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Abstract 

Within the beta-binomial framework for domain-referenced testing, 

the kappamax reliability index.is proposed for binary decisions 

	
based on test scores, and studied in.terms of variation, 

approximation and sampling fluctuation. A formula is given for the 

projection.of kappamax of tests with doubled lengths. 
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THE KAPPAMAX RELIABILITY INDEX FOR DECISIONS 
IN DOMAIN-REFERENCED TESTING, 

The search for a suitable reliability index for criterion-

referenced     testa (Hambleton & Novick, 1973) seems to have been settled 

with the kappa index of agreement as proposed by Cohen (1960; also 

sae Swaminathan, Hambleton & Algina, 1974). In a recent work, Huynh

(1977) argues for the assumption of test exchangeability (de Finetti, 

1937; Hewitt & Savage, 1955; Zimmerman, 1975), and subsequently 

defines the population kappa based on this assumption. In another 

work, Huynh (1976) details the computation of kappa on the basis of 

  data çollected from one test administration when equivalent test data 

follow a bivariate beta-binomial model. 

Kappa has been found to change with the cutoff score(s), 

hence there is no unique kappa for a given test' administered to a 

group of examinees. Under test exchangeability, kappa varies between

0 and,1 inclusive. Hence there exists at least one set of cutoff 

score(s) at which kappa is maxima;ed. We propose to call the upper' 

bound of kappa the kappamax (KM) reliability index for the test (and 

for the group of examinees) under consideratioà. 

This study will deal mainly with kappamax based on binary 

classifications. The beta binomial model will be used extensively 

to describe the test score distribution. Such model would assume that 

the test is composed by randomly drawing items from an item universe 

featuring the instructional objectives under study. This type of test 

is traditionally described as domain-referenced. . 



EVALUATION OF KAPPAMAX BASED ON THE  
BETA-BINOMIAL MODEL 

Several computational procedures for the kappa reliability index 

at a given cutoff score are described at length in Huynh (1976). To

obtain the kappamax, one may compute kappa for every cutoff score and 

then identify the maximum value that kappa can reach. (It is assumed, 

of course, that only nonrandomized classifications are to be used.) • 

As an illustration, consider the situation where a five-item test 

is administered to a group of examinees with true ability defined by 

the beta densi.ty'with parameters a • 11.43 and B • 6.80. The values 

of kapph at ;he cutoff scores of 1, 2, 3, 4 and 5 are respectively 

.034, .095, .144, .148 and .091. Hence thé value of kappamax is 

IQ4 • .148.

The scheme described above is a sure but lengthy way to get at 

kappamax. A fairly efficient algorithm may be formulated by noting 

that (in all situations considered by the author•up to now) kappa is 

an upturn U-shape function of the cutoff acore. Moreover kappamax 

is usually reached at a cutoff score very near the test mean score. 

(Sea Table 1 for some typical numerical illustrations.) 

Table 1 

Thus the search for kappamax may be confined to cutoff scores in the 

neighborhood of the test mean score. The steps to`be followed are: 

(a)Choose two consecutive cutoff scores c and c+1 near the test 

mean score, and compute the corresponding kappa indices K(c) and 

K(c+ 1). 

(b)If K(c) is less than K(c+1), then compute K(c+2). If K(c+1) is 

larger than K(c+2), then the computation stops and the kappamax is _ 



K (c+1) . Otherwise) compue K (c+3) , and so on. 

(c) If K(c) is'larger than K(c+1), then compute K(c-1). If K(c-1) 

is lesa.than K(c), then the computation stops and•the kappamax is 

KM K(c). Otherwise~ compute K(c-2), and so on. 

AN APPROXIMATION FOR KAPPAMAX 

FOR LONG TESTS 

The computations described in the last section for kappamax are-

rather tedious when the number n of test items is fairly large. Unless 

computer facilities are available, it seems desirable to seek an 

approximation for this case. 

In a theoretical study regarding kappa based on normality, 

Huytih (1977) proves that the value of kappamaxis 

-1
KM - (2/n) sin p , (1) 

where p is the traditional reliability. It follows that kappamax 

maybe approximated by replacing p by a suitably chosen quantity 

representing the correlation between two equivalent forms Of the tests. 

Several possibilities including the correlation p a21[(n-1)/(n+a21)] 

(See Huynh, 1976, Formula (22)) have been tried,  but it turns out that 

a resonable approximation for kappamax may be obtained as 

KM • (2/v) sin1a being the traditional KR21 reliability index. 
1 2 , a21 

It may be recalled that 

	

- [.1 - u(.._=~-]
(321 s . 

n-1 na-

where p-is thi'test•mean acorá and a2 is the test variance. When 

sample dita are to be used, a21 may be estimated by replacing p and 

2 by the corresponding sample mean i and sample variance s2. to 

illustrate the approximation process, consider for example the 



Duncan data referred to in Huynh.(197)6). Here n - 20, x • 12.54 

and s • 3.05. An estimate for the KR21 may be taken as a21 • .52, and 

hence KM.= .35. Exact calculations based on the beta-binomial model 

yield the value of .36 for kappamax. 

Table 2 provides more data on the approximation of kappamax based 

on normality. Three sets of true ability distributions are selected 

to represent different degree' of homogeneity and four levels of 

test lengths are chosen to be n € 10, 20, 30 and 40. Set 1 yields 

unimodal and fairly homogeneous test score' distributions. Set 2, on 

the other hand, may be taken as representative of unimodal distributions 

with moderate degree of homogeneity. Finally, Set 3 is a collection 

of bimodal and relatively heterogeneous test score distributions. For 

all the situations under consideration, the approximation based on 

normality provides kappamax slightly smaller than the corresponding 

true values. However, the absolute error (difference between a true 

kappamax and its approximate value) never exceeds six units in the 

second decimal. The mean absolute error stands at .023 at the relative 

error averages out at 3.7 percent. The data of Table 2 also reveals 

that the approximation becomes better with more test items. However, 

even with only ten items, the errors are still relatively small and 

perhaps negligible for most practical purposes. 

Table 2 

FACTORS AFFECTING KAPPAMAX 

Since kappamax.(based on binary classifications) does not involve 

the cutoff score, only the number n of test items and the true ability 

distribution .( reflected by a and ß) will have to be considered. 



Effect of test length. Test reliability p'is known to be an increasing 

function of n, hence kappamax défined under normality by 

KM - (2/7r) sin 1p, is, also an increaaing function.of n, This statement 

should be expected to hold asymptotically for the beta-binomial teat, 

acore model. To shed light on the behavior of kappamax based on tests 

with short or moderate lengths, several computations are made and the 

results are compiled in Table 3. The data vividly document the 

increasing variation of kappamax'with respect to n. Moreover they 

also indicate that the rate of increase becomes smaller as n takes 

larger values. The trend is retainiscent of th'e one induced by the 

Spearman-Brown formula. A later section of this paper will describe 

a way to project kappamax for tests of doubled length. 

Effect of true (or test) score variability. The relationship between 

the true (or test) score variability and kappamax may be inferred from 

the data of Table 3. It may be noted that for the first two lasses 

of test score distributions, kappamax varies in the same direction 

with the standard deviation aeof.the true score (or 'ability) distri-

bution. this observation holds for each of the test length levels. 

As for the third type of test score distributions, namely those With 

two modes located at both extreme ends of the score range, the 

relationship between kappamat and Leis not totally straighforward. It 

may be stated, however, that as a rule, kappamax tends to increase

along with the degree of heterogeneity in the true (or test) score 

distribution. 

Table 3 



	

SAMPLING DISTRIBUTION OF KAPPAMAX 

	SO far we have considered'mostly the case where both parameters 

a and B of the beta distribution are known accurately. In most practical 

situations,however, these quantities are to be estimated from sample 

data. There are many way to accomplish this task. Moment`estimates for 

a and ß may be obtained by replacing the, test mean y and the test 

standard deviation v by their corresponding sample statistics z and 

s in the formulas defining a and B. Thus the moment estimates are 

expressed as 

	 	

	
	

	
	
	
	

A A _ 

a s (-1 + 1/121)x• 

A A 
ß in a + n/a21 - n, 

n i(n - z)
where 

- ---~--7.121 L1 
n - 1 ns 

	

These quantities are fairly simple to compute. However, in sampling 

studies, •it is usually more desirable to consider the maximum likelihood 

(ML) estimates for their statistical inference properties all well, 

known at least asymptotically (e.g. when the sample has a reasonably 

large number of cases.) It may be noted that. for large samples, the 

moment estimates and their corresponding ML counterparts are very 

near each other in most cases. 

An asymptotic statistical inference theory for kappa and kappamax 

is provided in Huynh (1977b) for beta-binomial test score distributions. 

To be specific, let KM be the ML estimate for the population.kappamax 

KM. Then KM may be obtained simply by replacing the two parameters 

a and B in the formula defining kappamax by their ML estimates 

previously mentioned. If the estimation is based on N subjects,.then 



N (lá! - KM) has an approximate normal distribution with zero mean and 

standard deviation a . Standard methods for evaluating this constant
KM 

may be found in such text as Raa (1973) for example. Charts developed 

by Huynh (1977b) may also be used for this purpose: ,It follows from 

this discussion that the ML estimate KM is asymptotically unbiased for 

the population value KM and has a standard "error equal to 0KM/N11. 

The availability of a standard error for KM would serve at least 

two purposes. First, it may be used to establish confidence intervals 

for kappamax. For,example, 'consider the case where N = 100, a = 3.49 

and,ß = 1.08. Recall that the moment estimates and their ML counterparts 

are very close to each other for large N's. Numerical computations 

provide the estimated kappamax of .395 with an estimated standard 

error of .699/(100)12 = .070. An approximate 95% confidence interval ' 

for the population kappamax may now be taken as .395_: 1.645 X .070, 

which is the interval from .28 to .51. Second, the value of a may. 

serve as a starting point for decisions regarding the number of subjects 
to be included in any kappamax estimation. For example, a pilot 

administration of a 10-item test to a group of examinees yields the 
A A 

values a = S and ß = 3. It follows that an estimate for 0 is .539.
KM 

If a standard error of .02 is acceptable, then the number N of subjects 

should be at least (.539/.02)2 or 726 approximately. 

Table 4 presents some data regarding the variation trend of 0Km 

with respect to a, ß and n. It is clear that for a given-group of 

examinees (e.g. for a given set of a and ß), 0KM.is a decreasing 

function of A. It follows from previous discussions that p'Km is also 

a decreasing function of KM. Across different groups of examinees, 



 

     

  

however, a and KM relate to each other in a rather unpredictable
KM 

manner. 

Table 4 

PROJECTION FOR KAPPAMAX OF TESTS WITH DOUBLED 

LENGTHS BASED ON BETA-BINOMIAL DATA 

Huynh (1977)'shows that under normality, kappa is asymptotically 

.a function of nh, n being the number of test items. This suggests 

that an adaptation of thé Spearman-Brown formula might be stated as 

	

h1/2 km 
KM 

1 
1+'(h1/2-1) km • 

(2)

where km is the kappamax index fora short test and KM1 is the 

kappamax index projectéd for a test whose length is h times longer than 

the short test. If the original Spearman-Brown formula were to be used, 

then the predicted kappamax would be 

	h'km 

1+ (h-1) km 

(3) 

It turnsout surprisinglythat for the 45 beta-binomial situations 

considered as representatives of a wide range of testing conditions, 

Formula (2) always underprojects kappamax whereas Formula (3) always 

overprojects this index for tests with doubled lengths (h = 2). This . 

suggests that the compromised formula 

	
h3/4 km 

KM 

1 + (h3/4 - 1) km 

(4) 



would do a better projection. ,It fact it does. In all the 45 cases 

previously mentioned, the difference between the true value of kappamax 

and its projected value obtained from Equation (4) (e.g. the absolute 

error) nevers, exceeds two units of the second decimal. Overall the 

mean absolute érror is .013 and the relative erroi (e.g. the ratio of 

the absolute error to the true kappamax) averages but at 1.96 percent. 

As may be seen from Table 5, the errors do not seem to relate to the 

level of kappamax from which projection is to be made.. 

Table 5 

PROJECTION FOR KAPPAMAX OF TESTS WITH DOUBLED 

LENGTHS BASED ON REAL DATA 

The beta-binomial model has, been used in this study mainly because 

of its mathematical simplicity. Real test data, however, rarely conforms 

exactly to any parametric corm. It seems therefore desirable to 

investigati the accuracy of the projection formula (4) using real test 

data. 

The results subsequently presented in this section are based on the 

responses of S82 examinees to a 138-item test. The test items have 

difficulty indices ranging from .259 to .861 with a mean of .556 and a 

standard deviation of .142. Three levels of test length, namely n = 10, 

20 and 40, are considered and thirty independent projections are made-

for each n. The following steps are taken in each projection. 

(a) Four subtests, each with-n/2 itams are randomly selected from the 

138-item pool, and four sub cores"namely X1, X2, Y1 and Y2 are computed 

for each of the S82 subjects. 



:(b) The sums X = X1 + X2 and Y = Y1 + Y2 are computed and treated as 

scores obtained from two equivalent forms of an n-item test. The true 

kappamax is then computed usiríg the (X,Y) bivariate distribution and 

the average marginal distribution of X and Y. 

(c) Two "split-half" kappamax, orle based on (X1, X2) and the other on 

(Y1,, Y2) are computed .as in the previous step, and then projected via 

Formula (4) using h =•2. The average of the two projected kappamax is 

finally considered as the projected kappamax for the n-item test 

described in the previous step. 

Table 6 reports the summary data compiled from the 90 projections. 

In this table, the quantity L (Gulliksen,'1950, page 175) expresses
mvc 

the extent to which the scores X1, X2, Y1 and Y2 have the same mean,

the same variance, and the same covariance. When this similarity is 

fulfilled, Lac is unity. A small value for•this quantity, on the other 

hand, indicates that the four subtests represented by X1, X2, Y1 and Y2 

depart appreciably from equivalence. Projections basedon the adapted 

Spearman-Brown formula would therefore not be expected to provide good 

results when L is too far from unity.
mvc 

The data of Table 6 clearly show that Formula (4) leads to 

reasonably good projections for kappamax of tests with doubled lengths. 

Over the 90 cases under study, the absolute errors average out at .040 

and the relative errors do at 6.47%. As expected, very good projections 

are obtained (with absolute errors not more than .05) when the split-

half procedure provides reasonably equivalent subtests. As elaborated in 

Huynh (1976), a high degree of subtest equivalence may be secured by 

pairing the items by difficulty before randomly splitting each pair in 

the subtests. 

Table 6 



§OME CONCLUDING REMARKS 

Several aspects regirding the kappamax reliability index for binary 

classifications are'oonsidered in this study. The advantage of the use. 

óf kappamax instead of an ordinary kappa lies in the fact that kappasax is 

not a .fúnction of the cutoff score. Hence kappamax is unique for a test 

given to a group of examinees. In some sense, kappamax reflects the 

situation in which a test functionsbest in terms of consistence of 

decisions. It should be.mentioned that many aspects of statistical 

decision theory (such as the minimax principle> are actually' based on 

the best performance of a procedure over a wide rangeeof conditions. The 

asymptotic error prescribed for kappamax would be helpful in deciding

the number of examinees to be included in a kappamax reliability. 

study. The adapted' Spearman-Brown procedure  asreflected by Formula'. 

(4) would be useful'in approximating the kappamax directly from the 

test.'data without imposing a parametric form for the, test score, 

distribution, Ne would like to caution the reader that, the projection

might not be appropriate if it is based on a small 'number of subjects. 

As indicated by Huynh (1976), negative values for various kappa might be 

a result ' in this case and their interpretation is rather messy. 

Finally•there is no:reason that kappimax must be defined as the 

maximum kappa over the whole range of test scores..If there are good 

misons to restrict the range of Possiblecutoff scores, Pb • 

appropriate "kappamax" play thenbe defined., It is ,expected that most of 

the properties mentioned for kappamax as defined in this study would hold 

för other "kappamax" based on a limited. range of cutoff scores. 
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Table 1 

Variation of Kappa as Function of Cutoff 
Score c for n =,10 

a ß u ç=1 l 2 3 ,.4 5 6 7' 8 ~9, 10

11.43 6:80 6.27 :012 .045 .095 .153 .204 .236 .242 '.215 .154 '.071 

3.09 .98,'7.59 .151 .269 .358. .426 .476 .512 .533538 .518 :437 

1.22 .98 3.54 .423 .544 :602 .6334 .649 .654 .648 .627 .582 .476 

.30 .30 5.00 .749 .809 .832 .843 847 .847 .843 .832 .809 .749 

Table 2 

A Comparison BétweenExact Kappamax And Its 
Approximate Value Based on Normality 

a ß n a 21 Exact 
KM 

Appr. Error. Percent
KM Error 

11.43 6.80 10 .354 .242 .230 .012 4.962 

20 .'523 .361 .350 .011 3.65 

30 :622' .436 .427 .009 2.06 

40 .687 . 490 :482 .008 1.63 

3.49 1.08 10 .686 .515 .481 .034 6.60 

20 414 .630 ..605 .015 2.38 

30 

40 

.868 

.897 

.689 

.727 

.669 

.709 

.020 

.018 

2.90

2.48. 

.80  .50 10 .885 .70 .692 .052 6.99 

20 .939 .614 .776 .038 4.67 

30 .959 .847' .817 .030 3.54 

40 .968 .866 .839 .027 3.12. 



Table 3 

Variation of Kappamax as Function ofTest Length 
'and Test Score Variability 

Description a 0 Qe n- 5 10   20    40

Unimodal 3.49 1.08 .1$0 .395 .515 .630 .727 

5.00 3.00 .161 .273 .395 .523 .639 with modeno t es 
extreme 11.43 6.80 .110 :148 .242 .361 .490 
scores 10.00 10.00 .109 .142 .224.'-.341 .471 

Unimodal 1.00 1.00 .289 .567 .670 .758 .825 
with mode 1.22 .98 .278 .546 .654 .745 .815 at the 
extreme 3.09 .98 .190 .420 .538 .650 ' .742-
score 5.00 1.00 .141 .336 ,,460. .582 .688 

Bimodal .30 .30 .395 .791 .847 : .891 .922 . 
with modes .60 ' .50 .344 ' .688 .769 .833 .880
at the' 
extreme .80 .50 :287 .654 .744.  .814 .866' 
scores .80 .20 .200 .710 .785   .844 .889 



Table 4 

Vàriation trend of aKm with Respect to n 

a ce n 10. '20 30 40 

11:43 6.80 :18 .692 .531 .450 .399 

3.49 1.08 .11 .468 .328 .267 .226 

.80 ..50 .29 .269  1.176 -.139 .119 

Table 5

Projection Errors for Kappamax of Tests With 

Doubled Lengths Based on Beta-Binominal Data 

	Range of km No of ' Mean of Mean of 
Proj. Rel. Error Abs. Error 

.000 - .200 . 3 6.53% .006 

  .201 - .400 7 1.69. .007 

  .401 - .600 8 1.74 .011. 
.601 -.800   18 1.91 .015 

:801 - .999 9 1.34 :012 



Table 6 

Projection 'Errors for Kappamax of Tests With 

Doubled Lenghts Based On Real Data 

n Range of Lmvc .No of 
Proj. Rel. 

Mean 
Error 

Mean 
Abs. Error 

10 .59 or lower 4 22.65% .116 
.60 -•.69 3 18.19 .161 

.70 - .70   8 9:06 .048 

.80 - .89 11 . 2.23 .012 

.90 or higher 4 .5.46 .030 

Overall 8.88 .047 

20 .49 or lower 3 14.82 .080 

.50 - .59 ' 7 7.22 .045 

.60 - .69 7. 5.63 .035 

.70 - .79 11 4.13 .028 

.80 or higher 2 

Overall 

1.62 

6.10 

011 

:038 

40 ' . 39 or lower 3 12.89 .096 

.40 - .49 2 ' 4.44 .035 

.50 - .59, 4 4.57 .036 

.60 - .69 6 6.10 .044 

;70 or higher 15 2.04 .018 

Overall 4.43 .035 
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