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Preface

A sound knowledge of mathematic4is becoming a prerequisite for

.4x4tful work in an ever-increasing number. of endeavors. This knowledge

t include why mathematical processes work as veil as how they work.

is nqt enough for toddy's children to learn mathematics by rote..

Children now in elementary shcoolCanbe expected .to fa-Ce pr9blems

which, we cannot foresee. These problems will bd solved not by knowledge
.

Of matheatical facts alone, but by knowledge of zathematical methOds

for attacking problems. New and as yet unknown Problems, May involve,
.

.

dnd in fact will require, new and as'yet unknown.mathematiCs for their

solutions. Naturally, we cannot teach this unknown mathematics, butkwe

can and must teach methods of mathematical thinking as well as the basic

content of mathematics..

In'genera schools today are becoming increasingly aware of the

need to o ent the teaching of-mathematics in accord with.a conceptual

dev pment of. mathematical ideas. _Yet,' too frequently an assumption

s made that for a population of children that is considered to be

. °Culturallyideprived";, rote learning is still the only answer to learning

mathe ics. This course of eCtioA would further deprive these children.

A fc ure of this text is an attempt.toattend to problems that may be

associated with the culturally disadvantaged.

The introductory chapter begins with a description of the.culturally

disadvantaged based on)sychological findings. It continues with the

physical, social, and psychological environment in Which these children

[function in their pre-school years. The next'concern is with the char-.

acteristics manifest in the culturally disadvantaged children as they

enter school. 'Finally, implications fo -teaching these-children are

discussed in this-chapter.

Chapters 1' through 17 present mathematical content relevant

to teachingin:the pri.mary grades. All topics which'arejncludedin

. the texts for the SchoOl Mathematics Study Group Books IC and. 1 are

treated, but from a more'sophisticated point. of view. Other topic's have

been included when the deVeIbpment has warranted' it. As bok K and 3.. .
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dc n4".develoiitopics. in'.the same. -Sequence, adaptation of this course to

2.7 particular grade may necessitate some minor change in the order of
. ,..

studying these materials. The tWo tables beloW identify each chapter:

in Book. K and in Book 1 with the chapter invthis book that pertains

to. the same topics.,-.Thus,the sequence of the_chapters in the inservice

.text'listed in the right handlcolumn Might serve as a guide for-the order

tin:the studying.

Chapter in Book K -

L. e-ts.
.

P. Recognizing Geometric Figures

Comparison of Sets (----

Sial4et of a Set

Joining and Removing

6. Comparison of Sizes and- Shapes

7. Ordering of ,Sets

Additional Activities (geometric: shapes?

Inservipe Chapter ,

9. Using Numbers with:.SetS

. .

Chapter in Book 1

1. Sets and'Numbers 1

2. Numerals and'the NuMber Line

3. Sets of Ten.

4. Introduction to Addition and Subtraction

5. Recognizing Geometric .Figures

6. lace Value and Numeration:

7. ddition and Subtradtion

rrayS'and Multiplication

:9, artitions and Rational Numbers

10. ti ear Measurement

Both:Books and 1 start Witli the notion.df:st;2a.primftive

notion on which other mathematiCal concepts:1411,,be.biliit.' After this

development,.thet orders in presentation of topics Considerably:.

The reason for the differe nce is largely in consideratiou of concept

deVelopment of, children at the differient levels... For ekample,;in.the

,}dndergarten program, .fit makes sense to start With activities associated

410

5

2

, 4

14, 1
r

Inservice Chapter

'1, 2'

3, 5

6

5, 11

6.

7,.9.

8

14, 18

4 '
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geonetrA6 concepts since these activities in101Ye working with

faiallial- objects such; as boxes and. tin cads, : These activities ddpnot

,require.aa,high-a.level of abstraction as does the number concept.

Moreover, they. are activities that encourage-the ,learning ofsorting

and'claa6ifYing-of objects and ideas; an implicit, ifylot. explicit,'

'requirementfor learning numbers in particular, and mathematics in'

general On the:other-nand, the-Hirst grade course starts with the
.

1 -cbncept of number!rig,ht after, the develOpment'of sets ibecailse the
-4

number concept is at hand by then. Book 1 then buii.ds upon the 12re...,
. t

liminary groundwqk in the kfndergarten course and attends the :

concept ofAiumbers to those greatfer than 9. ' .

`Mother example tliUstrating digferences.:in sequence'maybe seen

T; in ;the -order of presenting the arithmetic operations.' Ih Book -1,

. subtraction immediately follows additiot, whereas-in the fnservidetext,

multiplieation follows additiOnThe order as presented in Book '1'.
.1

is the One:bywhich children usually learn these operations; the,'

procedure adopted for the inservi,ce, text diNussesfirstthe primary
%

operations of aadition'nd multiplication end then'ipringsInto. fbcu

the secondary operations for subtraction and division astha,inverse

_operations of. addition andAtltiplication respectively.; ,

The remainder of the boOk consists of three appendices contatning
k.

ba8kground, information. 'Appendix A' "is a descriptiOn,Of the SMS6
,r

mathehatics prograimfor'grades 1K-3. ',Here,' is displayed a chart shev.ing
a .

the scope and organization of Athematical'contents in these. grades,.'TI;e1.
: .,,

inclusion of tueh a' chart'is iritended:to provide perspective to the ',.,%.:, .'. ,. r %:: ',

teaching of mathematics: in Ahe elementary schooi.:By'showing;Whena-Cert4fm..
.. ,

. .%,

topic occurs, how its occurdnce is. related to other topic's in':the'sequenei-
.

.

and when it recurs again in the spiral,of the curriculum.

, .

i

Appendix -'B attends to languageland mathematical-learning.,, The
,, .. :.

..careful building;of understanding and correct use of mathematicarlanguake .%
. , . . . ,

.

. ,,

through aural -Oral experiaCes is .c6nsidered. % Particular examples and
. ,

'suggestions useful to teachers of youngch4dren are
.

%

C contains information gathered from observations and

testing of children who used the Schob1 Mathematics stoi Group-texts,

MATHEMATICS FOR alit ELEMENTARY SCHOOL, Books and I:durj.hg the sthr,V

year 1964-.05: These results are taken .from a comparative study Of

children descried irithe:introductorvchapter, DESCRIPTION OF CULTURALLY

DISADVANTAGED vuLtetN,

4

.



his 'bOok:has been written with anAnservice course in mind ; however,

it.is oped th)atthe text is sufficiedtly lucid to be understobd. easily

of the r ader. It is assumed thai;greater compehension and interest will
r

derive from diecusSion between an.inatructor-and:inservice teachers. For

this purpose, the problems thktlhave been inserted at .appropriate'ilitervals

in each .chailter"(asoppo-sed to 'a set of exercises, at the end of ach chaPter)

may be an 'integral part of disucssions.for Clarifying fine pointy and for
,

Pdeepening. Uaderstanding..

When it was felt' that some copteft,on pedagogy or° ther relevant'

remarks might contribute toward, better understanding a d teaching of the

-.concepts; these'comMents'are ih'cludO u nder the section; APPLICATIONS TO

TEACHING, at the end of. the qh&pter, 'From inserviceme'etings and other'

contacts. withteachers'in the primary g rades, a few questions. pertaining.

too vprious topics have been observed to:recur. We hope that, by selecting

',some of these. frequently asked -questions whenthey are relevant to the
.o

.-chapter and expanding on the underlying concepts, we can resolve some

of the difficulties that maYhaye arisen.. For want of a better handle,

we shall label such:sections, QUESTIW/ It. is. important to note that

. Y

- a large part'bf what is preseAed here 'is background material.- you,
.

.,, :c.

As a teacher, andiie nottintended,to be transmitted to your students per se. '
...

We hope that as yoU read the te#.and do the exercises, you will increase. .

, .

your.understanding of.some basiqnotions. underlying the mathematics that

youjare teaching, and that,' in general,:this text)will prove useful.

.In the,preparation of this book, we ha've drawn on materials produced

Sc6o1 Mathematics Study. .Group, and in particular, STUDIES IN

MATHEMATICS, Volume IX, A BRIEF cqugsa IN MATHEMATICS FOR ELEMENTARY*

. SGHOOL T HERS. For the use of these materials, we offer acknowledgement
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Chapter .6

( DESCRIPTION OF CULTURALLY DISADVANTAGED CHILDREN

I. Introduction

haveFrom.avariety of so ces, &it, have been accumulating which explain

the disadvantaged position of the culturatly deprived child as he starts

school. If we review some of the conditions within the family, and
.

neighborhood which these children experience during their pre-school years,

then the characteristics of these disadvantaged children become';

more meaningful.

The tWoMaj r criteria used in defining people classified as
J.

cultUrally disad antaged are (1) low-economic status, and (2) lack

of Particintio in middle--clas's cultuWe. The actual family income may

vary frpm one s udy to another. A maximum family income, of $2j000 per

. year defines t disadvantaged in-some studies; an income below $4,000

may define thi group for others working with them.

The criterion of lack of participation in middle-class cUlture is
,_/' '

. ...

more difficult tospecify, but relates most closely to the va'ues placed
s /

upon educatiOn. The lack of'books, of parental examples of
V
reading and

4

success in e ucation, and the lack of:stimaation to achieve are all

partsof th S non-partj.cipation in middle-class culture. , )
-

.

....

. 1

The culturally disadvantaged group consists mainly of urban

slum-dwelling people, particUlariY because the UniAed States population
i

.

is becoming increasingly more urban. This feet does not, however, preclude
- i

inclusig of such marginal subsistence groups as segregated rural Negroes)

dwellers in the depressed areas. Of Appalachia, and many American Indian

,groups rpm the ranks of those described.as culturally disadvantaged.
. .. _

II, bontributing.Factors

thes Children in ways which ere apparent at school entry, the physical

f we look to the.homeand environmental circumstances that influence
-

livi/ng -conditions.as well as the quality of the parent-child interactions.

ar most striking. There lire, .of course, exceptions to these observatiOns

that rash generalizations should not bemade. We mention...some of the

more.salient'observations in order to alert the reader to these factors.

/ '. . A

I-

1



A. Physical LivingTonditions
, 4

The living conditions provide a particulat kindOf setting within

which the parent-child interactions take plade. The crowding of dwellings

in disadvantaged areas of large cities allows for little privacy, solitude,

or quiet. Not only are there likely to be many people occupying a fall

apartment, but the dwelling 'units are close upon'each other. In other.

Words,.the density of people for the physical spaceis very high. What
.

this means for a young'child is that he has almost no place to play

withoutbeing either nunderfoot"or out on the street. He is constantly

subjected to noise from the family, television, neighboring hduseholds,

'and street activity.

the child in the disadvantaged home is not likely to have books or

. magazines, available to look at.nor to,have read to him: He is not likely

to. have a variety of toys, with which he can amuse himself nor toys which

encourage sharing, tthe possibility of developing gross and fine muscle
j, coordination and indepeftdentimaginative play through d4awing, tutting,

and building blocks, for example, axe lacking. lie it lets likely to

have been taken on trip outside the immediate neighborhood--td the zoo,

parks, a farm, museuMs, or, even to the library. ThuS; the experiences

of these children prior to school entry have been different frog& those
,

of chrldrenApf middle-class fa/nines and much,more.highly restricted

in variety
.

B. Aostility of the Envoixonment

In the above section the typical household situation was described.

The character of the neighborhood, as the broader social setting, also

.influences these children in ways which areapparent at school entry. ,

' .

The environment of the disadvantaged'is described as hostile.because

of the higher rates of delinquency, disease, and death in their neighborhoods.)

Whether or not these cbndit,loni ?an:be called-hostile, the following

conditions are, at the least, nottonducive to,mdving outside the home or

relating to tile community. First, fewerloublicreCreatio4al.facilitiet
4

are iodated in these areas than in areas of tigher income resiclendet.

I
. ,

1 . , , . ,
Fc5r atudies supporting these and the immediately following statements,/
see Sextinn, Patricia C..Education and Income.: New York: The Viking-.7.-Press, 1961.

-



Second; school buildings in these areas tend to, have lest adequate

equipment and:facilitieafor such aCtivities as science and art; to

mention two of many.whiehcould be cited. Third, contaet's outside

the immediate neighborhood have frequently beetc.witkauthority :

figures - policemen,' Welfare workers,. or school. officials.' The \school
,

is likely to beesSociated
i
with'this airthoritY and resented rather than.

. ,

considered an important resource for.help and development df:.potential.

C., Parent-Child Rlationships
.

.

Since the basifamilylunit:.:amoagwlyjof the disadvantagela groups

.does not consist of Mother., father and their children; the e'fects of

other 'compositions of the family unit must be considered. -'In many of.
. .

v . .

thete hOmes the father is not present. The'household often consists

,of mother, children, and possibly. other Temale%adultsauch as'an aunt

or maternal grandmOther. .There may be considerable instability, both in

the living' arrangements and, n the adults important to the child. Far

example,. a Maternal aunt and.her childre may moiredinto the hYusehold

if there is,a crisis in thetrlives; or a,child may leave his mother,'

and move to s.relative!s home.if his mother takes a job.

What -emerges 4s a form of It extendedfamily',whith provides A clrtain

safet5"r'and security against what maybe perCeived as the hostile world,

What lack eppears most significant, especially TOr.the childs'achool

performghce; is tht..tof aldirected interaction between' the adult and

the child.. The mother in the culturally disadventagedhome is not

likely:to. spend time in conversing with one .of her childrehalone, nor ih;- .

4sitting down to teachhim'a specific skill such EIA tying hisahoelace.

Supervision of the child is handled by any. of the adults available,

by older siblings, or none..

To clarify the term 'adult -child interaction'', let us use two

.typical.situatiOn's 'in a two-year-old' s explora4ion Of his environment.'.

Hesmay reach for sOmethlmg hot, or pOke afingerinto the eye of his

baby sister.' Mother, who is.likely tO1:epreoccupied with the sheer
t

phytiCaldemands of life, does not exl.ain why the child's

will:he harmful to him orf:the baby; rather she will yell at.hiM,

that'. ", or l!Bad.boi!", or simply slap hini.



The implications of mother s response for the-two-year-old are

several. First,-there is no verbal specification of what, exactly;

the undesired 'act was. He may interpret mother's slap as meaning'
r

that reaching or touching is wrongand, therefore, punishable. 5hils,
.

there is no.opportunity Tor learning a- disCrimidation between the
.

,

at of reaching or touching and the'consequences- of reaching for certain

objects (in thisinstance hOt),Or touching (the baby's eye). .What this

kind of PUniahment'is likely- to achieve, if used as the usual means of

distiplite, is a stifling of reaching and touching.. :This will eventually

diminish the child's curiosity by reduCing his explorations of his
. ,

immediate environment.

A acond implication Of mother's use of "Stolithat!" or 'a slap
.

is that it does not:prOVide a model for' complex' verbal behavior. .The

child needs te'listen to language forms in order-to pattern his own

language, both in :terms of range of vocabulary and complexity of.expression.
-...

', -.--Aisa,:he needs:theexperience of verbally expressing his questions, '

....

reason4 d feelings in order to learn to communicate verbally.

.-.A thi1NP-implication of molher's response in:the ear er cited

example's is fOthe child's self-concept. If mother said in

response to his reachingor4pokini, What a bigsboy'you are, to be able

to reach so high (onto the stove o; into the crib)': But,you must be

careful a hot things or baby's eyes," then there is someciincrement

jetin.a.pos ve,concept of himself. He is growing and is caRable of new

accomplishments. By slapping or telling him that he is a bad boy, however,.:

hit-image of himself is deflated. What is likely to evolVe in this setting, .

is aid image of the good child as oneyho stays .out of the way and. who is

quiet. 'This is not the child who.will achieve in school through.high

motivation and striving.

A,further.point should be made about the relationships between mother

and child as contributing to the child's:behavior as we .see him at school

entrance. If the'mother has not had Many,years.of formal education herself,

she will be less aware of what experiences 'she could provide which would

\eventually help her child in school.

D. Planning and Scheduling' of Time.

A charecteristid Of many disadvantaged faMilies, Partly_related to

Oefir living conditions and partly related to,their sub-culture, is the



lack of a Thad& schedule or routine. Mealsi'are not eaten at regulhr.

timeS,:nqx is there a set bedtime for the children. It is seldom that .

the family sits down to a meal together.

,There are two effects of this lack of tinle-planning hnd'xoytine

...which are likely to cause diffiCulties in the young child's adjustment

to school. The first has to do ;with adapting to a routine and working

'Independently within timelimitS, 'The second has to do with verbal.

development.

Let us deal-, first, with the use of time. -The child who has not

experienced Some scheduling of activities at home will not be able,

-without considerable help, to adapt to a school routine-'-d time to

start' a,given activity ,with the class and a time to finish up that

activity wen directed. This means less self-direction and less ability

to.Work independently. In addition, being on time-has no meaning unless

.expectations have been established that certain events occur at particular

times and some consequences may follow froM not being on time.

Without the experience of Planning time and using,periods of time

within the day for particblar activities, the child is less likely to be

able to'develop longer-range, more abrbraCt goals,which involve both

planning longer blocks of time and sequencing time. It may well be that

the demands of career plans involving particuldrsteps both in the immediate

and more-rembte future are not possible without theSe early expeiliences.

Successful performance in specially selected courses in high school, along.

with summer jobsAo earn money, In order/to enter college involves such

sequenced, long-terM planning:: When a mother explains to her pre - school

child that he may play with his friend at a certain time, after his.nap,

or when she says that he may watch television until supper at 5:30, she

may be laying the foundation for later longer- range, goal-oriented planninc2.

The fact that. the family does not sit down together for a meal or

foplcrussing the. day's happenings perMitslwer Opportunities for

verbal interaction. The.child does not have the'experience of hearing,.

attending to, or participating in coMPlex verbal expression, child

who does' not participate with adults in such verbal'interchange has little

opportunity to be heard, to be corrected, and therefore to have his

language modlified and expanded. -At school entrance, the child comes:into.:

a situation where there.are expectations that he express his ideas ip

Verbal interchange with an adult. The situationis strange anci,Unfamiliar.



He must learn to adapt to this new kind of interaction as well as to learn

the language necessary in order to participate.

In discussing the mother-child interactions earlier in thiS chapter,.

it was.pointed'out that the mother does not use complex verbal explanations
..

in directing her child's behavior. More physical, rAherthan verbal,

means of discipline; plus the lack of conversation among family members,

combined with the lack of direct teaching, contribute to ,the development '

of a child experientially limited in both the content (vocabulary, Varl.ety,

and complexity 'of speedh forms) and the structure of such verbal coMmunication.

E. Lack of Preschool Experience

A source of enrichmerit for some young children,.though usually not

for the deprived child, hasibeen a year or more Of nursery school prior

to school entry. ery schools have traditionally been privately

nfunded, therefore requiri tuition, they'have not,' in the past, ben
available to the disadvantaged groupS; With the increasing governmental

concern for the economically.deprived segments of ourpopulation,-Such

programs as Project Headstart will undoubtedly have influence'on the

experiential development of -these children.

I. Characteristics of Culturally Disadvantaged . Children

It In the two preceding sections we have described certain Characteristics

of culturally disadvantaged families which influence thar, ,cbildren's

behavior by the time they start school. In this sectibn4.14e shalLdescribe

feelings and behavior of these children in the beginning. school years

resulting from the family and broader environmental influences.

.A. Self Concept

Given the conditiOns of. a hostile environment, .of.; their families

being the "have-nots" economically and.socially, and'oP the lack'of

experiences directly relevant to classroom learning, these children

are not likely to have positive feelingS about themselves'nor of society.

Most crucial inthe context of this book are thefr feelings about their

competence for succeedingiq'school. For.'the.Ngro. child especially, the

effect6 Of prejudice, Tsegregationj'and inferior status are likely to lead

:



to negative feelings of his own worth.2 These feelings, in turn, lead

to little motivation or striving for success since these children are

learning that their chanCesfcq success are relatively limited.

Since these children.do not have the basic skills or knoV:how for.

...immediate adaptation and successful performance in the classroom situation,

'they. are likely to meet with frustration and confusion, if not failure,

very quickly. Indeed, they may not be aware of instances in which they

may have rejected avenues leading to success. The effects of such experiences

will further detract from their. feelings of competence.

Somewhat less tangible, but worthy of mention.is the observation

that these children do not have as.differentiated a self- concept as do

more privileged children. By differentiation is meant the perception of

onets self as a unique individual.with certain Characteristics, Preferences,

and wishes which form an identity distinguishing one frbm others. 7(,;.

reasons suggested for thi's lack of clearer differentiation arenegative.

That is, there is..not an intense relationship between a parent andoan

'individual child-in these families, nor is the treatment of a given child

individualied. As a result, these children display less self-conceim,

less competitiveness, and less motivation for self improvement. These are

facets of intrinsic motivation which many teachers rely on to keep children

in a, given task.

There is a special problem in the development of a self-cOncept,in,

boys from culturally disadvantaged homes. This arises from the lack of

a stable father. As.pointed out earlier, in many of these homes the

father is absent. There may be adult males in and out of the home,.but

the presence of these potential models is likely tote temporary. ,This

situation does not allow for a stable relationship with an adult male

whom the boy may use has a Model for ,imitation and identification. The

adult males with whom the child does have contact are generally not those

presenting a Picture of responsibility or successful achievement as

measured by the standards implicit within our schools.

2
For a detailed discussion of this topic, see AuSubel, T. and Ausubel,

"Ego development among segregated Negro children, in PassOw;
A. Harry, Education in DepreSsed Areas. New York: Teachers College,
Columbia.University, 1963.



C

B: Language

The language -with which the culturally deprived child comes to school

is likely to.be'different from the morb.advantaged .childtp in two major

waYs..:T.he first the quantity of verbal expression, andthesecOnd

is in the quality of verbal expression.

Concerning quantity, children from disadvantaged homes tend to speak:

inlshort phra es. A monosyllabic response to a teacher's request or

question is typical. It is not uncommon to.see kindergarten children
1,

of this group sitting side by side at a table in a 'classroom and not

'having any verbal'interchange at all. In certain pre- school enriChmnt
o

programs it has been found necessary, in manyinstances, to encourage,

a child to express himself verbally by 'talking to an imaginary person

over a toy telephone before he is able to.speak directly with: ncither

child or with a teacher.

The difference between disadvantaged and more advantaged, children

is less likely to be seen in verbal" labelling. That is, children from

the disadVantaged groups can give names to commonly see4 objects, 'such.

as a: dog, pencil,bok, key: If the object, or referent; is rarely

experienced in low income.environmpntsi (e.g., "neselwhichis experienced

in rural environments or, "giraffe" which'requires books or a trip-to

the zoo); these words are not likeli'tobe known by-thechildren.

The major qualitative differences lie in the elaboration of languageS-L

in complexity of grammatical expressiontand in the more, abstract language.

which goes hand, in hanTwith'conceptual development. The experiences of

these children have not prepared them well for simple classificatory

behavior, such as comparing toys or otherclassroOm materials onsuch.

dimensions as size,'shape, color, number. They'dOnotaqe the vocabulary

for exposing such classifications orComparisons, nor have they-had
.

experiences which have made thei attend to the attributes of objects.

Children from the middle class, both more 'experienced verbally and more

aware of abstradting from attributes,' are better able to state a concept

3
ThiSk discussion will not deal with .the child from a non-English speaking

home since this presents another kind of language problem, beyond the scope
of this section.



t
..

.

.

pliditly when given pictures all of which fit thaCconcept. Oln the/
.

,

other hand, loWer-class children. use more concrete attributes and nOV /

4 /

necessarily the essential ones.- To illustrate this idea, John . stud ed

agrouP of Negro lower:and middle-class first,graderp. She present d

them with pictures of four men at work: a policeman, a doctor, a/farMer,

a sailor.. The middle -class 'children more frequently said'they were

alike becauseall were:"men" oWpeople", which are'categOry labe*

The lo\ier-class children focused On)non-essential attributes withis ch
. .

.
. .

.

'

Statements as "look the Same";."likeaach other". .

..

C. Sensory ',development
;

Lacking the experiencesOf attending to attribUtes of 'object as

discussed in the previous section and lacking the experiences of ooking.

at books, these. children are"not likely. to be as ready for thediserim'mation

and attention demanded by,printed'materials. Teachers:working withthe e

children have found.thatthy are

done by many pictures( or numerals

One page in a workbook is readily

.

easily, confused about the task/ to be\

on a'page; they .quckly loSe their'pla6t;

confused With andther which haS lar\

-.Whether their eye-hand coordination is leis well developedit not

aicrucial an issue nei46,e,Sthe fact. that they havenothad the! opportuniti s

to use Tencils, crayont; and scissors. Their experiences in seeing printed

linet and pictures within books and finding meaning. from them are limited.

In the .area of auditory.discriminatii).the disadvantaged child

does-not attend as well to teacher directions nor to her instruction;

probably for two reasons: First, he isseasily distracted by extraneous

sounds or activities. Secondly, and partly resulting from.the first;'

he is 1 ss able to ditcriminate what is the sound to be listened to, from

the n se which impinges.

D. Motivation to achieve school goals
7

Considering the picture prsented of the pre-school environment of a

child from a-disadvantaged 'group and knowing,the expectations of the school

for task-oriented activity, the discontinuity between the two settings

. ,is striking. The child has much to "unlearn ", as well as to learn. He

John, Vera P. "The intellectual development of slum dhildren some

preliminary'findings. Amer. .,L.Orthopsychiat., 196'3, .331 ,a3-822.



must:learn the expectations of the school, and especially the demandi o
his teacher, without considering content learning at all!'

- Much hasbeen written on the antagonism
and defensivehes of

lower-classfamilies toward the schools and ofthe discrimination (often
unconscious and uninten'ional) on the part of the'sChool.in dealing with
lower-class parents and children. The work of understanding.snch attitudes
on both-Mes is'not to be minimized. Quite apart from such factors,
however,.the difficulty in transition for the child .entering school'can
readily be seen. He often lacks the long-range. goals which can be achieved
through school success, s well as the intrinsic

motivation to learn for
"self-improvement". .0

IV. Implications for Teachingi.

In the previous section of this chapter, a picture was sketched of,

the child'from a, disadvantaged group at the time he entered ,school. In
. ,

.

this section, an attempt will_be made to apply the understandings derived
from the descriptionof

contributing factors and resulting characteristics
.

to the teaching of disadvantaged children. fn order to:discuss teaching,
:references will be made to the o f t thsEL>ldren on school
tasks and in test situations.

A. Implications for.Teather'Attitude

It is very important tor a teacher in the-primary grades to be aware
thatthe performance of these dist;dvantaged.childreni,n their early school
Years is not necessarily a goOd indication of

theifpotential. Their ;

'earlier experiences have not well prepared themfOr:thedemands
made by,q.

the scnool;therefore they are not as ready for ,school. It should be
kept in mind that their rate of learning can.be-very rapid on tasks which
do not depend on prior learning that-. they have not had.

In.this-same vel:nHtest results should be interpreted within the
vein,'';test

of your knowledge of these children: Specifitally,,there are a
number of faets of standardized tests and of the testing situation
which contribute to. their pOorerPerformance. First, we can go back to
the visual and'audiory

disCrithination limitations discussed in Section
.

, .

III of this chapter. If the test. directionsarepreSented
verbally, the

child may not clearly understand what he is, expected to do -- assuming
that he is able to attend

.sufficiently long to hear what!is said.. Then,

10



assuming that.the test it groUp administered, he is expected to use a.

pencil:to mark certain symbols on a paper or booklet which involves both
. .

4 some dexterity in using the' pencil and making rather fine. iscriminations

.among the syMbols on the page. In additibh to this,*the relatively short

attention span of tlhese children compounds to the problem.
.

A test which is .timedadds another factor, contributing to the. poorer

perforMance ofl di.sadvantage children. These childreri are not accustomed .

to working within a time schedule as many middle class, children are.
, .

.
Other factors that contribute to poorer test performances of this

'group are particularly relevant to intelligence tests. These are lack

of practice or test."know-holr, lackNs
pf,mOtivation to do well, inadequate

rapport with the examiner, and the cultural' lOadingof the tests

themselvps which 'discriminates against these. children.

This discussion of the factors influencing test performance is placed

:under the heading,' "Implications for Teach r Attitude"; for the .purpose of

increasing your awareness. that:a set of t st-scores do s nOt'permitf

accurate judgments of what the Capacities, earning rates, or potential

performance of -disadvatitaged children may be in the future. Such test

scores give information on how-ECgiven child it performingat a.particular
.

point in time. How the same child might perform givenopportunities to

-comPensate for sofne of these limiting conditions.is a major challenge'

toJ> the ..Schbas 'p, sent, in attitude, as well as behaior.

The final admonishment concerning attitudes toward the culturally

disadvantaged child is to keep in-mind,his earlier expePiences.wnich may

make for difficulties in his relationship to you,.:as his teacher, in hit

adantatioh to the school routine, and in his unfamiliarity with the
.

work expected:

for Teacher Behavior

Given some knowledge. of fie background' and resultant Characteristics

'of: disadvantaged children, ;i1 at can a teacher. do to aid intheir develOpment,
. .

and School progress? Four :suggestions are given here which, it is hoped,

wilrprovide -guidelines for your work and relationship to them.'"

The ,Pirst suggestion', andpdrhaps the most. important, :isto.maintain

a AArm and supportive re!lationship with these' childrien.. AlthoUgh this



may sound like an oft-stated platitude; it is particulary important for
the groups that we are dealing with, and it can be acted upon in a variety
of meaningful ways: In as manyways as pdssible,provide experiences which
will'enable the 'children to be successful, Conversely, avoid Sittations

that may.produce frustration and failure. These bhildren need the
reassurance. that can be afArded by your attention and by regular and
frequent praite. Their need for experiences in sucoeesfUl completion
of tasks Means that you'mtst.be careful and discriminating in what you
ask each individual to,do. For example, suppose you ask. John to pair

the. members of two' sets. of objects:at
the flannel,board, and he is

, unable to manage thf.s.task. You then ask Any to go lap to the flannel -

board to help John. Do not allow Andy.to'take over and complete the task.
Make certalnl.that what, Andy pes is helping, by doing one pairing :

and that it is John..who actually_completes the tabk4successfUllf.
/

t

The variability in perfortance
S,evelof..children in these classes,

.which will be discussed in Appendix C, makes it,,imperative that You deal
) with disadvantaged children individually and that you assure each child
the experiences of completing his work; with expectations of success, at
Whatever his current level of performance.'

The next two suggestions concern your own langUage. and your-.

encouragement of the childrent's verbal expression. Given their
limitations -in :auditory discriminationand their inexperience with

1 'mire complex language structure, they may not'be able to.understand

YdUr language easily. This will be particularly true if you use long;
complex explanationt or directions. Tbey need short, simply stated

direCtions untirsUch time that are able to understand more complex

verbal: expressions, feel more certain:in their relationship to you; and
you are sure they. are'able to perform what is.being asked of them.'.

Complementary to the stIggestion Concerning, your language is'that of
encouraging the children's verbal expressiOn wherever possible', They,..

need the experience of exPressing,. through
words, their ideas and wishes''

. -to you as well as to tlie other children.
There are many ways in -which

this can be accomplished; only a few will be suggested here By asking .
.

children to describe objectsliphaobjects being used for set conttructiony
..- ;-

the toys they are playing with2.,tiv pictures.they have drawn.), you.are
both encouraging verb expression and:making theM aware of attributes
or properties (colo

111,1

y texture, size).'
i

av



Another.device 'which has been found yerY'helpful is the use of word

probLems the teacher starts by telling storips'which7have problems/

in them which she expects the children:to answer verbally, she can soon

get the children to make up sUch problems for the class to answer.

the.iast suggestion, keeping the children involved, is certain;y

applicabletO all children. It is.especially important forthe disadvantaged

children. Your knowledge of these children will be of great assistance,

in this, as'will the age of the children. With young 'children, you can

'use many sensory-motor experiences for teaching; there can be much more

activity involving.Concrete Materials from which abstractions can be made.

In summary, start your teaching at the level at which the cW.1d14h

are. able to lunctin, use. their assets, and maintain a high 'level. of

aspiration for yourself and for your pupils.



INTRODUCTION

There aree few ideas that occur over and over again in mathematics;

one of theSe is the concept og-7set. This concept occursifor example, in

'dealing with sets.orpoints, sets of nuMbere, sets of ohjects. The most' .

seperal of these,of course, are sets Of.objects.' From these sets we

ultimately, xtract the concept of number. Thus, sets help form a primitive

basiefol- the_number.concept and serve as pre-number ideas.

CHAPTER 1

SETS

WHAT IS A SET

In speaking of.collections of objects, special words may be uped with

reference to special. collections, such as:

herd of cattle (set.of cattle),

flock of geese. (set of geese),

pride of lions (set of lions),

-navy (set of Ships);

span of horses (set of horses).

Each of these may be equally described as a set; a set is just%a:collection'

Of"things; SoMe examples of Sets-of things Bre:,

1

the furniture in a'rbom;

the monkeys-in'the zoo,

the doors in .a room,

the children in the class,

the books in the. library.

EaCh object in a set is called a member or an:element of the set.

If the objects on your desk are a.pencil,. a book, a calendar, and a blotter,

then each df these is a member of the.Set of things on ypur desk; each child
.

.4in your class is a member of the set of. children in your class.

A, set may consist of a variety of objeCts-. A prime.
. . .

of a set is that there.id a method or- rule Whereby set membdtsnip or

nonmembership Can be.deteimined. Consider the following ekamples...

15



1.) Suppbse we consider theaet'of-wheel toys.' We askthe

question,. "Is a doll a Tilembarlof.the set?." Since a: doll

is not a wheel toy, it. is not a member of the set: A

wagOn,-on the otherhand, is a member of the set, since
it is a wheel toy.

2.) SuppoSe we consider the set of objects on. the teacherta.

desk. The ci''iterion.for-determining whether or not 'a

,particular object'is a member of the set is, "Is this

object on the teachertz desk?"

"In both examples, there is'a property that is sharedby,;meMbers=of

the set that is not shared by objects that'are not members of the set.

The'common property of being a. wheel toy, thus, is the rule that determines

membership in the set in the-first example. The common prOperty of being

on the teacherts desk is the rule that daermines membership in the

second set.

-BROBLEMS*

1. What are the members of the. set of

the Great',LakesOf:.the United StatesT:-

th7e days of .the week?

c. the Objects in Elsiets purse?

2 $aermine which of the objects listed below are members of the set

bf animals.

a. carrot

b. lion

c. tiger

d. tree

e. cat

. DESCRIBING. SETS

There are various ways ix which a set may be specified. In the case

of the 'set consisting of California, 'Oregon, and Washington, we may .specify

the set by 'listing all the-tetbers. A class roster is thus a means of e'

specifying a particular set; a reading list is a means of specifying another

set.. Ifthe reading listconsists of the book titles, The Story Of am)
'A ay in Maine, and Make Ely for pucklings,we can enclose,these titles,

within braces ( ) to denote the set so specified. Thus,

*Solutions for.problems in this chapter are on page 27

'16

x. 24



(

,(Th tort' of Ping, A Day in 'Maine, Make Way for DucklinW"..

a notati f6r "the set whose members are The Story of Ping, A,Day in Maine,

and Make Way f r'Ducklings." The braces are an abbreviation for the words

"the set whose members are." 'Note that the items in the listing are

separated by cvuluah.

There are o asions when its inconvenient or impractical'to specify*

the set by list g all its members. For example; the set ofall.state

of the United tates requires a-listing of ,50 states; the set of all

inhabitants in.the United States may require 4 listing of more than io0 .

million names. f there is an explicit common property that may be"used

to characterize e members of the set, then such a descripti6n may be
6.

adequate. Th

(the states of theUnited BtateS)

specifies. he set being considered. For convenience, we may use a letter.

symbol to 1, ular set, and once-so identified, refer to this:.

set by its libel. Thus, i we agree to labelthe set of stres of,the

United States by the letter Ai' :'then we can write

A = (Statehin the United'Staies)::

Thereafter, the set of states in the United States may:be referred to

simply as A. 'Conventionally, capital letters.-are used for this ptrpose..

We have mentioned that a class roster is a:Means of specifying' a

particular set. ,Note that a child'S name is not. listed more-than once in

specifying the set.. Once he is
t

listed, he is designated.as-a meMber Of the
,

set. By the same token, (d, e,'T) is the set of all'letters in'the word

"deer" as well as' in the' word "red".

PROBLEMS

3. Uping a common property,describe the set specified by

a. (Alaska,'Hawaii, Washington, Oregon, California).

b. (Maine, VerMOnt, New Hamibbire Massachusetts, 'Rhode

Connecticut}

c. (red, yellow, blue)

EQUAL SETS;

When we write

A =Astatesiii the United Sta:tes)



Wesmeahrthat A andj.states in the United:States) are Symbiols or names
;

for the same Wbonever we use the ;equal...sign as in

mean that the:two sets of symbols are neMet.for the same thing;

in this case.." 5"4.'2" '.and "7" are both names for.the same inmitiir;;

:Notgthat (the.fira-C.5 letter, of the English alphabet) is

Identical. with (a, e). To'indicate that we have ontthd the'.

saMe:eet, we' say that:theae are. equal sets and we:write

S.t4efirst 54)kiters of the.Englis:d. alphabet). c, e).
o

In other words-, if A. is a set and B is a set, then

B

,

it both sets have exadtly.the same members.

Since the set .consistlngof the members Rosa, Eddy, and Leon is
;

Aridentical with the set consisting of the members Eddy, Rosa, add. Leon,

,, We can write-
0111

. (Rosa, Eddy, Leon).. (Ed4y;tRosa, Leon).

Nte that the order in listing the eler3nta of a set is immaterial in

specifying the.set.. The same
'

set is specitied by two different listings
of the same members.

PROBLEMS

4. Are any of the following four sets equal? .

A= (1; 3; 5)

epresenting the first three positive odd numbers}

C = (135).

D (9)

(the digits in tt3e numeral 1351)

SUBSETS

A set is a collection of elements. The selection of certain elenients-.

from a given set williform a set,: F.or example, from

A = (a, b, 6, d, e)

we they forma set consisting of the elements, a,



Wepay that B is a subset of :Al Set B to be a'subset of a Setr

A, if each `element of B is also an 'element of A. This,

(Rosa, Eddy) is a subset of (Rosa, Eddy, Leon)

.
.

because each member of (Rosa, Eddy) is a member of (Rosa, Eddy, Leon).-.'

However,

(Rosa, Anthony) is,not a subset:of (Rosa, Eddy, Leon),

becaUse,Anthony is not a-member of ,(Rosa, Eddy'; LeOn).

Observe that if

A = (a, bc; d, :and B = (b, e, c, a, d)

then it is true that every element of B is an element of A ,(remember

the order'.of listing of the elements. is immaterial), so a is-a.moset

of A. Sinoq1A = B, .this.example.illustrates that one of the subsets'

that may be formed from a-given set is 'simply the4given,set. This .may
,

be sO taken for.granted'that the need to make such a statement is. not at

all apparent: However,"this. fact rillthave'some undertones for -us, as
.

for ;example, when we e.:camine. certain special cases for subtraction.

We have noted i at if.

A.,. (a, b, c, d,-e) and (131 e, c a, d)
,

then B is, a subset. of A; .it is equally't2;ile that A. is a subset Of'

We can also. see that

.IF A ISA. SUBSET OF

IS A SUBSET. gr. A;

PROBLEMS

5. WhiChexpresaiOn states tat: the;letter, Ir.is an

of the set of letrs in'the Word,"Friday"?

a. y is an element of (Friday)

b., (y):,i,p.'att element of .(FrideY)

Y. is an elementOf' cf, a; y) .

d. (yr'iS an element. of .(F, r, d, .a, y).

67.M9i4,4175.71 is a subset of (Toth, Diek, Harry)

Sibpets of 4TOm, Dick, Harry);

..

.4,

IF B.

element
r

Name six different



IA S2T WITH ONE MEMBER AND THE EMPTY SET

T9e set of all vowels in the word "cat" is a set with jUPt one member,

a. That. is:-totsa A

. (the vowels in the .word "cat ") 7: (a).

This is an example Of a set with a single member. It' may conflict with our

intuitive sense'to think of a set with a singlemeMber since, in ordinary

language', the word "set" connotes more than one object in thacollection.

.An even more bizarre ;et that we phall 'describe is the set that has no

members. Both of,these mathematical conceptsof a set with one member

and of,the set with na members - -are convenient ones; moreover, a vital
0

qUestion of logic requireS'the existencef such entities.

.

Logically, unless the,conceptof.aone-member, setis considered,. it .'

ould make-no-Sehie to come up with "a" as the set,of. all.vowelsih the

ward "cat"; the letter. "a" does not answer the question: "What is the

set of all vowels in the:ward 7cat'?". Likewise, the same question'of logic.

may enter into the consideration of the set With no members. ..11 plea may

beMade that the question itself needs to be laworded. Instead of asking,

".What is the set of vowels in the word Icatt?", it may be more appropriate

to ask, "What is the vowel in the word ',cat'?" . This may sound sensible,

but it does require a prior knowledge of the answer. Quiteofteri, we do

not know how many solutions we may have to a problem. With the understanding

that there may be one, more than one, or no Members'in a set, there woUld..'

be no need to rephrase. the question each time a special situation is

encountered. For.example, the 'question, "What is the set of boys enrolled

in thiP school?" might, be equally applicable to-the Yale, Columbia, and
Vdssar populations - -or to one in _which just one boy happens to be enrolled.

In thinkingabout a set with one Member, there is a 'strong inclination

to think of the set and the member that constitutes the set as one and the

same thing and it is important to.distinguish between the two. A case in

:point Might be sciverr, for example, in the cataloguing of.boOks in the school

library. Under the category of classics might be just the one book,:.

Treasure Island. By itsql, the book is not the same as the set of classics.-7

If another book is added to the collection, tbp .set of classics has changed;'
4

Treasure Island hap not changed.

, The empty set"is the set with no.members. Thus, the setof. all,boys

enrolled in Vassar is an,example the empty set. The set of all mohthS
tte!..:

".`
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having nine Sundays is another example of the.emot .et. There maybe

many ways'bf illudtrating the empty set but any of the empty 'set

has the same members as any other example of'it becaude none of them has .

any members. This is why we say-the'enItty set; there is'onlYone such set.

A notation for the empty set is ( ). The empty space between the braces

indicates that there are no members:-th the set. 'Another notation that is

used for theeMpty set is the symbol -0. With the firSt way of denoting

the empty set the question may arise. .sa to whether we'had forgotten to -list

the eleme Within the braces. With the symbol 0 this problem does

not arise.

Recall that. B is said to be a.subset;of A If each.member

is also a member. of A. Another way to'say this is

B, IS A SUBSET OF A IF THERE IS NO NEMER

OF B WHICH IS NOT ALSO A MEMBER OF A.

Both statements say exactly the same thing. Aq4a consequence °fie

second statement, the empty set is a, subset of

.

A = (Roseep Eddy, Leon, Anthony).

There is no member of ( ) that is not also 6 member of A. The empty.

set'has no members. Thus,'the empty set is a subset of every-set.

PROBLEMS .

7. Which of the followihg are equal sets?
r.A (a o, u) D = (women 6110 are 20 feet tall)

( ) E = (the vowels in the English.
_alphabet)

C = (Monday)
F = (the days of the week)

8. Which of the sets in theabove list is a subset of. another

in the list?

APPLICATIONS TO TEACHING

While both symbols,. 0 and ( ), have been used here to denote'the

empty set, it is best to avoid introducing. too many symbols simultaneously.

Sihce the braces have been used for sets 'consisting of manymembers as

well as for sets with one member we have kept to the use of the braces,.

( ), for the empty set for students in th6,!primary grades.. This notation

doggs have the advantage-;of suggesting no meggi.eIn the set. .
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As indicated above, the set with one member and the empty set TV

not seem to be easy concepts to present. Many teachers have, howeVeri

reported that childr ,pn have been able to grasp these conceptsquite

easily. Sinpathese sets will ultimately be associated withhe numbers.
,

1 and 0,- they need to' -be included in our experiences with .sets. There

should be emphasis on the use of the-article "the" in referring to the

eMpty set. As in many other instances., for this level, the emphasis is

largely by precept and example on the part of the teacher; there needs to

be constant awareness of the proper use of language.

Both the proper. use of..language'and the .deliberate-Stress on certain
.

critical terms are' particularly important in view of the listening habits

of some children. Soule may not. be able to'grasp all that.is said in
.

lOngexpi,essions.. Some will 'attend to only part of what is said. Thus,

aside from the cavalier reference to ."the empty set" as "an empty set',

there may bbe. confusion between the words "seeand "subset": Unless

conscious effort is made in enunciation,theseterMs may sound alike to

the youngsters. In additioti to marked effort in the proper useof.

language, constant and- natilral.use of new,terms throughout. the day as

occasions may arise has beenfound to be helpful.. For example,there
7

.

may be many instances of subsets that can be pointed out;. during play

period,

. during reading,

during'Music',

and' so On.

"a subset of the class that is on team A";

"a subset of, the ducklings in.the pond",

"a .subset of the class that is playing the piano ",.

fC

Team membership offers excellent reinforcement of the fact that

rearranging the members does not change the set. This is not an easy

concept to. teach and a variety of experiences may need to be provided

leading to this notion. Some children are quite convinced'that each

time there is a new arrangement of the same members, a new set is formed;

By way of illustration we might mention that the same, members make up

the set (team) regardless of who is on first base, who is on second and

so on.' If there is any change in Membership, a different team is actually

formed. Another illustration may be given in changing seat assignment
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in the classrdoM; the same-set (class) of students is in .each arrangement.

Books be arranged differently on a shelf, If there is no change in

member hip'', each arrangement giyes us the same set of rooks.' The students

will e faced with this conct again-and again. For example, when.

begin to compare sets of objects or .whenlwe partition a set into subsets

to ar ve at ;:the concept,ofdivision there will be opportunity to reinforce.
4

this otion.

e want to communicate:the concept that a, set is defined -b' the members;

it d es' not matter how widely. spaced-these members.Maihe-.: For example,

is t e same set of ob ects as'
\

* 0
46.0

Again.

we ma

the t

team r

belon

catalo

some m

the illustration of team membership may be helpful. Initially,

"choose sides" by grouping the Members of each team together. Once

membership is determined, the same members constitute the same,

gardless of location of the individuals. The set of classics

ng to.the school library, for example, may ba:defined by the

uing. Some of-these books may be clustered in groups fors a display;

be on various shelyes; some may be out on loan; spatial'arrangement

is imma erial to defining the set.

0 goal, through this disbussiOn, has been to etphasize that set
.

Membersh p is independent of spatial arrangement. However,. 'we recognize
,

the intu tive aspects in visual perception. In a display, the

spatial arrangement of a set of object may suggest a,natural grouping.

,Thus the rrangement

X -X x x x
X x x x x

X X XX X X X X X X
x x x x xxxxx

might sugv-st -3 groups of ten Objects. Later on, when we examine the

basis uncle lying our numeration bysteM, we do capitalize on this tendency

to group On-the,basis of spatial arrangement. Forexample, to arrive at

a particular decimal numeral, a set'of objects may be spatially grouped

into subsets of 10's and .1' and s on.
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As was mentioned in tote iptroduction,. we shall ultimet ly.elicit the.

concept of.numbers from sets of. objeCts. In particular, we shall' associate

a set with one member the number While it is true tha set with onll

member cannot be considered (from the standpoint of. logic) he() person
.

has a concept. of-the number 1, nonetheless, it will be fo :t.almost

universally.the Children will altvady, have "one" in their vocabulary. The\

word "single" may. cause difficulty forsome children. .From a teaching

Standpoint, we.'may rely on using th&words "one and "a single " interchangeabl

to communicate,some heeded concepts. Again) classes repc.tdifferently to the

situation. Some teachers report success because the word "single" has been

foreignfto the students' vocabulary.

Along with emphasizing the natur&l use-,of language, we'woUld like to

emphasize the natural presentation of. topics. Bythis, We mean a de- emphasis

on decree: that is we do not wish to -say these are the things yqu must

learn and this:is the way you learn them! By natural presentation., we alSo

mean minimizing forced-feeding. Atfiimes it may appear that'teaching

certain concepts reaches am impatSe. Subsequently, in conjunction with

presentation of some different topic, some student's remarks may,reveal".

that what had appeared to be an impasse before is no longer11one. It is
,

likely that some incidental learning,has.ocCurredJ is alsb likely that

there is. reinforcement with other, ,disciplines that, together with the

presentation in fnathematicS, helpto bring the concepts into focus. There

Is little nead.to insist on complete mastery immediately. Oftentimes, it

is best to proceed with other deVelopments when an impasse is apparent and

return to he topic sometime, in the future.

1/4

QUESTION

"Hew is it that the empty set is a subset of every set?"

" A subset is a relative concept in the sense that it must be considered.'

in relationt,to a givenSet. If every member (element) of a set B is also
an element of a giVen set A,' then B is W subset of

Suppose A . (house, toy.animal)

and B= (house, toy)



. . .

Since each element of B-- namely, house,.toy--is an element of A,

gi7alifies tobe.a .subset of A.

-To say'that eachelement of B is an element of A' is logically

equivalent to say.that.there is no element of B that is not an eleMent

of A. It is by .this second rePhrasingthat- we can see more clearly that

the .empty set is a subset of every set. Compare the empty set with

A = (house,'toy,animal).: Is it true that there' is nomember'of 0 that

is not a.member of A? Certainly., Compare 0 with B ='(houee, toyI!

Is it true that .there is no member of: 0 that is not a member of 'B ?.

Clearly, we can apply this criterion comparing .0 with any set and arrive_
.

et. the SameOccinclusion. Therefore, the empty set is a subset of every set:,

.4'ToilluStrate,.we may consider the question, ,What is the.elibSet.of

this class whose members wish to fail this course?" If there are no members,

.

'then this particular subset is the empty set. .

Another difficulty arises in connection with thinking cf a set with.

a single member. Since a set is said. to be acalectionithe question is

whether one can consider a single object a collection. If we think of

"all objects that meet such and such Conditions" as an alternate way of

determining set membership,i;hen the set of all vowels in the word "red".

consists merely of the letter: " ".

. (all vowels in therrd."red").

Elementdof a,Sett..

Empty Set*:

Equal SetS*

Improper 'Subset*

(e) is the single member set,

VOCABULARY

j4ember of

Set*

_Subset*

a Set*

. .

*The asteriskindicateS that the term or phrase Alsd-appears in the
glosphry'at'theend of ;the book.



EXERCISES - CRAPI'ER 1

1. List, the elemen,ts of each of the following sets whose descriptions are:.

a. (the days of the. week whose .1aEunes
. begin with 4..Re letter W) ;

p. (positions On a baseball team) ;

(months of the yearwhose names have lesethan six letters)-;

d. (Whole numbers between 7 and 8) ;

. 4e. (the age on the nearest birthday for the students. in your classroom) ;

f. (the capitals of ..Japan and'England) ;

.8'.. (the colors of the rainbow).
.. .

. Write a description of the set:

a.: (Alaska, Hawaii) i

b. (snips, snails, 'puPpy-dog tails) .-'

3-- bescribe the common property of the elenients. of (cat, lion, tiger).

24. Which of the foLlowing pairs of sets -are equal?

a. (17) and (71)

b. (letters in the word bundle) and Cu, d b, 1, up e)

c. ( *, q, 0) and (q,* , 0)
d. (zero) and (peacocks'tative to the North Pole)

e. (1, 2, 3, 4) and (a, b, c, d)

f. (are) and (era)

g. (M, 1, s, p) and (the letters in the word. "Miss/eagle)
'

5. For each of the following, decide whether the statement is true or

false 4end why.

a. 3 is a subset "off (1, 2, 3).

b. (ego) is a subset of (ego, je, I)

c It is possible for a set to be equal to one of its subsets.

d.-.. (all..birds in the world) is 'II subset of (all, hens in the world)
6. Given the 'Set. k ',I, (rose, bee, tulip, beetle, dekid.elion ) write the

subset of A desci=ibed. by

e. (plants)2;

b. (insects) ;'"

. (singers)

34
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SOLUTIONS .FOB PROBLEMS

1. a. Erie, Huron, Michigan,r:Ontario,lnd Superior.

b. Monday, Tuasday, Wednesday, Thursday, Friday, SatUrday,,,and Sunday.

c. This set is not well-defined. The set of objects depends on,which

Elsie. Even if Elsie is Uniquely identified, it will be agreed that

thasetof:objects changesin'time. In 'order to specify the set,

it is necessary to consider a particular Elaieat a particular, moment.

2. b, c, and 6 _are members of the set. a and ,d are not members of.

the set becauSe a carrot is not an animal, nor .is a tree

. a. (allStates of the United States which border on the Pacific Ocean)

b:: (theew-England states)

jthe.primarAdeolors) c'

v. 4. Sets A , B)(and E :are equal. No others are equal. : C 'is a single

member set whose element is the numeral for one hundred Wrty7five.
5

The.fact that no commas separate the digits, makes it different from

5, -D contains the numeral for nine. Even though the sum of

1,:3 and-5 is 9,. 9.. itself is not another name for 1, 3, 5. D

would be equal to '(1 + 3,+ 5) "an;. 1 +.3 + 5 would be'the single

element of.the.sett The. -reason E is the same as A and B is
..

. .

_
:

,that.the digits of:the numeral 1351,:are 1, 3,5 and 1. Recall,.

'however, that an element is'n6t reneated in a set, so the 1 should

,only be mentioned one..

5.. a. is incorrect becallie,(FridaY) is a single member'set

whose" element is the name of the fifth day of the week, which isnot

y. and d. are incorrect because (y). !is a set. Neither

(Frida,y) no {T; r, i, d, a, y) have any-members which are

.''.themselves sees.
:-

:.,

. (Tan); (Dick), (Harry), ..(Tom Dic), .(Dick, Harry), -(Tom, Dick 1

Harry).

. E; B D

and B are .subsets



BASIS OF COMPARISON

,CHAPTER 2

COMPARING SETS IC

One of the ways that we have used to specify a set is to describe it

by the property that the elements have in common. :This method of classifying

-things can beereended to help difftinguish one kind'of set` from another.

AsSoCiated with, this is the question'. '"Whatcharacteriatic does one set

have in common with another:set?" .Essehtialliithis is a'dlassification-

prableni that is one, step removed from identifying the common property

of element-avithin the 'et. For example, While-the seta

A = leopard) and C = (elephant, deer, cow,. horse)
. _

are not equal, both of these. are sets ofranimals, and may be

'distinguished from .B = (house, tree, salt, roek).
=

A further distinction might be that A is a set of:earntvdrous animals

and is;a set of herbporous:aniOals. The point is.tat sets' may be

7 compared with another.

ONE-TO-ONE CORRESPONDENCE

,

Oneway of comparing two sets is by an element -by- element pairing.

That -is, an element'ofone setis paired with an element of the:other'set.....

10,.indicat.a pairing we shall draw a double - headed arrow betWeen the

twO:.Mebera. Thus

= (titer, leopard

= (house tree, salt, rotk)

shoWa that

lion r is paired with salt;

...j.aguar is paired with tree;'

,tiger is paired

leopard- is paired with rock.

3



Another illustration o;a pairing May be given by-.

A (tiger, jaguar, lion, leopard)
bt

B = (house, twee, salt, rock)

For our PurpoSe, the concern is not so much that "lid-e-is. paired
with "rock" as.thatone member of A is paired with one ilMmber of B.
Nsptica that in pairing the elements of B with those of A, each eleMent
of. B is paired with an element of A and each element of A7 is paired

. with an element of B. When this happens, then we say that the sets match;i.

also,- we say that we have a one -to -one orrespondace between the elements
ofthe two sets. It can be seen that whether we can get a one-to-one'
correspondence betweSthe elements of two Sets does not depend...On Which-

-,

element of B is paired witig which element of A. For example, the
pairings may be established by either of the,,diagrams abbve. In the first'
diagram it is:easier to see at a glance that the pairing is a one,to -dhe
correspondence than when .the arrows:are. crossed.

ORDERING SETS

In pairing the eleMents of.-41 with thOSe of. B (shOWn below), there
is a member of!.B- which is not paired, with any.dlement of ,4. This, will

.beso regardle'Ss of how the:elements are Paired:' In,this case, Wa say
that -8 ,hasMore.members than A

A = (cat, dog; moUse);.

(Mary, Jo Bill, PeggY).. A

We can 480 sa
sets-according

hat "A has fewer Members- than

three possible outcomes:

aches, B;

A has more'members'than B;

A has fewer members than B.

4Furthermore, all this can 'be accomplished: without caanting. ,SuppOse
C isthe set of. all children in the achool'and S is the of seats in

B. .ThuS we can compare

'the school aUditorium. By pairing, we can deterMine withnuicounting
..whetherone set has more members than the nther, one-sethavfewer members
-:than the other, or the sets match.



PROBLEMS*.

. 1. Which_ of the following pairi of seti match? For those 'that do not:!

match, state which !let has more members.

a. (letters. in the word "group ") and ig; o p, r,

b. (23) and (232)

.= (1, 2, 3, .4, 5) and B = (C, d, e, f)

d. B = d, e, f) and :C (oyster, walrus,, carpenter)

-A (1; 2, 3, 4, 5) and C = ( oyster,
.
walrus, carpenter).

. HState Why 'we do not necessarily have a one-to-one correspondence .

between thechildren in your class and. their first names.

Show two different one-tokine correspondences between elements of

" the following pairs of sets..

a. A . (animal, vegetable, mineral) and

B (Carrot, plutonium, hippopotamus)
i

A = (animal vegetable, ) end .

..-*(carfot,i-PlutoniUm, beets)

c. A =:(animal, .vegetabie, mineral) and

1".) = (.iron giraffe. Vtitnip)

In one of the'abollb problems we considered three sets C,

where

B.

2, 3 4, 5) °

B.. (c, e; f) and,

G,= (Oyster, walrus, carpenter)

Note, that A has more members than B add.,tha. B has more sembers

than C. MoreoL it canite- Seen' that A has more members than (3, ," . .

This illustratea an important 'property ,called the transitive .property.

This. property 7i /important because it proVideaqii with some means. bf

*working with numbers later. The property, mEV, be stated in general,

T . r, .. ;. terms as iollowa .

, .

.
.

IF HAS 1,401iE MEMBilt THAN B;

AND DI B MORE MEMBERS THAN

THEN A HAS, MORE NEMBERS THAN C.

SoIutions..for problems 'in this chapter are on page 39.



This property is derived. without recourse to counting. The conclusion
sanctioned. by this property -Oyes us,.the comparison of .A and C . withx
a set, B, acting:as.intertediary. (In a sense, it ;belle ..uS how A
compares with C using. B. as, a "yardstick'.) Clearly, a transitive
property isrsipii.larly applicable :when A has fewer members than.... B,. .

fewer members than C. That is,
.

44:
IF A HAS FEWER 'MEMBERS TRW B :AND

IF B HAS FEWER MEMBRS'THAN C, TEEN

A HAS FEWER. MEMBERS. THAN C.

Furthermore, a similar property holds when thek4.sets match) as we shall
show later.

Observe that if. A has more'..thembers than. B, and if C 116 more
members, than B, no general -conclusion can be made.

For 17ample, if .A (I;
B = d: e), and

C = (oyster, wali..us)al.penter, cabbage), then A has more.members. ,

than B, C' has Mdr(=r meObers than B) .;and. A, has'more members than C.

If A = (1, 2, 30.4) B = ( c , d, e and C = byster,rWalrils,

carpenter, cabbage, king),, then A has more*mbrs than B, C Vas
more members than. B, and A matches C.

If A = (1,:2-;;,.1, 1, 5), B = (c, d, e), and C (oyster,: walrugc.

carpenter, cabbage!' kpg, owl, pussy -cat), then A 'has more members
than B, has-*b<ifiernbers than B) and A.-has fewer members than C.

_

..,..ee
: Thus; if A has m#eimembers than B, and C. has more meniberill'?'

than B, it is possible .f 6r A to have more meMbert than C, to'have
fewer Members than C, oPAO, match C. So in this case 1.* cahnot
determine the order of A and C.

BY the transitive pt.cperty, we ave a way of ordering sets that
do not match . If in.= (1,1'. 3), B = ;(a, b, Vic, d, e, f), .and
C = (2, 5:o, * ), then as' A ' has .feWer members than C ond,, C has
,fewer members than B, we cyan conclude that. A haS fewer memb.040han B.
Since A has fewer members than B *e 4ght. Order these sets: C,
If D = (carrot's, cabbage, carpenter, carousel, castenet), we see.:.

.

that C has fewer members than D and D has fewer members than
B. Here, by repeated. compari son, would ordeped' between C , and
B. Thus 'we' might .order these sets 'A) C, D, B. Of course, the get6

may beordered equally well by the "more than" relation,. For our purpose,

.-

32.
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ordering' by the "fewer than" relation,,will lead directly to the ordering

of numbers 'according to -increasing size.

EQUIVALENT SETS
. . . .

, .

One of the'.pOsibl,efoutdomes from the pairing of the elements of two

sets is that..the'aets'.matioh. If each element of 'A is' Paired with exaCtly.

;one eleMeiit,Of t. and..A0' -eletent of B is. left' unpaired, .we .say that A

Matphes 'B: Another ;6.6.,tecribing thii is that the e].lilerits of the

sets are in oigetdbcille dorre'Oottlderiee A third way of saying .thia is that
.

' ,

.A' IS ii4-1±7,4Er:TO...43.

ecilAvaI4n.ee. rele:tion..is:;tranSitiVe . If D= (1, 2,
.

L -,[e. di e and carpenter, ,ge-;kitig1,;

then D is equivalent to equivalent to 14 and i s equivalent;,

to
. - . . .

W. 141e can say this in general:" for any three sets A;. B, and C:
,

(a) IF A IS. EQUIVALENT TO B. AND B IS
. 1

EQUIVALENT- TO; D, THEN. A IS. EQUIVALENT

TO C.'

us consider; the following sets:.

A , (1, 2, 3, 4 57

= (a, b, c)

( a, PI 7, 6, e

= (A, It

following

(1);,/ has more membei.s than B

:1: is equivalent to A:

more members than '

"0 is equivalent; to

C has mi;r-e members than

..
(.)

Ing.
,

eneral, we can say for any four: sets A, B, C, and D

IF. A HAS MORE NiERS THAN B, AND

IF C IS EQUIVALENT :TO A AND D IS.

EQUIVALENT TO. B, THEN C
.
HAS,NDRE

MEMBERS. THAN D. :.

A sithar$tatement may be made in 66nnection with the: "fewer than"
... - ... . :.

relation.: That, is,
.-.,

:...,,,..
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VETORMEMBERS THAN B1 AND

.9s#gspT TO A AND D IS

TO S, THEN C HAS FEWER

SRS/
In this manner, all.setsingy 1*..drdered;

in thi same place in-thrOLkder.

.

sets %hat'are equivalent belong

For sets that areegpiVelent '.there are two.additional properties
that are of particularAtrestto:U.s..: If A =.(1, 2, 3, 4, 5) and
.B = (a, b, c, d; e), ,Aba#2.A: ls(e4uAValent to 'B. It is equally true
.that B is equivalent to 4a:;::14:eSli 'see that*by our pairing process,

it must be truejjn general that : ' '

(b) IF A IS EQUIVALENT TO B, THEN

B IS EQUIVAIENTTO A.

This is a property that the ',more relatiOn does not have. That
As to say, if A has more members than B, .then it is not true that
B has-more members than A. Neitherdoes the "fewer than" relation
have this property.

.If A'.= (1, 2, 31 1 5) and B =(3, 1, 4, 2, 5), :then certainly.

A is equivalent. to B. ,In fact, here, A.='B.' Recalling that hy''1.7 B,

we.meahthat both A. and .B represent the same thing (they are names
.-1f;pi s. thing),'it is ci4;9:hat aset is equivalentito

Or.

-4

.* that is

(c) A IS EQUIVALENT TO A.

This is ..another property that ,the non-equivalent relatio0 do not have.
t

It. is not true that A has more members vldit. A; -nor 1.6..p.t true that

A has fewer, members. than A. .
.

On the surggaee, the at4tement that a 'set is equivalmb to itself

may seem ratber.trAvi41. Thiel'is another of those statements that

will have some repercussions laterWhen we deal with numbers It is

not any more trivial than-to assert that A

2 + 5 = 7 .because 7 = 7.

Moreover, as was pointed OUt before,. the last two properties stated for

equivalent sets do distingUish.eqUivalence from non-equivalence.

41 h,



Equivalence relations' possess all three of the Properties mentioned, which

have been'identified by'the letters (a), (b), and (c).

PROBLEMS

4. Write the order of the following sets, beginning with the set

'.that has the fewest numbers.

0 0

r

a. A = (letters of the alphabet in the word "peacock ")

B = '(letters of the'alphabet in the word "letterS';):.

C = (letters of.the alphabet in the'word

D = (letters of .the alphabet in the word "mathe4t114f.').,

b. A = (1,2, 3, 4); B.= (2, 3, 5, 7, 11, 13);

C = (a, b, c, d; e, f); D. = ),

Show. how the transitive property may be applied to the following,

sets.
a

A = (lion, tiger, leOpard, elephant, mouse:cat)

= (house, tree salt, rock)

C = (the days of the week)
t 4

6. If A, B, C are the sets defined in Problem 5, and D, E,

areethe.setsso that

D is equivalent to A

E is equivalent to B.

F ie:equivalent .to C,

. A-7'
what.iCtherder of D, E, F?

more members than., P,
'tit

.1

-44,tich,sat,haS" the most members?

and C has more members ,

8. If B has more members than A, and C has more memberq than
. ,

tahiih set has the least members?

APPLICATIONS TO.TEACHiNG

.By the pairings that we have sta'ted.above, one member of e!.1set is

paired with exactly one member of a second seta Thus,it may be possible

that we cannot completely pair the members. If .A hsiCfewer members than

B, there will be at" least Ofie member of B that grill be left unpaired..

Furthermore, in a pairing, no more than one element of. A is paired :

with a partiCidar element of B. .So0, if A has more elements'than B,

there will be at least one element of A- that will be left unpaired.



If.no!tlement of eithr...B. is left unpaired, then we have a

one-to-one. cOrrespondence.(abbieViated: 1-1 correspondence:):
.

There,, are many manY7t :-.one: 'correspondences. For example, the

rounding-off process is 51.-toone.. In rounding,off%1,whole numbers to

'the nearest tens, the numbers

35, 36, 37,' 38> 39, 40, 41, , 43, 44

are either "roUnded-Up" or "rounded- down" to 40. .So this is a

ten -to- one correspondence.

Our main concern here is with 1-1 correspondence. We use

1 -1 correspondence for comparing sets according to how many. elements

tliey have.. This in turn gives us A:hasis for comparing' numbers. Aside-

from this, therg will be many occasions in the mathematical career of the

students, in:which 1 -1' correspondence will occur.

The studailts have been accustomed to thinking about pairs. of Objects

that are alike, for example; pairs of mittens, pairs of'shoes, pairs of

socks, and .so ono, In our examples we have avoided the use of the word

."pair" in this context because we do not want this restriction to get

in the way ofthe concepts associated with numbers and with .counting.
rry .

Inour development, we start ,with pre-number concepts that, do not require

the knowledge of numbers. .From these concepts we derive the concepts of.

numbers. Our concentration on set - comparison by equivalence is to prepare

for the concept' that if'sets are equivalent, then they generate the same

number.

The word "equivalent" may Cause difficulty for some children. However,

this may be again a matter of individual reaction. Some teachers have

'found that'some children apparently cope with this word successfully

because the word is ?Oreign to the children's vocabulary. The phrase

"as many as" is also used in conjunction with developing the notion of

'equivalence. 'The wordI in this phrase are more easily handled, but the

longer phrase demands more attention on the part of the children.. Some

children may attend to:only part of the phrase. For, example, in respbnse

to the request to produce a set with as many members as a given set, the

child may merely produce one with piny members.
.

.
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The notion of separating objects into equivalent sets or classes

also underlies our thinking of many names for a number. For example,

.1 2 3 4 5

V' b' -17'

all name the. same number, and we can think of all these fractions as being

ftthe same equivalence class. Any fraction in this class is equivalent

to Another and we may use any onedraction in this set as a representative

of the set. Usually, we choose thefraction that is reduced to lowest

;terms as the representative and consider that this represents.thanuMber%
o

But this is not always the case. For example, if we have the problem

1 '2

2 ' 3

1 2
neither the fraction-f

3
nor are convenient representatives for the numbers

. that we have JAI mind. From the set of fractions for one-half

2 3 4_ 5 .

275, . .

4

and they set of fractions for two-thirds
4

4 6 .8 10
-3-5, 3

we pick the convenient o es with common denominators to work with in

our problem.' Thus

1

2
Or

6

12 -8-12

and so on. Out Of these, the ones we consider to be the most convenient

ones to use are the ones with theleast common denominators.

QUESTION

"How does the transitive property give us a way of orde ing sets that do

not:match?"

This is in reference to, the transitive property' f "more than" or-r.

"fewer than " ( page 29). Taken out of context,,the question would be

inappropriate. For sets,that match, a transitive property applies, but

this does not give a way of ordering sets in the manner, that we have in

mind: according to the number of elements. By this criterion, one
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set that matches another cannot t:::6 to have a,higher or lower order
than the other.

If A = (a, b, c,'d, e, a

B = (ace, king, queen, jack)

C = (book, wagon)

P = 0

E.= (a, b , c),

then no two of the sets match. Comparing A with B, we see that
B has fewer members than A. So, in increasingorder of the number
of elements, We have B, A. Comparing C with B, we see that
0, has fewer elements than B. By the transitive property, C has
.fewer elements than B and B has fewer elements than A, means
C has

C, B,

order

fewer elements than A. Thus, in increasing order, we have
A, -and similarly by repeating this process we can get the

C, E, B,

VOCABULARY

As Many As (As Many Members As)* More n (Moxe Members Than)
Equivalent Sets*

Fewer Than (Fewer Members Than)*

Match*

'RN

One-to,-One Correspondence*

Pairing*

Transitive Property

'EXERCISES -.CHAPTER 2

1.. If the sets.match, show a pairing. If they 'do not, tell which set
has'fewer memberp than the other.

a. A = ( , 0, A, ) b. C = (cow, tree, blimp)

B (3C I, V, M' -0 D = (dirigible:trunk, milk)

it2. Order the sets X, Y, Z.

X = (1,.2) Y = (3, 4, 5, 6) Z.= (789)

3. Gloria is taller than Andrea, and. Mary is taller than Gloria.
Can the concept of trdnsitivity be applied here? If not, why not?
If so; what conclusion can be drawn?

4. In attempting to place the elements of .P in 4-1 correspondence with
the elements of Q, if we run out oflmembers. of P before we'run out
of elements of Q, what Ca4be said of the relationship between P
and Q?



The elements of which sets can be put in a .1-1 correspondence'

a. A.= (living human beings) '33 = (fundtioning human brains)

b. C = (social security flusters) D = (income tax returns filed)

c.. E = (consonantyin "I") F= (women who havelbeewpresident

of the U. S.)

d, G.= (the human senses) H = (normal number of toes ona.dogis

hind foot)

6. Name three ways of describing the fact that.:-A matches

SOLUTIONS FOR PROBLEMS;

a. These sets match. In fact they are Spaiisoone "natural"

pairing would be to pair each member'with:itself.

b. These: sets match. There is only one pairirig:aiflod each is a

single member. set: (23)

(232)

c. A and. B do not match. A.= (1,

Sin there is afl'elezdent"oV.,,A, -left oVer ?In any pairing,'
.

more members, :then-4 A. J,-.
Y1',

1.3,! ,ha4s more e. -

A has more membera.than'7C.

2. There maybe more than one child having. the same first name.

3. a. A = (marl , vegetable, nitnyal)
B = (carrot, plutonium, hippopotamus)

A ="(anim14legtable, miniral)

B = (carrtf7iittoniUm, hipl!opotamus)
.

b.- -A = (anipai, veglable, mileral)

C = (calkot,.plutf.onium, bests),

,

A = (animal, vege le neral)

C = (car plutonium, b ts)

c, A = (animal, vegetable, Ineral)

D = (ir8n, giraf"fe,turni,p)

A = (ani vege able eral)

= (ir fe, t aip)

01
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=

= (1,-
e,

t,

k

C -..k30.).(rn;

a e, i c

The oArder'requested B,

p D, A, or D, C.' Sinee' B and C are equivalent
-..

,

sets, they must occupy the same position in ane_ordeting.
't .

Since ,B tas fewe,members,than A. and A has fewer members

than C lit must be true that .13 Ytas fewet members than C. .
or. A

.0 'has more members than A; A has more members than

Therefore,. C' hagMore members than P.
,-

6. The increasing order of
. C`. is 13,: A, C;-. D, E.:andh F

must..be ordered EL.D, F ,because equivalent sets must'odoupy

4the same position in any-Ordering.

C. By transitivity, we can order: the_setsas

with the set that has the fewest elements.i

, C, starting

S. A. This is a case in Whi611 we cannot determine-the order of!

B and C. We.only know that both have mare members than A.



Chapter 3

WHOLE NUMBERS

LUMBER PROPERTY OF SETS

. .

.111-1e-concept'of number. is deVeloped from the concept of sets. In

Chapte we cRmpared sets on the basis of characteristics' Which they

had in common. We Alsb ordered sets, :In this chapter we shall focus

our attention on one of these common properties and develop the concept
. .

of nuMber.

Recall that sets can

4 set pf.red'balloons a

of 'colbi A set of blue

)1ocksar,e,each composed

e'compared according to different criteria.

a set of red-blocks share the common characteristic

blocks,.a set of green blocks anA,..4 set' of red

of elements which are blocks.

`..c,In%the last chapter.i.attention was given to pairing the elements of'

one-to Lonecorrespondencecan:be:,Set:up between the elements

of two,sets;they were said to be equivalent. :ForexaMple,. (Leon, Ro.4a,

Eddy) is equivalent to (8.; b, c) because their members can be paired

with none left over. It is.certainlypossible to name many other sets

,which are equivalent to these; indeed, we'could never exhaust all the

possibilities. These 'sets :share a common iuoperty; that is that.they

have the same:number of members.

Similarly the sets

b)

.

C =( B, O)
D =--(Don, Len).

are each equivalent to dny other in this list. They .s4arre;aommon

of each having two elements.

f Every set has this number property. We call this characteristic.thg -

1-humber of the.set.* It is. determine'd.by the number of elementS:inthe Set: 4

ets. which are equivalent have the same number. To simplify theterminology,.

r

,We denote -the number pioperty of a set A as- N(A) We can rephrase the!,

1stateMent that equivalent sets have the same number by'saying:

.1A shall call' this the cardinal number of the set. Cardinal number will

Oiscussed later.



IF THE SETS A AND B ARE EQUIVALENT,

THEN N(A) = N(B).
JA

;
.

Note that this does not say A = B The-statement A.= B is only true:.
if A. and B have the same)mendgers.

PROBLEMS*

Mesdribe a property whlidh the following two sets have in.common With
each other. .

D = (doll, balloon, tinker toy)

W = (block, wago )

2. Identify the number ofthesets using the notation
a. S = (b, d,/,

P= C71
:Y.

= (letters innabbreviation")

Given:

Find

a. N(A)

b. N(B).

c. N(C)

d. N(D)

A = (r, e, a, d)

B = (2, 4, 6, 8, 10 12,:14)

C = (0 b., 0, ,iOE, X)

D'= 44,4040

ORDERED SET6.

A

Frequently, the elements of It'Set present themselves in a natural order.
For instance, cost English speaking people would list the members of the. set
of v e s as (a, i, o, u). It is natural to-list the elements in this
rder because this is:the order in which they Were:learned.' It is convenient

because without undue checking one can be sure he has not'omittedany member.:

N( )-

Sofutions for problems in this chapter are on page 51:



the alphabet

w, x, Y,

'4c

natural tOcltat the merpbers of the set of letters of

In ordinary writing write this

7).

The three dots, .,., mean "and' so Win the same manner;'. They are used

to indicate the OmisSion of certain meMbers,.

Essentially, to "order" things is'to list-or arrange them'in some

particular fashion: One can then' sayOf each eieMentwhich of the other

elements it "precedes". We do this by comparing pairalof elements in.,;,'

the list and deciding, which element precedes. the other. The word
\

"precedes". may be repl ced by "above", "beloW", "shorter than", "greater

than", and so on depending on the elemenp16o be ordered:

(For example, consider the set of names

(James, Wilson, Smith, Alton)

If we order these slements alphabetically: We have

(Alton, James, Smith, Wilson)..

We call this set an ordered set.-
+-. .

STAIIDARD,4LTS.:

,Let us:etablish some ordered sets beginning

We :::ontinue

and so -Jr..

(1,

(1,

' (1,

2),

2,

27,

3),,

'3., 4),

with the set .(1).

We see that each' of these sets is a:subset of each of the following
ri

cets: 'Thus;

(1) is a subset of . (1;

(1, 2), is a subset of (`1, 2, 3),

and so on.

SD



By comparing these sets, called standard sele-We can determine which
belongs before the others in ordering these sets. For example; wesee
immediately that (1, 2,'3) belongs'before (1,.2, 3, 4, 5, 6) in Ordering
these standard sets.

PROBLEMS

For each of the rollowing sets, state Whether the elements are

'apparently ordered;.if an order is apparent, describe whs.-Night

:be the'determination:of the order.

(1, 2, 3, 4, 5)

(5, 3, 2,

(acOrdion; albatross, brain, bubble, Axmi, humbug)

d: .(student, teacher, principal, superintendent)

e. (father son, mother, dauti.h er)

f. (rather, mother, son, daughter):

h. .(5,4,.1, 3, 2)

Given an ordered set,

H =Jthumb; index, middle, ring,pinky),

a. 'Show the 1-1 .correspondence between the elements of H
and a. standard set..

b. If ='(Dorothyi Rosie, Laurie, Nancy, Susan) give-a sub:8et

of H that is equivalent to S, what is N(S)?

c. Describe how counting 9*our fingers implies,findinga set

that is' equivalent to al.standard set of nUmbernaMs.

CARDINALITY AND ORDINALITY

Let Us consider the sets

Each of these

of iny two of.the sets can be put into 1-1 correspondence. Let us
consider all the sets equiValent to any one of these given sets, for

.

example (Deane, Leo). Among the sets 'equivalentrto this set Is the

A = (Deane,. Leo)

B = (Don,.Len).

. C = (Ruth.Margaret)

D =,.(Elaine; Mabaq,

sets ate equivalent to any other; since the elements

14.4
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,

standard sets (1, 2). These sets all'possess a common property: their

equivalence to the standard set (1, 2). This property is indepenent-

of the N.ements of the, zet-....,Wp-ca11 this common property -.-the number. two

Jle:,:say the number property of th.d.set >A =.(Deame, %;e6) is 2. We write

this N(A) = 2. ,Tbisnumber property of a'Set is the cardinal number
3.

or pardinality of the set, and the number itself, a cardinal number..

S'I'.milar1y1the number property of (l)' is 1; of (1, 2, 3) 'is .8.,;

and so on.fti,f6e that the number propertyf any stdndard ,et is the

number named by the last eiemgpt in the set. The emptOet is assigned

,Oe_cardital.number zero:7Y etas = 0. The words "one ",,

,ert

.

r

ninety-nine', and ..soon, naives of_cardnal numbers.J:This concept

"can be considered entireeparatelyfroM.the phenorenonOf.order..

Muc} has been Sai$....ahOut the ordering of pets and of elements within

sets,. .in this erence, the words. 44A't and last. have been uSed. Thy

fact that we can talk about the third letter of the alphabet or :the*'

fiftieth state of the Union, depends on the ordinality-of-numbers: -.The

,words first, second, thirty - eight,. and so on are names of ordinal numbers.

These are independent of quantity and can only be considered relatiye to

some frathe of reference. That is, we cannot speak of-the third 6,arter
-4 '

in alpothall game without implying that there were a first and a seconlq.

quarter. However, the third quarter only refers to One of the implied

three quarters.' Both aspects of number 'are contained in the 'statement..

Jimmy is the third child of our seven children. 'Note that an ordinal

number requires a set of at least the corresponding cardinal number of

members. Jimmy is the third child requires at let set of three.

On the other ha" a cardinal number does not necessitate ordinality of.

its members. The number two is the property of`. egg); the

question of the ordinality of the members Of this set has occupied*.minds

for years!

: At this point, we want to remark on the oMmbn usage of languftge with

';referenqe.to the ordinaiity and cardinality.of numbers. Quite often, as

in.the.case of, "Page number is meant to be used in an ordinal sense
i-, .

even though it is.,adted as a cardinal ntmb:ki. The identification "Page 3"

refers to the th1A7d"of a'serieS of pages rather than to three' pages.
.,,, .,

,.
.

.



6.: Iden'tify.teach number in .the f011owingas'tawhather the use is
ordinilor caflinal:

a. .:There are 1 blocks On ;the..table..:

b. John is number 5 in line.::

c._ NY address is 164 Statetreet!.

d. Seventeen children are'in thiS7616:86.

6. .Joyce read Chapter '7 last night.

Identii'Yeach number in the following statements as to whether the

_us:d:S'4dinal or cardinal. ,

,
"Two of you'in''GrOub.'.Thi!ee

Will have the assignment' of lqbktng uPit

the history Of'.zeto:;iii.,therenCycOpedia You will find #at:Ofeal:'
these ' voluffies.frifAume :11;. :,Part 2 contains material'i#4t.,:.:

will. be most helpfa-tb either onea.'you.1!

FINITE AND INFINITE.SETS .
.

:The set. of cardinal numbersiwhen arranged in order, is endlesS:.

'Civenany standard set,it:is alWays.possiblat6 find another set With
larger cardinality. We say that the set of dardinal numbers is infinite.'.:

. Any nonemp*sep, ,A,. which is equivalent to a standard set is called

a.finite *Oet,i;!&06iller words, if a set A is a finite set,'its elements

can be counted,' and such a counting would comelteah;end;,:

'Eiamples of finite sets are

f./-

P = (a, b, c, x, y,

Q = (children in this class).

R = (houses on Maind.street).'

EXamples, of infinite, sets are_

S = (cardid'al numbers). =, (0, 1, 2, ,.)

T = (even.,pardinal,.numbers) =60, 2, 4, ...

ORDER OF NUMBERS'

The numbers named by the set of numerals

2,

are called the whole numbers. As in the case'n



.we have used the three dots to indicate. the omission of certain element's.
The difference in .the. use of'. the three dot.s in

(0, :"), .

is that no end is indicated in'the list of whole !hinters. The aetof
whole numbers is an irifinite

zero is omitted from the set

, 2, 3,;..

we have the set of counting numberd or natural ntmbers.
,

Th

of Counting nullifiers is

(1, 2, ...),
'Whole numbers can be,.ardered means, of' standard seta. Tw

set's such as - -

A = (a, b, c, d, e)
.Nand

B =sWC?.*.VO) X ,®

are equivalan Each of these.. sets is

''(1, 2, 3, 4, 5):
equivalent to the standard set.

Hence tha:c-ardital number of these sets is 5.

V. a standard set S has, fewer members than a...standar4 'Set 11,

then 'ciiraf.rial number of S is defined to be, less thah the cardinal
number For example 11; 31; has 'fewer menibers:thah (1, 2, 3,, 4, 5).
and hence 3' is less than 5 WaWrite this 11:..

<

The syInbol "<" meets less than"..
- .

When,the: elements of the set of.whole numbers°. is written in order) .

0, 1, 2, ..., each number is less than any number that Stcceeds. it in .the
, ,. ...

sequence. Thus
:

,

I-

0 -,:72- 3

< 5' mpay be wrisirten

,.5 >.3;

which
, ,

'read:N5 is...greeter:than
''is lass.than :.- and' is greater -than"

.

: .'



!,.
If we choose.*wo whole numbers a and b, exactly on,e'Ci the

following statenient-tis true:-
,

<'b

-b

a >
: .4.- ,,,

. PROBLEMS

t d
8. 'If .S = (b, AfjJ., j.= (1, "), and A = (a, b) r, e,

v, i., t, putlihe sets iniipereasing.order and then order

their numberS, using ..thg':;yMbel

Without'knoVring the Numbers of two .ssts, say X' and Y, .what 0

.must,be true of N(X) and N(Y)?

APPLICATIONS TO Tg0E6Nd..7
. .

.

The ;focus on. sets and other.pre-number, boncePts provides. a back-
4 '

grourid.f6 the concept of number introduced in this chapter.. If there

is a '1,-2,-;,-correspondence between the elementS of'tWO sets, then they

are saidrt6 be egliivalent and have the same cardinal. humber',Or the same

number. property. To determine. whether there is a 1-1 Correspondence.

.between the elements of taro sets,,vi'element.of one ,set id' paired with

:an element of the other set,. In?viee'of the.word pair is non- mathematical.

The two elements thatare associated forma pair.

2 For ,6ur purpose, once a pair is so determined, neither of the

eleMentsin..the pair is to bd associated with any other element, to

ii.form another pain Thus, for A = (a, b, c, And B = (.2),

0); if wq decide to pair b with D, we hair,e

rt A.,= (a, b, d')

B ( 0, *, 0, 0 )

in the attempt to get's. 1-10correspOndence, b is paired with

then b to be paired with any other member of '13. Neither 1s

4--4) be paired with any other membei% of A. Thus we cannot seek a 1-1

aorreSpondence between the members of

.4.= (a, ..4:, c, d)

= * . 0 )



1'

,
'..

Of course,* 1) may have been, selected to be paired with:,%2 at the outset,
, .

Then b is not to be paiired with .*, , or O. ,;,.:mor is .Z to
.

4

be paired with a, c, dr. d. The one-tomany and.many,-t-one .cerre'pondenee-s
. .

illustrated inthese last two diagrams as wellss many -to -many cwrespondence
e

dicussed in the.next chapter.
_, .1, 0

14 the children's books the pgrings are indicated by connefki,ng lineq

from one objeet.to another much as we have *sed the arrows on these pages.

:Special attention may need to be devoted to expAining: the meaning.of thds!

extra lines'(dotted or oth4rwiS'e) on the printed page as they maybe a

source of canfuSion. Having the chililentrace over.these lines themselves

,may be helpful. ThU4 they are actively engaged in connecting Or pairing .

the objects. For the same reason, active participation.in pairing objects

on the flannel board using yarn:to define tre. pairings will be helpful.

The pairings maY result in exhausting the elementg'of one set without

exhausting the. elements of the other. When the elements of both sets are,

exhausted simultanebusly, theset's match,.

-
Pairing then refers to the elements'and matching to the sets.

When the'sets match,,, they are said to be equivalent. Thus equivalence

implies,the same number of elements. Note that equa4 sets are always

equivalent. Sets are equal.t6nly if they have the same members; therefore,

, the number of elements must be the same. However,.itfs not true that

equivalent setsmustbecesv.rily be eqlal. (1; 2,!3,,4; 5) and

fl, 47-61---are-aqui IV -07. -1 62-1Tcapondenec.

between the elements of these two sets.

JuSt as the determination as to whether'tne number prope rtees cf,

two sets are equgl depends on -whether the sets match, the order of twq

numbers depends on.the result of set, comparison.. If A has fewer members

than .P, then, N(A) <_N(L). The characteristics ascribed to numbers

derive froth Characteristics observed for sets, nOt'the other way around..

Occasionally,, a` child may understand co!respondence and the.

process of counting,but still may* unsuccessful,bacause he cannclt keep,

track of what he has counted and what hehas not counted. Zor such a
.

child it may be necessary to actually suggd,t some systematic strategies

in attacking the problem.. For exam4e, if the objects are in a horimontal

row and he still skips aroupd counting' the objects in a random fashion:, it

,gaight'be suggested that he proceed from. left to right as in reagijag.

49



In counting, it .does not matter which element of a set is paired with

a given element in the appropriate atandard.get.1 The same number property

is obtained regardlees of the pairings used. By contrast, in_ordinal
/

xst of numbers, it,is assumed that there is a pre-determined order in the

given set as well as in the standard, aei:' That isr the elements are

ordered by associating with each element as -tbe.first, second, third element,

Elnd so on.as.the case may be. The ordinal numbers May not be in the vocabulary

of some children. However, it has-been obserVed thatInaloy children do know

_what these words mean. In such cases, apparently some incidental learning
Ahas occurred.

.1
,QUESTION

"What is the differerice between 'equivalent seta' and 'equal sets'?"

If A and -B denote sets, to say that A = B, we mean that A

'and B are both.4names for the same set. Thus, if A = (shoe, doll, wagon)

and,B= (shoe, wagon, doll), we can say that A and B. are equal:

both 4 and B consist of the same members.

On the other hand, the requirement for sets to be equivalent is less

demanding: if theoiets match, then they are equivalent. -; Thus, if

A = (shoe, doll, wagon) and C = (a, b, c), then bOth sets have the

same number property (both sets match). Hence, A is equivalent to
C even though A is not equal to. A ia equal to B, then
A and. B ,are .pecessarily equivalent. A end have exactly the.

same members, therefore the dumber of members are `necessarily equal.

If A is equiValent,to B, then A and B are not necessarily.

equdl. Having the same number of members does not mean that these sets

must therefore be identically constituted.

*.--
VOCABULARY

.Cardinal Numbers:.

Counting Numbers"

Finite.Set*.

. Greater Than*

Infinite Set*:

Less Than*

Natural Numbers*

Number Property of-a Set*

Ordered Set .

Ordinal NUMber

Standard Sets*

Whole:Numbers*
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..EXERCISES - CHAPTER 1

1., Name the number property of the sets:

a. ( 0, A, 0, 0) d. (letters in the word "deeded")

Fe" b. (24(3)
. .

e, (the number of vowels,in.."bureau")

(zero)c. f. (counting numbers le/s than 1)

. 2. Here are four sets: A = (a, b, c, d).

B = (1,

.0 = (

D = (

2,

a ,

3)

0, 7)

Identify the number properties of these sets; write all the

relationships you can, using the numbeys and the symbols <,

=, >. For exatple, 3 < 4. '

Suppose you want to explai*"wide"to someone Who speaks.no English

and you do not speak his language. How would yoU go about conveying

to him the idea, of "wide'?

44 = (man; fish, ape, amoeba, lizard)

Rewrite the elements of M in some more intuitively logical 'order

and describe-how it is determined.

5. List the elements of (9, 6, 11, 4, 3, 1, 10, 8, 7, 5, 2) in such

a way that its number can be determined without counting.

SOLUTIONS FOR PROBLEMS'

Answers may vary; e.g., they are both sets of objects which are

children's toys.

2. a. N(S) = 5

b. N(P) = 4

c. Since A =

b.

c,

d.

4

7

3

4. a. The elements are listed in increasing order..

b_i_14914e elemehts are listed in decreasing order.

b. These words are in alphabetical order.

d. This describes the posiAicins in the ascejiding hierarchy in

a school.



Males 2sted.first in decreasing order of age and then females

are liSted..n brder:W age.

f. 11wo.apparent rules:of order operate here also. .The adultS-.

are listed before the children and male takes precedence over

female. 1

g. No order is obvious, so,"not apparent" would be correct.

HoweVer, the.letters happen to be in the order in which

they.appear on'the third row of.a standard typewriter.

h. Again, no order is apparent. If the set'is renamed by the

5. a.

,Words(five, four; one, .three, two), yoU can see they are

in alphabetical order'.

H = (t uMb, ring, piiiky)

(. 2, 3, )

b The subset of. H which is equivalent to S is the'improper

subset H = (thumb, IT4ex, middle,. ring, ;IV). N(S) = 5,

as part a. 'shows.

c As one counts, he is listing the eleMents of 4 .standard set.

When, counting on our fingers, we usually touch one and say a

number. This is pairing fingers with numbers so that the

sets match. Hence we, have found a set; a set. of fingers,

which .is equivalent-to

6. a. Cardinal
4

b. Ordinal'

c. Ordinal,

d. Cardinal

e. Ordinal'

(1, 2, 3)..

1.

7. Cardinal numbers are: "two", "zero", m30", "one"; those used as

ordinal .numbers-are:' "Three", "l7";,"2".

8. The sets in InCreasing order are P, 5, A Sinde N(S) = 5,

N(P) 4 ana !N(A),. 9, the numbers must be ordered 4 <, 5 < '9.

9 Exacta one.of;'ithefollowing.p4g.tements must 'be true:

N(X) 01(Y) N(X) N(Y), N(X) N(Y)
1

.



Chapter 4

SET OPERATIONS

Suppose weAppSider the following sets:

( ,4 , 0,

:"'s6124:'= 0;413; X 8 ,*)
Let us join the.'eleMents of sets A and B to form anew set. This -

set conSists'Of all the elements belonging to A: or B or both

and is called the union or join of A and B. We write

AU B = o, 0, 0,43, 7, 8 ,*)
and read U B" as "A union B".

This process of joining two sets is called. an operation on sets. .

Since we join Just two sets at a time it is ,called a binary operation.

For our present purpose, we use'this operation of joining only IT the two

Sets do not have any members in common. The elements 'A, o; El,. are

members of A but not of B.. It is equally true that none of the. members

of B .is a member of A. If two;sets do not have anymembers'in common,

as in this case,. then we say. that the sets are disjoint sets. For example,

the set. of boys in a classroom and the set of girls in the classroom area"

disjoint sets; the union of these two sets is the set of boys and girls';
,

in the classroom.

. PROBLEMS*

1. Find the union of each pair of sets*

A = (1); B = (2)

'b. A = (1, 2); B

c.. A= (1, 2, 3); B = A T

d. D= 1, 2, 3); L.= (a, b, ci d, e)

e. L = b,41c .d, e);: D = (1,.2, 3).
y.

!kSolutions Tor problemS in this chapter are on page 66.



f:

g.

h.

a. Which of the problems above. illustrates the result of the union

of-a set with the empty set?

b% If' A is a set, what is A U ( )?

If V =, (aardvark, bear, cougar, deer, elephant, fox, giraffe,,

hyena, ibex, 'jackal, kangaroo; llama),

S

D = (1,

L -= (a,

2,

c,-d, e, 1,.2,

3); .G = ( a,

d, e); A =

3);

0,

(1,

G =

7,

2, 3,

46)

a,

'0;

0,

7,

7(5)

a)

W.= (aardvark, cougar, fox, jackal),

and X=

RROPERTIES:UNDER,

.41Ai re'56,re a few properties under ,the union operation that will.

have important bearing for us when we-Work with numbers. If

(bear,' deer, elephant, giraffe, hyena, ibex, kangaroo,

w*is W U X?

B = (Anthony, Barry, CharleS, Douglas).,.

and G = (Ethel, Florence, Grace),

then B U G = (Anthony, Barry, Charles, uglas Ethel,'

Florence, Grace}

and G U B = (Ethel, Florence, Grace, Ant ony, Barry

Charles, Douglas)..

Observe that G u.B has the same members as B:U G, hence'

G U B =BVUG

In fact, it is always.true that for any two sets it is immaterial whethe'r

the first set is joined to the :second,or the second is Oined to the first;

the-Same set results bY'the union. .-To express this fac , i,Te Say that,

THE OPERATION OF UNION OF SETS IS COMMUTATIVE.

In:other words, if A and B are, sets, the commutative property under.'.
3

the union operation states that-

A = B U

Another way to describe this is: under the union, operation, the order

___of. joining does not matter.



're:are ma4y,actual situations in which commutativitY, holds.

Thee4e.Anstances of commutative operations.. For example, it makes

:iO,difference'in what order the left.sock or the right sock is pUt on

-..lh.1i):141 result of applying the operation on both objects is identical

each : case.

Taking three red marbles froma sack; four green marbles from a

.:"sepoh4sack, and'putting these together into a third sack is another

''',illustration of a commutative operation. Taking four. green marbles

lioMr'the second sack and three red marbles from the first toput

'4ogether into the third sack would net the same result.
.

On the other hand, there are situations where the results do

',401.0q44 on the order.in which the operation is carried. out. For example,'

applying a coat of red paint on top-Of anoat,pf green paint gives a

different visual effect than reversing this ProOedure: Thereforei.it

:is pertinent-t%point,'*.!commulativity when itAlogliccur.

,.,.AnOtherproperty4,9. ,sets that is of significance fOrnuibers is
''

,.. el

'..kno*Cas:thealliaOiati!ii44)TOper*. under the union operatioile..-
Combiligionl*AnOr :Aan:.twti:setsie involVed in'thisprOpert*':ZuCh

0ka Combination Ishle,h04uliie- a :aet is specified'bytge union of two

I.Jith.a:;Set'-ta'fOrmediWiiniOnWith'still'anothet:;eet may be

obtained. To:illUttratell.P-.*=, Il, 4 3Yand L = (4; 1, c, d, e),
.

d, e

d,

If a, 0, , to D U L get

(D U L) U G Cs;:Cy, ) V, 6 )

a/=
,, t.. . .,-, !':',, ."':..7.,-:''

The parentheses around 'DU:L.-- .shoWst".that!. Ii.,`:is'-fireitAktied. to D.

As D'AJ L is a set, it, is POssiti.e.AO±idiu.,:a1.16triet:eitAci.:44.1., and

this is indicated by the union sri,th',:q.,-:ThWtieW...Sete*frheVformed
(

successively by this process. 'TIie4)PaPib litg:tileating.-new'seto

repeatedly is crucial to-theprOpertY,th4V:We-haveAn4itiHOWever,.'

the property further, epd more direptlijOiii..te,40.:*f*.W*XaMihing.the
,.

result of the repeated joininka.
70''.



If D, L, and G are as above, we see that we can get the

result of (D yL)t4G7 Letus now Derider. the union of .L and

G, and then joim:this set to JD. The union of L and G is

aL U G =
,

42') P) 5)

c, Ake:i 0, 51'

The union of D and this set is -a:41Y.

D U (L U G) = (1, 2, 3) U (a, b, e,

(1; 2, 3, a, h, c, d, e, a,

Compared with

(D'U U G. =,(1, 2, '3', a, b, c, d, cx, 0, 7, 61.
J. .

that we ha \e above,' it is clear that the same set result8-.:frnCthe two

.procedures. In general,

FOR SETS, A, B,YANTI. IT IS
,

,THAT (A U B) U C.= A U (B UiC).

f

13, 7, $51:

;What is conveyed by this property is that B may be joined with either-_

A.; :or; C first; the final result of the union of all three:Sets will

)be the same. That is :to say, B,,May;be associatedfirStYith A to

form A U B be associated arast.m1t1I: C. ,td form, BU C; .

the union of either of:these.with the remaining!tett or A as.the
; .

case.may be) is the same in both cases. this is'Wnat ye.mean when we ..

say that the union of sets is an associative,operatOn.-2 In other words,

in a:UAbn involving three setsthe 'different ways the sets are grouped

to forM unions'in the intermediate stage does not affect the final result

Because we hali,e'this option in grouping, (kU E4) U and .

U (B U.C) .denotetna aenhe'set,, Consequently, we need not specify

in the notation how the union is'to be accomplished. Tbrerfore,:the.

notation may be simplified by d °piling the parentheses in writing
,f0

A u B-u C.'

Since A u,B U C is a set, the union may be extended avin and again.

With the same kind Of analysis, it is clear that the associative property

Under the union operation is equally applicable.to more than three sets.

a



:A third property that will'be of interest to'us is one illustrated

(1 2, U ( ). As the union is.Composed of all the

element's in each ofitaittio sets, and since the empty set has no-membetd,

the union is preci*Ir (1, 2) 3). Therefore, we 'irit..st have

(1, 2, 3)V:V;=',I (1,. 2, 3)
-

is a set, then it'id true that

A:U ( ) =

In general,"if. A

This is parallel to the situatiOh in arithmetic. when

additiOnah 6S: 3 + 0 = 3.;.In fact it pain*
union.yith :the'eMpty 11akc concept frot:which'ue

Jtoydrty:;.ZO.. under addition

a, b,. c, a d)

involved in

out that the

derive the

We see that '13 .a subset of;;-A... The of all theeleMents of A

are,not.,0Aeinents of B i,:d'palle4 the relative 'complement of B to A,":.

The reiati* .poMplemeht of B ...to: A is writt9n A - B. Then

B.= LaYc;

e,read 'this. reihtie complement of B to A 1S.7the'Set. (a, c, f

-Sometimes.We shorten "relative 'complement of B to .A" to ,"the

'lement of B ".

lioti.ce that if C = A - B, then

B u 7 A.'

Notice if C is the complement of B, then B is the Pomplemeht

f C.fl .

Many examples of complements abound in actual situations. For

example, the set'ol' boys in the classroom is the complement of the set

of girls in the classroom. .These are disjoint sets that together complete

the set'of boys and girls in the plassrooth. The set of vowels and the.

set of consonants might be another example of coMplementary.sets. A

complementary set will also be referred to aS'a remainder set. This'

concept will be developed further when.we talk about subtractiOn.
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PROBLEMS

A. In:each offthe following problems, state Whichproperty or

prOPerties are indicated.

A. (a, b,. U g) = e, f, g) V(8, 1),_c)

b A U(1WC0 = A U 14.13). ,

c. .k,1 or the children in the second grade

areehildien in the cindergarten or chil4renjOts first two
grades.

Given: A = Cl, 2, 3

.
Find

a. The relative complement of A to D.

b. The relatiVecomplement of C to E.

c . (A U C) U B

d. D U C

= (4., 5), d =

and E = (4, 5, 6, 7,

If M = (the male presidents of the United States befote 1965)

and F = (the female presidents 'of tne United Btates before 1965),

then Mill F = M. State the property indicated.
..'.'

7. State which of thefollowing,actiVities are commutative.

an Go two blocks west and thetlthree blocks north.

b.' Put.aa the left:shoe and then the right Shoe. ... '

c. PUton socks and then shoes.
. .

:d.: Open the door and then walk into the room.
0".

E,'

e. .Close the hatch and then submerge the submarine.
.

f. Put on the hat and then the jacket.

SET INTERSECTION AND PROPERTIES
k.

In the unionva,thirdnetia created from two giveksetnby pooling

together all the elements in etch of the two. sets. Thereis another standard

Way'of creating a thi,rdset from two given sets, Suppose that one groUp for

reading consists of Charlie, Linus, tucyj'and,Onoopi. Suppose.also-, that

one group for mathematics consists of Lucy, Snoopy, Schroeder,Charlotte,

and Violet.; Then we have two sets,

R = (Charlie, Linus, JILIcy,'Snoopy.)

M = (Lucy, Snoopy,-Sohroeder:i. Charlotte, ViOlet).'



These sets are not LUCyand Snoopy are members of both.:
14; .

In ,fact, common members o ts, swest a natural set of elethentS77

namely, the set consie:qng, To % merriVers,hat the sets have in common.

Associated with .two 'giiveri ,s'bt ten, is the set whose' members are:-
rS

il44.i ,This
.

simultaneously eleme.ntt of,. q iren sets. st operation is' cal
the intersection of the'two ana "is :denoted by, the symbol' "
Thus,

R fl
-

As is the case of the union; ,.the interseon is alsoirii quely defined,

81v two sets,, a single set is deteeMI:ned by their 'intersection.

fl M draws on 'members R -for' its Creation,' the intersection

must necessarily be a SubSet'of. R. Likewise, R fl M must necessarily'

Oe, a subset,of M. Thush the intersection is a subset of both sets: ,

Even when two sets are disjoint, we can specify a sbt of the common

elements; this is simply
v-

the set that has no Members. Recalling that.:,the

empty set is a': subset' of every set; we see that the statement,

THE EMPTY SET IS THE INTERSECTION OF TWO. DISJOINT SETS,

is consistent ,witii'tM observatipn we have just made, namely, AIL the

intersection must:be.a subset each set: Related to:this; of, course, is
.

that the intersection of a' set and its cOmPlementls. the. etioty set This is
e . ,

`.16y virtue. bf the'? fabt that a set and its complement are disjoint .. Another
consequence of the ,fact that the intersection must be a subset of each of its
generating setei.elates',to the intersection of a subset wit its Superset

will;bethe theme of one of the problems to follow.

PROBLEMS

. 8. For each of the following problems, state whether Cf represents

the union or the intersection::

A = (1.; 2s.3, 4), B = (2i 4, 5, 9), = 4) ,

=' (1, 2, '3), B= (4, 5, 7), C {1, a, 3, 4, 5, 6,.7)

A =(1; 2, 3),.E =%(4, 7), C = ( )

A (1, 2, 3, 4, 5),, B (1,;,2, 3), C (1, 2, 3)

e. A =II, 2, = (1, 2, 3; 4), C = .(1, 2, 3, 4)

A.=..(1,: 2) 3, 41, B =. ( ), C = ( )

=, (1, 2, ,3 B 1 );,- C = (1, 2, 3, 4)

h. A (stockholders of Linus Tillports, Inc. ),

B?1 (stockholders Suban.EXports,

tqpicholders of -both Corporations)
.
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A = (stockholders of Linus ImPorts, Incj,

B =(ttockholders of $usan Exports, Itd..1;..

0 = (ttOckholders,of the Linus-Susan merger).

9. Find the intersection of each:

a.' A = (A6., h, i, k, pi m,pw, z), B =

b. A = (brown-eyed, green-eyed, blue-eyed,.jayen-ha4red, arunette,

blond, platinum),

B = (pink-eyed, blue-eyed, ox-eyed, .black-eyed red:Lheaded,

blond;. gray-haired):
'

.10. If B is.a,Subdet of 'A, what is A n B?

We have examined properties of sets under.the:.union 'opdration

view of postible applications to bumbers. Even more, we shall,find:;that.

these properties are equally applicable to sets of geometric objects';

The same is true about properties Of sets under the intersection operation,

We have seen that if

R (Charlie, Linus; Lucy, Snoopy);

and M = ( Lucy, SnoopS/-4Sehroeder, Charlotteiolet),

then. R n M (Lucy, SnoOpy).

Note that' M n R' is also---(Lucy, Snoopy)... It is obviously a POint'in.:

logic that if:_Lady and Snoopy are, 14members.common.to R and ,..t.hen
.

..

these. same elements are members that are common to M and

descriptibn of this characteristic corresponds'ta the analogous situation.

for the union:

THE OPERATION OF INTERSECTION. OF SETS IS COMMUTATIVE.

' That is to say, .under'the intersection operation, the order of intersection.

NcAr since the intersection of two'sets is a set, we may consider the

.possibility of intersecting this se-twith yet another set. To illustrate,-

suppose F =,(a, b, c, d, e, 1) and P= (b, d, f, h). Then'

F n.s , fa, b, c,. d, n (b, d,

= (b, d; f)

since b, d, and f are elements of both F and S. If T = (b, c,

e; f, h), then the intersection -of F fl s' with T would be

(Plin s) n T 7 f) n (b,

71b, f)H
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As, before, the parentheses around F and S indicate the

r grouping of these sets to fblin the first intersection, Thus, intersection

of sets may be formed .successively one upon another just as unions may be

formed Successively. Paralle-1 to our previous inlestigatiOns of the union,

we may pursue the question regarding the'restat .of grouping these same

,,.three,_set5: differently. The, question then, might be :' .-"HoW &Des F 11 (sn T)

compare with (F n s) n T27 TO,,, answer this, fiist observe that

S 11T = (b, f, n f, hi
-.

(b, f, h).

F n (S fl T) [a; b, c, bi

(b, f).

This clearly gives the same result that we obtained abdve for .(F n °s) n T.

In general,- we have the associativesproperty'under intersection::,.

FOR SETS A, B, AND CI STRUE THAT

("A n )3)'n = A a (B n

and we may simplify both of these. expressions by dropping that 'p,a.rentheses:

(Ar1B)rIC=Arl(BrIC.)=ArIBnC. .

On reflection, this must be so. In all these:'cases, the final -result

is the set of all alementS'..tbat all three sets haVe 'in common.

Set, intersections._ will "play an. important role . in our work with

nuabers andrith:geomeitinic abjectS.' paiticida.r; when we di-so'us,
Y.

the atinal. huMbers We will see that they fig:4.e very:. prominently,

such:,a'sin reducing fractions a :finding coition denominators:

PROB

11. If ,1"A 13' and C are the sets gp'ecified beloW, illustrate the

,assocyaitive Property under intersection by diffe.rent groupings ."A

.for f.,1*B f1 d.. .

s;

art

..,1.f1":10,.

=-t2,,;4,....6; 8, 10
. :

= '4, .6., 8, A.,,=.(4
: (2, 4.,-.7/!.11) . - ,

(2, 4., 7, 11), B = (3,' 9, a2) .:and.'
,

C (2, 6, '8, 10,



12. If And B. are 6isjoint, what would be the_intersection,
An B wOUld be the intersection, A fl B nc fl D fl Z?

THE PRODUCT SET

.ef

.In the t)reVious sections of this chapter 'We showed different ways that
.a3hirdset may be.created from tWo'given4sete.

1 There is another way 'of producing a set from two giVen sets. This is.
to form all possible pairs of elements of the two sets.' The formation of
such sets wial be.linked tirectly to Multiplication of numbers as well as
to graphing.

Suppose in the kindergarten Joe, Mary and Peter can play with blocks,
paints, wagon, 61 turtle. Each child may pick a toy to play with.. How

many combinations are there?

Joe -- blocks

Joe -- paints

Joe -- wagon

Joe -- turtle

Mary -- blocks

Mary -- paints

Mary -...,wagon

Mary -- turtle

Peter -- blocks

'Peer -- paints

.Peter -- wagon

Peter -- turtle

From this list we see that there are twelve combinations. In 'this

example we.haVe two sets:

C ='(Joe, Mary Peter)

T = (blocks, paints, wagon, turtle)

The combinations of child and toy form a set.of all pcissible pairs
in which the first member of the pair is an element of set C and the

second member of the pair is an element of T.

If we use initials we have

C = (J, m, T)

T = (b, p, w, t).

'All the combinations (called ordered pairs) we formed are

(J, p), (J, w), (J,

. (111 b), (M, P),. .(M, w), (M, t),

(P, b), (P, P), (P, w), (2, t)

where. (J, b) means the combination. Joe-bloCks. -The set of all these
.

.

ordered pairs forms a set. called the product set or cartesian product.
The product'set of C and T is represented by the symbol C X T.
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In the product set we haVe a set whose elements areonot
3

--61610t6 bUt ordered pairs. N6 member of a ptoductZit is-a member.ot

either generating set. IF!

,Consider

A = (ai, b, c)

140t.- (1, 2).

Then A X B is the'bet

UP ((a, 1), (a) (b, 1), (b, 2), 1), (c, 2)).

Now let us form B x A. B.X A is the set

((1) b), (1, c);(2, a), (2, b) (2, c)).

.14 The pair (1; a). is different from the. pair (a, 1).. By comparing

A x B and B,X A we see that A X B is not equal to B X A, but

A

N(A x B) =N(BX A).

BROADER CONCEPT dr A UNION

In our di'scussion of'the union, the concept of this operation
.
was made

on the basis of two. disjoint sets. The reason for this restriction _that

eventually we intend to link thp concept,to the addition of whole numbers:

Actually, the definition of union does not haVe this rearictiort.

THE UNION. OF A AND S IS THE SET

WHOSE ELENENTS.ABE MENBERS'OF A, OR

.MEMBERS OF B, OR OF BOTH A AND B.

That is to say, elements of AU B are members of atleast one of the

two sets, A, B. With this definition, the concept of a union is broadened

to encompass joining sets that have members:,in common as well as sets that

aredisjoint.
I

For example, if

A = (

then'.

*, 0, 0) and B = ( *, 0, c],en,<!)),

A U B = ( 0, 0, 0, GI, )
4

Note that the common members.* and A are not listed more than once;

.this in accord with our previous agreement on the specification of a set.

The properties that we have noted before under the restricted operation

still hold for the broader concept of union.
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. PROBLEMS

13. For each pair of sets given below, find A U B,. A n B, and A X
a. A.= (a, b; c, d, e), B = (c, e, f)

o. A = (c,erf), B.= (a, b, c, d, e)

c. A = (a, b, c), .B = (a, b, c)

d. A.= (a, la, c), B = e}

4
14. If A is a set what is A U A?

A
SUMMARY OF PROPERTIES

A. summary of the propertieS for sets that we have mentioned to this.

chapter is catalogued below, where A. and C are sets. These are

properties that will be particularly meaningful. for us when we deal with

numbers or sets of points.
1

s .

.

I. The union and intersection of sets are commutative:
4

A U B = B U A and A n B. =. B n A..

Note here.that the Order of operation is immaterial.
4

2. The union and intersection ofsets are associative :

(A U B) UC=AU (B V C) and

n B) n c.As i(13'n c).

Note here that the grouping for the operation is immaterial..

3. U ( ) =A:

APPLICATIONS TO TEACHING e.

The concept of joining disjoint sets has been reported to be fairly'

easy for.c'hildren to comprehend. Apparently, join is a'word that is used

oagesionally in other situations. Sets of buttons, koks, or other concrete

objects may be joined with other sets of any concrete obje4s to commudtcate

in a natuAL-wayhe-notion of N1 union.

The notion of a commutative opeirtion can also.be rendered in ta

concrete, form stch es books from the shelf joined with books on the desk

and Irks on the desk joined with.book qn'the shelf. In either case,

the sELe,set of books is in the Aion The words "unittne and "commutative
.

need hot be introduced at this point. "ilo

I(
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The concept of intersection is not introduced until the second

grade-and-formalized-in-the -third7grado. However, wet-can .Gee thgt it
.

has prOpertil that are analogous to those for'the union. We shall

make use of the intersection in the next chapter on geometry as well

as in our treatment of rational numbersy!

The cartesiaft product will be used here mainly in conneotfon.with
.

multiplication and with graphing whet we use'ordered pairs bf numbers

to locate points in the plane. The number line be introduced here.
along with the. presentation of whole numbers -in Chapter 7. Eventually,

Itthe stuAent will encounter the cartesian product in terms of relations

between two sets. The various. correspondences between the elements'

state which elements ofone set are related to which elements of another

set. Then, a principal undertaking will be to Study the characteristics

associated with various kinds of relations. From this will evolve the

important study of functions,. Graphing, Of course, gives a pictOrial

representation 'of relations. Thus,.graphing will be a valuable support

for establishing some of the underlying concepts of relations.

As we have hinted .1n the text, the nbtion of a relative complement

will be, applied to our development of. the concept of subtraction. In the

,rpreseAtion of thes deas, teachers have reported that they find it

.helpful to use the words ."reMove or "left over" prior.to the particular

lessons..

QUESTION

"Why is the intersection of two disjoint sets the empty set?"

'The intersection of sets consists of all members that the sets have.

in common.. Thus,_ if A = (1, 2:3, 4) and B = (2, 4, 6,. 8), then

4 11 B.= (2, 4);

2 and 4 are elementt of both A and B. Now, if C = (1, 2, 3,.4)

o

band D = c, .d), C and D are disjoint because the sets have no

. members in common. By this token,-the set consisting of elements that
L

these VA) ,gets have in common is then made up of no members. another way

of stating this is

C 11 D
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Associative

Binary Operation

CartCsian,Produce

Commutative

ComplemStt"

Disjoint Settl-

Intersettion'

VOCABULARY

OPerations

Ordered Pair

Product Set*,

Relative Complement of a Set*

RCmaiUdeiSet*

Remaining'Set*

Union"

EXERCISES - C1 PIER 4

Find. the union.Snd the intersection of A and '33 ,tf

A = (1, 2, 3, 4; 5) and B.= (1, 3,5):

b. If B is'a subset of A, what is A U B?

c. If B is a subset of A, what is A' n
.

2.' Explain how the union and the intersection of any set with the"
.-

empty set agree with your findings in EXercise. 1,

3. A recipe calls.fOr separating egg whites from egg yolks and

v. emphasizes the particular order these are :to be added. Explain
the implication of these directions for the cake- mixing operation.

State which of the following situations are associative.

a.' Putting peas and carrots together, and adding water.
b. Eating hot dog, mustard, and coffee.

c. Paying for groceries with a quarter, a dime, and a nickel.
d. Putting kerosene with-fire, and adding water.

State why the intersection of two sets is alwayd a subset of their
0.. union.

SOLUTIONS FOR PROBLEMS

1. a. (I, 2)
I Jill ,

b. (1, 2, .3) d.

c. (3.1 3)

d. (l, 3, a, b, c, d,- e,)

e. 0005.b c, d, e, 1, 2, 31 = (1, 2,,3, a, b,:c, d, e); same, as in d.
f. (a '4, c, d, e, 1, 2, 31 a,. 0 6)
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(1, 2, a, Q,. 7; 6

(a, b, c, d, e, 1, 2, 3, 6 ); same as in f .

2. a. lc

b . A U ( ) = A

% 3..

16

WUX=V

4. a. -Commutative property under union.~

b. CompUtative property under union; only order of B anq C

is changed.

c. Associative-property under union.

a. (4, 5)

b. (4, 5, 9)

c. (1, 2, 3, 4, 5,6, 7, 8)

d. ;(l,'2, 3, 4,V 6, 7,' 8)

6. The union and the empty set is M.

7. a. Normally coMmttative.; this depend's on the layout of the blocks,

also on the lOdation. If the location of the starting Point.is

3 ..blocks south of the north pole, then walking 3 blocks north,
r

the, north pole is reached. At that point,,tliere is no westerly

t.

direction; everywhere id.,south.

10.. Commutative

c.' Not commutative

d. Not.commutative

Not .commutative
r

Commutative

Intersection.
.

Union

c;" Intertection

JcL Intersection

Intersectidn; in a later section of this chapter, "Broader

.Concept-of a, Union", it will turn out that this is alSo.the

.ounion of A .and B.
*"

f., Intersedtion

.g. Union

.,- ,h, Intersection

i. Union
4'
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10. If 'B is a sulpse,t. of A, ;then: AnB=B
. (A fl B) f1 C 6,.; 8, 10, 121 n13, 6, 9, 12} = t6, 12)

A 11 (B fl' (6, 12) (6,,12)
n B)n c = (6 kfa) .141 (2..017° - 4).

Arn (Be C) = 6, ,' 10 12.) )

(An 1/B) [ 6,-=,(s rf.n (4,1:tt.. 6; 81, 10., 12)
A n (B n c) (6',

12. The empty set 'in ei-thh1'

13. 'a. A U ci d, e,: f); tfE...

A x =;((o., e)', (a, f); (b, c), (b,

f),

,te; c), '(e, ^e), -le, f)); the pairs May beaiS.ted

in a differentkorder; for exemPle,'''(d,, .e), ',ma;
11.'sted as ;thtAarst sir. However, the order of ;the. . +. .

,t within each pair must be 'observed..

4 '

..4":
A lIbk18, but4 (e, no-t, a..1;1e

4

,.e, f); A n B (e, e);

b), (c, e

(e,.(1), (f;

(3.),..(r, e )
- .

A 11 B (a, b;, c);

a,: b), (a, c), (b, a), (

c 44c);

B c, d, el; A n B =.( ,

Sc B =h(,k0d), (a, e), (b, (b d)/
1 . A CA A

&,1

. I
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Chapter 5

INITRODUCTION .TO GiONIETRY

INTRODUCTION

TheilaSt

'The ground no

thesset OperiAp

Besides bei
!gr.4'

.4-geometric fi

'extending

. ;.146 Sha I

erdealt:With opeziations on sets to form new sets
.

en.pre areAforcOaSidering sets of points using
, .

to gerierate. U.S.kinds of geometric figures:

aa
.

Vrvdiractia Which to' move at this juncture,

ert4iCof their properties will be usefUl'in

eas .hapters ahead.
N.

FoSt'helpful

,concr tbjec,

.infOrMatioa.'

GEOMETRIC SOI,I6S.,

ob66ir 11:4JA

- helpful .

ch to geometry in.a way that will be,

small ohildrea. That is, we will consider

ct from:them certain desired geometric

to,a more mathematically.logical-approach.
.

objects .such as those shown below will be

of abstract representations of figures.

ice cream one " box

'

.
Di.s6ussioaofthe characteristicS.9f these shapes facilitates familiarity

'with, some of the yocab,ulary:associated with them.

can

(a) (b)

-

'114 bove drawl;ngs%ar'eexaMples of, typical representations of

geometrio;solids There may "be: some difficulty in visa alizing the
^

Oitensional nature:ofthe:Xigures.since the drawings are restricted to

twoAimensions. The dotted;lines are included to aid perception. They
V ,

representyarts.of the figures which would not be visible from this

liantage.point.

(c)

In all OfitheSe figures, the "inside" is not filled. The object

identified. by .:(a) ablock. It iS not like a block in terms

of .being oomposed of matters such as wood. It is shaped like a block
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butois hollow. Physical,(Necta'which.can be associated with the geothetric
. _

solids illustrated are'e:::Shbeoox; (including thelid), an empty .oatmeal...

box with thelid'on, anea balloon. Thus, the word "solid" in "geometric:

solid" has the mathematical meaning of. "three-dimensional" rather than the

common usage of "firm" or "not h011ow".

Te figures (a), :(b),- and (c) .above can be abstracted from

numerous physical objects which are available to the:teaciler and children.'

Each has characteristics which convey the ideas we want to teach. For

example, by looking at and touching models of (a), children'will learn

to recognize "straight" .and"flat". objects with "corners". In (b),

they will feel a."rounded" object ,hick also has "edges" and "flat"
-

.

.

parts, but no "corners". The third figure illustrates a "ounded".SUrface

witnout edges or corners.

For our purposes in developing some basic concepts and VocabUlary,

we will concentrate. only-on Figure (a). The subject of 'geoliletric. solids

be developed; more thorougjz4y in a. later chapter.

-'4f

This !'box" (more formally; a rectangular prism) is made of six:.

flat surfaces which are. called faces of tiheprism. The .face'ct a

(a)

.geometric solid is a flat surface of the, solid.,

Where two faces meet is an edge of the solid... Each face of this

figure has a boundary of four edges. The!"skeleton" of the prism is,

made up of twelve edges.

One other characteristicwhich we wish to identify.in the above

solid is that it hasl,"cornere where three edges come together. Each

is .a vertex (plural: vertices) of. the prism: Note t'hat any two of these..

three. edges would meet at the same plade and form the same geometric figure.

,t'nus the two eigures to the right below

and



equally well locate. the vertex of the prism identified'by V.. Thus,

o

.

a vertex may be.determined by the meeting.of two edges of. a face.

A point of a geometric figure may sometimes be designated avertex,.

however; even though it, is not the meeting of two edges of a face.

This is the case, for example, with the vertex of a cone.

PROBLEMS"

.

I

1. How many faces does this solid contain?

tihich of the figures have edges. but no vertices?

(a) (b)

POINTS ANDPATHS

The basid ingredient of

called.a point. A paint may

are represented by dote 9 a

All ofthese are visual aids

of a point:

(c) (d)

all geometric configuratione is what is

be thought of as a precise location.. Points

paper or,as the end of a sharply pointed pencil.

to assist,us-n conceptualizing the mature

These representations are merely attempts to eyinbolize the idealized

geometric entity called a:point. The diffitulty'is that a_point is an

idea rather than a physical 'object, The point Which we'reprepent96y a, dot,

no Matter how emall the dat, covers. many lbations.

When we arrive at the description.ci a poirit as an exact location

this, is not a definition of a point in: the forma Sense. If we say a

pointj.s an exact locationf "exact lOcatiOnu must he understood. The

dictionary might define location as a upoeition in space". JOsition in

Space might refet us. baCkto.Point. If:none of these words were meaningfUl

to us; the dictionary wouid hardly clarify matters. However, the circularity
. -

in dictionary definitiOns is. necessary because there ii only a finite

number of words accessible in tote dictionary Eventually some word in the

chain:of definitions must reappear- ItTiicit in tlits(ds that at least one

*SOlutionato problems in this chapter Are-on page 84;



word in the chain must be simply understood so that .others mey be defined
in terms of it "Poi4t" is such a word in geometry. In a sense it. is,.
the "first" word in the vocabtzlary of geometry, arid we sa,.)- it is an

undefined term:"

Once the::conept poin derstood,.we will, again rely on..

. ,

.representing'points- by,marks. an pape#Ato facilitate discussing them.
They, are commoly labeled by capitel letters. The draw.irig represents

.

7-.point or simply P, by which a paint is underStoOd.

Every geonietric, figute is; .a .set, of points. A Curve is a set of

points, f011owed it-moving 'along a ps.tli.from one point to : another.

.0

Thus the drawing above represents a path from point A to Point. B,

or from point B to point A.' It is evident that there are other
curves from A to B; indeed there are infinitely many.

Inherdnt, in the-nOtion of' path is t'he idea of cOntinuity.-There

may not be gaps in a'path. Neither of the drawings below, is a path

from C to D.

According to the strict- mathemati9a1 definition, ?Curves do not have to be:

continuous. We, °however, will CSnsider only tho'se that are Hereafter,

by "curve" we shall mean a continuous curve. Portions of the path or

the entire oath may be Straight. As a path may be used to specify the

set of points in a curve, any of the following figures represents a curve
` from P to

. D



of3. ttate. whether or not each o- the following figures.represents a.ctlfve

from A to B.

-(a)

LINE SEGMENTS

.:(c) .(d)

Let 1.16,ep.resent two points by the dots.beloW lab496 A and .S.
- ,

We now trace several paths from point A- topoint B as Shown. aboii'e

One of the paths shoWn in the, pi6tUre is of
NO
special importance. It 1S-'

AireOt.path.from to Alislath;rel5resented below, is.

calledaline segment..

4,

:The symbOl.forthisline segment is AB or,BA ana%th0.

B are called the endpoints of AB.. A line sdgMent namMa

two endpoints. Since bdih .AB and BA denote the:.saillese0.mht,

.order.inwhidh theendpoints are named i's'irreavant.. With the"Ood66Pt

of:line, segment,. we can now identify an edge 043. rectangular prism as

aline segment.

PROBLEMS ; , .

.,.

'h ' Represents, .such tat it can .alto bp named'aS the unionof

AQ, QM,, and MB. : -
,, -



the same. AB of problem assume Q is between A and M.
iltate, all other possible relationships of one -point being between
two other'.points.

,

By AB I is imp'ied the Set of Paints-,. A, B, and all Poins between,
them. Thus the,, notion of betWeenneAs derired. However,
there may b'es need to :clarify what is meant by &between". If A, B, C,

are three points as ..indicated in (a), it may be ignite natural to

consider .that B 'ie betWeen A and C.' ,Everi if the, Points were as in
,

(-4 Or .(c) ..one might concede that BL'' is between A, -and C: But if
the three. points: were As in the ;question. as to yhiCh point is

between whiOT:other tifo points is not 'sc) easily ripsolved.

Implicit ihthe decision as to whi6h point is beiween4i'wo 'others

.-apparently is Avurve ,connecting. these pointe: If a curve: passes through
.

the three'poine as in (e);:7 ihen 'B..is between: and C:

,,

Id (f), , A it between B and C, and- in.2 1g), , C between- A and4
0 ,

B. this, of course, can be dOne for' points ,whfch we may
.

1.ave considered

sufficiently clear with isegards t e wdOnness. Thuer ii(h), A is
.

-
. _

between..." B and C. :EVentually",- a umber will be essoplated-Witkeach
. .., l' 41 ,'pair of points. We will call #0 nuMber tho. dtstance from one point .to,A

the :other.. Betweenness can then be 41Lted in terms. 14.;, dietenges.: Even -, -

-. with this definition,. a curVei s invoiied,in 'the tPnaeli.t.'of iiptance,i' Ile-

;'common sense interpretatiptiof -,betweenness; whk n?. curve i'sspecified; is
,-.., simply that:the Pointe. are to lie along aostraight4P1&th..Vihen we .say.'that

.

a Point is between twnothersiit willbe our erstanang then, that the.
, .

three points 7 are all on the eaile line segment.



LINE.

Once n line pegment.is:defined by the location of its. to endpoint ;;-.:.

and all the.pointS. betw,centhem, it determinestwO direati:Ons. If we

imagine. extending*,giVerisegment infinitelyfar ikbothaf these 'cli*edtion
. .

,

.weconceive of a geometria line

A circularity,:will be notedin.defining,,Ailine and betweennets.,4,.

line is conceived of'as.an eAenSion-of:a,pegment and a segment ,ts'defiiq,.

as'the :set co0i.sting'of. two eridpoirits and a4.1.7the:poirits between (:)ri -the

6-E:-,e1.riand, between is stated in terms af.paints on a line This

is unavoidable in definitions, Arid Ultimately, we must aCept..thes4..YriotiOri

as -OriiaitiA:041...undefined.' Thuii ingeamOry;.a line is accepted Simply.

as: cer'ta'in: set of points" .

, .

. . . ,

The drawing'represe'nts:the:linefo PQrmedbyrextending. : in both :

, .

. .

of its detertifted.direction The arrowheAds are 'used to indicate that

the extension is .We.adopt:the notation Q for he line
, .

cOntaining the, two. opints P. and Q1 in order to distinguish it from
. 1

1ine,cegment PQ Written as PQ, We could. also refer, to the.lirie,d?

W:P11,mq; TQM, :and. a0 on In general,. arty .!'two points in the set of points ".

in -the line May be' used to name it:Y.:Again," 'cqder :doe's not matter:

Itj's illiPbafit not 't'o Use this terminology. lbosely; A line has

-
no qpdpointE;*ileline.segment.M114:have':two.endpoinis.

SPACE.

-N -

No-,;,trlat_we'Lndexstand tAgeometric-coricept of'a point, Nre.m.ay

n',.y.; define. eometric-spade or simply :space as the set :of all

,,The uSiiai connotation. oi.-46eis.-0.1e set of all,pOints in a

thvee-L.dimensibn..ey.tent. :The notion of space in the more generWSense,_

as, .simply,-ai.Of all yoints,-is exteftded-to the branches of mathematics'
,4

otter than.gemetryi. Thus, in :probability, the set of all po'ssihle out

comdrof a certain definition is described as the sample'. space. ',The

meaning cf space is generally determined by the conteAjn which:it

:used. Unless otherwise indtcatedpace in. this tekt will refer to

infinite, .tKre.e-dimensional .spate.



'PLANE

Let us now consider a subset of the.setirf points of space called

a plane% Again we do not give a formal definition of the plane.

Any flat surface such as the floor, the top of the desk or a piece

of paper suggests the idea of a plane. Like the line, a plane is unlimited

in extent, That is, any flat s face:used to represent, a pl

a portion of the plane.

nay repqesents

`..!..te.,4o

bjec4VV''
and

thinking

In teaching 'children, to express the meanidg pl

as the floor; tabletops,.ana faces of blocks,should be examin?

The notion of theinfinite_extent.of:the plane is approached by

in terms of anlever-expandpg tiabletop and so on.

SiPLE'CLOSED CURVES

In bur.discussion'of egmeta, we'considered paths bapeen two. points

and Observed that each of the piths decribes a curve, . A path thus specifies

a set of'.points known as a curve from A to B. When. A and, B 'coincidej

:,the curve is said to be closed. Thus, each of the.diagrams illustrated

. represents a curve. The ones_appeering,on the second row are closed curves.

(h)

Of the closed curves that we have drawn, the first-three are

distinguished from the last two None of the first three curves crosses

itself. To describe the fact that, the curve does not cross itself, we

say it is simple. By simple closed curve we shall mean a set of points

in a plane represented by a path that begins.and enas at the'aame point _

and ',.oes not cross itself.

Simple closed curves have the important property of separating the

rest of the plane into two disjoint:aubsets;. the interior .(the subset



of the plane

closed curve

subsets:,

With the sepa

interior with

closed curve.

simple closed

and "A

enclosed bythe curve) and the exteriory,Thus;..14Ah at simple

tflere is a natural parttgioning.of a plane into three disjoint

riC
e.

the set of points that Are enclosed by the wve

the, set of points that dte onthe curve

(3) :the .set of ibintsothat are neither.enclosed b3,the

curve nor on the. curve.

PROBLEMS

6. , Which'of the

s( )

( 2 )

ration, any curve in'the plane connecting a point of the.

a point ofthe eNterior necessarily intersects thwimple

This .is illustrated-iby the more below, where C is the

curve, P is an intekor.point, Q. is an exterior pm*,
44

is a plane curve connecting P- and Q.
, ;

following curves are simple?

-'(a)

7, 37hi ch of'the Above

' (b) (d)

curves are closed?: Which i* simple andiclosed?

8. Which of the curves in Problem 6

-closed curves?

9. If the letters ol the alphabet were printed

is a .union of two si

in bloCk tvde withOut

serifs (no "taile.1?, which letters indicate simple.closed curves?

WhichAre

E3 (2 E)

simple.but not closed?
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10. a. Can a curve be drawn froM 'A; to B without crossing the given

curve? from A to C? from A to D? from A \to E?

State the reason for each case.

D
b. From which point in ye above diagram is it impossible to,draw

a curve to any other point without intersecting, the curve?

POLYGONS

An important class of simple closed curves is the class Of polygkis:

'A lilygon is a simple closed curve that is a union of line .segments. Not

all unions of segments form simple closed: curves For example, the union

oftwo.segments may again be a segment. In the picture below, th

t
union

A

of AC. and BD is 'AD; the union is simple; but not closed. Nor is

any of the figures below a. simple closed. curve although each is'a union'

of line Segments:, Triangles; quadrilatera16, pentagons,, and soon, .

are examples of polygons. Note that

For example, AB is contained in AD, is: contained in AD, AD is

contained in itself, and so on Likewie, with segments of a polygon,

agments are contained0.n segments. If a segment. of a polygon is .

contained in no segment other than itself, then this segment is.called.a.
. _

side of the polygon.. For example, PR is a side-of the triangle

Shown below:

AD- aboVe contains many other segments.

triangle quadrilateral' -pentagon

'78-

hexagon



A polygon of three sides is a trian le; foyer a quadrilateral;

five7sides, a pentagon; six sides, a h x on; and so on. The endpoints

of the sides are the vertices of the pol on) Note that each vertex

is a common endpoint of sides. Note also that the number of sides

, is the same as the number of. vertices.

CONGRUENT SEGMENTS

Congruence is a veryimportant and complex idea iith many. consequences

in geometry. We shall confine ourselves to an intuitive approach to the

dea of congruence. that is, if one geometric configuration is an exact

copy If another, we shall say that the two figures are congruent..

To decide whether two segments are congruent,,we can make a tracing

. of one and see whether or not the tracing fits exactly on the other.

' If they.fit exactly, the segments are said to be congruent.- It is, in this --

'srzrlse, :hat markings on a ruler perform the function of the movable copies

.a08egments.

PROELE46).1.
4J.

MakP a tracing of CD. Fit this copy on 0 to see whether
.

or not A2 and. CD are congruent.

D

It? Which of the follOwing pairs of linesegments are congruent?

a . P.

b.

P

Y

TRE'NUMMER LINE

Congruent segmentS give us a way of "elating numbers with points on

a line. ThisTs.the.case with thenumber line. Given:any two points on

a line, a segment is determined We'can continue.to mark ,off points, one

after another so that each.segment is.cOngruent to the first.
. .;
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.c

The points may be labelled 0, 1, 2, 4,: ih.the order of the

whole, numbers. Althoughone can assightpese,labels from right to left,

conventionally we proceedftbm left lc right. When points are labelled

thus, tne numbers associated with-the points are tailed the coordinates

of the points;. and the line together mith,its coordinates is called

the number line. /.1

7.* 1 1 1 r r r,
I

.

: 1 2 ii- 5
....

a Al e. The Numbeg Line

P A
IV

i

Tim number linethu-.-
.1.

vives. us a 1 -1 correspondence betWeen the
J ,

set of endpoints''. congr ent segments and the set of whole numbers.
ef'

That if ea.il endpOint is associated' with one and only. one whole number,
op

and each whjle number is associated with one and only one endpoint of

t;:ii, con:7rlient segments on the line. This device is quite- Usefu_l-for us.
41

It, enables us to visualize the Order of numbers by the PoSition_of

COrrespondingpoin s on the line. We will later contectleerations

in

4

arithmetic wit:- operations` on the number line.

PROBLEMS,

0
l What is the sma11.0W005whole number .represente theon the number.line

14. ;Tat can you say about every number represented by a point on the
4

number line that lies to the right of a giveh point?

APPLIGATION. TO TEACHING

4.]:_gidally, as geometric figures are made up of pail-its, one should begin

the study of geometry with the concept of what constitutes a Point.

curves,;.- planes, solids, and space's may be generated from a'point.

Desite'the.logical hazis;-the sets of geometric objects that children

have to manipulate'are sets of three- dimensional objects. These are. the,
.

,

concrete'objeQts which providehiidren with'expOiences from which. they can:

abstract the mdthematiqal concepts: For 'this reason. we begin with models of

solids, Rrom thd models, we identify faces,edges, and vertices. Once

identified, we can use these primitiVe elements to construct other; geometric



figures. Zor exfmple, "skeletons" o
certain line segmen

Far chilaren.),. the apprOachtt closed if

must be emphasizea that any closed figur 2 .

called a "solid', 'even though it is
consisting only of the faces is -a "5soad"; the';!.

ids and pri\ms are unions of ,
.

.4

is 'entirely geometric It ,

-not. lie in.ea plane it
e, a reettangular box,.

'of ,a rotangul'ar ..

Jbl:qc is a "solid":. ,

,
, a good.

Tmall. and encourage the
before beginning the ohaPt
"0:)

the,faces of the solids may
so that the children may ma

...

lay as set of . wooden.

to examine arid'

4,
i4,(4-;

-A , ,:,, -
:C.A.' .-;-:

.m.-...siv, .i. .i.,

cognizi.ng'Geome ..., -
.c.:4 V.141 is `N
k.A.A", on a large Sh c.111.-..--

1.-

,-, pap.

. of a. -solid -te -.1,ts..tra4
..`5`4,

Sr...a,re cdngruerti- It..6:'?iiigesstick models of polygons witle
used for the sane purposes,
models should prove ORpu.Tik,,,,

.'134s.ctures of ;soli,
.

rre *4.t too

1L, .

S of

.g-A

; o , . ,3dimensi.onail solids. .Most sreem,.to be interested iti...S'inailftt..1.3*.trje.ct,..,

at home which qual'kfy as cyli,ndere*rid ,4-ve c t.angu3 s.r ,:bc3Xes;an45,s.O. .

1. 1r,.. ., , . , ; . ! o,' !
Solid f.IV.res.itay be10 For' .e sample,

a.
. .. ....

triaUu/ait,;Aiainid maybe' refer?eli'tOl.as.i.a .14lOck triangtiar fac$s; but ',
. .it would npt .alpprppriate.,to D.1.1",a$ P.A.,'441-1cle or a recta ar .4'

, ' '994 4 49 4 . ,S;44 44 .

pjism as a ..rec be made 47ritv-?Ehe./ghildr
,

',,(02Eltr-Oi`gttit- Ag vs . rounded Oee, ''' ' .-.

oo,,,- ;- a-5;:e.%!if.-oh vs..: roundestdes]. reg;Iovy

;:;:t.,....?; 4,;,: ,:... d Ai.: ii.gure vs. so14.0.i4;fre..',..
. ... :.. -. -

aye -.'',,ted that Iii. t4le.:stlicly of geomeiry, each the .f2q#,i5Win
qpur. . . ..,, . . s

.. o ts, a Pain'; `,a line, jani a planc may, be*.regb.T:ded as a ii,rimiti
of M nt. By these, we cy Tie otbr geomtpi,c objectS.

a pil. 1 el ent, anfl:it: At f .oin, t

, /. .

3- pa, e serye
that we consider4poin

QUESTION -

"What is meant

ev er.-,shrinking dot fts representation of a point. concq)t:o-.? ooint

that we have in, mind is thus an alistraction from Pa* SD' ne

nealiszed conoept: that of an exact position pavitg no ldnfill,A,In other words, having no dimensions. The space t obi-14;21:11Y. drink

. ;

S , .planes; spaces; Ots'' element

. .
. P +.

-,:;1610

.r.stax4Point
-V'''....

. .

by` the statement,. °"that space i;11,1't set of.'all ocint;Sn"
. I., %.

...

Using varioup 4iShys cal' object's as m els,z;ze might move tot an :

4?



. .

as three-dimlensione.1 space can be. visualized as the set of all yossible,
pit IV.ons in -this spack. der-4141y we can imagine that wherever there
is lailoCtIttion, we 6aliOrisualie, a point; the totality of all positions

fi

thus Mills.. uit. the space -711 about us. This is an account for our
tefiaiition. of space ass. the set of. all\ points . However, the definition
is a goad deal :tore "far - reaching than this .'.'The word may have
many frs.mes.ff reference.'' . .\ ;

. , t , .*- ., It 4
if we think oV the pare'tie. as, the idealiiing oft: n eve ,expanding table,':,

' ':-., , A
w °see" thiwt, .this' too Is Corakosed of a collection _o ,,point namely, all,,...:'t4
the pOints locoated on the itaftlitted surface. : With ,refhence :t,,this surfaes-
t 44i, % 6.- ,,
the collection ofs all points serest,rict,eck is also a spate . This 'is , thti.:::4

,. Pspace we call the pIanei. Because...the planei ioccupies an &tent al4i4,a. ". 0 .
dimension* whic we might, conceive e' as leng anp. along one ,which 1,k t ,

% . -V:1 4.1* -

mi.ght -coriceie 'of, as' width, theplanet, .i,s,. said, to extend aloriEf4 two,;dimensions,4,,,,
,,, 1 , ,. : f', , '. '.*,c ,..' . , 4*Anotheii--,-wity*git sattg this is :' the p ape .k8, tW6-drMensional spb.c4-..(one../

AL,

that 'has!ino, thickne; s jik SindigiY.''Spa e in'a line is . one= fiiiional So,,,..'
...; ,

4.1"' / -' .. *s*''' ;.- `.1. / ,;.- '':space is* dependent:upon how Much, this 1,"4.1. 11;...1e,,,n,...9Prispdrsse; ...sf4t ever 04sei.';
,tile

.-'iit is set ooa1.15tp o its,. 1 us,1 teriAnoOgy and wirttout _otliq,
/ 'a-4 :"S _.,/.. qualifIcs.tiort by "s a , the', erstandingrAk the space of three

.'" i 0dimensidrls in %im*. . ro;'.., i .". '
4,

't,,..;%."

$,-...1.fwi
e ;VOCABULAY

.

4.1 0 Line egmentif '' rBetween* 1*
. ,:,

, ;
CloSed/Curve* Number Line*

Patch*
. ,

Congruence*. ' 4i,'''

Congrnient 1.4 .

congruent Segstents*tie
/
poodinates*,, $fi

-'Curve*

Edge*

Endpoints °
. .t

lantaigoii*

"Polygon *

Quadrilateral'*
Rectangular

Exterior (outside). `of, "
Simple Closed d2.1tvet

Face

Geometric Solids.

Hexagon*

'Interior (in;ide) of a

Si" loeed e*t.0%,,,,,, Spa ..;
*

,14 V...angle*

7Trtex SE' a Polygon*

Vertex Of a. Prism*

Simple iplo,sedi Curve*

Line*
. 4
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EXERCISES - CHAPTER 5

a representation of a geometric solid shaped like' the 'pyramids,

of Egypt. How many vertices does it have?

Explain the differences between .AB and AB.

How many different lines may contain:

one certain point?

one certain pair of points? ,

4. If any of the following statements are false, rewrite them col.rectly.

a. Two points determine a line segment.

b. Three points determine a Tame. .

c. The intersection of two planes may;b6 a line.

Show why PQ cannot be. divided into disjoint segments so that

the. union is PQ

P Q

6. a. In the following figure, which of the points, !A, Bi

be.tweeh the other two?

b. If three points are connected"by a curve, is one point necessarily

between the other two?

7. ;f a railroad does"not have spur tracks and does not cross.

itself, .1.rhat points form the boundary restricting the extent

of a train's journey?

b. To restrict the extent of a ship's operation, what kind of

, boundary Mightdbe required?.
, .

c. What kind of boUndary might be required to restrict the extent

of an airplane-operation?-.
vr-

d. What gilid of boundary might be required to restrict the extent

of a submarine Operation?'

8 If.one number is greater than anotheil what do you knoW about

their positions on the nipber line?

a. According to the outlines for Books K-yin Appendix'A, in

:J1-4

.

:which grades are Closed curves presented formally as .a topic?

b. In which grades are topAs .discusSed using basic concepts of
.

ng
stir

closed* curiMs?

4'

r)



4

SOLUTAOS FOR PROBLEMS

1, 7

2.. a. only. The-rounded surface intersects-the two,faceSin two edges.;

b. and d. Ave both vertices and faces; c. has neliI12450:

e. hava vertexe.s well as a face.

3., (b) and (d) represent curves from A; to B;' (4). .represents a

curve from A' to A or from 13 to B. There are two curves

'represented from A to B, hOwever; (c) is not a curve from.

A ,to. B, it is not continuous.

a M B or A 'M Q

5. Figure corresonds to the first possibility shown in 4. Q is

between A and B: ,M is between A and B; M is between

Q and B.

-(b). and (d); The:curves (a). and (c) cross themselves oace

and so are not simple.

v

7. (b) and (c); (b) is the only curve both simple and closed.

8. (c) The tW5i simple closed'curves whose union is figure (c) are

.

9 D, O are %j.mple cl. curves.
_.:

C, G, T, J, L, 14;11,"SpjI, V4, Z are simple but not Closed.

All. .,...

10. a. The curve is simPl rillosed; therefore the Plane isseparated

into 3 disjoint s ts;.,;the.interior of the curve, the curve,

and the exterior o4 the curve. .., and B' are in the interior;

D is'in the'Curve; -A and C are 'in the exterior.

Thus no curve can connect A to 13, °A to D, or A to E

without.crossing the curve. A and C can p.e connected by

such a cukve, however.

b. D. any. curve. that contains D intersects the curve at least

once, namely at D.

84
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11. AB is congiuent to

12. (b)

13. 10

14.. The coordinate of evety.:ioint
to;the right of a given

. .:
...greater thay the coordinate °I.";

the, ripoiq

O

s:

-7
857;

LI

r
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Chapter 6

NUMERATION; NAMING NUMBERS

.INTRODUCTION.

a
In this. chapter we shall considel4 explicitly -the important distinction

beiWeen numbers and. their names..; We shall concentrate our attention to

schemes for naming whole numhers;'that is, to the Problem of numeration.

'WHOLE NUMBERS AND THEIR NAMES

We know that the whole number"twelve",. for example, iaa.

of thethe Set

(a. b. c. d. e, h, i, j, k, 1"
and.OflaT1Isets equivalent to this Lt:. The word "twelve" is a name

for this number property and is not the number itself: Similarly, the

ST>18r numeral -"12Yis.another namefnr this same nuniberInis is.

true.also for the numeral '7XII", written in the Roman system of.notation.

In fact, when we write

-XII =-1

,we simPLy'are.asserting that\ "XII" apd "12" are two different names

for the same.thing;,that is, names .for thesaMenuMber.-

,. ..

As we now consider prinCiples of numeration; it ia:iMpOrtant.for

-us to.lieep clearly in mind that.nUMber and_numeral are not bytonyMoua.

A number is,a.concept, anabstraciion. A whole-number isone kind. of

number, and in various preceding chapters.wehave consideredselelited

asiectS'of the whole number system. On the other.hand, a numeration

'system is:a-syStem:for naming number8; thus, it is a-numeral:,system.

In this chapter, we hall be concerned -with, numeration Systemstor.naming

. r-41ole numbers. Our emphasis will be on the numb4names or. numerAle;"

rather than onthe:numbers. themselves. -.-

ANCihNi NUMERATION Sil'STEMS

Man, during thecOurse ofhishistory, did not always use our

familiar Hindu-Arabthnumeration-pystem. His earliest schemes involved
. 1

Tittle more'than tally marks, such-_0 ./ for //.for "two",

or



/// for .t.tihree' etc SuchJorimiive schemes far-from.effective

andeffIcienti'partieularly.when dealing with large umbers.

The Egyptians, the Chinese,-.the Greeks, the liomans.,..,and others all.,

developed numeratin.syStems'that were iMprovetents'.upon Primitive tally
fir:

schemes- HoweVer'none oAtheSe was :as sophisticated as the one Ileveloped.

by'the Hindus, which evolVed into the Hindu-Arabi,6 system:we uSe.6)d4Y.

Nevertheless; a brief%consideration of-atleast one

numeration :systems-can be-.Of interest and can give
,

-?the principleS and advantages of_1_,bur own syStert.

AI1ODIFIED_GREEK SYSTEM.,

of these earlier

appreciation' of

..1;..,.,
,''One of the Greek syStems ofcnumeratioirased twenty -seven basic 'unbolt:

thetwerity-four' letters of .the 6r4A alphabet,' an-ObSolete letter,_aad.,:'.

. .
.

.
. .

_

two letters borrowed 'from the Phoenicians. these basic symbols

named a partiCular number. Other nuMberawerenamed by Combining:bheT ic

symbols according to established prigqiples or "rule-S .

Let us illustrate a modified version Of this Greek system byllSing

as basic symbols the,tWenty-,six Utters of our own alphabetand'one_

additionaLarbitrary symbol, . The number named by each basicsymbol.-
is indicated below it.termS of our own Hindu-Arabic numerals.

Awl 1 J.= 10

13 K =

3 L = 30

D .14 =

5 N =50.

F 6 0 = 60
G 7 . P = JO.

Q = 80

R = 90

A compound symbol such as "P" is interpreted to

70 +.4, or .74

88
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e
it'our own System; SiMilarly; ..

No.,
means 50b + 20 +.8, or 528,

41. ' w"TR" means...200 +.W, :'or 290:, and
1 luF I

+. means 300: 6; or 306 41
I

in terms of our. familiar
9

numerals:
.

Notibe that the symbol ""DP" woult.befinterpreted to mean
.

. or 74.. Thus!, it _would be:truethat. g

4+70,

PD = DP

However, we shall agree that intsuoh instances weshall writ the basic

symbol for the'larger'number to the left of the basic symbol for the
S,

smaller number.' :Thus, the.preferred form would be PD instead of DP.

SimilarlY, it would be true that

Of these

would be .WKH7.,'

PROBLENt..

= .= KWH.-

six different names for the smeislumber,,the preferred form,

: 6

T: E:preSsiedch of these modified Greek, system numerals as familiar:.

HindU.Arabic numerals.

a. M . c . XK VC e.

2. Express each of these Hindu- Arabic numerals inn the "preferred fore

of modified Creel :system numeralt.

a. 3 b. 735 c. f.210
, .

bp'Ehe..Modified.:Greekisystem have. a baUc smb91 for the number.
i. .

"zero. ".' If Sci, what i'sthat symbol?
. If, not, why is such ,

syMbol..not,used.in.the,systM?

ButfWhat about naming greater than VRt, or 999?

cannotnTe Ouch numbers withoUt some 'further agreement'. or extensioll

ft .

.4

SolutIons mr:problems in this,Oapter'are,%n page 110,
.

. . .

i.

V4 ..4.

b,

, .., . ,
s .



Of 'the system. So, let Us agree that we may use. a. slash mark (/)
indicate that the number named by a'lbasic ymbol is to be multipi4ed by.
one thousand ,.(1000). : Thus,. '

. .

/ meanS 1000 X 5, or. 5000',

P means 1000 X 70, "6-r -3'700000,

aid / T means .1000"X 200,, or 200,000
r

in terms of our familiar nutheralS. In a numeral .domed of a'dollectiOn.
of 'symbols, the slash martftefers to only the one '..sYmpol that44is immediate4y,

PROBIMS

4. Exp4oss "each of these modified. Greek
Hindu-4abic.- numerals .

/BYMG"

You undoubtedly haVe notioed that the,number "ten" is of partitular
.apificanci.in. the niodified Qreek numeration System. For instance, the
zymbols' R° named multiples .of ten (10, ..., 80, .90), ,Po

and file Symbcls T, .`., . named multiple s of ten tens dr one
'nundied (100,;200; ..., 800, 900).

mv say -that "ten" is the:base of this numeration- system:' Tt
is the oasic, number that we ,u`se fbr groupings within the system..

. ,,
.1..

FEATURE'S
-
CiF.,NUMERAT pN SYSTEMS,.

Manprnimierja-tion systeMs have ;three 4eatures that,are o significance
as we turn .tO .considera.tion of our 'o.wn "Hinlu.-Arabic system. .7"

1. One of these features is that of 'base, ,a basic number. 1.n -terms
of which we effect- groupings within -the system. This nunitier may or may
not be "ten". If t.1-Le base is "te we often.refa*%U...that system as
a de imal system. ("Decimal"' is derived f'rom the Latir.Word decem
meet s "ten". ) .

a.;

2.. Another feature is a set -of basic symbols %r nuMber -names. From

'these., ell, other numerals are built., As we: shall see, ,the choice of
. .

base":,:.)ften determine the uber'f basic symhols used within numeration
system.



.

3. A third feature is a set of principles or rules for combining

basic symbols to form
,
other numerals so that every -ghole number may be

named:in terms of these basic symbols only. It is this third

feature that we find a principle that sets the Hindu-Arabic system apart

fro others thaft"preceded it.' se are referring, of course, to' the.
-

principle mf place value.

TIE !INDU-ARhIC NUMERATION:SYS=

Let us examine each of the preceding featU-res as it relates,.

specifically to our Hindu-Arabic numeration system. ,

1., The Hindu-Arabic-numeration System is'a decimal system: its

base is ten. T is is seen clearly in the fact that we interpret the
4 r

16)
number "sixty-three", for_ example, as "six tens and three (vonev)''.

J
"Sixty" itself .means "si:z.tens". This feature may be illustrated in

the groupings below for the interpretation of the minter "sixty-three".

..,

xxxxxxxx_25.)
(77,: xxxx x`x x x x

x x x,x x x x x)

'(xx:cxxxxxx-.4)

(xxxx;;:xxx-x9..

(xxx.xxxxxx).0

0

X x X,

.
1

2. .,,he .r.indu-Arabic.mumeration'system utilizos
.

or' digits: 0, 1, ''' 6, 3-, 9 such thg.t

i .

t )

ten basic symbols

naes 1?,he number zero;

_ names :the number one

2 names the number two ;

names the number four;

5 names the number five;

names the number six;

:.. 7 names the numver seven;
4

names .the numb eight;

and names the number n4:ne.

91
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Notice the inclusion of a symbol for zero: O. This is in marked

contrast to systems such as the Greek, the Roman, etc., that had no

zero symbol. The need for a zero syMbol.in the case of the Hindu-Arabic

system is related "closely to.the plade value principle discussed in the

following section. .

3. The Hindu-Arabic numeration system utilizes.a principle of.

place value, along with principles of addition and multip1ication,-in

order to combine basic symbols or digits of the system to name whole

numbers greater than nine. We are quite familiar with the fact that in

the numeral 2222, for instance, each digit 2 does not have the same

"value". The "value" of each .2 is deterLned by its place or position

in the numeral as a whole:

2 2 2 2

ones

2 tens

2 hundreds
.

22 thouSands.

Or, we may convey the.same idea in a,slightly different way:

2 2 21" 2

X.1, or 2

2 x '10, or 26.

100,: or 200

2 >4 1000, 9r 2000.

Here we.see the principle of multiplication.in association with the

ulace-value principle.
4

We frequently find it helpful touse an expanded form of .notation/

to emphasize both the multiplicative.aneadditiVe principles that a ly

to the interpretation. of a numeral such. as 222:

2222-= (2 x 1000) + (2 x.100) X 10).-1- (2.X 1).

. None of the notation's Usedthils'far has made explicit e important

role of the base, 'ten, in deter?inin,g. the "place values'''. Each place to
.

the left of the onv 1Dlace in a.numer.gl.has associated with it a "value"

that is ten times the '"value" associated with the place immediatelyto.

its right. For the numeral 2222, we can show this importantideain

92
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this way: r

2

H2 X 1

2 X 10 X1
-2 X 10 x 10 X 1
2 X 10X 10 X 10 X I

/2 = (2 X 10 ) 10 X°10) + (.2 X 10 N10) + (2 X 10) + (2,X 1).
/

/- * 7*4

'importance of the zero syMbol, 0,j In connection with our

ce-value numeration system is reflected in numerals such as 2220; '

2202, 022; 220b, and 2002.. Without the zero syMbol such numerals

could not be distinguished readily from 222 (in the case of 2220,

2202, and 2022) or from 22 (in the case of 2200, 2020, and 2002).

Without some syMbol,to denote. "not any" in a particular place,.a numeration

system with a plaqe value principle would not be feasible: In fact, the'

relatively late invention of asymbol for "not any" (a symbol for the

number pertaining to the empty set), was the reason.for the relatively

.ate creation of a place-value numeration system.

. .

The following chart may be helpful in summarizing some of the

ideas just discussed regarding our numeration system.
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.4

Aens

D.1000,o0o'

latio,oadadosbo,0

°ries

1, 000,

D'

/Or 10i tO Y10 YI07/0.

6'4

AUMIPC/J // terr's

al

ID r1040i10

10,000

10 40110x/0

ones

1,000

hun44is. lens ones;

100

1046

1

7

f I

0

Considersider the numeral 7, 205,046, which' we read as: "seven million, two hundred five thousand, forty six ".

(Notice that the ,word "and" is not sed in reading numerals for whole nunbers. Otherwise, it would not
,

,be.ci6ar, for examplC when we ,say 'tK hundred and five thousand" whether we mean" "200 + 5,000" or

"205,000" )

We nay.interpret,the,nmerai:7,05,046 to mean: :7 millions, 2 hundred; thousands, .0 'ten-thousands,

5 thousands, 0 hundreds, 4 tens, 6 "ones. Since 0, ten-thousands and 0 hundreds both result in

zero, these may be omitted in he interpretation. Thus, 7,205,046 means: 7 millions, 2 hundred-thousands,

5 thousands, .4 tens, 6 o es. We also may use an expaned notation form:

7,000,000.,+ 200,000 Jr 5,000 40 4.6, or

(7 x 1,000,000) (2"x loo,,poo) + (5 x 1,000) + (4 x lo) + (6 kl), or

"(7 X 10 X 10)(10 X 10 X 100.0)+(2x 10 X 10 X 10 X11. j10),4 (5,X 10 X 10X 10 (4X 10)+ (6 X 1).

, )00



PROBI:Egi

h.

e

CO X 2.0Q) (2 X 10):-+- .(4..4C- 1).

lo'x 10 )-< 10) (4 x l0 x 10) + (a.,x 1)

lo x 10 x x 10).+ (5, x X.10 X 10) + (6-.X11:3).;,

.6. ess each of these base ten numerals in three .ways as shown in

4-

).! illustrative exaMple - ,

le: 4257 = 4000 + 200 + 0 ..+ 7 ----

4257 = (4x 1600) + (2 x',ibo)li- (5X + (7.X 1)

4257 (.4 x x 10' X 10) (2 x.10 ).< 10) (5 x lo) + (7 x i)

a. 6184 f ,7350 a c. 40,702

116
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.11k

... GROUPING el FOURS (BABE-FOUR NUMERATION SYSTEM) 4 ,.....
-. .: _ . . .. .

t We'ar.,,a familiar With-grouping.:dbjects by tens in connection with our
... .

*.-..... ,

deciim4place=value humeraibn system. 'For insiance:

*,100r.

Suppose, for example, that instead-of grouping fOurteen objects as

' !

Nutber-o.

Tens -Ones

Base Ten

171ameral.

>COCCC.X

>COCXXXXX

=COCO=

1 xxlcoomcomc

ICI x

i)occoccoecci

ICI f

L=ccoccopc 1 =DC

1=1
DOCCOODOCCX

XXK

Etc.

1

.2

5

7

8

9

1
4

0

1 1

".1 2

r1 3

1

2

2

11.

5

T

8

9

10

12-

13..

'14

15.

23

reA

1),

Sunpo%e that we agreed to group objects by fours rather than by tens..

(5ommaccocxx) mob( .

aft

1 ten and 4 ones.

we had grouped the fourteen objects as

4) C.)mcD mx,s. 3 fburs and 2 ones.
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L,. a

. We certainly have not Changedthe number of objects: fourteen. We have
/

.

only changed the way in which these fourteen objects are grbuped:, as

"3 3 fours and 2 ones" rather,theaas "1: ten -and.: 4 ones". ..

The numeralsofour base, ten place'value-systemreflect a tens -and-

ones grouping, as..

1 4

L.-maesiz

/-Would.it be possible to'develop a base-four place-value numeration' scheme

whose numerals reflect a'fours-and-ones grouping, as

.*-1Jet us use sets of one, two, three,....; fifteen objects tosee hOw

such a bye four'numeral system might be'deveioped. This is..done in the :

chart on the opposite page which includes contrasting baSe ten'numerals.

Nofte'that in the decimal system,4each set of ten objects is grouped.

4 1 ten and the number of these groUps is indicated in the tens, place.

Thus, 23 is 2 tens and -3 ones,.and the number of ones left ungrouped

is .given by the digit ,3. The possible digits in the ones place are then

any of. the. numerals 0, 1, 2, 3; ..., 9. Similarly, groups 'of tens are,
0

regrouped into hundreds when" there are ten or more of-these groUrs, groups

of' hundreds are regirouped into' thousands when .there 'are .ten or 'more of the

hundreds, "and so on. Thus; any digit in any place ,is one of 'the numerals

0, 1, 2, 9. A similar-analysis ShowS that any digit in base-four
.

numeration. system is one of the numbers 0, 1, 2, 3 since any number;of

groups exceeding 3 wOuld'be, regrOuPed-into groups of the next largei. size.7
.

,
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. .

% ;:.

;Number of 'Base Four

:
-Numeral

.
Bele'Ten

NumpralFours
.

Ones

x , _

,..
.

..

.

. 2
l

' 2 1 2

3 .3 . 3

, 1 0
,

71.0* 24. .

F... ei
.

x: .-t
.

, 11 . .5EREE

xx 141
1:2 12, ,6mnm

.

xxx 3 13 7MEE

2
' . 0 20. '8 ...

MEa RRE

x - 2 1 21, /i:::

,
, 22 ,.. ... 10ERRE

23 11MEE ....

- 3
-- 30 12 .

EREM EEER xxxx -

iYmmxi. x .

.

31 . 13EEER

.:Xx 3 2 .. 32 14EEEm EEEE xxxx

3 3 53 15xxxx Emm xxxx xxx

We'now face a prOblem. What, for instance, does the numeral "13".

mean: "1 ten and .3 ones ". Or "1' four and 3 ones"? We commonly

resolvethis_ptoblem in,the following way.

If-we see .the.numjta.1 ":13", for example, we assume that it 'is

Written in base ten and undersiand it to-mean "1 ten_and 3. ones".

This simply follows familiar gohyention.

If, on the other handr.r wish to write a numeral to_ convey a base

four.grouping such as "1 four and 3 ones" 2g.r7ee to 'use'the form

"13'
four

The subscript Tfour": indicates the base in which-the
, _ ,

num2ral 17'wrftten.
.

. *This numeral should be read: one,
in this column would be read: one, one, base four; one, tw base -four;
one

,
three bate. four; etc. .*1/4--

zero, base fbur. Succeeding numerals

98
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On occasion, when showing the base ten numeral for thirteen, fdr.-1-\

instance, we may write
"13ten7

instead of simply "13", just to be

certain that there is no misunderstanding. ThUs, we, agree that

13 =

t

However, be sure to keep clearly in mind that

13 13four*

and that.

13
ten

13
four

.

In fact, it is true that

13ten 31fOur.

and that

13gour
ten'

PROBLEMS ' ,

7.' Write "Yesu or "No" to indicate whether each of these is,a true

statement.

a., 1
ten

c. 3ifour "four .

1:i 2
four

= 2
ten

d. 10 = 0
fo

8. Express each of these base four numerals as base ten numerals.
o

a. 21
fo b' 3Ofour

'c. 12
four.

'Express each of these base ten numerals as ebase four numeral.

a. 8 b. 1! c. 11

10. Using base four numerals:

a. Name the even whole numbers less than sixteet2.

b. Name the odd whole numbers not' greater tl'ian fifteen

FENDING, GROUPING Bi. FOURS

. Our base ten numeration system includes more than'just two places,

a tens place and a ones place. Likewise, a base four numeration system

includes more than just a fours place and a ones place. We now 'consider

an extension of grouping by fours.

symbol means is nretrmual to".
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We know that.ninety-nine is the greatest whole number that can be

names as a two-place numeral in-our base ten numeration System: 99..

,,The next whole number, ten tens, or one hundied, necessitates a new

place to the left of tens place. Thus, we name ten tens or one hundred

with the numeral-3

0 0

b..13gs

tens

ten tens or hundreds

Similarly, fifteen is the last whole number than can be named with

a two -place numeral in'a base four numeration system: 33. Thenex

whole number, four fours,-or sixteen, necessitates anew-plaCeto the

left of2fours place. Thus we name four fours or sixteen with the. 7.

numeral

0 Of

ones,

fours

four foursor sixteens

The following' diagram!may helm us interpret a numeral such as
1

232four.

1=c1 1)0=1

Ixxxxl Ixxxxl jxxxxl

Ixxxxl

lx)er-xl

jx-xxxl 1)=1
Doc

Thus, 232_
:our

2 sets -of

four fours
or sixteen

is another-name for

3 sets

of four

46
ten

232
four

6.

2 ones



The plase values associated with a base four numeration system

follow the 'same pattern as do the plebe values associated with a base

ten numeration system, as shown in this chart:

Base.X Base x Base Base x Base Base._, One

Ten x Ten x Ten
(.Thousands)

Ten x Ten
(Hundreds)

Ten One

Four x Four x Four
(Sixty-fours)

.

Four x Four

(Sixteens)
-,,

Four One

Thus, the numeral 2123
four.

may be interpreted as:

'2123 = (2 x 4 x:4 x 4) + (1 x 4 x 4) + (2 x 4) +. (3 x 1)
four

'2123f0 = (2 x 64) + (1 x 16) + (2 x 4) + (3 x 1)

23four = 16 +.8 + 321

212 four = 155 ( e 155ten)

PROBLEMS

;,,
JJ. Express each of these base four numerals as sp base ten =Feral.

a. 312four b. 1332.pour .. c. 3012four

a. 2301,
our

e. 1230four
l

OTHER BASES

a

A set of objZcts may be .grouped in terms of bases other than ten

or four. Consider, for instance, a set of 23 objects that are grouped

first by sixes,, then by sevens, and then by eights.

(0xxxx) xxxxx

'caccocc

3

3

2

sixes and

sevens. and

eights and

5

2

7

ones, or 35six

ones, or .32
seven

ones, or 27

' 1011 0 1



r
<These illustrations polint to the fact 'that the place -\/..alue pattern,

associated with base ten and'base 'our may be rplied to other base's

as well. For..instate:.

BxB*.xBxB BxBx.B. B*

10 x lo x 10 x 10

10000

10 x 10 x .10

I 1000
.

10' x.0

100 -

10

10 1
,

. 4 x 4 x-4 x 4
256

4x 4 xi+
64

4 x 4
16

4

'4,,.:

.1.

3 x 3 x 3 X- 3
81

3 x 3_ x 3
.

v 27

3 x 3 .
9

.

3

3

1

.1

2 x 2 x 2
16

2 x 2 x 2
8

2 x 2
4 , 2

1

'1

, 5 x 5 x 5 ; ( 5;
625

, 5 x 5
.1125

5 x 5
25

5 1

6 x6 x 6 x 6 _

1296

6 xEx 6
-

2:1.:

6 x 6,
36

06

6

1

1

.x,x 7 x
. 240i .

7 x 7 x 7
343.

....

47 x 7

49 - -7 .

1

"I

8 x-8 x 5 xe
4096

S x Ssx S-. 512-
.

S 5( 8
-I0 , Q

1

9,x: 9 x 9.x 9
6561

_9 x 9 x 9
.

9 x 9
81

9

9

1
.
1

. B denotes case.

.
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A Chart such as!the following one may be helpful in showing for

the Whole numbers one through twenty -five their numerals in each of
6 . 4

these bases.

BASE

'Ten

.

Nine

..,

Eight Seven Six

1

Five -Four Three

. 4.

1 1 1 1 1- 1 , 1 1 . 1

2 2 2 2 2 2 2 2 10

3 3 3 3 3 3 3' 10 11

4 4 4 1i..' 4 11. 10 11 100 2:
.

10k5 5 5 5 5 10.-- 11 12

6 6 6 '6. 10 11 12 20 k110

7 7 7, 10 -It 12 13 21. 111

8 8 , 10 11 12 13 20 22 1000

9 -10 . 11 12 13 14 21 100 1001.

10 11 12 13 .14 20, 22 101 1010.

11 12 13 117 15 21 23. 102 1011,
. ,

12 13 .14 i5 2p 22 30 110 1100.

13 14 15 16. 21 23. 31 111 1101.

14 15 . .16 20 , 22 -24 32 112
,.

1110

15 16 17 21
...

23 30 1. 33. 120 ° 1111

16 - 17 , 20 22 24 31 100 121 10000

17 18 21 23 25 32 i 101 122 10001

18 20 22 24 30 33 i 102 200 10010,

19 21 23 25 31 34 103. 201 10011

20 22 24. 26 32 40 110' 202 10100

21 23 25 i, 30 33 41' 111 210 10101.

22 24 26 O 31 34 .42 112. 211 10110

23' 25 27 32 .35 1.3 113 212 10111

'2
. 30 33 40 44 120 220 11000

25 27 31 34 .41 100 121 21 11001
; N .

As seen from the chart, the base numeral always appears as' 10 when

written in.that particular base system. Similarly, in a particdlar base

system the numeral 100 always designates the number obtained by multi-_
plying the base by itself.

o 0



1

The place-value pattern for a particular. base is used wherievetri-iwe

wish to rewrite a numeral in that base as a base ten numeral. Consider,
7--

for instance, the place-value pattern applied to the numeral 2435ni
ne

2 4 3 51

121i21:55x one

3 xnine

4 )(, nine xLnine

In'terms of this -oatArn we may

2 x nine x nine x nine

write:

2435nine = (2 x 9'x 9 x 9) (4 x 9 x 9) (3 x 9) + (5 x 1)

= (2 x 729) + (4 x 81) + (3 x 9) + (5 x 1)

= 1458 4 324 + 27 4 5

= 1814

SUppose that we were concerned with the numeral 2435
six

instead

of the numeral 2435ni
ne

Then, the base six place-value pattern would

permit us to:write:

245six = (2 x 6 x 6 x 6),+ (4 x 6 x 6) + (3 x 6) + (5 x 1)

=,(2 x 216) + (4 x 36) + (3 x 6) + (5 x 1)

= 432 + + 13 + 5

= 599

'PROBLEMS

12. Express each of these as a base-ten numeral.

a. 3421 b. 567
eightfive

c. 4653
seven

d. 20122
th ee

e. 32012
four

104

-I_



A ROTE ABOUT NOTATION
4.!

r We have been expressing various nondecimarbaidt.numerals as base

ten numeralsAfIn this work we moved directly into base tenjuSt as soon

as we expreSsed a nondecimal base numelithAn an expanded form. For
6*AA,r, .

instanceryhen ye write .

. .

2134five =(2 X 5 x 5 x 5) + (1 x 5 x 5) + (3 x 5) + (4 x.1).

we have.expressed all numerals on the right-hand siddrof the equation in

base ten notation.

If for some reason we had wished to express 2134
fiye

in an

expanded form within base five ("rather than in ba.e ten), then we would

need to use base five notation throughout the equation. We might convey

this idea by writing ;-

21 34five
(2 X 10 x 10 x 10 )five + (1 x 10 x 10).five + (3 x 10)five

+ (4 x 1)
five

ten
10five

5tenThese two notations a2e in keeping with the fact that 5

70n still othei occasions an expand d form for 2134
five

might'be

expressed as

2134
five

= (2 x five x five x five) + (1 x five x five) + (3 x five)

+.(4 x one) .

In such an instance we have expressed the base consistently. as the word

"five", thus avoiding the place-value nUterars 5
-ten

or 10
five

In.pre.cAtice we select whichever of these forms is best for a

particular purpose. 1.,

The main purpose of this chapter has been to assist in developing

a deeper understanding of our Hindu -Arabic numeration system, a decimal

or base tenssystem thatutilizeS a principle of place value. In addition

to a consideratiOn of this system itself, attention was directed to two

things that hopefully contributed to this deeper undergtariding: (1) a

'modified Greek numeration system vhiCh had no place-value principle,

-and (2) place-value numeration. systems having bases other than'ten.



This latter material should have clarified the fact that the "principles

which underl1'e ouf Hindu-Arabic numeratioh system are not determined

by the fact that its base.is ten. These principles are more general ones

which can e applied with other bases,as well. The case of the decimal

base is ut a specific illustration of a more general case.

oughout this chapter we sought to emphasize that any numeration. .

.... /
-

systeM is a scheme for naming numbers. AlthoUgh spy particular number
..

may be named in various ways, the-properties of a number are not affected

by' the way in which it 4 named. db

I .
APPLICATIONS TO TEACHING

i .
.

'Frequently we display sets of objects in ways that emphasize the

decimal base of our numeration system. For instance, we may display a.
.-

_.
set of 53 objects as 15 rows of 10 objects, and, 3...more:

1 0. ':'^'

O 0 0 0 0 0
O 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

O 0 0 0 0 0
O 0 0

r

Representations such as this do help children to think about collections

of obje42ts in terms of sets of ten "and some more", and conseqdently

direct attention toLthe decimal base of our numeration system: This is-

true of any representation that displays collections of objects as sets

of ten, regardless.of whether they are arranged in rows, in bundles,'or

0 0 0 .0
0 0 0 0
0 ,0 0 0
0 0 0 0
.0 0 0 0

whatever;

The development of the place value concept is a different and more

difficult matter. The Place value idea is associated with the numerals

we use, and may or may not be reflected in the wayin which a set of

objects is arranged.

In the numeral 53 YLhe 5 'is intens place and the 3 is in
ones place; However, when a set of 53 .objects is displayed in rows of

ten (and some ones), as above, the display itself does not suggest the

idea of a tens place and a ones place in our numeral system. But we may

move in the direction or this idea by shoving a collection of 53 objects

1o6
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in such a way that sets of 10 are placed, at the left of the ones:'

- o o 0 o o .

0 0. 0 9 0 0 0 0 0 0
O'

0 0 0 0 0 0 gd
0 O. 0 o 9 0 0 A 0 0 0 . 0 0 0

o .0 o'.0 0 . 0 0 o o :0 o o o o o oC' .- -

With some objects we often show each set of ten as a "bundle" rather

than as shown above. 'In either ionstance, we show the sets of ten to

'the left of the ooes, "hinting"- at the -place value Idea atsociated with-

numerals. We often.- further this "hinting":by using'place valu
. .. -

in which sets of ten or bundles of ten are placed in "pockets"

TENS, and-remaininesingle objects are placed in "nockets":marked

An abacus representation of. 53 clearly is associated much more

closely with the place value principle.

Here the number of tens and the number Of ones are shown by the beads .

in different positions. The-number of tens'and the number of ones also

may be- shown_ by tally marks (as at the left below). dr by digits (as at

the..right below) in appropriate positions.

)
Tens Ones

I:Ill 11 I

Tens Ones

.

3

We should be aware of the different purposes and uses that are

associated with two forms of number charts:

to

to
13
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Counting Chart

I .) 2. ..; 3 /4. 5 6 7 -8 9 10

11 12. 13 14 15 '-16 17 24 '19 20

. 21 22 '123. 24± 25 26. 27 28 29 30 ..

31 32 '33 34 35 136 37 . 38. 39 ..

.41 42 43 44 46 47 48 49._ 50

Numeral Chart

4

; 2 3 5 6 7 8

10 11 , 412 13 14 15 16 17 18 19

20, 23 24 25 26 27 28 29

'30. 31, 32 33 34 35 36 37 38 39

41 42 43 45. 46 47 48 49

TheCounting Chart highlights ten as the base of our numeration

syateli*le 7.ocate 35 for instance, 'on the Counting Chart, it

clearlY'ay be 'associated with 3 rows of 10 "blocks" and 5 'blbcks"

in the next row.

The. Numeral Chart highlights an important feature of the structure

of our:numerals. The-first row of numerals,lists the ten basic symbols

or digits used in our numeration system. The second row of numerals'

\iilcludes those with in tens place; the third row, those with 2

in tens place, etc.

Each chart has its appropriate place in an instructional program.

If a child is able to complete correctly 'an example such as

47 tens= ones

this does not guarantee that he also can complete correctly an example

114,



such as

4 tens + 7 ones

The development of an understanding of the place value principle demandS

that children explore its Meaning and apnlication with a variety of

representations and in a ,variety of ways. Suggestions made here regard-
.

ing numbers less than one hundred can be extended, of course, to apply

to numbers_ greater than ninety-nine.

QUESTION
/

c"Why do we haVe to teach'other base numeration systems?"

Contrary to the belief of many lay persons, the reason for teaching

other base numeration systems such as:base-two'nuteration is not due to-

tlia increasing influencaof.cmCputers in ous tociety..The main intention

is to sharpen our understanding of our own,decimal numeration system. It

is-not the ultimate goal that the children should be able to compute\

with facility in other numeration systems. In the attempt to understand

how and why the decimPl system works, often rote computation dulls our

sense to what occurs- in'the.domnutation bv the mere fact of being too

familiar with the mechanics.. By forcing cUrselves to zee the grouping and

regrouping that *nay be necessary in other bases, for example, we see

more.keenly the rationale behind so-called.7carrying" and "borrowing".

To illustrate, the traditional method of dealing with finding the combined,

length of an object 1 foot 8 i...he/s and another 1 foot .7 finches

is presented:

1 That inches.

.1 foot 7 incheS

2 feet 15 .inches-

One may shudder'to find youngsters "carrying ". without regard to what is

being carried:

1 .foot.8 inches s

1 -foot 7 inches

3 feet 5 inches

-Here, it is clear c Us-ihat t,:elve Of the units called-"inches" are

.

required for regrow ing into each foot, and the cotbined length should be.

2- feet 15 inches or, rerouping, 3 feet 3 inches. The associated

computation is in se twelve; 1.8t;eave.
.4-'17twelve-= 3-3twelve.

10911 5



Base (of a numeration system)*

Base-Four System

Counting Chart

Decimal System*

Digit*

ItCABULARY

Numeral*"

Numeral Chart.

Numeration System*'

Place Vglue*"

EXERCISES - CHAPTER 6

1. In each.ring write = or > or < so thattthe sentence will be

true.

a. 7000 + 600 + 50 U 7000 + 60 ± 5

b. .(3 x 1000) + (8 x 100) +,(4 x 1) 3840

c. 1234
eight

1234.

d. 4y4:,2,* .4321five

e. 4000 3 00
five

f. 312 0four (3 x 4 x 4 x 4) + (1 x 4 x 4) + 2 x 1)

2. Express each of the following as.base-ten (decimal) numerals.

a: 13 d. 103
five six

b. 24
eight n

e. 72
nine

c. 123five ,f. 1111 .

five

SOLUTIONS FOR -PROBLEMS

1. a. 47 b. 852 c. .620 d. 403 e. 999

2. a. OC -b, YLE c. 7 TJ d. .WD e. ZQH

3. No. It is not needed since the system has no place-value principle.

4. a.

.5. a.

e.

2747 b. 81330 c. 460093'

749 b. 8306 c..2751

5024 f. 70609 g: 8403

110116

d. 46083

h. 95060



6. a.

8.

9.

6184: 6000 + inn + Ro + 4

(6 )e1000) + (1 x 1000) + (8 x 10) + (4 x 1)
(6 x 10 x 10 x 10) + (1 x 10 x 10) +.(8 x 10) +(4 x 1) ,

7350:- 7000 + 300 + 50
(7 x 1000) + (3 x 100) + (5 x 10)
(7 x 1.0 x lo x 10) + '(3 'x io x la) + (5 x 10) 7

c. 40702.: 40000 + 700 + 2

--1----N (4 X 10000) + (7 >c 100) + (2 x 1)
(4 x 10 x-10 x 10 x 10) + (7 x 1,0 x 10) + (2 x 1)

Yes Yes-b. v.
(

c. Yes d. No (4 = i0 four)

9 h. 12 ,c. (6

.20four b. 3 2four c' 23four

a.

10. a. ()four, 2four, 10fo-ur,: 12four, 20four, 2 2four' 30four' 2four.3 .

b. 1fourl 3f,our' 11four, '13four' 21four' 23four' 31four' 33four

11. a. 54 b. 126 c.' 198 177 e. 108.

12. (3 x 125) + (4 x 25) + (2 x 5) +. (1 x 1) = 486

b. (5 X 512) + x 64) + (7x 8) 1- (4 x 1) = 3004:

C. (4 x 343).+ (6 x 49) + (5 x 7) + (3 x 1) = 1704

d. (2 x 81) + (1 X 9) + (2 x 3) + (2 x 1) = 179-

e. (3 x 256)' + (2 x 64) + (1 x 4) (2 x 1) = 902
t



CHAPTER 7

ADDITION

OPERATIONS

.The four basic operations of arithmetic are.addition, subtraction,

multiplication and division. A binary operation in mathematics is a way.

of associating with an ordered pair of -numbers a unique third number.

An ordered -pair is a set of two objects; not nePessarily.different, onp

of'which is designated as the first object of the pair. If dbg is the

first element pf.an ordered pair and cat is the.second element, we Usually

write (dog, cat) to indicate the ordered pair.

When we are performing the operation of addition, we associate the

number 8 with the ordered pair (6, 2). When we are performing the

operation of subtraction, we associate 4 with this same ,ordered pair,

(6, 2). For the operation of multiplication, 12 is,associated with

(6, 2) and for division, 3 is associated with (6,-2).

UNION OF SETS AND ADDITION
,

The union of disjoint sets. is the basis for the concept of adding

whole numbers.

and

.B= (x, y,

then

A U B = (a, b, c, d, e, x, y, z).

We know that N(A) = 5, N(B) = 3 and N(A U )) = 5 + 5, or 8.

The sum of the-cardinal numbers of two disjoint sets is defined

as the cardinal number of the union of the two sets.

We say

3 +.5 =_8.

113
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Three and .5. are called addends, 8 'is the.sum.

When start with two disjoint sets and form the union, we are

operating on sets: When we start with two numbers and get.a third we'

are. operating on numWs.- Addition is a Mary operation on the cardinal

numbers assoCiated
1

two ditjoint sets.

We,call addition a binary operation because we operate On just

two numbers at a time. Union is an operation on sets. .,Addition is

an operation on pUmbers. We-join (form their union) sets and we add numbers.

PROPERTIES UNDER ADDITION

Since addition is associated with the union of sets, we can expect that

propertievunder the union operatiOn may have itnlications for the
.

addition operation. We Observe first, that the union of two sets is a

set. This, of course, is crom.the definition of union. As a whole

number may be assigned to any finite set, corresponding to the fact that

THE UNION OF TWO SETS IS A SET,

we have

THE SUM OF TWO WHOLE NUMBERS IS A WHOLE NUMBER:

Both of these are statements of closure properties. The first is the

closure property of sets under union, and the second is the closure

property of whole numbers under addition. If an operation that is

defined on a set is such that the result is an element of the same set,

then we say that the set is closed under the Operation. For example,

let us consider the set of whole numbers

W = (0, 1, 2, ...)

and the omeration described by "doubling the

Then we see

the doubling .of 1 gives 2,

the doubling of 2 gives

the doubling of '3 gives 6,

number".

and so on.

4

In-other words if we perform this oper.ation on any whole number we get

its double. That i,seresult of perfoiming the operation on any whole

number n is 2 X.n.ance doubling any whole number is again a whole

number we ?ay the set of whole numbers is closed under the Operation

of doubling.
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Whe.n we add anytwo whole nuMbers the result always a whole number.
g

This means that.every time we add two-whole numbers, the result is always
. .

in-the set of whole nuMbers. , A consequence' of this property is that we

`may repeat the operation using the sum as one of the addends.
.

. .

AnOtherproperty of sets under union pertains to the order of operation.

If 'A B are sets, the result of joining A. to 'B is the same as

joining B to As We 'summarize ihis.by saying that the union is a'

commutative .operation. For any sets A and B,.

AU B. BU' A.

Corresponding to this,we have the commutative property of whole numbers

under addition. For any whole numbers a and b,

a+b=b+ a.
a

For instance, the sVm'of 3 and 4 (which may be written 3 + 4)

and the sum of 4 and 3. (written 4 + 3) both are the same number,

7. For.this reason, we can write

3 + 4 = 4 + 3.

\ ,

Both 3 4'-eda,4 + 3 name the:same number.

. We have said above that a consequenee of the closure property under

addition isthat the operation may be repeated on the sum. For example,

since .3 + 4 is a whole number we might add another whole number say,

. 9, to the sum. This would be indicated in the grouping of 3 + 4 in

parentheses, thus:

(3 + 4)-4- 9.

Since the sum 3 4.4 is also 7, the expr,ession (3 4 ) + 9 means the

sum 7-+9;. or, in other words, 16. That is to say,

(3 + 4) + 9 = 7

therefore, (3 +. 4) 9 = 7 + 9

16.

+9, d 7. + 16;

'Since 16 is atwhole 'number, this process may be continued as needed.

Thus, we mayadd.say, 5, to the result of (3 + 4) + 9 to get the

result of ((3 + 4) + 9) + 5, which is the same as 16 + 5, or 21.
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Our next concern is to pursue the concept of grouping the addends-.

Recall that for sets, the grouping under union did ngt charw the
/

resulting set. That is, union is said to be an associative operation.,

Consequently, both. (A U B) u C. and A U (B U C) give rise to the same

number property. Therefore we have the associative property of whole

numbers under addition:

c.

FOR WHOLE NUMBERS a, b, AND c,

(a + b) +c = a + (b + C))

If A has the number property 3, B has'the number property

4, and C has the.numbel' property 9, then A.0 B has the number

propetty 7 and {A U B) U C has. the number property 7 + 9, or 16.

For these same sets B U C has the number property 13 and A U (B U C)

has the'number property 3 + 13, or 16. A, B, C are of course, all

disjoint since addition is derived from the union of disjoint sets. To

trace "the machinery" behind this property,-we can display (a + b) + c

and a + (b + c) as follows:

(3 + 9 3 + (4 9)
11

II

+9
.3 .1- '3

_16 16

Witt,. the vertical equal signs indicating equality as we read vertically.

This May be interpreted as follows:

(3 +4) + 9 = 7 + 9,= 16;
.

independently 3 + (4 + 9) = 3 + 13 = 16.

Since- 16 = 16, we can follow the chain thus:

t 4) + 9 7 + + +-(4 +9).

From this, we conclude that (2;+ 14. + 9 =3 + (4 + 9). The associative

property states that this characteristic is not restricted to just the

numbers 3, 4 and 9; it. hol2ds_for ay whole numbers a, b, and c;

that is, (a + b) + c'= a + (b + c).
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.

property for closure. allows .us to. repeatedly add asmany aUmbers°

-as we wish. The commutative andzassociati4 properties allow us to do

the adding in,whichever 'way we please, as long as each. qderpdiF.,. appropriately-

accounted for. For.example; we may reouire the sum;

3 +61 t 9. + 4 + 7. 4,

-Closure states that this. can be done'i merely add any two, then, continue

to add any of the, other addends to the result and so on. ComMutativity

and associativity says that if wso choose, Wesare free to'pick appropriate
.

combinations at will. 0
. -

For illstanca, iii tl'a above exaMple, it may be. desirable to -look

for combinations of ten since adding one ten to

For the above sum,

following way: (6

and the

another is:easy for us..

we may then .Find. it convenient to group' in the

4); (3 + 7). .Hence, they scheme of our procedure

reasons permitting us to use this scheme is:

+ 9 + 4:+'7 = (3 + 6) +-(9 + 4) +7-

(3 + 6) + (4.+.9) + 7 Commutatiye Property

3 + [6 + (4:+9)] + 7 Associative Property

= 3 + .[(6 + 4) t 9] + 7 Associative Property:

= + t [(6 + 4)+ 9] CommUtative Property

,= (3.-4- 7) + (6 + 4)-+ 9 Assbciative Property

The Use of the commutative and associative properties of addition

allows4ts to go eap-frogging and add any two pairs of numbers we choose:

in finding the sum of many numbers. Use of t commutative and associative

properties also is the basis for checking addition 15y adding in the opposite

direction. For example, to add

we might add up and have

If we add down we have,

3

8Y11

[(8 4) 6] 3,

[ 3 1- 6) 4] +. 8.
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We can'show that these two name the same number because of the commutative

and associative properties..

,[(8+ 4) + 6] + 3 = (8 + 4) + (6 + 3)f

= (8 + 4) + (3 + 6)

= (3 + 6) + (8 + 4)

= (3 + 6) + +8)

= [(3 + 6) + 4] +.8

PROBLEMS*

Associative Property

.Commutative PrOperty

Commutative Property

dommutative'Property

Associative Property

1. Which of the following statements are examples of the commutative
.

property wider addition?

a. 7 + 8 = 8 + 7

b. 9 + 8 = 8 + 9

c . (7 + 8) +39 = (8 + 7)4 9

d. (7 + 8) + 9 = 7 (8 9)

e. = 87

f. (7'4' 8) 9 = 9 (7 8)

g. 7 +8 + 9-= 9 + + 7

2. Which of the following statements are exame s of the associative

property under addition?

a. (7 + 8) + 9 = (7 + 8) + 9

(7 4- 8) 9 = 7 (8 9)

c. (7 + 8) + 9 = 9 + (7 4 8)

d. 7 + 8 +9 =. (7 +. 8)

e. 7 + 8 +.9 + 10 = (7 + 8)+ + 10)

f. (7.+ (.8 9)) + '10 = ((8 + 957!+ 7) + 16t t

g, (7 + (8 + 9)) + 10 =7 + ((8 + 9) +l0),

3. Which property or properties of hole numbers under addition

I make(s) each of the folloWing'true?:

a. + 8) + (9 + = (9 +.10) t.(7 8)...

b.. (7 + 8) + ,(9 +' 10) .= C7 + + 10 9)

7 +- 8c. = 15

d. 7 + 8 + 9 + 10 7 '10

= 9 8 7

,f. '7 + (B + 9) +. 10 .=

g. 7 + 8 + 9 + 10 = (7

lr
+ 9 +, 8 +TO

.
(7 + 8) + (9 10)

+ 10) + (8 + 9)

_
*Solution.p ;to. preblems'in.thiyhapter will be found on page

ft 123

6



Another property of set's under the union operation that is significant

for the addition operation is one that is connected with thP<union of a

set with the.empty set. We have observed before that if A is a set

then t A U = A. Since the number property of the empty set is 0,

if the number property of A is a, then the corresponding statement

',tor the above observation is.:
t

FOR, ANY WI IILE NUMBER a,

a + 0 = a.

Of course,. because ofIlie Commutative property, we also have 0 + a = a.

Since addition of .0 ,to any number produces that identical number,

0 is called the identity element with respect to addition. No other

elemelit playS this same role. The property referred to above is known

as the property of zero under addition, or in short, the addition

'property of'zero.

ADDITION ON THE NUMBER LINE

The operation of addition may be vividly pictured on the number line.

Recall that the number line is.construdted by'placing marks on a line so

that the segment between any two neighboring marks is congruent to one

chosen
1

Segment. This was accomplished by laying off.Copies of the chosen

segment end to end. The chosen segment determines a unit in the number line.

0 4

To visualize 2 + 3 = 5, let us first locate 2 and 5 on the

number line.;, notice that between 2 and 5 are 3 units. Furthermore,

we can observe that between 0 and 2 are 2 units.

1 5 6. 7

This process may be more effectively indicated by arrows as illustrated

below, "showing 2 + 3 = 5.

2 3

0 1 2. 3.

2 +

5

5 6

=5
119
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The above diagram shows an addition using the number line. More than

this,. however, the example may be interpreted also as an illustration of

the closure property An arrow of 2 units "followed by" an arrow of 3

unitssis associated with an arrow of a whole number of units. Each unit

may be regarded as a step.. Thus, 2 steps followed by 3 steps result

in. a total of 5 steps. Note that the steps originate from 0 as.
Starting point and that we advance in accord with the increasing order

of.nuMbers-

Consider now the sum 3 + 2 on the number line. Here, 3 steps

are followed by 2 .steps and it is clear that we get the same result

as before. Incorporating the diagrams for. 3 + 2 and 2 + 3 5

into a single diagram,'we can illustrate the commutative property

under addition.

-4

2

2 6

The associative property can also be illustrated using the number

line. However, the process is more involved. As an example, we kno.that

3) + 4 = 2_+ (3 + 4).

The first expression, (2 + 3) + 4, may be illustrated by a simple

extenfton of ,the above method.. An arrow of 5 units results from the

2 and 3 unit arrows. To this, is abutted (attached end to end) the

!. unit arrow, thus

120
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0 1 3 i 5 6 7

1 2 + 3

(2 + 3) + 4

(2 + 3) + 4 = 9

This of course,-Tis analogous to the chain of statements

(2+ 3). 4. 4:= 5.4. 4 = 9.

The illustration for the second expression, 2 + (3 + 4), is not

as direct. For this, it may be more helpful to start with the analogous

situation fist. In 'analyzing 2 + (3 + 4), we note that 3 + 4 = 7;

tbat is " 3 + .4" and /"7" are names 'for the same numbei% Thus,

2 + (3 + 4) = 2 + 7 9. a

Accordingly, we are seeking an arrow corresponding to 3 + 4. This arrow

is then abutt4d to the arrow of 2 limits to arrive at the result for

2 (3 4).

3

1 3 *5

3 + 4

2 + (3 + 4)

3 + 4

9

4

2 + (3 + 14.) 9

The diagramming may be simplified by transferring the arrow fOr 3 + 4

directly onto the 2 unit arrow as is shown below by the dotted lines:.

12 On6



1"

2

5 10

3+

2 (3 4)

It is by incorporating the diagrams or (2 3)

2 + (3 `43: 4) = 9. that we show associativity.

.ta

2 3
IN4

401

4 = 9 and for

0 1 .2 7 9 10

2 + 3
414

(2 + 3) +

3

5

3 +

2 + (3 4)

Frequent use of the number ine to illustrate addition of whole numbers

willpromote familiarity with properties under addition. Thus the nutber:.

line.can talp a great deal in working with numbers and in answering questions

about numbers.

PROBLEMS

.4. Draw number lines to show the following addition examples.

a. 3 + 6 = 9

b. 4 + 5 = 9

c. (3 + 6) + 7 = 16

d. 3 + (6 + 7) = 16

5. Draw number lines to show that the following numbers are commutative.

under addition.

a. 3 and 5

b. -30 and 50

c. .(3 + 6) and 7

I. 2



6 Are the diagzams in Problem 5c the same as those in Problems 4c
.

and ii.d? Why. or why not?

7. How would arrows be'used to indihate advancing from one point on the

whole number line to the next point? What does this suggest about

the whole number immediately following a given whole number a?

SUMMARY OF'PROPEBTIES

The properties of addition developed so far for whole numbers

be summarized as follows, where a, b, and c arewhole numbers

1. The set of whole numbers is closed under addition.

a +.b is a whole number

Cr
2. Addition of whole numbers is a Commutative operation.

a +1D1D+ a

3. ,-'Addition of whole numbers is an as operation.

(a + b) + c = a'+ (b. +. o)

4. There is an identity element 0 for. addition

a + 0 = O. 4- a = a.

NUMBER SENTENCES

In developing the properties of numbers and various operations on

nuMbets, we Ave been using a rather special language involving:

Symbols for numbers, such as:. 1,. 5, 2, 9, 3,

Symbols for operations, such as: +, X;

kliad Symbols showing relations between. numbers,

such as: =, >, <.

A great deal of mathematics.is in the form of sentences about numbers

or number sentences as they are called. Sometimesthe sentences make true

statements as in "9 + 5 = 14", sometimes the nuMberaentences are false

"5 + 7 = 11".as in Whether it is true or false no more disqualifies

the statement as a sentence than the statement, "George Washington was

vice president under Abraham Lincoln" is disqualified as a sentence.

123
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`.Any number sentence has to have a "verb" or "verb form% The ones

we have encountered so far.are: Ilis "equal to",. "is less than", "is

greater than". The symbols which we use fdr these verbs are listed below

with a number sentence illustrating the use of each.

=; "is equal tb"; 3.+ 4 = 7

< ; "is less than"; 5 < 2 5

'),; "is greater thn"; 7 +1 > 7

As we have noted, verbal.sentences may be true: "George Washington

was the first President of the United States," or false: . "Abraham Lincoln

Was the first President of the United States." We also encounter sentences

such as: ."He was the first President of the United States." If read out

of context, it may not be known to whom "he" referred and it may thus be

impossible to determine whether the sentence is true or false. It fact,.

" was the first President of the United States" may be a test question

requiring the name of the man for which it would'be a true sentence. Such

a sentence is called an open sentence:and is of great usefulness not only

in historY tests but.in many other situations as well. Open number sentences

are the, basis of a great deal of work in arithmetic. Solving a problem

in.arithmetic, for example,, incorporates -the notion of.an.open sentence.

As an illustration, the problem

7 may be stated: ,7 + or 7 + 5 =
5

The number-that makes 7 +5. = a true statement is the solution for

+ 7
5.

S.

Open number sentences are called equations if the verb in them is "=",.

Sentences with arty of the other verbs listed above are called "inequalities".



PROBLEM

8. Write '>, or = in each blank so each mathematical sentence

is true.

a. 8 6

b. 3 +1+ 16

.c. ( 20 + 39) (30 + 20)

d. (2004 800) (200 + 700)

(1200 + 1000)e. (1000 + 1200)
,

APPLICATIONS TO TEACHING

Addition is associated with the union- of disjoint sets.

By this, the commutative property is clearly.illustrated; whether we

join -the first set to the second set or the second set to the first,

the union consists of the same members. Recording results of joining

sets using numerals may cause some difficulty without some_ intermediate

steps. For example-from the diagram'

X

X

X, X

X

X X'

X X

some children might not be able to proceed directly tothe,nutber.

sentence; 5 + 1 = 6.

A suggestion is to separate this problem into different tasks.

Use of the flannel board to displilY objects in each set will be helpful.

Then the numerals may be written below each picture with the numeral

for the union showing the addends.

5

X

125 I
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This may be followed by a review of the procedure the next day, writing

6 below 5 + 1 and finally, completion of the equation

.' Some' eachers have reported considerable success with providing

each child a specially outfitted cigar box for4thiS task. The lid of the

box is lined with some flannel material on which three frames have been

drawn. Beneath these frames appear the "skeleton" sentence, . +

. That is, the personalized flannel board.looks something like this:

each problem, the child constructs sets 'with color paper cutouts

that he has in the box, and.completes the corresponding number sentence.

wit) construction paper cutouts on which have been written various numerals.

In forming their own sentences to accompany a pictorialsituation,

some children may have difficulty getting:thie "=" symbol in the right

place. Drawing a double line between the appropriate frames may help

with theassociation of ides.6.
.

8

The-use of the number line has been reported to be extremely -helpful.

A number line is fastened to sach child's desk; the, child eventually

operates independent of this device in accord with his own rate of

development.

WESTIoN

"Why do we say that an operation is a way. of associating an ordered-pair

of numbers with a unique third number? Isntt it true that both (6,2)

and (2, 6). result in 8 for addition?"

It is true that both (6, 2) and' (2, 6) .result in the same

number under addition. This is the property which we call the commutative

property of whole numbers under addition, illustrated here by

6 + 2'= 2 + 6.
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The necessity for caasidering an operation as associated with an ordered

pair is more sharply brought to the fore when the operation is not

commutative, as for example, in subtraction, 6- 2 and 2 6 do not

have the same result, and it is a vital issue whIch of the two numbers

-Is considered the first number and which the second under the operation.

VCCAEULARY

Addend*. Identity Element*

'Addition* Inequalities

Associative Property of Addition* Number Sentences

Closure Property of Whole Numbers Ordered Pair
under Addition*

Sum*
Commutative Property of Addition*

Equation*

EXERCISES - CHAPTER 7

1.' If,the operation'of addition is applied to each ordered pair below,

what whole number is associated to each ordered pair?

a.' {3, 4) d. (24, 36)

b. (9, 8) '" e. (36, 24)

c. (16, 7) f.. (7, 16)

2. Which ordered pairs in Exercise 1 give the same number? Why?

3. Which of the following sentences are true for any whole numbers

a and .b? Why?

a. (Ii.+ b) + 0 = a + b

b. (a + b) + 9,= a + (b + 9)

c. (a + b) + c = (b + a) + c

By inspection give a whole number that makes each sentence belovi true:

a. 3 + 0 = 10

b. 7 + 16 = 0

c. D + 8'= 14

d. + 99.= 500



What properties of addition of whole numbers are illustratedhy each

of the following statements?

a. 5 + 7 . 7 + 5

b. 3 + 0 =

c. 8 + (6 + 4) . (8 + 6) + 4

d. 8 + (9 + 7) . 8 + (7 + 9)

e. 0 + 18 = 18 dm.

f. 14 + (9 7) = r9 7) + 14

SOLUTIONS FOR PROBLEMS

1. a, b, c, f

2. b, d, e, g

3. a. commutative property

b. commutative property

c. closure` property

d. Commutative property

e. na property; statement is false

.f. associative property
. .

. !

g. commutative and associative property.

4. a. 3 6

o '
2. 3, 5

9

0 1 4 5 6

9 10

y. 10

4

0 1 2 3 4 5 6 7 :8 9 10 11 12 13 14 15 16 17

3 + by 7

(3' + 6) +7

128 1,

1 16 17.



d. )r so 7____..a,
. .. .

A

a.

.
. .

.
0

a

sO1 3 4. 5
a

6 7

a

8 9 10 11

+ 7

12 13

(6 + 7

3. 5

.0 1 2 6 7 8 9

3 + 5 S.

5 .

0 1 2 3. 4. 5

+ 3

6 7 s8 9

5

b.
30

Ir

C

,

0 10 20 30 110 50 60 70 80 90

0 + .50

30.
I I I

0 10.20 30:40 50 60 70 80 90

3

. .
-

111. 3. 3:6 17
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IF
3 6

0 1 2 3 6 7 8. 9 10 11 12 1T/A.15 16'17 i8
7 ."*"... 3+6

7 + (3+6)

6.. No; 4c: and 4a 11.1NmeOsaciatiity of

commutativity'of (3 + 6) and 7.'

shows

7. Abuttipg'a... 1 unit arrow to an artov corresponding to a given number.
..

,Thistlhoini that the Uhole number after,a given whole numberl.a is

obtained by adding' 1 to a.
>

.

AS,
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HaTIPLICATION

kilfirlPitheATT-OIC.XiD THE PRODUCT SET

Multiplication of whole numbers is a binary operation which associates

Alth two whole: called factors and a unique third whole number called.

the product.:.

iul-d.:plicaticd is related to the product set of two sets just as

....."addition.iareleted-to the union of two. disjoint sets.- The product set

cif..twosets,A...:.an,resultsfrom a process.of.pairing each element of

set. 'A. .with each ele4en...-of set B. For example let

We find the product 3.:.1)y pairing each eleMint7-.of A 'with

each element of ea:sh8te3:_oW,-

:A Lair

This is the set of ordered pairs; A x B = ((a, 0), (a, A),(b, (b,

.(c, 0), .(c, A)). An orderly.. arrangement of these, pairings is called an array.

There are 6 different pairs, three rows and two columns as shown:on the

',left below.
4 0 ...; A'' 2

(a, 0) (a, A)

(b, o) A)..

(c, 0) (c,

6 different pairs

Q. 0

.3 0 0

0 ä

3 x 2 .76.

N(A x B) =.3 x 2, or

-::. ::?fi

-c->'



This cardinal number is called the product of ,3 and The product,

written 3 x 2, and read "three times two" is defined as the number

property of A X B. when N(A) = 3 and N(B) = 2. The array of A X B

may be drawn as shown on the right above. The product is the number of

dots in the array.

Notice that p.; iiriwatras the 'union of . three
. .

.,joint se s each having;. ...eiement.. In

.."
. .

0

other words, 3 X 2 may be'thoUght:.of:as the sum of three twos,

X.2 . 2 + 2.

The product 3 X 2 may alsaZhe.:thought.cif_oas the union-(4,two

disjoint sets each having threeelethints Thus, 3 X 2 may bethought

of as the sum of two threes,

3 X-2 = .3

. .

Every product involving counting numbers may be represented by

an array: Some arrays are shoi.rn;helow:'-

0 0 0

!O 0 0 0'

O 0 0 0

b000
o o o o

5 x 4 . 20

0 0 0 0. .

. (..
2 0 . 0 0 0 3.

x 4 = .8

5

60000
o 6 o

O 0 0 0

3 x 5 =1,15

On the bemis of such arsays,
P
we can thinkeof multiplication in terms

of counting sets as follows:
I

.7tIEVEN NUMBERS.--a'ANip b, AN a BY b
.,RECTANGULAR " -ARRAY OF OBJECTS CAN BE CON -.y

S2'RU0.1*) SUCH THAT THERE ARE a ROW AND':
b COLUMNS IN THE ARRAY. THE NUMBER,
a X b, IS THE NUMBER OF OBJECTS'IN THE ARRAY.

-
.1
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PROBLEMS*

Draw arrays illustrating..the following products.
a. 3 x 5 d., 7 x 3
b. 6 X 2 8 ?5 5,

c. 2 X 6 f. 9 x 4

2. Given A = b), B = (0, A, , El ). Find' A X B.', Find B x A.

What is N(A x B)? What is N(BxA)? Is A XB;= B,X A? Is. N(A X B)

N(B X A)?
-

PROPERTIES UNDER MULTIPLICATION

In he above, we have related multiplication to the produCt set.
The result of the operation of multiplication on taw pair of numbers is
called the product of the ttio numbers.

When we examined the union of two sets to get an insight .into ;the,
..

properties under addition, we observed that the union of the twO:
a set. The product set may similarly be examined to gather:some infor-

.., '
mation Qn the properties of the set of whole numbers under multiplication.
As in the case of union, the product set of two sets is also a set. It
is true that the elements of the product set are not elements of the Original
sets-7,they are ordered pairs of these elements. But, the crucial...point
is that the cartesian product is a set, and S. number ; property may be

.

assigned to this set. From this, we can intuitively..accept the closure.
property of whole'numbers under multiplication:

THE PROLUCT OF TWO NUMBERS IS A WHOLE NUMBER.

If A = (a, b, c, d) and B = ( a, 0, 7, 5, e), then the product

set A X B is a set with 20 members. We have seen that if A B,

then the cartietian,'ISgoduct B X A is different from A X B since tit
pairs are di-direa.. 7,i'or example, (a, 0) is a member of A X B whereas., ..
( 0,a) ;of B X A. By'clisplaying the members of B X A'-.ecS,:ire

had dog,:far:..;;;4,13.- we should see that B X A also has 20 members.

*Solutions to.problems will be found on page 147.

ti
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B X A = (( 0,a) a,c),

(

( 7)a), (1*10),:( 7.'0; .

i,a), ( ( 6,d),

(' , ( ( t,c), ,d)).

TherefOre., eve.n:though:.:.Ax B .54.-BXA, both produdt Sets are equivalent;'

that is, they havehe samenuniber-property. .

Notice from the above 'displays that an array of 5.disjoint sets,

each having 4 members, and an array of 1+ disjoint:se-Es, each having

5 members, have tile same number prOperty.

4_ sets, 5 members

in each set

5 sets, 4 members

in each set

Since multiplication refers; only to the number properties of sets

involved in the cartesian product, the fact that the cartesian product

is not commutative haS no bearing on the commutativity under multiplication.

It is still true'that the set of whole numbers is,commutative Under

multiplication; that is

FOR ANY: WHOLE NUMBERS A AND B, AXB=Bx A.

In the example that we(hae used, 4 X 5 = 5 X 4. A 4 by 5 array

has the same number of members as a ",5 by 4 array.

;ie array as a union of 4 disjoint sets, each having 5 members

also shows that 4 x 5 can be computed by the successive addition.

4 addends

5 4- 5 4- 5 5 ,

.that is, 5 is.used as an addend I:. times. (This is sometimes

referred to as the repeated addition description of multiplication.)
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Although multiplication of whole'numbers.may be described in terms of

repeated addition, it must be remembered that multiplication is defined

as an-operation on two numbers and is independent of addition. The
c-

operation showing the association of a third number with a given pair

may be indicated, for example, by the usual method: 4 x 5 = 20 or

simply (4,5)-420. "(4,5) -+ 20" may be read: "to 4 and 5 is

assigned pie number, 20". Likewise, addition may be so described;

thus (4, 5)-4-9 may refer to an operation of addition.

3. Draw two arrays to illustrate that 3 x 4 = 4 x 3.

4. Is it possible to draw an array to'illustrate 3 x 0? Why

or why not?'

For each opprationgiven below, state which arithmetic operation

it refers to.

a. d.

e.

f,

(1,1)

(1,1)-0'2\

(2,2) --11.4

-b. (3,5) y8

(5,0)c.. ---45

In.adding, there is a particular number a such that a + a = a;

*find this number.

'7. In multiplication, is there a number such that a X a = a?

Is there, nore than one numb% a such 1' a X a = a?

We have defined multiplication as abinary operation, that is,fit is

an operation on two numbers at a time: To find the product of three numbers,

for example 3, 4, and 5, we may multiply 3 and 4 and get the product

.12. We know that this product is a whole number because the set of whole

numbers is closed under the operation of addition. We then multiply 12

and 5 and get the product 60.

We write this

(3 x 4) X 5 = 12 X 5

= 6o.
We might.hsve multiplied 4 and 5 .getting the product 20, and then

multiplied 3 and 20 getting the product 60. We write this

3 x (4 x 5) = 3 x 20 N )

. 60.

1 .;
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In either 'case, the product is the Same; that is

(3 x 4) x 5 = 3 x (4.x. 5).

Observation of several examples'and our intuition convince us that

the order in which we associate the factors'in MultipliCation does not,

affect the product.

This is true in general.

FOR ANY WHOLE NUMBS a, b, and c

.(a X b)X c = a X (b X c)

This is called the associative property of whole numbers under multiplication.

For the example that we used above,

(3,x 4) x 5 = 12 x 5 = 6o

and

3 x (4 x 5) = 3 x 20 = 6o.

Alternately, this may be written as follows:

(3 X 4) X 5 3 x (4 x 5)

12x5 3 x 20

6o = 6o.

Showing again that (3 x 4) x 5 =3 x (4 x 5) by'virtue of the statement,

60 = 60; that is to say, both expressions name the same number.

The physical model of a box made up of cubical blocks with dimensions

a by b by c, may be used to illustrate the associativity of

multiplication.

a 'X b blodks in each vertical
slice; c vertical slices.

b X c blocks in each horizontal
slice; a horizontal slices.

Model illustrating the associative
property 'of multiplication.



The number of blocks in such-a box is) (a X b) X c and is also

a X (b X c) indicating thqt it is true that (a X b) X c = a x (b X c

PROBLEMS

8. Show that 2X3x4 = 8 x 3 involves both the commutative and the

.associative properties of multiplication.

What property or properties are involv'ed in each of the following?

a. 2 x..3 x 4 = 2 X 12 d. 2 x.5.x 4= 2 x 4 x 3

b. 2 x 3 x 4 = 3 x 8. e. 2 x 3 x 4= 3x 2 x

c. '2 X 3 x 4 =6 4 f 4x3x2=4x3x2

Just as we 'could "pick and choose" pairs of addends in a sum,

the commutative and associative properties under Multiplication allow

us to "pick and choose" pairs of factors in 'a product. For example,

100

8 x 4 x 5 x 25 x 2 = 8o00

,

Natural combinptions yielding.te.ns, laundreds, and 66 on.might make for

ease in computa ts. Tb be .sl.E.e;f9i;the same-prodixt,-one can proceed

to compute' lab.° sly as, fdllows:
.

0
-

8 x x 25

32 160 4000
/

8000 .
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.

10. Show by grouping with parentheses how axbxcxd may be
regarded.as a product involving 3 .factors instead of q+ for
each of the following:

64 2 X 3 x 4 x 5 = 2X. 3 x 20

b. 2 X 3 x4x 5 = 6 XbeX 5

-c. 2X 3 x4X 5 =2X 12X 5

The number 1 occupies, with respect to multiplication, the same
position that 0 occupies with respect to addition. Notice that,

1 x 3 3 x 1 = 3,

1 x 5 . 5 >4.1 = 5,

1 x 6 . 6 x 1 = 6,

1 x 8 . 8 x 1 = 8.

It is true that '1 X a = a for all numbers a because a 1 by a- ,

array consists of only one row having a members, and'therefore the

entire array contains exactly *a members.

5

x 5 = 5

6 8

1 (
) , 1(. . .. ... )

1 x 6 . 6 ' 1 x 8 = 8

Since 1 X a = a, the number 1 is called the identity element

for multipliCation. The property is referred to as the property of
1 under multiplication:

FOR EVERY WHOLE NUMBER a, 1 X a = a.

Because of the commutative property under multiplication, we also

have a X I = a.

While 0 does not act as the identity in multiplication, it does
have a special role. The number of members in a 0 by 3 array (that
is, an array with O. rows, each with 3 members) is *0 because the
set ofmeMbers of this array is empty. In general, if a is. a whole

number, the nuMber of members in a 0 by a array is 0; tIms;

FOR EVERY WHOLE NUMBER a, 0 X a = O.
It is also true that a x 0 = O.
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The characteristics of 0 in multiplication of "annihilating"

(so to speak) all numbers except 0= in the product has an important

'consequence. If any factor is 0, the product is 0:

. What has been done so far slows that multiplication, as -well as

addition is an operation on -410holtnuPbers which has the properties

of closure, commutativity and associativity. There isa special number'

2. that is an identity for multiplication ju as 0 is an identity

-for addition. Moreover, 0 plays a special role in.multiplicatiOn for

which there is no.correSponding property in addition.,

Thereis,another important property that-links-the operations'of

addition and multiplication. This property which we shall now study

7is the basis, for example, for the following statement:

.4 x.(7 + 2) . (4 x 7) + (4 x 2).

This example may be verified by noting that both 4 x (7-+ 2) and

(4 x 7) + (4 x 2) give the same result:

4 x (7 + 2) . 4 x 9 = 36,

(4x7) 7) + (4 28 + 8

and

36.,

k.Tie-property is called the distributiVe.prOpertyjof multiplication over

'i.ddi-Efoa.iTne distributive property states"that.if a, b and .c are

any w)Cle,nuPbers, then

a x (b + c) . (a x b) + (a x c)

The .distributive property, may be illustrated by considering an a

by (b + c) array.



It is true that this array is formed from an a by b array and an

a by c array.

a

b

a

array An a by c array

Cons uantlyi the number a X (b + c) of members in the large array

is th sum of -(a x b) and (a x c),. the numbers of members of the

sub.4ts. 12a.:t is, a x (b + c) = (a x b) t (a x c).

Since-multiplicationiis commutative,' both the "left hand" and .

the "right hand" distributive properties hold, that is,

Left hand: a x (b + c). = (a X b) + (a X c), and

Right hand: (b + c) x a = (b x a) + (c X a).

For example, by these distributive properties,

Left hand: 3 x (5 + 8) . (3 x 5) + (3 x 8), and

Right hand: (4 + 7) k 2 = (4 x 2) + cr7;x7,2).

Recalling that when we say A = B we mean A andboth name
the same thing, then if A = B, ft really makes no difference whether

we write A = B or B = A. With .this in mind, since the left hand
.

distributive property says that a >((b + c) and (a x b) + (a x c)

both name the same number, the statement

ax (b + c) = (a X b) + (a:X

. can equally. well be written as

For example,

(a x b) + (a x c) =a X (b +

'"

(3 x 5) + (3 X 8) =3 x (5 + 8).

Similarly, the right hand distributive property may .be expressed as e er

Or

(b + c) x a = (b x a) + (c X a)

(b,x a) + (c x a) = + c) x a .
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For eXaMple.

4'

(4 x 2) + (7 X 2).= (4 + 7) x 2.

The distrib6tive property. Is. very important as it is the basis for

computing 4ie product of two nubers.

.Left hand: (5 x 4).+ (5 x 6) = 5x(4 +6)'
= 5 x 10 = 50; also

Right hand: (7 x.9) (3-X 9) = (7 + 3) x 9

. 10 x 9 = 90.

The convenience may be further illustrated by the following examplei:

900;

= 850;

(854 X 673) + (146 x 673) = (854 + 146) x 673 = 1000x673 = 673,000;

(84 x 367) + (84 x 633) =84 x 1000 = 84,000.

PROMEMS

(9 x 17)

(24'x 17)

+ (9 x 83) =.9

+ (26 x 17) =

)( (17 + 83)

(24 + 26) x

=

17

9 x.100 =

= 0 x 17

11. Use the distributive property to compute each of the following:

a. (57 x 7)+ (51 x 93)

b. (57 x 8) + (57 x 93) [Hint: 8 . 7 17

12. ShoW that (57 x 5) +.(57 x 5) = 5D'x 10 by the diStributive

property.

One might question whether addition distributes over multiplication.

That is, is it always the case that

a + (b x c)= (a + b) x (a + c)?

This woul&be false if any set of numbers a, b and c can be found

.that would disprove the statement. For example, a = 1, b = 3,, and

c = 2imaybe tried. For these values,

a + (b x c) = 1 + (3 X ).= 1 + 6 = 7; but

(a + b) x ?a + = (1 + 3) x (1 + 2) = 4 x 3 = 12

*:it'cannat be stated that a + (b x c) is always equal to

(ax + (a x c).

ti
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SUMMARY CF PROPERTIES

The properties of multiplication developed so far for whole numbers

may be summarized as follows, where a; b, and c are whole'nuMber1,-.

1. Whole numbers are CLOSEDunder multipliCation:

a x b is a whole number.

,2. ,MbltiplioatiOn is a COMMUTATIVE operation:

a X b = b

3. Multiplication is an ASSOCIATIVE7Operatia:'

(a X b) X C = a X (b X c).

1.. Theie is an IDENTITY element 1 for multiplication:

a x 1 = a. .

5. Multiplication is DISTRIBUTIVE over addition:

- a x (b +.C) = (a + (a X

6.. Zero has a special multiplication property:

0 x a = O.

MULTIPLICATION USING THE NUIVIR UNE

.Through the interpretation of multiplication as repeated addition,

multiplication may be illustrated on ,the number line. For example,

3 x 1, means 3 addends, each addend being 1.. That is,

3 x = 4 + + 4.

Therefore, this may be represented. by 3 successive arrows as shown below:

14.
14.

10 11 12;,..

12

3 x 4 = 12

14



On the other hand, .4 .x 3 means 1 addendS+of

VII lineis as follows:

3 3 3 3

The representation

0 1 2 3 1!. 10 11 12

12

= 12

As.-Wecan see, the two representations above areAifferent;-however,

both of theseyieldtlie*-Simereault.. BycombininetheSe two in a single

Y::tikagiztaL we illustrate the comMutative Properter multiplication

/
When

more'

than two factors are involvedrtliis too may be illustratgd,'

For example.kto show (2 X 3) x 1., we have the following.

0 1 2 3 4 5 6 12 18

2 X 3 2 X 3

(2 x,3),5(...11.

2 x 3.

2X3) 5( 4 = 24

V.1

0

/Likewise, 2 X (3 x 4) may be shown by obtaining two (3 X 4) "arrows"
and abutting them. By combining the diagrams for: (2.X 3) X 4 and

'2 X (3 x 4), associativity may be illustrated.

PROBLEM

13. .
Represent multiplicatic3nOn the number line for 2 X (3 X 4).

APPLICATIONS TO TEACHING

We introduce the array as a means ofprovidinglreadine.as for the

concept of multiplication. The rectangular arrangements oeflannel,

board objects, blocks on the floor, panes in the window, eggs in a carton

may all be detcribed, as arrays. If we have an array such as,.



. lead the children to recogniZe".that 1this''may:be,thought of' as three sets..

'of.,two cats in each set or as....twri sets of three cats in each set.
;

Commilia.tivitY under multipliCation mayrbe conveyed .by arranging g-claira

facing the....board, for example; in. fin. airay. of 10 rows, 2 to each row.

When the ..cha:ira are turned 90° f27)m the original direction, there will

be 2 rows,. 10' to each row. In each case (10 X 2 .of" 2 X 10), the

numbr of children is 20.

)
The associative and di-'tribu,tive properties are not preientett*tiI

.

the second gradec. To illustrate the distribUtive property sacks,

each containing, say, 5 red blocks and 3 'ye'lloU blocks may be used

Thus, it.telw:':4 sacks. there are 20 red bloCks end Yellow blocks,

or, 32 blocks; .

Q.MSTION.

Z1+; 5 x 3).
;

"Is there'any practical situation that:reipaires students to know what:-

the distributive property is all about?"

The answer to this qu,estion depends on what is meant by "practCfr.1

As indicated in the text, the question for example, of the auditortuzi

seating may be a,very practical situation to"-the children, or the fact
e

that there alrep,cbasions when one can make computation easier may be

very praet..is-l'It4ia.trome. Learning to recognize that

a X (b + c) (a.X.-6,- c)
x b) + (a-X c)

,

say exactly the same thing is quite important. Later, this is applied

to factoring many expressions as a step in 6olvitig equations. That is

a very practical situation for some students.

Aside from this we make use of this property whenever we multiply c .
by numbers named by two or more digits, TI-Ip fact that we multiply
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each ot the digits, 7 and 2, individlIAllY by 4 in.the problem

72 X 4 is based Upon this, property:

I.
t. X 4

0-

a?:.

This is because 72 x 4 = (70 .t 2) X '4 since 72 ;talc/ (7-0 2

are names for the same number. IhuS

72 x 4 = (70 4. 2) x 4

= (70 x 4). + (2 x

= 280 + 8.

This same property may be applied to smsiller numbers For: example,

5 x 8. may be rewritten 5 x (3 + 5) 'since' 8 ark. (3 + 5) Aiame

the same number. By the distributive property,

5 x- (3 +:5) = (5 x 3) + (5 X 5).
a a

Thus, a nle.rite" factor' may be broken down as the sum of two or more

smaller addends; in this case, 8;: thought of as 3. +

' there are activities in Book 1 leadng to this prpperty,. the topic

-is not openly treated until 'the'. end
r.

,

AssociatitteiPropertY

of Multiplication

Closure Property of Whole

VOCABULARY.

Fector,
Identity Element*,

Multiplication*

Product*.
.

":IfuMbera-oxader Multiplication* Product Set*. ,,

-BiStribUtiVe Property of ' Property of One' under it4tipliiza.tion*
, .

.
Multiplication over Addition*

'EXERCISES - CRAFTER,

1. Show- by trying to indicate the steps in repeated addition how the

.
.commutative property of 'multiplication would simplify the .calculatiOn..,

.



. . . .

2. What mathematical sentence is suggested by each of the arrays below?
. . , '' 4 't

a.!-..., .. b. . .

O

Mr. Rhodes is buying a two-tone car. The coMpany offers tops in'
.

5 colors and ,bbdies'in 3 colors. Draw an array that showit the

various possrbleresults, assuming that none of the body colors

:are the same as any of the top colors.

. Mr..Rhodes is buying a two-tone'car. Colors available for the;'

top are: red, orange, yellow, green and-blue. Colors available

for the body are: - red, yellow and blue. Draw an arra to show

the various possible Asults. If Mr. Rhodes insists that the car
e

must be two-toned, how' many choices does he have?

5. An ensemble of sweater andiskirt is 'Offered with the sweater., available
.

Eie

in five different colors ana the skirt in 4 colors. The skirt also

comes in either straight or flare style for each of the 4 colors.

How many different ensembles are possiblel
o

6. Here'is an array.; separated into two smaller arrays.

(n = 4 x 8) .(p = 4 x 3) (4 . 4 x 5)

Array A ' Array a;: Array C ..

a. How may dots are in Ai-r'at.' 'A? Array B? Array C?

' b. Does n = p + q?%
Does 4 x 86= x 3).4-.(44 x 5)?

IA familiar puzzle problem calls for planting

orchard so,there,are 5 rows with

4 trees t, each row. Thet,Solution

is in the fort the star shown in

the figure to,* right. Why doesn't

this star illustrate the product of 5,

and 42

146
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8.

9.

10.

3,1.

The middle section of an auditorium seats. 28 to a row, and-each

side - section seats 11 .to a row. What is the capacity of, this

auditorium, if there are .20 such rows? ' e
0 0

Usethe commutative and associative properties to get the saver
..: .

quicklyty "pinking and choosing" appropriate combihatious:,

a. 5x-4x 3x 2x1 .

i). 125.x 7 x 3sx 8 -
,.

c. 250X14x 4 X2 -.

/
fi

t

What does thetfolloyeng operation indicate for 3 X 4?

.
. 0

12 !'

(141, 3)

Make each of the 'folio wing a trice statement illtStrating the'

0

:

e

4

..

.. -

.

d;

.

aistributive property.

.3x (4 + ) = (3x 4).A: (3x 3f)

b. 2 X ( .4- 5) = (2 X.4) + ( X.5)

c. 13( (6 + 4) . (13.X ) (13 x )

(2 X 7) + (3 x ) = ( + ) x 7

1. a. n000 o
O o o o o

..
SCIUTIOiS4OR PRULEMS

1.
. 0 0 .

O 0-

O 0-

O 0

C. 0 0 0 0 0 0
.0 0 0 0 0 0

147 .1.
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o '0 0
O 0 0

0 0 V

e. o o.o o o

o o 000
O 0000,
00000
O 0 0 00

_o o'o o o

O 0 0 0 0
O 0 0 0 0

f. coca
O 000
O 000
o o o

O 000
0 0 0 .

0 0 0 0
0 0 0 0
0 0 0 0

;

2. AX B = ((a,0),(a,0),(a,0 ), (a,Z), (b;0),(b,0),(b,E1), (b,Z))

B X A = ((0,a), (0,b), (A,a), (A, b), (Eg,a), (Eg,b)(0,a)(0,1)))

.

N(A X B) `= 8, N(3 x A) = 8,.A.X B B X A, N(A X B) = N(B X A) .

coca "000
0 0 0 0 0 0 0
0 0 0 0 0 0 0

3 x 4
0 0 0

4 x 3

4. No, 3 X 0 is the number property of the empty set.

18



a. multiplication d. multiplication

b. addition e. addition

c. addition f. addition or multiplication

6. a = 01

7. Yes;,either-a = 0 or a = 1

8. 2 x 3 x. ._. 2 X (3 x 1.) associative property

= 2.X (4 X 3) commutative property

= '(2 x 4) X 3 associative property.

= 8 x 3 renaming

ig" .9. a. 2 x 3 x 4 = 2 X (3 x 4) '=. 2 X 12 associative

2.x 3 x 4= (2 x 3) x 4 associative

= (3 X 2) x 1. commutative

= 3 x (2 x 4) associative

= 3 x 8

c. 2x 3 x 4 = (2X 3) x1. =6x1. associative

d. 2 X 3 k.4 =.2 X 4 x 3 commutative

e. 2X3X4 = 3x2X4 A
commutative

f. 4 x 3 x 2= 4-x 3 x 2 none involved

10. a.
.

2 X 3 X 4 x 5 = 2 x 3 X ( 4 X 5 ) = 2X3X 26

b. 2 x 3 x 4 x 5 = (2 x 3) x4x5=6x4x5

C . 2 X 3 x 4 x 5 -= 2 x (3 x 14) x 5 = 2 X 12 x 5

a. (57 X 7) + (57 x 93) = 57 x (7 + 93)'= 57 x.100 = 5700

b. (57 x 8) (57 X 93) = (57 x (1 + '7)) x (57 93)

= (57 x 1) + (57 x 7) +,(57 x 93) = (57 x 1) + (57 x (7 + 93))
= (57 x 1) + (57 x 100 = 57 + 5700 = 5757

12. (57 x 5) + (57 x 5) = 57 x (5 5) = 57 x 10 = 570

13.. ---*--4 ----"

0 4 8 12 16 20

3 x 4 3 x

I II

2 X (3 x 4)



Chapter __9

SUBTRACTION

THE REMAINING SET

If A = (Cornelia, Sally, Jimmy, Emily, Elsie, Edward, Douglas)

and if B = ,
{Cornelia, Sally, Emily, Elsie), then B is a subiet of A.

When B is specified as a subset of A, another subset of A is simul-

`taneously specified; namely, by all the elements of A that are not

elements of B. In this way, an operation is defined, producing from

A and B, a set called the complement of B relative to A, or more

simply, the remaining set. Thus, if C = (Jimmy, Edward, Douglas),.

and A and B are as above, then C is the remaining set.

Together, the union of B and C is A, so the two subsets

"complete" the given set. Since C is composed of elements that are

not elements of. B,, it is clear that the intersection of B and C

is the empty set. In fact, these laSt two statements can be used as

the basis for defining the relative complement, or remaining, set.. We

denote the operation by the symbol "J.". For example, if

A = (0, and B = (0,0), then A - B *,.0): This

is read "The relative complement of B to A is the set JL1-k,j)".

Of course, the goalis to connect this operation with subtraction,

and this goal is immediately achieved by looking at the appropriate

number properties. Note that in this example, thenumber property at

A is .5, the number property of B is 2, and the number property

of A is 3. In general, it is true that

N(A - B) = N(A) - N(B).

Since the definitionof A - B requires .B to be a subset of A,

there are evidently-restrictions or B. B. can be the. empty set; B can

be identical to A; these two sets, A and the empty set, establish the

limits an B. Consequently, if N(A) = a.e.td N(B) ="b, we have the

restrictions b ). 0 and b < a. (The symbol 15" combines .")P and

."." to indicate "is.greater than or equal to"; similarly. "<" is read

"is-less than or equal to".) The restrictions can be incorporated into

the one statement, 0 <.b <' a; that is, the 'number of elements in

can orange from 0 to the number of elements in A. These lir:citations
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for. subtraction are eventually relaxed when the set of numbers that we

have to work with is extended to include more than just the whole numbers.

The pattern of development proceeds thus: from observations on complementation,

the characteristics of subtraction are examined; from examination of the

eharacteristics, the operation is extended. As a result, numbers other

than whole numbers, may be introduced. For example,

if A -=-(a, b, d, e) and

B = (a, b, c), then A - B = (d, e).

From this, we get the difference

N(A) .-N(B) = N(A -

5 -.3 = 2.

; that is

The stat=ent, 5 - 3 =,2, may in turn trigger the question whether
.

tubtration may be defined for any -two whole numbers: For example, is
.

5 8.defir.ed?, If 'we litit ourselves to the set of whole numbers,

the anSweriSuno"., But by reassessing the behavior of subtraction, it

is possible to introduce new members to"the number system so that sub-

traction is always defined in the system.

The example, 5 8, brings out two iMportant featureS of the

subtractionoperation. Since no whole number is the result of 5 - 8,

the set of whole numbers is not closed under subtraction. Contrasted

with 8 - 5, _Which does yield a whole number for an answer, we see.that

in general, if a and b are whole numbers, it is not true that, a -

is the same as b -.a. Thus, subtraction is neither closed nor. commutative.

These are negative results; they tell us some of the-properties that

subtraction does not have. Nevertheless, these are important results.

SUBTRAC i ON AS INVERSE

V

r,

Su, traction is not restricted to only negative results, however;

nor is the operation of getting remaining sets so restrictet. 'A nOtewontby
:z -4

result may be 'stated thus:

c ..

..(A. - B)U B = A

In words: If we formhe remaining set. A-,B, _and then form the union

of it with' B,_ we have the original set, A.' Diagrammatically,the i

situation- may be illustrated as'follows:.

..., .



A B A -B (A - RAP

Similarly, if we start out with a set; X,. and,join.adisjoint

set Y to it, we get XUY. Now7if we take the complement of Y relative

to XUY, then we have (XUY) - Y, .which turns, out. to be X, the

original 'set. That is,

(XUY) - Y =7X..

4
Because of these two situations, we say that union and complementation are

, dmverse operations. In effect,-one.operation "undoes" what is done by

the other. Corresponding to these properties under set operations, we

have similar properties under addition and subtraction:

. IF a AND b ARE WHOLE NUMBERS, AND

b < b = a;- AND, IF a

AND bARE'ANY WHOLE.NUMBERS (a + b) - b = a.
.:1r . -.

Theefttizetriiction and addition are inverse operations whenever the
.

two qperations are possible or defined.

DEFINITIONS OF SUBTRACTION

We have defined the difference as the number property of the remaining

set. .-This gives us a means of' finding a - b. if a is a number and if

b is a number lesa than or equal to a. We first choose a set, A,

such that N(A) = a; next we pick a set, B, which is a subset of A

and such that N(B) = b, b < a. These two sets determine the remaj,4i1?g-

:set, A - B. The number, a - b, is the number of element's in A .:13:

a - b = B).

For example, if a = 5 and . = 2, we can choose A to be. the set

A =

Next we-dan choose_ B to be the subset

B= (4,1r).

153

-A-



A - B = (0,0,g).

tells us that.

5 - 2 =.N(A - B) . 3.

.

--NOte.that wemade a different choice for
..

B.= (D,),

B, for example

:..the4:reault would be the same as far as the number property '.is concerned.

.-;.A1-8.6.;., if we had chosen a d fferent set, A, for example A = (V; i, X, Y, Z

,E041,any two member subset this set as B, the result would still be

the :same...

fPNOBLEW*.

Use the above definition .of subtraction to compute in detail 7,- 3..

-" There is a second approach to subtraction which-does not use the idea

.of the remaining set,.but uses the ideas of union of disjoint sets and of---

'`one -to -one correspondence If a is a number and if b is a number with,

< a, we Start' by choosing aset A with N(A)= a and a set B

diajointFfrOm'A. with .N(B) =

Next we bhooseaIii C, :disjoint from both A
. _

and B in such .

-a way thai_-A and. .(V:U:C) are in one -to -one 'correspondence. That is,

there g Of ,h.e.elemanta of A with the..elemenaof B U C.

"Then the Second. inition -Ofstbraction

In other

look

a b = N(C):

_

words,,.4aving:4choSekappippriate 6.4Sjoint-Isets A and B we
for a thirg.:,set.::::C:::with'4:14-;the'righiYnumber:of members so that

the union of

set A. The

members "' A

-,As

a = 5 and

before, but

B = (X, Y).

elements of

this set- and. the set:!..:Jis.t exactly match with the

numbillinembers..:.in4Uset tells us "how many more

Xample tf4:this:-definit*C-oftb:6raction4et usagain.uSe'

b 2. A teen -be the:Saie:Set.::10,Ce) as Wasused

B must-now:bealdisibi4:Set.-w;th 2. teMbe.;s. Let

An attempt to-get.:-aone .:,e-ormesiOndeneibetween the

B and theelementa'"-Of'.

*Solutions fbr problems in thiS,2:c



B = (X, Y.)

A = (0, L, 0, *

leaving some elements of .A unpaired. We look for a set, C (disjoint

from B) so that BUC will match'11. Thus, if C = {4209, 5 ), then

the elements of BUC can be put into one-to-one 'Correspondence,with

those of. A.

BUC = (

1 1 I

IsA .... (0,: h., 0 , *, ).

Now by the second definition of-subtiraCtiOn, the reSqlt of .5 2 is

the number property of C. .Therefore,C5,,-2. 2 =N(CI = 3. The most

important thing to say about. this definition of subtraction isthat it

always gives exactly the same result as the girst definition.

1310B.IJEN

: ^

Use the second definition given above of dubtraction to compute-

in detail ..7 - 3.
....

, .

Now the question naturally arises as to why we should,bother with

two 'different definitions if they both giVe the Same result: Why not-

use just one of them?

-.._.

The reason* is'that there are two quite different kinds of problems.

that wtcommonly meet and it is iMPortantto know that the. same mathematical

. . . .

operation can be used to solve both kinds of problems.

,..

The first kind is tife. "take away" type:

_
"Fred has 5 dollixs.and loses two ogttlem. libw many dollars

does he hair left?"

1 . ....

The second kind s the "hoW many more" types.
!,.:

.. ....

. Fred. has 5 dollars:..Bill,has 2 dollars. }ivy-many ..,'N

more dollars does. Bill need in order to have as many
a

as

11

Fred?" .

The first definition of subtraction fits very.weN1 with the

"take away" type Of problem, and the second fit's very wellwith the

"how many more" type. But in each case the problem is sokred by

means of the subtraction: 5 2.= 3.'
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The. statement that we have on page 148, relating addition to

to subtraction, namely

- b) + b = a,

'gives us yet another insight into the concept of subtraction. If

is some number c, then we have

c + b = a.

In other words, a - b is that number c such that a = c + b. This

wily we can say that

- b = c IF AND ONLY IF-, a = c + b;

these two statements mean exsccttyytthe% same thing.t. t:.
From this point of view, subtraction is defined as the operation

of finding the unknown addend, c, in the addition problerti'

a = c + b

since .tiris .1 s the same numtiii.: as a - b. For example ; -ye can state that

5 .y.- because 5 = .1!'+ -2.

6 ;!.si;ce we know that both

5 = 3 + 2 4nd 5 7

rue that

5 r 2 = 3
.

-and- 5 r. 2.

..Except as noted in Problem 4 ibelow, an addition fact gives us two related,
subtraction facts..-- -

:The twk. statements a - b = c and a = c + b mean the same thing.
.... .

..: Working with whole numbers 6, 4, and 2 show _the related addition

- ate subtraction facts.,

.. . 7
When does an addition fact not give two Subtraction, facts..

There are two reasons why it is important for teachers to understand

this way of thinking_about subtraction, as well as the other two., The

first is that this is the way that children think when they are

developing their skills in computation. The second is that as children-

move through school, and study other kinds of numbers, such as rational
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decimals; negative numbers, etc., they will, meet this idea of defining

'subtraction' in terms of addition again and` again.

It is important to realize that all three definitions of subtraction_

are equivalent:and yield the same prOperties.

PROPERTIES UNDER SutuRACTION

We have noted the property of subtraction that points to its.role

as an inverse of addition. Two properties of the whole numbers under

this operation that we want to highlight now involve the empty set.

Recall that with the union, we have;

A(Jf ) * A.

The corresponding-statement for numbers is for arty whole number a

By the above, we observe that,

a + 0 =a.

a..and a =

WhiCh is the same as"..0.-=, a - ...Hence, in addition.to the inVerse

.say the same thing. 0 + a, we also have ,0 + a

properties,

FOR ANY WHOLE NUMBERS a and :b, WITH a 2 b, b) +

FOR. ANY WHOLE NUMBERS at' and b (a + b) - b = a.

We have the following two properties of zero under subtr)action:

.FOR.ANY WHOLE NUMBER a, a"- 0 = a;

. FOR. ANY WHOLE NUMBER a, a 72"a = 0.

PROBLEM.

5, By a definition of subtraction, we see that a:- b = c if and

only 1:f a = c +.b, and that (a - b) + b,= a. Which properties

are 'exemplified by the following?

a. (202 200) + 200 = 262

(y - x) + x y

c. [(30 15) 7 5] + 5 =.15

d. 5 + 0 = 5

e. 5 - = 5

-157
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6. Does the sentence (?r- 7) + 7 = '5. make sense foi whole numb

7. Show by the use of the_properties ',of addition and subtractiOn that
the -Tollowkng sentence is true:

If b > a; ' a + (b a) T-

Cheek that it is t several pairs Of
r.

SUBTRACTION USING ME

'If we condider qubtrarc
numbers using the. liumber. tin
prodesses and properties.

-

numberj3.

4.1rith respect to the representation
e can. illustr.ate many of its importan '.. I

What is the answer to .9 We stare on the number line at 9
.

and take away: or move to the left 4 units -thus..arilling at 5; ; whiCh

.
,s.,

9 - 4 = 5

,

In Chapte 7 we illustrated the use of the number line to show
the associative property of addition. Subtraction doed not have .the
associative prgperty for

while

(13 - 5 ) 2= 8- 2 = 6.

13- (5 - 2) = 13 - 3 = 10.

These examples:are illustrated on number lines below. The first figure
shows that 13'- 5 = Er,, and this result is used to get 6( from :.8 - 2.
The second shows that ° - 2 = 3, and thid result is used to get 10

from 13 - 3.

Sr.
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0

13

he s - .

I t. f t 1 4. I 4 1

1 2 3 -5 .6 7 8 9 10 11 12 13

13 -'.3)r 2.41411- 27-

- ) - 2 = 8 - 2 r 6

b 1 2 3 4 5 6 '7 8 9 10 11 12 13 14 15....

1.
;"' . .

1

13 (5 - 2)

13 ..- (5 ) = 13 -'3 10

.7

Hence, it is not.true that (13 - 5) 2 names.the same number as

and we.express this by the number sentence.

(13 5) 2 13. - (5 )

:where. the symbol q" , means "is not equal to"..

= APPLICATIONS TO TEAMING

Some children find it difficult t'o visualize set removal. For them

partitioning and ringing a subset is not enough; -they cannot seem to

appreciate that the objects have been removed:since the objects are still

much in evidence. Covering up the objects to be removed or crossing them

..-out with an >c may help communicate removal: Similarly, using a cup to

cover up Oubset of beans, for example, hag been found to be effective

in teaching set removal.
159
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On the other_bp.lid, removal tay.have been so convincing that itcauses

"..difficulty with Writing the number sentence associated with the removal.

FOr example, in tryingto connect the expression 5 -.2 with 3, only

the numbers for the original set and the remaining set-May.1)e recorded;
. .

t otfler subset has been removed, so.tilechildcannot understand W#y
4

its number must be recoiled. In that :case, intermediate stages -in the

removing process may be sugge sted. Thismay.be in the form of a class

activitY.', for example, with a set Of beans. :The number of the set may

first be 'recorded; a subset. may next be separated,'Counted; and the nutber.

. recorded. 'Removal may 14 accomplished,by covering the set removed (as with

-;----a_ou4# and finally, thenumber inrtile.remaining set identified and,recorded.
, .

Intermediate Stages for-th-cording.....of nuMbers. in the ringing of set:
!.

members may, also be provided. For example, ihe:follbwing suggests vartous:

possible stages for -5 - 2 = 3..

- 2

The concept of inverse may prove difficult. For.this, a variety o

examples may be required showing situationswhich have-inverses such as

falling asleep and waking un, say, or putting.,.on a coat and taking it:off.
.

However, sometimes it is not the lack ofunders-i,anding -of *the.contept that

is .causing difficulty; it May-be-trying to verbalize the "doing and undoine"
.

that the children find difficult. t,

QUESTION

What is mean-b:by the.: Statement a - b =',o. if and Only if a. = c ''-k b?"
.

.The. stament :is..equiVaIent'Ao`t;:ra'setarate statements, -"a ':-.13.;=:c
...!!, .

.

' -111.- a.= d....i, bjr. -and ."a = c +gip.: if -a.... b:=:c".' Its application' here,
.- ..

-fc....exatidie, may be in arriving, at the soIution.to 5 - 3 1py.,finding 'the.,
,,

.
.

"mS:ing addend"., - 4Tr-Zat is 5 -.37
'

-:.:- ;',
By t,4e.above, 4......

,

...._ ,;...

'-'4#. -- 3 . c g and only if. 5 =
t ::'a -. -,5 .

..t ''.'. : ,

...." I? ;Si
5-,/



Tbat is to say, 5 - 3 is th'at number. c such that:.5 = c ,-;:bcreover,

the nutber that ,makes 5.= c + 3 a true statement are the'oAly-Ones

that qualify to be 5X .Since 5 = c + 3 is true only if. c is 2
.

tb,en 5 - 3 must be 2.

Complement*

Difference

Inverse Operation*,

VOCABULAIt.

Remaining Set*

SU-traction*

EXERCISES -.- CHAPTER 9

CY

'ID, 0,7,o
B=10, 0, V }

4

Join to B a set C. disjoint from B 'such that BUC = A.

2; If A = {0 a 0' 0 , [3:1 0,1}
and = 0 .,0}

exhibit A - 'B.

3. If from a set of 8 members we remove a set of '2 members, how

many members does the resulting set have?

4. If A = O. 0
and C ,- 0 , , , , , IC) 0 }

exhibit B such that ALP = C. 'What is N(B).?.

5. Show a representation on the number line which illustrates the fact

that 10.- 3 = T. Use the same figure to illustrate the idea that

10 = 7 +3.

6. Show a representation on the number line which illustrates that the

associative property does not hold under the operation of subtrvtion.

(9.' 6) -3 9

7. What operation is the inverse of adding 7 to any number? What is

the inverse of subtracting 8?

8. If--A and. B 'are disjoint, illustrate that (AU B) - B = A.

What happens if A and B are not disjOint?-E7'

161

16 `,
>



f/.

e.- t

SOLUTIONS FOR PROBLEMS

Choose A = (0, byGiik,C),e,43) with x(A) =

a subset of A and 300 = 3.Choose B = ( *.;(.),C.1) which is

- tj, e,

.3

By definition, we 4now that 7 .- 3 =-N(A - B)4-4. 4.

2. Choose .A = (0, 61[3, ic,(),e,10 ;with N(A.)= 7 ..
e

Choose. B =7:(a, b, c). -e: with N(B)-= 3.
..,

'Aim/ choose a sto, C .disjoints:frbm both A and B.

C = (it E;OlD,6) and Nd) = 4

.so.that by,matching ()WC) with A, we Can' put BUC in

one-to-one carrespondnce with A.
.

BUC = -ta, b, CY 8., Z, *Yfc4') )

/ /. / I / / /
1 IL I CO, A, 0 , *, 0, 8, ea)

Bltdefinitionweknow that 7 - 3 = N(C) = 4.

3. By using whole numbers 6, 4, we can illustrate the fact that

- b = c and a = c + b. mean the same thing. Thus.

and
6 r 4 =57 beCaust 6 = 2 +4

6 2 = 4 becaUse 6 = 4. + 2

4. When a = b, a + b = c give? only one subtractionifact;

;pay a = c - b. For exampIO, + 3 = 6 and 3 = 6 3.

5. a. Inverse property of ad4tion and subtraction

' b. inverse proptrty.of addition and. subtraction

c. inverse property of addition and subtraction showing grouping

within' the parentheses. 30,- 15 is another name for, 15.

identity property of zero for addition (Zero added to any number

results in that number.)-:'

e. identity property of zero for subtraction (Zero subtracted from

any number results in that number.)

6.- 4(5 - 7) + 7 does not make sense in the present context because,

5-- 7 is not a whole:nuMber. :For any numbers _a and b,

0 (a 7 b) + b = a if 'a 2> b.

4.

162
-1.1 0 0 A

,



4a

To show that (b - a) = b if b > a we use the commutative

4operty of addition getting a + (b - a) = (b a) + a, which

by the third item in Properties ofSubtraction is equal to b.

r

,
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'Chapter 10

DIVISION

DIVISION

In Chapter 8, .a rectangular array. of a rows with b members

in each row was used as a physical model for a X b. From this and

from other models, the properties of multiplication for. whole numbers

were developed. We saw that multilolicatiOn of whole nup4ers.has the

properties of closure,wcommutativity, and associativity, and that multi-

mlication is distributive
\
over addition. .Also, the'numbers 1 and "0

have the special properties that

l X a =. a x 1 =, a, and :

OXa=aX0=,0.,

The first three'properties exactly parallel the same three properties

for addition, and 1 plays a role -for multiplication closely corresponding

to that of 0 for addition. The similarity in behavior of the two operations

leads to the question as, to whether there is an operation whiOh bears to

multiplication a similar relation as subtraction doea0o -addition; namely,

.
an inverse or undoing operation. The answer to'this is the operation

called division.

To find the product 4 X 5, we counted the number of members in a

4 by 5 away or in' 4: disjoint sets with 5 members in each set.

An associated problem is *start with 20 'objects and ask how many disjoint
e

sabsets there are in this'set if eaCh,sUbset is to,have 4 members. In

terms of arrays, the question is "if a set of 20 members is arranged 4

to a row, how many rows will-the're be?" The answer is 5.

x X _ X x

x x x- x

x .x x

x X x

x x x

. 20 objects arranged 4 to a row.
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In many cases there would be.no answer to tpe question, For example,.

20 objects arranged 6 to *viow does not give an exact number of rows.

It is true that ordinarily we,do carry oUt such a division process as

20 divided by 6, obtaining-e quotient and a remainder. In speaking of

division as an operation in the set of whole numbers, however, the

expression "20: divided by 6" is meaningless because it is not a whole

number. The process as indicated by > TY remainder 2, will be moreor
fully developed later when the techniques of diiidivson are ussed in.

-detail. It will then be pointed out that for any ordered air ,(a, b)'

with b 0, we may develop a division process.

.T2 answer tlie qUestion, many disjoint. subsets are,there in a

set of 20 ,if eacn.Subset is to have 4 members?", we formed an array

of 20 objects arranged 4 to a row. When. we form this array, we are

partitioning the set of 20 into equivalent sets. By partitioning a set,

we mean separating it into disjoint subsets. Thus, the fact that a set

of 20. may be partitioned into 5 equivalent subsets, each having, 4

members, shows us that 20 = 4 X 5 and 20 = 5 X 4. The nu Aber, 5,'

which is thus assigned to tile ordered pair (20, 1) is. called the quotient .

and the operation which produces 5 from (20, 4) is called division:

The normal symbol for the operation of division is ThuS 20 4- 4 = 5.

,ite partitioning, of course, does not have to be shown as an array: Either

'diagrant below, for example, gives the result of 12 ÷ 3.

12 objects, 3 in Set of 12 objects in disjoint
each row. ,subsets, 3 `objects in each subset.

--tor the ordered pair (20, 6) there is no such whole number that can

be attached; nor is there for (5, 15). So, under the operation of division,

(20, 6) or (5, 15) are not defined in the set of whole. numbers. Division

therefore does not have the-property of closure in the set of whole numbers.

The last case for (5, 15) is simply an example of the fact that'in the

ordered pair of whole numbers (a,- b),- if b > a, and a 0, the operation

of division never yields a whole number.

1 '

'
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PROBLEMS*

1. Find the whole number attached to each of the following ordered pairs

under the operation of divisioh; if there is none, explain.

a. (20, 5) :

c. 1) e. (64, 8)

b. -(4, 28) d: (72, 9)'. f. (42, 7)*

g. (47, 7)

2. a. Display an array to shOw 28 .1. 7.

ip. Illustrate 28 :k 7 by a partitioning that is other than an array..

By partitioning, we haVe obtained 5 as the result of 20.4. 4 because

20 = 5 X 4, This is-similar to the missing addend_ approach to subtraction.

Here, we say that a+ b is that number c such that a = c X b. That is,

a+ b = c IF AND-ONLY IF a . X b:

Thus, c is themissing factor of a=cxb for given numbers a and

b, with wb

DIVISION AS INVERSE

In- the-same way as subtraction is the inverse of addition, division

by a number n may be'thought of as the inverse of multiplication by n.

Thus,

(8 x 3)4 3 = 8 and (17 x 4) + 4 = 17.

However, caution must be exercised in thinking about multiplication as

the.inverse of division,because it rs true that

(15 + 3) x 3 = 15, while (8 +3) x 3 is meaningless

since 8-+ 3 is not a whole number. This is similar to the caution we

must exercise in thi's "doing and undoing" process with subtraction; thus while

C15 3) + = 15 is perfectly acceptable,

(5 -.13) 13 is meaningless
4 s.

tetince: t5 - 13) is nt a whole number. Of course, the restriction will

be removed Iater'when the set of whole numbers is extended to'include

numbers. for which 8 = 3 and 5 - 3 have meaning.

*

*So@oations for problems inthis chapter on.mage 180.
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PROBLEM.

3. - Tell whether each of the following statements is .true or whether
it is meaningless for whole numbers.

(3 + 9) 9 = 3
b. (9 + 3) 9 ;-- 3

"(3 9) +" 9. :=1-, 3,

d (3 x 9) = 9.

THE R0LE F .1 AND" 0 IN DIVISION

e.. (3 +9) ><9 = 3

.f. (9 X 3) 3 = 9
(9 *.3).X 3 = 9

1Ithe operation of divisioniwas cqyaneqci to `hi operation of
plication. by the: statement that 4 4 4

IT =cc if and only if le. x and

1 end 0 played special roles in rcultiPliCation,'it, may be .,a.pio:spriate..."
. . .

to pay particular atterition to t'fic'two numbers in divikon.

If b = 1, then we have a 1+ 1 = c i and, only if Via .55 1.

Recalling the .special. property al' 1 under multiplication, we ti.ave.
c X 1,=- -e; hence, a and c' represent the same number, and for any
whole number a, a = a. On the other hand, 1 "f b is tiOt e. whole
number unless 1 ? = .if-b # 1 there is .no whole niimber e e3.).ati that

1 = X b.

the number 1 acts f Scimewhat like"... an

e theidentity element. for
= a X 1; the number

division only if it is to the'

In -the sense .ttat
identity 'element: for di
:plication in hieh, for

acting as an ider.
of the symbol ' +

Again by t';,e defi
0" n division. Brie

ision, we tan note that the'
may be summarized as foil

0+ b = c if aad, = c X b. For b4 0',
oily if c = O. 'There

) FOR:,AN'A
I

NUOBER b SUCH .a.

If = 0, save ='V. and 0 = c X 0. -Site
:. any, number c, tIie re Sul of p+ 0 -is ambiguous;.; 0

Specify aginique number, hence
4

.THEC1OPERATION OF DIVISION ISA
0



a 4-0 where.4%. A.0 is

if and only if a c x 0,

have a contradiction in to

a: O. and came to the con

These last two results t

PROBLEM.

411710t4r situation. Since a +0 = c

for'Whatever number c, we

07ted out with the assumption that

that a ="0. E'dr this reason,

÷,0 IS t3RPZFINED.
4AtL,?'

r indicate
,

1.. Tell .whether each

number, or cannot

a. 8 + 4.

b. 2 = 4

C. 3.

d. : 6 0

. 0 t 132

4.b,

g. 1. 4-2b,

h. a..:= b,

. 0 ÷

. b, a d.".

k. a b; a

that division by 0 is not defined.

4
:$he`iollowing is a',whole number,, is not a whole

termined5 if pos-sible, name the-whole number.

I

and b.=1

and b

e numbers and b > a.

and. b 0.

numbers and, a > b.

numbers and a = b.

'PROPERTIES aF,z1v1

many liven to show that the whole numbers are not

closed unZer For example,,whlle, 6 = 3 2, 3 +6 is .not a

whole number *= same two examnlesshow that 6 4. 3 3+ 6, hence

the olierationtA, not commutative.- To ee:that division is not associative,

again menyexamples.may be produced. We'need only one example, and such

an.xample.:is the following:

"474'7$
Yr.elf-A

,

.
tifia.difterensults

, ....

d. 41-..,
for 12 4- (64

. that9(a t b) c

(12 4-6).4 7:: 2 = 1, but

12. =(6 t 2)= 12:: 3 = 4.

obtained,for (12 t 6) = 2 on the one hand, and

on the other, ahOWsthat, in general, it is not true

equals



So far, division with respect to whole numbers has revealed itself

as an operatic hat does not have the properties of closure, commutativity

and associati . Furthermore, division by 0 is impossible. To free.

,ourselves fraE the iMpression that not much can be said about. this operation,

we need to consider only the important notion that divisibn by b isthe

inverse of the operation of_multiplication by b. That is, (a X b4) = a,

provided, of, course, b

PROBLEMS

5: For which of the following is it true that (a +b)+ c = a+ (b. c)?

a. 1 +2 +2 e. 9 +9 +1
b . 4 + 2 + 1 f. 9 ÷ 3 +1
c. +6 +2 g. 0 + 9 +3

d. 0 +5 +1

6. From the results of the preceding exercises, under what:conditions

will (a c = a+ (b c)?

DIVISION USING THE NUMBER LINE

We can illustrate division using the number line by partitioning.a

segment into congruent subsegments. For example, to illustrate 6 = 3,

we can partition a 6 unit segment into 3 congruent sUbsegments, each

of which

;

a 1

2r

2 4

is congruent-to the segment from 0 to 2. Thus, this partition conveys

the concept 6 = 3 = 2. Clearly, this is associated with the representation

of multiplication.on the line in.whichthree 2 ..unit arrows or 2 unit

segments are abutted, resulting.in a 6 unit arrow or a 6 unit segment.

The association maybe thought of as: one operation is the inverse of the

other, or, from the point of view that

6 + 3= 2 if 'and only if 6 = 2 x 3.

Another method of illustrating division on the number line is related

to considering division in terms,. of repeated` subtraction. This concept will

be discussed in further detail in Chapter 15 when_the division techniques.

170
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are discussed. We can indicate here, however,.t.his use of the number line

in order to compare with the use shown above. Beginning with 6,

r
I

0 1

6

.we ask: SHow many times can 3 be subtracted? Corresponding to this,

We can show division using the number line as in the above figure.

In this case, since subtraction is performed twice, 6 +.3 = 2.

PROBLEM

7. a. Show by partitioning a segment on the number line that 10 4- 2 5.

b. .Show by partitioning a segment on the number line that 5 2

does not yield a whole number.

COMPOSITE NUMBERS

RectangIllar,arrw form the basis for what used to be known asthe

"rectangular numbers" by the ancient Greeks. If a number n can be

presented as other than a' 1 by n array, then the n is said to be

a rectangular number. Fbi..ekanple, 6 may be represented by'a .2 by

3 array, so 6 is a rectangular number. Now we call such'a number

.a Composite number; 6 = 2 X 3, so 6 is "composed" of 2 and .3.

12 is also a composite number; either a 3 by 4 rectangular array or

a 2 by 6 rectangular array may be uecigNs a model for the composition

Of 12. However, 2 X 2 X 3 also shows how 12 may be composed. It

is true that if a whole number n may be ';decomposed" into more than two

factors (other than 1 and n), then it can be decOmposed into two

factors other than: 1 and n. Hence, such a numbe5 wuld.be considered,

also a rectangular number. It is simply that thinking in terms of the

composition puts the focus more on analyzing the number than thinking

in terms of rectangular arrays that can be formed.:

Since 12 = X 4, we have regarded and 4 as factors of 12.

As we have noted, there are other factors of 12. For example, 2 is
. ,

g factor of 12 becaus theieis a whole number whose product with 2

is. 12. That is .2. is a factor' of 12 because 12 is 2 times a whole

17i.
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number; in this case, the whole number is

6 to be also a factor of 12. kcomplete 1

catalogued as follows:.

Thus, 12_ has

of 12 becaus

12 = 1 x 12, so

12 = 2 X 6, so

12 = 3 x 4, so

12 = 4 x 3,

12 = 6 X 2, so

12 = 12 X 1,

1, 2,.3,"4;

e there

SO

automatically qualifies

actors 6f 12 may be

1 and. 12 are factOrs of 12;''

2

3

14,

6,

and 6 are factors of

and 4 are factors of

and 3 are factors of
,

and 2 are factors of

id .42 and

12;

12;

12;

12;

1 are factors of 12;

!6:and-: 12- as'factors, 5 is not afactor

whoreN*yOber 'n such that 'the mathematical

- sentence

12 = 5 X n

iAkwue. Neither are .7,8,9,10,11, and anyWhole number greater than 12

factors of 12. (Notice'that the last thiee'statements in the display give
.

no information on.factors that was not contained in the first three state-

ments and we could have done without them.) ,

-It is clear that since = 1 X n, any whole number_ n_ has 1 .and
. .

n as tactOrs. However, there are many whole numbers for whichthese-are

the only factors. For example! .1 and,'5 are the only factors of :5;

1 'and are the only faCtorS of and 1 and 13 are the only

factors of 13; and so on. :Such numbers ;;-5.11 be of 1..terest-fOr.us and

are specially designated.

-ANY WHOLE NUMBER THAT HAS EXACTLY, TWO DIFFERENT WHOLE

NUMBER FACTORS (NAMELY ITSELF AND. 1)' IS A PRIME NUMBER,

Note that this definiton excludes '1 from the set of .prime numbers.bedaUse

l' does not have two different factors. It also excludes 0 from the se:b

of primes since '0 = 0x.n for any;Whole number n; any'WhOle'number is
a factor.of O. In essence, the prihte numbers are those that'can only be

associated with a .1 by n array .(for .11 For..example, let us

consider an array for 7. Placing:two objects in each row, we can complete

an array with 6 objects; the seventh object makes the array incomplete.

0.
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SimilarlY,

...,...................

3., 4, 5, or 6 objects in a row induce incomplete arrays with 7 objects.

All whole numbers greater than 1 may now be classified according to

whether they are prime or composite. Over 2,000 year ago, the mathe

matician EratoSthenes devised an easy and straightforward method for sorting

prime.num)iprs from a list of whole numbers. To find PNI the prime numbbrs

less than 50, for example, the whole:numbers from 0 Ithrough 49 are

listed as below. 0 and 1 are crossed-out since they are not primes:

2 is a prime, but every other even number has 2 as a factor, so all

even numbers greater than 2 are crossed out..

Z, 2, 3, . 5, X, 7, 2', 9;

11, .4 13, kir, 15, Z, 17, kg,

21, , 23, 2', . 25, 26, 27, A 29,
31, J.2r, 33, 3.4', 35, X," 37, .3e, 39,

41, 43, .b.4";,- 45, ;.(f, 47 J', 49

Continuing with this, 3 is "saved" and 3 x 2, 3X 30 3,X 4,

"eliPEnated";...thas id -Jell "multiples" of 3 greater than .3 x 1 are

eliminated-

.%. .. (3) 4-;- 4, 7, Ri,

140;.-.- 11, 12, 13, 4:4, , ,16,..,-. 17, 19,

"::29;'. X, %.22,. , 23, ,..24
. .. .

, 26i: $R, .29,....

30, i..
1,

..2*,' 33, ,11', :,, 351 34i't 37, 38 3,9c

',.'407,.- 41, :42,, , 43,., 's: ;31; 46,::: 47, 49

are

In this second chart,, the numerals that are Shaded represent numbers that

are "eliminated" after the screening as "multiples" of 2 (1 istioinate

before the screening):'' The slash marks indicate screening

of 3, and the, numbers that are "saved" are identified by

4 has been eliminated because itis a:multiple of 2; 5..

as."mult4Ats7';

,nOWy,

is next.-,SAvii.'7,%;/

and all:other multiples 'Of.'5 eliminated and so on. Thus, eventUa4y4.;..we

arrive at the set of all prime numbers less than 50:



(2, 3, 5, 7, 11, 13, 17, 19, 23, 29', 31, 37, 41, 43, 473.

It can be shown that this screening process needs tot be carried beyond 7

for prime numbers.less ttwua -50 since 49 = 7 X 7. If' 49 is the product

of two whole numbers a and b, and one of these is greater than 7, then

the other must be less than This tells us that any factor greater than

7 wo4d;.have been eliminated when its companion factor (which is less than

7) Iiiii44'considered..

44kt 7'

1'

PROBLEYE.

8. Express' each of the foLloWimgvnymbers as products of two factors, in

several wayi, or indicate that it is impossible to do so.
k

a. 18 c. 30 tr,

b. 6 d. 11r

1
t -

9. List all the numbers that could be called "factors.'

.a. of the number 30,
.

b. 'of the number. 19, ,

Of the number 24.,

FACTORING COMPOSITE NUMBERS.

A prime number cal be expressed-as the product .of cOixating'numbers

in One and only one way, namely the product of, 1 and itself. Thus

3 = 3 x 1, .

5 = 5 x

.7 = 7x.1,

11 = 11 X 1.

,
A Composite"nuraber has- more than one factor expression.

some factor .expressions of 22+

24 = 1 X 24

= X 12"

= 3 x .8 ,

=" 4 5< 6

= = 4 )0 2 x 3.

- = 2 x 2x 6

= 2 2 x2 Y(3.

e

For. example,

O.



]notice is the;expresSitn. 2 X 2 X X 3 all the factors are prime,'
numbers.- .3Because.of this. itz;is called. e complete factorization or the

rp.13zia-fadtbriiation- e 24. It expresses .24 as a product of prime.

7,LTE-.77tbers;.-

very composite...number can be factored; that is, it can be written.'
as the produ6zt'.of -at least two factors each of which is less than the
number .itself . If one or more of 'these factors is a composite'.nutiibe.,.
it can be vritten as the product of still smaller factors. This proceSS

. .

cannot go .c.n indefinitely since the factors, which are counting numberS,
. .

are getting smaller, .and the smallest counting number' is Eventually
we mutt come to a faCtor expression each of whose factors is a prime. f

For example

360 = 6 x 60
= 2 x 3 x 60
= 2 x 3 x 5 x12
=2X 3X 5 X 2X 6
= 2 X, 3 x 5.x 2'x 2 x

360 9 x 40
= 3 x x

= 3 5< 3 x 5 x 8
= 3.x 3 x 5 x 2 x 4
= 3 x 3 x 5-x 2,x 2x 2.

360 = 12 X 30

= 2 x 6 x 30
= 2 X 2 x 3 x 30
=2 x 2,X 3 x 3 x 10
= 2X2 X 3x-3 X 2 x 5.

j`Notice that Although in each case above we started With a different
pair of fact6rs,,:the complete factorization 'was one same' except folOthe

.:,-)rder in whiCh the prime factors were written. This is always: ika- e.

Every composite number can be written as the product of primes in one
and only one way except for 'Vie order in which the prime factous are written.

4"

c.



PROBLEM

10. Find the prime factorization ofeach of the following.

a. 8 d. 160.

b. ?7*
e. 144,

c. 24" f. 210

'6EATEST COMMON FACTOR'

),
Let us consider the numbers 8 and 12. We see that both 8

and..12 are even numbers, hence they both have a.factor 2. 2ecaase

is a factor of both 8 and 12, we say it is a common factor-f*e,nun0Deks.

All whole numbers are divisible by 1, Bence 1 is

of all whole numbers. Therefore when we.look for common fa

numbers, we need only look fOr numbers greater than 1,. beca

know that 1 is one of the common factors..

Let us ask. ourselves what factors are common factors of 8- and 12
.

8 -_-.1 x 8 , 4.2 = 1 X 12
..1,41

= 2 x 4 .12 = 2 X6
..

8 = 2 X 2 x.2 12 = 3- x 4

The set of all factors of
v

.,,,The set of all factors of

.Z-0
. 04

:.; :.:...

8' -is

(1,

12 is
(1,

"2,

2,

4,

3,

12 = 3 x 2.x 2

8).

4, 6, 12) .

"t

- The set of common factors of 8 and 12 is the intersection-of the

.twc sets above.

(1, 2, 4; 8) n (1, 2, 3, 4, 6, 12)'= (1, 2, 1).

-
Hence; the common factors of and 12 are J. 2,'4.

.D0 the numbers 5 and .8 have any. common factors other than 1?

The set of.all factors of 5 is

(1, 5).

The set of all factors of 8 is

(1, 2, 4, 8). ,

The intersection set of these two sets is

(1 }.

176
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V.''.41,,..

0.%."*.t. ''' .

4ender 5 'and..."Ef have,'onlY one commo, factor, 1. The answer to our

Opmeition then is."The numbers 5 and 8 do not illaN:e Wr co n factors

other than 1 ".. ,
..

,

Some seta or =abaci have many common factorsTand sole sets have only
,

1 as a commop factor. .

The.grealest-element,, p the set of common factors of several numbers

is called the greatest common factor of,fthese numbers. We see then that

4 is the greatest common factor of*.8 and 12i 1 is fh6 greatest

come= factor of 5. and 8.

- /, L7.

Writing the set,ofall factors of .a number. is sometimes troublesome,

especially if the number has many factors. An eatier way to 'the

greatest common factor of several numbers is the use of their corplete

factorization. .

Supposewe lash to find the greatest. common fact-or !! 362 42,

and 72. We find the collplee factorization of, the numbers:

36 = 2 X 2 X 3 X 3= ( x 3) X 2 >P3.

42 = 2 X 3 X 7 = (2 X3) X 7

72 = aX 2 X 2 X 3 3= (2 X 3) X 2 X 2 x 3.

Notice that each number has 2 as a common faciF and 3 as a common.

lietor. RenCe 2 X 3 = 6, is.a common.faptor.of them. All the common

factors of 336, 42,:and 72 are 1, 2, 3 and 6. The greatest common

ifactoi of these numbers is 2 X 3 = 6.

PROBLEM

%Ls.
1. Find .the greatest common sactor

a. 6, 8

b. 3, 8, 12

C. 24, 16

a. 36, 48, 56

O.

4

of then satc of numbers below
, .



APPLICATION TO TEACHING 4

The topics of_factors, composite numbers, and prime numbers will not

.41:4 prdtented until the second grade. A' start on thip:is given in the

first grade when we count by twos. Of course, in terms of multiPlei,

the even.numbers are Simply the multiples of 2. Similarly, multiples

of. 3 'are'the entries in the "3:. times" table,. and so on.

We have noted that since 3 is A,Ifactor of 12, we can say that

'12 is a multiple of 3. Both factor and multiple originate from the same

concept: theregis a whole number n such that 12 =, 3 X:11. A.,15illtiple

is viewed from the standpoint of the number being composed; a factOr is
_

viewed from the standpoint of a number goingLitto the composition as a

"building block". Beginning in Grade 5, the children will be introduced'

to the Fundamental Theorem of Arithmetic - when a whole number is "decail-

posed" into the primitive building blocks of prime numbers, this decom-

position will be revealed as unique; that is, a whole number is made up

of onerand only ape set of primitive blockswhich we call the primes.

:At that time', the children will be taught the-"complete factorization"

of a whole number (or, the prithe decomposition). Complete factorization

is a natural lead-in to a corresponding'factorization in algebra, which

yields, among other things, solutions to algebraic equations

;QuEsTioN

"Doesnic 6 + 3 ='2 show that division is closed in the set of who numbers'

The statement, 76 + 3 = 2, asserts that there is a whole number that..

answershe question "What is 6 divided by 3?" To say'that division

is closed in'the set of whole numbers means that without exception, for

'any whole numbers a and '13, b 0, we must be able.t,find a whole

number represented by a b. Since examples can be found tordeny that

it is always true that a b. results in a whole number, we cannot say

that division is closed in this set. For iZstance, 3+ 6 is not a.

whole number. One example cannot be used to prove a general. statement.

c.



Common Factor

CaMplete Factorization *

Composite Number *

tivisiOn *

Factor *

1.

VOCABULARY

Greatest Common Factor

Inverse Operation *

Prime Factorization*

Prime Number *

Quotient*

11,EXERCISES - CHAPTER 104

Rewrite each matheMatical sentence below as a-division

FiKd the unknown factor.

a. n x 5 = 20 d. n x 9 = 72

b. p x 4 . 28 e. n x 8..

c. n x 1 . 6 f. q X 0 = 0

sentence.

2. Tell whether each of the following is more readily visualized by a

rectangular array.of 7

each subset..

rows or by disjoint subsets with 7. in

a. 42 piece's of candy are to be divided equAlly among 7 children.

b. 42 pieces of candy. are to be packaged 7 pieces to a package.

drar.41img band always forms an array when it marches. The leader

3Aes to use many different formations. Aside from the leader, the

band )s.s '59 members. The leader is trying very bard to find one

.more 3embeF., Why?

Zoes divist6n.I'lave the commutative_property? Give an example to

slictaSatlate-your answer.

5. prc-rs's'eaq;e7rthe:followg numbers as a product of

nuMbersor17157Zte gist it 12,7.;:impossible to do this:

t

4s.- 12 g. 31' e. 8 .i. 35 i. 39 k. 6 m. 82

b. 36 d. 7 f. 5 j.

two smaller

6. Factor each number below-completely

a. 16 d. 90

b. 21 e. 144

c. 63 f. -132



3

Apt

7. ,Find the greatest.cammon

a..

b:

2,-3

15; 8

c. 6,.16,'

d. 3, 12, 15

a. 4

b. None; 28 >

c. 6

d. 8

e. 8

f. 6

g. None;

2. a.

Y.

factor of each set of numbers below.

e. 3, 8, 30

12, 16

g.," 9, 33, 21

h. 8, 16, 56

AITTIONS FOR PROBLEMS

144:14/

4 and 44 0.

there is no

a

3. a. *True

b. True

c. Meaningless

d. TrUe

. .a. ,Whole number; 2
4

b. Not a whole number

c. Whole. number; 1

d. Not a whole number

e. Whole number; 0

f. Whole number;, -1,

4

g.

.r

a

:,Zei
row akray..Of

of.r

Cannot be determined:

if- b 1.

h. Cannot be determined:

a # O.

i. Whole number; 0

j. Caniaot lo,determined:

if b = l;.whole numb

ti

b.

47 members.

e. 'Meaningless

f. True

g. True

meaningless if b = 0;. not a whole n 'ber

zero if a = 0; not a

Meaningless

b. > 1

ngt a wnole numoer if b.> 1 and

whole number if

if b = 0; mole; number a.

and b is a factor of a:

b is not a factor of a.



k. Cannot be determi,ned; undefined if a = '= 0; the whole number
S1 if a = b' 0.

a. False

'b. True

.c. False

d. True '

. \,,. . ,.

6.' If a = 0, or = I, or loot;

e. True

f. True

.True

7- a.

b.

I

0

5 .

1.4.e 5

0 i 2 3' 5

: .The coordinate of ihis point

i x 18 (or 6 x
x 3, 1 x 6

15, 5 .x 6, 3 x

1 X ,11 and '11 X i are the only

are not essentially. ditierent.

7%,

- -P**.

4

f'13.c..torkzationsc; an they:v

9. 'a. 1, 2, 3, 5, 6, 10., 15, end, 30

In more fob ;.;' 5610A30)i ns the set of factors of ,,30'= [4.52,3,,, ,

4 .
o. '1 and 19

e The set of factors o -7-7. (152; 3;14-i§1;85.ii25-211}
r

4

a: 2 x 2 x 2

b. 'f .x 3 x

c. 2 x 2

181



RAYS.

74.

)7,1aap-ter

ELgiLOTS .OF GEO.f.EIHY

a.

In Chapter 5 we intTauced some geometric concepts using physical

objects such as blodks, baks;; birj:ea., cans, and ice cream cones as models.
From these models, we conceipild iAalilad aet:s of points-such as rectangular

..
solids, spheres, cylinders 'cones serents and,'so on: There is another
set of points which is imgi9rtantin geometry. :.This seometric configuration
can be formed by extending'aline segment in One'. direction This

figure is called a rater. A ray is incitcated.
as sr

sL .

r
4

a
The ray shown above is formed by` vctending AB --tlirOugh B: 9r AC

,Afr

- through. The notation for. Np ccAtratt- '
with the nota:tion for 'segments enid. in nanEherays the or&er:94...,

fi-?*points is significant. A ray ha onekendp and itta. iiameci-

The second letter can name an:Y;Other point inn tie ray. As 1:ndicate4,

below, :g and g are not equ81- se-CS .ifThere are common points is < &he '

two sets... However; point X .is 00 ..ou is rk# point in

N /X
ai

;It
:Note that the Jarrow in the nomenaisture 'MP d esignates ,whic

A,;.;

the endpoint of the ray; it is not the intention
of the ray as it appears. In fact, it would

*4-

4.

44,

n4hy the orientation "'
%14kble to oriight

the arrows in conformity with all possible- ori nt,ations of the ray.
1;?Iit 1

ti!t.e
PROBLEMS*

1.
.

Represent n and show Q . between P andAr R. Which of the
1following denote the same 'ray?

1;4' . 4 4
;0-

1;
.

*Solutions for problems in this chapter are osi pa :96.



2. a. What is the implication:,of the statement 4. o-n

b. Does 'ILI = g. have. a similar cOnotation?

Referring to the.draying below, rename the sets in 'simple notation.

4

a. Union of:BC, CD. and DE

b. Interseation:of AB and BC.

c, .Intersection of CA and 22i.

d. Intersection of, or and Tel

e. Union of a and g.

ANGLE

Another fundamental geometric figure recognized in' many familiar shapes

is: an angle. The formal definitioneiSz.._.an angle is the union of two rays

whin have a common endpoint but which are not subsetof the same line.

-.The example shown is the Union of AB and AC. Their common endpoint

is said to be'the vertex of the angle. Retall that vertex also applies

to geometric solids and their faces. In each case it is the intersection

of appropriate edges. Similarly, here, the vertex of angle is the

intersection of the two sets of points in the rays. The rays are called

the sides of the angle.

Our angle is denoted by LBAC or' LCAB, where the middle letter

identifies the vertex. The other two letters name one Point distinct

from the vertex on each of the two'sides. Often, simply LA will be

written instead of LBAC. This notation cannot be used if more than

one angle is drawn at vertex A.

0



A D

4
It would not be clear by LA which of LCAD:Or BAD were

meant in the figure. above.

Agi
1MV

PROBLEMS

4. a. Name in three ways. the angle shown.

b. Identify the sides of this angle.

.5; Identify all angles in the figure below.

C.

A F E

6, Can ri and Sri be sides of an angle?

REGIONS

Since a polygon is a simple closed curve, it is the set of points on

the curve. These points should be distinguished from the set of points

enclosed by the curve which we call the interior; the two sets are disjoint.

A circle is also a simple closed curve, and it also has an interior. The

union of a simple .closed curve and its interior is called a region. We

'refer to a triangular region, rectangular region, polygonal region, or

circular region, etc., indicating that the simple closed curve is a triangle,

rectangle, polygon,circle, etc.

To denote a plane region in a diagrang the interior-of the simple
o .

closed curve is usually shaded. To denotippe interior only, the

interior is shaded, but the polygon is drawn in A ed,outline as is

shown in the figures below.

rectangle rectangular region

1.85

"Ft

1

interior of union "of interior

rectangle of rectangle and -
part of rectangle

I



CONGRUENT ANGLES

In Chapter 5 we defined two geometric figures as congruent if one

is an exact. copy of the other.

SUppose we are given two angles, LAW and- LFQR, and we wish to

find out if they are congruent. We make a tracing of

LABC, say :LAiBtCt:. We now place tilt tracing. on LpQR\ iuch.that ray

falls on !ii7 'and Bt flu s arc, Q. (his is shown above at the Tight.

Now if BiAt". falls on 7 we say that 'LABC is congruent to LFQR.

A special: angle thAt makes frequent appearances in mathematics is a

right angle. No formal defintion is given at this time. Instead, we will

describe.what is meant by a right angle in much the same'Vay that you will

convey the concept to your students.

' .41
7 w. .

The above drawing represents two right: angles, LyVX and LWVX.

The angles are congruent, and the union of a side of one and aside ofthe

other is a line.

45'

If apiece of paper were folded twice, as the drawing below indic4tes,

and it were then unfolded, the creases suggest segments of two Iines-whose

intersection is the point R. Thus: R is the'Nertex of four right'angles

whose sides are the extensions of appropriate pairs of creases.

;"-

R:

4

t R

Fold 1 Fold 2 Unfolded with
creasesdotted .



PROBLEMS

7. Identify all angles-which appear to be right angles.

8. Which of the following pairs of angles areAcongruent?

a.

C...

CONGRUENT REGIONS .

.-s

We have discusSed'bongruent Segments and congruent angles. Now we

shall discuss congruent regions.

Two geometric. regions are cbngrUentif one is an exact copy of the

other. SuppOse wehave the two triangles Pictured below

A. C X %.

First we make a tracing of triangle ABC. Now we cui\along the

boundary. We place this:tracing On triangle ZYX in any way that does

not distort the. region. If the tracing fits exactly the second region,

we say the tweregiOns are congruent and the bbundaries are congruent.
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To summarize, to decide whether or not two regions are congruent:

(1)

, (2)

(`3)

distorticin to either; then the boundaries.and the

Wetake a tracing of the boundary of one region.
e

We try to match this tracing to the other regign. .

If the tracing matches the second region with no

.- -

- regions are congruent.

The moVablcopy is.neededbecause the geometric figures to be com-.

pared are sets of points, and "as such, have fixed locations. Clearly,.
.

we cannot continue this matching process too long.

may not be matched and.fitted into another solid.

of congruence is not attempted un:pil'the children

more fOrmal standpoint.

A copy of a solid
.,

A more refined concept

study geometry from a
.

In the light of congruence, we may restate the reqUirements of special

geometric figures'. . For example, aay.two.edges of a cube are congruent .

,segments, and anytwo faces of a cube are congruent regions. Similarly,

we canonote the congruent Bides of a parallelogram and so on.

PROBLEM

9. Which Of the following,pairs of:regions are congruent?

a.

b.

d.

CLASSIFICATION OF POLYGONS'".

A polygon i7siis-i-mple closed curve that is a union of line svpments

it 'is a unionof three line segments, it is a. triangle; of four line

segments, a quadrilateral; of five Segments, a pentagon; df six segment's

a heagon; and so. on.

; 4
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.
4 ..

.

. .

The, segments which 'form thepoIygon are called it sides. The endt,ants-'

.of the aides. are the vertices of the polygOn. Note that,each vertex is a?
0

..

common endpoint,of two sides. Also, the number pf -vertices is the'sama:
, ..

'as the number of sides..

. J!' :

QUADRILATERALS

. A quadrilateral is a polygon of four sides., The figure's below are

° all quadrilaterals.

Rectangles are Special kinds of7quadrilaterals..- Lithe. angles,of-a.

rreCtangle are congruent.. Souares, in turn, are speciaL.kinds of rectangles;

'All sies of a-square are congruent. -: Thus, .in -the fPrilys

square 'rectangle

of quadrilatraIs,subfamilieS are identified. rectangles constitute

a.subfpmily or the quadrilaterals and`-t^ squares oonstitute-a subfamily'
.\

of the rectangles.. 'Another subfamily. of the quadrilaterals are the .

parallelograms. eTheir optosite sides' are segments of ainea which are

on the sane plane and which do not intersect:. As rectangl. also Possess

this CharacteriStic,'rectanglesare a subfamily of parallelograms.' Another

subfaMily of'the.parallelograms are the rhombi rhomt4s). Each__
side of a rhombus is congruent to each other side. So a square is. both a

special kind of>a. rectangle and a special kind of a rhombus..

, parallelogram rhombus

C

-4-the term '.'angle of a

I

lolygon" at:4 articUla'r vertex is a language:Of
.

. . ..
, oonVenietCe4to mean theiangle.having that vertex and such-thatithe particular

..i.: 4;.nsaesl o ..e tolygon belong...to the rays o' the angle
. ,. .

4-. :`:.-- .. .
i,

.

41.



Arhis kind of classification; we get a generic chain that. may be

indicated by the folloWing diagram.

simple closed curves

polygons

quadrilaterals

parallelograms if

reeiangIes rhombi

TtIANGT.P.S-H'

triangle it a polygon of three sides. A triangle may also. be .

defiled as a set of three'points, not all on.he same line, and the three.

line segments joiningthese.three points as endpoints..

There are three special triangles which shall be,of-speciAl interest..

to us. Theyare the equilateral:, the tsosceles:and the right:triangles.

An equilateral triangle is.a triangle each of whose sides is`congruent..:

'to the-others. In othei words, an equilateral:triangle has three congruent
4' . k . S e

sides.. .. .

Ci.
.-

An isosceles triangle ia.a.triangle with at leatt: two of its sides

congruent. an, every equilSeral:triangle is also an isosceles triangle,

A right triangle is.a triangle one of .whose angle's is a right angle..
.-

1

(1

.



'right triangle isosceles
triangles

equilateral
triangle

A right triangle may or may not be.iSosceles; but it cannot be equilateral.;

PROBLEMS

10. Which figures pictured below are polygons?

a.

b.

c.

11. Which figures pictured below are quadrilaterals?

a.

191 f'S

e..

, f.

e.

F



12. Which of the following are true statemen

a. Every squas4 is a'rectangle:

b. All right - triangles are qua aterals,

c. All equilateral triangles :e isosceles triangles.

d. A Parallelogram4s.aettangle:
de

e. A square is a polygon.

APPLICATIONS T6TEACEIIING

Geometric configurations are sets - -of points or unions of suchhet
A point is' a set with a single..meMber. A segment is ti* union of:Si

member sets. The union,ef'i;O points is a set and thus; the

constitute a geometr1"C configuration; so o a point and,a iyadd so on.

Fromi the union of certain segments or curves, we obtain such.j.familiar
. ; .

/figures as triangles, rectangles, circles, pyramids con ,'prisms, and spheres.

The sets of geometric objects that childr ha tdmonipulaie are sets

of three-dimensional objects. These are t c..drete objects whichproVide

children with experiences'froI which

concepts,. For this reason, we be/

we identify faces, edget, and

abstract thamathematical A

models of solids. From the niodeli,

Once identified, we -can use these

primitive elements to cons ct.oth r geometric figures. For example,..-

"skeletons" of pyramids ritms are unions of CertaiUline segments.

4 Eventually,-, her, nds.of primitive .elements will pa_intrOductd to

serve as building cks for various geometriigures. These building'

blocks 1.1.

segments, tL

jects called simplexes. They include figures such as

gular regions, and triangUlar pYramids: The .configurations

,formed by "he union of such elements are the complexes such as triangles

.and " eletons" of pyramids. For the study of thacomplexes, what can be

_e ed about simplexes will be extremely' helpful, although not all prob ems
.

out Complexes can be answered by relating complexes to the. building locks.

Moreover, certain kindsof complexes give rise to special sets of points

called convex sets which play ignificant role in the branch of mathematics
0

called linear programming. Linear programming has many applications in

business and in the ohysica.1)and social sciences. The contact which the

children at thiS level have with simplexesid complexes are mainly in

terms of polygons and other simple closed curves or.solids consisting of

edges.. Such exmeriences will form a basis for future experiences in mathematics.
.4.

Of particular interest are complexes that are closed figures.::Snch
4

complexes may specify where solutions to certain existing problems may be

4
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found. aOsed figUres do not have points that can be .designated as the

initial point and the endpoint. A circle, an oval, a triangle, a figure -

eight, the iurfate.of a rectangular box are all examples of closed figures.

Flor.childrenthe approach to closed figures is entirely geometric. It

must be emphasized that aay-closed figure that does not lie in a plane is

called a "solid", even though it is hollow. For example, a rectangular

"box" consisting only of the faces is a "solid"; the "skeleton" of, a

rectangular:box is a "solid".

It is a good.idea to display a set oXwoodenSodels'thataremmt...too

children to examine and handle them for several

days before beginning the chapter, "Recognizing Geometric Figures". Tracings

of the faces of the solids may be made on a large sheet of.paper and displayed

so that the Andrei:I-my match a face of a solid to its tracing. Wire or

stick models of polygons whose sides are congruent to edges of solids may

be. used for the same purpose. Matching pictures of solids with the.

appropriate modeli should prove usef14 in helping the children to visualize

drawings of .3- dimensional solids:: Most pupils seem to be interested in

finding objects.at home which qualify as cylinders and rectangular boxes

andao on.

Solid figures may be identified as blocks, boxes, or balls. For example,

a triangular pyramid may be referred to as a block with angular faces;

.but it would not be appropriate to identify a ball as aci cle or a rectangular

Brism at a rectangle. Basic distinctions to be made for e.children-at

this time are:

straight edge vs. rountled edge;

flat region vs. rounded regi'bn;

flat figure vs. solid figure.

We have stated that in the study of geometry, each of the following

objects, a point, a line, and a plane, may be regarded as a primitive

element. By these, we can define other geometric objects. Likewise, a

3-space may serve as a primitive element, and it is from this standpoint

that we consider points, lines, planes, spades, as elements ofgeometry.



QUESTION .

"What is meant by saying that, a rectangle is a special kind of quadrilateral?"-

A. quadrilateral isa polygon having exactly our sides. Thus, any of

the following represents'a quadrilateral:

It can be seen that, of these, a rectangle qualifies to be a quadrilateral;

it is a four-sided Polygon.. However, it distinguishes itself by the special

additional requirements having all angles that are congruent. Note too,

that a square fulfills all requirements fora rectangle; being a polygon,

having four sides; and having angles that are all congruent to. each other.

The square; however; has the additional reqUirement of having-all sides

that are congruent: By the same token that a rectangle.iS a special kind

'of a quadrilateral, a square is then a special kind of a rectangle.

Angle* 4

Circular Region

Congruent Regions

Equilateral Triangle/*

Geometric Configuration

Isosceles Triangle*
/

Parallelogram

Plane Region */..

Polygon * , 7/

Polygonal Region

Quadrilateral *

Ray *

Rectangle

VOCABULARY

Rectangular Region

Region *

Rhombus

Right. Angle *

Right Triangle*

Side of an Angle

Side of a Polygon

Square *

Triangle,*

Triangular Region

Vertex of an Angle*

Vertex of a Polygon *

*

*
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.EXEMISES -:CHAPTER 11.*

the Union of tw6rays,:- :AB add 0, is a line. what' will the
.

ction of .AB. and el

n the differences between AB, AB and Z.
_ .

the angles shown on-the-picture' below.

4. of'the followingttatedents are true?

5.

rectangles are polygndS.

quddrilaterals are rectangles.

4. All rectangles are squares. , .
e I

d..;. All parallelograms are polygons..
, ,

e. 'Polygont-ere siMple eloted curves.

f. All isosceles triangles are Polygons. ,

... -7.:'. ... *Which of the following pairS ofofigures are Congruent?
.....

,

, -

a.

b.

c.

d.

e.

;
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SOLUTIONS:FOR PROBLEMS

and:"W are the same. ray or PQ---.--17K

and" RIQ, are the same -ray or... RP = RQ .y
,

2. a. igi. CB .implies A =C. itne C ,must name the samepoint,
. ,

the endpoint of theray.

b. E1.7. ttr. indicates. only that A 'and C are On the same ray.

It is not necessary that A = C.

A. C

or

r

B A

3. a. BE

B.

c. C

d. CD

AB or any other notation for the line

4. a. LPQB; LQ; LRQ

b. u and

5. LCFE; LCFA; LBFD; Lilt h; LLIFC; LCB; LEFA; LDFA

6. No. There are two possible figures named VX and ,WX:

. Case 1

N

Case 2

t

In order for VX to be a side of,an angle, V must be the vertex,

similarly,,for V2 to be a side, W must be the vertex. This is

not true in Case 1. In Case 2, V = W but V. and V2 are not

two rays, so the definition of an angle is not satisfied.

.1961



T.., LCFA;

a,7 b,

b,

10. c

11. c,

12. a, c, e

ti

197

U.



1 .

Chapter 12

ADDITION AND SUBTRACTION TECHNIQUES

INTRODUCTION

We have used sets to describe addition and.subtraction and to

develop its properties. Knowing that 5 + 3 is the number of members

in A U B, where A is a set of 5 members and B is a disjoint

.of '3' members,

that 5 + 3 is

). of subtraction,

we may count the members of A U B and discover

.8. Knowing that 5 ±.3 8, from the definition

we can see that 8 - 3 Z. This is fine, but it doe

not really help us much if we want ;to determine 89.2 + 367 or 532 - ':278.

.1. To do problems life these quickly and accurately is a'goal of real

importance. is' a goal whose achievementia made muchaasier,in our

decimal system of numeration than in, for instance, the Chinese or

Egyptian +systems. ;

set /

. This chapter is concerned with explaining the whys and wherefores
.

of ,so- called "carrying" and "borrowing." in the processes of computing

sums and differences. Regrouping is a 'more- accurate term for "carrying"

and "borrowing" and will be Used throughout this text.

We must.liecall,hoW our system of numeration with baae ten is built.

What does.the numeral - 532 stand for? It stands for 500 + 30 + 2;

or 5 hundredi +. 3 tens + 2 ones; oragain, since one hundred stands,

for. 10 tens, 532 standS for 5 groups of ten tens + 3 groups.of

-,. ten + 2 Ones. Aso if.we knew that a nUMber has 2 .groups of ten tens

and 7 groups of ten and d ones; we can write a numeral for 'that.number

in the form (2-x [10 X 10])

When we write' the numeral in this stretched-out way, we have written it

in expanded form.

+ (7 x 10) + (.8 x 1) or 200 + 70 278.

REGROUPING USED IN ADDITION

Let us assume that we know the addition facts for all the one-digit

whole numbers encl.-Let we understand our decinsi.'aystem of numeration.

How does this help us? pet's. try some examples. Suppbse we want the

sum'of- 42 and 37. Since we are ,adding (4 tens + 2'ones) and

199. titj9
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IX.XX X x x X X XXI

(3 tens + 7 ones we get (7 tens + 9 ones) which-we can write

as 79 .

Essentially what we are doing_is finding how many groups of tens

and how many units wehave and then using our system of numeration to

- write the correct numeral. We may show this in several different formi
o

or algorithms, such as:

(a) 3 tens + 70.01ones

4 tens + 2 ones

7 tens + 9 ones =79

(b) 30 4: 7

40 +2

70 4- = 79

37

4- 42

9 ( 7 + 2,)

70 (30 4- 40"

79

Or we may use an equation form such as

37 +42 = (30.+ 7) +.(40 + 2)

= (30 + 40) + (7 + 2) Applying the associative

. 70 4- 9.

= 79

and commutative properties

Let us now add .27 and 35 . This time we have (2 tens +1'-ones)

+ (3 tens + 5 ones) which may be illustrated:

I.XX x x x x x x X.X1

IXX X X X X X X XXI

2 tens

XXXXXXX

XXXXXXXX,X X

XXXXXXXXXX

x x x x x x x x x x

7 .ones

3 tens t 5 ones

By putting these groups together.we now have:

XXXXXXXXXX

4_X x x x x x x x X X1,

xxxxxxxx,xx

xxxxRxxxxx
5' tens

XXXX.XXXXXXXX

200

2(11

12 ones



x x xxxx xl

Ix x7x xxxxxxxl

IX x x X x x x x X.XI

We now regroup the 12 ones and get another set of 1 ten and 2 ones.

er

1 ten

We now add (5 tens + 1 ten) + 2 ones.

0

(a)

XXXXXXXXXX

XXXXXXXXXX

xxxxxXxxxx

XXXXXXXXXX

5 tens + 1 ten

= 6 tens

+

, algorithms such as these may be used:

.2 tens + 7 ofies

3' tens + 5 ones

5 tens+ 12 ones, or

5 tens1+ 1 _ten + 2 ones, or

6 tens + 2 onds = 62

. .

Using an equation form we may write:

+27 + 35 = (20 7) +. (30 + 5)

= (o + 30) + (7 + 5)

= 50 + 12

= 50 + (10 + 2)

= 50 + 10) + 2

= 60 + 2

= 62

X X

ones

X X

2 ones

2 'ones = 62

(b) 20 +7 (c)

30+ 5

50 + 12, or

50 +10'+2 or

.60 + 2 =.62.

I

Ca%

27

+ 35

12 (7 + 5)

50 (20 +'30)

62

Applying the associative
and commutative properties

Applying the associative
property

We may extend these same ideas to the addition of.two whole numbers,

each greater than 100. Suppose, for instance,,that we were Adding

568. and 275 :

C.



1 ) 5 hundreds + 6 tens ++, 8 ones

2 hundreds + 7 tens + 5 ones

7, hundreds + 13 tens + 13 ones, or

7 hundreds + 14 tens + 3 ones, or

8 hundreds + 4 tens + 3 ones = 843',

or we nay. write

(b) 500 + 6o +: 8 or (c) 58
200 +. + 5 +275

700 + 130 +1.3 , or 13 (8 +.5)

700 + 140 + 3 , or 130 (6o + 7o)

800g+ 40 + 3 = 843 700 (500 + 200)

843

Precisely the same process is used in adding three or more numbers.

Oce again the properties 'of addition are important. Thus:

563 + 787 + 1384 can be-thought of as follows:

563 = 500 + 6o + 3 = (5 x loo) + (6.x 10) + (3 x 1)
787 = 700 + No .+ 7 (7 x 100) + (8 x 10) + .(7 x 1)
1384 = 1000 + 300 + 8o + 4 = (1 x l000) + (3 x loo) + (8 x 1o) + x

x loco) + (15 x loo)+ (22 x 10) + (14 ,x

and the sum 563 + 787 + 1384

=(1 x 1000) + (15 x 1001 + (22 x 10) + (14. X.1) ".

= (1,x 1000) + [(1 x 1000) + (5 x 100)] +.[(2 xipc) +

(2 x 10)] + r(1 x + x.1)]

= 1(1 x 1000) + (1 x 1000)] + [(5 x 100) .+ (2 x 100)] +

[(2 x + (1 x 10)] + (4 x 1)

= (2 x.1000:f (7 x 100) + (3 x i0) + (4 xi)

= 2000+ 700 + 30 + 4'

=2734'

This is usually abbreviated a great deal. But it is important that the .

underlying patterh be understood 'and the abbreviations recognized. Thus:

202



500 + 6o + 3 A , r 563

700 + 80 + 7 can be written with 1384
1000 + 300 + 80 +_4, partial gums

--T. aumof ones
indicated as:

.220 sum of tens
3400 + 1500 + .220+ 14',

1500 sum of hundreds
1000 sum of thousands

277
-

.

and 'the opdration may be still further abbreviated to:

COO
563 - 563

787 Finally, by omitting- 787
1384 even the `carry over" 138!.

.ff-77 numerals we get: 77

.PROBLEMS*

1.. Find the sum, 38 + 731+ 22 , by an algorithm that shOws'clearly

how the sum is obtained from:the addition-facts for- 0 through .

9 only:

2. Show the individual steps required in applying the.ds ociative

and commutative laws to show that

(30 + 7) + (50 + 8) =-(30 ±. 50) + (rf 8) .

. A PROPERTY OF SUBTRACTION

Just as we worked the same problem by various methods to get -an'

insight into tlie addition process, we shall now study the subtraction

process byexamining various techniques. Let us use a simple example

to illustrate the procedures.

Using an equation form for finding the value. of the unknown addend

n in n + 23 = 58 .and.compailng this with the,usual algorithm identifies

a property of subtraction that is used extensively in computational work.

We write: '

58'- 23,= (5o +'8) - (2o + 3) .

The property of subtraction that deserves our'special attention is that

which will enable us to express (50 + 8) - (2o + 3) in aUspftl:form..

*Solutions.for problems in -1.11s chapter are on page 211:
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Ixxxxxxxxx xl

The usual procedure for subtracting is by the vertical alignment,

58

23 ;

as either of the following:'

(b)

which may be expressed

.417

(a) 5 tens + 8 ones

2 tens + 3 ones

3 tens + 5 ones = 35

5o. + 8-''

20 + 3

30 + 5 = 35

In. the algorithm (b) above, notice that 3' is subtracted from 8 an

. 20. is subtracted from 50 to arrive at the tens and ones in the

difference. In equation form, this entire process is written:

58 - 23 = .(50 + 8) -.(20 + 3) = (50 - 20) + (8.- 3)

= 30 + 5

= 35

r.

We may' state the property, which allows (50 + 8) - (20 + 3)

to be reexpressed'as (50 - 20) +,(8 - 3) , more generally in the

following way:

IF ONE NUMBER IS a + b AND A

SECOND NUMBER IS c ± d, AND IF

a c AND b d, THEN (a + b) _

(c + d) = (a - c) + Cb -d)

We shall see repeated use of this property, along with regrouping,

throughout the rest of this chapter:

Next, let us interpret subtraction, such as 17 from 49 , in

terms of set removal. FroM set, A , of 49 objects remove a sub-:

set, B , of 17 bjects, leaving a remainder. set, A - B , whose

number is to be specified.-

We can take for A a collection of 49 x's arranged as follows:

A

XXXXXXXXXX
,/

Ix x x x x x x x x xJ

IXXXXXXXXX XI
'XXXXXXXXX
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(XXXXXXXXX Y1

dr

Now we need to pick a subset B .of A which contains 17 members.

Thelithe'nutber of members of the remainder set A - B will be - 17 .

There are: many ways to choose B . One of the is this.:

XXX-XXXXXXX

.TXxxxxxxxxxl
A

Ixxxx.xxxxxxl,

lxxxxxxxxxx(

x:xxxxxxxx'

But-when wechooae B this way, the remainder set. A - B is not easy"

to count. 'Some of the original bundles of ten have. been broken up, and

;only pieces of them are in A - B .

. It is much better if we-choose B so as to either include all of

a bundle of ten or none of it. Rere is one way:

A

xxxxxx'xxxx

kxxxxxx"xxx

x.x x X X X X X XX

XXXXXXXXXX

0
xxxxxxxlx x

.Nov it is easy to count. the remainder set A - B . 'Itcan be done

it two steps. Looking At the right hand SiCe.above, we see that the

number of ones in the remainder set is .9 - 7 = 2_. Looking at the left

hand side above, we see that the number of bundles of ten in)the remainder

set is 4 - lf= 3 . Therefore the number of members in the remainder set

is-32

An important thing to notice is that since we dealt only with com-

plete bundles of ten, we could count these using only "smell" nuMbers.

.
Now, let us examine in thesame way another problem: 32 - 17.= n

-We can pick A to be a set of 32; xts :

XXXXXXXXXX

X X X XX X X XX X

X X.

We need to pick a subset B. with 17 members, that is, one bundle .of

ten and 'seven ones. But A- has only two ones, so we'will have to use

2C5
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some of the members of A in the bundles of to :,As we saw above, it

we use only pole bundles. TherefOre we will take one of

the bundles of ten in A , Change it to 10 onei,'and pur,it with the

2 ones. Now A looks like this: u,,,.

x x x. x x .x x

A XXXXXXXXX X XXXXX XXXXXX

Now it is easy to see holi we can pick a Conve ent.subset B which.

has 17 :members; Here is one: *;

1
A

XX XXX XX XX

9.

It is easy to count the reMainder set A - B . The number of

ones is 12 - 7 = 5 and the number of tens is 2 - 1 = 1 . Therefore
32 - 17, is 1 ten add 5 ones, or 15, and n 7 15.,

Rather than object representation we may use algorithms such as

these to subtract 17 from 32 :

1410........

xxxxxxxxxxxx
B

Ta)' 3

1

tens t 2

ten + 7

ones = 2 tens" 12 ones

ones = 1 ten + 7 ones

1 ten + 5 ones = 15

or

(b) 30 + 2 = 20 +12
10 + 7 = 10 + 7

10 + 5 = 15

or we may use an equation form, as,

32 --17 = 2) - (10 + 7)
.

= (20 + 12) (10 + 7)

= (20 - 10) + (12 - 7)

= 10 + 5.

= 15

Notice that therenaming of (30 + 2) as (20 + 12) involves an

application of the associative property of.addition, in that

.(3o + 2) = ((20 + 103 + 2) = (20 +(10 +23) = (20 + 12) .
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We.m;ay.Subtract larger nurdbers, of course, simply by extending the

principle8 and procedures used With' smeller nuMbers.. Consider, for

instance, subtracting 276 from 523 .

.

Since ye Cannot subtract 6 ones from 3 ones nor, 7 tens from
. _

:2 tens, renaming is required. In detail, we may)irite:.

. 5. hundreds + 2 tens + 3 ones = 5 hundreds + (1 ten + 1 ten) + 3 ones,

= 5 hundreds .+ (1 ten + 10 ones) +.3 ones.

= 5 -hundreds + 1 ten + 13 ones.
B.

.= (4 hundreddlIkl hundred)+ 1 ten + 13 ones.

= (4 hundreds '4: 10 tens) + 1 ten :+ 13 ones.

= 4 hundreds +.11 tens + 13 odes.'

Ordinarily this procedure is simply indicated by

5 hundreds + 2 tens + 3 ones = 4 hundreds + 11 tens + 13 ones.

We may now complete the problem 523 - 276 by writing:

5 hundreds + 2 tens + 3 ones = 4 hundreds + 11 term + 13 ones

2 hundreds + 7 tens + 6 ones = 2 hundreds + 7 tens + 6 ones

2 hundreds + 4 tens + 7 ones = 247

or we may write

500 + 20 + 3 = 400 + 1I0 + 13

200 + 70 + 6-= 200 + 70+ 6

200 + 40 + 7 = 247

or we may use an equation form, such.as

523'- 276"= (500 + 20 + 3) - (200 + 70 + 6)

.(400 + 110 + 13) - (200- + 70 + 6)

= ( 4 o - 2 0 0 ) + ( 1 1 0 - 7 0) + ( 1 3 - 6 )0

= 200 + 40 + 7

= 247 .

We eventually may shorten such algorithms to the form

5 2 3 Or simply 523

- 2 7 6 - 276

2 4 7 247

207
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PROBLEMS

3 a. In the property (a + b) - (c + d) = (a - c) + (b d)

Why are the conditions a 2 e an d b d needed?
1

b. Give an illustration of the difficulty encountered if the

conditions are not met.
;

...

4.. a. .Represent with an.appropriate set, .A , and subset B ,. the

subtraction of 437: and 27,.

b. :Show the same subtraction in equation form.

SUMMARY

. Techniques of addition and subtraction may be explained in terms

of our decimal numeration system, coupled with regrouping and applications

of the commutative and associative properties of addition. Subtraction

techniques utilize a special property of'subtraction; namely.,

If a b and d are whole numbers such that

a c and b d , then it is true that

(a + b) + d) = (a - c) + (b - d)

This special property may be explained in terms of the definition of

subtraction in relation to addition, coupled with the commutative and

associative properties of addition.

APPLICATIONS TO TEACHING

If young children are to .compute with understanding, it is essential

that they have an adequate understanding 9f our numeration system with

its base of ten and its principle of place value. They also need to

have ample opportunity to manipulate sets of objects as the basis for

developing appropriate algorithms.

Algorithms such as these grow readily from manipulations of sets of

objects:



1. 42

(a)

+ ?

4 tens 2 ones- (b) :40 + 2 (c) 42

3 tens + 6 ones 30 6 36

7 tens + 8 ones -= 70 +.8 = 78 8

:._ 70

78

2. 69 - 24 = ?
. A

a) 6 tens + 9'ones (b) 60 + 9

2 tens +.4 ones 20 + 4 :

4 tens:+..5 ones =:45 40 + 5='45.

;

These same algorithms serve young children w5L1 when regrouping and re

naming are involved:

3. 58 +

(a) 5 tens + 8. ones

1 ten + 7 ones.

(b)_ 50 + 8

10 + 7

(c) 58

17

156 tens +.15 ones. or 60 + 15 or

7-tens +. 5 ones = 75: 70.+ 5 = 75 60

75

4.., - 35 = ?

(a) 8 tens..+4,one =.7 tens +,11 ones (b) = 70 + 11

3 tenir4-5:oned'= 3 tens 4..5 ones 30 + 5 = 30 + 5

4 tens + 6 ones = 46 40 + 6 =

Each Chile.ie not expected to be equally at ease with all algorithms.

He should be encouraged to work with the'form with which he is most com-

fortable. Eventually he will shorten that algorithm to a more efficient

form, but he should not be hurried into doing this. Computing with'

understanding takes precedence over computing with a highly efficient

form in the earliercstages of learning.
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QUESTION

"Does the property, .(a + b) - (c + d) =. (a - c) + ( b - d) 'if a > c

and b> d 'Mean that we cannot perform subtraction for whole numbers if

. the requirements a > c and b> d are not met?

To .a certain extent, this assumption'is correct, but with this

assumption, is a distortion in interpretation. If neither of these

requirements is met, then itit true that there is no whole number for

(a + b).- (c + d). For example, if .a = 2; b =_3, c = 4, and d = 5,
5.-""

then

(a + b) '- + d).= (2 + 3)'- (4 +

= 5 -9.

Since 5 - 9 is not a whole number, subtraction cannot be Perfo or

(2 + 3) - (4 5) in the set. of whole numbers. By the Same token,

neither can (20 +.3) - (40 + 5) be performed, as can be seen also in

the verticalarrangement:

23
'45

However, as illustrated in the example 32 - 17, .which is (36 + 2)

- (10 + 7),, we have 30 >10 but 2 < 7. Still, it ispossible to

perform this subtraction in the set of whole numbers; we rename 30 + 2

as 20 + 12 by regrouping. Then,

32 - 17 = (20 + 12) - (10 + 7),

and the requirements a > c and b >4 are fulfilled. The only time

that such renaming cannot occur to satisfy the requirements is when

(a + b) < (c

performed in

+ d); for example, (20 + 5) - (40 +3), cannot be

the set of whole numbers.

VOCABULARY

Addition * Commutative Property of Addition *

Algorithms * *-tXnded Fccni*

Associative Property Of Addition * Regrouping

Borrowing Subtraction *

Carrying
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A EXERCISES - CHAPTER 12

For each of these_examplet, c using the three addition

algorithms just illustrated in e preceding section..

a. 246 + 139-= ? c. 486 + 766 = ?

b. 777 + 964 = ? d..771 + 926 = ?

'For each of these examples, compute using the two- subtra.Ction'

algorithms illustrated ia-the preceding section.

a. 764 - 199 =

b. 402 - 138_-= ?

C

c. .710 - 287 = ?

d. 800 - 396 = ?

ompute 774+ 926 using an equation form.

4. Compute 800N\396 usiliv equation form.

SOLUTIONS FOR PROBLEMS

1. 3 + 73 -+ 22 = 38 + ,(73 + 22)

= 38 + [(7 tens + 3 ones) + (2 tens

= 38 + [(7 tens + 2 tens) + (3 .ones

= 38 + (9 tens + 5 one)

= 38 + 95

+ 2 ones)]

+ 2 ones)]

_ti

= (3 tens + 8 ones) + (9 tens *

= (3 tens + 9 tens) + (8 ones +

= 12 tens + 13 ones

= (1 hundred + 2 tens) + (1 ten + 3 ones)

= 1. hundred + (2 tens + 1 ten) + 3 ones

= 1 hundred + 3 tens + 3 ones

= 133 .

5 ones)

5 ones)

1

2. (30 + 7 (50 + 8) = ([30 + 7] + 50) + 8

= (30 + [7 + 50]) + 8

= (30 + [50 + 7]) + 8

= ([30 + 50] + 7) + 8

= (30 + 50) + (7 + 8)

2 ti
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. a. In order. for a - c and b - d to have meaning, it is

, necessary that a Z c and b Z d . These conditions also

assure that a + b Z c -+ d which makes (a + V) - ( c + d)

meaningful.

b. For example, let a=7 , b 5 , c = 8 , d = -2 so that

a 2 c . is not true. Then (-a + b) - (c + d) = (7 + 5) - (8 + 2)

= 12 10 = and (a - c) +(b - d) = (7 - 8) + (5 - 2)

= (7 - 8) + 3 = ? 7 -"8 is no't' a whole number, so the

'property. is undefined. If neither condition had been true,

(a. + b) = (c +' d) would not have been defined.

a. xxxkxxxxxx
x x x x x x x x

4
xl

XXXXXXXXX

XXXXXXXXXX

N(A) = 43

or, regrouped,

XXXXX'XXXXX

XXXXXXXXXX

x x X x x x x x x x

. 43 - 27

X X X

xxxxxxxv.xxxx
B4

N(A) ;4.43

N(B) = 27

N(A B) = 43 - 27 . 16

= (40 + 3) - (20 +7)
= (3b+ 13) - (20 .7)

(C) - 20) + (13 - 7)
= 10 + 6

16
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INTRODUCTION

.Chapter 13

INTRODUCING RATIONAL NUMBS

, .

A11 our workwith numbers up to this-point has beeir with the set of
.

whole numbers; we have pretended that they are thepnly'nutbers that exist
,

and we hive seen how they and their operations behave. Our number lines

have beep marked onf at the points whiehcorrespond to whole nuMbers,
.

leaving containing many points that are not named. Using only whole

.numbers t is clear that many division problems cannot be worked (for

example 1.);. that is, the seof whole numbers is not closed under

the operatipn of division.

Now the "problem of assigning'nutbersto "parts of wholes",, the problem

of naming points between those-named by whole numbers on the number line,
1

and the problem of lack of closure under divisionof whole numbers arethree

problems that convince us of the need. o.extend our number system to include

more than the whole numbers. In'the.hiStorical deVefopment of nutberS the

prOblem Of measurement (which willr-be considered in Chapter .16) was probably

a significant motivation in forcing the extension of number systems to more

sophistication than merely counting and numbering. .

REGIONS AS MODELS FOR RATIONAL NUMBERS

In our extension of the number system to include what we will call

rational numbers (but wh ich are frequently called "fractional numbers ")

we-willproceed much as'we'did with the whole numbers. That.is, we will

start with physical models for swish numbers andframfthese develop some

concepts about them..

In setting up physical models for rational numbers we usually begin

by designating some "basic unit", for example, A. rectangular region;

a circular region, a segment, or a collection of things.. This baSic unit

is ihen:partitioned into a certain 'number of .congruent parts. These parts,

compared to the unit, give us the basis for a model fdr rational'nutbers..

21
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For exatple, let us identify as

our-basic unit a square region and

suppose this is partitioned into two

congruent parts as shpan Figure (a).

We want to associate a'iiv-mber with,the

shaded part of the square region. Not

only do we want a .nublberowe want

name for this. number, a numeral which

will remind us of the two congiuent'parts

We have, of which one is shaded. The

'numeral is the obvious one,
1

read

'one - half ".. If 'our unit is partitioned into three' congruent parts and

2if two of them are shaded, as in Figure (b), the numeral
3

reminds us

that we are associating.a number with two of three congruent parts of a

( b )

unit. Observe that our numeral still uses notions expressible by whole

numbers; that is, a basic unit is partitioned into-three congruent parts

with two ofthese considered.

In the figures below, a rectangular region serves" s the unit.

(c) (d)

The numeral expresses the situation pictured in Figure (c), namely'

the'unit region partitioned into.four congruent regions,of whiCh three

are shaded. And, of course, the numeral 5
expresses .the situation

represented by Figure (d), the batic unit partitioned into six;-congruent.

regions, of which five regions are shaded.

Mbre complicated situations art represented in the next .drawings.,, 4,
In each case the basic unit is the rectangular region heavily' outlined by

solid lines: In some of these, the shaded region designateg a regiOn
. .

the same as or more than the basic. region, hence numbers eqUai-to or greater

214
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than one. ThuaFigure-(e) shows the basic unit partitioned. into five

parts, all of which:are shaded: The numeral ir des9ribes this model.

;

1

.(e) Physical model for
. k

2-
5

I

I I

I

Unit

(f) Physical model for 3

(g)

6

Ch

111111111

(k)

In Figure (f); the ,unit regiOn is partitioned into four congruent regions,
5

and five such regions are shaded; the numeral -z describes this model.

Examine the other situations illustrated and verify that in each case

the region shaded is indeed a model for the rational number namedunder

it.

1 16



1.

-3

2

3

...

Models using regiOns of various shapes

RegiOns of other shapes can also be used as models for rational

numbers. Some such regions, with associated numerals, are'pictured

above. In each case, you can verify that the model involves identifica-

tion of ,a unit region, partitioning of this region. into congruent regions,

and consideration of a certain number of these congruent regions.

For the sake of simplicity,we have used as models only plane

.regions. Frequently, we use solid regions, also, as models for rational

numbers. The interpretation given to such model:a is but an extension of

that used with plane regions. In this chapter we shall only use plane
regions as unit regions:.

PROBLEMS*

1. Draw models for:

2 12a. d.

4U Z e.

c.
3
2 f.

:5-

7
7

0
z

I

*Solutions for the probleis in this chapter are on page 237.
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.
,,.

.r
. . .

,

2. are the following pictures-not good models for rational-. numbers?

.. ..

at numbers do the- shaded portions of the^ following models

illustrate?

(a) (b).

NUMBER LINE MODELS FOR RATIONAL NUMBERS

(c) (d)

Anothefstandard physical model for the idea.1 a rational number

uses the'nUmber-line. The way we Iodate new points on the number line

parallels the'procedure we followed with regions. After.we mark. off a

'Unit 'segment and partition it into congruent segments, we then count

these parts. Thus, in order to lOpate the point corresponding to
1.

we mark off the unit segment into 2 'congruent parts and count off. 1

of theta. This point, corresponds to
1

1 part

0 1/2

unit

217 21s
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9
In like manner, to. locate. t , we partition a unit interval into

4 .congruent parts and count off 5 of these parts. We have now located

5the point which we- associate with .

5 parts

O 15/4

unit

4

Once we have this method inmind, we see that we'can associate a

point on the number line with all symbols such as 5
, , etc.,

as illustrated below.

3 parts

O 3/41 2' 3 4
. so-

unit

parts

O 5/8 1 2 3 .4

unit.

9 parts

0 1 2 9/4 '73 4

unit

PROBLEM

. , .
. ..4

4. Locate the,Point associated with each.oftte folloWing on a separate
I L

nuMbeiline... 44. 1#1m:
- '4.*"..-';..':,!

0

3 7, .tF,7
e. 17

a. 7.



ARRAY MODELS FOR RATIONAL NUMBERS

Sets of.objects arranged in arrays may serve as models for rational \

numbers, as in the illustrations below. In each figure the unit set or

array* is bounded by solid lines.

O 0000
G O)01@

() A model for 1

0** 48.**
O 00.00
O 4> 00 **
O 00000

(d) A model for

-0

-E3 111

ga 0 El

(b) A model for 2

(c) A model

for
4
1-
4

(e) A model for

J
2

1

In Figure (a), for instance, one of the -04o.rows'of the unit array
1is shaded.. With this model we may associate the rational number

In Figure (c), four of the four rows of the.unit'array are shaded, and

with this model we'may associate the rational number . There are two

unit arrays in Figure (d) with two rows in each array: Three of the rows

are shaded, and with this model we may, associate the rational number 3
.

Notice that in each instance the rational number associated with a

particular model is independent of the number of elements in each row

Of the array. For example: we would associate.the same rational



number, , with either of the arrays below.

.
C.O

0 0 0 0 0 0 0 0 0 0 0 0

Notice that we also may associate the'rational number . with a

representation that is nqt an array, such as:
-* ie loI1Io

; 41 ; 41 010 .0

in which a unit set is partitioned into four equivalent subsets, three

of which are to be considered.

PROBLEM

5. Show an array as a model for each of these.

5 7 , 4 7
a. b.

3
c. 7 u e. f.

SOME VOCABULARY AND OTHER CONSIDERATIONS
.:-

The'nuMbers for which our regions, segments, and arrays,,Are models

are called rational nutbers. The particular numeral form in Whi'dh these

numbers often are expressed is called a fraction. Avlaty,different fractions

designate the same rational number. We have here again the distinction

between a number and names (numerals) for that =ben

In this chapter we are concerned with those rational numbers that ,

can be named-by a fraction of the form
a

where a represents a whole

number and b represents a counting number (i.e., a whole number other

than zero). In effect, this definition restricts us to a consideration

of the nonnegative rational numbers. The complete set of rational
a

numbers consists of.*ose numbers of the specified form, .13 , and their.

opposites or negatives.
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Referring to our models we,aee that b , the denominator, always

is the number of congruent parts or equivalent subsets into which a

unit has been partitioned, while a , the numerator, is thenumber of

these congruent parts or equivalent subsets that are being used. One

of several reasons why the denominator is never zero is that it would be

nonsense to.,.speak.of a unit as being divided into zero parts; it surely

cannot be partitioned into fewer than one part.

EQUIVALENT FRACTIONS
,

The following figure shows several number lines :. one on which we have

located points corresponding to 0 1 2 , 3 , etc.; one on which we have

0 1 2 3
:located points corresponding. to

, , 1 ,
etc.; one on which we have

3
located points corresponding to

0 1 2
, 2 ,

etc.; one on which we have

0 1 2 4
located points tcorresponding to , , , , etc.; and one on

2
which we have located points corresponding to 7 ,

1 7 , , etc.

2

1.

a

0
2

1" 3
2

4

a

6
2

I ow-
0
4

I

4?
a
4 .4

4
4

'5
4

6
4

7
4

9 10

4
II 12

0 '1
8 8

2 3
8 8

4
8

5
.8

6
8

7
8

8
8

9
8

10

8
II
8

12

8
13

8
14

8
15

8
16

8
17

8
18

8
19

8
20

8
21

8
22
8

23
8

24
8

AS we look at these number lines, we see that it seems very .natural

to think of
0

, for example,. as being associated with the zero point.
2

For we are really, so to speak, countin off 0 segments. Similarly,
0- 0

it seems natural to locate , 7 and 7 as indicated.
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Now let us put the five number lines together, as shown is the

figure below. 'In other words let us carry out on a single line the steps

0 : 2 3

2 1 3
1 t 1 1

1 2 4 5 6
2 2 2 2 if.

2 . 3 4 6 7 8 9 10 IS 12

4 4 4 4 4 4 4 4 4

0 1 2 3 4 5 6 7 8 9 10H 1213141516 17 18 19 20 21 22 ?a a
8 8 8 8 8 8 8 8 8 8 8 8 8. 8 8 8 8 8 8 8 8 8 8 8 8

for locating in turn points corresponding to the rational numbers with

denominator 1 , with denominator 2 with denominator 4 and"with
1denominator, 8 . When we do this we see, among other.things, that ,

4
IT! and 13 all correspond to the same point on the number line, or, in

other words, are all names (numerals) for the same rational number. We

see also that , , 27 , and so on, name the points we have formerly

2named with whole numbers. Furthermore we see that fractions such as
2 '

8.
, , and the like also name points that have formerly been named

by whole numbers. Fractions which name the same pOint on the number line,

and which therefore name the same rational nutber,"ait called equivalent

fractions. Notice"that.corresponding to each whole nuMber there'is a

set of equivalent fractions.. Consequently, there is a one-to-one

correspondence between the set of whole numbers and a particular subset

of the set of rational numbers. Furthermore, it can be shown that a

one -to -one correspondence may be established between4he set of Whole

numbers and the entire set of rationals. :

EQUIVALENT FRACTIONS IN "HIGHER TERMS"

Recognizing the same rational number under a variety of disguises

(names) and being. able to change the names of numbers without changing

the numbers are great conveniences in operating efficiently with rational*

222
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4

numeers., SUCh an addition. Problem, aa l is certainly worked out

most efficiently by considering the equivalent problem
3

+

8

12 12

equivalent, because names the same number as and names the.
3 2

same number as
8
11 .

The figures illustrate a way of using our unit region model to show'"------\

8
that

2
and

'12
'are equivalent fractions; that

3

name the same number. First we select a unit

into three congruent regions by vertical

lines as. shown in Figure (a). Figure

(b) stows the shading of two ot.these

regions
2

to represent . If we re-

turn now to our unit region and

partition each of the former three-7N

is, that :and -
12

2

region and partition it

-4\ i

I
't 4
f 4

thirds

1 I

congruent parts by horizontal lines

into four congruent parts, we have

the unit partitioned into 3 x 4 = 3_2

(c). --1-
1

.1 I

twelfth's

Congruent parts, as shOial in Figure

(0) If the unit partitioned in this

way is now tuperimposed on the model

(b)

(a)
.r.44114.44.
iomomotal..4

2 . 2 x 4 8
Model showing

x 12

for
2

, we get the model shown in

Figure (d), which shows that each of the two shaded regions in the model

for
2

is partitioned into four regions, giving 2 x 4 =.8. smaller con-

gruent regions, shaded. Hence'the model showing 8 of 12. congruent

parts represents the same number as the model showing 2 of 3 congruent

.parts.

The number lines in Figures'(e)

and (f)_demonstrate this same equiva-

lence. In Figure (e), 2 is shown
3

by partitioning the unit segment into

3 congruent partS and, using two of these

-to mark a point. If each of the 3

congruent parts of the unit is now

partitioned into 4' congruent parts,

0 2 I

( f ) 4 3

12

0 ' 8 .

12

Number line model showing that

2 2x11- 8

T77 12
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the unit segment then contains. 3 x 1 = 12 parts while the 2 original

parts used to marls now contain 2 X 1 = 8 congruent parts, as shown

in,Figure .(f). 'Hence, the same point is named by
8

as was formerly
12

named by
2

To put this in more general terms, constTerthe'fraction fol'- where

b represents the number of parts a unit has been partitioned into and

a the number of -these parts marked in the model. If each of the b

parts is further partitioned into k congruent parts, the unit then con-.

tains b x k congruent parts, At the same timei each of the a parts

is further partitioned into k parts so that'there will be a x k

a x k
smaller congruent parts marked in the model. Hence,

b x k
represents

the same number as -
a

formerly did. Symbolically:

a axk
b -b xk

where k repreients any counting number. Hence, for instance,

'3 3 x 2 6 3 '3 x 3 9. 3 3 x 12.= , or = or =.4-7z( - , etc.

Our.knowledge Of multiples'of numbers can be used to good advantage

37when each of two fractions such as T and is to be changed to

"higher terms" so that each fraction has the same denominator.

The set of multiples of 6 is (6 , 12 .,- 18 , 24 , 30 , 36 , . .3

The set. of multiples of 4 is (4 , 8 , 12 16 , 20 , 24 , . . .

The intersection of these two sets is (12 , 24 , 36 , 4+8_., . .3 and

any member of this intersection can serve as the "common denominator" for

the new fractions. The least common denominator would be 12 , of

course, so that

5 5 x 2
o

or alternately,

5 5 x 4-
6 x 4

and so on.

10
12

20

and
.

,
and

3

4
= 3 X 3
7,>77

3 x 6

912'

18
4 x 6
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PROBLEM

A. Draw both a unit region model and a number line model to illttrate

7.

8.

2
that t 5

Supply the missing numbers in each of the following.

3 3 x 24 7
b.

14
c.

12

the first fraction

a. 5 5x

Speci the

$ =32

"k". used in each case to. change

to the sec d.

7 x k 28
a. 7 k

13 x k
=

IA

c. = 3-7 ,

EQUIVALENT FRACTIONS IN °LOWER TERMS"

Expressing a fradtion in "lower terms" (often called "reducing"

fractions) is simply reversing, or undoing, the process used to express

fractions in7l
3

"higher terms". FOr example, 2 =.1
30

an
x 10
x -

and,3

20 20-1. 10 2 10' 10 .1. a 5
undoing this process,

30-- 30 I. 10 3
Similarly, _

12 12 I. 3 147 147 + 3 _49
and so on. In general:Ts 117717-3 = ,
SnO

IF A COUNTING NUMBER, k, IS A FACTOR OF

4,BOTH a AND b , THEN 2 1
b k

In this case we say that; the fraction tt has been dhangedto "lower terms ".

It should be noted that while it,is always possible to change a fraction

to an equivalent one in-"higher terms" with denominator 'any desired

multiple of the original denominator, it is not.alWays possible to re-

name ("reduce")-a frantion using a specified divisor (factor), since

one.cannot-alWays diVidej!.polInting number by a counting number. For

example, ;6 can be renamed using 2 as a divisor, but not by using 3 ,

while 3

5
cannot be changed to any "lower terms ". We sometimes say that
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1
a fraction which cannot be changed to any "lower terms, such as

3
.

'
.

, etc:, is in simplest form or lowest terms.

Putting fractions'in lowest terms or simplest form is a convenient

skill, but its importance has been overrated. The superstition that

fractions must always, ultimately, be written in this form has no mathe-.

matical basis, foronly different names for the same number are at issue:

It is often convenient for purposes of further computation or to make
.

explicit a particular interpretation to leave.results in other than

simplest form. However, whetre simplest form is desired we can proceed

by repeated division in both numerator and denominator, or we can use the

greatest common factor of both numerator and denominator as the k by

which both should 1:1,e divided. The examples displayed below-,should,be

y) sufficient to illustrate both procedures for writing a fraction in

simplest form.

1
12 12 2 6 6 2

20 7 20 +2 10 10 = 2 5

12 (2 X 2) x 3
ti

20 =(2 X 2)

So the greatest,common factor of 12 and 20 is

2 x 2 = 5
(.0 104 104 = 2 52 _ 52 = 2. 26 26.÷ 13

T65 2 7577 2 130 130 2 7 65 13

% 2 )104 ® 1260

152 0 W.32

0 126 5 162

0
*So the greatest common factor is

2 X 2 X 13 = 52, and

104 104 + 52 2

-275 T67.775, 5'

Observe that for a fraction such as' 9

226
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of 5, and 9 is one, and consequently the fraction already is in its

lowest terms. It is true that 2 5 1
' .9 '

but, there is no need to9 7 9 1

perform such a division.

PRaBLEMS

9. For each of the following, give one equivalent fraction in "higher

terms" and give three equivalent fractions in "lower. terms", 'in-.

eluding one in lowest terms.

24 . 30
a. b.

10. Why would it not make sense to speak of a fraction raised to

"highest terms"? .

11. For each of the follming, specify the greatest eommon factof,

say f , of. the numerator and denominator ELIA use f to write

the fraction in simplest form.

30
a. -43-

24
b. -.7

3.0

3
c.

39

52

f .=

f =

f =

30

24

39

55

EQUALITY AND'ORDER AMONG RATIONAL NUMBERS

First let us recall'the three possible relations that may exist,

between two whole nuMbers, m and n . One and only one of thee.

" three things is true:

m = n m is equal to n),

m > n (m is greater-than n)

m < n (-m is less than n)

A similar statement can be made about two rational numbers,

a 2
and d

a
d

(1-1 is equal to
73

.a c

-13 >
(2 is greater than i)

a c

13 < d
(f is less than i)
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Let onsider these' three specific examples:

1. 6 9
372-

2, /3
7 5 5 4

3.

How may we compare the rational numbers in each example to determine
o

.whether the first number .of each pair is equal to, br greater- than, or

less than the second number ofoea1 pair? Of the several approaches

that might be taken, we.shall illustrate. the one in which each pair of

fractions is expressed in terms of equivalent 'fractions whose denomina-

tors are the same. In particular, the common denominator will be the

least common denominator. Thus:

181. To compare
6 9 6 18since '

9
,and

.fE
18and

it must be true that
6 9

21 2°2. To compare
7

and : since
7

= -

21
, -

2o -g, and ,-g ,
it must be true that.

5 4 5 15 4 . 16 15 16To compare /3 and : since = -g , = -g , and.
<

5 72it must be true that -t3 < .

Now let us summarize each of these three comparisons and also make

a ,signifi cant observation. in each instance:

1. 6 9
It also; is true that 6 -x 12 = 8 x 9 .

7 5
2. 73 > 'It also is' true that 7 x 6 > 8 x 5..

5 2
t3 < It also is true that 5 x- 8

.

It is extremely dangerous to generalize on the basis of isolated

,examples! However; the preceding examples do illustrate aftilimportant

set of relations that can be demonstrated to be true for all nonnegative

rational numbers
a

,and
c

a c
= if and only if a x d= b x c.

a c^

b
>

d
if and only axd>bxc.

a c
< d- if and only if axd<bxc.
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.
Th4s, we have a.very simple and convenient way for determining

Whether or not two rational.nuMbers are equal and, if not equal, a very

simple and, convenient way for ordering them.

PROBLEM

12. Make each of the following statements true by writing = or

or < in the ring.

a.

d.

60;46

40;
0

e" 1014g0

RATIONAL NUMBERS IN MIXED FORM

c. g 0 ;3

f.
111.3 1043(Th
13 103

Each of us is familiar with the fact that a rational number whose

name is
3- , for example, also may be named in the "mixed form" sometimes

called a "mixed numeral", 12. (We do not say. "piXed number" because 1
1

is a numeral, that is a name 'for a number, and not a'numeral.) Let us use

the number line to examine briefly some of the assUmptions underlying our
I

use of the familiar mixed form for naming certain rational numbers.

2 3 v, 4 5 6 7 8
7 . 3 .."42 7 3 7 3

2 1
1 '1- 1- , 2 2-

3 3 3

..,

Consider, for instance, the use of and 11.
.

o name the same

-.:?rational number. We often state thatl = 11 , Behind this statement

there is, the assumption, among others,°that rational .numbers can.be

added: = 3
1 7

2

3 7 17'

01
7

, consider the = 21 . Here again we see that-

the ability to add rational numberis one of theth.4:ngs underlying our

inte6;etatiOn Of, 2 , since:7 6 + 1 = + ='4 .

3. . 7 T. .7 , 3 3

Q



It is beyond the scope of thischapter to give any systematic

consideration to the addition of rational nuMbersw Hoigever, we did wish

to point out that this operation is implicit in an interpretation of the

mixed form for a rational number.

Another important .implicit assumption is considered in the

following 'section..

...RATIONAL NUMBERS AND DIVISION
14

Thus far rational numbers haye been interpreted in terms Of several

models: unit regions. partitioned into congruent regions, unit sets or

arrays partitioned:into.equivalent subsets, and Unit segments maatitiOned

into ponghent:segments. We shall now look more closely at the inter-

pretation of rational nuMbers.on the number line.

For an example we shall consider 3
7 .

went into four congruent subsegments and
1

interval in the partition presents'

the union of thier..-ef the subsegments0.
3

that 7 is defined as 3

(a)

We partition the unitaegL.

count tree of them. Each

therefospi7thrae-fourths is

NumeAllgsvIalis implies

o 4
-q 4

Similarly, the union of four of these segments

3represents -
h
0 X 7 or 2 as shown in (b).

abut,VId end-to-end

3 3 3

(b) ---4--. ''.
0 z. N. 1..I

. 2 3...; p .
. . 3 .1 4 x -4

...'This is consistent. with the above definition

.-.".of multiplication for the product:.

4 = 4 x (3 X

111114

and the associative property

,...;614..x 3) x 12 x . . 3
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The followimg equality derived' fronytrie4receding work is of particul,
interest:

3 =3

It demonstrates .thire 'there is a number of the form 1- that satisfies the

equation, ,...
.

x 18:7

..

3
........... . ..

namely, n-. Lt Assobiated with this equation is the quotient ib L- = 3..i. 4 .....
This had no Meaning in the set of whole numbers, but we see now that the

- ....
- 3set,.cif rational nuMbex-, provides the number .g as equal to 3 +

Recall the use the'n*er line in illustrating division, say of

6 4.'3 . 'A 6 13.41:t -segment is partitioned into ,3'.congruent sub -

segments.. Beat 'subsegment.IS cdangruent:.o-,the segment from 2 ,

and thus, 6,4-3 simi_lar.p4rtiticining of a 3 unit segment

into :4 congruent suhsegments can be ti.ssboiated with 3 +4 . As
,

Figurer (b) ; above ,shOWs, each pub gment is congruent to the segment'

from 0,. , thus justifying further that 3 I. = ,-3
3 . ,

This is but one illustration e...an important relation .1De-ween

rational numbers and division. In general,. it is true that

, .a
+ = t-t-)

where a is any =.71-kile number, b. is any -Counting number, and their

qUot erit is the rational number a . Thus, for every whole number ab . .

aand -fOr every cotrning. numb er b there is arational number'
b

such

')j

that

b x = a

PROBLEM ''

13: . 'Find n = 5
.

-Show the diV n the number line.
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NEW PROPERTY OF NUMBERS

Rational numbers are different in many ways from whole numbers.

One such differenCe is apparent if we recall that fOr any whole number

one can always say thethe "next" whole nuMber4pand then ask!, in a

similar. vein, what the "next" rational nuMber.is'after any given rational:

number. .,,Mr.exmple,i.'4:;.*the.neiVwhoie:nuMherj4"ter, 3 ,.1069 is the

.:next whole:

number afte
1 1

? If ..zs411kgetei::S.sihe next one, we can .observe

1 6 2 8 '7 1 2
that = and 7 =u is surely between .and. !

7 1
Hence, u has abetter clitiMto.being,,0ext to -f than does ,1 ..If

-

1
it is then suggested that 2be.regaidd as the next - number after ,

1 12 -.7. .. 14 '13 1
we can observe that - = so is to - thanf

H.

7

N
, 2

7
is To carry this. one #4':furtherp.7ye.can squelch anyone who

12

suggests 24 as being the next nUitiber-afr-: by :pointing out that

1, 24 13 26 4, 1

1+8
and so that is4Mbre'nea±lk "next to" -f than

13is -g It is clear that this process could be carried on indefinitely

and, furthermore, would apply no matter what rational number was in-

volved. That is, we can never identify a "next" rational number after

any given rational number. A similar argulent would show that We can-

not.identify a number "just before" a giveU'rational number.

A number line with a very large unit is shown to illustrate the

procesS we went through in'searching for the number "next to"
1

er after,"1068 What -is the next _rational. .--..:

.

13 2
,;.: 96

12
24

0
, 25 '7

48 12

6

Another way of expressing. what. we have.been talking about:is to say

that between any/two.rational nu.4mbersithere is. 1Ways a thirdrationa
.

number; in fact, there are more ratiOnsil.nlimers.,,than ve could-!count.

Mathematicians sometimes describeglis'.,:idy saying that the set of rational
-

numbers is denSe. The'wordis not 'important"to us, but its desdriptive

of the packing of points representing rational numbers closer and, .closer
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together on the. number line, Although we can visualize that the points

represpqhg:.ttie rational numbers are, densely packed, there arfmany

points,oni.the number line whose'coordinates.are tot rational nuMbers.

Many points

We- are

, .

are_ associated .with numbers such- as_1( , and so

not going to consider such,numbers inithis,text but we

mention them to indicate that the number line is not yetcoMplete. There

is a point associated with every rational number but there is not a

rational number for every point.

PROBLEMS

14, Name the rational numbers 'associated with the points A , B , C ,

D, and .E below, where A is halfwaybetween 1 and 2 , B

:halfway between 1 an A ,

E

0 D

A

15. How many numbers are there between 1 and the number

wisiooint E

,

SUMMARY
.

k
. t Lo..

-EVery nonnegative rational number can be represel4e.d.76y many dif-
.

. -

a
ferent fractions of the form IT , where

and b designates a counting number. All fractions for the same

rational number are said to be equivalent. The problems of changing

a designatee...S.ole number

a fraction to "higher terms" or to "lower

are essentially problem's of renaming.- .

advantage the fact .

a' x
:(where'

. y
-

and also ''t1WtO.cA-

"a .a
b b k

(where

terms". or to lowest terms

'IA this connection we use to

k designates counting nuMber)

k designates a factor of a and b )

. ". 17-



EqUality and'order among the nonnegative.rational.rhuMbeagan be

established on the basis of these. oondiiions:.;i

--d. if and only. -a. X, Zt x c

c
s >. -d- if .and only: ifs ax d>bXc.

b

a c<
d

d and o if axd<bxc.

We haVe-senthat a rational number May be used to designate the

quotient of any whole nuMber, a /and any counting nuMber,.b.:

a
a +b=r).

Finally, we have pointed:to thefact that between any two rational

numbers, no matter how close they are to each other, there are many

other rational numbers. Among other things this means that, unlike the

Whole numbers, one cannot identify the nuMbei that comes "just before"

or "just after" a given rational number.

APPLICATIONS TO TEACHING

We have emphasized the use of several different models in developing

ideas about rational nuMbers:

a. unit regions (plane and solid), partitioned into congruent

regions; .

b. unit segments, partitioned into congruent segments; and

c. unit arrays (or sets), partitioned into equivalent subsets.

Children,encounter each of these models in.connectionvith their

everyday experiences, such as:

a. displaying a fractional part of a candy bar,

b. displaying a fractional part of a piece of string,

c. displaying a fractional part of a bag of marbles.

It is important that children have ample experience with each of the

,models identified if children are to be able to apply rational numbers

correctly and effectively. Variety of representation is imperative in

this connection.
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QUESTION

"Why do you not insist on changing.improper fractions to mixed numerals?"

The plea is not so much to have numbers expressed in one form or

another as it is to have the pupils realize that the various forms are names

for the same numbers. Sometimes it is more convenient to have the mixed

numeral form than the improper fraction form. Sometimes it is the other

way around.

For exemple, an answer

more meaningfully stated as

be made on this answer, say,
15

pointless to express,. -- as
2

the product.

Array *.

CoMmon Denominator

COngruent Segments

Denominator *

Dense

Division *

Equivalent Fractions *

Fraction *

Fractional Numbers *

Greater than

Higher Terms

Least Common Denominator

Lower Terms

5
of -

1T
for the number of pounds of candy is

7-1 pounds. If more computations need to
2

to find the price at 374, it would be

72_
15

.and change it again to to obtain

VOCABULARY

Mixed Form.*

Mixed Numeral *

NOnnegaltive Rational

Numerator *

Rational Number *

Rectangular Region

Simplest Form *

Solid Regipon *

Square Region

Unit *

Unit Region *.

Unit Set.

235 236
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EXERCISES CHAPTER 2.1

1. Using rectangular regions as'your unit regions, represent each of

the following by partitioning the units and shading in parts.

7a. e.
5

2
b. f.

0

4 9c. g.

d. 5
7 h. 7

. Using unit segments on number lines, represent each of the fractions

a - h of Exercise 1.

3. Using arrays or equivalent sets, represent each of the fractions

a - h of Exercise 1.

1. Most of the following figures are models for rational numbers. Some

of them are not models because the unit has not been partitioned

into congruent parts. Ar each one that is a proper model, give

. the rational number which is pictured.

(a)

(d)

(e)

0

(f)
VI I

0

(h)

(b)

I

2 ('g)

(i)\(i)
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SOLUTIONS FOR PROBLEMS

1. Many models may be used. These are illustrative only.

b.

....:. .

c.

2
3

e.

f.
bTLd,

0

7
7

2. The figure's are not good models because they are not partitioned

into congruent regions.

3.
2 7 0

a.
2

b. = d.c.

a.

b.

C.

.0111111111.-

0

3
4

O I .

3
3

5. These models

a. '*4-

0 0 0 0

d.

-

Jo
o o 0

Lo o_0

illustrative
4

2 .

d.
5
5

e.

2

r';.- 7

0 2-.111J111.-

. -
.

O 0

O 0 0
O 0, 0
O 0 0
O 0 0
O 0 0

e.

- 0 0 Ow

237

f.

.
S

L. ±4
-0000000j

12
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6.' For example:

Or 0

611 1

0

3

4
6

7. a. . 28 c. 7

8. a. k =1+ b. k = 3 c. k = 21

low

Or

9. Higher -terms; many answers, e.g.:
48 72 21+0 etc.

. 6o 18o 240b. 1-2-0 , , etc.

10. Since in

V

1=1

Lower terms; any of these:
12 8 6 11. 2
IS r§? 9'7''
15 10 .6 5 3 1
30, 20' 12' 10'

Lowest terms:

2
3

1
2

a a X k k can be any counting number, there is nob b ,x 'k

liMit to }}ow large the numerator and denominator can become.

0 + 1511. a. f = 15 , 3 2375 -

b. f = 12 , 211 + 12 2
30 + 12

12. a. .j7 -i-6

a. ®

13. a. n = 5'+ 3 =

b.

e.

O I 2 3 4 5 6 7 a 9 10 II 12 13 14 15

3 T
O I 2 3 4

3 3

6

Co f = ,.., , 39 + 13 3------- -52 + 13

9 3o p"-_:\ 15
e .65 :s.) -.034

9 45 111.3(z-\_ 1043
loo 13 103

llt.. A B C D . E

7.3, (or 12-) 3 ( 9 (or 1.8) , 1 33 (or IL)
4 2

.8 or .8) 1-6 k or .1.-76) se 32

15. More than can be cou nted (actually "infinitely .many").
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5. Consider the points labeled A , H., C , D and E on the

number line: B A' C
Ilt I vor

0

a. Give a fraction name to .esOh of the points.

b. Is the rational number lOOS:ted at point B less than or

greater than the one located at D ? Explain your answer.

c. In terms of the marks ov. this number line, what two fraction

names could be assigned to the point A ?

. Interpret on the number line the following::

20 b

a. ' 20
b. = 5

Show on the number line the equality:

2 3

7 12

:

5

8. Tell which,of the following fractions are in "simplest form".

6' 11 7 12 516 7 412 10. 13 2

12 ' ' 12 ' 13 / 513 ' ' 7 ' 12 ' 3
.

FOr:ach pair of rational numbers named below, indicatehether the
. .

firstlAs equal to'the second, greatet than the second, or less than

:!.the second.
.

"a 1,.
'.1. 1 7 5 .18 :9-- c.

ir-,!;-...:2-r '; 7
.

8 , Z -7 ; -f6 ' TES
... ;;;

:if'. 12 17 '1
b. -27 ;_::m d.

32 '

10. Express each of these in mixed form.
;

:....

,, 15 21 34
a. . b. 17 c. d.

15

239
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Chapter 14

PREMASUREMENT CONC.6rTS

. INZRODazri.ON

. Certain basic geometric figures and concepts have been presehted in

Chapters 5 and 11. Recall that common physical objects provided-the

foundations:on which the development. was built. It was done.ths way

because this is the,way in which geometrical ideas are conveyed to young

childrdn. Little was said.at that time about geometric solids. This topic

will now be extended to gain familiarity with associated vocabulary and.,

characteristics as has already bedh accomplished for.many plane figures.

The notion of congruence which has appeared in the earlier discussion

will also be a vital concept in the following development. It will pro,.

vide a means of ordering sets of points which will in turn lead to the

concept of-measure. By this, we do not mean ordering the. points as we

have done on the number line. We Mean assigning =order to sets of

points as for example, among various segments, among plane region:" or

solid regions,. The corresponding measures are for lengths, areas, and

volumes. Thus,7We can compare the "sizes" of different geometricobjectt.

The concept. of measure' will be. discussed in Chapter 16. In t5i4:::tftter,

we want. first to identify some of the geometrical relationships 66Ccon-

figurations by their mathematibal names and next, to clarify_the concept

of ordering sets of points.

INTERSELLOG AND PARALLEL

.The terms intersecting and parallel are familiar though'common usage

in describing physical phenomena. We speak of a road that runs parallel

-to a railroad track, or we speak of the intersection ofPolk and Fell

Streets, and so on. These everyday references describey.although somewhat

more loosely, the same relationthipsfithat the terms imply in geoneky.

Recall that intersection is one of. the set operations dealt with

earlier. The intersectio; of two sets yields a set whose members are

those which the two sets have in common. The intersection of two sets,

then, can be the emtpy set or. it can have nemberS; it is thdempty: set

241
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if the two arelosjoint.

Thinking again of an example of streets, if First Street ai Second

Street run par 1: there is no intersection. TerhnicallY, we would

simply say the intersection is empty. However, the. less formal des-

cription, that "there is no intersection", is often used in geometry

for.the more accuratedescription, lithe intersection is empty".

Consider the lines Z37 and CD as our two sets of points. The

operation of intersection may yield the empty set,. a single point, or a

line. The drawings illustrate these possible situations.

lantii={ ) AB n CD = P AB rig() =AB

In general, "do intersect" or simply "intersects" implies the inter-
.

section has members; "do not intersect" implies the intersection is empty.
.

Although we have only used lines as examples, any setsof points can

be considered from the point of view of whether they do or do. not inter-

sect. A line may intersect a plane in a line, a point, or not at all; if

there is no intersection, the line is said to be parallel to the plane. Two

planes may intersect in a line, a plane, or not at all; if they do not

intersect, they are said to be parallel.

In space, 'it is possible that two lines are not parallel and still

. do not intern ct. Picture,a road_whichpasses under a railroad bridge. The

. bridge:ia not parallel to the road; but:does.not intersect the road.

CD and.:.AB in this drawing provide another example of nonintersecting,
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nonparallel lines, 1MT is not parallel to 12r; neither do the two lines

intersect.

Parallelism for lines may be stated:

TWO LINES AREPARALLEL IF THEY LIE IN THE,.:1,

SAME PLANE AND DO NOT INTERSECT.

If S and T. are sets of points, certain subsets of S and T

may be said to be parallel when S and T are parallel. For example,'"

two segments are parallel iftHey are subsets of parallel lineS.

Also, two regions are parallel if they are subsets of two parallel.

planes. A line may be parallel to a plane, and so on. Note that Tr

and mr in the above drawing are subsets of parallel planes but are

not considered to be parallel. Lines not lying in the same plane. are

said to be skew;'their intersection is empty. Note also that a plane

and a point that is ncA in the plane may be subsets of parallel planes,

but we do not say that the point is parallel to the'plane.

PROBLEMS*

1. Identify the intersections of the geometrical figures named. They

refer to the drawing. If the inteNfection is the empty set, state

whether the figures are parallel or not.

E

*
Solutions to problems in this chapter are on page 265.
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.%and,,,FC

he plate region with vertices,t D, E, F

and the plane region witertieS A, D,'

E, H. .

c. IE and CG

d. and the plane region with vertices

A, B., G,

e. -BH, and EF

PRISMS

'",0... In Chapter .5,, a rectangular prism vas identified and looked at

. briefly. It waS noted that it was composed of six plane regions called. ,:
faces. The intersection of any two faces may be empty. If two faces'

.

"do intersect", hoWeyer,':their intersection is a segment called. an

edge. In the same manner, intersectlnk.e.dges determine a point called '?
n

a vertex. . Thia the above rectangii.r. prism is the union of its six

faces, contains twelve edges and eight vertices, Its shape was 'abstracted

from a rectangular box; all of its faces are rectangular regions.

The pictures below of a deck of cards pushed into an oblique posi-

tionis also a model of a rectangular prism. The.criteria for..a-prism

are simply.

"-there are two congruent polygona.l.regions

lying in",-parallel planes, and the edges

which do not belong to these parallel planes

are all parallel to one another.

.4.;' 4:



: .
.

Thus in the.figureb..below, the first is a prism but the other two are

not.

' F.

:.... .

Congruent pcilygeral. :. Congruent -polygonal- Edges parallel;
,

.regions inpara4e1.. -regions in parallel Polygonal regionspolygonal
Iplanes; edges patallel. planes; edges...not .., not congruent. i.

parallel.* .' .

The congruent regions in'the parallel planea,a14Called bases of

the prism,and thpridm may be identified accOrangtoe kind of

bases it has.. For example, the rectangular prism haa rectangular regions
. -

for bases; the.prism shOyn in,the:figure at the left'above 'is a penta-

gonal prism; either of.4.he,.figures below is a triangular Pri".snL.'

. .

The faces of a. prism that are not bases are called-the lateral
. _

faces. Note that each lateral face is parallelogram region; the

boundary.of each lateral face consists of two parallel edges called
;..

lateral edges' and two sides,'oPtciagruent polygons. The two sided of the

congruent polygons azaalsipkr$ilel, thus the boundary of each lateral

face is a parallelogram.

If the blises Of.'a prism are also parallelogram regiOns,'the,prism

is called a parallepiped. Thus, the rectangular prisms. are..;a sub-

family.of the parallelepipeds. A cube, which is the union'-Of six .

congruent square regions, is another. kind of specialized rectangular

prism and, hence, is also a parallelepiped. A generic chain of quadri- .

lateral prisms can thus be formed-just as-was.identifiedfOr quadrilaterals.
.

*Imagine the top of the first figure given a twist.
lImagine cutting the first solidat.a slant to the basa.u-..
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The-above.two pictures of the deck.of:cards Illustrate :another

property by which prisms are classified. In the first case; the lateral :

faces are rectangular regions; in the second drawing they are Parallelo-.

,u;'gram regions only. The first is alright prism; the second' s. -an oblique

:,prism. The lateral faces of right prisms are rectangles. The tri-

angular prisMs shown above are right prisms. A cube is a rightprism. -

all of those faces are rectangular regions and more speoifIcally1,,are

square regions.

PROBLEMS

2. a. Seleot the.figures.which represenijorismsand

.Which best deSc-ribes each.

b. For those figures which do not represent pris

:.thy fail to qualify.

give the ,haMe

ms, state why

Draw a figure representing an oblique square prism.



PYRAMIDS

The drawilgs above represent examples of a familiar set of geometric

solids, tamely'pyramids:. As is the case fob. prisms, there are a great

,:variety of sizes and shapes of pyramids. Each must satisfy these

; crfieria:

1. tliere is a pol34Onal.iagion called the base;

2. there isa.point. caltedtha'apex not in the

same-pi-arre-ers-tha-ba the lateral

edges intersect;' Z ° .

Ei. .-

3. each lateral face is a;triftngular:ragion

determined by the apex and a side the base..

Analogous to' the classification
.

of prisms, a pYraMid is identified

c by its base. In tie first figure:above the base is a square region, and

.so it is a square pyramid. The others are a triangular. pyramid and a

pentagonal pyraMidrespectively, A, B, and C denote their respective

ap.eatt,

.,. ,

.-,.7.11te.eums
.

.t.:)

1i. Which
.

of the following are drawings,:e 't ramids?
..... .

a

a. State an appropriate name for this pyramid.

b. ;identify the apex.

c. How Mhny edges does it have?

d. How many faots.doN it have?.,

6. What ffi.e the possible intersections of two lateral faces. of a

pyramid? -!
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CYLINDERS AND CONES
I
L-----.

Although,welaaveinot discussed -all geometric solids that are,the * .

union of .flat, surfbeeso.we shall now turn our. attention to solids with
, .: ,

non-flat surfaces. ese two figures represent cylinders. The two faces'

must be congruent regions in parallel Planes. The are called'baseof

the'cylinder, Which'is consistent with the other uses of the same term.
.

Although-the examples show cylinders will circular:tisia, this is not s.A.

require -11 .n11 nn+
6 .

Cylinders with.bases of other configurations, so the discussion Will be

limited to -circulacylinciers. The boundaries of the congruent bases

are then congruent circles and are edges of the cylinder.
. A

The remaining rounded, portion Of the simple;. closed surfate which.

defines the cylinder is its lateral surface. The distinguishing

chepbe istie of a surface which is not flat is t4t a segment deter-

mined by two of its points is not necessarily a subset of the surface.
;-;

The drawing .below illustrates this feature; AB is not a subset of the

lateral surface-ofthe cylinder. In factall points of AB between A

and B e are in the'interior of the cylinder.

E
0.

It is possible to find segments which are subsets of the lateral
. . .

surface of a cylinder, however, such. as CD .f,i In fact, this- is a means

by:which the lateral surfate is specified, as we shall show below.

2

246
.5'



Each of the bases has a center; thetefore a segment is determined

by these two points. The line containing this segment may be referred

to as the 1W of-centers. Considerany plane of which this:segment is

a subset. It will intersect the bases in two segments called diameters,

such as AB ana CD in the figUre. Each endpoiniof one diameter is

to be paired with the appropriate endpoint. of the other diameter in order

B

A
to be able to describe the set of 'points in_the lateral surface. The

it

"appropriate" endpoints of the respective diameters are those which

determine a segment that does not intersect the line of centers. Thus,

a

in the drawing, A' is paired with C and B is paired with D

By considering a different plane, we will obtain two new pairs of

points. If all such planes are conceived;. all such pairs are generated:

Then we say we have defined a correspondence between the .points in the

boundaries. of the two congruent bases. .Any two points which are.thus

paired are corresponding points.

Each of these pairs of 'corresponding points determines, a segment

parallel to'the segment connecting the centers. The union of all seg-

ments determined by corresponding points is the set of points in the

desired surface. Each segment is said to be an element of the cylinder.

Any two elements are parallel. In the figure, MN and 71. are elements

and therefore are parallel.

- 249 2.16
771.
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The preceding description for generating the lateral surface is

rather involved. This is because we want to specify the particular

correspondenie we have in.mind since other possible configurations can

be formed with the required :bases. If a different correspondence'were

defined between the points of the boundari , gureas in (a) and (b)

below might evolve.

(a) (b)
.

A

We can now state that a circular cylinder mist satisfy thete

criteria:

1. there are two congrdent circular regions in

parallel planes;

2. there is a surface which is the union of ail

segments determined by corresponding points of

the boundaries of the bases.

Referring back to our first two ewaples of cylinders in this

section. the first is a right circular cylinder; the second is oblique.

In order to be a right circular cyliiider, every element of the cylinder,

must form right angles with each segment of i base which intersects it.

It is apparent on reflection that there is a distinct similarity

between the cylinder and the prism. They each have congruent.regions

in parallel planes for bases. If an appropriate correspondence were.

set up between the points. of the sides of the bases of a prism, and if

line segments joining they yore considered such that they are parallel,

then the lateral faces would be specified. In fact, the only difference

is that the bases of a prism must be polygonal 'regions while those of a
,

circular cylinder must be circular regions. It is the case that a cylinder

el
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can be defined in such a way as to include prisms as a subfamily of

cylinders; hoWever, this will not be done for the elementary, level.

By the same token that cylinders are analogous to prisms; cones

are analOgous to pyramids. As with cylinders, we will restrict the

plane region of,a coned a circular shape and. designate it as the base

of the cone. The point which is not in the same plane as the base

describes the,apex. The lateral surface is not so difficult to describe

4

in this figure. It is gimiuk-Irer-OT-Iine segments determined by t7-----71-7-

apex and each point,of-tnecircular boundary of the base.

PROB.LEMS

7. State a definition of cylinders so that prisms would be a sub-

family of cylinders, namely polygonal cylinders.

8. Describe or draw representations of the intersections of a plane

and a right circular cylinder if the plane does intersect the,

cylinder and is

a. parallel to the bases;

b. parallel to the line of centers;

c. not parallel to the base nor the line of centers.

SPHERES

. The final solid to be included is the sphere. As is the case for a

circle, a sphere has a center. All segments connecting the center of the

sphere and a point on the sphere are congruent. Indeed, this specifies

the s4 of points in the sphere.. They are:

all endpoints of congruent segments

which have one endpoint in common,

but not including their common endpoint.
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The congruent segments are radii (singular: radius). The union of two

radii which are each subsets of the same line is a diameter. In the

is the center, AO and OB are7.radii and therefore congruent;

and AB is a..diameter.

A hemisphere is half.of a sphere. Any plane that contains the

center of a sphere, will "cut off" a hemisphere.

PROBLEMS

9. Identify the intersection of

a: a plane and a sphere;

b. the center and the sphere;

c. a diameter and the sphere;

d. the center of the sphere and one of its. hemispheres.

ORDERING SETS OF POINTS

The ordering of sets is not a new topic. Chapter 2 was devoted

to the comparison of sets according to order and'certain properties of

ordered sets. The. approach taken was to pair the meMbers of ti}etWo

sets in question. Then it was possible to decide whether one set had°

more or fewer members than the other or whether the two sets were

equivalent. If we try to'use the same process with sets of points,

difficulties are encountered whidh make the procedure impossible.
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Take, for example, two segments, MN and XY: Each is an infinite

set, and therefore if we tiepin pairing points we would never exhaust the

P0- N

X w-

points of either set. This alone eliminates pairing as a means of ordering.

.Then, how are segments, and sets of points in general, ordered 2 We

can resort to our concept of congruence to assist us. It has been estab-

lished intuitively that two line segments are congruent if a movable

copy of one can be matched and fitted exactly on the other. A similar

procedure serves to indicate whether curves, polygons, plarle regions and

-so on are congruent. It does not prove useful in determining whether or

not solid figures are congruent, however, since-a movable copy of a:

:solid cannot always be matched: and fitted exactly. on the other intact:

Tot'eXamjple,a.solid block cannot be fitted into another solid block.

Sets of points are not congruent, we can still conceive of .

an order between them. Suppose you measure the dimensions of this book.

Its length is shorter than one yard. You are essentially c01"tt44:0117

a comparison of set size with the aid of a movable copy. The sets

compared are an.edge of your book and a standard. yard defined-by.the

United States Bureau of Standards in Washington, D. C. The.miovable copy

is a yard stick and its scale it'a record of the length of the standard. By

stating that the length of the edge of the book is shorter:than one yard,

we are ordering the sizes of two physical representations of line segments.

In particular, you book is shorter than the.standard yard.- -

Geometricalsegments are handledin.a similar fashion. Suppose it

is desired, to order the two sets MN and XY, 'We make a copy of MN,

A53 .
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:tliidd.Cdted,1SY:tiie: dotted segment, and lay it over XY . We have already

if- they fit exactly, then MN and would be congruent. f,
.

,.hoWever,- 'they do not, one of two situations must exist. XY will be

c4Pgruettt to'a proper subset of MN or MN will be congruent to a

-15r,irper -.subset of XY . In the first instance, we. would day XY is

lhorter than MN cr, equivalently, MN is longer than XY . The second
. . ,- .

podsibV,ity is interpreted as MN is shorter than XY or XY is

longer. than MN . Ourexample demonstrates the first case, since XY

'obligruent to a proper subset of MN . We can order the sets by

M .

X

XY. '; MN in increasing order.

. :Tor finite sets, A: and B , recall that comparing sets assured

:peeCtly one of three,possible outcomes:

. A is equilielent, to ,B ;. .A: has mom* members that ;

fever members than.::B .

Nbw. we 'can state.-the :parallel's relationships for infinite..Sits of points,.,

F AFB is:Ongruent to'. CD ;

AB' is .longer.,than CD ;

"AB . is :s:h.ciiter than CD.

Note that "AB Is lo.nger' than CD": .do4, not mean. AB has more members
. .

than CD . We are .saYlkie. nothing: ab.but ':."hb-br many" in relating infinite

sets.. By repeated comparison;:; ft 1.s.- p.bsSible to'. order, more than two

segments. Thus Q,R below :would. fit. irit:o.14e'''Order , MN as

the diagram illustrates lie find that . fs nongriaeiat 'to.t'a subset

of. MN , and that XY is -COngruent ,;?.*-s 6utset- of QR, 414.,l'etefore

QR is shorter t4an MN iincf. Ionier 7than:.;

0



In Chapter 16,' these order relationships will be restated in terms

of numbers associated with segments. These numbers will be the measures

of the segments. By our ordering, however, we have done no measuring.

The second kind of geometric-figures that we wish to order is angles.

An angle is the set of points defined by the union of two rays which have

a common endpoint and which are not sUbsets of.the same line. Jusas

simple closed curves separate a plane into three subsets (the curve, its
`)

interior and its exterior), angles can be thought of as doing the same

thing. A point is in the interior of an angle if it%lies between two

R

one on eaCh.rayi exclusive of the vertex. Thus -1' is in the
.

interior of LABC and Q.-is in the interior of L?1=7. is in the

exterior of LDEF--and R is an'eteerior point of LABC.

To order two angles, we rely on a movable copy of one.in puttlfthe

same manner as we did fclr segments. For the angles pictured above, we

could place a copy-of LABC ?over POEF so that one side of the copy

!...Coicides with one ,side.*:.IDEE. The figure below shows one way the

1:e. positioned. If the second' 'of the copy also. coincides

'with the.:second side of LpIEF, we would say.

LAB.C''i,s congruent to 2:1)2.

(See Chapter 11 for a'discussion of congruent a,igiei*

.
E
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If it is not possible to get such a coincidence, as it is not for the

ones pictured above, we define an order. 11Dte that the.points of BA,

except the endpoint R, lies in the interior of LDEF. Whenever this

phenomenon holds, we say

L ABC is smaller than Z-DEF

or, equivalently, LIEF is larger than 2:ABC . If it happened that

the interiors of the two angles have points in common and that BA ,

excepk.for B , were a subset ,of the exterior of L DEF ,Ahei

2ABC is larger than --LDEF-,:,
-

or DEF is smaller than LABC-;
.

Consider:4g a third angle, 2:GBI , we find that GH except for

G , lies in the .exterior of 2:ABC and in the interior of . Two

BEM F I C

....Statements expressing this are 2:GHI is liirier than 2:ABC , and

is
-

Steller than In-Incteesisni:Order, we could write 2:ABC

2:GHI; 2:DBE . As foisegments,%this(prOcedure can be repeated in-

odefi:nitely for as-many sngles,:as we wish.Congruent angle's would occupy,..,

the.sape,position in.the'bider.

:Y.1E/le...definition of measurement for angles will not be ..included in

Chapter;736:hecause it is not treated in the K-1 text materialS. It he's

beendiSoussed, here to indicate that the ordering of sets. of points can

be accomplished for figures other than segments. It is actually possible

to use congruence as a means of ordering regions and solids also, although

it is a bit more complicated. It is not possible, however, to order

unlike sets of 'mints; that is,'We cannot order segments and angles, nor

segments and plane regions, and so on.



PROBLEM

10. Represent AB , qpand EF such that their order from shortest

to.longest is CD-,.AB . t
11. Place the sets represented by the angles below in increasing order.

A B

12. Can you devise a means of ordering the'two regions .shown below?

APPLICATIONS TO TEACHING

.

Teachers have found it mott...74elpful to hae i; the;i0OM a :wide

:r.cpilection of objects which.: llUptnate-geometrical solids: Children

4016 enjoy bringingsuchlikjetts tibM home. EffeCtiyeWaYs.ht':Using:'

'''these and other modelshmie been recommended in this section of

C

Chapter 5.

On the next pages are included four patterns to be used in'IbOn-
r

structing geometrical solids Out of paper. -Having the children observe

your deMonstration_of a construction emphasizes two aspects Of_solids.

Many are the union of plane regions that do not lie:in the same plane,

ancrthey are holldw.

. The ideas in the. Pre-measurement section are most important: The.

childrefi should be asked to :particiitatefat much as possible i:n.maniPillat-
:.

ing figures to compare their sizes, both to understand congruence and

order': They often experience some difficu1ty'in visualizin congruent

regiond if they have different orientations, so practice should be.

provided with this in mind.
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PRISM - Construction of a- square.Sorism.
, .

.1. Draw a rectangle with vertfces. A ., B , C:, D asshown..
, -.

. 2.'. Draw, as shown; three other rectangles congruent to the rectangle
already drawn. with tabs.

. _ . .

. .T., Draw the two squares alongto'AB and. DC. with tabs, as shown"...
4.. :Cut 'around the boundary of :the figure:and '4old aloAg the,dashed line

segments.
- .

5; Use scotch tape or paste t A the model 'together. The tabs wilf"
help gi,,re rigidity to the ;-,1 ;Km may went to trim them some if
you.use-Scotch tape.

6. The bases of this rectangultr areaquares, hence.the name -
. ,

square prism: :.'!;.::-.

i. This p idu- eeitture has been c. -.*r fitAgraphically. The original had the : .:':,-
length of AB at.',:11.12" at of .BC as. 4" .; This made a .. -4 L.l
I.1/2" X 1 1/2" 3.qt..7:,seigide'.

. :;

i

-.

a

I'

C

. ; .

TAB
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fRAMID - Construction o a square pyramid.

Draw a square with. vertices , D ,

2. Draw the arcs with ;centers at 'A. and. B :Labl
the intersection shown as C..

3. Draw dished line segments.. AC and, i)3C to form:."dashed" equilateral
triangle with vertices' A', t , C Draw tabs-asbOwn...

:Repeat step 3 to obtain "dashed" equilateral triangle with vertices
Ty") , F withtabs_as Shown.

5. , )111raw*tbLetillilataral triangla'shown on BD.and AE.,'
6. Cut around the-boundary and.fold along the dashed line segtents.
7. Fastenwith scotch tape or paste. The tabs will help.in putting the

model together. <You may want to trim someof them.if you use scotch tape.
. 8. This picture has been reduced photographically. Theorigihal model

had the lengths of AB- es 2" .



CYLINDER:-.Construction of.a circular cylinder.

1. Draw the rectangle with vertices fly, .

2. Draw two .congruent circles
modeleasitr. to construct,
.these circlet' can be tan-
gent to the rectangle.
Cut around the boundary
of the Ogure. Do not
separate the circles:

. from the rectangle.

with.radius as shoWn. - In order tfimAke the
' .'

Fold into the fort of-
a circular cylinder.'..

1.Tse scotch tape or

paste to.fasten the
model together. Place
-BC on AD. firgt.
Fasten the bases
last. Do not fold
the tab Et. BC . Lap
it. ver:AD and paste,
or:fasten with. tape.

TAB

;:...;This.pictuke has

',,:been' reduced
1

<t .

1-1The origindl todel
qiad bases of radiut

with the lengthq
o TD end. AB as
4" and amproximatelyt .',

6 e, i-espedtive;51r'.

4 ". !'.A
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CONE - Construction of aoircular cone.

1. Use a compass to draw-.a'oircle with a radius
Draw tabs as shown. . . .

2. Cut around the boundary of this. figure. The circular region will be
the baie of the cone.

3. Use a compass to draw a semicircle with a.adius as .shown in t4e,15ia--.
gram.. C is the center of the circle. AB is a diameter. DAW the
tab as. shown;

. Cut around this figure.
5. : Fasten AC to 'BC with scotch tape or-paste so that AC .falls on BC
.6. Easten the base tothis model by folding the tabs and using scotch

tape or paste.

as shown in the .4agram.
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QUESTICiN.

"How do ordering points, ordering sets of points, ordered sets, and ordered

pairs differ?"

Ordering points is connected with our development of the4number line: 1!

'Here,*with 'the designation of a particillar point ,p.s starting point, and.

with a given segment selected as a unit, the linels markeimoff at equallyi

bpaced intervals'and the marked points are associated.with the whole numbers

in the usual seqp7e: 04i, 2, 33 ... The number line is nextli"...

filled by associating-points between those named above: with other

rational numbers-su4 as . 2 and12) 7, an so on. InSo doing, any two

points named in the number line are ordered with the designation of,which

precedes the other. Consequentlyi:all the points named in the number lina

are ordered.

A

Ordering sets of, points may.be illustrated by taking two sets of

points in the plane. Suppose4these are represented in A and B below.
.

«:

a

A 7 .5 . .

, . A

We want to convey the notion that agrees with our intuitive sense: tAl.
..

B occupies more space than A. Counting the number of points. in each set
--.

.
would not do since each set contains an infinite number of points. ,A

scheme is bought whereby we can still assign a number to each set to 0.0

indicate aniorder inl"size". Thus, a number evolves as a measure- -such

as area, volume, length, etc. In so doing, we are 9rdering sets of points.

The set of ration-al numbers is an example of an ordered set. The letters

in the alphabet are another example of an ordered set.. Although, with sets

in general, we state that it is immaterial in. what order 'the elements are

listed, in an ordered set, for any two members,, it is possible to designate

.which member precedes the other. By association with members.of the ordered

G

6.
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4.
liset of rational numbers, for example, the points inthe- rational number

line become an ordered set. ,;Similarly, Sets of.points may be ordered

via their measure.

An ordered pair arises from the product set. An illustration of

an ordered pair may be the element denoted (4, '3) 4f it is agreed

gthail'an order must be observed in the naming of the compondnts, and

3. .This may be, forekample, the designation for the child in, the

4th row; 3rd seat. _Thus; the notation in the theater ticket stub,

may be indicative of an ordered Pair. Or; when you say, "Fred and Maggie_

are president and secretary of the Clamdiggers Society, respectively",

an ordet.,is induced in the pair, (ired, Maggie). .

4
." w

a

t

Apex

Bases (of a geometric

Center. (of a 'Sphere)

'tone

Cube ,

Cylinder

Edge'*

Element (of a cylinder)

0.
-ft

figure)*

Hemisphere

-InArsectiok*

.T.ateral Edges

LaIgal Faces

Lateral Surface

tine of Centers

'1

VOCABULARY

a

ParP1I.P1

Parallelepiped:

Pentagonal Prism.

Pentagonal Pyramid

Prism

Pvamid

Radius (of a. sphere)

RighttCircular.Cylin.der.

Skew Lines

Sphere
,
Square.Pyratld

Triangular Prism

Triangular Pyramid

Vertex (of a prism
xS
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EXERCISE - CHAPTER 14

1. Why is the following definition of parallel segments not sufficient

to, determine what we mean by parallel segments?

Two segments are parallel if they lie

in the same plane and do not intersect.:

2. What are the sets which may result in the intersection of a line

and a plane?

3. Construct a paper model of a square pyramid using,Ahe pattern on

page

a. How many edges does a triangular pyramid have?

b. How many edges does a rectangular pyramid have.?

c. If the base of a pyramid has n sides,.how many,edges does the

.pytamid have?

Identify by a drawing the intersection of a plane parallel to AO

and the cone,'if A is-the apex and 0 is:the center of the base.

Assume the plane intersects the cone in more than one pbint.

6. Which of the following solid regions must be cpnvex sets?

a. sphere; ' b. circular cylinder; c. quadrilateral pyramid:

- 7. State in increasing order the sides of the triangle.

;,

b. `-Why is itrincorrect to say Ir is a subset of the interior of

Z MAL ?-
...

.L
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.
SOLUTIONS FOR PROBLEMS

1. a. C b. DE c. ( ; they.4re parallel d. H e. ( ; not parallel.

2. a. (A) cube; (B) right pen.6gonal prism; (F) non-convex

quadrilateral prism.

b. (C) There are not 2 congruent, parallel bases; the lateral

edges are not parallel.

(D) The congruent faces are not polygonal; the'lateral surface

is not 'the union of parallelograM regions.

The parallel bases are not congruent; the lateral edges

are not pa7rallel.

3.

4. (b) (c) (d) 4 (f)

5. a. quadrilateral pyramid

b. D

c. 8

d, 5

6. A lateral edgeor the apex

7. A cylinder is a geOmetric solid which is the union of two similarly

oriented parallel regions whose boundaries are Simple closed curves

and all the segments determined by corresponding points of the

congruent boundaries.

8. a. a circle; b. a rectangle or a segment congruent to the
J.

segment connecting the centers; c.

or

9. a. a circle, a point, or ( ) ; b. ( ; the center is not part of

the sphere; c. two points--the endpoints of. the diameter; d. (' ) .

10. °C D B E

. _
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11.
`ZP

2 g 2 LA

12. We can partition one region, make movable copies and lay them on

the other region. If they fit, we will say' they have the same size.

If they do not, one will .be larger than the other.

S

Excess

Thus, the rectangular region is larger than the square region.
e

110

au

_
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Chapter 15

MULTIPLICATION AND DIVISION TECHNIQUES

MULTIPLYING" NUMBERS GREATER THAN TEN.
4

The abii to compute'vithunderstanging,and skill when multiplying

whole nu greater than, 10 depends upOn several things. Amctg

. these are knowledge of basic multitolisca.tieln. facts, .ability to use a

mul tiple of 10 as a factor, famii.iari,t3t deq6mal place velue

nuMerationsyStem,. alid ability to apply 4.11tip1ication properties

( commutativelaisociative,OdistribUtive over' g.ddition, etC.).

First let us -consider the product of 4 and 12 ; 'for 'which:We

.display' the array

0 0- 0 0 0 0 0 0 0 0 0
4 -0 0 te 0,0 0 0 0 0e)6,00000000000

0 ck-p 00 -.

t
a. ' By partitioning thearray.-into two arrays =so that each row haS lees than,

, ---.... hutive property of multi-olist

° 10 members. we need to use on17. .basic multtp altion facts, the distri'-:

` 12

and acid1.tiOn 'facts in

...;0'ider to commute thepioduc r,..),:- t'Ck 12 .6For instiance; we may:

-. ,,,%,"'"
et

partition the 4 by 12 ar 4 by 7 array and a .4 by

, .rarray;

.....,.;..-?,.., ,......

r,''

They, 4 x (7 -+

20 1.

= 48

gone #directly there froM

1)

0 0 0 0 t 0 t
0 0' d 0 0 00
0.0 0 0.0 13 0
0 -0 0 0 0.0 0

5

28 + 20 to 1.8



intervening step

= + 20. A.,

= 210
'4"

= 20 +.(20i1.44-'§):

= ( 20 +
Ky

tY=

By dhooSing the ni

facts from the,Milltipl.

to consider 12, as

going outside the t

system ve.commonlYi0

to partition the

+ 5 for -12,:,only basic multiplication

on table are needed.. We could also have chosen

or 6 ± 6:without the necessity of
. .

HoweVer4-since in terms of our numeration
, .

J. as .10 +:2;Jt would be more natural

:'=-.171micYJao,m5". arrays in this way:

o o 000000
O o 0 o o o 0
0 0 0- 0 0 0 0

00 0 0 0 0 0 0
10 + 2

- 4,er"=-'"-
": Thus, 4 x 12 = 4 x (ip+:

(4 x10),-:

In ordertoracco id"matiplication- necessary to knoy'

multiplicatiOn'

also.

To .fin

of ten; This is

Oduct, 4 x 10 , we look at

10 + 10,+-10+=10 = 140 .

Similerlyiali-mltiples of ten are 'considered by

tens.. Fuitb.ermOre, to multiply and 20 then

or as
dr?*

done fqr the children,

adding or counting

can be thought of as:

4, X 20 4 x (ao .+ 10)
= (4 x io) + (4 x 10)

+ 4o

x 10)

=:(4 X 2) x 10

'=8x10
= 80



In the same way, multiples of tens of tens, or hundreds can be presented,

and so on.

Returning to the product of 4 and 12 , it can now be completed.:.,

4 x 12 4 x (10 -+2)%

= (4 x 10.)+ (.4'x 2)

= 40 ..+13..

= 48

We often use vertical algorithms such as these to effect the same dompu-

(a) (10 + 2) (b) 10 2 40
4' or x' x 4 +8 or

40.+ 6 = 48 7

or

(d) 12
x 4

4

175

or eventually simply

(e) 12
x-4

As another example, consider the product of thenumbers 3 and 2

.3 x 28 = 3 x (20 8),

= (3 X 20) + (3 x 8)

= 60 + 21k.

= 84

PRORLEgi

1. Show the, multiplication of 3 and 28 in more detailed form,

particularly in going from 3 x 20 to 60 and in going from

60- 24 to 8' .

ie/e also may use one:vertical algorithm or another to record am-

.*Solutions or problems in this chapter are on page 2
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thinking when multiplying 3 and 28 :

(a)

( c)

(2o + 8)
x 3

. 60 + 24
8o + 4 =.84

28

x3
-g (3 x 8)
6o x 2o)

;87

or

or

(a)

(b) 20 8 6o

x3. x3 +24
Tel 7

or eventually sithply

( e)

Now let us extend our computation to an example such as -4 x 236 .

We shall be fairly detailed in our -first illustration:

4 x 236 = 4 x (2oo + 3o+ 6)

= (4 x 2oo) + .(4 x 3o), + (4 x 6)

= [4 x (2 x Ioo)]. + [4 x (3 x 10)]4 x.6)

= [(4 x 2) x 100] +J(4 x 3) x 10] + (4 >(.'6)

z (8 x ioo) + (12 .x + (4 x 6)

-800-+120 +24 .

= 800 + (loo + 2o) + (20 + 4)

.=(800 + 100) + (20 + 20) +.4

900 + 4o + 4

= 914-4

or

28

x3

t

PROBLEM

2. Justify each step of the'procedura just illustrated for the product,

of 4 and 236 .

We may record our thinking in several ynys,Using vertical algorithms:

(a)

(c)

(200 + 3o + 6)

+ 120 + 24
900+ 40+ 4 = 9

236
x 4.

(4 x 6)
120 (4, x. 30)
.800 (4 x 200)

.

or

(a)

(b)

or

236
x 4

12
8
9.1-X

200 30 6 rh 800
x 4 x 14. X 120

157/ TO 2W + 24

or eventually

(e) 236
x.4
-jU

os



In all of these different procedures considered in t ion.

we have seen repeatedly that use is made of the distributi perty

of multiplication over addition. Further extensions of lication to

computations such as 23 x 45. involve 'even greater use of this property.

However, Tpecific consideration of these extensions is beyond the scope

of this chapter.

PROBLEM ^

3. ..UsT one, of the vertical algorithme.identified above .by.. (a) - (e)

to illustrate each of these products -, a e. respectively. For

exantle, use (a). has a model for a. 1/4

` ' a. 3 and 23 b. 5 and . 17

d. and 397 e. 6 and. 130..

Vsc..

DIVISION ALGORITHMS

c. d. 38

First let us recall that a problemSuch as 24 r 4 = n*emaY be
4.

interpretedto mean that we are to'find the number n such that

n x14 24 . may.illustrate this'in the following way, using a num-

ber line representation on which We havkidentified multiples of 4 :

_4 8 12 -20
P
24 28

4 1x4 2x4 3x4 4x4 5x4 6x4 "Tx4

With point ,P we have associated 24 and also 6.x 4 . Since the

assbciatioMmf.a number with a.point is-Unique, we know that 6.x 4 = 24'
e.

. and that 6. is the number n such that n = 24 . .Let is recall'

what 6 x:4 means,usingthe number line. It has been interpreted in

terms Of repeated. addition, namely 4 +.4 + 4+ 4 + 4 +4:.

4 1.1--e-4 4 4 --owl

2 3 4 6 7 8 9 10 .14 2 13 14 IS 16 a. t8 19 20 21 22 23 24

6x4-24 111

Because divigion is the inverse 6peration of multiplication and subtraction

,is the inverse operation of addition, it is reasonable to expect that

division may be interpreted in terms of suintraction. This iindeed

2'71
a



Thus, 24 + can be shOWn on the number line as repeated subtraction.

6

4 4 4 4 4 4

0 8 . 9 10 11 12 .13 A 15 16 17 18

24+4 - 6

21 22 23 24

et,

The procedure-'illustrated above can be stated in terms of number's:

from 24 we subtract 4 and then continue to subtract 4 from each

remainder in turn; until reaching' a remainder that is less than 4

Fog inqance:

24 20 16 "'12 8 4-4
- -.4 4 -4

20 12 o 7

Since there are .6 such subtractions and the resulting remainder:is 0 ,

we know that 6 'x 4 = 24 .

Frequently' ve shOW these SubtraCtions in a more. compact 24

form such as that shown at the right..

Our work might be ahOrtened if, for instance, we

subtractedJdultioles of. 4 'that are greater than 4 . 4
.37

4

7
- a.

(7)

such as:

24'
. = 8 (2 fours') or (2 x 4)

-17

.112 -.(3 fours) or' (3 x

, -

=4 .(r four) or';( 1 x-4)

T

A total of 6 fours has been_subtracted since
.

(2 x 4) + (3 x + (1 x 4b= (2. + 3 + 1)

=6 x 4

Repeated subtraction, then,. provides .the rationale for division..

algorithms. Using multiples of the divisor can be of great advant

if we are dividin,g larger nuMbers:, for. example, -42 +.3 = n

.272.'
s
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(a) 42++
-'24 (8.x 3:= 24)

13
- 15 ( 5 x 3 = 15)
i 3 ,
- 3 (1 x 3 =, 3)

0 (14 x*-22)

Thus, 2

(a)

or simply (b)

42 . or simply
-.30 (10 X 3 =, 30) t

12
-12. ( 4 X 3 = 12)'

0 (14 x 3 = 42),

(b)t

3)42
24

15
3
3
0

5

1
14

3) 42
f30 10
12
12 . 4
0 14

,.

As before, of course, 42 + 3 = 14 , even though different multiples:

of 3 were used. Choosing multiples of ten may again be more' natural

and more simple eventually. However, children.' will begin with the

smaLler raultiples and take larger jumps in accordance with their

maturity.

Next let us consider an example such as 101,1 8 =n .

0 8 16 24 32 40 48 56 64 72' 80 88 96 104
I I I 1 4 I k1 1 I I I i

Ox8 1x8 2x8 3x8 4x8 5x8 6x8 7x8 8x8 9x8 10x8 IIx8 12x8 13x8,
Clearly there is no whole number' -r- such that n x 8 101 , since

.

12:x 8 = 96 and 13 x 8 3 101.1. 2. and there is no whole,number between
A

12 acid 13

Let us explore the situation- further inc,this way:

(a) .,101

-8o (10 x 8 = 8o)
121

- 16 ( 2.x 8 = 16)
5 ,(12 X 8 = 96)

or. eventually ( c)

12
8TrUf

8
21

(b)

r simply

Thus, EilthoUgh there is no whole number n such that n x 8 f 10'1 ,

we have determined. that 101 = 96 + 5 or 1Q1 = ?12 x 8) t; 511. Howelliet

, ';;
273 2

.



we are not.permitted.to writepomething such as 101 1-8 = 12 r

since not a name for a number.

, if a is any whole euMber and b is any counting

number,7,we may associate with a t b or .11 the sentence

commonly written in the form

a = n x b + r

r
n

b Fa

for which' n is a unique ,whole number such that (n x 'b

r <b. t For example, 20 3. can be associated With

. 6
3
2.

and

d.(6 0) + 2 or: 377

where .a o 20 , b. = 6 and r = 2 . more detail, the common.:

algorithm would,. appear:

4'

Thus, 6 x 3 = 18 is to be subtracted from 20: to find the remainder.

',In order to subtract, then, 18_ :must.be2ieSs than or equal.tO.

If'the remainder,. 2 .,had been greater than or equal. to-3 ,A*oould

haye found a larger multiple of: 3 to subtract from 20 .

The condition that r'< :b. has a fUrther implication; It -is cer-,
.

tainly true that 20 3 can be associated with this ,eqUation.

20 = (1 x 3) + 17

'are all:valid equations associated with 20-1. 3 .- It is generally Under-.

stood, however,.that'when we wish to know:what. 20 4vided
..(4

we want the qultient expreSSed-as the largest pppsibIe whole hutberplIds%"'

. a sonnev4tve reMainder. (Note that there.is always a remainder. When



b is a factor of it happens to be 0 .) Thus by restricting the

remainder, r ; to be less than the divisor, b we assure that n will

be the largest whole number of times b is'Contained in a , and so we

only associate with 20 + 3 the equation we want:

20 = (6 x 3) +2.

expression:

(E)

Nov let us use division
..7

250.+ 7

algorithms
250

to find n and r

or, using
larger

for this

multiples:

30

or .

7

or (b)250

- 140 (20'x 7) 20

10

7)250
140

110
- 7o (10 x 7)
4-5

110
70

7)250
210

35
- 28 ( 4x7)

12
28
.12

4
5

5 35
- 7 ( L x 7) 7 1

5 T7777 5 35.

or eventually ( c )

35

73755
. 21

35.

5

Thus, for a = 250 and b = 7 , we see

We therefOre,may associate with 250 + 7 or

that"' n =" 35 and r = 5 .

r; '4101 250 = (35 x 7)+ 5

250
7

the sentence

PROBLEM'

4:. For each"of the folloWing write &i equation of the form

a = (n x b) + r , such that (n x b) S a and r <b .

a. 38 + 5 b. 79 I. 3. c. 112 + 4

d.
.c7

e.
83 106

3-

f.
2

5. ). Rewrite the.general equation for the special case where r.= 0
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4,4'06;
6 ;#.%.!-i,

go

.6d er COVisider the example 704 3.= n , or
74 A
3- = n : .

377
11,60

12
2

20

214.

This algorithm proVes us with a great deal of information.

First, since the, remainder SS not zero, we know that there is no

Whole number n" such that 1CX n = 711. That is 3 is not a factor

of 74 .
im

. S a.:

Second, the algorithm gives us the information we need to replaC

n and r in the dtquation 71i. = (n X 3) + r so that (n X 3) S 74

and r < 3 . We now may write

= (e14-x 3) ir62,..

.

.

Third, althgpghthere is no whole number n such that 3 X n
iir
= 74

there very definitely,is.a rational number mack.. such that 3 X n = 74.. :14

74 74
One namefor that rational number is 7 ,.since 3 x = 74 . The

algorithm giveskts the information needed to name this rational number

in a different way, in mixed form. From our knowledge of rational

2
numbers we know that 2 (the remainder4s of 3 (the divisor);

that is, 2 =
2

x 3 . We then may assert that

74
71.4 3 = 24 + 24n or = 24 = 24

3 3

Thus,-we know that

(24 +
3

9, 3 x 24 = 74 .

Divisions with larger nu4ers follow,the same ideas we have developed

but are beyond the scope Of this chapter.

PROBLEM

For each exercise of Problem 14, express the quotient as a rational

number in mixeorm or as a whole number.
A

276
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In the dev elopment of multiplication algorithms we used extensively

the diAributive property of multiplication over.addAn, coupled with ,

the renaming Of a factor in accord with our decimal place value numeration

scheme. For instance, in order to effect the product of 4 and 23 :1

we renamed 23 as (20 + 3) and then applied,the:distribative prope

4 x (20 + 3) = (4 x 20) + (4 x 3)

In the development of division algorithms we utilized a process of

"repeated subtraction" in which we successively subtracted multiples Of

the-diVisor. We saw that the greater, the size of the multiples used,.

the more efficient is the algorithm.

The division algorithm gives the information necessary to associate. .

with a t b or (where a is any whole number and b is any counting

number) either of two things:

1. an equation of the form a = (n x b) + r -where (n x b) S a

and r < b `,

2. a'rational number in mixed form whenever .a > b and b is
,nctafactorof a.

A specie ase of both 1. and 2. arises when- r =

when b is a factor of a

:Tr

r

; that is,

APPLICATIONS TO TEACHING

It is important that algorithms are developed from the standpoint

of being written record's of thinking_ patterns used when computing. Thus,

we can expect that children's-algorithms will change with the passing of0
time. Airst the multiplication and division algorithms may be more

lengthy and less efficient than at a later 'tage of work. We should

allow children to use those algorithms that are most helpful and sensible

to them. We may encourage them to shorten algorithms, Over a period of

time, but children should not be forced to use more .efficient algorithms

prematurely.
- '.'
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QUESTION`

'.'Isn't the 'platform' Method terribly inefficient for division ?"

To an adult who alreadiknows.how to compact his computational.
2

techniques, it may be immediately apparent that 275 7 = 397. For

the child in the beginning stages of learning these techniques, a

strategy should be provided whereby he can attack such problems piece-

meal without being overwhelmed by the task. Thus he might begin with

the algorithm indicated in (a): 7

(a)

7175-
70
205

. 70

135
70

.

1.1

30
. 21

9

7

2

(b) (c)
92 y

7/75 . 7 275
7

10 210 30
7.-67

10 63 9

2
1

39

10

5

3

1

39

Tatev, the student may learn to reason with himself that
O.

7.;4:1 7, so 7. x 10.= 70; 70 < 275

,..1 11, so 7 x 20 ='140; 140 < 275

7 X '7= 21, so 7 x 30 = 210; --210 < 275

7 x.%-= 28, so 7 x 40 = 280; 280 > 275.

.The result 30 the,Featest multiple of 10 that is contained.
0

. . argUments bring out a refinzment of (a) as-

that it, (b). With practice, he ',tan then be led to the uspal short

division form (c):

The point is, an apparently "inefficient." method allows the studer/t

to attack the problem in bite size commensurate zth his maturity. Obser-
s.

vations attest to the fact that youngsters too, will learn to recognize

that-they can improve on the method -- especially with gentle prodding.

When they do realize the inefiencylpthey will shift to various refineMents

at rates that. vary from'one individual to another. Ultimately, some may

278
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Vi

get to the point wheye they may see right away that 275 is, 5 less
5

(
280Nthan 280,: so 275 + 7 is short of 40 k = ), arriving instantly72

But
.

'at A40 -.7 ori 39 for the 'answer mut we are not advocating that every-7

one must get to such a stage,of proficiency.

; .

Another important point for consideration is that the "platform" la

.method does relate direct4 with Ale:kind of activity assoc;ated with
.#kthe'introduction to division. Wiln 2'j.5 members,( removing a subset

. .

hay-1110'7 members, 268 members4kgkin; another set of 7, leaves
.

.

261.,-.... .. Obviously, this is inefficient, and we may turn:to removing

ten subsets_ at a time, leading us to tbp methodidesAibedp ca).

Algorithm:*

.Array*

Associative Property

of Multiplication *

Commutative Property

of Multiplication*
/

1. Ise

a.

b.

2
2. Associiite two things with each of the following: can equation

several

7 xi34

6 x648

fliffePent

ti

a

VOCAEUL&Y

TistributivefProperty of

MUlt4lication over Addition

vision Algorithm

Remainder ,

:11 ;
Q A,

EXERVSES.- CHAPTER.15

algorithmAo compute each of these:

c. 9 x 28

d. 8 x 54
Plo

9'
tie formt a =, (n x b) + r where (n x b) < a and

a rational number ;mixed form (or a whole number

4

O

3.

of

r < b; and

if b is a

4111' factor4of a).

a. 38÷ 6 c. 125 8

b. 99. 4 d. 84= 3

a. Using the common divisiOn algorithm, find...the quotient

342- 7.
1.

Relate this algorithm to the more primitive algorithms used by

the - ".children when they are first introduced to division.

4. In 'a = (nxb) + r, explain why n x b < a and r< b.
.
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1.

SOLUTIONS 'FOR PROBLEMS

3.x 28 = 3 x (2o + 8)
= (3 20) + (3 x 8)

= (3 2 00..io)+ (3 x8.
= (6 x 10) + (3 x 8)

60 4-;21+

= (6o + 2o)
= 80 + 4
= 84

2. 4 x 236 .= x

= x

. ;:t'03

3.

ite...ro/Arty of' .

[4 x.

1(.14- x 2)

.= (8 x
= 800 + 120
= 800 + (100-

[4. x (3 x 1o)
f(4 x 3) ).10

6 + (4 x 6) Mc.ilt3pi

4iplying .

4) Re

° j.
,Ole -

, 74'

= (Boo *106). ,?:.;;(:,o,t,is!. 26) + 4 ikstociiatilit piOir' . ..-xit,..atiaititn1
...7 -o 17'..''('. '

.

_ ° ... i .. .,...;_..... t... ... .

. : , .. '.42,...... ''''.-7'.
:: -...

''` ', '

= 900.+ 40 +4 cfai;tg

944.

20 +. 3)

1,00,4r+ 9 = 69
;44 -,<4 '

)

c.

:-
a. X 5)- b...79 = (2 x 3) + 1

d. 57 (9 e.:83 = (
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Chapter. 16

MEASURE ENT

INTRODUCTION

Measurement Is one of the connecting_ links between the physical

world aroun6.us and mathematics. So is counting, but in adifferent way.
. _

We count the numbsr of books on the desk; but measure the length of the

. detk.'NeaSurement is also a connecting link betweennumbers and geometric

figUres. To measure aline segment is to assign's number to it. This

'caringt be done by counting the points of the segment since there are

infinitely many moint6 in any. segment. To. take the place of counting

the points, some new concept bust be developed:- The concept of "measure-

ment" is applicable not only to line segments.but in a closely related

fashion to angles, areas of regions, volumes of solids, weight, time,

work, energy, and,many other concepts or physical entities.

THE MEASURE OF A SEGMENT

In mathematics we think of the endpoints of a line segment as being

exact locations in space. The line segment determined by these endpoints

iv'considered to have a certain.exact length. For instance, the end-

points A and B of AB Care exact locations in space, and AB itself

has an exact length as one of its properties. Exact length, then, is a

property of all, segments. In our4ntuitive concept of congruence, we

have said that two segments are congruent if a movable copy of one can

be "matched and fitted exactly" on the other. This may be interpreted

as meaning that the two segments have the same length. Thus, the common

property of-congruent segments is the same length. 'Non-congruent seg-

ments, have different lengths which enable them to be ordered. When we

compare AB with any other segment such as CD , one and only one of

these three things is true:-_

AB IS LONGER THAN' CD, OR

AB IS EXACTLY AS LONG AS CD, OR

AB IS SHORTER THAN OD..
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)
In the case of finite sets, .examination revealed a property on the

basis of which the sets could ber:,J6Moared. That is, one set could match
LO

a second set or it could have more at fewef neMbers than second set.

At that Toint,nutbers were as ociated 1Wh.,the property? In the same

way, we wish to irssociate.n tiie property of length of segments.
S.

This ts.the objective of meAkrtmentf or. finding the length of .a segment:

Let us describe the processoftsurement as it' applies to line
f'

segments. The first step it to choose , ,:RS , to

serve as one unit. This'means-to se ect RS., and agree to consideilAt.

measure to be exactly the

r.

C

(4/e. should 'reco ize that this selection of a unit is an arbitrary

choice we make . Different people might well choose different units and

historically hey have, giving rise to much confution. -For example,

a.1 One tir the English "foot' was actually the length of the foot of

the reig.ing king and the "yard" the distance from his nose to the end

of his o tstretched 'arm. Imagine the confusion when the king died if

the'ne one was of much different stature. Various standard.units will

be disc. ssed a little.later-but&anwhile we return to the choice of RS

- as our 'nit, recognizing the 5rbiti-ariness of this choice.)

Now it is possible to conceive of a line segment, cp such that

the unit RS. can be laid off exactly. twice along CD as suggested in

the next drawing.

e . *- .2: UNIT

R S

UNITK. UNIT

C I 0

ttli. , .
Then by agreement the measure of CD jis the number 2 and the length

of CD is exactly 2 units, although CD can be represented only
-
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al3proximately by a drawing. In the same way, line segments .of length

exactly 3 units, or exactly 4 units, or exactly any larger number of*'

units are conceptually possible, although such line segments can bedrawn:'

only aPprOximately. In fdct, if e line, segment is:very long --.say a

'million inches long -- no one7would.want to try to draw it even approxi-

mately; but we can still think of such.a segment: .

We can also conceive of..;iine segment, AB , such that the unit,

RS will. not "fit into" AB a whoaknumber of times ,at all. AB is a.
line ?egment such that:starting *t RS `can be laid off 3

A

(;)

UNIT
r

S

UNIT UNIT UNIT UNIT...
B

times along AB reaching. qv which is between A and B , although j.f-

itwere laid off times we would-arrive at a point' 2 which is well

beyond What can be said about.the.lengthof AB-? Well, surely

AB has length greater than 3. 'units and less than 4 units. In this

particular case, we can also estimate visually that the length-of AB

is nearer to 3 units than to 4 -units, sd that to the nearest unit

the length of AB is 3 units. This is the best we can do without

considering fractional parts of units, or else shifting to a smaller

unit. -

Another way of describing lengthto.the nearest unit is by using
-

the word "measure". Thus the ,measure of 'AB ,:denoted m(AB) is. the

It is understood in the use of measure that itdoes not

necessarily-des±ibe txac:tilength. If two segments have the same length,

we know they are congruent and they have the same measure. Two segments.

with the s.gme measure in terms of 'a specified unit are not necessarily
-

congruent: 'However, of two segments have the same' measure for everY,

specified unit, no Ma43i-,er how small, they must be congruent.
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PROBLEM *

1. Using the unit find the measure of each,of the following

segments to the'nearett unit.

(a)

0111
(c)

. Using the unit find the measure of each of the segments

in Problem 1 o thenearest unit.

Tor help us i estimating whether the measure ofa segment is say,,

3 or 4 , we need to.titect our unit. RS is again shown as our unit

with T bisecting RS so that R. is congruent to TS and RS is

used to measure MY .

.T

R

I.

N
f

P

In laying off:the unitalong-MN , label P the endpoint of the

.first unit that falls on of. oeyond N and label Q the end of the

preceding unit just as you did for AB on the preceding page. Using

RT." (which has just been determined) to aid in measuring AB we ban

.check that BP is longer than RT and that:the measure of IE is

3 , or m(AB) = 3 . Above, NP is shorter than RT = 1 .

:There is ,nearly always'a deCisiOn to be made -about 'whether .Or not-to

count the last unitwhichextendS beyond the endpoint of the-segment-

teingmeasured. The reason for this is that,it is rare indeed for the

unit to fit an, exact number of times from endpoint to endpoint. Its

aOlutions for problems in the chapter are on page 298.

sr'
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well to realize now that measurement is, approximate and subject to error.

The "error" is the segment from the end ofthe segment being.measured to

the end of the last unit being counted. In AB , the,error is BQ , 4

in *I, it is 10-. We note that the error in 'any Measurement is alms

at most half the unit being used.

.Let us emphasize one thing about terminology.. In a phrase similar
rf:

to,"ellinesegMent of '3- units" we mean '.`the measure ofthe line

tnterms of a.PartiCUlar unit is the number 3 ". ThepOint here
-

is simply to have -a way of referring.to the-numbers involved so that
. .

theyfcan be added,. multiplied,.. etc.. Remember that we have learn.da

how'to apply,,arithmetic.oVerations only to numbers. You'donit add yard

any more than you add apples. If you have 3: apples and 2 '.apples,
.

you have z5 apples altogether, because

3 .4- 2 5. .

9You add numbers, not yards nor apples.

A8 we shall, see shOrtly, the use of different units. gives rise

to different measures for the same segment. Thus, if we consider MN ,

m(MN) = 6 for the unit .KL and

m(Mff).= 4 in terms of_the unit. RS

as the figure indicates.

K

N P. to

M N P
1

R S

STANDARD UNITS
a

Numbers of people each using their own units would have difficulty

comparing their results or-communicating with each other. 'or these

reasons- certain units have been agreed upon by large numbers of people:

and such units are called standard units.

n.
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0
HibtoricallSr there have been ..py standard units used to'measure
.!

line segments, such as a yard, an .inch or, a mile. Such a variety is)a'

great convenience. An inch isa suitable standard unit for measuringb
.,,

the edge of a sheet of paper; but hardly satisfactory Tdr-finding,:the

.length of'the school corridor.. Whil,e a yard is t satiSfatory: standard.

for measuring the school corridor, it would not be a sensible unit fOr::

.finding the distance between Chicago and Philadelphia.

Such units of linear measure as inch, foot, yard and .mile are'
commonly used standard units in the British-American system of measy.

7
N .

In the eighteenth century in France, a group of scientists developed the

system of measures which isknown as the metric system using. a nest
O.

standardunit.

In the'metric system, the basic standard unit of length is the

meter; which is approximately'

1 yard. :The metric system is

those.in which English is the main language spoken and .is used by all

scientists in the world including those in English speaking countries.

Actually, the one official standard unit for linear measure even in the

United States is the meter, and.the, correct sizes of other units such as

theCentimeter,'inch, foot and yard are specified by law. with reference

39.37 inches or a little more than .

in common'uSe in aliq'countries except

.to the meter.

The principal adVant -e of the Metric system over the British-.

American system 1-ies inthe fact that the metric system has been designed.

for ease of conversion between.the various metric units by exploiting -he

decimalsYsteM of r.;.merationi Instead of having. 12 inches:tbthe foOt,

3 feet to the yO'd: and 1.760 yards.to the mile, the metric system has

TO milLimeterSAo apcenti:meter, 10 centimeters.to a pelmet*, and

10 decimeters to a meter. .;his makes conversions between units very
4

.,easy.,

Jo far. w %-e liae said othinr_t about metric units larger than the meter.
s:il:'

. .

.Tht most us.i'ul of:,thesc isthc kAoMeter, which iS defined. to be 1,000.
_fili. - .'. . ; ' .s.

4 ."TMFters. The ?..ilometer-is.the.metric unit which closely correspondsto

IP-.! ,...-he British-AMerillan mile.It turris out that one kilometer is a little,
1

..
.

.
. .

mreei than six4.enths of .-:.:.r..ile.

.f. ,.s

...I
, a.,



We have already noted that in the metric system, te'meter as the

unit which corresponds approximately to the,yard.in the,BrAtiah-American

system.: :The-metric uhit which corresponds to the inch is the, centimeter

which is one- hundredth.of a Meter. A meter is almost 40 inches so it

1
takes about 2- centimeters to make an inch or to put it another way

2

a centimeter d
;72

s about. 'or .4 of an in6h.. Below areillustreted

a scale of Inches anda scale of-centimeters. so-you Canecompare them.

Centimeters -

,0 I 2. r 3 5

A
I I I

a

Inches

0

SCALES AND:RULEHS.-.

OnCe a standard unit such as a:yard, meter .Or mile is agreedunon2.

the creation of a i?ale greatly"Simplifies measurement.
.

8 10' ,It 12-

i- i I Ii. a' 1

. 3. . 4

A SCALE IS A NUMBERIaNE WITH THE SEGMENT FROM
0 TO 1' CONGRUENT TO UNIT BEING U64.1.).

SP:scaie:can bemadeWith a non-standard unit or with:a standard- unit.

A RULER IS A'STRAIGHT EDGE ON WHICH A SCALE USING
A STANDARD- UNIT HAS BEEN MARTCD.,..

.."

If we use the. inch as the unit 'in l!s.akinea'ruler, halie a measuring.
.

device. designed to give ds readings to the neareSts.itch. 0Most ordinary,

rulers are marked with the ;unit one-sixteenth af-anc"inchor with_the,

unit one millimeter.'

THE APPROXIMATE NATURE OF14EASURE,-

Any Measurement of.the.length of-a segment:made with a ruler is,.

at besti.apProximate. When a segment is be-measured, a'scale based

on a unit appropriate to the purpose of the measuretent isaelected.

The unit fs the segment with-endpoints at two consecutive scale .divisions

of the. ruler. The scale is placed on the.segmeht with the zerc1446oint of

the scale -on:Oneendpoint of the segment. 'The number which Cori-4StOnds
.

to the division. point of the scale nearest the other enapoint-of.



segmett is the measure of the segment. Thus, every measurement is made

to the nearest unit. If the inch is the unit of measure Tor,our ruler,

' then we have a situation in which two line segments, apparefitly not the

same length, may have the serge measure, in terms of a spece unit.

A

INCH

B
.

fn inches, m(CD) = m(AB) = 2

For the same two segments we may get et.differOn measure if we, use

a different unit segment. It should be clear th :the unit is change),

the' scale changes. Thus, if we decide to use the centimeter as our unit,

the fig.tre below shows that in centimeters m(AB) = and 'm(CD) = 6 .

.,.

Now the Apasures do indicate that there is a difference in the lengths_

A B C D
6- tiAll I t I 1 t: 1 1 w 1

i

CENTIMETER

In centimeters, m(CD) > m(AB)

of the two segments. Notice that by using a smaller unit (the centimeter)

we are able to distinguish between the lengths of two non-congruent, seg-

ments which in terms of a larger unit (the inch) have the same measure.

If measurements of the same segment are made in terms of different units,

the error in the measurements may be different since it isat.mos't half

ithe unit being used. Thus, if a segment is measured in inches the error

cannot be more than half an inch', while if it is measured in tenths of

an inch the error cannot be more than half of a tenth of andnch. As a.

result, if greater precision is desired in any measurement, a smaller

unit should be used.

SometimeS.it is more convenient to:record a length of 31 inches

as 2 feet _)inches. Whenever a length is recorded using more thin

one unit, it is understood that the accuracy of the measure ip,indicated

290
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I
by the smile lunit named. A length of 4 yd. 2 ft. 3 in. is measu

to the nearest nch. That is, it is'closer to 4 ye 2 ft. 3 in.

it is to either. 4 yd. 2 ft. 2 in. or 4 yd. 2 ft. 4 in. A 1

'4 yd. 2.ft. is interpreted to mean a length closer to 4.y

to 4 yd. 1 ft. or 4 yd. 3 ft. However,

to the nearest/inch we would have to indicate this b

2
A.

.

'r
if this Segm nt were measyrad

y , 2 ft; 0 in.

real difference

surement ismade to

or 4 ydT\2 ftlA (to the nearest inch). There is

in the precision of these measurements. When

the nearest foot, the interval within whic the ;,ength may vary is one
f

foot; when the measurement is made to t e/nda#st inch, the interval

within which .the length may vary is e ind.: This is because the end2
of the last unit counted may lie to .half h unit on either side of16/9

the end of the segment.

A very importatt prop

may be measured in term

how small the unit

lay Off the unit

completely; tha

beyond the p rat

be,

4..

11.77'segmentid that any line segment

given unit. This means that no matt?t

ere is a whole number n , such that if we

along, AB
,

11 beis,/a point

B on mr

starting at A we will cover AB

reacted th2lits at the point B or

The ength of a line- egment property of the line segment which

we may easure in terms .f different units. 'Theoretical/y,-two segments

have he same length , and only if, they are c ngrtvent: We run into

tr uble,thinking an talking attout length because, in practice, measurb-
--J

ent Of length'is lade ih terms Of units and, as we saw above, two lines

which are reall different in length may bot134be said quite truly to have

length 2 in es to the nearest inch. 7

A vivi illustration of this trouble will emerge.if we think about ..

an applic

of a po

tion.of linear measurement to the calculation of the

gon. py definition:

THE PERIMETER OF 'A POLYGON IS THE LENGTH OF THE ,

LINE. SEGMENT WHICH IS THE UNION OF A SET OF NON-
OVERLAPPING LINE SEGMENTS CONGRUENT TO THE SIDES
OF THE POLYGON.

perimeter



E

Thus the peritheter of polygon ABCD is the length of IT where

EI is the union of H', FG , GH and HI which are rlpectivel;

congruent to AB , BC', CD and DA If we pub pins at'Vbints ,A

B C and D and stretcha taut thread around the polygon. from ,A

back to A when we / straighten out our thread we will have a model of

a segment congruent ;to El . ,

16 ength of /ET k we know intuitively, is the sum of the length's

of the four segment whe we consider length as an intrinsic property

of segments. But, when we talk abou44 lengths as measured in terms of

certain units we may run into the following situation:

0.

0 1 e, CENTIMETER SCA E 7 8 9 10
4--

0 I INCH SCALE 3 4
1

E,

F4

I

To the nearest centimeter m(AB) = m(BC)i== mkCA) = 3 . AB is congruent.

to DE , BC is congruent to EF , CA is congruent to FG but m(DG) = 10

This is because to the nearest Millimetel; m(AB) = m(BC) ,

and to the nearest millimeter m(DG) = 99 , and to the nearest centimeter

this means m(EG) = 10 . Even if we measure our se rents to the nearest

inch We find m(AB) =:,m(BC) = m(CA) = 1 and we would expect the measure

o; the perimeter to be 3 . But we findH m(DG) = 4 This reminds us,

again that the measure of a'length is always, at best, an approximation

292
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and approximation errors may accumulate to cause real trouble. The

best we an say is to be aware of this possibility whenever in your

problems you are dealing with numbers which turn up fr m.measurementl,

procefte ribe preciseness of any measurement is the size

of the. tIselecte.d.

3. Two iidren are asked to deterMine the length a f/a

cratedne is given a ruler with units marked in f. other
t

a ruler With units marked in inches. Tbe first says rate

'I:s31ft long and 2 feet wide; the second says i is 40 inches

Aby 28\: inches. Explain why they.cOuld both be tight

4. Bot children-are-asked to find the perimeter of tlip, ate. The

first opt says 10 feet, the seconffi'says 136 'inc A string
`.

is then passed around the crate, stretched out d the children ere

asked t measure the string o find the peri * er.. This time the

first on ',I -says 11, feet, the second one l3'' inches. Which Te-
I

sults ar correct?, Explain th( discrepancy betWeen the results.

We have indicated in this development; lat length is the common

property pobse sed. by segments that are congruent in much the same way

that a number i1a the common property of all sets that are equivalent.

Corresponding t\-., the length of Pgivensfsegment, a whole number is L

attached which We call its .measure. Note that this measure depIrdson-

the unit selected, and as-we have seen, is what one normally considers

the measure to the nearest unit. .Thus,.lengt is approximated b the

measure,.with the approximation being closer and closer as the u is
YI

finer and finer. \This.is the case for any measure whether itidescribesi.

length, time, ,weight, or any other measurement.

When we'say-that a segment has a measurement of 34 inches, for

instance, the implication is, that the unit is the quarter-inch.: Thus,
1 1

a "measure" of 3 is actually 13 , since. 3. inches means 13

quarter- inches. When a measure is expressed as a rational nuMber, the

underatanding is, therefore, that an approximation is made to the

smallest unit indicated, as for example, the quarter-inch mentioned ebove.4'

Starting with the concept of measure as a whole number, a meaning may now



be attached to a measure given in 'terms of a ratidilal number. With
4

reference to the smaller unit, the measure is the whole number of the

smaller Units; with reference to the larger unit, the mep.sure may be
Ar"'

stateda.aa rational nuMber.

!Dna-line, a segment can always be found that would be congruent

to some segment. It is then possible to choose two points on a line so

that the segment determined by the two points would be congruent to the

unit for a particular measure. If the two points on the line were

identified as 0 and 1 , then a number line may be constructed such 11

''"\ that the unit on the number line is congruent to the unit for he measure.

Now, suppose that the length of a given segment is to be determined.

Clearly, there would\be a segment on the number line from 0 to a point

having a rational number as its coordinate that would approximate the

given segment in length. In Aldt, by finding the segment on the number

line with '0 as one of the 9dpoints (the left endpoint) that isscon-

gruent to the segment being measured, it should be possible to obtain the

measure by the coordinate of the other endpoint. By this, any number

that may be associated with any point on the number line as its coordinate

may be assigned as the measure of a segment, and two segments are said

to be of the same length if they have the same measure regardless of

the unit used. Length) conceived of as the common property -of congruent

segments, iS a, slight departure from length in ordinary language usage,

as for example, in stating that the length of a desk is 4 feet. The

explanation of length as the common property of congruent segffients more '

accurately emphasizes its mathematical meaning.

29 ,J
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QUESTION

"Why is i

Ian read o

/ The p

(page272)

is betw

a '

said that a measure ida whole number of units when 'clearly we

f measurements on theituler such i 3-
1

inches?",
2

int is made'in the'sectton on the use of an arbitrary unit

that if RS

3 and 4

'Units

1

is,taken

units in

to a

length,.

model for the unit, then AB

.

vQ B

In terms of this unit, we could only say.that the measure ot)'-AB is 3

since B is nearer to Q than to P; where Q is the point exactly

3 units from A and P 4is , 4 units from A. Suppose we were to

measure AB using.a segment exactly'half as long as l'tS to be

the model for the unit. Let's call this a "demi-unit" to .indtcafe that
ti

4 --
this is smaller than the unit determined by RS. The'situation may 15q

as diagrammed below.

Demi-unit

U

:Demi-units

3 4 5 .4_ ..I
A I

Q, B
P

it

Since .B- is between,' Q and V, then the measure of AB isbeiween

6' and 7. Since "s is neareryto V than to 4, to the nearest unit, .

the measure of AB is, 7. This i,s in terms of the demi-unit. If the

demi-unit is compared to

justified in thinking of

thought of as seven
"1

the statement that an object is

the unit as deternined,by RS, we'might be

it as a "half-unit". The demi-units are then'

I units. Fdr this reason, henind
2

units in 1 ngth is the

units" or
1

3

295
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'

.0

the-",half-unit"is

of t6e marked late

fact that . may

adapt ouraelvesotq

if necessary. .70r

of'an,inchUnd 1.71-q

We 'do go,- we are i

- inch segment,

mumber,oksubbiltts

, ;

Centimeter:

Exact neng-411

Kilometer

being useid.as aunit'and.that to the nearest one
Y

it thewholenumberto.r tjaermdasure. The
,

.

be /tad directly from the'ruler shows that we may
4

estimating qUi klyand filling 1n subinterval marks%

example, tb.014. 'may'be marked off in thirty -seconds

be esti* g sixty-fourths of an inch. Uban

!reality reiatin the whole. number of units using the \

s!a;MOdel;1. be e, in the readingithi whole

Arralated back to standard unit o; a/inch.

. .

length* ,

;Line Sgpierit*.

. ,

Measure*

Mater

. VOCABULARY

4

I °

.Metric System

. Perimete .(of a 'polygon)*

Preciseness

Ruler.*

Scales*.

Segment*

Standard Units*

Unit* IL

ci
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1' EXERCISES - CHAPTER 16

411

Which of the following statements is true about segments AB ,

EF, 'and GH ?

A

C

a. .AB is congruent to CD d. AB

b. AB is shorter than CD' e. GH

c.. AB is longer than EF f. Gil

-2. A dog weighs 18 pounds.

a. The unit of measure is

b. The measure is

c. The weight is

3. A desk rs ,9 chalk Plecesllong.

a. Its measirement is

.b.- Its measure is

c. The unit of measure is

standard units used?-.

/

, .

4. In which of the.following sentences. are

4 fp a. Hejs strong as aniAtc.

b. Put in a'pinch of, salt.

c. WO drink a gallon, of milk per day.

d. The corn is Icnee high.

e. ,I'am five feq tall.

is congruent to' EF

is shorter than CD

is congruent to CD

The measures of the sides of a.triangle in inch units are 17',

15 and 13 .

a. What are 'the measures of, the sides If.the unit is a foot?

b. Wile-0.s the measure of the perimeter. in inches? In feet? _

c. Is there anything Curious about your answer?

d. How dp you explain it?'

Use
A

as a unit-to measure the following segments.

Is CD congruent to EF .? Do your answers contradict each other?

Explain.



11

SOLUTIONS FOR PROBLEM

a. 1; b: 2 ; c. ; d.

2. a. 2 ; b. 3 ; c.. 1 ; d. It should be noted how the

measures differ. A
A

3. 40 inches to the nearest foot is 3 feet sinche error is

less than
1
"foot.. 28 inches to the. nearest fo6t is 2 feet.

jigairi the terror is less than ;;" foot.

. This prOlem involves the definition of perimeter of.a polygon:

Nbte thac.the perimeter iii/by definition the length of the segment
1

which is congruent to the union of non- overlapping segments con-

gruent to, the.sidds. Thus the second method is the, correct one A'

or both Children and the answers to the nearest unit are 11 feet

and 137':inches. The first result comes from adding

butach measure had an error of about 4 inchesor

and'the accumulation of these leads to the.result '10

is, in-fact, incorrect. The result 136

3 +2-1?v3 +2
1

of a fogt

flet whiCh

inches comes likewise
)because each side measured in ±nches had an error less than 1

an

inch'but which. accumulated to something near an inch. The dif-

ference beteen the correct results 11 feet and 137 illches is

due to the fact that each child gives his answer correct t o.th

nearest unit' he is using. 4

,
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Chapter 17

STRUCTURE

THE4COUNTING NUMBERS

In our developMent, we have started with sets as pre-number cpngepts

r and obtained from them the set of counting (natural). numbers.; Although

-we did not consider the properties of the. counting numbers (weInsidered

properties of whole numhers), if we had examined the counting'numbers

in this light, we would have,discovered .closure under Sdditionand multi-

plication. In fact,, all'of the properties listed below hold for the set
`._

of countingihuti?ers:

1.

2
the set is closed under addition'and4multiplication;

the elements are cdtmutative,under addition anclmultip1:ication;

3. the elements are associative under addition and multiplication;

4. there is an identity element for multiplication;

5. mu tiplication is distributive over addition;

The sta ement.for th- losure property under ad ition is: if a

and b are c. nti 1 mbersr then a + b is a cou ing number. This

7may also' be stated

IF a AND b ARE COUNTING NUMBERS AND

a x b ='c, THEN -c IS A COUNTING NUMBER.

Thus, if a is ,3 and b is 5 , then, c is 5 , or 8 . A

related question is: if a is 3 and c is 8 , is there a counting

number x such that a + x = c ? In terms of o en sentences, wesare

then looking Tqr,the solution for
.

3 + x = 8 . r.

In this case, 5 is,the solution of the equat on. If we ask whether

there is a counting number b such that 3 = 8 , we are posing the

question, Is 3 + b = 8 solvable in the set of counting numbers?

THE WHOLE NUMBERS

In our study, .we have found that 3 = 3 ; furthermore, 0 is

the only solution for 3 + x = 3 . However 0 is not a counting ;lumber.
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Clearly then, 3+ x.= 3 is not solvable in the set of counting numbers.

Nor are 5 + x = 5 , 6 + x=.6 , '2 +3c. = 2 , and soon: In fact, for

any counting number a , 0 is the only solution for

a + x = a ,

and hence, a + x = a, has no solution in the set. of counting nuMbers.

By adjoining 0 to the set of counting numbers, we obtain an

,extension from the counting numbers to the whole numbers. That is,

IF Z = (0) AND N = (1 , 2, 3 , 4, 5,

THEN Z U N = ( 0 , 1 , 2 , 3 , 4 , 5 , ...) = W .

Within the set of whole numbers, then, the equation a + x= a

has the solution x = 0, All the properties that we have for the set

of counting numbers hold equally for the set of whole numbers. By the

inclusion of 0 in the set of whole ;lumbers some new properties are

gained:

THERE IS AN IDENTITY ELEgENT FOR ADDITION;

THE PRODUCT OF 0 AND ANY WHOLE NUMBER IS O.

INTEGERS

Even adjoining 0 to the set of counting numbers is not enough

to completely solve the equation,,a + x = c . If < a , this .equa-

tion is not solvable in the set of whole numbers. For example, there

is no whole number x such that + x = 3 . Negative numbers are '

introduced in the first grade, but only in a limited way in relation to
%

the number line, for example, as associated with the scale on a thermometer.

Later on, when negative numbers are explored in, greater detail, the

opposites of the counting ndMbers, namely, (... , 74 , 3 , 2 , 71) , may

be adjoined to the whole'numbers. Thus, we get the set of integers
A

I = (... , 4 , 3 , -2 1 0., 2 , 3 .

Then, the equation a + x = c will be,solvable in 'the set of integers.

for numbers a and c in this set. By this extension, we will find

that all the properties that we have'identifie4 for the whole numblis

still holdfor the integers. Moreover, we have an additional property

which derives from the solvability of a + x = 0 for any integer a,.

The solution for this equation is called the inverse of 'a . The property

a

2
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may be stated;,

/

FOREACH INTEGER a, THERE IS FINVERSE,

-a SUCH THAT, a. +- -a 0. L

By the commutative property, we can sae that A and a are inverss
.

of each other. For, example, .3.4- 3 = 0 and 3 +,3:= 0 ; to ....3:

.

3 are inverses of' each-other. '

HiZtorical16 there was only need Of the counting numbers for the

,primitiVe.man, his possessions and All his rec4 koning were adequately

accounted for by these numbers The concept of zero as a number did not

.emerge until quite late in civilization. With sophiAT'ecAlon, we may
*

interpret the toncept'from d.different.point of...41m Zero might be

considered to be the...solution far a +.x = a for whatever number a ;

in this way, a nuMber called zero is "postulated" as the solution.

Similarly, a 'may be postulated as-the sontion 'for a + X = 0 .

THE RATIONAL NUMBERS
S

We may net consider the sOlvabilitysof equations'ef the form',

a x x c for integers a and c . Evidently, for certain numbersi

such fasp'a =2 and t = 6 the,equation a)X x = c is solvable.in

integers.', The Solueion for

such, as

2.X x.= 6 is 3 . However, equations 1p

4X X = 2 ,

are not solvable in the set o integers. This leads to the-set of all

resented by Till where m and 'n arerationa,pumbers; number

integers and 0 The\solution for 6 xx. 2 is then considered

to be
2

Just as-the Solution. for 2,x x 7 6 is considered to be
2

1,
As we have indicated 'in the prec4ding section regarding the postulation'

7.

of.zero and .a , the number 1.1lay also be postulated as the solution

for n

By representation of sech numbers on the number line, we identifivdo,

for example, the number's named as, O

3 6. 9 ,

' '

,°... , for k / 0
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to be the. same number. Thus,

if a and b are nonnegative integers such that

b X k F 0-, then all numbers that Can be represented

° aXk
by -----

b x k
are identified with 2 and al

a X.k
that-can be represented by -----

b X k
are identified with

TD': ,.where a and b do not have any common factor other

than 1 .(unless a = 0 ).

ers

In this way, , , , are considered to be in the same

"equivalence" class; 3 , , , ... in another equivalence 'class;

1 2 1
... in still another class; and so on. Corresponding

", 4 g
to t

2
ha equivalence of t , , ... is the equivalence of the. .

Statements

3 X x= 2 , 4 , 9 x.x . 6 ,

So, instead,of'defining the equivalence classes via the number line,

the conceiit-also can be approached via equivalent. statements. Either

2 4
way, , ,

6
., would be classified together. Our appro

by the numbers line is the'more intuitive approach in accord,with.th

'presentdtion to the student's:
, .

There is another kind of identification that we might interpret by

number line. It is that the rational numbers 3
X 2:1,: ,

, , may be identified with the intpger m m is an

r. From this viewpoint, the set of ratiOn numbers may-bp

arded as au extension of the set of integers. We can observe that

in the se rationals, all'the properties that we have identified that

hold the. integers still hold: Furthermore, another prope y is

gained -- one that parallels the"property on inverses under addition:

FOR EACH RATIONALNUMBER rill THAT IS DIFFERENT

FROM 0, THERE IS AN E SUCH THAT

n

k

X .4 (with the id tification, = 1:),.

2 3 2 X 3 ' 6 1
For. example, 3 x 3x2 °7 1
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With extension'on top of extension, we see anemerging structure

of.the numbers as characteriZed by the properties. Each set of numbers,

together with the operations andithe properties, form what is called a

number system. For the rational number system, the properties may be

listed as follows:

the set is closed under addition and.multiplication, for

example) 3 is a rational number;

the elements are commutative under addition and multiplication,

1 5
for example, --2- + =

5
+ ;

the elements are associative under addition and multiplication,

1 . 3 , 4,
example, (2

1 5
+ + )for

there is an identity ,element for addition, for example,

i -- + 0- =
1

;

4

th reis an identity element for multiplication, for example,

)
,

3 3
x , J. = .4 ;

1.

forph,rationalnuMber,.there is an inverse under addition,

2 /2
'ft w;exampie, 4 = 0

3

for eac rational number different from 0., there is an

inverse under . multiplication, for example, x
6

= 1 ;

'multiplication is distributive over addition, for exa

1 ,2 5\ ,1 2\ ,1 5\
. A \ -r 7, = \- A A 7)

BesideS these, there are properties which we can elicit from the bove,

"such as ,

the product of 0 iind any rational number. is 0 ; for

example, 0 x 97 = 0



OTHER EXTENSIONS

Other extensions will be made beyond 'the set of rational numbers,

but these Will not be carried out in the first six grades; The rational

numbers were associated with'points on the number line. As. the rational

numbers have the property Of being dense (between any two rational numbers

are infinitely many rational numbers), it apPeap that every point on

the number line. represents a rational number. However, there are

numbers such as n re IT 7, and so on, that are coordinates of

points on the number line but are not rational numbers.

The.next extension brings us the set of all numbers that may be

represented on the number line. These are the real nuMbers. Beyond

this. extension are the complex numbers, whose representations-occupy

the entire coordinate plane (that is, just the, number line is not

sufficient for their respresentations) and the hypercomplex numbers.

With each numbeer system is associated a structure given ley its properties.

We have pointed to the property or properties gained with each

extension. However, although we shall.not.show how here, we should

mention that it is not always the case that properties are gained. The

extension from the complex numbers to a hypercomplex system may result

in the loss of the commutative property; a further extension may result

in the loss of botti the commutative and associative properties.

'TheLe are other losses of properties that occur in the extensions

which have not been mentioned but which we will note very briefly now.

When the 'set of whole numbers in extended. to the set of integers, we

lOse the property that there is a number which 'we, can call a first (or

smallest) number. Extending to the rationals, we lose the property that

each number' has a number which we call the next number (or miccessor).

That is, the ,integers can'be visualized as "isolated" (discrete) points'

on the.number line, whereas the rationals are visualized as being denSely

packed. It can he shown that the rational numbers may be put into,1-1.

correspondence w.ith,the counting numbers, whereas a 1-1 correspondence,

cannot be made with the real numbers (we say that we lose the property

of countability in the extension). The extension from the'real nuMbers,

to the complex numbers results in-los6 of the property of order: between

two tamp numbers, there Is no "order relation" such as "<" or 5"

that determi es which of the two numbers precedes the other.



While we have. losses with the extensions mentioned, the gains

'apparently far outweigh the losses, considering the many, many new

problems that can be solved with each extension. An important aspect

in the study of algebraic exisiorts consists of determining pi'operties

that.hold in each extension. In turn, the study may orient itself to
D

investigating what extensions may be determined that would retain

certain' properties (such as associativity, etc.), and thip is indeed

a'program in the study of algebra.

An appropriate observation to make at thistimeisfthat in Pre-L

senting.matheMatids as a structured discipline, the student Is guided,

through the extensions.of.the number systems. Thus, with the student's

maturity, his knowledge of systems of numbers is simultaneously broadened

and deepened.

Associative Property*

taosure Property*

Commutative Property*,

CoMplex Numbers

Counting Numbers"

Distributive Property of

Mbitigication over Addition*,

VOCABULARY

Identity Element*

Integers*

1

Inverses under Addition*

Inverses under Multiplication*

Rational Numbers*

Real Numbers'.

Whole Nurhbers*



APPENDIX A

THE MATHEMATICS PROGRAM, GRADES K-3

The SMSO mathematics, program, MATHEMATICS FOR THE ELEMENTARY SCHOOL,

K.-3, is a contemporary instructionaIprogram that.eMphasizes conceptual

learning. Primary. attention is g.vOgto the, introduction and progressive

development of significant mathehatical'ideas. ThiS'emphasts'on mathe-

matiCal ideas provides the necessary' foundation for the related development

of apprbpriate skills and the abilitY. to use, athematics effectilbly.

'Central to the program are relatively few basic ideas. Two of these

are-the'ideas of number and operation. Each is introduced and extended,
. ,

in close association with appropriate manipulations of sets of physical

.objects.. Mhjor attention is given to the set of whole numb6r (0, 1,

2, 3, 4, ...), and to the nature and properties of the familia operations

of addition, Subtraction, multiplication, and division within the s of

whole numbers. Consideration is given alsoto the nonnegatiVe rational

:rational numbers, such as
1 2 3 5, 7

E.

Closely related to the ideas of number and operation is the idea.

of numeration and also the ability to compute. Emphasis is given_to

the deciMal base (ten) of our numeration system'and\to its "place value"

principle. 'These, coupled with properties of the opels.tions, form t e

1)
basis for developing meaningful algOrithms--i.e., forms for computing

The remainkng major idea developed in the prOgram.is geometrid
(

in nature. Our first concern is with characteristics and properties
. /

of familiar geometric figures, viewed. as sets of points and abstracted

from appropriate models within the phyaical world. krelated Concern -.
4

is with measurement, in which number is applied to properties stich as

length and area of geometric figures.
.

The Teac rs' Commentary for Book K stresses informal work with

Ere- number con epts at the kindergarten level. These are concepts

pertaining to se s, and are explored through work with sets of physical.

objects.. The ideas of number and geometry also are introduced at the4
. -

kindergarten level, as reflected in the scope and organiiation chart.

Not all topics in the student texts, Books 1-3 arg included in.this'enart.

. However those that are listed are tied to the topics in this inservice teat.
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1

SCOPE AND ORGANIZATION OF MATHEMATICAL CONTENT

Fot expediency, a notation such as 2.3 has been used in this chart

ob refer to the chapter, and section numbers in Books 1 -3. The notation,

2.3, means 'Chapter II, Sedtion 3. in the particular text.

. ,

Topic Ht 1 2

Sets

, Members of a set 1 1.1 1.1
.

.

.The empty set 1 1.2 1.1

Number of members 1.5, 1.7 1.1

Pairing and equivalence , 3 1.3

4 Cqmparison of sets 1,4 1.2 2.2 ---

Ordering- of sets 7 2.1 1.2 2.2

Joining sets 5 4.1,4.2,
4.3

1.3
':,4'

.-.,,

Subsets

Removing subsets and the

remaining set 5

.

4.4,4.5,
4.6

1.4 2.1

Sets of points

Point 3.1.

.

1.1

Curve 2 5.2 3.2 .1.1

segment 10.1 3.2 1.1

ray 7.2 1.2

line ,
. 3.3 1.2

simple closed curve 2 5.3 3.4 1.3

circle_
I.

2 5.2
_

rectangle
,..

5.3 1.3

triangle 2 5,3: 3.5,7.1 1.3,1.5

quadrilateral 5.3
,

1.3

square 2 5.3 .
1.3

si pentagon .

hexagon
,

interior, ex1terior, on 2 3.5 le4

angle
.

7.3,7.4, '1.2,1.5

7.5

congruence 5.5 7.1-7.5



Topic K .3

Region 2, 8 5.4 7.1 1.4

Solid ' 5.1

COmpartson of sizes 3
4

Linear measurement ' 10.2 . - . 6.1,6:2

6.3length to nearest unit 10.3

A real measurement , .
'6.5,6.7

The number line

Coordinates

'

'

.

2.1,2.2,
2.3

1.8,2:2, 8.1,3.2

R4ce value

Sets-of ten
s::;---,,

.l 6.1 2.4 .

The written numerals

throtgh 99 4, 6.16.5

:Operation on whole numbers,

Addition

.

.

by joining 4.3

using the number line 7.3 2.1

Subtraction

by removing subsets 4.5
.

using the ntmber line 7.3

by missing addend. 7.5

Multiplication

arrays 8.1. 8.1 4.1'

relation to
multiplication - < 1.2 8.2 4.2

. by repeated addition 8.4 4.2

using number line 3.5

,factors prime . 9.1 4.4

Division

arrays 94
relation to
multiplication 9.1

I

by repeated subtraction 9.3

finding factors 9.1

Rational numbers

Partitioning,paris of regions 9.1-9.6

94,9.4

t 8.1

Rationals on number line 9.5

Equivalent subsets 8.2-8.4

Order of rational numbers 8.5
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AN

Topic

Operations on rational numbers

. Addition .

Multiplicatiop . 9.6

9.5 .
.

Techniques of computations

Addition facts '1/4 2.3 ', 2.3,2.5

addition algori4
4.

' 6.2-6.7 5.1-5.4

,Subtraction

subtraction facts

,

,

.

6.2,6.6 ,

2.3,2.6,
5.1

Multiplication facts 8.4 4.3,

multiplication algorithm 7.1

Finding quo en s 9.1-9.3 7.3-7.5,
8.1-8.4

Coordinates in a plane
--,

3.3

The program of o°k 1 reviews and extends pre-number .concepts

associated with se1s, and also reviews and extends the work with numbers

and geometry. Operations and numeration are introduced, along with ,

measurement. The extent of this work is reflected in the scope and

organization chart above.

It is imperative that kindergarten and first-grade teachers view

their instructional work in relation to the work of subsequent grades.

-.All of the baqic ideas of the program appear within Book 1 and are

extended:in Bo k 2 and Book 3.

TVs inse e book develops the mathematics underlying the program

of Grades K -3. By using the chart abOlie, the teacher will be able to

see how these ideas are progressively developed from kindergarten through

Grade 3.

The nature and scope of mathematical content embraced by MATHEMATICS

-FOR.THE ELEMENTARY SCHOOL, K-3 interest and challenge children within

the primary gtades. They also interest and Challenge the teachers of

these children. Through this program mathematin truly can "come alive"

for both children and teachers.



6 APPEND

. . 1-

GUAGE ANDIIATHEMATICAL INSTRUCTION

A

The,introduct chapter, Chapter 0, included a consideration of

language charecte "stics. of cultUrally disadvantaged children and

-gecieral icatione-ofthesecharacteriatics for teaching theWc ildren.

in this a pendix we shall deal more explicit with language'And mathe

Malice]. instruction.
-

'14athematics is a language.. It provides'a

.cating such ideas as number and space. It has
I

and symbolism which, if under toad, facilitate

whtch, if not understood, inhibit its use as a

A major objective of mat emati

is growth in children's abili y to

effectiVely. This includes growth

concepts and in knowledge of terms,

with these concepts.

precise means of cnmmuni-

special terms, expressions,

its, use as a language and

language:

cs instruction in the elementary grades

use the language of mathematics

both in understanding mathematical

expressions, and symbols associated

Growth inrthe ability to use'the language of mathematics effectively

and in the ability to use "general" langUage effectively are closely related.

The development of these should gq hand in hand, each reinforcing the other.

In this sense; everything you d6 to improve the.general language ability of

children can reinforce the development. of their mathematical language ability;

conversely, everything you do to improve'the mathematical langUage ability

of children can reinforce the development of their general language ability.

Here, we shall discuss the importance of aural,roral experiences and the

learning of concepts, tems, and symboll. We shall consider the preciseness

of mathematical, language an.,the use of correct or preferred terminology in

teaching young children. Mull

of distinctibns between terms

classroom situations.

AURAL-ORAL EXPERIENCES

tiple meanings of terms: as well as the importance

will be illustrated by examples from

In keeping with the development of young children's general language

abilities, aural-oral experiences precede and receive greater emphasis

than do reading-writing experiences in 'the early stages of the development

of mathematical abilities. These listenirig-speaking experiences need

extensive attention.
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It is.important to note here sePeral kinds of difficulties which'

children may have in aural-oral leaf

1. Some terms are completely new to children and if polysyllabic,

may not be heard or spoken correctly at the out*et. .A good illuSOkion

of this is the term equivalent.

2. Some expressions are relatively lengthy ones, and children

may attend to only parts) of the expression rather than to th9twhole

expression. For instance, with the expression as many as, or as many
c

members as, children often focus attention on just the "many" or "many

meMber They di) not even sense the word 's.s",in the expressions.

3.. Some words sound so much alike thatchildreffmay fail to sense au.

distinction between them. Examples of this are the words' six and sixth,,

or ray and array. The latter may also be confused with a ray:

Difficulties such as these make lt imperative thatve give most

caref 1 attention to speaking and to libtening experiences.

tting Language patterns

Wlwish to emphasize the "power of example"'in developing acceptable

matheMatical language patterns of yoUng children- -i.e., the power

of your example.

rt

If terms are to be Used correctly by the children, the terms

first must be used correctly by the teacher. Consider the following..

Set A Set B

g

In this instance we would avoid saying, "Set A is larger than set B."

Rather, we would say "Set A has more members than set B." We would avoid

asking, "Which set is larger?" Rather, ie would Ethic, "Which set has

more members?"
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A child might say, "Set A is larger." Without makingan issue

of this, we can accept what he'has said but respond by giving 6Preferred

language pattern: :"Yesj Tommy, set A'has more members."

As we rk to establish'preterred language patterns, it is important

that we ourselves enunciate as clearly'and as distinctly as possible. Tilts

is important at all times, but it is,particularly crucial when distinguishing

between words such as fifteen 'and fifty, nineteen and eninety.

Failure to enunciate clearly and distinctly can lead to such' xpressions

as "quiirun" for "equivalent."

Use of Primitive Language

Primitive language often must precede the use of the technical

language of mathematics. For instance:

A rectangle is a quadrilateral whose sides 'determine four right.angles

(i.e., each pair of adjacent sides determines a right angle). We obviously

cannot expect young Children to use such terminology from the outset of

their work with rectangles!

Consequently, with young children we refer simply to the "corners"

of a rectangle rather than to the angles associated with a rectangle.

,Although children certainly could b.e taught to use the word "angle" from

the outset,_it would be a meaningless or misunderstood term at that time.

Concepts of angle, right angle, and angle associated with a rectangletar*

much too sophidticated to be csed with understanding when young children .

first work withrectangles. Consequently, at first we have no.reasvnable

alternative but to use prtglitive terms such as "corner."

Premature use of technical mathematical language, before suelvterme

and expressions .can be understood\by children, should be avoioteid.

CONCEPTS, TERMS, AND SYMBOLS

We must distinguish carefully between a,child's understanding of a

mathematical concept and his ability to use mathematical terms or symbols

associated with that concept.

Virst consider the idea that the order in which two whole numbers are

added does not effect their sum, e.g. 3 + 5 = 8 and.'5 + 3 = 8; or

3 + 5 = 5 + 3. We refer to this as the commutative property of addition

within the set of whole numbers. Children may show in various ways an

understanding of this idea. For instance, with the two sets of. dots
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below ey may associate either 3.+ 5 = 8 or' 5 + 3 =

How.ever,,they may be wholly unaware that they are dealing with a particular

'instance,of the commutative property of addition. An understanding of the

ctncapt may exist.without knowledge of its technical name. Also;

knowledge of the expression,canmutatiVe property of addition, in no way

indicates or guarantees that children understand the concept,

Now consider theidea of greater than as it applies to whole numbers.

Chiidren may know very well that. is greater than 4. They may be

able to demonstrate this fact by,showing that a set o'f 7 things has

more.. members than a set of 4 things. These same children, however,

t pay not be able to write 7 > 4, inor understand what 7 > 4 means when

they see it written. An understanding of the. concept- may exist Without

knowlddge of symbolism associated with that concept.

Our first concern is with the development of mathematical concepts

and understandings. Technical teens and symbols are introduced and used

only when it becbmes advantageous to do so. Frequently this comes much

later than the introduction of the concept itself.

Preciseness of Language

Qne characteris4c of mathemaical 1;nguage is ittreciseness.
.

Consider our useof,the expression, is equal to (or, equals).

When we state that "set A is equal to 'set B" (A ='B), ,we mean

simply and precisely that "A" and "B" are names for the dame set.

When we state that "3 + 4 = 7" we mean that "3 + 4" and "7"

are names for the same number; when .we state' that "6 - 1 = .5 11 we

mean that "6 - 1" and "5" are names for the same number. Similarly,

when we write "AC . CA" we mean that "AC" and "CA" are names for
,

for the same line segment.

In each of these instances, and throughout out. work, the expression

is,equalto is used to convey precisely the same meaning. We have.asserted

that one thing - -a set, a'number, etc., -has been named 4,two ways. It

is this precise meaning that we convey by the expression,(s equal to

(or; equals).
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Using the,Correct or Preferred Term

The precisne6s of mathematical language makes it possible for us to

eliminate ambiguity by using correct or lreferted terms and expredsions.

Consider the statementi,'!I am bigger than you are." Does this mean .

that I am taller than you are? Does this mean that'I am heavier thin

you are? The statement clearly is ambiguous in its present form. Any one

of these statements would eliminate this ambiguity:

"I am taller than -you are."

"I
4
am heavier than you are."

.4
"I am taller and. heavier than you are."

g

IT? a subsequent section on 'Some Important DistinctiOns," we shall

aee further illustratiOns 'of the fact that Using,a preferred term or

expression:eliminates ambiguity. Children need to be helPed to choobe

those words that are unambiguoUs. One of the best ways of providing this

help is by the example we set.

Multiple Meaning's of Terms

Many words in our language have more than one eaning:k We rely upon

the context in which such a word is used.to sug the appropriate

meaning in a particular situation.

Some mathematical words or expressions also have more than one meaning

associated with them. An excellent example of this is seen in connection-

with counting the members of a set.

For instance; the word "three" may convey'either or both off' these ideas:.

it Is a labelor name for one particular block,lock C; it also names the

number, property of the set whose members are blocks A, B and Q. There,

is ia place'for each of, these interpitetations.in the development of

number concepts.



ConsicAr also a number line representation such as.t

X

11.

Here. we may interpret "3" Ineither,or'botb%of,,two ways: ag a designation

or label-for:point Y.,,k Or, as indieating'tne measure of line segtent XY

(the/segment having X and _Y as its endpots). Again, there is a plaCe . .

,
. for each of these interpretaetionsin the developMent Itthematical concepts.

4
,..

...i. . Air
Some'Important:Distinct 4

It is notupcommon il/k6theMat work to 4cstinguish between terms.

. .

orexpressions that are often;uaed as synkts in "everyday langiiage."' '

.

-
-1.

Consider these illustrations.4 .,,,, '..1i :.° -

-,..... c
..

1. In our work we distinguishbetween the expressions is equal to
---. -

And i.ecitivalent-to: ,We previously indicated that if the statement is

,made,'"Set.A is equal. to thiAimplies that "A" and'. "B" are:

names. for the same set. .Ayflifferent meaning is implied, Nwever, by the
!

statlment, "Set A is equivalent to 'set B." This latter statement implies

that a one-to-One correspondence exists between the members of set.tr
A

,andythe mellibers of set B, each member of t there is a member of
. ,

B that can be put in correspoldence with it,and foreaich metbei" of B

there is.a membir of A that,'can be put in correspondence with' it., As we

Use-these expresIbions,"is equal'IoCand is equivalent to, they are not

synonymous, -The factthat two sets which'are equal are''also equivAlent,

while o sets that are equivalent may or May not be equal will be

'discussed in Unit B.

2. In our work we'distinguish between a number and a numeral.

For instance, the number *e refer to as "five" is a' property- common to 'a

.
particular class of sets (e.g. the property common to all sets that are

equivalent to the set of fingers, including the thumb; 41 your right'hand).

The numeral., '75" iS'a name for that number. The Characpristics of
77--

numbers angi, numerals are quite different.'

it,
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3. In our work we distinguish between a triangle and a triangular

region. For instance, the diagram at the left, below, illustrates. a

triangle. (ABC). It is a union of the line segments AB, BC, and -CAil

The diagram at the right, above, illustrates a.triangular region. It'is
the union of'.eriangle DEF an'd its interior (represented y the shaded

portion of the diagram). Clearly, triangle DEF is not the same thing

as the region bounded by triangle DEF.

Distinctions such as.these necessitate precisentss in the use of mathe-

matical language and size important in clarifying certain concepts. and

ideas. It. is not uncommon that such distinctions involve terms or

expressions :used synonYMOusly in everyday language,'or that they reflect

distinctions net made'ineveryday language.

Different Language tterns,forDifierent Things

Some ideas which were closely associated with each other may require

the use,of different language pattern. Consider several ideas concerning

sets bf physical objects and ideas concerning numbers associated With

such sets:.

Set (a dog, a monkey, apencil, a bottle)

Set B = (a book, an orange, a trombone).

When Speaking of the sets themselves, we say that set A has more members

than set B, or that set B has fewer members than set A. When speaking

of the nutters associated with each of these sets, however', we say that

4 .is greater than 3, or that 3 islless than 4., (4 > 3- or 3 >

If we join.sets A and B to show their union, it'is appropriate

to'state that things and, 3 things are 7 things." We may associate

with this statement the following statement about numbers:
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4 plug 3 equals 7. (4 + 3 7).

Here we see a difference between language patterns used with sets
-:--

of physical objects and languagi patterns used with numbers.

Using Familiar Meanings

Frequently we can use familiar meanings of word to clarify their

interpretation in a mathematical context. One example of this is the

Word member, as it occurs in the expression, "member of a set."

A child often is familiar with the.fact that he is a member of
1

his family, or that he is a member of his 96=1 class. Such instances

of "member" are quite appropriate to use in develdping an understanding

Of a member of a seta On other occasions, however, a familiar meaning,

bf' a fiord may not be helpful in developing an understanding oat

word ap Used in fa' mathematical context. We shall see'an illustration

of this in the case of the word match.

Special Meanings of Familiar Terms

In their mathematical work children. will encounter some familiar

words' that must be given a special meaning--a meaning. that differs

to*Some degree from'one that applies in other contexts. Consider, for

instance, the interpretation we attachto the words pair and match.

Frequently children may be asked to pair the members of two sets

(tn aa. Tar as it is possible to do so) to determine whether, or not the

two sets match (i.e. whether or not one set has exactly as many members

as the other set). For example:

Set A Set B Set C

r

-0
V
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In the illustration on the'previbus page we can pair each member of

set A with a member of set B, we can pair each member of set B with

a member of set A. Thus, sets A and B are matching sets (or equivalent

sets). There are as many members of one set'as there are members of the

other. But sets B and C do not match (ite., they are not equivalent).

Although we can pair each member of set C with a member of set B, we

cannot pair each member of set B with a member Q.f....4.1t C (and use

each meMbei of set ,C only once).

Here we see that a special meaning is given to the words match and

matching as applied to sets. This meaning may differ from the way in

which children interpret these words in other contexts.' Similarly, pair

and EL:LEE, as applied to members of sets, convey particular meanings to us.

Language that Contradicts the Vernacular 4
We have seen that there are occasions when the mathematical interpreta-

tion of a familiar term may differ froth one or another of its more general

meanings. There are other occasions when the mathematical interpretatiOn

of a familiar term may even contradict its common meaning.

Consider these three representations.

Each of these represents a curve. The curve.at the left has A and B

as its endpoints. The curve in the middle has C and D as its endpoints.
eA.

The iepretentation at the right, with, E and F endpoints, qualifies

mathematically as a curve despite the fact that it is "straight." Our

use of the term curve does not imply the idea of "not straight."

Here we have a goodWaustration of a term whose xiathematical

interpretation actually . qpntradicts its common meaning under'pertain

conditions. .
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Non-Mathematical Terms

In teaching mathematical ideas to young children, we must give

careful attention to their understanding of words and expressi ns

that are not mathematical but, which are relevant to their le ruing

of mathematics. Consider, for instance, several ideas associ ted

with a number line.

0 1 2 3,, 4 5 6

610.

19

In relation to this number line, the idea of "greater than" is associated

with Ito the'right of," and the idea of "less than" is associated with

"to the left of." Specifically, 8 is greater than 5, and tha point

labeled 8 is to the right of the point labeled 5. Also, 3 is less

than 7, and the point labeled .3: is to the left of the point labeled

7. Thus, it is crucial that children-be able to distinguish between

4/the non-mat eMatical terms right and left in order to interpret the

mathematical relations of greater than and less than in using the

"number. line." Young children often have difficulty with the right-left

distinction, but it must be mastered if certain mathematical ideas are

to be undeffbtood. Therefore, we must give attention to .those non-mathe-

matical terms that are essential to the development of mathematical done

Unnecessary Terms

Contemporary approaches to the teaching and learning of mathematic

make unnecessary certain terms that in the past were a familiar part of

elementary school arithmetic vocabulary. Good illustrations of this ar

the terms minuend, subtrahend, multiplier, and multiplicand.

Consider these number sentences: 3 + 5 =8 and 8 - 5 = 3. In

each instance 3 and 5 are addends, and 8 is their.sum.' It is not
1.

necessary to use one set of terms with the addition example and another

set of terms with the subti.action example.

Also consider the number sentence, 3 x 5 = 15. In this instance

3 -and' 5 are factors whose product is 15. If we wish'to distinguis

between the two factors, we may refer to 3 as the "first factor". and

to 5 as the "second factor." There is no need 'for the terms multiplier

and multiplicand.
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Contemporary approaches to the. teaching arilearning of mathematics

have introduced some new terms; on the other hand, contemporary approaches

to the teaching and learningof mathematics have made unnecessary' certain

terms that were used in the past, but frequently not understood.;

CONCLUDING STATEMENT

Mathematics is a language. The teaching and learning mathematics

is therefore, the teaching and learning of a language.

The language of mathematics has its unique concepts, terminology,

and symbolism. In this appendix we have attemped to highlight some of

the elements that appear to be particularly crucial for culturally

disadvantaged children as they learn to use this language effectively.

If we were to single out any one thing that is,most important in

this connection, it would be the power of the teacher's own example.

Children's learning of mathematics as a language will be advanced in '

direct relation to the strength of the lariguage model that yoir;\as their

teacher, set.for them. It is our hope that the inservice experiences

in this course will increase the strength of that model.
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APPENDIX .0

NUMBER CONCEPTS OF DISADVANTAGED CHILDREN

DESCRIPTION OF THE STUDY

ObServation classes at the kindergarten nd first grade levels were

established' for the 1964765 school year in Bo

Miami,'-Osy.and, and Washington, D. C. in areas

and cult14ragy disadvantaged..

ton, Chicago, Detroit,

described as economically

Thi&tAndy Was based on the idea .that th re is a diff4ntial in

experiences prior to school entrance between ddle-class anal lower-plass

children. Studies from a number of sources s gest that children from more

.advantaged homes tend to havehad experiences, greater variety in an ..

organized .family-Settini. By the time the c ildren reach school -age,

they appear to be better able to work in a gr situation, to utilize

verbal skills, and to deal with abstract.con t .

. One aim of the study was to gather info tion'on the stage of

development of certain concepts relevant to t e learning of mathematics

in these children at the beginning of the school year and to study,their

growth during the year. Another ai s to discover what mathematical

concepts caused the children diffic y $0 that a more effective program

could be developed for them and to pro ide information to help develop

materials for teachers emphasizing techniques for providing disadvantaged

.children with experiences necessary to. make the program *more effective.

The procedures adopted'forgathering the information were varied and

included individual and small group testing of the_pupils, weekly reporting

by the teachers, observationb of the clasqrooms, and four conferences of

the participating teachers.

TESTING,

. Individual tests were administered to the pupils in October, January,

and May. A pencil and paper group test was given in June to each class.

The class was split into several^small groups to make it easier to administer

the group test.
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The table below shows what assessments were made and at which testing

session for both the kindergarten_ and first grade pupils.

Schedule of Assessments: Individual Tests by Grade

,

Assessments Made

I '

Initial I Mid-Year Final

K 1st K 1st .. .K 1st

Object Recognition

Photograph Recognition

DrawingrRecognition
i /

Vocabulary

Visual Memory-Objects

VisUal Memory-Pictures

Color Inventory-Matching

Color Inventory-Naming

Color Inventory-Identifyieg

Gepmetric Shapes-Matching

Geometric Shapes-Naming,
.

Geometric Shapes-Identifying

Pairing ..-

Equivalent Sets

Counting Buttons

Counting.Sets .

-

Rote Cardinal Counting .

Rote Cardinal Counting by Tens

Identifying Number Symbols

\Naming Number Symbols

Marking Number. Symbols

Place Value-Naming

Place Value-Forming

Ordinal Number

Ordering

Classifying

Response to Verbal. Directions

Attention to Tasks

\

X

X

X

X

X

X

X

X

-

X

P

X

X

X

X

X

X

X

X

X

X

. I

X.

X

X

X

X

X

X

X

X

1

X

X

X

X

X

X

X

X

X

X

X

X

X

.

.

X

X

X

X

. X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X'

, X

X.

In the space available it is not possible to include all the results from

each session. An analysis of the results is contained in a separate report

of'the project. 'A selection has been made of those results that highlight

certain points in the learning of mathematical concepts of these disadvantaged
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children. The specific areas included are object recognition, color,

geometric shapes, rational counting and the recognition and 1)riting of

number symbols. These are typiCal of the level and range of abilities

found .in all the classes tested and Point ott.clearly some of the problems

that the teachers of disadvantaged children encounter.

OBJECT.RECOGNITION
0

In this section, the pupil's ability to recognize objects and to

recognize pictorial representations of such objects that are used in

the curriculum materials, was measured. The child, was.. shown an object,

wdrawing of an object, and a phdtograph of an object and asked, "What

is this?" The number of items and the approximate mean score for each

of these assessments were as follows:

Assessment Number of Items Approximate Mean

Object'recognition 23 20

Photograph, recognition 10 9

Drawing recognition 7 -6

Little. difference was found between the classes in the disadvantaged areas

and classes in middle-class areas.

- Objects causing difficulty were different fruit, coins, and string.

From 10-20% of the pupilsNwere.unable to name orange; banana. 10% ;

penny.- 10% nickel 20-30%. ; dime 20-25% ; and string 20-40%.;

Althdugh many could not name string, they could indicate what function

it served. 4

The results indicate that most pupils are able to name and identify

the objects suggested in the text materials for use in the classroom.

Do not infer from these results,'-however, that thevel-bal skills

and experiences of the two groups are the same. It has already been

pointed out that children from disadvantaged groups will lack many of

the experiences which facilitate school learning.

COLOR AND GEOMETRY
).

Children from all backgrounds are able to match the basic colors, but

their ability ,to name these colors and to select a color when given its

name are very variable at the beginning of kindergarten. Children from

middle-class areas are fairly proficient_on these two tasks when entering

first grade but children from disadvantaged areas are not. Typical results

for classes in the same city were:
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KINDERGARTEN FIRST GRADE.

Number of Items E C_ E C

Matching 6 5.4 5.7 5.6 . 6.0

Naming 7 4.9 5.:8 6.1 6.9

Identifying 6 4.1 4.9 5.3 6.0

[E denotes experimental classes (disadvantaged area) and

C denotes comparison classes (middle class):]

The results from this and othe/nventories point out the need for

'teachers to be aware of the three-fold nature of many of the tasks that

children must learn at these grade'levels. ; The child has to be able to

match ttwo objects, e.g., the name "three" to.the numeral "3" and, when

given a number name, to be able to stlect the correct number of objects.

The assessments showed generally that matching was-the easiest, then

identifyingyand naming the most difficult.. However, by continually

providing the children with experiences in the three phases,' considerable .

improvement can be seen. The results in gebmetry,for thesame first

grade classes from the mid-year to final inventories show this.

GEOMETRIC SHAPES - CORRECT RESPONSES

.Matching

0

First. Grade

Final

E

Mid-Year

C E C

Circle' 96% 100%

Square: '96% 96%

Triangle 96% 100%

Rectangle 96%. 100%

Mean 3.8

Naming

Square. 39Afc 9% 81 ck' .93%

Triangle. 57% 93% 96% 79%

Rectangle ' 0% 85% 50% 64%

Circle 50% 81% 73% 89%

Mean 2.2 2.7 3.3 '3.1

326

323



Mid-Year Final'
E C E C

.Identifying

Triangle 89%. 93% 100% 89%

,Rectangle 14% 85% 77% 89%

Circle 96% 96% .52% 100%

Square 64% 93% 85% 96%

.,1-11ean 3.1 3.2 3.8
3'8

-

This table shows the gains that pupils in the experimental first

grade classes were able to make in naming and identifying the geometric

shapes._ In both of these tasks, the meansfor the experimental group

were lower than the means for the comparison classes in the midyear

'assessment.. Foi. the final inventohes, the mean, for the.eXpen.mental

:classes in these tasks were at least as great as those for the comparison

group. These gains.may be seen also in the table below which shows the

frequency diStribution of correct responses for the ''ss.a.re classes in naming

and identifying the geometric shape. It should be noted that although

the Rupils improved, there remained more variability within the

experimental class.

t

NAMING AND IDENTIFYING GEOMETRIC SHAPES

Number of Tasks Naming Identifying
Successfully Completed Mid-Year Final Mid-Year Final

E C E C E. .0 E. C_ . ..... _
0 .. 6 . 0( b 0% i 2 0 0

1 6 0 3 0 . 1 ... 0 0 0

2' 13 2 3 8 .,8 2 4 p

3 3 9 11 5 15 1:, 4: 2.

4 0 16! 9 15 3 23 18 24

,;

.

Several different tasks were used to measure the il's ability to.',.

COUNTING MEMBERS OF A GIVEN SET

count given sets of objects and to select ,,given numbers of objects Other
y.

number tasks such as rote counting were also included in the assessments:.

There is4ittle evidence to suggest hOweverthat a child who can count by
,

rote will' ecessarily be able to count the members of.a set,

One task'pupils were asked. to do Was to count out 3 buttons, then

5 buttons, 4 buttons, 6 buttons, 8 buttons, 7 buttons,.and- 9

buttons. Initially, the average kindergarten pupil could complete
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successfully only.two'or three. of these tasks. At the end of the school

year, this,pupil could manage about six tasks correctly. Similar

improvement was found withfirst.grade pupils from the initial inventory

(five to six of these tasks-Correct) to mid -year when the average'was

almost seven correct. Thel6reatest difference' found between the .experi-

mental and control,classes,was the greater variability among students

in. the experimental claSses.

Number of tasks

COUNTING BUTTONS

Kindergarten First Grade

Successfully completed

E

Initial

-,C

Final

E C_

Initial

E C

Mid.Year

E C

0 2 .3 0 0 2 0 2 0

1 12 3 0 3 0 0 1 0

2 4 . 1 0 0 2 0 0 1

5 2 0 1 0 0 0

2 6 1 0 2 2 0 '0

3 2 1 0' 0' 5 '1

6 .1 1 2 3 ,

,
6

.,
o 4 1

7 6 20 17 16 '21 20 24

The variabilNty in level'of perfo ance between pupils from dis-

advantaged areas was not Confined to number tasks but was also evident

in othertasks that they were:required to do. For example, thee

below shows the frequency distribution of correct responses On color
-

naming for ti., 'classes of first gradeilclkldren at the end of the year;
. .

The number of taskaperformed successfully by the first gradert in the

comparison group was concentrated near 7, whereas there was a greater

spread in the experimental group.; This is reflected in the standard

deviation of 0.7 for the experimental group and of 0,1 for the

comparison group:

Number Correct

0

3

5
6

NAMING COLORS'

First Grade

'Ekperimental

0

3

3_O*:

..!;11

Comparison

,,0

0

0

0



RECOGNITION AND WRITING NUMBER SYMBOLS

First grade teachers often assume'that most at their pupils can

recognize, name, and also write many of the numerals whenthey start

first grade. However, children in disadvantaged areas will generally

not be.:able to db any of these tasks well, as the following two tables show.

RECOGNITION AND WRITING NUMBER SYMBOLS PERCENT.CORRECT

Numeral Recognition Write

E C_ _

79 r 100

83 100 48 79

76 100 24 .00. :'

76 100 '211:';1001
6.

65 100 '89

69 :. aoo P 24. 68

69 100 45- 89

59' 100 14 79

0

4

5

6

7

8

9

In identifying these number symbols, the mean percent for the experimental

group was ?5 and for the comparison group, 100. In writing the number

symbols, the mean Perient'Wes 29 for the experimental as against :86 for

the comparison. Here 'again; there was greater variability in the experi-

mental group as can be notedin the table for the frequency dist4bOtion

In recognition. (idelitifying) of number symbols, the standard deviations

are '2,9 .fOr. the experimental group and 0 for the comparison group.

InwEiting number symbols, the standard dairiations are 02.0 for the

experimental and 1.3 for the comparison.

FREQUENqyDTSTRIBUTION
,

1Wognitioxa WriteNumber Correct

2

3 e'

4

5

6

7
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Although the recognition and writing Of-numeraiSsere*T fOndarnentel

to the understanding of methematicai,eonCepts, thesaara

for communicating mathematical ideacJand concepts, and...the ohild.whw.

lacks them will be handicapped for futUrelearning:

the pupils Will need additional practice in writing nUMerele

but this pActice.should not be given-until they havean Uhderstendlng:Of

the elementary concepts of number. It'eannot be assumed that if:.ch,ildren

can recognize the numerals they can write them. This can be seen: in the

difference between the means mentioned above. The children wi41:ndec.as.

great deal-Of careful practice which can be given independentiy.'.0f:

'Mathematics lesion.

In theaarlYCtages an. adhesive number line, attached to; pupils'
desks is a very usefulaid,astheiraan USO:it.whenevertheY:,needit:

Even with number lineSOntheir desks theremay:be some pupils who,wiil:

-.not be able to form the-numeralicorredtly,

'IF" and "9" as "de. :and the pupils will need additional assistance.,

GENERAL DISCUSSION.
1441

--'0.nelfact that clearly,amerges from the asseCementsmadt this year

,wthet;:it was difficUlt.topredict from,the initial 'test what

deVelOpment and progress a pupil will make during the year. Some pupils

.c../11Ose scores on theinitial assessment were low, progressed very rapidly;

others did not. All pupilsdid make progress but etVariable_rates. This

is one of the major problems
.

that confronts the teacher of(disadVantagea

abilities.
1.

children. The range glf abilities. in these .classes lituCh wider than

found in classes,of middle-cless children, as has a ready been notth. .c.

. i 1 ' °'
A technique which the taachers found useful thl,Orear was.to,phserve

carefully three selected pupils each day:. sheSe sytematic observations
:1. :i ).:

gave the teacher valuable information about,. the str_ngt S., weeknesses ::,,

and difficulties of each pup .sind enabled her tp cha hanges in his

level of perf. rmance.

In attempting to meet
..A,

pupils for instruction as W 6t
1

the class as a unit but provid

the different performance leveE

. "

variability, some teachers grouped

tdoee in reading, Whle others kept,:.

*Drk sheets which tAkAnto aceo
..,

't the pupils. If groupings sed,'
,A

it is essential to move an indiVi al 'from group ;to group a= changes

level of performance, y ceess of any method depends upon

k

,.-
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the pupils beteg ableto USe blocks or other"manipulative.meterial tAr

do their work Sheets .7414:iethe teScher-wOrks yitha.mnallgioup or.F

an individual. .-

As yet:;therelareCnoadecillate.:matelals'fior work sheets'that will keep

aIl of the pupils fully and jorofitebly:engagedet:ell times..' This is a

problem and challenge that each:.teachetnerstfaee.. ;However, a great deal

can be ddne and e....great-deal more canbe-,learned if each teacher tries.

'a variety of approaches and reports her iiticeeSses, ancrtailures.

J. \-- .



ANSWERS TO EXERCISES

CHAPTER 1

a. (Wednesday):

b. (pitcher, catcher, first base, second base, shortstop, third base, C
left field, center field, right field)

c. IMArch, April, May, June, July) 4
d. ( ) or 1J

e. Answers will vary. Example (5, 6, 7n

f. (Tokyo, London)

g. (red, orange, yellow, green, blue, indigo, violet)

A

2. a. (49th and 50th states of U. S. A.)

b. (things little boyd are made of)

They are all members of the cat family.

5:

a. Not equal. 17 and 71 are names for different numbers.

Equal. The sets, are the same. Order makes no difference,

even though it would be mere natural to write (bi u, n, d, 1, e).

Equal. The same elements are listed; order is itrelevan.0c.
d. Not equal. (zero) has a single member, as opposed toy',( which

has none. (peacocks native to the NorthPole) As the y set.

e. Not equal*. The members are-different:

'f. Not equal. These two sets each have single Members but they are
..,

--not the same member. 4Are" and "era" are not names for the

same thing, ,

g. Equal. Remember:. Elements are not .listed more than once in a set.

a. False. 3 is e iember of (I, 2, 3). The braces must be used

to indicate set. A correct statement would be: "(3) is a

subset of (1, 2, 3)"
m.

b. True. (ego) is a subset because all of its members are.gliStt'

..M6tibers of (ego, Je, I). .
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A

True. Any set equals itself, and every set is a subset of itself.

.

. False. There are birds that are not hens, a./roOster to name one.

It would be correct to say (all hens in.the:world).. is a subset

of (alibirds in the world).

6. a. (rose, tulip, .dandelion) or any subset of this.

b. ,(bes,:beetle) or any of its subsets.

c. CO. Some may consider (beetle) but the spelling is different:.
,

CHAPTER 21,':

1. a. A has fewer members than B

b. C ( Cc5W,'H tree blimp).-

D = le, t Milk)

Answers may vary.

2. Z, X, Y in increasing circler.

Y, X, Z fn decreasing order.

3. Mary is taller than Andrea.

4. Q has more members than P.

5, a. and c. only.

To show the 1-1 correspondence; natural pairing would

associate each person and his brain. The question of what is

meta by "functioning" brains may enter into Consideration..

Depending on the answer to this, itmay be that there is no

1-1 correspondence. n.

b. This is not .necessarily one -to -one. Some people have social

security numbers and don't file income tax returns. There

are many joint income tax returns filed. Corporations file

returns but have no social security number. It is conceivable

that these two sets might be equivalent, although the natural

pairing would not show it.

c. E is the empty set and' so F.. Therefore, E and F are equal.

Every set matches itself, -
-r;

d. G = tasting.ktmelling, touching).

H = (5). 1.,;heS,CSe.t'S are obviously not In 1-1 correspondence.
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6. A is equivalent to B.
7

. The members of A and 'B are in 111 correspondence. The members

of A can be paired vith those of B with none left over.

CHAPTER 3

4 b. 1 c. 1

'di: 2; the set is (d, e).

e. 1; (the vowels in :'bureau ") =(u, e, a). However, this set

is (the number of vowels in "bureau") which is the single,

member set (3) whose number property is 1.

f. 0; there are no counting numbers less than one, so this is

the empty set.

2. ,N(A) = 4 N(B) = 3 N(C) = o N(D) = 3

The relationships are: 3= 3 0= 0 4= 4

4 >3 3 <4:

4 o o:< 4

3 > 0 0 < 3

Some statements can be combined to'form two others:

0 < 3 < 4 and' > 3 > 0.

3. Take a set of wide and narrow objects of the same kind. Put

the wide ones in a setby themselves and reject the narrow ones.

Repeat until the idea gets across, refining distinctioris to

indicate the relativity of "wide" and "narrow" to some standard.

This is an instance of specifying sets according to the property

you wish to convey.

4. Answers miIr vary. The elements maybe ordered alphabetically; they

maybe ordered according to the evolutionary development of man:

(amoeba, fish, lizard, ape, man).

5. (1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11). The number is 11. ;t is

now written as a standard subset of the counting numbers whose

number is determined by .the last member of the set.

6. a. Finite; 10

b. Infinite

c. Infinite

d. Finite; 15. (Recall that "natural numbers" is another name

for "counting numbers".)
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7. a. Ordinal; line chapter; not the quantity of three chapters,

is referred to, namely, the third chapter.

b. Cardinal; 50 states are mentioned, not the one which
r:

is4fiftieth.

c. Ordinal; 1066 suggests one year, not one thousand sixty-six

years. It happens to be the one-thousand sixty-sixth year in

the set of years A..D.

CHAPTER h.

1. a. A U,B = (1, 2, 3, 4, 5)

A n B = (1, 3, 5)

b. If B is a subset of A, then A U B = A

c. If B is a subset of A, then A fl B = B

2. The empty set is a subset of any set so if A is a set,

A U ( ) = A and A n ( ) = ( )

3. The cake-mixing operation is not commutative.

4. a. Associative.'

b. Not associative; although the result may be that all items

would be consumed, it is likely that mixing mustard with

coffee may result in abandoning the meal.

C. Associative.

d. Not associative; putting fire with water first, the final

mixture will not ignite.

5. The intersection consists of common elements of both sets; the

union contains all members of both sets.

CHAPTER) 5

1. Five vertices.

AB is the segment with A and B as endpoints. is the ray

.With A as endpoint and B a point in the ray, n is the line

containing the points A and B.



3. Infinitely many different.lines,may contain a certain point; only

one line contains a certain pair, of points.
ti

4. a, b, and c are all true.

5. Any segment contains the endpoints. If PQ is divided at say, R,

the division point either belongs to the segment containing' P or

to the segment containing Q. If R belongs to both, then

PR U RQ = PQ but PR' and RQ are not disjoint. If R belongs

to. PR, then the set'of points in RQ without R is not a segmept.

Crucial to the argument is that for pointS line, there is no

very next point; so if belongs to PR, there is no next point

,S to specify SQ. so that PR U SQ = PQ.

8.

a. In this closed curve, ea' point is between the other two; there

is no one point that is'is between the others.

b. No, as noted in a. a ove.

4

a. The initial point and th inal point.'

b. A closed curve, as for example; formed by the shore line-and a

ring of blOckadfng armada.
L

c. A closed surface, as for example, determined by effectiVe range

of antiaircraft defense network.

d. A closed surface with the sea surface as one of the boundarie.S.

The,point associated with the larger nuMbqr is to the right.

9, a. Grades 1,,2, 3. Closed.curves is a section title in Book 1

(Chapter V-2), BoOk:.2.4Chapter III-4),. and Book

(Chapter IH.3):,

b. Curves as abasiC. concept for closed curves iSe.topiOn;::,

Book K (ChapterIII). Topics using the basiccOnCePtg' of .

closed curves are, for example, polygons, Book 1 (Chapter V-3);

triangles, Book 2 (Chapter III -5); Book '3 (Chapter I-3,I-5,III-)+).

;,
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CHAPTER 6

1.

2.

44

b.

c.

a.

b.

e.

>

<

8

20

38

d.

e.

d.

e.

f.

39 c

65

156

CHAPTER

1. a. T d. 60

b. 17 e. 60

c. 23 , f.:, 23

2. c- and f; d and e; because addition:of whole nuMbers is commutative

3. a. Identity Property

'b.

c.

Associative Property

Commutative Property

4. a. 7 c. 6

b. 23 d. 401

5 a.

b.

c.

d.

e.

f.

Commutative

Identity

Associative

Commutg.tive

Identity

Cammutative

CHAPTER 8

1000 addenols.

1. 1000 x 3 ,.. 3 + 3 + 3 + 3 + + 3`= 3000. This expresses 1600 x 3.

By the commutative property of multiplication, 1000 X 3 = 3 X 1000,

and 3 x 1000 = 1000 + 1000 + 1000 = 3000.

2. a. 4 x 5 .'20;

c. 2 x 4 . 8 ;

b. 3 X 2 = 6;

c. 3 x 3 = 9

33
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red

yellow

blue

yellow green blue

ed

red
*ange
:Ted

yellow
red

green
red

blue
'red

red'

yellow
ore
yeangwllow6 green

yelloW

green'

blue

,

blu e

yellow

.lue

blue

red
blue

Orange
blhe

yellow
blue

15 possible. results.

'If the car must be two-toned, there are.only 12 Choices.

flared.

straight
skirt colors

Sweater; color's

skirt

6. a. n = 32 ; p'= 12 ; q, = 20

b. yes; c. yes

. The star pattern does not give% 5 'disj nt sets with 4. members

1

01 )1'

2 X 40 .

40 different ensembles.

in each set.
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8. 20 x (28 + 11 + 11) =

=

=

=

or 20 x (28 + 11 + 11 ) =

(20 x 28) +42o x ii) + (20 x ii)
560 + 220 + 220
560 + 440

1000

20 x (39 + 11)

= 20 X (50)

= 1000

9. a.

b.

c.

(5 x 2)
(125 x
(250 x

X,(4 x 3) X 1 = 10 x 12 =
8) Xi-7 x 3) = 1000 x 21 =
4) x (14 x 2) = l000 x 28 =

120

21,000

28,000

10. Commutative property under multiplication.

11. a. 3 x (4 + 3) = (3 x 4) + (3 x 3)
b. 2 x (4 + 5) = (2 X 4) + (2 x 5)
c. 13 x (16 + 4) = (13 x 16) + (13 x 4)

r

a. -(2 x 7) 4- (3 x 7) = (2 x 3) x7

1. C = 0, p, .;)

Joining .0 to B yields BU C= A.

2. A = 0 , D , 0 , 0, 0, 0 3

3. 6

4, B = ( , , , 4tt' , 0)
l(B) =5

`!

t'.4

3.3 Z



10

0 J. 2

If 3

10 3 --04

7

I -4.43

7 82 3.4 5 6 9 10

7 + 3

6.
9

6

0 1 2 3 5 9: 0,1

0 1 2 5W0
krw 6- 3

6 -3

F7-- 9-(6 -3) ---am

7. Subtracting 7 from the sum.-

Adding 8 to the difference.

8. .Le A = ( 0 , 0 , ) and B = (a , b , c) .

Then 'AtJB = ( () , 0 , 0 , a , b ,c)'

and '(AUB) - B = LC) , , = A .

If A and B are not disjoint, the sets (AUB) - B and A are

not equal. See example.

A = (a , b , c , d , e) ; B ;(a ,d,g, j) .

ALJB = (a , b., c ,id , e., g j)

(AUB) - B = (b%,'c , e) , which is a new set.
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1. a. n= 20+ 5 ; n = 4

b. p = 28+ 4; p = 7
c . n = 6 +1 ; n 7: 6

CHAPTER 10

d. n =72 + 9 ; n = 8

. e. n= 64+ 8; n = 8

Y. No divisiop sentence can be written. Division by 0 is ;'1'

undefined. q X 0 = 0 is true for any number' q.

2. a. Rectangular array with 7 rows and 6 columns.

b. Disjoint subsets, six with seven members each.

$ ither interpretation is equally valid. There may be slight'

preference in thinking of disjoint subsets in b, since subsets

of seven members each ar specified in the packaging.

3.

. .

The number 59 is 'a prime number, so. no rectangular arrays can

be formed other than one with a single row or a single column.

Sixty members allows many rectangular formations since its factors

are 1, 2, 3, 4, 5, 6, 10 12, 15, 20, 30, 60.

4. No. 15 +5 +15. In fact, 5 + 15 has no meaning in the set

of whale numbers.,

5 a. 2 x 6 or- 3 x 4

b. 2.x 18 ; 3rX 12; 4 x 9 or 6 x 6

c. Prime

d. Prime

e . 2 X 4

f. Prime

g. 5,x 7

h. Prime

1 . 3 x 13

j. 2 X 21 ; X 14 ; or 6x7
k. 2 X '3

1. Prime

m. 2 X 41,a

n. 5 x 19

-J
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6. a. 2X 2X g X

.b. 3 x 7

C. 3 x 3 x 7

d . 2 x 3 x'3 x 5

e. 2X2X2X2X3X3
f . 2 X 2 X 3 411

:7. a.

b. 1

c. 2

d. 3

e. 1

f. 4

g. 3

h. 8

VgATTER 11

1. If A = C, then 7,A1U T6 is a pointi.i :.,AWqjfth6h the union"

is a segment.'

2. AB is the segment with A and B as endpoint

At is the ray with A. as endpoint and B a point in the ray;

tr is the line containing the points A and B.

3. LFQR; LPQS; LPQT; LRQ,S; LRQT; LSQT.

4. a, d, c

iT

5. a, c, d

1.

CHAPTER 12

I

2 hundreds + 4 tens + 6 ones or 200 + 40 + 6

1 hundred + 3 tens +' 9 ones 100 +. 30 + 9

3' hundreds + 7 tens + 15 ones .300 +.70-+ 15
3 hundreds + 8 teni-T- 5 ones = 385 300 + 80 + 5 = 85

or 246

139
15

70
300

385
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b. 7 huildredg + 7 tens + 7 ones
9 hundrts4s,'+',1 6 tens + 4'ones

16 hundred +1:3 tens + 11 ones
17 hundreas± .1v]tens + 1 ones

or 777. ,.....,.

564

11

130
160o

or 700..1.; 70: + 7.

906.'4- :66 + 4

1,6op +.130 + 11.
= 1741 1700 +: 40 + 1 = 1741

c. - 4'.huncired:s1- 8 tens + 6 ones or 400 +. 80' +.
...- .

7 hundreds + 6 tent + 6 ones 700 + 60 -i-, 6

11 hundreds + 14 tens + 12 ones 1100 .+ 140 + 12 = 1252. , -.).
12 hundreds + 5 tens + 2 ones = 1252
.,

or 486

766
12

140
1100
1252

.;.7 hundredp: 1.10 47`.' 4' oned-:°'.

9 hundreds!:.V 2 ..tena 6 ones
16 hundreds .+ 9:. tehs + 10 ones

17 hundreds + 0'.tens + 0 ones .= 1700

or 774
926

10

90
1600
1700

+ 70
900H- 20 + '6'

1'500 + 90 + /0
1700 + 0 + 0:= 1700

a. 7 hundreds + 6 tenseones = 6.hUndreds + 15 tens + 14 ()nee
1 hundred + 9 tens + 9 ones = 1' hundred + 9 tens + 9 ones

5 hundreds + 6 tens + 5 ones = 565

or 700 + 60 + 4 = 600 + 150 + 14
100 + 90 + 9 = 100 + 90 + 9

500 + 60_ + 5 = 565
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.b.- 4 hundreds + 0 tens + 2 ones =-5..hUricireds + 9 tens + 12 ones1 hundred + 3 tens +8 ones - .'1 ,hundred .+ 3 tens + 8 ones
s' eahundr,pdt. + 6 tens + 4 ones = 264

or 400 + o + 2,
100 + 30 + 8

60 +
IF

c. 7 'hundred's + 1 ten + 0 Crieb.. 6,.huneds + 10 tens + ones.:2 hundreds + 8 tens + 7 'ones := 2.1rindeds + 8 tens +. 7 ones
?. ,hundreds + 2 tens + 3 oiled .='423

or 700 + 10 + 0 =
200 + 80 + 7' =

d. 8 hundreds +
3 hundreds +

600 + 100
200 .+ 80 4... 7 ..
400 + 20 +." 423

;,-

0 tens + 0 ones -7-b7 +.9 tens + 10 ones'9 toas + 6 ones '= 3 htindiads %-t! 9 tens-+- 6 ones
hundreds +6116-tens + 4 ones, = 1.04

; or 800 + '0 + 0 =. 700 + 90+ 10
-300 .+ 90 + 6 =300 + 90 + 6

400 + ..o.+ 4 = 404

(700 + 7o ±j 20 4.6
, ( 7 0 0 :+ ' 9 0 0 : + . , ( 7 + 2 00 +

31600.' 90 `+'

+ loo
T :1760-

00 + 90
voo + 90 + - (300 6)

500) + 90 -

Oi:o6f+
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.)
f.

2

\$g. not an 10 ropriate model'

h. not, an appropriate model.

i. not an appropriate modg

J.
6

5. a. 3 1
J

2A-- ., r.
,e -1

.b
or C

7

b. legs than, since B lies tothe left of D while 1 lies to,

the right of 0 .

1 2
9,,

6. a.

b.

c.

41 5

0

5.

2 4

10

5,
157 20

5

235 25

5

0 3

12

8.

9.

10.

11 7

IF ' 12

a. <

.,11
b. -27 <

a. i

'

-27

12

12
11'

'7
'4-57

b.

'4

8

12

.1412 2

' 7 '

7 5 13 9'
g > z e Ts

17, 1
d

32 >2-

7 41 E c. = 2 d. 2

12

30943



CHAPTER

.*

1. 2inqp segments have two en$points, it is quite possiblipior theth

At to intersect and ye* not lie in parallel lines. AB and. CD.

1A

2. li'he line; a point; )

. 4010C

3. Model construetion. '

. a. 6; b. 8; c. 2 x n

6. a. ; b.

or

illustrate two segments which

satisfy the conditions of lying

in the same plane and not inter-.

secting; however., they are not

parallel.

if the . plane contains

the like of:Center

c. does not have to be. When the,civadrilateral is not convex,

thepyramidis_npt.

7. E, 57Y

J

8. Contains the point A ; A is in the angle, not in its interior.

31+8
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CHAPTER '15 "

1. These answers are illustrative; others are possible.

a. (30 + I) or
x e? . -
2a0 +73-
230 + 8 = 238

31+ b. 48 or 48
x.7 x6 . x6

2g 17; 28
21 240 .
23 5 78

c. (20 + 8) or 20 8 180 ' .
x . 9 x,-9. x 9 + 72
180 + 72 1E6 72 252 1'
250 + 2 = 252

d. 54 or 54
x 8 x8

32 7
-47

a. 38 = (6 x 6) + 2 ; also, 38 + 6 = 6 =

b. 99 = (24 x 4) +. 3 ; also, 99 r 4 = 24

c. 125 = (15 x 8) 4c..:\ 5 ; also, 125 + 8 = 15.8

d. 84 = (28 x 3). ; also, 84 r 3 = 28

48 4/
3. a. 73+2 b. 732 719---",

8

28 28 . - 28 40
62 62 --a"

56 56 --... - 56 8
7-0- 7 IPE3

.

. 342, t. 7 .--..,0 6 .'. 37
2 = (48 x 7) +6

4. n Xt a in order to assure that the multiple of b is less

than Or equal to 'a .

If n ,X b > a the subtraction would not be meaningful.

r < b in order to,be sure,,that n is as large as it can be.

If r. b 'the quotient would be one more than n ;

if r,f> b , the quotient would be at least one more than n

with or without a. remainder.
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CHAPTER 16

1. d. and e. only

2. a. one pound ; b. 18 ; c. 18 po

3. a. 9 chalk pieces; b. 9 ;

4. c. and e. only

ands

c. one chalk piece

5. a. 1 ; 1 2 1

b. 45 ; 4

c. 4 isnot the sum of the measures of the sides in feet.

d. The.measure of a perimeter of a polygon is obtained by the

measure of a segment which is the union'of non-overlapping

segments congruent to the sides of the prgon. Each side

of the triangle is longer than one foot, and therefore the

'errors account for the extra foot in the perimeter.

6. The measure of CD is 1 . The measure of EF is 1 . No. No.

Congruent segments must have the same measure, regardless of the

unit. However, segments may have the same measure without being

congruent. 1 It is necessary, however, that with reference to some

unit, non-congruent segments must have different measures. In

the'case of CD and EF , the measure of CD is' 6 and the

measure of' EF is 8 if the unit is

. I



GLOSSARY

w Mathematical terms and expressions are frequently used with different

meanings and connotations in. the different fields or levels of mathematics.

The following glossary explains some of the mathematical words and phrases

as they are used in'this book and in the K-3 texts. These are not

intended to be fOrmalfdefinitions. More explanations, as well as ftgUres

and examples; may be' found in the book.

A

ADDEND. If 8 iS'.1the sum of 2 and 6, then 2 and 6 are each.
. ,

an addeW0t,, 8.

ADDITION. An'operation on two numbers, called Addends; to obtain A'Unique

third number called their sum.

ALGORITHM. A vmerical expression of a computation using propertief,
addition and multiplication and characteristics of a system of.

numeration to determine the standard name for a sum, difference,

product, or quotient.

ANGLE. The union of two rays which have the same endpoint but which

do noViie in the same line.

ARRAY. An Orderly arrangement of rows and columns which may be used as

a physical model to interpret l.tiplication of whole numbers.

For exaMple,

TOW

column

3 x 4 3 x 4

A, rectangular, array is implied by ARRAY unless otherwise specified.

AS MANY AS; AS MANY MEMBERS AS. If two sets are equivalent, then one

set is said to have as many members as the other set.

ASSOCIATIVE PROPERTY OF ADDITION. When three numbers are added in a given

order,, the sum is independent of the grouping. That is, for any

three numbers a, b, and c,

(a + b) + c = a + (b +c)



ASSOCIATIT6 PROPERTY OF MULTIPLICATION. When three numbers are multiplied

in a given order, the product is independent of the grOuping. That

is, for any three numbers a, b, and c,

° (a X 14) X c = a X (b X c).

B

BASE (of a geometric figure). A particular side or face of a geometric

figure. For example, the base of a parallelogram is one of the

sides; the base of a square,pyramid is the face that is the square .

region.

BASE ,(ot a numeration system). A basic number in terms tt which we affect

groupings within the system. Ten isthe b4se of a decimal, system

and: two isthe base of a binary system.

BASIC 1:'A8 (addition, mult4j.licStion,-subtractiohi division). Basic

addition and multtAidlitiOn-flita'aresentences which express two

names for the suWandprOdUCtia41;,ordere'd pairs of whole

numbers less than 1
1.0':,:066oame expraaes::tpeum or product,

using the ordered pair. The Operilpamv exOessefi the sum or

product, using the standard nazie..Forexp.014e+ 4 = 6 is

a basic addition fact; 3 X 4 = 12 1 is aloW0mul*Zie4t1on°0t.

Basic subtraction and:division facts express the 4the".reiles;:andr'

quotients for any ordered pairs of whole numbers a and b,

such that a - b =,c if c +.1) = a and a .4: b = c, such that

clX b = a, where b dnd ; are both whole numbersless than) 10. .

BETWEEN, If a curve passes through three points A, B, and C,

;:

then B. is between, 'andand C When a curve is not specified, it

understood that the curve.is a lineor"a segment through the.points.

If for three numbers a b, and c, a <flo and b < c, then

b is between a and c."'

BINARY OPERATION. See OPERATION,'
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1

CARDINAL NUMBER. See NUMBER PROPERTY OF A SET.

CARTESIAN PRODUCT.. If,for two given sets,' A = [a, b, c) and B = (1, 21,

then the Cartesian product (product set) of A and B. is expressed ;s

A x B = 1(a, 1).'(a, 2) (b, 1), (b, 2), (c, 1),. (c, 2)).

CIRCLE. The set of all points in a plane which are the same distance frOm

a given point. Alternatively, a circle is a simple closed curve

"having a point .0 in its interior such that, if A and B are.any

two points of the circle, .0A is congruent to OB.

CLOSED CURVE. A curve whose starting and endpoints are the same.

CLOSURE PROPERTY of WHOLE NUMBERS UNDER ADDITION. When two whole numbers

are added the sum is always a whole number.

CLOSUREPROPERTY OF WHOLE NUMBERS UNDER MULTIPLICATION. When two whole

numbers are multiplied theproduct is always a whole' number.

COLUMN. See ARRAY. °

COMMUTATIVE PROPERTY OF ADDITION. When two numbers are Added, their sum

is independent of the order of the addends. Forany two numbers

a and b, a +b,= b +

COMMUTATIVE PROPERTY:OFIMPLTIPLICATION. Whenftwo numbers are, multiplied,

any. 41their product j.s,independent'of the order of the factdrs. For

two typOper.F1.'.* and .b, aXb=bX a.
.1. a

,COMPLEMENT OF-A'SET. See REMAINIV SET.

COMPLETE FACTORIZATION. Factorization of a number into its prime factors.

For example 24 = 2.X 2 X2 ><'

COMPaSITE7

pAme number.

" I I III ber uther Lhen 1 that is uu a

0
CONGRUENCE. The relationship' between two 'geometric figures which have

exactly the same 'size and shape.

COORDINATE. The number associated with a point on the number line'.

COUNTING. The pairing of objects in a set with the numerals in the

equivalent standard set.

COUNTING NUMBERS. M4kbers of (1, 2, 3, 4, .. ); that is, the,whole

numbers with the exception of O.
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V

CURVE. A curve is a set of points followed in going from one point

to another.

D

DIFFERENCE. The number which is assigned to an ordered pair of numbers

under subtraction. 4 is the difference of '6 and 2.

I

DIGIT. Any one of the numeralq/in IL set (0, 1, 2, 3, 4, 5, 6, 7, 8, 9).

DISJOINT SETS.. Two or more sets which have no members in common.

DISTRIBUTIVE PROPERTY OF MULTIPLICATION OVER ADDITION. A joint property

Of multiplication and addition. For any three numbers a, b,

area c, then

X(b + (a X b) +Ta x c).

DIVISION. An operation on two nuMbersi a and b, such that a +b = n

if. and only if n X b = a.

o

DIVISOR. A factor of a number is a divi$that..nitiber. For example,

since' 4 X 2 = 8, 4 and...2 are factors (cits) of 8.

E

'EDGE. The intersection of two polygonal regions .wi'dch' are faces of the

surfedemf:::k0Alid,16Where too facea'MeetAs an edge of the solid.

.J.Or..Cylinderi(ald Cones," the.bouridargretaCeis: an edge.

ELEMENT: See OBER.

EMPTY SET. The set which has no members.

EQUAL,--A- = B means that.- A and B are names for the .same thing.

For example, 5 - 2 = 3 expresses two names for the difference

of 5. and 2; also; A = B if A and B are sets consisting

of the same member's.

EQUAL SETS. Sets whichliave exactly:the same members.

EQUATION. A sentence which expresses an equality. Open number sentences

are calledequationsif the verb is "equals", ..or "is 'equal to".



EQUILATERAL TRIANGLE. A triangle with three congruent side4.

EQUIVALENT. "ND or more sets are said to be .equivalent if their members

can be put into a one-toone correspondence; that is, each element

of A is paired with exactly one'element of B and no element of

.B is left unpaired.

EQUIVALENT FRACTIONS. Fractions which name the same fractional number:

EVEN NUMBER. An integer which can be expressed as 2 X n *ere n is

an integer.

EXPANDED FORM. The numeral 532 written as

(5 X 10.X 10),+j3 X 10) + (2 X 1)

or as 500 + 30 -1-!72'''

is said to be.wiliUen in expanded form.

'EXTERIOR (OUTSIDE) OF A SIMPLE CLOSED PLANE CURVE. The subset of the

plane which excludes both the simple closed curve and the :.subset

of the plane enclosed by the plane geometric figure. ,

F

FACTOR. If 10 1.sie product of 2 and

both factors Of 10.
0

FEWER THAN; FEWER (MEMBERS) THAN. If, in pairing'eelements of A..with
. .

; , ,

those of B, there is an
J

element of B which.is'not paired with

i. aliylement of A, then A has fewer membersthan B.

FINITE:OET: A set is finit if there is a whole -number ihEii will answer

the question, "Horn: elements are there it:the, 'getr:'

5, "0* and 5 are

The notation t0;;1,.,p 3, 4, 5,'6) describes the set of the

first seven wholeqi rs, a finite set.

FRACTION. The numeral o' the form
a

where b is not equal to O.
b 4

FRACTIONAL NUMBER. See RATIONAL NUMBER.
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G

GREATER THAN. Associated with the relation "has more members than"

for sets is the relation "is greater than" for numbers. For

example, "9 > 8" is read "9 is'greater thah 8". For any

two huMbers g and b, a > b, if a - b is a positive number.

HEXAGON. A pOlygon with six sides.

I I.

IDENTITY ELEMENT. The humbe 0 is the identity element for addition

because the sum of. 0 and any giveh number is the given number;,

that is, 0 + a = a.

The number 1 is the identity element for Multiplication because

the'produc<01 and any given number is the given number;

that is, 1N"a'= a.

IDEOTITy PROPERTY. The prOP4-rty which states thaAere is an identity

1::eleMent,under a particUiar operation.

,INFINITE SE`h. A set is infinite 1.f there is no whole number that

,answer the question, "How many' elements are there?"

The notation (0, 1, 2, 3, 4, ,5,' 6, )

numbers, an infinite set.

describes the set of whole

INTEGERS. Members of the set -3, -2, -1, 0, 1, 2, 3, ...)

INTERIOR (INSIDE) OF 4 SIMPLE CLOSED 'ANE CURVE. The subset of the plane

enclosed by the:simple ClOsed curve.

INTERSECTION. The operation that associates with two seta third set

consisting of elements common to the two given sets.,,If

A = (1, 2, 3, 4) and 'B = (2,. 4, 6, 8) then A (1 (2, It)
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INVERSE (DOING AND UNDOING) OPERATIONS. Two operations such thitt one

"undoes" what the other one "does". For example,'puttingon a

jacket and taking it off are- inverse operations.

.INVERSE UNDER ADDITION. For everkinteger a there is an inverse "a

such that d + A = O.

mINVERSE UNDER MULTIPLICATION. TIPLICATION. For every rational number different

from zero, there is an inverse 12. such that Ex2..= 1
q n q. 1,...

ISOSCELES. A triangle with two congruent sides.

JOIN; UNION. The union of two disjoint sets to form a third-iset,

whose members are all the elemehts in each of the two sets.

For example

if blue, green), and )30'=.j White, Orange),

then A U B =. (red, blue, green, 'white,:orange).

LENGTH:

L

The common property of congruent segments. We approximate

length by measurement or eomparispn with' sPecifie:d unit'segments.

In the, length approximated by the Measurement- 5.). miles, 5 is

the theaeure and the:4nAdtAhe $ile.

LESS THAN. :,Associated. with the relatiOn ;"has fewer members than" for

sets, is the-,relati-On "is,less than" fbr numbers. For example,

"2 < is read is less than 5". For any two numbers a

and b, a < b if b - a is WpositiVe number.

LINE. . A line is 'conceived of as.the unlimited extension of a given

segment in both direCtions:.

LINE SEGMENT, A special case of the curves between two points. It maYs

be represented by'a string stretched tautly between its two endpbints.

LINEAR SCALE. A scale isa number line with the segment from 0 to. 1

congruent to the unit being used:

a

M

MATCH. 'Two sets match if their members can be put in one-to-one

correspondence,
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:MEASURE'. 'A number` assigned to ;a geometric figure indicattng its size

(length, area, volume, time, etc,) with respect to a specific

'For. example, the'measure in inches of AB is 3.

MEMBER (0f.a'set). An object in a set.:

MISSING ADDEND. If 8 is the sum of 2 and n, then n ids the

missing addend. t,

MISSING.FACTOR..., If 10 is the product of 2 and n,, then n is

the missing factor.

MIXED FORM. See MIXED NUMERAL.

MIXED NUMERAL. A numeral arch tps

than one.

naming a rational number gl'eater

MORE (MEMBERS).THA. If, in pairing.the elements of A with those of

B, there is at least one member of B whiCh is not paired with

any element of then.. B. has more members -then A.

MULTIPLICATION. An operation on two numbers to obtaV,,third number
. ,

called their Product.

N

RS. See COUNTING NUMBERS.

NEGATIVE NUMBER', Any. number that is less than 0.

.

NUMBER LINE. A line 'mprked off.at intervals congruent to a chosen unit

segmentsuch.that: there is a starting point associated with the

number 0; tha endpoint of successive intervals are labeled according

to the counting numbers Ln their natural order.

NUMBER (PROPERTY) OF A SET. The number of elements in the set. The number

property of A is written N(A), where A is a set.

A



NUMERAL. A name fOr a numbeer.

NUMERATION SYSTEM; A system fcknamingnumbers. The Roman numeral,

system and the decimal' systeM are systems of numeration.

t

0

ODD NUMBERS. An integer which cannot be expressed as

n' is ahiriteger.

ONE -TO -ONE CORRESPONDENCE. A pairing between two set's A and B,

which associates with each element of .A a single element of

B, and with each element;pf B a single element of A.

OPERATION. The association ofa third number. with an ordered pair of

numbers is a binary operation.. For example,,in the operation of

addition,.the number 7 is associated 4th the pair' of numbers

5 and

In general, an operation is the association of a .unique element

where

to each element of a given set, or to each combination of,elements,

bne'fi...Q.veach of the giyen sets,'
.

ORDER. A' property, of a set of numbers whickl.permits one to say whether

is less thEin b,, greater than b, ;Or equal to b, :where ,a

and b ere members of the set:'

PAIRING. :A correspondence between. .an element of one set and:an element

(of another set.

.PARTITION. See PARTITIONING.

PARTITIONING Partitioning a finite Set Means. Separating the set int.o.!::

disjoint subsets so that the union of tile subsets is the.givenset.

In partitioning an infinite set such as a lfrie segi*Oi the. 4ubsats

subsets haVe t most theneed not be disjoint. However, any two

points of separation in common.

The separation'is the partition:

PATH. See CURVE.
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PENTAGON, A polygon with five/sides. i ''''

.p0iMETER(.of a POLYGON). The.iengtfi of .the line-sqgthent which is the union
. .

. ,
, . 4.!'''.

. .

of a set of notir-OverlappingAine. segAnts codgruent to the sides of

'
the polygon.

'PLACE VALUE. A Value giVen,to a certain position in a nuteral; Thus,

.the.place value of the digit 2 in 235 is 100.

PLANE. A partieularset.of polAte whicl/ can be thought Of as the eXtens#14
;

of a flat surface;.subh as the surface of a table.-
;.:.

PLANE REGION.. The union of a siruple closed,plan'e curve add its i4erior:'

POLYGOW: A simple closed curve which is' the union of three or more

line segments..

PRIME,FAcTGRIaTION: See COMPLETE FACTORIZATION':

PRIME NUMBER. Any whole number that has exactly two different, whole.
#

number factors, namely itself and 1,.

UM
.., .:

_ .

PRODUCT. The third number associated with an orderedTpairvof nere'.

... by Multiplication,, For example,. 8-Atile.product.of. 2 and
14 v :

nopucT SET .See CARTESIAN PR9DUdf.

. ,) 3'
. $ #

h
.,

: Q

QUADRILATERAL. kpolygon With'foursides.

QUOTIENT.,, The third number associated with\an ordered Paireknumbers
-f

;by division. VOr example, I2lis the quotient Of. 48 and .4.''

' RATIO. A relationship between an ordered pair of numbers and 13.

a a
where ,b, 1 0. The ratio may be e9SC, pressed by a- b: or by b.

RATIGNAL NUMBER. A number' which may "be expreSsedlas.

andv,,b are whole'7nUmbeisith b

RAY. gay : AB' is..-Che union of fsegent' AB .and all'pointa

7..that' B.is between A find.? C. .,

FiE5ANGLE, right-angles.

or - a°
b'

REGION. SeeitANE REGION AWDSOLID REGION.



REMAINDER; REMAINDER SET. See REMAINING SET.

REMAINING SET; REMAINDER (SET). If B is a subset of A, all members

of A whidh are not &embers of B are members of the remaining

or remainder set. The complement of B relative to A is the

remaining s4.

RENAMING. Using anOther'neme for the same number. Fpr example, 34

can be renamed as 30 t 4, 20 + 14, 2 X 17, and so on.

RIGHT ANGLE. One of two congruent angles determined by a line and a

ray having a point in the line as endpoint.

RIGHT TRIANGLE: A triangle with one right angle.

ROUND. A shape which has no corners or sides.

ROW. See ARRAY.

RULER. A straightedge on which scale using a standard unit has

been marked.

S .

SCALE. See LINEAR SCALE.

SEGMENT. See LINE SEGMENT.

SENTENCE. A:statement, such as "9 + 5 = 14" is a number sentence;

it connects sets of numerical and operational symbols showing

a relation between the sets of symbols. Examples of symbols

relating the sets are: =, and >. These symbols act as.

verbs in the sentences. .

SIDE (OF AN ANGLE). Each szf the two rays'-forming the angle is called a

side of the angle.

SIDE (OF A. POLYGON). A segment-of a polygon that ts,c9ntained

in no segment orthe polygon other than

itself. For example, AB, BC, CD,

and IA; are,sides.of the quadrilateral

illustrated at the.right.

SIMPLE CLOSED CURVE. A closed curve which dbes not intersect itself.
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simpitsT FORM.' A fraction is said to be in simplest form when the

greatest common factor of its timerator and denominatorls 1.

SOLID. A geometric 'figure that is not a subset of any one plane.

FARE. 41.rectang1.e whose sides are congruent.'

STANDARD SET. .0ne of the setatf or red numeral, such as (1, 2, 3, 4),

(1, 2, 4, 4,.5):
ARD UINTJ A standard unit is d.unit'of measure "officially" agreed.

upon or acceptelias a standard. Examplee are: inch, meter, gram.

SUBSET. GiVen two sets rand B, B is a subset of A if every
4

member of B is also a Ober of A.

SUBTRACTION. An operation on two numbers a and b to obtain a

third number n, galled thdldifference such that a - b = n

if n + b = a.

SUM. The third number associated with an ordered pair of numbers by

addition. For example, 6 is the sum of 2 and 4.

T

TIMES.
111

ercrassOciited with X to indicate the operation,

multiplicptionv

osb

TRIANGLE': A polygon with three sides. 4

o

UNION. The operation that associates with two sets a third set

consisting of all'the members in each of two sets. For example,
2

if A = (red; blue, greek, white, yelloy), and

B = (blue, white, orange),

4 then A U B = (red, ate, green!'white, yellow, "orange).

' UNIT. A prototype from which the measure ia:n5htained 1y comparison.

For example, the unit in meaSuringFliength a segment; the unit /

for area is a square region.

UNIT REGION. See UNIT,.



V

VERTEX d AN ANGLE. The common endpoint of its two rays.

VERTE2 OP A POLYGON. If two sides have a point in common then this

.comnpon point is a vertex. The plural of vertex is vertices.

VERTEX OF A PRISM Oit PYRAMID. 'If three or more edges have a point in

common, then the common point is a vertex.

LE NUMBER. The property common to a set of equivalent sets.

Members of (0, 1, 2, 3, ,..).

.r



INDEX

, --

addend, 114, 156
unknown, 156

addition, 113-130
addend, 114, 156
algorithm,. 199-203
associative property, 116, 117,

123, 303
'associative property on number

line -, 120-122
carrying, 199
closure, 123, 303
commutative property, 114, 115,
117, 12, 303

commutative property on number
-line, 120
Identity element, 119,303
regrouping, 199
sum, 114
zero and, 1l9 ,

addition and subtraction. techniques,
119-212

algorithm, 200
. addition, 199-203

division, 271-275'
multiplication, 267.6269
subtraction, 203-208

ancient systems of numeration,
87-89

angle, 184-185, 255-256
congruent, 186, 255
exterior, 256
interior, 256
is smaller than, 256,
right; 186
side, 184
vertex,..184

angle of polygon, 189
apex

of cone, 251
of pyramid, 247

applications to teaching, 21-24,
35-37, 48-50, 64-65, 80-82,
106-109, 125-126, 143-145,
159-161, 178,'192-194, 208-210,

234, 257, 277,.293 -294
arrays, 131, 132, 165

models for rational nuiibers,.

219-220
'associative property

of addition, 116, 117; 123, 303
of addition on the number line,

120-122
of intersection, 61, 64

41

of multiplication, 136-137,'142,
303

of union, 55-57

base, 90
of cone, 251 ,

of cylinder, 248
of prisms, 245
of pyramid, 248
other than ten, 101-104
four, 96 -101

between, 74, 75
binary operation, 53, 114, 135
borrowing - see regrouping.
braees; 16

cardinal number, 45, 47, 113
cardinality, 44-45
carrying - see regrOuping
cartesian product, 62
center

.line of, 249
. of sphere, 251
centimeteri 289, 290
chart, other bases, 103
classification of polygons, 188-191
closed, 76
closure property

0 addition, 123, 303
o multiplication, 131, 133, 142, 303

.common factor, 176
commutative property

of addition, 114, 115, 117, 123, 303

of addition on number line;120
of intersection, 60, 64
of multiplication, 134, 142
of union', 54'.

comparing sets, 29-40
complement, 57, 151
complementary set, 57
complete factorization, 175
composite number, 171-174
cone, 248-251, 261

apex of, 251
base of, 251
.lateral surface of, 249

congruence, 79
congruent

angles, 186, 255
line segments, 79
regions, 187-188, 245-

continuity, 72
coordinates, 80
counting

chart,. 108

,numbers, 47; 299
cube, 244, 245
curves, 72
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cylinder, 248-251, 260
base of, 248

V edge of, 248
Lateral surface, 248
right circular, 250

decimal system, 90, 91
denominator, 221.

dense;,232
describing sets 6, 18
diameter, of sp ere, 252
difference, 15
definitions oI subtraction, 153-157

',digits, 91

disjoint gets, 53,
property, 139-141, 142,

3Q3 I

division, 165-181
algorithm, 271-275
and number line, .170-171
and rationale, 230-231
as inverse, 167-168
as repeated subtraction, 272
diviSor, 166
properties under, 169-170
quotient, 166
techniques, 267-281
zero and one, 168 -169

edge,

of
70

248

of prism, 244
element

of cylinder, 249
of set, 15, 25

empty set, 20-21, 22,

endpoints, 73
equal sets, 17-18, 25
eqUation, 124
equality of rational numbers,

227-229
equilateral triangle, 190, 3:91.

o equivalent

fractions, 221-226

sets, 33135,38
expended form, 199
expanded notation, 92, 93, 101-102,

104, 105, 199
exterior, 77

25

face,'70
of prism, 244

factor, 131, 225
. missing, 167

factoring, 174-176
fewer than, 30, 47

'finite sets, 46
foot, 284
fraction, 220
fractional numbers

numbers
- see rational

geometry, 69-85, 183-197
geometric solids,. 69

geometric space, 75
greater than, 47
greatest common factor, 176-177, 226
Greek system of numeration, 88-89 '
grouping; 90, 96, 99`

hedisphere,'252
, ,hexagon,exagon, /8, 79

higher terms, 222-225
Hindu-Arabic numeration system, 90-94

identity element
of addition, 119.
of multiplication, 138', 422, 303

inequalities, 124
infinite sets, 46
inside, 69
integer's, 300-301
interior, 76, 185
intersecting, 241-242

'intersection, 58-59
inverse, 301

multiplicative; 302
operation, 153, 271
subtraction as, 152,153

is smaller than, .256

isosceles triangle, 190, 191

kilometer, 288

lateral edges of prisms,, 245
lateral faces of prisms, 245,246
lateral surface of cylinder, 248
least common denominator, 224
leftlenddistributive property, 140-141
lebs than, '47
line, 75 ,

line of center (of cylinder), 249
line segments, 73, 74,:75
listing members of sets., 17
lower terms, 225-226
longer than, 254
lowest terms - see simplest form

^
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matching sets, 30, 38
measure, 283, 285
. . approximate nature of,'289-293

of segment, 283-285
to nearest.unit, 285

measurement, 283-298
member, 15, 24, 25
meter, 288, 289
millimeter, 292
mixed.form, 229-230
mixed numeral -see-mixed-forM--
more members than, 30, 38
multiple, 90, 178
multiplication, 131-150

algorithm, 267-269
and division techniques, 267-281
associative. property of, 136 -137,

142,-303
closure. property of, 131, 133,

142, 303

commutative property of, 134
142, 303

. distributive property, 139-141,
142, 303

factor, 131, 225
identity element, 138, 142
left hand distributive property,

140-141
multiple, 90, 178
multiplicative inverse, 302, 303
multiplying numbers greater than

ten, 267-269
number line and, 142-143
product, 131, 133
property of one'under, 133-141,

303

zero and, 138-139, 142, 303
multiplicative inverse, 302

natural numbers, 47
negative numbers, .300

non - negative, rational numbers, 220

notation, 1605 c

number(s), 87
counting, 47, 29?
cardinal, 45, 47, 113
composite, 171-174
greater than, 47
integers, 300-301
less than, 47
line, 79-80
natural, 47
negative, 300
non-negative rational, 220
order 'of, 46-479)

ordinal, 45

prite, 172 '

property of set, 41-42,
number lin4,79-80

addition on, 119-122
6nd:rational numbers, 217-281
Multiplication on,1.42-143
'subtraction 158-159

,umber sentence, 123-125
number system, 303

extension of, 304-305
prOperties-Of,-303-

_.....

numeral,
numeral chart, 109
numeration system, 87-111

'ancient, 87-88
base four, ?§-101
bases other'. ten, 101.106
Greek, 88 -89.

Hindu-Arabic, 90-94
, notation, 105
numerator, 221

one-to-one correspondence, 29-30,
open sentences, 124
operation, 53, 113
order

of numbers, 46-47
of rational numbers, 227-229

ordered-pair, 63, 113,'131, 166
ordered set, 42-43
ordering sets, 30
ordering sets of points, 252-257
ordinal number, 45
ordinality, 44-45

parallel, 241-242
parallelepiped; 245
parallelogram, 189, 190
path, 71-73
pentagon, 78, 79, 188
pentagonal

prism, 245
pyramid, 247

perimeter of polygon, 29
preciseness of measurement, 293
premeasurement concepts, 241-261
place-value, 91, 92, 93, 104,
plane, 76
point, 71-73

. on a line, 79, 80
polygons, 78, 79

classification of, 188-191
eter of, 291

33

pr 4torization,--175
1

prime nUitiber, 172

367
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prism, 70,
edges,
faces,
vertex, 70

product; 131, 133
product set, 62-63

properties
of number systems, 303
under addition, 114119
under division, 169-170 .

under. multiplication, 1332141
under subtraction, 157
zero under addition, 119

pyratids, 247, 259

244-246, 258 - scale, 289

245

245, 246 sets; 15-27

quadrilateral, 78, 79, 189-190
quotient, 166

radius of sphere, 252
rational numbers, 213-240,

denominator, 221
dense, 232
equality of, 227 -229

equivalent fractions, 221-226
220'

higher terms, 222-225
least common denominator, 224
lower terms,,225-227
lowest terms, 226
numerator, 221
mixed form, 229-230
mixed numeral, 229-230
order of, 227-229
simplest form; 226,

ray, 183
reading numerals, 94'
rectangle,. 189, 190

rectangular region, 185
regions,' 185

as models for rational numbers,

213216
rectangular, 185

regrouping, 199
relative complement, 57
remainder set,' 57

'remaining set, 151.

rhombus, 189,190
fight angle, 186
,;right circular cylinder, 250
right'hand distributive property,

.*1.40-142

t triangle, 190, 191
ruler, 289,

301-303

;

.

braces,'16
cartesiam product, 62
comparing, 29-40
complement, 57, 151

complementary, 57
describing, 16, 18
disjoint, 53

25element, 15,
empty, 20-21, 22, 24, 25 ,it$
equal,17-18, 25
equivalent; 33-35, 38 -

fewer (members) than, 30j
finite, 46 74
infinite, 46
intersection, 58-59

associative property of,
commutative property of

listing members of, 17
.matching, 30, 38 5

member of, 151.24, 25 4,:
more (members) than, 30,q0
number, of, 41-42
number property of, 41,42 11,
of points,. 241

operations on, 53-68 .""-7%v

ordered, 42-43-

ordering, 30
product 62-63
relatiiie complement
remainder, 57
remaining, 151

standard,-43-44
unit,219
union, 53, 54,.55, 56,

associative property
comutatiVe properti',,,5-;;54

shorter than, 254 if(e.:

side

7%. *;,.-

1

63 34, 114

Afteev
of angle, 1.8 4 Nej,,;"

of polygon, 78, 189,
t o

of Eratosthenesoit73-174
.simple, 76
simple closed curves, 76-77
simplest form, 226

, space, 75

spbere,251-252'
diameter, 252;7,v.

hemisphere, 251kfi,;.

radius of, 252
square, 189, 190
square pyramid, 247
standard sets, 43-44 ,,10,

standard units 278-289a
structure, 2194305
subsets, 18-19, 22, 25

/
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subtraction, 151-163

algorithm, 203-205
as inverse, 152-153
borrowing, 206
definition of, 153-157
difference, 152
number line and, 158-159
properties under, 157
property, 2037.204, 208

subtraction property, 203-204, 208
sum, 114
symbols, 123-124

transitive property, 31-32, 38
triangle, 78, 79, 189, 190-191
triangular prism, 245
trim-141.11er pyramid, 247

undefined terms, 72.

union, 53, 54, 55, 56, 63, 113, 114
of:line segments, 78

unit (of measure), 248
unit set, 219

vertex, 70
of angle, la:
of polygon, 74, 189
of prism, 244

whole. numbers; 41-52, 87, 299-300

yard, 284

'zero

and multiplication, 138 -139, 142,
303

and division, 168-169
symbol, 92, 93

414/
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