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"Mathematical Methods' in Science" id'the title of a couXse. -
whichI haire given several .times atAanfOrd'Untireasity tOteacheis,

or prolpectiveteachers, of mathematics and T4e.f011owing.
pages-11resent those chapters of the 'Cod,raethe.Ceintents of which:

were n6tpincorporated in a previously printed. work. (See Mathematics'

anpcd')Plausible Reasoning,, Vol: 1, especially chaPters'III, VIII, and

. , ,

The following presentation is due to Professor Leop Bowden.of
.

the University:of yietOria, whocarefuily followed-1n the substance

of'a taPerecording,of the cours6but added severaldetails and several

picturesque sentences of his own. ..ome peCuliarities'of the oral

presentatiOn have been preserved:. ascertain broadness and some

.traces of improvisation.

One of the,essehtiartendencies'i).f.te course.is to point to

the history o'f.certain elementary *.rts of s4ienie as 'a source'of

efficient teaching in the classroom. Several historical details.`

are somewhat distorted: Apmeintentional;y, to bring them down to

the level'of,the highschool, bait a few details may be =intentionally

distorted, I am afraida -CcarefUl confrontation of the.pedsgbew.

mall appropriate with the historicall;yooriect 'version would be 7

most desirable, but'. was not feasible withirf the limits. of time, and

energy. at my disposal...A few non - historical niceties are alsp some-

what roughly treated, for reasons. of.space and pedagogy. .

I hope that the following pages willbe useful, yet they should

not be regarded as a finished expressioh of the views offered...

't"
-I wish to express myiwarmest thanks to. Professor. Bowden.

Stanford University

r.

July, 1963 -

George Tipilia
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INTRODUCTION.

In these lectures we will discuss:

(1).. Very simple physical or prephysical problems; problems that

could be discuised at the high school.leV'el. .

(2) The relation of mathematics to science and of'science to math-

ematics..This relation is a two-way street. Though more Usual,.

it is not always the case that mathematics'is applied to science;

also there is traffic in the opposite direction. Good drilcing

(3)

takes note of the oncoming traffic..

Elementary' Calculus; for without some calculusLone's idea of

how mathematics Is applied to science is necessarily'inade..

quate.

Aiso,,as their title indicates, these lecture's will deal with my

ideat:about methOds. -First,.let me say:that there is no one teaching'

method which is the method;/there:are as many good methods as there are

good teachers. To. teach effectively a.teaoher must develop a feel.lng

*for his. subject; he cannot makehis dtudents sense its vitality if he .

does not sense it himaelf.:Hedannot share his ent 'husiasm when he has

no enthusiasm to.share.' How he malteshiapoint 'MAY be as important as

the point. he makes; he must personally feel it to be important; he must.

develop his'perSOnaiitY. .

In my presentation ,I shall, by anA large, follow-the genetic method.

The essential idea of this method is that,the Order'inwhichknowledge-
:.4.

has been acqui'red by the human race will te a good order for- its aequi-.

sition by the individual.' The tciences came ip. A certain order; an order

determined by human interest and inherent aifficulty. Wthematics'and

astronomy were the- first sciences really.VOrthY of the.name; later came.

111P 'mechanics, optics; and soon. At each stage of.its development the hvnan

race hat had a certain climate of opinion, way of looking, conceptually,

he world.:The'neit glimmer of fresh. underdtanding had to grow out of

what already understood. The'next move forward, halting shuffle,
1. ,

faltering step, or stride-withisome confidence, was dependent upon how'

".well the race could then walk. As for the human race, so' for human

.child. But this is not to say that toteach sciencewe must repeat the..
v

4



thousand and.one errors of the past, each 141-directed shuffle. It is
to say that the.aequence inybichthe major.atrideaforWard were made
is a good sequence in which to teach them." The genetic method is a guide
to, .not a substitute for,luagment.

.

a-



apterl. From the History of Astronomy: Measurement
and Successive Approximation

1.1.1 The Tunnel

Section 1. Measurement

Astronomers have measured the distance of the Sun the Earth;

even the distance of the fixed stars. How did they do. ^Not by

strolling through outer space with a measuring rod. The distSnce. of

places that cannot be reached is calculated frtm46 distance of places

that dan'bereached. To measure the stars' we ,.get 'down' to Earth; coup-

logical survey has a terrestial base.

We'begin withs, terrestial problem. Due to increasing population

a certain city of ancient Greece found its water supply insufkcient;, so
. ,

that water had to-be channeled in froth a lake in the nearby mountains.

And since, unfortunately, a large hill intervened, thereWas no alterna-

tive to tunneling): See Fig. 1.

Source of
Water Supply

Figure 1

Working from both sides of the hill, thetunnelers met in the middle as

planned.. .

How did the planners determine the correct direction to ensurethat....

the twb brews would meet? *Cow would you have planned the job? FtemeMbh.

that-the Greeks could not use radio signal or' telescope,. for they had

neither. Alevertheless they devised a method and actually suc9eededin
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making their tunnels'eroMbotheides meet somewhere inside the hill.

Think about it

Of aourde,'had hot'the lake been on a higher level than the. city,

-there would-not have been gravity -66'.make the water flow through. this

aqueduct: But, to.better concentrate'on the cruX.of the matter, .let us

neglect the complication the to difference. of levels. Essentially. the

problemist'his. How dO We:determinathe would-ba iineofaight betWen
two coplanar points C and S .when a tili intervenes?' See,

...Figure a

Here we haVe a problem of applied geometry.' :How are we ;to construct

seggents CC', SS' of the straight-line CS 'without joining C. to

S?* It is not'permitied to traverse theshaded area:.
'

.

Thht which cannot be connected directly can only be connected

. directly. Let. 0 (0 is'for Oiltside).bea_point from whiCh both :C and
S are Observable. Joining ':0 to C and to S, we have the situation

,
.of Fig. 3,,



,.Figure 3 .

..
. .

Burely.this diagram must suggest application of the geometry of the

triangle. And,how do we specify a triangle? By measuring its angles and

sideb. -And.what angles are measurable in Fig.-3? Theangle at 0 can '

be measured, for C and S are both visible-from O. .Butwhat about'.

the angles at C andi,S cannot measure LOCC' since the hill inter-

venes betWeen :C, and S; and therefore the direction of "CC'. --is unknown. .

For the same reason we cannot measure LOSS', or the length' of OS. 'Thus
$:..,.,

the measurables are CC, OS .and the angle at 0'-- two sides and inCIUded

angle-4.sufficient to specify ROCS uniquely.

..Suppose that OC is foUnd to be 2 miles, 9S.' 3 miles, and 4!COS4=

rt.
53(3.: We can draw a scale model With, say, 0

1
C
1 '
'20inches 0

.1
S
1

30 in-
.

.

Ohesi , of course, with the included .L.C101S1 =.53°. And .since similar

tricadl ees are equiangular, it follows that LOCC' (Lew', LOOS ) -.=.

4f01C1S1, and LOSS' (i:e:, /PSC) = L0IS1C1. .See Fig.-4.. The problem is

:.sod veci.



Figure 11:

The alert reader will have already appreciated that the length of
-"14s7tunnel, and consequently the amount of tunneling for each crew is
easily deduced. The directions of CC' and SS' having been determined,
their lengths-can'be measured; from the length of CiSi in'the auxiliary
triangle the length of CS can be deduced by siMple.proportion: the
length of the tunnel is the difference belefeen

the latter and the sum of
CC' and SS'.

14
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1.1.2 Measuring:. Tfiangulatin

NeXt a word about the importalOWyractical business of making measure-'
6 .

gents. .Hclir do we measure an anglef46 We necessarily do it the same way

today as the Greeks did it two thousand yeare, ago. The modern theodolite

effects greater precisibrttis better built; the principle is no better,

it is :the sane. Its essential is ,a .Protractor. What is a protractor? -

An arc or the whore circumference of a circle divided into equal parts.

5

See' Fig. 5..

Figure 5

In changing our line of sight from OC to OS, it is rotated.throughla
.

certain number of subdivisiond of the circular arc. Since the amount of

turning is proportional to this number,. thejiumber.is,a measure of 4.11COS.

It is conventional fromBabylonian times to consider a Complete revolu-

tiOu.tobe 360 degrees, and therefore to divide the whole circumference
. .

into 360 equal parts. When greater., accuracy is. required and the protrac-

tor is large enough to alloW further division, each part is subdivided

into 60 parts to read off sixtieths of a degfee (minutes )which, in turn,



is subdivided into 601parts/tead'offaixtieths of a minute (seconds).

To measure Z.COS with great accuracy the lines, Of sight OC, OS
j

must be preciselyAcn . Precision is achieved by sighting the ob1ects

C 9.nd.S with the id of a cross hair at the end. Of a cylindrical tube.

mountedat :O. A m dery refinement is the magnification attained by mak -.

ing tTekube telescopic. See Fig.:6.

Figure

Yet no matter how refined the refinements, error is'inevitable. So today's

surveyor just as the surveyor of two thousand years ago, makes several

measureMenta,of an angle and takes their average* The measurement of gn

angle remains a fundamental operation.

The reader, who in trying his hand at, amateur carpentry, attempts to

makea picture frame without the aid of a miter box knows to his cost

how difficult it is to make the fourth corner fit. His sad experience

may tempt him to suppoSe that accurate measurement of lengths is easier

than that of angles. NO, when it comes to surveying the measurement of

an angle it,is a relatively precise operation. Toestablish a base line

a mile or two long is a difficult (and expensive) operation. It has to

be made completely flat. A further difficulty is that measuring rods or

16
0
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chainadhange length with temperature. 'Another difficulty is that the

line must.be..straight. The-men now engaged in the construction of the:

two-mile-long linear accelerator at Stanford could tell, you that measur-

ing anaes is much easier than Constructing a straight line. '. co
.

.
. .

When abase line 43 is established, the sighting of some_promineht
:,

distant object C, such as a church steeple or mountain peakenObles

angles ABC, BAC to be measured and hencer'AC, BC computOdlay4riendm-

etry. These in turn can be used aabase.lines from which to Cightother

prominent topographical points. Cl, C2, leading to:the use of Ac,I cci,.
J

CC2, BC
2.

as further base lines; and so on.' Sege Fig..T.

Figure 7

a

In this way'that is, by what is called triangulation, a whole country

or continent can be.surveyed.

1.1.3 How Far Away is the Moon?

From the Earth we turn to the heavens. How are we to measure the

distance of the Moon from the-Earth? Since this distance cannot be

.measureddirectly, it must be measured indirectly; it can only be deter-

mined by calculation from accessible distances. So we feed a known:base

line. Basically we have a problem of triangulation. Can the problem be

related to that of 6ABC of Fig. 7?. ;consider Fig. 8.



FY

Yes, if tine can determine the straight lihe.distance AB and angles

cc, and. Granted that the Earth is a sphere,. if the distance AB

' on the Earth's surface.(thearc length). has :teenmesAured and e is

known, then be calculated (or, conversely, if the radius 'OA

'id known, then' ,e can be calculated). Hence by considerationofthe

isosceles ACIAB) the straight. line distance. AB is computed. But how is

;74 a to be determined?' LOAB can be comPuted.from .6.OAB,- BO, thSt-qt will ,

'be.known When a' is known: But What is a? a- is the angle which the

line of sight to the Moon makes with the vertical at A. And. how is the

vertical determined? Yes, by suspending a plumb line. ,Similarly pi is

determined by first measuring p. The problem is indeed related! .Note

'that a base line is indispendable, so that before the Greeks could measure
\

the distance of the Moon from the Earth they had to know the-shape and

the size (i.e., radius' or circumference) Of the Earth.

One obstacle remains; the.Mbob moves relatively to the Earth. If p.

is measured. at, B after a Was measured at A, then 13.1.8 not the angle

to the vertical 'at B made by the' Moon when at C;. it is the angle made

'by the Moon from.some'subsequent position. - gay C'.. Instead of.a tri-

angleWith vertices A, B, C, we are confronted with a.. quadrilateral

with vertices A, B,, C, C', and the method has failed For-trianguld

tion must be coincident; a and p must be measured simultine-,

ously.

18.



But how is the measurer at '.B 't,(1 know when the measurer at A is

9

Ineasuritg?' To signal to a second measurer just a few miles away a lantern

would serve; yet for accurate triangulation suchs.a short base line would ,

hot. Remember that AC, BC' are each,some tens of thousands of miles.

Ideally a base line sliould be of .the same order of
magnguderat leadt it

must be hundreds. Remember also that.the'.Greeks had. no radio with which

to transmit signals, nor had-they accurate watches,Oust clepsydcas).,

.Doesn't their problem seem insuperable? Yes; yet they surmounted it.

How? Let us for the moment indulge in wishful thinking of a particularly

whimsical kind:' what a pity the Greeks couldn'tget he Man in the Moon

to cooperate by signaling: His signal would have en visible .at A_ and

, B siimultaneously, Put less' fancifully, measurers had.to wait for'soltie

happening on the Moon visible from Earth. What hapPening? A lunar

eclipse. See Fig. 9.
ve.

Figure .9
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10 .
The eclipse provides four distinct events, observable simultaneously from

A and. B: (1,) the beginning and (2) the completion of the Moon's entry

of the Earth's shadow, (3) the beginning and (4) the completion of the ".

,Moon's emergence from the Earth's shadow. Had yOu appreciatedhOw useful.

eclipses are? Compare the idea here with that of 0 in Fig. 3. Isn't

huMan ingenuitya fascinating thing?

1.1.4 To Teach Triangulation

Let us for a moment turn from triangulating to teaching. Why should

your typical student be interested inyour wretched. triangles?, Hasn't

he already genuine interests? Baseball, television, and the, girl next

door? After all he "is only human. t PAcisely because he is human he

has human interestsand human curios . Why not introduce the subject

in the way:that,must interest him? Until he has .developed to your level

of sophistication he cannot share your sophisticated 'interests. He is to

be brought to see that without knowledge of triangles there is no trigol7

nometry; that without trigonometry we put back the cioCk millennia to

Standard barimess Time and antedate the Greeks..

Section 2. Astronomical Measurements

1.2.1 Aristarchus of Samos

Aristarchus, a famous Greek theMatician and astronomer, was born

on the island of.Samos about 310.B.C. and died about 230 B.C.; so that. ,

he was a contemporary of Euclid. is fame rests on his heliocentric theory,

the theory tht the Earth and planets revolve in orbits around the. Spn.

Perhaps "theory" is too strong a word, for his prOofs were weak; yet it

was a great idea, an. idea redeveloped centuries later by Copernicus:

Although Aristarchuth did hot.knoW the distances of the Moon and Sun

frantthe Earth, he was able to estimate their ratio. .Hie method depends

upon a moat ingenious idea. To better appreciate his ingenuity, stop.and

pOnder awhile. What method would you use? His idea is germinated in an

understanding of how the phases of the Moon occur.

Why do we sometimes see a full moon; at othertimes a half -moon, and

when there is a new Moon, nothing. at all? Because the Moon has no light

Of its own but depends upon the Sun for itsillumination, only one half

of its spherical .surface is lit up; the other hemisphere is unilluminated.

(More precisely, granted the. natural assumption that the Sun is a very

great distanCe from the Moon, the beam of its light which illuminates the

20
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11,

Moon will'be practibally. a parallel beaMiand so light up very little more
.

than One hemisphere. See Fig. 10.

Figure 10

An observer at P
1

(ideally transparent so as not to block any of-the-

Moon's sunlight) would see an illuminated hemisphere,_Le., full Moon.

At P
2

what 'does he see? His field of Vision now includes less of the

illuMinated hemisphere and a little of the unilluminated.- and thei.efore

inVisible-'!.hemisphere. He sees thelMoonin the.last.quai'tar. At P
3
?.

At P
3

hisfield of vision includes but little of the illuminatedpart

and much ofthe unilluminated. Since only the illuminated is visible

he sees the Moon. in the first quarter.. At P4 his'field of vision in-
,

cludes none of the illuminated part, he sees no moon at the begin-

ning of thenew-:noon. In what position (relatAle to.the gun and Moon)

would he see precisely a half-mOon?.



.

Is'it not visibly obvious thatan observer will have on half ofthe

illuminated and'ona half of tha.uniiIuMinated hemiSpheres in his field of

vision, and consequently iip.1 ee a-half-mbon,:only'when he is.OomeWhere

on the line EE' ?, In short, referriTlgtO-Fig. 1.1; an observer on Earth'

sees a half-moon only when 44S. is a right angle.

1 .

-Under good atmospheric conditions the-Moon is Sometimes visible ih

the daytime, especially near sunset and sunrise. So, sometimes both Sun

and Moon are visible.,,So, sometiMes(thoughleSS aften):both:Sun and.

Moon are visible when the phase of the Mbon'is half`-moon.. So? Measure

LMES, on such an occasion, of course. This iswhat'Arisiarchus did.

First note that without any measuring ats11,. since the hypotenuse

of a.right-angledtriangle is the greatest side, we .may Infer, as did

the Greeks, that the-Sun is-farther.frbm:theEarth than the Moon; Next

'note that when a is measured, the third angle (the complement of .(1)

is determinate,. so that the shape but not the siza:of: LEM: is known.

Consequently, although the actual length of any side is not determinate,

the.,imtiO of any pair is. It immediately follows, from the definition

of cosine that the ratio of the distances ME. (MoOn- Earth), SE (Sun --
Earth):is given bY

Figure li

ME
CO B 'a

22
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Having measured a, Aristarchud had to compute cos ay unlike us he

had.rio tables to refer to.: Ris'resuli.was grossly inaccurate for two-

reasonsa a , is nearly 900 a:NlleriorIs critical.' Second, just

by 40t sayldokIng,' en precisely the Moon's phase is half-moon;annp -w. h

there is a morepi-lessness about the observation. Nevertheless, Aa'ietar-

Chus had a great idea. Since the Sun is vastly more remote than the

..Moon at halfrmoon, and since the size of the Sun and Moon as viewed froM

the Earth remain sensibly constant, it is a safe inference that the Sun

is at all-timesfarther-frpm the Earth than the Moon.
L

Hadius.of Earth:: Eratosthenet

Earlier, in discussing a more interesting question, that of the dis-
,

. .

-dance of the Moon from the. Earth, we saw that a necessary preliminary is

deterMination,pfthesize of the Earth. So the next important question

is: What is the radius of the Earth?

In ascribing radius to the Earth we commit ourselves as to its shape.

What shape? Yes, spherical. Is this precisely correct? No, we now knoW

that the Earth Is slightly flattened at the poles; it is more nearly an

oblate spheroid. But to treat it as a sphere is.a go6d. approximation.

Good approximations often lead to better ones.
..# "

termination bf the Earth's size was Eratostheries' outstanding

achi ement. As well as a geographer and astronomer, he waalibrarian.

of t e famous library at AleXandriai then the greatest library of the

civilized world. He lived from about 28(to 195 B.C., but these dates

are problematic. With the subsequent dispersal of this library there

is no extant Alexandrian Who's Who in which to look him UP, Although:

his dates are in doubt, fortunately his method is not. And'so we -raise

the inevitable question: How did he do it?

The circumstances are.asfollows. The River. Nile fi4-approximately.

from south to north, so that the shortest route from the .41.ty of Syene
: .

(nowadays Aswan) far up.the Nile to Alexandria in its delta-is a great

cle route. That is to say Syene and Alexandria lie (almost),on the same

Meridian; a circular hoop or belt joining the poles and:passing.through.

Syene would also pass through Alexandria. Moreover Egypt is a civilized

country, there is a. road between Syene and Alexandria, and its Iength.is_

known. It is 5,000 stadia. See Fig. 12.
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In phort the circular arc AS is 5,900,tadia. If it were known what

angle 0 at the Earth's Center subtended this, arc, then it would be

known what fraction of the Earth's circumference AS is: The real pro-

blem is to determine e.

.:Zratosthenes, knew that Syene has a very deep well whOse waters'

are touched by sunlight at noon on the longest day Of the year, i.e.,

that there -the sun is thee directly overhead. So at noon on a Midsum-

marls day he-meadured the SunIpA:nlination-to the vertical at Alexandria.

Of course he needed no watch to tell himself when the Sun's inclination to

the vertical was a minimum; to.!the contrary he used the Sun's minimum

inclination to determine noon. He found the angle. to be 712'. And, since

the Sun is so remote that its rays are 'sensiblyparaIlel, the.circUm

stances were as is illustrated.by Fig. 13;



Con ertng t e un's raysto be parallel;, the corresponding angles at

0 *id A are eq . We have

O = 7°121

7 °12'so that of a complete. revolution.
360 360° 50 -

Consequently AS is-11.:-
50

th of Earthts circumference. But AS is

5,000 stadia, so that the. Earthts circumference.is 250,000 stadia and lis

radius.
250,000

Atadia.2m

.4

. Unfortunately we do not know which of the several stadia iSedin an

..tiquity is the unit employed byEriatosthenes.:- A stadi,um is 600 Greek feet,

but the' Greeks. had several feet; for example, the Attic'Stadium7is 607,Eb-

gliSh.feet, the Olympic, 630.8 ft. If we take the former, the radius*ofthe

.Earth becomes
.250,000 607

2m 576 4,600 miles.



Nowadays' the ,a.ccezted
-
figure for t.he:16.40s equatorial radius is 3;963

miles,: the, polar radits, miles less..: .i '
That Eratoithenee result isci inaccurate does 'not really detract from

the.greataesi"Of:his-achieveMeRt. It is 'hid method that excites our ad-
miration. Would not a giant measure the Earth -by encircling it with his
arms to compare its circumference with his span? And what didionr little
pigmy Eratosthenes. do ?. At. Alexandria: at .noon on a certain midsiumaei-ta
day',long:939',11e obserVed, the angle of the..shadow cash on his protractor.
by a little stick.-' A mere shadow andan idea is 'the substance'that madet. .

the pigmy a giant Who spitrined:the Earth. : .

RivalOOSinologies

'Row, without a watch, do we know what time it is? Yes; by looking
at a sundial.:: The cast. of the Sun's shadow across the dial teLisa's the
time.` : Despite the fact that a watch has two hands although. a sundial
has_' only ogif harld.; a watch is in effect 'a sundial. Think about it
.The !'haffr",:or position of the minute' hand. tread in conjunction with the
position of the hour hancl.) is a Substitute for the Surf's shadow. A watch,

in telling us our time...--to be precise,. local solar time -- indicates our .

positiOn relative to the Sun.. We cannot see in the dark; surely primitive
man arose 'to work with the rising up and retired to rest'xikth,the'
down of the Sun. .Life was gOverned by nature's clock.

And how do we measure ar-?' Yes,''in years. But, -what is a year? 11Wie.
time that elapses before th_s.rth ia 'again in the same position relative
to the Sun. And how do .we .deteitine sameness of positioil?;. By reference
to the framework of the-fixed stars. As. the position of Earth changes
relative to Sun,. the days grow longer, :then shorter, then. longer again.
'There is a Cycle of seasons -- of the time 'to sow and the time to reap. Thel

calendar is_ pur .recogaition of this periodicity. . -

Afe not our lives regulated by the clociand the 'calendar? Is not
our existence dependent upon the-rotation of the. Earth relative. to the Sun?

--Without the Sun thereiVould be petpetual night; neither day, nor weeenor.
month hor ,yeari . neither. a time for sowing nor a. time Rix. reaping. the .

fate of all Mankind dependent upon the .heaVens, is it not a natural step
to suppose perbonal destiny to be governed by the stare? Cduld not greater r
knowledge of the .heavens lead to knowledge of . our ;individual destinies?
Although to date astrology has not been asuccessfa applkation of as-
tronOiny, it served apurpose. It gave additional impetus to astronOmy;'
to BUAL:solid practical .reasons for the study of -the stars Ms the deter
minatiOn of the calendar and a method of navigation, .it p.d4led.its own. .

26
.I.N

40114



k

Evidence: of an especial regard for the adering etars- the e-Planets is

embedded in our language: 'Sunday is the day of the Sun; Monday the day.

of the Moon; aluesday,:via.the French, Mardi, the dey.of Mars; Thursday,

via:Jeudi, the day of Jupiter; Friday, via Vendredi, the day:of Venus;.

and Saturdayyt4e:cley of Saturn.

.

Fbr primitive man nature was a malignant uncertainty. Even for the

Greeks, behind every,bush and underneath every stone there lurked a god

of unpredictable Caprice. The. paths of the:planets gave tie comforting
0

assurance 6f a glimmer of certainty in an uncertain world. Thes.w

stars as the Greeks called them--in oppOsitiOn to the fixed stars --

appeared to be predestined to follciefixed Raths. Planets were observed

tq reappearin the.same position (relative to the fixed stars) at regular

in-4rval:i.. Despite the general fortuitousness of nature, a fewevents

were predictable; their occurrence could be,depended upon. In studying

.

the applications of mathematics to astronomy we see the first attempt to

discover uniformities in nature: stars man:his first,. glimpse of.

Afgreat idea-- the belief that there are uniformities to be discovered.
.

.

It is rdly pobsible to exaggerate the itportance of this change of

view; he new view is thegenesis of science.

Aristotle .(3e4-322'.B.C.) argued that a planet: must move with uniform

Motion in a'circle.: What is his argument? That the planets are neces-

sarilysarily :bodies and therefore Spheres, and because. perfect must

Move with perfect motion, ire:', uniformly. in circles. You smile;' his;

conteMporaries.did not. Aristotle never caused a smile ima,thousand

years. His dictum persisted withoutpa murmur of contradiction until the

Middle Aget. The foUnder of zoology; of meteorology, of logichad spoken;..

it was left to lesser men merily.to,follOW'in.the footsteps of the master

and.qUote his authority.
S.

Circular. .planetary orbits had been proposed before.Axittotle; after

Aristotle theY.were obligatory. _The queseiorrwita: About what center?

,...that the Sun movea around the Ea a natural impression, and the;.

theory.of Hipparchus (160 -125 B.C.) 1
loped by Ptolemy (i0

..that ell.the planets move Aroundth rth,.was generally accepted,

COtei4ation did not precisely 4I the theory. Soin...thepreek
. .

view, if.a. planet did nOtmove in a circle then its tot4Onimistbe a com-:

bination of circular motions, See Fig. 14.:



Figure 14

Here is illustrated a combination of two circulid. motions. As P. moves

around the circleOf center Q,. Q moves around .the circle of center C.

The former circular or cyclic path .(relative to Q).1,a;said to.be an

epicycle of Q.' Yet such. a combination did not precisely fit the facts;

so epicycles of epicycles were'tried. See Fig. 15.

28



Figure 15

Here is illustrated a combination. of three circular motions. .moves

aroundthe. epicyCleOf center. Q and 'Q itself moves'around the'epi

of center R, R itself moves around thg circle of center. C. This

point .is of impOrtance for the understanding of science; by Sufficiently:

complicating. the hypothesis we gain enough flexibility to fit it to our

,observational data. Fitting the data by an uncomplicated.hypothesis is

much more interesting.
.

We recall a rival theory; that of.Aristarchus of'Samos. His theory

was that the Earth and. planets move in circular orbits around the Sun:.

Although the .mass of then available observational data fitted his theory

fairly well, it was nevertheless universally rejected; it was. rejected by

Archimedes(287-212 B.C:), the greatest mathetaticien, .physidiSt,:and

inventor of antiquity.. ,

WhY.waS it universally rejected? -In part, no doubt, because of.

29
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Archimedes' rejection. We must remember that pride and prejudice can ill*

fluence'ourthinking. Earlier, we asked: HOw',far is the Moon from the Earth?

We did not ask: How far is the Earth tromthelMOon? Both questions must have

the frame answer, so why the former but not the4atter question? When we travel

we necessarily start from where we are.. Is not the first a mere natural for-

mulation? When fogbound in a rowboat. is it not more natural to suppose the

,other fellow's boat drifting past ours than ours drifting past his? Is not an

'Barth-centered more natural than a Sun-centered theory?

Fig. 16 illustrates Ptolemy's universally accepted geocentric (Earth-.

centereOtheory; Fig. 17 -7*-tAristarchust universally rejected heliocentric

(Sun- centered) theory. (in which the Moon orbits the Earth).

Ptolemy-'s

Geocentric System

Ffgure 16
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Figure 17

Aristarchus'
Helis5centric System
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. Some.seventeen centuries later, Aristarchuss helioCentric,System was

rediscovered by'Copernicus (147371543), It was still de rigueur:to quote

authority -- preferably Aristotle-- and as Aristotle could not.be.quoted

in fairor of theSe matters, Copernicus was pleased to quote Arista:taus.

'(Later, hOWeVer, he deleted this quotation.) AS, he knew.Aristarchusl work

it is more correct to say that he redeveloped rather thanrddiSCOvered

the heliocenttic theory. Patiently and PertinaciousIx, he cheCked it'
,

against a vastaccumulation of his own 'and othet astronoerst observations.

Although a man of immense intelleCtual courage as well. as energy, he was

very careful. Knowing that people do not like to have their old habits

of thoUght, or the habit of not thinking at all, diaturbed, he: delayed

publication cif4lis findings some thirty years until-he .wes:upon his death

bed. With characteristic caution he did not claim that-the Earth and

Planets,do actually .move around the Sun; he contented limself with shOW-

ing that-a heliocentric 'hypothesis works better than a geocentric one: it

requires fewer epicycles.-.

.The Orbit:of Venus .

An earlier theory was propounded bx:Herakleides in'the 4th

Century, B.C. He studied under Plato and probably under.Aristotle.aldo.

His theory.,is $tn intermediary between the .Ptolemaic and Copetnican stand-.

:point6. According to Herakleides, Mercury and,Venus moved in circles

around the Sun, while the Sun itself and_all the other planets-moved in

:circles around the Earth. .

The bright star often visible at the setting of the SUn 11 known as

the Evening Star; the b,right-star often visible at the rising of the Sun

is known as the Morning Star. Although these names occasion no 'thUrprise,

surely there was, great surprise at the early discovery that the Evening:

Star andthe:Motning Star are identical. This star is Venus. Its wander -

ings, while exhibiting some regularity, .were perplexing. Liong7term obder7

vatiop showed iteventually to reappeat in the sameplace(relative.to

.°the fixed stars); it was at all times' relatively close to the sun, yet.

sometimes appeared to be moving rapidly in the same direction-as the Sun
.

and at others slowly in the opposite direction. But.surely perfect bodies,-

spheres, deecribeloerfe4 figUres,'circles, with perfect, uniform, motion.

4heievetcoulotbe the reason for this apparent disctepancy?. A glance at

Fig. 18 makes the explanation immediately obvioub.
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Figure 18

-The, trouble. with hindsight is 'that it blinds .us to the brilliance of. fore-

sight. The explanation is Hern_kleides' . That we now know. that Venus'

arbit is not exactly a circle nor its motion precisely uniform detracts

. nothing from His ingenuity; The astonishing thing is. that his hypothesis

fits the fact's so closely.

The good first approximation accuracy of Herakleides hypothesis 'makes

it reasonable to ask: What is the radius of Venus orbit about the. Sun?

This question raises another question: How 'are we to determine this radius?

How 'would you do it? Well, .begin with careful study of Fig. 19.
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Observe.that.the angle am that the straight line joining. Venus to

the Earth makes with SE changes asVenus progresses in her orbit. In

particulari note that

In short,

LBEV1 = LSEV1'

ZSEV2 = 4SEV
'2

2SEV = ZSEV
3 3

znEvm, = 4Bwm.

a 'increaseti-to.s. maximum when Venus is at' V
m (m is for

maximum) and then decreases. Where is V ? Consider the successive.'

Chords VIVI', yg2,, 113v3,.; they are progressively shOrter. Obviously

EVm is the limiting Position, tangential to the circle. Consequently a:

is a maximum, say am, when 4EVME is a right angle. : Consider Fig., 20.

Figure 20

'Since' SV, SVm are radii of the'circular orbit
S

SV
V

SE f SE

and..aince.2SVmE of 6SVME is a, right angle

SVm

SE = sin a

consequently -

SV
= sin am



. The radius.of Venus' orbit is sin am times the distance between Earth

and Sun. We do not, of course, have sufficient data to determine the
. .

Actual distances, only their ratio. Yet i6 it not .surprising what can

be donbY using the most elementary gedmetry and trigonoMetry?

To apply our formula we require the actual numerical value:of am.--

How are we to obtain thisl By observing Venus when at V ? But how could
.

m-
weknow when Venus is there? To say "when a is a Maximum" is to beg

. the 'question:: The point is that we cannot obtain ain by a single observa-

tion.% We. cannot have this information for.nothing; we must earn it by

regularly making measurements at sunset or'sunrise day after day.:
A

WithoUt

a sequence of observations, how could we tell when a ceases to increase

and begina to decrease? Advances in science demand tenacity-Of-purpose

as well as bright ideas.

41.2.5 Tycho Brahe and Kepler

,Tycho Brahe.(1546-1601) was a wealthy Danish nobleman who had much

.
land,. many serfs, and a qqarrelsome dispbsition. His disposition-when he

was.a youngman resulted in a duel, the loss of his nose, the acquisition

of abIlver substitute, and a marked propensity to.shun society. No

doubt this'setience of events increased his Attraction to astronomy (nOt_

asregarious science). Be this as it may, he had an obsession for con-

.
tinualand.exact observation of the stars,.and this obsession is the baais,

.

of his fame. No, he di& not propound any new theories. Being rich, he

was able'to have constructed, with utter disregard of the cost, gigantic,-

.well7made instrungnts, that set anew standard of observational accuracy:
. .

Nowadays, with aCcuracy,a sine qua non we overlook this vital contribution
.A

of. Brahe to astronomy. and. development'of the scientific attitude.

.Kepler (1571 -1630) was Very poor. In his day there were no chairs

of astronomy, only the patronage of princes-. -Such patronage was often

given for astrOlogy:r4Ither than astronomy, and Kepler earned' his meager

living by the former,'thereby.enablirig himself to study the latter. :Ad

he remarks, ,astrology is the daugnter of astronomy, and is it not right.

that tha:daughter cares for the mother?

He was a man of genius.' His work marks the.transition 'between Medi-

.eVal and modern outloOk. 'For this reason he is called, by Koestler,. "The

Watershed", in a book of this title. From Kepler the history of thought.

flows back through a hodge-podge oof emerging scientific thought, astrology,

mysticism and superstition to Babylonian times, and forward to the modern

outlook. His own writings are a mixt'uraof. both. .Not having the money

to'buyaccurate (and consequently expensive'8 5struments with which to

Op.



make his own observations, he finally met Tycho Brahe and inherited his

Vast. accumulation of accurate data, data accurate to a. degree that-the

Greekt would have found incredible. ,Kepler's ambition was to describe.

.precisely'the orbit of Mars. He.Aried'one fruitless combination of

epicycles'after another. At last, after fOUrteen laborious unsuccesses

he cams to the conclusion that the orbit is neither a circle nor a combin

ation of circles. It must be something' else. Kepler's conclusion had

astounding novelty; ever since. Aristotle's dictum some seventeen centuries

earlier epicyclic motion had been taken as axiomatic. His break with the

Aristotelian tradition was the crossing of the watershed.

With industry toaatch his courage.he continued to grind out more

and more calculations to test other hypotheses; it was'not until nearing

the end that the invention of logarithms eased his labors. Ultimately,:

he hit upon the. hypothesis that Mare moves with non-uniform motion in an.

ellipse with,the Sun.atione of its foci.: Heretical; Utterly heretical.

How could the Synbe at one focus rather than the other ?' How could a

planet move with non- uniform motion? How could-thsuniverse be so im-

possibly imperfect? ,Observation fitted hypothesis like a glove..

The ideal of Euclid's Elements, that the theorems. are necessarily

consequences of the premises, is aPt.to mislead us into supposing that

the develOpment of science hasibeen entirely rational. .Nothing could-

be farther from the truth.' Nowhere. is irrationality more clearly ex-

hibited than in the. history of abtrOnomy; nowhere in.astronomY'is preju-
.

dice against fact more visible thah in the tenaciously ed notiOn

,of perfect bodies in perfect Motion..

. New theory in astronomy led to achange of world view; a new stand -

point,point, a new civilization. Even in the pre- Sputnik ere,, some appreciation
dl

of these developments was necessarily, an ingredient of educated common

sense. Surely your students will want to know more. .A good. introductory

,account is Morris Kline's Mathematics: .A.Cultural Approach... .Another

is Koestler's large volume The'Sleepwalieerso:of which his:above. mentioned

book,. The Watershed, is'a:(large)cha This yolume.is most appro-

priately.titled,' for as a,sleepwa er with losedeyes finds. his way along,

A roof top, so Aristarchus conje tured th- eliptentric system: his facts

were few; he knew so little that is eyes were closed -- yet he moved. with

a sure.instinct. Tater astronomers' closed their eyes to 1.11cts. Here is

a story too fantastic to be fiction,, unfolded with spellbinding skill.
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1.2.6 ghe Mars Year.

1.7e return to Kepler: How did he discover the precise orbit of Mars? .-

By what observations? And on.the basis of what presuppositions? His

Working hypothesis is that Mars moves with.uniformmotion in a circle

around the Sun. Although, as we now know; this is not exactly correct,

it is'nevertheless a od first approximation..And a consequence of this

hypothesis is 414t Mars will be in the same position relative to the :Sun.

(as determined against the framework of the fixed stars) at regular Inter-

.The' length of this interval, tile time required to complete one cr-

,bit around the Sun, is said to be the Mars year. Kepler's firPt. taskwis

to determine this year.

.
Mars and Earth move around the.SUn in the same.direction, but with

different angular velocities. .Consequently, Sun, Earth, and Mars become

momentarily collinear,. or in conjunction, as is illustrated by Fig. 21.

Such' an event is called a synod. In rmion usage,'a forMal meeting of

ecclesiastics (to decide Church matters) is said to be a Synod: by natural

extension of usage the coincidence. or Meeting,bf radius vectors

iS'also said to be a synod.

3



A,. synod is observable with great accuracy. Prima facie; this seems

astrange thing to say, for when there is a'synod Sun and, Mars will not .

bedgmUltaneously visible to a terrestial.observer. But remember that a

full twenty-four hour day is the qme interval between two consecutive

Occurrences of the. Sun at its zenith, so that, because of the uniform'.

rotation of the Earth about its axis, in twelve hours from noon, at
midnight, the Sun is precisely on the opposite side:of-the Earth. Thus,

if at midnight Mars is directly in the meridian, then (suppose, for.sim-

plicity, the Orbits,of Earth and Mars around the Sun to be coplanar) there

is a synod. The Sun is, so to speak, observed inferentially..

'Fig. 21 may he considered as ihe dial of a celestial clock; but the

hands Lare not called hour hand and minute hand: SE is the 'YEarth" hand. and

SM the '!Mars" hand.- We suppose that VE! the Earth year, the time for

the earth hand to complete-a revolution, is known: the Babylonians. had

determined,it with great accuracy. If SM were stationary theh

viously.the hands would be again collinear aftera complete revoluton of.

the Earth hand; i.e., TE would be the time interval, 4 (say),, between

two consecutive synods. (it for synod is not to be confused with S for .

Sun.') If SM were to rotate in the same direction and with the same

angular speed'as SE, then there would at all times be a synod3'the.in-

t'ervalAdbetween Consecutive synods Would be. zero. It is equally obvious

that if SM were to rotate with the same angular speed but inhe oppo-

site'direction, then there would be a synod after. SE (and SM)

completed half a: evolution, i.e., after time T is not evident

that Ad, the integal between consecutive coincidences of the hands

of our clock, is related to their angular velocities, i.e., thel ef will

depend uPon TE, and Tie Alternatively put, isn't .linked logically

between T
E

and T ? The crux of the problem to determine TM iCspeci-

fication of this relation between. TE , )el, and TM.

Our celsstiW1 clock is somewhat.peculiar in that the angular speedi

of :the two harks are not in the:proportion 1:12 although they are in a

constant proportion. Does this'make,any real diffexende,to the problem?
- .No, of cburse

Let us, with the convenience of b2i,evity, describethe4osition of.the

hands at the synOdOf Fig. 21 as on:the initial line. What hapPenssubse-
.

, .

luently?:Because the.Earth rotates fasierit4lecessarily-completes

reVolUtion before. be. Mars hand doffs Thus, when SE' arrivea.at-ihe'
. . 0

fnitial line,' SM has but partially completed a revol4ion. PeaTig., 22.



h .

Figure

t,
Igpore for the momewti :that the .e,itttEitj.on of Fig. 22 derives from

'tchat of Fig. 21. Concentrate on what follows on from 22. The exl,
.

suing situation is analOgous to that of q handicap race: E, on the.
'iqtarting (initial) line, is handicapped by M starting way ahead at Mi.

But, thit;41igiil'Or velocity of SE being greater than that of h't SM, E must

sooner or later catch up with M. :Suppose this to occur when SE has

rotated thi'bulih an angle a (measured; of cours'e ..A'rom the starting line).

So at the end of the race the circumstances are as* illustrated b' Fig. 23.

444E

N..



While SM has -rotated from- SMl to -SM2, SE has rotated through .an:., ...

ro
.

'.angle CL fm the. intial line to .SE.: Nov recalI,Iig. 21... Duringthe...

1 .

interval between the one synod- and thenelFt!) SM has; rotted fromithe.......I, , , . ',,ir4ti4"line to Skil; i.e....has turned -tiirOugh'.anaagle:, d. Andr0t*ber,
that SE completed a revolution before the start of the handicap ra.0.6.,.,

.''We' .conclude that if in the interval .eff betweenftlo. condecutive:syn940'

rotates through tit, .°Ahen SE rotates through.09 + a.
,---,\,

It pays tolook back. isn't-this 'Concluspn immediately obvious to ;

hindsight? We how know the right '140 'of 196kini,,at the p141em:,. immedi-,
ately alter a synod.the hOUr hand SE 4 forge*Abead and so(W41 have, to
rotare,* more than the minute hand'IEM in order' to catch',uPWith'it.:

.

t is plain ailing. TS.bulating ours. to forjAara):We.have:
terval-

' Angle rotated thOl4ih in interval'
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But, fior"a (clock hand) rotation with uniform angular velocity the time

of rotation is directly proportional to the angle of rotation. Therefore,

a " (1)
. T 7 . -5-615

And ,tabulet-tj.4:e data

Time

T
E

And similarly

:Angle rotated in the time interval'

- 360' + a A

: 360

=
36o + sc '

60
(2)

To link TM to by ,.S it remains merely to eliminate a

From (2),

Hence, by (1)

We. have,established the.explicit exprbasion of the relatibh between To

The latter beinknown,. it remains merely to measure.!

in order to commute TM . A5t.,,ilkd been -measured by the Greeka;Kepler

computed 1M.

1.2.7 The Orbit of'Mars

Recalling that Kepler's ambition was to detetmine ptedisely the orbit.

Mata"the alert.readetwill ask: How is the idjetermination of TM

.StrumenL1 to this ehdt'i

-Consider Fig. 24. .

4
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When.Mars is at, M, collinear with the Sun iS and. a fixed star So,
suppose the Earth to be at El. Precisely TM Jater Mars W-11 -have

completed tin orbit around he Sun and agatTL<Ve at M, but since the

Earth hand of our celestial clockrotatSi'4i3ter than the.Mars hand, the

Earth .will hsive'rotated more than a coWate. revolution and be at E2.

Although Mars is again in its initial position relative to the',41.,xed
.

stars as viewed from the Sun (i.e., collinear with it it a differ-

ent position relative to the fixed stars as viewed from the Earth.

Initially Mars is collinear with Earth and S1'; TM .later, with Earth and

S ' . -Yet despite Mars at M appearirig.againet the framewOTk of the2 ;.1,71r

fixed staii as in different positions when viewed from the *th at E.J.

;Rand
...E ''-eince the Mars year is TM, we know inferentially,t it is,;

:Ea* position:

We may infer much more. TE being known, the angular velocity of

our celestial hour hand. is -known, apthat the angle turned in time TM
can be 'computed: we can determine ZEISE2. And taking the radius of

the Earth's orbit as known, the length of base EEE2 and base: angles of

isosceles triangle EISE2 are determinate.
. '51

What else do we need to compute SM? What are the' easiest things

to measure accurately? Yes, angles. Now conal'Ok Fig. 25.
'7
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Figure 25

The position of the Earth relative to Suri and fixed stars'had been given

careful study from Babylonian times;.Tycho Brahe had Made most exact

observatidg.s. This data enabled Kepler to determine the fixed star S,

collinear or%mobt nearly collinear with Sun and Earth when, for example,

the Earth was at El. We have already remarked that although the-Sun

is not visible to the terrestial astronomer at El when observing Sl,

it is nonetheless "observable inferentially ". Thus Kapler.was able, to

measure 41E24 (where ElEi produced passes through when the

Earth was at. El and likewise L.S2E2M;;where 32E2 produced passes

4.Q
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through S) when, later, the Earth was at E2.

A (Eb notconfUse the fixed star S1 of Fig. 25, with SI' of Fig: 24:

the latte'ris collinear with El and S; the former' collinear with E'j.

and M...NOr is S2 to be identified with M.).

What use can be made of this additional data? ZE
2
E M is the supple -y,
lc,

ment of the-sum-of the known angles,: 4!SE1E2,.12:S.,1E.,M, and therefore
,1.

determinate. LE1E2M is similarly determinate. Thus. in 6E1E2M two

angles'and a side ,(Elt2) are known, so that by using sine rule E
2
M

is computed. But, ZSE2E1 and. LEIE2M are both knOwn, so that in

dgE2M we knOW.the amgle SE2M as welles.the sides containing it;

by using.cosine rule, SM is computed.

Remember that Kepler's working hypothesis includes the supposition

that Maros repeats its orbit with regularity: no matter whatO_Worbital

position at a specified time, it will again be in that po4tion after an

interval .T14. So the above method is applicable to computation of the

length of the Mars hand of our. celestial clock in'any,Position., In this

way TM was instrumental to Kepler's determination of Mars' orbit around

the Sun.

Having computed many radius-vectors.of Mars' orbit, Kepler with

energy to equal his enthusiasm set about fitting theory to fact. His .

inheritance of Tycho Brahe's observations gavehim datamith an accuracy
.

unknown to the-Greeksand consequently made his task all the more diffi-

cult. Finally, at his fourteenth.attempt, the,theoretical orbit conse-.

quent upon his hypothetical epicycles closely approximated to.the factual
.

.

.orbit: .there was a discrepancy of merely eight minutes 6farc, am-accuracy

unknown to the Greeks. But, closeness of fit which would halit-;been more

than good enough to satisfy. the Greeks. was rejected out of hand by

Kepler. And with itAlejected-the notion.of cycle and epicycle, bag

and baggage. He was aick with the wearisome repugnance of epicycle, piled

'upon epicycle; the dogma of perfect motion had 'become a celestialnight-

mare. His final hypothesis yea-that Mars moved in an ellipse with the

Sun at one focus: it worked.

This, in rough.outline, is how Kepler discovered the first mathemat-

ical law of astrOnothys' Unfettered from thedogmathat the planets move

in perfect figures, i.e., circles, it was an easy step to reject also the

fiction that they move with uniform velocity. The tands of our celestial

clock rotate with variable speed. Tycho Brahe's observations afforded.

.ample evidence. Indeed, it was known tiNthe Greeks that the nearer the

Earth is to the Sun the faster it

4
moves; yet it.took.the insight of genius

. 4



to ,discover the law. See.Fig. 26.

Figure 26

Kepler.found likewise that the farther Mars from the Sun, the slower

it moved; the nearer, the faster. Eventually he discovered the law which

fits the facts. Maremovesin its orbit so that the radius vector SM

sweeps out equal areas in equal time's:.

BY analogy Kepler extended his two laws for Mercupy to the Other

planets. The available data fitted.

Many years later he discovered a. third law. We recall that the

planets in the order of their distances from the.. Sun are Mercury (nearest),..

Venus, Earth, Mars, Jupiter, and SatUrn (mostdistant).Also.it is a

fact that the farther a planetfrom the Sun, the longer it takes to com-

plete its orbit. Kepler first suppoded that T, the planet's year, is'

proportional to R, its mean radius about the Sun. He quickly found that

T increases faster than direct proportion; to double R more than

doubles T. The law is hidden;'eventually Kepler found it: The square

of T is proportional to the cube of R.

Kepler's.published work is a hodge-podge of astronomy, astrology,

geometry, theology;. and a miscellany:of oddments: he sat astride the

watershed. Yet it is intensely interesting, for unlike Galileo and, Newton

he did not try, to. cover hiatraces. His conjectures, failures, successes,

errors, insights, fallacies, obsessions, are all revealed with disarming

frankness.. No other man of genius has been so open about his wild goose

chaseii. But ICepler's work is so full 4r competing idead that it remained

for Newton to separate the wheat from the chaff, to discern the iMportance

of what Kepler did not himself fully appreciate --.his three laws.
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1:2.8 A Word to the Teacher

What is the primary importance of Kepler's work for the.high school_

mathematicti student? First that there are applications of trigonothetry

on the grand scale. Trigonometd, as we have seen, made computation of

Mars' radius vector possible. What could even a Kepler have dOne.without

mathematics?

.Second, we see the role of what is usually ill- described as "trial

and error", better put as auccessive approximation. Kepler, we recall,

starting from the' working hypothesis of uniform circular motion, 'deter-

mined theMars year '71,4 only to conclude finally that Mars' motion is

neither circularnoruniform, but elliptic and non - uniform.

Doesn't this appear,. paradoxical? The initial hypothesis that
.

and Mars have uniform circular motion'is'erroneous, yet a good ap xima-

tion to the truth, Note that the talculationof the synod is not inval

idated by the orbits of Earth and Mars being non - circular :' the coincidence

of our celestial ,clOck'shands is independent of variations in their length

and dependent only on the uniformity of their rates of rotation. Also,

aa,luck.would haverit, variation in the'Earth hand's angular velocity is

less than that of the Mars hand, so thate good approximation to the

Earth's orbit suffices to show that a siMilarhssUmption for Mars'. orbit

is unacceptable. More accurate'observationt,'the Earth's orbit leads to

more accurate determination of Mars'.

. 4

1.2.9 Newton's Problemof-s. gomptia:.Path.
.

. .

e condlude-thislectiOn.V4th-4 probl.eiv Calculus is not necessary,
,but will need:ybuf,;t0gonothet*: .Newtdii;vin addition to his monumen-

Prindipid took trouble tb, owtite 'a fboai2iOn,.what we -now call high

xadhool algebra. Andjihat7as the main'Point of Newton's algebra text?, The

same as Deecartes': ..tcrsolve word probleras.7-thereby demanding, among other

things, the full comprehension necessary to translation,of problems from

prose into mathematics, .Newton's problem in,good old-fashioned.English

is:. "To determine the.posjtion of a comet's course, that'maves uniformly

ins-atrightline from three observations." Fig. 27 illustates the problem..

4 6
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Figure 27

Newton knew perfectly well that a comet does not move Uniformly and does,

not move in a straight line.. What is the path of.a\gomet? les, an

ellipse. But, don't you see, a straight line is a firstepproximation?'

Here is the first step in a sequence of successive approximations. What

is observable? 0 stands for Observer. 0 observes the comet at

at B, and C and notes in each position the star with whichit coincides

or most nearly coincides. The angi.es subtehded.at 0 by these fixed stars

are measured, to and W' are known. Also 0 observes when the comet

ip.at A. at 'B. and at C, so that the times t and .t' Ibr the comet

to pass from A to B and A to C are known. In short, given co, co',

t, t', and that the comAss'motion Is uniform, we are required to find

the direction of. ABC. This is most conveniently determined by finding

0.. We conclude with one hint: to find p we.Must first find a trig

onometric function'of B -- the nicest is the cotangent.*

*See Mathematical Discovery, P6lya, Vol. 1,.p.',54, prOblem

"16
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Section-3. Successive Approximation

We begin by repeating a point:. it is important. Kepler started

from.the assumption. that Earth and Mars move with precisely uniform

circular motion drOp4d the Sun as center, to finally arrive.dt the cOnclu-

sion that Mars moves neither in a circle, nor uniformly- nOr.is. the Sun the

center of its orbit. To the uninitiated, his argument, like. the orbit of

Mars itself, .appears to be circular. But scientists habitually argue this

way: 'fliord a working hypothesis giveW,by proposition p We are led to the

conclusion. "no, not p": This proa,dUrais often described as the method

of false'position. trait a:"false" (inaccurate) start we proceed to a

"true" (accurate) finish: beginning with what is only approximate)-Y

correct, we reach by successive, diminution of error, if not a dead accurate

result; a much closer approAmation.

The method

.CONFIANCE, in a

timate the word

C :then we have

of the word; we

is well, illustrated by the way we loOk up a word: say .

French dictionary. We open the dictionary at where we es-

to be. If the paice dyes not contain words beginning with

made a poor estimate; we have udged falsely the. position

have made a.false start. BaOe'poOr estimate can be a

step in arriving at a better one; a falSe position can lead to a truer

tunre accurate) one. Suppose ou XvtestiMate turned outto be a page

..:of 'words beginning with B; we est ts that we must turn on five or six

_PAges. Doing this we.turn up, day, :t4,6rds beginning with CA. We have -

`arrived at an improved positiOn, But we want C to be followed by 0,

not by A; we haVe found the won! Orrect,tothe first, but not the

second,. letter. If our next estimate'giVds us CO ye have found

the word:, correct to at least two letters:. if incorrect and faced with

CL we turn forward; if.faced with CZ we turn back. Well, y9u know how

to use a dictionary efficiently --Thut aid you appreciate that in so using
_

we employ the method of false pcIsitiorir more aptly p4t,osuccessivp-

approximation? Isn't the underlying ger*ral is e >1 e th9tiytip

root

pccessively

computing a square ot tO one, t

decimals?

Full appreciation of a Mathematical methOd'.'Cannot.'544g,by

talking about it, only by intelligently using it..49/102 plyi

method and see the idea. in action.

1:3:1 First Application .

'Consider the following probleM, which is a god cine:fd?

. Old. If the7price Ofaloatis one quarter (25/centS):arld'ti1 440i0i-



what is the price of a loaf? Can you do it in your head? Tory. Let x

cents be.the price of a loaf, then

x = 25 +3.2-c

so that

A loaf costs half a dollar.

39

There is for ourpurposes a much mere instructive way of doing it.

To prevent ourselves sinking.toodeeplY -into the particularity of the

problem, we generalize by taking S. cents instead of 25 cents. This is

an enormous advance which enables usto deal en bloc with a whole faMily

-.&li.:prsiblems: our Problem/r, its brothers; sisters, 'cousins and aunts. General-
.

the prObleM is: find x, given.that

x = a (l)

Obviously,thssolutiol is 2a; yet a person with the outlook of a

practical engineer mig t be enticed to tackle our problem in the folloW-
x

ingcomplidated, but t ingenious, way:
2

is.,less than x, so let us

neglect it, and. our itial approximation x is

xo = (2)

II.

Obviously this approximation is too small, but it is only a.first trial.

UrAIY: we can do better than this? What happens when. we substitute (2)

in the.;ight-hand side of (1)? Let's find Out.ipur new.approximation

xl (Conveniently called "the first") is
ko

xi = a +2- = a
a

+

This is better, so.letts repeat the procedure i.e., consider a secdnd

approximation x2 such that

1.
x2 = a + 2 (the preceding approximation)

a
x2 7 --2-.-

xl
7 a +2.(a it) a +

a
.

Better still, NOthng.sUcceeds like success..: What is x
3
?

. .)
..>

'L-,:-1.9..1. -1. 7 a + 2: ( a + 2 + 2 ) := a +:";2*
a A

3 0 . 2. 2 2 4 2
t

Satisfy yourself that, aaa
x4 = a +2 + +2 +16.

. n

We can repeat this procedure again, and again. Although we will never

reach the true value, we can come closer and closer to itq-IThis is

readily seen in the following way. Take a number linsin which numbers



1.

appear as distances, so that

110.. 8.

a is represented by an dbedissa. See

Figure 28

a
a +-

2

a
a 7.

a
a +2 - +

a

Observe that k (i.e., a)is.halfway between 0 and 2a, xl (i.e.,

a + 2) is halfway between x, and 2a. x
2

(i.e., a +: lq) is halfway
2
24

between x
1

and 2a, and
3

(i.e., a +.11 + +11) is halfway between

x2 and 2a. In other words, xi is obtained by adding half the'dif-

Terence' between x0 and 2a, x2 obtained by adding half the difference

between xi and 2a, andso on. In making the nth approximation

x
n we take'half the pre-Ceding difference (i.e., between X and 2a).--

Since we take half we leavehal';'; since we leave half there is always half
.

left.. Thus no matter how many successive steps we takewle:will never

get the exact solution to-(1),Yet every step must giVe a better approXi-

mat ion than its predecessor.
a .

is short. of 2a, x3. .is;

denominators, 2, 4, 8, 16*...'

a
Observe that xi is -E short 'of 2a, x2

E short, 5c4 is Is short. But these

are pOwers of 2. Putting this explicitly,

we have

= a

X = a

X = a

a+-
2

= 2a.-

a
+
a

+
2

= 2a
22

a a a+.7 + -7 +
'2 2

a + a
-2- 22 23

x
4
-.a +
-.

We conclude that

_ a
22

= 2a
a

- -5
2'

a
+ 7 = 2a
'2

+..
a

., + =

2
n

a
a

2

Our algebralconfirms our geometry._

Ihie.fresult invites generalization. What is the

by the sequence .of terms Of xt1,?' Each term (except of 'course

(3)

pattern exhibited

the first)

511



1
2 of the one before it. But our sequence would .still'exemplify this

pattern if instead of the .ratio of a term to its predecessor being
2
1,

1 1.1.

it were
.;

-J., or 5, or T. Generalizing, let the ratio of any term

to its predeced4or be . r. The first term is a; what is 'the sPcond?
th

Yes, sr.1 , anti' the third term is
2.

What is the '4telta?t:*ere are

n-i terms after, the first; and with each another factor7..!4,6n.-yModuCed,

so that the n., term is ar . Let :S: be the .6 thennth
n-1

S .= a + ar + ar2+ ar3 +' -+ ar + ar . - (4)
n-".2 n-1

Any sequence of this pattern --.in whiCh each term is in the same ratio to

its predecessor-- is said to be a geometrical progression.

Since any term. is obtainable by multiplying its predecessor by r, -

it 'follows that to. multiply each of the first n terms by .r is to

obtain the sequence of n terms which begins with the 2nd and ends'

with the (n + 1)th. We have

Sn =.a + (ar ± ar2 + ar3 + + arn7?+ ern- )

r S = (ar + ar2 ar3
arn-2 arn-1)

+ ar
n

.

n

Subtracting,

'(1 - r).. Sn = a' + (0 + 0 + 0 + - arn

so that
1.-

Sn a 1 - r

Does (5) check against (3)?

we have

= a

If in (4) we put

A

+e.t.a
2 717

a
T

2 ' 2

(5)

'1
r =

Comparing this with (3) we note that xn has an extra term; i.e., (n :+ 1)

terms: to make (4) and (5) applicable we must write' 'n + 1 for n..

Doing' this in (4) and (5), (with r = 2, of course) and equating them,

we

ake

1 Nn+1

8r0.1 +
a a2 + + 'a + -

n -1 n
a a.

2)

.2 2 .1 -

- 2a(1
2n+1 a 2n+1

o

= ea -
a

.

2n

It checks. Solution of .our little problem about the :cost of a loaf, by

the engineer's method of successive ,apprOximation, has led to discovery

of the formula for the sum of a geometric progression. . Oh yes, doubt--

lessly it has been disdbi;ereff heusands of times, but this 'makes the

5-4- .
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e. 1

result 46:leas a natural olirm4 of our deliberations.

1.3.2 Extraction of Soupte..ROOts

um consider anothaf'-example of successive aPproximation:. ..lg. Perhaps

you can quote it from memory correct to a',I'ewdecithelplaces and probably you

tech the "standard textbook method",of square root eXt;action to your'Classes.

touknow.the method I mean: start.at the decimal point and pair off the digits

before and after it, then fraithe left-most number, i.e., the number denoted by

,the digit or pair of digits of the first "pair", subtract the greatest` erfect.

..Aquare not,xceeding4t, and. . Well.i.y6urknow how it goes. Of course you

can teach'this methodAf you insist --,fhad it inflicted on me almost,'apventy:.,,

years.. ago. I didn't understandAhe:rgeaon for it, 0.7 hatedItt:

do. But you can teach a different method; more'interest140q.icause it is
. .

ithmediately.intelligible; more useful, because it has an ithpoitant generalizer

!..tibri. Ey hand it is a_little slower'tO use tharr'the--:"stancierd textbook method",
.k

-with a, desk calculator,: quicker. You haya.to make up your thindwhetner you

wish to'teacn rap0:computation or a methq0-which-leads somewhere.
.

..

To.avol4 dOlication of materiel, theeader is referred to the:l.'divi49:

and average" method of. finding square rootsee., for-exampleigh School
,

.,
MathematicW*it 3, pp. 121-130, University of Illinois' Press,'- Urbana, 1960;

Firat,COuraelliAlgebra, p 047301 Yale UniYersity Press, Ney,.Eayen, 1960;"

Section 4. Newton's Method of Successive Approximation'`

Successive approximation is an important mathematical method; it is the

yeiy essence of science. Although almost invariably in sciencewe must begin.
.

with what' is only an approximation-to thetruth, we. ;;4!apd noirest content with

it A crude approximation can be made to lead.to a lets.crUde.epproximation;

a good approxithation to a better one. That, the notion ofmVCCessive approxi-.

nation is
t
a key'to mpre'exact knowledge makes it' a worthwhile-Atudy.

1.4.1 The General Method of Newton,

Newton devised a general method to find the roots 'of aneivaion that is,

to findthe values of x such that f(x) = 0.. First of alli"to get some idea

where the roots lie, we sketch the functional relation. 4.. *004 Suppose

that.part of our curve is as illustrateA bfb.,11g. 29.



". Figure 29 ,-.

Note that at P -.`crhere'tlie...eurVe'CitiSseb the x-axis) theZ.y.".alue or

ordinate is zero, .ilp.,tkiat: f(X) in other.worda,2.-the.'.::..iralue'.t.
. .

or abscissa of P. Is a, :root. .of equation. The probleM to..

get successively better. estimates of this abscissa.. It, iE;'43fictitirpe;

,.sufficient to.'consider one root of 'Vie equation, for once we are-.Clear., .

as to the method, mutatis. mutandis, other roots can be found.,

Our graph enables us to get startea4 to make an initial estimate.

Suppose our atimate of the abscissa of P to'be xo, ;(This is a coP-:::

venient -ni5p.r,i3On, for the subscript 0 may-be construed mnemonically

as Origine.l.
4,
approximation.. ) Is xo dead accurate? Just pdssibly, but

,
generally we cannot expect to be -so lucke: Wetest it. Substituting

, . .

x, we find f(xo) 0.. Thua .it ,turne.' out 'that xo is:merely

an *proximation to the roof: What tc; ria:t ?

Newton tells us to do something both 'simple and effective. At Po,

where co-ordinates are xo, r(x0), 7draw thetangent to the curve; Suppose

this tangent to meet the x-axis at a poirrt Ai with abscissa then

xi is seen to be:'4.,better {approximation. See Fig. 30:



7 ,

Net at thepoint, On::the curve with ,the abscfssa of Ai,
draw a -tangent tO 'curve .ta cut the x- axis,' in iif)oint4 with aliecitea
x2. Repeat the procedure. At thethe point. on the curve with .the ab-
scisisa x2 .4cif A2, draw a tangent 4to the curve to cut the i4Lxis.an

. .

point A''3 ;.w:ikth abscissa x3. visibly apparent that the resUltjult
.sequence of points A A, , A, a:iesucceseively nearer to P, BO

F ,
3

x0, x2, x3 are progreisively better. approximatiOns to the'
'quired root. See Fig. 31.

. ,



Figure 31

S4..rough.it is evident that in principle the procedure may be repeated

uniAliihy required degree of accuracy is obtained, in practice there is

a liziiit.to the number of repetitions possible with penCil, and graph

.paper. In our diagrai the thickness of our.. pencil 1).ne for the tangent

at P3 Ufeais further aOirkii,.;The role ofgeomet'ryiato illutitrate

.the7methodvfof its unlim1t;a 61ication we need, a. formula.

i.

'1.44 Newton's Formula

See Fil(52.



4.4oAlP0,

tan' 7 vertical rise
horizontal adVance

f(xo)

x0
-

xl.

Ahe, b§ra'he differential calculus comes in useful, for-tan 7. is also

the .& ,fie Ett Po' of the tangent' to the curve y ='f(x).. We recall that

the spe cf.thiS curve at the p6int i?o(ko,f(x0)) is the yalue of its.

d4PeZef0-41.cefficient when. x =.3c0, or to use an alternatiVe

nottkt .the value of fl(x) when. ?c =x6.., The latter. is expressed:W/1th

coneRgent notational cO4aciness by 'f'(x0). So, in shoA,

taniy = (2)

FroP ( ) ( 2 )

gilAa

.so

f(x0)

- xi
- f '(x

0
)

f(x0)

tr(77 xb - xl

xo

x0 757

56
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Given x0 this formula enables us to compute xl. Yet the efficacy

, of Newton's .method is its..generality; x2, will be computed from xl and

x3. from x2 in exactly the same way as x
1

from x
0.

That is,.we have,

40 similarly,

and NeWtdn's famous foimula, in its'full generality, is

f(x
-n

xn+i = xn - .

*Although there are excellent intuitive grounds for supposing Newton's

formula to work, fo r supposing that successive approximations are better
4

approximations, ht is nevertheless prudent to test it. Tbo''be chary of

the untried, hesitant to accept the. unproved, is the very first require-

ment of a scientific attitude. So, let try it out.

1.4.3

SuPpose4that we wish to find. II:, the positive root 'of

Here,

f(x) = x2 - a =

fl(x) = 2x

so_that applying Newton's formulae, the right-hand side of our required

equation is

. 2
x - a

2x

Remembering to put.in the necessary subscripts, the complete equation

is

Hence,

x
2

- a
.` n

x
n+1

= x
n 2x

1.-..

n

,

. x

x x -
n a

--
n+1 n .2

+
.2x

n

+ IL
n x

n . a
+ =

2 2x 2



. But.,

a
x = a
n x

n

atito that if xn is an overestimate for a then
x.

is an underestimate,
n

and conversely. These consideratiOns are consistent with X i.e.,

a
. the mean of x

n
and being a better alTroximation to a than x

n
,

. but do not prove it.. So let's get down to brass tacks.. Supppse we wish

to find ,r2',..and that our-crude initial aPproxidatiOn.(xn where, n = 0)

is xo =.2. :Then
x 7x
0 ,

so that

Thus,

Hence

x =
_ 1 2

+ 1 3

2

3 4

2 3
=

2 2 12

2 ...24
x
2

'1/ - 17
12.

17 24
12 17.

x3. 2

Our successive approximations x0, xi, x2, x3 are

F4
whose sq.dar,es are

2
2 ,

12,
2

7 1 1
2

122'
2

4082

letting the facts, speak for themselves is a strong argument,

/4 .



1.4.4

To further. test Newton's formula, suppose that we wish to find the

root of a, the (real).root of

f(X) =.x.3 - a.

Here

so, that

Hence,

f' (x) =

x 3 - a
;n

x = x
n+1 d

3x2

x
n a

x
n+1

3k
2'

. n

2x+
n a

=
3

3x
n

2x + --
n 2

x
n

3

At this stage it is illuminative to take a numerical

we wish to compute 3, i.e., to find the root of

f(i) = x3 - 26.

49

cube

example. Suppose that

Evidently 3 is .better approximation than 1, 2, 4, or 5, so let us Start with
a 26x

o
oonsequently

2
--
x0

9

Since

3 3 3 = 27 > 26.

3.is greater than ..':;/g;yetnote that

-§--
26

(3. 3) = 26 = 3.gb ( 5b/ 31M) .

Consequently 10"leSs than' 112o. , so that 3153 is already

pinched between 2-E.3- and 3.

Alternatively; if we take x = 5 (say), then

1
between 1-- .and 5,.tirit plenty of elbow -room, so.to speak. We appreCiate the

convenience of a close initial approximation.

Returning to our computation with x
0

= 3,

a 26
= which

xo
Leaves



so. that

.:80

. .

liothat,----1.s too large an estimate for 3
-6. then

27
too small, anis

802
conversely: But, .

27
2

.

2x0 + a
2o t- 2 . 3 +

3 3" 27

.a 26
2--

802
X1

-s 27
2

26 (80

802
27

7
2

= 26 = (310 3-1g)

0x
1 287

= 2.962...

X2 = 2..961

x
1

80
2

27

so that 3Zg is already pinched between 2.962.and 2.961, and is therefore 2.96

'correct to two placea of decimals.

Continuing the'compUtation, we have

. 2xi +
a

YE
2

-

2
80

+
26'
802
272

3

It is left to' the reader to show tiaatigg'lies between
a'

2'
, ..".

and tocaiculated.t from their numerical values to as many significant figures

tnd

t

as is permdssible.

/a1.4.5. 5

Although tiiere,is an algebraic formula for the solution of the general'

quadratic,'and very complicated formulae for the cubic biquadratic equations,

it is impossible to obtain such 6 forMula for the general equation of. degree.

5 or higher. In real life, tolptf6astUal problems, we are obliged to proceed



by approximations, by arithmetic procedures that give successively

approximations.

To conclude our testing of Newton's formula let us find 5-IZ, i.e.,.solve

f(x) = x5 - a.

f'(x) = 5x4
Here,

51

better

so that .

Hence,

f(xn) xn a
n

xn+1 = xn - - xn - .

xn
5x

n

xn
a

x
4+1

xn - - - --1 ..
x
n

EVerybody makes mistakes; nobody is infallible. Whereas we cannot avoid

making mistakes, we can make'24hecks to avoid leaving them undetected and there-

fore uncorrected. 111,0:96rmulae for .x +1
for 2157, 3117., 5.. exhibit some

64140fp'ettern Yes, the pattern that for -W..

(q - 1)x + an.+
-1

n
x
n+1

Doesn't this uniformity increase our confidence in our woti4Ag%
...

Proceeding as on previous occasions, we have
.

.

17. (x xxx) =a=. 54.. .' (51; -54:, 5,1;. . 5173..), ..., .nnnn
x
n

From consideration of this it.is evident that if -x
n

is greater than 51/71.
,-.

then 7 is less,than 51E1 and conversely.
,

COnsequentlY 51; must lie -: ,*

x V:" . I ..

between x
n

and Ilt. And similarly if xn+1 / 5ra then the root must -also

x
n

".

lie between x
a

and -4----.; Now suppose.that x
a

> then-
.-,1.,

x
n+1

x
n

L.

so that

a
4.x +x > 4x + -r-

n n n
x4

a
4xn + r-

4
5x x

>
5 5



xn > xn+

a
< xn

x
n

a
+

a
<

n
+

a

xn xn xn

< X
n 1*

x

From (1), (2) it ollows that x lieb between
-11+1

x
n

and . Also by (1)
xn .

_1_

xn +1 xn

1 1

x
n+1

x
n

a , a

x
n+1 Xri

wvo can we conclude 66M:ih4Se consideraiions?

approXiMation)
.

..111

the situation is as illus.qated by Fig.

(3)

If x
n+1

33.

is an upper .

n+i
Figure 33..

SinCe,= x is necessarily a clo6er
a
up-

per, akiik.4n14:4001141x 4.77-'7, clQ6pr lower approximation than 7.

n

1,t tll'.inctsas accuracy.



.Chapter 2, From the History of Mechanics

Mechanics is the study of theection,of forces'On bodies. 'That part
A

53

in which the. bodies are at rest and, .consequently, the forces are in equilib-.
.

rium,' is,called statics in contrast to the other part, dynamics. inwhich
AN.1

the forces are not in equilibriut and, consequently,-the bodied not at rest.

Here we shall be concerned with:the simpler and first - developed branch,

statics, whichiS conveniently introducedby consideration of thecontribu-

tions of Stevinus ana Archimedes.: Altyugh the first real-achievementS

due to Archimedes'and-precededStevinusl, by many centuries, I prefer to di's-
,,,,

cuss the. latter first.

Section 1. Stez.1:n4§ and Archtmedes

Stevinus, a Dutchman, lived in"the 16th Century, contemporary wtth'

Descartes; a century orgso before Newton, Leibnitzvand the invention of the

differential calculus. :Ile was a brilliant applied mathematician who was fas;-
Ai. .

cinated by the usefulnes of mathematps: for Stevinus, mathematlCs to be

.good had to be good for. something, He was one of the first to use decimal

.-fractiOns and showed theirjOefulness.for everyday affairs,'he' invented

' the first416rseless carriage, and he constructed dykes, 34,Xi6h 'Still serve

.Holland to this day. His achievements are cOmmemoratekby his statue in his

native city, BrUgge. If yoU ever go there, look him Meanwhile we shall

consider his ,derivatidn of the Lag. of the Inclined Plebe.

..!2.1.1 Inclined Plane
/ .

.
.

.,:Even crude, casual, unavoidable everyday. experiencepresents thequrions

with questions. Indeed, the simpler the experience the difficult tcv.

avoid meeting pertinent questions head-6n. No mater:Whether or not

terests us, 'we all kndlithat it is harderto.Pigh:an:Object.up a steep
. : .

cline than up a less steep: the steeper the inclinethetarder we need

incline formed by a pair of planks enables :ft l*Slideinto our station

wagon'01trunk too heavy to lift,,,and for the same good reason the brewer

loads146.9±:ayby rolling thecas"ki of beer up_a ramp..: 3rains decrease the

need for brawn: t10 simple machine has the merit that the incline takes

part of the weight,,The.,purious:naturally raiseHrhequeSion: Since. pushing

up is less strenuous than lifting, what precisely is the saving in effort?

It all depends. Yes, but on what? Stevinus was curio:'.

After pondering these matters, Stevinus conceivedipe question in a
4

new context, How does the pull (or push) to move a heavy body up an in-

nline compare with the force necessary to lift it directly1 was asked in

: 40,



relation to the. situation here illustrated by Fig. 1.

,

since,the tension w in the string, counterbalances the foTce acting down,
.,. .

111# inclined plane011aratio pull to direct 14t is w:Vir. But a vertical

dspecial case; of an inclined plane, so t1ia4 the. underlying general;

'situation is

Figure .2

And the pertinent question, given equilibrium: What is. the ratio of

w?

Our crude, uncritical, everyday experience suffices to begin .an answer.

1

We knowthat-the steeper the slope the greater.;the pull. When the angle of

,inclination i zero, do horizontal force is needed to-maintain in equi-

librium; when he angle of inclination is 900, a vertical force 14. is

necessary. Con ider,



Surely for intermediate angles intermediate be required. Were,

w equal, the body on the SteeperAncline.(on:the:'right in Fig. 2) would'
.4 V

exert the greater pull and consequently slide::dOwti.."?""11We.must conclude thoi..

for equilibriuln,,:w.:1-4::1:eS0 but how muctiljssi''

We poatpon'sthia" quebton to consider several .matters of importance
P

raised by the 'foregoing. 'First, that varying the data:is an important ingre-

dient of puzzling,;Sovething out By this method we ave come to focus cIir

attention on the fact that the foce to maintain a bo in 'equilibrium on an

inclined plane is dependent uppn the steepness of the cline.

Second, in retrospect many tacit assumptions come to light; We

:know that when using a ramp to load a station wagonAtith a heavy trunk;'

we stop to get our breath, the trunk dbes not necessarily slide back down

the ramp. Friction can be -sufficient to pre,vent its sliding down when we

cease pushing it up. We said nothfng about friction. -Ndit,'%Consider. the,
.

Slightlysituation illustrated. in Fig. I';' That the incline iltight sag ever. so h

under the weight W was neglected. That friction at`tlie axle Of. tlie pulley
':Y wheel would resist turning and consequently movement of the string; that the

:'string has weight and therefore the length of it each side of the pulley

wheel is relevant; that the. string may not be completely homogeneous, 'but

Vary in density; that it is not :coMpletely flexible, but offers resistance

to bending at the pulley wheel:hat-the portion between W and the pulley..
will not be absolutely; parallel to the incline, 12i. 3.dependent on its density

and flexibility, will 'Sag a little; have been negl7cted. ..,

Nature is infinitely complex; to renderan investigation possible, its

complexity must 'be reduced to manageable proportions. The friction of our

station wagon loading ramp can be diminished by making its surface smoother

5 .
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And smoother and. by,. using better and still bettet quality Finally,

with friction reduced to an. a' negligible aMount,
. , . .

:.approximate8the:ideal.frictiohless state, Similarly, by us thinner, nwr
:flexible, more uniform string, more rigid and smoother" planes, and better

quality pulleys,: we mihimize..the4efilielicee Off:minOt_circhmstamedtOtlIgi

The closer the:
- 4

pan test the. th

. Third,'ther

tures on the.,

1.,epproach2wthe idealized state, tHe more ptecisely we

*lent upon O'll.fidealitatibin.

:Polfitsb Often Made by philosophers in-their lec-

Science,that physics is an'obseruatiOh4l scence, It

elead;you into supposing that Stevin .r.Oilat;':i*t

soiNNtig,6;614hi.. 1644 measurement and britical,obseryaten.

.Before he ,could intelligentlymake-Use of.measuremena* had to decide what

measurements'could intelligently bejnade'Use:of0TO the contrary he 'Solved

.1 his problem :by precise thirpangaboUtdrUdeadt:. real problem was con-

.deptual; he.:had todecide4hat:AOCUmetandeare'relevant,, what irrelevant,

and of the relevant, what Was4!tif major' importance and.what'coUld reasonably

-be neglected. It is precisely this controlled use of:the itaglnation, this
,

conceiving of.an.idialized situation by abstraction from experience, that /

the key to discovery. Until Stevinus had a:theory he'had no theory to test;

his need for precise measurement was subsequent:to this theOrizing.

We return to the problem of the inclined plane:itself. .What, with'tne

Jdealized:cirbOmstances of Fig, 2, is the ratio of. W to w for equilib-

rium?- Deeply pondering this problem, Stevinus appreciated' that with no .

friction equilibrilme is independent of the shape.of the bodies W, w.. Whether

these bebox-Shaped or barrel - shaped is beside the point...Eveo so, it takes

more than' an ordinary exercipe of the imagination-to suppose' boxes orbar-

rels to ,bereplaced by'rope or chain, Consider.Fig. 4.

Figure 4

6:6
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ABC is supposed to be an. old-fashiOned We'idari
, 4--

not today's .lean 'chain with elongate& i;inks;, butt. Yesterday' a :'fat Chwiii with:

closely interlbcking links that:adorned ,.,g.iind,father'a'watch and. igaiiitcOat.::,

This, idealized, ,.perfectly tlexibis.. rove 'of unifdriti density...

'.ties the weights W, w of AB BC are considered 'proportional to their

lengths; so the .ratio of W to ; is 'that of AB' to. BO.. So our prOb.,

is to find the latter ratio. Is; there any real. progpect of doingletYac' now,.

so? We seem ;to have taken a 'step in the- wrong directiOli....

The measure of a giant is his stride' Stevinns' gore `seVen. league boOfa.

If.q\ imagined, What ,very few of us would imagine; a :closed chain. Consider

Either the flexible homogeneousclo'sed chain hung over the triangular prism,

is in motion or it is not Suppose that it is in motion in, say,: the direc:

tion ABC.. Consider a particle of chain, say .that at C. Zince.'it is moving

downwards there must be a downward force acting on it. When it has moved,

its .place.at C will be -taken by an identical particle. What now? The

whole chain.still occupies the position it had previously; although each *

particle has moved a little, each has been replaced by an identical.particle;



,
the overall situation remlin's unchanged. We are forced tq, condede that if
originally there tad been a..downward fOrce acting on the chain at C, then
there still is. Consequentii; if thechain'is in motion orianally, then

is in 'motion foreer. But surely perpetual motion, a. free "inexhaffstIble
supply of energy., 4is a philosOpher is; 'ape-dream.- The Dutch knoW that from
nothing comes nothing;, Stevfnus wEt6. a Ilutchman. We conclude that the chain"
is in equilibrium.

. , .

And since the Whole chain is, in; equilibrium, the I.OWer portion ,ADC
Moreover, the Chain, being' completely. flexible, there is no resistance

to bending at either A or C, :so that it hangs symmetrically below. AC.
. Consequently the downward. plzll on the TrtIcies at A and C; are eqi.kal;
conselauently when the lower portion'. As.bc is remoired, the upper portion
ABC .will 'persist in. equilibrinm. This situation is illustrated by 'Fig. 6.:
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i",
.

.

BUt*violiblythe equilibrium of the chain ABC will'heilindisturbed

by extending thetriangularpriam over which it rests. See,Fig. 7.

,;

B"

Figure 7

C'

Whether or not AC is .a base edge of the prism does not matter at all.

What matters is that AC is horizontal. Suppose, referring to Fig:

that AC is .not horizontal. Since AC is no longer horizontal, thl lower

portion 4 the chain:does not hang symmetrically belc7W AC, so that the

downward forces acting on the particles at A and C are unequal: COnse-

quently when the lower portion is'removed, the upper portion ABC is no

longerin equilibrium. ABC is in equilibrium if and only if AC is hori-

zontal.

In shOrt, Fig. 7 provides the answer to the questfon of Fig. 4. Since,

'in Fig. 7; AC is.parallel to A'C', the sides of triangle A'BC' are di-.

vided proportionally,

BC 'BC'',

AB A'B

And since, the chain is of unifOrm density,

BC -_w
AB W

Therefore,

w BGI .

777

(1)

The ratio of the weights is that of the lengthd'of the 'inclines on which

the weights rest.

Yet this conclUsion holds no matter whatthe (arbitrary) inclinations

of A'B and BC1 to the hoTizontal. Consequently equilibrium will still be



maintailLle4 even if BC' is vertical, provided only that A'C'. remainahori-

ZontaI, sit4tion.isoillustrated by Fig. 8% *4

4

rM

, Figure 8

Here '

BC'ToT3.. sin a .

So that by (1)
f

sin a
W

giving

= W .sin ct.

It rema4.2a0 okrely to remark that the counterbalancing tensionActink at B,

and con0ealottly the equilibtium of the system, wou],d be unaltered if AI'

homogenoll s enain were replaced by a weightles6 string with a weight' W at its

left 111.161, w.at its right. We conclude that equation (2) is the .

answer 1 tii-e 1roblem illustrated by Fig. 1 and to the original question

"How d000 lull (or push) to move a heavy body up an incline compare with

the f01$e hocessary to lift it directly?"

It 0 09.dent to check conclusions. By (3), when a= 90, sin a= 0;
so that V 0, and when .o.= 90 °, sin cx = 1, so that 'w = W.. Stevinusl

formula 1.0 orrect.for'horizontal and yei-tical planes. We have reached the

stage, 0111;000eirt to theorizing, where precise experimental measurement is

approi,r*V,....totest the,theoretical.results for intermediate cases. .At

this pc01 ytevhtus hkd a theory to test. and tested it. The theory satisfied

7 0 ,



the examiner.

We

His solution, obvious to hindsight; requires'the foresight Of genius.
.._.

cannot force otaxpelveS to'get such bright ideas.

The substance of this account of the inclined plane as that of the

followingsectionOn the lever, was taken from Ernst Mach's. Principles of

Mechanics, of which a good Englibh translatiOn-(1893).of the original.btrman

011883)_is available: Mach, besides being an :Vole pAysicist whose experimental

work on sound is -commemorated by the Mach unit, was the outstanding philos-

opher of science of his day. To write this treatise he had first to read

Architedes. in the.original Greek, Galileo in Italian, Stevinus in Dutch and

others, in Latin. Modern specialists claim that there are a few points on

whieh,he misunderstood the original texts, but when we recall that he was

,primarily both philosopher and physicist rather than linguist, occasional

misinterpretation is only. to'be expested. Despite minor blemishes, it

remarkable work by a remarkable man: to me the most fascinating book I have

ever read, for I read.it at the right time; when. young, but not too young.
-

It demands very,little mathematics, but lots of common sense. It merits
1 4

beAg read several times.

s 2.1.2' Lever
,

We are a perve ;se lot.' Although Archimedes (287-212 B.C.) is acknowl-
. .

'edged as the greatest of the Greek mathematicians, it is customary not to

credtt. him with what he ai.d do and to credit him with what he did not do.

4.His ingenicks methods of computing areas and volumes brought mathematics.

. to the threshold of theAntegral calculus, yet the textbook .gives full
,

credit for the calculus to Newton and Leibnitz. He initiated the. science

of meChanics by discovering the conbltions. of equilibrium of a lever,' yet

it often is said t4at he discoVered the leVer daspite Egyptian

pyramid builders using levers thousands of years before he was born.

Here I propose to-.do no more than introduce the reader to the train of

thought underlying ArchiMedkds discovery o?"the conditions of equilibrium of.

a lever. For a complete account of his theory of levers, read Mach.
.

-Although, in donsidering weights suspended by strings frOm a beam or

lever balanced about a fUicrum, Archimedes never ackally says so, cOntext

makes it clear that the levet itself is.suppOded to be rigid'and weightleds

and the !Ling weightless andiflexible.-Ige find inevitable idealizatibia.

416Eritly.e. is mathematical; he begins with lexplicit statement of his- additional,

non-qpntextudly implied, assumptieS. The first'of these, cOnsiderea So

obviously true as to be termed axiomatic, is

AA i

,!

4 it sit,
4



'

Axiom 1. Equal weights at equal distances are in. equilibrium.*

It is of'course understood that the distgnces are measured From the fulcrum

and that.the suspended weights are on opposite sides.. Fig. 9 illustrate6

this, axiom.

r--

Figure 9

This a om raises two questions: The first: Do we belie've'it?'',j'S it

the right e r uilibriUm of equal weights? But think a moment.

There could not be a correct rule orti.n.:inCorrect rule if there were nd _
. .

ftles at all. So there is a.second, yet'lbgicallyprior, question: ..gre

ruleq possible? It is tempting to retort, Of course there'muiat be rules." ;

Of course? Must? There is no must about it. We do not know. Yet without

rules there could be nothing properlY termed science, and With no science

to pursue there could be no pursuit,.of science. We take.it as an article

of faith that science is possible,'that.there are rules.

Let us return to the first.question: Is Axiom 1 the correct rule

`orequilibriullpf equal weights? Obviously., We all know -how to weigh a

pound of bacon with,apir of (equi-armed) scales. Archimedes has merely

made articulate our edmmon experience. . So his rule is "obvious" in the

sense that we are faMiliar with its exemplifications. . And we are all famil-

iar with boiling water changing into steam; obviously.boiling,Water makes
.

steam. That it happens is obvious; why it happens'is not obvious. That

Axiom 1 applies to scales is obvious; why it is applicable isnot.

This bringd us to the principle of sufficient,. or. if you prefer, in

sufficient) reason. This principle is illustrated by the story of Buridan's

ass. Buridan was a scholastic philosopher who is nowadays remembered only

*The Works of Archimedes, edited by T. L. Heath (Dover), p. 189.
0
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ipecac/se of his ass -- even bough it is far: from certain that the story of

Buridan's ass is Buridan's:-Otory. ..But no matter whose ass it was, the poor

creature found himself equidistant from two identical bundles of hay. Sym-

metrically placed between these equally sweet-smelling bales, the poor ass

could find as much reason to go first to the one as first to the other and no

More reason. to go first to the one than firSt to the other. And so, as a

consequence of the principle of sufficient, or insufficient, reason, it

of hunger.

We turn from Buridan's ass to Archimedes' lever. Lever, strings, and

weights being.symmetrically.situated with respect to the Tulcrum,.there

is as much and as little reason why the right weight should sink as the left

should. Suppose that the right-hand weight sinks. But which weight:is the

right-hand weight?, View the lever. froM the other side and the aide pre-

viously said to be the right must-now be described as the left. Thits a
I 4--,:'

.right-hand'rule is inconsistent. :.So, similarly, is a left-hand rule. Such
-4,

ruleS depend uPionthe point of 'view of the observer, yet the lever does not

care whether it is ObServed or not. The only consistent aFlternative is

Axiom 1. r
.

.

Archimedes makes a second explicit assumption. It may have been sugges-

ted by the following common experience. We all know that it is easier to
.

carrya ladder.. with help than to carry it alone. Unassisted, you take the
a

wholeiWeight on your shoulders; assisted, you share the weight with other.

. ',.

shoulders.' Consider carrying a (uniform) ladder with a fellow ladder car-

ier, one of you at each end. Who takeS the greater weight? Change ends,

As Tar as your shoulders can tell you take the same weight as before; you

share the weight equally. This we are led to argue that in the idealized

case where the ladder carriers are twins with shoulders the same height,
OP .

'above the ground and so forth, theaituation is "perfectlysymmetrical, so.

that each pair of. shoulders takes exactly half the ladderls weight. Carry

the ladder without help and you put your shoulder to its midpoint to bal-
J

.ance. it.

.
Let us tuin.our attention from 'Supporting shoulders to supported weights.

We conclude that the equilibrium of a weightless ladder, rod,'or beam with a

weight. W suspended Trom each end, will be undisturbed byreplacing'both,

Weights by a single weight 2Wi. suspended from the ladder's midpoint. And

conversely of course., 2 a 11,,the midpoint may be replaced by W at each
.

end without destroyingoth 9A1AbrAUA. This is (essentially) Archimedes'

1,0. ' ;

second armption. The co4text understood, we may put it tersely.as

k
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(A) W at each end S. 2W in .the middle equilibriUm),

This assumption is illustrated by Fig. 10.

J

W

1

2W 2W

I D Figure 10

From Axiom 1 and Assumption A, or rather from a generalization of the

'. first, Archimedest:Law of the Lever is deducible. .1 shall giVe some insight

of the method of proof for the general case by considering specific exanples.

First, study Fig. li.

A B F A'

Figure 11

The five equal weights are supposed spaced at equal intervals, say? unit:dis7

tance. The'whole system is symmetrically'placed with respect to the fulcZuM':.

and so, by th4 principle of insufficient reason, in equilibrium. We have an

alterhative argument. Since by Axiom 1 the weights at A, A' would:in the

E1:13sence of all other'weihts ensureequilibrium..while similarly the Weights

et B, would in the absence of .all other weights ensure equilibrium, as

would that at
, F. we conclude that'the weights at A, A', B, B', and F.

together ensure equilibriUm.

Next, 43..tudy Fig. 12.
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9' o 4 : . 0 .41 ;

. :4 ...' 4 ..' ' '.. :I ,
By 'AsSumpticin CA) :t,he .equilibriumicif the se,gment AB of the, leyer is un-

changed by rePlacllig W at k ..and .at:' B ..Eby ,2W sit:. C,! 'consequently

the ,eqUilibrinm :of the enti.ire lever is eunchs,hied;

And, finally;. Eitudy. Fig. 13.
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Again .using

W at F sand X1',1

tnri ;entire le
Suspended

ended "'l un

i.e.,
t. weight . distanhe from fulcrum wei

,f

Lei us consider another special

er
' E

1.
FiErre:

, eqUilibripm io

2W at B' ; consequent

hanged. short , we Cohc

its ;fripm the fu.lcruni
*-0m its other. But

t
1

r 2W 1-2 = 3W

1 x4r

Ete.tc: from _fu1c

,See Fig: lit.

41.

2W.

;<-

raged by' replacing.
eeqtiiliblitin of

....a.,,weight of - 2W
:.'t

tv.ci
.

t of ,/ 3W, r.

N.*

I II

4



B' A'

1 ,>

Axiom 1, we conclude that the lever is in equilib-

1N.

Assumption (A) the equilibrium of BA' is unchanged by replacing at

and W at, at B'; conseqUently, ,the. equilibrium of the entire
1 .

ver is 'undhangea.:.:ThUv w acting at units from the fulcrum lbalanceS

acting at uni,t from' it. But .

W 1-
1 1
= 3W

2 2

76
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weight distance. weight distance.

''Note that multiplying (2) by 2 gives (1) or

(2 .1 = 3W (2

W 3 3W 1.

.67

Illustrate this alternatiVe interpretatiOn and. use Archimedes' aXiom to shoW

that equilibrium is obtaidled. We can conjecture on the same general condi-

tions for the. equilibrium of levere

Section 2. Vectors
,

The notion of vector arises quite. naturally and is basic to physics and

indispensible to applied mathematics. That it is clear from the outset

that vectors are good for something makes the topic readily teachable at

an elementary leVel: That vectors are 'becoming .part of the high school

program is a rear step fOrward .

We 'begin with an:example. A man is to cross a river from the left

bank to the right. Too laty to row, he uses a motor boat. If'hie motor

fails, to start when he casts off, he will 'drift dotal Tiver. with the tide.

Let 'Us :supPo0 hiM to drift AB in unit time. See Fig. ,16..

Figure 16

If it is high tide so that there is neither a current up nor down river,

and his motor de working, he will travel let us say, AC, in unit. time.

.

But, if both tide .and motor are 'working his bdat will have velocities .

771
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due to both. Wherewill it'be at. the end of unit

The answer comes AAte,naturally. Consider.a'special case. A, boat at...

A. headiniup river at, say; 7 feet per minute (about 5- m..p.h.) against a
1.

down-river current pfthe same velocity .moves neither up nor down river;.

with both velocities simultaneously it stays put relative to the river,bank.

At the end of a minute it is in the same position as it would be at the end

of two minutes ifit moved,aolely under the influence of the current with

no motor for the firstmdnute andunder. the influence of the motor with no

current for the second minute. In the first minute it would move 7 feet down

river with the current and in, the second Minute 7. feet back up the :(now

currentless) river. Thus (at the endmf two minutes) it .would be in the same

Position after current and motor acted successively (for a minute each) as it
would be after both acted simultaneously (for a minute). In short;'the re-.

sultant effect of both forces, current and motor, is that of each acting

independently of the other.'

Thus, returning to.the general cdse'of Fig. 16, it is natural to suppose

tnat the boat will at the end of unit time, say; a. minute,, be at Dvwhere'

AMC is a paralielogam. .See FYg. 17.

In

.Figure 17,

ci)

.

one minute the boat acted on by:current without, motor would drift to ,'

in the succeeding minute. acted on. by. motor.withoui.currentit would go.

as fat as (and in the same direction as) if it started from A instead .

B, i.e., from B to D. (instead Of from A to C). .So, under the forces,.

due to current and motor acting successively, at the end of two minutes,
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At is at D. AlternatilielY conceived, the ing at A, acted Upon

by mOtor without current would in one minute r C, and in the- succeed-

ifiliminute acted upon, by current withOut.motory would":drift a distance .

('from ) down river equal to AB, i.e., it would drift from 'C'-tb- D:

Viewed either way the successive effects of current and motor (each acting

:for oneminUte) is for. the boat to reach.. D. Ie.it 'not natural t&Ponclude

that the_simUltaneoua:effects (for One:minute) is:,for the boat toreach.'..D?....

I'leTthUs arrive at ihe'Parallelogram Law.OfDieplacements.
. .

.
,

, Ikhalf (or double) the'time the boat's\lisplacement down .river will

be half ..(or double) AB,' AB',-.- and. its "across" river displacement
. . . . . ,

.

:,:,.

.half or doubI.e);AC;.;thay b14,1i, so .that the boat's - position resultant

froM.both displacaMents Will be ' where AB'D'C' is,a parallelogram of.154
. ,

..

'aides half (or doublerthOseof.parallelogram Ape. :.See Fig. 18..

r-

.

More. generally, since np matter what the time. in question, the ratio of

AB'r to AB must be the same as'that of AC'' to AO., ,:the.positiOn D'

.resultant from both the disPlacements AB'. and AC'. will be such that

parallelograms ANC, and hence. triangles. AODYACD axo.



It folowa.by'obvious geometrY that DO. lies on ADD or AD 131-0.:.

`We 'conclude that, the. path .of the boat is actually along AD. But .

AB and AC are the distances the. boatgOes down. and "across" river in

unit time, Onaminute, so that thase.displacements'representits component

velocitiesinthese directions, and. AD represents their resultant: We ""

have the Parallelogram Law of Velocities.

Displacements and velocities are remarkable quantities. In addition

to havingan amount or magnitude they have a direction or sense, ad thaijit

is natural to:repredentthem by direCted line aegments, or, as we say,

4.eetors. Ihe directiOn'of the quantity is Indicated by the'direetion

the line,segment,',the.Magnitude'caf the quantity by the lengtOf the line

)segment.., PreCisely because displacements and

quantities, the resultant -of a pair of either

of theparallelogram through the common point

pair.. Many important physical quantities are

velocities are both:vector

is repi"Esentedbi'tile,aiagonal

of the sides, representing the

of the same nature.:-poxers:.

know the difference between receiving a straight right and an uppercut;

the 4irectiOn'of.the blow can be crucial. W. must anticipatea..Parallelo7

gram La' of FOrces. Considerthe Situation illustrated by 'ig:.11:

,

The particle at A isjneqUilibriumiunders.'.force
Y1'.Pyic 6"g.

A8,
. .. .. . . .:....,. ,. -ti.g,,..-!/. .. .

a force W Along string AC; and a...force W alOng;",StringI4210. Sinde -,

.A is in:eqdilibrium undex=tha action sf, these three:f0o4,)itmust be:in..

:.equilibrium under anyone of them and the'reaultant of the other:tWo; in
. ..

,;particUlar', .Amust be in:equitbrium;under the ACtion.bf.tha ftiTe 4014 -1 1-,
, .

pt



Mr and the resultant 'Of the 'forces along AB and AC. But it is clear
that A Will.be in equilibriUni only if this resnitant is equal in magni-
tUde to the force along AD' and acts in the opposite direction. See

Exrferiment confirms our expectations. It is found that, AB,, AC, and

AD' are of length'. W1, W2, . and W' units 'respectively, then the fpurth
vertex D of the parallelogram "withsides AB; AC is suoh ,that AD is.

3rZ units and, A; D, are collinear.. 'In short, if. AB, AC are vectorb
representing component. forces in magnitude and 'direction then the diagonal.

. .

AD of parallelogram is, a vector representing their resultant in mag-
;,

s and 'direction. "

Of course an element. cisf idealization' is .attendant 'upon this experimek
k. . .

as on any other.. In sup,pdsing the weights to exert forces W1, W2, W on

A, we assume the btgingg .tci weightleaS' arid perfectly flexible, the
little pultey wheels to be 'fi:iptibitessf;, and so forth. The nearer actual °
conditions afe, made to approximate to, the ideal,..the more exactly is the
Parallelograth tip verified'.

Inclined: Plan&
'

COneider a botlY of weight O. in equIlibriurri' qn a Irigid frictionless
inclined:plane of gle a i.. as Illustrated by.

4 0
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With,.the usual idealization; we infer' that :the tension, in the String
throiighout.. What., is w in terms of :W?

The 'body' is; In equiiibeitii under 'the action of4three forces,' its on
. weight W. 9,cting vertically dOwnwards, the tension w in ,the 'String'. acting
. up the planei R the reaction of the plane.,: Since we suppose there to

.

be no friction betWeen the body and thePlene R cannot have a component
fOrce along the 'plane; R must be normal to:tht plane. R, last be
a force of Opposite direction,(but equal' magnitude) to the rebultant of the

other two forces. Put, by the Parallelogram Law of tio'rqA*: the direction
of -te'reaultant of the otherctWo forces (as well as its, magnitude) is re;.
resented by the diagdnal through-5.A of the parallelOgraii whose .:aides with
cOmmaxi vertex; at A represent Fr~ and :!'qOnsequently, the diagonal th

is normal to the inclined plane. See ,
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Figure" 22(a)

Fr Om Fig. 22(b) we have that, LcB.A.D, 2i(EF are

So that: GRAD = a, and. that

AB = W units, BD = AC =

IT

:Figure Ra(b)

each complementary to 4SAB, .

since BD1.1 AC, GPM = 90.?.. Hence, since'
units, considering 6ABD

soz-that

14 = sin a...

W = S in ct.i

-Although Stevinus fotind this result:in ,a most excitingly 7atiginal way, his

underlying principle. has the disadvantage that it is far less, readily appli-

cable to other problems than the Parallelogram Law.

. Pulley

.A system of pulleys enables us to lift weights too heavy to lift by.

. unaided Muscle power. Suppose, for example, you must remove the engine
.

from your. car for a major overhaul.: gather them try to lift it, you could..

les,d strenuously hoist it out by the,pulkey System illustrated by Fig. 23.
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C"

Garage Roof

Automobile ?Engine

Figure 23

NN

As usual, we suppose idealized circumstances x. that pulling at` C will

-lift up the engine rather than bring down the roof.. With .frictionless°

pulley wheels (the center of A being fixed. in position) .atti weightless
. , 1

rope, a downward .force of w at. C will give the rope a tension w through..

out, so that IS when in equilibrium will be in equilibrium under two upward
9

forces of wk. and a dOWnwsrd forge of ,s1./. Thus,

w + w = W °'

giving,

W
.. -2 .

With any increase int w; the ',engine is hoisted.

Note thSt"this rsult, is a consequence of, the Parrallelogram. Law Of.5.

Fo ices if we 'neglect the dimension's of he pulley. The 'resultant of 'the

two upward forces; each w, is given by ..completion of the parallelogram.

- See".Fig.. 24.

°



Figure 24
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Heed we suppose the forces w to be equally inclined at an anale e to the .

°

vertical AE in opposite directions and investigate the position of D when

6. decreasgs-to zero. When 6AB, AC collapse on to AE, B. and C. become

coincident, and CD, .since it must remain parallel to AB,' will lie on AE.

But CDC must remain equal in length to- P1, so that AD will lie along .AE

and will be twice the length of AB; Thus, by the Parallelogram Law the re-

sultant is a force 2w acting vertically upward

Ibis left to the7=ader to show by means of the Parallelogram Law

that the resultant of two 'equal but opposite forces is zero.

f

2.2.3 Lever.

w

We already have some idea of how Archimedes deduced.his Law of the Lever.

Let us derive thip by applying the...Parallelogram

But first a vordSbouirigid bodies:: Itiyvident:that a rigid body B

will be in equilibrium under the action of two equal, but opposite, forces

acting on the' Same particle of it, say, that at A. See rig.' 25.,'
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Figure 25
4

Yet we all know that in a tug of war, different members' of our team pull on

. the rope at different places. Does this matter? Of course ndt. B. will

still,be in equilibrium if the points of application. of the equal and opposite

forces are at, day, At and A",'insteadof both at A. See-Fig. 26.

,

J

It does not matter at all where the points of application are, provided that

thetwo equal opposing forces have the same line of action. The trans- '

missibility of the forces of At and A" is due to the rigidity of B.

The reader will more fully appreciate the importance of.this princi-

oftransthissibility. when he. has seen how it enables us to deduce the
.

conditions of equilibrium Of the lever 'from the Paraileloiram Law.' To this

s

PA



deduction we now turn.

The general probl

Tor the equilibrium of

suspended TroM

ern:may be stated as follows. What are the conditions

a rigid weightless lever AA' with weights w,

At whatirpOint of AA! is the fulcrum. F, and 'What

77

...
. ,

force must. F exert °A the lever?' Archimedes' Assumption (A), illustrated

by Fig. 10i suggests

where w and, 10 are 4111, an upward force equal o the sum of the w
.

acting at a fulcrum at -Igidpoint of AA!, 'receives equilibrium, Does not

_.Ihis suggest in ihe generalcase an upw&rd force of w + wl at some point

F in AA1? Yes, but whist point?' Alen. w and w' are unequal, symmetry

the answer. In this special symmetrical

is destroyed, F is not the midpoint. Odr introduction to Archimedes'. - .

. s' -..

treatment of the lever 0104 enable the reader to anticipate the specifics-

tion of F. 1

To apply the Tarallgl gram Law to determine the resultant, of w .sus-
p .

-
Tended. at A and 0 at.:: , we represent these forcee'by lines, AB, A'B',.

,o.

drawn vertically downwards, of. w. and 0 units respeCtivelythereby rep-
",.

resenting these forties in both magnitude and diftection.% IMmediately we are

confronted by a.diffigulty. Since AB; A'B' are parallel lines, no matter _

. :a. a ,
how far they are extended they cannli intersect; we cannot construct a para-

.

llelogram tg obteinAheir4asultant.- See Fig. 27. 4'

11
s

$
A

w.

B

At

Figure 27

0.

B'

The difficulty is zeadilyoveicome,.. Ifthe forces w, w' were not

parallel, there would.beno difficultyillye must substitute equivalent forces

(l.e.',,forces with the sameeffect) that are not parallel. Can we compound a

force with.w and a force with w! to give nonparallel resultants. with

the same effect as 'W and w' now have? Suppose that at A we introduce

two equal alt oppOsite.forces; one inYthe direCtion 'A'A, the other'inthe

. direction AA' Each of tOese ann s the effect of the other; equilibrium

is undisturbed. But. by the principle of transmissibility, the Toint of

87



application of one of.thege 'bay be transferred to Al provided that its
magnitude and directiOn are unaltered. Neither .fotce wins the tugof :war.
The vector representation of the new situation is given,by,Fig

K;

"A '}. Tr

.-.- - .... -

The vectors AC, Ayf ent the "t Inple
1:4..,.. '''' .;.....t':.

the vector raile16,-"'''. tr-.'..il and At; wre',g12.tain A, ; '`reire0e.
ti,'4 ec'' .1-e-,- -' 57., .' .:, 4t- x-- -:,`t,..

i.7z.", .f. , -`:-'.''. i.-, ''\-1,....
'--Thete
).....,- 4,- 7'. : -..

tions. AD, 11)1, ,of s.-0.'dt,,ing at A and A,.....r
"resultants t theiilia.10.1 am effecti'.dtt.tie -1e*r-.13. , --irsiiift
compgnerits;:" hir pairs.,,,;tiorp-ponents have .4he..%arge..ef: en atthe..pii,fir10.11:'

. ..'t 1' ' .,s

forCes . C6tisequently .rt. :ticie: leier. we re :.in equil ibt4.ini, ;Originally ; : it still...

is:.".....4i'ilave surmoUnteti.iiV. diki."'iculty;.'-",.... :', .'.? . ,:,-. . :

....,%tvt.roilan'ircg further..1.{realilation; let us suppose the levei; A.At., to
-;beco (extended rigid, but we tle4,..body-i! Being weightlelifilRe ng..new

ti t.forbi. intre0144, so:4thatetetluilibri#01.'g UNisturbed; be ngiwrigid,.
forc,cs 'kin .it ;are itniis61.15.,i'e..;, so!,that t'heir: int s f, a ication

. ..,,-
.. ., . . ,.

may b.' Ineagt?Iii11- their directionp,.. w %chang --.e.ffeet:z7.

t Se:::ti;:t:.:.:
15.4t.';:',1.7-..:

...;...4;r- : , .,.. 1. .

..!.
%t?i,-e:' ',,.' k''' .. 4.

I
I

° A. 8
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.

Let: ;114.141-16f

wards it4terstct at''M
M not; in ,genekl be above the Midne of, .AlitV:;-,-"-

.
'

point). ''llen'' 'we i y, without c '/O of effee4;';replace the forces
point's cor8tppriCatipn -1? jj A r by far,..C4. Yell.. th@ saMe niiitgnitude:

.!..ley "1 , . ,-,-, .., ..,'!....' .._:,;,
direction.twhose Csonnon pRint 'of. .Ittplicat,i'on is 4.1: Thy ;vd,c ,:p'f";",tdiejorceif

acting at . M a4 the directed lines Mii,
. . ..where of M5 = AD:.

and MD.-ADA. /. . 34 46 3A

.1'. '. ,.!.
But MD,, nay biz res tWeo component vetois 'idelitibeiiiteil-tgiea . . .

component vectors ofi AD cept or poiA of applicf(tion) for MI5

.the same Magnitude anCl.directfon as AP. Similarly, "delr.5.' pas the 'combpfients

of .A'D':. 'SQe11410 30.
.
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Figure 30

t the tug-of warfforceS represented(.by annulled'one another;

consequently the pair represented by MC, MU' also annul one another. ThuS

the resultant force acting at M is the resultant of forces w and w'

(equal to those originally at A and A') acting vertically. dOwnwards.. So,

by the Parallelogram Law the resultant force at M is w + acting ver-

tically downwards .

The interesting question is: Where does the vertical line of action of

this resultant cut AA'? .Congider Fig. 31.'

Figure 31

Werecall that a line parallel to the base of a triangle Ai1ides the s4s,

proportionally. So, considering ,LAMN, .1t#

99



and cpnsidering M'M
s
j.to 101NA' 1,5,

MB'

From (1),

From (2),

But

,
by Fig. 30), so that

Hence from (3), and (4)

(1)

(2)

NA MT3. =.M 1315 . (3),

NA' NCB' = MN .

81,

15 = le = AC = AIC!"= MC' = Ti,51.(Eis is illustrated

10 Taf, =,NIN B'5'.

.11A. MS = NA' MS'. (5)
We have the answer to our question., The vertical line of action-of the re-
sultant cuts AA' at a point N such that (5) holds.

But; again making use of the principle of transmissibility, Vie: replace=
ment of the resultant acting at M by a fOraecof the same magnitude and -

direction actingat N,. leaves the effect on the lever (or extended rigid,
but weightless body) unchanged: we have shown. that the resultant of the
original forces w and w' acting vertically downwards at A and A',
respectiVely, is a forcg w + acting vertically downwards at__N. But of
course the lever would be in equilibrium.,u,haer:two forces of w + at N,,

the one acting vertically 'downwards...Elia the other vertikally upwards. Conse,_

quent]y, if a fulcrum F (sufficient: to supportw + w' is introduced at
N,' then the lever 'is In equilibrium under the Oigina4Arces. That is, by.,

1

(5),. as F .= N, the lever wi4l be'in equilibrium if
410 FA E3 = FA, ttEu ,

Recalling, that M53 = A13-: .y' Nl = AB' = anU putting FA = a,

(where a Aands for a ve, finally,
.

.';w= a' le

We have,used the Parana gram Law of iNetora to.derive Archimedes' Laa

FA' = a'

of "the Lever.
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IL We have already seen, in rough outline, howArchimedeSt, so(5v1e: his

.wasthegreateatofthe'Oreeemaz
.

greatest matheMatieianswhO'aVer
1,';

discovery of the beginnings ofthatinte..7.

gral calculus, a discovery brought about,by a most application

Archithedes! Application of his

Law of:the Lever. As you know, he

ticians; indeed, he was One of the

The chief basis of his fame is his

Law of the Lever

his Law of the L:

.The aimsEhe tonStvisible3aima, which 0-04-rise to the integral
,

. luS, are those of,* 40.n&areaS'and volumes which are enclosed, not by

straight lineali. .1D(4.g.P401pr by Blames like. polyhedra, but by curved

lines and curvedaurTaces: For0Astande,'aproblem:Oemanding integral .caleu- .,.

lus is detirMination of the volume. of a sphere. N4111111y is" it the most
Y.

natural and:most .exeiting probleM about volume; also it is one of the cost

difficult. Archimedes was tha:Lrst to solve, it. Why:1S it so difficult?

of '

calCu-

Wha% on'earthasthis to do with'levers?

One question7at,-a,time. Why. so difficUlt? Compare the sphere with

Other volumes, 'say the cylinder and cone. Whereasthe sphere is.round in
. .

every direction, the latter are, so to speak, merely half round. Theiateral

surface of,a right.cylinder .can be cut along the Straight-line element

peeled off, and flattened out into a rectangle without distorting its See

Fig. 32.

Similarly the lateral surfade of a xight.cone can :be ctt along the straight

line element OB, peeled off, and flattened out into a'circyar seCtorvith-

out; distortion. See Fig.' 33.
. . .



Figure 33

Not so, the surface of a sphere.. We have all'peeled orangesS. That:the..
.

sphere has a inuoTe complidated sort of surface: suggests the computation of

its volume to bamore difficult.

The eecond,question,-"What is the relevance of levers to Aetermihation

of the volume,:of,a sphered:', cannot; be aneweted.immediately. Every' problem

is ilewed.relative to.a framework of associated ideas.,:First 'We must ask
,

ourselves: Whllt, for-Arbhimedes, ,was the Context of: his problem? How did

Archimedes, his mathematidal contemporaries,.and their mathematical pre-

da4etsors.dohceive irolume?',

r .1Well, of what volUffies do you. know the formilael-, Certdin volumes axe.

easYto find; fOr instanCe,.that of a rectangular parallti-Opiped,.7 in brief,
. _

a boX. Its volume idthe produCt of its length,breadth; and heights: And

do you know the fOrmUla for a, right prism? But first,..x4at. is 4 righyprism?

It is a solid with a (plane) polygonal top congruent anct'Perallellto'its

and,lateral faces (parallelograms) perpendicular to its base. .Its

Volume is the product of its base area and height. Note that a box is a

prism (with a rectangular base) an4 therefore.ihe formula for prisms is appli

cable. A tight cylinderis a solid closely relatedto the prism. Is it not

visibly evident that as,the number of sides of the base of a right prism whose

base is a regular polygon is increased, the pq'tm approximateg more closely.to
o

_a right cylinder? Doesn't this suggest that the same formula applies to-

right cylinders? ,

A pyramid presents a much more difficult probleM.,,The formula for its

volume is one-third area of its base times its height; Here, likewise, it

isvisib*-evident that as the shumber of sips of a pyramid with a regular

polygon as,base is increased, the pyramid approximates more closely to

96
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cone. .Surely we Must anticipate that the fOrmula ;for pyramids applies to

cones. o

Historically, whodidcoverpd the volume of-the hok, the priSmiand

the cylinder, it is impossible to say.' Hut these formulae-- and even those

for the D5'rhmid and c were already known to the Egyptians They had

no strict proofs, but the formulae. were known and were used There is,

however; something definite to be said about the cone.

.The volume of 'the cone was disdovered bY:Democritus,who lived' about

400 B.C. He did not' prove it; he guessed it: the evidence is that-his

gUess was not a blind gues, rather it was a' reasoned conjecture. As Archi-

medes has;, remarked; great: credit is due to plemocritus 'for his' conjecture ,-;
,

since thk made proof much easier. Eudoxus (408-355 B.C.), a pupil. of ,

subsequently gave a.rigorous proof: Surely' the labor of writing limited.

his manuscript to a few copies; none has survived. In those''Aays,editionq

did not run to thousands or:hundreds' of thousands of,OOpies 'as modern books- -

espec fally, ttid boOks -..- do: However the substance of most ACI7h6:t he wrote'

is nevertheless-aya4lable to us. Euclid; who 'lived About,3160B.C.j wrote,

to the knowledge:Of every schoolboy of ty generation, The EleMente of dame-
.

trY. Euclid!s great achievement was the systetatizatiOnof the Woks of his

pr'edessors: His compilation includes quite a lot of:things besides georae-

. try; the. Greeks :understood the term in amore generous sense, They Elements

preserve several of Eudoxus' proofs.'. ;

Archimedes studied and-pondered deeply the works of his predecessore;

these .are thp. context:within whichhe conceived'the problem of the sphere.

Herein lies the clue of the 'relevancl of levers AO:volumes. ,;4'W

9

To 'find this clue we go °back to Democritus. If you have heat d hiS

name before, it is tore. llkely that you heard it in a philos4hY lecture'
rc, ,

than in a mathematics. course. He is much better known as a hilosopher, as.
1

'an originator of atomic 'theory. Deniocritusl/ conception of ana*ml.ras some;-

thing altogether 'different from today's .physicists'. For h1,14, ,:$.s. for the

modern physicists, tbe whole world cohsists of atoms despite the'apParent
.

continuity otmatter. The crucial difference. is that the IF o as Democritua

conceived it, could not be split. Matter could, conceptually at any rate,, be

chopped up into little bits, the little bits lhto smaller hits, until finally,

atoms were obtained; these'little bits were held to be the smallest possible

--indivisibles:' orie could chop no smaller.
lr

It is worthwhile to stop for a minute 'or two to pokider
9

Conjectured the volume of the cone. .What.can be said is necese yet'



4 ,

not solely, speCulative.;ti5ere are afew extant quotAipns to .support us'.

. First, xedonsider the volume.of a' rectangulartarallelppiped, or box.

'Howwouid We.demonstrate to a c uld that a block whose:edges.are 3, 4, and
. .

hasa vOiUMe of 6a cubic inehes?'Sure*., into.-

60 cubes .of unit' edge and by pointing, out that:WeaketAo!consider the

Hvolume of. any such cube to .be unit. volume. We!1,6Uld, in,Short.; .consider

the unit cube to be an atom andoStowthat the-1)1(36i in:gUestion,is made Up

of 60 atoms. The :only objection is that itYusing atom ih:Democritus' .sehse

we would be implying that a'unit.cube Car-hive be.splitjnto smaller cubes:

s.'2/jet to which weneed°not commit ourbelveS to effectOUtdeMonstration:

Next, could we-Aemonstrate in exactly Oesame way that.a block

haS:41 volume of 70 cubic. in&es?: Not:in exactly the same way

Itincean edgeof 37, osinot form.an edge of an integral number of unit Cubes.

The necessary modification is obvious. We chop thesblockinto.560 cubes Or.
"

atoms of
I

edge and then reassemble them to form 70 unit cubes. Thus the

problemOfdetermining the volume of a solid boils down tocounting the t

number of its constituent. atoms. SUrely this was bekocritus' basic idea,
. .

.0h yes, the ideais.simple, but the application be arduous.:. Suppose'

that we are to demonstratethe.volume of a .block 3it x X10 X 510 The .

Counting 61.64,84,atoma,:cubes of 10" edge, is%much.quicker said than done.

One counts up to 37,428). forgets whetherthat was the number of the atom just'

counted or the one-abput.to be counted and Startsallover

do we dol We facilitate enumeration by dealing with large numbers of them

en bloc-- no pun intended. By multiplication we know immediateiy that a
.

block with.base 3 by 4, and height 5 has 12 atoms (unit cubes) the first.

..layer,jg in the second. layer, ...,:and-So etc)* altogether.' We
. A I .

enumerat4ithe.atoms by first dealingwith One.iaye ot cross section. Surely
.

Democrittis thought of this too.
3,

-Wha4'fOr the cone, isa natural layer or gross Section? Yea,'a layer. .

af , (

.para Ltd:Elle bas0. So aTone ../S-dOnceived as made up of adjacent Circular

dust one: atom .'But here:there-is a complication. A1t4ough as

forAltrectangular block thp successive layers or cross. sections are all of:
r

-the same shape, their are'fnOt all of the same size: The labbr:Of enumeration

'mouldlapped.r;:to4fbre upon,us the notion,ofayariable cross. section.

A.Str4hOw far'iYetbdrit4 developed this notion' we do.nOt knO*.' Surely

hecknew that a cub-e.can be dissected into threeadentical'PyraMidS1-sothat

the volume of a.pyramid. of this. special shape is, --,base'X-heigbtvsureby..he
.

MuSt(.ttalsEConjectured .t11)%t other pyramids andtheir limiting case? the .dona,

had the:same:formula. .t .44 '4

Z.)

if



'Be this as it may, ,Eudoxus gave a rigorous proof. The proof
cult and several lectures can profitablY: be given to its detailed expoLtionat,,
phe reader, may .try to read it in the twelfth bodk of Euclid's Elements.

Here we haVe the context, the conceptual background, ofArchimed
blew to determine the volume of the Sphere.. .A - problem similar. ye
pite simtlarity, distinctly more difficult-thany that of the, cone.
sphere, unlike the cone, is, rounded in all directions. ,.Hid' genius was eq.11$1

ti

tip
r-the challenge. .

His method? .A tii-illiant application of his tali (of Equilibrium)*.egf the
ver.- In accordance. with his law he aliusted the length of. 'the arms
ver so that the cross section of a sphere cb{interbalanced both the corres -
ding cross section of a cylinde and the cOrre8ponding;Cross section: of..
one Simple? Although he called his'method the Mechanieal Method he
no artifiCer of metals counterbalancing9ne chunk of sheetmettl.tgainsti.

air of ',Chttnks He worked with ideas, not with tin; hisxMethod-las'con.
ce tual. His corfesponding crOss sections were just one atom thick. Rray

11

te how:thiCk is an atom? Oh no,' it is thinrier, much thirEiner than '

t . ts Sc, small that if it were any smaller it 'Would: be; no sfsze at,
An whe.:6 did Archimedes do? With an'Insolence to logic equale;sonly by, the

number stoiris he conceived, he irifrred that the infinitely many, ciods.-,
sections that till the sphere would counterbalance both:the infinitely
(corresponding) cross sections that, fill, the cylinder ancLthe infinite;y.

many '(corresponding) cross sections that fill the cone. He inferree equil b-

riumiof;th'e solids from'equilihruil of their cross sectionk. For

tails he interested reader is referred to Vol 1, lop. .557.3,.51:3, of iiii'book

Mathematics,--and Plausible Reasoning.
=ft.. add that ArChimedes was too good.a mathematician` to leave itat

that He used the yesult''obtained.hY MechaniCal.Method only to discover

the formula for the sphere : from discovery. he/proceeded: tot'rigorous:yrbbf.
Also I must' remark in Passing that the riotion.of a variable cross,.

sect Con hada long history.. More than02,000 years'. later.we'meet the
idea 'oft Ciwalieri=s in the 'terminology' of'leihnitz 7- of gassing frOm infini-
tesimal element to integral W le: the idea of proceeding from ightegrand

fX) dx to integral f(x).

2.2.5 (-).(-) = (+)
Although Archimedes* di4overy of the gral calculus is:by*far the

most important application of his Law (of of the Lever,

there .are a multitUde of other .intereatinW appiicatIons. I shall conclude



my selection from these w th an answer to theperPlexed schoolboy's question:

Why does minus times min equal plus?.

.
One answer to thisq estion is its proof; its detailed step-by-step de-

duction from the axioms a d definitions of algebra. But this is not What',-

your pupil is asking for. The proof, if presented,' would go unappreciated;

it demands sophisticatio beyond him.

BIB younger brother,:who is learning to count; wants to know what

4 + 7 is. His motherellsLhim, only to be driven crazy with his incessant

"Why?", "Why ? ", "Why ? ". 'Id he demanding a resume along the lines of Whitehead

and Russell's Principia Mathematica proof that .1 +.1 = 2? Or does he rant

the comforting assurance of a demonstration that four apple& together with

seven apples makes eleven apples, followed by similar demonetxations with

orghges, his building bricks, and his mother's cups and

answer does poor, diStractedmoitherattemptY ,

Doubtlessly the "Why?" of your pupal, the older, brother, though less

incessant, is more demanding. His question'May be manyquestions, "How was

it discovered?", "What'is its use?", yet ,the dominant demand of his "Why

does minus times minus equal plus?" is for tangibility, It is no accidental

figure of speech that we speak of grasping an idea; you must mojher the.

brother. The lever.meets his demand for tangible illustration.

Consider the equilibriuM of a (weightless) lever, anted upon by weights

W1, W2, W3, W4 at distances al, a2, a3, a4, respectively, from the fill-.

drum , as illuStrated.by Fig1 34.

Figure 34

Either a weight tends to rotate the lever about F in a clockwise directionit

Z) (as do 14 and W or to rotate it in tne opposite, anti - .clockwise, T\
1. 3

,directionCA(as do W2 and 144).. The measure of this tendency, the turn -

ing the product.df the weight and.the.length of the arm from the.

fulcrUm to the weight's point of application. More briefly,

9



weight X arm = -moment.

More precisely,.this turning.moment.is termed static moment, in contradis-

tinction to that considered in dynaMics. Let us characterize a clockwise

moment as positive dnd an anti-clockwise moment as negative.

. On what does the characterization of a moment depend? Clearly.it does

not depend on the magnitude of the weight used; to increase Wi is to in-

crease the moment, not to alter its characterization. Nor does it depend

upon the length of the arm; to shorten al is to decrease the moment, not-

to changsl,fts sign.' To alter the sign of the moment we must reverse the.

`direction of the force due to (say) W by introducing a° pulley,'or hang it

from the opposite side of the fulcrum. To take account of these pertinent

considerations let us term a weight whose force acts vertically downwards

from the lever (as do W
1

and W
4
) a iositive weight, and in contradis-

tinction, a weight whose force acts vertically upwards Srom the lever, nega.,

tive (as do W. and W3). And to distinguish between ,a weight acting to the2
right of the fulcrum (as do W1 and W2) and a weight actin to the left

(as do ,W3 and W4)ze,introduee an,
ix-dxiscoincident:wth the lever, with

origin at the fulcrum,. so that each arm a is.a horizontal, directed line
... 1

segmeit. As in drawing graphs, we consider to the right from the origin .to

bekpositive and the opposite direction to be negative. 'Thus the arms al. and
a
2

are positive; 81 and a
4'

negative.
-

'Fig. 35 indicate3 s the signs of the weights..and the arms'of Fig, 34 an

the pharacterizations orsigns of the TOrresponding moments.
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?

W.--
1

( sitive) acting at a distance rail -:bo tile irightof.. 0 .(PositiVeY has
\

- a;:tendency to- give-the leve-i a clockwise, positive, rotation; i.k,, the prod

uct of' b. positive; weight ondapositi-Cter arm is a positive moment. Andre-' :,
.

.

memberingythe Cheshire cat who disappeored:sb'hastily.that he left hid/grir-1:

behind, we may put the matter schematically f .., --

= +.
There Is a superstition- that mathematical potation t be always perms

0

feet. But English with never a colloquialism; heyer ellipsis is unendur-

able; it leayes the reader thing to7do bit pass ely listen.. As with:En1

glish, so with mathematics. t us consider egrins'without th6.cats:,

What is thesign,of 2? Yes, neg :-vei And the sign of a2?-; Yes,

'positive. AnItheirmoment? Ye",-anti-clockwise: -So,

"
It is 'left tto the readei to satisfy himself and OubdeAuently his

that consideration of W4 and a4 gives

+ 1

/

,%Ond of W
3

and a
3

gives '

/ - - +

/
Have we proved it? No, we have not deduced it fz4b4 the definitions and

,axioms of aigebra.., But, we have shown that it .hai an intuitive interpret's-7....

'tion, that it is applicable to physics; above all, we have made it tangible.

Of course, any physical phenomenon whose magnitude is the product of the

Magnitude of two physical quantities will serve to illustrate the rule Pro-

vided that each magnitude is capable of taking both positive; and negative

'sign's. Yet what can be a more elementary, or a more intuitive, illustration.

than that furnished by the lever? And is it now so'very difficult to con-

jecture how that minus times minus equals plus was first discovered?

2.2.6 Von Mises' Flight Trlangle

.We.have discussed instanceo,of equilibrium, namely, inclined plane, .

'pulley, and lever, in terms of vectors. Our next eXitmplaithousl-i strictly

speaking a problem:Of dynamics, is so simple that we include it in our vec-

tor.treatment, of statics. Our problem is how to determine the air speed of

an airplane.

First, what do we mean by:afr speed?' We do not mean ground: speed.

The former is the speed of the plane relative to the air it aid's throUgh; .

the latter, its speed relatiVe to 'the ground itflies over. This distinction

is vital tq our problem. To fix it clearly in our minds let us ponder the

following illustration.

Suppose that an airplanej flying at constant-speed, goes from Se

9 o'
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Francisco to Los Angeles in 4 hours. For easy arithietiv; let us.,take
the distance to be 400 miles. It follows that the 'airplane's ground speed --

qr, if yOu Prefer, road speed-- is 100 m.p.h. That is, it sets there in,

the 'same time an at the same speed as a motor car would, if automobile en-

gines were just a little more powerful, the San Francisco-Los Angeles road

much less congested, andthe California speed cops' less vigilant. Clearly,, .

azi,airplane that keeps pace with a ,car racing to Los AngeleS ,at. a road speed

of 100 m.p.h. must itself have a road speed of 100, m.p.h.

alit what is the air "gpeed.of the plane? That depends on the speed of the

air.' If the air is still.; then the plane flies through the air, at the same
speed as it flies over the ground. Its air speed is 100 m:p.h., the' same

as its road speed. °

Next/suppose that the car stopo for gas and that the plane overhead is,. : .. .

battlfng against a t2b0 m.p.h. head-on hurricane. '''The plane, to..cOntinue

to keep-pace with the car, to remain directly above- the filling station

while' the car refuels, _must. be .fly.ing through' the hurricane at 200

Although the - plane's road speed is now zero- (as is the car's),. its air speed;

its speed thro:ugh the air, is now 200 m.p.h. When the ear, relueled, ton- -.

tinues its journey at 100 the plane to keep pace with it must,(because

of thelle44-guilTrriaane) increa . its air speed to 300 m,p.h. In short,..the

air speed of,the plane the r ad 'speed (pr; if you prefer, grolind speed) It

would have if flying in still ir.

Let us now use vectors t make visibly obvious the relation between the

planets road velocity, a road speed V in the direction PL), its

air velocity a (i.e., an r'aispeed. a in the direction POE), and theiwindis

velocity (i.e., air mOvin / with a speed W' in the-direction P0). ,See

Fig. 36

The situation i.d analogous to that, considered'earlier, of a motorboat

crossing a rive* With no wind, the plane would, in, say, one minute, fly

t 10 0



o

. s
, ' c.,.. .,. '..., ;, 4'.

' from P 'to 10.1.,.. WitVno_sj.*J3154ediLa balloon wOUle,, in the same time,

firift'lith the Oind:frOm.Vto:' e:,inci.we;;h4-ire'alresdkseengthdt tile re-
)

sultant-of simUltaneousCaidplaceme a is-as' if they 41ad:been consecutive.
.

. .....,

Thuathe .actual. path of planes PL,;;,tts.road.velocity V is the re-

sultant of its air :velocity a and the wind{ velocity As we,antidi.1

'.:pate,lwhenthere 1. no 344A (s.

,

othat- PO.: ..is zero and L and 0' coincide).
3 I '

the. actual 'load velocity PL Nand the air velocity: PICA,' of the pla4e, are

1

ti

,'identical. - , .

.

1
.

. , ,c.

So; id determine the.air speed of a p aneit is sufficient merely. to
. , .

determine '}its maximum. road speed on a calm day. :The-snag is the sparsity

of windless days. AirplanemanAfacturers want to make money as well as

/ yplanes,.,and so cannot afford to sit around for six months waiting for still

'air over some hundreds of square. miles in which to test ple performance of

tlieir.machines. 2mpatiently, you exclaim, "Why wait for a windless day?"

.True if w 'ean be accurately measured, as well as V, then 'S... is readily

calculated by means of a vector parallelogram of velocities. The snag, here,

' 14 Ito measure 1-77 accurately. The practical problem is how to determine,

from the road speed of a plane at full throttle in a wind whose velocity 17

is not known, the maximum road speed of the plane when there is no wind. .

......

Quite a problem. It was solved by Von Mises some fifty years ago; this I

well remember as I heard it from him at that time.

We are now ready to begin introducing his method. An airplane flies at

full throttle from A along a triangular course ABC, a flight triangle,

whose vertices are chosen to'be easily identifiable landmarks, preferably

fewhundred miles from one another. The lengths of the legs Ai, BC, CA,

eing known, and the time to traverse each one.of them recorded, the road

speed for each is readily calculated. But of course the directions ofthe

legs. arealso. known, so that we know the three velocity vectOrs,,say,

V2,;V3. See Fig. 37. And since the plane Was flown at full throttle, its

air speed a is its maximum air speed. How is a to be determined from

the data?.

101
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Figure .37

It is *portant tb note that - although the veloCity vectors are represented

in direction bcthe side of the night triangle,_they are not, except when

there is no wind all, represented in MagnitudelyytheT4. We Use'arroisi

in Fig. 37 as a graphibaI.Aevice,to indicate .the road velocity in'direotiOn

and magnitude... Suppose,.for examtle-,Nhat in flyinithe longest leg: BC

the plane has a head wind. In consequence, in flying 1C thS airplane

road speed is slower than on either of the'bther two leg'sassuming, of/

course, that the wind remains constant in both speed and direction. ...But,.

if the least road speed is represented by the length of the lOngest'side,

the greater road speeds woiild need be representedby sides longer than-the ,

. longest. 'Agreed?

-Sp, to make the data fully visible, starting froM some point P, we

draw lines. PL, PM, PN, to reprepent
1'

17.'
2'

17
34

respeCtively,.three.vea mt-
(in Fig. 38) which agree'with the three arrows in1Fig. 35.1,n magnitude'as-

well asern direction, especially PL H AB, PM H BC, PN II CA.

102



Eby are we to utilize this vector diagram to determine a -rthe maxinlizm

--air speed of the plane? Can we intrOdUce a vector for ,i.? Alas, no. That

the plane flies around the flight, triangle at full throttle merely implies

',that its air speed a, the magnitude of, s, is constant. It does not-

'imply that the direction of s 'is constant. We must' thinkagain,..

Can we introduce a vector TT- for the wind? Doesn't this suggestion seem'

more fruitful? Remember our assumption that the wind 'velocity. .remains con -

`°'stant throughout the entire so, one directed line segment frOm
.

P should serve as a vector'coMponent of ther9ad'yelocity alongeach and all

'76f the three legs of the 'flight triangle. As in Fig; 37, let PO'be a

directed line segment representing TT. But wait a'momenti w, although con-;

stant,. is unknown. AA we baffled?-Think a moment. Doyet, in algebia

dlay embodying an Unknown, x, in equations until we haveiletermined its
, ( -

value? 'NO, to the contrary, we put in x in order..to determAle,its
(

So? ,Tentatively, we insert b. See Fig. 49..
. ,



Figure 39 ,

What nov? Reference to Fig.,36 suggests comlletion of the parallelogram

of Fig.- 3§ of which .P0 is a side and. FL a diagorial. No Weyer, in),,Fig,' 36,
OL parallel an.d.e,qual.to POI, an equivalent'directeld line segthenti so .

. that 7), could alternatively be represented by. OL and, the vector parallelo-

gram dispensed with 'In favor of the vector triangle POT,. Thus, in Fig.. 39,
OL w be an -air-speed vector which together With w has the. resultant

>,.

d what of triangles POM, PON? We have- remarked that PO should1

serve as a. component of the road velo7ity along each leg of the flight

triangle. See Fig. 4o.



Figure 40.

Note how delightfully the three vector t;iangles.ninterlock" on PO just
,

. lk.ke piecesofaAigaaw puzzle. Not only is .771 the Tesultantof 7

and an air - speed.. elocity 01,;' also is 7.2 the resultant of w and an air-

speed velocity OM, and V3 the redultant of 7 and an air =speed velocity

ON. But.the plane flew the entire flight at full throttle. Therefore its.

air speed 'a (but not its air velotity) was the same for,each leg. Therefore

OL, OM,. ON have the sane magnitude,(butinot same, direction). ,Therefore

o is equidistant from. L,M,T; it must 'be. the center of the circumscribing

circle of triangle LMN. Construction of 0 determines both a and '7.

This is Von MIsest.elegant, ingenious-solUtion.

1 'L
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Chapter 3 From the 'HistorY of Dynamics
4.: .

Whereas statics, we recall, is that part of mechanics 'which is concerned

with the equilibriUm of bodies, dynamics is that part which is concerned with

:the,motion of bodies. The' former, as we have had occasion to °note, goes back

to the Greeks; to Archimedes'' discovery of the. of the Lever and his appli-
,

cation of it to the tntegral calculus. The latter is relatively new; it starts

with Galileo.

Section 1. Galileo - . , ,

Ga ileo is known by his first' name; his family name is Galilei. He ,was

born A. 1564 and died in 1642. To believers in the transmigration of souls

the date of his death is .important. Not only did he die -in the year in which
.

Newton Was born, . c9 eniently for their specUlatiOns,., he died shortly before

7Newton was born: much more important date is' 1636, the year in which he

completed the book on which his fame so securely rests, the Dialogue ConFern-

ing Two New Sciences. Although many of his brilliant predecessors, beginntrig

with Aristotle, and including that most versatile Of versatile geniuses,

Leonardo da Vinci, had been interestedin the free fall of heavy bodies,

Galileo was. incomparably the greatest dynamicist of them all. He inherited a

,, dogma and bequeathed a' science. .

His tomb is to be found in Florence, pi the Church of Santa Croce, among

'those of Leonardo and MichaeianAelo the .
Dante the poet, and

0achiavelli the\ politician. : His instruments are also to be found in Florence,

in the Museum of the History of Science; among them the telescopes he made,

used;'but did not invent, and the thermometers he made) used,:and did, indeed!'

. ,

invent;',.also his instruments for the study of dynamics.. Florence is an inter-

esting city. r
Like his father, who was a physician, Galileo studied medicine. Unlike

his father, he .was soon bored by it,c. In those days the college course was a

digesting, and the examination a regurgitation; of the texts of Galen. Galen

had lived from about 130-200 A.D. .Meanwhile, his texts -- preSumably in Latin,

for then as now few knew Greek had- been accumulating the dust of dogma for

fourteen. centuries. In medicine it was sufficient to quote Galen, as to quote

Aristotle in-practically everything else. For Galileo, to _quote vas not suffi-j

. ,

cient; he turned to mathematics.

3.1.1, Heavier BodieS Fall Faster?

Aridtdtle had stressed the .importance of observation, yet he did wit,, in

dynamics, observe well himself. It is a matter of casual observation, well

known to mountaineers and pthers, that bodies free to fall,- fall to, the ground.

To Aristotles' very casual observation,.the heavier the body the faster the I

1 OS
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fall. Galileo argues to the contrary.
.

. %dr
Suppose two bodies W, w to fall..freely from rest and to have velocities

v, respectively, at the end of unit time. Then, according to Aristotlei:

giyen that W is greater than w, V must be greater than. v.' But, asks

Galileo, "What happ9ns if the two bodies ate
. conjoined Let V be the velo-:

city at the'end,of unit time of the.conjoint body W Since w alone

falls more slowly than W, the w part of W + w Must retart the W part;

the fleet of foot has to slow down to helptheltme along. V must be less

than V. Yet, since W +w is greate* than W, byAristotlest hypothesis,

V must be greater than V. TherefOra V is both .lesathan and greater than

V; "vri, w falls both slower than and fasterthan W. This is'absUrd.

What has dalile6 done? He has said, in effect, that'here is a possible,

law, supported by a rather weak observation. Is it consistent? He has argued

that it is not. Therefore it is unacceptable to mathematics;.it CannOt be an
.

ingredient of a systematic description of phenomena.

Galileo's argument was an important one; it made uneasy the. dogmatic

slumber of many of his contetporaries. He spoke and wrote with an edge to.

tongUe and pen. Like his father, he was quarrelsome as well as argumentative,
.

and witty as well as logical-- a combination that Made his opponents look silly

as well as their arguments. unsound. He did not endear himself to all.

3.1.2. Not "Why?", But "How?"

Why? Why this? Why that? Such are the questions asked by the good.

shepherd Aristotle and bleated by his sheep down through the centuries. Why

do heavy bodies fall? "Because," says Aristotle, "each body seeks its natural

place." He argues as if an inanlmate object were an animal seeking its mate.

Are.you much enlightened by this argument? No, because you are born in modern

times; Galileo Vas*not. He had to argue the point; such was the intellectual
k,

Climate of his day. Galileo, frighte4ningly modern, aaked.a better question;

'no. Why?", but "How?". His question was'a demand for precise description of

the phenomenon under copsideration, not speculativaanthropomorphism. "HoW,"

he asked, "do bodies htll.freely?" Hid "How?" was much more.;. Behind his"ques-

tlon stood his fundamental tenet, "The greatest book is Nature; it is always

open before your eyes. And the true philosophy is written in it, but to read

it, you must know the characters in which it_is written. It is written in

mathematical` language, and the characters are triangles, circles, and other

geometric figures." His demand was for a'precise mathematical law, no less.

3.1.3 Itow Do Heavy Bodies Fall?

Galileo asked the right kind of. question. Finally he asked the righNues=

tion of the right kind.' He gave the right answer. In so doldng, he founded a

0 ,
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)1(5w 'do heavy bodiss fall? The farther, the ft:tater. EVen the most casual

Ab;eiver cannot avoid the cOnclUsion that the Velocity,increases with the dis-
.

,tance fallen. We all 'know that the greater the qroP,Of a hammer, the harder it

hits:: We':ali'knOw that it is better to be hit orithe head by the bone fo the

dog,dropped from the second story window than- froM the.toP. of the Ehapire. tate

Building. It can be made painfully evident that free -fall motion is acceler-

ated, So what is the mathematical law relating the velocity to the dista4e?

What'is the simplest conjecture? That'the velodiiy.o.the failing body

directly proportional to the distande fallen? This was Galile's first ques-

tion.- It is the -right sort of question. , - t

.. :It islikelythat Leonardo and.a fel others before Gl.ileo had raised the

same question; the-ditference:is that'Galileo took-i more seriously lAlthough

nOt tO.be found in his pr,inted works, .he discussed it at length in his corre-..

spondence with. other natural philosophers.. After some three year6 of pondering:

he came to theconclusion that this conjecture As absolutely untenable; it has'
- ..:7 . -) .

0
the-self-contradictory consequence' that the free fall could never get^started.

i.

His. refutation. is not an easy argument and'eannotbe stated concisely or very

clearly withoUt calculus. For this reason its considerationMust be postponed

until you.ard-introduced to differential iguations)_nearly at the end ofotbis

course' of lectUrei. The probability is that. Galileo had thought it out thor-

oughly,:but could not .quite succeed,in putting it explicitly Aespite.his mathe-

matical abilitY: He had it clear enough in his -own mind to convince himself;

yet.couldnOt state it Well enough to convince those who, unike himself?,

lacked the, grasp ofthe difficulty given by -&ree years of pondering Mach,.

for example, although a firstTratephysicist,'failed'AC understand hits.,

Galileob conjecture, based on the undeniable fact ofrfree fall that

the farther tile-fall, the faster the fall, isuntepabie. The fall could never

get'started.a He-had to think again. But, it is also-an unavoidable.cbserva--

tion that the longer. the. time,:th faster the fall. The bone for the dog takes

longer to hit you the harder When: Opped from the top of the

..Building instead of being tossed from a second-floor window.

accelerated with"respect to time as, wellas with respect to

is the'mathematical law relating velocity to-time? What is

jeoture? Thaithezyellscity of the' falling body'is directly

the time? That is Galileo's second.guestion.

question '.of. the' right kind.
-

Galgeo verify hieconjecture experimentally? Remember he didnot,

have today's elaborate photoelectric equipment with which' to handle split _

, .

Empire State

pee-
fall is

distance. ;So what

the simplest con

proportional.to'

It turned putt to be the right,

second motion. :atop a. moving particle to:take a longer look-and you. have



destroyed the velocity you wished.to observe.. Yet there is no hurry in
.

measuring distance; tills can be.made at leisure andwith accuracy. So Galileo's

problem was to deduce the law relating distance to 'time imialied.la (and imply,

Ina) lielocqyaeing directly proportional to time; and hence indirectly to
"V-k-

verifY the.later relation by direct verification of the-former.:

So, to fully Understand Galileo's indirect experidental Verification of

his conjecture, we must first Okhow he deduced that, relation between distance

and time which is implied by-his 'conjecture. To faCilitate deduction, like

Galileo but unlike Aristotle, we shall use diagram with coordinate axes;
f

"essential charadters of mathematical:language," as Galileo wou1stput.it..

°'.

( Merits investigation of dynamics was physical; Aristotles' was metaphysical.
. t, unlikelGaIileey,'we have the additional con enience of algebraic notation.

d it been inyented,in his day he vould.certain y have known it; almost der.- .1
.

tainly he wouldhave beer[ able to push his devAo ent of aynamiceduch farther.

Suppose that a heavy body has a velocity v whPn ithas been falling

4reelyfor time .t. Then Galileo's hypothesis is that 1" is directly4rbpor-
.

tional to. t; that v is,a constant multiple of' t; that ,

v = constant. X t.

The, numerical value of the.eonstantAependsupon the units we use .for v and

t, and.the constant is. nowadays usually denoted by g. .Our. primary school

teacher who taught us that. A is, for apple, should have added that g .is

for gravity that'made the apple'in NewtOn'S orchard fall.'6Thus algebraically

speaking, Galileo's .conjecture is

y = g 6
(1)

But the distance s' fallen from rest in time t by the heavy body depends

upon t; s ib,a Specific, yet unspecified, function of t;-
s = f(t).,. (2)

Galileo's Problem is: Liven (1), to specify (2).

How did he solve it?
,Most ingeniously, by conceiving accelerated, non-

"
: : motion as'a liditingfcase of non- accelerated, uniform motions.. .

Pmrst, consider uniform motion. ,If you driye for two hours at a steady

rate, of 40 m.p.h.,yOU go a total diStance of 80 miles.
I

More generally,

Algebraically,

80.= 4o, X 2.

distance = uniform velocity x time.

where .v is constant.

Graihically, see Fig. 1.

C3)



Figure 1

. !

The ordinate v is.constant,\so that the graph of

parallel to the taxis.. NOte\that the area under the curve, the area

of the shaded rectangle, is v\X t. 'So, by (3), the total4istance traveled

is represented bycthe area under the curve -- when the motion is uniform. Oh

yes, an obvious observation, but nevertheless important.

Second, consider the non- uniform motion. What is the graph of (1)?

This equation is of the for% y = mx, with v instead. of y, -t instead

of x, and g )mstead'of m. It is a straight line through the origin with

slope g. See Fig. 2.

v is a straight line

101

Figure 2

'Why is the velocity of a fkeely.falling body not:uniform? Because its

velocity continualy.increasesi bf course. And an accelerating-car does not,

for example, move at. p ft/sec for the first:second, at 5 ft/sec for the second

second, at 10 ft/sec for the third second; at 15 ft/sec for the fourth second,

and soon. TO.ihe contrary, let Us temporarily'suppose velocity which eon-,

tin:m-117 increases at a steady rate to be characterized by such spasm.'of
. .

uniformmotion punctuated by accelerating jerks.at the end of regular inter- .

.vale. This grotesque caricature .ofthe truth is illustrated by Fig. 3.

0
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a

FigUre 3

In the first second the car moves zero feet, then instantaneously with a.

bone-shattering jerk it accelerates/to 5 ft/sec. After a second of gentle

driving at this constant velocity there is a .we rhad-better-install-safety-.

.belts jerk to 10 ft /sec. There follOWs a secOnd'i driving at"10 ft/sec; jerk;

a second's driving at 15 ft /sec; jerk; a second's driving at 20 ft/sec; and so

on.' The distances.covered in the successive intervalb are represented by the
.

.areas of the successive rectangles. (The first rectangle is of zero height.)

The total distance traipled is .represented by the total area of the shaded.'

rectangles.' ,

Now suppose th acceleratiOns.and the time intervals to be halved. In

the first five sec nds the car now acquires successiVely2'fpr half-second
1

intervali, the ten velocitied, 0, 21 2 5, 7-2-2 10, l'.-.,202 222 ft/Sec.

4 trate this for yourself by a diagram of the same type as Fig. 3. The Jerka,

although twice as frequent, are only half as strenuous, for the sudden in-

creases in velocity are now only 2 ft /sec instead of 5 ft/sec.
2

Now suppose these accelerations and time intervals torbe halved. too.

Although the jerks are four times as frequent as in the initial case, they are

only one - quarter as strenuous; the sudden increases'in veIocityare now only ,

ft /sec instead of 5 ft/see. With the jerks eight times as frequent they are

only one-eighth as strenuous; the .sudden increasesbin velocity are now only

ft/sec instead of 5 ft /sec, When the intervals are each 2- Of a second
2

where n is large, the.jerks become gentle jerks, for the sudden changes in .

velocity have been decreased to ft/sec. The larger we make n2 the more
2

nearly'we smooth out our ride. By making n suffi'ciently large we make the

smoothness of our ride differ imperceptibly from the glide of vicar whose
- _-
velocity is continually increasing at a steady-rate. By making !I' sufft-

Ciently large, our grotesque caricature becomes as.e;tact a descriptionOf

continually'increasing:velocity.as we please.

111
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Mtatis mutandis, these considekations'of course apply equally well to

freely falling hodies. And what happens to Fig. 3.and the figure that you

have drawn for yourself when n becomes large? As the rectangles become more

numerous they wear a leaner look and more completely fill the area under the

curveof /1/. = g t. By making n sufficiently.large.we come arbitrarily

close to filling the whole area. See, Fig. 4.

course,:the aiea under the curve in Fig. 2 (i.e. ,.the shaded area

Fig. 4 (ii)) representsthe total distance traveled in time t by a heavy

..body-falling from rest. Despite the fact that the motion is non-uniform,

the total distance' traveled is, as in the case of uniform motion (illustrated

.;* 1), nevertheless represented by the area under the'cuiwer.. But, the

" -.urea under the curve is a triangular area of base t and heighi"'"gt. So,

.e

1 .
X gts = -2 t

s =
1 2 (4)

This.is the'vay,ln Which-Galileo deduced the specification of f(t) of.-

equation (2). This is the'law relating distance to time impliedhy yelocity

being direCtly proportional to time. .(And is it not evident that if the40

1 2')
area under the curve is 2et for all values of t, then the equation of

the curve must be v = gt?) The distance fallen is proportional not, as

Galileo first thought, to-the time, but to.the square of the:time.:In dis-

.

proving the former and deducing the latter, he investigated two important

corners of. the calCuius.

Galileo's basic difficulty, we recall, was that he could not "freeze" the
1

motion of a falling body to take a' longer look at its Instantaneous velocity;

his guiding motive,that distances areeasier to' measure than velocities.

His final problem, was to verify (4) e erimentally, thereby verifying
.



indirectly its implication, (1), . How.did he do this?

' 'Consider the follOwing tabgation.

Total distances fallen
in t' Seconds = lgt2

2.

Distance fallen in
successive seconds

0

3

ai

1
g

1.)

1

g
4

1
g 9

C

1
g

16

1
g . 25

1

-2' g

1

"g

1

The distances fallen in successive equal time intervals are in*the ratio

1:3:5:7:9 and soon.

Thus if a heaVy body dropped from. the t4 Of a wall passes a chalk

mark 1. unit dbiwn at'the end of unit time, it shOUld pass a mark 3 units

farther down.at the 'end of two more-units, a mark 5 units..farther down et the

end of.5 units, andso on. But bodies falljso. fast that.even:these obser-

vations are difficult; despite a legend to the .contrary Galileo did not drop

cannon balls from the Leaning Tower of Pis . Isnt it possible to slow up

the motion to facilitate observation? A r duction'in the value of
1

woUld.not alter the ratios. A vertical wa 1 is a limiting case of an in-

clined plane; shouldn't we expect these tiog to hold for motion on an In-

cline? UnIikea vertical, an inClinetakasoMeof the weight of the- body .-

sliding along its surface, thereby reduc g the body's. acceleration. ,Surely

the smaller the angle of inclination a, the slOwer.the.mottpn.

Galileo experimnted.to find out. See Pig. 5.
/



He found that a ball let roll from 0 which moved from 0' to A' in unit

. time, moved from B to C,. and from 'C to D, also in unit time. As

,near as he could tell, this phenomenon was independent of the angle of in,

.clination of the'%ncline. In this way Galileosubstantiated his right answer

to the right queStion. .

Dynamics-of thb Inclined Plane

When, the angle of inclination a is reduced to zero, the plane is hori-

'iontal and a 'Cody on it does ribt.mova.; the plane takes the whole of the

wgi t. The greater thOftangle a, the faster the body slides down and the

ethe protbition of its weight taken by the plane. Finally, when

a =.90
6

the'plane takes none of the weight; we have free fall. Obviously.

.-ttle proportion of the weight taken by the plane depends on a as does the '

condition for equilibrium ofia body on it., The Condition for the. latter,

-Which Galileo kneW eitherfrbm SteVinus or by figuring it out:for himself,

'helped him to deduce the former. His method is what really amounts to an .

implicit'use'of a parallelogram of forces:

First, what causes a body to accelerate? Yes,. the force acting Onit.

We all'know that to speedup when driving,fib accelerate, we have ."tb'step.

on the gad", as we say. Our engine has to deliver more. force. And what is

the force which causefE(afreelytalling body.-to continually' increase its

velocity? Yes, the gravitational' pull of the.Earth, its weight. We now

know what Galileo could not know, that the accelerationofthe free fall of

a body'to the Moon'a surface is only about one-sixth that to.the Earth's .

:surface. Although the substance of the body'id unchanged in moving it from

:,,,t*i.:Moon.to the Earth, its weight is increased about sixfold. On the Moon

it weighs less because itis in.a weaker gravitational field. ,There2.With

only one -sixth the effort to surmount an 'overhang, rockclimbing must be a

less strenuous affair. And when.you dlip'and'fall off you have only one -sixth

the terrestial acceleration. The free fall of a body-- its acceleration --
, A

is proportional to the force acting on its weight.

Next, what is th g of eqnation (1)? Consider Fig. 2, the graph of

this equation.. What is m in y = mx? .Yes,. m is-the slope. More

mi is the ratio of the change in vertical displacement to the change

in.hOrizontal displabbMent. So, mutatis mutandis;,g is the ratio of the
,

increase in velocity. to the increase. in time.. But the curve is a straight

line, a. curve of -constant slotievso that the ratio' -g is the same no matter

how Small .the change in time. In short, g is the constant rate of instan-
.r.

taneotm change of,velocity.due to gravity' - - in a word, the, acceleration.'
. ,
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To up: g of equation (1) is the gravitational ,Gonstant, the measure

of the Ea Os gravitational field. The force exerted on a'bOdy by the

Earth's, tlieZ,Mbon's, or any other gravitational field, is proportional to the

constantfor.t4at field.

Accordingly;qet ustake g as a measure of the force acting vertically..
_ .

,. ..
downward on a.bodyron an inclined plane. See Fig. 6.

Figure 6

Since the surface of' the-incline is supposed to .be perfectly smooth, the

only,effect.of the plane on the body, the plane's reaction ',11, must be::

perpendicular to it,surface. But, recalling the geometry of Number 2.2.1

(Vectars, Inclined Plane) the vector .g may be resolved into.a force g cos a
perpendicular to the plane (and-so equal and opposite to as there is no

motion, perpendicular to the incline),and a force g sin a down the

Thus, the problem of free motion down a smooth incline becomes,,in effect,

that, ofla body "falling" in a gravitational fieldof g sin a (instead of g)

which acts in thedirection OA (instead of vertically downwards)..

The gravitational field being g sin a ,instead of g, instead of

= g t (1)

we have

cafseiluente of (1)',-. so that

v = g sina t

s = g
1. 2



a consequence of (1'). Taking t = 0, I, 2, 3, ..., it follows, as we

an.icipated, that displacements down the plane.iii)COnsecutive unit intervals

are in the ratio 1:3:5:7:.... .

This completes our exposition of Galileo's deduction of (49.

ment was much less explicit.
-T

There is an alternative way of 1poking at the problem of free motion

down an incline. The Velocity .,;v vertically downward!of a body which has

been falling freely for time t after being dropped from 0 may' p con

ceived as the resultant of two mutually perpendicular compo*ent veloCitieS,

namely a velocity v cos a inclined at an angle.a to the downWard vertical

and a Nelocity v sinA, perpendicular to it.. See Fig. 7.

His treat-

A

0

I

I

I

.

es___

Now consider, what happens when a smooth rigid plane, inclined to the

horizontal at angle a , iq,interpoted such that its apex is at O. Since

the plane is rigia.it prevents Motion through its surface, so that the com-
,

ponent v cos a is annulled; butthe. plane being smooth its reaction must

be.pertdndicular to its surface,ana therefore has no component up or down

the incline: In short, although the compOnent v cosa is destroyed by in-

terposing the inclined plane, the component

unchanged. ..Hut, by (1),

so that

v = g t

v sin

v sin. = g sin a t

i.e.,

'free velocity down incline of
of 'angle = g sin a t.

a in the direction OA is

11 6
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Wehave derived (1') in an alternative way.

From the relation (1).between v and t

as we have seen, the relation (4) between s and t. He went on to ask.

what is the relation between v and s. The answer_to this lUestion is the

elimination of t from (1) and (4).. Dividing (1) by g and squaring, we

have,

for free fall Galil,eo deduced,

.substitutin6 for

so that

in (4),

2
2

g

1
51: f.g

= 2gs .'

t.

v
= 2g

(5)

.Re)a, he asked the same question for free motion dQwn an inclined plebe

of angle a. -Remembering that 411) is similar to (1) (49 to (4) in

that the latter pair are the former pair except for.the factor sin

what do you anticipate for Motion down the inCline? Do you notexpect an

equation (59= which has thesame similarity to (5) as (11) has to (1)' and

(49 to .(4)? :Yes, we conjecture,
b.

v2 -= 2 sina. s; (5' ?)

We have committed ourselves; we must test our conipottre.

Referring to Fig. 7, we suppose a body which starts fronireat'at. 0,

i.e., with .v =.0, s = 0, and t = 0, to reach A,. the bottom of the

incline, with velocity after traveling the distance S from 0 V' A,

in time' T.. By (1')

and by (41)

V = g sin a

1
s = -0 sin a ! T.

Dividing the former by g sina and squaring,

..V2 T2

g
2 2:

and substituting for T2 in the latter!'

S = g sina

so that .

V2

g2 2 2 2g sina

V2 = 2g S

I

7 .

(5"
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This, with appropriate change of notation, is (517)7.. Our conjecture is con-
,.

tirme4.

.151) has a vitally important consequencefOr the entire development of.

dynamics. In Fig. 7,10 OE, the vertical height of the commencement-of

free motion above its terminationybe H. Then, since QA F.S, we have

Bin. F

Substituting for sina in (5'),
.

BO,

H
V2 =, 2g -5- S

0

V2 = 2gH. (6)

Hasn't Galileo's questiona truly astonishing answer? .(6)-mtikesno re-
:

ference to the length of the incline nor to its angle of inclination. The

'equare of the velocity-.-andconsequently the..velocity itself-- is indepen-.

dent of these things. The velocity. acquired depends solely upon the height.

1.9st. from the commencement of the motion. And since the acquired velocity'.

is independent-of et, we should expect the formulato hold `even when a = 910?,;,

i.e., for free vertical fall. And doesn't it? Ianotj6)the same equation

as (5) but for difference. of notation? :With the clarity of hindsightwe

now that (6), not (5'), isthe truly enlightening analogue. The questions
P.

of remarkable men have remarkable Answers': even Galileo was astonished.

3.1.5' Conservation'of Energy.

Froth (6) ,

=g11'

and introdUcikg mass the substanceolikose attraction by the Earth's.

gravitational field, i.e. , whose weight is mg, wethave
.

2MV2 = mg H. (7)

And 'What is l2 mV2? Yes, the krnetic energy, the energy of the motion. And

H? mg . is theforce exerted by gravity onithe:substance. m, so that

mg H is theyork done against gravity in raising mass mf a height. H.

When so raised, although not in motion, m has capacity far motion; it

has, as we say, potential energy.° Aen m is let fall,itastored energy is

utilized to produce motion; what was potentiallpecomes kinetic. The loss

of.the'former'is the gain of the latter. There is no overall loss, the total

Of used and readYAobe7Used:energy remains unchange the. energy is conserved

Although Galileo came close tolformulatingthia canceitl'it nevertheless..

escaped him - -and his successors for more tkaktwo centuries. He fully 04010Te.r

ciated the implications of (6), but not those of°(7), He did know that the,
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motion of (6) is reversible; that if a body in sliding down a perfectly.

smooth. from rest loses height' H in reaching the bottom, with velocity*

V, it will when projected from the bottom with velocity .1,T just reach the

top 'of: of heigliE' H. This he demonstrated by letting a bOdy

ci0c one incline and up'another of the same height.: See Fig. 8.

0' 0

A

Figure 8

To prevent the sliding body when on one incline at A from jamming

against the edge of the other, it is of course necegsa to round off the

:vcorner at A. Actual-cOnditions being less than ideal, mere being some

-'-'40tiOn despite smoothed and. polished inclines, the parti e from 0 does

not Wte succeed in reaching 0'. Wereit suceessfUl it'wo d return to

.0, from: 0 to 01' again and again. Perpetual motion is an idealize-
.

not.a reality.. .A fact that reminds us,thst absence of friction is

e4SentiaI to conservation of energy. With friction, some potential energy. is
"

/Changed not into kinetic energy, but into hest.:

Tb:eliminatefriction Galileo mad& an experiMent justly regarded as a

classic. What is needed --apait from the genius to.conceive. it? Two nails,

string,. a heavy bob, and a lighted candle. $66'7./11.0.' 9.

Nail

.7 --
Auxiliary

Nail

#

L

:Figur

1 1 (1

9

Bob Candle
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Why the candle. ?. To burn through the auxiliary'String, thereby releasing the.:

PrOm_rest: Although ever so .careful in reIeaiiMg.by hand, one might

inadvertently pull back or push forward; the object is to'let they bob hart

of its own accords What happens?.,- The bob swings down from 0 to L, and

then back up --almostto the same level at 0'. Almost, but not quite

to the same level, because there is just a little friction between -the

perfectly flexible string. and supporting nail ,and frictitn of air reSistarice'

to motion of both string -and bob, In.,,thus avoiding therelatiVelygross '

friction:of.a pair 'of inclined planes, exPeriment clos,lePproxi-
.

7 ,

mates the ideal. . 2 . .

'Did you anticipate the result? Oh yes, I. know you are tedi0Ualy / famil-
/.

.iar with the swinging of a pendulum. The point is: did you apticipate

this result as a consequence of the inclined plane result (illustrated

Fig, 8)? Or did you froth the all- too - familiar sWing.of the pendulum infer

the result for (idealized) incline planes? It:takes genius to see the com-

Monplace with discerning eyes. -.\
What did Galileo see? At any pointof its circular arc the bob is moving,

momentarily, tangentially to the circle at P. It id, it effect,moving

juSt7for'a moment` eaong a very short segment of an inclined plane whose

slope is that of thetangeni at P.- For other moments the bob is moving

along other inclinss; other inclines with other angles of inclination. But,

precisely.becausethemotionis independent of the angle of inclination it

Matters not whetherthabob traverses two or two hundred planed. Isn't tfie

circular pathaaimlting case where the motion takes place along infinitely
,

many planes? jig. 10ia.suggestive.

. .

Think about it.

Figure 1.

120
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Have you ever discerned the swinging of a pendului as motion along infinitely

..many inclined planesq More important, would you have seen its implications?

Vary the, data: Galileo did. To repeat his additional series. of:experi-

ments we need additional apparatus; we.need another nail. See.Fig. 11..

Figure 11

The extra nail N1 is fixed vertically, below that suspending the bob.

What happe s? Whenthe bob reaches the lowest point L its suspending
4,-, ,

string gets caug t against N1, so that the subsequent motion of thebob is

along a circular arc of radius NiL about N1 instead of NoL about N0.

But its motion at L is simultaneously tangential to both circles Since here

they have a common tangent,. so that there is no disruption of the continuity

of its motion. There being no disruption, there is no loss of velocity.

There being no loss of'velOcity we expect the bob to ascent to almost its

,. original level. (Remember air resistance and the imperfect flexibility of

the :siring.) It does. Additional confirmation is reassuring. See Fig. 12.
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Continue to vary the data. Vary the height of 171 aboire L: What hap -

pens when Ni is midway between L and H?1 The bob Just about reached.

It has, in effeCt,clisibed planes of all angles. between 0° and 180°...

And if ,111 is nearer to L than 41? See Fig. 13.



'

physical constraint of the string preventalhe bob fromAgoing,any higher

than where H1N1 =N1L. The bob is carried beyond H and the string

begins to wind around the nail 'N1, thereby demonstating that the bob has

a residual velocity at. that it would have gOne:higher but for the

constraint:

Here is verification, elegant in' ita simplicity, that a falling body ac-

quires sufficient velocity:to return to its original height. Do:ot be

deterred from making these experiments, for want of a nail; 'for want:of a nail.

44a kingdom was lost. The whole apparatus can be purchased for a quarter of

'a dollar or half a crown. ,Yet remember it was the man behind the experiment

who made what could be an idiot's plaything one of the great sxperiments

physics.

3.1.6 Law of Inertia

What more is there to Say?' That depends upon whether yoU think about

these experibents.with Galileo's intelligence. We reconsider the .situation

illustrated by Fig. 8. We know that with'idealized'planesa body let slide

,at '0 would regain its original' height no matter what the inclination of

AO' to the horizontal. Now supposeAW'' to be nearly horizontal. What

happens? The slope is so gentle that in regaining its'height the body has

to travel miles ..and miles up the incline. The more nearly. the incline 'is to

dead level, the farther along it the'bodY will 'elide to regain its original

height.' If the incline is precisely 'horizontal', the bo6Y will have to travel

on, and ono and on

:.What abont its velocity? We all know, without experiMent,,
v

that the' steeper.theincline, the greater the deceieratioh ofthe body

ascending it; the gentler the incline; the more. slowly abody.ascending it
,r

will lose speed. If AO' is pn.ty Just uphill thedropping:off'of speed

Must be'a very gradual affair; yetif. A011 were downhill ever so slightly`
. .

there would be an increase, of speed. ..So,.what happens:if AO' is dead level?

Thersnan.be'neither.a slowing d nor a spee.ding'np. .Sol The body must
.6417:

continue at constant velocity. ow far along the lizontal,jhcline must

itgo.to regain the height .of has to go on,.and-On,'and on Sp,? It
.

must:go on, and on,, forever, andtlter.
:

theory being consistent with our comma experience, we antici-

pate that theSe conclusions may be draWn from his. theoretical equations as

.Ifell.las.from his experimentS. In.deriving (5') inNudher 3:1.5 'We obtained

'..the equation: .

= e
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i.e., sbodytith.velocity V at the foot of a plane. of inclination a will,

'under idealized Conditions, reach the top in time T, where

115

V
g Bina - T .

Consequently, since sin a. tends to 0 as a tends to zero, T becomes in-

finitely large when the incline becomes horizontal. Also,, we recall that

the body,in question is, in effect, falling freely in a gravitational field

g sin a, i.e., with an acceleratiOn gain a.- When a = 0, sin a = 0, BO

that. g g 9. 0,, i.e., there is no change of velocity.

What frome.1I these experimental and theoretiCal considerations do you

declUde? Galileo's conclusion is the Law of Inertia. A body will continue

in its stateof.reat or of 'uniform motion in a straight line until acted

upon by external forces (e. ,'gravity, friction). to. change that state.

.The astute readermayprotest,that we have tacitly used the Law of Inertia

.in 'deducing it. :2111,ch protest misunderstands the situation: Galileo' Was not

making. deductionS from established theory; he was establishing atheorY..

'Tscit,mpe is a step towarpls explicit use; inartictlate' experiences step

towards articulated experience.. And the steps? Varying the' datein acCor-
.

dance withthe concepts of a fertile imagination.,

- But whyis this law described as Law of Inertia2 Aninanimate body; un-

like a person or an animal, does nothing to control its. own motion. Whither

it goes andhow it, goes are at the mercy of external forces. It iS'inert.

Galileo invariably considered the Law'of Inertia withinthe'context or

his disCovery; he always thought of uniform motion along a straight line in

an infinite'Tlane. .Never could he escape the terrestiall his thoughts were.

Earthboumd. Of course he knew.thatthe Earth is spherical;, yet'heneVer

-thought out the consequences. He knew what little imhistime there was to

know'about the stars, he was ondof the-first.to use a telescope,obut he

never cameto the'idea of applying his Law of Inertia to the stars.. ,A dimple/

idea, yet a. tremendous jump forward. It.is as if Galileo beCame a'victim Of'

his:own law, houncrby the inertia of a fixedContext. It is remarkable

-Aalileo.did not make the jump; it-,would have been more remarkable had he done

so.. Galileo was-alileo, not Newton.-

3.1.7 A Cannon Ball's Trajectory

It was in Galileo's timethat firearms were invented; cannon became the

final argument of kings. Aithoughs deadly subject, the effiCacy of'new

'methods os killing for one's country is always a lively issue. What is the

path of a cannon ball? The question:was of great scientifiC interest as:well

as of practical importance. Characteristically, Galileo was engrossed by the

124
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problek; characteristically, he solved it. The outcome of his ingenuity we
.

know today as the method of superposition.

, Like Galileo, to reduce. the complexity to the manageable; we neglect

the dimensions of the cannon ball and consider it to be merely a Material

point. To further simplify we neglect frictiona1though air resistance to

a cannon ball is hy'no means negligible. Galileo did not have the means for

precise measurement4and remember that a first approximation is astep to-

.
wards a better approximationiAlnlike Galileo, we are able to facilitate his

solution by using a little algebra and an orthogonal coordinate system. It

is vital to his solution that the one axis is horizontal,aLd the other verti-

Cal...

See Fig. 14.

Figure 14

The initial velocity of the cannon ba11'when leaving the cannon's mouth.is

represented inmagnitude and direction by the big vector frath 0. This, vec7-

for is resolved into a component, U along the norizontal x-axis and a cbm-

ponent v .along the vertical y -axis. (Note that the letter u'COmes before

v

.y:

as does x.. before y, so that u is associated with x .and v with

'respect the alphabet). So) timing the ball's motion froM the. cannon's'

mouth, at x = 0, .y ='0, when t = 0, its horizontal.velodity is u and

its

.

vertical velocity v. What are its component velocities in these direc-.

tionsat time t.?

Galileo's deep insight is that the horizontal motion is unchanged. The

horizontal component of the ensuing motion is that of a particle traveling

in a gravitationless field. Remember his Law of Inertia. This component

remains u. SO,at end of time t, the horizontal displacement x is.given

by
(8)
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And whit about the vertical component of the motion? Likewise, ifthere

were no gravitational pUll'vertiCAlly downWards, we would have

y .

Balt this ipt.contray to fact, so let us be mindful by writing the letter ,y

'with a superscript, viz,z

y' = vt (9!)

Next, taking gravitation into account and ignoring the initial velocity,.

fran(4) we. have

=
2

1
gt

2

. .t 'A .

where.the pcisitive y-axis is vertically downwards. So with poSitive axis

vertically upwards,'

-IR

Yet, to be mindfbl.of our neglect of the initial velocity v, we write the

letter y with a double snpericript, viz.

1,2

y" = (9")

.
It Is at this stage that:Galileo makes use of. the principle of superposi-

tion. He argues that the total upward displacement 'y .t) of a

'particle leaving '0 with initial velocity v and decelerated by gravity

will be the suM of the-displacements 50_ and y", i.e., of the, displacement
.

(in'time t) with initial velocity v but no gravitational field and the dia..

placement.(intime t) withgravitational field but. no initial velocity.

What is his 'argument? First, suppose the displacements to take place cOusec-

utively; in time. t the partiCle is displaced y!; subsequently, in a simi-

lartime the particle is displaced a farther distance y". Clearly, the re-

sultant'of theconsecutiveedisplacements is their sum, the.joiningOn'or add-

ing in position of the latter to the former. In short, superposition is

'obviously applidable to the displacements resulting from the successive mo-

tions. The crux. of the matter: ,Is'superpositionapplicable'to the resultant

disPlacementsif the motions occur simultaneously?. Whether or not a particle
.

has an initial. elocity-is independent of the presence or,absence of a gra-

vitational field, and a gravitational field is independent of'Whether-or not

apartiCie has' an initial velocity. Sosurely both motions may occur simul-

taneously without either altering the other, so that the displacements due

to 1pese motions are unchanged by the simultaneity 'of the motions.. "per-

position is still applicable; from (9') and (9") we have

y = vt (9)

We can describe completely the cannon ba1.1'sit4ajectory if we can

always answer the question: Where is the cannon ball now; t seconds after
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being fired? The Pair of equations (8), (9) 'give precisely this answer; from.

*"4 (8) we get. its Present, horiZontal displacement x,- from (9) its present

vertical displacement y; i,e., we get. its preSent.pOsition (x,y). Told.

when, we can compute where. For any when. (t), we can plot the where (x,y)

and so:Obtain a picture of the-Cannon ball's path.

If we knowthe cannon ball's present horizontal displacement x, by (8)

we ckijind whenit was fired and so by (9) .findits present vertical dis-.

placement; given x we -can compute. thecorresponding y' via the go- between

t. Mathematically speaking, t is'said to:be a parameter,. x and y. are

.
said to be giyen parametridally Somewhat analogously, if X is the Tether

Of T and Y' is the only on of 'T, s he parameter, the middleman

between Y and. X. Elimlnating reference . the middleman, we'llave.

that Y is a grandson of X. It would be convenientto have y deal'

directly with x. Can weget.rid of the middleman t?

From (8)

so that

t = xu

2 x
2

=
2
u

Substituting, for i' and t2 in (.9)

='
x 1- g x

2
. (10)u 2 u

What sort of. curveie given by (10)2 Can we transfoimi this'equatiOn into

a more familiar pattern-where grapys.known? To make +1 the coefficient

of x
2

we multiply through by - 2'; giYing

2u
2-

y_ 22.17.x + x2.
g g

u2. 2
Adding

_

,the square of half the cOefficiedt. df x, to each side

g

u
2
v
2

2u
2

u
2
v
2

2uv 2= g
Y = --r x + x

g g

i.e.j the square completed,

0_2
v

v2 \
.

'"
. - 2g1 x g

uv 2'

But this is of the pattern

where

1 9
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, w- v uv
= and X = x --)

,n9

parabola with vertex X = = 0, and axis = 0.* When X = 0,

=.
v

x = u --, and when Y 0, y = so that (10) is the equation of a
g

V2.
2g

arid axis x = u
g

; 7.
uy

Parabola. with vertex
.

At:first sight the coordinates of the:vertex seem unenlightening.. What

is their physical'signifidance? Think-back. By equation (5)We -know that

a particle-projected vertically with velocity v. willtust reach a height
.

of ---
v2

'

the vertex is at the maximum height of the trajectory.-' But :a para-
. 2g
bola la syMmetrical with respect to its.axis,sol Why, we must expect ir.

to be half. the cannon's range. Is it? S en the cannon ball.returna to the

horizontal plane y = 0, i.e. in (10)

0 = x - g . 5')
2 u

but the ball. having left the cannon's" mouth: x / 0, 'therefore
.m..

g x
Tx

2uv
x =

g

.Thus 8 Is.indeed:halt:the cannon's range. We are now able to:complete...-.

Fig. 14. It becomes Fig. 15y

Figure 15

1 2 8



120.

.How did Galileo verify experimentally that the cannon ballis trajectory

is a parabola? Have you not seen performing dogs, and even seals, jump

through hoops? Success is assured by placing the hoop where the jumper. is

going-to lump. Galileo used this principle. See Fig. 16.
t

Figure 16

4.

The inclined plane is a device to give the ball a predeterMihed velocity

u alongtheluirizontal A101.,.:so that it hurtles hOrizOntPily into'space

as if at 0' in Fig. 15; Its neat passage through-a series of hoOlps whose

centers are on a parabolic arc confirms his theory.

Yes, 'a little naive by dern standards, but who with the technology of

Galileo4s day and age old devise abetter? Speaking of ingenUity, refer

back to Fig. 5. I never told you how Galileo measureaf.tithe;.watches were

nonexisteht. He glued tiny slats across,the incline at A, B, C, D, big

enOughfor the sliding body to be audible. .When hitting them, yet not suffi--

cient an obstacle. to impede the motion appreciably. His ear his metronome --
)

like his father he was a good musician -- he judged the intervals equal. All

phybicists use their beads; the best also think with their; fingers.

Section 2. Newton

IneVitably, Galileo -leads to Newton.- Newton was born on Christmas Day,

1642, some'eleven months after the death of Galileo; a fact the transiigra-

tionists among my readers'cannot.lhil to remember. Never has Santa Claus::

12J



rought the.world 6 More ehligntenihg Christthas present. Newtoh died in

,1727,.yet theiimporkant date for us is' 1687'. This is the year in which he

. was finally goaded by his ptaunch friend Halley into-publication of Prificipia

Mathematica Halley paid fortthe'printing. Never before or. since in the

..history of science has a man with so much to say been so reluctant to publish.

teibnitZ, said that of all the mathematics that had ever been done, Newton

bad done the greater part. This remark was made before, they quarreled.

Newton's perbonality was less colorful and his career less dramatic. thah

Galileo's, 7' Unlike Galileo he was .shy and retiring and hated controversy,

It is:said that when asked to allow his name to be put forward for election,

to the Royal Saciety,...he at first declined on the grounds that election would

necessarily.enlarge the circle of his acquaintances. 'His life is his works:

Highody,like Galileo's, liegit the Westminster Abbey of his country; his

System of the World, his Law of Etiversal Gravitation, his mechanics, have

becothe an integral part of educated common sense.

3:2,1 Apples; Cannon Balls, and the Moon

g is for .gravitY'that made the apple iri Newton's orchard fall. That

this is an old story.ie certain, that it is a true story is not certain.

Certginly it ds a good story.. .

When Newton was a young man up at Cambridge there was a Plague.: .To

escape At he,ietired tohis parents' farm at Woolsthorpe in Lincolnshire.

There in a year or so of countryside peace he made his greatest diacoveries:-

the concepts of universal gravitatiOt and the infinitesimal calculus. 'Whether
,

or not he.was hit by a falling apple when theditating.in theWoolsthorpe or-
_

chard, he was certainly struck by a great idea. Althoughliewtogapproached

the problem:of gravitation with an open mind, he. did not apProaCh it with

an empty:adnd: thadsands of people have seen apples all without being struCk.

by Newton's idea. °. .

ANhat.didliewton have An mind when meditating in his orchard? A-,diagram

in an appendiito Principia entitled "The System of. the World" must make his

train of thought an open secret.' He knew certain things about apples, cannon

balls, and the. Moon, things that were common knoWledge to the,physicists of

his time The Moon, like the apple, is roughly spherical andpresumably

lieaVyi:go.why.doedn't the Moon tall. too? The apple is pulled to the'Earth

. by the4a,tWeigravitational attraction, Why not the Moon?, What makes the

Moon ortat'abaut the!Earth? Galileo"s Law of IneAia implies that the Moon

.`would continue with Uniform speed in a straight line were it not acted upon

by a force_to change this motion. What pulls it from, its would -be straight
-

line. path to move on a curve concave towards the Earth?

121
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But how on earth can one relate the path of a.falling apple to the ellip-

tic orbit of the Moon? Straight lines are so different from. ellipaesi apple.

paths sodifferent from Moon paths. . Could two curves be more dissimilar?

HowRpuld bOtbpossibly be axemplificationof oneaaw?

Newton saw' thepossibility; he had.the insight of genius. Hiagreatided? '

Cannon balls. Ids, cannon balls. Had not Galileo. shown the tiajectorycif.a

cannon ball to be.a parabola? 'Isn't a falling apple a.little cannonball

fired .with negligible. horizontal. velocity? So, iintt its trajectory,a limiting

case of parabolic motion? And the Moon? Isn't.this a larga,cannOn ball?

Isn't this large cannon ball fired with great horizontal velocity?

Consider a cannon ball fired toward the 'Pacific -from a mountain peak in

the Andes. Given a.high muzzle velocity, 'isn't it conceivable. thit,theball

Couldbe fired right out into the Pacific? With a higher peak to fire front

and a. greater. muzzle velocity to fire with, wouldn't its trajectory be a

larger parabola? Couldn't the ball be fired clear. across the Pacific Ocean?

But if its trajectory could reach halfVay around the Earth, Why not three-

quarters? Imagination costs nothing; if three-quarters, why not fOur7quarters?

How exciting to see the cannon ball score a direct hit on the cannon from

which it was fired. For more' excitement, more muzzle velocity. What now ?.

The cannon ball does not land on its cannon after circling the Earth; it blows

the gunner's head off and keeps on going. An ending parabolic trajectory is

replaced by an unending closed curve;. we have a cannon ball moon in orbit.

Newton had the fertility of mind to see the continuous transition from

apple to Moon. SUrely'this must bathe most spectacular argument.bY analogy

in the history of science. You will find a copy. .of.NewtOn'S Principia :diagram

in my Mathematics and Plausible Reasoning, Vol. I; p.

If the Moon is, kept in 'orbit by aforce exerted by the Earth, are not

Earth and the other planets kept in orbit.about the Sun by a force exerted by

the Sur4, To let imagination run riot is one thing; to backup highly specula -

tive conjecture b,1 what finally becomes an overwhelming accumulation of .

supporting considerations is entirely another matter. Newton.had the capacity

Of mind to do both.

3.2:2 Never Smoke Without Fire

. Apples and stones fall; the farther_they fall, the faster they fall.,
e.-What.cailses

them to speed up? Supposedly a force exerted on themy the Earth.

Yet a force is not something that can be seen. If it cannot be seen how can

it be.measured? Bits effect: smoke is evidence of the valley fire the

other side of the hill.. What is its effect? Acceleration, the increase
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in velocity it causes..

From Galileo, for a body falling from rest, we have

v g t.

If time r later the velocity has increased by r3 , then
).

v -1-13 + r )

Subtracting the former from the latter

we have

13_
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increment. of velocity
g -. increment of :tithe

But if, for example; an increment in velocity of 6 ft/sec occurs in 3.seoonds,

this is at the same 'uniform rate as an increment of 2 ft/sec. occUring

second, i.e.,

increment of velocity per unit time

= acceleration._

We, know that -Galileo g. to be a constant; 'yet remembering the

necessary imperfection of m,ea rement we must be cautious. At or near the .

Earth's surface g is a 'cons nt within the errors of measurement. It' turns

out that this answer is a very close, but only .a :very close, approximation.

. to the truth:

However, the crux of the matter is that acceleration is a measure of

force. What bearing has this on the motion, of the Earth and other planets

around the Sun? What would' be evidence that each is ..kept in orbit by a force

exerted on it .by the Sun? Its accelexationtowards the Sun.

3.2.3 That the Planets do_ Accelerate Towards the Sun

Let us suppose that the Moon accelerates towards the center of the Earth

and that the planets aoceleri3.te towards. the center .of the Sun. What are

the nconsequences of these suppositions? What sort of orbit.will 'Moon and
. .

planet have? This is a,hard mathematical question because the acceleration

takes place continually and is therefore difficult:ttake into account. How

..are we to deal with continual acceleration ?. Wellx how did Galileo deal with

continually increasing velocity? Look at Figs..2, 3; and' 4 again:and .think

itbout them.
.

Yes, Ne.wton as Galileo; and we 'as'both Newton and Galileo, must deal with

the continual, the continuous, *the gradually changing by :startingwith a'

caricature, discontinual,.,discOntinuous, 'discrete jerky jumpy change and

thep by increasing the number and decreasing the jerkiness of the jumps,
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thaket.he 141ky change become less and less perceptibly different from gradual.

change. ThUs fiction tecohes reality. To treat, the continuous as limiting

case of the discrete is really the fundamental idea behind the integral calcu-

lus. Newton invented itprecisely to facilitate thiS treatment.. Of course,

he inherited much from Archimedes, from Cavaiieri and from Fekmat, yet his

Contribution was deflkitive. History Justly claims him as a founder of.the

calculus.'

We may be certain- that Newton obtained his results in mechanicaty--,

r integral calculus, but inhis published exposition, Principia Nathehatica,

he insists on not using calculus -;! even thouA he invented it for himself:

He argued that his readers would find:his mechanics shock enough Without the

diffiCulty of learning- calculus.. Whether this made Principle easier reading

for his contemporaries I cannot tell you; unquestionably_it meke6 it harder

for us. The elementary.but obsolete. methods used therein can compete with the, -

celculus as successfully as the. abacus with the electi.onic computer. iloweVer,

fortunately for both author and reader, Principia contains one deduction WhiCh

is as simple as it is important. rIt is the answer to the question posed above:

What is the-ornt of a planet which conti,nuelly accelerates towards a fixed'

point C? We turn to NeWton's answer.

We suppose a, planet. P the instant.it is at Al to be moving at

ft/sec. FUrthermore we suppose that during the-ensuing second it is not acted

upon by:any external force. What..happens? In accOrdencaith Galileo's Law -°

of Inertia it continues to move,uniformly in a-straight line with a

'of v ft/sec. . Consequently, since velocity is space traversed in unit time,

.one second later. it is at a point A2, v feet from Al, and the-directed,

line segment AiA 2 representsr.in-both magnitude and directiOn its velocity.

during thls.Second.
p.

Also suppose that the moment P reaches A2 it receives an instantaneous

1 acCelerationtowards, (C is.for Center, say, thp center of the Sun). What

4

' does now happen? Had our planet not received. this. when at A2,

in.accordance with the Law of'Inertia it would; of course, taVe continued at

v ft /sec along AlA2 (produced) forever. One second later it would have

been v feet froth A2,. at F3 such that AiA2.= A2F3 (F Is fot

P, neve/:'.ectUally gets to ,F3)., See Fig. 17.
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But when at

represented.

717% Thus
2.3
thezdiagonal

/
C/

Figure 17

A2 our planet receives, an acceleration towards which is

in magnitude and direction by (say) the directedfne,iegment

the resultant.velOcity of P on leaving A2 is represented by
,

A2A3 of the vector parallelogram illustrated by Fig. 18.

F3
..y

/
A3

Figure 18-

What happens afterwards? Remember that the accelerating iMpulseWhich,

actedo&T.:when atA.2',acted onlyfOran instant. When P left A2 this

impulse no longer acted: Sd,..after'40a1f!ng A2, : in accordance with the'Law

of. Inertia, p contilueS to .move in the direction' A2i:s; .::traversing a dis-

tance A2A3' every. second is subjected to another external impulse:

One second after leaving A2 our planet:4tually.reaches A3 (A is for

Actual).. .

, At A

toWartlEts

'The aztual

we suppose our planeillc0.144nother instantaneoUs.:14U1Se

Similarly, this causes a second inatantaneous chafige.O4velocity.'

velocity of P- on. leaving :A3 is. likewise kepresented.bY:thep;',,

1 ,1
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diagonal A A of the vector parallelogram illustrated in Fig. 193

. t. Ai. A
3

A
ss

h

i,,, .

.. fk;.- r..' .,.-'
.

- Fi'bu'la 49.
.

.

Had P not receiv44 an accelerating impulse tOwards C .when. at A.3.; v,,...

.:. , .4;r;' it would by the laW'of inertia -have continued along A2A (produced) to,:.

.=---).reach F secondAater. Had P not had a velocity A2A3 when. it,redeived., .!4.

at A apa.ddeleration towards C, it. would have, oved along A C to reach ,.'

.. ..

.'',1 . . 3.
C).1. a adantle414er. With both velocities P. actually travels along A3A14::

and reaches A. a second later. It- is unnedessarY.,for us to consider theA....4
.

:next accelerating impulse' given to FL:vat, A4.
,'

.,

.Careful consideratiOn of the donsequences'ofthese discrete discontinual
accelerations of P towards C. is the keyto.determination of the copse -.': :v.,:

..,/

luenceaohntinual acceleration of P towards. C. ..,.,
, i; 7 :

Note:Anat in Fig.--19, A2A3.-, A3F4 and that FLA,
3

II A C, (because 11----" ,+ ,+to A
3
C )'. tat

1
-usredraw this figure With a new emphasis: Fig.:20.''...-

rr'
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Because A's CA2A3', CA3Fj. have equal .bases .A2A3, A3F and the same

altitude,: they..a:re- equal in area Symbolically,

CA,A3--.6cA3F4.
`

.. And because "4's CA3F4, CA3A4 have the same base CA3 and equal altitudes

....if (because they lie between the same parallels F
4
A
4'

A
3
C)

'
they also are' &pal ':

,
,

t

'i lin areal

erefore,

4
"(A LOA2A3 =, LCA3124! ;.

: v Y,

What do We .,tonclude? What is the relevance of this result to the known

, .

,,Ilaws of

;14nd, a

5 0 attraction C .tti:our:%planet P sweeps out eqUal areaa.:':'But isn't 'ft..:

cl ar.that the argument would hold ;if we took some other unit of time instes.a

of ;a second? Alternatively we,4uld.-take a tenth of a second, or. a: hundredth,

, or, a millionth,. or a billiOnth; or a. trillionth,. or ... . As the: equal'

; A

. interval's deCreade in duration in effect of jerky juirrii. discrete central'

tion? That in two c'onsecutive' seconds (actually:the sec:-
:

. . .. :

,, this, is not 'impoi-tant) the radinS.Xector cen7'



accelerations differ less and. less perceptibly from that of continual ntral .

aceeleration.
What must we concrude? That. if a platiet P . has a continual central

acceleration towards C, then its orbital motion is such 'that it radius'
vector PC sweeps out' eqUal Areas in equal tithes. But Precisely 'this is

' KepleVei. iSicoiad
,.,

. seicte1, W6:.. 0 u6,b:- t..iii.iiiiple .argument had such imPortant repercuisions.: It'
' .

, . -convincedYNeW-Ebrif-.0.4d. 'fritkplid convince you --that the planets are accelerated..

towards thel*.Sum.., Regard Fig. 19 and 20 with respect: they link.together
the mechaniS :of* terieEitial and interplanetatt space.

3.2.4 What::.is the ve.*.:.6f,:: Universal Gravitation

We have se'enhow..Net4On by discerning a cbntinuous transition between the
fall of an apple, -the trajectory of a Cannon ball, and the orbit of a planet.

... ..
was led to ..corijaCtUre that *:the planets have .accelerationa towards the Sun as .

. ......,,
, z.,.,

do falling apple07;.1tOwardS.the EarthieAnd how did he adduce strong suppoit
for his conjectureirAY*ShOwing that.Kepleria Second:Law is a necessary ponse-*.
quence? (It is 'just that 'Kepler's Law 'could be a necessark .conse-

,

quence of an alternative.'con'jecture.)' .

What is the next step? Granted that the planets do accelerate towards the
Sun and the Moon towards theEarth;surely, because of the regularity of their
orbits-, these 'accelerations .cannot be haphazard affairs, but must be subject
to some law. And isn't the. whole paint of Newton's. insight the continuity
of the trarition? SurelY'.Similar-effects .have similar causes. Surely the

1.

Earth's gravitational pull on the apple, the cannon ball,.and the Moon must
1be of the Same nature as the SUn's. graiitati.onar puLl on the Earth.. Surely

there must' be a 'Law of UniiYersal Gratitation. The next step is tcr specify
it. 4

At school, I ws.E.:,heated by .my physics teacher, Conjurer Newton puts
up the most spectat4ar show on Earth -- or theSolar Systeni%.::-by producing

*7,
the:gravitational rabbit from the universal'hat'. And whe,t I get? A
bland statement of the Law of Universal Gravitation withont.4ny indication
of how the trick was done. -

How didothe rabbit; get into,.M.±1. Newton's hat? To appreciate his legerde-.
Main you must first iC.-ti?ick 'of orbital conjuring, namely deduction
of the Pen:trill jceeterStiOn of a body moving with 'Uniform circular Motion.
The'MOttelepnt method of dealing with thela-tipr was found, 'subsequent to
Newton's *derivation, by Sir William Rowan Hamiltbn (l805-1865) the inventor
of t4 calculUs. of quaternions. To Wr William's Method we now turn. .
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,3.2.5 Uniform.Circular
.

We Considez"a partiCie.(orTlariet)

circle of radius r 'SO:Center'. C. ;'Since

'29

Hodograph

to move with uniform motion in

P moves in a'circle, the dissection

of its motion (tangentiaite*Tdirale.):4;-of course, continually changing,

and consequently, its veidcity is Cant,ingally changing alsO.' But, since, P's

motion is uniform circular, motion:it to:lied:equal 44 stances in .equal time, that

, is, Its speed v (the distance it goes in Urditime irrespective of, direction)

Is constant:. Therefore, if the velocity of P at . P- represented.ln both
1

magnitude and direction by P1A and its veleeity.S.t any other point P2 is"

represented in 'both magnitude and direction by
4

P,A2., then bath directed line
. ,

segments must have the same length. Furthermore, this common length must:be

equal to the space traversed inunit time. See Fig. 21.

Figure 21
, .,,,,4,

, .....

.,',..lhat tieitelocity vectors PiAl, P2A2 hawethe same magnitiiae was of-...

0U6nte;eSA to Hamilton.
n

What is its significance? Yes, of course,..t.!,
.

.

... -,.

implies that P -moves with constant speed. But what other significance does

it have?,,Hamilton introduces a new representation to exhibit this other
4 c

Significande. He terms it'a hadograpii! .

'Suppose duplicates of the vectors PiAl, p2k2 to be moved parallel to

the originals so as to originate from some fixed point 64 See Fig. 22.
!...



Figure 22

, .

Thut 077. is the duplicate of P3TA and. 0A2..is the duplicate of
P2-72.

And since the duplicates are parallel to the originals, the angle betWeen the

'duplicated pair is equal to the angle & between, theoriginal pair.' Conse-

quently we may th.nk of Figs.'21 and.22 as the dials of synchronous watches ,

synchronous in the sense that as an am CP rotates uniformly from -CPI . to

CP2 on the.original dial, an arm OA rotates frog OA, to .0A2.'on,the

holograph dial. It follows:that Oh. will rotate. Dill circle from .OPLI back

to Oil( in the same time T. as OP rotates full circle from OP1 back to

OP1.
.

What follows? In time T, traveling with uniform speed v, P. traverses

the circumference of a circle of radius So,

Tv - .2gr
. ,

Similarly, in time T, traveling with uniform (because synchronous). speed

a (say), A travels thecircUmference of a circle of radips- v. So,

Hence,

i.e.,

so that

= 2,v.

a=-;

i

Ta 2rcv

Ty 2icr

a v
-.

v
=r

(11)
r

'Thesimplicity of the mathematics belies the subtlety of its interiireta-

tion. What is a? a is, because uniform, the speed of thevector tip A

at any instant; the instantaneous speed of A. And what is the instantaneous

speed-of the vector tip A? The answer to this question is Hamilton's ingen-

ious insight. It is the magnitude of the instantaneous rate of change of :

.40111w



.velocity of the vector 0A.. But, r

tion of P's velocity. In short, a

acceleration of. P.

Thus, (11) gives the magnitude of

1
131

is the_duplicated vector represents-.

is the magnitUde of. the instantaneous

P's acceleration But what is its

direction? Because of Newton's argument. that the, planets do indeed accelerate

towards the Sun, /ou are no doubt prepared to accept the view that the acceler-

ation of P is toWardS C. However, it readily folloWs from Hamilton's

hodograph that such is the case, thereby bolstering up our conviction.

The motion of A when at Al, for example; is instantaneously tangential

to the circle 0 at' 'Al, i.e., perpendicular (down the page) to OA in Fig.

22, and onsequently parallel to. PC. SO, the acceleration of P when at

P1 is alokig. PLC. But Al, Ti are (corresponding) arbitrary points. In

dhort, we..conclude that the acceleration of P is invariably towards the

center C of its circle of rotation.
,

What has been said in short about the magnitude of the acceleration, may:

ba said at length 7-at the expense of spbiling.a good short story. Siappode .

that. QA' is in the position 0A2 time *t after being in position

We'cOtplete the vectorparallelogram ow. See Fig. 23.

.

Figure 23

OAT

'4

0A2 is the resultant of "EAT and OB, .so that the. velocity of *1:, at-Fi

has to be increased by lig. for P to have velocity TIA; at P2. but this

ricrease of veloCity OB occurs in time t, so that 7-15g.
is the average

rate of increase of velocity, i.e., the average acceleration of in moving

from P, to P
2

But, aqually well we may take the equivalent vector

11-97;.. instead of OB. (Considering the vetor 40A1A2,' velocity QAi

6 .
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has to be increased by A1A2. to give b).. Consequently,

average acceleration of P in moving Trom P1 to P2.

Next, suppose A2 to be arbitrarily close to Al. The closer A2 is

is the

to Al the more nearly

length of A1A2 = ,.atc

consequently, the more nearly. and,

so that

AiA2

AlA2 -7A2
length

aro Al
t

length .,o arc
AiA2

arc A1A2
t

a X t

a.

A
of hodograph

Thus, the shorter the interval t, the more nearly

length AlA2
t ot

. We conclude that the magnitude of the, instantaneous acceletationis

3.2.6 Newton's Discovery of the Law of Universal Gravitation
.

Newton's great discoVery is specification of the relation between the
fC.

acceleration a of a planet P towards the Sun and its distance r from

the Sun, the provision of a formula for a in terns of r. 'Just this --

and the audacity to suppose that every body in the universe exerts an ac-

celerating force on every other body in the universe in accordance with this

formula. What is the relevance to Newton's discovery of the formula giving

the central acceleration of a body-moving with uniform circular motion? A

clue is the reminder that an idealization, a good first approximation, often .

reduces the complexity of a problem to what is manageable. What holds in

the simple case may perhaps hold in the general case, or be at least a good

indication.

According. to Kepler's. First Law every planet moves in an elliptic orbit

with the Sun:at one of the foci. In fact the, planets move in elliptic orbits

that have very small eccentricity orbits that are very nearly circles.

Mars, of which Kepler made a special study, has a less circular orbit than

the other planets except Mercury. ip, like the other planets, has minor

perturbations or deviations (due to the gravitational attraction. Of the

other planets), yet its orbit is still a very good first. pproximation to.a-

circle. Introduce simplifying idealizatiOn; suppose* that it is a circle.

What folloWs?'
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According to Kepler's Second Law, the motion of a planet is such that

its radius vector from the Sun sweeps out equal areas in equal times. But,

if the orbit is a circle, then obviously equal areas Cannot be swept out in

equal 'times unless the motion is unifg/rm,clcular motion. So3, Why,-,of

course1 '(11) is applicable.. Suppose that R is the radius of Mars' circular

orbit about the Sun and: v its uniform speed, then by (11) we have that the

-magnitude a of.Marsi acceleration towards the Sun, its.centripetal.accelera-

tion, is giver} by i

2 1
a = v R. (12)

What follows? W have ,d. in terms of R 'and v; -Newton's'problem is

to obtain .a in to of R alone. 'Therefore we must eliminate v; we

need asecond equatio Cast your mind back fot a moment-to the derivation'

of (11). If T is the petiod of Mars".otbit, then we have a precise analogue

to an equation used to obtain (11), namely .

T v = 2.4tR

so that

v =
T

Squaring, and substituting for V2' in (12),;:ye].bave

a
T

, .

We have iminated v. at the:ekii.inseJot-introducing T. Are we really any

ibetter Remembe'r'that;.thAeNistenge of.a'ewton presupposes'a Kepler.

,,,AlaSniepler.soMetAgoMetbing.impoxtant,,t6 pay:about T?

_..s,,.AtOording to Keplet1S 'Thad Law; be.SquEite to T is proportional to the-

Cube.Of R. Put alternatiVely, T is prOportional to R3/2; algebraically,

T = c R
3/2

where c is a constant, independent of R.

Squaring,
,g c2 R3.

Substituting for 12 in (13), we have,

-

4n
2

a =
c R'

4n
2

a -
c



1341

so that a is inversely proportional to the square of the distance between

Mars and the'Sun. We now.know Newton's' specification and know how he dis

covered-it.

-,3.2:7 Scientific Attitude': Verification

The difference between conjecture, hypothesis, theoryand law is a dif-.
,..

ference of degree sather.tha# a difference Ofkin The difference, of ter-

minology is one of emphasis, indicative'of the well-foundedness of.the propo-

*Sition in question, and consequently,-the degree of conviction with which it

is held. .

The idea that a cannon could, supposing sufficient muzzle velocity,..be,

its on target is a wildpognjecture°; that a-cannon ballcould encircle the

Earth to'return to its on starting point is merely 2 "light'of theimagina-

tion. ,.But-when such a conjectured flight is seen in the context in'Nhich

'Newton Saw- it, as an intermediate case between the falling apple's, trajectory

and the Moon's orbit, its status changes. The aspect of.continuouStransi-'

tion gives the conjecture plausibility-enough to'be considered seriously.

What, fancy free, might well have been taken from the pages of Gulliver's

Travels or Alice in Wonderland, might perhaps 'after all be a physical reality.

Wild. Conjecture becomes sobe hypothesis. s,

When Newton,showed that Kepler's Second Law is.a COnsequence/of the hypo-

thesis that the planets accelerate towards the Sun,'he had a most substantial

indication. that planets moving with a central acceleration towards the Sully.

would have the sort of orbits which they do in fact have. 'Falling apple

and orbiting Moon have a common explanation; the terrestial and planetary

pieces of the cosmological jigsaw puzzle fit together.-, What was enter-

tained precariously is held with some conviction; hypothesis becomes theory.

Applying Kepler's Third Law, theory'becomes'specific theory: that the centri-

. petal acceleration is inversely proportional to the square of the'distance:.

.Galileo, using the recently invented telescope, discovered that Jupiter

has three moons in orbit about-it. Later he discovered a fouath. It was

found that the period of. revolution of. Jupiter's moons, as those of the

planets around the Sun, satisfy Kepler's Third Law. Here too, planets (i.e.

the moons of Jupiter) orbit about their sun (Jupiter) in accordance with

the law

T = c ;. R3/2.

Here is a second planetary system to the same law, the only difference being

applicability; .each system has, its own.'value of c, the constant of pro-
.

portionality. These considerations were of great importance to Newton; that

Kepler's Third Law also holds is a firm indication of a second planetary

1.43.
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.systemin,w#ich centripetal Seceleration Is inversely proportional t'o the
. ,

square'Of.the distance. But if this_holds for two planetary systems,

why not for a third; a fourth, ::.? And so. Newton was led to his theory of

. universal gravi ation.q

But, how in hydicadOes theory become law? The act-'of "legiltiation"

that puts theory on the statute bOoks of'physics is verification. And how.

could Newton make verifiCation? By bringing his theory of the heavenly

bodies down to earth, so to speak: Is not:thitapiedeof chalk with which I

'

2write on the blackboard, as the MbOn,jUst another planet of the system

whose sun is the Earth? But when I let.'this chalk fall it accelerates towards .

. - t

the Earth's center.with terrestial acceleration it: Is the value of g,

the central acceleration of our little planet, as deduced from Newton's theory.'

the same as the factual measurement.of .g? This is the crucial test. °

What .iathe theoretical value of g? Newton dedUced it in the following'

Way. By hypothesis, centripetal acceleration of Moon and chalk are each in.

versely proportional to the square of its distance from the'denter of the

Earth, i.e., both Satisfy the law (equation (14) with:.nOtational simplification)

centripetal acceleration N (140-
.(.distance) .

'Where c is a constant of proportionality,. independent' Of the distance. ,

does the mind no harm to remember that c stands for constant and for

t.,',.41i411.21.) jet R be the distanceb4;.the Moon from the center of the

Eaitand. gm (M is for Moon') the Mbon's:Zrayitationai acceleration towards

the Earth's center, then

r;"
gm )

Likewise,. if r is the radiUe of the Earth, and consequently the distance of

'my chalk from the Earth's center, and (E is for Earth) my chalk's

'gravitational acceleration. towards the Earth's center,

yc 150-
gE

.:;;

Supposing thSMbon's orbit about the;A:artii, WMArs" orbit about.0.

to' be ii.ciple, and conseqUentlyby'Kepler'S'''*Ond Law, iiiut,tiOiot

uniform ciMtiar motion;.. say y,"- recalling (12) of Hamiltons,000dogra

v2

a+

01:.

so, from (15)
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and thus

c = v
2
R

AlsO,since the Moon's motion isnniform circular motion, taking T to be its

:orbital period,

2nRv=
T

Squaring,, and substituting for v
2

in the precedingequation
.

=
(all)

2
-

R,
T2O

that is,

4n2R3

. I

Unfortunately c cannot be measured directly, but. g
E

.Can: From (15')

4n2R3
g
E

- (16)...

T
2
r
2

This expresses the gravitational acceleration at the Earth's surface in terms

of the quantities r R, T known to Newton. The principal ingredient8 of

'this deduction are iyenin the following diagram: Fig. 24.

c R

Moon '

,

=
2nR

Figure 24

Does NeWton!s theOretical value for gE. coincide with the exPerimental

value? Does the formula check?. This you can find V foi yoUrselves

Newton's. data are:,

r54iUs'O4theEarth, r = 6.37PYX-10w
K

meters .

"thedistancpf:the.Mbon from the Earth,i R = i84.4 X 106 meters

(so th4tfthe Moont dii4tancp. from,the Earth is about 30 times the Earth's

diameter). and

the period of the Moon's orbit, T = 27.322 -days.

All the data are given to 5.significant figures, except ,R, which is given to

4. So wor to. 5 figures and your answer (sUpposing no:athmStical mistakes)

will be rel 1:11-to 4. Secondly, if you know the dimensions test, apply it to

(16) to the k that gE is the sort of quantityit mught to be, namely an
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acceleration; LT7. I shall illustrate the importance of this procedurein

the next, cantb, section, Section 3. One more qUestion: How can g
E

be determined
. ., i

. ,

exper ntally?, 'Yes, by a penduluM experiment.- This also we will consider

in the next section. g
E

is 9.806 meters/second
2

. (Cf. Principia,.Book III,
;. ..

Proposition PLY
_ .

To his consternation, when Newton did the arithmetic the answer.did not

come out close enough to the observed value. This set him back eighteen years.

The theory must fit the facts; this'is the scientific attitude.

We must mention that Newton was reluctant to publish Tor 'personal reasons.

Sensitive, reserved, indeed somewhat of a secretive nature, he had ,a.strong

distaste for controversy -- and with good reason. Ais previous publication of

his Optics led to a violent quarrel with Hooke who was all too. apt to be.as,

bitter as he was brilliant, and his discovery of the calculus to similar

unpleasantness with .its other.discoverer, Leibnitz. Yet while it is true,

Newton was reluctant for fear of further controversy to publishihisIctincitia,

that his derived value of-gE- conflicted against.thefactual value was.for°

him in, itself sufficient reason not to publish. Because wrong in an important.

.particular he would not publish, yet if-right he would have been reluctant.

So much of Newton's theory fitted so well that he asked hiMself if the

'4:Lta applied to (26) were well determined. T, the period of the-Moon, was

known with fair accuracy from Babylonian and Greek times; the determination
..!r

of r and R, considered earlier in these lectures (cf,,Eratothihenea),

althmu§h only roughly determine4b3r the'Greeka, were known'with but slightly

better' accuracy in'NeWtons day. He decided that r was probably ill
0.

determined, and awaited,its rtdetermination by a scientific expedition.of the

French7itademy toSouth-America for thi's purpose. Their evaluation of r

gave his theoretical value of gE: clost.agreement with the experimental; the

theobut not Newton, was ready for publication.: : Finally, at Halley's

insistence and expenses Philosophise Naturalis Principia.Mathematica was

published. Is there an inverse square law Of.publication that an author's

urge4tO publish is 'inversely proportional to the square of his work's-merit?

The thoughtfUl reader will note.afew neglected circumstances: for exam-

ple; forMula (16) isderived on the assumption that the Moon moves uniformly

in a circle, yet if,Newton'stttory is correct.the MoOn's motion will be in-,-

Tfuenced to A very iiiinOr:extent -- but nevertheless influenced by all the

planets and all, the stars in.all.the Secondly, what is "the correct"

yalue of y ,/I
Since the Earth is not a perfect sphere, r, and therefore

g,m , vary. There is another reason; the rotation:-of our_Earth gives my
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falling ehalk a. entrifugal acceleration, so that gE. is dependent upon the

latitude. t en ..., but you carind others for yourself. Ish't it

a wonderful thing that idealization enables effective investigation? For

otherwise, surely Nature's complexity would bury too deeplieitaiwe for min-

to probe.

. 3.2.0 Hindsight and rbresight
. ,

Newton.was not the may one, nor the'fstfto conjecture the Inverse

,Square Law. His brilliant scientific friends; Halley who ohthe basis of

Newton's mechanics made with spectacular success the first predictiO of a

comet's return, Hooke who is remembered by his Law of Elasticity tha-5 the
.

'tension of a wire:is proportional to. its atretch,and Wren whOse solid mathe-

matical achievements are overshadowed by his architectural, all thought of it

The crucial difference is that they lacked that combination of insight and

fmathethatical ability necessary to lock it in with Keplerft laws. Newton

turned the key, his colleagues couldn't; they couldn't find a key to t4rn.

In retrospect, Newton'stheory seems obVious: How could itpoBsibly have

been otherwise!? ,Oh yes, told that this is the key to turn, and this the way

to fit.it into the lock,_the rest is obvious. It is tempting to Bay -that
0

Halley, Hooke, and Wren also found the key-- but wouldn't this be misleading,

really? What use is-a key if you, can find no lock for it to fit?

Kepler also thought of the .Inverse:Square Law; he thdught 'of itzfirst:

It IS interesting to see how he arrived at'it and especially_interesting to

see why he rejected it.

Kepler regarded gravitational attraction as analogous to propagation of

light. His analogue is concerned with the intensity of propagation. Let

us introduce this necessary preliminary.

It is an inescapable observatioU4that the Sun emits light;.without sun-,

light there would be no life on Earth. Climate is related to latitude, for

on latitude depends the angle at which the Sun's rays strike;the Earth, and

on the angle dependsthe area of the Earth's surface over which an incident

beam of sunlight is distributed. See Fig. 25.

50
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Because,of the Suer & great distahee froM the Earth;.its beams, e.g., B,IP"

will be senaibly41rallel. And supposing, a'sseems naturalithatthe Sun

radiates light,Oelpfirlly in. all directions, beams :B, B', if of equal .breadth;

will dottaineqUiil quantitieelb:f.,aUnlight. Equal quantities whici*i.re dia-
..e*

tributed over unequal areas; for obviously area ac is less than a'c'

Frith the sUnlight,more thickly spfead, 'more heating; the tropics are'hotter

than the poles. -1' Thlis the concept,

intensity of sunlight =
quantity of light

, area

'naturally presentaiiself. But, 20 units delight fall'u4Ainiformly on 2
.

square centimeters is.10 unitafalling on each. square centimekei.e.,

intensity quantity of light per unit area:-

It it4ot necessary. f6r:'Pursuit of.Keplerttii line of. hought to consider in

detail. how the quantity of sunlight is to be measured or the unit ;to.hemploy.
. .

Consider now the intensity of light falling on a,planet P ataYdistance

R from the Sun, 'Let S be the total amount of light emitted 14/he Gun.
4

Again, as seemb natural, we.supposethisto be radiated equally iri ill direc-

tions, so that. the intensity will be the same at'ali points distance R from

the Sun. Bqt,thesexpints,or to be more precise, thaimmediate neighbor-

hoO'ds of these points, constitute a spherical shell (with -center the SuAL
2. F;;:.-e:

whose radius R and whoee surface area; tilereOwe;..i6 '4nR Con0.44ently,

S
intensity-of radiation at P =
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I 'the' intensitY is inversely proportional to the square of the distance

:. 0

SInce light is radiated from the SuritkccOilling to an 'inverse square
-cotlidnO,I;gravitationsq. attraction be similarly. wradlated"? Kepler thonsht!'...:
carefully iti:64-t pods'ibility, but yas-41.ibi6uS-- and i3o ?missed a great

.discovery: Tha:t, he did so,' or rather. -that he was dubionS.,.'..:ia to his credit; t;

he mistrusted the vei7..good reason. His reason? '1piat;al-phOUgh,
during' a solar eclipse the i4Opri :.blocs the Sun's radiation
Earth, there is no di:de6nti.trinity: in the Earth's motion. Ifs '

attraction were radiated 'as-light id;:ittdiated, this too WO.4d...:C?.. o`temp... rarily

,-..:.blocked 'by the Moon, so that during the eclipse it would diacOnt#Ue,,its.....
elliptical orbit, about the $pn. But, It doesn't. Therefore, graVittitiOrial
attraction is not radiated. ad light is .*adiated. See Fig. 27.

It
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°

Kepler's argument is a good argument; do not let hindsigtit prejudice you .41,

against its merits: any fool can be wise after the4vent. Try.to view q;te
problem anew. That the Sliti,',,can keep the Earth in orbit and the Earth".the

- n

Moon-withoUt any material connecting link. is, to say the leasl.n. mOst-mys7
. .

terious affair. It has been calculated that a steel,dable, egual'.in -Cross
section to the Moon's diameter?. would not, faateped.from Earth to'"Moon, be
strong enough to replace the Earth's 'grayitationeril jSull. on the' Moon. -.,.How.Can

, 4 .

empty space be stronger than steel? The notion' 118.)F3 theipiprObabrility of

H.. G. Wells,: Time' Machine :.Stories.'
. .

.; Only a lunatic or a genius could believe.the Moon tg,be, kept in orbit
by fOroe'.transinitted through empty ;pace. :-Kepler,, not7a JuinatiC, rightly'
rejected the .inverse,squlare conjecture;NewtOn, not 'a lunatic, rightlyaac-

..'-tepted:. it Kepler's conclusion was right relative to partial..U4derstand-
`:ing*(and.partial misconception) of,.the probleM. Hewton4/aa justified for
he-- if you will pardon the colorful phrase was nOtixid.s;ed by that rod

light '4,aw clearly. what Kepler could not appreciate
that .Consequent: upon Galileo's Law of ,Inertia an orbiting .bOd:yinturt'hal,;e an
acceleration toWaids the.'condalia.Sicia Of path-- aild,Wa arebajck tq. the

70. billing apple, tkie canhon. ball, and :the Moon..;
The rest of the storf We'.knOw-.tr .11,e,,wton'S, of:-Kepler!s

three'laws.:' Yet it would be a .mistake to sUppOse. that Kepler' s Woris,dis-
played his laws for the convenience' of posterity; chameleori.dike they were
.camouflaged by;tlieir context. Kepler, the last 'in the great: Pythagorean
traditeion, had the magnificent .tcr the whole univetbe,

, st6CV:and barre., in one devastating',',ailembraciug synthesia,Of geoMetry
amid, astrology, astronomy and epistemology.:.::11eWtoriwaSi,ess. ambitious. In

e Kepl,er's 'HarmonY of -the.WorIld (1618), the eecjuel: to his goamic Mystery

;an of his lifelong obsesIiOnto' establish the;, harmony:. of
theia-sheres (Tor detailt;',..again.. see koestlerls:-..,The; Watershed);: his lawe are

part of the 'flotOam and...:jetaam teat up by restless:'tidei of
'''.:*.tiloUght. It reniapied- korNOwton :to pick over.' the. 4';iriftwood . ...,11e was .a .

beachcomber -genius. ,
.

And how shall we best, reMember him? His friend Sir Christopher Wren,
architect of, St. EC Cathedral and host; Of 'other; famOuS:bUildirigatliati.

fond of saying , qf you want' to El`Se my .mofiumentS, .look around you:" . Fled e`

;Sin Lihriatophe 'td make that remark to Sir Isaac -tOclay". one can well
.

imagine the latter's. retort a 'shrug of the shourders f011Owed by, a sly .J'erk .

of thehead, iii.the direction of and'Telstars.
his monuments becbme more numerous.

tJ
r_^-,-,c)

,
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Section 3. The Pendulum
.

Primarily for two Rodd reasons we begin this section with the l'comMan

garden " variety of pendulum such as makes agrandfather's clock go tic-toC,
.

tic -toc, and was used '6YAGalileo in hia,exiperiments considered earlier:

firstly, because deriVatipn of the right kind of formula:f.orAts period .Of

oscillatiop*.the classic illustration of the dimaasiondUst; secondly,

because tIgavfOrmula is essential to verificati,dn of Newton's Law of Universal
'o 0

Gravitation by penduli= determinatiOn

3.. 3.1 The Dimensiant Test ;

This:hap nothIng..to do with the Hallywood,directofst measure of a female
-

'filmstarts p*okabllibox.office appeal;Ii 'is a' test to ensure that formulae

make sense;;that theiTuahtity indicated by the left -hand side of.an'equation

is of the samaTIcina.ar caPegorklas, or is syncategorioppvith, that indicated.:

by the right.'

Far example, suppoWit.conljectured that the volume. .a sphere is

given.by

v--yo
,...%i,

:, %
.

.

Where r is.theraaluaof the sphere and _c 'a spedific (but here urispeci-
. .

fled) number independent of r. Since r .is a length, r is an area,

:s.lid! c r
2

a larger. or smaller area than r2 according as -c is greater
2

::o .less than unity. In short, the formula states that a volume is Identical:

2

wittk'an area, or that a quantity measurable in cubicunits'is the same as a

quantity measurable in square Units.. Isn't thi8 ap absurd thing to say? The

quantities are not,Syncategorious, they are of different-kinds. .:
,

Contrast this formu18.Lforv with
.

.v r3 .

v and c r3: are both measured in cubic units, so that the quanti-

,ties are of the same kind and therefore cotparable. The formula is the

right kind of formula, it makes sense. If. we haVe tAe right formula

of thaFightlind; yet note that if e is'taken to, be any o

16n, .:*tte formilla:stillrmiakes.sense.: It happens to be false

''formula of the right kind.. Conceivably c eould have been..

cceceixpiple' is. that, forexample,.
(Ar

v =.16n

4 2= r r y-

It just.aoesn'l,t make sense tosaythat a vp):ume:;is

1.51.

ther number, say

; we have a wrong.

16n; what is,in-
.

4

equal,toan area; the



quantities are not syncategOrioud, they cannot be compared. LiGwise,,ethe
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teen-ager who says that his age is fourteen hundredweights has confused his

categires,

The dimensions, test is the basic,logical iramMar of phypdcs :Although,.

UnfortUnatelY, it does nqt eneurethaVour equations,ust be true; it.does $

ensure that they dollaae sense, that they.couldcohceivably be true. The
.

dynkmieist's. working concepts, for,example,-ve100ty, acceleration,. torce,,

impulse, Work,'Mpmentum,.eergy,.pgwer, may each..14'defined 14 terms of (at
4 a

most all three 10) the basic concepts or dimensiZns, length; mass, and time.

For example,. It

.
4

kinetip energy . tiokv

2

where, of course; m is thp mass and v the velocity questioil. But,.4r,

. velocity is defined as displacemen6 or length per Unit time. Taking, as is

7177
4, .

, .

'usual, the letters L, M, and T for length:, Mass, arid time, veropIty is *.
'

indicated schmat4ally by
46 L 11. 1-
Mr- *.Or L. T `.

T 4

It has 1 diMnsion of length, -1 dimension of time-- and, if you Vish'to'be
.

fussy; p dimension of mass, for its,dimensfonecould be indicated schemati-.

cally by
L1

T
1 0 11

Consequently, proceeding schematically, for;

(L1 M° T.1)2 or L2
?.

"
..4.

.- . 9
and, for kinetic energy

(-42-'M) L2 . T2
'..:

(. 1
7,or, respecting the alphabet and ignoring thepUre number (since this affects

. .q;'!. -. .

only the amount of the quantity considered, no its quality or category)

L2M1-T1.

v
2

we have

.140. T-2

4

Next, let us check the dimensions of .(16), the formula so important for

Newton's verification. Since acceleration :can be measured in cm/sect the
;? L<

dimensions of g
E

may evidently be indicated schematically by
iik

L
or

m-27 J;

.T,

But, proceeding schematically,

4n2113' '.L3 L
- (Num'per)

T2 T L2. T
or Li

Check. 'The'test dOes not. shoItthat 'the formula is the, correct formula,

but it does ahow.that it is the right sontiof that it makes sense;

a

0



Had the-test failed the formula could not have made sense, it would have

been absurd. The test is a necessary but not sufficient condition for correct

formulae.
s

Let us sum up: Any physical quantity Q has babic dimensions. a, p,

and 1' of length, mass; and tine (and there are no others). Schematically.

Q = L M
p
T

ti

And,,if
at pi

Ql= L M T

and are quantities of the same kind (but. not necessarily of the same

amount) if and only if

a = a', .p = pi, and Y = .

Simple Pendulum's Timeof Swing

As with Gallileb's pendulum.experiments'Wg supposadealization, that the
4

frictional resistance of the air, the weight of the string,.and the dimensions

of the bob may be neglected. It is of course essential that thebob be

heavy; with a feather for a bob air resistance is ob?iously not

We suppose'the length of the string to be i . See Fig. 28.

Figure 28

Our prOblem-is to find .T, the time oftswing, or more solemnly-puf,

Perigcrof oscillation,of the bob. TV this we mean the time'of a complete

.swing, from A across to A' and back to A, as when a grandfather's

This point is of importance as many textbooks give

IformuIg for onlya half - swing; tic-46c without the succeeding tic.

On what does T depend? We must make a conjecture; to jug hare, first

cdtCh your hare.,
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Let us begin with what We-knoW, congenital physics., Isn't.7thers some

analogy between the swing of a penduluM and the swing. of the leg as one

strides along? .Even in this car-ridden country motorists become pedestrians

to reach their automobiles. Haven't you ever lingered at a streetcorner'

to observe hov.people walk? Presumably, Aristotle, did - -far he. observed

that there is a minimum *peed at which one can wank. Also there is a cOmfort-
,

able'speed foi each Pedestrian; when the sWing is natural and unfOrced;

short legs natuzalii-swing moresquickly.tfian icing ones1.7. Doesn't. this suggest

that a pendulum's time of swing depends upon the length of its leg?

The simplest assumption, that T is directly proportional to 2, is

disproved by a minimgm of experiment. Yet T clearly depends on 2, 'so

what. is the next simplest conjecture? Let us suppose that .T is prOpOrtional
a

to some power of.i, say

On what else does T depend? Does it depend on the base of the bob?

By experiment (keeping 2 constant) we. find that provided the bob is heavy,

thereby keeping air resistance relatively small, it does not matter how heavy.

What else?: If there were no gravitational field the pendulum would,not

swing at all. $O, supposedly under a very weak gravitational field

swing to and fro sfer so slowly. Doesn't it sees reasonable to suppose that

as g .becomps greatemb T becomes smaller? But the dependence need not

inverse proportion; so. let us suppOse,that T is proportional'id

where-13 is expected to be negative.
. h a

Thus we' have grounds for conjeoturinethat T is proportional to 2, and

to g e;, but independent of the mass of the bob; i.e., that

1 T 7 c.a.

Have we taken all the relevant factors into account? Not being able to think

of any others, let us apply the dimensions'tsst to this equation.

ScheMatically, for the left-hand side we of course have

T = LQM°T1.

And for the right-hand side? c isa-pure number end only affects the amount,

not the quality, and so may be ignored. g can be measured in:cm/sec
2
, so

that its dimensions, as we ought to 'expect from Galileo's worki are those of

acceleration, LT
-2

. So, scheMaticallY,

c g
a'i3

=
2)P

La a 21,
= L (L T.

..

)

La+P T-2 P

which, making fully explicit that the formula is independent'of the mass of
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the bob

Consequently,

La +f 0 2p
< = L M Ir

T and c.eCle have (as stated. in the-last paragraph of
Number' 3.3.1) the same dimensions of length only if

0 = a +f3

and thesame.dimension of time only if

1 . -2p

(they already have the same dimension of Mass; .

From the latter equation

1
P =

negative as we anticipated, and from the former,'

1
a = +-

2
giving

T = ci
l/2g-1 2

.

Oh yes, our conjecture was daring - -yet there was nothing worse at

stake than the possibility of being wrong and having to.think again. As it

happens our conjecture was fortunate. It remains to determine thenuMerical.

value of. c.

,Martyr dynaMicistslof ability tackled with unsUCCess.the problem of a for-
'mule for. T. Galileo came crOse to SolVing it', Yet never quite succeeded.

Its complete solution demands use of differential equations. Finally it was

deduced with less thah. fullrigor.bY Huygens; his working knowledge of the:

.calculus was not quite adequate for a fully. explicit derivation. It turns

out that c = 2g and that the formula is accurate only if the oscillations

are sthall.. It would.uot do, for example, to have the pendulpd swing throlgb_

half circles, but when the. penduluM string does not oscillate more than a

feW degrees from-the yertical-the formula is quite accurate, even for scien

tific purposes, Soor small oscillations,

T = c71-g

T '=" 8g (18)

3.3.3' Determination of g by Pendulai Experiment

An explicit formula for g is immediately. available Squaring (18),

,2 2

;$

455'



so that

g
4712 .

Thus g, (for here the subscript of gE. in (16) may be dropped, without

confusion), se essential to. the verification of'Newton!s_theory, may be' ob-.

tained experimentally by. observation of a pendulum's perlodGf oscillation.

Thp,aceUrite measurement of,2 is no:problemy but how is T to be me

ured accurately? Ohiously, to. take, say, one hundredth of the. time of one

.hundred complete oscillations is better than to time a single oscillation,

for then the error in timing is, so to speak, dispersed over a hundred in i-

vidualiOperVatiOns. And to determine the bobis return to a former position
, -

. .

it isi)est viewed against the hairline of a telescope. It would not do to .

set tlieliirline at A (see Fig. 28 again), for air resistancethougH small

.aidam.,../Lzngl'fect on the. oscillations, so that they gradmOly beco

smalIer. -The 'Obvious position for the hairline is B, along the vertical
!!.$

throtigh;!tWbOb's point of support; for the motion, as we know from Galileo's

(19)
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experimetits, is symmetrical.aboUt it.-

.3.3.4 The Conical Pendulum

The determination of T, the period of osciliation.of a conical pendu-

i lum, is a somewhat similar problem to the determination of T for the simple

.pendulum, but has the advantage that we can solve it completely even with

the mechanics of thepreceding lectures.

First, what is a conical pendulum? The apiXi.ratus is that 'of the,simple

pendulum; the distinction lies in:the Math of the bob. If the bOb swings to

and fro on an arc of a vertical circle, the pendulumia simple; if it rotates

in a horizontal. circle, the pendulum is conical. Suppose a bob B to be

suspended frOm a nail in. the ceiling N by a string NB and let C be. the

foot of the (vertical) normal in the horizontal plane through thTinitial

position Bo of the bob. See Fig. 29.

156
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Figure 29

Let B start,,from..reSt and it will swing to and fro in an arc frOm B of

Oi'center N and radius (or NB) in the vertical plane NB Ci0
. 0

'4,4etaie a simple pendulum. Alternatively, give B an apprdpriate push in

.the horizontal direction perpendicular to B0C and (.stppokng,the string

free to swivel at N) it will rotate in circles OfOtgx'7,'COld
;% ; .

in the horizontal plane, through B we have a coniCSpeg,4lumr..viA8::15',/,

circles C, NB ,generates the lateral, surface of a cone; ,the term conical 16

appropriate:

A$ already mentioned when speaking of Galileo, as well as being,simple

the apparatus is inexpensive. Here is another experiment you can. perform

an infinitesimal outlay.--provided that you already have a roof over your` _..
.71head.. Moreover, in contrast to make- your- own - atomic -pileexperiments,.there

:isno risk of burning the house down or blowing the ceiling up; althouft not;

debtructiire, instructive..

Yet even without- performing any fire -proof experiments we:already know

willy- nilly, something of the results by congenital mechanics. Suppose the.

horizontal circle of rotation of B to be such that NB is inclined at'ad
V -

angle a to the vertical NC, i.e., such 'that.a.is the semi-verticali

of the cone generated by the string. If a is increased.(with the length of

the string invariant) ,will T; the time of revolution of the bob,i.tcrease'ar*

decrease? Part of the answer we .can feel 'with our muscles; the nediVr

15 1
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Plane of revolution to -the ceiling, the greater the. thrust to get it started.
pOuld we get B to rotate in theplime of the 'ceiling? Can't yOu feel the

. .

'No, not quite in the plane of the ceiling. To get B to rotate
,';, in a plane .just beneath the ceiling would require an enormous initial' thrust.

Your muscles ache at the very thought. of it? And with an enormous ini-
thrast B would rotate with enormous velocity. So? We conclude that

::the nearer a becomes to 90°, the nearer T becomes to.O. T depends

on a.
On what else does T depend? consider a limiting case. If, in the

complete absence of a .gravitational field, B is started on a.horizontal
Circular path at the ceiling, it will continue on this path for there is no
force to pull it down....So shouldn't we expect T to depend on g?

Next suppose that cc is kept constant and.that the length of the
'string NB, is increased. When 2 is increased, the radius of B's hori-
zontal circle of rotation is increased. With 'a short string, just an inch
or two long, would B need a smaller or a greater. push than if the string.'
were several feet long? Your muscles tell you that the longer the string,:
the greater the force: The greater the force, the greater the velocIty.
But thereiis a complication'; -the longer the;,:string,,the greater the circum-
TeAnce. O'f' the .circle of So,the farther the bob has to go to

..';complete ari osillation, the faster it; goes. Does the increase in velocity
t1 c, .

..;
, .more than. oil sate .br less than compensa e for. the increase' in distanAr

, . .. .

Does T des :.e as ',r,2 increases, or does it.,,ilic.;e4e? What seems unlikely

!,. is 'tiiikt- the! increase il} velocity with increase :in..: 4... jt%t'. ,compensates for

.', tlia,-..ipd se in 'distance,,,, thereby. making T- independent of 4 .

. DI it , it :yould, appear prima .facie thitt. ..depends on. i as well :as ..on
, 7" " . -!:,-..,',,-,.. .. ... .., --- :' .:.. :

g and `cc,. :,liecal., lAng" the forthula for T. for tie simple pendulum and remem-
bering:#e 'dinierisidps-_test; ±s it4Teally too. gild a conjecture that for the
conicattpendulUni'.:

where

f(6).

f(4) :46 of: ei3rils::(*i.q1ad,43ns*?, ],e',tliis as it may, it wOdd,,appear that
a Correct ,formulatv4:0-r-,our .pro:blem:;ip:

,.
`, Find TGiven - di . g

Take another look, at:Fig; -,a 'A:atter of complete indifference
-7whether we start the 2? Whatever forces are

acting on 5 and' .'45-new forces are introduced.
By the Law of Sufficient-(oz:,'TASutrietegi).B404.!there is no reason why the
motion should not-be UnifOrT., Tharefore:.. ....uniform circular motion.
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We recall Newton's argument for central acceleration so that Must have

a centripetal-acceleration- a, and'that according to'HaMilton's hodograph

deduction
2v

a =
r

;where 'v is the initial horizontal velocity perpendicular to B0C and

B
0
C = r. ,.:'''),. .

.
. _ .

But how is this acceleration caused? g "acting vertically (downwards)

has cif itself *'horizontS.1 compient; there must be a second force.lIf N

is not securely hammered into the.ceiling; it will be wrenched out hYthe

Motion. TherS is a tensbn in the String. Thus a is theresultant'of

two forces acting on B; g,y4.24pically doWnwards and the ension in.the'
.

.

.

.

string obliquely'upwards. We1 miiete the4arallelogram of forces: See
': . . g '

.Fig. 30: . "4 '

B3

FigurS:.30

G
From the obvious.geometry of the figure BG'=]''N'C!

'6BN'C',

tan a= a

We have relateci. to ,the geometry: of the:

0u2:problem, remember; as to find -- supposedly in term/ of a, A,

and g. So far, we do not have what we must haveT-
Zr-,

,
an equation containing

11

T;, and we do have what ultimatkly we must nothaie-.;-the intrusion of v

and r., We must introduce T eliminate' v and. Can Wejcill two

birds with one stone? Since the.motion is uniform:Ciroular motion, 2nr.
. ,

so that considering.the
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being the circumference of the circle of.oscillation of radius r, we haVe

'by definition that .

2nr
v' =

T

Do we now have enough equations to find T?..The business of sOlving

problems is so important tOmathematIcians.and the business of getting into

formulae problems stated in words so important to many who are not primarily

"mathematieians (such as engineers and chemists) that it is well worthwhile

to emp4asize by::tabulation the role of our equations and how we obtained

them. We tab1.6;04:

of

. . -

2

a =

' tan a =
a

g

2nr
v =

from dynamicS: the principal equation

by geometry of vector triangle

by definition.

How many quantitiea*re there? Six,. namely, v, r, a, g, and T. How

m.000cdg..these are knownTWO, 4amely, a- and g.- ,:'So that leaves 'four un-

V, and T. Primarily we are interested in 'T. The
- .

etAip--:
a, v, and ry.i. are only- means to an end, so let tia-berm,them,auxil;.

H1.4iknOWna; their role4s.to help solyethaTroblem. Yeicharacterizing,

will not alter'the..faet.:.ti wh as we do haVe foUr.:.UnknoWns.4e-"'
_ -

130nly three equations We-need..g. 'fourth quation.
.

What quantities Ought..the foUrth'equation contain?, In mathematibWif

pot.in:tRtaltiyeics,. it isieceSeary to be clear .what .you. are Agiii4

we recali'the
. ,

g, a Fj nd T

,Note that Oiii'bOve'list of six quantitieS doe.d.not contain Although .e

is given, it has!not been taken. So look at :rib. in Fig.;.30.' An obvious'

relation involving is

r
- .

cliehave obtained a fourth equation which introduces X without introducink

anynewunknowns. Pour equations, four unknOWna.,. the stage is set for the

deiertination of T.

:It is my personal opinion that there is 'nothing of greater importance to

be taught in mathetatics to the high school student thantil business of

setting up equations, TOT. better or for worse, Whether we like it or not,

we live ihatechnological society that daily becomes increasingly so. ,

Although your typical student will not become a professional mathematician,

166
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the nearer his future field of endeavor-to science, the greater, his need to

undetattnd ttxtbooks., manuals, JOurnals, and articles in which mathematical

.itiritulae ate steadily becoming more numerous. And unless he is to rest con-, ..
:.tent;throvghout the whole of his life as a non- contributor to his chosen

field, fie1111 at least need be able to set up s4milar equationd'Ibr himself.

It is not in:the,nature of intelligent man to be a spectator to life.

TO repeat a point WhOteimppitance in my:view justifies its repetition;

without getting .,cl'undergtand what a problem is about. and what is relevant;

to it and (wbenappropriate):tranalatitg it from .words into fOrmillae, there

is no mathematical educaelon:: That Most of.the.Word problems in the tradi-

tional textbooks, are so boring and useless does not4nvalidate.my.poimt: of
,

course,: the problems must be intelligently designed. Is it not'signipicant

that even at a time when ;technology was atttnding an,attenatal'clinidi

Newton,,Euler, and bescartes each thought*topiC of solving "word roblems"

and the setting up,.:of equationvauffiC1et4i;i4Ortant to Justify ttiauthor-

ship? .1

Vt retlT?.'D.Oho:.d#etmination of T:..:1`rom;the7tecondtabulat4Pequaticv,

g tan 'a'. .

Substitufingfor*, a .in the first equation,

v

g
Squaring the third equation and sUbstitutingfOr

2
,

141c2212 1 41c2.
,7r

r 1.& .

so that

Finally,. frOm:the fourth equation,

so that

:p

'giving

g tan a

11..n

g tan a

r = / sin a k

T2 =

T =

Stan a
2 !.

2
2 sin a = 40

That (20) is of the fOrM

T f(4.
where f(a) =, cos a .and is of zero'dimensionsconfirms Our conjecture.'.

(2D)
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);A Consequence or. 20, : as a tends to.90 cos a tends

consequently so does..544:: FOr the tOb to.rotatein'the plank,ofthqCelliirk

its'-velocity would need be infinite, Mathematical ded*tion'up s muscular
...

perception. ...

And the other limiting'

consequently T t

obeillatiOn becomes,

penduluni..

conclusi.onono

acceleration for,uni

Reconsiderthe

...cabe? 48-'0.;4 tends

2g. Thus, most curiously,

14 the periOd.i*the,same as

anda.
/ t

when the circle..of .

that Of thefciple

impOrkance of the conical iendulUM:for.dlevt41

nstation Of the-necessity for a
t

.16.rIa4tion, a limiting case of Planetary motion..

circumatanCea'.:Of 3.04a in:Fig. 31,.

N
A

\ B3
I C

Figure'31

The force of gravity acting on B may be decomposed into a force B.
. 4

acting along NB aid a force BC! along IC, as is indidated,bY...thePcral-... \
.

lelogram of forces :', Thefirstcolkponent:is utilized in keeping the strine:

taut. What about the'''spare" fOrce along BC? ,,This provides the centripetal
. ,

racceleration necessary for- m circular n.unifor circuar motio
. .

Section 4. Escape Velocity

This. section; despite its title, is not about the

a conviet .over the penitentiary wall. Our concern ls

namely", the velocity necessary fox a space capsble to

16,

rate of departure of

much more exciting;

escape the Earth's.
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gravitatiogal Pull. Although ponviCts have .13een.;;;BCP,Ping fraut: penitentiaries

for es long as there have beep penitentiP.ries ,to' esCape froth, it ,is only .;

within the last few years that technologica progress has, made'..po,8 Bible gen-..

eration. the 4.Xtremely high 'SS.tellit es into orbit abo3.1t

the Earth and to send. rociefs.to the Mo'on':oa to outer. space. What. was

Science: fiction is 'rapidly beconing fact; the other'side 'of the Moon has been

photographed. The space race is supplanting'the World Belies in public in-

terest; we'live in the. Satellite Age.

With ever increasing frequency ,projectiles' are being hurled into':,SpaCel:

Your studerr4s; stimulated by newspaper, radio; and television reports, will

have eager curiosity to know more Your,better studenta mill ask you better

questions; among others, questions bearing On the releVance of mathematics to

apace travel. The answer to many such q-uestionst. is a difficult coirtplei of

differential equations, but happily there are some such topics of:Nes.rednian

mechanics amenable to elementary treatment. An especially amenable topic As
the velocity of, space capsules, so let.us consider it.

We begin by distinguishing between orbital and escape velocity; by the

former we mean the velocity of a satellite in orbit ,:about the Earth bY:the'',.

self-explanatory terms1 go

latter the velocity necessary to escape from the e-tarthis gravitational.'fiAd

to outer space. Alternatively, we may use th

around and go-away velocities. See. Fig. 32.

Which velocity do you suppose the greater? Many persons reply "The go-away

velocity, obviously." Here "obviously" is all too apt to mean groundless con-

viction. You.have grounds for your conjecture? Either way you have committed

yourself; the question must be answered. Since the, go-around, velocity° is

easier to compute, let us deal with it

.10



GO-rAfrouncl. Velocity
. . .

Suppose a satellite in orbit:' about the Earth, Just skimming the chimney
. - . , - . :

Not a very realistic :Supp6siAicUi .yeTy dangerous for the tree tops,:

MOreoirer, althoUgh we 'do not feel the friction of the air when strol4ni,..."

aiong, tie frictiOn 4the Earth's:atmosphere is tremendous at high veloci

ties and horribly, complicates :our probAeM. 3o, idealization is imperative ;
, .

we- suppose no atmosphere. Also, that the orbit will be precisely a circle

'.' instead of tin .ellipaeand that the exactly uniform. Now
- .

the-main idea; of course,is that'. the ,Earth'e:gravitational attraction must

prOlbkie our satellite with a centripetal acceleration.. We recall. Brabiltonle
, _

. .

.

/.

46dOgraph derivation of centripetal .acceletp,ton, namely,

a-7-
v.-- ' -.
r

What, for our present 'problem,. r7 Since our satellite ii-ekiramng- the

.roof tops4 r is the radius' of the Earth.' And what is . a? a is the ac =..

..CeIeration due,to the Earthis graVitational pull. But the strength of this ,

pull depends '.upon the distance, of our:satellite from the Earth. To be pre-

'Ciee 'a. is the acceleration due to the Earth at: the Earth's. surface... 'Tb

t:40roind ourselves of this,. as An'an earlier cOntext, We denOte this- acceleral

Lion by gE : rather, than!, g. (E. i6 for Earth sid for. EhAsisc,) We have
.

V

so that

v r

We bave found the go-Around velocitir at the Earth's siargaCe. ,

More realist iCally, let us_Consider a satellite in:O'ircuiar orbit, say;

300' kilometers abbve the Earth's surface.. At this height, our satellite is

above the Earth's atmosphere,. so. that friction, if any, .17e

...Cap...iMmediately write that v300, the .go- around velocity. at 300 kilometers

aboVe the '%ith'e.:sUrface, is given

60k-

ere g300 is the acceleration due to ithe -gravitatibnal attractibn:

',kilometers-above its 'surface and r the orbit' radius` (3ocy knopiesiers
,

.thah thec;tvidius of the Earth).. The problem to find Is reTIliced "'SE'

4 :

th0 Itroblem to find.
t.

: <.

Ilhe letter .problem can be avoided by usirii...Kepler's Third rai",(;4iiet'anothe*;

.,fact ,th'itti underAned. the crucial role thip4* in Newtonian, es.' I,e,. ,

T be the:oibital period at. the Earth'e aurfabe *itnd. -ob
-ir .300;

iii1O4ters.,''ahOVe -Sineetbe r ions urri
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motions,

where r300 = r 71,360 being measured Hence

T 'Y' 0027cr 13

T v . 2yr
. 300i 300_

1r300

.

-300
v

. r300Artthis stage we :make use of Kepler's:ThirdiLaw

:3/2
T

300 .-r
300

From this last pair of,'equations,

v300
v

so that'.

and from the first of the pair

r
.r3/2

r300
.300

r300

T = 093/? T.
.300

We leave as an exercise calculation of the go-around.yelocity'and period,

of spac capsules in.orbit 100, 200, 300 and k kilometers above the Earth's
'7

aurface. Surely students will be keen to work out in this way the average go-
.

around velocity and alOprOximate period of any orbits actually being made, to

compare their answers wi,th the figures publicly- announced in newspapers and

on radio and television.

4

3.4.2 Apropos Go-Away Velocity

As already remarked, the calculation ofthe go -away velocity is more diffi-:

cult.: More difficult, because. the Earth's gravitationalpull:oria rocket head-

ing.for outer, space is not constant, but varies with the rocket's distances'froM

Earth. The answer.depends upon the instantaneous deceleration at every point

of its.path from the Earth's 'surface to outer apace. In CalcUlating the go7,

around velocity v300 we were,able to avoid determination of
g300;

in deter

.mining the escape velocity we cannot avoid knowing the various .g's. Yes, the

problem is mors.
6

What is. the Earth's gravitational pull at,a distance x kilometers from.

its center? According to Newton's, Law of Nnivarsal,GraYitrationthelpull

1 6



gived our rocket a deceleration inversely proportional to the squad of the
4.,.

'distance; proportional to Hitherto, we have been concerned with
x

the effect of grav*y, acceleration or decelerativn; itisIsnly indirectly

that we ha§e been concerned with its cause, the force of gravity. In o:)ur

next problem it is' convehient to 4ea1 with gravity in terms of the fciAe

exerts-rather than in terms of the change of'velocitY it effects. lccOrd'inglYr

we now 'consider this necessary preliminary.

it

3.4:3 The Force of Gravity

Of-,, ;.,.
I

Let Va suppose that'you sr" weekend'climbingtthe mountains of .the Moon.

There, as here, your rucksack contains spare socks and a pinttlask:of brandy

for medicinall4poses. Although on the Moon your spare socks are still'

the saMeVe and the brandy (before the emergency) still fills the flask,
2

'eacharticle weighs less; the,Moon's grAviVtionalLpull is about one-sixth

that of the Egrth's. Whereas mass remains the name,the force to whioh

is sub4cted does not. The weight of the Hass or aubstances the measure'

Of the force exerted on it. If on Earth the' force! exerted by gravity on a
! '

le
pint flask of brandy is1 pound-weight, on Moon

1
itweighs about .g Roundweight;

in.either place two pint flasks of brandy weigh twice as much as one does. If

When climbing in either place pour flask is let slip, you can console yourself

with the thought that. two would have, fallen just as fast. Although, two weigh

twice as much as one, although. gravitational force exertedeon two is twice

th exerted on one; the accelerations are the same.77A force of '2m gE

act g on a mass 2i-Iiitroduces in it an acceleration gE -as:does a force

m gE,acting on m;, atorce

an acceleration gm as does a
.1

2m gm acting on a mass 2m produces in it

force m gm acting on m. conception

of force, mass and acceleration is embodied in Newton's Law

.force mass X aCceleration.4 (24)

And weerecall that Kepler's laws are valid for Jupiter's Anti as wel
. .

as for the Sun's satellites, so that as'a consequence of his third law tF

centripetal acceleration of each of Jupiter's moons towards Jupiter. is in-

verseiy proportional to the square of its distance from.Jupiter, just as

(in 'consequence of Kepler's Third Law) the centripetal acceleration of each

of the Sin'a satellites towards the Sun is inversely proportional to the

aquare. if its distance from the Sun. Likewise, the Moon's centripetal ac-

celeration is inversely proportional.to the square of its distance from. the

Earth: The moons or satellites of each system each have a centripetal ac-

celeration such that

centripetal acceleration Iroportional to
1

(distance)2

.
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or

Centripetal acceleration =
.

(distancel
2

Thepoint to note is that Whereas. c, the constant of.proportionality,,is.

the same for'all the moons or satellite's of-the Same.system, it is different

for different systems.. How did Newton get a truly universal law, a law in

which the. constant of proportionality is the-same for all systems?

Combination of (24) with .(25) etables us to-Consider'gravity in terms of

the force it exerts instead of 1n terms of the acceleration it causes. Can-
..

biking these. equations, a planet't gravitational pull on its satellite is

ditectly Proportionalto the satellite's mass and inversely proportional to

the square of the satellite's distance. Let F
111

be the force exerted'on a

satellite of mass, m to cause it.an.acceleration g at a distance r from

its attracting body. By (24)

= m
P

. and by (25) t

g 7
C

so, that
.

i m
, F = cm 2

r
(26)

Note wellthat.the attracting force is a function of the mass of the attracted
72

body as well as its distance.

The Moon is attracted by the Earth, the Earth is attracted by the Sun.6,

Its is natural, but audacious, to conjecture that every particle- is attracted

by every oter, that gravitation is universal. But,,if particle A atti':ac
.

particle B and every particle attracts every'other, then also.- B attracts
. f -

A; ,also A is
'

attracted by A. If every particle attracts every_other,
. 40-

then every particle is attracted by every other.'

Consider the simplest universe o4 this kind, namely4hat with -just two

.particles, say-311, m',. 'distance r apart. See tlg. j3..
,,,....,.,, (I

4 .

0

E.

s,al 4,0

m

m'

' Figure, 33

c'm'.

r
2

.

se

O
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zf m is regarded as a .:,''satellite" in the graVitational field of m', then

the force exerted on it is directly proportional to itp.mass m,:and.the

aqUare of its distance from M', i.e.,

c (26)Fm =

where c is a constant of proportionality for m'op gravitational field.

Likewise, regarding mi as a satellite in the gravitational field of m;

the. force Fm, exerted on it is given by

c'm'
Fm, = (26')

r

,

where c' 'ig the constant of -Iroportionality"for m's gravitational field.

Which exerts the greater force on the other? It is natural first to make

the simplest conjecture, namely thathey are the same. But, if

by (6/

Fm - 777-
r :

sothat F111 is directly proportional to M' (as well as inversely.propor-
.

tionalto the square of r). But the basis of our argument; (26), is that

Fm
is directly proportionalto m and inversely proportional to the square

of r. What must we conclude? That 'Fm is directly proportional to le;

directly proportional to m, and inversely proportional to the square of

r. That

Gm'm
= 2

r

where G is aconstantofproportionality.-

But, for which gravitational field is G a constant. For m's? Or, for

MI's?' Since F
m' m= F'

'

we ,may with equal propriety write (27) as

FELL' = 2-
(27')

No matter whether we consider the equation as applying to mils ,grayitatiOnal

field or as applying to m's, the constant is the same. The constant applies

to every (i.e., both) field of the universe. Being universal, it is appro .

priately termed the universal gravitational. constant.

114e.that '(27) becomes (26) -when:

c = Gm'

and that (27') becomes (26') when 168
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c' = Gm.

What is the signiO4nce of these equations? The first states that the con-.

.stant of proportionality for 111"s' gravitational field is proportional to'.

m'; the second; that the.. constant of proportionality for m's is proportional

to m. Combining these equations

c, G
in

=
m.

= ,

the constant of proportionality for the gravitational field of a given body

Is proportional to that body's mass. Surely, this is precisely in accordance

with our conception of'force,.maaa, and,acceleration. .A flask of brandy

weighs more at'a given distance from the Earth than at the'ame.distance.

from the'Moon becauSethe Earth has esater mass.'

Supposedly it is along some such line of thought that Newton arrived at',

(21), his Law forthayorCe of Gravitational Attractiono from his already

established hypothrsis that acceleration due to gravity is inversely propor:'

tional to the square of. the distance.

To be precise,.this law is taken by Newton to-hold only for particles of

matter, that is, for bodies whose dimensions re negligible.',It is a conse-

. .quence of this law -- which Newton had considerable difficultyin proving--

that the resultant attraction of a uniform, is as if the whole of its.

j, mass were concentrated at its center. do when dealing,.for example, with

.thegravitational attraction of the Earth at a distance r from it, we must

take r as the distance from its center, not its.surface.

3:4.4. That Kepler's Third Law is a Consequence of Newton's law of Gravitation

We recall that the crucial step in Newton's formulation of his TAW of

Universal Gravitation is that an inverse square law of gravitationalattrac-

tion is a consequence of Kepler's law that the square of a planet's period

T is proportional to the cube of'is orbital radius r. We shall now show,

Conversely., that Kepler's Third Lewis a consequence of Newton's.

With close approximation to thfacts, we suppbse a planet to move around

the Sun.with uniform circular motion. Let M and m. be mass of Sun and

,planet, r the distande between them, and F the gravitational pull of the

former on te latter. Any letters subsequently introduced are to be given

customary interpretatini7 By Newton's. Law of Gravitation,

F.= GMm.
K,F

(27)

since the.motion'is uniform circular motion, the centriPetalacdeleration
2

viven by a (11)

16J
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and by (24) for the centripetal force

F = ma

we have

(28)

It remains to introduce T. Since the motion is uniform circular motion,.

definition of velocity °

2nr
v = .

..Our problem is to find the relationbetween T and r.

First we eliminate a. From (11) and (28)

v2m
r

Substituting in (27) to eliminate we have

v2 eft
=

I

so that

and in also is, eliminated.

r2

2 GM
V = -

r

Squaring (29) an substituting for v
2

,

47c
2
r
2

so that

4i2
GM

T2

143t2\

\ GM /

is independent of T and r, so that

2
T-CX r-)

(29)

(30)

161

y

aswas to be shown.

The attentive rider will note that this deduction, as that in Number

3.0.4-to.determine the period of oscillation of a conical pendulum, readily .

lends itself to detailed "Word Problem" development: What is given? What is

to be found? How many equations?

3.4.5 Planetary Mass

From (30), making GM the subject of the formUla, we have
. .

GM = 4n-
2 r3

(31)

The produce of G and the mass of the SUn M is a function of r and Ti

4 .the. Orbital radius and period of a satellite, but, is independent of this

.satellite's mass. And of course the formula is equally applicable to any

' other sun and a satellite of that. sun. Jupiter has moons, so .let:us apply

Vt.to Jupiter And one of its moons. If m is.themass of Jupiter and

1 70
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and T' the orbital radius.and period of a moon of Jupiter, we have
.

so that

L 2 3
Gm 47C '

T'

r3

GM

Gm,

Thus, Wean compute pthe.rratiO.:Of the masses of the Sun and Jupiter..
I A

.larlY, wince the Earth has la ;Moon; the. rat Mass. to the Esaith
can he determined., andaconseqUently;.: the:relativ,e .masses Ot:Suri,...Jupiter, and..

, .

Earth:
To find M, ,tie actual mass of the 'bun, (31) is, of cbuipe .insuffialent;

'vie need to know G"'. From (27,), 'when M ta r we have

'
4That is to Say that G isithe gravitational fdrce eXertedby,'unit mass on

"'unit. mass' at unit distance. So, in principle; G could be. determined by
'measuring the force oriattraction between theed.tWO bite Hof ilackbOard

t
' , However, force is an tery small. that it i6 rathei.mpi-act cal to deter?.

G was determined Vith accuracy .11iy t lish physloistfli
hysiaLst,..von Jolly; and others: I sh to mertiorx

vi,;,
determination, using the, torSion_bal" e, was devised .by

z,

,"
ist EOty5s'- - a, brilliant lecturer my...teacheiti.a tte e'

Mine 4t
',Gairendis

fthet. one m
the

.
Univers

''kot
for the

hodog1ra

But the
the air
impulsive

st.
not exacts co/.-4ect.
cceleistion, of! uniform circ

it presupposes that .the ceri.

t, nailed to 6. point in i3ii14:46
any from the Earth andSO

.

acting on sun- 6 gigantic
r11,

r.`thoughkyoy prancing does not cause
TakiV the; Sun's motion into `accoicat,

relative velocity, it turns out that ,

T2 =

of the fopmala,'

jittraelfon.
,v.a.i4r When you

e, such o,
146:11. 111;nia"-

negi.

disti
tigives the

t he replaced by

A 9
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7 V
say that ` "'elation b4tWeen T. and r depends not' only on the

M Of the :sab' on ma the mass of the attracted'satellite, And

to indict e,have noteAausted the topic of planetary mass, let me

conclude A that it.is;pbssibie to determine the mass of Mars,

Mercury, and;',. .wen thbugh tteyllave no satellite moons. It is sufficient

tal'peridas to the required degree of precision.to know their "

3:4.6. GO4

We..

straight o

Ve'neglact

suppose

only fo

Ale titular topic of Section 4: to determine:the initial

tiCAL. rocket must aefired. from the Earth's .surface to voyage

biOuter space,n0er;to return. With inevitable idealization

rfrictional resistance of the Earth's atmosphere.
s.

and 4:ocket,to bejthe :only bodies in the universe,

g4in vat rocke;iS:the Earth's gravitational.pull.

Also, we

so'ihat the '

Even with'

these: AifLeatiolia.the r:ia far from obvious.

ImmeJja t: ,oUr rocket blasts off, ita initial velocity

begs

fro

rocke

reaSb:du theEarth's gravitational pull. The falther away

were fi

ASA
rocket-backt

the Earh-Fs'.'

but:4Ille

_ .

6

vel
.

he Earths pull and the slower the:rate at which our

ses, Yet. its velocity continually d9creases and if it

0 rest waylout in space,. its rest would be only momentary;

h weakibeing the only force, would begin to draw our

The ,nearer our rocket returned to Earth, the greater

t;'it.would. arrive back.at the speed with which it set

f'the Maiter:iS to determine an initial velo4ty just suffi-

me.the effectOf the Earth's continuously decreasing gravita-

r
. ,

we to set about' computing this continuously variable effect7 let

our minds back totlui section on Galileo. He dealt the Contine

Changing in terms of tilrunchanging, Caricature the continually changing

intervals of steadiness punctuated by instantaneous jumps,tilen decree e

the,intervals and the magnitude of the jumps until the phenomenon.is smo0

*out into a gradual cOntinual.change. :Recall Galileo's treatment of the con--

increasing yelorcitY of free fall. Accordingly we, as Newton, con-

ceive of continually decreasing gravitational pull as the limiting case of

im,tervals of steady pUll"Punctuated by instantaneous-decreaseb.of pull.

How are We'to'coMilitethe'..,effect of an interval of steady pull on our

et's yelo4t? 'Wbat:is the'key concept here? To this,we also find the

Aallawer in Number.3.1.5,.ConserVation of:Energy. There we have

amv 2
= mg H

(1)"

2

.172
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v2, we recall, is the kinetic energy of a mass in moving with velocity v, ,

mg is.the force exerted by gravity. on this mass at the'Earth's surface; H.- is
e

the'height through which the mass falls. When the mass m falls a distance- H,
A 2ita, loss.in Roteritial energy, mg ' H, is converted into kinetic energy, %ilv .

Alternatively put, gravity exerte.a force mg on m over a distance of H in

the direction Of therforce; i.e., mg 'H'is the work done by gravity: And

sfrice the free- :falling mass starts from rest its initial velocity, and conse-

quentlY, initial kinetic energy, is zero. SO (7) may be read as

gain in kinetic energy = work done in direction. of the Force.

Alternatively; considering the sequence of events .to occur in the reverse order,

so that the mass is thrown up with initial velocity v and work is dop%in-the
j.

Opposite direction,.(7) is to be construed as

los in kinetic energy.= work done against gravity.

Isn't this just what our problem needs for each interval bf constant gravita-'

tional pull? We must add that Newton was'familiar with the condepts of kinetic

energy and work done, but he was, of course, unfamiliar with the terminology..

Contrariwise, many schoolboys are familiar with the terminology, but not the

concepts.

It M be the mass of the Earth; r its'radius, and m the mass of our

rocket.: See Fig..34.,

Earth

Figure 34:

X2
-)m

We recall that the gravitational attraction of a uniform sphere acts. as if the

whole of its mass were concentrated at its center, 'so that the pull F on our

rocket at a distance x from the Earth's center is, by Newton's Law of Gravi-

tation (27),.

Mita
F = .

x

SiliCe we shall need consider a sequence of n positions of our departing

rocket (as did Galileo of a free'-falling body), it is convenient to denote

46,
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Alm nth :position by

Fri ;

x.
n

and the forc6 exerted on our -rocket at that Toint .

Gift

/
F
n 77 (33)

.

xn

'Also, it is Convenient to denote the work done against gravity by our rocket

in moving frOM xri-.1 to '..xn
n -1 n'

Since the initial position of our rocket at blast off is on the 'Earth's

:surface, we put xo = r,. and we. buTToae it to reach a distance R Prom

the Earth's center in the nth. position, xrl = R.' (We let it voyage firpt.,to

R, later to infinity.) Our problem is primarily to compute the work done

..'against gravity by our rocket 'in moving from x = r .to' x = R. We graph

the equation of the force F Oft by plotting the points where ab--

x

scissae are xo,: xi, XII and complete inner and outer rectangles in

relation :to these Points tas shown. in Fig. ,35.

What is:the work

to what is WO

-.the.initial- force is

F0(xi - k0), but we

It is clear that

FigOre 35

done againstgravitY by our rOcket in moving from xo.

1?
The distance froth 'xo to xi is (xi - x0) and

F0. If this ''remained constant the work done would'be

know that the actual force continuously decreases. So? .



continuously decreases' from to e least:force .exerted is

and that only for an Ina-tent. '-So? It is =ar that'

COmhining thede results,

we estimate WI

(x1 7 x0) < W
0,1 ,

< F
0
(x1. - x

' W2;3' 77, Wn_,n

F2(x2 - xi)

- < F2(x3

,

Adding, what.. do we get?:
J ,
What is the geometric.significanee of x0)? This is the area

of ihe;rSctangle with base (xi - x) circumsdribedbythe curVe-,

Tr= Mm: F(x2 - xi) is'the area.with taSe:(X2.
x

and'height F2. In short, the summation of the'aeithand,eideelements,of

our ineqbalities is the area of the sequence of reciangleseireumscri:he&by

:tIle curve. Let . 'be.the'area of this, inner ataircase.Of. n 'Steps.: And
.

what is the geombtric.significanceiof x6)1 This is. the area bf..

the reetangle:With base: 7'x6). and height FO.. And:',-.F1(x2-- xi)?

Similarly, the right-handside elements of our.. inequalities is the area of
.the sequence of rectangles circumscribing'theturve F :-.;.G14m Let On.

be the area, of this outer staircase of .n steps. Adding,

I .< W +W +
'

+W <0n- '0,1 1,2 2,3 n-1,n n

I < W< O
n' n ,

(311)
.

.

where W s the total Work doneagainOt gravity by .01.1r rocket in traveling

Irom
0
toX

n'
Le in traveling from x = r' to x = R.

What happens as the number of positions 'Considered,
:

.

The steps beCome more'numerousend inner,,and outer:staircase more closely

coincident. Isn't it clear that for sufficiently'large the difference

.:between 0n' and I beCOMes arbitrarily )8Ut;:'it is equally evident
n .

that

7.

I, < area under curve <-9n
n



Sowhaido you conclude from (34) and (35)? We must.conclude that for

auffipiently large. n,' W and the.area under the curve are sqUeezed arbi-

trarily close; that

work done against gravity .= area under curve from r R. 'Symbolically,

W [area] 11!

The. problem to compute W becomes'the problem to compute the

167

(36)

curve.

. Reconsider.(34), (35.). These are of the.pattern
..

I X < 0 .n

0 The: method is to find another. X -- and squeeze..

First, tojind an 'X. ''(34) is a summation of items such as

F,i(xi 7 x0) < w0,1 < FoCxi

Can we, more modestly, find an X' such that:

Fi(xi - x0) < )0<. Fo(X1 x0)'?

If sb -- and similar %terns, can be similarly.four4,-: there Will be nothing left

to do butadd.

What is 'F ? Remember that we are dealing With the

(Do not omit

FIT(33)

1
GMm

the constant is not for, Genetal Motors.)

GMm
7

x
!:

GMm. F

- x
1

(
xl. 0

.

GM2 a lk
x1 - x .14 d F0(x1:- xo)

.

M (kI . xo) .

. x.1
4? 'x0..

What'quantitylies betweemthem?NOt.,helpfui? Well, trywa change of ei-

phasp:: We rewrite the right-hand sideS of these equations;

((k

'c3.--
-GMM,.-7,71--

..xi

.

!,., .

' Helpful? Try another change of:emPhasilal concantraa'.00

(Orowthe.diSsiMilarities).
.

..

[GMM(Xi .x0)] :-42
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:What lies between theM? Obviously something of the pattern

taits(xi .

to find a. .Y such that

.1: :1
2" < 'xl

The immediate problem is

", At this

fitness

"
stagebne:needs,luckanda keen'sense-bf.wnat is Appropriate, of the

of things.. Isn't the foilowiiig:a more aii7b, .i'brMulation?.,Find

1 1
- 2 <

glippose that is such 'a y, then

<: and 7 <
x
1

y y x
7

2.
y < xi and 0.<

and .Consequently, since we are dealing with positive quantities,

111

i.e..,

Y <:x and

These steps are reversible,

also meets all the former c

Can we find Such.a' y?

4

and the abundant occurrence

introducing x .and,
0 1"

by x., we ha-ge

5'9

(37)

so,that. any y satisfying the latter Condition.

Onditions.

We do'knoW

X , X
0 1

of squares does (whether helpful or not, suggest.`

Multiplying .this inequality firstAy: x0, second

.17

- x0..,x(A
.

.<'X'*4
k,) v. 1 1

or.e2 = 4c0)i1 meets our. rkulteMent

.

x,x, iasUchlallat

.k0X1
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such.- that, with .a peculiar emphasis on

,such ' :that

Of course. We can deal:Jilththe sequential items similarly. The pa tern'
is obviona.. -P11;to1d, we have,'

< GMm( -
,Rr

, 1

t
Note how, neatly all the- iris other hazi the f1,i.st of the fire difference,.

(and the latit of the last difference canceled out We are luckier-than we

knew.

V.112.01.011 ( 38 ) gives our .:X: to complete the Method -itiemains to squeeze.
I :');14?.0 ..together. Since for sUfficivntlYarge :n, the dlifferenCe''''..,*

betWten the area of the inner, circumscribed and the oixtei4F,'circUmscribing
staircase of tila.Curve become arbitrarily small, by',(.38).we''have :

(1 i)
atm - area]-

41

:
loss .in `kinetic energy = work, done against gravity
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giving'

or
,.-

1 2 4

e(

.mv =H
2

1 2 1 I
guy (r" 11"

1/,'= 2gm -
.

.or.
"30

where v is the initial VelocitY for our rocket to.reach a point itrOuter

spaceAistance R from the Earth's center before being'pulled badk. Fbr

complete escape R. must .Fie 1
e infinitely large and = zero. So the escape

'Velocity' v 4s given by

.

C =F4
r

4.44451)
. - 1*;,.._

We have solved our problem," In salying it ente4liftelarilque

of, bUt ot the ideas basic 'to, integration. he old-faShioned
t

A.

way,:..,which really gdes right back to ArchiMedes. To compute the required area
. .,

we really needed tremendous luck; with integral. Calculus such problem's be

come: merely roUtine.:7randless.eXditing.. I hope you will present this method.
.a

to.Your.better students, it will pave the way forthe integral calculus. ...'

..

Coddentrate on the estatial concepts: ,area undef. a ourve,, zuccessively-bet
...., ...;,,.

ter approximations, sra ici. the siecifie,.lucky inequality. -'

.4.'"( Ratio of Escape and Orbital Velocities : 0,

.Which is greater, the go-awa7 or the go-arelund velocity? At the begihningl

of this settiort you were asked..to commit yourself to an opinion. We are now'
, ,

in a position toletermirie if. yOU.are right..

The'rgef-top .orbital.velocitY y is.given by

v =11777.

And ,'111 being-the massof-our rocket and M the mass

Lai! of Gravity,' (27), we have

(21)
.

of the. Sun, Joy Ntwton't
, .



,

so that

V

4 ,.

i.e., IP
/

w. 41 TT .42-- V.

i.PeAtlps 416i.is obvious that the go-away velocity is.greater than the go-around

great.,'NelAity, but it is not obvious that it is 14,imes as great.

I Ti;
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We have seen how Newton, Primar4 by relating the 4A.on otfailing

' apple, cannon ball, and the Moon to Kepler's Laws, was led tp his Law of

Universal Gravitation and Thetyof Dynamics. Ikre not theLtniks, Sputrilks,
4.

and Telstars vOyaging overhead a fitting memorial to, as well as a vindication

of, his genii's?.

a

4
0

130

a.
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Chapter 4 Physical Rfatoning in Mathematics

To. date, what. have.we done? First we discussed measurement, especially
1

w in astronomy; t

1.)

en simple butpervasive topics:culled from the' history of .

static, And finally; great discoveries from the history of dynazics--"s6

bany.of which hark back.to the stars...We haye seen something of the role
!

played by mathematics in the deveibpment of_science; thit the aim of physics
.

.1 .

is.:tbi,condense is knowledge into mathematical formulae;! that, As Galileo so
A N .

delightfully e rotted it, the.bbok of Nature is written.in mathematical

Characters.

Yet this view, although undeniable, is one -sided -. -or should 31 say uni-'

directiotal? Qf course mathematics :helps physics. , But You'must not suppose'

that help always flows downstream from.mathematics to physics; the river of

thQught is tidal. My object in this chapter'is to navigate an incoming tide,
. .

to show how,help flows also from .physics, to_mathematics.

My lecture-room navigation will not bereptoduced here as may upstream: .

voyage is already carefully charted in'my Mathematics and Plausible Reasoning,
.

Vol.1,.pp. 121 -167, to which the interested mariner is.directed. .
, .

of
Q
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Chapter 5 Differential Equations and'Their Use in Science

This; my last chapter, presupposes the rudiments of the: caldulus and aims.

to explain What it.is good tot. It is more. instructive to'showthan to say

what-itsuses are; saying, no matter how illuminating, cannot be a substitute'

forodoing:baccordingly, we begin with examples.

Section 1. First Examples.

00*
5.1.1 Rotating Fluid

One lump'of sugar, or two? Cream? We.have all observed .a lady taking

tea. What happens? The faster she stirs, the higher up the side of her cup

the tea climbs. If she stirs too fast.she spills, it and ruins an afternoon.

Her teacup contains a problem.for.her and a problem for us. Our problem is

amenable to mathematical treatment: What is the:Surface shape of the rotating

tea?

. First consider_a-motibnless liquid.- We have all seen a glass of water

when.no-ode iskicking the table. Its surface looks flat,. yet closer examina-

tion shows its surfade to be not entirely horizontal; it curls up ever so

slightly at the edges, due to surZacetension. For water substitute mercury'

and surface:tensign causes precisely the opposite effect, a curling down at

the edges. A phenomenon distinctly visible in a mercury barometer: ',See

ftg4 1(a) and 1(b).

Water

.

?'figure 1(3)

Mercury

Figure 1(b)

Dielicoint, Made sp many tlffies, is that Mathematics succeeds in dealing with

tangible reality by being conceptual.:We:,cannot cope with the full

complexity; we must idealize.- We neglect the minor circumstance of-surface

tension, we suppose the surface of a non-rotating fluid.tolie wholly in a

horizontal plane.

When a glass of liquid 10 rotated on a centrifugal machine, what. happens?-

Water is a oonvenient fluid and is more easilY.observed if colored. At the

center of the rotating glapsthewater is depressed,at,the circumference,.
.

eleVatecL: As the rate of rotation is ,increased the water rises higher towards
..

I. 8 2
k
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the rim.and sinks lower in the middle, forming a hollow. See Fig. 2.
U

A Y

Rotational Surface.

Static Surface
/

'
Axis of Rotation

oit

.eFigure 2
4

It

A cross section looks roughly as illustrateL With A brightly colored liquid

there is no problem to see what it looks like; the problem is to state what

it looks like, to give a mathematical deseriiption'of the:shape of the rotating

surface. '

A -eoo crude- description is to say that the surface shape is hemiellerical

-- a remark that introduces the notion of surface of revolution. If hemispheri-

cal, what would a cross section be? Yes, a semicircle, the same as any other

cross section; the surface generatli by rotation of a semiciple about its

central radius is a hemisphere. Similarly,the rotation of a circle aboUta.
--

diameter generates a:sphera. And, a mos-Cintel4sting case, what happens if

a circle is rotated about a line which'does not intersect it? An anchor ring,

*Wedding ring -- or to be technical rather than nautical or matrimonial

torus, _is generateC Torus is the Latin for ring. See F43. 3.

1 8r
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Ses4c,Yrcle
s

441e.re 1

'Fi
. 4,..

. ,. , .4% ;.;t: ..1

E li!eSince heljhere, 2rus,are a.:generated-by::groationrley,are
said,.;!aPfro priately; 14t::4OliiiS. of revolution ..

41f

aceS-At revolut T'44ernne surface revolution it obvious}
"--suffitnt to nieff. the .8hape: of iwip1:4ne cure

, .

vt4C4,is rotat and its post-
tton.r is 3u oot:11S .
.... .ithe rotatr i rurface ;of pp the ffe; nt:45arbs

:- ;-*-
the sui c :paAjotii4-fiked 'gate .therev.40..;nO.42dd;t4derni:b ge _shape,'

nor ST6 Reason suggest :tine

surface ;b17 . the::curKed
:..`"`

ty, ,vboundays,.yr.:q'. :any crops ;section through aicip !drcis .
of trace'. out new :Scajdal they '.iretracet:ilig- saMe .

deternlide4biie. cdrof the rcratink4.:;quid its AS suitiCient Etb:elet the
getmAr.y. . of -any c seitbion.:4:iii a plane t awaxis of ation.

Tech Lally, ;the sinfadAgenerati.Q.;.t
. r

cross section is said to -bie'the meridian f the s term, when frUllY

understood; is helPful. as 'well as s144ggyealed
its origin. Th Latin eridies (mecliUP:. ddle dies, day.Viti4 became '4),

French midi me p:.noOni .thepecgre' Y:;nal'e:'-hoon at tieaamikiiie.'1Are on

a noon curves or nieridfsn. 'San Frangiscans ,t)3 SetOtelitis whatel,fer
4..
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they call ,themselVeS -= have the Sim at , 'b'' zenith, .twelve o'clock Oon:..abla.r. ,

time; at the same time ,Ney Yorkers .haver the 'Sim highest in the 'sky some, three
hOura, earlieri. they\ liVe on a different meridian. A meridian is any great:
circle connec 'g North and South Pdles,, a curve that, .f. rottated.,2 geneilfitez .

the Earth's s erical, surface. Thus, our usage of meridian. ' 't. ..''f'. .',. +....''
I....,'' ,,

The oupsno-t: our 'problem becomes' that of finding the equation of.''tfial.!-;.;.f..
1.

;~}'meridian. How are we,,to. do this?' Yes, we begin by introducing a -reptangu,,lar e.
. . . . . . .

. s
I coordinate sy. gtem. And, Where. are : we to put. the axes of coordinate's ? It- 491'! t?'

natura0l to make the y -axis :the (vertical) axis of rotation. Consequent*`-,:,ttle .

J.° x=axis will be horizontal:. And what aboUt the 'origin 0? There remaina,poMe

;choice. Foreseeing that, the, axia-,,of rotation goes through the enter Of'Aiiii'i = V ,

holloit; it would. appear Convenient' to make 0 thlil.P central poin-ti' .Yet!,oi35erve:4
.,.. A.,-.... , ,. ... ...,.

'... ' ;that ItiltehoUgh we are,-,free to put the y-axisN,,anywhev 'we .please and Etre tpee,h.

v ofi '. 1 ;.- . +, ,,. ':' ,A.-,
.., .,......

t
4: /to put d .., anyw.he re on 'the y=axis we please, he two. .R eedoms aie..,;not;),>,, p.-. to

speak, .equally free.' N riot unnatural alternat %re chti '4e for' 0, ' ta:....t.h:e, pi?
4, 40. 1 df intersection of. the arils, of rotation with theRriginalt.liorizOrital.:.surface.

, Or, the liquid. 3ut what 1.V.) an altrnative.. for they,y-axis? ,TrUei'We',cOyl,c1 t i
41,

. , ...
,.1 e , .1 . iv :

map it t edge,edge, of our contper, but,as this a gerivine aldrriatiye?
D

I ..i"t,,.real4/...please.:4s 7 Aitholighci gida. possible, it iis physiVally abhOrrer'it.
.5 1he reader who fikdstthis 'point ' arptch+d. lacks feellnEZcfo;,What is p si-1 ., -... ,.,' ^ -.' '. . . , -

:ic4Eil it lorta e We insezt :'sect ngu,Sr axes . as _illustrated in g. 2.
:' . .'i,t . ' - , o'.' . Our prcible as become ev nmore spacigie :. to.'iltInd:-th61 equati0i,of' the

.i.,4# *-,,. ,'. ..-:':.' 2., ..: 4.. I. - ,,,tikrP,;7.,1: .1-...

meridian itt lative.to the ..a.xes bf coordinates. While this g7 -ktijozir iithaediate
-,..

. tiintpre,st let Tustplos 'ight oeletur /reipter ambition. ' Remem ,ar that these
,

' t, ____, 7 .q:, . ^ . ; . ...;;;,,
Jectuies .8.476 eritittled "MleheMatical Methods' in Sdleetilee:4.-pur MajOr la is to

a - .1 .. .... #;.,/-5,%02'.2.:;", '' "o',.-7.,,,,"; 1.
learn tb/ to apply mathematics to physics.. 'Yet wtfet0e,:reilec-t pialt there is

,-to eldto tibia lik of p sical pro am able toi Inathematical;treatment *
we shudder at th t able prospect of 'constidtring*thed ;one. 11 14one. But

Pr g k

surely we catnnot d. up. ur itinerary by deaiing with them two; p.t a time?
1% 48ui-ej_y we can do proel^ly only one thing at"aiktiiiie2 Hotr are Aiefto escape the

4... :. . t'
horns ofhtspis dilemma? ThjoyonS4Fering typice.4. prlerai.:- Ana 'what is a typical
probleta? A II It, 17typieal Iry -so far 'as the,,Athod for itst solution will,
, . , -4- ''. S.% ' :-' ' '.- '' .. "1.."

. with itilti,te o olabdificat-ion-,,. :prix effect: solution of many other problems.
In intelligthytlytoolving a s'pcifid prOblem4, we, in Air4ciiple, solve 'the other

. 4.,

Problems 'whieh iitt,typlifils4 Although we enter but ont -solution to one problem
'in our exercise !book, if fully,,understan hat we are doing it is , s if

. the follong. page? tgtad ,entrieS i visible k 'of more or less similar solu-
I , .

lions to more br similar pro ms. To fully.,,priderstand the 'problem VI
its wider context is to- see Iltpe iting in coiorless ink glow as a neon sign.

S30 7

.4
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1,h ;addition to solving the,pioblem of the rotating flUid we wish to see

it in a wider context, to see it, as an application of "Mathematical. Methods in

Science ". Typically, there are three phases. The first is entirely pr almost

entirely a Matter of physics; the thirdi a matter O. matheMatics; and the inter-,

'mediate phase, a transition from physics, to mathematics. The First phase is

the formulation of .a physical hypothesis or conjecture;, the second, its trans-

lation' int0 equationsrthe third, their solution. Each phase calls for a

different kind of work and demands a different attitude. To exemplify and to

,,amplify these remarkswe continue with tour problem.

The'Physical These

What are we to find? The equation of the meridian, whose rota.dkon gener-

ates the required surface of revolution. That much is clear. But what is to

: be our starting point? What are the data? This would be an appropriate ques-.

tion if we were dealing with a wholly mathematical textbook problem41thysics
i"

is not,so easy. Physics does not.give; we only get what we take.

.What are we going to take? It seems natural to begin by noting that what-

ever the shape of the meridian 4t continues to maintain that shape. That is

to say that every particle of it is in "dynamic equilibrium". Thereisno.

movement of a particle up 6r doWn the curve over its neighbors; whatever the

forces acting in it:, they remain invariable. And if they were different?'

With other constant forces supposedly the meridian would have a diff rent

shape. The meridian has such-and-such a.shape because the point ma s at (x,y)

. on it is subjected to such-and-such forces The shape is cohditional on the.,

forces. To deduce the shape we must specify the condition.- The usual mathe-

matical problem is of the form: Given A, find B;, or,,find B. conditional

upon A. Here, we have to find the appropriate condition. A. This, is the

physical phase.

Condition A, when found, is necessarily of .a conjectural or hypothetical'

nature.. This, especially if you already know a little hydrodynamics, may seem

to be an astonishing thing to say.:::But we can never be absolutely certain
t

that ,we have taken all the relevant factors -- even those sufficient for a

good first approximation to the truth -- into account. It is; for example,

pure supposition on our part that surface tension does not become a'dritical

factor at high velocities. Having thought of this point we can of'dourse test

it_; what we cannot.. do is allow for factors of which we are unaware ;. And have

we not'spoken of a "particle of liquid"? Is this a figure of speech, or ors

ia liquid actually consist of particles? If so, would you recognize on ti you
.

saw it? Or is it, that imagined particles area convenient auxiliaryirthe

golution of physical problems? Although it ijnot oUr:purpose here to'inquire

410 I 8 6 .-..1).

. 4
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into the ultimate constitution of matter,, these questions do serve to indicate

.''. that familiarity Nifty& terminology makes it all too eaSy to equate fancy with

fact. 'Whatever conditice,A, ,i-t is in principle conjectural.
,

-. So much fdr

4
e nature of,.cpndition,.A. Our-immediate problem is to

'specify this cok iOn. Possibly a step,in the rightAirection is to' inquire

why (neglecting4krt!ce tension) the surface of a non-rotating*liquid remains
..e

flat. There Is no tend y for a particle to creep-over its neighboring sur-

face particles. We infer that R, the resultant of the various forces which

act on it due to:thelpressures of the contiguous parts of the fluid, must be .

perpendicular to the surface -- it must be perpendicul. o the horizontal .

surface of the fluid at rest to counteract the Vertigrayitational force

acting, on the particle. But will .R still be perpendicUlarto the surface

when the liquid is rotated with unifbrm angular velocity? We know that if

velocity is kept uniform the surface remains invariant; there is no tendency

for a particle to creep up or down the meridian over its. neighbors. Despite /

the liqVidts, rotation the particles remain stationary relative to one another;.

the 'configUration of the surrounding particles is unchanged. So doesn't it
,

. .

seem reasonable to suppose.thatR remains perpendicular to.thesu:i'face? .

What other forces act on a particle P of the meridian besides, R? Yes,.
e

gravity. And since the particle rotates with uniform circular motion it must

. have a centripetal acceleration. What provides this acceleration? See Fig. 4,

Figure 4,



Thus we arrive at the. desired Condition A:. that the.centripetaorWacting

on a.particle of therietidian is the resultant of gtavity and0Oitce R (due

to the ptessuresof the contiguous fluid) aCting. Pet'pendiCula4r.Othesurface

of the'fluid. We conjecture that the shape Of the meridian is, determined by,

or as conditional upon, A. TIO.s completes the first, the physical PhaSe.

The Transition from,Physics to Mathematics'

Provided theOilie,igord translation is underitood in a wide sense, the
a

second phase may.%bedesdribed.aS atranslationof the physical, hypothesis dis-

covered in thefirshaiWiqci.mathematics. Characteristically, the statement.
' -,.

of the former, is mainly'verbal,'that of. the latter mainly symbolic.. If, however,

the inveStigatot's problem lies within a field of hi ecial competence, he

may 'immediatply. Write down the pertinent m4thematica. tions and conditions.

In this event it would appear,'75riMa facie, thathisrprocedAre has nofirst

physical phase SuCh is not the base:. facility has enabled him to handle both

phases simultaneously. .

Our transition..:ctet m be the mass and v the uniform cincular velocity

of the particle P at the point (x,y) on the meridian. What is :the distance

of. P from its axis of rotation? Yes, its abscissa. x. Consequently, since
v2

its circular.motion is uniform its centripetal acceleration is --. And since

force =. mass x vceleration
2

mv-
the centripetal fOrce exerted on is and the gravitational fotce is

x

mg. Thus, in addition to the directions of all three fotces acting at P being

depicted by Fig. 4, we know:the magnitudes Of two of them. Moreover, by ,Condi-

tion A, the centripetal force is the resultant of the other two: So, to depict

the relations between these thtee forces we need merely, complete the parallelo-

gram of. which a horizontal line from P (fich rePreseites the centripetal

181

force) is a diagonal and a vertical line film. P .(which represents the gravi-

tational fotce) is a side*It 4's sufficient to remark that pc -*1st be parallel

and.equal to .B. We have FYg. 5.
4
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What next? Our physical hypothesis is that the shape of the meridian is
44

--conditional.upon-Condition A,' conditional upon the situation depicted in,Fig, 5.

.Howare.we to deduce the equation of the meridian from the depicted circum-

stances. of. PI .It is at least'clearhat we must. 'make use of the geometry of

this figure and take into opcountthe.coordinates of P. _But, of the relevant
2 .

items and mg) only one contains x and neither contains y: Perhaps'
x

0 we should console ourselves with:the thought that half ,aloaf is better than.no
mm2

bread. Whatever 'our disconsolations,.we must, utilite the item for other-.

wise we have no'prospect of incorporating x in anequation. Yet on'second

thought this.a.atot a happy prospect, for with. x 'comes' M. :tWwouldtemost

embarrassing if the shape of the. curve should prove to depend. upon the mass oft

its particles. Ebbarrassinghecause mass will depend upon and our

supposition is that P's 'dimensions are negligible. So? While hanging on to

-x we must get rid of m.

How are we to elithinate' m? Take another look at Fig. 5. Consider .4ABP,.

MV.2
The ratio of to Mg Is independent .m. Doesn't this suggeSt that the

tangent or cotangent of angle A .ought to be,of interest to us? Or, the oppo-

site.angles.of a parallelogram being equal, angle C? Tangent ofan angle?

. Wait.a minute, Why, or course. We have neglected an important part of Condi-

tion A: that R is perpendicular to the meridian, that R is perpendicular

to the tangent at. P. .

Let us reintroduce the neglected tangent line of Fig. 4. At the sometime,

since we are at:liberty to select an scale we pleasefor the perallelogroMof.-,.

g forces, At:is convenifnt although not essential to have B (and consequently
,

C) orOhe,y-axis. We consider Tig. 6.

189



. Let the tangent to.ihe meridi&n at P cut the x -axis at an angieT!(T'is the

Greek, T-and T isjor ;Tangent and meet the y -axis at Q, : and lat 0Q,10,

.b-e-let4,11PI to .Ox. It foilows that LSQP = T. .Since A.S. 11' ox; A5 .i8;
*.

perpendicUlai-to the y-axiS, and therefore Z,SQP is the complement of Z.PQC:'

And considering'. AQ,PC, since PC _1:q, LC 11 also the complement of L
..

..

;?

. . .

It .follows that zfC = 7... But, ,:

1 y2
.
tan C = tan;T =

x
=

mg xg

1,..

.

tan =

. Partial success. We hive an equation involving ;x.

so that

Obviously we would like to -subStitute'a function:of: x arid ,;6foi tan 7..

Can we? JuSt about the first thing we.leara in the differential..C4pUlus is

that the first deriYatiVe
dx
-1I is the slope of the tangent...at the pqtnt (X,y)'

to the curve y = f(x). And sirice,:i is the angle the tangent:iineki .Makes.
es

with the x!-axis tan r is its'slope.



') xg
The left-hand side of our equation now Contains' 3v, and yr even ff `not'.in the
straightforward way to4which we are accustomed, ii dealing with algebraic. for-
khae. Perhaps we should take comfort in the reflection that an unaccustomed
appearance is preferable to no Appearance at all

Other aspects of (2) also provide food. for thogght. It us suppoSe our,
selves to be looking down upon the rotating fluid from way up above they -axis:

.What do we:tieey,' Conceptually, We View the suiA'aCI,.. of revolution as hosts of
,particles rotating in circles concentric about (for the axis from directly
above appears as apoint): All the particles in the same horizonta.1, plane
revolve with the 'same velocityr but the higher the plane, the greater the
radius of rotation x and the greater the velocity v. In Other witids; 41t is
a funCtion of x. liktt what .is the real/1y remarkable featurei That any two
Particles on a meridian" continue to revolve with the Meridian.. They behave as'
if they were the tips of clock hands, that turn to 'keep pace with one another.
See Fig.' 7.

Z2T

\

Figure 7

"fr While; the one Partiole circles about' 0 from, P to P the other circles
1 1

abont 0 riota P P . The two particles rotate with the same angular Ile'2 2 ,

-
. -

And how '1O we 'measure angular velocity? A particle is said to have'angu--
-lar velocity w if it traverses an arc...stbtended by (.3. radians of a unit'
dj,c1,e in unit time!. We use the Greek letter t.D. ("Omega); as is customary in '

-Mese matters. The reader may reflect that sinCe-the accuracy of a clock
depende' upon the rates( of rotation Of Itilillands alid not their

1 9



Omega would, bean appropriate name for, a co tarty, manufacturing Chronometers. ;,

Let Us suppose that = 1, Op = x, and that the one particle trarels,

along are
1
P in unit time with angular velocitY, U3' While: the other travels

along 'arc P
2
P
2

with velocity v. It follows that .

arc P
1

P
1

' = w arc P P =
2.

.13ut; obvious to intuition -..- and by a theorem. of arc lengthS
_ ,

are proportional to:their radii.. Thus

so that

v. = w x. 3) .

It remains remark: that -since the clock hands- are syncrstronou; both particles

have the, same angular velocity,' so that the particle with *vcaicity v and

rotational radius x also has angular velocity'

Squaring (3), azi substituting in (>2) we have .t4"fis.t

2L= 2
x

F.,

dx xg

And ,what :are the implications this equation? With w constant (g beihg

constant, course-), increases or decreases as x increases or decreases;

for any steacV,rate of totatioh,"the surface of the fluid near the y-axis

flatter, that farther away, steeper. And note that f!or 'a given; cp is

increased; is increased. Thus (4)*, Aplies \that the faster the ladY stirs
, ,

her tea, the steeper the sides of the giollow obecdme. g' does' itOt stir,

= 0 the slopeis' norLontai and the surface fl t. Thase implidations

in accordance with the obvious :f!acts; they -afford unds for accepting (4> as

a correct .xnatheniatical° Statement of the condition 'upo which the shape of the

meridian, depends . But according to (4-.) the shape of e meridian 'is also 7.*

dependfrot upOn ;,;

g. It implies that-, if g were reduced o one-sixth its

terrestial vs.14.1e the meridian would become six times as s eep. Although we dip

.
not yet take afternoon tea on the MoohT and an appreciable c ange-T ih g, is

,outside our common experience, we ave..no reason to suppose at tea is "not".
.,

more readily spilt at Dinar tga &ties ..-, ;Our ground are suds tial, not

conclusive. We, are disposed to accept (4) as corre4''
..-- - \.. 9

Rirthermore, , we can apply the dimensioha test .:,, is help 1 to t'hirak of,
1 I ' .

! the: various entities in terms of units in which ther:,COuld be me aiLted*. We
, .

rNNS
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take centimeter and second 'as the units of length and time; mass is not in

volved. And do remember that anglilar velocity is measured in radians per

unit time. Since a radian is an angle which subtends unit arcon a,unit circle),

it, as slope, is the ratio of two lengths; its dimensions are zero.

cm
L

L
.= tan. r = slope =

cm
= = LO =-1

dx

so that the left-hand side of (4) has zero dimensions.

so that

x = cm = L.

radian I -1 -1 2 -2
w - - sec =T ;w= T

sec sec

g = acceleration =
cm

2 2
LT

-2

sec

x L T.:2 1
g

T
-2

qo

Itichecks. We accept (4) ab correct.

Our final,mathematical statement, spelled out in full, if1 that the genera-

ting meridian of a fluid that rotates with angular velocity w in a gravita-

tional field g is such that any point (x,y..) of the meridian satisfies the

condition . 0

1Y =
2

w x
dx (4)

This completes the second phase.

Oh yes, we have been a long time arriving at this statement. 101 we

were not told to use the notion' of meridian; we were not told to think of a

liquid as a conglomeration of point mass particles; we were not given the an-
;

gular velocity; we were not given the gravitational field. All these things

We had to,take for ourselves. The problem was to decide what to take. If an

investigator is clear about-their 'relevance at tha outset, his work is routine;

he does not have w problem.

The Mathematical Phase

The final phase is essentially mathematical: to deduce the equation of

the meridiah curve from

(.0
2
x

dx g
(4)

The novelty of this equation as opposed to our familiar algebraic equations

is that it contains the differential coefficient For this reason mathe-

maticians term it a'dfiTerential equation. We-have reached the p:inciple-

topic of this chapter.



The reader may anticipate that since
dx1dY.-

may alternatively be to red

first derivative, (4) may alternatively be termed derivative equation. This

is never done. The latter terminology would invite confusion for all quations

are in a .sende derivative 7-from the given, or, as here, the taken.

former is firmly indicative that the differential calculus is involves. But,

with equal propriety,

d
2
y y

dx
2

x
2

is, for example, to be termed a differential equation. This equat on contains"

a second derivative whereas (4) contains no derivative of higher rderthan ,

the first. It turns out that the order of the highest derivativ= involved has

an important bearing on the solution of the equation: According y, distinction

is made: (4) is said to be a first=order differential equation the succelking

example, second order. /

Differential equations of the first order are indidated s hemati y by .

F(x, y,)
121'

(5")

This exhibits that the ingredients are the independ varia e x, the depend-

ent variable y, and the first derivative bf with respect to x. The F

is to emphasize that there is a functidnal ation between here ingredients..

'Note that from (4) by iransposition,,we ave

ii 2
.d w x
vv

1 an especially simple case-of/ ), for we have no ingredient y. ,Unfortunately -

//
.

there is no general/Metho./of
/

solution of differential equations of all orders;
!

nor even a gener Met,..d for just those of the first order.. It is convenient

to classifylassify the
,/

lat.,-
,/
r according to the methods to which their solutions are

//
amenable.°/(4) i/readily solved by the method of separation of the variables.

(This explain why I chose to introduce the topic of differential equations
/ .

via hie pr em of a rotating fluid.).

g
0;

rat on of the Variables

e firs derivative; the'result of the differentiation of y with respect

x, was written by Leibnitz in the form

dX

(other notations are yt, y, Dy, Dz). LeibnitZls notation deserves some

comment's; because it is both extremely useful and dangerous.

Tbaay, as the concepts of limit...and derivative are sufficiently clarified,

9
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the use of e notation' E need not be dangerous. Yet, the situation was

diffe3prA in the 150 years between the discovery of the calculus by Newton and

do of two "infinitely small quantities", of the "infinitesimals" dy and

dx. Such consideration was helpful: it greatly facilitated the systematiza-

tion

and the times of iauchy. ,The derivative was considered as the

ti

tion of the rules of the calculus and gave intuitive peening to its formulas.
.

Yet this consideration wash also obscure -- so obscure and nebulous, in fact,

that it brought mathemati s into disrepute: some of the best minds of the age,

such as the philosopher Brkeley, complained that the calculus is incompre-

hensible.

It, should be clear today that ccis the limit of a ratio and emphati-

cally not the ratio of dy to dx: the full symbol :has a clearly defined

meaning,'but the best is toqconsider its parts dy and dx as devoid of

meaning: the word WORD has a.meaning, but its parts WO and RD have none.

,once we Piave realized this sufficiently clearly, we may, under certain

circumstances, treat U so as if 'it were a ratio: adults anti experts may do
dx

things that children or begihners should not do. For instance we may conven-

iently.recollect the geortric meaning of as slope of the angent'to the

-curve in considering the\"ir.finitesimal" right triangle with hor ontal leg dx

and vertical leg dy. Se Fig. 8.

Figure 8

We may do so if we take such consideration just as a colloqUial'but short
)

(althoQgh somewhat sloppy) expression for a limiting 1!.rocess which, we have once
.

carefully' considered and could reproduce if needed. ,

.

Trusting the wisdom of Leibnitz's notation, we treet' as if it were

a ratio and multiply (4) by dx to achieve separation of the variables. We

get

2.
dy = g xdx.

The left-hand side does not now contain 3c,,, nor the ri y; we can inte-

grate immediately: , /
1.9z,
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jimay,9, . xdx.

And si e a constant factor is not affected by integration

fiy = 92- Fix.'
g

2

differentiate to get x? Yes, 2x2. So,?not forgetting the

definite ;integration,, we have '

a
2

1'2-
y = x + C

or

a
2

2
y 1.7g- x + (8)'

:1
, %

By asligning different numerical values to C we obtain different' curves.

Which c 4 the required 'meridian? Becall that we selected our axes such

that thel, in 0 is at the bottom of'the/hollow, i.e., such that y =

when x This is.termed an initial a boundary condition._ These terms

are. used beuse the condition determines the position of the point at which

the meridian is initiated or by which the,meridian is bounded.

Although our problem 4 not determined by the differential equation alone,

establishing this equation is the major, more responsible work. To obtaintit-

we had to probe a complex physical situation to conjecture what we termed the

Condition A. To the contrary, the initial condition'isobvicts and somewhat

arbitrary. Equation (8) bears testimony that the horizontal plane in which we,

select our x-axis is a matter of merely notational convenience. As,remarked

ranch earlier, our choice, unlike that oe the y-axis being the axis of rotation)

hhs'no physical significance.
7

. Applying the initial condition, y = 0 whenhen x = 0, to (8), we obtain
2

=
2
a)
g

0 + C

so that

and

C = 0

2
2y = rg x .

The meridian is a parabola; the surface, a paraboloid of revolution. We have.

solved our problem.

7.1.2 Galileo: 'Free Fall

Our second illustration of the use of differential equations is conven-

iently provided by Galileo's problem of free fall:

We introduce a vertical x -axis whose positive direction is downwards and
_ I

suppose a heavy particle to be let fall'from the origin 0, x = O. As we let

the particle fall we start our stop watch, t = O. 'Thus the motion is subject

1 9
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. -

to theinitial condition that v = 0 and x = 0 when t = O. How fa /, t

seconds later, will Uhe falling particle be below 0?, Obviously it Can be only

in one place at a time and so long as it)continues to fall, it will be in
5

.different places at different times. Where depends on when; x is function

of t, x = f(t). Our problem is 'to specify the function, f(t). See Fig. 9.

1

( = o , t = )

Figure 9

Aristotle, among others, notedthgt the farther,a body falls, the faster

it falls. Galileo, we recall, was 1116istent upon beirrg more specific and first

made the very natural conjecture that the acquired velocity v is proportional.

to the distance fallen x. That is, ghat

.s (9)

where c is a constant independent of EarIier4 we remarked that Galileo

eventually came to.the conclusion that this conjecture ig not merely wrong but

logically, absurd. But as he. had no calctl he was unable to make his argu-

ment sufficiently articulate to convince otherS, although'doubtlessly clear

enough in his own mind to convince himself. Here is opportunity to,present

the calculus version.

Since the instantaneous velocity v is given

v =
dx
dt

substituting -(10) in (9), we obtain the first-order differential Ntiatibn

dt

cbt
= cx.

Again, trusting Leibnitz's wisdom, we,treat the derivative as aratio.

plying by dboi we have

. dx = cx dt.

But birds of a feather shOuld flock together. We divide by

dx
= c dt.

The variables are *rip./ separated. It remains to integrat .

13
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rldx = ciat, .r

x

And w ki a do we differentiate 'to obtain
1

? Yes , abg x. So
e

logex = ct +

where k s the arbitrary constani of indefinite

a formula.for x, not loge.x. It is at this

'that by definition of logarithm the equations

. 10442 = Ct. 3 103,
% -w..._ 4 o

are equivalent. With "'x. instead of 2,
.

you can do it for yourselves. We.get

t''',: , ' ct+k

111 .

the initial conditions, lien t = 0, x =:
.

I 4..
,

c0+k k ".

-I-

But, by

:
integration. But we want

stage, convenient to remember

2 = 100.30103 .

instead of 10,

111.

k 0,

is positive

3sh}1s ek is

proportional

SO

. Yes,',

e ' Is cleaily positi*. .k < 0, say equal: to

k' -k' 1 -1
- positive.

e,

rcessari..4pgsitive.`0.In short: if the free-fall velocity is

where 10

to° the dj.splacement, .then

re°

0 = a positive number.,

This., as Euclid would say, is absurd. Therefore free-fall velocity it be

..rproporeional to displacement.

Again we have a problem resolved by a differential equation with ini-

tial condition. Despite being effected by such a simple separation- of thp

variables it is histprically important. We are apt toksuppose that all unten-
a A

able phyeical theories are eventually refuted by experiment. This one was

defeated by logic: we have proV d ?hat it is oinconSistent:

1:Galileo's second though s conjectured that the velocity acquired is

litoporhional to the time tai en to acquire it. That is, that

v = gt

where' g is S. constant ind6pendent of t.

(
Now substitift4g (10); in.' (11) instead of (9) f. we have

We

r
-'dx

separate the variables by multi3plyinOoy dt

dx = gt 198

11.

(n)

.

o .,
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It remains to integrate

We get,

And since initially

so that.,

and

I

f dx = gft` dt

x = 0 when

1 _,_2
. x

t = 0

0
. 1
= -2-g

+

0 + c

C'=

1 2
DC =

This is a useful proposition of physics. Reflection urn the contrast

between its derivation here and Galileo's (cf. Number 3.1.3) is r;Warding. By

effecting solutions without having to think what we'are really doing we gain a

lot -- and can lose 4e. lot .

7.1.3 Catenary

Catenary is derived from the Latin catena meaning chain, and is used as

a technical term. for the curve formed b5y.a uniform chain hanging freely from

two points not in'the Same vertical line. Our problem is,to speciti the shape

of the catenary: to determine its equation. With one point'of support verti-

daily below the other there is no catenary and no problem; the shape is obvious.

When I was.young the well-situated gentleman was wont to indicate his

. opulence --.not to mention emphasis.of his corpulence -- by sporting a ,golden.

watch chain across a wide expanse of waistcoat. But even if golden chains

andwaistcoats were still. with us this would not be sufficient reason to consi-

der the catenary.{ In]his technological age, suspension bridges, telegraph

wires, and high-tension cables display some important catenaries. Unless the

,strength of steel has recently been increased it islstill the case that a

steel cable catenary six "miles long would break and ;its own weight. See

Fig. 10.

Figure 10

-- Horizontal
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Obviously the supports at A and At do much more than take the weight of

the cable. Recall the exertion needed to take up some of the "slack" of a

sagging clothes line. Many engineers spend much 'Of their working lives calcu-

lating tensio s in,wires and cab es, particularly the magnitude and direction

. of the/pulls at the points%of sup Ort. The effect of, contact with,a falling

high tension cable is apt tG'be permanent as well astinstantaneous.

Not allfreSly suspended wires hang in catenaries. The word chain in the

above definition is used to imply strength and flexibility. We think oe a

chain not rusted at the links. Ideally it does not stptch and is free to

swivel at its linkages; 'it is inextensible and offers no resistance to bending.

And the word uniform implies that it is made of homogeneous material,,'that its

weight per unit length is the same throughodt. The more nearly a suspended

wire, cable, or chain is flexible, inextensible, and homogeneous the closer

its shape approximates a catenary. .

We consider a perfect chaii suspended fr6m two supports in_the same hori-
.

ontal plane.' (The case where the supports are not in. the same,thbiizontal'
,

plane will be considered subsequently.) DOeS:it hang lopsidedly? If so,

to which support is the erbottom of the curve nearer? The left or the right?

Yes, we have encountered the Law of Sufficient Reason before. It will hang

aymnietrically with respect to the-vertical equidistant between its supports.
, .

It is n ural -to take this vertical as,the y-axis. And the )axis? for

a rota ing fluid\it is tempting althbugh not essential to put it at t a bottrom

of the c

will beco

. I prefer to put it an aribitrary distance belowi, my rea

apparent later. We have the situation depicted'by Fig
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Our problem is to determine the equation of the catenary, y = f(x), relative
6-

to our selected rectangular coordinate axes.

The first', physical phase is difficult. Although it is clear what we are

to find, what we are to take as given is far from evident. Rereading the

definition of catenary we note that the chain is uniform. We take this to im-

ply that it is made of homogeneous material, so that it has constant weight
.

perunit volume. Yet on second thoughts,uniform chain implies more than

this: a chain with he;ty links at one end and slender ones at the other, or

a cable thick at one ena and thin at the other, would not be'described as
..,

uniform even if Iside of homogeneous material. Additionally; it implies uniform.

cross section: every part of the chain has the same weight per unit length.'

Idealized, with cross section shrinking until the chain becomes a line, this'

11,
'amounts to saying that.it s constant linear density. As is customary we

take this density to be )-. 6 is the Greek L and L stands for Lenith')
.

0
' Is this sufficient, or do we need provide ourselves with additional data?

If a chain has linear density ?, it has it no matter what its pape. It

would still have this density while being cracked like a(rip. But it is not.

being cracked like a whip; it isrL't moving at all: it is in equilibrium. We

conjecture that the condition that a chain has density T, and is in equilib-

rium is sufficient to determineits.shape. Or, not to do violence to the

English language, we may reformulate oursproblem: Given that a perfect chain

of density A is -in. equilibrium,, find its shape. It is of course understood

that the answer is to be given relative to our selected coordinhte system.

The second, transitional phase is the translation of our conjectured

condition,'equilibrium, into mathematics. We anticipate ending up with a

'differential equation with.an initial condition.

Unwind sem cotton from a cotton reel and pull. The unwound cotton is
.

tangential'to the reel, isn't-it? Unwind some very heavy cable from a drum

and pull. The unwound cable need not be tangential; its resistance to bending

noisy be'too much for Your strvigth. A perfect chain is perfectly flexible. We

conclude that the tension in the chain iseverywhere tangential to it.

Partial corroboration of this conclusion is given by consideration of the

';forces acting at B, the bottom of the curvy. The crux of the matter is that

B is symmetrically placed with respect to the left- and right-hand portions

Of the curve, so that no matter what4orces are exerted on it by the one .

portion,,, symmetrically. identigal forces are exerted on it by the other. Since

if, 'stands for. Horizontal and V for Vertical let us suppOse H to be the ,

horizontal and V the'vertical ( rd) component of the pull exerted on B

by either portion. See Fi,g. 12.

9!)
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Figure 12

The sYmmetry is such the horizontal components H are equal but opposite;

eaah annuls the effect of the other.,.Contrariwise, the symmetry is such that

thd ve ?ical components V have a resultant 2V. For equilibrium 2V

must be annulled by the weight of the particle at B. What. is its weight?

Since.the chain weighs. T per unit length, the smaller the length of the

particle, the less its yeight. But isn't it singularly odd to speak of the

length of a particle? Arbitrarily short, it weighs arbitrarily little, so

that 2V, and consequently V, is,.arbitrarilY small. With an idealparticle
,

it follOws that V =.0; the only forde exerted by either portion ofthe chain

is horizontal.. But, the tangent at B is horizontal. We again conclude

that the tension at B is, tangential. If,you sever the chain at B, in

What direction must'you pull to maintain BA inoequilibrium? Surely your

muscles give you the same answer.

Progress has
gs,

been made: we are agreed thatif the chain is. in equilib-
,

rium,the tension is everywhere tangential to it.' Thus, in particular, the '

equilibrium of BA. is effected by a horizontal pull H at B and a pull

T (say) at A tangential to the-chain.. What other forces. act upon it?

Yes, only its weight. Each tiny portion of the chain is subjected by gravity

to a_downward:pull proportional to its length. Yet we do hot need consider

these forces individually, their combined effect is just as if the whole

weight W of the chain BA were concentrated' at a certain point"(somewhere

in the plane V, but not necessarily on, the chain)' And what is this point

called? Yes, theicenter of gravity. So BA may be regarded as in equilib-
.

riumunder the action of three forces, H T, and W. It follows that the

force 'W-must be equal and opposite to the resultant of the othdi- two, and

that the lines of action of these forces must be concurrent. ,Let them meet 1

2

)
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at C.

J

t.

is for Concurrent.)' See Fig. 13. .

v

\

Think about this situation. With a little thought it becomes

)

Figure 13

that we are now abl'to describe the shape'of the curve. Our description is:

no.matter where.the point A()t,y) maybe, the equationof BA is such that

the line through the center of.gravity of BA, parallel to the y-antis, p4sses

thrdugh' C, the pOint of intersection of the tangent at A and the line
4 ' -

through B'perpendicularto the y; axis. Can we obtain a differential equation,
.

rrom this? Not very inviting, is it? Well; perhaps there is a, more-amenable

.descripti5n. Let's try again.

Instead-of starting from thefact that the lines of acttan of H, T,

and W are concurrent, let us begin with the fact, that these three forces

are in equilibrium. Alt follows that lines representing them in mapitude as

well as dir&ction will form a closed vector triangle. Consider Fig. 142

r
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. As in our firs example, taking _r to 'be the angle made by the tangent line

with the x- axis, we have immediately that

And again using

. .

we.obtain

tan r =
H

= tan r
dx

.1Y (11P
dx. H

Is (12) a differential equation? The snag is that although H is con-
,

start, W. is not. W' depends upon the length s of the chain from 41A. to

A(x,y)

W = T (13)

Our next task is to relate s to the coordinates Of The required formula

is..a textbook commonplace, but perhaps you have forgotten it. Just in base,

I shall derive 4.t for you. my method will be the "ning7to-one method. NO,

no; I do not mean it take me four hours; I mean that I shall use nine

parts intuition to-one part logic..

Consider Figs. 15(a), 15(b).
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Figure 15(a) Figure 15(b),

As P moves along the curve towards 0 the slope of the secant OP more

closely approximates to that of the tangent line OQ.

Lim D (y):
,noc x

x-o0

It is tempting to us as to. Newton to describe Dx(y) as the ultimate ratio --

thereby covering up a multitude of logical sins -- and to join Leibnitz in

writing it as 11 (viz., dy, divided by dx). The notation
dxn

Lim =
dx

X-0-0

aids and abets intuition. Both notation and diagrams tempt us to assert that

when the secant reaches its limiting position, P coincides with Q,

becomes dx, ,6y becomes dy, and the straight line element 6.9 becomes ds,

the infinitesimal bit of the curve coincident with its tangent line. Let us

not resist temptation.

To find s, the,length of ,BA, we must evaluate fds from B to A,

Is, we observe, is the hypatenude of a (right) triangle with legs dx, dy.

Bringing PythagOras'to our assistance,

,2 ,2 ,2
(ds ) = (dx ) + (dy )

so that

11(d )2 +
(dy)2

ds = .(14)

This implies integrating 111(dx) + (dy)2 from B to A, but to write

1/ (dx)2 + (dy)2

205
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9.8 td demand integration with total disrespect to both x and y. Very rude.

Since x is the independent variable of the hard soyght y = f(x), our pre-

ference is to integrate with respect to x. We mu ,introduce a dx. From

(14)

199

L! t I! 41i.)2 r .1i
ds = (dx)2 ) 1. ' (dx)7 = 1 + (°11) dx.

'(dX)2 C 1r4\
dx

. In moving along the curve from B to A the abscissa. changes from 0 to x,

so.that

sj'A
2

=
B
ds =JO dx.

dx

We have the textbook, formula.

Substituting (15) in (13)

so that (12) becomes

x (d
2

W = 1 4- dx dx
JJo

-H 1
dx'dx 0

(Al)
dx

( 15 )

At long last we have a differential equation. Indeed we have much more than

we bargained for; certainly differential, it also contains an integral. Of

a higher, more formidable kind, respect for its exalted rank entitles it

integro-differential equation. Oh yes, the wonderful name does exist. And

behind the name there exists, even more impressive, a theory. A theory whose

intricacies we can happily escape by transforming (16) into a differential

equation of the more pedestrian non-integro kind. To do this we must review

a most important notion.

Instu ng Galileo's deliberations we were informally introduced to

the notion ol.the area under a curve as,the limit of an inner or outer stair-

case of rectangular steps. The shorter the tread (breadth of step) becomes,

the more snugly the staircase fits the curve, the more nearly coincident areas

under curve and staircase become. By making the tread sufficiently short (and

consequently, of course, the steps more numerous) the-difference between these

areas becomes arbitrarily small. This consideration Has led mathematicians

to agree to define the area under the curve y = O(x) from a to x, say

A(x), by

A(x)--- Lim /2 1)(x) 6.x. (17)

..x-.00 a

[The typical step has a rise (height,) 1)(x) and tread (breadth) 6,x and

consequently is a rectangle of area O(x) 6,x. It follows that the area under

206



200

the staircase is the sum of the areas of all such steps from EL-to x, i.e.,
fie

4X
2] 0(X) 6x.
a

The area under the curve is taken to be the limiting sum as the treads become

indefinitely short (and the steps more numerous).]

A ligical consequence is that

Lim 4?614 - 0(x) . ..

-60r40 64

The proof is difficult; it demandg a more formal introduction to limits tllan

given earlier. But fOrtunately Leibnitz's notation makes thls.,consequence

quite intuitive. For

(18)

Lim 2] 4(x) Ax he writes
4514e-00 a

.LA(xand for Lim -77."
)
- he writes

Ax-0

Thus the translation of (17), (18) gives:

x
if A(x) =1 0(x) 'dx

a

L/then Ix E - 0(x).d (19)

Let us consider these equations intuitively. See Figs. 16(a)4 16(b).

Figure 16(a) Figure 16(b)
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With the usual usage of the notation we suppose 64x) to be the incte-

. ment of area under the curve corresponding to an'increment of base Lx. Then,

clearly,

A(x) 0(x) 6.x

the approximation becoming the closer, the shorter .6x. Nbw it is intuitively

tempting to suppose that 'ultimately the treads Lx become so short that areas

under curve and staircase coincide exactly. Suppose this to happen and let

dx be the value of Lx for which it happens. Leitnitz terms dx the

differential of x. .Then dA(x) denotes the incremen of area under the

curve corresponding to an increment' Of base dx. But since areas under curve

and staircase are perfectly `coincident so are the areas of common base dx,

so that

dA(x) = 4)(x) dx

and

Ati.112 = 4)(x).
dx'

Also; intuitively, A(x) is the sum of the infinitely many steps, from a to

x, of which 4)(x) dx is typical,

A(x) 4)(x) dx.
Jxa

the elongated old-English S, is used for Sum in contradistinction to the
-7-

usual E, to emphasize that an infinite number of elements are involved.

So much for intuition. Let us apply (19) to (16). Instead of. A(x)

we have .2-X and instead e4 4)(x),
dx

+ ()
dx

2

Differentiating (16) with respect to x,

'd (dx)_ 2
dx dx H

d
2
y 71/
2 Ti 1 ± (dx )2

obc

1

(20)

2
AYThis equation contains and. =-4 but no derivative of higher order than
dx

dx

the second, so that it is a second -order differential equation and is charac-

terized (strictly speaking, after transposition) by the general pattern

F

2
'AY. ILY(x, y, d/ dx2
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.
And although choice of the x-axis was left open, we nevertheless have an ini gal

.
condition: at B, no matter what its ordinaie, the curve is horizontal.

When x = 0, oix= 0.

(20) is the conseqtence of a. physical conjecture. It ought to make se

noes it? Let. us apply tke. dimensions test. In an

that schematically

so that

.1Y
dx
also of

being of zero

d
g .

dx

4

dx

d(1) 1 1

dx cm

earlier application

s

se.

we d."

dimensions (a pure number), a bit of d IX isg.
dx'

zero dimensions (a

(dx) is a pure

clx)

/ \ 2

(20),, since

pure number). Considering the right-hand side of
2

number,
/

dx is a pure number, and so, conse-

quently, is And, schematically,

"linear density cm

gm

1

L'

H tension

So, 'the right-hand side also has dimensions

test.

Finally, for brevity, it is convenient

7\ 1

H a

where a is h length, so that (20) 'becomes

1 1-
CM L'

Our equation has passed its

to put

_2.-

'dX2 7 a
+

dx

2

(21)

This completes the second, transitional phase.

The third, mathematical phase is to solve (21). This equation is a very

.special case of the second order fdi. it Contains neithel' x nor y, just

the first derlVative and the derivative of the,first derivative. This very

'special feature enables us to do what can be done in' a fewore general,cases:

to reduce it. to a first-order differential equation. You can always try; you

will seldom succeed.

Let P =IX then

_ d (k) = dr 1 :22
dx

2 dx dx dx(p) -:dx

2 o

7



"and_ (21) is reduced to. the first-order equation

:12 = l'+ p2.
dx a

203

What are we to do next.? Separate the variables, of course.

1101.x.

a

77.
(22)

.

And what do we differentiate with respect to p to get
1

1 + p2

Yes, an answer you shouldAnOw by heart, loge(p + 1 + p2) We had.better

have a check-up for those with weak hearts:

4

d 1
_ ---(p 4.. v7.7.p2)

cT.p-

/ loge (P + li 1 + p2 1 dp
1174 p- 2

but

,=

('D +
1117:77 = +

:- , k + p2 )1/2

,) + 1(1 + p2)
1/2:)

1 -(1,+ p
2\

= 1 +

))1

1
+ p

2 \ -1/2
2p

dp 2

r + 41 + 13
2.

'

= 1 + (1 + 07112 t. p =.1 +---2----
117-P2 ,1 47

so that

Tp" 11°ge(13 C7P2

Consequently, (22) gives,

loge( +

_

477)

Using p = ,
dx

C,

1 + p 1 +p , /.

2\

loge1Y 1 + ( ) ) + C.
(dx dx

Using the initial condition that t = 0 when x = 0,

log
e

0 + 11-7477 = 2
a

+ C

logel = C

210
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so that

ReCalling that

(23) and obtain

Cr=

loge 1/1 + (i)!)
e dx dx '(23)

g 2 = 0.30103, 2 = 100
.30103

we analogously transform

xis
= e .

The next step is to get rid Qf the radical

1 + ()2- exia - ;IX

Squaring,

1 + (rx)

2
2x/a

-
2ex/a (2y)2

so that

giving finally

x/a,e2

dx
2e

2 (ex's -
-x/a)

dx

a first-order differential equation. Solve this and we havesffected the

solution of a second-order differential equation bysolving successively two

first - order, equations.,

Separating the variables, it remains to integrate

fdy 2 fe xia . A, 1
f (-e-xia )4x

/

Since the derivative of aexia is 'ex/a and the derivative of ae is
-x/a

-e
-x/a,

1 x/a 1 -x/a
y -ae + -ae + C .

2
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When X' = O,

1'. -O. 1 ,
k + e ) + CI . akl + 1) + C' = a + 0'.y = --a. e 2

. .
.

The simplest equation available to us is given by C1 = 0; -by taking y to -

be equal,to a when ,x =,0. Thus is most convenient to have the origin

a units below B, whereupon the equation of the catehary,'the shape of a

unife4m chain hanging freely; is

lexia + e-xitt)
y =

2
(24)

There remains one point to complete the solution: we have considered the

shape of a uniform chain 'hanging freely from two supports A-, A'. in the same

horizontal plane. What happens in an asymmetrical.case where A, A' are at

different levels and B no longer lies on an axis of symmetry?' If the curve

has a minimum point B, the bottom of a hollow, it still follows that H the .

tension at B is horizontal, so that the rest follows as before, despite

asymmetry.

There is an alternative argument which holds even if the chain is so

short that .it has no bottom -of-a-hollow point ''B. Consider gs. 17(a), 17(b).
9

Figure 17(a)

C

Figure 11(b)

Suppose the particle. of chain at C to be replaced by two adjacent subparts

at C, C'. These supports supply the tensions T which the particle at C

had supplied. Conbequentlithe.equilibrium and therefore the shape of curve

A'C and curve CBA are unchanged. Since C is an arbitrary point, (24)

covers all possible' cases.

7.1.4 Fall with Friction

There is some analogy between learning how to. solve problems of science

by mathematics and learning a foreign language: an analogy close enough to

merit remark.' Consider the English-speaking person who'decides to learn

French. At first, our would-be linguist has to do all his thinking in English;

having decided what he wishes to say, he has to wrestle with the problemof

21 0
4,



'2206

kl

translating his E6glish.into French. Later, with increased facility, he is

soften able to reply in French to a-question asked in French without, inter-
, -

.mediary translation of'the question into English Eih+d- his answer to kt into

French. Finally, given ability and erseverande, he seldom if ever needs to

fall back on his English; he thinks Ln French. Somewhat analogously, with

scientific problems, given mathematical facility, there is n9 need for prior

painstaking formulation in English of the physical condition; it,can be -ex-.

pressed in mathematical notation directly. 'Phases 1 and 2 may go forward,

as the animals went into the Ark, paired;°they need not march in single file.

Our next problem is to specify the motion of a body let fail from rest in

a resisting medium;' for example; that .of.a stone when air resistance is taken

into account. Let us7deal conjointly with a Leljecture of- physical condition

and its mathematical formulation; we have the facility.

We consider the fall of a particle of mass sm. To provide a convenient

frame of reference for our observations, we introduce an x-axis vertically

downwards such that the particle is let fall from the origin, when we start

our stop watch. Thus in addition to.the, initial condition,given by our:co-
-

ordinate system that x = 0 when t = 0, we also have, a physical condition,
dx-

= O. Obviously, the position of the falling particle is dependent upon thedt

time for which it has been falling; x depends upon t, x = f(t). Our

problem is to specify f(t). See 'Fig,

Iv

(o,o)
ddtx

' x
1

Figure 18

Our difficulty is to conjecture the condition upon which tile motion de-

pends. Since

mass X acceleration = force

a stone of mass m falling under gravity, without friction, satisfies the

condition

21 r)
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-2
d x ,

dt2

m

- What modification does aiplksiStance introduce? Not only is the In-oblem

difficUtt'for us,'It is by end. large an unsolved problem. Knowledge of

friction-has little theoretical foundation. However, we all know ap a matter

of crude observation that frictiorr;ppOSethSe:MOtion, So, if R' Is.the

frictional force oppos!ng.the motion of our particle m, we have

'd
2
x

m = mg R.

dt

On what does R depend? It'has been found experimentally that R in-

Creases as the velocity v of the falling bodY increases. The simple assump-

tion that R'is directly proportional to vCarns out to be too small an

estimate; the.assumption that R is proportional to, v
2

, too large. Althoufhi

wrong, the latter more closely fits the facts. Thus a better assuiption would

appear to be that R is proportional to v
a

IWhere 1 < a < 2. In consequence,

the'condition for the motion is
2
x

m = mg KV.
a

dt

where the constant of Proportionality K is positive. The best emPir%al

value of a is about 1.71. It is not theoretically conclusive.

To obtain a differential equation amenable to simple treatment we.shall

take a, to be 1. And since v = we have
dt'

Dividing by m

d2x dx
m

dt2
mg

K.
dt

-

d
2
x K dx

dt
2

= g
m dt

For brevity, we.put IS = k
'

a positive number, scOthat the condition for:the
m

/

motion is ")

d
2x

dx
g dt

dt2
I.

The physical conceptions involved suggest the substitutions

dx d
2
x d (Ix) dv

dt v'
dt

2 dt dt dt'vi

2l.

(25)



With these substitutioni (25) becomes

-dv
= g - kv.at

We have a.first order differential equation `that cries out for separation of

its variables. Separation gives
N .

And since

integrating,

17 (log.
Rg

r kv)= -k 1g kv

1
-

k
- log

e
(g - kv) = t + c

lOge(g kV) = -kt - kC.

Again c ling 1og102 = 0.30103, etc., we have

-
g - kv = e

kt-ke

so that transposing g and dividing hy -k, we get

ig 1 --ict-ke
v T e (26)

Using the initial condition v---dx = 0 when t = 0, (26) gives
dt

so that

and

1 -i0 -kC
k' rt. e

is 1 -kC.
7 cc e

g = e-kd

v = - e
g g -kt

.

k k

dx
But since --f- v, this becomes

dt

/

(12 a e-ict
dt k k.

(27)

(28)

Again wehave reduced a second -order differential equation to two consecutive!

first-order equations.' UnfortunatelY'this is.not always possible..

215



Separating the variable's in (28
4 .

fdx
-kt)dt

so that
-kt

t +

And by the initial condition..x = 0 when t = 0,

o o + z5 e-k° + C'

k

x t + e

so that

& -Ict

k
k
2

k
(29)

We have specified i(t); we have /a formUla for free fall with friction.

Doe8 it fit the facts? To check quantitatively is a matter for the

laboratory and costs time and money, so first check qualitatively. Often

mtch can be checked in this way with little computation. We begin with the

obvious question: How is our formula related to Galileo's formula f6r free

209

fall without friction,

ix . lgt2 ?

When there is no friction, K = 0, so that k ='0, and (29) should reduce to

Galileo's. But we cannot substitute k = 0 as we cannot divide by'zero;

and it is difficult to see what happens when k is close to zero. We will

Alave to postpone this check until the next section (Number 5.2.2).

But (29) is derived from (27), so that it can be checkedindirectly by
1

checking the latter. With k-> 0, as t. increases e , that is
e--

tends to zero.

So that as t increases, by (27)

v tends to

Thus there is a terminal velocity in the sense that no matter for how long the

body is its velocity will not exceed
k.

A terminal velocity is con-

firmed by the experience of parachutists jumping from high altitudes -- and

has yet to be denied by those jumping without chutes. Chemists observe that

particles sinking in a strongly viscous fluid quickly acquire a velocity that

remains sensibly constant. To this small extent at least our conjectured for-
,,

mula.is in accordance with the facts.
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.

0 Section 2.. Approximate.Formulae: 'Power Series

Introduction )

In most applications Of .mathematics 'io'sciqnce.approximate formulae play

4

.

a role. Often it tufts out that the: full soAtion idtoo.complicated:U7-even:

inaccessible. When:We cannot. obtain the exact answer we must Content.our-

selves with the next teat thing, a good 4proXimation. Yet the situationis
.

not really. hs bad--as,.at Tirst sight, it-se-ems. Usually, prov.ided we are

energetic enough to perform the labor of calculation, we can obtairi a numerical'

answer correct to as many places of decimals as we please. .Nowadays with'

eledttollic computers to do our. hard Work'for us, 'calculation is no problem;

rather the p4pplem is to find a domputer.currentlyunemployed. 'The:es*mtial 1

tool wAh'Which increasingly exaet approximatiOns,are obtained; no matter
.

whether driven by electronics or by brain power, is a power series. No pun is

,

' -.What is a power series? Essentially, t5e dxfansion.df Ei.ifunction of x

say,, in terms of pOwers of And what has this to do'witii increasingly

-better approximations to the exact value? The basic idea is illustrated b-

a sequence of-successively better values of n.

ye
3

3.1

3.14

3..14

3.14

3.14

3.14

3.14

3.14

3:14

3.14

1

15

159,

159.2

159 26

159 265

159 265 3

159 '265 35

(We add, parenthetically, that there exists in French a d lightid mnemonic

for g, a poem of which the onuater of letters in the .nth word ia the nth

figure othe decimal expansion of g. 'The first line.of this pOem runs:

.Que Palms a faire apPrendre un nombre utile' aux sages

3 .1 4 1 5 9 2 r,6 5 3 s.)

To expose the idea we write our last approximation for g with a change of \,

emphasis.
ti
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tiehaVe an approximatia or ,T expressed as a Power series,. as

10
)

. .

pdilirs of (1 To determine the first n + 1 .figuresof the
' 7

,- pansion of It is to find4he coefficients.. a0, a2,.....

'4

a.series of

decimal ex',.

a
n

such that

T1ie%ore coefficients we ,compute; the More 'accurately we determine by

1.-' .

Sufficient coefficients we ,find 7( with whatever-acduacywe leas°1

,Doesn't' The basic idea speak'for itself? Replace the powers of
) °

e

10
by powers of x dad we haye a function of x:

- ,
f(x) 'a + a .x + a

2

3
x3 + "... + a nxn

0 1,

In this expaniion, however, we must be prepared to accept for the 'coefficientst:

ao, al, a2, an, numerical values o any kind (and not. only the

digits 0, 1, 2, Our optiMistiC con geture is that any- function of

x, call be expanded as a power series of x sii;h that the mbre,,doeffi-

cient.g ao, al, a2, an we -User the,more accurately we can determine 'f(x)

fonanTgiven numerical value of x. )P°

. It turns.oUt,that our optimism is well 'rewarded; almost all the useful

fUnctions can be expanded in this way. There is Just one complication: that",

"op

computation of an'extia term is to g4e extra accuracy usually makes necessary

a restriction on the numerical values of x for which the power serie's'eX-
.

pansionAwill work. However, there' are methods of circumventing this restric-
.

tion,,as we hall presently illustrate in Number 5.2.1.

IPMe con Judeude this introduction by listing a few well-known power series

expansions.
.

>

, (a. ) Some expansions_thlt hold without numerical restriction On- x..

e

X,sin x x
7 31

2

qos X =;1 -
2.

2 3
x x x

. + --+ +
3111 21

(b) Soma expansions that require numerical restriction on

<16
.11
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1
.loge(1 + x) =x7 -2-x

2 +-vc
3

- -1 )c + ... (71 < x < 1)-

lx
_3 1 _5 1 _7,

= x - .-i- -,.. 5x 7.-rx -t. ... (-1 lc < 1).tan x

logex =
x-1 1 (x-1) 2 1(x-1) 3 1 (x-1)X 2 x - 3 x

+ + + 17
4 X

+ 41010 ',3P. > Ti
/ 1 N

.:
I'

'.21 Calculation of 3/

The reader will likely complain'that our little list of power series omits

the best-known one of all: the binomial theorem; discovered by Newton while

'still an undergraduate at Cambridge. It is

x)a ax 4.,a(a-1)x2 a(a-1)(a-2)x3
1! 2!

We did ot list it under (a) because in certain circumstances there is a

restric ion on x; we did not list it under (b) because in certain circum-
e

' stances there is no restriction on x: it all depends on a. If a is a

positive integer, say n, the exact value of (1 ± x) for any given numerical

. value of x can, of course, be readily calculated. The necessity to content

ourselves with an approximation does not arise. And since there is no neces-

sity for approximation, there is, a fortiori, no need for a restriction on

x to give successively better approkimations. -If a is not a positive in-

teger, the expansion of (1 + x)a has no last term. And since there is no

last term we cannot sum them all by adding successive terms one'at a time; we

could never finish: When the exact value is inaccessible we must content'our-
.

pelves with an approximation. It turns out that the restriction for succes-

sively better numerical approximations is that x must be numerically less

than 1.

HOW is it that we sometimes need and sometimes do not need a restriction

on.the numerical value of x .when the expansion has no last term? Suppose

that we have an expansion for it of which the first four terms are

1 4 -4

ion 13, 13-.

These giVe. rise to the following successive approximations

3, 3.1, 3.5, 3.1 .

The fourth approximation is only as good as the second and the third is worse.

In fact the third is even worse than the first. Doesn't this expansion make it

obviously' desirable for practical computation to place some restriction on the

relative size -of successive terms? Ideally, we require an expansion such that

after the first few terms each term is only a fraction of its predecessor, so

that later terms in the expansion can be neglected without_ erious error.

21,E
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Isn't it obvious that the SMALLER we make x in the .binomial expansion of

(1 + x)a, the fewer terms we need take into account to get accuracy to, say,

five places of decimals? Determination of the largest x for which any given

power series meets our requirement.is -difficult. The complete answer is the

theory of convergence. It suffices our purpose to be told if a restriction

'on x is necessary, and.When necessary, to be told what the restriction is.

We have already given examples with restricted x in (b) above. It remains

to ask: Why do some series, for example those of (a), meet our requirement

without restriction on x? With such series our requirements are, so to

speak, already built in; it so happens that no matter how large a numerical

value is given to x, a stage will be, reached in the computation after which

each term is only a fraction of its predecessor. If x is small this stage

is reached after a few terms; the larger x, .the later this stage and the
,

44ka

more laboriOus th omputationfor the accuracy.

We first illus to the utility of power series by using the binomial

theorem to compute the cube root of 28. How are we tlapply it? Takeanother,

Look; it is stated above. ,

3;03 = (28)1/3

1
.so that 41 = Also, 28.= + x, so that x =

3
7.6' We have

(1 + 27)1/3.

But since a is not a positive integer, there is, we recall, a restriction

on x. x must be numerically less than 1, which 27, alas, is not. Earlier,

we remarked that there is sometimes a way of circumventing the restriction on

As circumventing the restriction on liquor 'during prohibition, it requires

little ingenuity. What is an approximation to 47? Yes, a little more than

3. Why a little more? A little more than 3 because 33 = 27. And doesn't

this suggest writing the following?

so that

1 +27 = 27(7A7.+ 1)

. 127(1 + M113 = 271/3 1 + 1/3 = 1
27 J(..' 27

Now the x of (1 + x)
1 / 3

is and complies with the restriction. It is
1

27

SMALL relative to unity. This is important, so we write the word in large

letters. Why important? Important because we can anticipate soon reaching

a stage where a term becomes only a SMALL fraction of its predecessor, thereby

indicating that we can obtain given accuracy with relatively little labor..,

SMALL x gives the uplift of a hymn in praise of idleness.
0

1/3
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Apply the'binomial: expansion with

310 = 3(1 14- -

(1 L. 1.\

31" +1; (217) + 7 7 1( 12: k27)

+
3I27

a =
3'

(31 31
2).

3!

2 l'(1)2 10

9 2! 27
(1

27 3! 27
) +

1(1) 1)2
-3.T.(*).33\27/ \27/ °

+ .,.1

= 3 + 27(1\27 3\/ .l27 e
)37,7 +

=3
+ 0.037 037 ...

- 0.000 457'

less than 0.000 010

- 0.000 000 ...

1
+

1( 1)2

+27
27 27

we have

(217)

,4t1:1 and following terms.

Isn't it jolly? Right'frOm the beginning every term is only a small fraction,

of its predecesdbr, apd the farther we expand the smaller the small fraction

becomes. Wheret we 'stop ,depends upon the accuracy werequire. The third and

succeeding t ems do not affect the first 2 places of decimals, so that merely.

the first two terms gives us.:1403.correct to 2 places of decimals, namely

3.03. The fourth and succeeding terms do not affebt the first 3 places, so

that the flit three terms give us the cube root correct to 3 places, namely

3.036. Using the fourth term, the cube root is-3.0365.

, The method is of course appliCable to other cube roots. For ex le,

= (27 + 14)1/3 = 27(1 + 2)
3

1/3 271/311 + 21/3 = 3(1
3

2 1 n
Here x not.sosmall, -3- instead 7r. (lo times as big), so we can expect a

little more work for the same accuracy. And we hardly need add that the method,

is not.confined to the extraction of cube roots. One more example will suffice

to show that the same little ingenuity still works: We consider 51/E7. What .

is the best integral approximation?

35 = 243, too big. 25 = 32, much too small.
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(Since 35 is too big, 45 is bigger'still; and 15 is too small.)

Without doing any more arithmetic it is clear that 3 is the best integral

appro4thstion.- So, we proceed thUs.:

239 = 243 - 4 = 243(1 - = 35(1 -

4 1/5 4

= (3') 1 - (1

ad that

.
and the stage is set for a binomial performance.

Note that for cube roots, if x is very small,

(1 + X)1I3 1 +.1 x.
3

Fbr example,

3
= 10(1UZI )

143

10(1
1000

) =10:03.

More generally; for very small x

(1 + x)a 1 + ax.

Oh.yes, binomial expansions have great practical importance:

215

5.2.2 Fall, witb Ftiction Again

That a man does not speculate upon the outcome of his investigation is a

sure sign that he has genuine interest in it., If genuinely interested,

he cannot prevent himself from forming some idea of the answer to.his problei

at the outset, or, subsequently, from checking his answer when be gets one.

Earlier, we had an idea -- a good idea, even though obvious -- for'the

checking our free fall with friction formulae (27), (29). When the fric-

rOonal force becomes zero, the formulae for the velocity v and the displfie.-

pent x should reduce to Galileos free fall formulae

v = gt

1
x = -fst

2

Mat alternatively, when air resistance is taken into account, Galileots formulae

need correction. With air resistance a falling body is retarded, it does pot .

fall so fast. We conjecture A corrective factor that diminishes .".v and'of

course the diminution will depend on t. We .conjecture

where

v = gt - correction

correction = a positive rition of t.



216

f_

And if a body does not'fall so fast, it does not fall so far. Likewise for

the displacement x, we-conjecture

'

x =
1 2

- correction
2

!.41.

where this correction is also a positive functica of t.

Yes, we had a good idea; the defect was our inability to apply it. Times

liave'changed; power series gives us the ability. Now, we can handle (27), (29).

Let us do so.

We begin with (27)** Substituting -kt for x in the Cxpansion for
X

e given in (a)
2 2 3 3 4

-kt kt .*Ict kt.4.kt
e =

1 1! ! 3! 4!
(3o)

'sand since there is no restriction on the numerical value of x neither is

there a restriction of kt. Thus, no matter what tne value assigned to kt,

by (27)."

(1 -
k

-
k 1

+
2

+ - ) .

kt k2t2 k tv

Multiplying out the first two terms of the bracket, we halie
2 2 '4 4'

k3 t 3 kt
k 2 3! -TT-

)

as a 'factor 'from this bracket,"

2 3! 7(kt

k2t2 k33
15" 17

= gt gt ko.0 l(ct)2 .6-(kt)3 - . ,f 31,
31

We have'obtained a power serieAformula for v.

(01) is interesting as well as complicated. It merits careful considera-

tion. First'note that when k = 0 every term in the curly bracket is zero,

so that when there is no friction this formula reduces to Galileo's formula

v = gt.

We confirm our first anticipation. Second, commare the power series in the

curly bracket with the expansion of 1 +
1 )

-'-given above.
1/3

Isn't there
1a striking similarity? Here we have powers Of kt instead f.powers of TIT.

True (31) holdsnolniatter what the magnitude of kt b Wouldn't it be

nice if kt werdSMALla Now as a matter of experimen fact is very

small indeed, so that kt is small. And Since each term of the curly bracket

is -only a fraction of kt times its predecessor, with kt much less than 1,

22
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each term is only a,frection ok,a small fraction of its predeCedsor. Doesn't

this consideration invite comparison with the fact:that each term of

is numerically. less than -2Cl + 1-+of its predecessor?.1)43 What must ire
27

conclude? That the higher powers. of kt can be neglected without much loss of

precision; that

r

v gt - gtli(k-t) + nothing

v = gts

is a good approximation. The speller. kt, the better the approximation, of

course. And we confirm our conjecture

gt - correction

where

correction = a positive funCtion of t.

It is worth remarking that-even if kt, though small, were insufficiently

small for the accuracy we require to neglect the seCond:'and some higher power

of kt, (31) would still'confirm this conjeCture. The reason is not far to

seek." Consider the terms in the'curly bracket to be paired thus:'

[-N - 3(kt)2 [t(kt)3 7 -351(kt)4] + , (32)

Provided
1

vided

3

< kt < 3; so that of, and smaller fractions of, arekt a less

than 1,

= kirt(1'7. likt) = positive quantity

)11.] tict 1 - "Irt) = positive -quantity

and similarly for succeeding pairs. Thus (31) is Still a positive quantity

and consequently the correction is still a positive function of t.

Next, in essentially the same way, we deal with (29). Substituting (30),°

k2i2 g3t3 k4t4 k5+5

k
2

k
2 1 2 3 4 5:- 4-7.*

Multiplying out the first three terms of the bracket ..:

(

x = -at - -E. 4. _Z. _ At 4. lgt2 a _JA3 k4t4 1c5;t5

k k2 k2 k 2 k2 3:. ', -T7- 5! .. "'
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so.that, simplifying,

x -2-1 gu +
k3t

+

k5t5
_EL (

+

44

Taking -k
2
t
2

as a factor from this bracket

2 ji 2,2 kt k2 t 2 k3 t 3
x gt - k t + 7 - +

so that

1.

"

.2
-

1 / 3

2
1(kt) - .7(kt) + --(kt) -

!

.1.

Similarly, we have obtained a power series for x.

Compare (33) with (31). How much alike can two peas from the same pod

be? Mutatis mutandis,we draw the same conclusionshen k = 0 every

term in the curly bracket of (33) is also zero, so that when there isno fric-

tion the formula reduces to Galileoq formUla

( 33 )

x =
1

2gt

2

as, interested, we anticipated. Neglecting the
4
.second%and higher powers of

.kt, we have

x =
1 2 2 1

:

gt (kt) - nothing
3

is a good approximation (when kt is small). We confirm our, conjecture

x =
1
Et

2
- correction

2

where the correction is a positive function of t: It is left as an exercise

for the reader to show by considering (33)'s analogue of (32), that even if

kt is not sufficiently' shall for the accuracy we require to neglect the

earliest. higher powers of ;kt, it is still the case that the correction is

positive i 0 < kt

We cannot claim that our formulae

1
gt - Et

c
1- 2

1 z
3

x yt - gkt

are of gieat practical import'ance'. Remember that they are based on the inacr

curate physical assumption that frictional resistance is directly proportiOnal'
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to velocity, not to the 1.71 power of velocity. It was expedient for the

purposes of illuatration'to sacrifice physical realism to mathematical sim-

,plicity. What is of great practical importance is the role of power series

in the deduction of such simple, but good, approximations to such inherently

Complex equations as (27) and (29).

5.2.3 How Deep is a Well?

Newton was of the opinlon that the solution of word prdblems is necessarily

basic to anybody's and everybody's mathematical education. He wrote a high

school textbook to support his contention. His viewpoint is not a modern one;

his book is at odds with the spate of texts tnat currently appear: we do well

to remember that, Newton was no worse a mathematician than the best of our,

so ,often hasty, contemporary authors. Here we can consider only one of Newtonlie

well-worthwhile little problems. The reader who findi an appetite for more

and has the wish, most commendable, to read Newton for himself, may be dismayed

to learn that he wrote in'Letin; in consequence, no doubt, of his coulipry's

earl ter occupation by a foreign power. 1 hasten to add that there is an'English

translation available: Universal Algebra. No "educator", or for that matter,
)ri

educator, should be licensed to banish word problems from the curriculum until

he has read Newton -- in LatiA.

The problem: to determine the'depth of a well. The method: 'to time t

drop of a stone into it. The crux: when the stone has gone down we have to

wait for the sound to come up before we her the splash.

We assume a stone, a stop watch, a well -- and a prone posture. Bee

Fig. 19.

Figure 19



Let t
1

be the time taken by the stone to fall a distance x, the depth of

the well, and let t2 be the time taken by the sound of the splash to rise the

same distance. (As usual, we idealize; we suppose water at the bottom of our

well.) The time t meaqured by our stop.watch is the interval between dropping

the stone and hearing the splash, i.e.,

t = t
1

+ t

With Galileo, we neglect retardation due to air resistance, so that

1'
x =

2
-gt

12

The sound of the splash we suppose, as is sensibly correct, to be transmitted

rectilinearly with uniform velocity, say c. c is for constant and for

celeration; sound has neither ac-celeration nor de-celeration. CondequentlY,

t =
c
-

2

Given t, g, c our problem is to find x. AB Newton is careful to

explain, we have 3 unknowns, tl, t2, x, and 3 equations. We have as many

equations as unknowns; we can hope to determine x. But we are not really

interested in t
1

or t2. So? Eliminate them. From our second equation we

obtain

ul i54i

Substituting for tl and- t
2

in Our firstequatiOn,

t Pi +B c

It remains to solve for x.

How are wato set about solving it? Take a good long look. The main

point is that it Contains I 'and x, i.e., (1/T02. We have a quadratic in

in a slightly disguised form. We remove the mask:

+_i (,/) = t
g

Find I and we can find x. To solve this quadratic we have a choice:

parrots'-food formUla or common-sense completion of the square. The reader may

have forgotten the formula, bUt surely he cannot lack common sense. We complete

the square. Before taking half the coefficient: of itA.6 convenient to

introduce a factor 2 into this coefficient by multiplying by --

1, f-.2
2

6-0
colx) 2

22



We make the coefficient,of (iii)2 unity

(167)2-+ 2 . :g(1/R) = ct.

Half the coefficient of i is 7m, We square and add to both sides.

so that

and

2
2

+ ct-2,-(1/5) + = c

2

ki 2g

2 2
(a ..i.

',12g

= + ct
2g

'17e + e2
_ e2 + ctt

c +
x = - - c2 t .+ c

2g 2g.

221

This equation is embarrassing.',Our well 'has only one depth, J has only

.
one value, yet our equation .giyeb"two. We have a choice of the plus. sign or

the minus 'sign; it is ta responsible choice. .No, no,dOn't mutter under your.

breath; acqyire the right mental .habit: vary the data. We already know the

answer in a special case. If t = 0, the depth of the well is of course 0.

Yet when the negative sign is taken; t = 0 resultsin the absurd conclusion

that the water level in ourwell is above ground. We take the plus. (That

with the + sign, t 0 gives x ='0 is some check on our algebra.)

2.

= - + P-r + ct
2g 2g

We have found 5.

To find x we square.

6 c
2

2c c -c
2

x =
2g'- Vfi, 2g 2g

Simplifying'slithtly, 2crc
2

+ ct - + ct .

g 4-g. 2g
( 3 4)

This is a nasty, cuMbeysome formula: ,Canhot we effect further simplification

The-last term cohtains 2g twice, each occurrence under alToot sign.. let

us utilize our observation. 4

2
c + ct c

2
2gct )

.11
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SO

-and

hat

2

2g + ct na 2gct

2c. c
2

2c 1 2 c 2'"

2g
+ ct _ . c + 2gct = c 2gct'. (35)

'A little better perhaps. Wouldn't it be worthwhile to buy simplification?.

The price is only a small loss of precision. Isn't a good approximation fdr-:

mula worth its cost?

Before we can expand the radical of (35) we must have it in the form

x where -1 < x < 1.

Are we able.to meet this reqA7tement? Which term of c2 + 2gct is to te.cOme
,

unity? c is approximately 1100 ft/sec
1
and g approximately 32 ft /sect.

If

ian.,

Or

I

pt
17.1 1100

16 2.32

2.3 < 1100

2gt<c

O

a. 2gct <-c2

2.E12L <

c

But it doesn't take 17 secondsbetween dropping a stone. and hearing the splash

with ordinary common:or,garde4rwells; they are hot that deep by .a long chalk.
_' 1'If a stone takes 11 seconds to.drop,,by Galileo's formula it rails .- 32 142,

i.e., 3136 feet; so that the sound of the splash less thelin)seconds to

come -4.': Our interest is in water wells,' not oil wells. It is V4t43&ator

to us to take

N



It.,relmains to manipulate the, radical of (35) into the form

.6+

1r72-772;:: .117.77EiT - 171/1775,.. 9-

(

so that

.gence, by:(35)

and,(34)- becomes

2
'2O.+

c2 + 2gct
c

g
--Ili

c
.

4 _2a 7,7,t Ctc

eg 46,

.223

(36)

vo,

Before expanding into.wpower series we are prudwtto assure ourselves

that we have the correct formula to expand.v Of cOurtSpaccannot gain absolute

assurance, yet we can make a check. It lea physical'PrOblem. Doeg-0(36) haVe

the right dimbpsfOns? We can with propriety take centimeter and second to be
.;

our units; mass ,not involved. Schematically,

.,(1! ).0 -i'-',1, t = sec,

the velocity = cm, ,

r 1
sec.? the acceleration-_g_=_cm sec

-2
.

-'

.

. A.,:'. - ,,,

So, schematically(36) becote4

cm
2

sec
-2

c m sec
-2'47.

-1. (cm sec
-2

)sec

-2
cm -. + (dm sec )sec

-2
1 +

-1' .

cm sec -t.' cm 'sec 6 cm sec

cm + cm - -cm 4_4'1

= cm + cm - cm

= °

member that .E, a pure number, is of zero dimensionsimensionally, our
, J.,.

;

,
equation is correct.' We proceed with some confidence. :1'

It is a good mental habit to.:4-Aticipate the outcome of a procedure. What

::.. ...

.
.

result do we expect power seriexpansion .p) give? If the splash were heard
.;.

when it occurred, x would be giVen by Galileo's fOrmula
., - '::- .f."..-

1
x = .Egt

2
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=
1-gt 'correct ion .

. ,, .
Fuller.appreoiatiCirk or,the physiCal circumstances enables us' to be more pre-

.

cise.. a ThetiMe .'t '-i.i3, Shared between stone and sound: Since the 'stone
1doesn't fall for.So In-ng as t it doesn't. fall sb far as 2

. The correc-
tion must be negative C; On these occasions -when we can bee as well as hear the;
splash:wa. know:bight 'an&' sound to be almost instantaneous, The stone takes.
the '11.On's isnttre pr ;:i., TI* negEitive correction will be small.

a,
, ,.ICnowing. What to.expect, we proceed. With a = 1 the binomial theorem;;. ,.::. ;

2'
giveEi

1 1 1-3)) --1)( 1.
:2
-

x3 +
2 2 2

x14 +

Taking., = to obtain'tbe exijandilen of
.. .

(6.)abeCimies:
)1

, g g. 2 c c'

.2 2

21 (c W.).6
4102

T
1 (

c
E_Ly

,

ing out the' first three terms of the bracket, we have.

125\ c

2. 2
et -

*),;. 21
T. -2Z c

So that

c?1 1 ?fey.

F75.-6(1)5

. g

X =

X

s

3-177
21

C°) +25 \°

as pz.ctOr rt'rom the curly bracket

1 N
2 lib c 128\ c4.,

21 (2L)
7.0-27 c



eo that

1 2 h 2
X = 4.gt

'This equation is rather similar tp (33). To emphasize this similarity we ab-

; sorb the factor 4 in the curly bracket, giving

2 1 2 +44(2_.16 (116 4
(37)

It is instructive to coMpare (3/) (33).. To facilitate comparison we

repeat (33)

Itts rather: like meeting an old girl friend with a new hairdo. The novelty :

lies within the curly bracket. First, we note a different sequence coeff.i....

1: .1 i 21
.:

1' 1 1 .

.

cientp; t, .2w ..:::nstead of ,

1
TI-7, ,. 7, ...; yet the new ,

oeq rice:contihually decreases as does the old. Second, ,we..ip..e, powers of tg. * : ,.. , , ,::. 1.0: .-.r. instead. of powers of kkt), yet the powers- Vielselv are the sane.

7, 'And' isii!t-,one; si011 quantity as gacit kulother, ip steak? And what do we.

conclude?.,, that it's the same old kirl"exiend.' at the numerical value' '

.tt.t
the curly bracket in ( 37 ) is pos it lye Ar pmall confirming our. expeCia-'

tion

That we 'may with little

Of (2 sp.that

1 2
x = 2gt

c

- (positive correction).

-
less of preciaion neglect the second and higher powersr.

2
2

x - gt) - nohing

2
1 g t

3
x =

(1EZ.) ta, small).Ai3 0...:..gcseept 'approximat,ion (when

Isn't it
.

astonishlng that two distinctly different physical prOblems,

that of' free fall with friction and that of the depth of a w;11, should have

such similar solutions? .Their similarity bears testimony to the usefulness

of power series. Let us be prepared to meet mathematics that with trivial

change of detail affords s9lution to problems from vastly different areas of.
*

physics.

230;
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7.2.4 Pendulum: Small Oscillations,

assuming that. T (the full period of oscillation of a simple
.

pendlilum) is 6. function of i (the.peridUlues.-1angt9and g (the gravitational:

constant), we were able to show, merely bY'dimensional cdnsideraions, that

where c is independent of i and of g. That we could do so much with so

little is astonishing. That we could not show c = 27t 'by such limited means

not astonishing. However, we now have the means: namely, that mathematical

Method in science which formulates the condition as a differential equation.

Let us, without further ado, use it.

What is the condition upon which the oscillation of a pendulum depends?

Not so fast; we had better walk before we run. First ask: What foTce cti..usea

the acceleration? Consider Fig. 20(a).

Figure 20(a)

The only fothWactini op the bob B, cf!point mass m (say), are the'upWa:rd

tension T''"in'.th4:0i.eing and mg vertically downward due to gravity. So?

The accelerating force acting on B must be R, the resultant of these two.

What is R? Axonvenient alternative to using.a:vector parallelograth of

forces is to resolve mg into two components', the one collinear with, and

the other perpendicular to, the string. See Fig. 20(b),

23.



Figure 20(b)

Since the,. string is inextensible and remains taut, the component part of mg

represented by BQ must be equal and oppoSite to the tension T. Consequently

the Component of mg 'perpendicular to the string, represented by V (P is

for Perpendicular), must be the resultant R. From'the obirious geometry of

the figure, 'Z'OBQ = 0, the angle made by NB with the vertical NO. And BP

is perpendicular to BQ. Therefore

R = mg sin 0

We have found the accelerating force acting on the bob.

What is a the bobleacceleration? Not so fast; walk, First ask:

what is its velocity? See Fig. 21.

(38),

. UI

Figure 21
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If in time Git the string turns through an increase of angle 60, the bob

moves along an arc length .A0, so that its average velocity during this

time is .24) Hence, mindful of Leibnitz, we have that its instantaneous
.

Velocity is I-- But acceleration is rate of change of velocity, so that
dt

d d0 -d /d0 d20)
,EcTivt-

a dt dt
=

dt2
(39)

We have found the bdb's acceleration.

What 4.s the relation between acceleratiOn and accelerating force? Yes,

mass x'acceleration = accelerating force.

But be clear that ft is incorrect to write

'm x a = R.

We haVe measured a albn the arc in the direction of increasing c and R

in the opposite direction. We must measure both in the same direction. The

accelerating force in the direction of increasing c is -R; we have

Substituting (3), (38),

m x a = -R.

2

.mi - -mg sin 0
dt

so that 4

ect,
= E sin P.

dt.
2

We have found the differential equation upon which the pendulum's oscillation

is conditional.

We have yet to assign initial or. boundary conditions to this differential.

equation. See Fig. 22.

/1
/ I

/

A

Figure' 22

.
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We have taken the pendulum NB to beat an angle 0 to its central position

NO (where B is vertically below the nail N) at time t. When.is the bob,

at 0? It is obviously convenient to start timing the swinging pendulum from

When it is in this central position. Since this is the time when we initiate

measurements,

229

when t = 0, = 0
(i)

is appropriately-sa/d to be an initial condition. We are agreed when our in-

terest in the swinging pendulum begins. When does our interest end? At the

end of a quarter swing, when the bob'is at A; for obviously the time for

the bob to swing from 0 to A is a quarter of the tdme T for.s.corplete

oscillation from 0 to A to 0 to A' to O. Thus we are led to ask:

What is the value of 0 when t = tf and the bob is at A? This, the greatest

value of 4, is said to be the amplitude of the oscillation. Let us call'it

a. So, we have,

wnen t =
1

0 = a.

But, is this conditiori genuinely informative? .Would we be any the wiser if

we had, called the amplitude 8 instead of a? The giving of a name to

the ampiltudedoeS not tell us anything about the amplitude itself: We are

mindful of the story, possibly apocryphal, of the student who, said, "Yes, yes,

I understand how you determined the mass of Jupiter. What puzzles me is how

--yoU-Tfound-out -its -name . "----Yes,--yes-r-we-Lh-ave-named-the-amplitud-erth-e-impartarrt.

thing is to characterize it.' This is a question of physics, not language.

When the bob reaches A it is at the end of an oscillation; it is instan-

taneously at rest:

z--
d0

= 0,
dt

Thus, we have,'

and consequently,

d0when t.=
1

= -d.T 7 O.

d0

dt =0.

Because this condition holds when the bob reaches an end or boundary of its

path, it is appropriately termed a boundary condition. Although A is a

terminus, terminal condition is not accepted usage.

Now we are able to state the complete mathematical fo ulation of our

problem:

Given (40), (i), (ii), Find T.
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Two points arise; each has a bearing on the other. The first, that solution

belies brev,ity of formulation. As well as long, it is difficult. There are

far too many matheMatical difficulties for us. Exact solution involves an

,elliptic function, a variety distinct from the usual exponential, trigonome-

tric, logarithmic, and algebraic expansions. Anticlimax. What are we to do?

No, no, it's no use muttering. Above all, we must retain the right mental

attitude. We cannot solve our problem; can we solve a simplified version?

Simplicity is worth buying if we do not have to pay too great a loss of pre-

cision for it. The sensible thing to do is the next best thing; to se

good approximation. Approximation? Approximation suggests power seri s ex-

pension in powers of a small quantity.'

This brings us to the second point. What sort of solution does (40)
,

Since this equation contains a (second) derivative of 0 with respect to t,

we anticipate the solution to be an equation giving 0 as a function of t

(and involving the constants 2, g); i.e., of the form

0 = f(t, 2, g). (41)

Alternatively, consider the problem from the other end, Differentiating (41).

with respect to t, schematically,

dO

dt
= ft(t, g)

Differentiating again with respect :t0 t,

r( t , , e) .

t'.

Either v4364.0e to the concludion thAtthe solUtidnAs of the sort described
.

by (4;1'). Substituting the boundary condition (ii) in it, ,we have

a = f(.1117., t, g)

1
i.e., that a is given in terms of 7T, 2, and g. Hence, making T the

subject of the formula, we expect T to be given in terms of g, and a.

Schematically,

T = F(.2; g, a).

Yet, earlier, we concluded in consequence of dimensional considerations that

T'- clri

237.
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4,v

where c is a constanOactually 20. This conclusion, put schematically, is

= F(2, g),.

We concluded T to be a function of i and g without being a fuNtion of

a. T cannot both be and not be independent of a. A dilemma confronts us.

Overcoming our despondency, we think again. The formula,

T

was obtained by dimensional con derations on the assumption that T is

dependent upon'(ONLY) I. and True we did not explicitly use the word only,

true we.did not explicitly state T oibe independent of dq::;ba an implicit

assumption is nevertheless an assumPtion. "WaCannot'quarrel with our conclu

sion being consistent with Its premises. .S6 the real question is: What about

Our premises? Is .T in fact independent of a or'not? emust resort to the

final 'arbiter, experiment.
..f

What'is experiment's verdict? For large a' it is found that T is not

independent of a. When, for example,,a pendulum'swing8 with'anamplitude of

60° its period is appreciably less than when. it swings with an amplitude of

90°. But when a is small, say less than 10°, there is no sensible difference

in the periods of oscillation. When a pendulum does not swing so far it does

not swing so fast; deCrease in arc and acceleration are compensating:factors .

that tend to annul one another: the smaller a, the greater their annUlment :

and the smaller the change in T; the greater a, the smaller"Meir annUItent

and the grealter the change in. T. What are we to conclude? That although to

be exact T is a function of a (as well as of and g), if a is small

its effect may be sensibly neglected.

Small a? What about ,0? Since a is the greatest value of 0, when

a is small, 0 must be small. Small 0? The very thing for a good approxi-

mationmation from an in powers of 0. And what has an expansion in powers

of 0? Look at list (a) above. Yes, sin 0 and cos O. But (40) prefers

sin O. We.take

sin eD
0 03 05
1! 3! 5!

This expansion holds for any value of measured in radians.. Ig,it is not

already obvious that for small values. of 0 the third and higher powers of 0

can be neglected with little lossof accuracy, then an example will make it

obvious. Take = 10°.
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so that

Since 180°.= ac (c is for circular measure, radians)

10° =.7

(0.171? 0 (0.1745...)5sin 10
o

= 0.1745...
120

= 0.1745... - 0.00088...

,We 'conclude that for small

sin

0J:600013000 .'4,04.

with'good accuracy.

Let us now use geohetry to echo arithmetic. It is convenient to consider

the chord and arc of a unit circle. subtended by a small angle 0
c

d. its

mirror image: See Fig. 23.

From the obvious geometry

so that

Figure 23

I . OB
sin 0 =

B
--

1

O
=

1

gu,

2 sin = 33'0 + OB = chord °BIB

23D



While since' 0 is measured, iri''radians,

But, for small 0

so that

angle x raditus arc

20 x 1 = arc B'B.

chord B'B = arc B'B

2 sin 20

and

I

sin10 74 0.

Tie smaller 0, the more 'nearly equa

nearly equal

We

sin and 0.

'233

chord and arc; consequently the more

conclude that'for sufficiently small 4

2
d E

(1)2 2
dt

(42)

is a good approximation to (40). In consequence we are disposedito;think that

the solution to (42) will be a good approximation to the solution to (40). 'To

accept (42) as a substitute for (4o) is a responsible decision; some error

must be involved. How big an error?

thereof; the best check is to compare

equation with the experimental facts.

. quences we have to deduce them.

The proof of the puddJmg is the eating

the consequences of our simplifiek

But.before we can compare the conse-

How are we to solve our second,-Order differential equation? Yes, we try
., ,

to reduce it to a firstaiderequation.. And what substitution do we make?

One appropriate to,the'physidaI4Atuation. Our concern is the swing of a

pendulum; rate of swingip.an angular velocity, isn't it? So? We put

Consequently

d0
dt.

&Ja 'd %

dt

d (dt.d4))

dt2

d20
CD/dt dt %

24O
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and (42) becomes

du) ..E
dt (14)

First order? Or should we say "first disorder"? For we have three variables,,

w, t, and 0. Two is company, three is a crowd. Who, to use a current

vulgarity, is to get lost? Coreller

dM LI dm
dt -dt

Is do.), dt, or d4 to fill both parentheses? Try them. d0 gives

.

dm d4 ou 'rre
dt dt dO

Using (43)

so that (44) becomes

dm
d4)

dm
dt

&m
- 4) .1

d4) £

t gets lost. We have a first-order differential equatioli.

Next, of course we separate the variables. (45) give
\

1

Fa dw = - 4)' d4).

Integrating,

1 2 - E 1

71) + c.

Using part of boundary condition (ii), 0 = a,, at = w= 0

and

0 = -L
2

+

1 g 2
c = :a

241
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/Hence, using (434 -again

dt 4
21i)

2(= f-2. -
A21

,

416

_(E V:72
dt

We have a second first-order differential equation.

As a mere matter of routine we separate the variables.

integrate

a - 0

.;The left -hand side is a little awkward.

4)2 a2 (12)2 I
a

so. that

and

cre27
a 1 2

a

---2--0 -I a 1 -

BO, finally

d0 = d(ce)

A) d(1 )
'-1112 02 (4)

\a/

which is of the form

where

dx

0
x = -

a .

It remains to

(47)



ii:§anpoi *low by intuition, yoftmust know by tuition and. by llearti.ttuit

Thus (47) gives

= sin-1(x) + c.

sin1(2). = t +c'.a

where the arbitrary constapt..gfthe left-hand side ht#::been absorbed into:that
?-;

4171,the right.
.

7 -! .

Though not essential to the determination of 'T it is useiulto
' 4

explicit formula' or O. How do we get. rid of arcsine or -sin ? The7;rela.,.

tion betweeOp 1 or arcsine of and sine of is analogous to the relation

between fattier,.:Of, and son, of Both are inverse relaticiftl---/-1

...

. .

!"tafier of Jimmy. = John

If

then

In consequence, our last equation gives

\

'Jimmy = son of John.

arcsine of
0
= Aa

so that

0
= sine of,A.a

."'

= sin t 01a

0 = a sin t +.c41. (48).
4

It remains to determine the aroitrary constant: The'main point here'is

that we do not use the same condition twice. We have used the boundary:condi

tion;.we 1.ow'Axes the initial condition, (i), that 0 = 0 when t = 0. Substi-

tuting in (48),

0 = a sin (0 +



This eqUatOnjdaS a Variety' otsOutions; we take the simplest angle,

); 0

237

4

WeAlave obtained Wexplicitormula for.: ..7

Finally, we axib1e to determine T. dee.:Fig. 22 again:::.. Because the

pendulum is timed i*M'..1.ts `central is the fiiet'tiMe:at which
1

the bob coincides with:. A; i.e., -T is the-.1east'Va1ue: of t for which

(1) = a. Consequently,' .17 is the least value of.: t for which

(1) = a. What are these values? . Putting (1) =..ci'..in.(49)*,we have

so that the values of ii"Ft0fOi WhIth a. are

Thus the least is
2

Therefore,

T 2nia- .

Wehave solved -4104Apiified Versyon of our problem.

And now the:::C:i,u4a1 question: does the tubstitiliOn ni!1.42) for (40)

result4h.serious'Oror? No, it doesnot. With a 10(.14here is rib senbible.

difference between the predictions of (50) and the resultS.of experiment. Our

Simplification has ample justification.

Remember that

has the solution

,dt2

= a sin t}ftir

24 el:
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It is important. Important for a verietY'of reasons. The vibrations of

tuning forks,- elastic bodies, and even certain electrical phenomena are also

:.;conditional 'Upon (42). In cOnsequence (49) is known as the, equation of sm?11:

oscillations. You must surely meet: it in. physics.

Section 3. Physical Analogy

The first stage of our success in solv'ing physical problems hag been the.

formulation of the appropriate condition as a' differential eque,tion with an

initial corrdition; the. second, the solving of the equation subject to its

initial conditiOn.' .0n one occasion we were unsuccessful; 'we could not.deter-

mine. the...period for a pendulum with large oscillations. We may. reflect that

the limiting factor to our suoce,ss lay in the second stage. rather than the

'first. Even if without the Scots' proverbial thrift, the difficulty of solving

differential,equations is an incentive to using :them parsimonimitly.
...-

here is a, commodity of which a,little may be made to gq a long,Way. I have

already made brief ,mention that the equation of small oscillattons of a pendu-'

lum also holds'fOl' other Vibrational phenomena. In investigating's*inglatg,pen-,

duluilie we were, albeit' upWittingly, also inveatipting vibrating tuning eforks.

Is this,p, straw which EihOirs' whichWay the.Wind:bloWS? tio other difte.rereiai e,

eciilailons have multiple uses ?... We, have the inCentiVe ;to find out.

We concern ourSelves' with the 'aPplidation'of a pi.eviotis 'reindi -eleari-'

city. In Number 5 .,1-4, Fall with Friction, we showed tha-the differential

equation

with the initial condition

has the consequence that

2re- xt, (27)k ,k.

It would seem iMprObable that thiaLinformation could be of any interest whattio7

ever to the electrical engineer. Nowadays, with Telstars 'in regular Use,

Continental ballistib missiles ready for ,immediate, use, and electronic computers

rapidly becoming as nurnprous as typewriting machines, the reader 'trill occasion,

no surprise when told that ,the study of electricity has become a most exact

science.. What, for goodness' sake', 'can an approximate condition. for the fall

of a body, dead or alive, from a hot-air hallObn have' %o do with.s2.1.8h an exact
,

science? Life is full of surprises our approximate. condit'i'on for the fall of,

24
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a body through a resi!ating meditm is precisely analogous to the exact condition
. . _...

for the 4;.ow qf an electric.qurrent .through a resisting wire.
...

To be strictly cOrreCt'there is:a precise ipalogy when:(25) is expressed
i

in a 'fully.'expl.ieit form: TO gain that breVity'of notation so Convenient to

formal manipulation we obtained (25) by dividing through by -m and subsequently

substituting k for K. To regain.ekpliptt reference to m we employ the

reverse procedures in reverse' order, the eby obtaining;
\...---7

2
a x

KITE
dx

=10 .

-dt

1

And finally, since bpi definition

, '

r

and Consequently

- ,

we hiay with brevity int without

Write 7* 1(

-dx

dv 'd
2
x

dt

n

4. r

fosfir. of ,expiiCitness

.f dv . .

m = mg - Kv.
dt, - ¢.'

.

4/0
. .

This,ipthe form most convenient to making an analogY with the

flora; Hof eleftriq current. .,

Since (25') is explicit the ingredients 'of the equivalent equation (25)

are now visibly obidous: ,namely,...inTorder from left to right, maaF m, velocity.
dv
dt'

gravitational force- mg- and velocity. v. What axe their electrical

Counterparts? See Tlg, 24.

Induction
Coil

Circuit, Switch

Bette*

Figure 24
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To press the switch, to allow a current to start flowing is the analogue of

opening the .fingers, to allow 4 :body tg starts fallirig..

is' caUsed by.theforce mg due to gravity;' the flow of

by the electric force or tension E due to the battery

The fall of the body

the current is caused

.' the falling body has

to overcome the frictional resistance of the air; the flowing current has to

Overcome the electrical resistance of,the wire. Air resistance is proportional

to the body's velocity. v;. electrical resistance is propOOipnal to the cur.
..' dv

rent's' intensity 1- And Onsequently,rate of change of velocity 7 Corres-

ponds to rate of change of.intensity a.. We tabulate these analogues.
-:.

means analogous to.

Electrical

Electric tension

Intensity of flowing current k

Rate of change of intensity

Analogy 4

i

di dv''

dts dt

? m

A

Physical

Gravitational force

Velocity of falling body

Rate, of change of velocity

Mass,of body

urn

ye are confronted with a blank onthe left-hand side. What is the analogue of

mass? The electromagnetic induction AL opposes change of current so that a

current cannot be quite instantaneously, tarted or st4ped. And doesn't the

inertia or mass m Of a body tend to.ma_:e it go op:forever without increasing
.

or decreasing its'totion? Isnit L., so ib speak, an electromagnetic inertia.

We complete our list

Analogy
.174

Self-induction L m Inert mass

At

'flaying found what are more or-less plausible analogues we substitute -them

in (25') and obtain

Ldidt E
Ki.

There is One small blemish: K the 'frictional factor is now associated with

i instead of with v; speaking strictly, it bedomes'an electric resistance

factor.. Therefore it is more appropriate and indeed customary in textbooks

Of electricity to call this.factor r (for resistance of course). With

the substitution of r for K (251),finally becomes

Ldl =.E - ri (253')

2,4



and our analogy is Complete: Tidy minded we finish our tabulation.

Analogy

EleCtric resistance rector K Frictional factor

2la

HaVing found an. analogy,'or to moderate our claim, having found what we

conjecture to be a sound analogy, we hasten to use it. The first step is to

apply to. the init condition and consequence Of (25) the notational changes

that we applied to (25) to give us thexplicitness of (25'). The initial

conditiOn is

When t A= 0, x = 0,
clx

= 0 ,

this becomes,

%a when t = 9, x = 0, v = 0 .

And puttf* for k in (27), the consequent of (25), we have

v - e-(K/m)ti. (27')

In sh8it, the result oe our investigation of free fall with friction may

be expressed:

If a phenomenon satisfies

with the initial condition

.

then. it ..satifies

dV
m-- = mg KV
dt

t = , x= 0, .v = 0

(25')

v = - e-(K/m)ty. (27')

The road is now clear to speed to the consequence Of our analogy. With

the 'paired counterparts set before us

dvm

4, 4'
A(1-t

/1

n3,8

L_
di

dt
r i
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we can immediately write:

If a phenomenon satisfies,

with the initial Condition

then it satisfies

Ldidt ri

:= 0, = 0

- e-(111- )t)-.

(25")

(27")

A trivial point: x = 0 has no counterpart; being extraneous it is cast

aside'without complaint. It is a lack of'relevant, not a surplus of irrele-

vant, infOrmation which would be a cause for dissatisfaction.

It remains to ask the vital question: Is our analogy sound? It is. And

what are our grounds for this assertion?. As ever, experiment is the final

arbiter. (27") accords with the result of experiment; consequently, we ac-
,

cept (25"),

Earlier (using the less explicit notation) we showed that when 11,, t is

large (27') gives

i.e., a falling body acquires a'terminal or steady velocity. We must anticipate

an analogous result for flow of an electric current. When Et is large

(27") gives

a flowing current acquires a terminal or,steady intensity. Here is

Ohm's Law, known to every schoolboy. We have additional grounds for accepting,

(25") and for the soundness of our analogy.

Of course analogy is often misleading. Its importance is that it is often

helpful. That we cannot give other examples of its role in finding new inter-

pretations of old equations is!lack of timP-, not material. Differential equa-

tions are powerful for their name is legion:and they speak with many tongues.

2 u


