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" were n‘ét'r incorporated in a previougly printed work. (See Mathematics
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_ "Mathematical Methods’in Scieded" 18'the tifle of ® cowse. .. " ~*°!
which I have given several -times at Stanford ‘Unifersity to teachers, Y,
or prospective teachers, of mathematics and science. . The.following .
peges-present those chapters of the ‘course-=the. conténts of which' ' .

[IN : .
w .

‘The following presentation iz due to Professor Leop Bowden .of:
the University of Victoria, who carefully followed*in the substance
of ‘& taperecording.of thé course, but added seversl details and several
plcturesque sentences of his own. Some peculiarities’of the oral .
presentation have been preserved: . a.certain broadness and some

<

One of the:essetitial’ tendencies ‘of tHe course is to point to -

the history of certain elementary Rerts of sélente as & source of

efficient teaching in the classroom. Several historical details:

are somewhat distorted: sgome” intentionally, to bring them down to

the level®of,the high-school, biut a few details may be unintentionally
distorted, I am afralds .A’careful confrontation of the . pedagogt~

cally appropriate with the historically- corfect version would be

most desirable, but.wes not feasible withir the limits of time and ,
energy. at my disposal. . A few non-historical niceties are alsg some- - ..

what roughly. treated, for fgasons' of .space and pedagogy. i
I hope that the following pages will be useful, yet they should

_not be regarded as a finished expression of the views offered."

. I wish to express my- varmest thatiks to_Profe_sséi" Eo_vderi.
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Ly e INTRODUCTION. © ... SRS
J.} B v ‘ '
In these lectures we will discuss: p
(l) Very simple physical or pre-physical problems, problems that
~ .. .comd be discussed at the high school. level ,
' (2) The relation of mathematics to science anﬂ of science to math-
‘ -ema.tics._ This relation is a two-way street 'I‘hough more usual,
) ‘ it is not always the case that mathematics is applied to science,
. also there is traffic “in the opposite direction. "Good driiging ] :
N ‘takes note ef the oncoming traffic.. ° A ' S
(3) Elementary™ calculus, for. without .some calculus -one's idea of .
- how mathematics is applied to science is necessarily inade- '
! ' quate. ' : o : T
' Also,‘ as their title indicates, these lectures will deal wi'th my
: ideas about methods. First, let me say that there is no one teaching
method which is the method /(:here -are as many good methods ‘as there are
o good teachers. To. teach effectively a teacher must develop a feeling
ofor his subJect ‘he cannot make ‘his students sense its vitality if he ./ '
. - does not sense-it himse1f~. . He éannot share his enthusiasm when he has .
no enthusiasm to. share. | _How he makes his. point may be as important as -
the point he makes; he must personally feel it t0o be important he must
N develop his personality. v - : -
. B -In my presentation I shall; by and large, follow ‘the gepetic method
The egsential idea Qf this method i's that the order in which knowledge '
"'has been acquired by thé human race will be a good order for its aequi-
> gition by the’ individual The sciences came in a certain order, an order '
determined by human inter/est and inherent difficulty. Ms,thematics and ) |
astronomy were the first sciences really worthy of the name; later came-

' ’_~mechanics y optics ) and so on, - At each stage of -its development the human.

' race has had a certain climate of opinion, 8, wéy of looking, conceptually,
~the _world ’I'he ‘next glimmer of fresh understanding had to grow out of |
already understood 'I‘he next move forward halting shuffle,

% .well the race could then walk. As for the ‘human :pa.ce, so" for, the human .-
.child_ But this is mot to gay that to- teach science we must repeat the: ‘.

. . L v Lo o " ) .

O
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thousand and.one errors of the past each ;11 -directed shuffle. It is
to say that the sequence in which the major. strides forward were ms.de
The genetic method is. a guide

is a good sequence in’ which to teach them.
3 to, not a substitute for, Judgment. , ,"-' C .
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'.111 The'l‘unnel S

'neither. Nevertheless they devised a method and actually suc9eeded in

gaapter 1 From the History of Astronomy: Measur'ement"'

and Successive Approximation

" Section 1. _ Measurement

Astronomers have measured the distance of the Sun fidu the Earth ;-
even the distance of the fixed stars. How dia they do ¢ "Not by )
strolling through puter space with a measuring rod. The distanca of
places” that cannot be reached is calculated fr?m ‘t‘fhe distanc‘e of places .
that can be ‘reached. E[b measure the stars we-get down’ to Eart_h ; cosgo~
logical survey has a terrestial bese. _ o .
'We'begin with a terrestial problexn. ' Due to increasing population

§ 5 a certain city of ancient Greece found its water supply insuff]icient, so

that water had to ~be channeled 1in' from a lake in the nearby mountains.

© And since, unfortunately, a large hill intervened there was no alterna-

tive to tunneling See Fig. 1.

\

Source of .
Water Supply

. Figure 1 v

. . N . . \ - . . .
Working. from both sides of the hill, the tunnelers met in the middle as -
planned. - ¢ v - - v . o

How did the planners determine the correct direction to ensure. that '.

the twd crews would meet? How would you have planned the Job? Rememb&'

that- the Greeks could not use radio signal or' telescope, . for they had -



making their tunnels from both?ides meet somewhere 1nside the hill

( Think about 1t? . . S o

ERIC
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of course, had not the la.ke been on a higher level than the ci'ty,
: there would not have been gravity to ‘make ‘the water flow through this
<-;aqueduct But to -better concentrate on the cru.x of the matter, 'let us
neglect the complication due to difference- of levels. Essentially the .
pmblem is this, How d.o we determine the would-be line of sight betveen -
two coplanar points C and S .when a hill intervenes? See Fig ﬁ2.'° ‘

Ce

oot . . — ’ /v .
Here we have =4 problem of applied geometry. How are we to construct’ 1-

n ,the segments cer, SS' of the stra.ight line CS without ,joining c' to

S? It is not’ permitied to traverse the shaded area. Yoo ?
_ Tl'rat which cannot be connected directly can only be connected in-
directly.. Let 0 (O is for Outside) be a point from which bqth :C and »

S . are observable Joining "0 %o - C and to S we have the situation S
J { '
\ Of Fig 3 . : " | ) " 1 o o o



(b

‘.Figu.re-_B ' o .

urely this diagram must suggest application of the geometry of the

.triangle. And how do we specify a triangle?- By measuring its angles and

. sides. And what angles are measurable in Fig. 3? 'l'he angle at O .can _' s
. be measu:red for C and S are both visible from 0. . But what about -
_the angles at C and S'Z We cannot measure LOCC' since the hill inter- :

venes between 'C.. and S, a.nd therefore the direction of CC' -is unknown.

For the same reason we cannot measure AOSS' or the length of O0S, - Thus -

the measurables are O0C, oS . and the angle at O - two sides and included
angle -—-sufficient to specify AOCS uniquely. *

Suppose that OC is found to be 2 miles,. ;0873 miles, and ACOS
o )

'53 .. We can draw a scale model with, Bay, O 10, 20, inches, 0,8, 30 in-

_ ’ 171
Cher’ of course, with the included LC:LO:LS:L =. 53 + Ang since similar ‘

trisgfffes are équiangular, it follows that £0CC! (i.es, £0CS) = T
£0,C,8,, ‘and LOSS' (1.e., LOSC) = 40 s:L 1 . See Fig. b, The problem is -
solved o - .

A T )



P

-\,a

Figq;e y

The alert reader will have a.lrea.dy appreciated thet the 1ength of
"the tunnel, and consequaently the a.mount of’ tunneling for each crew ig - .
. easily deduced. The directions of - CC' and SS' having been detennined,
their lengths -can be mea.sured from the length of C S in-the a.uxilia.ry
triangle the length of CS cen be deduced by siniple proportion' the -

. length of the tunnel is the dif‘ference bﬂaeen the 1a.tter and the sum of’
. CC' .and ss' ' '

PR}

14



1. 1 2 Measuring iriangulatin
Next a word about the importé’r’practical business of making measure-l’

.'. ments. HQy do we measure an anglei“QWe neceBBarily do it the same way

" today aB the Greeks did it two thousand year& ago. The modern theodolite
'.'; effects greater Pre°1542E6?4t is better built, the principle is no- better,
it is’ the same. Its essential is a protractor What is a protractor? -

An arc or: the whole circumference of a circle divided into equal parts.

See Fig 5 '

~y

. . . . ) Figure 5 . . . .bl..

InAchanging our 1ine of sight from OC to 0s, it is rotated.throughia
'certain number of Bubdivisions of the circular arc. éince the amount of
turning is proportional to this number, the number is.a measure of ZCOS.
It is conventional from’ Babylonian times to consider a complete revolu-
"'tiou to be 360 degrees, and therefore to divide the whole circumference
into 360 equal parts. When greater accuracy iB required and the protrac-
tor is large enough to allow further division, each part 18 subdivided
into 60 parts to read off Bikpieths of & degree (minuxes),tghich? in turn,

5 -




/ I ' ‘.' //-

. must be precisely ki
- C and :8 wiﬁh the

mounted at 0. A mddern refinement is the magnification attained by mak-
ing tﬁettube telescopic. See Fig. 6.

. Precision is achieved by sighting the objects
id of a Cross hair at the end. of a cylindrical tube

£ . Figure 6 -
. . . . Col : . . A

.-Yet no‘matter how refined the refinements,.error is'inevitable. So today'
surveyor Just as the surveyor “of two thousand years ago, makes several '
measurements .of an angle and takes: their averageit The measurement of gn
angle remains a fundamental operation. '

; The reader, who in trying his hand at amateur carpentry, attempts “to
make: a picture frame without the aid of a miter box knows to his cost

how difficult it is to make the fourth corner fit. His sad experience

may tempt him to suppose that accurate meagurement- of 1engths is easier>

than that‘offangles. No, when it comes to surveying the measurement ofl .

an angle.it is a relatively precise operation. To establish a base line )

a mile or two 1ong is a difficult (and expensive) operation. It has to

be made completely flat. A further difficulty is that measuring rods or




O

ERIC

Aruitoxt provided by Eic:

.

. chains Change length vith temperature. Another difficulty is that the ;
: line must ‘be straight. The men now engaged in the construct'rn of the

two-mile-long linear|acceleretor at Stanford could tell you ¢hat measur-
v o

When a base line AB is established, the sighting of some prominent

distant object C, such ‘as & church steep]:e or mountain peak, enables

‘ing angJ.es is much easier than constructing a straight line. < 4
.o J(L

angles ABC, BAC to be measured -and hence’ AC, BC computed ‘by }:rigonom- .
etry. These 1n turn can be used as base’ lines from which to. Sight other ‘
' prominent topographioal points Cy) 02, leading to. the use of ACl, CCy 5,

002 BC'2 as further base lines; and 80 on. See Fig 7 ‘ ".-'

g o . Figure7

L

In this way s that is, by what is. called tr1angulation, a whole country

or continent can he surveyed. T

l 1. 3 How Far Away is the Moon?
From the Earth we turn to the heavens. How are we to measure the :

: distance of the Moon from the Ea.rth? Since this distance cannot be
measured directly, it must be measured indirectly, it can only be deter- ~

mined by calculation from accessible distances. So we f ed a known base -

line, Basically we have a problem of triangulation. Can the problem be
related to that of OABC of Fig. 72 Consider Fig. 8.

\




)

- . . Y

Figure 8. -

N
.t

Yes, if we can determine the straight 1ihe’-distance' AB and angles .

a' and Bt Granted that the Earth is & sphere, if the distance AB

‘on the Earth's surface (the arc length). has been: méasured ‘and 6 1s

-

ously. : ! y o

known, then OA can be calculated (or, conversely, if the redius " QA
“i8 knoyn, then 6 can be calculated) Hence by consideration of the
isosCeles AOAB; the straight line distance. AB is computed. But how is

‘be. known ’when G is known. . But what is @ 7 a. is ‘the angle which the
line of sight to the Moon makes with the vertical at A, And how is the .
- vertical determined? Yes , by suspending & plumb’ line. Similarly}' p* is
determined by first measuring B. The problem is indeed ‘releted! Note
‘that a base 1ine is indispensable, so that before the Greeks could measure
the distance of the Moon from the Earth they had to know the shape and
the size (i.e., redius or circumference) of the Earth. )
' One obstacle remains, the Mooh moves relatively to the Earth. I B
18 measured at - B af‘ter a was measured at A, then B-1is not the angle
to the vertical at B ma.de by the Moon ‘when at C it is the angle made
by the Moon from.some subsequent position - Say C' Instead of.a tri-
.angle'with vertices 'A; B, C, .we are confronted with & quadrilateral N
with vertices A, B,.C, C?, and the method has failed' - For-triangula-
tion C, C' must be coincident; o and B must be measured similbane-.

to be determined? AOAB ‘cen be computed from -AOAB,- 8o. that @' will . -



But how is the measurer ab \B tq know when the measurer at A 1is A
‘-measuring? To signs.l to a second measurer just a few miles awvay & lantern
,would serve; yet for accurate triangulation suchea short base 1ine would .

not. Remember that AC, BC' are each.some téns of thousands of miles.

Ideally-a base line should be of the same order of magniftude, ‘at least it .

- must be hundreds. - Remember also that the Greeks ‘had no radio with which
to transmit signals, nor had they “accurate watches (just clepsycﬁ‘as)

"._Doesn't their problem seem insuperable? Yes; yet they surmounted it.
"How? Iet us for the moment indulge in wishful thinking of a particularly
. whimsical kind what a pity the Greeks couldn't g)eZ{he Man in the Moon
to cooperate by signaling! . His' signal would have been visible at A and
B simultaneously Put less’ fs.ncifully, measurers had.to wait for’ soge ’
happening on the Moon visible from Barth, What happening? A lunar
eclipse. See Fig. 9 S . \\

|
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Jrl.l L Tb Teach Triangulation
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The eclipse provides four distinct events, observable simultaneously from
A and: B: (1) the beginning and (2) the completion of the Moon s entry
of the Earth's shadow, {(3) the beginning and (h) the completion of the
,Mbon 8 emergence from the Earth's shadow. Had you appreciated how useful
eclipses are? Compare the idea here with that of © in- Fig. 3.. Isn't
human ingenuity ‘a fascinating thing? S o ':-ﬁ .

~Let us for a moment turn from triangulating to teaching. Why should
your typical student be interested in. your wretched triangles? Hasn't

'_he already genuine interests? Baseball television, and the girl next

door? After all he ‘is only human. ﬁEciseiy because he 'is human he
has human interests --and human curios . Why not introduce the subject
in the way that must interest him? Untll he has .developed to your level
of sophistication ‘he cannot share your sophisticated interests. He is to
be brought to see that -without knowledge of triangles there is no trigo-
nometry; that without trigonometry we put back the clock millennia to .
Standard Darkness Time and antedate ‘the Greeks.

Ca .
\

Section 2, Astronomical Measurements

. 1.2.1 Aristarchus of Semos

Aristarchus; a famous Greek mathematician and astronomer, was born

'. on the 1sland of Samos about 310.B.C, and died about 230 B.C., §0 that x

he was a contemporary of Euclid. “His fame rests on his heliocentric theory,
the theory thet the Earth and planets revolve in orbits around the. Sun.
Perhaps "theory is too strong a word, for his proofs were - weak ; yet it~
wes a great idea, an.idea redeveloped centuries later by Copernicus.
Although Aristarchus did not- know the distances of the Moon and Sun - *
from the Earth, he was able to’ estima%e their ratio. _His method depends
upon a most ingenious idea.‘ To better appreciate his.ingenuity, stop and
ponder awhile. What method would you use? His: ‘idea is germinated in an_
understanding of how the" phases of the Moon occur.

Why do we sometimes see a full moon, at other times a half-moon: and

- when there is a new moon, nothing. at all? Because the Moon has no light
" of its own but dépends upon the Sun for its: illumination, only one half

of its spherical surfacé ig 1it up; the other hemisphere is unilluminated.
(More precisely, granted the. natural assumption that the Sun is a very

| great . -distance from the Moon, the beam of its 1ight which illuminates the

)
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o Moon will be pra.ctica.lly a para.llel bea.m and 80 1ight up very Little more
thnnéne hemisphere.) See Fig..lo o . e

v o

e

An observer at Pl (ides.lly transparent so as not to block any ef"the N
Moon's sunlight) would see an Illuminated hemisphere, ie., fu;Ll moon.

At P2 what does he see? ‘His field of vision ‘now includes less of the
illuminated hemisphere and a 1itt1e of the unilluminated ~- and therefore
invisible - hemisphere. He sees the Moon in the 1s.st quarter.v At P3?

At P3 his- field of vision includes but 1itt1e of the illuminated part
~.s.nd much of the unillumina.ted. Since only the illuminated is visible

he sees the Moon in the first qua.rter.‘ At Ph his’ field of vision in-
cludes none of the illumins.ted pa.rt ) he sees no moon at all -- the begin- .
ning of the.new aoon. - In what position (relati\e to. the Sun and Moon) '

- would he see precisely a half-moon?.

: ?.',-" N g . % ‘f"
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_ Is ‘it not visibly obvious that a.n observer will have one half of the -
illuminated and- one half of ‘the, un:Llluminated hemispheres in his field of
e -vision, and conséquently wi:li see a" half-moon, only when he is &omewhem o
. on the line EE'?.In short referring to Fig. 11, an o'bserver on Barth ™ - "
‘sees’a ha.lf-moon only when A‘JMS is ‘a right a.ngle.

: o | . : o l&(oon)»A

L - Figu.reli ‘ ‘

s

Under good atmospheric conditions the’ Moon is sometimes Visible ih
“ the daytime, especially hear sunset and sunrise. So, sometimes both Sun . ’
and Moon are visible. , So, sometimes (though less often) both Sun and- B
Moon are visible when thé phase of the Moon is half‘-moon. . S0? ‘Measurg '
ZMES. on such an occasion, of course. :This is what Aristarchus did.

o First notg ‘that without any measuring at all, ’ since the hypotenuse

of a. right-angled triangle 1s the greatest side, we may infer, as did

‘the Greeks, , that the. Sun 1is farther from. the ‘Earth than the Moon. Next

" ‘note that when o 1s measured, the third angle (the complement of a)
‘is determinate, so that the shape but not the size of ABMS © is known. T
Consequently ) although the actual length of any side is not determinate,

the ratio of any pair is. It immediately follows from “the definition o

" of cosine that the ratio of the distances ME - (Moon - Earth), SE - (Sun -
Earth) isgiven'b'y ’ o -

ERIC
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"'\ Having measured @, Aristarchwus‘had to compute cos @; unlike us ‘he

_had .no tables to refer to._ His- result ‘was grossly inaccurate for two-

- reasonsa a .. is nearly 90 where a’ ll error ‘is critical. Second Just

by looking, dﬁcgfhamlot say when precisely the Moon s phase is. half—moon,

" there 1s a more-or-lessness about the observation. " Nevertheless, A'ristar- -

chus had a great idea. Since the Sun is vastly more remote than the )
‘Moon at hal f-moon, and' since the size of the Sun and Moon as viewed from

the Earth remain sensibly constant, it.is a safe inference that the Sun

'fihfat“all*times]farthermfrom,thegEarthrthan the Moon. . ..

i.2. 2 Radius of Earth' Eratosthenes .
Earlier, in discussing a more interesting question, that of the dis-

tance of the Moon from the Earth, we saw that a necessary preliminary is
) determination -of thet size of the Earth. So the next important question

is: What is the radius of the Barth?:

In ascribing radius to the Earth we commit ourselves as to its shape.
What sha.pe? Yes, spherical.” Is this precisely correct? No, we now lmow »
that the Earth is slightly flattened at the poles; it is more nearly an
oblate sphemid.( But to treat it as a sphere is. a gobd approximation. '
Good appmx'hnations often lead to better ones. .

termination of the Earth's size was Eratosthenes' outstanding ,

achi ement. ' As well as a geographer and astronomer, he was librarian’

_.+of the famous library at Alexandria, then the greatest library of the

civi'li'zed' world. He lived from about 280 to 195 B. C., but ‘these. d.ates B
are problematic. With the subsequent dispersal of this library there
is np extant Aleitandrian Who's Who in which to look him up. Although
his dates are in doubt, fortunately his method is not. And 80 we raise
__the inevitable question: How did he do it? ’

T The circumstances are. as follows. The River Nile floi{s approximately
from south to north, B8O that the shortest route from thei.éi‘ty of Syene -

A
(nowadays Aswan) far up .the Nile to AéLexandria in its delta is a great cir-

cle route. That is to say Syene and Alexandria 1ie (almost) on the same

meridian, a circular hoop or belt Joining the poles and ;passing. through
Syene would also pass through Alexahdria. " Moreover Egypt is a civilized

country, there i a. road between Syene and Alexandria, and its length is |

_ known. It is 5,000 stadia. See Fig. 12,

- :

>
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. are touched by sunlight at noon on the longest day of the year,- i.e.,
; that there the sun- is then directly overhead. So at noon on a midsum- .
2 ,'_mer s day he ‘measured the Sun! 8 =:anlination to the vertica.l at Alexa.ndria. :
i 'Of course he needed no wa.tch to tell himself when the Sun's inclination to
,'the vertical was g minimum; to the contrary he used the Sun 8 minimum

- Figure 12 "
In short ’ the circular arc AS is 5, 000 stadia. If it were known wha.t
angle 6 at the Barth's ‘¢enter subtended this arc, then it would ‘be

.known what fraction of the Earth"s circumference AS is. - The rea.l-pr'o-'-'--

blem is to determine 6..

Eratosthenes knew that Syene has a very deep well . whose waters

4

inclination to determine noon., He found the a.ngle to be 7, 12' And sincer '

o "the Sun is so remote that its rays are sensibly pa.rallel, the, circum-
- stances were as is illustrated by Fig. 13 g o Con ,!‘

e
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o A

. 8o that . i A =712 =L ofa.complete revolution. :

, o | 360 %P 50
Consequently AS iSaésth of Earth's circumference But AS is
H5 000 stadia, so that the Earth's circumference is 250 000 stadia and its
: ra.dius . ’. ' .
' O —:—250 900 ."'sta.dia '
- S . 2r .
Unfortunately we do not- know which of the several stadia used in an-; -
h . tiquity is the unit empioyed by Eratosthenes.' A stadium is 600 Greek feet
but the' Greeks had several feet .for example, the Attic Stadium-is 607, En-

glieh.feet, the Olympic, 630,8 ft. If we take the former, the radius‘of»the

'

v
®

" Barth becomes y ; o o
: , 20,000 60T . _ ) 600 miles.

o Ta o X 53 . R
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‘ Nowadays the accegt'ed figure for the Earth's equatorial radius is 3, 963

' _the pigmy a’ giant ‘who. spanned the Earth. IR L e

~ .m:iles, the polar radius, 139 miles less, .. .° \" e L ‘
'I'hat Ezato‘sthenes' result is& inaccnrate does not really detmct from .
; the greatness of'his achievemept It is ‘his method that excites Sur ad- ﬂ

e A miration. Would not a giant measure the Earth by encircling it with his

arms to compare its circumference wit'h his span? And what did our little' R

pignw Eratosthenes do? At. M.exandria at noon on a. certain midsummer e
day long: ago "’he observecL the angle of: the shadbw casj. on- his protractor L
by a little s‘tick. A mere shadow and an idea is ‘the substance ths.t made

. . i

. I - s

» I

“123 Rival’ @osmologies RREEEN ST i‘?’ L

R 'How, without a watch d/p we know what tinm it is? Yes; by looki‘ng

R at a sundial.; The cast of the Sun's shadow across the dial tells us the .

- time.—«. Despite the fact that' a watch has two hands althqugh a sundial )
has only Lhand." a watch 18 in effect & sundial. Think about i,
The g ‘g or position of the minute: hand (read in conjunction with the -
position Gf the hour hard) is a substitute .for the Sut's shadow. A watch:
in telling us our time. -; to be precise, local solar time - indicates our . .

- 4‘,' position rela?:.ive to the Sun. We cannot see in the dark, sure]_y primitive

N

- man arose to work with the rising up and retired to rest ui*th the going‘

e down of the Sun,. Life was govemed by nature's clock. o : " '\

"¢ And how do we measure a ? Yes, “in years. _ But what is a year? T,he

e 't'ime that elapses before the rth is again in the same position rela-hive

to "the Sun. And how do .we. deteﬂline sameness of positiori? By reference .'
to the framework of the~ fixed. stars. As. the position of Earth changes
relative to Sun, ‘the days grow longer, then shorter, then. longer again. _—
There is a cycle of seasors -- of the time'to sow and the time to reap. _'I'he[
calendar is pur.. recognition of this period.icity. . . S e
~ Are not our lives regulated by the clock- and the calendar? Is not

_ our existence dependent upon the- rotation of the Earth relative to the Sun?

“~~Without the Sun there/would be pefpetual night neither day nor week®nor ., 'A .

. month hor year;. neither a time for sowing nor a time for reaping. The . ','. '
fate of all mankind dependent upon the heavens, is it not a natural step .
to suppose personal destiny to be govemed by the stars? Could ot greater .f
knowledge of the .heavens lead to k_nowledge of. our ,individual destinies?
Although to date astrology has not been a successful appl%ncation of. as- )
trononw, it served a purpose. It gave additional impetus to astrononw

E to such solid practical .reasons for the study of the stars *as the deter- <
mination of the calendar and a éetehod of navigation, it added its \own. \ T

a

T S Y
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',Evidence of an especial regard for the dering stars-- the planets - i8

.embedded in our language Sunday is- the day of the- Sun Mondsy. the - day

. ::of the Moon; Tuesday, v,ia,.the French, Mardi, the day.of Mars; Thursday,

via Jeudi,_the day of Jupiter; Friday, ‘vie Vendredi the day of Venus;

-and Saturday, the: day of Saturn. .. - . : -

v
For primitive man nature was a malignant uncertainty. Even for the

.Greeks, behind every bush and underneath every stone there’ lurked a god

.of unpredictable caprice. The- paths of the.planets gave the comforting .‘

_ assurance &f a glimmer of certainty in’ an uncertain world, These ‘wander-

ing stars as the Greeks called them -- in opposition to the fixed stars--‘

-appeared to be predestined to folloﬁ'fixed paths. Planets were observed
j-to reappear in the same position (relative to the fixed stars) at regular

intérvals.' Despite the general fortuitousness of nature, a few ‘events
were predictable, their occurrence could be depended upon. In‘studying

v~the applications of mathematics to astronomy ve see the first attempt to

' vibw, e new view is the genesis of science.- 2

discover uniformities in nature. The stars gave man- his first glimpse of-.
8 great idea -- the belief that there are uniformities to be discovered.
It is hdrdly possible to exaggerate the importance of this change of
Ar stotle (38u4- 322 B.C.) argued that'a planet must move with uniform
motion in a° circle.. What is his argument? That the planets are neces-

' sarily perfect bodies and therefore spheres, and because perfect must

move with perfect motion, i e., uniformly in circles. You smile, his;
contemporaries did not., Aristotle never caused a smile in- a, thousand

years. His dictum persisted without a murmur of contradiction until the

© -Middle Ages. The founder of zoology, of meteorology, of logic had spoken

Tﬂit was left to lesser men merely to follow in-the footsteps of the master

. and quote his authority. - *'F . P

ce —.

Circular planetary orbits had been proposed before Aristotle, after
Aristotle they were obligatory. The question was' About what center?

a

- Tnat. the Sun. moves. around ‘the Ea a natural impression, and the

theory of Hipparchus (160 125 B.C. ) #8loped by Ptolemy ( % 130 B c ),
._that all the planets move ‘arourfd th rt

h, was generally accepted. . .

Observation did not precisely ffgrthe theory. So, in the Greek -
view, if a planet did not move in a circler then its motion must be a com-
bination of circular motions.. See Fig. 1k,

.




. Figure 14

A ' o ' o ‘
.Here 1s illustrated a combination of two circular motions. As - P. moves .
.around the-circle of center Q, Q moves around the circle of" center C. -

:.The fbrmer circular or cyclic path (relative to Q) is said to be an
) epicycle of Q. Yet such a combination did not precisely £it the facts,

" 80 epicycles of epicycles were “tried, See Fig. 15. ¢

~
~



Figure 15"

. P

~

Here is illustrated a combination of three circular motions. As P ihoves

) "around the epicycle ‘of center Q ‘and ‘g itself moves around the epit P

of center R R itself moves around the cirele of center C. This

point is of importance for. the understanding of science; 3 by sufficiently
-complicating the hypothesis we gain enough f’lexibility to fit it to our
: ;observational data. Fitting the data by an uncomplicated hypothesis is

© much more interesting. e :
We recall a rival theory, that of Aristarchus of Samos. His thedry . -

was that the Barth and planets move in circular orbits around the Sun. '

" Although the ma.ss of then available observatioml data fitted his theory
' fairly well, it was nevertheless universally rejected, it was. rejected by
_ Archimedes -(267- 212 B.C.), the greatest ma.thems;bician, physicist. and
" riventor of antiquity. o _ . -'- .

) Why was it uniVersally rejected? In part, no doubt because of.

s A
s

.f

ah
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Archiinedes..' re.ject_'ion; We must remember that pride and pre,judice can’ in-

I' fluence our thinking. . Earlier, e asked:. How far is the Moon from the Earth?
We did. not ask: How far is the Earth from thegMoon? Both questions must - have
the Same answer, so why the" former ‘but not thel’ latter question? When we travel
we necessarily start from where we are.._ Is not the first a mere natural for— '
mulation? When fogbound in a rowboat. is it not more natural to suppose the ‘

« other fellow ] boat drifting past ours than ou.rs drifting past his? -Is not an’
*Earth-centered more natura.l than a Sun-centered theory? .

Fig. 16 illustrates Ptolemy 8 universally accepted geocentric (Earth-
centered) theory; Fig. AT ==-Aristarchus' universally re,jected heliocentr:l.c
(Sun-centered) theory (in which the Moon orbits the Earth)

Ptolemy-'s ° " e - _ -
Geocentric System. T R o e

o o E‘-igurel‘6( -.
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Some seventeen centuries later, Aristarchus' heliocentric system was
; ' rqdiscovered by” Copernicus (lh73 l5h3) Tt was still de rigueur to quote
o authorityun-preferably Aristotle-- and as Aristotle ‘eould not. be quoted

in favor of these matters, Copernicus was pleased to quote Aristarchus.
_ (Later, however, he deleted this quotation. ) As he knew. Aristarchus' work
. it is more correct to say that he redeveloped rather than rediscovered

the heliocentric theory. ‘Patiently and pertinaciously,\he checked it .

against a vastSaccumulation of his own and other astronomers' observations.

e

Although a man of immense intellectual courage as well as energy, he was
very careful. Knowing that people do not like to have their old habits
of thought or the habit of not thinking at all, disturbed he" delayed
publication of his findings some thirty years until -he was: upon his death
bed. With characteristic caution he did not claim that - the Earth and

s planets do actually move around the Sun, he’ contented ‘himself with show-
ing that a heliocentric hypothesis works better than a geocentric oné it
requires fewer epicycles. '

'ﬂ. .-
'12h TheOrbit ofVenus.‘p_» " S e
o An earlier theory was propounded by Herakleides who lived in:the hth
"/ Century, B.C. He studied under Flato' and probably under. Aristotle also.

/ His theory is an intermediary between ‘the Ptolemaic and Copernican stand-

points. According to Herakleides, Mercury and Venus moved in circles
around the Sun while the Sun ‘1tself and .all the other planets moved in
eircles around the Earth, . . . ¢
S The bright star ‘eften visible at ‘the setting of the Sun 4! known as
the Evening Star, the bright star ofben - visible at the rising of the -Sun
‘1s known as the Mbrning Star. Although these names occasion no surprise,

'

surely there was great surprise at the early discovery that the EVening )
‘Star and’ the Morning Star are identical. This star is Venus.. Its-wander- i
ings, while exhibiting some regularity, were perplexing. Long-term obser- . -
vation showed it'eventually to reappear in the same place (relative to
the fixed stars), it was at all times relatively close to the sun, yet

' sometimes appeared to .be moving rapidly in the same direction. as the Sun f.
and at others slowly in the opposite direction. ‘But - surely perfect bodies,
spheres, describe ,perfect figures, circles, with perfect, uniform motion.’
Whatever could be the reason for this apparent discrepancy? A glance at

Fig. 18 makes the explanation ixmnediately obvious.

- ° s
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. Venus )
Rapid

Figure .18

“The. trouble with hindsight is that it blinds us to the brilliaxfce of. fore-
sight.' The explanation is Herakleides' ’I'hat we now know that Venus® '
orbit: is not exactly a circle nor its motion precisely uniform detracts .
.nothing from Ris ingenuity. ’I'he astonishing thing is, that his hypothesis -
fits the facts 80 _closely, - : e S

' The good first approximation accuracy of Hera.ld.eides hypothesis makes
» :‘it reasonable to ask What is the radius of Venus' orbit about the Sun? - S
This question raises another question: How are we tqdetemine this radius?
. How would you do it? Well, begin with careful study of Fig. 19. .-

| Figure 19 . -




‘el

. Observe that the angle a, tha.t the straight 1ine Joining Venus to '
-.the Earth makes with SE cha.nges as’ Venus progresses in her orbit In .
particular, note that

. ' ks Ul R
' Ly = L5

. ] - t

i R

\ : . . &Evm, = ASEVm.

In short, a increases “to.a maxipmum when Venns is at V (m is for
maximum) and then decreases. Where is V ? Consider the successive '
chords vlvl 3 V2V2 B V3V3 3 they are progressively shorter. Cbviously ~
’ '(EVm is the limiting ‘position, tangential to the circle. . Consequently o
is & ma.ximum, say a o when A._ZSVmE _is a right a.ngle. Consider Fig. 20,

. i“igure _20-
‘Since " SV, 'SV are radii of the’ eireular orbit’ |
sv' _ Sy e
_ L E S ®
g ‘and. s.ince. IZSVmE of ASVmE i a right angle

g2

. . ‘ = sin e
consequently

o= sinqm.

ga

3 e-,',: - 2
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- be. done by using. the most elementary geometry and trigonometry?

The radius of Verus! orbit is sina  times the distance between Earth

_end Sun. We do not, of course,. have sufficient data to determine the

actua.l distances, only their ratio. Yet is it not surpris;.ng what can

To apply our formula we. require the actual numerical value of a L

* How are we to obtain this? By observing Venus when at V ? But how could

_we know when Venus is there? To say "when @ is a maximum" is to beg

the question. . The point is that we cannot obtain a. by a’ single observa--

. tion. We cannot have this information for nothing, we must earn 1t by
regularly making medsurements at sunset.or sunrise day after day.. Without
~a sequence of observations, how could we tell when a ceases to increase
and begins to decrease? Advances in science-demand tenacity—of-purpose
‘a8 well as bright 1deas.‘ - _ )
. _ S »
ﬁl 2. 5 Tycho Brahe and Kepler T , . T,
_ 'I‘ycho Brahe. (151#6 l60l) was. a wealthy Danish nobleman who had much
land Jany gerfs, and a qqarrelsome disposition. . His dispositimhen he.

was .a young .man resulted in a duel, the loss of his nose, the acquisition B

of a. silver substitute, and a marked propensity to shun society. No .

doubt this seq/ence of events increased his attraction to astronomy (not

a gregarious seience). Be this as it may, he had an obsession for con-
tinual: and- exact observation of the stars, and this. obsession d.s the basis
‘of his’ fa.me. : No, he dia not propound any new theories. Being rich, he
was able "to have Constructed, with utter disregard of the cost giganticy:

.well-made instruments, that set a new standard of observational accuracy.

E No.wadays » with accuracy,a sine qua non we overlook this vital contribution

. of. Brahé to astronomy and the development of the scientific attitude. _
- Kepler (1571 l630) was very poor. In his day there were no chairs .

(.
of astronomy, only the patronage of princes. Such patronage was often

given for astrology ral:her than astronomy, and Kepler earned his meager
‘living by the former,’ thereby. enabling himself to study the latter. “As—
he remarks, astrology is the daughter of astronomy, and is it not right
that the daughter cares’ for the mother" - —
.+ © He' was a man of genius,” .His work marks the transition between medi-
_eval and modern outlook. ‘For this reason he is called, by Koestler, "The
Watershed" in a book of this title. From Kepler the history of thought .
-flows back through a hodge podge of emerging scientific thought astrology ’
mysticism and superstition to Babylonian times, and forward to the modern

‘ outlook. His own writings are a mixture-of both. Not havirg the money

. to buy accurate (and consequently expensiveBirrstruments with which to
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'make his own observations, he finally met chho Brahe and inherited his
vast. accumulation of accurate data, data accurate to a.degree that the
'Greeks would have found incredible. ,thler's ambition was to describe
_nprecisely the orbit of Mars.. He-; tried one fruitless combination of
epicycles- after another. At last after fourteen laborious unsuccesses ‘
“he came- to the conclusion that the orbit is neither a circle nor a combin-
-ation of circles. It must be something else. Kbpler‘s conclusion had
astounding novelty, ever since Arlstotle s dictum some seventeen centuries
earlier, epicyclic motion had been ‘taken as axiomatic., His breek with the :
'iAristotelian tradition was the crossing of the watershed.

With industry to match his courage he continued to grind out more .
and more calculations to~test other hypotheses, it was’ not until nearing
the- end that the 1nvention of logar1thms eased his labors. Ultimately,
he ‘hit upon the. hypothesis that Mars moves,with non-uniform motion in an -

. ellipse withbfhe Sun.at,one of its foei.: Heretieal Utterly heretical.
'I, How could the Sun be at one: focus rather than the other? * How could a
'planet move with non-un1fonm motion? How could the universe be so im-

' possibly imperfect? Observatlon fitted hypothesis like a glove.,
o The ideal of Euclid's Elements, that the theorems are necessarily
consequences of the premises, 1s apt to mislead us into supposing that

the development of science has been entirely ratlonal.' Nothing could
be farther” from the truth, Nowhere is irrationality more clearly'ex--‘

v hibited than in the history of astronomy;- nowhere in. astronomy is preJu- :
'dice against fact more visible than in the tenaciously ed_notion'
- of perfect bodies in perfect motion. ) S
New theory in astronomy led to a- change of world view, a new stand-
'jpoint a new civilization. Even in the pre-Sputnik erg, some appreciation
- of these developments was necessarily an ingredient of educated gommon - "
. “ o sense. Surely your students will want to know more. A good-introductory
',account is Morris Kline's Mathematics' A Cultural Approach. Another’

] is'Kbestler' large volume The Sleepwalkers, of which his. above mentioned
book,. The Watershed is’ a (large) cha *
priately . titled for as’ a sleepwa‘ er “with- losed eyes finds his way along1

This volume is most appro-

a roof top, 80 Arlstarchus conjedtured th eliocentric system his. facta
. were few; he knew so little that his eyes were closedu--yet he moved with :
a sure instinct Later astronomers closed their eyes to -facts. Here is

a story too fantastic to be fiction, unfolded with spellbinding skill.
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_By what observations? And on. the basis of what presuppositions? His
»"working hypothesis is that Mars moves with uniform motion in a circle

i

1.2,6 ﬂ!he Mars. Year.

We return to Kepler How did. he discover the precise orbit of Mars?

around the Sun. Although as we now know, this is th exactly correct
it is’ nevertheless a g&od first approximation. . ’And a consequence of this.

hypothesis is 1"1.8.1‘: Mars will be in the same position relative to the Sun
(as determined against the fra.mework of the fixed stars) at regular inter- i

vals. -The length of this interval, the time required to complete ‘one or-

. bit around the Sun, is said to be the Mars year. Kepler's_ first task .wes

T to determine this year._ :

Mars and Earth move around the Sun in the same. direction, but with _
different angular velocities. Consequently, Sun, Eaxth, and Mars become :

'momentarily collinear, or in conjunction, as is illustrated by Fig. 2.

I,
ot ¥ 4.-‘:-'.._ N

Figure o1 Y

.
ro

R

Such an event is called a synod. In gommon usage, a formal meeting of ’
f,ecclesiastics (to decide Church matters) {s said to be & synod: by natu_ra.l s
'extension of usage the coincidence or meeting of radius vectors SE, SM-

’
RS

ig ‘'also said to be a synod. = . R

37"




. {
A synod is observable with great accuracy. Prima facie, this seems

o8 strange thing to say, for when. there iz a synod Sun and Mars will not
'be .simu.'Ltaneously visible to a terrestial _observer. But remember that a
full twenty four hour day is the time inter\ral between two consecutive -
occurrences of the Sun at its. zenith, sO that, because of the uniform a |
rotation of the Barth about its axis > in twelve hours from noon, -i.e. ;. at
midnight the Sun is precisely on the opposite side of the Earth, .Thus, »

- ifat midnight Mars 1s directly in the meridian, ‘then (suppose, for sim- - K
plicity, ‘the orbits,of Earth and Mars around the Sun to.be coplanar) there

is a synod. The Sun is, so to speek,’ observed inferentially.. ' ‘
‘Flg. 21 may be considered as the dial of a celestial clock ‘but the '

- hands gre not called hour hand and m:Lnute hapd:  SE 1s the "Barth" hand. and.

4SM the "Mars" hand. We suppose ‘that T the Earth year, the ‘time for

‘the Earth hand to complete a revolution, is known 't‘,he Babylonians had

. determined it with great accuracy. If SM were stationary theh ob=-

‘_viously the hands would be ‘again. collinear af‘ter-a complete revolution of.

C v the Earth hand; i.e., TE would be the time interval _J (say),, between U
two consecutive synods ,J for synod i8 not to be confused with 'S for .

‘Sun.) If SM were to rotate in the same direction and with the same
angular speed as -SE,. then there wou.'Ld at all times be a. synod* the. in-
_terval,d between consecutive synods wou.ld be zZero, - It is equally obvious”
‘that 1f .SM were to rotate with the same angul»ar speed but in the oppo-

" site® direqtion, then there wou_'Ld be a synod after SE (and SM) 'had

»

" completed half a revolution, l.e., after time 4 2 B LIt is not- evident o i
that d the inte‘z"@al between consecutive coincidenc'es of the hands v
of our’ clock, is related to their angular velocities, i. e., that J will
'depend upon T ,and TM? Altematively put isn't ,dlmked logically _ o
betweep Tp 'and TM The crux of the problem to determine TM i specih--"
' fication of this relation between, -Ty Vel ena Ty o ' ERE
' Our celestial clcrck 1s somewhat pecu.'Liar in that the angular speeds

of the two harPds are no'c in- the proportion 1:12 although they are in a 'l'-"-

T 'constant proportion.. Does this make -any rea;L diffe.renderto the problem? “

. . RTINS
° ot Yo s

- o :No, of cOurse not._..'i' 4, L ' T Ty e

Let us, with the convenience of brev1ty, describe the position of. the'

i‘\-.l- .

hands at the synod " of- Fig. 21 -as on the initial line, What happens subse-
'quently? . Because the- Earth ha rotates faster it onecessarily completes '
Ui A revolution before the Mars hand does. Thus, when _SE” arrives at the '

B A N

initial line,' SM ha's but partially completed a revolu;ion. See Fig; 22,

s

L 3 8 & ) J |
S L.t >,
o .".. )

"ﬂ‘-"..o
e

O
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' ' Figure .
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i Ignore for the momeat: that. the s,it‘ua'hion of Fig. 22 derives from ""‘-',"
that of Fig. 21. Concentra.te on what follows on from ng. 22, The en-
o j guing ‘situation is analdgous to ‘that of & handicap rece: - 'E,.' on the .
_ .‘Earting (:Lnitial) line, is ‘handicapped by-. M starting way ahead at Ml ~
o But,- ’ thé. angtﬂ'e,‘&' velocity of SE .being greater than that of SM E must ; B
' ..sooner_o '1aterr catch up with M. Suppose this to occur when SE he.s
. "rotated thz‘bugh an angle a (measured of course ' i‘rom the starting 1ine) o
. So at the end of the race the cirCums,,gancés are as illustrated ‘qy Fig.,23. o /
. - w . /
- . //-
. ’ 1.
- . I
’ .: 2 O ! ' et A”’
. L b, ) !
: . AR
Lo . S - o
;‘. *e . - HAL U
‘ L . . ¥ d :
/ £ :
c N + . ¥ .
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While SM has rotated fyom- SMZL to " SMQ, SE has rotated through an’
R angle a from the intial Tine to . SE2 ~ Now recall? Fig. 21, . During. the
b .. intez'val between the one synod ‘and the . next SM has rota.ted from\the‘@'
a ini,tia§1 "].ine to 8142-; l.e.. has turned through an a.ngle a. “And ren;ember
_ that SE completed a revolution before the start of the handicap rac
. We conclude that if in the interval ,ef between tﬁo consecutive synods’,

g‘otates through &, “ihen SE rotates through 1360° £ q. -

. SN
N It pays to, look ‘back, Isn't this conclusion immediately obvious to ,,f ;
' hindsight? We now know the right wa-y of looking .at the pﬁlem. ‘ immedi- '
ately a:i*te\r a synod the hour hand . SE 4 forge'sﬂ ahead and sowill have to: '-' j"_.-;
" rote t\‘a“36a more than the minute hand :SM in order to catch up_with i, ”

s,
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K But, for a (clock ha.nd) rotation with uniform angular velocity the time
' of rotation is directly proportional to the angle of rotation. Therefore,

.n\. | . l d.a 'd"‘ ke (l)

Y . . o : Mg '31— . ,- (2

, And tabulatm'_' Qur: data for; Earthl., s S
. Angle rotated in the time interva,l
. R 360+a L ,’
’,
.“‘.'d.. : ];..' 1 - "‘/:
_'Hence, by (1) . SO J. .
1+ é . ' g
. STy

We have, established the 5explicit expréseion of the relation betWeen TM’ .
' d{ and '1‘ The latter being known, it remains merely to measure

in order to comnute ’ A _.,.'hl_d been meaeured by the Greeks, Kepler
:. "computed ‘I‘M o R "‘.. e e
ST .
i1.2.7 The Orbit of’Ma.rs , o . . -
. g > ‘Recalling that Kepler & a.mbition was o determine pzecisely the 'orbit . '
| o of Mars x .the alert read.er will ask How is the det’ermination of Ty . in-
SR "strumental to this e"nd'lr , ' ) : o
Consider Fig. 2& .. S E S g Do
. L r :1
- " ": N ,.,
a : ‘e &l, SR ) : 3
3 ' o &'. : " .
e R CIC) -
J2a i .
o .
* d 1 ’ ‘1. N KT
3 i
. I : . \ s, : \
i . CoL - N . . = . !
\)‘ . . - . _ - ‘p - o
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: .Fi.gure 24

When Mars is at. M, collinear with the Sun 8. a,nd a fixed star Sy e
suppose the Earth to be at El Precisely TM later Mars will have

completed en. orbit around #he Sun and again ‘he at M, but since the

" . Earth hand of our celestial clock rotate _:,f'aster than the.Mars hand, the..

‘Barth will have'rotated more than a comf_&lete revolution and be at - By r,'
' Although Mars is again in 1ts initial position relative to the ’ﬁ:Lxed ’
stars as viewed from the Sun (i.e., collinear with S ), 1t 1s in a differ-
;ent position relative to. the fixed stars as viewed from the Earth

Tnitially Mars is collinear with Earth and S TM -later, vith Earth and

1 ’

o !
. 82 ¥ ﬂ Yet %espite Mars at M P_P.M g-againgt the framework of -the

th at E
s;[nce the Mars year is TM’ we know inferential’l t.hat it is
—_—

e
(S U

-~_ﬁ'. »in the bsa.me position: : . v S AR

. ‘5*"5\'M
v

~ We may infer much more. TE being known, the angular velocity of
our celestial hour hand is known, sp that the angle tumed in time TM
ca.n be computed we can determine ZE]_SE And taking the radius of
the’ Earth's orbit as known, the length of base ElE _&nd base: angle_s of
isosceles triangle E:LSE2 ‘are determinate. . '-.u .

What else do’'we need to compute SM? What are the easiest things -

: ~to measure accurately? Yes,* angles. ‘Now consider Fig. 25.

et

:.‘-_{..'. .‘ | .'.':-'..’ . L. 4 é




e ). Lo

byl

F,isure. -

The position of the Earth relative to Sunt end fixed sts-.rs‘hed."been given
careful study from Babylonian times, ‘Tycho Brahé had made most exact
'observations. This data enabled Kepler to determine the fixed star Sl '_ S .
collinear or most nearly collinear with Sun and Earth when, for exa.mple s

. the Earth was at E - We, have already remarked ths,t although the-Sun

is not visible to- the terrestial astronomer at Ej_ when observing Sl

“ 1t 1s nonetheless "observe.ble inferentially". Thus Kepler was able to

_ .measure ASlEj_M (where S,E, produced passes thro s) when the

- Earth wes at. B and likewise ASQEQM (where SpEp produced passes

w .
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I
through §) when, -later, the Earth was at Ey. :

(Do not confuse the fixed star S, of Fig. 25 with 8t of Fig. 21+
the latter is collinear with El and S, the former collinear with El
and. M. Nor is 82 to be identified with S ).

What use can be made of this additional da.ta? LEEE]_M is the supple-

: ment of the-sum of the known angles, LSE E AS E M, and therefore

_ angles and a side (E ) are known, 50 that by using sine rule EM

determinate. AE]_E M is similarly determinate. Thus in AElE M two

: . 2
is computed. But; ZSE2E and. AE]_E M are both known, 80’ that in

ne e

' ASE M we know" the .angle SEM as well as the sides containing it k\ -

by using cosine rule, SM is- computed.

f(emember thdt Kepler's working hypothesis includes ‘the supposition '
that Magrs repeats its orbit w1th regularity' : no matter what Jitg” orbital
position at a specified time, it will again be in that position after an
interval TM -So the above method is applicable to computation of the -
lehgth of the Mars hand of our. celestial clock in-any position. In this o
way TM was_ inst_rumental,to Kepler s determination of Ma.rs' orbit around
the Sun. . ' .

Having computed many radius- vectors of Ma.rs' orbit, Kepler with
eriergy to equal his enthusiasm set about fitting theory to fact. His )
inheritance of Tycho Brahe's observatlons gave him data .with an accuracy _
unknown to the.Greeks --and consequently made h1s task all the more diffi-
cult. Finally, at his fourteenth. attempt the theoretical orbit conse- ]

. quent upon his hypothetical epicycles closely approximated to. the factual

.orbit: there vas a d1screpancgr of merely eight minutes of arc, ‘an’ accuracy A

u.nknown to the Greeks. But, closeness of fit which “would Have been more

- than good enough to sat1sfy the Greeks was re,jected out of hand by

Kepler. And with it.he re,jected the notion of cycle and epicyele, bag'

. and baggage. He was sick with the wearisome ‘repugnance of ep1cqu.e piled

- upon epicycle, the dogma of perfect motion had become a celestial night-
mare. ~His final ‘hypothesis was. that '‘Mars moved in an ellipse with the ’

. Sun at one focus° it worked. '~

This, in rough outline, is how Kepler discovered the first mathemat-"'
ical law .of astronomy;‘ Unfettered from the dogma “that the planets move
-in perfect’ %igures, i.e., circles, it was an easy step to re,ject also the

fiction that they move with uniform velocity. The hands. of our celestial

_ clock rotate with variable s.peed. . Tycho Brahe's observations afforded

,ample evidence. Indeed, it was known 'lﬁ\the Greeks that the nearer the
Earth is to the Sun the faster it moves; yet it took the insight of genius

-
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_to.discover the law. See Fig. 26. o Y

. R

' Figure 26

.

A

, ‘Kepler found likewise that the farther Mars from the Sun, the slower
it moved; the nearer, the faster. Eventus.lly he discovered the law vwhich
fits the facts. Mars moves in its orbit so that the radius vector SM
.sWeeps out equal areas in equal times. . S | |

By analogy Kepler extended his two laws for Mercupy to the other -

E ‘planets. The ‘available data fitted. -

Many years later he discovered a. third law. We recall that the

‘planets in the order of their distances from ‘the. Sun are Mercury (nearest) 5
'Venus, Earth, Mars, Jupiter; and Satim (most distant). ‘Also, it is &

fact that the farther a planet from the Sun, the longer it ta.kes to com-:
plete its orbit. Kepler first supposed that T, the planet's year, is’

proportional to R, its meen radius about the Sun. He quickly found that '
- T increases faster than direct proportion, to double R ‘more than

doubles- - T. The law is hidden;’ eventus.lly/Keplervfound it: The BQquare
of T is proportional to the cube of R. X N ' ' .

: Kepler's published work is a hodge-podge of astronomy, astrology,
geometry, theology,. and a miscellany -of oddments: he sat astride the’
watershed. Yet it is intensely interesting, for unlike Galileo and. Newton
he did not try to. cover his traces., His con,jectures, failures, successes,
errors, insights, ‘fallacies, obsessions, are all revealed with disarming
franlmess.. No other man of genius has been so open about his wild goose
chases. But Xepler's work is so full‘f competing idesas that it remained
for Newton to separate the wheat from the chaff, to discern the :meortance

of what Kepler did not ,hims_elf f‘ully appreciate =~ ‘his three laws., :

45
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) " ._'_lg. . 3 . , n ‘-1..
iy 1.2.9 Newton's Problem of -a Cometts Path -

36 Lo . . ’
'172.8 A Word to the Teacher - 5
What is the primary importance of Kbpler s work for the high school, )
mathematics student? First that there are applications of trigonometry N

. on the grand scale. Trigonometry, as we have seen, made computation of
Mars' radius vector pOSsible. What could even a Kbpler have done- without
mathematics? ‘ . .

_Second, we see the role of what is usually ill~described as "trial '
and error", better put as successive approximation. Kbpler, we. recall

" starting from the working hypothesis of uniform gircular motion, deter-
mined the‘Mars year TM only to conclude finally that. MarS' motion is

neither circular nor unifonn, but elliptic and non-uniform. )
' Doesn't this appear. paradoxical? The initial hypothesis that

and Mars have uniform circular motion is- erroneous, yet a’ good ap

tion to the truth, Note that the calculation of the synod is not inval-
idated by the orbits of Earth and Mars being non-circular:‘ the coincidence
. of aur celestial clock's-hands is indepcndent of variations in their lenigth
~ and dependent only on the uniformity of their rates of rotation. Also,
as.luck. would have ' it, var1atlon in the Earth hand's angular velocity is
" less than that of the Mars hand, so that a good approximation to the -
Earth's orbit suffices to show that a similar assumption for Marst orbit
is unacceptable. " More accurate- observation d? the Earth's orbit. leads to

more accurate detennination of Mars?, N

o
§

g conclude this seci:ion ’with :1 pro'blem ' Calculus is not necessary,
but will need yourftrigonometry. Newtdn,‘in addition to his monumen-
.tai'Prinoipia took'the trouble tor write a book'on what we now .call high

A;school algebra. And: what'is the main'point of Newton 8 algebra text? The

same as Descartes'° to solve word problems--thereby demanding, among other
things the full comprehension necessary to translation of problems from
prose into mathematics Newton s problem in good old-fashioned .English
is:l "To determine the position of a comet's course, that moves uniformly

S dn™ a right line from three observations Fig 27 illustrates the prbblem.

’
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: onometric function of 8 -- the nicest is the cota_ngent.*

/{[‘o Fixed- 'S_ta.r'

Figure 27

Newton knew perfectly well ‘that a comet does not move uniformly and doys‘
not move in a straight line. What is the path of- a\gomet? Yes, ‘an
ellipse. But, don't you see‘, a straight line is a first. approximation?
Here is the first step in a- sequence of successive approximations. What

is observable? 0 stands for Observer. O observes “the comet at A,

at B, a.nd C and notes in each position the star with which it coincides B

or most nearly coincides. ' The ang]l.es subtended at 0 by these fixed stars

are measured i.e., ® and o' are known. Also O observes when the comet

is'at A, at ‘B, andat C, so that the times t end t' for the comet

to pass from A to B .and A to C are ‘known., In sh'ort, given w, w!,
t, t', and that the come"t’s motion is uniform, we are required to find.
the direction of ARC. This is most conveniently determined by finding .
B . We conclude with one hint to find B we must first find a trig-

) *See Mathematical Discovegx, Polya, Vol l, D.. 5k, problem 2.63.

47
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© Section~3. ‘Sucdessive Approximation

We'bégin by repeating a point:. it is important. "Kepler started

from. the assumption that Earth and Mars move with precisely uniform

ircular motion dround the Sun as center,.to finally arrive,at the conclu~-
sion that Mars moves neither in a circle nor uniformly; nor is the Sun ‘the
center of its orbit._ Tb the uninitiated his argument like. the orbit of
Mars itself, appears to be circular., But scientists habitually argue this
way. «from a working hypothesis given by proposition p Ve are led to the
conclusion. 'no; not p". This procedure is often described as the method

. of false position. From a "false" (inaccurate) start we' proceed to a
-~ "true" (accurate) finish: beginning with what is only approximately

correct we reach by’ successive diminution of error, if not a dead accyrate

- result a much closer approximation.

3 ‘,f_y

.:-pages. Doing this we turn up, say,

. The method is well illustrated by- the way we look up a word- -say,-
CONFIANCE,}in a Frerich dictionary. We open the dictionary at where we eB--
timate the word to be., If the page ddes not contain words beginning with

- C “then we have made & poor estimate ve have judged falsely the ~position -

_of the word; we have made a false start. But~a poor estimate can be a
step in arriving at a better one; a false position can lead to a truer.
%Neft estimate turned out ‘to be & page

(more accurate) one, ‘Suppose our

.of words beginning with B, we est_l te that we must turn on five or six—

Wbrds beginning with’ CA. We have " -
arrived at an improved position, But we want C- to. be followed by - O,_ .
not by "A; we have found the word dorrect to the first but not the
second, letter, If odr next estimate ‘gives us CO ... we have found

-the word,correct-te at least two letters-~ if incorrect.and faced with.
CL we turn forward; if faced with CZ we tum back. Well, you know how’

. to use a dictionary efficiently'--but did you appreciate that in 80 using .'.

:i method and see the idea in action. L

. old.

1

decimals? ‘ : ,3”
/

. Full eppreciation of a mathematical meth .,,J
V
talking about it, only by intelligently using it.

1: 3 1 “First Application S
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. A loaf costs half a dollar.

" neglect it, and our

2

. ‘
t -

what is the price of a loaf? Can you do it ‘in your head? Try. -Let x
cents be. the price of a loaf, then ' '

..' i ‘x_25+__ . ¥

80 that '

instryctive. wayof doing it. -
To prevent ourselves sinking too: deeply into the particularity of the

_ There is for our purposes a much m

problem, we generalize by taking a cents instead of 25 cents. This is
an enormous advance which enables us-to deal en bloc with a whole - family

éf problems our problemr, its brothers, 3 sisters 3 cousins and aunts.' General-
ized the problem is: find ‘x, given.that '

R B x_a+-§‘.‘- 1y —

. Obv'iously ) the solution]" : x.= 2a;. yet-a person with the outlook of a

practical engineer might be enticed to tackle our problem in the follow-
ing complic'ated, but

*

pst ingenious, way: g is less than .x,_ so let us

itial approximation X, is e S d
{ N . o . . . A

o ) ) _ o )
v i xo =a. . . (2)

' Obviously this approximation is too small, but it is only & first trial.

Surely we can do better than this? What happens when ve substitute (2)
“in the Tight-hand side of (1)? Iet's find out.

g $ 2

Our new.-approximation :

’él (conveniently called “the first") is g‘; g
R R ‘ . x X . *‘ 7
x1=a+—ég—a+%. . .
This is better, so .let's repeat the procedure,.i.e., consider a seco’nd
g approximation X, such that.
X, =a+ l'(the preceding appro_ximation)i
2 2, o T .
i.e., " R ' : ' )
' X 1 a  a
. : xe.; +-—2—,-_a+ (a+ ) .+§+.E"
Better st"ill:i ’Nothing succeeds like success.; What is 3
SR x o .
- - sa a. a
S e g oe—m = = = = + e
e % e %a +3 ( a+2 5 + E)‘ + I *E8
Satisfy yourself that. Co ‘ '
. x) = a*‘*n 8 ‘15 - ‘

. Ve can repeat this pmcedure again and again. 'Although we will never

' reach the true value, we can come closer and closer to it & This is

- readily seen in the following way. Take a number line’ in 3hich numbers




“9 X ) - ~

appear as distances , 8O that a 1is represented by an abscissa. ~ See

Fig.‘. 28- Y
B (
L &’ ,
1 ' : : o
. X i & X X L
el ° P > 1]
el e ] -
‘ a+fe2.8

]

Figtire 2B

Observe that 3: (i.e., a) is. halfway between O and 2a, o x l (i e. ,'
a + -) is halfway between x, and 2a. X, (i.e., a+ - + -E) is ha.lfway
between 'x, and 2a, and x3 (i.e., = + —- + E -8) is half‘way between
L%y and 2as In other word,s » X is obtained by adding half the dif-
5 'ference between X and 2a, . X5 As obtained by addigg haif the difference
. between X and 2a, and 80 on. In making the n’ approxima.tion
xn we take ‘half the preceding difference (i €., between xn-l and 2a)
~ Since we take half we leave hal.ﬁ, since we leave ‘half th‘ere is always half
left.. Thus. no matter how many successive steps we take- we ‘will never
get the exact solution to (1), 5 yet every step must give a better approxi-

.mation than its predecessor. Observe that xl is 2 short of _2a, X

2 : 2
J . ..a' K y
. . is E short. of  2a, ,x3v is 8 short, !-I» _is 36 short. But these
‘ denominators, 2, 4, 8, 16, ‘are powers of 2. Putting this explicitly,
: % S . -
-we have . . . ‘ : : o
T a T a i ’
s y=etz=2-3 .
. a . a ©a
’ N Xy=8+5 +—0 =28 - —
. e 2 "2 2
- " L a .  a ,8a. o .a
L X, e to+ 2+ B _pg B
372 2 3 23
: a,a ' a a a
X, =8+ e b = g g
b TET 2 T3 o o
a a a . a a ‘ .
X =atst—s b=+, 4By B (3)
n. 2 22 23 2n B ‘211' ) i

i Our alge’bra‘ 'onfirms our geometry.
‘ This /;‘esult invites generalization.’ What is the pattem exhibited
by the sequence of terms of xn7 Each term (except of ‘course the first)

- -
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with the (n + 1), Ve have -

" we have’

R

: is % of tne one before it But ourfsequence would still'exemplify this

pattern if instead of the ratio of a ;erm to its predecessor being: 2,
it were %, or ;, or %%,. Generalizing, let” the ratio of any term

to its predeceséor'be r. . The first term is' &; what 1s the second? ..
'YeB; ar’, anﬁ‘“the third term is ar2. What 1s the nt-.h i
n-l terms after the. first: and with each another facto

"0 that the 1" term is er’ . I.et 'S, be the Bimiet . 1

D L Sﬁ'e a +ar + ar2|+ ars + ey + arn-g ra®t, (h) -

! »Any sequence of this pattern-- in which each term is.in the same ratio to

its predecessor-- is said to be a ‘geometrical’ progression. o 1
' Since anv—te;;:is obtainable by multiplying its predecessor by ‘T,

it Tbllows that to. multiply each of the first n terms by v 1is to-

obtain the sequence of n terms which begins with the 2 and ends

.,-.‘

Sh.:.a + (ar + ar? +.ar3 +..;. + arnf21+ arn-l) -
‘r .8 = (arl+ ar2 + a'r3 ok ar® 2 + arn'l) +ar” .
Subtracting,

(1-1)..8 =8 +(0+0+0+...+0+0)- ar’

so that = .
l R el . ' N »

=g . . o 2

CSpmecTT o (5)

. Does (5) check. against (3)? If in (h) we put T = %

. R
a : . ..
B . S ,
22 ; '2n—I A e R o .
Comparing this with (3) we note that x; "has an extra term, f.e., (n+1)
terms: to make (k) and (5) applicable ve ‘must write n-+ 1 for RE

Doing this in.(h) and (5),-(with" r ='§ of course) and equating them,
we have . s . K . . .:~ ] - ( )n+l . -
+l=a+ﬁ+f_a;-+...+ al-Fa=a-. - - .
n+l - 2 ..22 on- 2 , 1 -;%' R 4 -
SN { — 1. ‘ '
=TIV e n+l' ,
= ‘2 | ‘o.
=.2a - j%. ‘ .
S 2 E *

It checks. 'Solution of our, little problem about the -cost: of a. loaf, by
the engineer's ‘method of successive approximation, has led to discovery ;’
of -the formula for the sum of a geometric progression. . Oh yes, doubt~ '
lessly it has been discovered thousands of’ times, but this makes the -
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resuli', no 1ess a ne.tural ow:omé of our deliberations. Vi

1.3.2 Extrs.ction of Sg&re-Roots e . ~' . ~.~.~
© 7 let us consider a.nother exs.mple of successive s.pproxim.s.tion _.f- Perhs.ps
_ you cen quote it from memory correct to & few decims',;l. places and probsbly' you '
te.p.ch the "sta.nda.rd textbook method" .of squa.re root ex;:rs.ction to your cls.sses. '
“You ¥now . the method I mean: start e.t the decimal point e.nd palr off the digits :

, before and after it then from ‘the left-most number, i e., the number denoted by ‘
the digit or pair of digits of the first "pair", subtrs.ct the gres.test perfect
squa.re not exceedi:dg .it and ... . Well‘1 YC)U know how it goes. Of course you -,
. can tee.ch‘this method if you insist .- I' had it inflicted on me s.lmost seventy o

yes.rs ago. T didnt't understa.nd the res.son for it, s0..I hated i‘b. I still
But you can teach a different method; more interestin”g, becs.use it is

immedis.tely intelligible H more useful, because it has an inrporta.nt genera.lizs.- L
-" tibn. By hand it is a.little slower to use tha.n"lrh&."sts.ndard textbook method" .
with e. desk calcu.lator, quicker. You hs.ve to mske up your mind whether you wy

S

,' . wish to: teach rap!.d’ compute.tion or a methqsl which 1ee.ds somewhere. cT e
AR  To. e.voi& d&p&ication of material, the" reader is referred to the’ "divide

' s.nd s.vers.ge method of finding square roots.\ See P for exa.mple, _High School
Ms.thematics,‘Uhit 3; PP 121-130, University of Illinois Press, Urbe.ns., 1960
First Course in Qgebra, pp 301+ 307, Ye.le University Press, New Haven, 1960

ﬁ. R Or i ,..»_k.,

' Section L. Newton's Method o'f Successive Apg oximation B

Successive s.pproxi.mation is an i_mporta.nt mathematical method it is the
very essence of sclence. Although s.lmost invs.ris.bly in science we must begin -
with what is only an approximation-to the truth we »need not rest content with

o it. A crude s.pproximation ca.n be made to les.d to 'a less crude s.pproxim.s.tion,
a good s.pproximation to a better one. Ths.t the notion of xs‘uccessive s.pproxi—
mation is a key to mpre exs.ct knowledge ’ makes it a worthwhile study.

-

l b1 The General Method of Newton . . .
.' Newton devised a general method to find ‘thé roots of an. equation, ths.t is, .
- to, £ind- the values of x such that f(x) 0. First of e.ll, to get some idee. )
where .the roots lie, ve sketch the functiona.l rele.tion ¥y o= :E(x*)x Suppose

ths.t part of our curve is as illustrs.ted > Fig. 29.

u
"




Note_tl‘{at at P _
o ordinate 1is zexo,’ so tHat f(x) :
. or abscissa of P is a. réot oftt (

generally we cannot expect to be so lucky. :
' ve find f(x ) 74 O Thus it turne out 'that xo i_s_.merely’
an 'afpproximation to the root. What to do nexb? o S

" Newton tells us to do something both simple and effective.» At Po, IR
where c@-ordina.tes are X 0’ f(x ) 'y ~dre.w the tangent to- the curve. SuPPOse
this tangent to meet the - x-axis at 2 point, Al with abscissa xl, then .
xl "is seen to be’ a‘\better ‘approx1mation. See Fig. 30.

. T oo
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he curve with ,the abscissa i = ;

. ange 'cut the x-axis In & ;;c'aint A2 :‘with abscissa
e X5e '».-Bepeat the p'rocedure-.~ At P the poin,t on the curve with «Fhe ab-, ,
R -scisBa x2 of A2 y. draw a tangent to the curve ‘to cut the x-axi

" point | A*3~ th abscissa. x3

':'equence of points Ao, A.l A2, 4\
hat %, xl,

Xpr X3
quired root. See P.Lg. 31..
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[ 28
-
[ O
2
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et 7
R
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) ' Btgt ‘t;hough it is evident that in prlnciple the procedure may be repeated
0 unt;.l a.ny reqluired degree of accuracy is obtained, in pra.ctice there is

Figure 31

> a. limit to the number of repetitions possible with pencil and graph:

'_'paper. In our diagram ‘the thickness of our. pencil line for the tangent
The role of geometry is to illustrate .

. at P3 defeats f‘urther agcuraey.

b', ., the method; for its unlimfted b.pplicatlon we need a formula.

. 1. h 2} Newton's Formula

B See Fi{SE
o Coam

5,"7 ki
T
*
P
. s
» o
R | :
. . R -
: R | @ : M
AT o
Y .
3 5
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b . . i - .‘
. ) . :-Flgure;Be w. v )
? - . o . . o ‘ . . . . | e . ,
. ‘Tn N\)Al _ ey 4 . :v .
.' ’t‘. r = . VE_IZBE.cal rise . o, o ‘x s ; (1) )
. &ﬂ‘ = horizontal a.dVance = AlA % _. '

A.nd hara bhe differential calculus comes in usef‘ul for- tan 7. '1s also

thg slbpe at P of' the tangent to the curve y =f(x). We recall that
“the sloge of . this curve at the point (xo, £(x )) -4s ‘the yalue of its ® ,
dif}‘el‘eﬂti&], coefficient _d_y_. when. X =, “%gr ‘Or to use a.n alternative - '

notﬁtioﬂ, “the va.lue of f'(x) when ;c :Xge'« The la.tter is expressed with

cm;‘\efli@nb notationa.l comﬁactness by, f'(xo) So, in short, -. :
T ey, L@
P . FroR (1) sna .'(2) N D
-’ \‘ ry v ’ ~. .. L
. . :‘ "~
givhaR .
v W’
b ’ ., f(x ) s
R —m % - % -
R N .
so Anfy ’ f‘zx ) 2
[N y Py xl = XO - 1 X * ‘
! » 0] - ' ot
v ¢ ,"A . “




. E Given xo this formula enables us to compute xl.
- of Newton's method is its: generality, xé'
o ox Xy from x2 in exactly the same way as 'x,  from " X..

o 0.

Q similarly, .

ve
]

¢ and Newton's famous fopmula, in its full generality, is

f(x )

il T *n T T(x )

formula to work for supposing that successive approximations are better

approximations, it is nevertheless prudent to test it. To " be chary of

Yet the efficacy
will be computed from X and
That is,.we have

N7

'Although there are excellent intuitive grounds for supposing Newton's

¢ “the untried, hesitent to accept the unproved, is the very first require-

ment of a scientific ettitude. So, let ms try it out.

143 Ja . L

e * “y

. Supposeéthat we wish to find. /— the positive root of -
- } 3 . o . f(x) = x2 -a=0,
" Here, . '

.t o Ve - f1(x) = 2x :

so_that_applying'Newton's’formulae, the right-hand side of our required

- ‘equation is : : R : 3

L - T . X e
e - : 2X

1"15' . ‘ - RN~
: ’ : . JX - a
. atn T
nel T xn S 2%
L 3 , .
- Hence, . ,
N . . ¢ ! X_.
. ’ X = X LI
- ndl T n .2 X
Nt n
! ’-e‘ ‘X +'i
X, noox,
R .
= — -+ = — .
2 2

O
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. But)
T -' . B . -E- =8 ’ o
, T % T o o L
L n N
\ . . T - a : g » s 8 Lo . -
'-BQ that if X, is an overestimate for a then P is.an underestimate, -
: . = ' ' . : n
‘‘and conversely. These considerat*bns-are consistent with xn+l’ i.e.,
. " the mean of 'xn and iL being a better approximation to a. than X N
el ’ n .

’~»;;q2but do not prove ‘1t. . So let‘s get down to brassvtacks . Suppgse'we wish

to find /3, and that our crude initial approximation (x _where n =0)

el 8o 8 _2_ 5
s Xy 7.2.. Then > % ° zhf‘l,
. om0 ‘ -
so that .- o .
. T -~ 2+1_3
I B -
Thus,
& _ 2 k.
x, 3 3
1,35
. 2
and 3,5k
-, g‘ _2 3 _17 . - .
et 2 T 12t .
H - .
erce "
. & __2 _3 S '
{ X, 17 - 17
v 12. I
and - L l'_-(__‘_,& A
. 1 17 %11_
3 2 408 ¢ .
- Our successive approximations Xgr Xys Xos x3 are ,
B s 3 A % “ . -
& 2J. 12? - ’ v ; . .
L whose squares are o o , _
'2 T127 h08
. .Letting the facts speak for themselves is a strong argument. ’
58 ]
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To further. test Newton s formula, suppose that we wish to find the cube

‘Toot of a, - the (real) root of

f(x) ='x3 - a.
‘Here j
B £'(x) = 3x
8o, that , N .
- . & = x .8 : N '
n+l . n. 3x |
Hence, N .
X =B, 8 .
ntl . “n 3 2
ST 3x
. “n j
%, A
L3 2 '
. 3x,
. ‘a
. 2xn+'—2' '
. X :
Y n .
. 3 _

At this stage it is illuminative to take a numerical example.
we wish to compute /-3 i e., to find the root of

__— : £(x) =

Suppose'tﬁat

26,

Evidently 3 is a.better approximation than 1, 2, b, or 5, 'so let us start with

X, = 3. Consequently 3% = %?;'
TR x : -
Since
s 3 . 3 . 3

33 is greater than /_3 yet note that
' 26
9

: ¢ (3- 3) =

v

% ig "less than 3/2_6. But-

pinohed netween 2

Consequently
. L4 Y
5.end 3.

9- :
Alternativelyj‘if we take x

5

between lj;

25

convenlence of a close in1t1al épproximatlon

Returning to our computatlon with Xq

‘%

.. .,*

-

O
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{say), then

-and 5,nﬁitp‘plenty of elbow -room, so-to speak.

27 > 26.

(¥ - V).

, eo that 3/56 is already

8"
...2—9-

2

—_—

= which ieaves Y8 -

—

. B v

S
. We appreciate the
i _—

)



O

ERIC

Aruitoxt provided by Eic:

o and to’ calculate it from thelr numerical values to as many significant figu.res

50 . .

so.thet = - T

converseiy.' ‘But, . . S _ c0_

. 272
80 _ |
x =% 2962...'.'
‘a 2 g
_4—2=—12—_2961...
& 8
2
. 27

=) that 328 1s already pinched between 2,962 and 2. 961, and 1s therefore 2 96

"correct to two places of decimals.

Continuing the’ computation s we have

8 . 26
a D o = 4
LY 2T . gof -
%, = . FE
2 3 =" 3

. . Lo . R
It 1s left to the reader to show that 328 11es between | X, mnd
N 3 s ) 'v . . . :u“ . . 9 h x2 ) ! ,

as 1s pemissible . . L

: ) o t _
1.4.5 5JE : : o -
’ Although there is an algebraic formula for the solution of the general

) quadratic,' and v'ery complicated formulae for the cubilc biquadratic equations, :

- it 1is ‘impossible to obtain such & formula for the general equation of degree
5 or higher. In real life, to; gbve actual problems, we are obliged to proceed

at
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by' approximations 1 'by arithmetic procedures that give successively better

approximations. . .0 ST o
o ~To conclude our testing of Newton's formula let us find 5-fa, 1.e., solve -
£(x) = :? - a. o
P A -\
- Here, . :
R £1(x) = 5x :
80 that ‘ ' o) E
| ‘ x =x - DLy --R
n+l n f'Z'x'ni " n st * :
~ Hence, - o n
n ., _a_.
xn+l xn 5 + 5—}?:
n .
Lx
n, 6 .a
, e = —5— + —-E .
5x. ‘ .
n
) bx + _aE
. X - 'Y
' K ’ = ._£ - -
. L . . 5

Everybody ms.kes mistakes, nobody is infallible., Whereas we cannot avoid
_  meking mistakes, we can ms.ke checks to avoid leaving them undetected s.nd there-‘ '
a", fore uncorrected. Do qur formulae for x .4 for 2/— 3/_ 51/71 exhibit some
¢ t‘em? Yes, the pattern that for U

Proceeding as on previous occasions, we have s ~'; AR e N

'.—h- (x-xn-x-x)—a—swf— (51/— 1/— 51/—)

Ve _xn _ . i _' _

. - . N
From consideration of this it.is evident that if xn is greater than .5{3 e e

“then ,_ah_ is less. than 5fé, and conversely Consequently 5/— must lie Sk ':
. . N EI |
between x and ‘—E And similarly if x a1 ;4 51/71 then the root must also e

lie between ‘xn+l .and T— : Now suppose. that - x, > _E’ then - VY ‘

el v T , Lo

: - a : v .
» hfxn x >_l+xn_+_.—1: o L
Lo o B C
- so that -~ - C R . - o
. . o ,hxn+—1: R ) . S I.
. . - 5% X _ o .
A . ) n> A n » } ‘.". o

O
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) " e/ ’ -
*n >xn-l-‘lf (2) .
T<x
x - .0
n ] . - . A
a . &a - a
I#-E +—E<,+xn +_E . .
X X . X f
n n o .

Y ' o .
< Xpge oo . (2)

. n _ 0 S

From (1.), (2) 1t oij:o'y_zs' that .xn+1 lies between X, a.nd —a,; . ‘Also by (1)

X . 4
n . .

-

:}:én+1 1s necessarily a closer ﬁp-
33. closer lower approximation than _’I

‘.'_..? "
! wd ‘n

We. thus! g
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Chapter 2. . From the History of Mechanics T ‘

Mechanics is the study of the- action of forces ‘on bodies. “That part _ )
in which the bodies are at rest and, consequently, the forces are in equilib- o

‘ rium, is called statics in con‘trast to the other pars, gmamics in which

the forces are not in equilibrium and; consequently, the BYodies not at rest.
‘Here we sha.ll be concemed with the simpler and first-develop)ad branch, _' o
statics, which is conveniently introduced by consideration of the contribu-
tions of Stevinus ant Archimedes..- Alth)ough the first real- achievements afe. .a

cuss the latter first. - _l:'

' .2 . -. ° -‘“‘,? - . . . 1_,‘;-
S Section 1. é&:EVihu‘s and Areh’imedes

due to Archimedes and. preceded -Stevinus? by many centuries, I prefer to dis- a A

' Stevinus , 8 Dutchman, lived iri“t'he l6th Century 'y contemporary with'
Descartes, a century or so before Newton, Leibnitz, and the invention of the , »
' differentia.l cachLlus. - He was a brilliant applied mathematician‘who was fas-
cinated by the usefulne‘ss of mathemat;_l,cs' for Stev:.nus, mathematics to be _
.good had to be gon for something, He was one of the first to use decimal
fractions and showed their _useﬁllness for everyday affairs, he’ invented
' the first ’horseless carriage., and he constructed dykes, whiéh ‘atill serve

T

I T
R -

" Holland- to this day. His achievements are commemorated. by his statue in his
-native city ) 'Br’u’gge. Iif you ever go there, look him up. Meanwhile we. shall
consider his derivatidn of the Law of the Inclined Plé.he. '

2ll Tnclined Plane, L ( T -

“ Even crude, casual, unavo:.dable everyday experience presents the curious .

. "with questions. Indéed, the simpler the experience the: rore aifricult tq
' avoid meeting pertinent questions head~0n. _ No matter whether or nhot it in«- '
'terests us, we all know: that it is harder to puSh an object up a steep in-

cline than up a less steep the steeper the mcline the harder we neefd push. -
‘ An incline formed by a pair of planks ehables. s to slide into our station - .
vwagon a’ trunk too heavy to lift,, and for the same good reason the brever N _.."
' loads 'his ‘dray by rolling the’ cas‘ks of beer up. & ramp Brains decrease the - " .o
' 'need for brawn: th‘is -simple- machine has the merit that the ‘incline takes SR .
! ,part of the weight 'I'h,e curious naturally raise: the question. Since pushing .

‘up is less strenuous than lifting, what pre.cisely is the saving in effort?

It all depends. - Yes, but on what? Stevinus was curioyys j

After pondering these matters, Stevinus conceived%}g-le question in a
new context. hs "How does the pull {or push) to move a heavy body up an in- .

"cline compare with the force necessary to 1ift it directly?” was ‘asked in’
. i
,w

",‘I" . 83 ‘ . ) _. '

v

O

ERIC

Aruitoxt provided by Eic:



Iigure 1 .
T Since the tension w in the string counterbalances the force. acting down
the inclined plane, ths ratio pull to. direct lift is, wi:W. ‘But a ‘vertical

{plane ig a- special case of an inclined plane, so that the underlying general.

)

PR R X . o

Figure,E.Fn
-
"',vAnd the pertinent question, giuen equilibrium -What is the ratio of W to
ifw?'
o Our crude, uncritical, everyday experience suffices to begin an answer.’
We know that ‘the steeper the slope the greater the pull. When the angle of

=inclination i

zero, no horizontal force is needed to’ maintain W' in equi-
' librium, when he angle of inclination is 90 y 8 vertical force W is

necessary. Con ider, C “

O
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'dient of puzzling something out.. - By this method we
attention on the fact that the force to maintain a bo ;in'equilibriumuonfan. o
‘inclined plane is dependent upen the steepness of the '

consequently slide
but how much’ less?

Yes,

', que tion to consider several.matters of importance

raised by the foregoingb Eﬂrst that’ varying the data is " an impOrtant ingre-

by »__l
ave come “to focus_ppr

RENE

»clhm.
‘Second, in retroSpect many tac1t assumptions come to light We all

Ifknow that when using & ramp to load a- statlon wagon With,a heavy trunk if

We stop to get our breath ‘the trunk does not, necessarily slide back down f
the ramp. Frlction can be sufficient to preyent its sliding down when we ]

under the Weight W vas neglected. That friction at the axle of. the pulley
‘wheel would resist turning and consequently movement of the string, that the

;string has weight: and therefore the . length of it each sidé of the pulley
'fwheel is relevant that the string may not ‘be completely homogeneous, but

vary in density; that 1t is not completely erxible, but offers resistance

.:cehse pushing it up. We said nothing about friction. Next \consider the' .
.Zsituation illustrated.in Fig. That the incline might sag ever so slightly

to bending at the’ pulley wheel.:that the portion between W and £he’ pulley L

’ will not be abSOlutely parallel to the incline, but dependent on its density
.and flexibility, will sag ‘a 1little; have been neglected.

. Nature is infinitely complex; to render an 1nvestigation'possibleylits“

: complexity must ‘be reduced'to manageable proportions. ‘The friction of our

.o,.._ ) . ) L 60 t 5" . L. ' L N

]

-station wagon - loading ramp can be diminished by making its . surface smoother §



. e T C e
. N R ' ,
.;and smoother and Ey using better and stil’l bet'f:er qua“llty 5‘__

.....

‘_;,.approxima.tes the, ideal frictionless state. . Similarly, by us#g %hinner, morg
: flexible, more uniform string, ‘more rigid and smoother planes, &nd better "',.':-.f
quality pulleys s we mihimize *Ehe.: inYlue‘nces oF: minor c:[rcumstagl.ces‘#of Figi l

.solv1ng his probﬁmfkk%recise measurement and critical observat On.‘ No.- )
. Before he .could intelligently make use of measurements he ha.d 6 decide what

‘3
RN ~measurements could intelligently be made use of‘ :-To the contrary he solved

P " his problem by precise thinking about crude fact - His real problem was con-_t

r : -ceptual he: had to decide what %rcumstances vere relevant, what irrelevant
~and of the relevant what was ‘df ma jor importance and- what couJ.d reasonably '
.'.jibe neglected. It is precisely this controlled use of "the imagination, ‘this -

. _'conceiv‘:‘.ng of an idealized situation by abstraction from experience, that is

:"'the ke)( to discovery. Unti_'l. Stevinus had a theory he’ had no theory to test;

» his need for precise measurement was subsequent “to this theorizing. :

' _ We return to the problem of the inelined. plane itself. . Wna.t, with the .
;idealized cirooamstances of Fig, 2, is the ratio of W . to W for equilib-
'rium'l Deeply pondering this problem, Stev1nus appreclated th&t with no
friction equi_librium is 1ndependent of the shape of the bodies W, W Whether
these be box-shaped or barrel- shaped is beside the point EVen g0, it takes

" more than an ordinary exercise of the imagination to suppose bOXeB or, bar-

" rels to be replaced by’ rope or chain, Consider JFig. 1#.' ‘

(L

N
3
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closely interlocking links that adorned g, 'dfather's uatch and waistcoat.,
‘This, idealized is é perfectly flexib1° metal rope of uniform density.
ffhus the weights W, w of AB BC are considered proportional to their .
lengths, 80 that the .ratio ‘of W to w.dis ‘that’ of"_ AB:- to Bc SO our prob-v- b
lemgﬂnow, is to find the latter ratio. ‘Is there any .

fal prospect of doing

.

807 We seem to have taken 8 step in the wrong directiohq . T
. The measure of & giant is his stride! Stevinus wore seven league boots. s
}ki imagined what-very few of us would imagine,‘a elosed chain. Consider

Fig. 5.~ . : o e UL T e
N a Ty - 0 ' B vi;;,: A

o

inther the flexible homogeneous closed chain hung over the triangular prism

1§ in motion or it is not, Suppose that it is in motion in, say,‘the direc-bri; B
tion ABC., Consider a particle of chain, say that at “C. Since it is moving *

downwards there must ‘be a downward force acting on it." When it has moved, . ;;::
its place at C will be taken by an 1dent1cal particle. What now? The’ )
whole chain st111 occupies the position it had previously, although each . o - S
particle has moved 8 little, each has been replaced by an identical particle: S

S . . ,
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the overa.ll situa.tion rema‘lns uncha.nged. We are forced tq, concede that if : o
originally there ‘had been ar downward force acting on the chain at C then‘
there still is, Consequently,u if the cha.m is in motion origg,nally, then

:Lt is in’ motion foreVer But surely perpetual motion, a. free 1nexhaust‘ible
supply of energy,ais ‘a philosopher g pipe dream. The Dutch k.now that from .

nothing comes nothing, Stevinus wds a. Iﬁltchma.n. We conclude tha.t the chain
is in equilibrium. R oo _ ' : : ST '--‘

And since the whole chain 1s 1n.equllibr1um, the lower portion ADC ‘
is. Moreover, the chain being completely flexible, there is no resistance

; _Qto bending at either A ‘or c, so that ii: hangs symmetrica.lhr below AC. »

O
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Consequently the downward piJll on the rticles at A and Q are equal

conse‘huently ~hen tne lower portion ADC is removed « the upper portion _-.‘m'-w..

ABC will persist in equilibrium. This si'tuation is 1llustrateg1 by Fig._-.6.

D . . B . "
Tl S ) o
: e L. . R A Y

0 . RO Tt
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But obviodbly the equilibrium of the chain ABC will bevundisturbed

ot

by‘extending the triangular prism over which 1t rests. See Fig. 7.‘5

Hgne7

' Whether or not .AC is a base edge of the prism does not matter at all.
What matters is that AC is horizontal. Suppose, referring to Fig. 5,
that AC 1is not hor1zontal. Since AC "is no longer hor1zontal, th ‘lower
portion of the chain ‘does not. hang symmetrically bélow AC, so that the _

" downward forces acting on the particles at A and C are unequal. Conse- -
quently when the lower portion is removed the upper portion ABC -is no '
longer in equilibrium. ABC is in equilibrium if and only if AC. is hori-

e N

‘zontal. - - . .
In short Fig. 7 prOV1des the answer to the question of Fig. b, Sinoe,

.'in Fig. 7, AC is_parallel to A'C', the sides of triangle At BC' are di-

vided proportionally, e S A CoL
, x CBoi, :
. . - : AB-~ &'B
" And since the chain is of unifdrm density, _
e h ‘ .. ) . . ] ] im— _ E o . . i .
: : - EBTW - o .
Therefore, N S o ' x o
. w _BC' v oo '
W TR )

The ratio of the weights is that of the lengths ‘of the inclines on which
. the weights rest. .
Yet this conclusion holds no matter what the (arbitrary) inclinations
" of A'B and BC'. to the horizontal., Consequently equilibrium will still be

..69?" .

'
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¢ maintaj}\ed even if BC' 15 vertical, provided only that A'C'  remains.hori-T
zontal %is &i‘tqﬂ.tion is- illustrated by Fig. 8\ ‘ o s ) .
‘ - o . = .
. ]
- in::‘ :, . t{
- W8 S 'y
: ,
g
.
' . u )
. ~. -
3 . .
. : . , *
3 . ﬁ / T e
o
. , . , a. °
. '“ 1)
. -. .
v N ]
’ : ' o Figure 8 s
N i I i K
. Here [ ' - . . . o " : 3 i 7 . 'Y ‘. ) .
. 2 ? | BC',' o : o -
. . _ FE = sin g .
. Yoo R S .
. Sotmtw (1) C - S e ' - ’
' = ' ;m=s8inag - : ' .
.v | :“ '~ ' s . w . ‘ . ‘ 8 . “.
giving . - : S o
» - . X .
' N w=W-Sin Q. P ’ (3)
Tt remgiud Iﬂez‘ely to remark’ that ‘the counterbalancing tension%ctinnz at B,
}
and cgnﬁe%gntly the equilibrium of the system, would be unaltered if th%
. homogenﬁoﬂg thain vere replaced by a weightless string with a weight W at itd.
» left E.nd 8 ,;gight w ' at its right. We conclude that equation (2) is the 3
answver '50 h}de Droblem iq.lustrated by Fig. ‘1 and to the original question = .
!
. MHow doﬁs tpe Dull (or push) to move a heavy body up an incline compa.re with o
. the forfe \geeSsary to 1ift it directly?" T . .o
' It 3% prudent to check conclusions. (3), when a=0°, sin a= 0,

80 th&t ¥ ~ 0, and when .d: 900, sin ¢ =1, so that w =W 'Ste\.rinus'-
'formula 19 ortect for'horizontal and vei‘tical planes. We have reached the
‘stage, éh‘vggqﬂeht to theorizing, where precise experimental measurement is®

» .approprﬁﬁm »-‘to test the. theoretical results for intermediate cases, . At .
‘this Dotub é‘tevirxus had a theory to test,: and tested it. The theory satisfied

706 -
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‘the exa.miner.' - T - , .
5. His solution, obvioue to hindsight r%quires the foresight of genius.‘ .
Ve cannot force ourselves "to’ get such bright -ideas.

. The substance of this account of the inclined’ plane as that of the
following section on the lever, was taken from Ernst Mach's Principles of .
Mechgnics, of which a good Eng‘l.ish translation . (1893) of the original German“

(1883) is available. Mach besides being an 5}’19 pﬁysicist whose experimenta.l

SRR S, — S I

work on sound - is commemorated by the Mach unit was the outstanding philos-
opher of science of his day. To write this treatise he hed first to read
Archimedes in the, original &'eek, Galileo in Italian, Stevinus in Dutch and
qthers,’ in La.tin. .Modern specialists claim that there are a few points on

) which he misu.nderstood the original texts, “but when we recall that he was
prima.rily both philosopher and physicist rather than linguist occasional _
misinterpretation ig only, to be expeeted. Despite mino,r blemishes, it is a
remarka.blé work by a remar}qa.ble man: to me the most fascinating book I have

' ever read for I read it at the right time, when young, but net oo young.
It demands very 1ittle mathematics, but lots of common sense. It merits ’
befng read geveral times. - : . ‘ b

- .

0212 Tever , ' ‘
‘We are a perve;‘se lot. Although Archimedes (287 212 B c.) is aclmowl-
edged as the greatest of the Greek mathematicians 2 it is customa.ry not to .
credit hiim with what he 8id do and to c;‘edit him with what he did not do.

.+ His ingenio%s methods of computing areas and ‘volumes brought mathematics ]
to the threshold of !he integral calculus , yet the textbook gives full
credit for the calculus t30 Newton and Leibnitz. He initiated the science
.of mecha.nics by discovering the con‘dftions of edui‘librium of a’ lever, yet ’ ‘
it oftén 1s said that he disgvered the lever itself-- despite Egyptian . ‘S
pyranid builders using levers thousands of years before he was born. an

Here I propose to.do no moxe than introduce the reader ‘to the train of*
‘thought underlying Archimedgs' aiscoyery o fne conditions af equilibrium of
a lever. For a complete acﬁount of his theory of Levers, read Ma.ch. L
Although in c.onsidering weights suspended by strings from a beam or H
lﬂver bala.nced about a ﬁJJ.cmm, Archimedes never ac&ially says so, context .
" makes it clear that the lever itself is supposed ta be rigid and weigl'rtless o
and the Btring weightless an& flexible.- We find inevitable idealization.

%is style is mathematicgl 3 he begins with explicit statement of his additiona],

non-c.ontextus’.y implied assumptiis. The first of these, consiﬁered so

obviously true as to be termed axioma.tic, is : - :
> - 'R ) 4

L7y . 2] .
‘\ . '... ; “. 71‘

o




Axiom 1. 'Equal weights at equal distances are in equilibrium.*
. . ' . . . v. T

It s of course understood that the distances are measured from the fulerum

and that the suspended weights are on opposite sides.. Fig. 9 illustrates
this axiom.< e ,

-

. F .
1 ! )
N . "j‘\'
o Figure 9 .
This a om raises two questions. The first Do we beliéve’it?"?Is it
z'the right uilibrlum of equal welghts? ‘But think a moment .

There could not be a correct rule or ‘an- 1ncorrect rule if there were na-
rules at all. So there is a second, yet logically prior, question:_,Kre'
rules‘possibie?_ It is tempting to retort, "Of course there must be rules,"
Of course? Must? ‘There is no must about it. We do not kmow. Yet without
rules there could be nothing properly termed sc;ence, and with no science
to pursue there could be no pursult-of science. We take -it as an article
of faith that science is possible, that there are rules; - :
Let us return to the first question Is Axiom 1 the correct rule
. For ,equilibriu*f equal weights" Obviousi].y.: We all know how to veigh a
pround of ‘bacon with &, pair of (equi-armed) scales. _Archimedes has merely
made articulate our cdmmon experience. . So his rule is "obvious" in the
'sense that ve are familiar'with.its exemplifications. -And vwe are all famil-
iar with boiling water changing into steam, obviously boiling vater makes i
_steam. That it happens is obvious, why it happens 'is not obvious, Ihat
: Axiom 1 applies to scales is obvious; why it is appliceble is ‘not. .
This brings us to the principle of sufficient, .or if you prefer, in-
sufficient, reason. This principle is 1llustrated by the story of Buridan 8
ass, Buridan was a scholastic philosopher vho is novadays remembered only

B .
LA ‘v_ ’ X ’ . . . . . ! LA

¥The Works of Archimedes, edited by T. L. Heath (Dover), p. 189.
. » B . . .

T ’ 72
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becaﬁse of his ass -- even though it is far from certain that the story of
Buridan's ass is Buridan's story.. But no matter whose ass it was, the poor
_creature found himself equ@dlstant from two 1dent1cal bundles of hay. Sym-

metrically placed between these equally sweet -smelling bales, the pooTr ass

" could find as much reason to &0 first to the one as flrst to the other and no

more reason. to ga first to the one than first to the other. And so, as’' a
consequence of the principle of sufficient, or’ insufflcient reason, it died
of hunger. ' T

We turn from Buridan's ass to Archimedes' lever, Lever, strings, and®
weights being. symmetrically situated with respect to the fulcrum, there
is as much and as Iittle reasonn why the right weight should sink as the left
should. Suppose that the right-hand weight s1nks. But which veighty’ is the
right—hand weight° View the lever from the other s1de and the s1de pre-
viously said to be the right must nov be descr1bed as the left. Thus a
.right hand rule is inconsistent. So, similarly, is a left hand rule. Such
rules depend uphn the point of’ view of the observer, yet the lever does not
care whether it} is observed or not. The only cons1stent adternative is
Axiom l.‘ ’ o ¢ . ) . ot _ .

“Archimedes makes a second explicit assumption.-'lt may have begn sugges;
ted by the following common experience. We all know that it is easier to
carry a ladder. with help then to carry it alone. Una351sted you take the
whole,weight on your shoulders; a8sisted, you share the weight with other
shoulders.' Consider carrying a (uniform) ladder with & fellow ladder car-
rier, ‘one of you at each end. Who takes the greater weight? Change ends,
As far as your shoulders can tell you take the same weight as before; you
share the weight equally. Thus we are led to argue that in the ideslized
'case where the ladder carriers are twins with shoulders the same height.
above the ground -and so forth, the- situation is perfectly symmetrical, 50 .
that each pair of shoulders takes exactly helf the ladder's weight. Carry
the ladder without help and.you put your shoulder to its midpoint to bal-

o

.ance it, .

Let us turn our attention from supporting shoulders to supported weights.

We conclude that the equilibrium of a weightless laddér rod, or beam with a

. weight ‘W suspended from ‘each end will be undisturbed by replacing both

weights by a single weight 2W suspended from the ladder's midpoint. And
conversely of course, W% aﬁ the mideint may be replaced by W at each
end without destroying thd egﬁilibrlu% This is (esseqtlally) Archimedes .

sec nd a?sumption. The coﬁtext understood we may put it tersely as

T g TR . M7

e : o ' : Y : . .

s
-”
¥g

.
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.

(A) W .ateach end = 2V in the middle (with equilibrium),

This assumption is illustrated by Fig. 10.

-

I

= |

~ ce ’ - S Figure”lO
) _ From Axiom 1 and Assumption A, or rather from & generalization of the
e first Archimedes’ La.w of the Lever is deducible. I shall give some insight
S - of the method of proof for the general case by cpnsidering specific examples.
. First, study Fig. 1. - .

B . r
. B F B! A
:
: W ' W
. Figure 11

'I'he five equal weights are supposed spaced at equal intervals, say,. unit 'dis-

tance. The- whole rsystem is symmetrically placed with respect to the ﬁLlcrum : .

. and so, by the principle of insufficient reason, in equilibrium. We have an
S al'te'r,native argument. Since by Axiom 1 the weights at A, A' would in-the

‘ absence of all other weights ensure equilibrium ‘while similarly the weights
e at B ‘B'. would in the absence of all Otner weights ensure equilibrium, as
»',_ would that at | F. we conclude that ‘the weights at A A B, B, and” F,

e together ensure equilibrium
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By Assumption QA) the equilibrimn‘of 'the segment AB of the lever 1s un— ,
changed by replacing W at k‘and at‘ B by 2W a.t C ? consequently,_‘  ‘.\“{,

..;

l " 1ts frpm the i‘uicrum

m-”‘!ﬁmm i0s other- gide.

#‘2w1-1-

' Ba

e

i weigl“lt‘ distance from ﬂﬂ.cru.m
' d
;] . Le§ us consider another. spec:\lal i

\' . ‘/ ; S ‘ ANy '_Y.‘

pORRRE ot ‘ '
o . ‘ . A
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.- . : Figure 15
L. B .

Assumption (A) the

equilibrium of BA'
and W at, A"

by 2W at B';

3W act ing at

But

A
l__‘:
T

1s unchanged by 'replacingv" W dt

5 units from the fulcrum bala.nces
unit i‘rom it ‘

- ,‘," “,-‘ - . 76 :
.' ‘ , ”rw':‘"v.‘“. C . .
Q ’ ’
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"1.é.,'a351n': o o : J”:'ﬁ‘ v R
S S weight . distance - weight . distance. _ ;;;;

‘Note that multiplying (2) by 2 gives (l) or - T

L U Ci (L RICEE IR

i,e., C ;__ :

' w-3 3w-1.,

bIllustrate this alternative interpretation and use Archimedes' ‘axiom-to show

‘that equilibrium is obtained We can conjecture on the same general condi-

"tions for the equilibrium of levers. PR s

. _ Section 2 Vectorsv'_' ST R

;- . | ———— ) R . - . C-_
. . N __}

The notion of a vector arises quite. naturally and is'basic to physics and

. indispensible to applied mathematics. That it 1is clear from the outset
© -that vectors aré good for something mekes the topic readily teachable at "
: an'elementary level. That vectors are'becoming,part.of the high school N
' program is a rear:step forward.- N o » . . l
. " We begin with an example. A man is to cross a river from the left '
bank to the right.. Too lazy to row, he uses a motor boat. If his motor.
:fails to start when he casts off “he will drift down .river: with the tide.
;bLet us ‘suppogs him to drift AB. .in upit time. Seé Fig.,l6

ot L
R IR . ) o
R : LY L o : !

. A E
\ e e
- . b4
ki | &
T 5 .
B o V(/ ° 0 ///J.#'~
4 e = |~ 5
Bl al [ 3 .
: ] N
, & -
LIS g
A ‘ -
. ',.A LT ':'.' '..Figure 16
“If it is high tide so that there is neither a. current up nor down river,v. ~;'

Q,and his motor 1is working, he will travel let us say, .AC, in unit time.
.'_But, if both tide and motor are working, h1s boat will have velocities

.8 . Lo L
: w0
A




*»

due to both. Where"will it'be at. the end of unit time? - .
‘ The - answer .comes quite. naturally. Consider a special case., A,boat at
A. heading up river at, say, T feet per minute (about 5" m, Pe h.) against a *
down-river current - of the same velocity moves neither up nor down r1ver, %‘
w1th both velocities simultaneously 1t stays put relative to the river bank
At the end of a minute it ig in the same position as it would be at the end
of-two minutes Af it moved solely under the influence of the current with
no motor for the first minute and under the 1nfluence of the motor with ng .
, " current for the second minute. In the first minute it would move T feet down .

‘river with the current and in the second minute 7 feet back up the (now

currentless) river.. Thus (at the end of two minutes) it would be in the same. ‘f;

position after current and motor acted successlvelx (for a minute each) as it
would be after both acted simultaneously {for a minute) In short "the re-

0

sultant effect of both forces, current and motor, is that of each acting
“independently of the other.b .' . ‘ ‘
Thus, returning to.the general case of Fig. l6 it is natural to suppose :
that the boat will at the end of unit tlme, say, a minute, be at D, where ‘

‘e - s

: ABDC is a parallelogram. See Fig. 17. - : _ ,

o

I
I
o]

Stream
Right ~Bank

RARRIRR

“Left Bank

 SITTIREIRINT -

.Figure l?»

. . : "_ s 14 ‘ ‘ . .
. : ) .

'In one minute the boat acted on by current without motor ‘would drlft to ﬁ;f

I3

'B in the succeeding minute acted on by motor without current it would g0
. as far as (and in the same direction as) 1f it started from A instead of
B i e from B - to D. (instead o6f from A to C). .So, under the forces

due ‘to current and motor acting successively, at the end of two minutes,

78 S
Q ‘. .
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it is at .D. Alternatively conceived the .A ing at A, acted. upon

¢, and in the- succeed-

i“ng minute acted ‘upon by current without motor would drlft a distance . fl'.;‘.
' ”(from €) down river equal to £B, i.e., it would drifb from ‘C “to D

by motor without current would in one minute d

.Viewed either way the successive effects of current and motor (each acting
'for one minute) 1is for the  boat to reach D.‘ “Is* it not natural to conclude
- He thus arrive at 'Ehe Pa.rallelogra.m Law :of Displacements. L .

_ _‘ Iq half (or double) the time the boat's\isplacement down river will
‘_'<'~'be ha’lf (Or “double) AB say A_'B' and its "across river displacement
.- half (or double) AC; say % 50 that the boat g positlon resultdnt

.. from both displacements will be'\‘?‘ where AB'D'C' is a parallelogram of
:..'Sid.-?s half (or double) those of. parallelogra.m ABDC- " See Fig 18

/ » U / L .
-z S N
- = 2
S 'ﬁsli%e" 8,0

More genera.lly, since no tter what the time. in question, the ratio of< »

AB' to AB must be the same as that of CACY £6. AC, the position D*

vresultant from both the displacements AB* .and. Act will be such tha‘b ‘
parallelograms AB D'C' - ABDC, and hence triangles AC.‘D‘,\ "ACD o.r,e_. '

Q )
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It fol.lows by 'obvious geometry that D'- lies- on AD or AD pro-

We conclude that the path of the boat is actually along. AD But .

AB and, AC are the. ‘distances- the boat goes down and "across" river in

unit time ‘one.-minute s 8O that these displacements represent its component

-

velocities in these’ directions, and AD represents their resultant. We ¥
have the Parallelogra.m Law of Velocities. ' v

" Displacements and velocities are remarkable quantities. In additlon

to having an amount or magnitude they have a directlon or sense, 50 that it 15."':.:
is natural to represent them by directed line segments, or, as we say, ol ::
‘y‘ectors.. The direction of the: quantity is. indicated by the’ direetion dr s T
e i;he line. segment,,the ~magnitude Qf the quantity by the length of the line » .
segment., Precise,y because displacements and velocities are 'both veCtor . o
quantitles, the resultant of a pair of either is repr!sented by the diagona.l L
of the: parallelogram through the common pplnt of the sides representing the.

pair. Many important physical quantities are of the same nature - Boxers -

know the difference between receivin,g. a straight right and an uppercut,

“the direction of ‘the blow can be .crucial. We must antic1pate R Parallelo- .
gram Lew of Forces. Consider the s1tuat10n 1llustrated by Fig.; 19‘ R R

»

a4

'Ehe particle at A is. in equllibrlum under an force _ ‘
“a ‘force W2 along string AC; and’a. f'orce W al._ n "‘,"’Si'nc'é:"f?" ,\;“
A is in equilibrium under’ the action qf these three f roes; it must be'in .
equilibrium under any ‘one- of them and the resultant of ‘the other f,wo, in"

particular, A must be in equl]}ibrium under the action of the force along’ - ﬁ 9

-3
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2 AD'" a.nd the resultant of the forces along AB and AC. - But. it is clear " ) i
tha.t A Will be in equilibrium only if this resultant is .equal- in magni- L

tude to the force along AD' and acts in’ the opposite direction. . See .o

'Figaré- 20 . P S

o Exp’eriment confirms our expectations.v It is found that~ ir AB, AC, cand. -

. -,_AD' are of length Wl, Y and W units respectively, then the' fourth

.":vertex D of the parallelogram withssides AB, AC is such that AD is
s units and, D' A, D, “are collinear. “In short, 1f AB, AC are vectors

representmg COﬂlPOr!ent forces in magnitude and’ direction then the d:.agonal _
AD of paral‘lelog_ra_m A?é is~ a vector representing their resultant in mag-
nitude and direction i ol : ' - . - :

v Fas

Of coursée an element of 1dealization is attendant upon this e)gperiment

e

‘as on any other. 8 ]'_n sugposing‘ t‘he weights to’ exert forces l’ 2,
A,- we assume the étx,;ings to be we:bghtles,s and perfectly flexible, the :
‘.little pulffey wk;eels to be friptior‘fl.ess’ and 50 forth The nearer actual"
<conditions af'eﬁ made to approxima\te to the ideal, the more exactly is the
"Parallelogram Layr verified R -."«_-- T & e e

R
. < -. Y R to AT . . .
K . e ! ,:p. R Lo e -
= - & [V

2 Inclined Pland) N T e

Won

o [T . . .

7

Consider a’ body of weight W> in equila.br“ium‘ qn a Jrigid frictionless
, o I
: inclined plane of/.ngle Q. -8s !llustrated by Fig.” 21'

N

O
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) a force of opposite direction (but equa.l magnit?:tde) to the resultant of the ‘

‘A’ is normal to the ;lnclined plane. See Fil 3 _22(&)
5. :

he usua.l idealization, we infer that the tension in\ the stri.ng is w

throu8hout What 1§ w interms of W LR
'I'he body is: in equilib!fium under the action of three forces ) its own

weight W gcting verbically downwards y the tension L in cthe 'string acting

up the plane' and R the reaction of the plane., Since we suppose there to -
be no friction between the body gnd: the pla.ne, R cannot have a- cormponene sy
force along the plane- R must be normal ta: thé plane.' A.'Lso i R must be .

other two forces. But by the Parailelogram Taw of Fbrceé" the direction . '

. of the resultant of the othez' two forces (as. well as its magrritude) is rep--, Sl
resented by the. diagonal through A of the parallelogra.m whose sides with -

common vert;ex at A represent W'- and w. Qonsequently, the diagonal th'i

AR

o




R -~Figure 22(a). o ... ... . [TFigure 22(v) .
. ' i . . .ﬁ_' 3 N . s o . "‘ T . . e "
! FTom Fig. 22(b) e have that’ ¢Q¥UL AXEF are each complementary to ~ZEAB, .
‘,so-thati - /BAD = as and that since ~BD’ ll AC £BDA = 905.. Hence, since " v
TS AB =W _units, BD = AC.= W units, considering AABD, - ' 4

* - Lo ' . ; ' ' N - co
: e S ' : e T

o . XZeginag - -
- P S W S ‘ ‘
v -so/that o e S g ' : . L - SR g . .
7 ' R ' N Tw o= W.f sin a17 R ‘ N s

o "L
\
4

RN Lo ‘ o i . . o
*'M.“‘; .

_&Although Stevinus foﬁnd this result- in~a most excitingly original way, his
‘underlying principle has the disadvantage that it is far less readily. appli-, .

gcable to other problems than the Parallelogram Law. ' R
222 Pulley o : : S .
4 ﬂ;'. A system of pulleys enables us to’ lift weights too heavy to lift by - '._,“
. unaided muscle power. Suppose, for example, you must remove ‘the engine .
'from your car for a major overhaul.' Rather ‘thaa- try to lift it, you could
fileas strenuously hoist it out by thexpulley system illustrated by Fig. 23 i
4 ., e e
? -~ S @t .. . i ) ‘3 #
1 . » U . Bk ~ : ’
. . 0 - PR &
s . Y v « :
s . o N - e . J
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~ As usual we' suppose idealized circumstances‘ that putlling at el will
“1ift up the engine rather than bring down the roof. With frictionless
pulley wheels (the center of A begg fixed in pos1tion) a;:é weightless
q' rope_, a downward force of w at c will give the rdpe a tens1on W through- -;- R
3 out, so that B’ when in equilibrium will be in equilibrium under two upward “

forces of w' and a downward forg:e of *W. 'Thus, : ° e ' ’
' < ’ L . . . ! - ~' B . .
o '_ :'w+w='w Qe . P )
N . gi-i - Lo . . ‘. . . . ] A , ' ) EY . o E
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With any increa.se inf w, the g,engine is hoisted o s,
: "Note that this rEsult is 3a consequence of the Pa,rallelogra.m Law of .
. =X Forces if we ‘neglect the dimensions of‘the pulley. 'I‘he resultant of ‘the '

two upward forces, each w, is. given by completion of the parallelogré.m )
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Here we suppose the forces w to be equally inclined at an’ ang{l'e to the ..
vertical AE in opposite directions and investigate the position of D when
When "AB,’ AC B and C Dbecome
coincident, and CD Since it must remain paralXel to AB, will lie on 'AE
But CD‘ must remain equal in length to ﬁﬁ 80 that AD - will lie along AE
and will be twice the length of AB. Thus, by the Parallelogram Law ‘the re-
sultant is a 'force 2w scting vertically upwardd.

‘Tt .is left to the reader to show by means of the Earallelogram Law

6. decreas®s~to zeTo. collapse on to AR,

that the resultant of two equal but opposite forces is zero

-

o
223 Lever PR

. We already have some idea ‘of how Archimedes deduced his Iaw Of the Lever. -

o Let us derive ‘thig by applying the Parallelogram Law