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ABSTRACT

This paper presents a methodology for the design of cost-effective

computer input systems for mathematical prdgramming models. It illustrates

how the input language can be defined through a formal grammar and how the

cost-effectiveness of the input features rcan be determined by observing

oa. ,

their effect on the grammati61 structgre. A pethodology for the design

of the input parsing algorithm is presented, based on the graph of the grammar.

The graph can be transformed to provide effective error detection at the lex-
/

ical an syntaticil levels. The Automati-6 deletion of edges and vertices,

through A syntax-directed type input, provides increased semantfcal analyst's.

ti



Operati research has evolved into a science of a high degree of sophis-

tication. Igorithms have been developed for solving-a variety of problems-

Many.of algorithms are recognized for efficiency and universal applica-

tion. The evolutl_on paralleled the growth of computer science and technology,

since most operiations research methods require a digital computer for efficient

e cost-effective utilization.

6
There is, h9wever, a difficulty that causes most of these sophisticated

computer algorithms to be uriderutilizea% 'the barrier 'associated with 'communi-

cation between man and machine. Sinn.accesS\to tliesalgorithms has required

considerable computer skills and special knowledge of program. structure,

potential. users tend to avoid' sophisticated compu r codes for operations re-.

search methods.
(

The purpose of this paper is to develop and demonstrate the design of

interface systems for cost-effective communication'of the user with the computer-
,

ized operations research procedures. These interfacing systems should provide

trade -offs between costs incurred by the user -ad the machine. The concentration

is in the area of interfacing methods for implementing the optimization tech-

niques of Mathematical programming. Emphasis is given to flexibility of access-

ing

-,

the algorithm, cost-effectiveness, and pedagogical or self teaching aspects

of the interface systems. Methods which take advantage of the characteristics

of the input model, for soliciting, storing, and analyzing the input informati,-,

are invest4gated. Concepts in higher level interfacing systems are also-

explored'.

Linear programming is the vehicle for experimental development of interface

systems in this paper. The results are applicable to other mathematical program-

ming procedures (e.g., nonlinear and dynamic programming), since their data

requirements are quite. similar.
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The spectrum of compUter gygtems for mathematical programming begins

-with the commercial production packages and ends with the high-level input

system. The former represents the communication at the machine level and the

latter the communication of the problem environment level. The following list

is a repres,-ntative feature-wise tracing of the, development in this area:

UnVAC 1108 LP, CLP [ 8 ] , UHELP [ 3 ], MPOS [ 2 ] , EZLP [.6 ] . The last, bn the

list is discussed in detail in a later section of this paper.

Definitions and Basic Concepts

A metalanguage is a language describing another language (object,lnnguage).

Terminal symbols are the symbols of the object language.

Nontermirial symbols are the symbols of the metalanguage.: (In this paper

nonterminals will be denoted-by capital letters; e.g., DIGIT is a non-

terminal and can be used to denote any digit).

An alphabet A is a finit set of terminal symbols.

A liguage is, an infinite set of character strings on some alphabet A.

A production H is a string transformation rule or grammatical rule.

H is denoted as X Y where Y is the transformed X.

- A grammar G is the nonempty set of productions over a given set of

terminal and nonterminal symb4s.

Any element of a language is "produced" through a finite recursive trans-

formation of strings. The starting point of this recursion is called the start
4

ing symbol of the grammar. In Operations Research languages, this starting

symbol is the nonterminal MODEL. This is the most structured nonterminal.

*, Consider the grammar: G = (N, A, EXPRESSION, P)

.where:

t

N = {B,C} : set of nonlerminals

A= {b,c} set of terminals
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P = {EXPRESSION + BC

B + bB, B + b,

C + cC, C + : set of producitons

e.g., EXPRESSION BC + bB + bbBc + bbbC + bbbc

The string.bbbc is an element of the language generated by the grammar G.0

However, consider the stringicbbc. A typical translation process would.attempt,

say, by left to right scanning, to reach the starting symbol of the grammar

by successively applying legal transformation rules,

Exhaustive Tree Search:

cbbc + CBBC ; terminated with error since no further. Iransformation is
ti

possible

cbbc + CBBC + CBC : terminated with error since to further transformation
is possible 4

Hence, tha..string cbbc would be rejected as an illegal construct.

The syntax of a language is the set of rules specifying legal'onstructs`

of the language.

-'The semantics of a language is the assignment of meaning' to thecon7

structims of the language.

- A grammar is nonlinear if at least one of the grammatical rules.have,

on the right side, more than one nonterminal symbol. Al the rules must
%.

have a single nonterminal in the left side. e.g., T le VARIABLE +

LETTER, DIGIT is a nonlinear one and so is chara terized by the grammar

-

si.

-A. grammar is linear if all the rules have a single nonterminal on the

P----ontaining it.

left side and at most one nonterminal on the right side. e.g.,

OPERATOR + + : linear rule

Now we have,enough formalism to make a speculation about the expected cost

4

ti
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of recognizing (acceptingcTejecting) input character strings. We will

refer to this process of'recognition as parsing.

/-"""The parsing of a string generated by a simple nonlinear production rule

will be more expensive than parsing a string generated by a linear rule. The

reason is that, the nonlinear'rule .contains'at least two nonterminals on the

right side and the resulting syntactical tree (parsing actually -is a tree

search) will be more complex than tree implied by a linear rule. Further-

More, the greatar the number of nonlinear rules in the grammar, the higher the

expected parsing cost. Also, the higher the degree,of nonlinearity,..the higher

the parsing cost. These two aspects of nonlinear grammar, say_density of non-

linearity and degree of nonlinearity, are controllable by the designer of the

grammar. Since the rules of the gram4ar are "models" of the language features, %

the designer-bean weight the various input features by .their importance and

their parsing cos.

The'above concepts provide a foundation upon which a coSi-effective method-,

.

ology can be devised'. Before that, however, we shall discuss.a metalanguage

which adequately describes grammatical specifications.

Syntax Specifications

A metalanguage widely used to specify syntax is the Backus-Naur Form (BNF).

It precisely s ecifies syntactical rules, but lacks the power to specify se-

mantical rules.

In BNF, the following notational rules exist:

1. Nonterminals and written in brackets (<>); i.e:, <X> means the class

of nonterminals named X.

2. The sign of production (-4-) is replaced by = and is readas "is

replaced by".



3. Multiple ways of transforming a nanterminal (alternative productions)

5

are written on the same line separated by the ORing operat

0

)
EXAMPI S:

n BNF, the following is written'

<DIGIT> !: = 1 12-1 3 ..1 9 I 0

The recursive character of a set of productions can be easily specified,

III II

as in:
J

<LIST> :: = <VARIABLE> 1 <LI?, <VARIABLE>

An extension of the above feature is:

<LIST> ::'=, VARIABLE 1 <LIST>, <VARIABLE>
(n)

where (n) assignS an upper bound to to
)

following ex Ample could be astatelent in a user oriented mathematical

prograiming system. ColCsider: LET Xl, X2, LI , POWER > = 10.5.

In the context of fdrmal languages, this is a phrase of a language with

a specified grammar. Part of this gramear is*the following segment of syntacti-

cal rules related to die above phrase.

<LIST CONSTRAINT>.:: = LET <NULL STRING>,<IIST>'<REL. OP><NUM>

<LIST> :: = <VARIABLE>1<LIST>., <VARIABLE!

< VARIABLE> =-<LETTER? ! <LETTER?<LITAAL>
(k-1)

<LITERAL> :: = <DIGIT>I<DIOIT><LITERAL>1<LETTER>I<LETTER><LITERAL>
(K-2) (k-2),

<NULL STRING> = SPACE I SPACE <NULL,STRING?
(4-)

<NUM> = <INTEGER>1<INTEGER> <INTEGER>

<INTEGER> :: <DTGIT>1<DIGIT><INTEGER>

o

<LETTER? = A 1 B Z

A
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<DIGIT>:: = 1 1-2 I . .. 9 I

It is observed that this grammar specifies a maximal lagthof K characters

for variables. Also, it allows up to five spaces after the key word LET.

In BNF, user oriented features can be included or excluded by a quick

transformation of the grammar. Hence, the language des ner can visualize the

effect of certain features. The effect has two camponen s:

`1. The user-response and attitude towards certain syntactical rules

2. The cost associated with the design and utilization of a pa,rsing

algorithm

As a final example of this section, a complete mathematical model and

its grammar wig. be presented. Consider the following rrnCr model:

N

OPT Y CIXI
I=1

ST Y. AijX, = Rj
1=1

J = 1,M

The corresponding grammar is:

G = (N, A, MODEL, P)

A = {A, B,..., Z,1, 2,..., 9, =,-, ST,T-, MIN, MAX, NULL)

N = {MODEL, CONST. SET, CONST, OPT. AE, NUM, SIGN, AkITHM. OP, VAR, AE2,

LETTER, DIGIT, INTEGER, LITERAL).

Where AE denotes Arithmetic Expression and CONST denotes CONSTRAINT.

P is the set of productions.

Th e grammar of the model is shown below in BNF:

<MODEL> r: = <OPT><AE>ST<CONST. SET>

<CONST. SET> :: = <CONST.>I<COVT.><CONST. SET>
(M1)

`C

.4



<CONST%> = <AE> := NUM

<AE> = <SIGN><NUM><VAR>1<SIGN><NUM><VAR>AE2>
(N-1)

<AE2> = <ARITHM OP><NUM><VAR>1<ARITH. OP><NU-M><VAR><AE2>
(N-2)-

<VAR> = <LETTER>1<LEITER><ALFANUM>

<ALFANUM> - <DIGIT>I<DIGIT><ALFANUM>I<PLUTER>1<LETTER><ALFANUM>
(k-2)

<N M> :: = <INTEGER>1<INTEGER>.<INTEGER>

<INTEGER> :: = <DICIT>l<DIGIT><INTEGER>

<DIGIT> = 1 1 2 1 ... 9 1 0

<LETTER> = A 1 B 1 Z

<OPT> = MAXI MIN

<SIGN> = + 1 I mall

<ARITM. OP> : = 1

7

A DESIGN METHODOLOGY

The methodology for processing (recognition and interpreation) of languages

for operations research (OR) models consists of a series of processing phases.

These phases represent a decomposl iqn of the processing into sub processing

phases so that each phase will b responsiblt for processing certain grammati-

cal constructs of the languag in such a way that:

i. the information content will not b&1'altered

ij. a grammatically.illegal construc.t- will eventually be detected

iii. the input string will be transformed in a way that will assist the pro-

cessing by "the next coming phase

iv. the systems can be modularly designed.

This approach is language independent.

.11
Q



I

A natural decompostion, used 4n most compilers, is divided into three

phases: lexical analysis,- syntactical analysis, andosemantical analysis.

Lexical analysis is the process in which the basic grammatical constructs

(variables, coefficients, etc.) are identified and their grammatical correct-.

ness is checked.

s'
Syntactical anal /sis is the process in which gramMaticli'' constructs of

higher order (arithmetic expressions, constraints, .etc.) are identified and

checked.

Semantical analysis is the process in which a meaning is assigned to each

construct. This process checks the meaning of a-specific.construct with respect

to other constructs, assuming syntactical correctness.. For instance, in aa

syntactically correct double bcowndqd constraint, the lower bound is greater

than the upper bound.

The first two phases represent the recognition process; the last' one is

the interpretation process. These phases will be presented more detail in

the following sections. J

The desigmof the interfacing system should be initiated with the design

and analysis of the dialogue of the system. As a firSt step, the designer of

the interfacing system should define the level of communication by identifying

various ways of entering the model. As well, the input

---i

Par s should be

selected and explicitly stated.

As a second step of the design, the grammatical restrictions on'the
input

should be described. This implies syntactical and semantical specificaticns,

The syntax can be specif(ed by formally describing the grammar. The semantics

attached to this grammar should be clearly stated. .

The 01419, step of the design should be the analysig of the grammar in order

1 n.
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A natural decompostion, used -in most compilers, is divided into three

phases: lexical analysis, syntactical analysis, andosemantical analysis.

Lexical analysis is the process in which the basic grammatical constructs

(variables, coefficients, etc.) are identified and their grammatical correct-

ness is checked.

Syntactical anallisis is the process in which gramMaticli'' constructs of

higher order (arittimetic expressions, constraints,iatc.) are identified and

checked.

Semantical analysis is the process in which a meaning is assigned to each

construct. This process checks the meaning o a-specific.construct with respect

to other constructs, assuming syntactical correctness. For instance, in "a
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syntactically correct double bndqd constraint, the lower bound is greater

than the upper bound.

The first two phases represent the recognition process; the last one is

the interpretation process. These phases will be presented more detail in

the following sections. J

The design,of the interfacing system should be initiated with the design

and analysis of the dialogue of the system. As a irst step, the designer of

the interfacing system should define the level of communication by identifying

various ways of entering the model. As well, the input

-23

par s should be

selected and explicitly stated.

As a second step of the design, the grammatical restrictions on'the
input

should be described. This implies" syntactical and semantical specifications.,,

The syntax can be specif {ed by formally describing the grammar. The semantics

attached to this grammar should be clearly stated. .

The thtiit step of the design should be the analysis of the grammar in order

1 n.



to allow anestimation of the expected cost associ.ated with the grammar.

This analysis' identifies potential transformations and ttade-o4s' of flexibi,lit}.
.

The final versiZgl of the grammar wirl,he the input to the fourth step.far

The fourth step of the design should be the'selec'tion and designvof the
.

supporting software. Algorithms and the-mode.of their operation for lexical
a

and syntactical analysis should be defined. The proper cost-effective data

structure should also be designed considering user featuies and. the internal

OR technique. The data structure isthe,only part of the interfacing system

that will be affected by the OR technique.

Lexical Ana.lyis

The basic function of the lexical analysis is'the left-to-right scanning

of the input string and the grouping of characters in 'units which repreSent the

basic classes of the'language. The following is the result of trle lexcial

analysis on a typical linear programming okjective function:

MAXIMIZE X1 I X2 15

According to the grammar of the language, these basic syntactic classes

(tokens) are nonterminal symbols and hence, they have names. Therefore,
t

is an ARITHMETIC OPERATOR, and so .on. Blanks areis a VARIABLE,

suppressed.
I

tai

A nonterminal might be mapped into a variety of terminals. Therefore,

another function of the lexical analysis is to find the exact mapping element

and establish the_proper pointers so that the information can be passed to the

next 01-lase.

k

How efficiently the information is processed is a problem of data struc-

tures and will not!be discussed here. FOr simplicity, a simple table isused
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which is usually called the Uniform Symbol Table (UST). It consists of two

entries: the. class name (nonterminal), and the pointer to the appropriate

sable.

Various support tables will be used by a lexical analyzer for, variable

names, numeric entries, etc. The UST for the above example will be as folloKs:`

\

Table 1. The Uniform Symbol Table

Pointer
Token Type in Tables

XIMIZE

.3

X1

2 .

X2

OPTIMIZE

NUMERIC

VARIABLE

ARITHM. OP.

NUMERIC

VARIABLE

ARITHM.

15 NUMERIC

1

1

1

1

2

2

3

This table, along with the updated support tables, will be the input to

the syntactical ana phases The support tables are needed to preserve in

formation which will Be used by the parser and semantic analyzer. Hence, the

lexical analyzer should correctly update these tables. For instance, if a

variable name is sca\ined by the lexical analyzer, it should be entered in the

table for variable (names only it if is not already entered.

Through lexical analysis, the information content is preserved and the
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string is transformed into symbols of unit length, bust of higher grammatical

order. This will make the syntactical anlysis easier since t'he parser winoilot
t

be working on characters, but on tokens.

'Lexical analysis, more formally defined, is the analys4s of an input

string through, certain linear productions or "linea k " productions, such as:

<VARIABLE> = <LETTERI<VARIABLE><LETTER>

By scanning the terminal symbols, which are the characters, the nonterminals

(tokens) are constructed. At the same time, certain violations of the rules

are,detected (e.g., illegal characters in an identifier, alphabetic characters.

in numeric fi ld, etc.).

At the presense of an error, the lexical analyzer shyuld be able to re-

cover to scan the remaining string,and to create a UST so that the patser will

detect any syntactical errors of higher order.

The implementation of the lexical analyzer can be accomplished by coding a

state diagram where each state represents a nonterminal symbol of the grammar

and each arc represents a terminal symbol. For instance, the productions

<VARIABLE> = letterl<VARIABLE> letter) <V4IABLE> digit

<INTEGER> = digiti<INTEGER>':digit

can be interpreted as, the graph of Figure 1.

The state LINK represents a starting state and the remaining of the

grammatical rules. To increase the flexibility, an abstract symbol is intro-
-

duced; this is the "break" symbol which could be anything that differentiates

syntactical constructs including the null. That is to say, the break symbol

terminates a syntactical construct and introduces a new one. By introducing

the "break" symbol into Figure 1,c.we obtain the graph of Figure 2..
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Figure.J. The State Graph of Grammatical Nfinitions

letter

letter TAIL' digit
T

digit

digit

Figure 2. The State Graph of Grammatica4 Definitions
Including Transitions under the Break Symbol

1r



13,.

The "break" symbol shoUld be used only whdn needed; if one knows exactly

where to gd from the current state, then going gack to LINK might duplicate

the effort. Thus, the "break" symbol should violate the syntactical rules, as

represented by the current location on the graph. This means that the break

symbol does not drive the parsing back to the current state nor to any other

state connected to the current one. The break symbol causes a transition back

to the LINK state w re it will either be defined as the starting symbol of

another synifacti'cal construct, or it will cause an error; in the latter case,

it will.bo-ignored to enable the process to. continue.

The graphical representation should be able to handle cd0Wn loworder 'non

linear productions since there is an implicit memory in the graph. This is "

illustrated by Figure 3, as a modification of the gr.pph of Figure 2, so that

.

the production <NUMERIC> :: = <INTEGER>i<INT

at the level of the lexical analyzer.

-<1NTEGER> can be handlpd

I

Figure 3. The State 'Graph of a Grammatical Definition Illustrating
the Graphical Representation of Nonlinear Definitions

17
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From Figtre 3 we 'observe that:
.

,The construct NUMERIC is represented Implicitly by the two statesi.

in the square with dotted lines.
u.

ii. The "break" arcs are reduced to those needed. The graphical

representation presented above can serve as the ftamework for a lexi-

cal analyzer. For coding, each state of the graph mist be represented

with a separate portion of code. This approach will make the lexical

analyzer highly modular since states and arcs can be easily added or

deleted. (Hence, grammar modifications can be performed at a low de-

sighing-coSt. .Since all the grammatical constructs will be defined

on tae zxaph, uncertainty will be decreased, and thus the time of

.4
processing will probably decreasle in comparison to a table driven

parsing.

Syntactical, Analysis

. The syntactical analyzer operates on the'ST (Uniform Symbol Table). Its

basic function is to recognize the syntactical constructs and check the cor-

rectness of their construciton as specified by the rules of the grammar. At

the phase of parsing, the rules which were utilized by the linear analyzer are

eliminated from the grammar and the terminal, symbols of the grammar at the

current stage are the symbols of the UST (frst entry). The second entry of the

table isnot used by the parser, but is used for the interpretation 'process

which might be incorporated with the parser.;

An error recovery facility should exist in the syntax analyzer for econom-

ical reasons since it would enable the parses to locate most of the errors with-

out reprocessing the string. At worst, an error recovery facility enables the

parser to locate further errors not related to the 'first error encountered in

a string, while perhaps identifying legal syntactical elements wrongly as errors
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due to assuming a state after an error which is different from the intended.

At best, an error recovery,facility whose assumed state sufficiently matches

the intended state often Ldicates vecific, alternative syntaxes that can be

redefined as legal in the redesign of the syntax analyzer.

Consider the model:

OPTIMIZE 1-.c.X.
i =1

1 1

ST
N

a2..X. 1 R.
1

1=1
,3

j = 1,M'

Assuming that the input has been processed by the lexical analyzer as .described

in the previous section, all the linear or "linearlike" productions have been

eliminated and the UST has lien created. The entries. of the UST are the termii'

sal sumbols for the reduced grammar of the yodel. This grammar is of reduced

monlinearity since certain nonterminals were converted to terminals. An algt-
4

braic analogy to the reduction to nonlinearity is the conversion of 'variables

to constants. Thus, the grammar of the model could be rewritten in reduced

form where entries in small letters denote terminal symbols and the underline

is used to separate them. Let us-call this the "UST grammar." The UST grammar

in BNF is as follows:

<MODEL> = OPT <1'E> st <CONST. SET>

<CONST. SET> :: = <CONST.>I<CONST.>,<ONST. SET>

<CONST = <AE> = num

7',_<AE> :: = sign num var I sign num var <AE2>

'14*o<AE2> :: = ao num var num var < AE2>or,

where
..,_
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opt denotes optimize,

st denotes subject to

num denotes numeric

var denotes variable

ao denotes arithmetic operator

In the case Of a state graph, a linear production,A xB is conver #ed

to a transition from state A to state B through the arc x. At the syntax

analysis level, the productions are nonlinear 10'ith degi.ee on nonlinearity

at least two.

Previously, the implicit memory in the state graph was used to handle

certain nonlinear productions at the lexical analysis level. The definition

of a nonterminal (i.e., NUMERIC) was decorvosed to its elements; each nonterm-

inal was represented by an arc. The same concept can be applied at the syntax

analysis level. However, at this level, tie productions might have more than

one terminal associated with each nonterminal and hence, the terminals cannot

be represented by arcs. To solve this problem, a special assumption will bey.

made.

All the symbols of the grammar are represented as states in the graph

A neutral symbol (e) will be used to denote the arcs. Is assumed that e

precedes all the symbols of the grammar. (The UST grammar is assumed.) The

introduction /f this eutral symbol can be viewed as a linearization of the

grammar. Assuming mbols S1, S2, S3, S4, the production

S
1

S
2

S
3

S
4

is written as

S1 eS2 eS3 eS4

The following is a notation, where.the depth of the structure is illustrated:

2O
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e e

S1 ( S
2

(S3 k- (S
4
)))-

This in state graph notation is:

The S.'s are the states of the grap)-1 and the state in the square is the term-
].

inal state. There may be more than one terminal state.

The state graph of the production

r
S
2

I S
2
S
3
S
4

is

Consider the following UST grammar.:

so s
1

I Sosi I s
1

s

S
3
S
2

4
The "e-equivalent" of this grammar is

o
1

eS, I egbeSi

eS1 I eS3eS2

eS
1
eS

2

The state graph of this grammar is presented in Figure 4.

0
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.

Figure 4. The State Graph of an "e-equivalent" Grammar

Indeed, the string S1S2S3S
2
S1 is a legal one,since the "flow': reaches the term-

inal state S
1

. However, the stringS1 S2 S3 S
1

is not legal since there is not

path from state S
3

to state S1.

The amount of memory, implicitly eMbedded 'in the above state graph, is

exactly the same amount
40

of memory embedded in a table representation of thef
graph as shown in Table 2.

Table 2. The Matrix Equivalent to the State Graph of Figure 4

S1 S
2

S
3

S
o

1 1 0

S
1

0 0 , 1 0

S
2

0 1 0 1

S
3

0 0 1 0

22
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That is.to say that the parsing algorithm."remembers" only what is the current

and the revious state of parsfng. This can be considered as the major dis-

advantage of .a table driven parsing. It would be desirable to extend the

4,

memory of Vle .state graph because it would facilitate features such as error

re
/ .

covery or'diagnostics. The cause of the problem of limited memory is the

recursion through the samastate. For instance, in Figure 4 there is recursion

flOw through states-S
1

and S
2.

A way of extending the memory of the graph would

be a type

of states and not a single state. Then, all.trle recursions over state S would

-4..Ape.eliminated by introducing an additional state of type S each time there is
J

a recursive transition aver state S,. That is to say, in Figure 4 a new state,

S
1

and 52,, should be introduced to extend the memory of the graph. This is .

ilLmstrated in the state graph of Figure 5, where the points indicate an in-
.

finite repetition of the.same state sub-graphs. The state graph of Figure

has -an infinite memory.

By extending the memory of the graph:

i. the locational relationship of each state to otter states is

explicitly defined, and

at each point in time it is known exactly where the parsing, flow is

located.

However, the above approach could be considered as extreme. Certain recursions

can be preserved and still have the above two advantages if the following rule

is used: A recursion is eliminated by duplicating states if the state on which

the recursion occurs belongs to two or more syntactical constructs.

2 `1ii
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Figure 5. The Extreme Case of Memory Extension of the State Graph
of Figure 4

Consdier the production:

<AE> = ao num var I ao num var <AE>

The corresponding graph is:

The state at which the recursion occurs is (ao). However, it belongs only to

the construct AE and the recursion should be preserved.

The above methodology is illustrated with a complete example. Figure 6

represents a UST grammar similar to the one presented at the beginning of this

section. Figure 7 is the extended memory state graph of the same grammar, but

with the recursions eliminated as needed. All the transitions are under the

neutral symbol e.

2
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Figure 6. The State Graph of a Grammar of a Simple Linear Model.
The memory of the graph has not been extended.

21

In the extendd memory state graph, certain syntactical constructs are

implicitly represented in the sense that no explicity state was required.

These are AF, AE2, CONST. and CONST. SET.

The concept of extended memory can be viewed as an elementary learning

process since the more input that is processed the more can be said about the

following portion of

right. This,

\\

input. Hene, this learning increases from left to

bined with the fact that there is prior restriction on the

expected input (e.g., linear expressions in linear programming) provides the

foundation for efficient error recovery and explicit diagnoistics7

r-

efficiently of error recovery will similarly increase from left to right. This

is important since the chance of an occurrence of a human error increases from

-left to right. An additional advantage of the state graph is that any changes

in the grammar can be easily implemented by properly modifying the state graph.

The "break" symbol introduced in the state graphs for lexical analyzers

is meaningless in the graphs'for syntactical' analyzers. In an actual design,
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Figure

-40

7. the Partially Extended-Memory State
Graph of Figure 6.

1

4--
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each state of the graph should be represented by a separate set of computer

language statements. This increases the modularity of the system. The length

of thelcode and the coding process appears to be the only disadvantages, of

the graphical simulation. The advantages of the graphical representation are

summarized belOw:

1. The memory can be expanded up to any desired de ea;

2. Certain syntactical. constructs are implicitly represented.

3. Efficiency exists with respect.to:

grammar, expansion or reduction
1--. Q

Ah&,
ii. error recovery ) o

,
. 4. .EkPlicit diagnostics exist :,,

5. Modular desigh exists.

6. fNo supporting tables are required
Lf

Dynamic Syntak.Adjustment
o

The extended memry state graph provides a means for indirect semantical

analysis. Given the type of a problem there existssome prior knowledge of its-

, .

syntax_art parsing time. It there is a way of explicitly-specifying the type of

the model, the systcOuld- properly adjust the state graph by deactivating

certain 'states.

Letus consider the example of the transportation pipblem. The correspond-
:-

ing mode4 l is a linear one with the restriction that the matrix coefficiens.be
. .

.

1 tzeros would not be entered). The proper adjustment of the graph should be

the bypassing of,the two nonterminal states -num- in the constraint section of

Figure 7. If a coefficient different than the implicit 1 is entered, the

system will detect this as a semantical error. In fact, the restriction of

"implicit 1" could be relaxed at the lexical level by suppressing all the co-

2 -1
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7

efficients equal to 1. This concept could be implemented by reprsenting\.,

the characteristics of a specific type of.model by .a set of active states.

Hence, a group of types of linear problems (i.e., I)etworks, machine scheduling,

etc.) can be represented by a 0-1 matrix where the columns are the states.

A modular design of the system with the proper labeling for the transfer

of the execution flow would facilitate the activation-deactivation of the

states at a dynamic mode, i.e., at the end of the execution the graph could be

reset to its initial configuration. In addition, the concept of dynamically

adjusting the state graph of the system provides a means for detecting certain
,

model characteristics.. Given a set of active states for a specific type of

model, and an-initial configuration of the state graph, it would then be pos-

sible to determine the type of the model. Moreover, this could be expanded

since the linear model, at least grammatically, is considered as a special case

(i.e., a set of active states) of the nonlinear model.

Semantic - Analysis

The semantic analysis which operates on the UST concentrates on the

second entry of the table. The basic function of this analyzer is to assign

the proper meaning to an entry and execute the appropriate information handling.

For instance, if a numeric entry is located in front of a variable, it should,'

be interpreted as a coefficient.

The coding of the semantic analyzer is usually ansad hoc 'procedure; most

often it is implicitly included in the parser. e

r.4
In languages for OR models;,/Wsemantic analysis is important since it can

detect certain irregularities before the optimization routine is activated and
...

41
computer time is wasted. For instance, bound inconsistencies can be easily

;

detected. However,, the state of the art of semantic analysis;does not provide'

a theory upon which a semantic analysis, routine can be designed.
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ECONOMIC CONSIDERATIONS

A major difficulty in the area of sotware economic analysis is the lack

of a closed-form metric system; Gilb [ 4] presents progress towards that direc-

tion and some of his metrics will be presented here.

With respect to tcNtinerfacing systems,the economic attributes can be

divided into two general classes: cost and benefit. Figures 8 and 9 illu),trate

the breakdown of various attributes; the terminal attributes are the ones that

have real economic meaning, and the nonterminal ones are used to illustrate

the hierarchy and thus clarify the effect of the terminals on the system so
ti

that the analyst can estimate associated costs and benefits. This classifica

tion provides a cost /benefit decision framework. The decision, depending on

the application enviroumeht, can be' reached through an assignment .e weights

of importance- to the attributes attaining a small cost/benefit ration, the

design of the system can be scheduled according to .the optimal freight distri-

bution.

USER PSYCHOLOGY

$

User psychology is an important part of the design of an interfacing system,

but because the mechanics of the system absorb most of the designer resources,

little attendtion is paid to it. Cohcentrating exclusively on the mechanism

of the interfacing can be viewed as 0' y a partial design; a complete design

should take into consideration the mechanics of the human element of the man-

rsd

machine system. The objective is lipt to minimize the present worth of the

total cost, but rather to maximila-Xhe present worth of the total gain.

User psychology considers the'human interface with computer systems, its

objective being to identify and analyze behavioral patterns that increase the

effectiveness of the system. A.s.such, it falls under human engineering and

deals with rather complex envimonnents.

31
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User psychology provides, the designer with information about the p t i 1

user,a.e,., capabilities, intelligence, amount of'time ac eptable to learn a

syntax, psychological effects of the design (motivation, boredom, etc,) The
i

overaY14effectivene s of the system will be increased if this inform tion is

properly utilized during the designing process.

N.There are "intelligence gaps' Yn current generation computers, and this

becomes more apparent in the problem solving area.,, A successful man-machine

system should utilize human intelligence available on the terminal to fillthe

gaps of the machine. This would alsO Substantially contribute to the effective-

ness okthe system. Hence', the interfacing system should have the capabilities

of retrieving from the user not only infor4titn but intelligence as well. User

psychology provides an insight in this area.

Martin [ 7] indicates that the user psychology should be studied t three
1

levels: The first one is the functional considerations which studies ge dis-
:.,i,

tribution of functions to toile man and to the machine(i.e., which functions the

user performs and which ones the machine performs). It is at this level that

the user's intelligence will be utilized. An important consideration of this

level is the ability of the interfacing system to retrieve human experience

which cannot be quantified, and programmed explicitly in the machine., This

is veryimportant in the environment of operations research where one "channel

of flow" of human experience and intelligence is the mathematical model. The

capacity of this channel is increased, the interfacing system provides a high

degree of input flexibility.

Human judgment and experience are further effectively utilized if the system'

provices editing capabilities. In the OR environment, it is a functional

.)consideration of user pSychology to decide whether the model will be formulated
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by the user or by the machine. In other words, the user could enter an ex-
_

plicit formulation or certain key characteristics of this problem.

The second level is that of procedural considerations which organize

the operation into a sequence of procedures, e.g., when is the model entered?

When are error messages displayed? When can the user edit the input? These
.

are the questions to be answered at the procedural level. A good design

should avoid the "human channel overload," or user's boredoth. On the other

hand, attention should be paid to creating to the user motivation for using the

=system. For instance, motivation can be increased by a comprehensive output.

With respect to user's boredom, an important, procedural consideration is the

flexibility of the system No accept input through alternative sequences of

instruction. Experience indicates that the useVlOecomes bored by a system that

requires a fixeq,input sequence, especially if its length is not controlled

by the user. He should be able to effectively utilize his knowledge of the

system.

The third level is that'of syntactical cdiderations, which primarily deals

with the effect of the syntax on the user. Experimental psychology provides

insight into how a particular syntactical feature is accepted by the user. The

syntax can affect.

i. the time nexessary for a system to be learned, and

ii. the chance of an error occurrence.

Through statistical investigation, researchers have concluded that certain

conventions of natu al
--/-

1 aguage should not be used. For instnce, abbreviations
7

as ISN'T or DON'T sho ld be wri-t.i.e.rr'is IS NOT or DO NOT. Also words sug.h%as

'ILLEGAL or UNKNOWN ould be written as NOT LEGAL or NOT KNOWN.

33
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To summarize, the designer should consider the following:

1. Minimize the time necessary for the user to become familiar with

the system.

2.9. The design should promote user motivation for using t e system.

3. The design should try to minimize the chance of user frustration

due to diagnostics or other system behavior.

4. 14h e human time on the keyboard should be minimized.

APPLICATIONS TO LINEAR PROGRAMMING

EZLP is an interactive computer system for linear programming problems

which was developed in he School of Industrial and Systems Tngineering of the

Georgia Institute of Technology [6 1. The goal of the system was ''to increase

the compuater share in formulating and solving a linear programming problem.

In that respect, EZLP is a step towards narrowing the gap between the OR analyst

and the computer.

0

An informal characterization of the EZLP syntax is that it provides a

free formation with respect to the mathematical model. Hence, all the re-

strictions of a typical LP system are relaxed. Usual restrictions are:

i. The linear expression must be entered before the relational

operator.. Usually, only a numeric entry is allowed to the right

of the relational operator.

ii. The variables should be entered in the same sequence.

iii. The dimensions of the problem should be specified in advance.

EZLP relaxes the above restrictions and provides certain additional features

as summarized below:

1. There is no restriction to the number of alternative objective

functions.

2. Single variable constraints with the same right hand side

34
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can be grouped into aksingle constraint (explicit list constraint) e.g., Xl, X2

X2, X3 >=.10...

3. A bound can be assigned to all he variables e.g., ALL VARS >= 5.

4. A bound can be assigned to all he variables.not assigned a bound up

. to the point of entrance of the constraint, e. g. ALL OTHER VARS >= 10.

5. 'Different bounds can b
\
e assigneeto the same variable in different

points in the model but the minimum upper bound and the maximum lower bound

will prevail.

6. Afithmetic expressions can be bounded from above and below, for

example; 5 = X1 + X2'+ X3 <= 10
O

7. Arithmetic expressions .can be entered in both sides of a relational

operator, e.g., X1 + X2 <= 10 X3.

8. There is no restriciton to the order of variables, e.g., X5 + X3 +

X4 <= 10 X2 + X1

9. Indexed variables are allowed, e.g., X1,2,3 X25,3,

v. Numeric values can be entered in an arithmetic ex ssion as

single arithmetic entities. The summation of all these numerics will form the

right hand side of the constraint, e.g., ROW3: 3 POWER 2 -4- 6 HEAT 10 <= 15

%O.

is equivalent to Row3: 3 POWER + 6 HEAT <= 7.

11. Prior knowledge of the size of the model is not required.

The design of the interface of EZLP was based on the methodology pre-

sented in the previous sections. The state graph approach was used to perform

lexical and syntactical analysis. The complexity of the EZLP grammar was such

that the design took advantage of all aspects of the state graph.

Semantical analysis, embedded in the process of syntactical analysis, is

limited to checking the consistency of bounds of the variables and expression,

35
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EZLP detects most of the errors in a line. However, in certain instances, it

stops at the first error, ignoring the remaining part of the input string.

This occurs when it is stspected that several,articficial errors would be

generated by error propagation should the scanning process continue. The

'-state graph provides the facility of pointing the exact error point with a self

explanatory diagnostic message.

The follbwing is the EZLP nonlinear gr%ammar in BNF:

Notation:

LIST CONS. denotes Implicit List Constraints

EXPL. LIST CONS. denotes Explicit.List Constraints

ALT. OBJ. FCN denotes Alternative Objective Function

AE denotes Arithmetic Expression

INT. AE denotes Internal Arithmetic Expression

REL.'OP denoted Relational Operator

AO denotes Arithmetic Operator

NUM denotes Numeric

VAR denotes Variable

SPECS denotes Specifications

COEF denotes Coefficient

LP denotes Linear Programming

36
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Definit ions :

<LP MODEL> :: = <OPT><LINE NAME><AE><MODEL SPECS>

<MODEL SPECS> :: = <MODEL ENTRY>I<MODEL ENTRY > <MODEL SPECS>

<MODEL ENTRY> = <ARITHM. CONSTRAINT>I<LIST CONSTRAINT>I

<ALT.'OBJ. FUN>

<LIST CONSTRAINT> : = <EXPL. LIST CONS>I<IMPL. LIST CONS>

<ARITHM. CONSTRAINT> = AND <LINE NAME><AE><REL. OP><AE>I

AND <LINE NAME><NUM><DEL. OP.><AE>

<REL. OP>

<ALT. OBJ. FUN> = ALSO <LINE NAME><AE>

<EXPL. LIST CONS> :: = AND <LINE NAME><NUM><REL. OP.><VAR,LIST>I

AND <LINE NAME><VAR'LIST><REL. OP><NUM>I

AND <LINE NAME><NUM<REL. OP><VAR. LIST><REL. OP.><NUM>

<IMPL. LIST CONS.. = AND <LINE NAME> ALL <OPTION 1> VARS

<OPTION 2>

<OPTION 1> = OTHERInUA

. < OPTION :: =<REL. OP><NUU>IURS

<AE> = <SIGN><TERM>I<SIGN><TERM>.<INT. AF>

<INT. AE> =<A0><TERM>I<A0><TERM><INT. AE>

<TERM> : = <COEF><VAR>I<Num>

<VAR LIST> = <VAR>I<VAR ,, <VAR LIST>

<VAR> = <LETTER>I<LETTEP><VAR STRING>

<VAR STRING> :: = <PREFIX STRING>:<RREFIX (--,TRING><VAR STRING>

<PREFIX STRING> : = <DIGIT>I<LETTER><INDEX>

= <DIGIT>, <DIGIT>I<INDEX>, <DIGIT>

<LINE NAME> :: = ,<VAR> I Null t

3?



<COEF> : = <NUM>1Null

<NUM> = <INTEGER>I<INTEGER>1<INTEGER>.1

<INTEGER> <INTEGER>

<INTEGER> = <DIGIT>1<DIGI.T><INTEGER>

<DIGIT> = 011121 19

<LETTER> = AIBI 1Z

<OPT> :: --, MAX 1 MIN 1 MAXIMIZE 1 MINIMIZE
/

<SIGN> : = + 1 1 Null

<AO> = +

<REL. OP> :: =
. I, . -<1 = >

The above grammar after the lexical analysis is

trinsformed the following UST grammar.
,

<LP MODEL> = Opt. Line name <AE><MODEL SPECS>

<MODEL SPECS> = <MODEL ENTRY>I<MODEL ENTRY><MODEL SPECS>

<MODEL ENTRY> :: = <ARITHIC CONSTRAINT>I<LIST CONSTRAINT>,

<ALT. OBJ. 'FUN>

<LIST CONSTRAINT> :: = <EX PL. LIST CONS7,,57-1-MPL. LIST CONS.>

<ARITHM. CONSTRAINT> :: =-AND -ikine name <AE>I

AND Line name - num rel. op

<AE> rel. op. num

<ALT. OBJ. FUN> ALSO line name <AF>

<EXI01. LIST CONS.> = AND r line name num rel.

<VAR LIST>,

AND line name7 <VAR LIST>

Rel. op. num

AND line name -num rel. op.

<VAR LIST> 1 rel., op num
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Fioure 10. The Mite (Trloh of the 1::LT1 Crammar
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<IMPL. LIST CONS. >'. Y't = AND - line name ALL <OPTION 1>. --TARS - <OPTION 2>

<OPTION 1> = ()THERA Null

<OPTION 2> :: = rel. op num URS

<AE> = Sign - Term i Silk - <TERM><IN'L AE>

-<TERM> = Coef-- Var I nud ;

<VAR LIST> Var Var, - .<1-/AR LIST>

The state graph corresponding-to the above grammar is shown in Figure. 10.

In this giaph, certain nonterminals are represented implicitly, i.e., by a

group of states. These are all the nonterminals at the left of the definitions. °

The terminals.- sign - and coef - are omitted since their difitrenT

from their counterparts ao - and num is the null element.

\\

The EZLP gratmar could be dynadically adjusted at low cost to extend its

capabilities. Special forms of linear programming could be inputted through the

Eip in erface with the error recovery mechanism reflecting their special

charac, ristics for instance, if EZLP' were -to be adjusted to handle only models

with 0-1 coefficient's', the only change should be to redefine TERM as <TERM> :: =
.

<VAR>I<NUM>. In t tate graph, this transla i1nto
,

eliminating the arcs

leading from/ state, num to. the state var

,

-The generic state,graph of

AE (ArithM4tic Expression) should be as iA 'Figure 11.

The State Graph, of an Arithmetic Expression with 0-1
Coefaclents
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Aspects of user psychology were considered in the design of EZLP. The

high fleXibtlity of input reduces the users bofedom and increase his likeli-

hood of using the system, especially in the academic environment. The capacity

of the user's at ention channel has been increased by increasing the informa-

tion capacity of e EZLP entries:, Constraints as " AND Xl, X2, X3, >= 10"

or "AND ALL OTHER V <= 511 are'exaMples'of entries with increased informa-

tiov capacity, for the same reason, .the capacity of the user's short term memory,

has been increased. As a result, human judgment can be exercised in a more

effective way in the process of formulating or editing the model.

ty comparing EZLP to the other existing interfacing systems for LP, it is'

apparent that there are mainly two, advances: the elevation of the qommunidation_

closer to'the user's thinking level, and a higher rate of communication.
I
A

The-fi4t Can be conAdered aS a c&ntribution to tho task of 'tetrieving user's

experience" and henc-ea more effective'man-machine System. Th.#.second is a

.-.major economic conideration affecting several economic attributes.
I

, ,
.

. #

$

EZLP and its variations.represent e man-:machine communication at a fixed A.
a

P

level of information 'comptessl!cr This implies that the rate of communication
Y w, ,. ..

same~;of the EZLP'variatibn will be approximately the same i.e., a grammar transform-

ation will not substantially affect the rate of ccOmunication. On the other

- hand, it may affect the "experience retrieval."

To substantially increase the rate of communication in the linear environ-

ment, the system should provide facilities' of symboliC input of higher informa-

l'. AA
tion capacity. For instance, the arithmetic expression

MAX tin + C2X2 + + C10X10 could be inputted as

MAX SUM CIXI lc= 1,10 or

MAX SUM CIXI I = 1,2,3,...,10

4
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Note the simplicity of the grammatical definitions:

<OBJ FUN> = <OPT> SUM <CQEF> X <INDEX><INDEX> = <NUM>, <NUM>

<COEF> = <fNDEX>INull

These facilities, if carefully designed considering the;.Pptential user

psychology, may substantially affect cost effectiveness'of the system.

Nonlinear Programding

The conceptsidiScUssed in the previous chapters apply to processing non-

linear models. Once the features of the system lave been decided, the grammar
"

should. 12.e specified an efficient metalanguage. This specification for non-,

linearity would be similar to the general linear model specification with the

addition of nonlinear arithmetic expressions. As an example, the grammar of EZLP

of the previous section, can be easily converted to a grammar for nonlinear in--.0

put. All the "features of EZLP would be preserved if AE, INT. AE and TERM are,

the only redefinednonterminals. The new definition should be a broader one

able to kept nlinear entries as well as linear. This could be accomplished
e

by the following definitions:

<AE> = <SIGN><TERM>I<SIGN><TERM><INT. AE>

<SIGN><NUM>i<SIGN><NUM><TERM><INT. AE>

<INT. AE> = .,A0><TERM>I<A0><NUM>I<A0><TERM><INT. AE>

<A0><NUM>4TERM><INT. AE>

<TERM> = <VAR><EXP>I<VAR><TERM>

<EXP> =14<NUM>INULL

With the above definitions the system would be aboe to accept an input as:

Max X + X+2 - 2 X YZ + 15 - XZ-t 2W-
.

Lexical analysis wouldtransfoim the above definition to the following UST

_4



definitions:

<AE> = Sign - <TERM>! Sign - <TERM > <INT. AE>

Sign Num' ! .Sign - Num - <TERM><INT. AE>

<INT. AE> = AO - <TERN>1 AO - Num

AO <TERM>1 AO - Num.- <TERM><INT AE>

AO <TERM><INT. AE>

<TERM> :: = Var + Num Var - <TERM>

3.9

The' above translates to the following state graph of Figure 12.

Figure 12. The State Graph of a Nonlinear Arithmetic Expression

Nonlinear programming, with exceptions of some special forms as quadratic

programming, is based on function evaluation and search methods rather than qn

"a closed form matrix dirven.methodology. The most efficient way of handling

this situation is to simply append the nonlinear expressions to a program written

in a high level, gcmeral purpose language. The associated compiler would check

the syntax of the input. So the syntax of a high-level, well-knoWn language

42 3
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would be the primary part of the syntax of the interfacing system. This im-

gi

plies that the.potential User would, very possibly, be required to become

familiar only With a few key words of the system.

CONCLUSIONS

The goal of this research was to develop a cost-effective methodology for

inputting mathematical models of Operations Research into the computer. Elements

of mathematical linguistics provided a framework for this methodology. Through

grammatical specifications, the designer can visualize the complexity of the

system and,hence, estimate the associated development, operational and mainten-

ance "costs." Through grammatical transformations, these costs can be altered

and the system, during the analysis stage,
1

can reach a cost-effective state.

Given the final ?Om of the grammar, the parsing algoirithm can be designed as a

flow through legal syntactical states: This leads to the state graph approach.

-The above methodology can be seen as a systematic step-by-step transformation

of the - system features expressed in English to a highly modular code. The

most important advantage of this feature is that it provides the basis for
<N,

system whose syntax can be altered at input time.

o.
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