ¢ a ' “ K4
said ‘that a measure i¢ a whole number of units when clearly we

f measutrements on. the’ruler such && 3— inches?"

fan read o

The ppint is made“in the’ section ot the use of an arbitrary uni S

(pege272) /that if RS is:taken 6 be e model for %he wiit, then 7B -

1s betweén 3 and L units in length. R ﬂ”&N R
| 4 . o .
) —::.J‘ ) e . o '
. et o Lo |
RS L L e
. . . ; C .
‘Units e S N
1 2 . : : ’
L T —— /e, | P‘[‘ T ;
.',‘Q B s . . - N .

- . . . a . -
13

In terms of this unit, we could only say that the measure Qf/yAB is 3
since ' B 1is nearer to Q than to Py where Q is the point exactly
3 units from A and P xis S units from A. Suppose we were to -

'

%y

measure AB using a segment Tﬁ exactly half as long as RS to be
the model for the unit Let's call tfils a "démi-unit" to indicate thatf ,
this is smaller then the unit determined by RS. The situation may be

as diagrammed below. ,

i ) N *
. I T
~ Demi-unit ' . . ) oo o N
) o ‘ . . . . . « ] " ] . .,v' ..
“’T;._._4U~ - ) - N K . . : \
| -, e Lo ) v i
- Demi -units ' . . ‘
" ' e .
. X2 3k .il_,;§, - S —
A . . — . e — P X : ) )
' . * Q; B V ’ 2 ! '

| 6 and 7 'Since 'B is nearer&to’ V than to Q to the nearest unit .

\ . >
. PR .

Since B is between‘ Q and V, then the measure of AB 1is be&yeen
the measure of AB 1s. 7. This is in terms of~the demi-wmit. If- the' ’
,demi-unit is compared to the unit as determined. by RS we' might be
Justifled in thinking of it as a "half wit". The 7 demi- units are then'
thought of as seven "% - units" or % units. For thls reason, hehind

‘the statement that an object is 3% units in L ngth is the concept that

VI
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. " : : P A N é
_the: "half- wit" is being used .85 8 unit- and that to the nearest one .
of the marked in%e!‘va.ls s '{ i’s the whole number for the"méa.sure. The '
) fa.ct that é may |be read directl}r from the ‘ruler shows that we may zz
adapi ourselves "Q estimating quigkly and fitl.ling fn subinterval ma.rks%
if necessa.ry “For example, thm r may be marked off in thirty-seconds
. of *an «inch }md we; ; g to sixty-fourths ©of an inch. * When .
we do §0;° we are ' _ \the whole number of units usihg the \ .
, EE - inch segment ‘ ! e, in the readir‘lg',_thi whole -
- P ) N
number og subxmfts ifrelated back to ¢ standard unit of ex’inch.
Il - o R *" i ¢ 7 ’e ’ ‘.i. ‘4. ’ N °
R RN
. . VOCABULARY = ' T
_.}‘,b /.4‘:'. “ . * L . - ,.
, Centimeter' . | CT - Métric, System .
. ~.I " [N R . N '
_Exact Length 1 ’ _—
Kilometer “'_“ S I ’ Preciseness )
o % _ - - , .
| i C 8 % -
‘ ,Length* . L | Ruler D
“  .Line Ségment* ; PR . "Scales* .
ivinear Sca.le-)! ' _ T Segment * .
PR} w - . : .
. 'Measuxe{* o ) Standard Units« *
I ' : ! . . . .
. Meter e L Unitx 1 ‘ )
S o ' - e M K} ' .
1 7 , o .
i - . ]
$ ' g J
' . - -
= 8
;
* . & .
. “' [ « —: . . /*: ‘
\. . . . g ’
‘ 3 v - :
| : . : .
’ con . N0
< \"“’; "'-‘ * ) " '
b . *
g > - " ¢ .
1 ";‘ P é o
- o . , BN
3
. . 296 . /
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_‘tja." Put in e pinch of\salt o . - :

a.‘ What are the measurelsof. the sides "if_‘,the unit is a foot?

| . .o A

. . ¢  EXERCISES - CHAPTER 16
‘ N ‘ 4 '
1. Which of the following statements is true about segments AB €D »
| EF and GH ? o
A _ ——8
c o 7 .

a. .AB 1is congruent to €D d. . AB 1is congruent td; b

b. AB 1is shorter than CD .+ -e, GH 1is shorter than CD

cew AB 1s longer than EF f. GH 1is congruent to CD {
2., A dog weighs 18 pounds. . .

a. ' The unit of measufe is ' . s

b. The measure is. - ’

Ce Thebweight is . . . Iy
3. A desk I; .9 chalkNﬁiecesqlong. B A

" &, Tts measyrement is ., S ’
+b." Its measure is- ‘

¢c.." The unit'of meadure is .
ﬁ. ‘ In which of the.following sentences.are‘standarunnits used?-. v
+ g 8. He,is strong as an &x, P B / '

. >

- We drink a gallon of milk per day.
d. The corn is knee high.

e T ‘am five feef tall. . L i

‘The measures of the sides of a. triangle in inch units are 17,
15 and 13 . ' ’

be. What.is the measure of the perimeter in inches? In feet? _:

c. Is there anything éurious about your answer?

d. How dp xou explain 1te *
6. Use > - . as a unit'to measure the following segments.
o c D i E— F
Is CD congruent to TF 2 Do your answers contradict each other?
Explain, R : . f' s
' ¢
. R . 297 : .
- - CT ' ’ -
.A ' ' ’ 2‘; &
. l':;‘ f:‘ N *' . I J.A
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8 13 be2; e 1 H d._'ME.. o - -

. SOLUTIONS FOR PROBLEMS
- - < ;

8. 2; B, 3; c..1 ; .de . 3. It should be noted how the

‘measures differ, ._' o .

.-, » ) \

Lo inches to the nea.rest foot is 3 ‘feet sinc':he error is

less than % foot... 28 1inches o the. nearest foot is 2 feet,
Again the ‘error isxless than % foot. '

. .

'I'his problem involves the definition of perimeter of .a polygn.
the thar the perimeter 18 by definition the length of the segment

which is congruent to the union of ‘non- overlapping segments con-

gruent to. the sidés. -Thus the second method 1is the, correct one -
(or both chi,ldren and the answers to the nearest unit are ll feet

) and 137 inches. The first resuld comes from adding 3+ 24 3 + 2

'but ‘each measure had an error of about L4 inches-or % of a i‘ogt
and "the accumulation of these leads to the .result '10 fget which
is, in- fact, incorrect.» The result 136 inches comes 1ikev;ise
because each side measured in inches had an error less than % an .
inch- but which- accumulated to something near an inch. The dif;
ference between the correct results 11. feet and 137 - inches is

due to the fact that each child gives his answer corsect %0 .th

A

nearest unit: he e is using. * - - : . Y . ‘ '

™~ -
. o
“
’
-
- .
. ¢
. - < .
. R
~ N ! '
. . e
. € ) ~ '
.
- &
[ ]
. ’ I
)‘ -
° ¥
~ o
. o,
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o Chapter 17
ST ' STRUCTURE
THE.COUNTING NUMBERS . a o . L
In our development, we have started with sets as pre number concepts

#and obtained from them the set of counting (natural).numbers.‘ Although
-we did not consider the properties of the. counting numbers (we considered
‘ properties of whole numbers), if we had examined the counting numbers
in this light, we would have Jdiscovered. closure under addition’ and multi-
plication. 1In fact,, all of the properties listed below hold f%r the set
'of counting 'lum‘pers . >~

B

the set is closed under addition'and‘multiplication; -

the elements are commutative. under addition and.multiplication,

1
2
..3. the elements are associative under addition and multiplication,
4. there is an identity element for multiplication, :

P

muptiplication is distfpibutive over.additiqn; .

The statement for thg€losure property under adiition is: if ' a

J

mbersr then a +b is a'cou7 ing number. This

. may also be stated: \- '
IF a AND b ARE COUNTING NUMBERS/ AND

a Xb=wc, THEN *c ISACOUNTINGMER

Thus;:if a is. '3. and b is 5 , then ¢ is 3 45, or 8. A
related question is: if a is 3 and c is' 8 ,'is there a counting .
number x such_ that a+x=.c? Interms of open sentences, we\are
then looking fqr,the solution for

. . Ll - “u

| 3+x=8. o E e

In this.case, 5 is the solutlon of the equat on. If we ask’ whether
there is a cpunting number b such that ' 3+p = 8 , we-are posing the
question:, Is "3 +'b =8 solvable in the set jof counting numbers? o

THE WHOLE ‘NUMBERS ,

In our study{_me have fdund that 3 +§ = 3 ; furthermore, O/ is

the only solution for' 3+4x =3, Howeve&

O
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Clearly, then, 3 + x=3 1is not solvable in Qhe set of c0unting numbers.
Nor are 5 +x=5, 6 +x -6 , 2% x=2, and so on. In fact, for

(%

any counting number a , 0O is the only solution for o

. ’ . v’ ’ ) ‘,
- . e a+x =18,

and hence, a + X = a, has no solutior in the set of counting numbers.

By adjoining 0O +to the set of counting numbers, we obtain an >
~extension from the counting numbers to thre whole numbers. That is,

IF 2=(0) AND N=(1,2,3,%4,5,..}, .
T}IEN'ZvUN=-[O,1,2,3,l+,5,...}=‘w. . '

Within the set of whole nunbers, then, the equation a + x- a
has the solution ‘X = 0. All the properties that we have for the set
of counting numbers hold equally for the set of whole numbers. By the

inclusion of O 1in the set of whole pumberg some new _properties are

gainead: ) R
THERE IS AN IDENTITY ELEMENT FOR ADDITION; ' ;
THE PRODUCT OF O AND ANY WHOLE NUMBER IS O.
INTEGERS ’ ‘o

Even adJoining 0 to the set of counting numbers is not enough
to completely solve the equation,'Ja +x=c¢. If c<a, this equa-
tion is not solvable in the set of whole numbers, For example, there
is no whole numbes x such that 5+ X =3 . Negative‘numbers are
'introduced in the first grade, but only in a limited way in relation to _
: the number line, for example, as associated with the scale on a thermometer,

Later on, when negative numbers gre explored in, greater detail the

" opposites of the counting nunbers, namely, (bee , "4, 3 , 2, l} ’ may "

be adjoined to the whole numbers. Thus, e get the set of integers

I=(.., ™, 3, 2, i»,oﬂ,i, T I

Then, the equation a + x = ¢ will be solvable in the set of integers

for numbers a and c " in this set. By this extension,'we will find

that all the properties that we have identified for the whole numbqgs

still hold' for the integers. Moreover, we have an additional property

which derives from the solvability of a+ x =0 for any integer 8.,

The solution for this equation is called the inverse of 'a . The property * ’

2
o

O
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may be stated;, ' - '_. R . l o ST
. " : :
?  FOR'EACH INTEGER a, THERE IS gNINVERSE, . /
“a SUCH THAT. a.+- ae‘o..L A : S
‘ o . , . o .
By the. commutative prOpErty, e can see that Ta and “a are inversgs
of each other. For example, 3 + 3 0 ‘and 3 +1 3 = O H o .3. apd..
-3 are inverses of eachother. ' - v ’ s Loy

. .

. Hiﬁtorically, there was only need of the” counting numbers for the
,primitiVe man;- his possessions and a1l his reCkoning were adequately

accounted for by these numbers. The concept of zero as a number did not o

4emerge until quite late in civilization. With sophfﬁ?fb&ﬁion, we may

interpret the concept from a different point of.view Zero might be
considered to be the" solution for a +uX =8 for whatever number & ;

1n this way, a number called zero is—"postulated" as the solution

. - !

THE RATIONAL NUMERS S . |
1 . - .

We may neﬁt conslder the solvability;of equations ‘of the fonn

'L

a X x+= ¢ for integers e, and c . Ewidently, for certain numbers

A

such Esp'a 2 and ¥ = 6, the equation ayXx =c is solvable in l:.
integers.. The solution for 2.§'x-c 6 1is 3. However, equations ':'H

~

, o . . . s
such.as * -, el - . . . d

. R . . o . \ - . . \ ." ;
-, 1 o . 'é-xdx =2, ' s T,

aré not solvable in the set o integers. This leads to the set of all
v . N
rationa pumbers. number

Fbresented by % where m  and 'n are
integers and n # 0 The solution for 6 X X = 2 is~then_considered

to be 3 just-as ‘the solution'for 2x x=6 1is considered to be. g .
As we habe indicated in the preceding section regarding the postulation

of. zero and Ta R the number %»ﬁmay also be postulated as the solution

4 .

for n‘x; L7 M. - ‘ . o

- B

By representation of sgch numbers on the number line, we identifigd

for example, the. numbers named as- ’ , : ' '

) l 6 - j9 R m X < o

. i"é’i""'nx y cee 5, for k £0

. = : : :

’ R ’ * b} .

) 301
- . ) ~o~ . ’

- . L)Lj{}

-

.Similarly, "a may be postulated as the solution for a+x=0. > ”"

hS

v



.to be the. same number. Thus, ‘

- if a and b aré nonnegative integers such that

b X k )é 0', then all numbers that can be represented

-

e ‘' aXk " a ?l\ ber
o by e identified with 5 and al
f - that “can be represented by g :'ﬁ are identified with
. ce . - . ' - ¢
’ o . _ % , wvhere a and b do not have any common factor other
M ~ 'than 1 (unless a =0 ).
Y 1 2 3 oo ’ '
In this way, T G2 G e are considered to be in the same
. "equivalence" class; % , % , -‘g- , ... 1in another equivalence class;
N % s .%" % s +s» 1in still another class; and so on. Corresponding”
"+ to the equivalence of % » % ’ -S— s s+ 18 the equivalence of the.
statements o l .
. ) . . . v' . .
s 3Ixx=2, . 6%Xx=4, 9xx=6, ves .

So, instead of defining the equivalence classes via the numher line,

the concep‘t' 4lso can be approached via: equivalent statements. Either

way, % y % ’ -g— g eeey would be classified together. Our appro

by the numben Iine is the more intuitive approach in accord with th

' presentation to:the students.

There is another kind of identification that we might interpret by

: m miX 2
he number line, It is that the rational numbers I Tx3°?

LI,

regarded as an extension of the set of integers. We can'observe that
R rationals), all “the properties that we have identified that
the integers still hold, Furthermore, another propefv(:y is
‘gained -- one that par’allels the ‘property on inverses under‘ addition:

FOR EACH RATIONAL NUMBER % THAT IS DIFFERENT . s

FROM O, THERE IS AN SUCH THAT
- . m,p_1 1.
‘ X =T (with the iddptification, T =1 )‘.
Q.
For. example, §X%=§:g=% , ]

L]
r

O
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‘ With extension® on “top of ex@nsion, we See an ‘emerging strucwre i
of. the numbers as characterized by the properties. Each set of numbers,:
together with the operations and ?the properties , form what is called a
number E&t_ For the rational number system, the properties may ke

1isted as follows: . )
the set 1s closed under addition and, multiplication, for

0 example;, - 2 + 2 is a rational number,

° . the elements are commutative under addition and multiplication,

Pl »

for example, L +2= 2 +‘l . R

2 373 2’7
’ the elements are associative_under addition and multiplicat-ion,
* for example, (%ﬂ-%)v+%=%+ (%*‘%) S \
there, 15 an identity element for addition, for example,
1, 1 '
- ;
‘ 4 ‘ T .
th-is>re"is an identity element for multiplication, for example,

e &
for ?ach :rational number, there 1s an inverse under addition, ,
SN 2, -

. for_,example, 3 v (=

« - A . . .

for eacﬁ* rational number 4different from O , there'is an.

. »

inverse under- multiplication, for example, -Z X 5= 1;:

OoN\

- 'multgg.ication is distributive over addition, for exa?le, :

. ,%x»(3+-75-) —(l_‘ x8) + (5x2) .

Besides these, there are properties which we ‘can elicit from the bove,

“such as . o S -

the product of 0 %nd any rational number is O ; for

example, 0 x% =0.
3‘\ . .
s
' 303 ’ ’
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OTHER EXTENQIONS o S .

Other extensions will be made beyond ‘the set of rational numbers

but these will not be carried out in the first s1x grades. The rationAl '
numbers wvere assoiiated with' points on the number Tine. As the rational
numbers ha;e the property of-beingidense (bétueen any two rational numbers.
‘are infinitely many rational numbers), it appea;s that every point on:

the nunber line represents a rational number. Hewever, there are
. . . —

. numbers such as x ,° V2 ,"37_, and so on, that are coordinates of

points on the number line but. are not rational numbers.

The. next extension brings us the set of all numbers that may be
represented on the number'line. These .are the real numbers., Beyond

this. extension are the complex numbers, whose representations occupy;

the entire(coordinate plane (that is, Just the number line is not

suiiicient for their Iespresentation") and the hypercomplex numbers.

With each number system is associated a structure given hy its properties.,

We have pointed to the property or-properties gained with each

extension. However, although we. shall not .show how here, we should

mention that it is not always the case that properties are gained. The
extension fxom the complex numbers to a hypercomplex system may result
in the loss of the comnutative %roperty, a further extension may resu}t

in the loss of both the,commutative and assoclative properties.

,

Thene‘are other 1osse of properties that occur in the extensions '
which have not been mentioned but whlch we will note very briefly ‘now. v
When the 'set of whole numberv is extended to the set of integers, e
lose the property that there is a number which we can call a first (o;
smailest) number. Extending to the rationals,‘we lose the property that
each number’ has a number whlch we call the next number (or siccessor).
That is, the integers can be yisualized as "isolated" (discrete) points’
on the number 1ine, ‘whereas the rationals are visualized as being densely
pacPed. It can be shown that the rational numbers may. be put into 1-1.
correspondence with the rounting numbers whereas a 1-1 correspondence
cannot be made with the real numbers (we say that ve lost the property
of countability in the extension). The extension from the’real numbers
to the complexbnumbers results in"loss of the\propertyvof order: between

two tompl® nunbers, there s no "order relation" such &s "¢" or "M

. that determi es which of the two numbers precedes the other.

'.-. ._ S v 30’4
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'4}(/{While we have'losses‘with the extensions mentioned 'the éains
‘apparently far outweigh the losses, considering the many, many new.
problems that can be solved with ‘each extension. An important aspect
in the study of algebraic ex%eqsions consists of determining properties
‘that hold in each extension. In turn, the study may orient itself to
‘investigating what extension may be determined that would retain ]
certain‘properties (such as associativity, etc ), and this is indeed

a ‘program in the study of algebra. : .-'__' :“‘ '

An apprppriate observation to make at this Fime ts that in preq
senting mathematics as a structured discipLine, the stqdent is guided
through the extensions of the number systems. Thus with the student’

maturity, his knowledge of systems of numbers is imultaneously broadened

and deepened. ’ - o : . ‘:,
‘ < VOCABULARY o
. ‘ v oo o
" Associative Property% : ‘ Identity‘Element*
'Closure'Property* "ﬁ v ' - Integers* ? :
Commutetive Property* o Inverses under Addition; . ;

Complex Mumbers . Inverses under Multiplication*

Counting Numbers* Rational Numbers*

Distributive Property of | . Real Numbers'
Multiplication over Addition* Whole Nutbers*
~ P .
N
.- L .
i
. \
D‘ ‘
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APPERDIX A - =+
. . . r
THE MATHEMATICS PROGRAM, °GRADES K-3
) T . . ’ o

. L}

The SMSG mathematics program, MATHEMATICS FOR THE ELEMENTARY SCHOOL,
”K-3, is a contemporary instructional program that emphasizes conceptual
learning. Primary attention is givég’to the introduction and progressive
'development of significant mathematical' ideas. This' emphasis *on. mathe-
‘_matical ideas provides the necessary foundation for the related development
.of apprbpriate skills and the ability to use\mathematics effecti#ély.

Central to the program are relatively few basic ideas. “Two .of these
" are the ideas of number and operation. Each is imtroduced and extended

in close association with appropriate manipulations of sets of physical
_obJects. Mk jor ‘attention is given to the set of whoie numb&r {o, 1,
'2 3, kL, ...}, and to the nature and properties of the ‘familia 'operations'“

of addition, subtraction, multiplication, and division within the 82t of
" whole numbers. Consideration is glven also:to the nonnegative rational

: 12 5 7
.rational numbers, such as 2, 3§ 6’ B

.

Closely related to-the ideas of number end operation is the idea o
- of numeration and also the ability to ¢ mpute. Emphasis 18 given.to
the décimal base (ten) of our numeration system ‘and\to its 'place value"
principle. These, coupled with properties of the opeTations, form tRe
- basls for developing meaningful algorithms--i.e., forms for computing '

The remaining maJor idea developed in the program is geo tEié

in nature. Our first concern 1is with characterisfics and properties

of familiar geometric figures, vieWed as sets of points and abstracted

from appropriate models within the physical worldw A related doncern °
is with measurement, in which number is applied to properties such as

.length: and area of geometric. figures. -

oo
]

. The Teac r:a €ommentary for Book K stresses’ informal ‘work with -
pzs-number,con epts at the kindergarten level. These are concepts ’
pertaining tg'sg_g, and are explored through work with gets of physical
obJects., The ideas of number and geometry also are introduced at thet
Mindergarten level, as-reflected in the scope ‘and organiéation chart.

Not all topics in the student texts, Booﬁs 1-3 are included in.this'ehart, ‘
However tHose that are listed are tied'to the topics in this inservice text.

.

-r
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SCOPE ANT ORGANTZATION OF MATHEMATICAL CONTENT' o

N - .
' For expediency, a ndtation such as .2 3 has been used in this chart
}p refer to the chapter, and section numbers in Books 1-3. ‘The notation,
“ 2.3, means Chapter II, Section 3 in the particular text. , kS
- . s
Togic R o K Sl . 2 3
~ -
Sets - | el - | - BT
, Member:>%fta éet'f," ' 1 .-_ 1.1 B ETS I : :
. The ‘empty set : . 1. 7 1.2 .
* Number of members 11 Jis, 1.7 20 .
Pairing and equivalence; 3 1.3 ol o L
v Comparison of sets 3 1.4 l.2 , 2.2 °~
. . Ordering- of sets 7 {21 1.2 2.2
Joining sets 5 h.,h.2, 11.3 |2
H . S : ]+‘3 ‘ o
Subsets - - . - ‘ !.
Removing subsets_andbthea~: v ‘; B ‘
' | remaining set . - 5 kb, lfh 2.1
B . : 4.6
. Sets of poiﬂts' ’ . .
_Point . SERY 1.1
\ Curve - 2 - |5.2 3.2 1.1
l , segment r . 10.1 3.2 _ 1.1 ’
ray . i 7.2 1.2
line d ' o 3.3 ‘(1.2
simple closed curve 2 5.3 - |3.h 1.3
"~ circle, _ ‘. 2 5.2 ‘
rectangle . |2 5.3 1.3
trtangle - 2 15.3 3.5,7.1 [1.3,1.5
quadrilateral ‘ 5.3 1.3
. square T le 1953 L 1.3
¥ pentagon )
hexagan ' ) _
interior, eﬂterior,'on 2 ' 3.5 1,4
' angle ' S a 7.3,7.%,71.2,1.5
, IR . N . 7.5 | v -
’ , congrueﬁce . i S (5.5 ) 7.1-7.5 *

O
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. Topic Sy K 1 2 f 3
Regibnv . ‘ . ]1 2, 8 5.4 171 BT
~ Solid ' - P . 5.1 S .
{ Comparison of sizes ' 3 . ‘
Linear measurement - o 10.2° . ‘5.1;%.h 6.1,6.2
length to nearest unit . 10.3 - 55 . 6.3
_ A real measﬁ{ement I B '6.5,6.7
The number line b W F :
' Coordinates 2.1,2.2, |1.8,270, [8.1,3,2
: ' 12.3°
P}gce value S = . . .
" Sets.of ten S 1 6.1 2.4
The w;itten'nmqeral's . ) . ’ ‘
‘through 99 W o N 16.126.5
. | Operation.on whole numbers?
| - Addition . ,
' by Joinihg - 4.3 . b
“'using the number line 7.3 2.1 _ ‘
Subtraction ) S . .
by femoving subsets ' 145 - .
» "hging the number line 7.3
. by missing addend. 7.5
| Multiplication D o
i arrays o .81 8.1 = k1
‘ relation to _ -'.» o ' ' -
" multiplication - . jﬁ.e 8.2 . 4.2
. by repeated addition S " 8.4 1y.2
using number line ' JI 3.5
[factors prime = 1 9.1 - - |4.k
- Division : ' . B K/ ﬁh\\ o
' arrays L R .9.i N |
relation to ) . '
multiplication | | 9.1 /
by repeated subtraction 9.3
finding factors ) 9.1
Rational numbers . ‘ 911,9.h
Paftitioning,p&r%s of regiong o 9.1-9.6 ¢ 8.1 ‘
Rationals on number line T R 9.5
Equivalent subsets - D " |8.2-8.4
Order of rational numbers |, : 18,5

O
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s
. ( . Topic ¥ rr 2. 3.
_ T Operatfons on rational numbers
" .. Addition ' A 9.5 .
Multiplicatiop . 9.6 ‘ -
Techniques of: computations :
. Addition facts % 2.3, 2.3,2.5
addition algorithd | / 16.2-6.7 |5.1-5.4
Subtraction ’ 6.2,6.6 |
‘subtraction- facts 2.3,2.6,'
v ‘ ] 5.1
) Mnltiplication facts : 8.4 4.3
" multiplication algorithm 7.1
Finding quoyienys 9.1-9.3 7 -7.5
; .. : . : ' 1-8.4
Coordinates in abplane 13.3

2’ ' The program of ok 1 Treviews and ektends pre-number\concepts
a§§ociated with sei:, and also'revieWsland extends the'work with numbers

’4and.geometry Operations and numeration are introduced‘ along with

" measurement. The extent of this work is reflected in the scope and

organization chart above
!
It is imperative that kindergarten and first-grade teachers view

their instructional work in relation to the work of - subsequent grades.
- A1l of the basic ideas of the program appear “within Book 1 and are
" extended, in Bo k 2 and Book 3. .

. 9

Ei;einse
of Gra

see how these ideas are progressively developed from kindergarten through
Grade 3.

e book develops the mathematics underlying the program
. By using the chart above, the teacher wlll be able to

The nature and seope of mathematical content embraced by MATHEMATICS
“FOR. THE ELEMENTARY SCHéOL, K-3 1interest and challenge children within °
the primary‘gtadasr They also interest aﬁd challenge the teachers of
' * these children. - Through this program mathematics truly can

for both children and teachers.

"come alive"

E N -

ERIC

Aruitoxt provided by Eic:



‘ \INTROHJCTION .

- The introduct,>y'chapter, Chapter O, included a consideration of -
language charactexfg

general icationé-of these characteristics for t@aching these c-ildren
_ fn this « pendix we shall daal more explic1tl§xwith language and mathe- )
.qmatical insﬁruetion. )

P - . L
. . B

‘ : Mathematics is a language. It prov1des a precise means of communi -
icating such 1deas as number and space It has special terms, expressions,
and symbolism which if undersgtood, facilitate its.use as a language and

which, 1f not understood, inh bit its use as a language

J
N
A maJor objective of mathematics instruction in the elementary grades

is growth-in children's abili y to use the“language of mathematics
_effectiVely This includes growth both in understanding mathematical ~
iconcepts and in knowledge of terms, express1ons, and symbols associated

with these concepts. . N v

‘

Growth in: the ability to use’ the language of mathematics effectively
and in the ability to use "general" language effectively are cloSely related.
The development of these should gq hand in ‘harfd, -each reinforcing the other.
lIn this sense, everything you do to improve the general language ability of
children can reinforce the development of their mathematical language ability,'
conversely, every’th:&g you do to i‘mprove the mathematical language ability
of children can reinforce the development of their general language ability.'

Here, we shall discuss'the importance of auralforal.experiences'and the
learning of concepts, terms, andisymbols We shall consider the preciseness
' of mathematical language aqﬂ.the use of correct or preferred terminology in
teaching young children. 11tiple meanings of terms as well as the importance
.of distinctibns between terms will be illustrated by examples from
classroom situations.: &
‘AURAL-ORAL EXPERTENCES  ° - ’ o
In keeping with the development of young children s general language

abilities, aural- oral experiences precede and receive greater emphasis .
than do reading-writing experiences in the early steges of the development.
of mathematical abilities. These listening-speaking‘experiences need

' extensive'attention. .

305 o
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.

It is important to note here se¥eral kinds of difffculties which
children may have in sural-oral leafning.

'

l. Some terms are completely new to children and if polysyllabic,
may not be heard or spoken correctly at the outset, -A goodrillus?iﬂhion'

L . Rl
S

‘of this is the term equivalent.

I

., . 2, Some expressions are relatively lengthy ones, and children
may attend to only part(s) of the expression rather than to the, whole
.expression. For instance, with the expression as many as, or as EEEX

" members as,,children often focus attention on Just, the ' 'many" or "many

members." *They do not even sense the word “as" .in the expressions.--

.

3. Some words souﬁd so much alike that children’ may fail to sense any
" distinction between them. Examples of this are the words’ 5ix and sixth,-
I
or-ray and array. The latter may also be confused with a ray. l‘,

Difficultles such as these- make 1t imperative that we give most .

. carefyl attention to speaking and to listeninZ experiences, o
/lﬁttti:g Language fatterns PR TR i SRR
wish to emphasize the "power of example' in developing acceptable o

mathematical language patterns of young children--i e., the power
of your example.

JUsed conrectly by the children, the terms

first mnst be used correctly by .the teacher. Consider thejfollowing.-

;.' . If terms are to: be

. \ A . . l_ _%_e_'t é . . . ! . v : .Set B

1
1

'

In this instance we wquld avoid saying; "Set A is larger than set B,"

Rather, we would say "Set A has more members than set B," We would avoid

asking, "Which set is larger?" Rather, we would ask, "Which set has
more members?"

. . w .
- ~
' .

O
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A child might say,_dSet A'is larger." Without making anissue .°
of this, we can accept what he ‘has sald but respond by gilving a‘preferred

language pattern: ,"Yes, Tommy, set A has more Eembers.

Aa'we!york to eatablish;preﬁerred language patterns it 1s important .
that we ourselves enuncilate as clearly and as distinctly as possible. This
is important at all times, but it is. particularly crucial when distinguishing

3'between words such as fifteen 'and fifty,, nineteen and ,ninety.

4
Failure to enunciate clearly and distinctly cdan lead to such xpressions

"quivun" for equivalent "

»

4

" Use of Primitive Language

i Primitive language of‘ten must precede the use of the technical
language of mathematics. For instance ’ ~
~.

o A rectangle is a quadrilateral whose sides determine four right angles

"(i.e., each pair of adJacent sides determines a right angle)‘ We obviously
cannot expect young children to .use such terminology from the outset of
their work with rectangles'

Consequently, withfyoung children we refer simply to the "corners"
of a rectangle rather than to the angles associated with a rectangle.
.Although children certainly could be taught to use the word "angle" from
vthe outset, it would be a meaningless or misunderstood term at that time.~‘
Concepts of angle, right angle, and angle associated with a rectangle ar@
much too sophisticated to be ased with understanding when young children t .
first work with Trectangles, Consequently, at first we have no reasQnable S

‘alternative but to use primitive terms such as corner. '5“
~e ' :
Premature use of technical mathematical languege, before such terms

and expressions -can be understood\by children, should be avoided. o

. . r‘,,

CONCEPTS, TERMS, ANDsﬂmoLs - IR
We must distinguish carefully between a, child's understanding of a

mathematical concept and his ability to use' ! mathematical terms or symbols
- assoclated with that concept.

HFirst consider the idea that the order in which_two whole numbers are
. added does not effect their sum, e, g. 3+ 5=8 and.'5 + 3 =8, or
3+ 5=5 + 3. We refer to this as the commutative property of addition

within the set of whole numbers, Children may show in various ways an

understanding of this idea, . For instance, with the two gsets of,dots b

‘_J.
313
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;However, they may be wholly ungware that they are dealing withva particular
‘{nstance ,of the commutative property of addition. An understanding of the
cbncept may exist. without knowledge of its technical name. Also,

. knowledge of the expression,’ commutative property of addition, in no way-

/indicates or guarantees that - children understand the concepta

Now consider the-idea of greater than as 1t applies. to whole numbers.
Children may know very well that. [ 1is greater than L, They may be
ble to demonstrate this fact by showing ‘that a set of 7 -things has
morg. members than a set of b things. These same children, however,

b may not be gble to write 7 > 4, ‘ nor understand what 7 > 4 means when
" they see it written. An understanding of the.concept may exist without
knowledge of symbolism associated with that concept.

.

. E Our ffrst‘concern is with the development of mathematical concepts
and understandings. Technical terhs and‘symbols are introduced and used

i only when 1t becomes advantageousrto do so., Frequently this comes much

later than the introduction of the concept itself.

.y

fPreciseness of Language

One characteristic of mathematical language is its\preciseness.
Consider our use of; the expression, is egua to (or, equals s).

\

When we state that "set A is equal to ‘'set B" (A = B),\ e meani :
.simply and precisely that "A" and "B" are names for ‘the dame set.
When we state that "3 44 =7" we mean that "3 + 4" gna "M R
are names for the same number; when.we state that "6 - 1 =5" we .
mean that "6 - 1" and "5" are names for the same number. Similarly,

. when we write "AC = CTA" we mean that "AC" - and "CA™  are nemes for

for the same line segment. lp//

In each of these instances, and throughout our' work, the expression
1s,equ ual: to 1s used to convey precisely the same meaning. We have asserted
that one thing--a set, a number, etc.,--has been named i) two ways. It

- 18 this precise meaning that we convey by the expression,f?s equal to
(or, egual ) " '

O
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Using the Correct or Preferred Peyp.

The precis¢ness of mathematical langhage makes it pbssible'for us to-
eliminate ambiguity by using correct or %referred terms and expressions.,_

Consider the statement,. "I am bigger than you are.™ Does this mean
that I am taller than you are? ‘Dées this mean that ‘I am heavier than
you are? The statement clearly is ambiguous in 1its presént form. Any one g
! of these statements would eliminate Jthis ambiguity — _ . -

"I am taller than you are,"

"I¥am heavier than you are," . P B AR

"I am taller and heavier than you are." S “r
Ira subsequent section on '\Some Important Distinctions, -we shall
FBee further illustrations ‘of the fact that using a preferred term or
expression-eliminates ambiguity. Children need to be helped to ‘choocse
those words that are unambiguous. One of the best ways of providing this B

help is by the example we set.

?

N . ¢ . [

Multiple Meéninés.of Terms

-

Many words in our language have more than one eaning.j We rely upon

the context in which such 8 word is used-to sug’. t the appropriate T

meaning in a particular situation.

. &
Some mathematical words or expressions also have more than one meaning

3 associated with them, ~ An excellent example of this is seen in connection—

with counting the members of a set,

, T one : . two three

»

For instance;”the'word "three" may convey'elther or both of these ideas:

it is a label -or name for one particular block, ‘block C; it also names the
number~property of the set whose members are blocks A B and C. There,
is a-place for each of  these interpretations-in the development of'

number concepts.

L.
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" Considér also a number line representdtion such as-this:

v . .
b . . . - '

. " X L ! Y .t S . - ! st

I

& & &~ & — < .

. ‘_. . . . . st ‘_ ! -
. Here we may interpret "3"w in. either\or both-, of‘two ways. as a designation

or lebel for point Y, or, as indicating the measure of line segment Xy

. 'for each of these interpretatiens in the development ﬁfthematical concepts.
‘-, ' v o _' . .' '. . .- "'. -"‘“_ ) . "

- . . . ‘.
* , e . e

BN, 4 S o . .
Some Important Distinctions ~ . ‘: . . Co .
X . PR 1

It is not upcommon i thematf/af’work to'distinguish between terms. .

(the(segment having X and X as its endpézhts) :z:in}/there is a place
At

.-
nv -

or: expressions that are often used as’ synenyms in " everyday language."

Consider these ilIustrations U u ¥ _ _Z'; o A
,‘\," : : .. “ y e i
1. In our work we distinguish between the expressions »18 egual to

and 1is e ivalent.to. We previously indicated that if the statement is
made, "Set A s e equal to set B," this: implies that' "A" and . "B" Care” .
1 names. for the same set, .A’different meaning is implied hqwever, by the -
!/rstat%ment ' "Set A is eguivalent to set B."} This latter statement impliies
that ,a pne- -to-cne correspondence exists between the mewbers of set £
and'the membars of set B.. For each member of ih ‘there 15 a member of
. B that can be put in corrésppndence with it, and for each member of B )
there is.a memb of A that\can be put in correspondence with’it. As we -
use these expre3:ions, is equal“td ‘and is eguivalent to, they are not
ynonymous. -The fact that- two sets which‘are equal are” also equivalent
' while fwo sets that gre equivalent may or may not be equal vill be o
‘discussed in Unit B. ' '

2.‘ In our:work we distinguish between\a number and & numeral.
wFor instance, the numbez e refer to as ifive™ 18 & property-common to a
+ particular class of sets (e.g, the property common to all sets that are
equivalent to the set of fingers, including the thumb o@ your right hand)
mhe numeral, Vs" 1§ a name for that number, The characﬁ;ristics of

numbers ang numeralS'are quite different,

I. N S o 316 L » . K .
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3. In our work we distinguish between a triangle and a triangular
region. For instance, the diagram at the left, below, illustrates a - l

triangle . (ABC)., It .is a union of the line segments AB, BC, and "CA.%%

4

The diagram at the right, above, illustrates a\triangular region It is
the union of friangle DEF and its interior ( represented ¥ the shaded
portion of the diagram). Clearly, triangle DEF 1s not the same thing

P N

"as the region bounded by triangle DEF.

> \ : \
Distinetions such as'these necessitate precisenéss in the use of mathe-

matical language and are important in clarifying certain concepts and

l1deas. It is not uncommon that such distinctions involve terms or

expressions used synonymously in everyday language ‘or that they reflect

distinctions not made in everyday language.

Different Language %terns for Different Things -

Some ideas which were closely associated with each other may require
v O
the user of different language patterns. Consider several ideas concerning
sets of physical objects and ideas concerning numbers associated with

such setsu ' ' - o ¢

-

Set A= (a dog, a monkey, .a pencil, a bottle)
. Set B = {a book, an orange, a trombone]. .

‘When speaking of thF sets themselves we say that set A has. more members
‘: than set B, or that set B has fewer members than set A, -When speaking
of the numbers associated with each of these sets however; wve say that

h3’1$ greater than 3, or that 3 1sgless than L. (4 53 or 3> W),

" If we join.sets A and B to show their union, it is appropriate
_to’state that "4 things and, 3- things are 7 things."  We may associate

A

with this statement-the following statement about numbers: _
) 317 '315 . "
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A

4 plus 3 equals' 7. (4 +3 ¢z ) ) L a .' E

Here we see a difference between }agg\fge patterns used with sets
of physical objects and languagd patterns used with numbers.

Using Familiar Meanings '

‘

Frequently we can use familiar meanings of words to clarify their
interpretation in a mathematical context. ‘One example of this is the

word meuber, as it oceurs in the expression, "member of a set."
A child often 1s familiar with the .fact that he' is a member of N

his family, or that he 1is a member of his scheol class. - Such instances
of "member" are quite appropriate to use 1n develdping an understanding

of a member of a set.  On other occasions, however, a famlliar meaning

off a {ord may not be helpful in developlng an understanding of at

word ag used in a mathematical context. We shall see’ an illustration
of this in the case of the word match, '

N

Special Meanings of Familiar Terms

In theilr mathematical work children will encounter some familiar
words that wmust be gilven a special meaning --a meaning that differs

to? some degree from one that applies in other contexts. Conslder, for

instance, the interpretation we attach to the words pair and match.

Frequently c‘¥ldren may be asked to pal r the members of two sets
(tn sg far as 1t is possible to do so) to determine whether or not the
two sets match (1.e. whether or not one set has exactly as many members

as the other set). For example:

Set A ' ' Set B . set €




\
In the illustration on the previous page we can pair each member of e
set A with & member of set B, we can'pair each member of set B with
a_mqmber of set A. Thus, sets A and B are matching sets (or equivalent
sets)s There are as many members of one set as there are members of the
other.' But sets B and C do not match (i e, they are not equivalent)
Although we can pailr each member of set C with a member of set B we
cannot pair each member of set B with a member Qbmget C (and use

each member of set .C only once).

4

Here we see that a specialymeaning is given to the words match and
‘matching as applied to sets. This meaning may differ from the way in
which children interpret these words in other _contexts. Similarly, pair -

and pairi » 88 applied to members of sets, convey particular meanings to us.

N

Language that Contradicts the Vernacular : ) "

We have seen that there are occasions when the mathematical interprefa—
tion of a familiar term may differ from one or another of its more general
meanings. There are other occasions vhen the mathematical interpretation’

of a-familiar term may even eontradict its common meaning.

Consider these three;representations.

EEEE of these represents a curve, The curve.at the left has A and B '

as its endpoints. The curve in the middle has c fnd D as its endpointe._
The representation at the right, witha E and F a;‘endpoints, qualifies
mathematically as a curve despite the fact that it is "straight." Our

use of the term curve does not imply the idea of "not straight."

Here we have a goad {jllustration of & term whose .mathematical
: interpretation‘actually qggtradicts its common meaning under- certain

“conditions. ‘ _ e
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" 7. Thus, 1;)15 crucial that children-be ablé to distinguish between

‘between the two factors, we may refer to 3  as the "first factor and

Non-Mathematical Terms ' .}é% . R

In teaching mathematical ldeas to young children, we must give i
careful attention to their understanding of words and expressi ns
that are not mathematical but, which are relevant to their le rniné
of mathematics. Consider, forlinstance, several .ideas associ ted

with a number line.
/ ' o . ]

3v{+567.8'5

®
[ ]
®
L ]

=
n ¢~

In relation to this number line, the idea of "greater than" s associated

with "to the‘right of," and “the idea of "less than" is associated with

‘Mo the left of." Specifically, 8 1is greater than 5, and the point

labeled 8 1is to the right of the point labeled 5. Also, 3 is less
then -7, and the point labeled 3 is to the. left of the point labeled

the non-matiematical terms right and left in order to interpret the

mathematical relations of greater'than and less than in using the
"number, line.' Young children often have difficulty with the right-left
distinction, but it must be mastered if certain mathematical ldeas are

to be undeFstood. Therefore, we must give attention to those non-mathe-

matical terms that are essential to the development of mathematical conceptse;

Unnecessary Terms

Contemporary approaches to the teaching and learning of mathematicy
make unnecessery certain terms that im the past were & familiar part of

elementary school arithmetic vocabulary. Good illustrations of this are

the terms minuend, subtrahend multipliér, and m ultiplicand.

« Consider these number sentences: 3 + 5 =8 and 8 ~-5=3., In

each instance 3 and. 5 . are addends, and 8 1is their. sum, It is not

necessary to use one set of terms with the addition example and another

T

: |

- Also congider the humber sentence, 3% 5 =15, In this instance

set of terms with 'the subtraction example.

3. and‘ 5 are factors whose product is 15. If we wish®to distinguls

to 5 as the "second factor." There is no need ‘for the terms multi lier

and multiplicand.

» . y

J ,
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Contemporary approaches to the. teaching and learning of mathematics

. have introduced aome nevw terms; on the other hand,'contemporary approaches
to the teaching and’ learning-of mathematics have made unnecessary certain
terms that vere used in the past, but frequently not understood‘ . s

”'. T . ’ ' - ’ };
. CORCLUDING STATEMENT o . : -

Mathematics fs a language. The teaching and learning of mathematics
%8 therefore, the teaching and learning of a language, ' )

The language of” mathematics has its unique concepts, terminology,
and symbolism. In this appendix‘we have attemped to highlight some of
‘the elements that" appear to be particularly crucial for culturally .
diaadvantaged children as they learn to use this language effectively. o

If we were to single out any one thing that is most important in
this connection, it would be the power of the teacher's own example.
Chlldren's learning of mathematics as a language- will be advanced in *
direct relation to the strength of the language model that you?\ag_their
teacher, set. for them. It is our hope that the inservice experiences '

in this course will increase the strength of that model. -
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Yoo : ' APPENDIX -C

NUMBER CONCEPTS OF DISADVANTAGED CHILDREN

nsscmmong'_@sm'b
Observation classes.at the kindergarten %nd first grade levels were
established for the 1964-65 school year in Boston, Chicago, Detroit,

Miami,’ Oa&land and Washington, D. C. in areag described as economically
and culturally disadvantaged ‘

.
.

o
Thi@'study we.s based on the idea that thfre is a diffeJential in o

‘ experiences prior to school entrance between middle-class an& lower-class

" ehildren. Studies from a number of sources suggest that children from more

. advantaged homes tend to have -had experiences! T greater variety'in an .-.
~ organized family setting. By the time these c ildren resach school-age,
situation, to utilize -

» verbal skills, and to deal with abstract condepts.

" they appear to be better able to work in a gf’

One aim of the study was to gather info tion ' on the stage of
development of certain‘concepts_relevant to the learning of mathematics'
in these children at the beginning of the school year and to study,thelr
growth during the Year; Ancther ai. s to dlscover 'what mathematical
concepts caused the children diffic y 50 that a more effective program
.could be developed for them and to pro ide information to help develop
materials for teachers emphasizing techniques for providing disadvantaged

.children with experiences necesSary to. make the program'morg effective.

The procedures adopted'for‘gathering the information were varied and
included individual and'small group testing of the pupils, weekly reportirg
by the teachers, observations of the classrooms, and four conferences of

the participating teachers.

TESTING. - -
Individual tests were administered to ‘the pupils in October, January,

and May. A pencil and paper group test was given in June ‘to each class.

The class was split into several small groups to make it easier. to administer

the group test. , S , iR /
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The table below shows what assessments wez:‘.e made and at which testing

session for both the kindergetten and first grade pupils.

! (]

- 8chedule of Assessments:

Individua% Tests by Grade

- . _ " Initial Mid-Year Final
Assessments Made- K lst. . K 1st . K 1 1lst
Object Recognition X X
Photograph Recognition X '
Drawing Recognition . X i
L _Vocabul{ary . ' ' o X. X
Visual Memory-Objects . x | X : ‘ X X
Visual Memo'ry-Picture‘s ' ' ' o . X - X
Color Inventory-Matching » X X ' _
= | color Inventory—Néming ’ oo X x | _i X . X
| -Color Inven_torjf-Identifyjﬂg X 1 x _ 1 x X
Gepmetric Shapes-Matching " BE - X X o
Geometric Shapes-Naming . : X X XYl X
‘ Geometric Shapes-Identifying ‘ ’ X X X X
Pairing - : X -
Equivalent Sets - IR _ ' X X i
v ‘Coulmping Buttons > X, .«._x . X X x |
Counting Sets . - x |'x . x| x
Rote Cardinal Counting - - X | X : : X.. X
’ Rote Cardinal Counting by Tens - . . X
1 Tdentifying Number Symbols X x | | x § x| x
\Néming Number Symbols ' B X -
Marking Number Symbols . -~ = .} X X - i X X
.| Place Value-Naming ' X
Pié.ce Value-Forming ) C ‘ X
‘ Ordinal Number X \}l(
Ordering X X X : .X. '
Classifying : X X X X
.| Response to Verbal Directions { X X X | X X X
Attention to. Tasks ' 1 X VX X X X x'.‘,

.

In the space available it is not possible to include all the nesults from
each session. An analysis of the results is contained in a separate report '
of the project. "A selection has been made of those results that highlight

certain points in the learning of mathenatical concepts of these disadvantaged
324
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children. The specific areas included are object recognition; color,

_ geometric shapes, rational counting'and the recognition and writing of‘
number symbols. These are typical of the level and range of abilities _
found in all the_classes tested and boint out.clearly some of the prohlems
‘that the teachers of disadvantaged childrén-encounter. .

OBJECT RECOGNITION -

In this section, the pupil's ability to recognize obJects and to
recognize pictorial representations of such objects that are used in
‘the curriculum materials, was measured The child, was . shown an obJect;
axdrawing of an object, and a photograph of an object and asked, "What

is this?" The number of items and the approx1mate fiean score for each

of these assessments were as follows: B
_ Agsessment . Number of Items Aggroximate Mean
» Object’ recognition 23 : 20 .
.¢‘ Photograph recognition 10 ' 9 -
. Drawing recognition . -7 _ 6

‘ . oyt
%

Little difference was found between the'classes in the disadvantaged areas’
¥ . .

and classes in middle-class areas. . .
o :

Objects causing difficulty were different fruit, coins, and string.
From, 10- 20% of the puplls: were unable to name'orange; banana . 10% ;
peany. - 10% ;. nickel 20- 30% dime. 20 »% ; and string 20- MO%
Although many could not name string, they ‘could indicate what function

it served. = v . - . ' . : [ ]

The results indicate that most puplls are able to name and identify
the obJects suggested in the text materials for use in the clagsroom,

* Do not infer from these results,”however that the-verbal skills
and experiences of the two groups are the same. It has already been
polnted out that children from disadvantaged groups will lack many of
the experiences which facilitate school learning.

COLOR AND GEOMETRY - )

-
Children from all backgrounds are able to match the basic colors, ‘but
their ability,to name these colors and to select a color when given its
name sre very variable at the beginning of kindergarten. Children from
_ middle-class areas are fairly broficient.on these two tasks when entering
,first'grade'but chiidren from disadvantaged areas are not. Typicel results )

for classes in the same city were: . !
325 o
o
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- ' KINDERGARTEN  FIRST GRADE..

Number of Items E c E C

Matehing 6 5k 51 56 60
~ Naming * - g 49 578 ° 6.1 6.9
g Identifying

" 6 R U B 5.3 6.0

[E denotes experimental classes (disadvantaged area) and,

"C .denotes comparison classes (middle class).)

'_The ..results from this and othe{:nventories point out the need for
“teachers to be aware of the three-fold nature of many of the tasks that
~ children must leam at these grade levels. [ The child has to be ahle 1o
match {wo obJects, €.8¢, the name "three" to the numeral "3". and, when
given a number name, to be able to sglect the correct number of objJects.
The assessments showed generally that matching was  the easiest, then
identifying,\ and naming the most difficult, . However, by continually
providing the children with experiences in the three phases, considerable .
improvement can be seen. The results in geometry: for the same first .

grade classes from the mid-year to final inventories show this.
' . . . e ’
GEOMETRIC SHAPES - CORRECT RESPONSES

o .
First Grade
. Mid-Year Final
| p ¢ B¢
-‘Matc'hing o -

Circle” . - . 96% 100% - - - -
Square _ '96% - 96% _ ‘ -- -
Triangle ' - 96% S 2006 - -
"Rectangle I *96% 100% - -

Mean - _ 3.8 - ‘h.'(') - - - -
'Naming ) . ‘ .

"‘Square' : 39“17\ 93% 1% . 93%
Triangle - 57% . 93% . 96% 9%
Rectangle < 0% & % - 50% 64 %
Circle - 50%  81% - 73%. 89% .

Mean ro2.2 S 25 . 3.3 "3.1
326
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.. Mid-Year . Final"

) , ‘ N B o c E. - C '
| .Identifying - - o » 4 )
. © Triangle 89% . 93% 1009 89% “
.Rectangle 144 85% ; 7% 89%l
Circle ° 96%  96% - .92%  100%
| Square e 939 &% 96%
A rMean 5 317 3.2 . 3.8 3.8

This table ahowa‘the gaina that puplls in the experimental first
grade classes were able tofmake in naming and identifying the geometric
shapes. In both of these tasks, the means: for the experimental group

* were lower than the means for ‘the comparison classes in the midyear
. 'mesessment.. Fof the final inventofies, the mean for the. expefimental
:clagses in these tasks were at lgast as great as those for the comparison
l group. These gains may be seen also: in_the table below,which shows the
frequency'distribution of correct responses for the 5ame classes in naming
and identifying the geometric shape. It should be noted that although
4the pupils improved there remained more variability within the '

experimental class. o
. ' . . , . “
NAMING AND IDENTIFYING GEOMETRIC SHAPES

P

Number of Tasks ,Naming Identifying

Successfully Compreted Mid-Year Final Mid-Year . Final
- E. C B C-E ..C E G

: ‘ 0 : 6. . 000 O0~1 2 0 D
| 1 . 6 0 3 0.1 -0 0 0

2" 13 3-8 8 2 L4 p

i 3 3 9.11 *5 15 1., 4 2.

’ - L % 9 15 3 23 18. 2k -

COUNTING MEMBERS OF A GIVEN SET L : Lo

"

Several different tasks were used to measure the/péggl' ability to’
. . '
count given sets of obJects and to select glVEH numbers of objects Other
‘number tasks such as rote counting were also 1ncluded in the assessments‘

There 1s'{ittle evidence to suggest however that a child who can count by
rote w1ll necessarily be able to count the members of .a set, " S
'»‘v‘l
One task ‘pupils were aﬂked to d04WQs to count ocut 3 buttons,; then
5 buttons, 4 buttons, 6 buttons, 8 buttens, 7 buttons, and- 9

buttons. Initially, the average kindergarten pupil’ could complete

<

324
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successfully only.two or three'of these tasks. At the end of the school
«.year, this, pupil could manage about six tasks correctly. Similar
impromement was found with- first grade pupils from the initial- inventory
(five t0 six of these tasks correct) to mid-year when the average was
almost seven correct. The}greatest difference found between thé,experi— -

mental and control. classes. was the.greater variability among students

in. the experimental classes. : : ~ ‘N ‘.., ".

CFOUNTING BUTTONS

Number of tasks R Kindergarten' ) First Grade

duccessfuliy completed_ Initial Final Initial Mid-Year
E . E C E ¢ E ¢ |
0 2 3 o0 0 270 2 0 .
1 12 3 0 -3 0o 0o 1 - 0 i
T2 DT | o 0o 2 0 o0 1
3 5 5. 2 0. 1..0 o0 0
4 2 6 .1 o 2 20 0
5. L e 3 2 1. 0 "0 5 -1 1 :
, 6N 1 1 2. 3- 60 Yy
5T 1 6 ' 20 . 17 16 ‘-21 20 ol

The'variabillty in level of performance between pupils from dis-
advantaged areas ‘was not confined to number tasks but was also eVident
'iﬂin other -tasks that they were: required to do. For example, thef}gbié .
below shows the frequency distrlbution of correct Tesponses on color
naming for two- classes of first gradenchildren at the end of the year.
The number of tasks performed Successfully by the first graders in the_
comparison group was concentrated near 7, whereas there was a greater
spread in the experlmental group. ; - This is reflected in te. standard

. ..
: .deviatlon of 0.7 for the experlmental group and of O 1 for ‘the "
comparison group. P . y : !
. NAMING COLORS® | ‘ . H
v : ) First Grade "'M.._' T N _. .
Number Correct =~ < - ‘Experimental T e Cogparison
; . . , o . ’ . .. - | 1-5 ' - . -““o .
i t]_l' . [ ..._‘"_ ‘,I' O
‘-}"" N . " N o
. ‘ . o
o 1
. 5 FAG
,; ’~ K - N A
.. S ! RO
& 26°
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' In recognition (1deqtifying) of number symbols, the standard deviations-u&ki- Sy

,

& '
- | .
Rﬂcocmnou AND WRITING NUMEER SYMBOLS | S
First grade teachers often assume that most of their pupils can
_recognize, name, and also write many of the numerals when-they start
first grade. However, children in disadvantaged areas will generally ‘
not. be*able to do any of these tasks well, as the following two tables show.
" RECOGNITION AND WRITING NUMBER SYMBOLS - PERCENT CORRECT ‘
Numeral f. ‘ Recogn;tion Write Y
7 . E o ‘B¢ |
o 19 ¢ 200 e eme R
N 83 . 100 8 79 ] .
S ' 76 100 -0 2% 100 v |
5 . T 16 100 ¢ el a0 F T
6, .. 6 100 5“3l sy -
7 ' .. 69 aoo- 68
L8 L& 100 45" 89 o
A s 100 - - T )

In identifying these number symbols, the mean’percent for'the experimental
group was ?5 and for the comparison group, 100. In writing the number
symbols, the mean percent was 29 for the experimental as against 86 for

..the comparison. Here again, there was greater variability in the experi-

mental group as can bé noted-in the: table for the frequency disﬁribntion.

are 2.9 er the experimental group and O for the comparison group . S ?'
" In wr&ting number symbols, “the standard deviations are .2.0 for the . _— ﬁh;ﬁ
:.experimental and 1.3 for the comparison._ . ' . .
' - FREQUENCY. DISTRIBUTION ' R
Number Correct N Recognitiog e T Write E:il‘w
¢ 2 - 10 -- iﬁﬁi-
. 3 o 3 s L “C:q%n:p_e
. e AT . - i
., e N
TR Tl 2 2
.5 o 2 4
6 ’ 3 3
Y 7 - 3 - 0 15
.8 ’ 'i6f‘ 2., - -
. C 329’
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Although the recognitmn and writing of numerals are NO'I‘ fumdaﬁxental L
“to the understanding of mathematical concepts, these are skills essential‘
- for communicating mathematical ideas and concepts, and the ohild whob"
lacks them will be handicapped for future learning. ﬁ={, v e

o, LA E

-~

K

~ALL the pupils will need additional practice in writing numerals, .
but thie practice should not be given- until they have an understanding of
‘the elementary concepts of number. It cannot be assumed that if children
can recognize the numerals they can write them. This can be seen in-the
difference between the means mentioned above.: The children will neeakau

" great ‘deal”of careful practice which can be given independently of the ;f,A
:‘mathematics lesSon. : f’ - . r~ :‘.“ T “ii ?ﬁ?A \;ﬁ

In the: early stages an. adhesive number line attached to pupils' _z ?l'
desks 18 a very useful aid asfthey can use it whenever they need it

Even with number lines on their desks there may: be some pupils who will *-"ﬁi
-.not be able to form the: numerals correctly, e.g.; ", will Qe made ‘as”
- '1" and 9"  as "c)f_ ‘anld the pupils will need additional assistance.;_:;ﬁp

i . Cae

GENERAL DISCUSSION. "f* T
R

f\

_; :4”0ne fact that clearlyvemerges from the assessments made this year "'flf
s that, 4t was difficult.to predict from ghe initidl’ ‘test what D
development and progress a pupil will meke during the year. Some pupils -
.whose scores on the initlal assessment were low, progressed very rapidly,

o others did not. All pupils did make progress but at variable_rates. This

i one of the major problems that confronts the teachar of,disadvantaged

children. The range qﬁ%abilities in these classes Eﬁ} ch wider than
a

found in. classes of midd1é&- class children, as has already been noted‘ ‘
S b [\. ‘ " '.iv."

A technique which the teachers found useful thislyear was to pbserve
carefully three selected pupils each day. Qhese syftematic observations
gave the teacher valuable information aboum the str@ng%Js, weaknesses T
and difficulties of” each pup

level of perf: rmance.
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the pupils being able to use blocks or other manipulative material

an 1nd1v1dual.

L As yet there are\nO'adequate materials nor work sheets 'that will keep
all 'of the pupils fully and profitably engaged at.all times,‘ This is a

problem and challenge that eachateacher must face.' Hovever, a great deal

can be done and a great deal more. can}be learned if each teacher tries

‘a variety of approaches and reports her successes.and failures. _Yg"“v
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: They are all members of the cat family.

. o 4 , . . .
— - . : g SESE F SR
’ . .. .
. . . i
. ANSWERS TO EXERCISES . gl
{Wednesday}, . ' -. B

[pitcher, catcher, first base, second base, shortstop, third base, (::
left field, center field, right field] 4 ’

(March, April, May, June, July] S

() or ¢ K

- Answers will vary. Example [5, 6, 7]l '\

{Tokyo, London} - ' ’ .
[red, orange yellow, green, blue, indigo violet) g

(49th and 50th states of U, S. A}
{(things little boys are made of) ' .

Not equal. 17 and 71 are names for different numbers.

Equal. The sets are the same. Order makes no difference,

even though it would be mere natural ‘to write [b u, n, 4,1, el}.

Equal. The same elements are listed; order is irrelevanf\ .
Nof equal. {zero) has a single member, as opposed to* whieh
hag none. {peacocks native to the North.Pole} 'is the y set.
Not equal‘ The members are:different‘ '

~
'

Not equal. These two sets each have single members but they dre

"

~-not the same member ﬁéAré" and "era" are not namds for the

RN
same thing Ly

Equal. Remem%er “Elements are not.listed more than once in a get.’

b

False. 3 is a member ot (1, 2, 3). The braces must be used
gember .

to indicate set. A correct statement would be: "(3)] is a
’ ‘

subset of (1, 2, 3}". & ~ . ¢ﬁf . ftsf
True. (ego)} is a subset because all of its members are’ gl%b *"”i l;
.mékbers of {ego, Je, I}, K , "m; h;;hOva
o - .
. \
. v
o ,
329 g



1, I:'.ao

3.
4,
5e

ERIC

Aruitoxt provided by Eic:

b,

z, X; Y in increasing order. -
Y, X, Z fn decreasing order,

Mary 1s taller than Andrea. o n

True,

"False.

[rose tulip, dandelion}

',‘ : ; : 0
Any set equals itself, and every set is a subset of itself.
There are birds that are not hens, a. rooster to name one,

It would be correct to say {all hens in. the world} is a.subset o
of {all birds in the world]. ﬁi '

or any subset of this, - < .

[bee beetle] or any of its subsets.

.

[?]. Some may consider [beetle] but the spelling is different.i'
A ‘'has fewer members than B <o .
C={ cow,;j' treey blimp] ' b

= (dirigible, trunk; k)

Ansvers may vary.

Q hes more members. ‘than P, ' ’ ' .

-

‘:jj;7To show the 1-1 correspondence;

b,

Ce

d,

.and Cs

) méaﬁt by "functioning" brains may enter into considenation.. v

G =

A

Onlyo

the natural pairing would
associate each person and his brain. The question 5% what'is {
Depending on the answer to this, it'may be that there is no -
1-1 correspondence, n. / .
Some people have social
There
Corporations file

This is not:nécessarily one-to- one,
security numbers and don*t file income tax returns.
are many Joint income tax returns filed,
returns but have no social security number, ' It is conceivable
that these two sets might be equ1Valent although the natural

pairing would not show it.

E 1is the empty set and so iéﬁ'F;?

Therefore,: E and ¥ are equal,

;.

Every set matches itself




O
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6 A is equivalent to B..

flo

-, v
The members of A and B are in 141 correspondence. The members

. of A can be paired with those of B with none left over.

\

 CHAPTER 3
ges b by 1 co 1 - z

47 2; the set 1s (4} e). S C L -

2 MR =h KB =3 Mo -0

3e

ul

Se

es 1; (the vowels in "bureau") ='(u, e, a). However, this set
1s (the number of vowels in "bureau") which is the single.
member set [3] vhose number property is 1. '

£, 0; there are no counting numbers less than one, 80. this 1s

the empty set.

N(D) £3 .
The relationships are: 3 = 3 0=0 L=k
b>3 3¢ ‘
bso  och
3>0  0<3 o

Some statements can be combined to’ form two others:

0<3<k and~hk>350,-

Take a set of wide and narrow obJjects of.the same kind. Put

the wide ones in a set -by themselves and reject the narrow ones,
Repeat until the 'idea gets across, refining distinctions to
indicate the relativity of "wide" and "narrow" to some standard.
‘This is an instance of specifying sets according to the property
you wish to convey. ' N .

Answers mé& vary. The elements'maycpe ordered elpnabetically; they
mﬁy<%e ordered according to the evolutionary development of man:
Lamoeba, fish, 1lizard, ape, man}. | h

(1, 2, 3, 4 5, 6, 7, 8, 9,,10, 11}, The number is 11, ft is
nov written.as a standard subset of the counting numbers whose
number is determined by the last member of the set, .

a. Finite, 10

" b. Infinite

S

¢. Infinite ,
d, Finite; 15, (Recall that "natural numbers" 1s another name

for "counting numbers",
331 \
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7. a. -Ordinal; ®ne chapter; not the quantity of three éhapters,

1s referred to, namely, the EEEEE chapter. ‘ '

b. Cardinal; 50 states are mentioned, not the one which '
‘is*riftieth. o LT -

Ce AOrdinalj' 1066 suggests one year, not. one thousand siity-six
years. It happens to be the one-thousand sixty-sixth year in

the set of years A.‘D. . » '

I

CHAPTER b
v 1. a AUB=(1,2 3,4 5]
' AN B=(1,3, 5]
b. If B 1is a subset of A, then Al B
c. If B is a subset of A, 'then A N s

B

2, The empty set 1s a subset of any set so 1if A is a set,
AUC(C)=Aanda AN{()=1() ’

'»

3. The cake-mixing operatio‘n is not commutative.

"4, a, Assaciative. - , ; ‘ ' ' l
b. Not associative; alﬁhgugh the result may be that all items
would be consumed, fﬁ is likely that mixing mustard with
coffee may result i% abandoning the meal,. .

¢. Associative, - .
. -
!

d. Not associative; putting fire with water first, the final
mixture will not ignlte. » V

5. The intefsection consists of common elements of both sets; the
1 4

union contains all members of both sets.

L

JCHAPTER}E

"1, Five vertices.

- -
'

2. AB 1is the segment with A and B as endpoints, 28 is the ray
with A as endpoint and B a point in the ray, B is the line

containing the points A and B.

~

R

O
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Infinitely many different.lines‘may contain a certain point; only

one lihe contains m certain pair of points.

a, b, and ¢ are all true.

Any segment contains the endpoints. If FQ is divided at say, R,“.

the division point either belonés to the segment containing: P or
" %o the segment containing Q. If R belongs to both, then ‘
PR U RQ=PQ but PR and RQ are not disjoint. If R belongs

to.

PR, then the set of points in -RQ without, R is not a segmept.

Crucial to the argument is that fon points™ line, there is ne

very next polnt; so if

belongs to fﬁ, there is no next point

.8 to specify B8Q so thag PR U Sq = PQ.

a.

&. The initial point and th

The point associated w1th the larger number is to the right

8.

In thls closed curve, eadh point is hetween the other two; there

is no one point that is Petween the others.

No, as noted in a. abfove.

inal point.’

A closed curve, as for example, formed by the shore line and a
ring of blockadihg armada. .
A closed surface, as for example, determined by effective range
of antiaircraft defense network. . X . ’

A closed surface with the sea surface as one of the boundaries

-

Grades '1,.2, 3. Closed curves is a .section title in ‘Book 1
(Chapter v-2), Book 2 (rChapter I11 h) and Book 3. ,_.'___‘@
(Chapter I- 3) i.pi-: vt i

Curves as a. basic concept for closed curyes is & top1

Book K (Chapter II) Topics using ‘the: basmc:concepts of

L :,- o

closed curves are, Tor example, polygons, Book 1 (Chapter v-3);
triangles, Bock 2 (Chapter III-5); Book '3 (Chapter 1-3,I-5,III-4).



CHAPTER-s

Ir 1. aa > d. > ‘ : - e
b < - e = - =
h c. < ’ S
, ; .
2. a. 8 d. -39 <
b. 20 ‘ e. 65
e. 38 £f. 156 -
I3 '(r
) ' CHAPTER T )
1. . a. :(' : N d. 60
b, 17 - - e. 60 ,
- ) - c. 23 : - f.. 23 S - i :
2. ‘cand f; d and e; because additlon of whole numbers is commitative
3.  a. ZIdentity Property \ ,
'b. Associative Property s ) o B 4
c. Commutative Property -
- .- . * . \
L, a. 7 ‘ ‘ c. 6 ‘
b. 23 , . d. ko1
I
5. a. Commutative
'+ b. Identity
c. - Associative B
"d. Commutative 0
e. Identity .
f. Commutative
CHAPTER 8 . .

s

. 1000 addends

1. 1000x3=3+3+3+3%...+3=3000. This expresses 1000 X 3.
By the comﬁutativé'probefty.bf'multiplication, 1000 X 3 = 3 X 1000,
amd 3 X 1000 = 1000 + 1000 + 1000 = 3000.

2.  a. kx5 =120 . b 3x2=6;
c. 2xh=8; .Y c. 3%X3=9

-~ B

w

34
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" red '/ 'orange yellow green blue
lred N 51’&!188 _yéllow "Jgrleen blue
red  Kred/'~|.reéd red | red ‘red |
red* orange ellow\| green | blue
yellow | yellow ellow/| yellow | yellow
red orange | yellow | green |/%® '
blue blhe

blue blue

B

£labed .
skirt T ,-\>\

-, stralght skirtféolors

skirt

a. n = 325

b. yes';

The star pattern does not gives 5 ‘dis

in each set.

’

C.

yes

.

"

15 possible. results.

car must Be two-toned, there are.only 12. choices.
A

nf sets with L members
- L

4 .
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RYEE

. PARRY
£ . er :'.m‘

8. 20 x (28 +'11 + 11)'= (20 x 28) +-{R0 x 11) + (20 x 11)
= 560 + 220 + 220 ' S

560 + bko '

1000:

il-

BN

or 20 x (28 + 11 + 11)

20 % (39 + il) .
20 x (50) '
1000

9. a (5x2) x(kx3)x1l=10x12=120
b, (125 x 8) X7 X 3) = 1000 X 2L = 21,000
c. (250 X 4) x (1k x 2) = 1000 x 28 -= 28,000

10. .‘ Commutativ_e property undez: multiplication. - ' -
1l 8 3x(B+3)=(3xk)+(3x3)
© b, 2x(k+5)=(2xk)+(2x5) '
c. 13 X (16 +14) = (13 x 16) + (13 x 4)
d(exT) +(3x7) =(2x3) x7

- C
1. C=[O,/,Q,¢]
 Joining C to B yields BUC=4.
_2,‘Ar}3.=[O,D,V‘, E,.-O,Q} .

36

."‘ 1!'4 ‘B=[ A, @s.ms @:0:]

?;}'..:E(B) =5

v
"o
LR, .
© e .'J'.
. , ‘
LA W 2 ~
.. ‘%":“'-l
-~ u'-ﬂ-" .
A'I




0123 k56 7.89 10

s---3—-l
0123h5678910
«—0—0—0—0—.—0—0—0—0—0—’

e 73—

re— 6 . ‘

‘012355375910'(

F—0 .6
re— 33—

.o 6 o;‘
‘ 0123 k567809 10
“ h-\6;3—-0\

~_
\\ 9

Sve 6-31;

e 9- (6-3) —w

7. Subtracting 7 from the sum."

Adding 8 to the difference,

8. .Let A = O,:A,D }. and B=(a,b, c).
Then.AUB=[_O_ ’ A: D.,a,b_,'c]-
and (AUB)-B=(Q , A,O0)=a.r"

If A and B are not disjoint, the sets (A\JB) ~ B and A
not equal. Seesexample.

{a,b,c:, s e} ; B:[a, » 85 3} .
: )
AUB [a:,‘:c:d:Q S;J]
(ALJB) -B=(b,c, e}, which 18 a new set.

337 .

341

’
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o CHAPTER 10

1.  a. n=20+5;nekh 7 de no= T2+ 93n=2=8
b.p=‘28+l+;p=7- .e'.n=61++8;n=8.
c. n=6 +1 ;n=6 : #, .

it

No divisiop sentence cen ‘be written. Division by © is ¥

T

undefined. q X 0 = O 1is true for any number g. .
2. a. Rectangular array with 7 rows and 6 colums.

Disjoint subsets, six with seven members each.

TR

Either interpretation is equally valid. There may be slight'
preference ‘in thinking of.disjoint subsets in b, singe subset's '
of seven 'meml.le'rs each ar@épecified' in the packaging. -
3. 'The'number 59 1is a prime number, so no rectangular arrays ‘can
be formed other than one with a single row or a single colum.
Si)d‘,y members allows many rec{:’angular' formations since its factors
are 1, 2, 3, 4, 5, 6, 10 12, 15, 20, 30, 60. '
L, No. 15+ 5 #5.415. In fact, 5+ 15 has no‘_mearﬁng in the set

of whole numbers..

2x',6 or .3$<l+‘

5. a.
b. 2%X18; 3rXx 12; bX9; or 6X6 -
.- Prime ' ' -
d. Prime .
e. 2xX 4 . T
f. Prime
8- 5.X 7
h. Prime. ’ ’
"1, 3% 13 : ‘
3. 2x2l 33%x1h; or 6XT°
Jk. 2X%13 )
1.  Prime
m. ' 2.>< 41 ™
. 4 1.
n. 5X19 ‘
. o 4
. ~
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~or 246

139
15
T0

343

300 + 80

+
+
+ 1
+

6

9,
5 .
5 =38

A
8. 2% 2 X &8 Y.
ec. '3IX 3IXT o
d. 2X3.%3%5
. 2X2X2X2X3X3
2x 2x3R11 )
‘a. 1 R ,
1
ci 2 o
d. 3.0
f. 4 '
g 3 i
h. 8 .~
_ GHAPTER 11 .
If A=C, then ZﬁlJ'jf is a point; if Aﬁ% g ’then the union -
is a segment > ‘ﬁ
is the segment with A and B as endpointsi .
is the ray with A  as endpoint and B a point in the ray,
is the line containing the points A and B. 8
: LY
- LPQR; [Pas; [PQT; [RQS; [RaT; /saf.
a, 4, ¢
a, ¢, d ' —.
CHAPTER 12 )
I ' . , o
“a. 2 hundreds + 4 tens + 6 ones or 200 + 40
1 hundred + 3 tens + 9 ones 100 + 30
3 hundreds + 7 tens + 15 ones .300 + .70
3 hundreds + 8 tens ¥ 5 ones = 385
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b, ° 7 huhdreds + 7 tens + 7 ones  or
. -9 hundreds *+..6 tens + 4 ones :
" 16 hundreds +/13 tens + 11 ones .o
-17 hundreds’# . Yitens + 1 ones =174l
T Cor ~ TTT.- L
' 964 ot
T
130 .o
1600 %
c.v "W hundreds -+ 8 tens + 6 ones
. - _ .7 _7 hundreds + 6 tens + 6 ones
-'o.i‘iif ‘11 hundreds + 14 tens + 12 ones o
%? hundreds + 5 tens + 2 ones = 1252
, or h26
S 766 + . .
B - o
Wl e 140 N e
..‘,_ ‘.‘1.,“ . Eo—
L, lasa
~+T hundreds’. 3 -l
.9 hundredst#:2.tens + 6 ones
16 hundreds .+.9 tehs + 10 ‘ones
17 hundreds + O'tens + O ones. = 1700
. ¥ .
) or  TTh4
Lo 926
T .
9 s
‘ 1600
1700

700 A T0+ .7

. 90G "+ 60 + k4

.. 7600 +.130 + 1L

1700.+ ho+ 1 =

or. koo + 807% 6.

700 + 60 + -6

Y

i 700 + 70
900 + 20

*" 600 + 90
- 1700 +- O

10

o_; 1700

34k

’ A ) e
2. &, 7 hundreds + 6 tens & ones = 6 hundreds + 15 tens + 1% ones .
‘ 1 hundred + 9 tens + 9 ones = 1 hundred + 9 tens + 9 ones :
N - 5 hundreds + 6 tens + 5 ones = 565
= 1 : )
or 700 + 60 + 4 = 600 + 150 + 1k
100 + 90 + 9 = 100 +. 90 + 9 : >
- "500 + 60.+ 5 = 565
- . v

1100 + 140 + 12 = 12502




. R . . .
: ﬁ‘ b.” b hundreds + O tens + 2 ones- = 3 hundreds + 9 tens + 12’ ones
‘ 1 hundred + 3 tens +.8 ones =1 hundred .+ 3 tens + B ones R
- L e hundreds + 6 tens + & ones = 264
w0 or hOO+ 0+ 2= 3oo»+ 90 f‘le B
EEEE 100 + 30 + 8 =100 +30 '+ '8 7 :

. ‘_@66*1366“TTE =.é%h

v . ¢ f P

coe T° hundreds +1 ten +0 one = 6 hunareds + 10 tens + 10 ones ,
2 hundreds + 8 tens + 7 ones:= 2'hundreds + 8 tens 4 7 ones.’ .
, .,;_'_:y Tu ndreds + 2 tens + 3 oned h23
Co T N L . .N_ B
or. 700 + 10 + 0 = 600 + 100 + 10
200 + 80 + 7'= 200.+ - 80 4" T o
. ) . W00 +726 +7 3. h23 .
0 "L Do '-;-,M'j . o ] et - . N
* " d. 8 hundreds + 0 tens + O ones = VT hundreds + 9 tens + 10 ones" S
+ 7. 3 hundreds + 9 tens + 6 ones = 3 hundr@ds™ 9 teng £ 6 ones =
e h hundreds +‘3—tens + L ones, = Lok
lior 80040 ’mo+-9o+1oﬁ _ ',f¢y IR SR

- +0 =
oMt 2300 490+ 6 =300 + 90 + 6
S : hoo +10.+ AH hoh

+ 900)
”+§9Q W 10 ";
. 1600 '+ 1007
L l?OQf,nf“=ﬁiﬂ E

1700 +90 +10) - (3oo'+h90 +6)
700~ 300) + (90 - 90)"+" 1045 6)" -

Q0+ b
. . ' = lF'OIb -
. . ' « iR}
7 VR ’ '
' 13
v _ .
: ,‘ . ! ’ : .
. _ L ,
: - . . ! -.- »
5 ' ’5341_1 >
¢ -.' v R +
o _ o3 ,
. e .'} ! v 3 f
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N * .. ¥
; 6' ° \3 . .
L, a, T « fA. 3 C s - '
3 5 . . -
i b. g g. not an\Mropriate model®
‘ , . .
C. % , h. not an appropriate model. ‘
a l& I’ N S 'I , ‘a
Y 5 i. not an appr-opriat_e model
6 | Y T
e-'.'E- a , ’ ! J' B o .
"l ' 2 l - 'l 4'
5. a"A"E-OrK"B’K’.,C”%’.D’%’.E’§
' b. legs than, since B [1es to"the left of D while 1 tes to,
. the right of 0. : st A
. % l or : K . [ 4
' | S % / lI 23
6. a8, guedtatad vl avaaliagy i AT
X 0 ¥ ¥ ZTmz-
\ . % . E 5 5
Nl Lol 1 1],
b. < Oll\Lu‘l Blll.ldl:llol!lzull'lz.'
v L L T ny T T
’ 1 2 . ? R ’ ?;
Co g l 1|1||111||11'1 ‘|1|1| Py -
9 2 0 15 20 é 2
5. 5 . 5 355
To ¢ [ = 2d 1 L 1 ‘L L —
A . 0 L2 . i .
B L M 3
Ll ey M Y
. 0 3 g ' B -
. @z s . 5 ., 4
S 5 A -
g, W 1 12 7 .2 2
. T112;l3:1m-)—"{'_;3’
1.1 1.5 139
9. a. 25‘(@: ] B>E e %-Tg }
. 211 12 , 17,
b. g( % g d.‘ -3—2' >-§ .
Y0, a8 13 b, 1 [ c. 23 2&:‘,‘;, 3. ok '
oo 8 Tt fg.7 53 1
- :
e._ )4 ﬁ = )-& § . “,' ; #
R




A - - QHAPTER 1h .

1, Binge segments have two eggpoints, it is quite possiblsf';or theth
v n®t to interSect and yep not lie in parallel lines. AB and CD.
illuatrate two éegments which

- » A - Be 7 satisfy the conditions of lying - '
R in the same plane and not inter=-,
A secting; however, they are not
. . ) Q parallel, - ) '
ST ¢ o . g

,. . 2, ghe line; a‘point; 'Y] .

2

« . 3. Model construetion. . L , q ' “\
. ) 3,
, e

k, a 6; b, 8; c. .2Xn N
) . A

e

or
~1if the .plané" conteins
6. & ;b . 'z‘the line of center N
c. does not have to be. _ When the 'quadrilateral is not convex,
the pyramid is not. .- a..___-_.‘;,,,,_.._,..'_A__::

. ' ’ o Lo ¢ .

.7‘ Xz ’ -Z-Y--.: X to . ColL . ) : %

8. i85 contains the point A ; A 1is in the angle, not in its interior.

AR}
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* CHAPTER'15" -

1. Theae answers are illustrative; others are possible.

a. (30 + b) "or 34 b, 48 or L8 " .
X T . ~LXT X 6 <. X6 v
210 +28 . 728 B - 288 *
230 + 8 = 238 gg 2ho . - .

: 23 : 288

c. (20 + 8) or 20 8 18 ¥ .

) X . 9 - . X9 X 9 .+72 . ki
180+ 72 . 1B 75 55 M
250 + 2 = 252

d 5k or - S47
x 8 - x8 -
.38 2 ,
Lo, |
132 '

2. & 38=(6x6)+2; also, 3846 - 6.2 63
b. 99 = (24 x 4) +3; also, 99+ 1# ok
. e, 125 =(15 x 8) 6\5'; also, 125 + 8 = 151?3

“

d. 84 ;'(28 X 3) ; also, 844+ 3 =28

o .48 : 48.
3. a. 7[3%2 . b 13RE 7 .
28 s 28 —.-28 ho .
: B2 - 62 - T&2
56 L 56— -56 8
.. _8& ... &> "B 1B I
. 342,47 =,.e+8$ T 32 = (B xT)+6

L, nXxXDb S a in order to assure that the multiple of b is less
than or equal to ‘a .

if nXb>a ;lthé éuﬁ%raction'would not be meaningful,
\ - - .. ' . : :

I r<¢<b in oraer to be sure.that n is as large as it can be,
If r'=b , the quotient would be one more than n ;
if r,> b , the quétient would be at least one more than n

with or without a remainder. v o’

. g | ,- /
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CHAPTER 16

d. and e, only : ' ‘
a. one pound ; b. 18 ; c. 18 pounds
.. 9 chalk pieces; b. § ; . c. one chalk piece
. . : ' N
c. and e, only r ¥
L] ! \
a, 1,1,1
b, 45 ; &4
c. 4 18 not the sum of the measures of the sides in feet.
d, The measure of & perimeter of a polygon is obtained by the"
measure of & segment which is the union of non-overlapping
A
) segments congruent to the sides of the pg¢lygon. Each side
of the triangle is longer than one foot, and therefore the
errors aceount for the extra foot in the perimeter.
The measure of GD is 1 . The measure of ¥ is 1 . No. No.
-Congruent segments must have the same measure, regardless of the

unit. However, segments may have the same measure without being

congruent. q’It is necessary, however, that with reference to some

unit non-congruent segments must have different measures. In

the case of CD and FF , the measure of CD 1is 6 and the
measure of EF is B8 1if the unit is G—H )

i



e ’  GLOSSARY

St Mathematical terms end expressions are frequently used with different
meenings end connotations in. the different fields or levels of mathematics.
The following glossary explains some of the mathematical words and phrases
as they are used in’this book and in the K- -3 texts. These are not

intended to be formalgdefinitions. More explanations, as well as figures
and examples, may be found in the book.

A

ADDEND. If 8 issthe sumof 2 and 6, then 2 and 6 are each}'"
en addend va 8.

. :- Q..."
ADDITION An operation on two numbers, called addends, to obtain a unique

AIGORITHM., A Rumerical expression of a computation using properties of :,:‘

addition and multiplication and characteristics of a system of
numeration to determine the standard name for a sum, difference,
product, or quotient.
" ANGLE. The union of two rays which have the same endpoint but which
' do not 1lie in the same line. .
ARRAI An orderly arrangement of rows and colums which may be used as .
‘a physical model to interpret ‘

tiplication of whole numbers.

For example
; amp ’ column
_ I
R » * * -
‘ ) "« o» »
3Ixh | ' 3xXh

third number called their sum. ) ',;h g:ffh"'

A rectangular array is implied by ARRAY unless otherwise specified

AS MANY AS; AS MANY MEMBERS AS. If two sets are equivalent, then one
set is said to have as many mémbers as the other set.
¢ ASSOCIATIVE PROPERTY OF ADDITION. When three numbers are added in a given
' order, the sum is independent of the grouping That is, for any
three numbers “a, b, and Cc,
L la+b)te=a+ (b+e)

ERIC

Aruitoxt provided by Eic:



ASSOCIATIVﬁ‘PROPERTY.QF MJLTIPLICATION. When three numbers are multiplied

in a given order, the product is independent of the grouping, That
¥ is, for any three numbers a, b, and c
> - (axp)xc=ax(bxec)

A
’.

. B
éASE (of a~geometric figure) k particular side or face of a geometric.
figure. For example, the base of a parallelogram is one of the
; sides; the bage of a square,pyramid is the face that is the square .
region. . :

BASE. (of a numeration system) A basic number in terms bf whichk we affect
groupings within the system. Ten iﬂ:the bgse of a deFimal system
and two is¥the base of a binary system.

BASIC FACTS (addition, multiplication, subtraction, division) Basic

' additiqn and'mult‘ﬁlicgtio

names for the sums and 'ro uCts»of &3

'fadts are

s ntences which express two

@rdered pairs of whole

numbers less than-‘LO One name exprEsses tpe'Sum or product,

using the ordered pa1r The otherxname expresses the sum or

” ..F:;ﬁfai* b=61s .
a basic addition fact; 3 X 4 = 12 is a baﬁie”’ultiplicationffatt

Basic subtraction and.division facts express the ﬁifferences and

product,. using the standard name. B

quotients for any ordered pa1rs of whole numbers a and b,

such that a - b ;‘c if c+b=a and a+b=oc, such that
) ¢Xb=a, where b dnd < are both whole numberSjless'tnaﬁ' 10. .
BETWEEN. If a curve passes through three points A, B, and C,

then B, is betweenﬂ'A \and C When a cu}ye'is not specified, 1t

is understood that the curve is a line or-a segment througn the.points.
. If for three numbers a b, and ¢, a <o ‘and b <c, then _
b is between & and c.* ‘ sh . L 7

#"  BINARY OPERATION. See OPERATION.- NI -

©

, ' 352

o
b
(6.5

O
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‘ c
CARDINAL NUMBER. See NUMBER PROPERTY OF A SET. |
CAR‘I'ESIAN PRODUCT. * If, *for two given sets, A = {a, b, ¢} ‘and B = [l. 2},
E then the Cartesian product (product set) of A and B  is expressed 38
Ax B = ((a, 1), (a, 2) (b, 1), (b, 2), (c_, 1), (e, 2)}.
‘CIRCLE. The set of_all points in a pfane which are the same distance from
a given polnt. Alternatively, a circle is a simple closed curve

" having a point .0 in its interior such that, if A and B are.any
two‘points of the circle, 0& is congruent to, 0B.

CLOSED CURVE. A curve whose starting and endpoints are the same.

CLOSURE PROPERTY of WHOLE NUMBERS UNDER ADDITION. When two whole numbers

are added the sum is always a whole number.

CLOSURE. -‘PRQPERTY OF WHOLE NUMBERS UNDER MULTIPLICATION. When two whole
1 ‘ ) .
numbers are multiplied the product is always a whole' number.

COLUMN. See ARRAY. -~ , , ! _

CQl\dM.lTATIVE PROPERTY OF ADDITION. When two numbers are added their sum

is independent of the order of the addends. For -any two_ numbers

aandb a+b b+a

- a7

,CMTATIVE PROPERTY: OF WLTIPIICATION When two numbers are mult.,iplled

B .u

their product ;.,s in.ependent of the order of the factdrs For any ,
bersaandb aXhb=1bXa. :

: T
R ,
/

‘5 . commmr OF K SET. See REMAINING SET.

COMPLETE FACTQRIZATION Factorization of a number into its prime fa!)rs. .
For example 24 = 2X2X2X§

_COMPOSITE“NtMBER—*PHW*comm—mbethheﬁhan—l—thMmoira—

. pAme number.

‘ - . . .
CONGRUENCE The relatlonship between two geometrlc figures wh1ch have

exactly the same slzé and shape.

COORDINATE The number associated with a point on the number line.

COUNTING. The pairing.of objects in a set with the numerals in the
~ equivalent s-tandard ‘set.

COUNTING NUMBERS. Mdffbers of (1, 2, 3, 4, ...); thdt is, the whole
‘ numbers with the exception of O. :

.3 349
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’ .-

CURVE. A curve is a set of points followed in going from one point ...

to another.

W ',

~

D
DIFFERENCE. The humber which is assigned to an ordered palr of numbers
unde

DIGIT. - Any one of the numerala)in

DISJOINT S

r subtraction. 4 1is the difference of 6 and 2 o

ETS..

e set {0, 1, 2, 3, h 5, 6, 7, 8, 9}

Two or more sets which have no members‘in common.

DISTRTEUTIVE PROPERTY OF MULTTPLICATION OVER ADDITION. A joint property

‘of multiplication and addition.

arfd

4o

DIVISION.
L if. a

DIVISOR.

sinc
\

surf

EMPIY SET.

-EQUAL

For
of .

EQUAL SETS.

- EQUATION.

are

é, then

, An operation on tWo numbers,' a and b,

nd only if nXb-=
L}

For any three numbers a, b

2

= (axD)+(axc).

such that a +b =

A factor of a number is a divisor-of”thatlJuMBer For example,

-4,.|‘-;

e’ Lbx2=8 L4 and .2 are factors (drvisors) of 8.

E

)

ace ]

See MEMBER.. . .

The set which has no members.

“EDGE. The intersectlon of two polygonal regions which are faces of the
i “V'solid,n=Where two faces meet is an. edge of the solid.

=B means that.- A and B .are names for the same_thing. .

example, 5 - 2 = 3 expresses two names for the difference

he same metbers. - “ﬂg

A sentence”which expresses an equallty.

calied'equations_if the verb is "equals"

~

35h§;;ji).“

Sets which have exactly the same members.

5-and 2; also; A=DB if A and B are sets consisting
of 4 ’

Open number sentences

,'or "is equal to".



EQUILATERAL’TﬁIANGLE. A triangle with three congruent sides.

'EQUIVALENT. * Two or more sets are said to be -gquivalent if their members
can be put into a one-to-one correspondence, that is, each element-’

- of X 1is paired with exactly one ‘element of B ‘and no element of
B is left unpaired.

EQUIVALENT FRACTIONS. Fractions which name the same fractional numbers

EVEN NUMBER. An integer which can be expressed as 2 X n :nhere n 1is

“he an integer.f _ SR
EKPANDED FORM. The numeral 532 written as. - o
’-.u'; v .- (5 x 10'x 10) +.03 % 10) +(2x1) e

i e
Sty - ,‘ o
f . ) L

or as 500 + 30 +! 2 ' .
is sald to be‘uriﬁten in expanded form

&

EXTERIOR (OUTSIDE) OF A SIMPLE CLOSED PLANE CURVE. The subset of the
plane which excludes both the simple closed curve and thensubset s
of the plane enclosed by the plane geometric figure. ,

. Yy e ey
Sey ' Sl e
i . F

. \
.-vQ

FACTOR. If 10 is.lt%;le product of 2 and 5, theén 2 and 5 are
both factors 6% lO A g

]

FEWER THAN; FEWER (MEMBERS) THAN If, in pairing the elements of A, with
those of B, there is an element of B which is not paired W1th-
':%. any element of A, then A has fewer members than B.

;FINITE SET A set is. finit, if there is a whole number that will answer e Y

N :
the question, "How _ elements are there in theVSet?"

The notation {O,‘l 2 3, 4, 5, '6) describes the set of the

first seven whole: n;

rs, a finite set.

FRACTION The numeral of the form % 'where b 1is not equal to O.

{  FRACTIONAL NUMBER. See RATIONAL NUMEER.
J
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Aruitoxt provided by Eic:



G
GREATER THAN. Associated with the relation "has more members than"
for sets is the relation "8 gréater than" for numbers. For
example, "9 > 8" is read g i greater than 8". For any

two fumbers a and b, a>b, if a-Db isa positive ‘number. o ;;

»” B H"."
HEXAGON. A polygon with six sides.

. e G
—_— . R
4 . .
!

TDENTTTY ELEMENT The number 0 is the identity element for addition

‘because the sum of, O and any given number is the given number,,
that is, O + a = a.

4

The number l' is the identity element for multiplication because

.<the produc/xaf 1 and any given number is the given number;
Ahat 15, 1'x 8= a.

lement under a particular operation.

.‘.

s :INFINITE SET A set is 1nf1n1te if there is no whole number that Will

*4'»

,.answer the question, How many elements are there?"

. ‘The notation (O, 1, 2, 3,. h1.5, 6, .{L} describes the:set of whole"

.17 numbers, an infinite set

INTEGERS. Members of the set ’{-a; -3, -2, -1, 0, 1, 2, 3, ...}
INTERIOR (INSIDE) OF A SIMPLE CLOSED.PLANE CUBVE The subset of the plane
enclosed by the’ simple closed curve. - # R L.

INTERSECTION- The operation that assoc1ates with two sets a third set .
. consisting of elements common to the two given sets. ,If
A= (1,2, 3, 4} and 'B = (2, 4, 6, 8) then AN Bi= {2, b},

. - r’n

O
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INVERSE (DOING AND UNDOING) OPERATIONS. Two operations such that. one
"undoes" what the other one "does". For example, putting on & ‘
—f  jacket and taking it off are inverse Operations . o =

o

. INVERSE UNDER ADDITION. For every integer a there 15 an inverse "a )
such that d + @ = 0. : ) 5 . etk

. .

INVERSE UNDER MULTTIPLICATION. For every rational puxhber different ’

from zero, there is an inverse P such that 2 x E

u SiB

ol

'ISOSCELES. A triangle with two congruent sides.

v . . . B . vie

) JOIN; UNION. The union of two disJoint sets to form a thirdx set, B
whose Jnembers are all the elements in each of the two’ sets. : .
For example, : ' E
if A -:[red blue, green}, and B— [ white, orange] d ) '
then AU B= [red blue, green, thite, _orange] ,:

Vool )
PR

LE_NGI‘H' The common property ‘of congruent segments ' We a.pproximate
. length by measurement or comparison with specified unit segments.
" In the, length approximated by the measurement 5; miles, 5 1is :
the mea.sure and the.uniff: Qs\he mile Yo A

N

] :
"“LESS THAN.. Associ,ated with the relatlon "ha.s fewer mémbers than" for

sets, is the rela‘tion 'is'less than" for numbers. ‘For example, # )

o "2 ¢ 5" is read’ "2 s less than 5". For any two numbers a

and b, a<hb i b -8 is a; ‘positive number
R : L‘ - . - -

- LINE.. . A 'line is conce'xved of as.the unlimited. extension'c_)f a glven )
- segment in both direétioms. .— ;. ‘ G

i
@

LINE SEGMENT. A spe'ciaJ. case of the curves between two points. It mayn-

‘be represented by a strlng stretched tautly between its two endpoints >
-

IINEAR SCALE, A scale is a number line with the segment from 0 to. 1

congruent to the unit belng used.

B , . . Bl

%
": . .. ’ '. . . R M

‘MATCH. Two sets match if their members can be put in one-to one '

correspondence Y . ) i
o ' ' ' - 35T Ta.

ERIC
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A number‘assigned to‘a geometric figure indicating its size

Y 2
A (length area, ‘volume, ttme, ete. ) with respect to a specific )
.unit .vFor.example, the 'measure in inches of ° AB is- 3. . : y
2y . ' R v
: 5' - ’ A : . . / B .
'.‘ ; ; 3 v u/ 3 ' ';' '
R * J N . '.‘
MEMBER (Of Y set) An cbject in a set. = S : o

&

: MISSING ADDEND. 1f B is the sum of 2 and n, then n 1% the
missing addend. - . o - i L,

,

MESSING-FACTOR Ir 10 ‘1s the product of 2:.:and n, then n 1is-
the missing factor . ' L X

" MIXED FORM. See MIXED NUMERAL.ﬁk
MIXED NUMERAL. A numeral\such és l% -naming a rational number greater
‘than one.: . f ‘ # S '
MORE (MEMBERS ) -THAN. If ¥ pairlng ‘the elements of A with those of

B, there is at least one member of B which is not paired with

any element of A then B» has more members than A. .

MULTIPLICATION An operation on two numbers to obtaiwﬁ\third number .
called their product. '

LY " J.‘
N . : .

RS. See COUNTING NUMBERS .

NEGATIVEvNuyEER; Any number that 1s less than O . PR
NUMBER LINE. A line'marked off at intervals congruent to a chosen unit

segment- such that' there is a start1ng point associated with the
- number 0; the endpoint of succe551ve intervals -are labeled according»

4

to the counting pumbers in their natural order.

KUMBER (PROPERTY) OF A SET. The number of elements in the set. . The number
property of A is written N(A), where A 1is a set. '

1
+

- 355355

O
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N . .- .- . . - . ' . .
o ﬁ;NUMERAIION SYSTEM A system fqr naming numbers. The Roman numeral
' '_ system and the decimal system are systems of numeration.

» ‘-

] .

i N . LY S

. . oo o

. : ‘ . . . . "
L . . 0 v, . . B ’

DD NUMBERS An integer which cannot be expressed as 2 X n, yhere

n is an’ integer

f ONE-TO ONE - comspommvcs A pairing between two sets A and:' B,
which associates with each element of A a single elemegt of
B, and w1th each element of B a single element of  A.

OPERATION The association of a third number with an ordered pair of

R numbers is a binary operatlon ~ For example,ﬂln the operation of
o addition .the’ number 7 is associated with the pair of numbers <"
5and 2. . : IR . s

1 . ..:_, .

.{- In general, an operation 15 the associatlon of a unique element

one fremveach of the glven sets.

P

ORDER A property of a set of numbers which permlts one to say whether.
J;l"'i ";"a is less then b, greater than b, 'or equal to by -where 1a
R and b are members of the set B '
R v S,
sl S
'PAIRING. A correspondence between an element of one set and an element
~ eof anothsr’set 1 ; . ’

',PAR'I;ITION <See PARTI‘I'IONING S ;

PARTITIONING Partltlonlng a f1n1te set means separating the set into

disjoint subsets SO0 that the- union of the subsets is the glven set

- need not be dlSJOint However, any two subsets have at most the

p01nts of separatlon 1n common. 0

'The separat10n°1s the partltlon

PATH. See CURVE

ERIC
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3 e o . ) . = ‘ . . - i
_ PENTAGON A pq,lygon with five’sides. o N G
v g . e
PERIME!I'ER(of a POLYGON) The lengtﬁ of "the lg,ne sqgment wnich is the union ,
;Y.-. - of a set of non-overlapping »1ine segmdnts corfgruent to the aides of ‘
s the polygon. St & ) ‘\ * - o
“PLACE VAI.UE A Value given to a certain position in a nuineral Thus, '
M the place value of the digit 2 in 235 ECh 100. v ." S
s
PLANE.. A particular set of poiﬁt,s which can be thought of as the extengior@
" of a flat surface, such as the surface of a table. - I_: ".
PLANE REGION. The union of a simple closed plame curve add its interior. :
POLYGO}f\' A simple closed curyve which is the union of ‘t',hree or more :
line segments. - '. . ‘ L S o
PRIME FACTORIZATION . See- COMPLETE FACTORIZATION Y
v . e . \,“. ] . @ \g: .

RIME NUMEER Any whole’ number that; has exactly two different Whole ma S

d
ety

number factors, na.mely itaelf and 1,

- ~ PSRRI B
PRODUCT The third number associated with an ordered paiﬁ of numbers_v e

J_, .'" by multiplication. For exa.mple, 8" Q the product of, "2 apd - k.

)

o . ST
mowcw SET. See CAR'I'ESIAN PRODU& . P Sl
(Y} '1 LS : - “5 : ~ . .
) i i : 3 ) o ' ‘ [ .‘7..1« -
o e
- ',
QUADRILATERAL A polygon with’ four s1des ‘. T

QUOI‘IENT.¢ The third number’ associated witg an ordered pair ,of numbers
by division For example, S et is the quotient oi‘ h8 and h

s . t ) ' N . N L : . .I N B A ' . : .vy . ‘;Vj‘o.. ’ ,A .:\
. » . ."'» " » . T v :R ) : ’ ., :_\‘: . i':' . ’_ 0. . o
[ RATIO A relationship between an ordered pair of numbers- 8 a.nd b
8 8,
m‘here b ,1- 0 "I’he ratio may be 9bcpressed by a’ b" or by‘ 5 .
RATIONAL NUMBER A number which may be expressedvas %_ or .. %: : R Q:,,
where a and»a,b are whole" numbers with b ,1- O& L . o .‘ .
RAY Ray AB is "the union of segrqent AB and all'points C. such e ‘ ' _
T ":'_that B 18 between A~ &Hdo c. ‘°z"“'.A:- - ' "" e
: R . @ S . P . we et
B REGTANGLE LA quadrilateral with four right ‘angles. e e
R_mxom See 'PLANE REGION AND SQLID REG'ION R SE L RN
A . "‘_ . . e o v . .“‘ . L 3 - ! ’
T o T
s e L T e O 3 Gh, e oL
e . s S . 1L . >
i . " T : ‘s . ¥ e
. ’ e R o 2

O
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REMATNIER; REMATNDER SET. See REMAINING SET.

L]

REMATNING SET; REMATNDER (SET). If B is a subset of A, all members

_.of A -whiéh are'dbt-ﬁempers of B are members of the .‘remaining

~ or remainder set. The cémplehent of B "relative to 'A"is the
- ~ remaining Seg.

RENAMING., Using anotqér’name,for the same numbér./ Epr example, 34
_can be renamed as 30 + 4, 20 + 1k, 2 X 17, and so on.

RIGHT ANGLE. - One of two congruent angles determined by a liﬁe and aA
ray having a point in the line as endpoint. - B

~ RIGHT TRIANGLE. A triangle with one right angle.
ROUND. A gshape which qas no corners or sides.

ROW. See ARRAY.

N
RULER. A straightedge on which %“scale using a standard unit has

been markedg

N S : . ‘.

SCALE. See LINEAR SCALE. . . *
SEGMENT. See LINE SEGMENT. -

SENTENCE . A:statement, such as "9 + 5 = 14" 1is a number sentence;
it connects sets of numerical and operational symbols-shqwing
" a relation bet&een the sets of symbols. Examples'of gjmbols
relating the sets are: =, - g, -énd >. These symbols act as.’

- verbs in the sentences. . ) ) v

P .

. SIDE (oF AN ANGIE). Each Rf the two rays forming the angle is called
side of the angle. ‘ ' ‘

SIDE (CF A~?OL&GON). A segment of a pbiygon thatkts.cghtained
in no segment of ‘the polygon other than- A
itself. For example, AB, BC, CD,
and .53; are‘sidés‘of the quadrilateral
1llustrated at the right.

Y . . 0
SIMPLE CLOSED CURVFE. A closed curve which does not intersect 1tself.
: . : C o . .

O
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SIMPLEST FORM.’ A fraction is said to be in simplest form when the

greatest ‘cormon factor of 1its *Jmerator and denominatorqs 1.
)
SOLID. " A geometric ’rigure,that is not a subset of any one plane. .

! §®ARE * rectanglb whose sides are congruent.
-.'e : <
S'J.‘ANDARD SET. .One of the sets'bf or&red numerals such as {1, 2, 3, 43,

[123,4 5}.

DARD U'!K'.E_, A standa.rd wnit is &,unit‘of measﬁ.re Wofficially" agreed..
i . upon or acceptefas a standard. Examplet are inch, meter, gram.

SUBSE'I‘ Given two sets f'and B B is a subset of A if every
member of B 1s also & @Jer of A.. o Y

SUPTRACTION. An operation on two numbers a and b to o'bt‘ain a
third number n, qalled the‘difference such that a - b =

.

if n+b= : - ; ‘

. - SUM. The third number associated with an ordered pair of numbers by
. addition. For example, 6 1s the sum of 2 and L.

.
«

T
s TIMES. Th ,7 rd'assbciated with X to indicate the operation, ,
multiplication. .- ' : i
o ”~ o _ .
TRIANGLE:. A polygon with three sides. . . . :
- R . . -3
- ) # : ‘
: > -

{ . 4 ’ : » . .
UNION.: The operation that associates with two sets a third set

consisting of all’ the members in each of two sets. For example,
b if A= [l;ed, blue, green, white, yellow}' and
. {blue, white, orange},

4 then AU B = (red, %, green®vhite, yellow, “orange}.

. - ‘ s .
¢ v " . '

' UNIT. A prototype from which the measure istgbtained by comparison.
?For example, the unit in measuringt jength j‘.s a segment; the unit ;o
- “~, : * : ] .

for area i3 a square regiom.

URIT R}?IGI(_)N. See UNIT. ’
) . e " * L8 3 ) . ¥

O
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' .V v

-

VER'.I'EX of AN ANGLE. The common endpoint of 1ts two rays.

VEK[’EX OF A POLYGON. If two sides have & point in common then this
commpon point is a vertex. The plural of vertex is vertices.

VERI‘EX OF A PRISM Ol PYRAM[D 1f t‘hre_e or m&;re edges have a 'pdin‘b in

common, then the ‘common point is a vertex. - ™~
. k X % |
bR}

- B -
LE NUMBER. The property common to a set of equivalent sets.
Members of {0; 1, 2, 3, ...).

- .
. - v
.
s .
.
'
. 2
. - -
3 ' ’
-
. RS
-
-
,
e M +
v .
- o \ L
n 3
t . i i
4 N .
!
. .
' f . )
. " -
1 . - .
-
)
L] . 1
.
-
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\ '
. . .
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-~ . ) * ° L4
)
N
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L
. .
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\
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INDEX ¢ _ e

BN

€0

addend llh 156 base, 90 ’

unknown 156 , ~ of cone, 51 . ‘ -
addition; 113 -130 . of cylinder, 2h8 B t
. addend, 11k, 156 . - . of prisms, 245 o
algorithm 199 203 . of pyremid, 248 o ’
associative property, 116, 117, . . _ other then ten, .101-10k
- 123, 303 .~ four, 96-101
associative property on number . between, 7h S
. line, 120-122 - binary operation, 53, 114, 135
carrying, 199 - , - borrowing - see regrouping
closure, 123, 303 . braees, 16 .

commutative property, llh 115,
117, 123, 303

commutative property on number cardinal number, 45, W7, 113
“line, 120  cardinality, bh-k5 '
identity element, 119, 303 ~ carrying - see regrouping
7regrouping, 199 _ cartesian product, 62 Cow
sum, 11k ‘ : . center o
zero and, 139 .1line of, 249

addition and subtraction‘techniques, . of sphere, 251
119-212 . _ . centimeter, 289, 290

algorithm, 200 o chart, other bases, 103.
eddition, 199-203 classification of polygons, 188- 191
‘division, 271-275° closed, 76
multiplication, 267-269 . closure property
subtraction, 203-208 SR addition, 123, 303

ancient systems of numeretion, - oR multiplication, 131, 133, k2, 303
87-89 . common factor, 176

angle, 184-185, 255-256 - commutative property
congruent, 186, 255 ~of sddition, 11k, 115, 117, 123, 303
exterior, 56 -« . of addition on number line,;120
interior, 256 ’ . of intersection, 60, 64
is smeller then, 256 of multiplicetion, l3h lk2.
right, 186 , of union, 54 . "
side, 184 - ' ‘ comparing sets, 29-L0 o
vertex,- 184 C complement, 57, 151-

angle of polygon, 189 " complementary set, 5T

apex . ) complete factorization, 175 .
of cone, 51 composite number, 171-17h
of pyramid, 247 cone, 248-251, 261

applications to teaching 21- oL, . apex of, 51
35-37, 48-50, 64-65, 8o- 82, ., base of, 251 - t
106-109, 125-126, 1hk3- 1h5, lateral surface of, 249
159-161, 178, '192-194, 208-210, congruence, T9 -
234, 257, 277, 293- 29h congruent

arrays, 131, 132, 165 engles, 186, 255

" models for rational nufibers,. * - line segments, 9 .
219-220 ° . ‘ regions, 187-188, 25"/

‘associative property K continuity, 72
of eddition, 116, 117, 123, 303 coordinates, 80
of addition on the number line, counting :
- 120-122 chart,; 108 - . -
_ of intersection, 61, 64 - -numbers, 47; 299 <
of multiplication, 136 137, lh2, cube, 2hl ) 2hs

+ 303 - . . - .curves, ?2

of union, 55-57 o . ‘ o Loy ,£§
o 0 o ' 36 e - q§%§
S - 380. . ; AR

O
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cylinder, 248- 251 260
 base of, 248
\' edge of, 248
lateral surface, 248
right circular, 250

. decimal system, 90, 91

»

denominator, 221
dense, 232
describing sets,
diameter, of sp ere, 252
difference, 15
definitions o
“digits, 91
disjoint dets, 53.
- distributive property, 139-1k1, 1k2,
303
division, 165-181 .
elgorithm, 271-275 X e
end number line, -170-171 . )
and retionals, 230-231
as inverse, 167-168
as repeated subtraction 272
divisér, 166
properties under, 169-170
quotient, 166 )
techniques, 267-281 v

subtraction, 153-157

e

zero and one, 168-169
. edge, TO
* of cylinder, 248

of prism, 2&&

' element

.of cylinder, 2h9
of -set, 15, 25 -+
empty set, 20-21, 22, 25
endpoints, 13
_equal sets, 17-18, 25
equation, 12k
equality of rational numpers,
227-229
equileteral triangle 190, 191
* equivalent
fractions, 221-226
sets, 33%35,.38
expanded form, 199
expanded notation, 92 93, 101- 102
104, 105, 199
exterior, T7

> - L3

face, 70

of prism, 2hh
factor, 131, 225
.. missing, 167
factoring, 174-176
fewer than, 30, 47
. - '

v

- Greek system of numeration, 88-

"less then, 47 -

366

‘finite sets, L6 -

foot, 284

fraction, 220

fractipnal numbers - see rational
numbers N

geometry, 69-85, 183- 197
geometric solids, 69
geometric space, T5
greater then, h7

grestest common factor, 176-177, 226

89 -

grouping, 90, 96, 99

hemisphereé'252

‘hexagon, T8, T9

higher terms, 222-225
Hindu-Arsbic numeration system, 90-94

-

identity element

of addition, 119

of multiplication, 138, 422, 303
inequalities, 124
infinite sets, 46 ‘
inside, 69 i o
integers, 300-301.
interior, 76, 18
intersecting, 241-242

"intersection, 58-59.

inverse, 301
multiplicative, 302
operation, 153, 271 ‘ ‘
.subtraction as, 15 2-153

is smaller than, .256 -

isosceles triangle, 190, 191

kilometer, 288

5

lateral edges of prisms, 25

lateral faces of prisms, 245, 246 .

lateral surface of cylinder, 248
least common denominator, 22% .
left hend distributive property, ‘140- lhl
o \
line, 75 B ¥
line of center (of cylinder), 249 -
line segments, 73, Th, 15 _ g
listing members of sets, 17
lower terms, 225-226
longer than, 254
lowest terms - see simplest form

#,

\’ i}f

g

3



/

) . . {
matching Bets, 30 38 primé, 172 : '
megsure, 283, 285 " property of set, kl-k2 = .
. approximate nature of,’ 289- 293 number line). 79- 80 P St
of segment, 283-285 addition on, 119-122
to neareat,unit, 28 ' 4 &nd.'rationel numbers, 217-281
measurement, 283-298 multiplication on, 1ft2 143
member, 15, 24, 25 . ‘subtraction on, 158 -159
meter, 288, 289 jumber sentence, 123-125
millimeter, 292 . number system, 303 : )
mixed.form, 229-230 ‘. extension of, 30&-305
mixed numeral = see mixed i’orm properties of 303 -
more members than, 30, 28 o numeral, 87
multiple, 90, 178 , : numéral’ chart, 109
multiplication, 131-150 - numeration system, 87-111
algorithm, 267-269 - ' ‘ancient, 87-88 '
and division techniques, 267 281 ‘base four, 9% -101 :
assoclative property of, 136- -137, bases other’than ten, 101-106
142, 303 Greek, 88-89. i
closure property of, 131, 133, - Hindu-Arabic, 90-9k
142, 303 “ notation, 105
connnutative property of 134 numerator, 221 ‘ ¢
3 k2, 303 ' : -
. aistributive property, 139- -1k1, S
1k2, 303 . one-to-one correspondence, 29-30, 33
factor, 131, 225 ' . open sentences, 124 o .
identity element, 138, 1hk2 . «operation, 53, 113
left hand distributive property, . order -
140-1k1 . of numbers, 46-47
multiple, 90, 178 of rationel numbers, 227-229

multiplicative inverse 302, 303 ordered-pair, 63, 113,131, 166
multiplying numbers greater than ordered set, 42-43

. ten, 267-269 ' ordering sets, 30 °
number line and, 1h2-143 ) ordering sets of points, 252-57
product, 131, 133 : ~ ordinal number, L5
property of one under, 133- lhl ordinality, Lh-L5
303
zero and, 138-139, 1k2, 303 . : ,
multiplicative inverse, 302 parallel, 241-2L2
‘ - parallelepiped; 25
. ~ parallelogram, 189, 190 .
natural numbers, , b7 : path, T1-T3
negative numbers, 300 N ©  pentagon, 78 79, 188
non-negative rational numbers, " 220 pentagonal
notation, 105 « ) i pfism, 245
number(s S 87 - pyramid, 247
counting, k71,7299 . o perimeter of polygon, 29
cardinal, 45, L7, 113 preciseness of measurement, 293
ccmposite 171-17h , . premeasurement concepts, 21+l 261
greater thén, 47 . place-value, 91, 92, 93, 10k
integers, 300-301 : plane, 76 : ’
less than, W7 ~ point, T71-T3 L
line,. 79-80 ) . on & line, 79, 80 v
natural, 47 , ' . polygons, 78, 79 \‘Qv"
megative 300 classification of, 188-191%J
" non-négative rational, 220 : eter of, 291 Ly
order ‘'of, W6-UTs . orization, IS5
ordinel, h5 ' < "prime nsg'ber, 172
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ERIC

Aruitoxt provided by Eic:

prism, 70, 2hk-246, 258 —
edges, 245 ' :
faces, 245, 246
verteéx, 70 .

product 131, 133

product set, 62-63

. propert1es

of number systems, 303

under addition, 114-119

under division, 169-170 .

under multiplicetion, 133-141

under subtraction, 157

zero under addition, 119
pyramids, 247, 259 -

quadrilateral 78 79, 189- -190

quotient 166

radius of sphere, 252 N

- rational numbers, 213-240, 301-303

denominator, 221

dense, 232

equality of, 227-229
equivalent fractlons, 221- 226
fraction, 220" .
higher terms, 222-225

least common denominator, 22k
lower terms,.225-227

lowést terms, 226

numerator, 221

mixed form, 229-230

- mixed numersl, 229-230

order of, 227 229 ' Loy
\simplest form, 226, '

- ray, 183 Y- : L

reading mimerals, 94
rectangle, 189, 190 )

’ rectangllar region, 185

regions,: 185
213216

" rectangular, 185
regrouping, 199 : !
relative con?plement 57
remainder set, 57
‘remaining set, 151
rhombus, 189, 190
tight angle, 186
,,right circular cylinder, 250

“‘right’ hand distributive property,

iareli0-142 .
pPRR Pt triangle, 190 l9l }
ruler, 289 - “_i
" ' ) .
| ;
f ‘g »
. [ Y :

scele, ‘289

as models for rdtional numbers,

segment, 75 o e .
setsy 15-27 Cy ¥
~ braces,” 16 ;g o
cartesian product, 62 : i,
comparing, 29-40 Y 1‘,
complement, 57, 151 s
complementary, 57 5 R
describing, 16, 18 B ’$r
disjoint, 53 . = o
Celement, 15, 25 C MR
‘empty, 20- 21, 22, 2k, 5° ,M
equal, .17- 18 o) : A
equivalent; 33 35, 38 - iN
fewer (members) than, 30, 38,,;& e
finite, 46
infinite, L6
intersection, 58-59
assoclative property of,
] commutative property of,
listing members of, 17 - R
matching, 30, 38 . 3 -S
' member of, 15, .24, 25 ‘»
more (memberss than, 30,”?8
number, of, 41-k2 &1
number property of, hl-he g\}‘-
of points,. 2kl 1
operations on, 53-68 vf% 4
ordered, L2-L43’ K SN
ordering, 30 ) ‘;ir

product, 62-63 : : ,"\
relative eomplement{ 57‘ f %
remaipder, 57 2
remaining, 151 . R
standard," h3 L : R
unit, 219 : 1Y
union, 53, 5k, 55, 56 63 113, 11h
assoclative propert 5-'57 ,‘
commutative property’
shorter than, 254 J‘ﬁ

"

side 1
of angle, 184 ‘4.7
of - polygon, 78, 189‘"‘»-

_.sleve of Eratosthenes,\:ﬁ3 17k -
. simple, 76 ' '
_simple closed curves, 76 77

simplest form, 226
space, 15
sphere,. 251-252" ;7 >,
dlameter, 252 g ‘. N
“hemisphere, 5ol RS )
radius of, 252 ’
square, 189, 190 -
square pyremid, 247
stendard sets, 43-hk .,_U !
standewd units, 278- 289{?
structure, 24933 K .
subsets, 18-19, 22, 25
. ! s, ‘
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au'brtraction, 151-163
) algorithm, 203=-205
as inverse, 152-153
borrowing, 206
definition of, 153~157 -
difference, 152 .
number- 1ine and, 158-159
properties_under 157
' property, 203-20£ 208
subtraction property, 203-20%, 208
sum, 114
" symbols, 123-12k -

" transitive property, 31-32, 38
triangle, 78, 79, 189, 190-191
triangular prism, 245
triadgular pyramid, 247

undefined terms T2

union, 53, 5L, 55, 56, 63, 113, 11h
of 'line segments, 78

unit (of measure), 248

unit set, 219

- vertex, 70
of angle, 18k
-of polygon, 74, 189
of prism, 24k

whole numbers, 41-52, 87, 299-300
yard, 284

‘zero
and muitiplication, 138 -139, lh2,
303
and division, 168-169
symbol, 92, 93
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