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ABSTRACT

This ,study investigated the feasibility of using the family-of Weibull
distrubutions - a family which is)widely used in system-reliability analysis -
as a model for the distributions of time scores (response times) of items
in.criterion-referenced tests, lesson segments and entire lessons that were
implemented' on the PLATO system. The items tslere those of a series of
jnatrix algebra tests developed for the dual purpose of using in this study

'- 'and for testing students in three statistics courses at.UIUC both before
and after they studied our matrix algebra course. The latter provided the
lesson segments (including exercises) while the entire lessons came from
the Chanute AFB CBE project and deals with special and general vehicle
maintenance training.

The.fits of the Weibull distributions to these various observed
distributions were, on the whole, very good to excellent as gauged by the
Kolmogorov- Smirnov goodness-of-fit test. However, for some items (most
o- which possessed certain exceptional properties in common) the two-

.

parameter gamma distribution offered better fits. The same held true with
even greater force for the exercises occurring in the matrix algebra lessons.

'Tentative explanations of when and why the gamma was better than the Weibull
were advanced, but discovery of definitive reasons must await future research..

We would be the first. to concede that we have barely scraped the surface
in studying the utility of response time (time scores)-along with performance
scores for analyzing and evaluating data from criterion-referenced tests,
both for the purpose of assessing the quality of the tests themselves and
for improved testing of the examinees' abilities.

Nevertheless, we believe that we have at least demonstrated the
--..L44fiabllity of this approach and hope to have shown that further research

along these lines is warranted. In particulat;the Weibull distriBytion
in its two-parameter.form (which we used in this study), three-parameter
form, or two-component composite form - long used by system analyst
apparently not widely known among educational and psychological re archers
seems to bear further investigation for this purpose..
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TIME-SCORE ANALYSIS IN CRITERION=REFERENCED TESTS.

6

1. INTRODUCTION

It,is well known that one of the major. problems encountered
in ,psychometric and statistical analyses of criterion-referenced (or
'domaih-reference'd) tests ,stems from the fact that because they are

' designed Primarily for mastery testing, their scores tend to be uni-
formly quite high.' The consequent lack of variability of scores leads
to embarrassingly /ow reliability and validity coefficients when these
are defined in the traditional way in .terms of product-Moment correla-
tion coefficients. A number of authors (e.g., Harris, 1972; Huynh,

:1976; Livingston, 1972) have proposed various' approaches td sidestep-
ping this problem of limited score variability by 'offering alternative
measures of reliability and validity.

One 'approach that does not appear to bave'been exploited to
date, however, is the seemingly obvious one of considering time scores- -
i.e., the time it takes examinees to-respond to items or entire tests
(assumed unspeeded)--in addition to performance scores. That there is
no dearth of variability in time Scores is evident from casual observa-
tion. The main reason time scores have not beep utilized despite this
`fact is probably that their accurate recording can take place only in
the context of, computer aided instruction and testing, which are fairly
recent developmentds. Another possible reason is that response times

rhave widely been regarded as erratic phenomena not exhibiting-any law-
like behallior and hence not indicative of the extent'of knowledge or
mastery. pf a subject matter. (We are here obviously excluding the use
of time fneasures such as response latencies and time taken to learn
lists of nonsense syllables, paired associates, etc. that have long and
widely beetwsed uhder the tightly ,controlled conditions of psychologi-
cal experiments. Also, we are aware that one of Rasch's models [1960)
involves a time Measure, viz.., the time required by a pupil to read a
passage'of a given length. But again, the situation'here is a relatively
controlled One. Reading a particular pa§sage is a mikh more circum-
scribed activity than, say, taking an algebra.test in:whichvarious
abilities are brought to pray.)

One of the presEnt authors. as-been working in the field, of
computer based instruction (specifically the PLATO system at the Univers-
ity of Illinois) for a number of years, and sht has hence been informally
exploring 'the utilization of time scores for a long time' The research
described in this report is an outgrowth.of this sustained interest in

'4 time scores and represent a more systematic exploration of their utility.
We w-,1.h to emphasize, however, that this study makes no attempt to en-
hance the psychometric properties of criterion-referenced tests by of-
fering alternative measures of reliability and validity based on time
scores. (That must be deferred to some future project.) The pbjective
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of to present study, to repeat, is simply to explore in depth how time
scores behave and to reveal whatever regularities and potential useful-
ness they may possess.

G One way to check whether a variable is behaving in a systematic
fashion is to examine its statistical distribution, and if it seems to
be following some identifiable theoretical distribption, to see if some
rationale can be adduced lo explain why it might be expected to follow
that particular distribution. Of course there are' any number'of theo-
retical'distributions'a stochastic variable may seem to be following, so
it would be like looking fora needle in a haystack if theee weren't

.

some guides as-to what sort of distribution might,fill the bill. Since
Rasch's (1960) work parenthetically alluded to above had led to a two-
parameter gamma distribution for the time taken to read a passage of N
words, this distribution was a possible candidate. However, Bree (1975)
had analyzed sore A empirical data on problem-solving time (albeit of
quite limited scope) which showed that a two-parameter negative exponen-
tial distribution offered a better fit than the two-parameter gaMma dis-
tribution,, thus decreasing the attractiveness of the latter.

We were therefore thinking of carrying out a larger-scale repli-
cation of Bree's study comparing the relative goodness-of-fit of the
gamma and negative pxponential distributions, utilizing a large and in-
creasing data base accessible to us (and in part developed by us) on the
_PLATO system,, when a third family, of distributions shown to be useful in
modeling certain time-score distributions came to our attentioll. This
was the Weibull (1951) distribution which, we learned, had been (and
continues to be)'extensively used in the context of system-reliability
theory: the study of the probability of failure, within a given time
span, of a mechanical or electronic system as a function of the,probabil-
ities of failure of individual components zf the system. We learned of
'this distribution through the works of Sato (1973) and Takeya, Sato and
Sunouchis(1975) who hadpioneeredl its application to the modeling of the
cumulative response curve, i.e., the plot of the percentage of students
completing an item within a given length of time, against the latter as
absci4sa,

The justification suggested (although not explicitly' stated)
by Sato.and his coworkers for diverting a distribution found to be des-
criptive of fatigue or failure time to so remote a field of application
as response time for test items is as fdllows. The test item (or total
test, or instructional unit, depending on the level of analysis) is
identified with the system whose reliability is being asSegled. The

11t was subsecittly brought to me-attention that Bargman (1966)

41
had also utilized the Weibull distribUtion in a study of growth func-
tions. t

V



-

student's "attacks" on the item correspond to tbe shocks or wear and
'teak. -to which the system is subjected, and the eventual solution of the
-item is the fdklure of the system. Farfetched as such identifications
may seem, they are not unreasonable. It is plausible to imagine the
student to be intent on "cracking the system" by answering the item
correctly. The time he takes in doing so--the -response time--corresponds
to the "survival time" (or "fatigue life:') of the system. The only dif-
ference is that, whereas in system-reliability analysis we want the sur-
vival time to be as long as possible, in test response data we want it
to be as short as possible--especially in criterion-referenced tests.
Thus, the use of the Weibull distribution in time -score analysis has
some intuitive appeal.

Another reason that encourages at least examining the Weibull
distribution for the purpoge hand is that the two-parameter negative''
exponential distribution advocated by Bree can be regarded as a special
'case of the Weibull.distfibution--a three-parameter family--when one if
its parameters is equated to unity:. (See next section for mathematical
demonstration.) When it is recalled that Bree's data'base was quite
limited--comprising solving-time data from 'three problems originally

.

fitted to gamma distributions by Restle and Davis (1962) plus those for
fourth problem taken from another source--it is not inconceivable that

ehese sets of data happenedto be well modeled by this special case of
the Weibull distribution.' Ifso: the psychological arguments invoked By
Bree to provide a rationale for the two-parameter negative exponential
distribution may hold also for the Weibull distribution.

Thus the,thrust of our contemplated study shifted from a gathma
vs. negative-exponential comphrison to amore general one of investigat-
ing the usefulness of the Wbull distribulionasa model for time-score
data from CR tests in the conIext of CAI. What is reported in ,the sequel,
thereforee.includes but is not confined to a comparison-of the gamma and
Weibull distributions. It also includes attempts to relate the three
parameters of the latter distribution tb lerious psychometrically meaning-
ful indices associated with CR tests and their constituent items, such as
difficulty level, ability to differentiate between masters and nohmasters,
and so forth.

2. THE WEIBULL DISTRIBUTION: RATIONALE AND DERIVATION

e Although an intuitive rationale for the applicability of the
Weibull distribution for item (or test) response time was given inthe
introduction by identifying the solution of an'item by a student with
the failure of a system in system-reliability theory, this rationale doe's
not lead to a derivation of the distribution (or density) function. .In
other words, the rationale stated earlier is far from being a set of
axiomsor io-stufates from which the mathematical form of the density func-
tion logically flows. In the final analysis, as Weibull himself (1951)

10



and subsequent expositors (e.g., Mann, Schafer and Singpurwalla, 1974)
have said, the distribution was empirically discovered rather than
axiomatico-deductively derived in the first place. Nevertheless, if
something even remotely resembling a postulate (or set of postulates)
can be found that Makes intuitive sense and at the sameJime logically
implies'the mathematical expression for the,distribution function, this
would lend greatly to the credibility ofthe distribution. Such a
basis has been postulated (albeit as an ex post facto rationaliiation)
by system - reliability researchers in terms of the'concept of hazard rate,
which is essentially the conditional probability that a system which has
survived through time t will fail during an infinitesimal time interval
immediately thereafter. Translated .to fit the context of iitem response
time, this may be dubbed the conditional response rate and defined in
the following, subsection.

.

2.1 Derivation Based on the Conditional Response Rate

Let us denote by f(t) the probability density that a person
randomly selected from the population will respond to a given test item
(or any other unit of a test) during the infinitesimal time interval
[t, t + dt]. (The actual probability that the person will respond to
the item in this time interval is f(t)dt.) Then the proportion of indi-
viduals who will have responded to the item by time t is !

F(t) = f(u)du,
J 0

411

which is the (cumulative) distribution fupction. Lt follows that the
proportiorrof individuals who have not responded to the item by time t
is 1 F(t). Consequently, the conditional probability that a persdn
will respond to the item, during the interval [t, t + dt] given that he
or she has not responded ,to the item up to time t is,, by the definition
of a conditionallprobability, 'given by

p(respondsin interval [t,t+dt]lhas not responded by time t)

f(t)dt

1 -F(t)

(From the definition of'conditional probability, qne might expect to
find in the numerator the piobability ofthe joint event "has not re-.
spon by time t and responds in interval [t,t+dt]." however, a.little
reflecti n shows that the simple event "responds in interval [t,t +dt]"
automatically implie's "has not responded by time t." Hence the former
simple eventis synonymous with the joint event cited,'and their

4
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probabilities are idencal.) The conditional response rate (CRR) is

Ill

defined by the expression ove exclusive of the differential element
dt, and we symbolize it by (t), keeping the notation conymirly used for
hazard ratikin system-relia ility theory. Thus

(2.1) h(t) =
f(t)

. 1 - F(t)

From the concept of hazard-r.te'in general; the corresponding
distribution'and density functions may easily be derived by elementary Ly.1
calculus, as follows. "Tacking on" the differential element dt in
both sides of equation (2.1), replacing f(t)dt by the differential ele-
ment dF(t) of F(t),sand further wri ing u in place of t (in- anticipation
of using t for the upper limit of a definite integral), we obtain

q

h(u)du -
dF(u)

1 - F(u)

Integrating both sides from a lower limit u =,t to to a general upper

liMit t, we get
\

ft h(u)du = F(u))

u=t

to . u =t

= tn[l - F(to)] - tn[1 -,F(t)]

= -2.n[/- F(t)],

if we let t
o
be the lower limit of the range of t so that F(t) =

4, 0 .

It then follows that

1 - F(t) = exp[ -1 h(u)du].;'

t

or
t

(2.2) F(t) = 1 - exp h(u)du
t
o

Taking derivatives of both sides, we get

(2.3) ft) = hc),exp [4. h(u)du].
t

0
*moo,

5
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The last,two- equations express the distribution function and
the density function, respectively, as functions of the CRR h(t) in
general. Substituting particular expressions for h(t) in these equa-
tions gives rise to particular distribution and density functions. The

WOibull distribution results essentially when it is assumed that h(t).
is a monotorliCally increasing function of t, is independent of t, or is
a monotonically decreaiing function of time. (That is, we forbid h(t)
from being a function that first increases with t, reaches a maximum,
and then decreases with t, or the other way around. Of course, more
complicated behaViors are also forbidden.) Actually, we need to be
slightly more specific than merely requiring h(t) to be a monotonic
function of t; we must require it to-be a monotonic power function of t
(like tm): We further write the expression in a more elaborate form in
order to have a "neat' expression for the TeSulting probability density
and distribution functionS. Specifically, we postulate that

c (t-1(2.4) h(t) =

Although this expression looks highly contrived, t4 multiplier c/p
o

may, at this point, be regarded simply as a proportionality constant,

and the subtraction of t
o
from t merely reflects the fact that t

o
is the

effective "hero point" on the t scale, for no value of t smaller than

this can exist, by the definition of t6 given above. Thus, the expres-

sion is no more than a "plain" power function t
m

with a shift in origin

and a rescaling factor.

It is evident kr...Om exp4ssion (2.4) that h(t) is an.increasing
function of t, a constant,'br decreasing function of t, according as
c > 1, c = 1, or c < 1, respectively, asillus*trated in Figure 1.
From the meaning of h(t),. the intuitiveAalthough somewhat loose) inter-
pretations .of the three cases are as follows:

;
1. When c > 1, the longer a person persists with the item

without responding to it, the more likely it becomes that
'he/she will answer it "the next moment" (which is roughly
what the interval [t,t+dt] means);

2. When c = 1, the chances that a person will re pond theme
'next moment, when he/she 'hasn't responded so far, neither

' increase nor decrease with time;

of

3. When c < 1, the longer a person persists with the item
without responding to it, the less likely it becomes that
he/she Will answer it the next moment.

6
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h(t)

1

1

kLo

0

c >1

Figure 1. The conditional response rate (CRR) h(t) for three
'choices of parameter a.

i

c =1

c<1>t

It is intuitively plausible that items of all three kinds may exist in
practice, depending on the difficulty and other properties of the item.
(In particularN.the second case may correspond to an item whose solution
depends on a sudden insight, the occurrence of which is independent of
how long the person has been at the item so far.) Thus, the distribu-
tion which results from substituting experssion (2.4) in equations (
and (2.3) will be quite a flexible one which can model a wide varier
of types of items depending on 'the value of the parameter c, Aich is
hence avcrucial one.

Making-the stated' substitutions and carrying out the integra-
tion called for, we obtain-

(2.5) F(t)

t

exp t (

P

o)c]

o

for t t
o

for t < t'



0

as the Weibull distribution function Arid

{(2/.6) f(t) =

t - tcy-1
t - t

( exp [-(
P P

o o o

o)c
for t t

0 for t < t
o

as the Weibull density function. In the system-reliability theory lit-
,

erature the three parameters t , p , and c are referred to as the loca-
o o

tion, scale, and. shape parameters, respectively. Since we let t
o
be the

,lower limit of the range of t ih the general derivation of F(t) from

h(t) above,, it is clear that this,,parameter is the theoretical value

of t such that prob(t<t ) = 0. ,Thus it is natural to call this the

location parameter. The scale parameter p
o

specifies the 100(1-e 1)

percent point of the distribution of t t
o

[i.e., prob (t<t
0
+p

0
) =

1 - e
-1

= .632] as may readily be verified by letting t = to + po in the

expression for the distribution function F(t) given in equation (2.5).

The shape parameter c is the most interesting'Of the three for it deter-

mines the general shape-assumed by the density function. If c 1,

there is no mode and the density function decreases monotonically with

t. If c > 1, the distribution is unimodal and skewed, with mode at

to +-p (1-1/ )
lic

. Interestingly, the skewness chadges from positive

to negative at'approximately a = 3.60. Figure 2 shows the density func-

. tions of Weibull distributions with t
o
= 2, p

o
= 15, and four selected

values of c.

The mean and variance of a random variable following the_,

Weibull distribution W(t
o
,p c) are as follows:

07)
and

(2.8)

E(t) = to + por(1+1/c)

Var(t) = p
2
[F(1+2/c) F

2
(1+1/c)],

where r() is the gamma function, defined as

8
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r(m) = f° e-unm-ldn

0

"

= (m-1)! when m is an integer.

2.2 'Comparison of Several Related Distributions

4,
As a matter of incidental interest as well as a possible aid

in subsequent discussions relating the value of the 'shape parameter c
to the nature of the item or other unit of a test, we display the dens-
ity functions of several related (or in some sense similar) distribu-
tions and also indicate what each of them reduces to when c = 1.

The density function of the two-parameter gamma distribution
used by Rasch (1960) as a model for the distribution of time taken to
read a passage of N words is, in a notation consistent with what we
are using for the Weibull distribution,

(2.9) f2g (t) [-
1 t

)c-1 exp (7 1.-1--) /No.
11 11
o 0

The N,in Rasch's equation (6.6) corresponds to our.c, and his X to our

ju
o

. Equation (2.9) is equivalent also to that given by Restle and

Davis, (1962) in their k-stage model for problem soiling, where k = c.

To serve in either the Rasch or the Restle-Davis model, the c in equa-.

tion (2.9) must thus be an integer, but there is no such requirement

in the density function (2.6) of the Weibull distribution. If we let

c = 1 in equation (2.9), we get the density function for th:wone-para-

meter negative exponential 'distribution:

(2.10)
t

f = exp
T-TOle p

0

Again, 1/p0 is customarily written as X and'called the-intensity
meter.

On the other hand, if we let c = 1 in equation (2.6), we get

the density fu tion of the two-parameter negative exponential distri-

butioh
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(2.11)

t - t
ol,

f (t) = 1 gxp (

2e Po
. o

a

which is the model found by Bree (1975) to offer a better-fit to the
distributions of solvingPtimes for Restle and Davis' thtleeyroblems
than did the two-parameter gamma distribution, (2.9). Breecalled
(2.11) the negative expolential distribution with shift in location.
In other words, this density function starits at t.= to instead of t = 0

as does the one-parameter negative exponential distribution, (2.10).

Now it is well kroWn that when c is an integer greater than-1,
the two-parameter gamma distribution (2.9) is a c-fold convolution of
the one - parameter negatiye exponential distribution (2.10), In other
words, if there are c independent randoM variables t1, t . . t

1, 2' c

each following the one-parameter negative exponential distribution (2.10),

then their sum t = t
1
+ t

2
+ . . . + ts follows the two-parameter gamma

dist ibution (2.9). [Thus Rasch's model ,for the distribution of reading

tim for an N-word passage amounts to saying that the reading times

for each word fol ow a negative exponential distribution and that the

N distributions ,a e statistically independent. Similar remarks hold

, for Restle and Da is' k-stage problem-solving model.]

In analo y to the fact just stated, that the two, parameter

gamma distributio (for integer c) is a c-fold convolution of the'one-
parameter negativ exponential distribution, it might be tempting to

jump to the concl sion that thh Weibull distribution (2.6) with inte-
ger c (>1) is a c-{fold convolution of the two-parameter negative expon-
ential distributin (2.11)--in view of the fact, that (2.6) reduces-to
(2.11) when c = . This is not the case, however. Rather, a c-fold
,convolution of tie two-parameter negative exponential distribution gives
rise to the thrte-parameter gamma ,distribution having the density func-
tion

(2.12)

t t 4 t t
r1,f oNc-1 oyur(c)

3g 1.11 I
r 11

o o o.

Note that letting c = 1 in this equation also leads to equation (2.11).
Thus, the Weibull distribution and the three-parameter gamM1 distribu-
tionhave in common the property that they both reduce to the two-para-
'meter negative exponential distribution when c = 1.

A comparison of equations (2.6) and (2A.2) shows that the
density functions of the Weibull and the three-parameter gamma
butions are strikingly similar, Aside from the absence of the normali- -

zing constant 1/F(c), (2.6), differs from (2.12) onlyin the presence of

11
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c at two places where it is lacking in (2.12).. Thus, in a sense, the
Wepull.distribution may be regarded as a somewhat generalized form of
the three-p rameter gamma distribution.

t.

,3:1---11RAMETER ESTIMATION

It must be conceded thatAthe methods we'used to estimate the
Parameters of, the Wiebull distribution and those of the two-parameter.
gamma were no\ the best possible. But, operating as we were 'Cinder tight
time constraints and since PLATO IV uses a time-shafing mode with rather
limited storage, capacity allocated to any one,user,.we had to make do
with relatively\simple methods with reasonable accuracy. It might be
mentioned in passing that PLATO V terminals, each equipped with a m4.cro-,

computer of its own, are becoming more and more widely available, and
they would circumvent much of the limitations under which we operated.

It was unfoitunate also t at we did not become cogni ant of
the three-parameter gamma distribut on early enough to include , it among
the distributions to be fitted to o r data. However, a comparison of
equations (2.6) and (2.12) suggests that not much has'been lost, Since
the two density functions are remar bly similar, as noted earlier, and
if anything the Weibull distribution appears to have a slight edge on
th ,gamma in flexibility. Whether this is indeed, so must await future

earch, however.

3.1 The Weibull-Distribution Parameters,

The problem of estimating the parameters ofa Weibull distri-
bution has been the subject of a number of papers (e.g.liarter and -

Moore, 1965; Johns and Lieberman, 1966; Mann, 1967, 1969; Lemon, '1974).
Most of these, however, either deal with two-parameter vergOns of the
Weibull distribution (i.e.., when one Or another of the three.parameters
is assumed known) or present iterative methods whose programMing ap-
pears to be an enormous,job. Believing that the maximum likelihood
method would be the most accurate, and before becoming familiar the
papers just cited (since Sato [1971] spoke only of a rudimentary method
using a special Weibull probability paper) one of the present authors
derived the likelihood equations and struggled for some time to solve
them. He concluded--correctly as it turned out--that they were capable
of solution only by tedious, iterative methods. Since 'time was of the
essence he abandoned the maximum likelihood approach2'and improvized a
rough-an-ready method based on linear regression, as follows.

2 He subsequentlybecame)aware that
this method could be obtained from H. L
oratories, Wright - Patterson AFB,
ing this on the PLATO system would have

1a12

a computer prp-Jam ligting for
. Harter, Aerospace Research Lab
But even adopting and implement-
been a lengthy task.
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We First rewrite equation (2.5) for, the Weibull,distribution

function as -

- t
1 - P = exp

c5ci,

0

where F(t) has been denoted by P for.,short, it°being understood that it
is a function of t and correaponds to the observed_ proportion of exam-
inees who respond to ai item by a given time' t.. Taking tHe natural
logarithms of both sides of this equation gives

t - t

kn(1-P) =.-( °) c.,

Changing the signs of both sides and tiktng their natural logarithms
again yields

(3.1) knkn(1-P)
-1

= c kn(t-to) + kn(1.1"-c).

If we now let

(3.2) knkn(1 -P)-1 E Y',

(3.3) kn(t -t
o
) E X

r and

(3.4) kn(p-c) E a,

equation (3.1) becomes.

(3:5) Y r, = cX + a,

which looks just like an ordinary linear regression equation of Y on X.
The only (but big) difference is that X itself is not completely ob-,
servable, because it depends on one of the unknown parameters to, as

- equation (3.3) shows. [Note that if we were dealing with a two-para-
meter Weibull distribution with to known (usually, to = 0) then (3.5)
would indeed be a regular linear regression equation, and the estima-
tion of c and a wou,ld be a simple matter.] .

1
2 0

3
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Therefore, we had to resort to a trial-and-error method to

estimate t
o

first, and then apply the.standard methods Of.linear re-
,

gression to estimate c and a, from which in turrleo,is'determined via-

equation (3.4). The principle adopted for guiding,the trial-and-error

'procedure was to maximize the correlation between Y = tran(1-P)
-1

(which is observable) and X = Zn(t-t
o
), which becomes an observable

once Some value is given to t
o

. The'search started by dividing the-'

interval [0,t
min

+t
min

/200] into 20 subintervals (where t
min

is the

smallest observed response time) and calculating r with t given. trial
xy a

values equal to the endpoints of these subintervals. Next, the (closed)

interval between the trial value pf.t
o
yieldingthe largest value for

r and the adjacent one giving the next largest value forsr" wa,s di-
xy y.

videeinto ten equal subintervals and their endpoints were taken as the

second set of 'trial values for t with which to calculate r . Finally,
xy

the interval between the trial values among this set that yielded the

two largest values for r was again divided into ten subintervals and
xy

their endpoints were taken as the third set of trial values t
o
With

which to calculate r . . The optimal among these trial values was taken
)tyA

as our final estimate t
o

of t
o

.

A A

Once the estimate t
o

is determined, X = Zn(t-t
o
) is calcul-.

A
able for each observed value of t, and thence c is computed from

A YXY (YX)(YY)/n
c

x2 2/n '

where" n is the number of observed response times. Then a is computed

as a = Y cX, and n.t0 is obtained by solving equation (3.4) for it.:

p0 = (e..4 a
-1 c

)

This completes our estimation of the three Weibull parameters, rough\

and-ready ,though it is. In the subsequent sections we omit the cit.-. .

4
cumflexes and write to, p

o
and c for these estimates to simplify the

notation, since we will not need to refer,irto the true-parameter values.

14'2.



. ,

3.2 The Gamma -Distribut ion Parameters

Here, too, the maximum likelihood estimates wouldpro ably

.

.
. .

have been the most desirable, but due to ihe limitations already. n-

. tioned we.again adopted a simpler method, the method of moment§ in this
case. .Since only .two parameters have to b.e'estinlated, it suffices.to
express the theotetical mean and variance in terms of the paraMeters
and equate these expressions to the observed mean and variance, re-

. , . .

0.. spectively.

-. . ,...

The required'expressyins, computable fi-om equation (2,9),

i 4

6'

are

andand

E(t) =
0

Var(t)*= p o2 c.

It readily follows that

kit and

Hence,

= Var(t)/E(t)

c = [E(t)]2/V4r(t).

p
o
=.s

2
/7

and

c = (0
2
/st

2

may be taken as estimates for p
o
and c, where't and s

2
are the sample

mean and variance, respectively. In the sequel,-we write a for c and

(3 for p
o

to avoid confusion with the corresponding ieibull parameter

estimates.

4. DESCRIPTiON OF DATA

N

As mentioned earlier many different data sets were used in
this study. Some of them were from 4ssons (which include instructional

2215
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segments, exercises, and quiz , tests (pre and post) on matrix alge-
bra that were developed by one o the present authors for the dual pur-
pose of servint as a self-study course to accompany several statistics
courses taught by the other author and two of his colleagues in the
'Educational PSychology and Psychology Departmentsof the Univergity of
Illinois at Urbana-Champaign and for gathering data for this study.

. Others came from over 30 lessons, and their accompanying tests, on
general and special vehicle maintenance tr ning developed by the
Chanute Air FOrce Base Computer-Based EducaTion (CBE) Project Group
under the sponsorship of the Advanced Research Projects Agency (ARPA)
of the Department of Defense.

AO

"'4.1 Matrix Algebra Lessons and Tests

The matrix algebra course, written on the PLATO system by one
of the present authors with some assistance from one of herassoctates,
is intendedsfor graduate students in educational and psycholOgical
statistics--particularly multivariate statistics--who do not have much

.
mathematical background. Topics covered include the basic definitiong
and simpae operations of matrix algebra, matrix multiplication, matrix
inversion (including the definition and calculation of determinants),

;linear transformations and axis rotations, and eigenvalue problems,. The
:c9firseOis divided into five lessoris corresponding to the above topics,
and their average completion times range from 20 minutes to 2 hours per
lesson. (See Appendix A for several sample pages of the course.)

fThe PLATO system permits a student to make any number of
passes through any instructional unit, which may be the actual instruc-
tional:Segment,,a set of exercises, or a quizy and which is called an
"area" frn PLATO terminology. Each area is identified by the lesson
number preceded by the letter i, e or q (for instruction, exercise or
quiz) ,\and followed by the instruoptional segment number within that,les-
son. Thus, for example, "i036" refers to the sixth instructional seg-

,

ment in lesson jib, while "e036" refers.to the exercise.set for the"Sixth
-instructional segment in lesson 3. An exception occurs in lesson 5,
which contains but one instrUctional'segment as such (i051) followed by

.thrvokiexercise sets (e051, e052 and e053) of ,the prOblem-solving type
-'-teaugment the instruCtion. There are 36 areas in all, whose codes and

content matter are listed in Table 1.
D

The set of data for any area includes, among other things,
the name or ID number of each student who went through,that areacdonr,
pletely at least once, the pass (or try) number, and the tisme he/she gp,
took on each pass. For the purposes of data analysis, only the time

. taken on the first pass (if completed) through each area for each stu-
dent was considered. Ye-
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Table 1

List of Areas and their Content in Matrix Algebra Lessons

Introduction to Matrices

area content
.i011 Definitions and simple operations ok a matrix
i012 Use PLATO as a calculator
'e011 Eleven exercises

Matrix Multiplications L-

1114

i021 .Multiplication of two matrices A and A
e021. Foru exercises
1022 Multiplication is not commutable ,i.e.,' AB BA

'J022 Four exercises
i023 Scalar product ' .-

e023 Four exercises 4
1024 Matrix product
e024 Four exercises
i025 Quidratic product
e025 Four exercises
1026 The principlesbf matrix operations
e026 Exercises
i027 Diagdnal matrices
e026 Four exercises
102'8 algr matrices and identity
e0 Four exercises

Deerminant'and Inversion of a Matrix

431 Identity matrix
. q031 Five item quiz

i032 Definition of the determiant of a matrix
i033 Evaluation of the determinant of a 'matrix
q033 Five item quiz
i034 Cofactors, expansion of a determinant o
e034 Exercises for cofactors, expansion of a determinant
i035 Properties of determinants
i036 Adjoint and inverse of a matrix A

\ Matrix and Linear Transformations

\ , i041 An example of lineartransformationiaxis rotation
i042 Properties.of orthogonal transformations

1043 SSCP matrix '

EigenvalUes and eigenvectors 4

1051 Definition of eigenvalues and eigenvectSrs
e051. Calculate eigenvalues
e052 Calculate eigenvectors

e053 Normalization of eigenvectors

0 17
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:'A 48-item pretest was given to all students before they stu-
died the matrix algebra course: (See Appendix 1/23 for a list of the items,
plus a sample item as it appears on the PLATO screen.) The original
version of'this pretest was constructed a year and a half before Fall
1976, and had been used in the multivariate statistics course. -It was'
,designed to minimize guessing by permitting students who'did not know
the subjet matter related to a given item to omit it and,go on to the
next by pressing the NEXT key without haVing-to'choose any of the
multiple-choice options, in the earlier item. There were 88 students
who tried every'item"and were thus likely to have taken the test ser-
iously in an earnest Asire to find out their initial level of.knowledge.
The data for these 88 students ere referred to as the "pre-revision
data" in the sequel. After all 48 items have been answered, the pretest
provides feedback by indidating which option the student chose for each
item, the correct option for that item and, at 'the very end, a recommen-
dation as'to which lesson the student should start from.

In Fall 1976, a revision of the pretest was undertaken, in
light of information obtained from th original version. SoMe display
wordings and options were changed, but the biggest change was that the
NEXT key could no longer be used wit ut choosing some option in each -

.item, thus forcing students to res d to every item.. .The feedback,

system was retained in the revi d version, however. Data from the new
version of the pretest are referred to as t "post-revision data"
-below.

At the same time, a posttest for the first to le4Sons com-
bined (simple operations and matrix multiplication) and one for each of
the other lessons (lesson 3, matrix inversion; lesson 4, transforma-
tions; and lesson 5, eigenvalues and eigenvectors) were implemented and
the time and performance scores on these posttests have been collected

isince then. Only those who completed each lesson could take the cor-
responding posttest.

Since most instructors of the relevant statistics courses
did not forcibly require all"4tudents in their classes ,.to study the
matrix algebra lessons on PLATO, data for these lessons came mainly from
volunteers who selected the topics according-to their own judgment. But

Caking the pretest was requested by most instructors. Thus, computer-
mapaged instruction (CMI) was not carried out, and insteaAof forcing
the students to adopt a predetermined strategy, almost' complete freedom
of choice of learning strategy was allowed, the students. We therefore
did not develop a computer-managed router of the mastery learning type.
Instead, data collection routines were implemented within the lessons
and tests-se that,all the students' behavioral records were colleCted.
That is, for each student and each area, the time spent in that area,
the number of questions attempted (whether in an instructional segment,
an exercise or a quiz) the number of questions ultimately answered cor-
rectly, the number of questions correctly answered on the first try,
and the number of times the student. requested and received on-line
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4elp, were recorded. In addition, for the items in the quizzes, the
pretest and the posttest, more detailed data were collected; the re-
sponse time for each item, whether the item was answered correctly or,
not, and the _number of times the item was attempted.

4.2 Chanute AFB CBE Proiett Lessons and Tests

These .lessons have been developed over a period of more than
la years, as a cooperative enterprise between the Chanute AFB CBE Pro-

, ject group and members of the Military Training Ceheer (MTC) group-at
the Computer-Based Education Research Laboratory (CERL) of the Univer-
sity of Illinois atUrbanarChampaign, for the purpose of training
Special and general purpose vehicle repairpersons (Dallman, 1977)..
There are.34 lessons, comprising about 30 hours of instruction, along
with a

t
criterion-referenced test for each.' The lessons are homogeneous

fn sub) ect matter (in'the sense that they do not naturalty form a
hierarchically organized seWand tutorial in style for the most part.
Nevertheless,, they are al-ranged in a specific order and students must

s achieve mastery in one lesSon as assessed by the end-of-lesson test be-
fore they can koceed to the next. 41f mastery is not achieved, thby

,

,icomust.repeat the lesson. AA listing of the contents of the lessons is
given in Appendix C.

TIT 34 associated tests consist mostly of matching and mill-
,tiple-choice itims,"and they vary from 5 to 20 items in length. Only,
`one pass is all6Ved through.each test and no feedback is' given. The
tests are called MVE(for Master Validation Exams) and are numbered to
cOrrespond to the lespons; e.g., the test given at the end of lesson
1_ 01 is denoted MVE 101. The mastery levels are set at 80 percent, but
the cutoffs actually used are somewhere between 75 and 90 percent cor-
'rect.

.

A lesson is',:said to be validated when 90 percent of the' stiff -,

dents have achieved mastery by getting 75 to 90 percent of its MVE test .

items,correct. The samples yielding the data for analysis in this study
consisted of about- 30 students per lesson, though not necessarily the
same 30,each time. No modifications of lessons were made until all the
students finished them, and alrlessons were validated (after which.
they might be,mod-ified) between April and September, 1975, inclusive.

The data collected included test scores on the MVE tests,
completion time for each test, the Completion time for each lesson each
time it was studied (which may be jus/t once or several times; depend-
ing On h91) quickly mastery was achieved), and the total time spent on
each lesson until mastery. The last mentioned. time is tallied the "Inas--

tery time" for,each lesson in the sequel.. Unlike the matrix algebra
lessons, data are available only for entire lessons and not for their
constituent parts.

, /
Ac;
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A flow chart of the lessons and tests in the Chanute AFB CBE'

Project is shown in Figure 3.

4.3 Teaching Strategies and Lesson Styles

Since the matrix algebra course and the Chanute AFB CBE Pro-
ject course in motor yehiclemaintenance differ considerably in their
teaching strategies and lesson styles, we compare them here although
some of the descriptions were already given above.

Virtually every lesson in the Chanute course ffoYlowed the

9)
sj'.'le tutorial learning activity that can e characterized as a linear

series of instructions and questions. Ev y student is required to
proceed through the same Material in each lesson regardless of prior
knowledge or ability. Since these students were first-year Air Force
draftees with only a high-school education for the' ost part, this les-
son style is probably well suited for them. . They probably could not
be trusted with much'freedom of choice. - -

By contrast, each lesson in the matrix Algebra course has an

. index page at the beginning, as illustrated in Figure 4. Each student

can choose a particular lesSon segment covering the topic of fiis/her

choice.- Sind the students taking the matrix algebra course were all

graduate students in educational psychology, psychology or accountancy
with a feol from other departments) they were bright and motivated,
enou to control their own learning activities, and hence. this lesson

style was robably the best for them.

It should be noted that, in both courses, the posttest scores
were significantly higher on the average than were the pretest scores,
thus permitting us toinfer that learningdid take place regardless of
which lesson style was used.

% . .

To make'somewhat more detailed comparisons, in the matrix
algebra course some topics are taught by drill and practice Arategies
while others are taught by problem-solving strategies. The particular
strategy chosen was adapted to the nature of the topic. For instance,
simple,subject matter such as matrix addition and multiplication are

, taught with the aid of exercises, following the instructional segments,
that are designed to give students practice in calculations, while more
difficult'material such I as eigenvalues and eigenvectors are taught with

the help of exercises o, the problem-solving type. All but one lesson
contalned the provision of alAwing the student to go back for review
to the preceding frame within any area (instructional segment, exercise

._,_or quiz), and also6 ito go clear back to the index page (seeTigure 4).
in:the latter case the student could choose to go to an area other th4n
that in which he/she was working before re-calling the index. This re-

i some
-n sme messy data which had to be disca.rded'in (r analysis,
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IPRETEST : 50 ITEM NORMED REFERENCED TEST, COEF. a = 0.40 I

LESSON 103

I MVE 103

4 4

LESSON 104o I

MVE 1040 f-
ESSON

I MVE 104b

4'

1..]

1.1E221p12.71

MVE 105

4

LESSONS IN BLOCK 1

103, 104o, 104b,~105

00'

BLOCK TEST 1: 20 ITEM TEST,, a21 = 0.56 1

I LESSON 2010 I

LESSON 207,

FIVE2577EL

BLOCK TEST 2: 20 ITEMk TEST, a2, = 0.33 I

LESSON 301

LESSONS IN BLOCK 2

f
20Io , 20Ib , 202b , 204 ,205o,
205b , 206o , 206 b , 206c,207

IMVE 301 F--

t
4

ILESSOr 309 I

IMVE 309

BLOCK TEST 3: 20.. ITEM TEST, a21 = 0.47

I

4

LESSDIN 401

MVE 401t.
4

(LESSON 403c

1
LESSONS IN BLOCK 3

301,303,304,305,307,308

LESSONS IN BLOCK 4

401, 402 , 403, 404,
.405o , 405b , 405c

I BLOCK TEST 4: 20 ITEM TEST, a21 = 0.42 I

1 POSTTEST : THE' SAME TEST AS PRETESt, COEF. a = 0.63

Figure 3

Block diagram of student flow in Chanute APB CBE Project
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4
MULTIPLICATION or MATRICES

2.1 Multiplication of A and B

2.2 AB * BA

2.3 Scalar Product

2.4 Matrix Product

2.5 Quadratic Form

-2.6 The Principles 'Of Matrix Operatien
>

2.7 Diagonal Matrides

2.8 Scalar Matrix and Identity Matrix

2.9 Attitude Questionnaire and Posttest

You cane enter the section you worked last by
typing the section number. If this is your first
time in this lesson you should begin from 2.1

I;
Figure 4 Index page of the lesson aling multiplication of matrices
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for tb times spent in the two areas becafte fuzzy. (In fact, it led
to a/reduction from about ,n = 300 to about n = 100 in some analyses.W 4,
Howeve, since many students requested this option, it was implemented
after the Fall 1976 semester. Such are the disadvantages of collect-
ing data in conjunction with learning activities in which the freedom
to which graduate students are accustothed is permitted!

By contrast, if a student did not achieve mastery at the end
of a Chanute lesson, he was required to repeat the entire lesson. The
total time taken by each student to master each lesson was recorded for
the purpose of lesson validation. It was this mastery time that was
used for our 4nalyses of the Chanute data. The situation here was much
'!.'cleaner" and under strict control by the i4tructor in typical mili-
tary style.

Finally, it should be mentioned that some students in both'
courses took;notes ,during their studying, which of course lengthened
their study. times.. Since the percentage of such students amounted to
only about 1 or 2 percent of the total sample, we did not discard the
data from these students--which would have been difficult to do without
closer monitoring and log keeping than we were able to effect. We ra-
tionalized this state of affairs by regarding note taking as part of the
normal learning strategy for some people, and hence the time for this
activity should be included in their study time.

5. ANALYSIS OF PREREVISION DATA

Before presenting the results of analyses based on the prere-
vision data (which, it will be recalled, are the data from the matrix
algebra pretest prior to its revision in Fall 1976) we giire a brief
description of the PLATO IV system and tie programs, that were imple-
mented on it for this study. Virtually all of the programs were writ-
ten by Robert Bernie aside from some contributions made by Tamar.'
Weaver, Kay Tatsuoka, and Jerry Dyer in this order of involvement.

5.1 The PLATO IV System and the Programs

,t

PLATO IV (Programmed Logic for Automated.Teaching'dperations)
is a computer -based education system developed at the University of
Illinois at Urbana-Champaign having a large-scale central computer (the
Control Data Corporation Cyber 73-74) with about 1,000 terminals con-
nected by telephone lines throughout the United States. Approximately
5,000 hours of instructional material have been used in several hundred
subject-matter areas, andFadditionat lessons are constantly being de-

"veloped. The target populations range from preschool children to

23.
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graduate students, including such diverse groups as prison inmates and
sPecial'adult-eduCation recipients, like industrial workers, Armed
Forces, personnel, and the physically handicapped.

The PLATO eysted itself was used as the primary analytic tool
' for analyzing the student data collected automatically on the system,
besides serving as the delilerer'of instructional material. Data
processing can be done directly without having first to punch the data
onto cards, and the results can-6e utilized for such diverse purposes
as adaptivtesting, computer.managed instruction and item analyses
leading to modification of weak instructional units.

The computer language used is called the TUTOR, which is some-
where between FORTRAN and assembler language in its Capability and pre-
cision for numerical work. Each word of the computer is 60 bits in
lingth, which provides for greater accuracy than most existing computers.
This feature is especially at a premium when iterative calculations are
required as in the computing of gamda or beta integrals which abound
in statistical work. .Approximation routines for various theoretical
distributions were written, along with that for the Kolmogorov-Smirnov
test of goddness-of-fit of observed with theoretical distributions.
This involved a great deal of adaptations and modjfications of existing
statistical programs, mainly from the IBM Scientific Subroutine Package
(IBM, 1972).

Since PLATO operates on a large-scale time-sharing mode, spec-
ial problems exist in programming for it that are similar to using a
minicomputer in terms of storage size: The core size per user is
limited to 1650 words at a time for data processing. If the computa-
tional requirement exceeds this limit, transfer routines must be de-

' veloped for moving the data and intermediate results back and forth
between the disk storage and the core, where data processing is done,
successively within the limit. A list of the computer programs written
on PLATO expressly for this study is given in Table 2.

5.2 Weibull Fitting of Item Response-q/MNData

v

The 48 items of the matr ix 'algebra pretest shown in Appendix
B were implemented in the test frame written by James Kraatz of CERL
and modified by K. Thtsuoka into two parts--one allows us to edit data
and the other stores and transforms the data-format so as to be accept-
able by the programs, for estimating the Weibull and gamma parameters.
Data editing was necessary for several reasons. One was that we were
interested only in the first pass data, as mentioned earlier, even
though second-pass and third-pass data were also on record. Sometimes
the system would "crash" while the student was taking the test and he/
she had completed, say, the tenth item. Then the response-time record
for the remaining 38 items would consist of blanks. The TUTOR. would'

;
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Table 2

List of PLATO Progrdms Developed under the Project

Program Name Brief Description

matx4 The 48 item matrix algebra test. It collects
performance and response time data.

Shows and alldws us to edit the dataC Do the
simple item analysis.

.edittest

storetest

datam

gram

Transforps and stores the data collected from
matx4 intWa permanent storage (dataset).

Calculates the item characteristics of 48 items
and estimates the individual student's performance
level.

Estimates the individual gain scores by regressing
the time score difference onto the-pretest, post
test, and other variables.

Kappa Calculates Kappa index from a test.

)
ublr

matsubr

cutof f

Calculates various probability f4nctions.

Calculates the determinant of a matrix, inverse,
eigen_values, and eigen vectors.

.Evaluates the optimum cutoff scores of a'
criterionreferenced test, estimates the
probabilities of false positive' and negative.

llab Plots various _relationship between- the test,

information such as 21 vP'
positive, etc.

wb2
4

statedit

wb2area

kolmo

gamma

ability of false

Estimates Weibull parameters of the rata from
mat24.

Input output routine with a data format that was
adapted as the standard format for all prOgrams
developed by the NIE project.

Estimates Weibull parameters from the data stored-
.

via statedit format.

KolmogorovSmirnov testing routine for matx4 data
format.

KolmogorovSmirnov, testing for statedit format

25
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(Table 2 ,cont.)

wgraf

t
Comparison of Weibull distributions associated .

with the items. Density functions of various
Weibull parameters. Plotting.o'f conditional
response rates.

kgraf Draws graphs of Weibull distribution and density
function based on typed-in parameters.

Note. Various uaivariate and multivariate statistics routines were
eveloped to analyze our on-line data stored on the PLATO system. Also

several transformation programs,were developed. Their descriptions and
main programmers are listed in Appendix C.

s.
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0
memorize the item number at which the crash occurred, and would auto-
matically send the student -to the eleventh item on his/her second.
entry. At that time the response-time dat4 for the first 10 items
would be blanks and actual times would be recorded from the eleventh
item on. We then had to combine the two sets of data to get the score

0' and response-time data for the first try for that student. Sometimes
we would encounter data records in which the same response option was

e chosen for all items, thus indicating that the student (or instructor)
was merely examining the items and not taking the test. Such data
Would, of course, have to be deleted. All told, there was about a 20
percent attrition due to editing to clean up the data.

Using these cleaned-bp data, a Weibull distribution was fit-
ted to the observed time-score distribution of each item in three ways:
once for the entire sample, secondly for the subgroup of students who
answered the item correctly (called the "OK subgroup"). and finally for
the students who got the item wrong (called the "NO subgroup"). The
fit of the observed to the theoretical distribution was tested each'time
by the Kolmogorpv-Smirnov test of goodness of fit. The OK subgroup
'and NO subgroup had considerably different estimated Weibull parameters,
but both showed very good fits for most items, Ninety-three and 92 per-
cept of the 48 items had p-values'for the Kolmogorov-Smirnoir test of

goodness of fit with We ull distributions that exceeded ,20 in the OK
and NO subgroups, respecti ely, and 65 and 83 percent exceeded .50 re-
spectively. Considering the fact that two items which needed correc-
tions during the fall semester of 1976 due to unclear display on the
screen or ambiguous wording showed very poor fit,'with p7values of .

0.0053 and 0.0550, the fit of nearly all of the other items is seen to
be stisfactory to excellent. Weibull istributions did not fit the
time-score data of the total sample as w 1 as they did those of the
two subgroups. Only 69 percent of the it s had p-values larger than
.20, and 56 percent had values larger than This fact suggests that
students in the two subgroups are going through different processes to

groups might be entirely different.

0

complete each item; thus the nature of the time-score data in the two
-

Tables 3 and 4 show the p-values and the maximum discrepan-
cies' (z) for the OK and NO subgroups, respectively. Tables 5 and 6
show the estimate& Weibull parameters for the 48 items id the two sub-
groups.

p

Next arc shown figures illustrating the degree of observed to
theoretical distribution fits for two typical items in each of the two,
subgroups (Figures 5 through 8). The fits (or lack thereof) are shown
in two ways: ,first by superimposing the observed cumulative distribu-
tion graph onto the theoretical curve with the estimated parameters;

. and second by fitting the regressions lines of 9an(1-P)-1 on kn(t-to)
to-the observed scatterplot after determining the value of to yielding
the maximum correlation between these two quantities (see Section 3.1).

1k
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Table 3

K.Amogorov-S mirnov Tests for MatrixMlgebra Pretest;OK Group

item z 'N item p z N

1)
Acc"

8.209,7 1.0617 77 25) 0.3489 0.9329' .62

2) B.1571 1.1271 82 le 26) 0.3956 0.8979 59

3) 4.8832 0.5853' 68 f 27) 0.6966 0.7088 48

4) ,0.9716 0.4871 '69 . 28) 0.5620 0.7770 44

5) B.2504 1.0188 :79 29) 0.4534'0.8579 33

6) B.4419 0.8656 81' 30) 0.6424 0.74e 34

7) B.4675 0.8486. 67.; 31) 0.8145 0.63W '25

'8) B.1444 1-.1463' 61 , 32) 0.9983 B.3873 18

9) B.4140 0.8834 67 '33) 0.5176 0.8164 28

10) 0.6.237.0..75'20
A.

69 ,
7

34) 0.8719 025942 18

11) 0.3821-,0.9072 22 35) 0.5414 0.8017 30

12) 1..9621 0.5028 27 36) 0.5891 0.7727 36

13) 0.6196 0.7545 42 37) 0.3821 0.9078" 27

14) 8.9918 0.4335 46 38) 0.8945 0.5759 24

15) 0.4205 0.8803 54
.

39) 6 0.7887 0.6522 30

16) 0.6378 0.7437 63 40) 0.9963 0.4081 18

17) 0.8898 0.5798 28 41) 0.8640 0.6002 17

18) 0:2979 0.9749 59 42) 0.9714 0.4875 31

19) 0.8424 0.6160 29 43) 0.9726 0.4852 24

20) 0.3747 0.9133 40 44) 0.8142 0.6355 21

21) 0.5740 0.7818 37 45) 0.6191 0.7548 22

22). 0.0184 1.5314 59 46) 0.9776 0.4754 12

23) 0.7264 0.6908 28 47) 0.99544.4143 15

24) 0.2101 1.0611 47 f48) 0.9884 0.4467 7

Pretest for all subjects before 1976 F. semester:igoodness

of fit' testing for Weibull distributi,oris



Table 4

Kolmogorov-Saurnov Tests for Matrix Algebra Pretest;NO Group
item p. z N item
1) 0.9944 8.4206 9 25) 8'2910 8.9810 15

2) 0.9996
.1.-

0.-3,3A 2 26) 0.7675 8.6656 19

3) 0.7178 1.6465 17 27) 0.84040.6177 27

4) 0.4941 0.4222 16 28) '0.2901 S.9817 33

5) 0.8236 0.6291 6 '29) 8.5341 0.8862 44

6) 1.0000 B.2887 '3 30) 8.9017 0.5697 43

7) 0.4598 08537 16 31) 0.6827 0.7178 52

8) 0.9673 0.4946 22 32) 0.9174 0.5553 54

9) B.7671 0.6659 /r5 33) 0.9884 0.4689 ,46

10) 0.8990 0.5728 14 -34) 0.7752 0.6687 57

11) 0.0594 1.3260 61 35) 04633 0.7345 39

12) 0.8380 0.6191 56 . 36) 0.7309 0.6881 36

13) 0.9958 0.4116 41 37) 0.78 0.7916 47

14) 0.9998 0.3438 ,37 38) $!5712 0.7835 45

15) 0.7103 0.7006 27 39) 0.6857 0.7153 43

16) 0.9525 0.5164 -17 40) 0.8435 0.6153 54

17) 0.5022 0.8262 54 41) 0.1067 1.2105 53

18) 0.7430 0.6807 21 42) ., 0.5508 0.7959 40

19) 0.5990 0.7668 52 43) 0.9164'0.5562 42

20) 0.9359 0.5363 3-4 44) 0.3085 0.9658 47

21) 0.9493 0.5205 35 45) 0.1106 1.2030 45

22) 0.8630 8.6810 20 46) 0.9442 0.5268 50

231; 0.0827 1.2620 50 47) 0.8813 H.5868 39

24) 4.6237 0.7521 31 48) 0.7991 8.6454 22

Pretest for all sUbjects.bfoin1976 Fall semesterCgoodness
of fit' testing for Weibilfl,drilributions
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Table 45 If

.Yhe Three Weibull Parameters for Matrix Algebra Test Items.'
;

1-

items
1.

2..

5.
,

'E.:

2-.71
1.5.9

- '1.46
2.51
2.77
7.63

,

m. c.
0.98
0.98
0.99
0.99
0.99
0..99
0.97

1.05
1.32
r.15

1.34
1.26
1.15
1.14

yo

39.52
21.98

21.91
12.84
11;00
31.46

4ftb. 6.04 0.99 1.27 36.62
9. 1.63 0.99 1.38 28.37

10, 3.'52 1.00 1.38 18.28
10.53 0.97 29.82

12. 0.00 0.q9 1.34 109.63
13. 8.18 .0.99 1.25 64.46
14. 0.99 1.44 38.17

15.52 15.99 0.98 61.57
16. 47 0.99 1.16 38.47
17. 0.00 0.98 1.17 139%65
18%. 2.33 0.99 1.52 16.89'
19. 1.67 0.98 1.17 48.25

. . 0.96 1.45 66.83
21. 0.00 0.98 1.,13 68.66,
22. .19 0.98 1.59 19.82
23. 2.71 G.97 1.01 16.86

,.24. 1.74 *a 0.98' 1.19 12.93
25; 2%75 13.(P; 1.09 8.H0
26. 1.65 G.1:19 1.21r-

29

37 9*
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fable 5 (con t)

The Three Weibull Parameters for Matrix Algebra rz-..-st Items
,

items
27.
. . - - - ,
.._ .3 .

31 .

3.'.
33 .

34.
3';'.
36.
37.
38 .
39.
411.

41.
42 .

4 3 .

4 -,-r .

45 . .

46.
47 .
48.

4-
-0

1 .. 96
. 51 9

6.60
:1: . 7 9

F.00
7 . 68
0.67
2 . 95
4. 73
2 . 66
2 . 68
3.75

15 ..8 5

[7i I. 46

1.29.
2.80
2 . 65
2. 8
3 . 63
6.56

m.cl.\\
0 . 99

J1^" ,-----

1-1)-11.I. .: .'::)!I il::',.''

.171.'-.0-

0 . 98

0, 99
0.98
0 . 99'
1 . .10

F. c..! 9

.0' . 99
0 .98
1.00
1 .J,1 0.

1 . fitif

0.99
.0 . 99

1 . 013

0 . 99

'

c
.3 . 75
011.77

11,1:117ri

t::::11:62143

0 . -77

.1 . 92
0 .. '73

1 . .0.6

1 . 28
113. 70

1.14
1.47
0 . 98
0.89
1 . 08
0.94
0. 88
0.81

,
yo

19. Ef8
. 16 . 39

24. 34
35 . 26

175.'45
33 . 73
59 . 48
12 . 49
14. 34
13 . 32

:3 . :2

8 . 0 q

25 . 48
25.81
17. 20
1 2 . 86
10' . Q 4

22 52
1 15 . 5'6

10 . 72
"

4.

:, ,v.,

J

Ob
Pretest given before 76 Fall semester, OK subgroup

-0

29a
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Table 6

The Three Weibull Parameters for Matrix Algebra Test Items

items :to rn.c.. c J1

1, , 10.66 0.99 0.88 33,96
,
,...., 0.05J 1.00 0.98 3.50
3. 0.00 a.07 1.06 13.05
4. 1.73 0.99 0.69 14.54

- 5. 0.00 0.3.9 1.07 6.62
6. k 0.90 1.0 0' 0.55 2.13
7. 1.52 0.97 0.78 38.31
8. g.00 -0.99 1.05 37.07
9. 0.73 0.98 j.05 15.16

10. 0.00 0.98 0.92. 20.69.

11. 1.35 ii.f. 96 1.11 31.80
ty 1--.------ 0.59 1.00 0.91 69.67

13. 4.49 1.00 i 1.01 .38.08

14. 0.00 1.00 1.13 46.24

15. ,1.52 0.90 0.66 60.92
16. 0.92 0.99 0.38 19.33
17. C..72 0.99 0.88 51.96

18. .1.86 0.99 0.80 15.00
19. G.26 0.98 0.92 25.56

20. 0.92 0.99 0.62 22.99

21. 0.92 0.99 0.69 34.0'3

22. 0.18 0.99 1.04 13*.43'

23. 2.69 0.99 1.23 14.41

24. 0.00 £1.97 1.56 12.48

25. 0.'36 0.99 1.01 13.18

26. .0.64 0.99 0.76 17.g1

(
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Table 6 (con' t.)

9

* The Three Weibull Parameters for Oatrix Algebra' TeSt-,It ems

1

,..I

.

items'

27.,..e .

28.
29.
3o.
31. ,

3'.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

._

1

tz

0.73
0.94
8.63
0.85
0.66
1.03
1.77

'0.55
0.94
0.71
0.52
0.95
0.87
0.78
0.32
1.97
8.44
0.88
.0.96
0.70
8'.00
0.00

(
'

m. c.

0.99
0.99
0.99
0.99

:1 . 1] .8

0.59
0.99
0.99
0.99
0.99
0.99
1.00
1 . ZO

0.99
Z.99
0.99
'0.99
0.99
4.00
0%99
0.99

,c.,

0.95
.0.68
.0.87
-0.93
.0.95
0.94
if . 80 i
1.15
0.64
1.00
0.98
0.35

, 0.92
1.10

, 1.16
0.75
0.97
0.75
0.7'4
0.02 -

i 0.E:2
'0.96

Y0
9.32
6.21

13.67
18.07

....2.63
51.93
58.73
31.48
18.60
7.22

16. A'
10.57
7.77
8.34

39.03
11.669.f.e-
5.99
6..;4

11.70
17.10
24.23

03

Pretes!: riven be f,-)r° Fall 7 =r, subgroup

30o,

40
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OK Group quef,--.tion number 1

2.71, max. corr. = c = 1.G53, = 39.52

'7

r
_>

j/
ii"

/

t

?

fWe DiF,fribution: n= 77.

03
i

7i
Th hyp;pth,:,:sis is ±h.-.,t the aa-1.7.

ar.z.--, from a ..leibull diz....tribution.

C.Dn r,!.,:dcct 1-15,,p.:::i:hsi:3 wiLh pnob-

abilii-5, Z.:U.197 of 1-.ein.:, wrong.

I"z"- lor thi.5 TzmpLEI, is 1..062.

.11.1

0.1 )
1)

....

,

. ,

0,G .°

, 'ff 5.0 1gg 150 ,20g f... J
,r4t71 '31f:q 37.1]:(

-./. axis: rez;ponFv- -1-ifor,..7, (3 to ,116)
-MP

LA3 for g.fra;;.h,,NET f.:r nf2xt qivs..,%fion.

Figure 5. Goodness of fit test for the time-score data and Weibull
-distriblition function
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P,Q

question 1

rz

-

f --;

if K 3 4

0

n= , (.1) 3 , (n) = 416 , . 1,Fr 1 . 2 2ci 97

4-0= 2-.71, c=1..05:-.I, p . F.; 2 , 1) . 336

. qu i on, LAD : slot: arid

Figure 6 Plot of lnln(l -P) -1 as yaxis and ln(t -to) as x axis. The line

is the regression equation of y on x.
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OK Group que-Fifion number 16

'5.47, max. corr. = 0:99, c = 1.161, po.

6

0.5

0..41

G.3

7

4

WeIbull Distribution: n = E-3.

4,I-he_ h.p:Ahesis is that the data

fr.No a 7i5tr1butin.

0.2

Can rej,-.2c.t wije_h prob-

abi,it.) 0.6:378 of

z for thi.-3 is g.7437.

0.1

.G.0 : 4 :

_ .----L --1---- , I

q ..______J...____J

,,0 25 5Z 75 11:0 1Z5 15J.1 175 2'-illf

., :: a -, 1 :.3 : i t7:':".,:0:-.:, n'.3 2 "1: i 17, '1:"=. (IS -1-X,N ;;:? ':.1

LAB for :--rriph, NE, f,.7.r nc.:-;,t qu.::-,,,Li,.,.n.

Figure 7 GoodneSs of fit test for the time-score data ,nd Weibull
distribution function
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N
1

question 16

7

-

1 3 4

n=6:3, x ( 1,i = 6 ,

1 7_ =
55.47, c.:= 1

ti. (n) =221,1

. ). C. I }t.

,

2.i 8

Fi-: '1";

, ,

...r.-7,1 = f y 9 9

) (1- t C = ,0

13.37

:7;0,1 E.

NEXT: ne-xt quesir.,n, LE:5:

Figure 13 Plot of in ln(1-P)*as y axis and ln(t-to)as x axis.
,lineis the regression equation of y on x.
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Since the Kolmogorov-Smirnov testing procedure looks only at the maxi-
mum

I
discrepanc)* (z) between the observed and theoretical cumulative

distributions, Vlp resultant 'goodness -of -fit" depends partly on the
size of the intervals or units of measure used. In the matrix alge-
bra pretest,'the item 'response times were recorded to the nearest
secondand hence this undesirable feature of the Kolmogorov-Smirnov
test seldom manifests itself there. Even so, when the time range is
small (as in true-false items) and the sample size is relatively large
there are occasions when the p-:volue is rather small despite the fact
that the fit looks very good to the eye. This trouble (if indeed it
be a trouble) increases when we come to analyze lessons, where the times
taken are recorded only to the nearest 10 seconds and is further ag-

,
gravated when we get to the Chanute data, where the time unit is minutes
and some lessons take only 25 minutes at a maximum.

5.3 Characteristics of the Pretest Items

The performance-score-data from the pretest items were pro-
cessed by the computer program developed for computing various item
parameters. (See description in Appendix D.) Some of the results are
displayed in- Table'7. The first column in this table, labeled "Dif-
ficulty 1," shows the.values of the traditional difficulty index--i.e.,
proportion of subjects. getting the items right. The second column
("Difficulty 2"),.on the other hand, g values of a modified diffi-
culty indes due to Loeschner (persona communication). It is defined
as the estimated average probability t at the particular item (i) is
answered correctly but another item (j) is answered incorrectly when a
randomly dratin subject is given both itemsi and j. The formula is

n n..
(5.1) Difficulty 2 =

j1
(n-1)N

=1

where n is the number of items in the test,
Nis the number of subjects taking the test, and
n.. is the number of subjects who got item i right but item j
ij

wrong.

The reason we regard this alternative "difficulty" (actually
"facility") index worth considering along with the traditional diffi7
culty index is as follows. The topics covered in a matrix test are, by
their nature, hierarchically ordered (or, more strictly speaking, lin-
early related). For instance, in order to be able to compute a matrix
inverse, one must know what an identity matrix is*, must know how to
multiply matrices, must know what cofactors and adjoilits are, and how to
calculate the determinant of 'a (square) matrix. These prerequisite
knowledges must have been mastered earlier and the required calculations

45
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Table '7

Difficulty indecis, discriminating power, and
the rnrrelation of the total score and item-time score

item DifficultY1 Difficulty2 rs,i rs,ti

1

2

3

.4

5

6

7

43.

9

10

11

12

13

14

15

.16

17

18

19

20

21

22

23

24
25

26

27

i8

29

30

31

32

33

34

35

36

37

38

39

40

'41

42

43

'44

45
46

47

48

.90

.95

.79

.80

.92

.'94

,..78

.71

.78

.80

.26

.31

.49

.54
1.63

.73

.33

.69

.38

.48'

.44'

.69

.33

.55

.72

'.69

.56

..51

.3-8

.40

.29

.22

.33

.21

.35

.44

:31

.28

.34

.21

.20

4)36

.28

.24°

.26.

.14

.17

.22

.44 .43

.48 -.48

.39 .32

.39 .40

.46 '.39

.47 .45

.36 :50,

.32 .55

.36 .53

.37 -.59

.3 .07

.13 .35

.20 .49.

.23 .50 J

.27 .62

.33 .58

.11 .58

.30 .64

.12 .53

.18 .60

.17 .56

.31 .50

.13 .43

.23 .56

.32 .61

.32 /

.23 .3

.22 .48

.f4 .59

.16 .50

.11 .44

.08 .36

.11 .60

.08 .39

.14 .41

.18 .51 .32

.12 .43

.11 .41

.12 .57

.07 .41

.07 '.40

.13 .62

.10 .52

.09 .41

.07
I%

.65

.03 ' -.55

.08 .19

.07 .54.

36 4 6

-.03
.03
.08

.07

-.07
.10

.02 .......

:16

".08

.05

:06

.39
-37
.28

.14

.13.

.39

.19

.27

.24

.41

.30

.35

.33

.2.0

'bi
.38

.21

.38

.38

.39

.38

to
.34
.46

.42

.35

.42

.41

.42

.46

.43

.38s

.32

.34

.42

.07

Ne,



,,carried out without error in order to achieve the goal of getting a
matrix inverse. These prerequiSites were taught in the first three
lessons of. the matrix algeb'.a course. The various test items in the
pretest were roughly ordered by the difficulty of the topic involved.

.

Bob Linn (persdn.al communication) suggested that the diffi
culty index (proportion of correct answers) of items should be expecte

4 to have a perfect negative rank-order correlation with difficulty of
topic. Theis is so because, for instance, nobody should be able fully
to understand the import of the identity matrix without first knowing
,

how to multiply matrices. Thus, if item i test for the knowledge of
matrix multiplication, while item j tests for deretanding the concept
of the identity matrix, it is natural to expec that anyonewho got
item j correct will also have answered item i correctly.

Now, we sorted our subjects x items score data by item "diffi-
culty" (proportion of subjects answering correct) and by total score
earned by each subject. The result is a plot of dots and blanks in a
p ttern like that shown in Figure 9, which resembles a dcalogram. The
u per left-hand corner represents the score (dot = 1, blank = 0) on
t e easiest item earned by the highest-scoring subject. Thep the points
at which the number of dots to the left equals the total Score were con-
e ted'by a "step line," whick Sato (1977) called the 1'S-cueve.. " If

th data were Orfect, i.e., if the items were scalable in-Guttman's
/

(1947) sense, and the item scores were error- f.ree, then the sum of the
estimated conditional probabilities p(Xi = 1 1 Xi = 1) over j = i + 1,
i + 2, . . ., 48 (where Xi and Xj are the scores on items i and j, which
are either 1 A 0) will be given by the shaded area in the figure.
This value is asso S 'ated with the relative importance of item i to the
items testing for mo e'advanced topics. We related these sums for the
48 items with the difficulty of the topic being tested and found a ''')

nearly perfect rank-order matching; only three items were disarrayed.
(Thanks are dye to Bob Linn for'suggesting that we consider the condi-
tional probabilities. It was our idea to sum them:,,)

It should now be clearrpthat Difficulty 2 2s related to the
*sum of the,conditional probabilities complementary to those considered
above. Hence this alternative "difficulty" index is ofiginterest quite
apart from the traditional difficulty index.

Thelliscriminatingpowerr.in the classical test theory
5,1

sensei'Sshownsinthethirdcolumn,Ighilethecorrelationrs
ti

between
,

item response time and total test score is given in the last column.

Since the test is a pretest for a difficult` subject that reqkres high-

er cognitive skills and most f the students were not mathematics or

physical-science majors, alm st 65 percent of the items were tough prob-

lems. The 88 students on t e basis of whom the results in Table 7 wire.
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Figure 9 Graphical explanation of difficulty2
(Loeschner's facility index)'

Note. Tfie 48 items are ordered by their difficulty index so that the

easiest item is placed at the leftmost, and the hardest at the rightmost

position. The 86 students are also ordered by their scores from the top line

as the-highest, to the bottom as the lowest. A small dot stands for a

correct answer 1, and a blank is for wrong, 0. The two step lines represent

the total scores of each student and number of right answers for each item

respectively. The shaded area represents difficulty2 of item i when a test

is perfect.

11..,
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computed excluded those who were taking (or who had completed) the most

advanced of the three statistics courses using the matrix algebra

course, and hence the r
s,i

values are not very high. It may be noted

that r
s,ti

increases as the difficulty indices get smaller, which is

reasonable because a person who gets higher test scores tends to stick

longer with ,difficult items while less able students ,give up on them

and go on 'to the next item.

Table 8 shows the correlations among the four measures (two

of which are themselves gorrelation coefficients) that were displayed

in Table 7 and were discussed above. It is seen that the two types of

item difficulty (actually "facility") indices correlate almost perfectly

with each other. (It'might therefore be argued that the second index,

Difficulty 2 is gratuitous, but it does have somdesirable ivoperties

discussed above that are not possessed by the traditional difficulty

index.) On.the other hand the two "discrimination indices" are uncor-

related with each other, and instead r
s,ti

(or rather its Z transform)

shows a moderate negative correlation with the "difficulty" indices.

Table 8

,Correlations Among Two Item Difficulty Indices and
TwoDiscriminating Power Measures

1. 2. 3. 4.

1.

2.

3.

4.

Difficulty 1

Difficulty 2
*

Z(r
so.

.)

Z(r )
s,ti

1

,:991

.241

-.492

1

175 1

-.018 1

*These are Fisher's Z-transforms of the correlation coefficients
shown in .the parentheses.

Recalling from Table 7 that no item actually had negative

to speak of (only two values were negative, but they were

zero), a low rsti value means that students havinghgh

and those with low total scores showed little difference

41

r
s,ti

values

practically

total. scores

in time taken
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to respond to that item. Hence, the moderate negative correlations be-
.

tween*rsti
and the _"difficulty" indices, just noted, imply the follow-

ing relations: It was the easy items (i.e., those with large

"difficulty" index values) that tended, by and large, to exhibit little

differences in response time between those with high and low prior

knowledge of matrix algebra. Conversely, the more difficult items

tended to how larger differences in response time between high and low

total sco e students, with high scoring students tending to take longer

time.'4We may therefore infer that students with higher prior knowledge

of matrix algebra tended to persevere longer on difficult items while

those with low prior knowledge tended to give up on them sooner. This

is a reasonable result, and by itself is almost trite (except that it

does seem to confer some construct validity to the test) but it has

some implications for subsequent interpretations of the Weibull shape

parameter, c.

The Relation between Discriminating Power and Time. Woodbury
(1963) and Novic (1966) developed a model involving time that identi-
fies the measurement process with the realization of a stochastic pro-
cess. However, their definition of\t1,4e,time parameter, t, is the
examiner-controlled time allowed for the test, in other words, the
length of the test, whereas the time score we have been using is the
time taken by an examinee as needed. Their studies showed that there
is some optimum time that maximizes the reliability of a test. Even
though their definition of time for a test and its relationship with
test theory are quite different from our usage, we were convinced.thata,
by controlling time after the fact in the scoring' process, we could
demonstrate a similar relation from our data between time score and ,

some established concept in test theory. Testing out our hunch, we
found two interesting empirical relations between time and discriminat-
ing power. Specifically, when a test item is easy, there is an optimal
time point within a relatively short time interval such that the dis-
criminating power of the item becomes the largest. On the ot,her hand, 1

for difficult items, the longer the time allowed the better. the discri- _

minating power. These relations were observed fairly consistently for
48 items in two samples of about 80 and 100 subjects-2-i.e., data from
the prerevision and postrevision matrix algebra pretests--and also for '5

the posttests foelhe lessons on multiplication, matrix inversion,
transformations, and eigenvalues and eigerlvectors.

Figures 10 through 12 illustrate these relations, while Table
9 displays the numerical detail on which Figure 10 is based. (Corres-
ponding tables'for Fig4res 11 and 12 are omitted to' save space.) To

o
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&plain the,construction of Figure 10 and the contents of Table 9, the
40 subjects in the OK subgroup for Ttem 20 were first arranged in as-
cending'order of their times taken. The fastest 10 percent (n = 4)

/I of the subjects, with response times no greater than 20 seconds, were
taken and only these subjects were regarded as having answered Item 20
correctly. The Item-20 score and the total test score for 36 subjects ,

were thus modified, with the scores (1 or 0) on the other items left
unchanged for all 4Q subjects. The point biserial correlation calcy-
lated between the modified Item-20 score and the modified total score
for the 40 subjects, is what is shown as the first entry, .018, in the
last column ("adjusted discrim.inating power") ofTable 9 and is the
ordinixe-of the first point plotted in Figure 10. Next the fastest
20 percent, with response times no greater than 29 seconds, were scored
1, and the others scored 0,'on Item 20 and the total scores accordingly
modified. The point biserial thus calculated is.the second entry, -

ate.139, of, last column in Table 9 and is ord. ate of the second point
in Figur 10. The same process is repeated for he remaining cutoff
percentages, 30, 40, . . ., 90 percent, yielding adjusted discriminat-
ing powers .272, .456, . . ., .145, respectively. The last cutoff
percentage (100 percent) necessarily yields a point biserial value of
zero, because all 40 subjects now ar( scored 1 on Item 20, since only
the OK subgroup was used. For this subgroup Item 20 was obviously an
extremely easy item (everyone got it right), and the maximum adjusted
discriminating power .497 occurs when the cutoff percentage is 50 per-
cent, with a cutoff time 42 seconds, thus illustrating the time vs.
discriminating power relation stated above for an easy item.

Figure 11 shows the time vs.,discriminating power relation
for the same item, but now usifig-t-he total sample of 74_"earnest"

subjects (i.e., those who chose an option at all for Item 20). Of

course not all of the fastest 10 percent (n = 7) were.scored 1 on Item
20 this time but only,those among the seven who actually got the item
right were,so scored. Similar scoring was used for the fastest,20 per-
cent; fastest 30 percent, etc: through the entire groUp. Item 20 is now
a moderately difficult item, with 40 out of 74 subjects getting it
right, and the maximum discriminating power, .597, now occurs at cutoff
percentage 80 percent with cutoff time 70 seconds.

Figure 12 presents an exception to the rule. .Item 16 was an-
item (73'percent got it right, as shown in Table 7), and yet the

maximum discriminating power, .462, occurs with 100 percent cutoff.
Thus, the empirical generalization stated earlier is not a perfect one,
suggesting that other faclors besides item difficulty must affect the
relation.between discriminating power and time. Theoretical work on
this issue is planned.

11"
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5.4 Interpretation of Weibull Parameters

0

We sa in Section 5.2 that the response-time data for practic-
ally all of the 4 matrix-algebra pretest'items were well fitted, and i4 A

those fOr a large ajority of them were excellently fitted, by Weibull ,

distributions. It/is now time to engage in some interpretations of the,
observed fit. Thp first thing to note is that the Weibull distribution
for an iifeii>la....the OK subgroup (those who got,,the item correct) and that in

the NO ubgroup showed interesting differences. Thisis apparent from
a co arison of Tables 5 and 6, given earlier. Let us now focus on a
cou le of specific items and. compare their Weibull` parameters for the
twd subgroups.

For example, Item 10, which asks for the transpose of a 2 x
atrix (see Appendix B), shows quite a contrast between the two sets of

Weibull parameters.), The OK subgroupThas larger values for all three
basic parameters than does the NO subgroup:

t c
`110

OK subgroup 3.52 1.33 29.82 30.73

NO subgroup, 0.00 .92 20.69 21.50

Here p is the theoretiCal mean, denoted earlier by E(t) and related to
the three basic parameters through equation (2,7):

p = t
o
+ p

o
F(1+1/c).

Similarly, Item 16 (finding the product of a (2x3) and a-k3x2) matrix)
has Weibull parame#rs as follows:

OK subgroup'
NO subgroup

t
0

5.47'

.92

c

1.16

.38

Po

38.47

19.33.

11

.94

.85

Since to is the theoretical minimum time required forrleXam-
o %'

inees to arrive at their answer, it is only natural that t e NO subgroup

had the smaller value f both items. Most members of thi subgroup

simply pressed the NE key or made an incorrect gueSs. They usually

don't knovPwha..t the transpose of a matrix is or how to multiply mat-

rices. They may have had some exposure to the rudiments of matrix alge-
.=

'bra a college algebra course ap/ong time ago, but since they had no

4
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further contact with matrices they have forgOtten what little they knew.

Thus it seems safe to infer that anyone whose response tim4 to an item

is closer to the t
o
value for the NO subgroup than to the t for the OK

o

subgroup must have guessed at .the answer instead of attempting to solve

the problem. However, this is still in the realm of speculation, and

we will examine the issue further in the context of posttest data.

Thirty -seven out of-the 48 items have'larger values of c (the
shape parameter) in.the OK subgroup than in the NO subgroup, but the
oppoSite is true fr. 11 items. Sik of these 11 items Were of the true-.
false type, and two ,involved either an ambiguity of wording or an'incon-
spicuous symbol (' for the transpose of a matrix). Thus, a majority of
the items for which the c value in the NO subgroups was larger than in
the OK subgroup had, something unusual about them.

Returning to the two items cited above, both were among the 37
"normal" items for which the OK subgroup had the largee"value of c.

-Looking at the p values for the two items, we can infer that Item 10
was easier than Item 16. (In fact Table 7 shows that the "difficulty
index"--which should be called the "ease index"--had the values .802 and

,.733 for the two items, respectively.) The difficulty index and c are
indeed positively correlated, at least. for the OK subgroup.

Table 10,in the next subsection shows that the c for the OK
subgroup correlates (across the 48 'items) .41. with the difficulty index3
as computed for the total sample, while thi c for the NO subgroup cor-
relates -.15. These are not exactly high correlations, but when the c
is based on the total sample (not shown in Table 10) the correlation
increases to .56. If the c'from the NO subgroup is partialled out, ,

the partial correlation between c in the total sample and the difficulty
index is .70. Since the time-score distribution in the total sample
does not fit the Weibull distribution as well as those in the OK and NO
'subgroups separately, however, the parameter c based on the total sample
may not by very meaningful. We'may have to introduce a composite
Weibull'Astribution (cf. Mann, Schafer and Sigpurwalla, 1974, pp. 140-
142) to, fit the total sample, but we have note done so in the present
study.

1
The upshot of the foregoing discussionseis

meter, c has something to do with item difficulty, bu

be identified with it. In a sense, c has a "richer"

that the shape pare-

t not so much as to

meaning than the

3
Unless the suffix '2' is,attached, "difficultyQTex" will always

dente the traditional difficu4y index and not the alternative index
introduced by Loeschner.
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usual concept of difficulty, since it determines the shape of the cumu-

lative distribution curve. The nature of its relationship with, the

distribution shape is illustrated in Figure 13, which depicts the

Weibull distribution with t
o

= 10, p
o
= 30, c = 1.5 (curve 1) and that

with t
o

= 10,? p
o
= 30, c = .8 (curve 2). Curve '1 is seen to approach

its asymptote more rapidly than curve 2 does.4 Although, by defini-

tion, the graph of any distribution function must asymptote to F() =

it may approach different values within "reasonable" ranges of the time

variable, thus indirectly reflecting different item difficulty levels.

To further illustrate how c determines distribution Shape
with real item data, we again return to Item 16. Figure 14 shows the
distribution curves for .Item 16 in both the OK subgroup (curve 1) and
the NO subgroup (curve 2): Curve 7. starts at to = 5.47 on the time axis'
and converges, to 1 faster than does Curve 2. It is interesting to
note that about 40 percent of the NO-subgroup examinees leave this item
before the (thec4etical) minimum time,5.47 seconds, for the OK sub-
group. Ten percent of the NO-subgroup examinees spent too long a time
without achieving success-while almost all subjects irk the OK subgroup'

arrived at the answer in 130 seconds. These facts suggest that it is
not necessary to allow more than 130 seconds for people to answer Item

16. The density-function curves for both subgroups are also shown in
Figure 14, but their scale is different from that of the distribution-

function curves. The unimodality when c > 1 and absence of a mode when

c 1, alluded to,in Section 2.2, is here seen for fits to real data.

,The conditional response rate (CRR); which formed the theore-
tical basis for deriving the Weibull distribution in Ssection 2.1, is
here given for real data, that for Item 16 again. Curve 1 in Figure 15
sh2ws the CRR for the OK subgroup, with c = 1.16, and'Curve 2 that for
the NO subgroup with c = .38. Curve 1 increases monotonically with
time, indiCating (loosely) that the longer a person sticks with Item 16
the more likely it becomes that, he /she will get it right if indeed he/
she gets it right at all.. Curve 2, on the other hand, decreases rabidly

with time. Among people who do not get Item 16 right, the longer they
stick with it, the less likely it becomes that they will espond toit
the next instant, given that they haven't responded to it so far. Vh

otheryords, many subjects gave the wrong answer early on but the "giving

up" rate slowsolOwn as time goes by. It might be said that CRR expresses
the degree of involvement in an item by examinees. But further expli-

- cation of this eoncept must await further research.

4 In.fact, it was this relationship with the speed of "convergence"
to asyytote that led us to denote the shape parameter as c.

N
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Next, we yectified five lets (four pairs and one triplet)
of items that respecttively had the same difficulty index in the .tradi-
tional sense and were on the difficult side. The c-values (determined
for the OK group) of the items within the "isodifficulty" sets were con-
sistently and fairly substantially different. Examinatio of the item
contents revealed that the c-values seemed to reflect a m re 'ntuitively
plausible notion of "item difficulty"-than did the traditional diffi-
culty index.. The data are as follows:

Difficulty Index Item crvalue
(Proportion Passing) Number (OK group)

.279 38 1.062

.279

.114

.314

.290 .

.290

.290

43 .982

1.336

1.019

12

37

17 1.173

23 1.014
33 1.240

9

Item Content

A property of orthogonal trans-b
formations
Variances and eigenvalues

Tricky problem on order of
matrices
Property of orthogonal trans-
formations

Symbols for Matrix/vector oPer-
ations,,

If AB'- AC then B = C
Matrils.inverse: numerical
example

.349 35 1.917 Orthogonal transformatioriP
numerical example

.349 39 1.276 Simple property of orthogonal
transformations

.442

.442

21 1.126 Row-wise expaneionof deter-
minants.

36 S84 , Property of orthogonal trans-
formations

The foregoing data.suggest that the 14eibUil parameter c a yAbe a more
' sensitive measure of the conceptual difficulty of an item han is the

traditional difficulty index defined as the proportion of examinees

67

getting the item right. In fact, for the OK group the items are com-
pletely undifferentiable by the traditional difficulty index, since
the value is 1.00 for every item. Yet c enables us to differentiate
among such items by detecting different rates at.which the asymptote
is approached.%

Items 36 through 39 all ask the Simple properties of orthogonal
'transformations. Their difficulty indices are .442, .314, .279 and
.349, respectively, but their c values increase monotonically in the
order the items sere presented: .784, 14019, 1.062, 1.276. This makes

60,
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sense when we consider the concept of, or the redoning,bellind, the
Weibull parameter c.in general. The CRR for questions related to the
same topic seems to increase as the familiarity with the topic increases,
as it should from earlier to later items on the same topic. Thus, the
parameter c, seems to be related to what may be termed degree of involve-
ment on the one hand and degree'of familiarity on the other. Both '

these are indirectly related to difficulty but are conceptually dif-
ferent from it.

e

To conclude, the means, across the 48 items, of the three Weibull,
parameters in the two subgroups were as follows:

OK subgroup
NO subgroup

to(sec) c p
o

2.7 1.125 33.05 0
1.1 ,- .903 22.50

---

We did not discuss the scale parameter p
o

in the foregoing, but in view

of its mathematical relation, p = to + po r(1+1/c), withthe theoretical

mean of the distribution,it hardly needs discussion. Since the mean

of p
o

fn the NO subgroup than he r1101( subgroup, we may con-
,

elude that, on the average, the NO subg up spent less time per item

than Aid th? OK.sUbgroup in the matrix algebra pretest..

5.5 _Correlations among j4eibull Parameters and Item Statistics

The foregoing concludes the main anolyses carried out on the

data from the original version of the matrix algebra pretest. To ex-

plore other possible relations,, however, the three Weibull parameters

and the maximum correlation between knin(1-P)
-1

and kn(t-t
o
)4 that was

found in the process of estimating the parameters (see Section 3 1) for

the OK subgroup and the NO subgroup separately were correlated wit' the

Kolmogorov-1Mirnov 13-wanes in the OK subgroup and six other item stat-

istics based on the total-sample. There were thus 15 variables in all

but the p
o

in the NO subgroup had to be omitted becfuse of storage limi-

tations. The resulting '14 x 14 correlation matrix is shown in Table 10,

where the correlations significant at the 5 percent level are asterisked.,

(All correlation coefficients used as input variables were transformed

into Fisher's Z before being correlated with bther variables.)

00
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.1. to (OK sub-group)

2. max. correlation

3. c .

4& Po
5. No. of options
6. o from Kolmo.
7. Difficulty 1

8. rs,i
9. rs,ti .

10. Difficult y.2

11. Average time
12. to (NO sub-group)
13. max, correlation

Table 10

A Correlation Natrix of Velbull Parameters and Item Statistics,

1:

1.000

.067

2

1.000

3 4

-.169 .185 1.000

-.285* -.184 .245 1.000

-.066 -.179 .316* .438*
.095 .143 -.331* .033

-.007 .,55 .406* -.137'

-.029 .109 .160 .100
-.210 .124 .097 .340*
.016 .1.31 .374* -.169
.131 -.149 .183 .912*

.016 -.048 -.003 .143
.088 .000 .091 .117

.240 -.031 -.170 -.189

5

1.000

5 7 8 9 10 11 12 13

.023 1.000

.113 -.611* 1.000

-.049 -.216 .241 1.000-
-.066 .271 -.492* -.018 1.600

.163 -.582* .991* .175 -.544*.1.000

.541* -.015 -.004 .089 .219 -.030 1.000

.080 -.167 .187 .009 -.189 .188 .259 1.000
-.108 .140 -.243 -.021 .222 -.262 .083 -.004 1.000
-.\221 -.024 '-.153 .:.232 -.133 ,-.136 -.157 -.108 .186

....

*Significant at .2 < .05; i.e., r -.285. N 48 items.

Nate. All correlations were converted by Fisher's 2-transformation.' The first 4 variables are
of OK subgroup, the last 3 variables are of 110 subgroup.

o
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The Weibull parameter c of the OK Subgroup correlates with
.the numbers of options in the items (.316), difficulty 1 (.406), the
artsine transform of the Kolmogorov-Smirnov p-values (-.331), and dif-
ficulty 2 (.374). The negative correlation with the Kolmogorov-Smirnov
p-value is probably largely an artifact, because items with small values
of c 'tend to be more difficult and hence the QK.subgroup"for those items
tend to be smaller,'thus inflating the "significance" and decreasing
the p-values. When the difficulty index is portioned out, the correla-
tion between ,c and p drops to -.115, which is nonsignificant.

The shape parameter in the OK group also correlates .316 with
the number,of options, meaning that itemsewith more choice"options
(which ratiged frbm two for,true-false items to five for the multiple-
choice item with the largest number of alternatives) tended to have
larger c values. interpretation, suggested earlier,'that the
itedc-value reflects degree of engagement students show with the item
is correct, we may conclude that within the range represented, the lar-
ger the number of optieels the greater the engagement students feel.
This seems reasonable since items with more alternatives present more of
a cognitive task and hence probably induce greater involvement on the
part of students. To put it the other way around,this observation
lends further support tour notion that c reflects degree of engage-
ment. It should be mentioned that portioning out Variable 7 (diffi-
culty 1) does not affect the correlation (the partial r is..30-hence
the correlation between'c and number of options cannot be explained
away by arguing that the larger the number of options the afore diffi-
cult the item tends to be.

It is interesting, although rather .disappointing, to note

that none ,of 4e Weibull parameters correlates with item discriminating

1s
power, r

s,i

Next, the scale factor'po corriiates moderately to highly

with the number of options (.488), rs
ti

(.340) and the observed average

time (.912). Since Po is fufictionally related to p (the theoretical

observed time--see equation (2.7)) its very high correlation with ob-

served average time.is also to be expected. This in turn 'explains the

moderate correla ion between p
o

and number of options, since the larger

the latter is t more time it would take, by and large, to respond to

that item.

Tte p lues from the Kolmogorov-Smirnov tests of goodness-of-'
fit in the OK subg oup have correlations -.611 ind -.582 with difficulty
1 and difficulty 2, respectively. This, too, is probably an artifact
to a large-extent in that the p-values tend to decrease as sample size
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increases, and large n for the OK subgroup means an easy item whose
"difficulty'! indices would be large.

The correlation r
tis

between item response time and total
,

test score in the total sample of 88 subjects correlates with p
o

(.340),

difficulty 1.(-.492) and difficulty 2 (-.544). The negative correlation

with the difficulty index has already been discussed in the previous

subsection. The positive correlation with the scale factor p
o

is dif-

ficult to interpret.

It should be noted that the Weibull parameters, t
o'

r and
max

from the NO subgroup did not correlate significantly with any of the

other 11 variables. This is probably because the data analyzed hee is

for the pretest,'and members of the NO subgroup know little if any mat-

rix algebra. The situation changes considerably when we analyte the

posttest data in.the next section.
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° 6. ANALYSIS OF POST-REVISION DATA

. After the results from the "original version of the matrix
algebra pretest were analved, and partly'as a consequdnce of the analy-
ses, several items were mddified to correct ambiguities in'wording or
defects in the display. Another change made in thetest was, as men-
tioned earlier, that the option of pressing the NEXT keylito go to the
next item without answering the previous one _was eliminated. This change
was made at the request of the instructor of one of the participating
statistics courses who wanted to force the students to answer al1,4ues-
dons. Iwretrospgct, however, this may have been a change for the worse,
for it has no doubt led to increased essing. At the risk of seeming
to attribute tp the Weibull distribution some magical power to detect
"undesirable" items, we note that the fit became very poor for items-in
which a large increase of guessing must have occurred such as...those
testing for difficult material like transformations. It could be that
guessing contaminates the distribution so that it no longer appears to
result from a_single underlying stochastic process.- How 'to handle this '
problem is something we are not prepared to say at this'time. That must
be left to future research.

In this section we discuss thelealyses
,

aot'only of data from
the revised pretest but those. from the pdsttest as well. (In fact:, the
analyses are mostly of the posttest data.) We must therefore first
describe those tests. to . .

.

.

/

6.1 Description of Posttests (with Some Speculations)

b

It might have seemed strange that the analyses discsed so -

far were confined twpfetest data, with no mention of a posttest -. This
was simply because no posttest had existed before Fall 1976. Thanks to
NIE funding, we were able to implement four posttdsts during that semes-
ter. (Lest it .be thought_that funds were diverted from research to

instructional use--especially in the current atmosphere of censure of
mishandling of grant monies!--it should be.pointed out that the posttest
results were not,used at all in deteitining grgdes in the three statist
tics courses'..Thus, these tests served our teseatch purposes only.)

Specifically, the tests come after completion of the lessons
on matrix multiplication, on matrix inversion, on transfOrmatfilos, and
on eigenvalue problems, and they ate referred to as "Multpost,11 "Hatinv-
test," "Transtest," and "Eigtest," respecEqvel.y:"The items on'dach.
'.constitute a subset of the 2+8 items can the pretest, there being 23

items in Multpost, 12 in Matinvtest, 7 in Trailrest, and 8 in Eigtest.
-(The numbers total 5Q because the first two_tests contain two item; in
common.). The actual items,.identified by which numbers they are in the
pretest, are shown on the following page along with the number of

4subjectN..

O' 5C5
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on whom usable data for each test were available. (The interested
reader may refer to Appendix B to see what the items on each posttest
are.)

Items
Number of
Subjects

Multpost 1-18; 25-29 68'

Matinvtest 17-24; 30-33 30
Transtest' 34-40 38.
Eigtest 41-48 56

We mention in passing that many students complained, in their responses
to an open-ended question included in the questionnaire attached to the
lesson, that some of the items in Transtest tested for material beyond
what was taught in the lesson on transformations. They claimed that
these ite were too mathematical and advanced for the students( to whom
the te5it s addressed. Despite these complaints, however, we did not
moslify these items because we were curious to see whether/the Weibull
fitting would be adversely affected by the lesson-unrelatedness of the
items.

Three Items with Matrices Constructed by a Random Number
Generator. In three of the items, the elements of the matrix.in the
stem were generated by a random number generator, so students would not
get identical matrices to work with. Each had a parallel, counterpart
item in which the elements of the matrix were fixed. We were curious
to see whether the two types of item would lead to equal degrees of fit r
to the-Weibull. If not, it would indicate that the time taken for the
sheer arithmetical calculations, which may vary from version to.version
of the randomly generated items, plays an important part in,the total

1)

time taken for the item, thus leading to a mor complicated distribu-
tion with separate Weibull processes for the a ithMetic and the matrix
algebra parts. A twofold Weibull convolution might then offer abetter
fit to the "random' items while a regular Weibull would fit the "fixed"
items. Alternatively, if the component parts, are successfully modeled
by one-. (two-)parameter negative exponential distributions, then both
the fixed and random items would be well fitted by two- (three-)parameter

gamma distributions with the random items having a value for c greater
by approximately 1 than the fixed items.

Posttests Should Make Students More Seriously Involved in
Solving Items. Since the conditions under wgich pretests and posttests
are taken differ considerably, we expect th4 the incidence of guessing
will differ in the-two Gases. Specifically, _we-expect tha guessing
will be minimized in the posttests while the press to guess would be
greater in the pretest, especially then the option to skip items is
eliminated. Also, the knowledge of matrix algebra newly acquired
after the students have gone through the lessons will have led them

,56
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to be more involved, with answeting the test questions. Consequently,
the CRR should be monotinically.increasing with time rather than
decreasing or remaining constant. We would therefore expect c to be
greater than 1 for posttest items. On the other hand, if the student
doesn't know or has forgotten the material, we would expect him/her
more, likely to give answers by random guessing.

6.2 Results pf Analyses

Tables showing p-values and z-values from the Kolmogorov-
Smirnov tests of goodness-of-fit and the Weibull-parameter values for
the items,in the four posttests are given in Appendix E. Here we dis-
cuss onlythe summary results and their implications. Table 11 shows
the percentages of items having Kolmogorov-Smirnov p-values greater
than .20, greater than .40 and greater than .50 and the' mean p-values
for the four posttests in the two subgroups. Also shown for.compara-
tive purposes are the mean p-values.n the pretest.

Table 11

Percentages of Items with KcIlmogorov-Smirnov p-values
Exceeding Three Values in the Two Subgroups

p > .20 p > .40 p > .50i p Pretest p

OK Subgroup

Multpost
Matinvtest
Transtest
Eigtest

NO ubgroup

Iviltpost

Matinvtest*
Transtest
Eigtest

87%

100%.

,71%

100%

100%
----
71%

100%

83%
92%

57%
100%

100%
----
71%

100%

78%

75%

43
100%

100%.

----
57%

88%

. 4

.50

,.79

.82

.54

.80

4

.46

.55

.51

.78

.51

.59-

.43

.27

*IpLifficient data

' The.distributions of time-score data from all but the Trans-
. test fitted the Weibull distribut* n much better than did those of the

revised. pretest, for which only 9 percentof the items had p-values

6 '17



in excess of .20"in the,OK subgroup-and 75'percent in the NO subgroup.
she items in the pretest corresponding to those in the Transtest had
an average p-value of .51 in the OK subgroup and .43 in the NO Sub7
group, as shown in Table 11. The average p-values in the Transtest

t...

. in the two groups, on'the other hand, were..50 and .54. As we mentioned
earlierT-there were some items in the TranstesC that covered material
not tanght,in the lesson, inviting much student complaint Again, ,

something unusual in the items seems-to result in poorer fit.
Apart from this, the mismatch between the lesson,and the test should

(0
play a role in the study of the importance Of the links e between lesson
and items in measuring the effectiveness of instructi as well as in
assessing the level of a student's learning. Such a study is planned.
in a forthcoming projeCI.

Let us examine in some detail the results for the problematic
test, Transtest, which included items covering material not taught in
the lesson. (It may be mentioned in passikig that some'students.expressed

,

irritation and hostility, while others thought they had missed some-
thing in the lesson and went back to repeat-it.) For-comparative pur-
poses, the averages of the Weibull parameters to and c for items, in
three posttests, with adequate numbers of'subjects in both the OK and
the NO subgroups are shown below.

a '

Multpost
OK subgroup
NO subgroup

Transtes
OK subgroup
NO subgroup

Eigtest

t
0

c

4.98

9.45
1.11 (based on 8 out
1.06 of 12 items for NO)

6.83 1.04
5.56'` .88

OK subgroup 7.84 1.22
NO subgroup 6.09 1.28

7 items)

(8 items)

In brief, the Transtest averages alone out of the three
posttest averages shown above exhibit a pattern typical of that for a
pretest item, which was exemplified by Item 16 in the previous section
(see page 44). That is, the NO subgroup has smaller values for both
to and c than does the Oisubgroup. In particular, the c value in
the'NO subgroup is smaller than 1 while. that in the OK subgroup is
greater than 1. (Note that in neither of the other two posttests do

0 the average to and the average c shOw all of these relations between
OK and NO subgroups.) Thus we may conclude that the Transtest,
although a posttest, acted much like, a pretest by,virtue of the anoma-
lous items. Again, there is corroboration Of our speculation that
indicates extent,of engagement or involvement on the part of students
in an item.. The fact that the average c for Transtest in the NO sub-
group is only ,88 suggests thht many students merely guessed at the
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answers for the three items in this test that covered material beyond the
scope of.the lesson; which is only to be expe ted.

. As mentioned earlier three items used matrices whose elements
were chosen by a random number generator,supplying integers between
-9 and 9 inclusive. Specifically, Item 1 asked for the.sum Of two
3 x 3 matrices with fixed elements; Item 2 was a parallel item with
random elements. Items 3 ana 4 called for the difference between two
3 x 3 matrices with fixed and random elements, respectively. Items 5
and 6 asked for the transpose of a 3 x 3 matrix, again with fixed and
ranclm elements respectively. That is, the odd - numbered items, used
fixed matrices while the even-numbered items used random matrices.

Table 12 shows the Kolmogorov-Smirnov p-values and the Weibull
parameters c and for thee three pairs of items in the revised pre-,
test and in the pos5.tst for the OK and NO subgroups (except that the
latter subgroup is nonexistent for the posttest because everyone got
all six items correct). Note that for the OK subgroup the even-numbered
items have considerably larger:c Values than do their odd-numbered
counterparts in the revised pretest, while the reverse is true for the
NO subgroup. Interpretations will be attempted after the findingshave
been'stated factually:

(i

Table 12

'4 Comparison Of Items Using Fixed Matrices '(Odd-numbered)
and Parallel, Items (Even-numbered) Using:Random .

Matrices in Terms of Kolmogorov-Smirnov p- values
and'the Weibull Parameters c and Po

Subgroup

Pretest Posttest

NO Subgroup

.Pretest

Item p Po ,p c PO p c ,11p

1 :06 1.15 44.5 03 1.06 25.3 .94 2.08 52.6
2 .02 '1.92 28.1 ,26- 2.76 23.6, .,99 .49- 32.1,

r

,.64, .1.24 23.3 .94 1.24 17.7 ,.41 1:05 _19.3:'
:51 2.19 32.4 .1.7 , 20.9 ..66 1.0/ .14.5'1

5 .45 1,.25 13.7 .38 1.00 10.9 .99 ,2:lb.

6 .16 1.35 12.7 .08 11.6 :'85- 10.8

,
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Next the conditional response rates (CRR) of Items 1 and 2
axe competed in Figure 16 for:the OK subgroup and in Figure 17 for the
NO subgroup. In the OK subgroup it is Item 2, which uses the random
matrix, that has a larger and monotonically increasing QRR 'While the
CRR for Item 1 is smaller and almost parallel to the horizontal axis. 1.

In other words the'conditional probability (given that fhe item hasn't
been answered up to then) that-it will be answered the next moment is
always greater for Item '2 than it ids for Item 1. Note that, on the post-
-test, both items were answered correctly by all subjects and hence
traditional item -analysis based on the, performance score would fail to
show any difference between these two items that are identical in fraMe-
work but differ in the way the matrfic elements were chosen. 'Our analysis
based, on time scores' has revealed an interesting difference as the

..c-values in Table 12 shows (althou0ethe Items '3 and 4 pair is an.'
exception). N.--

CRRsiof Items 2, 4 and 6 were larger than those of Items
1, 3 and 5, respectively, in the OK subgroup on the.revised pretest,.
but the reverse was true in the NO subgr4up. ,That is to say; the condi--
tional probability that Item 1 will be answered wrong in the nett
moment increased with time while the same conditional probabilie7:6,
decreased for Item 2. Similar remarks hold for the Iteps 3 and 4 and
Items 5 and'6 pairs. Mures for these pairs In_both subgroups are
shown in.Appendix F.

-

Interpretations. The complicated findings' reported above are
difficult to interpret, and what follows must be regarded as attempts
xathei than definitive interpretations. The three pairs of items were
very simple for students taking advanced statistics diursuir in education
and psychology once they learned the definitions ofmatrix addition,
subtrac%ion and transposition. "Pleonly difficulty probably occurred
in the addition and (more so)'the subtraction o signed numbers, and
In the case of transposition, therequiremeltt'to-rapidly perceive and '
distinguish among five 3 x 3 matrices (the options) with the same set'
of numbers in different arrangements. We surmise that the items with
fixed matrices (Items 1, 3 and 5) were so easy for the OK subgroup
that the answer's were arrived 'at without much 7involvement" on the part
of the students. But sore versions of Items 2',14' and 6 probably re-
quired greaterattention'and involvement of the students, depending on
particalar combinations of numbers chosen by the random number generator.

'Letias now returp to Table 12 and examine the Weibul pare-
'meters for:the:posttest: IA item pairs 1, 2 and 5, 6 they followed
exactly the same Pattern as they,did for the pretest. In fact, the
difference in c values between the odd- and even-numbered members of.,

,

the pairs were greatdr fcr_the.pqttest/than they were for the pretests.
Referring to equation (2.4) for the Weibull CRR function\.it can be , -

-seen that- for fixed c, this is a mOnotonicallydecreasinlifunction of-
uo. Since all 00's for the postust were smaller thilthecorres-
ponding pa's for the pretqst, the CRR vanes at any given
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C
,t0

item .1 : 2.879 8.8881
item 2 : 0.4865.. 11.4871

2.180

0.090.

cps!

52.64
. 32.09

OK subgroup I

0.000
.

4

0 10 20 30 40 50
time in seconds

7

Figure 16 Comparison of conditional response rotes of
items 1 and 2 for OK subgroup ,

C .to Pg
item, 1 : 1.150 10.5983 44.51

item 2 : 1.924 2.52.60t 28.12

0.117 -

0.058

0.080
8

NO subgroup

f F +° 4

20 30 40 50
tir4e in seconds

Figure'17 Comparison of conditional response rates of

7/

items 1 and 2 for NO subgroup,
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time point were`mostly larger for the posttest than they were for the
pretest. In item pair 3, 4 the pattern was not the same for the'post-
test as it as for the pretest. ,

For members of the NO subgroup, the'materials of these Three
item pal were relatively new and, unknown or were forgOtten. As time

went by th CRR's slowly increased for the fixed-number items 1, 3 and
5, while this was not the case for Items 2, 4 and 6. (See figures'in

. Appendix F..) This means that the studerkts who answered the fixed-
number- items wrong tried harder, on the Nerage, to figure out the right
.answers than.did the students who answered the random-number items.
Two of the latter items (Nos. 2'and.6) were given up quickly on the
average, again suggesting that some number combinations,chosen,by the
random-number generator led to difficulties. In the exceptional pair,
Items 3 and 4, the c values were almost -equal and close to one (1.05
and 1.02) but the po's were somewhat different (19.3 and 14.5). 'There-
fore the CRR curve for Item 4 lies.above that for Item 3, and both are
almost horizontal. Recalling that Item 4 differs from Item 2 only in
that the oration is subtraction instead of addition, we infer that
the difficulty of subtraction of signed numbers depends strongly Orr
the particular pair 4 numbers involved. This must be the reason why
the item pair 3, 4 sho4d a different behavior from item pairs 1, 2
and 5, 6 in intrapair differences.

7. WEIBULL AND. GAZOIA. FITS 'COMPARED

In this section we compare the relative goodness of fit of
the Weibull and two-parameter gamma distributions to time -score data
from.various sources and attempt to come up ewith an explanation for
when and whyt which offers the better fit. As a general rule, it seems.
that for material requiring a sustained, uniform thinking process the
Weibull has an edge over'the gamma. The Weibull also showS;wider
applicability and greater flekibility. On the other hand, if the task
consistl of a concatenation of several relatively,incrependent'and more
or less simple, mechanical subtasks or stages, the gamma fit seems
better. Of course pure cases of either type are rare, and often the
fits areambivalent4 Cases for which neither distribution offers an
adequate fit seem to be ones in which the several stages of a task are
non-independent or non-mechanical or both. Compound Weibull distribu-
dons, would pro .ably shdw good fits in such cases.

-a

Due to the abundance of fittings undertaken, the Kolmogorov-
Smirnov p-values and the Weibull and gamma parameter estimates are
shown in Appendix E, and only summary tables are given in this section.
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.7.1 Multiplication Pretest and Posttest
4

-S

Data from a sample df 56 examinees whti took both the pretest
and posttest for simple operations and matrix multiplication lessons
were subjected to goodness of ,fit testing for Weibull and gamma dis-
tributions. Theestimated parameters of WeibUll'and gamma distribu-
tions based on time-score data of 2 items were determined and tested

',by the Kolmogorov-Smirnov test. Items were clastified into four cate-
gories according to p-values from .the Kolmogorov-Smirnov testing:

(1) p values for Weibull (pia) is much better than

p values for gamma (pG); (pw pG > .10)

(2) pw is bettr but not much; (.10 > pw - pG > 1;)

(3) pG is better but not much; (:10 > pG - pw > 0)

(4). pG is much better than pw; (pG pw > .10).

In order to show which theoretical distribution is better for the 2.3
items, the frequencies in each category were counted and summarized
in Table 13.

Table 13

Comparison-of Goodness of.Fit for Weibull and Gamma in Multpost

Pretest (23 items) Posttest (23 items)

Category OK Subgroup NO Subgroup* OK Subgroup NO Subgroup**

1 13 (57%) 9 (47%) 16 (70%) 6 (75%)
2 4 (17%) 4 (21%.) '2 (9%) 1 (12.5%7
3. 3 (13%) 6 (32%) 3 (13%) 0
4

.
3 (13%) O' 2 (9%) , 10(12.5 %)

, 5

Four items were omitted because of rail. N.

**
Only eight items had N > 12.

The Weibull distribution is a distinct preference for both
the OK and NO subgroups in the pretest akd the posttest; but the post-
test shows a Siightly higher percentage in Category 1 than the pretest
does. The items that Fall in Category.4 are only a few in each group

'4k



of the pretest and posttest. It can be said of 87 percent, 100 percent,
and 92 percent of items in both groups the pretest .and OK subgroup
of the posttest that the cumulative distri butions of their time score
data are pretty well. approximated by Weibull distributioir-functions.

The average p.values and standard deviations of\ach group
for both distribution functions are given in Table, 14.

Table 14

Average°p-vallies for Weibull and Gamma Distributions;
Multpost (23 items and N = 56)

Pretest Posttest

OK Subgroup NO SubgroUp .0KSubgroup NO Subgroup

Pw

SD
W

PG

SD
W

.73

.28-

.75

.30

.63

.65 .82

.27
.

.39

. .37-

:16

.50

..35

The average values of pw in the four columns arl"larger than
those of pG in the same columns,andthe standard deviations-of p values
for Weibull (SDO are smaller than the standard deviations of p for gamma
(SDG). The values of pG fluctuate considerably more than those of pw.
The result that Weibull better was expected because items in the
matrix algebra test were not egsy,,and many levls'of knowledge that

0 are hierarchically or linear .ly related would have been required to
arrive at their responses. Therefore a gamma distribution, which is
A convolution of finite number of independent negative-exponential
'variables which' Restle (1962) interpreted as representing independent-

. stages or components of a problem'solving process, cannot'explain thao-
_retically the time score data from matrix algebra test items where the
stages or components are not independent. Indeed, for most of o r items
there. is no way we can say that the stages to reach A response a

givfin item Are independent from one another. Since the Weibull distribu-
,--tion does not require such a strong, assumption so, no matter how each
stage relates one to the other, a whole process of cognitivetasks to
reach a response can be modeled by aWeibull distribution. The response
can be positive or negative as long as a student's process of achieving ,

their cognitive task can be consider&I to be of the same kind. This
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means that the OK subgroup in the posttest and NO subgroup in, the pretest
follow different processes of thinking for reaching their responses.
but subjects in the OK subgroup may be following a very similar thinking
process to reach their responses, and so are subjects in the NO subgroup
for the pretest.

The NO subgroup in the pretest may be characteriZed as follows:
many examinees gave up trying a problem hard and responded by guessing
their answer while the studentAipthe NO subgroup in the posttest
tried hard and spentlonger times but unfortunately their answers were
wrong. A close examination of the CRR would tell more about these
relations.

It is interesting to note that the pG of the pretest was .59
but it dropped to .39 for tile posttest in Table 14, and for the .NO sub-
gro it dropped from .63 to .50 while TiT,4 of both gioups don't change
thei values so much. As we mentioned earlier in this paper, iCresponses
to a given item occur at a random base, then the time-score data follows
a negative exponential function. Gamma is a convolution of such
negative exponential functions. It i.s probably true, that the number
of examinees who took the pretest }answering randomly by guessing are
likely larger than those for the posttest by which time everybody had
learned the material already.

The Revised Pretest, the Case of N = 1013rand 48 Items. Alhough
the original version of the pketest was designed So as to minimize ,the
guessing effect on the time data, their data were not analyzed
for comparative study of goodness of Tit testing of Weibull and gamma
distributions.i The revised version of the pretest has a matched sample
of Multpost as a subset of the N = 100, the whole pretest sample, for
items 1-18 and 25-29 out of the 48' items and these 23 items wer4 analyzed
in the Previous subsection, but the summary of.the pretest, 48 items is
given below.

' Table 1A,

--3

111

Compa 'son of Weibull_arbi Gamma Fitting for
the ised Pretest (48 items and N = 100)

Category* OK Subgroup NO Subgroup

1 29 (60%) 22 (46%)
2 6 (13%) )11 (23%)

-3 11 (23%) /12 (25%)
4 2 (4X7 3 (6%)

* 1
1 {items with pw pG >,10};
2 = {items with 0 < pw pG< .10}0 '
3 = {items with 0 < pc - p/,/ < .10);

4 = {items with pG = pw,''? .10}

7
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In Table 15, only two items for the OK subgroup and three items
for the NO subgroup fell in Catagpry 4; that is, 94 perc'ent to-96-percent
of the 48 items are favorable to Weibull distributions for both the OK
and NO subgroups. The average p values and standard deviations have very
similar results to those of the 23 matched pretest and posttest items.

Table 16

Average p-values for Weibull and Gamma; the Revised
Version of Pretest (48 items and N = 100)

Distribution Man S.D. OK SubgroUp NO Subgroup

Weibull P .52

SD
W

.33 .36

Gamma el PG

SD
G

..47 .40

.38 ..41

The average values of pw and pG for the OK and NO subgroups
are about .10 smaller than the average values shown-in Table 14 and the
standard deviations in Table 16 are 1ar0r than those in Table 14. But
it is obvious that our observatidn in the previous section is applicable
to these data as well.

The Posttest: Matinvtest, Transtest, and Eigtest. Three more
posttests were analyzed by the Kolmogorov- Smirnoy test. These samples
were not mAkched with the pretest sample. The results of a close
examination for these data only revealed the same conclusion as those
in the.previous-two subsections, with moreemphasis on the fact that
Weibull distributions are more suitable to our items of the posttests
in the matrix algebra test than gamma distributions. Tables 17 and-18
summarize our observations.

WeLhave only two items which fall in Categor'y 4 in Table 17,
one each in Transtest and Eigtest. It is natural to wonder which items
fall in Category 4 and why their time scores fit gamma better. We will

*pick up such items and discuss further details in the following subsection.
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Table 17

Comparison of Weibull and Gamma Fitting;
Matinvtest, Transtest and Eigtest

*
Matinvtest Transtest Eigtest

12 Items 7 Items. 8 Items

Category, OK Subgroup OK Subgro p NO Subgroup OK Subgroup NO Subgroup

-..,

1 9 (75%) 3 (43%) 4 (57%) 5 (62.5%) _2 (115%)
2 1 (8%) 2,(29 %) .2 (29%) 1 (12.5%) 1 (12.5%)
3 2'(17%) 1 (14%) 1 (14%) 1 (12.5%) 5 (62.5%) /

4 0 1 (14%) 0 1 (12.5%) 0

Almost everybody got all 12 items correct, so the NO subgroup
is almost empty.

Table 18

The Average p-values for Weibull andiCamma; Matinvtest, Transtest and Eigtes't

4

Mean
Matinvtest

.111,

Transtest Eigtest

Distribution S.D. OK Subgroup OK Subgroup NO Subgroup "OK Subgroup NO Subgrp

Weibull p .64

SD ,21

Gamma PG

.50 .77 .79 .80

/
.37 .34 .16 .21

.33 .42 .65 .76

SD
C

.42 .34 .22 .21

Almost everybody got all 12 items correct, so no analysisfor the NO
subroup was carried out.

ItemsWhoi'e Time Scores it Gamma Better.- We found that
Weibull distributions are generally more appropriate to approximate the
cumulative distribution of the item time-score data from the matrix

t



algebra test than two parameter gamma distribution functions. But there
are a few items whose p-values from goodness-of-fit testing are favorable
to gamma. Of.course, our sample size is not large enough and the
observations are restricted to only 48 items in pretest and posttest,
therefdre it is dangerouS to conclude that the Weibull definitely is our (

distribution. Besides, there are many psychological, intellectual and
physical causes that individually or collectively may be responsible
for reaching responses at any particular instant. It is impossible to
isolate these causes and mathematically account for all of them, there-
fore the choide of response time distribution is still subjective and
cannot be completely scientific. With these difficulties, it is neces-
sary to'appeal to a reasoning that makes it possible to distinguish
between the differ-7'A distributions on the bases of logical considerations.

We hope that our reasoning developed in the previous sections
in terms of why most time-score data of items in the matrix algebra test
are favorable IwIleibull distributions is convincing to the readers.
We must argue now why these few items show their favor 'to gamma. They
are Items 2, 4, 6, 9 and 25 for the OK subgroup on the pretest, 18, and
42 for the same group on the posttest, and Items 18, 27, and 34 of the
pretest, and Item 17 of the posttest for the NO subgroup.

Items Presented in the Posttest Without Proper Instructions.
Items 17 and 18 fell in Category 4 when they occurred in Multpost but
when they occurred in Matinvtest, both items went into Category 1. Be-
cause they are testing the knowledge of determinant-that is'not taught-
in the multiplication lesson, a great number of examinees in the multpost
sample did not know about the determinant of a matrix. This complaint
was confirmed by students' open ended queqtionnaire. Transtest invited
the same complaint. Transtest items in Table 17 show more favor to Gamma
than items in Matinvtest and Eigtest for the OK subgroups. Now, let us
go back to 17 and 18. Since Items 17 and 18 and some items in Transtest
are the only items that were given to the students prior to the'related
lessons being taught, the related topics would never be taught in a
series of matrix algebra lessons, their respOnsesmight have been reached
by different causes. Since these items were well fitted to Weibull in
.the,pretest, psychological effects might be disturbing the determination
of to, the minimum response time and CRR, conditional response-rate*
or the shape parameter c.

Items 2, 4, 6 and 9. As mentioned before, we experimented
with two types of items: one type used fixed numbers in each element
of matrices, the other used a random number generator to fill in each
elemerh. Items 1, 3 and 5 ask for addition, subtraction and transpose
of 3 x 3 matrices with fixed elements while Items 2, 4 and 6 ask for
the same opeptions with randomly supplied integers between -9 and 9
inclusive. Item 9 asks for multiplication of a scalar to a matrix and:
the random number generator supplies integer elements between, -9 and
9 except for zero. Cothparison of Kolmogorov-Smirnov p-values' is shown
in Table 19.
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Table, 19

Comparison of p-values for Weibull and Gamma;
Items 1, 2, 3, 6 and 9, Matched Sample,

N = 56, OK Subgroup

Pretest Posttest

Items p
W'

Weibull p
G'

Gamma pw, We ull '13
G'

(gamma

1 .69 .03 .63 .00
2 .27 .77 .73 .67
3 .89 .76 .93 .93
4 .99 1.00 .57 .46,
5 .80 .12 .93 .4`8

6 .15 .27 .18 .20
9 .88 .92 ' .93

e- .76

Items 2, 4, 6 and 9 have higher p-values from Kolmagorov-
Smirnov test for gamma than for Weibull in the pretest while Items 1, 3
and 5 have higher p-values for Weibull than for gamma in the pretest.
But in the posttest, the p-values fol. Weibull became higher than or
almost equal to those for gamma.

Weibull distributions are determined by three parameters,
the minimum time to, a shape' patameter c, and a scale p

I
rameter po

while our gamma distribution has only two parameters, ithout a location
parameter to (or minimum time). Graphic display of both of the cumu-
lative distribution of time-score data and the theoretical distribution
function on th_ e same PLATO screen often shows that the smooth curve
gamma did not fit the cumulative distribution step function near the
initial point to.

The-examples shown in Figures 18 and 19 explain the situation
intuitively. Two-parameter gamma distributions lack the capacity to .

provide information about the minimum-time to, unlike a three-parameter
gamma which has a location-parameter.

Since ;Items 1,'3 and Shave fixed number elements in the
matrices, the degree of difficulty due to calculation for each item
is constant, and does not vary from item to item, whi stems 2, 4 sand
6, having a different set of numbers' as elements in 3 matrices,,
lead to ditferent difficulties in calculations. For e, 9-1 is
much easier than -9-(-1), especially for those who afe dering how
to do the subtrac;tiort of two matrices. Thus, to minimum time to
respond to an item such as Items 2, 4, 6 and 9'can be different from.
item to item, de .nding on what kind of numbeis were picked up by the
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Figure 18 Goodness of fit test for the time-score data and Gamma
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random number generator to.supply as matrix elements. It may be
impossible to determine a unique to-value for these items. The Weibull,
distribution requires a location parameter to to be estimated from the
observed data, and it is impossible to estimate such a value when a'
single to really does not exist. Maybe this is the reason why the
time-scoredata from these items don't fit Weibull distributions so
well, in comparison with4gamma distributions that does not require a
unique location parameter to.

In the posttest, the different degrees o difficulty caused
by a choice of different sets of numbers became negrgible. Student's
had already learned the simple matrix operations and had plenty:of
opportunities to practice them before taking their posEtest. Therefore
the discrepancy among tos, varying from item to item due to the diffi-
culty of calculation would have been minimized and became negligible
also. That is probably why Kolmogorov-SMirnov p-values for the Weibull
distribution of the posttest improved a great deal as shown in Table 19.

O

7.2 Exercises in Matrix Algebra Test that Require Only Mechanical Practice

The matrix multiplication lesson includes eight sections
with exercises at the end of each instruction. These sections are as
follows,

' 1. Multi4ication of A and B
2. AB T BA
3. Scalar prodUct
4. Mattix product
5. Quadratic form
6. The principles of matrix operation
7. Diagonal matrix---._
8. Scalar matrix and Identity,matrix

a. t

Each exercise has the following format where all eletents.in
are supplied by the-random number generator.

_ e

- ?

All,items in each exercise are'very easy, straightforward
examples of what they have learned in the previous instruction. There-
fore each problem involves only mechanical calculation rather than
requiring heavy reasoning or thinking. As in Figure 201 each exercise,
requires simple repetition of calculating a scalar product, and.hence
a strong similarity can be seen to Rasch's model in which the distribu-
tion of time taken to read a passage of N words follows the two-parameter
gamma distribution. The repetition of N mechanical calculations
corresponds to 'reading N words ;we think.

The time data for a student's first try only were sorted out
and goodness of fit testings were processed. A summary is given in
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Table 20. The time-score data from these exercise sections fit the
gamma distribution better than the Weibull distribution.

.

.

o

Table 20

p-71ues for Weibull and Gamma: Exercises

Section of Exercise PG
N

AM. .54 .82 744 ,e02.1

e02.2 .25 .47 61

,e02.3 .45 .57 67

e02.4 .68 .95 53

e02.5 .98 .98- 16
42.6 -88 .90 39

e02.7*

I
Note:--Average p-values: ..63 for pw

'and 478 for pG._

Data in this section was lost.

. , Recall that the items generated by,the random number genera-
tor,tor, 2, 4, 6. and 9, in the matrix algebra test had a tendency'for
their time data to show favor to the gamma distribution. in the pretest.
nt in this case, students took exercises after completiop of the
related instruction, so the argument about the difficulty/of deter-
mining the minimum required time to respond to a given item in the
pretest situation cannot be applied to the situation here. Weibull
became abetter fit for Items 2, 4, 6 and 9 in the pottest situation.
We will need another reasoning to ONplain why gamma is better than
'Weibull,in the exercises after the instruction.

The two-parameter gamma distribution is a convolution of
k independent variables which each follow identic'al negative exponen-
tial distribuerion functions, and the negative exponential distribution
cantbe obtained by%considering the waiting time betwyn arrivals in a
randoth process, '1141 (1961) constructed his oral reading model

-drawingair anal -6y with d biwplc- vroblem iTr
teleplfony: 'the occurrence of a telephone call as a random- event,
.deterMined by a "calls intensity" parameter which is stable over a
dertain length of In the exerciss unit shown in Figure 20, each 4

-

question involves four simple calcuat6ns, and three out of Chem
require tire ith element of one vector by ith element of
the other liector and the last calculation involves adding up the three

(

4
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resu of multiplication to get the scalar product. We view, these
operations as being simple and mechanical enough to-identify them with
reading the k words which were used in Rasch's word reading model.

Exercises in a Problem Solving Style. Three problem solving
style exercises were implemented in the lesson teaching eigenvalues arid
eigenvector problems. For example, one problem is aimed at guiding a
student, step by step, to the goal of calculating.eigenvector(of a
2 x 2 matrix. There are four or ive stags required to arrive at the
final answer and all'stages are in axly related, so that previously
given stages are required as prere isites to undersEanding a later
stage. Therefore this type of exercise violates tlie assumption used
in deriving gamma distributions. Note thdt,Weibull distr4utions
don't require such a restrictive assumption and hence haveIwide applica-
bility and flexibility to more general examples according to Weibull
(1951). We predict that the4time-score data from exercises in a
problem-solving style will fit WeibulL distributions very well, and
Tables 21. and 22 back up our prediction.

Table 21

p-values for Weibull and Gamma:
Problem-solving Type Exercises=

Unit Names
G

N

-0
' e05.1 .98 .86 31
e05.2 - , .93' . .05 30
e05.3' -, .99 . .84 29

Table 22

Weil:run Parameters for Problem-solving Type Exercises

Unit Names
o

c p
o

Average time'

46.1
e05.2

e05.1'

_2_1.673

3.758

3.593

t880
.790

.962

11.36
9.96

12.14

1 18.39

.24.77

16,72

* ?
----''

.;Tit ,
e

Unit 81 times is 10 secfmds. P

.

ye
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The c's for these three exercises are smaller than 1.
Since, :despite this fact, the average times'are very short, it may be
thA the abundance of hints given during exercises allows many students
to speed up toward reaching their given goal.

7.3, Instructional Units or Areas ;in Matrix Algeb.a Lessons

:-
7-Matrix'algebra lesso ns were divided into nineteen small

segMents or ins#ructional units and the elapsed time to complete each
instructional unit was collected. ,tince these lessons did not-adopt a
mastery learning strategy, it was impossible to collect mastery tim6
which is the time needed to master a given,instructional,unit, so the
irst completion time of eaclipnit was used for analysis. The results

of Kolmogorov-SmirnOv testing are summarized in-table 23.
s t

Table 23

p-values,from Kolmogorov-Smi,rhov Tests: Matrilc Areas

Areas Content pW p
G

Average Time

.i01.1 Simple operations . 128 .09 .00 1- 10.5
1

1.01.2 Use of system calculator ' 134 .30 .01 2.
i02.1
i02.2

Multiplicatioriof matrices A,
,AB ILBA

B 135

123

.30

.73

.5"
,53

6.l,

1.8
1.02.3 product ' 114 ¶02 .01 1\ 1:0
102.4

1;$calhr

Matrixroduct 116 .14 .13 1.3 .
i02.5 Quadratic form . 1(122 __.33 .56 3.1
i02.6 Propeties of operations 109 .21 .12 1.7'--"

i02.7 Diagonal matrix 104 .66 .29 2.3
P03.1 Identity matrix 105 .14 .19 ,,--< 4.9.
103.2 Determinant 103 .50 .48 13.5'
iO3.3 Evaluation of determinan 101 .64 .32 7.1
iO3.4
iO3.5

Cofactors
Ptbperties of determinant

100

98.

.81

.62

.68

.72

8.9,

,9.9
103,6
iO4.1

Adjoint and inverse matrix
,

118taaon of axes
lq

, 73

.95

.00

.76

.b2 '

11.9

.8

iO4.2 Orthogonal transformation 52 .56 .79 19.4
iO4.3 SSCP matrix 48 .82 .99 19.1
105:1 =EigenvaTueg and "eagenv$Ctors. 72 .'.71 ;83

...

14.8
,

Unit of time is rounded to the/nearest minute.
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The number pf areas whose p-value is larger than .20 for

4.
Weibull is 14 and that for gamma is 12, but the number of areas whose
p-value is4largeT than .40 is 10, in each case. The average p-value,.,

pw and Tic are .448 and6.417 respectively.,_ It is difficult to say.which
distribution is more suitable to our data, because five areas are
classified in"Category 1, while seven areas'are in Category 4. The Q,

combined Category 1, 2 and Category 3, 4 respectively, include eight
areas each.

.61

Three instr
either of the distribut'
pretty well. A close e

. 1 ,
. .

ctional units,-i01.1, 102.3 and iO4.1'don!tifit
ons while others fit both Weibull and game
amination of all area diata from tpe matrix lesson

revealed that 20 to 30 percent 'of time data from some areas were not
the right, kind of data that we were interetek4 in. Before the revision

the lack of flexibility in the origina version of thelessons. The

dcof the lessons was made, quite a numb r of students complained about

original lesson did not have an index page, so if a student starts'a
.

lesson, then he/she was forced to go.thraugh .tN'e lessbn without' -: i. 1

changing the topic until the'end. Therefore telaents were more con-
centrated on studying and M'any stayed on the same lesson until they,
finished it all. In the new'version, some siudents' got ollt of.one

,

sect-n before_they finished it, and they went back to the indeA page.
at the'middle Of instruction by pressing the-key that is always
available at aily page. The.time data used, in Tabld 2
thecomple6iOn time of each section since 20 to 30 per
dents did not. compNlete some areas

t

.1

were llot'exactly
ent of the stu7.

J4.

The time dvf th9.6.X version fit Weibull _exy well.
The first three lesso 'defj. 'tions and simple operations, matrix
multiplication and deterMi nt, cofactors and inverse) were dii<ided

.

into nine instructional units is (areas) and the time data from these
nine areas were analyeed. Their fit to the Weibull distributions'was
very good,.with the average p-value being .80. 11f the data is fairly.

'c,lean, then a small segment of instructional unit fits the Weibull
distribution very well. r

It was interesting to note that one area WhiCwas, given
twic,e during the course showed a remarkailly low p-yalue fet4 the second
presentation. When students s,t)Udied this area for the first'" time,

the p-value was .95, but cii.L.the second timeit was only .03.

1.4 .The Lessens Of S eciald and General Vehicle Tra4ng...lrorat'____:
ir orce Base .

C

The Chanute AFB'CBE project devel pod 34 lessons to teach
repairing and maintenance.of various vehicle on the PLATO system.
They'also developed their awn Computer managed instruction systemnnd

.867
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student route . Their unit of measured time was rounded to tibo'nearest
minute. Some tests required,a_few minutes to complete for all students,
while other tests had an average time of longer than 10 minutes. About.

. 90 percent 'of the examinees needed about three minutes to tomplete many
Mastery Validation Exams, and hence rounding to the nearest minute was
too rough to analyze t ese'tiMe data, so we-hadto throw them away:

.

The time score from he lessons were much better thavthose
from the Master Validation .Exams but a few les ons had,a very short
average time needed to 'complete and master the essons. For example,
Lesson mve.201a requires an average time'of only .6 minutes to master

t

the lesson,.yet 72 examinees studied` -the lesson. If t e unit of time
4 were' the nearest second; then the p-values from'Kolmogorov-SmirnoV

,,

'would have become/larger. The plotting of a stepfunction (observed
i

*time data) together with a Smoothcurve (Weibull distribution function)
iv Figure 21 has a very large increase of height around the mean value
of 12.55 minutes. That affects the z-valup. These two plottihgs look,
like aefairl6lose match intuitively, while the average time needed'
to master Lesson mve 202a is 189.63 minutes and the steps of the . . - .

observed curve are very, fine in Figure 22.: The correlations of, average
.

times and p-values from Weibull- fitting over 27 Chanute lessons is .57,
p-values from gamma-fitting over 27 lessons is .34. Therefore it will
be wise to, take a finer-unit of time in educational recearch.utilizing

'

° time scores. Since Chanute lessons used a mastery learning strategy,

L
o kinds of time data were available; one'is the first cdmpletion'time
r a giyen lesson and the second is the time neei,ed until a Student

achieves a' given criterion of'mastery at the end 9f the lesson test, a
,

Master - Validation Exam. . ,

, .-.,
,. The foliowing,table-25,and 26, p.esent a summary 'of

...,

Kolmogproy-Smirnov tests for gamma and Weibull distributions., Appendix C
expa A 4
lgins.t -content rea that allmChanute lessons wereiiimed at, and .

'average ime r eachNlesson, Tabl 2.4!thows the Weibull parameters.

The ave,rage-Oalue for Weibull is);46, and that for gamma
s .51, The valUes arl almost the same as the 'average p-value's for
the areas in 'matrix algebra IesSoft, but they are not so high in,com-
parison with those of test i(ems and exer.iseS in' matrix algebra
(refer,to Tables 14, 18,'19 and 21),

, .... Al/though' befth of the average pr value's are only around' .50,
. about 80 pereent.o.f the lessons halie p.-valises of 1 rger than or equal'

_...._,to .2:0.--in-inas-refy tinie (time ne ode& to -achieve- -a' given. mas tery-lev ) ,

%which is a satisfactory result. Table 27 shows tha ,gamma i6 slightly 1

better than Weibull. Sinca-the gamma distrit:4 'o hasp had been 'Xr,

,considered.h9xe i _aiwo-parameter distributionlwitheutea looYttion 4

parameter; lt 1\sbo,theripg to note that wma is 'better fon this case.
Begause learning thetAterial.writteT in 4 Whole lesson is not.

ik a

a
0 ,

Tatter of s e process, or_ nevent that can be explarAfd

7 7'
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Table 24

Three Weibull Parameters and.thd-Maximum Correlation

t

for Mastery Time

4:
rnC

'1) 6.87 .98 1.61 30.03
2) 15.18 .99 1.55 21.54
3) 16.21 .99 1.87 32.65
4) 4.72 .97 1.25 8.06
5) .00 .98 1.53 48.32
6)1 48.67 .99 1.95 160.86
7) 4.49 .99 2.53 11.32
8) 8.63

1 .99 1.81 105.64
9), 35.38 .98 179 126.09

10) 5.38 .98 1.67 42.22
11) 14.85 .99' 1.77 42.19 4

12) 3.13 .99 1.66 20.72

13) -4.169 .99 '1.81 46.82

14) 13.21 .99 1.29 '27.16
15) .00 .99 1.81 36.65
16) .' .4.2? .99 1.85 11.24

17) .57 .99 210 1437
18) 6.38 .99 1.'52 -18:40

19) 7;93 1.99 2.11 '71.52
20) 11.50 ,.99 1.75 A4.13

.99 .2.85 20.3721) ) 4....t,:"3. 2.

I 22) 20.55 .99: .1.63 79.59
23) .7 .99 1.21 .15.91

24) .99 At75 14.27

5) . 4.33* . ''-99 1.76 31.10

2.6) -, 12.22 .99 1.53 1i5.01

27) 2.53 .97 1.55 12.96'

N

Sr

79

91

I



Table 25

Lesson Mastery Time

T55t5

.35

for Chanute Date

Completion Time

55

C

.1:48 1.1777

gag.

0.2718 0. 83
21 0.60.94. 0.7626 33 .0.7286 0.6895 63
3) 0.3349 0.9440 85 0.4193 0.8811 85

41 0.2123 1.0587 72 0-0156 1.5574 74
5i 0:6653 0.7274 86 0.85 00 0.6106 86

61 0.7731 0.6621 96 'N.0.5205 0.8146 95

71 0.0624 1.3168 81 0.0712 1.2914 81

2.6711 0.7240 0.7874 0.6530 85

9) 0.4919 0.8328 89 0.4251 0.8771 89

10) 0.5622 0.7890 78 0.7288 0.6894 77

11) 0.8667 0.5981 75 0.4350 0.8703 75

12) 0.2714 0.9987 82 0.2121 1.0590 80
131 0.6780 0.7198 67 0.3768 0.9117 67.

141 0.8316 0.6236 87- 0.6781 .0.7198 87

151 0.7671 0.6658 77 0.6552 0.7334 77

16) 0.3222t 0.9543 71 0.2360 1.0333 71

171 0.1387 1.1550 67 ` "0.2167 1.0538 67

18) .0.1438 1.1471 72 0.1344 1.1618 72

,19) 0.9095 0.5627 62 0.9189 0.5538 62

20) 0.1212 1.1838 76 0:1682 1.1124 75

0.4265 0.8761 59 0.4176 0.88.23' 59

Z2) 0.3812 09084 93 0.1583 1.1260 93.

23) 0.0988 1.2264 73 0.0743 1.2-832 41

24) 0.4985 0.8286 67 0.6039 0.7638 -67

251 0.4089 0.8884 70 0.8339 0.6220 70

5_1662 70
0.2938 1.23'0 69 0.8860 0.5830 '68

6

Igoodnia5s of fit' -9ting.fT Weibull

so

92
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Table 26

I.

Kolmogorov-Smirnov Tests for Chanute Data:

"Goodness for fit" for GamMa-
-.*.

Lesson

1) mve103

2) mve104a

mve104b

r 3) mve105

4) mve201a

5) mve201b

6) mve202a

7) iave202b

8) mve204

9) mve'205a

10) mve205b

11)-.Mve206a

12) mve206b

13) mve296c

14) mve207

15) mv_e301

16) mve303

17) mve304
,_.,

18) mve305

19) MVe307

40) mve308

Mastery Time N

Pe z

0.0643 1.3110 85

0.4537 0.8577 83

0.8373 0.§196 6

0.5619 0.7891 85

0.0361 1.4169 72

0.6318 0.7472 86

0;3646 0.5998 96

0.1554 1.1300 81

0.9260 0.5468 -86

0.5686 0.7851 89

0.1923 1.0818 7e,

0.7981 0.6460 75

0.6267 0.7,503 80

0.7859 0.6540 67

0.2470 1.0222 87

0.8557 0.6064 77

0.5185 0.8159 71

0.6996 0.7070 67

0.31.19 0.9629 .72

' 0.6292 0.7488 , 62

0.2856, 0.9858 76

'Completion Time

p z

0.1260 1.1757

0.5184 0.8159

1.0000 0/0
.

0.7193 0.6952

0.0544 1.3425

'0.5357 0.8052

0.9889 ''0.4449

0.1681 1.1130

0.5726 0.7827

0.7117 0.6997

0.9316 0.5410
a

0.5745 0.7815

0.6043 0.736

0.5758 0.7307

0.3833 0.9069

0.8879 0.5814

0.3720 0.9153

0.7225 0.6932

0.2130 1.0580

0.8028_ 0.6430

0.4262 0.8764

----.....21).-mve401-----0-81.22------0-6-34-4------5-9-- 0:023- 1 .--49 244- -

0.5650 0.7873

0.1003 1.2232

0.9764 0.4778

0.9962 0.4087

, 0.98 5 0.4430

0 7 7, 1.0097

,,

22) mve402 0.2362 1.0331 9,3

23) mve40°3 0.2761 0.9944 73

24) mve404 0.8396 g.6180 67

25) mve405a 0.3883 0.9032 70'

26) mve405b 0.6758 0.7211. 70

27) mve405c 0,0561 1'.3366 69
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parallel to a Poisson process, or like Rasch's words reading model,
,'it is probable that we will have to investigate -the composite distribu-

?

tion model for Weibull, distribution, instead of a single distribution.
An _r- component composite Nibull distribution is defined.as Fx(x) =
Fj(x), Si - < t < S- 1 for_k= 0, 1, 2, r. Further mathematical
discussion will be found in Mann et al. (1975). In future work, we
will have to analyze carefully a whole task of instruction in a lesson
and divide it into finer tasks. The time-score data from each task
unit (or segment of instruction, or area) can be repreented by a
Weibu 1 distribution. If a lesson is' f k tasks, then a k-composite
Weibu 1 distribution will be the distribution representing the whole

son. Since it is impossible to investigate further along this line
h Chanute lessons, we will work with matrix area'data (after cleaning

up he messy data) in the near future.

Table 27

27 Vehicle Maintenance Training Lessons, p-values
from Kolmogorov-Smirnov Testing for
Weibull and Gamma,Distributions

.20 p > .40 p >-.50

Weibull, 1* 20 (74.%) 15 (56%) 12 (44%)
2** 21 (78%) 16 (69%) '12 (44%)

(
Gamma 1* 22 (81%) 4.18 <67%) 18 (67%)

2** . 23 (85%) 17 03%) 16 (59%)
.41

*
Time eded to complete a lesson.

**'
Timt }seeded to reach argiven mastery level. :

Althougl the mastery.time obtained from Chanute lessons did
not fit Weibull distributions cloite as well as time-score data from
matrix test items did, the sh,dpe parameter in this context c ha's.an
import-ant L e lattonsYr1 1th one -of tire- ttir r etir topics in educational -

measurement: the problem of false nega ves and false positives of
clkterion-referenced tests. The detailed analyses and discussion
of the role of, the shape parameter c w' 1 e given in the next section,.,
The table of Weibull parameters for mast ry time data from Chanute
lessor was given in Table 24.

4k,
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- -Revised'Chanute Lessons. After the initial data (the result
of-the previous sectionwas based, on this data) from all lessons in the
vehicle Maintenance"training.course were collected and analyzed, seven

'lessons were selected for further modifiation and revisions. /A.year
later, the first cbmpletion time of these polished, revised 16ssons
were collected arld'tested for goodness of_fit with Weibull distribu-
tion: The changes that were made were quite extensive and ave:r4'e <

times of the lessons became quite different from the original version
_af'seven lessons; some gpt longer but others got shorter. But the
p-values from kolmogorov-SmirnoV tests becaffie much.larger than the
original ones. These values are shown in Table 28;

Table 28

'Comparison. of p-values from Kolmagarmirnov '
Tests fobthe Original LeSsons and.

their Improved Versions

-Lessons

202b
204

207

301

307

308-
401

Original p-value, Revised p-value,

.07

.79

.6.7

.42

.90-

.54

.68

.73

.91
A.

.79

.79

Table 2 might suggest that the'qime data from the more f
polished, improvediessons fit Weibull distributions better than those,
ft the less polished, original version of lessons. The les polished,
legs6ns usually contain ambiguous explanations, t Pographic errors, .

i
.

inappropriate feedbacks or improper amounts and uality of help.
Elimihatlng such distractions, that affected a student's pace,of_

i

learning. baste, especially"for those who "were not so bright, or for
those who knew nothing about the material, might hav caused better fit,
with Weibull, distribut.pns. .. Thio fact implies that the study of QRR
will lead us to identIfy-the-qualit-y-of-feedhacks, appropriateness-of
the help branch in terms of using qualitative analysis methods. We
believe thatour research will be very useful to the area Al instruc-.
tional design ip a practical sense; we can provide a quantitative
tool,to'instrutional designers whoarexiotly artists.

A
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14.

8. THE CORRELATES OF PROBABILITIES OF MISCLASSIFICATION BY CRITERION-
REFERENCED TESTS

In this section we explore what variables are associated
with erroneo9s-decisions--calling a non-master a master (false posi-
tives, F+) ind calling a master a non-master (false negatives, F-)

xpased on the criterion-referenced tests of the Chanute AFB CBE Project.
!the Weibull shape parameter c turned out to be a prominent predictor
.or the estimated probabilities p(F+) and p(F-).

Another thrust of this section is the definition of a new
'index, dubbed the "efficiency index," which we believe to be a reason-
able measure of the quality-of a lesson. A factor analysisusing 18
variables (including p(F+), p(F-), p(Fi. or F4,-(1.-21, failure rate,
the three Weibull parameters, the_distance between the optimum cutoff
point and 06 mean, etc.) along with this efficiency index yielded a
distinct factor loading only this variable and c.

8.1 Beta Binomial Model

Criterion- referenced testing %CRT) has gained much attention
from educational measurement and testing specialists in recent years.
'The object of criterion `referenced testing is not to distinguish
finely among subjects, but to classify subjects into mastery and nob-
mastery groups.; Hence the accuracy of judging non- mastef or mastery
status of examinees4becomes the main concern.

Since criterion-referenced tests are commonly used in situa
tions where students are expected to achieve the level o mastery, say
90 percent ,correct, the observed scores become as bounded variable,
If there are subjects with true scores near the "ceilin ' or the "floor,"
it becomes implausible to assume that the ,errors of mea rement are dig-
tributed independently of true scores for those near tht boundary.

Lord and Novick (1968) area about the plaus ble dist-ribu-
tional forms of observed CRT scores and true scores in >hapter 23 of
their book, "Stat.istical Theories of Mental Test Scores ,r' We will
follow' their Steps and adopt the binom1p1 error model f, r CRT scores.

_The binomial error model .pssumes that ',"if each MVE test s aimed at
reasuring the learning level of a topic taught in the V hicle Training
Course of the Chanute AFB DBE ProjTct,,,for instance, th,r, all items ,

e test-must measure the same task. In other words all items in '

a test a,- elle and only; one common factor with 0-I'sc6 ing: Supliose

there is a pool o .tems measuring the,, same task, and to ing nn-item
/".

-----.- out of the pool is an independent eVent, that is, answe ng the earlier

. items on the test deep not affect the ability of a stud t to answer .

tot

ft
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'e/- could tie adequately represented,by the hypergeometrit distribu-
* tion f(x) with a negative parameter and the true score distribution
could be represented by the two-parameter beta distribution g(0).

later items correctly, then we can formulate the distribution of raw
scores x by a binomialdistribution with-parameter 0 in which 0 is
the proportion of items that .a student would answer correctly over
the 'entire pool of items. If T is a fixed true score and e is an
error of measurement, then the raw score x can be expressed as the sum
of the two, x = T + e, and 0 is given by

A

0 = T/n

where n is the number of items in the test. Let g(x10) he the binomial
distribution of x av any given true ability level 0, then the condi-
tional' distribution g(x10) can_be given by

g(x10) = ( )0x(1-0)117x. x = 0,1,...,n.

It is interesting to note that this model does not pay atten-
tion to item differences. The traditional measurement indices such as
ire in difficulty Or items discriminating index are. not the major concern
in the binomial error model. Rather, finding out how accuratelyia
test can estimate an examinee's pass or fail status with respect to
a given mastery criterion is the main concern of the model.

Keats and Lord (1962) investigated the relationship between
the distribution of test scores, observed and true scores. The test

U (1-0)b-n/B(a,b-n+1)

where a > 0 and b > n-1. And also

-a-1.: -,b-n

g(x) =S 4(a 1°),b-n+1)

n )0x(1_e)n-x.-,
did X = 0,1,...,n.

In classical test theo6; the estimation of a true score is
given by regressing the true Score T on the observed score x, and the
equation is giveriby

E(Tlx) = px + (1-p)Px



- where p is the reliability of the test and px is the mean of test scores.

In the binomial error model, the'estimation of a true score,
is given by a similar equation,

E(Tlx) = a
21 ,
x + (1 -a

21
)11

x'
x = 0,1,...,n.

where an is the ratio of number-correct true -scoe variance to observerl-
,

score variance and is given by

2
a
T

11.(n-1-1 )
n x x

n-1
n a2

`421

x x

Table 29 is the summary of information from the Mastery Validation Exams
at ClygnUte.

The mastery level of Master Validation Exams (MVE) of the.34
lessons in the Chanute AFB CBE Project was set at a level of 80 percent;
although it is hard to prove that 80 percent is the most appropriate level
for their' program. Block (1972) showed in his experimental study that
attainment of a 9'5 percent mastery level maximized student learning of
cognitive tasks in his matrix algebra course, while an 85.percent level
maximized.learning as characterized by affective criteria.

Since Chanute's 34 kessons are designed to be "homogeneous"
with respect to content and teaching style, all lessons are written
under the same principle with'the same tutorial log4.c, although the
subject matter in each lesson is different. Therefore Chanute's
lessons are nett linearly relatea'and the content difficulty of the
.lessons is not hierarchically ordered.as it would be in teaching mathe-
matics, arithmetiC, or foreign languages. If the lessons are linearly
related, setting a mastery level 'for-the earlier instructional units
should-be higher than those of the later instructional units. If the
goal of the second unit is the attainmentf an 85 percent mastery level,
then the mastery level of the first unit might be 90 percent, or some
other level higher than 85 percent. Since there is no analytical
techrtique to provide.the optimallevel of mastery learning; definite
statements about the determination of ideal mastery levels cannot be
made at this time. Linn (1978) provides an excellent discus4ion
about the topic of "setting standardst"

86
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Table 29c)

The Summary of Simple Statistics of Mastery Validation Exams

test

)

mma03

mve104a

mve104b

'mve105

mve201a

mve201b

mve202a

mve202b

mve204

mve205a

mve205b

mve206a0

mve206b

mve206c'

mve207

mve301'*

mve303

mve304

mve305

mve307

mvp198 ,

mve401

mve402'

mJCe4 03

mv 404

mve 05a-

mve4 5b

mve4 5c

,
mean

7.38t
y

.11.822

'10.120

7.706

9.474

8.907

'16.186

9.720

8.557
,1

6.767

8.110,...

12738

15.250

19.257'

3.761

8:727

17.380

9.209

7.458

4.68'3

9.Q37

9.254
.

14.138

0.095

4.254

*. .9.f69

p8.329.

t
9.087

SD
/'

items

1.

a21 N.

1.124' 8 0.6321 85

0.442 12 0.4910 83

1:728 11 0.8018 83

0.737 8 0.5470 85

0.973 10 0.5254 76

1.325
, 10. 0.49:51 86

2.934 20 0.6753 97

0.634 '10 0.3573 82

1.68f
t

10 0.6253 88

1.558 , 9 0.3470 90 4

1.736 10 0.5457 82

1.574 '-. 13 0.6942 78

1.619 17 0.4259 80

' 1.151 20 ' 0.4841 70

'1.124 5 0.3287 88

1.501 10. 0.5635 77

2.257. 6 20 0.5824 .71

'1.366 10 0'.6771 67

0.934 8 0.4806 72

1.522 16 0:5101 63

1.170 10 0.4045 .0 82

1.015 10 0.3673 63

2.335 17 0.5988 94

2.487 10 0.8340 84

'0..876 . 5 0.2166f 67

1..069 10 0.3701' 71

:1.991 '10 6.7208 70

1.222 10 0.4934' 69
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Mastery levels are usually set by instructors or the author
of a lesson, butthe deFision of mastery and non-mastery is based on
examinees' observed test scores. The score that is used to decide
mastery and non - mastery is called the "cutoff." Mastery and non-
mastery statuses ought to be defined on-thebasis of true ability 0,,
not observed test scores x that are subject to measurement errors.
If true ability were known, there would be no incorrect classifications.
Unfortunately, true scores are impossible to obtain in practice, so
we have to find a way to minimize misclassification.

There are four kinds of classifications: (1) an examinee's
true ability 0 is higher than a given mastery level 00 and the observed,
score x is higher than.the cutoff score c, that is A = (0 >,0b and
x > c); (2) 0 is lower than 00 and x is also lower than c, that is
B = {0 < 00 and x < c }; (3) 0 is lower than '00, but x is larger than c,

= (0 < 00 and x > c}; (4) 0 is higher than 00, but x is lower than c,
F- = {0 > 00 and x c}. Figure 22 shows these four conditions:

Oo

F_ A

a
. t

F4

Figure 22 Classification Table

: true ability, x: observed score

,0
o

: true mastery level

c : observed cutoff .

Probability of these events will, be
denoted by P(A),'P(B), F(F+) and P(F-)
respectively

Millman (1975) and then Novick and Lewis (1975) reported
the percentage of students expected to be misclassified for a given
cutoff with various numbers of test items. Millman used the binomial
error model, but Novick and Lewis used the Bayesian beta binomial error

.o;

According to Millman 's calculations, the percentage of
students expected to be misclassified at 80 percent mastery level
using a 10-item test could be as high as 53percent.

88
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Emerick (1972) and Huynh (1976) considered the,10ss ratio
Z of F- to F+ as a means of controlling misclassification, especially
false advancement. If later instructional units require the know-
ledge and skill acquired in earlier units, false advancement will be ,

a problem. The loss,.ratio of 10 implie's the event F- is ten times 's
serious as-the event F+. Since F-''stands for, the eventin Which a
student has really mastered the given instructional unit but his /her,
observed score happens to be lower than the cutoff, retaining such a
student in the same unit is not efficient. If the instructional units
are,fairly independent from one 6*"another, as, are lessons in the

'Vehicle Training Program at Chanute Air Force Base, then an appropriate
, loss ratio would be 1, or-at least'it is not necessary to set it as

high as 10.. 0.

Huynh (1976) proposed'an evaluation of the cutoff score that
minimizes the occurrence of misclassifications for a given loss ratici.,
With his cutoff score, the loss ratio of having a false positive to
having' a false negative stays the same, say 10, while the 11nea
combination'of the probabilities of the both events and the loss ratio
(the average loss)'is minimized. We will discuss in more detail Huynh's
method in conjunction with 34 Chanute lessons and their MVE test scores.

8:2 Evaluation of the Optimal Cutoff Scores
.., ....,

a. 4

,
Huynh derived the optimal cutoff-co-ot a test for a given

mastery level 0o and loss ratio Q so as to minimize the average loss
function R(c) which is the following linear combination of the prbb-
abilities of falge positive and false riealive:

:1R(c),= P(F+) + Q P(F)

_ -

It turns out that co is the smallest integer such that the incomplete
beta function Ie

o
(a+cd, n+b-co) is smaller than or equal to (1/(1+Q);

where

43a+c0-1' (1-conth-c0-1
P(c

o
) = I

00
(a+c

o'
n+b-co) =

B(a+c
o'

n+b-c
o

)

In order to apply Huynh's result to evaluate co, we need the yelp of a
computer to calculate and plot the values of the incomplete eta
function for co = 0,1,2,...n. The PLATO systein eases these steps
and we can obtain the answer through the program ucttoff." Figure 23
illustrates ,the procedure-to determine the optimal cutof co. The

. .
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2.111

C17

Figure 23 Determinin

lesson
mean

a

g the optimal

MVE201a
= 9.4737
8.5560

6 $. 7

cuto ff Co as minimize

subjects = 6
SD
b

0.9726
n * 10

0.4753
x
21

I. 0.53

1.6"

1.0Z

SZ
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1.

parameters a and b are obtained from the mean, standard deviation of
the test and the number of items in the test .(denoted by n). .Table 30
shows the values of incomplite beta function I00(i),at each point
i = 1,2,...,n, where a,b ar calculated from test scores of mve201a by
the formulas

0

a ='( -1 +
1

---)p
a21 x

n
b = -a + - n

a
21

The curve in Figure 23 is obtained 69 plotting the points in Table 30.
The hotizontal lines which are marked by losses 0.5, 1, 2, 3, and 4 in
Figure 23 help to evaluate the optimal cutoff which minimizes the
average loss R(c) at co for the partially knoWn loss ratio Q and a
given true mastery level 80. Since the contents of all lessons dis-
cussed in the Chanute(AFB CBE Project deal with independent topics
across the lessons an the lessons are not linearly or hierarchically
related, a loss ratio of 1 will be reasonable. Note that in Figure 23
the smallest integer value of i for which the curve P(i) goes under
the line of loss ratio 1 is 7. Therefore co = 7 is the ideal cutoff
score of the test, mve201i.

Table 30

Ten Points in Figure 23

Item a+i n+b-i' 1 0(a+i, n+b-i)
o

1 9.556 9.475 -0.998
2 10.556 8.47.5 0.991
3 11.556 7.475 0.969
4 12.556 6.475 0.913
54 13.556 5.475 0.796
6 14.556 4.475 0.608
7 15.556 3.475 0.376
8 16.556 2.475 0.169
9 17.556 . 1.475 0.045

10 18.556' 0.475 0.004

)
0 = .80, Test = mve201a, a = 8.5560, b = 0.4753

11.



It is interesting to note that** cutoff. score, e=8, actually
used for mve201a in thp Chanute training program gives a slightly
larger value of the probability, of misclassification R(c) = P(F+) + P(F-),
where Q=1than the theoretically derived co does, but not for P(F+),
probability of false positive, or,P(F-), probability of false negative
separately.

The probability of event B in'Figure 22, P(B) = P(6 < 00,
x < c) can be expressed by a linear combinhtion of beta functions and
incomplete beta functions, because

P(B) = P(6)f(x10)d6dx = f 6a-1(1-6)13-1 n x n-x
B(a,b)

(x)6 (1-0) .cixd

0<0
o

x<c
.° <0 o

x<c

1
c-1

n_
B(a,b)

E (.1.)B(a+i, b+n-i)I
0

(a+i, b+n-i).
i=0 .... o

Similarly,

\
P(F-) = P(6>0, x<c) = P(x<c)-P(0<60, x<c) = P(x <c) -P(B)

where

(X)B(a+x, n-x+b) c-1
n'.P(x<c) =

B(a,b) B(a1 ,b) 1
dx = (.)B(a+-1:, n+b-i).

x<c i=0

P(F+) = P(0 <00, x >c) = P(0<60) P(B)

where

p(0 <00) = Ie (a,b),
0

4

Thus,, we obtain the following calculation formulas for P(A), P(B),
P(F-) and P(F+).

. 92
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P(Ft) = Ieo(a,b)
1

E -(n)B(a+i, b+n-i)I
eo

(a+i, b+n-i)
B(a,b)

i=0
i

c -1

c-1
1

P(F -) -=" E ()B(a+i, n+b-i)(1-I (a+i, b+n-i))
i=0 .

0
0

c-1
1

i
P(A) = 1-I

eo
(a,b) +

B(a,b)
E ()B(a+i, n+b-i)(1 (a+i, b+n-i)-I)
i=0

eo
,

c-1

P(B) - B(alb) E (i )B(a+i, b+n-i)I
eo

(a+i, b+n-i)
,

i=0
k

The probability of each misclassification for all available
Mastery Validation Exams were calculated and summarized in Table 31.

Since the sum of the probabilities A, B, F+ and F- is 1, the
sum of-the probabilities of A and B must have the maximum value at co
where the sumof probabilities F+ and F- reaches the minimum. Since
mastery and non-mastery status of examinees are actually determined by'
the observed cutoff c, the probability, P(x > c) is the probability
of the observed mastery status.N. Column 6 in Table 31, headed by
P(A or F+), is the estimated probability of passing the mastery criterion
...judged by the observed scores using cutoff c and cutoff co respectively.
The success rates in Column 7 are the actually observed percentages
of examinees who achieved mastery level, i.e. who obtained scores
greater than or.equal to c. Also Table 31 indicates that the actually
ussd cutoff scores c produce higher prokabilities of misclassification .
than the theoretically)determined cutoff cos except in a few cases.
Since'the theoretical cutoffs are determined 'so as to minimize the
average loss R(c), in our case the sum of probabilities of false nega-
tive F- and false positive.F+, all values in Column 6 of Table 31,
P(F+'or F-) are smaller for co than for c. The sum of the probabilities
of A and F+ is the expected success rate, so this sum matches the
observed success rate given in the last column fairly well., If co
were used ag cutoffs for MVE test scores, only 12 lessons would
have a probability of observed success less than .90, while 20 lessons
have values of P(A or F+) less than .90 when c's are used.

Since the probability of false negative, P(F-) stands for
the case.that an examinee really mastered the goal of instructional
unit but his/her observed score happened tolbe lower than the used .

cutoff c, he/she does not really have to repeat the instruction. If

efficiency of training -in terms of shortening the training time is the
main concern, then P(F-) should not be so large. For example,. MVE207
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Test

Table 31

Estimated Probability of Misclassifications

Success
Cutoffa P(F4.) P(F_)' P(F+ or F_) P(`A or F+) rate',

mve103 c0
c

6

7

0.0621 0.0162
0.0314' 0.0639

0.0,783
0'.0953.

0.9247
0.8462

.89

mve104a c0
c

7

10
0.0026 0.0001
0,0011 0.0057

Q.0026
0.0068

0.9997
0.9927

.94

,mve104b c0
c0

9 .

9
0.0348 0.0259
0k0348 0.0259

0.0606
0.0606

0.8705
0.8705

.86
.

mve105 c0
c

6

7
0.0235. 0.0094
0:0123 '0.0399

0.0329
0.0522

0.9739
0.9323

.88

mve201a c0
c

7 .

8
0.0357 0.0064
'0.0238 0.0262

0.0421
0.0499

0.9788
'0.9472

':90.

mve201b CO
c

7

8
0.1078 0.0146
0.0710 0.0556

.0.1223
0.1266

0.9375
0.8598

.72

five202a c

c

16
16

0.1163 0.0624
0.1163 0.054_

0.1788
0.1788

0.6495
0.6495

.82

mve20tb c0
c

5

8
0,0055 0.0Q01
0.0031 .0,0122

0.0056
0.0153

0.9998
0.9853

.98

mve204 c0
c

8
8

0:0996' 0.0503
0.0996 0.0503

0.1499
0.1499

0.7803
0.7803

;
:94
,

mve205a c0
Q

8

8
0.1428 0.1341

.Q.1428 0.1341
0.2769
0.2769

0.3612
0.3612

.79

mve205b c
0

c

8
8

0.1507., 0.0634
0.1507 0.0634

0.2141
0.2141

0.6913
0.6913

,82

..82mve206a co
c

10
11

0.0478 0.0184
.0.0266 0.0535

0-0662
0.0801'

0.9207
0.8644

mve206b c0
c

12
14

0.0606 0.0113
0.0305 0.0911

0.0719
0.1216

0.9708
0.8608'

.82

mve206c c0
c

13.

16
0.0057 0.0003
0:0030 0.0116

0.0061
0.0146

0.9991
0.9852

.95.'

mve207 CO
c

5

4
0:09651M1957

N0.878 `:0'.0547
0.2922
0.3425

0.3070
0.6393

.91
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Cutoff
a

Table 31 (wit.)

P(F4.) P(F ) R(F
+

or FT) P(A or F')
Success-
rate

mve301' c 8, .0.0894. 0.0540 0.1434 0.8184 .79
c
0

8 0.0894 0.0540: 0.1434 0.8184
Jmve303' c 15 0.1070 0.0266 b.1336 0.8867 .9p

c
0

16 0,.0730 0.0653 .0.1383 0.814Q
mve304 c 8 0.047,1 0.0292 0.0763 0.8922 .82

c
0

8 0.0471 0.0292 0.0763 0.8922
mve3b5 c 5 .0.0632 0'0036 0.0668 0.9827 .96

?

'e,()' 7 0.0247 0.0787 0.1034 0.8691
mvp307 , c 11 0.0526 .0.0056 0,0582 049797 .81

c0 12 0.0413 0.0187 0.0600 0.9553
mve308 c 7

0
.c , 8

0,0732
0.0498

0.0147
0'.0578

0.0880
0.1076

0.9601
0.8936

.§3

mve401 c 7. 0.0364 0.0109 0.0473 0.9872 .83
c0 8 0.0252 0.0451 0.0704, 0.9328

mve402 c 13 0.1494 010395 0.1890 0.7809 .79
c0 14 0.0910 0.0961 0.1871 0.6660

.mve40-3 : . c 8 0.0771 ' 0.0294 0.1065 0.7048 79
c0.8 0.0771 0.0294 0.1065 0.7048

mve404. c 3 0.2100 0.0130 0.2230 0.9564 1.00
c0 4 0.1455 0.0840 0.2296 0.8208

mve405a c 6 0:0560 0.0025 0.0585 0.9919 1.00
c
0

8 0.0326 0.0'513 0.0839 .9196
mve405b c 8 0.0987 0.0419 0.1405 .7344 :91

c
0

8 0.0987 0.0419 0.1405 '' 0.7344
wie405c c 7 0.0794 0:0123 0.0917 0.9543 .94

c0 8 '0.0527 0.0478 0.1005 0.8921.

a
c
o

is the theoretically derived cutoff to minimize

p4F+) + c is the cutoff actually used in the PLATO Service

Program at Chanute.
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has P(F-) = .19'57 so-that to 88 x 0.1957 or 17 out of a 'total of 88'

it
students repeated same instruction unnecessari4, Of -course this

j:s an extreme case d most p values are less tha6 .10 percent,.which,
mea#s that five.to eight students repeaed the same lesson mistakenly.
Table.32 shows the'number of students who will be misclassified or
were misclassified. . \

We conclude that most cutoffs of Master Validation Exams
used at Chanuiewere not the be,s_tchoice. By adopting the.th4aoretically
derived cutoff .co's the probability of misclassifitations could lave
'.-aen-minimized. Note that P(F +) at cutoff co fox each MVE except-4a
MVE207 (which has co larger than c; while others has the reverse)

. becomes larger than or equal to the value of 11(F) at cutoff c, while
P(F-) showed' the reverse phe omenon. The appropyiafe judgement of
which misclassification sho d be minimizedemusf be made by'a tebt
administratar through -decid ng on the loss ratio Q. We set Q=1 because
all lessons were considered to be not related linearly.. We have to face
the problem of how to put w 'ghts on the cases, the increased chance
of having students advance by mistake and decreased chance of retaining

' students unnecessarily in the lessons they just finished or the revers
If a training program must.be finishedin a hurry, then it is better
to setQ so as to minimize the chaiice of false retainment, P(F-).
Thus, Huyith's method gives us more control over the situation, but
also brings in more complications of judgement. 'We don't know how to
make the best judgement on the issues what level a mastery.criteiTo
.should be set at, and how large the loss ratio Q should. be: Neither-

decisions can be made analytically or in a logical . Only carefully

designed, research can answer what are best decisions.

Let us eemine Huynh's method more carefully, gigure 24
shows similar plotfings to Figure 23 but the time'mastery levels of .79,.
.75, .85, .90 were also plotted together with ..80 on the same screen.
The dotted lines were marked by the level of mastery respectively ,
The horizontal lines correspond to various4loss ratios; ,50, 1.,

In FigUre 24,E -the optimal cutoff co at the mastery level'
of .80 is'9 with the loss ratio of 1.00. co=9 can be the optimal,
cutoff at the mastery level of .85 with the loss ratio of, Q=2, anti
also at the mastery level of...90 with Q=2.5. Indeed, the ranges of Q
for co=9, at 80 percent is 'from 0 to 1.2, tor co=,at 85 percent is.
from 0.8 to 3, for co=9, 90 percent is from 2.25 to 9.25. In the last-

example, a choice of loss ratio between 2.25 and 9.25 will lead u# to .

select co=9 at the gagtery level of .90. Figure 24 show& that the
'range of loss ratio Q for co=8 and the mastery level of .90 becomes
from 9.25 to over 30. The average loss P(F+) + Q P(F-) associated with
Q=9.25 and 30 will be quite different, but P(F=), P(F+) Are determined -

uniquely with e0=9, and -the mastery,level e0=.9. Test administrators
'Will need more guidance to decide the best loss ratio for,their testing.

ta
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Table 32

Estimated umber of Misclassified'Studefits

Test . Cutoff
a

F
+

Test

mve103 c' 6 5.3 1.4 mve207
c
o-

7 2.7 5.4
mve104a c 7 0.2 0.0 mve301

c0 10 0.1 5

mve104b c
0

9 2.9 .1 mve303
c 9 2.9 2 1

mve105 6 2.6 0. mve304
c0 7 1.0 3.

mve201a c 7 2.7 0.' mve3q
c
0

8 1.8 2.0

mve201b
r : '

c 7 9.3, 1.3 mve307
c
0

8 6.1 4.8
mve202a 16, 11.3

16 11.3
mve202b

c0

6.1
6.1

mve30.8

5 0.5 0.0 mve401
,8 0.3 1-.0

mt e2Q4 . c0 8 8.8' 4.4
c a 8.8 4.4

.mve205a c 8 12.9 12.1
c
0

8 12.9 :12.1
mve205b c' 8 12.4 5.2

c
0>

8 12.4 5.2
mve206a co

.

10 3.7. '1.4

''', c 11 2.1 4.2
imve206b c

0
12 4.8 0.9

c 14 2.4 7.3

Mve206c c
0

13 0.4, 0.0
.

c 16 0.2 0.8

mve402

mve403

mve404

4
mve405a

mve405b

mve405c

4

Cutoffa F
+

c
c
0

5

4

8.5
25.3

17.2
4.8

c
o

8
8

6.9
6.9

4.2
4.2

c0
c
o

15
16

7.6'
45.2

, 1.9
4.6

c

-c
o

Q
8

3.2
3.2

2,.0

2.0
c
o

5.

7

4.5
1.8
3.3
2.6

0.3
5.7
0.4
1.2

c

'c°

11
12

c0
c

7
8

6.0
4.1

1.2,
4.7

1 c0 2.3
1.6

0.7
.2.8

.13
14

14.0
8.6

3.7
9.0

c0
c

8
8.

6.5
6.5

2.5
,2.5

c

c
0

3

4

14.1
9.8

0.9
'5.6

c

c
o

6

8

4.0
2.3

0.2
13.6-

c
o

c

8
8

6.9
6.9

2.9
2.9

c
o

c

7

8

5.5
3.6

0.8
3.3

a
c
o

is the theoretically derived cutoff to minimize P(FE) + P(F )

c is the cutoft actually used in the PLATO Service Prograq,at Chanute.
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8.3 Other Measures Obtained frLm the Evaluation Study of the Chanute
AFB CBE Project

J
Correlation Values of Mastery Validation Examh 'Scores wish

Block Test Scores and Gain Scores. The evaluation study of the program,
supported by the Advanced Research Projects Agency, measured some
cfiterion variables which would be helpful in conducting a validation
study of MVEs. The evaluation study revealed that a substantial number
of examinees were misclassified (Table 32). Since detailed information
on the design used in the evaluation stud? can be found in Dallmen et al.
(1977), just a brief description will be given here.

A 50-item NRT was given at the beginning and the end of the
eight-week Chanute Project, which, included 35 on-line lessons. 'The
35 lessons were divided into four subsets called Bleckl, Block2, Block3,
and Block4. After a student studied and mastered all lessons in a
block, he took thelolock test; the block test score was counted in his
final grade for the course: He had to take all four block tests, and
thena posttest was given in order to measure the effectiveness of
the program. Each block test had twenty items whiCh were either

,multiple-choice or matching.: The coefficient alpha reliabilities were
not calculated because the tests were written on the PLATO system and
the itemvinformation was not collected, But a21 .was available in the
following chart. Figure 3 gives a flow chart of the testing program.

In order to validate,the effectiveness of lessons, four kinds
of correlations were calculated. These correlations are described in
the following paragraphs.

Each Block's test scores were matched with the corresponding
Master Validati n Exam ,scores and the time needed to master the lesson
(mastery time), and their correlations4were calculated over the sub-
jects. These two correction values of 27 lessons were denoted by
r(B,MVEs) and r(B,time) respectively. Their values are shown in Table 33.

The true gain scores of posttest, ,x2, from pretest, xl,
were estimated by multiple regression procedure; the true score
difference t2 -t1 of the observed score difference x2-xl was regressed
on the post- and pretest scores. It is known that regression of
t2-ti onto the two variables xl and x2 is the same as regressing t2-t1
on the scores x2-xl and the residual score, c2, of x2 on x2-xl.
(Tatsuoka, 1975), because the covariance of x2-xl and c2 equals zero
and both x2-xl and c2 are linear combinations of xl and x2. Therefore,
the multiple regression R(t2-tilx2-x1) will be given ae the sum of
the regression of R(t2-tilx2-x1) and R(t2-t1lc2):

R(t
2
-t

1
lx

2'
x
1
) = R(t

2
-t

1
Ix

2
-x

1
) R(t

2
-t

1
lc

2
).

a

b.

ti

4
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Table 33-

The Correlations of Block tests to MVE Scores and Mastery Time
.

lesson r(B, MVEs) r(B, time) r(G, MVEs) r(C, time)

103 .15 -.22 .23 -.38*

104a .38* -.33* .19 -.43*

104b .36* .44* .....

105 .22 -.08 .20 -.34*

201a .34* .12 .44* ,-.05

201b .19 -.25 .38* 7.40*

202a .17 -.04 .07 -.43*

202b .26 -.03
e

.28* -.07

204 .21 -.21 .f1 -.13

265a .28* -.24 .18 -.32*

205b %25 -.08 .15 -.26

206a .40* -.21
i

.13 -.22

.206b .12 -.04 -.02 -.18

206c .00 -.04 .33* -.08

207 .28* -.17 .25 -.27

301 .04 -.08 . -.11 -.06

303 .34 -.21 .08 -.05

304 .38 -.27 .42* -.37

305 .0i -.19 .31* -.26
.

,,

307 .30* -.23 .41*
. *
-.30

308 .01 .04 .00 -.07

401 .50* -.15 .32* -.21

402 .25' -.14 .46* -.34*

403 .40* -.23 .21 -.02

404 -.02 / .00 .02 -.33*

405a .07 .01 .12 -.11

405b .25 -.06 .17 -.12

'405c .37* -.11 . .19 -.07

*significant at p < .05.

ve
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Note- that the regression coeffrcient of the first .term is
the reliability of gain scores and tat of the gecond term is the
increment of multiple R2. The multiple R is .861,'hence the reliability°.
of the multiple regression gain' score is R2=.7405. The squared multiple
R of the first term,'viz. the reliability of x2-xl, is .1047. "The
squared multiple R of the second term is the increment .6358.

This estimated gain score has a higher reliability than those
of pretest and posttest separately. this score waa gorrelated with,MVE
scores and mastery time. Table 33 shows the tesult. The numbers of
statistically significant correlation values are 12 in Column 2, 1 in

Column 3, 10 in Column 4, and 10 in Column 5. he correlation matrix
of these four variables over 27 lessons, r(G, MVEs), r(GT,.tide),

MVEs) and r(B, time) is as folldws:

1. r(G, MVEs)
2. r(G, time)
3. r(B, MVEs)
4. r(B,vtime)

1 - 2 3

1.000

-.377 1.000
.403 -.275 1.000

-.235 .520 -.468 1.000

"Variables 1 and 3 have a moderate correlation value, and
Variables 2 and 4 have also a moderate correlion value of .520.
The reliability of our gain score has the value of .74 while the four
Block tests in Figure 3 have the reliability an of .56, .33, .47 and

.42 respectively which are very low. Therefore, we decided to use
only the first two variables, r(G, MVEs) and r(G, time) in subsequent
analyses. They were renamed "gain" and "timeg."

The optimal cutoffs cn that mere evaluated in the previous
subsection, and designated by co in Table 32, were divided by number of
items of the corresponding Master Validation Exam.

The distance of co from the mean value in each test, co-37,
was also divided by the number of items of the corresponding Master
Validation Exam in order to make it free from the effect of the test
length of MVEs, and then absolute values were taken. This value
stands for a sort of the distance of co from the mean of each, test.

A lesson of Vehicle Training Program at Chanute Air Force
Base was said to be validated when 90 percent of-the students have
achieved the-given mastery level of 80 percent of the items answered
correctly in'the first attempt on each Master Validation Exam. The
sample consisted of about 30 students from successive classes. No
major modifications of lessons were made until all students in the
sample finished the lessons. All lessons were Validated according to
this criterion.between April and September of 1975. These lessons were
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used without any major change during the evaluation period and were
tested on more students who came iki,lafter the validation dates were

,established'., Table 34 includes theAkformation of validation data,
the number of examinees who studikl the lessons after the lessons were
said-to be validated (we call this number "nafter" from now on), th
percentage of students who achieved the given mastery level at the f st
try (denoted by Y. of success), the
at the first try, the total number

uercentage of students who failed
of students (which is equal to 30

plus "nafter") and the number of stjudents who passed the end of the
lesson test at.the first try.

e

Efficiency Index in the laSt column in Table 35 (seepage
105) is aimed at measuring the quality of Chanute,lessons. It is
derived from the idea that a good lesson written on the CAI system
will allow a student to spend his/her minimum time to maseer, the
instructional objective. If a lesson is not good, then a student ,

tends to spend more time than he/she actually needs to master the same
instructional goal in a good lgsson. The reader might wonder what is
the definition of a good lesson. The experienced instructional designer
might say that the quality, of instruction may be determined by the
appropriateness of instructional cues, and the quality and the tape
of reinfor.cement given each student, as well as the amount of partici-
pation and practice. experienced by each student. If the instructional
cues are appropriate, clear without ambiguous wording or explanation,
then a student must learn the instruction at his/her own learning rate
without wasting his/her time.

Carroll (1963). Carroll and Spearitt (1967), and Atkinson
(1968), studied the various rentionshipS among the quality of instruct
tion, intelligence and time required forleach student to achieve the
mastery. Atkinson's findings are especially interesting. They show
that students can achieve mastery level of different tasks with
different rates and that time variations'in learning can be reduced by
improving the quality of instruction. Indeed,high quality lessons
maximized the individual's learning rate. We all know that a bright.,

student learns very quickly, no matter how poorly a lesson is written.
It seems likely.that a mediocre student will beithe one who suffers the
most from ambiguous; unclear instructional cues in'a poor quality
lesson. 'If the teaching objective in a lesson does not require pre-
viously acquired knowledge.or hip intelligence, and is fairly easy, then
average students should master it as quickly as bright students master
it.

-

How to measure the quality of a lessin became a major concern
in the evaluation study df Chanute Air Force Base Computer Based Educa-
tion Project. They to validate a leS'son by using success rate
(see Tables 31 and 34),.but their attempt was not successful,. It is
natural to consider that the quality of instruction-can be recognized
at least by two aspects; one,is higher success rate, the other is
faster learning rate.
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Table

Summary,ofMaSter Validation Exams bin the Chanute PLATO IV Project

Validation Size of testa

Lessons Ma ,4 Date out sample

103 ! 30 10 June

104a 30 14 April

104b ' 30' 14 April

105 30 14 April 1021

106 30
4

19 June

201a 30 28 May /

201b 30 23 May 119

202a 30 18 Aug 33

202b 30 28 May /

'203a 30 28 May

203b 30 13'Jun

203c 30 18 Aug

204 30 18 Aug

205a 30 15 Jan

205b 30 15 Jan

206a' 30 13 June

206b 30 25 June

206c 30 11 April

207 30 15 Aug

301 30 25 June

304 30 25 June

305 30 18 May

307 30 14 April

308 30 18 May

401 30 17 April

402 30 8 July

403 30 30 June

404 30 2 Sept

am

63

114

113

90

33

33

33

33

33

33

90

65

118

33

109

65

109

130

109

142

65

65

33

% of

Success

89%

94%

86%

% of
_failure

11%

6%

14%

Total
N

93

144

143

# of

SUccess

83

134

124

88% 112% 132 117

82% 18% 63 . 54

90% '10% 129 116

72% 28% 139 105

82% 18% 63 54

98% 2% 120 115

97% 3% 63 59

94% 6% . 63. 58

91% 9% 63 57

94% 6% 63 58

79 21% 63 53

82% 18% 63 .54

82% 18% 120. 101

82% 18% 95 80

95% ..12L- 148 139

91% 9% 63' 57

79% 21% 139 113

82% 18% 95 .1 80

96% 4% 139 132

81% J9% 160 132

63% '37% . 139 96

83% 17% 172 146

79% 21% .95 78

79% 21% 95 .78

100% b% . 63 60,'

is the sample sizd used for establishing validation dates.
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(Table34 corit%)

k'
LessQis Ma

Validation, Size of tested
Date -\ out sample

.
r . .

%% of
Success

.

% of
Failure

., Total
, N.

s

if of
SuCcess

405a 30 26 Aug 33 . 100%., ,0% . 63 60

405b 30 26 Aug 33 91% '9% :'\( 63 57

405c 30 26 Aug 3,3 . ,; 94% 6%
i

63 58

405d 30 2 dept' , 33 73% 23% 63 51

406 30 30 June 65" 95% ' , 5%, 95 89

407 30 22 Sept 33 88% . 12% 63 56

p.

it

si
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Tatsuoka (1978) discu sed the possibility, of using the succg6
rate as .a measure of instructional quality in her paper, and the:result
was not favorable. Success rate easure depends on the scores-on the
end-of-lesson test, a criterion- ferenced test which has-been a
problem in educational measuremen . It is dangerous to use a criterion-.
referenced test alone as a measure the instructional, quality, and
the success rate is contaminated by the problems of misclassifications,
false positive, and false negative. It is urgent to' establish a methbd
that can measure the quality of instruction, directly without using
criterion-referenced testing as an auxiliary means. We believe our
efficiency index ,provides one such wanted measure. The procedure for
deriving the efficiency index is as follows,

. -
1. The total sample of about 80 subjects,. was divided into

three groups according to their scores on ble.aptitude'test, the Armed
Services Vocational Al5titude Battery (ASVAB). The hest is aimed 4t
measuring general-technical, mehcanical, motor mechanical elec-
tronics aptitudes for high school seniors, as payt ci the recruiting
programs of the Army, Navy, and Air Force. The first\group conbists
of the top 25 percent of the students, the second is

first\group
middle

50 peicent of students and the third is the bottom 25Aercent of the
students who took the ASVAB. The average mastery times of the three
groups are calculated and summarized in Table 35. The t-test of mean
mastery, times for the two groups, Group 1 and Group 2, revealed that
9 out of 27 lessons were statistically significant at p < .05.

2. Lesson MVE201a was arbitrarily picked as the base, and
its mean mastery times in Groups 1 and 2 were divided by the respective
mean values of mastery time of every other - lesson. We calculated such
ratios of the Mastery time of 27 Chanute lessons in Groups 1 and 2,
taking the mean Mastery of lesson MVE201a as the base.

. 3. According to the assumption that a good lesson will not
make the average students slow down to master it in comparison with time
taken to master the lesson for the brighter students, we divided the
newly calculated 27 ratios, [mean mastery ime of MVE201a]/[mean mastery
time of lesson X], in Group 1 by the corresponding ratios in Croup 2,
and obtained 27 efficiency indices which.appear in the last ,column of
Table 35.

If the value of (efficiency index of lesson A'is larger than
that of lesson B, then ye might be able to say that lesson A is more
efficient than lesson B.

8.4 The Results of Statistical Analyses Over 27 Chanute Lessons'

Nineteen measures were selected and their correlation matrix
was calculated. Table 36 gives a brief descyiption of 19 variables and
Table 37 is the correlation matrix of theseiwriiiblIs,

.
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Table 35

Average Mastery Time and Efficiency Index

A

e4-

Mean and Standard Deviation (Minutes)

Lesson
.Efficiency

IndeX1

* **
2

***
3

MVE103 21.25 , 5.26 32.95 , 15.42 41.83 , 27.1.1 0.746
MVE104a 23.42 , 5.09 36.82 , 13.61 36.25 , 13.07' 0.736
MVE105 31.73 , 8.19 41.63 , 12.32 54.42 , 23.00 0.882
MVE201a 11.20 , 5.35 12.96 , 6.31 `13.75 , 7-19 1.000
MVE201b 27.08 , 16.02 ' 42.46 , 23.05 52.42 , 29.05 0.738"
MVE202a ,142.23 , 56:22. 183.44 , 73.65 218.14 ,114.81 0.897
MVE202b 12.46 , 3.'89 14.58 , 4.46 14.25 f 3:41 0.989
MVE204 ... 71.64 , 31.36 100.76 , 59.91 102.50 , 60.03 0.823
MVE205a 86.75 , 25.32. 111.60 , 47.97 149.17 , 94.90 0.899
MVE205b 27.90 , 11.80 44.46 , 35.94 50.18 , 29.35 0.726
MVE206a 37.89 , 12.75 53.10 , 21.77 55.00 , 26.03 0.825
MVE206b 11.00 , 3.20 20.33 , 13.50 22.50 , 7.15 0.626
MVE206c 33.13 , 15-50 50.95 , 33.75 41.8 , 10.69" 0.752
MVE2 -07 22.45 , 5.05 34.50 , 16.18 43.15 , 26.86 0.753
MVE301, 26.67 °, '9.10 29.1 , 18.81 29.92 , 16.98 1.035
MVE303 3.99 13.50 , 7.06 15.36 , 6.,99 0.992
MVE304 12.83 , 7.25 10.06 , 4.99 15.80 7.71 1.476
MVE305 14.75 , 3.41 - 19.90 , 9.01 21.80 , 7.15 0.858 .

MVE301 44.00 , 12.54 58.22 , 27.57 86.83 , 22.74 0.874
MVE308 38.00 , 5.95 44.71 , 18.66 42.10 , 15.77 0.983
MVE401 17.00 , '3.27 , 5..50 26.17 , 5.42 0:934
MVE402 53.55 , 18.91 81.69 , 67.17 114.08 , 49.75 0.758
MVE403 7.13 , 1.13 4.88 , 16.34 15.86 , 8.73 0.666
MVE404 10.20 6.14 10.00 , 5.13 13.44 , 7.50 1.180
MVE405a , 23.00 , 1410 25.37 , 7.21 32.60 , 13.82 1.049
,MVE405b 33.25 , 9.16 42.47 , 18.37 39.11 , 19'.33 0.906
MVE405c 9.00 , 2.38 11.10 ,. 8.51 13.00 , 5.29 0.938

*

The top 25 perCent of examinees according to ASVAB scores.

**
The middle 50 percent of examinees according to ASVAB scores.

**
The bottom 25 percent of examinees according to ASVAB scores.

cf.
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Table 36

A Brief Descriptionof 19 Variables

Variable
Number

'Notation Description

2(

a

I

la

r

*

1

2

3-

4"

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

P(F+)

co/n

a21

'P(F+) + P(F-)
nafter

o

% fail
to

MC

C

Po
p

4"
range

gt,

efficiency index

-gain
time g

items

icd-meanl/n
P(F-)
P(A or F+)

The probability of false positive
The optimum cutoff ratio so as to minimize

misclassifications
The ratio of true variance to observed
variance

The probability of misclassification
The number of subjects tested after a

lesson was declared to be vatidated
Observed percentage of failure In MVE
The minimum time parameter from Weibull

distribution .

Maximum correlation from estimation pro-
cedure of Weibull parameters

Shape parameter of Weibull distribution
Scale parameter of Weibull distribution
Probability value from Kolmogorov-Smirnov

test

Maximum mastery time minus minimum mastery
time

Relative ratio of mean mastery time of
higher aptitude group to mediocre
aptitude group

Correlation of gain scores with MVE scores
Correlation of gain scores with mastery

time
to Number of items in a test
Relative distance of co from the mean
Probability of falge negative
Probability of pass based on the observed
cutoff c

"AS

The probability of false positive (or advancemeit),.P(F +)

has correlation values of .931, -.562, -.678,, .638 and -:637
Ico-meant p6%.,

Pr4) P(F-), Rafter, P(F -) and P(A or F+) respectively.

According, to theSe correlations; when false positive occurs, then
O

false negatille more likely occurs but the observed passing rage,

P(A.or t+) more likely ideclines. That means that the lessons whose.
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Table 37

Correlation Matrix of 19 Variables
(x 1000)

1 7'50, -6. 93'1 -562 . 111 147 -345

2 250 ion 358, 393 .-373 167 754 259

3 -6 358 1003 -20 -37 4 158 44

4 931 393 -20 pOD -617 165 257 -223

5 7562 -373 -37 -617 1000 335 -261:,285

6 111 167 .384 165 335 100.0 225 1

7 147 754 158 257 -261 225 100 1 203

8 -345 259 44 -223 285 1 203 100E

9 -276 -10-236 -294 337 -2Z 20 389

10 342 614, 196 396 -329 254 762 32

. 11 1E2 270 89 -279 -64 76 318 295

12 265 621: 213 345 -304 226 755 67

13 19 -145 -1 -3Z -23-167 -101.

14 -283 --44 90 -264 271 3- -90 -205

15 '1)83 -233 -259 54 -99 -460 -508 ,26

16 'v-128 -271 172 -211 426 385 -106 98

17 -678 -441 -626 -662 353 -522 -219 239

18 638 542 , 79 869.-544 293 376 '-17

19 -637 -558 -189 -853 587 -289 -426 12

-2r6 342

-12 614

-236 196

-294 396

337 --!)-329

-20 254

20 762

389 32

1000 60

60 10015

-31 383

-15 967,

401 -227

64 -94

-71 -449

43 43

228 -440

-234 428.

298 -473

11 12 :3 14 15 16 17 18 '19

11 1000 432 -193 -126 -1175 15t.-259 347 -326

12 -150 1200 -289 -74 -414.,702 417 -467
13 -193 -289: 1.600 -1 261 -319a1-05 -75 '148

14 -126 -74 -1 1000 -377

15 -175 -414 261 -377 1000

16 157 70 231 -190

17 -259 -402 105 181 119

18 347 417 -75 -196,-171

19- -:326 -467 148 155 174

-108

120

231 181

-1,9a 1-19

1000 -123

-123 1000

-264 .-595

238 640

-196 155

-171 174:
-264 2384)-
-595 640

1000 -974

-974 1000

.4



t A. ,

observed passing ratet,P(A or F+) is higher tend to have less chance

of false positive (advancement) cases. The test which advances the

students to the
\
next lesson more fregliently by mistake :tends alsb to

retain the student whose true scores are really abcov-,d,the mastery level.

The high correlation of P(F+) and -o. .shoWs when the observed

cutoff co is closer tomean, then the misclassificatpa of false

advancement tends to occur more often. The 'correlation value of -.562

with the variable, nafter, the number of students who studded a lesson

after the validation date was set '(if over 90 percent of the students

pass the mastery level of a MVE, then 'the lesson was s td be valida-

ted) indicates that the probability P(F+) will be sitall if.the lesdons

whose validation _date were established,:at an earlier date during the

period of evaluation study at PLA 0 program.

This relation is trr for the variable.s P(F+ or F-) and

P(F-) because the correlatikns of variable "nafter" with them are -.617

and -.544 respectively. Moreover, P(F+), P(F-) and P(F+ or F-) corre-

late highly with variable
lc
n
;mean!

with-the values? of. -.678, .595,

and -.662 respectively. But the correlations between "nafter" and

IcA-mean
n is not so- low, at .353. Further. discussion of the appropri-

ateness of the procedure that a lesson can.be said validated will be

found in Tatsuoka (1978).

n

co -mead I

---,,

Variable 17 (J- -L) correlates significantly with nine L

ariables, and s does Variable 19 (NA or F+)). Variable 12, (range) -

4 ,
'

and Variable 18 P(F-)) each'correlate significantly' ith.eight

variables 4 (P(F+ or

F-) and 10 (.10) have six variables whose correlation values are signifi-
,

'cant. In ordento clarify the characteristics of the 19 variables,

principal component analysis was rst performed. The first five

eigepvalues were 6.32, 3.08, 1.40, 1:30 respeCtively and their

cumulative percentage was 75 per ent of the total variance. The factor

matrix was orthogonally rot ted y Varimax analysis and five factors

were selected. Table X38 summarizes variables in each factor with their

factor loadings.
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Table 38

The Results of Factor Analysis
.

Variable

factor 1.

Loading Variable

Factor .2

Loading

1 i(F+) , .89 2 co/n .

4 P(F..1.- or F-) .94 7 to

..70
.90'

5 nafter . -.69 10 Po .85

17 Ico-meanlin -.73 12 range .85

18 P(F-) .81 15 timeg -.66
19 P(A or F+) -.81

Variable

Factor 3

Loading

3 (121 .62

6 % fail '.85

16 items .62

17 Ico2meanlin -.58
1

Factor 5

Variable Loading

9 c .69

13 efficiency index .84

Factor 4

Variable Loading

4

8 me -.78
ri p

,
. -.54 .

14. gain .61

.04

Probability Variables 1, 4, 18 and 19 clustered together
with Variables 5 and 17 as Factor .. Time variables 7, 10, 12 and 15
clustered together with the optimal cutoff co. The result most
interesting to the authors was Factor 5, the shape parameter of Weibull.
distribution clustering together with the efficiency index of lessons.
The correlation of c and efficiency index is ..401 which means that if A

c is larger, then the lessons tend to have larger efficiency index,
and hence the difference between the average mean time of Group 1
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and Group 2 becomes smaller, with respect to.the difference of those
in Group 1 and 2 of lesson MVE201a. .That means by our assumption that
if c is larger, then,th*corresponding lesson is more-efficiently
teaching students. Recall the previously developed argument that CRR
of larger than 1 was interpreted as meaning that students engaged
themselves with the task of solving.a problem, and .CRR of smaller than
1 indicated they gave up a given item because it was too difficult
to try for.them,. These two results from the analysis of lessons and
test items were independently derived in difierent.conteqe, and yet
both make sense. and sound reasonable. Since aptitude scores are in-
frequently available in common practice, it is usually difficult to
obtain the efficiency index we introduced in this report. But mastery
time can be obtained fairly easily from lessons written on a CAI
tystem, so our research result wille used to measure some aspect.
of quality in lessons, we hope.

Multiple Regrestion Analyses were,performed in the several
sets of variables. The purpose of the analysis was to see which
variables,predict large misclassifications. :Variables 3, 5, .6, 7; 8, 9,
10, 11, 12, 1314, 15, 16 and 17 were taken ak a set of predictors,
and Variable l (P(F+)Y was taken as the criterfbn. Stepwise multiple
regressiqn where F values of entry and removal of predictors were tet
at 2.0 was performed on these variables, an& then Ico-meanlin with
,t-value of -10.4, a21 with t = -6.6, % fail with t = 2.6 and c with
t = -2.0 were selected to predict P(F+), probability of false positive.
Multiple R was .921; R corrected for shrinkage was .828.

-----,, A second analysis was performed on the same jet of predictors
and the criterion variable of 18, P(F-). 'Multiple R of .912, R
corrected for shrinkage of .782 were obtained with the predictors
Ico7meanl/n, a21, maximum correlation,number of items, c, and timeg
(correlation of gain and MVE scores).

A third analysis was done on the same set of. predictors and
the criterion variable 4,'P(F+) + P(F-). The result was pretty much
similar to the first and second analysis results. The predictors are
Ico-mean /n, a21, maximum correlation, c, the correlation of gain and
MVE scores, nafter, and number of items in a test'. Multiple R is .97b
and R corrected for shrinkage is .918. These results are summarized-
in Tables 39, 40 and 41. .
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Table 39

Relationship between P(F+) and Other Variables

Variable

3 , a21
6 % fail
9 c

17 Ico-meanl/n

Beta-Coefficient SDT Error t

-.709 .108 -6.6

-.256 .099 -2.6

. -.172 .087 -2.0

-1.216 .117 -10.4

Multiple = .921, Corrected R for shrinkage = F11;22 = 30.543

Table 40 .

Relationship between P(F-)'and Other Variables

Variable Beta- Coefficient ST Error

3 a21 -.793 .141 -5.6

8 mc .529 r .123 4.3

9 c -.368 .110 -3.4

15 timeg -.Z38 .106 =2.2

16 items -.409 .101 -4.1

17 Ico-meanl/n -1.198 .145 -8.3

)

Multiple R =--%912, Corrected R'for shrinkage = .782, F7,19 = 13.446

Table 41

Relationship between P(F.I. or F...) and Other Variables

Variable Beta-Coefficient SDT Error

3 a21 -.864 .088 -9.8

5 nafter -.195 ' :077 -2.5

8 mc .377 .079 4.8

9 c -.362 .080 -4.5

14 gain .224 :070 3.2

16, items
.

-.161 .073 , -2.2

17 Ico-meanl/n -1.216 .096 -12.6

Multiple R = .970, Corrected R for shrinkage = .918, F318 = 35.382

14



Variable Ico-meanl/n is a common predictor of three criteria variables
and t-values are -10.4, -12.6 and -8.3 which are the largest among other
predictors. This result is expected due to the nature of beta-binomial N:
model, but o21 as the second strongest predictor in the three analyses
is surprising. If an is high enough, then the probability of the
three errors, false positive, false negative and either misclassifica-
tion, will be minimized. Most Master Validation Exams have reliabilil"
ties of around .4 to .5 which is quite low, so it' is natural to expect
that misclassifications will have occurred quite frequently in the
program.

44 The variable an does not correlate significantly with .

Variable 16, number of items in the tests; it correlates with Variable
6, percentage of failure at the 5 percent significance level. This
relationship may be interesting to investigate further, especially
when the test lengths are short and about the same; 10 to 15 items as
is typical for criterion referenced tests. It is apparent that a21
is a strong predictor of the three criteria with beta values of
-.709, -.865, and -.793 respectively, and therefore internal consis-
tency is an important factor for controlling the occurrencee,of mis-
classifications in a criterion-referenced test. Figure 25 is a copy
of the PLATO screen where the graphic relationship between P(F+) + P(F-)
and a21 was plotted. The/curves in Figure 25 are of P(F+) + P(F-) as
y-axis, an as x-axis for the test whose mean value is 8:907 and the
test length is 10. When cutoffs are 7, 8, and 10, the corresponding
curves go down as a21 goes larger. The curve,for cutoff 6 has the
optimum value at around an = .6, but_it goes down as' an increases.
If internal consistency a21 of the test is between .53 and 1, then
cutoff 7 minimizes the probability of F+ or F -. If a21 of the test
is less than .53, then the optimum cutoff will be 6. Thus, the optimum
cutoff scores so as to minimize the misclassification.mistakes depends
on a21. This fact will be one useful guide to construct a criterion-
referenced test so that misclassifications, false positive, false
negative can be minimized. The,most interesting result is that the
shape parameter c appears in three cases as a predictor with beta-
values of -.172,-.362 and -.Z368 respectively. If the lesson has
larger c value, then the probabilities of misclassification, false
positive, and false negative become smaller. Even though P(F+),
P(F-) and P(F+) + P(F-) are determined by such variables as number of
items, means of,CR test scores,:a21 that are purely obtained only from a
test, the value of the shape parameter c of the Weibull distribution
entered as a common predictor of the three misclassification cases.
It implies that some factor of a lesson related to the quality of
lessons, or conditional mastery rate of the lesson (conditional
Probability of a student who has not mastered the lesson at time t
will master it at the next moment, t + At) affects the possibility of
having misclassifications upon judging based on the scores on the end'
of lesson test.
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Figure 25 The relation between P(F.dtP(FJ,and a21
mean = 8.907, no. of items = 10, cutoffs 6,9
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In the last analysis, Variable 2, co/n, was taken as the
criterion and all other variables as predictors. Stepwise regression
analysis selected predictors, to,, Ico- meanl/n, items and mc with
multiple R of .875, and R corrected for shrinkage of .735; F value for
'this regression was 17.98. ,Table 42 shows the result of analysis.

Table 42

Relationship between co and Other Variables

Variable Beta-Coefficient Standard Error

,

7 to .578 .112 5.2
8 mc .269 .112 2.4
16 items -.287 .107 -2.7
'17 Ico-mean in -.414 .113 -3.7

Multiple R = .875, Corrected R for shrinkage = .735, F
4,22

= 17.984.

It is surprising to see that to, location parameter of the.Weibull
distribution, enters as the strongest predictor of4the optimum cutoff
scores co with t-value of 5.2. Beta-coefficient'oP578 indicates
the lessons that have larger to values tend to have larger c0 /n. Note
that co came in together with to, p0, range and timeg. The percentage
score-of the optimum cutoff, IcoI /n showed a strong relationship with
time variables in the corresponding lesson. We don't know how to

interpret thii result.

The major conclusion of this section is that misclassifica-
,

tiogrfalse positive and false negative are mainly affected by three
factors: how;, closely to the mean of a test the cutoff was selected,. -

internal consistency of a test, and conditional-mastery rate of a
lesson.

/
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9. SUMMARY AND CONCLUSIONS

This study investigated the feasibility of using the family'
of Weibull distributions--a family which is widely used in system-
reliability analysis--as a model for <the distributions of time scores
(response times) of items in criterion-referenced tests, lesson segments
arid entire lessons that were implemented on the PLATO system. The items
wee those'of a series of matrix algebra tests developed for the dual
purpose of using in this study and for testing students in three sta-
tistics courses at UIUC bokPbefore and after they studied our matrix
algebra course. The latter provided the lesson segments (including
exercises), while the entire lessons. came from the Chanute AFB CBE
Project and deals with special and general vehicle'maintenance training.

The fits of the Weibull distributions to these various
observed distributions were, on the whole, very good to excellent as
gauged by the Kolmogorov-Smirnov goodness-of-fit test. However, for
some items (must of which possessed certain exceptional properties in
common) the two-parameter gamma distribution offered better fits. The
same held true with even greater force for the exercises occurring-in
the matrix algebra lessons. Tentative explanations of when and why
the gamma was better than the Weibull were advanced, but discovery 'of
definitiVe,reasons must await future research.

Interpretations of the three Weibull parameters--the
theoretical minimum time or location parameter to, the scale parameter
po which is closely related to the mean, and the most interesting,
although sometimes "recalcitrant" shape parameter c--were given in

' terms of psychometric properties of the achievement test items. The
last mentioned parameter was found by correlational analysis to,be
moderately related to two kinds of item difficulty index--the tradi-
tional proportion passing and a more subtle one developed very recently
by Irmgard Loeschner (personal Communication). It was also believed
to be related to what might be called "degree of engagement or in-
volvement" of the student with the task, and further to be associated
with degree of familiarity with it.' Bez.th these are'akin to, but
conceptually different from, difficulty. . .

-1

A function related to, and partially determined by, the shape
parameter is what we dubbed the conditional response rafe (CRR) and
which is called the hazard'rate in the system-reliability literature.
This is the conditional probability that an,examinee who has not
responded to anitem (or lesson segment, etc.) up to time t.will
respond to it within the follpwing infiniteimal interval [t, t4 At].
When c < 1 CRR is a monotonically decreasing function of t, and.the

.

implication is that students give up early trying tosolve'Such an
item. This typically occurs in pretest items, while the same Items
given after the instructidn usually has c > 1 and the CRR is a mono-
tonically increasing curve. However, anomalous items (of which there
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were three in one of our subtests) that involve materialnoe covered
in the lessonwill behave like pretest items even when given in the
posttest. In a way, therefore, one might say that the,Weibull shape
parameter c relates.also to how well an item "matches" the instruc-
tional content. If 'the match is poor (as it was in the three -

anomalous items), thefi the students will get frustrated and angry.tas
. they did) and will quit trying early, which will be reflected in c
becoming less than 1. If the match is good, on the other hand, the
students will 134 and irge become ego involved and will engage them-
selves deeply With the\items, thus resulting in c > 1 which leads to an
increasing CRR, implying that the longer a student perseveres in the
item the greater'the chances that he/she will answer it.

A relatively trivial point, but nonetheless one which bears
passing'mention, is the-4feet that the location parameter to estimated
for the group which got that item right (i.e. the "OK subgroup' as we '

have been calling it giVes a good idea of the minimum,time that should
be allotted for answering thatfitem.

Another finding is that the time-score distribution of an
item which, requires only simpl.g.t., mechanical sub tasks f-er its execution
is generally fitted better by a two-parameter gamma than by a Weibull
distribution. As mentioned in Section 2.2, a two-parameter gamma
distribution [see equation (2.9), p. 10] with-integer- valued c(>1) is
a c-fold convolution of one-parameter negative exponentiaL distribu-
tions. Such distributions fit well the time distribution of a simple
task with/but one stage; hence their c-fold convolution 6outd 'fit a

problem consisting of c independent stages each of whiCh is simple and
mechanical. Thus the finding just cited makes good, intuitive sense.

We'also found some evidence to support the thesis that the
shape parameter c is a more sensitive measure of the "conceptual
'difficulty" of an item than is the traditional difficulty indeX? This
was done by identifying five sets of d.tems'that respectively had the
same difficulty in Ehe traditional sense but differed considerably
in their c values. For example, both the following' items we're correctly
answered by 29 percent of our sample: (1) If AB = AC, then is B =.C?
(2) An item calling for the inverse of a-2x2 matrix. Yet c = 1.01
for the fitst and c =.1.24 for the second,'and certainly it can,be-
argued thag the latter is conceptually more difficult than the former.

A new measure which we named the "efficiency index" of a
lesson was cleaned as follows. The total-sample-of students is
divided into three groups on the basis of scores on an aptitude ,test
relevant to the subject matter of the lessons (say A and B) whose L,
relative efficiencies or qualities are to be compared. The groups are,
for instance, the ebp 25 percent, (group 1), the middle 50,percent
(group 2) and the bottom 25 percent (which is discarded from further
consideration). We assume that the're are other lessons in the'same
or similar subject matter that have also bgen studied by our sample

117

129

yc



of students, and one of them is arbitrarily chosen as a "reference
lesson" (R). The average times taken by group 1 and group'2 to master
the reference lesson are divided respectively by the mean mastery times
of Lesson A and Lesson B in two groups. We now have four ratios,

XR1 /XA1, xR2t7A2 , AB1
,and XR2/ XB2 say.

Finally, we take the pairwise ratios of these ratios, thus:

/V
. and EB(R)

"11/ -Bl
E
A(R) V /V

-5-(R2PA2 "R2/ -B2

P

Onthe reasonable assumption that a "good" lesson will not require
group 2 (average aptitude) students much more time than group 1 (high
aptitude) students to master it, while a "poor" lesson will show a
larger discrepancy in mastery times, the ratios EA(R) ana EB(R) defined
above will represent the relative efficiencies of lessons A and B:
the one with the larger the ratio is the more efficient lesson. If

there are more lessons to be compared, there will be more such . '

efficiency indices, and the lessons will be rank ordered by them.
(The rank ordering will be invariant of what lesson is chosen as the
reference lesson.)

When a factor analysis folloWed by varimax rotation was
carried out on 19 variables including our efficiency index and the
Weibull shape parameter c, a distinPt factor was found that loaded
only these two variables. We,thus find yet another evidence of the
meaningfulness of parameter c.

The relationship between the probability P(F+) of a false
positive (calling a non-master a master on the basis of a criterion-
referenced test), the probability P(F-) of a false negative (calling a
master,a non-master) and the probability P(F+ or F-) of either mis-
classification on the one hand, and the thret Weibull pprametersi
other psychpmetric properties,of tests such as a21 and rco'- meanl/n
(the tlistance between,the mean and the theoretical cutoff point for.
declaring "masterhood," adjusted for test length) was examined by
stepwise multiple regression analysis. It turned out that the shape
parameter p was one of the strongest predictors of P(F+) and of
P(F-), along with a21 and Ico - meanl/n. The direction of the re:-
lationship so far as c is concerned was that, the larger the e'the
smaller the P(F+) and P(F-). (Actually, the same directionality of
relationship held' for a21 and Ico - meanl/n as well.) Hence we may
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conclude that, although one way to minimize misclassifications is
, natti ally to use the qptimal cutoff point, that alone-is insufficient.

We may still have quite large P(F+), and P(F-) and P(F+ or F-) values
for some tests unless internal consistency (a21) and c (a surrogate
measure of efficienc)Vof i9struction) are also high.

I .

One incidental.but in our mind important and,interestirig
finding was that item discrimination power appears to be an "inverted -U"
type functionof time allowed for completing that item. This is how
we arrived at this conclusiqh%

Carroll (1963) emphasized in his "model.of4thool learning"
the importance of differences in the time required to learn and
asserted that learning rate was to important source of individual
differences in educability. A study conducted by one of the present ...-

authors during the past year showed that the time needed to complete
certain tests correlates with aptitude scores more significantly than
do the scores on the tests. Sato and his coworkers (1973, 1975), and

, Tatsuoka and Tatsuoka (1978) have studied the Statistical aspects of
time-score distributions.and theit characteristics. When a telt item
is easy, there is an'optimal time point within a relatively short time
interval such that the discriminating power of the item becomes,the
largest. On the other hand, for difficult items, the longer the time
allowed the better the discriminating power. Figure 10 (p.41) is a copy of
the PLATO screen display of plots of the discriminating powers of an
item in our matrix algebra test,' against 10 time points obtained in
the following manner. The subjects were first arranged in ascending
order of the time they took to respond to a given iteiri, The first
(leftmost) point in the figure was obtained as follows. Only those
who got the item right and'were in the fastest 10 percent ofi the group
were given a score of 1. Everyone in the remaining 90 percent of the
group got a score of 0 even if they got the item right. The point-

.

biserial correlation coefficient calculated between the item score
thus defined and the modified total score is the ordinate of the first.
point (10, .02) in Figure 10. Next only those who got the item right
and were in the fastest 20 percent were scored 1, and the others were
scored 0 on the item, and the total score waelaccordingly modified.
Thelboint-biserial correlation thus calculated is the ordinate of the
second plotted point (20, .14). The same process was repeated for
the #emaining cutoff percentages, 30 percent, 40 percent, 90

percent', yielding adjusted discriminating powers, .27, .46,-..., .15
respectively. .

The limitations of this study are many in number, perhaps
the chief of which is the fact that it isnot experimental in the
sense of having a neat design and experimenter-manipulated independent
variables. It is, rather, a status study from which, of course, causal

- relations cannot be definitively concluded but only inferred and hinted
at. On the other hand it has the strength of having been conducted
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in a real CAI classroom situation yielding "dirty" data instead of
"antiseptic" data that often accrue from tightly controlled. laboratory
experiments which are hence frequently criticized as bearing
'relationship with real life. (To be sure, some of the dirty data
'were "laundered" to the extent that they meet the minimal demands of
analyzability--not to fit our preconceived theory of course--but dirty
and "real-lifeish" they nevertheless remained.)

Other weaknesses; as mentioned in the main text, were (1)
.that the parameterl-estimation procedures, were' not the best conceivable
or even available - -we learned too late,of the best existing method;
via. an iterative maximum-likelihood approach; and (2) tha.t wel did
not consider qp-component composite Weibull distributions which
probably woulf have fit, the total sample without our having to parti-
tion it into the "OK" and-"NO" subgroups--those who answered an item

''(or exercise, etc.) right or wrong, respectively.

As.of this writing we have in fact implemented on the PLATO
system a program for the iterative maximum-likelihood method (adapted
from the FORTRAN printout kindly supplied to us gratis by Dr. H. Leon
Harterof thd&ight-Patterson AFB, Ohio) which, mutatis mutandis,
'is usable for estimating the parameters of both the three-parameter
gamma and the Weibull distributions in the best possible way given
the state of the art. We intend to do this as well as experiment
with composite Weibull distributions in the near future.

Thus, we wouldbe the first to concede that we have barely
scraped the surface in studying the utility of response time (time
scores) along with performance scores for analyzing and evaluating
data from criterion-referenced tests., both for the purpose of assessing
the quality of the tests themselves and for improved testing of the
examinees' abilities.

Nevertheless, we believe that we have at least demonstrated .

the feasibility of this approach and hope to have shown that further
research along these lines is warranted. In particular, the Weibull
distributiph in its two-parameter form (which we used in this study),
three-parameter form, or two-component compositerm--long used by
system-reliability analysts but apparently not wi

ely
known among

educational and psychological researchers--seems to bear further
investigation for this purpose.

.r

i) 120

132



REFERENCES

Atkinson, R.C., Computer-baspd instruction in initial reading.
In proceedings of the 1967 invitational conference on testing

-problems. Princeton, Educational Testing Service, 1968, 58-67.

Bergman, I.E., Association in a class of growth functions. Urbana,
University of Illinois,1966.

1

p

Block, J.H., (Ed;) Masterylearning: theory and:practice. New Yorkl...,

Holti,Reinhart & Winston,1971.

Brie, D. S. The distribution of problem-solving times: an examination
of the stage model. British Journal of Mathematical and Statistical,
Psychology, 1975,28, 177-200.

earrolf;J.B., A,model of school learning. Teachers College Records,
1963,64,7237733.

Carroll, J. B., & Spearitt, D., A study of a model of school learning.
Monograph No.4 Cambridge, Massachusetts;. -Harvard University,
Center for Research and Development of Educational Differencqs,
1967.

Emrick, J. A. An Evaluation model for mastery testing.. Journal of 'N.

Educational Measurement, 1971,8, 321-4626.

Guttma , L., The quqntification of a class of'attributes: a theory
method of scale construction. In P. Horst(Ed..),

Thrprediction of personnel adjustment. Social Science Research
CounCil, Bulletin 48, 1941, 321-345.

Harter, H.L. & Moore, A.H., Maximum likelihood estimatio of the
parameters of the Gamma and Weibull population's from mplete and
from censored samples, Technometrics, 1965, 7, 639-64

Harris, C.W., An interpretation of Livingston's reliability coefficient
for criterion- referenced tests. Journal of educational measurement.
1972,9, 27-29.

Huynh, H. Statistical consideration of mastery scores. Psychometrtka,
1976,41, 43-64

John, M.V.,Jr. & Lieberman, G.J., An.exact asymptotically Efficient confidence
bound for reliability in the case of the Weibull distribution,
technometrics, 1966, 8, 135-175.

41,

121

133

(



4.

Keats, J.A. & Lord, F.M., A theoretical distribution for mental test
scores. Psychometrika, 1962, 27, 59-72

Lennon, G.H., MaximUm-likelyhood estimation for the three parameter

' Weibull distribution based on censored-sample, Technoietrics,

(to appear)

R.L. Personal communication,. October 1, 1978.

Livingston, S.A., Criterionferenced applications of classical
test theory. Journal of educational4measurement,19/2,9,13-25..

Loeschner, I., Personal communication, February 11, 1978.

Lord, P.M. & Novick, M.R., Statistical theories of mental test
scores. Reading: Adison-Wesley,1968.

Mann, N.R., Tables for obtaining the best linear invariant estimates
of parameters of Weibull distribution, Technometrics,1967,9,

629-645.

a

Mann,N.R., Optimum estimators for linear function of location and

scale parameters, Annals of mathematical statistics,1969,40,
2149-2155.

A

Mann, N. R.,Schafer, R. E. & Singpurwalla, N. D.; Methods for Statistical
analysis of reliability and life data. John Wiley &
New York, 1974.

Millman, J. Tables for determining number of items needed on domain-
-referenced tests and number of students to be tested. Los Angeles:
Instructional Objectives Exchange, Technical Paper No.5, April 19/2.

Millman, J. Passing scores and test lengths.for domain-referenced measures.
Review of Educational Research, 1973,43, 205-215.

Novick, M.R., The axioms and principal results of classical test theory.
Journal of mathematical psychology. 1966,3, 1-18. 1 .

1961,4, 321-324.

#010 Novick, M. R. & Lewis, C. Prescribing test length for criterion-
referenced measurement. In C.W. Harris, M.C. Alkin, &
W.J. Popham (Eds.), Problems in criterion7referenced measurement.

Los Angels: UCLA Graduate school of Education,'Center for

the Study of Evaluation, 1974.
Y.

122

134



r

Appendix A

Sample Pages of Matrix

Algebra Lessons

The numerical entries are called the

'elements of the matrix.
A particular element is specified by

the number of the ROW and the number
of the COLUMN in which it occurs.

fHete. is a 4x3.matrix

3 columns

3
0
L

e

ti

2 7

3 8 5 What is 1tt 'row vector?

41st 42nd 43rd - elements

1 6 9 Q 1,

8 6 2

Press NEXT to continue, SHIFT -HELP 'for

BACK-to see previor page

156 %
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3,3 Evaluation-of the determinant of a matrix'
SARRUS' RAE

Next, let us show you the way
to evaluate a 3rd order determinant,
by Sarrus'' rule.

Copy the first-two columns over again,
and connect'each'of the three first-row.. elements

of A with the two numbersjocated "southeast"
of it by solid
Similarily, connect.each of the-three third
4:row elements by THICK solidlines with the
wo numbers lakated 'northeast" of it.

Note that solid lines produce epsilon
'valUe 4-14'and the thick lines produce rt:

T1145; the value of determinant A is

a22a33 a12a23a31
3a22a31 - a a a -11 23 32*

A
-11\a12
a21 /a22
a3 a32

LET

Press :NE

al3a2ia32

a12a21a33.

11 12

2 a22

31 32-



We just obtained the relations .

OR = (cos30°) x5 + (sirji3r) x5.-:

r05 = (-sin31 x5 + (cos300) x5

Substituting cos3r,sih30' b9 their,
1 i

values,

OA = .866x5 + .5x?°= 6.83
OB = -.5x5 + .866x5 = 1.83.

=

Thus, OP is represented by [6.83, 1.83]
using the new awes Yi and Y,-.
8X ...

7

6

5
P 15, 51

..71 T 1
C . ',./ : -,-

4 t f
a------'''

.---/ [':' ' 1.83]
--4.

B \..

1
'4 I 1 1:

0 0-0 A 7 8/.1

1."5

Pre = -,s NEXT

0



APPENDIX B

PRETEST FOR MATRIX ALGEBRA

Those who have little or no background in matrix algebra may be unable
to answer many of the items below. You may skip by pressing the NEXT
key without answering. ;2

You may then come back to the test after taking one or more lessons. ,

This test will provide yOu with some feedback so that you may choose
only the lessons you have to learn from five lessons in. the index.

to start press -NEXT-

1) Choose the right answer.

a)

3 7

- 5 7

4 -1

8 -2

-1 8

3 9

b)

= ?

2 15

- 2 16

2Y Choose the right answer.

a)

-1,, 2

9

-2 2

7 1'5

1

-1

b)

0

-6

0

5

=

2

34-

3y Choose the right answer.

a)

8 -1

0 -7

9 -4

5- -6

b)

c)
-4

-8

15

16

d)
10

-2

7

12

= ?

7 2

- 5 -8

l27

139

c)
0 5

2- 3

c)
-4

-8

15

16

d)
10

-2

7

12



4) Choose the right answer.

a)
-7 -11

-7 7

L6 10

9 -1
=

b)
5

11

9

.5

c)
-7

-11-
-7

7

d)
-7

7

-1

7

5) Choose the right answer.

a)

8 -1

0- -7

80 -1

0 -7

x 10 = ?

b)
80 -1

c)
80 -10

d)
80 -1

0 -70 0 -70 0 -7

6) Choose th right inswer.

a)

7 2

-8 -2

35 2

-8 -10

x 5 =

b)
35 10

-40 -10

7). Choose the right answer.

a)
-1 4

9 2

=

c)
35 -40

10 -10

d)
35 2

-10 -JO

c)
1

0

0

-1

d)
2

4

9

-1

128

140

4



8) Choose the right answer.'

a)
-3

2 2

2 "5

-4 -4

9) Choose the right answer.

a)

r

-9 x

-63

-72

7
or

8

45

-18

-5

2
=

b)

?

63

-.72

4

45

18
.!=

10) Choose toe right answer.

a)
1 /( -1) Os

0 1/(-1)

b)
1

0

0

1

c)
-3

3

-1.3

-1.1

c)
-1

.0

2

2

1.8

-4.5

0

-1

d )-

.d)

0

]

d)

-63

45

-1

1

40'

0

I

1

-72

-18

"1

-1

li4-Mhat is the order of the product of

-4

7

5

-1
x

8

-8

4*

-3

-1

18

= ?

a) 2 x 2 matrix
b) x 2 matrix

oc) 3 x 3 matrix
d) 2 x 3 matrix
e) not computable

JP'

4;4



12) HOW 'many two -factor productS'irivolving A,B and their transpose are

computable? (e.g., AB', BA' and B2)
111,

a)

5 4 5 10.
A =

-3. 4
B =

-1 1

19 5

none b) 1 c) 2 d) 6 e) more than 6

13) Suppose a matrix A is 2 x 2 symetric matrix, choose the letter whose
statement is not true.

a) A = A'

b) A is a square matrix
c) AB = BA for any 2 x 2 matrix B

d) If the inverse of A, A-1 exists then A-1 = (A')-1

14) C = AB where A is p x q, 8 is s x t:j.Which of the following state-
.

ments is not necessarily true?

a) The order of C is p x t b) p= s

15) Choose -the correct answer;.

a)

c)

3 -3

1 0
x

9' 15 -6

3 3 1

9 9 3

6 6 -9

3 3 1

0 -2 3,

b)

d)

9 15 26

3 '4 5

12 12 4

0 4 -6

16) Choose the mUhte'nswer.
1

-1 0 6 -2 0

2 -3 5 4 =1

0 1

s = q

= ?
a)

c)

-2

12

2

-16

6

-3

8

b)

d)

-2

4

4

-16

76

-1

6

5

a
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17) Two 3- dimensional vectors u' = (u1, u2, u3), v' = (v1, v2; v3),
and a 3 x 3 matrix A are given. Choose the wrong statement

a) u'v is a number,
uv' is a number

'c) 1100,v is a number
d) vu' is a matrix
e) v'Atu is a nuMB*r

[18) If A = a b

is equal to
-

a) - ab + be
b) a + d
c) ad bc
d) ac bd
e) a+b+c+ d

;its determinant 1A1

19) The cofactors of the-elements of the first row of

I'
a b

a) d, -c b) d, c c) d, -b d) b, c , b, -c

20) The cofactors of the elements of the 1st column of

a)

b)--

c)

d)

a b

g h

are

e f

h

e 'f

h e f

i h e f

e d f d e

g

a

h

a

g h

b

d e g d e

40,

e) a, -b, c
a

are



21) For a given matrix A = a b c

d

g h

choose the correct statement.

a) d e f -e d f +f d e a b c

h i g i g d e f

g h si

b) a e f

h t

-b d f

g

+c

g h

c) a e f

h i

-b d f +c d e

g h

a b c

d e' f.

h

d) a e f

h

-b d f

g i

+c d

g h

a + e +'i

*
;

22) IfA+B=A+CthenB= C

a} true b) false

23) If AB -= AC then B = C

a) true b) false

24) If AB = 0 then necessarily A = 0 or B = 0

a) true b) false

25) AB = BA for any matrices A and B

a) true b) false

26) A ( B + C ) = AB + AC

a) true b)

27) ( A + B )' = B' + A'

a) true b) false

28) ( AB )' = A'B'

a} true b) false

1442
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29) If A = A' then AA' = I

a) true t, b) false

.30). If P is invertible and B = P
-1

A P, then the determinants of B and
A are equal.

a) true b) false

31). Let A, B, C, D be n x n matrices, then the determinant of in x 2n

matrix A B is the determinant of matrix AD - BC.

C D

a) true b) false c) I don't know

Chooe the right answer. The adjoint matrix of A = -9 -.33. is
.5 2.1

a) -9.00 0.50 ,b) 2.10'-0.33

2.10
0.50 -9.00

c) 2.10 0.33 d) 2.10 -0.50 I

-0.50 19.00 0.33 -9.00

33Y

a)

Choose the inverse

3 0 0

-2 5 J)

of the triangular

1/3 0 0

-2 1/5 0

matrix. "3 0 ,0

-T 5 0

1 -6 -2

1 -6 -2 -6 -1/2

'c) 1/3 -2 1 d) 1/3 .0 0

0 1/5 -2 4/30 1/5 0

0 0 1 -7/30 -3/5 -1/2

34) Which one of the following has orthogonal row vectors?

a) 1 0 1 c) 1 -1 d) 1-1 Jig

1 1 -1 1 1 -1

[-0

-1 1

J
133
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35) Which of the following transformation matrices is not orthogonal?

:a)

d)

1/i-g-
2//-3'

-1 0

0 1

b) 0 -1 c) 1/FT -1//71
1' 0 ibri 1//2-

]

e) 3//7176 1/7176

iii-ro 3/r-T0

36) The product of two orthogonal transformations is an Orthogonal
transformation matrix.

,a) true b) false

37) f,The row vectors contained in an orthogonal tiansformation matrix. 11114:'.

are mutually orthogonal but are not necessary of unit length.

a)

38)

'a)

true b) false

The column vectors contained in an orthogonal transformation
matrix are not mutually orthogonal when the row vectors are
muLually orthogonal.

true b) false

39) Any rigid rotation is an or,thogonal transformation matrix.

true b) false

40) An orthogonal transformation of axes will not change the length,
of vectors in the space.

43

,a) true , b) false
Ett

41) Suppose matrix E = 5.3 1.5 is a variance-covariance matrix.

.5' 10.1

Choose the wrongstatement. 4

a) The.characteristic equation of E is 1E XII =

-W. The characteristic equation of E is X
2
- 15.4X +

c) E is always transformed by some matrix into agonal for6m,

d) The roots of the characteristic equation might be complex variables.

134
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For items 42-46, assume the following:

Suppose Es" is a n x n variance- covariance matrix, A LA
2

A
n

are its characteristic roots (or eigenvalues), vl, v2, ...,vn are the

characteristic vectors (or eigen vectors) of E associated with

Ai, A2, , An respectively.

111..

42) If the rank of E is n, then the eigenvectors vl, v2, ..., vn are
linearly independent.

a) true b) false

43) If Al, A2 ... An are of distinct values then Al is the largest

varianceofanylinearcombinitionokx.Igith fixed norm of the

coefficient vector.

a) true b) false

44) Some of the eigenvalues may be negative.

a) true b) false

45) vi, v14" are not mutually orthogonal.

a) true b) false

46) Choose the correct answer.

A) The constant term of the characteristic equation of E is the
trace"of E.

b) The constant term of the characteristic equation of F. is the
determinant of E.

c) The constant term of the characteristic equation of E is the
determinant of adjoint matrix E.

d) None of the above is correct.

47) How are the eigenvalues and eigenvectors of E
-1

related to those
of E?

a) 9The eigenvalues of E
-1

are the,same as those of E, but the
eigenvectors are inverted.

b) The eigenvalues of E
-1

are reciprocals of those.of E, and
the eigenvecoprs are inverted.

c) The eigenvalues of E
-1

arereciprocals of those of E, but
the eigenvectors are unchanged.

d) Both the eigenvalues and eigenvectors of E
-1

are respectively
the same as those of. E.

135
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48) If a 2 x 2 matrix A has eigenvalues A
l'

X2, then the eigenvalues

of kA (where k is a scalar). are

a) k
2
A
1,

k
2
A
2

1/2 1/2
b) k X

l'
k A

2

c) X
l'

A
2

d) kA kA2
1,

e) kA
l'

A
2

,,

You have completed the tes

4*

c

/

Press -BACK- if you wish to review your work and make changes.

Press -NEXT- to review the test and to see the correct answers.

1

lig ft.
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Appendix C

Description bf,Contents in the Lessons of Chanute

lesson average time Content

103 33,27 Principles of Gas Engine

104a 34.28
Identification of Parts and PurpoQe of

10 4b missed Gasoline Engine Compressor

105 44.74 Cooling System

201al. 12.55
Air and Exhaust System

2010 42.31

202a 189.63 Fundamentals of El ctricity

202b 14.24 Batteries

20 3b missed EleCtrical Schematics

20 3c

204 10020 Starters

205a 136.51 Cranking Motors, DC'Charging System

20 5b 41.20 AC Charging System

50.22

206b 21.43 Battery Ignition,

206c 43.69

207 37.77 Emission Control

3111 32.40 Diesel Engines PC.

303 14.04 Lighting System

304 12.81 Warning System

305 22.56 Clutches

307 72.67 Basic Hydraulics

308 46.60 Fluid Couplings/Torque.Converters

401 20.84 V-Joints/Propeller Shafts

402 91,09 Differentials. 46.

403 13.35 Transfer Case/PTO

404 12.60 Suspension System

405a 31.17 'Hydraulic and Mechanica.egrakes
)

405b 52.96 Air Brakes.

405c 13.64 Power Assisted Brakes

137
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Appendix D

Description of PLATO Programs and their Programmers

Lesson Name Programmer and Description

matx4

edittest

storetest

gram

JimKrAatz
Test items were developed by one =of the authors but' the
test frame and data collection' scheme was developed by Jim

Kraatz of CERL. 'Up to 50 items can be handled and item
scores, response time for each item, apd selected option,
of multiple choice are collected. The traditional item

analysis, such as means, discriminating iiowers of each
item are given.

Robert Baillie, Jim Kraatz
Routine for editing data fromthe "matx4" test Wriver.

Robert Bailli
Transformatio routines. This prOgram prepares the data
from "matx4" test driver for various analysis such as
"datam," "wb2," and "Kolmo.",

Robert Baillie
Orthogonalize up to 10 vectors by Gram-Schmidt method and
estimates an individual student's gain scores. Eight

vectors (variables) besides the pre-test and post-test can
be used to step up the accuracy of the, gain scores.

subr Jerry Dyer and Robert Baillie
Calculates various probability functions. They can be
used as a statistical table by condensing this lessofnut,
they are mainly used as subroutines in user's programs.

This program contains Fand F-1 diAtributions, X2 and

inverse X2, normal and inverse normal disributions, t,
distribution, binomial, beta, incomplete beta, and two

parameter gamma disributions.
/- -

mat!olbr .Jerry Dyer, Robert Baillie, and Kay Tats oka
4, Calculates the `inverse, eigenvalUes and eigenvectors, and

determinant of a 20 x 20 matrix.
I

Kolmonorm

cutoff

e.obert Baillie and Jerry Dyer

4°-th

ogorov-Smirnov test of a sample and a given
(theoretical distribution function, such as Weibull, Gamma,
normal distributions. Uses "stated it" to input data.

Tamar Weaver
Evaluates the optimum cutoff scores of a cri erion-
referenced test and calculates the estimati n of false
posttive, negative, failure rate., success rate based on a

user's specified true mastery level and observed cutoff
score. 'Cltssify an individual's score into one of four'

status groups:
purecpass, fail false positive, or false negative.

-.



multrd6-'
.multrega,

multre0,
iTud linkage

program to
statedit,
formatf,

lintesi

manova

sscp

sscp2

facdiscr

ccor

ccor2

varimax

Kumi Tatsuoka, Robert Baillie, Tamar Weaver
Input raw data and Matrix into temporary storage,
calculate a correlation matrix up to 20x20, partial
correlations and stepwise multiple regreSsion.;_ The
data stored in a dataset via Felty's "statedit"' is

acceptable.

Kay Tatsuoka
Tests linearity of the data.

Kay .Tatsuoka, Robert Baillie

4
4

Aultivariate analysis of variance

area package

formatk

kstl

cfiitest

mdcl

Robert Baillie
Discriminant analysis:for one factor, several groups and

using a dataset with "statedit" data format.

Robert Baillie
Discriminant analysis with temporary storage.

Kay Tatsuoka
Factorial discriminant analysis.

Robert Baillie
Canonical correlation analysis -- takes data stored in
"statedit" format, needf,a dataset.

Robert Baillie
'Canonical correlation analysis using temporary
storage.

Kay Tatsuoka, Robert Baillie
Do principal component analysis and rotate a factor
matrix by Varimax rotation.

Tamar Weaver, Al Avner, Kumi Tatsuoka
Collect the area, data specified by an author in his/
her lesson.

Tamar Weaver-
Transforms area data in a "statedit" format -dataset.,

.Kay Tatsuoka
Augments data from several different datasets which
are stored in the "statedit" data format.

Kay Tatsuoka
Do a simple factorial analysiscdig..variance and X2
goodness' of fit test.

Mark Bradley

Bc4.t and simple analysis of the quizzes and tests in

611 matrix algebra lessons. These ..data were not

uset in the report.

15 1



Appendix E

Tables o p-values and the Weibull Parameters
,

Table El

Kolmogo-rov-Smirnov Tests for Matrix Algebra Pretest Items for OK subgroup

4.

. item
V

N item N

1) B.8616 1.3191 90 25) 8.0687 1.3219 62

2) B.8211 1.5882 96 26) 0.0081 2.2628 .81

3) B.6417 8.7414 78 27) 8.1897 1.2048 49

4) B.5115 8.8203 79 28) 8.58/1 8.8231 36

5) 0.4456 8.8631 94 29) 8.9999 8.334 '26

6) B.1558 1.1296 96 38) 1.6781 8.7198 24

7) 0.2213 1.8488 6.1 31) 0.3388 8.9489 31

8) ' 0.6889- 8.7689 54 32) 0.7888 8.7815 33

9) 8.38.63 0.9677 78 33) 1.8808 8.2735 29

1.0) .0.9228 0.5588 65 34) 0.6892 8.7687 27

11) 0.5059 8.8238 34 35) 8.1706 1.1893 57

12) B.9215 0.5513 38 36) 8.3154 8.9688 37

13) B.9137 8.5588 43 37) 8.9646 0.4989 9

14) 0.7459 0.6798 42' 38) 8.6187 8.7551 23

15) 0.1285 1.1716 49\-. 39) 8.7291 8.6892 16

16) 0.8567 8.6857 68 48) 8.1785 1.8989\ 28

17) 0.8832 0.5852 21 41) 8.9731 0.4844 21

18) 0.9587 0.5878 61 42) 8.5664 0.7864 28

19) 0.8643 0.6088 26 43) 8.7422 8.6812 18

20) 0.5751 8.7811 ,46 44) 8.9487 8.5389 16

21) 0.9650 8.4984 42 45) 8.8249 B.6282 12

22) 0.8865 1.6928 77 46) 1.8888 8.3288 16

23) 0.7124 8.6993 16 47) 8.2973 8.9754 40

24) 0.9942 8.4218 27 48) 8.8687 8.5967 32
NIP

. .

Pretest for all subj4cts after 1976 Fall semester;'goodness

of fit' testing'for Weibull distribaioni'
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Table B2

"The Three Weibull Par:ameters for Mati-ix Algebra Test Items

A' i t ems t 4,\ m . c . c .110

1. 10.59 0.96 1115 \\44.51

-2p 2:5T 0.96 1.92 28.12
3. 6.02' Y.99 1.24 23.34
4-. .0.00 0.98 2.19 32.35

5. '.54 0:99 1.25 13.70

6. 5.51 0.98 1.35 12.67
e -7. 7.52 0.99 'NI 1.15 33.02

8.
.

0.00 £f.96 1.56 57.62

9. 4.F0 0.99 . 1.71 40.68

10. 7.27 1:00 1.45 22.00
11. 4.49 0.98' .33 41.95

12. 8.24 0.99 0.97 57.67

13. , 5.41 g.99 .18 507.21

14. 9.29 Z.99 1.34 43.46

15. Ak 0.00 0.97 1.08
.

112.06

16. 0.45 0. 99 1.2 57.26

17. 15.24 0.99 1.14 108.62

18. 2.77 1.00 r.63 21.67

19. 0.0ff 0.99 1.24 33.70

)
2ff. 1.37 0.99 1.1111 49.98

21. 5.24 1.00 1.04 49.83

,
...

22.

23.

0.61

3.19

0.94
13.95

1.90

1.02

23.27
26.15

\-- 24. /1 4.613' 1J.10 1.14 13.91

25. 3.47 0.98 1.42 11.04

26. 1.96 0.93 0.87 13.70

.148
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Table E2 (eon' t)

The Three Weibullameters for Matrix Alcf.Pbra Te5t 4r

Items
27.

8.

29.

:1.0.

31.

+

.94

3.94
6.56

",.72

1.52

m.c.

4.n8
0.98
1.?.0

0.97

0.97

c
0.34
0.62
0.97

0.85
1.39

.1-1-7,

15.31
9.R9

25.6'7

28.69

32.93
,,

32.
.

0..99
,

JD.91
5.

..:'1.1....19

33. 1:1.110.7j 1.00 1.04 13'3.67

34, 5.51 0 :-1 0 .171. 9 8 3 0 . !:., 5
a

3 9 . ,1 . 96 0.98 1.71 52.95
36. 3.89 0..93 0.91 13.15
.1-7
.De. 5.65 0.97 0.93 13.26
38. 6.74 1.00 1.46 17.04

3.12, 0.90 1.49 9./3

40. 3.77 0.98 '1.10 9.76

41. -1.21 0.99 1.79 38.':'5

42. 3.46 0.93 1.26 31.78
43. 7.23 0.99 1.42 21.32
44. 3.84 0.90 1.35 15.'3

45. 3.34 0.99 1.71 17..-.Ar

'46. 1.70 :j.99 1.31 .:-.; a . 5 it-,
S.

47. 1 .21 0.99 1.22 16.61

48. 5.17 0.99 1.191 1.5.t.-.3

*Pretest F,iven aft,72r /6 Fall scmPr-.,ter,OV
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1,0

Kolmogorov-Smirnov T

czZo,

item

1

z

Table E3

for Matri Algebra Pretest Items for NO subgroup

#

N itern z N
1) B.9912 0.4364 10 25) 0.2976 $ :9751 38

2) 1/0000 0.2791 4 26) , 0.9776 0.4754 19

3) ./0.4068 B.8899 22 27) 0.1566 1.1285 51

4)) / 0.6647 B.7277 21 28) 0.0408 1.3950 64

5) / 0.9882 B.4474, 5 29) 0.0217 1.035 74

6) / 0.4203 0.8804, 4 30) 0.0205 1.5130 76

7) / 0.7219 0.6936" 38 31) 0.9192 B.5535 69

8)/ 0.9458 B.5249 46 32) 0.7305 0.6884 67

'9) 0.9020 B.5694 '30 33) 0.6574 0.7321 71

10) 0.9608 0.5048 34 34) 0.5,696 B.7845 73

11) 0.1987'1.2043 66 35) B.5377 0.8040 43

12) 0:8269 B.6268 70 36) 0.0387 1.'4043 63

13) 0.8959 B.5747 57 37) 0.7907 0.6509 90

14) 0.9603 0.5056 58 38) 0.2083 1.0632 76

15) 0.6791 B.7192 51 39) .0.3499 B.9321 83

16) 0.9418 0.5296 40 40) 0.4919 0.8328 .71

17) B.8424 0.6160 79 41) 0.4429 0.8649 78

18) 0.8033.0.6426 39 42) 0.7938 0.6488 79

19) 0.7451 B.6795 74 43) 0.0725 1.2880 81

20) 0.2778 0.9928 54 '44) 0.0098 1.6311 83

21) B.0108 1.6162 58 45) 0.0000 2.4586 87

22) 0.9068 0.5652 23 46), 0.3486 0.9332 83

2\3) B.0097 1.6327 84 47) 0;1819 1.0947 58

24) 0.0291 1.4545 73 48) 0.2734 0.9968 416

Pretest for all subjects after 1976 Fall semester;'goodness

of fit' testing for Weibull distributions

1144
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Table Ell, (con't) .©

The' Three Weibull Parameters 'for Matrix Algebra Test 'Items

i t E1115

27.
28. le

t0 '

0.37
1.98

1

m. c.

0.93"
0.98

c
1.64
0.80

µ0 It
11.52"
7.12

29'. 1.83 F.98 1.12 10.86
30. 1.85 0.99 1._13 13.97
31. 2.85 1..00 .0.95 13.14
32. 4.61 1c: ,10 1.10 35.26
33. 1.75 4.99 .98 44.33.
34. 0.00 0.99 2.10 24.0:6
35. 2.39 ,t 0.99 1.13 29.62

6. , - 1.83 0.97 1r.28 8.41
37. '2'. 76 1.00 1.16 11.64
38 2.91 0.99 0.61 8.30
39,,..1

1

1.73 1.i."40'' 1.31 6.59
N 40. 1.80 0.99 1.11 6.63

41. 4.86' 0.99 0.95 28.31
42.
43.

4.76
3. 97

1.00
0.99

0.74
0 .95

1 C4. jr:.,60.

44. 2.97 0.97 - 0.94 7. 19
45. 1.94 0.91 1.03 9.64
46. 1.64 0.99 1:34 16.74
47. 5.85 0.98 1.06 14.48
48. 1.49 0.99 1.20 17.99

de .
MOO

*Pretest, g i ven after 7 6 Fall semester, No .5ubgroup

15



Table E5

Kolmogo-rov-Smirnov Tests for-Matrix Algebra Test Items for OK subgroup

item z N item z N

1) 0.0000 2.7994 90 25) 0.0481 1.3651 62

2) 0.0008 1.9841 96 26) 0.0000 4.793 81

3) '0.1823 1.0942 78 27) 0.0053 1.7213 49

4) 0.9139 0.5586 79 28) 0.0004 2.0688 36

5) 0.1076 1.2088 94 29) 0.8979 0.5730 26

6) 0.0042 1.7557 96 30) 0.0095 1.6362 24
7) 0.1012 1.224.3 61 31) 0.2322 1.0373 31

8) 0.6397 0.7426 54 32) 0.6328 0.7467 33

9) 0.6809 0.7181 70 33) 1.0000 0.2884 29

10) 0.8039 0.6423 65 34) 0.0900 1.2452 27

11) 0.3451 0.9359 34 35) 0.2346 1.13348 57

12) 0.2275 1.0422 30 36) 0.0062 1.6985 37

la) 0.9137 0.5588 43 37) 0.86-90 0.5964 9

14) 0.6949 0.7098 42 38) 0.5605 0.7900 23

15) 0.2306 1.0389 49
.,..

39) 0.7606 0.6699 16

16) 0.9160'0.5566 60 40) 0.0329,1,1.4332 28

17) 0.7804 0.6575 21 . 415 20:8993 0.5718 21

18) 0.9689 0.4920 61 42) 0.2178 1.5361 20

19) 0.5555 0.7931 26 43) 0.7687 0.6698 18

20) 0.5510 0:7958 46 44) 0.9579 0.5090- 16

21) 0.8376 0.6194 42 45) 0.8395 0.6181 12

22) 0.0037 1.7754 77 46) 0.9985 0.3845 16

23) 0.0745 1.2826 16 47) 0.3650 0.9205 40

24) 0.9468 0.5236 27 48) 0.7982 0.6460 32

.Pretest for all subjects after 1976 Fall,semester:igcodneis

of fit' testing for Gamma distfbutIons
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Table E6'

Kolmogorov4mirnov Tests for Matrix Algebra Test Items for NO .subgroup

z N item
11 0.9996 0.3540 10 25) 0.0805 1.2675 38
2) 0.9623 0.5026 4 26)k. 0.8151 0.6348 19
3) 0.1775 1.1'003 22 27) 0.3833 0.9069 5'1

4) 0.0748 1.2817 21 28) 0.0000 2.9113 64
5) 0.9592 0.5071 5 29) 0.0028'1.8111 74
6) 0.3186 0.9573 4 30) 0.0238 1.4883 76
7) 0.7544 0.6737 38 .31) 0.1990 1.0739 69
8) 0.9885 0.4463 46 32) 0.9090 0.5631 67
9) 0.7421 0.6813 30 33) -0.0001 2.2033 71

10) 0.9417 0.5298 3,4 34) 0.8965 0.5742 73
11) 0.0010 1.9456 6'6 35) 8.5527 0.7948 43
12) 0.8839 0.5847 '70 36) B.B011 1.9415 63
13) 0.8749 0.5918 57 37) B.3386 0.9411 90
14) 0.9500 0.5196 58 38) 0.0000 2.5784 76
151 0.0000 2:6823 51 39) 0.2728 0.9974 83
16) 0.9646 0.4990 40 40) 0.0279 1.4616 71
17) 0.8622 0.6016 79 41) 0:2250 1.0449 78
18) 0.931'6 0.5410 39 / 42) 0.0026 1.8225 79
19) 0.7355 0.6853, 74 le 433-- 0.0003. 2.1121 81
201 v 0.0027 1.8167 54 44) 0.0000 2.9649 83
21) 0.0966 1.2309 58 'f 45) 0.0000 3.6842 87
20 0.9124 0.5600 23 46) 0.0683 1.2993 83
23) 0.0645 1.3103 84 47) 0.0075 1.6713 58
24) 0.020 1.5126 73 48) 0.2291 1.0405 66

cr,..tAst =if-ter Fall 76 : fittlni Gamma

1.48

159



Table E7

Kolmogorov-Smirnov Tests for Matrix Algebra Pretest Items f-Matched Sample

item

1)

NO Group

1.000 0.3196 5

item

1)

OK GrOup

z

0.6927 0.7111, 51
2) 0.2700 1.0000 1 2) 0.2707 0.9994 55
3) 0.1690 1.1114 13 3) 0.8910 0.5789 43
4) 0.9456 0.5251 12 4) 0.9976 0.3962 44
5) 0.8928 0.5774 3 5) 0.7999 0.6449 '53
6) 0.9996 0.3536 2 6) 0.1503 1.1375 54
7) 0.9928 0.4290 30 - 7) 0.8781 0.5894 26
8) 0.9922 0.4320 31 8) 0:7253 0.694'6 25

9) 0.8941 #.5762 21 9) 0.8755 0.5914\ 35
10) 0.9250 0.5479 24 10) 0.8941 8.5762 \ 32

11) B.6932 0.7108 34 11) 0.9113 0.5611 ) 22

12) 0.9954 0.4145 40 12) ; 7020 B.7855 16

13) 0.9375 0.5345 ?5 13) 4 0.9185 0.5542 21

14) 0.7875 0.6529 34 14) 0.9518 0.5173 22

15) 0.7963 8.6472 35 15) 0.7017 0.7057 21

A6) 0.9873 0.4503* 29 16) '0.9962 0.4089 27

17) 0.9303 0.5424 49 17) 0.9171 0.5556. 7

18) 0.9100 0.5623 26 18) 8.9941 0.4225 '30
19) 0.6220 0.7531 25 19r 8.4319 0.8725 .31
20) 0.9818 0.4656 11 20) 0.0389 1.4836 45

21) 0.2851 0.9861 31 21) 0.5322 0.8074 25

22) 0.1638 1.1184A 44 22) 0.5341 0:8062 12

23) 0.1910 1.08341 45 23) 8.9999 0.3228 11

<,

Pretest for matched group after 1976 Fall semester; 'goodness
of fit' testing for Weibull, distributions

.
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Table E8

The Three Weibull Paramefers for Matrix Alfebra Test_Items

4.

5.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

27.

29.

b

to m. c. 1

o 9.87 0.97. f
2.93 0.99c

0.99
6.30 1.0.0

8..77 0..99

5.21 .6.99
...

9.06 1.00

0.00 0.98

9.85 1.B0'

8.14 0.99
4.83 0.98

8.89 0..98
0

5.42 0.99
10.29 1.00

24,94 0.98
5.62 1.00

g.00 0.97

3.48 0.93
3.3'? 0.99

4.94 0.96

3.64 0

3.99 0.98
7.79 1.0"

c Po
,1..44 33.67

2.42 24.10
1.39 4.0.21

1.C5 23.73-
1.17 "13.13

1.54 11.89

1.11 33.17
'1.45 60.P.8

1.55 32.95

1,0 - 22.43
1..12 37.92

..

0.99 36.55
1,07 52.52:
0.35 36.24
0.99 95. 10.

1.,)7u 50.69

r. 2. 11E76

1.33 12.32*

1:54 10.59

6.74

0.64 9.39
0:50 7.1,11

0.64 ' 24.64

Postte,z,± for matched group, ilultpost P.r6T.JK subgroup
-
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Table E9

The Three Weibull Parameters for Matrix Algebra Test Items

items
,

to m.c. Y°
1. 21.04 1.10 1.12 29.62
3. 7.45 '0.93 0.90 21.42
4. '3.18 0.99 2.54 13..54

5. 0.00 1.00 21.19

6. 0.00 1.00 m* 13.79

li
8.

5.69

6.01

1.00

0.99
1:54

1.15

32.93
36.98

9. 3.67 0.99 0.82 27.40
10. 1.91 G.99 1.31 22.44

11. 10.29 0.99 1.,13 30.31

12. 4.23 1.00 1.37 .45.23

13. 9.09 0.98 1.23 32.31

14. .3.41 0.99 1.21 47.50

15. 3.46 0.99 1.13 54.65

16. 3.61 1.00 0.84 47.:39

17. 4.73 0.99 0.98 32.112

24. 3.27 0.93 1.56 9.46

25. 2.69 1.11 13.84

)6. 1.12 1.00 1.34 11.62

27. 2.74( 0.99 1.07 6.79

28. 2.92 0.99 0.65 5.16
29. 2.76 0.97 1.00 8.03

.Multpost for NO subgroup, matched sample
a
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Table El0 -

Kolmogo;ov-Smirnoli Tests for Matrix Algebra Posttest Items ; Matched Sample

a

item
1)

NO Group

z

8.8808 8.8881
N
8

tens

1)

OK Group

8.6385 8.7488 56
2) 8.0888 8.8088 8 2) 8.7303 8.6885 56
3) 8.8323 8.6231 7 3) 8.93448.5380 _/49
4) 8.0888 8.0088 8 4) 0.5666 0.786e 56
5) 8.9996 8.3536 2 5) 8.6345 8.7456 54
6) 8.8808 8.0880 8 6) 8.1768 1.1812 56
7) 8.8888 8.8888 8 7) 8.8277 8.6263 55
8) 8.8888 8.0880 8 8) 8.7035 0.7846 55
9) 8.9981 8.3899 4 9) 1.9364 8.5357 52

10) 8.8888 8.8888 8 18) 8.1114 1.2816 56
11) 8:7364 0.6848 36 11) 8.9354 0.5368
12) 8.9577 8.5893 27 12) 8.9788 8.4727
13) 0.9446 0.5263 16 13) 8.7324 8.4872 40
14) 8.7286 8.6895 12 14) 8.7929 8.6494 44
15) 8.9415 8.5252 7 15). 8.8858 0.5838--49
16) 8.9248 0.5489 4 16) 8412284 1.0498 52
17) 8.5312 8.8888 30 17) 8.6169 8.7561 26
18) 8.9267 8:5461 21 18) 8.7893 8.6518 35
19) 8.9826 8.4636 4 19) 8.3674 0.9188 52
28) 8.9984 8.3858 5 20) 0.1832 1.8938 51

21) 8.9295 0.5432 7 21) 8.5858 8.7747 49
22) 8.9887 0',4457 21 22) 8.8147 8.6351 35
23) 8.7789 0.6635 36 23) 8.9838 0.5686 28

Posttest Yor matched group after 1976 Fall seme5ter;igOodress

of fit' testing for Weibull distributions.
SIN
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Table Ell

; -

The Three Weibull Parameters for Matrix ACebra Test Items

.1: ,, ,
, . tp5

i

items

i .

t0

11.57

m. .D.

6! 9F.,

c
1.04

il?
_24.29

6.1-3 1 . I: .0 1.73 13.43

3 6.47 1.17;if, 1.29 17.i::1

4. 1k.j.13 R.99 1.32 17.75

c. "6.7c: 0.e') 1.10' 1.0.07

_.= 1-", '? . C.6 is..'`? 1.33 , 11.76

7. 6.-7,.'R 0.9" Z.90 1.2.51

P. 1c.29 .0. '' 9 1.11 27./2

9. 7.23 . 0 -9.:1 1.47 -29.19
, 1. 0.73 .0..16 1.01 16.91

A

11. 11.34 .0.9'9 1.28 46.

1:. , 1.12 'ii.'.11) 1.15 .78

13. 1u.49 g.6:3 0.95, 54.11..2

1 4 .
.....

0 . 3 2
.

0.':19 1.65 56.94

1 cr..,. 19.06 U.99 - 1.20 95.00

16. 6.59 0.98 1.41 77.43

17. 216.91 0.98 0.67 111.12

18. 5.72 1.0g .0.93

19. 2.71 0.99 1.40 8. r.,

2 0 . 2.94 0 . 9 7 3.8.0 8 . 3 8

2 1, . 2.80 0.99 0.69 1-e.,.c.,0

22. 3.76 3.99 0.74 , 17:34

25. 5.80 , 0.9'6 1.1R 27.01

J.

Postb=5)r. f6r match _: d amp1 e, Mulfpiir of OK 7,ubgrup

tf,

153
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Table E12

- The Three Weibull Panameters for Matrix Aleebra Test Items .

L.

to m.c. c yo
3. 1.46 0.97 1.75 1.6.02

0.00 1. cf 0' 1.41 18'. 57
12.16 a.'99 .0.76 26.18

11. 1. 0 171 0. 9 9 34.18
12. 12.73 174.*1 1.22 85.1
13. 26.64 o.90 149 4-i.:74

1 4 .
1 r' 0.99 1.48 36.64

1!1,. 0.96 Y.75 140.5
16. 0.00 0.96 1.04 149.16

0.00 0.96 1.31 91.28
1b. c.63 11.99 0.75 -2..11
19. 2.93 0.95' '0.88 10.01-

4 20. 2.c4 0.99 1.26 14.10

21. A.90 a.97 0'.. 53 14.E4
3.70 1.00 0:76 '64.'44

23. 4.65 0.99 0.79 :, '' 14.52

Multpost,for NO subgroup in matched sample

165
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Table Eli

Kolmogorov-Smirnolt Test.s for Matrix Algebra Posttest Items...; Matdhed Sample
A

NO subgroup

item

1).

p z

8.8080 0.8888 8

2) 8.8800 8.0800 0
'et

3) 8.9192 0:553- 7
4) SAWS 8.8888 8

5) 0.9788 8.4727 2

6) 8.8888 8.1888 8

7) 8.8888 8.8000

8) -2.8088 8.0000 S

9) 0.9847 2.4588 4

8.8080 0.0080 8

11.) 0.39'83.0.8968 36

12) 0.9298 8.5429 27

13) B.8413 0.6168 16

14) 0.6815 8.7,177 12

15) 0.8296 0.6258 7 '

16) 0.8272 8.6266 ,4

'17) 0.7366 8.6847 38

18) 0.2239 1.0468 21

19) 0.9387 0.5419 4

20) . 0.9971 8.4884 5

21) 0.1'835 1.8927 7

22) 0.1523 1.4145 21

23) 8.0133 1.5837 .36

OK subgroup

item
1)

p
8.8088

z

2.4473

N'
56

, 2) 0.6675 0.7261 56

3) 8.9312 8.5414 49

4). 8.4618 8.8528 56

5) 4.8817 1.2646 54

6) 8.1957 1.8779 56

7) 0.0231 1.4935 55

8) 0.1842 1.2153 55
9) 0.7550 8.6733 52

10) 8.8888 3.4737 6
11) 0.7752 8.6607 28

12) 0.90'48 0.4229 29

13) 1.8547 48

14) 2.9332 0.5392 44

15)' 0.2127 1.0697 49

16) 8.1619 1.1211 52

17) 8.1182 1.2839 26

18) 0.9832 8.5684 35

19), 8.1693 1.1110 52

20) 0.0000 3.6924 51

21) 8.1411 1.1513 49

22) .1772 .1807' 35

23) 8.9472 8 5231 28

Psottest for matched groupi,after 1976 Fall semeztpr,lgooaness

of fit te4t,ing for Gamma distributions
OP

A
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TABLE E14

Kolmogorov-Smirnov Tests for Matrix Algebra Posttest Items

OK Group NO Group

item p z N item p z N

1) 0.3300 0.9480 64 1)

2) 0.264f..///-1.0051 64 2)

3) 0.9378 0,5342 55 3)

4) 0.1693 1.1109 63' 4).

5) 0,3757 ,0.9125 62 5)

6), 0.0751 1.2810 64 6)

7) 0:6907 0.7123 61 7)

.8) 0.3863 0.9047 62 8)

9) 0.6921 0.7115 57 9)

10) 0.0237 1.4891 64 10)

Fl) 0. 8667 0.5982 ..A. 11)

12) 0.9929 0.4285 31 12

13) -,0.8903 0.5794 Lrr--' 13)

14) 0.7517 0..6754 50 14)

.3 3.,./ 0.9255 0.5473 56 15)

16) 6.2001 1.0726 . 59 16)

17) 0,4410 -. 0:8662 _30 17)

18)
i

0.8377 0 194
\-.

36 18).

19) 0.3289 0.9489 59 .19)'
.

20) 0.1469 . 1 1425 59 '20)
.

21) 0.5989 .7668 , .53 21)-

22)
.

0.8014 :6439 38' 22)

23) 0.9030 0.5686 23)

0

0

.4834 .8382 9

0

.9996 .3536 2

: 0

.0050 1.7321 3

.0366 1.4142 2

.6504 .7362

1;70

.7463 .6787 41

.9350 .5373 33 "

.9093 ;5628 17 .

'.7109 .7002 14
0'

-.6895 .7136 8

.6686 '

.

.7255 5

.7767
Ai.

.6598 34

.5818 ° .7771 28

.
.

.6408 .7419 5

.9984 .3850 5

.7015 .7058 11

.9605 : .5052 ' 26

.3914 .9010 44
. 0

24) 0.0000. 5.1962
.

27

t)
r

Posttest for all° subjects after 1976 Fa1,1 semester; 'goodness

of fit' testing, for Weibull distributions
4
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Table E15

Three Weibull Paramets fr Matrix Algebra Te'a,t

Items
. ..

1.

., .

3.

1: A.

11.59

r.C.:14

6.',740.

m.c.

0,97
0.97
1. 0' ! I

06

1.24

4. .82 0.Yt, 0..g5 20.;=;7

5. L. . 7 CI 0.,'9

6. C.67 ,I. 1. 41

e C.68 is, ,.: ; Cf.n4 13.!,11

..:,, 11..46 0.''.9 1.05 J 6

1.46

10. 5.78 0.'7.'6 . 97 , 18.r2

1 1. Y . 6 1 J.9'1 . 24, 45.0
12. P.28 0.'.-."1 1 . 117.i.15

1 3 . 1 Cr, , 1 1 , 1 . :.:4 -3 .0.Q5

4 1. '12 0.i-.1 ll 1 . 5 1 o lJ
7 r

. . 23 n. D9 1.21 9.3. 14
16. 1, .'51 0.,.48 1 . 48

17. '3 . 03 0.97 1.1.8 -1 43. .3
18.. 5.74 1.0,i1 25. ,17
A 2.76 0.90 1.34 9

' 1' 2 9 4 1...f. 9 7 9 . 17
-....,

1 .

.,.. 4:: 8 (,' ':19 . 7 1 17.'!
- . r..r.. 0 if 1.1'. ':.f ,..; 1 . . ;

t. f 0" n 1. 1.

a
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Table E16
4

The Three Weibull Parametei-s for Matrix Algebra Te5t Item5

it-ms t 0 m.:.

1
, 1.00 0:0g 0.0'0 0/0 .

% -43 1.00 4.0U 0.00 0/0
1.46 i3.97 1.75

0.00_ - 1.1J 4,41
.11

74. 12.16 0.,.49 0.76 26.1_8

11. 9.51::, 11.01.S 0.99 o4

12. 1:...73, as . 99 1.2? ;35.71

.1.3. 28.6,4 0.98 1,19 42.7.4
i...i. 10.51 0 . 9 '.1 1.43 38.

1. 0.00 0.96 0:75 -4a .55 .

16, .0.00 Z.:96 1.84 1413.16

17. .0.00 0.'.18 1.31 91.28'

1;3. 5.(33 0.9 ) q.75 2T.11:

19. 2.93 .0.98 .'38 10.3.1

2E. 2.54 0.9.9 1...6 14.18

21. 4.k? A 4, Up. I 7 0.53 14.54

,..,. J.76 6.14
23. 4.05 0...0 0.79 14.E."7'

o

Mu;tpost for NO 5ub9r,:up in 1 1 5ubj

o.

I

458
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Table Ell

Kolmogorov-Smirnov Tegts for Matrix Albebra

1

tpost Items for,All Subjects

NO Group

Item P ,

z.
1) 0.9992 0.3700 5

Item

1)

OK Group

z N

0.0267 1.4692 51

2) 1.0.000 0/0 1 ,2) 0.7712 0.6633 55`

3) 0.2090 1.0624 13. 3) 0.7644 0.667543

-4) -41.9459 0.52-48 12 -4) 0.349.4 44

5)- 0.0000 5.3453 3 5) 0.1201 1.1859' 53

6) 1.0000 0/0 2 6) 0.2720 0.9982 54

7) 0.9980 0.3915 30 7) 0.7921 0.6500 26

8) 0.6979 0.7080 31 8) 0.8316 0.6236 25

9) 0.9540 0.5143 21 9) 0.9214 0.5514 35

10) 0.9386 0.53.33 24 10) 0.8644 0.5999 32

11) 0.1970 1.0762 34 11) 0.2368 1.0325 22

12) 0.9880 0.4479 40 12) 0:4371 0.8689 16

13) '0.4483 0.8613 35' 13) 0.8973 0.5735 21

14) 0.8602 0.6030 34 14) 0.8358 21.206 22

5) 0.6073 0.7618 35 15) 0.6166 0.7563 21

16) ' 0.8174 0.63.33 29 16) 0.9800 0.4699 27

17) 0.2751 0.9952' 49 17) 0.9016 0.56264 7

18) 0.9833 0.4619 16 18) 0.9970 0.4021 30

19) 0.3216 0.9548 25- 19) 0.5501 0.7964 31

20) 0.9676 0.4941' 11 20) LIMO 3.5313 45

'211 0.1521 1.1349 31. 21) 0.0018 1.8711 25 -

22) 0.0000 2.4902 44 22) 0.'138.1.5772 12

23) 0.0107 1.9862 45 23) 0.9198 0.552 11

Multpost for all subjects after 76 Fall semester
Gamma distributions
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Note. The following programs are used in connection with the,proirams
listed in this table: "wb2," "wb2area," "kappa," "llab," "kolmo," "gamma, "'
"wgraf," and "kgraf" programmed by Robert Bailtie; "statedit," programmed
by J. Michael Felty.
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TABLE E18

Kolmogorov-Smirnov Tests for Matrix Algebra Test Items

OK Subgroup for Matinvtest

Weibull Gamma

item p

4

i N* item p z

1) .500 .827 27 1) .002 1.88'

2) .723 .693 30 2) .031 1.45

1) .923 .550 28 3) .980 .470

4) .400 .897 27 4) .376 .912

5) .600 .768 27 5) .008 1.658

6) .440 .867 29 6) ' .017 1,.546

7)- :824 -:629 23 #7) .915 .558,

8) .710 .702 27 8) .214 1:057 4

9) .737 .685 '28 9) .619 .755

10) .i92 .980 , 27 10) .026 1.471

11) .958 .510 20 '11) .722 .694

12) .600 .766 24 12) .006 1.710-

* The total N is 30 and No subgroup was not analyzed.

Weibull parameters

item
.

t
o

.,

c Po

.

1) 18.66 ' .85 41.50

2) 8.78 .98 14.80

3) 2.88 2.29 24.35

46) 7.51 1:42 270.35

5) 7.94 0.74 14.68.

6). 7.87 0.91 12.50

7) 1.61 1.84 20.79

8) 13.50 . .93 36:98

9) 6.25 1.41 32.21

10) 5.74 .93 21.23

11) 15.37 1.03 21.69

12) 4.92 .63 41.25

160
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TABLE E19

Kolmogorov-Smirnov Tests for Matrix Algebra Test Items

OK Subgroup for Transtest

Weibull Gamma

item p z N* item' z

,i) .464 .851 16 1) .579 .778

2) .694 .710 26 2) , , :073 1,4.285

3) .146 1.144 34 3) .011 1.618

4) .941 .530 11 4) .874. .592

5) .950 .519 26 5) .896 .574

6) .061 1.321 29* 6) .062 1.316

7) .216 1.054 34 7) .000 2.304

* The total N is 38

OK Subgroup for Eigtest

Weibull Gamma

item p z N* item z

1) .971 .488 20 1) .513 .8i9
.

2) .,626 .751 39 2) .801 .644

3) .829 :625 44
/

3) .825 .628

4) .918' .555 28 4) .388 .904

5) .666 , .727 34 5) .367 .919

6) .999 .285 16 6) .978 .475

7) .609 .761 25 ., 7) .706'

8) .727 .691 30 8) .640 . .742

* The total N is 56

161
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TABLE E20--

Kolmogorov-Smirnov Tests forJtatrix Algebra Test Items

NO subgroup for Transtest

Weibull Gamma

item p z N* item p z

1) .965 .498 22 1) .718 .696

2) .872 .594 12 2) .544 .800

,3) .9'97 .399 4 3) .945 .526

4) .038 1.407 27 4) .123 1.182

5) .829 .625 12 5) .444 .865

6) .732 .688 9 6) .116 1.193

7) .964 .500 4 7) .885 .584

* The total N is 38

No subgroup.for Eigtest

Weibull Gamma

item p z N* item p z

1) .4665 .8492 36 1) .477 .843
----

2) .9801 .4697 17. 2) .838 .619

3) .9993 .3649, 12 3) .. .946 .525

4) .5266 .8108 28 4) .587 .774
40.

5) .7481 ,:6776 - 22 5) .832 .623

6) .9518 .5173 40 6) .984 -.461

7) .7674 .6656 29
.7)

.491 .834

8) .9323 .5402 24 8) .959 .507

* The total N is 56

4
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TABLE E21

Kolmogorov-Smirnov Tests' for Matrix Algebra Test Items

Weibull Parameters for Trantest and Eigtest Items

OK subgroup for Transtest No subgroup for Transtest
item to c lio

1) 10.63 1.12 31.65

2) 15.45 .84 67.16

3) 3.80 1.01 13.99

4). 6.15 1.24 22.53

5) 5.99 1.23 25.11

6) 2.86 .94 10.25

7) 2.93 .91 7.36

item to c Wo

1) 10.35 .74 95.10

2) 4.09 .80 104.27

3) 9.33 p.84 7.40

4) 2.03 1.17 33.58

5) 2.84 1.11 20.75

6) 5.94 .57 9.73

7) 4.36 .94 5.36

OK subgroup for Eigtest NO subgroup for Eigtest'
+ item t

o
c

Wo item to c
Goo

1) 10.68 1.08 75.94

2) 3.28 1.63 41.60

3) 6.88 1.43 27.26

4) 5.43 , 1.19 17.42

5) 7.69 1.04 17,54

6) 14.09 ,1.09 22.01

7) 6.37 , 1.27 58.50

8) 8.26 1.04 35.83

a

4

z.

0=1M.1111,

1) 3.29 1.75 91.00

2) 15.09 1.07 20.50--

3) 11.22 1.06 14.50

4) 4.03 1.44 16.98

5) 3.86 -1.16 25.81

6) 1.66 1.39 53.65

7) 8.03 1.13 39.00

8) 1.57 1.23 34.51

.

/ ...
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0.133

Appendix F

Graphs of Conditional Response Rate

3 : 1.649 ' 6.5019 19.29
4 : .1.022 7.6480 14.47.

=sub-group

1.0

4

"3

4 4

2.0 30 , 40' 50
time in seconds

Figure Fl Comparison of conditional response rates of
items 3 and 4 for OK subgroupCt0

it,=TF,._ 2.103 5.6420

item 6 : 0.8525 0.0001

0.561

0.280

OK subgroup

6

5

Yg
17.05

10.79

0.000 4

0 10 20 30 40 50
time in 5ecands

Figure F2 Comparison of conditional response rates of

items 5 and 6 for OK subgroup
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t0 p0
item 3.: - 1.240 6.0210 23.34.

item 4 : '2.188 0.0001 32.35

0.125

0.062

- 64.NO J_ sujw.roup

3.

4

4
10 20 30 - 40 , 50

time in seconds

Fi ure F3 Comparison of conditional response rates of
items 3 and 4 for NO subgroup

p
.., t0 y2

item 5 : 1.251 7.5420 13.70

item 6 : 1.353 5.5105 12.67

0. 237

0.118

0.000

NO subgroup

6
5

10 30 40 50)

time in seconds

Figure F4 Comparison of conditional response rates of

Items 5 and 6 for NO subgroup
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