

. . X . | ' .
T ' DOCUNEWY, RESUNE g

ED 152 327 - , IR 00S 87k

AUTHOR _ Bierman, A, ¥.; Krishnasvasy, R.
TITLE-.. - Constructing Programs from Examgle Coaputations.
INSTITUTION Ohio State Univ., Columbus. Computer and Information

, Science Research Center. -
SPO¥S AGERCY - Bational Science Poundation, Washington,. D.C.

EEPORT KO 0S0-CISBC-TR-74-5 *
PUB DATE . Rug 74 ‘

- GRAHT GJ-34739X : ‘ , ;

NOTE - L 46p. ‘o »

EDRS PRICE BP-$0.83 HC-$2.06 Plus Postage.

DESCRIPTORS *Computer Programs; sDisplay Systeas; ,
R Electromechanical aids; *Input Output Devices; *Xan
Bachine Systefis; On Line Systemz} *Programing;
Prograaing Lan%pages, -
IDE!TIFIBRS‘ *Autoprcgramne

1
3

ABSTRACT S ¢ ‘ »

This %aper describes the construction and
implementation O an autoprogramsing system. An autoprogrammer is an
interactive computer programming syst&a vhich autcmatically
constructs computgr pregrams from example computations executed by
the user. 'The example calculations are done in a scratch pad fashion
at a computer display, and the system stores a detaiTed history of
all of the steps executed in the process. The systes then .
automatically synthesizes the shortest possitle progras which is
capable of executing the observed exasples. Various sections of the
report describe (1) the system, (2) its usere, (3) the computational
environsent, (4) basic formalisas, (5) the progras.synthesis systen,
- (6) convenienct features, shortest possible and (7) programaing
details. (Author/DAG) : :

%>

>

““l‘tt‘#"“t“t&‘t““t‘t“““““t#“‘t‘##t"ﬁ*“ttt##t*ttt‘#?““

s -Reproductions supplied by EDRS are the best that can‘be made *

* from the original Jocument. ‘ *

*t‘}tttt‘ttttttt‘tt‘ttt‘#ttttttt‘}ttttttt g?tttttttt##tt‘ttttt‘ttt“t‘
' S -

T . -2

-

. , 2 .

- * i 14

DOCUNENY, RRSURE o,

¢

ED 152 327 ’ - , IR 005 874

LAUTHOR Bierman, A. ¥.; Krishnasvasy, R.
TITLE-.. = - Constructing Programs from Example Computations.
INSTITUTIOf Ohio State Oniv., Colupbus. Computer and Information

. Science Research Center. -
SPOES AGENCY - National Science Poundation, Washington,. D.C.

EEPORT HO 0S0-CISBRC-TR=74~5

PUB DATE . Aug 74 ‘

GRAHT GJ-34739% - ' , ¢
HOTE - 4 46p. ‘o »

EDRS PRICE BP-$0.83 HC-$2.06 Plus Postage.

DESCRIPTORS *Computer Programs; *Display Systeas; ,
. Electromechanical Aids; *Input Output Devices; *Xan
Bachine Systefis; On Line Systems} *Programing; °
Prograaing Lan%pages. -
IDE!TIFIBRS“ *Autoprcgramme

*
1

e ? ‘ ,

This Haper describes the construction and ~»
impleneptation ©f an autoprogramaing system, in autoprogrammer is an
interactive conguter programeing system vhich autcmatically
constructs comp tgr praegrams from example computations executed by
the user.'The example calculations are done in a scratch pad fashion
at a computer display, and the system stores a detaiTed history of
all of the steps executed in the process. The systts then ;
automatically synthesizes the shortest possiltle program which is
capable of executing the observed .examples. Various sections of the
report describe (1) the system, (2) its users, (3) the computational
environsent, (4) basic formalisas, (5) the progras.synthesis systea,

ABSTRACT

- (6) conveniencek features, shortest possible and (7) prograsaing

details. (Author/DAG)

%>

-~

t“‘*"t‘#"‘?“‘tt‘t“““t“““““##““‘t‘t"ﬁ““t““*‘tt#““t‘

* -BReproductions supplied by EDRS are the best that can‘be pade’
* from the original gJgocument.

]
]

tt‘}“““‘t“t’#‘““‘t““t““"““‘# g’#“‘t#“‘#““kttt““““

) _
Hd -

B i 4 - . - - - .
Ny . =
* * - -~
. " -] . 1)
* - he A; *
. ‘ .
- . N » - : -
1 -, . R .
- - - A -
- -~ € . .
'. - . - .7 -
. . P
. i . . - -
- . [- 4 b
. . - .
.o . ABSTRACT A
R r ¥ e—— » .
LR ‘ £ . *)

i o . b
paper describes the comstruction and implementation of an auto-'

-
.

9 . iarograﬁzaiﬁ.g system. An aﬁtmogfam-er is an _interaétive con\pa:er‘sysne:::

. : . N i, .) ' ‘) -
. wvhich accepts as input example calculations, and which yields computer *

- - . —

~ . L Y » —
prograns for doimg-these calculations. ¥
» - . ‘
- . . - h L3
, . . i . _ '. R . . K
cr - - - . ‘" . b * }
. . i} , .
o»
.o T :
L . . .
¢ o -7 - ' .
= < P) . , i - . .
. T . 3 - -
F 4 .) . . »
L , v .t
4 . P Iy - , B *
. = : ’ —_— - .

* ! L] ‘ >
. . . o . ‘ (\
¢ s . Y ! v
. t . /e
14 ' .{/ . v,
- .
. -
) - : ' ~
~ ’ .

. - -
- ‘a . * ‘-
- #
.—/ L P ' i - &~
. - -, z e N
. « f - - -
. P
. = # -
I -
. = . ¥
- “~ +
. s o
. R & LY . . . ‘/
. d i , o ¢ F
- . ! v
. . -
x . L ¢y
. . - -
yd . . —— -
. B
[B
- -
. .
. .
.
. \d .
-
- * v
. -
. ’ . . -~
. . .
-~
- s -
. -
] - r
-
3 A .
© T *

LRIS o

. . I‘nis‘f;ager degeribes an aut?prog;amj,ng systen which constrycys

[
. .
”

€xecutable cpmputer programs from example computations. Messr#. .

4 2 - "

. /
[C' Richard Bau::‘Qd Frederick Petry have beem in charge of developing
% “ ~ * ' .

- L3
. s M
. our synthesis algorithms,, We are greatly indebted to'Mr. erge
3 . . .
i . ! .] t4 (’ * . .
_ -Fournier of our PDP-10 staff for help with our systems g ogracring
A . » 3 .

t L4

3 .
. . . Ao - P -
problems. This work was done at the Computer and Infohmation Science
. - . *

Research Center and was supported. by the Xational
K PT b

cience Foundation N
. .

A “° sfrant No. GJ-34339% and by the Department of Compyter end Information " .
. R AN
Science, Tae Ohio State Waiversity. T / 2 S :

X R o ! -
The Corputer and 1n:omation§>ience Research Certter of The !

. , ' ’

- yonz ¢ : 4 3 s
- Onic State Universiry-is an interdisciplinary reseagreh organizatjiod
- . . L =

. , , . -
- .

‘ which consists of tne staff, graduate students, and faculty of ©any)
. » _ . +

. C s ! . ' . -) ‘ !
wniversity departments and lanogato‘ries., This report presents ., iy

) * % . - ., - .)
resear‘c;‘z accomplisned) in coopergtion with the Department of Coaputer -, ~

o’
.
o

. . { . . 4 “E
7 - .

£
. and Information Science. The research was adzinistered and ponitored ’
, * — . L3 - . § tl - - J - * - “ .. "
5y. the Ohio State University Research Foundation, i .- o
. . « Ve * ' ’ »
-) - - 7 .
- ' J . o *
. . s - <
. -~ " . - ’ ¢ - * .
. o . i P . 3 . 3
~ ’ hd v
. ..
- . L S .
- . ') » - , "! ~ :
) . ¢) o~ ‘et =
L4 ' . * ’ ’* . !
- - & = * v
4 - - : . - -
14 : » ~ 3
¢ - 4. - o, *
- . * . ‘ *

CERIC . . -

e o . - .
. - d
. " hd
. , -
. . ‘ 1 ,
- ’4‘ .
.. . . . s -
~ . pos - - .
3 (A - . .
- - . -
e e 0 € - .
. - - 7 -
LI [} ’.
.. - . . .
. = f 4 b1
.o . ABSTRACT : et
» ¢ k4 f ———— F Y ®
. * t .
L4 b

.. A .)
paper describes the construction and implementation of an auto-',

g . prograrcming systen. An autoyrogfamgr is an .interabtive com?a:er systen

- ’

. .) . I, . ‘ : . : -
. vhich accepts as input example calculations, and which yields computer °

prograns for doifg-these calculations.

.. - . - «
A L] . . - R . M
- P . A - - .
. i %

L4 L4 .
. .
.
.
.
x - - .
’ - -
® .
. . . - M *
* " - -
- ’ - . . . 4
B . < .
. . -
»] M - " N
. s
hd - > - * 4
. .
. . * * _/
. .
- * .
¥- . - ’ - .
. . - . - _ -
. _
- .
. -~ —
- ~ . . - - .
L % - » . ‘ - 3
. ™ . - . :
’ . .
.
- - ’
- . -
. - ‘ N ’
* r » ‘ >
. - - e —_ A N .
3 . -
4 A] B, M
R i . / & {/
» . .
. -
x
. L ‘ f
. - 3 ~
-
' .
rd " . - Ed
- b ~ *
. . . [.
e 7/] }] Y .
’ i . - - . .
DL v h ‘ * 4
N » LI . o .
N . - - / . = _ - - - on
- *» . .
- - * .
-—/‘ cm s - & . i - <
-
. . . . _ ot I3
- ’ * -) "
* - * -
& *
- - .
. o -
- . .
- * M * : “ -/
> . R . F’ \ ¢
, .
. . ‘ et b
/ : : -t -) °
. , - - -
. rg .
— »0'—
- ° hd
. .
.
. . "
”
- . v
.
- # . . -
. .
- LR 2 -
E 4
. -
. -
P T
Q N -
ERIC ' ‘ |,)
— F .
= . f -
. .

Aruitoxt provided by Eic:
-

- - . = .

. . .
‘ - o [of ’ -

s 5 . '
3 . . -
J -
. ! . L4 R -
$ - . -]
- i < P .
. TABLE OF CONTEKTS
. s . .’
s . . .
L i - - f - .
P,reface e 4 e s e x e s e e s " srer s e v e e e " * e 8 & s s e & s -ii .
Abstract. . , . N v s e e e e e e e S RV & & SR
. 3 : z - . i

1. Introduction. . « + + o 4 e s\ . B 5 1

.- 2. Doing the BXamples. . . « « v v vfe s Suee s n e . . S2-1

. '54'5.’ Basfic Deffnifioms . « « 1 v v v v e 4 b e h e e e e e e e .. L
‘4, Yhe Progran Syntﬁeais Algordiths o v v v v v v w e w L e =1
5, Systez Debign and Héjor Features. v v v o v o v . W51

) 6..An1nplé:éntedAucoprogrmer................'....6—1

7. DASCUSSION. v .+ v b b e e e e e e e e e N]

8. Bibliography. . % . . ¢ . ¢ i i i e e e e e e s e e e e, W8

. P . .
¢ L4
|\- . -
- . .
- /
»
* - - A - .
.
. . -
.
4
. - -
. ~a
- -
#
¥
. .
-
7 -
T »
3
*)
- - K
[
i -
~
A -
4
v
. h 2 x
T -]
- i v
® t
N x
. L4
- . . .
~ -
.
t .
’ -
.
L]
-
- - :- - [
- - - .
S * . ~ ~
e
% i
-
-5
.
-
.
[t

ERIC ~ :

P v | : . 3 iv

1. - 'IKTRODUCTION
o . / -
An autoprogracmer ig an interactive %onputer progra:ziag systen which
. J
autoaatically conatructs computer programs from example conputations executed

by the user. The exarple calculatioas are done 1in a sgratch pad fashion
at a computer display using a light Pen or other graphic inmput device, and
the systam stores a detailed history of all of the steps executed in tberprocess.
Then the gystea autonatically synthesizes the shortest possible prograe uhich
is capaBle of executing the observed exezples.' -

K‘ The autoprogra::dng concept as a program ctonstruction tecboique attexpts

-_to'divide the responsibilities of man’and nachine as optisally as possible‘
giving the man the creative tasks of c‘noos‘ing’the data’structures and
furﬁishing the algorithm while the eéchin!'produces the actual code of the
program. The user works in' the familiar domain of concrete exarmples asehe
pushes the information around in the datazstructures by hand. He does not.
need to zentally vieualize the effects of his instructiops since they take ’
place on the screen before bis eyes. The csde created by the machine is
guaranteed to preciaely mimic the actions of .the uger in his examples.
Language syntax in the traditional sensge is’ totally absent fro= the user's .
point of view except for the cor;;;t ordering of the graphic inputs.

&
~

.. This vork is aiged-at the developzent of a sizple, r?liable, effes;tive,
and convenient program syn;hesizer. Peatures will be described here vhich
_help~tbe qser corzgctly cozplete his examples, which enable hinm to be .
.somevhat carefree about the style of his inputs, and which enable him to
find and correct prograé errors by dealing with the effects of the program
rather than the prograr.e itself, It is agsumed that, the user will change,

¥iis mind often during ‘the synthesis process, that he will want 'to add and p

~de1ete9data structqres at unpredictablé tizes, that he will make mistakes

£l .o . \\ # N . "
\ -

- . =

[]
- I x

in his éianplgﬁathat must be corrected, that he will want-z\\tall Bub}outines’z

that havé not yet been created and that he may provide iuformation in 2
» l -

fragmentary wanner. The system described here allans fgr all of these.
—— . . s‘
possibilities without losipg its basic g:nplicity-of design.

The next gection describes the‘qozputatioial environment provided by

*

an autoprograrcer within which‘the user can execute his exampleg. Section

3 will introduce the basic formalisms to be used in this paper. In Section -
}

4, w will dessfibe the progranm syntheais system and show that it is both.

' -

sousd and ce:plete in the follcwiug senses: we can guaran:ee that a synthe-

sized program will correctly execute the given examples’ (soundness) and that

r
every possible progran (or its’ equivalenc) can be ed by buz,systez

&
Ly

-

1 2

.) . >
1 & / ‘ " « ‘! ..a-l—/‘
, ¢ ’
2 'i -
. " ' ’ . St ' * .Q 4 - . . ‘: -)
"-2., DOING THE EXAMPLES . ST v - il
. ‘ . .
4 " ' ‘. P
.2 An example calculation begins vith 8_declaration of the name -of the . .

‘:outine to be c?eated and a.ny parameter inputs to be included with\ts call
Then tb.e "data étructuresg wb.ic aré to appear ‘on the screen are declared. Oon < .
our currest system, these declarations are aade at the teletype altbpugh they

\ could bé- input graphically as are most dther cmds. The declarations S
% - - * |
include not only arrays and variables buttalso pointers i,nto arrays. That

ig; if I has value 3 and is i{sted as a pointer into linear array A then an . .
. : "c’ Il
arrow labeled I 1 point to the third location in A, We can rgfer graphicai'ly -
/ y

»

to the location A(I) by touching the pointer and to location/i(}.) by touching 3‘

the actual location A(3). This usage will bec clea: 1n th,e e to - ‘_{f 5 -
follgw. * « - L) . / L T

- - - - 03 L
y Gnce the data structures have. appeared on the screen, one'may begin

the sa.nple caiculation using the' graphic input device. Probably. the beat
!

such device fox autoprogrming wouéx'i be a touch sensixive éi{rface o the

-

display screen, but on our current system we have _used .a- light pen. “We auspect

I

that a touch senaitive screen would yield a mych better syst@ hecause 1t . . 7

wc-uld accept i/npi:ts at a much higher rate and would. allow the prégrmer to - -
-4 - . _e -

_/‘ use both hands. In anmy case,\ﬁ:e will refer to ome graph:f.c input, one pair T : ‘
R r of x,y-coordinat as a touch or a hit. TR - ‘ -
Tﬁe commands to the systen are. indicated by a touch sequentially df ' .]
T the cmam{ dame which appears-on the screen a’nd each of its Sperands. Let -
Py st&nd for the 1-tb graphical hit after the command is designa‘ted. That ie, .
;\tppose we t;uch seque?tially the instruction nove follawed b‘j I and J . Then T
2 I, p2 J and by the definition gf{en belowr, the- ccmtentf of I will be 7/
ded into 3., L . - ., E ot
v/h’\we will need eight comand in our forthcoaing ‘exampIe. . . ;{‘ - ’ .
e ' A 0 » T N
;Q,EKTC = RO e . 8 N R R

’ . . 2-1 ’ ' R *‘ _ - id * .- ; f, ¥ v—i: 3

e

s

-y .

start - the first instructfon in any progr&n. Aot

meve, - pz*'pl - .
- P, 4:-p1+p2 or if there are -threé operands. p3 -, pi+pz
.- - Pyt pz-pl or if there are three oﬁerandsa p3 4-p2-pl .

subst -~ this is a»special operator invented for.the purpose of thisx

~ exanple. apply the gra:dhtical rule vith left,hand side at

and righ hand- side at P, to string p at 1oéation p, and-
% 2 3 4

4

put the resuilt -nto p-. Thg; if. pl rg{erencesisc, p2 reierenges

*

N
. into 1ocation Ps- (Typicalgy, a subroutine woul& be synthesized

to do this task rather than creating suck an operator) ..,

¢ G

length - yields the 1ength of stri‘1 -

print - types outy on the teletype the Btring pl
halt . - ends executionm of’ the reytine dnd returns'control to the calling
- (, - routine, h : ,)
X LI '. {

" It is also tiecessary to indicate to the system when a condition is being

. ‘qhecked. For example,’in a gorting. routine we note that two ifems are-out of,
. I ; -1 * P

order before we exdhange them: note A(I)>A(J). So for checking conditioms, ’

Le have the relations'-, >, and < available with the usual definifions* and .
L Y s
terminal wniqh ig defiyed for the purpoaes of the following e;kéble. The »

* - -

predicate terminél yields a_;Llue of true if apd only if its operand pli

=

has all terminal symbols as defined below. . ~ . ~ .

*

. ‘~ . -
Let _us suppose that fe wish $o create a progran called GEHERATO&#which

- generates and prints all of the terminal strings that can be producéd by h

*
»
L3
«
. s

%

IText Provided by ERIC

.’Ql' B

[KC * then, x-fsr ‘£ thé fift i characters of X and ¥ are 1denti-cal. PR
%

*

or Iess applicaticns of :ules of an arbitrary grammar starting from a given

inLtial string. The algorithm will be to generate ali ppssible imaediate

M i
-) N, *] £ .
. 7 . . .
i [1

*If x and Y are strings "of different length and the shortest one has length i

» 2-2 - - s .

-t XYz, p3 references ABCDE, and pl‘ '2 - then AXYZDE C'ill be entered ’

(/ . * N " - A .
successors of the initial string add to store them_on-a stack Then it will
)) s
load the too &tring from the stack generate all‘ of its immediate successors

and add them to, the stack, iand 5q forth Terminal. strix;gs will be immediately

} . S v = &
! + printed, and deleted from the-stack as they are generated and nouterminal
+

strings resulting from N applications of rules wili })é deleted to insure

-
»*

& termination of the computation A . co o

€

. .’ , .
The autoprogra_umer vill need an example 'co'mputatiorr/'rom \hich to .

e donstruct the program ar;d we will choose the granma,r {BA+BBA ABA~d} using

i *

initi‘al string ABA and searching to(a depth of N = 2. The nonterminals in
% r~ .

this grammar are A and B, and the -on}y ter#inal symbol is a. The data

structures will/b\ R . .. ,\ . .

~ STRIKG which holds the c-}zrre/nt string being processed,

114

[

- .
. LEVEL which gives the depth of ge'neration‘of STRIKG,
K as definedkabove, S . . .

- ; LEPT and RIGHT ; to hold the left and right sides. of the grammatial r'ules,

& . A . .

Z\'URULES to hold the nunber of rulee/in the grarmar,

. ‘&STRSTACK and LEVSTAC’:} ‘;to hold: the stored strings and? their levels,—and

r‘ . -
the pointers,P, I,' nd J. . - 3 _

Figure 1 shows how these structures will lappear on.the s%reen after they are
‘declared. P is a speclal substring.pointer which references all of the contznts

] . - ‘ .
of STRING from the p~th character onwards. Thus, if. ? = 3 and STRING =
5 . v e r ‘
/" "ABCDE", them STRING(P) = "CDE". =3 CL L
. ¢ ?’he calculation proceeds as shown in Figure 2 where the commands ‘are /
. e

given ,in the leftmost column and their results in the m&jor data st}:uctures

aré §ndicated to the right. Thué? the first hit is' the sfart instruction, s
~ ' -
the second is move, the third% the literal 0 at- the bottom of the screen, the .

. J
fourth is J, and so forth.’ Scgnning down the figure, one can see’ the pointer

P being advanced across STRIhG searching for an application of rule 1 of the
¥ - - L4 "

RIC T o 10 S

S ' 2-3

>

*

.
M - ‘1 *
‘, _' . 2

.t ' i —

P P .
w

s Ly

® NGRULES

*

_STRSTAGK ~ LEVSTACK

—+ BA L ol BBA/ St

o

PIGURE 1. The autoprogrammer screen ‘before th% safiple

»

calculation begins.

-

B - e . . . - . \ .
’ . 7 /I - -
’: . o . R « v, ' '.)] \
: - Instruction £ . STRING 'LBVEL 1 smsmcx . LEVSSACK
;‘l-start ’ S : S -~ ABA .0. = ,¢
2 moye O “TEvEL) £, DN T T .
3 move0J . .ot . ' _—
& move 1.1 R . o 1 . e
5 move-9P . —_ 1 - ¥ ABA - oy P ’ .
6 +17pP o, . -] TABA -t .
7 ¥19 ‘ABA - _ .— - '
8 note LEFT(I) = smmc(p) T, e T T T "
L9 41 _ o e e, .
"10< subst LEFT(I) RIGHT(I) smm; P smsmcx(.r) ‘ .. "aBBA T T .
11 + 1 LEVEL LEVSTAGK(J) - o ¢ 1 -
12.+1°p ‘ -ABA ‘
13- note length\(LEFT(I))>leng£h(STRING(P)) ¢ B
14 +11 . CoL 2 <) <!
15 move O P | | IR N aBat S
16 +10p ; ‘ TABA Moo *
7 +13 «f - = - R .
18 subst LEF'I‘(I) ucﬂr(ﬁ STRIKG, P smsmcx(.r) T . , a,ABBA *
19 + 4 LEVEL LEVSTACK . L .o . 1,1 “%
20 note terminal STRSTACK(J) ¢ o : Z - . :
21 print STRSTACK(J)) RN . L. ' /
22 -13J Co) . cae " ABBA .14
23 +1p - -~ oL ; ABA . : i ! '
26 +11 4 . T .3
25 obte I>noauizs - S - " - :
26, move STRSTACK(J) STRING : : T A ” T s :
27 “mbve-LEVSTACK (3){LEVEL ~* - . 1 . - 2’y 1 : . ‘ ‘.

29 move 1 I

8 - 13 o N b e

> 30 move O P : . P : ' ABBA, .) . *
31 +1°7° . - e W Tk
" 32 4+, 1P -’ . ABBA) D= %
i. +1°P) « ABBA, ' . - R 2
+1J, - ' ¢ . *
subst LEFT(I) RIGHT(I) smmc 3 STRSTACK(J) . e . ' " . ABBBA 2
36. + 1 LEVEL LEVSTACK(J) “ o Lt R *
37 note LEVSTACK(J) = N L C :
g‘g" :i P i * ABEA ¢ X
[> - Y .
40 +11 -« . (s 2 . *
.41 move QP _ : * *7 ABBA : S
42 +1p - e oL ABBA : *
83 + 1P i ; ABBA - . *
4 + 1P ¢ % ABBA L, . *
45 + 11 . \ 30 - Lk
46 note J = Q - ' ’ I -,)
47 halt ‘?:‘\ . “ ® ’
. . N .." . ’ * :-‘(& -) *
. e T LR . - - :
' 'FIGURE 2. The steps of an example calcu'lalion: generating terminal strings from a grammar..
. c) e - . . . « . "‘\)
’ . ey L cor : .
- <) - ! ' e .

ERIC - . e ., - A
L , . \2_512/ . ST Y

. 'd - ¢ ~ .
* 00 ‘nstréttion is inserted auto;natically using the continue feature of Sectiqn 5. \)

~ . i . .
- 4 ‘
grammar ‘in step 7, we discove tule 1 zan be applied which, yields fthe

.

string ABBA in step 9 Then the second rule of the grammar is applied yielding

¢, B

‘- string a which is printed out. \jFinally string ABBA is brought in from the, .

N I A N
sBack and its successors are generated in the search for a terminal string

1-' N ' 7 N

The halt instructiqn-termipatés the calculation,

‘§ s . Of course, in actual practice,x;he user never sees anything like Figure

. /

2 and his total experience is with the display of Figure l and—the movement
)

.

v

ot " of information from place "to place. We have found that a programmer'can .
- (.
execute a surprisingly long sequénce of steps without er as the‘

method well in mind. However ‘such, 15ng se uvencgf are almost never ‘necéssary
’ 8 q ! 4 (

-

‘as will be shown in later sections. .) e

The careful Teader will 3serve that tkWe condition (LE?T(I) = STRTNG(P)S
.

of .step 7 shOuld have also been notéd immé@iately after step;lS ‘and immediately :

after step 32, 1In fact, there are other places in the calculation where v

donditions were omittdd. The rule ig' that i;Qevery condition is properly

I ~

p ¢ inserted'at least once in the. calculation, ‘the synthesis technique properly

" X . (- . "‘ -~ . —~~— -

/, constructs the program. ’ % . R ‘Tﬂ&g . ’
? a e *° =

. - .
' . x PP

" (f, After one or several example cal¢ulations are cOmplete, ‘the.program is

" synthésized as described in-the following seetions.’

(“ |
‘ * Y, . .
N N . 4 ’
| .- . . < .
*
‘:f;‘ ¢ e ——
. -
»
- - - ~ M
. 4///’ . s ¥
< - .
.
..
> % . 2
t - -
w oo
+ . .
4 - . - 1
[] ¢ ‘
v a ~ -
- ¢ =
N .
L' l . "
* . Y - - *
,
* 5 -~ . .
4 2 .
B

. : ‘ . : 13 T ‘ . R

ce » N | .
3. BASIC DERINITIONS .- C . ' - .

. — : . . s L., L
Before it'ia)possible to define the synthesis method and study its

*

properties, it is necessary to introduce some notation. A computation .will

-

be thought of as.a sequence 9f steps with .the insxructions 1, beéing executed .
ad'the discrete tiffies t = 1,2 33y 000 4 m, for £ = G 1, 2,... will designate!
a cbmplete description»of the computer memory immediately before instruction

has ‘been performed. Thus, instréﬁtion i will operate on memory cohted%s

- D
m 21 to yield m, which may be written in functionazl notation as mt = i (m 1).'
- 3 L

Actually i (m l) may yield many differen;;)esults simce i might be, for

example, a read instructidn 80 we pre et to write m, € i (m 1), fReferring to

7]
the above example in Figure 2, i start, i2 = move § Jy and so'forth.
b - - L.

&
¥

By By cens nay be thoué of as sequential photographs of the.displayed " ,—

)

data structures &8 compu,tation progresseS'.‘ . ‘. z

The symbol a will dgsignate an atomic predicate or atom with value true or

/

false wh is measurable by the machine for the purpose of making branching .

decieions. "A(I) > A(I)" and "LEFT(I) = STRING(ED“ are examples of atoms taken

\d

_from the*previoss section. A sign atom. will be either an atom or or a
negatedjatom-w a.' A conditdon c_is a predicate which 18 a (posmibly empty)
"conjunction of atoms and/or their negations. ~will be represented as Lt
t- l) ‘
3Pich-uill have value true if and “only if all of its unnegated atoms applied

v i‘

tom m,_; are true and all of its negated atoms applied to m,_; are false, T

set of signed\atoms but we will also use a functional notation e Gm

.

c; is tﬂéiempty set ¢ its value is true. e Ty

- -

= (ct’i) ig a condition-instruction pair executed’at time t. That

«

is, at tigggé,condition-ct was observed to be true and then instruction i,

*

was execut:ed_q A computation may thus be vigualized as a sequence of memory) -

.*

snapshotsrseparated by condition-instruction pairs'

-

-
hd . .
Ps -~

o & i v * - - ‘ _1.4k ' «
.t - 1.1 ¢ - -

-

‘e
Jn
.
1}

ﬂd—b- ml;—zu- mz—t ——-—-;n-.

Cf course, pany of the conditions c, will be the trivial'emp{ty condition. ¢)t

v " ~ ‘

. . A partial trace T of a computation will be defined as the (2n+1)-tuple
- p . - .

(m r ,ml,rz,mz,....,r m) ' L g

PIEE

where for each t = 1 2/3 .n we have

- r, = {c,,1), . :

mt Eb—i-t- (mt-l), p

c (m)istrue,andc=¢) \

t-1
The instructions available in the autoprogramming language will be

denoted Io,Ii,IZ,.'..,Iz'. and I, where I_ is a do*nothing start inftraction .
"L ry &
and ’IH is"the halt instructibn. Every program will have exactly one occurrence

' A trace vill be a partial trace
. !

N > . 13

=T _ym_) with the additional requiremehts that x, = (Q,Io)

of I and usually one occurrence of I

'TF (m rl, 1’ 1,..

and r = (,c I). A particular 'instruction, say I6 = move R S, nfay occur
many times in the same program so that it will be necessary to label each

such occurrence separately We wiJ.l do this by coacatenating an integer

. v
prefix to the instruction name so that, for example, three occurrences of .

16 would be designated 11 Ié, and 31 These will be called labeled

6’ 6"
‘instructions and the positive integer prefix k will be calfed the ldbel. .

An incomplete program P is a finite set of triples of the form

(qj’ck’qe) w}iere each qjv and q, is a labeled it:stru,ction arjid Sy is a condition

and where the fcfllgwing resttr:’iction holds: ,
‘o 1f (q.,c,q") € Pand (q,¢',q") € P and there exists m such that .
%(m) = c'(.m) = true, then ¢'w ¢’ and q' -_gj‘ .

Thus”an incomplete progranm ia, 4 finite set of 1abe1ed énatructions connected

by triples or transitions which are each associated with a particular condition.

» '
< N . >
- " ’
. L oL
e

. -
. /2 et 4 -
—'w.a .

Ld
s

2) ~ T
] B '. B - ’ N~ T
. -4 ‘1-‘ : L e s * T / 4 > ’_ .
. “ & - C. o .
o et . i I ..t . -

A transition is .taice 1t its condition ig true, and no tio appl’ica’ole tran- v

’ . ";" . -

[- .- -

sitions can everz’be gimuitaneously satisfied An example of this Moore ' '

v

; machine type representation appears in Figure 3,. This"~ proga:am is called

Ql

incomplete because {here is no sgtart instruction I0 and‘"because the tran- RIS 2

B * [. \'\ < . ;’:

.sition {—1% 0ut of state 2I¢ ig missing. . - . . T
g ’ - R : ’
I\ow we defin’e an operato, l‘g&akes as arguments;an incomplete -7

ptogram P and an ins;%\“ ction 1: _ - ’

B(P, I) {a](jI,c,q)eP for some j ¢, and'q and aec or — agc}

|)

\ B(P,I) is the set of-all atoms ubich are observed on transitions Jeading
- < .
away from I in pro am P, As uming that B(P,I) = {al"»a ,...,ak}, then ano':her.ﬁ‘
! . * - . .
operator B' is deff he set of‘_ all minterms ¥hat can be constructed @ -
3 : AL
from these atoms: REEE N - O 4
; - : - . (9

_ B'(P,I) = {{al,a22a3,.. »3p } {al,az,...,-—, ak} cees{=, 31571 855000, ak}}
\ -
- Note that B'(P,I) maywbe empty.))

v
1

»‘}ur‘

. \A(‘Erogr P will be an incomplete program with the additional r‘equire-

_ments that. }
. .

(1). for ali 1 (where i’. # I) such that (jL ¢,q)eP for som@j{c, and q,

P

- 7 U{e|(31,e,q)eP) = B! e, 1) for each such j, and
* (2) there is exactly one start .instruction, namely""l , and .
. ")
.o (lI c,q)eP for some .c and gq. . N .
b}
The first reqnirement means, that ev.ery winterm in B'(P,I) must be represented . /
in a transition out of eyery occurrence. of I. 'I'herefore, after any iastruction
t
I in the program is exec%ed there will be exactlir one transitio\n condition e

satigfied to a next instruc’tion until the halt is reached. . The. gecond

. . ' -~ b C

requirement asserts that there must be exactly one start imstruction. An

example of a program can"be constructed if the ttansitions (l’.[,¢_.111) &nd

(2 {—, al, 1.1‘2')., are added’ o the incomplete pré'rém of Figure 3' ‘ . “
’ (" " i o B . . . M
-RIC. . . o e ' - 16 . o S
3’ " * : e« "o ':;’3-3‘,” s ~ . ! « [~.

* C b

‘v “” & L
. h‘ < + -] 1 i I ~
=
Before inc;oducing the synthesiaAayigfithm it will be helpful to ;
‘broaéen the above definition of B so that it can Operate on a set S of . /
partial traces. Lo : -] R
‘- . . .“ e *
B(S,1) |= falTes, I=i, for some i in trace T amd acery) OF —agcy,) in T3.

. < oo\, .
Here B(S,I) is the get of all atoms which are obsérved in conditions fellowing

I in a trace 'in‘S: Consistent with the previous definitions, if B(S;I) =
jap.a 2,...,a,} then define B'(S,1) =, {{a;sa,,. ,ak},(al,az,.,.,’ _,’ak},

{_\ al’_-l az; sy }}

-
-

.
4 | ‘ *
4

Q1 Q2 Q3, and Q4 Let S be a set of partigl traces; we wi}l deﬁine QI(S)

to be another set of partial traces as fo lovs: if T=(m ,(cl, 1) ml,..-.(c 1) =)

-

is in S. then T'=(m ,(cl L), ml,--:.(c ,i Lm) 1is in Q, (5) vhere ¢, = $ and

f = e . [B‘
or £ = 2,3,...,n, cteB (5,1, ;) and ctfmt__l) 1s_true. (If B.(S,it,l) 4,

theu c' - b.) Nothing elsge is in’Ql(S)f_ Netige tﬁat <. is uniquely definéd
since there can be only one minterm cé in B'(s,1 1) with the property Eha: A
c (E 1) is, true. s ‘ "t

G, is the cperatiggyuhigh inserts into each trdce all condi;ions
vhich may have been onitted by the user. Exanining the trace T of Figure 2

one gees that the atoms I>NORULES end J=0 ‘can immediately follov the instruction |
» » o 3 L

+}.Io Thus * * r ’

. BUT), + 1 1) = {I>NORULES, J<OF

s

B'({T}, + 1 1) ={{I>NORULES, J=0}, , .

~ {I>KORULES, —J=0}, .

s ('WI>RORULES, J=0}, 5 -
{-11>\?mms,—-,5-o}) ’ -
Ql({T}) is a trace similar to the one in Figure 2 except that one of the - 7

“four minterms in B ({T}, + 1 1) will appear after every occurrence of,+ 11,

and certain-other conditions will be similarly inserted after other instructions.
“Let g be a function wvhich puts an order on a sat of partial tTaces. For

’example, g(8) an be tbe set $ of p&rtial traces ordered the sequénce

1* 2”""& is the ordered set

of partial traces Tj.' (mb(j),rl(j) (jéii {j) ooy (%),n (j))_j = l,Z,.f}k,

" in which they were recej.ved. If g(s) = T,

, - ST
then‘defisp f(g(S)) to be bhe (2(nl+n +n3+.ttlnk)+2k-l)-tuple“
' . —e - \ ’ ‘ . 18 (Y -
. I - - &1 . . } ..

L d I

£(g(S)) = (no(l),rl(l),...ga,rn (l),m (l),d
7 r-l nl . ’)
i n 9??,r (2),.....,r ‘(2),n ,Kz),d -
. Q/ 1 n2 n2
k) (k) (k) (k) -
- R » T goeete » T)
1 " "

. : . L .
where d iq,called a ducay transition and is distinct from all qther symbols

—_—

in the formalisn. Then £(g(S)) is cne long partial trace with all of the

partial traces of S concatenated together and separated by durmy tramsitions d.

P Let T = (u r ,nl rzv!rn,nn) be a2 partial tréce vhich :iy be made

—___ up of g concatenation of several traces, and let U b? an n-tuple of pogitive

integers U= (u U

2,.....,un). Then .
» . . l ~”
Qz(TpL) {(u};ij,cj'i'l j+l j+l l'j * d, 3
- B T TR T ' -
/>~ rji} - (cj+l’ij+1)’ uj and
7uj+i are in U = (ul,uz,.....,un), %?d o, A

T= (ao,rl,a,rn,mn);

1
- QZ(T,U) is a det of triples which constitute an incoe;lgte prograz if U 'is
chosen piépgrl> C‘is the set of labels which will be applied to the in-
struc;ions in trace T in the synthes¥s of the progrg%& An exdrple n-tuple
that would w&gi is U = (1,2,3,...,n) vhich yields a linear progra:*;itb no

branching. Using thisc'and the trace of’ Figure 2, one can begiw constructing

(24

QZ(T,U):‘ (1 start, @, 2 move 0 J), (2 move O J;¢, 3 move 1 I), etc. The .

‘purpose of Q, will be to find a program which is more interesting than this
rp 3 € R

¥

"~~~ _linear one. , . - .

i -

He will need a function h which counts the number of instances ogEK

‘ instrugtions in ? progran. Define |S| td be the cardinality of the set 8,

+

* — '

and let Z be a set of tripl¥s.

] * [
.

: 19 :

42

-~

2. « . . *

b= | BBy e ¢ (5,2,00¢2))

- : .
* Thus, if Z is a seét of't?ip%es representing a program P, then h(Z) is the \

nucber of ‘different insiaucéb of instiuctions in P, ’ ’

<% If’g = (pl,ﬁz;.....,un) and U' = (ui,ué,.....,u;) are two integer -

¥

‘ n-tuples. then we define U<U' if there is a j, 1<jsn, skeh that

u, = ui, uszé,.....,uj_l = u;-l’ uj<u5..iLet k and k' be integers and U and °

v ’h‘ - - .
.U' be n-tuples, then we define (k,U)<(k',U') if k<k' or if k=k' and U<U'.

This puts an ordering on a set of such pairs (k,U) and allows us tddepeak

. -

of & minimm,. ' . : -
Define (kg,Ug) to be the minimum paif (k,U) with thej properties {hat

k = b(QZ(f(S(Ql(S)7)fﬁ)) and Qé(f(g(QLLS))),D) is an incomplete

program. Define ' . . \

rd

. Q3(S)~'.Q2(5(3(QI(S)))sUS) which is ghé desired incomplete progra=m.

Intuitively, one enumerates the set of pairé’(;,U) in inﬁigasing order until '

!

/gg&’is fouqd such that Qz(f(g(Ql(S))),U) is 2n incomplete ;%bgraa. Host of: '
“the possible values for (k,0) will yield a nondeterminism in the flow 6t
A . .

-, conrol thus violating the definition of an incomplete pfogrém. The enumeration
will certainly balt somewhere because there alwdys existsﬁthgivfal solutidn
'\ ,‘“"" N

(n(1,2,3,.....,0). A pseudo-progran f?f computing Q3(S%fnig§;_}ook some-
th like this: . > - . ‘
. tog 1 : * L~)

. . . ¢ . . .

1] . @ . -

I 4

for k = 1 step 1 until infinity do coeond J
Vs ¢ fOr eagb U?(1,2,3,.....,n) such that h<Q2(f(F(Q1{S)))'U) -xktéo . ' %
» . if Qz(f(g(Qi(S))),U) 1s an incomplete program then

halt and retwrn)0, (EGQUOV M |

-
, T
4

X

20 . g

4 : 4-3 d s)

. ’ .
.
. ’ .
) f R -
. .
- . .
'A e - - . . l‘ A

. - Y- ' . .
. - 4 - . b - -~

. v . . b .
This ppogram will never enter an infinite calculation on any given value ‘, o

-of k because there are only 2 finite number of ndtuples U which satisfy L.

U=(1,2 3,.....,n) The art of perforaing th!s caloulation q{ficibntly is -

discussed in some detail in [3] and will not be er her considered here.

¢ &

Por rost programs of the’ size and cornplexity conslder% in this’ paper, this

3

calculations can b? cospleted in less than one hunﬁ}ed milliseconds.

We will,meview the above synthesis process by doing a sindl exampgf ié -
Suppose a cslculation is perforeed with the instruction sequey f;’ll’}z’ 1’ T
;(—a a), I Then(vhe partial trace is - ! : -

. T= (¢;;(¢,1 gy s 4, ,),52,(¢,12),s3,(¢,11),a&,(§¢~ al, Ip)mg).)
. -\If S = {1}, then %%} and 31(8,1)) = {{a}," {= a'}r}_;, Now assuge thl(
) a(a,) and a(a) are true. Q, ‘inserts all applicable Eintfj%s into 1,
- Q(8) = f(s $($.1)),m), ({2}, 1)) 0, {(a), Iz)iﬂ3_;¢ 1),a,‘,({— a1),m)} - -
Fext it is necessary to find a ninimm (k,U)Aagch that Qz(f(g(Ql(S))),U) is .3
an incomplete/machine, Enutterating each- posaibfe ,U)) we find:

\ka\ k -i?i r " po U's - . -

. k = é no U's
k=3 . U= (11,1,1,1) nondeterministic -
. . _ ’—2 X
A k=64 _ - - 7 U= (1,1,1,2,1) ‘nondeterministic T

k=4 /\ ‘0 = (1,2,1,1,1) incomplete ‘program .
9 - i

~ This terhinates the search so k -évand US = (1,2,1,1,1). Thus Qs can be computed: .
Q3(S) Qz(f(S(Ql(S))) U)

o- = {1, {a},21)), (21;,{a},11,), (139,11)(111.{—1 ab1Idl -

\ ¥

- The resulting incomplete program appears in Figure 3.

hd v . d I'd .
) - or - E L A W, ‘
_ W . .
] ¢ ->“ i ©t ¢
- A . [X3 3
~ e - A) ’ '
’ - - t(*) K N
\ Ve PR
\ . - A .
- ” - - -
- N s : -
nay ’
' B 4 . *)
N LI -) *, '_ - !
\ . e ' s .
' . vt
) - - hd . .
. - . ¢ N » . & (I
. * M . ’ . B !
L RS ’
) . . P 3 P
~ — - i «* v :) ¢
. — ~ ® - " 'l
- 1]
. .) - . ; s
. [3 s . F :
/
.1, .
”» w N -
B . . 2% 1 s
. La - *
. .
. « Lo ! s
. . . . -
A
- e *)
{— a} p

‘ R ¢ {a)

. . . .
.’l
4 - . 4
» ~ . . ' ’V' !)
FIGURE 3. Incomplete program Q,(S) = {(111,{8‘3,211),(211,{a)"',112),(112,¢,lli), \
(}-Ils{"ﬂ a}yll)}. .
H L

» . » ‘ * ’ - &
- 7. . 1
We will define one more operator Q4 which will convert incomplete '

progra& with inicizl states into programs. However, Q.(S) has the desired
3

properties of Soundness and completeness, and we will, therefo;e, prove .

these two theored be,fore c%ntinuing) S . ¢

3 * -
c- We wil.l say \ha; ai!»incomplete program P can execute a partial txace

3 - 1
= (m rl’-B 2,‘....,1- ,mn) if there ex}.\t l,uz,....t,un‘and cl”cz""‘f’cﬁ‘

such that for. eachj 1,2,..... Bn -1, (ujij cj+l’uj+l 41

éj'-tl(mj) is true. (We continue to follow the notation Ty = (cj’ij) for

) € P where g/
+ .

3= 1,2,38....,m.)

Theorem 1. If S is a set of-_part’{\ia/l traces, then Q;(s) is an incomplete

. * . . »
-program which can execute each trace T in S. ==

. IS » B ‘ . . . T)
.- ,‘ - . , . ’ P ;
The proof follows esgentially from the defipitions of the various

opetators Assume for simplicicty %S has, only one_trace, S = {‘I‘} whete

%I % (m r,rn,m) and each r k (c . It is nece._s‘sar?-»to shew

that there exist\ul,uz,.....,un and cl ,cz,.....,cn such that for each
j=1,.....,01 (ujij’ cj+l’ uj+1’ j+1) fqﬂg’) where cj_{_1 (mj),is troe.

- But Q3(S') = Q' (f(g(Q S¥); U) aaé'Us provides the n constaats ul,uz,u3,.....un.

(Ug (“1’“2’“3"""’“ M. Furthermore f(g(Ql(S))sr(m ,(cl,i),m J.,(cg,i ?,-’-_‘
‘....,(c i) m/) where-ql = é and cd“’l (mj) is true for j = 1,2,.....,n~1 by. (.

definition of £,g, and Ql. By definition of Q2 we note that
1 ’ = o
_(ujij’ ?j‘*‘l’ uj+lij+l) £ Q3 (S) for each j h 1,2,.....,0~1 which completes

N N %jv, -
.the proof. A simple extension of these observations will complete the proof

*

. . A . .
for the case where § has k>l traces. — \ ..
4 .
I - v

" Theorenm 1 gghraqteéé—;giat the synthesized program Q’;(S) will be able to

execute all of the given example traces 1?\ S. The next theorem assures us

. N EY .
» ¥ =
»
- . *
=

. . ' s
~ / o '—\
. A . .

that «2f a user.begins exeCuting example calculations for some program P

'

the system will syuthesize a corr%ct program P after only a_finite nuaH&g of
examplégrhave been comﬁIeted. P w1 have .the property that it can exeeute
—

N
every calculation that P coula execute,’and this convergence property will

~ hold without regarJ'to the® order of presentation of the examples. The corolla%y

will futher assert that if P is complete then P will be "equivalent" to P.

~
[y

Al -
.

) ° 4

" * Theorenm 2. Legt P be an incomplete program and-let Tl,Tz, +v.. be any enumeration

. of all of the partial traces execttable by P.* Then there eiists a finite

-~ . o L3

k and some incompiete program Bo such that . -

; .
, _ ~

; (D) B, =0y ({T),T,50000,T,)) for all £k, - ') o
- (nb “@n&u&eamrf1=1szulrmd g ,

(3) no program with ‘fewer instences of ins::ructions than P can execute

‘ / 'each,'l‘i,i-123 - ,
#

. ~ i o) .)) g

[/

. . , L
This result also has a simple proof. Suppose P has.exactly p instances 4 -

- A
of instructions. Notice that the construction of Q3 involves a complete -

»

search through the space of all possible incomplete programs which could ~
execute the traces and which have i instances oninstructione for { = 1,2, ...-.

Since P y{ll exist somgwhere in the enumeration done by Q3, the enume;:ation

. 3L .
,g?.ll be bounded, and QB({TI’TZ"“"’T }) wilt yield either P or some in-
/ complete program which precedes P in the enumerationm. Tbus, there exists”

%nite v such that for all 1, Q3({Tl,’r .,Ti}) need enumerate no more

2’ &
than v incomplete programs before {t can yield its_;answer. Define
P, = Qu({T},T,,./...,T,}) for each 1 = 1,2,3,,..., and e can think of

. PysPysPyy..... @8 a sequence of guesses at the answer P over a period of

time. Then the set {P {1-1,2,.. ..} by the above argument has finite cardinaﬂty.

»
. |. Also notice that any incontplete program P' that is chosen at some time Gj
j+j') can never be .
w).. This is be‘cayxse if P’ .is

such t’nat;-Pj) and. later rejected 33'such that P T$P

‘choeen again . (not 33" such that P' j"'j'ﬂ-

. 4 rejected whea it is found unable to execute 'rl,'r then it will’

gree e Tigge

certainly be unable to execute TI’T So the finiteness)

2,?....,'?j+j,+j,,.

- . .) <
*

- ’we assume that P can execute only countably many different pa‘rtial traces.

- 4

.
. *

~ : . ‘ .

o . >-. ¢) . . : 25 ‘ . A / %

.

t - of the seé {P [i =1,2,3,} and the inability to return to previOusly
. - o

'rejected guesses implies tesult (1) cf the theotem. P° can execute every

T1 by Theorem l'and has minimal size by-conscruction which completes the
) . , . i .
proof,) . . .) \

v - i I ' .
Prograés Pl and P2 w%}l'be_said g; be equivalent if ior every partial

- - . o b. h]
_ trace T which begins with the stdrt {;3f§53§?3n~110; P; can execute T if and
' . ,),__—-:ﬁll; R z -.if. .o . ;
only 1f P, can ex e T, . i F " . .
. 2 Eﬁ‘i L . Foooed 3 *

Corollary., If P is a (complete) prograé; then Po'of Theorem 2 is equividlent
- ' _t . ‘ . LY
to \P . . T4 ’ e

P -

- -

— _ -] . . -
Since Theorem 2 asserts that Po can execute every partial trace

executable by P, it is only necessary to show that P can execute every partial
N — .) {
trace,executable by P, which beginsg wi:h’llo. Assume the contrary that there

s a T = (mo,(¢,llo), ml, (c Y,.. ..,(cn,in),mn) wﬁich‘Po can execute
. but P cannot. Tgeq?there is a largest prefix of T, say T' = (mo,(¢,llo);ml,

(c,si)seeves€, 54),m,),0<k<n, which P can execute._ ?urthermote{ since
2’72 . k kr - -

-

P is complete, it can validly continue T' and can execute T" - (mo’(¢’llo)’ml’

,(cz’iz)”";"(ck’ik)‘mk’(c"i’)’h') for some ¢',i', and m' where (c',1i') #

LS

<£k+l’ik+l)' But P camnot execute T" which contradicts Theorem 2 and completes
N + .
tHE proof. (Cotment: P, may not be complete even though it is equivalent to

P.) . * .

<

. 1'\be8e results are neither new nor surprising considering earlier pa.fers

in grammatital inferemce [5, 6, 7], Notice that even though Theorem 2
- -] . ~ o
guarantees that ‘the cottect incomplete program‘? will be fountd after some

finite time k, there is no way of knowing at any given time 1 whether or -
4
not Po has been found. Thus,; there is no pralf of correctnesa intrinsically

~

cE .
e - ¢

- A
13 . N

bu#it into_the syster,. and at any timef the/nert partial‘trace T, K, May

i+l
ca@ée the system to discard'igé current guess of | P 'and try a new one.

;o
— ,

‘Thie kind of learning is known elsewhere as identific;tion—in the limit

* ’ rd

o . .0 .
15671 : for

- s

This means that the programmer in debugging his code is theoretically

, 7
.

Y
-no better off with this system than he was with traditional programming‘ -

techniques, He still must find errors by running test cases and by studying

]

~

his code. From a practical point of ‘view, however;_we hope that the auto-
programmer will provide facilities that g}ll speed this process considerably.

Applying the synthéesis technique to the trace of Figure 2 'yields
US = (,1,9\4-.,l,Z,l,l,.....,l), twenty~-three 1's followed by 2 followed by

seventeen 1's., The resulting incomplete program 1is shown in Pigure 4

This would, be & correct complete program except that two triples are missing,
(+ 1 P,{LEFT(I) = STRING(P); length (LEFT(I)) > length (STRING(P))}, + 1 1) .
and' (+ } LEVEL LEVSTACK(J), {terminal (STRSTAQKRE)) LEVST&EK(J)'= N}, print

STRSTACK(J)).‘ Instruqtion labels are omitted in Pigure 4 because sll but

- ; r

one of them are l..

Omitted triples in an, incomplete program can often be guessed 4nd) .

filled ip correétlx to produce“a codplete program. For example, in Pigure

S5a, the condition {al,:l } has not been obsenved ‘after inétruction lI1

and {— a,—1 a, } has not been observed after ZI‘ These omissions can take

-place eitker because it is impossible~£er—the—aasociated conditions occur
\ L

(such as J>2 and J<0$/or beeause Ehey simply bave not yet baen observed

ot .

in the traces.. In any case, arbitrary addition of -the migsing transitions

LFa

will not destroy the guarantees of Theorems 1 and 2 énd can often be done to

Yy e - ~

achféve quicker coﬁzgrgence to the desired program. In the case of Figure 7

5a, it would seem natural that lI1 followed ogggali:?‘azﬁ would lead to the

(3

é - R P . \ h 4
. ‘, .7.‘4- 14
I . ’ * ° .o
\' ‘ " 13 “ . N
start > . ~ !
move O LEVEL - ’
‘} A] P ,”’
move 0.J
A - ' -
- move 1 I | + 1 J.,
B « .o
,c ' subst LEFT(I) RIGHT(I)
move O P [smmc Ri gs;aexfn
p y - fapmay) : :
/ . + 1 LEVEL ngsjacx&f;
*+ 1P - R
v T,
- . A\ =
{—al,ﬂa L \ e
e ,
. b - a3,a5}‘ {a,,—t a_} I
T r11 . halt] ° L
oF -
. N
4 . (a,4) N
{

{-‘al‘)'-\ aﬁ}‘ ’ £) £ -' .
T I [If print STRSTACK(J) | #
] : | 3 ‘
move STRSTACK(J) STRING {2325} (: Y

‘ __1 a)—“as}
mové LEVSTACK(J) LEVEL 1 i -1 31" .
[) A- l‘ J .\ . - 4
. - 1
= a) = (LEFT(I) = STRING(P)) ' ..
.. a, = (length(LEFT(I))>1ength(STRING(P))) A :
¢ a, = (terminal STRSTACK(J)) - .
- » t -
- a, = (I>NORULES) . .
- ’ ag = (LEVSTACK(J) = &) - _ ')
- (J - 0) A B ’ L !
, . 26 . 4 -
4 ’ ’

"FIGURE 4. The program syﬁthesized from the trace of Figure 2. (The dotted’
transitions, one of which is erroneous, are inserted by Q&')\

: o 28

.)
4-11

Ca

” *

-

same instruction as'lIl followed by {al,aé} and 11, followed by {— a;,—a }

¢

o & '
and hl,-q a2} would also lead to the same next instructipn. This results in

* the simplified diagégg,d? Figure 5b. In other words, a reasonable heuristic

for completing ihe'pfbgram is to add transitions so as to minimize-the total,'
complexigz of the‘?oolean expressions on the instruction-to-instruction
transitionéx For the purposes of'this paper, it is not important to more

L 3

clearly defire Qa(S) other than to say that if Q3(S) is an incomplete program

with a start instruction 1I o’ then Qa(S) is a complete program constructed
s &

by’add{ng triples to Q3(S). Hopefully Qa(S) will stfiifapproximate the desired

rrogram than QB(S)' ')
" Let us assume that Q4 operétes on the incompiete program of Figure 4

- - and adds the two pissing transitions<as shown with the dotted }inea. It ..

. turns out that Bne 6} %h;se @ddigions has introduced an error into the

program, and one of the purposes of the next gection will be to show how

this error can be found and corrected. - .o ‘ -

4-12 - =t :

.
‘e -
L] - -
N -
. - 4
LI
. * N
L4 i
-
- ~
. . » . %
. . 3

"

FIGURE 5a. Two instancesg of ingtruction I; in an incomplete program.

3

f * ’
. . ~ *
i ~
. - -
- .
h

.

. ’

©

x . "1 - : [& . . R N . o =

. 5. SYSTEM DESIGN AND MAJOR FEATURES

The general organization of the autoprograzning system is shown in

‘

Figure 6 where the major functional units are . ¢

(1) the display and tdp fével routines which interface %ith the
user and which transfer user commands to the rest of the systen,
(2) the f;terpreteb~which inputs instructioné and data structure
‘ 'codtgnts and outputs changes in the é%ta structhre contents, and«7
(3) the-synthesizer vhich_inputt sets of partial ttaceg and outputs
incdﬁtlete‘ér 6gmplﬁfé proérams.
The major sto*age areas keep the following inforsation for each ro%ftne

to be synthesized
-‘(- " - *
L (1) Data structure display information including each data structure

name, type, dimensioné, organization, location on the é¢isplay, -
. . ’

pointer Ynfomation, ete;

[.
(2) Data structyre contents the actual values currently held in

A\

each location . - v

’ . » .
(3) Computation trdces from which the routine is to be created.

- {4) The synthesized program. .
. -, . £
. " A typicdl usage of the %ystea is easy to visualize. The p:égra::er

enters-the nape of the routine to be created; we will call it 'routine 2".

-

Ihen he declares the data structures to be associated with this roytine,

_ +
«

and their descriptions are entered into the Data Structure Display Inforzation’

atf:!;s shown in Pigure 6., KNow this iﬁfdrngtiod is avaiiable‘to the.diéﬁlay ’

~.routines so that the user will see these structures on the screen. In prep-
. .

- ¢
aration for doing an example calculation, he switches the system to local mode

L

and enters the example data into the data structures, Local mode insures

that the instructions he uses will not become part of the trace and will
< f ‘ R »

not be synthegized into the grogr%a. He can do any other hand calculation

@) . l,

v

Instructiens During

a

¥ ;
Data Structure

Display Information

~ v

FIGURE 6.

%

@) |

\ (c) -

14

,”

i
I
i
i
4
§
I

L]

!
1
.
|

1

]

I

]
A

i

!

I

i

\

[4

A

Y

L~
4 '—' r----b----*-----——q‘p'--‘
. LU 1 Continue
t .
, | A s
- I
[& ’ d' t ¢ .
isplay and Instructions . ’ .
TOP Level * o .
_ . Data Structure Interpreter
Routines - —pd
¢ Contents |- .
. $ '#) f
y e " | Changes in
A ~\)
. . Data Structure Contents
Declarations
- =
o
o
I R ¥ § s
. - & &
. SIS . Y Synthestzer | _
M Clobaly Lokal
wio s =
- o 1 .
“alg l
z| e
- O3 - . B >
Routine 1 ’ Routine 1 Routine 1 Routine 1
sRoutine 2 «R§utine 2 [~ Routine 2 Routine 2

Data)
Tucture) -
Contents ’

| P

T

~
o
Nt

-

¥

- »

&

ﬁﬁajor progrags and storage arep#”

-

‘

&

tneie:allesf prqgr;_ cozpatible with the given traces and the result of

-

Jimput to the systez with tyo.gar:iaigeraces:- read J, note J = é/’print A

the znpunt of informatiop abdut these instructiens. . Por exa:yl;> heheiép;

o o : - S
he‘raéts'while in‘ al rode without affecting the graces. Each instrucjkéa‘
he performs that causes changes in the data strucrures is i::edietely update
on -the screen. phen he is rea&y to begin the exanple, he switches the 5yst

{ ‘ o

to global mode and now all instructions perforzed are saved in the trace

storage area for routine 2. ~7Fhe synthesizer is operative at all tires ¥ éﬁing

-
& L4 e

Ehe s:allest incozplete progre: cczpatihl vitn the*éraces to date in the
progras area for routine 2, \Ih.s\igna:plete prograz can be revised after &
every nev trace instruction‘without sign ficant co:putational logs, and with-

% \‘/

izportant benefits to the user to be- -explained later in this section. After

1}

the user cocpletes the partial trace (with or without a halt imstructionm)}, -

L)

[
:dL synthesizer applies Qé to turn routire.Z into a complete progra=.

L L e T
At this point, the user zay either begin testing the current versfon ¢

of routine 2 or do another exacple. It is }:porkant ®0 rezexmber that the

traces ray be partial and néed not incAude either a start ifstruction or &

halt. Thus, the aser cay want cé'eay: "After reading J, 1£J =,1 then

’

print é\:aé {2 J = 2 then print B". This frag=entary inforrmation may be

-

asd read J, note J = 2, print B. The synthesized program will always be /

2

- +

these WO néw traces vill be additional transitions glued“ into the e}ready N
created prograz. ¥Usually-because of the nature uf’progra:s they viil be

added at the correct position in the‘irogr&s. if they are later'founé to

‘

be incorrectiy inserted, the prograsmer can do another partialistrace increasing

*

3
)

ihput: "After K is increzehted and 3 18 read, then if J = 1, print A", — .
P

But users quickly learn vhat they cust iapbt to get the desiredfp Ogram a:d .

such trial and error revisions are not typical. . -

-, -~
- rs ~

.\,/(N .t . *
St The fact that the synthesizer continuously maintains an updated version
of “the iﬁcomplett_ﬁ?bgrae during trace creation enables us‘to add ah extreme{y
iap;rtant feature to the system. It may be that while the user is executing an, -
example, a partial ﬁfbg:a? will be created which is quite capable of ntinuing
or even completing his example for him. If this is true,,be should\ certainly
, turn control over o this pare§9l prograa and save hieself the troub;e of ~
doing the instructions by hand. Por exasple, 1f he wishes to add a column
bf numbers, the loop required to do the suzming would probably exist in the
. updated progranm after he has added the first two or three nuebers,.end this
partial program could suarebe rest Qf the column automatically. The continue
feature then works as followa: The system at all ti;;s keeps track of which ./
.inséructio? in the current ieco=ylete program corresponds to the.last
instruction in the current trace. If’the given instruction in the‘inc$=yle€e
prograe is followed by a valid transition, the co==and continue appears on
. the user's screen along with the other instructionms. If the user vishee\“\\
to let the synthesized incoeplete progran issue the next inscructiOn rather
‘than déiug it himself, he touches the continue cozmard. Then he can dbserve

.. ~
the results of this' continue, and 1f it ig correct and the continue command

still remains/on {h screen, he ceg vepeatedly hit continue to carry ‘on

—

the eLaap;-\\if the continue comsand produces 1ncorrec: results, he can _
t the backup ccéEenh, undo the effect of the last instruction, and imsert :
mewn&tmaﬁumnﬁhhm X)) ‘
The inclusion of such features means that the experience of doing exaaples
‘t be thougbt of as simply a ;yﬁg string of haﬁd inserted instructions.

. ograimer pushes the system through new lparts of the desized progree,

uses continue to do other parts of the example, backs up, inseres. instructions .

.) now and then, returns to continue, and so forth. The reader should examine

- “
' .
- , ot

T ’ . 34 - T :)

Vel - C SR

NG S ' | -__z;> ‘) '} | ‘

b. ‘ ’\v -— i . i ’,,.
Figure 2 again to se& how much of that'example could be done automatically .

with the-continue feature. - ' .

fﬁe backup command is available on the system at all times' so that the o

] user can undo any'instructions that he has _executed and decided to erase. -

.

' The backup can be used

% .
tedly even t¢ the point of erasing a Sonplete -

ot

—_—
S

Lrace.

Jco&e, and one may run a nucber ‘of test anples. Suppose the example of

Sectimn 7 is rum again as a test with K set to value 1., The synthesized
-~ ‘progrgn should st1ll find ome terninal stfing, ;becifically, the string a,

but it fails to becayed Q& of the last section fnadvertantly inserted an

H

error. 'Not realizfag why the prograc’did not print the correct result, we

can display the data structures, initialize to do ehé“example with N = 1,

» and in local mode use continue to advance the calculation through, step-by-step,’(’ﬂ-'

’

i 1
It will all go perfectly until ‘the instant string~2 is put on the stack and
is supposed to be printed.. Huch to‘odi sufprise, the synthesized progranm.

irmediately grases a from the stack” and proceeds to the next étep.“At this
. ‘ 4

point, we can back the calculation up to the point where a was about to be

— , -

R Fs
put on the stack, switch to globak\node to create a-.partial-trace, use continue

#

8

to put a on tbe*stack agaip, insert thg:priﬁt STRSTACK(J) instruction, use

‘ R el ‘ £ ﬁ ~
continue to check that the _calcWlation is proceeding normally, and terminate

{ L

the partial trace. ,The synthesized program will now include a corrected

transition which wi]&. do this example and all other examples correctly. Hotice

.

that the cause of error was discovered by examining the effect of the code
L3 Y . - LN . N
in the data structures, and the error,was.removed by forcing correct action

' —

at the point of error. Thus, errors can be found and corrected without direct

_ - *
——

reference to the code.. ™ .o PR - -
Q ' . ‘SE;ES & —
ERIC Lo : 5- .

.
s & I
) % @ « .- R . B -

s

The example of Section 2 18 now in perfect working order but, as usual,.

the programmer may wish to ‘change it in some“way. This can be done using

4

the override feature while running a new sample calculation. Aasume that it

is desired to put a counter COUNT int9 the’ program which counts the number

>

of terminal strings which have been printed, and then it igs desired to. print /

‘the total count before halting The programmer first declares the new variable

80 that it will Jappear.on the screen. (Declarations can be made or deleted
at any time.) Then he initializes the data structures to do’ an exaaple,

sets the aode to global, and used continue to begin advancing automatically

I .

through the example. Icmediately after the s;art instruction, he touches
o .

the override command, loads zero into COUNT, and then returns to usage of

the continue ‘Instruction. The effect of the override command is to return
g S e ﬁ i

to all previous traces and replace thzirz—-—{hj,ij)'tern that would have

been executed gt this point by the'duasy_synbol d. Since.this symbol d is

used as a séparator between traces, such an insertaion effectively cuts the

, 7
> /

trace‘into two gfrtial céaéig,as well ag eliﬁinaéing the unwanted transition. :
The progrfgger now proceeds forward’with the céntinqe feature until a ,
terminal string ts printed at vhieh time he tgaches override, increments
‘]
‘—*ﬁOUNT, and returns again té continue. As he ﬁroceeda, he will,be gratified
teadge COUNT autoaatically 1ncre=ented as othar terminal gtrings are generated
singce the continuously updated progr"’ffil have already incorpor;ted his

-

change. Finally, just before the halt instruétion, the prograemer uses

_./
override oné more time to causé COUNT to be pqﬁnted The automatically
VN o

' gsynthesized program will be idenfical to theﬁgarlier version except that
- . ?
the variable count is now included and will be_correctly initiakfzed, incre-
F

’fgzxted, and printed. —] ..

The fact that the override feature chopg, up earlier traces d:e-s . . C‘
-3 . £ 7
® not affect the convergence guaranteed by Theorem 2. That theorem states

EKC B ' | i 5_6'36':

-

wll Toxt Provided by ERIC

¥ ¥

——

/

ERIC

IToxt Provided by ERI

-

, e . <
that any enumeration of partial traces'converges on the desired Po’ and thus

an arbitrary amount of chopping on the e;rly traces will not prevent a correct
C .
synthesis. Of course, the decision to alter the synthesized program means

that the’goal program P, has been thanged, and the pu%pose of thé® trace

verride is to make the set of traces compatible with the’
-

H
éelqgions made

new goal prog
4 L 4

the override féatur

-’ 4

used without limit to make changes to a synthesized

program. The only cost infusing this feature is a slower convergenée to Po

)

. due to the information lost in the deletioms. . .

The subroutine feature enabl

L~

programmer to build a large program

~ - B
Jout of many smaller omes and to properly modularize his task. With an
i + _ - . .

aut0progr§E;:;> it also mskes it poBsible to deal with shorter traces. dnd

fewer data structures on the screen. As esch new subroutine is cregted, some
. P »

of its data structures can be designated as arguments to be supplied at the

4

time of the call., One of the instructiong available on the screen is CALL

SUBROUTINE which bay be used like any other instruction. If CALL SUBROUTIKE
’ 7

is hit at any time, the nages of all subroutines created to date including
. ’ 4

-

-

BecauSe chopping of the traces does not eliminatse convergence; <

the current subroutine appear on the screen and the user can designate which 7

- 5 &

one he wants. Then he touches among the current data structures the arguments

for the foutine. After the subroutine c&% is made, the connections at (a) °

-

and (b) inﬁfggure 6 are moved to, say,_(c) and (d) to reférence the called

program and its data structure contents. These connections, of, course, return

I3

to (a) and (b) when the subroutine execution terminates.

-

v,

Many :}mes a programmer in the-process of doing an example suddenly

realizes that he ;ould‘like to call a gubroutine to do a iask that he y@s

not anticipafed. In t?fg;gas;, he can execute CALL SUBROUTINE and type -
in the name of the desired su;:EUfi;;é;ven though it does not yet exist. *

fhen hg can inser{ on the screen the results the subroutine would have yiélded
A :

T 37

‘) 5-7

PR

]

¢

if it did exist and proceed onward. Thus, he.can do top down programming

in a fairly convenient manner. If he wigshes to execute this routine before

L4

creating its supporting subroutines, he, of course, mus¥be willing to f111

.

in by hand the results of every call to every nonexistant subroutine.

@ -

6. . AN IMPLEMENTED AUTOPROGRAMMER

s
An autoprogtamming system for integer calculations has been implemented

- .

and tested extensively by the authors. The system uses a Digital Equipment
Corporation Hodel 340 display with light pen connected t9'e PDP-10 computer.

o . B
The implemented instructions are add, subtract, multiply, divide, movd,
read, write, call subroutine, and note greater than, equdl to, or less than.

-

The allowed data structures are individual variaples, linear, and rectangular

ipteger arrays. o

Because some of the features described in this paper have only recently

been developed, they were pot incorpordted into the original design. The

-

synthesis algorithm “in this paper, for exanmple, ailows the user to freely'-

i

omit conditionals duriag a sample calculation as long as each conditional

.is properly inserted at least once. The implemented systemkmakes more

stringent requirements on the user. Continuous updating of the synthesized

program during a computation is not available so the continue and override

-~ -

features are not included. This systen does, honegef, include a convenient
« . ’—‘;‘/ - '/f
subroutine feature with recursion, the backup feature, local and global modes,

and the ability to add and remove data structures at. will.
. ! .
The Data Structuré Contents array of Figure 6 was igplemented using a

-

hash coding scheme with the key computed. from a combinatfon of the datg

. v N - ’
structure name, its associated subroutine name, the level of the call_(in -

a hierarchy of callg), and the array indexes if any. This organization _
. RS
is quite convenient in that it makes the subroutine featufe recursive without

¢

any additional coding and it effectively.innregses all arrays to an f%rin

———

&ize as long as the hash table is not full. Thus, an arrayxwhich is declared
v ‘ .
to be two-by-two will appear on the screen to be that size -at synthesis .

time. However, at execution time when the subroutine is ciiied, it can '

*

:
/ . . i
:

-

~ A
reference and use the 100,100—@5 entry of the array without ;pncern about

w——-“'—\

overflow. This 1s quite important because the limited size of the display
screen prohibits the declaration of large arrays.
An example g:?gram synthesizei’gp this system appears in Pigute 7,
< the sorting algorithm kn "quicksort" [8]. The program accepts three
arguments a_linear array A to be sorted and the bounds N1 and\NZ for the =
. soret. QUICKSORT (A,N1,R2) reorders the entries A(N1+1)# A(N1+2),.....,A(N2)
b ' into asce;;ing'order One ‘can create this zoutine by executing the Jlgorithm

on the example Iist (2,7,1,6,3). Set the poin{ers Pl and P2 to the entries

given by N1 and N2: b ‘ .:;p; ’ ' ’
3 2 7 1l 6 3 . p P -
-4 . . + !
Pl P2
. . -~ . VIV . .
Advance pointer Pl until we note that A(P1)>A(P2) i . =
Y . > .
2 7 1 6 3
4 B d ~

Pl P2 ; .) -

Exchange those entries and then decrease P2 until we again note that A(P1)>A(P2)

- 2 3 1 6 7 : - re 7
- t 4 - -~ .
Pl - P2 : e
T C - -
Exchange those entries and increase Pl umtil Pl=p2, - - - ~ , S
- 2 -x 5 6 7 : L g
e =TT - 4 . o . e ma
Pl=p2 ' ')

¥ Decrease Pl by one, call recursively QUiCKSORT (A,N1,P1) and QUICKSORT) '
(A’PZ N2) to complete the sort, and halt. Because the program is not synthe-

sized until the trace is completed on this é;stem, the recursiye calls to
QUICKSORT result‘in a megsage from the Eystem: "This v;utine does not exist!'.
- Bug the trace is correct and the fact that the cagis result im no action BE™"
- <
the time of the example calculation is of no concern. If it is important to
have the results of calls to none;ELtant routines updated on the screen during

. e 40 g .

‘ . ' N1 ='N2 —
. . Start -) Halt
- 4 * 1
y
‘. 1Y
, Pl « N1 9
. P2 « N2 .
’ . L 4 ~
<
< . ~ -
s - .
+ 17 P1 ') -

ARL)>A(P2)

A{P1) >A{P2)‘

"Temp N(f,}), Temp « A(P1l)

£(P2) + Temp _ 1A@2) « Temp | v,

Call QUICKSORT (A,N1,Pi)

_ Call QUICKSORT !éA,Pz,ri?."‘):~ '

PR

S ¥ e
FIGURE 7. A sorting routine created .f
‘ with an,autoprogrammer:

- -chxsgzg‘aafu,nz) ‘

s
a sample calcxﬁation,g these results can be inserted by hand using 10cal mode.
Next we execute another example calculatioh sorting the list (2,1) ’
. and an example ‘with arguments N1 = N2 =- 0, After campleting these three
traces, the prograzn of FPigure 7.is correctly sypthesized., .- . \ -

 Careful examination of Figure 7¢eveais that this autoprogrammer handles

conditionals differentIy from the algorithm of Section 4. After executing
“) -

an instruction,” the transition with the true condition is taken, and if no

condition is true, the unlabelled transition is taken. "Unfortumately, this

-

occagionally leads to.a nondeterminism with two o more valid transitions
which must be resolved either with additional traces’or by answering a“query

from the systenm.) 3

s

Another 'program created on the autoprogr Aag 4 compiler for a

. - .
simple ALGOL-1like language called Y73. This la ge has eeen"’used as

the source language for a compiler writing ‘exercise in programing classes ;
- >
anc%ha.s only integer mode, no arrays, and no subroutine feature, ,'l'he

/ available key words in Y73 are READ WRITE,. BEGIN, END, WRILE, POS and

NPOS. The WHILE statement has the form VHILE e .x. p; which means "while'

4

arithmetic expression e has the property x, continue repeating program p".-

+

x is either POS (pos!itive) or NPOS (not positive) and p. 46 a program bracketed - -~
by 2 BEGIN and an END A typical program in Y,73 appears in Figure 8. The

object code for the compiler was IBM 370 maghine language. e
E& 1 — N L .
b 0f course, both the :f.npuriy and the oytput for thé compiler had to be
* ' coded 4into integ g.é by hand because the current autoprogrammer handles 7 -

L rr

on.ly integers.‘ Thus, the input tokens were coded 1 for + 2 for -,

8 for ; $s eeees , 10 for READy.. ..., and 17 for BEGIN. Identifiers were :

coded 21 22,.....,29 and constants were coded'30 for 0, 31 for 1, etc.
This means that the :anut program was a sequence of integers‘ in the case

of the program of Figure 8, it would be 1%, 10, ‘ZL,?E.‘... .

RIC : o « S
JAFuitext provid: ic = L]

. T] - . &N ' = -

BEGIN ' < - ' .
‘READ . N; : \ .
. WRITE N; L R J
. WHILE N-1 .POS. ' T

- BEGIN _ '
- ' WHILE ~ K-N/2%2. .P0S.- ~ - »
. BEGIN ‘ .
N1+ 3 %N -

~e

- - g s
- - s WRITE &; ‘
: END; : 4 B
= N/2; -

- WRITE N; .
. END; - - - -
END:)) .] ‘ ' ’

e

’ »
E .
= - -

FIGURE-8. A program in the language Y73 which was compiled wi.;h an auto- -
programmer created/compiler.

b . v, - é . . -
. f” "o X »
d Ce -
z ‘;
L . $ ‘ i '
- - . I .
s .

‘An example eutput instrucnon from this compiler wov..ld be "load into

»

‘

J register 5 fronz the location addressed by base register 12 with a displacement ’

of 20", This instructiorf‘-rould be 385C0014 in IBM hexadecimal and would be

prid‘ted out by «the sautoprogrammed compiler’ as, ¢
\) INST = 88, 88 (de:chnal) = 58 (hexadecimal) ’ oy,
R "= 5° ’ . -
. R2 =32 * !
, _ Disp=28 -
'\) Excepc for this coding problem, the object code was directly executable on .
. . the IBM machine. w and HRI# insbruction were implemented with locally
defined supervigor call instructions. ' .
This autoprogramming systém has been used to create the above aentioned
¥
compiler which involved fifteen subroutines, a program synthesizer similar
‘
to the Q3 fumeion described above, and dozens of other prograns. T‘ne amount
of effort required to prodé,ce thede programs does not differ greatly from
N that required using more ?:onventionai systems. It is hoped that ae 21l the
featurea discussed in the paper%become implemented and as others are
¢ developed, autOprogramning will, in fact, become a degirable alternative
N - sl ' :. ’ & »
~ to conventional systems. - = .
. . '
¢ , o .
Ao -.
% ‘, Jlif - * ~ *
- . o3 A] :
) _ A ' - . e - T, %3
- ’ ” ’ ‘ ; -) *
" Vb A

- ? .
“
-

N
-
-
23
4
rd
o

7. DISEUSSION . - ! ‘ ot
. : 3 L. ' Y-\ ‘
Autoprogram=ing is by nature 2 language independent concébtuand can

provide the context for many Hifferent'kinds of computicé. The approach is -

< - - "
designed to put the user in in;inate contact with his data st:uctures anﬁ .
the events which affect thex. It enzbles the ugér to creaée, debug, and o \{L' .

r- »

cedify nis program by yorking v1tp che effects of the code tather than the .

. code itself, The approach puts the' aan and uachine in a truly in:era;tive —

relationgnip at the time when the soufce code is being created and it ;-
breaks away froo the bétcb mode psycbolggy:'.u¥ite the program, type the coée, e
and compile. . - o . T, -) . ’::-_
i - C o A '*. . ‘

Our research has emphasized si:plicity of aesign both in the au;oprograc- “
ning language and in the total system. Becagse tne language is without *’) "

. t
&

syntax in ‘the traéitional sense ' and because tne results of each inmstruction

are update ‘*“édiately before the use?'s eyes, the ampunt of ratning required
for a new user is miniral. We belteve that the special sy e:'features K .
such as continue, backup, and override sbould be few in mumber and so simﬂle ;
and.obv!ous in their operation thaf_gbe novice prograzwer can use thex
irmedistely and without hidden éangersh ‘, . . .;
6ur current work is airced at developing‘lacguaée features And error L.
correction mechanisms which will enable the prograr—er :é 52 more casual ;/
and less deia;led in his execution of exaﬁpleé and to still maintagn the o

expectarion that a correct program will be ¢reated. ’ *

P ‘ A - P

.

8. 3:§L10c125§§4' « 7 :

- , : ~) - —

: . - . € By / ‘
1. Amarel, S., "Representations and ¥odeling in Problems of ;kg-téJ “ - - -

’

Formation™, MacBfige Intelligence 6 (¥eltzer _and Miehie, eds.) American . =
AP Elgevier Publishing Company; Inc., Kew York 1971. .
© 7 - 2. Biermanm, A. W.., "0n the Inference of Turing Machines from Sarple T
. Cozputations"”, Artificial Intelligence 3,.1972. f

3. Blermamn, A. ¥., Baun, R. 1., and Petry, 7. E., "Speeding Up the Synthesis
of Progra=s from Traces™,’ to appear in IEEF Transactions on {ozputers.

-) s M
4. Biercamm, A W., Baum, K. I,, Krishndswary, R., and Perry, 7. Z.,
"Autoprograr—er”, ten-tinute rovie. ' R
R Theoretic
iy, 1973,

P

Q

2.' Blum, L., and Blum, ., "Inductive Inference: A Recursi
Approach”, Recursive Function Thecry Newsletter, o, €, -
b4 —~—t

N

6. Feléman, J. 4., "Soze Decidability Results on Gra==arical Inference ;
and Cozplexity”, Inforratien and Control, 1972 ’ ‘

-

7.» Gold, M., "Language Identification in the Lizit”, Inforzation and Control, 1967 °

8. Hoare, C. &, R., "Quicksort”, Co-puter Journal 3, 1962.

9. Lee, R. C. T., Chang, C. L., and Waldinger, R. J., "An Irproved Progranm
' Synthesizing Algorithe and its Correctaess"”, Co——unications of the -
ACQH, March, 1974, ’

&

-

10. Hax;da, Z., and Waldinger, R. J., "Toward Automatic Prograz Synthesis”,
Comunications of the ACH l&,_ Ko, 3, 1971.

" 11. “Wakdirnger, R. J. and Lee, R. C. T., "PROW: 4 Step Toward Autozatic
Program Writing”, Proceedings of the International Joint Conference son
Artificial Intelligence, Washington, &7 T. 1969. .

*

