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. ABSTRACT

The report describes the Rasch model for dichotomous items,

or the one-parameter logistic model, which is the simplest

of the psychometric latent trait models. In the Rasch model

each item is described with only one parameter, the difficul-

ty, and each perm= is described with only one parameter, the

ability. In Chapter 1 the basic features of the model are

spelled out and a comparison is made with other, more complex,

latent traits models. It is concluded that the Rasch model

has decisive advantages over the other models with respect

to interpretability, estimation of parameters and possibilities

of testing assumptions. In Chapter 2 is shown how conditional

maximu likelihood equations for estimating the item para-

meters can be derived and it is explained how the numerical

problems in solving these equations have been solved in a

computer program so thait estimates can be obtained even for

large sets of items. The same chapter also deals with the

estimation of person parameters and how to establish confi-

dence intervals for the estimated parameters.

In Chapter 3 goodness of fit tests based on the conditional

estimates of the item parameters are presented. A graphic

test of item fit is described and two overall numerical tests

are taken up: one likelihood ratio test and one chi-square

test. In Chapter 4 strategies and problems in developing

scales fitting the model are discussed in relation to analyses

of some tests developed within the framework of the classical

psychometric theory.

,Chapter 5 presents some areas of applications of the Rasch

model suth as, test optimation, test equating and linking, and

tailored testing. In Chapter 6 some generalizations of the

basic model are briefly taken up; it is mentioned that models

can be formulated also for the case when there are more than

two categories of answer and that a general linear logistic

model zan be used to study the sources of item difficulty. In

Chapter 7, finally, the computer program is presented.
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INTRODUCTION
9

In a discussion about prospective developments in item sele.:-

.tion theory for the construction of mental tests Gulliksen

(1950) stated that: "A significant contribution to item ana-

lysis theory would be the discovery of item parameters that

remained relatively stable as the item analysis group

changed..." (p. 392).

This problem has been solved, along vith several others,

within a class of models generally referred to as latent trait

models (LT models, or modern test theory; other names some-

times applied are item response theory and item characteristic

curve theory).
N.

For different reasons, among which the nathematical and nume-

rical complexities involved probably are the' most important,

LT models have not yet been widely applied in the development

and use of tests, even though the last few years have shown

some evidence of a change.

There is in particular one LT model, various2y referred to as

the Rasch model or the one-paraMeter logistic model, which

has been applied in solving practical problems and which.

holds special promise for further usa. This report presents

the Rasch model and indiCates at least a selection of all its

possible uses. Also presented is a computer program for con-

ditional maximum likelihood estimation of parameters in tke

model and for computing goodness of fit tests.

8
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Chapter 1 //
BASIC. CONCEPTS AND MODELS IN LATENT TRAIT THEORY

Although the basic tenets of LT theory can be found in early

work by Lawley (1943) and Lord (1952, 1953), the breakthrough

came in the sixties. (For measurement of attitudes, however,

Lazarsfeld very early formulated and used the closely related

latent class model, see e.g. Lazarsfeld, 1950;. During this

decade Rasch (1960, 19b6) forMulated his model and the com-

putional problems in relati4n to the model began to be maste-

red as well (Fischer & Allerup, 1968; Wright & Panchapakesan,

1969). The sixties also saw the advent of the Lord and Novick

(1968) treatise in which five chapters (four of which were

contributed by A. Birnbaum) dealt with LT theory.

In the last ten years a host of papers has also appeared

dealing with specific questions, and rather simple, relative-

ly non-mathematical introductions to LT theory have appeared

(e.g. Lybeck, 1974; Willmott & Fowles, 1974; Kifer, Mattson

& Carlid, 1975; Baker, 1977; Hambleton et al., 1977) as well

as at least one proper text book presentation (Fischer, 1974).

1.1 Three logistic models

Common to all LT models is that one set of parameters is used

to describe the items in a test and that another single para-

meter represents ability. An underlying psychological trait

or latent continuum is thus assumed on which the standing of

the examinees differs. Another thing common to all LT models

is that a function relating the probability of a correct

answer to an item is explicitly stated (the item characte-

ristic curve, ICC).

The differences between the models reside in the particular

choice made of parameters describing the items and the kind

of function used for the ICC. Two kinds of ICC"s have been

9



.tried, the normal ogive and the logistic function. However,
since the logistic function is mathematically and computa-
tionally much more tractable than the normal,ogive the three

most cop9only used models are all based on the logistic

function, with' the difference between the models residing
in the number of parameters used to describe the items.

The one parameter model

In the simplest carry one parameter is used for each iter,f

its difficulty. In order to describe this model we will need
the following notation:

= The difficulty parameter of item i.

= The ability prameter of person v.

f.(E) = The ICC for item i.

Avi = A binary response variable with the

value 1 if the answer of person v to

item i is correct and the value 0 if

incorrect or omitted. A particular

realization of this stochastic

variable is giyen the algebraic

notation avi.

k = The number of items in the test.

The one-parameter model, or the Rasch model, asserts that the

probability of a correct answer by person v to item i is:

exp(Ev-ai)
(1.1.1) P(Avi=11Ev,a0=

1+exp(Ev-ai)

The higher the value of Ev the higher the probability of a,

correct answer and the higher the value of of the lower the

probability of a correct answer.

10 0
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?rom (1.1.1) follows that the ICC for an item i in the Resch

model can be written:

(1.1.2)

r
1(E-ai)

4si(E): 4

1+exp(E-01)

Two ICC's for this model are shown in Figure 1.1. Throughout,

the curve for the more difficult item is located under the

curve for the easier it4m.

1

*td
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.
Figure 1.1. Item characteristic curves for two items (o1=- 1,c2 =1) in the

one-parameter logistic model.
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The question may 9f course be asked as to what the parameters

I/
in the model me n and wnat reality this model may present. A

very concrete xample which illustrates this is the Flogging

Wall test invented by Lumsden (1976) as a tool, for thought

experiments in test theory and as a "test for test theorists"

(p. 251).

Along a wall at intervals there are k flexible canes attached

at various heights. The canes flog slowly and independently

up and down. In taking the test the examinee is placed on a

cart. whicti is drawn quickly along near the wall and the

examinee's score, to be used as a measure of height, is th*

number of canes which touch him (see Figure 3.2).

""... \

liP

imE

Figure 1.2. An illustration showing tr Flogging Wall test (cf Lumsden,
1976, p. 252).
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With one assumption, namely that the canes flog with the same

amplitudes, this test would fit the Rasch model, with he

height of the examinee as the ability parameter F
v

and the
'

heights of the canes on the wall as the item difficulties

As will be shown later the Rasch model furthermore

implies Uhat the examinee scores and the cane scores (i.e.

the number of examinees which a cane touch) can he used to

obtain separate estimates of the parameters.

The two- and three-parameter models

In the two-parameter model (or the Birnbaum model as it is

sometimes called) another parameter (ai, i=1,...,k); the
4

discrimination parameter, is intrdduced which allows the

ICC's for different items to have different slcpes,The

ICC for an item in this model Can be written:

(1.1.3)
expa.(C-0.)

fi(q)=
1+expa.r. (C-a1)

Two ICUs for the two-parameter model are shown in Figure 1.3.

For the item with a high discrimination parameter the slope

is steep, while it is much more shallow for the item with

the low a
i
parameter.

We can use the Flogging Wall test to illustrate the meaning

of the discrimination parameter too. This parameter would

reflect differences in amplitude of the flogging of the

canes, i.e. with this model it would no longer be necessary

to assume that all the canes have the same amplitude. But it

should also be pointed out that with this model we should no

longer use the number of canelb touching the examinee as an

estimator or his height (ability), but instead weight the

score on.each item with its discrimination parameter.

13



Figure 1.3. Item characteristic curves for two items (a1=-1;a9=1;af.5,02=1.5)
in the two-parameter logistic model.

Lets return to Figure 1.3 for a moment. Inspection of this

figure (observe that only a part of the ability continuum is

shown) shows that for low scores o4 the ability continuum

the probability of a correct answer asymptotically approaches

0. This obviously implies that this model, as little as the

one-parameter model, can be expected to properly represent

the case when the items allow guessing.

A third model, the three-parameter model has been proposed

in which another parameter (wi,i=1,...,k) is, introduced to

prevent the lower asymptote of the ICC to approach zero. The

ICC for an item in this model can be written:

(1.1.4)
expai(F,-ai)

1 1 1
1+eXPa1 (F -a1 )

14

)



Inspection of Figure 1.4, where two ICC's for the three-

parameter- model are depicted, reveals that the curves approach

the, value of w
i
as the lower asymptote (compare the grapt's

for item 2 in Figure 1.3 and 1.4). Since the lower asymptote

can be taken as the probability of obtaining a correct

answtt obtained by guessing, the parameter wi is often re-

ferred to as the guessing parameter. In can be noted, how-

ever, that the estimates of the parameter typically come ou4-

lower than the values that would result if examinees of low

ability were to guess randomly. For this reason, which Lord

(1974a) has attributed to there often being "too attractive"

distractofs, it has been argued against labelling this para.,

meter "guessing parameter", and instead considering it as the

limit of the lower asymptote of the ICC.

1.0

Figure 1.4. Item characteristic curves for two items

(01.-1,02=1;a1..5,a2.1.501=w2=.25) in the three-parameter

logistic model.

15



1.2 Assumptions underlying the LT models

All applications of LT models imply that in one step or

another parameters included in the particular model chosen

are estimated from the responses of a group of persons to a

set of items. These parameters have a number of desirable

properties and when they are at hand a number of problems

can be solved which would even be difficult to formulate

under the classical approach to test theory (see chapter 5).

However, there are a number of assumptions that.must be ful-

filled in order for any reasonable estimates of parameters

to be achieved, and any sensible application to be made. The

three most important assumptions are those pertaining to

the dimensionality of the latent space, the principle of

local statistical independence and the form of the item

characteristic curve.

Unidimensionality

The three latent trait models spelled out above, and several

others, are all based on the assumption that there is only

one ability underlying examinee performance. The meaning of

this assumption can be explained as follows (Hambleton et al.

1977): Suppose that a test of k items is to he used in r

subpopulations of examinees (an example for r=2 is one group

of boys and one group of girls). For any particular given

ability level the conditional distributions oftest scores

must then be identical if the test is unidimensional. If,

however, the conditional distributions vary between the sub-

groups this can only be because the test is measuring some-
'

thing more tnan a single ability.

With respect to certain tests in common use, the assumption

of unidimensionality is certainly untenable. It can, how-

ever, be claimed that a test should be unidimensional since

the resulting scores are otherwise more ur less meaningless

(Lumsden, 1961, 1976). McNemar (1940, also quoted in

Lumsden, 1976) expressed this in the following way:

16



"Measurement implies that one characteristic at a time

is being quantified. The scores on an attitude scale

are most meaningful when it is known that only one

continuum is involved. Only then can it be claimed

that two individuals with the same sccre or rank can

be quantitatively and, within limits, qualitatively

_similar in their attitude towards a given issue."

(p. 268).

The same line of reasoning certainly Also applies in the

measurement of abilities.

It can be asked how one can make sure that the items intended

to constitute'a test are unidimensional. Factor analysis of

the items is a method that has been used to investigate the

number of dimensions involved in taking a test. Lumsden

(1961, 1976), specifically, has argued in favor of this

method.when attempts are made to construct unidimensional

tests and several authors have reported arplications of

factor analysis to assure unidimensionality before pro-

ceeding with an LT model.

The method is, however, not without its problems. One prob-

lem pertains to the choice of measure of association between

the items. The phi-coefficient is commonly used but this

measure has the. unfortunate characteristic that there are

limits on the numerical values it can attain, with=the limit

varying as a function of the marginal frequencies of the

items. A consequence of this may be that even a strictly un-

dimensional test may appear as multidimensional in the factor

analysis (Ferguson, 1941).

The tetrachoric correlation is another measure of association

that has been used in factor analyses at the item level and

which is not limited as to the values it can attain. However,

matrices of tetrachoric correlations are often not positive

definite with breakdowns of the analyses as a common con-
.

sequence.

17



Another problem when factor analysis is used to investigate

the dimensionality of a set of items is that unless there are

differences in the levels of abilities among the examinees

the ratio of the first to the second principal component of

the matrix of inter-item correlations will not be large, as

is dictated by the assumption of unidimensionality. Since LT

models can fruitfully applied even in the case when all the

examinees have the same ability this restriction in the app-

licability of factor analysis is unfortunate.

Even though the problems mentioned above .tio not wholly in-

validate the use of factor analysis before LT models are

applied, it cannot be allowed to give the final verdict. The

problem is not very serious, however, since the assumption

of unidimensionality, along with the other assumptions, can

.be tested-with the LT models themselves through goodness of

fit tests.

Local statistical independence

The assumption of local independence implies that the answer

of an examinee on one item must not influence his answer on

another item. For any two items, i and j, this can be given

the following statistical formulation:

(1.2.1) P(A.=-1 and A.:110= P(A.1:110P(A.:110
J

That is, for a given ability level the probability of getting

two given items correct must be equal to the product of the

probablities of getting each one of them correct.

Hambleton et al. (1977) pointed out that the assumptionof

local statistical independence for the case when the ability

(
continuum is unidimensional is equivalent to the assumption

of unidimensionality. They argued that, for a fixed ability

level, if the responses are not statistically independent,

some examinees have higher expected scores than others. Con-

sequently more than one ability would be necessary to account

18



for test performance.

As a consequence of the equivalence of the two assumptions,

what was said above about the testing of the assumption of

unidiviensionality applies to the testing of the assumption

of local statisticalindependence as well. But it must of

course be realized that the kind of action to be taken differs,

depending upon which assumption has been violated.

The form of the item characteristic curve

All LT models have in common that a choice must be made as

to what kind of ICC to operate with. If this was not done,

it would be impossible to formulate the statistical models

out of which the equations for estimation of parameters can

be determined.

Of course the function relating the probability of a correct

answer to an item to ability can take any form, it need not

even be continuous (of "latent class analysis", Lazarsfeld

& Henry, 1968). Thus it is always necessary to test the

particular assumption made, which can usually be done through'

applications of goodness of fit tests.

The three logistic models spelled out above differ with res-

pect to the constraints put on the form of the characteristic

curve, with the one-parameter model imposing the strongest

assumptions and the three-parameter model imposing the least

strong constraints. It is of course an empirical question

whether, for a given set of data, a less constrained model

is necessary or whether a more severely constrained one will

do. Hut partly it is also a question of research strategy in

that it is sometimes possible to select from a larger pool

of items those that conform to the requirements of the more

constrained model.

19



1.3 The Rasch model versus the other models

The different LT models all have their strengths and weaknes-

ses and they are not all equally applicable to all types of

problems. The most important differences seem to reside, how-

ever, between the Rasch model on the one hand and the two-

and three-parameter models on the other.

The most important drawback of the Rasch model is that it is

built on such strong assumptions that it could be argued that

the opportunities for using this model are small. It has, how-

ever, been shown that it is by no means an impossible task to

find existing tests that do fit the model (e.g. Rasch, 1960) and

tests can of course be specifically constructed to conform

to the requirements of the model. The reason that this might

be a preferable strategy is that the Rasch model in many

'respects has decisive, advantages over the other models. These

,advantages are discussed below.

Interpretability

The size of the item and person parameters can in the Rasch

model be,given simple interpretations in terms of odds of

success on an item. The probability of success on item i for

person v (for, ,simplicity this probability will be called Pvi)

is:

(1.3.1)
exp(Cv -ci)

P
vi

1+exp(
v
-0.)

Evidently the odds of success can be written:

(1.3.2)
P
vi

1-P
vi

= A Llexp(
v-a.)vi

20



If we now relate the odds of success for person v to the odds',

of success for person u on the same item this can be written:

(1.3.3)
Avi_ exp(&

v
-a.)

A
ui

exp(r -a.)

which can he simplified into:

(1.3.4) vi,
exp(E -& )

v u

ui

We thus see that when two persons are compared this does not

involve the item parameter at all and it can easily be shown

that when two items are compared, the comparison does not in-

volve the abilities of the persons. These possibilities for

comparing persons independently of items, and items indepen-

dently of persons form the core of Rasch's theory of "specific

objectivity" (Rasch 1960, 1961, 1966) and it can be shown that

the one-parameter logistic model is necessary and sufficient

to obtain this kind of obejctivity.

Behavioral scientists are probably more conversant with the

additive linear model upon which the analysis of variance,and

lated models are'built than with the exponential-family of

models,,Jramed in the langpage of the linear additive model,

however, it-can be said that the Rasch model is a model that

does not allow for any interactions, i.e. the difficulty of

an item must not be qualified'by the conditions under which

it is taken or by which person takes it. Oa the other hand

it is of course quite difficult to imagine items the diffi-

culties of which are immanent to such a degree that they

will nev4r,be qualified by any factor. The boundary condi-

tions for a set of items to conform to the model should thus

be sought - whiah in a sense is done each time the model is

applied and a goodness of fit test is computed.

21



Equation (1.3.4) above not only says that persons can be com-
. pared independent of items but can also be used to compute

the relative odds of success on any item for any two persons.

When the persons have the same ability the relative odds are

1 since exp(0)=1. If, to take another example, person v has

the person parameter 2.0 and person u the parameter -1.0 the

relative odds of success on any item in favour of person v

are 20 since exp(3)=20.1.

The same type' of calculations can of course also be applied

in the_comparison on items. Only the Rasch model allows this

kind of simple probability statements and simple comparisons

between items and persons.

Estimation of parameters

All the LT models have separable paramet-rs which can, at

least in principle, be estimated on scales that are indepen-

dent of the particular sample of examinees studied. The

theoretical and practical problems connected with the esti-

mation of-parameters have, howeve.r, been adequately solved

only for the Rasch model.

The common approach that has been used to derive the equations

for the estimation of parameter is the maximum likelihood

(ML) method. However, a straightforward ML approach, resulting

in equations in which the item parameters and the person para-

meters are estimated simultaneously, yields estimates which '

are not consistent, as has been shown by Andersson (1973a)

and Martin-L8f (1973) (see chapter 2 below for further de-

tails).

This problem arises when structural parameters (the item pa-

rameters) are estimated in the presence of incidental para-

meters (the person parameters). Increasing the sample size

obviously does not solve the prOblem since each new person

brings a new incidental parameter. But it has been.shown

(Anderson, 1973) that if the likelihood equation can be for-

mulated only in the item parameters, then consistency and

22



unbiasedness is assured, which can be done if there exists a

minimal s fficient statistic for the person parameters. In

the Rase model, and only in the Rasch model, total score can

be sho to be such an estimator of ability. Thus it is

possi le to formulate ML estimators for the item parameters

throu onditioning on the total score in the Rasch model

but not in the other models.

in spite of the fact that the conditional maximum likelihood

'(CML) approach is the correct one for estimating the item pa-

rameters in the Rasch model, the unconditional (UML) approach

in which item parameters and person parameters are-06timate-d

simultaneously is the one that has most commonly been used.

(Wright & Panchapakesan, 1969; Wright & Mead, 1977; Wright &

Douglas, 1977). The reason for this is that the CML method

is computationally cumbersome and that numerical problems`

have prevented its use on tests with more than 20-40 items.

The' computer program presented in chapter 7 below does,

however, present a remedy since it._ can be used-for ,CML esti-

mation of parameters for larger sets of items.

It can be pointed out parenthetically that there is some

confusion concerning the use of the_terms condit,ional and

unconditional estimates in LT models. Unfortunately Bock and

Lieberman (1970) used these terms'in a rather peculiar sense

deviating from common use in mathematical statistics. By im-

posing assumptions about the distribution of person para-

meters they were able to state the estimating equations for

the item.parameters in the two-parameter model without in-

troducing the person parameters. These estimates were termed

unconditional estimates while they used the term conditional

estimates
for those resulting when both sets of parameters

are estimated simultaneously. The terms conditional and un-

conditional thus in asense carry the cpposite meaning in

the usage of Bock and Lieberman as cCImparfid to the usage

above in connection with the Rasch model. In the sequel of

this paper the latter meaning of the terms will be implied.

Summarizing the discussion so far it can be concluded that

only for the Rasch model are there solutions to the problem
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of estimating the parameters which are theoretically comple-

tely satisfying. (To be fair, however, it must be pointed out

that this is true only with respect to the estimation of the

item paraieters; the unbiased estimation of abilities is still

a problem to be solved). But aside from these theoretical

questions there are also important differences between the

Rasch model and the other models with respect to the amount

of practical problems met with in estimating the parameters.

Since solutions to the likelihood equations are not available

in closed form; numerical methods must be resorted to. How- '

_ever, for the two-Parameter' model the iterative approach

f employed does not converge properly unless both the number of

examinees and the number of items is large (at least 1000- .

3000 persons :and 30-60 items seem to be required). The amomnt

of computer time''required is also very great. Hambleton et al.

-- (1977, p. 107) report, for example, that for a test with 60

items given to 5305 examinees 40-60 minutes was required Doir

convergence on an IBM 360/65. Practical problems aldne thus

make application of the two- and three-parameter models out of

the reach for many researchers and for many problems.

For the Rasch model, however, the iterative procedure almost

never fails and at least for well conditioned problems where

the number of items is not very large (less than 50 to 80

items, say) more than a few minutes on an IBM 360/65 is sel-

dom required, even when the CML estimates are computed.

Testing assumptions

Goodness of fit tests exist for all_the different LT models

(Rasch, 1960; Wright & Panchapakesan, 1969; Andersson, 1973b;

Bock, 1972; Martin-Lof, 1973; Mead, 1976b). The tests gene-

rally are of the chi-square or likelihood ratio type and at

least for some of the proposed test statistics it hap been

shown that they assume the specified distribution at least

asymtotically (Martin-L8f, 1973; Anderson, 1973b).

More important,perhaps, than the statistical properties of the

proposed tests are the difference between the different LT
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*Models with respect to the possibilities of detecting impor-

tant deviations from the assumptions.

It appears that the Rasch model is "safer" 4n this respect

than the other two models. Mead (1976a) discussed factors

such as guessing, carelessness,, speed, practice and item

bias as threats to the fit of data to the Rasch model. He

concluded by saying: t.

"All of the disturbances considered represent some

form of multidimensionality; they would violate any

model that assumes unidimensionality. Since the effect

of the disturbances often anpears as a change in the

slope of the item characteristic curve, any model

which includes item discrimination as a parameter

would appear to fit the data:'(mead, 1976a, p. 11)

`There is thus a risk in using the less constrained models

since threats to the important assumption of unidimensionali-

ty can be "taken care of" as varying item discrimination.

It is of course true that the importance of testing a more

constrained model with powerful means is extremely important

since otherwise all claims for sup,-riority arei invalidated.

Fortunately there do exist sound statistical tests for the

goodness of fit tests of the Rasch model, at least when the

CML approach is used (see chapter 3 below).

Conclusion
S

In the comparisons made between the Rasch model on the one

hand and the two- and three-paramete; models on the other

with respea to interpretability, estimation, of parameters

and testing assumptions, the Rasch model shows up more

favorably in every respect. If it can empirically be shown

that it is possible to make educational and psychological

measurements which conform to the requirements of the model

it will find a number of different uses. Poore of the possible

applications will be discussed in chapter 5 after a more
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detailed presentatici of the mathematics of the model aped

Otocedures for testing goodness or fit has been made.
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Chapter 2

THE MATHEMATICS OF THE RASCH MODEL

4

In this chapter the structure of the Rasch model will be

more formally exposed and it will be shown how the parameters

in the model can be estimated. But the presentation also

serves as a documentation of the computer program (caller?

PML) presented in'chapter 7; the solution of some numerical

problems are presented in detail and operating characte-

ristics of the program are presented.

:,

-

2.1 Estimating item parameters

In developing the mathematics of the one-parameter model we

`will make use of a somewhat different notation from that

used hitherto. The derivation is at points greatly simpli-

fied If an antilogarithmic transformation is made of the

parameters such that 0v=exp(v) and ci=exp(-o4). The probabi-

lity of success for person v on item I can then be written:

(2.1.1)
evci

P(A
i
=116,ci)-

"
4' 1+0 c.

v i

The usual testing situation is one in which n examinees have

been given k items. As previously we assume that the res-

ponse variable is of the Bernoulli type, so that in keeping

with the previous notation

f
A

1 if person v is succesful on item i
vi if person v is not successful on item i

i

Then we can write (2.1.1):

(0 c.)
a
vi

(2.1.2)
.

P(A
vi

=a
vi v
de ,c.)=

1

fir
-i+evei
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The observed data can be assembled in the matrix ((avi))

shown below:

Items

Examinees

1 V

1

k

all
a
vl and

C

ail ... avi .

ain

akl akv akn

sl

s

s
k

r
1

ry

The raw score for person r is thus:

r E
aviv

i=1

and the total number of correct responses to item i (the

item score) is:

S1=
E a .

v=1

Those persons who have 0 or k correct answers must be excluded

from the ((avi)) matrix since no estimates of their parameters

are possible to obtain. Also items with 0 or n correct answers

must be excluded from the matrix for the same reason.

Under the assumption of statistical independence the likeli-

hood of the data matrix ((avi)) is the product of.the pros

babilities of all the answers:

0
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(2.1.3)

s,

A II II
c . )

sv,
v iv -v-

n k
(0

1+0
v
c

1111( 1' ve--pL

v i

Looking at the likelihood function we find that only the

marginal sums of ((avi)). are'represented and not the "inner"

of the matrix. Thus we need not take into account which items

a certain examinee has answered correctly or which examinees

answered a certain item correctly. In other words, we find'

that raw score is a sufficient estimator for the person para-

meters and that item score is a sufficient estimator for the

item parameters.

The likelihood function A can be maximized in the usual way

with respect to the parameters to yield ML estimates of the

(011) and (ci) (Wright & Panchapakesan, 1969; Martin-Lof,

1973; Fisher, 1974 p 257 ff; Wright & Douglas, 1977). Written

in a simple form, although not very suitable for computations,

the estimating equations are:

(2.1.4)

n

s
i

= E eves

v=1 1+0
v
c

E evci

1+0vci

There is one more parameter to be estimated than there are

equations, a problem that can be solved through using some

kind of normation. One possibility is putting the parameter

value of one item to unity and another possibility is using

the product normation Hei=1. The system of equations can only

be solved iteratively but there do exist efficient computer

programs for this purpose (Wright & Panchapakesan, 1969;

Wright & Mead, 1977).
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The approach sketched above is the unconditional maximum

likelihood approach that was mentioned above on-`page .

In that context it was also pointed out that the UML method

produces estimates which are not consistent.

That ML estimators in certain situations fail to be consi-

tent was first'discovered by Neyman & Scott (1948). One class

of situations in which this occurrs is the one in which the

model contains incidental (or nuisance) parameters beside

those structural parameters which are to be estimated. The

most commonly known example of such a situation is the esti-

mate of a population variance for a normal distribution

(see Andersen, 1973a, p. 14 ff; Martin-L8f, 1973, P. 76). It

is.known that the deviation'sum of squares is to be divided

with n-1 to give the unbiaSed estimate. The ML estimator,

however, can be shown to make, use of n as the, denominator

and this estimate is thus biased. This occurs because the

population mean must be estimated from the sample data;

each new sample will thus give a new value on this (inciden-

ta1) parameter .

In the Rasch model the person parameters are incidental para-

meters when we want to estimate the item parameters (and the

item parameters are incidental parameters when we want to

estimate the pers'on parameters) and of course the number of

person parampters does not stabilize when we increase the

sample size since each new person brings a new parameter

(this fact must not be confused with the fact that since the

model is discrete we can only get a limited number of esti-

mates of all the possible person parameters).

But it has been shown (Andersen, 1973a) that if the likeli-

hood equation can be formulated only in the item parameters

consistency is assured. This can De done if their exists

a minimal sufficient statistic for the person parameters and

in the Rasch model, and only in the Rasch model, raw score

is such an estimator of ability. Thus it is possible to for-

mulate ML estimators for the item parameters through condi-

tioning on raw score. The details of this are presented below

but first we shall discuss another approach to come to grips



with the incontsib stency of the OAL-estimates1

This approach consists in seeking corrections to rectify th; ,
i

UML estimates, in a similar vein with the way in which the

ML estimate for the population variance is corrected for

with the factor n/n-1. Simulation studies carried out within

the range of 2 to 40 items (Wright & Panchapakesan, 1969; 7.
,

Fischer & Scheiblechner, 1970; Wright & Douglas, 1977) have ,

indicated that for item parameter on the log scale a correc-

tion factor of (k-1)/k is suitable, and when this correction

is applied the difference between the VML and CML estimates

is generally not greater than one unit in the second decimal

place.

Since the CML .9stimates are quite cumbersome computationally

it couldbe argued that the corrected PM.. estimates would do

for all practical purposes. There are, however, three reasons

for which the UML estimates should be discarded, in spite of

this, in favor of the CML estimates. The first, reason is that

the particular correction factor employed is empirically

rather than theoretically derived and its validity hinges

entirely on the range of situations studied in the sin/Illa-

tions. My own impression is that the correction used works

quite well in situations were the variance of person para-

meters is not to large but that it tends to become poorer

when this variance increases. (These observations were made

when data were generated under the two-parameter model with

a high but for all items' common discrimination parameter,

and then analyzed under both the UML and CML approaches.r The

Rasch model of course does not assume that the discrimination

parameter for all items is exactly unity; all that is assumed

is that all the items have the same discrimination parameter.

Varying item discriminations among sets of items is taken into

account as a simultaneous transformation of the scales of item

and person parameters and a high discrimination shows as a

high variance of the person parameters.)

The second reason is that no correction has as yet been

found for the bias in the person parameters. In virtually all

-the computer programs for UML estimation the person parameters
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obtained in the simultaneous estimation of parameters are

presented; somewhat better results would be obtained if the

Person pdrameters instead were estimated from the corrected

item parameters.(In fact, since the problem of a strictly

conditional estimation of person parameters is not solved

yet, this would in many cases place the UML- and CML-approaches

on an equal basis). Even without presenting any exact figures

it can be claimed that the bias in the UML estimated person

parameters is rather severe. It can be observed that when

data are generated in accordance with the Rasch mod with a

standard deviation (s) of, say, unity and,the s of the sti-

mated person parameters is computed, a rather similar value

is observed. But in fact the observed person parameters should

have a higher s since another variance component (correspon-

ding to the standard error of measurement) has been introduced

in generating the data.

The third reason in favor of the CML approach concerns the

possibilities of testing goodness of fit: under the UML

approach only approximate techniques have been proposed

(Wright & Panchapakesan, 1969; Mead,1976b) while under the

CML approach there are test statistics which have an at least

asymptotically known distribution (see chapter 3).

The most important reason for not employing the CML approach

has been that numerical problems have prevented its use with

more than a limited number of items. It is,however, shown be-

low that these problems can be solved.

In developing the conditional approach let us first for

simplicity consider a given examinee with the raw score rv,

corresponding to the person parameter The probability

of obtaining any score vector (avi) given the person para-

meter and the vector of item parameters is:

(2.1.5) P{(avi)lev,(ci)).
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To be, able to express this' probability as a conditional pr'o-

bability given score r
v we must know the probability of ob-

taining score ry given ev. This latter probability is given

by the sum of the probabilities of all possible ways of ob-

taining the score rv, that is the sum of all the expressions

like (2.1.5) in which the vector (a
vi

) sums to r.

A given score r obtained on k items can of course be obtained
fit) %.in kr different ways. We-will need a special notation to be

able to express this in a simple way. Define:

(2.1.6)

k

Y {(e.-)}: E 77
-

avi
11. c.r 1

Ea =r i=1vi

In the expansion of this sum of products tile summatinn is

made over those (r) combinations in which Eavi=r. mhe yr{(0}

(or, for short, is is called the elementary symmetric

function of order r in the parameters (a). (On the following

pages a more concrete presentation of these symmetric

functions will be made).

We-can now write the probability of obtaining the score r

given Ov and (ci):

k a .,..; ruc.) v.,. ...,

/ tr Tr(2.1.7) ifrIO ,(e.)}: ): IT
v

:v 1

Eavi=r i=l 1+6 v c i
II(1+0vci)

i i

The conditional probability of obtaining the vector (avi)

with the total score r
v,

given the score r
v

s thus given by

equation (2.1.5) through equation (2.1.7):

(2.1.8)

k
avi

1
1

II e
ma )Ir Pf(avinev'(c)jvi (c

i
)}-

Pfrle(ei
r

)) Y
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We thus see that,-thisconditional probability is not a func-

tion of 0 only the item parameters appear in the expression

(2.1.8).

Since the examfneet are assumed to be independent we obtain

the conditional likelihood of the data matrix ((a
vi

)) for n

persons as:

r's

(2.1.9)

n
e.

avi

A=
i=1 1

v=1 Yr

If we use n
r

to denote the number of persons with raw score r

(r=1,...k-1) and recall that si is the score of item i

(0=1,...n-1) we can simplify (2.1.9) info:

(2.1.10)

TI C. 11

A=
i=1 i=1

Ei

n k-1 nr

II Yr
v

II Yr
v=1 r=1.

From this conditional likelihood function the CML-estimators

can be derived. If we First take the logarithm of both sides

we get:

(2.1.11)

k-1

Elog A E s 1 og nr logy
= 1 1 r=1

r

We differentiate with respect to all the ci and set the de-

rivatives equal-to zero:'

(2.1.12)

k-1 (i)
ologA s. y

r I

Sc.
ci r=1 Yr

(i=1,...,k)

(i)
in which equation the symbol y

-
is used for the partial de-

.,

rivative of y
r

with respect for c . This derivative is

symmetric function of order r-1 in all parameters except Li.

This is most easily seen in an example. Suppose that

k=4 and that we are studying y2.
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In explicit notation the symmetric function can be written:

y
2
(c

l'
c
2' 3,e4c

4
): c

1
t
2
+c

1
c
3
+c

1
c 4 c2-3+ c E

and

dy
2_ 4

(1)(
ylt .e2,-c 32c4,= y .el,A2,e3,c4)

Syl 2-1 '

From (2.1.12) it.is seen that we end up with a set of nonlinear

equations in the (ci) (for simplicity we will not distinguish

between the Parameters (ci) and the estimates (Z) of the para-

meters) .

(2.1.13)

k-1 (i)

,s.=
nrc.y r-1

r =1
Yr

(1=1,...,k)

FromthefactthatEs.:En
r'

it follows that we must impoe

some constraint on the system of equations to be able to

solve it. The same formations as those mentioned above (p 22)

in connection with the UML approach are of cours'e available

and we can set c
m=1.(It is practical to select m as the item

with medium difficulty. This is done automatically in the

PML program, but there is also the optiod to select any item.)

Even after normation it is not possible to find an explicit

solution to the system of equations but there exist numerical

methods (Andersen, 1972; Martin-lbf,'1973; Fischer, 1974)

leach can be used. In the application of these iterative

methods there are two important problems to be solved: the

first pertains to the computation of the symmetric functions

y
r'

and the second to how a rapid convergence of the sequence

of iterations can be obtained.

The computation of the symmetric functions

Tip4. symmetric. fun of order r consists of a sum of (11

w _
products, each of which consists of r terms. For example,
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when k :50 and r:25 the symmetric function is a sum of about

146(10 14
terms, each of which is a Product of 25 terms.

Obviously it is impossible to compute the and the deriva-

Itives through a orocess of straightforward multiplication

tiVraummation.

,..Fortunately there do exist recursive formulas which make a

ic.relatively rapid computation of the symmetric functions

IlL\\-possible (Fischer, 1974, p 242 ff; Andersen, 1972). We can

write:
71.

ti
) ()

(2.1.14) y
r
= c.y r(i +y

i

- 1 r

This is true since y
(i)

is the sum of all products of r para-
r

meters that do not contain e. and c.y
(i)
r-112 1

is the sum of all

products of r parameters that contain ci. An example should

clarify this. Suppose that k=4 and r=2. Then we want to get:

(2.1.15) Y2= cic2+cle3+cicec2c3+c2c4+c3c4

If we take the partial derivative of y2 with respect to ci

we get:

(2.1.16)

and

(2.1.17)

(1)

Y2-1: c2"3+£4

(

c y
1)

=
1 1 5 4

In the same way we can .easily convince ourselves that the

partial derivative of y3 with respect to ci is:
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(2.1.18) y2
(1)

= c2c3+c2c4+c3c4

If we now compare the sum of (2.1,18) and (2.1.17) with

(2.1.15) we find them equivalent.

Another recursive relationship of great use is the following:

(2:1.19)

le

(i)
rYr:

i =1
iYr-1

This formula can be derived from (2.1.14) but again we use

the example to convince ourselves. We get:

(2.1.20)

(1)
cly, = cic2+cle3+cic4

(2)
c2y1 = cic2+c2c3+c2c4

3)
c3y1 = e1c3+c2c3+c3c4

(

t4y1
4)

= cic4+c2c4+c3c4

We thus see that in this set of equations the six product

terms in (2.1.15) each appear two times.

From the two recursive formulas (2.1.14) and (2.1.19) it is

possible to devise a very efficient algorithm for the com-

putation of the symmetric functions of all orders and all

the derivatives. Starting from the fact that y (i) =1 we get

(
yizEciy(oi)=Eci. Then we can compute y11) =y1-ely(01) and all

the other derivatives of the symmetric functions of order

two. In the next step we get 2y2=Eciyi i)
and an then ob-

tain all the derivatives of the functions of the third

order, and so on.
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'The algorithm has been' programmed by Fischer (1974, p. 544)
and this subroutine is used as one of the methods of compu-
ting the symmetric functions in the PML program. The algo-
rithm has the virtue of being very fast: only k

2
multipli=

cations, k2 additions, k2 subtractions and k divisions are
performed. It has one serious drawback, however: When the
number of items is large and/or there are great differences
in the size of the item parameters the computations break
down as a consequence of round-off errors. The prOblem is
caused by the differences y

r ri-1
-E.y() which, particularly for

the orders around k/2, involve very large numbers, resulting
in cancellation of terms. These problems are reduced if, as
is done in the algorithm used, the recursive formulas are
applied both from "below", starting with order one, and
from "above", starting with order k and then meeting at
about k/2 (which procedure also allows a test of computa-
tional accuracy). However, even with this method there is,
when k is large, a virtually inescapable loss of accuracy
when floating-point representation is used and even'attempts
to use extended precision (REAL*16 on IBM machines) have
failed to appreciably increase the number of items that can,
be analyzed.

The breakdown .of this algorithm (which will be referred to
as the Difference algorithm) occurs in the range of 20-00
items. Since k for many tests is within this range, use of
this algorithm is accompanied by the frustrating experience

1that sometimes the analysis breaks down, and that sometimes
it does not, for example whenldifferent sub-groups are
studied.

Fortunately, it is possible to frld a recursive formula for

the computation of the symmetric func-qOhs in which no use
is made of subtraction. We can write (21.1.10 in a slightly
different way:

(2. 1.21) Yr(c1,...,c0= Yr(c1,...,et_1)+ctyr_1(cl,...,ct_i)

(Fischer, 1974,, p. 250).
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But this means that we can add one parameter at a time, so

to speak. If we start with el then yi(c1)=c1 and yo(c1)=1.

If we add one more parameter, e2, we have:

Y (C ,C )=Y (C (C )=C C
1 1 2 1 1 e2Y0 1 1+ 2

2
(c c

2
)=Y

2
(c

1
)4t

2
Y
1
(c

1
)=0+z

1
z
2

.1.t

1
E
2

Adding a third parameter we get:

Yl(El.c2,E3):-.Y1(c1)
)+E3y0(zi,e2)=c1+z2+e3

Y2(c1'e2, e3)"2(c1 'c2)"3Y1(c12c2):c1c2"2c3+cic3

Y3(c1,c2,c3)=y3(c1,c2)+E3y2(c1,c2)=c1c2c3

and so on.

After we have added the k parameters we.have thus obtained

the symmetric functions of all orders in the parameters.

This algorithm too khas been programmed by Fischer (1974,

p 544) who uses it to compute the second partial derivatives

of the symmetric functions, which is done through setting as

equal to zero the parameter vales for all combinations of

items two at a time. But it can of course also be used,

with some slight alterations, to'compute the symmetric

functions themselves, as well as the first derivatives.

In order to obtain the symmetric functions and the deriyatives

the routine has to be called (k+1) times. Each call to the

k
routine makes use of

k(k-1) k(2 -1)
multiplications and +k-1

additions so to obtain the, needed information roughly

k(k
2
-1) multiplications and

k(k
2

-1)
+k

2-1 additions are per-
2

2

formed. If the number of arithmetic iperations necessary for

for this algorithm (which will be referred to as the

Summation algorithM) is compared with the number of opera-
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tiona used by the Difference algorithm it is found that the

Summation algorithm is slower. It can also be seen thlit exe-

eution time must increase rapidly as k gets larger.

Nevertheless, the Summation algorithm is not unbea:ingly slow:

Acomplete iteration cycle, which involves computation of the

symmetric functions of ail orders and all the first derivati-

ves, requires for 40 items about 1 second of CPU time on the

IBM 360/65, and for 60 items about 4 seconds is required. For

a long test containing 100 items some 20 seconds would be re-

quired for each iteration.

These estimates of computer time required are Valid for the

case when the computations are carried out in double preci-

sion. However, since the Summation algorithm is very accurate

numerically there is in the PML program art option ofusing

single precision arithmetic in this algorithm. When tie option

is used, somewhat less computer time (a reduction of some 1.0

per cent is a reasonable estimate) is. required.

In addition to the fact that the amount of computer time re-

quired may become prohibitive when very long tests (k>100,

say) are analyzed there is one more problem that may appear.

The problem is that the symmetric functions, and especially

those of orders around k/2 assume very large values and

sooner or later the limit set by the size of the floating

point numbers which can be represented in the particular

computer used will be reached. This problem could be solved

through scaling down the parameter values, but since the

product normation is used in the PML program after the para-

meters'have been estimated this method is not immediately

available in the program. .

The amount of computer, time required for each iteration is
..

one factor affectint the cost of the-analysis. Another impor-

tant factor is of course the number of iterations required.

'How to obtain a rapid convergence is discussed next.
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The 'convergence of the iterations

Several.different methods have been Proposed for the solution

of the system on non-linear equations (2.1.13). Andersen.,

(1972) suggested Fisher's Method of Scoring for the equations

to be solved .in the P olychotomous model, which has been pro-

grammed by Allerup and Sorber (1977). This method requires

only few iterations but on the other hand the computation of

improvements makes use of the second derivatives of the

symmetric functions so each iteration cycle is very time con-

suming. For example, a test with 40 dichotomous items required

about 3 minutes on the IBM 360/65 with this program.

Another-method, suggested by among others Martin-Lof (1973)

and also presented by Fischer (1974) makes use of a simple

switching between the right hand side and the left hand side

of the equations (2.1.13). This is the method used in the PML

program and it is presented in greater detail below.

A first problem is how to choose start values for the itera-

tions. One simple solution is to pit all the (ei) equal to

Unity. Martin-Lof (1973) suggested that start values can be

obtained through 'an approximate solution to the equations

(2.1.13) using a linearization in the parameters.

(2.1.22)
si -s

logci-

ur
r(k-r)

r=1 k(k-1)

(i=1,...,k)

Both methods of selecting start values are availAble in the

program. Sometimes use of the approximation effects a consi-

derable saving of iterations in comparison with when unities

are used as start values,,sometimes the approiimations has no

appreciable effect. There should be no risks'involveri in usinz

it, however, so it can, be regularly applied.

In each new iteration cycle, t +], new values for the parameters

are computed from the previous cycle t as:'
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No

(t+ 1)
(2.1.23) e =

Si
i

(i=1,:..,k)

nE r
y
r-1 i

(t)
r= 1

Yr{(ci"

(t+1) (t)

When the absolute difference-between e
i

and e
i

is less than

a specified value (in the program it is flken to be .001 but

it can be changed at will) for al] items the iteration

sequence is stopped.

The number of iterations required to a very high degree de-

pends upon the range of parameter values, but for the. most
le

part a rather large number of iterations is required (often

not less than 100). It has,however, been noted by Fischer

(1974 , p. 245; se also Fischer & Allerup, 1968) th ' the

sequence of improvements tends to form terms in a ge etric

series and as soon as three iteration steps have been per-

formed several iteration cycles can be saved through extra-

polation. (In numerical analysis this extrapolation is known

as the Aitken extrapolation, see Dahlquist & Bjorck, 1974,

P. 235).

If we call the estimated parameter values for item i from
(t) (t+1) (t+2)

three succesive iteration cycles
' i

ei e and e
i

we get the extrapolated value as:

(2.1.24)

, (t+2) (t+1),2
co (t+2) kci C. )

1

i
C-7-Ei

(t) (t+2) (t+i)
ei +ei -ce.

1

Two new iteration cycles can then be performed, whereafter

the extrapolation can be applied anew. 'V

. This method'Is available in the program and generally it ef-

fects a very considerable saving of iterations. However, it

is reported by Fischer (1974 , p 245) that the extrapolation

may also cause the iterations to diverge. To prevent this

42



from happening two precautions also mentioned by Fischer have

been taken. The first precaution is not to apply the extra-

polation on the basis of the results in the first few itera-

tion cycles and the second to set an upper lirit as to the

amount of extrapolation. In no case have I observed that the

Aitken extrapolation using these precautions should cause

divergence, so it can probably be regularly applied.

It is impossible to give any generally valid estimate of the

member of iterations required for convergence since this to

some degree varies from problem to problem. It can be ob-

served, however, that the range of item parameters is of

critical importance -- as soon as one or more of the para-

meters assume high values, a larger number of iterations is

required. For those problems in which the proportions of

correct answers, on the items vary betwedh, say, .10 and .90

convergence is, however, generally obtained within 8-20 ite-

rations. Bor a test with 40 items, the iterr parameters can

thus often be estimated in less than 20 seconds and for a

test with 60 items in a minute or so.

2.2 Estimating person parameters

In estimating the person parameters we could in nrinciple

proceed in a similar way as when estimating the item para-

meters, i.e. through conditioning on item score a conditional

likelihood function expressed only in the person parameters

can be developed. It can be shown that the equations to he

solved can be written:

(2,2.1) r
v

=

k (v)

EevYs-11(8v)/ (v=1,...,n)

i=lYsI"v)/ (cf. Fischer, 1974, p. 240)

Unfortunately it is an impossible task to compute the sym-

metric:functions in the Ov parameters so it is not possible

to solve this system of equations.
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If: however; it is assumed that the number of persons is large

in comparison with the number of items, we can treat the esti-

mates of the item parameters as fixed and estimate the person

parameters under this assumption. We then get the following

set of equations to solve:

(2.2.2)

k

E erei
r=

i=1
1+0

r
c

(r=l,...,k-1)

We find that these equations are the same as those appearing

in (2.1.4) for PML estimates of the person parameters, except

that here the subscript v has been changedto the subscript

r, which is possible since all persons having the same raw

score must get the same estimated ability.

The equations can easily be solved iteratively using the

Newton-Raphson method. In the PML program a routine presented

by Fischer (1974, p. 525) is used to do this using the item

parameters resulting under the product normation ne1=1.

Locking more.closely at (2.2.2) we find that in one special

case the equations can be solved explicitly and this is when

all items are of equal difficulty (i.e. all item parameters

are 1). Then (2.2.2) reduces to

(2.2.3) r=
kOr

1 +0

so

r

(2.2.4) Or:
k-r

(r=1,...,k-1)

When the range of item parameters is not too great (2.2.14) is

used to compute start values for the iterations. This approxi-

mation of course gets poorer the more the item parameters

vary, so when the difference between the largest and the

smallest item parameter on the log scale is greater than 2.0
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another approximation presented by Wright & Douglas (1975, P.

22) is used to compute start values. This approxiMation is ba-

sed on an assumption of equally spaced item parameters:

(2.2.5)

where

0
r
=

(1-exp-Ii)expw(

1-exp-w(1-5)

w= loge max-lagenin

, From the presktation above it is obvious that. with this

method of estimating person parameters the only thing that in-

fluences the estimates is the distribution of item parameters.

The resulting estimates are known to be slightly biased but

it should be pointed out that one adyantage is gained: as

soon as the item parameters are in hand, an ability scale

corresponding to the different raw scores is easily construc-

ted (see chapter 5 below).

2.3 The information function and confidence intervals for the

parameters

It is possible to determine standard errors for the estimates

of the parameters, which are based on the information func-

tion with respect to each parameter. The statistical informa-

tion in the sarrple wit: respect to any parameter 11 is defined

as:

(2.3.1) I(fl E01211)2)

where A is the likelihood function.

It can easily be shown (see e.g. Fischer, 1974, p. 2911 ff)

that the information of item i with respect to the person

parameter is

(2.3.2)
exp(Fw-ci)

I( )=
v

(1+exp(F,
v
-C ))c



The information of a test (It) with respect to the person

parameter is the sum of the information of each of the k

items:

(2.3.3)

k

A Eexp(Cv-ai)
I
t
(v )=

i=1{1+exP(v-ai)}
2

Analogously we get the information in the sample:with respect
.

to the item parameters {I
p
(a.)} to:

(2.3.4)
Eexp(Cv-ai)

I (a-)2p
V=1

{1 +exp(F -0.)}2

Confidence intervals for the item parameters

In the theory of ML estimation it i3 known that the estimates

are asymptotically normally distributed with the standard

error 1. We can thus construct confidence intervals for the

item parameters in the usual way:

(2.3.5) 8 -z
a p

(a
i

)
-1

i
<050

i,+z ap(a i
)
-1

where z
a

is the critical value from the normal distribution.

In most cases the asymptotic properties of these confidence

intervals should be assured since n is usually large;

Confidence intervals for the rson arameters

At least when the number of items is larger than, say, 20-3n

items, it is rossible to determine useful r.onfidence inter-

vals for the person parameters

(2.3.6)
v
-z

a 'v
/I ( <r +z )
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Prom the fact that the information function is a function of

ability it is clear that the confidence intervals will be

-efferent for-different person paraMeters. Thus, in contrast

with the classical psychometric theory, the LT models make no

assumption about homoscedastic standard errors of measurement.

Some details on how the functions for these standard errors

look for different tests are presented in chapter 5.1.

It must be observed that the standard errors are normally

distributed only when k is large, so only then can these

confidence intervals be trusted. But we have already derived

an expression (2.1.7) for the probability of observing a

certain raw score, given a person parameter and the item

parameters. .This expression can of course be used for a

straightforward computation of the probabilities of obser-

ving each different raw score Unending 0-and k) for each

estimated person parameter. Such a matrix of probabilities

is included in the output from the PML program for kS30.

Some comments on how to interpret confidence intervals around

person parameters might be in place. Lord and Novick (1968,

p. 511-512) stressed that any confidence statement about

which region a persons ability falls into can be made with

the specified probability only for a randomly chosen person.

We can in fact make no confidence statements "about a parti-

cular, nonrandomly chosen examinee in whom we happen to be-

interested. Nor can any confidence statements be made about

those examinees who have some specified observed score."

(Lord & Novick, 1168, p. 512).

It is a distressing fact that we can have no confidence in

confidence statements relating to specified observed scores;

for a particularly i1]uminating discussion of the problems

involved the reader is referred to Cronbach, Gleser, Nanda

and Rajaratnam (1972, p. 132-134).
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The index of subject separation

In some cases there is a need, when the Rasch model is appliPd,

to have a counterpart to the coefficient of reliability in the

classical theory, i.e. a measure of the accuracy with which

the relative positions of the subjects on the latent trait

can be discriminated. Such a measure has been introduced by

Andrich and Douglas (1977).

The traditional concept of reliability can be defined:

(2.3.7)

2

QF
.r.xx'=

a
2
+a

2

c

where a,
2

is the variance of true scores and a
c

2
is the variance

of the errors of measurement. From the assumptions that the

observed score x
v

can be written x
v=Ev

+c and that true scones

and errors are uncorrelated, it follows that we can also

write the reliability:

(2.3.8)

2
a
2
-a

xr =
xx'

a
2

x

The measure introduced by Andrich and Douglas (1977), called

the index of subjP-t separation (ISS), serves as a counter-

part to the coefficient of reliability in those cases in

which we can obtain direct estimates of the variance of the

errors, of measurement.

They argued that even though the variance of the errors of

measurement varies as a function of ability, the average of
n 32

the estimated error variances, cancan be taken as a

2
v=1

reasonable estimate of a
c

in (2.3.9) above. rinPe the

variance of the estimated person parameters (i.e. the

counterpart to a 2
) is easily computed we have estimates
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.4

Of all the quantities in (2.3.8) and can directly compute

the ISS according to this formula. .

This measure tends to give estimates that are highly similar

to estimates of the coefficient of reliability with KR20

(both measures are given in the ell, program) but there

are sometimes differences between them (when the sample is

Beverly skewed, for example, the ISS tends to be considerably

lower than KR
20

).

The ISS of course shares with the coefficient of realibility

the characteristic of being sample specific but it appears

that the ISS has a conceptual advantage.'The coefficient of

reliability can be low for two reasons; either because the

items are heterogenous or because each of the lriesls of abi;

lity is not measured with enough precision because too 'few

items are used. If, however, the ISS is low for a test fit-
.

tiff
,.,

g the Rasch model we can rule out item heterogeneity as a' ,,

cause and instead concentrate on getting better estimates .of

each level of ability through adding more items.
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Chapter 3

TESTING GOODNESS OF FIT TO THE RASCH MODEL

It has been -stressed above thas as a consequence of the
0

rather strong assumptions underlying'the Rasch model it is

very important that sound procedures for testing goodness of

fit are applied.

Several different procedures for testimg goodness of fit to

the Rasch model have been suggested. Here, some methods based

on the CML approach for estimation of item parameters are

presented in detail; one graphic method for assessing item

fit (Allerup & Sorber, 1977) and two overall numerical tests

(Andersen, 1973b; Martin-Lof, 1973). There do exist other

more primitive methods for assessing goodness of fit, and

some of these are briefly mentioned first.

Since the item parameters, if the model holds, should show

no systematic differences if estimated from different sub-

groups of the sample it is possible to plot such estimates

against each other and look for systematic deviations (Fischer,

1974, p. 281 ff). Since the standard errors are estimated too

it is also possible to test for each item the difference

betv.een the estimates obtained in any two groups. (Fischer,

1974, p. 297-298 and chapter 5.2 below).

Another approach to testing model fit for the Rasch model

has been developed by.Mead (1976a, 1976b) and Wright and Mead

(1977). In this method, estimated item and person parameters

are used to predict scores at the item level an ''rom the

residuals between observed and predicted scores chi-square-

like tests of item fit, person fit and overall fit are deve-

loped. However, these tests have unknown asymptotic distribu-

tions and simulation studies (Mead, 1976b) indicate that even

though the means of the distribution conform to the expected

the variances may depart substantially.
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Before the tests based on the conditional approach mentioned

above are presented, it should be pointed,out that a sound

application of statistical tests for evaluating goodness of

fit implies much e t an the choice of a test statistic

with known properties. Any inferential method is strongly

dependent upon the number of observations made: when the

sample is too small even gross departures from the model will

be accepted and when the sample is very large even the

slightest deviation will cause us to.-reject the model. The

first problem reduces down to one of making enough observa-

tions to obtain a reasonable power inn the test. Unfortunately

the power characteristics of the overall tests are unknown

but some simulation studies of this problem will be presented

below. The problem that since no -model ever holds perfectly

.true all models will be rejected granted that enough observa-

tions are collected has, however, been solved. Martin-L66f
\\\

.

(1974a) nas introduced a measure call redundancy which on an ab-

solute scale gives a measure of the degree to which the data

deviate from the model, which'gives a basis for accepting in

s me cases the model even though the test statistic yields a

sigpificant value. This measure is described below in section

3.3.

There are several other questions relating to strategic app-

lications of goodness of fit tests, such as trading relation-

ships between assumptions, item selection procedures, cross

validation problems and so on. This type of problems will,

however, be discussed at length in chapter 4.

3.1 Testing item fit

Before the overall tests of goodness of fit are presented,

methods for evaluating goodness of fit at the item level will

be considered. Under the CML approach tnere exists no statis-

tical test that yields a p-value for the probability of fit

of each item. Instead graphic methods are employed. The dis-

advantage of the graphic methods is that they involve an

inescapable element of judgement which, especially until
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experience has been accumulated may be quite difficult. But4r,

the graphic methods have the important advantage that they

are not so strongly influenced as the inferential methods by

the sample size: thus deviations not detected by a powerless

statistical test may be possible to detect by a graphic method

and a statistically significant departure from the model may

be judged practically insignificant on the basis of a graphic

test.

In investigating fit we do not work with the ((evi)) matrix

introduced above on page 21 but reorganize it into the item

by scoregroup frequency matrix of correct answers, ((nir)),

in the following way:

Score group

Item

1 . r k-1

1

k

n
11

nil

nkl

n
lr

nir

n
kr

n 1,k-1

i,k-1

s1

s

s
k

11.0

ni rnr . '1(-1

It is obvious that:

(3.1.1)

k-1

En = R
irr

and recalling that nr, is the number of persons with raw score

r we see that:
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(3.1.2)

e

k

nir= rnr
i=1

The observed proportion of correct answers to item i within

score group r is nir/nr. We can also compute the predicted

'proportion of corrects answers to item i for score group r.

The conditional, probability that a person with raw score r

answers item i correctly is the number pf answers vectors in

which item i is answered correctly divided by the total num-

ber of possible answer vectors which add up to r, i.e.:

(3.1.3) P{A
vl.=1Ir 1

(c.)}= .=

Thus, if the model holds true for the data the relation

(3.1.4)

(i)
n. c.y

r-1

nr Yr

0

should hold for all score groups. If we, for a fixed item,

plot the observed proportion against the predicted proportion

the points should fall along a straight line with a slope of

unity. As a function of sampling error the points will of

course be spread around the line with unit slope, thus syste-

matic deviations from the predicted proportions along diffe-

rent regions of the abscissa is what is to be looked for,

In the PML program this graphic test is produced as one prin-

ter plot for each item with each plot requiring about 1 se-

cond of CPU time on the IBM 360/65. Each plot uses one page

(or,to be more exact,54 lines)of printed output.

Even though no statistical test yielding p-vales for the fit

of each item has as yet been found within the conditional

approach it is possible to compute for each score group the

probability that an observed frequency of correct answers

deviates from what would be expected on the basis of the mo-
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del. Under te:_null hypothesis,of.model fit the nir should

be distributed binomially B(ni wri). A two sided test can

thus be performed such that when nirsnrwri'the probability of

observing nir or fewer correct answers is computed and when

nir>nrwri the probability of obtaining nir or more correct,

answers is computed, in both cases under the assumption that

the null hypothesis holds true.

These tests, too, are available in the PML program but it

should be pointed out that the power of these tests is lower

than the. "power" of the graphic test in the sense that syste-

matic deviations from the model which can he detected with

the graphic test are often not detected with the binomial

test.

A slightly different version of the binomial test has been

,presented by Allerup end 3orber (1977) and for computing the

cumulative binomial probability distribution a subroutine

written be these authors is used.

3.2 Overall tests of goodness of fit

It has been shown by Rasch (1960) that it is possible to de-

vise a test of the model which is completely free from esti-

mated parameters. This test, which is a generalization of the

Fisher exact test fop' a 2x2 matrix, is, however, so computa-

tionally cumbersome that it is impossible to put it into

practical use.

Thus methods based on estimated item parameters have to be

used. This, however, is no great sacrifice since it has been

shown by Martin-L8f (1973, 1974b) that certain tests based on

ML-estirWates are parametric counterparts to generalizations

of the Fischer exact test.

There do exist two overall numerical tests of goodness of fit

for the Rasch model which are both asymptotically chi-square
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distributed. 04e is a conditional likelihood ratio test inde-

pegdently suggested by Martin-L8f (1973) and Andersen (1973b).

Since this test has come to Ipe called the Andersen test the

same label will be used here. The other test is a chi- square
4

test '6omputed from a quadratic form suggested by Martin-1W

(1973). This test will be referrea to as the Martin-Lof test:

The Andersen conditional likelihood ratio test

Likelihood ratio tests are intimately associated with ML es-

timation and stated verbally in simple terms the general

principle of such tests is to compare values of the likelihood

function resulting from parameters estimated under competing

hypotheses.

The logarithm of the conditional likelihood function was de-.

rived as formula (2.1.11) above and we repeat it here:

(3.2.1)

k k=1

logA= E s.logc.- E n logy
r

After having estimated the item parameters for the total

sample we can insert the estimated parameter values in (3.2.1)

to get the maximu value of the logarithm of the likelihood

7'function. We call the resulting value Ht.

Under the null hypothesis of model fit we should expect

essentially the same estimated values of the item parameters

whichever subgroup in the sample the estimates are based upon.

In.the limit we can estimate the item parameters whithin each

of the k-1 score groups and still expect the same estimates

(within the limits of stochastic variation, of course). If we

compute the value of the logarithm of the likelihood function

for each of the score groups and call these Hr (r=1,...,k-1)

we can form the statistic:

(3.2.2)

k-1

JogA= Ht-E Hr
r =1
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It can beshown that -21ogA is asymptotically chi-square dist-

ributed when each nr.ce with (k-1)(k-2) degrees of freedom..

This particular form of the test can, however, seldom be used.

Only rarely is the sample size so large that sufficently

stable estimates can be obtained within each score group and

when there are differences among the item difficulties the

simple items tend to be answered correctly by all nersons in

the higher score groups and the difficult items tend to be

answered correctly by no person in the lower score groups,

under which conditions it is not possible to estimate the

parameters.

However, Andersen (1973b) has shown that the test can be com-

puted also when adjacent score groups are pooled. Thus, if we

pool the k-1 score groups into g disjoint groups we can esti-

mate the parameters within each group, compute the H,(j=1,...,g)

and form the statistic:

(3.2.3) logAr. Ht- E H.

Here too -21ogA is asymptotically chi-square distributed when

nj now with (g-1)(k-1) degrees of freedom.

This test is available in the PML program with an automatic

grouping of the score groups. The grouping is carried out un-

. .der the constraints that there must be a minimum number (m)

of examinees within each group (this number can be specified,

with the default taken to be m =100) and that there must be no

zero or perfect item scores within any group.

N

The grouping process may fail either as a consequence of

choice of too high a value of m or as a consequence of there

being items answered correctly by all or no e.aminees in most

of the score groups (or as a consequence of a combination of

these two problems). The first problem can of course be easi-

ly solved through the choice of a lower m but the second prob-

lem can only be solved if those items causing the disturbance

are excluded.
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The amount,=of computer time required for computing the test

depends upon three factors: the number of items in the test,

the number of groups in which the parameters are estimated

and the number of iterations required for convergence within

each of the groups. There are two reasons for which it is

necessary to choice an m so large that the grouping results

in only a few groups when k is large. The first reason is

that it may be quite time consuming just to estimate the item

parameters within the total group when the test consists of

many items; if this is to be repeated for a large number of

subgroups as well, the costs may become prohibitive. The Se-

cond reason is that a large number of iterations is often

required in groups composed of just the highest score groups.
;

The reason for this is that the proportion of correct ansirt.ors7

on the easiest item tends to be very high in these groups in

which case the convergence is slow.

Thus, before testang goodness of fit of a long test it is

strongly recommended that the ((nir)) matric be inspected for

a suitable choice of m. In fact, for very long tests it may

even be impossible under a strict budget for computer time to

apply this test for overall goodness of fit. It should be

pointed out, however, that in the first steps of an item se-

lection procedure'with the purpose of constructing a undi-

mensional test conforming to the Rasch model, the graphic

tests give all the information needed. Only when the final

test is to be composed of very many items may an overall test

be required. In such a case, however, there is the possibility

of constructing the test in parts and then testing whether

the parts can be fitted together into one long test, using

the procedure described in chapter 5.2 below.

It is also possible to compute the conditional likelihood

ratio test for the equality of item parameters between sub-

groups defined in other ways than through differing raw

scores. Each analysis with the PML program namely results in

the value of the maximum of the logarithm of the likelihood

function being printed, and these values can be used for

simple hand calculations. Thus, if separate analyses are

made within each disjoint subgroup (boys and girls, for
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example) lind one analysis is made with all groups merged into

one, all ingredients necessary for computing the test statis-

tic (3.2.3) are at hand and only a few arithmetic operations

are required. (For an example see chapter 4.2 below).

The Martin-I1 of chi-spare test

Martin -Lof (1973) has suggested an alternative test for asses-

sing overall goodness of fit to the Rasch model in which a

chi-square sum is built up from deviations between observed

and predicted frequencies of corrects answers within each

score group.

From (3.1.4) above follows that if the model holds true:

(3.2.3)
n c.y

(i)

r r-1
n
i r

=

Yr

If we label the vector

n
lr

n
kr

=(qr) and call the corresponding

vector of predicted frequencies

tic can be written:

(3.2.4)

(1)
nrclyr_i

Yr

=(tr) the test statis-

n c.y
(k)

r r-1

Y r

k-1

T= E f(qr)-(tr)}'{((Vr))1-1f(qr)-(tr)}
r=1
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din which quadratic form ((Vr)) is a variance- covariance

matrix of order kxk with elements defined as follows:

(3.2.5)

n c.y
(i)

r r-1

Yr

n c.c(i,j)
r j

y
r-2

Yr

in the diagonal

for igj

Martin-LOf (1973) has shown that the test statistic is asymp-

totically chi-square distributed with (k-1)(k-2) degrees of

freedom when each nr+03.

In (3.2.4) the summation is made over all score groups. If,

however, some nr=0 we have to restrict the summation to those

R groups in which nr>0. The degrees of freedom then are

(k-1)(R-1).

This test requires computation of the second derivatives of

the symmetric functions, ((y (i,i) )). In the PML program this
r-2

is effected with the Summation algorithm, through repeated

calls to this routine with the parameter values for two items

at a time put equal to zero.

From (3.2.4) it is seen that at any-sten in the computations

only the ((Y(Iiij))) of one order (i.e. for one score group)

are required. With the Summation algorithm, however, the'de-

rivatives for all the score groups are obtained, which makbs

it necessary first to compute the off-diagonal values in the

variance-covariance matrices for all the score groups and

store these. Since the total number of off-diagonal elements

in the variance-covariance matrices is given by the formula

k(k-1)2/2 it is easily seen that a vast amount of storage

space is needed when the number of items is large. For

example, when k=60 816K bytes would be necessary to store
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these elements as REAL*8 numbers.

For larger problems as sequential scratch-file is thus used

to store the elements. Since it would be rather time consu-

ming to read this file as many times as there are score

groups, an array is used in which the information for several

score groups is stored. The number of matrices which can be

stored in this array dependi upon how large it.is; it must,

however, be dimensioned at least for k(k-1) elements and the

larger it is the better. Both in this array and on the scratch

file the second deA.vatives,are stored as single precision

numbers even though the precision used in the computations is

dependent upon whether single- or double-precision arithmetic

is chosen.

When the number of items is large the Martin-Lbif test tends

to be quite time consuming to compute; not only must the

second derivatives be computed but the test requires inver-

sion of (at worst) k-1 matrices of the'order kxk as well.

For example, for k=60 and with all nr>0 the test requires

about 7 minutes of CPU-time on the IBM 360/65. When the num-

ber of items is moderately large, however, the amount of com-

puter time required is no obstacle against using the test.

For k=40 somewhat more than a minute is required and when

k=20 the test is computed in less than 20 seconds. In most

cases when the number of items is moderate this test is fas-

ter to compute than the Andersen test.

The Martin-LOf test vs the Andersen test

Both the overall numerical tests are asymptotically chi-

square distributed (they are in fact related through a Taylor

expansion), but there may be differences in the power charac-

teristics Of the tests and as well as in their asymptotic,pro-

perties. It should also be noted that while the computation

of the Andersen test may fail at times, especially when the

sample is small, the computation of the Martin-Lof test al-

most never fails. But even though the Martin-L8f test can al-

most always be computed this does noilimply that the results
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of the test can alWays be trusted; when a small sample is

used and the number of items is large, quite a few score

groups will necessarily consist of only a few personswith"

the consequence that the test statistic may be far from chi -

square distributed. In order to cast at least some light on

the characteristics of the two overall goodness of fit tests

some simulation studies have been performed.

To obtairi some information about the difference in the be-

havior of these tests for smaller sample sizes, data were ge-

nerated so that they would conform to the model. For genera-

ting the scores, a modified version of the routine presented

by Allerup and Sorber (1977) was used, with a version of the

the feedback shift register random number generator (Lewis &

Payne, 1973) as the basic generator
1)

. (It should be pointed

out parenthetically that great demands are put on the basic

random number generator in these simulations since the tests,

and especially the graphic tests, are so sensitive as to be

able to pinpoint generators with less than optimal qualities).

Data were generated only for k=15 with the size of the item

parameters chosen to vary in-equal steps between -2 and 2

with the person parameters randomly sampled from a normal

.Jstribution with zero mean and unit standard deviation.

Data were generated for two sample sizes, n=150 and n=300,

each with 50 replications. The number of observed p-values

less than .05(x.05) and the means of the p-values (7,7
P

) for

these analyses are presented in Table 3.1.

1) I wish to thank Dr. Philip Ramsey at Hofstra University

for putting into my hands an easy-to-use version of this

excellent random number generator.
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Table 3.1. Results, from the two overall goodness of fit tests

for data generated to fit the model.

Sample size

150 300

N.05 xp .05
x
p

The Martin-LOf test 5 .57 7

The Andersen test 3 .48 2 .4e

With 50 replications we should not expect more than 2 or 3

significancies at the 5 per cent level, and this is also what

is found for the'Andersen test (in all replications two groups

were used in computing the Andersen test). But we also find

that the Martin-LH* test discards the model at too high a rate

for both the sample sizes.

The reason for the difference between the tests is quite ob-

vious when a look is taken at how they are computed. In the

Martin-LOf test all score groups are treated regardless of

their size (except when nr=0) while in the Andersen test small

cs.core groups are pooled to form larger groups. In the present

simulations there were of course score groups which contained

only one or a few persons.

In the presentation of the results from the Martin-Lof test in

the PML program all the indepeident contributions to the chi-

square sum from each score group are, however, printed out,

and it was noted that in all the cases when this test resul-

ted in a highly significant chi-square sum a very large part

was contributed by one or two score groups consisting of only

a few persons. It is thus strongly recommended that when this

test is applied in situations where the sample is small rela-

tive to the number of items, the contributions from the 'mall

score groups are investigated, and that the results of this

test are put aside as soon as therr is a large contribution

from any score group consisting of less than, Jay,. 10 persons.
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In investigating the power of the tests.sets of data were ge-

nerated under the two-parameter model, with varying values of

the discrimination parameter for the items. As previosly, on-

ly the case with k=15 was considered, with the item parame- .

ters taken to be three each with the values -2,-1,0,1 and 2

and the person parameters chosen in the same way as above.

Data were generated to reflect three degrees of deviation

from the one-parameter: small, with one third of the parame-

ters 0.9, one third 1.0 and one third 1.1; moderate, with the

discrimination parameters chosen to be 0.7, 1.0 and 1.3; and

finally large, with the corresponding discrimination'parame-

ters chosen as 0.5, 1.0 and 1.5. In all cases the three '-

discrimination parameters were represented Est all the five

levels of item difficulty.

Three different sample sizes were used; 150, 300 and 1 000

and 10 replications were made. The results are presented in

Table 3.2.

Table 3.2. Results from the two overall tests for data gene-
..

rated to deviate from the

Amount of deviation

Small

N
05

7
p

oderate

.05
7
p

Large

N
05

x
p

n=150

The Martin-LOf test 2 .41 3 .36 5 .15

The Andersen test

n=300

1 .42 2
1)

.27 8
2)

.01

The Martin-L8f test 0 .66 4 .20 7 .07

The Andersen test

n=1 000

0 .47 6 .10 10 .00

The Martin-Lof test 0 .50 9 .0] 10 .cn

The Andersen test 1 .34 l0 .00 10 .00

1) The Andersen test c'72q1d be computed in only 9 cases.

2) The Andersen test could be computed in only 8 cases.
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We find that when there are only small deviations from the

one-parameter model there is no possibility with the sample

sizes used here to detect any deviation from the model (it

will be shown below that even though highly significant va-

lues of the test statistics are obtained when the sample size

is heavily increased there would still be reason to accept

the model with this amount of deviation in the data).

With large deviations from the model we find that the Ander-

sen test in all successful analyses,forall the sample sizes,

discards the model, while the Martin-Lof test discards the

model only for the sample size 1 000 in all analyses. At

least for deviations from the model caused by varying

discrimination among the items the power of the Andersen

test thus appears to be greater than the power of the ',Iartin-

LOf test.

For the intermediate case with medium deviations we do find

indications, too, that the Andersen test is more powerful

than the Martin-Lof test but it can also be noted that only

for the largest sample does the former test consistently dis-

card the model.

Even though these simulations are merely some examples it does

seem as if the conclusion can be drawn that the likelihood

ratio test has somewhat better properties than the chi-square

test both with respect to the number of observations needed

to claim that the test has the assumed distribution and with

respect to power.

3.3 Redundancy

No model is ever completely true in describing a set of data,

which means that with a sufficient, number of ob.iervations

any goodness of fit test would discard the model. In discus-

sing this problem Vartin-Lof (1974a) stated:

"This indicates that for large sets of data it is ton

destructive to let an ordinary significance test decide
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whether or not to accept a proposed statistical model,

because, with few exceptions, we know that we shall have

to reject it even without looking at the data simply be-

cause the number of observations is so large. In such

cases we need instead a quantitative measure of the size

of the discrepancy between the statistical model and the

observed set of data... " (p. 3).

Martin-Lof derived such a measure called redundancy (R) from

concepts in the statistical information theory, which on an

absolute scale measures the deviation between a statistical

model and a set of data. The redundancy exists in two forms:

the micro-canonical redundancy corresponding to non-parametric

formulations of the test and the canonical redundancy corre-

sponding to parametric formulations. The canonical redundancy,

which is of course the only one that is accesible in tests of

the Rasch model, should be regarded as an approximation to the

microcanonical redundancy and both can be given the same inter-

pretation:

"it is the relative decrease in the number of binary

units needed to specify the given set of data when we

take into account the regularities that we detect by

means of the exact test"(Martin-L6f, 1974, p. 10).

Since tne measure reflects a relative decrease it assumes va-

lues between 0 and 1 and low values indicate a good fit

between the model and the data.

The canonical redundancy can easily be corputed from the

likelihood ratio quotients (3.2.2) or (3.2.3) above together

with the maximum of the logarithm of the likelihood function

(3.2.1):

(3.3.1)
logy

H
t
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It is also possible to compute R from the rartin-Lof chi-square

test, which gives an approximation for R in the formula above:

(3.3.2)
X
2

R= - ---

2H
t

Since the scale upon which R is expressed is in a'sense abso-

lute it is possible to use case studies for calibrating it.

Martin-Lot (1974a)computed the values of R for different va-

lues of the binomial probability p with respect to the hypo-

thesis p :.5,

P

with the results presented below:

R Fit

.000 1.000 1. Worst possible

.216 .684 .1 Very bad

.441 .559 .01 Had

.482 .518 .001 Good

.494 .506 .0001 Very good

It might be of some interest to compare this calibration of

the redundancy scale with the results which ran be observed

for R when very large sets of data with known deviations

from the model are generated. Data have thus been generated

under the two-parameter model with different values of the

discrimination parameter for the items. In all analyses 15

items were used with the same 5 levels of difficulty para-

meters as in the simulations investigating power presented

above. The sample size was 50 000 persons (N(0,1)) and three

different discrimination parameters all represented at all

levels of difficulty were used.

Discrimination

Case parameters The Andersen test The Martin-LOf test

X
2

df 4 X2 df R

1 1.00 1.00 1.00 185.2 182 .0003 188.0 182 .0003

2 .95 1.00 1.05 247.8 168 .0005 254.2 182 .0005

3 .90 1.00 1.10 455.4 154 .0008 494.7 182 .0009

4 .85 1.00 1.15 933.2 ]82 .0017 933.6 182 .0017

5 .80 1.00 1.20 1504.7 182 .0028 1498.7 182 .0028
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In case 1, using data fitting the model, we find non-signifi-

cant values 0: the test statistics and the redundancy indica-

tes a "very good.' fit. In all the other cases the statistical

tests are very highly significant but at least for some of

them the value of R is low enough to indicate; an accept-able

fit.

For case 2.the value of R is .0005, which on the scale

established by Martin-LOf corresponds to a fit that is "good"

to "very good". The graphic and binomial tests of the items

in this analysis showed no signs of systematic deviations

from the model and would thus have been useless to improve

the Sit. (had a plotting method yielding greater accuracy

been used, such as the one in the Allerup & Sorber, 1977,

program it might of course have been possible).

For case 3 the valus of R indicate a "good" fit. Here, how-

ever, the graphic tests could be used to identify all the

deviating items. Here there is thus a choice of whet-Ire-I, to

improve the fit through selecting items, or to accept the

fit as satisfactory.

The other case's all how a fit which is worse than "good"

and in all these analyses boththe graphic and the binomial

tests could clearly be used to identify the deviating items.

The results obtained in case 2 show that it is possible to

observe a highly significant deviation from the model with an

inferential test while at the same time. it is impossible to find

any deviations with descriptive methods. If in such a case the

redundancy is suffiently low, less than .001 say, we have a

good basis for accepting the model in spite of the significant

test statistic.

If the redundancy is low and it is possible to use the results

from the graphic tests to improve the fit we have the cho'5r.

of doing so or to accept the model as showing a good fit t3

the data. In making this decision it, does seem necessary to

invoke other than statistical criteria, such as content, rela-

ted considerations.



t*

In order to prevent any misunderstanding to occur it should

finally be pointed out that the redundancy statistic is of

any interest only when the number of observations is large; a

high redundancy observed for a smaller sample is not necessa- .

rily a sign of a poor fit.



Chapter 4

CONSTRUCTING RASCH SCALES

It has repeatedly been stressed that the Rasch model is the

LT model which entails the strongest assumptions, and even

though no model is ever wholly valid for describing a set of

data, serious deviations from the assumptions will invalidate

most attempts to capitalize on the great potentialities for

applications in the model. Thus, whatever eventual applica-

tion is intended, one inevitable first step is to make sure

that the data do show a reasonable fit to the model, and if

they don't, take the necessary precautions to make sure that

they do.

In the introduction it was mentioned that the Rasch model has

already been applied to some extent and surely some experience

has accumulated as to possible sources of threats to the model.

,But it must also be stressed that in the applications carried

out on the European continent as well as in North America the

problems of testing goodness of fit have been taken rather

lightly, w4, ch is almost surely a consequence of the fact

that the procedures employed for,testing goodness of fit have

less,than optimal properties. In fa'A, there are very few

-studies where the test procedures developed on the basis of

the conditional approach have been used for other than

illustrative purposes.

In this context neither will it be possible to present much

more than illustrations of applications but the important

point to note is that there is still much research to be

carried out on the sources of deviations from the model and

how to remedy them.

Before the possible sources of deviations from the model are

discdssed, analyses of two tests of PMA-type (Primary mental

Abilities), develop within the framework of classical test

theory will he presented.
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4.1 Analyses of two tests of PMA-type

The two tests to be analyzed'are Number Series and Opposites

constructed to measure inductive(or non-verbal reasoning)and

verbal ability respectively. The tests were constructed by

Svensson (1964. 1971) and the only reason for chosing these

tests was simplF: access to data which consist of a sample of

566 fifth-graders (see Gustafssor, 1976, for a detailed

account of why and how the data were collected).

Each of the 40 items in Number Series consist of a series of'

six numbers and the task is to add the two following numbers.

The time limit of the test is 18 minutes.

In Opposites, which test also consists of 40 items, the task

is to select., from among four given words the one which is the

opposite of a given word. This test too is timed, with the

limit being 10 minutes

Opposites is thus a multiple-choice test which allows guessing

and can for this reason alone be supposed to show a poor fit

, to the model. But it is of course of some interest to inves-

tigate in what ways this kind of violation of model assump-

tions expresses itself in the model tests. Number Series, in

contrast, requires constructed, responses which means at least

that guessing is minimized as a source of deviation from the

model. Rasch (1960) who also investigated the fit of some

previously existing tests to the model in fact found, with

graphic methods, a good fit -for a test highly similar to

Number Series.

Number Series

With a sample of 566 persons and a test with 40 items it is

obvious that quite a few score groups will be very small; an

attempt was thus made to use the Andersen test to investigate

the overall fit of the test, This test could, however, not hp

computed for the original set of items since easy items were

solved by all persons in almost all the score groups, excep-

ting only some of the lowest while two of the most difficult



items were solved only by a few persons in some of the highest

score groups. When the five easiest and the two most difficult

items were excluded, however, the score groups could success-

fully be grouped into four groups, with the value of the test

statists being 349.2 with 96 degrees of freedom, which is of

course h g ly significant.

Thus, if we hade hoped to find a good fit for the Number Se-

ries test to the Rasch model, there is reason for disappoint-

ment. But on the other hand it will be instructive to find out

ithe reasons for the poor fit of this test.

Several factors may, singly or in combination, be responsible

for the poor fit: item heterogeneity, speededness of the test,

learning effects from one item to another, varying item

discriminations, just to mention a few. In searching for the

cause or causes to the deviations, the information which is of

most help is the graphic test of each item, along with, of

course, the content,of each item and every piece of informa-

tion about the testing situation which can be found.

The items in the test have been analyzed and the recursive

formulas defining the series have been determined. These

algorithms are presented in Table 4.1 along with the propor-

tions of correct answers and rough summaries of the graphic

tests in which for the lower and the higher score groups

and signs have been used to indicate whether the observer!

proportion of correct answers is higher or lower than the

predicted proportion.
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Table 4.1. The recursive formula defining the items in the

Number Series test.

Item Prop. Algorithm Low High
score score

corr. a
n+1

= groups groups

2 .97

3 .98

4 .98

5 .97

6 .93

7 .91

8 .87

9 :85

10

11

12 .56

13 .67

14 .57

15 .64

16 .54

17 .50

18 .51

19 .46

20 .49

21 .43

22 .41

23 .41

24 .45

.77

.63
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1
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a
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Table 4.1 Continued

Item Prop. Algorithm

corr. a
n+1

=

Low High
score score
groups groups

25 .28

26 .35

27 .31

28 .40

29 :35

30 .25

31 .28

32 .29

33 .32

314 .20

35 ..13

36 .17

37 .09

a
n
+2(n-1) a

1
=5

an-1-2 a1 =34, a2=29

a
n-1

+3 a1=17, a2=15 - 4

aa
n-1

02 a1=6, =12 - +

a
n-1

/2 a1=128,a2=64 - +

a
n-2

-5 a
1
=20, a

2
=18,a

3
=16 - +

a
n-1

+2
,

a1 =1, a2=4 +

a
n-2

+5 a
1
=1, a

2
=3, a

3
=5

a
n-1

+1 a
1
=1

'
n=1,3,5

a
n-1

-1 a
2
=2, n=2,4,6

+ ...

a
n
+1

a
n-1

+1

9

n=2,5,8...

n=4,7,10...

n=3,6,9...

a
1
=1

+

a
n-2

+16 a1 =13, a2=15,a3=22 +

a
n-1

+2 a1 =1, a2=2, a3=3 +

a
n-3

+2 a
1
=3 n=4,7,10...

a
n
+1 n=2,5,8...

a
n-1

+a
n

n=3,6,9... +

Looking at the pattern of deviations from the model as evi-

denced by the g.aphic tests we find that for most of the

items late in the.test the observed proportion is too high

for the higher score groups and too low for the lower score
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__ . __
groups. If the items appearing late in the test have a higher

discrimination parameter such a pattern of results would be

found, but there are other explanations as well of which

speededness of the test appears to be most reasonable. For

the items with order 'umbers around 30 almost half the sample

did in fact not attempt any answer, correct or incorrect,

which is a strong indication that a large proportion of the

sample did not even attempt to solve the items appearing la-

ter in the test. Additional evidence in favor of this inter-

pretation is obtained from the algorithms for the items. The

recursive formula for items 27 and 31 are in fact essentially

the same as those for items 13 to 15, for example, and still

the items appearing early have proportions of correct answers

which are almost twice as large as those- for the items appea-

ring later in the test. This must be regarded as a very

strong indication that the test is speeded dn the sense that,

if given additional time, some persons would get additional

items correct (or for that matter, that there may he some

other reason, such as boredom, accounting for why some of

the examinees did not attempt the items later in the test).

If speededness or some other factor with equivalent effects,

is the only reason for the poor fit of the whole test, we

should expect a good fit for items placed early in the test.

Since omitted responses were coded in a special way it has

been possible to determine the proportion of omitted respon-

ses for each item and this proportion was found to be fairly

low, never exceeding 20%, for item 22 and earlier items,

while there was a rather rapid increase in the proportion of

omitted responses for the items from number 23 to the end of ,

the test.

A new analysis was thus performed including only items 2-22.

This analysis too resulted in a highly significant x2-value

of 57.6 with 20 degrees of freedom (the Andersen test.with

the score groups grouped into two groups). Again the graphic,

tests of tne items were resorted to and these indicated a

poor fit for-items 9, 10 and 11, with the fit being worst

for item 11. For the higher score groups there,was for this

item a too low observed proportion of correct answers and for
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from the ability measured by the other items in the early

part of the test.

the lower score groups the observed proportion was to high.

Just a glance at the recursive formula for this item (see

Table 4.1) is sufficient to show that it deviates from those

for the other items early in the test in that it defines two

intertvined series defined by different rules. Obviously this

item measures at least partly an ability which is different

The graphic tests for items 9 and 10 gave a pattern very much

like that found for item 11, but less pronounced. The algo-

rithms for these two items are the same as for those four items

immediately preceeding them. What obviously makes items 9 and

10 more difficult and also showing a poor fit is that they

pose requirements for arithmetical ability: they require com-
.

putation of expressions like 45-38, which is a task which

pupils in the fifth grade have a high probability of failing

(Kilborn & Johanson, 1976. It can parenthetically be men-

tioned that when the second author above was asked to identi-

fy those items in the early part of the test posing exceptio-

nal demands for arithmetic skill, items 9 and 10 were clearly

identified and a few more with some doubt). Thus we can draw

the conclusion that the reason why items 9 and 10 do not fit

together with the other items is multidimensionality of the

latent space, i.e. performance on these items is affected by

arithmetical skill in addition to the ability measured by the

other items.

A new analysis was performed in which these three items were

excluded with the result that the Andersen test gave x2=28.4

with 17 degrees of freedom, with a corresponding.p-value of

.04, which will here quite arbdtrarily be regarded an accep-

table fit.

In passing it can be mentioned that the Martin-L8f test for

the same items resulted in a very highly significant valuP

of the test statistic (x2=763.3, df=272). A very large part

of the x2
-sum (457.6) was, however, contributed by score

gip 2, consisting of one single examinee who had answered

\,,A.tems 15 and 20 correctly. The results from this test must
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thus obviously be set aside (cf page 55 above).

Even though the overall test indicates that an acceptable fit

was finally obtained, the graphic, tests could be used t se-

lect a still more homogenous item set or perhaps severs item

sets. There were, for example, some indications that asce Ang

and descending series gave slightly different results. H w ver,

since we in this case are restricted to a very limited set f-

iteMs there is but little to be gained from pursuing such

..lyses.

In conclusion, we have thus learned that unless a reasonable

number of examinees have attempted the items and unless in-

fluence from other abilities is not controlled for, the data

will not fit the model. But it should also be pointed out that

we have made a heavy selection among the items and have thus

to some degree capitalized on chance effects. Thus, the fit

of a set of items selected from a larger pool on the basis of

the results in one sample should be tested in another sample,

for purposes of crossvalidation.

Opposites

C..Analysis of the items in Opposites with the Andersen test re-

sulted in x2=333.4 with 117 df, which is of course highly

significant.

Table 4.2 presents gross summaries of the graphic tests of

the items (the first two items have been excluded since they

were answered correctly by almost all persons; thus little

information is gained by keeping them, but as soon they are

included in an analysis a large number of iterations is re-

quired for convergence). As before the method of marking too

high and too low observed proportions of correct answers for

lower and higher score groups with + and - signs has been

used. When looking at the pattern of signs it should, however,

be kept in mind that they represent a very simplified descrin-

eu tion, there sometimes being important differences between

plots for items with the same pattern of signs.
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--Table -11 =nary & -the---graptriir test s--ot the items irr

Opposites.

Item Prop.

corr

Score groups

low high

Item Prop. Score groups
corr, low high

3 .98 22 .60

4 .97 23 .51

5 .89 24 .37

6 .90 25 .44

7 .71 26 .31

8 .71 27 .32

9 .75 28 :19

10 .80 29 .39

11 .58 30 .39

12 .69 31 .16

13 .72 32 .33

14 .69 33 .25

15 .66 34 .27

16 .56 35 .22

17 .60 36 .19

18 .47 37 .22

19 .69 38 .11

20 .53 39 .25

21 .38 .> 40 .22

Nevertheless the deviatiops form quite a clear pattern: for

the items late in the test, which are also the more difficult

ones, there tends to be a too°high observed proportion of-cor-

rect answers for the lower score groups and a too low propor-

tion for the higher score groups, while the reverse pattern

of deviations is found for the easier items. This is exactly

the pattern to be expected. when a test permits' guessing: on

the difficult items the examinees with low ability will get

scores which are too high by guessing, with the consequence

that their ability is overestimated which in turn implies that

on the easier items where the proportion of the sample which

guesses is smaller, the low ability examinees will appear to

perform too poorly.
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What is perhaps more interesting than this general pattern is
that there, nevertheless, are items whichdo not conform to
it: Some of the most difficult items do not appear to be af-
fected by random guessing and there are in fact a few items
(35,37 and 38) with a very low proportion correct (lower ac-
tually than would be expected if all the examinees guessed
randomly) on which the + rather than the + - nattern is ob-

served. It may be inteing to take a closer look at these
items which are "good" items in the sense that if it were
possible to estimate the discrimination parameters, this

parameter would be found to be high for these items.

The three items are presented in Table 4.3 together with the
percentage of subjects marking each alternative.

Table 4.3. Three difficult, highly discriminnting items in
Opposites.

Choices

Item Stem 1 2 3 4 No
resp

35 Foolhardy Castiess(22) Attestim(35) holish(10) Oaring(16) (9)
37 Slialficaat Vaoloar(r4) Usisporiant(22) Despisod(13) Meaniagless(41) (10)

Ample Ner(63) ImpovorisW(9) Nagnitioest(e) SeastY(11) (9)

What is especially striking, particularly for items 37 and
38) is the high percentage of examinees marking one of the
distrlactors. If the content of the items is looked at, it
does beCome Gvious, however, why one of the incorrect alter-

natives is so attractive. In item 37 the majority of the

examinees have chosen "meaningless" the opposite of "sig-
nificant". I suspect that even in English this distractor

would be quite attractive, but it must he so to an even

higher degree in Swedish since the :Iwedish counterpart of
significant can hie literally translated as "meaningful".

.Obviously, many of the examinees, not knowing the exact

meaning of the words, were fooled by their literal appearan-

ces to choose this particular distractor.
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The same explanation holds true for item 38, even though ti-is

its here. less clear from the translation into English. The li-

teral translation from Swedish into English of ample is, how-

ever, "richlike" which makes it understandable why more than

60 per cent of the sample chose "poor" as the opposite to

ample.

These examples provide an explanation of why some multiple

choice items don't show evidence of any guessing effects:

if one (or more) of the distractors is so attractive that al-

most all of those who don"t know the correct answer chose it,

of course little or no random guessing will take place (cf.

.Lord, 1974a and page 8 above). From this, it follows that it

is at. least in principle possible to construct multiple choice

tests where guessing will only to a small degree be another

factor affecting performance. Whether it is possible to con-

struct :iuch a multiple-choice test in practice is of course

more doubtful, and is probably not worth the attempt.

We will now embark on an excersise intended to serve above

all as a warning: The usual practice in item screening to

obtain fit to the model is to try out a larger set of items

on a sample and select those that appear to fit the model.

We will investigate whether this is possible here, in which

case we know that such a procedure can yield only essentially

meaningless results as a consequence of the fart that all the

items are of multiple choice type and thus are influenced by

guessing.

There are essentially three types of items to be found in

Table 4.2: those with no signs marked, those with the + -

pattern and those with the - + pattern, corresponding to i-

tems with intermediate, low and high discrimination, respec-

tively (the items will be referred to as MD, LD and HD items).

It c 14 be argued that those items without any signs marked

are se that should be selected since they do not show -)T17

deviation from the model. Not much thCuEht is required, how-

ever, to detect that this is incorrect: items do not show

fit or lack of fit to the model in themselves, the model



assumption instead says that the items should he homogeneous,

i.e. that each item should fit together with the other items.

This implies that if we analyze the three groups of items se-
_
parately, we should-e)*ct to find-three sets of items which

each form a scale conforming to the requirements of the Rasch

model.

Such analyses have been performed using every item listed in

Table 4.2 except item 15 since the results of the graphic test

for this item did not conform to the results of any other

item. The results from the goodness of fit tests

test are presented below:

(the Andersen

Type of item Npmber of items x2 df p ISS

LD 12 33.0 33 .47 .27

MD 10 19.8 27 .84 .41

HD 15 49.6 42 .20 .72

We thus find that the reasohIng was correct; for each set of

items a good fit is 'found. It cao also be observed that the

ISS (see page 41) is considerably higher for the HD than for

the LD\items.

Two conclusions can be drawn from this exercise. First,the

question of item fit is wrongly stated if it is asked

whether an item does or does not fit the model, the correct

quest -ion' to ask is whether any given item fits together with

the other items. This implies in turn that, in most cases ana-

lysis of an item pool should not result in the selection of a

subset of items which are "good" in relation to the require-

ments of the model, instead grouping of items into internally

ihomogenous scales is the result to he sought, and throughout,

1 of course, attempts should be mad to clarify whst s-rh scale

14 is measuring.

7
i The serond conclusion t') he drawn i2 purel7 nPgativn: nt'v1

ly it is very easy to select item:, from a pool so as to

/ scales conforming to they odel, but in this case it, is almost

f ()r

e t

m

equally obvious that the result is nonsensical, since if these



groups of items were administered to a new 51711with only a

slightly different distribution of person parameters a poor

fit would be found. What has been done can probably best be

described as a capitalization on trading relationships between

assumptions; for example the amount of guessing is different

on the items and the discrimination can be supposed to vary.

These two factors can blend and balance in different ways for

different items, with the net result being that items which

are very different in both these respects can be found to fit

together.

t7

4.2 Item bias in Opposites

The overall numerical tests as well as the graphic tests are

constructed from the starting point that the item parameters

should remain the same for all levels of score croups and e-

vidently these tests are powerful means of guarding against

violation of certain kinds of model assumptions such as vary-

ing item discrimination. The Rasch model, however, states that

the item parameters shall be the same whichever subdivision of

a sample is made, and the tests based on the results for

groups with different levels of performance need not be power-

ful when some items are too easy for one subgroup and too

difficult for another if the overall level of performance of

the groups is equivalent.

This problem of analysis. of what has been termed item bias

will be illustrated through analyses of sex differences in

Opposites.

As was mentioned above on page 5) the Andersen test.(equation

3.2.3) can be used to test differences between the estimates

of item parameters obtained in any disjoint grouning of the

sample through performing some simple hand calculations of

figures found in the computer printout, i.e. the maximu of

the log likelihood.

The item parameters were first estimated separately for boys

and girls for items 3-40 in Opposites with the resulting va-
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lues of Hj being -4 905.31 and -4 834.16 respectivel:1. Those

values, together with the value of Ht of -q 795.4o found with

both grolps pooled were put into formula (3.2.3) with a resul-

ting 2 :111.86 with 37 df, which is highly significant.

Had there been large differences in the level'of performance

of boys and girls it could have been argued that the signifi-

cance does not reflect anything except the kind of deviations

already detected with the overall goodness of fit test. Since

this is not the case (even though the mean for boys is slight-

ly higher) we can go on to study which items tend to favor

boys and girls respectively.

Since estimates of the normally distributed standard errors

are obtained along with the estimates of the item parameters

in each analysis a z-test for the difference between the pa-

rameters for each /tie can easily he computed (Fischer, 1974,

,J P. 297):

(4.2.1) z-

/SEM? +SEM?
11 12

oil -ail (i=1,...,k)

where the subscripts 1 and 2 refer t81"the groups.

The item parameters, along with the results from the statis-

tical test, are presented in Table 4.4. A negative sign of 7.

indicates a lower value of the item rarameter for boys, i.e.

that the item is easier for boys. There are four itens fbr

which a significant difference in favor of boys is found and

for four items a significant difference is found in favor of

girls.

The words which are "too easy" for boys are "srurt', "attack",

"noble", and "foolhardy" and the words which are "too easy" for

girls are "smooth", "desert", "merry" and "anonymous". 'his is

not the place to venture in4v discussion why certain items ar,,

biased in a certain way, but at least for the. "boys items'" it

does appear as 1i they are related to what is regarded as

boys' activities (cf. Wernersson, 1977).
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Table 4:4. Tests'of equality of estimated item parameters for

boys and girls for.item 3-40 in Onposites.

Item

Item parametei's

Boys Girls z

Item parameters

Item Eoys Girls z

3 -4.30 -4.07 -.36 22 -.16 -.58 2:23x

4 -3.16 -3.78 1.36 23 .03 .07 -.24

5 -2.26 -2.22 -.16 24 .39 1.03 -3.40x

6 -2.14 -2.50 1.25 25 .47 .26 1.15

7 -1.05 -.75 -1.56 26 .914 1.00 -.29

8 -1.34 -.52 -4.03x 27 .92 .90 .10

'9 -1.01 -1.26 1.21 28 1.60 1.69 -.41

10 -1.27 -1.62 1.62 29 .73 .44 1.59

11 -.20 -.33 .72 30 .63 .57 .33

12 -.72 -.93 1.04 31 2.04 1.82 .02

13 -.91 -1.00 .45 32 .98 .74 1.22

14 -.69 -1.06 2.37x 33 1.20 1.45 -1.21

15 -.48 -.87 2.07x 314 1.10 1.314 -1.16

16 -.21 -.14 -.42 35 1.18 1.95 -3.07x

17 -.51 -.20 -1.70 36 1.53 1.91 -1.56

18 . .49 -.04 2.31x 37 1.44 1.59 -.68

19 -1.27 -.44 -4.15x 38 2.49 2.22 .96

20 -.02 -.011 .11 39 1.32 / 1.36 -.2.0

21 .75 .51 1.32 49 1.40 1.59 -.8P)

.1111.1..........

It will be recalled that in the analyses performed on Oppo-

sites in the previous sect.on, it was possible to divide the

items into three groups, within each of which a good fit to

the model was observed. It can be asked how this grouping of

the items is relPted to sex bias. according to the signs of

the z-test presented in Table 4.4 each item in the three

groups was classifiPd according to whether it tended to lc

biased in favor of boys or girls. The results are presentPd

below
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Item type

Tendency towards bias

in favor of

Boys Girls Total

LD 8 4 12

MD r
, 5 10

HD 5 10 l5

1, 19 37

There is a correlation: the items which were identified as

having a low discrimination tend to be biased against girls,

while the HD items tend to be biased in favor of girls. Fut,

on the other hand a closer scrutiny of Tat4les 4.2 and 4.4

reveals that two of t'.-ie items significantly favouring boys

are of the LD type, while the other two are of the HP type.

There is thus a considerable heterogeneitir within the groups

of items with respect to sex bias, which in turn implies that,

the three scales previously found to fit the model may well

have to be discarded on the basis of an analysis of sex dif-

ferences.

Three separate analyses have thus been performed in which

the Andersen test was used to test sex r!iffercnces for each

of the three scales:

X
2 df p

LD 28.1 11 n<.01

rID ,14.0 9 ns

HD 57.7 14 p<.Onl

For two of the scales there are significant differences

between boys and girls with respect to the item parameters

in spite of the fact that the overall goodness of fit tests

did not indicate any reason for discarding the model. Thus, 4--

yen though one test show: a good fit;, anott,r can show a poor

fit, which is of course due to the fart that the test,i hwvo

differential power of detecting different deviations from

the model.

It is of some interest to study the distribution of person
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parameters for boys and girls on the three sub-scales. Martin-

Lor (1973) has presented two tests for comparison of the

distributions of the person parameters for two croups. One of

the tests is a likelihood ratio test and the other is a x2-

sum. If we use the subscript e (e=1,2) to denote the groups

we can write the likelihood ratio test:

(4.2.2)

2 k

re

n
r

logX= - 2:
/:

n log
n
re

4 E n r
log

e=1 r=0 n
e

r=0

Since the index r here varies from 0 to k the test has k

degrees of freedom, and as before -21ocX is asymptotically

chi-square distributed as nr-s.,-3.

The X2 -test is computed according to the following formu]a:

k

(4,2.3) x2_
k

): 11n2,nr1 nr2
)

2

n
2

r=0
n
r

n
1

This test, too, has k degrees of freedom and is asymptotically

chi-square distributed under the same condition as the likeli-

hood ratio test.

Application of these tests require that there be no difference

between the groups among the item parameters so in.this case

they can be strictly used only for the mP items. Nevertheless,

the tests were used on all three scales and the results are

presented below:

Iikelhood !fieans of raw scores
Item type fatio test x -test df boys Girls

LD 34 9X 33.2x 12 4.16 3.55

MD 12.0 11.9 10 5:77 5.61

HD 14.5 8.2 :5 R.i9 8.76

The two tests give highly similar results except for tne HD

items and they both agree that only for the Lr items is

there a significant difference among the distributions of
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item parameter's. On this scale the boys havela higher mean

than the girls, which is also the case for the other two sca-

les even though the differences on the latter are considerab-

ly smaller.

According to the finding reported above that there is a cor-

relation between the sex bias and item discrimination, we

might perhaps have'expected to find a difference in favor of

th'e girls on the HD items, which is obviously not the case.

Three explanations can be put forth to account for this.

First it should be' noted that even tilough some items may be

found to be biased against one group there is nothing that

szys that this group will have a lower mean on these items

since the mean i's also affected by the distribution of per-

son parameters. Second it must be observed
4
that if there are

in th test a few items whiCh are severly biased against one/

group several of the others will appear'to have at least a

small bias n favor of this gr,DuP which follows from the

fact that the constraint must be imposed that ttle'parameters

shall sum to zero. As the third eplanation,it can he pointed

out that even though we in this case have irterrreted the

differences between the groups iin terms of the sex variable,,,

there is evidently in this sampie P correlation between SPX

and ability. This implies /hat the division of the sample

according to sex to some extent is confounded Taft, level of

performance which inturn implies that the correlation obser-

ved between "sex bias" and item discrimination may also be

accounted for by differences in level of performance.

Let us now 'suffnar!ze some of the conclIlsions which can 'he

drawn from these analyses. First of all it pan he"cohclu'ded

that the Rasch model can be used to' study item bias, both as

nuisance in meastiring devices and as a sobstantivearea Of

research. (In order to prevent any misunderstanding fromoari-

sing it shoul-i perhaps be pointed out, that if alt ;*Pr' in a

test to the same degree favor one speial grow) this will n,'

be detected as any ,Pviation from the mod01.asnumptions. Prt

the problem rather is one of definition of the ability 1)in(

measured.) The model adds two arTepts to the st,idy itpm
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bias which are quite unique: the first that there exists an

overall test of item bias, which is also supplemented by

tests at the item level and the second that differences

between the groups with respect to tne nerson narameters do

not influence the results, at least not ,the there is no

differences among the item parameters as a function of abili-

ty.

A second important conclusion to be drawn is that the overall

numerical test of goodness of fit presented in chapter 3.2

have a low power of detecting certain threats to the model;,

in this case multidimensionality of the latent space since

sex is an rAditional factor to ability which systematically

affects performance on some items. The implication is of

course that even though the overall test of goodness of fit

is not significant there may be a need to carry the investi-

gation further by division of the sample along other lines

than level of performance.

4.3 Discussion

It must be stressed that the analyses of "lumber Series and

Opposites presented above are nothing but examples, which can

serve to highlight a few of the characteristics of the Rasch

model. In the analyses several sources of threats to the

model have been pin-pointed and we will first discuss these,

and a few more common violations of'model assumptions. After

that strategies and problem in the development of scales

fitting the model are discussed.

Scources of threat against the model

Item heltLutaitu is a violation of the assumption of uni-

dimensionality and as was pointed out in chanter 1.2 auo-,re,

there is no entirely satisfactory ret14)d, with which one can

imake sure that this assumption is not violated before the

Rasch model is appl'_ed. But it does anpear as if the good-

ness of fit tests (and especially the graphic tests of the
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items) are powerful means with which item heterogeneity can

be detected. In the analysis of Number Series, for example,

the heterogeneity caused by some items requiring more arithme-

tical ability than others was easily detected.. It thus appears

that the model in itself is a very useful tool for studying

unidimensionality of measurements.

It must be strongly emphasized that the question of item ho-

mogeneity is a question of finding items measuring the same

ability, and not a question of excluding items not fitting

the model. This implies among o*her things that purely statis-

tical criteria cannot be used in selecting items and that a

very clear grasp of the content_and the processes required

of each iteMs is demanded.

Speededness of the test is obviously a violation of the, model

assumptions since if 'a person does not have time to read an

item any statement aUbut the probability of a sorest answer

as a funCtion-of the person parameter will be memingless.

None of the LT-models considered here can thus be supposed

to properly represent the case when there is any amount of

speededness iivolved. It can be pointed out, however, that

Rasch (1960) has proposed a 'Poisson process model for one

particular case where speed is .irvolved, namely tests of

oral reading speed.

For, almost al group tests of ability there, is a fixed time

limit (this also holds true for somc achievement tests) ,

which makes. them at least in principle speeded. But know-

ledge about the time limit under which a test is administered

does not say much about whether some persons would answer

additional items correctly 4.f given unlimited time; the omit-

ted items may all have been so difficult as to ma'e'the pro-

babity of a correct answer very close to zero.

Thus whether a,jtest with a time limit is speeded or not i^ nr

empirical question (in a sense this appl4es to tests given

without, time limits too since there may be self-imnosed "tiro

limits" which are consequences of boredom and tirdness) and

0
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it does appe.ar as if it is possible to investigate this

question with the Rasch model. Not only is the a.alysis of

Number ,Serie& presented above an ,example of this; Rasch

(1960) was also able.to identify lack of fit for a test as

being a consequence of the test being sneeded.

But it should also be pointed out that if we know that speed

is the only violation of the assumPerO5ZThe Rasch mode) nan

be Used to "partial out'" the speed factor. This is effected

through estimating the person parameter for the "power" from

the scores obtained only on the attempted items. A study

using such piocedures has been presented by Allerup, (1.ylov

and Spelling, 1977).

Guessing can probably never be completely avoided but certain.

kinds of items, i.e. multiple-choice items, are of course es-

pecially likely to be affected by this e ?xtranous factor. Un-

less active attempts have been made to minimize guessing, the

Rasch model (or the Birnbaum model) should be used only with

great caution when the items are of multiple-choice type,

keeping in mind that,-.4,e item parameters cJ.,nnot be expected

to remain invariant over samples differing in levels of abili-

ty.

Varying item discrimination is a kind of thlat'to the validi-

ty of the Rasch model which is quite-difficult to discuss

since its implications are hard to identify at a more concrete

level. In chapter 1.1 the Flogging Wall test was used as an

example, and it was pointed out that the discrimination para-

meter of the canes corresponds to the amplitude of the' flog-

ging, i.e. to item reliability.

It certainly is possible to imagine that different kinds of

item have different reliability; items requiring a constructed

response are for example usually more reliable than multiple

choice items: To take another example, T Liodblad (1177, p,'r-

sonal communication) has pointed out that tests of listening

comprehensionNfor measuring foreign language achiyement tend

to be less 'reliable than tests of reading comprehension and
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that the reason for this is probably that listening compre-

hension.tests are more susceptible to chance influences than

reading comprehension tests.

In nne sense it could be argued that those items in the Plumber

series test which were found to he influenced by arithmetical

ability do have lower discrimination parameters, but since

this can be explained with reference to a systematically

working factor, it is better described as representing multi-

dimensionality. Also in the analyses of Opposites we found

that the items had different discriminative abilities which

were among other things related to how much random guessing

took place. But again, of course, it is basically a kind or

multidimensionality which causes this to occur'

It may of course be possible to find items which measure the

same unidimensional ability and which are, to different

degpees, affected by chance factors (i.e. have different

discrimination parameters). I do suspect, however, that in

most cases when what appears to be varying item discrimina-

tion is found, a closer look will reveal that some kind of

multidimensionality is involved.

Item bias is also a kind of multidimensionality since in this

case variables associated with a particular group make the

items systematically too easy or too difficult. A good now-
ledge of the items as well as of the sample is of course

essential to produce a fruitf1.11 approach to this problem.

Constrained responses and learning effects from one item to

another are threats to the model as well. If, Tor example, r

four responses are derived from' a question requiring the

pairing with respect to meaning of four given English words

with four giver Swedish words those of the examinees1who know

three of the answers will automatically get the fourth pair

correct too, which obviously is a violation of the assumptipn

of local statistical independence.

50
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Learning effects from one item to another arP

model assumptions of somewhat the,same kind. Such effects ra::

be very difficult to identify but it can be men*ione,'

is also possible to Feneralize the ash modP1 so that it can

be used to study this problem specifically (see chapter 6.2).

Person fit may be a problem too: idiosyncratic working methods,

cheating and carelessness (person reliability does appear to

be at least as fruitful a concept as item reliability) are a

few such threats to the model. Some of these factors can be

controlled out in the administration of the items, others only

through excluding persons.

Wright and Mead (1977) have presented a test - of person fit, .

based on analysis of residuals. There is also the possibility

,/ of constructing a theoretically satisfying test of person fit

under the conditional approach. Since the probability of each

observedscore vector can easily be computed (equation 2.1.8);
4 r

all that is needed to obtain a p-value is to sum the probabi-

lities of all,smore extreme score-vectors (i.e. those with lo-

wer probabilities) than the observed. Tre test does, however,

appear to be computationally complex, so it has not been

implemented in the present version of PS.

Strategies and problems in the development of Ras.ch scales

The usual procedure in attempting to find a set of items

fitting the model is to select, on the basis of a tryout, out

of a'larger set of items those which appear to fit the model

and then, at best, cross-validate the set on anew sample.

Such a procedure is reasonable enough (at least when the

reasons for misfit are not to be found in factors other then

item heterpgeneity) but there are some risks involved which

need to be discussed. It has already been poirled out that

when item heterogeneity is-at issue the items do not fit

the model but may fit each other. If a vast majority of the

items measure the same ability, there being just a few de-

viating ones, the lattc,r can easily be identified in the
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graphic tests. But if there is more of item heteKogeneity,

the graphic tests are useless if used to select items which

have a plot where the points fall close to the diagonal (and

a statistical test //even worse); in this case it is necessa-

ry to keep an eye on(the pattern of deviations common to se-

veral items and if such a group of items shows similarities

also in other respects such as content, it is reasonable to

select those and investigate if they form a Rasch scale.

But this can at time be a risky strategy. Sometimes several

threats to the'model are in opefttion and the problem is that

these can combine in different ways for different items and

even cancel out. It is quite easy to imagine, for example,

what would happen if guessing is allowed in a set of hetero-

genous items; it would almost surely be impossible to get

anything meaningful out of such an analysis.

This indicates that when attempts are made to maximize

homogeneity it is essential that all or most of the other

sources of threat to the model assumptions are controlled For,

which-is reasonably easy with respect to factors such as

guessing and speededness but 1,hich may be :more difficult with

respect to others.

Another conclusion which is inevitable in this light is that a

very clear conception of the content of the items'in the try-

out is required if a meaningful selection and/or classifica-

tionof items is to be made.

Degree of fit and inferential test:

A

!There are problems involved in using statistical tests to de-

cide whether the data show an acceptable fit or not. 'one'

problem is tnat even though one test mr)y indicate a good

another may indicate a very poor fit. Another problem is rela-

ted to-sample size; when large samples are!used very small

deviations will result ia significant values on the test sta-

tistic and when small samples are usen even gross deviations

mays remain undetected. The first problem can to some degree
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be solved by use of the measure of redundancy (chapter 3.3)

but how large a sample is required to obtain a reasonable

power in the statistical tests is as yet an unresolved prob-

lem.

These problems indicate that riot too much weight should to

placed on the inferential tests of goodness or fit and

especially not when the sample sizes are extreme in Dither

direction. Less formalized approaches thus appear to be

necessary complements in evaluating fit. The granhic tests of

items are here valuable and content-reiated considerations

are indispensible.

But it must also be pointed out that the degree of fit which

is necessary to some degree depends upon the applications in-

tended. For some. applications, such as the study of unidimen-

sionality, we can accept only small deviations, but for others,

such as perhaps more technologically oriented applications,

might expectexpect to get useful results even when the fit is not

the best 1,ossible. It does in fact appear to be a very impor-,

tint area of research to study :low much the model assumptions

can be violated without jeopardizing different kinds of appli-

cations of the model.

The concept of unidimensionality

The notion of unidimensionality is essential in all the 17

models but particularly so in the Rasch model since there is

no possibility of treating different kinds of multidimensio-

nality as varying item discrimination in this model. There

thus reason to take up the notion of unidimensionality to

special discussion.

In my opinion it is as yet an unanswered question what pro-

perties those scales fitting the Rasch model have from a

psychological perspective. Are they for example so narrow

and specific that they will be impractical to use? own

impression which is, however, only based on analysas of tests
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originally constructed within the framework of classical test

theory is that the Rasch model is extremely sensitive to any

kind of multidimensionality and that the scales thus tend to

be quite narrow. It does appear to be a research question of

the highe'st priority to investigate the "psychological width"

of item sets which do fit the model and to study how one

should proceed if it is found that they in fact tend to be

very narrow.

But be as it may with this question; the notion of unidimen-

sionality is nevertheless of utmos.: importance in any attempt

to make measurements. Some arguments in favour of this view

have already been presented (pa..;e 9) but there is reason to

emphasize once again the central importance and great use of

the concept of unidimensionality.

As has been pointed out by Lumsden (1976) the requirement that

tests should be unidimensional has been seriously neglected,

in classical test theory, which is probably partly due to the

fact that there has existed no satisfactory method for study-

ing unidimensionality but probal-,17also to the faetthat rea-

sonable degrees of success in practical applications have

been obtained without imposing this requirement.

But whenever anything more than some degree of correlation

with an extranous measure is to be achieved, the assumption

of unidimensionality is essential. Lumsden (1976) stressed /

that measurement is always measurement of sn attribute or a /

property (a latent trait) so it may he- asked: "How can we
/

imake any claims to measure if 'our measuring instrument has a

number of different sets of items based presumably on diffe-

rent attribute conceptions?" (p. 266).

To construct a test intended to measure an attribute we of

course need a conception of the attribute at once when thr

work is begun. But this conception is likely to he vague ,1-'

'there will be little basis for deciding whether an item or an

item type does reflect the attribute. But through a continuing

process of revision of the conception of the attribute and re-
_

vision of the items used to measure the attribute we are likely
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to obtain a better understanding both of the attribute and the

measuring device. In such a procss of revision the Rasch mo-

del can be supposed to contribute greatly, even though it is

of course not the only method to be used in such work.

The notion of unidimensionality implies that only one attri-

bute should be measured with the same test, but it does not

imply that the latent trait in itself is unidimensional; it

may well be functionally (and factorially) complex and we can

certainly not, claim that there is one unitary process under-

lying test, performance. (But there are in fact developments

of the Rasch model which are well suited to the study of what

kind of processes contribute to the difficulty of items, see

chapter 6.2).

Let me give one more example showing the importance of uni-

dimensionality!. In experimental educational research it is
1

common practice to administer to groups given different

treatments the same post-testsand then compare the outcomes

in the treatments in terms of the means of raw scores obtained

on the post-test. But if there are interactions between treat-

ment and outcomes so that the difficulties of the items in

the post-test vary as a funct_on of treatment such a compari-

son can only produce more or less meaningless results. In such

a case we would want to reorganise the items in the post-test

into internally homogenous scales which measure the same

thing in all treatment the Rasch model can easily be applied

to accomplish this.
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Chapter 5

SOME AREAS OF APPLICATION

In the preceeding chapter it was pointed out that one very

important area of application of the model is to study the

internal workings of a test. But it is also true that once

scales fitting the model have been developed it is possible

to solve within the framewOrk of the Rase.1 model a number of

measurement problems. We will briefly indicate some of these

possibilities.

I

5.1 Teskioptimation
,1

The problem of how a test should be, organized in terms of nut,-

ber of items, level of difficulty and spread of item difficul-

ty in order to obtain a suitable precision of measurement can

rather easily be solved using the information function with

respect to the person parameters (chapter 2.3).'

In the Rasch model the information with respect to a person

parameter (and the item parameter) contained in the response

to an item is a furtction only of the Pisobability of a correct

answer which is easily seen if we rewrite (2,3.2) slightly:

(5.1.1)
V PVi(1PVi)

A

In Figure 5.1 Ii(&11) for any item is shown as a function or

the probability of a correct answer. The maximum of the curve

is where pvi=. but we can also note tyit the information

obtained is re atively constant within the range .20spvis.80.

I -
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From these properties of the model follows that the only

factors affecting the precision of measurement at any given

level of ability is the number of items in the test and the

distribution of item parameters. But it also follows that the

standard error of measurement varies as a function of ability,

which c n be illustrated with some examples.

For two tests, both with 40 items, the SEM(0 has been plotted

against in Figure 5.2. One of the tests (peaked) contains

items which all have the same parameter (ai=0) and in the

other test (spaced) the item parameters vary between -3 and

3 in equal steps. We see that the peaked test gives a higher

SEM() for extreme person parameters while it gives a lower

SEM(E) for the intermediate range of abilities.

Figure 5.2. Standard errors of measurement of ability as a function of
ability for two hypothetical tests.
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Figure 5.1 The information in an item as a function of probability of a

correct answer.

From chapter 2.3 it is recalled that the information in a

test with respect to a person parameter is the sum of the in-

formation contributed by each item:

(5.1.2)

k

E pvi(i-pvi)

i=1

and it will also be recalled that the standard errdr of

measurement SEM(E) is:

(5.1.3) SEM(E):
1
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From these properties of the model follows that the only

factors affecting the precision of measurement at any given

level of ability is the number of items in the test and the

distribution of item parameters. But it also follows that the

standard error of measurement varies as a function of ability,

which c n be illustrated with some examples.

For two tests, both with 40 items, the SEM(E) has been plotted

against & in Figure 5.2. One of the tests (peaked) contains

items which all have the same parameter (ai=0) and in the

other test (spaced) the item parameters vary between -3 and

3 in equal steps. We see that the peaked test gives a higher

SEM(E) for extreme person parameters while it gives a lower

SEM(E) for the intermediate range of abilities.

C

Figure 5.2. Standard errors of measurement of ability as a function of

ability for two hypothetical tests.
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The highest precision of measurement is of course always ob-

tained for any given level ofability when at that level the

probability of a correceanswer is .50 for all the items. We

can thus formulate the very simple rule that when the purpose

is to measure just one level of ability, items should be se-

lected which have the same parameter value as the ability to

be measured. The number of items needed (kw) to obtain any

wanted precision (SEMw) is of course easily determined:

(5.1.4)
1

k
w
=

.25SEMw
2

Mostly, however, a test is intended for use over a range of

abilities and to reach any statement about how a test should

be built up it is necessary to make assumptions about the

distribution of person parameters. If we take a look at Fi-

gure 5.2 again in this light we find that any of the two

tests can have the .lowest mean of standard errors and thus

have the best subject separation (or, equivalently, have the

highest reliability). If, for example, the person parameters

are distributed normally with zero mean and unit variance we

would find that for more than 90% of the persons in the

sample the peaked test has the lowest SEM(E) and would con-

sequently yield the best subject separation. When the ISS's

for the two tests were computed under these assumptions the

values found were .88 and .85 for the peaked and spaced tests

respectively (the corresponding values of KR20 were .89 and

.85). If, however, we assume another distribution of person

parameters such as a rectangular one or a normal distribution

with a standard deviation which is considerably greater than

unity it is easy to see that the peaked test will give an ISS

lower than that for the spaced test.

The problem of how items with different parameters should be

chosen so as to obtain maximum precision of measurement (in

terms of the mean of the standard error's) has been studied

in great detail by Douglas (1975) and Wright and Douglas

(1975). They found that when the sample has a normal distri-

bution of person parameters a peaked test centered on the
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mean of the sample is optimal when the standard deviation (s)

is not larger than 1..25-1.50 but that for samples with grea-

ter s uniformly spaced item difficulties should be used. For

example, when s=1.75 an optimal difference of 6 between the

highest and lowest item parameter was found (for this diffe-

rence the term width, W, was used, so here W=6).

For rectangular distributions of person parameters lower va-

lues of s were found where a change from a peaked to a spaced

test is motivated, the limit being around s=.75. Compared to

the normal distribution a rectangular distribution of person

parameters requires a greater spread of item parameters for

the same s to obtain the best precision. For examrle when

8=1.75 the optimum was found at W=10 for the rectangular

distribution.

Wright and Douglas (1975) have summarized their studies in

some simple rules for test construction: they do advise, for

example that uniformly spaced item parameters with W=4s,

where s is the best guess of the standard deviation in the

sample, should be used. But it must of course be realized

that use of such simple rules implies that some accuracy

is sacrificed.

It is of some interest to compare the conclusions about opti-

mal test design drawn here with those recommendations issued

within the framework of the classical test theory. It has

long been known that a test with uniform item difficulties

(with a proportion of correct answers of .50, when no guessing

is allowed) generally has a higher reliability than a test in

which the item difficulties are spaced (e.g. Gulliksen, 195;

Lord, 1952). Another conclusion which has been drawn is thet

a better reliability is obtained if items with a high relia-

bility, as measured for example with the biserial or point

biserial correlation, are selected. But it has also been noted

that for a peaked test there is an optimum item reliabilit

beyond which the reliability of the test decreases; this is

the so called attenuation paradox (e.g. Loevinger, 1954).
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The explanation as to why the attenuation paradox occurs is

quite simple if stated in general terms: If the reliability

of all items is very high, the correlations between all items

will approach unity (if the test is unidimensional).which

means that a person who passes one item will pass all the

others and that a person who fails one item will fail all the

others. The distribution of scores will thus tend to be bimo-

dal with a very good discrimination at one level of ability

but with virtually no discrimination between examinees at

other levels of ability. The attenuation paradox occurs only

if the items all are of the same difficulty and'the solution

of the problem is, of course, to use items with spaced diffi-

culties (e.g. Brogden, 1946; Cronbach & Warrington, 1952).

The conclusion was drawn above that when the variance of the

person parameters in the sample is small a peaked test should

be usEd, otherwise not. This conclusion is in fact identical

to the solution of the problems caused by the attenuation

paradox which follows from the fact that with a higher, for

all items common, discrimination there is in the Rasch model

a higher standard deviation of the person parameters.

In fact the real explanation of the attenuation paradox is of

course that since the standard errors of measurement are lar-

ger for certain scores than for others, constructing the test

so that for a sample it results in many scores which have a

.large standard error will have detrimental effects on the

reliability. Thus what in classical theory is a paradox follows

in the Rasch model (and all the other LT models) naturally

from the fact that the standard errors of measurement vary as

a function of ability.

5.2 Tailored testing

It is obvious that the strategy of giving the same set of test

items to persons of all levels of ability will necessarily

result in different precision of measurement at different le-

vels of ability. The only possibility of obtaining standard



errors of measurement which are equal over a rangeof abili-

ties is to give different items to different persona, i-vel-7=

tailored testing.

The LT models are of course extremely well-suited for tailo-

red testing since it is posstUfe to estimate on a common abi-.

lity scale results obtained by different examinees on diffe-

rent items. The next section demonstrates how such a transla-

tion into a common metric can be effected with the Rasch mo-

del.

The basic principle is of course that all the persons should

take items on which they have a probability of .50 of giving a

correct answer. Ususally computer based administration of the

items has to be used and there are different strategies by

which items can be selected from a pool so as to keep as close

to this requiremert as possible (Lord, 1971, 1974b). There is

of course additional use of the computer when, after the tes-

ting, the scores on the items are to be translated into the

metric of the latent trait.

`"Wright and Douglas (1975) have, however, presented a system

for self-tailored testing based on simple approximations in

which a computer need not be involved either in selection of

items or in computing person parameters:

"The person/to be measured can be handed a booklet of

test items more or less equally spaced in increasing

difficulty from easiest to hardest and invited to choose

any starting place in the booklet with which he feels

comfortable. From that self-chosen starting point the

examinee can work at his own will and speed in either

direction, forward into harder items or backward into

easier ones, until he reaches his own performance limits

or runs out of time. Whatever the level and length of

the self-chosen segment, all that are needed to obtain

an objective item-free person measure and its standard

error are the serial numbers of the easiest and hardest

items tried and the number of successes in between.

These three observations are sufficient to look up in a
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simple series of tables the person's estimated measure

and the standard error of that estimate. (Wright &

Douglas, 1975, p. 43-44).

As was mentioned above this system is based on certain approxi-

mations and it is easy to imagine practical problems in its

application; it is, however, possible teat it might work so

well that it can be profitably exploited.

5.3 Test equating and linking

One area of great potential for applications of the Rasch mo-

del is equating and linking of tests, i.e. expressing on the

same scale raw scores obtained on different tests (or sets of

items).

Test equating

If it can be confidently assumed that two (or more) tests

measure the same trait, equating of scores is a very simple

tasK, which is illustrated below. However, since the assump-

tion that the tests measure the same ability is critical we

will first adress the problem of how to test this assumption.

Let us-assume that the tests have been given to the same samp-

le and that separate analyses of the tests have indicated a

good fit tO\the model. If te tests measure the same ability

then we must\S\lso find a god fit if all the items are analy-
\

zed together. This straightforward approach of testing the

assumption is conceptually simple, but it may be impractical

since when all the '.terns are pooled, a very long test may be

the result and it will be recalled that the overall numerical

tests are cumbersome ip compute when the number of items is

large. Fortunately there,exists a likelihood ratio test which

directly tests the hypothesiS that the two sets of items

measure the same ability (Martin-Ldf, 1973, p. 135-136). This

test calls for some hand computations (or a short computer

program) but requires otherwise only that the parameters are

estimated for each test and for the pooled eet of items.
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Let us call the number of items in the two tests kl and k
2'

with k=k
1
+k

2*
We define further n to be the number of

r1r2

persons_ with raw score r1 on the first test and raw score r
2

on the second test. Let rH be the maximum value'of the

logarithm of the likelihood function (3.2.1) and H
1
and H

2
J

the corresponding-values for each test. Martin-L8f has

then shown that the test.statistie is

. < (5.3.1). V .

G

k
1

k
2

n
k

n
logy = - E E n

r
r1rr"""""2"' La n rlOg"+H -H1 -H2

1
=0

2
=0

1
r=0

r
10g"

2 n n
r r

a
and that -21ogA is approximately chi-square distributed with

k
1
k
2
-1 degrees of freedom when nAw.

The values of Ht, H
1
and H

2
are'obtained on the computer

r
printouts from the corresponding analyses. The values of the

other terms appearing in (5.3.1) can be obtained either

_through hand.'ealculations based on the bivariate and uni-
.

'virillte' distributions of test scores, or by writing a special

program to perform these simple but sometimes tedious tasks.

The test presented above can be expected to be o use not on-

ly in testing the homogeneity of two distinct se of items

intended to be used as separate tests but also when very long

tests are constructed. Since in such cases the overall nume-

rical tests of goodness of fit are out of reach, at least if

one is operating in an 'environment where computer time is of

limited Supply, a good strategy may be to develop out of the

same pool of items two tests fitting the model and then in-

vestigate whether they can be put together into one long

test.

Lets now turn to the problem of equating raw scores obtained

on different tests. It will be recalled that in any estima-

tion of the item parameters a constraint must be imposed, for
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example that the sum of the item parameters expressed on ttle

log scale is zero, which effects a fixation of the origin of

the scale. The ability scales associated with two tests mea-

suring the same ability are thus the same except for the

arbitrary origin of the scales. But if the two tests are gi-
.

Vento the same sample we are in the position to estimate the

difference in origin of the scales since, of course, the same

sample must have the same mean of ability whichever test is

used.

There are two methods which can be employed to estimate the

difference in origin of ability scales, both resulting in a

simple additive constant totbe used as a correction-factor

(see e.g. Kifer, 1976 ; Rentz & Bashaw, 1975). The first

Method, the so called "ability method" simply consists of.cal-

culating the difference in the means of ability estimated

from the two tests and using the obtained difference as the

correction factor. In the other method, the so called "dif-

ficulty method", the item parameters from both tests are esti-

mated together and the difference between the means of the

estimated item parameters is used as the,porrection fac or.

roc

These two methods give theoretically identical results but

there i's' at least one thing that speaks in favour of the dif-

ficulty method: since the person parameters cannot be esti-

mated for zero or perfect raw.scores (such persons are excld-

ded from the analysis) the ability method must not be used

whenever different persons obtain such scores on the two

tests.

The difficulty method will here be illustrated with some ge-

nerated data. For a sample of 1 000 persons, distributed

N(0,1), scores were generated for 40 items, of which 20 had

the parameter -1 and 20 the parameter 1. It will be supposed

that these two groups of items can be given as two forms, one

simple and one difficult, and that we above all are interested

in knowing which raw score on the simple form corresponds to

which raw score on the difficult form.
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The test of the homogeneity of the two forms gave x2=302,62

with 399 degrees of freedom so it is obviously no problem to

'do the equating. Not surprisingly the difference between the

means of the parameters of the simple and difficult items.

sets turned Out to be -2 in the analtisis. This value of -2 is

the correction factor which of course means that we shall sub-

tract 2 from' (or rather add -2 to) the ability scale for the

simple items to get the corresponding location of the ability

scale for the difficult items. Table 5.1 presents the table

of conversion from raw scores on the two forms into the abili-

ty,scale of the difficult form.

Table 5.1 Person parameters expressed in the metric of the

difficult test for raw scores obtained on the

simple and difficult forms.

Raw scone on the
difficult form

Person
parameter

Raw score on the
simple form

Person
parameter

1

2

3

4

5

6

7

8

-2.94

-2.18

-1.73

-1.39

-1.10

-.85

-.62

-.41

1

2

3

4

5

6

7

8

-4.94

-4.18

-3.73

-3.39

-3.10

-2.85

-2.62

-2.41

9 -.20 9 -2.20

10 .00 10 -2.00

11 .20 11 -1.80

12 .41 12 -1.59

13% .62 13 -1.38

14 .85 14 -1.15

15 1.10 15 -0.90

16 1.39 16 -.61

17 1.73 17 -.27

18 2.20 18 .20

19 2.94 19 .94
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From the figures presented in the table it is easily under-.

stood that before the conversion was made the scale of abili-

ty for the simple form was numerically exactly the same as

that for the difficult form. The reason for this is of course

that separate analyses of the t, items sets produce exactly

the same item parameters, (they are all equal to zero, more

or less, as a consequence of the normation) soiconsequently

there can be no difference between the numerical values of

the person parameter corresponding to a certain raw score

(but the distribution of person parameter is of course radi-

cally different).

Using linear interpolation methods a graph has been construc-

ted (Figure 5.3) to show the relation between raw scores on

the two forms, i.e. using the common scale of ability, raw

scores on the simple form have been translated into raw

scores on the difficult form. Obviously there is a curvi-
-\

linear relationship between raw scores on the two forms.

AP

10 11 12 1 14 15 16 17 1

SIMPL E

Figure 5.3. Raw scores on the simple and difficult forms corresponding

to the same level of ability.
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It should gerhaps be pointed out thit if we did test a sample

with both forms we would not find this particular curvilinear

relationship,between raw scores on the two forms even for ve-T_

ry large samples. The reason for this is that there is a re-

gression towards the mean, i.e. those examinees with bad

(good) luck on the simple form can on the whole not be expec-

ted to have an equally bad (good) luck on the difficult form

and vice versa. TNe conversion should thus not be interpreted

to mean that it gives the expected raw score on one form gi-

ven the raw score on another form; rather it tells what raw

score would have been found if the other form had been used

instead, everything else being constant.

Test linking

Also in linking tests the purpose is to estimate on the same

scale results obtained on different tests but in this case the

tests are given to different samples; the linking is made

possible through use of a subset of, say 10-20 items common to

both (or all) tests:

A version of the d4fficulty method described above is used, in

that the mean of i item parameters for the common subset is

estimated in the context of each test. The difference between

the means of the estimates of the parameters indicates of

course the difference between the origins of ' :he scales of the

item parameters in the two tests and can be tJed as a correc-

tion or translation factor. Theredfter the ability scale

associated with the "translated" item parameters must be com-

puted (handy computer programs which perform this task can be

found in Wright & Panchapakesan, 1969; Kifer, Mattsson &

Carlid, 1975; Rentz & Bashaw, 1975) which makes it possible

to translate into the ability scale of one of the tests, raw

scores obtained on the other.

No example of how this can be done in practice is presented

here; the reader is instead referred to Wright (1977) for

further details and more elaborate linking designs and to

Kifer, et al. (1975); see also Kifer, (1976), as they do

present an easily followed example.
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It need probably not be paid that no linking should be attemp-

ted unless the tests measure the same ability. The fact that

the tests do have a subset of items in common of course makes

it possible to test this assumption: if all tests fit the mo-

del they must in fact measure the same ability.

5.4 Item banks

Virtually all the applications discussed in this chapter pre-

suppose that there exists a pool of items measuring the same

ability and for which items the difficulties have the same

origin of scale. It,is obvious than when such a pool of-items

is at hand a large range of. measurement problems can be solved

*ith great efficiency and simplicity; tests can be optimized

for specific purposes and tailored testing becomes, possible.

Furthermore, all possible testa which can be constructed by

selection of items from the pool are automatically equated

(even though it is of course necessa3 to compute the associa-;

ted ability scale for each selection of items so that the ob-

served raw scores can be translated into the common metric).

The most effective way of developing item banks is of course

to successively link new items into the bank, using the pro-
.

cedUres of test linking described above. But it is important

that an eye is kept 6n the. fit of'the-items throughout: a bank

consisting of heterogeneous-items with a poor fit is probably

worse than no bank at allithe strong claims which can be ad-

vanced in relation to the Rasch model are valid when the model

holds true, otherwise not.

4
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Chapter 6

GENERALIZATIONS OF THE RASCH MODEL

This report treats in detail onlly the simplest case, i.e. in

which the model specifies only two parameters and there are

only two categoriessof answer. (Even though the wording has

been-phrased in terms of measurement of ability there is of

. course nothing that says that the model cannot be used to /

measure personality, attitudes and so on). There are, however,

developments of the.basic.modeliwhich can deal with more

complex situations and the parameter structure of the model

can be transformed in different ways. SoMe of these generaliza-

tions of the model will be briefly mentioned below.

6.1 The polychotomous case

It is possible to generalize the model to treat the case where

there are more than two categories of answer, as is for example

often the case in attitude questionnaires (Andersen, 1973;

Fischer, 1974, p. 424 ff.;Allerup & Sorber, 1977).

Instead of observing whether a particular answer is correct or

incorrect we observe which particular answer category

(h, h=1,...,m) a person v endorses on item i. We can represent
(the answer by using a selection vector (A .)=(A .

)

'

A
vi

)

(m)
. ) which contains zeroes for all the alternatives

not chosen and a one for the category endorsed. If there, for

example, are three categories of answer and a person choses

the last for a particular item this is represented with the

selection vector (0,0,1).

Instead of one person parameter there is in the polychotomous

case a vector of person parameters, the elements of which each

indicate the tendency for each persons to chose each alterna-
(1) (h) (m)

tive: (Ov)= (011, ...,ev,...,8v ). In the same way there is for
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each item a vector of parameters representing the tendency

for each alternative to be chosen: (e )= (e (1)
'
c(.

h)
'
E

i

m)

We need, however, to impose a constraint on these vectors of

parameters and we can use (m) and e(m) for unity normation,

i.e. they are put equal to unity. We can then write the basic

model in the following way:

(1) (1),
c.

F(Avi -111/0.)-
v

E (h)1+ e E(h)

h=1
v

e
(h)

c.
(6.1.1) NA(h):11v,i)-

vi

E e(h)e(h)
v

h7.1

P(A(mvi ):-.11v,i)=
-m

e(h)E(h)

h=1
v

Thus, the ICC is for each answer category here multidimensio-

nal and there are m-1 dimensions. But of course the. notion of

unidimensionality is as important here as everywhere else so

it may be asked whether the multidimensional model may, in

fact, be reduced into a unidimensional one. This can be.done

, if it is possible to find a unidimensional vector of item

parameters (ei),i=1,...,k and a oring-vector" (0 () th=1,..:m)

so that for all items loge.
(h)

. .

There are great technical complexities in obtaining CML,esti-

mates of the parameters. Ailerup and Sorber (1977) have, how-

ever, presented such a computer program, based on methods foi

computing the symmetric functions and solving,the equations

suggested by Andersen (1972), This program also tests the hypo-

thesis that the multidimensional model can be reduced into a



unidimensional one and provides also the necessary informa=-

tion for performing goodness of fit tests. There do also

exist approximations to the strictly conditional approach:

Fischer (1974, P. 571) has presented such a program for the

case where there are three categories of answer, and methods

for/obtaining unconditional estimates have also been developed

(An4rich, 1977). Examples of applications of the polychotomous

Basch model have been presented by Fischer (1974, p. 478 ff.).

6.2 The linear logistic model

In_the basic Rasch model there is one difficulty parameter for

each item; it is, however, possible to construct models with

another parameter structure. A very interesting model results

when the' item parameters are replaced with a smaller number

of "basic parameters" (n j=1,...,m) representing, for example,

hypothesized processes which appear with different frequency

in different items. By specifying one parameter for each pro-

cess and the frequency with which it has to be carried out,

the difficulty parameters can be "explained". We thus want to

investigate the hypothesis that loge.= E f..n which can be
1 j=1 iJ J.

L

be made e 1711) iricall 5"th when the matrix of frequencies ((f.1 ))j

has the rank m, and when m<k.

The model has been presented in detail by Fischer (1974, p.

340 ff.; a computer program is also presented); Fischer

(1974) and Lybeck (1974) discuss some very interesting possib-

le applications in an educational context. It should be poin-

ted out, however, that Kempf and Niehausen (1976) have criti-

zed this approach on the basis of lack of interpretability of

the "basic parameters". They suggest instead that error types

should be analyzed with a polychotomous model.

Dynamic models in which "transfer effects" are represented

with special parameters have also been proposed and used

(Spada, 1976; Kempf, 1976; Kempf, Niehausen & Mach, 1976).

Such models can be used to investigate learning effects from

one item to another as a threat to the validity of the basic
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model, but can of course also be used to investigate substan-

tive problems of great interest.

6.3 Analyses of experimental data

The linear logistic models mentioned above can be used to

analyze data from experimental studies (see e.g. Kempf et al.,

1976). But as has been pointed out by Fischer (19711, p. 506)

it is also possible to formulate linear logistic models re-

sembling the analysis of variance model, i.e. with parameters

representing treatment and interaction effects of different

kinds. Such models would entail one single assumption (which

is also empirically testable), namely that there is an additi-

ve or, equivalently, a multiplicative' relationship between the

parameter's, and they would fill a deeply felt need for sound

statistical models for the analysis of qualitative data.
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Chapter 7

THE PML PROGRAM

The computer program is written in FORTRAN IV and was develo-

ped on the IBM machines (360/65 and 370/148) at GUC (Gothen-

burg Universities'Computing Center). The program should, how-

ever, only to a small degree be machine dependent (one ver-

sion of the program at least) so it can probably relatively

easy be implemented on other machines.

7.1 The two versions of PML

There are two versions of the program: one OSIRIS version

calling routines in the OSIRIS III (1973) subroutine library

and a non-OSIRIS version (or rather a simplified OSIRIS ver-

sion) in which all routines called are included in the source

code. The OSIRIS version can of course only be used at compu-

ter installations where the OSIRIS system is implemented.

The OSIRIS system has four important advantages:

- A self descriptive data structure is used, i.e. for each data

file there is an associated dictionary file containing

descriptions of the data file such as variable numbers,

variable locations and names of the variables. This implies

.that the variables (items) can be referred to with a variab-

le number which remains constant from analysis to analysis

and that the variables are easily identified on the printout

since they have a unique name.

- Specification of the control parameters for each run is easy

since keywords are specified in a completely free format.

- Selection of any subset of cases is easily effected th "ough

the special filtering feature.

- Since the input routines are coded in Assembler they are

very fast.
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In the non-OSIRIS version of the program some of these advan-

tages are lacking: no filtering is possible and fixed format

specification of a few of the control parameters is necessary.

However, to maximize the similiarity between the versions,

and to gain some of the advantages of OSIRIS, a simplified

OSIRIS structure has been created (this work has been done by

Jan-Gunnar Tingsell at the Department ce educational research,

University of Goteborg) in which a simplified dictionary file

is used along with the data file (see below).
V

Thw two versions of the program thus differ with respect to

the input routines used; in the analysis parts of the programs

there are no differences.

7.2 Obta.nire pro ram

The scource code punched on cards (or written on a tape sent to

me) may be acquired from the Institute of Education, Univer-

sity of Goteborg by writing to the present author. A fee is

charged corresponding to the price of the cards and the costs

involved in handling and shipping. Please indicate whether

the OSIRIS or the non-OSIRIS version of PML is desired.

7.3 Using PML

Since the control information needed for the two versions of

the programis somewhat different and is specified in diffe-

rent ways, the instructions for use will be specified separa-

tely. Some advice about choice of options is also given below,

but only in connection with the OSIRIS version.

How to use the OSIRIS version

The control cards for the OSIRIS vePsion are specified

according to the standard OSIRIS III (1973) syntax and they,

is no need to describe the details here. Three or four state-

ments (mostly corresponding to the same number of cards) are
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necessary as input:

1. Filter statement (optional)

2. Title card (80 charactei,d of information to labe2 the output)

3. Global parameters (seli'cted from the 15 parameters described

below)

4. Variable list.

The global parameters are selected from those described below

(defaults are underlined)

PRINT :DICT /NODI DICT: Print the dictionary

NODI: Do not.print the dictionary

DESC/NODE DESC: Only descriptive information (e.g.

proportion of correct answers, point-

biserial correlations, and the item by

score group frequency matrix of correct

answers) is supplied without any estima-

tion of j.tem and person parameters.

This keyword can be specified to make

sure in an economical way that there

are no items with a very high proport &on

of correct answers (which causes a slow

convergence). Another usage is to have

a look at the ((nir)) matrix in order to

specify a suitable minimum group size for

the Andersen test (see page 49 above).

NODE: A full analysis, according t" the

other options chosen is performed.

MAXI=N

Y

The maximum number of iterations in the

estimation of the item parameters. The

default is N :250. If.convergence has not

been obtained within the specified num-

ber of iterations PML will assume that

this has occured when MAXI is reached

and will continue with the other tasks

set up. The maximum number of iterations

in estimating the person parameters is

taken as'4N.
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ERROR :N The accuracy required in the estimation

of item and person parameters in terms

of number of decimal places. The default

is N :3. For some purposes a lower accura-

cy can be demanded but certainly not when

the overall numerical tests are to be

computed. The variance- covariance matri-

ces which are inverted in
%
the computation

of the Martin-L8f test (see page 51 ff.)

may for example not be positive definite

when accuracy is too low.

DIFF: The symmetric functions are computed

with the Difference algorithm (see page

31), Since this algorithm is sensitive to

roundoff errors it should not be used

when the number of items is large and/or

there is a great range of item parameters.

This algorithm seldom works when k>40 and

it seldom fails when k<20. It should be

pointed out,however, that even though

this algorithm may work well in,estimating

the item parameters f "r the whole sample

it may',break down when the Andersen test

is computed. When this test is requested

this algorithm should thus be avoided un-

les; k<20. There is no risk, however, of

getting wrong results as a consequence

of roundoff errors since the program is

stopped when computational accuracy gets

too low.

SUM: The symmetric functions are compu-

ted with the Summation algorithm (see

page 32). This algorithm works in those

cases in which the Difference algorithm

fails but it is somewhat s]ower.

PREC :SING /DOUB This keyword is effective only when

ALGO :SUM is chosen.

MG: The symmetric functions are compu-

ted *ith single precision arithmetic.
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This, keyword should be chosen only when

it is essential to keep the amount of

computer time to a minimum. Observe that

there is no test of computational accu-

racy in the SUM algorithm.

DOUB: The symmetric functions are compu-

ted with double precision arithmetic.

START=APPR/UNIT APPR: The approximation suggested by

Martin-Lof (1973, see page 54 above) is

used to compute start values for the ite-

rations. This keyword can be chosen re-

gularly.

UNIT: Unities are used is start values

for the iterations.

N: the variable number of the item chosen

for unity normation. The default is the

item of medium difficulty.

EXTR: The Aitken extrapolation (see

page 35) is used to speed up convergence

of the iterations. This dr"lult value

can be used regularly but if the itera-

tions should diverge the extrapolation

may be the explanation.

NOEX: No extrapolation is done.

PERS: The person parameters are estimated.

NOPE: The person parameters are not

estimated. In a process of item selection

and goodness of fittesting it may be a

waste to estimate the vrson parameters

in each analysis. But it is of course

not possible to obtain estimates of the

standard errors of the estimated item

'parameters if the person parameters are
!not computed.



PLOT/NOPL

BINO/NOBI

NOBS :N

PLOT: For each item a printerplot is

made of the observed proportion of cor-

rect answers against the proportion

Oedicted for each score group (see

chapter 341). Observe that these plots

produce a large amount of lines as out-

put.

NOPL: No plots are made.

S

BINO: For each item and for each score

group a binomial test is carried out to '-
test the difference between observed and

predicted frequencies of correct answer

(see pages 46-47). The power of these

tests is lower than the "power" of the

printerplOts but may at times be useful.

T1.4v also present the numerical informa-

tion on which the printerplots are based.

NOBI: No binomial tests are carried out.

-N+1 is the smallest size allowed for a

score group if it is to be considered in

the printerplots or in the binomial tests.

The default is N=5.
e

TEST :CHIS /LIKE /BOTH/ CHIS: The Martin-Lbif chi-square goodness

NONE of fit test is computed (see chapter 3.2).

LIKE: The Andersen conditional likelihood

ratio test is computed (see chapter 3.2).

BOTH: Both the overall numerical tests

are compute'd. This keyword should be

chosen only rarely, especially if k is

large, for economical reasons.

NONE: No overall test is computed.

N is the minimum number of persons allowed

within each range of scores when the

Andersen test is computed. The default

is N=100.

NIND=N
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A fairly typical example of the setup,

quired for executing the OSIRIS version

machrne under OS is shown below:

inciu ng the JCL, re-

....erf'PML on an IBM

//UPEJEG JOB ...

/*JOBPARM RTIME=3,LINES=6K

// EXEC ... (referring to the library where PML is to be found)

//DICTIN DD (description of the dictionary file)

/ /DATAIN DD (.deecription of the data file)

//FT12F001 DD UNIT=SYSSQ,DISP=(,PASS),SPACE=(TRK,(50;20)),

// DCB=(RECFM=VBS,BLKSIZE=6006) (description of the

scratch file used in the computation of the Martin-

L8f test)

//FT01F001 DD * (Observe that the instream is defined

as unit 1)

(Filter card)

(Title card)

(Parameter card)

(Variable list)

4

INC1UDE V3=1*

BOYS IN GRADE 6

ALGO :SUM PLOT*

V121-V140,V145*

/*

0

How to use the non-OSIRIS version

In OSIRIS the dictionary file is created with a special prog-

ram. Also in the non-OSIRIS version of PML a dictionary file

is used; here, however, the dictionary is simply punched on

cards (but of course the card images can be stored on adisc

or a tape). The non-OSIRIS dictiona-ry must be prepared in the

following way:

1st card

pos 1-3 Logical record length (LRECL) for each record

in the data file. (If the data are on cards

LRECL is of course 80; if there are more items

than can be contained on one card it is neces-

sary first to create a file with a greater

LRECL).

pos 4-6 The variable number of the first item descri-

bed in the dictionary (need not be 1).

120



pos 7-9 The variable number of the last item described

in the dictionary.

2nd and following cards:

pos 1-3 Variable number

pos 4-27 Variable name

pos 28-30 Column location in the data file

`4- The variables must be continously numbered between the first

and the last variable number, but there is no restriction as

to where in the record the different variables are located.

It must be observed, however, that the information for each

item must be punched in only one column (i.e. using Il format),

and that the responses of course must be coded 0 and 1. At

most 200 items can be described in the dictionary.

An example is given below:

a

181 28 43
028 VOK A 1 062
029 VOK A.2 063
030 VOK A 3 064
031 VOK A 4 0E6
032 VOK A 5 066
033 VOK A 6 067
034 VOK A 7 068
035 VOK A 8 (169

036 VOK A 9 070
037 VOK A 10 071
038 VOK A 11 072
039 VOK A 12 073
040 VOK A 13 074
041 VOK A 14 075
042 VOK A 15 076
043 VOK A 16 077

This dictionary describes 16 items in a data file with

LRECL :181. The variable number for the first item has been

taken to be 28; if, for example there is another subtest pre-

ceeding this one which in a later step is to be analyzed to-'

gether with these items, the same variable numbers can be used.
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In executing the non-OSIRIS version of PML there are 4 control

-statements (usually the same number of,dards) which must be

supplied:

1. Title card (80 characters of information to label the output)
6

2. Keyword parameter card (keywords are selected from those

described below)

. Fixed format parameter.card (is prepared according to the

instructions given below)

4. Variable list (see below)

The keyword parameter card should contain a selection from the

keywords described below:

NODI/DICT

DIFF/SUMM

NODI: The dictionary is not printed.

DICT: The descriptions in the dictionary

for the variables selected in the

variable list are: printed.

DIFF: The symmetric functions are computed

with the Difference algorithm.

SUMM: The symmetric functions are computil

with the Summation al,orithm.

DOUB/SING This keyword is effective only when SUMM

is chosen.

DOUB: Double precision arithmetic is used.

SING: Single precision arithmetic is used

for computing the symmetric functions.

APPR/UNIT

EXTR/NOEX

APPR: Start values for the iterations are

computed according to an approximation

(see page 34).

UNIT: Unities are used as start values in

solving the equations for the item

parameters.

EXTR: The Aitken extrapolation (see page

35) is used to speed up convergence of

the iterations.

NOEX: No extrapolation is used.
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PERS/NOPE

NODE/DESC

es

PLOT/NOPL

BINO /NOBI

PERS: The person parameters are estimated.

NOPE: The person parameteits are not

estimated.

NODE: A full analysis is performed:

DESC: Only descriptive informati,m is

presented, without any estimation of item

and, person parameters.

PLOT: For each item a printerplot is made

as a graphic test.

NOPL: No printerplot is made.

BINO: For each item and for'each score

group a binomial test is carried out to

testthe difference betWeen observed

and predicted frequencies of correct

answers.

NOBI: No binomial test is Carried out.

NONE/CHIS/LIKE/BOTH NONE: No overall numerical test of good-

ness of fit is computed.

CHIS: The Martin-L8f chi-square gOodness

of fit test is computed.

LIKE: The Andersen conditional likelihood

ratio test is computed.

BOTH: Both the overall numerical tests are

computed.-

The -keywords selected to override the defaults are written on

the keyword parameter card, beginning in the first position.

The keywords are specified in any order and are separated with

comma or blank. The list of keywords must be ended with an

asterisk.

An example is given below:

DICT SUM PLOT LIKE*

The fixed format parameter card is prepared in the following

way:
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1-4 Maximum number of iterations in estimating the

item parameters (MEV). If left blank MAXI is

assumed to be 250. The maximum number of ite-

rations in estimating the person parameters is

taken to be 4 times MAXI.

578 The accuracy required in the estimation of the

item and person parameters in terms of number.

of "4ecimal places (ERRO). If left blank ERRO

is assumed to be 3.

9-12 The minimum number of persons allowed within

each range of scores when the Andersen test is

computed (NIND). If left blank NIND is assumed

to be 100.

13-16 The smallest size allowed for a score group if

it is to be considered in the printerplots or

the binomial tests (NOBS). If left blank NOBS

is assumed to be 5.

17-20 The variable number, according to the dictionary,

of the 'item chosen for unity normation(NORM).

If left blank the item of medium diffieulty is

used for unity normation.

Even if there is nothing punched on the fixed format parameter

card it must be physically in place, after the keyword para-

meter card. An example is given below:

100 4 150 10

The variable list must contain a list of the variable numbers -

for those items to be included in the analysis. Each variable

number must be specified with three digits (e.g. 006) and the

numbers should be separated with comma or hyphen, where the

hyphen indicates that a range of items are selected. The

variable list must be started in position 1 and as many cards

as are necessary may be used. Each card must be filled, how-

ever, and the comma is the only sign which is allowed in co-

lumn 80, if continuation to a new card is to be made. The

variable list must be ended with an asterisk. An example of

a variable list could be:
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005,008-617,034*

In executing the non-OSIRIS version of PML the control cards

are read from unit 1, the dictionary from unit 13and tre

data from unit 14. A fairly typical example' of the Si in-

cluding the JCL, for executing this version of PML on an IB

machine is shown below:

//UPEJEG J013

// EXEC ... (referring to the library where PML is to be found)

//FT12F001 DD UNIT=SYSSQ,DISP:(,PASS),SPACE:(TRK,(50,20)),

// DCB:(RECFM=VBS,BLKSIZE=6000) (description of the,scratch

file used in the computa-

tion of the Martin-L8f test)

//FT14F001 DD ... (description of the data file)

//FTO1F.001 DD *

GRADE 6 (Title card)

SUM PLOT* (Keyword parameter card

150 (Fixed format parameter card)

121-140,145* (Variable list)

//FT13F001 DD *

256 78192 (The dictionary)

078GRAMMARTEST 1, ITEM 1 112

192GRAMMARTEST 1, ITEM 115 226

7.4 The most important subroutines

READ reads the data, forms the ((nir)) matrix and compu-

tes the proportions of corrects answers, the point-

biserial correlations (with the item included in

the test) and the KR20.

PAREST administeres the iterative solution of the equations

for the item parameters.

is used to compute the symmetric functions with the

Difference algorithm. This routine has been written

by Fischer (1974).

GAMMA
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GAMMA2 supervises the computation of the symmetric functions

with the Summation algorithm and calls repearedly

the

GAM routine,which is a slightly changed version of a

routine presented by Fischer (1974), or the

GAME routine, which is a single precision version of GAM.

AITKEN computes the Aitken extrapolation, if requested. ,It

is called by PAREST.

PERS estimates the person parameters iteratively using

the Newton-Raphson method. This subroutine has

been taken from Fischer (1974) but code for com-

puting start values has been added. The present

version also computes the standard errors of the

person parameters and the routine calls

ITINFO which computes the standard errors of the item

parameters.

ITTEST administers the analysis of the items and calls

PLOTT which produces the printerplots and

DPIBIN which computes the cumulative binomial distribution.

The latter routine has been taken from Allerup and

Sorber (1977).

PMLCHI administers the computation of the Martin-Lbf

chi-square test but most of the computational work

is, carried out in

STORVA and in the two SSP routines

DMFSD and

DSINV which invert the variance- covariance matrices.

EBACHI groups the score groups and computes the Andersen

likelihood ratio test by calling PAREST as many

times as groups found.

7.5 Dimensioning of the program

The version which is delivered is dimensioned for k
max

60.

Dummy dimensions are, however, used almost throughout so it

is easy to dimension the program for both smaller and larger
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problems. The following arrays must be changed in MAIN with

K as the maximum number of items:

INTEGER V(K),VMD1(K),VMD2(K),NIS(K,K),NR(K),AOI(K)

INTEGER*2 LIST(K),KDIFF(K)

REAL*4 WK2(2,K),W(K)

REAL*8 EPS(K),EPSI(K),G(K),GI(K,K),WK3(3,K),THETA(K),SAVE(K),

VARKOV(K*(K+1)12)

In GAM there are two arrays the dimensions of which must be

changed:

REAL*8 X(K),Y(K)

and in GAME there are three:

REAL*4 E(K),X(K),Y(K)

Since the program tests that no attempts are made to analyze

greater sets of items than it is dimensioned for an IF state-

men must bechnged too. This test is made in MAIN immediate-

ly after the variable list has been read.

Furthermore, in any implementation ofPML there is one more

array the size of which must be considered. As was mentioned

above on page 53 an array is used to store as many matrices

ot second derivatives of the symmetric functions as possible.

This array (STOR) shou11ld be dimensioned to be as large as the

available core allows. It is also necessary that the size of

STOR is represented as the integer constant in the statement

immediately preceeding the call to PMLCHI in MAIN.

7.6 A sample printout

On the following pages a sample printout from a run with the

non-OSIRIS version of PML is shown.
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sr
ti

Page 1

NUMBER SERIES

FOLLOWING PARAMETERS OVERRIDES THE DEFAULTS:

R

ROTH6

012-020

NOMMEN OF ITEMS 9

MAXIMUM NUMBER OF ITERATIONS 250

CRITERION FOR CONVERGENCE U.0010
4

THE SYMHETRk FUNCTIONS MICE RE COmpUTED WITH THE DIFFERENCE METHOD.
THE AITKEN EXTRAPOLATION KILL HE USED TO sPEEn UP cnNVEIGENcE.
SCONE GROUPS KITH S OR FEWER PERSONS ARS NOT CONSIDERED IN THE PLOTS OR THE BINOMIAL TESTS.

Page 2

THE FOLLOWING

VA' NAME

14 NUMB
15 NumA

17 NV 4
1' NUMNP4
19 =3

VAR1AHEES AWE

T:1B 11F,1 15
R ScHlEy 'TEE, 14
w SEwlEs ITEm 15

W UrV 11P4 10
50410 ITEM 1H

nE g

INCLUDEO:

TLOC

OH
109

11?
112
113
114 ,

Nom.3ER OF CASES 0EAD Shh

Nt0H4Cre OF CASES elh A IFk0 ScoHE 53

WiFinDe OF CASES .ITH A FULL SCOkr 44

NUMBER uF CASES REMAINING FO4 *HALTS'S 469
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Page 3

VAR.NO VAR/ANL( NAME HOROPTION COPPECT POINT RISERIAL

12 NUMBER SERIFS ITIM 12 0.578 0.530

13 NURNEH SERIES ITtm 13 0.716 0.440'

14 NURNER SERIES !Tim 14 0.547 0.444

15 NumPFR,SER1ES ITEM 15 0.67e 0.457

16 *NURPk SEhIfs ITEM 16 0.552 0.563

17 NUMBER SERIFS ITE,4 17 0.512 0.468

18 . NymPFR SERIFS ITER IN 0.516 0.556

19 NUMBER SER1Fs 1T144"19 0.456 0.519

20 NUMBER SERIFS ITEM 20 b.501 0.510

NoRmAITON UN VARIAHLE 16

THE PELIARILITV (AR-20) IS 0.64
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r I

THE mu BY SCORE6ROUR FREQUENCY MATRIX OF CORRECT ANSWERS

.NO
1 2 3 5 6 7 8

12 0 7 16 35 34 37 63 77 271

13 b 16 60 35 be 51 t65 79 336

14 4 .1s 22 ..23' 37 39 66 75 280

15 9 13 30 GO 46 44 68 80 318

16 0 6 11 31 35 41 55 80 259
17 S 9 12 20 30 36 55 71 240

18 5 7 '1 19 37 40 61 71 242

19 2 3 15 13 26. 31 51 73 214

20 5 6 14 14 es 39 55 74 235
31.1 35 53 Sb 6S 60 77 8$

NU8KER OF-ITERATIONS Rs; CoreitknEhLF:

********** *******

This is the maximum of the 16Aarithm of the likelihood
041,18E= -0.1640032890404

0

function.

130



40.NO

12

13

14

15

16

OW

18

19

NI

UNITY NORmATIDN
ITEM PARAMETERS

PRODUCT NuRNATION PRODUCT NORmATIONILOG) STANDARD ERROR CONFTOENCE INTEPVALI95 11/

1.133/0 1.04068 -0.03987 0.10858 -0.25268 0.17294

2.3054 2.16410 -0.77200 0.11618 -0.99971 -0.54430

1.24718 1.1448* -0.13527 0.10919 0.34904 0.07874

1.90206 1.74599 -0.55712 0.11323 -0.77926 .-0.33538

1.00000 0.91795 0.08562 0.10794 -0.12545 0.29714

0.82239 0.75491 0.28116 0.10132 0t071141 0.49151

0.83937 0.7/049 - 0.26072 0.10736 0.0Sue9 0.47116

0.631/8 0.57994 0.54483 0.10719 0.33474 0.75492

0.78152 0.71739 0.33213 0.10723 0.12196 0.54230

Page 6

SCORE

1

2

3

4

5

7

8

ABILITY PARAMETERS

P900UCT NO4mATION PRODUCT NORMATIONIL061 STANOAPD ERROR CONFIDENCE INTE RVALI9b iT

0.11698 -2.14575

0.27317 -1.29/65

0.40763 -0.71779

0.79557 -0.22869

1.ebb63 0.23b57

2.05961 0.72252

3.66238 1.29811

R.4911t1 2.13903

r(NtRARF). OF ITFPATIoNs FOR CONvER6FNCE OF
44

ON THE LO5 SCALE T*4 MEAN OF THE SAMPLE

TH$ INDEA OF SUBJECT SEPARATION IS (J.,/

1.0709d -4.24487 -0.04663

0.81468 -2.89442 0.29911

0.72088 -2.13071 0.69513

0.68449 -1.570e4 14.11290

0.68370 -1.10448 1.',7562

0.71864 -0.68603 2.13106

0.81142 -0.29226 2.00,69

1.06722 0.04720 4.e3077

Tr,

IS

AHILITIES: 36.

0.3b WITH THE VAPIANCE 1.63
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'ACORIF

4

r,
RhOrARILLTY t* ORTAINI10 A CERTAIN RAw SCORE GIVFN THE PERSON RARAmfTEW

RAw SCURF

011.4ARFIti4
0

.11(.s 0/.34

u.e7311 0.10

u.4,47(4.4 0.11(

0.0u

1.e3 U.Ou

e.u5441 0.00

:..r5e38 0.00

m.44l1r 0.00

Page 8

THF VALUf'l Of
040FR

1 2 3 4 5 e. 7

0.30 0.2U U.Ob U.01 0.00 0.00 0.00

0.0 0.31 u.e1 0.04 0.02 0.00 0.00

0.11 0.e4 U.2 0.21 0.10 0.03 0.01

0.U3 0.11 u.ee J.21 0:21 0.11 0.04

0.01 0.04 0.11 u.41 0.27 0.22 0.11

0.00 0.01 U.03 0.10 0.21 0.2$3 0.24

0.00 0.00 0.00 0.0e 0.09 0.21 0.31

0.00 0.00 0.00 0.00 0.01 0.0t 0.20

THE 41YmMNFTRIC FUNCTIONS

1 0.4h36/04,73e142-14001

2 0.41e014c.j.1474eesh3051)*Oe

3 U.101434U4C15.44659003

U.15..11617/4b16Y/hUo0.1

0.13,016510,00,53b03

6 0.100,16174410971c1b.ui

0.411n407c6151J000.0e

8 u.(019v347611(04kd30001

0.10000000000000010.01

132
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0.0U 0.00

0.00 0.00

0.00 0.00

0.01 0.00

0.u3 0.00

0.11 0.02

0.27 0.10

0.34 0.34



MO VA*148if NO IP: WAREN SERIES ITEM 12GROUP Fotuuu4CY

NJ
JS

COPECT,ANSRERb

1

ORSF9E0 PRIWORTION
0 .0
0.200

.1 h3 Id 0.340
* 56 3b 0.625b 65

34
0.'123

h 60 37
0.617

1 I? 6!
. 0.814

A 4b 71
0a906

'PREDICTED P4000PTION
f:tWALUF,..-

St P 0.0144 TOO LOW OPSEPVED PROP0.4914O. ,,S . 0.5261, 0.454
0441074 100 RION OASERWED PROP0.b11
0.253v,0.006 9.M4
0756PAT . .4
0.0Iu

The table shows the results from the binomial tests-.
There is of course one table for each item.
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if."'AXIS:S

, 00/SERVED PHOPOPTION00/SERVED

U.9

4

0.8

U.5

0.4 !

1

0.e

1.4

X

X

I

0.0
.....

.....,.. ......- .. .. room... ...am vb....*
0.0 0.1 u.2 0.3 0.4 0.5 0.6 0.7 6.8 0.4A-AAIS: P4Eo1cro PRoonwrtow

v4,1AHLF NO 1? NUM0401 SEPIE,S ITtM IdFor each item a printerplot e the one above is produced. The symbol
X is used to mark along the Y-axis the observed proportion, and the
symbol I is used to indicte the predicted properion, i.e. the I's are
placed on the dlagoral. W,.an the ',I and the I coincide an M is r.r!rtrse..
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TPf SCOPE GROUPS CONTRIRUTE TO Tht Cm1-SOUIWE SUM tS FOLLOWS:
SCURF 'GROUP momNEW OF OBSERVATIONS CoNTPIBUT1ON

1 3d 13.05A

35 6.161
3 53 10.573
I. 56 15.750

bb 3.47H
6 tO '1.493

7 77 5.A15
45 5.7Gt.

THE me.TIN-LVF CHI-SWAPf eu0ONESs of FIT TEST GIvS roil-5006JF=

TIE PEOoNLANCT IS: u.01953,4

I

66.03[ Wm 56 oFGJE;s OF FPEED0m. fft0.160de

TNF mINI'Aum 4.umeL,. OF Of.Sfwv61I0N5 r.I1iIN oicH AILOWED .00N COMPUTING TmE LIAFLIPono Relr, IFST IS 100
7.0" FOLLMI%( (-ouPINu ,6S AEEN USE')

PANGE

1

h

F

40413EP OF osSE,Pv6IONS

lel

loL

NoPPE0 of ITEPATIONS F04 cnNvfP,,foCf:,

P.umpew OF ITIwATIONS FOk C0,0414,04:

t.141ti, IrtweioNs E04 cONW.N.fm.: lo

tArcttiewl, PATIO IOOTIh-5S of E1T TEST Ayfr, cHT-sp14.q= 14.016 111.4

T" PtPONU u...0/1us3
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/.7 The source code of the non-OSIRIS version of PML

C
C

PPPPPP
P

M M

e
MM MMmmmm

L
L
l

..... A PP0.040 oPITTFm MY JAN-EPIC
NUSTArSSON. IseOlTuTt or

PPPPPP
P
Y
P

o o m
m
m
M

m
M
M

L
1
L
111111

flTiCATION. PNIVFPSITy OF
NOTFOOP6. OFCFPFIEh Iv., 1471.

THE PPOPAm CumPUTFS CuNVITIONAL mAAImoo LIKELIHOOD FSTIoATFS oF

C PARAPFIFFPS IN THE PlCmoTOPuUs oAs:-.1 MODEL AMP PF(00445 4000MF5i OF

FIT TFiTS.

C &FFEPENCES:
C ALLEOUP...P.. b. SOMPFP46. (1477, THE os.:,Co mOoFL F1P OOFST/ONNAIRF5. WITH

C A COMPUTE" 06.061.04(eNO Em.). DANISH (N5TITUTF FOQ EDUCATIONAL
C RESEAWC04. COPLNHA(N. lo/7.4.

C
FISCOEP.6.m. 114+ 41 EINFUP0fit. IN DI; TNFOPIE PS1,4010615CHEM TESTS.

M FN: 1(PLAC, HANS wLorw.
C mANT N-L0F.P.(1473) 5TATIStIsoA MOoFLLFP (STATISTICAL MODEOI.
C m mFAGPAPHtP. INST1TuTET ;0 F04SAKHINC.SmkTEAATIm 0CM PATEMATI50(

C 5 ATISTIP .400(m0LoS oNlYFoSITr1. .

E************** .............

C
THIS IS THE NoN051PIS vEwSION OF Pol.

C THE CONTHUL CAHOS APE NEAP Fom UNIT 1

C

C PrAZIV41Pg PollYNIP
11 t nail% ON uNIT 14

C

E
C
C WHEN THE PAkAmETFo TEST=CHIS Is Cgio,,fN A SCPATCH FILF
C (UNIT 12) FOo'HINAoY ktAHN6 AMP 014ITINS IS USFO F4m LAW:E PpOPLEm5.

E********* ..................................... *************************
C THE FoLL01F1(7 1,ImFNSIUN SfAI,HFNI yo0OLO OFrINF AN A'. AY THAT IS
C AS LAW,F AS THE AvAILAHL; Lo4t ALL )..5. Toe NW Cr ToF MOW(
C SMOULI) AISC Fo. oFvF45 I-Orr A'. THE INTsl.co CONSTANT 1m TH. "TATFMFNT
C 1MmEllIATtLT,PPECEOI,6 THc CALL TO emlco1 IN THE MAIN o(oLo.Ao.

01mEMSIGT, ST040.43000)
S

INTEGF0 Leo.FI (eft). ILOC(10.111ALIISI.ISTPIIIV(601.
Imo 11 60).vm(?(F,01.NI5(60.ft01.N4(50).001((.0.S
INTFOE644,4 L 01 ( t,0) .r
MI. 404 4ge 1 e.',U, 6h1O1 0)

IFF (hU)

RFALm rP51.10).Fgasi(6o)6(60)t.1(r.0.h11)FLI«r.mg143.h01
ITorTA(00(.tH40o.sAy;(0,u).vA4Kov(loiL0
NAIT.Aju

INP=I
Ibul=h
KoLA=60

C
-ran TM( FILTI4- tNn

Sw=0
WEA0(IhI0o9)

1000 FUoAAT(e4A4)
m/I IF IN. tool) LLHFL

14:01 FOWMAI(qe.,/X.VUA4)

OFFINf ANC It3TF,44,F1 PAwaorf.,
C

136 .

CALL 6F (ASP V ( I VA( I OOT 1,41d)

ofy,op.ivail4)
Pkf( .11,41,)
Tcsr.lvaL(,-,
F'IN=TvM (7)
10 OTzIvAL(H)
IsfAwT=Tym(44)
FX=IVAL(10

HINSTsIvAL(111
NOrS=IvM (IL)
JAN IL= I vAL 1 I 7f,
4,10$4M=1VASI 1 1*)
TOF srm: vzo I I s)

C wFan THE vio,IA-th LIST
CALL Al IsT(LIsT.If4,0,:o1.%1v,
KaNv

- IF(No.f.f.NuOoNy.Lt.01,0 Tu 4o)

E PINT oUT (944)a01 ['Ft/H.4011)1

IIT(1:-LAPtr,

LA1-1 L



r

vek

1

WWVF(h.100c,Nv.#,Axi.F.040.41002 FUmmATIouNu1,4*A- OF Ittw.0.151..1-4/
mAAImUm NumqFP OF ITEHATIOIN5..15// CHIIEHIo% FOO Omo.06iNcE

I FT..)
IF(NIFIW911.0/K4ITF.1,1.100,2)1003 FokM41(10TAt SYmmET.Ic FuNti will HF COrol.:O WITH THE OIFFEPtIN cc mET4oDOT

IFINFIMUD.10.1)wHI1F4.).10b41-100K F0PPAT10THt SYmmeTKIC FUNCTIONS KILL 4F COmoMFD KITH THE SUMMATI10N NkTHOD.IT

if(mFT400.tu.L44'!0.1PqC.110.01.41TE(6.100511005 FOPKATi 0uHLF PPF.W,ION
AHITHKFTIC KILL HI USF(1.1)1/4I. II. .AT'D. 11.4E.C.f 4.1. 1 11,1 I TF (6.100n)1000 FOPPAT( SINAL PFOCP,IoN
A-41TolvETIC KILL HF uFo.$)IF(191Awf.to,1).1141416.1007,1007 FORmitT(OuNITIFS WILL HE USE) As 51A0TvALUF_S co, THE ITFMATION5.11IF11kA.E0.11.614ITF16.10uH1

100t4 if or!//.0THE AITKEN FATF,APOLATIN KILL HF USED TO SPFED UP CUNVFPG
IFII4IN.FO.0.00.1PLOT.FGu1KKITF(6.101P1NOP510U FOomArtuSCoPE GROUPS wiTH,I13 OR FFKFP PFPSONS APF.II NOT CONSILWMFD IN THE PLOTS 0d THE HINomIAL TrSTS.II

Kim THE DATA

1 N NO.INP.1vUT)PEAWNVsLIST.V.Vmpl.VMOe.L150IC.KmAx.wK2.A01.NRNNISNO9m.
IF1 DE5CM.E0.0)STOP

COMPUTE START-vALOF5 ACCOPDINCI TO THE y,pLuE OF ISTAQT
CALL STAPT45.KN0An1.1sTART.NOPm.LIc-T1Kt

F5r1mAli THE ITEM PARAMFTE.F6

C
.0
C

C

CALL PAPFNITmf1400.1PPFC10.FP',.FPSI.G.GI.mAx1.FPPON.14(11NPNIN.KFt IKE ITEPKiTIFFwK3..Nokm)wPITF(h.1010)FLIKF
1010

FOPPATII-0.30).$)/Ix.***.?tot.t+./IA0.60.?Hz.vol/lx...10111,100 /1x.41.2PA. /1x..2dx.o /IA30(.))DO 10 I=1.K
10 SA0,111=tPh(11
C FSTIKAIF THE AH11111F9 ANO ProINI OUT THE PAPAMFTFPS

LOWAKE=

MfdlP=4MAKI
CALL

PfuPS.tPSI.THFTA.K.mAX0.040QNutwo43.1.151.JA41L.51
C IF ASKtO FOP. iNVfSTI6ATF EACH ITEMC

IF(14IN.fu.u.OP.IPLOT.FL.uCALL ITIrST(IHINTPLOT.SAVE.6.14.K.INw.41s.KKl.0.115T.Noos.I01)1 )
C IF AsKED FOR. ComkuTE THE mAkT.P4-LIF CH!-Sr)6APF TFSTC

KN1:K)K-1//1
C
C THE INTFGfr CoN,,TANT IN TH

t 'slop, AS STATEMENT yinoto HE THE SIZEOF THE APL
sT ,,TATF,,ENT AND ITC souLn Hr AS LAi-C4 AS Pc'SSII,Lt.

C

,41PAP=43000/KKI
IFIITFST.tO.1 04.ITISI.FO.31CAU P4LCHI(sAVF.t.IT:I.
IcoSI.K.NIS.N..tAkKov.THtTA.HOHJOIP4FC.LIST.sToP.NTPAD.6.,KI.NINf,w(FLInt1

C
C IF ASKFO (*pvLITE TkF LIKELIHOOD PATIO TEST

FI,Pcs.7.1.0 ,10-*IVAL(3)
IfilIt-s1.t1o.,=.O.17ES7.1-0.?1 CALL F4ACH1(4ETHDD.IPPEC.TEx.

ite,Fpc!.....400:x1,41.400.v.v4p1.NTS.K.FLIKF.KK3.NOPm.N41.20'neLISTA.41W:TI
Diu TO 49990 ovITF0.11

4111 FoPmATte09CToo FFK ow Too MANY ITEMS corCtriEn,)STOP 461,
410 KHITF(6.911)
911 cT4AINuf.4+14,
999 STOH

te4C

CC

C

ON THE PAPAP) Trk cr.inI

ar, IK rt. 1 cl v.vmD I v402 0 ISO1r.K 0AxKK .A0 / .N0.NIS
.

I NINO.INH(')OT)

Wan', TsF (OA Ar,i, TOOS 7141 ITEM HYPOINT HISFkIAL Cuo-LhIAlIhNs APk ALSO
14TFC-fg. (.CLcL4
h 5Sl(iP er)
f NT cf.c.,,,e ),0 (1)

INTr().. 5vN.TYpE.fvN.1,(1).vmoiti).vm(1tli).Nto416aSIK011
KM1=4...1
MODF=0
IPECO=U
Nv=0(
Sum=0.0
SUm2=0.0
N/ND=0
NNOLL=0
NFULL=0
DO 5 J=IK
00 4 1=1,Y,

1
NISIJOL):0
NR(J)K0
AOIIJ1

1wsu00 5 1.2
wKi1.J/=0.0

Co'S,4-A00up F41)UFNCY riATPIA.COMPOTFD.

137
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C

C
C KO THE DICTIONARY ANn THE CASES

CALL GFTOI(lLISOIC.NV.IN.,0uILIST)
1 CALL CASE(V.KL)

IFIni.NE.0)G0 TO 11
1P 0

10
no to.: I.r.K
IHmIROill)

IFIIP.F0.0.Ow.10.Eu.K/G0 TO 2
UM=Sum.114

SuKet:SUm2.1Ktit2;

INCREMENT THE NIS-mATRjA

-00 20 I=1.K '

NIS(114.11 =NIsilw,1,vII)
211 RK(I.y(1)1)=wK(1V(1).1)IR

NINO=NINV.1
GO TO 1

2 IF(Ik.F0.0)NNOLL=NNOLlI
IFIIR.f0.K)NFULL=NFuLL1GO TO 1

CONTINuE

NTOT=N/NONNOL(1, NFULL
o wITF(6.100G)N GT.NNOLL.NFuLL.NINO

1002 FoRmAl(o-NuHmEp OF CASES .4EA01.19(4.1).1K,/. K11m4FP OF CASES wITH1A UP° SCOHF1.6(101).16//,
NUHIFR OF CASF, wIT.s. A FULL SCNWII.26(.0).16,/, NUNNFO (4, CLY-1 HEHAINI10, F(w AHALYSIc.16)

C
C
C

11
C

C
C COMPUTE THE 1404 ANE, COUPPAH vE.cinos

00 30 1=1.K
00 30 J=1.K
AP1(1)=A01(1)NIS(J.1).04(11=Nk(1)N11JI
00 40 1=1.,(41
NktI1=1m4 11 ) / f

30

40
C

. C SFLECT ITFH FOw NowmATIoN
C

50

IF(NOwoo1.0)60 10 ob
DO 51.1 I=1.K
vf1)=A01(I)
vmol(I)=1
no b° I=1.KM1
L=r-I
flu 60 J=1IL
I.A=IJ

5'3_ ISP1:4(1)

4(11=V(IJ1
Vvri(1)=1,m0111J1
WJ1=1SPI
Vm01(1J)=Isre
(.0NIINUF
N,)14m,..-(0'.1)/e

NOPor.v..1)1iN0,-,m1
(;(1 TO 64

6, CONTINUE
00 t7 I=1.r
IF (yOkm.c LIST ( I ) ) bn TO t)67 ros'IINut
..ITI.(6.1013)

101.1 FfwmAf,101H0- ITt,' SECELTt-0 fi,P OITY NOWMATION TS JOT IN,.14 THE v!.-,IA)-.F 1_1.1.)
',Tor, 414

66 NOPm=f
69 CuNTIN01.
C
C t"r4PUTF ANf F..10 1HF pk-10. Ti KE wia4T-11SFPIALSC CO4PFII ANS$0-1,-,S.
C

/II

AN0 PkOF,OwTiON5 OF

50-xsoaTit,:,0..e-tst,m,r2/NIN011/ININO-1))
wwfIF(6.1ouil

1003 rOwrIAT(gIrA1.,46 YAP1APLE ,..Ami..1JA.Ippoid0o110,4 rOwPf(T..4A.IIPOINT RP4.14L (-.0i-t.FLAffleol
Lexx170.
rho 70 1=1.K
pkow=Ao1(1)4.1.0/NINI.
wAx,14Ayo-woP*(1.-RKitiP)

woHIc=((wetr.1)/A0111)-KKt1.1)/(NINu-A01(1»)/$0)*IS,JPT(Pw(o,.(1.0-w140P))

7o
CAII ,,NApr(1.NAKI.)

wwITF(6.1011.)L1,,T(1).NAmf.w4no.4.4.1,,1004 FoPwAT (10,.1...x.644.c ly. 3.1. 11.3)
w''ITF 110051 11ST (Now"")
Wxv=xotSr.ro?-wx0k;/((r-11,050**21

1011 IN4f7WWW PFLIA411.17Y IKH-20) ISDIFh.211005 FORHAT(IONOkMATION ON VAH1AHLE'1b)
C
C PRINT THE Nic,-MATRIX
C

wWITFt6.100b)
1006 FORHAT(111.eux.ITHE ITEM NY SCOkF6WItIP F1-444Frofr wATPIX OF CU04HECII ANStrFP511

NPPINI=Arm1-11/164,1
IPPINT=17 IF(1PPP)T.Fu.NPPINT)(00 TO 8
L=IPPIN1IP-17
R=IPRiNT41k
wRITE(6.104i) 11R.1.=1..m)

1007 FORmAlt////6A.ImIto
toojTE(6.1010)

1010 FORMAT(' vAk.N001
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60 §o J=1.1(
su wRITEth.luoto LisT(J).(Nistik..1).114.L.m)whITFin.1004) (m411.).w.L.m)looe FORmAT(101.15.1A.191b)
1009 FODMAT(101.6A.INT6I

IPRINT=IPR1NT.1
GO TO 7

8 L=IRRINI*14-17
10RTE(6.10071 (19.1P=1.KMI)
wmITF(6.1010)
DO 9(1 I=1.K90 wwITF(6.100o)

LIST(1).(N.(1,9.1)1R:L.KNI).A01(1)WPITF(6.19091 (N(1441.1R=L.K9100 10b I=1.K
1F(401(11-NINO)101.99.99101 IFIAO1111)99.99.100100 CONTINUE /l*TuRN.

99 wojTE(6.1012)
1012 FOP9AT(01NL4E APE /F40 /AND /Ilk PEPFCi ITEM SrOdtc0)STOP 920

END

SUPPOUTINF
l',9P1(EPS.K.Nw.AoI.9F-J5TA.NoievllsT)

c cnmPuTcs STAiT vALoFS FOP THF ITFRATIOhS

PEAL8 EPS(1).14S090FL
INTEFGEP NP(II.A01111
INTGFP*2 1
9PTIE(b.1000

151(1
1001 FORMAT( /////1

IFINEJSTA.Eu.1)60 TO 1

RSU9=0.000.(i0
DE1=0.000100
DO 1 12..10(
RSUm=0 RSU9.A01(1),11.011-00

10 0i1=DFL1.0t).0u*Nk(1)*(1,11K-11)/(K*(K-1))
PS091...RSu9/K
00 20 I=1.K

20 FP5(1741ExPJ(A01(1)*I.U0(1.00-aSoMJ/DEL
DEI=FPSIK.0041
no 21 I=1.K

21 gAf11.16r(I)/oE.L
PE TURD

1 DO 30 I=1K
30 FRS(1)=1.00(+.00

Rt TURN
E ,)(")

S'O-04(W1 -lo4 ,1 (Mt 1.rq). IP/4 Clk A IF OC.O.P.)1 ',4416 vA) .',41)4*OW' NjNI",K*Fl IKE 111....K(IIF F oro4 50100,4)C
C FSTNATFS THE jr- 11 PAPAmfic:..AS
C

PfAlcr i( 5(1).FPs111).11).151(.Kj.ip,T.FLIKI-.KK1(3.K)..>
.101.11.,14-(11.N15(K.N1

If'"(4-"e KvIFF(I)Lonp=0
FLIK,=(,.(,P0

)

If(wr1-1),(,.).u.9)(ALL N8.,,m4(yS.6.f.1.,(1
if(Ne-T.-1))1).f:).1)(ALl_ 1 .K.Iq4FC)If ( x.f,).())CALL TM( V (t,+5.1.,'(((.1K tj4.f.
If ( ..Fr.,.1)cAL) Al T.(,)(..., 3.f .)S.t PSI

mc=o
1=1.

3)

IFC.g.1c.f0.016j TO eu
Ju (oJrir,uf
.) .1Tc(t.,.P.IU1) IIFP3u01

FO"ATII.I..",5A,ONOv" ITE,ATIONS co. rufloP4'..Ct:III"0(aq=1.0(q)
110 I=1.K

.1) ra.;=ppcp,1(1)

C cA4ur our i'- ,-'071!(
C

nJ 1=10,
F ( t I I

vK iC 1 I
Mr 4(4'111=r P,( I )

SU 1Vr 1( 341, ,:! ar+S(
C rnwPOTE T1-.F mmf 1 C 11()P0- OCT r.an.J..6) pi:).4,14C

IF (h)( ,J.()) CALL "f)1144.4)tlf PS.r(114K
IFINIFTHU.).H1.1'CAt '71104Ar'i,--,.,.',I.K.IPP1'()C

C cnmpulf Tut LI.ti,)urrDnl h0 I=1,
61(

FLIKF=FLIKF.KOI(I)*(A0((1-PS(1))-Nw(1)*()LoGI))RETURN
ENr
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susRouTINE imin.ov(Eps.Epsi.0.610,01Fp.,.A01.,...Fp.owN0-.)

(-------

Sc

C
COMpUTtS Ni.t VAL(JFS OF THE ITEM PA4APETFP;S IN THF ITF.4ATTOf

PEALP EPs111.EPS1(1).G(11.o1(K.4).0FP0OP
INTECTE4 NP(11.A01111
INuGER2 xbIFfil)
nU 10 T=1.1(
EnPsici)couo
o RO J=TeK

.o

2u FP51(1)=EPS1(1)444(J) *NI(IJ)/(,IJI
10 f05111I=A01(1)/FPSI(I)

V=FPSIINORm)
OU 30 I=1.1
gOIFFTI1=0
EPSICI1=EPSI(I)/D
IFIOAHS(EPSI4I1-EPS(11).67.E0H01.71KOIFF(11=1

3U EPSIIT=EPIIIT
PE TURN
cNO

1'

SUMWUUTINE 6AmmAups.6.61.N)

E COMPUTES THE SYMMFTQIC FUNCTIONS 41TH A wECOwS10 FoNtiOLA THAT USES
C SUBTRACTIONS. THF AL(0HITH4 IS SFNSTTTVF TO dOuND-OFF EPPOPS wHEN
C NomHEP OF ITF.PS IS LAPoF.
C THc POuTINF IS TAKFN F0.0m FISCHEi. (1m74).

uFAL*H n(11611N.N1
FtALPF FLP511).1FST

C GIII.J1 1=1 N GPuNOFONKTION J -IF" OPTINUNG OHNE I

C
N0m=(N.1)/e
NoPm1=NOHH1
n11)=0.
Do eon 1=1.N
.11.1)=.

200 G1(1)=GII)1Fk,(i)
no 230 J=e.NoPm1
o0 210 I=1N

210 61(1.J)=MJ-11-61(1J-11°EPSII)
61.1)=0.
Do 2 ?0 1=1N

2?0 r,(J)=G1J/.61(1.J1QFP`IlI)
230 61,) =6(JT/DFLOAT(J)

TFcT=o(N0P041)

no 25u I 1.N
c-IlItN)=1
00 /40 i=1.N
IFII.FO.Jri,o TO ?10
nI(1.N)=01(I.N)*FPS(J)

240 CONTINUE
250 6(N)=61N14ESII/

41=N-NOP,F4-1
Dr, e7u J=1.J1
GIN-J)=0.
rIO 2h0 I=1.N

?010 .(N-J1=61N-J).61(I.N-J.11
r,(N-J)=0(N-JI/CFLOAT(J)
DO 270 1=1.r.

270 GICI.N.J)=(,,IN-0-f,1(1.N-JIII/FPS(11
TtsT=1.-IFST/r.(NOP)1I)
IF(NA0S(TPST)-1.0-4)310.31U.2m0

2t,0 PINT .100.TEI,T
sTOR 920

31u PrTUUN

SuO
[oPmaT(sOCU,,duTATI(N0L ACCoHACY TUu LOw IN GAHH4P.D1s.7)
rc,

SUF40U11t,F oAmmile(F.(..r,I.K.100FC)

C To-.r .nOTTPF ,wPc.ovISP.3 THF (,)mPoTaTION GP THF ',YmkoTwIC FUNCTIONS
C ANC) Imf1M IrwivAl1ViS w(TH THE sommATIoN 11.Tr,Ofl.
C

pc'AL4F4 F',(1).1(1).4.1(K.KW,TOPE
K.A1=K -1
00 10 1=1.K
STn..1=F 0'5
FP,..,(1)=11.UreU

IF IPPF F (/.1> CAL VA F'`Not o(11
IF ( iPPF 0.14.1 L 00'1' If "SoK 0,)
(.1 ( 1.1 ) =1.0ou

)=1141
20 61(1.A.1)=(,())

Fps(1):,,T0pP
10 CoNsTINut

CALL c-,AP(EPS.K6)
WFTUPN

1.40

4



C
C THE ROUTINE COMPUTES THF'SYHmETHIC F uNCT 1(145 w I TH A4cCu4S I v) Fo.tmui A
C THAT ONLY USES mOL T !PI. ICA T ANL) Aont !MI: OE 0,1',111),IF NuH-,RS.
C nou80 RPEC IS Iu\i AwITHI.FT IC 15 wA(' .
C THE HOOT INF IS TAKEN FMOH ISCHr4 (1474)
C

%I.IRHOUTINF GAH(EPS.KF)

REAL10 os Fp...(1).F(1)A(60)y(b0)
n0 K

10 E ( 1 )=EI45 (1)
--,

. x(1) =Ell)
no 30 K -..,

A( I)=0.000
Y(11=A11)E(11
no e0 J:c.1a Y(J)=*(J).(1,1-11*E(1)
DO 30 i=1.!

30 Y(.1)=Y(J)
DU 40 J=1.K

40 F(J)=A(J)
RETURN
ENE'

su"ouTINE bAmtiFps.K.(,).

THIS IS A SINGLE PHFCNIoA VEPSION OF THE (-44 wouTINF.
C

PEA1.118 IPS ( 1 I (.11)
.FAA11.4itrK0).x (6u) (ow)

lu ( ) =SI'vf,l. (EPS ( )

(1)=F (1)
(04)3.0,..1.=0e.

( 111=x (1) E ( I )
4 no e0 J=2.1

20 Y (.1174 (..)) A (J-1 '1 (I )

30
DO 30 J=1.1
x(j)=),(J)

40 .RY.inklgi17,(/»
14: TUkN
ErIC

0

5uHwooTIN ATTAFN(A.FPC.EPS1. rd.N.4.A01.FwPOP.OIFF.L00P.
IITFR.NOF,-H1

C
,PoLATAnr T soF 1: 0 t.IP CooVIRCENC1.-C THE -FPUT C00,-,(CtES THF fNi

C
n(*ra A (301) t't,( I) F PSI (1) 41(1)

INTF (1U mr4 ( ) Al) 1

Po2 n,)IFF i

p,(ITFP.LT.4)('" TO e
NoT)-=()
Lonv:L0nP.1
CALL r m 1.4()v;1,- s EPsT. 01.1(DIFFKA0T,(4.4.1-i4.4)P.Nom)
,)1i 10 T: I 9r,

N' IF =NnIF ntIFF (1)
1U A (I on- ) =F (1)

IF (f`')IF IOW;
IF (1 nnp.t, To.4,
11) 2U 1=1.)k
TF (KTAFF111..0/(10 TI
Hti=iti (1.1 )-A (1.1)
1-irc to-0, (WI/ (t. 1 l 1 )ti( i I) -cGA ( 1 ) ) )

1.0111 )-=1 001
FP5(I).4(3.1)H00H

nu 30 !=1.1.T
111 A 1 l =FP5111

UrT 1-TN=1P
2 CALL Imk1. ev(EP5 ).151 6.hlruIFFA.A(11N.)k014.N)w41)

PF TUPN
ENS

C

C
C
C

C
C oFiFprAlf,F, ,Ar". r,F VAIATIu14 uF THf. II)m PA.,AH)71,45
C

SUF.-04001Ni. (1 .(,.TF 1A. .mAX 'Fr HU- NO to' T.L T JAH1L (,)

c T TrA Tr TH FA. -AML o-- Ti- qAT Tv., li,>111,
kt1--141111n. TH ;JT I.% u.)Vt V11,--1101
FISHFH (1'474)

A101-1 111.TI-H TA(1) i( i, ) .11)
1 irF qi I
IMFCcw N111
INTF ( -F1.4,4Z L111 I 1 )

IF r )111-.11,',.11r-) ln r'01
IF (vt.A.F..1.11 o To

THr KF.T,Th-PAPHSON
ro. 1.,,,;E5l,TEP HY

Z1=E (1)
le=11
nG 4 ittf.M
IF CF 11 ) -Z111 4c*

1 11-7.4. (II
i IF(1.(1)-/e)4.4.3
3 /?:-..F 111
4 CONTINUE

f-l 41Z2zOLOC. (111-A06111)

r.



/
iftZ2.0.2.01$01:40 10 1,

iimPLJTE AteT YALTA'S 06401.14 1HE ASSUMPTION OF E0oALI SHAcfCC Lm PARMALTEPS

0o 5 141
21=1.01/K

Kk
DO )=DFXP (ZeI/1-.5001

201114111.000-DEAPC-11.7211/ (1.000-OF YH(-72(1.000-21)1TO 7

CQMPUTF ST Ak T VALUES Uw0tk THE ASSUMPTION OF EiJoAL ITEM PAH461FTEHS
CONTINUE

- no 6 1=1.KK
i1 =1.0401/0(

6 nmszi/(L.uno-zi)7 CONTINuL
20 no 60 ITER=1,mAA

niF400J21,m$
SU.10,
DO 30 1:.pc30 sozsU.E()/(1.*FfI100(J11
00=J

40 THETA(J) :00/SU
0 =lJoorYP 5COARS(THETA(J)-0(J11.G1.FEHLF.w)NDIF=NDIF1

OtJ)4-THE TA 1,11
IF (WM .E0.0100- TO 70

60 CONTINUE
70 IF 1MA)(.F 0.11PETu( N

C
C COM POTE THE sTANDAkp -01.0HS OF THE ITEM PA0ALIF TFThYS Af,,r) PWINT OUT THEC INFOmmA f ION.
C

CALL II I140 (roc 3.P.Nm.4.1.1,,T1
wi.I1F (0..1001)

1001 FoPmAT $ 1.30x AFILITY HAPAHE TFr-05//6A. evanrviCT NOHwAT1.)-4 PPOouICI New/4 T ION (L0() STANDAW) L).14014 iPqT.vAL (HS 411/2' SC0FE')
FFHLE1-=0.00
SU=0.00
00=0.00
64'40=0,

0,) 110 1=1.61c
INF=0.01,00
00 111 J=1.e

111 1,IF=INF 1E (J)4,0(1» / (1.0E (J) °D(II) ° °2
LOC =0L^G (L) )

HLE.,==1. HL INIP ( ) INE
Or-SUK1411 ) °LOC.

00=n0NH (I) °LOW?
NINO=NINOr,4( )

INF=1./r50(JT (INF )
21=1.0(.(7146 *INF
Z2z1LOG.1.460INF

110 wwITF(6.100211.0(1).L0(..164F.II.Z21002 FouHA /0..1 3.F 15.5.F 19.b.Fe4.S.F19.5F12.5)
wpiTF (6'1003) IT'P

' 1003 F0.0(116:1(o0Num..FH /TF.A1106.5 Flro CONic(46ENCE OF THE AHILITIE.,:s.114.0
(SuoeiNINo (N1No-1)

F riLFD=F E HUE -./611s)t) _ _
1.)-1,,O/N1KJL)

FF 4I f,P-F F I.) /1,0
owl (610ooblino
.,.1,:(6.1u061FrHLFL,

1005 F,JHHAT(ouw. THt LOG SCALE 'hit. 1.41A' of TriF S4.EF 15,.F6.2 wITH1HE viu.IANCF F7.2)
IF o< AT. 301,,o To 125
4TTE 14.,..101e)

=U
wwO!t, TF(h.1013) NULL.11 .1:100
wl.IfF16.1u14V) 120 1.1 cK

.oDu
no 130 1 =1.K
/17-.1.0no.E (J) of, ( 11
00=0n41/1

130 C°NTINUF141) J=1r
I-U To-1F1 A I =171 J 111°' PhD/1111.0( Ur)E)

otkITE (6.101') 1.1 III Ll (THET A (J) oj=10()
126 CONTINUE
12t. CuNTINUF

ri.ITF(h.1010)
hu 150 I=1.r
ww1T(.(..1011)

TU(+N
110, FiU4PAAT IOTit. if `-...1r1jf CT SF eAl4A P-O.F2:11 Aril T1 (..*11,07)
1007 Ff..PAAT It. 10), PA,4Amf IF rico / . y ,j111),A5T ION t,.4()',11(

lwr..AT TON t., 1,011 Ni,r+0 At j,IN IWO')nu 210 1.'1
10 01-+!If 6.100m) I 1(4 (v) . (0( it 1.1) ..)=1. 3)

100,1 Filku`AT $J, 1`,F
C01.44A11.1 vALUFS .1c THT TII.(TToNs1/. oHOFHT
1)

1011 F uwmaT ( TOT .?.
11)12 F opriA I I. p,.0. Ai- IL IT f OF ) T A I'JI'I' A C, TAP FA. ,.(( (,ION

1 THE E("oN TAAm(TE //,,10(HAm
1013 F0PmaT(o0..1.,A.,0111.,(/)7r.!),1S1)1C14 FORMAT I' -)C00T PAt(F,(TF('$)
1014 FukmATISC'.13.F11.',..x.e00,.e.L,(/p...ew.,,,,,))FNO
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SUPROUTINE ITINE0Iwn3.RERS.N0.K.LIST1

COMPUTES TI STANDARD ERRORS OF THE ITEM PARARPTEPs AND PRINTS Out
C THE INFORMATION ABOUT THE ITEM PARAMETERS.
C.

RFAL.8 Ww.413.K1.PFRS(II,INF.7.1./k
INTEGER NP(I)
INTEAFP2 LIST II)
KMIAK-1
WWITEIb$1001)
DO 10 1=1.1t
INEs0.0D00
00 kg .01.KM1 ...

a timINENRIJ)*ANK312.11110ERs0))/41..0.RK3(2.1)*PFRSIJWD2

1

s /VORIIIN8.1

g:::143.11:1:U:Ita
10 woITE(h.100e1 (IS II/.1AK30.I)IJ=1.31.INF.21.72

RETURN
1001 FURRAII$141.30A.81TER PAPAmETERS41//4Y.8UNITY NORHATION PRODUCT NO

1RmATION_. RonDUCT NORRATIONIL06) STANDARD EPROR CONFIDENCE INT
2EMYALI95 Al*/* wAR.NO.I

1002 FORmATI$01.1S,F,4.5.F1H..F19.5.F24.S.FIR.5.E17.SI
, ENn

SUPROUTINE ITTFSTIIHIN.IPLOTIERS.6461.K.NR."11S4Ww2.w.LIET.NUHS.
IIUUTI

C PLOTS FOR FACH ITEM 0R5Ewvf0 AGAINN7 PREDICTED nwoonRTIONS OF CORRECTC ANSWERS WITHIN SCOFF 6HOUP,3. OPTIONALLY/sA HINOMIAL TEST ON THEC FREQUENCIES IS CARRIED OUT. ')
C

REALh FMS(11.(,111.61tm,K)
INTEGFR 10411).NISIK.mIlNAmE161
INTEGFR2 EISTII!
DIMENSION A(47)1ww204,4).0(1)
DATA A/2004, 8.8RREO..11C7E1,10 RE14.8oPow41.8TInm10,411 41.
I'OPSFI..RVED..8 PE/08..RoPte.110N $.508
23,IXXX./
M=2
INC=1
KM1=K-1

C
C START THE LUOP 00$.. THE ITEMS

00 10 1=19A
NR=0
IFfIRIN.EU.IIGO 70 e
CALL r,NAME(1.NAmE)
Wk1((,.1001) 1.I51(1).NAmc

1001 FOPmATf814.44x.8VAPIA'ALE 40'.14.4; 8.hA4/10SCOPF FH-TOUP FPEOUENCY
1 COPMF(T ANsi.M.HS OmSEPWEif ,1POPT1ON PkFOICTEP PPOPOHTION P2- VALUE' /1

C
C LOOP OOP SCOFF GROUPS
C

00 20 j=1.Km1
IF INRI)I-NOHS/ 11.11912

11 NR=NR.1
GO TO 2Q

12 ..CONITIWUT
w(J-Nk)=EPS(114G1(11J1/G(J)
wp(21j-Ni..1)=.4(j-NH)

mKE(J-Ne.e)=NISIJ.11°1.0"41J)
IFIIFIN.EQ.1)60 TO e0
MOSS=NIS(J.1)
PP=w1J-N9)

C IF THE n..1EPVED FPPUUENCY IS HIGHER THAN THE PREDICIFOI INVESTIGATE THEC UPPER PANT OF THE. 0IST6IPUTION
C

IF(wK21J-NH.1)-wK/(J-Np.21)3.4.4
3 MORS=MPIJI-MubS

PP=1.0-PP
4 P=CleImINIPC',.NPIJ1.wP1wHTIF(6.1Q0c.) 101w1J1,NISIJ.P.seIJ-,0".,),*1)-%.").P

IFIwK?(j-N14.1).t,I.wre.,(j-N...e).A,10.P.LT..02',1441fr,.1004)
IFTiot?(J-Nw.11.11.0',?(J-N'.e).15"U.P.LT..0e"-04,-;IT051100)1004 FoHmAT(8.".40-4.1T,J0 LCV, (0410.P

1005 FoPmA1(8.8.9hA.f1on HIGH (4.5f4vPI) e.r1P0)
lu))? FOPmAT(171e114.Fe0..31F23.31F17.4)
i0 COmTINLM.

IF(IPLOT.NE.0)6u TO 10,
KMK=Km1-NN
CALL "LOTT(w.wK?grmrk.m.INC.K.1411100T1
CALL r,NAM1(1.NAwt1
00411F16.10031

1003 FOkmAT(81.0.40X..VAPIAmll N0'.14.': 8.bA41lu CONTINJE
RETURN
END
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FUNCTION UPINININ.N.PI
C OPIPIN CompurEs THF CUNULAIIvF PINoNtAL PPDPoPILITY DIsTPINoTION,C AY A METHOD SUGoESTFD by SONfN SPELLING.

PAPANFTEPS:

INTEAtP VARIANT L 0,40SE CUmulATIvE PwomAmILITY Is To W. CemPUTFO
N 1NTE(yER NUMHEP OF TPIALS IN THE DISTNIFoTION
P PEAL ehoSAHILITY OF SUCCFSS IN ONF TPIAL

CODFo BN).Y GORCOPDON
EN

SOkNFP. UPI. (DANISH IhSIITOF FraiLA11)NAI
FN=FLOAT(N)

PFSFAPCNsofN. ?h AUciosT. 1976.
FN1=FN.1.0
J0 =IFIAIINP0.5,0011
JI=J01
P1=11.0P 1P

51 =0.0
S=0.0

Se=0.0
1:00 .

IFIJQ.FU.0Io0 TO 16
D =1.0

DO 14 I=1.j0
J=J0-11
D.1.1JPI/IFNI-J
S=S*0
TEISI-S/1O.161b

10 CONTINUE
S1=S
IF(J-44-1)12,12.14

12 CONT0 INUE
T=T4

14 CONTEWE
16 CONTA.'JE

C

IFIJO.FU.N/60 TO 26
5=0.0
D=1,0
P1=1.,p1

n0,24 J=4,1.0
0=n(FNI-J1H1/J
s=sn

2U CONTINUE
S2=S
IF(J- 41)c2.2[[4

12 CONTINOE
I=TO

14 CONTINUE
26 CoNTINuE

OPTHIN=7/(1.uS14521

C

C

RfTURN
ENO

SUtHWTINL PHLCHIIEP,.6.151.(11.K.NIS.NP.v4wK0v.vF.C.
1HEIHOh.IPHEC.LIST.siOw.NTHAD.mKi.NIND.W.FLIKF1

THE wnuT1NF LOHINISIfw, THE (OmPoTATION OF THE CHI-SQUARE 'IonoNEss
nF FIT TEST SW,I,FSIFP FY MARTIN -LaF (1./73)..-

1N1E(41,01 LIST(1)
4m1Ef-,0 '11',IK,,,t)04411)
tAl*. FR's(1).(,(1).1,1(0(.rF.404K0,, IFK(11(,?(I)

1,'HI.H.If.f1r,a1F.fLIFNE
RFAL04 S10,4(oTHAO.Ko1)*(1)
IF 2 =O

,y1=,1
cA=0.000
wwliF",.1007,

10(.7 EoPN4ATIIIHt, bqouw, CONT,411.5UTF To THE CHI-SQUARE ',Um AS FOLL
LOWS:' //' SCI0-4 tp4OLIN NukEN oF otAfwvATIo4S CONTHIHUTION.1

C
C 1O-TFP,41f,:F HOw MANY TIM(, I1 IS NECrESAwY TO FILL 7'4F ...0141* wHFwE
C THE SrCOhn OfkIvATIvEc of THE Ellfir110,4c, lor STONE'

III NLOovr.wm1P0440
10140=t)
IF,,;(1.gytaQ.u160 10 141

C
C
C

CALL Tr,F POU1IN/ 41.46E THE COmPuTSSION' APF cAppiFilnuT.

1)0 140 LooP=1hL6OP
CALL STPwvAlFP'.1(,.1.1.K.KKI.vFK.,,?.04P4(*V.ParoAD.CHI.NPAP.L001).
10'1.ST0s41(0,;,.N4.%)',1W4F(41t1.4?;
11.11cPe.f,.F.U1k)-10W,

140 CONiIN
C
C IF THFI-et APE AVIY ,!,1(0.4-f,WOUPS TAKE 0F T-40...
C
141 IF(10,-0,-1,411)14.130.130

142 LOOP=Km1/N7HA01
1;0,40=1,0.41-10Hf
CAI 1 SToNvAll.S.6.GI.K.KKI.VFK 1,1.VAW400NTWAO.CH1.NPAD.LUOP.
IKS.SiCw.V.M.Nw0415.11-441C.M.IFPe1
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!JO Alolt!fNE.OIRETVRN
NUraKS(K-1)
CALL mocuci(cHt.w.ALF.IER)
,w4ITF(6.1u03) CHINVF.ALF

1003 FORMAT(//// THE mAkTIN-LIF CHI-SOUARF (,(!(NESS Of FIT TEST (AYE*,
1CMI-SOUARE=0.F14.3. WITH.16 UFGkEES OF F4F-Fonm, pc.F1.5.,)

C COMPUTE THE REDUNDANCY
C

H=-041/12.0ELIKf1
uPTIF10.100141

100. PQR41
TURN
0140THE REDUNDANCY Is:.F20.71

RE
ENO

suRRouTJNE usiNv(A.N.Fps.,E.)

E THIS SSP-POUTINE INVEPTS A SYMMETRIC POSITIVE oFFINITF mATkIX
C

REAL8 A(11.0IN.KORK
CALL OmESU(A..N.EPS.IFP)
IFIIER)91.1
rill:N0411/2
NO=IPIV
0 6 I=1.N

DIN=1.DO/A1
AIIPIVI=DIN

IPIVI

MIN=N
KEND=I-1
LANF=N-KEND

2
IFINDIKEND15.11.2
J=
DO 4 K=1.KENU
WORK=0.00
m/AmIN-1
WION=IPI9
LYE.14:.)
1 3 L=LANF.MIN
Lfk=LVF14.1
LHOP=LHORL

3 MOkK=w0kKAILVEm1 *A(LHO.)
A1J)=-KORKADIN

4 J=J-MIN
/k/v=IPIv-MIN

6 INO=IND-1
DO d I=1.N
IkIv=IP11/1

D0.0 K=I.N
WORK=0.1,0
LHON=J
00 7 L=K.N
LYER=LH0m*K-I
w0RK=w0kKA1LHOF0°AlLYEk/

7 LHOP=LHOmL
AIJI=MOkK

8 J:JK
9 RETURN.

ENO

suwwouTINE umF5D(A.N.Fps.,E.)

E THIS CSP-wOUTINA FArihke, A (00-N SYMMETRIC P0`0110 OFFINITF mAlkIx.
C IT IS CALLED RY nwiv.
C

kfALAN A()1.,,P1y.0Sum
IFIN-111?.1.1

, 1 IEm=0
tempi:0
DO 11 K=1.N
KkIv=KPIV.K
Imn=KkIV
LEND=K-1
T01=AHS(FIJS4,SNU(A(KPIv)/1
no il 11...K.N

05104=0.1:0
IEILEN(02.4.2

t rA/ 3 L=I.LENP
LANF=KPIY-L
LJNO=INO-L

3 0',Um=1SUmAU.ANF1*A(LINU/
4 OSUM=4111,40)nSUO

IF(I-K110.5.10
5 IFISNGI (USUm)-TOL)6.6.9
0 IFIOSOm111.1d.7
7 IFIIER111.8.9 .-

8 IFF07(..1
9 uPIV4=DSORTWSUm1

A1KkIVI=Ukr
DPIV=1.00 /OPIV
GO TO 11

16 AfIND1=uSUm*pPIV
11 IND=INI

RETURN
ie IER=-1

RETURN
END
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sopouTINf smovA(Fps.0,1 KKKI.vi.Ge.""ov.w...Av.cmi.
IN0Au.Loop.Ks.sTok.100).NR.N1sop.".w.,?)

E THIS 000TINF I', CLLLFP RY PMLCHI. THE sECONo 01.41VATIOS o THE
C SvMMETMIC 'UNCTIONS AWE STORED A;, .,11066LF P4FCISION NOmHE,..S IA THE ..,(ow

APkAY. THEN THIS AkPAY IS TO SMALL OSr IS WADE OF A SCPATC1 FILE
(UNIT 12) FOk HINAHv solITING AN') REAb/hG.

14 AE Ft r.P5 (.1).O(1).(.2(1).VEK(1)01(( 4K)4TOI.STrl J.CHI.4412.
1VAPKOV(I1
PE.4L*4 ,TOWINTkApoo(1).w(1) , .

INIEGEP NH(1).NIS(R.R)

KMI=K
KmeAK-
wooPAAvI/NT4AD
JL=0
IFILOOP.GT.I/G0 TO 11

C
C COMPUTE THE SECOND DEHIVATIVFS OF THE SYMMETRIC FUNCTIONS THdoo6H
C REPEATED CALLS TO THE GAM (OH GAME) ROUTINE
C

DO 10 I=2K

DO 10 =1,61.gL*J
STOI=ERS(I)
STOJ=EP50)
EPS(I)=0.00
FRS(J)=0.00
IFCIPREC)17.17.18

17 CALL 6Am(ERS.K.62)
60 TO 19

IR CALL 6ANE(EPS.K.D2)
19 w(1)=0.

w(2)=1.0
DO 20 LOH0=1Km2

2u w(Lowpe).6e(L04P)
FPS(I)=STOIEps(j):STOJ

C
COPY

TO THE
THE I NFoRHATION FOR THE SCOPE (POOPS HEIN6 TREATED IN THIS LOOP

IN STOW AHRAr
C

IoPO=NTRADo(LOOP-11
00 30 LP=1.NPAD

30 STORILR.OL)=4(IUkp)

C IF NFCESSAWY WRITE THE INFORMATION ON THE 5CPATCH
C

10
IFINLOOP.GT.u/ w9ITE112) (K(KL0).KL0=1.0(m1)
CONTINUE
Go TO 12

C PEA() 1HE SCRATCH FILE AND COW( THE INFoomATION coP THE SCOPE r,POOPS
C EWING TREA1E0 IN THIS LOOP luTo 1HF STog AkkAY
C
11 REBIND 12

DO 110 1=2.K
L=1-1
00 110 J=1.L
JL=JL1
140(121 (%(KL0).KL0=1Km1)
10,40=NTPAD*(LOOP-1)
00 130 LP=1.NPAO
10PD=I0k(I.1

130 "S1OHILET.JL)=1.(1DP0/
110 CONTINJF
12 10141,=NTPAC*ILOOH-1)

E LOOP OVER THE SCOPE GPOUPS HEING TPEA1E0 TH.,'" too('
C

DO 40 LI,I.NwAn

IF(NR110k0))39.39.41
39 KS=KS-1

Go In 40

C COMPUTE THE VARIANCE- COVARIANCE MATPICES
C
41 JL =0

JK=0
DO 50 J=1.K

IE(L.E0.J)G0 TO 141 ,

JK=JK.1
VAPKOVUL)=NH(10P0F°EPS1J)0tHb(L)*ST091L00) /(10(+0)
60 TO 50

141 VARK0V(A)=EHS(0)*G1(J.10H0)0NRIIORM/(010Ho1

C COMPUTE THE UIFFEPENCFS NITwFEN OR,EwvF0 ANO 1-4/FORTFD FRFI.UFNCIES
C

VEK(J)=NIS(10140j)-vANK0V(A)
5U CONTINUE
C

INVERT THE vAHIANCI- COVARIANCE HATHICFS

CALL o%1Nv(vA4priv.R.ToL,if.R)
If(It.4.t1.0,60 To 4hu
iF(IF4.(.T.0)',u 10 yio
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PRE- AND FGSTMULTILY THE INvEKTEO mAT;ICES '!Ti T4E 0.00-0 or
C DIEFERLNCFS

CMIe=000
J*0

DO 60
00 60 0=1.1

Y112.),;0.191bu' 10 61
CHIeKC42.2.4,VI.K4114WK(1u1YANK09(1JIGO TO 60

60 CONTINUE
61

CH12=CIewvAkKOVIIJ/*VEKIII.oe
CHI=CHICH1e
looTTE(8.19113110RO./4w(10140).0.12AO CONTINUE
REJUNN

960 WkITE(6.1001) 10F,40

4E1644
970 KOITEI6.1014$10kO

IERe=2
TUirrjy

1001 FORmAII4OTHF MATIN-LpF TEST CANuT oF CAmpoiEo S1NCF THt VARIANCE1-rOVAIANCE NATFIx FOPP, SCOl'E.W.OU08.13. IS NAT POSITIvt uFFINI411
1002 0OAATisOTHI. mAkTIN-LOF IE5T CANNOT of COmpUTEO SINCE TOO 104 COMP1UTATIONAL ACCUPArY *AS CHTAINFO / IN THE ImvEPSI6N OF THE 4A9IANCe-COVAPIANCE MANI* FOW SCORE GOP.13/1003 FORMATI0.1h.1e9.FeS.3END

C
C
C
C

\\

\
',AEI( FIPST A SUITAbLE 6POUPIN6 OF (THE SCOPE 61FuOPS

C \UPwAI.OIS Flo$1
,

DO 10 1=1.K
10 AOI.ITI=0
' 1,017=0
e 1oPp=10H,1
E TFST IF THEP!. AkE ANY SCOkE
C

SUPoOUIINF
FHACF1114FIHOD.IP(tC.IEx.FP5.EPSI.G.G1.mikAle

ICkPOR.A0G.Ni.,6.NISIIK.FLM.KKI.NOoo.No.Knol.KOOL.mINST)
THE ROUTINE Co4PuTES

THE LIKFLIH0Q0 PATIO N0q0NESS OF F17 TESTAS SOWSTE0 111' F.O. AF'opsFN (1973)
RFALA

FP'=111.EPSII11.6(11.61(K.K)..43(1.K).FLP(F.FLOG.FLolINIEGEP
NkG(1.40610.NIS(K.KI.NR11).KOOI11).K001 IIIINTEGER2 VDIFF(60)

FLOG=FLIKF
fLOT=FLIKE-

12k8"
NbPI=0
NGRL=0

iFlinNO-(L0k1)-1113..J.I99C
C ADO a ',C0kr C. UP
C
3 DC, CO 1=1.,
eo 0 x,(1)...A(0.(11.Ni5(lu,,no)

N.T.Nki.Nkr10140)

(0.1oUPS LEFT

C WIT FOP 7.Ekri vip FULL 1114 PPoPokTIONS
C

Po AV I=1.r
If' (A(,(1) 12,e.r4

I,) IF (An.,(1)-N,,T ) lu.e.c
30 CohITINJF
C TEST IF THE wriLF,-, IMF SP1JFCIS IS SUFFICTFNT
'C

C A

13 N,P1=W1k11
Koro11NkII=I040

C
C orPEAT THE PkoLE55 GUM: flOw.wioOS

U0 0 1=1,1t
AoG111=0
riPT=0

102 LOo0=LOPO-1
1,-1(1041)41)-0RO/103.103.1991u3 DO SO 1=1.4

5u Ani,111:Ak)GiIINIc110 .I1
roa=Nwit491LOkul

C TFST FOk 2E0 ANO FILL
00 ho 1=1.K
IFIA06(1)110e.W.129119 IFIA0o

kiu
111-NP1160.10e.10280 CLral

IF(NoT-fAIr61)10e.1?3.1e3123 N641=NOPI
KOOLI96PII=LoW, I

IFIII0o01)-LOku/I.e(A.20A
E THE FoLIOKINU `4AIFIONI 4tACHEOC FAHAusIth IUPINI. A NrouPINN
199 CONTINUE

IF IHF NOmHro OF SCOwf 6ROUPS IS
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IF INGMI.1 T 1 00.N6141..1 I. 1 /Go TO 499
Apo THE RFMAINING SCOPE G404.6JS TO AUJOININI, 6wOop5 FnUNoeU0 10902(001(N(,..q)

LO9D=KOCI(N6PL/
IFIIOND*1.Ew.LOO)60 70 2042u1 twoo=rnq)1
IF ( (10,4(,.1 )4L01.01102:40.1.e0.1

202 LOADeL090.*1
IFI1107001)-L0k0201.203.103203, KOO1(44691)=IONO
KOPLINAhL)=LOND
CONTINUL
LIGHz0
NGPTsN6141441UPL
WPITE(6.1006)MINST
WRITE 16.10011

FSTIMATF TP'E 17Fm PAwAmPTEkS wITHIN EACH OF THE G9O11PS
DO 300 1=1,N,,WI
LOWcLIE,N1
LIGH=K001(1)309: CONTINUE
no 310 J21.1(

310
406(J120
N0O(J)z0

rItT

;10 J=4.04.LIGH
NRO(J) =Nk(J)
NRI=NWTNH(j)
DO 320 1.=1.K

320 406(0=A00L/oNI5(j.l)
wwITE10,4100l11,04,L111.41k1CA(L

PAvIST(4ElmOD,IPIQColfx,Fi.,14PSI.o.1,1,mAXI.F4w0w.Aoh,INI$FLIKF.1110KUIFFvos.s.N04)M)FLO(, =FLO6-FLIAF
300 CONTINUE

DO 400 1=1,N1,9L
LOw=wOUt INC041-11)
IFII-NC41.14ue.4u1.401402 LI4m=%0OL(NuHL-11-1
GO TO 403

401 LIGH=,-1
*03 DO 410 0=1.1(

A06(J):-V
410 NRGIJ)=1)

NWT110
DO 420 J=LOw.LIG
NRG(J1=NR(J1
NHT=NRT.NR(j)

420 DO n(20
) =A0=G(K )*NIS(J.L)

RITE(6.1u01)LOw.E16H.N9TCALL
PAkEST(mETHoO.PktC,IFAEPS.EF,14,n.G104AXI.F.4000,A06.N4G.INI.K.FEIKt.ITEr.KpjFF.00(J.(.ORM)FLOC=FLOG-FLIKE400 CONTTNuF

FEOT.11106/FEOT

P)PL2ITIMW4P(K-1)
CALL mDLOF111-0)(,.NnF,FEliq.110)
wwit:th,l003,FEo6.N.A.FLIPE
wP1Tr(6,100/)FLOTPFTOPN

999 .64/Dih,l(45)
PfTivr4

lUD1 104MA11ouTHL F017,WPf.J6 1,klicP1rJr, HfrN usfn./ WMflfH IiF n44faqA1Ofe,01100? FO('MATI$U.s114 - $114114)inoi FowmATir//0 T.1F tj'Cliihr)01)
kATTO il0h1fckS to,- FIT DST (.)OS CHI-SIWIANC=0,414.40 wITHI.164 qi(,affs 11F FHi.DOM. P:,147.30,0)1001 FOPMATIOU THE LigELTHOW) WA( 111 TI-ST CAIOT He f(WpuTfuf)i006 F041.4ATt///// TH1 HIImow NomkFo OF 0scpv.0100,... 41141rlo ',NOUN ALL.o.cr, wkch COMPOTINO. Tot I IxEL/Hon:., PAT/0 TEST ft01411007 F0PmAlfouTHE wEDuNOOICT Is!..F10.7,fmr)

SUPH01.111fs.f Xl 1ST 11_ IST41NP.IUUT
11C

C wpITTFN (-f JAh-wNNAk
11W-0,ELL, f.FPAwTmcNT f-u. crmCATI4INAtC PESEA.)CH. uNIWPsITY OF 1,nTEH0R.,.

C
C
C pfAos THE vawfAntt LlSf col0 Htio.H', THf VAHIAHlf 111MHFON IN 1.1`,1C
C FX:
C

001$0W5.V07-.O1,,,oeolb

AIW4Vn 3 011.11S It. 1)-- Ni0.44.4. H1.1,1'. 10 PIPS 1.C F114'-1 CAPD s*0-,1 I) t,OmPltil- 4/40wk ,TAH11N1, V. 'il.A1 Cilw0C SEPA.,AIt wilt, (W4hiti 01. YPHtftC AFTrW 1041 Vti410.11. POI((., A14 AST14/1'ot (41.C *6C
C

111144460/ u)olo
olufw Am lv.?(0.11ro).Tfo(14).(A.4)1,4)
DATA

C
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1 PIAMIN10.100.FNO:491 CAw0.1y.T
100 FotowATI/0A4.71./01I 311t1.11.201 0.4111
101 FCwmAT(0.16A4)

v0+ 11F 11001.20.101) CAP))
f)C, 15 /Iw
IF IT ( I 1.E17.TFCw 1111 (,01() 5
1.1%1 (J)=IVII)
JA
IFI.1.1TIII.IL.TECs 1311It IT 11). 0.TICP4 (4) )
GOT)) 10

,b CONTINUt
jP1A11
11'10(1
12:101111411

. DO xA11.1/
LIST

h
(J1wIA

6
011:1
IF (1)...TiCk 13
If (T(II.Eii.11C) 141)

»
10 1=191
15 cnNTINUt

GOTO 1

20 J' -J -1

Rt Tu) N
94 owITE(IOUT.999)499 copmAT(ouiP404 IN vAP;ANLE LIST.

STOP
END

GOO 10
6010 99

GoTO 20
GOTO 99

-sof.wouilkE 6,7Kry(IvAL.INp.100T.wy..)

wk1TTFr1 BY JAN-6uNNA4 TINGstLL ofpAQTmENT Fn4 FnocATIoNALC kE.,,tozcH. UNIO0SITY OF G(1TFHOgb.
C

C

E
PAPA4IFTFoS:
:s1 0A..641ETEN CAI .4) INCLUIFS wFfwORDS.1

C THEY AWL AWITTFN *11H 4 (AAAACtfOS ....FPAwATE0 HY romma OQ QLANwC 4E-GINNING II FIPST posjIl'IN.
C ONLY PO.AucT1,4;, 00H010( THE ofFAuLTS APE DFOoLPFO.
E

IF ALL ro:FAuLlS At+f Ch()05EN TN). CA1,r) mip.,1' ST It 1 wt imi wt.
C ?:NO PAPAmtlAp (m.+(: INFLUDFs> THE pAPAmETrws AAA!. FPPO.C NIN(,. NOS ANO NOww IN THIS 0400,, WITH FIzen FrAwAT 4 WIC..C THIs CAkD IS ALSO ALWAYS wEOUIPF(1C
Cs +1,00 ****** 000000444.04,0004.4.004000004

***** 404000000000000000000* 0000C
C

1)Imtfv,..1(IN 1)IAL ( )
oiwiNsION LI5IA(30).) 1,4)4130) L IST0( 30).1 TSTF (lc)nt 1 A L T A / f.(4, I esnIFF S.

1 .01r1.'L1 mt I oNf.o4i /.1- INOe e ei)L01 ie eAPPkir.
SoNII,ofAiNookrIsAtootw5ooNopf...eyof,ft.Incc,c4/DATA

LIsT:4/1.0.o.I.uF.0.1.1.3.1.(,.1.0.0.1.1.0.0.11.0/()ATI% LIS10/11.4.40).S.b.6.6.s.7.7.,...,4.9.4.101,)
I 13.13.161.15/
NI=??

C NI = NUmhiR uF FLEwfNTS IN LISTA
C
C
C OFFAuLT-vALUFS

IvAL(I)=1
YAL(?1:e50
VAL(3)=3
VAL(4)=0
vAL151=0
VAL:6/A0
VAL(7) =I
vAL(8)=1
vALI4/:0
VAL(10)=.1
IvAL111/=100
IVAL(12):5

13t 112I:t
ivAt (15) .1

C

PfAulINP$1011 LISTC
wHI1((lOul.103)i=115

r..1.11vi
IFILISTjC(i).k0.1.1STA(J)) 4..mj
CUNIINUf
IF(w.F0.0) ooTO 11
M=I
1:4 ISTR(K)
IvAL141=L
woITF(100.(i4) LISIA(K)

I I CLOTINUt
pfAn(INP.102) LIsIC
IF ISIC (1) t4.0) 1),AiILISICIel.tif 01) IJA114)=1. ISTC(e)IF IL 1$Tr (3).mt .0) 1vAI (11).--1 15TrI3)
F I L L 1!,1C 14) .NE .1)) I kilo (1e) mt. ISIC 1.4)
IF (LIST( 1,0.'4E.°) ?VAL 114)*LISTr111

C



ALITEIIONT:201) LIsICII)
F1L T 111.NE.U1 mmlIf( 011.20?) LAIctel
fa, T ii1.NF.01 Od111( oUl.t0.11 LISTC431
FiL ST041.N1.01 mmITF(1PUT.2041 LISTC141
FILIN STCONI.Nf.b) wwITF110U1.20-0 L'STC(%)
PTUR

Iul FORMATIISIA.1X11
102 F11wmAT(15141
03 FoPmAT(0FOLLONINL, PAIAMtTFWS OvEwIOFS TmF oFFA,ILIS: //i
10. FOMmAT(SA.A41
01 FORmATI110.x.wAxial./4)

202 FOLImATi ..x.twwfte..141 .

2U3 FOwmAT(e *.d.A.fiNINO=,.I41
t'04 FOwmAT 1 e 0 1,4A MPSzt 14)
20S FORMAT(' ...A.NCN.S2e.I4i

END

SJAROUI1Nt 14T01(4( 1SOIC*NV.INP.100.LINTI
C
C 1.0ITTEN WI JAN-IIONNAw TINGSELL. 0EPAQ1.0NT Foi4 FOuCATIO'AL

C RESEAOrm. LII1OwsITT OF WITinvOG.

... ,

C pt.os DirTio",., Iwo oATA FILES.
C

THE ITEMS musT AtSCRIMFD 1N A DICTIONAwT FIIF ON UNIT 13
C DATA FIII UNIT 1..
C 31CTI0rAwY OFSOOPTLONS:
C OS 1-3 vAW1111.LF NumHEm
C wOs .....27 yA1.101.1 NAME
C PDS em-3u COLUMN loCATION IN OATAFILE
C
C Elics CASE mTsT 14 INCLUOFD IN ONE rcONO
C
C FIwST wECOw0 IN 01rTIONA./T FILE CONTAINS:

E ,rkqkl, U'i't,YVI,,, WAHLF NummFP IN II(T1)NA141,

C it N;) tNuiNN vAIAHLF NUmmf

E
Fopm67,313)

C MAX , ?U(` vAwIAFItFs CAN 4F DEFIAFO IN nicTioNAQ,
C Tmh yAwlAmit MUST t...r CuNTINOUSLY Num4E7.2r0 rywFEN ISTA4.T
C AND If ND.

0400000000400....0000000 0 ******** 0 ********** 00 ********** 4

C
C r -01 l NT (I) ell r)( (20U) 0114

INit&fw NAmi.i,e(19.b1o,AmN(bI.V(11.A(10(10).DATFIL
INF IL =13
noF II =le

C WEAL) DICTIoNAPY F Ilk
C

10

1`
r

C
C

P11011NFILel1,01 1.10CL.ISIAWF.IEND
1=1
frqADIINFIL.10111END=151 Nw(I)(NAmEII.J1.J=1.AIOL6CIII
1=1.1
IFII.AT.e00) Sinv lti
(Ato lu
CoNTINUf

CHI:K VANIL.Lf 1151 AN0 p.INT ni01:11var

%c1if(loul,101)
41.1 1=1NV

J=L1ST41)Ir().Ar.ISF41,1,00'.J.(..F.lein, (mu 9u

')(1

IF (11.11,..1.4'4.t. C .F0.0) «. IF I I(`tIT .103) P414 ( )

E 111%1i) 13-=1,) OLUCI 11)
CrN itItiE

4U wqiic(141u1.11,8) J
STnW lb
ENTwY citlf.(1/.KL)
K1 =0

C .+f A1. NF CASF AND ,001414 hit VAPIAHLFs Ir v.

,51 wcA0(ATFIL.10SENI):10) ;X(11.1=1.0,1-CL)

r,:i1sT(1)-IsTtPT1
Lor=1Locljb)
v11r=x(i0c,
I.FTUI4N

3y KL=I
C rmn OF FILE

kIFUPN
FNIwY (9NAM1(1.,NAwN1

IHt vo/IANL1 NAmFS
C

Wi,Nlit7,1S1A441.1
50 NAwN1J)=NAW1110J/

WIUWN
100 FuNmATII°I.4)

F=1:1 4110w VA-01A4p.', AWF ):$/$06.
1 ,VAP

101 FhWmAIl ,01.0.fA4.?11.1.11
fur F0PMATC,UV141/thIC1'.!4., NO1 IN 01(110NAWY'l

FhwMITICSUII.PL.611.,5011.eSUIII
ENO

150



sumaouTtNE LoTT(A.y.%.m.iNc.IA.A.loul)
4 E ...ITTFN HY JAN-OoNNAJ UfPAHTmENT flp fr.o(Allo,ALC RFSEA9CH, uN101.0:,1TY Of (HITIHORG.

C

DIMFNSION A(1).YI1A.11.4010).1(4).1Y111
LOOTCAL1 HM( 101 11).44x(s1511.HLANNT41.TC4f1?)
Eou11/ALFNCF (mTk(1.1)410(1))(NLANK(1)RL)

1 (T(11.Tfcx(1)1 4
DATA 81/11 /0/1A-11080.90 mo/

1F1H.Nt.2) GOT() 9h

C FLANK OUT THE LOT
C

70 10 1=1.5151
10 ..4*(1)=MIANK(1)
C

ANn Y.-VALUES ALWAYS >=0.0 aNI)
C JUST 2 fUNC,11UN-_ CAN 4.11 1,,CTTED
C
C CONSTPuCT THE FpAmr5
C

11
C

11
C
C

00 1 1=.1u1
mT,111,11=1TfCY(31
IFII(1-17/515.fo.(1-1)) mFu(1.1)=TfCK(4)
mTP(1.51)=HTkI1.11

00 1?* J=150
mi1J11.j)=IFCA(51
(FII(J-1),0-$)5.fo.(J -1)) mTwT1.J1=TFCK(4,mTkIlUlj1=m1w(1J)

1F(x(1).1T.01.).ok.A(1).,4.1.0) (.OTO 44
DC) e) 1=1.N

no 11 Im=104
(,UTO 94

IIIIM)=10u.u01(111/2)1.5
cnfT1NOr
IFtlY(11.F0.1Y(1)) c010 e3

c1 Imz1H
!Iv:Iv(1H)
mTP(/,(.11Y)=TFCK(Im)
60T( 14
11Y=1Y(1)
mY41/x.ily)=TEC,.(12)
CONS
roNTINUE

p4INTot;TS

wkIif (1(0 ) .10i) TA I 1) 1=31.40)
On JO JJ=1..).1
1=`11-,:Jji

Uu.l)
..j) 011i (1)a1T .101) x..).(HTot ).)1)1=1101)

A411f(100T.1021 imiP((J41).1=1.1911
(r_1;1.11 I) A,1(-.10-,(1,1)I=lellli)

w. I IF ( jr(.T .1 J4) ( 1,1=100)wwITr (A 11).( ..ei.3o)
01.1U4N
NwITViluulvei)
Pt 1 ,J401

fr w.,174.((out.c)e)
L,ETwr
F0.):.,A1(10//o 044)lui 41.14.1.1*.lulA1)

10c rtcmAT(' 11[1(11A1)
Frkwill(o .,11,X00.0'.917X.OU.,11)./K.01,011

JO, F14NATI,11$0*AAP,: 1u.41c-f,kvicr tub*., Fr,t-eou IN P11111 0* 41.00F1F-k ((F
I 1.,oT ftolro e.,1

eo? Fo4mAT(c4 fPw04 IN 1-1011 *44 X..' 0., Y-vALI)F5 NCT lw0 tkev..f. 0 TO 1.'1
pin
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