‘ ‘ o ‘ ‘ L. R N
- o ,/.,/) ‘ DOCUNENET RESUME oo T -
‘ o . L .

BD 161 692 . . } SE 025 112 " L
AUTHOR 4 Jarvis, John J.%; Papaconstadopoulos<\Chrls r
TITLE ; . Methodology for Designing High Level Computer Input
. Systems for Mathematical Programmlng Models.
.t Industrial and Systeus Englneerlng Report Serids No.
Jo~d J-78-16. s
"INSTETUTION Georgia' Inst. of Tech., Atlanta. School othndustrlal
. and Systems Engineering. ‘
SPONS AGENCY -« National Science’ Founda&i?n, ﬁashlngton, Q@@% .
BUREAU NO NSF- SEIL-?S -17476 ,
" PUB DATE ‘May. 78 :) ' Co
NOTE - * -.45p.; NOt avallable in hard copy due to marglnal o
o legibilix Y of orlglnal document’ R
EDRS PRICE MF-$0.83 Plus Postage. HC Not -Available from EDRS. '§%%
DESCRIPTORS , *Computer Programs; CbmputerS' *Linear, Program%ng,
. “*Mathematical Applications; *0peratlon<’§esearch' P

Post/Secondary Educatioh; #*Programing; Systems
Dev opment . . ~ ' . 4

2 -~
© 2 ;!

A'BSTRACT .
Developed ‘-and demonstrated here is the des1gn of '~
_1nterface systems for cosi-effective communication of the user with v
the computerized operations research procedures. The concentration is '
in the area of interfacing methods for implementing the optlmlzation gV
techniques of mathematical programing. Emphasis is. given to
flexibility of accessing the algorithnm, cost—effectlveness, and’
pedagogical or self-teaching aspects of the interface systenms.
Methods which take advantage of the characteristics of the Anput?
rodel, for sgliciting, storlng, ‘and analyzing the input information,
) are-investigated. Concepts in higher 1level interfacing systems are 3
also explored. Linear programing 1é the vehicle for experlmentai
‘\He;elopment of interface gystems. The results are appllcable to other
mathematical programing procedures. (Ruthor/MP)

s
<R

* - Reproductions supplied by EDRS are the best\that can be mad _*

* from the original document. - %
**************************************a;*********t ********************_

-

ek e Ao s o o o ok ok ok ok ook e o de e e ek o o dkok ko ok e 3 e e e oo e e e e g o kol o o kok Kok ******_ﬂg****
L]

.::h - el ‘) Industrial and Systems Engineering.;
N, . Report Series No. J-78-16
N e .o May 1978
, . .
‘ . » <L
- - -& 5
> ‘,{;‘;
s
P X
.""43‘.'.: - 7
. e ’ '
« 4
Koo i
A METHODOLOGY ¥OR DESIGNINC HIGH LEVEL COMPUTER L 3
N o
. INPUT SYSTEMS FUR MATHEMATICAL PROGRAMMING MODELSY
’ . . ,
by "
- . - ~7
.) John J. Jarvis . . .
' j L and " .
- . Chris Papaconstadopoulos - ' \
- Georgia Institute of Technology ’
" Atlanta, Georgia 30332 A f
- . » . B
’ \] . : - /
. ;
o .
£
- & -
' @ . v
. ' L)
. . -
. »
o .) 1
w { - ! 1
\ -3 :
. b

°

ABSTRACT

. This'paper presents a methodology for the design of cost—effective
computer input systems for mathematical prdgramming models. It illustrates

o ~

how the input language can be defined through a formal grammar and how the

cost-effectiveness of the input features can be determined by observing

0

L Q
their effect on the grammatié%l structyre. A methodology for the design
of the input parsing algorithm is p{psented, based on the graph of the grammar.
The graph can be transformed to provide effective error detection at theylex—
- / : '

ical an éyntaticai levels. The automatic deletion of edges and vertices,

. . through a\syntax-directed type input, provides increased semantical analysis.

.
.«
-)) : !
. .
. .

ERIC . ' : '

T - . : : S

O

ERIC

Aruitoxt provided by Eic:

N .
research has evolved into a science of a high degree of sophis-

.
algorithms are recognized for efficiency and universal applica-

>

the growth of computer science and technology,’
since most operations research methods requife a digital computer for efficient

cost-effective utilization.

There is, hgwever, a difficulty that causes most of .these sophisticated

computer algorithms to be underutilized* ‘the barrier "associated with ‘communi-

. . . ' . 4
cation between man and machine. Slnce‘accesg‘to tﬁgﬁg\algorlthms has required

considerable computer skills and special knowledge of program structure,

potential users tend to avoid sophisticated compu%ér codes for operations re--

»

search methods. . ()
) |
. b -
The purpose of this paper is to develop and demonstratzs the design of

L .
interface systems for cost-effective communication’ of the user with the computer-

¢
ized operations research procedures. These interfacing systems should provide
trade-offs between gosts incurred by the user .ad the machine. The concentration

7

is in the area of interfacing methods for implementing the optimization tech-
niques of ﬁaphematical programming. Emphasis is given to fiexibility of access~-
ing the algorithm, cost-efiactiveness, and pedagqgical or self teaching éspacts
of the interface systems. Methods which take advantage of the characteristics
of the input model, for soliciting, storing, and analyzing the input informat ...,
are investjgated. Concepts in higher level intérfacing systems are also
explored:

i

Linear programming is the vehicle for experimental development of interface

systems in this paper. The results are applicable to other mathematical program-

ming procedures (e.g., nonlinear and dynamic programming), since their data

requirements are quite similar. -
[]

“

The spectrum of computer systems for mathematical programming begins
Co

- with the commercial production packages and ends with the high-level input

-

system. The former represents the communicatian at the machine level and the

latter the communication of the problem environment level. The followindg list
1 : :)

is a representative feature-wise tracing of the . development in this area: .
- UNSVAC 1108 - LP, CLP [8], UHELP [3], MPOS [2], EZLP [-6]. The Iast on the

list is discussed in detail in a later sectionm of this paﬁer.

Definitiors and Basic Concepts N

- A metalanguage is a language describing another language (object-language).
. .)
- Terminal symbols are the symbols of the object language.

' - Nonterminal symbols are the symhols of the metalanguage.j (In this paper

& %

-nonterminals will be denoted by capital 1e£ters; e;g.z bIGIT is a non-
~terminal and can be used to denote any digit).
- An alphabet A is a finitg set of terminal symbols.
- A lA. uage is an infinité set of character strings on some alphabéf A,
- A production H is a string transformap{on rule or grammatical rule.
H is denoted as X - Y where Y is the transformed X.
Z A grammar G is the nonempty set of productiopsuover a given set of
terminal and nonter®inal symqus.
Any element of a lanzuage ig "préduced” through a finite recursive traﬁs—'
formation of strings. The starting point of this recursion is called the start--
ing symbol of the grammart In Operations Research languages, this starting

symbol is the nonterminal MODEL. This is the most structured nonterminal.

R Consider the .grammar: G = (N, A, EXPREssiON, P)
- .where: =~ N = {B;CI : set of nonterminals .
A-= {b,e} :+ set of terminals 1
¥
» /Jf !
. C \

v

W

= {EXPRESSION - BC - o .
B~ bB, B~ b,
C> cC, C~> c} : set of producftone
e.g., EXPRESSION - BC > bB » bbBc - bbbC - bbbc
The string bbbc is an element of the language generated by the grammar G.”
However, consider the strlng cbbec. A typical translatlon process weuld attempt
say, by left to rlght scannlng, to reach the starting symbol of the grammar)

by successively applying legal transformation rules,

Exhaustive Tree Search:

cbbc »~ CBBC ; terminated with error 51nce no further transformatlon 1s
possible
cbbc - CBBC - CBC : terminated with error 51nce o further transformatijon
is possible ’ . ‘ «

Hence, thewstring cbbc would be rejected as an illegal construct.
#

- The syntax of a language is the set of rules speelfylng legal gonstructs.

of the language.

- The semantig¢s of a language is thf assignment o% meaning:to the"cep;
structions of the language.

- A grammarlis nonlinear if at least one of the grammatical';aleS'have;

E N

the rules must

le VARIABLE ~
LETTER. DIGIT is a nonlinear one and so is characterized by the grammarl

/—\\éontalnlng it.) . “*w“'

.« - A grammar is linear if all the rules have a single nonterminal on the .~

on the rfght side, more than one nonterminal symbol. Al

<r have a single nonterminal in the left side. e.g., T

. !
left side and at most one nonterminal on the right side. e.g.,

OPERATd% >+ linear rule

.

Now we have .énough formalism to make a speculation about the expected cost

A 4
2

O

ERIC

Aruitoxt provided by Eic:

¢

\ -
.- . t -
of recognizing (acceptinngr rejecting) input character strings. We will

refer- to this process of 'recognition askgarsingﬁ

~*~The parsing of a string generated by a simple nonlinear production rule

will be more expensive than parsing a string generatea by a linear rule. The

reason is that. the nonlinear rule contains 'at least two nonterminals on the

2

.

right side and the resulting syntactical tree (parsing actually ‘is a tree

'search)vwill be more complex than aég tree implied by a linear rule. Further- -

more, the great&r the number of nonlinear rules in the grammar, the higher the

¥

expected parsing cost. Also, the higher the degree of nonllnearlty, the higher

the>parsing cost. These two aspects of nonlinear grammar, say density of non-

linearity and degree of nonlinearity, are controllable by the designer of the

grammar.

"

Sifice the rules of the grammhr are "models" of the language features,

the designérwcan weight the various input features by .their importance and

ar

’

F3 o

their parsing cost. .« . . '

The™ above concepts provide a foundation upon which a\ggst—effective method-

ology can be .devised. Before that, however, we shall discuss a metalanguage

Ay

-

which adequately describes grammatical specifications. ‘ '

Syntax Specifications L ; -

A metalanguage widely used to specify syntax is the Backus-Naur Form (BNF).

L

It precisely igecifles syntactical rules, but lacks the power to specify se-

mantical

rules.

N~

b In BNF, the following notational rules exist:
“

1.

Nonterminals ard written in brackets (<>); i.e:, <X> means the class
of nonterminals named X.
The sign of production (+) is replaced by :: = and is read as "is

replaced by "

N
g

{

‘/\'__/_.
T

<g L &
3. 1Multiple ways of transforming a nonterminal (alteynative [productions)

are written on thé same line separated by the ORing operater "rg.
R . .

‘ EXAMi:jS: R . S
. : n ENF, the following is writtens < : . ‘

‘
1

<DIGIT> ¢: = 1] 2.] 3 |

J9olo

—
»>

The recursive character of a set of productions can be easily specified,

. . ,
as in: o
Voo) S

\, °

<LIST> :: = <VARIABLE> | <LIST>, <VARIABLE>

[3 : P
An extension of the above feature is: v

L,.
<LIST> ::'=, VARIABLE | <LIST>, <VARIABLE>
(n) ~

’ where (n) assigns an upper bound to ﬁhé recursjon. s
" 5

¥
b

e following example could be a statement in a user oriented mathematical

progr ng system. Cofisider: LET Xi,‘XZ, LI » POWER > = 10.5.

In the context of formal lénguages,’this is a phrase of’é language with
a specified grammar. Parﬁ of this gramﬁéfrié’the following segment of syntacti-
cal rules related to tlWe above phrase.

[

<LIST CONSTRAINT> .:: = LET <NULL STRING><LIST><REL. OP><NUM>

<LIST> :: = <VARIABLE>|<LIST>, <VARIABLES

4

<VARIABLE> :: ="<LETTER> | <LETTER><LITERAL>

- TN (k1) .
<LITERAL> :: = <DIGIT>|<DIGIT><LITERAL>|<LETTER>|<LETTER><LITERAL> .
' (k-2) ‘ (k-2),
. <NULL STRING> :: = SPACE | SPACE <NULL.STRING> —~
(4) . ' o J

- <NUM> :: = <INTEGER>|<INTEGER>-<INTEGER>

<INTEGER> :: = <DIGIT>|<DIGIT><INTEGER>

<LETTER> : = A | B }.....| z

<DIGII>:: =

)
It is observed that this grammar specifies a maximal langth,of K characters

for variables. Also, it allows up to five spaces after the key word LET.

"In BNF, user oriented features can be included or excluded by a quick

t:gnsformation of the grammar. Hence, thé language des

. effect of certain features. The effect has two componern

=
‘1. The user-response and attitude towards certain
2. The cost associated with the design and utiliza

v

algorithm

1)
)

ner can visualize the
~N
s:

yntactical rules

ion of a parsing

As a final example of thislsection, a coﬁplete mathematical model and

its grammar wild be presented. Consider the following

N

- . OPT | C X,

The corresponding grammar is:

G = (N, A, MODEL, P) .
A ={A, B,..., Z,:1, 2,..., 9, =,-, ST,s, MIN, MAX, NULL}
N:

LETTER, DIGIT, INTEGER, LITERAL}

.

Where AE denotes Arithmetic Expression and CONST denotes

P is the set of'prqductions. S

- .

The grammar of the model is shown Below in BNF:

<MODEL> ¢: = <OPT><AE>ST<CONST. SET>

<CONST. SET> :: = <CONST.>!<COQ§T.><CONST. SET>
(M21) .
"(!

ar model:

1,M

{MODEL, CONST. SET, CONST, OPT. AE, NUM, SIGN, ARITHM. OP, VAR, AE2,

CONSTRAINT.

L 7
7/
<CONST.> :: = <AE> = NUM
<AZ> :: = <SIGN><NUM><VAR>|<SIGN><NUM><VAR><AE2>
(N-1) - - - i
<AE2> :: = <ARITHM OP><NUM><VAR>|<ARITH. OP><NUM><VAR><AE2> ,
(N-2)- '
<VAR> = <LETTER> | <LETTER> <ALFANUM>

. \ 7)
<ALFANUM> “MCA;ID | <DIGIT><ALFANUMS | ¢LETTER> | <LETTER><ALFANUM> o
(k-2) . .
. §
<z

~

<NUM> :: = <INTEGER>|<INTEGER>-<INTEGER>

<INTEGER> :: = <DIGIT>|<DIGIT><INTEGER>

DIGIT> ::=1| 2] ...9] 0" | ' .
<LETTER> :: = A | B | .,. | z -

<OPT> :: = MAX | MIN - .

<SIGN> :: =+ | - | null

<ARITM. OP> :: = + |i ~

A DESIGN METHODOLOGY

The metho&ology for processing (recognition and interpreation) of languages

for operations research (OR) models consists of a series of processing phases.

phases so that each phase will be/ responsible for process{ng certain'grammatf—

cal constructs of the language”in such a way that: ! V4

\

i. the information content will not beffaltered

-

) ¢
ii. a grammatically.illegal construct-will eventually be detected
iii. the input‘string will be transformed in a way that will assist the pro-

cessing by the next coming phase

v

iv. the system®’can be modularly designed.

N

fhis approach is language independent.

o~
b

. 13
A natural decompostion, used -in most compilers, is divided into three
. . a . = " 7
phases: lexical analysis, syntactical analysis, and'semantical analysis.
. ® .
Lexical analysis is the process in which the basic grammatical constructs

(variables, coefficients, etc.) are identified and their grammatical correct-
-) - "1
- ness is checked. ‘
’ . . J . 'T . o
Syntactical apalvsis is the process in which grammaticJT"coﬁstructs of

higher order (arithmetic expressions, constraints, .etc.) are identified and

checked. v ’))

\

Semantical analysis is the process in which a meaning is assigned to eagh
construct. This process checks the meaning éf a-specific.construct with respect

to other constructs, assuming syntactical correctness. - For instance, in %

. (. 4.
syntactically correct double bgynded constraint, the lower bound is gieatef '

'
L4 . *

than the upper bound.)) !
. The first two phases represent the recognition pProgess; the last’ one is
~ the interpretétion process. These phases will be presented in more detail in

the following sections. /r

’

‘ The desigm of the interfacing system should be initiated with the design

-

and analysis of the dialogue of the system. As a first step, the designer of

the interfacing system should define the level of communication by identifying

. .
N

various ways of entéring the model. As well, the input fﬁﬁ;iif; should be A,fn,

selected and explicitly stgted.

~

As a second step of the design, the grammatical restrictions on 'the input

should be described. THis impl{es syntactical and semantical spec;ficéticns;
‘ . I = .
The syntax can be specif{ed by formally describing the grammar. The Gemantics

attached to this grammar should be clearly stated. . L .

s

The thﬁigfstep of the desién should be the analysis of the grammar in order
3 ‘ ‘ 9 . g R .
o S 10 _

[RIC .. | S

Aruitoxt provided by Eic:

. N 3
A natural decompostion, used -in most compilers, is divided into three
v i ' a * A //,
phases: lexical analysis, syntactical analysis, and'semantical analysis.
. ® .
Lexical analysis is the process in which the basic grammatical constructs

(variables, coefficients, etc.) are identified and their grammatical correct-
-) - "1
- ness is checked. ‘
’ . . J . 'T . o
Syntactical apalvsis is the process in which grammaticJT"coﬁstructs of

higher order (arithmetic expressions, constraints, .etc.) are identified and

checked. v ’))

\

Semantical analysis is the process in which a meaning is assigned to eagh
construct. This process checks the meaning éf a-specific.construct with respect

to other constructs, assuming syntactical correctness. - For instance, in %

. (. 4.
syntactically correct double bgynded constraint, the lower bound is gieatef '

- - ! hd

than the upper bound.)) !
The first two phases represent the recognition pProgess; the last’ one is
~ the interpretétion process. These phases will be presented in more detail in

the following sections. /r

’

‘ The desigm of the interfacing system should be initiated with the design

-

and analysis of the dialogue of the system. As a first step, the designer of

the interfacing system should define the level of communication by identifying

. .
N

various ways of entéring the model. As well, the input fﬁﬁ;iif; should be A,fn,

selected and explicitly stgted.

~

As a second step of the design, the grammatical restrictions on 'the input

should be described. THis impl{es syntactical and semantical spec;ficéticns;
‘ . I = .
The syntax can be specif{ed by formally describing the grammar. The Gemantics

attached to this grammar should be clearly stated. . L .

s

The thﬁ%gfstep of the desién should be the analysis of the grammar in order
)) ¢) .
Q , . _l'V . . .

ERIC . - | S

Aruitoxt provided by Eic:

$
»
.
- /’

\
_to allow an’ estlmatlon of the expected cost assocLated with the grammar

v o 4

A E ‘?
Thls analysas 1dent1fies potentlal transformatlons and trade— Ts of’ flex1bg11t§

3
»” L4 hd

The flnal ver51on of the grammar will be the input to the fourth step ‘_\
The fourth step of the design should be the’ selectlon and de51gn6pf the -
. p& - ~ . .
supportlng software Algorlthme and the‘mode.qf their operation for lex1cal
. . . @

N

L]

and syntactical analysis should be defihed. The proper cost-effective data

L ' n -

‘structure should also be designed considering user featufes and the internal

>

. OR technique. 'The data structure is-the,enly part of the interfacing system

LI -
N

that will be affected by the OR technique.

Lexical Analyis ~ - . \
The basic function of the lexical analjsiS'iS'the'leEt—to;right scanning
of the input string and the grouping 6f charaeters'in‘units which repreéent the

'basic clasees of the'language. The following is the result of the lexcial
' ' RV-L08 . EI

-

analysis on a typical'iinear programming ohjective function:
v - ’ '

PMAXIMIZE 3 X1 L+ 71| x2 -1 s

H

Accordihg to the grammar of the language, these basic syntactic classes

(tokens) are nonterminal symbols and hence, they have names. Therefore, X1
i ¢

is a VARIABLE, |+ | is an ARITHMETIC OPERATOR, and so on. Blanks are
.) - . .

w

\

©. suppressed. . - jV
s A nonterminal might be mapped into a variety of terminals. Therefore,
another function of the lexical analysis is to find the exact mapping element

and establish theﬂproper pointers so that the information can be paséed to the

next ﬁhase.

How efficiently the information is processed is a problem of data struc-
= .

3\

tures and will not ,be discussed here. For simplicity, a simple table is used

.~ N \
.) -
&
. . -
which is usually called the Uniform Symbol Table (UST) It consists of two
'entries: the class name (nontermlnal), and the polnter to the appropriate
#able. ' v T
Various suépoit tables will be used by a lexical analyzer fbn variable
‘ names, numeric ertries, etc. The UST for the above example will he as folloqsf
) N ‘ |) ‘ Vi
Table 1. The Uniform Symbol Table
< -
. .) : Pointer
Token . Type in Tables .
\MAXIMIZE < ‘ OPTIMIZE o, 1
.) 3 NUMERIC _ 1
. >. - - - T
X1 ~ VARTABLE :) 1
+ . . ARITHM., OP. !
o NUMERIC | | 2
\
X2 - ' VARIABLE o 2
[. -
-] ARITHM. POP. -2
15 NUMERIC 3
7 3
This table, along with the updated support tables, will be the input to
the syntacticall anélyyis phase;;-‘The support tables are needed to preserve in- ‘
? formation which will Be used by the parser and semantic.énalyzer. Hence, the

[y

lexical analyzer should correctly update these tables. For instance, if a
variable name is SSEVned by the lexical—analyzer, it should be entered in the

table for variable<names only it if is not al;eady entered.

Through lexical analysis, the information content is preserved and the

:S / > b 7// \l.l \ ’
F e \ //Q) . .

. string is transformed into symbols of unit length but of hlgher grammatlcal
5
order. ThlS will make the syntactiical an1y31s easier since fhe parser w1il{pot

. O .‘\n Q J

be working on characters, but on tokens.
- 4 . - [

‘Lexical analysis, more formally def;ned, is the analysés'of an input

string through certain linear productions or "lineafEIle" productions, such as:

@

- <VARIABLE> :: = <LETTER>|<VARIABLE><LETTER>

/
.

By scanning the terminal‘s&mbols, which are the charai;ers; the nonterminals

N .
- (tokens) asﬁ c&nstructed At the same time, certain violations of the rules
are detected (e.g., illegal characters in an identifier, alphabetic chdracters.

« 1in numeric fi‘ld, etc.). .

At the ‘%fesense of an error, the lexica} analyzer.shyuld be able to re-
coves to scan ;he remaining string,and t?icreate a UST so that the patser will
detect any syntactical errors of higher order.

The implementation of the lexical»anaiyzer can be accomplished by coding a
state diagram where each state represents a nonterminal symbol of the grammar
and each arc represents a terminal symbol. For instance, the prsductions

v

<VARIABLE> ::

1t

letter|<VARIABLE> letter|<VARIABLE> digit

<INTEGER> :: = digit!<INTEGER>' digit
can be interpreted as. the graph of Figure 1.
Thé state LINK represents a starting state and the remaining of the

. grammatical rules. To increase the flexibility, an abstract symbol is intro-
duced; this is the "break" symbol which could be anything that differentiates

»

~

syntactical constructs including the null. That is to say, the break symbol

‘terminates a syntactical construct and introduces a new one. By introducing

—

N

the "break" symbol into Figure 1, we obfain the graph of Figure 2.

o .

letter

-
=

3

4 1

Figure-1l. The State Gréph of Grammatical De¥initions

J

\

A}

letter LINK digit

letter

digit

Figure 2. The State Graph of Grammatical Definitions
Inctuding Transitions under -the Break Symbol

15

" 13 '

- B 4 ' ' ~
. - . ‘

- The "break" symbol should be used only whén needed; if one Knows exactly -

- where to gd from the current state, then going gack'to LINK might duplicate

' '

‘the effort. Thus, the "break™ symbol should viélétevtgf—syntactical rﬁles, asg

— ¥
represented by the current location on the graph. This means that the break

]

symbol does not drive the parsing back to the current state nor to any other

state connected to the current one. The break symbol causes a transition back

to the LINK state ;hQFe it will either be defined as the starting symbol of
another synfactfcal construct, or it will cause an error; in the latter case,

it will.bé ignored to enable the process to .continue. X

The graphical representation should be able fo'handle ceyggin low-order non-) -

I ' vl -’ I . » s ~\4 I .
linear productions since theré is an implicit memory in the graph. This is *

. .
. -

illustrated by Figure 3, as a modification of the gragph of Figure 2, so that

‘ . .
the production <NUMERIC> :: = <INTEGER>[<INTEGQR>'<£NTEGER> can be handled

at the level of the lexical analyzer. ; T
N , . ,
breai ______ & .
ﬁ b
digit 1
- INT |
]
. |
|
letter I
|
|
| >
|
|
- |
|
letter]
AT | !

7 .

Figur%&?. The State Graph of a Grammatical Definition Illustrating
the Graphical Representation of Nonlinear Definitions

17 _ 1

ERIC

Aruitoxt provided by Eic:

P ‘ ’ 14

From Figﬁre 3 we vbserve that:

. §)
.

i. .The conét;%pt NUMERIC is represented dmplicitly by the two states

in the square with dotted lines. i
- : Y

ii. The "break" ‘arcs are reduced to those needéd. The graphicaf

L(lv - , - .

. e ’ , .
representation presented above can serve as the framework for a lexi-

- cal analyzer. For codiﬁg, each états‘of the graph must be represented -

with a separate portion of code. This épproaﬁh will ‘make the lexical

. analyzer highly modular since states and arcs can be easily added or

deleted. "Hence, grammar modificatfons can be performed at a low de-

- ‘ «
, °

sighiqg-qoét. "Since all the grammatical constructs will be defined

.
L]

on tﬁﬁ]gmaph, uncertainty will be dééreased, and thus the time of
M - ’

! - HA, . .4 . [
procegssing will probably deecreask in comparison to a table driven
. o Y “'
parsing. N
Szptactical\'Analysis o ’ .

. . The syPtactical analyzer operates on the\UST (Uniform'Symbol Table). Its

basic function is to recognize the syntactical consétucts and check the cor-’

LY

rectness of their construciton as specified by the rules of the grammar. At

-

the phase of parsing, the rules which were utilized by the linear analyzer are

eliminated from the grammar and the terminal symbols of the‘grammar at the

a“

current stage are the symbols of the UST (first entry). The second ‘entry of the
J . ,

table is' not used by the parser, but is used for the interpretation process

RS
. N)
which might be incorporated with the parser..’

An error recovery facility should ‘exist in the syntax analyzer for econom-~

ol

ical reasons since it would enable the parsegy to locate most of the errors with- -
out reprocessing the string. At worst, an error recovery facility enables the

parser to locate further errors not related to the first error encountered in

v

a string, while perhaps identifying legal syntactical elements wrongly as errors

A

&'18'

)

due to assuming a s&ate after an error which is different from the intended.
.

’

- At best, an error recovery, facility whose assumed state sufficiently matches

.

the intended state often éndicates qpecifia alternative syntaxes that can be
’ . .

' redefined as legal in the redesign of the syntax analyzer.

J
Consider the model:

-\ /

: N
OPTIMIZE Y e X,

N
ST) a..X_ 2R, ji=1,M

Assuming that the input has peen processed by the léxical analyzer as described
v N .

N

in the previous section, %ll the linear or "linear-like" productions have been
eliminated and the UST has ggﬁn creatéd. ' The entries' of the UST are the termid:'
' . ’ -

‘~al sumbols for the reduced grammar of the podel. This grammar is of réduced
nonlinearity since certain nonterminals were converted to terminals. An algt-
. ' L]

braic analogy to the reduction to nonlinearity is the conversion of Variablqs

[

to constants. Thus, the grammar. of the model could be rewritten in reduced

) 4
form whe?E‘Eﬁf?iEg'invsmall f;gﬁgys‘denote terminal symbols and the underline
. ;: used to separate them. Let ﬁs:éall this the "UST grammar." The UST grammar

in BNF is as follows: o ¢
<MODEL> :: = ofT ;__<A£>__§t__§CONS}:_SE$$
<CONST. SET> :: = <coxsr.$]<c0N5T.z<cbﬁs:. SET>

. <CONS?} 1t = <AF> > = num
‘ <AE; o= ;ign __num __var ' sig; _pum ﬁdr __§A£2> s

<AE2> :: = ao num varm num var <A£’2>

yhere . ' _

O

ERIC

Aruitoxt provided by Eic:

) ;opt denotes
st denotes
num denotes
var denotes
ao denotes

In the case of

o

optimize

-

subject to

numeric

variable

H

arithmetic operator

a state graph, a linear production,A - xB is conveﬁ&ed

‘to a transition from state A to state B througg'the arc x. At the syntax

analysis level, the productions are nonlinear with degree on nonlinearity

at least two.

certain nonlinear productions at the lexical analysic leyef. The definition

of a nonterminal (i.e., NUMERIC) was decomposed to its elements; each nonterm-

Previously, the implicit memory in the state gréph was used to handle

v

inal was represented by an arc.

analysis level. However, at this level,'tPe pgpductions might'have more than

be represented by arcs.

made.

.

s

All the symbgls of the grammar are represented as states in the graph\

The same concept can be appiied at the syntax

Y

*

"

ry

\

.one teérminal associated with each nonterminal and hence, the termipnals cannot

To solve this problem, a special assumption will bes

A neutral symbol (e) will be uysed to denote the arcs. ﬁj(fé asstimed that e

precédes all the symbblsAof the grammar. (The UST.grammar 1s assumedf) The
introduction Sf th

grammar. -

~—

0 .
Assuming

mbols S

l)

S

2)

3

S

S

3

4

, S

A

the production

is written as

«

is geutral symbol can be viewed as, a linearization of the

The following i€ a notation where.the depth of the structure is illustrated:

)

<

0

~ e (<] e -
¢

.s1 > (52'\‘_(53\> (54)))‘ . o

\

This in state graph notation is:

. .
The Si's are the states of the graﬁh and ‘the state in the square is the term-
. .

inal state. There may be mg}e than one terminal state.
. \
The state graph of the production ' _
N
¥ L.
' -
. sy s, | 5,558, is %
. AN
AN
. e S e e S \
"\2 v 4 . .

h ’
. Yy
) So > S | 5,8, | 845,
) ™~
= //?E\;%Q] 5,5, :
'::nv -
i

.The "e-equivalent" of this grammar is

'S —>_eSl !‘esaesl l eSieS2 \

. . .
The state graph of this grammar is presented in Figure 4.

3.

ﬂ ' ~

- . 18
[N , - '
5
, Y,
- N R
- ®
& ‘
e "
- Sl,f
/ Lo
\ e v S
v
e .
* 3
-3
, L %2
L A
Figure 4. The State'Graph of an "e;equivalent" Grammar
' .
- .
Indeed, the string S.S.5.S.S. is a legal one,since the "flow" reaches the term-

172737271

inai state Sl.' However, the stfing 51525351 is not-legai since there is not

path from state S, to state S

3

The amount of memory, implieitly embedded in the above state graph, is

1-

-

) //Z
exactly the same amount of memory embedded in a 0-=1 table representation of the i

L 4

graph as shown in Table 2.

-Table 2. The Matrix Equivalent to the State Graph of Figure 4

N
—
- s, 5 S, S ' \
.8, 1 1 | o 0 |
s,) o | 1 0
s, 0 1 0 1
s, 0 0 1 0 | ‘

— o - 22

19

s ‘ - ! ’ . \/
That is.to say that the parsing algorithm '"remembers" only what is the current

. . o . l

and the ?ggvious state of parsfng. This can be considéred as the major dis-

.
.

‘advsntage of a table driven parsing. It would be desirable to extend the

- . :)
memory of &he-state graph because it would facilitate features such as error
7 / ‘ v - /

recovery or diagnostics. ‘The cause of the problem of limited memory is the

regqursion through the saﬁé?;tate. For instdnce, in Figure 4 there is recursiomn
‘;‘ - . . R N .
flow through states-Sl and SZ' A wvay of extending the memory of the graph would

4 , — .

~ , be to consider each state as a family of statas, sot that state Sj is 4 type

of states and fiot a single state. Then, all.the recursions over state S, would

N

«wbe eliminated by introducing an additional state of type Sj each time there is

"
R - . .
a recursive transition egver state Sj' That is to say, in Figure 4 a new state,
. Sl and Sz? should be introduced to extend the memory of the graph. This is

illystrated in the state graph of Figure 5, where the pdints indicate an in-
finite repetition of the.same state sub-graphs. The state graph of Figure é
has. an infinité memory.
] -
"
By extendihg the memory of the graph:
i. the locational relationship of each state to other states is
explicitly defined, and
ii, at each point in time it is known exactly where the parsing. flow is
/
located.
However, the above approach could be considered as extreme. Certain recursions
can be préserved and still have the above two advantages if the following rule

is used: A recursion is eliminated by duplicating states if the state on which

the recursion occurs belongs to two or more syntactical constructs.

s

ERIC - _C o o

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

’ql

-

-

20

Figure 5. The Extreme Case of Memory Extension of the State Graph
of Figure 4 ‘

Consdier the production:

<AE> :: = ao

Ny

num var

.The corresponding graph is:

ao num var <AE>

-

var

The state at which the recursion occurs is (ao). However, it belongs only to

the construct AE and the recursion should be preserved.

The above methodologyv is illustrated with a complete example. Figure 6

represents a UST grammar similar to the one presented at the beginning of this

section. Figure 7 is the extended memory state graph of the same grammar, but

with the recursions eliminated as needed.

neutral symbol e.

S

All the transitions are under the

\

21

MODEL

o~
|
Figure 6. The State Graph of a Grammar of a Simple Linear Model.
The memory of the graph has not been extended.

L ' R . | 2

In the extend%d memory state graph, certain syntactical constructs are
1

implicitly represented in the sense that no explicity state was required.

These are AF, AE2, CONST. and CONST. SET.

°

The concept of extended memory can be viewed as an elementary learning
process since the more input that is processed the more can be said about the

following portion of Ehs—input. Hente, this learning increases from left to

-

right. This, ;ﬁhbined with the fact that there is prior restriction on the
expected input (e.g., linear expressions in linear programming) provides the

foundation for efficient error recovery and explicit diagnoistics x?e
efficieney of error recovery will similarly increase from left to }igpt. This

is important since the chance of an occurrence of a human error increases from
left to right. An additional advantage of the state graph is that any changes
in the grammar can be easily implemented by properly modifying the state graph.

’

The "break" symbol introduced in the state graphs for lexical analyzers

is meanihgless in the graphs® for syntactical analyzers. 1In an_actual design,

—

O ’ 23

- t -
. ~
g ;.— - ; -‘@
e : Figure 7. The Partially Extended—Memory State
' Graph of Figure 6.
: !
, L4

’

each state of the graph should be represented by a seﬁarate set of computer
. :) N

v

languaée statements. This increases the médulérity of the system. . The length (o

of the'code and the coding process appears to be the only disadvantages .of

the gréphical simulation. The advantages of the graphical representation are \
‘summarized below: s . .
d 1. The memory can be expandedfup to any desired de i .
" ' -~
- 2. Certain syntactical .constructs are implicitly represented.
o . . N v’
3. Efficiengy exists with respect to: . - : 5
fr e) . P
ji. grammam expansion or reduction
;f.'fb" : . : . °
#5 Jro e
ii. error recovery 1 o
;;' h . o - . . - ' s
" 4. Explicit diagnostics exist., : . , ‘
- Fo ') . . B ;
5. ﬂodular desigh exists.
— g o . . & .
N\N ’ z “ 0 supporting tables are reauiredt , _ I .
i " Dynamic Syntak Adjustment ok

The extended memory state graph provides a means for’@n'fndiréct'éemantical_
analysis. Given the type of a problem there exists some prioa knowledée of itg”
. syﬁtax~é¢ parsiné time. ~ 1t there is a way of explicitiyfspecifying the type of

.

" the model, the systéﬁ/:;uld'pfoperly adjust the state graph by deactivating
'ﬁcértainié;ateé. . , e NGy - - ' .

Let.us consider the example of the transpbrtation pfpblem. The correspond-

[

- T . : : '
ing model is a linear one with the restriction that the matrix coefficients .be

. .. . [T
3

=

1 tzefos would not be entered). The proper adjustment of the graph sﬁould be

.

the bypassing of .the two nonterminal states -num- in the constraint section of \
. N - » :

Figure 7. If a coefficient different than the implicit 1 is entered, the ¢

' ! ' .
system will detect this as & semantical error. 1In fact, the restriction of

. -,

"implicit 1" could be relaxed at the lexical level by suppressing all the co-

ERIC - 2 | s

o o o \\ v

. ' . o . -
efficients equal to 1. This coricept could be implement=d by representing'.,

the characteristics of a specific type of model by:a set of active states.
:) A

Hence, a_groﬁp of types of linear problems (i:e.; 3étworks, machine scheduling,

t

: etc.) can be fepresented by a 0-1 matrix where the columns are the states.

A modular design of the system with the proper labeling for the transfer

of the execution flow wouid facilitate the activation-deactivation of the

]

states at a dynamic mode, i.e.,uat the end of the execution the graph could be
reset to its initial configuration. In addition, the concept of dynamically

adjusting the state graph of the system ptrovides a means for deteéting certain

. - 7 .
3 model characteristics. Given a set of active states for a specific type of

model, and an--initial configuration of the state graph, it would then be pos?

L

sible 'to determine the type of the model. Moreover, this could be expanded
. since the linear model, at least grammatically, is considered as a special case

(i.e., a set of active states) of the nonlinear model.
. ' 4 T

Semantic -Amalysis : : T VZ

-

The semantic analysis which operates on the UST concentrates.on the
second entry of the table. The basic function of this analyzer is to assign
the proper meaning to an entry and execute the appropriate information handling.

For instance, if a numeric entry is located in front of a variable, it should. -

v

be interpreted as a coefficient.

{ .
The coding of the semantic analyzer dis usually an ad hoc procedure; most

- . ' . ' .

NG X .

often it is implicié&y included in the parser. i .

s . l) e

” In languages for OR models;iSemantic analysis is important since it can

8

’

detect certain irregularities before the optimization routine is activated and
3 -

. ‘ ‘r

sl s . . e

computer time is wasted. For instance, bound inconsistencies can be easily ¥

- .

detected. Howéver, the state of the art of semantic analysis:does not provide-

. a theory upon which a semantic analysis routine can be designed. .

2

Qo . E ' .

r \ B -
Full Tt Provided by ERIC. . . .

PORTABILITY

MODULARITY

TRANSFORMATION WORK

-

\

: TOTAL SYSTEM COST

INCREMENTAL COST

COST—m ' | | -
COMPUTER TIME

OPERATIONAL

MAINTENANCE COST
cost

EXECUTION SPACE

~ —HUMAN TIME

Figure 8. Cost Attributes of an Interfacing System

29

f

" —DATA COMPRESS£9N/’

. ——DATA IDENTIFICATION
PROBLEM

ECIFICATION‘—_—GOAL SPECITICATION

INPUT
IFLEXIBILITY

——SYMBOLIC INPUT

—TFREE FORMAT

DES TGN
[ADEQUACY

»

\— DUTECTION O CHAR.

 EFFECTIVENESS PROPERTILS ‘

\\\\ DATA BANK INTERFACE

/r — _OPERATTONAL RELIABILITY

PEDAGOGICAL : MOTIVATION
BENEFITS) . '

TEACHING CAPACITY

BENEFIT

— : - GENTRALITY

- —— EVOLUTION

Figure\ 9. Benefit Attributes of an Interfacing System

*

.

30

27

ECONOMIC CONSIDERATIONS

—

A major difficulty in the area of software economic analysis is the lack-

of a closed-form metric system; Gilb [4] presents progress towards that direc-

tion and some of his metrics will be presented here.
With respect ro Eﬁg\inberfacing systems, the economic attributes can be
divided into two general classes: cost and benefit. Figures 8 and 9 illuétrate

the breakdown of wvarious attributes; the terminal atpributes are the ones that

~

have real economic meaning, and the nonterminal ones are used to illustrate

the hierarchy and thus clarify the effect of the terminals on the system so
A\

that the analyst can estimate associated costs and benefits. This ciassificéf

tion provides a cost/benefit decision framework. The decision, depending on
the applicat}on environmeht, can be'rgached thréugh an assignmént 9f weights
of importance to the attributes attaining a small cost/benefit fation, the
design of the system can‘be scheduled accqrding to .the optimal yeight distri-

bution.

USER PSYCHOLOGY ' !

o
User psychology is an important part of the design of an interfacing system,

but because the mechanics of the system absorb most of the designer resources,

P
’

little attendtion is paid to it. Co éé trating exclusively on the mechanism

of the interfacing can be viewed as: y a partial design; a complete design

. R
should take into consideration the methanics of the human element of the man-

'

‘>machine system. to minimize the present -worth of the

total cost, but rather to maximize ‘the present worth of the total gain.

"User psychology considers the human interface with computer systems, its
e %
g . >
objective being to identify and #&nalyze behavioral patterns that increase the

s

effectiveness of the system. Ag such, it falls under human engineering and

’ v, _:«;;,
deals with rather complex envirzonhments.

4

o

ERIC

Aruitoxt provided by Eic:

28

v .
o

User psychology provides the designer with information about the potsghial
b\
user, “1.e., capabilities, intelligence, amount of’time achpLable to learn a

o

syntax, psychological effects of the design (motivation, boredom, etc,). The
’ ’
) t

overaftmeffective;:;s of the system will be increased if this informa{ii:\is

b+

properly utilized during the designing process.

1Al

There: are "intelligence gaps%hin current generation computers, and this

'AL..

becomes more apparent in the problem solv1ng area. , A successful man—machlne
2L

—

system should utilize human intelligence available on the termfnal to fill‘the
gaps of the machlne. This would also Substantially contribute to the effective-
ness o(\the system. Hence', the interf;cing system should have the capabilities
of retrieving from the user not Qniy iJforn@tiﬁn but intelligence as well. User
psychology provides an insight in this area.)

Martln [7] 1nd1cates that the user psychology should be studlad%ft three

levels: The first one is the functional con31derat10ns which studleséﬁm dis-

e
“J

tribution of functions fo the man and-to the chhine-(i.e.; which functions the
user perf&rms and which ones the machine performs). It is at this level that
the user;s intelligence will be utilized. An important consideration of this
level is the ability of the inte}facing sysﬁem to retrieve human experiencé

" which cannot be qpantified, and programmed explicitly in the machine. This
is very-important in the eavironment of operations research where one "channel
of flow" of human experience and intelligence is the matﬁematical model. The
capacity of this channel is iqpreased,if,the interfacing system provides'é high
AGgreé of input flexibility.)

Human judgment and.experience are further effectively utilized if the systeh9

proviabs editing capabilities. In the OR environment, it is a functional

j;bonsideration of user psychology to decide whether the model will be formulated

ERIC - V32—

29
R

by the user or by the machine. In other words, the user could enter an ex-

plicit fermulation or certain key characteristics of this problem.

’

The second level is that of procedurzl considerations which organize

the operation into a sequence of procedures, e.g., when is the model entered?

Wheﬁ are error messages displayed? When can the user edit ghe input? These
. , _ N .
are’ the questions to be answered at the procedural 1level. A good design "
" -
should avoid the "human channel overlodd," or user's boredom. On the other
hand, attention should be paid to creating to the ﬁ%er motivation for using the
%system. For instance, motivation can be incregsed by a comprehensive output.
With respect to.user's boredom, an impo;tant procedural consideration is the
flexibility of“the system to %ccept input through alternative seq;ences of
instruction. Experience indicates that the uéerq'ecomes bored by a system that
requires a fixeq\iqput sequence, especially if its length is not controlled
by the user. He should be able to effectively ﬁtilize his knowledge of the

system. .

The third level is that 'of syntactical cofisiderations, which primarily deals

>

with the effect of the syntax on the user. Experimenfal psychology proyides
iﬁsight iﬁto'how a particular syntactical feature is accepted by thé user. The ‘
s&ntax can affect: .

i. the time nexessary for a system to be learned, and

ii. the chance of an error occurrencé.

7 : Through statistical investigation, researchers have concluded that certain

/ .
conventions of natuyral Iﬁpguage should not be used. For instgnce, abbreviations
. L . .

as ISN'T or DON'T should Ee‘iszfeﬁ‘is IS NOT or DO NOT. Also words sushVas

°ILLEGAL or UNKNOWN ould be written as NOT LEGAL or NOT KNOWN.

ERIC | ¥ '

s : ty

- ‘ . 30

To summarize, the designer should consider the following:

1. Minimize the time necessary for the user to become familiar wigh
the system. .

2.2 The desién should promote user motivation for using/&be system.

3. The design should try to minimize the-chance of uéer frustration

due to diagnostics or other system behavior.

4. The human time on the keyboard should be minimized.

APPLICATIONS TO LINEAR PROGRAMMING e

-)
EZLP is an interactive computer system for linear programming problems

which was developed in }he School of Industrial and Systems ‘Engineering of the

Georgia Institute of Technelogy [6]. The goal of the system was 'to increase

the compuater share in formulating and solving a linear programming problem.

&
»

In that respeét, EZLP is a step towards narrowing the gap between the OR analyst

g

and the computer.

[
An informal characterization of the EZLP syntax is that it provides a

free formation with respect to the mathematical model. Hence, all the re-
strictions of a typical LP system are relaxed. QSual restrictions are: .

i. ".The linear expression must be entered before the relational

operator.. Usually, only a numeric entry is allowed to the right

of the relational operator. 3

ii. The variablgs.should be entered in the same sequence.

£
.

iii. The dimensions of the problem should be specified in advance.
EZLP relaxes the above restrictions and providés certain additional features
as summarized below:

"1. There is no restriction to the number of alternative objective
AY

functions.

~s

2. Single variable constraints with the same right hand side

34

31

N .
can be grouped into a single constraint (explicit list constraint) e.g., X1, X2

X2, X3 >= 10. . ﬂ - ‘ ‘

3. A bound can be assigned to all the variables e.g., ALL VARS >= 5.

4.. A bou;d can be assigned to all the variables.not assigned a bound up
to the point of entrance of the constraint, e. g. ALL OTHER VARS >= 10.

5. “Different bounds can ;E assigned”to the same variable in different
points in the model but the minimum upper bound and the éaximum lower’bound‘
will prevail. ” .

6. Afithmetic expressions can be bounded from above and below, for

example, 5 = X1 4+ X2 + X3 <= 10 ’
Y 4 ’

\,

7. Arithmetic expressions can be entered in both sides of'a relational
operator,'e.g., X1 +9X2 <= 10 - X3.

8. The;e is no restriciton to the order of va;igbles, e.g., X5+ X3 +
X4 <= 10 - X2 + X1 -

9. Indexed variables are allowed, e.g., X1,2,3 XZS,%

%p. Numeric vaiues can be entered in an arithmetic expLession as

single arithmetic entities. The suﬁmaxion of all these.nu@eri;s will form the
right hand side of the constraint, e.g., ROW3: 3 POWER - 2 + 6 HEAT + 10 <= 15

is equivalent to Row3: 3 POWER + 6 HEAT <= 7.

11. Prior knowledge of_Ebé size of the model is not required.

The design of the interface of EZLP was based on the methodology pre-

sented inwthe previgus sections. The state graph approach was used to perform
lexical and syntactical analysis; The complexity df the EZLP grammar was such
that the design took advantage of afl aspects of the state graph.

Semantical analysis, embeddéd in the process of sy;tacticgl analysis,‘is

.

limited to checking the consistency of bounds of the variables and expressions.

35

32

- -

EZLP detects most of the errors in a line. However, in ferﬁain instances, it
stops at the first error, ignoring the remaining part of the input string.

. . L ‘ e el D :
This occurs when it is stspected that severallarglcflc;al errors would be

. ¢ '
generated by error propagation should the scanning process continue. The

. ; .

“state graph provides the facility of pointing the exact -error point with a self-

explanatory diagnostic message.

The foliéwing is the EZLP nonlinear ggémmar in BNF:

Notation:
IME#. LIST CO&S. denotes Implicit List Constraints
s
Ei}L. LIST CONS. denotes Explicit List Constraints *
ALT. OBJ. FCN denotes Alterﬁative Objective Function
AE denotes Arithmetic Expression
INT. AE . denotes Internal Arithmetic Expression
REL.- OP denoteks Relational Operator .
AO -, \ denotes Arithmetic Operator .
-3
NUM denotes Numeric
VAR denotes Variabie
SPECS ' deBoées Specifications
COEF denotes Coefficieﬁt
~ .
LP ’ Renotes Linear Programming
- ¢

36

.Definitions:

<LP MODEL> ::° = <OPT><LINE NAME><AE><MODEL SPECS>

<MODEL SPECS»>

<MODEL ENTRY> | <MODEL ENTRY><MODEL SPECS»>

<MODEL ENTRY> <ARITHM. CONSTRAINT>|<LIST CONSTRAINT> |

<ALT. OBJ. FUN> ' .
<LIST CONSTRAINT> :: = <EXPL. LIST CONS>|<IMPL. LIST CONS>
<ARITHM. CONSTRAINT> :: = AND <LINE NAME><AE><REL. OP><AE> |

AND <LINE NAME><NUM><DEL. OP.»<AE>

/

<REL. OP>
<ALT. OBJ. FUN> :: = ALSO <LINE NAME><AE>
<EXPL. LIST CONS> :: = AND <LINE NAME><NUM><REL. OP.><VAR.LIST>|

AND <LINE NAME><VAR LIST><REL. OP><NUM> |

AND <LINE NAME><NUMs<REL. OP><VAR. LIST><REL. OP.><NUM>

<IMPL. LIST CONS.» :: = AND <LINE NAME> ALL <OPTION I> VARS
<OPTION 2> . |
. . :-;7
<OPTION 1> :: = OTHER|nuli ,

. <OPTION 2>.:: =<REL. OP><NU>|URS

<AE> 't: = <SIGN><TERM>|<STGN><TERM><INT. AFE>
<INT. AE> :: =<AQ><TERM>|<AO><TERM><INT. AE>
<TERM> :: = <COEF><VAR>|<NUM>
<VAR LIST> :: = <VAR>|<VAR ~, <VAR LIST»>
<VAR> :: = <LETTER>|<LETTEE><VAR STRING>
<VAR STRING> :: = <PREFIX STRING>'<PREFIX STRING><VAR STRING>
<PREFIX STRING> :: = <DIGIT>|<LETTER><INDEX>
—FNDEX> :: = <DIGIT>, <DIGIT>|<INDEX>, <DIGIT>
<LINE NAME> :: = <VAR>| Null 7
r . -

37

R

<COEF> :: = <NUM>|Null
~t NUM. - o= <INTEGER> | <INTEGER> | <INTEGER . | B

<INTEGER> - <INTEGER >

<INTEGER> :: = <DIGIT>|<DIGI-T><INTECER>
" <DIGIT> _,_‘ = O|1|2| --- |9 . -
<LETTER> rro= A|Bl --- IZ

<OPT> :: = MAX | MIN | MAXIMIZE | MINIMIZE
/

<SIGN> :: = + | - | Null

<AO> :% = + I - = @

EREL. oP> :: = <: l = |> = l =<I = >'
s .

' The above grammar after the lexical analysis is

t

tqgnsformed{fo the following UST grammar. i
N - "
<LP MODEL> ¢: = Opt. - Linc name - <AE><MODEL SPECS»> o

<MODEL SPECS»> <MODEL ENTRY> | <MODEL ENTRY><MODEL SPECS>

<MODEL ENTRY> <ARITHM. CONSTRAINT>|<LIST CONSTRAINTS | .

<ALT. OBJ. "FUN> - C
<LIST CONSTRAINT> :: = <EX PL. LIST CONS,»=¥MPL. LIST CONS.>
<ARITHM. CONSTRAINT> :: =-AND.;§mine name - <AE>_Rel. of - <AE> |

AND - Line name - num - rél, oé -

-
-~

<AE> - rel. op. - num .

<ALT. OBJ. FUN> ALSO - line name - <AE>
<EXPL. LIST CONS.> :: = AND - line name - num - rel. op -
 GVAR LISTs>|
AND - line name - <VAR LIST> -
S - . Rel. op. -\huﬁ I "
"AND - line name :”num - rel. op. -

<VAR LIST>| - rel.. op - num

£,

, - e o _—— =~ -— = - e — —
4 \ 4 \
\ { i
\ '/l tA \
~ - ¢ ‘J‘.“_:' - ~ -
a0t : ’ ('\
’)
T - ' ’
. f line line
-nane . nanme
AO VAR , VAR-}." NUM T AO
g g s
J . . . /QJL e AO NUM VAR
"~ - ' s
OTIED VARG . VAR "' 0P
e
g) e o
» LES , 2 AO NUM VAR
b |
1L
AO nv
R . Tieure 10. The State Granh of the EILP Crammar

3

ERIC : . 3 g

o

‘

<IMPL. LIST CONS. >"’? AND -~ llne name - ALL - <OPTION 1>. - “WARS - <OPTIOV 2>

i
<OPTION 1> :: R.4 Null

il

<OPTION 2> :: = rel. op -, num URS

<AE> :7 = Sign - Term | 51éi - <TERM><INT AE>
-<TERM> :: = Coef '~ Var | num { "",

<VAR LIST> :: = Var‘| Var, - <VAR LIST>

The state graph correspondlng to the above grammar';s shown in Flgure 10.

y

In'thls graph, certain nontermlnals are represented'implicitly, i.e., by a

group of states. These are all the nonterminals at the left of the definitions. °

A\ 3 . .
The terminals'- sign -~ ‘and - coef - are omitted since their difﬂErenqg

from their counterparts - ao - and - num - is the null element. . JQ
it) ’ .o LA
The EZLP grammar could be dynamically adjusted at low cost to extend its
capabiiities{‘” Special forms of linear programming could be inputted through the
. i . . - .

r ' ' : : - .
E§LB in erface with the error recavery mechanism reflecting their special

gristics for instance, if EZLP'were {o be adJusted to handle only models

with 0-1 coeffic1ents, the only change should be to redefine TERM as <TERM> :: =
L // \\
<VAR> | <NUM>. In t tate gra h, this transla és i o'eliminatin the arcs
| Aﬂ%ﬁgﬁ grap s ing 3
e

leadlng frotdyﬂggsta;"

AE (Arithmétic Expression) should be

/‘

num to. the state Vé/// -The generic state graph of

'a/s\’ir(’Figure 11.

The State Graph of an Arlthmetic Expression with 0-1
Coefficients : .

'3

SO o 40 y

v

n

.\)

ERIC

Aruitoxt provided by Eic:

’ level of 1nformat&on compies51on This 1mp11es that the rate of communication

AsPects of user psychology were consldered in the design of EZLP. The

4
.

h1°h flexibility of 1nput reduces-the user's boredom and 1ncrcase his likeli-~

hood of using the system, especially in the academic environment. The capacity

¥

<

e EZLP éntriess Constraints as " AND X1, X2, X3, >= 10"

<= 5“'are'egamples'of entries with increased informa-
! *

tiom capacity, for/the same reason, the capacity of thé user's short term memory -

has been increased. As a result, human judgment can be exercised in a more -

effective way in the process of formulating or editing the model.

By comparing EZLP to the other existing interfacing systems for LE it is”

.

~ -

apparent that there are mainly tqp advances. the elevation of the. communlcatlon_ o,

o »”

closer tg the user S thlnklng level, and a higher rate of communication.

"

a

The fina; can be conSldEred as a cBntribution to ths task of "retrlev1ng user's ;

-

o »

experience" and henceva more effectlve man—machlne system. Ihg second is a

’ - N «
major etononlc con%}deraticn affecting several economlc attrlbutes e T
. . . §

EZLP and its variations. represent-a”man¥machiné communication at a fixed 3

. y
NECI e . ¢
IA

7 > e
of the EZLP'variatibn will betapproximately the same; i.e., a'grammar transform-

ation will not substantially affect the rate of coffmunication. On the other

-
'

.o» .
hand, it may affect the "experience retrieval." A T

To substantially increase the rate of communication in the lineas environ-

ment, the system should prov?de facilities' of symboli¢ inpuyt of higher informa-
. . :) K- L .o f‘.-
tion capacity. For instance, the arithmetic expression >

3

MAX €1X% + C2X2 + ... + C10X10 could be inputted as: _ . .
MAX SUM CIXI I~= 1,10 or -) e ..
. - T
MAX SUM CIXT T = 1,2,3,...,10) : . e
Ak : S "L ‘ 47 ~ _—
. s . S L .
LIRS . . e . - - 5

B 38

Note the simplicity of the grammatical definitions:
<0BJ FUN> :: = <OPT> SUM <CQEF> X <INDEX><iNDEX>:= <NUM>, <NUM>
X -

SCOEF> :: = <INDEX>|Null

a

" These facilities, if carefully designed cons1der1ng the potentlal user

>
« . al

%
psychology, may substantlally affect cost effectlveness of the system.

-
Nonllnear Programiing = . . ' (' v
n; $: . LI 4

The concepts,Hlscussed in the previous chapters apply to processing non-
H

linear models Once the features of the system,have been decided, the grammar
/I _') . -
should be SpeElfled fh an eff%c1ent metalanguage This speeification for non= !

-

11near1ty would be similar to the general llnear model spec1f1catlon with the
addition of nonllnear arithmetic express1ons. As an exam@le, the grammar of EZLP

of the previous sectlon, can be easily converted to a grammar for nonlinear in-

5 L4 -

put. All the features of EZLP would be preserved if AE INT AE and TERM are
8 -~

the only redeflned“nontermlnals. The new definition should bé a broader one

.able to/éézept hghilnear entries as welk as llnear This could be accomplished

by the following definitions:

<AB> i1 = <SIGN><TERM> |<SICN><TERM><INT. AE>
<SIGN><NUM>]<SIGN><NUM><TERM><INT. AE>

<INT. AE> :: = «AO><TERI\4>|<A0>fNUM> <AO><TERM><INT. AE>

<AO><NUM>2TERrD<INT} AE>

<TERM> :: = <VAR><EXP> | <VAR><TERM>

<EXP> :: =|d<NUB |NULL o o

ope

N B Pead '\ . . .
With the above definitions %he systém would be .aboe to accept an input as:

Max X + X42 T 2 X YZ + 15 - XZ4 20"

-« RJ

. Lexical analysis\would‘transfbgm the above definition to the following UST

. : .

5 .

&

definitions: o iy ‘ ?
"<AE> :: = Sign - <TERM>| Sign - <TERM><INT. AE>
RN Sign - Num' | ,Sign ~ Num ~ <TERM><INT. AE>

<INT. AE> :: = A0 - <TERM>| A0 - Num

A0

<TERM>| A0 - Num' - <TERM><INT AE>
A0 - <TERM><INT. AE>
<TERM> :: = Var - 4 - Num Var - <TERM> .

. N~

The’ above translates to the following state graph of Figure 12.

3

oyt ’ .

Figure 12. The State Graph of a Nonlinear Arithmetic Expression

Nonlinear programming,.with'éxceptions of some special forms as qﬁadratic
programming, is based on function evaluation and sear ch methods rather than qﬁ
‘a closed form matrix dirven.methodology. The most efficiént‘way of handling
this situatioq is to simply append the nonlinear ekﬁ}essions to a program writtéu
iﬁ a high le;él, g=neral purpose language. The associated coﬁpiler would check

the syntax of the input. So the syntax of a high level, well-known language

+ . [y

O

ERIC

Aruitoxt provided by Eic:

40

~ ’
1
would be the primary part of the syntax of the interfacing system. This im-

‘ .y . : .
plies that the potential uset would, very possibly, be required to become

‘ £
familiar only with a few key words of the system.

CONCLUSIONS

The goal of thfs research was to develop a cost-effective methodology for
inputting mathematical models of Operations Rgsearch into the computer. Elements
of matﬁematical linguistics provided a framework for this methodology. Through
grammatical speciéications, the designer can visualize the complexity of the
system and, *hence, estimate the associated deﬁelopment, operationa} and mainten-

ance "costs." Through grammatical transformations, these costs can be altered

< @ .
and the system, during the analysis stage, can reach a cost-effective state.

- 1

Given the firmral ?%rm of the grammar, thewparsiﬁg'algogithm can be designed as a
flow thréugh legal syntactical states. This leads to Ehe state graph approach.

“The above methodology can be seen as a systematic step-by-step transformation
ofi the syétem feafures expressed in English to 'a highly modular code._ The

most important advantage of this feature is that it provides the basis for e\\\

system whose syntax can be altered at input time.

»

&

o
©

s
(SN

<O

41

REFERENCES

Aho, A. V. and J. D. Ullman, The Theorv of Parsing, Translation, and
Compiling, V. 1 -- Parsing, Prentice-Hall, Inc., 1972. >

‘Cohen, C., A Guide to MPOS Version 2, Multi-Purpose Optimization System,

Vogelback Computer Center, Northwestern University,’ 1975.

Donaghey, P. Sewan, D. Singh, 'A Beginner's Language for LP, Industrial
Engineering, p. 17, 1970.

Gilb, Tom, Software Metrics, Winthrod}Computer Series, 1977.

Gross, M. and A. Lentin, Introduction to Formal Grammars, Spring and
Verlga, 1967.

Jarvis, J. J., F. H. Cullen, p. Papaconstadopoulos, EZLP: An Interagtive
Computer Program for Solving Linear Programming Problems, School of
Industrihl and Systems Engineering, Georgia Institute of Technology,
1976.

Martin, J., Design of Man-Cpmputer Dialogues, Prentice-Hall, Inc., 1973.
\

Wagner, G. ﬁ. and M. M. McCants, Conversational Linear Programming for
Experimental Learning, Engineering Education, Vol. 62, No. 7, 1972.

Wall, R., Introduction to Mathematical Linguistics, Prentice-Hall, Inc.,
1972,

