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sues in Semantic Memory',

A Response to Glass and Holyoak

in their paper on "Alternative Conceptions of Semantic Memory,"

and Holyoak (1975) raise a number of importak.iswes conoernirsg the psycho-

logical repre qtation of meaning .2 Many of thee issues revolve erouhd,a

=distinction between set-thearetie and network models. (Rips, SbOben t Smith,.

1973), where the former-clas.s of models treats concepts `as sets of s'er anti

elements, while the latter' class epresents concepts As nodes within a

. network of .labeled relations. With regard to this distinction, the ajor .

p ints of Glas5 and Holygak seem to be': (1) Network models may be, superior

to set-theoretic ones, is suggested by a comparison of, a specific set-

theoretic formulaf jon, namely the Feature Comparison model (Smith, Shoben

Rips, 1924), with specific network proposal, the Marker Search'model

(Glass and Hoiyoak This alleged superiority of network models has

definite implications o a number of well -known is ues in the study of

.`formal semanticssuch whether the distinction between analytic and

synthetic truths is viable--because the set-theoretic vs, networ =k dichotomy

is intimately related to these distinctions.

We wish to challenge both af thse.conclusions. In the next section-of

ill argpe that the "set -net" distinction basically orthog-this paper,

onal to issues in format semen ics.like the distinction' between analytic and

synthetic truth. We will then go on propoe a 'different sort of taxonomy

of semantic memory models. In the third ection, we AO examine in detail'
\
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Glass and Ho Yoak's contention that the Marker Search model is superior to

the\Fea-tyre Comparison model. We will first offer some criticisms of the

general characteristics of the Marker - Search model,: and

selves toJbme of , criticisms that Glass and Holyoak have -adeiof the

en address our-

0

Feature rison model. in the fourth sectiong, we will c nsider th

experiment.' of-claA and Glass th

dIsconf i rmatip6s- of the Feature Compariso Ore we i 1 1 p- es nt some

near experlMental findings that seriously ualify the H lyoak s

results and lessen some of the major empirical probiers of the Feature

Comparison model. final section provldes.a summary and - discussion of

future directiort,S.

On 'the face of it PreVide_Critical

MA the Distinction is Not About

motion Retonsidere

Re-resentational dif rences In .surveying the semantic me-Mary lit

krL1973\,(Rips

.

tion seem

'al.) we found that a single represerntational distin

o capture many of the fundamental differences among contem-
\

proposed by haOffer and 1Jallace (1970)

and Meyer (1970,) had a set-theoretic structured, while the theories of Collins
.

and Quillian (190).arid Rumelhart, Lindsay, and Norman (1972) uv d a network

of labeled relations to represent meaning. Updating this list, would

add the Feature Comparison mode as another example of a set model, and HAM

porary models.. Thus the models

(Anderson .& "Bo 1973) and the'6Marker Search model as new instances of

network model But while this di -ihctl n ser-

soon became. clear that the contrast betw

d qa n ganjzational purpose,

n sets and nets mi0It be a
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relatively superficial indicator more important underlying differences.

This point was demonstrated by HOlian {1975) who simply oted that set models

can be recast as ne

node standing for f

by connecting each element of the set to a common -'

e sat itself.

What then can be said about our original partition of models? As-we

have argued el sewhere (Rips, Smith & Shoben, l975) we still believe this

partition is useful since the set-net distinction correlated with some

important substantive differences among models. the task now becomes ane

of specifying these cliff

tion, have proposed' two

_nee5, G as_ and Holyoak, who accept our distinc-

rather simple representations aric

meaning components within a cope

of positing representations that stip

concept'S comPonents. We, do, not

One is that s'et models have considered

not specified any relatiOns among the

in contrast, network theories are capable

to entaientailment relations among a

ish to deal at length with this proposal,

but two points merit cofrnen t. Set mod

simple semantic represent

not necessarily have to assume

d indeed we have introduced some additional

structure into ,et-theoretic repre5entations (Smith, Rips & Shoben, 1974).

Simila'rly, while r etwork models are cepa of Stipulating entailment rela-

tions among meaning cponenats, riot all network -15,inevitably dp so

witnessed by aspects Anderson and Bower' HAM Thus we think this

distinction is of limited value in capturing the substal Live differences

between set ar d rietwork theories.

'Analyticity and,formnal_vs. psychological semdntics.\ Of greater concern

the present paper is the second distinction proposed-by Glass and Holyoak.
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This is their claim..that. set models are consistent with the view that cafe

gory membership and sentence truth value are continuous or'graded, while

network models view category membership and truth as dichotomous. 'Given

this assumption, Glass and Holyoak proceed to align set models, with both

Lakoff's (1972) advocacy of fuzzy semantics and (2uine's (1953) skepticism

regarding the- distinctien'between analytic and'synthetic truth; net. lodels,

In contrast, are seen as consistent with Katz's. ,(1972) defense of analyticity,

and of two- valued truth. We disagree. As we see importantmpor nt dis-

tinctions from forma) semantics--analytic vs. synthetic truth and binary,vs.

graded truth- -nay be orthogonal to those- substantive psychological-dif-
,

ferences that sexist between the theories we have classified as Set and net-
-

work models.

The distinction between analytic and synthetic statements comes from

philosophical semantics, and based on the reJations among meaning

entities,. A statement may be classified as analytic if the meaning asso-

ciated with the predicate is contained in that of _the sentence subject

in A bachelor i unmarried. Otherwise, the statement must be classified as

syhthetic. The analytic/synthetic distinction, then, rests on the nature

meanings and their., interrelations, and Trot in any direct way on psychological

representations. To make this point clearer, consider Frege (1892) dis-

tinctions among the sense, reference, and idea 04 a word. While the sense of

ord is some abstract meaning entity, its reference is- the set of real-

world entities denoted by the word, and its idea is roughly the psychological

representation of the word. Clearuly the referent and psychol(Igical epresen-

!

tation of a word are distngt, since psychological representations are by
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anno be equated

with sen either, at least on Frege's account. To use Frege's own ana.logy,
%.4

,.-

,

the sense of, say,, moon i independent of anyone's representation of the moon
,

in thetie same way that the optical image of the moon-in a telescope is indepen-

.

dent f'observers retinal images. By nature, then, theories of psychologica

semantics must-deal primarily with individuals' representations of meanings,

and not with the erents or senses themselves (Smith, Rips 6- Shoben, 1974).

Thi-s triptych of reference, sense, and representation has implications

fora number of the arguments made'by Gass and tiolyoak. firSt, we can

reject their'cl is that our Feature Comparison model, as presently stated,

is concerned with referential meaning. This paint has no force at all sin e

our model is clearly about representations,nol referents. (Indeed it is

'difficult to imagine how any psychological model could be solely concerned

with reference.) Second, we can question their, assertion that the Marker

Search model, unl ke the Feature Comparison model, ".. .ls directly concerned

'only vith'sense relations" (P. 335). While psychologists may try to construct
.

.

only
. . !.

represeptations that capture only pens: relations, current'semantic-memory
0

models, including the Marker Search model .have notidone this. For example,.

Glass and Holyoak have'av used their model

tends like Some women a re writer

expl in the confi rmat ion of sen7

and such sentences. clearly cannot be

verified by a consideration only of sense rel.ati ns, on apyone's account of

ease. That is, the truth of our sample sentence is surely an empirical

matter, for

that-p ohnoi

set'of

ere is nothing
/
about the abstr

he sentence from ,being false, and

:meanings of women and r* ters

it is easy to imagine a

:antes that would make this very sentence a false one. Third,
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d representation allows us to make

some general. points about ahalyticity and dichotomous truth in formal vs.

psycological semantics. For, example, work in formal semantics indicates

that'the truth-value of sentence can be det-rmined by means of relations.

between expressions of a language and their nts without mention of-

psychological representationt (Tarski, 1956); it is therefore possible to

adopt a binary truth-value system without implying that.the psYchological

representations of these truth-values are also necessarily= binary In prin-

ciple, then, one an endorse binary truth values in formal se antics,,and

continuous truth' in psychological semantics. filn a similar way, since the

notion of analyticity can be defined in terms of the relations between the

senses of expressions in a sentence, without Mention of psychological factors,.

one can accept the analytic/synthetic distinction without implying that such

a distinction need be psychologically represented. In short, the questions

of whether truth values are binary and whether the analytic/synthetic dis
7

tinction is tenable may be onrologit 1 qUestions, not psychological ones.

A more psychological approach to analyticity. While the tenability of

the analytic/synthetic distinction may not be a psychological question, there

is at least one aspect of this distinction that is psychological and of in-

interest to semantic memory. Granting that foFmal semantics provides a basis

for classifying sentences as analytiE or synthetic, we may ask whether there

is a-mental procedure that,reliebly picks out all those sentences and only

thoseHsentenees that have been classified as analyticallytrue. This would

constitute a psychological disti-nction between analytic and synthetic state-

ments.' But even given-that such a procedure exists, h question arises -of
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whether it is a critical difference between set and network

only if all net models maintain a psychological distinct/ion etween analytic

and synthetic statements and all set models blur thisdis.tinction woul1 there'

dieting

Memory

ihat is

then be support for the Glass and Holyoak proposal`-that the

tion is chiefly about analyticity. However an examination of,e istent Models

indicates that the set-net distinct ion Is not correlated With this

psychological-analyticity issue,

First, all semantic memory models, to our knowledge have been applied

to both analytic and.synthetic statements. As we have already rioted net

models, like the Marker Search theory, are intended as- explanations cof the

way we verify statements like Some women are writers,ywhich are ourely,%yn

thetic, as well as analytically true. statements like Some b

married. This is also true of the set theories proposed by Meyer 1976Y and

Smith Shoben, and Rips'(1974). This aspect of semantic-memory

flection of the fact that the .distinction between analytic and

meats is not equivalent to one between propositi n cons!

memory and those thought to be a part of epis dic meTory ( mith,

1974). Second, one may go on to ask whether an analytic/synthetic

can be formulated within the framework of Set or net models. This

tainly be done, and it seems to be no more dif ;chit for one class' models

than for the other. In the case -of network mo eIs, analytic statements ight

15

do e
tic .

h ben,

listinct;t

r ble by restricting. the relatibns in the network to hi

they connect, Similar]true solely by virtue of the meaning of the

set models, analytic statements are those thatror

concep

an be nfir-med by m

e semantic elements of features that are de initionally true of the
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associated terms. Exactly the same arguments can be applied to the relation

between binary truth values and the 6 classes of models we are considering.

Hende, 'neither analyticity nor binary truth can be used to distingui0 between

set and network models, as Glass and Holyoak have proposed. As a consequence,

neither type of model can be construed as evidence pro or 'con particular'

linguistic theories se antics ,(e.g, Lakoff, 1972; Katz &'-Gever, 1975) that

take sides on issues concerning truth -value systems. These issues in

philosophy and linguistics: while important n their own. right, are not at

this tine helpful in distinguishing among rival- psyhological theories.'

the S et=Net [listinction is Al294

Computation vs, pre-storage models. that then are the critical dif-
,

ferences that divide set and network models? To get a grip on this problem,

let us take a look at two simple semantic memory models: Figure 1 presents

the Attribute theory, a set model described by,Meyer (1970), along With-

Collins and Quillian's ,(1969) Hierarchical theOry, a typical network model.

Guth 'were intended to a count for the data obtained in a verification task.

In such a task, subjects must decid- ran the truth or falsity of simple state--

ments of the form An is a P (where S designates a subject noun and P a

predicate noun), and the,data of interest are the reaction times and error

The Attribute model confirms a statem nt like A in is a bird by

comparing Oe features of the pred category t those of the subject gate-

ry, while, in the Hierarchical model one verifies this statement :by finding

an acceptable path that links subject and_ predicate categories.



Insert Figure 1 about here
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Note that in addition to their obyjous representational di Ferenc-

the two models differ in a rather striking respeOt. In the network Model

the pr positd n that a robin is a bird is represented directly in memory,

and confirmation of the sample statement involves fin'ding the corresponding

proposition in memory. That is, the subset relation between robin and bird

is not represented directly, and conSequently it must be computed during the

verification process. Since the differences just-noted appear to hold for

all set and network models, it seems that a critical difference between the-
/

two Clases of theorie is this: Network models posit that verification of

subset:relat ns can -cur by searching for pre-sorted propo itiOns, while

_set models assume that verification requires the computation of that relation.

We now need to specify a couple of boundary conditions on this Compute-

'.
tion/Pre-sto dichotomy. First, no current network )MOdel of semantic

memory assumes that all verifiable statements are ccjrffirmed by finding the

corresponding proposition Stored in.memory. Forsuch a position would imply

that if someone can verify that Julius Caesar a living. thing, he must

haVe at some time stored that exact proposition in memory_ To avoid this

claim, network modelers allow some room for computnetwork modelers They posit infer-

.routines that, wh6n given stored propositions like Julius Caesar-wat a

person and ALiverson- is a ive, use the transitivity of subset relations to

infer that Julius Caesar was a.liOng thing, Thus in the network model in

Figure 1, while the statements Alrobin is a bird,or A-bird is an animal would
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be confirmed-by searching for the pre=-stored propositions,=confirmation _

A robin is ananinal would involve an additional inference, Hence, all

semantic memory models involve some computations. But we will continue to

hold to our Computation/.Pre-storage distinction since all network models

assume hat at least me subset statements are stored as single units in

memory.

A second boundary condition concerns Computation models. In-such models,

not all relations a-- computable, for some Meanirig components must be pre-

stored if the model is to compute anything. As an

model, the

features- can -then 4e-used to compute-other relations, like the subset one.

example, in the Attribute

(
uTes a e pre-stored with.thelr respective thesecategories;

'Related dist nctions. There are other distinctionsthbt are correlated

h our Compute. -on/Pre-storage dichotomy. From our description of the models

in Figure seems. that-the notion of a computation procedure leads to two

consequences. -First, since one cannot operate on'the terms robin and. -bird
-

directly, one must initially expand these terms into components that cambe

operated on (Rips, Smith &'Shoben, 1975). In the Attribute model, the terms

are expanded into sets of semantic features before _any_ subsequent processing is

donee The comput tien models of Schaeffer and Wallace (1970) and Smith, ShOben,

and Rip (1974) also assume an initial expansion into semantic features, while

some of the Computation models considered by Meyer (1970) atsii_e that su, _e=t,

and predicate term °are first expanded into a list of exemplars of these terms,
,

or else into the names other items that share exemplars with the subject

1

and predicate terms In any event, all Computation theories assume some sort
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of semantic expansion of terms presented, and this is in contrast to most

Pre-storage models.

pa

the second consequence of positing a.Computation procedure ,hat com-

ison processes are given a major role-in verification (Rips, Smith & Shoben,

1975).. -An the Attribute model, once the subject and predicate terms have

been expanded into sets of semantic features, these two sets must be compared

to confirm that a subset relation holds between the two concepts. The notion

of comparison processes is central to all Computation theories, and most of

them further assume that variations in comparison Processes are responsible

for many of the empirical effects obtained in experiments on verification.

While Pre - storage rr dels also require comparison pros sses (so that the

relations in the retrieved proposition can be checked against those in the

test sentence), such processes play little role in the explanation_ of most

empiri =cal findings. Rather, variations in search processes are thought to

underlie most findings of interest.

A third actor that correlates with the Computation/Pre-storage dichotomy

has arisen as simple semantic-memory models, like those of Figure 1, have been

revised to incorporate recent experimental results. For example, Rosch (1973)

and Smith, Shoben, and Rips (1974) have found that the speed' with which true

sentences can be confirmed depends on how typical the subject category is

of the predicate category. Thus, if apple is judged a more typical fruit

than strawberry, An apple is a fruit should take less time to verify than

A strawberry is a fruit. To cope with these results network models have been

broadened to allow pathways to be differentially accessible, where accessi-

bility determined by the co-occurrence frequency of the connected terms
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(Collins 5 Loftus, 19754 Glass & Holyoak). Set models have also been revised,

by allowing the semant features' of a term to include those which charac-

terize the concept as well as those that strictlyAefine it (Smith, Shobeh &

Rips, 1974). Typicality effects are then explained on the basis of shared

characteristic features between subject and predicate concepts. Thus, in

explaining these typicality effects, a Computation model emphasizes a struc_r

tural aspect, featural similarity, while a Pre-storage Model stresses a func-

tional aspect, co-occurrence frequency. Although it may be possible for Pre

storage models to incorporate a more structural account (see, e.g., Norman &

Rumelhart, 1975), most ccyhese models attribute - typicality effects t co-.,

occurrence frequency (Anderson & Bower, 1973; and the Marker Search model

of Glass and Holyoak).

In summary we have proposed four distinctions. For two of these--the

Computation/Pre-storage contrast and the distinction based on semantic expan-

s on--we know' of little relevant data. As for the relative emphasis n com-

parison vs. search processes, this is a difficult issue,to address directly,

but it is related to Glass and Holyoak's recent experiments on disconfirming

false statements. We will consider phe relevant data in the section entitled

"Expe imental Studies of Disconfirmations" below. Lastly, we raised the issue

of featural similarity vs. co-occurrence frequency as a means of explaining

typicality effects. Here there are clearly pertinent data, and they will be

discUssed in "CriticisMs' of the Marker Search and Feature Comparison Models"

below.
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Characterizations of the feature comjarison and marker s-arch models
-

We now want to describe the Feature Comparison and Marker Search models in

detail and show how they may be characterized by the above distinctions. Let

P
us start with the Feature Comparison model. Its representational assumptions

ar quite simple. Each lexical term carries with it a set of semantic

features. These vary con inuously in the degree to which they confer category

membership, with features at one extreme being essential for Aefining the

ofconcept, and features at the other extreme-being only characteristic of the

concept. Thus the term bird wog-IT-Include as defining features the notions

that it is animate and feathered; and as characteristic' features the notions

that birds are of a"partIcular size and have certain predatory relations to

other animals (Rips et al., 197; Smith, Shoben & Rips,-19-74). More relevant

to our proposed distinctions are the processing assumptions of the model. It

assumed that performance in a verification ask is based upon a two-stage

process.. The first stage compares all of the features of the subject and

predicate nouns in the test sentence, and assesses the degree of featural

similarity between the two terms. In this stage, no consideration's given

to whether the simildr features are 'defining or only characteristiC. It is

next assumed that the fdAtural similarity is, either very high (as in robin

and bird) or very low (a s in pencil and bird), hen one can decide immed-

iately whether a subset relation exists between th two nouns. That is,

subject-predicate noun pairs with sufficiently high or low degrees of featural

-.--

similarity will be classified as true or false, respectively without going

on to a second stage of processing. However, a second stage will be necesary

for subject-predicate pairs that haVe an intermediate level of similarity



in penguin and bird, or bat -d bird

Issues in Semantic .emory

15

The second stage considers only

the more defining features, and determines whether

features of the predicate term match those

1 of the defining

the stbject term. This stage

is thus identical to the simple Attribute model,

Clearly thi?-,,model is a Computational-one. The model essentially pro-

poSes that people ha o ways of computing, subset relations, where these

two ways correspond to the two stages. Decisions based on only the first

age involve a heuristic computation, for such computations are rapid but

may sometimes be in error

teristic rather than defining). pecisi6ns based on the second stage involve

an algorithmic, computation, for such computations are slow but consider only

logically sufficient conditions. Both types of computation -- heuristic and

,e. when many of the similar features are charac-

algorithmic- -are alike, however, in that they require expansion of the lexical

terms into underlying semantic feature!, ,and subsequent comparisons of these

feature sets. The two types of computation differ in that the heuristic
1

computation deals with characteristic as well as defining features. And it

is these characteristic features that allow the model to explain

effects. That given thit robin is judged to be a

icality

typical bird and

chicken an atypical one, robin will presumably share more of the charac

istic'features of bird than will chicken. This will permit one to confirm

robin is a bird by means of only the heuristic process whereas the confir-

mation of A ehicken is a bird will also require the time-consuming algorithmic

computation In sum, with regard to our distinctions, the Feature Comparison

model has all .the aspects of a Computation model, and these distinctions

serve to elucidate certain of its key aspects.
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'As for the Marker Search model, its representational assumptions are
/

more complex than any we have considered thus fare eln the pre'sent model-,

each lexical term is represented by markers, a notion- o rowed from Katz's

(1972) theory of semantics. While Glass and Holyoak suggest that mariners

can thought of as properties, in tfleir own examples common words_are

reedy associated with only a single marker. Thus the terms bird, icke

and robin, are represented by the defining markers avian>, <chicken>, and

<robin>, respectilvely, where, for example, the marker <robin> would be

characteriZedeas 'possessing the essential properties o-f a robin." -A seco

representational'assumption is that markers are interrelated o that one

marker dominates or implies a set of other markers." AA an example, robin>

implicavian> which in turn implies <animate>, where the latter is the
2--

marker for animal. This implicational structure, which js intended to capture

Katz's (1972) idea of redundancy rules, is ullustrated in Figure 2. There it

Insert Figure 2 about here

can be seen that the upshot of these assumptions is a semantic network similar

to.that of the Hierarchical model. However,, further assumptions serve to

distinguish the present theory from the Hierarchical one The third repre-

sentational assumption of the Marker Search modet i-s that the hierarchical

connections may sometimes be shortcut by direct pathways between nonadjacent

markers. This is exemplified in Figure by the shortcut path between

<chicken> and <animete>. The final representational assumption is that

,information about contradictions is represented directly in the semantic
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network. Specifically, a contradiction arises benever t oi,p4Ahs ith'the

same label meet at the same marker, e.g., in Figure chicken? and <robin>

conCradic <avian>.

The processing assumptions of the model based on th.e notion that

perfornanc9 in a verification task is determined by a search of the semantic

network. - When a statement of the fc m An is a P is preA s-ented, the subje

accesses the defining markers of the two nouns andgall other they

imply or are implied by. In essence, this. specifies a target section of t e

semantic network.' This section is then searched, and the subject responds

True as.,soon as he. finds an acceptable path betweeh the markers of the subject

and predicate terms. Hence the time needed to" confirWi a true statement

depends on the time it takes to find n acceptable path. This- just as -Jt

was in the Hierarchical model. However, unlike the Hierarchical model, if

the shortcut path between <thicken and <animate?

between <chicken> and <avian>, the subject should be relatively quic

arched before the Path)

confirming A animal, but relatively slob in confirming

A-chicken is a bird. Shortcut paths, then

typical ity effects. In a similar, fashion,

ovide a means of accounting for

subject nesponds False' as soon

as he finds a contradictory path between either (a) the defining markers

the subject and

or (b) the

edicate terms in A robin is a chicken--see Figury 2),

efining marker`of the predicate and a marker whch implies the

defining marker of the subject in g bird

implies <avian' and contradiC

a robin, where

<robin>--see Figure 2).

hicken> both

The above model is basicapy of the Pre - storage variety, as mai},

propositions are represented directly n'. network. Little expansion o
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terms is needed for verification; rather, verification is a matter of

sear=ching for direct or indirect connections, or of searching for two connec4

-tions that contradict one alfother. In all of these cases the critical deter-.

minants of verification times are the number of rinks in the'pathways-between

markers and the order in whicli these pathways are"seorched. Thus, typicality

and related effects can be explained in terms of the order in which certain

ch d. That is, the probability that a particulars.ho tcut-paths are

shortcut exists, as

ea

as f. priority n'the search order increases with

the co- occurrence frequency of the terms involved. Hence this theory differs

from the Feature comparison model with respect to all of our proposed distinc-

tions. The two models, then, should lead to. different empirical conseqUeroes,

and the next two sections of this paper are largely concerned with a coy.-

par on of the models with respect to certain empirical findings.

ritici';msf_ the Search and Feature Gc mpa'r_l scon Models

The Glass and Holyoek paper contains etailed critique of sthe

Feature Comparison model, and (b) a presentation of their own Marker Search

model. In this -ect _n we will first point ou two potentially serious

. problems with the Maker Search model, and then attempt to rebut some of the

criticisms of our own theory.

A Criticism of the Marker Search Model

In essence, the Marker SearCh model accounts for the existent data on

disconfirmations by its notion of a contradiction, and for the data on con-

fir-maions by its ideas about the role of co- occurrence frequency in
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determining short-cut paths and search order. We think both-6f

have. their difficulties, as detailed below.

Contradictions: The encoding of negative informa

tent contribution of the Marker Search model -!

e notions?,

The most impor-

the way it handles false

sentences, t aditionallya problem for Pre7storage thedries (see, e.g, Collins

& Quinlan, 1972; Anderson & Bower, 1973, chap. 12). As w6 have noted, the

Marker Search model,disconfirms statements by searching for tags on pathways

thatindicatetwoormoremarkersare contradictory. Although Glas-s'^grie--

Holyoak have been hesitant to say exactly when two markers are contradictory,

the only reasonable assumption seems to be that contradictory tags indicate

which subsets of a common superordinate are disjoint (see Collins & Loftus,

1975). For example; the identically libeled paths from <chicken> and <robin>

that intersect at <avian; in Figu're 2 indicate that chickens and robins are

disjoint subsets of birds: see how this contradiction mechanism works

in detail, it is convenient first to translate the language of Glass and

Holyoak into more standard terminology. Accordingly, there are two ways of

disconfirming statements in the model, one for sentences in which the subject

and predicate categories ark disjoint .g., All robinsare chickens and

another for sentences where either the subject category is a superior of the

predicate (e.g., All birds are robins) or the subject category partially

overlaps the predicate one ( All birds are pets). Disjoint statements

are disconfirmed by searching for identically labeled links to a superordipate

shared by the subject d predicate. For example,

are chickens, the subject locates paths from xrobin> to <avian> and from

disconfirming All robins
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e Figure ). In contrast,

category that is itself.disjoint with the predicate category. For example,

in disdonfi ming All birds are robins, a person must locate a subset
..,(1,

<bird> (e.g., qf=chidicen>),' and then determine that this subset is disjoint

with 9-obin>, just as in the previous example.,

While such a Pre-storage model for false sentences is a clear advance on

earlier propos

sense of he

still possible to ask whtthir it is comple a in the

hat eve know to be falseable to disconfirm all those sentences

on semantic greunds. A consideration pf some specific

not, and the simplest- such example is Must _-tea it 'figure.

-s sugges

Here we hove

four 'subsets. (A, B, C, and 0 of-a-single superord inate. , such that A ane5

partially overlap, as do'C and D. We indicate these set relations. in

Insert Figure 3 about here

4t,

'Figure 3a by a Venn diagram superimposed on the network structure. Given

such a struetue we can begin to label the paths, following the,procedure

that mutually excrbaive subordinates of the same sunerordinate have the same

labels. Since ).1,and B partially overlap, they must have differently labeled

paths to,their superardinates, for if the tags were identical we would have

evidence that A and 5 wgre disjoint. tie ind-icete the overlapping status of

.A and B by placing et on the ;A-S path and 5 on the B-5 path. Now however, we

must decide how to label C-S and V =S. Using. he rule that diSjoint cate-

gories indicated by the same tag, C-5 must be labeled a since A and C
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are disjoint by hyp thesis. But if so, C-S and,B-S will now have different

labels, which indicates that B and C are not disjoint, according td our

labeling.procedure. This, however, contradicts (.11- original assumption about

set relation between categories.

Clearly something is wrong with the original labeling rule, and

must consider other alternatives. One way out for the Marker Search model

to define away such a situation. For example, the model might posit that,

for any overlapping categories

S', is formed together with the con ions A-S', B'-S' and S'-S, rand that

6), a new superordinate node,

connections between, A or B and S are di flowed. The resulting structure

illustrated in Figure 3b, labeled in a way consistent with our procedure.

-However, there are two major disadvantages to this modification. First,

posits memory nodes for no other reason than to bail out the model. We wo0d

need some evidence that such nodes actually represent concepts that play some

_substantive role in semantic memory. Second, the proposed modification

prohibits the use of shor cut pathways in such situations. But we have seen"

that these shortcuts are wa ranted on other grounds, and are in fact a major

structural assumption of the model.

However, there i d second - possible way out of the present difficulties

that we can explore. Suppose we allow multiple labels on a single path, so

that C-S can be tagged by both a and B. If we assume that pat's sharing at

least one tag indicate disjoint subsets, then the structure. in Figure 3c

correctly reflects the relationships among A, B, and C. But we still have

the C-S path to consider. If we label it with 6, in order to show that

0 is disjoint with A or 13, then 0-S will also share labels with C-S. But
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this means that.D and C are disjoint sets according to our rule, and this

contradicts the original hypothesis that C and 0 partially overlap. Our

second way, out has therefore led to only deeper difficult'

come up with no way in which the Marker Se:

and so we have

h model can provide an a priori

basis for deciding when two paths have the same label,

In the course' of our preceding arguments, noted that the Marker

Search model's provision for shortcut paths may, under certain asumpti n5,

dliInflict with the method used to store negative information. A second Way

in whichithis conflict may arise is depi ed in Figure 4, using an example
c.

Insert Figure 4 about, here

along the lines of Figure 2. in-this diagram e have indicated

pathways between, the nodes <canary> and <animate> and between

shortcut

and

<animate> by dotted lines. What is crucial here is the labeling of the paths

terminating at <animate >. indicate that <chicken> and <canary? d

disjoint subsets of animals, we have given both shorgtcut ths the label a,

It follows that the <avian>-<animate> path must possess a different label

(here, 0 since neither <avian> and <canary> nor <avian> and ' chicken> are

disjoint subsets. But, the 'what label should be used for the <manmel ion > -

<animate>,path? The problem is similar to that raised with respect to

`inure a, For if we use a in order to indicate that <mammalian is -disjoint

from <chicken> and <canary>, we can no longer represent the fact that <ay'

and =mammal ian> are disjoint. Similarly, we use f3, we lose the ability

indicate that <can and <mammalian> and <chickenl- and rnammel iar)) also
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Finally, as r have seen in the previous paragraph,

1

using both a and for the <nammaliananinate> path leads directly to

further problems. It appears, therefore, that we must either prohibit

disconfi mations on the basis of shortcut paths, or restrict or eliminate

such paths entirely. Both possibilities violate the structural assumptions

of the Marker Search model.

The problems essociated with the structures in Figures 3 and 4 should

not be taken to mean that it is impossible to store information about which

subsets intersect and which are disjoint. Rather our demonstrations show

only that the storage of negative informal n may not be as simple as markers

on paths, as Glass and Holyoak's formalisms seem to suggest. It remains to

be seen'whether negative information can be incorporated into.Pre-storage

models in,a way that is both theoretically par imonious and consistenk ith

experimental evidence. We note, by way of,contrast, that such projems are

not encountered by Computation models, since here the storage of negative

k
information is unnecessary. Rather, negative decisions are made whenever

defining features of predicate concepts mismatch those of subject concepts,

as we have seen in terms of the Attribute and Feature Comparison models. We

count this theoretical parsimony as a virtue of Computation models in gene

Theerole of co- occurence frequen As we have noted, co-occurence re-

fluency plays a central role in the Marker Search.model, as in other Pre

storage theories of semantic memory. Co-occurrence frequency determines

what shortcut paths are formed as well as the order in which paths are

searched, and these two factors, determine all of the empirical predictions

from the model. That is, given co- occurrence frequencies, one should .be able
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to deduce the ordinal relations among reaction times for the verification of

any set of true or false sentences. However, no norms of co-pc'currence

frequency have yet been published, and for this reason predictions from the

Marker Search model have been generated from other, more readily available

data. An particular, Glass and Holyoak. rely on the frequency with which

subjects prodUce a predicate noun when given a sentence fram4 containing the

subject noun.

are

FOr example, raters may be asked to complete the frame kit birds

with a noun that will make the sentence true; the fre'quency wi -th which

a group of raters produce a particular predicate noun (e.g., animals) -is then

.

taken as an estimate of the co-occurrence frequency of the subject-predicate

pair (e.g., of the birds-animals pair).

In an earlier paper (Smith, Rips & Shoben, 074 argued that co-

occurrence frequency may not offer a setis actory explanation.of semantic

phenomena because co-occurrence i itself d termined in part bysemantic

factors. Thus, the words which appear in the oresent sentence co-occur

hecause of the meaning relations they bear to one another and not because of

the frequency with which they have been grouped. Frequency, therefore, may

have the status of an epiphenomenon.

This anti-frequency argument is strengthened by reaction lime effects

with unfaMiliar stimuli where co-occurrence frequency cannot be a factor,

These effects must;be attributed to-tructural aspects of the stimulus 'domain

itself. - Evidence on this score comes from a series of experiments' by Rosch,

Simpson, and Miller (l 976), who used sets f dot patterns

letter strings, as,-

stick' figures, and

imuli. To illustxate the critical findings, consider the

case where letter stringrvece employed. Subjects first learned to Classify
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WD disjoint categories, and then were given
';

reaction time task in which they pressed one,of two buttons. depending on the

category of a presented item. 'Finally,..the subjects were asked either

rate the typicality of each of-the instances, or to produce as many items

posible from each categbry. The strings themselves hail been generated by:

varying the number of letters that a given string shared with-other members

of its category, and this variable (number of shared letters) determined all

performance measures. Instances with More letters in commoft.:were learned in

fewer'trials, were classified fas er- and had higher typicality ratings and

production frequency than their counterparts. Similar results were obtained

even when the less typical items were presented more frequently during initial

learning. In this way, Rosch et al. reproduced the usual typicality effects

tvaryngonly the internal properties of the sti ylus domain, and this gUggests

that co- occurrence frequency may not be a necessar factor in determining

typicality effects even in semantic-memory studies.

to-occurrence frequerky may not be a sufficient cause of.typicality

effects either, but to investigate this, we need a reliable index of co-

occurrence frequency. The problem with the usual indices -- production Fre -

quencies, as in Glass and Holyoak, or ratings. of how often two terms,seem,to

occur together, as in Anderson and Reder (1974)--it that-they may be deter-
,.

mined by semantic factors, as we noted earlier. There is, however, one index

available that has the potential for providing an objective measure of co-

.occurrence frequency, the KuEera and Francis (1967) corpus written Americ n

English (not to-be confused with their simple word frequency counts). From

this corpus we can tabulate the number of times an instance and its appropriate
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category term appear together, which gives, us: a relatively d eCt measure of

the kind of freq6ency we are interested in. In what,follow we will refer

to this measure as the KF count.

.Theexistence of the KF_coUnt alloWs 'Lis to assess. certain claims about co-

occurrence frequency and typicality effects. Suppose that (1) co-occurrence

frequency is indeed a sufflcient cause of typicality effects, and (2) pro-

duction frequencies and co-occurrence ratings are:good estimates of objective

co-occurrence frequency. Then it follows that 3) the*KF count:should cor-

relate with typicality effects, and -(4). the KF count should torrelate-with

production frequencies and co- occurrence ratings-. -Suppose instead that:

(1') co-occurrence frequency is not a-determinant of typicality effects, and

(2 ) production frequencies and co-occurrence riktingS primarily efle

semantic factors. Then it follows that:- (3')- the KF count should not

correlate with typicality effects, and (4') the KF count should not correlate

with either production frequencies or co-occurrence ratings, though the latter

two indices should correlate with themselves as well as with typicality.

ratings.

To test these contrasting sets of predictions we used the data previously

collected by Anderson and Reder (1974). These investigators collected- re-

action trews (RTs) in a task where subjects were presented word 'pairs

turnip, - vegetable), and had to decide whether the first item was a subset of

e. sec nd. In addition to the RT data, Anderson and Reder also collected co-
,

occurrence ratings ("how frequently do these two terms co-occur together?")

and typicality ratings ("how typical is the instance of the category ? " ").

This list of factors grVes us everything we need to test our contrasting
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predictions, except for production frequencies and KF counts. To obtain

production frequencies; we used the norms coLlectec.by Battig nd Montague

-41969); who had subjects prouCe as rhan'y instances of given cafe rues.. they

Could in a 30 sec interval. .- Thirty. -six of the 40 category terMs.0 ed by
a

Anderson and Reder correspond closely to categories in the Battig and Montague.

norms, and we will confine our subsequent analysis to these common categories.
4

Finally, we obtained 6ur .Kr counts by-defining an instance-category co-.

occurrence,as't o appearance of both terms within two lines of coded tekt

(70 characters per line)

To .test the contrasti- g sets of predictions, we simply carried out

correlational analyses on the five factors mentioned: True RTs, typical

ratings, co-occurrence ratings, production frequencies, and KF counts.

Consider our first 'set of "predictions, where true co- occurrence (estimated by

y

the KF count) supposedly determines typicality effects, as well as cc

occurrence ing5 and production frequencies. 'Contrary to predictions, the

all with True RTs, r(70) = .00, and correlatedKF count did not correlate at

only,margjina ly with co- occurrence ratings, r(70) = .2, and production_

frequencies, r(70) = .05 < 41 < .10: in both cases. Thus the results offer

little support for our first set of predictions; and are in far better agree-

ment With our second set. Recall that in the latter, the,KF Count was 'not-

expected-to correlate with RTs, co-occurrence ratings, or production fre-

quencies, while all subject-generated Measures were expeCted to be inter-

.

correlated. In-fact,-all three subject-generated measures were substantially

interco -eldted. Co-occurrence ratings correlated highly with production

frequencies',,r(70) .66-k .01, and with typicality ratings, r(70)= .70,



.01; while prodUcticin,,frequencies arid,:

intereorrelated, r(70) .63, IL

The above findings, then, favor our second set of predictions and the

hypotheses that generated .them: true co-occurrence frequency does not deter-

'Mine typicality, :and subject7gene -ted estimates,of this factor reflect

semantic factors. But there is reason to be cautious in drawing- these con-

clusions. For our .1(F counts may be limited bytherelatively small number of

times our instance-category peIrs actually appeared together '- the Kaera

d Francis corpus. However .there is an-additional result in the literature

suggesting that the KF count is net positively correlated with True RTs. This

is the finding of Ros h et al. (1976) that for a completely different set of

items, .the KF count was Limtima correlated With ratings of typicalityC

given thi and the -fact that highly typical ite are responded to quickly,

it seems most unlikely that 63-occurrence frequency is _thy, cause of rapid

responding to typical items. But still; until more work is done with the KF

count, we shall have to settle for a cautious conclusion: There is no

evidence that typicality effects are Caused by co- occurrence frequency-when

this factor is measured by a relatively objective index.5

Even this weak conclusion leaves the Marker Search model (and all other

Pre-s'torage models) without a theoretical explanation of the well-documented

relations between'RTs on the one hand and typicality ratings and production

frequencies on the other This is in contrast-to the Feature CompaRson model,

model, where feature] 'similarity s.assumed to be responsible for the effects

A
of typicality ratings and production frequencies od True RTs. On this view,

all of the subject generated measures we discussed above are baSe_ on featural

similarity, and that is why they are all correlated with True RTs, as well as

2r)
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with'O-e-anothe Furtherrivare there are two pieces of evidence-Oa-

-.direttly link featUral similarity ypi cal ity rat ing First-, Rips et al

(1973) showedlhat the features derived'from a multidimensional scaling of a

set of animal terms can predict typicality effects in semantic memory tasks

(see-alsoShobenis subsequent scaling work, discussed in Smith, Rips, and

..Shoben,-.1374).. Second, -there-is the Rosch _ (1976) study described
.

earlier, where eXplicivvar:iation-in featural similarity induced concomitant

,variations in typ cality ratings, as well as in production frequencies and

'RTs;

Criticisms of e Feature Comparison Model

In their paper, Glass and Holyoak.refer to s-everal sources of difficulty

with the Feature Comparison model, apart from those problems assOciate&wrth

the Holyoak and Glass data. Some of these criticise are concerned mainly

with the evidence in support of the Model presented in Smith, Shoben, and Rips,

(104). However, other remarks are addressed to the more general question of

whether the Feature Comparison model is, in principle, able to account for

verification ofsentencesother. than subset statements.. Roth probleMs.are

obviouSly important ones, if-they can be substantiated,.and we deal with them

,in the following.

Can the Feature Com arison model be extended? According to Glass and

Holyoak, the Feature Comparison model is inherently unable to encode relational

information such as the notion of possession expressed by have `in Elephants

have -ears. If so, the model could not explain how such statements are verified,

and in addition, Would have difficulty in accounting for the meanings of words

that have relational components as part of their definition. But this supposed
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CoMpariSon-Model., Indeed:, in an earlier paper (Smith; Rips .Shoben, 1974),

discussed sentences' like the above example in some _detail as well as other

sentence types commonly used in semantc,memory (e.g., An ostrich is lard e).

To rehearse our propOsal concerning

represented- by an ordered pair

edicate like has-ears can be

where the -First member includes the semantic

features of the verb (perhaps a single feature, has -as -a- part), and the second

contains the feature list of the prediCate-noun. In verifying such a sentence,

%.4

one would' compare the features of the subject category to the representation of

i
the prediCate just described; if. the subject- category's features,corhain. those

the compound predicate then the sentences will be true, and otherwise false.

according to the model,'sentences containing relational information can be

encoded and, further relational components can be part of the analysis of indi7

vidual terms. In-fact, in a new series of experiments, we have shown that-the

mechanics. of the Feature Comparison model can be used to predict reaction times

for the verification of sentences containing, has (Rips, Shoben & SMIth, 1975).

This, however, does not absolve the Feature Comparison model of.all

theoretical. difficulties. _t is merely that the problems faced by the model

are not different in kind froM those surrounding tieories like the Marker Search-.

model. As Glass and Holyoak acknOWledge, these difficulties concern the way

such models can be constrained so As'to provide a pr nbipled account, of

semantic phenomena. For Pre - storage models, this comes down to specifying

boundary Conditions on permissible-nodes and relations, as well as limits on

the types of search procedures that can be employed. For Computation models,

similar bz)nstraints must be established on the semantic components and
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c mparYson processes. Thus the problem is not one of the generality hese

mitidets,'but rather one of accounting fot'experimental data in other than an-

.ad hoc fashion.

The em ;rice] status of the Feature Com arison model. -After arevie'w of

that there is little eXperi=he relevant evidence, Glass and'Hplyoak conclude

mental evidence to support.theprocessing assumptions of the Feature Comparison.

modal. Their reasoning is as follows. The Feature. comparison model. ident fies

two factors that should, theoretically, influence RT; these include ratings of

semantic relatedness, which should affect the first stage, and catego6 size,

which should affect the second stage. Neither factor, according to Cdass and

Rolyoak, has been shown unambiguously to determine RTs, and therefore, no

unambiguous evidence for the Feature Comparison model exists.

These variables are iMpottant to 'the model, and a lack'oftevidence for

them would indeed-undermine-the theory. 'Let us first consider th- .evidence

for the effects of relatedness on semantic decisions. As Glass .nd Holyoak

acknowledge, large number of studies can be construed as Showing effects pf

relatedness (e.g.; Loftus, 1973; Meyer, 1970; Rips et al., 1973; Rips, Shoben

Smith, 1979; Smith, Shoben 1974;- Vilkins, 1971). But-Glass end

Holyoak argue that: (a) Ratings of semantic relatednesS are sometimes less

accurate predictors of RT than are production frequences (Smith, Shoben 6

Rips, 1974), suggesting that production frequency, not rated relatedness, is

the key factor; and (b) Certain findings are more plausibly explained on the

basis of search order than shared. features (Glass, Holyoak & O'Dell, 1974;

Loftus, 973), again suggesting the importance of production frequencies
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emory.

,

suppoSedly measures of-searchorder over that of relatedneSs (supposedly a

measure of shared featOresi.

We have already'considered: the issue of relatedness vs. production

freqUency whenwe reabalyle0 the results of Anderson and Reder (1974).- There

we -found that the correlation.of.RT with relatedness .(typicality was actually

-slightly higher, hoUgh-nOnsignificantly so, than the correlation with pro-

duction frequenCy (see Footnote. 5).- Previously, however, we have found dne,

case where= production frequency was a better predictor RT than was semantk

relatedness (Smith, Shoben & Rips, 1974, Experiment 1).1 So we have something

-f a discrepancy between these, xperiments with regard to whether a rating of

relatedness or production frequency, is the.better predictor of RT S. This

discrepancy may be due to .any of a number of differences between the two
A-1

experiments. HoWever, even if production frequency was consistently superior

to ratedtkrelatedness in predicting RTs, we believe that this would say little

about the underlying mechanisms (search order vs. shared features) responsible

for the RI effects. This is because production frequency norms r_ generally

collected with subjects under speed pressure, just as they are in standard RT

tasks. Consequently, extrinsic factors that affect all speeded tasks

factors that influence stimulus encoding) will increase the correlation be-

tween production frequency and RT. By contra subjects are usually not

timed as they make relatedness judgments and are therefore uninfluenced by

such extrinsic variables.( For this reason, we might expect lower correlations

between RT and relatedness than between RT ,and production frequency even if

both ratings and frequencies were principally determined by shared semantic
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tions in question seems like an unimportant issue.

The second question concerning the role of semahti is

whether this variably is sufficient to explain certain problematic

One set of findings (by GlaSs et al., 1974; and 1 Holyoak And dl

cases in which reaction time decrea-seismith relatedness for false sentences,

result that is contrary to theFeature Comparison model'- edicrions. We

will discuss this evidence in the next section. The second kind of experi-

mental evidence that seems counter to- the Feature Comparison model is Loftus

(1973) demonstration of asymmetries between verifying-that an instance is a

category member and verifying that a category is the superordinate of an

,

instance. For example, is easier to verify that insect is asupe_ordinate,

of the-previbusly presented instance- butterfly than to decide:that butterfly-
t

is an instance of the previously presented superordinate insect. -8y contrast':

it is -easier to decide that shrimp is an instance of seafood (seafood pre-,

sented first) than that seafood the superordinate of shrimp- (shrimp pre-

sented first). If -RT i -determined by relatedness, =and.iaf relatedness is

: .

itself a matter of shared features, why should such asymmetrie arise?'

There are,, however, a number of ways to explain Loftus' result that are

-fully in keeping with the Feature- Comparison model. First, we note that

according to the original formulation of the model, the relatedness vale_

computed in the first stage is based. not'on the number of shared features

between instance and category; but on the proportion of the categorY's

features that are shared (see Smith, Shoben E Rips, 1974). While this account

was intended to apply to situations in which the instance and category were



presented simultaneously,- it seems reesonebleto sOppdse,that when the items

are Oesented in sequence, as in the Loftus experiment, relatedness -should be-

,dittrmined'by. the proportion of shared features of whichever term is presented

4

need not be_equal,. of course, -theY -depend

ctal number of- defining and.Characterjstic featUres in the term pre-

first. The two proportions

stilted first)

A second explanation of Loftus' result -is to-assume that when the super-

ordinate insect) preserited.first subjects attempt o gentrate

'instances in- anticipation of the to-be-presented instance. Simi arly,

when an instance (e.g., butterfly) presented first, subjects generate

possible superordinates. Whether subjects aresuccessful in anticipating the

correct itethwitl depend on two factors:

relatedness

the instance-stperordi-nbte--

and (b) the number of alternative items With higher relatedness

than-thetorrect one, We can -thus:explain'the.asymmOry-between-butterfly-

Insect and insect-butterfly.by appealing to the (b)-factor. That
.

there

are more insect-instances with higher relatedness values than butterfly, than

there are butterfly-superordinates ith higher relatedness than insect. For

the seafood-shriMp example, this ordering with respect to the factors

reverses. Again, instance-category asymmetries are not inconsistent' with the

Feature. Comparison model.

The second factor questioned by Glass and- Holyoak is "category size.

Category size predictions arise f pm the Feature Comp ison model's second

stage, where the defining featurL f the predicate are compared to those of

the subject noun. The_total number of the predicate's defining features

should therefore determine second stage duration according to most serial and
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further assume, with Meyer (1970) and -.Clark-(1970),

categories are likely, to have fewer defining features than their

subordinates, it folloWs that the duration of the secand stage should decrease

with increasing predicate size. For example, -the time to complete the second

stage,- should be greater for A bee i an insect t1-4n for A bee is an animal.

is difficatti. however, to test this 15redictron directly 'for two reasons.

,First a simple change in the category, size of the predicate Is not sufficient,

since such a change rs likely to Alter the subject- redreate relatedness and-

hence the probability that the second stage is even executed. Second, the

second-stage drfference that we are interested in- may not occur on every trial;

thiS--is because some resPonSesil always ..be made:after only first- stage-

processing:prOdessjng- for_ there is as yet no- experimental technique that ensures-second-

stage-processing on every trial.

In- View of these obstacles tpa direct test our categorysize pre-

.drction -we- attempted to Assets it indirectly. in one attempt (Smith,- Shoben

.t Rips, 1974, Experiment'l) We varied the size of the.predica ecategories

in a standard verification task.. Here, we used an analysis of covariance to

'eliminate any effects that categoryisize-might -have- had on -elatedness.

Contrary to predictions, we found no significant residual effect of category

size when RTs were corrected in this way. In retrospect, this failure of the

category size hypothesis seems, surprising. The mathematical model presupposed

by the analysis of covariance is not equivalent to that of the mathematical'

version of the Feature Comparison'model itself, and-swthere is no antee

that estimates of the category-size effects from the two mathematical pro-

cedures will coincide.
8

In order to derive estimates of category -site effects

9
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from the mathematical version of the-Feature Comparason -model we performed a

second verifiCation experiment and fit the model explicitly to the results

(Smith, Shoben-& Rips, 1974, ExperimeAt 2). In this case,the duration of the

second stage for large categories (animal and 212nI) was Calculated to-be 161.-

msec, while the estimate for small categories {bird, insect, fruit, and vege-

table) was 280 m ec. -So, as predicted, larger predicate categories were

processed faster in the second stage. It should be noted that.the model-

fitting procedure itself did not constrain the former value to be smaller than

the lat er so that these results constitute a confirmation of the underlying

theory.

The parameter values just described were obtained by using error rates to

help predict reaction times, following the procedure outlined by Atkinson and

Joule (1974).. This proced0 ehas been criticized by .Glass and Holyoak who

claim that it trades on a. general positive correlation between errors and RTs.

However, several points. can be made in responSeto this. First, recent evi-

dence suggest that high poSitive correlations between errors and RTs are far

om-universal (Pachella, 1974). Second, even if this correlation were a

truly general one, it is irrelevant in evaluating the crucial parameters. of

model. Clearly, high correlations between errors and RTs imply nothing

about the parameter values for the second stage that were discussed above.

Finally, Smith, Shoben, end Rips also used a second procedure to predict the

obtained data. In this procedure, error rates as well .as RTs were predicted

only 'from relatedness ratings. Here, ther is -no way we could have traded on

a general positive correlation between errors and RTs, yet we still fou that

the estimated duration of the second stage was less for larger predicate

3'?



catego ies (245 msec)

Issues in §emantic Memory

37

han for smaller ones (311 msec). Thus, there is in

fact some vidende that the size of the predicate category affects semantic

decisions. Such evidence fits nicely -with the Computation models that assume

semantic decisions are based. on a-tomparison of features, l.th fewer features

resulting in\ shorter comparison_ times. In contrast, it is not at all clear

now Pre-stora e theories like thejlarer. Search moderwould account for these

results.

erimental Studies of DiScon irmations

It remains for- us to account for the empirical results of Holyoak and-

.Glass on,discoil rmation times, which, taken at face value, violate a major

predictiop of the Feature Comparison model. There are actUally, two sets of

-findings of intere one toncerning,the'disconfirmation of disjoint' state-

meats, the other co cerningthe disconfirmation of superset-and overlap

statements. We -deal with each in turn.

Disconfirming Uij oint Statements
,

The Holyoa d lass results Using a standard verification paradigm,

Holyoak and Glass pres nted subjects with 39 disjoint sentences of the form

All S are P and 39 of form Some S are P, in addition to other sentences

that are irrelevant to t e present issue. The 78 false sentences were sub=--

divided .by Holyoak and GI into three types: high-production frequency,

low - production' frequency and anomalous statements. These distinctions were

based on an earlier experiment in which subjects were asked t .generate corn-

pletons for the sentence frames All S are eand Some , such that

the resulting sentences were false. Holyoak and Glass then _tabulated the

production frequencies for these false completions. According to a

3
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Straightforward interpretation of the Marker,Search,theory, the frequency-.

with which-a- particular-completion, is produced should'reflect the amount of

time necessary to disconfirm the corresponding sentence. For example, the

production frequency of men to the frames-All women are ? should predict the

time needed to disconfirm All women are men, since completing frames involves

finding,a_contradiction that also used to estonfirm- the statement in the

Verification task. Thus, high-freqUency ',comniettoris (produced by a mean of.

35 of their 14 subjects) should be disconfirmed faster than low-frequency

complet ons (produced by 5'%)% and these in turn should be falsified faster

than anomalous completions (4%). Note, however, that the difference in

prodLietiOn frequency between low and anomalous sentences is slight. 9

Holyoak and. Glass also obtained ratings of semantic relatedness for each

the disjoint subject-predicate pairs, and this allows us to generate rival

predictions from the Feature Comparison model. These.ratings show that e

high-frequency, sentences were somewhat more'closely related than low:

frequency sentences, and that low - frequency sentences were much mbre closely

related than anomalous,ones;-the means'vwe.4.88., 4.47 and 1.76, on a .7 -point

scale, for-high, low, and anomalous sentences,. respectiVely. Since.the Feature

Comparison model predicts that disconfirmation times should-increase -with

relatedness, the high - frequency statements, should take the longest to cis-

confirm, the low-frequency next longest, and the anomalous statements' should

be the fastest. This-of course, is the exact opposite of the ordering pre-

dicted by the marker Search model.

The results of this experiment disconfirmed major predictions of both

models. First, contrary to the Feature Comparison model, low-frequency

sentences took longer to disconfirm than=: the high4requenty ones. And second,
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contrary to both-theorie,. anomalops.sehtences took about the same amount

of- time as high - frequently sentences. Before commenting on an interpretation

of these is seems important to inquiee about their robustness.

'Since these findings are surprising ones, we decided to replicate-

Exper.iment a tial'replitation of Hol oek.and Glass. We attempted

to replicate the part of Holyoak and Glass's,exper meat that dealt itk dis,

joint. statements quantified by All', making-only minor change5-in procedure

and design. We used .a total of-182 woed-pairs. TWo sets of 39 pairs,. were

-selected frem HOlyoak.and Giass..-These sets comprised tbe disjoint state

ments and their true- counterpa 'hatWerequantified'by All in Aolybak and

Glass. Ou- rema1 Pling .54 pa s were used .as fillers to control for frequency
-

Of'nounS in true vs. false items, such that (1) all subject nouns were

--presented equally often. in true d'false items; and (2) approximately on--

,third of the predicate nouns appea ed in a true item only,Aone-third

false item only,-land the remaining third once in both a true and false item.

in a

y the 78 pair selected from Holyoak and Glass were analyzed,.

The two members of a paur were:typed in uppercase Gothic-in a single

line (and were separated by a hyphen) on a 6" x 9" white index card. -Subjec s

were instructed that "air was t be_cons-idered-True if the-left7hand member

was a subset of the 1 ht-hand one, and False otherwise Twenty of the filler

pairs were selected as mactice items while the remaining 112 pairs were
A

randomly ordered. The same orderqvas used for al1220 subjects, who were_

Stanford undergraduates. The pairs were presented in a Gerbrands two-field

tachistoscope at a viewing distance of 59-cm and each pair was preceded by

1.5 sec f xation point. -Responses were made on two telegraph keys, which,
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when depressed, terminated the display of the pair and a Standard Electric

Timer. The assignment of keys to-response types (True and False) was balanced

over subject's..

In analyzing the results, RTs to the- critical 78 pairs were analyzed

across both items an subjects (Clark, 1973), which. separate analyses for True

and False responses. The 39 true pairs were categorized as high-, medium-,

and lowtproduction frequency, following Holyoak and Glass's classification of
6

these Same items. This production frequency factor was a within-subjects'

variable, with stimulus pairs nested within frequency levels. In a similar

vein, false pairs were divided into high, low, and anomalous items, again

following Holyoak and Glass's classification.

.Table 1 presentee mean True and/False RTs from both the subjects and

items analysis. The RTs differ slightly for our two analyses because we have

Insert Table 1 about here

used unweighted means analysis. For the False 'items, both sets of means show

that RTs were fastest for anomalbus pairs, next fastest for high-frequency

pairs, and slowest for low- frequency items. The overall difference among the

False means was significant at the .001 level (min P(2,59) = 8.09), and

Newman-Keuis analyses showed all pairwise comparisons among these means to

be significant in both the analysis by items and that by subjects. This

finding contradicts that of Holyoak and Glass, who found no significant dif-

ferences betweenanomalbus and high-frequency sentences. 1G
0

Evidence for dif-
-

ferences among the True means was more equivocal-, as the min F' statistic
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showed no significant differences (min_F1(2 55) =-1.86, p > .10). However,

the subjects analysis does indicate a difference among these means (see .

Table 1), and a Newman-Keu s analysis over4subjects found high-frequency

pairs to be faster than either medium- or low - frequency items. Further, a

test for the linear trend among the True means showed a marginally significant

effedt (min P(1,56) = 5.71, .05 < < .10). The results for True RTs, then,

are in rough- agreement with Holyoak and Glass, who found the same ordering of

means as we did.

The main discrepancy between Holyoak and Glass and our study concerns

the relation'between anomalous and high-frequency statements. It i possible

that.Holyoak and Glass failed to find a significant difference between these

statement ype.,s because they repeated subject-predicate pairs in an unbalanced

fashion. That is, considering both statements quantified by All and by Some

in Holyoak and Glass, 9 (out of 17) high-frequency items, 6 (of 20) low-

frequency items, and no anomalous items were repeated. If these repetitions

decreased RT, high-frequency statements'may,have been artifactually fast

relative to anomalous statements. In the present study, only statements

quantified by All were used, and for these statements, there were no

repetitions of subject-predicate pairs in the critical false statements-

Implications of Experiment -1. With respect to the to models of interest,

our resutts can be summarized as follows. In congruence with the Feature

Comaprison model, false. items containing very unrelated nouns (the anomalous

pairs) were verified extremely rapidly. This finding is contrary to the

Marker Search model, which predicts relatively slow RTs to these pairs
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because of their low production frequencies. However, our experiment dupli-

cates Holyoak and Glass's important finding that low-frequency pairs are dis-

confirmed faster than high-frequency ones, despite the fact that high-

frequency items are also rated as more related in Holyoak and Glass's norms.

This finding is inconsistent with the Feature Comparison model, but in accord

with the assumptions of the Marker Search model. Hence the results contra-

dict some major predictions of both models. It seems that if we are to

salvage the Marker Search model we must explain away the data from anomalous

pa mss. Alternatively, if we want to rescue the Feature Comparison model, we

must explain the relation between high- and Jow- frequency pairs.

Let us first consider some ways salvage the Marker .Search model.

Holyoak and Glass were aware of the problem _hat anomalous statements posed

for their model, since this problem manifested itself in their own data

(recall that they found anomalous statements were disConfirmed faster than

low-frequency ones even tHOugh both statement types had comparable production

frequencies). To reconcile these findings with their model, they proposed a

new "admittedly ._111_211Tf device, t the theory, namely that "...certain abstract

types of information which differentiate between almost all words (such as the

distinction' between 'living' and 'non-living') are uniformly accessed quickly"

(p. 237). ,Thus anomalous sentences should be disconfirmed quickly on the

basis of this abstract information. But this_leaves us with a serious

question. If this abstract information is accessed rapidly, why do the

production frequencies collected by HolyoaF'and Glass show anomalous com-

pletions to be rare? If prodOction frequency is truly an indicator of search

order, then anomalous completions should be fairly common, whiCh is not the

4.;
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case. Holyoak and Glass's reply is that "...production fr,equency may not e

a valid measure of the association strength of such abstract properties"

(p. 237)-, since these abstract concepts may not correspond to single lexical

itemsin English and may be very rare in written or spoken language.

This explanation is not just ad hoc; almost surely incorrect.

First, it is unclear why the supposed low frequency or lexical form of,

abstract predicates should result in low-production frequencies, since sub-

jects contributing to these norms are not called upon to encode or produce

these abstract terms at all. In order to produce an anomalous completion--

chairs to the stimulus fraMe All birds are 7 --the subject must determine

that the superordinate pathways from <avian> and <chair> intersect at the

appropriate abstract concept, like <thing>, with identically- labeled paths;

this is the only role played by the abstract concept. How quickly this can

be done should depend on the order in whiCh the abstract concept is searched,

and this'search order should not depend on factors like word frequency or

number of words in the lexicalization of the concept. For if it did, the

abstract concept involved should not be available quickly in verification

tasks either, and this leaves Glass and Holyoak without any -way of accounting

for the falsification of anomalous statements. Second, abstract concepts need

not be infrequent in English. Take, Holyoak and Glass' example of an anom7

alous statement, All birds are chairs. As we have just noted, disconfirming

this sentence requires us to find a common super rdinate where the pathways

from the subject and predicate meet. Such a superordinate might be thing or

object (not living thing, as Holyoak and Glass assume since living thing is

the superordinate of the subject term only). Both thing and object have the
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advantage of being single lexical ems and fairly common, at least in written

English (thin appears 333 times per million and object .69 time per million in

the Kuera- Francis, 1967, norms). Note, in addition, that the abstract term

thing will serve to disconfirm any anomalous sentence that is fake by virtue

of one concept being animate and the other inanimate, as in the above example.

Third, the purpose of using production frequency as a predictor of RT was,

according to Glass and Holyoak, to provide empirical constraints on their

model. The importance of doing so, as'they note,. s that the Marker Search

model lacks any structural constraints on search order. But Holyoak and -

Gloss's abandonment of production frequency for abstract concepts seems to

leave the model without empirical constraints of search order as well,

allowing "predict" any RT results whatsoever. Thus the modification

proposed by Glass and Holyoak to account for findings on anomalous statements

is fraught with problems.

Now let us see what we can do to salvage the Feature Comparison model.

Recall that its problem is that it - cannot account for why high-frequency

statements are disconfirmed faster than low - frequency ones. To get some

leverage on this problem, let us consider in det -,ome of the Holyoak and

Glass items. Low-frequency items included the sentences Some (All) women are

babies, Some (All) valleys are lakes, Some (All) flowers are foods. In

'contrast to these difficult items, the high,- frequency counterparts were

Some (All ) women are men, Some (All) valleys are mountains, and Some (All)

flowerS are trees.- The subject and predicate concepts in both the high- and

low-frequency sentences share a fairly large number of semantic dimensions_

Women, men, and babie for example,share those dimensions common to humans.
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However, the subject - predicate pairs in high-frequency items (e.g., women

men) seem to possess directly opposing values on at least one shared dimension

(sex, in our example). While it is possible to find such opposing values for

the subjects and predicates of low-frequency pairs, the relationship is not

as clear-cut. Thus, while women and babies may'differ on the dimension of

age, this, difference depends on interpreting women in its most specific sense

(woman as adult human female) rather than its more general one (woman as human

female). This is the kind of intuition that led Glass and Holyoak to formulate

the Marker Search model, and we concur that it is an important insight. The

task for us is to determine some way of accommodating this intuition into the

Feature Comparison model. 4

There are at least two ways of making this accommodation. The first is

to change the model by adding some new content to the second stage. Specif-

ically we may assume that this stage terminates'as soon as any mismatching

f
feature is found, and that a mismatching feature will be found sooner with

high- than low-frequency statements. To use our previous example, the mis-

matching feature of sex may be found relatively quickly when.comparing women

and men, while the mismatching feature of age may be found relatively slowly

when contrasting women and babies. Of course, added assumptions are of

limited value unless they lead to new predictions, but the'present as4umption

seems testable. It seems to predict faster confirmation times for the true

statements Women are femal and Men are male than for Women are adults and

Babies are nonadults. This seems like a reasonable prediction. But, alas,

there are-other problems with this approach. In addition ,to our assumptions
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about self-termination, we must further assume that the faster second -stage

processing of high= than low-frequency statements -more than compensates for

the greater likelihood of having to execut the second for high-frequency

items (recall they have higher related values). While the small difference

in relatedness between the high- and low-frequency completions argues for

the viability of this approach, it is not an altogether satisfactory one

N.--
without an explicit quantitative model.

Alte natively we can accommodate the findings on high- and low-frequency

pairs by altering our conception of first-stage processing, particularly of

how one computes a relatedness value. We may assume that, in our Experiment 1,

for example, When a subject computed the relatedness value, he gave more -weight

to dimensions with widely discrepant values than to dim

values.

n ions with' similar

In this way, pairs like women-men would have been computed as les'A

relied than women - babies because of the extra weight given to the dimension

Of sex which differentiates the first pair. This method of computing related-

ness may differ from that used by those subjects who contributed to the

ratings and were asked to rate "how closely you feel that two words are

associated in meaning" (Holyoak and Glass's method, and our own). For in the

er situation, subjects may be inclined to give equal weight to all shared

dimensions. This same ambiguity with -respectp relatedness judgments has

been noted -by Fillenbaum (1973) in connection with multidimensional scaling

techniques. To borrow Fillenbaum's example, the judged similarity of

antonymous pairs like hot and cold will depend heavily on whether subjects

attend more to the'dimensions having similar values or to those having

different values.

I -
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Again, we would like cur proposed modification of the Feature Comparison

model to lead to some new prediction One such prediction is the following.

If `new rating instructions can be.devised that induce subjects to emphasize

dimensions having widely discrepant values, then this set of ratings should

accurately predict the ordering-of False RTs in Experiment 1. We attempted

to test this Prediction in Experiment 2.

Ex eriment 2: An alternative rocedure for measuri relatedness. We

.asked 29 Stanford undergraduates to rate the related ss of the subject-

predicate pairs used in Holyoak and Glass's disjoint statements, by d ter-

mining "...how 'easy it would be for the subject term to become the predicate."

Our presumption was that such instructions would emphasize the importance of

shared dimensions with discrepant values. The 63 distinct subject-predicate

pairs were presented to the raters in a randOmized list, and the raters were

asked to prOduce a rating on a 10-point scale for each pair; with 10W- values

denoting more related items.

The results of this experiment may be summarized easily,t The low-

frequency pairs were now judged to be the most related, the high-frequency

items next most related, and the anomalous statements least related of all.

These relatedness ratings, then, display the same ordering as the RTs of

,

Experiment 1, with relatedness being directly related to disconfi mation times

as predicted by the Feature Comparison -iodel. This was the case for both

the set of items quantified by Some (used in the Holyoak and Glass study)

and for the set quantified by All (used by Holyoak and Glass and by us in

Experiment 1). For the former set, mean ratings were 4.20 for low-frequency
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items, 4.54 for high frequency, and 7.71 for anomalous pairs (remember --

low numbers mean high relatedness). For the latter 5 of items, means were

3.03 for low frequency, 4.43 for high frequency, and 7.11 for anomalous pairs.

Differences between these means were significant in both cases, with E:(2,53)

= 30.08, p .01 for Some items, and F' (2,48) = 27.20, p < .01 for All items.

Newman -Keuls tests showed that each of the pairwise differences within the

two sets were significant, except for that between'the high- and low-frequency

pairs for statements quantified by Some.

So the Feature Comparison model is comz'stent with the pattern of means 0

obtained in Experiment 1 as long as we assume that the relatedness value

computed in the first stage mirrors the relatedness judgments provided by our

subjects in Experiment 2. The relatedness norms collected by'Holyoak and

Glass fail to predict the results of Experiment 1 because their ratings

reflected only the overall prop9rtion of shared dim'eM0ens. Ratings of this

kind have proved successful in earlier studies (e.g4Aips et al. 1973;

Smith; Shoben&'Rips, 1974), possibly because the falseitems*used in the earlier

studies did not discriminate between the two sorts of relatedness. These

conclusions, however, need further scrutiny. Introducing yet another measure

of the semantic relation between subject and predicate nouns, may raise as

many problems as it solves. Many types of ratings have been found to

correlate with RTs for semantic memory judgments (e.g., co-occurrence rati-ngs,

prodUction frequencies., relatedness ratings), and all of these measures are

,intercorrelated. So additional experiments and analyses-are needed'to tease

,:apart the critical differences between these measures, and additional thought

must be given to the factors responsible for the differences. Perhaps such
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studies will show us that different measures all tap different, but equally

important', semantic aspects, for there is surely, no reason to think that

re--1$.";ne best measure of semantic processing.

Disconf rming 'u erset and Overla. Statements

The Holyoak and Glass results. There is one -last set of findings due
_ .

to Holyoatcand Glai- that we must still deal with These findings involve

RTs to false superset statements, e.g., All women are mothers, and false

overlap statements, e.g. All women are writors (what Holyoak and Glass call

j

Counterexample statements). As we noted earlier, the Marker Search model

assumes that these types of sentences are disconfirmed by a search for a

subset of the subject category that Is disjoint with the predicate category,

as indicated by identically labeled pathways. The Feature Comparison model

would disconfirm these kinds of statements in the same way it falsifies dis-

joint statements, that is, by finding mismatching features. Again the two

f.

models differ in the predictions they make about the disconfirmations of

interest. But tb see this,we need to examine the Holyoak and Glass study

in detail.

In their study of how superset and-overlap statements were disconfirmed,

Holyoak and Glass's experimental strategy again involved finding cases where

produCtlon frequency and relatedness ratings make discrepant -predictions for

False RTs. But in this case, Holyoak ar Glass's frequency measure of

interest is obtained by somewhat indirect means. Instead of Using the fre-.

quency of completions that make.a sentence frame false (the procedure used for the

disjoint statements previously discussed), Holyoak and Glass use the frequenc
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of completions that make the corresponding Some statement true. (Note that

a superset or overlap-statement is true when quantified by. Some; t is only

false when quIptifi,ed by X41). For example, to-predict RTs for disconfir

mations of sentences like All fruits are oranges, Holyoal6.and Glass used

completions of die frame Some fruits are 7 that serve to make the sentence

true. In theory he higher the frequency of the Some completion, the faster

one can disconfi the corresponding false Ail statement, If, for example,

2p212F_ is a high-frequency completion to Some fruits are then apples is

readily accessible from fruits, and rejection of All fruits are oranges

should be fast. This follows from the Marker Search model's hypothesis that

such sentences are disconfirmed by a "back-up" search from the subject term

('fruits) that finds a category (apples) that is disjoint with the predicate

term (oranges).

The results showed significant effects on False RT of these true-

completion frequencies. However, the False RTs showed no significant effects

of production frequency'of-the fa-se sentences themselves. For example,

reaction time to disconfirm a sentence like-All fruits are oranges was

unaffected by the frequency with whFch subjects generate o tinges to the

frame All fruits lare ? when asked to ake the sentence false. This contr

with the finding obtained for disjoint statements. Also, according to the

norms collected by Holyoak and Gloss, ratings of semantic relatedness co-
,

incided with the frequency of false completions, so they likewise failed to

predict the False RTs. Holyoak and Glass note, however, that a significant

residual effect of relatedness remains when the true-completion frequencies

are controlled.
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Holyoak and Glass conclude. that these -findings support the Marker-Search

model, because the model correcflY predicts that False-RTs should decrease

with true-completion frequencies.. They further conclude th t the results

conflictovith the Feature Comparison model, because the latter cannot account-

-for the effects of true-completion frequencies. We,disagree, as .we think the

findings-pose difficulties for both models. Consider first the Marker Search

model. The problem here is how to explain the lack of effect of false-

completion frequency. Surely, according to this model, false completions to

All fruits are 7 indicate the order in which pathways are searched from

fruit, as this search must locate not only a potential predicate, like orange,

but also another subset of fruit, like apple, that is disjoint with the

potential predica'te. For if this last step were omitted, it would be

impossible to determine that the potential predicate actually made the

sentence false. Thus the search needed to produce a false superset or over

lap completion mirrors the search necessary to disconfirm the completed

sentence. By the usual Marker Search logic, this should mean that these

completion frequencies will predict RTs for the corresponding full sentences,

and this is contrary 4-1the obtained findings. ,Although Holyoak_and:GlasS

seem to dismiss this implication from their model, we think it provides an

important disconfirmation'of their theory.

Now consider-the Feature Comparison model. The problem here is how to

:account for the effect of true - completion frequency on False RTs, since

0
Holyoak and Glass were able to demonstrate that this effect was independent

of rated elatedness could.proceed as we did before, and attempt to add
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tent with the

prob ematic effect. In this case, however we think this approach is

unnecessary at this point in time. For we dispute the very claim that.the

effect. of true-completion frequencyhas'been adequately demonstrated, becau

there are two methodological problems with this study that undermine its

principal finding.

First, appears. that several of the items in the critical set were

simply misclassified by Holyoak and Glass. (All of the items-are listed in-

their Appendix.) For example, the sentence All dits are citrus is listed

as one for which there was no high-frequency true-completion to Some .fruits

-are that was disjoint with citrus. However, a±e, listed as a high-
s,

-frequency true-completion, seems to fill the rol& of such a disjoins predicate.

r-A similar problem applies All are swimmers, which was also classified

as having no high-frequency true-completion associated with- it,here robins

seems to be such a completion. Removing just these two items from the

critical sentences reduces the overall difference from 109 to 76 cosec. This

reduced effect is not significant over either subjects (F(1,1 ) = 9.41,

< .05) or items (F(1,20) = 2.51, p < .10). However, the effect is still in

the right direction, and it might prove significant in future experiments

that involve more subjects and more items.. So while this problem is somewhat,

serious, it matt not be that severe,

The second methodological problem is more bothersome. Holyoak-and Glass

did not control for the type of set relation within their critical sentences

(those where true-completion frequency and relatedness were-unconfodnded),
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That is, for the critical sentences, d of the 12 items with high true-

-completion frequencies were superset statements while the remainder were

overlaps,; in contrast, only 3 of 12 items. with low true completions were

superset statements while the rest were overlaps (see Holyoak & Glass, Foot-

note 4). Thus true-completion frequency was confounded with the prevalence of

superset statements; If we assume that superset statements can be confirmed'

faster than their overlap counterparts, we have come with an alternative

explanation of the problematic result. Experiment 3 provides support for

this assumption.

Experiment 3 Differences between" superset and overlap statements.

Thirteen subjects (Stanford undergraduates) were given 150 statements to

verify, all of the form NI SareR. Half the statements wereltrue, and

half false. The false items contained 25 disjoint, 25 superset, and 25

overlap statements, and these three statement-types were equated- -for average

11
subject-predicate relatedness as determined by previously obtained ratings.

Also,'the average relatedness of subject-predicate pairs in the falsastate-.

meats (6.5 on a scale of 1710, where high numbers
N '

was roughly equal to the average relatedness of subjeCt-predicate pairs in

true statements (6.9). Each statement was presented only once, and there

were no repetitions of words across the 150 statements.

Each full statement was typed in uppercase Orator in a 'Tingle line on
N

11a 6" x 9" white index card. Subjects were simply instructed to decide

indicate similar meanings)

whether the statement was True or False. The same random ordering of the

150 statements was used with all subjects. The statements were presented
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in an lconix three-field tachistosto at a viewing distance of 68 em, and

each item was preceded by a 1 sec fixation point.- The response panel. con.-

tained three telegraph keys arranged-horizontally.' The middle key was used by

the subject to initiate each trial, while the left and right keys were used

to indicate True and False responses.) All subjects used the key corresponding

their dominant hand to indicate true decisions.

The False RTs are the, only ones of interest, and they were analyzed

across both items and sulojects. For the subjects analysis, disjoint statements

were disconfirmed fastest (1510 cosec), superset statements next f stest (1575

cosec); and overlap statements were slowest of all (1721 msec). The overall

effect of set relation was significant at p < .01, with F(2,48) - 9.67.

Furthermore, subsequent planned comparisons showed that overlap statements

were significantly slower than superset statements, F(1,48) =,14.49, <

while the superset and disjoint statement-types were n ignificantly dif-

ferent from one another, F(1,48) 2.87, p < .1. For the items analysis,

the mean RTs for disjoint, superset, and overlap statements were 1506, 1580,

and 1680, respectively; the effect of set relation was marginally significant,

F,(2,144) 7 2.42, .05 < p < .10. While a planned comparison did not reveal

a significant difference between overlap and superset sentences, F = 2.34,

.10 < p < .20, the difference between them is of course in the expected

direction, and the magnitude of the differ (100 msec) is relatively

or rate on overlap

statements (24%) was far greater than that on superset statements (8%),

substantial for this kind of experiment. Lastly, the

= 4.35, p < .001.
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All things considered, these results indica -that overlap statements

are harder to 'process than their superset counterparts,and this provides

alternative explanation of the Holyoak and Glass results. Thus there is no

clear-cut evidence, in -the Holyoak-Glass study. for_the effects of true.-

completion frequency, or for what they have called "disconfirmation by

counterexample.P As we see it, this reduces the credibility of their

theoretical claims.

How do the present results line up with the Feature Comparison model?

It seems that they remove one problem for the model --the need to explain the

effect of true-Completion frequency on False RTs -and create a new onethe

need to explain the effects of set relation on False RTs. That IS, there is

nothing in the Feature Comparison model that would lead u to expect that

False RI should increase from disjoint to superset to overlap statements,

when all three statement-types are equated for relatedness. Before trying

add some new assumptions to our model to account for these new results,

,
s helpful to localize the effects of set relation wi- n the procesSes

the model. Two aspects of Experiment 3suggest that set rel n affected

only the second stage of the model. Fi st, all three statement-types ere

equated for relatedness, and, in terms of the model, this means that all

false statements were equally likely to require second-stage processing.

Second, as previously noted, true and false statements had roughly the same

level of subject- predicate relatedness, and-, according to the model, this

means that many of the TruejFalse decisions must have been base on second-

A

stag,prexessing {Smith, Shoben & Rips, 1974; Smith, Rips hoben, 1974),.
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We also have additional evidence:that argues fora second-stage locus of

the effect of set relation. To appreci te this evidence, consider the con-
,

sequences of changing the quantifier used in Experiment 3 from All to Some

We have argued elsewhere hat Some statements probably require a different

second stage than that used in verifying All statements (Smith, Rips &

Shoben, 1974) . Essentially, this is due to the fr:ct that the second stage

used will All statements establishes a subset relat ion, and Some statemstatements

true even when they manifet only a superset or overlap relation. Con-

sequehtiv, if the set-relation effect i-s due to the second stage, then this

effect might not obtain if the quantifier is svlitc*d.f m

Accordingly, we basically redid Experiment using Some as the quantifier.
r.6

.(To insure that--True-and False- responses were still equally probable, wre used

only-25 subSet statements and increased the number of disjoint statements to

75-) The results were s irnp There was no' longer any effect at all of set

relation If we restrict our attention to the 25 disjoint, superset, and

overlap statements that were previously used in Experiment 3 the new means

are as follows for the ubject analysis, disjoint = 1452 msec, supers

1494 msec, and overlap = l499 msec, F(2;48) -< 1; for the items analysis,

disjoint = 1502 msec, superset -= 1522 cosec, and overlap .--- 1517 cosec, F(2,45)

< 1. These results, then lineup with the notion that the set - relation

effect of ExperiMent 3 was due to:the second stage.

To explain why second - stage processing is faster disjoint and

,_superset statements than for overlap ones', it seems we must assume this stage

is self- e minating. DiSjoint statements would then be disconfirmed rapidly
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if we further assume that general features, like being animate or being alive,

are compared first since most of our disjoint pairs differed on these f atures

(Note that thiS differs from the Iolyoak and Glass assumption about

features being accessed first

general-

since we hold that such features only become

availabte after an extensive amount of processingthe first stage --has been

completed.) There is some support for our assumptions in Shoben (1974),

where disjoint noun -pairs were disconfrrmeorfaster when they differed on

general features rather than-just specific ones. Shoben, thoUgh,did.not

establish that this effect was independent of relatedness, our assumptions

should be considered speculative until further research is done.

It is somewhat more -difficult to comp up with an explanation of why

second-stage processing should be faster for superset than overlap noun-pairs,

as both types of noun pairs contained virtually no mismatches on general

features_ There ids, ho ever one notable difference between the sets of

defining features for superset and overlap pairs- superset pairs the

predicate term should contain more features than the subject tern (as the

predicate term is in et a subset of the subject), while this imbalance

not hold in overlap pairs. Detection of this imbalance0ould provide,'

sufficient grounds for-distonfrrming a statement, for obviously

pf,the predicate cannot.oe found among those of the subject. if there

are more features in the predicate to-begin with. Thus = it is possible the

superset statements were processed faster. than Overlap on

subjects Of ExPeriment 3 wei

.ecause the

wrts[Iive to this imbalance- and terminated.

their second-stage processing as n as imbalance was deteCted.-
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a very ad hoc assumption, and again further research will be needed to

determine if it has any merit.

To summarize, Experiment 3 appears to undermine the results of Glass and

Holyoak on true - completion frecluencies (Counterexamples, in their terminology);

it also leads to me new probl ems for the Feature Compar i son model, problems

that call for further embellishments of the prI6oposed second; stage`.
,

Summar and Future Directions

We began with an attempt to classify semantic-memory models, and after

considering various unsatisfactory classifications, va proposed a distinction,

between Computation and Pre-stora0 mod 1 Computation models, of which the

Feature Comparison model is a current exemplar, emphasize semantic expansion

of terms during sentence verification, and account for RT effects in ver.ifi-

cation experiments .by means V variations in the time needed for comparison

rations between these expanded concepts. Obtained effects of relatedness

or typicality are explained by similarities among the elements of the expanded

concepts. Prge-storage models, such as the Marker Search model, explain RI

f -ts in terns of variations in search procedures that operate on a data-

13 se of stored (usually interconnected) propositions. Typicility and kindred

Ph omena are explained away by means of co- occurrence frequency.

What is the current status Of these models light of the evidence

reviewed here? 'Much f this evidence related indirectly to the guest ion of

wheIher RTeffects areFbest ascribed to search or comparison processes. But

though we were able to.offer a detailed contrast between a theory enphasizing
.

comparison processes (the Feature Comparison model),and one emphasizing search
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v= search issue in any final way.

that infirms either theory. This

Issu s i n `Semen t ic Memory

59

we are not able to se

There i s- rib decisive empir.66.1 resul

the compor is n

not sb much beta tse semantic-memory

research has uncovered no interesting facts, but rather because the models

have been retrenched in an effort to account for the new facts. As a result,

one-of the outstanding questions is whether the'revised models are too general

to be testable a prpblem that seems be particularly acute for Pre -storage

models (Glass & Holyo0, and particularly Collins & Loftus, 1975).

models, ther

For these

e no ructu al constraints at all on search order. Even

the empirical constraints proposed by Glass -ands tilyoak can be by-passed by -

to account for disconfirrrninginvoking extra mechanisms like those needed

anomalous sentences. For Computation models, one of the important remaining
P

problems. is to specify the mechanics of the comparison process through

further discriminating experiments; hopefully the present Experiments

begin, tai do this.

With respect to an explanation for typicality effects, we seem to be

on firmer ground. There is no evidence whatsoever for the rot

occurrence f uency,

way'(-' in our reanalysis of Anderson & Reder, 1974, or in Rosch et al., 1976).

Although dependence on co7occurrence frequency i,s a relatively. peripheral

feature of Pre-storage models, the latk of evidence for co-occurrence

frequency leaves these models without a principied.explanation for their own

f co-

least when frequency is measured in an objective

structural organization. For example, the Marker Search model is left withou

any theoretical underpinning for its short-cut pathways or search order,

co
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-beyond the 'sheer need to account for the data. By contrast, those Compute
-

tation models that take featural similarity as their starting poin ave

little difficulty in coping with typicality effects and other related

phenomena. Instead, the problems- faced by the latter models have to do with

specifying the status of'the features themselves, 'and the boundary conditions

on feature combinations and fe6ture comparisons.

Of course the issues contended by- ComputatiOn-and Pre7storage models do

not exhaust the range of questions concerning 'psychological semantics. Nor

do we need to resolve the former before pursuing the latter. For example,

little experimentation has been done on rules, for combining - propositions

semantically in complex sentences, and to our knowledge, no semantic-memory

model has even explicitly addressed this problem. While we have done some

preliminary work in this area (Rips, Shoben & Smith, 1975), there is no way

at present to evaluate semantic-memory models on this issue. Similarly, most

current models of semantic memory haVe,been content to divide sentences- into

propetty statements (eg., Oranges are round) and cla=ss inclusion statements

But among the so-called property statements areg, Oranges are -frmdt).

a wealth of distinct s mantic .types, including modals (Oranges can roll

sentences with relative adjectives (Oranges are.small), -and l sentences with

-complex verbs es grow). ,Jde know from linguistic and philosophical

analyses that such sentences contain importantfser antic characteristics, yet

we have, no evidence at all concerning psychological distinctions among them.

It seems to us that semanti memory has nothing to lose by dealing with a

broader range of phenoMena.
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Similarly, references to Holyoak and Glass reerto Holyoak and Glass (1975).

3
The problems that we hav_. .just di cpssed aly stem from the procedure of

assigning mutually exclusive subsets same marker. One could argue tha

rather than relying on,this- kind-of pr- _ edure, we need instead to use our

intuitions to:decide when two paths are contradictory. The difficulties with'

this s'olution are obvious forgoes any a priori determination of contr

dictory pairs, and it may not lead to, many predictions if intuitions about

c&ranttions are not clear-cut. Both of these fn-oblems could eventuate in

a theoretical formulation that lacks

It is,pos5 ble to,maintein'that

tability.

n.

her measures of production frequency-

ould have been more appropri te.-:Cu choir e;was dictated by the ayRilability

Of the Battig7Montegue entries for the-items used by Anderson and Rader (1974)

and,by- the role that these nOrMs have played in .previous studies of semantic

emory (e. Wilkins, 1971).

Forno additional results from our correlational -lanalySis that

'deserve comment. First, bOth prod6ctton frequency and typicality ratings

True' RTs, 7 .05 < 10; and r(70)'= -.25,-

Neither., of these findings is the -least bit novel (see

1974), though-botn...tdrrelatiOns'aresurprisTnglyjow in

correlated w th

05, pect iVely.
--.

mith, h ben Rips
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light of prev us results. Second, there was also a marg
_..

correlation between typicality ratings and the kF count,

This result conflicts with the negative correlation of Rosch et -aa <

(106) that was just_Qpntioned in the text. But the conflict may be more

apparent than
.

real, since the ins-tance-category pal

a wider typica. lity range than did those of Anderson
-1I--"t -----s--.

et al. res:ults may be h more se'nsitive ones.
,

s of Rbsch et al -coverall

and Reder. So the Rosch

Finally we should mention

that we performed a step -wise multiple regression of RI on the entire set%)

independent

(determined by the

entered the egreS

. .

plUs measures., oaf s mple ward.re uency

standard Ko6era and Francis norms)

and of the rernoirfing :varlabs only the.

variables discussed above,

ion equation first,

word frequency-of the instance e m -Showed ,even a marginally significant

correlat'on with. RI, r(69) 1, .05 < p <.10. Thus, typicality ratings

taken together
.

the RT data

lass and

instance word

FactOrs 'method: We feel

-equency seem to provide the best accoun

F(2,69) = 3.96, .05.

argue this in terms of Sternbergs -(1969) Additive

that invoking the Additive Factors method here may

be something-Of a red herring., In the Feature Comparison model, the output

of the first stage (the semantic relatedness value) directliaffects the

duration of the second stage; this means that if relatedness is manipL4ated

experimentally, itseffect will interact with any factor (e.g., category, size)

that influences the second stage. The Feature Comparison model, therefore,

cannot be faulted for lack of additive effects between relatedness aid cate-

gory size since none are prediAed. J course; it may be possible to find
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some third VariableAhat'influences the duration of the first stage without

changing the relatedness value, and so, this factor should .produce

additive effects ' with -ittand stage variables

7
We could equally-well".:a sump that relatedness dependsoon propor-

tion of. the second items features. that are char

the present argument.-

More specifically,

'This in no way affects

e of thecategory size effect derived

from the analysis of covariance_ is obtained by fitting an equation of the

following form to the, reaction time data (ignoring error):

is the reaction-time to verlj
and X. is the relatedness

the overall
)

effect orcategory size. By,aontras

and Rips (l 74, Equations 3 and 6) is

Mean MT

ify sentence-
.-.

ing for the same sentence.:'-

ff

edness

..

ting, and t
_ . _.

,

4

1-g-
i-

i!

-. .

model_ by Smilih- -Shdben,

more complex, and predicts TrUereaction

X is the mean

times as

RT. ---- t t
--II mean size.

where I), represents the normal distribution funEtion
,

are parameters of the model. -A similar equation obtains for False reaction

times. The relationship between reaction time, relatedness retings,l, nd the

estimate of the category size effect is clearly different. in the two model.
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and consequently, there is no reason to suppose that the estimates of

will be eq valent.

At one point, Glass and Holyoak argue that the results fr anomalous

statedents are net critical to their model because they wish to restrict

their theory to explanations of high- and low-frequency statements. We are

not convinced that this restriction is a principled one, and so we will

ize

consider the results for anomalous statements.

10
Interestingly, though these results fail replicate the Holyoak and

Glass i suits for anomalous statementhey do replicate an earlier study

of Glass et al. (1974). These authors, using noun-property statements rather.

than noun-pairs, found that anomalous statements were disconfirrned fast-r=

than highfrequeney statements, whichrr turn were faSter than -heir low-

frequency counterparts.

11
To keep matters comparable to Holyoak and Glass, relatedness was

determined by ratings of "closeness in meaning"--the standard procedure. As

an afterthought, we also measured relatedness by the ratings used in

Experiment 2,, these ratings also showed that the superset and overlap sta

equal in. relatedness.
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Table 1

esuIts iron Malyses of Varianceri of True and False Responses

Treating Either Items ( |tems-analysis) or Subjects Subjects-

analysis) as a Random Variable while Averaging Across the Other

A

Trues

Hi F Med-PF Lo-PF df

Subjects-analysis 986 1045 1089 8.14 2,38 <.005
(3,

Items-analys s 979 1050 1112 2.41 2,36 n.s.

nun F 2 59) 7-1 1.86 a > .10

High Low Anow-laus F df E

Subjects7appjysis 1103" 1248 998 38.58 2,38 <.001

items-analysis 1136 r4266 1001 10.24 2,36, .00:1

min F' ( 59) 7 8 O,, .001
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