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AASTRACT

The report describes the Rasch model for dichotomous items,

or the one-parameter logistic model, which is the simplgst

of the psychometric latent trait models. In the Rasch model
each item is described with only one parameter, the difficul-
ty, and each persaon is described with only one parameter, the
ability. In Chapter 1 the basic features of the model are
spelled out and a comparison is made with other, more romplex,
latent traits models., It is concluded that the Rasch model

has decisive advantages over the other models with respect

to interpretability, estimation of parameters and possibilities
of testing assumptions. In Chapter 2 is shown how conditional
maximum likelihood equations for estimating the item para-
meters can be derived and it is explained how the numerical
problems in solving these equations have been solved in a
computer program so that estimates can be obtained even for
large sets of items. The same chapter also deals with the
estimation of person parameters and how to establish confi-
dence intervals for the estimated parameters.

In Chapter 3 goodness of fit tests based on the conditional
estimates of the item parameters are presented. A graphic

test of item fit is described and two overall numerical tests
are taken up: one likelihood ratio test and one chi-square
test. In Chapter U4 strategies and problems in developing
scales fitting the model are discussed in relation to analyses
of some tests developed within the framework of the classical

psychometric theory.

.Chapter 5 presents some areas of applications of the Rasch

modei suth as test optimation, test equating and linking, and
tailored testing. In Chapter 6 some generalizations of the
basic model are briefly taken up; it is méptioned that models
can be formulated also for the case when there are nore than
two categories of answer and that a general linear logistic
medel can be used to study the sources of item difficulty. In
Chapter 7, finally, the computer program is presented.
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INTRODUCTION ,

In a discussion about prospective developments in item selec-

.tion theory for the construction of mental tests Gulliksen

(1950) stated that: "A significant contribution to item ana-
lysis theory would be the discovery of item paraﬁeters that
remained relatively stable as the item analysis group
changed..." (p. 392).

This problem has been solved, along vith several others,
within a class of models generally referred to as latent trait

models (LT models, or modern test theory; other names some-
times aPplied are item response theory and item characteristic

curve theory).

~

A

For different reasons, among which the mathematical and nume-
rical complexities involved probably are the most important,
LT models have not yet been widely applied in the development
and use of tests, even though the last few years have shown
some evidence of a change. /'
There is in particular one LT modél, variousl!v referred to as
the Rasch model or the one-paraﬁeter logistic model, which
has been applied in solving’ﬁfactical problems and which
holds special promise for,fﬁrther use, This report presents
the Rasch model and indiéétes at least a selection of all its
possible uses. Also presented is a computer program for con-
ditional maximum likelihood estimation of parameters in tke
model and for computing goodness of fit tests,



Chapter 1 //

BASIQ CONCEPTS AND MODELS IN LATENT TRAIT™ THEORY

Although the basic tenets of LT theory can be found in early
work by Lawley (1943) and Lord (1952, 1953), the breakthrough
came in the sixties. (For measurement of attitudes, however,
Lazarsfeld very early formulated and used the closely related
latent class model, see e.g. Lazarsfeld, 1950,. During this
decade Rasch (1960, 1966) formulated his model and the com-
putiénal problems in relatidn to the model began to be maste-
red as well (Fischer & Allerup, 1968; Wright & Panchapakesan,
1969), The sixties also saw the advent of the Lord and Novick
(1968) treatise in which five chapters (fouf of which were
contributed by A. Birnbaum) dealt with LT theory.

In the last ten years a host of papers has also appeared
dealing with specific questions, and rather simple, relative-
ly non-mathematical introductions to LT theory have. appeared
(e.g. Lybeck, 1974; Willmott & Fowles, 1974; Kifer, Mattson

& Carlid, 1975; Baker, 1977; Hambleton et al., 1977) as well
as at least one proper text book preséntation (Fischer, 1974).

1.1 Three logistic models .

Common to all LT models is that one set of parameters is used
to describe the items in a test and that another single para-
meter represents ability. An underlying psychélogical trait
or latent continuum is thus assumed on which the standing of
the examinees differs. Another thing common to all LT models
is that a function relating the probability of a correct |
answer to an item is explicitly stated (the item characte-

ristic curve, ICC).

The differences between the models reside in the particular
choice made of parameters describing the items and the kind
of function used for the ICC. Two kinds of ICC”s have been

9

N



.tried, the normal ogive and the logistic function. However,
since the logistic function is mathematically and computa-
tionally much more tractable than the normal. ogive the three
most cgpmonly used models are all based on the logistic
function, with' the difference between the models residing .
in the number of parameters used to describe the items.

-

The one-parameter model
f

In the simplest caammQply one parameter is used for each iten
its difficulty. In order to gescribe this model we will need
the following notation:

’

o5 = The difficulty parameter of item i.
Ev = The ability p?rameter of person v,
fi(E) = The ICC for item 1i.

Avi = A binary response variable with the
value 1 1if the answer of person v to
item i is correct and the value 0 if
incorrect or omitted. A particular
realization of this stochastic
variable is given the algebraic
notation avi‘

k = The number of items in the test. ,/

The one-parameter model, or the Rasch model, asserts that the
probability of a correct answer by person v to item i is:

-

eXD( CV‘oi)

(1-1-1) P(A -=1|E G.):
vi vl l*eXP(EV'Gi)

The higher the value of Ev the higher the probability of a
correct answer and the higher the value of o the lower the
probability of a correct answer.




Trom (1.1.1) follows that the ICC for an item i in the Resch
model can be written:

‘(E'Oi)

(1.1.2) £ (E)s

-

Two ICC”s for this model are shown in Figure 1.1. Throughout,
the curve for the more difficult item is located under the
curve for the easier itém.

1+e;p(5-0i)

o~

o : .

ftem1

jtem 2

Figure 1.1. Item characteristic curves for two items (c]=-1.02=1) in the
one-parameter togistic model.

11
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The questign may of course be asked as to what the parameters
in.the ‘node 1 mjég and wnat reality this model may present, A
very concrete éxample which illustrates this is the Flogging
Wall test invented by Iumsden (1976) as a tool for thought
experiments in test theory and as a "test for test theorists"
(p. 251). : -

i&ong a wall at intervals there are k flexible canes attached
at various heights. The canes flog slowly and independent ly
up and down. In taking the test the examinee is placed on a’
cart- which is drawn quickly along near phé wall and the
examinee’s score, to be used as a measure of height, is the
number of canes which touch him (see Figure 1.2).

[ ) ’ /

 Figure 1.2. An illustration showing Qpé/Flogging Wall test (cf Lumsden,

1976, p. 252). ///




i
° ’ . ©

4

With one assumption, namedly that the canes flog with the same
amplitudes, this test would fit the Rasch model, with e
height of ‘the examigge as the ability parameter Ev and the
heights of the canes on the wall as the item difficulties

Tf' \ ' %3 As will be shown laterrthe Rasch model furthermore

: implies that the examinee scores and the cane scores (i.e.
the number of examinees which a cang touch) can be used to

obtain separate estimates of the parameters,

The two- and three-parameter models ’

In the twe-parameter model (or .the Birnbaum model as it is
sometimes-called) another parameter (a y 1=1,...,k), the
dlscrlmlnatlon parame*er, is 1ntrdducnd which allqws the
ICC s for di ferent 1tems to have different sldpns. The

E ICC for an item in this model can be written:

%

expai(g—oi)

(1.1.3) © fi(g)s=
, 1+expa;(£-0;)

-

Two ICC”s for the two-parameter model are shown in Figure 1.3,
For the item with a high discrimination parameter the slope
is steep, while it is much more shallow for the item with !

.

the low ai parameter.

We can use the Flogging Wall test to illustrate the meaning
o of the discriminationaparameter too. This parameter would
| reflect differences in amplitude of the flogging of the

: canes, i.e. with this model it would no longer be necessary
' to assume that all the canes have the same amplitude. But it
should also be pointed out that with this model we should no
longer use the number of cane® touching the examinee as an
estimator of his height (ability), but instead weight the

by

. score on.each item with its discrimination parameter.




Figure 1.3. Item characteristic curves for two items (o]=-l,b,=1;0f.5,02=1.5)
in the two-parameter logistic model.

1

Let”s return to Figure 1.3 for.-a moment. Inspection of this
figure (observe that only a part of the ability‘continuum is
shown) shows that for low scores onf the gbility cont inuum
the propability of a correct answer asymptoticaliy approaches
0. This obviously implies that this model, as little as the
one-parameter madel, can be expected to properly represent
the case when the items allow guessing. ‘

A third model, the three-parameter model has been proposed
in which another parameter (ni,i=1,...,k) is. introduced to
prevent the lower asymptote of the ICC to apnroach zero. The
ICC for an item in this model can be written:

expai(ﬁ‘oi)

(1.1.4) Fi(g)=m +(1-my)

»

1+expai(6-0i)

14
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Iqsﬁection of Figure 1,4, where two ICC’s for the three-
parameter model are depicted, reveals that the curves approac:n
the value of v, as the low?r asymptote (compare the grapts
for item 2 in Figure 1.3 and 1.4). Since the lower asymptote
can be taken as the probability of obtaining a correct

answer obtained by guessing, the parameter LA is often re-
ferred to as the guessing parameter, In can be noted, how-
ever, that the estimates of the param;?;r typically come ou*
lower than the values that would result if examinees of low
ability were to guess randomly. For this reason, which Lord
(1974a) has attributed to there often being "too attractive"
distractors, it has been argued against lébelling this para-
meter "gueésing parameter", and instead considering it as the
limit of the lower asymptote of the ICC.

Figure 1.4, Item characteristic curves for two items
(o]=-],02=1;a]=.5,a2=l.5.n]=n2=.25) in the three-parameter
logistic model.

\
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1.2 Assumptions underlying the LT models -

Al]l applications of LT models imply that in one step or
anothef parameters included in the particular model chosen
are estimated.from the responses of a group of persons to a
set of item§. These parameters have a number of desirahle
properties and when they are at hand a number of problems
can be solved which would even be difficult to formulate
under the classical approach to test theory (see chapter 5).

HoweVgr, there are a number of assumptions that.must be ful-
filled in order for any reasonable estimates of parameters
to be achieved, and any sensible application to be ﬁade. The

' three most important assumptions are those pertaining to .
the dimensionality of the latent space, the principle of
local statistical independence and the form of the item"
characteristic curve.

Unidimensionality

The three latent trait models spelled out above, and several
others, are all based on the assumption that there is only
one ability underlying examinee performance. The meaning of
this assumption can be explained as follows (Hambleton et al.
1977): Suppose that a test of k items is to be used in r
subpopulations of examinees (an example for r=2 is one group’
of boys and one group of girls). For any particular given
ability level the conditional distributions of-test scores
must then be identical if the test is unidimensional. If,
however, the conditional distributions vary between the sub-
groups this can only be because the test is measuring some-

thing more tnan a single ability. '

With respect to certain tests in common use, the assumption
of unidimensionality is certainly untenable. It can, how-
ever, be claimed that a test should be unidimensional since
the resulting scores are otherwise more our less meaningless
(Lumsden, 1961, 1976). McNemar (1945, also quoted in
Lumsden, 1976) expressed this in the following way:

16




"Measurement implies that one characteristic at a time
is being quantified. The scores on an attitude scale
are most meaningful when it is known that only one
continuum is involved. Only then can it be claimed
that two individuals with the.same sccre or rank can
be quantitatiVely and, within limits, qualitatively
.similar in their attitude towards a given issue."

(p. 268):

The same line of reasoning certainly also applies in the
measurerent of abilities.

It can be asked how one can make sure that the items intended
to constitute-a test are unidimensional. Factor analysis of
the items is a method that has been used to investigate the
number of dimensions invoived in taking a test. Lumsden
(1961, 1976), specifically, has argued in favor of this
method .when attempts are made to construct unidimensional
tests and several authors have reported applications of
factor analysis to assure unidimensionality before pro-
ceeding with an LT model.

The method is, however, not without its problems. One prob-
lem pertains to the choice of measure of association between
the items. The phi-coefficient is commonly used but this
measure has the. unfortunate characteristic théﬁ there are
limits on the numerical values it can attain, with the limit
varying as a function of the marginal frequeacies of the
items. A coﬁsequence of this may be that even a strictly un-
dimensional test may appear as multidimensional in the factor
analysis (Ferguson, 1941).

The tetrachoric correlation is another measure of association
that has been used in factor analyses at the item level and
which is not limited as to the values it can attain. However,
matrices of tetrachoric correlations are often not positive
definite with breakdowns of the analyses as a common con-

sequence.,




Another problem when factor analysis is used to investigate
the dimensionality of a set of items is that unless there are
differences in the levels of abilities among, the examinees
the ratio of the first to the second principal component of
the matrix of inter-item correlations will not be large, as

is dictated by the assumption of unidimensionality. Since LT

models can fruitfully applied even in the case¢ when all the
examinees have the same ability this restriction in the app-
licability of factor analysis is unfortunate. .

Even though the problems mentioned above do not wholly in-
validate the use of factor analysis before LT models are
applied, it cannot be allowed to give the final verdict. The
problem is not very serious, however, since the assumption
of unidimensionality, along with the other assumptions, can

- be tested-with the LT models themselves through goodness of

fit tests.

Local statistical independence

The assumption of local independence implies that the answer
. of an examinee on one item must not influence his answer on
another item. For any two items, i and j, this can be given
the following statistical formulation:

Ve

(1.2.1) P(A;=1 and Aj=1|§)= P(Ai=1|€)P(Aj=1|g)

That is, for a given ability level the probability of getting
two given items correct must te equal to the product of the
probablities of getting each one of them correct.

Hambleton et al. (1977) pointed out that the assumption of
"local statistical independence for the case when the ability
continuum is unidimensional is equivalent to the assumption
of unidimensionality. They argued that, for a fixed ability

le&el, if the responses are not statistically independent,
some examinees have higher expected scores than others. Con-
sequently more than one ability would be necessary to account

18 ‘
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for test performance.

A8 a consequenqe‘of the equivalence of the two assumptions,
what was said above about the testing of the assumption of
unidimensionality applies to the testing of the assumption

of local statistical independence as well. But it must of
course be realized that the kind of action to be taken differs,
depending upon which assumption has been violated.

“

The form of the item characteristic curve L

A1l LT models have in common that a choice must be made as

to what kind of ICC to operate with. If this was not done,

it would be impossible to formulate the statistical models
out of which the equations for estimation of parameters can
be determined.

Of course the function relating the probability of a correct
answer to an item to ability can take any fofm, it need not
even be continuous (cf "latent class analysis", Lazarsfeld

¢ Henry, 1968). Thus it is always neceésary to test the )
particular assumption made, which can usually be done through
applications of goodneqs of fit tests. :

The three logistic models spelled out above differ with res-
pect to the constraints put on the form of the characteristic
curve, with the one-parameter model imposing the strongest

‘assumptlons and the three-parameter model imposing the least

strong constraints. It is of course an empirical questiqn
whether, for a given set of data, & less constrained model
is necessary or whether a more severely constrained one will
do. But partly it is also a question of ressarch strategy in
that it is sometimes possible to select from a larger'pool
of items those that conform to the requirements of the more
constrained model.

19 /




1,3 The Rasch model versus the other models

The different LT models all have their strengths and weaknes-
ses and they are not all equally applicable to all types of
problams. The most important differences seem to reside, how-
-ever, between the Rasch model on the one hand and the two-
and three-parameter models on the other.

The most important drawback of the Rasch model is that it is
“built on such strong assumptions that it could be argued that

the opportunities for using this model are small. It has,_how:

ever, been shown that it is by no means an impossible task to

find existing tests that do fit the model (e.g. Rasch, 1960) an”

tests can of course be specifically constructed to conform
to the requirements of the model. The reason that this might
be a preferable strategy is that the Rasch model in many
Tespects has decisive advantages over the other models. These
.advantages are discussed below. '

Interpretability

The size of the item and person parameters can in the Rasch
model be given simple interpretations in terms of odds of
success on an item. The probability of success on item i for
person v (for simplicity this probability will be called Pvi)
is:

exp(g_ =0.)
(1.3.1) PVi: ‘ v =
1+exp(§,-0;)

Evidently the odds of success can be written:

P . ,
vl _ . -

1-P s

T o



[ e

If we now relate the odds of success for person v to the odds’,
of success for person u on the same item this can be written:

-

(1.3.3) Avi= €¥P(E,-04) ‘

Aud exp(£u~oi)

which can be simplified into:

(1.3.4) i

- = exp(Ev-Eu)

ui ~-

.

We thus see that when two persoﬁs are compared this does not
involve the item parameter at all and it can easily be shown‘
that when two items are compared, the comparison does not in-
volve the abilities of the persons. These possibilities for
comparing persons independently of items, and items indgpen-

) dently of persons form the core of Rasch”s theory of "specific
objectivity" (Rasch 1960, 1961, 1966) and it can be shown that
the one-parameter logistic model is necessarv and sufficient
to obtain this kind of obejectivity.

Behavioral scientists are probably more conversant with the

. additive linear model J;on which the analysis of variance,and/

\>\rel?ted models are built than with the exponential family of ‘
modéis\\Framed in the langpage of the i{near additive model, |
however,\Ib\can be said that the Rasch model is a model that
does not allow for any interactions, i.e. the difficulty of B
an item must not be qualified by the conditions under which
if is taken or by which pérson takes it. Oa the other hand
it is of course quite difficult to imagine items the diffi-
culties of which are immanent to such a degree that they
will neﬁéﬂ\be qualified By any factor. The boundaty condi-
tions for ;\Sgt of items to conform tou the model should thus
be sought - whith in a sense is done each time the model is

applied and a goodness of fit test is computed.




are 20 since exp(3)=20.1.

Equation (1.3.4) above not only says that nersons can be com- ‘////:
pared independent of items but can also be used to compute [/
the relative odds of succeSs on any item for any two persons.
When the persons have the same ability the relative odds are
1 since exp(0)=1. If, to take another example, person v has
the person parameper 2.0 and person u the parameter -1.0 the

relative odds of success on any item in favour of person v

The same type of calculations can of course also be applied
in the comparison on items. Only the Rasch model allpﬁs this
kind of simple probabilit& statements and simple comparisoﬁé
between items and persons. ‘

Estimation of parameters '

A1l the LT models have separable paramet~rs which can, at
least in principle, be estimated on scales that are/indepen-
dent of the particular sample bf examinees studied, The
theoretical and practical problems connected with the esti-
mation of -parameters have, however, heen adequately solved
only for the Rasch model.

The common approach’that has been used to derive the equations

for the estimation of parameter is the maximum likelihood

(ML) method. However, a straightforward ML approach, resulting s
in equations in which the item parameters and the berson para- '
meters are estimated simultaneously, yields estimates which

are not consistent, as has been shown by Andersson (1973a)

and Martin-L8f (1973) (see chapter 2 helow for further de-

tails). . ) .

This problem arises when structural parameters (the item pa-
rameters) are estimated in the presence of incidental para-

heters (the person parameters). Increasing the sample s3ize .
obviously does not solve the problem since each new person

brings a new incidental parameter. But it has been shown

(Anderson, 1973) that if the likelihood equation can be for-
mulated only in the item parameters, then consistency and
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? . unbiasedness is assured, which can be done if there exists a

E” ‘ minimal sufficient statistic for the person parameters, In

| the Rascl model, and only in the Rasch model, total score can
.be shoyh to be such an estimator of ability. Thus it is

: ‘. pbssi le to formulate ML estimators for the item parameters

] throu onditioning on the total score in the Raséh model

but not in the other models. 5

' in spite of the fact that the conditional maximum likelihood

'(GML) approach is the correct one for estimating the item pa-
rameters in the Rasch model, the unconditional (UML) approach
in which item bargheters and person parameters are estimated

' simultaneously is the one that has most commonly been used.

é (Wright & Panchapakesan, 1969; Wright & Mead, 1977; Wright &

| Douglas, 1977). The réason for this is that the CML method

k ‘ is computationally cumbérsome and that numerical problems

|

I

»

|

have prevented its use on tests with more than 20-40 items.
The,comﬁuter progran presented in chapter 7 below does, s 4
howéver, present a remedy since it. can be usédffor,CML esti-
mation of parameters for larger sets of items, ‘ i'

It can be pointed out parenthetically that there is some
confusion concerning the use of the_terms conditional and
unconditional estimates ;n‘LT models. Unfortunately Bock and
. ) ‘Lieberman (1970) used these terms 'in a rather peculiar sense
deviating from common use in mathematical statisties. By im-
posing aSSumptioﬁs about thé distribution of person para-
meters they were able to state the estimating equations for
the item parameters in the two—paraméter model without in- .
froducing the person parameters. These estimates were termed
unconditional estimates while they uééd the term conditional
estimates for those resulting when both sets of parameters

) |

are estimated simultaneously. The termg conditional and un-
conditional thus in a-sense carry the cpposite meaning in
the usage of Bock and Lieberman as compared to the usafge
above in connection with the Rasch model. In the sequel of
this paper the latter meaning of the terms will be implied.

Summarizing the discussion so far it can be concluded that
only for. the Rasch model are there solutions to the problem

s




.ever, for the two-parameter model the iterative approach

. examinees and the number of items is large (at least 1000~

of estimating éhe parameters which are theoretically comple-
tely satisfying. (To be fair, however, it must be pointed out
that this is true only with respect to the estimation of the .
item parameters; the unbiased estimation of abilities is still )
& problem to be solved). But aside from these theoretical
questions there are also important differences between the
Rasch model and the other models with respect to the amount
of practical problems met with in estimating the parameters.

Since solutions to the likelihood equations are not available
in closed form; numerical methods must be resorted to. How- °

employed does not converge properly unless bcth the number of

}000 persons and 30~60 items seem to be requlred) The amount
of computer tlme ‘required is also very great. Hambleton et al.
1977, p. 107) report, for example, that for a test with 60 1
items given to 5305 examinees 40-60 minutes was required for
convergence on an IBM 360/65. Practical problems alone thus
make application of the two- and three-parameter models out of
the reach for many researchers and for many problems.

For the Rasch model, however, thg iterative procedure almost
never fails and at least for well cenditioned problems where
the number of items is not very large (less than 50 to 80
items, say) more than a few minutes on an IBM .360/65 is sel-
dom required, even when the CML estimates are computed.

-

Testing assumptions

Goodness of fit tests exist for all_the different LT models
(Rasch, 1960; Wright & Panchapakesan, 1969; Andersson, 1973b;
Bock, 1972; Martin-L8f, 1973; Mead, 1976h). The tests gene- 'i““
rally are of the chi-square or likelinood ratio type and at ~
least for some of the proposed test statistics it has been
shown that they assume the specified distribution at 1least
asymtotically (Martin-L3f, 1973; Anderson, 1973b).

}

More important,perhaps, than the statistical prooerties of the
proposed tests are the difference hetween the different IT
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*models with respect to the possibilities of detecting impor-
tant deviations from the assumptions.

It appears that the Rasch model is "safer" in this respect
titan the other two models. Mead (1976a) discussed factors
such as guessing, carelessness, speed, practice and item
bias as threats to the fit of data te the Rasch model. He
concluded by saying: t

"Al1l of the disturbances considered represent some
form of multidimensionality; they would violate any
model that assumes unidimensionality. Since the effect

of the disturbances often aopears as a change in the
slope of the item characteristic curve, any model -
which includes item discrimination as a parameter

would appear to fit the data." (™ead, 1976a, p. 11)

‘There is thus a risk in using the less constrained models
since threats to the important assumption of unidimensionali-
ty can be "taken care of" as varving item discrimination.

It is of course true that the importance of testing a more |
constrained model with powerful means is extremely important %
since otherwise all claims for supsriority are invalidated. |
Fortunately there do exist sound statistical tests for the
goodness of fit tests of the Rasch model, at least when the
CML approach is used (see chapter 3 below),

Conclusion .

<

In the comparisons made between the Rasch model on the one
hand and the two- and three- parameta; models on the other
with respeot to interpretability, estimation of parameters
and testing assumptions, the Rasch model shows up more
favorably in every respect. If it can empirigally be shown
that it i possible to make educational and psychological
measurements which conform to the requirements of the mcdel
it will find a number of different. uses. fome of the possible
» applications will be discussed in chapter 5 after a more
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. Chapter 2

I ' " THE MATHEMATICS OF THE RASCH MODEL

' N -

<

In this chapter the structure of the Rasch model will be

more formally exposed and it will be shown how the parameters

' in the model can be estimated. But the presentation also
serves as a documentation of the computer program (called
PML) presented in’ chapter 7; the soluticn of some numerical ’

, problems are presented in detail and operating characte-

* ristics of the program are presented.

»
¢ L

2.1 Estimating item parameters

‘ In developing the mathematics of the one-parameter model we
T “=will make use of a somewhat different notation from that
used hitherto. The derivation is at points greatly simpli- -
fied 4f an antilogarithmic transformation is made of the
parameters such that ev=exp(5v) and ei=exp(-ci). The probabi-
lity of success for person v on item 4 can then be written:

) Gvci
Ul
+ .

1 Vel

(2.1.1) P(A,_.=1|0

vi v

The usual testing situation is one in which n examinees have
been given k items., As previously we assume that the res-
ponse variable is of the Bernoulli type, so that in keeping
.with the previous notation

.

ALLE 1 if person v is succesful on item i
vi 0 if person v is not successful on item i
A

Then we can write (2.1.1): .

a_ .
vl
(Gvei)

(2.1.2) R(Avi=avi'9v’€i)?
\- 'l+evei
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The observed data can be assembled in the matrix ((ay;))
shown below:

Examinees o
l L I ) v * o » n
lja ees 8 wes A s
11 vi = 2m| %)
Ve N
ila. a a: _|s

Items

N e e o
[\
M

The raw score for person r is thus:

d

4

*
and the total number of correct responses to item i (the

item score) is:

Those persons who have 0 or k correct answers must be excluded -
from the ((a,;)) matrix since no estimates of their parameters

are possible to obtain. Also items with 0 or n correct answers

must be excluded from the matrix for the same reason.

Under the assumption of statistical independence the likeli-
hood of the data matrix ((a,;)) is the product of the pro--

P oy =

babilities of all the answers: #
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‘ n k | - .
(2.1.3) A= H H vei. v 'i

~

Looking at the likelihood function we find that only the
marginal sums of ((avi)l are represented and not the "inner"
of the matrix. Thus we need not take into account which items
a certain examinee has answered correctly or which examinees _
answered a certain item correctly. In other words, we find-
that raw score is a sufficient estimator for the person para-

. meters and that item score is a sufficient estimator for the

’ item parameters. '

The likelihood function A can be maximized in the usual way
with respect to the parametérs to yield ML estimates of the
(ev) and (ei) (Wright & Panchapakesan, 1969; Martin-L&f,

1973; Fisher, 1974 p 257 ff; Wright & Douglas, 1977). Written
-in a simplé form, although not very suitable for computations,
the estimating equations are:

s . | )
1y si: Z eve*i =
. v=1l 1+6 ¢,
2.1.4 v-i
( ) ok
0. ¢
- v-i
rv-
T izl l+ev€1

There is one more parameter to be estimated than there are
equations, a prohlem that can be solved through using, some
kind'%f normation. One possibility is putting the parameter
value of one item to unity and another possihility is using

the product normation nei=l. The system of equations can only
, i
be solved iteratively but there do exist efficient computer

programs for this purpose (Wright & Panchapakesan,‘l969;
Wright & Mead, 1977).
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The approach sketched above is the unconditional maximum
likelihood approach that was mentioned above on’page .

In that context it was also pointed out that the UML method
produces estimates which are not.consistent.

That ML estimators in certain situations fail to be consis-
tent was first“discovered by Neyman & Scott{ (1948). One class
of situations in which éhis occurrs is the one in which the
model contains incidental (or nuisance) parameters beside
those structural parameters which are to be estimated. The
most‘cbmmonly known example of such a situation is the esti-
mate of a population variance for a normal distribution

(see Andersen, 1973a, p. 14 ff; Martin-]I8f, 1973, p. 76). It
is.known that the deviation 'sum of squares is tg be divided
with n-1 to give theé unbiased estimate. The ML estimator,
however, can be shown to make use of n as the, denominator
and this estimate is thus biased. This occurs because the
population mean must be estimated from the sample data;

each new sample will thus give a new value on this (inciden-
tal) parameter .

In the Rasch model the person parameters sre incidental para-
meters when we want to estimate the item parameters (and the

item parameters are incidental parameters when we want to

estimate the person parameters) and of course the number of
person parameters does not stabilize when we increase the
sample size since each new person brings a new parameter
(this fact must not be confused with the fact that since the
model is discrete we can only get a 1imited‘number of esti-
mates of all the possible person parameters).

But it has been shown (Andersen, 1973a) that if the likeli-
hood equation can be‘formulated only in the item parameters
consistency is assured, This can pe done if their exists

a minimal sufficient statistic for the person parameters and
in the Rasch model, and only in the Rasch model, raw score

is such an estimator of ability. Thus it is possible to for-
mulate ML estimators for the item parameters through condi-
tioning on raw score., The details of this are presented below
but first we shall discuss another approach to come to grips
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with the inconsﬁytency of the UML-estimates.
This approach consists in seeking corrections to rectify the  --%—
UML estimates, in a similar vein with the way in which the ‘ -
ML estimate for the population variance is corrected for
with the factor n/n-1. Simulation studies carried out within
the range of 2 to 40 items (Wright & Panchapakesan, 1969; -
. ﬁischer & Scheiblechner, 1970; Wright & Douglas, 1977) have{;
indicated that for item parameter on the log scale a correc-
- tion factor of (k-1)/k is suitable, and when this correction
" is applied the difference between the UML and CML estimates
is generally not greater than one unit in the second decimal
’p lace. . ]
p . N
Since the CML gstimates are quite cumbersome computationally
it could be argued that the corrected !ML estimates would do
for all practical purposes. There are, however, three reasons
for which the UML estimates should be discarded, in spite of
this, in favor of the "ML estimates. The first reason is that
the partiéular correction factor employed is empirically
réthe? than theoretically derived and its validity hinges .
entirely on the range of situations studied in the simgla-
‘tions. My own impression is that the correction used works
quite well in situations were the variance of person para-
meters is not to large but that it tends to become poorer

when this variance increases., (These observations were made
when data were generated under the two-parameter model with

a high but for all items common discrimination parameter,

and then'analyzed under both the UML and CMIL anproaches.! The
Rasch model of course does not assume that the discrimination
parameter for 511 items is exactly unity; all that is assumed
is that all the items have the same discrimination parameter,
Varying item discriminations among sets of items is taken into
account as a simultaneous transformation of the scales of item
and person parameters ‘and a high discrimination shows as a
high variance of the person parameters.)

The second reason is that no correction has as yet been
found for the bias in the person parameters, In virtually all
-the computer programs for UML estimation the person parameters




obtained in th; simultaneous estimation of parameters are
presented; somewhat better results would be obtained if the
person parameters instead were estimated from the corrected
item parameters.(In fact, since the problem of a strictly
conditional estimation of person parameters is not sofved

yet, this would in many cases place the UML- and CML-approaches
on an equal basis). Even without presenting any exact figures
it can be claimed that the bias in the UML estimated-pgrson
parameters\is rather severe. It can be observed that when

data are generated in accordance with the Rasch model with a
standard deviation (s) of, say, unity and‘the s of :::\egti-
mated person parameters is computed, a rather similar value

is observed. But in fact the observed person parameters should

~r

have a higher s since another variance component (correspon-
ding to the standard error of measurement) has been introduced
in generating the data.

‘The third reason in favor of the CML approach concerns the:
possibilities of testing goodness of fit: under the UML
approach only approximate techniques have been proposed
(Wright & Panchapakesan, 1969; Mead,1976b) while under the
CML approach there are test statistics which have an at least
asymptotically known distribution (see chapter 3).

The most important reason for not employing the CML approach
has been that numerical problems have prevented its use with
more than a limited number of items. It is,however, shown be-
low that these problems can be solved.

In developing the conditional approach let us first for
simplicity consider a given examinee with the raw score rs
corresponding to the person parameter 6;. The probability
of obtaining any score vector (avi) given the person para-
meter and the vector of item parameters is:

(0,e 1 Vo i L
. }= =
(2.1.5) P{(au)' (e ) H 140 € n(1+6vei)
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To be able to express this 'probability as a conditional pro-
babilipyusiven score r_ we must know the probability of ob-
taining‘score_rv given ev‘ This latter probability is given
by the sum of the probabilities of all possihle ways of ob-
taining the Score r , that is the sum of all the expresslons
like (2.1. 5) in Whlch the vector (a ) sums to r.

A given score r obtained on k items can of course be obtained
in ¥ different ways. We will need a special notation to be
able to express this in a simple way. Define:

O

- k a
(2.1.6) YRITIONE ¥ _]'[:eiVl
r =

In the expansion of this sum of products tie summation is
k . . . .
made over those {r/ combinations in which fa;=r. The v{(e;)}
i

(or, for short, Y,) is called the glementary symmetric
function of order r in the parameters (€3). (On the following
pages a more concrete presentation of these symmetrie
functions will be made).

»

We 'can now write the probability of obtaining the score r
given 8 and (e;):

/'»
. .
: (8,e;) fviog Ty
2.4.7) P{r|o,,(e,))= >, H A A
fa .zr iz=1 1+6 vEi ]I(l+6vci)

;ovi
The conditional probability of obtaining the vector (avi)

with the total score o given the score rv\is thus given by
equation (2.1.5) through equation (2.1.7): )

k
P{(avi)|ev:(€i)} 'H

(2.1.8) - P{(a,;)|r,(e;))s

1
P{rlev,(ei)} Yp “
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We thus see thétgthi§jcon§itional probability is not a func-
tion of OY; only t?e item parameters appear in the expression
(2.1.8). LT

Since the examineeékére assumed to be independent we obtain
the conditional likelihood of the data matrix ((a,)) for n
persons as:

RN | Sl o

. If we use n, to denote the number of persons with raw score r

(r=1,...k=1) and recall that 84 is the stcore of item i

(8=1,...n-1) we can simplify (2.1.9) into: ~

vt (2.1.10) A= 1z1 = i=1 ' l oo ]
k-1

From this conditional likelihood function the CML-estimators
can be derived. If we first take the logarithm of both sides
we get: *

kK k-1

(2.1.11) "~ logh= Z s.loge.~ Z n. logy
. i i r r
1=] r=1

We differentiate with respect to all the €4 and set the de-
rivatives equal-to zero:~ . :

-

. k=1 (i)
§ Slogh s, Yoo
(2.1.12) = =% - Z r-l (i=1,...,k)
i €5 pmy Yp |
(i)

in which equation the symbq} Yroq is used for the partial de-
rivative of y, with respect to e,. This derivative is &
symmetric function of order r-1 in all parameters except by
This is most easily seen in an example. Suppose tha?

ERIC k=4 and that we are studying v,. |
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In explicit notation the symmetric function can be written:

72(81’82’83’eh )= €1 EtE 1 E54E € tEHE SHELE HESE

*
L4

and

Sy
671

SN

From (2.1.12) it-is seen that we end up with a set of nonlinear

equations in the () (for simplicity we will not distinguish
between the parameters (e;) and the estimates (€) of the para-
meters). '

»

‘ - k=1 e Y(i) : ’
(anlnlj) si= Z -’r—'l——L-'l— (izl’-n-’k)
: r=1 Yr

.

From the fact that Is ;= In,, it follows that we must impose
some constraint on the system of equations to be able to

solve it. The same ndrmations as those mentioned above (v 22) °

in connection with the UML approach are of course available
and we can set e =1,(It is practical to select m as the item

L)

with medium difficulty. This is done gutomaticaliy in the

2_ . - (1)
== g teqgte T Yl(EZ’EB’EH)' 72_](51’52’53’84) .

PML program, but there is also the optior to select any item.)

T

Even after normation it is not possible to find an explicit
solution to the system of equations but there exist numerical
methods (Andersen, 1972; Martin-L8f,' 1973; Fischer, 1974)

yhich can be used. In the application of these iterative -

methods there are two important problems to be solvedﬁ the

first pertains to the computation of the symmetric functions
Yps
of iterations can be obtained.

~

The computation of the symmetric functions

-
, . e S ’, o fk
‘ Tﬂg symmetric. function of order r consists of a sum of (r]

products, each of which consists of r terms. For example,

4
o~
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and the second to how a rapid convergence of the séquence'
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e X e T

L

when k=50 and r=25 the symmetric function is a sum of about
1. 36:&,101u terms, each of which is a product of 25 terms,

'ngiously it is impossible to compute the vy, and the derlva-

tivea through a srocess of straightforward mu1t1p11cat1on
_‘;summatlon.

.J‘ ' o

Fortunately there do exist recursive formulas which make a
relatively rapid computation of the symmetric functions
0831b1e (Fischer, 1974, p 242 ff; Andersen, 1972). We can

write:

X)) (1)

L) L) u " -
(2.1.14) Y. eer”l v

This is true since y(l) is the sum of all products of r para-

(i)

meters that do not contaln €55 and €, y -1 is the sum of all

products of r parameters that contain €y An example should
clarify this. Suppose that k=4 and rz=2. Then we want to get:

?

r

(2.1.15) Yo7 EqE+E € E € ELEHEHE HESE

If we take the partial derivative of Y, with respeet to €y

we get:
(1) | : '
{(2.1.16) Y2-1; EptEgte, )
and )
(1)_
(?.1.17) €1y, '° E1€,+E E54E €y,

L3

In the same way we can casily convince ourselves that the
partial derivative of 73 with respect to €y is:

36




(2.1.18) ?;1)= e253+ezeu+ese“

If we now compare the sum of (2.1.18) and (2.1.17) with
(2.1.15) we find them equivalent.

Another recursive relationship of great use is the following:

(i)

(2.1.19) re1

This formula can be derived from (2.1,.14) but again we use
the example to convince ourselves. We get:

(1)

(2)_ . .
€2Y1 R LPALPLES P

€ CB)' E €.t E,¢E_E
377 T E183TERE3YELEy

(2.1.20)

(4
Y, ). SLICPCIRCEC

We thus see that in this set of equations the six product
terms in (2.1.15) each appear two times.

From the two recursive formulas (2.1.14) and (2.1.19) it is

poésible to devise a very efficient algorithm for the com-

putation of the symmetric functions of all orders and all

the derivatives. Starting from the fact that yéi)-
(i) (1)

0 0 ,

the other derivatives of the symmetric functions of order

3 A
two. In the next -step we get 272=£eiy§1) and can then ob-

(1)
yl-ZeiY =£ei. Then we can compute Yq =Y =€ Y and all

tain all the derivatives of the functions of the third
order, and so on.




“ The algorithm has beeniprograned by Fischer (1974, p, 5il)
and this subroutine is used as one of the methods of compu-~-

L~ ting the symmetric functions in the PMI, program, The algo-

ﬁ - ' ' rithm has the virtue of being very fast: only k2 multlplz- .

;\ ' , cations, k2 additions, k2 subtractions and k divisions are

1 / perfarmed. It has one serious drawback, however: When the

3 number of items is large and/or there are great differences

o in the size of the item parameters the computatlons break

5 ‘down as a consequence of round-off errors. The nroblem is
caused by the differences Y€ y( i which, particularly fov"
the orders around k/2, 1nvolve verv 1arge numbers, resultlnr
in cancellation of terms. -These problems are reduced 1f, as

_is done in the algorithm used, the recursive formulas are

. “ applied both from "ﬁelow“, starting with order one, ang

' o from “above", starting with érder k and then meeting at

. about k/2 (which procedure also allows a test of computa-

E tional accuracy). However, even with this method there is,

- when k is large, a virtually inescapable loss of accuracy

when floating-point representation is used and even’attempts

to use extended precision (REAL*16 on IBM machines) have

failed to appreciably increase the number of items that can

be analyzed.

[}

The breakdown .of this algorithm (which will be referred to
‘as the Difference algorithm) ocecurs in the range of 20-40
items. Since k for many tests is within this range, use of
this algorithrm is accompanied by the frustrating eﬁperlence
that sometimes the analysis breaks down, and that sometimes
it does not, for example Whenvdlfferent sub=-groups are

studied. AN

~ \

Fortunately, it is possible to find a recursive formula for
the computatlon of the symmetric funcﬁiqns in whlch no use
is made of Subtraction. We can write (2.1.14) in a slightlv
different way:

(2.1.21) Y (el,...,e )= Yp(e 12+ € 1)+e e l(el’ Cer€y 1)

(Fischer, 197h4,-p. 250).
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But this means that we can add one parameter at a time, so
to speak. If we start with €, then Yl(el)=e1 and yo(el)=1,

If we add one more parameter, e,, we have:

Yl(51a€2)=Y1(51)*IE2Y0(€1)=€1*52

-72(51,52)=Y2(el)+5271(e])=0+5152 =€ 1€,
A

\\_/
Adding a third parameter we get:

Yile1sep,e5)2Y (e e5)¢e5v (e, 6502, ety
Yz(51,52,53)=y2(51,52)+5371(51,52)=ele2+e253+5153

YB(51a52a53)=73(51a52)*€3Y2(51a52)=515253

and so on.

After we have added the k parameters we .have thus obtzined
the symmetric functions of all orders in the narameters.
This algorithm too has been programmed by Fischer (1974,

p 544) who uses it to compute the second partial derivatives
of the symmetric functions, vhich is done through setting as
equal to zero the parameter vales for all combinations of .
items two at a time. But it can of course also be used,

with some slight alterations, to compute the symmetric
functions themselves, as well as the first derivatives.

In order to obtain the symmetric functions and the derivatives
the routine has to be called (k+l) times. Each call to the

routine makes use of Eiglil multiplications and E-(-%:—lli»k--l .

additions so to obtain the.needed information roughly

2 2
k(k®-1) sy : k(k“-1) ,2 ‘o e
- multiplications and ———5-——+k -1 additions are per=- -

formed. If the number of arithmetic iperations necessary for
for this algorithm (which will be referred to as the
Summation algorithm) is compared with the number of opera-
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tions used by the Difference algorithm it is found that the
Sumpation algorithm is slower. It can also be seen that exe-
cution time must increase rapidly as k gets larger,

Neverthelesé; the Summation algorithm is not unbearingly slow:
A complete iteration cycle, which involves computation of the
symmetric fupctions of a1l orders and all the first derivati-
ves, requires for 40 items about 1 second of‘CPH time on the
IBM 360/65, and Ffor 60 items about 4 seconds is required. For
a long test containing 100 items some 20 seconds would be re-
qu{red for each iteration.

These estimates of computer time required are valid for the
case when the computations are carried out in double preci-
sion. However, since the Spmmation algorithm is very accurate
numerically there is in the PML program an optioﬁ of'using
single precision arithmetic in this algorithm. When thié option
is used, somewhat less computer time (a reduction of so&? 10
per cent is a reasonable estimate) is required. ’

<
-

In addition to the fact that the amount of computer time re-.
Quired may become prohibitivé"when very long tests (k>100,
say) are analyzed there is one more problem that may appear.
The problem is that the symmetric functions, and especially
those of orders around k/”? assume very large Values and
sooner or later the limit set by the size of the floating
point numbers which can be represented in the particular
computer used will be reached¢. This problem could be solved
through scaling down the pafameter Qalues, but since the
product normation is used in the PML program after the para-
meters ‘have beén estimated this method is not immediately

-

available in the program.

The amount of computer time required for each iteration is
one factor affecting the cost of the: analysis. Another impor-
tant factor is of course the number of iterations required,

"How to obtain a rapid convergence is discussed next.
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Tﬁe‘conveggggce of the iterations

Several different methods have been prorosed for the solution
of the system on non-linear equations (2.1.13). Andersen ..
(1972) suggested Fisher”s Method of Scoring for Zhe equations
to be solved in the polychotomous model, which has been pro-
grammed by Allerup and Sorber (1977). This method requires
_only few iterations but on the other hand the computation of
improgemeﬁts makes use of the second derivatives of the
symmetric functions so each iteration cycle is very time con-
suming. For example, a test with 40 dichotomous items requireq
' about 3 minutes on the IBM 360/65 with this program. "

Anobher?method, suggested by among others Martin-L8f (1973)
and also presented by Fischer. (1974) makes use of a simple
switching between the right hand side and the left hand side
"of the equations (2.1.13). This is the method used in the PMJ,
program and it is presented in greater detail below. '

A first problem is how to choose start values for the itera-
tions. One simple solution is to pyt all the (£€;) equal to
unity. Martin-16f (1973) suggested that start values can be
obtained through "an approximate solution to the equations
(2.1.13) using a linearization in“thé parameters.

Si—s
(2.1.22) loge ; = ' (i=1,...,%)
k-1
nrr(k-r)
r=1 k(k=-1)

Both methods of selectingmstart‘values are availéble in the
program. Sometimes use of the approximation effécts a consi-
derable saving of iterations in comparisoﬁ witﬁ when unities
are used as start values,-sometimes the approximations has no
appreciable effect: There should be no risks;invoived in using
it, however, so it can be regularly applied.

~

In each new iteration cycle, t+1, new values for the parameters

are oomputed from the previous cycle t as:
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(2.1.23) (i=1,...,k)

e(t+1)_ 83
i k-1 (i), (%)
n lel{(ei

r
L T
YP{(CI)}

)}

r

(t+1) (t)
When the absolute difference between €5 .and € is less than
a specified value (in the program it is t3ken to be .001 but
it can be changed at will) for all items the iteration '
sequence is stopped.

The number of iterations required to a very high degree de-
pends upon the range of parameter values, but for the most
part a rather igrge number of iterations is required (often
not less than 100). It has,however, been noted by Fischer
(1974 , p. 245; se also Fischer & Allerup,‘1968) th * the
‘'sequence of improvements tends to form terms in a ge =atrie
series and as soon as three iteration stens have been per-
formed several iteration cycles can be saved through extra-
polation. (In numerical analysis this extrapolation is known
as the Aitken extrapolation, see Nahlquist & Bjéreck, 1974,
p. 235).

If we call the estimated parameter values for item i from

(t) (t+1) (t+2)

three succesive iteration ecycles € 5 €y and ei‘

we get the extrapolated value as:

(£42) (e(t+2) e(t+1))2
. © t+ : ~E. .
(2.1.24) FET -2 2 (i=1,...k)
(e), (£+2) _, (t+1)
Ei Ei Ei

‘Two new iteration cycies can then be performed, whereafter
the extrapolation can be applied anew., ¢

This method is available in the program and generally it ef-
fects a very considerable saving of iterations. However, it
is reported by Fischer (1974 , p 2U45) that the extrapolation
may also cause the iterations to diverge. To prevent this
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rroq happening two precautions also mentioned by Fischer have
been taken. The first precaution is not to aprly the extra-
polation on the basis of the results in the first few itera-
tion cycles and the second to set an upper lirit as to the
amount of extrapolation, In no case have I observed that the
Aitken extrapolation using these precautions should cause
divergence, s6 it can probahly be regularly applied.

It is impossible to give any generally valid estimate of the

~flumber of iterations required for convergence since this to
some degree varies from problém to problem, It can be ob-
served, however, that the range of item parameters is of’
critical importance =-- as soon as one or more of the para-
meters assume high values, a larger number of iterations is
required. For those probiems in which the proportions of
correct answers on the items vary betweeh, say, .10 and .90
convergence i's, however, generally obtained within 8-20 ite-
rations. For a test with 40 items, the iter parameters can
thus often be estimated in less than 20 seconds and for a
test with 60 items in a minute or so.

2.2 Estimating person parameters

In estimating the person parameters we could in nrinciple
proceed in a similar way as when estimating the item para-
meters, i.e. through conditioning on item score a conditional .
likelihood function expressed only in the person parameters -
can be developed. It can be shown that the equations to bhe
solved can be written:

k (v)
) Op¥s-1 10} (van, )

i:IYS{(eV)}

(2,2.1) r,

(cf. Fischer, 1974, p, 2U0)

Unfortunately it is an impossible task to compute the syn-
metric. functions in the ev parameters so it is not possible

to solve this system of equatiors,
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.If, however, it is assumed that the number of persons is large

in comparison with the number of items, we can treat the esti-
mates of the item parameters as fixed and estimate the person
parameters under this assumption. We then get the following
sét of equations to solve:

(2.2.2) - ors Z-I-"-—l— (r=1,...,k=1)

We find thaé these equatioins are the same as those appearing
in (2.1.4) for UML estimates of the person parameters, except
that here the subscript v has been changed to the subscript
r, which is possitle since all persons having the same raw
score must get the same estimated ability.

The equations can easily be solved iteratively using the
Newton-Raphson method. In the PMI, program a routine presented
by Fischer (1974, p. 525) is used to do this using the item
parameters resulting under the product normation Te,=1,

Locking more.closely at (2.2.2) we find that in one special

case the equations can be solved explicitly and this is when
all items are of equal difficulty (i.e. all item parameters

are 1). Then (2.2.2) reduces to

kﬁr
(2.203) r= (r=1’o..,k-1)
1+8
r
SO
r
(2.2.“) 9 T e—
r k-r

@
When the range of item parameters is not too great (2.2.4) is
used to compute start values for the itérations. This approxi-
mation of course gets poorer the more the item parameters
vary, so when the difference betwgen the largest and the
smallest item parameter on the log scale is greater than 2.0
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ot another apprcximation presented by Wright & Douglas (1975, p.

» 22) is used to compute start values. This approximation is ha-
o .Sed on an assumption of equally spaced item parameters:

——R

€

(1-exp-!§)expw(§-%)

(‘I (2-205) 0r=
l-exp-w(l—g)

where w= 1°g€max—1°g?min

| <“From the pres®ntation above it is obvious that with this

_ method of estimating person parameters the only thing that in-
fluences the estimates is the distribution of item parameters.
The resulting estimates are known to be slightly biased but

it should be pointed out that oné advantage is gained: as

Soon as the item parameters are in hand, an ability scale - ~
corresponding to the different raw scores is essily construc-
ted (see chapter 5 below).

2.3 The information function and confidence intervals for the

- parameters

It is possible to determine standard errors for the estimates
of the parameters, which are based on the information func-
tion with respect to each parameter. The statistical informa-
tion in the sarple with respect to any parameter 1 is defined
as:

A 2
(2.3.1) 1(n;= B (8108,
81

where A is the likelihood function.

It can easily be shown (see e.g. Fischer, 197h, p, 294 ff)
that the information of item i with respect to the person
parameter gv is:

eXD(EV‘O]- )

(2.3.2) I.( )= 5
: v {1+exp(€v-ci))‘

e 15




The information of a test (It) with respect to the person
parameter £ is the sum of the information of each of the k
items: . ]

k y /
exp(§,-0;) :

(2.3.3) I, (E,)=

_1{1+exp(5v-oi))2

Analogously we get the information in the sample :with respect
to the item parameters {Ip(oi)} to:

n ! 5 -
exp( Ev"oi)

(2.3.4) I (0.)2 -
P2 v_1{1+exp(£v-oi)}2

Confidence intervals for the item parameters

In the theory of ML estimation it is known that the estimates
are asymptotica}ly normally distributed with the standard

error —l. We can thus construct conffdence intervals for the
/T
item parameters in the usual way:

Y S | N Ve ‘
(2.3.5) §;-2, Ip(oi) $0:50.42 Ip(oi) . . 1

where zy is the critical value from the normal distribution.
In most cases the asymptotic properties of these confidence
- intervals should be assured since n is usuallv large:

g

Confidence intervals for the person parameters -
At least when the number of items is larger than, say, 20-30

items, it is fossible to determine useful confidence inter-

vals for the nerson parameters:

(2.3.6) ag T e e <F s /1 ()7
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From the fag¢t that the information function is a function of
ability it is clear that the confidence intervals will be -

- - "different for different person parameters, Thus, in contrast

with the classical psychometric theory, the LT models make no
assumption about homoscedastic standard errors of measureﬁent.
Spme details on how the functions for these standard errors
iook for different tests are presented ig'chapter 5.1,

It must be observed that the standard errors are normally
distributed only when k is large, so only then can these
confidence intervals be trusted. But we have alreédy derived
an expression (2.1.7) for the probability of observing a
certain raw score, given a person parameter and the item
parameters., This expression can of course be used for a
straighﬁforwa;d computation of the probabilities of obser-
'ving each different raw score (including 0 and k) for each
estimated person parameter. Such a matrix of probabilities
is included in the output from the PML program for ks<30.

Some comments on how to interpret confidence-intervals around
person parameters might be in place. Lord and Novick (1968,
p. 511-512) stressed that any confidence statement about
which region a persons ability falls into can be made with
the specified probability only for a randomly chosen person.
We can in fact make no confidence statements "about a parti-
cular, nonrandomly chosen examinee in whom we happen to be-.
intereste&. Nor can any confidence statements be made about
those examinees who have some specified ohbserved score."
(Lord & Novick, 1468, p. 512).

It is a distressing fact that we can have no confidence in
confidence statements relating to specified observed scores;
for a particularly illuminating discussion of the problerns
involved the reader is referred to Cronbach, Gleser, Nanda
and Rajaratnam (1972, p. 132-134),



The index of subject separation

In some caseé-there is a need, when the Rasch model is applied,
to have a counterpart to the coefficient of reliability in the
classicgl theory, i.e. a measure of the accuracy with which

the relative positions of the subjects on the latent trait

can be discriminated. Such a measure has been introduced by
Andrich and Douglas (1977). '

The traditional concept of reliability can be defined: _

@

(2.3.7) Fxxt* ;?——5__
g

where og is the variance of true scores and oi is the vapiénce
of the errors of measurement. From the assumptions that the
observed score x,, can be wfitten xv=§v+e and that true séones
and errors are uncorrelated, it follows that we can also

" write the reliability:

(2.3.8) r z

The measure introduced by Andrich and Douglas (1977), called
the index of subje-* separation (ISS), serves as a counter-
part to the coeffic.ent of reliability in those cases in '
which we can obtain direct estimates of the variance of the
errors. of measurement.

They argued that even though the variance of the errovs of

measurement varies as a function of ability, the average of
n 62

. . Y] €v

the estimated error variances, o_= —
- n

» can be taken as a

5 vz1

reasonable estimate of o in (2.3.8) above, Sinre the
variance of the estimated person parameters (i.e. the

counterpart to oi) is easily computed we have estimates
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of all the quantities in (2.3.8) and can direetly compute
the ISS according to this formula.

This measure tends to give estimates that are highly similar
tobestimateé of the coefficient of reliability with KR
(both measures are given in the ML program) but there
are sometimes differences between them (when the sample is

severly skewed, for example, the ISS tends to be considerably
lower than KR

20 )

20)0

The ISS of course shares with the coerricient.of realibility
the characteristic of being sample specific but it appears
that the ISS has a conceptual advantage.'The coefficient of
reliability can be low for two reasons; either beeause the |
items are heterogenous or because each of the lefels of ahi-
lity is not measured with enough precision because too Tew ‘
items are used. If, however, the ISS is low for a teét fit-
tirtg the Rasch model we can rule out 1tem heterogenelty as a
cause and instead concentrate on getting better estlmates or
each level of ability through adding more items.

\ —
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It has been 6tressoa above thas as a consequence of the
rather strong aSSumptlona underlying ‘the Ra3ch model it is
very important that sound procedures for testlng goodness of
fit are applied. )
Several different procedures for testing goodness of fit to
the Rasch model have been suggested. Here, some methods based
on the CML approach for estimation of item parameters are
presented in detail; one gréphic method for assessing item
fit (Allerup % Sorber, 1377) and two overall numerical tests
(Andersen, 1973b;-Martin-L6f, 1973). There do exist other
more primitive methods for assessing goodness of fit, and
some of these are briefly mentioned first.

Since the item parameters, if the model holds, sﬁould show
no systematic differences if estimatea from different sub-

.. groups of the sampie it is possible to plot such estimates
against each other and look for éystematic dev_.ations (Fischer,
1974, p. 281 ff). Since the standard errors are estimated too
it is also possible to test for each item the difference
betvreen the estimates obtained in any two groups. (Fischer,
1974, p. 2?7-298 and chapter 5.2 below).

Another approach to testing model fit for the Rasch model

has been developed by Mead (1976a, 1976b) and Wright and Mead
(1977). In this method, estimated item and person parameters
are used to predict scores at the item 1eve1 and from the
residuals between observed and predicted sceres. chi~square-
like tests of item fit, person fit and overall fit are deve-
loped. However, these tests have unknown asymptotic distribu-
tions and simulation studies (Mead, 1976b) indicate that even
though the means of the distribution conform to the expected
the variances may depart substantially.
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Before the tests based on the conditional approach mentioned
above are ﬁresented, it should be pointed out that a sound
application of statistihal tests for evéluating goodness of
fit implies much e than the choice of a test statistie -
with known properties. Any inferential method is strongly
dépendent upon the number of observations made: when the
sample is too small even gross departures ffom the model will
be accepted and when the sample is very large even the
slightest deviation will cause us to.reject the model. The
first problem reduces down to one of making enough observa-
tions to obtain a reasonable power in the test. Unfortunately
the power characteristics of the overall tests are unknown -
but some simulation studies of this problem will be presented
below. The problem that since no -model ever holds perfectly
. true all models will be rejected granted that enough observa-
tions are collected has, however, been solved., Martin-L3&f a
\\\ (1974a) nas introduced a measure call redundancy which on an ab-
solute scale gives'a measure of the degree to which the data
deviate from the modél, which' gives a basis for accepting in
some cases the model even though the test statistic yields a
siépificant value. This measure is described below in section
3.3, '

\

There are several other questions relating to strategic apn-
lications of goodness of fit tests, such as trading relation-
ships between assumptions, item selection procedures, cross
validation problems and so on. This type of problems will,
however, be discussed at length in chapter A4,

3.1 Testing item fit

- Before the. overall tests of goodness of fit are presented,
“methods for evaluating goodness of fit at the item level will
be considered. Under the CML approach there exists no statis-
tical test that yields a p-value for the probability of fit
of each item. Instead graphic methods are employed. The dis-
advant.age of the graphic methods is that they involve an
inescapable element of judgement which, especially until

o1




experience has been accumulated may be quite Aifficult. But’l_
the graphic methods have the important advantage that they

* are not so strongly influenced as the inferential methods by
the sample size: thus deviations not detected by a powerless
statistical test may be possible to detect by a graphic method
and' a statistically significant departure from the model may
be judged practically insignificant on the basis of a graphic
test, «

In investigating fit we do not work with the ((avi)) matrix
introduced above on page 21 but reorganize it into the item
by scoregroup frequency matrix of correct answers, (knir)).
in the following way:

Nt

Score group

1 LI ) I‘ p o e k‘l
1 nll o 0w nir ® o nl,k"l sl
Item iing4 n:n nj k-1 54
kinygy Mep  Py,k-1{%k
Ny ... TR, 'ﬂ'mhlhrl
It is obvious that:
k-1
(3.1.1) Y on..:s.
r=-1 ir 1

and recalling that n, is the number of persons with raw score
r we see that:
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k
(3.1.2) Z n;.s rn,
1s1

»
-

The observed pfoportion of correct answers to item i within
score group r is nir/nr' We can also compute the predicted

proportion of corrects answers to item i for score group r.
The conditional probability that a person with raw score r
ansvwers' item i correctly is the number of answers vectors in
which item i is answered correctly divided by the total num-
ber of possible answer vectors which add up to r, i.e.:

(1)

- - - €i¥p-1
(3.1.3) P{Avi-llr,(si)}_ L -
r

Thus, if the model holds true for the data the relation

(1)
(3.1.1‘) nil"geiY!"'l

np Yr

. o
should hold for all score groups. If we, for a fixed item,

plot the observed proportion against the predicted proportion
the points should fall along a straight line with a slope of
unity. As a function of sampling error the points will of
course be spread around the line with unit slope, thus syste-
matic deviations from the predicted proportions along diffe-
rent regions of the gbtscissa is what is to be looked for,

In the PML program this grabhic test is produced as one prin-
ter plot for each item with each plot requiring about 1 se-
cond of CPU time on the IBM 360/65. Each piot uses one page
(or,to be more exact,54 lines)of printed output.

Even though no statistical test yielding p-valyes for the fit
. of each item has as yet been found within the conditional
approach it is possible to compute for each score group the
probability that an observed frequency of correct answers
deviates from what would be expected on the basis of the mo-
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del. Under the .null hypothesis of.model fit the n;, should -

be distributed binomially B(qy, "ri)' A two sided test can

S

thus be performed such that when "if‘"r"ri‘the pfobability of

observing nsp or fewer correct answers is cemputed and when

>
nirnﬂ'

rfri the probability of obtaining n,

p OF more correct,

answers is computed, in both cases under the assumption that
the null hypothesis holds true. '

These tests, too, are available in the PML program but it
should be pointed out that the power of these tests is lower
tharr the "power" of the graphic test in the sense that syste-~
matic deviations from the model which can be detected with .
the graphic test are often not detected with the binomia}l
test.

A slightly different version of the binomial test has been
presented by Allerup and Jorber (1977) and for computing the
cumulative binomial probability distribution a subroutine
written be these authors is used.’

}.2’Overa11 tests of goodness of fit

-

It has been shown by Rasch (1960) that it is nossible to de-
vise a test of the mddel whicp is completely free from esti-
mated parameters. This test, which is a generalization of the
Fisher exact test fop a 2x? matrix, is, however, so computa-
tionally cumbersome that it is impossible to put it into
practical use.

Thus methods based on estimated item parameters have to be
used. This, however, is no great sacrifice since it has been
shown by Martin-L8f (1973, 1974b) that certain tests based on
ML-estimates are parametric counterparts to generalizat.ons
of the Fischer exact test.

There do exist two overall numerical tests of goodness of fit
for the Rasch model which are both asymptotically chi-square
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distributed. Ofe is a conditional fikelihood ratip test inde-
pepdently suggested by Martin~L8f (1973) and Andersen (1973b).
Since this test has come to be called the Andersen test the
same label will be used Qere. The other test is a chi-sguare
test ¥omputed from a quadratic form suggested by Martin-I8f
(1973). This test will be referred to as the Martin-L&f teSt;

The Andersen conditional likelihood ratio test

Likelihood ratio tests are intimately associated with ML es-
timation and stated verbally in simple terms the generai
principle of such tests is to compare values of the likelihood
function resultiﬁg from parameters estimated under competing
hypotheses. '

)
The logarithm of the conditional likelihood function was de-
rived as formula (2.1.11) above and we repeat it here:

k k=1 ,
(3.2.1) . logA= Z s:loge. - Z n_logy
io1 i i r r

After having estimated the item parameters for the total
'sample we can insert the estimated parameter values in (3.2.1)
to get the maximu?/va]ue of the logarithm of the likelihood

function. We callVlthe resulting value H

£
‘'Under the null hypothesis of model fit we should expect
essentially the same estimated values of the item parameters
whichever subgroup in the sample the estimates are based upon.
In.the limit we can estimate the item parameters whithin each
of the k-1 score groups and still expect the same estimates
(within the limits of stochastic variation, of course), If we
compute the value of the logarithm of the likelihood function
for each of the score groups and call these H, (r=1,...,k=-1)
we can form the statistic:

k-1 i

(3.2.2) Togh= H, - Y H
N r=1
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It can be shown that -21og)l is asymptotically chi-square dist-
ributed when each n,*= with (k-1)(k-2) degrees of freedom.

This particular form of‘the test can, however, seldom be used.
Only rarely is the sample size so large that sufficently
stable estimates can be obtained within each score group and
when there are differences among the item difficulties the
simple items tend to be answered correctly by all persons in
the higher score groups and the difficult items tend to be
answered correctly by no person in the lower score groupé,
under which conditions it is not possible to estimate the
parameters,

However, Andersen (1973b) has shown that the test can be com-
puted also when adjacent séore groups are pooled. Thus, if we
pool the k-1 score groups into g disjoint groups we can esti-
mate the parameters within each group, compute the Hj(j=1,...,g)
and form the statistic:

.o

. g
(3.2.3) logh= H. - 2, H.
. t J_=1 J

Here too -2logA is asymptotically chi-square distributed when
. ng——, now with (g-1)(k~1) degrees of freedom,

This test is available in the PML program with an automatic
grouping of the score groups. The grouping is carried out un-
.der the constraints that there must be a minimum number (m)

of examinees within each group (this number can be specified,
with the default taken to be m=100) and that there must be no -

zero or perfect item scores within any group. “

AN
The grouping process may fail either as a consequence of ‘
choice of too high 2 value of m or as a ¢onsequence of there N
being items answered correctly by 2ll or no e .aminees in most
of the score groups (or as a consequence of a combination of

these two problems). The first problem can of course be easi-

\ ly solved through the choice of a lower m but the second prob- ‘
lem can only be solved if those items causing the disturbance |
are excluded.
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The amount «0f computer time required for computing the test
depends upon three factors: the number of items in the test,
the number of groups in which the parameters are estimated

and the number of iterations required for convergence within
each of the groups. There are two reasons for which it is v
necessary to choice an m so large that the grouping results

in only a few groups when k is large. The first reason is

that it may be quite time consuming just to estimate the item
parameters within the total group when the test consists of
many items; if this is to be repeated for a large number of
subgroups as‘well, the costs may become prohibitive. The Se-
cond reason is that a large number of iterations is often
required in groups composed of just the highest score groups.
The reason for this is that the proportion of correct ans&e;kg“
on the easiest item tends to be very high in these groups‘in

~ which case the convergence is slow,

-~
Thus, before testing goodness of fit of a long test it is

strongly recommended that the ((nir)) matric be inspected for

a suitable choice of m, In fact, for very long tests it may
even be impossible under a strict budget for computer time to
apply this test for overall goodness of fit. It should be
pointed out, however, that in the first steps of an item se-
lection procedure ‘with the purpose of constructing a undi-
mensional test conforming to the Rasch model, the graphic
tests give all the information needed. Only when the final
test is to be composed of very many items may an overall test
be required. In such a case, however, there is the possibility
of constrdcting the test in parts and then testing whether
the rarts can be fitted together into one long test, using
the procedure described in chapter 5.2 below.‘\

It is also possible to compute the conditional likelihood
ratio test for the equality of item parameters hetween sub-
groups defined in other ways than through differing raw
scores. Each analysis with the PML program namely results in
the value of the maximum of the logarithm of the likelihood
function being printed, and these values can be used for
simple hand calculations. Thus, if separate analyses are

made within each disjoint subgroup (boys and girls, for
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example) and one analysis is made with all groups merged into
one, all ingredients necessary for computing the test statis-

‘. tic (3.2.3) are at Hand and only a few arithmetic operations
are required. (For an example see chapter 4,2 below).

The Martin-L6f chi-square .test .

Martin-L8f (1973) has suggested an alternative test for asses-
sing overall goodness of fit to the Rasch model in which a
chi-square sum is built up from deviations between observed
and predicted frequencies of corrects answers within each
score group. /

From (3.1.4) above follows that if the model holds true:

(i)
Np€iv¥raa

Yr

(3.2.3) ’ nir=

If we label the vector |. =(qr) and call the corresponding

]

\
(1)
nreer~1

vector of predicted frequencies)|. =(tr) the test statis-

tie can be written:

k-1

(3.2.4) T= 2 {(a)-(t )} (V)Y H(a)-(t )}
r=1
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‘in which quadratic form ((Vr)) is a variance=- covariance

matrix of order kxk with elements defined as follows:

ne (i) ¥
r€i¥r-1 in the Jiagonal
Yp
~(3.2.5)
w (i,3)
Np€i€i¥p-2 for i#j
L

Martin-L8f (1973) has shown that the test statistic is asymp-
totically chi-square distributed with (k-1)(k-2) degrees of

freedom when each np+e.

In (3.2.4) the summation is made over all score groups. If,

however, some nr=0 we have to restrict the summation to those

R groups in which nr>0. The degrees of freedom then are
(k=1)(R-1). ‘

This test requires computation of the second derivatives of
the symmetric functions, ((YiiéJ))). In the PML program this
is effected with the Summation algorithm, through repeated
calls to this routine with the parameter values for two items

at a time put equal to zero,

From (3.2.4) it is seen that at any.sten in the computations

» » \"
ﬁféJ))) of one order (i.e., for one score group)

are required. With the Summation algorithm, howvever, the' de-

only the ((y

rivatives for all the score groups are obtained, which makes
it necessary first to compute the off-diagonal values in the
variance-covariance matrices for all the score groups and

store these. Since the total number of off-diagonal elements

in the variance-covariance matrices is given by the formula

k(k-1)2/2 it is easily seen that a vast amount of storage
space is needed when the number of items is large. For
example, when k=60 B16K bytes would be necessary to st ore

59




-

these elements as REAL#8 numbers.

For larger problems as sequential scratch-file is thus used
to store the elements. Since it would be rather time consu-
ming to read this file as many times as there are score
groups, an array is used in which the information for several
score groups"is stored. The number of matrices which can be
stored in this array depends upon how large it 'is; it must,
however, be dimensioned at legst for k(k-1) elements and the
larger it is the better. Both in this array and on the scratch
file the second derivatives.are stored as single precision
numbers even though the precision used'in the computations is
dependent upon whether single~ or double~precision arithmetic
is chosen.

When the number of items is large the Martin-L5f test tends
to be quite time consuming to compute; not only must the
second derivatives be computed but the test requires inver-
sion of (at wobst) k-1 matrices of the-order kxk as well.
For example, for k=60 and with all n,>C the test requires

about 7 minutes of CPU-time on the IBM 360/65. When the num-
ber of items is mode-ately large, however, the amount of com-
puter time required is no obstacle against using the test.
For k=40 somewhat more than a minute is required and when
k=20 the test is computed in less than 20 seconds. In most
cases when the number of items is moderate this test is fas-
ter to compute than the Andersen test. o

The Martin-LOf test vs the Andersen test

Both the overall numerical tests are asymptotically chi-
square distributed (they are in fact related through a Taylor
expansion), but there may be differences in the power charac-
teristics of the tests and as well as in their asymptotic pro-
perties. It should also be noted that while the computation

of the Andersen test may fail at times, especially when the
sample is small, the computation of the Martin-18f test al-
most never fails. But even though'the Martin-18f test can al-
most always be computed this does no‘ imply that the results
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’ of the test can always be trusted; when a small sample is

used and the number of items is large, quite a few score
groups will necessarily consist of only a few persons.with’
the consequence that the test statistic may be far. from chi-
square distributed. In order to cast at least some light on
the characteristics of the two overall goodness of fit tests

/" some simulation studies have been performed.

/
K*’“ To obtain some information about the difference in the be-
havior of these tests for smaller sample sizes, data were ge-

. nerated so that they would conform to the model, For genera-
ting the scores, a modified version of the routine presented
by Allerup and Sorber (1977) was used, with a version of the
the feedback shift register random number generator (Lewis &
Payne, 1973) as the basic generatorl). (It should be pointed
out parenthetically that great demands are put on the basic
random number generator in these simulations since the tests,.
and especially the graphic tests, are sc sensitive as to be
able to pinpoint generators with less than optimal qualities).
Data were generated only for k=15 with the size of the item
parameters chosen to vary in-equal steps between -2 and 2
with the person parameters rgndomly sampled from a normal

Jistribution with zero mean and'unit-§tandard deviation.

Data were'generated for two sample sizes, n=150 and n=300,
each with 50 replications. The number of observed p~values
less than .05 0105) and the means of the p-values (fp) for

these analyses are presented in Table 3,1.

1) I wish to thank Dr. Philip Ramsey at Hofstra University

for putting into my hands an easy-to-use version of this
excellent random number generator.
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Table 3.1. Results, from the two overall goodness of fit tests

" for data generated to fit the model.
’

Sample size

150 300

N o5 X5 " o5 Xp
The Martin-L8f test 5 .57 7 - 47
The Andersen test 3 .48 2 g

With 50 replications we should not expect more than 2 or 3
significancies at the 5 per cent level, and this is also what
is found for the Andersen test (in all replications two groups
were used in computing the Andersen test). But we also find
that the Martin-I1S8f test discards the model at too high a rate
for boﬁh the sample sizes,

Y - The reason for the difference between the tests is quite ob-
vious when a look is taken at how they are computed. In the
Martin-L8f test all score groups are treated regardless of

their size (except when nr=0) while in the Andersen test small

cfcore groups are pooled to form larger groups. In the present
simulations there were of course score groups which contained
only one or a few persons.

In the presentation of the results from the Martin-L8f test in
the PML program all the indepegdent contributions to the chi-
square sum from each score grour are, however, printed out
and it was noted that in all the cases when this test resul-
ted in a highly significant chi-square sum a very large part
was contributed by one or two score groups consisting of only
a few persons. It is thus strongly recommended that when this
test is applied in situations where the sample is small rela-
tive to the number of items, the contributiors fror the srmall
score groups are investigated, and that the results of this
test are put aside as soon as there is a large contribution
from any score group consisting of less than, say, 10 persons.
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In investigating the power of the tests.sets of data were ge-
nerated under the two-parameter model, with varying values of
the discrimination parameter for the items. As previosly, on~

ly the case with k=15 was considered, with the item parame- .
ters taken to be three each with the values -2,-1,0,1 and 2
and the person parameters chosen in the same way as above.
Data were generated to reflect three degrees of deviation
from the one-parameter: small, with one third of the parame-
ters 0.9, one third 1.0 and one third 1.1; moderate, with the
discrimination parameters chosen to be 0.7, 1.0 and 1.3; and
finally large, with the corresponding, disecrimination® parame-
ters chosen as 0.5, 1.0 and 1.5. In all cases the three °*-
discrimination parameters were represented®t all the five
levels of item difficulty.

v
[}

Three different sample sizes were used; 150, 300 and 1 000

and 10 replications were made. The results are presented in

Table 3.2. _

Table 3.2. Results from the two overall tests for data gene-
rated to deviate from the . 13

Amount of deviation

Small Moderate Large
— TJ -—— ., -—
N.os *p 05 % Nos %
n=150
The Martin~18f test 2 L1 3 .36 5 .15
The Andersen test 1 b2 210 o7 82 o
n=300
"The Martin-18f test 0 .66 ] .20 7 .07
The Andersen test 0 Ju7 6 .10 10 L0N
n=1 000.
The Martin-1d8f test 0 .50 9 .01 10 W00

The Andersen test 1 .3l 10 .00 10 .00

1) The Andersen test could be computed in only 9 cases.

2) The Andersen test could be computed in only 8 cases.

63




L3

We find that when there are only small deviations -from the -
one-~parameter model there is no possibility with the sample
sizes used here to detect any deviation from the model (it
will be shown below that even though highly significant va-
lues‘of the test statistics are obtained when the sample size
is heavily increased there would still be reason to accept
the model with this amount of deviation in the data).

With large deviations from the model we find that the Ander-
sen test in all successful analyses,for all the sample sizes,
discards the model, while the Martin-I6f test discards the
model only for the sample size 1 000 in all analyses. At
least for deviations‘from the model causcd by varying
discrimination among the items the power of the Andersen

test thus appears to be greater than the power of the %értin-
L6f test. N

For the intermediate case with medium deviations we do find
indications, too, that the Andersen test is more powerful
than the Martin-L8f test but it can also be noted that orly
for the largest sample does the former test consistently dis-
card the model.

Even though these s%mulations are merely some examples it does
seem as if the conclusion can be drawn that the likelihood
ratio test has somewhat better properties than the chi-square
test both with respect to the number of observations needed

to claim that the test has the assumed distribution and with
respect to power,

3.3 Redundancy

No model is ever completely true in describing a set of data,
which means that with a sufficient number of ohservations
~any goodness of fit test would discard the nodel, In discus-

sing this problem Martin-L3f (1974a) stated:

"This indicates that for large sets of data it i5 ton

destructive to let an ordinary significance test decide
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whether or not to accept a proposed statistical model,
because, with few exceptions, we kinow that we shall have
to reject it even without looking at the data simply be-
cause the number of observations is so large. In such
cases we need instead a quantitative measure of the size
of the discrepancy between the statistical model and the
observed set of data... " (p. 3).

Martin-L8f derived such a measure called redundancy (R) from
concepvs in the statistical information theory, which on an
absolute scale measures the deviation between a statistical
model and a set of data. The redundancy exists in two forms:
the micro-canonical redundancy corresponding to non-parametric
formulations of the test and the canonical redundancy corre-
sponding to parametric formulations. The canonical redundancy,
which is of course the only one that is accesible in tests of
the Rasch model, should be regarded as an approximation to the
microcanonical redundancy and both can be given the same interf

pretation: - -

"it is the relative decrease in the number of binary
units needed to specify the given set of data when we
take into account the regularities that we detect by
means of the exact test"(Martin-I&f, 1974, p. 10).

Sir.ce the measure reflects a relative decrease it assumes va-
lues between C and 1 and low values indicate a good fit
between the model and the data.

The canonical redundancy can easily be computed from the
likelihood ratio quotients (3.2.2) or (3.2.3) above together
with the maximum of the logarithm of the likelihood function
(3.2.1):

(3.3.1)




It is also possible to compute R from the Martin-L8f chi-square
test, which gives an approximation for R in the formula ahove:

(30302) R:--——-—-—

Since the scale upon which R is expressed is in a sense abso-
lute it is possible to use case studies for calibraéing it.

Martin-L8f (1974a)computed the values of R for different va-
| lues of the binomial probability p with respect to the hypo-
thesis p=.5, with the results presented below:

p R Fit
.000 1.000 1. Worst possible
.216 .684 .1 Very bad
R .559 .01 . Bad
482 .518 ~.001 Good
Lu9l .506 .0001 Very good

It might be of some interest to compare this calibration of
the redundancy scale with the results which can be observed
for R when very large sets of data with known deviations
from the model are generated. Data have thus heen generated
under the two-parameter model with different values of the
discrimination parameter for the items. In all analyses 15
items were used with the same 5 levels of difficulty para-
meters as in the simulations investigating power presented
above. The sample size was 50 000 persons (N(0,1)) and three
different discrimination parameters all represented at all
levels of difficulty were used.*~

Discrimination
Case parameters The Andersen test The Martin-L3f test

x°  df R ¥  df R

1.00 1.00 1,00 185.2 1&2 .0003 188.0 182 .0003
.95 1.00 1.05 247.8 168 .0005 254.2 182 .0005
.90 1.00 1.10 A455.4 154 .0008 L94,7 182 .0009
.85 1.00 1.15 933,2 182 .0017 933.6 182 .0017
.80 1.00 1.20 1504.7 182 .0028 1498.7 182 .0028

(S, I — R G A
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.In case 1, uéing data fitting the model, we find non-signifi-
cant values o' the test statistics and the redundancy indica-
tes a "very gond” fit. In all the other cases the statistical
tests are very highly significant but at least for some of
their the value of R is low enough to indicate an acceptable
fit, )

For case 2’tq§ value of R is .0005, which on the scale
established by Martin-L8f corresponds to a fit that is "good"
to "very good". The graphic and binomial tests of the items
. in this analysis showed no signs of systematic deviations
from the model and would thus have been useless to improve
the fit. (ilad a plotting method yielding greater accuracy
been used, such as the one in the Allerup & Sorber, 1977,
program it might of course have been possible).
For case 3 the valus of R indicate a "good" fit. Here, how-
ever, the graphic tests could be used to identify all the
" deviating items. Here there is thus a choice of whether to
improve the fit through selecting items, or to accept the
fit as satisfactory.

-
The other cases all gshow a fit which is worse than "good"
and in all these analyses boththe graphic and the binomial
tests could clearly be used to identify the deviating items,

The results obtained in case 2 show that ié is possible to
observe a highly significant deviation from the mbdel with an
inferential test while at the same time. it is impossible to find
‘any deviations with descriptive methods. If in such a case the
redundancy 1is suffiently low, less than .001 say, we have a
good basis for agcepting the model in spite of the significant
test statistic. )

If the redundancy is low and it is possible to ﬁse the results
from the graphic tests to improve the fit we have the choire
of doing so or to accept the model as showing a pmood fit &
the data. In making this decision it does seem necessary to
invoke other than statistical criteria, such as content, rela-
ted considerations. ‘
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In order to prevent any misunderstanding to occur it should o
finally be pointed out that the redundanecy statistic is of
any interest only when the number of observations is large; a
high redundancy observed for a smaller 'sample is not necessa- .

rily a sign of a poor fit.
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Chapter &

R

CONSTRUCTING RASCH SCALES

’

It has repeatedly been stressed that the Rasch model is the
LT model which entails the strongest assumptions, and even
though no model is ever wholly valid for describing a set of
data, serious deviations from the assumptions will iﬁvalidate
most attempts to capitalize on the great potentialities for
applications in the model. Thus, whatever eventual applica-
tion is'intended, one inevitable first step is to make sure
that the data do show a reasonable fit to the model, and if
they don”“t, take the necessary precautions to make sure that
they do.

In the introduction it was mentioned that the Rasch model has
already been applied to some extent and surely’game experience
has accumulated as to possible sources of threats to the model.

.But it must also be stressed that in the applications carried

out on the European continent as well as.in North America the
problems of testing goodness of fit have been taken rather
lightly, which is almost surely a consequence of the fact
that the procedures employed for testing goodness of\fit have
less .than optimal properties. In fast, there are very few
studies where the test procedures developed on the basis of
the conditional approach have been used for other than
illustrative purposes.

-

~

In this context neither will it be possible to present much
more than illustrations of applications but the important
point to note is that there is still much research to be
carried out on the sources of deviations from the model and
how to remedy tnem.

Before the possible sources of deviations from the model are
discussed, analyses of two tests of PMA-type (Primary Mental
Abilities), develop within the framework of classical test
theory will be presented.
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4,1 Aﬁalyses of two tests of PMA-type

[}
The two gvests po be analyzed are Number Series and Oppogites '

constructed to measure inductive (or non-verbal reasoning)and
verbal ability respectively. The tests were constructed by
Svensson (1964 1971) and the thy reason for chosing these

\ ' » »
tests was simple access to data which consist of a sample of

566 fifth-graders (see Gustafssor, 1976, for a detailed

. account of why and how the data were collected).

Each of the 40 items in Number Series consist of a series of
six numbers and the task is to add the two following numbers.
The time limit of the test is 18 minutes.

In Opposites, which test also consists of 40 items, the task
is to select from among four given words the one which is the
opposite of a given word. This test too is timed, with the
1imit being 10 minutes

Oppasites is thus a multiple-choice test which allows guessing
and can for this reason alone be supposed to show a poor fit
o the model. But it is of course of some interest to inves-
tigate in what ways this kind of violation of model assump-

tions expresses itself in the model tests. Number Series, in

contrast, requires constructed responses which means at least
that guessing is minimized as a source of deviation from the
model. Rasch (1960) who also investigatec¢ the fit of some
previously existing tests to the model in fact found, with
graphic methodé, a good fit .for a test highly similar to
Number Series. |

Number Series

With a sample of 566 persons and a test with 40 items it is
obvious that quite a few score groups will be very small; an
attempt was thus made to use the Andersen test to investigate
the overall fit of the test, This test could, however, not he
computed for the original set of items since easy items were

solved by all persons in almost all the score groups, excep-

ting only some of the lowest while two of the most difficult

.’;,’ O




items were solved only by a few persons in some of the highest
score groﬁps. When the five easiest and the twe most difficult
items were excluded, however, the score groups could success-
fully \be grouped into four groups, with the value of the test
statistilg¢ being 349.2 with 96 degrees of freedom, which is of
course hiéh%y significant.

%
Thus, if we hade hoped to find a good fit for the Number Se-
ries test to the Rasch model, there is reason for disappoint-~
ment. But on the other hand it will be instructive to find out
fhe reasons for the poor fit of this test.

Several factors may, singly or in combination, be responsible
for the poor fit: item heterogeneity, speededness of the test,
learning effects from one item to another, varying item

discriminations, just to mention a few. In searching for the

. 4 . L. . . . . .
" cause or causes to the deviations, the information whieh is of

most help is the graphic test of each item, along with, of
course, the content of each item and every piece of informa-

tion about tne testing situation which can be found.

The items in the test have been analyzed and the recursive
formulas defining the series have been determined. These
algoritﬁms are presented in Table 4.1 along with the propor-
tions of correct answers and rough summaries of the graphic
tests in which for the lower and the higher score groups

+ and - signs have been used to indicate whether the observed
proportion of correct answers is higher or lower than the
predicted proportion. - '

/l
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Table 4.1. The recursive formula defining the items in the

Number Series test.

\
Item Prop. Algorithm gzgre Zig:e
corr, RIS groups groups
2 .97 a g%l a;=1, a,=1
3 .98 a -1 a,=9
4 .98 C a;=1, a,=4
5 97 a -2 a1=18
6 .93 a_ +2 a =3
7 .91 an-3 alzéu -
8 . 87 a -l a,=29 £
9 .85 a +7 a,=10 . + -
N
10 77 a -7 a,=51 + -
11 .63 a__ 42 a =2, n=1,3,5...
a 1 5 ay=2 MN=2,4,6 + -
1? .56 an-2 a1=2
13 6T a _1+3 a;="7, a2=8“ - -
4 .57 a__q*5 2,75, a,=7 - -
15 .6l an_1+1 a,=11, a2:8 -
16 54 a .2 a,=5 -
17 50 a +n-1 a1=2 -
18 51 an_l—u ' a,=22, a,=21
19 U6 a_#n+2 a1=3
' 20 . L9 an_l-s a1=19, a2=17
21 .43 a2 a,=3 -
22 U1 an_l—l a1=]2, a2=13 -
23 .41 a -10+n a,=43 -
'2“ .45 a,_.1*9 a1=5, a,=11 - +
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Table 4,1 Continued
Item Prop. Algorithm Low High
corr. qn+1® Zggzgs Z;gzgs

'25 .28 an+2(n-1) a,=5 + -
26 .35 B2 a1=3U, a,=29 -
27 .31 ' a__,*3 a =17, a,:15 - ’ '
28 .40 ff a _q'2 a,=6, 52:12 - +
29 35 a /2 a;2128,a,:64 - +
30 .25 n-2-5 a1=20, a2=18,a3=16 - +
31 .28 # a _1+2, a,=1, a,: - +
32 .29 an_2+5 al=1,.a2=3, a3=5
33 .32 ’an_l+1 a =1, n=1,3,5

Lan_l-l ay=2, n=é,u,6
3,20 2 +1 n=2,5,8... a;=1

an_l+l n=4,7,10... +

L9 n=3,6,9...
35 .13 an_2+16 a,=13, a2=15,a3=22 - +
36 .17 a_q+2 ay=1, a,22, a,=3 +
37 .09 a_5+2 a,=3 n=4,7,10..,

an+l n=2,5,8...

a _,*a \ n=3,6,9... +

Looking at the pattern of deviations from the model as evi-
denced by the g.aphic tests we find that for most of the

items late in the .test the cbserved proportion is too high
for the higher score groups and too low for the lower score
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discrimination parameter such a pattern of results would be
found, but there are other explanations as well of which
speededness of the test appears to be most reasonable. For
the items with order ' umbers around 30 almost half the sample
did in fact not attempt any answer, correct or incorrect,
which is a strong indication that a large proportion of the
sample did not even attempt to solve the items appearing la-
ter in the test., Additional evidence in favor of this inter-
pretation is obtained from the algorithms for the items. The
recursive formula for items 27 and 31 are in fact essentially
the same as those for items 13 to 15, for example, and still
the items appearing early have proportions of correct answers
which are almost twice as large as those for the items appea-
ring later in the test. This must be regarded as a very
strong indication that the test is speeded-in the sense %hat,
if given additional time, some persons would get additional
items correct (or for that matter, that there may he some
other reason, such as boredom, accounting for why some of

the examinees did not attempt the items later in the test).

If speededness or some other factor with equivalent effects,
is the only reason for the poor fit of the whole test, we
should expect a good fit for items placed early in the tést.
Since omitted responses were coded in a special way it has
been possible to determine the proportion of omitted respon-
ses for each item and this proportion was found to be fairly
low, never exceeding 20%, for item 22 and earlier items,

while there was a rather rapid increase in the proportion of

omitted responses for the items from number 23 to the end of -

the test.

A new analysis was thus performed including only items 2-22.
This analysis too resulted in a highly significant xz-value
of 57.6 with 20 degrees of freedom (the Andersen test.with
the score groups grouped into two groups). Again the graphie
tests of tne items were rescrted to and these indicated 3
poor fit for items 9, 10 and 11, with the fit being worst
for item 11. For the higher score groups there was for this

item a too low observed proportion of correct answers and for

[y
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the lower score_éféabénéhe observed proportion was to high,
Just a glance at the recursive formula for this item (see
Table U.1) is sufficient to show that it deviates from those
for the other items early in the test in that it defines two
intertvined series defined by different rules..Obviously this
item measures at least partly an ability which is different
from the ability measured by the other items in the early
part of the test,

The granhic tests for items 9 and 10 gave a pattern very much
like that found for item 11, but less pronounced. The algo-

1
rithms for these two items are the same as for those four items
\

immediately preceeding them. What obviously makes items 9 and
10 more difficult and also showing a poor fit is that they
pose requirements for arithmetical ability: they requige com-
putation of expressions like 45-38, which is a task which
pupils in the fifth grade have a high probability of failing
(Kilvorn & Johanson, 1376. It can parentheti;ally be men-
tioned that when the second author above was asked to identi-
fy those items in the early part of the test posing exceptio-
nal demands for arithmetic skill, items 9 and 10 were clearly
identified and a few more with some doubt). Thus we can draw
the conclusion that the reason why items 9 and 10 do not fit
together with the other items is multidimensionality of the
latent space, i.e. performance on these items is affected by
arithmetical skill in addition to the ability measured by the
other items.

A new analysis was ‘performed in which these three items were
excluded with the result that “he Andersen test gave x2=28.4
with 17 degrees of freedom, with a corresponding p-value of
.04, which will here quite arbdtrarily be regarded an accep-
table fit.

In passing it can be mentioned that the Martin-L8f test for
the same items resulted in a very highly significant value

of the test statistic (x2=763.3; df=272). A very large part
of the x2-sum (457.6) was, however, contributed by score

group 2, consisting of one single examinee who had answered

_~items 15 and 20 correctly. The results from this test must
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thus obviously be set aside (ef page 55 above). .

Even though the overall test indicates that an acceptable fit
was finally obtained, the graphic tests could be used t
lect a still more hornogenous item set or perhaps severa

and descending series gave slightly different results. How :
since we in this case are restricted to a very limited sgf\of"
items there is but 1little to be gained from pursuing such ara-

'a lyses. - <

In conclusion, we have thus learned that unless a reasonable
number of examinees have attempted the items and unless in-
fluence from other abilities is not controlled for, the data
will not fit the model. But it should also be pointed out that
we have made a heavy selecfion among the items and have thus
to some degree canitalized on chance effects. Thus, the fit

of a set of items selected from a larger pool on the basis of
the results in one sample should be tested in another sample,
for purposes of crossvalidation.

Opposites

Analysis of the items in Opposites with the Andersen test re-
sulted in x°=333.4 with 117 df, which is of course highly
significant. ’
Tabtle 4.2 presents gross summaries of the graphic tests of
the items (the first two items have been excinded since they
were answered correctly by almost all persons; thus little
information is gained by keeping them, but as soon they are
included in an analysis a large number of iterations is re-
quired for convergence). As before the method of marking too
high and too low observed proportions of correct answers for
lower and higher score groups with + and - signs has been
used. When looking at the pattern of signs it should, however,
be kept in mind that they represent a very simplified descrip-
tion, there sometimes being important df?férqgoes between-zBB\\
plots for items with the same pattern of signs.
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T 7 Table #72  Summary “of the graphic testsof the -items-4m—-——— — ——oI
] Opposites, )
Item Prop. Score groups Item Prop. Score groups
corr Low high corr. low high
3 .98 22 .60 - +
4 .97 23 .51 - +
5 .89 - + 24 37 + -
6 .90 . + 25 . u4 - -
7 .71 26 .31 + -
) 8 .71 - + 27 .32 + -
9 .75 - + 28 .19
10 .80 - + 29 .39
11 .58 30 .39 + - .
12 .69 - + 31 .16 + -
13 .72 - + 32 .33
14 .69 - + 33 .25 + -
15 .66 - 34 27 + - -
16 .56 35 .22 - +
17 .60 36 .19 + -
18 A7 - + 37 .22 - +
19 .69 + - 38 .11 - +
20 .53 N + 39 .25 + -
21 .38 e no 22 + - ’
Nevertheless the deviations form quite a clear ﬂatt;rn: for

the items late in the test \which are also the more difficult
ones, there tends to be a too®igh observed proportion of cor-
rect answers for the lower score groups and a too low propor-’
tion for the higher score groups, while the reverse pattern :
of deviations is found for the easier items. This is exactly
the pattern to be expected.when a test permits guessing: on
the difficult items the examinees with low ability will get

¢ scores which are too high by guessing, with the consequence
that their ability is overestimated which in turn implies that
on the easier items where the.proportion of the sample which
guesses is smaller, the low abilitv ex&minees will appear to
perform too poorly. . ¢
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What is perpgggmgggg"}ppgrgsq;pg than this general nattern is

that there, nevertheless, are items which do not conform to
it: Some of the most difficult items do not appear to be af-
fected by random guessing and there are in fact a few items
(35,37 and 38) with a very low proportion correct (lower ac-
tually than would be expected if all the examinees guessed
randomly) on which the - + rather than the + - nattern is ob~
served. It may be inte&ing ‘to take a closer look at these
items which are "good" items in the sense that if it were
possible to estimate the discrimination parameters, this
parameter would/be found to be high for these items.

The three items are presented in Table 4,3 together with the
percentage of subjects marking each alternative.

!

‘Table 4.3. Three difficult, highly discrininating items in

Opposites.
Choices
y Item Stem 1 2 3 4 No
. resp
35 \ Peolhardy Cantiews(22) Attentive(35) | Foolish(18) Daring(16) (9)
37  )sagaiticaat Unclear(Is) Unimportant(22) Despised(13) Meaninglass(41) (10)

Asple  Peor(63) Ispoverished(9) Magnifioent(8)  Scanty(11) (9)

+

What is especially striking, particularly for items 37 and
38, is the high percentage of examinees marking one of the
distractors. If the content of the items is looked at, it
does become c.vious, however, why one of the incorrect alter-
natives is so attractive. In item 37 the majority of the
examinees have chosen "meaningless" - the opﬁosite ot "sig-
nificant". I suspect that even in English this distractor
would be quite attractive, but it must rLe so to an even
higher degree in Swedish sincethe Swedish counterpart of
significant can be literally translated as "meaningful".

.Obviously, many of the examinees, not knowing the exact

meaning of the words, were fooled by their literal appearan-

ces to chooSe this particular distractor.
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The same explanation holds true for item 38, even though this

~ (is here less clear from the transiation into English. The 1li-

teral translation from Swedish into English of ample is, how-
ever, "richlike" which makes it understandable why more than
60 per cent of the sample chose "poor" as the opposite to
ample,

These examples provide an explanation of why some mhltiple
choice items don“t show evidence of any guessing effects:

if one (or more) of the distractors is so attractive that al-
most all of those who don“t know the correct answer chose it,
of course little or no random guessing will take place (cf.

. Lord, 1974a and page 8 above). From this, it follows that it
is at: least in principle possible to construct multiple choiee
tests where guessing will only to a small degree be another
factor affecting performance. Whether it is possible to con-
struct such a multiple-choice test in practice is of course
more doubtful, and is probably not worth the attempt.

We will now embark on an excersise intended to serve above
all as a warning: The usual practice in item screening to
obtain fit to the model is to try out a larger set of items
on a sample and select those that appear to fit the model.

We will investigate whether this is possible here, in which
case we kﬁow that such a procedure can yield only essentially
meaniqgless results as a consequence of the faect that all the
items‘are of multiple choice type and thus are influenced by
guessing.

There are essentially three types of items to be found in
Table 4.2: those with no signs marked, those with the + -
pattern and those with the - + pattern, corresponding to i-
tems with intermediate, low and high discrimination, respec-
tivelv (the items will be referred to as MD, I.D and HD items).
It ¢ 1d be argued that those items without any signs marked
are se that chould be selected since they Ao not show ~nrv
deviation from the model. Not much thcught is required, how-
ever, to detect that this is iﬁcorréct: items do not show

fit or lack of fit to the mocdel in themselves, the model
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assumption instead says that the items should be homogeneous,
i.e. that each item should fit together with the other items.

This implies that if we analyze the three groups of items se-

—parately, we spould‘éﬁﬁéét to find three sets of items which

each form a scale conforming to the requirements of the Rasch
model, ‘

Such analyses have been performed using every item listed in

" Table 4.2 except item 15 since the results of the graphic test
f?or this item did not conform to the results of any other

item. The results from the goodness of fit tests (the Andersen
test) are presented below:

K]
&

2

Type of ivem Number of items y daf ) 1SS
LD 12 33.0 33 L4727
MD 10 19.8 27 . 84 .41
HD 15 49.6 b2 .2n .72

We~thus find that the reasoning was correct; for each set of
items a good fit is found. It ca, also be observed that the
ISS (see page 41) is consideratly higher for the HD than for
the LD, items.

Two coﬁmlusions can be drawn from this exercise. First,the
question of item fit is wrongly stated if it is asked

whether an item does or does not fit the model, the correct
question\to ask is whether any given item fits together with
the other items. This implies in turn that in most cases ana-
lysis of an item pool should not result in the selection of a
subset of items which are "good" in relation to the require-
ments of the model, instead grouping of items info internally
homogenous scales is the result to be sought, and throughout,
of course, attempts should be made to clarify what ench scale

is measuring.

The serond conclusion to he drawn is purely negative: Obvious-
ly it is very easy to select items from a rool so as to form
scales conforming to the model, but in this case it 15 almost

equally obvious that the result is nonsensical, since if these
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groups of items were administered to a new s m;;:\with only a
slightly different distribution of person parameters a poor
fit would be found. What has been done can probably best be
described as a capitalization on trading relationships between
assumptions; for example the amount of guessing is different
on the items and the discrimination can be supposed to vary.

" These two factors can blend an¢ balance in different ways for

different items, with the net result being that items which
are very different in both these respects can be found to fit

together,
v

4,2 Item bias in Opposites . /

The overall numerical tests as well as the graphic tests are
constructed from the starting peint that the item parameters
should remain the same for all levels of score groups and é-
vidently these tests are powerful means of guarding against
violation of certain kinds of model assumptions such as vary-
ing item discrimination. The Rasch model, however, states that
the item parameters shall be the same whichever subdivision of
a sample is made, and the tests based on the results for
groups with different levels of performance need not be power-
ful when some items are 00 easy for one subgroup and too
difficult for another if the overall level of parformance of

the groups is equivalent,

This problem of analysis.of what has heen termed item bias
will be illustrated through analyses of sex differences in
Opposites,

As was mentioned above on page 57 the Andersen test (equation
3.2.3) can be used to test differences between the estimates
of itemn parameters obhtained in any disjoint grouning of the
sample through performing some simple hand calculations of
figures found in the computer printout, i.e. the maximur: of

the.log likelihood,

The item parameters were first estimated separately for boys

and girls for items 3-40 in Opposites with the resulting va-




lues of Hj being -4 905,31 and -4 834.16 respectively. Those
values, together with the value of I of -9 795.40 found with
both groaps pooled were put into formula (3.2.3) with a resul-
ting x2=111.86 with 37 df, which is highly significant.

Had there been large differences in the level 'of performance
of boys and girls it could have been argued that the signifi-
cance does no;“reflect anything except the kind of deviations
already'detected with the overall goodness of fit test. Since
this is not the case (even though the mean for boys is slight-
ly higher) we can go on to study which items tend to favor
boys and girls respectively.

Since estimates of the normally distributed standard errors
are obtained along with the estimates of the item parameters
in each analysis a z-test for the difference be%wveen the pa-
rameters for eécb iter can easily be computed (Fischer, 1974,

- op.o29m):
y 0..=0, .
(uozol) z= 11 12' (1-1’000’k)
[ ? a2
SEM11+SEMia

where the subscripts 1 and 2 refer to~the groups.

A <
The item parameters, along with the results from the static-

tical test, are presented in Table 4.U4. A negative sign of =z
indicates a low '» value of the item parameter for boys, i.e.
that the item is easier for boys. fhere are four items for i
which a significant difference in favor of boys is found and
for four items a significant difference is found in favor of

girls.
>

The words which are “tqo easy" for bhoys are "spurt’, "attack",
"noble", and "foolhard&” and the words which are "tco easy" for
girls are "smooth", '"desert", "merry" snc "anonymous". This is
not the place to venture inﬁp discussion why certain items are
biased in a certein way, but at least for the "boys items" it
does appear as 1i they are related to what is regarded as

boys” activities (cf. Wernersson, 1977).

82




Table 4.4, Tests of equality of estimated item parameters for

| boys and girls for . item 2-40 in Onposites.

- .

-

é _ Item parameters Item paraneters

;

? Item Boys Girls vA Item Eoys Girls z

. 3 -4,30 -4.07 -.36 22 . =.16 -.58 2:23%
o -3.16  -3.78  1.3%6 23 .03 07 -.2k
5 -2.26 -2.22 -.16 24 .39 1.03  -3.40%
6 -2.14  -2.50 1.25 25 A7 .26 1.15
7 -1.05 -.75 =1.56 26. .54 1.00 -.29
8 ~1.34 -.52 -4,03% 27 .92 .90 .10
9 -1.01 -1l.26 1.21 28 1.60 1.69 -4
) 10 -1.27 -1.62 1.62- 29 13 N 1.59

‘11 -.20 -.33 .72 30 63 57 .33
12 -T2 -.93  1.04 31 2.0l 1.82 .92
13 -.91  -1.00 . Us 3 .98 .Th 1,22
14 -.60 =106 2.37° 33 120 1.5 -1.2)
15 -, 48 -.87  2.07% 3h 1.10 1.34  -1,1€
16 -.21 -.1h .42 35 1.18  1.85 -3.07%
17 -.51  -.20 -1.70 36 1.5%3  1.91  -1.5F
18 . .49 .00 2,91% 37 1.44 1.59 -.€8
19  -1.27 ° -.44 -4,15% 38 2.49 2.22 .96
20 -.02 -.0b J11 36 .32 1 1.36 -.20
21 .75 51 1,32 Lo 1

Lo 1.59 -. 88

[

It will be recalled that in the snalyses performed on Oppo-
" sites in the previous sect’'on, it was possible to divide the
items into three groups, within each of which a gooa fit to
the model was observed. It can be asked how this grouping of
the items is related to sex bias. According to the signs'of

the z~-t~st presented in Table 4.l each item in the three
groups was classified according to whether it tende? to lr

biased in favor of boys or girls. The results are presented

below:

%ﬁ"f—'-"———————f'—f——f———————————————T——————————————————ﬁﬁ*f~f«ﬁm—mww~7f,ww,




Tendency towards bias

in favor of

Item type Boys Girls Total
LD 8 b 12
MD 5 10
HD 5 10 15
1. 19 37

There is 2 correlation: the items which were identified as
having a low discrimination tend to be biased against girls,
while the HD items tend to be biased in favor of girls. Fut
on the other hand a closer scrutiny of Tables 4.2 and 4.4
reveals that two of tie items significantly favouring boys
are of the LD type, w“hile the other two are of the HD type.
There is thus a considerable heterogeneitv within the groups
of items with respect to sex bias, which in turn implies that
the three scdles previously found to fit the model nay well
have to be discarded on the basis of an analysis of sex dif-

ferences.

Three separate analyses have thus been performed in which
the Andersen test was used to test sex Adifferences for each

of the three scales:

x2 daf p
LD 28.1 11 n<.01
MD . 14.0 9 ns
HD 57.7 14 p<,dN1

For two of the scales there are significant differences
between boys and girls with respect to the item parameters

in spite of the fact that the overall goodness of fit tes*s
did not indicate any reason for discarding the model. Thus, -
ven though one test shows a good fit anotht2r can show a poor
fit, which is of course due to the fact that the tests hove
differential power of detecting different deviations from

the model. ' .

It is of some interest to study the Aistribution of person

84




!

parameters for boys‘and girls on the three sub-scales. Martin-
L8f (1973) has presented two tests for comparison of the
distributions of the person parameters for two groups. One of
the tests is a likelihood ratio test and the other is a‘x2-
sum. If we use the subscript e (e=1,2) to denote the groups

we can write the likelihood ratio test:

k

2
n r
- . re n_ log —
(4.2.2) logh= Z: NLe 108 —+ r N

ezl r=0 n r=0
e

Since the index r here varies from 0 to k the test has k
degrees of freedom, and as before -2logh is asvmptotically
chi-square distributed as B>

The x2-test is computed according to the following formula:

k
1in n n 2
(4.2.3) VD Y i ¥ £l L)
r=0 "r M 2

This test, too, has k degrees of freedom and is asymptotically
ch}-square distributed under the same conditiorn as the likeli-
hood ratio test.

Application of these tests require that there be no difference
between the groups among the item pararmeters so in .this case
they can be strictly used only for the ™MD items. Nevertheless,
the tests were used on all three scalies ancd the results are

presented below:

I tkelihood “eans of raw scores .
Item type ratio test x -test arf boys Girls
LD 34 X 33.2% 12 4,16 3.55
MD -~ 12.0 11.9 10 5:77 5.61
HD 14.5 8.2 15 8.%9 8.76

The two tests give highly similar results except for the HD
items and they both agree that only for the Il items is

.

C . i~ s |

there a significant difference among the dlstr1gﬁt10hs of
' |
\
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item parémeteré. On this scale.the boys have’a higher mean
than the girls, which is also the case for the other two sca-
les even though the differences on the latter are considerab-
ly smaller. §

According to the finding reported above that there is a cor-
relation between tﬁe sex bias and item discrimination, we
might perhaps have'expected to find a difference in favor of
the girls on the HD items, which is obviously not the case.
Three explamations can be put forth to account for this.
First it should be noted that even taough some items may be
found to be biased.,against one group there is nothing that
s%ys that this group will have a lower mean on these items

since the mean is also affected by the distribution of per-

. 4 X
- son parameters:, Second 1t must Re observed that if there are

in the test a few items which are severly tiased against one/
groupl several of the others will appear ‘to have at least 3
small bias ‘n favor of sthis group which follows from the

fact that the constraint must be imposed that tbe'baramepers
shall sum to zero. As the third eﬁplanation,:it can he pointed
out that =ven- though we in this case have irternreted the
differences between the‘groups in terms of the sex variatle,
there is evidently in this samplc o corref%tion befween s5ex
and ability. This implies f%at the division of the sample
according to sex to some extent is confounded wity, level of
performance which in.turn implies that the correlation ohrser-
ved between "sex bias" and item discriminatiOn may also be

accounted for by differences in level of'performance.
»

\

Let us now 'sumnarize scme of the conclws.ions which can be
drawr from these analyses. First of all it ran be:conclg&ed
that the Rasch mod can be used to‘spudy item bias, both as
nuisance in measfring devices and as a snbstant%veﬂarea of
researcn.(In crder to prevenﬁ any misunderstancding f‘rom,ar-i-‘
sing it should perhaps be pointed out that if all_iteme In a \
test to the same depree favor one special groun thisz wil? ne!
be detected as any .eviatien from the model .assumptions, Here
the probler rather i3 one of definition of the ability being

measured. ) The model adds two aspents to the stady oh item
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bias which are quite unique: the first that there exists an
overall test of item bias, which is also supplemented by
tests at the item level and the second that differences
between the groups with respect to tne nerson narameters do
not influence the results, at least not hen there is no
differences among the item parameters as a function of atili-
ty.

A sacond important conclusion to be drawn is that the overall
numerical test of goodness of fit presented in chaptér 3.2
have a 1ow power of detecting certain threats to the model;;
in this case multidimensionality of the latent space since
sex is an zdditional factor to ability which systematically
affects performance on some items. The implication is of
course that €ven though the overall test of goondness of fit.
is not significant there may be a need to rarry the investi-
gation further by division of the sample along other 1lines

than level of performance; /

4,3 Discussion

/

P

It must be stressed that the analyses of “umber Series and

Opposites presented above are nothing but examples, which.oan
serve to highlight a few of the characteristics of the Rasch °
model. In the analyses several scources of threats to the
model have been pin-pointed and we will first discuss thesa
and a few more common violations of model assumptions. After
that strategies and problem in the development of scales
fitting the model are discussed.

»

Scources of threat against the medel

Item heterogeniety is a vioYation of the assumption of uni-

dimensionality and, as was pointed out in chanter 1.2 avowe,
there is no entirely satisféctory metqsd with which one can
@make sure that this assumption is not violated before the
Rasch model is applied. But it does anpear as if the good-
ness of fit tests (and especially the graphic tests of the
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items) are powerful means with which item heterozeneity can

be detected. In the analysis of Number Series, for example,

the heterogeneity caused by some items requiring more arithme-
tical ability than others was easily detected. It thus appears

that the model in itself is a very useful tool for studying
unidimensionality of measurements.

It must be strongly emphasized that the question of item ho-

mogeneity is a question of finding items measuring the same

ability, and not a question of excluding items not fitting

the model. This implies among o*her things that purely statis-

tlcal criteria cannot be used in selecting items and that a
very clear grasp of the canﬂnL_and the processes required
of each items 1is demanded.

Speededniess of the test is obviously a violation of the model

assumptions since if "a person does not have time to read an

item any statement ailonut the probaBility of a correct answer

as a function of the person parame*er will be meaningless.
None of the LT-models considered hore can thus be supposed
to properﬁy represent the case when there is any amoeunt of
speededness iivolved. It can be pointed out, however, that
Rasch (1960) has proposed a Poisson process model for one
particular case where speed is .irvolved, namely tests of
oral reading speed. ' : IS

'
For almost al: group tests of ability there is;a fixed time
limit (tnis also holds true for sorr achievement, tests),

%
which makes. ther at least in princinle speeded. But know-

ledge about the time limit under which a test is administered

does not say much about whetper some persons would answer

additional items correctly'{f given unlimited time; the omi%-

ted items may all have becn so difficult as to ma'e the pro-

bability of a correct answer very close to zero.
rd
Thus whether ajtest with a time limit is speeded or not is

empirical question (in a sense this applies to tests given

4 »
without. time limits too since there may be self-imposed "tire

limits'

!
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it does appear as if it is possible to investipate this
question with the Rasch 'model. Not only is the a.alysis of
Number Serie& presented abovelan_example of this; Rasch
(1960) was also able.to identify 1lack of fit for a test as

being a consequence of the test being sneeded.
' .

But it should also be pointed out that if we know that speed
is the only violation of the assumﬂf?ﬁﬁg:‘Zhe Rasctl, model nén
be vsed to "partial oug“ the speed factor. mis is 2ffected
. ' through estimating the person parameter for the "power" from
" the scores obtained only on the attempteﬁ items. PA sﬂhdy
using such pfocédures has been presented by Allerup, Mylov
and Spelling, 1977Y. ‘
Guessing can probably nevér be completely avoided but certaih’
kinds of items, i.e. muygiple-choice ibems, are' of course es-
// pecially likely to be affected by this %xtranous factor. Un-
less active attempts have been made to minimize guessing, the
Rasch model {or the Birnbaum modgl) should be used only with
‘great caution when the items are of multip1e~chéice type,
keeping in mind that ~&je item paraumeters connot be expected
to remain invariant over samples qiffen}ng in levels of abili-

ty. . ) . 3

= L Varying item discrimination is a kind of threat’ to the velidi-

ty of the Rasch model which is quite-difficult to discuss
sinze its implications are hard to identify at a more concrete

level. In chapter 1.1 the Flogging ¥all test was used as an

example, and it was pointed out that the discrimination para-
meter of the canes corresponds to the amplitude of the' flog-

ging, i.e. to item reliability.

It certainly is possible to imagine that different kinds of
item have different reliability; items requiring a constructed
response are for example usually more reliable than multiple
choice itemst To take another exaéple, 7 piudh)ad (1777, ror-
sonal communication) has pointecd out that tests of listening
comprehensiOnwfor measuring foreign language a}hiyemnnt tend

to be less reliable than tests of reading comprehension and
’ :
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that the reason for this is probably that listening compfe-%
hension-tests are more susceptible to chance influences than
reading comprehensicn tests.

In one Sense it could be argued that those items in the Number
series test which were found to be influenced by arithmetical
ability do have lower discrimination parameters, but since
this can be explained with reference to a systematically
working factor, it is better described as representing multi-
dimensionality. Also in the analyses of Opposites we found
that the itens had different diicriminative abilities which
were among other things related to how much random guessing
took place. But again, of course, it is basically a kind of
multidimensionality which causes this to occur¥ "

* e

It may of course be possible to find items which measure the
same unidimensional ability and which are, to different
degrees, affected by chance factors (i.e. have different
discrimination pérameters). I do suspect, however, that in
most cases when what appears to be varying item c¢iscrimina-
tion is found, a closer look will reveal that some kind of
multidimensionality 1s involved. : :
p )
Item bias is also a kind of mulﬁidimensionality since in this
case variables associated with a particular group make the I
items s&stemabically too easy or too difficult. A good know-
ledge of the items as well as of the samnle is of course
essential to produce a fruitful approach to this problem.

Constrained respcnses and learning effects from one item to

another are threats to the model as well. If, for example, =

four responses are derived from a question requiring the
pairing with respect to meaning of four given English wérds
with fbur giver Swedish words those of the examinees 'who know
three of the answers will automatically get the fourth pair ~
correct too, which obviously is a violation of the assumption
of local statistical independence. ’
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Learning effects from one item to another ara vinlation: of

model assumptions of somewhat the :sane kind. Such effects rax
be very difficult to identifv but it can be ment iones et 1
is also possible to¢ feneralize the Tasecn model so that it ecen

be used to study this problem specifically (see chapter 6.2).

Person fit may be a problem too: idiosyncratic working methods,

cheating and carelesshess (person reliability does appear to
be at least as fruitful a concept as item reliability) are a
few such threaus to the model. Some of these factors can be
controlled out 1n the admlnlstratlon of the 1t§ms, others only

through exclq@1ng persons.

Wright and Mead (1977) have presented a test. of person fit,
based on analysis of re51duals. There is also the possibility
of constructlng a theoretically satisfying test of person fit
under the conditional approach. Since the pPObablllty of each
observed,score vactor can easily be computed (equatlon 2.1.8),
all that is needed to obtain a p-value is £o sum the probabi-

lities of all*more extreme score-vectors (i.e. those with lo-

“wer probabilities) than the observed. Tne test does, however,

appear to be computationally complex,so it has not been

implemented in the present version of PML,

Strategies and problems in the development ofé@asbh scales
The usuél procedure in attempting tb find » set of items
fitting the model is to select, on the basis of a tryout, out
of a' larger set of items thosc which appear to fit the model
and then, at best, cross-validate thg'set on a'new sample.
Such a procédure is reasonable ehough (at least when the
reasons for misfit are not to be found in factors other then
item heterogeneltj) but there are some. risks involved which
need to be discussed. It has allready been po¢r£9d out that
when item heterogeneity is-at issue the items do not fit

the model but may fit each other., Il a vast majority of the
items measure the same ability, there being just a few de-

viating ones; the latter can ecasily be identified in the”

1
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graphic tests. But if there is more of item heterogeneity,
] the graphic tests are useless if used to select items which
have a plot where the points fall close to the diagénal (and
a statistical test ig even worse); in this case it is necessa-
ry to keep an eye onithe pattern of deviations common to Se-
» g veral items and if such a group-of items shows similarities
also in other respects such as content, it is reasonable to

select those and investigate if they form a Rasch scale.

But this can at time be a risky strategy. Sometimes several
threats to the model are in operation and the problem is that .
these can combine in different ways for different items and
even cancel out. It is quite easy to imagine, for example,

. what would hapren if guessing is allowed in a set of hetero-

genous items; it would almost surely be impossible to get

anything meaningful out of such an analysis.

This indicates that when attempts are made to maximize ivem

- homogeneity it is essential that all or most of the other
sources 0. threat to the model aSSumptions are controlled Yor,
which- 1s reasoriably easy with respect to factors such as
guessing and speededness but vwnien may be wore Adifficult with

respect to others.

Another conclusion whlch is inevitable in this light is that a
very clear conce~tion of the content of the items ‘in the try-

out is requirec¢ if a meaningful selection and/cr classifica~

tion of items is to bte made.

oy

/

Degree of fit and inferential tests

' . A
There are problems involved in using statistical tests to de-~

|
|
\
1
cide whether the cata show an acceptable fit or not. ne
problem is that even though one test may indicate a good fi%, ' 1
anofher may indicate a very poor fif. Another problem is rela-
ted to-sample size; when large samples are: used very small
deviations will result im significant values on t,he test sta-
a1 tlStlc and when small samples are usefl even gross deviations

may.remaln undetected. The first problem can to some degreo
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be solved by use of the measure of redundancy (chapter 3.3)
but how large a sample is required to obtain a reasonable
power in the statistical tests is as yet an unresolved prob-
lem.

These prqblems indicat~ that not too mLch weight /should %e
placed on the inferential tests of goodness of fit and
especially not when the sample sizes are extreme in either
direction. Less formalized approaches thus appear to be
necessary complements in evaluating fit. The granhic tests of
items are here valuable and content-related cqpsiderations
are indispensible.

But it must also be pointed out that the degree of fit which

is necessary to some degree depends upon the applications in-
tended. For some .applicacions, such as the study of unidimen-
sionality, we can accept only small deviations, but for others,
such as perhaps more technologically oriented applicatloﬁs, we
might expect to get useful results even when the fit is not

the best pussible. It does in fact appear to be a very impor-,
tant area of research to study now much the wdde] assumptions
can be violated without jeopardizing different kinds of appli-
cations of the model.

The concept of unidimensionality

The notion of unidimensionality is essential in all the [T

models but particularly so in the Rasch model since there is
no possibility'of treating different xinds of multidimensio-
nality as varying item discrimination in this model. There i3

thus reason to take up the notion of unidimensionality to

special discussion.

In my opinion it is as yet an unanswered question what pro-
pert.ies those scales fitting the Rasch model have from a
psycholiogical perspective. Are they for example SO narrow
and specific that they will be impractical to use? "Iy own
impression which is, however, only based on analyses of tests

/
/
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originall& constructed within the framework of classical test
theory is that the Rasch model is extremely sensitive to any
kind of multidimensionality and that the scales thus tend to
¥ be quite narrcw. It does appear to bte a research question of
thé Highest priority to investigate the "psychological width"
-of item sets which do fit the model aﬁd to study how one
should proceed if it is found that they in fact tend to be
. very narrow.

But be as it may with this question; the notion of unidimen-
sionality is nevertheless of utmos:. importance in any attempt
to make measurements. Some arguments in favour of this view
have already been presented (pase 9) but there is reason to
emphasize once again the central importance and great use of
the concept of unidimensionality. ‘
As has been pointed out by Lumsden (1976) the requirement that
tests should be unidimensional has been seriously negiected&
in classical test theory, which is probably partly due to the
fact that there has existed no satisfactory method for study-
ing unidimerisionality but probaliy ‘a‘so to the fact—that rea- /
sonable degrees of succ%Fs in practical applications have

beenn obtained without imposing this requirement.

ek *

~

But whenever anything more than some degree of correlation
with an extranous measure is to be achieved, the assumption
of unidimensionality is essential. Lumsden (1976) stresseé
that measurement is always measurement of an attribute or a /
property (a latent trait) so it may he asked; "How can we
make any claims to neasure if our measuring instrument has a
number of different sets of items based presurably on diffe-

rent attribute conceptions?” (p. 266).

To construct a test intended to measure an attribute we of’

course need a conception of the attribute at once when the

work is begun, But this conception is likely to be vague n-?
‘there will be little basis for deciding whether an item or an
item “ype does reflect the attribute, But through a continuing
process of revision of the conception of the attribute and re-

vision of the items used to measure the attribute we are likelwv -

4
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to obtain a bétter understanding both of the attribute and the
measuring device. In such a process of revision the Rasch mo-
del can be supposed to contribute greatly, even though it is
of course not the only method to be used in such work.

The notion of unidimensionality implies that only one attri-
bute should be measured with the same test, but” it does not
imply that the latent trait in itself is unidimensional; it
may well be functionally (and factorially) complex and we can
certainly uoi claim that there is one unitary process under-
1lying test performance. (But there are in fact developments
of the Rasch model which are well suited to the study of what
kiné of processes contribute to the difficulty of items, see
chapter 6,2).

Let me give one more example showing the importance of uni-
dgimensionality. In experimental educational research it is
common practiée to administer to groups given different
tpeatments thé same post-test,and then compare the outcomes

in the treatments in terms of the means of raw scores cbtained
on the post-test. But if there are interacqions between treat-
ment and outcomes so that the difficulties of the items in :
the post-test vary as a funct_on of treatment sdch a compari-
son can only %roduce more or less meaningless results. In such
a case we would want to reorganise the items in the post-test
into internally homogenous scales which measure the same

thing in all treatment _ the Rasch model can easily be applied
to accomplish: this.
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5.1 Tesffoggimation
\

Chapter §

SOME AREAS OF APPLICATION

In the preceeding chapter it was pointed out that one very
important area of application of the model is to study the
internal workings of a test. But it is also true that once
scales fitting the model have been developed it is possible
to solve within the framework of the Rasch modef a number gr‘
measurement problems, We wiil briefly indicate some of these
possibilities.

}
4

!

|

The problem of how a test should bq,organized inlperms of nuu~
ber of items, level of difficulty and spread of item difficul~
ty in order to obtain a suitable precision of measurement can
rather easily be' solved using the information f@nction with
respect to the person parameters (chapter 2.3).’

-~

In the Rasch model the information with respect to a person

parameter (and the item parameter) contained in the response
to an item is a fuqFtion only of the probability of a correct
answer which is easily seen if we rewrite (2.3.2) slightly:

(5.1.1) I.(£,)%p,;(1°p;)

'

} t

In Figure 5.1 I.(§,) for any item is shown as a function of
the probability of a correct answer. The maximum of the curve

is where Pyise but we can aiso note tQ?t the inrormation
obtained is reYatively constant within the range .20spvis.80.

o |
’_“ .
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From these properties of the model follows that the only '
factors affecting the precision of measurement at any given
level of ability is the number of items in the test and the
distribution of item parameters. But it also follows that the
standard error of measurement varies as a function of ability,
whic:,j}n be illustrated with some examples,

For two tests, both with 40 items, the SEM(£) has been plotted
against £ in Figure 5.2. One of the tests (peaked) contains
items which all have the same parameter (ai=0) and in the
other test (spaced) the item parameters vary between -3 and

3 in equal stéps. We see that the peaked test gives a higher
SEM(E) for extreme person parameters while it gives a lower
SEM(E) for the intermediate range of abilities.

4
peaked
= \
n 10
75 ¥
spaced
.50
4
251
-4 3 2 R] 0 i 2 3 4
€

Figure 5.2. Standard errors of measurement of ability as a function of
ability for two hypothetical tests.
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Figure 5.1 The information in an item as a function of probability of a
correct answer,

From chapter 2.3 it is recalled that the information in a
test with respect to a person parameter is the sum of the in-
formation contributed by each item:

k
(5.1.2) I(£,)= % Pyi(17Py;)
izl B}

and it will also be recalled that the standard errdr of

. measurement SEM(E) is:

1
(5.1.3) SEM{§)=z ——

/1,(€)
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From these properties of the model follows that the only _
factors affecting the precision of measurement at any given
level of ability is the number of items in the test and the
distribution of item parameters. But it also follows that the
standard error of measurement varies as a function of ability,
whic:/sgn be illustrated with some examples.

For two tests, both with 40 items, the SEM(E) has been plotted
against £ in Figure 5.2. One of the tests (peaked) contains
items which all have the same parameter (oi=0) and in the
other test (spaced) the item parameters vary between -3 and

3 in equal stéps. We see that the peaked test gives a higher
SEM(Z) for extreme person parameters while it gives a lower
SEM(E) for the intermediate range of abilities.

peaked
&
n 1.0
75 v
spaced
.50
L 2
251
-4 3 -2 R 0 1 2 3 4
€

Figure 5.2, Standard errors of measurement of ability as a function of
ability for two hypothetical tests.
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The highest precision of measurement is of course always ob-
tained for any given level ofrability when at that level the
probability of a correct’ answer is .50 for all the items. We
can thus formulate the very simple rule that when the purpose
is to marasure just one level of ability, items should be se-
lected which have the same parameter value as the ability to
be measured. The number of items needed (k, ) to obtain any
wanted precision (SEMW) is of course easily determined:

1
(5.1.4) k=

¥ .25sEM ° -
Mostly, however, a test is intended for use over a range of
abilities and to reach any statement about how a test should
be built up it is necessary to make assumptions about the
distribution of person parameters. If we take a look at Fi=-
gure 5.2 again in this light we find that any of the two
tests can have the lowest mean of standard errors and thus
have the best subject separation (or, equivalently, have the
highest reliability). If, for example, the person parameters
are distributed normally with zero mean and unit variance we
would find that for more than 90% of the persons in the
sample the peaked test has the lowest SEM(E) and would con-
sequently yield the best subject separation. When the ISS”s
for the two tests were computed under these assumptions the
values found were .88 and .B5 for the peaked and spaced tests
respectively (the corresponding values of KR20 vere .89 and
.85). If, however, we assume another distribution of person
parameters such as a rectangular one or a normal distribution
with a standard deviation which is considerably greater than
unity it is easy to see that the peaked test will give an ISS
lower than that for the spaced test.

‘
The problem of how items with different parameters should be
chosen so as to obtain maximum precision of measurement (in
terms of the mean of the stancard errors) has been studied
in great detail by Douglas (1975) and Wright and Douglas
(1975). They found that when the sample has a normal distri-
bution of person parameters a pegked test centered on the
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mean of the sample is optimal when the standard deviation (s)
is not larger than 1.25-1.50 but that for samples with grea-
ter s uniformly spaced item difficulties should be used. For
example, when 8=1.75 an optimal difference of 6 between the
highest and lowest item parameter was found (for this diffe-
rence the term width, W, was used, sSo here W=6).

For rectangular distributions of person parameters lower va-
lues of s were found where a change from a peaked to a spaced
test is motivated, the limit being around s=.75. Compared to
the normal distribution a rectangular distribution of person
parameters requires a greater spread of item parameters for
the same s to ohtain the best precision. For examnle when
8=21.75 the optimum was found at W=10 for the rectangular
distribution. -

Wright and Douglas (1975) have summarized their studies in
some simple rules for test construction: they do advise, for
example that uniformly spaced item parameters with W=ls,
where s is the best guess of the standard deviation in the
sample, should be used. But it must of course be realized
that use of such simple rules implies that some accuracy

is sacrificed.

It is of some interest to compare the conclusions about opti-
mal test aesign drawn here with those recommendations issued
within the framework of the classical test theory. It has

long been known that a test with uniform item difficulties
(with a proportion of correct answers of .50, when no guessing
is allowed) generally has a higher reliability than a test in
which the item difficulties are spaced (e.g. Gulliksen, 1945;
Lord, 1952). Another conclusion which has been drawn is thet

a better reliability is obtained if items with a high relia-
bility, as measured for example with the biserial or point
biserial correlation, are selected. But it has also been noted
that for a peaked test there is an optimum item reliabilitv
beyond which the reliability of the test decreases; this is
the so called attenuation paradox (e.g. Loevinger, 1954),.

160 -
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The explanation as to why the attenuation paradox occurs is
quite simple if stated in general terms: If the reliability
of all items is very high, the correlations between all items
will approach unity (if the test is unidimensional) which
means that a person who passes one item will pass all the

_ others and that a person who fails one item will fail all the
others. The distribution of scores will thus tend to be bi@p-
dal with a very good discrimination at one level of ability
but with virtually no discrimination between examinees at
other levels of ability. The attenuation paradox occurs only
if the items all are of the same difficulty and the solution
of the problem is, of course, to use items with spaced diffi-
culties (e.g. Brogden, 1946; Cronbach & Warrington, 1952).

The conclusion was drawn above that when the variance of the
person parameters in the sample is small a peaked test should
be used, otherwise not. This conclusion is in fact identical
to the solutioh of the problems caused by the attenuation
paradox which follows from the fact that with a higher, for
all items common, discrimination there is in the Rasch model
a higher standarc deviation of the person parameters.

w In fact the real explanation of the attenuation paradox is of

, course that since the standard errors of measurement are lar-
- { ger for certain scores than for others, constructing the test

g " 80 that for a sample it results in many scores which have a
| .large standard error will have detrimental effects on the
reliability. Thus what in classical theory is a paradox follows
in the Rasch model (and all the other LT models) naturally
from the fact that the standard errors of measurement vary as
a function of ability.

5.2 Tailored testing

It is obvious that the strategy of giving the same set of test
items to persons of all levels of ability will necessarily
result in different precision of measurement at different le-
vels of ability. The only possibility of obtaining standard
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errors of measurement which are equal over a range of abil1-

ties

tailored testing.

The LT models are of course extremely well-suited for tailo-
red testing since it is possilile to estimate on a common abi-"’

lity
rent
tion
del.

is to give difrerent items to different persons,

scale results obtained by different examinees on diffe-
items. The next section demonstrates how such a transla-
into a common metric can be effected with the Rasch mo-

The basic principle is of course that all the persons should

take items on which they have a probability of .50 of giving a

correct answer, Ususally computer based administration of the
items has to be used and there are different strategies by

which items can be selected from a pool so as to keep as close

to this requiremert as possible (Lord, 1971, 197% ). There is
of course additiopal use of the computer when, after the tes-

ting, the scores on the items are to be translated into the
metric of the latent trait.

.*Wright and Douglas (1975) have, however, presented a system
‘for self-tailored testing based on simple approximations in

which a computer need not be involved either in selection of

items or in computing person parameters: "

"The person to be measured can be handed a booklet of
test items more or less equally spaced in increasing
difficul%y from easiest to hardest and invited to choose
any starting place in the booklét with which he feels
comfortable. From that self-chosen starting point the
examinee can work at his own will and speed in either
direction, forward into harder items or backward into
easier ones, until he reaches his own performance limits
or runs out of time. Whatever the level and length of
the self-chosen segment, all that are needed to obtain
an objective item-free person measure and its standard
error are the serial numbers of the easiest and hardest
items tried and the number of successes in between.
These three observations are sufficient to look up in a
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simple series of tabJles the person”’s estimated measure
and the standard error of that estimate. (Wright &
Douglas, 1975, p. 43-44),

As was mentioned above this system is based on certain approxi-
mations and it is easy to imagine practical problems in its
application; it is, however, possible trat it might work so
well that it can be profitably exbloited.

5.3 Test equating and linking

One area of great potential for applications of the Rasch mo-
del is equating and linking of tests, i.e. expressing on the
same scale raw scores obtained on different tests (or sets of
items).

Test equating

If it can be confidently assumed that two (or more) tests
measure the same trait, equating of scores is a very simple
task, which is illustrated below. However, since the assump-
tion that the tests measure the same ability is critical we
will first adress the problem of how to test this assumption.

Let us- assume that the teets have been given to the same samp-
le and that separate analyses of the tests have indicated a
good fit to\the model. If tne tests measure the same ability
then we must\hlso find a good fit if all the items are analy-
zed together. fhis straightforward approach of testing the
assumption is coﬁceptually sfmple, but it may be impractical
since when all the ltems are pooled, a very long test may be
the result and it w1ll be recalled that the overall numerical
tests are cumbersome %o compute when the number of items is
large. Fortunately there\exlets a likelihood ratio test which
directly tests the hypothesis that the two sets of items
measure the same ability (Martin-L8f, 1973, p. 135-136). This
test calls for some hand computations (or a short computer
program) but requires otherwise only that the parameters are

estimated for each tes: and for the pooled cet of items.
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" thraugh hand. calculatlons based on the bivariate and uni-
‘variﬁte dlstrlbutlons of test scores, or by ertlng a special

Let us call the number of items in the.two tests kl and k2,

with k= k1+k2 We define further n to be the number of

T2

. persons with raw score r, on the first test and raw score r,

on the second test. Let 'ﬁ;)be the maximum value’of the
logarithm of the likelihood function (3.2.1) and H, and H
the hofrespondingrvalues for each test. Martin-LBf has
then shown that the test . statistic is:

2

(5'30 1)_ . h J *
k n k .
r1r2 < N
logh=- Z Z n, . log—=-%+, n log--—ﬂit--ﬂl--ﬂ2
r =0 r,=0 172 N oo n

' a
and that -2log) is approximately chi-square distributed with
k1k2 -1 degrees of freedom when n-+s,

g

The values of Ht’ Hl and H2 are ‘obtained on the computer

[‘
printouts from the corresponding analyses. The values of the
other terms appearlng in (5 3.1) can be obtained either

[\

program to perform these simple but sometimes tedious tasks.
“ . , ,
The test presented above can be expected to be of}) use not on-
ly in testing the homogeneity of two distinct(gzzl of items
intended to be used as sepafate tests but also when very long
tests are constructed. Since in such cases the overall nume-
rical tests of goodness of fit are out of reach, at least if
one is operating: 1n an ‘environment where computer time is of
limited Supply, a good strategy may be to develop out of the
gsame pool of items two tests fitting the model and then in-
vestigate whether they can be put together into one long
test.

Letfs fow turn to the problem of equating raw scores obtained
on different tests. It will be recalled that in any, estima-
tion of the item parameters a constraint must be imposed, for
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example that the sum of the item pa}ameters expressed on té&
log scale is gero, which effects a fixation of the origin of‘
the scale. The ability scales associated with two tests mea-
suring the same ability are thus the same except for the
.arbitrgry origin of the scales, But if the two tests are gi-
. vento the same sample we are in the position to estimate the
difference in origin of the scales since, of course, the sane
sample must have the same mean of ability whichever test is
used. '
There are two methods which can be employed to estimate thé,
’//' . difference in origin of ability scales, both resulting in a
- simple addipive constant toebe used as a correction-factor
(see e.g. Kifer, 1976 ; Rentz & Bashaw, 1975). The first’
method, the so called "ability method" simply consists of cal-
culating the difference in the means of ability estimated
from the two tests and using the obtained difference as the
correction factor. In the other method, the so called "dif-
ficulty method", the item parameters from both tests are esti-
mated together and the difference between the means of the
estimated item parameters is used as the correéction fa¥or.

.

These two methods give theoretically identical réQults but
o there is at least one thing that speaks in favour of the dif-
ficulty method: since the person parameters cannot be esti- \
mated for zero or perfect raw scores (such persons are exclu-
ded from the analysis) the ability method must not be used
whenever different persons obtaih such scores on the two
tests., ‘
The difficulty method will here be illustrated with some ge-
nerated data, For a sample of 1 000 persons, dis;ribnted
N(0,1), scores were generated for U0 items, of which 20 had
the parameter -1 and 20 the parameter 1. It will be supposed
that these two groups of items can be given as two forms, one
simple and one difficult, and that we above all are interested=
in knowing which raw score on the simple form corresponds to
which raw score on the difficult form.
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The test of the homogeneity of the two forms gave x2=302.62

with 399 degrees of freedom so it is obviously no problem to

‘do the equating. Not surprisingly the difference between the

means of the parameters of the simple and difficult items.

sets turned out to be -2 in the anal%sis. This value of -2 is

the correction factor which of course means that we shall sub-

tract 2 from {or rather add -2 to) the ability scale for the

simple items to get the corresponding location of the ability

scale for the difficult items. Table 5.1 presents the table

-of conversion from raw scores on the two forms into the abili-

ty.scale of the difficult form.
1
|
|
|
|
|
|
|

&~
»

Table 5.1 Person parameters expressed in the metric of the
difficult test for raw scores obtained on the
simp;e and difficult forms.

Raw score on the Person Raw score on the Person
difficult form parameter simple form parameter
1 -2.94 1 w‘“.9“ ‘ g
2 -2.18 2 -4,18 |
3 -1.73 3 -3.73 1
by ~1.39 b -3.39
5 -1.10 5 -3.10
6 -.85 6 -2.85
7 -.62 7 -2.62
8 -.41 8 -2.41
9 -.20 9 -2.20
10 .00 10 -2.00
11 .20 11 -1.89
12 41 12 -1.59
138 .62 13 -1.38
14 .85 14 -1.15
15 1.10 15 -0.90
16 1.39 16 -.61
17 1.73 17 -.27

p—
(0]

.20
.94

p—
O
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From the figures presented in the table it is easily under-.
stood that before the conversion was made the scale of abili-
ty for the simple form was numerically exactly the same as
that for the difficult form. The reason for this is of course
that separate analyses of the t*+ 1items sets produce exactly
the same item parameters, (they are all equal to zero, more
or less, as a consequence of the normation) so,coﬁseQuently_
there can be no difference bétween the numerical values of
the person parameter corresponding to a certain raw score
(but the distribution of person parameter is of course radi-
cally different).

.
Using linear interpolétibn methods a graph has been construc-
ted (Figure_S.}) to show the relation between raw scores on
the two forms, i.e. using the common scale of ability, raw
scores on the simple form have been translated into raw
scores on the difficult form., Obviously there is a curvi-
linear relationship betwegh raw scores on the two forms.

- b
W b

DIFFICULT
2 8

-
[=)

N W e N W

-—b

6 7 8 9 0 1 12 13 W _16 % 17 B 19
SIMPLE

Figure 5.3. Raw scores on the simple and difficult forms corresponding
. to the same level of ability,
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it should gerhaps be pointed out that if we did test a &ample

with both forms we would not find this par+icular curvilinear
‘relationship between raw scores on the two forms even for ve-.

ry large samples. The reason for this is that there is-a re~
gression towards the mean, i.e. those examinees with bad

(good) 1luck on the simple form can on the whole not be expec-

ted to have an equally bad (good) luck on the difficult form

and vice versa, The conversion should thus nof be interpreted

to mean that it gi;es the expected raw score on one form gi-

ven the raw score on another form; rather it tells what raw ,
score would have been found if the other form had been used
instead, everything else being constant. oo

Test linking

A£?° in linking tests the purpose is to estimate on the same
scale results obtained on different tests but in this case the
tests are given to different samples; the linking is made
possible through use of a subset of, say 10-20 items common to
both (or all) tests.

A version of the g’fficulty method described above is used, in
that the mean of 1 item parameters for the common subset is
estimated in the context of each test. The difference between
the means of the estimates of the parameters indicates of
course the difference between the origins of “he scales of the
item parameters in the two tests and can be L.ed as a correc-
tion or translation factor, Theredfter the ability scale
associated with the "translated" item parameters must be com-
puted (handy computer programs which perform this task can be
found in Wright & Panchapakesan, 1969; Kifer, Mattsson &
Carlid, 1975; Rentz & Bashaw, 1975) which makes it possible |
to translate into the ability scale of one of the tests, raw
scores obtained on the other. .

No example of how this can be done in practice is presented
here; the reader is instead referred to Wright (1977) for
rurthef details and more elaborate linking designs and to
Kifer, et ai. (1975); see also Kifer, (1976), as they do
present an easily followed example.
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- It need probably not be gaid that no linking should be attemp-
ted unless the tests measure the same ability. The fact thaé
the tests do have a subset of items in common of course makes
it possible to test this assumption: if all tests fit the mo- .
del they must in fact m%asure the same ability,

»

5.4 Item banks ’

- -

Virtually all the applications discussed in this chﬁpter pre-
suppose that there exists a pool of items measuring the same
. ability and for which items the difficulties have the same
origin of scale. It is obvious than when such a pool of -items
' i8 at hand a large range of measurement problems can be solved
« with great efficiency and simplicity; tests can be optimized
for specific purposes and tailored testing becomeh\possible.
Furthermore, all possible tests which can be constﬁuctedbby
selection of items from the pool are automatically equated -
(even though it is of course necessaggy to compute the associa-~-
ted ability scale for each selection of items so that the ob-
served raw scores can be transldted irto the common metric).

L ¥

The most effective way of developing item banks is of course

to successively link new items into the bank, using the pro-
cequfes of test linking des¢ribed above. But it is important ]
that an eye is kept 6n the. fit of the items throughout: a bank
consisting of heterogeneous-items wi;h a poor fit is probably
worse than no bank at all;the strong claims which can be ad-
vanced in relation to’thé Rasch model are valid when the model
holds true, otherwise not.

- .
a
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Chapter 6 )

L]

GENERALIZATIONS OF THE RASCH MODEL

-~

This report treats in detail only the simplest case, i.e. in
which the model specifies only two parameters and there are
only tWo categories of answer. (Even though the wording has
been-phrased in terms of measurement of ability there is of
course nothing that says that the model cannot be used to 7/
measure personality, attitudes and so on). There are, however,
developments of the .basic -modelywhich can deal with more
complex situations and the parametér structure of the model

can be transformed in different ways. Some of these generaliza-
tions of the model will be briefly mentioned‘below.

6.1 The polychotomous case - ' -

It is possible to generalize the model to treat the case where
there are more than two categories of answer, as is for example
often the case in attitude qyestionnaires (Andersen, 1973;
Fischer, 1974, p. 424 ff.;Allerup & Sorber, 1977).

Instead of observing whether a pagticular answer is correct or
¥

incorrect we observe which particular answer category

(h, h=1,...,m) a person v endorses on item i. We can represent

. . _¢p(1) (h)
the answer by using a selection vector (Avi)-(Avi ""’Avi

,...,Ai?)) which contains zeroes for all the alternatives
not chosen and a one for the category endorsed. If there, for
example, are three categories of answer and a person choses
the last for a particular item this is represented with the
selection vector (0,0,1).

Instead of one person parameter there is in the polychofomous
case a vector of person parameters, the elements of which each

indicate the tendency for each persons to chose each alterna-
(1) (h) (m)

tive: (ev)= (Ov, I R ). In the same way there is for
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each item a vector of parameters representing the tendency

for each alternative to be chosen: (ci)= (cgl),...,e§h),...,e§m))

We need, however, to impose a constraint on these vectors of
parameters and we can use Bim) and €§m) for unity normation,
i.e. they are put equal to unity. We can then write the basiec
model in the following way:

(1) (1)

P(alDe1)v,i)s X1

(h) _(h) .
1*h=1 Gv €

g(h) (h)

(n)._ L OV i
P(A4 =1|v,i)= =

- (h)_(h)
1+ hzl R

1

(h)_(h)
ev ei

Thus, the ICC is for each answer category here multidimensio-

nal and there are m-1 dimensions. But of course the notion of
unidimensionality is as important here as everywhere else so
it may be asked whether the multidimensional model may, in
fact, be reduced into a unidimensional one. This can be done
if it is possible to find a unidimensional vector of item

parameters (ci),i=1,...,k and a "gforing-vector" (¢(h),h=1,..:5m)
)c

so that for all items 1ogc§h)= i

There are great technical complexities in obtaining’CMLJesti-
mates of the paraheters. Allerup and Sorber (1977) haQe, how-
ever, presented such a computer program, based on methods for
computing the symmetric functions and solving the equations
suggested by Andersen (1972). This program also tests the hypo-
thesis that the multidimensional model can be reduced into a

LY
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unidimensional one and provides also the necesséry informa-
X tion for performing goodness of fit tests. There do also
exist approximations toc the strictly conditional approach;

) Fisqher (1974, p. 571) has presented such a program for the
casé where there are three categories of answer, and methods
for obtalnlng unconditional estimates have also been developed
(in:irich, 1977). Examples of applications of the polychot omous
Rasch model have been presented by Fischer (1974, p. %78 ff.).

6.2 The linear logistic model

In the basic Rasch model there is one difficulty parameter for
each item; it is, however, possible to construct models with
andother parameter structure. A very interesting model results
when the item parameters are replaced with a smaller number
of "basic parameters" (nj,j=l,...,m) representing, for example,
" hypothesized processes which appear with different frengqcy
in different items. By specifying one parameter for each bro-
- cess and the frequency with which it has to be carried out,

the difficulty parameters can be "explained" We thus want to

T investigate the hypothesis that loge 2: f n which can be

- be made emplrlcally when the matrix of frequenc1es ((f, J))

- > has the rank m, and when m<k.

. The model has been presented in detail by Fischer (1974, p.

340 ff.; a computer program is also presented); Fischer

(1974) and Lybeck (1974) discués some very interesting possib-
le applications in an educational context. It should be poin-
ted out, however, that Kempf and Niehausen (1976) have criti-
zed this approach on the basis of lack of interpretability of
the "basic parameters". They suggest instead’ that error types
should be analyzed with a polychotomous model.

Dynamic models in which "transfer effects" are represented
with special parameters have also been proposed and used
(Spada, 1976; Kempf, 1976; Kempf, Niehausen & Mach, 1976).
Such models can be used to investigate léarning effects from
one item to another as a threat to the validity of the basic

ERIC 12




model, but can of course also be used to investigate substan-
tive problems of great interest.

6.3 Analyses of experimental data

The linear logistic models mentioned above can be used to
analyze data from experimental studies (see e.g. Kempf et al.,
1976). But as has been pointed out by Fischer (1974, p. 506)
it is also possible to formulate linear logistic models re-
sembling the analysis of variance model, i.e. with parameters
representing treatment and interaction effects of different
kinds. Such models would entail one single assumption (which
is also empirically testable), namely that there is an additi-
ve or, equivalently, a multiplicative relationship between the
parameters, and they would fill a deeply felt need for sound
statistical models for the analysis of qualitative data.

-
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Chapter 7

THE PML PROGRAM

The computer program is written in FORTRAN IV and was develo-
ped on the IBM machines (360/65 and 370/148) at GUC (Gothen-
burg Universities“Computing Center). The program shsuld, how-
ever, only to a small degree be machine dependent {one ver-
s8ion of the program at least) so it can probably relatively
easy be implemented on other machines.

7.1 The two versions of PML

There are two versions of the program: one OSIRIS version

calling routines in the OSIRIS III (1973) subroutine library
and a non-OSIRIS version (or rather a simplified OSIRIS ver-
sion) in which all routines called are included in the source
code. The OSIRIS version can of course only be used at compu-

ter installations where the OSIRIS system is implemented.

The OSIRIS system has four important advantages:

- A self descriptive data structure is used, i.e. for each data
file there is an associated dictionary file containing
descriptions of the data file such as variable numbers,
variable locations and names of the variables, This implies

.that the variables (items) can be referred to with a variab-
le number which remains constant from analysis to analysis
and that the variables are easily identified on the printout
since they have a unique name.

- Specification of the control parameters for each run is easy
since keywords are specified in a completely free format.

- Selection of any subset of cases is eésily effected fh"ough
the special filtering feature.

- Since the input routines are coded in Assembler they are
very fast. o
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In the non-0SIRIS version of the program some of these advan-
tages are lacking: no filtering is possible and fixed format
specification of a few of the éontrol parameters is necessary.
However, to maximize the similiarity between the versions,

and to gain some of the advantages of OSIRIS, a simplified
OSIRIS structure has been created (this work has been done by
Jan-Gunnar Tingsell at the Department cr educational research,
University of G8teborg) in which a simplified dictionary file
is used along with the data file (see below). .
Thw two versions of the program thus differ with respect to
the input routines used; in the analysis parts of the programs
there are no differences.

7.2 Obtaining a copy of the program

The scource code punched on cards (or written on a tape sent to
me) may be acquired from the Institute of Education, Univer-
sity of Glteborg by writing‘to the present author. A fee is
charged corresponding to the price of the cards and the costg

[]

involved in handling and shipping. Please indicate whether
the OSIRIS or the non-OSIRES version of PML is desired.

N

7.3 Using PML

Since the control informatioﬁ'needed for the two versions cf
the program: is somewhat different and is épecified in diffe-
rent ways, the instructions for use will be specified separa-
tely. Some advice about choice of options is also given below,
but only in connection with the OSIRIS version.

How to use the OSIRIS version

The control cards for the OSIRIS veision are specified
according to the standard OSIRIS III (1973) syntax and ther.
is no need to describe the details here. Three or four state-

ments (mostly corresponding to the same number of cards) are
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necessary as input:

1. Filter statement (optional)

2. Title card (80 characters of information to labe! the output)

3. Global parameters (selected from the 15 parameters described
below) s M' '

4, Variable 1list, )

The global parameters are selected from those described bélow
(defaults are underlined)

P ~

PRINT=DICT/NODI DICT: Print the dictionary §
' NODI: Do not.print the dictionary {
|

. DESC/NODE DESC: Only descriptive information (e.g.
\ \ proportion of correct answers, point-

biserial correlations, and the item by
score group frequency matrix of correct

x answers) is supplied without anj estima-
tion of jtem and person parameters.
This keywbrd can be specified to make
sure in an economical way that there
are no items with a very high proportion
of correct answers (which causes a slow
convergence). Another usage is to have'
a look at the ((ny.)) matrix in order to
specify a suitable minimum group size for
the Andersen test (see page 49 above).
NODE: A full analyéis,baccording tn the
other options chosen ig performed.

MAXI=N The maximum number of iterations in the
estimation of the item parameters. The
default is N=250, If.convergence has not
been obtained within the specified num-
ber of iterations PML will assume that
this has occured when MAXI is reached
and will continue with the other tasks
set up. The maximum number of iterations

- in estimating the person parameters is
p taken as’ UN,

»~

RIS B




ERROR=N

N

ALGO=DIF

The accuracy required in the estimation o
of item and person parameters in terms

of number of decimal places. The default
is N=3, For some purposes & lower Hccura-
cy can be demanded but certainly not when
the overall numerical tests are to be
computed. The variance- covariance matri-
ces which are inverted iqxthe computation
of the Martin-LY8f test (see page 51 ff.)
may for example not be positive definite
when accuracy is too low.

_DIFF: The symmetric functions are computed

with the Difference algofithm (see page
31), Since this algorithm is sensitive to
roundoff errors it should not be used
when the number of items is large and/or
there is a great.range of item parameters.
fhis algorithm seldom works when k>40 and
it seldom fails when k<20. It should be
pointed out,however, that even though
this algorithm may work well in estimating
the item parameters'(or the whole sample
it may{%reak down when the Andersen test
is combuted. When this test is requested
this algorithm should thus .be avoided un-:
less k<20. There is no risk, however, of
getting wrong results as a consequence

of roundoff errors since the program is
stopped when computational accuracy gets
too low.

SUM: The symmetric functions are compu-
ted with the Summation algorithm (see
page 32). This algorithm works in those
cases in which the Difference 2lgorithm
fails but it is somewhat slower.

This keyword is effective only when
ALGO=SUM is chosen.
SING: The symmetric functions are compu-

- ted with single precision arithmetic.

AN
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START=APPR/UNIT

NORM=N

EXTR/NOEX

PERS/NOPE

t

¢

This. keyword should be chosen only when
it is essential to keep the amount of °
computer time to a minimum. Observe that
there is no test of computational accu-
racy in the SUﬁ algorithm.

DOUB: The symmetric functions are compu-
ted with double precision arithmetic.
APPR: The approximation suggested bZ;
Martin-L8f (1973, see page 34 above) is
used to compute start values for the ite-
rationg. This keyword can be chosen re-

" gularly.

UNIT: Unities are used as start values
for the iterations.

N= the variable number of the item chosen
for unity normation. The <4default is the
item of medium difficulty.

EXTR: The Aitken extrapolation (see

page 35) is used to speed up convergence
of the iterations. This dr "ult value

can be used regularly but if the itera-
pions should diverge the extrapolation
may be the explanation./

NOEX: No extrapolation is done.

PERS: The person parameters are estimated.
NOPE: The person parameters are riot
estimated. In a process of item selection
and goodness of ‘fit testing it may be a
waste to estimate the p:rson parameters
in each analysis. But it is of course

not possible to obtain estimates of the
standard errors of the estimated item

‘parameters if the person parameters are

£
not computed. :




%

PLOT/NOPL PLOT: For each item a printerplot is
made of ﬁhe observed proportion of cor-
rect answers against the proportion
predicted for each score group (see
chapter 3.1). Observe that these plots

., produce a large amount of lines as out-

put. . ' .

NOPL: No plots are made.

BINO/NOBI BINO: For each item and for each score

o group a binomial test is carried out to

test the difference between observed and
predicted frequencies of cdrrect answer
(spe pages 46-47). The power of these °
tests is lower than the "power" of the
printerplots but may at times be useful.
Thew also present the numerical informa-
tion on which the printerplots are based.
NOBI: No binomial tests are carried out.

NOBS=N -N+1 is the smallest size allowed for a
score group if it is to be considered in
the printerplots or in the binomial tests,
The default is N=5,

. "
TEST=CHIS/LIKE/BOTH/ CHIS: The Martin-L8f chi-square goodness
NONE of fit test is computed (see chapter 3.2).

LIKE: The Andersen conditional likelihood
ratio test is computed (sge chapter 3.2).
BOTH: Both the overall numerical tests
are computed. This keyword should be
chosen only rarely, especially if k is
large, for economica} reasons.
NONE: No overall test is computed.

NIND=N N is the minimum number of persons allowed

within each range of scores when the

Andersen test is computed. The default

is N=100.
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A fairly typical example of the setup, including the JCL, re-
quired for executing the OSIRIS versio _of PML on an IBM
machine under OS is shown below:

//UPEJEG JOB ...

/#JOBPARM RTIME=3,LINES=6K

/! EXEC ... (referring to the library where PML is to be found)
//DICTIN DD ... (description of the dictionary file)
//DATAIN DD ... (destription of the data file)

//FT12F001 DD UNIT=S¥SSQ,DISP=(,PASS),SPACE=(TRK,(50,20)),

<

/1 DCB=(RECFM=VBS ,BLKSIZE=6000) (description of the
scratch file used in the computation of the Martin-
L8f test)

//FTO1F001 DD * (observe. that the instream is defined

as unit 1)

INCTIUDE V3=1* (Filter card)

BOYS IN GRADE ¢ (Title card)

ALGO=SUM PLOT* (Parameter card) .

V121-V140,V145# (variable list)

/®

-4

How to use the non-OSIRIS version

. 'J.

In OSIRIS the dictionary file is created with a special p:og-

ram. Also in the non-OSIRIS version of PML a dictionary file

is used; here, however, the dictionary is simply punched on

cards (but of course the card images can be stored on a-disec

or a tape). The non-OSIRIS dictionary must be prepared in the

following way:

1st card R )

. pos 1-7 Logical record length (LRECL) for each record

in the data file. (If the data are on cards
LRECL is of course 80, if there are more items
than can be contained on one card it is neces-
sary first to create a file with a greater
LRECL). '

pos U-6 The variable number of the first item des:ri-
bed in the dictionary (need not be 1).
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pos T-9 The variable number of the last item described
in the dictionary.

2nd and following cards:

pos 1-3 Variable number
pos 4-27 Variable name
" pos 28-30 Column location in the data file

The variables must be continously n;mbered between the first
and the last variable number, but there is no restriction as

- to where in the record the different variables are located.
It must be observed, however, that ﬁhe information for each
item must be punched in only one column (i.e. using Il format),
and that the responses of course must be coded 0 and 1. At -
most 200 items can be described in the dictionary.

An example is given below:

181 28 43

028 VOK A 1 062
029 VvOK A -2 063
030 VOK A 3 064
031 VUK A & 065
032 VOK A 5 (7.7,
033 vOK A 6 067
034 VOK A 7 068
035 vOK A § 69
036 VOK A 9 070
037 VOK A 10 0721
038 VoK A 11 072
039 VOK A 12 074
040 VOK A 13 074
041 VOK A 14 07%
042 VvOK A 15 ) 076
043 VOK A

16 077 \

Faay,

This dictionary describes 16 items in a data file with
_LRECL=181. The variable rnumber for the first item has been
taken to be 28; if, for example there is another subtest pre-
ceeding this one which in a later step is to be analyzed to-
gether with these items, the same variable numbers can be used.
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In executing the non-OSIRIS version of PML there are 4 control’
-statements (usually the same number of éards) which must be
supplied: .
1. Title card (80 characters of inrormatlon to label the output)
2. Keyword parameter card {keywords are selected from those
 / described below) , T
3{/Fixed format parameter card (is prepared according to the
instructions given below)

4, Variable 1list (see below)

.
hd -

-y

The keyword parameter card should contain a selection from the
keywords described below:

on? >
%3

NODI/DICT NODI: The dictionary is not printed.
DICT: The-descriptions in the dictionary
for the variables selected in the
variable list are printed.'

DIFF/SUMM ‘ DIFF: The symmetric functions are computed g
‘ * with the Difference algorithm.
SUMM: The symmetric functions are computbn :
with the Summation algorithm,

- DOUB/SING This keyword is effective only when SU"M
' is chosen.
DOUB: Double precision arithmetic is used.
SING: Single precision arithmetic is used
for computing the symmetric functions.

<

APPR/UNIT APPR: Start values for the iterations are
computed according to an approximation
(see page 3U4).
UNIT: Unities are used as start values in
solving the equations for the item
parameters.

EXTR/NOEX EXTR: The Aitken extrapolation (see page
35) is used to speed up convergence of
the iterations.

NOEX: No extrapolation is used.
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“

= PERS/NOPE PERS: The person parameters are estimated.
3 NOPE: The person parameteis are not

3

: ) - estimated.

. NODE/DESC NODE: A full analysis is performed.

é DESC: Only descriptive informati~n is

: - pregented, without any estimation of item

and, person pdarameters.

PLOT/NOPL PLOT: For each item a printerplot is made
as a graphic test.
NOPL: No prin%erplqt is made.

.
BINO/NOBI BINO: For each item and for each scofe‘
' group a binomial test is carried out to
- test .the difference betWeen observed

and predicted frequencies of correct
answers, - ’ ‘
'NOBI: No binomial test is carried out.

NONE/CHIS/LIKE/BOTH NONE: No overall numerical test of good-
ness of fit is computed. ‘

CHIS: The Martin-L8f chi-square goodness
of fit test is computed. )
LIKE: The Andersen conditional likelihood
rétio test is computed.

BOTH: Both the overall fiumerical tests are

computed.-

The ‘keywords selected to override the defaults are written on
the keyword parameter card, beginning in the first position. .
The keywords are specified in any order and are separated with
'comma or blank. The list of keywords must be ended with an
asterisk.

An example is given below:
DICT SUMM PLOT LIKE*

The fixed format parameter card is prepared in the following

&

way:
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Pos

p ' 1-4 - Maximum number of iterations in estimating the

E i ' item parameters (MAXZ). If left blank MAXI is

| assumed to be 250. The maximum number of ite-
rations in'estimating the person parameters is

Lo taken to be 4 times MAXI,

{

~

578 The accuracy requiréd in the estimation of the-
item and person parameters in terms of number:
of ‘decimal places (ERRO), If left blank ERRO
is assumed to be 3.

- 9-12 The minimum number of persons allowed within
each range of scores when the Andersen test is
computed (NIND)., If left blank NIND is assumed
to be 100, g . )

Ci\_ 13-16 The smallest size allowed for a score group if
- it is to be considered in the printerplots or
the binomial tests (NOBS). If left blank NOBS
! is assumed to be 5,

17-20 The variable number, according to the dictionary,
of the "item chosen for unity normation(NORM).
If left blank the item of medium difficulty is

- ' used for unity normation. =~

Even if there is nothing punched on the fixed format parameter
card it must be physically in place, after the keyword para-
 meter card. An example is given below:
100 4 150 10

The variable list must contain a list of the variable numbers .
for those items to be included in the analysis. Each variable
number must be specified with three digitg (e.g. 006) and the
numbers should be separated with comma or hyphen, where the
hyphen indicates that a range of items are sélected. The
variable list must be started in position 1 and as many cards

"as are necessary may be used. Each card must be filled, how-
ever, and the comma is the only sign which is allowed in co-
lumn 80, if continuation to a new card is to be made. The

. variable list must be ended with an asterisk. An example of
a variable list could be:
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005,008-017,034x

—

-

In executing the non-OSIRIS version of Rmi\the control cards

are read from unit 1, the dictionar& from unit 13 and tre

data from unit 14. A fairly typical example’ of the\§é in- -
cluding the JCL, for executing this version of PML o;tzifﬁﬁf\\\
machine is shown below:

- //UPEJEG JOB™: A )

// EXEC ...v'(referring to the library where PML is to be found)

//FT12F001 DD UNIT=SYSSQ,DISP=(,PASS),SPACE=(TRK,(50,20)),

// DCB=(RECFM=VBS,BLKSIZE=6000) (description of the scratcnh

' file used in the computa-

tion of the Martin-18f test)

//FT14F001 DD ... (description of the data file) -

//FTO1F001 DD * ‘

GRADE 6 (Title card)

SUMM PLOT* (Keyword parameter card

150 (Fixed format parameter card)

121-140,145x ’ (Variable 1list)

//FT13F001 DD * -

256 78192 (The dictionary)

078GRAMMARTEST 1, ITEM 1 112

192GRAMMARTEST 1, ITEM 115 226
/ ! -

7.4 The most important subroutines

READ reads the data, forms the: ((n;)) matrix and compu-

tes the proportions of corrects answers, the point-
biserial correlations (with the item included in

the test) and the KRZO'

PAREST administeres the iterative solution of the equations
for the item parameters.

GAMMA is used to compute the symmetric functions with the
Difference algorithm. This routine has been written
by Fischer (1974).
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_ supervises the computation of the Eymmetric functions
with the Summation algorithm and calls repearedly

the
~———  GAM routine,which is a slightly changed version of a
routine presented by Fischer (1974), or the
GAME routine, which is a single precisicn version of GAM.

AITKEN computes the Aitken extrapolation, if requested. .It
is called by PAREST.

PERS estimates the person parameters iteratively using ]
the Newton-Raphson method. This subroutine has '
been taken from Fischer (1974) but code for com- .
puting start values has been added. The present '
version also computes the standard errors of the
person parameters and the routine calls

ITINFO which computes the standard errors\or the item
parameters.,

ITTEST administers the analysis of the items and calls
PLOTT which produces the printerplots and
DPIBIN which computes the cumulative binomial distribution.

The latter routine has been taken from Allerup and
Sorber (1977).

PMLCHI administers the computation of the Martin-L&f
chi-square test but most of the computational work
is carried out in

STORVA and in the two SSP routines

DMFSD and
DSINV which invert the variance- covariance matrices.
EBACHI groups the score groups and computes the Andersen

likelihood ratio test by calling PAREST as many
times as groups found.

7.5 Dimensioning of the program
|

The version which is delivered is dimensioned for kmax=60.
Dummy dimensions are, however, used almost throughout so it
is easy to dimension the program for both smaller and larger




problems. The following arrays must be changed in MAIN with
K as the maximum number of items:

INTEGER V(K),VMD1(K),VMD2(K),NIS(K, K) NR(K) AOI(K)
INTEGER*2 LIST(K),KDIFF(K)

REAL*4 wK2(2,K),W(K)

REAL*8 EPS(K),EPSI(K),G(K),GI(K,K),WK3(3,K), THETA(K) SAVE(K),
. VARKOV(K#(K+1)/2) -

In GAM there are two arrdys the dimensions of which must be
changed:

REAL#*8 X(K),Y(K)
and in GAME ghere are three:

REAL*Y4 E(K),X(K),Y(K)

Since the program tésts that no attempts are made to aﬁalyze
greater sets of items than it is.dimensioned for an IF state-
ment- must be_chénged too. This test is made in MAIN immediate-
ly after the variable list has been read.

Furthermore, in any impleméﬁtation of -PML there is one more
array the size of which must be considered. As was men®ioned
above on page 53 an array is used to store as many matrices

of second derivatives of the symmetric runctiqns as possible,

- This array (STOR) should be dimensioned to be as large as the

available core allows, It is also necessary that the size of
STOR is represented as the integer constant in the statement
immediately preceeding the call to PMLCHI in MAIN.

7.6 A sample printout

On the following pages a sample printout from a run with the
non-0SIRIS version of PML is shown,
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K1

NUMHER SERIES

Lo " FOLLOWING PARAMETENS OVEPRIDES THE DEFAULTS:
1 ' ’
4 “
&, R ?" = *
012-020¢

NUMBER OF ITEMS.ueeereovesiles 9 '
MAXIMUM NUMBER OF ITEWATIONS,, 24%0
CRITERION FOR CONVERGENCEoooes U.0010
THg SYMMETRIC FUNCTIONS WILL AE COMPUTED WITH Tw PIFFF=ENCE METHOD,

THE AITKEN EXTHAPOLATION wiLL Wt USED TO SPEEN UP CONVERGENCE o

SCOME GROUPS wiTh & OR FEwel PERSONS aRS NOT CONSIDERFD IN ThE PLOTS OR THE HINOMIAL TESTS,

-

.
Py 4

Page 2
TnF FOLLOWING VARIARLES ANE INCLUDED: .
vaQ NAME TLoc
NUMKER SEWTES JIEM 0
{g NUMRE W 5&&}%5 IYEM }s ;u
s NUMHER § n}tb }7EM la 04
15 NUMAE W SEw]ES TTEM 1S 109
fb NUMAE W SEwWTES JTEM {o l{?
7 NUMAE @ Sk“{t% }TFM 7
. 1% NUMKER SEwriES Ttn 14 112
19 NUMIFQ 5&~1€S I! MYy 113 .
¢c0 NJMAFR SEwItS TT1FM 20 1le
"“‘“‘35“ UF CASES uﬁ"l)........t'......... 566 ’
NhMER OF CASES wlln LF ko) SC')NE....” 5’-‘
NUMRER OF CASES wlTh & FULL SCOnfeoevee L1

MUMMER uF CASES WEMAINING FOk AwALYSIS, LY-1

>
i




* Page 3

VAR NO VARTAHLE NAME FROFPURT TON CORRECT POINT RISERIAL CORRELATION
12 NUMBER SERIFS 1TeM )2 0.578 0,530
13 NUMHER SEKIES 1Tt™ 13 0,716 0,440"
14 NUMRER SEWIES [TiMm 4 0,597 0,694
15 NUMRE KR .SERLILS JTEM ]S 0,678 0,657
16 NUMAFR SEWIES 1TEM 16 ©0,55¢ 0,503
17 NUMKER SFRIES [Te™m 17 0,512 0,464
B NUMRER SEWIFS 1TEM la 0,516 0,556
19 NUMRER SEWIES JTEM" 16 0,656 0,518
20 NUMRER SERTES 1TeM 20 L b.501 2 0.510

- Nonuntfou UN VaRTanLE 16 N

THF RELIABILITY (Rw=20) IS O.he
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TrE 1TEM BY SCOREGROUP FRENDUENCY MaTRIX OF CORRECT ANSWERS

,@0 1 Z 3 - 5 ° 7 8 .
12 0 T 1 35 3« 31 63 11 2n
13 B 16 30 35 52 S .65 79 338
m o B 22 .29 31 39 es 75 280
15 9 13 30 ¢ 6 e+ 68 80 318 *
16 0 & 11 3F 3 &1 & 8o 259
17 5 9 1l 20 30 38 S5 11 260
18 S 2 T 19 31 s &1 T 2e2
19 2 3 15 13 6. 31 LY 73 r4 L)
7 5 6 14 14 en 3y 55 T4 235
3 35 b3 5 65 60 T 8%
- L J
NUMKER OF - JTEMATIONS FOKN CONVERRENCE 3 4

GBVVQOUVBIUNVNLNENNOIGNIQRGS

This is the maximum of the logarithm of the likelihood

bOGLIKE = U, 1690032891Neye o
N function.

o,
..-".....................9..'

L]

n
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v 3

e 5 .
H
* ITEM VARAMETERS
;au.uo UNITY NORMATION  PRODUCT NURMATION  BRODUCT MORMATION(LOG)  STANDARN EWROR  CONFTDENCE INTERVAL (95 .
12 1.13370 . 1.04068 -0.03987 0.10858 ~0.25268 0.17294 .
13 2,395 24106410 -0,7720¢ v.ll618 «0.9997] =0.54430
1e 1.26718 1.14084 -0.13527 0.10919 -0 .36928 0.07876
15 1.902v6 1.74599 -0.55732 0.11323 «0.77926  .=0.33538
) 1.00000 V.9179% 0.08562 0.10794 -0.12595 0.29718
” 0,82239 0,759} 0.2R116 0.10732 0,07ud} 0.49151
18 0.83%37 0eTI069 - U.26072 0.10736 0.05029 0.47116
19 0.63178 0.5799¢ 0.56453 . 0.10719 0.33476 0.75492
20 0.78152 0.71739 0.33213 0.10123 0.12196 0.54230
Page 6
ARILITY PARAMETERS
sconepnoouc' NORMATION  FRODUCT NOWMATION(LOG) STANNARD EHROR  CONF INENCE lN?YERVAL(% LY
1 . 0.1l69B ~2.14575 1.07098 ~4.260487  =0,06663
2 0.27317 -1.291765 0.81468 ~2.89042 0.29911
3 0.48783 -0.7177v 0.72088 «2.13071 0.695)3
“ 0e 79557 -0.22869 0.68449 “1.57029 111290
5 1.¢6563 0023557 0.68370 ~1.10648 1.57562
6 2.05961 veT2252 0.71864 -0.686503 2.13106
7 3,662 3 le¢9811 Ue81142 =0.29226 FLITY |
B H.0911k 2.13903 1.06722 0.08728  4,23077 |
< NUMRER OF ITERATIONS FON CONVERGENCE OF THF AMILITIES: 36,
ON THE LD SCALE Tnb MEAN OF Trb SAMPLE 15 0.3 WITH THE VARIANCE 1463

Tets
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0

Ve db

Vel
VelC
0.00L
delu
0,00
U. 00
Ve VO

d

PrOEARILLTY Uf ORTAINING A CEKTAIN RAW SCORE GIVEN THE BERSON PAQAYFTER
RAW SCURF '

i

039
Vee?
Ol
u.03
Vel
Vet
0.uY
0,00

P4

.
V,2y
Ue 3l
Qecé
dell
Ual4
V.01
Beul
A\

'Y

3

V.06
vecl
VeeH
V.22
Vell
Vo3
V.00
V.00
7

Ve 362847 3¢hec300001
D,6]anaysnbTalnbibDsie
VelU193404¢ 15945590003
Velbel101T700169160De03
Ve l5323]898K0MSINO{1eU ]
Vel00161T49 VY TIciDoud
Uat]19807¢6)51 30270002
U.969934T61 1vakssvLeul
0.100000600G00LVVOVID V]

~ ” e

’

L) S 6 7 ] 9

0,00

Oev0

0.u0 g
0,00

Vevy

V.02

0.10 . .
V.34

V.0l
UeOY
0.21
J.217
Uecl
V.10 0,21
0,02 .09
Veud 0.0l

N.90
0,02
V.10
0.21
v.27

0.00
0.00
0,u3
Veil
Vecl
VelH
0,21
0.00

0,00
0,00
veol
0,0
Dell
[y
V.3l
0,20

0.00
0400
veun
0.0l
Go03
Vell
0,27
0,39

THE VALUFS OF THp SYMMMETRIC FUNCTIONS
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gﬂm GMOUR  FRt yugncy
2

VARLARLF N §o, NUMREW SERIES ITFm )2

CONRECT JANSNERS ORSF#VEN PINPORTION

PREDICTED PRUPORTION  pevaLup.,.
26 0.0 04 106 U.0)e :
5 33 lZ 8.528 gggsg §.£égf T00 L.Ovw ORSERVED Phup
- * ] a ) *
; 23 32 8.35; : 8.;:7:: 3.3%3 100 MI6M ONSEWVED PHOP
o " 37 ¢ st 0,686 V.155¢
7 17 4 . 0814 "0¢ .
7 i 44 380 T 5 B
| The table shows the results fpom the binomial tests;
' There is of course one table for each item,
\ . ’ ¢ . ,
A v .
[
. .
O
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] Vol v.2 0,2 0.4 0.5 .6 0,7 v.8 0.9
AepK]S: PYEDICTED PROPOR T [N

VARTABLE MO )2 ~u~~fw SERIES ITgm j¢ \
For each item a printerplot e the one above is produced. The symbol

X is used to mark along the Y-axis the observed proportion, and the
symbol I is used to indicte the predicteq propertion, i,e. the I's are
placed on the diagoral. W-en the ¥ and the I coincidg an M is rricteq,

134

5




Page 11

TuE SCOWE GROUKS CONTRIRUTE TO THE CHI-SQUARE SUM 1% FOLLOWS:
SCORF GROLP NUMBER OF OdSERVATIONS CUNTHRIBUTION

1 s 36 13,054 -

P 35 6.l6] ' .

3 53 10,573 .

“ 50 15,750

5 65 JeaTH

[ [ H.493

! 7 5.A15 ’

-] 3} Se70% ' .
TwF “;&TYN-LC“ CHI=SQUAPE GUODNESS OF FIT TEST GIVFS rel=SQUARF = 66,032 WiTw S6 FGIEEN (F FREEDOM. PO, lodle
THE WEDUNDANCY I53 UeD195 359 '

!

I
THF MINTauMm LGMEp < OF ORSENVATTONS w]TH]K EACH GRN IV AL LOWED wHFN COMMUTING TrE LIAFLIWO0D RATIN TFST 1S )00
Tue FOLLWING GRuUGHING AS AFEN USED

Y ANGE NUMBER OF UBSERVATIONS
1 =~ 3 len MNuMHE S OF [ TERATIONS FOR CONYVEROGECH !
« - & Jul i LUMEES OF TTERATIONS Fir CONVE diop reld ¢ "
7 - ] loe hUMEER OF TTewWaTIONS FOR CONVERGENCE ¢ fv
- ’
T L1K=t1940h HATFO GDODNR LS OF FIT TEST GIVES (HT=S ) A} = e Uit w]lA o DEGWEES OF FepppomM, Pz, 0nG]S,

T=b Re{iunpanCy Ise Veu0l]lun3 : N
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ERIC

1.7 The source code of the non-0SIRIS version of PML

......................0.....0.........0....0............................

PRPPPP “ M t
kd P MM M L e A PROARAM wRITTEM uv JAN=ENIC

8 v MMM t HUSTAESSONe [usTITUTe OF
PPPPLP v omoM L £NICATION. UNJVEWRSITY OF

P v ™" L GOTFROKRGS DFCEMRER lwe 14717,
] - " L

P ™ “ it

.O'C.....'.C'.OQC!:OCCQOQCCQﬂCCQﬂCCs d00000000000.0000000000000000..0..00
THE PPOGRAM COMPUTES CONDITIONAL marimum [ TeFL 14000 FSTIMATES OF
:;$A;;s§u§ IN THE DICROTOMUUS WASTs MODEL AMD PFnFOnMS HOOINESY UF

RFFERENCES
ALLERUP - Poe & SONBFRGL(1G7T) ThE waSCn MANEL FaP_OIESTIONNAIRES, wiTH
A CUMPUTEW wrlibk AM(ZND En.). NanlSw INSTITUTE FOR EDUCATIONAL

;s AMCHe COPEARAGER e LYwll,

Fl&cw; eGery (1974} thFUthh 1% Dl TuFORIE PSYROLOGISCHER TESTS,

N OVEHLAG MANS ML WE

MAKT (M=t BF ok, (1473} ?tnl"sfl'ﬂu MOOFLLFR munst}cu MOOELY) o
MIMENGRAPHE D, TRSTITUTET Fov FO*HAK~INGSnx1£*A [k OCH MATEMATISK
STATISTING STOCKNOLMS UNIVERSITET,

.O..OC........DQ..G.0.09000‘ﬂ.ﬂG..Q...9................................

THMIS IS THe NON=OSTRIS VEXRSION OF PeL.

.0.000CCQQCCQQCQQQCCGQ\)OCC900001’0“a..CIO\0.0000000000000000..000.00.0000
THE CONTROL CAMOS ARE HEAD FHOM UNIT |

POlNTEU OUTkYT ON UN 1. ¢
UMARYS ON LNLT 18
NATA ON UNIT e

WHEN THF pakamETEW TESTICHIS IS CAoSEN 8 SCRATCH L
(UNll 12) FORTHINARY kb ADING AND wo{TING IS USEN F)u LARARER PRORLEMS.

00 Q9000 ROLOOBLLLLOOL o1.00»001.vooov.'000000n.o.ooovo.o.oon.oot.onoooooooooo
YnE FHL}ﬂalhu {1 {MFASTON sral.ur\l y=OULe) nFFle AN AAY I~Al 15

S LARGE A9 Tk AVATLAALE (0Wb BLL WS, Te€ w[fF CF Tuf awkd
A0UEn RS0 wb wp okt SpaTE( AS TeE [rTF BN CONSTANT 1 Ths xtATFMfNr
'""E"“'EKY BRECENTNG THE CALL TO worcnl IN Tre malt PROGKAM

ﬂf"ﬂﬂf!ﬁﬂf"ﬂfkﬂﬁﬁfﬂﬂfﬂ\ﬂfﬂ1ﬂfﬂﬂfﬂﬂfﬂﬂﬂfﬂﬁﬂfﬂﬁﬁfﬂﬁﬂfkﬂﬁﬂfwﬂﬁfuﬁﬁfﬂﬁ

¢ OI%enSTON STUR(Iee30U0)
* INTEGFo 1anEL (20)e TLOCUIS)I o IVAL (1S) o ISTH 1) eV AN,
qunl(bol-vnc*(hU\.NlS(hn.hO)-N (A0 e 81 (61) «Sw

taiw sl(bO).r| EF (HU)
ﬂbA oH Vz(( ’.JNU(!:’H G
FESED0) e FPSTUEN) eGS0 et (MOeBU) ob L [0V swx .
1T TA(HU) anwwQueNAYS (AY) e BRSOV | 1 3Y) L w3360 K
NKE Y215
rRINTZY
NEz ]
10ul=h
KMLizbU

wFAD Thl Pl Tew= 28D TIT e awuy

W=}
WEAD (T e j UG ass
1000 Fuuqarfrhaa: t t
WALTF (he LUNY) ¢ &MEL
1001 FOWMAT (Lo e” 1K e?Uln)

¢ DEFISE AN [0THwpkb T Tre aravr Thws

CaLl O IR Y (IvAL olrr e IOUT ViR Yoyl U)
LIsDIc=1vAL (1)

MAX=zIva c 2

bz, o/luvogvaL(J)

Mf TNz lan«a

IURECZTVAL (%)
IIFHT:IVA_lh
FINTTVAL (T)
;r'd!:xvaL(k)
STawt=zlval (v)
e X=tvaL(lu!
MitST=IvaL ()
NGeSIVAL (2 '
N JaRIL=fvaL (i,
NUBMz VAL ()
¢ IDFSCuzlvat (19
C uFan TwF VAP{ b LIST
CALL LTI A 15T elta il ey
- lF(uv T abu i Ny Lt o200 Tu 40

2 PRINT GUT Trb (ONT2OL G EURMAT IO

>4
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WhITF (
§002 FO&MAY
3

1003 !nknAl('

~100a

1
SlUGCINY AR ] oF WADW
SUMURREE OF [TEMS L 1o( 0, 0) [ny/s MAX[MUM NIMRFK (OF
B/ culv£u4u~ FUR CORNVECOENCE o 0puo b oF T,e)
F(uf!nvg Lus 0 wrlTr (6e gl
Fre *SYUME T 16 FUMET TN WILL HE COMRUTEN wITH THE (1]FFe g
lNgF ME Toppn, v .
IF (MF HUﬁfEU.I)hPlTFquIUU“)

FGR¥AT (v e SYMME T FUNCT JONS wILL HF Come
10N METROp, )

f
; ITExATIO

UTFD WITH THE SUMMAT 1

FAMETHONE g b, wth, BubCob Qo)W [ TE (64 100%)
100y }OP“AY(' u0u5&3 V~EJI$IUN AH{T:vfllr WILL TRE USEN, 1)
5r(~rtwnu.tu. cALDYIMOEC H QL 1) anITF (64 1G0K)
1000 CRMAT (v SINGLE Bt CISTON AITHYETIC wipL Hf USFD, )
1007 18&52;?760§?' égusitfh'éOQZé) AN STaRTVALUES FOn THE ITERATIONS,.')
HE s TVALUE 3 o
TFCLEXLEQO, LI mRITF (B [OUR) .
1004 158??‘1}'07“5 ATTKEN FXTRAPOLATINN wiLL HF USED TO SPEED UP CUNVERG
}F(iﬁ{N.‘G.ﬂ.nR.lPLOI.FQ VIaR{TE (64 1012) M0AS
lole Foomat(#ySCneE GROUES wifno 1. On FruFR PFRGONS AWE 1,
1* NOT CONSTOFRED IN Thf

¢
¢

Y O

[alaiale e NN Ye Yol

[alnlel

QU
L1i3]

%10
91

999

PLOTS 0% THF RINOM] AL TEQTS, )
PEAD THF DaTa
Cay uEAb(NV.LlST'v.VMDIovnue.Llsnlc.xunx.wxe.nol~NH1NIS-NOQM.
1 N}NDOIN“olUUT)
IF (IDESCHLEQ.0)STOP

COMPUTE STAwT=vALUFS ACCANDING TO THE VALUE of [sTART
CaLt STAPf({»S.K.NR.AnIolSTANToNORM~Ll<!)
4
FSTIMAIT ThE [TemMm PARAME TE WS

caLL PANFST (Mt THOD e [PHFCe |F
p;ny.wu.nlsox'rlst.lrtu.xnl
wH1TF thelUl0)FL IKF
r()uunf(l-o._jt)(lol)/]x.lol.?
IDIRL 1Us? o0/ xer01 208K 101y
00 16 [=1.x

SAVE (1) =t PS ()

FPNeEPSenne] CMAXT «FRIEORN
WK JoeNi)NM)

X
F
T * LubLIkg=0,

o
F
lo"'/llo"'o?ﬂlo"!/ll!'
lo""02610'9'/11030("'))

ESTIMATF Twg ABIL ITIFS ann PRINT OuT JHE PARAME TFRY
Y MAXPzGeMLX ]

€att PH*S(U’Q.&“SIOTH}'AoK.MAX"oLPQﬂQoNHoVKSoLISYoJAHlLo(a)
IF ASKED FORe TWVESTIGATF £acH |FEM

IF(lﬂIN-fU.U.ON.IPLOT.FU.UDCALL ltrrST(lHlN.ruLor.SAvE.G.nl.x.
lNQO“]SoaN(oNOL]ST.NH»“HlOllT)

TEASKED FOle COMFUTE THE MAKTbumLAF CHI-SAUARF TEST
KhlzKe(xe]) /2

THE INTFGEr CONSTANT
GF THE AQRAY iNTOR' &
SHOULN HFE 8% LakGE &S P

NIPANZ43000/%K)
IFLITFSTptie ) 0
l‘-’sloKoNlSohwo\
ZAKTeNINf oW L TR

OWlnNG STATEMENT SHON D RE  THE SIZF
DTS THE ETwST STATHVENT aND [T

-

et - &
~ Te
X .
-
< v
LRV
——
Te
>
—
e
o

CALE PML O (SAVE otvgGT o
Tnun.loufc.LIS§.§fﬁ HTRAD

IF ASKED Foke CrmpuTE
”

FeRCwz] 0/ 0ve]
L I S I I Y PO )
ErSeF St givate] oM
VMOZeL TSTASMINS
cu 10 9y

“]JTF (64901
FORMAT (*OTH) Frw (W
stoap gay,
WHITE (6eG) )

E?zznllaufwun& ON THE FANAME TE K Canne)
STow
[ 2%

) CALL FHACHT (METHODGIPRECSTEX o
VMO LeNTS eXeFLIRE e WK 3o NORM ¢ NR o

—% T <

Tun MANY TTFMS SPECIFIENY)

SUReCUT IE wF AT, ok,
I NINDe AR o H0T)

I3

Ll<1ov~anl'vﬂ02.|lsnlr.WVAx.u«.AOI.ND.NIS-

. L

i
S TeF TATA ANt F o THE IThu WY SCowt -ap L Fay )
THISERTEL CORRRUATTONG ake | aLal CaomygTER0 AUENCY natera,

VTHEFE GOLLSF
MENSTO weti¢en)
e TIST oy

k'bvN'lYPt ofVNOV(“OVMDI(I)OVMH((H-

v

Na v (h)'(‘l)l(l)oNH(L'Do

220022
X2C V=D n
-~ -~
— e

———

Lo
(Lo o™

L L X — ol TETI-Y- S
He o
cxx
—
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c . N
E PEAD THE DICTIUNARY aND THE CASES
CALL GFVDI((LlSDIC-NV-lNP-IUUIleST) .
1 CALL CASE(VenL) .
IF (AL NE.0)GO TO 11
&R:o
0 10: I=f.x
10 lw:xn.v«]»
AF(X «EQ, 0 UhoIW b0 8)GO TO 2
UMSSUMe

¢ Suwazsuw o1u~~e
g lNCQt"‘NY THE NIS-mMATH]X

.8%%%lﬂ'ﬁ;uux) (1)

. =0 13 ey

2¢ HK(IOV(]).I):HK(loV(ID-l)olR
NlND=N{NDo .
60 T0

2 TFECTHOFQLUYNNOLL ENNOLL o }
lF(lR.iO.K)NFULszFULLOX
GO To

él CONT INUE .
NTOT=NTND » NNUL ouruL .
d“lYFti 002INTUToNN gL. FULL «NIND

lvo2 FODMA1('-NUMnEu OF CASES READYe}9 (!

-).éﬁt/o NUMBER OF CASES wWlTw
1A 26RO SCOPFIGe (0 o P elB// 0 NUMHER OF CASFs w]Tw & FULL SCuWk v,

L IR NS IS L Y¥X) Nuwurw CF CeSES KEMATINING FOw AMALYSIS v ]m)
C COMSUTS Tet wOw AND COLY MM VECTNWS

0 30 I=].x
DO 30 Jgz=].x
AOTLT)=A0] (1) eNIS(J0])
30 NRUII Nk ([) e IS (1)) .
0O 44U J=zlewwv]
80 NR(IY =My /T
g SELECT ITFM FOk NOWMATION
IFANOKRM ] w60 T 6b
00 90 [=lex
Vili=anlit1
S0 Nl (ry=] 4
NO 60 I=lexm]
L=r=~]
DU 60 =1L
. 1%=I~J
I (VI =vIIU) ) bUebl NS
55 IHP}:V(])
. ISEZS=ymDl ()
VAL VI .
YRR =M (T )y
ViIu)z]sK)
VMD LT ) =] Ske
ol CAONT INUF
NRMz (Kel) /e
NQORzyM | (N(wM)
GOTO kY
69 CONT T U
fin 1 1=1
1F (NOWM ‘J.LIST(I))bO To on
67 conv T Inul

= TTH(belUld) . -
Lol Fawmariogipwd e SELECTED F0% UNTTY NOMATION 1S NOT lk'
PO oThF var]ants L1sT 1)
STrR Qe
[-1-] NOPMz§
69 CUNTINUE

COMPUTE ANT pR INT THE me=g(e Tre POlT=RlSFRIALS Ann BHOPOWTIONS OF
CORPECT aANSwErS,

SUI?ﬁQTl(SUMH—(SlM'v?/NINH))/(NINJ-)))
t(oelnyy
1903 CORMATIY [vAK (G VARTAELE 'vAME Yo | 3R« VWROPO T TON CORPECT VY eux,
1RO INT Q]\}nldL CORKELATT NG
bxxsn,
DO T0 T=]ex
PROP=ANT (1) e (0 /M ]N
HAX=WAX abp(10e (| L =Ppip)
”ﬂﬂ’c=((wﬁ(/cl)/AOl(l)'wK(loI)/(Nan-AOI(l)))/SD)“
)

[alalelel

1Suk (DHUH\'(], -bWNP) )

CALL GNAME (ToNAME) -
Tu WRITE (o0 LUNGILTSTIT) oNAME «PRNP ok ]S
l1u0we FORMAT (000 [houneShaef |5, dup |,

wWeTTE (R 10UST | [ST (INORM)

RAX=ZK® (Gruolupxa;/((K=])os0az)

bhelll

1611 ?ﬁéunfd/} IR PELTAMILITY (KN=20) 150 ,Fh. )
éuus FORMAT ( *UNOHKMATJON ON VARTAHLE ' e [5)
C PRINT THF NIS-MATR]X
C

Wi TF(bolUOH)
1006 FORMAT (1] sCUX Y THE [TEM HY SCONFGR OUD FHREJQUFMCY YATHIX OF CURKECT

1 ANSwERS Y

NPPINT=z (KM]=1) /1841

IPRINT =]

7 IFCIPRINT kLU NPRINTIHO TO 8

LeIPRINT®]R=]17

Mz[PR[NT | K

WRITE (he] 0O ]) Lpo]h LeM)
1007 FURMAT (777764 )

ungﬁ(b.lOlU)
1010 FORMAT(Y vaw,NQ?)

138




i 00 ?0 Jz] ek
80 WRITE (helUpa) LlﬁT(J».(NlStlw.J).luzL.M)
WhITE (64]1009) (NK(Tr) e IRz o M)
lvos Fo NA1('0'-15-11-19]h)
1009 FORMAT (100 .hky18]6)
IPP4NT:]PRINT0l
60 10 7 .
T RTINS
f . { s =L oM
uanE(b.lOlU) IReTu=Loxml
T TS 100 o F1 S
. o) L] (l)c(le«lﬂ.l).xn:L.Knl).Aul(l)
, v RRITEL(621009) TNR(TH) ol onu]) -
. Ny 100 ;=l~n L,f !
S 191 }Ffﬁﬂ}t,}r”é”gé‘?66”°'°° /
ey A GG, .
& 100 GONTINUE . i
WFTURN - 4
The fRlGin2: /
- MAT(PUTHEHE AWE (FHO AND/ZOR PERFS LS,0 .
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