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ABSTRACT N

This study investigated the feasibility of using the family of Weibull
distrubutions - a family which is\ywidely used in system-reliability analysis ~
as a model for the distributions of time scores (response times) of items ’
in .criterion-referenced tests, lesson segments and entire lessons that were
implemented on the PLATO system. The items Were those of a series of

thnatrix algebra tests developed for the dual purpose of using in ¢his study
and for testing students in three statistics courses at.UIUC both before
and after they studied our matrix algebra course. The latter provided the
lesson segments (including exercises) while the entire lessons came from
the Chanute AFB CBE ptoject and deals with special and general vehicle
maintenance training.

The fits of the Weibull distributions to these various observed
distributions were, on the whole, very good to excellent as gauged by the
Kolmogorov- Smirnov goodness-of-fit test. However, for some items (most
of which possessed certain exceptional properties in common) the two-

: parameter gamma distribution offered_better fits. The same held true with
even greater force for the exercises occurring in the matrix algebra lessons.

} Tentat ive explanations of when and why the gamma was better than the Weibull
were advanced, but discovery of definitive reasons must await future research.-

We would be the first. to concede that we have barely scraped the surface
in studying the utllity of respaonse time (time scores) -along with performance
scores for analyzing and evaluating data from criterion-referenced tests,

. both for the purpose of assessing the quality of the tests themselves and
fog improved testing of the examinees' abilities.

Nevertheless, we believe that we have at least demonstrate&'the
—fgasghility of this approach and hope to have shown that further research
along these lines is warranted. 1In particular, the Weibull distribution
in its two-parameter form (which we used in this study), three-parameter
form, or two-component composite form - long used by system analyst t
apparently not widely known among gducational and psychological resgkarchers -
seems to bear further investigation for this purpose.. . ) i
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TIME-SCORE ANALYSIS IN CRIIERIONLREFERENCED TESTS T
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1. INTRODUCTION ~ , ' !
\ ,‘ . ! ‘
It,is well known that one of the méjor.problems encountered
" in psychometric and statistical analyses of criterion-referenced (or
“domaifi-referencéed) tests stems from the fact that because they are
* designed primarily for mastery testing, their scores tend to be uni- .
formly quite high.' The consequent lack of variability of scores leads
to embarrassingly low reliability and validity coefficients when these -
are defined in the traditional wdy in terms of product-moment correla-
tion coefficients. A number of authors (e. 8-> Harris, 1972; Huynh,
1976 L1v1ngston, 1972) have proposed various approaches td side .step-
ping this problem of limited score variability by offerlng alternative
meastires of re11ab111ty and valldlty.

3t
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2

One ‘approach that does not appear to have'been exploited to .
date, however, is the seemingly obvious one of considering time scores—
i.e., the time it takes examinees to respond to items or entire tests
(assumed unspeeded)--in addltion to performance scores. That there is
- . no dearth of variability in time scores is evident from casual observa-
) tion. The main reason time scores have not beep utllized despite this |,
*fact is probably that their accurate recording can take place. only in
.. . the context of computer aided instruction and testing, which are fairly
) recent developments. Another possible reason is that response times |
have w1dely been regarded as erratic phenomena not exhibitlng -any law-
1ike behaviér and hence not indicative of the extent’ of knowledge or
) mastery. pf a subject matter. (We are here obviously excluding the use '
t of time |neasures such as response latencies and time taken to learn
lists of nonsense syllables, paired associates, etc. that have long and
~ widely beeﬁpused ufider the tightly cohtrolled conditions of psychologi- >
cal experiments. Also, we are aware that ope of Rasch's models [1960]
involves a time heasure, viz., the time required by a pupil to read a
. ~passage of a given length. But again, the situation here is a relatively
controlled one. Reading a particular pa%sage is a much more circum-
scribed activity than, say, taking an algebraetest in:.which various
abilities are brought to play.)

.
, .

One of the pres&nt authars has-been worklng in the field of
computer based irnstruction (spec1f1cally the PLATO system at the Univers-
ity of Illinois) for a number of years, and sh® has hence been informally

‘ © . exploring 'the utilization of time scores for a long time. The research
| described in this report is an outgrowth of this sustained interest in
=  time scores and represents a more systematic exploratlon of their utility.
We wish to emphasize, however, that this study makes no attempr to en-
hance the psychometric properties of criterion-referenced tests by of-
fering alternative measures of reliability and validity based on time B
scores. - (That must be deferred to some future project.) The gbjective

» . ! .
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of‘}ﬂe present study, to repeat, is simply to explore in depth how time
scores behave and to reveal whatever regularltles and potential useful—
ness they may possess.
- Th—

& One way to check whether a variable is behaving in a systematic
fashion is to examine its statistical distribution, and if it seems to
be following some identifiable theoretical distribution, to see if some
rationale can be adduced to explain why it might be expected to follow
that particular distribution. Of coutrse there are' any number’ of theo-
retical-distributions 'a stochastic variable may se to be follow1ng, S0
it would be like looking for’'a needle in a haystack if there weren t
some gu1des as~to what sort of distribution might fill the bill. Since
Rasch's (1960) work parenthetically alluded to above had led to a two-
parameter gamma distribution for the time taken to read a passage of N
words, this distribution was a possible candidate. However, Brée (1975)
had analyzed somé empirical data on problem—solv1ng time (albeit of
quite limited scope) which showed that a two-parameter negative exponen-
tial distribution offered a better fit than the two-parameter gamma dis-
tribution, thus decreasing the attractiveness of the latter.

«
»

We were therefore thinking of carrylng out a larger-scale repli-
.cation of Brée's study comparing the relative goodness—of-fit of the
gamma and negative exponent1a1 distributions, utilizing a large and in-
creasing data base accessible to us (and in part developed by us) on the
JFLATO system, when a third family, of distributions shown to be useful in
modeling certain time-score distributions came to our attention. This
was the Weibull (1951) distzibution which, we learned, had been (and
continues to be) ‘extensively used in the context of system-reliability
theory: the study of the probability of failure, within a given time
span, of a mechanical or electronic system as a function of" the, probabil-
ities of failure of individual components gf the system. We 1earned of

[

“this distribution through the works of Sato (1973) and Takeya, Sato and

Sunouchi “(1975) who had, ploneered its application ta the modeling of the
cumulative response curve, i.e., the plot of the percentage of students
completing an item within a given 1ength of time, against the latter as
abscigsa.

The jdstification shggested (although not explicitly ‘stated)
by Sato.and his coworkers for diverting a distributjon found to he des-
criptive of fatigue or failure time to so remote a field of application
as response time for test items is as follows. The test item (or total
test, or instructional unit, depending on the level of analysis) is
identified with the system whose reliability is being asseSsed. The

<

»

't was subseque tly brought to ouf attention that Bargman (1966)
had also utilized the Weibull distribution in a study of growth func~-
tions. .
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student's "attacks" on the item correspond to the shocks or wear and

_ ‘teap-to which the system is subjected, and the eventual solution of the
“.item is the faﬂlure of the system. Farfetched as such identificattons
may seem, they are not unreasonable. It is plausible to imagine the
student to be intent on '"cracking the system' by answering 'the item
correctly. The time he takes in doing so--the response time-—corresponds
to the "survival time" (or "fatigue life!') of the system. .The only dif-
ference is that, whereas in system-reliability analysis we want the sur-
vival time to be as long as possible, in test-response data we want it
to be as short as possible-~especially in cr1terion—referenced tests.
Thus, the use of the Weibull dlstrlbutlon in time-score analysis has
some intuitive appeal. R

Another reason that encourages at least examining the Welbull
distrlbutlon for the purpofe at hand is that the two-parameter negativéY
exponentlal distribution advocated by Brée can be regarded as a special
*case of the Weibull distrfibution--a three-parameter family--when one ¢f -
its parameters is equated to unity:‘ (See next SECtlQ_ for mathematical
demonstration.) When it is recalled that Brée's data~base was quite
limited--comprising solving-time data from three problems originally
fitted to gamma distributions by Restle”and Davis (1962) plus those for

fourth problem taken from another source-—-it is not inconceivable that
these sets of data happened to be well modeled by this special case of
the Weibull distribution.' If so,” the psychological arguments invoked by
Brée to provide a rationale for the two-parameter negative exponential
distribution may hold also for the Weibull distribution.

Thus the.thrust of our contemplated study shifted from a gamma
vs. negative—exponential comparison to a 'more general one of investigat-
ing the usefulness of the W&ibull distribution-as_a model for time-score
data from CR tests in the conEext of CAI. What is reported in .the sequel,
therefore, includes but is not confined to a comparison of the gamma and
Weibull dlstrlbutlons It also includes attempts to relate the ﬁhree

parameters of the latter distribution tb qgtlous psychometrically meaning— :

ful indices associated with CR tests and their constituent items, such as
difficulty level, ability to differentiate between masters and nonmasters,
and so forth. , N -

5

2. THE WEIBULL DISTRIBUTION: RATIONALE AND DERIVATION

ar .
0 Although an intuitive rationale for‘the applicability of the
Weibull distribution for item (or test) response time was given in:the
introduction by identifying the solution of an”item by a student with
. the failure of a system in system-reliability theory, this rationale does
not lead to a derivation of the distribution (or density) function. .In
other words, the rationale stated earlier is far from being a set of
axioms or postulates from which the mathematical form of the density func-
tion logically flows. “In the final ana1151s, as Weibull himself (1951) -

> 10
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and subsequentgexpositors (e.g., Mann, Schafer and Singpurwalla, 1974) .
have said, the distribution was emplrlcally discovered rather than
.axiomatico-deductively derived in the first place. Nevertheless, if
_something even remotely resembling a postulate (or set of pestulates)
can be found that makes intuitive sense and at the same.time logically
1mp11es ‘the mathematical expression for the distribution function, this '
" would lend greatly to the credibility of- the dlstrlbutlon. Such a
basis has been postulated (albeit as an ex post facto rationalization)
by system—reliability researchers in terms of the'concept of hazard rate,
which is essentially the conditional probability that a system which has
survived through time t will fail during an infinitesimal time interval ’
immediately thereafter. Translated to fit the context of item response
time, this may be dubbed the condltlonal response ‘rate and is defined in
the following sybsection. .

~ ~ o
< .
.

2.1 Derivation Based on the Conditional Response Raté ) . '

. . ' 1

.

Let us denote by f(t) the pro%abiiity density that a person
randomly selected from the population will respond to a given test item
(or any other unit of a test) during the infinitesimal time interval
[t, t + dt]. (The actual probability that the person will respond to
the item in this time interval is f(t)dt.) Then the proportion of indi- R
viduals who will have responded to the item by time t is [/ °

: 3 Mo t « '
. F(t) =f £ (u)du, ) ' ;o :
o . . .
N . °

which is the (cumulative) distribution fypction. It follows that the- . '
proportion” of individuals who have not responded to the item by time t )
is 1 = F(t). Consequently, the conditional probability that a person
will respond to the item during the interval [t, t + dt] given that he .

or she has not responded to the item up to time t is, by toe'defipition .
of a condltlonal\probablllty, ‘given by

v C M "w' .
- ' (responds in 1nterval ft, t+dt]]has not responded by time t)
' ' : f(t)dt '

. T 1-F(t)

-

(From the definition of conditiongl probability, gne might expect to J
find in the numerator the probability of. the joint event "has not re-.

spon by time t and responds in 1nterval [t,trdt]." Towever, a little |
reflectiyn shows that the simple event "responds in 1nterva1 [t t+Hde " .- |
automatically implies "has not responded by time t." Hence the former

simple event 'is synonymous with the joint event cited, and their T, %

. 3
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probabilities are idenfical. ) The condigional response rate (CRR) is

« defined by the expfe551on ove exclusive of the differential element
dt, and we symbolize it byf§e(t), keeping the notation commenmdy used for

hazard ratein system-reliability theory. Thus -
i £(t) : ) o v
.1 el .
{2-1) BE) = TTF O : .

” -

From the concept of hazard- rate”in generai‘ the_corresponding
- distribution -and den51ty functions may easily be derived by elementary o
calculus, as follows. "Tacking on'" the differential element dt in
both sides of equation (2.1), replacing f(t)dt by the differential ele-
ment dF(t) of F(t), and further wri 1ng u in place of t (in ant1c1pation
of using t for the upper limit of afdefinite integral), we obtain
.. . ¢ .

= , . -

dF (u)

h{u)du = 1 - F(u) - .

Integréting both sides from a lower limit u =.t0 to a general upper
limit t, we get \ .
N\

It

t ? ' ’ u=t N ) - '
J h(u)du = -2n{l - F(u)]

R : u=t R : : .
/ o . [o]

Ll - F(to)] - a1 - F(v)]

v

: alX'- F(0)], e

if we let t be the lower limit of the range of t so that F(té) =
3, .

It then follows that - v o

t ) .

1l - F(t) = exp[—f h(u)du},* ‘ ‘

t ) ~ *
or o : .

t ; . b
(2.2) F(t) = 1 - exp [ﬁf “ h(u)du]. Coay ! ,

’ . ' t - .
- [o] -~

Taking derivatives of both sides, we get

' J

. . ' .ot : ,
(2.3) f(t) =11gﬂ\exp [—{' h(u)dul. -
v> . ‘ ~t0 ‘w R -
.12 | |




5\

..—-_...',

E

Aruitoxt provided by Eic:

RIC

. from being a function that first increases with t,

3 - . .
. .

P

The last. two equations express the distribution function and’
the density function, respectively, as functions of the CRR h(t) in
general. Substituting particular expressions for h(t) in these equa-
tions gives rise to particular distribution and density functions. The
Welbull distribution results essentially when it is assumed that h(t)
is a monotonically increasing function of t, is independent of t, or is
a monoton}cally decreasing function of time. (That is, we forb1d H(t)
reaches a maximum,

Of course, more
Actually, we need to be

and then decreases with' t, or the other way around.
complicated behaVviors are also forbidden.)

. slightly more specific than merely requiring h(t) to be a monotonic

.c > 1,

function of t; we must require it to- be a monotonic power function of t
(like tm).' We further write the expressiop in a more elaborate form in
order to have a '"neat" eiﬁressloh for the resulting probability density
and distribution functlons. Specifically, we postulate that ’

(2.4)  h(o) (et )7 ) ~

=
o nijn

~

Although this expression looks highly contriyed,
be

th} multiplier c/u§
may, at this point, regarded simply as a proportionality constant,

and the subtraction of £, from t merely reflects the fact that t, is the

effective on the t scale, for no value of t smaller than

Thus,

"zero point"

this can exist, by the deéfinition of té given above. the expres-

. . 3 . U . 3 ..
sion is no more than a "plain" power function t with a shift in origin .

Al

and a rescaling factor.

It is evident from equ’ss10n (2.4) that h(t) is an_increasing
function of t, a constant, br.decreasing fung;;on of t, according as
‘e=1, or c < 1, respect1vely, as illustrated in Figure 1. ¢
From the meaning of h(t), the intuitive- (although somewhat loose) inter-
pretations of the three cases are as follows:

1. When ¢ > 1, the longer a person persists with the itenm
without responding to it, the more likely it becomes that
"he/she will answer it "the next moment" (which is roughly
what the interval [t t+dt] means); . ¢

2. When c = 1, the chances that a person will re%pond the

’ . ‘next moment, when he/she hasn't responded so far, neither

increase nor decrease with time;

3. When ¢ < 1, the longer a person perslsts with 'the item

* without responding to it, the less likely 1t becomes that

he/she will answer it the next moment.




Figure t. The conditional response roie (CRR) h(t) for three
-choices of parameter ¢. ~

,
. A

It is intuitively plausible that items of all three kinds may exist in
practice, depending on the difficulty and other properties of the item.
(In particular the second case may correspond to an item whose solution
depends on a sudden 1n51ght the occurrence of which is independent of
how long the person has been at the item so far.) Thus, the dlstrlbu-
tion which-results from substituting experssion (2.4) in equations (2.2)
and (2.3) will be quite a flexible one which can model a wide variet

of types of items depending on the value of the parameter c, whlch is
hence a,crucial one.

Making the stated' substitutions and carrying out the integra-
tion called for, we obtain -

1 - exp [-(—2)

-

C@2.5) . R(e) =




(46) - E(t) =

as the Weibu11~distributign function &nd

ct -t t -t ¢
£ (—2 exp [-( 2y¢.
. H H

)

for t 2 ¢t
)

o |
- 0 for t < t
. . o

-~

as the Weibull density fﬁmction In the system-reliability theory lit-

, erature the three parameters t o’ u , and ¢ are referred to as the loca-

1}
tlon, scale, and. shape parameters, respect1ve1y. Since we let t be the

.lower limit of the range of t i the general der1vat10n of F(t) from

h(t) above, it is clear that thlsﬂparameter is ‘the theoretical value

of t such that prob(t<t ) = 0. .Thus it is natural to call this the
location parameter. The srale parameter uo specifies the 100(1-é‘l)
percent point of the distribution of t - £, [i.e., prob (t<to+uo) =

1 --_e_1 =~ .632] as may readily be verified'by 1ett?ng t = t0 + uo in the
expression for the distribution function F(t) given in equation {2.5).
The shape parameter E_}s the most interesting of the three,‘for it deter-

mines-the‘general shape -assumed by the density function. If ¢ <1,

there is no mode and the density function decreases monotonlcally with

t. If ¢ > 1, the d1str1but10n is unimodal and. skewed with mode at

t, +. U (1- 1/c)1/c. Interestingly, the skewness changes from positive

' to negatlve at “approximately ¢ = 3.60. Figure 2 shows the density func-

. tions of Weibull distributions with.to = 2, uo = 15, and four selected

*

values of c.

The mean and variance of a random variablg foliowing the.

Weibull distribution w(to,uot) are as follows: .
(2.7) E(t) = ¢+ uOF(i+1/c)
and , .

2 2 <,
(2.8) Var(t) = Uo[r(1+2/c) - I"(+1/0)1,

wﬁere I'(+) is the gamma function, defined as .
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. I'(m) = f”e u du 5. LT %
‘ (; = (m-1)! .- when m is an integer. *
. 2.2 -Comparison ¢f Several Related Distributions B . -,
- h . . e
As a matter of incidental interest as well as a possible aid
in subsequent discussions relating the value of the 'shape parameter c 4

to the nature of the item or other unit of a test, we display the dens-
ity functions of several related (or in some sense_similaz) distribu-
tions and also indicate what each of them reduces to when c = 1.

/y The density ﬂunction of the two-parameter gamma distribution
used by Rasch (1960) as a model for the distributiof of time taken to
read a passage of N words is, in a notation consistent with what we
are using for the Weibull distribution, !

2.9 £ (0 = = ep IM@. R
. . 0o, ) i

The N%in Rasch's equation (6.6) corresponds to ogr'c,'and his X\to our !
‘l/uo. Equation (2.9) is equivalent aléo to that given by Restle and
« Davis (1962) in their k-stage model for problem sol¢ing, where k = c.
. To serve in either the Rasch or the Restle-Davis model, thelc in equa- _
' tion (2.9) must thus be am integer, but there is no such requirement

in the densigy function (2.6) of tbe Weibull distribution. If we let

c = 1\in equation (2.9), we get the densit§-fuqction for theg one-para-

meter negative exponential ‘distribution:

1 t
(2.10) £, (£) = ~— exp —).
le My Mo
“Q‘I N 4
& Again, 1/u0 is customarily written as A and called the- intensity para-
meter. <L
On the/otHer hand, if we let ¢ = 1 in equation (2.6), we get
the density function of the two-parameter negative exponential distri- .
butio ' '
y /’/
“/f l h"f'. B ~ -
' / ’
L ;
¢ / v
v/ y 1y .
R / -




(2.11)

as does the one-parameter negative exponential dlstribution

: dis;Zibution (2.9).

. for Restle and Davis'

2(2.12) f3g(F)

. butions are strikingl¥y similar,

1
(2 fZe(t) Ny exp ( .
which is the model found by Brée (1975) to offer a better fit to the
distributions of solving times for Restle and Davis' thiee Jproblems
than did the two-parameter gamma distribution, (2.9). Brée-called
(2.11) the negative expornential distributjon with shift in location.
In other words, this density function starts at t.= to instead of t = 0
, (2.10).

\ ,
‘Now it is well k&o&n that whdn ¢ is an integer greatex than-l,

the two- parameter gamma dis ribution (2.9) is a c-fold convolution of
the one-parameter negative exponential distribution (2.10), 1In other

words, if there are c 1ndepéndent random variables tl’ Ers o o o tC

each following the one- parameter negatlve exponential distribution (2. 10)
then their sum t = tl + t2 + ...+ f& follows the two-parameter gamma
[Thus Rasch's model for the distribution of reading

4 .
tim for an N-word passage amounts to saying that the reading times

for each word follow a negative exponential distribution and that the

N distributions are statistically independent. Similar remarks hold

k-stage problem-solving model. ]

b
In analo to the fact Just stated, that the two#parameter
gamma distributio (for integer ¢) is a c-fold convolution of the' one-
parameter negative exponential distribution, it might be tempting to
jump to the conclusion that thé Weibull dlstrlbutlon (2.6) with inte-
ger ¢ (1) is a c+fold convolytion of theé two-parameter negative expon-
ential distributipn (2.11)--in view of the fact that (2.6) reduces-to

(2.11) when ¢ = }. This is not the case, however. Rather, a c-fold

_convolution of the two-parameter negative exponential distribution gives

rise to the thrge-parameter gamma distribution having the density func-

tion

-1 ‘;’ t -t ' 3

[——( SN exp ——1/T (o).
0 uo. a

Note that letting ¢ = 1 in this equation also leads to equation (2 11)
Thus, the Weibull distribution and the three-parameter gamma distribu-
tion have in common the property that they both reduce to the two-para-
‘meter negative exponential distribution when c = 1.

A comparison of equations (2.6) and (2:12) shows that the
density functions of the Weibull and the three-parameter gamma distri-
Aside from the absence of the normali-

zing constant 1/I'(c), (2.6). differs from (2.12) only in the presence of

11 ' ’ -
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- papers .just cited (since Sato [1971] spoke only of a rudimentary method
using .a special Weibull probability pap

. /
c at two places where it is lacking in (2.12).
Weibull distribution may be regarded as a somewhat generalized form of
* the three:i7rameter gamma distribution.
- )

)

3 R
3.—PARAMETER ESTIMATION

f

ye

.

It must be conceded thatathe methods we-‘used to estimate the :

Thus, in a sense, the

parameters of, the Wiebull distribution and those of the two—-parameter

But, operating as we were under tight
time constraimts and since PLATO IV uses a time-sharing mode with rather

gamma were no

the best possible.

* limited storage capacity allocated to any one, user, we had to make do
with relatlvely . simple methods with reasonable accuracy.
mentioned in pa851ng that PLATO V termlnals, each equipped with g3 micro-,

It might be”

computer of its own, are becoming more and more widely available, and
they would circumvent much of the limitations under which we operated.

It was unfortunate also t
the three-parameter gamma distribut
+the distributions to be fitted to o

equations (2.6) and (2.12) suggests

-

at we did not become tognigant of

on early enough to, include /it among

r data.

that not much has been lost,
the two density functions are remarkably similar, as noted earlier, and

However, a comparison of

if /anything the Weibull distribution appears to have a slight edge on

the~gamma in flexibility.

research, however.

&

Whether this is indeed,K so must await future

.

3.1 The Weibull—Dietributioh Parameters

S

The problem of estimating the parameters of-a weibull distri-

-

3
~

-

il

Y

x

bution has been the subjegt of a number of papers (e.g. Arﬁarter and

Moore,

1965; Johns and Lieberman, 1966; Mann, 1967,
Most of these, however, either deal w1th two- parameter versions of the
Weibull distrlbutlon (1 e., when one 6r another of the three parameters

]969*'Lemon, '1974).

is assumed known) or present iterative methods whose programmlng ap-

Believing that the maximum likelihood
method would be the most accurate, and before becoming familiar the

pears to be an enormous job.

r) one of the present authors

derived the likelihood equations and struggled for somé time to solve

them.

- essence
rough-a{H

)

’He éubsequently*became)aware that a computer prggﬁam lidting. for
L. Harter, Aerospace Research Lab-
But even‘adopting and implement-

this method could be obyained from H.

oratories, Wright-~Pattterson AFB, Ohio.

He concluded--correctly as it turned out--that they were capable
of solutjon only by tedious, iterative methods. Since ‘time was of the
he abandoned the maximum likelihood approach2 and 1mprovized a

-ready method based on 11near regression, as follows.

ing this on the PLATO system would have been a lengthy task.

1312
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We first rewrlte equatlon (2. 5) for the Welbull dlstrlbutlon - ,
functlon as ‘ . S . ‘

<

S 1-Peexp [(—9%, . . T, : /
where F(t) has been denoted by P for- short, it bEIUg understoo&ythat it

is a function of t and correSponda to “the observed proportion of exam-
e
inees who respond to ap item by a glven time t..  Takipg-the natural )

- logarithms of both sides of thls equatlon gives . : -

2n(1-p) & -(— ¢,
Changing the signs of both sldes and taklng thelr hatural logarlthms

again yields . -

(301) lnﬁn(l-—P)-l = C z‘n('t_to) + zn(ugc) .
. . R
If we mow let - . ) .
, . " )
(3.2) Lnln(l-P) =Y, s
(3.3) Q,n(t—to) =
and . ﬂ; i . .
(3.4) ) = a, .
equation (3.1) becomes ’ p
-
(355 Y =cX+a,

]

which looks just like an ordinary linear regression equation of Y on X.

The only (but big) difference is that X itself is not completely ob-, .
servable, because it depends on one of the unknown parametefs ty, as

equation (3.3) shows, {Note that if we were dealing with a two-para- |
meter Weibull distribution with ty known (usually, t, = 0) then (3.5) '
would indeed be a regular linear regression equation, and the estima- ‘
tion of ¢ and a would be a simple matter.]
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Therefore, we had to resort to a trial-and-errxor method to
L] , )
estimate t first, and then apply the standard methods of'linear re-
gression to estimate ¢ and a, from which in turq;p ,is determined v1a"

equation (3.4). The principle adopted for guldlng.the trial-and-error

‘procedure was to maximize the correlation between Y = Rnln(l-P)_l

(which is observable) and X = Rn(t—to), which becomés an ohservable '’
once dome value is given to to. The search started by dividing the:'
interval [O,tmin+tmin/290] into 20 subintervals (where tmin is the .
smal%est observed tesponse time) and calculating rxy with té given. trial
values equal to the endpoints of these subintervals. Next, the (closed)
interval between the trial value pf't0 yielding_the 1argest‘value for
rxy and the adjacent one giving the next largest value forir;§”wa§ di-
vided into ten equal subintervals and their endpoints were taken as the
second set of trial values for to“With which to calculate rxy' Finaliy,
the interval between the trial values among this set that yielded the
two largest values for rxy was again divided into ten subintervals and
their endpoints were taken as the third set of trial values t with -

which to calculate er" The optimal among these trial values was taken

‘as our final estimate t0 of t .

a

"~
Once the estimate t is determined, X = 2n(t-t ) is calcul-

able for each observed wvalue of t, and thence c is computed from -

Y

_ XY JX) (m/n , : :
Ex (ZX) /n

i )

A
where n is the number of observed response times. Then a is computed

A
—

as a =Y - cX and o is obtained by solving equation (3.4) for it:

ﬁo (e€p a) 1/° . ( ’ '

.

.

This completes our estimation of the three Weibull parameters, roughy
and-ready ,though it is. 1In the subsequent sections we omit the cir-
cumflexes and write t o’ u an ¢ for these estlmates to simplify the

notation, since we w111 not need to refer  to the true -parameter values.

/
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3.2 The Gamma-Distributiowr Parameters L

-

° N L g -t e
: ' érq, kdo, the maximum likelihood estimates would-proéggiy

have been the most desirable, but due to the limitations already Ten-

tioned we again adopted a simpler method, the method of moments in this

case. .Since only two parameters have to be estiflated, it suffices: to

express the theotetical mean and varianceé in terms of the parameters

v . and equate these expressions to the observed mean and var;ancek re—
B> " spectively. * ° ) o0 Lo ) R N
‘Ei‘ S " . The required expressions, qomphtéble from equation (2,9),
) : are ‘ . - i ¢ ’
. Ay . . X " )
’ E(t) = u [o4 '
0 .
. and . ' ‘ ¢ .
Var(t) = uzc.
)
It readily follows that
-
W, = Var(t)/E(t) ) ]
L
_ & and
. . - - v
. 5 :
c = [E(t)] /var(t).
N Hencé, -
} , \ - -» -
~ 2_ . ‘,,.."' ‘ o
. H —.st/t . i e . .
4 and c { . \ |
g ’ ~ -2, 2 N Ko
o 7 c e =(w)7/s - ate
, t * i
, = S 2
4 may be taken as estimates for uo and ¢, whgre t and s, are the sample
’ mean and variance, respectively. In the sequel,-we write o for ¢ and ~
B for ﬁo to avoid confusion with the corrésppnding ueibull parameter @
estimates. ’ - , N
* . 4. DESCRIPTION OF DATA . e
X ) As mentioned earlier many differept data sets were used in l
l’ this study. Some of them were from lgssons (which include instructional |
- | e | B . 1
- 1 . R \ .
ERIC  -- « 2215 1 .
= ~ . N




segmerits, exercises, and quizée\%, tests (pre and post) on matrix alge-
bra that were developed by one of the present authors for the dual pur-
pose of servind as a self- study course to accompany several statistics
courses taught by the other author and two of his colleagues in the
Educational Psycholdgy and Psychology Departments -of the University of
Illinois at Urbana-Champaign and for gathering data for this study.
Others came from over 30 lessons, and their accompanying tests, on
general and special vehicle maintenance training developed by the
Chdnute Air Force Base Computer-Based EdUCESion (CBE) Project Group
under the sponsorship of the Advanced Research Projects Agency (ARPA)
of the Department of Defense. .

-

-~

r4.l Matrix Algebra Lessons and Tests

The hatrix’algebra course, written on the PLATO system by one
of the present authors with some assistance from ome of her *assoc?ates,
is intended for graduate students in educational and psychological
statlstics-—particularly multivariate statistics--who do not have much
mathemag}cal background. Topies covered include the basic definitions
and simple operations of matrix algebra, matrix multiplication, matrix
inversion (including the definition and calculation of determ#nants),
.linear transformations and axis rotations, and eigenvalue problemg, The
cgurséils d1v1ded into five lessorfs correspanding to the above topics,
“and their average completion times range from 20 minutes to 2 hours per
lesson. (See AppendlxﬁA for several sample pages of the course.)

. R . .

\{ The PLATO system permits a student to make any number Qf
passes through any instructional unit, which may be the actual instruc-
tional. ségment,. a set of exercises, or a quiz, and which is called an
"éreagldn PLATO terminology. Each area is identified by the lesson -
number” preceded by the letter i, e or q (for imstruction, exercise or
quiz),%and followed” by the instruqtional segment number within that.les-
son. Thus, for fxample, "'1036" refers to the sixth instructional seg-*
ment in lesson 3, while "e036" refers.to the exercise.set for the’sixth
-instructional segment in lesson 3. An exception occurs in lesson 5,

L4

which contains

but one instructional’segment as such (i051) followed by

~'threu exercise

sets (e051, e052 and e053) of the problem-solving type
instru®tion. There are 36 areas in all, whose codes and
are listed in Table 1.

to augment the

centent matter
[~

-~ .

5
'

‘The set of data for any area includes, 'among other things,-
the name or ID number of each student who went through that area-coms
pletely_at least once, the pass (or try) number, and the t¥me he/she <]
took on i each pass. Far the purposes of data analysis, only the time

. taken on the first pass (if completed) through each area for each stu-
,dent was considered. -

. . * ~

. . . ' . ,.,;;

,

-
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Table 1

List of Areas and their Content 'in Matrix Algebra Lessons

Introduction to Matrices

’ -

area content

1011 Definltions and simple operations of a natrix
i012 Use PLATO as a‘calculator

‘e0ll - Eleven exercises

Matrix Multiplications e

i021 Multiplication of two matrices A and B

e021 Foru exercises . .
022 - Multiplication is not commutable ,i.e., AB # BA
22 Four exercises v

i023. Scalar product - ..

e023 - Four exercises ' P

1024 ° Matrix product .

e024 .Four exercises

1025 Quadratic product

e025 Four exercises

i026 The pr1nc1p1es\of matrix operations

e026 Exerc1ses v

1027 . Diagonal matrices :

e026 Four exercises .

i028 .\ﬁlear matrices and identity mgzgix

el ¢ Four exercisés

+ Determinant “and Inversion of a Matrix

~

i031 Identity matrix

q031 Five iten quiz

i032 + Definition of the determiant of a matrix

i033 Evaluation of the determinant cof a matrix

q033 Five item quiz

1034 Cofactors, expansion of a determinant PR
e034 Exercises for cofactoro, expan51on of a determlnant
1035 Properties of determinants

i036 Adjoint and inverse of a matrix A

.
Matrix and Linear Transformations

- *

104} An exgmple of linear transformationjaxis rotation
1042 Properties of orthogonal transformations
i043 SsCp maprlx :
Eigenval&es and eigenvectors " N
4051 Definition of eigenvalues and eigenvectdrs
e051 Calculate eigenvalues .
e052 Calculate eigenvectors | ~
e053 Normalization of eigenvectors
17 ) R4

@0 Y
. -

*
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+'A 48-item pretest was given to all students before they stu-
died the matrix algebra course: (See Appendix B for a list of the items,
plus a sample item as it appears on the PLATO screen.) The original
version of ‘this pretest was constructed a Year and a half before Fall
1976, and had been usgd in the multivariate statistics course. - It was”
.designed to minimize guessing by permitting students who 'did not know
the subjett matter related to a given item to omit it and go on to the
next by pressing the NEXT key without having-to’ choose any of the
multiple~-choice optlons in the earlier item. There weré 88 students .
who tried every‘item”and were, thus likely to have taken ‘the test ser-
iously in an earnest dbsire to find out thelr initial level of knowledge. °
_ The data for these 88 students are referred to as the "pre-revision
data" in the sequel. After all 48 items have been answered, the pretest

s

provides feedback by indicating which option the student chose for each a

item, the correct option for that item and, at :the very end, a recommen- N

dation as’ to which lesson the student shoulﬁ start from. . ' ~ 7
In Fall 1976, a revision of the pretest was undertaken in *

llght of information obfélned from the original version. Some displayg,, s
wordings and options were changed, but the biggest change was that the¥ .
NEXT key could no longer be used withput choosing somz option in each -
«dtem, thus forcing students to respefid to every item. .The feedback ~
system was retained in the revis#d version, however. Data from the new .
version of the pretest are referred to as tns\zpost—revision data"

‘below. )

Y

At the same time, a posttest for the first o lessons com-

LY

bined (simple operations and matrix multiplication) and one for each of Y/’/";A'u

the other lessons (lesson 3, matrix inversion; lesson 4, transforma-
tions; and lesson 5, eigenvalues and eigenvectors) were implemented and
the time and performance scores on these posttests have been collected
/ since then. Only those who completed each lesson could take the cor-
responding posttest. :

Since most instructors of the relevant statistics courses
did not forcibly require all "dtudents in their classes Lo study the
matr1x algebra lessons on PLATO, data for these 1essons came mainly from
volunteers who selected the top1cs according  to their own judgment. But
taklng the pretest was requested by most instructors. Thus, computer-—
managed instruction (CMI) was not carried out, and 1nstea of forcing
the students to adopt a predetermined strategy, almost ‘complete freedom
of choice of learning strategy was allowed, the students. We therefore .
did not develop a computer-managed router of the mastery learning type.
Instead, data collection routines were 1mp1emented within the lessons
and tests *sd that.all the students' behavioral récords were collelted.
That is, for each student and each area, the time spent in that area,
the number of questions attempted (whether in an instructional segment,
an exercise or a quiz) the number of questions ultimately answered cqr-
rectly, the number of questions correctly answered on the first try,
and the number of times the student Jrequested and received on-line

~
w

»

[
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pelp, were recorded. In addition, for the items in the quizzes, the

. pretest and the posttest, more detailed data were collected:; the re-

sponse time for each item, whether the item was apswered correctly or
not, and the number of times the item was attempted. ‘

R .
v - ‘

4.2 Chanute AFB CBE Projett Lessons and Tests
These lessons have been developed over a peried of more than

10. years, as a cooperative enterprise between £he Chanute AFB CBE Pro-

ject group and members of the Military Training Cefiter (MTC) grouprat o

the Computer-Based Education Research Laboratory (CERL) of the Univer—

sity of Illinois at.UrbanarChampaign, for the purpose of training

special and general purpose vehicle repairpersons (Dallman, 1977).
There are.34 lessons, comprising about 30 hours of instruction, along
with a cr1ter10n—referenced test for each.' The lessons are ﬁomogeneous
in sub;ect matter (in the sense that they do not natura®y form a
h1erarch1cally organized set) and tutorial in style for the most part.
0 Neverthelessx they are afranged in a specific order and students must .

y achieve mastery in one lesson as assessed by the end-~of-lesson test be-
fore they can ﬂroceed to the next. ¥if mastery is not achieved, they
must.repeat the lesson. 4\ listing of the contents of the 1essons is °
given in Appendix C. . . /

.

1_a

; The 34 associated tests conéis;\mostly of matching and mul-
1t1p1e -choice” items, 'and they vary from 5 to 20 items in 1ength Only
‘one pass 1is allewed through each test and nq feedback ig g1ven The
tests are called MVE\Kfor Master Validation Exams) and are numbered to
correspond to the lessons; e.g., the test given at the end of lesson

"101 is denoted MVE 101. The mastery levels are set at 80 percent, but
the cutoffs actually used are somewheré between 75 and 90 percent cor-
rect. R ‘ . e

y ..l
* A lesson is'ssaid to be validated when 90 percent of the stu-,

dents have achieved mastery by getting 75 to 90 percent of its MVE test

items ,correct. The samples yielding the data for apalysis in this study

consisted of about 30 students per lesson, though not necessarily the
same 30 each time. No modifications of lessons were made until all the
students’ finished them, and all” lessons were validated (after which
they mlght be mod1f1ed) between Apr11 and September 1975, inclusive.

The data collectéd included test scores on the MVE tests,
completion time for each test, the ®ompletion time for each lesson each
time it was studied (which may be jugt once or several times’, depend-
ing on hg® quickly mastery was achieved), and the total time spent on

each lesson until mastery. The last mentioned. time is called the "mas~

tery time" for .each lesson in the sequel.. Unlike the matrix algebra
lessons, data are available only for entire lessons and not for their
constituent parts. _-

*
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A flow chart of the lessons and tests in the Chanute AFB CBE’
Project is shown in Figure 3.

- . Cm “w <

4.3 Teaching Strategies and Lesson Stvyles

.

N

-

> Since the matrix algebra course and the Chanute AFB CBE Pro-
ject course in motor wehicle maintenance differ considerably in their

- teaching strategies and lesson styles, we compare them hére although

some of the descriptions were already glven ‘above. -

Virtually every lesson in the Chanute course/followed the
sigple tutorial learning activity that can pe characterized as a linear
series of instructions and questions. Evegfy student is required to
proceed through the same material in each lesson regardless of prior
knowledge or ability. Since these students were first-year Air Force
draftees with only a high-school education for the most part, this les-
son style is probably well suited for them. . They probably could not
be trusted with much freedom of choice. : - T

~\

By contrast, each lesson in the matrix algebra course has an
index page at the beginning, as illustrated in Figure 4. "Each student
can choose a particular, lesson segment covering the topic of His/her
choice.” Simc¢d the students t3king the matrix algebra course were all
graduate students in educational psychology, psychology or actountancy ™
{with a fei} from other départments) they were bright and motivated
enou to control their own learning activities, and hence. this lesson
stylgh;;;\brobably the best for them. . :

) It should be noted that, in both/courses, the posttest scores
were significantly higher on the average than were the pretest scores, :

- thus permitting us to- 1nfer that learnlng.dld take place regardless of

which lesson style was used. . /

To make ‘somewhat more detailed comparisons, in the matrix
algebra course some topics are taught by drill and practice strategles
while others are taught by problem-solving strategies. The partlcular _
strategy chosen was adapted to the nature of the topic. For instance, S
simple ;subject matter such as matrix addition and multiplication are
taught with the aid of exercises, following the instructional segments,
that are designed to give students practice in calculations, while more
difficult'material suchfas eigenvalues and eigenvectors are taught with
the help of exercises of the problem-solving type. All but one lesson
cohtafined the provision of allbwing the student to go back for review
to the preceding frame within any area (instructional segment, exerc1§;
or quiz), and also to go clear back to the index page. (see“Figure 4) . - .
Th.the latter case ‘the student could choose to go to an area other than
“ that in which he/she was working before re—calllng the index. This re-
3ul§gd\1n some messy data which had to be discarded’ in ¢ur ana1y51s,

a

v
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| BLOCK TEST 1. 20 ITEM TEST, a, = 0.56 ’
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i LESSON 20io
I MVE 2010
. LESSONS IN BLOCK 2
! 20la , 201b, 202b, 204, 2050,
‘ 205b , 2060,206b , 206¢,207
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}
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LESSONS IN BLOCK 3
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LESSON 40!
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. : ' MVE :‘—C_L—}— LESSONS IN BLOCK 4
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Y
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R Figure 3
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MULTIPLICATION OF MATRICES

2.1 Mu[tiplica;ion of A and B
2.2 B = BA
. 2.3 Gcalar Product
2.4 Métrix Product
2.5 Quadratic Forql
2.6 The Principles bf Matrix Operatien -
2.7 Diagonal Matrides
2.8  Scalar Matrix and Identity Matrix
2.9 Attitude Quesfionnaire and Posttest
You can’ ent;r the section you worked last by

typing the section number. If this is your first
time 1n this leﬁson vou should begin from 2. 1

C '
- @ 4 Index page of the lésson t&ggxing multiptication of matrices
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for thé times spent in the two areas becahe fuzzy. (In fact, it led 8 - -
. - to a‘reduction from about n = 300 to about n = 100 in some analyses PR ‘

Howevef, since many students requested ‘this optlon, it was implemented - .
after the Fall 1976 semester. Such are the dlsadvantages of collect- *
ing data in conjunction with learning activities in which the freedom

to which graduate students are accustohed is permifted!

) By contrast, if a student did not achieve mastery at the end
of a Chanute lesson, he was required to repeat the entire lesson. The
total time taken by each studert to master each lesson was recorded for
the purpose of lesson validation. It was this mastery time that was
used for our gnalyses of the Chanute data. The situation here was much

v “cleaner" and under strict control by the 162tructor in typical mili- ’
" tary style. . k) h

Finally, it should be mentioned that some students in both °

‘courses tookspotes during their studying, which of course lengthened

their study times. §ince the percentage of such students amounted to

only about 1 or 2 percent of the total sample, we did not discard the

data from these students--which would have been difficult to do without
" closer monitoring and log keeping than we were able to effect. We ra- ‘

tionalized this state of affairs by regarding note taking as part of the

normal learning strategy for some people, and hence the time for this

#

) act1v1ty should be included in their study time. Lo T
5. ANALYSIS OF PREREVISION DATA _ T e
¢ ' N T !

\ Before presenting the results of analyses based on the prere- )
vision data (which, it will be recalled, are the data from the matrix Lo
algebra pretest prior to its revision in Fall 1976) we give a brief §
description of the PLATO IV system and the programs.that were imple— @

.,mented on it for this study. Virtually all of the programs were writ-
ten by Robert Baillie aside from some contributions made by Tamar
Weaver, Kay Tatsuoka, and Jerry Dyer in this order of involvement. -

A \ - —— ,

5.1 -The PLATO IV System and the Programs

PLATO IV (Programmed Logic for Automated Teaching ‘Operatioms)
is a computer-based education system developed at the University of ]
Illinois at Urbana-Champaign having a large-scale central computer (the
Control Data Corporation Cyber 73-74) with about 1,000 terminals con- i
nected by telephone lines throughout the United States. Approximately -
5,000 hours of instructional material have been used in several hundred
subject-matter areas, andfadditional lessons are constantly being de-

" veloped. The target populations range from preschool children to

, o 23 -
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graduate students, including such diverse groups as prison inmates and
special adult-education recipients like industrial workers, Armed
Forces, personnel, and the physically handicapped.

The PLATO s'ystenm itself was used as the primary analytic tool
for analyzing the student data collected automatically on the system,
begsides serving as the deliverer‘of instructional material. Data
processing can be done directly without having first to punch the data
onto cards, and the results can e utilized for such diverse purposes
as adaptivg,tesping, computer.managed instruction and item analyses -
leading to modification of weak instructional units. )

i s

The computer language used is called the TUTOR, which is some-
where between FORTRAN and assembler language in its capability and pre-
cision for numerical work. Each word of the computer is 60 bits in
lingth, which provides for greater accuracy than most existing computers.
This feature is especially at a premium when iterative calculations are
required as in the computing of gamma or beta integrals which ahound
in statistical work. . Approximation routines for various theoretical
distributions were written, along with that for the Kolmogorov-Smirnov
test of goodness~of-fit of observed with theoretical distributions.

This involved a great deal of adaptations and modffications of existing
statistical programs, mainly from the IBM Scientific Subroutine Package
(IBM, 1972), ’

Since PLATO operates on a large-scale time-sharing mode, spec-
ial problems exist in programming for it that are similar to using a
minicomputer in terms of storage size. The core size per user is
at a time for data processing. If the computa-
tional requirement exceeds this limit, transfer routines must be de-
velopedl for moving the data and intermediate results back and forth
between the disk storage and the core, where data processing is done -
successively within the limit. A list of the ‘computer programs written
on PLATO expressly for this study is given in Table 2.:

. {, v
5.2 Weibull Fitting of Item Responseq?ng\Data . °
H ‘

14

' The 48 items of the matrix élgebra pretest shown in Appendix
B were implemented in the test frame written by James Kraatz of CERL
and modified by K. Ttsuoka into two parts--one allows us to edit data
and the other stores and transforms the data-format so as to be accept-
able by the programs, for estimating the Weibull and gamma parameters.
Data editing was necessary for 5everal reasons. One was that we were
interested only in the first pass data, as mentioned earlier, even
though second-pass and third-pass data were also on record. Sometimes
the system would "crash'" while éhe student was taking the test and he/
she had completed, say, the tenth item. Then the response-time record
for the remaining 38 items would consist of blanks. The TUTOR.would

*~
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R Table 2 = »

List of PLATO Progradms De&elopeﬁ under the Project

Program Name

matxéd

edittest)

-

0‘\

storetest

datam
gram
Kappa

suby

matsubr

cutoff

statedit

wb2area

kolmo

.Evaluates the optimum cutoff.scores of a°

Brief Description

The 48 item matrix algebra test. It collects
performance and re?ponse time data.

Shows and allows us to edit the data. Do the
simple item analysis.

Transfogg;band stores the data collected from
matx4 int® a permanent storage (dataset).
Calculates the item characteristics of 48 items
and estimates the individual student’s performance
level.

Estimates the individual gain scores by regressing
the time score difference onto the: pre—test, post-
test, and other variables.

Calculates Kappa index from a test. —~

Calculates various probability fynctions.
v - T

Calcylates the determinant of a matrix, inverse,
eigen values, and eigen vectors.

a

criterion-referenced test, estimates the
probabilities of false positive and negative. .

Plots various relationship between the test ,
information such as 2} vs. .abillty of false
positive, etc.
Estimates Weibull parameters of‘tye ata from
mat24.

[}

Input output routine with a data format that was
adapted as the standard format for all programs
developed by the NIE project.

Estimates Weibull parameters from the data stored-
via statedlt format.

’

L4
Kolmogorov—Smlrnov testing routine for matxb- data

format-

3

[N

Kolmogorov-Smirnov testing for statedit format

?
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wgraf

1
'

kgraf

aggtloped to analyze our on-line data stored on the PLATO system.
several transformatien programs were developed.

e 2

v

Note.

cont.)

IR

- .
I : . o
.
,
A ]

) © Comparison of Weibull distributions associated
with the items. Density functions of various
Weibull parameters. Plotting.of conditional
response rates. .

a

-

v ) Drawys graphs of Weibull digtribution and Q§nsitj
) function based on typed-in parameters.

- "
. " w,
? ™

Various ugivariate and multivariate statistics routines were .

Also
Their descriptions and

main programmers are listed in Appendix C.
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memorize the item number at which the crash occurred, and would auto-
matically send the student.to the eleventh item on his/her second
entry. At that time the response-time datg for the first 10 items
would be blanks and actual times would be recorded from the eleventh
item on. We then had to combine the two sets of data to get the score
and response-time data for the first try for that student. Sometimes
we would encounter data records in which the same response option was
chosen for all items, thus indicating that the student (or instructor)
was merely examining the items and not taking the test. Such data
would, of course, have to be deléeted. All told, there was about a 20
percent attrition due to editing to clean up the data.

Using these cleaned-up data, a Weibull distribution was fit-
ted to the observed time-score distribution of each item in three ways:
once for the entire sample, secondly for the subgroup of students who
answered the item correctly (called the "OK subgroup") and finally for
the students who got the item wrong (called the "NO subgroup"). The
fit of #he observed to the theoretical distribution was tested each’ time
by the Kolmogorov—Smlrnov test of goodness of fit. The OK subgroup
and NO subgroup had considerably different estimated Weibull parameters,
but both showed very good fits for most items. Ninety-three and 92 per-
cent of the 48 items had p-values for the Kolmogorov-Smirnov test of
goodness of fit with Weihull distributions that exceeded ,.20 in the OK
and NO subgroups, respectively, and 65 and 83 percent exceeded .50 re-
spectively. Considering the fact that two items which needed correc-
tions during the fall semester of 1976 due to unclear display on the
streen or ambiguous wording showed very poor fit," with p-values of .
0.0053 and 0.0550, the fit of nearly all of the other items is seen to
be satisfactory to excellent. Weibull \Jistributions did not fit the
time-score data of the total sample as wxll as they did those of the . °
two *subgroups. Only 69 percent of the itexs had p-values larger than
.20, and 56 percent had values larger than This fact suggests that
students in the two subgroups are going through different processes to
complete each item; thus the nature of the tlme—score data in the two
groups might be entirely different. -

Tables 3 and 4 show the p-values and the maximum discrepan-
cies’ (z) for the OK and NO subgrdups, respectively. Tables 5 and 6
show the estimated Weibull parameters for the 48 items in the two sub-
groups. %
Next are shown figures illustrating the degree of observed to
theoretical distribution fit$ for two typical items in each of the two.
subgroups (Figures 5 through 8). The fits (or lack thereof) are shown
in two ways: [first by superimposing the observed cumulative distribu-
tion graph onto the theoretical curve with the estimated parameters;
and secdid by fitting the regressions lines of £n2n(1-P)~! on &n(t-t,)
to “the observed scatterplot after determining the value of t, yleldlng
the maximum corrélation between these two quantities (see Sectlon 3.1).

26 . | '
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Table 3

Kolmogorov-S mLrnoy Tests for Matrix ﬁlgebra Pretest; OK Group
1tem ,4{/~N z N 2  1tem p z - N
1) .2897 1.8617 77 |  2%5) .3489 £.9329 62
2) .1571 1.1277 82 , 26) .3956 9.8979 59
3) .8832 9.5853 .68 e’ .6966 B.7988 48
4)- .9716 #.4871 69 . 28) .5828 B.7778 44
5) .2584 1.9188 .79 29) .4534°'8.8579 33
6) .4419 #.8656 81 38) .6424 8.7418 34
7) . 4675 §.8486. 67. 31) .8145 #.63
'8) - .1444 1.1463 61 . 32) $#.9983 £.3873 18
9) .4168 9.8834 67 ‘33) .5176 B8.8164 28
18) .6237. 8.7528 69 34y .8719 #.5942 18
11) .3829 #.9872 22 © 35) .5414 #.8817 38
12) .9621 B.5828 27 . 36) - .5891 B.7727 38
13) .6196 B.7545 42 | - 37) .3821 #.9878° 27 .
14) .9918 #.4335 46 . 38) .8945 #.5759 24
:15) . 4285 9.8883 54 . 39) .7887 8.6522 38
16) .6378 8.7437 63 48) .9963 #.4881 18
17) .8898 #.5798 28 - . 41) .8648 #.6882 17
18) . 2979 $.9749 59 - 42) .9714. .4875 31
19) .8424 #.6168 29 43) .9726 #.4852 24
28) .3747 #.9133 48 44) .8142 B.6355 - 21,
21) .5749 B.7818 37 45) .6191 #.7548 22
22) .#184 1.5314 59 . 46) .9776 B.4754 12
23) .7264 9.6988 28 47) .9954 §.4143 15
24) L2181 1.8611 47 3548) .9684 B.4467 7

‘tji

8
8
8
8
8
8
g
8
g
8
]
g
g
g
g
8
g
g
g
g
g
g
g

NN NN RN DR R DR DR R|R
YL G L I I L L L L T R T A L T L

L]
.

Po-test for all sub)ects beforb 1976 Fall seme ter:'g&odness
ERggzxt tnstzng for Weirbull distributions
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' testing for Weibull
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Table 4
Kplmoéorov-—S mirnov Tests for Matrix Algebra Pretest;NO Group
1tem P. z N 1tem p z N
1) 9.9944 §.4288 9 25) 82918 8.9818 15
. 2) $.9996 8.3536 2 26) 8.7675 B.6656 19
3) 8.7178 8.6385 17 *27) 8.8488 8.6177 27
4) 8.9941 §.4222 16 28) B.2981 $.9817 33
. _5) 9.8236 B.6291 6 " 29) 8.5341 B.8862 44
. 6) 1.9888 8.2887 '3 38) 8.9817 8.5697 43
o $.4598 9.8537 16 31) 8.6827 8.7178 52
8) B.9673 B.4946 22 32) §.9174 8.5553. 54
9) #.7671 B8.6659 A5 33) #.96884 B.4689 46
18) 9.8998 B8.5728 14 T . 34) $.7752 8.6687 57
11) §.8594 1.3268 61 35) B.6533 B.7345 39
12) $.8388 8.6191 56 - 36) 8.7389 B.6881 36
13) B.9958 B.4r16 41 37) B8.5578 B.7916 47
14) 9.9998 B.3438 37 38) 8/5712 B.7835 45
15)° @#.7183 8.7886 27 39) © " $.6857 B.7153 43
16) $.9525 B.5164 - 17 48) 9.8435 §.6153 54
17) B.5822 B8.8262 54 41) 8.1967 1.2185 53
*18) B.7438 B.6887 21 42) ., B.5588 B.7959 48
19) 8.5998 B.7668 52 43) B.9164 'B.5562 42
28) #.9359 8.5363 34 44) - B.3885 B.9658 47
21) #.9493 B.5285 35 45) B.1186 1.2838 45
22) 9.8638 B.6818 28 46) B.9442 B.5268 58
23) B.8827 1.2628 58 47) 8.8813 8.5868 39
- 24) #.6237 8.7521 31 ° 48) 8.7991 B.6454 22
Pretest for all subjects befowgn1976 Fall semester:’'goodness
' d?sgributions




. iﬁ . . 7 A
L7 - " . <
N -n - ,
'.* ‘j;' : .
s B «
¢ ’ i o
I % ' Table 5 . Y
' 4 ]
- ‘ .
F The Three Weibkull Parameters for Matrix Algebra Test Items 7
< '. . i . v . . ‘
T ,Ltemsvf ty m.c. c Jlo
1. 2. 71 7.98 1.55 39.52
. e Z.. 1.59 B.93 1.32 21.98 . _
TN 1278 g.29 [.15 16.86 L4
IS PO L n.99 1.34 21.91 )
=, .51 F.99 1.26 To12.34
ST 2.77 F.os 1.15 11: 98
G 2,63 §.97 1.14 . 31.45
£ 6. @4 .99 {.27 36.62 ,
9, 1.63 .99 1.38 28.37 ‘
1qb 3.52 1. 68 1.38 18.28 x
147 19.53 .97 F.91% 29.82
12, g. @8 8.9 1.34 189.63
13.° 8.13 .99 1.25 - p4.46
14, .5~ a.14 .99 1. 44 o 38.17 .
y 15.° 15.52 .99 5.98 61.57
16, <, 47 §.99 1.16 © 38,47
7. . B \) B.95 1.17 13965 '
i, 2.33 " .99 1.52 16.589
B L1a, 1.67 g.98 1.17 48.25
2E. - 5. 68 F.96 1.45 66.23
21. 5. 69 F.98 1.13 68.66,
2z, .19 . B.98 1.59 19.§2 - >
P z.71 , 9.97 1. 91 156.56
24 1.74 * g.oz 1.19 12.93
) .25 £.75 T, 08 1.89 8.1
Q;; 2&. 1. &5 g.09 Y1.21 0 .09
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The Three Weibull Parameters for Matrix Algebra Test Ttems

. 1tems ty m.c.. ¢ Bo .
1.+ 1E.66 3. 59 7.88 33. 96
z. .80 1,738 #.98 3.58
3. . B8 8.7 1.86 13. 145
4, 1.72 W.99 - H.69 14.54
- =, g.90 ey 1.87 6.2
b, F o @.ay 1. 30 .55 2,13
7. 1.52 g.97 . #.78 38. 31
3 q. 98 .39 1.85 37.87 : R
@, B.73 g.93 #.55 15018 - ’
14, “§.08 f.98 .92 25. 69, ‘
C11. 1.35 q. 96 // 1.11 31.58
& 12 B.59 1,89 #.91 69,67
13, L 4,49 1,88/ 1.81 '35. 93
14, " 88 1.8 1.13 - - 46.C
15, .1.52 #.90 F.66 68,92
16, B.92 .99 .38 19.33
17. L E.72 .99 f.88 51.96
18. -1.86 .99 - #.88 . 15.%8 ;
19. 7~ B.26 g.98 g.92 25.56
28. .92 #.99 g.62 22.99 )
21. @.92 #.99 H.69 34.93 -
22. F.18 .99 1.84 o 13,43
. 23. 2.69 g.99 1.23 144, -H
24, . Ag #.97 1.55 12,48 o :
25, f.56 .99 1.61 13,18
26. B 04 F.99 g.76 17,51 .
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Since the Kolmogorov-Smirnov testing procedure looks'only at the maxi-,a)
mum discrepanc§ (z) between the observed and theoretical cumu}ative
distributions, ¢he resultant “goodness-of-fit" depends partly on the
size of the intefvals or units of measure used. In the matrix alge-
bra pretest, the item response times were recorded to the nearest
second, .and hence this undesirable feature of the Kolmogorov-Smirnov
test seldom manifests itself there. Even so, when the time range is
small (as in true-false itedls) and the sample size is relatively large
there are occasions when the p-value is rather small despite the fact
that the fit looks very good to the eye. This trouble (if indeed it
be a trouble) increases when we come to analyze lessons, where the times
taken are recorded only to the nearest 10 seconds and is further ag- .
gravated when we get to the Chanute data, where the time unit is minutes
and some lessons take only 25 minutes at a maximum. ‘

t

< .
]

~
5.3 Characteristics of the Pretest Items

The performance-~score ‘data from the pretest items were pro-
cessed by the computer program developed for computing various item
parameters. (See description in Appendix D.) Some of the results are
displayed in Table'7. The first column in this table, labeled "Dif-
ficulty 1," shows the values of the .traditional difficulty index--i.e.,
proportion of subjects getting the items right. The second column .
("pifficulty 2"),+on the other hand, gives;values of a modified diffi-
culty indes due to Loeschner (persona communication). It is defined
as the estimated average probability tHat the particular item (i) is
answered correctly but another item (j) is answered incorrectly when a
randomly drawn subject is give;?both items* i and j. The formula is

' n n,. .
. . = 1 .
(5.1) Difficulty 2 jZl ?H:%Tﬁ ,

v C ¥,

where n is the number of items in thé test, )

N'is the number of subjects taking the test, and

n,. is the number of subjects who got item i right but item j
wrong.

-

The reason we regard this alternative "difficulty" (actually
"facility") index worth considering along with the traditional diffi-
culty index is as follows. The topics covered in a matrix test are, by
their nature, hierarchically ordered (or, more strictky speaking, lin-
early related). For instance, in order to be able to compute a matrix
iﬁéerse, one must know what an identity matrix igy must know how to
multiply matrices, must know what cofactors and adjoifits are, and how to
calcudate the determinant of a (square) matrix. These prerequisite ™
knowledges must have been mastered earlier and the required calculations

/
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Table '7

-

L 4

Difficulty indecis, discriminating power, and
the i‘;relation of the total score and item—-time score

item  Difficultyl Difficulty?  rg,i Ts,ti
J A e
' 1 .90 G . .43 . -.03
2 .95 .48 w48 - .03
3 79 .39 .32 .08
A .80 .39 .40 . .07
5 . .92 .46 .39 -.07
6 AN A PRty 45 10 .
7 L L..78 .36 150, (02 o
8- .71 .32 .55 ;16
9 .78 .36 .53 .08
10 .80 . $37 ¢ - 59 .05
11 .26 © A3 .07 Jos
5 12 .31 .13 .35 .39
. 13 .49 .20 49, .37
14 .54 .23 50 .28
.15 1.63 .27 .62 14
16 .73 © .33 .58 .13
17 .33 S .58 .39
18 69 . 30 .64 .19
: 19 .38 . A2 .53 < .27
. 20 48 18 - .60 24
.21 bl _ .17 .56 .41
22 .69 © 3] .50 .30
.23 .33 13 .43 .35
. 24 .55 S .23 .56 " .33
25 | .72 .32 .61 .20
26 . 69 .32, A oL,
27 56 \-23 SN .38
. 28 “51 .22 48 o .21
' 29 . .38 A .59 " .38
30 A .16 . 50 .38
31 .29 - \\.11 b .39
32 .22 A .08 .36 .38
33 .33 .11 .60 7
34 S | .08 .39 034
) 35 .35 14 41 .46
’ 36 b © .18 .51 v .32
+ 37 .31 .12 .43 ' 42
38 .28 .11 .41 .35
.39 .34 .12 .57 42
40 . .21 .07 .41 41
‘41 . .20 .07 Y40 42
42 236 .13 .62 .46
- 43 .28 .10 .52 .43
44 24° 09, A .38
45 . .26 - .07 . 65 . .32
46 14 .03 .55 .34
47 - .17 .08 .19 W42
48 .22 .07 .54 . .07

,.36 46
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\\ .carried out without error in order to achieve the goal of getting a -
matrix inverse. These prerequiSites were taught in the first three
lessons of, the matrix algebxa course. The various test items in the
pretest were roughly ordered by the difficulty of the topic involved.

4
Ny

. . " Bob Linn (persoQ3£ commdnicagion) suggested that the diffi‘q%\
culty index (proportion of Correct answers) of items should be expecte
. to have a perfect negative rank-order correlation with difficulty of ~
topic. Thds is so because, for instance, nobody should be able fully -
to understand the import of the identity matrix without first knowing
how to multiply matrices. Thus, if item i tests/ for the knowledge of
matrix multiplication, while item j tests for ders'tanding the concept
of the identity matrix, it is natural 6 éxpec that anyone who got
item j correct will -also have answered item i correctly., )
Now, we sorted our subjects x items scoré data by item "diffi-
culty" (proportion of subjects answering correct) and by total score
edarned by each subject. The result is a plot of dots and blanks in a
pittern like that shown in Figure 9, which resembles a scalogram. The
upper left-hand corner répresenﬁ§ the score (dot‘= 1, blank = 0) on
tke easiest item earned by the highest-scoring subject. Then the points
. ati which the number of dots to the left equals the total score were con-
nected by a "step line," which Sato (1977) called the "S—;hfvgxﬁ 1f
thp data were p!%fgct, i.e., if the items were scalable in-Guttman's
(1947) sense, and the item scores were error-free, then the sum of the
estimated conditional probabilities p(X:. = 1 [ ¥, =1 over j=1+1,
i+ 2, .. ., 48 (where X; and X; are the scores on items i and j, which
.are either 1 oF 0) will be given by the shaded area in the figure.
This value is assogéited with the relative importance of item i to the
itéms testing for more ‘advanced topics. We related these sums for the
48 items with the difficulty of the topic being tgsted.and found a R
. nearly perfect rank-order matching; only three items were disarrayed.
(Thanks are dpe to Bob Linn for' suggesting that we consjder the condi~
tional probaSﬁlities. It was our idea to sum thems)

@

It should now be clearthat Difficulty 2 ds related to the
«sum of the,conditional probabilities complementary to those considered
above. Hence this alternative "difficulty" index is ofs®nterest quite

apart from the traditionmal difficulty index. %
/, 3 » 3 ' 3 ) . ' 3 ’
~— ‘ The discriminating power r,; in the classical test theory
% b
& . . " .
ssnse is shown 4in the third column, while the correlation r . between

3
item response time and total tést score is given in the last column.

‘Since the test is a pretest feor a difficult*subject that requires high-
er coénitive‘skills and most“of the students were not mathematics or

physical-science majors, almgst 65 percent of the items were tough prob-

lems. ‘The 88 students on tle basis of whom the results in Table 7 wtre-

| g7
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student 1...8%6

Figure 9 Graphical explanation of difficulty2
(Loeschner's facility index)- -

Note. The 48 items are ordered by their difficulty index so that the
easlest item is placed at the leftmost, and the hardest at the rightmost
position. The 86 students are also ordered by their scores from the top line
as the highest, to the bottom as the lowest. A small dot stands for a
correct answer l, and a blank is for wrong, 0. The two step lines represent
the total scores of each student and number of right answers for each item
respectively. The shaded area represents difficulty2 of item 1 when a test

is perfect.
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computed excluded those who were taking (or who had completed) the most

advanced of the three statistics courses using the matrix algebra

course, and hence the r , values are not very h1gh {t may be note&
. , N
that ro ti increases as the difficulty indices get smaller, which is
- ’

reasonable because a person who gets higher test scores tends to stick
longer with difficult items wh11e 1ess able students glve up on them

:

and go on ‘to the next item.

Table 8 éhows the cqrrglations among the four measures (two
of which are themselves gorrelation coefficients) that were displayed
in Table 7 and were discussed above. It is seen that the two types of
item difficulty (actually ”facility") iédices correlate almost petfectly
with each other. (It’highﬁ therefore be argued that the second index,
Difficulty 2 is gratuitous, but it does have some desirable gproperties
discussed above that are not poésessed by the traditional difficulty
index.) ' On the other hand the two "discrimination indices" are uncor-

related with each other, and instq3d r (or rather its Z transform)

s,ti
shows a moderate negative correlation with the "diff#culty'" indices.

Table 8

Correlations Among Two Item Difficulty Indices and
Two Disdriminating Power Measures
N

1. 2. i 3. 4,
1. Difficulty 1 1 . .
2. Difficulty 2 <2991 1 k\<
% ‘ .
3. Z(rs i) . 241 175 1
> %
4. Z(rs,ti) -.492 —Féﬁf -.018 1

*These are Fisher’s Z-transforms of the correlation coefficients
shown in .the parentheses. ’ -

~ Il

Recalling'from Table 7 that no item actually had negative r . values
Iy bl
to speak of (only two values werc negative, but they were practically

" zero), a low r " . value means that students having-high total scores

s, ti
and those with low total scores showed little difference in time taken

- M I -
A >
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Aruitoxt provided by Eic:

"dlfflculty" index values) that tended, by and large, to exhibit little

‘g
R
E

.

to respond to that item. Hence, the moderate negative correlations be-
tween’r i and the "'difficulty" indices, just noted, imply the follow-

3
ing relations: It was the easy items (i e., those with large

dlfferences in response time between those with high and low prior
knowledge of matrix algebra. Conversely, the more difficult items

tended to ghow larger differences in response time between high and low.

total scofe students, with high scoring students tending to take longer . T

time. 4 We\may therefore infer that students with higher prior knowledge

of matrix algebra tended to persevere longer on dlfflCult items whlle

those with l,ow prior knowledge tended to give up on them sooner. ThlS ) \

is a reasonable result, and by itself is almost trite (except that it
does seem to confer some construct validity to the test) but it has -

some implications for subsequent interpretations of the Weibull shape

parameter, c. ‘ o v
»—.::. . - - ;
£ The Relation between Discriminating Power and Time. Woodbury

(1963) and Novic (1966) developed a model involving time that identi- .
fies the measurement process with the realization of "a stochastic pro-
cess. However, their definition of™the time parameter, t, is the
examiner-controlled time allowed for the test, in other words, the . Y
length of the test, whereas the time score we have been using is the :
time taken by an examinee as needed. Their studies showed that there .

is some optimum time that'maximizes the reliability of a test. Even .
though thelrlgeflnltlpn of time for a test and its relatlonshlp with

test theory are quite different from our usage, we were convinced .that &

by controlling time after the fact in the scoring’ process, we could
demonstrate a similar relation from our data between time score and . :
some established concept in test theory. Testing out our hunch, we !
found two interesting empirical relations between time and discriminat-

ing power. Specifically, when a test item is easy, there is an optimal
time point within a relatively short time interval such that the dis- oo

criminating power of the item becomes the largest. On the other hand, *

for difficult items, the longer the time allowed the bettér, the discri- . ‘
minating power. These relations were observed fairly consistently for

48 items in two samples of about 80 and 100 subjects--i.e., data from )
the prerevision and postrevision matrix algebra pretests-<and also for s -

the posttests for®the lessons on multiplication, matrix inversion, o
transformatigns, and eigenvalues and eiggqvectors. ’ .
Figures 10 through 12 illustrate these relations, while Table e-

9 displays the numerical detail on which Figure 10 is based. (Corres-
ponding tables 'for Figlires 11 and 12 are omitted to save space.) To'

va
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Figure 10 Discriminating powers over 10 cutoff times (in seconds)
for OK subgroup .

A . \
“Table 9 v
10 Points in Figure 12, item 20
-~ :
%*  cut t;?i; N ¥ :
18" 28 4 B.618
26 " 29 8 ‘B.139
S0 33 . 12 - B.272
Al 37 16 " F.456 ’
, o % 5H 42 3] ooH.497
R A -7 - , 54 24 0.487
, P 67 27 L, B.432
5§ 82 32 g.311 .
9 114 450 H.148
160 1£8 Y 80

»

* % of .subjects, ** discriminating power
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dxplain:the‘construction of Figure 10 and the contents of Table 9, the
40 subjects in the OK subgroup for Ttem 20 were first arranged in as-
cending order of their times taken. The fastest 10 percent (n = 4)

of the subjects, with response times no greater than 20 seconds, were
taken and only ‘these subjects were regarded as having answvered Item 20

s correctly. The Item~20 score and the total test score for 36 subJects

were thus modified, with the scores (1 or 0) on the other items left
unchanged for all 4Q subjects. The point biserial correlation calcu-
lated between the modified Item~20 score and the modified total score
for the 40 subJects, is what is shown as the first entry, .018, in the
last column ("adjusted dlscrlm;nating power") of Table 9 and is the
ordingte-of the first point plotted in Figure 10. Next the fastest
20 percent, with response tlmes no greater than 29 seconds, were scored
1, and the others scored 0, ‘on Item 20 and the total scores accordingly
modified. The point biserial thus calculated is the second entry,
.139, of the last column in Table 9 and is ord%mate of the second point
in Flguré 10. The same process is repeated for ‘the remaining cutoff
percentages, 30, 40, . . ., 90 percent, yielding adjusted discriminat-—
ing powers .272, .456, . . ., .145, respectively. The last cutoff
percentage (100 percent) necessarily yields a point biserial value of
zero, because all 40 subjects now ar¢/ scored 1 on Item 20, since only
the OK subgroup was used. For this subgroup Item 20 was obviously an
extremely easy item (everyone got it right), and the maximum adjusted
discriminating power .497 occurs when the cutoff percentage is 50 per-
cent, with a cutoff time 42 seconds, thus illust:sting the time vs.
discriminating power relation stated above for an easy item.

Figure 11 shows the time vs..discriminating power relation
for the same item, but now usifig~the total sample of 74 'earnest"
subjects (i.e., those who chose an option at all for Item 20). Of
course not all of the fastest 10 percent (n = 7) were.scored 1 on Item
20 this time but only those among the seven wHo actually got\the item
right were,so scored. Similar scoring was used for the fastest 20 pex—
cent, fastest 30 percent, etc. through the entire group. Item 20 is now
a moderately difficult item, with 40 out of 74 subJects gettlng it
right, and the maximum dlscrlmlnatlng power, .597, now occurs at cutoff
percentage 80 percent with cutoff time 70 seconds. :

. - - '

item (73 percent got it right, as shown in Table 7), and yet the

) . Figure 12 presents an exception to the rule. .Item 16 was an
2%,
m.

aximum discriminating power, .Q62, occurs with 100 percent cutoff.
Thus, the empirical generalization stated earlier is not a perfect one,
suggesting that other factors besides-item difficulty must affect the
relation between discriminating, power and time. Theoretical work on

this issue is planned. o

’
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5.4 Interpretation of Weibull Parameters

”

\ .

We saWin Section 5.2 that the response—time data for practic- L
ally all of the 48 matrix-algebra pretest ‘items were well fitted, and na
those for a large majority of them were excellently fitted, by Weibull - v

: distributions. It/is now time to engpge in some 1nterpretations of the
observed fit. Thg first thing to note is that the Weibull distribution
for an ifém ia_the OK subgroup (those who got the item correct) and that in -
the NO subgroup showed interesting differences. This‘is apparent from

arison of Tables 5 and 6, given earller. Let us now focus on a

0

For example, Item 10, which asks for the transpose of a 2x 2

atrix (see Appendix B), shows quite a contrast between the two sets of

Weibull parameters., The OK subgroupYhas larger values for all three

basic parameters than does the NO subgroup: .

-

. ¥ \
£, c M u
0K subgroup .. 3.52 1.33 29.82 30.73
NO subgroup . 0.00 .92 20.69 21.50
< Here U is the theoretical mean, denoted earller by E(t) and related to
the three basic parameters through equation (2.7):
|
. |
h u = t0‘+ uor(1+1/c). (
Similarly, Item 16 (finding the product of a (2x3) and a_(3x2) métrix)‘ J
has Weibull parameg?rs as follows: ‘ <
~to N ¢ uo H
Ve , . S -
. ' OK subgroup ’ 5.47* 1.16 38.47 39.94 o
NO subgroup .92 « .38 19.33' .85 .
Since t is the theoretical min&mum tlme requlred for/exam- . l/

inees to arrive at their answer, 1t is only natural that “tje NO subgroup
had the smaller valuexégx\poth items. Most members of thid subgroup
simply pressed the NE key or made an incorrect guess. They usually

-~ don'E know what the transpose of a matrix is or how to multiply makt-

‘0

rices. They may have had some exposure to the rudiments of matrix alge-

» -brj/iﬁE; college algebra course a.long time ago, but since they had no

- A
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" furthef contact with matrices they have forgotten what little they knew.

Thus it seems safe to infer that ‘anyone whose response timé to an item ’

., is closer to the t value for the NO subgroup than to the t for the OK

subgroup must have guessed at .the answer instead of attemptlng to solve

the problem. However, this is still in the realm of speculation, and

5 wé will examine the issue further in the context of posttest data.

' Thirty-seven out of the 48 items have larger values of c (the
shape parameter) in.the OK subgroup than in the NO subgroup, but the
opposite is true fer 11 items. Sik of these 11 items were of the true—

. false type, and two involved either an ambiguity of wording or an’incon-
spicuous symbol (' for the transpose of a matrix). Thus, a majority of
the items for which the ¢ value in the NO subgroups was larger than in
the OK subgroup had, something unusual. about them. -

Returning to the two items cited above, both were among the 37
"normal" items for which the OK subgroup had the larger™value of c.
'Looklng at the Y values for the two items, we can infer that Item 10
was eas1er than Item 16. (In fact Table 7 shows that the "difficulty ‘
index"--which should be called the "ease index"-—had the values .802 and
. -733 for the two items, respectively.) The difficulty index and c are
indeed ppsitively correlated, a%ﬁleast_for the OK subgroup.

Table 10,in the next subsection shows that the ¢ for the OK
subgroup correlates (across, the 48 titems) .41 with the difficulty index®
as computed for tHe total sample, whilé the ¢ for the NO subgroup cor-
relates -.15. These are not' exactly high correlations, but when the ¢
is based on the total sample (not shown in Table 10) the correlation
increases to .56. If the ¢ from the NO subgroup is partialled out, ,
the partial correlation between c in the total sample and the d1ff1cu1ty
index is .70. Since the time-score distribution in the total sample
N does not fit the Welbull distribution as well as those in the OK and NO
‘subgroups separately, however, the parameter c based on the total sample
may not bg very meaningful. We’ may have to introduce a composite
Weibull distribution (cf. Mann, Schafer and Sigpurwalla, 1974, pp. 140~
142) to, fit the total sample, but we have not dgne so in the present

study. o ) 1. . - . ‘

The upshbt of the foregoing disgussionsris that the shape para-

® ' meter. ¢ has something to do with item difficulty, but not so much as to

be identified with it. 1In a semse, ¢ 'has a "richer" meaning than the
, g |

1 - ' Al

or *Unless the suffix '2' is, attached, "diffitultyc;ﬁaex" will always i
: dendte the traditional difficulfy index, and not the alternatlve index
introduced by Loescbner . .. -
’ ! ¢ AN
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usual concept of difficulty, since it determines the shape oé the cumu-
lative disfribution curve. The nature of its relationship with the
distribution shape is illustrated in Figure 13, which depicts the
Weibull distribution with to = 10, uo = 30, ¢ = 1.5 (curve 1) and that
with e, = 10, M= 30, ¢ = .8 (curve 2). Curve' 1 is seen to approach
its asymptote more rapidly than curve 2 does." Although,'by defini-
tion, the graph of any distribution function must asymptote to F(*) =1,

. e s 3 . .
it may approach different values within "reasonable" ranges of the time

variable, thus indirectly reflecting different item diffiqu?ky levels.

To further illustrate how ¢ determines distribution Shape
with real item data, we again return to Item 16. Figure 14 shows the
distribution curves for JItem 16 in both the OK subgroup (curve 1) and
the NO subgroup (curve 2). Curvé 1 starts at tj = 5.47 on the time axis’
and converges. to 1 faster than does Curve 2. It is interesting to T
note that about 40 pércent of the NO-subgroup examinees leave this item
before the (theoretical) minimum time, -5.47 seconds, for the OK sub- )
group. Ten percent of the NO-subgroup examinees spent too long a time
without achieving success-while almost all subjects in the OK subgroup’
arrived at the answer in 130 seconds. These facts suggest that it is
ngt necessary to allow more than 130 seconds for people to answer Item
16. The density-function curves for both subgroups are also shown in
Figure 14, but their scale is different from that of the distribution-
function curves. The unimodality when c > 1 and absence of a mode when
¢ £ 1, alluded to in Section 2.2, is here seen for fits to real data.
. A\
. The conditional response rate (CRR)l whicﬂ ﬁprmedlthe theore-
tical basis for deriving the Weibull distribution in Qection 2.1, is
here given for real data, that for Item 16 again. Curve 1 in Figure 15
shows the CRR for the OK subgroup, with ¢ = 1.16, and' Curve 2 that for
the NO subgroup with ¢ = .38. Curve 1 increases monotonically with
time, indicating (loosely) that' the longer a person sticks with Item 16
the more likely it becomes that, he/she will get it right if indeed he/
she gets it right at all.. Curve 2, on the other hand, decreases rapidly
with time. Among people who do not get Item 16 right, the longer they
stick with it, the less likely it becomes that they will .respond to it
the next instant, given that they haven't responded to it so far. Fh
other words, many subjects gave the wrong answer early on but the "giving
up" rate slows.down as time goes by. It might be said that CRR express'es
the degree of involvement in an item by examinees. But further expliT
cation of this eoncept must ayait further research. P

P

., -

“In fact, it was_ this relationship with the speed of 'convergence"

to asymfgqte that led us to denote the shape parametcr as c.

46
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Figure 13
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X axis: response times
Weibull distributions for =2=.8 and 1.5,
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Next, we

of items that respeiﬁ

e@tified five %ets (four ﬁairs and one triplet)
ively had the same difficulty index in the 'tradi-

tional sense and were on the difficult side.

The c-values (determined

for the OK group) of the items within the "isodifficulty" sets were con-
sistently and fairly substantially different. Examination of the item

’

"
~

-

contents revealed that the c-values seemed to reflect a more

intuitively

plausible notion of

'item d1ff1cu1ty - than did the traditicnal diffi-

eulty index.

The data are as follows:

<

Difficulty Index

(Proportion Passing) Number (0K

.279
.279
314

~
.314

.290 .
.290 ot
.290 .
©.349

.349

LA42

LA42

rd

Item

qrvalﬁe
group)

) -

Item Content

38 1.062 A property of orthogonal trans-'
v formations * .
43 .982 Variances and eigenvalues .
12 1.336 Tricky problem on order of
) matrices
37 1.019 Property of orthogonal trans-
formations
17~ 1.173 Symbols for matrlx/vector oper-
i ations
23 1.014 If AB"= AC then B = C
33 1.240 Matrl?.inverse. numer ical
example .
35 1.917 Orthogonal transformation™
numerical example °
39 1.276 Simple property of orthogonal o
’ transformations s
21 1.126 Row-wise expansion -of deter-
minants.
36 584 .. Property of orthogonal trans-

formations

The foregoing data, suggest that the Weib&il parameter c qu/be a more
* sensitive measure of the conceptual-difficulty of an item than is the

of examinees

the value is 1.00 for every item.

traditional difficulty index defined as the proportion
getting the item right. In fact, for the OK group the
pletely undifferentiable by the traditional difficulty
Yet ¢ enables us to
among such items by detecting different rates at ,which
is approached.‘

items are com-
index, since

differentiate
the asymptote

LS

Items 36 through 39 all ask the simple properties of orthogonal
transformatlons Their difficulty indices are .442, .31l4, .279 and
-349, respectively, but their ¢ values increase monotonically in the

S
e

order the items vere presented: .784, 1. 019 1.062, 1.

276. This makes

—
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sense when we consider the concept of, or the red3oning behind, the
. Weibull parameter c.in general. The CRR for questions related to the
’ ' same topic seems to increase as the familiarity with the topic increases,
~as it should from earlier to later items on the same topic. Thus, the

parameter c seems to be Eelated to what may be termed degree of involve- *

ment on the one hand and degree of famlliarity on the other. Both '° .
these are indirectly related to difficulty but are conceptually dif-

ferent Hrom it. . s .

' To conclude, the means, across the 48 items, of the three Weibull .
parameters in the two subgroups were as follows:

. ' t,(seck) e Mo )
_ OK subgroup ‘ 2.7 1.125 33.05 »
NO subgroup 1.1 r/* .903 22.50

.~ \'
We did not discuss the scale parameter uo in the foregoing, but in view

. of its mathematical relation, M = to + uor(1+1/c), with -the theoretical
mean of the distribution,®it hardly needs discussion. Since the mean

of u igvsmaller in the NO subgroup tha:&%g\;he’OK subgroup, we may con-

clude -that, on the average, the NO subg ~up spent less time per item

[4
’

than .did ty7 OK subgroup in the matrix wlgebra pretest..

5.5 Correlations among Weibull Parameters and Item Statistics

The foregoing'concludes the main anglyses carried out on the
data from the original version of the matrix élgebra pretest. To ex- ! '
plore other possible relations,, however, the three Welbull parao;ters
and the maximum correlatlon between 2nin(l- P) and 2n(t-t ﬁ that was )
found in the process of estimating the parameters (see Sectlon 3A\l) for

= the OK subgroup and the NO subgroup séparately were correlated wit

" Kolmogorov-Smirnov p-+values in the oK subgroup and six other item styt-
istics based on the totalesample. There were thus 15 vériables in all
but the u in the NO subgroup had to be omitted becguse of storage 11m1—
tations. The resultlng 14 x 14 correlation matrix is shown in Table 10,
where t@e correlations significant at the 5 percent level are asterisked-
(All correlation coefficients used as inout variabies were traneformed \\

into Fisher's Z before being correlated with bther variables.)

. .
L
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Table 10

A Correlation Matrix of Ueibull Parameters and Item Statistics,

> -

) 1
. 1: 2 3 4 -5 5 7 8 9 © 10 11 12 13

1. tg (0K sub-group) 1,000

2. max. correlation 067 1.000 ¢ -
3. ¢ } ~«.169  .185 1,000

4. g ~.285% ~,184  ,245 1.000

5. No. of options  «,066 =,179 .316* .438% 1,000 '
6. o from Kolmo. <095 L143 -.331% .033 .023 1.000 c
7. Difficuley 1 =007 155 .406* -.137° 113 -.611* 1.000

8. rg, 1 - -.029 .109 L1860 ,100 =-.049 =-.216 241 1.000° -
9. rg 4 , =210 L1246 ,097  .340% -,066 .27l =.492% -,018 1.000

10. pifficulty 2 016 L131 .374* -.165  .163 -.582% ,991* 175 -.544%.1.000 N
11, Average timé < J131 =149 L1863 .912* .541% «.015 -.004 .089 .219 -,030 1.000

12, to . (NO syb-group) .016 =,048 =-,003 .143 .080 -.167 .187 .009 -.189 .188 .259 1.000
13, max, correlation .088 ,000 .0%1 .I117 =.108 ,140 =.243 =.021 .222 =-.262 .083 =~.C04 1.000
foma +240 =031 =.170 -.189 =,221 -.024 *=,153 <,232 -=,133 ,-.136 =.157 -~,108 .186

*Significant at p < .05; i.e., r = ~.285, N = 48 ftems.

“~

Note. All correlations were converted by Fisher’s Z-transformation.*® The first & variables are
of OK subgroup, the last 3 variables are of %0 subgroup. :

> ¢ R
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The Weibull parameter ¢ of the OK subgroup correlates with
-the numbers of options in the items (.316), difficulty 1 (.406), the
arcsine transform of the Kolmogorov-Smirnov p-values (-.331), and dif-
ficulty 2 (.374). The negative correlation with the Kolmogorov-Smirnov
p-value is probably largely an artifact, because items with small values
of ¢ ‘tend to be more difficult and hence the QK subgroup for those items
tend to be smaller, thus inflating the "significance" and decreasing
the p-values. When the difficulty index is partialled out, the correla-
tion between c and p drops to -.115, which is nonsignificant.

.
-

The shape parameter in(th% OK group also correlates .316 with
the number.of options, meaning that items,with more choice options
(which ranged from two for,true-false items to five for the multiple-
choice item ‘with the ;afgést'number of alternatives) tended to have
larger ¢ values. Ifour interpretation, suggested earlier,” that the
item~c-value reflects degrge of engagement students show with the item
is correct, we may conclude that within the vange represented, the lar-
ger the number of optiofis the greater the engagement students feel.
This seems reasonable since items with more alternatives present more of
a cognitive task and hence probably induce greater inyolvement on the
" part of students. To put it the other way around, -this observation
lends further support to‘our notTon that c reflects degree of engage-
ment. It should be mentioned that partialling out Variable 7 (diffi-
culty 1) does not affect the correlation (the partial r is..30)3 hence - -
the correlation between c and number of options cannot be explained ‘
away by arguing that the larger the number of options the nfore diffi-
cult the item tends tao be. ' ' N )

¢

It is intereé%ing, although rather disappointing, to note -

.

that none .of ghe Weibull parameters correlates with item discriminating

o , R
ower, r ..
P s s, 1 V . v

Next, the scale fac;or‘uo corpa%ates moderately to highly
with_the.number of options (.488), rg ti(.340) and the observed average

-

time (.912). Since My is functionally rekated to i (the theoretical
observed time--see’ equation (2.7)) its very high correlation with ob-
served average time.is also to be expected. This in turn ‘explains the
moderate correlatlion between po and number of 0ptiohs, since the larger
the latter is the more time it Qould take, by and large, to responq to

that item.

TME"b>v<iues from the Kolmogorov-Smirnov tests of goodéess—of—'
fit in the OK subgyoup have correlations ~.611 and -.582 with difficulty
1 and difficulty 2, respectively. This, too, is probably an artifact

to a large.extent in that the p-values tend to decrease as sample size

’
]
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N increases, and large n for the OK subgroup means an easy iEem whose
"difficulty" indices would be large.

The correlation r i between item response time and total
’ ' -

test score in the total sample of 88 subjects correlates with M, (.340),
’ difficulty 1-(-.492) and difficulty 2 (-.544). The negative correlation

with the difficulty index has already been discussed in the previous
- ~ .
subsection. The positive correlation with the scale factor uo is dif-

ficult to interpret.

It should be noted that the Weibull parameters, to’ roox and

. ¢, from the NO subgroup did not correlate significantly with any of the

.

e
other 11 variables. This is probably because the data analyzed here is

B for the pretest,'and members of the NO subgroup know little if any mat-
rix algebra. The situation changes considerably when we analyze the
posttest data in.the next section. X . "’—“\\

N \

e




6. ANALYSIS OF POST-REVISION DATA , g

. After the results from the original version of the matrix

algebra pretest were analyzed, and partly as a consequénce of the analy- ¢
ses, several items were mJalfled to correct ambiguities in°wording or
defects in the display. Another change made in the test was, as men-
tioned earlier, that the option of pressing the NEXT key‘to go to the
next item without answering the previous one was eliminated. This change
was made at the request of the instructor’ of one of the participating
statistics cdurses who wanted to force the students to answer all ques-
tions. Ip-retrospéct, however, this may have been a change for the worse,
for it has no doubt led to increased 551ng At the risk of seeming

to attribute tp the Weibull distribution some magical power to detect N
"undesirable'" items, we note that the fit became very poor for items in
which a large increase of.guessing must have occurred such as-those
testing for difficult material like transformations. It could be that .
guessing contaminates the distribution so that it no longer appears to

rasult from a single underlying stochastic process. - How to handle this *
problem is something we are not prepared to say at this time. That must
be left to future research.

’

In this section we discuss the

the revised pretest hut those. from the pdsttest as well.

analyses are mostly of the posttest data. )

nalyses not"only of data from
- (In fack, the
We must therefore first

describe those tests.

ﬁ’

¢

1

>

6.1 Description of Posttests (with Some Speculations) e
. -,

‘

It might have seemed strange that the analyses dlscdgsed so -
far were confined to"pretest data, with no mention of a posttest. This E Y
was simply because no posttest had existed before Fall 1976. Thagks o
NIE funding, we were able to 1mp1ement four posttdsts during that semes-—
ter. (Lest it ‘bé thought that funds were diverted from research to
instructional use——espec1a11y in the current atmosphere of censure of
mishandling of .grant monies. '-—it should be ,pointed out that the posttest

ning grades in the three statiss

results were not used at all in deter@%

tics c0urses}

Thus, these tests' served our feseatch purposes only )

%
3

AN

P ~

Specxflcally, the tests come after completion of the lessons

on matrix multiplication, on matrix inversion, on transformatd
on eigenvalue problems, and they afe referred to as "Multpost,
test," "Transtest," and "Eigtest," reqpecﬁlvely

‘constitute a subset of the %48 items un the pretust

,

and

' "Matinv-

The items on®éach .

-~

items in Multpost,

12 in Matinvtest,

7 in Trad%test

there being 23 .
and 8 in Eigtest.

-(The numbers total 50, because the f1rst two.tests contain two items, in

Aruitoxt provided by Eic:

-

+common. )
pretest,

The actual items,.identified by which numbers they are in the

ERIC ™

are shown on the following page along with the number ofi§ubjects,
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on whom usable data for each test were available. (The interested
reader may refer to Appendix B to see what the items on each posttest

are.)
\ ’ Number of - . .
1\\ ) Items Subjects
. Multpost 1-18; 25-29 68 . )
Matinvtest 17-24; 30-33 30
Transtest 34-40 : 38 -
Eigtest 41-48 56

4 e

We mention in paésing that many students complained, in their responses
to an open-ended question included in .the questionnaire attached to the
lesson, that some of the items in Transtest tested for material beyond
JWwhat was taught in the lesson on transformations. They claimed that
‘these itegh were too mathematical and advanced for the students to whom
the test addressed. Despite these complaints, however, we did not s
modify these items-because we were curious to see whether/the Weibull

fitting would be adversely affected by the lesson-unrelatedness of the
items. : / '
Three Items with Matrices Constructed hy a Random Number :
Generator. In three of the items, the elements of the matrix in the
N stem were generated by a random number generator, so students would not
' get identical matrices to work with. Each had a parallel, counterpart
item in which the elements of the matrix were fixed. We were curious
to see whether the two types of item would lead to equal degrees of fit .
. to the-Weibull. If not, it would indicate that the time taken for the
) sheer arithmetical calculations, which may vary from version to.version
of the randomly generated items, plé&s an important part in .the total
time taken for the item, thus leading to a mor® complicated distribu-
tion with separate Weibull proéesses for the a ithﬁeqic and the matrix
algebra parts. A twofold Weibull convolution might then offer a ‘better
fit to the ''random" items while a regular Weibull would fit the "fixed"
items. Alternatively, if the component parts are successfully modeled
by one-" (two-)parameter negative exponential distributions, then both
.~ the fixed and random items would be well fitted by two- (three-)parameter
gamma distributions with the random items having a value for c greater
by approximately 1 than the fixed items.

) Pogttests Should Make Students More Seriously Involved in
Solving Items. Since the conditions under w#ich pretests and posttests
. are taken differ considerably, we expect. that the incidence of guessing
will differ in the “two gases. Specifically, we- expect that guessing
will be minimized in the posttests while the press to guess would be
greater in the pretest, especially %hen the option to skip items is
eliminated. Also, the knowledge of matrix algebra newly acquired
after the students have gone through the lessons will have led them

\ A .56 - !
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to be more involved, with answering the test questionms. Codsequently,
the CRR should be monatinigally. increasing with time rather than
decreasing or remaining constant. We would therefpre expect ¢ to be
greater than 1l for posttest items. On the other hand, if the student
doesn't know or has forgotten the materral we would expect him/her
more likely to give answers by random guessing.

hS

. 6.2 Results of Analyses

Tables showing p-values and z-values from the Kolmogorov-
Smirnov tests of goodness-of-fit and the Weibull-parameter values for
the items-in the four posttests are given in Appendix E. Here we dis-
cuss only-the summary results and their implications. Table 11 shows

. the percentages of items having Kolmogorov-Smirnov p-values greater

than .20, gréater than .40 and greater than .50 and the' mean p-values
for the four posttests in the two subgroups. Also shown for compara-
tive purposes are the mean p-values-in the pretést.

-

) _Table 11
3 . N - . ,
‘ Percentages of Items with Kolmogorov-Smirnov p-values
Exceeding Three Values in the Two Subgroups

N \ 1 . n -

~ T

p>.20 p> .40 ” p > .50 P Pretest p .
. o - R - 1Y "
OK Subgroupy e
. Multpost 87% 837% - 78% .%§ .46
Matinvtest  100%° 92% 75% .64 .55
Transtest J1% 57% 43% .50 .51
Eigtest 1007 100% 100% .. 79 .78
NO i;ZgrouP - ’ i
. Maltpost 100% 100% 100% . .82 .51
Matinvtest® ———- -— -—— -— .50
Transtest 71% 71% 57% .54 .43

Eigtest 100% 100% 88% .80 .27

* g ’
Inéufficient data ~

\

<" The.distributions of time-score data from all but the Trans-

; test fitted the Weibull distribution much better than did those o6f the
revised, pretest, for which oiiﬁ/ﬂgppeycent'of the items hgd p-values

B

.0

- \ *
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in excess of .20"in the_OK subgroup- and 75° percent in the NO subgroup.
¢The items in the pretest corresponding to those in the Transtest had

an average p-value of .51 in the OK subgroup and .43 in the NO sub:
group, as shown in Table 1ll. The average p-values in the Transtest

in the two groups, on-the other hand, were .50 and .54. As we mentioneé
earlier; there were some items in the Transtest‘that covered material
not taught in the lesson, inviting much ‘student complain®¥. Again,

' something upusual in the items seems” to result in poorer Weibull fit.
Apart from this, the mismatch between the lesson.and the test should
play a role in the study of the importance of the linkage between lesson
and items in measuring the effectiveness of instructi as well as in

assessing- the level of a student's learnlng Such a gtudy is planned
in a ‘forthcoming project. :

Let us examine in some detail the results for the problematic

" test, Transtest, which included items covering material not taught in

the lesson. (It may be mentioned in passi g that some’ students. expressed

irritation and hostility, while others thought they had missed some-

thing in the lesson and went back to repeat”it,) For- comparative pur-

poses, the averages of the Weibull parameters to and ¢ for items, in

three posttests, with adequate numbers of subjects in both the OK and

the NO subgroups are shown below.

- @

[}

OK’§ubgroub . (based on 8 out
NO subgroup . of 12 items for Ng)

Multpost

OK sybgroup

Transtest NO subgroup

- (7 items)

OK subgroup

Eigtest NO subgroup

(8 items)

In brief, the Transtest averages alone out of the three
posttest averages shown above exhibit a pattern typical of that for a
pretest item, which was exemplified by Item 16 in the previous section
(see page 44). That is, the NO subgroup has smaller values for both
to and ¢ than does the OK'subgroup. In particular, the c value in
thé NO subgroup is smaller than 1 while.that in the OK subgroup is
greater than 1. (Note that in neither of theé other two posttests do
the average t, and the average ¢ show all of these relatlons between
OK and NO subgroups.) Thus we may conclude that the Transtest,
although a posttest, acted much like a pretest by~v1rtue of the -dnoma-
lous items. Agaim, there is corroboration of our speculation that &
.indicates extent of engagement or involvement on the part of students
in an 1tem.. The fact that the average c¢ for Transtest in the NO sub-
group is only ,88 suggests that mamy students merely guessed at the

\ ' N "
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- ‘ - oK Subgroup

a e '
“ 4 I 2.
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'
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answers for "the three items in th1s test that covered material beyond the

scope of: the 1esson whlch is only to be expected. Poos

. As mentioned earlier three items. used matrices whase elements

were chosen by a ramdom number generator,supplylng integers between
-9 and 9 inclusive. Specifically, Item 1 asked for the.sum Jf two

"3 x 3 matrices with fixed elements; Item 2 was a parallel item with

' random elements. Items 3 and 4 called for the difference between two
3 x 3 matrices with fixed and random elements, respectively. = Items 5
and 6 asked for the transpose of a 3 x 3 matrix, again with fixed and
rand elements respectively. That is, the odd-numbered items, used
fixed matrlces while the even-numbered items_ used random matrices. .

<

2

Table 12 shows the Kolmogorov-Smirnov p-values and-the Weibull
parameters c¢ and uy for these three pairs of 'items in the revised pré-
test and in the postzést for. the OK and NO subgroups (except that the
latter subgroup is nonexistent for the posttest because everyone got
all six items correct). Note that for the OK subgroup the even-numbered
items have considerably larger c values than do their odd- ~numbered .
counterparts in the revised pretest, wvhile the reverse is true for the
NO subgroup. Interpretatlons will be attempted after the flndlngs have
been stated factually '

Y ? \ ) &- ,
L . Table 12 o oL Lo -
| - . o TR
e 7 Comparison of Items Using Fixed Matrices (Odd numbered) “%
and Parallel Items (Even-numbered) Using Random . T
- ) Mattlces in Terms of Kolmogorov-Smirnov p-values -

and the Weibull Parameters c and Mo

- N - re - -

' NO Subgroup

e - .- -

B . Pretest - * Posttesty ,Pretest e
! Item - p, ¢ Yo ’ .P c Yo P < lup
1 .06 1.15 4.5 .33 1.06°25.3 . .99 2,08 52.6 +
2 .02°1.92 28.1  ,26° 2.76 23.6. .99 .497 32.1,
" 3 ..64.1.240 23.3 194 1.24 17.7 .61 1:05 19.3"
47 51 2.19 32.4 .17 -1.05 , 20.9 66 1. 02 14.5
v .5 .45 1.25 13.7 .38 1.00 10.9 .99 ,2.10. 17%1
. 6 .16 1.35 12.7 .08 1.41 11.6 . .42 ' '85-10.8 y
) . . , . . . . ) {. " ‘;.(
- ’ -\""\/ -: - & } - h
e 59 o ' ¢ - "

F LA




~ b . \
\ ‘ Next the conditional response rates (CRR) of Items 1 and 2
. are compaf%d in Figure 16 for ‘the OK subgroup and in Figure 17 for the
NO subgrOup. In the OK subgroup it is Item 2, which uses the random
matrix, that has a larger and monotonfbally increasing CRR while the
CRR for Item 1 is smaller and almost parallel to the horizontal axis. «
In other words the conditional probability (glven that the item hasn't
been ansyered up to then) that.it will be answered the next moment is
always greater for Item 2 than it is for Item 1. Note that, on the post-
“test, both items were answered correctly by all subjects and hence Nt
traditional item -analysis based on the performance score would fail to
show any difference between these two 1tems that are identical in frame-
work but differ in the way the matrik elements were chosen. * Our analysis
based on time scores’ has revealed an 1nterest1ng dlfference as the
+ c=values in Table 12 shows (althougpythé Itemq 3 and 4 pair is an .
exception). C N .

. - - : . T
’ CRRs, lof Items 2, 4 and 6 were larger ghan those of Items

1, 3 and 5, respectively, in the OK subgroup on the.revised pretest,

but the reverse was true in the NO subgrdup. Jhat is to say, the condi- -
( tional probablllty that Item 1 will be answered wrong in the ne§£*k

moment increased with time while the same conditional probabilit¥?

decreased for Item 2. Similar remarks hold for the Iteps 3 and 4 and

. Items 5 and’'6 pairs. Figures for these pairs 1n_both subgroups are

shown in- Appendlx F. »o- .y

.
’

2 "*' Interpretatlons. The complicated findings® reported above are
difficult to interpret, and what follows must be regarded as attempts
rather than def1n1t1ve<1nterpretat10ns - The three palrs of items were
very 51mp1e for students taking advanced statistics ®ourse# in education
and psychology once they learned the ‘definitions of ‘matrix addition,
subtraction and transpoqrtlon. The only difficulty probably occurred
1n the addition and (more so) ‘the subtractlon o§ signed numbers, and
in the case of transposition, theRrequlnemeWt ‘to.rapidly .perceive and *
) " distinguish among five 3 x 3 matrices (thé optlons) with the same set '
N of numbers in different arrangements. We surmise that the items with
) fixed matrices (Items 1, 3 and 5) were so easy for the OK subgroup
' that the answers were arrlved at w1thout much "1nvolvement" on the part
“of the students. But some versions of Items 2,.4 and 6 probably re-
quired greater.attention and involvement of the students, depending on
particular combipations of numbers chosen by the random number generator.
. ‘ - : ,
‘Let ‘is now return to Table 12 and examine the Weibull para-
‘meters for 'the’ .posttest.: If dtém pa1rs 1, 2 and 5, 6 they followed
éxactly the same pattern as they did for the pretest. In fact, the
difference in c values between the odd- and even-numbered members ofae. |
the pairs weére greatér fqr the po ttest ‘than they were for the pretests.
Referring to equation (2.4) for tze Wezbull CRR functiony' it can be , - .
-seen that- for f1xed ¢, this is a mgnotonlca%}y*decrea51n unction of
Hg. Since all “0 s for the postteast were smaller thgﬁ\Lhe .corres-
ponding l,'s for the p“etgst thc CRR values at any given !

’
7" v

’ ., re 6 0
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1item .1 2.879 g.888) 52.64
item 2 : 8.4865.  11.4871 . 32.89
8.1808 T ‘ |
! ‘ . OK subgroup |
9.998, 1 | ' '
o - e R I
g.888 oy ' — — e
g 18 28 38 48 59

time In seconds

~

Figure 16 Comparison o6f conditional response rgtes of
’ items 1 and 2 for OK subgroup

2
s ateme 1 1.158 18.5983 44.51
item 2 : 1.924 - 2.5268 28.12
g.117 T |
; ?
~ t -
N 2 .-
o) l "
' 9.958 + I -_
b
3 \", . . [}
B.888 +——— + ¥ —t — 4
g 18 . 28 38 . 48 58
S i, /17 7 time in seconds
- € . .
Figure'17 Comparison of conditional response rates of
- m} items 1 and 2 for NO subgroup - 4
( pot , 60a v
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time point were mostly larger for the posttest than they were for the
pretest. In item pair 3, 4 the pattern was not the same for the’ post-
test as it as for the pretest. .

For members'Pf the NO subgroup, the materials of these Three
item pai were relatively new and unknown or were forébtten. As time
went by th® CRR's slowly increased for the fixed-number items 1, 3 and
5, while this was not the case for Ytems 2, 4 and 6. (See figures 'in
Appendix F.) - This means that the students who answered the fixed--
number items wrong tried hardér, on then\Vgrage, to figure out the right
.answers than .did the students who answered the random-number items.

Two of the latter items (Nos. 2’ and 6) were given up quickly on the
averdge, again suggesting that some number combinations chosen by the
random-number generator led to difficulties. In the exceptional pair,
Items 3 and 4, the c values were almost- equal and close to one (1.05
and 1.02) but the no's were somewhat different (19.3 and 14.5). "There-~
fore the CRR curve for Item 4 lies.above that for Item 3, and both are
almost horizomtal. Recalling that Item 4 differs from Item 2 only in
- that the opgration is subtraction’ instead of additior, we infer that
the difficulty of subtraction of signed numbers depends strongly on
the particular pair of_numbers involved. This must be the reason why
the item pair 3, 4 shoged a different behavior from item pairs 1, 2

and 5, 6 in intrapair differences. r
. . p .
7. WEIBULL AND GAMMA FITS "COMPARED
. . §.»A. 4%.. . " R

In this section we compare the relative éoodness of fit of
the Weibull and two-parameter gamma distributions tb‘time—score data
from.various sources and attempt to come up'with an explanation for
when and why which offers the better fit. As a general rule, it seems .
that for material requiring a sustained, uniform thinking process the
Weibull has an edge over'the gamma. The Weibull also show$;wider
applicability and greater flekibility. On the other hand, if the task
consists of a concatenation of several relatively independent “and more
or less simple, mechanical subtasks or stages, the gamma fit seems
better. Of course pure cases of either type are rare, and often the
fits are ambivalent¢ Cases for which neither distribution offers an
adequate fit seem to be ones in which the several stages of a task are
non-independent or non-mechanical or both. Compoun¢g Weibull distribu- ~
tions: would pggéfbly shdw good fits in such cases.

.

Smirnov p-values and the Weibull and gamma parameter estimates are
~shown in Appendix E, and owly summary tables are given in this section.

- ! -

g .

- L)
Due to the abundance of fittings undertaken, the Kolmogorov—5
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7.1 Multiplication Pretest and Posttest
L + O

. N

Data from a sarple Jf 56 examinees whé took both the pretest
-and posttest for simple operatlons and matrix multiplication lessons
were subjected to goodness of fit testing for Welbull and gamma dis-
tributions. The estimated parameters of Weibull*and gamma distribu-
tions based on t1me score data of 23 items were determined and tested
"-by the Kolmogorov-Smirnov test. Items were classified into four cate-
gories according to p-values from the Kolmogorov-Smirnov testing:

(1) p values for Weibull (pw) is much better than
- " Q - E3
p values for gamma (pG), (pw - P > .10) g
> 0)

(2)

Py is better but not much; (.10 > Py = Pg -
(3) Po is better but not much; (.10 > Pg = Py > 0)
, 4). P; 1is much bette; than Pys (pG = Py > .10). }’
In order to show which theoretlcal distribution is better for the 23 L

items, the frequencies in each category were counted and summaflzed
in Table 13.

.o N N =
Table 13

2 .
o . |

Comparison: of Goodness of ,Fit for Weibull and Gamma in Multpdst .

N
v
.

e \ -
Pretest (23 items) E Posttest (23 items)
L “
Category OK Subgroup NO Subgroyp* OK Subgroup NO Subgroup*#*
’~‘ > ot - v .
1 13 (57%) 9 (47%) 16 (70%), 6 (75%)
.2 4 (L77%) 4 (2179 : 2 (9%) - 1 (12.5%)
3. 3 (13%) 6 (327%) : 3 (13%) 0
4 3 (13%) | o ) 2 (9%) .1 £12.5%)
’, N . ’ ' bl

Four items were omitted becalise of %mall N.

x .
Only eight items had N > 12.

The Weibull distribution is a distinct preference for both
the OK and NO subgroups in the pretest aﬁd ‘the poettesu@ but the post- A
tést shows a 'slightly higher percentage in Category 1’ than the pretest ’
_does: The items that fall in Category*4 are only a few in each group

%-
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of the pretest and posttest. It can be said of 87 percen‘ 100 percent,

and 92 percent of items in both groups the pretest .and OK subgroup v
of the posttest that the cumulative dlst utions of their time score N
data are pretty well approximated by Weibull distributiog-functions.

The average p values and standard deviations of\éach gréup
for both distribution functions are given in Table 14.

Table 14 L
. Average' p-values for Weibull and Gamma Distributions; .
Multpost (23 items and N = 56) '
\ : . ,

e

. .(
Pretest Posttest ™

- 2

! . OK Subgroup NO Subgroup - OK- Subgroup NO Subgrodp

73 .75 .65 * .82

4

S . .28 .30 S ;16

.63 .39 .50 .

S

.35 .37 " .35

0

e : Thé average values of py in the four-columns afE”larger than
those of p; in the same columns and the standard deviations' 'of p values |
for Weibull (SDy) are smaller than the standard deviations of p for gamma |

-, (SD ). The values of pG fluctuate considerably more than those of Py |
' The result that Weibull -is better was expected because items in the
matrix algebra test were not easy,’and many levels ‘of knowledge that
o are hierarchically or lineardly related would have been required to -
’ ‘ arrive at their responses. Therefore a gamma dlstrlbutlon, which is
a convolution of finite number of independent negative. exponential
“variables which’ Restle (1962) interpreted as representing indgpendent
» stages or components of a problem'solving process, canndq'explain theo-
retically the time score data from matrix aigebra test items where the
stages or components are not independent. Indeed, for most of(our items
there. is no way we can say that the stages to reach a response a
} given item are independent from onc agother. Since the Weibull distribu-
i ~tdon does not require such a strony assumption so, no matter how each
h . stage relates one to the other, a whole process of cognitive, tasks to
reach a response can be modeled by a -Weibull distributjon. 'The response
can be positive or negative as long as a student's process of achieving
their cognitive task can be consideréd to be of the same kind. This

|
|
o . |

»

A i
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means that the OK subgroup in the posttest and NO subgroup in, the pretest
follow different processes of thinking for reaching their responses.
but subjects in the OK subgroup may be following a very similar thinking

process to reach their responses, and so are subjects in the NO subgroup
for the pretest. -

The NO subgroup in the pretest may be characterized as follows:
many examinees gave up trying a problem hard and responded by guessing
thelir answer while the studentA the NO subgroup in the posttest
tried hard and spent’ longer time< but unfortunately their answers were

wrong. A close examination of the CRR would tell more about these
relations.

It is interesting to note that the pg of the pretest was .59
but it dropped to .39 for the posttest in Table 14, and for the NO sub- -
gro it dropped from .63 to .50 while py of both groups don't change
the¥§§values so much. As we mentioned earlier in this paper, if’ responses
to a given item occur at a random base, then the time-score data follows
a negative exponential function. Gamma is av convolution of such
negative exponential functions. It is probably true that the number
of examinees who took the pretest)answerlng randomly by guessing are
likely larger than those for the posttest by which tlme everybody had
learned the material already. J

The Revised Pretest, the Cagse of N = 100,and 48 Items. Although
the original vegs1on of the e pretest was: designed so as to m1n1mlze\¢he,
guessing effect on the timé score dgta, their data were not analyzed
for comparatlve study of goodness of fit testing of Weibull and gamma 2 ¥
distributions. The revised version of the pretest has a matched "sample . ,
of Multpost as a subset of the N = 100, the whole pretest sample, for
items 1-18 and 25-29 out of the 48 items and these 23 items weré analyzed
in the previous subsectlon but the summary of’ the pretest, 48 items is
given below,

’ 4 \
]

" Table 13

Comp:"son of Weibull a®d Gamma Fitting for

the ised Pretest (48 items and N = 100)

. N -

T

Categor * OK Subgroup NO Subgroup
y

29 (60%) 22 (46%)
6 (13%) - 11 (237)
11 (23%) 12 (25%)
2 (47) 3 (6%)

= {items with py - Pc > 410;, N

= {items with 0 < pw - pG < .10};
{itemS ‘Jlth 0 < p(‘ - p“] < 10}
?i}ems[w1th PG < py "> .10}

' 75
64

Y




In Table 15, only two items for the OK SUbgrOup and three items
“for the NO subgroup fell in Category 4; that is, 94 percent to.96 percent
of the 48 items are favorable to Weibull distributions for both the OK
and NO subgroups. The average p values and standard deviations have very
similar results to those of the 23 matched pretest and posttest items.

Table 16 .

dverage p-values for Weibull and Gamma; the Revised
Version of Pretest (48 items and N = 100)

'Discribution Meéan S.D. OK Subgroup NO Subgroup

¢

Weibull ;w .. .59 .52
\ .
N *
SD,, ] .33 .36
_ ¥
Gamma g Pe ’ Y .40
. SD,, . 238 41

The average values of py and pg for the OK and NO subgroups
are about .10 smaller than the average values shown in Table 14 and the
‘'standard deviations in Table 16 are largér than those in Table 14. But
it is obvious that our observation in the previous section is appllcable
to these data as well. iy

‘

4
;

The Posttest: Matinvtest, Transtest, and Eigtest. Three more
posttests were analyzed by the Kolmogorov-Smirnoy test. These samples
were not ma®ched with the pretest sample. The results of a close
examination for these data only revealed the same conclusion as those
in the-.previous- two subsections, with more-emphasis on the fact that
Weibull distributions are more suitable to our items of the posttests
in the matrix algebra test than gamma distributions. Tables 17 and 18
summarize our observations. .

Wé\have only two items which fall in CaQegofy 4 in Table 17,
one each in Transtest and Eigtest. It is natural to wonder which*items
fall in Category 4 and why their time scores fit gamma better. We will

»pick up such items and discuss further details in the following subsection.

e

.




-, * Table 17 ,'

’ 3 Y

-Comparison of Weibull and Gamma Fitting; !
Matinvtest, Transtest and Eigtest

33

Matinvtest Transtest Eigtest

12 Items - 7 Items: \ .8 Items

Category, OK Subgroup OK Subgrgpp NO Subgroup OK Subgroup NO Subgroup

~

(75%)

1 9 3 (43%) i (57%) 5 (62.52) 2 (25%)

2 1 (8%) 2.(29%) .2 (29%) 1 (12.5%) 1 (12.5%)

3 2 (17%) 1 (14%) 1 (14%) 1 (12.5%) 5 (62.5%)
4 0 1 (14%) 0 1 (12.5%) ° 0

&

* .
Almost everybody got all 12 items correct, so the NO subgroup
is almost empty.

’

. -

. R Table 18
’ [ - .
The Average p-values for Weibull and Gamma; Matinvtest, Transtest and Eigtest
. - i -
!

’

Matinvtest - Transtest . Eigtest
Mean ’

Distribution S.D. OK SubgrOupd OK éubgroup NO Subgroup “OK Subgroup NO §ubgrqup

©

Weibull Ew .64 .50 .77 .79 .80
. / ‘
SD,, .21 .37 .34 .16 o.21
" * ) ’ - b é‘
Gamma SG _ .33 42 .5§ .65 .76
SDC : .3 .42 L34 7 22 .21
\ — - >
*

Almost everybody got all 12 items correct, so no analysis.for the NO
subgroup was carried out. . ' ' ‘

¥ <

) s . . . .
Items- Whose Time Scoqes Fit Gamma Better. We found that
Weibull distributions are gencrally more appropriate to apprgximate the

cumulative distribution of the item time-scorc data from the matrix
L4

. ’ ¢
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algebra test than two parameter gamma distribution functions. But there
are a few items whose p~values from goodness-of-fit testing are favorable
to gamma. Of course, our sample size is fhot large enough and the
observations are restricted to only 48 ifems in pretest and posttest,
therefdre it is dangerous to conclude that the Weibull definitely is our (
distribution. Besides, there are many psychological, intellectual and
physical causes that individually or collectively may be responsible
for reaching responses at ary particulay instant. It is impossible to
isolate these causes and mathematically account for all of them, there-
fore the choice of response time distribution is still subjective and
cannot be completely scientific. With these difficulties, it is neces-
sary to‘appeal to a reasoning that makes it possible to distinguish
between the different distributions on the bases of logical considerations.
\id

We hope that our reasonlng developed in the previous sections
in terms of why most time-score data of items in the matrix algebra test
are favorable to Weibull distributions is copvincing to the readers. °
We must argue now why these few items show their favor 'to gamma. They
are Items 2, 4, 6, 9 and 25 for the OK subgroup on the pretest, 18, and
42 for the same group on the posttest, and Items 18, 27, and 34 of the
pretest, and Item 17 of the posttest for the NO subgroup.

Items Presented in the Posttest Without Proper Instructions.
Items 17 and 18 fell in Category 4 when they occurred in Multpost but
when they occurred in Matinvtest, both items went into Category 1. Be-
cause they are testing the knowledge of determinant -that is ‘not taught-
in the multiplication lesson, a great number of examinees in the multpost
sample did not know about the determinant of a matrix. This complaint
was confirmed by students' open ended questionnaire. Transtest invited
the same complaint. Transtest items in Table 17 show more favor to Gamma
than items in Matinvtest and Eigtest for the OK subgroups. Now, let us
go back to 17 and 18. Since Items 17 and 18 and some items in Transtest
are the only items that were given to jthe students prior to the related
lessons being tanght, the related topics would never be taught in a
series of matrix algebra lessons, their respbnses‘might have been reached
by dlfferent causes. Since these items were well fitted to Weibull in
.the,pretest psychelogical effects might be dlsturblng the determination
of tg, the minimum response time and CRR, conditional response ‘rat®
or the shape parameter c. LN .

Ttems 2, 4, 6 and 9. As mentioned hé?bre, we experimentéd
with two types of items: one type used fixed numbers in each element
of matrices, the other used a random number generator to fill in each
element. Items 1, 3 and 5 ask for addition, subtraction and transpose
of 3 x 3 matrices with fixed elements while Items 2, 4 and 6 ask for
the same ope;étions with randomly supplied integers between -9 and 9
inclusive. 1Item 9 asks for multiplication of a scalar to a matrix and
the rdndom number generator supplies integer elements between.—9 and
9 except for zero. Comparison of Kolmogorov-Smirnov p- values\ls shown
in Table 19. ‘

‘\
!




Table. 19 -

“Comparison of p-values for Weibull and Gaﬁma, : k
Items 1, 2, 3, 4,.5, 6 and 9, Matched Sample,
N = 56, OK Subgroup ’

'\
Pretest -t Posttest
Ltems Py Weibull Pgs Gamma pw,.WegQull "Pgo Gamma
1 .69 * .03 .63 .00 :
2 - .27 .77 .73 . .67 A
3 .89 .76 .93 .93
4 .99 ) 1.00 .57 .46,
5 .80 .12 .93 .08
) .15 .27 .18 .20
9 .88 .92 ¢ .93 .76

Items 2, 4, 6 and 9 have higher p-values from Kolmogorov-
Smirnov test for gamma than for Weibull in the pretest while Items 1, 3 ) ®
and 5 have higher p-values for Weibull than for gamma in the pretest.
But in the posttest, the p-values for Weibull became higher than or
almost equal to those for gamma.

Weibull distributions are determined by three parametErs,
.the minimun time t,, a shape parameter c, and a scale parameter Ho

while our gammd distribution has only two parameters, yithout a location
parameter t, (or minimum time). Graphic display of both of the cumu-
lative distribution of time-score data and the theoretical distribution
function on the same PLATO screen often shows that the smooth curve
gamma did not fit the cunulative 'distribution step functlon near the
initial point to- . -

The examples shown in Figures 18 and 19 explain the situation
intuitively. Two-parameter gamma distributions lack the capac1ty to .
provide information about the minimum.time tos unlike a three-parameter
gamma which has a location’ parameter

-

Since Jltems 1, 3 and 5 have fixed number elements in the

matrices, the degree of difficulty due to calculation for each item '
- is constant, and does not vary from item to item, whi *‘tems 2, 4 -and

6, hav1ng a diffierent set of numbers as elements in 3 matrices, ,

lead to different difficulties in calculations. For e, 9-1 is

much easier than -9-(-1), especially for those ‘who are dering how

.to do ‘the subtra(Lloﬂ of two matrices. Thus, to minimum time to .

respond to an item such as Ilems 2, 4, 6 and 9 can be different from.

item to item, depending on what kind of numbexs’were picked up by the
e » / V. ’ .
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random number generator to.supply as matrix elements. It may be
impossible to determine a unique to-value for these items. The Weibull,
distribution requires a location parameter t, to be estimated from the
observed data, and it is impossible to estimate such a value when a'
single t, really does not exist. Maybe this is the reason why the
time-score ‘data from these items don't fit Weibull distributions so
well, in comparison w1tﬁ’gamma distributions that does not require a
unique location parameter t, ¢

-

\

In the posttest, the different degrees of\ difficulty caused “
by a choice of different sets of numbers became negligible. Student’s
had already learned the simple matrix operations and had plenty. of
opportunities to practice them before taking their posttest. Therefore
the discrepancy among t,s, varying from item to item due to the diffi-
culty of calculation would have been minimized and became negligible
also. That is probably why Kolmogorov-Smirnov p-values for the Weibull
distribution of the posttest improved a great deal as shown in Table 19.

[l <

7.2 Exercises in Matrix Algebra Test that Require Only Mechanical Practice

+

The matrix multiplication lesson includes eight sections
with exercises at the end of each instruction. These sections are as
follows. P ~
Multiplication of A and B L 4
AB + BA :

Scalar product

Mattix product

Quadratic form T e :
The principles of matrix operation S

Diagonal matrix - .. _ . A L e
Scalar matrix and Identity. matrlx

J ~ - . ',

Each exercise has the follow1ng format where all elemeﬁts in matr1cas.

[

s

[e-RR NN M B S N

are supplied by the..random number generator. I 5-3-‘5& e

v -

All, items in each exercise are‘very easy, straightforward .
examples of what they have learned in the previous instruction. There-
fore each problem involves only mechanical calculation rather than -~
requiring heavy reasoning or thinking. As in Figure 203 each exercise_
requires simple repetition of calculatlng a scalar product, and hence
a strong similarity can be seen to Rasch's model in which the distribu-
tion of time taken to read a passage of N words follows the two-parameter
gamma distribution. The repetition of N mechanical calculattons
corresponds, to ‘reading N words

e think .

é-'w . L. .
A The time data for a student's first try only were sorted out
and goodness of fit testings were processed. A summary is given in

I3
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Table 20. The time-score data from these exercise sections fit the
gamma distribution better than the Weibull distribution

NS \ L A

N

. Table 20

<

p-z;lues for Weibull and Gamma: Exercises

. (, [
[ * - v

Section of Exercise Py Po N P

- e02.1 - .54 .82 74 R
e02.2 .25 47 61 ?
,e02.3 .45 .57 67 g v

4 e02.4 .68 .95 53 ' ' L

e02.5 " ° .98 .98" 16 ' ‘
eQ02.6 .88 .90 39 .
. e02.7% - - - ’ .
- i B -
Note:~-Average p-values: .63 for py .
“and 478 for Pge. . . .

8

* ' ' .
Data i this section was lost.

i .

L. Recall that the items generated by. the random nUﬁber genera- VS
rtor, 2, 4, 6 and 9, in the matrix algebra test had a tendency for

their time data to show favor to the gamma distribution. in the pretest.’ Coe
But in this case, students took exercises after completion of the

related instruction, so the argument about the difficulty of deter-

mining thefﬂlnlmpm required time to respond to a given item in the X !
pretest situation cannot be applied to the sittiation here. Weibull
became a' better fit for Items 2,‘4, 6 and 9 in the posttest situation. *
We will need another reasoning to «xplain why gamma is better than
'Weibull.in the exércises after the instruction. . 1V° )

. The two-parameter gamma distribution is a convolution of .

k 1ndependen; variables which each follow identical negative exponen- *

tial distriburion functions, and the negatlve exponential distribution

can‘be obtained by considering the waiting time betwegn arrivals in a
random process. Ra gh (1961) constructed hls oral readlng model

ERIC

Aruitoxt provided by Eic:

‘
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\

—(word reacln" mote )by drawing-an anat x Tt e e
telepﬁbﬁ) *the occurrence of a telephone call as a random-event,

.determined by a "calls intensity" parameter which is stable over a

certain length of ¢ime. 1In the exercisg umit shown in Figure 20, each A
quest;on involves four simple caICqutths, and three out of them
require multlplylno tire ith element of one vector by ith element of

the other vector{and the last c#lculation involves adding up the three »

’ X ) ( - '
R . ¢ . . ) / . "\ . r
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. ~
resuresbf multiplication to get the scalar product. We view these
operations as being simple and mecharical epough to identify them with

. reading the k wqrds which were used in Rasch's word reading model.

y Q

Exerdises in a Problem Solving Style. Three problem solving

style exercises were implemented in the lesson tedching eigenvalues and

eigenvector problems. For example, one problem is aimed at guiding a

student, step by step, to the goal &f calculating. elggnvectorsyof a

2 x 2 matrix. There are four or 1ve stagées-required to arrive at the

final answer and all'stages are {in arly related, so that previously

given stages are required as prerejuisites to undersgandlng a later
stage. Therefqre this type of exercise viodlates tHe assumption used

-in deriving gamma distributions.. Note thdt Weibull distr

\ <

bility ‘and fiex1b111ty to more general examples according to Weibull

utions
don't require such a restrictive assumption and hence hav:‘w1de applica-

(1951). _We predict that the tlme score data from exerc1s¢s in a
roblem—solv1ng style will fit WelbulL ‘distributions very well, and .
Tables 21 and 22 bac¢k up our predlctlon
RS
Table 21 ) 2
. p—vélues for Weibull and Gamma: , A
- Problem-solving Type Exercisés’
. Unit Names pw,‘ i ?G ﬂ i ’ .
L] N .
; * e05.1 98 . .86 31 v g
{ e05.2 ~ . .93 .05 30 . .
' e05.3’ ~ .99 .84 29
'.. ) ‘é q
' Table 22 . :
Weibull Parameters for Problen-solving fype Exercises - ,
- PO ¢ . "
i
Unit Names to - //::rf ) My Averﬁge time*
e e05.1° . 1.673  _ 880 _11.36 | 18.39 '
e05.2 3.758 . 790 9.96 " 24,77
* e05.3" 3.593 .962 ,12.14 16.72 :
* 5 - ’ 3 Q .-';; . ;//
Unit of timesis 10 seconds. * \ - 5
s . ) ‘ , ’ P
. ‘c o 2 . - . ' ~y 9 ‘
. y s L}
“ , ’é‘s_ Ve - - }
- - a g ~
) A LY ’ - ¥
{ . z .
» r
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.The c's for these three exercises are smaller than 1.
Since, ‘despite this fact, the average times‘are very'short, it may be
thae the abundance of hints given during exercises allows many students
. to speed up toward reaching their given goal.

7.3 Instructional Units or Areasjjn Matrix Algebéa Léssons

"Matrix algebra lessons were divided into nineteen small
segments or insfructional units and_the, elapsed time to complete each
instructional unit was collected. \Blnce these lessons did not-adopt a
mastery learning strategy, it was impossibie to collect mastery timeé
which is the time needed to master a given:instructional.unit, so the
The results

f Kolmog07ov-Sm1rnov testing are summarized in- Table 23.
L]

////ﬁlrst completion time of each unit was used for analysis.
o

i3

- . . .
. N

)

> . R 4

Table 23

-
. -

; ‘
p-values' from Kolmogorov-Smjrnov Tests:

L

s

i

Matrix Areas ' .

*

2 . — <.
Areas Content ! e AL Py P Average Time
i0l.1 Simple operations ‘ 128 .09 ..00 -~ 10.5 !
i01.2 | Use of system calculator © 134 .30 .0l 2.0
i02.1y  Multiplication of matrices A, B 135 .30 - .50° 6.1,
i02.2 - AB EBA LY . 123 .73 .53 1.8 v
i02.3 | cafr product ° 114 ,02 .01 .S\ 1:0 . 8
102.4 Matrix.product 116 .14 .13 1.3, f
.i02.5 °  Quadratic form , $122 .33 6 3.1 |
*102.6 Propetrties of operations 109 .21 .12 1.7
i02.7 Diagonal matrix 104 .66 .29 2.3 "\
i03.1  Identity matrix 105 .14 .19 .~ 4.9, { -
_103.2 Determinant o . 103 .50 .48 13.5°
i03.3 « Evaluation of determinaé%\ 101 .64 * .32 7.1 ‘ .
i03.4 Cofactors X 100 .81 .68 8.9 - A
i03.5 Properties of determinant 98 .62 .72 9.9 '
i03.6 Adjoint and inverse matrlx 1072 .95 .76 11.9 3
i04.1 R¥tation of axgs ‘ 73 .00 .b2 .8
i04.2 Orthogonal transformation 52 .56 .79 19.4 }
i04.3  SSCP matrix .. € 48 .82 .99 19.1
1051 ‘Eigénvalue¥ and’ e1gcnvect6'§452?> 72 . .71 .83 14.8
v L e e , k )
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The number ¢f areas whose p-value is 1argef than .20 for
Weibull is 14 and that for gamma is 12, but the number of areas whose
p—value is. larger than .40 is 10 in each case. ,The average p-value,,
Py and P are .448 ands.417 respectlvely. It is d1ff1cu1t to say.which
d1str1but10n is more suitable t6 our data, because five areas are
class1f1ed in"Category 1, while seven areas "are in Category 4. The @&
combined Category 1, 2 and Category 3, 4 respectively, include eight
areas each.

N

. 2

Three instryctional un1ts,—101 1 102 3 and i04.1 ‘don! t!flt
either of the distributfons while others fit both Weibull and gamma
pretty well. A close efamination of all area data from the matr1x lesson
revealed that 20 to 30 percent of time data from some areas were not \
the right kind of data that we were 1ntereStqp in. Before the revision
-of the lessons was made, quite a numbd§ of students complained about
the lack of flexibility in the original version of the\lessons. The
original lesson did not have an index page, so if a Student starts’ a
lessgn, then he/she was forced to go. through tR& lesswon without”™ ~-
changing the topic until the-‘end. Therefore students were more con-
centrated on studying and many stayed on the sime lesson until tbey
finished it all. 1In the new'version, some students got odt of‘one
sect)gn before. they finished it; and they went back to the ihdex’ page.
at the ‘middle of instruction by pressing the key that is always .
available at gny page. The: time data used, in Tablé 22\weré not exactly
the complesgpn time of each sect10n since 20 to 30 perdent of the stu-

dents did not complete some areast . A N :

- o . /‘a
The time data of thg;o}d version fit Yeibull very well.
The first three lesso ‘dgé;nitions and simple operationms, matrix
nt,

multiplication and determi cofactors and 1nverse) were diyided .
into nine instructional units (aneas) and the’ time daba from these
nine areas were analyeced. Their fit to the Weibull dlstrlbutlons was
very good,.with the average p-value being .80. JIf the data is fairly
‘clean, then a small segment of instructional unit fits the Weibull -
distribution very well. . * ,~ Lo
It was interesting to rote that one area whleh ‘was, given
tvice during the course showed a remarkably low p-value fot.the second
presentation. When stdents siﬂdled this- area for the fitst t1me,
_ the p-value was .95, but dn the second tlme,,lt was only 03, -

‘-
g 1

7.4 . The LessOns of Specials & and General Vehicle Tra ;nlng Program ax q_rj_* .
“Chanute Air Force Base . ¢ 7 . . 37
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- . The Chanute AFB CBE project develpped 34 lessons to teach
repairing and maintenarice ' of various vehicle$ -on the PLATO system.
They also developed their own computer managed instruction system. nnd
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studgnt route Their unit of measured t1me was rounded to tshe”nearest

minute. Som tests required.a fey minutes "to complete for 411 students,
whi¥e other tests had an average time of longer than 10 m1nutes. About

. 90 percent 'of the examinees needed about three minutes to complete many
Mastery Validation Exams, and hence rounding to the nearest minute was ,
too rough to analyze thiese 'time data, so we. had- to throw them away.

e
e -~

The time score from\the 1essops were much better than those
from the Master Validation ExamsW but a few lessons had a very short
average time needed to complete and master the essons. For example, -
Lesson mve' 20la requires an average time’of only .6 minutes to master [
the lesson, .yet 72 examinees studiéd -the lesson. If the unit of timé
. ’ were' the nearest second, then the p-values from'Kolmaogorov~Smirnov 3
‘would have become larger. The plotting of a stepfunction (observed ,
time data) together with a smoothcurve (Weibull distribution function)
. in' Figure 21 has a very large increase of height around the mean value
of 12.55 minutes. That affects the z-value. These two plottihgs look,
like a, fairly’¥lose mAtch intuitively, while the average time needed’

_to master Lesson mve 202a is 189 63 minutes and the steps of the .- - .
: observed curve are very, fine in’ Flgure 22.” The correlatioms of average .
times and p -values from Weibull- f1tt1ng over 27 Chanute lessons is .57, -+ =~

. Pp—-values from gamma- f1tt1ng over 27 lessons is .34. Therefore it will
, ‘be wise to. take a finer- un1t of time in educational résearch, utilizing
,° ° time scores. Since Chanute lessons used a mastery learning strategy,
o wo kinds of time data were avallable, one 'is the first cdmplevlon time
r a glVen lesson and the second is the time neeaed unti’l a student
. achieves & given criterion of mastery at the end of the lesson test,
Master Valldatlon Exam. - . A .
‘ ’ ‘- h The follow1ng\tab1es, 25‘and 26, present a summary ‘of .
Kolnogprov-Smlrnov tests for gamma and Weibull d1str1but10ns . Appendix C
expla&ns the -content area that a1L"Chanute leSsons vere aimed at, and .

‘average r each\}essonw Tab}e\fé .8hows the Weibul parameters.- - ’

®

L
Th ' ~ . 1 . ’).' -”} -
e average Value for We}bull 1s/ﬁko, and that for gamma //

is .51, .The values agl almést the same as the average p-valuds for -

« the areas ip matrlx algebra Iessoﬂﬁ but - they are not so high in; com~ \\_J/)
parison with those of test iﬁens and exdrfises 1n matrix algebra . o
(refer to Tables 14, 18,19 and 21)~ IS T § ‘

. . 3 i
.- Al hough begth of the average p—values are only around .50, ' C;i
about 80 petrcénct, of the lessons have p- values of llrger than or equal RS

4%&*30‘iﬁ“ma§féfy tige (Eime " needed to achieve @ g ven: master) Tevel), - .

~which is a satisfactory resu‘t. Table 27 shows that, gamma is sllg tly _\l

better than Weibull. Since-the gamma distribynion.thas has been o

‘ cowslderedthe e iga two-parpmeter dlstrlbut1£§}w1thout!a locttion * PR
parameter, botherlno fo note that ‘gamma is better for. th1s case. .
. Because 1earn1ng theaﬁaterLal writtep in g3 whole lesson is not .., >

. mattér of sTmple process ot an\evtnt that can be explarmed in’
¢ ’ 13 i ~ _J ].

- .
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. Table 24

Three Weibull Parameters and .the Maximum
for Mastery Time )

-

[

Correlation

‘

t R m.s c

> 1) 6.87 .98 1.61 30.03
2) 15.18 .99 1.55 21.54
3) 16.21 .99 1.87 32.65
4) 4.72 .97 1.25 8.06
5) .00 .58 1.53 48,32
o, 6) 48.67 .99 1.95 160.86
7) 4.49 .99 . 2.53 11.32
8) © - ~8.63 ,. .99 1.81  105.64
9), 35.38 .98 1.79  126.09
10) 5.38 .98 1.67 42.22
11) 14.85 99 . 1.77 42.19
- 12) 3.13° .99 1.66 20.72
T 13) Y 99 1.81  46.82
14) 13.21 .99 1.29  *27.16
15) .00 .99 1.81 36.65
16) o . 4.27 .99 1.85 11.24
- .17) .57 .99 2.10 14+37
] 18) .38 .99 1552 -18:40
o 19) ... 793 £.99 ©2.11  C74.52
. 20) . 11.50 , " +99 1.75 44.13

21) N 3R .99 2.85 20.37

- 3\ 22) -’§ET§§_ .99 . .1.63 7959 .

‘ L 23) ;;9 .99 1.21  .15.91
X\- © 24) 5 .99 1,75 14.27
LI 95y 4.33- . .99 176 31.10

L 26y~ - 12.2% .99 1.53 %5.01

C27) . " 2.53 .97 1.55 - 12.96 ,
% ) N, / L R
' (}
i P
{
: .
. 5 ¢ 4
.// - .
. ' A |
) | -
, A - 79
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Table 25

for Charute Dats

3

-

tolmzgorv-5 narniy T2sts
Lesson Mastery Time Completion Time
' N < z " £ = b
g &.1248 1.1777 =5 .2715 B.9383 5%
2 B.6094 B.763f 83 §.72686 2.6895 63
3 2.3349 #.9448 85 @.4193 @.6811 85
4) B.2123 1.8587 . 72 - @.8156 1.5574 74
S . €653 §.7274 86 |\ 8.8588 0.6186 86
&) B.7731 B.6621 96 |-NB,52085 B#.8146 95-
7 ¥.8624 1..3168 81 #.8712 1.2914 81
3 B.6711 B.7249 86 P.7874 8.6538 85
9) #.4919 9.8328 89 #.4251 9.8771 89
19) §.5622 #.7898 78 §.7288 £.6894 77
o 11 §.8667 8.5981 75 #.4359 #.8783 75
12) @.2714 9.9987 88 g.2121 1.8598 88
2) . @.6788 $.7198 67 | ©.3768 8.9117 67,
147  @.8316 B.6236 87 | @.6781 B.7198 87
15) @.7671 9.6658 77 |- 8.6552 8.7334 77
16) §.3222¢9.9543 71 |. 9.2368 1.8333 71
17) @.1387 1.1558 67 “g.2167 1.8538 67
18) B#.1438 1.1471 72 #.1344 1.1618 72
19) '@.9895 8.5627 62 $.9189 #.5538 62
29)  C #.1212 1.1838 76 #.1682 1.1124 75
71y 9.4265 8.8761 59 #.4176 9.8823 59
©2) - -9.3812 8.9884 93 #.1583 1.1268 93,
23) $.9988 1.2264 73 #.8743 1.2832 1
24) g.4985 B.8286 67 | B.6839 £.7638 67
251 #.4889 £.8884. 78 | 9.8339 8.6228 70
26 n.9599.9,5862 78 | 89929428978
7. B.2938 1.237@ 649,

2.8868 B.5838 ¢

'goodnzss of fit! té?ting_f%gweibufl

12

80

o




Kolmogorov-Smirnov Tests for Chanute Data:

27) mve405c¢c

’

Table 26

» -

A

o

"Goodqifs for fit" for Gamma

ligstery Time

Lesson
Pe-
%) mvel03 0.0643
2) ﬁvelpAa 0.4537
mvel04b 0.8373
3) mvel0S 0.5619
/ 4) nve20la 0.0361
5) mve20ib:  0.6318
6) mve202a 058645
T 7) ave202b 0.1554
8) nve204 0.9260 °
9) mve205a . 0.5686
’ 10) mve205b 0.1923
. 11)~aive206d  0.7981
"12) mve206b 0.6267
13) mve206c 0.7859
14) mve207 0.2470
15) myve30l 0.8557
16) nve303 0.5185
17) mve304 0.6996
~18) mve305 0.3119
19) tve307 - 0.6292
@0) nve308 0.2856 _
21) mueﬁﬂ-lm»-m_—-ﬂ*SLZ&
A 22) nves0?2 10.2{§2
23) nvesdl 0.2761
24) nvel04 " 0.839.
25) nve405a 0.3883
26) nve405b 0.6758
0.0561

O OO0 O O O M O O O - O O O O = O O O -

z

.3110
:8577 83
.6196 6
.7891 85
. 4169 72
L7472 86
.5998 96
1300 7 8l
5468 86
.7851 89
.0818 . 7§
+6460 75
.7503 80
.6540 67
.0222 87
. 6064 77
.8159 71
L7070 67
L9629 72
7488 . 62
.9858 76
0-6364-——--59
1.0331 93
0.9944 73
F.6180 67
0.9032 70"
0.7211 70
I.3366 69 .
- 93

81

85

bompletion Time

S

P
0.1260

0.5184
1.0000
"0.7193
0.0544
.5357
.9889
.1681 -
.5726
7117
<9316

[
.5745
.6043
.5758
. 3833
.8879
.3720
. 7225
.2130
8025
. 4262

@
(@]

\

OOOOOOOOOOOOOOO.

0.1003.
0.9764
"0.9962

- 0.9835
0¢2597 , ¢

"

L]

z

1.1757

" 0.8159

0/0 .
0.6952
1.3425
0.8052
0.4449
1.1130
0.7827
0.6997
0.5410
0.7815
0.7836
0.7807
0.9069
0.5814
0.9153
0.6932
1.0580
0.6430
0.8754

o o 0238 b 92y
0.5650
A

0.7873
1.2232
0.4778
0.4087.
0.4430
1.0097

.
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- parallel to a Poisson pracess, or like Rasch’s words reading model,
,'1t is probable that we will have to investigate the composite distribu- "®.
tion model for Weibull distribution, instead of a single distribution.
An r-componént composite Wélbull distribution is defined ,as F (%) = . .
8 FJ(x), i St <8549 for j=20,1, 2, ... xr. Further maﬁhematlcal
discussion will be found in Mann et al (1975). 1In future work, we
" will have to analyze carefully & whole task of instruction in a lesson
and divide it into finer tasks. The time-score data from each task
unit (or segment of instruction, or area) can be represented by a
Weibull distribution. If a lesson is 'of k tasks, then a k-composite
Weibu)ll distribution will be the distribution representing the whole ‘
son. ' Since it is 1mp0551b1e to 1nvest1gate further along this 11ne

up he messy data) in the near futune -

Table 27

-

e
27 Vehicle Maintenance Training Lessons, p-values “
. from Kolmogorov—Smirnov Testing for

.

/S Weibull and Gamma.Distributions . ’
p > .20 p>.40  p>..50
Weibull 1% ° - 20 (74%) 15 (56%) 12 (44%) P
. : 2%k 21 (78%) 16 (69%) ‘12 (44%) .%~
Gamma  1¥ 22 (81%) ~ 18 (677) 18 (67%)
> 2%% 23 (85%2) 17 €63%) 16 (597)
% ' o
. .Time {Ekded to complete a lesson.
. ‘ P ¢
a ’ "NTimé %eéded to reach argiven mastery level. .

'measurément

e

« b4
4
¥ —‘\ @
. Although the mastery. time obtained from Chanute léssons did
not fit Weibull distributions quite as well as time-score data from

matrix test items did, the shdpe parameter in this context ¢

dmportant retationship with one of the tarrent topics in educatiomel-
ives and false positlves of
The detailed\analyses and discussion

e given in the next sectloq.

the problem of false nega
terién-referenced tests,.
of the role of. the shape parameter c will

A ]

has .an

The table of Weibull parameters for masté&ry time data from Chanute -

1essogs was given in Table 24. i

v

\ N

iy

N

%
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‘Revised'Chanute Lessons.

- ‘~?

/
After the 1n1t1al data (the

of -the prev1ous section 'was based on this data) from all lessons

"vehicle maintenance’ training .course were collected and analyzed,

’ lessons were selected for further modlflgatlon and revisions. _A.

‘ * later, the first cbmpletlon time of these polished,
. . were collected and tested for goodness of fit with Welbull dlstrLbu—

revised 1

result
in the
seven
year

SOUS

The changes that were made were quite exten51ve and average <

or1g1nal ones.

Table 28

Comparlson of p values from Kolmogazgg;gmlrnov'
Tests for” the Original Lessons and
their Improved Ver51ons

%

tlmes of the lessons became quite different from the original version
_of ‘seven 1essonsg some got longer but others got shorter.
p-values from holmogorov Smirnov tests became much. larger than the
fhese values are shown in Table 28:

But the

. R ~Lessons Original p-value. Revised p-value «
- '
- ~, 202b .07 L .90 N
204 .79 ~ e o . 454
* o 207 .67 .68 .
T 301 NI e G130 IR
. 307 . . 5 BN - 91 % ’
‘- 308. oAy ' .79 ‘
! 401 o A2, . .79
. A s A N ﬁh“{;\ .. »
) ¢ . . Table 28 might suggest that thetime data from the more f
. " polished, improved .Jessons fit Weibull distributions better than those

“fraff The less polished,

original version of lessons.
leSsons usually contain amblguous exp]anatlons,
inappropriate feedbacks or improper amounts “and
Eliminating such distractions that affected a student's
learning. badly, especially’ for those who ‘were not so brlght
thosé who knew nothing about the material, might hav

The les pollshed
ﬁographfcafsérrors,
ualityvof help.

s pace-of
or for

caused better fit

with Weibull dlstrlbut%ons

. This fact implies that ithe study of CRR )
e will lead us te 1den&1fyrthe quatity of-feedbacks, appropriateness of -
the help branch in terms of using qualitative analysis methods.

We

believe that -our research will be very useful to the area ﬂf instruc-.

tional design

4
ip a practical sense; we can provide a quantitative

tool, to instruttional désigners who are mostly artists. .ot

.

‘.{a
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8.
REFERENCED TESTS o -

” -

In this section we explore what variables are assoutatcd
with erronedgs—dec1s1ons——ca111ng a non-master a master (false posi-
tives, F+) dnd calling a master a non-master (false negatives, F- )
based on the criterion-referenced tests of the Chanute AFB CBE Project.

§&he Weibull shape parameter c turned out to be a prominent predictor
of the estimated probabllitles p(F+) and p(F-
~\\

"~ Another thrust of this sectlon is the definifion of 4 new,
index, dubbed the "efficiency index," which we believe to be a reason-
able measure of the quality 'of a lesson. A factor analysis using 18
variables (including p(F+), p(F-), p(F+ or F-), @y, fatlure rate,
the three Weibull parameters, the distance between the optimum cutoff
point and the mean, etc.) along with this efficiency index yielded a
dlstinct factor loading only this variable and c.

EN— ‘_‘-'Lr; 4

8.1

Beta Bdnomial Model

N 4

Crlterion-referenced testing (CRT) has galned much attention
from eduéational measurement and testing specialists in recent ycars.
“The object of criterion-teferenced testing is not to distinguish
finely among subjects, but to classify subjects into mastery and noh-
mastery groups./ Hence the accuracy of judging non-masterfy or mastery
status of examinees becomeés the main concern. Fo,

Since criterion-reéferenced tests are commcnly[used in situaZ
tions where students are expected to achieve the level of mastéry, say
90 percent correct, the observed scores become a bounded variable.
If there are subjects with true scores near the "ceiling)'
it becomes implausible to assume that the .errors of meas
_‘tributed independently of true scores for those near th( boundary.
Lord and Novick (1968) arglie about the plausible distribu—
tional forms of observed CRT scores and True scores in (

'

or the "floor,"
rement are dis—'

THE CORRELATES OF PROBABILITIES Ol MlSCLASSIFICATION BY CRITERION-

8¢ hapter 23 ‘of
their book MStatistical Theories of Mental Teqt Scores 7 We will

follow their steps ‘and adopt the binomi

.. The binomial error model assumes that “if
measurlng the learnlng level of a topic taught in the Vehicle Training
items ,

Course of the Chanute AFB DBE Broject,
e _test must measute the same task.
a test ha
there 4s a pool‘\f‘items measuring the.s
out of the pool is an independent eVent,
. items on the test dges not affect the ab

+f

=

k

error model f
each MVE test

or instance, th
In other words

e and only one eommon factor ‘with 0-1- scdring.

ame task, and th
that is, answe

ility of a stud

br CRT scores.

s aimed at

n all
all items

L]

in '

it to

Suppose

ing an item
Fing the earlier

answer

-




later items correctly, then we can formulate the distribution of raw
scores x by a binomial’distribution with ‘paramerer 6 in which 0 is

the proportion of items that a student would answer eoriectly over

the ‘entire pool of items. If T is a fixed true score and e is an -
error of measurement, then the raw score X can be expressed as khe sum
of the two, x = T+ e, and 6 is given by

A .

6 = T/n

, Qhere n is the number of items in the test. Let g(x|6) be the binomial
distribution of x at‘ any given true abtlity level 6, then the condi- .
tiopal distribution g(x|6) can_be given by

)

' Ve
g(x]6) = ( 2 6% (1-0)""*  x=0,1,...,n.

-~

“ 1t is interesting to note that this model does not pay atten-—
tion to item differences. The traditional measurement indices such as
", item difficulty or items discriminating index are. not the major concern

) in the binomial errotr model. Rather, finding out how accurately, a
test can estimate an examinee's pass or fail status with respect to
a given mastery criterion is the main concern of the model. ’
4 - ’
Keats and Lord (19@2) investigated the relationship betwegp
the distribution of test scores, observed and true scdbres. The test
% scores could be adequately represented .by the hypergeometrit distribu-
*tion f(x) with a negative parameter and the true score distribution
could be represented by the two-parameter beta distribution g(0).

2(0) = 6% (1-6)"""/B(a,b-n+1)

where é >0 and b > n~1. And also

1 ja-1 - b-n .
PR 1-6) n X, . A 0-X S
‘.fo* by (20% =040, x = 0,100,

In classical test theory, the estimation of a true score is
given by regressing the true 'score T on the observed score x, and the
equation is given by

g(x)

-

'E(Tlx) = px + (1-p)uy

o . . ~

g7 ' | . .‘ . .




>

where é is the re@iability of the test and Uy is the mean of test scores.

<&

In the binomial error model, the ‘estimation of a ttue score,

is given by a similar equation, !
LN

E(T|x) =

a21x t (1 -a21)ux, x =0,1,...,n.

a

where Qo1 is the ratio of number- correct true—sco e variance to observed-
score variance and is given by ’ {

a2
T

b2

X

" on-1

Table 29 is the summary of information from the Mastery Validation Exams

at_ Chanute. ~ , -
o

The mastery level of Master Validation Exams (MVE) of the 34
lessons in the Chanuté AFB CBE Project was set at a level of 80 percent,
although it is hard to prove that 80 percent is the most appropriate level
for their program. Block (1972) showed in his experimental study that
attainment of a 95 percent mastery level maximized student learning of
cognitive tasks in his matrix algebra course, while an 85 percent level
maximized.learn%ng as characterized by affective criteria. N

Since Chanute's 34 Pessons are designed to be "homogeneous"
vith respect to content and teaching style, all lessons are written
under the same principle with the same tutorial logjc, although the
subject mattet in each lesson is different. Therefore Chanute's )

lessons are not linearly related ‘and the
. lessons 1is not hierarchically ordered.as

matics, arithmatic, or foreign 1anguages.

related, setting a mastery level ‘for: the
should-be higher than those of the later

content difficulty of the

it would be in teaching mathe-
If the lessons are linearly

earlier instructional units

instructional units.

If the

goal of the second unit is thé attainment “of an 85 percent mastery level,
then the mastery level of the first unjt might be 90 percent, or some
other level higher than 85 percent. Since there is no analytical
techdique to provide_the optima}’level of mastery learning, definite
statements about the determination of ideal mastery levels cannot be

made at this time. Linn (1978) provides
about the topic of "sett%ng standards:"

s

*

an excellent discussion -

-~




] . . Table 299 -
- - f

N ' )]
The Summary of Simple Statistics of Mastery Validation Exams

4

g -

test - mean’ SD ) items - a2l N.
S etV 7.3 1.;24’{ .8 0.6321 85
nvelO4a .11.892 0442 . 12 0.4910 83
mvelO4b '10.120 1:728 11 0.8018 83
: ‘myel05 7.706 0.737 - 8 0.5470 85
mve20la C9.474 0.973 10 0.5254 76
mveZ0lb . 8.907  1.325 10 0.4951 86
mve202a 16.186 . 2.93% 20 0.6753 97
mve202b 9.720 0.63 "1 0.3573 82
) mve204 9 8:557 1.681 * 10 0.6253 88
. mve205a 6.767 1.558 . 9 10.3470 90
mve205b  8.110, 1.736 10 0.5457 82
7 mve206a’ 127038 ’ 1.574 % 13 0.6942 78
' mve206b | 15.250 1.619 17 0.4259 80
\ mve206c - 19.257° < 1.151 20 0.4841 70
¢ Cmve207 - " 3.761 126 s . 0.3287 88
mve301} ) 8.727 1.501 - 10, 0.5635 77
" mve303 17.380 2.257 * 20 0.5824 . . .71
mve304 . 9.209 '1.366 10 0.6771 67
 mve305 7.458 0.934 8 0.4806 72
| mve307 14.683 1.522 16 | 0:5101 63
. mve3os . 9.037 1.170 10 0.4045 » 82
" mve401 * o 9.254 1.015 10 0.3673 63
© mve402  * . 14.138 - 2.335 17, ©0.5988 9% -
 mYes03 8.095 2.487 .~ 10 | 0.8340 84
' C o baash '0.876 . 5.  0.2166! 67
° . 9.169 1069 10 0.3701 71
T p.329. 1991 10 0.7208 70
*9.087 ) 1222 100 C 0.4934° 69
© 87

124

. "
. . s B
. ]
. . .
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” Mastery levels are usually set by instructors or the author
of a lesson, but -the decision of mastery and non-mastery is based on
-examinees' observed te:E scores. The score that is used to decide -
mastery and non-mastery is called the "cutoff." 'Mastery and non-
o mastery statuses ought to be defined on the:basis of true ability 0, ¢
not observed test scores x that are subject to measurement errors.
If true ability were known, there would be no incorregt classifications,
Unfortunately, true-scores are impossible to obtain in practice, so -
we have to find a way to minimize misclassification.

-

”

There are four kinds of classifications:

-

(1) an examinee's

true ability 6 is higher than a given mastery level 0o and the observed -
score X is higher than the cutoff score c, that is A = {6 2.9, and v
x > c}; (2) 8 is lower than 6o and x is also lower than c, that is

B=1{8 <0, and x < c}; (3) 8 is lower than 6., but x is larger than c,

. Fy = {6 < B85 and x > c}; (4) 6 is higher than 80, but x is lower than c,
. F- = {8 > 6, and x < c}. Figure 22 shows these four condftions.
# . . <
X ¢ - .
© © : true ability, x: -observed score
F. A '
- ,00: true mastery level
Bo
‘ ¢ L . ) .
) B8 Fe | ¢ observed cutoff )
S —————

Probability of these events will, be
denoted hy P(A),*P(B), P(F+) and P(F-)

Figure 22 Classification Table respectively

AN

Millman (1975) and then Novick and Lewis (1975) reported<:‘L,
the percentage of students expected to be misclassified for a given
cutoff with various numbers of test items. Millman used the binomial
error model, but Novick and l.ewis used the Bayesian beta binomial error
model:—- ’

=

e N
According to Millman's calculations, the percentage of '“¢;§;5=o\
students expected to be misclassified at 80 percent mastery level
using a 10-item test could be as high as 53.percent. ' -
. L

o~
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Emerick’ (1972) and Huynh (1976) considered the. ;oss ratio
Z of F- to F+ as a means of controlling misclassification, espec1ally .
false advancement. If later instructional units require the know- V
ledge and skill acquired in earlier units, false advancement will be .
a problem. The loss-ratio of 10 implies the event F- is ten times %s
serious as the event F+. Since F- stands for the event *in which a :
student has really mastered the given instructional unit but his/her
observed score happenis to be lower than the cutoff, retainlng such a
student in the same unit is not efficient. If the instruct10na1 units
areffairly independent from qne to-another, as_ are lessons in the
" Vehicle Training Program at Chanute Air Force Base, then an appropriate
loss ratio would be 1, or.at least it is not netessary to set {t as _ .
high as 10.. &~ L

B * - -

J .

Huynh (1976) proposed an evaluation of the cutoff score that

minimizes the occurrence of misclassifications for a given loss ratio.
With his cutoff score, the loss ratio of having a false positive teo
having a false negative stays the same, say 10, while the ]lnea: .

combination ‘of the probabilities of the ‘both events and the loss ratio o>

(the average loss)’ is minimized. We will discuss in more detail Huynh's
. method in conjunction with 34 Chanute lessons and their MVE test scores.
.

13

*

8.2 Evaluation of the Optfﬁel Cutoff Scores - . W

i
. .
-
4 ! - w

Huynh derived the optimal cutoff co o? a test for a given
mastery “level 8o and loss ratio Q so as to minimize the average loss
function R(c) which is the following linear combination of the prob-
abilities of false positive and false ative:

I R(c) .= P(F+) + Q P(F—)\

e

It turns out that co is the smallest integer such that the incomplete
beta function Ie (atcgy, n+b—c0) is smaller than or equal to Q/(1+Q);
where - : -

SR n+b—

. ' (6 ja+
P(co) = 160(a+c0, n+b_C°)=igo 9 (1 0) dﬁ

+
(a+LO, n+b- Lo)

A

"In order to apply Huynh s result to evaluate cy, we need the help of a
computer to calculate and plot the values of the incomplete Meta
function for ¢, = 0,1,2,...n. The PLATO system eases these/steps

. and we can obtain the answer through the program "catoff." Figure 23 .
illustrates the procedure-to determire the optimal cutoff/cy. The

89
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Figure 23 Determining the optimal cutoff C0 as to minimize misclassification

- lesson = MVE20la .subjects = 76 ’ n =10 SR
mean = 9.4737 SD = 0.9726 Xy = 0.53
a = 8.5560 b
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‘ ) & . o
) . ,
parameters a and b are obtained from the mean, standard deviation of
the test and the number of items in the test .(denoted by n). .Table 30
shows the values of incompéﬁte beta function Igo(i),at each point ;
i=1,2,...,n, where a,b ar®®calculated from test scores of mve2Qla by
the formulas ' '

[
a = (=14 ,
31 \
b=-a+_t--n \
21 \\ @
(N -~

The curvé in Figure 23 is obtained b§ plotting the points in Table 30.
The horizontal lines which are marked by losses 0. S 1, 2, 3, and 4 in
Figure 23 help to evaluate the optimal cutoff which minimizes the
average loss R(c) at co for the partially known loss ratio Q and a
given trué mastery level 685. Since the contents of all lessons dis- °
cussed in the ChanutefAFB CBE Project deal with independent topics
across the. lessons and the lessons are not linearly or hierarchicall
related, a loss ratio of 1 will be reasonable. Note that in Figure 23
the smallest integer value of i for which the curve P(i) goes under
the line of loss ratio 1 is 7. Therefore €y = 7 is the ideal cutoff
score of the test, mve2013.

Table 30 . . )

A
Ten Points in Figure 23

Item at+i - ntb-1i’ I8 (a+i, n+b-1i)
1 9.556 9.475 -0.998
2 10.556 _ - 8.475 . 0.991 : .
3 11.556 7.475 0.969 :
4 12.556 6.475 0.913 , -
5 13.556 5.475 0.796 :
6 14,556 4.475 0.608
7 15.556 3,475 0.376
8 16.556 2.475 - 0.169
9 17.556 . 1.475 0.045
10 18.556" 0.475 0.004

0, = .80, Test = mve20la, a = 8.5560, b = 0.4753

%,

103



-

- oo
it . ,

=

N It is interesting to note théé}ﬂﬁgﬁcutoff-score, ¢=8, actually
used for mve20la in the Chanute training program gives a slightly
larger value of the probabillty of misclassification R(c) = P(F+) + P(F-),
where Q=1 than the theoretically derived ¢, does, but not for P(F+),
probab111ty of false positive, or. P(F- z probability of false negative P
separately. N )

’

.

Th'e probability of event B id‘Finure 22, P(B) = P(G < 04
x < ¢) can be expressed by a linear comblnation of beta functions and

1ncomp1ete beta functionms,. because - .. .
6<6 X<C e<6 %< a X
L/ :
1 b oa . .
= Ba.p) . (Bt bin-i)Ig (ati, bin-i). )
i=0 . RPN ' :
-Similartly, ) N . .
. 8

P(F-) = P(620, x<c) = P(x<c)-P(0<0_, x<c) = P(x<c)=P(BY
{ - | )

%

where

. ) (0)B(at+x, n-x+b) 1 c=-1 . ‘
P(x<c) = J x dx = ———= I (?)B(a-i-i', ntb-i) ., TN )

<o B(a,b) B(a,b) ‘ |
> ) co : >

P(F+) = P(6<60, x>¢) = P(6<60) - P(B)

-

where -

P(6<60) = Ieo(a,b)v . T .

¢

Thus,, we obtain the following calculation formulas®for P(A), P(B),
P(F-) and P(F+).

L4 .
.

1
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P .

c-1
1 n . . .
= Ie (a,b) - B(a,b) .Z -(i)B(a+i, b+n—1)Ie (a+i, b+n-i)
o i=0 o
T —
' 1 c-l n
P(F-) = 5?;:37 z (i)B(a+i, n+b—1)(1—Ie (a+i, b+n-1))
1=0 . 0
1 C“l '[; .
P(A) = 1—Ie (a,b) +B?;TB7 E (i)B(a+i, n+b—1)(].e (a+}, b+n-i)-1)
0 i=0 0 v
1 el n ‘ =
P(B) = 373737 ifo (1)B(a+i, b+ﬂ‘l)160(a+l, b+n—1)
&

The probability of each misclassification for all available
Mastery Validation Exams were calculated and summarized in Table 11.

Since the sum of the probabilities A, B, F+ and F- is 1, the
sum of .the probabilities of A and B must have the maximum value at cg4
where the sum*of probabilities F+ and F- reaches the minimum. Since
mastery and non-mastery status of examinees are actually determined by °*
the observed cutoff c, the probability, P(x > c) 1is the probability
of the observed mastery status., Column 6 in Table 31, headed by
P(A or F+), is the estimated probability of passing the mds%ery criterion

" .judged by the observed scores using cutoff c and cutoff cy, respectively.

The success rates in Column 7 are the actually observed percentages

of examin€es who achieved mastery level, i.e. who obtained scores
greater than or .equal to c. Also Table 31 indicates that the actually
used cutoff scores c produce higher probabilities of misclassification . s
than the theoretically ldetermined cutoff cos except in a few cases.

Since “the theoretical cutoffs are determined 'so as to minimize the
average loss R(c), in our case the sum of probabilities of false nega-

‘tive F- and false positive. F+, all values in Column 6 of Table 31,

P(F+ or F-) are smaller for c, than for c. The sum of the probabilities
of A and F+ is the expected success rdte, so this sum matches the
observed success rate given in the last column fairly well. If c¢gq

were used as cutoffs for MVE test scores, only 12 lessons would

have a probability of observed success less than .90, while 20 lessons
have values of P(A or F+) less than .90 when c's are used.

Sincé the probability of false negative, P(F-) stands for
the case,thdt an examinee really mastered the goal of instructional
unit but his/her observed score happened to"be lower than the used -
cutoff c, he/she does not really have to repeat the instruction. If
efficiency of training+in terms of shortening the trpiding time is the
main concern, then P(F-) should not be so large. For example,. MVI207

. k4 «

13
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Table 31

Estimated Probability of Misclassifications

Success

P(F+) P(FT) P(F+ or F_) Pﬂ? or F+) rate’
Sy .6 0.0621 0.0783 | 0.9247 .89
c” 7 0.0314"° 0.0953, 0.8462
Sy 7 . 0.0026 Q.0026 0.9997 T .94
c” 10 0.,0011 0.0068 0.9927
,mvel0O4b Sy 9 - 0.0348 0.0606 - 0.8705 .86
c” 9 0),0348 0.0606 0.8705 .
Cy 6 0.0235. 0.0329 0.9739 .88
c 7 0%.0123 0.0522 0.9323
mve20la Sy 7 0.0357 0.0421 0.9788 190 .
L c” 8 "0.0238 0.0499 ' 0.9472 - -
- mve201lb Sy 7 0.1078 0.1223 0.9375 - .72
s c”' 8 0.0710 0.1266 0.8598
«1ve202a Cqy 16 0.1163 0.1788 0.6495 .82
, c” 16 0.1163 0.1788 0.6495
mve20gb- Sy 5 0,0055 0.0056 0.9998 - .98
c” 8 0.0031 0.0153 0.9853
c, 8 0.0996 ° 0.1499 0.7803 | .94
S 0.0996 0.1499 °~ 0.7803 ~
nve205a c, 8 0.1428 0.2769 0.3612 .79
¢ 8 .0.1428 0.2769 0.3612
mve205b S, 8 0.1507,, 0.0634 0.2141 0.6913 .82
c- 8 0.1507 0.2141 0.6913 _
mve206a Sy 0.0478 0.0662 0.9207 ..82
: c .0.0266 0.0801 0.8644
nve206b Sy 0.0606 0.0719 0.9708 - .82
c 0.0305 0.1216 0.8608"
mve206¢c Cq 0.0057 0.0061 0.9991 ° .95.°*
c 0.°0030 0.0146 0.9852
Sy 0.0965 0.2922 0.3070 .91
c v0.2878 0.3425 0.6393




Table 31 (cont.) )

)

" V4
Y - ) &
/ . ¢ ' Success
,°Cutoffa P(F+) P(F_) P(F+ or F_) P(A or F;) rate
mve301 ~ < 8. .0.0894 . 0.0540 0.1434 0.8184 .79
. “c” 8 0.0894 0.0540. 0.1434 0.8184 - .
mve303 | Sy 15 0.1070. 0.0266 ©0.1336 0.8867 - .90
. c” 16 0.0730 0.0653 .0.1383 0.8140
nve304 i c 8 0.0471 0.0292 0.0763 “0.8922 .82
c” 8 0.0471 0.0292 0.0763 - 0.8922
mve 305 . .0.0632  0.0036 0.0668 0.9827 .96
! ‘e 7 0.0247 . 0.0787 0.1034 0.8691
mve307 - ., co 11 0.0526 .0.0056 0,0582 049797 .81
c” 12 0.0413 0.0187 0.0600 0.9553
mve308 o ? 0.0732 0.0147 0.0880 0.9601 - .§3
.c° 8 0.0498 0.0578 0.1076 0.8936 R
mved 0l c. 7. 0.0364 0.0109 0.0473  0.9872 .83
- ) 0.0252 _0.0451 0.0704 . 0.9328 _
mved02 c. 13 0.1494 0'0395 0.1890 0.7809 - .79
: . < 14 0.0910. 0.0961 ~0.1871 0.6660
.mved03 : . c 8 0.0771 ° 0.0294 0.1065 0.7048 .79 .
] c™* 8 0.0771 0.0294 0.1065 0.7048
nved04 o 3 0.2100 0.0130 0.2230 0.9564 1.00
c” 4 0.1455 0.0840 0.2296 0.8208
mved405a - c076 0.0560 0.0025 0.0585 0.9919 1.00
c” 8 0.0326 0.0513 0.0839 - (0.9196
mved405h N 8 0.0987 0.0419 0.1405 ~ Wg.7344 291
c” 8 0.0987 0.0419 0.1405 * 0.7344
mved05c c. 17 0.0794 030123 0.0917 0.9543 .94
: P 8 "0.0527  0.0478 0.1005 _ 0.8921.
™ ’ e - L . .
8¢ is the theoretically derived cutoff to minimize

: o : .
P(F,) + P(F_). c is the cutoff actually used in the PLATO Service

.

Prog;aﬁ at Chanute. .
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has P(F-) = .1957 so-that to 88 x 0.1957 or 17 out of a total of 88°
students repeated same instruction unnecessari Of course this
Is an extreme case ¥nd most P values are less thaf .10 percent, .which,
mealls that five _to e1ght students repeéied the same lesson mistakenly
Table 32 shows the number of students who will be misclassified or
were misclassified. . . _ \

We conclude that most cutoffs of Master Validation Exams
used at Chanute’ were not the best choice. By adopting the .theoretically
derived cutoff <o's the probability of misclassifitations could have
reem~minimized. Note that P(F+) at cutoff co far each MVE excep
MVE207 (which has ¢y larger than c,; while dthers has the reverse)
becomes larger than or equal to the value of P(F#) at cutoff ¢, while
P(F-) showed the reverse phepomenon. The appropriate judgement of
which misclassification shoulld be m{nimized,must he made by a tebt
administratgr through- deciding on the loss ratio Q. We set Q=1 because
all lessons were considered{ito be not related linearly.. We have to face .
the problem of how to put weights or the cases, the increased chance ,#
of having students advance by mistake and decreased chance of retaining
students unnecessarily in the lessons they just finished or the reverse.
If a training program must be finished in a hurry, then it is better
to set’'Q so as to minimize the chahce of false retainment, P(F-).

Thus, Huygh's method gives us more control over the situation, but

also brings in more complications of judgement. 'We don't know how

make the best judgement on the issues, what level a mastery. criteftﬁﬁ/d
.should be set at, and how large the loss ratio Q should be! Neither
decisions can be made analytically or in a logical . Only carefully

deslgned experimental- research can arnswer what are best decisions.
Nde -

.

Let us eyamine Huynh s method mare carefully Plgure 24
shows similar plottings to Figure 23 but the time’ mastery Tevels of .70,.
.75, .85, .90 were.also plotted together with .80 on the same screen.
The dotted lines were marked by the level of mastery respectivelyt
The horizontal lines correspond to various jloss ratios, ,50, 1. N
1.5,..:,20. 1In ‘Figure 24,.the optjimal cutoff co at the mastery 1eve1
of .80 is'9 with the loss ratio of 1.00. ¢o=9 can be the optimal,
cutoff at the mastery level of .85 with the 1loss ratio of Q=2, and
also at the mastery level of..90 with Q=2.5. Indeed, the ranges of Q
for co=9, at 80 percent is from 0 to 1.2, for co=9j at 85 percent 1is.
from 0.8 to 3, for cg=9, 90 percent is from 2.25 to 9.25. 1In the lagt.
example, a choice of loss ratio between 2.25 and 9.25 will lead ué to
select co=9 at the maStery level of .90. Figure 24 shows that the -
*‘range of loss ratio Q for c0—8 and the mastery level of .90 becomes
from 9.25 to over 30. The average loss P(F+) + Q P(F-) associated with
Q=9.25 and 30 will be quite differedt, but P(F+), P(F+) are determined -
uniquely with ¢,=9, and the mastery level 6,=.9. Test administrators

*will need more guidance to decidé the best loss ratio for .their testing.
. 1 P . .

& ’ o —
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.
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. Table 32 .
/ .

 EsStimated Wumber of Misclassified’ Students

Test Cutoff? | F, F_ - Test Cutoff® P, F_
mvel03. « ¢j. 6 5.3 \\1.4 mve207 ¢, 5 8.5 17.2
7 2.7 5.4 ‘c 4 25.3 4.8

mvelOda  ¢,. 7 0.2 \8.0 mve30l cq 8 6.9 4.2
c 10 - 0.1 "5 c 8 6.9 ~ 4.2

mvelodb ~ _c, 9 2.9 5§1 mve303 cg 15 7.6 - 1.9
’ ‘¢ 9 2.9 21l c 16 5.2 4.6
mvelO5 ¢, .6 2.0 Oﬁi * mve304 c, 8§ 3.2 2.0
c 7 1.0 3. 2 -C 8 3.2 2.0

mve20la C0 7 2.7 0.5\ mve303 C0 5t 4.5 0.3
. ) c 8 1.8° 2.0 . T c 7 1.8 5.7
mve20lb N 7 9.3. 1.31\ mve307 c, 11 3.3 0.4
vt c 8 6.1 4.8 ‘C 12 2.6 1.2°
mve202a ¢, 16 11.3 6.1 \» mve308 - cg 7' 6.0 1.2.
. . c 16 11.3 6.1 c 8 4,1 - 4.7
mve202b co" 5 0.5 0.0 \ mve40l < S w il 2.3 "0.7
c .8 0.3 1.0 Cay 8 1.6 2.8

mye2Q4 cd 8 8.8 4.4 \ mve402 cd+13 14.0 3.7
c- ~ 8 8.8 4.4 - i c 14 8.6 9.0

.mve205a c, 8 12.9 12.1 \ mve403 c, 8 6.5 2.5
: ) o 8 12.9 -12.1 \ c 8. 6.5 2.5
mve205b cé 8 2.4 5.2 + mve404 <, 3 14.1 0.9
c ' 8 12.4 5.2 Ga c 4 9.8 ©5.6

mve206a ’co' 10 3.7. 'l.4 “mved05a cd 6 4.0 0.2
g D 11 21 a2 N L 8 2.3 *3.6
pve206b - cdf 12 4.8 0.9 mve405b c, 8 6.9 2.9
o 14 2.4 7.3 . c 8 6.9 2.9

mve206c , ¢4 13 0.4, 0.0 mve405c .y 7 5.5 0.8
2 c 16 0.2 0.8 ¢ 2 c 8 3.6 3.3

aco is the theoretically derived cutoff to minimize P(F+) -+ P(F;)L

¢ is the cutofl actually used in thie PLATO Service Programg.at Chghuﬁe.
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8.3 Other Measures Obtained igﬁm the Fvaluation Study of the Chanute
AFB CBE Project \4/

Correlation Values of Mastery Validation Examh'ch££§ wigh
Block Test Scores and Gain Scores. The cvaluation study of the program,
supported by the Advanced Research Projects Agency, measured some
cfiterion variables which wquld be helpful in conducting a validation
study of MVEs. The evaluation study revealed that a substantial number
of examinees were misclassified (Table 32)., Since detailed information
on the design used in the evaluation study’ can be found in Dallmen et al.
(1977), just a brief description will be given here.

-

s

A 50-item NRT was given at the beginning and tﬁ% end of the
eight-week Chanute Project, which, 1nc1uded 35 on-line lessons.  The
35 lessons were divided into four subsets called Blockl, Block2, Block3,
and Block4. After a student studied and mastered all lessons in a
block, he took tHe lock test; the block test spdre was counted in his
final grade for the courset He had to take all four block tests, and
then.a posttest was given in order to measure the effectiveness of
the program. Each block test had twenty items which were either
multiple-choice or matching.! The coefficient alpha reliabilities were
not calculated because the tests were written on the PLATO system and
the item information was not collected..- But ] was available in the
fqllowipg chart. Flgure 3 gives a flow chart of the testing program.

In order to validate. the effectiveness of lessons, four kinds
of correlations were calculated. These correlations are described in
the following paragraphs. -

« Each Block's test scores were matched with the corresponding
Master Validatign Exam scores and the time needed to master the lesson
(mdstery time)jiand their correlations were calculated over the sub-
jects. These two correction values of 27 lessons were denoted by ‘
r(B,MVEs) and r(B,time) respectively Their values are shown in Table 33,

The true gain scores of posttest, Xp, from pretest, Xxj,
were estimated by multiple regression procedure; the true score
difference ty=t; of the observed score difference Xp-X) was regressed
on the post- and pretest scores. It is known that regression cf
ty-t) onto the two variables x; and x; is the same as regressing tj-t)
on the scores Xp~xj and the residual score, cj, of X2 on Xp-x1
(Tatsuoka, 1975), because the covariance of x3-xj and cj equals zero
and both x7-x; and ¢, are linear ecombinations of Xy and x3. Therefore,
the multiple regression R(tz—tllxz x1) will be given as the sum of
the regression of R(tz—tllxz—xl) and R(tz-tllcz)

.
-

Ri t,-t Ixz, X ) . lx -X ) + R(t tllcz)

LI -4
a
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Table 33.
The Correlations 'of Block téests to MVE écores and Mastery‘Time
lesson r(B, MVEs) r(B, time) © (G, MVEs)H r(G, time)
103 ‘ .15 T 22 .23 -.38%
104a _ .38* _.33* .19 .43
104b - T A AR cre e
105 .22 ~-.08 .20 -.34*
20la V34% T2 | A .=+05
201b .19 -.25 | .38* — . 40%
202a 17 =04 .07 —.43*
202b .26 -.03 f .28* -.07
204 21 -.21 11 —.13
205a .28* . —a24 .18 -.32% ) ’
205b 25 - -.08 . .15 -.26 . -
206a . .40% -.21 / .13 -.22
.206b" .12 -.04 -.02 - 18
206¢c . .00 -.04 . EEL -.08
207 - .28* ’ -.17 .25 -.27
301 .04 T .08 .~ -.11 -.06 ,
303 L34 -.21 .08 -.05
304 .38 -.27 J42% -.37
305 o7 . .19 .31% -.26 W
307 .30% .23 41 ST I
308 .01 < 04 - .00 -.07
401 : .50* -.15 2% =21 :
402 “ .25 -.14 L46* -.34*
403 .40* -.23 .21 -.02
404 " .02 . .00 .02 .33 -
4058 .07 .01 12 -.11
405b .25 2,06 ST, -.12
%05¢ ' .37* .11 SRS -.07
*significant at p < .05. : ‘




Note: that the regression coefficient of the first .tegm is '
the reliability of gain scores and that of the Second term is the
increment of multiple R2. The multiple R is .861 hence the rdliabilitya
of the multiplle regression gain score is R2=,7405. The square4 multiple
R of the first term,’viz. the reliability of xp-x;, is .1047. ~The
squared mult1ple R of the second term is the increment .6358.

K

‘ This estimated gain score has a higher rellabillty than those
of pretest and posttest separately. This score wa$ correlated with MVE
scores and mastery time. Table 33 shows the result. The ‘numbers of
statistically significant correlation values are 12 in Column 2, ! in
Column 3, 10 in Column 4, and 10 in Column 5. 'The corre]atlon matrix

of these four variables over 27 lessons, r(G, MVEs), r(GT, time),

r{B MVEs) and r(B, time) is as folldws:

“n ~

L 2 3 4
1. (G, MVEs) | 1.000 ) R
2. r(G, time) -.377 1.000 :
3. r(B, MVEs) 403 -.275  1.000 g |
S

r (B,, time) -.235 .520 -.468 1.000 ,

. “Wariables 1 and 3 have a moderate correlation value, and

Variables 2 and 4 have also a moderate correlﬁﬁlon value of .520.

The reliability of our gain 'score has the wvalue of .74 while the four

Block tests in Figure 3 have the reliability apq of .56, .33, .47 and

.42 respectively which are very low. Therefore, we decided to use

only the first two variables, r(G, MVEs) and r(G, time) in subsequent

andlyses. They were renamed ''gain" and "timeg." .
The eptimhl cutoffs c4y that were evaluated in the previous

subsection, and designated by cy in Table 32, were divided by number of

items of the corresponding Master Valdidation ExamL

~ . .
1

The distance of co from the mean value in each test, co-X,
was also divided by the number of items of the corresponding Master
Validation Exam in order to make it free from the effect of the test
length of MVEs, and then absolute values were taken, This velue
stands for a sort of the distance of c, from the mean of eacHKtest.

. \
A lesson of Vehicle Training Program at Chanute Air Force
Base was said to be validated when 90 percent of” the students have
achieved theegiven mastery level of 80 percent of the items anbwered
correctly in ‘the first attempt on each Master Validation Exam. ' The
sample consigted of about 30 students from successive classes. ' No
ymajor modifications of lessons were made until all students in the
sample finished the lessons. All lessons were validated according to
this criterion.between April and September of 1975. These %essons were

. ' 101 . :
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used without any major change during the evaluation period and were
tested on more students who' came lpwafter the validation dates were -
established's Table 34 includes thei&qﬁormation of valddation data,
the number of, examinees who stud1§§ the lessons after the lessons were
said-to be vaiidated (we call this number "nafter" from now on), th
percentage of students who achieved the given mastery level at the f
try (denoted by % of success), the percentage of students who failed
at the first try, the total number pf students (which is equal to 30
plus '"nafter') and the number of students who passed the end of the
lesson teést at,the first try. j '

| [ . I'e

. Efficiency Index in the last column in Table 35 (see-page
105) is aimed at measuring the quality of Chanute, lessons. It is
derived from the idea that a good lesson written on the CAl system
will allow a student to spend his/her minimum time to master. the
instructional objective. If a lesson is not good, then a student
tends to spend more time than he/she actually ncede to master the same
instructional goal in a good lgsson. The reader might wonder what is
the definition of a good lesson. The experienced instructional designer
might say that the quality of instruction may be determined by the
appropriateness of instructional cues, and the quality and the type
of reinforcement given each student, as well as the amount of partici-
pation and practice.experienced by each student, If the instructional
cues Aare appropriate, clear without ambiguous wording or explanation,
\yi then a student must learn the instruction at his/her own learning rate
without ‘wasting his/her time.

-

Carroll (1963), Carroll and Spearitt (1967), and Atkinson

(1968), studied the various relitionships among the quality of instruct
tion, intelligence and fime required for'each student to achieve the
mastery. Atkinson's findings are especially interesting. They show

that students can achieve mastery level of different tasks with

different rates and that time variations in learning can be reduced by
improving the quality of instruction. 1Indeed, high quality lessons
maximized the individual's learning rate. We all know that a bright
student learns very quickly, no matter how poorly a lesson is written. )
It seems likely.that a mediocre student will be'the one who suffers the
most from ambiguous, unclear instructional cues in’'a poor quallty

lesson. 'If the teaching objective in a lesson does not require pre-
viously acquired knowledge or high intelligence, and is fairly easy, then
- average students should master it as qu1ck1y as bright students master
it . ’

How to measure the quality of a 1essrn became a major concern
in the evaluation study of Chanute Air Force Base Computer Based Educa-
tion Project. They~£11éd to validate a lesson by using success rate
(see Tables 31 and 34), but their attempt was not SUCCESbel It is
natural to consider that the quality of instruction can be recognized
at least by two aspects; one.is higher success rate, the otller is
faster learning rate.

" 102 ‘ %

114\ .
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‘ Table 34
Summary, of Master Validation Exams jfn the éhanute PLATO IV f}ojcct
o | /. |
e Validation Size of teste % of - % of Total # of
Les;ons M e , Date out sample Sches& Failure N Success
103 f 30 10 June’ 63 897 11% 93 83
104a 30 14 April 114 94 6% 144 134
104b 30 14 April 113 / 86% 14 143 124
105 30 14 April 102 } 88%7.  12% 132 117
106 30, 19 June , 3;f 82% 18% 63 54
201a 0 28 May 9 90% 10% 129 116
201b 30 23 May 109 72% 28% 139 105
202a 30 18 Aug 33 82% 18% 63 54
202b 30 28 May / 90 987 2% 120 115
.203a 30 28 May ' 33 97% 37 63 59
2036 30 13-Jun 33 94% 6% * 63 58
- 203c 30 18 Aug 33 91% 9% 63 57
204 30 18 Aug 33 94% 6% 63 58
205a 30 15 Jan 33 79¢ 21% 63 53
205b 30 15 Jan 33 Z{ 82% 18% 63 54
20628 30 13 June 90 . 82 18% 120 101
206b 30 25 June 65 827 18% 95 80
206c © 30 11 April - 118 95% \s%_. 148 -139
© 207 30 15 Aug 33 91% 9% 63 57
301 30 25 June 109 79% 21% 139 - 113 °
306 30 25 June 65 82% 18% 95 ' g0
305 ¢ 30 18 May 109 96 4% 139 132
307 30 14 April 130 817 .19% 160 132
308 30 18 May 109 N ey ‘377 139 96
401 30 17 april . 142 83% 17% 172 146
402 30 8 July 65 .. 79% 21% ‘95 78
403 30 30 June 65 79% 21% 95 78
404 30 2 Sept 33 100% %jﬁbz 63 60.

ay is the sample siza used for establishing validation dates,




(Table 34 contw.) . . ‘ , o

L ' Vallidatic‘mv Size of tested 2% of ‘, % of .., Total it of
Lessagns ‘- M Date ., out> sample Suctess  Failure - N Success

! N ) L ‘ RS .
405a 30 26 Aug 33, 100%, 0% . 63 60
4055 30 26 Aug 39, 917 97\ 63 57
405 30 26 Aug 33 . ., 9% - 6% - 63 58
405d 30 2 Sept” 33 1w 27% 63 51
406 30 30 June .65 ‘ 957 - 5%, 95 .89

407 30 22 Sept 33 88 . 12% 63 56
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Tatsuoka (1978) discu
rate as.a measure of instruction:

sed the possibility of using the supc@?%
1l quality in her paper, and the ‘result
was not favorable. Success rate measureé depends on the sgores “on the
end~of-lesson test, a criterion-rieferenced test which has-been a

problem in educational measuremenX. It is dangerous to use a criterion-.
referenced test alone as a measure the instructional quality, and

the success rate is contaminated by the problems of misclassiflcations,
false positive, and false negative. It is urgent to establish a method
that can measure the quality of instruction d1reet1y without- uqlng
criterion-referenced testing as an auxillary means. We believe our
efficiency index provides one such wanted measure. The'procedure for
deriving the efficiency index is as follows.. "

2 s

1. The total sample of about 80 sub]ects was divided into
three groups according to their scores on the ,aptitude“test, the Armed
Services Vocational Aptitude Battery (ASVAB). The test is aimed 3t
measuring general-technical, mehcanical, motor mechanlcal and elec-
tronics aptitudes for high school seniors, as part of the recruiting
programs of the Army, Navy, and Air Force. The first\group conkists

.of the top 25 percent of the students, the second is tpe middle

50 percent of students and the third is the bottom 25 fercent of the
students who took the ASVAB. The average mastery times of the three
groups are calculated and summarized in Table 35. The t-test of mean
mastery. times for the two groups, Group 1 and Group 2, revealed that
9 out of 27 lessons were statistically significant at p < .05.

-

2. Llesson MVE20la was arbitrarily picked as the base, apd .
its mean mastery times in Groups 1 and 2 were divided by the respective
mean values of mastery time of every other.lesson. We calculated such
ratios of the mastery time of 27 Chanute lessons in Groups 1 and 2,
taking the mean mastery of lesson MVE20la as the base. ‘

3. According to the assumption that a good lesson will not
make the average students slow down to master it in comparison with time
taken to master the,lesson for the brighter students, we divided the

. newly calculated 27 ratios, [mean mastery,time of MVEZOla]/[mean mastery

time of lesson X}, in Group 1 by the corresponding ratios in Croup 2,
and obtained 27 efficiency indices which, appear in the 1aat column of
Table 35.

-
S

“If the value of refficiency index of lesson A'is larger than
that of lesson B, then we might be able to say that 1esson A is more
efficient than lesson B. . - -’

-\ ' ~

8.4 The Results of Statistical Analyses Over 27 Chanute Lessons
. .

Nineteen-measures were selected and their correlation matrix
was calculated. Table 36 gives a brief description of 19 variables and
Table 37 is the correlation matrix of these vﬁriab]gs

‘ 1% . |
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Table 35

Aﬁ%;age Mastery Time and Efficiency Index

<

Mean and Standard Deviation (Minuteé)

-~

*hk

,Effic;ency-

‘ * T kk

Lesson 1 £2, . Index

MVE103 21.25 , 5.26 32.95 , 15.42 43.83 , 27.11 0.746

MVE104a 23.42 , 5.09 - 36.82 , 13.61 36.25 , 13.07 0.736

MVE105 31.73 , 8.19 41.63 , 12.32 54.42 , 23.00 "0.882

MVE20la 11.20 , 5.35 12.96 , 6.31 '13.75 , 7.19 1.000 -

MVE201b 27.08 , 16.02 *  42.46 , 23.05 52.42 , 29.05 0.738"

MVE202a . 142.23 , 56:22  183.44 , 73.65 218.14 ,114.81 0.897

MVE202b 12.46 , 3.89. 14.58 , 4.46 14.25 4, 3.4l 0.989

MVE204 =+« 71.64 , 31.36 100.76 , 59.91 102.50 , -60.03" 0.823

MVE205a * 86.75 , 25.32. 111.60 , 47.97 149.17 , 94.90 ' 0.899

MVE205b 27.90 , 11.80 44.46 , 35.94 50.18 , 29.35 0.726

MVE206a 37.89 , 12.75 53.10 , 2}.77 . 55.00 , 26.03 0.825 . ’

MVE206b 11.00 , 3.20 20.33 , 13.50 . 22.50 , 7.15 0.626 + °  °

MVE206¢c 33.13 , 15.50 50.95 , 33.75  41.78 , 10.69 0.752 O
. MVE207 22.45 , 5.05 34.50 , 16.18 43.15 , 26.86 .0.753 e

MVE301. 26.67 4 '9.10 29.81 , 18.81 29.92 , 16.98 1.035 ° °

MVE303 11.5%2., . 3.99 13.50 , 7.06 15.36 , 6.99 0.992 3

MVE304 12.83 , 7.25. 10.06 , 4.99 15.80 ; 7.71 1.476 :

MVE305 14.75 , 3.41 ~-19.90 , 9.01 21.80 , 7.15 0.858 .. -

MVE30% 44.00 , 12.54 ° 58.22 , 27.57 86.83 , 22.74 . 0.874 ’

MVE308  38.00 , 5.95 . 44.71 , 18.66 42.10 , 15.77 . 0.983 N

MVE40)l- . 17.00 , - 3.27 21.06 , 5.50 26.17 , 5.42 0:934 R
. MVE402 53.55 , 18.91 81.69 , 67.17 114.08 , 49.75 0.758

MVE403 7.13 , 1.13 %, 88 , 16.34 15:86 , 8.73 0.666 - .

MVE4 04 10.20 ,_ 6.14 10.00 , S.13 13.44 , 7.50 1.180 = °

MVE405a , 23.00 , 14.10 25.37 , 7.21 32.60 , 13.82 1.049 .
‘MVE405b 33.25 , 9.16 42.47 , 18.37 39.11 , 19.33 0.906

MVE405¢ 9.00 , 2.38 11.10 ,. 8.51 13.00 , 5.29 0.938

*
The top 25

*%
—— The middle.

Xk : , N
The bottom 25 percent of examinees according to ASVAB scores.

-

percent of examinees according to ASVAB scores.

50 percent of examtnees according to ASVAB scores.

-

-
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. ‘ ' Table 36 ° . ‘
A Brief Description.,of 19 Variables
‘Notation Description /:}
P(F+) ) The probability of false positive
co/n The optimum cutoff ratio so as to minimize
¢ misclassifications
091 . The ratio of true variance to observed
varience
4 “P(F+) + P(F-) The probabilkity of misclassification
5 nafter The number of subjects tested after a
v lesson was declared to be validated
6 % fail Observed percentage of failure jn MVE .
to The minimum time parameter from Weibull /
distribution . ”
mc ‘ Maximum correlation from estxmat1on pro— '
cedure of Weibull parameters
¢ Shape parameter of Weibull distribution <
o - Scale parameter of Weibull distribution ¥
P ' Probability value from Kolmogorov—Smlrnov
. i test
range Maximum mastery tlme minus minimum mastery

& time .
efficienéy index Relative ratio of mean mastery time of
. // higher aptitude group to mediocre
‘ aptitude group &

, .has correlation values of .931, -.562, -.678, .638 and -.637 wlii \
p{F+) + P(F-), nafter,

"‘gain Correlation of gain scores with MVE scores
time g Correlation of gain scores with mastery
. time : . -
items * Number of items in a test .
*cd—mean]/n Relative distance of ¢, from thc mean ‘
P(F-) - Rrobability of falsSe negative
P(A or F+) . Probability of pass based on the obscrved
. cutoff ¢
* i
. A

The probability of false positive (or advancement),.P(F+)

Co—mean

A . P(F-) and P(A or F+) respectively. o

According to these correlations; when .false positive occufs,_then

false negative more likely occurs but the observed passing rate,

P(A,or P+) more likely deelines. That means thqt the lessons whose

(o, -7 o ‘
~t: 119 . N - o
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- Table 37
Correlation Matrix of 19 Variables
\ (x IOQO) '
\. . ) - g - p .,
. - Z "' f > ] o z E i
1 LEns T -5, 8319-582 111 147 -345 -276 34
2 I°F 1000 355 _ 393 -373 167 754 259 1§ 61
3 -6 355 1888 -20 -37 W§4 158 44 -236 19
4 931 393 -2§ J688 -617 165 257 -223 -29+4 39
s 2562 -37% -37 -617 169§ 335 -261°.285 337 -B2
& 111 167 . 284 "165 335 1858 225 1 -28 25
7 147 754 15§ 57 -Z61 225 1988 2063 28 76
8 -34% 259 44 -223 285 1 283 1868 389 3
9 276 -1@_-236 -294 337. -28 20 389 1468 68
g 158 342 £14, 196 396 -329 254 762 32 60 1908
11 lez z7p 85 -279 -64 ° 76 318 2957 -31 383
12 265 6o18 213 345 -384 286 755 67 -15 967
13 /;//;%?\\%}9 145 -1 -3@ -23B\-167 -181 481 -227
14 A283 -244 9% -264 271 32N -95 -2B5 64 -94
15 153 -233 -259 54 -99 -460 -588 ~-26 -71 -449
16 -188 -271 172 -211 426 385 -166 98 43 43
17 -678 -441 -6£26 -662 353 -522 -219 239 228 -449
18 538 542 , 79 B69.-544 293 376 -17 -234 428,
19 -637 -558 -189 -853 587 -289 -426 12 298 -473
11 1z 13 14 1T 16 17 18 19
) 11 1§EH 438 -153 -126 -175 157 -259 347 -326
12 450 1888 -289 -74 -414 - TEIc4B2 417 -467
13 -193 -289 1988 -1 261 -319° 185 -75 148

14 -126 -74 -1 1888 -377 231 181 -196 155
15 -175 -414 261 -377 1688 -198 119 -171 174 .
16 157 78 -319 231 -196 1608 -123 -264 238.@¥?"_
17 = -259 -4gz 185 181 119 -123 1868 -595 648
18 347 417 -75 -196 .-171 -264 '-595 1885 -974

« 19- -326 -467 148 155 174 238 648 -974 1888

! 108

o 120 R
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observed passing raté? P(A or F+) is higher tend to have 1ess chance

of false positive (advancement) cases. The test which advances the
students to the Jiext lesson more frequently by mistake %ends als6 to- R
retain the student whose true scorgs are really abbve ,the mastery level.
The’high correlation of P(F+) and mean " shows when the observed
cutoﬁf ¢y is clqser to mean, then the mlsclassificatjon.of false
advancement tends to occur moré often. The tnrrelation value of -.562

£
with the variable, nafter, the number of students who studded a lesson

after the validation date was set (if over 90 percent of the students a .

pass the mastery level of 4 MVE, then 'the lésson was sadid to be valida-
ted) indicates that the probability ?(F+) will be small &f,the lessons
whose validation.date were established,.at an earlier dat@ during the

period of evaluation study at PLAKO program. -

This relation is tr for the variables P(F+ or F-) and -
P(F-) because the correlatipns of variable "nafter" with them are —-.617

and -.544 respectively. Moreover, P(F+), P(F-) and P(F+ or F-) corrc-

late highly with variable lEQ%mgéﬂl with-the valued of,-.678, -.595,
and -.662 respectively. But the correlations between "nafter" and
|g°%mean is not so low, at .353. Further. discussion of the appropri-

ateness of‘the procedure that a lesson can_be said validated will be

found in Tatsuoka (1978).

Variable 17 (l_Q:EEr_L) correlates sxgnificantly with n1ne
?arianles,\and si does Variable 19 (P(A or F+)). Variable 12, (range) -
‘
and Variable 18 [P(F-~)) each correlate s1gn1f1cantly ith eight -
variables. Variable 2 (c67 h4ds seven variables, V;:I:bles 4 (P(F+ or
F-) and 10 (uo) have six variables whose correlatdon values are signifi-
cant. In nrderfto clarify the characteristics of the 19 variables,

principal component analysis was rst performed.  The first five

eigepvalues were 6.32, 3.08, 712, )1.40, 1.30 respectively and their

cumulative percentage was 75(pergent of the total variance. The factor

matrix was orthogonally rotgted by Varimax analysis and five factors

were selected. Table 38 summarizes variables in each factor with their

factor loadings.
[ .
-~ ' ¢ \
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. ' - Table 38 -

The Results of Factor Analysis i

. .

. CR . = Y

. Factor 1. . Factor -2 ", .
Variable . Loading . Variable Loading .
e . ‘._ , [ T .
1 P(F+) .89 2 co/n . o0
4 P(F+ or F-) .94 7 to .90
5 nafter . ~-.69 10 Yo * .85 L '
17 |co-mean|/n -.73 ) , 12 range .85 o
18 P(F-) .81 : . 15 timeg -.66 )
19 P(A or F+) -.81 ; . -
= : ' 4 \
< /
N L . A
. Fattor 3 - L , Factor 4
. —_— i ~ Jactor 4
‘ > ' » ‘ . : —3 -" ' ‘
v~ Variable Loading p Variable Loading - I |
3 o] .62 \ 8 me -8,
6 % fail *.85 _ Il P =S4 ..
16 items ) .62 i 14 g&in .61 |
17 } |co-mean|/n -.58 . |
. : < "o ' ‘
. " Factor 5 :, . - ;
3: o . : ‘. . s v -
#  Variable Loading ‘ "
“i’ Y
9 . ¢ 69 ” - C .
. 13 efficiency index .84 L . v
’ Probability.Variables 1, 4, 18 and 19 clustered together

with Variables 5 and 17 as Factor ]l. Time variables 7, 10, 12 and 15
clustered together with the optimal cutoff c,. The result most
interesting to the authors was Factor 5, the shape parameter of Weibull. |,
distribution clustering together with the efficiency index of lessons. .
The correlation of ¢ and efficiency index is .401 which means that if -
¢ is larger, then the lessons tend to have larger efficieﬁcy index,
and hence the difference between the average mean time of Group 1

- 0 L4
A ' - ' ’ r~

-~ ' *

e“ i . ) 110 <
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o
and Group 2 becomes smélleg, with respect to,the difference of those
in Group 1 and 2 of lesson MVE20la. . That means by our assumption that
if ¢ 1is larger, then\tht:qgrresponding lesson jis more efficiently
teaching students. Recall the previously developed argument that CRR
of larger than 1 was interpreted as meaning that students engaged
themselves with the task of solving.a problem, and CRR of smaller than
1 indicated they gave up a given item because it was too difficult
to try for-them. ‘These two results from the analysis of lessons and
test items were independently -derived in different.contexts, and yet
both make sense.and sound reasonable. Since aptitude scores are in-
frequently dvailable in common practice, it is usually difficult to
obtain the efficiency index we introduced in this report. But mastery
time can be obtained fairly easily from.lessons written on a CAI
system, so ®ur research result wil%/ké used to measure some aspect.
of quality in lessons, we hope. .

Multiple Regression Atialyses were performed im the several
sets of variables. The purpose of the analysis was to see which
variables,prédict large Tisclas§ifications. JVariables 3, 5, 6, 7, 8, 9,
10, 11, 12, 13, 4,15, 16 and 17 weré taken ag a set of predictors, )
and Variable 1 (P(F+)) was taken as the cripér?ﬁn. Stepwise multiple
regressiqn where F values of entry and removal of predictors were set °
at 2.0 was performed on these variables, and® then Tco-meanlln with =
,2t-value of -10.4, 091 with t = -6.6, % fail with t = 2.6 and c with

t = -2.0 were selected to predict P(F+), probability of false positive.
Multiple R was .921; R corrected for shrinkage was .828. :

°

—— A second analysis was performed on the same set of p¥edictors
and the criterion variable of 18, P(F-). "Multiple R of .912, R

" corrected for shrinkage of ,782 were obtained with the predicters
Icojmeanl/n, @231, maximum correlationm, - number of items, c, and timeg
(correlation of gain and MVE scores). :

3 -

.
A third analysis was done on the same set of.predictors and

the criterion variable 4, 'P(F+) + P(F-). The result was pretty much

similar to the first and second analysis rgéults. The predictors are

Ico-mean]/n, 091, maximum correlation, ¢, the correlation of gain and

MVE scores, nafter, and number of items in a test. Multiple R is .970 ‘-~

and R corrected for shrinkage is .918. These results are summarized -

in Iables 39, 40 and 41. . ’ .

/




Table 39

Relatiopship between P(F+) and Other Variabiles

Variable Beta-Coefficient SDT Error
3. o9 -.709 .108 6.6
6 % fail -.256 .099 . -2.6
9 c -.172 .087 -2.0
¥ 17 Ico-mean|/q -1.216 .117 , - =10.4
Multiple R = .921, Corrected R for shrinkage = .828, F;;ZZ = 30.543

?able 40

Relationship between P(F-) ‘and Other Variables

<
— —
Variable “Beta-Coefficient SD@ Error
3 apgy - - - -.793 - . .141 5.6
8 me » .529 . 7 .123 4.3
/ 9 c -.368 .110 -3.4
15 timeg " -.238 .106 =2,2
16 items -.409 .101 -4.1
17 |co—mean|/n ~1.198 145 -8.3
L) . - '
Multiple R =7.912, Corrected R-for shrinkage = .782, Fy 19 = 13.446
. . [
. . - o L X
[N . Table 41

Relationship between P(F+ or ?_) and Other Variableé

A DOLOO L

, Variable Beta-Coefficient SDT Error
3 091 -. 864 T .088 -9.
5 nafter -.195 +.077 * -2,
N 8 mc . .377 .079 4,
9 c -.362 ~.080 -4,
. T 14 gain 224 ~070 ' 3.
16, items ) -.161 .073 .o =2,
17 |co-mean|/n  --1.216 7096 -12.
Multiple R = .970, Corrected R for shrinkage = .918, Fy o = 35.382

b
X .
T | 122 5
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Variable lco—meanI/n is a common predictor of three criteria variables
and t-values are -10,4, -12.6 and -8.3 which are the largest among other
predictors. This result is expected due to the nature of beta—binomial\<
model, but Ggp as the second strongest predictor in the three analyses

is surprising. If ap) is high enough, then the probgbility of the

three errors, false positive, false negative and either misclassifica-
tion, will be minimized. Most Master Validation Exams have reliabili-
tieg of around .4 to .5 which is quite low, so it is natural to expect
that misclassifications will have occurred quite frequently in the
program.

« The variable 09y does not correlate significantly with .
Variable 16, number of items in the tests; it correlates with Variable
6, percentage of failure at the 5 percent significance level. This
relationship may be interesting to investigate further, especially
when the tegt lengths are short and about the same, 10 to 15 items as
is typical for criterion referenced tests. It is apparent that 093]
is a strong predictor of the three criteria with beta values of
~.709, -.865, and ~.793 respectively, and therefore internal consis-
tency i's an important factor for controlling the occurrences,of mis-
classifications in a criterion-referenced test. Figure 25 is a copy
of the PLATO screen where the graphic relationship between P(F+) + P(F-)
and 09] was plotted. The curves in Figure 25 are of P(F+) + P(F-) as
y-axis, Qg1 as x-axis for the test whose mean value is 8.907 and the
test length is 10. When cutoffs are 7, 8, and 10, the corresponding
curves go down as a21'goes larger. The curve, for cutoff 6 has the
optimum value at around 0j; = .6, but it goes down as’ 3] increases.
If internal consistency &2] of the test is between .53 and 1, then
cutoff 7 minimizes the probability of F+ or F-. If ap] of the test
is less than .53, then the optimum cutoff will be 6. Thus, the optimum
cutoff scores so as to minimize the misclassification.mistakes depends
on 21. This fact will be one useful guide to construct a criterion-
referenced test so that misclassifications, false positive, false
regative can be minimized. The most interesting result is that the
shape parameter c appears in three cases as a predictor with beta-
values of -.172, -.362 and -4{368 respectively. If the lesson has
larger c value, then the probabilities of misclassification, false
positive, and false negative become smaller. Even though P(F+),

P(F-) and P(F+) + P(F-) are determined by such variables as number of
items, means of CR test scores, apj that are purely obtained only from a
test, the value ‘of the shape parameter c of the Weibull distribution
entered as a common predictor of the three misclassification cases.

It implies that some factor of a lesson related to the quality of
lessons, or conditional mastery rate af the lesson (conditional
probability of a student who has not mastered the lesson at time t

will master it at the next moment, t + At) affects the possibility of
having misclassifications upon judging based on the bcores on the end’
of lesson test.

‘




e
rd
¥

o N

’ N A ~ ’
~ Figure 25 The relation between P(F+)fP(F_)Aand Ay '

mean = 8,907, no. of items = 10, cutoffs 6,9
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In the last analysis, Variable 2, ¢ /n was taken as the
criterion and all other variables as predictors Stepwise regression
analysis selected predictors, tos, Ico meanl/n, items and mc with
multiple R of .875 and R corrected for shrinkage of .735; F value for
< "this regression was 17.98. . Table 42 shows the result of analysis.

; Table 42

-
.
-+

Relationship between cy, and Other Variables

Variable " Beta-Coefficient Standard Error t
7 to .578 L112 5.2
8 me .269 .112 2.4
- 16 items -.287 .107 _ -2.7
‘17 |c,-mean]|/n -.414 113 -3.7
_: Multiple R = .875, Corrected R for shrinkage = 735 F& 22 = 17.984

It 1s surprising to see that t,, location parameter of the. Weibull
distribution, enters as the strongest predictor of ,the optimum cutoff
scores co, with t-value of 5.2. "Beta-coefficient off,578 indicates ‘
the lessons that have larger t, values tend to have larger c,/n. Note
that o came in together with t,, M,, rafge and timeg. The percentage
score 'of the optimum cutoff, Icolln showed a strong relationship with
. time variables in the corresponding lesson. We don't know how to
interpret this result. : > ‘

The major comclusion of this section is that misclassifica-
\ tion, "falsé positive and false negative are mainly affected by three
- ) factors' how closely to the mean of a test the cutoff was selected,
internal consistency of a test, and conditional mastery rate of a
‘- lesson. v .

’

« . .

.




9. SUMMARY AND CONCLUSIONS

This study investigated the feasibility of using the family:
of Weibull distributions--a family which is widely used in system-
reliability analysis--as a model for ¢the distributions of time scores

(response times) of items in criterion- referenced tests, lesson segments
and entire lessons that were implemented on the PLATO system. The items
we those ' of a series of matrix algebra tests developed for the dual
purpose of using in this study and for testing students in three sta-
tistics courses at UIUC bo¥p before and after they studied our matrix
algebra course. The latter provided the lesson segments (including
exercises), while the entire lessons came from the Chanute AFB CBE
Project and deals with special and general vehicle'maintenance training.

{

The fits of the Weibull distributions to these various
observed distributions were, on the whole, very good to excellent as
gauged by the Kolmogorov-Smirnov goodness-of-fit test. However, for
some items (mbst of which possessed certain exceptional properties in
common) the two-parameter gamma distribution offered better fits. The )
same held true with even greater force for the exercises occurring.in )
the. matrix algebra lessons. Tentative explanatlons of when and why ‘ )
. ° the gamma was better than the Weibull were advanced, but discovery ‘of.
definitive, reasons must await future research. ' g

|
\
. Intérpretations of the ‘three Weibull parameters--the ’///’/
theoretical minimum time or 1ocation parameter t,, the.scdle parameter
Uy, which is closely related to the mean, and the most interesting |
although sometimes reca1c1trant shape parameter c--weére given in ’ :
terms of psychometric propérties of the achievement test items. The
last mentioned parameter was found by correlational analysis to.be
moderately related to two kinds of item difficulty index--the tradi-
tional proportion passing and a more subtle one developed very recently
by Irmgard Loeschner (personal communication). It was also believed
to be related to what might be called 'degree of engagement or in-
volvement" of the student with the task, and further to be associated
i with degree of familiarity with it. Bqth these are’ akln to, but
conceptually different from, difficulty. . .o
- \A.function related to, and partially determined by, the shape
parameter ¢ is what we dubbed the conditional response rafe (CRR) and
which is called the hazgrd rate in the system-reliability literature.
This is the conditional probability that an examinee who has not s
esponded to anm item (or lesson segment, etc.) up to time t.will ‘
respond to it within the following infiniteimatl intcgval [t, t™+ At].
When ¢ < 1 CRR is a monotonically decreasing function of t, and’the
implicatiop is that students give up early trying to -solve® such an »
item. This typically occurs in pretest items, while the same items
given after the instruction usually has ¢ > 1 and the CRR is a mono-
\ tonic?lly increasing.curYe. However, agomalous itemS’(og.which there

- . [ R "
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were three in one of our subtests) that, involve material not covered
in the lesson will behave like pretest items even wien given in the
posttest. In a way, therefore, one might say that the Weibull shape
parameter c relates-also to how well an item "matches" the instruc-
tional content. If the match is poor (as it was in the three
anomalous items), thei the students will get ‘frustrated and angry. (as
they did) and will quit trying early, which will be reflected in ¢
becoming less than 1. If the match is good, on the other hand, the
students will by and lirge become ego involved and will engage them-
selves deeply with thelitems, thus resulting in ¢ > 1 which leads to an .
increasing CRR, implying that the longer a student perseveres in the
item the greater-‘the chances that he/she will answer it. )

r..

i A rélatively trivial point, but nonetheless one which bears
passing ' mention, is thewfact that the location parameter to estimated
for the group which got that item right (i.e. the "OK subgroup' as we °
have been calling it) gives a good idea of the minimum.time that should
be allotted for answering thatr item. '

Another finding is that the time-score distribution of an
item which, requires only simple, mechanical subtasks for its execution
is generally fitted better by a two-parameter gamma than by a Weibull
distribution. As mentioned in Section 2.2, a two-parameter gamma -
distribution [see equation (2.9), p. 10] with -integer-valued c(>1) is
a ¢c~fold convolutinn of one-parameter negative exponential distribu-
tions. Such distributions fit well the time distribution of a simple
task with, but one stage; hence their\g—fold convolutiog Yhould fit a
problem consisting of ¢ independent stages each of which is simple and
; mechanical. Thus the finding jusf cited makes good, intuitive sense.

. ™ We "also found some evidence to support the thesis that the
shape parameter c is a more sensitive measure of the "conceptual

‘difficulty" of an item than is the traditional difficulty index? This
was done by identifying five sets of dtems'that respectively had the
same difficulty in the traditional sense but differed considerably

in their c values. For example, both the following items were correctly
answered by 29 percent of our sample: (1) If AB = AC, then is B =.C?
(2) An item calling for the inverse of a 2x2 matrix. Yet c = 1.01

for the figst and ¢ = 1.24 for the second, and certainly it can, be-
argued th the latter is conceptually more difficult than the former.

A new measure which we named the "efficiendy index'" of a
lesson was defdned as follows. The total.sample of gtudents is
divided into three groups on the basis of scores on an aptitude .test
relevant to the-subject matter of the lessons (say A and B) whose L~
relative efficiencies or qualities are to be compared. The groups are,
C ~ for instancé, the top 25 percent (group 1), the middle 50 ,percent

(group 2) and the Bottom 25 percent (which is discarded from further

consideratiqg). We assume that there are'other lessons in the-same

or similar subject matter that have also been studied by our sample o

¢
-

-
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of students, and one of them is arbitrarily chosen as a '"'reference
lesson" (R). The average times taken by group 1 and group'2 to master
the reference lesson are divided respectively by the mean mastery times
of Lesson A and Lesson B in two groups. We now have four ratios,

»

: iRl/ §A1, iRz/ i-AZ, ’_‘Rl/ 3(-131 and i1112/ 3(-132, say-

Finally, we take Ehe pairwise ratios of these ratios, thus:

. _ X1/ X _ a1/ ¥g .

; AR) —_—— and E =
' xRz/ Xp2

B(R) z v
Xpo/ %a

”»

On'the reasonable assumption that a "good" lesson will not require
group 2 (average aptitude) students much more time than group 1 (high
aptitude) students to master it, while a "poor'" lesson will show a
larger discrepancy in mastery times, the ratios EA(R) and EB(R)(defined
above will represent the relative efficiencie’s of lessons A and B:

the one with the larger the ratio is the more efficient lesson. If

. there are more lessons to be compared, there will be more such . *

efficiency indices, and the lessons will be rank ordered by them.
(The rank ordering will be invariant of what lesson is chosen as the
reference lesson.) -

When a factor analysis followed by varimax rotation was
carried out on 19 variables including our efficiency index and the
Weibull shape parameter c, a distinct factor was found that loaded
only these two variables. We,thus find yet another evidence of the
meaningfulness of parameter c. .

The relationship between the probability P(F+) of a false
positive (calling a non-master a master on the basis of a criterion~
referenced test), the probsbility P(F-) of a false negative (calling a
master ,a non-master) and the probability P(F+ or F-) of either mis-
classification on the one hand, and the thret Weibull parameters
other psychometric properties of tests such as 051 and [co“— meanl/n
(the distance between,the mean and the theoretical cutoff point: for.

* declaring "masterhood," adjusted for test length) was examined by

stepwise multiple regression analysis. It turned out that the shape
parameter ¢ was one of the strongest predictors of P(F+) and of
P(F-), along with apj and Ico - meanl/n. The direction of the re-
lationship so far as ¢ is concerned was that, the larger the ¢ ‘the
smaller the P(F+) and P(F-). (Actually, the same directionality of
relationship held for a,; and Ico - meanl/q as well.) Hence we may

-
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conclude that, élthough one way to minimize misclassifications is )

< naturally to use the timal cutoff point, that alone*is insufficient.
We may still have quite rge P(F+), and P(¥-) and P(F% or F-) values
for some tests unless internal consistency (a21) and c¢. (a surrogate
measure of efficiencw of i?struction) are also high.

. . One incidental.but in our mind important andvinterestiﬁg
finding was that item discrimination power appears to be an "inverted-U"
type function-of time allowed for completing that item. This is how
we arrived at this conclusiéﬁi -

Carroll (1963) emphasized in his "model*of‘géhool leqfning"

the importance of differences in the time required to learn and
asserted that learning rate was an important source of individual
differences in educability. A study conducted by one of the present -~
authors during the past year showed that the time needed to complete
certain tests correlates with aptitude scores more significantly thdn

. do the scores on the tests. Sato and his coworkers (1973, 1975), and

, Tatsuoka and Tatsuoka (1978) have studied the statistical aspects of
time-score distributions.and theit characteristics. When a test item
is easy, there is an'optimal time point within a relatively short time
Ynterval such that the discriminating power of the item becomes: the
largest. On the other hand, fox difficult items, the longer the time
allowed the better the discriminating power. Figure 10 (p.4l) is a copy of
the PLATO screen display of plots of the discriminating powers of an
item in our matrix algebra test, against 10 time points obtained in
the following manner. The subjects were first arranged in ascending
order of the time they took to respond to a given item.. The first
"(leftmost) point in the figure was obtained as follows. Only those
who got the item right and ‘were in the fastest 10 percent ofi the group
were given a score of 1. Everyone in the remaining 90 percent of the
group got a score of 0 even if they got the item right. The point-
biserial correlation coefficient caleulated between the item score
thus defined and the modified total score is the ordinate of the first.
point (10, .02) in Figure 10. Next only those who got the item right
and were in the fastest 20 percent were scored 1, and the others were
_scored 0 on the item, and the total score was™accordingly modified.
The point-biserial correlation thus calculated is the ordinate of the
second plotted point (20, .14). The same process was repeated for

., the iemaining cutoff percentages, 30 percent, 40 percent, ., 90
percent’, yielding adjusted discriminating powers, .27, .46,>..., .15
respectively. . “ \

» . -

N

) The limitations of this study are many in number, perhaps
the chief of which is the fact that it is .not experimental in the "<
sense of having a neat design and experimenter-manipulated independent
variables. It is,’rather, a status stgdy from which, of course, causal

- relations cannot be definitively concluded but only inferred and hinted -
at. +On the other hand it has the strength of having been conducted )

“

n
119 " &

‘ 131

A 4
y

o




\ ’ ' . .
in a real CAI classroom situation yielding "dirty" data instead of )
"antiseptic" data that often accrue from tightly controlled. laboratory
experiments which are ‘hence frequently criticized as bearing littlew o
"relationship with real 1ife. (To be sure, some of the dirty data - .3§.
‘were "laundered" to the extent that they meet the minimal demands of

analyzability--not to fit our preconceived theory of course--but dirty
£+, .and M'real-lifeish" they nevertheless remained.)

— -~

.

» . Other weaknesses; as mentioned in the main text, were (1) .
.that the parameter~estimation procedures were'not the best conceivable -
.0r even available--we learned too late.of the best existing method, )
via. an iterative maximum-1likelihood approach; and (2) that wé did
not consider tyo-component composite Weibull distributions which
probably would have fig the total sample without our having to parti-
.tion it into the "OK" and "NO" subgroups—--those who answered an item
‘(or exercise, etc.) right or wrong, respectively. . N g
. As .of this wgiting we have in fact implemented on the PLATO
system a program for the iterative maximum-likelihood method (adapted
from the FORTRAN printout kindly supplied to us gratis by Dr. H. Leon
Harter .of thd Wright-Patterson AFB, Ohio) which, mufatis mutandis, i
‘is usable for estimating the parameters of both the three-parameter
.gamma and the Weibull distributions in the best possible way given
the state of the art. We intend to do this as well as experiment ?
~ with composite Weibull distributions in the near future.

Thus, we would-be the first to concede that we have barely
. scraped the surface in studying the utility of response time (time
scores) along with performance scqres for analyzing and evaluating
data from criterion-referenced tests, both for the purpose of assessing

. the quality of the tests themselves and for 1mproved_testing of the
examinees' abilities.

<

*

Nevertheless, we believe that we have at least demonstrated
the feasibility of this approach and hope to have shown that further
- research élong these lines is warranted. In particular, the Weibull

distribution in its two-parameter form (which we used in this sthdy),
. three-parameter form, or two-component c0mposite?rm——long used by

system-reliability analysts but apparently not wi ely known among
educational and psychological researchers--seems to bear further
inyesgigatidn for this purpose. ’ ’
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Algebra Lessons , ..

The numerical entries are called the
‘a)l ements of the matrix.
& A particular element is specified by
P the rumber of the ROW and the number
I of the COLUMN in which it occurs.
;’:Hene is a 4x3.matrix o ‘
¢ 3 columns ~ el
4 -7
A 8 5 What is 18t row vector?
g ) +1st +2nd s3rd-elements .
RS 6 9 > ., s L ”
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n » ‘
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3.3 Evaluatxon"o?rthe determxnant'of a matrix’
SARRUS® RULE

Next,slet us show you the way
to evaluate a 3rd order determinant
by Sarrus' rule. .
. Copy the first-two columns over again, .
: = and connect” each of the three first-row.elements
- " of A with the two numbers,]ocated southeast'
B of it by solid linés.
Similarily, connect: each of the-three thxrd
row elements by THICK solid'lines with the
wo numbers lctated "northeast® of it.
+ Note that solid lines produce epsilon
_ value +15  and the thick lines produce -i,
- . Thus) the value of determznant A is
; " _ .
a22333 * a12"‘23331 * a1332)1332
Py r3322331 T 311323%32¢ " 312321333~

» . o { ' ‘ ‘l . *
B IS 1 212 e
o a21 2 222 .
. a3 31 932

LET

-
]
£}
'3
.
f.p
Zé
€
9
v

K * Press -MEXT-
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e just obtained the relaticons

oA
0B

Subst1tut1ng CVSSE ,a1133° by the1r.

values,

OA
oB =

Thus, P

BX];'

(cos3@°) x5 +
(-s1n38°, x5 +

.666x5 +
-.5%x5 +

.5+% - §.83
.8E6x5 = 1.83

1S rnrreSﬂn ad by [b 83,

‘using the new axes Vyoand A

(5173ﬁ°)x5~i
(c5s38°) x5

|

1.83]
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APPENDIX B

- PRETEST FOR MATRIX ALGEBRA

Those who have/little or no background inrmatrix algebra may be unahle
to answer many of the items below. You may skip by pressing the NEXT

' key without answering.
You may then come back to the test afiter taking one or more lessons. ., >

This test will provéde you with some feedback so that you may choose
‘only the lessons you have to learn from five lessons in,the index.

to start...... press -NEXT-
. 1) Choose the right answer.
3 7 -1 8
. + = 9 '
bg’{%k . ;5 7_ 3 9
~a) |4 4 B) 1, s )[4 15 D (1o 7
-8 =2 -2 16 -8 16 -2 12
. 2) Choose the rfhht answer.
-1 2 1 0
& = 7
6 9| Tla1 -6]°
A |2 2 o 2 Dlo s D)o 2 -
. 7 15 5 3 N 3 3
3). Choose the right answer. ’
) -1 -1 3
- = ?
0 -7 -5 -1
a) -l g 4 By ) -4 15 ) o 7
5. -6 -5 -8 -8 16 -2 12

.




-

4)

5)

a)

a)

.
0

-1 -1 6 10 ,
2 6 9 1|7 .
- - \ \g_// - ‘
|7 -1 P) s o |7 o7 Dy |
-7 7 11 5 \ -1 7 7 .7 o ‘
Choose the right answer. N J
8 -1 . -
= 7
o -7 10
L. —
80 -1 | b g0 -1 <) lgo -10 D lgo -1
0 -7 0 -70 0 -70 0 -7 |
6) Choose the rig’ht ﬁ’nswer. ‘ ,
7 2 ]
= 7
8 -2 |7 o
35 2 ®) | 35 10 ) 135 -40 D135 2 .
-8 -10 -40 -10 10 -10 -10 -10 ' -
L. 1 - -
7). Choose the right answer. )
_ - . .
2 4 e .
? L]
L2 7 -
e — & -~
- . ,:,&- .
-1 4 b) 4 1 o Dy 9.
9 2 9 -2 0 -1 4 -1
+ » . . |
: 128 . 1 |



8)

a)

9)

a)

10)

Choose the right answer.

L / |
-5 2] |20 )
& 6| l-4 -4

o f— -

-3 3 Bl o o2 13 2
2 2 3 -1 3002
Choose the right answer. N
]
7 -5 - ,
-0 x 8 2 = 7 ,
-, |
63 45 ®) | 63 45 1.3 1.8
-72 18

-72 -18 ~=1.1 =4.5

Choose the right answer,

— 7 /
10
0 -1
’_- ¢ i)
/¢y o] Y 0 .1 o
o yEn|. o 1 0 -1

lii \What is the order of the product of

a)
b)
ecC)
d)
e)

’

-4 5 8' -3
= 2
7 -1 *|-8 -1
4 18
\\
2 x 2 matrix
‘3 x 2 matrix =
3 x 3 matrix
2 x 3 matrix
not computable ’

"

d)

-1

.L$‘H




How ‘many two-factor products involving A,B and their transpose are

computable? (e.g., AB', BA' and B2)
»

Y

none b) 1 ) d) 6 e) more than 6

Suppose a matrix A is 2 x 2 symetric matrix, choose the letter whose
Qstatement is not true. . ™~ .
=]

A=A .

A is a square matrix i N

AB = BA for any 2 x 2 matrix B '

If the inverse of A, A-1l exists then A‘1 = (A")-1 <

C = AB where A is p X q, B is s x tfj Which of the following state-
ments 1s not necessarily true? > \

+

The order of C is p X t b) p=s . s =q

Choose ‘the correct answer.

16)




. . ‘ . )
¢ .

17) Two 3-dimensional vectors u' = (ué, ugs ug), V' = (Vi vz; §3),

R and a 3 x 3 matrix A are given. hoose the wrong statement-.
-»
a) u'v is a number. - o .
v b)- uv' is a number &

‘c) udi v is a number

d) wvu' is a matrix
e) Vv'A'u is a nﬁﬁﬁér

18) If A=|a b |,its determinant |A|
c d '

is equal to.

2 LA

é) - ab + be

b) a+d
c) ad - be

' d) ac - bd . ‘
e) a+b+c+d - .

v

‘19) The cofactors of the-elements of the first fow qf a b are

q v \‘-.
oy - c
T/ .

a) d, -c b) d, ¢ c) d, -b d) b, ¢ g) . b, -c

R i a" b ¢

20) The cofactors of the elements of the lst cblumn of d e £

a) f -1b c b c
. < ' h i s h i s e f
b)- | e f c -1b c . g
W i, A, e £ ‘
-
‘ o) |'d el -4 ¢ d e
) g h|, |g 1], ]g n
. d) a b -1 a ;{/ a b |
d e b g i b d € [y * . 1




21) "For a given matrix A = (—; b ¢
' - d e f

choose the correct statement.

a) d f -e d f | +f d e =
/ h i g i g -h
, b) a e f -b d f | +c d e =0
h o 4 g i g h
+ ¢) a f]-b|d.f|]+ |d el]-=
h 1| g i g h
d) a e f -b d f +c d e =
. . h i g i g h ‘
+ \‘.‘r T
22) If A+ B =A+C then B =C
, a) true b) false \
f 23) If AB = AC then B = C

-

a) true ) b) false

2@) If Ah 0 then necessarily A =~0 or B=20

"a) true b) false
- 25) AB = BA for any matrices A and B

a) true b) false

26) A (B+C) =AB +AC
, a) true b) false“
27) (A+B)'=B"+A'
a) true b) false

28) ( AB )' = A'B'

a). true b) false




29) If A=A' then AA' = I

a) true 4 b) ' false . .

-

+30) If P is invertible and B = P—l A P, then the determinants of B and
A are equal. e
a) true b) false ;
31) Let A, B, C, D be n x n matrices, then the determinant of Zn x 2n
matrix | A B | is the determinant of matrix AD - BC.
C D '
a) true b) false c¢) I don't know
! -
gg) Choose the right answer. The adjoint matrix of A = | -9 -.33.|-is
. - _ 520 ol
a) |-9.00 0.50 b) | 2.10-0.33 -
-0.33 2.10 | {_P.SO —9.00__ . oo \
c) 2.10 0.33 d) | 2.10 -0.50 J
-0.50 -9.00 0.33 -9.00 ,
33) Choose the inverse of the triangular matrix. 3 0 .0
i ’ -2 5 0
_ 1 -6 =2
N a) 3 0 o0 b) |.1/3 O 0
-2 5 0| -2 1/5 0
1 -6 =2 "1 -6 -1/2
‘c) 1/3 =2 1 d) | 1/3 .0 0 .
0o 1/5 -2 | - 4/30 1/5 0 R .
0 0 1 , {=7/30 =3/5 -1/2
34) Which one of the following has orthogonal row vectors?
a) |1 o0 b) |1 1 o |1 -1 [0 1 -
1 1 S | 1 -1 -1 1
v — y
133 ~ ‘




35)

;a)

d)

36)

,a)

37)

41)

a)

*b)'

c)
d)

3

Which of the following transformation matrices is not orthogonal?

VS 2 |

2/V's -1//5 .
-1 0 e)

0 1 '

¥

b

b)

3//710
1/Y10

0 -1
1 0

1/¥ 10
3/V/ 10

=

1/?"5' -1//]5'

1// 2

1//2

‘v

The product of two orthogonal transformations is an orthogonal
transformation matrix.

‘true

' 4
fThe row vectors contained in an orthogonal transformation matrix,

b)

false

v

@

are mutually orthogonal but are not necessary of unit length.

true

b)

false

o

The column vectors contained in an orthogonal transformation
matrix are not mutually orthogonal when the row vectors are
mutually orthogonal.

true

b)’

false

- .

’

Any\rigid rotation is an orthogonal transformation matrix.

true

b)

false

3

An orthogonal transformation of axes will not change the 1ength
of vectors in the space.

true -

b)

"

false

Suppose matrix I

5.3
.5

s

3
.5 is a variance-covariaance

10.1

Choose the wrong statement.

[

The. characteristic equation of I is |Z - AI! =

- 15.4x + [Z]ME0
prers T

I is always transformed by some matrix intd the dtagonal form

;Ihe roots of the characteristic equation might be complex variables.

'

134
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The characteristic equation of I is AZ

@

matrix.

<

~




i
a oy -
£

-x—f"‘ —'L

7. A >

. JFor items 42-46, assume the following:

- Suppose ¥ is a n x n variance-covariance matrix, A, > A >

e A
) ] 2 — 'n
are its characteristic roots (or eigenvalues), Vis Vgs ... Vv are the

characteristic vectors (or eigen vectors) of I associated with

of I?

-

a) ¢ The éigenvalues of Z—l are the «same as those of I, but the

b)

c),

eigenvectors are inverted.

The eigenvalues of E—l are reciprocals of “\those of &, and

the eigenvecyprs are inverted.

The eigenvalues of 2—1

"the eigenvectors are unchanged.

d)* Both the. eigenvalues and eigenvectors of L

f\\\ .

the same as those of L.

135

147

are reciprocals of those of I, but

are respectively

/- Al, Az, - An respectively.
x,
. 42) If the rank of I is n, then the eigenvectors Vi» Vgs ...y vV are
- linearly independent. N .
n .
a) true b) false
43) If Al’ Az oo An are of distinct values then Al is the largest
varfance of any linear combination of X5 with fixed norm of th
- coefficient vector.
- a) true V b) false
44) Some of the eigenvalues may be negative.
a) true b) false .
45) Vis v; are not mpgpaily orthogonal.
a) true b) false
46) ®hoose the correct answer. )
~ a) The constant term of the characteristic equation of I is the
trace'of I. .
b) The constant term of the characteristic equation of & is the
determinant of I. '
c) The constant term of the characteristic equation of ¥ is the
determinant of adjoint matrix I.
d) None of the above is correct. v
47) How are the eigenvalues and eigenvectors of E-l related to those




s

.
A

If a 2 x 2 matrix A has eigenvalues Al’ Xz, then the eigenvalues
of kA (where k is a scalar). are

2 2.
k Al’ k AZ

1/20°

k Al’ k

You have completed the te§t\\

Press -BACK~ if you wish to review your work and make changes.

»

Press -NEXT- to review the test and to see the correct answers.

4




Appendix C

Description bf Contents in the Lessons of Chanute

&

~

lesson average time Content Y
103 33,27 Principles of Gas Engine
104a - 34.28 Iéentificatiop of Parts and Purpoge of
. 104b missed Gasoline Engine Compressor
105 44,74 Cooling System :
2018} 12.55 Air and Exhaust System
201b 42,31
202a 189.63 Fundamentals of Ezkifricity
202b 14.24 Batteries ) .
203a '
203b missed  Electrical Schematics
203c ‘
204 100..20 Starters
205a 136.51 Crgnking Motors, DC“Charging System
205b ~ 41.20 AC Charging System ™
206a 50.22 ~—
206b 21.43 Battery Ignition -
206¢ 43.69 . .
207 37.77 Emission Control ‘
301 32.40 Diesel Engines - . w v
303 14.04 Lighting System .
304 12.81 Warning System
305 22.56 Clutches ’
307 72.67 Basic Hydraulics o7
308 46.60 Fluid Couplings/Torque. Converters
401 20.84 V-Joints/Propeller Shafts
402 9L.09 Differentials’ “
403 13.35 Transfer Case/PTO
404 12.60 Suspension System‘
405a 31.17 "Hydraulic and Mechaniga%ﬁgrakes , .
405b 52.96 Air Brakes- . 5
405¢ 13.64 Power Assisted Brakes ) ot ~ |
137 o :
149, .




-

Lesson

matxh

edittest

storetest

nlrltbllbr
-

-

Kolmonorm

cutoff

°

Appendix D

Description of PLATO Programs and their Programmefs Vo

]

Programmer and Description

. P

Jinm Xraatz ) L
Test items were developed by one -of the authors but the
test frame and data collection scheme was developed by Jim
Kraatz of CZRL. "Up to 590 items can be handled and item
scores, response time for each item, -apd selected option
of multiple choice are collected. The traditional item
analysis, such as means, discriminating powers of each
item are given. .
Robert Baillie, Jim Kraatz .
Routine for editing data fromthe "matx4' test driver.

Robert Bailli

Transformation routines. This program prepares the data
from "matx4" test driver for various analysis such as
"datam," "wb2," and "Kolmo.", ’ .

3

. Robert Baillie

Orthogonalize up to 10 vectors by Gram-Schmidt method and
estimates an indiyidual student’s gain scores. Eight
vectors (variables) besides the pre~test and post-test can
bé used to step up the .accuracy of the,gain~scores.
Jerry Dyer and Robert Baillie | .
Calculates various probability functions. They can be
used as a statistical table by condensing this lesson, but
they are mainly used as subroutines in user’s programs.
This program contains F- and F-1 dtgtributions, X2 and
inverse X%, normal and inverse normal disributions, t,
distribution, binomial, beta, incomplete beta, and two
paraneter gamma disributions.

A
Jerry. Dyer, Robert Baillie, and Kay Tatsyoka
Calculates the ‘inverse, eigenvalues and eigenvectors, and

determinant of a 20 x 20 matrix.
s

Robert Baillie and Jerry Dyer

(Jmimogorov—Smirnov test of a sample’and a given

theoretical distribution function, such as Weibull, Gamma,
normal distributions. Uses "statedit' to input data.

Tamar Weaver ’ S
Evaluates the optimum cutoff scores of a criterion-
referenced test and calculates the estimatigh of false
posjtive, negag¢ive, failure rate, success rate based on a
user’s specified true mastery level and observed cutoff
score. ” Classify an individual’s score into ohe of four’
status groups:

puréNpass, faiii false positive, or false negative.

+
.




-
-

multreg; " Kunmi Tatsuoka, Robert Baillie, Tamar Weaver
-multrega, Input raw data and matrix into temporary storage,
“miltreg2, calculate a correlation matrix up to 20x20, parrial
multrepgd, - correlatlons and stepwise multiple regression-‘ The
And kirkage W data stored in a dataset via Felty’s "statedit'™ is
program to acceptable. Co-
,statedit, o '
-formatf, ’

v

lintest Kay Tatsuoka
Tests linearity of the data.

manova . Kay Tatsuoka, Robert Baillie
\ ‘Multivariate analysis of variance
y .

-

Robert Baillie ) ¢
Discriminant analysis.for one factor, several groups and
variables, using a dataset with "statedit' data format.

@

sscp? Robert Baillie
J Discriminant analysis with temporary storage.

factdisc Kay Tatsuoka
Factorial discriminant analysis.

Robert Baillie .
Canonical correlation analysis -~ takes data stored in
"statedit" format, needsa dataset. .

" Robert Baillie : ) i
“Canonical correlation analysis usinf temporary
storage. '
varimax : Kay Tatsuoka, Robert Baillie
Do principal component analysis and rotate a factor
wmatrix by Varimax rotation.

¢

area package Tamar Weaver, Al Avner, Kumi Tatsuoka

Collect the area,data specified by an author in his/
her lesson. )

- -

formatk Taﬁﬁr Weaver- ’
Transforms area data in a "statedit“ format dataset .
kstl Kay Tatsuoka
Augments data from several different datasets which
are stored in the "statedit' data format.

v

Kay Tatsuoka
Do a simple factorial analysis¢df-variance and "x2
goodness’ of fit test.

Mark Bradley T »

ngt and simple analysis ‘of thé quizzes and tests in
tHe matrix algebra 1e580ns. These .data were not
USeﬁ in the report.

™ 1519
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Appendix E

&

Tables of p-values and the Weibull Parameters -

Table El

Kolmogorov-Smirnov Tests for Matrix Algebra Pretesf Items for OK subgroup

1tem p z 1tem p z N

' 1) 8.8616 1.3191 98 25)  §.8687 1.3219 62

2) #.8211 1.5882 96 26) 8.9081 2.2628 .81

3) g.6417 B.7414 78 27) 8.1897 1.2848 49

4) #.5115 8.8283 79 28) §.5871 §.8231 36

‘ 5) #.4456 £.8631 94 29) 9.9999 8.3234 26
6) #.1558 1.1296 96 38) 9.6781 8.7198 24
7) #.2213 1.9488 6.1 31) 9.3388 9.9489 31

8) #.6889 B.7689 54 32) 9.7988 8.7815 33

9) #.3863 8.9677 78 33) 1.9888 8.2735 29

18) .P9.9228 8.5588 65 34) 8.6892 8.7687 27
SR P #.5859 #.8238 34 35) 8.1786 1.1893 57
©"12) #.9215 #.5513 38 36) 9.3154 §.9688 37
13) #.9137 9.5588 43 37) #.9646 §.4989 9
14) B.7459 8.6798 42 38) #.6187 8.7551 23
15) $.1285 1.1716 49> 39) 8.7291 8.6892 16
16) '9.8567 9.6857 68 48) 8.1785 1.8989, 28
17) #.8832 8.5852 21 41) 8.9731 9.4844 21
18) #.9587 9.5878 61 42) 8.5664 #.7864 28
19) #.8643 B.6888 26 43) g.7422 9.6812 18
28) #.5751 8.7811 _ 46 44) 9.9497 8.5389 16
21) B.9658 §.4984 42 45) g.8249 9.6282 12
22) #.8865 1.6928 77 46) 1.88088 §.3288 16
23) #.7124 8.6993 16 47) $.2973 B.9754 48
24) o 8.9942 B.4218 27 48) §.8687 8.5967 32

™

Pretest for all
E of fit' testing

/

: £ .
subj écts after 1976 Fall semester;’'goodness
'for Weibull distributions’

1
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Table E2

9

-

*» The Three Weibull Parameters for Matrix Algebra Test Items

o items ty 'Q»\ m. c. ?c‘ B .
1. 18.59 - @.96 1.15 \44.51 ,
2. 2.597 F.96 1.92 28.12
3. 6.82° .99 1.24 23.34
4- B.08 F.93 2.19 32.35 ,
: z, 7.54 F.59 1.25 13,78 -
5. .51 ' §.98 1.35 12.67
v, 7. 7.52 5.99 % 1.15 33.92
8. 3. 58 7.98 1.56 57.62
a. 4. AR #.99 . .71 4. 683
19, 7.27 1. B 1.45 22,98
11. 4.49 | §.9% .33 41.,95
12 8.2+ F.99 \\<E>9? , 57 .67
13. 5. 41 B.99 f18 0 57.21
14, 9.29 .99 1.34 - 43,46
15, & 9.88 B.97 .88 112.96
16. @. 45 LB.99 1.26 57.26
17. 15.24 .99 1.14 . 1§8.62
T 18, - 2.77 1,98 1.63 21.67
19. . B.88 F.99 1,24 33.7
) 26, 1.37 B.99 1. 88 49,98
) 1. 5.24 1. 98 1.84 49.33
_22. W61 B.94 1.98 23.27
~ 23, 3.19 " §.95 1.52 26.15
(. 24, 4.68 1,59 1.14 13.91
: 3. 47 B.93 1.42 . 11.54
2fi.. 1.96 g

.53 §,87 ¢ 13,78




21 F.99
17 [, a9

v

.22 16,51
.19, 16. 073

&

L
. ) : _Table E2 (con't) (:,,
The Three Weibull Farameters for Matrix Algebra Test Itens
1T eEms tg m.c. e o
o7 2.04 . W, Na 7,54 15,31 ;
oG 2.94 A, us "R .79
2, 6.56 1. A 5,97 25,67 .
P G, 77 g, 07 . &5 2E. 6T "
3t 1,52 .97 1,39 32,93
ac AT .09 nLoat .
A WL W1 184  138.07
34, 6,51 .90 .93 305
. 35 .95 gL o 1.71 52,05
A6 3.8% .93 F.91 13,15
a7, L G A,97 f.03 13,58
3. f.74 1.0H T 1,46 17,54
T 3.12 /.95 1,13 9,73
4R, 3.77 &, 98 ‘1.1 9. TR
41 4.21 #.99 1.79 38,75
, z 3. 45 @.93 1.26 31.78
43. 7.28 .oy 1,42 21,32
44, - 3.84 .93 1.35 15,3
5. 3.34 g.99 1.71 17,0y
46 1,78 .79 1.3 S PR >
1 1
5 1

wPretest given aftar 76 Fall somester,Of = lgrous

/ ‘ .l‘t}-'
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\

Table E3

Kolmogorov-Smirnov Te%g for Matri; Algebra Pretest Items for NO subgroup
~
“ - M ! \

@ .
item  p p z N
1) °  $.9912 » 8.2976 §.9751 38
2) 1 (8888 #.9776 B.4754 19
3) '/ B.4868 9.1566 1.1285 51
4 / B.6647 9.8488 1.3958 64
5) "/ $.9882 9.8217 1.5835 74
6) /| 9.4283 B.8285 1.5138 76 .
N .7219 $.9192 #.5535 69
8)/ .9458 - 8.7385 B.6884 67
' 9) .9828 8.6574 8.7321 71
19) .96488 #.5696 B.7845 73
11) .1987" 9.5377 B.8848 43
12) . 8269 8.8387 1.4843 63
13) .8959 8.7987 B.6589 98
14) .9683 . 2883 1.8632 76 -
15) .6791 .3499 #.9321 83
16) .9418 .4919 8.8328 _ 71
17) . B.8424 .4429 9.8649 78
18) -~ B.8833. .7938 §.6488 79
19) .7451 .8725 1.2888 81
28) .2778 .#898 1.6311 83
21) .8188 .B8P8 2.4586 87
22) .9868 .3486 #8.9332 83
23) . 8897 #)1819 1.8947 58 .

NCIEICIEIEIE

m

mmmen(we ==

SRR R AR R R R R R R R R R R R

mlnjnnneleo|le|e|x|=|s

24) .8291 8.2734 B.9968

\d

Pretest for all subjects after 1976 Fail semester; 'goodness
of fit' testing for Weibull distributions

14
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1% - mable & | :

The Thres Weibull Parameters for Matrix Algebry Test Items

items ty Jom. . o IS e e
1. AR5 S &.39 2.8 SZ. 54 -

2. 11,49 1. 08 T 49 I L T ‘
i B.EH .99 1. 55" 19.29
: 76T S Bk L40a7

4
, 5. S.64 1. B 2.1 17.45
A @R .23

5]
—

40
FulL S
’

Lar S A R R |
— b W .
-~ ra o Q2
D
. oo -
T Co o

.

.
i3
-
el
Y -d
—
«
—
-
-
&
' T s b ot e b e e e
— 4
w
1 2
C‘J.\')
[t A B ]

5] s T

)
S
-
\

y—it
o
=
(R3]
w
o
e
-t
=
w
(O3]
L
o
[

—
~J

=

iy

o

=

il

(Vx]

— [w e
(9] ~N
L Ty
— N
W AN LRSS Y] K
Cy 1 UM
%

1
& 1.67 JB.99 1.34 o4 8
19, 2.28 1. A 1.3 26.12
2@, 3.69 §.97 ‘g.a 22.03 ..
21. B A ST 1.22 4,15
22, 2.29 5,99 1.17 17. 13
23, 1,48 .97 1.56 16, 35
74, S3.45 N SR ¥ 1.59 8,52 -
or, S E2 0, 1B G i
6. RS e 0, 3 1,59 RS-
- Y




Table E (con"t) o

The Three Weibull Parameters for Matrix Algebra Test Ttems - »
- items ty ., m.c. c oMo ¥ 1 -

27. 0.37 6,23 1.64 11.52° . ¢
28, ¥ 1.98 . #.393 f.a5 7.12
29. 1.8g \@. 98 1.12 15,86
35, 1.85 F.an 1.13 13.97
31, 2. 85 1.5 'B.95 13.14
3z, 4,61 ol 1,18 35,26
33, 1.75  ° g.39 .38 44,33
o 34. G.EF . #.99 to1g 24,96
35, 2,39 ¢ §.99 1.13 .o29.82 -
36. . - 1.83 #.97 1.28 g.41 ‘
37. 0 2.7% 1. 59 1. 16 11.64 |
\ 38~ 2.9t F.939 g.61 . 8.39
394 -, 1,78 1, wg 1,38 6.59 i
v 44, .88 g.99 1,11 6.63
' 41, 4,85 . B.99 g.95 < ' 28.31
42. 4.76 1. @ #.74 1. Fb ﬁ ;
43, 3.97 B39 #.95 L
44, Z.97 3.97 - f1.94 7.19 ‘ ‘
45, 1.94 g.94 1.93 . 3.64 ’
46, 1.6 7.99 1:34 15.74 ‘
47. 5.85 .98 1.96 14,48 )
. 48, 1.49 .99 c1.28 17.79
" sPretesi, given after 76 Fall zemester, MO zubgroug

-




* Table E5

N

Kolmogorov-Smirnov Tests for Matrix Algebra Test Items for OK subgroup ‘

£

1tem p z N 1tem p z N
1) B.8888 2.7994 98 25) B.8481 1.3651 62
2) B.8888 1.9841 96 26) B.8888 4.7953. 81
3) ‘9.1823 1.8942 78 -27) #.8853 1.7213 49
4) $.9139 #.5586 79 28) B.8884 2.8688 36
5) B.1876 1.2888 94 29) B.8979 #.5738 26
6) g.8842 1.7557 96 38) B.8B95 1.6362 24
7) g.1812 1.2M3 61 31) B8.2322 1.8373 31
8) B.6397 B.7426 54 32) B.6328 #.7467 33
9) B.6889 #.7181 78 T 33) 1.9988 9.2884 29

18) B.8839 #.6423 65 34) B8.8988 1.2452 27

1) #.3451 §#.9359 34 35) #.2346 1.8348 57

12) B.2275 1.6422 38 36) B.8862 1.6985 37

13) $.9137 B8.5588 43 37) B.8698 #.5964 9

14) 8.6949 B.7898 42 38) #.5685 B8.7988 23

*15) B8.2386 1.8389 49 * 39) B.7686 B.6699 16

16) £.9168 ‘B.5566 68 48) B.8329+1.4332 28

17) #.7804 §.6575 21 41)  .B.8993 8.5718 - 21

18) #.9689 9.4928 61 42) #.9178 1.5363 28

19) ©  $.5555 §.7931 26 43) B.7687 B.6698 18

28) #.5518 #.7958 46 44) B.9579 B.5898- 16

21) B.8376 B.6194 42 45) B.8395 B.6181 12

22) 8.8837 1.7754 77 46) $.9985 #.3845 16

23) B.8745 1.2826 16 47) B.3658 B.9285 48

24) B.9468 B.5236 27 48) B8.7982 B.6468 32

. Pretest for all sublecfs after 1976 Fall: semester; 'gcodnes

~f f1t' testing for Gamma distributiors

.

107

158 ..




)

) Kolmogorov-Smirnov Tests for Matrix Algebra Test Items for NO subgrou? .

Table E6.

1tem c -z N 1tem £ z ke
11 #.9996 3.3548 18 25) B.88B5 1.2675 38
2) B.9623 B.5826 4 . 26)\  g.8151 B.6348 19
3) B8.1775 1.1883 22 27) 8.3833 8.9869 51
4)  9.9748 1.2817 21 28) B.8988 2.9113 64
5) #.9592 9.5871 S 29) 8.9828 1.8111 74
6) . @.3186 #.9573 4 38) B8.8238 1.4883 76
7) B.7544 8.6737 38 31) 8.1998 1.8739 69
8) B.9885 §.4463 46 32) 8.9998 B8.5631 67
9) B.7421 B.6813 38 33) -9.8891 2.2833 71
19) 8.9417 $.5298 234 34) P.8965 B.5742 73
11) #.8018 1.9456 6% 35) $.5527 B.7948 43
12) 9.8839 9.5847 ‘78 36) B.8611 1.9415 63
13) #.8749 8.5918 57 37) B.3386 #.9411 98
14) B.9508 #.5196 658 38) B.98P8 2.5784 76
15] B.9988 2:6823 651 39) °  @§.2728 9.9974 83
16) B.9646 §.4998 49 . 4g) 9.8279 1.4616 71
17) 9.8622 9.6@816 79 . 4 41) F.2250 1.9449 78
18) @.9316 9.5418 39 | 42) 8.8826 1.8225 79
19)-  @.7355 @.6853. 74 433  9.8803 2.1121 81
28) . B.BE27 1.8167 54 - 44) B.08PF 2.9649. 83
21) B.8966 1.2389 58 ‘" 45) - g.@@8P 3.6842 687
22) B.9124 #.5688 23 46) B.8683 1.2993 83
23) 9.9645 1.3183 84 47) B.8975 1.6713 58
24) #.9286 1.5126 73  48) B.2291 1.8485 66

cretast sfter Fall 76 1 fitting Gamms




Table E7

e

Kolmogorov-Smirnov Tests for Matrix Algebra Pretest Items ; Matched Sample

NO Group oK Group

¢t

1tem P ‘ 1item - p z N
1) . B88Y 1) 8.6927 8.7111. S}
2) .2788 - 2) 8.2787 8.9994 55
3) .1698 '3) 8.8918 B.5789 43
4) . 9456 4) #.9976 B8.3962 44
5) .8928 5) 8.7999 9.6449 53

. 6) .9996 6) B.1583 1.1375 54
7) .9928 - 7) 8.8781 9.5894 26
8) .9922 8) #:7253 B8.691¢ 25
9) . 8941 $.9  8.8755 B.5914. 35

.9258 18) 9.8941 B.5762 \ 32

.6932 11) 8.9113 8.5611 |22

.9954 12).. :8.7828 B.7855 . 16

.9375 13) " 52 §.9185 #.5542 21

.7875 149  9.9518 §.5173 22

.7963 .64 . {15) 8.7817 8.7657 21

.9873 16) ' §.9962 §.4889 27

.9383 17) #.9171 #.5556. 7

.9188 18) 8.9941 8.4225 - 38
.6228 199> @§.4319 8.8725 31
.9818 11 [28) 8.9389 1.4836 45
.2851 31 [21)° B.5322 9.8874 25
.1638 1.1184, 44 |22) #.5341 9.8862 12
.1919 1.8834 | 45 |23) = $.9999 g.3228 11

~

SRR RN R RN R

Y N N N Y Y Y S

1
8
8
)
)
)
)
)
)
)
8
)
)
. B
)
8
)
)
§
)
]
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g

|| ||

for matched group after 1976 Fall semester;
testing for Weibull distributions
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‘!hble E8

<

v The Three Weibull Parameters for Matrigﬁﬂlgebra Test“ItemS\

-~ -
items ta m.c. 1‘ c Jo
1. , .87 8.97. 7, 1.44 33.67
2 2.9 H.;} 2.42 24,18
3. 5,33 g, of 1.39 28,21
4. 6.38 1.5 1,65 23.73°
5. 3.77 #. 99 1.17, "13.13
5. 5,21 F.ooa 1,54 11.89
. 7. 9. @6 1,88 1. 11 33.17 -
8. E.0@ B.95 1,45 RE. RS
2. 2,85 1. 55 1.55 32.95
15, 8,14 B.99 | - 1.63 22.43
11 4,83 8,98 v 1.12 37.92
12 5.89 §.98 .99 36.55
3. 5. 42 A.39 1,87 52.52
14, 15,29 1.98 8. 95 36.24 -
15, 24,94 F.98 .99 95,18
16, ° 5.62 1. 58 1.0 58,69
17 .08 9.97 r.z5 13,76
24, 3. 43 B.93 1.33 12.32 »
: AL 3,32 Tod. 9y 1.54 19,59
26 .94 7.9% g,54 6. 74
2 3.94 g. © g.64 "3, 39
28.°, 3.99 . B.98 558 Y
29.  7.79 ‘1.8 - .64 N 24.64
w Posttest for matched group, Multpost ?gn’QK SuUl>gr oup
. ‘ o P o
'&: ‘
) - . i
_ A Y
150
o 161
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Table E9 S
The Three Weibull Parameters for Matrix Algebra Test Items
items ty m. <. < Pe
1. 21.84 1. 0@ 1.12 29.62
3. 7. 45 ‘W93 7,98 21. 42 )
4. ©.18 F.99 2.54 13. 54
5. . gQ 1. R 3.97 21.49
. g, 58 1. 2t o 13.79
i 5,69 1. @9 ' 1:54 32.93
. 3. 6.81 B.39 1.15 36.48
q, 3.67 .93 .52 27 .49
18, 1.91 7.99  1.31 22.44
1. 18.29 @.93 1,13 - 3H.3
12. 4,23 1. 58 1.37 45,23
13. 9,69 5,93 1.2 32.21
14. 3. 41 F.99 1.21 47.58
15. 3. 46 B.39 1.13 54.65 ¢
16 3.61 1. #H B.54 47 .39 _ )
17. 4.73 H.99 B.98 22 .12 T
~4, 3.27 g.95 1.56 9.46
7e, 2,69 5.93 1,11 17,84 C
26, 1..12 L. HE 1.34 . 11.82
27. 2.74/ .99 .47 5.79
28. 2.92 - B.99 #.65 5.16
- - 29, 2.76 B.97 1. 88 8.93

Multpost for NO subgroup, matched sample
. n '

'\ \
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. Table E10

-

Kolmogow"ov-Smirnoxf Tests for Matrix Algebra Posttest Items 3 Matched Sample

-

NO Group OK Group
1tem P z N 1tem P @z N
1) 9.9088 8.9998 8 1) $.6385 8.7488 56 -
2) 9.8988 8.9888 8 2) §.7383 8.6885 56 -
3), 9.8323 £.6231 . 7 3) 8.9344 8.5388 _49
4) 8.9988 P.88P8 @ 4) 8.5666 #.7863 56
5) 8.9996 §.3536 2 5) B.6345 B8.7456 54
6) 9.8998 3.9888 8 6) $.1768 1.1812 56
7) 9.9988 B.8888 8 7) §.8277 8.6263 55 B
8) 9.99P88 B.9888 8 8) §.7835 §.7846 55 ’
9) 8.9981 #.3899 4 9) '9.9364 8.5357 52
" 18) 8.88P88 B.8888 8 18) $.1114 1.2816 56
11) §.7364 B.6848 36 11) $.9354 8.5368 - 28
12) 8.9577 $.5893 27 12) $.9788 8.4727 29
13) 'B.9446 8.5263 16 13) B.7324 8.6872 48
1 4) 8.7286 #.6895 12 14) §.7929 $.6494 44 .
15) : 8.9455 8.5252 7 15), ' B.8858 $.5838— 49
16) 9.9248 9.5489 4 16) #.2284 1.9498 52
17) 8.5312 9.8888 38 17) 9.6169 B8.7561 26
18) 8.9267 B./5461 21 18) $.7893 8.6518 35
19) B8.9826 #.4636 4 19) $.3674 8.9188 52
28) $.9984 9.3858 5 29) $.1832 1.8938 - 51
21) 8.9295 B.5432 7 21) . §.5858 B.7747 49
22) 8.9887 B.4457 21 22) 8.8147 #.6351 35
23) 8.7789 B.6635 36 23) 8.9838 §.5686 28 \
Posttest 'f/or matched group after 1976 Fall semester; 'goodness
of fi1t' testing for Weibull distributions _
P
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- The Thrae Weikull Farameters for Matrix Algebra Test Items .
1tems tg o m. <. N Poo -
3. 1. 46 A.a7 1.75 fe.@2
. B EE L. Ag A 18,57 ,
2, 12,18 .o #.76 26,18 ,
1. H, TR 1, L E.E9 34.18 .
12, 1:(?? 7w 1,22 5. 71
13. 2864 PR T R I 47,74
. 14, 16,51 S 1.48 AH.64

1r., w.oEE T ft. 75 14/, B8

15, 5 84 149.18 -
VLEE 2 0,95 .31 91.28 - ‘
.53 W, 99 75 25,11

I - T ‘.38 10,51 -

s @.-° .54 H. 99 1.6 14, 18

. o1, Lo O /a7 i, 53 14,54

L g .76 £, 14
.ag F.79 5. 14,52

[T .
[ %

ran >
i

=
sy

r
[
L}
-

Ll
=)

ra
LR
L.
(ux
N
E:!

Multpost, for MO subgroup in matched sample
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Table E13

A

Kolmogorov-Smirnov Tests for Matrix Algebra Posttest Items 3 Matched Sample  /

~

. te

»

NO subgroup 0K subgroup

' - 1tem p) z N - item p z - N .
1) 9.8988 8.8888 8 1) P.9988 2.4473 56 -
2) 9.908988 8.9888 8., | -2 8.6675 8.7261 56
3) $.9192 8.5535~— 7 3) #.9312 8.5414 49
. 4) g.9998 8.8988 8  4) 9.4618 #.8528 56
5) 9.9788 9.4727 2 5) B8.9817 1.2646 54
6). 9.9998 B.8988 8 6) #.1957 1.8779 56
7) .-9.9898 8.8988 8 7) 8.8231 1.4935 55
8) P.P98P 9.8888 # 8) - B.1842 1.2153 55
9) 7. §.9847 #.4588 4 9) 8.7558 8.6733 52 - -
18). . #.9988 B.9888 B "18)  98.9888 3.4737 56 ‘
11) 9.3983 B.8968 36 11)  §.7752 8.6687 28
12) 9.9298 B.5429 27 1.12) 9.9948 #.4229 29
13) #.8413 #.6168 16 - | 13) g721434} 8547 48
14) 8.6815 8.7177 12 . | 14 8.9332 8.5392 44
15) §.8296 8.6258- 7 ' . - 15) - 5.2327 1.8697 49
16) 9.8272 B.6266 4. . | 16) °  #.1619 1.1211 52 ;
*17)  B.7366 #.6847 38 ‘17)  8.1182 1.2839 26 C
18) 9.2239 1.8468 21 18) §.9832 B8.5684 35
19) B.9387 $.5419 4 | 19) $.1693 1.1118 52
‘ 28) .  B.9971 B.4884 S 28) g.9888 3.6924 51
21 4.1835 1.8927 7 21) 9.1411 1.1513 49
22) §.1523 1.4345 21 22)  @.17721.1887° 35 —
23) 9.8133 1.5837 .36 23) #.9472 8,5231 28 a

PN -’ R - ) \

v N\
Psottest for matched group, after 1976 Fall semester;’ goodness \——

Y of fit tedting for Gamma distributions \'

ST s C ‘
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TABLE El4

" Kolmogorov-Smirnov Tests for Matrix Algebra Posttest Items
OK Group

£

item'

1
2)
3)
4)
5)
6),
W 7)
.8)
9)
10)
4))
12)
13)
14)
13)
16)
17)
18)
19)
20)
21)

E 22)

23)
24)

.

P

. 0.3300

0.2666?////1.0051~

0.9378
0.1693
0:3757
0.0751
0.6907
0.3863
0.6921
0.0237
"0.8667
0.9929
~0.8903
0.7517

0.9255,

0.2001
0.,4410
0.8377
0.3289

0.1469 °

0.5989
0.8014
0.9030

0.0000 .

,

Posttebt for all* subjects after 1976 Fall semester;

z

0.9480

0,5342,
1.1109
.0.9125
.2810
.7123
.9047
.7115
.4891
.5982
.4285
5794
.6754
5473

0
1
0
0
0
1
0
0
0
0
0
1

.8662

.0726 .

194<
~

L9489
1425,
. 7668
6439

0.5686
\

5.1962

o)

!

H

38"
20
27

NO Group

of fit!' testxng for Weibull distributions

156

<4834
.9996

.0050
.0366
.6504

L7463
.9350
.9093

L7109
. .6895

.6686

.7762!
.5818

.6408
.9984
.7015

.96Q5

.3914

7

=

.8382

\_

O ~N N W O MM O Ww O O

.3536
1.7321
1.4142

.7362

-

6787
.5373
5628
7002
.7130
, .7255
6598
L7771
L7419
73850
. 7058
.5052
.9010
o

[ L T . S
R )

»

A
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‘The Thres Weibull Parameterz for Matrix ngebré Test Items

2MmS ty m. . . < Ja ' ~

.Y L.Ag T ooAg B8 .

2 1. W i, 88 S pg :

i 1. 46 p.a7 1.75 '

AT VR : 9 -1 N S ol

' G, 12,156 F.oud .76
1i. 9,54 B 0 F.99

ERCH L F.00

32
o4 0,35

i
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051 e, 9% 1.45 . 33,64
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0
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L. 5. 63 f.09 .75 79,11, )
19. 2.93 §.93 ToR8 ., 1. 31
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Kolmogorov-Smirnov Tests for Matrix Albebr;\hﬂltpost Items for.All Subjects

Table E17

-

t

t
L AR

(¢

, ~ \ “
. . NO Group OK Group
1tem P . Z N 1tem P z N
1) 8.9992 #.3788 5 1) B.8267 1.4692 S1 .
2) 1.8888 8/8 1 2) B8.7712 #.6633 55
3) g.2898 1.8624 13 3) -P#.7644 B.6675_ 43 |
c—— T3y - --§.9459 $.5248 -12 - L -4 - —B-9997 $.3494 44
5)- g.8888 5.3453 3 5) g.1281 1.1859 53
6) 1.8868 8/8 2 6) B.2728 8.9982 54
7) #.9988 8.3915 38 7) B8.7921 #.6588 26
8) 8.6979 8.7888 31 8)  8.8316 B.6236° 25
T 9) 3.9548 B.5143 21 9) #.9214 8.5514 35
18) #.9386 #.5333 24 19) .8644 #.5999 32
1) g.1978 1.8762 34 11) - #.2368 1.8325 22
12) B.9888 F.4479 48 12) #.4371 B.8689 16
13) "8.4483 #.8613 35 [13)  B.8973 §.5735 21
L 19 #.8682 8.6838 34 14) B.8358 B.6286. 22
15) g.6873 B.7618 35 15) B.6166 B.7563 21
16) ' #.8174 B.6333 29 16) 8.9888 8.4699 27
17) .  $8.2751 £.9952 49 17) 8.9896 B8.5626 7
. 18) g.9833 B.4619 26 18) 8.9978 8.4821 38
. 19) g.3216 8.9548 25- | 19) §:5581 B.7964 31
28) 9.9676 B.4941° 11 | 28) g.8888 3.5313 45
21) g.1521 1.1349 31. 121) B.8818 1.8789 25 .
" 22) 3.8888 2.4982 44 ' | 22) 8.8138.1.5772 12
‘531A g.8887 1.9862 45 | 23) 8.9198 s.ssz%b 11
Multpost for all subjects after 76 Fall semester 3 goodness of fit test for
. Gamma distribniions R o N
. : 159
Q ¢

170




Note.
listed in this table:

B

The following programs are used in comnection with the programs

"wb2," '"wbarea," "kappa," "1lab," "kolmo," '"gamma,'"’

"wgraf," and "kgraf" programmed by Robert Baillie; '"statedit," programmed

by J. Michael Felty.




TABLE E18
Kolmogorov-Smirnov Tests for Matrix Algebra Test Items

: OK Subgroup for Matinvtest

Weibull Gamma
- &

item P z N* iteﬁ p
1) .500 .827 271 1) .002
2) .723 .693 0 2) .031
’) .923 550 28 3) .980
4) . 400 .897 27 4) .376
- '5) . 600 .768 27 5) .008
6) . 440 .867 29° 6) ' .017
S7) o 1824 T TI629 9 - 918
8) 710702 27 8) 214
9) .737 685 . 28 9) 619

" 10) 292 .980 27 10) .026
1) .958 .510 20 '11) .722
12) .600 766 2 12) 006

A

* The total N is 30 and No subgroup was not analfzedu

Weibull parameters

“
*

tO . c Uo
18.66 * .85 41.50
8.78 98 14.80
. 88 29 24.35
.51 142 27135
.94 .74 14.68.
.87 .91 12.50
.61 . 1.8 20.79
.50 . .93 ' 36:98
.25 .41 32.21
.74 .93 21.23
.37 '1.03 ° 21.69
.92 . 41.25

—
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TABLE E19 A -

3

Kolmogorov-Smirnov Tests for Matrix Algebra Test Items

OK Subgroup for Transtest

Weibull ’ Gamma
item P z N* iteﬁ\ P z
1) .464 . 851 16 )~ .579 778 _
2) .694 .710 26 2), -.073 ) 285 e
3) 146 1.144 34 3) 011 - 1.618
4) .94l .530 1. 4 .874 592
5) .950 .519 26 5) .896 .574
6) 061 1.321 2% g 062 1.316
7) .216 1.054 34 7) _  .000 2.304
* The total N is 38
»
0K Subéroup for Eigtest‘
Weibull - o . Gamma
& <
item P z N* item P z
° 1) .97l .488 20 1)  .s13 .89 . o
2) © 626 751 39 2) , .80l 644
3) . .829 1625 A 3) .825 .628
%) 918" .55%5 28 4) " 388 .904
5) .666 © 721 T34 5) . 367 .919
6) - .999 .285 16 6) .978 475
7) .609 .761 25 < 7). .701. .70&
8) .727 .691 30 8) 640 . L T742
v * The total N is 56
161 , .
LY [
. 173 ‘
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TABLE E20™
¢\
Kolmogorov-Smirnov Tests for Matrix Algebra Test Items

<7
NO subgroup for Transtest

Weibull ’ CammaJ‘

item P : ) item

1) .965 : 1)
2) .872 : 2)
3) 997 : 3)
4) 038 1, 4)
5) .829 : ' 5)
6) . .732 : 6)
7) .964 : 7)

. % The total N is 38

No subgroup.for Eigtest

Weibull : Gamma

item P z item

1) 4665 8492 ' 1)
2)  .9801  .4697 2)
3) .9993 .3649 3)
4) 5266 .8108 4)
5) . 7481 06776 - . 8)
6)  .9518 5173 6) .
7) L7674 .6656 f7}

8) .9323 .5402 8)

T4
* The total N is 56
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TABLE E21

Kolmogorov-Smirnov Tests for Matrix Abgebra Test I[tems

Weibull Parameters for Trantest and Eigtest Items o~

OK subgroup for Transtest No subgroup for Transtest
item to c ko item to ¢ Mo
1) 10.63 1.12 31.65 1) 10.35 .74 . 95.10
2) 15.45 .84 67.16 2) 4,09 .80  104.27
3) 3.80 1.01 13,99 3) 9.33 W84 7.40
4) 6.15 1.24 22.53 4) 2.03 1.17 33.58
S) 5.99 1.23 25.11 5) 2.84 1.11 20.75
6) 2.86 .94 10.25 6) 5.94 .57 9.73
7) 2.93 .91 7.36 7) 4,36 .94 5.36

OK subgréqp for Eigtest NO subgroup for Eig;ést'
item t, . c’ Mo item to - ¢ Ho
1) 10.68 a1.08 75.94. ° n 3.29 - 1.75° -91.00
2) " 3.28 1.63 41.60 2) 15.09 1.07 20.50™
3) 6.88 1.43 . 27.26 3) 11,22 1.06 14,50
4) 5.43 - 1.19 17.42 4) 4,03 1.44 16.98
5) 7.69 1.04 17,54 5) 3.86 -1,16 25.81
62 14,09 ,1.05 22.01 6) 1.66 1.39 53.65
7) 6.37 + 1.27 58.50 7) 8.03 113" 39.00
8) 8.26 1.04 35.83 8) 1,57, 1.23 34.51
N
4
- /
163 )

. o : 175




: Appeniix F
Graphs of Conditional Response Rate
. < tg. . Yp .
1terr 3 1 . 1.d49 6.5819 « 19.29°
. ~ 1tem 4 ‘1.g22 7.6488 14,47
a.133 1 .S,
g . ‘subgroup .
r r- 4
CB.BE7 T 3
i 3
C 8. 808 — e 5 + 4
o 18 toze 30 49 Se
time 1n seconds
b N
Figure Fl Comp%rison of conditional response rates of
items 3 and 4 for OK subgroup
e s : "8 s, |
1tem ™NE 2.183 5.6428 17.85
1tenm £ B.8525 g.080801 19.79
g.%6l T
t K subgroup i )
B.2808 T
.
! N S ,
! 6 ' /
B. 800 ¢ % +— +L |
L] '_7 '
, 8 14 28 398 49 =17}
time 1n seconds |

K \ Figure F2 Comparison of conditional response rates of °

items 5 and 6 for OK subgroup
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ND subgroup

i
-+

28 38 -
time 1n §é€&nds

ure F3 Comparison of conditional response rates of
items 3 and 4 for NO subgroup

Vg
13.78
12.67

NO subgroup

b }
T L]

28, . 38
time 1n seconds

Figure F4 Comparison of conditional response rates of
ltems 5 and 6 for NO subgroup
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