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ESTIMATION OF THE K20 RELIKthLITY
COEFFICIENT WHEN DATA ARE .INCOMPLETE

=. . Introduction
IP

The calcblation of a reliability of a test such as the Kuder-Richardson

coeffiCient twenty (KR20) or.its more genral counterpart alpha [Cronbath,

19513 frequently assumes that data are complete. In other words each exam-

inee is expected to resporidto every item. Yet data completion is rarely

realized in many situations. For know.n or untold reasoni,i;any students

choose to skip a difficult item rather than to contemplate a wild or edu

cated guess when penalties are imposed for theincorrect responses. If the

responses and

When testing
'A

,[Lard, 1955;

proportion of missing responses is fairly sm;f1,.one may estifilate these

then apply an appropriate formula to the complete set of data.

is construed as the realization of a two -way factorial design'

Kristof, 1963, 1970; Feldt, 1965], various technique'des-

cribect in such texts as Cochran and Cox [1966] or Winer [1971] may be called

,upon: The extent to which theestimated responses would. bias the computed

reliability4 however, does not seem to have been fully explored. 'Hence it

.

- appears desirable to base reliability computations directly on the available

-data .)and.to disregard totally the missAng-fesponses.
r

TkeOresent study aims at the exploration of several estimation proce-.,

duret..for test reliability when data are incomplete. Attention will be fo-
.

, A

Cuiie&on the kR20 index (e.g. with test scored as 0 or 11. Conceiv-
. .

ably the 'reiUlts ould befexpected to hold for thiaore oeneral index alpha

since the 0 - 1`ing presents the most serious violation on the assumptions

of the inpiel used in the study. It will be assumed on the part of the reader

-

. familiarity with the content of Chapter 7of Lord and Novick (1968),
.7"-.

. .3 t.
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tile linear model 1 Searl, 1971] and the work of Fe ldt [1965] ern modeling

testing asa random effect,- two -way factorial design.

2. Description of three Estimation

Procedures for the KR20 Coefficient

It will now be assumed that the response of subject i (i = a) on\item j (j b) may ,be represented as yii = ai $j where' ,
ipa constaiSt-,:zi L(0,aa2), faj z L(0,a02) and ei L(0,ae-2),..and

'all random Variables are independent. The notation I.(`O, a2) represents an,., .
distribution with 4-4p 0 and wariance a2. It is not required that this

distribution is normal . Given the various parameters as defined, the population

reliability index is ;590 = bac! I (b%2 ae2 ).

The estimation'vf p20 on the basis of sample -test data may be §-emewhat

facilitated by cons;idering the estimation of andand ae2 separately. Thus. a

reasonable estimate r
20

of p
20-

may be.artlived at by replacing a12 and ae2 Te-
"0

-spectively by two suitably chosen unbiased estimates s2 and" s
e
2. This in no

. a

way guarantees that c-20.wOuld average out at ¢20', however uhbiasedne'ss should be

expected to hold atleast asymptotically under Mild:regularity conditions:

Under normatity, "it is known [Kristof, 1970] thit an unbiased estimate for the
,-*

population reliability may be given by & linear 'function of .the sample.

reliability. Granting that the pattern of missing data isfrfixed from sample. to

2sample, there are at least three ways to estimate both aa and ae2.` All rnethtids

yield unbiased statistics for aa2 end ae2, and reduce to.the traditional

variance component estimation when data-are complete. .f
The first two procedures, nam ely the analysis of variance (AIWA) and

. .

fitting constants'IFITCO) techniques are due to .Henderson [19531. They are
er s4

also referred to as 'fiendersctnis Method 1.-andMendersOn's Methpd 3. Details
, ,-,,... ..

about these methods along with their rationale may be fotOd in. Sear)-E1971,.:,. $, '1 8

Ch7pter10]. Basically, ANOVA attempts tit extend the fermu'iation of thetsum
s, ., ,- , ,

4



.1
y of sqUares in a granced*design to the case of unbalanced data. Thus three

sources of variation cre identiftied, namely the total variation SStot, the

row (sbjmft) variation SSA and the (item) column variation.SSB [See Table)1
.

for the computational procedures.] The unbiased es mates sae and s"20ftill
e

./ ,

be fou6d among the line r combinations of these v riations. genderton's

11.4thod 3(FITC0), on he other hand, focuses o the .equation yij = u ai Bi

4..erj as a lin earhodel, considering (in t s study) the roW.variation SS
A

as' the.sum of squai explained by the is after being adjusted for the effects

Otheis and u [S.ee Table 2]. Unbiased estimates for a
a
2 and a

e
2 may be

found as previously described.

The third procedure, due to Koch [1958], called the symmetric sums

(SYSUM) method. It is based on the symmetric sums of squared differences of

the form Yi,j1)2. Three symmetric sums [refered to as hA, hB.and.hAo

in Table 1] are there linearly combined to fcrrm the unbiased estimates sae and

se 2.

fr

Tables 1 and 2

It may be noted that both proCedures A1OVA and SYSUM are computationally

simple and can be implemented easily by hand. The FrTCO method is more complex,

ii./Olving,the inversion of an usually large matrix (of order of b - 1). Of

course this should not present any problem where cordputer facilities.are avail-
..

able.
7

To provide the readers with some 'feeling about the three described methqds,.

'a numerical example is presented in Table 3.

Table 3

3. Logic of the Simulations

When normality. is assumed for the distributions described early in Section 2,
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sa.
O

and when the pattern of misFing'.data is fixed in advance; the sampling variances

of S
0
2' and- s

e
2 may be computed [Searl, 1971]. Bush and Anderson [1963] studied

several cases of the twa -way design' with planned dnbalancedness. The general

trend 'which may be deduced from their results is that when a
e
2 is much larger

than *
a
2

'
the ANOVA estimates have smaller variance than the FITCO estimates,

but otherwise the f/TCO estimates are less variable. Thus in estimating test

reliability p20

thtt the ANOVA

FITCO does when

technigA would

020 is high.

-r-

is"function of the ability level of the examinees. when guessing is nbt a
.0-

major factor:it would be reasonable to assume for example that examinees With

with fixed (hence, knawn)pattern of missingrdata, it 'eems

rocedure would provide a more stable,estimate r20 than the

020 is fairly 19w. 'Conversely,.estiTates based on the FITCO

show less fluctuation than those deduced from the ANOVA when

In mental testing, it seems likely that the pattern of missing responses

lower ability will leave more items untouched than examinees with Ther abil-

.ity. For these situatiOns the.variahce calculations displayed in Searl [1971,

Chapter 11],and the findings of Bush and Anderson as stated would not automat-

ically hold:
6.

It maybe noted that the Model u +sai 83 eij .implies that

each respowsgy,--- takesatleast-flir separate values. The lower bound is
?

5 L.5 and el.i have positive probabilities

at only two.identical!points. .The estimation proedureS previously described for

pa) are therefore applicable as ludg as there are at least four response cate-

gories for each test item. Iiiis.reqUirment is sai'isfled for data collected

from scales ofthey.ikert type. The 5O - 1 scoring procedure, on the other hand,

0
clearly Violates the functional form

yi3
= u + ai SoMe-data reportpd

in Feldt [19651, however, inclicate.that this linear model may still serve as

ari=aproximation for reliability,studies:whelf the set of b -'1 responses.is.
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complete.

ir

Even under normality any theoretical computation of the s.amoUng vari-

anceance of each of the three estimates r
20 would in4olve :awful efforts whed the

pattern of missing data fs* let to vary

such a computation may not be possible

on an exhaustive enumeration Giver

of the author, it seems appropriate to

compare the-performance of the AttIVA4

section will present the design of the

from sample to sample. With 0 - 1 data
,

unles of course one',IS- prepared to rely

the computer time coqstraint .on, the part

resort to Monte Carlo simulationsto

FITCO and SYSUM procedures. The next.

first simulation based on artificial data.

4. Design of Simulation Study 1

For reason of mathematicar tractability, the beta-binomial model'was
f

chosen' to generate the test responses in the first simulation. This model assumes

that (i) each examinee with true ability 8 responds-independently tp the items

with'e being the probability of obtaining a correct answer; and

(ii) the true ability'e for the population of examinees fellows a beta

density of the form

p(e) - I (1 - 8)"(- 1

B(u1,v)

where u > o and v >o.

Witiv,the beta-binomial framework so stated, the population reliability for a

1
test consisting of b items is known to be pio = b/(b u + V).

It seems reasonable to postulate that the proportion of missing response

.

is a noningrepsing function of the ability of the examinee. (One would assume .^ I

of course that guessing is not a serious factor.) A missing resporj5eJunctton

,..4
m(e) will'ha.,.;e to be specified. Though the set of noriincreasing functions

-°
infinite.a linear form was chosen for.m(e) for reason of simplicity. In_

other words, the proportion of missin ^espouses is- .

t. m(e) = d

) " I



where c and _d are two sultahly chosen constants."' Over-the total population
%.;

of examinees, the expected value for m(e) may-belloted to be

E m(e) = cu/ (u + v) + d.
'

. ,

If p denotes the'oVerall proportiof missing responses, then

cu/ (u + v) +d =..p.
11,. .

To get a second equation so that'd and d may be solved, it was Astimed. that
. .

.

examinees with highest ability (e = 1) would not miss any item. This implied

that c + d = 0, and hence

m(e) = p (u + v) (1 - e)/v.

b:being the number of items, an examinee with true ability e waild be
. 4

-expected toskip.bm(e} ReMs. Of course this number had to be rounded to

the nearest integer in the study. It may be noted that though only one

iTiouiand samples Were generated in this study,the overall observed proportion

of missing responses is almost identical to the posted value p.

As the first step in t'he simulation process; the percentile points of the .

4

troe'abiljty distribution were computed via the IBM subroutine BDTR [19711.

The IBM subrofting RANDU [1971] was then used to (i) generite a random sample

of a true ability values, (ii) generate at each true ability 8 the b 0 - 1

responses, and (iii) generate at each true ability e the pattern of the bm(e)

missing responses. These three steps generated an incomplete matrix of

responses. The'three estimation procedures ANOVA, Hite and SYSUM were then.

applied to obtain the sample
.

r
20

's. The whole process was repeated one thou-
,

sand times to estimate the means *20's and the corresponding mean square

errors (MSE) which were Used to Oapare thQ,perfOrmance of the estimation

(-
procedures under a variety of situations.

5. Results of 'Simulation Study 1

Table .4 reports the means ,.and mean square errors of the three 'sample

estimates 4.20's for eighteen situations with a = 40iand b = 20. The popu-'
A 4`

13
c ,
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lation reiability'was,chosen to be.p20 = .5 tlow), ,7 (moderate) and .9

(high). For each reliability level,,three true ability distributions were

.seleCted to represent several levels of skewness y. Finally,except for

one case,the proportion of, missing data was chosen as 20% (moderate) and

40% (high).

The following trends may be inferred'from the ddlea on Table 4:"

(a) Underall situations under consideration, both the ANOVA and FITCO

provide, estimates which behave almost identically in terms of bias and

,
than square error.

.

*(b) For symmetric .(true ability or test score) disilikutions, the three

ththods are about equally efficient. Though the SySUM estimate tends to

show more bias or more variability than the other No-estimates; the

discrepancies are not substantial.

(c) For skewed distributions, the SYSUM estimate tends to display more pro-

nounced bias or variability than the other two estimates.

(d) Other,things being equa), the means of both the ANOVA and FITCO esti.;

mates relate positively to the skewness level of the true ability or

test scare distributions. The reverse trend holds for.the SYSUM

estimate.

(e) As expeCted, the three estimates perform better when the proportion-of

missing responses is smaller.

Table 4

These findings indicate clearly that for all practical purposes, the

ANOVA estimateis the most suitable in dealing with incomplete data,. at

least with those conforming tothe beta-binomial model-. This estimate is

fairly simpletto compute and tends to show less bias and less variability

9
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. .

than the FITCO (a computational' nightmare) and SYSUM estimate& in most

sitiations.

6. Siqulation 'Study 2
o

While the beta-binomial model was chosen mainly fDr its mathematical

,tractability, most real lie test data rarely conform to any simple distri-

bution. It would seem desirable to replicate some of the conclusions of

Section.5 using some data of this type. 4 -

A second simulation was conducted via random sampling (without re-
.

placement) from three data sets. ti) Data I consist of the responses of

582 examinees to a 138 item test. The test score distribution bas mean

76.75, standard deviation 27.09, skewness .259 and reliability .964. Using

the Spearman -Brown formula for projection, it was found that a test consisting

of k = 20 items of Data I would have a KR20.index of .796. (ii) Data 2.-

is a subset of Data 1, consisting of the responses of 428 examinees. The

test score dtiribution has pan 63.67, standard deviation 17.77, skewnest

.096 and telialtility .909., Tie projected reliability of a 20-item test is

P20 .590. (iii) Finally Data 3 is a subset of Data 2 with,314 examinees.

The test score distribution has' ean,55.23, standard deviation 12.17, ikew-
.

ness -.271 and reliability .805. The projected reliability for a 20-item

test is
p20 4375.

For the present simulati-en, the missing response function was chosen to
It,

be asdecreasinq:ljnear function of the test score obtained from the I38-item

test for each examinee: As in Section 4, it was assumed that examinees with

a score of 138 would not miss any item.'

The results of the second simulation s udy are-reported in Table 5. They

indicate clearly that the ANOVA and FITCO estimatesbefi6e.aTindst identical in

terms of bias and'mean square error.in all circumstances under invest,igation.

The SYSUM estimate tends to show more bias and/or more variability than the

4
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other two estimates. These observations reinforce the.majorConctGonof

t the -first simulation study thattha A10VA procedure seems to 1:4 most s,6ita-

' 41e in dealing with incomplete data.
N

Table 5'

r

r.

1

7. Confidence Interval for the KR20
.1-Reliability Based on Incomplete Data

Under normality, confidence intervals for the KR20 reliability may be -

AO.

7e-tablished when data are complete [Feldt, 1965]. An extension will be made

`-to the case of incomplete data.

'Referring to the notations of Table 1 and 2 it may be noted that under

normality, the Various sums of squares are distributed as chit-squares up to a

multiplicative constant.. More Specifically, it is well known that (i) the

adjusted sup d'squares due to A, SSA = R(u, a, B) - TB is distributed as
).

aa2 .1. (a. 1)ae2] x2(a _ 1); (ii) the error sum Of squares SSe,=

To a, B) is distributed as 11_0e2x2(f); and (iii) the two chi-squares

Are independent. It follows that the ratio

is distributed as

s (
F f SS /SS'

E

2a

[h
a

2

4

a - 1] F(a 1,f)
a
e

where F represents .an F variable with listed degrees of freedom. Algerbraic

manipulations yield
s 2-

x = h --g-- + a - 1
s
e
?

r2b

a

=h + a - 1

b(1 - .r20)

ace
where sae, see and hence rirbmputed via the _FITCO procedure. Let 100(1 - a)%

1:1



be given confidence level and let

1.1 Fa (a 1,f). = 'F
1

and

Then a 100

two limits

and

-10-

AA.

.- .
. L.-,

a
= F

a
(a .- 1 f). '

1
, -

2-

1 .... a)%-.confidence interval for .the ra tio a
a

2/a
e
2 is ,ivkn by.the.

I

N

p.
a + 1)/h-

in 2.2 (),/t.
1

a.+ 1)/h- :

Sint ba_
"
2/(baa2 +- a e2) is monbtonically increasing with a a'2/ae2; the

corresponding 100(1 -. a)% confidence !interval of p2(..) is given by (p1,132) where

and

= bz gbz
3_

4- 1)p1
1

0 btz +1) .
2 2 2

Nurerical example. Granting that the normal theory can be applied to the

da;!:.a Of Table 3, an 80% confidence interval was found to be (.029 - .529), For

cia2/ae2. The corresponding 80% confidence interval for 620 was dedu4ed"a-P
3 "

(.146 -

To conclude this section, ,the following remarks may be made.

(a) The..dat'aNcoimpiled by*Feildt [1965] -and thoSe of Table 4 with y =-P
0 .

indicate that the normal mocieUords up fairly well'for symmetric

distributions based on 0 - 1 'responses. ,One should tidpe at least

that'the procedures previously. descrited would prbvide an ppproxi-
,

mate confidenbe inteYVal for pa) when4th'e test score distribution

is> of batly skewed. The Jacknife precedure'as implemented by

Pandley- and,aubert [19/5] may be.adapted to the case' of incomplete

data if nbrmality, agp to be a botherint-assimption.`



(b) The data simulated id this study clearly slim- that the estimates

ibpased on ANOVA and FITCQ are almost identical id terms of mean .and

mean squarelerror. This indicates that in case of -need, dne may

,go ahead and use_the_AUOVA,rio to establish-a confidence inter 1 -

for p20. 'This would greatly simplify the. computations.
4 .

. 8. Conclusion

Attentioh was focused in the study on the estimation of th(KR2Oarelia-
.

.

bility coefficient when dat a are incomplete. In terms of point estimation, i,t

was found that the analysis of variance procedure_would be most suiiAleamong
e 1.0

.

. ,

the three techniques under study. Other techniques are of course available.

But by and large they do not seem to be easily implemened for test data.. One

of them is the minimum normednuadratic unbiased estimation (MINQUE);Prnposed

by Rao [1973;:also other references listed in this text]. -Under normality,

4.
MINQUE Orovidfs locally minimum variance unbiased quadratic estimates for

both a
a

2 and ae. Unfortunately MINQUE at the present time requires inversion

of large matrices 4nd therefore may not be computationally justified in most

testing situations.

4 A

Finally confidence intervals based' on normality are providqd. The mass

OP
'cif data on the effect of nonnormality on the F test and the 46e,s of the ."

Central Limit TheoreM shouTd,convince the readers that the procedure so dess-
.

cribed would provide at )east an approximation for a number of testing situ-
,

ations.
11/4 \.

a

13

_
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Table 1

Computing Formulae foi- the ANOVA,
and SYSUM Variance Estimates*

Model: ytj = ai 51+ g3

i = j-=1,...,b; with n..ij=
non -empty cells; N = E E n..-.

Analysi,s, of variance estimators

Calculate

and

2
T = E E'

1J
y..

2
T = E y. /n.
A . 1. i.

2
k-1
1 i

= n -/g
.

al = (N - k')/(N -b) and.,
1

Then

2
se

2
(To - TA) + (To -

N - k'
1

and

2
S

a
=

o
, T

B
- (N

SyMetri c ums .estimatorS

,Calolate

1.

0 for cells

2
Tu = /N

2
T
B

= y In

: 2 c
= E n .-/N

a2= (;
2

i k4)/(N- a).

TB) - (T0 -\\d

+ 1

ij = 1 for

2 . .

se li(N - .

k
1 1
= Nk' aid k

2
=

2
h
A

= E (n E i.4jy

2hg = E
1(n.

E y. ij
3

sit
2

.Y2J )/kk2 )

- yit)/(k1 - 11)



sr

and

Then .

.

Table I
(contd.)

2
E E (V - n. - n h..)y.

J
.j ij ij

2

y
2

T0) gn - k
/

k
2
+ N)") 0 e

, 2 2
S h - h

B
and se = hA

h8
h
ABa A3

* Adapted from Searlf[1971, Chapter 11]. It should be noted that the two
expressions for h and h on page 488,40 Searltmust be interchanged. The
dot (,) notation ?efers to summation,. ,-

4

1.

Op,
Imes

4

15
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Table 2-d

Computing Formulae far the FJC6
Variance Estimates*

Computation for R(u, a, a) ,

Comwute for j and j1 = 1,4.

.

, -

..ii.
.

J
C = n . '-- n./.
J -J L) 1J.1: , ,...

a

c..,= -
iE 1

n..n..,/b-
. , j I ji33 1

=

a

r- Y z

whe1e yi, is the ran of the filh *row.

Let C = (cji,) and r = {ri}

Then R ( u, a, s) r'C 1r.

- Fitting -.constants method estimators

Denote
and

Then

and

= A .

f = ti - a -

2
se = [To.- R( 3j, a, 8)]/f

2
Sa ,- [11{11, a - (a-1

--a

* Adapted from- Saari [T971, Chipte,e 11].

- 4 2
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/

::Table. 3

A r4umerical Example of

the ANOVA, Fj1CO, 'and, SYSUM Estimates-
, o

Page 15

Examinee 2
it

4, .5 e' .6 , 7 9 10 11 12

A
Item

2

3

4

5

6

1 1 X 0 1 0 0 ,1 X 1 ,

a 0 -a x x,, a :x x a 0 a t
.4

1, a x 0 a ,,a 1.,0 0
1.;,

1' X

1 ' 1 ' 1 1 1 r x 1-. 1 le 1 o\olOo:000lxx 1 ,ch.. /
1 ' 1 AR 1 , x., 1- 0 1; 0 0 1 1 ,.. vr'

Coding: 1 =,orrect response Retiability ANOVA = ,.615

S.

0 = incorr t response

X = missing response

./

17

ejtimate Fin() = .547

SYSUM = .663.



Table 4

Pag4.16
, .

,

4
Means (and Mean .Square Errors) of the'APOVA, FITCO and SYSUM Reliability

Estipate Basedon Data Simulated from the Beta-Binomial

Model

Population parameters P

Means (MSE) of r20 based on

AUOVA FITCO SYSUM'

u = 6.000
v = 14.000

u = 10.000
v = 10.000

y = .385.

p A .500
20

%

y = :000

p = .500
20

, &
'20%

40%

26;

40%

.833(.17)

.549(.207)
b

- .504(.148)

.491(.196)

.534(.191)

.550(.208)

.504(.149)

.413(.196)

.508(.210)

.489(.264)

.515(.153)

.520(.210)

,Ii(,= 14.000 y = -.385 20% .485(.150) :485(.151) .564(.130)
v = 6.000- p20= .500 40% .472(.180) .471(.182) .643(.128).,

U = 2.571

v = 6.000
y =- .519

p24= .700

.20% -
40%

.710(.097),

.708(.116)
.710(.097
.708(.118)'

.68)1.112)

.637(.180)

u = 4.286 y = .000 20% .692(.082) , .692(.082) .698(.084)
v = 4.286 p = .700 40% .685(.107) .685(.108)

.
20

.

-1., = 6.000 y = -.519 20% .671(.090) .670(.091) .736(.071
v = 2.571 p

fp
.700 4`7% .655(.111) .653(.111) .790(.062

u77 :667 y = .141 20% .898(.030) .898(.030) .888(.035)
v = 1.556 0 = -.900 40% .898(.834) .899(,034) .875(.056)

20

u =. 1.111 / y = c000 20% .895(.027) .895(.027) .897(.085)
v = *1,111 p20= .900 40% .883(.032) .883(.032-) .900(.041)'

U = 1.556 y = -.141 20% .882(.032) .881(.032) .910(.024)
v = .667 . p20 = .900 3O%* c, .862(.036) .860(.036) .913(.024)

* The simulation failed at p = 40% due to some negative values for ir(e).

1-8
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Table 5 .

Wean (and .Mean Square - errors) of the ANOVA,.FIVO and SY56M.Reliability
Estimates'Based on Random Samples. from Three Sets' of Real Data

Populat.ion.Parageters

No. 0
20

Means(MSE) of r
20

based on

ANOVA -FITCO SYSUM

1. .259- .796 .20% .795(.056() .7'95(.057) .815(.053)

40 %! :795(.062) .793(.061) .843(.048)

2. .096 .590 20% .562(.123) f .563(.123) .553(.127)
7 40% . .544(.159) .547(.1540 .528(.171)

-.-

3. -.271 .375 20% .331(.176) .329(373) *.318(.176)
.40% .321(.204) .322(.202) ,295(.205)

it
19
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